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Abstract

Many stiff systems of ordinary differential equations (ODEs) mod-
eling practical problems can be partitioned into loosely coupled sub-
systems. In this paper the objective of the partitioning is to permit the
numerical integration of one time step to be performed as the solution
of a sequence of small subproblems. This reduces the computational
complexity compared to solving one large system and permits efficient
parallel execution under appropriate conditions. The subsystems are
integrated using methods based on low order backward differentiation
formulas.

This paper presents techniques for the partitioning of systems of
ODEs based on a classical graph algorithm. The complexity of a
partitioned discretization is evaluated using operations count, and the
paper presents a selection of techniques for the efficient evaluation of
the error introduced by the partitioning.

The feasibility of the approach is demonstrated by an experimental
integration algorithm which, along the solution, adaptively partitions
a system of ODEs originating from chemical reaction kinetics. The
computational savings are reported to be substantial.

1 Introduction

The numerical solution of a stiff system of S ordinary differential equations
(ODEs) typically has computational complexity O(S3) because of the linear
algebra. Besides, it is difficult to solve stiff systems efficiently on a parallel
computer when the only option is to parallelize the linear algebra.

∗Technical report 05/04, Department of Computer Science, University of Copenhagen,
Universitetsparken 1, DK-2100 Copenhagen, Denmark, e-mail: stig@diku.dk
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Waveform relaxation [1] was originally developed to exploit the struc-
ture of digital circuits to reduce the amount of linear and nonlinear algebra
involved in numerical integration. Later it was realized that waveform re-
laxation was very well suited as the basis for parallel numerical integration
algorithms.

In [2] an approach similar to waveform relaxation is proposed but without
the relaxation part. This reduces the amount of computation but requires a
more precise partitioning into subsystems. Besides, the computational gran-
ularity is finer, which means that parallel speed-up is expected to be smaller
than for waveform relaxation. The paper [2] deals with the absolute stability
and global error expansion of decoupled backward differentiation formulas,
especially the implicit Euler formula. The formulas are demonstrated on a
toy example.

In [3] the decoupled implicit Euler and second order backward differen-
tiation formulas (BDF2) are developed for practical applications, and ex-
pressions for the local truncation errors are presented. The formulas are
demonstrated on a real problem, the same as the one in this paper section
6. The example in [3] relies on two a priori partitionings where an algorithm
adaptively during the integration selects the more efficient (i.e. smallest
subsystems) which is sufficiently accurate.

This paper presents low-cost formulas for the evaluation of the accuracy
of a partitioning and a graph based technique to perform the partitioning.
At present it is not clear that it is possible to design an efficient general

purpose integration package based on adaptive partitioning and decoupled
integration formulas. Therefore this paper presents a selection of elements
which may be of use in the design of a special purpose integration program
for a well defined class of problems. The feasibility of constructing such a
program is illustrated by the algorithm in section 5.4 and the integration of
the example problem in section 6.

The motivation in this paper for being interested in the partitioning of
a system of ODEs, namely the potential reduction in operations count, is
given in section 2 together with an introduction of the decoupled implicit
Euler formula.

Section 3 presents a rather general analysis of the error of the decoupled
implicit Euler formula. In the analysis, the influence of the partitioning be-
comes clear, and the analysis gives a qualitative understanding of the prop-
erties of a good partitioning. However, the analysis gives fairly pessimistic
bounds and it is expensive and difficult to perform in general.

In practical applications, an analysis of the linearized problem is usually
to be preferred and certainly when the partitioning is performed adaptively.
Section 4.1.1 discusses the splitting error which is independent of the dis-
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cretization. In section 4.1.2 techniques are presented for the evaluating of
the difference between the matrix resolvent ME for the classical Euler and
the corresponding matrix MD for the decoupled implicit Euler formula. The
matrix difference is evaluated for typical linearizations of the problem, and
it is independent of the actual solution. This matrix difference was used in
[3] for the a priori selection of partitionings.

When a system is partitioned adaptively, the linearization is performed
at the current solution point, and it is obvious to evaluate the error of the
solution resulting from the partitioning in stead of the matrix difference. This
approach permits a very accurate evaluation of the partitioning error, and
section 4.2 with subsections present various techniques.

In particular adaptive partitioning requires very efficient techniques for
the evaluation of a partitioning, and both section 4.1 and 4.2 present ap-
proximations to reduce the computational cost of the evaluation as far as
possible.

Section 5.1 presents the theoretical basis for a partitioning approach and
then in section 5.2 the reordering algorithm used to obtain a partitioned
system. These are put together in section 5.3 to make up the framework of a
partitioning algorithm. Section 5.4 presents the specification of an adaptive
partitioning algorithm used to solve the example problem in section 6.

This example problem was also solved in [3], and it is clear that the ad-
aptive partitioning algorithm is able to obtain more aggressive partitionings
than the approach applied in [3]. The performance of the decoupled Euler
formula is illustrated by graphs showing the variation of key values.

2 Partitioned systems of ODEs and decoupled

discretization formulas

Define a system of ODEs,

Y ′ = F (t, Y ), Y (t0) = Y0 and t ≥ t0 (1)

where Y : R → RS, F : R × RS → RS, and F is Lipschitz continuous in Y .
Stable systems of differential equations are considered stiff when the step size
of the discretization by an explicit integration method is limited by stability
of the discretization and not by accuracy. Efficient numerical integration of
stiff systems therefore requires implicit integration methods.

Let implicit integration formulas be exemplified by the backward differ-
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entiation formulas (BDF),

Yn =
k
∑

j=1

αjYn−j + hnβ0F (tn, Yn) (2)

The implicit formulas require Newton-type iteration to advance the solu-
tion one time-step, e.g.

Y [m+1]
n = Y [m]

n −
(

I − hnβ0
∂F

∂Y

)−1


Y [m]
n −

k
∑

j=1

αjYn−1 − hnβ0F (tn, Y [m]
n )





(3)
The computational complexity of F and hnβ0∂F/∂Y in terms of floating

point computations per function or Jacobian evaluation is in the following
assumed to be ηF S2 and ηJS2, respectively. The complexity is of main in-
terest when it is valid for classes of problems parametrized by S. An obvious
example is the system of ODEs resulting from applying the method of lines to
PDEs. The term S2 is probably a worst case value, and Sp where 1 ≤ p ≤ 2,
may be more realistic, corresponding to a sparse Jacobian.

The total complexity of the Newton iteration (3) with nit iterations is
then,

CBDF = ηJS2 +
2

3
S3 − 1

2
S2 − 1

6
S + (2k − 1)S + nit [ηF S2 + 4S + 2S2] (4)

The complexity expression assumes a pseudo-Newton scheme with just one
Jacobian evaluation and LU-factorization for each solution step. The com-
plexity of the LU-factorization and corresponding solution stage applies to
a full matrix algorithm. The complexity of a sparse LU-factorization and
solution are dominated by terms like Spf , 2 ≤ pf ≤ 3 and Sps, 1 ≤ ps ≤ 2,
respectively.

When big systems of stiff ODEs are solved, it is important to be able to
perform the linear and nonlinear algebra as efficiently as possible. The tech-
niques described in this paper aim at reducing the computational complexity
and furthermore permit efficient use of parallel computation. However, the
focus is on reducing complexity.

Let the original problem (1) be partitioned as follows:













y′
1

y′
2

...
y′

q













=













f1(t, Y )
f2(t, Y )
...
fq(t, Y )













, Y =













y1

y2
...
yq













, Y (t0) =













y1,0

y2,0
...
yq,0













(5)
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where yr : R → Rsr , fr : R×RS → Rsr and
∑q

i=1 si = S. When necessary,
the partitioning of Y will be stated explicitly like in fr(t, y1, y2, . . . , yq).

The decoupled implicit Euler method is defined by the following discret-
ization of the subsystems r = 1, 2, . . . , q by the implicit Euler formula [2]:

yr,n = yr,n−1 + hnfr(tn, ỹ1,n, . . . , ỹr−1,n, yr,n, ỹr+1,n, . . . , ỹq,n) (6)

where n = 1, 2, . . . , tn = t0 +
∑n

j=1 hj, and the variables ỹi,n are convex
combinations of values in {yi,k | k ≥ 0} for i 6= r. The convex combinations
ỹi,n will, in general, depend on subsystem index r, but in order to simplify
notation, this dependency will not be specified explicitly.

The method is called ”decoupled” because the algebraic system resulting
from the discretization of (1) by Euler’s implicit formula is decoupled into
a number of independent algebraic problems. The decoupled implicit Euler
formula can be used as the basis of parallel methods where (6), for different
r-values, is solved independently and in parallel.

Theorems 4 and 5 in [4] assure the stability of the discretization by (6) of
a monotonically max-norm stable problem and the convergence of waveform
relaxation, and as a special case, the convergence of the point-wise relaxation
as defined in (2.9) in [3]. The stability condition poses no restrictions on the
choice of the step sizes hn, and even multi-rate solution is covered. The
convex representation of ỹr,n is necessary in the stability theorem of the
decoupled implicit Euler method. A convex combination of previous solution
values would typically be a zero-order interpolation, ỹr,n = yr,n−1.

It is straightforward to extend the principle of the decoupled implicit
Euler formula to higher order backward differentiation formulas (2). The
decoupled BDF2 is analyzed in [3] and even higher order decoupled BDF
might be considered. However, only the stability properties of the decoupled
implicit Euler formula are well-studied [4].

The sequential solution of (6) for r = 1, 2, . . . , q on a single processor will,
in general, be computationally cheaper than solving the complete system
Yn = Yn−1 + hnF (tn, Yn). Therefore the decoupled implicit Euler method
may also be an attractive alternative to the classical Euler formula on a
sequential processor even when there is no multirate opportunity.

The computational complexity of subsystem r of the decoupled implicit
Euler formula is assumed to be,

CDEr = ηJs2
r +

2

3
s3

r −
1

2
s2

r + ηF srS + nit

[

ηFs2
r + 4sr + 2s2

r

]

The assumptions are the same as in (4). Besides, it is assumed that the
number of iterations for each subsystem, nit, is the same for all subsystems
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and the same as for the classical Euler formula. However, this needs not be
the case. In the example in section 6, most of the the subsystems are actually
scalar problems, and most of these turn out to be linear in the unknown thus
reducing the iteration count to 1.

The computational complexity of fr is somewhere between ηF s2
r and

ηF srS. In the model in (7), it is assumed that after an initialization of
complexity ηF srS before the iteration loop, fr can be computed at the cost
of ηF s2

r.
The computational complexity of a decoupled k-step BDF analogue to

(4) is as follows assuming that si = S/q,

CDBDF = ηJ

1

q
S2+

2

3

1

q2
S3−1

2

1

q
S2+ηF S2+(2k−1)S+nit

[

ηF

1

q
S2 + 4S + 2

1

q
S2

]

(7)
The expected speed-up compared with the classical BDF is somewhere from
q2, when the computation is dominated by linear algebra, to q/[1+q/(1+nit)]
when the nonlinear algebra dominates and ηF ≈ ηJ .

The objective of this paper is thus to devise partitioning strategies and
algorithms that result in partitioned systems (5) with as small subsystems as
possible without compromising accuracy and stability of the decoupled Euler
discretization (6) relative to the classical Euler discretization.

The decoupled implicit Euler formula is related to the implicit-explicit
(IMEX) multistep methods primarily considered for the solution of partial
differential equations. The IMEX methods assume the following structure of
the system of ODEs,

Y ′ = F1(t, Y ) + F2(t, Y ) (8)

where Y ′ = F1(t, Y ) is a stiff problem and Y ′ = F2(t, Y ) is a non-stiff prob-
lem. The problem is then solved using a splitting method based on a stiff
and a non-stiff solver.

3 Partitioning Accuracy

The accuracy and computational efficiency of the decoupled implicit Euler
formula (6) depends critically on the partitioning of the original problem
(1) into (5). The partitioning algorithm described in section 5 is iterative
and requires an efficient method for evaluating the accuracy of a proposed
partitioning.

Along with the integration using the decoupled implicit Euler formula,
the accuracy should be monitored. The accuracy is likely to change because
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of nonlinearities of the problem and also for a linear problem with the change
of the solution.

A partitioning is supposed to be applicable for many time steps, maybe
for all of the solution while the accuracy must be monitored continually.
Therefore computationally more expensive – and accurate methods – may be
chosen for the evaluation of the accuracy of the partitioning algorithm while
less accurate and cheaper methods should be chosen for the monitoring along
the solution. First a general nonlinear analysis aimed at providing insight
will be presented.

Consider the partitioning of F (t, Y ) as specified in (5). The partitioned
system and corresponding discretizations can be characterized by the q × q
matrix A(t, U, V ) defined as follows, where U, V ∈ Ω and Ω ⊆ RS is a convex
neighborhood of Y .

arr(t, U, V ) = µ(Brr(t, U, V ))

arj(t, U, V ) = ‖Brj(t, U, V )‖, r 6= j

Here µ denotes the logarithmic norm which is derived from the matrix norm
which is again derived from the vector norm used in this section. The
matrices Brj of dimension sr × sj are defined as follows, assuming sufficient
differentiability:

(Br1(t, U, V ), Br2(t, U, V ), . . . , Brq(t, U, V )) =
∫ 1

0
∂fr(t, φU+(1−φ)V )/∂Y dφ

Then the following inequality holds (Theorem 3 [4]):

‖ur − vr + λ [fr(t, U) − fr(t, V )] ‖ ≥ ‖ur − vr‖ + λ
q
∑

j=1

arj(t, U, V )‖uj − vj‖

for λ ≤ 0 and U, V ∈ Ω.
The partitioned system (5) is said to be monotonically max-norm stable

[4] if µ∞(A(t, U, V )) ≤ 0 for U, V ∈ Ω. Theorems 4 and 5 in [4] assure the
stability of the discretization of a monotonically max-norm stable partitioned
system by the decoupled implicit Euler formula (6).

Consider the decoupled implicit Euler formula yr,n−yr(tn−1)−hnfr(tn, Ỹ r
n ) =

0, where Ỹ r
n = (ỹ1,n, . . . , ỹr−1,n, yr,n, ỹr+1,n, . . . , ỹq,n), and the local truncation

error for subsystem r,

L[Y (tn); hn]r = yr(tn) − yr(tn−1) − hnfr(tn, Y (tn))

= −h2
n

2
y(2)

r (tn) +
h3

n

3!
y(3)

r (tn) − · · ·
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Introduce the simplified notation ãn
rj = arj(tn, Y (tn), Ỹ r

n ). Then subtraction
leads to

‖L[Y (tn); hn]r‖ = ‖yr(tn) − yr,n − hn[fr(tn, Y (tn)) − fr(tn, Ỹ r
n )]‖

≥ [1 − hnã
n
rr]‖yr(tn) − yr,n‖ − hn

∑

j 6=r

ãn
rj‖yj(tn) − ỹj,n‖.

Define a convex neighborhood of Y (tn) called Ωtn . Assume that [1 −
hnã

n
rr] > 0 for Ỹ r

n ∈ Ωtn for all r. Then a bound for the local error yr(tn)−yr,n

(r = 1, 2, . . . , q) of the decoupled implicit Euler formula for Ỹ r
n ∈ Ωtn can be

expressed as follows (cf. Lemma 2.2, section III.2. in [5]),

‖yr(tn)−yr,n‖ ≤ [1−hnã
n
rr]

−1



‖L[Y (tn); hn]r‖ + hn

∑

j 6=r

ãn
rj‖yj(tn) − ỹj,n‖





(9)
The local truncation error also appears in the error of the classical implicit
Euler formula, but the decoupling introduces a new error specified in the
summation term in (9).

It is clear from (9) that a good partitioning, from an accuracy point of
view, has numerically large negative values in the diagonal of A(t, U, V ) for
U, V ∈ Ωtn and numerically small off-diagonal values.

The definition of Ỹ r
n corresponds to a Jacobi type of organization of the

decoupled Euler formula, and this organization permits parallel execution of
each subsystem. When this is not relevant, a Gauss-Seidel organization will
in general result in better accuracy. Define Ȳ r

n as follows,

Ȳ r
n = (y1,n, . . . , yr−1,n, yr,n, ỹr+1,n, . . . , ỹq,n)

and the corresponding ān
rj = arj(tn, Y (tn), Ȳ r

n ). Assuming that Ȳ r
n ∈ Ωtn

for all r and [1 − hnā
n
rr] > 0 for Ȳ r

n ∈ Ωtn , then the error bound for the
Gauss-Seidel organization analogous of (9) is,

‖yr(tn) − yr,n‖ ≤ [1 − hnā
n
rr]

−1



‖L[Y (tn); hn]r‖ (10)

+hn

∑

j<r

ān
rj‖yj(tn) − yj,n‖ + hn

∑

j>r

ān
rj‖yj(tn) − ỹj,n‖





Assuming that ‖yj(tn) − yj,n‖ < ‖yj(tn) − ỹj,n‖ and ãn
rj ≈ ān

rj, the bound
of the local error of the Gauss-Seidel organization (11) is in general smaller
than the bound of the local error of the Jacobi organization (9).
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Furthermore a reordering of the partitioned system corresponding to a
symmetric row-column reordering of A can put the numerically largest off-
diagonal elements of A into the lower triangular part where the impact on the
local error is smaller due to the assumption ‖yj(tn)− yj,n‖ < ‖yj(tn)− ỹj,n‖.

The analysis presented in this section is rather general, and it provides
both qualitative and quantitative understanding of the error of the decoupled
implicit Euler formula resulting from the partitioning.

When used for evaluating the partitioning of a problem, two points should
be noted. First, the local truncation error (or an estimate) is needed. Second,
the use of norms may lead to error bounds that are unduly pessimistic. In [4]
the analysis is based on different norms for different subsystems. By choosing
the norms appropriately, some of the pessimism can be removed at the cost
of a more complicated analysis.

The next section presents analysis of the partitioning based on a linear-
ization of the problem. The linear analysis can be used as an alternative or
a supplement to the analysis of this section.

Example 1

Consider a linear problem Y ′ = BY of dimension S = 4. Let B be partitioned
into four 2 × 2 blocks (si = 2),

B11 =

(

−2 1
0 −10

)

, B12 =

(

0 1
1 0

)

, B21 =

(

0 10
1 0

)

, B22 =

(

−2 0
10 −20

)

With Y (0) = (1, 1, 1, 1)T , consider the point of the smooth solution,

Y (1) = (4.458910−1, 8.361310−2, 7.606710−1, 4.215710−1)T

Let this point be the initial point, Y (1) = (y1,0, y2,0)
T , for a numerical in-

tegration using the decoupled implicit Euler formula with ỹj,1 = yj,0, Jacobi
organization and h = 0.1.

Using the infinity norm throughout this example, we have µ(B11) =
−1, ‖B12‖ = 1, ‖B21‖ = 10, and µ(B22) = −2. Notice that the infinity
norm does not establish monotonical max-norm stability of this partitioned
system. The error of one step is bounded using (9), and the required exact
solution is easily computed using e.g. Matlab.

‖y1(1.1)− y1,1‖ ≤ 1

1 + 0.1
(1.518910−3 + 0.1× 1× 3.710310−2) = 4.753810−3

‖y2(1.1)− y2,1‖ ≤ 1

1 + 0.2
(2.904110−3+0.1× 10× 6.953010−2) = 5.702810−2
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With the Gauss-Seidel organization, y2,1 is different, and the error bound
is given by (11),

‖y2(1.1)− y2,1‖ ≤ 1

1 + 0.2
(2.904110−3+0.1× 10× 8.429210−3) = 9.444410−3

The results are summarized for easy comparison in Table 1.

Jacobi organization Gauss-Seidel organization
error bound (9) error bound (11)

‖y1(1.1) − y1,1‖ 4.572310−3 4.753810−3 4.572310−3 4.753810−3
‖y2(1.1) − y2,1‖ 8.429210−3 5.702810−2 5.285210−3 9.444410−3

Table 1: Summary of first example problem results

In this example, the bound for ‖y1(1.1) − y1,1‖ is fairly tight while it is
somewhat looser for ‖y2(1.1)−y2,1‖. However, both the bound and the actual
value of ‖y2(1.1)− y2,1‖ is smaller for the Gauss-Seidel organization than for
the Jacobi organization as expected.

If the example is modified slightly, by transposing B21, the matrix norms
are unchanged. Bounds and errors for the modified example are summarized
in Table 2.

Jacobi organization Gauss-Seidel organization
error bound (9) error bound (11)

‖y1(1.1) − y1,1‖ 5.209210−3 5.955210−3 5.209210−3 5.955210−3
‖y2(1.1) − y2,1‖ 1.619110−2 3.459510−2 3.375510−3 1.568710−2

Table 2: Summary of second example problem results

Comparing the bounds and the errors for the Gauss-Seidel organization
for the two versions of the example, they change in opposite direction. This
is a result of using norms in stead of more detailed measures.

4 Linear Analysis

The purpose of the analysis in this section is to provide the theoretical un-
derstanding and foundation for the partitioning technique to be presented in
the next section. Besides, the analysis provides tools for the evaluation of a
partitioning.
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The general nonlinear system of ODEs (1), transformed into an autonom-
ous system, can be linearized around a point (t0, Y0) leading to a system of
the type,

Y ′ = BY + V, Y (t0) = Y0 (11)

where Y is assumed to include t and the system (1) is augmented with the
equation t′ = 1.

Some of the analysis to follow is simpler when applied to the homogeneous
system Y ′ = BY , and for some analysis is does not make any difference
whether it is applied to the homogeneous problem or to (11).

The partitioned linear homogeneous problem corresponding to (5) is as
follows,













y′
1

y′
2

...
y′

q













=











B11 B12 ... B1q

B21 B22 ... B2q

... ... ... ...
Bq1 Bq2 ... Bqq























y1

y2
...
yq













Define D = diag(B11, B22, ..., Bqq) and E = B − D. With this definition
of D and E the decoupled implicit Euler formula,

Y [1]
n = Yn−1 + h(DY [1]

n + EYn−1) (12)

corresponds to the Jacobi type organization, mode 1 [3]. The mode 1 de-
coupled implicit Euler formula (where Ỹn = Yn−1) leads to simple formulas
for the evaluation and comparison of partitionings. However, in practice a
higher mode and/or a decoupled BDF2 formula will be used. Therefore the
estimates of the decoupling error from the formulas presented in this section
may be pessimistic.

Alternatively D can be defined as the lower block-triangular part (in-
cluding the block-diagonal) of B. Then (12) corresponds to the Gauss-Seidel
organization, mode 1 in [3]. Solving for Y [1]

n from (12) leads to Y [1]
n = MDYn−1

where
MD = (I − hD)−1(I + hE)

For a stiff system (11) it is assumed that the following relations are fulfilled
during the integration of the smooth solution,

ρ(MD) ≤ 1, ‖hB‖ � 1, ‖hE‖ < 1 (13)

where ρ denotes the spectral radius.
For comparison, the classical implicit Euler formula is defined by ME =

(I − hB)−1, and both MD and ME approximate exp(hB). The objective of
the partitioning is to achieve MD ≈ ME and at the same time have small
blocks in the block diagonal matrix D.
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4.1 Matrix error

This section first studies the effect of the splitting and then the difference
between MD and ME is studied. This type of analysis is mainly suited for the
evaluation of a priory partitionings to be chosen among during integration,
cf. the approach taken in section 6 Examples in [3].

The analysis does not depend on the mode of decoupled implicit Euler
formula, nor does it depend on whether the problem is homogeneous or non-
homogeneous.

4.1.1 Splitting

When the linear system (11) is partitioned as B = D+E, it is identical to the
splitting Y ′ = DY +EY , and the decoupled implicit Euler formula expressed
as Y [1]

n = MDYn−1 then corresponds to an IMEX method first applying the
explicit Euler formula to Y ′ = EY and then the implicit Euler formula to
Y ′ = DY .

Notice that the decoupled implicit Euler formula does not rely on a split-
ting like (8). Besides, neither the higher modes of decoupled implicit Euler
nor the decoupled BDF2 formulas [3] can be interpreted as IMEX methods.

The splitting error is,

‖ exp(hB) − exp(hD) exp(hE)‖ = ‖h2

2
(ED − DE)‖ + O(h3)

The principal local truncation errors of implicit and explicit Euler formu-
las are identical except for the sign. Therefore the splitting error is expected
to account for a significant part of the difference between MD and ME. How-
ever, the leading term of the splitting error given above may not be a very
good approximation of the total splitting error.

4.1.2 Error analysis

Define the matrix difference,

∆ = ME − MD

The difference between the solutions obtained by the classical and decoupled
Euler formulas is called the decoupling error, and it can be expressed as
follows,

Yn − Y [1]
n = (ME − MD)Yn−1 = ∆M−1

E Yn

and the relative error estimated by,

‖Yn − Y [1]
n ‖/‖Yn‖ ≤ ‖∆M−1

E ‖ (14)

12



Alternatively,

Yn − Y [1]
n = ∆M−1

E Yn ⇔ M−1
E (Yn − Y [1]

n ) = M−1
E ∆M−1

E Yn (15)

and the estimate,

‖Yn − Y [1]
n ‖M/‖Yn‖M ≤ ‖M−1

E ∆‖∞ (16)

with the norm definition ‖v‖M = ‖M−1
E v‖∞.

It is not obvious that the estimate (16) should be sharper than (14). How-
ever, this is usually observed during the integration of the smooth solution
of a stiff problem where relations (13) apply. Since ∆ and M−1

E generally do
not commute, the estimates cannot be expected to be equal either.

The matrix (I − hD)−1 can be approximated as follows,

(I − h(B − E))−1 = (M−1
E + hE)−1 = ME(I + hEME)−1 (17)

= ME(I − hEME) + D1

where ‖D1‖ = O(h2‖(EME)2‖). We then have

MD = (ME(I − hEME) + D1)(I + hE) = ME(I + hE(I − ME)) + D2 (18)

where ‖D2‖ = O(h2‖(EME)2‖).
The matrix difference ∆ can be expressed as

∆ = ME − MD = h2(I − hD)−1EBME = hMEE(ME − I)) + D2

using (18). We now have

M−1
E ∆ ≈ hE(ME − I) and ∆M−1

E = h2(I − hD)−1EB (19)

The approximate expressions for M−1
E ∆ and ∆M−1

E can be bounded as fol-
lows,

‖hE(ME − I)‖ ≤ ‖hE‖(‖ME‖ + 1) and ‖h2MEEB‖ ≤ ‖ME‖‖hE‖‖hB‖
The relations (13) imply ‖hE‖(‖ME‖+1) � ‖ME‖‖hE‖‖hB‖, and therefore
it is also to be expected that ‖M−1

E ∆‖ � ‖∆M−1
E ‖.

During the transient solution h is adjusted such that ‖hB‖ � 1. With
‖∆‖ = O(h2) and

‖M−1
E ∆ − ∆M−1

E ‖ = ‖h(∆B − B∆)‖ = O(h3)

it follow that ‖M−1
E ∆‖ = O(h2), ‖∆M−1

E ‖ = O(h2) and M−1
E ∆ → ∆M−1

E for
h → 0. These results agree completely with the results in [3].

During an iterative process for obtaining an effective partitioning, hE(ME−
I) ≈ M−1

E ∆ is useful for evaluating the accuracy of the partitioning. The
matrix ME may be expensive to compute, but it is only needed once since it
is independent of the partitioning.
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Example 2

With the partitioned problem from the first part of example 1, D=diag(B11, B22),
E = B−D and h = 0.1, we get the following value of the leading term of the
splitting error (h2/2)‖ED−DE‖ = 0.585, while the splitting error evaluates
to ‖ exp(hB) − exp(hD) exp(hE)‖ = 0.2687.

For the same values, the scaled matrix difference can be computed to

‖M−1
E ∆‖∞ = 0.55 ≈ ‖hE(ME − I)‖∞ = 0.5217

The following table illustrates the relations between M−1
E ∆, ∆M−1

E and step
size h,

h 0.01 0.1 1
‖M−1

E ∆‖∞ 0.01 0.55 10
‖∆M−1

E ‖∞ 0.01078 0.9167 36.67

In this example it is clear that ‖M−1
E ∆‖∞ always gives the sharper bound.

4.2 Solution error

When the decoupled implicit Euler formula is used adaptively, it is desirable
and also natural to use an estimate of the decoupling error to control the par-
titioning. However, such an estimate will typically depend on both the mode
of the decoupled Euler formula and on whether the problem is homogeneous
or non-homogeneous.

The analysis in section 4.2 is basically for homogeneous problems and
mode 1 of the decoupled Euler formula. When the analysis applies wider, it
is noted, and some of the analysis is extended to non-homogeneous problems
and/or higher modes.

4.2.1 Direct computation

The matrix norms considered so far lead to bounds like (16) which are often
fairly pessimistic. Alternatively a vector error like (15) may be considered.
The left hand side can be estimated using (19) as follows,

M−1
E (Yn − Y [1]

n ) ≈ hE(ME − I)Yn−1 = hE(Yn − Yn−1) (20)

Now follows an estimate which is valid for a linearization of (1) along the
solution,

Y ′ = Bn(Y − Ỹn) + Fn (21)
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where Y is assumed to include t as the last element and

Bn =

(

∂F
∂Y

|(tn,Ỹn)
∂F
∂t
|(tn,Ỹn)

0T 0

)

, Fn =

(

F (Ỹn)
1

)

The classical implicit Euler formula applied to (21) gives

Yn = Yn−1 + h[Bn(Yn − Ỹn) + Fn]

and the decoupled implicit Euler formula, for Bn = D + E, gives,

Y [1]
n = Yn−1 + h[D(Y [1]

n − Ỹn) + Fn] (22)

The identically zero term E(Ỹn − Ỹn) was omitted. Subtraction gives,

Yn − Y [1]
n = h[Bn(Yn − Y [1]

n + Y [1]
n − Ỹn)) − D(Y [1]

n − Ỹn)]

which solves to,

Yn − Y [1]
n = (I − hBn)−1hE(Y [1]

n − Ỹn) (23)

The difference Y [1]
n − Ỹn is readily computed from (22),

Y [1]
n − Ỹn = (I − hD)−1[Yn−1 + hFn − Ỹn] (24)

In the non-autonomous case, it is easy to choose Ỹn to obtain a zero as the
last element of Y [1]

n − Ỹn and Yn−1 + hFn − Ỹn. With the last row of Bn

being equal to zero, the analysis, and notably (23) and (24), can just as well
be performed for the linearized system with Bn = ∂F/∂Y , neglecting the
equation for t, t′ = 1.

Notice that ‖Yn−1 + hFn − Yn‖ = O(h2) and ‖Ỹn − Yn‖ = O(h) or O(h2)
depending on whether mode 1 or mode 2 is used (cf. [3]). This implies that
‖Yn−Y [1]

n ‖ = O(h2) or O(h3), respectively. This agrees fully with the results
in sections 4.3.1 and 4.3.2 in [3].

The approach, with obvious modifications, also applies to the decoupled
BDF2.

4.2.2 Iteration

The decoupled implicit Euler formula (12) can be reformulated into an iter-
ation converging towards the classical Euler formula,

Y [m+1]
n = Yn−1 + h(DY [m+1]

n + EY [m]
n ), Y [0]

n = Yn−1 (25)
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The iteration matrix is then G = (I − hD)−1hE. A small norm of G
results in a fast convergence of the iteration process and a small error of Y [1]

n

(12),

‖Y [1]
n − Yn‖ ≤ ‖G‖

1 − ‖G‖‖Y
[1]
n − Y [0]

n ‖ for ‖G‖ < 1 (26)

This error bound also applies to the non-homogeneous case (11).
The iteration matrix G can be approximated using (18), G ≈ hME(I −

hEME)E. However, the complexity of this matrix computation is dominated
by a 6S3 term, and it is therefore three times as expensive to compute as
hE(ME − I). An alternative is to use the crude approximation G ≈ hMEE.

The convergence rate km can be computed as,

km = ‖Y [m+1]
n − Y [m]

n ‖/‖Y [m]
n − Y [m−1]

n ‖ (27)

where km ≤ ‖G‖. With the usual convergence criterion of the power method
for computing the dominant eigenvalue, we have km → ρ(G) for m → ∞.
Therefore km may be used in a – somewhat uncertain – approximation of the
iteration error, e.g.

‖Y [1]
n − Yn‖ ≈ k1

1 − k1
‖Y [1]

n − Y [0]
n ‖ for k1 < 1 (28)

≈ ‖Y [2]
n − Y [1]

n ‖ for k1 � 1

The value of k1 is used for evaluating a partitioning in the implementation
described in section 5.2 in [3].

With the decoupled implicit Euler formula (12), the computation of k1

requires an extra iteration, i.e. an extra solution using the factorized matrix
I − hD.

Notice that (28) can be used independently of the mode of the decoupled
Euler formula and with the decoupled BDF2 formula as well (using the ap-
propriate BDF2 formula for (25)).

4.2.3 Residual

The residual

r[1]
n = Y [1]

n − Yn−1 − hBY [1]
n = (I − hB)Y [1]

n − Yn−1 = M−1
E (MD − ME)Yn−1

is easily computed, and it can be used for approximating the error

Y [1]
n − Yn = MEr[1]

n ≈ (I − hD)−1r[1]
n (29)
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This relation also applies to the non-homogeneous problem (11) with the
appropriate definition of r[1]

n , since (29) simply defines a Newton step.
The approximation is somewhat crude since (I−hD)−1 ≈ ME(I−hEME)

according to the better approximation (18).
Notice that (29) applies independently of the applied mode of the de-

coupled Euler formula. It also applies for the decoupled BDF2 formula with
the obvious substitution for ME and appropriate definition of r[1]

n .
The relative error defined in (16) can be computed as,

‖Yn − Y [1]
n ‖M/‖Yn‖M = ‖r[1]

n ‖∞/‖Yn−1‖∞ (30)

Error estimates based on the residual are best suited for being used for
monitoring the error along the solution.

The estimate (30) only costs the norm computations on top of the residual
computation.

Example 3

With Y0 = Y (1) given in example 1, we find using the partitioning, the
value of ‖M−1

E ∆‖∞ and other values from example 2 that (16) gives ‖Y1 −
Y

[1]
1 ‖M/‖Y1‖M ≤ 0.55 while (20) results in ‖Y1 − Y

[1]
1 ‖M/‖Y1‖M ≈ ‖hE(Y1 −

Y0)‖/‖Y0‖ = 0.0091. However, direct computation gives ‖Y1−Y
[1]
1 ‖M/‖Y1‖M =

0.0075.
For G defined in section 4.2.2 we find ‖G‖ = 0.8333, ρ(G) = 0.2041

and from (27), k1 = ‖Y [2]
1 − Y

[1]
1 ‖/‖Y [1]

1 − Y0‖ = 0.055. We can bound

the decoupling error using (26), ‖Y [1]
1 − Y1‖ ≤ 0.29. The actual error is

‖Y [1]
1 − Y1‖ = 5.7610 − 3, so the bound is rather conservative. Using the

estimate (28), we get ‖Y [1]
1 −Y1‖ ≈ 3.3310−3 which is obviously not a bound

but an estimate of the correct order of magnitude.
Using the residual, we find for (30) ‖r[1]

1 ‖∞/‖Y0‖∞ = 0.0075 which is

identical to the value of ‖Y1 − Y
[1]
1 ‖M/‖Y1‖M computed above. The approx-

imation (29) leads to

‖Y [1]
1 − Y1‖ = 5.763310 − 3 ≈ ‖(I − hD)−1r

[1]
1 ‖ = 3.144010 − 3

5 Partitioning

In this section the matrix B is assumed to be the Jacobian of F as defined in
(11). It will be assumed that this matrix is available both for determining a
partitioning and for some of the formulas for evaluating the accuracy of the
decoupled integration formula.
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The objective is to devise an algorithm which reorders B such that the
same reordering applied to the equations and variables of the original system
(1) results in a partitioned system (5) which can be solved efficiently and
accurately using the decoupled implicit Euler method either in its basic form
(6), in one of the more accurate forms or using the decoupled BDF2 [3].

5.1 Regular splitting

Consider a partitioning of B, B = D + E and the corresponding splitting
(I−hD)−hE of I−hB. This splitting is called regular [6] if (I−hD)−1 ≥ 0
and hE ≥ 0. The splitting is convergent, i.e. ρ((I − hD)−1hE) < 1, if
(I − hB)−1 ≥ 0 and the splitting is regular.

Consider two different splittings, I − hD1 − hE1 = I − hD2 − hE2 and
assume that they both are regular and convergent. Then the following com-
parison theorem follows [6],

0 ≤ E1 ≤ E2 ⇒ ρ((I − hD1)
−1hE1) < ρ((I − hD2)

−1hE2) < 1

for E1 6= 0 and E1 − E2 6= 0.
Referring to the discussion in connection with the approximation (28)

in section 4.2.2, ρ((I − hD)−1hE) is a good measure of the accuracy of the
splitting. The highest computational efficiency is obtained with E being as
close as possible to the off-diagonal part of B. However, this may lead to a
value of ρ((I − hD)−1hE) which is unacceptably large. The objective of the
partitioning algorithm is to find the best compromise.

The comparison theorem is the theoretical basis for the partitioning strategy.
Assume that I −hB is an M-matrix. Consider a sequence of partitionings of
B, B = D1 + E1 = D2 + E2 = ... where E1 consists of the numerically smal-
lest (non-zero) off-diagonal element of B, E2 consists of the two numerically
smallest (non-zero) off-diagonal elements of B, etc. Hence Ei ≤ Ej for i < j.

The splittings (I − hDi)− hEi, i = 1, 2, ... are all regular and convergent
because I−hB is assumed to be an M-matrix [6], and the comparison theorem
therefore applies.

The partitioning of the Jacobian of a practical problem does not ne-
cessarily lead to a regular splitting (I − hD) − hE which is convergent,
at least not for step sizes h of practical interest. The paper [7] presents
weaker splittings for which comparison theorems also exist. However, the
partitioning algorithm may be applied to problems where Ei < Ej results
in ρ((I − hDi)

−1hEi) > ρ((I − hDj)
−1hEj), and the partitioning algorithm

must take this into account.
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Example 4

Continuing example 3 we find that I − hB is an M-matrix for h ≥ 0. With

D1 =diag(B11, B22) as in example 4 and D2 =

(

B11 0

B21 B22

)

, we have regular

and convergent splittings corresponding to the partitionings B = D1 + E1 =
D2 +E2 where max |E1| = 10 and max |E2| = 1. For h = 0.1 we can compute

ρ((I − hD1)
−1hE1) = 0.2041 > ρ((I − hD2)

−1hE2) = 0.0417

5.2 Symmetric reordering

The partitioning of a system of differential equations is based on a matrix
reordering algorithm which uses a symmetric row–column reordering specified
by the permutation matrix P to arrive at a lower block triangular matrix,

B̃ = PBP T =











B11 0 ... 0
B21 B22 ... 0
... ... ... ...
Bq1 Bq2 ... Bqq











In [8] an efficient algorithm for performing this reordering is described.
The complexity of the algorithm is 8(S+NZ)+64S where NZ is the number
of non-zero elements of B and S is the dimension.

If B is symmetric, the result of the reordering is a block diagonal matrix
(Bij = 0 for i 6= j). Obviously the reordering may fail to produce more than
one diagonal block which is then the original matrix, possibly reordered to
some extent.

5.3 Elements of a partitioning algorithm

The objective of the partitioning algorithm is to obtain a reordering and
partitioning of B into B̃ = D + E where max |E| < δ and D is a lower block
triangular matrix. The maximum absolute value of a matrix is defined as
max |E| = maxi,j |eij|. The reordering is performed as follows.

δ-partitioning.

Delete all off-diagonal elements of B numerically smaller than δ
to obtain Bδ. Use a symmetric row–column reordering [8] on Bδ

to obtain the lower block triangular matrix B̃δ.

Apply the same reordering to B resulting in B̃ which can then
readily be partitioned into a lower block triangular matrix D with
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the same envelope as B̃δ and the upper block triangular (without
diagonal blocks) part E where max |E| < δ.

The partitioning where D is a lower block triangular form is optimal for
execution on a sequential processor. For parallel processing D should be
block diagonal. This is easily obtained by performing the reordering to block
form of the matrix Bδ + BT

δ .
In order to obtain diagonal blocks of the same size as with the lower

block triangular form, is will usually be necessary to choose a larger value of
δ resulting in a less accurate splitting.

When I − hB is an M-matrix, a splitting with ρ((I − hD)−1hE) ≈
ρ0 can be obtained by applying a secant type iteration to g(δ) = ρ((I −
hD(δ))−1hE(δ)) where B = D(δ) + E(δ) denote a δ-partitioning of B. The
iteration is complicated by the fact that g(δ) is not continuous. However,
according to the comparison theorem, δi < δj ⇒ g(δi) ≤ g(δj).

The purpose of the partitioning is to reduce the computational complexity
from that of a traditional approach given in (4) to the complexity of the
decoupled Euler method (7). The optimal partitioning results in a D-matrix
with as many diagonal blocks q of uniform dimension as possible. Obviously
q ≤ S.

As long as accuracy is only sacrificed insignificantly by the use of the
decoupled Euler method, the reduction in computational complexity is a
complete gain. If the partitioning leads to a reduced accuracy which must be
compensated by an extra iteration in (6) or a shorter step size, the situation
is more complicated.

It is possible to model the computational cost of applying the decoupled
Euler method to a given problem fairly accurately. This can be used in an
outer loop of the partitioning algorithm where ρ0 is adjusted to either reduce
or increase the number and size of the diagonal blocks of D(δ).

The partitioning algorithm has some drawbacks. First, it assumes that
I − hB is an M-matrix. This will often not be the case in practical problems
although I − hB may be “close” to being an M-matrix. Besides, it may
be expensive to establish whether I − hB is an M-matrix or not. When
I − hB is not an M-matrix, the comparison theorem does not hold, and the
partitioning algorithm becomes more complicated.

Second, the measure g(δ) = ρ((I − hD(δ))−1hE(δ)) is expensive to com-
pute. However, a spectral radius approximation based on the power method
may suffice.

Third, the relation between g(δ) and the accuracy of the solution of the
decoupled Euler is only simple when g(δ) ≈ k1, cf. (27), such that the
approximation (28) applies.
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The system (1) is in general nonlinear, and the Jacobian B is computed
at some point Yn along the solution (possibly the initial value Y0). The
partitioning algorithm to be proposed is iterative so therefore the evaluation
of the partitioning has to be performed several times. It should therefore be
as computationally cheap as possible.

The norm of the approximation hE(ME − I) of the matrix M−1
E ∆ (19)

has been used successfully. The expensive part of this computation is ME

which is independent of the partitioning. Alternatively – and even cheaper
– is the use of the vector error estimate obtained from (20),

‖Yn − Y [1]
n ‖M/‖Yn‖M ≈ ‖hE(Yn − Yn−1)‖/‖Yn−1‖ (31)

The choice of the matrix norm as acceptance criterion is the more con-
servative which will be valid along the solution as long as the Jacobian has
not changed too much. The vector error norm estimate gives a fairly accur-
ate local value corresponding to the current solution vector, cf. example 3.
However, it only applies to the decoupled Euler formula, mode 1.

The approximation in (31) can be used to obtain an initial value of the
threshold δ for the partitioning algorithm,

δ0 = εtol‖Yn−1‖/‖h(Yn − Yn−1)‖
where εtol is the local truncation error tolerance.

5.4 An example of a partitioning algorithm

Some notation is introduced for the partitioning algorithm. The control
structure used is close to that in the programming language C, but otherwise
a matrix-vector notation close to that of the rest of the paper is used. Scalars
are denoted by Greek letters except n. A partitioning is described by R and
E where R is a permutation matrix and the matrix-valued function E deletes
the D-part of a matrix thus resulting in the E-matrix.

A partitioning is characterized by the total area of the diagonal blocks,
ρ =

∑q
r=1 s2

r and the partitioning error of the linearized problem, Φ. All of
this information is kept in the data structure P= {[R, E ], Φ, ρ}. The value
of a field is denoted by the usual dot-notation, say P.Φ.

Pn is at most updated every 10 steps (n is the step number), and it is
assumed that Pn = Pn−1 unless Pn is updated by the partitioning algorithm.

The following partitioning algorithm is used in the program generating
the results of the example problem in section 6. It is invoked after each 10
iteration steps depending on φn, the estimate of the partitioning error derived
from an extra iteration of the decoupled implicit Euler formula ((2.9) in [3])
leading to Y [2]

n cf. (28).
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1 φn = ‖Y [2]
n − Y [1]

n ‖;
2 if (n mod 10 == 0 ∧ (φn > 5εtol ∨(φn < εtol/5 ∧ Pn.ρ > 0))) {
3 ∆Ỹ [1]

n = (I − hDn)−1(Yn−1 − hF (Ỹn) − Ỹn);
4 if (φn > 5εtol) Pn+1 = {[I,O], 0, S2};
5 else { Pn+1 = Pn; Pn+1.Φ = φn; }
6 σ = 1; Φ0 = φn; [R0, E0] = Pn.[R, E ];

7 δ1 = max |E0(R0BnR0)|
√

εtol/φn;

8 for (i = 1; i ≤ 3; i + +) {
9 create Bδi

;
10 [Ri, Ei, ρi] = reorder (Bδi

);

11 Φi = ‖(I − hDn)−1hRiEi(RiDnRi)Ri∆Ỹ [1]
n ‖ ;

12 P[i] = { [Ri, Ei], Φi, ρi};
13 if ((ρi == Pn+1.ρ ∧ Φi < Pn+1.Φ) ∨ (ρi < Pn+1.ρ ∧ Φi < 5εtol))
14 Pn+1 = P[i];
15 if (Pn+1.Φ < 5εtol ∧ (Pn+1.Φ > εtol/5 ∨ Pn+1.ρ == 0)) exit i-loop;

16 if (Φi−1 == Φi) σ = σεtol/Φi; else σ =
√

εtol/Φi;

17 if (i == 2 ∧ ((Φi−1 > εtol ∧ Φi < εtol) ∨ (Φi−1 < εtol ∧ Φi > εtol)))
18 δi+1 =

√
δiδi−1; else δi+1 = σ max |Ei(RiBnRi)|;

19 }
20 }

The partitioning algorithm has three main components, the computation
of δ, the δ-partitioning and the evaluation of the resulting partitioning based
on (23) and (24).

Because of the problems mentioned in the end of section 5.3, the partition-
ing algorithm is more a search algorithm than an iteration algorithm. The
partitioning is initialized to assure that the accuracy is adequate, Pn+1.Φ <
5εtol, and then at most three iterations towards a better partitioning are
performed.

While the accuracy is measured by φ and Φ, the efficiency of the par-
titioning is measured by ρ, the sum of the areas of the diagonal blocks. A
partitioning resulting in S scalar subsystems is characterized by ρ = 0.

The value εtol is the set-value for the control of the local truncation error,
and the aim of the partitioning algorithm is to keep the partitioning error
φn close to εtol to maintain accuracy (small φn) and efficiency (small ρ). The
partitioning algorithm is now commented in detail.

Line 2: The partitioning is evaluated every 10 steps and possibly changed.
If the partitioning is changed too frequently, it results in oscillations in the
solution.
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Line 3: Approximate computation of the difference in (24).
Line 4 and 5: If the error of the current partitioning is too big, the initial

partitioning of the search is taken to be no partitioning characterized by an
identity permutation matrix and a zero-function O to generate the E-matrix.
Otherwise the current partitioning is chosen in line 5.

Line 7: δ for the δ-partitioning is computed aiming at obtaining φn+1 =
εtol. The definition of Φi in line 11 indicates a linear relationship between
Ei(RiBnRi) and Φi, but the square root is used in the formulas in line 7
and 16 in order to reduce the excursions of δ and avoid oscillations in the
partitioning algorithm.

Line 9 and 10 essentially specify the δ-partitioning algorithm described
in section 5.3.

Line 11: Decoupling error using an approximation of (23).
Line 13: The new partitioning P[i] is accepted if either it is more accurate

(Φi < Pn+1.Φ) or more efficient (ρi < Pn+1.ρ) than the current partitioning.

Line 16: The change in δ is generally determined by σ =
√

εtol/Φi. If the

partitioning algorithm is “stuck”, σ is changed to the larger value σ = εtol/Φi.
Line 17 and 18: If Φi oscillates out of the bound [0.2εtol, 5εtol], δ is adjusted

to the geometric mean of the previous values.
Remark to line 3 and 11: These lines implement approximations of for-

mula (24) and (23), respectively. In line 3, ∆Ỹ [1]
n is computed corresponding

to Dn. To comply with section 4.2.2 ∆Ỹ
[1]
i should be computed for each new

partitioning using (I −hDi)
−1 where Di = Bn −RiEi(RiBnRi)Ri. However,

the factorization (I − hDn)−1 is available “for free” since it was used in the
current integration step. Likewise this factorization is used in line 11 in stead
of (I − hBn)−1. The difference between these matrices appears from (18).

6 Example: Chemical reaction kinetics

The example problem is the same as the problem in [3], a system of 32 ODEs
from chemical reaction kinetics used in an air pollution model, see [9] and
[10] for more details.

The system has the following structure,

Y ′
i = Pi(t, Y ) − Li(t, Y )Yi, i = 1, 2, ..., 32.

The nonlinearities are mainly products, i.e. Pi and Li are typically sums of
terms of the form cilm(t)YlYm and dil(t)Yl. The time dependency in cilm(t)
and dil(t) is due to the influence from the sun.

In most equations (all but 4), Li(t, Y ) does not depend on Yi, and by
definition, Pi(t, Y ) never depends on Yi. This means that a decomposition of
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the problem down to scalar equations in most cases results in linear discret-
ized equations, resulting in a considerable saving on top of the decomposition
itself.
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Figure 1: The variation in diagonal block area along the solution.

The example problem is solved using an implementation of the decoupled
implicit Euler formula similar to that described in section 5.2 in [3], notably
regarding the error estimation and step size control part. The main difference
is that the partitioning algorithm from section 5.4 is used here. Besides,
mode 2 is always used, and a second relaxation is only used every 10 steps
as explained in section 5.4.

The problem is solved over the time interval [2.16104, 1.728105] The step
size control aims at keeping the local truncation error at εtol = 10−3. How-
ever, the step size is not permitted to drop below 90, and when this limit is
reached, the local truncation error becomes greater than 10−3.

Figure 1 shows the result of the partitioning algorithm. The total num-
ber of steps is 741, and 292 steps are taken using a partitioning into scalar
equations (block area, ρ = 0). The variation in diagonal block area along the
solution involves partitionings with the following diagonal blocks, {3 × 3},
{3 × 3, 2 × 2}, {3 × 3, 3 × 3}, {10 × 10}, {3 × 3, 2 × 2}, {9 × 9}, and after
an interval with a scalar diagonal, {2 × 2, 2 × 2}. The initial 10 steps taken
with the full system (block area, ρ = 1024) are not shown.

With εtol = 10−2 the partitioning chooses diagonal blocks {2 × 2} and
{2×2, 2×2}. Approximately half of the steps are taken using a partitioning
into scalar subsytems.
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With εtol = 10−4 and a lower bound of 9 on the stepsize, the partitioning
is among the same group of diagonal blocks as for εtol = 10−2, only now more
than 80% of the steps are taken using a partitioning into scalar subsytems.
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Figure 2: Global integration error, Euler: solid line, decoupled Euler: dashed
line. Scaled diagonal block area: lower solid line.

Figure 2 compares the global errors obtained by the classical implicit
Euler formula and the decoupled Euler formula. The classical Euler formula
is applied with the same step size selection as the decoupled Euler formula.
The discrepancy between the errors is seen to be insignificant.

The global error is obtained by comparing with a reference solution com-
puted using a variable step size variable order (maximum order = 6) imple-
mentation of the backward differentiation formulas [11] with a bound on the
relative local error estimate of 0.01εtol. The errors presented in the figures
are the maximum relative deviations from the reference solution measured
componentwise (the values of the components vary widely in magnitude).

The time axis is in seconds, and the initial time corresponds to 6 a.m. The
model includes the influence of the sun on some of the chemical reactions,
and this leads to very distinct transients in the solution and global error at
sunrise and sunset. The minimum integration time step of 90 seconds is too
large a step to integrate the transients accurately, and large spikes in the
global integration error are seen around 7 p.m., 5 a.m. (t=105,000) next day,
and 7 p.m. (t=155,000).

The figure also shows the partitioning for reference. The diagonal block
area is scaled as follows: (ρ + 1)×10−3. It is obvious that the the large spikes
in the error necessitate more conservative partitionings.
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Figure 3: Step size variation: dashed line. Diagonal block area: solid line.

When the stepsize is not bounded from below to 90 but controlled exclus-
ively by the local truncation error estimate, the spikes in the error are less
pronounced (maximum 0.12) and the partitioning is into scalar equations for
all of the integration after the first 10 steps. Figure 3 shows the stepsize
variation and the corresponding partitioning.

Figure 4 shows some of the key data used in controlling the partitioning
algorithm. The relaxation error φn is computed for every step in the ex-
perimental algorithm to provide data for the plot in figure 4. However, the
value is only used every 10 steps like the partitioning algorithm in section
5.4 shows, and in a production program φn would only be computed every
10 steps.

Inside the partitioning algorithm, the linearized error Φn is computed at
least once, and the graph shows the value corresponding to the partitioning
being chosen. The value of Φn is not changed until the next repartitioning.
You would expect φn and Φn to agree reasonably well immediately after Φn

has been computed, and this is observed in the figure.
With 741 steps in this example, the partitioning is potentially invoked 74

times. However, because of the test in line 2 of the partitioning algorithm,
it is only invoked 15 times. Out of these, a new partitioning is found in the
first attempt 7 times, and it takes the maximum of three iterations 8 times.
In total, re-partitionings are performed 31 = 7 + 8 × 3 times.

The system of ODEs is very stiff with the real part of the eigenvalues of
the Jacobian along the solution ranging from 0 to −8104 The partitioning
and reordering of the Jacobian B results in B̃ = D + E where max |E| ≤
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Figure 4: Relaxation error φn = ‖Y [2]
n − Y [1]

n ‖, dashed line. Linearized error
Φn, solid line.

δ. Consider the linearized decoupled Euler formula (12). With hδ < 1
the stiffness has been confined to the implicit part while the explicit part
handles the rest. However, near step n = 539 and an upper triangular E
corresponding to a decomposition of the problem down to scalar equations,
h max |E| = 3.13 peaks and likewise for n = 730, we have h max |E| = 2.48

When the example is executed with εtol = 10−2, h max |E| reaches a value
of 107 for an upper triangular E. This illustrates that the decoupled implicit
Euler formula retains its stability even when there is considerable stiffness in
the explicitly solved part of the problem.

The purpose of using the decoupled Euler formula in this example is to
obtain a more efficient algorithm than the classical implicit Euler formula.
An approximate comparison between the algorithms for this example shall
now be presented. It is based on the complexity formulas (4) and (7) with
the addition of the complexity of the partitioning algorithm in section 5.4.

Each new step is preceded by the computation of the rate constants cilm(t)
and dil(t), in total 69. This computation involves numerous exponentials
and some trigonometric functions. The floating point operation count is
estimated to Crate = 2800.

The floating point operation counts for the function F and the Jacobian
∂F/∂Y are 480 and 1670, respectively resulting in the coefficients ηF = 0.47
and ηJ = 1.63. These values turn out to be small compared to a full LU
factorization of a 32 × 32 matrix, CLU = 21328.

The complexity of a step with the classical Euler formula according to (4)

27



with S = 32 and nit = 2 including the computation of the rate coefficients,
amounts to approximately 31300 FLOPs.

The cost of a step of the decoupled Euler formula is evaluated according
to (7) with s1 = 10 and sr = 1 for r > 1, resulting in CDEul = 1300.

Before the partitioning algorithm is entered, the error φn must test greater
than a threshold plus some other conditions. The computation of φn costs
an extra relaxation of the decoupled Euler formula every 10 steps.

The total complexity of the partitioning algorithm is divided into initial-
ization and iteration. Initialization is approximately CPinit = (ηF + ηJ)S2 +
1
2
S2 + 3S + CDsolv where CDsolv = S2 + s2

1 is the FLOP count for the solu-
tion based on a factored block triangular matrix (I − hDn)−1 with just one
diagonal block of dimension s1 = 10 in this example. The iteration cost is
approximately CPit = Creord + CDsolv + 2S2, where the operation count for
the block triangular reordering algorithm is Creord = 4104 for NZ = 225, cf.
section 5.2.

Furthermore, the partitioning algorithm is entered 15 times in 741 steps
and a total of 31 iterations are performed. This results in an average com-
putational cost per step of 1813 FLOPs according to the following formula,
where the factor 1.1 accounts for the relaxation used for computing φn,

1.1 CDEul +
15

741
CPinit +

31

741
CPit

This value is slightly conservative, since a maximum diagonal block with
s1 = 10 is only present in 10 steps.

Add to the worst case value the cost of the computation of the rate
function and the total cost is then 4613 FLOPs. The saving in this example
over the classical Euler formula is better than a factor 31300/4613 = 6.8.

The complexity analysis involves some inaccuracies. The rate coefficients
include numerous transcendental functions, and the complexity value being
used is an estimate. The complexity of the entries of F and ∂F/∂Y vary
widely, but an average value is used. Finally, the terms of O(S) are only
partly accounted for.

The saving would be less if the classical Euler implementation had used
an efficient sparse solver, but the partitioning algorithm would also benefit.
However, the problem is somewhat small to amortize the overhead required
by sparse matrix computation.
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