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The Rho Cube : some results, some problems

Horatiu Cirstea, Claude Kirchner, Luigi Liquori, Benjamin Wack

The rewriting calculus [1], or Rho Calculus, integrates in a uniform way matching, rewriting
and non determinism. Its abstraction mechanism is based on the rewrite rule formation: in a
p-term of the form [ — r, we abstract on the p-term [, and it is worth noticing that when [ is a
variable z this corresponds exactly to the A-term Az.r. When an abstraction [ — r is applied to
the p-term wu, which is denoted by (I — 7)*u, the evaluation mechanism is based on the binding of
the free variables present in [ to the appropriate subterms of u. Indeed this binding is realized by
matching [ against u, and one of the characteristics of the calculus is to possibly use information
in the matching process such as algebraic axioms like associativity or commutativity.

At that stage, non-determinism may come into play since the matching process can return zero,
one, or several possibilities. For each of these variable bindings, the value of the variables are
propagated in the term r yielding zero, one or several (finite or not) results. In a restricted way
this is exactly what happen in the -redex (Az.r)u, which is simply denoted in the syntax of the
Rho Calculus (z — r)*u, and where the match is trivially the substitution {z/u}. Therefore, the
Rho Calculus strictly contains the A-calculus and the possibility to express failure of evaluation
or multiplicity of results is directly supported. The rewriting calculus is thus a very general and
powerful formalism since it allows one to simply represent not only lambda-calculus and rewriting
but also object calculi [2].

The static and dynamic semantics of the rewriting calculus have been extensively studied and
more recently, the properties of the calculus in a typed context have been investigated. In particular,
a new presentation ¢ la Church, together with nine (8+1) type systems which can be placed in a
p-cube that extends the A-cube of Barendregt, has been proposed [3]. We study the properties of
the different typed calculi and the relationship with corresponding logics.

We have proposed an original solution to the different problems related to the identification
of the standard “A” and “II” abstractors [4, 5]; our approach is essentially based on the complete
unification of the two operators into the only abstraction symbol present in the Rho Calculus, 7.
e. the “—” operator. This unification is, so to speak, built-in in the definition of the Rho Calculus
itself. The most powerful type system in our cube (namely the ninth one) is a variant of the plain
Calculus of Constructions and it is essentially inspired from the Eztended Calculus of Constructions
(ECC) of Z. Luo [6]. In ECC, indeed, we have an infinite set of sorts, i. e. s € {x,[0;}, with7 € N,
and the extra axiom F 0O0; : ;41 with ¢ € N.

We have shown some classical properties for different typed calculi: correctness, subject reduc-
tion, consistency. We should notice that, in our case, the additional type system ECC is essential
since an infinite hierarchy of sorts is needed. Since the plain p-calculus is not confluent, we have to
deal with confluent strategies. Therefore, the typing rules have to be slightly modified in order to
avoid possible clashes with the conditions imposed to recover confluence. As already mentioned in
previous papers, having only one abstractor gives the possibility to introduce smart typing rules,
but this leads to the failure of the uniqueness of typing. Still, we have an insight at how many
distinct types a term can have, and we prove the uniqueness of typing for p2, the polymorphic
p-calculus.
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Evaluation Strategies for Calculi with Explicit
Pattern Matching and Substitutions

Julien FOREST
Laboratoire de Recherche en Informatique (CNRS UMR 8623)
Bat 490, Université Paris-Sud
91405 Orsay CEDEX, France.

Higher and First-Order Pattern calculi such as for example [BTKP93, CK99]
were proposed as a theoretical model for programming languages with function
definitions by cases (CAML [Obj], HASKELL [HPJe92]).

An evaluation strategy gives a deterministic way to proceed with evaluation
of terms of a given calculus. Thus for example, the so called lazy and strict
evaluation strategies are the most used in implementation of functional pro-
gramming languages. Intuitively, a lazy strategy evaluates a subterm of a given
term if and only if this evaluation is necessary to continue with the evaluation
of the whole term. A strict strategy first evaluates the sub-terms of a term,
even if these evaluation are not necessary, and only then evaluates the term.
Functional languages such as CAML use strict evaluation strategies whether
HASKELL implements a lazy strategy.

In this talk we are interested in the encoding of the Higher-Order Calculus by
using explicit operators for pattern matching and substitutions. In particular,
we present two different evaluation strategies for the T PCg s calculus of Cerrito
and Kesner [CK99]. For each of these strategies we specify two evaluators,
namely a big-step one and a small-step one. This work on calculi with explicit
pattern matching and substitutions can be seen as a extension of the work of
Hardin, Maranget and Pagano [HMP95].

The more interesting case is the small-step lazy evaluator which breaks the
orthogonality between pattern matching and substitution in such a way that
propagation of substitution is only performed when an explicit substitution op-
erator appears as the head constructor of the term being evaluated.

To illustrate the difference between the orthogonal approach and our, let us
take the following T PCgs-term:

My = Let <xy,22> be <t1,t2> int

where is a term and 1is a pattern.

Any term of the form Let N be P in M in the TPCgg calculus can be
understood as a classical Ad-term (AP.v(M))v(N), where P is a complex pattern
and v is a canoniocal translation from TPCgs to the A-calculus. In order



to evaluate the term My the first point consists in decomposing the pattern
matching part of My. Indeed, the pair pattern < ¢;,%5 > will be matched with
the pair term < 1, z9 >, thus giving:

My = Let 21 be t1 in (Let x4 be to in t;)

Now, the variable pattern #; will be matched with the variable term xq, thus
giving:
M2 = (L@t Ei) be tQ n tl)[tl/l‘l]

Now, substitution must be propagated into the sub-terms of M, thus giving:
Ms = Let x5[s] be ty in t1[s] where s = t1 /a1

Here is the point where the orthogonal approach differs from non-orthogonal
one.

The orthogonal approach will first propagate the substitution s into the
sub-terms (in two steps), thus giving:

Mg = Let g be ta in x;
Then, the pattern ¢ will be matched with the term 25 (in one step), thus giving:
M§ = 21[ta/ zs)
Finally, the evaluation of the substitution gives the final result

MSIJL‘l

The strategy that we propose in the small-step lazy evaluator applied to the
term M3 consists in first matching (in one step) the pattern 5 with the term
zs[s], thus giving:

M = st /5]
Finally, classical propagation of substitutions can be performed in only two steps
in order to obtain the final result ;. Thus for this particular example, we have
shown that the non-orthogonal approch leads to less calculi and is lazier than
the orthogonal approch. This result seems to be valide for any T PCEgs-term.

Finally, our purpose in this talk is to theoretically define what both strict
and lazy strategies for calculi with explicit operators for pattern matching and
substitution are. Moreover we show that in the case of the lazy strategy, one
maybe should improve the laziness of the strategy by not treat pattern matching
and substitution as two orthogonal operations. I hope this result should be
extented to higher-order pattern matching calculi.
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Term Rewriting with Variable Binding

Makoto Hamana,

Department of Computer Science, University of Gunma, Japan
hamana@cs.gunma-u.ac. jp

The theory of higher-order rewriting is recently very active research area in rewriting. We
present a variation of higher-order rewrite system, called Binding Term Rewriting Systems
(BRSs). This is based on the recent development on the mathematical semantics of abstract
syntax with variable binding by Fiore,Plotkin and Turi [FPT99]. This work is a continuation
of our previous work on a logic programming with variable binding [Ham01], which was also
based on Fiore-Plotkin-Turi’s semantics. In contrast to most of other higher-order rewrite
systems, BRSs do not use the lambda calculus for the binding mechanism, instead, own finer
notion of binding is defined in the term language by type-theoretic approach.

A motivating example of our BRSs is a set of rewrite rules for the untyped lambda
calculus, which can be considered as a typical example of a system involving variable binding.
BRSs are defined in typed language, where the only base type ¢ and the types [N]o of
abstraction from a type o are assumed. Assume three function symbols app : ¢,¢ — ¢,
lam : [N]c — ¢+ and sub : [N]s,¢ — ¢ for the lambda calculus. Then we can represent the
lambda terms Aa.M as the BRS’s terms lam([a]M), where [] is own abstraction operator
of BRSs. For example, Ac.\d.d is represented by lam([c]lam([d](nam(d)))) where nam(d) is a
name which represents a variable d of the lambda term. Then S-rule can be written by a
BRS’s rewrite rule:

¢ : aF app(lam([a]t), s) = sub([a]t,s) : ¢ : @.

Here the term sub([a]t, s) expresses a usual meta-level substitution ¢[a := s] in object-level
(i.e. BRS’s) term. To make it actually a substitution, we can define the following rewrite
rules:

y:0:@ Fsub([alnam(a),y) 2>y :v: @
y::b Fsub([alnam(b),y) — nam(b) N
e1::a, ex:v:a, y:1:@ Fsub([alapp(e1, e2),y) — app(sub([aler,y), sub([a]ez,y)) RN
z::a, b, y:0:0 Fsub([a]lam([b]z), y) — lam([b](sub([a]z,y))) : ¢ : @.

BRS’s rewrite rules are also typed. Behind the colons in the right-hand sides, type infor-
mations are written; the first is a usual type and the second is called a stage which means
(possible) free names in the rewrite rules. The important thing in BRSs is that different
names written in a term denote actually different names. This means that in the second
rule, the name a and b can not be the same, so the term sub([alnam(a),t) can only match
the first rule.

The front of F in the rules are typing contexts. For example, y:.:& means that y is the
type ¢ and can be substituted by a term having no names, because it has the stage @. And
z:v:a,b means that x can contain the free names a and b. The matching can be performed
as similar to the first-order case”

" The matching algorithm in this term language can be given by a special case of the unification
algorithm [Ham02a).



So for example, the term sub([a]lam([b]f(nam(a),nam(b))), nam(c)) can match the last
rule with the substitution  — f(nam(a),nam(b)). This is very different from other higher-
order systems because this substitution makes the names a and b caputered by the binders,
which is usually avoided by suitable a-renaming. This kind of capture is admitted only when
the variable declaration has a stage which includes bound names such as z:.:a,b. Namely,
stage controls the form of substitution.

Names are a bit similar to constants in TRSs, which cannot be substituted by terms
directly like variables. So if we need to replace a name by some term, we define a set of rules
for substitution such as sub in a BRS. Of course, we have a-renaming of terms, say, the
term sub([d]Jnam(d),nam(c)) can match the second rule. We have also a different kind of a-
renaming, which can be considered as a-renaming between rules (not terms). The difference
between A-binder and BRS’s binder [.] appears here. For instance, in the rewrite rule

z:1:at f(la]z) = g([a]z) :v: @

the underlined a’s are actually the same a because we have such ” a-renaming between rules”.
So a-renaming of this rule is replacing all these a’s with some other name. This is not in
the case of Higher-order rewrite systems, e.g. for the rewrite rule

f(Aa.z) = g(Aa.x)

the underlined a’s are not actually the same a because of usual a-conversion.

We first define the type system of the term language, then develop equational logic and
rewriting for BRSs, and show a correspondence between them. Our system BRSs is rather
similar to the first-order term rewriting system (TRSs) than other higher-order rewrite
systems. In particular, our main result is BRS rewriting can be simulated by TRS by giving
a translation from a BRS to a corresponding TRS. The translation is just forgetting all
type and stage informations and regarding the binding and name operators as usual first-
order function symbols, and taking all possible variants with respect to free and bound
names of the original BRS’s rewrite rules. Since the translated TRS’s rules do not have
the stage restriction, it may produce more rewriting than the original BRS’s. Hence, the
translated TRS is terminating, then so is the original BRS. As a result, it is possible to
prove termination of BRSs by using the proving techniques for termination of TRSs. Also
we will discuss comparison between BRSs and other higher-order rewrite systems.

For further details the reader is referred to the draft [Ham02b)].
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UNTYPED TERM REWRITING

ABSTRACT, HOR’02

Daniel Leivant*

This note is a crude initial statement of a simple idea, with a rough outline
of some of its potential applications and uses. Since the author is far from being
an expert in the field of rewrite systems, he would be particularly grateful for

feedback.

1. THE U-CALCULUS.

Term rewriting is word rewriting regulated by first-order functionality. More
generally, in higher-order rewriting term application is governed simply-typed
functionality. We consider a formalism U of untyped term rewriting, in which
the parsing of terms by their applicative structure is a regulator still in force, but
with no typing restriction. In this note we illustrate the power of the calculus
with some examples, and outline potential relations with computability in higher
type and reasoning about programs.

The syntax of U posits two kinds of identifiers: the object variables and the
functional parameters. We use z,y,... and f,g... as syntactic parameters for
these kinds, respectively. Terms are generated inductively from identifiers (of
both kinds) by application: if t and s are terms, then so is t(s). We call a term
computational if it is of the form f(t1) - - - (ty,), i.e. with a parameter in the lead.
Thus f(z), £(f), f(2)(f), f(z(f)), z(z), 2(f(2))(f) and z(f(z)(f)) are all terms,
but only the first four are computational. A rule is a pair t = t/, where t is
computational. The inference-rules for rules are instantiation, replacement, and
composition:

t=t q=q t=s s=q
{a/z}t = t') {a/z}t = {d'/z}t t=q

A procedure is a finite set of rules.

Examples.
1. First order term-rewriting.

2. A special case of first-order term-rewriting is standard word rewriting: a

word a; - - - ay is identified with the term ay (- - (ag(e)) )
3. SK Combinatory Logic.

4. Simultaneous recursion equations, whence the AY-calculus.

*Computer Science Department, Indiana University, Bloomington, IN 47405.
leivant@cs.indiana.edu. Research partially supported by NSF grant CCR-9309824.



2. INTERPRETATION OF THE LAMBDA CALCULUS

The Lambda calculus can be simulated within Combinatory Logic. That
simulation can also be described directly. Let us use sans-serif characters for
the A-calculus variables, to distinguish them from the italic characters we use
for variables of U. We stipulate, without loss of generality, that no A-term has
a variable occurring both bound and free. For each A-term M and a listing
X = X1 ...x, of A-variables that includes all variables free in M, and no variable
bound in M, we introduce a functional parameter (i.e. identifier), which we
write as {M[X]}, intended to represent AX.M. Writing & for the tuple y; - -y,
of rewrite variables (of the same length, r, as X), the rules are as follows.

My =
{Qze M)} = {M[x 2]}
{MN)KH) = AMEKHHENKHG))

The reduction rules of the A-calculus can be introduced explicitly as rewrite
rules. However, B-conversion is already derived from the evaluation rules above
for A-terms, as follows.

Let M,.—n be the result of substituting NV for the free occurrences of z in
M. We use this notation when N is substitutable in M, i.e. when no variable
is free in N and bound in M.! We write M &~ M’ if M and M’ rewrite into a
common term, i.e. M = M" and M' = M" for some M".

LEMMA 1 [Substitution] Let X and § have equal length. Under the conventions

above,
{M, =~ XX} 7, §) = {M[X,2,X]}g)(n)(¥)
where n =gr {N[X, 21}(7) ().

Proof. Induction on M. For M a A-variable x other than z, and the U-variable
y corresponding to it, we have

-

{xz=n K XTHD (W)
= (xZ XD ()
=y
and
X%, 2, XD () (V) = v.
For M = z,

{z=n KRN (V)
= (NEXH@) ()

=N

I This condition can be refined of course, but to no particular benefit here.



and

{zI%, 2, X]}(@) (n) (') = n

For the induction step for A-abstraction we have

{(Ow.M)[Z, 2, %1H@) (n) ()
= {M[%, 2,3, ul}(5) () (7')
~ AM..=n %%, u}@)(7) by TH
On the other hand,

{Ow M), =N K R HD ()

= {(Au.M,.—n)[X, X]1}(#) () given the conventions on variables
= {M.=n %X, u}(#) ()

Finally, for the induction step for application we have,

{(MM)..—n[Z <} @) ()
= (M. =~ [FXTHD () ML=y KX ()
while on the other hand,
{(MM)[Z 2, xTH@) (n)(7)
= MKz, X1} (i) (n)(7) (M'[%,2, X} () (7))
~ AM,=n KX D(T) (MLn KA @G () by TH 5

From the Lemma we immediately obtain

ProPOSITION 2 The rule of 3-conversion is derived for the interpretation above
of the A-calculus. That is, under the conventions above,

{((Az. M)N) X HG) = {M.=n [X]}()
Proof.

{(Az. M)N)[x]}(9)
= {2z M)[X} () {NKH)
= {M[X.z]}(H) (N} (D)
~ {M,.-~n[X]}(¥) by the Lemma =
The simulation above of the A-calculus also yields an interpretation in U
of higher order rewriting (HOR), say in the style of Nipkow [6]. The general
rules of HOR are rewrite rules that refer to terms of the simply typed lambda

calculus. Such terms can be simulated as above, giving rise to rules of U.
Many standard examples can be formulated in U directly. For instance,

map(f)(cons(z)(y)) = cons(f(x))(map(f)(y))

10



is admissible as it stands, and indeed is generic with respect to types (which is
not the case in HOR).

3. PATTERN MATCHING AND THE p-CALCULUS

Fix a functional parameter R. Consider a pattern-matching rule t = u,
where # is a list of the variables free in t. The functional behavior of the
pattern-matching rule is encapsulated by the term R(t)(u) and the rewrite rule
R(t)(u)(ot) = ou, where o = {§/Z}, with ¥ a list of fresh variables.

Consider for example the p-term

(z—=2z+1) = (1—=2)](a—a+1)](1)

considered in [2, §2.1] as an example of a rule with no corresponding A-term.
To this corresponds the term

R(R(z)(z+1))(R(1)(2))(R(a)(a+1))(1).

Under the term-rewrite schema above

R(R(z)(2+1))(R(1)(2))(R(y)(y+1)) = R(1)(y).

By instantiation
R(R(z)(z+1))(R(1)(2))(R(a)(a+1)) = R(1)(a).
And so

R(R(z)(z+1))(R(1)(2))(R(a)(a+1))(1) = R(1)(a)(1).
From the rewrite schema for R we also have R(1)(a)(y) = a, so the final r.h.s.
is a.
Thus the central idea of the p-calculus, i.e. abstraction on patterns, is cap-
tured in the U-calculus. We conjecture that much of the p-calculus is inter-
pretable in the U-calculus.

4. FUNCTIONALS OVER INDUCTIVE DATA-SYSTEMS

Consider an inductively generated (multi-sorted) data-system C', such as
the free algebra N, whose constructors are the 0-ary 0 and the unary s, or the
free algebra W = {0, 1}* whose constructors are the 0-ary e and the unary
0 and 1. The calculus U(C) differs from U only in treating the constructors
of C' as additional identifiers, apart from the variables and parameters. We
start by adopting the most liberal approach, and let the calculus be oblivious
to the functionality of the constructors, including their arities. For example,
in U(N) we can form terms such as 0(z(s))(0). Still, the constructors differ
from the variables in that they cannot be instantiated, and they differ from the
parameters in that terms starting with them are not declared computational.
The base-terms of C' are represented in U(C) in Curried form. For example, if
among the constructors of C' are a binary p and a 0O-ary e then the base-term

p(p(e, €),e) is represented by p(p(e)(e))(e).

11



Let T'p(C) be the system of simple types over C': the base types are (names
for) the sorts of C, and compound types are generated using — (x can be
included with minor modifications). To simplify, let C' be N, and let ¢ be the
name of the unique sort. A program of U(N) is a triplet (P,f, ) where P is a
procedure, f a functional parameter, and 7 a type of Tp(N). We wish to define
the computation of partial functionals of type 7 by programs (P, f, 7), starting
with unary first-order functions. A partial function f : N — N is computed by
(P, f,0—¢) if for all n,m € N, f(n) = m is derived from P iff f(n) = m. An
equivalent definition which generalizes better to higher types is this. Rephrase
the definition of a program as above to include an additional parameter a. The
program (P, f,a,t—¢) is said to compute f : N—=Nifforalln,m e N, f(n) =m
iff f(a) = m is derived from P + (a = m).

For second order functionals we say that a partial functional of type & =
(t— ) > ¢ is computed by program (P, f, a, ), if for all unary (partial) function
g over Nand all m € N, fg = m iff f(a) = m is derived from P+ {(a(n) = gn |
n € N and gn is defined }.

The generalization to all second-order types is trivial. However, the gener-
alization of these definitions to functionals of order > 2 must involve continuity
conditions. Note that a procedure P may be used in programs for different

types.

5. COMPUTABILITY AS MODEL THEORY.

Here we switch to undirected rewrite systems, that is, reading = as equality,
and using derivations in equational logic. The vocabulary Vp of a procedure P
of U(C) consist of the parameters in P and the constructors of C'. Let Tp be
the set of all (untyped) terms over Vp. The canonical model Mp of P has as
universe the quotient 7 p/ =, where t = t’ iff there is an equational derivation
of t~t' from P. Herbrand falsely conjectured that a function f over N is
computable iff it is the unique solution over N of a set P of recursion equations.
A revised version of his conjecture does hold, though: f is computable iff it is
the unique restriction to N of solutions of P in Mp. For the definition above
of second-order computability we believe that a similar statement holds: A
functional f over C, of type T of rank < 2, is total and computable iff it is the
unique restriction to C; of solutions of P of type T over Mp.

This model theoretic property now generalizes automatically to all types
7. MAJOR QUESTION: what is the computational notion that corresponds to
this definition of computability in higher type, and how does it relate to familiar
definitions, e.g. Kleene’s definition of total computable functionals of higher type

[3].

6. PROOF THEORY: WHERE TYPES COME FROM.

Let C be an inductive data-system, and consider unary relational identifiers
for the sorts of C'. Say C'is the single-sorted N, with N as sort-identifier. For a
type 7 € Tp(N) we define a formula T [2], over the vocabulary of rewrite terms
augmented with N, which states that (the object denoted by) z has semantic
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(i.e. Curry-style) type 7. This is defined by recurrence on 7: Tjy is N, and
Tosr[2] Zar Yy.To[y] = Tr[2z(y)]. We say that an equational program (P, f)
has semantic-type 7 if |2 P — T, [f]. For first order types 7 this is equivalent to
Mp | P — T, [f], and also to the totality of the function of type 7 computed
by (P,f). We conjecture that the same holds true for all types.

The definition of T can be trivially extended to polymorphic types 7 of Iy
or even F,,. For a type variable X define T'x to be X, understood as a variable
for sets (unary relations). Then, define Tyx [z] =qr VX.T;[z].

Let L(C') be a natural deduction formulation of constructive logic in all finite
types, with data-introduction and data-elimination (induction) rules for C' [5].
Let XA(C) be F,, augmented with the constructors of C' and recurrence operators
over C'. Let (P,f) be an untyped equational program over the data-system C.
We know that for a first-order type 7, a derivation in L(C) for P — T;[f] maps
under the homomorphism of [4, 5] (a contracted form of Curry-Howard) to a
term of A(C') which defines the type r-function computed by (P,f). A major
task is to extend this to higher types: rank-2 (i.e. second order functionals),
finite-types (functionals of arbitrary type), and Fy and F,, types.
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On head-rewriting paths in the Ao-calculus

Paul-André Mellies

CNRS, Université Paris 7

Abstract

In this note, we illustrate our definition of head-rewriting path in the Ao-calculus [6]
and explicate the proof of a theorem appearing in [5]. The theorem states that every
head-rewriting path M — V in the Ao-calculus projects (by o-normalization) to
the head-rewriting path o(M) — o(V) in the A-calculus.

The point of this note is not to present new material on the Ao-calculus, but
to summarize the results obtained by the author since 1995, and the counter-
example [4]. All results discussed here are published in [5,6].

The general pattern of this work goes as follows:

(1.) start from a syntactical rewriting system R like the Ao-calculus,

(2.) define (syntactically) the class V of values (= head-normal forms) of R,

(3.) applying a stability theorem [6] to characterize (diagrammatically) the
head-rewriting paths of R,

(4.) uncover from diagrammatic step (3.) the syntactical nature of the head-
rewriting paths of R.

The methodology goes beyond the particular case of A-calculi with explicit
substitutions, and may be applied on any (interesting enough!) rewriting sys-
tem. The methodology is particularly useful to analyze rewriting systems ad-
mitting critical pairs, which lack the usual “confluence methodology” inherited
from Church, Rosser, Knuth and Bendix historical contributions.

1 Head-normal forms in the \o-calculus

The set V), of head-normal forms in the Ao-calculus is defined in a similar
fashion as the set V, of head-normal forms in the A-calculus.

Definition 1 (head-normal forms) A closed Ao-term V is called a Ao-
head-normal form when it may be written as

Vo= ALAGM,..M,)

where i = 1[to---01] is a de Bruijn number, and M, ..., M, are Ao-terms.
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Obviously, every Ao-term V' in head-normal form o-normalizes to A-term o (V)
in head-normal form. But the converse is not true: think of the Ao-term V{s]
where V' is a Ao-term in head-normal form.

Now, let M denote the A-term M = (Az.(A\y.y)z)V where V is a A-term in
head-normal form. This A-term M induces a head-rewriting path to the set
V), of head-normal forms in the A-calculus:

Az.(Ayy)z)V — (A\yy)V — V

The Ao-term U(M) = (A(A1)1)V is the de Bruijn notation for the A-term
M. At this point, we have not yet defined what we mean by head-rewriting
path of the Ao-calculus. However, we may already indicate, in the informal
style, several candidates of head-rewriting path from M to the set V), of
head-normal forms, see figure 1 in appendix.

2 Head-rewriting paths in the \o-calculus (diagrammatically)

The central point of our work is a stability theorem proved diagrammatically
[6] for a wide class of (possibly higher-order, possibly conflicting) rewriting
systems. Here, for simplicity, we instantiate the diagrammatic theorem, and
formulate it for the Ao-calculus, and the set V), of head-normal forms.

Let = denote the Lévy permutation equivalence on paths. The theorem states
that, for every Ao-term M, there exists a cone

(M =5 Vi)ier

of paths from M to V, universal in the sense that every path f : M — W

from M to a head-normal form W factorizes as M < V; 5 W (modulo =)
for one and only one index ¢ € 1.

This leads to a diagrammatic definition of head-rewriting paths in the Ao-
calculus.

Definition 2 (head-rewriting path) A Ao-rewriting path f : M — N s
head-rewriting if it appears as an element e; : M — V; of the universal cone
(€i: M — Vi)ier.
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3 Head-rewriting paths in the Ao-calculus (syntactically)

By its diagrammatic nature, definition 2 does not provide any information
about the syntactic shape of head-rewriting paths in the Ao-calculus. In good
cases, typically in the A-calculus, the shape of head-rewriting paths may be
captured by a big-step semantics. Defining such a big-step semantics would
be quite difficult in the Ao-calculus. So, instead of introducing a heavy big-
step semantics, we prefer to establish nice characterizing properties of the
head-rewriting paths of the Ao-calculus. Namely, we establish that

Theorem 3 (adequacy) Fvery head-rewriting path
M =5V,

of the \o-calculus projects (by o-normalization) to the unique head-rewriting
path

o(M) 24 (V)
starting from o(M) in the A-calculus.

The theorem appears in [5]. It somewhat counter-balances the counter-example
[4] with a nice adequacy between the Ao-calculus, and the A-calculus.

Let us outline the proof here. Let U(M) denote the de Bruijn notation of the
A-term M, seen as a Ao-term. The main technical lemma follows:

Lemma 4 FEvery standard rewriting path f : M — U(N) in the \o-calculus
is interpreted as a standard path o(f) : o(M) — N in the A-calculus.

The result is more subtle than it looks at first sight. For instance, the trans-
lation from Ao to A by o-normalisation, does not preserve standardization in
general. For instance, consider the standard \o-rewriting path

(M1)1)[(A1)1 - id] — (MD)D)[L[L-id] - id] —> (11)[1 - id][1[1 - id] - id]

The path translates as an inside-out computation in the A-calculus:

(Az.zz)((A\y.y)1) — (Az.z2)l — 11

The proof of lemma 4 starts with a definition, and a syntactic lemma relating
occurrences and rewriting paths.

Definition 5 (enshrine,annihilate,preserve)

e An occurrence x enshrines a reder u : P — @ when x is a strict prefiz of
the occurrence of u.

e A reder u annihilates an occurrence x when the occurrence of u is prefiz of
x.

e A path uq;---;u, preserves an occurrence x when none of the redexes u;

annihilates x.
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Lemma 6 Suppose that an occurrence x enshrines a redexr : P — (). Fvery
standard path f = r; g preserves the occurrence x when:

e x is a cons-node (M - s),
e 1 is a A-node AM,
e 1 is an application node M N and the path f is a o-path.

From lemma 6, it follows that no Ao-redex contracted in the standard path
f M — U(N) ever occurs enshrined in a cons-node M - s. Otherwise, the
cons-node M - s would appear in the resulting Ao-term U(M), which would
contradict the fact that U (M) is the de Bruijn notation of a A-term. From this,
it follows in turn that no Beta-redex contracted in f ever occurs inside a sub-
stitution s. Of course, the remark does not extend to the o-redexes contracted
in f, as the following standard path f : M — U(NN) = P illustrates:

1[(1-id) o (P -id)] X8 1[1[P - id] - id o (P - id)] V%™ 1[P - id] V<8™ P

The property implies that every Beta-redex contracted in f : M — U(N)
is translated as a unique [-redex in o(f). So, whenever f : M — U(N) is
standard, we may consider o(f) as a proper A-rewriting path — and not just
as an equivalence class of A-rewriting paths modulo permutation of disjoint
redexes, as usual projections of Ao-rewriting paths in the A-calculus, see [5].

The proof of lemma 4 ends by showing that any standardisation cell « :
o(f) = h in the A-calculus mirrors as a standardisation cell : f = g in the
Ao-calculus, in the sense that o(g) = h. This proves lemma 4.

Once this lemma 4 established by syntactic means, the rest of the proof of
theorem 3 proceeds by abstract non-syntactic arguments. Let us illustrate
this with theorem 8. We know from [6] that every head-rewriting path (in the
A-calculus, in the Ao-calculus, in any axiomatic rewriting system) is external
in the sense below:

Definition 7 (external path) A rewriting path e : M — N is external in
the A-calculus or the Ao-calculus, when for every right-composable rewriting
path f: N — P,

N L) P is standard = M —» N i> P s standard.

Next lemma follows easily from lemma 4, using abstract arguments enables
by definition 7.

Theorem 8 Fuvery external rewriting path e : M — N in the A-calculus is
translated as an external path o(e) : o(M) — o(N) in the \-calculus.

We should mention at this point a recent manuscript [1] where Eduardo Bonelli
“axiomatizes” our syntactic proof of lemma 4, in order to generalize theorem
8 to a wide class of A-calculi with explicit substitutions. The axiomatization
is still awfully complicated, but the subject is very young, and there are good
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chances to see a simplified version emerge at a later stage.

4 Needed strategies in the \o-calculus

Here, we generalize to rewriting systems with critical pairs, the usual notion of
needed path for orthogonal rewriting systems. We start from the definition of
Luc Maranget in [3] for orthogonal rewriting systems: A redex r : M — N is
needed when it has a residual (at least) after any rewriting path f : M — P,
unless f contracts at some step a residual of r.

We want to extend the definition to rewriting systems with critical pairs.
Consider a rewriting system like:

A— B A—C

The critical pair in A implies that the redex r : A — B has no residual after
the reduction f : A — C. From this, should one conclude that r : A — B is
not needed? Well, not really! It is possible that the word needed is inadapted to
qualify 7 : A — B, and that it should be replaced by the word unavoidable.
But if we choose to keep the word needed, then we should consider r : A — B
as needed, since after all, every path from A either contracts a residual of
r: A — B, or a redex forming a critical pair with a residual of r : A — B.
We adapt Maranget’s definition accordingly:

Definition 9 (needed redex) A redex r : M — N is needed when every
rewriting path f : M — P such that r C f, contracts a residual of r at least.

Here, r C f means that there exists a path ¢ such that f and r; g are equal,
modulo Lévy permutation equivalence. Check that the redex r : A — B
is needed in our previous example, and that the definition is equivalent to
Maranget’s one for orthogonal rewriting systems. Let us say that the definition
of needed path is formalized further in [5].

Gérard Huet and Jean-Jacques Lévy prove that every needed strategy nor-
malizes in an orthogonal rewriting system. This is not true any more in the
presence of critical pairs. Consider the term A in the first order rewriting
system:

A— A A— B

Observe that the redex 7 : A —» A is external (a fortiori needed) and that the
term A has normal form B. However, the needed strategy computing A — A
does not normalise A. Next result shows that the reason for non-termination
is that there exists an infinite number of paths from A to its normal form B,
modulo Lévy permutation equivalence =. In fact, one Lévy permutation class
for each path:

A—A—..-—A—B
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Consider a (first-order, higher-order, axiomatic) rewriting system in which,
for every term M, there exists at most a finite number of normalizing paths,
modulo Lévy permutation equivalence. Among examples of such rewriting
systems:

e orthogonal rewriting systems, in which the number is at most one, by a
famous result by Lévy,

e the A\o-calculus, by theorem 3 (or theorem 8) and strong normalization of
the substitution o-calculus.

We prove in [5]

Theorem 10 (needed normalization) FEvery needed strategy normalizes in

such a rewriting system.

Theorem 10 generalizes Huet and Lévy classical theorem for needed strategies
in orthogonal rewriting systems, see [2]. It also proves normalization of needed
strategies in the Ao-calculus.

After proving this result, the author hoped to explain that way many recent
normalization results on rewriting systems with critical pairs. A nice exam-
ple is Femke van Raamsdonk’s normalization theorem for needed strategies
in weakly orthogonal rewriting systems [8]. Unfortunately, in a private com-
munication, Vincent van Qostrom [7] gave two examples of weakly orthogonal
rewriting systems, in which a term M may have an infinite number of nor-
malizing paths, modulo Lévy permutation equivalence.

First example
a— Fa GF"xr — b  for every natural number n
Second example

a— Fa Fb—b Fr—b

5 Conclusion

The quest for a satisfactory description of rewriting systems with critical pairs,
is only starting.
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Higher-order pattern disunification is concerned with the (decidable) task of
solving arbitrary quantified formulae on certain A-terms, namely patterns, where
the only predicate symbol is equality, call them equational formulae. The equal-
ity theory is the one induced by afn-conversion. Notwithstanding its interest,
for example w.r.t. the issue of completeness of higher-order algebraic specifi-
cations, the problem has attracted little research, possibly due to its technical
complexity.

The only account I am aware of is by Lugiez in [3], where he presents a
set of rules which transform an equational formula on simply-typed patterns
into a so-called constrained solved form. Alas, the treatment is very difficult
to comprehend; indeed, the crux of the matter can be located in the issue
of dependency constraints, already present, albeit not with the same impact,
in pattern unification, namely in the Flex-Flex-Same case. We can provide a
glimpse of the problem by asking, for example, what is the solution of a formula
such as

VY Xz . Z x #p7 Az Y (1)

where Y does not depend on z. Intuitively, Z equals a X which must depend
on z. As the simply-typed A-calculus is not strong enough to directly represent
this, Lugiez modifies the language of terms to promote dependency constraints
to first-class objects. Technically, for a variable X : A4, — ... — A, — a,
he introduces a notation X = X[I] for I C {1...n} meaning that X can be
instantiated by a closed term that must depend on the i-th argument, i € I.
Those constraints are further generalized to allow I to be a sort of algebraic set
expression and to occur in the quantificational prefix of a formula. A constrained
formula is obtained by turning the original formula into a disjunction (resp.
conjunction) consisting of all the dependency constraints induced by every free
or existential (resp. universal) variable. For example, the above problem (1)
yields the constrained form:

(Z=ZBIAVYY =Y [0IA X2 . Z & #py Az.Y)V
(Z = ZHIAVYY = Y0 A Xz . Z & #5y Az.Y)

which eventually transforms into the solved form 7 = Z[{1}]AT. The technical
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handling of those formulae is rather awkward as they require specialized rules
which are, we feel, foreign to the main issue.

In [4], while tackling a related (though simpler) problem, namely the relative
complement problem over higher-order patterns, we have employed a different,
and, we maintain, neater method. To begin with, we distinguish the case when
a pattern is fully applied, that is each free variable is applied to every bound
variable mentioned in the lambda binder. With this restriction, which, by the
way, plays an important role in functional logic programming and rewriting [2],
the complement of a linear pattern, 1. e. with no repeated occurrence of the
same free variable is a straightforward extension of the first-order case. This
applies to disunification as well: indeed, it is fairly immediate to provide a
complete set of rules for this fragment, which generalize the first-order ones [1]
and dependency constraints nor linearity are needed at all.

For the general case, the formulation of the problem suggests that we should
enrich the A-calculus with an internal notion of strictness at the level of types,
so that we can directly express that a term must depend on a given variable.
For reasons of symmetry we also add the dual concept of invariance, expressing
that a given term does not depend on a given variable. Thus, we internalize
dependency constraints into the type theory. Indeed, we generalize our language
to include strict functions of type A = B (which are guaranteed to depend on
their argument), invariant functions of type A 5B (which are guaranteed not
to depend on their argument) and the full function space A =% B. This yields
the following language, where the different kind of abstraction and application
are denoted by a post-fix label:

Labels k== 1|0]|u
Types A == al|A; 5 A,
Terms M == c|xz| A M| (M My)F

The typing judgment uses a three-zoned calculus [';Q;A - M : A, which,
logically speaking, yields a variant of relevance logic. It has nice meta-theoretical
properties culminating in the existence of canonical forms (as proven in [4]).

Thus our formulation of problem (1) is to make the partially applied pattern
Az .Y fully applied by inserting a vacuous application and then applying the
appropriate rules, i.e.

V(YA D a) Aa" A Z 2 #5y Az A Y 2°
=" 3(X:A N a) e A Z 2% =g, A" A X z!

More in general, patterns in the simply-typed A-calculus are embedded into
the strict one by viewing constants (and bound variables) as strict functions,
while higher order functions are kept undetermined. Moreover, partially ap-
plied patterns involved in dis-equations are linearized introducing the obvious
constraints.

For instance, using the running example in Chapter 11 of [5], a (object-
level) n-redex (z). y z is encoded in the simply typed calculus as abs(Az :
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term. (app Y) ), where the proviso # ¢ F'V (y) is realized by using a a variable
Y of type Term and a partially applied pattern. It is then brought to full appli-
cation similarly to the above and embedded as abs(Az¥ :term.app (V' 2°)! z1)L.
The solution of the disunification problem

Y(Y'iterm - term). Az iterm. Z & #p, abs(Az" :term.app (Y' 2°) 2')!
via one branch of the Explosion rule includes

A(Xq:term N term), (Xo:term = term).

Az term. Z x¥ =g, abs(Ax" :term.app (X1 &")' (X2 %))}

Having internalized the dependencies constraints, the disunification proce-
dure proceeds with relative ease through the usual procedure of elimination of
universal quantifiers and transformation of existentially quantified formulae into
solved form, namely basic formulae in the terminology of [1]. This is based on
the adaptation of the rules of pattern unification over strict terms which have
been shown to be finitary in [4]. Termination is shown along the lines of [3].
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We will discuss the dependency pair (DP) technique for proving termination of Nipkow’s higher-
order rewrite systems (HRS). The DP technique is effective on term rewriting systems, because it
gives us a mechanical support for proving non-simple termination. Sakai, Watanabe and Sakabe
tried to extend the DP method to the higher-order case[l]. Since it requires a reduction quasi-
ordering having the subterm property, the argument filtering method is not applicable any more
that weakens their approach extremely. After that, we proposed another DP method[2] on HRS by
introducing a notion of dependency forest and show that the termination property of a higher-order
rewrite system R can be checked by the non-existence of an infinite R-chain, if R is non-duplicating
or non-nested. Although no longer the subterm property is needed hence the argument filtering
is applicable, the strong restriction, non-duplicating or non-nested, is required. We explain this
method and discuss the possibility to weaken the restriction.

The key point of the DP technique is producing R’ by adding rules, called DPs, to the given
TRS R in order to transform infinite reduction sequence of R to an infinite reduction sequence
of R' having infinite head-reductions, called DP-chain. Thus, proving termination is reduced to
showing that no infinite DP-chain exists. In the transformation of the sequence, we take an ap-
propriate subterm of each term in the original sequence. Generally, the head symbols in DP-chain
are introduced by right-hand sides in R. Fortunately, it is easy to define DPs in first-order case,
because each additional rules are obtained by replacing the right-hand side of a original rule with
its subterms headed by defined symbol. In higher-order case, it is difficult to define DPs having
such a good property, because the head symbols in DP-chain may be carried or even copied as
instances of higher-order variables after their introduction. We introduce the notion of dependency
forest in order to analyze and to trace dependencies between the introduction and the consumption
of such symbols.

The following example shows why the restriction non-duplication or non-nested is required.
Consider an HRS R;

p = {100 000X),
g(h(Az.F(z)),X) = F(X)

Although we have only one dependency pair (i#(X), g% (X, X)), the following infinite reduction
sequence exists; i(h(Az.i(z))) = g(h(Az.i(x)), h(Az.i(x))) = i(h(Az.i(x))) = - --
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