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Classification of toppoints for the gradient
squared
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Abstract
In this paper we present a classification of the toppoints for the gra-
dient squared. In this approach the parameters for the critical curve
are derived from implicit differentiation of the defining equations. The
two generic events for the gradient squared in a family of images are:
(1) the creation or annihilation of a saddle and an extremum, (2) two
minima and a saddle merge or they split into one minimum.

1 Introduction

We study the evolution of critical points for some functional of the image L.
We are interested in topological change of the critical point configuration.
The evolution arises when the image evolves according to some partial dif-
ferential equation with the raw image I as boundary condition. The heat
equation is a partial differential equation which has our special interest for
image evolution:

Li(z,y;t) = Lyg(x,y;t) + Lyy(z,y; 1), L(z,y;0) =1

*fogh@diku.dk, http://www.diku.dk /users/fogh/
tpeterjo@diku.dk, http://www.diku.dk/users/peterjo/




Partial derivatives are denoted with lower-case indices. The solution is called
a scale-space image. For a general evolution we have a family of images
L(z,y;t) indexed by t and with domain variables x,y as a solution to a
PDE. The critical points for the image are defined by the equations:

Ly(z,y,t) =0A Ly(z,y,t) =0 (1)

In the (z,y,t)-space the two equations implicitly define a curve. We denote
it the critical curve.

The used scheme calculates the derivatives of the critical curve r(s) =
(xz(s),y(s),t(s)) from the derivative of the family of images by implicit dif-
ferentiation. Hence the above equations are derived with respect to the curve
parameter s:

d'fl
@Lw(l'(S),y(S),t(S)) =0
dn
@Ly(x(s)ay(s)at(s)) =0

We want to study the local structure of these solutions in the neighbour-
hood of toppoints. A toppoint is a point on the critical curve where the
determinant of the Hessian is zero:

Ly (1) Ly (1) — L;ch(r) =0

The above equation and the defining equations (1) determine the toppoint.
A toppoint marks a position in (z, y, t) space where the topology of the image
changes. At a toppoint critical points appear or disappear as a function of
t. Johansen [1] has classified the toppoints of the image both for general
evolution and in the specific case of scale-space images according to the type
of the intersection of the branches of the critical curve.

In this paper we want to study the local structure at toppoints for the
gradient squared g when the image evolve. Hence, the following functional
is under investigation :

9(z,y,t) = Ly(z,y,t)* + Ly (z,y,1)° (2)

Thus the above equations will be applied to g. The generic results for the
gradient squared have been obtained by Olsen et al. [2]. That is whether a
certain type of topology change can occur generically. The emphasis in that



paper is on scale-space images. It is shown that the generic topology changes
“can go both ways” meaning that critical points can appear or disappear
generically. The result on appearing and disappearing critical point is reached
using heat polynomials as the local model.

The knowledge of the generic topological changes has been utilised by
Olsen et al. [3] for multi-scale segmentation. Each local minimum in the
gradient squared is assigned a segment. The change of segment topology
with scale is derived from the change of minima topology. Based on this the
segments are linked over scale. The linking makes it possible to segment the
coarse scale structures and localise the segments on a fine scale.

Pratikakis et al. [4] has also based their segmentation scheme on the
knowledge of the generic changes.

2 Gradient Squared Evolution

We want to study the local structure at toppoints for the gradient squared

denoted g, see equation 2. In particularly we are interested in the case where

the image L evolves according to the heat equation but the derived results

will hold for a general evolution. We evaluate all expressions in a Cartesian

coordinate system with origin at the toppoint and with the (z,y) directions

oriented according to the local geometry in order to simplify expressions.
On the critical curves the spatial derivatives of g equals O :

(5) -0 ) (5) - >

From Equations 3 it is clear we can split the solutions in two cases, namely
case A in which the gradient for L equals zero (critical points for the image)
and in case B in which the Hessian for L. degenerates in the direction of the
gradient of L (perpendicular intersection of flow lines and parabolic lines of
the image).

For later use we write derivatives using indices and implicit summation
over ¢ for the variables x and y:

gi = 2L;Ly
gjk = 2LigLsij + 2L, L;jy (4)
ikt = 2LigLi; + 2L Ly + 2Ly Ly + 2L, L
Gikim = 2LigimLij + 2L Lijm + 2Lk Liji + 2Lk Lijim
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+ 2LymLijk + 2Ly Lijkm + 2LimLijie + LiLijkim,

We assume the critical curve r(s) = (z(s), y(s), t(s)) is parametrised with
a parameter s. Now we want to study the tangent of the critical curves. If we
substitute g for L in the defining equations 1 and differentiate with respect
to s we have:

dgs
% = I,gmm + y,gacy + t,gzt =0 (5)
dg
d—sy TGy + Y Gyy + gt =0 (6)

Where " indicates derivation with respect to s. We can continue differentiat-
ing to gain information on the higher order derivatives of the curve:

d?g

ds; = x'ngT' + y'ngyT' + t'ngtT' + xugmm + y”gmy + t”gxt =0 (7)
dQQy o ' ! T, ! " " "o _

ds2 TV GayT + Y Vgyyr + TV Gyt + 37 Goy + Y Gyy + 1 gye = 0 (8)

We will also normalise the parametrisation such the curve is parametrised
by arc length:

$/2+y/2+t12 = 1

2.1 Case A

In case A, being on a critical curve for the gradient squared g implies that
L, =0AL,=0. From equation 4 we have the elements of the Hessian and
now we evaluate for case A.

_ 2 2
Gzy = Q(Lm + Lyy)Lwy
Gyy = 2(Liy + L32/y) 9)

By selecting orthogonal (z,y) directions at a toppoint where the Hessian
for g has rank 1 we can have g, # 0 A gz = 0 A gy, = 0 which implies by
equations 9 that L,, = 0A Ly, = 0 A Lg; # 0. Hence, the chosen directions
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for (x,y) are the principal curvature directions for both the image L and the
gradient squared g.

Next we calculate the remaining terms in the equations 5 and 6 expressed
in L-derivatives:

gzt — 2thLz‘z‘
Oyt = 2(L:cthy + LytLyy + LwLwyt + L?/Lyyt) =0

Equation 6 is vacuous and does not reveal anything about 7'. We need
another equation. We evaluate equations 7 and 8 under the case constraints:

d?g

dsf = 2'Vguur' + YV auyr’ + 'V aur' + 2" gss + 1" g5 = 0

d29y _ /v ! IV ! t’v I — 0 10
e T NVGeyt + Y VGyy +1TVgyur = (10)

Equation 10 seems promising for determine /. So the involved g-derivatives
are calculated in terms of L-derivatives using the constraints L, = L, =
Lyy= Ly, =0:

Yooz = OLlgozlos

Grzy = ALpgyles

Joyy = 2Layyles

Gyyy = 0

Oyt = 2(nyth + Lot Ly + Lyth‘yy)
Qyyt = Q(Lthwyy + LytLyyy)

Gyt = A(LatLgyt + Lyt Lyy:)

Thus gy, is always zero at toppoint for this type of critical curve! This
reduces equation 10 to:

2

%gy = Goay®” + 292y 'Y + 20008t + 2951yt + gyut”
A(2" Lz Lagy + 'Y Lag Layy

x’tl(Lthmmy + LyyLyy + LyyyLyt)

ylt'(Lthzyy + LytLyyy) + tIZ(thLmyt + LytLyyt)) =0 (11)

+ +



and equation 5 was in term of L :

L,
22 1’ 4+ 2Ly Lopt! = 0= 2/ = —t' =2 (12)
wa

Substituting equation 12 into equation 11 and assuming L,,, # 0 we get two
solutions:

r' = (0,9,0)
= (-t Loty LatLayy = LaaLyyt t")
Lug’ Lz Lyyy ,

Hence there are two tangents through the toppoint, one in the y-direction
and one in a transverse direction.

We can use a normalisation of the curve parameter for fixing the last
degree of freedom in 7'. We get two solutions with same absolute value but
opposite signs. They correspond to opposite traversals of the curve. We just
show one here. First solution is :

r'=(0,1,0)

The second solution is bit more complex.
Let b = Ly Lyyy — LygLyye, a = (L2,L2, +b*+ L2 L2 )2 and solve r'? = 1:

yyy Tz Yyyy
2 12 1/2
2 2 2 12
Lthyyy + 0% + LmLyyy
_Lyyy Lwt
'I"I = a b (13)
waLyyy

2.1.1 Classifying the type of points on the curves

Next we want to classify the type of critical point on the curves through
the toppoint. We follow Johansen and approximate the determinant of the
Hessian. We have two cases corresponding to the two different tangent direc-
tions (one solely in the y direction and one with components in all directions
including t) .

_ | Gz + ngwrls ngyrls

Det(H,) = 3
ct(H,) Vguyr's Vgyyr's + 5(V2gyyr'®? + Vgy,r") s* +0(s%)

(14)



First solution
For the first solution r' = (0, 1,0) equation 14 evaluates to:
Det(Hg) _ 9zz T 9zxyS GxyyS &2 + 0(83)

GzyyS %(gyyyy + Gayy” + gyytt”)

1
= 52(§9ww(9yyyy + Guyyt" + Gyyt") — gZyy) +0(s%) (15)

One more equation is derived by implicit differentiation of equation 8 and
simplified according to case conditions and the specific tangent solution:

d3
—diy = Vigr'erer +3Vigrer + Vg,r"
= Gyyyy T+ 3gyyw$” + 3gyytt” =0 (16)
=
—Gyyyy /3 = gyywx” + gyytt"

We substitute the result into equation 15:

1 1
Det(H,) = 32(§9zz(9yyyy(1 - g) - gﬁyy) + 0(53)
= 48°L% L% + O(s%)

TTYyy

The determinant is always positive, consequently we conclude that lo-
cally the curve consists of only extremum points. The type of extremum is
determined by the sign of the trace of the Hessian:

Trace(H,) = gz + O(s) = 2L2, + O(s)

Since locally the trace is always positive we conclude that the curve consists
exclusively of minimum points.

Second solution

For the second solution given in equation 13 we have:

det(Hg) = S gww(_gwnyynywt + gyythwLyyy)/a + 0(52)
= s4L3 L2 Ly/a+ O(s?)

zryyy
a = (Lithyy + (Lthzyy - LmLyyt)2 + LiwLZyy)%
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We assume L,; # 0. Consequently the determinant is only zero for s =
0. The sign of the determinant changes when the s-parameter passes zero.
Hence the curve consists of saddle points and extremum points and the switch
between the two types happens for s = 0.

The trace of the Hessian is :

Trace(H,) = gz + O(s) = 2L%, + O(s)

Hence the curve consist of saddle points and minimum points.

2.1.2 The t-direction

The t-axis has special meaning since it describes an evolution. It is mean-
ingful to give this axis a direction (in contrast to the spatial z, y-axis). We
want to know if critical points can both appear and disappear when the pa-
rameter ¢ increases. In the image evolution this corresponds to appearing
and disappearing structure.

First solution

For the first solution we calculated that #(s) = O(s*). We determine ¢” to
gain some information on the behaviour in the ¢-direction. We use equation
7 which reduces for this solution to:

d2
@gm = gzyy + gzz-T” + gmtt” = O (17)

Solving equations 17 and 16 for z” and " and using gy, = 6(L%,, + L2,,)
we have

o — — Ly Lyt + Lt Lyyy
La:a:Lyt
" = M
Ly,

When ¢” > 0 the curve is concave, and if ¢ < 0 the curve is convex.

Second solution

We have calculated in equation 13 that ¢(s) = sLzzLyy,/a+ O(s?). Since the
sign of t(s) changes with s, both positive and negative ¢ values occur on the
same curve.



2.1.3 Both solutions

Now we want to relate the two curves (the two solutions) which of course are
related through the image derivatives. We want to determine the possible
configurations of the two curves. The ¢t-component of the two curves are:

—L
ti(s) = —Lytyy s+ O(s%)
Y

ta(s) = sLpzLyyy/a+O(s%)

First we assume that %;’t” > (0. Hence the first curve is concave.
Next we check the positive t-part of the second curve. That is, we assume
$LyyLyy,/a > 0. Since a is positive it implies sLyy Ly, > 0. The determinant
of the Hessian evaluates to:

sign(det(Hy,)) = sign(sLy, L2, Ly) = sign(sLogLyyy)sign(Lyyy Ly) = negative

Hence the positive part of the second curve consists of saddle points when
the first curve is concave. The negative part of the second curve consists of
minimum points when the first curve is concave.

In the opposite case f”y < 0 the reasoning follows the same line. The
first curve is convex. The posmve part of the second curve consists of mini-
mum points and the negative part consists of saddle points.

So we always have two minima (the first curve) meeting a saddle (second
curve) and becoming a minimum point (second curve). This event can occur
either as an annihilation (three critical points merge into one) or as a creation
(one become three). See figure 1 for an example.

2.1.4 Summary

Case A occurs in a critical point for L. It is assumed that the Hessian for
L has rank equal one. For convenience the coordinate axis are chosen to be
the principal curvature directions and such that the curvature in z-direction
is non-vanishing. The conditions were the following:

Ly = 0 A Ly=0 A Lyy=0 A Ly=0
Lag # 0 A Lyy#0 A Ly #0

In the case of Gaussian scale space we have Ly = Lz, + Ly, # 0. The case
conditions lead to two intersecting tangents. One along the y-axis and one



Figure 1: Two minima and a saddle merge into one minimum for increasing t.
The saddle points are plotted with a dotted line and the minima points with full
lines. To the left is depicted the projection to the three axes-planes (y,t), (x,t) and
(x,¥). In the right column is plotted the curves in “3D”. The coefficients for this
plot are: Ly, = 1,Layy = 1.1, Ly = 1.2, Lyy = 1.05, Lyyy = —0.1, Ly, = —0.05. This
example shows a merge of critical points as predicted by the algebra since —Lyyy/Ly; is
negative.
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not contained in any of the axis-planes. Second order derivatives for the first
solution reveal the behaviour in the ¢-direction. There are two configurations:
Two minima (the first curve) meet a saddle (the second curve) and change
into a single minimum point (second curve) when ¢ increases in value. An
example of this event is plotted in figure 1. The reverse event is also possible:
one minimum point changes into two minima and a saddle with increasing
t-values. Simply reverse the t-direction in figure 1 and you have the latter
event.

2.2 Case B

In this case the Hessian for image L degenerates in the direction of the
gradient for the image L. By a rotation of the coordinate system we choose
the gradient direction to be the y direction. In this coordinate system the
constraints are:

Ly#0ALy=0ALy =0ALy =0A Ly #0

The above constraints and equation 3 imply that the gradient of g equals
zero. We calculate the needed g-derivatives under these conditions.

9ay/2 = LyLyy,
Gyy/2 = LyLyy,
9et/2 = LgtLgg + LyLgy
gyt/ 2 = LyLyy

Goyy = 2LagyyLyg + 2LyLyyy,
Gyyy = 2LyLyyyy

The determinant of the Hessian of g is zero at the toppoints

JzaGyy — giy = (wawa + LyLLELEy)LyLyyy - L2L2 =0

yTxyy T
By implicit differentiation once we have:
gwwml + gzyyl + g;cttl =0
gmyxl + gyyyl + gyttl =0
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We assume g;50yt — gatgzy 7 0. This is generic since g0yt — gatGay =
4(LygLyy + LyLyyy)(LyLyyt) — 4(LytLyy + LyLyyt)(LyLyy,) is not in general
ZEro.

! gmxgyy - ggy

9xt9zy — GraxGyt

t' = =0

Let us assume Ly, # 0 then
L

! ! —~TYY

y=-x
yyy

Normalisation of the tangent now gives:

LQ
le + y12 — .’E’2(1 + myy) — 1 =
L2
Yyyy
.’L‘I — Lyyy
2
Lmyy + Lzyy
yl — _LSU?/?/
Lgyy + LZQJZI?/

The tangent to the critical curve lies in the z-y-plane and the direction
relative to the L gradient direction y is given by the above formula. After
normalising the tangent we have two solutions. Each solution corresponds to
a direction of traversal. So essentially we have one tangent direction. Next
we want to determine the type of points (extremum or saddle) on the curve:

o 0
Det(H,)(s) 0 Vg,r's + 0(52)
L ~L, \
= gm(gwyy = + Gyyy = )s + O(s%)
Lgyy + L.vQ;yy L?vyy + Liyy

= 5 2Ly + LyLowy)
(2L$nyII + 2LyLmyyy)Lyyy - QL?/Lyynymyy
L2 + L2

Yy Yyy

+0(s?)

We conclude that the type of the critical point changes with sign of s.
Hence the curve consists of saddle points and extremum points. A new set
of equations can be set up by implicit differentiation once more. By this ¢”
can be calculated and it can be determined that both positive and negative
values are generic. This means both creation and annihilation events can
occur.
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