

Technical Report no. 05/07
ISSN: 0107-8283

Proceedings of the 1st DIKU-IST Joint
Workshop on Foundations of Software

Robert Glück and Zhenjiang Hu (Eds.)

HCØ Tryk
University of Copenhagen • Universitetsparken 1

DK-2100 Copenhagen • Denmark

Preface

These proceedings contain the contributions presented at the 1st DIKU-IST
Joint Workshop on Foundations of Software held at Dragør Badehotel, Denmark,
September 23-24, 2005. This workshop featured talks and discussions on the
theory and practice of automatic software production, programming language
technologies, and the safety and robustness of critical software components.

The workshop aimed to provide a forum for exchanging research ideas and
promoting research collaboration on foundations of software between the Depart-
ment of Computer Science, University of Copenhagen (DIKU), and the Graduate
School of Information Science and Technology, University of Tokyo (IST). Un-
til now there has been a long and continuing, but only intermittent, series of
informal contacts between researchers at both institutions. Our objective is to
create a closer collaboration between the two groups of researchers, postdocs,
and graduate students. In 2004, IST at Tokyo University and the Faculty of Sci-
ence at the University of Copenhagen entered a Five-Year Academic and Student
Exchange Agreement during the State Visit of Queen Margrethe II to Japan.

Software has become a decisive factor for commercial success in many areas
of modern technology and business development. Despite tremendous progress
in hardware, the production of software is still manual, error prone, and costly.
The exploding demand for software has led to a worldwide undersupply of skilled
programmers, outsourcing, and to low software quality, which is evident to any-
one today who uses software. The workshop invited contributions on all topics
related to the foundations of software.

The workshop had about 40 participants from Japan and Denmark. The
organizers would like to thank all speakers, participants, and the local organizers
for making this meeting both a successful and enjoyable event. Special thanks
to Jørgen Olsen, Pro-vice Chancellor of the University of Copenhagen, and to
Miyoko Akashi, Minister Counsellor at the Embassy of Japan in Denmark, for
opening the workshop, and to Stig Skelboe, Department Chairman of DIKU,
and Masato Takeichi, Dean of IST, for presenting their institutions.

Copenhagen and Tokyo, November 2005 Robert Glück
Zhenjiang Hu

Organization

The DIKU-IST Joint Workshop on Foundations of Software was organized by
the Department of Computer Science, University of Copenhagen, together with
the Graduate School of Information Science and Technology, University of Tokyo.

Meeting

Program committee: Robert Glück (co-chair)
Masami Hagiya
Zhenjiang Hu (co-chair)
Neil Jones
Masato Takeichi

Local arrangements: Jesper Andersen
Morten Fjord-Larsen
Karin Outzen
Thomas Pecseli
Naja Villien

Sponsoring Institutions

The workshop was sponsored by The Danish Research Agency, Forskningsr̊adet
for Natur og Univers (FNU), of the Danish Ministry of Science, Technology
and Innovation. We gratefully acknowledge the support of the Department of
Computer Science, University of Copenhagen.

Table of Contents

Introduction

Opening Address . 1
Miyoko Akashi

The University of Copenhagen: Presentation and Some Models for
Cooperation . 3

Jørgen Olsen

Introduction to the Graduate School of Information Science and
Technology, University of Tokyo . 7

Masato Takeichi

DIKU: Research and Teaching . 11
Stig Skelboe

Research at the TOPPS Group . 14
Neil D. Jones

Introduction to Hagiya Laboratory . 18
Masami Hagiya

Research at Takeichi Laboratory . 24
Zhenjiang Hu

Software Construction

Parallel Tree Reduction and its Implementation in C++ 30
Kiminori Matsuzaki

Coccinelle: A Language-based Approach to Managing the Evolution of
Linux Device Drivers . 36

Julia Lawall, Gilles Muller

Program Transformation

BiXJ: A Java Library for Bidirectional XML Transformation 38
Dongxi Liu, Zhenjiang Hu, Masato Takeichi, Kazuhiko Kakehi,
Hao Wang

Incrementalization of Axapta Report Programs . 50
Michael Nissen

Report of an Implementation of a Semi-inverter . 54
Torben Ægidius Mogensen

Language Design and Processing

Streamlining Functional XML Processing . 63
Keisuke Nakano

Parametric Polymorphism for XML . 79
Haruo Hosoya, Alain Frisch, Giuseppe Castagna

Compositional Specification of Commercial Contracts 80
Jesper Andersen, Ebbe Elsborg, Fritz Henglein,
Jakob Grue Simonsen, Christian Stefansen

Termination

The Size-Change Termination Principle on Non-wellfounded Data Types . 95
James Avery

Termination Analysis by the Size-Change Principle of Programs in the
Untyped Lambda-Calculus with Arbitrary Input from a Well-defined
Input-Set . 109

Nina Bohr

Semantics and Rewriting

IO Swapping Leads you There and Back Again . 111
Akimasa Morihata, Kazuhiko Kakehi, Zhenjiang Hu,
Masato Takeichi

On the Relations between Monadic Semantics . 118
Andrzej Filinski

Infinitary Combinatory Reduction Systems . 124
Jeroen Ketema, Jakob Grue Simonsen

Program Analysis

Multiset Discrimination for Acyclic Data . 139
Fritz Henglein

Natural Numbers Type in Call-by-Value Based on CPS Semantics 150
Yoshihiko Kakutani

Verification of Liveness Properties . 155
Carl Christian Frederiksen

Author Index . 165

D
ra

gø
r,

D
en

m
ar

k
(S

ep
t.2

00
5)

Opening Address
Miyoko Akashi

Embassy of Japan in Denmark

Ladies and Gentlemen,

May I offer my congratulations to you on this special event which marks the first

official joint step of academic cooperation between the two universities, the University

of Copenhagen and the University of Tokyo? The cooperation is based on the academic

exchange agreement signed in November last year on the occasion of the state visit of

H.M. Queen Margrethe of Denmark to Japan.

Bilateral relations between our two countries have been very good throughout our

history. This is very much due to the close ties between the Royal Family of Denmark

and the Imperial Family of Japan. One could say that the relationship is almost too good

so that we are in danger of taking the good situation for granted and becoming

complacent about facing the challenges of the future.

However, in the last few years, our bilateral relations have become more proactive

than ever before. In 2002, during the Danish presidency of the EU, Prime Minister

Anders Fogh Rasmussen, together with his EU colleagues, had an important meeting

with the Prime Minister of Japan, Mr. Jun-ichiro Koizumi and they signed a document

which has given an enormous impulse to all levels of all-round exchanges between EU

member states and Japan. And this year, in Denmark too, many cultural, political,

economic and social grass-root events have been organized with great success.

In 2004, the state visit made by H.M. Queen Margrethe made a breakthrough into

more solid relations in various fields and genres. The official Danish delegation which

accompanied the Queen met business partners in Japan and also technological and

academic cooperation was taken care of extensively. You must be proud to know that

this workshop is one of the important fruits of the visit. The youth exchange program

known as the Working Holiday Program has been agreed between our foreign ministers.

The multilateral trade partnership in Asia seems to be getting started.

Moreover, in the fields of diplomacy and international politics, global problems

and issues, more and more close contacts can be seen between our two governments,

such as cooperation on UN reform, counter-terrorism, the eradication of poverty and the

preservation of the environment etc. Actually, in many respects, our two countries share

the same values and ideas. More can be done in the future.

1

Continuance is power. We should keep up this momentum and continue to

challenge common problems together.

I sincerely hope that this workshop will be very successful and will be a basis for

the continued development of the cooperation between our faculties and universities in

the years to come.

2

The University of Copenhagen

Presentation and some models
for cooperation

Joint Workshop on Foundations of Software
23 September 2005

Jørgen Olsen
Pro vice-chanchellor at the University of Copenhagen

University of Copenhagen

• The oldest and biggest research and education establishment
in Denmark

• Founded as a Catholic university in 1479 and reformed as a
Protestant university in 1536

• More than 32.000 students

• 6.700 employees

• Budget approx. 650 billion USD

Organisational structure

University Board:

11 members, external majority, 2 students, 2 academics

and 1 administrative representative:

Strategy, budget, appointment of rector, performance
contract with the ministry

Rector:

Day-to-day management of the University and appointment
of deans

Deans:

Day-to-day management of Faculties and appointment of

heads of departments

3

The faculties

Traditional structure with 6 faculties:

The Faculty of Law (unitary faculty)

The Faculty of Theology (unitary faculty)

The Faculty of Social Sciences (6 departments)

The Faculty of Health Sciences (16 departments)

The Faculty of Humanities (8 departments)

The Faculty of Science (11 departments)

The Mission of the University

According to the University Act 2003:

• The University shall conduct research and offer reasearch-
based education at the highest international level

• The University has freedom of research and shall
safeguard this freedom and ensure the ethics of science

• The University shall collaborate with society and contribute
to the development of international collaboration

• The University shall exchange knowledge and competences
with society and encourage its employees to take part in
the public debate

• The University shall contribute to ensuring that the most
recent knowledge within relevant disciplines is made
available to non-research oriented higher education

Internationalisation

International Students

More than 1200 international students every year

Student exchanges via:

Institutional Agreements
Socrates-Erasmus
Nordplus
State Bilateral Agreements

4

Crossroads Copenhagen is a professional

network involving private and public

enterprises with a commitment in culture,

media and/or communication technology.

Crossroads Copenhagen

• The IT University of Copenhagen
• Copenhagen Business School
• The Faculty of Humanities at the University of Copenhagen
• NOKIA
• CSC
• Hewlett-Packard
• TDC – Teleoperator
• Skanska
• DR - The Danish Broadcasting Corporation
• The Royal Library
• The Danish Consumer Information
• The Danish Business Daily Børsen
• The City of Copenhagen
• The Ministry of Research, Technology and Innovation

Partners in Copenhagen Crossroads

Regional & local models for cooperation

5

Facts and figures regarding the Øresund
University

• 14 member universities

• 140.000 students

• 6.500 PhD students

• 10.000 researchers

• 4000 foreign students

• Networks with 800 universities world wide

• 5th in Europe on scientific output

• 8 Nobel Prizes

Partner universities

• Australia National University

• National University of Singapore

• Tokyo University

• Peking University

• ETH Zürich

The Memorandum of Understanding includes:

Co-operation on: Research projects and protection of Intellectual
Property, Joint degree programmes, Summer Schools, financing
and sponsorship of activities, exchange of students and faculty,
benchmarking, secretariat , web site and chat-room.

Principles that underpin the Alliance

(i) The Alliance will be strategic, drawing together a select group of
research-intensive universities that share similar values, a global
vision and a commitment to educating future world leaders. Central
to these values is the importance of academic diversity and
international collaboration

The Alliance of International Research
Universities (Preliminary name)

• University of Copenhagen

• Cambridge University

• Oxford University

• University of California Berkeley

• Yale University

Denmark - Home of Fairytales…

6

www.i.u-tokyo.ac.jp

Introduction to
Graduate School of

 Information Science and Technology
University of Tokyo

Masato Takeichi
Dean IST, University of Tokyo

September 23, 2005

Information Science and Technology, University of Tokyo (September, 2005) 2

Outline of the University of Tokyo I

• Established in 1877 as the first National
University

• Incorporated in 2004 as a National University
Corporation

• 2,800 Professors, Assoc. Professors
• 29,000 Students

– 3,250 Undergraduates graduate every year
– 2,700 Masters and 1,000 Ph.D’s every year

• 10 Undergraduate and 14 Graduate Schools

Information Science and Technology, University of Tokyo (September, 2005) 3

Outline of the University of Tokyo II

• Annual Expenditures
– 180,315M Yen = US$ 1,639M

• Personnel 42.8% / Materials 27.9%
• Educational&Research 42.7% / Hospital 20.6% /

Administrative 7.4%

• Annual Revenues
– Own revenue 48% (86,272M Yen = US$ 784M)
– From the 3rd Parties 16.4% (29,512M Yen = US$

268M)

• Scientific Research Grants
– 22,918M Yen = US$ 208M

7

Information Science and Technology, University of Tokyo (September, 2005) 4

Outline of Graduate School of
Information Science and Technology

• Established in 2001
– Reorganizing 5 departments of School of Science and School of

Engineering

• 60 Professors, Assoc. Professors [2.1%]
• 600 Students

– 190 Masters and 60 Ph.D’s every year [7.0%]

• Annual Revenues
– Materials: 360M Yen = US$ 3.3M
– From the 3rd parties: 1,357M Yen = US$ 12.3M [4.6%]
– Scientific Research Grants: 709M Yen = US$ 6.4M [3.1%]

IST/UT
ratio

Information Science and Technology, University of Tokyo (September, 2005) 5

Graduate School of
Information Science and Technology - Departments

CCoommppuutteerr SScciieennccee

CCrreeaattiivvee IInnffoorrmmaattiiccss

MMeecchhaannoo--IInnffoorrmmaattiiccss

IInnffoorrmmaattiioonn aanndd CCoommmmuunniiccaattiioonn EEnnggiinneeeerriinngg

MMaatthheemmaattiiccaall IInnffoorrmmaattiiccss

IInnffoorrmmaattiioonn PPhhyyssiiccss aanndd CCoommppuuttiinngg

“Computing the idea across disciplines”

Established
in 2005

Information Science and Technology, University of Tokyo (September, 2005) 6

Graduate School of
Information Science and Technology - Keywords I

CCoommppuutteerr SScciieennccee
Logic, Computing Algorithm, Computer Languages, Operating Systems,
Computer Architectures, Parallel and Distributed Computing, Security,
Graphics, Numerical Computation, Natural Language Processing, Knowledge
Discovery, User Interfaces, Genome Informatics, Computational Science

MMaatthheemmaattiiccaall IInnffoorrmmaattiiccss
Mathematical Informatics, Mathematical Modeling, Operational Research,
Mathematical Programming, Probabilistic/Statistical Analysis, Numerical
Analysis, Computational Mathematics, Computational Geometry, Information
Theory, Mathematical Bases of Information Coding, Mathematical Bases of
Complex Systems, Mathematical Bases of Bio-information, Mathematical
Bases of Programming, Mathematical Finance

IInnffoorrmmaattiioonn PPhhyyssiiccss aanndd CCoommppuuttiinngg
Information Physics, Computing, Control Theory, Signal Processing, System
Architecture, Physio- and Bio-cybernetics, Intelligent Sensors,
Instrumentation and Sensory Systems, Integrated Intelligent Systems,
Image and Speech Recognition and Synthesis, Adaptive Recognition and
Control Systems, Virtual Reality, Tele-Robotics

8

Information Science and Technology, University of Tokyo (September, 2005) 7

Graduate School of
Information Science and Technology - Keywords II

IInnffoorrmmaattiioonn aanndd CCoommmmuunniiccaattiioonn EEnnggiinneeeerriinngg
Information & Electronics, Computer Architecture, Basic Software,
Information System Design, Intelligent Information Processing, Database,
Information Networks, Networked Information Environments, Signal
Processing in Communication and Media, Communication Theory/Systems,
Information Security, Media Technologies, Human Interface, Information
Media Environments

MMeecchhaannoo--IInnffoorrmmaattiiccss
Mechatronics, Robotics, Micro-Nano Systems, Virtual Reality, Human
Interfaces, Artificial Intelligence, Cognitive Informatics, Real World
Informatics, Brain Informatics Machines, Bioinformatics Systems, Welfare
Systems, Computer Aided Surgery

CCrreeaattiivvee IInnffoorrmmaattiiccss
Strategic System Creation, Strategic Network Software, Ubiquitous
Network, Software Engineering, Software Verification, Real-time Distributed
System, Human Media, Agent Technology, Intelligent Informatics, Natural
Language Processing, Cognitive Action System, Real-world Robotics

Information Science and Technology, University of Tokyo (September, 2005) 8

Crown Prince Naruhito visits IST
Akihabara Laboratory (August 18, 2005)

IST “Satellite” Laboratory in Akihabara

Promoting Collaborative Research
with Industries, Government, …13th Floor

800m2

Information Science and Technology, University of Tokyo (September, 2005) 9

Reported …, and …

• In “World's top 100 in Engineering and IT”
(Times Higher Education Supplement, THES
12/2004) ranked University of Tokyo #8 in
the world
– UC Berkeley, MIT, Stanford, Indian Institute of

Technology, Imperial College London, California
Institute of Technology, University of Tokyo, …

– Low score in internationalization; staffs, students

Improvement required for
President’s “The World’s Tokyo University”

9

Information Science and Technology, University of Tokyo (September, 2005) 10

Academic Exchange Agreement Celemony
between Faculty of Science, University of Copenhagen and
Graduate School of IST, University of Tokyo

November 15, 2004

10

Research and Teaching
Stig Skelboe, Dept. Chairman

D e p a r t m e n t o f C o m p u t e r S c i e n c e
U n i v e r s i t y o f C o p e n h a g e n

Her: Billede af mennesker, natur
og teknologi

What characterizes DIKU?

Founded 1970
Bridging practice, usability and functionality

Holistic approach to problem solving

Broad competence / cross disciplinary

Teaching B. Sc., M.Sc. and Ph.D.

Which problems do we solve?

How do we pack the knapsack?

How do we simulate interacting objects?

How do we prevent your computer from
breaking down?

How do we ease document reading on a
pda or computer screen?

How do we construct the Grid?

11

We have five research groups:

Programming
Distributed Systems & TOPPS

Mathematics
Image Group & Algorithm and Optimization

Systems
HCI and Systems Design

Students

1000+ students enrolled
100 B.Sc. per year
40 M.Sc. per year

5 Ph.D. candidates per year

Faculty of Natural Science

Founded 1850

9 departments

10 centers

3 museums

6000 students

12

University of Copenhagen

Founded in 1479

6 faculties

Many locations in Copenhagen, Denmark
and one in Greenland

32000 students

13

Research at the topps group
(DIKU, University of Copenhagen)

Neil D. Jones

September, 2005

What is topps?

topps is an acronym for “Teori Og Praksis i ProgrammeringsSprog”, which translates to “Theory
and Practice of Programming Languages”. It is used as the name of a very active and international
research group at DIKU, the Department of Computer Science at the University of Copenhagen,
Denmark. The group has been doing innovative research in the field of Programming Languages
since the early 1980s, as evidenced by external recognition, grants and involvment with leading
international conferences. Students and researchers from topps have been employed in Australia,
Denmark, France, Germany, Japan, the UK and the US.

topps performs both basic and applied research to advance programming language technologies
in several directions, including:

1. Domain-specific programming languages, “tailor-made” languages for specific applications.

2. Automatic program analysis, e.g., to certify error-freedom, more generally safety and liveness
properties of critical software components.

3. Type-based memory management to reduce memory consumption and prevent memory faults.

4. Theoretical aspects of programming languages: logic and computation, the limits of computer-
solvable problems, computability and complexity from a programming perspective.

5. Software production, generation and manipulation: compilers and interpreters, bootstrap-
ping, partial evaluation, program transformation, program inversion.

Current members

Andrzej Filinski Associate professor
Robert Glück Associate professor
Klaus Grue Associate professor
Fritz Henglein Professor
Neil Jones Professor
Julia Lawall Associate professor
Torben Mogensen Associate professor
Jakob Grue Simonsen Research adjunct

A brief profile of topps

topps programming language research is recognised worldwide, as indicated by the following.

Research production. The group’s members have been quite productive since the 1980s, with
substantial numbers of scientific articles and several books. Most of them are described in the
bibliography at http://www.diku.dk/topps/Bibliography.html, and the group’s web pages:
http://www.diku.dk/topps/ give some topical overviews.

14

Citations. CiteSeer is the main citation index for research in Computer Science. In particular,
CiteSeer periodically compiles a list of the 10,000 most-cited researchers in Computer Science. A
recent (2004) version of the list included 19 researchers based in Denmark. Among these, 7 were
current or former topps members, including the two most-frequently cited Danish researchers.

EU/Esprit/Danish research grants. The topps group has been supported by a long series
of research grants. This includes European Union support: Semantique I and II, Atlantique,
Daedalus, ABILE, APPSEM; and Danish support: continuous support by SNF (Danish Natural
Science Research Council) since the 1980s, support by CIT (Center for IT Research), and Ph.D.
support by the University of Copenhagen, as well as MBS (Microsoft Business Solutions) and ATV
(Academy for the Technical Sciences).

Recent international meetings hosted by topps in Copenhagen

• Summer school on Program Analysis and Transformation, June 2005.

• First Joint Workshop on the Foundations of Software in Denmark together with the Univer-
sity of Tokyo, September 2005.

• 17th Nordic Workshop on Programming Theory, October 2005.

• The large conference cluster FLoC’02 (Federated Logic Conference 2002) consisted of 7 main
conferences and more than 30 workshops, with 950 participants. FLoC’02 was hosted by the
topps group, whose members did most of the local organisation, and included the FLoC’02
Conference Chair.1

Other international conference series initiated by topps members include PEPM (Partial Evalua-
tion and Semantics-based Program Manipulation), continuous since 1991, and SPACE (Semantics,
Program Analysis, and Computing Environments for memory management), held in 2001, 2004
and 2006.

The worldwide leading professional association for research in Computer Science is the US-
based ACM, the Association for Computing Machinery. One of ACMs first conference series, and
its flagship conference in the topps research area, is POPL: Principles of Programming Languages.

topps members have been involved in POPL since the 1980s, have published many scientific
articles in its yearly proceedings, and have given several invited lectures. Further, topps members
were POPL Program Committee Chair (Paris 1997), General Chair (Paris 1997 and Venice 2004)
and Chair of the Steering Committee (2004-2005).

American research institutions. Former topps members are now employed at top-rate Amer-
ican Computer Science research institutions. Examples include: two researchers at Microsoft Re-
search (Redmond Washington); one researcher at IBM Yorktown Heights; and three members of
the programming language research group at Kansas State University.

Educational achievements.

At least 19 Ph.D. degrees for research in programming languages have been earned within the
topps group, and numerous M.Sc. degrees.

Ph.D. degrees were earned by: Lars Ole Andersen, Anders Bondorf, Niels Christensen, Hans
Dybkjær, Carsten Gomard, Jesper Jørgensen, Henning Makholm, Christian Mossin, Torben Mo-
gensen, Henning Niss, Jakob Rehof, Kristoffer Holm Rose, Jens Peter Secher, Peter Sestoft, Jakob
Grue Simonsen, Sebastian Skalberg, Harald Søndergaard, Morten Heine Sørensen, Morten Welin-
der. Employers of these graduates included: Danish research institutions (5), Danish industry (8),
foreign research institutions (5), and foreign industry (1).

1FLoC’06, the successor to FLoC’02, will be held in Seattle and is to be organised by Microsoft. Its Conference
Chair is Jakob Rehof, who earned his Ph.D. degree in 1998 in the topps group.

15

Some topps research breakthroughs.

Partial evaluation. Members of the topps group [Jones, Sestoft, Søndergaard] created the
word’s first self-applicable partial evaluator2: a program whose construction settled an open prob-
lem that had stood unsolved for 13 years. This success showed for the first time (in practice as well
as in theory) that partial evaluation could be used automatically to generate compilers from pro-
gramming language interpreters. topps members currently active in this area: Andrzej Filinski,
Robert Glück, Julia Lawall, Torben Mogensen.

Other well-recognised achievements by topps researchers:

• Automatic program analysis, e.g., termination analysis [Neil Jones, James Avery, Nina Bohr],
and two much-cited pointer analyses to recognise possible variable aliasing in C language3

[Lars Ole Andersen and Bjarne Steensgaard].

• Type-based program analysis was used to alleviate bad effects of the “year 2000” problem,
and has been used for many applications since then [Fritz Henglein, Mads Tofte, et al.].

• Region inference allows implicit automatic memory management with order-of-magnitude
reductions in storage requirements [Mads Tofte, Fritz Henglein, Henning Niss, Henning
Makholm, et al.].

• Map theory is an integration of computer science algorithms and reasoning (the λ-calculus)
with classical mathematics [Klaus Grue].

• The programming language Standard ML: Earlier topps members defined the first precise
semantics for the language, co-authored two frequently-cited books, and developed a very
widely-used implementation for teaching [Mads Tofte, Peter Sestoft, et al.].

Current projects include

• Plan-X: “If the network is the computer, how do we program it?” This aim is a software
platform where program and data, running on one machine, can be distributed on a network
and moved about, even while client programs execute and software and data migrate. The
purpose is to allow application-focused programming, leaving the computer science machinery
to the software platform. [Fritz Henglein, Thomas Ambus, Mads Pultz, et al]

• Logiweb: a system to construct a world wide web of theorems and proofs. It specifies protocols,
data structures, and abstract machines to realize such a web of theorems and proofs. [Klaus
Grue]

• NEXT: “Enterprise Resource Planning Systems” This project (joint with Microsoft Business
Solutions IT University of Copenhagen), aims to develop software technology and methods
to construct a next generation of systems to steer businesses. [Fritz Henglein, Christian
Stefansen, Daniel Brixen, Ebbe Elsborg, et al].

• Coccinelle: A language-based approach to managing the evolution of Unix device drivers.
Software systems frequently evolve to improve performance, fix bugs, and address new re-
quirements. When evolutions affect heavily used interfaces, however, a multitude of collateral
evolutions may be needed in dependent modules. An example is the frequently evolving Linux
operating system. This project will design a transformation language dedicated to specifying
the modifications needed for collateral evolution, and a transformation tool to apply them
to device driver code. [Julia Lawall].

2The purpose of partial evaluation is to make programs run faster. A partial evaluator is given a program
together with some, but not all, of its input data. From these it builds a new specialised program that, given any
remaining input data, computes the same answer the original program would yield if given all its inputs. In practice
partial evaluation sometimes yields order-of-magnitude program speedups.

3These analyses are at the base of some tools currently used by Microsoft.

16

Theory in relation to applications: the topps approach

The research areas above all focus on topics that lie near the border between theory and practice.
Many of the theoretical results concern practical aspects of computing, and many of the practical
parts of the work are carefully chosen to cast experimental light on questions of principle that
arose in theoretical investigations.

Context: Programming languages are the raw material of the complex conceptual structures
that make up all computer software. Formalized computer languages and their semantics play a
central rôle in all phases of software development. This begins with a description of the desired
abstract software entity, often expressed using a formal specification language. A next phase: the
refinement of the specification into a prototype executable version expressed in an implementation
language. Later and equally important steps: verifying that the constructed software will be-
have in reliable and error-free ways in safety-critical applications; and that software and hardware
combinations can be guaranteed to run within preassigned space and speed constraints.

Since the 1950s, advances in programming languages have greatly aided effective computer
usage. The phenomenal success of Java is an example of how advances in programming languages
(clean semantics and well-planned implementation) can reach widespread acceptance. Thanks
to Java, automatic memory management, type safety and several other features, well-known in
research-related communities but not available in languages like C++ and Fortran, have finally
entered mainstream computing.

The rôle of research in programming languages, as we see it, is to develop and test ideas
that may gain widespread use ten years from now. The programming language research span is
wide, encompassing: significant experimental work on language design, program transformation,
etc.; implementation technology, which is necessary to establish the practical viability of new ideas;
and purely theoretical studies, which are necessary to establish a foundation upon which all the
other activities can be built.

An approach to automation. A central component of the group’s world view is to use the
computer itself for program optimisation, analysis, debugging, transformation and adaptation to
new contexts.

The current practice of programming is (still) essentially a handcraft, analogous to one-at-a-
time construction of artefacts by a blacksmith. In order better to automate programming, we
need better computer tools to aid program creation, maintenance, updating, and other forms of
program manipulation. These can be of higher or lower level, for example tools to analyze existing
programs to locate possible errors; interpreters or compilers; and tools to aid in creating programs,
given precise specifications of what the programs are intended to accomplish.

Our opinion, based on many years’ experience: automatic program manipulation works much
better when solidly based on the semantics of programming languages. This helps in systematically
developing correct and reliable tools to manipulate existing programs and create new ones. Further,
a good formal and informal understanding of semantics is essential to specify and implementing
new languages (important: the number of existing poorly designed languages is legion).

Problem-solving approaches. The group is characterized by knowledge of and experience
with a broad spectrum of programming languages: imperative, functional, object-oriented, logic
and concurrent. Its emphases are and will continue to be on building semantically well-founded
tools to aid humans in many ways when dealing with programs.

The group works with programming languages as an object of study and manipulation rather
than just a tool for getting work done. In particular, we investigate methods of automatically
analysing or transforming programs, often using the results of one to further the other. Some of
the work done in the group centers on particular languages (e.g., ML and Scheme), while other work
treats classes of languages that share common traits, like lazy functional languages or imperative
languages.

17

Introduction to Hagiya Lab.
from Hagiya’s home page

With background in formal logic, our laboratory
is seeking for new computational models,
developing new methods for analyzing and
verifying such models, and implementing new
tools for the analysis and verification.

While our main target is software and
programming languages, we are also dealing
with molecular and biological systems (DNA
and molecular computing).

• Students are doing what they want to do
– Nishizawa (D3): category theory for abstract interpretation
– Frederiksen (D2): termination and liveness analysis
– Abe (D2): concurrency
– Tanabe (D1): shape analysis
– Kawamura (M2): computable analysis
– Kakutani (Research Associate): categorical semantics

• Collaborations
– Research Center for Verification and Semantics, AIST
– NTT Communication Science Laboratories
– Chiba University
– IBM TRL
– Other collaborations on DNA and molecular computing

Hagiya Lab.

• Branching-time temporal logic can naturally be used
to express properties of trees and graphs, where two-
way logic is more useful because it can handle both
forward and backward edges

• We have implemented a tableaux-based satisfiability
checker for alternation-free two-way modal -
calculus using BDDs (TABLEAUX2005)

• and applied it to schema checking in XML
(CIAA2003) and shape analysis (FLOPS2004)

• In particular, shape analysis can be considered as
tableaux construction with suitable extensions to
temporal logic (DSN2005): two-way, nominal, and
global modality

Satisfiability Checking of Two-way Modal -calculus
and Its Applications

18

Two-way
(an extension to temporal logic)

Each modality has its backward counterpart
Ex.: The variables x and y

point to the same node

x f f y

Alternation-free two-way modal -calculus
Prop: set of propositional variables

Mod: set of modalities

Backward modality: : Mod Mod, a = a

Two-way CTL a subsystem

x

y

f

f

Satisfiability Checking...

• two-way (full)
– Vardi 1998: full -calculus (no efficient

implementation?)

– Sattler and Vardi 2001: hybrid full -calculus (also
handling nominals)

• using BDDs for tableaux
– Pan, Sattler and Vardi 2002: for K

– Pan and Vardi 2003: also for K

– MONA: WS2S

Our Tableaux Method
• Definition of I-types (nodes of the tableau)

– In order to avoid loops following forward and
backward modalities, we introduce an irreflexive
and transitive relation in each I-type

• Consistency conditions of I-types
– Various consistency conditions are defined,

including loop-freedom using the irreflexive and
transitive relation

• Technical but crucial improvements

• Implementation by BDDs

19

Application to XML

Tozawa and Hagiya proposed XML schema
containment checking using BDDs
(CIAA2003)

We have recently extended the method to handle
schema checking of XML transducers

The satisfiability checker for alternation-free
two-way -calculus is used by restricting
models to finite binary trees

Tozawa has reported that using the satisfiability
checker is more efficient than using MONA

Abstraction of Graphs
(Shape Analysis)

A directed graph is a Kripke structure

Each node in a graph is characterized by a finite
set F of modal formulas

• An abstract node C is a subset of F : C F

• A concrete node m is abstracted to

{ F | m|= } F

• An abstract graph G is a set of abstract nodes,
i.e., G 2F

Simple Analysis of Lists

• Mod = {f, b}, f = b

• Prop = {x, y}
x: pointed to by the variable x

y: pointed to by the variable y

• F = {x, y, f true,

E{f}Fx, E{f}Fy, E{b}Fx, E{b}Fy}

• C1 = {x, f true, E{f}Fx, E{f}Fy, E{b}Fx}

• C2 = { f true, E{f}Fy, E{b}Fx}

• C3 = {y, E{f}Fy, E{b}Fx, E{b}Fy}

x y

C1 C2 C3

x y

20

Global Modality
(another extension to temporal logic)

A, E : global modalities
• m|=A n|= holds for all n
• m|=E n|= holds for some n
For the abstract graph G, there exists a natural

surjection from the tableau of the formula

A (C | C G)
to the abstract graph, i.e., the tableau can be
regarded as a refinement of the abstract graph

C | C} | F C}

Shape analysis is tableaux

Nominal
(yet another extension to temporal logic)

In Sagiv et al.’s shape analysis, abstract nodes are
classified into summary and non-summary nodes

A nomimal is a kind of propositional constant, but it
holds at exactly one node in a Kripke structure

(Modal logic with nominals is called hybrid)
Nominals correspond to non-summary nodes in the

shape analysis
– x and y in the simple analysis of lists should be nominals

because they determine unique nodes

We have extended our BDD-based satisfiability checker
to cope with nominals, though it is not complete
– A formula is unsatisfiable if tableaux construction fails

TLAT (Temporal Logic Abstraction Tool)
Abstract graphs are not constructed explicitly but

implicitly by the “Shape Analysis is Tableau”
principle

Q1, ..., Qn : formulas of the form A (given by the user)

Abstract state: @i

: conjunction of Qk or Qk

i: program counter

The weakest precondition of a program in PML (Pointer
Manipulation Language) is computed

A transition between abstract states @i and @j is
allowed if wp(ij,) is satisfiable, where ij is the
program statement from i to j

21

Q1 Q2

Current and Future Work
• Complete and efficient satisfiability checker

with nominals

• Comparison with other (many) frameworks:
– TVLA, MONA, Description logic, ...

• Spatio-temporal logic

• Cardinality analysis Termination analysis
(cf. Frederiksen)

• Adding clocks or continuous parameters
– Cardinality analysis Timed multiset rewriting

(FTRTFT2002)

Cardinality Analysis

Analyze changes in the number of nodes
corresponding to each abstract node

Abstraction from graphs to multisets
– Less abstract than abstract graphs, but still infinite

x y

x y

1 3 1

(1, 3, 1)

multiset of abstract nodes

22

Cardinality Analysis by wp

Ci : abstract node

i : the formula Ci
corresponding to Ci

ki : the cardinality of Ci before the transition

ki : the cardinality of Ci after

i1 im
wp(, j1 jn

)

ki1
+ + kim

kj1
+ + kjn

ki ki 1
Ci contains x Ci contains x

23

Research at Takeichi Laboratory 1�

�

�

�

Research at Takeichi Laboratory

Zhenjiang Hu

The University of Tokyo

September 24, 2005

Research at Takeichi Laboratory 2�

�

�

�

Information Processing Laboratory

Department of Mathematical Informatics /
Department of Creative Informatics

Graduate School of Information Science and Technology
The University of Tokyo

http:://www.ipl.t.u-tokyo.ac.jp

Research at Takeichi Laboratory 3�

�

�

�

Members in IPL Lab.

• Staffs

� Masato Takeichi, Professor, Head

� Zhenjiang Hu, Associate Professor

� Kiminori Matsuzaki, Research Associate

• Visiting Researchers

� Xi Chen

• Students

� Ph.D students (1)

� Master students (9)

� Research students (1) (will be)

24

Research at Takeichi Laboratory 4�

�

�

�

Programmable Structured Documents Laboratory

Department of Mathematical Informatics
Graduate School of Information Science and Technology

The University of Tokyo

http:://www.psdlab.org/

Research at Takeichi Laboratory 5�

�

�

�

Staffs in PSD Lab.

• Masato Takeichi, Professor, Head

• Zhenjiang Hu, Associate Professor

• Kazuhiko Kakehi, Assistant Professor (Project)

• Yasushi Hayashi, Researcher

• Dongxi Liu, Researcher

• Shin-Cheng Mu, Researcher

• Keisuke Nakano, Researcher

Research at Takeichi Laboratory 6�

�

�

�

Current Research Topics

The PSD Project

• A framework of programmable structured documents

• From program transformation to document transformation

The SkeTo Project

• Systematic parallel programming with skeletons

• An environment supporting sequential style of parallel pro-
gramming in C++

The Yicho Project

• Development of calculation rules for fold-free program
transformation

• A system for implementing calculation rules

25

Research at Takeichi Laboratory 7�

�

�

�

The PSD Project

Programmable Structured Documents

Structure documents + Code

<addbook>

<names ref=“contents”, code=“extractName” />

<addresses>

<number ref=“contents”, code=“count” />

<contents label=“contents” >

<person><name>Masato Takeichi</name> ... <person>

<person><name>Zhenjiang Hu</name> ... <person>

<person><name>Shin-Cheng Mu</name> ... <person>

</contents>

</addresses>

</addrbook<

Research at Takeichi Laboratory 8�

�

�

�

Challenges

• How to create PSD by people even with little
knowledge of programming?

• How to evaluate PSD efficiently?

• How to update PSD?

• How to manipulate PSD?

• How to check that PSD is well-formed?

Research at Takeichi Laboratory 9�

�

�

�

Our Idea

• How to create PSD by people even with little
knowledge of programming?
⇒ XEditor

• How to evaluate PSD efficiently?
⇒ Lazy evaluation

• How to update PSD?
⇒ Bidirectional Scripting Languages: X, BiXJ

• How to manipulate PSD?
⇒ Program calculation

• How to check that PSD is well-formed?
⇒ Make a type-check system

26

Research at Takeichi Laboratory 10�

�

�

�

PSD Framework

Research at Takeichi Laboratory 11�

�

�

�

XEditor

⇒
Structured Documents

+
Bidirectional Transformation

Codes

[PEPM 2004]

Research at Takeichi Laboratory 12�

�

�

�

An Algebraic Approach to Bidirectional Updating

Reflect can be automatically derived from any injective transform.
[MPC 2004, APLAS 2004]

27

Research at Takeichi Laboratory 13�

�

�

�

A Bidirectional Langugae: X, BiXJ

X ::= B { primitives }
| X ; X { sequencing }
| X ⊗ X { product }
| If P X X { conditional branches }
| Map X { apply to all children }
| Fold X X { fold }

B ::= GFun (f, g) { Galoi function pairs }
| NFun f { a simple function }
| Dup { duplication }

[PEPM 2004, Liu’s Talk]

Research at Takeichi Laboratory 14�

�

�

�

Applications: Tree Calculators

Figure 1: iExam

Figure 2: Student Management System

[ACM DocEng 2005]

Research at Takeichi Laboratory 15�

�

�

�

Applications: iDocuments

Figure 3: iTextbook
Figure 4: iPuzzle

28

Research at Takeichi Laboratory 16�

�

�

�

The Sketo Project

• How to program with parallel skeletons [TOPLAS:97, PEPM’99,
ESOP’02]

� What are basic skeletons?

� How to combine basic skeletons to solve a problem?

• How to implement parallel skeletons efficiently in distributed-memory
systems?

� List skeletons [IJPP:04,EuroPar 2004]

� Tree skeletons [EuroPar 2003, CMPP 2004]

� Matrix skeletons [ongoing work]

http://www.ipl.t.u-tokyo.ac.jp/sketo/

Research at Takeichi Laboratory 17�

�

�

�

The Yicho Project

• Developing calculation rules for fold-free transformations:

� Fusion [ICFP’96]

� Tupling [ICFP’97]

� Parallelization [POPL’98]

� Accumulation [NGC:99]

� Dynamic Programming (Maximum Marking Problems) [ICFP’00]

� Iterative-free Program Analysis [ICFP’03]

� IO-Swapping [ongoing work]

• Implementation:

� Deterministic High-order Patterns [IPL:2004]

� Deterministic High-order Matching Algorithms [TFP’05]

http://www.ipl.t.u-tokyo.ac.jp/yicho/

Research at Takeichi Laboratory 18�

�

�

�

Thank You!

29

Parallel Tree Reduction and its Implementation in C++
(Extended Abstract⋆)

Kiminori Matsuzaki

Graduate School of Information Science and Technology
University of Tokyo

kmatsu@ipl.t.u-tokyo.ac.jp

1 Introduction

Trees are important datatypes that are often used in representing structured data such as
XML. In recent years, the grow of computational power enables us to store huge data in
forms of trees, which calls for methods of manipulating trees efficiently.

Though hardware environments for parallel computing are becoming widely available
(e.g. PC clusters), parallel programming for trees is still known to be a hard task because
of the ill-balanced and irregular structures of trees. For binary trees, there are parallel algo-
rithms called tree contraction algorithms, which was first proposed by Miller and Reif [11]
and studied by many researchers [1, 2, 6, 10, 12]. Though the tree contraction algorithm are
efficient algorithms, it requires intuitions and/or experiences to design and implement the
algorithms. For trees of arbitrary shapes there are only a few studies [5, 7] most of which
are rather ad hoc.

In this paper, we formalize an important computational pattern called reduction or
homomorphism on trees of arbitrary shapes. We then show this computational pattern is
mapped to the reduction on binary trees, under certain conditions on the operators used in
the reduction.

We have implemented several computational patterns on binary trees using C++ and
MPI in the parallel skeleton library SkeTo [13]. We show furthermore how we can implement
the reduction on general trees based on this ready-made implementation using the template
mechanism and function objects in C++.

The rest of the paper is organized as follows. In Section 2, after briefly introducing the
notational conventions, we review the tree contraction algorithms. In Section 3, we formalize
the general tree reduction, and show how we can parallelize this computational pattern using
the parallel tree contraction algorithms. In Section 4, we show an implementation of the
general reduction on our parallel skeleton library. Finally in Section 5, we make conclusion
remarks.

2 Preliminaries

2.1 Notations

In this paper, we use the notation of Haskell [3]. In the following, we briefly review important
notations and define the datatypes of binary trees and general trees (called rose trees).

Functions and Operators Function application is denoted by a space and the argument
may be written without brackets. Thus f a means f(a). Functions are curried, and the
function application associates to the left. Thus f a b means (f a) b. The function application
⋆ The detailed version of this paper was published as a technical report METR2005-30, Department

of Mathematical Informatics, University of Tokyo [8].

30

binds stronger than any other operator, so f a⊕b means (f a)⊕b, but not f (a⊕b). Function
composition is denoted by an infix operator ◦. By definition, we have (f ◦ g) a = f (g a).
Function composition is associative and its unit is the identity function denoted by id .

Infix binary operators will be denoted by ⊕, ⊗, etc, and their units are written as ι⊕,
ι⊗, respectively. These operators can be sectioned and be treated as functions, i.e. a ⊕ b =
(a⊕) b = (⊕b) a = (⊕) a b holds.

In deriving parallel programs, algebraic rules on operators such as associativity or dis-
tributivity play important roles. We introduce an generalized rule of the distributivity in
terms of a closure property of functions.

Definition 1 (Extended Distributivity [7]). Let ⊗ be an associative operator. The
operator ⊗ is said to be extended-distributive over operator ⊕, if for any a, b, c, a′, b′, and
c′, the following equation holds.

(λx.a ⊕ (b ⊗ x ⊗ c)) ◦ (λx.a′ ⊕ (b′ ⊗ x ⊗ c′)) = λx.A ⊕ (B ⊗ x ⊗ C)

where A = p1 (a, b, c, a′, b′, c′), B = p2 (a, b, c, a′, b′, c′), and C = p3 (a, b, c, a′, b′, c′). The
functions p1, p2, and p3 are called characteristic functions. 2

Many pairs of operators satisfy the extended distributivity. For example, let ⊕ be an
associative operator, then ⊕ is also extended-distributive over ⊕ itself. If operator ⊗ dis-
tributes over operator ⊕, then of course the operator ⊗ is extended-distributive over ⊕.
There are many pairs of operators where the distributivity does not hold but the extended
distributivity does. Thus, this property is useful for specifying the conditions for paralleliza-
tion.

Data Structures Binary trees are trees whose internal nodes have exactly two children.
In this paper we may assume the nodes in a binary tree have values of the same type.

data BTree α = Leaf α | Node α (BTree α) (BTree α)

Rose trees are trees whose internal nodes have an arbitrary number of children. In this
paper we may assume the nodes in a rose tree have values of the same type.

data RTree α = RNode α [RTree α]

2.2 Parallel Tree Contraction Algorithms

The reduction on binary trees is a computational pattern that takes a binary tree and
collapses the tree into a value by applying a function in a bottom-up manner.

reduceb k (Leaf n) = n
reduceb k (Node n l r) = k n (reduceb k l) (reduceb k r)

The reduction is computed efficiently in parallel with the tree contraction algorithms.
The parallel tree contraction algorithms were first proposed by Miller and Reif [11] and stud-
ied by many researchers [1, 2, 6, 10, 12]. The main idea of the tree contraction algorithms is
to apply the local contractions independently on multiple nodes. One of the tree contraction
algorithms applies SHUNT operation (Fig. 1), which removes a leaf and its parent node
from a tree. The tree contraction algorithms collapses a binary tree of size n into a value in
O(log n) steps in regardless to the shape of trees.

To utilize the tree contraction algorithms, it may be required to modify the computation
from the specification of reductions. For example, the computation of height of a tree can be

31

λxy.(1 + (x ↑ y)) ↑ 0

λxy.(1 + (x ↑ y)) ↑ 0 λxy.(1 + (x ↑ y)) ↑ 0

λxy.(1 + (x ↑ y)) ↑ 0
1 1 1

1 1

λxy.(1 + (x ↑ y)) ↑ 0

λxy.(2 + (x ↑ y)) ↑ 1
2

1 1

SHUNT

Fig. 1. The SHUNT operation and the computation for height of trees

defined by the reduction with function k defined as k n l′ r′ = 1+(l′ ↑ r′) where ↑ return the
larger of the two arguments. Unfortunately, it fails to compute the height of tree if we apply
the function k above naively through the tree contraction. This is because the function k
does not satisfy the closure property under function composition. To make the computation
correct, it is required to modify the definition of k into a closed form of functions. In the
case of computing the height, we can use a closed form λ l′ r′. (a + (l′ ↑ r′)) ↑ b, where a
and b are certain parameters. (Fig. 1).

As reviewed so far, tree contraction algorithms are efficient and important parallel algo-
rithms for reductions on binary trees, but it is however necessary to find a closed form of
functions to correctly compute with the algorithms.

3 General Tree Reduction

In this section, we first specify the reduction on rose trees, and then show how we can
parallelize the reduction in terms of the reduction on binary trees.

3.1 Specification

Since an internal node of rose trees may have an arbitrary number of children, we define the
reduction on rose trees with two binary operators. The reduction on rose trees collapses the
tree into a value in a bottom-up manner by applying ⊗ to fold the siblings and ⊕ to fold a
parent and its children. By definition, the operator ⊗ must be an associative operator.

reducer (⊕) (⊗) (RNode a []) = a ⊕ ι⊗
reducer (⊕) (⊗) (RNode a [t1, . . . , tn])

= a ⊕ ((reducer (⊕) (⊗) t1) ⊗ · · · ⊗ (reducer (⊕) (⊗) tn))

There are many applications that can be written in the form of reduction above. Exam-
ples of them are computing the summation of nodes, computing the height of trees, XML
serialization and the maximum connected-set sum problem.

3.2 Binary-Tree Representation of Rose Trees

Efficient implementations of the tree contraction algorithms have been known for binary
trees, for example, on EREW PRAM [1] and on hypercubes [9]. To utilize these parallel
implementations, we represent rose trees in shape of binary trees as shown in Fig. 2.

In this representation, every internal node comes from a node in the original rose tree,
and all leaves are dummy nodes. The left child of a node in the binary tree is its left-most
child in the original rose tree, and the right child of a node in the binary tree is its next
sibling in the rose tree. Let n be the number of nodes of the original rose tree, then the
number of nodes of the binary tree turns out to be 2n+1, which guarantees the asymptotic
cost when we utilize the tree contraction algorithms.

32

a

b c d

e f

a

b

c

d
e

f

Fig. 2. The binary-tree representation of rose trees.

3.3 Parallelizing General Tree Reduction with Binary Tree Reduction

In general, we can compute the reduction on rose trees by the reduction on binary trees with
function k defined as k n l′ r′ = (n ⊕ l′) ⊗ r′, after substituting ι⊗ for every leaf. As seen
in the previous section, it is required to find a closed form of the functions to guarantee the
correctness of the tree contraction algorithms. In the following of this section, we formalize
the conditions for parallelizing the reductions and show a closed form of the functions for
each condition.

First, we consider the most simple case where the operator ⊕ is the same as the asso-
ciative operator ⊗. In this case, we can use function form

λ l′ r′.a ⊗ l′ ⊗ r′ ⊗ b

as a closed form of the functions, where a and b are certain parameters.
Secondly, we consider the case where the two operators are different. It is well-known that

the distributivity plays an important role in parallelizing programs, and the second condition
is that the operator ⊕ is associative and distributive over ⊗ and ⊗ is also associative. Under
this condition, we can define a closed form of functions as

λ l′ r′. (a ⊕ l′) ⊗ (b ⊕ r′) ⊗ e

where a, b, and c are certain parameters.
Then we consider the case where the distributivity hold in the opposite pair of op-

erators, in other words, the ⊗ is distributive over ⊕. Unfortunately, there are still many
reductions where ⊗ is not distributive over ⊕ because of the mismatch of the types. We
apply the extended-distributive property [7] to generalize the condition to capture a wide
range of reductions. The third condition is, therefore, the operator ⊗ is both associative
and extended-distributive over the operator ⊕. Under this condition, we can define a closed
form of functions as

λ l′ r′. a ⊕ (b ⊗ (c ⊕ l′) ⊗ r′ ⊗ d)

where a, b, c, and d are certain parameters.
We summarize this section as the following theorem.

Theorem 1. The reduction on rose trees can be parallelized in terms of the reduction on
binary trees, if either of the following conditions is fulfilled.

– The operator ⊕ is the same as the associative operator ⊗.
– The operators ⊕ and ⊗ construct an algebraic semi-ring.
– The operator ⊗ is both associative and extended-distributive over the operator ⊕.

Proof: We can show the correctness of the computation on binary trees by the induction on
the structure of binary trees. We can prove the correctness of the tree contraction algorithms
by calculating the composition of functions above and verifying the closure property. 2

33

4 Implementing General Tree Reduction in C++

We have implemented a parallel skeleton library named SkeTo. The SkeTo library is a library
based on the theories of Constructive Algorithmics [4] and now provides the parallel skeletons
(ready-made components) for lists, matrices, and binary trees. In the SkeTo library, we can
implement the reduction on rose trees as a wrapper functions of the skeletons on binary
trees based on the discussion in Section 3.

The binary tree skeletons in the SkeTo library take function objects for their argument
functions. The function objects enables us to generate new functions by function composition
or partial binding of some arguments in conjunction with the template mechanism in C++.
Therefore, we can generate suitable functions for the binary tree skeletons from the functions
for rose trees given as function objects.

In the implementation, the data structure of rose trees is dealt as binary trees, and the
class for the rose tree structure (dist_rose_tree) has a member of the class for the binary
tree (dist_tree) as shown in the following segment of the code.

template<typename A> class dist_rose_tree {
dist_tree<A>* btree;

...

We implement the function objects that will be passed to the reduction on binary trees,
such as the argument function k, the closed form, its composition, and mapping from the
closed form to the actual value. In the following we show the definitions of function k
(reduce_ring_k) and the closed form for the tree contraction (reduce_ring_form), and
the function that lifts function k to the closed form (reduce_ring_phi), for the case when
the two operators construct an algebraic semi-ring.

template<typename A, typename OP, typename OT>
struct reduce_ring_k : public skeleton::ternary_function<A, A, A, A> {
OP op; OT ot; reduce_ring_k(OP op_, OT ot_) : op(op_), ot(ot_) {}
A operator()(const A& n, const A& l, const A& r) const {
return ot(op(n, l), r);

}
};
template<typename A>
struct reduce_ring_t {
A a, b, c; reduce_ring_t(A a_, A b_, A c_) : a(a_), b(b_), c(c_) {}

};
template<typename A>
struct reduce_ring_phi : public skeleton::unary_function<A, reduce_ring_t<A> >{
A e_op, e_ot; reduce_ring_phi(A e_op_, A e_ot_) : e_op(e_op_), e_ot(e_ot_) {}
reduce_ring_t<A> operator()(const A& x) const {
return reduce_ring_t(x, e_op, e_ot);

}
};

Now we can implement the reduction on rose trees by using the function objects defined
as above. First, we call the map skeleton to substitute the unit of ⊗ for each leaf, and then
call the reduce skeleton to obtain the result.

template<typename A, typename OP, typename OT>
A reduce_ring(OP op, A e_op, OT ot, A e_ot,

const dist_rose_tree<A>* tree) {
dist_tree<A>* bt1 = tree_skeleton::map(f_const(ot),f_id(),tree->btree);
A result = tree_skeleton::reduce(reduce_ring_k(op, ot),

reduce_ring_phi(e_op, e_ot), ..., bt1);

34

if (bt1) delete bt1;
return result;

}

As seen so far, we can write a new library function for the reduction on rose trees without
considering the lower-level problems such as send-receive in MPI.

5 Conclusion

In this paper, we have shown the specification of the reduction on rose trees and the par-
allelization by the tree contraction algorithms. We have formalized three conditions for
parallelizing the reduction, which capture a wide range of the reduction algorithms.

Actually, we have formalized seven general computational patterns on rose trees and their
implementation in terms of the binary tree skeletons (component). We have implemented
the rose tree skeletons in our parallel skeleton library SkeTo. Please refer our web-pages [13]
for more details and download the current version of the library.

We are currently formalizing the derivation method of efficient parallel programs in terms
of the general computational patterns on rose trees.

References

1. K. Abrahamson, N. Dadoun, D. G. Kirkpatrik, and T. Przytycka. A simple parallel tree con-
traction algorithm. Journal of Algorithms, 10(2):287–302, June 1989.

2. D. A. Bader, S. Sreshta, and N. R. Weisse-Bernstein. Evaluating arithmetic expressions using tree
contraction: A fast and scalable parallel implementation for symmetric multiprocessors (SMPs).
In 9th International Conference on High Performance Computing (HiPC 2002), LNCS 2552,
pages 63–75, Bangalore, India, Dec 2002.

3. R. Bird. Introduction to Functional Programming using Haskell. Prentice Hall, January 1998.

4. R. S. Bird. Constructive functional programming. In STOP Summer School on Constructive
Algorithmics, Abeland, 9 1989.

5. R. Cole and U. Vishkin. The accelerated centroid decomposition technique for optimal parallel
tree evaluation in logarithmic time. Algorithmica, 3:329–346, 1988.

6. X. He. Efficient parallel algorithms for solving some tree problems. In 24th Allerton Conference
on Communication, Control and Computing, pages 777–786, 1986.

7. K. Matsuzaki, Z. Hu, K. Kakehi, and M. Takeichi. Systematic derivation of tree contraction
algorithms. In S. Gorlatch, editor, 4th International Workshop on “Constructive Methods for
Parallel Programming” (CMPP 2004), pages 109–123, July 2004.

8. K. Matsuzaki, Z. Hu, and M. Takeichi. Design and implementation of general tree skeletons.
Technical Report METR2005-30, Department of Mathematical Engineering, University of Tokyo,
2005.

9. E. W. Mayr and R. Werchner. Optimal routing of parentheses on the hypercube. Journal of
Parallel and Distributed Computing, 26(2):181–192, 1995.

10. E. W. Mayr and R. Werchner. Optimal tree constraction and term matching on the hypercube
and related networks. Algorithmica, 18(3):445–460, 1997.

11. G. L. Miller and J. H. Reif. Parallel tree contraction and its application. In 26th Annual
Symposium on Foundations of Computer Science, pages 478–489, Portland, OR, October 1985.
IEEE Computer Society Press.

12. G. L. Miller and S.-H. Teng. Tree-based parallel algorithm design. Algorithmica, 19(4):369–389,
1997.

13. SkeTo Project. SkeTo project homepage. http://www.ipl.t.u-tokyo.ac.jp/sketo/, 2005.

35

Coccinelle : a language-based approach to managing the evolution

of Linux device drivers

Julia L. Lawall
DIKU, University of Copenhagen
2100 Copenhagen Ø, Denmark

E-mail: julia@diku.dk

Gilles Muller
Ecole des Mines de Nantes INRIA, LINA

44307 Nantes cedex 3, France
E-mail: Gilles.Muller@emn.fr

1 Introduction

The Linux operating system (OS) is becoming more
and more widely used in government and industry at
all levels. In areas ranging from servers, to desktop
computing, to embedded systems, Linux is known for
its configurability, low cost, and innovative applica-
tions. These advantages are due in part to the use
of the open source model in developing Linux and
accompanying applications. The key feature of this
model is that users contribute to system development.
Thus, bug fixes and new features are introduced as
soon as there is a motivated user, and not when it be-
comes in the business interest of a company to do so.
In practice, this model has led to the rapid evolution
of Linux and accompanying applications.

Evolutions that affect the Application Program In-
terfaces (APIs) of the OS often trigger the need for
collateral evolutions in OS services. Device drivers
are particularly vulnerable to the need for such col-
lateral evolutions, both because of their huge number
and because of the multiplicity of their dependences
on the rest of the OS. Furthermore, device drivers are
typically developed by users who are more expert in
the device than in the OS. This leads to a number
of problems: The users who have sufficient expertise
in a device to maintain a device driver often do not
have sufficient expertise in the OS to infer the col-
lateral evolution associated with a given API change.
Even if the collateral evolution is understood, it may
be complex and thus hard to apply correctly. Even-
tually, the user maintaining a driver may become un-
available, in which case, the driver can fall behind
the rest of the OS. These issues contribute to the lack
of continuity in support for devices across successive
versions of Linux.

To illustrate the difficulty of keeping drivers up
to date, we consider the case of the function
check region, used in driver initialization. In Linux
2.4.1, this function was called 322 times in 197 driver

files. Starting in Linux 2.4.2 (February 2001), the
use of this function began to be eliminated, because
changes in the driver initialization process implied
that it could cause race conditions. Eliminating a call
to check region requires complex modifications that
affect multiple parts of the code and require a non-
trivial control-flow analysis. Indeed, discussion in
Linux mailing lists indicates that the issues involved
are not well understood. Accordingly, the elimina-
tion of check region has proceeded very slowly, as
shown by the graph below.

2.4
0-5

5-10
10-15

15-20
20-25

25-28

2.5
0-5

5-10
10-15

15-20
20-25

25-30
30-35

35-40
40-45

45-50
50-55

55-60
60-65

65-70
70-75

2.6

75-5
5-9

0

10

20

30

40

ch
an

ge
s

The evolution is not complete as of Linux 2.6.11
(March 2005), five years after the need for it first
appeared, and bugs have been introduced along the
way. This example highlights the critical need for
a means of compensating for the diversity in exper-
tise and commitment among Linux device driver de-
velopers. Specifically, an approach is required that
provides (a) a mechanism to formally document col-
lateral evolutions, and (b) a tool to aid developers in
performing them.

2 Coccinelle

We are developing a system, Coccinelle, that provides
a transformation language for precisely expressing

1

36

fjord
Rectangle

collateral evolutions and a transformation tool for ap-
plying these evolutions to device drivers. Coccinelle
is being designed around the strategy of shifting the
burden of collateral evolution from the driver main-
tainer to the OS developer who performs the original
evolution of an OS API, and who thus understands
this evolution best. In our vision, this OS developer
uses the Coccinelle transformation language to write
a semantic patch describing the transformations re-
quired to perform the collateral evolution in drivers.
The developer then uses the Coccinelle transforma-
tion tool to apply the semantic patch to the drivers
included in the Linux source distribution, to check
and potentially refine the transformation.

To enable the OS developer to have confidence in
the transformation process, we envision that the Coc-
cinelle transformation tool will be interactive. Rather
than transforming the code directly, Coccinelle will
identify matching code patterns and propose the cor-
responding transformed code to the developer. The
developer can either accept the change or modify the
semantic patch to more accurately describe the re-
quired evolution. To further aid the developer, Coc-
cinelle will identify partial matches, so that the de-
veloper can check for overlooked cases. When the
OS developer has validated the semantic patch on
the available drivers, he makes it publicly available
for use by the maintainers of drivers outside the OS
source distribution. These maintainers can also study
the patch to understand the collateral evolution, and
then use Coccinelle interactively to check that the
assumptions made by the developer of the semantic
patch hold for the given driver. Overall, Coccinelle
will thus provide a means for formally documenting
collateral evolutions and for easing the application of
these evolutions to driver code.

Currently, we are carrying out a domain analysis,
consisting of a thorough study of collateral evolution
in device drivers in recent versions of Linux. This
domain analysis will then form the basis of the de-
sign of the Coccinelle transformation language and
transformation tool.

2

37

fjord
Rectangle

BiXJ: A Java Library for Bidirectional
XML Transformation

Dongxi Liu, Zhenjiang Hu, Masato Takeichi

Kazuhiko Kakehi and Hao Wang

University of Tokyo

Outline

� Motivation of this work.

� BiXJ in detail.

� Examples in BiXJ
� Demos in <Oxygen />

� Translation of XQuery Core Expressions

� Related work and our contributions.

� Conclusions.

XML Transformation

� XML -- the format for exchanging data.

� Heterogeneous applications require different format of data.

� Transformation is pervasive for XML applications.

Network

Application

Application

Motivation of this work

Application

38

Problem

� In many cases, bidirectional transformation is desirable.
� As illustrated by the following figure

� The current transformation languages are only able to transform
XML documents in one direction.
� XQuery

� XSLT

� JAXB

� …

Source Target

Target`

Editing

Source`

Forward transformation

Backward transformation

Motivation of this work

Our approach

� BiXJ: a Java library for bidirectional XML transformation.
� Writing forward transformation, users can get corresponding backward

transformation for free.

Source Target

Target`

Editing

Source`

C

C

Wrriten by users

Gotten for free

A Sample Scenario of Using BiXJ (1)

Motivation of this work

39

A Sample Scenario of Using BiXJ (2)

<books>
<book>

<title>Computer Programming</title>
� <author>Tom</author>

<year>2003</year>
<publisher>Now Century</publisher>

�</book>
�<book>

<title>Data Structure</title>
���<author>Peter</author>

<year>2005</year>
<publisher>Great Press</publsher>

�</book>
<book>

<title>Computer Graphecs</title>
<author>Tom</author>
<year>1999</year>
<publisher>ACM Press</publisher> ��

</book> �
</books>

<mybooks>
<book>

<title>Computer Programming</title>
<publisher>Now Century</publisher>

�</book>
<book>

<title>Computer Graphecs</title>
<publisher>ACM Press</publisher> ��

</book> �
</mybooks>

Source Doc on Server Target Doc for Tom

Forward

Transformation

Motivation of this work

A Sample Scenario of Using BiXJ (2)

<books>
<book>

<title>Computer Programming</title>
� <author>Tom</author>

<year>2003</year>
<publisher>Now Century</publisher>

�</book>
�<book>

<title>Data Structure</title>
���<author>Peter</author>

<year>2005</year>
<publisher>Great Press</publsher>

�</book>
<book>

<title>Computer Graphecs</title>
<author>Tom</author>
<year>1999</year>
<publisher>ACM Press</publisher> ��

</book> �
</books>

<mybooks>
<book>

<title>Computer Programming</title>
<publisher>Now Century</publisher>

�</book>
<book>

<title>Computer Graphecs</title>
<publisher>ACM Press</publisher> ��

</book> �
</mybooks>

Source Doc on Server Target Doc for Tom

<mybooks>
<book>

<title>Computer Programming</title>
<publisher>New Century</publisher>

�</book>
<book>

<title>Computer Graphics</title>
<publisher>ACM Press</publisher> ��

</book> �
</mybooks>

Editing

Forward

Transformation

Motivation of this work

A Sample Scenario of Using BiXJ (2)

<books>
<book>

<title>Computer Programming</title>
� <author>Tom</author>

<year>2003</year>
<publisher>New Century</publisher>

�</book>
�<book>

<title>Data Structure</title>
���<author>Peter</author>

<year>2005</year>
<publisher>Great Press</publsher>

�</book>
<book>

<title>Computer Graphics</title>
<author>Tom</author>
<year>1999</year>
<publisher>ACM Press</publisher> ��

</book> �
</books>

<books>
<book>

<title>Computer Programming</title>
<publisher>Now Century</publisher>

�</book>
<book>

<title>Computer Graphecs</title>
<publisher>ACM Press</publisher> ��

</book> �
</books>

Source Doc on Server Target Doc for Tom

<books>
<book>

<title>Computer Programming</title>
<publisher>New Century</publisher>

�</book>
<book>

<title>Computer Graphics</title>
<publisher>ACM Press</publisher> ��

</book> �
</books>

Editing

Forward

Transformation

Backward

Transformation

Motivation of this work

40

Transformations in BiXJ

� Two ways to represent transformations in BiXJ
� Java classes vs. Code element

Java classes Code element

� Syntax of Some Transformations in Code element

X ::= PT | TC

 PT ::= <xid /> | <xconst>elm</xconst> | <xhide />

 | <xmodifyname>nm</xmodifyname>

 | <xnewroot>nm</xnewroot> | <xdistribute>n</xdistribute>

 | <xchildren>nm</xchildren> | <xcollapse>nm</xcollapse>

TC ::= <xseq>X1 X2 .. Xn</xseq> | <xmap>X</xmap>

 | <xzip> X1 X2 .. Xn</xzip> | <XIf>pred X1 X2</XIf>

BiXJ in detail

XID

� <xid />

Src Tgt

BiXJ in detail

XConst

� <xconst>elm</xconst>

Src Tgt

elm

Note: the modification on elm will be reflected onto transformation.

BiXJ in detail

41

XHide

� <xhide />

Src Tgt

() -- An empty value

BiXJ in detail

XModifyName

� <xmodifyname>nm</xmodifyname>

Src Tgt

… …

nmtg

Note: the modification on tag nm will be reflected onto transformation.

BiXJ in detail

XNewRoot

� <xnewroot>nm</xnewroot>

Src Tgt

nm

Note: the modification on tag nm will be reflected onto transformation.

BiXJ in detail

42

XDistribute

� <xdistribute>n</xdistribute>

Src Tgt

…

virtual

1 n2

BiXJ in detail

XChildren

� <xchildren>nm</xchildren>

Src Tgt

… …

virtualtg

nm nmtg` nmnm

BiXJ in detail

XCollapse

� <xcollapse>nm</xcollapse>

Src

…

nm

…

Tgt

…

…

BiXJ in detail

43

XSeq

� <xseq>X1 X2 … Xn</xseq>

…
X1 X2 X3 Xn

Src Tgt

BiXJ in detail

XMap

� <xmap>X</xmap>

X

Src Tgt

…

1 2 n

…

1 2 n

X X

Note: Src and Tgt can have different numbers of child elements because

 1) Some child elements of Src are transformed into empty element ().

 2) New child elements are inserted in Tgt.

BiXJ in detail

XZip

� <xzip>X1 X2 … Xn</xzip>

X1

Src Tgt

…

1 2 n

…

1 2 n

X2 Xn

Note: Src and Tgt can have different numbers of child elements due to the
same reason as XMap.

BiXJ in detail

44

XIf

� <xif>pred X1 X2</xif>

Src Tgt

X1
pred holds on Src

Src Tgt

X2
otherwise

BiXJ in detail

--example in sample scenario
--example of bidirecitonalizing XQuery
-- example of bidirecitonalizing XSLT

3 Examples in BiXJ

<books>
<book>

<title>Computer Programming</title>
� <author>Tom</author>

<year>2003</year>
<publisher>Now Century</publisher>

�</book>
�<book>

…
�</book>
<book>

<title>Computer Graphecs</title>
<author>Tom</author>
<year>1999</year>
<publisher>ACM Press</publisher> ��

</book> �
</books>

<xseq>
<xchildren>book</xchildren>

 <xmap>
 <xif>
 <xequals>

<path>1</path>
<value>Tom</value>

 </xequals>
 <xid />
 <xhide />
 </xif>
 </xmap>
 <xmap>
 <xseq>
 <xdistribute>2</xdistribute>
 <xzip>
 <xchildren>title</xchildren>
 <xchildren>publisher</xchildren>
 </xzip>
 <xnewroot>book</xnewroot>
 <xcollapse>virtual</xcollapse>
 </xseq>
 </xmap>

<xnewroot>mybooks</xnewroot>
<xcollapse>virtual</xcollapse>

</xseq>

Src

BiXJ code for Tom

<books>
<book>

<title>Computer Programming</title>
<publisher>Now Century</publisher>

�</book>
<book>

<title>Computer Graphecs</title>
<publisher>ACM Press</publisher> ��

</book> �
</books>

Tgt

Example #1 -- BiXJ Code for Scenario Example

45

Example #2 -- Bidirectionalizing XQuery

� Typical XQuery expressions have a structure called “FLWR”.
� For-Let-Where-Return

� The XQuery expression we have bidirectionalized as an example is:

<Books-of-Tom>
{
 for $l in doc("lib-src.xml")/lib return
 for $s in $l/shelf[category="Engineering"] return
 for $c in $s/cabinet return
 for $b in $c/book
 where $b/author ="Tom" and $b/price<50 return

<book>
 {

$b/title,
$b/price,

 <press>{$b/publisher/name/text()}</press>
 }
 </book>
}
</Books-of-Tom>

Find BiXJ code for this expression
 with Google in a same name paper!

Example #3 -- Bidirectionalizing XSLT

� A typical XSLT expression consists of transformation templates.

� The XSLT expression in the paper is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

 <xsl:template match="/">
 <html>
 <title>Books-of-Tom</title>
 <body>
 <table>
 <tr>
 <th>title</th>
 <th>price</th>
 <th>press</th>
 </tr>
 <xsl:apply-templates />
 </table>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="/lib">
 <xsl:apply-templates select="shelf[category = 'Engineering']"/>

 </xsl:template>

<xsl:template match="shelf">
 <xsl:apply-templates select="cabinet"/>
 </xsl:template>

 <xsl:template match="cabinet">
 <xsl:apply-templates select="book[author = 'Tom' and price < '50']"/>
 </xsl:template>

 <xsl:template match="book">
 <tr>
 <td><xsl:value-of select="title"/></td>
 <td><xsl:value-of select="price"/></td>
 <td><xsl:value-of select="publisher/name"/></td>
 </tr>
 </xsl:template>

</xsl:stylesheet>

Find BiXJ code for this expression
 with Google in a same name paper!

Demos in <Oxyygen />

� We have implemented a plugin to combine BiXJ into <oXygen /> editor
� helpful to develop BiXJ code in this editor.

� helpful to experience Bidiretional XML transformation.

Take a look at demos in <Oxygen>!

46

Translating XQuery Core Expressions

� Associate transformation with a context (stack)

� 3 operations to manage data in stack
� <xstore>$v</xstore>

� <xload>$v</xload>

� <xfree>$v</xfree>

XStore

� <xstore>$v< /xstore >

Src Tgt

($v, Src)

stack

XLoad

� <xload>$v< /xload>

Src Tgt

($v, Src) ($v, Src)

The most recent $v

47

XFree

� <xfree>$v< /xfree>

Src Tgt

($v, Src)

Syntax of XQuery Core

Expr ::= ExprSingle (, ExprSingle)*

ExprSingle ::= for $Var in ExprSingle return ExprSingle

 | let $Var := ExprSingle return ExprSingle

 | if (Expr) then ExprSingle else ExprSingle

 | child::NCName | child::* | child::text()

 | descendant::NCName

 | ExprSingle InfixOp ExprSingle

 | Literal | $Var | (Expr?) | ElementConstructor

InfixOp ::= and | or | < | =

ElementConstructor ::= <NCName /> | <NCName> {Expr} </NCName>

Literal ::= NumericLiteral | StringLiteral

Var ::= NCName

XQuery value BiXJ value

virtual

Represented as

[| for $Var in ExprSingle1 return ExprSingle2 |] ==>

<xseq>

[| ExprSingle1 |]

 <xseq>

 <xmap>

 <xseq>

 <xnewroot>virtual</xnewroot>

 <xstore>$Var</xstore>

 [| ExprSingle2 |]

 <xfree>$Var</xfree>

 </xseq>

 </xmap>

 <xcollapse>virtual</xcollapse>

 </xseq>

</xseq>

Transformation rules: one example

1

virtual

2 n
…

i

virtual

for i=1 to n

1

virtual

2 n
…

virtualvirtualvirtual

i

virtual

48

Related Work and Our contribution

� J. Foster, etc. Combinators for Bi-Directional Tree Transformations. {ACM
POPL 2005}
� Based on un-ordered trees without repeated labels

� Have not touched the expressiveness of their language (future work)

� Z. Hu, etc. A Programmable Editor for Developing Structured Documents
based on Bidirectional Transformation. {ACM PEPM 2004}
� Not standard XML destructing operations, e.g., using integer list to represent path

� Have not touched the expressiveness of their language, either.

� Contributions in BiXJ w.r.t the existing work:
� Support variable binding

� Expressiveness is studied
� Algorithm of translating expressions of XQuery Core to BiXJ.

� Accepts the native data model.

� Support standard XML processing operations.

� …

Conclusion and Future Work

� BiXJ
� A Java Library for Bidirectional XML Transformation

� Writing forward transformations, users can get
backward transformation for free

� Future Work
� Translating XSLT to BIXJ code automatically.

� Implement insertion and deletion operations.
� Some progress has been made-- deletion propagation.

� Combining this work into a real XQuery Engine.

Thanks!

49

Incrementalization of
Axapta Report
Programs
Presented by Michael Nissen

Introduction

� Overview of the programming language FunSETL

� Overview of incrementalization

� Overview of the Axapta report “Financial Statement”

� Implementation of the Axapta report ”Financial statement” in
FunSETL

� Automatic incrementalization of the ”Financial statement” in
FunSETL

� Demo of the Financial statement

� Explanation of the computational differences.

� Advantages & Future work (summing up).

FunSETL

� A simple functional language

� No recursion allowed, only iteration

� Made for the purpose of illustrating, that it
is possible to make a system that
automatically incrementalizes programs.

50

FunSETL Example

))sum5(1,0))sum5(5,sum5(7,sum5(3,

:Computes

mset(int))as1,5,7,3}sumarize({

 xs)0,b),sum5(a,=>b)(a,(fnfold

=mset(int)):(xssumarizefun

belseb+a then a<=5if

=int):bint,:(asum5fun

FunSETL Language

() ()

etvtvffundef

fundeffundefp

ttttlabtlab

tttt

nn

n

n

id

==

=

+=

):,,:(:

,,:

mset|,map|}:,,:{

||string|date|real|int|bool|::

11

1

211

21

K

K

K

FunSETL language overview

()

() { }

[]
[] []

1

213

2121

1121

1121

111

32121

321

).,(

}',,','{e

where)),)),'(,'(,,'(,'(

:following thecalculatesoperationThe

',,'|

|as',,'|with|)(#

|:,:|,,

|,fold|inlet

|elsethenif||:

ebaf

eee

eefefefef

fold

eeeeeee

teeeeeeelab

elabelabeef

eeebaeev

eeecve

n

nn

nn

nn

nnn

�=

=

��

��

==

�=

=

�

K

KK

K

K

KK

51

() ()
().ofresultsteintermedia theand

,ofusemakingbycomputes'if,underof

 version lincrementaancalledis'programathen

,operationanandprogramaGiven:Definition

xf

xfyxfff

f

f

��

�

programs.of versionslincrementa

makellyautomaticathatsystem,amakeTo:Goal

Definition and goal

Overview of incrementalization

() ()

()
()

()

() ())(ˆry,x,'ˆˆ

such that

,and,parameterswithdefined,is'ˆfunctionnewA4.

lized.incrementa

alsoisfunctionsothertoCallspossible.whereC

byfollowedmade

aree then therandunfolded,isˆexpressionThe3.

results).teintermediaitsand,ofuereturn valthe

containsˆofuereturn val(theCcacheaastousedis

ˆofuereturn val theandunfolded,isˆexpressionThe2.

.ofresultsteintermedia theand,fromuereturn val

original thereturnsˆwhere,ˆintoedtransformis.1

.respect towithlizeincrementa wish toWe

yxffxfr

ryxf

cache

from theng values substitutitionssimplifica

yxf

xf

xf

xfxf

ff

fff

f

�=�=

�

�

Simplifications

[]

[]r/be/a,

again tosimplifycanwecached,is),(If

/),(,/)(),(

:expression theofsemantics thepreserves

rewritefollowingThe.expressionfold theusing when is

FunSETLinrepitionofformonlyThe

1

21

21121

e

Seebafoldr

bSeebafoldaeeewithSeebafold

�=

���

52

Advantages & Future work

Advantages:
� To get a program efficiency improvement

� To get simpler looking programs (source code)

� To reduce the errors induced by humans

� To gain a reduction in programming time

Future work:
� Automatic feedback on result of incrementalization (have we gained

speedups)

Literature

� Daniel Brixen. Inkrementelle metoder til REA-baseret rapportering.
DIKU, January 2005.

� Yanhong Annie Liu. Incremental computation: A semantics-based
systematic transformational approach. Technical Report TR95-1551,
Cornell University, Computer Science, October 31, 1995.

� Robert Paige. Formal Differentiation: A Program Synthesis
Technique. UMI Research Press, 1981.

53

Report of an implementation of a Semi-Inverter

Torben Ægidius Mogensen

torbenm@diku.dk

DIKU-IST workshop 2005

Abstract

Semi-inversion is a generalisation of inversion: A semi-inverse of a program

takes some of the inputs and outputs of the original program and returns the re-

maining inputs and outputs.

We report on an implementation of the semi-inversion method described in a

paper [2] that will be presented at GPCE 2005. We will show some examples of

semi-inversions made by the implementation and discuss limitations and possible

extensions.

1 Summary of semi-inversion

1.1 Inversion vs. semi-inversion

Original program:

p!
!

!
!

Inversion is reversing all arrows:

p−1"
"

"
"

Semi-inversion is reversing some arrows:

p’!
"

!
"

1.2 The semi-inversion transformation

The steps of the semi-inversion transformation is shown in the following diagram:

154

disjoint

equations

#

desequentialisation

relational

equations
!resequentialisation

$

refinement

disjoint

equations

relational

equations

%
equation

construction

&

The following sections will elaborate on each of these steps.

1.2.1 Desequentialisation

Make patterns and expressions into unordered set of relations.

f P | G = E

⇓
f (P1,P2) = R1∪R2∪R3
where

(P1,R1) = Ip(P)
(P2,R2) = Ie(E)
R3 = Ig(G)

Ip : pattern→ var+× relationset
Ie : expression→ var+× relationset
Ig : guard→ relationset

Symmetric with respect to construction and deconstruction.

1.3 Refinement

• Combine operators:

z= div(x,y), v= mod(x,y) is replaced by (z,v) = divmod(x,y)

• Split tuples:

(x,y) = (z,v) is replaced by x= z, y= v

255

1.4 Resequentialisation

• Use dependency analysis to list relations in possible evaluation order.

• Operators use list of possible semi-inverses:

z= x+ y ⇒ x= z− y, y= z− x

• Assume any subset of input/output to functions can define rest, backtrack if

wrong.

• May fail.

1.5 Constructing equations

• Construct patterns from structural relations for new inputs.

• Make guards from non-structural relations for new inputs.

• Make expression from remaining relations.

• Equations for same function must be visibly disjoint by patterns and guards. If

not, backtrack.

2 Detailed example: Permutation index

Original program: Takes n and i and returns list of 1 · · ·n permuted by permutation
number i.

i2p (0, 0) = [];
i2p (n, i) | 0<n = insert (i2p (n-1, i/n), n, i%n);

insert (xs, n, 0) = n : xs;
insert (x : xs, n, i) | 0<i && x/=n
= x : insert (xs, n, i-1);

Want: Program p2i that takes n and permuted list and returns the index i. Semi-inverter
is given divison:

i2p(1,0,1)=p2i;
insert(0,1,0,1)=find;

which indicates that the first argument and the result of i2p are known and that the
semi-inverse is to be called p2i. The (optional) division for insert indicates that the
second argument and the second half of the result are known and that the semi-inverse

is to be called find.

356

2.1 Desequentialisation of i2p

i2p (x1,x2,x3) where
{x1 = 0, x2 = 0, x3 = []}

i2p (n,i,x1) where
{0<n, insert (x2,n,x3, x1), i2p (x4,x5, x2), x4 = -(n,1),
x5 = /(i,n), x3 = %(i,n)}

insert (xs, n, x1, x2) where
{x1 = 0, x2 = : (n,xs)}

insert (x1, n, i, x2) where
{x1 = : (x,xs), x2 = : (x,x3), 0<i, x/=n,
insert (xs,n,x4, x3), x4 = -(i,1)}

2.2 Refinement

We can combine / and % into /%:

i2p (x1,x2,x3) where
{x1 = 0, x2 = 0, x3 = []}

i2p (n,i,x1) where
{0<n, insert (x2,n,x3, x1), i2p (x4,x5, x2), x4 = -(n,1),
x5 = /%(i,n)}

insert (xs, n, x1, x2) where
{x1 = 0, x2 = : (n,xs)}

insert (x1, n, i, x2) where
{x1 = : (x,xs), x2 = : (x,x3), 0<i, x/=n,
insert (xs,n,x4, x3), x4 = -(i,1)}

(x5,x3) = /%(i,n) can semi-invert to i = m5*n+x3.

2.3 Resequentialisation

Order by data-dependence:

i2p (x1,x2,x3) where
{x1 = 0, x3 = [], x2 = 0}

i2p (n,i,x1) where
{0<n, x4 = -(n,1), insert (x2,n,x3, x1), i2p (x4,x5, x2),
x5 = /%(i,n)}

insert (xs, n, x1, x2) where
{x1 = 0, x2 = : (n,xs)}

insert (x1, n, i, x2) where
{x2 = : (x,x3), x/=n, insert (xs,n,x4, x3),
x1 = : (x,xs), x4 = -(i,1), 0<i}

2.4 Construction of equations

Create patterns, guards and expressions:

457

p2i (0,[]) = 0;
p2i (n,x1) | 0<n =
let x4 = n-1 in
let (x2,x3) = find (n,x1) in
let x5 = p2i (x4,x2) in
let i = x5*n+x3 in i;

find (n,n:xs) = (xs, 0);
find (n,x:x3) | x/=n =
let (xs,x4) = find (n,x3) in
let x1 = (x:xs) in
let i = x4+1 in
let True () = 0<i in (x1, i);

2.5 Inlining some let-expresions

Inline let-binding if used once or constant:

p2i (0,[]) = 0;
p2i (n,x1) | 0<n =
let (x2,x3) = find (n,x1) in p2i (n-1,x2)*n+x3;

find (n,n : xs) = (xs,0);
find (n,x : x3_) | x/=n =
let (xs,x4) = find (n,x3) in
let i = x4+1 in
let True () = 0<i in (x : xs,i);

This is the final version as output by the semi-inverter (bar renaming of variables and

removal of redundant parentheses).

3 Design details

The GPCE article leaves some details unspecified. Here are a few details of how the

implementation handles these.

3.1 Refinement

Multiplication and division are combined, as shown above. Additionally, p = x+y, q
= x-y are combined to (p,q) = x +- y, which when p and q are known can be in-
verted to (x,y) = ((p+q)/2,(p-q)/2).

Equalities between tuples are split, and if a variable is equated with a tuple, the

variable is replaced by the tuple where the variable is a result of or argument to an

operator or function call.

3.2 Resequentialisation

When there are several possible relations that can be selected during resequentialisa-

tion, the following priorities are used:

558

1. Tests with all parameters known.

2. Primitive operators with sufficient instantiation for semi-inversion.

3. Calls to user-defined fuctions with instantiation correspoinding to a desired semi-

inverse.

4. Other calls to user-defined functions.

3.3 Backtracking

If semi-inverter fails to semi-invert a desired semi-inverse, it prints a message, marks

the semi-inverse invalid and starts over. Sometimes, it may find other semi-inverses

that can be used instead, otherwise the message may help the user rewrite the program

to get better results.

3.4 Determining disjointedness of equations

First, the variables in the two equations are renamed to make them use disjoint vari-

ables. Then, the patterns are unified. If this fails, the equations are disjoint, otherwise

the unifying substitution is applied to the guards. If the conjunction of the guards can

never be true, the equations are disjoint.

To test the guard, intervals of variables are maintained and if one becomes empty,

the guard can’t become true. A few additional cases of unsatisfiable constraints such

as e/ =e are also considered.
There is room for improvenet, as a conjunction like x<y && y<x is not recognised

as unsatisfiable.

4 A more ambitious example: Multiplication of binary

numbers

.

If the result of a multiplication and one of its arguments are known, the other ar-

gument can be found by dividing the result by the known argument. For integers, this

semi-inversion of multiplication is built into the semi-inverter, but if we represent num-

bers as lists of bits and multiplication as a recursive function over such lists, can the

semi-inverter derive division from multiplication?

The usual binary multiplication algorithm can be described by the following recur-

sive equations:

1 × y = y

2x × y = 2(x× y)
(2x+1) × y = 2(x× y)+ y

The last equation uses addition, so the first step is to semi-invert addition of binary num-

bers. Since we require unique answers, we assume that numbers do not have leading

zeroes (so zero is represented by an empty list of bits). It turns out that we, additionally,

have to require that the second argument of the addition has at least as many its as the

659

first in order to avoid overlapping equations in the semi-inverse.1 Hence, addition (for

little-endian lists of bits) looks like:

add(m,n) = adc(m,n,0);

adc([],bs,0) = bs;
adc([],bs,1) = inc(bs);
adc(a:as,b:bs,c) =
let (s,c1) = add3(a,b,c) in
s:adc(as,bs,c1);

add3(0,0,0) = (0,0);
add3(0,0,1) = (1,0);
add3(0,1,0) = (1,0);
add3(0,1,1) = (0,1);
add3(1,0,0) = (1,0);
add3(1,0,1) = (0,1);
add3(1,1,0) = (0,1);
add3(1,1,1) = (1,1);

inc [] = [1];
inc (0:bs) | bs/=[] = 1:bs;
inc (1:bs) = 0 : inc bs;

Note that absense of leading zeroes is explicitly tested in inc. With the division:

add(1,0,1) = sub;

we get the following semi-inverse:

sub (m,e_23_) = (adc_1011 (m,0,e_23_));

adc_1011 ([],0,bs) = bs;
adc_1011 ([],1,e_26_) = (inc_01 e_26_);
adc_1011 (a : as,c,s : e_30_) =
let (b,c1) = (add3_10110 (a,c,s)) in b : (adc_1011 (as,c1,e_30_));

add3_10110 (0,0,0) = (0,0);
add3_10110 (0,1,1) = (0,0);
add3_10110 (0,0,1) = (1,0);
add3_10110 (0,1,0) = (1,1);
add3_10110 (1,0,1) = (0,0);
add3_10110 (1,1,0) = (0,1);
add3_10110 (1,0,0) = (1,1);
add3_10110 (1,1,1) = (1,1);

inc_01 [1] = [];
inc_01 1 : bs | bs/=[] = 0 : bs;
inc_01 0 : e_39_ = 1 : (inc_01 e_39_);

1An alternative is to require zero-extension to a fixed number of bits. This also works, but complicates

the multiplication.

760

Note that the semi-inverter automatically finds the required semi-inverses of adc,
add3 and inc, and that the test for absense of leading zeroes in inc is now a guard
that ensures disjointedness. sub is, in fact, reverse subraction, as the first argument is
subtracted from the second.

Getting multiplication to semi-invert is a bit more tricky. After a few tries, we come

up with:

mul(0:as,bs) = 0:mul(as,bs);
mul([1],bs) = bs;
mul(1:as,0:bs) | as/=[] = 0:mul(1:as,bs);
mul(1:as,[1]) | as/=[] = 1:as;
mul(1:as,1:bs) | as/=[] && bs/=[] =
1:add(as,mul(1:as,bs))

Note that we have done case-analysis of the second argument when the first is of the

form 2x+ 1. Even so, the two last equations give overlapping patterns in the semi-
inverse, so we have to add an assertion in the form of a superfluous test:

mul(0:as,bs) = 0:mul(as,bs);
mul([1],bs) = bs;
mul(1:as,0:bs) | as/=[] = 0:mul(1:as,bs);
mul(1:as,[1]) | as/=[] = 1:as;
mul(1:as,1:bs) | as/=[] && bs/=[] =
let p = add(as,mul(1:as,bs)) in
let True () = p/=as in 1:p;

With this test in place, we can successfully semi-invert with the division

mul(1,0,1) = div;

to

div (0 : as,0 : e_66_) = (div (as,e_66_));
div ([1],bs) = bs;
div (1 : as,0 : e_74_) | as/=[] = 0 : (div (1 : as,e_74_));
div (1 : as,1 : as) | as/=[] = [1];
div (1 : as,1 : e_87_) | as/=[] && e_87_/=as =
let bs = (div (1 : as,(add_101 (as,e_87_)))) in
let (True ()) = (bs/=[]) in 1 : bs;

where add_101 is equivalent to sub. As with sub, the arguments to div are reversed:
The second argument is divided by the first. The nonlinear pattern in the penultimate

equation and the comparison in the last equation together correspond to the test that in

the traditional algorithm for binary division stops the repeated doubling of the divisor.

Since the above requires the divisor to divide evenly into the other argument (otherwise,

it wouldn’t be a true semi-inverse), the test is here for equality rather than less-than-or-

equal.

861

5 Conclusion

Other examples that work successfully include a varint of the permutation function,

where it is used as a simple encryption function that uses the key to permute the list

of characters. The semi-inverse is the corresponding decrypter. But some simple pro-

grams, such as list reversal using an accumulating parameter, defy semi-inversion with

this method, so stronger methods like those in Glück and Kawabe’s LR-parsing in-

spired inversion [1] need to be investigated.

As the multiplication example shows, it is sometimes necessary to rewrite programs

and add assertions to get successful semi-inversion, similarly to how you sometimes

need to rewrite programs to get good results with partial evaluation.

References

[1] Robert Glück and Masahiko Kawabe. Derivation of deterministic inverse pro-

grams based on LR parsing. In Yukiyoshi Kameyama and Peter J. Stuckey, editors,

Functional and Logic Programming. Proceedings, LNCS 2998, pages 291–306.

Springer-Verlag, 2004.

[2] Torben Æ. Mogensen. Semi-inversion of guarded equations. In GPCE’05, Lecture

Notes in Computer Science 3676, pages 189–204. Springer-Verlag, 2005.

962

Streamlining Functional XML Processing∗

Keisuke Nakano

Department of Mathematical Informatics, University of Tokyo
Bunkyo-ku, Tokyo, 113-8656, Japan

ksk@mist.i.u-tokyo.ac.jp

Abstract

Since an XML document has tree structure, XML transformations are ordinarily defined as recursive
functions over the tree. Their direct implementation often causes inefficient memory usage because the input
XML tree needs to be completely stored in memory. In contrast, XML stream processing can minimize the
memory usage and execution time since it begins to output the transformation result before reading the
whole input. However, it is much harder to write the XML transformation program in stream processing
style than in functional style because stream processing requires stateful programming. In this paper, we
propose a method for automatic derivation of XML stream processor from XML tree transformation written
in functional style. We use an extension of macro forest transducers as a model of functional XML processing.
Since an XML parser is represented by (infinitary) top-down tree transducer, the automatic derivation of
XML stream processor is based on the composition of the top-down tree transducer and the extension of
macro forest transducers.

1 Introduction

Since an XML document has tree structure, it is natural to define XML transformations as recursive functions
over the tree. Such a style will be called functional XML processing . Several XML transformation languages
[8, 2, 22] have been presented in this style, in which programs are recursive functions over forests that are
sequences of labeled trees. This is mainly because each node in an XML tree can have an arbitrary number of
children.

Forests are defined by

f ::= σ[f]f | %[str] f | ()

where we write σ[f1]f2 for a sequence whose head is a σ-labeled tree with a child forest f1 and tail is a sibling
forest f2, %[str] f for a text node of strings s which has a sibling forest f , and () for the empty sequence. For
simplicity, we ignore attributes and allow the root to have sibling labeled trees. Text nodes are represented by
a labeled tree with no child. For instance, an XML fragment

<p> XML is forest. </p>

are represented by

p[%[XML is] em[%[forest]]]

Perst and Seidl [17] recently presented Macro forest transducers (mft) which can be regarded as programs
based on recursive XML Transformation. Roughly speaking, mft’s can deal with recursive programs over
forests1. A mft specifies a forest transformation by defining mutual recursive functions over forests with accu-
mulating parameters. For example, we consider a simple XML transformation which creates a corresponding
XHTML code and adds an index including all key elements before a postscript paragraph at the end of the
input article. The transformation program is defined by a mft shown in Figure 1. The main function Main
transforms an XML

∗This work is partially supported by the Comprehensive Development of e-Society Foundation Software program of the Ministry
of Education, Culture, Sports, Science and Technology, Japan.

1This paper deals with mft’s extended for text nodes.

1

63

Main(article[$x1]$x2) = html[head[Title($x1) body[InArticle($x1, ())]] ()

Title(title[$x1]$x2) = title[$x1]

InArticle(title[$x1]$x2, $y1) = h1[$x1] InArticle($x2, $y1)
InArticle(para[$x1]$x2, $y1) = p[Key2Em($x1)] InArticle($x2, $y1 AllKeys($x1))
InArticle(postscript[$x1]$x2, $y1) = h2[%[Index]] ul[$y1] h2[%[Postscript]] $x1

Key2Em(key[$x1]$x2) = em[$x1] Key2Em($x2)
Key2Em(%[$s] x) = %[$s] Key2Em($x)
Key2Em(()) = ()

AllKeys(key[$x1]$x2) = li[$x1] AllKeys($x2)
AllKeys(%[$s] $x) = AllKeys($x)
AllKeys(()) = ()

Figure 1: Example of a mft-style XML transformation program

<article>
<title>MFT</title>
<para> XML is <key>forest</key>. </para>
<para> <key>MFT</key> transforms forests. </para>
<para> MFT transforms XML. </para>
<postscript> MFT is quite expressive. </postscript>

</article>

into an XML

<html>
<head><title>MFT</title></head>
<body>
<h1>MFT</h1>
<p> XML is forest. </p>
<p> MFT transforms forests. </p>
<p> MFT transforms XML. </p>
<h2>Index</h2>
 forest MFT
<h2>Postscript</h2>
<p> MFT is quite expressive. </p>

</body>
</html>

using two auxiliary functions AddKeys and AllKeys. The function Main matches the argument with a pattern
article[x1]x2 and call the function AddKeys with the sub-forest x1 and an extra argument (). The function
AddKeys collects all keys in para elements and add them as an index element before a copyright element.
The function AllKeys collects all keys occurred in a given forest. The pattern matches any values. When the
first argument of AddKeys matches with a pattern para[x1]x2, the function AllKeys is called with x1 and the
result is accumulated in the second argument of AddKeys.

In a mft-style XML transoformation, only the first argument of every function is matched with several
patterns as a forest. The rest of arguments can be used for accumulating parameters such as y1 in the defintion
of AddKeys in the above example. Though some functions may be partial, they can be extended to total
functions just by adding a rule F (,...) = () with a wild-card pattern .

Though a recursive XML processing is a handy style for XML transformations over forests, it frequently
causes inefficiency of memory usage and execution time because the entire XML stream has to be read and
passed to construct the complete input tree before the computation takes place. It is quite harmful in particular
when the input is extreamly long.

XML stream processing improves the efficiency such as [21]. It minimizes memory usage and execution time
by not storing trees in memory. An XML stream processor begins to output the transformation result before
reading the whole input. A program written in stream processing style simply consists of initial buffered value
v0 and event-associated function P which takes the current buffered value and an input event and returns a
value to be buffered and a part of output where an input event is <σ>, </σ>, str or the end-of-file event EOF.

2

64

Input :

Output :

Buffer :

<article>!" #$v0 P

<title>

<html><head>

!" #$v1 P

MFT

<title>

!" #$v2 P

</title>

MFT

!" #$v3 P

<para>

</title></head>
<body><h1>MFT</h1>

!" #$v4 P

XML is

<p>

!" #$v5 P

XML is

!" #$v6

Figure 2: Example of stream processing flow

XML processing proceeds with updating a buffer as shown in Figure 2. First, the buffer has the initial value
v0. After that it processes the input stream depending on the event and the current buffered value for each
event read. Now the current event is the begin tag <article> and the current buffered value is v0. Then the
function P is called with the arguments the event <article> and the buffered value v0. In the result, a part
of the transformation result <html><head> is output and the buffered value is updated to v1. When the next
event <title> is read the function P is called in a similar way. Note that enough information should be stored
in the buffer since a stream processor cannot backtrack on the input stream in general. For example, v3 should
comprehend all child nodes of title element so that the stream processor can output an h1 element with these
nodes.

While stream processing saves memory usage and execution time, it is much harder to write a program in
stream processing style than in functional XML processing style because complicated stateful programming is
required.

This paper presents a method to automatically derive the XML stream processor from an XML transfor-
mation program written as recursive XML processing. To be more precise we give a method to obtain an XML
stream processing program from a mft. The method is based on the composition of a top-down tree transducer
(tdtt) and a mft. The tdtt represents an XML parser which transforms XML streams into XML forests. Though
we need a stack in order to parse XMLs by tdtt [15, 14], it can be simulated as an infinitary tdtt, that is a tdtt
with infinite number of states. The composition is done in a way similar to that of a (finitary) tdtt and a mtt
presented by Engelfriet and Vogler [5]. Though it has not been proved that an infinitary tdtt and a mft can be
composed by their method, we directly prove that the XML stream processor obtained by our method behaves
equivalently to the original mft in this paper.

Related Work

Several researchers have discussed the automatic derivation of XML stream processors from declarative pro-
grams. Most of them, however, deals with only query languages including XPath [1, 4, 6, 7] and a subset of
XQuery [11]. These querying languages are not expressive enough to specify XML transformation. For exam-
ple, they could not define the structure-preserved transformation, e.g., renaming the label a to b. In recursive
functional style, we can easily deal with this kind of transformation.

The key idea of our framework was presented in the author’s preceding work [15, 16]. The previous work
is based on the composition of (stack-)attributed tree transducers [14]. The author has released the XML
transformation language XTiSP [15, 13]. All programs definable in XTiSP can be translated into attributed
tree transducers. It is well known that attributed tree transducers are less expressive than macro tree transducers
[5], i.e., our result in this paper is more powerful than before. Moreover, since the previous framework [15] does
not give the formal model of stream processors, some part of the implementation of XTiSP is ad-hoc and that
contains inefficient evaluation.

Kiselyov [9] gave an XML parser with a general folding function foldts over rose trees. They define an
XML transformation by applying three actions fup, fdown and fhere to foldts. These actions specify how to
accumulate the seed value. This programming style is not user-friendly and many function closures are stored
during the processing. Furthermore, his framework does not mention whether the processor can output a part
of the result when reading a single XML event, e.g., a begin tag <a>.

STX [3] is a template-based XML transformation language that operates on stream of SAX [21] events. While
the programmers can define the XML transformation program as well as XSLT [22], they have to explicitly
write when and how to store the temporary information like stream processing style.

TransformX presented by Scherzinger and Kemper [18] gives the framework for syntax-directed transforma-
tions of XML streams. We can obtain XML stream processors by defining a kind of attribute grammar on the
regular tree of the type schema for inputs. Even in their framework, however, we must still keep in mind which

3

65

information should be buffered before and after reading each subtree in the input.
Kodama, Suenaga, Kobayashi and Yonezawa [10, 19] propose a translation method from tree processing

programs to XML stream processors where the programmer does not have to consider which information should
be buffered. Their tree processing language only deals with binary trees which can be easily parsed without
end tags, that is rather far from practical XML transformation languages.

Outline

In Section 2, we introduce a simplified model of XML documents and macro forest transducers. In Section 3
we give the formal model of XML stream processors and its derivation from our transducers. We discuss an
extension of our framework for applying the existing functional XML transformation languages in Section 4.
Finally Section 5 concludes the paper.

2 Model of XML and its Transformation

This section formalizes a model of XML documents. For simplicity, we deal with a simplified model of XML
documents. Firstly, we deal with only element nodes. Our framework is easily extended for other kinds of
nodes, such as text nodes and attributes. Secondly, we assume that the input XML is well-formed , i.e., all
begin/end tags are balanced. Therefore, in the input and output, we ignore the names of end tags The names
can be recovered by keeping a stack of names whose size coincides with the depth of the XML tree.

2.1 Trees, Forests and XML Streams

Let Σ be an alphabet. Then Σ-trees and Σ-forests are defined by the following syntax:

t ::= σ[f] | %[σ] f ::= () | tf

where σ ∈ Σ and () denotes the empty forest. Σ-forest is also called Σ-hedge [12] and seen as a list of rose trees.
Every tree t ∈ TΣ can be seen as a forest t() ∈ FΣ even if it is written as t. We denote TΣ and FΣ for sets of
Σ-trees and Σ-forests, respectively. A Σ-tree a[%[bar]b[%[foo]()]()] with certain Σ corresponds to an XML
fragment <a>barfoo. For two forests f1, f2 ∈ FΣ, we write f1f2 for a Σ-forest t1 . . . tnu1 . . . um()
where f1 = t1 . . . tn() and f2 = u1 . . . um().

An XML stream is modeled by a sequence of named begin/end tags and texts. The model of XML stream
is defined by a sequence of Σ-events which is an alphabet {<σ> | σ ∈ Σ}∪ {</σ> | σ ∈ Σ}∪Σ denoted by Σ</>,
provided that the sequence is well-formed, i.e., every begin tag has a corresponding end tag and vice versa. For
instance, an XML fragment <a>barfoo is represented in our model by the sequence of six symbols,
<a>, bar, , foo, and . We denote by Σ∗

</> a set of well-formed sequences of Σ-events and denote
by ε the empty sequence. The set Σ∗

</> is a subset of FΣ</>
where every tree has no child. The symbol EOF

denotes the end of an XML stream, which is also regarded as an event. We write Σ</>EOF for Σ</> ∪ {EOF}.
Let Σ be an alphabet. The streaming of a forest is the function $ % : FΣ → Σ</> defined by

$σ[f1]f2% = <σ> $f1% </σ> $f2% $%[σ]f% = σ $f% $()% = ε.

For example, $a[%[bar]b[%[foo]()]()]% = <a>barfoo.

2.2 Macro Forest Transducers

Macro forest transducers (for short, mft) were proposed by Perst and Seidl [17] to define transformations from
forests to (sets of) forests. They extend macro tree transducer (for short, mtt) [5] with the concatenation
operator for forests as a primitive. Let us write N for the set of non-negative integers including 0.

Definition 2.1 A macro forest transducer (mft) is a tuple M = (Q, Σ,∆, in, R), where

• Q is a finite set of ranked states whose ranks are obtained by rank : Q → N \ {0},

• Σ and ∆ are alphabets with Q∩(Σ∪∆) = ∅, called the input alphabet and the output alphabet, respectively,

• in ∈ Q is the initial ranked state,

4

66

• R is a set of rules such that R =
⋃

q∈Q Rq with sets Rq of q-rules of the form q(pat , y1, . . . , yn) → rhs
with rank(q) = n + 1 and variables yi where

– pat is either () or σ[x1]x2 with σ ∈ Σ,
– rhs ranges over expressions defined by

rhs ::= q′(xi, rhs, . . . , rhs) | yj | () | δ[rhs] | %[δ] | rhs rhs

with q′ ∈ Q, δ ∈ ∆, i = 1, 2 and j = 1, . . . , rank(q′) − 1. Additionally, no variable xi occurs in rhs
when pat = ().

Next we define the semantics of mft’s such that every state is translated into a function with accumulating
parameters following [17].

Definition 2.2 Let M = (Q, Σ,∆, in, R) be a mft and f ∈ FΣ. The semantics of states q ∈ Q with n = rank(q)
is given by the function [[q]] : FΣ × (F∆)n → F∆. The functions are inductively defined by q-rules in M as
follows:

• [[q]]((),ϕ1, . . . ,ϕn) = [[rhs]]ρ where (q((), y1, . . . , yn) → rhs) ∈ R and ρ(yj) = ϕj for j = 1, . . . , n,

• [[q]](σ[ω1]ω2, ϕ1, . . . ,ϕn) = [[rhs]]ρ where (q(σ[x1]x2, y1, . . . , yn → rhs) ∈ R, ρ(xi) = ωi for i = 1, 2 and
ρ(yj) = ψj for j = 1, . . . , n,

• [[q]](%[σ]ω,ϕ1, . . . ,ϕn) = [[rhs]]ρ where (q(%[σ]x, y1, . . . , yn → rhs) ∈ R, ρ(x) = ω for i = 1, 2 and
ρ(yj) = ψj for j = 1, . . . , n,

where [[]]ρ denotes the evaluation of a right-hand side expression for states with respect to the binding ρ of the
formal parameters xi and yj that is defined by

[[q′(xi, rhs1, . . . , rhsm)]]ρ = [[q′]](ρ(xi), [[rhs1]]ρ, . . . , [[rhsm]]ρ)
[[yj]]ρ = ρ(yj) [[()]]ρ = ()

[[δ[rhs]]]ρ = δ[[[rhs]]ρ] [[%[δ]]]ρ = %[δ] [[rhs rhs ′]]ρ = [[rhs]]ρ[[rhs ′]]ρ.

Our definition is different from [17] in that we deal with text nodes explicitly and consider only deterministic
mft’s, i.e., every semantics of states ranges over a set of forests instead of a power set of them. Note that the
semantics of a state is a partial function when there is no rule for the state and a certain pattern. For such
uncovered state and pattern, we assume that the mft implicitly has rules whose right-hand side is a leaf. Then
we can claim that the semantics is total. In the rest of paper, we deal with only total mft’s though we may
omit these additional rules.

The transformation of a forest f by an mft is defined by applying the semantics of the initial state to f and
an adequate number of leaves.

Definition 2.3 The transformation induced by a mft M = (Q, Σ,∆, in, R) is the function τM : FΣ → F∆

defined by
τM (f) = [[in]](f, (), . . . , ()).

We show two examples of XML transformation written in mft’s. First example Mhtm is an XML transfor-
mation shown in Section 1.

Example 2.4 Let the mft Mhtm = (Q, Σ,∆,Main, R) be defined by

Q = {Main,Title, InArticle,Key2Em,AllKeys,Copy},
Σ = ∆ = (proper alphabet),
R = { Main(article[x1]x2) → html[head[Title(x1)]body[InArticle(x1, ())]()],

Title(title[x1]x2) → title[Copy(x1)],
InArticle(title[x1]x2, y1) → h1[Copy(x1)]InArticle(x2, y1),
InArticle(para[x1]x2, y1) → p[Key2Em(x1)]InArticle(x2, y1AllKeys(x1)),
InArticle(postscript[x1]x2, y1) → h2[%[Index]] ul[y1] h2[%[Postscript]] Copy(x1),
Key2Em(key[x1]x2) → em[Copy(x1)] Key2Em(x2),
Key2Em(%[σ]x) → %[σ]Key2Em(x) (σ ∈ Σ), Key2Em(()) → (),
AllKeys(key[x1]x2) → li[Copy(x1)]AllKeys(x2), AllKeys(%[σ]x) → AllKeys(x) (σ ∈ Σ),
AllKeys(()) → (),

5

67

Copy(σ[x1]x2) → σ[Copy(x1)]Copy(x2) (σ ∈ Σ), Copy(()) → () }

Almost rules of Mhtm are the same as the function definition in Figure 1. However, the variables matched with a
pattern cannot occur in the right-hand side of rules except for the case where they are used as the first argument
of the states according to the definition of rhs. For example, the right-hand side of the definition of Title is
title[$x1] in Figure 1. The definition of mft’s does not allows the expression title[x1] in a right-hand side
of rules. The mft Mhtm solves the problem by using a state Copy whose semantics is an identity function, i.e.,
we can use title[Copy(x1)] instead of title[x1].

Second example of a mft represents an XML transformation which reverses all descendants of rev node in
the input. For instance, when the input XML fragment is

<a>
<rev><c></c><d></d><e></e></rev>
<f><rev><g></g><h></h></rev></f>

,

the transformation returns

<a>
<rev><e></e><d></d><c></c></rev>
<f><rev><h></h><g></g></rev></f>

.

The transformation can be given by an mft with only two states.

Example 2.5 Let the mft Mmir = (Q, Σ,∆,Main, R) be defined by

Q = {Main,Rev}, Σ = ∆ = (proper alphabet),
R = { Main(rev[x1]x2) → rev[Rev(x1, ())]Main(x2),

Main(σ[x1]x2) → σ[Main(x1)]Main(x2) (σ += rev), Main(%[σ]x) → %[σ]Main(x) (σ += rev),
Main(()) → (),
Rev(σ[x1]x2, y1) → Rev(x2,σ[Rev(x1, ())]y1) Rev(%[σ]x, y1) → Rev(x, %[σ]y1) (σ ∈ Σ),
Rev((), y1) → y1 }.

3 XML Stream Processors and Its Derivation

This section presents a formal model of XML stream processors and its derivation method based on the com-
position of tree transducers. Since the set Σ∗

</> is a subset of FΣ</>
, XML stream processor (for short, xsp) can

be defined in a way similar to the definition of tree transducers such as mft’s.

3.1 XML Stream Processors

An XML stream processor proceeds an XML transformation by updating the buffered value. In our framework,
we consider a partially-evaluated result, called temporary expression, as the buffered value. The value will be
the transformation result itself after all input events are read. Additionally, the stream processor can output
a part of the transformation result by squeezing some decided output events at the head of the temporary
expression before completing reading all input events.

Our XML stream processor consists of rules which specifies how to update the temporary expression

Definition 3.1 An XML stream processor (xsp) is a tuple S = (Q, Σ,∆, in, R), where

• Q is a set of ranked states, which may be countably infinite and the rank for each state is obtained by
rank : Q → N,

• Σ and ∆ are (finite) alphabets with Q ∩ (Σ ∪ ∆) = ∅, called the input alphabet and the output alphabet,
respectively,

• in ∈ Q is the initial state,

6

68

• R is a set of rules such that R = {r(q,χ) | q ∈ Q,χ ∈ Σ</>EOF} with (q,χ)-rules r(q,χ) of the form

q(y1, . . . , yn) χ−−→ rhs

with variables yj where n = rank(q) and rhs ranges over expressions defined by

rhs ::= q′(rhs, . . . , rhs) | yj | ε | <δ>rhs</δ> | δ | rhs rhs

where q′ ∈ Q, δ ∈ ∆ and j = 1, . . . , n. Additionally, the pattern q′() does not occur in rhs for any
q′ ∈ Q when χ = EOF.

3.2 Semantics of XML Stream Processors

The definition of semantics of states in an xsp is different from that of states in a mft because a rule of an
xsp specifies how to update the temporary expression for each input event. Temporary expressions range over
output XML streams with a number of unknown parts given by using states with arguments.

Definition 3.2 Let S = (Q, Σ,∆, in, R) be an xsp. A temporary expression E for S is defined by the following
syntax:

E ::= q(E, . . . , E) | ε | <δ>E</δ> | δ | E E

where q ∈ Q, δ ∈ ∆. We denote the set of temporary expressions by TmpS.

The semantics of an xsp is defined by translating every rule of the xsp into a transition for temporary
expressions.

Definition 3.3 Let S = (Q,Σ,∆, in, R) be an xsp and s ∈ Σ∗
</>. The transition over TmpS for an input

Σ-event is a function 〈| , |〉 : TmpS × Σ</>EOF → TmpS. The function is defined with another transition
over TmpS which is a function 〈| , |〉 : TmpS ×Σ</>EOF → TmpS. The definition use the evaluation function
[[]]ρ : rhs → TmpS for right-hand side expressions with respect to the binding ρ of the formal parameters in
the left-hand side. We give the definition as follows:

• 〈| |〉 are defined by

– 〈|q(E1, . . . , En),χ|〉 = [[rhs]]ρ where (q(y1, . . . , yn) χ−−→ rhs) ∈ R with q ∈ Q, χ ∈ Σ</>EOF, ρ(yj) =
〈|Ej , χ|〉 for j = 1, . . . , n,

– 〈|ε,χ|〉 = ε, 〈|<δ>E</δ>,χ|〉 = <δ>〈|E,χ|〉</δ>, and 〈|δ,χ|〉 = δ where δ ∈ ∆,
– 〈|E E′,χ|〉 = 〈|E,χ|〉 〈|E′,χ|〉,

• [[]]ρ is defined by

[[q′(rhs1, . . . , rhsm)]]ρ = q′([[rhs1]]ρ, . . . , [[rhsm]]ρ)
[[yj]]ρ = ρ(yj) [[ε]]ρ = ε

[[<δ>rhs</δ>]]ρ = <δ>[[rhs]]ρ</δ> [[δ]]ρ = δ [[rhs rhs ′]]ρ = [[rhs]]ρ [[rhs ′]]ρ.

XML processing reads the input events one by one. For each reading step, the processor computes something
with stored information and store a new information for the next step. The transition 〈| |〉 defines how the
processor computes the next information for each input event. In our framework, the information is represented
by a temporary expression. Let S = (Q,Σ,∆, in, R) be an xsp and χ1χ2 . . .χk be an XML stream with χj ∈ Σ</>

for j = 1, 2, . . . , k. The initial information is represented by in(ε, . . . , ε). When finding the end of the input XML
stream, the transition for EOF is applied to the current information. The final information is the transformation
result itself. Thus we obtain the transformation result by

〈|〈| . . . 〈|〈|in(ε, . . . , ε),χ1|〉, χ2|〉, . . . ,χk|〉, EOF|〉. (1)

This transformation is not what we require as XML processing, however, because the XML stream processor
should output part of the result if possible before reading the whole input.

We give two definitions of transformation induced by an xsp. One is called non-squeezing . The definition
is simply given as represented in (1). Another is called squeezing . The squeezing transformation achieve the

7

69

best result possible, that is, the output written so far always the largest that can be determined from the input
read so far. Stream processing with squeezing is a desirable behavior of real XML stream processors which can
start to output a part of the result for each input event. Since squeezing will collapse the syntax of temporary
expressions, we define collapsed temporary expressions Tmp×

S with an xsp S by

E ::= q(E, . . . , E) | ε | <δ>E | </δ> E | δ E

where q is a state of S and δ is an output symbol of S. We can easily confirm that TmpS ⊂ Tmp×
S .

Definition 3.4 1. The non-squeezing transformation induced by an xsp S = (Q,Σ,∆, in, R) is the function
τS : Σ∗

</> → ∆∗
</> defined by τS(s) = θS(in(ε, . . . , ε), sEOF) where

θS(e, ε) = e θS(e,χs) = θS(〈|e,χ|〉, s)

for e ∈ TmpS.

2. The squeezing transformation induced by an xsp S = (Q, Σ, ∆, in, R) is the function τS : Σ∗
</> → ∆∗

</>

defined by τS(s) = ηS(in(ε, . . . , ε), sEOF, ε) where for e ∈ TmpS

ηS(e, ε, b) = be ηS(e,χs, b) = ηS(e′, s, bs′).

with (e′, s′) = sqz (〈|e, χ|〉) and a sqeeze function sqz : Tmp×
S → Tmp×

S × ∆∗
</> is defined by

sqz (q(e1, . . . , en)) = (q(e1, . . . , en), ε) sqz (ε) = (ε, ε) sqz (<δ>e1) = (e′1, <δ>s
′
1)

sqz (</δ>e1) = (e′1, </δ>s
′
1) sqz (δe1) = (e′1, δs

′
1) sqz (e1 e2) =

{
(e′2, s′1s′2) if e′1 = ε
(e′1e2, s′1) otherwise

where (e′1, s′1) = sqz (e1) and (e′2, s′2) = sqz (e2).

The non-squeezing transformation uses the auxiliary function θ which takes two arguments, the current in-
formation as a temporary expression and the rest of the stream, and returns the next information. On the
other hand, the squeezing transformation uses the auxiliary function η which takes three arguments adding one
extra argument to those of θ. The extra argument is used for output buffer which does not change during the
computation except for adding some events to the tail of the original buffer. In the output buffer, the second
element of the result of the squeeze function sqz is added as a possibly-known part at the head of the result. It
is easy to show that

s′e′ = e if (e′, s′) = sqz (e) (2)

for e ∈ TmpS by induction on the structure of e.
The following lemma shows that the non-squeezing transformation and the squeezing transformation are

equivalent. In the rest of the paper, we employ the non-squeezing transformation instead of the squeezing one
to compare the behavior of a mft and an xsp since it is simpler than the squeezing transformation, although
the implementation of XML stream processor does employ the squeezing transformation.

Lemma 3.5 Let S = (Q,Σ,∆, in, R) be an xsp and s ∈ Σ∗
</>. Then we have

θS(in(ε, . . . , ε), s) = ηS(in(ε, . . . , ε), s, ε) (3)

where θS and ηS are as given in Definition 3.4.

Proof. We prove the equation
θS(be, s) = ηS(e, s, b) (4)

for b ∈ ∆∗
</> and e ∈ TmpS , which is more general than (3). Equation (3) is the special case of (4) in which

b = ε and e = in(ε, . . . , ε). We show at the same time

ηS(e, s, b) = ηS(be, s, ε) (5)

for s, b ∈ ∆∗
</> and e ∈ TmpS .

Equations (4) and (5) are proved by induction on the length ,s of s. If ,s = 0, then both (4) and (5) are
the same, that is be.

8

70

If ,s > 0, then suppose that s = χs′ with χ ∈ Σ</> and s′ ∈ Σ∗
</> and that b = ξ1 . . . ξn (n ≥ 0) with

ξj ∈ ∆</> for j = 1, · · · , n. The left-hand side of (4) is

θS(ξ1 . . . ξne,χs′) = θS(〈|ξ1 . . . ξne, χ|〉, s′)
= θS(ξ1 . . . ξn〈|e, χ|〉, s′)
= ηS(〈|e,χ|〉, s′, ξ1 . . . ξn)
= ηS(ξ1 . . . ξn〈|e, χ|〉, s′, ε)

from the definitions of θ and 〈| |〉 and the induction hypotheses of (4) and (5). When (e′′, s′′) = sqz (〈|e, χ|〉),
the right-hand side of (4) is

ηS(e,χs′, ξ1 . . . ξn) = ηS(e′′, s′, ξ1 . . . ξns′′)
= ηS(ξ1 . . . ξns′′e′′, s′, ε)

from the definitions of ηS and the induction hypothesis of (5). Both sides of (4) are the same since we have
s′′e′′ = 〈|e, χ|〉 by (2). Hence (4) holds.

From the definition of ηS , the induction hypothesis of (5) and (e′′, s′′) = sqz (〈|e,χ|〉), the left-hand side of
(5) is

ηS(e,χs′, ξ1 . . . ξn) = ηS(e′′, s′, ξ1 . . . ξns′′)
= ηS(ξ1 . . . ξns′′e′′, s′, ε).

Since we have sqz (〈|ξ1 . . . ξne,χ|〉) = sqz (ξ1 . . . ξn〈|e,χ|〉) = (e′′, ξ1 . . . ξns′′) from the definitions of 〈| |〉 and sqz ,
the right-hand side of (5) is

ηS(ξ1 . . . ξne,χs′, ε) = ηS(e′′, s′, ξ1 . . . ξns′′)
= ηS(ξ1 . . . ξns′′e′′, s′ε)

from the definition of ηS and the induction hypothesis of (5). Hence (5) holds.

3.3 Derivation of XML Stream Processors

The derivation of an xsp from a given mft is achieved in a similar way to the existing method by Engelfriet
and Vogler [5] to synthesize two tree transducers, a top-down tree transducer (for short, tdtt) and a macro tree
transducer (for short, mtt). That is because an XML parser which transforms XML streams to forests (binary
labeled trees) can be represented by an infinitary tdtt and a mft is a simple extension of a mtt. Therefore we
can give a derivation method of an xsp just as a straightforward extension of the existing method. Correctness
of our method will be shown in the next subsection.

Definition 3.6 Let M = (Q, Σ,∆, in, R) be a mft. We define an xsp SP(M) = (Q′,Σ,∆, in ′, R′) where

• Q′ = {q[i] | q ∈ Q, i ∈ N} where rank(q[i]) = rank(q) − 1 for every q ∈ Q and i ∈ N,

• in ′ = in[0] ∈ Q,

• R′ contains the following rules:

– For every q ∈ Q, σ ∈ Σ and (q(σ[x1]x2, y1, . . . , yn) → rhs) ∈ R, the (q[0], <σ>)-rule in R′ is

q[0](y1, . . . , yn) <σ>−−−→ A(rhs),

– For every q ∈ Q, σ ∈ Σ and (q(%[σ]x, y1, . . . , yn) → rhs) ∈ R, the (q[0],σ)-rule in R′ is

q[0](y1, . . . , yn) σ−−→ A(rhs[x1/x])

where rhs[x1/x] is obtained by replacing x by x1 in rhs,

9

71

– For every q ∈ Q, σ ∈ Σ, i ∈ N and q((), y1, . . . , yn) → rhs ∈ R, the (q[0], </σ>)-rule and (q[i], EOF)-
rule in R′ are

q[0](y1, . . . , yn) </σ>−−−−→ A(rhs), q[i](y1, . . . , yn) EOF−−−→ A(rhs),

respectively,
– For every q ∈ Q, σ ∈ Σ and i ≥ 1, the (q[i], <σ>)-rule and (q[i], </σ>)-rule in R′ are

q[i](y1, . . . , yn) <σ>−−−→ q[i + 1](y1, . . . , yn), q[i](y1, . . . , yn) </σ>−−−−→ q[i − 1](y1, . . . , yn),

respectively,

where A is defined over right-hand side expressions of rules in mft’s as follows:

A(q′(x1, rhs1, . . . , rhsm)) = q′[0](A(rhs1), . . . ,A(rhsm))
A(q′(x2, rhs1, . . . , rhsm)) = q′[1](A(rhs1), . . . ,A(rhsm))
A(yj) = yj A(()) = ε

A(δ[rhs]) = <δ>A(rhs)</δ> A(%[δ]) = δ A(rhs rhs ′) = A(rhs) A(rhs ′)

Now we show two examples of derivation of xsp’s from a mft Mhtm of Example 2.4 and a mft Mmir of
Example 2.5. Additionally we illustrate how the obtained xsp SP(Mhtm) works for a certain input XML
stream. In these examples, we omit some of rules whose right hand side is ε they are derived from omitted rules
whose right-hand side is a leaf in the original mft.

Example 3.7 The derivation method gives an xsp SP(Mhtm) = (Q′,Σ,∆,Main[0], R′) from the mft Mhtm =
(Q, Σ,∆,Main, R) in Example 2.4 where

Q′ = {q[i] | q ∈ Q, i ∈ N},

R′ = { Main[0]() <article>−−−−−−−→ <html> <head> Title[0]() </head> <body> InArticle[0](ε) </body> </html>,

Title[0]() <title>−−−−−−→ <title> Copy [0]() </title>,

InArticle[0](y1)
<title>−−−−−−→ <h1> Copy [0]() </h1> InArticle[1](y1),

InArticle[0](y1)
<para>−−−−−→ <p> Key2Em[0]() </p> InArticle[1](y1 AllKeys[0]),

InArticle[0](y1)
<postscript>−−−−−−−−−→ <h2> Index </h2> y1 <h2> Postscript </h2> Copy [0](),

Key2Em[0]() <key>−−−−→ Copy [0]() Key2Em[1](), Key2Em[0]() σ−−→ σ Key2Em[1] (σ ∈ Σ),

AllKeys[0]() <key>−−−−→ Copy [0]() AllKeys[1](), AllKeys[0]() σ−−→ AllKeys[0]() (σ ∈ Σ),

Copy [0]() <σ>−−−→ <σ> Copy [0]() </σ> Copy [1]() (σ ∈ Σ), Copy [0]() σ−−→ σ Copy [0]() (σ ∈ Σ),

q[i]() <σ>−−−→ q[i + 1]() (σ ∈ Σ, i ≥ 1, q += InArticle),

q[i]() σ−−→ q[i]() (σ ∈ Σ, i ≥ 1, q += InArticle)

q[i]() </σ>−−−−→ q[i − 1]() (σ ∈ Σ, i ≥ 1, q += InArticle)

q[i]() χ−−→ ε ((χ, i) ∈ Σ(), q += InArticle),

InArticle[i](y1)
<σ>−−−→ InArticle[i + 1](y1) (σ ∈ Σ, i ≥ 1),

InArticle[i](y1)
σ−−→ InArticle[i](y1) (σ ∈ Σ, i ≥ 1),

InArticle[i](y1)
</σ>−−−−→ InArticle[i − 1](y1) (σ ∈ Σ, i ≥ 1),

InArticle[i](y1)
χ−−→ ε ((χ, i) ∈ Σ()) },

where Σ() = {(</σ>, 0) | σ ∈ Σ} ∪ {(EOF, i) | i ∈ N}.

Let an input XML stream for SP(Mhtm) be

<article> <title> MFT </title> <para> XML is ...

10

72

Main[0]()

<article>
=⇒ <html> <head> Title[0]() </head> <body> InArticle[0](ε) </body> </html>

<title>
=⇒ <html> <head> <title> Copy [0]() </title> </head>

<body> <h1> Copy [0]() </h1> InArticle[1](ε) </body> </html>

MFT
=⇒ <html> <head> <title> MFT Copy [0]() </title> </head>

<body> <h1> MFT Copy [0]() </h1> InArticle[1](ε) </body> </html>

</title>
=⇒ <html> <head> <title> MFT </title> </head> <body> <h1> MFT </h1> InArticle[0](ε) </body> </html>

<para>
=⇒ <html> <head> <title> MFT </title> </head>

<body> <h1> MFT </h1> <p> Key2Em[0]() </p> InArticle[1](AllKeys[0]) </body> </html>

XML is
=⇒ <html> <head> <title> MFT </title> </head>

<body> <h1> MFT </h1> <p> XML is Key2Em[0]() </p> InArticle[1](AllKeys[0]) </body> </html>

=⇒ · · ·

Figure 3: Stream processing induced by SP(Mhtm)

Then an xsp proceeds as shown in Figure 3 where χ=⇒ stands for buffer updating when an input event χ is read.
The processing is as expected in Figure 2. For each step, the stream processor outputs the head-determined
part by the squeeze function. The remainder is stored in a buffer.

Example 3.8 The derivation method gives an xsp SP(Mmir) = (Q′,Σ,∆,Main[0], R′) from the mft Mmir =
(Q,Σ,∆,Main, R) in Example 2.5 where

Q′ = {q[i] | q ∈ Q, i ∈ N},

R′ = { Main[0]() <rev>−−−−→ <rev> Rev [0](ε) </rev> Main[1](),

Main[0]() <σ>−−−→ <σ> Main[0] </σ> Main[1] (σ += rev), Main[0]() σ−−→ σ Main[0] (σ ∈ Σ),

Main[i]() <σ>−−−→ Main[i + 1]() (σ ∈ Σ, i ≥ 1), Main[i]() σ−−→ Main[i]() (σ ∈ Σ, i ≥ 1),

Main[i]() </σ>−−−−→ Main[i − 1] (σ ∈ Σ, i ≥ 1) Main[i]() χ−−→ ε ((χ, i) ∈ Σ()),

Rev [0](y1)
<σ>−−−→ Rev [1](<σ> Rev [0] </σ> y1) (σ ∈ Σ), Rev [0](y1)

σ−−→ Rev [0](σ y1) (σ ∈ Σ),

Rev [i](y1)
<σ>−−−→ Rev [i + 1](y1) (σ ∈ Σ, i ≥ 1), Rev [i](y1)

σ−−→ Rev [i](y1) (σ ∈ Σ, i ≥ 1),

Rev [i](y1)
</σ>−−−−→ Rev [i − 1](y1) (σ ∈ Σ, i ≥ 1), Rev [i](y1)

χ−−→ y1 ((χ, i) ∈ Σ()) },

where Σ() = {(</σ>, 0) | σ ∈ Σ} ∪ {(EOF, i) | i ∈ N}.

3.4 Correctness of derivation

The correctness of our derivation of XML stream processors is that, for every mft and every input forest, the
XML stream corresponding to the transformation result of the mft for the forest is equal to the transformation
result of the xsp obtained by our derivation from the mft. In the rest of section we do not deal with text nodes
in forests. The proof can be easily extended for text nodes. Additionally we ignore the names of end tags since
we deal with only well-formed XML. We write </!> to denote a proper end tag. The name of the end tag can
be recovered from the context.

Correctness is stated by the following theorem.

Theorem 3.9 Let M = (Q, Σ,∆, in, R) be a mft. Then

τSP(M)($f%) = $τM (f)%

for every f ∈ FΣ.

11

73

To prove this theorem, we show several lemmas with respect to properties of an extension of θS . Before the
definition of the extension, we introduce the following forests representation (for short, FFR) for a forest f that
is a list of sub-forests of f whose syntax is

L ::= [] | f ′ :: L

where f ′ is a sub-forest of f . We use FF f to denote a set of FFR’s for a forest f . The i-th element of L ∈ FF f

is accessed by L.i where (f ′ :: L).0 = f ′ and (f ′ :: L).i = L.(i − 1). The FFR can output one by one the next
XML event from the XML stream corresponding to f by updating the representation. The initial FFR for a
forest f is a singleton list of f , i.e., f :: []. The updating function ud takes the current FFR and returns the
next XML event and the next FFR as follows:

ud(σ[f1]f2 :: L) = (<σ>, f1 :: f2 :: L) ud(() :: f :: L) = (</!>, f :: L) ud(() :: []) = (EOF, []).

It outputs one by one the next XML event by updating the FFR by ud , which is confirmed by the following
lemma. We do not define ud([]) because the computation is not required in the rest of the paper.

Lemma 3.10 Let g be the function defined over FFR’s by

g(l) =
{

ε if l = []
χ g(l′) otherwise

where (χ, l′) = ud(l). Then we have
g(f :: []) = $f% EOF. (6)

Proof. First we show the following equation

g(f :: f ′ :: L) = $f% </!>g(f ′ :: L) (7)

for forests f ′, f and a FFR l with some σ′ by induction on the structure of f . If f = (), then (7) holds by the
definitions of g, ud and $ %. If f = σ[f1]f2, then we have

g(σ[f1]f2 :: f ′ :: L) = <σ> g(f1 :: f2 :: f ′ :: L)
= <σ> $f1% </!>g(f2 :: f ′ :: L)
= <σ> $f1% </!> $f2% </!>g(f ′ :: L)
= $σ[f1]f2% </!>g(f ′ :: L)

from the definition of g, ud and $ % and the induction hypothesis. Hence (7) holds for every forest f .
Now we prove the equation (6) by induction on the structure of f . If f = (), then (6) holds by the definitions

of g, ud and $ %. If f = σ[f1]f2, then we have

g(σ[f1]f2 :: []) = <σ> g(f1 :: f2 :: [])
= <σ> $f1% </!>g(f2 :: [])
= <σ> $f1% </!> $f2% EOF
= $σ[f1]f2% EOF

from the definition g, ud and $ %, the equation (7) and the induction hypothesis. Therefore (6) holds for every
forest f .

Now we define an extension of θS with FFR. Let S be an xsp and f be a forest such that $f% is an input
stream for S. We define the function ΘS as well as θS by

ΘS(E, []) = E ΘS(E,L) = Θ(〈|E,χ|〉, L′)

for E ∈ TmpS and L ∈ FF f where (χ, L′) = ud(L). The following lemma shows that the function ΘS can
simulate τS for an input stream $f%.

Lemma 3.11 Let S = (Q,Σ,∆, in, R) be an xsp. Then

τS($f%) = ΘS(in(ε, . . . , ε), f :: []) (8)

for every f ∈ FΣ.

12

74

Proof. From the definition of τS , what we have to show is

θS(in(ε, . . . , ε), $f% EOF) = ΘS(in(ε, . . . , ε), f :: []). (9)

Let g be the function as given in Lemma 3.10. and G(L) be a set of FFR’s occurring as an argument of g in the
computation of g(L), i.e., if L = [] then G(L) = {L} and otherwise G(L) = {L} ∪ G(L′) with (χ, L′) = ud(L).
The set G(f :: []) is finite because g(f :: []) always terminates as shown in the proof of Lemma 3.10. We show
the more general equation

θS(E, g(L)) = ΘS(E,L) (10)

for E ∈ TmpS and L ∈ G(f :: []). From Lemma 3.10 we can claim that the equation (9) is the special case
of (10) in which E = in(ε, . . . , ε) and L = f :: []. We prove the equation (10) by induction on the cardinality
,G(L) of G(L). If ,G(L) = 1, i.e., L = [], then the both sides are the same, that is e. If ,G(L) > 1, then
g(L) = χg(L′) with (χ, L′) = ud(L). We have ,G(L′) = ,G(L) − 1 since L +∈ G(L′) from the definition of G.
Therefore we obtain

θS(E, g(L)) = θS(E,χ g(L′))
= θS(〈|E,χ|〉, g(L′))
= ΘS(〈|E,χ|〉, L′)
= ΘS(E,L)

from the induction hypothesis, the definition of ΘS and (χ, L′) = ud(L). Hence the equation (10) holds for
e ∈ TmpS and L ∈ G(f :: []).

Next we define the function I that translates temporary expressions into output forests. The function I
has a good property that I(E,L) = I(E′, L′) if ΘS(E,L) is computed by ΘS(E′, L′), which will be shown as
Lemma 3.12.

I(q[i](E1, . . . , En), L) = [[q]](L.i, I(E1, L), . . . , I(En, L)) I(ε, L) = ()

I(<δ>E</!>, L) = δ[I(E,L)] I(E E′, L) = I(E,L) I(E′, L)

Lemma 3.12 Let M = (Q, Σ,∆, in, R) be a mft, SP(M) = (Q,Σ,∆, in, R′) be an xsp, f ∈ FΣ be a forest and
L ∈ G(f :: []) be a FFR where G is a function as given in the proof of Lemma 3.11. Then

I(E,L) = I(〈|E,χ|〉, L′) (11)

where (χ, L′) = ud(L).

Proof. We prove the statements by induction on the structure of E. Here we show only the case of E =
q[0](E1, . . . , En) with q ∈ Q that is the most complicated one in the induction. The other cases can be shown
in a similar way, which are omitted.

If E = q[0](E1, . . . , En) with q ∈ Q, then the left-hand side of (11) is equal to [[q]](L.0, I(E1), . . . , I(En)) by
the definition of I. When L = σ[f1]f2 :: L′′, ud(L) = (<σ>, L′) with L′ = f1 :: f2 :: L. Then the left-hand side
of (11) is

[[q]](L.0, I(E1, L), . . . , I(En, L)) = [[q]](σ[f1]f2, I(E1, L), . . . , I(En, L))
= [[q]](σ[f1]f2, I(〈|E1,χ|〉, L′), . . . , I(〈|En,χ|〉, L′))
= [[rhsq,σ]]ρ

from the definition of [[]] and ud and the induction hypothesis for (11), where ρ(xi) = fi for i = 1, 2 and
ρ(yj) = I(〈|Ej ,χ|〉, L′) for j = 1, . . . , n. The right-hand side of (11) is

I(〈|q[0](E1, . . . , En), <σ>|〉, L′) = I([[A(rhsq,σ)]]ρ′ , L′)

where ρ′(yj) = 〈|Ej , <σ>|〉 for j = 1, . . . , n. It is shown by induction on the structure of rhsq,σ that

[[rhsq,σ]]ρ = I([[A(rhsq,σ)]]ρ′ , L′)

13

75

using L′.0 = f1, L′.1 = f2 and the definition of I and A. When L = () :: f :: L′′ and L = () :: [], we can show
the equation (11) in a way similar to the case of L = σ[f1]f2 :: L′′.

Now we prove Theorem 3.9. Let M be a mft and S = SP(M) be an xsp. The statement of Lemma 3.12
shows that, for the computation of

ΘS(E0, L0) = ΘS(E1, L1) = · · · = ΘS(En, Ln) = En (12)

with Ln = [], all I(Ek, Lk) with k = 0, . . . , n are the same. Since En = 〈|En−1, EOF|〉 and the right-hand side of
every rule in S with respect to EOF contains no occurrence of q(. . .) with a state q, En is just an XML stream.
Therefore $I(En, Ln)% = En holds by the definition of I and $ %. From the relation of I and Θ shown in
Lemma 3.12 and the equation (12), we obtain

$I(E0, L0)% = En = ΘS(E0, L0)

When E0 = in[0](ε, . . . , ε) and L0 = f :: [] with an input forest f ,

$τM (f)% = $[[in]](f, (), . . . , ())% = $I(E0, L0)%
τS($f%) = ΘS(E0, L0).

Therefore Theorem 3.9 has been proved.

4 Discussion

We hove shown how to derive an xsp from an arbitrary mft. Thus whether existing languages can be implemented
as a program in stream processing style is whether the language can be translated into an mft. In order to make
the translation easy, we discuss the extension of mft. In the formalization of mft, we cannot use even primitive
functions over booleans, integers, strings, etc. In this section, we discuss how to extend our framework for such
additional features and a few idea of translation for existing languages. Additionally, we add limitations of
XML stream processors and show a benchmark result comparing with the existing processor.

4.1 Booleans and Conditional Branches

We consider a simple extension of mft with booleans and their operator, conditional branches. Let us extend
the right-hand expression of mft with them as follows.

rhs ::= . . . | true | false | if (rhs, rhs, rhs)

where true and false are boolean values and if (e1, e2, e3) stands for a conditional branch with a test e1, a
true-branch e2 and a false-branch e3.

If we regard true, false and if as output symbols of the mft, our algorightm derives an xsp from the mft
though these symbols are left in right-hand side of rules in the obtained xsp. Hence we add the following special
rules for them in a similar way to [15]:

if (true, e1, e2) → e1 if (false, e1, e2) → e2

By applying these rules in each squeezing phase, we achieve an XML stream processing for the extended mft.

4.2 Pattern-based Languages

Most of existing XML transofrmation languages support pattern-based recursion (iteration). For instance, XSLT
[22] and XQuery [20] are based on pattern matching by XPath expressions. It is easy to encode simple forward
XPath expressions in mft style. Predicates in an XPath expression can be encoded into mft-style programs
using boolean values in the extended mft.

On the other hand, XDuce [8] and CDuce [2] are base on pattern matching by regular expressions. Though
a regular pattern may contain the simbol * for Kleene-closure, both languages use the definition

type T = () | E T

for a regular expression type E*. Hence a program in these languages are written in recursive style which is
quite similar to a mft-style program.

14

76

4.3 Limitation

There is a class of inherently memory inefficient transformations [16] such as Mmir in Example 2.5, which
reverses the order of markups at every nesting level for all descendants of rev nodes. Suppose the root node of
an input XML is labeled with rev. Though our framework can deal with such a transformation, the obtained
XML stream processor is not efficient because it cannot output any result until reading the end of the input
stream. This problem is not specific to our framework. Every SAX-like stream processing program has the
same problem: this kind of transformation is not suitable for stream processing.

5 Conclusion

We have presented a method to automatically derive an XML stream processor from a program in functional
XML processing style, where we write XML transformations as recursive functions over the input XML tree.
We adopt macro forest transducers (mft) as a model of functional XML processing and have shown that we can
obtain an XML stream processor for every mft by our method. The framework presented in this paper will be
applied to the next release of XTiSP [13]. The extension of our method will be applied to existing languages
[8, 2, 22] in which programs are given a set of recursive functions over XML trees (forests).

Acknowledgment

The author is grateful to Giuseppe Castagna and Shin-Cheng Mu for their kind help and advice on the
manuscript.

References

[1] M. Altinel and M. J. Franklin. Efficient filtering of XML documents for selective dissemination of infor-
mation. International Journal on Very Large Data Bases, pages 53–64, 2000.

[2] V. Benzaken, G. Castagna, and A. Frisch. CDuce: an XML-centric general-purpose language. In Proceedings
of the 8th International Conference of Functional Programming, pages 51–63, 2003.

[3] P. Cimprich, O. Becker, C. Nentwich, M. K. H. Jiroušek, P. Brown, M. Batsis, T. Kaiser, P. Hlavnička,
N. Matsakis, C. Dolph, and N. Wiechmann. Streaming transformations for XML (STX) version 1.0.
http://stx.sourceforge.net/documents/.

[4] Y. Diao and M. J. Franklin. High-performance XML filtering: An overview of YFilter. In IEEE Data
Engineering Bulletin, volume 26(1), pages 41–48, 2003.

[5] J. Engelfriet and H. Vogler. Macro tree transducers. Journal of Computer and System Sciences, 31(1):71–
146, 1985.

[6] T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and D. Suciu. Processing XML streams with deterministic
automata and stream indexes. ACM Transactions on Database Systems, 29(4):752–788, 2004.

[7] A. K. Gupta and D. Suciu. Stream processing of XPath queries with predicates. In Proceedings of the 2003
ACM SIGMOD International Conference on Management of Data, pages 419–430, 2003.

[8] H. Hosoya and B. C. Pierce. XDuce: A statically typed XML processing language. ACM Transactions on
Internet Technology, 3(2):117–148, 2003.

[9] O. Kiselyov. A better XML parser through functional programming. In 4th International Symposium
on Practical Aspects of Declarative Languages, volume 2257 of Lecture Notes in Computer Science, pages
209–224, 2002.

[10] K. Kodama, K. Suenaga, N. Kobayashi, and A. Yonezawa. Translation of tree-processing programs into
stream-processing programs based on ordered linear type. In The 2nd ASIAN Symposium on Programming
Languages and Systems, volume 3302 of Lecture Notes in Computer Science, pages 41–56, 2004.

15

77

[11] B. Ludäscher, P. Mukhopadhyay, and Y. Papakonstantinou. A transducer-based XML query processor. In
Proceedings of 28th International Conference on Very Large Data Bases, pages 227–238, 2002.

[12] M. Murata. Extended path expressions of XML. In Proceedings of the 20th ACM Symp. on Principles of
Database Systems, pages 153–166, 2001.

[13] K. Nakano. XTiSP: XML transformation language intended for stream processing. http://xtisp.psdlab.
org/.

[14] K. Nakano. Composing stack-attributed transducers. Technical Report METR-2004-01, Department of
Mathematical Informatics, University of Tokyo, 2004.

[15] K. Nakano. An implementation scheme for XML transformation lauguages through derivation of stream
processors. In The 2nd ASIAN Symposium on Programming Languages and Systems, volume 3302 of
Lecture Notes in Computer Science, pages 74–90, 2004.

[16] S. Nishimura and K. Nakano. XML stream transformer generation through program composition and
dependency analysis. Science of Computer Programming, 54:257–290, 2005.

[17] T. Perst and H. Seidl. Macro forest transducers. Information Processing Letters, 89:141–149, 2004.

[18] S. Scherzinger and A. Kemper. Syntax-directed transformations of XML streams. In The workshop on
Programming Language Technologies for XML, pages 75–86, 2005.

[19] K. Suenaga, N. Kobayashi, and A. Yonezawa. Extension of type-based approach to generation of stream
processing programs by automatic insertion of buffering primitives. In International workshop on Logic-
based Program Synthesis and Transformation, 2005. To appear.

[20] XQuery 1.0: An XML query language. http://www.w3.org/TR/xquery/.

[21] SAX: the simple api for XML. http://www.saxproject.org/.

[22] XSL transformations (XSLT). http://www.w3c.org/TR/xslt/.

16

78

Parametric Polymorphism for XML

Haruo Hosoya
The University of Tokyo

hahosoya@is.s.u-tokyo.ac.jp

Alain Frisch
INRIA

Alain.Frisch@inria.fr

Giuseppe Castagna
École Normale Supérieure de Paris

Giuseppe.Castagna@ens.fr

Abstract

Despite the extensiveness of recent investigations on static typing for
XML, parametric polymorphism has rarely been treated. This well-established
typing discipline can also be useful in XML processing in particular for
programs involving “parametric schemas,” i.e., schemas parameterized
over other schemas (e.g., SOAP). The difficulty in treating polymor-
phism for XML lies in how to extend the “semantic” approach used in
the mainstream (monomorphic) XML type systems. A naive extension
would be “semantic” quantification over all substitutions for type vari-
ables. However, this approach reduces to an NEXPTIME-complete prob-
lem for which no practical algorithm is known. In this paper, we propose a
different method that smoothly extends the semantic approach yet is algo-
rithmically easier. In this, we devise a novel and simple marking technique,
where we interpret a polymorphic type as a set of values with annotations
of which subparts are parameterized. We exploit this interpretation in
every ingredient of our polymorphic type system such as subtyping, in-
ference of type arguments, and so on. As a result, we achieve a sensible
system that directly represents a usual expected behavior of polymorphic
type systems—“values of variable types are never reconstructed”—in a
reminiscence of Reynold’s parametricity theory. Also, we obtain a set of
practical algorithms for typechecking by local modifications to existing
ones for a monomorphic system.

This paper has been presented at ACM Symposium on Principles of Pro-
gramming Languages (POPL’05).

1

79

Compositional Specification of Commercial Contracts

Jesper Andersen, Ebbe Elsborg, Fritz Henglein, Jakob Grue Simonsen, and Christian
Stefansen

Department of Computer Science, University of Copenhagen (DIKU)
Universitetsparken 1, DK-2100 Copenhagen Ø

Denmark

Abstract. We present a declarative language for compositional specification of contracts
governing the exchange of resources. It extends Eber and Peyton Jones’s declarative lan-
guage for specifying financial contracts to the exchange of money, goods and services
amongst multiple parties and complements McCarthy’s Resources/Events/Agents (REA)
accounting model with a view-independent formal contract model that supports defini-
tion of user-defined contracts, automatic monitoring under execution, and user-definable
analysis of their state before, during and after execution. We provide several realistic ex-
amples of commercial contracts and their analysis. A variety of (real) contracts can be
expressed in such a fashion as to support their integration, management and analysis in
an operational environment that registers events.

1 Introduction

When entrepreneurs enter contractual relationships with a large number of other parties, each
with possible variations on standard contracts, they are confronted with the interconnected
problems of specifying contracts, monitoring their execution for performance1, analyzing their
ramifications for planning, pricing and other purposes prior to and during execution, and inte-
grating this information with accounting, workflow management, supply chain management,
production planning, tax reporting, decision support etc.

1.1 Problems with Informal Contract Management

Typical problems that can arise in connection with informal modeling and representation of
contracts and their execution include: (i) disagreement on what a contract actually requires;
(ii) agreement on contract, but disagreement on what events have actually happened (event
history); (iii) agreement on contract and event history, but disagreement on remaining con-
tractual obligations; (iv) breach or malexecution of contract; (v) entering bad or undesirable
contracts/missed opportunities; (vi) bad coordination of contractual obligations with pro-
duction planning and supply chain management; (vii) impossibility, slowness or costliness in
evaluating state of company affairs.

Anecdotal evidence suggests that costs associated with these problems can be consider-
able. Eber estimates that a major French investment bank has costs of about 50 mio. Euro per
year attributable to (i) and (iv) above, with about half due to legal costs in connection with
contract disputes and the other half due to malexecution of financial contracts [Ebe02].

In summary, capturing contractual obligations precisely and managing them conscien-
tiously is important for a company’s planning, evaluation, and reporting to management,
shareholders, tax authorities, regulatory bodies, potential buyers, and others.

We argue that a declarative domain-specific (specification) language (DSL) for compositional
specification of commercial contracts (defining contracts by combining subcontracts in var-
ious, well-defined ways) with an associated precise operational semantics is ideally suited to
alleviating the above problems.

1 Performance in contract lingo refers to compliance with the promises (contractual commitments) stipu-
lated in a contract; nonperformance is also termed breach of contract.

80

1.2 Contributions

We (i) extend the contract language of Peyton-Jones, Eber and Seward for two-party financial
contracts in a view-independent fashion to multi-party commercial contracts with iteration
and first-order recursion. They involve explicit agents and transfers of arbitrary resources
(money, goods and services, or even pieces of information), not only currencies. Our contract
language is stratified into a pluggable base language for atomic contracts (commitments) and
a combinator language for composing commitments into structured contracts. In addition, we
(ii) provide a natural contract semantics based on an inductive definition for when a trace—a
finite sequence of events—constitutes a successful (“performing”) completion of a contract.
This induces a denotational semantics, which compositionally maps contracts to trace sets as
in Hoare’s Communicating Sequential Processes (CSP). We (iii) systematically develop three
operational semantics in a stepwise fashion, starting from the denotational semantics: A re-
duction semantics with deferred matching of events to specific commitments in a contract;
an eager matching semantics in which events are matched nondeterministically against com-
mitments; and finally an eager matching semantics where an event is equipped with explicit
control information that routes it deterministically to a particular commitment. Finally, we (iv)
validate applicability of our language by encoding a variety of existing contracts in it, and
illustrate analyzability of contracts by providing examples of compositional analysis.

Our work builds on a previous language design by Andersen and Elsborg [AE03] and
is inspired by Peyton Jones and Eber’s compositional specification of financial contracts, the
REA accounting model and CSP-like process algebras. See Section 7 for a comparison with
that work.

2 Modeling Commercial Contracts

A contract is an agreement between two or more parties which creates obligations to do or not
do the specific things that are the subject of that agreement. A commercial contract is a contract
whose subject is the exchange of scarce resources (money, goods, and services). Examples of
commercial contracts are sales orders, service agreements, and rental agreements. Adopting
terminology from the REA accounting model [McC82] we shall also call obligations commit-
ments and parties agents.

2.1 Contract Patterns

In its simplest form a contract commits two contract parties to an exchange of resources such
as goods for money or services for money; that is to a pair of transfers of resources from one
party to the other, where one transfer is in consideration of the other.

The sales order template in Figure 1 commits the two parties (seller , buyer) to a pair
of transfers, of goods from seller to buyer and of money from buyer to seller . Many
commercial contracts are of this simple quid-pro-quo kind, but far from all. Consider the legal
services agreement template in Figure 2. Here commitments for rendering of a monthly legal
service are repeated, and each monthly service consists of a standard service part and an op-
tional service part. More generally, a contract may allow for alternative executions, any one of
which satisfies the given contract.

We can discern the following basic contract patterns for composing commercial contracts
from subcontracts (a subcontract is a contract used as part of another contract):

– a commitment stipulates the transfer of a resource or set of resources between two parties;
it constitues an atomic contract;

– a contract may require sequential execution of subcontracts;
– a contract may require concurrent execution of subcontracts, that is execution of all sub-

contracts, where individual commitments may be interleaved in arbitrary order;

81

– a contract may require execution of one of a number of alternative subcontracts;
– a contract may require repeated execution of a subcontract.

In the remainder of this paper we shall explore a declarative contract specification language
based on these contract patterns.

Fig. 1 Agreement to Sell Goods
Section 1. (Sale of goods) Seller shall sell and deliver to buyer (description of goods) no later than (date).
Section 2. (Consideration) In consideration hereof, buyer shall pay (amount in dollars) in cash on de-

livery at the place where the goods are received by buyer.
Section 3. (Right of inspection) Buyer shall have the right to inspect the goods on arrival and, within

(days) business days after delivery, buyer must give notice (detailed-claim) to seller of any claim for
damages on goods.

Fig. 2 Agreement to Provide Legal Services
Section 1. The attorney shall provide, on a non-exclusive basis, legal services up to (n) hours per month,

and furthermore provide services in excess of (n) hours upon agreement.
Section 2. In consideration hereof, the company shall pay a monthly fee of (amount in dollars) before

the 8th day of the following month and (rate) per hour for any services in excess of (n) hours 40
days after the receival of an invoice.

Section 3. This contract is valid 1/1-12/31, 2004.

3 Compositional Contract Language

In this section we present a core contract specification language that reflects the contract com-
position patterns of Section 2.1. This is a cursory presentation, with no proofs given. See the
technical report [AEH+04] for a full presentation.

3.1 Syntax

Our contract language CP is defined inductively by the inference system for deriving judge-
ments of the forms Γ ; ∆ ` c : Contract and ∆ ` D : Γ . Here Γ and ∆ range over maps from
identifiers to contract template types and to base types, respectively. The ⊕-operator on maps is
defined as follows:

(m⊕m′)(x) =
{

m′(x) if x ∈ domain(m′)
m(x) otherwise

The language is built on top of a typed base language P defined by ∆ ` a : τ that defines expres-
sions denoting agents, resources, time, other basic types and predicates (Boolean expressions)
over those. P provides the possibility of referring to observables [JES00,JE03]. The language is
parametric in P , and we shall introduce suitable base language expressions on an ad hoc basis
in our examples for illustrative purposes.

The language CP is defined by the inference system in Figure 3. If judgement Γ ; ∆ ` c :
Contract is derivable, we say that c is a well-defined contract given type assumptions Γ and
∆. Success denotes the trivial or (successfully) completed contract: it carries no obligations on

82

Fig. 3 Syntax for contract specifications

Γ ; ∆ ` Success : Contract Γ ; ∆ ` Failure : Contract

Γ (f) = τ → Contract ∆ ` a : τ

Γ ; ∆ ` f(a) : Contract

∆′ = ∆⊕ {A1 : Agent, A2 : Agent, R : Resource, T : Time}
Γ ; ∆′ ` c : Contract
∆′ ` P : Boolean

Γ ; ∆ ` transmit(A1, A2, R, T | P). c : Contract

Γ ; ∆ ` c1 : Contract Γ ; ∆ ` c2 : Contract

Γ ; ∆ ` c1 + c2 : Contract

Γ ; ∆ ` c1 : Contract Γ ; ∆ ` c2 : Contract

Γ ; ∆ ` c1 ‖ c2 : Contract

Γ ; ∆ ` c1 : Contract Γ ; ∆ ` c2 : Contract

Γ ; ∆ ` c1; c2 : Contract

Γ = {fi 7→ τi1 × . . .× τini → Contract}m
i=1

Γ ; ∆⊕ {Xi1 : τi1, . . . , Xini : τini} ` ci : Contract

∆ ` {fi[Xi] = ci}m
i=1 : Γ

∆ ` {fi[Xi] = ci}m
i=1 : Γ Γ ; ∆ ` c : Contract

∆ ` letrec {fi[Xi] = ci}m
i=1 in c : Contract

anybody. Failure denotes the inconsistent or failed contract; it signifies breach of contract or a
contract that is impossible to fulfill. The environment D = {fi[Xi] = ci}m

i=1 contains named
contract templates. A contract template needs to be instantiated with actual arguments from
the base language. The contract expression transmit(A1, A2, R, T | P). c represents a contract
where the commitment transmit(A1, A2, R, T | P) must be satisfied first. Note that A1, A2, R, T
are binding variable occurrences whose scope is P and c. The commitment must be matched
by a (transfer) event e = transmit(a1, a2, r, t) of resource r from agent a1 to agent a2 at time
t where P (a1, a2, r, t) holds. After matching, the residual contract is c in which A1, A2, R, T
are bound to a1, a2, r, t, respectively. In this fashion, the subsequent contractual obligations
expressed by c may depend on the actual values in event e. The contract combinators ·+ ·, · ‖ ·
and ·; · compose subcontracts according to the contract patterns we have discerned: by alter-
nation, concurrently, and sequentially, respectively. A contract consists of a finite set of named
contract templates and a contract body. Note that contract templates may be (mutually) re-
cursive, which, in particular, lets us capture repetition of subcontracts. In the following we
shall adopt the convention that A1, A2, R, T must not be bound in environment ∆. If a vari-
able from ∆ or any expression a only involving variables bound in ∆ occurs as an argument
of a transmit, we interpret this as an abbreviation; e.g., transmit((a,A2, R, T | P)). c abbre-
viates transmit((A1, A2, R, T | P ∧A1 = a)). c where A1 is a new (agent-typed) variable not
bound in ∆ and different from A2, R and T . We abbreviate transmit(A1, A2, R, T | P). Success
to transmit(A1, A2, R, T | P). Examples encoding the contracts from Figures 1 and 2 are pre-
sented in Section 4.

3.2 Event Traces and Contract Satisfaction

A contract specifies a set of alternative performing event sequences (contract executions), each
of which satisfies the obligations expressed in the contract and concludes it. In this section we
make these notions precise for our language.

A base structure is a tuple (R, T ,A) of sets of resources R, agents A and a totally ordered
set (T ,≤T) of dates (or time points), plus other sets for other types, as needed. A (transfer) event
e is a term transmit(a1, a2, r, t), where a1, a2 ∈ A, r ∈ R and t ∈ T . An (event) trace s is a finite
sequence of events that is chronologically ordered; that is, for s = e1 . . . en the time points
in e1 . . . en occur in ascending order. We adopt the following notation: 〈〉 denotes the empty
sequence; a trace consisting of a single event e is denoted by e itself; concatenation of traces

83

s1 and s2 is denoted by juxtaposition: s1s2; we write (s1, s2) Ã s if s is an interleaving of the
events in traces s1 and s2; we write X for the vector X1, . . . , Xk with k ≥ 0 and where k can be
deduced from the context; we write P [a1/A1, a2/A2, r/R, t/T] and c[a1/A1, a2/A2, r/R, t/T]
for substitution of expressions a1, a2, r, t for free variables A1, A2, R, T in Boolean expression
P and contract expression c, respectively.2 We are now ready to specify when a trace satisfies
a contract, i.e. gives rise to a performing execution of the contract. This is done inductively
by the inference system for judgements s `δ

D c in Figure 4, where D = {fi[Xi] = ci}m
i=1 is a

finite set of named contract templates and δ is a finite set of bindings of variables to elements
of the given base structure. A derivable judgement s `δ

D c expresses that event sequence s
satisfies—successfully executes and concludes—contract c in an environment where contract
templates are defined as in D and δ specifies to which values the base variables in c and D
are bound. Conversely, if s `δ

D c is not derivable then s does not satisfy c. The premise δ |=
P [a1/A1, a2/A2, r/R, t/T] in the 3d rule stipulates that P [a1/A1, a2/A2, r/R, t/T], with free
variables bound as in δ, must be true for an event to match the corresponding commitment.

Fig. 4 Contract satisfaction

〈〉 `δ
D Success

s `δ
D c[a/X] (f [X] = c) ∈ D

s `δ
D f(a)

δ |= P [a1/A1, a2/A2, r/R, t/T] s `δ
D c[a1/A1, a2/A2, r/R, t/T]

transmit(a1, a2, r, t) s `δ
D transmit((A1, A2, R, T |P)). c

s1 `δ
D c1 s2 `δ

D c2 (s1, s2) Ã s

s `δ
D c1 ‖ c2

s1 `δ
D c1 s2 `δ

D c2

s1s2 `δ
D c1; c2

s `δ
D c

s `δ letrecD in c

s `δ
D c1

s `δ
D c1 + c2

s `δ
D c2

s `δ
D c1 + c2

3.3 Contract Monitoring by Residuation

Extensionally, contracts classify traces (event sequences) into performing and nonperforming
ones. We define the extension of a contract c to be the set of its performing executions: C[[c]]D;δ =
{s : s `δ

D c}. We say c denotes a trace set S in context D, δ, if C[[c]]D;δ = S.3

We are not only interested in classifying complete event sequences once they have hap-
pened, though, but in monitoring contract execution as it unfolds in time under the arrival of
events.

Given a trace set S denoted by a contract c and an event e, the residuation function ·/·
captures how c can be satisfied if the first event is e. It is defined as follows:

S/e = {s′ | ∃s ∈ S : es′ = s}
Conceptually, we can map contracts to trace sets and use the residuation function to mon-

itor contract execution as follows:
2 We have not specified a particular language of Boolean expressions; we only require that it has a

well-defined notion of substitution.
3 A variant of C[[c]]D;δ can be characterized compositionally, yielding a denotational semantics; see

[AEH+04].

84

1. Map a given contract c0 to the trace set S0 that it denotes. If S0 = ∅, stop and output
“inconsistent”.

2. For i = 0, 1, . . . do:
Receive message ei.
(a) If ei is a transfer event, compute Si+1 = Si/ei. If Si+1 = ∅, stop and output “breach of

contract”; otherwise continue.
(b) If ei is a “terminate contract” message, check whether 〈〉 ∈ Si. If so, all obligations

have been fulfilled and the contract can be terminated. Stop and output “successfully
completed”. If 〈〉 6∈ Si, output “cannot be terminated now”, let Si+1 = Si and continue
to receive messages.

To make the conceptual algorithm for contract life cycle monitoring from Section 3.3 op-
erational, we need to represent the residual trace sets and provide methods for deciding tests
for emptiness and failure. In particular, we would like to use contracts as representations for
trace sets. Not all trace sets are denotable by contracts, however. In particular, given a contract
c that denotes a trace set Sc it is not a priori clear whether Sc/e is denotable by a contract c′. If
it is, we call c′ the residual contract of c after e.

3.4 Nullable and Guarded Contracts

In this section we characterize nullability of a contract and introduce guarding, which is a suf-
ficient condition on contracts for ensuring that residuation can be performed by reduction on
contracts.

Fig. 5 Nullable contracts

D ` c nullable (f [X] = c) ∈ D

D ` f(a) nullable
D ` c nullable

D ` c + c′ nullable

D ` c′ nullable

D ` c + c′ nullable

D ` Success nullable D ` c nullable D ` c′ nullable

D ` c ‖ c′ nullable

D ` c nullable D ` c′ nullable

D ` c; c′ nullable

Let us write D |= c nullable if 〈〉 ∈ C[[c]]D;δ for all δ. We call such a contract nullable (or
terminable): it can be concluded successfully, but may possibly also be continued. E.g., the
contract Success + transmit(a1, a2, r, t|P) is nullable, as it may be concluded successfully (left
choice). Note however, that it may also be continued (right choice). It is easy to see that nulla-
bility is independent of δ: 〈〉 ∈ C[[c]]D;δ for some δ if and only if 〈〉 ∈ C[[c]]D;δ′ for any other δ′.
Deciding nullability is required to implement Step 2b in contract monitoring. The following
proposition expresses that nullability is characterized by the inference system in Figure 5.

Proposition 1. D |= c nullable ⇐⇒ D ` c nullable

A contract c is (hereditarily) guarded in context D if D ` c guarded is derivable from Figure 6;
intuitively, guardedness ensures that in a contract with mutual recursion, we do not have
(mutual) recursions such as {f [X] = g[X], g[X] = f [X]} that cause the residuation algorithm
to loop infinitely.

3.5 Operational Semantics I: Deferred Matching

Residuation on trace sets tells us how to maintain the trace set under arrival of events. In this
section we present a reduction semantics for contracts, which lifts residuation on trace sets to
contracts and thus provides a monitoring semantics for contract execution.

85

Fig. 6 Guarded contracts

D ` Success guarded D ` Failure guarded

D ` transmit(X | P). c guarded
D ` c guarded (f [X] = c) ∈ D

D ` f(a) guarded

D ` c guarded D ` c′ guarded

D ` c + c′ guarded

D ` c guarded D ` c′ guarded

D ` c ‖ c′ guarded

D ` c guarded D ` c′ guarded

D ` c; c′ guarded

Fig. 7 Deterministic reduction (delayed matching)

D, δ `D Success
e−→ Failure D, δ `D Failure

e−→ Failure

δ |= P [a/X]

D, δ `D transmit(X|P). c
transmit(a)−→ c[a/X]

δ 6 |=P [a/X]

D, δ `D transmit(X|P). c
transmit(a)−→ Failure

D, δ `D c[a/X]
e−→ c′ (f [X] = c) ∈ D

D, δ `D f(a)
e−→ c′

D, δ `D c
e−→ d D, δ `D c′

e−→ d′

D, δ `D c + c′
e−→ d + d′

D, δ `D c
e−→ d D, δ `D c′

e−→ d′

D, δ `D c ‖ c′
e−→ c ‖ d′ + d ‖ c′

D ` c nullable D, δ `D c
e−→ d D, δ `D c′

e−→ d′

D, δ `D c; c′
e−→ d; c′ + d′

D 6` c nullable D, δ `D c
e−→ d

D, δ `D c; c′
e−→ d; c′

D, δ `D c
e−→ c′

δ `D letrecD in c
e−→ letrecD in c′

The ability of representing residual contract obligations of a partially executed contract
and thus any state of a contract as a bona fide contract carries the advantage that any analysis
that is performed on “original” contracts automatically extends to partially executed contracts
as well. E.g., an investment bank that applies valuations to financial contracts before offering
them to customers can apply their valuations to their portfolio of contracts under execution;
e.g., to analyze its risk exposure under current market conditions.

The reduction semantics is presented in Figure 7. The basic matching rule is

δ |= P [a/X]

D, δ `D transmit(X|P). c
transmit(a)−→ c[a/X]

.

It matches an event with a specific commitment in a contract. There may be multiple com-
mitments in a contract that match the same event. The semantics captures the possibilities of
matching an event against multiple commitments by applying all possible reductions in alter-
natives and concurrent contract forms and forming the sum of their possible outcomes (some
of which may actually be Failure).

The rule
D, δ `D c

e−→ d D, δ `D c′ e−→ d′

D, δ `D c + c′ e−→ d + d′

thus reduces both alternatives c and c′ and then forms the sum of their respective results d, d′.

86

Finally, the rule

D ` c nullable D, δ `D c
e−→ d D, δ `D c′ e−→ d′

D, δ `D c; c′ e−→ d; c′ + d′

captures that e can be matched in c or, if c is nullable, in c′. Note that, if c is not nullable, e can
only be matched in c, not c′, as expressed by the rule

D 6` c nullable D, δ `D c
e−→ d

D, δ `D c; c′ e−→ d; c′
.

In this fashion the semantics keeps track of the results of all possible matches in a reduc-
tion sequence as explicit alternatives (summands) and defers the decision as to which specific
commitment is matched by a particular event during contract exectution until the very end:
By selecting a particular summand in a residual contract after a number of reduction steps
that represents Success (and the contract is thus terminable) a particular set of matching deci-
sions is chosen ex post. As presented, the reduction semantics gives rise to an implementation
in which the multiple reducts of previous reduction steps are reduced in parallel, since they
are represented as summands in a single contract, and the rule for reduction of sums reduces
both summands. It is relatively straightforward to turn this into a backtracking semantics by
an asymmetric reduction rule for sums, which delays reduction of the right summand.

Guardedness is key to ensuring termination of contract residuation and thus that every
(guarded) contract has a residual contract under any event in the reduction semantics of Fig-
ure 7.

Theorem 1. If c ∈ CP is guarded then for each event e there exists a unique c′ ∈ CP such that
D, δ `D c

e−→ c′. Furthermore, we have that c′ is guarded and D, δ |= c/e = c′, which means
C[[c]]D;δ/e = C[[c′]]D;δ .

Using this reduction semantics we can turn our conceptual contract monitoring algorithm
into a real algorithm.

Proposition 1 provides a syntactic characterization of nullability, which can easily (not
trivially) be turned into an algorithm. Inconsistency—whether a contract denotes the empty
trace set or not—is not treated here; see the full report [AEH+04].

3.6 Operational Semantics II: Eager Matching

The deferred matching semantics of Figure 7 is flexible and faithful to the natural notion of
contract satisfaction as defined in Figure 4. But from an accounting practice point of view it
is weird because matching decisions are deferred. In bookkeeping standard modus operandi is
that events are matched against specific commitments eagerly; that is online, as events arrive.4

We shall turn the deferred matching semantics of Figure 7 into an eager matching se-
mantics (Figure 8). The idea is simple: Represent here-and-now choices as alternative rules
(meta-level) as opposed to alternative contracts (object level). Specifically, we split the rules
for reducing alternatives and concurrent subcontracts into multiple rules, and we capture
the possibility of reducing in the second component of a sequential contract by adding τ -
transitions, which “spontaneously” (without a driving external event) reduce a contract of
the form Success; c to c. For this to be sufficient we have to make sure that a nullable contract
indeed can be reduced to Success, not just a contract that is equivalent with Success, such as
Success ‖ Success. This is done by ensuring that τ -transitions are strong enough to guarantee
reduction to Success as required.

4 There are standard accounting practices for changing such decisions, but both default and standard
conceptual model are that matching decisions are made as early as possible. In general, it seems
representing and deferring choices and applying hypothetical reasoning to them appears to be a rather
unusual phenomenon in accounting.

87

Fig. 8 Nondeterministic reduction (eager matching)

D, δ `N Success
e−→ Failure D, δ `N Failure

e−→ Failure

δ |= P [a/X]

D, δ `N transmit(X | P). c
transmit(a)−→ c[a/X]

δ 6 |=P [a/X]

D, δ `N transmit(X|P). c
transmit(a)−→ Failure

(f [X] = c) ∈ D

D, δ `N f(a)
τ−→ c[a/X]

D, δ `N c + c′
τ−→ c D, δ `N c + c′

τ−→ c′

D, δ `N c
λ−→ d

D, δ `N c ‖ c′
λ−→ d ‖ c′

D, δ `N c′
λ−→ d′

D, δ `N c ‖ c′
λ−→ c ‖ d′

D, δ `N Success ‖ c
τ−→ c D, δ `N c ‖ Success

τ−→ c D, δ `N Success; c′
τ−→ c′

D, δ `N c
λ−→ d

D, δ `N c; c′
λ−→ d; c′

D, δ `N c
e−→ c′

δ `N letrecD in c
e−→ letrecD in c′

Based on these considerations we arrive at the reduction semantics in Figure 8, where
meta-variable λ ranges over events e and the internal event τ . Note that it is nondeterministic
and not even confluent: A contract c can be reduced to two different contracts by the same
event. Consider e.g., c = a; b + a; b′ where a, b, b′ are commitments with suitable D, δ, no
two of which match the same event. For event e matching a we have D, δ `N c

e−→ b and
D, δ `N c

e−→ b′, but neither b nor b′ can be reduced to Success or any other contract by the
same event sequence. In reducing c we have not only resolved it against e, but also made
a decision: whether to apply it to the first alternative of c or to the second. Technically, the
reduction semantics is not closed under residuation: Given c and e it is not always possible to
find c′ such that D, δ `N c

e−→ c′ and D; δ |= c/e = c′. It is sound, however, in the sense that
the reduct always denotes a subset of the residual trace set:

Proposition 2. 1. If D, δ `N c
e−→ c′ then D, δ |= c′ ⊆ c/e.

2. If D, δ `N c
τ−→ c′ then D, δ |= c′ ⊆ c.

Even though individual eager reductions do not preserve residuation, the set of all reduc-
tions does so:

Proposition 3. If D, δ `D c
e−→ c′ then there exist contracts c1, . . . , cn for some n ≥ 1 such that

D, δ `N c
τ∗−→ c′′i

e−→ ci for all i = 1 . . . n and D, δ |= c′ ⊆ ∑n
i=1 ci. The notation · τ∗−→ · indicates

any number ≥ 0 of τ -transitions.

As a corollary, Propositions 2 and 3 combined yield that the object-level nondeterminism
(expressed as contract alternatives) in the deferred matching semantics is faithfully reflected
in the meta-level nondeterminism (expressed as multiple applicable rules) of the eager match-
ing semantics.

3.7 Operational Semantics III: Eager Matching with Explicit Routing

Consider the following execution model for contracts: Two or more parties each have a copy
of the contract they have previously agreed upon and monitor its execution under the arrival
of events. Even though they agree on prior contract state and the next event, the parties may

88

arrive at different residual contracts and thus different expectations as to the future events al-
lowed under the contract. This is because of nondeterminacy in contract execution with eager
matching; e.g., a payment of $50 may match multiple payment commitments, and the par-
ties may make different matches. We can remedy this by making control of contract reduction
with eager matching explicit in order to make reduction deterministic: events are accompa-
nied by control information that unambiguously prescribes how a contract is to be reduced.
In this fashion parties that agree on what events have happened and on their associated con-
trol information, will reduce their contract identically. See the full technical report for details
[AEH+04].

4 Example Contracts

For the purpose of demonstration we will afford ourselves a fairly advanced predicate lan-
guage with basic arithmetic, logical connectives, lists and basic functions. The syntax is stan-
dard and straightforward, and the details will be obvious from the examples.

Consider the validity period specified in Section 3 of the Agreement to Provide Legal Ser-
vices (Figure 2). Taken literally, it would imply, that the attorney shall render services in the
month of December, but receive no fee in consideration since January 2005 is outside the va-
lidity period. Surely, this is not the intention; in fact, consideration will defeat most deadlines
as is clearly the intent here. In the coding of the Agreement to Provide Legal Services the ex-
piration date end has to be pushed down on all transmits despite its global nature to make
sure that consideration would not be cut off.

The Agreement to Provide Legal Services fails to specify who decides if legal services
should be rendered. In the coding it is simply assumed that the attorney is the initiator and
that all services rendered over a month can be modelled as one event. Furthermore, the attor-
ney is assumed to give the notice nowork if no work was done for the past month. This is an
artifact introduced to guard the recursive call to legal .

Fig. 9 Software Development Agreement
Section 1. The Developer shall develop software as described in Exhibit A (Requirements Specification)

according the schedule set forth in Exhibit B (Project Schedule and Deliverables). Specifically, the
Developer shall be responsible for the timely completion of the deliverables identified in Exhibit B.

Section 2. The Client shall provide written approval upon the completion of each deliverable identified
in Exhibit B.

Section 3. In the event of any delay by the Client, all the Developer’s remaining deadlines shall be
extended by the greater of the two following: (i) five working days, (ii) two times the delay induced
by the Client. The Client’s deadlines shall be unchanged.

Section 4. In consideration of services rendered the Client shall pay USD $100.000 due on 7/1.
Section 5. If the Client wishes to add to the order, or if upon written approval of a deliverable, the

Client wishes to make modifications to the deliverable, the Client and the Developer shall enter into
a Change Order. Upon mutual agreement the Change Order shall be attached to this contract.

Section 6. The Developer shall retain all intellectual rights associated with the software developed. The
Client may not copy or transfer the software to any third party without the explicit, written consent
of the Developer.

Exhibit A. (omitted)
Exhibit B. Deadlines for deliverables and approval: (i) 1/1, 1/15; (ii) 3/1, 3/15, (final deadline) 7/1,

7/15.

Now consider the more elaborate Software Development Agreement in Figure 9. When
coding the contract, one notices that the contract fails to specify the ramifications of the client’s

89

Fig. 10 Specification of Software Development Agreement – note that we assume (easily de-
fined) abbreviations for max(x,y) and allow subtraction on the domain Time.
letrec

deliverables (dev, client, payment, deliv1, deadline1, approv1,
deliv2, deadline2, approv2,
delivf, deadlinef, approvf) =

transmit(dev, client, deliv1, T1 | T1 <= deadline1)).
transmit(client, dev, "ok", T).
transmit(dev, client, deliv2, T2 |

T2 <= deadline2 + max(5d, (T - approv1) * 2)).
transmit(client, dev, "ok", T).
transmit(dev, client, delivf, Tf |

Tf <= deadlinef + max(5d, (T - approv2) * 2)).
transmit(client, dev, "ok", T).
transmit(dev, client, "done", T).
Success

software (dev, client, payment, paymentdeadline, ds) =
deliverables (dev, client, deliv1, deadline1, approv1,

deliv2, deadline2, approv2,
delivf, deadlinef, approvf) ||

transmit(client, dev, payment, T | T <= paymentdeadline)
in

software ("Me", "Client", 100000, 2004.7.1, d1, 2004.1.1, 2004.1.15,
d2, 2004.3.1, 2004.3.15, final, 2004.7.1, 2004.7.15)

non-approval of a deliverable. One also sees that the contract does not specify what to do if
due to delay, some approval deadline comes before the postponed delivery date. In the current
code, this is taken to mean further delay on the client’s part even if the client gave approval
at the same time as the deliverable was transmitted. It seems that contract coding is a healthy
process in the sense that it will often unveil underspecification and errors in the natural lan-
guage contract being coded. The Change Order described in Section 5 of the contract and
the intellectual rights described in Section 6 are not coded due to certain limitations in our
language. We will postpone the discussion of this this paper’s Section 6.

5 Contract Analysis

The formal groundwork in order, we can begin to ask ourselves questions about contracts such
as: What is my first order of business? When is the next deadline? How much of a particular
resource will I gain from my portfolio and at what times? What is the monetary value of my
portfolio? Will contract fulfillment require more than the x units I currently have in stock?

The attempt to answer such questions is broadly referred to as contract analysis. The resid-
uation property allows a contract analysis to be applied at any time (i.e. to any residual con-
tract), and we can thus continuously monitor the execution of the contracts in our portfolio.

Recall that our contract specification language is parameterized over the language of pred-
icates and arithmetic. There is a clear trade-off in play here: a sophisticated language buys
expressiveness, but renders most of the analyses undecidable.

There is another source of difficulties. Variables may be bound to components of an event
that is unknown at the time of analysis. An expression like transmit(a1, a2, R, T |true). offers
little insight into the nature of R unless furnished with a probability vector over all resources.

90

Here we will circumvent these problems by making do with a restricted predicate lan-
guage and accepting that analyses may not give answers on all input (but will give correct
answers).

The predicate language is plugged in at two locations. In function application f(a) where
all components of the vector a must checked according to the rules of the predicate language,
and in transmit(a1, a2, r, t|P) where P must have the type Boolean. As previously we require
that a1, a2, r, and t are either variables (bound or unbound) or constants. If some components
are bound variables or constants, they must be equal to the corresponding components of an
incoming event (a′1, a

′
2, r

′, t′) for a match to occur.
Consider the syntax provided in figure 11. In addition to the types Agent, Resource, and

Time, the language has the fundamental types Int and Boolean. Take τ to range over {Int, Time},
take σ to range over τ ∪ {Agent, Resource}, and assume that constants can be uniquely typed
(e.g. time constants are in ISO format, and agent and resource constants are known).

The language allows arithmetic on integers, simple propositional logic, and manipulation
of the two abstract types Resource and Time. Given a time (date) t we may add an integral
number of years, months or days. For example 2004.1.1 + 3d + 1y yields 2005.1.4. Resources
permit a projection on a named component (field) and all fields are of type Int. E.g. to extract
the total amount from an information resource named invoice we write #(invoice, total, t)
where t is some date5. The fields of resources may change over time; hence the third Time
parameter.

Observables can now be understood simply as fields of a ubiquitous resource named obs .
An Int may double for a Resource in which case the Int is understood to be a currency amount.

Fig. 11 Example syntax for predicate language

∆ ` ∆(var) = σ

∆ ` var : σ

∆ ` type(const) = σ

∆ ` const : σ

∆ ` e1 : Int ∆ ` e2 : Int op ∈ {+,−, ∗, /}
∆ ` e1 op e2 : Int

∆ ` t : Time ∆ ` e : Int f ∈ {y, m, d} op ∈ {+,−}
∆ ` t op e f : Time

∆ ` e : Time f ∈ {y, m, d}
∆ ` e#f : Int

∆ ` r : Resource ∆ ` t : Time f ∈ fields(r)

∆ ` #(r, f, t) : Int
∆ ` e : Int

∆ ` e : Resource

∆ ` e1 : τ ∆ ` e2 : τ

∆ ` e1 < e2 : Boolean

∆ ` e1 : σ ∆ ` e2 : σ

∆ ` e1 = e2 : Boolean

∆ ` b1 : Boolean ∆ ` b2 : Boolean op ∈ {and, or}
∆ ` b1 op b2 : Boolean

∆ ` b : Boolean
∆ ` not b : Boolean

Ideally, a contract analysis can be performed compositionally, i.e. can be implemented by re-
cursively evaluating subcontracts. This section contains a simple analysis with this property.
Space considerations prevent a walkthrough of more involved examples, but the basic idea
should be clear. We will assume for simplicity that recursively defined contracts are guarded.
The analyses are presented using inference systems defined by induction on syntax, empha-
sizing the declarative and compositional nature of the analyses.

5 When a resource is introduced into the system through a match, it must be dynamically checked that
it possesses the required fields. The set of required fields can be statically determined by a routine
type check annotating resources with field names à la {date, total, paymentdeadline}Resource. To
keep things simple we omit this type extension here.

91

5.1 Example: Next Point of Interest and Task List

Given a contract or a portfolio of contracts it is tremendously important for an agent to know
when and how to act. To this end we demonstrate how a very simple task list can be compiled.

Consider the definition given in Figure 12. The function gives a structured response to
reflect the decision structure (the task list) of the contract. It operates on a very simple subset
of the predicate language that, however, is indicative of the bulk of temporal constraints in
contracts: only interval conditions of the form a ≤ TandT ≤ b with T the time variable in
the enclosing transmit commitment are admitted. Such a condition is abbreviated to [a; b]. It is
important to notice that the result of the analysis may be incomplete. A task is only added if
the agents agree (i.e. a = a1), but if a1 is not bound at the time of analysis, the task is simply
skipped. A more elaborate dataflow analysis might reveal that in fact a1 is always bound to
a.

Also notice the case for application f(a). We expand the body of the named contract f
given arguments a but only once. This measure ensures termination of the analysis, but re-
duces the function’s look-ahead horizon. Hence, any task or point of interest more than one
recursive unfolding away is not detected. This is unlikely to have practical significance for two
reasons: (1) recursively defined contracts are guarded and so a transmit must be matched
before a new unfold can occur. This transmit therefore is presumably more relevant than
any other transmits further down the line; (2) it would be grossly unidiomatic that some
transmit t1 was required to be matched before another transmit t2, but nevertheless had
a later deadline than that of t2.

Fig. 12 Task list analysis

D, δ, a, t ` Success : [] D, δ, a, t ` Failure : []

|= a 6= a1 X = (a1, A, R, T)

D, δ, a, t ` transmit(X | [x; y]). c : do []

|= t /∈ [x; y]

D, δ, a, t ` transmit(X | [x; y]). c : do []

|= a = a1 X = (a1, A, R, T) t ∈ [x; y]

D, δ, a, t ` transmit(X | [x; y]) : do [transmit(X | [x; y])]

D, δ, a, t ` c1 : l1 D, δ, a, t ` c2 : l2

D, δ, a, t ` c1 + c2 : choose[l1, l2]

D ` c1 nullable D, δ, a, t ` c1 : l1 D, δ, a, t ` c2 : l2

D, δ, a, t ` c1; c2 : choose[l1, l2]

D 6` c1 nullable D, δ, a, t ` c1 : l1
D, δ, a, t ` c1; c2 : l1

D, δ, a, t ` c1 : l1 D, δ, a, t ` c2 : l2

D, δ, a, t ` c1 ‖ c2 : l1 @ l2

(f [X] = c) ∈ D D, δ, a, t ` c : l

D, δ, a, t ` f(a) : l

The examples given above, in their simplicity, may be extended given knowledge of the
problem domain. In particular, knowledge of or forecasting about probable event sequences
may be used in a manner “orthogonal” to the coding of analyses by appropriate function calls.

Analyses that are possible to implement in this way include resource flow forecasting (sup-
ply requirements); terminability by agent; latest termination; earliest termination; and valua-
tion, or simply put: What is the value to an agent of a given contract?

92

6 Discussion and Future Work

The Software Development Agreement (Figure 9) provides a good setting to observe the lim-
itations to our approach and the ramifications of the design choices made.

The Change Order is not coded. It might be cleverly coded in the current language, again
using constraints on the events passed around, but a more natural way would be using higher-
order contracts, i.e. contracts taking contracts as arguments. Thus, a Change Order would
simply be the passing back and forth of a contract followed by an instantiation upon agree-
ment.

Contracts often specify certain things that are not to be done (e.g. not copying the soft-
ware). Such restrictions should intersect all other outstanding contracts and limit them appro-
priately. A higher-order language or predicates that could guard all transmit s of an entire
subcontract might ameliorate this in a natural way.

A fuller range of language constructions that programmers are familiar with is also desir-
able; in the present incarnation of the contract language, several standard constructions have
been left out in order to emphasize the core event model. In practice, conditionals and various
sorts of lambda abstractions would make the language easier to use, though not strictly more
expressive, as they can be encoded through events, albeit in a non-intuitive way. A condi-
tional that is not driven by events (i.e. an if-then-else) seems to be needed for natural coding
in many real-world contracts. Also, a catch-throw mechanism for unexpected events would
make contracts more robust.

Conversely, certain features of the language appear to be almost too strong for the domain;
the inclusion of full recursion means that contracts active for an unlimited period of time, say
leases, are easy to code, but make contract analysis significantly harder. In practice, contracts
running for “unlimited” time periods often have external constraints (usually local legislation)
forcing the contract to be reassessed by its parties, and possibly government representatives,
from time to time. Having only a restricted form of recursion that suffices for most practical
applications should simplify contract analysis.

The expressivity of the contract language and indeed the feasibility of non-trivial contract
analysis depends heavily on the predicate language used. Predicates restricted to the form
[a; b] are surely too limited, and further investigation into the required expressiveness of the
predicate language is desirable.

While the language is parametrized over the predicate language used, almost all real-
world applications will require some model of time and timed events to be incorporated. The
current event model allows for encoding through the predicate language, but an extended set
of events, with companion semantics, would make for easier contract programming; timer (or
“trigger”) events appear to be ubiquitous when encoding contracts.

7 Related Work

The impetus for this work comes from two directions: the REA accounting model pioneered
by McCarthy [McC82] and Peyton Jones, Eber and Seward’s seminal article on specification
of financial contracts [JES00]. Furthermore, given that contracts specify protocols as to how
parties bound by them are to interact with each other there are links to process and workflow
models.

Peyton Jones, Eber and Seward [JES00] present a compositional language for specifying
financial contracts. It provides a decomposition of known standard contracts such as zero
coupon bonds, options, swaps, straddles, etc., into individual payment commitments that
are combined declaratively using a small set of contract combinators. All contracts are two-
party contracts, and the parties are implicit. The combinators (taken from [JE03], revised from
[JES00]) correspond to Success, · ‖ ·, · + ·, transmit(·) of our language CP ; it has no direct
counterparts to Failure, ·; · nor, most importantly, recursion or iteration. On the other hand, it

93

provides conditionals and predicates that are applicable to arbitrary contracts, not just com-
mitments as in CP , something we have found to be worthwhile also for specifying commercial
contracts.

Our contract language generalizes financial payment commitments to arbitrary transfers
of resources and information, provides explicit agents and thus provides the possibility of
specifying multi-party contracts.

Disregarding the structure of events and their temporal properties, CP is basically a pro-
cess algebra. It corresponds to Algebra of Communicating Processes (ACP) with deadlock
(Failure), free merge (· ‖ ·) and recursion, but without encapsulation [BW90]. This process
algebra is also part of CSP [BHR84,Hoa85]. Note that contracts are to be thought as exclu-
sively reactive processes, however: they respond to externally generated events, but do not
autonomously generate them.

There are numerous timed variants of process algebras and temporal logics; see e.g. Baeten
and Middelburg [BM02] for timed process algebras. Their relation to our base language is not
evident at this point. This is in part because our base language is not fixed yet to accommodate
expressing temporal (and other) constraints “naturally,” in part because the temporal notions
of timed process languages seem rather low-level and distinct from the notions we have used
in contract examples.

8 Acknowledgements

This work has been partially funded by the NEXT Project, which is a collaboration between
Microsoft Business Solutions, The IT University of Copenhagen and the Department of Com-
puter Science at the University of Copenhagen (DIKU). See http://www.itu.dk/next for
more information on NEXT.

We would like to thank Simon Peyton Jones, Jean-Marc Eber, Kasper Østerbye, and Jesper
Kiehn for valuable discussions on modeling financial contracts and extending that work to
commercial contracts based on the REA accounting model.

References

[AE03] Jesper Andersen and Ebbe Elsborg. Compositional specification of commercial contracts. M.S.
term project, December 2003.

[AEH+04] Jesper Andersen, Ebbe Elsborg, Fritz Henglein, Jakob Grue Simonsen, and Christian Ste-
fansen. Compositional specification of commercial contracts. Technical report, DIKU, Uni-
versity of Copenhagen, Universitetsparken 1, DK-2100 Copenhagen, Denmark, July 2004.
http://topps.diku.dk/next/contracts.

[BHR84] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequential
processes. J. ACM, 31(3):560–599, 1984.

[BM02] J.C.M. Baeten and C.A. Middelburg. Process Algebra with Timing. Springer, 2002.
[BW90] J.C.M. Baeten and W.P. Weijland. Process Algebra. Number 18 in Cambridge Tracts in Theoret-

ical Computer Science. Cambridge University Press, 1990.
[Ebe02] Jean-Marc Eber. Personal communication, June 2002.
[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. International Series in Computer Science.

Prentice-Hall, 1985.
[JE03] Simon Peyton Jones and Jean-Marc Eber. How to write a financial contract. In Jeremy Gibbons

and Oege de Moor, editors, The Fun of Programming. Palgrave Macmillan, 2003.
[JES00] Simon Peyton Jones, Jean-Marc Eber, and Julian Seward. Composing contracts: an adventure

in financial engineering (functional pearl). In Proceedings of the fifth ACM SIGPLAN interna-
tional conference on Functional programming, pages 280–292. ACM Press, 2000.

[McC82] William E. McCarthy. The REA accounting model: A generalized framework for accounting
systems in a shared data environment. The Accounting Review, LVII(3):554–578, July 1982.

94

!"# $%&#'(")*+# !#,-%*).%/* 0,%*1%23# /* 4/*'5#33
6/7*8#8 9).) !:2#;

<)-#; =>#,: ?)>#,:@8%A7B8AC
9#2B /6 (/-27.#, $1%#*1#D E*%>#,;%.: /6 (/2#*")+#*

$#2.#-F#, GHD IJJK

!"#$%&'$

9#;2%.# %.; ;%-23%1%.:D ."# ;%&#'1")*+# .#,-%*).%/* 2,%*1%23# ?$(!CD 2,#;#*.#8 F: L##D </*#;
)*8 M#*'=-,)- %* NL<MJGOD %; ;7,2,%;%*+3: ;.,/*+)*8 %;)F3# ./ ;"/P .#,-%*).%/* 6/,) 3),+#
13);; /6 2,/+,)-;B
= ;%+*%!1)*. 3%-%.).%/* 6/, %.; 7;#D "/P#>#,D %; ."# 6)1. ."). ."# $(! ,#Q7%,#; 8).) .:2#; ./ F#

P#33'6/7*8#8D)*8 .").)33 -#1")*%;-; 7;#8 ./ 8#.#,-%*# .#,-%*).%/* -7;. %*>/3># 8#1,#);#;
%* ."#;# +3/F)3D P#33'6/7*8#8 2),.%)3 /,8#,;B

R* ."# 6/33/P%*+D R P%33 2,#;#*.)* #S.#*;%/* /6 ."# ;%&#'1")*+# 2,%*1%23# .").)33/P; 6/,
/'P#33 6/7*8#8 8).) .:2#;D)*8) ,#)3%&).%/* /6 ."%; 2,%*1%23# 6/, %*.#+#, 8).) .:2#;B
!"# #S.#*8#8 ;%&#'1")*+# 2,%*1%23# %; ,#)3% .",/7+" 1/-F%*%*+)F;.,)1. %*.#,2,#.).%/*

/>#, ."# 8/-)%* /6 1/*>#S 2/3:"#8,) P%." ."# 7;# /6 ;%&#'1")*+# +,)2";B R* ."# 1);#; P"#*
8).) .:2#; !"#P#33 6/7*8#8D ."# -#."/8 ")*83#; #>#,: 1);# ."). %; ")*83#8 F: L<M ;%&#'1")*+#
.#,-%*).%/*B

!"# -#."/8 "); F##* %-23#-#*.#8 %*) ;7FT#1. 3)*+7)+# %*8#2#*8#*. ;"),#8 3%F,),:D);
P#33); %* ."# =4$R (;2#1%)3%&#, IID 6/,) ;7F;#. /6 %.; %*.#,*)3 3)*+7)+# B

()*$%+,-'$.+*

!"# Q7#;.%/* /6 2,/+,)- .#,-%*).%/* %; /*# /6 ."# 13);;%1)3 7*8#1%8)F3# 2,/F3#-;B !"%; */.P%."'
;.)*8%*+D .#,-%*).%/* 1)* F# 2,/>#8 %* Q7%.# -)*: 1);#;D #%."#, F: 1/*;.,71.%*+ 2,/+,)--%*+
3)*+7)+#; %* ;71") P): ."). /*3:) 1#,.)%* 13);; /6 .#,-%*).%*+ 2,/+,)-;),# #S2,#;;%F3#D /, %*
) 6733#, 3)*+7)+#D F: ,#);/*%*+)F/7. ."# ;#-)*.%1; /6 %*8%>%87)3 2,/+,)-;B NL<MJGO 2,#;#*.;
) 2,)1.%1)3 .#1"*%Q7# 6/, ."# 3)..#,)22,/)1"D F: ,#);/*%*+)F/7. 8).) "/P 1/-F%*#8 P%." P#33
6/7*8#8 2),.%)3 /,8#,; /* ."# 8/-)%*; /6 8).) .:2#;B

!"#;# */.#; 8#;1,%F# P/,A %* 2,/+,#;; F#%*+ 8/*# /*) 2,/T#1.). 9RUED N=>#JKOD ;72#,>%;#8
F: 0,/6B 4#%3 9B </*#;B !"# +/)3 /6 ."# 2,/T#1. %; ./ #S.#*8 ."# ;%&#'1")*+# .#,-%*).%/* 2,%*1%23#
/6 NL<MJGO ./)* %-2#,).%># 3)*+7)+# P%." %*.#+#, 8).) .:2#;B M#;%8#; ."# %;;7# /6 8).) .:2#;
/. F#%+ P#33 6/7*8#8 %; ."# 1")33#*+# ."). %-2#,).%># 2,/+,)-; ,),#3: .#,-%*).# 6/, ,#);/*;
#S2,#;;%F3# F:) +3/F)3 /,8#, /* ."# 8).) .:2# ?); %; %337;.,).#8 F: ."# #S)-23# %* ;#1.%/* ICD
."7; -)A%*+ ;%&#'1")*+# .#,-%*).%/*)*)3:;%; 8%6!173.B =; %. .7,*; /7.D F/." ."#;# %;;7#; 1)* F#
)88,#;;#8 F: ,#23)1%*+ ."# ,#Q7%,#-#*. /6 P#33 6/7*8#8*#;; F: ."# #S%;.#*1# /6 3/1)3 F/7*8; /*
2,/+,)- ;.).#B

V)*: /6 ."# %8#); 2,#;#*.#8 %* ."# 6/33/P%*+ +,#P /7. /6) 2,/T#1. P%." $.#6)* U7-),)+#
$1"/7 ?N=$JWOC %* IJJWB 5# 8#>#3/2#8 ."# -#."/8; %*) ,/7+" 6/,- ./ "#32 8#.#,-%*# Q7);%'
.#,-%*).%/*)*8 +#*#,).# F%*8%*+ .%-# 8%>%;%/*; %* II ."). +7),)*.## ."). 2),.%)3 #>)37)'
.%/* .#,-%*).#;B =; ;71"D -71" %; /P#8 ./ /7, ;72#,>%;/,;). ."# .%-#D 0,/6B </"* X)33)+"#,)*8
=,*# X3#*;.,72B

G

95

(7,,#*. P/,A 6/17;#; /* ."# 8#>#3/2-#*. /6) -)."#-).%1)33: ;/7*8 6/7*8).%/* 6/,)* #S'
.#*8#8 ;%&#'1")*+# .#,-%*).%/* 2,%*1%23#B !/)>/%8 ,#87*8)*1:D ."# ,#)8#, %;);;7-#8 ./ F#
6)-%3%), P%." ."# 1/*.#*.; /6 NL<MJGOB

/ 01$2*,.*3 456 $+ 7+*892:: ;+-*,2, 6<=2#

=3."/7+"-71"-/,# 2/P#,673 .")* %.; ;%-23%1%.: ;7++#;.;D ."# ;%&#'1")*+# .#,-%*).%/* 2,%*1%23#
%; 3%-%.#8 %*)223%1)F%3%.: F: %.; ,#Q7%,#-#*. ."). 8).) .:2#; -7;. F# P#33'6/7*8#8B

Y6 1/7,;#D)*: 8).) .:2# P%." >)37#; ,#2,#;#*.)F3# /*) 1/-27.#, 1)* F# -)8# P#33'6/7*8#8
F:)*)22,/2,%).# /,8#,%*+D ;%*1# ."# 8/-)%* %; %*"#,#*.3: 1/7*.)F3#)*8 ;/ 1)* F# F%T#1.%>#3:
-)22#8 ./ NB = 2/;;%F3# ;.,).#+: P"#* /*# P%;"#; ./ %-23#-#*. $(! 6/,) 2),.%173), 3)*+7)+#
%; ."#* ./ 3//A 6/, 7;)F3# P#33'/,8#,%*+ ,#3).%/*; 6/, #)1" .:2# %* ."# 3)*+7)+#D)3/*+ P%." /2#,'
).%/*; ."). 8#1,#);# ."# ,)*A; /6 #3#-#*.; P%."%* ."#;# /,8#,%*+;B

Z/P#>#,D %. %;*[.).)33 /F>%/7; ."). ;71")* /,8#,%*+ P%33 1/,,#;2/*8 >#,: P#33 P%." ."#
-#1")*%;-; ."). -)A# 2,/+,)-; .#,-%*).#B \)."#,D %. P/738 ;##- ;/-#P"). 7*3%A#3:B !:2#;
;71"); #B+B .,##;)*8 3%;.;),#]*).7,)33:^ P#33'6/7*8#8D)*8 ."%; 2,/2#,.: %; 7;#8 1/*;1%/7;3: F:
2,/+,)--#,; ./ -)A#)3+/,%."-; .#,-%*).#B M7. %6 ."#,# %; */ ;71" *).7,)3 P#33'6/7*8#8 2),.%)3
/,8#,D .,:%*+ ./ !*8 /*# ."). ,#*8#,;) ;%+*%!1)*. 13);; /6 2,/+,)-; ;%&#'1")*+# .#,-%*).%*+
;##-; 3%A#)* #S#,1%;# %* 67.%3%.:B

=*)3.#,*).# 1/7,;# /6)1.%/* %; ./)..#-2. ./ ,#23)1# ."# ,#Q7%,#-#*. /6 P#33'6/7*8#8 8).)
.:2#; P%.") 3#;; ,#;.,%1.%># 2,/2#,.: ."). ;.%33)33/P;)* #S.#*8#8 ;%&#'1")*+#)*)3:;%; ./ 2,/>#
.#,-%*).%/*B

/>(?+-3@ AB2%B.2C

!"# F);%1 %8#) 2,#;#*.#8 %* ."%; ,#2/,. %; ./ ,#23)1# ."# ,#Q7%,#-#*. /6 P#33'6/7*8#8 8).) .:2#;D
) 2,/2#,.: /6 ."# 3)*+7)+#D F: 8%;1/>#,%*+ F/7*8; /* 2,/+,)- ;.).#B !"#;# ;"/738 */. /*3: F#
;2#1%!1 ./)* %*8%>%87)3 2,/+,)-D F7.)3;/ ;2#1%!1 ./ ."# 2,/+,)- 2/%*.;B 5%." ."#;# %* ")*8D
/*# 8#.#1.; .",/7+" ;%&#'1")*+#)*)3:;%; ."# 2,/2#,.: .").)*: %*!*%.# 1/-27.).%/* -7;. >%/3).#
;71") F/7*8B !"%; "); ."#)88#8 F#*#!. ."). #>#* P"#* 8).) .:2#;),# P#33 6/7*8#8D) 3),+#,
13);; /6 2,/+,)-; ;%&#'1")*+# .#,-%*).# 7*8#, ."# *#P 1/*8%.%/*D ;%*1# ,#3).%/*;)-/*+ >),%'
)F3#;),# .)A#* %*./)11/7*.B

M#6/,# 8#3>%*+ %*./ ."# 8#.)%3; /6 "/P /*#)1.7)33: +/#;)F/7. 2#,6/,-%*+ ;71")*)*)3:;%;D
3#.[; !,;. .)A#)* %*6/,-)3 3//A).) ;-)33 #S)-23# %* /,8#, ./ F7%38 ;/-# %*.7%.%/* 6/, ."#-#."/8;
2,#;#*.#8 %* ."# 6/33/P%*+ ;#1.%/*;B (/*;%8#, ."# .%*: (2,/+,)- ;*%22#. %* !+7,# G_) ;%-23#
8/7F3# 3//2 P%." .P/ 8#;%+*).#8 2,/+,)- 2/%*.;D $)*8 %_

!"#$%&

'"#$(%)

*"#+%& ,"#-./0-1

2"#+3$(%)

4"#+55 6"#$55

M _ & − '+ (≥ J ∧ & − (≥ J

= _ & − (≥ J

`%+7,# G_ $%-23# 8/7F3#'3//2

I

96

9#;2%.# %.; ;%-23%1%.:D */ /,8#,%*+ /6 Z P/738 ;##- ./ -)A# ."%; 2,/+,)- ;%&#'1")*+# .#,-%'
*).#B M7. P# %--#8%).#3: ;## ."). ."# %**#, 3//2 .#,-%*).#; F#1)7;# N− j+ i %; F/7*8#8 6,/-
F#3/PD)*8 ."%; #S2,#;;%/* %; 8#1,#);#8 %* #)1" %.#,).%/*B $%-%3),3: 6/, N− i %* ."# /7.#, 3//2B

L#.[;)..#-2. ./ 8%;1/>#, ."%; 2,/2#,.: .",/7+" ;%&#'1")*+#)*)3:;%;B 5# F,#)A ."#)*)3:;%;
%*./ .",## 2%#1#;_

GB A"$&.* '+*#$%&.*$# $@&$ @+:, &$ 2&'@ =%+3%&D =+.*$B

R* ."%; #S)-23#D P# /*3: 3//A).),1; $)*8 %D)*8 P# 8#,%># ."# %*#Q7)3%.%#; %* !+B G
8%,#1.3: 6,/- ."# F,)*1"'.#;.;B

IB 5+*#$%-'$ #.E28'@&*32 3%&=@# ;+% $@2 "&#.' ":+'F# $@&$ '@&*32 D2D+%<B

!"# F);%1 F3/1A; .").)3.#, ."# ;./,# %* ."# #S)-23#),# ."# F3/1A; 3)F#3#8 GD aD K)*8 b
%* !+7,# GB !"#%, ;%&#'1")*+# +,)2"; ?$(X;C),#_

)G
N → N
i i
j → j

)a
N → N
i → i
j j

)K
N → N
i → i
j ↑→ j

)b
N → N
i ↑→ i
j → j

?GC

aB 5+D".*2 $@.# .*;+%D&$.+* $+ #@+C $@&$ *+ .*!*.$2 '+D=-$&$.+* =&$@# 21.#$B

L#. S F# ."# .,)*;%.%># 13/;7,# /6 ;%&#'1")*+# +,)2"; 6/,)33 !*%.# 2,/+,)- 2/%*. ;#Q7#*1#;B
!"# ;7F;#.; /6 +,)2"; ."). +/ 6,/- 2/%*. $ F)1A ./ $D)*8 6,/- % ./ %D ")># ."#;# 8).)'"/P
,#3).%/*;_

S$ =

{)ac)b
N → N

i ↑→ i
j j

}
D S% =

{)K
N → N
i → i

j ↑→ j

D

)Kc)bc)a
N → N

i ↑→ i
j j

}
?IC

!"7;D #>#,: .%-#) 1/-27.).%/* #S#17.#; %*) 2)." 3#)8%*+ 6,/- $ F)1A ./ $D N %; 2,#;#,>#8
)*8 i %; 8#1,#);#8B !"# *#. ,#;73. %;) 8#1,#);# /6 ."# #S2,#;;%/* N− iD P"%1" %; F/7*8#8
6,/-F#3/PB $%-%3),3:D)*: 1/-27.).%/* ;#+-#*. +/%*+ 6,/- % F)1A ./ %P%33 #%."#, 8#1,#);#
."# #S2,#;;%/* N− i /, 8#1,#);# N− j+ iD)*8 F/."),# */*'*#+).%>#B

4/PD F#1)7;# ."# 2)."; ."). 8#1,#);# N− j+ i). ."# ;)-# .%-# %*1,#);# N− iD /*# P/738
%*.7%.%>#3: ;7;2#1. .").)* %*!*%.# 1/-27.).%/* 2)." -%+". 2/;;%F3: 6)%3 ./ 8#1,#);# #%."#,
/6 ."# #S2,#;;%/*; %*!*%.#3: ' %B#BD)3."/7+" #>#,: !*%.# 1/-27.).%/* 2)." % → % 8#1,#);#;
/*# /, ."# /."#,D %*)* %*!*%.# ;#Q7#*1# ."#: 1/738 1)*1#3 /7.B 5# 2,/># %* ."#/,#- IBd .").
."%; 1)* *#>#, ")22#*B

!"%; %-23%#; ."). $)*8 % 1)* /*3: F# >%;%.#8 !*%.#3: -)*: .%-#; 87,%*+)*: 1/-27.).%/*B
!"#,#6/,#D)6.#,) 1#,.)%* 2/%*. %* ."# ;#Q7#*1#D)*:)33#+#83: %*!*%.# 1/-27.).%/* 2)."
-7;. ,7* #*.%,#3: P%."%* ."# +,)2" P%." ."#),1; $)*8 % ,#-/>#8_

!"#$%&

'"#$#(%#)

*"#+%&

!'*246,7

,"#-./0-1

2"#+3$(%#)

4"#+55

!'*246,78!'*2

6"#$55

a

97

M7. ,#-/>%*+ $)*8 % 6,/- ."# 2,/+,)-[; "/P'+,)2" "); 3#6.) +,)2" P%." */ ;.,/*+3:
1/**#1.#8 1/-2/*#*.;D)*8 ."7; */ 1:13#;B (/*;#Q7#*.3:D ."# 2,/+,)-);) P"/3# -7;.
.#,-%*).#B

!"# ,#-)%*8#, /6 ."#;# */.#; ;7223%#;) 6/,-)3 6,)-#P/,A 6/, ."# -#."/8 "%*.#8).)F/>#B
=3."/7+" ."# 6/,-)3%;- %; /*3: 8#>#3/2#8 6/, %*.#+#,;D ."# +#*#,)3 ;.,).#+: ' 1/-F%*%*+ 3/1)3
3/P#, F/7*8; 6/7*8 F:)F;.,)1. %*.#,2,#.).%/* P%." ;%&#'1")*+#)*)3:;%; ' 1/738 F#)223%1)F3#
)3;/ ./ ;%-%3), */*'P#33 6/7*8#8 8).) .:2#;B

/>/ 42D&*$.' G+-*,&$.+*#

!"# ;7FT#1. 3)*+7)+# 7;#8 %* ."# 6/33/P%*+ %; %-2#,).%>#)*8 P%."/7. 67*1.%/* 1)33;D ;.)1A /,
8:*)-%1 -#-/,:B =33 >),%)F3# >)37#;),# %*.#+#,;B

H2!*.$.+* />(>

*+ $;./,# (, ! -./0# !1 ∈ Z&2 34#"# & (, -4# 5.67#" 89 /"8)"!6 :!"(!70#,+ V = {x1D B B B D xN} (, -4#
,#- 89 :!"(!70# 5!6#,+

;+ $ 7!,(< 708<= (, ! ,#>.#5<# 89 !,,()56#5-, 980083#? 7@ ! '.6/ 8" ! "#-."5+

A+ $ 2,/+,)- 2/%*. / (, -4# -"!5,(-(85 7#-3##5 -38 7!,(< 708<=, 7 !5? 7′2 <8""#,/85?(5) -8 -4# !"<
9"86 7 -8 7′ (5 -4# /"8)"!6, !83B)"!/4+ C4# 2,/+,)- #*.,: 2/%*. (, ?#58-#? /J+

D+ $;.).# (, ! /!(" (/D!1)+

E+ C4# 85#B,-#/ ;.).# .,)*;%.%/* ,#3).%/* 4!, -4# 98"6 (/D!1) → (/′D!1′)+

F+ $!*%.# 1/-27.).%/* 2)." (, ! "5(-# /"8)"!6 /8(5- ,#>.#5<#

π = /GD /ID B B B D /6

980083(5) /"8)"!6 <85-"80+ G# 3(00 !0,8 3"(-# π _ /G →∗ /62 !5? π _ /G →+ /6 (9 6 > J+ H5 -4# <!,#
34#5 6 = I2 (+#+ π = /GD /I (, ! ,(5)0# -"!5,(-(852 3# 3"(-# π _ /G → /I+

I+ $5 %*!*%.# 1/-27.).%/* 2)." (, ! ,#>.#5<# π = (/()NJ 980083(5) /"8)"!6 <85-"80+

J+ K8" ! "5(-# <86/.-!-(85 /!-4 π _ /G →∗ /62 ?#"5# (-, ;./,# .,)*;6/,-).%/* 7@

π (!1G →∗ !16

(99
(/GD!1G) → (/ID!1I) → · · · → (/6D!16)

H- (, ! /!"-(!0 9.5<-(85 Z& → Z&+

L+ $,-8"#!1 (, ,#)1")F3# !- / (99 -4#"# #1(,-, !5 (5(-(!0 ,-8"#!1J !5? ! "5(-# <86/.-!-(85 /!-4 π _ /J →∗ /
,.<4 -4!-

π (!1J →∗ !1

G# 3"(-# M#!<4(/) 98" -4# ,#- 89 !00 ,-8"#, "#!<4!70# !- /+

H2!*.$.+* />/ ?`%*%.# (/-27.).%/* 0).";); `7*1.%/*;C> K8" 58-!-(85!0 <85:#5(#5<#2 3# 3(00 3"(-#
π(!1) = !1′ (99 π (!1→∗ !1′+ G# ?#"5# -4# 8/-)%* 89 π !,

N(π) _=
{
!1 ∈ Z& | ∃!1′ ∈ Z& _ π (!1→∗ !1′

}

!5? -4# ,)*+# !,

M(π) _=
{
!1′ ∈ Z& | ∃!1 ∈ Z& _ π (!1→∗ !1′

}
= π(N(π))

W

98

H- (, <0#!" -4!- π _ N(π) → M(π) (, 3#00 ?#"5#? !, ! 9.5<-(852 (5 -4!- ! .5(>.# π(!1) #1(,-, 98" !00
!1 ∈ N(π)+

K8" !5 (5"5(-# <86/.-!-(85 /!-4 π = (/()NJ 2 ?#"5# -4# ?86!(5 !,

N(π) _=
{
!1 ∈ Z& | ∀= ∈ NJ∃!1′ ∈ Z& _ π= (!1→∗ !1′

}

34#"# π= = /JD B B B D /= (, -4# 0#5)-4B= /"#"1 89 π +

H2!*.$.+* />I ?\#)3%&)F3#C> $ O"5(-# 8" (5"5(-#P <86/.-!-(85 /!-4 π (, ,#)3%&)F3# (9 !5? 850@ (9 N(π) +=
∅2 (+#+ (9 -4#"# #1(,-, ,86# ,-8"# -4!- 3(00 <!.,# π -8 7# -!=#5+

H2!*.$.+* />J> $5);;#,.%/* (, ! "#0!-(85 ρ ⊆ Z&+ G# 3"(-# Qρ(!1) 480?,R 8" ,(6/0@ Qρ(!1)R 34#5
!1 ∈ ρ+ $5 !,,#"-(85 "/38;). 2,/+,)- 2/%*. / (99 98" !5@ :!"(!70# :!0.#, !1JD!1

(/JD !1J) →∗ (/D!1) (6/0(#, ρ(!1)

8"2 /.- ?(99#"#5-0@2 (99 M#!<4(/) ⊆ ρ+

H2!*.$.+* />K> G# <!00 !5 (5#>.!0(-@ 89 -4# 98"6 9 (!1) ≥ J 3(-4 9 _ Z& → Z ! 67*1.%/*)3 %*#Q7)3%.:+

4/.#D ."). %6) 67*1.%/*)3 %*#Q7)3%.: 9 (!1) ≥ J "/38;). 2,/+,)- 2/%*. /D ."#* ."# ,#;.,%1.%/* /6
9 ./ M#!<4(/)-)2; %*./ ."# *).7,)3;D %B#B

9 |M#!<4(/) _ M#!<4(/) → NJ ?aC

H2!*.$.+* />L ?8#1,#);%*+C> $!*%.# 1/-27.).%/* 2)." π _ /→+ / (, <!00#? 8#1,#);%*+ (99 -4#"# #1(,-,
! 9.5<-(85!0 (5#>.!0(-@ 9 (!1) ≥ J 480?(5) !- / ,.<4 -4!-

∀!1 ∈ N(π) _ 9 (!1) > 9 (π!1)

H9 -4# !78:# (, -".# 98" ,86#)(:#5 9 2 3# ,!@ -4!- π 8#1,#);#; 9 +

/>I 62%D.*&$.+*

5# */P ")># %* 23)1# ."# .//3; *##8#8 ./ 6/,-73).#) +#*#,)3 .#,-%*).%/* 2,%*1%23# F);#8 /*
%*#Q7)3%.:);;#,.%/*;)*8 ;%&# 1")*+#B 5# 6/33/P ."# 2"%3/;/2": /6 ."# #S)-23# %* ;#1.%/* IBGB 07.
;%-23:_ `%*8 #S2,#;;%/*; .").),# F/7*8#8 6,/- F#3/PD ."#* ;"/P ."#- 8#1,#);%*+)*8 !*)33:
7;# ."%; %*6/,-).%/* ./ ;"/P ."). 1#,.)%* 2,/+,)- 2/%*.;),# *#>#, 2);;#8 %*!*%.#3: -)*: .%-#;B
R6 ."# "/P'+,)2" ,#-)%*%*+)6.#, ,#-/>%*+ ."#;# 2/%*.; "); */ ;.,/*+3: 1/**#1.#8 1/-2/*#*.;D
."# 2,/+,)- .#,-%*).#;B R* ."# /22/;%.# 1);#D P# ")># 3/1)3% ."# 2%#1#; /6 ."# 2,/+,)- .").
-): 1)7;# */*'.#,-%*).%/*_ ."# ,#-)%*%*+ ;.,/*+3: 1/**#1.#8 1/-2/*#*.;B

H2!*.$.+* />M ?$)6#C> $ 2,/+,)- 2/%*. / (, <!00#? ;)6# (99 !5@ "#!0(S!70# <86/.-!-(85 /!-4 :(,(-, / !-
68,- "5(-#0@ 6!5@ -(6#,+

6@2+%2D />N> H9 -4#"# #1(,-, ! "5(-# ,#- H(/) 89 9.5<-(85!0 (5#>.!0(-(#, !00 480?(5) !- /"8)"!6 /8(5- /2
,.<4 -4!- !5@ π _ /→+ / ?#<"#!,#, !- 0#!,- 85# 9 ∈ H(/)2 -4#5 / (, ,!9#+

T"889+ =;;7-#D 6/, ."# ;)A# /6 1/*.,)8%1.%/*D ."). ."# 1/*8%.%/* "/38;). /)*8 ."). π = (/()NJ %;
) ,#)3%&)F3# 1/-27.).%/* 2)." ."). 2);;#; /)* %*!*%.# *7-F#, /6 .%-#;B 9#!*# 1/,,#;2/*8%*+3:
π('); ."# !*%.# 1/-27.).%/* ;7F';#+-#*. /6 π +/%*+ 6,/- ."# ([." ./ ."# '[." /117,,#*1# /6 / %*
π D %B#B_

π _ /J →∗
πGW︷ ︸︸ ︷

/ →+︸︷︷︸
πGI

/ →+︸︷︷︸
πIa

/

︸ ︷︷ ︸
πGa

→+︸︷︷︸
πaW

/ · · ·

K

99

`/, #)1" 2)%, ((D ') ∈ NI P%." (< 'D 8#!*#)]1/3/,^

<((D ') _=
{
9 ∈ H(/) | π(' 8#1,#);#; 9

}

=; <((D ') ⊆ H(/)D ."# 1),8%*)3%.: |<((D ')| %; !*%.#)*8 F/7*8#8 6,/-)F/># 6/,)33 (D ' F: |H(/)|B
=3;/D 6,/- ."#);;7-2.%/*D <((D ') += ∅B 4/PD 6/, #)1" < ∈ P(H(/))D 8#!*# ."# 13);; T<);

T< _=
{
((D ') ∈ NI | (< ')*8 <((D ') = <

}

!"# ;#. {T< | < ∈ P(H(/))} %; /F>%/7;3: !*%.#)*8 ."# 13);;#; T<′ D T< P%." <′ += <),# -7.7)33:
8%;T/%*.B M: \)-;#:[; ."#/,#-D ."#,# %;)* %*!*%.# ;7F;#. U ⊆ N)*8)]1/3/,^ <J ;71" ."). 6/,)*:
.P/ (D ' ∈ U P%." (< 'D P# ")># <((D ') = <JB

e*7-#,).# U %*);1#*8%*+ /,8#,); { 'GD 'ID B B B}B !"#*D ;2#1%!1)33:D <('(D '(+G) = <J 6/,)33 (∈ NB
$#. π(./ F# ."# !*%.# 1/-27.).%/* 2)." 6,/- /J ./ ."# '([." /117,,#*1# /6 / %* π _

π _ /J →∗ /→∗ /︸ ︷︷ ︸
πG

π 'G 'I︷︸︸︷
→+ /

︸ ︷︷ ︸
πI

π 'I 'a︷︸︸︷
→+ /

︸ ︷︷ ︸
πa

→+ · · ·

("//;#)*: 9 ∈ <JB (#,.)%*3: 6/,)*: (D ' ∈ N P%." (< 'D ."# 1/-27.).%/* 2)." π '(' ' 8#1,#);#; 9 B

5# */P ")># 6/,)*: 1J ∈ N(π)_

GB 9 (πG!1J) > 9 (π 'G 'I(πG!1J)) = 9 (πI!1J)

IB `/, 5 ≥ I_ 9 (π5!1J) > 9 (π '5+G '5+I(π5!1J)) = 9 (π5+G!1J)

=*8 ;/ ."# ;#Q7#*1# (9 (π=!1J))=∈N %;) ;.,%1.3: 8#1,#);%*+ ;#Q7#*1#B M7. F: ."#);;7-2.%/*D P#
")># 9 (M#!<4(/)) ⊆ NJD)*8 6/,)33 = P# ")># π=!1J ∈ M#!<4(/)B $%*1# ."#,# #S%;. */ %*!*%.#3:
8#1,#);%*+ ;#Q7#*1#; %* NJD /7,);;7-2.%/* ."). π >%;%.; /)* %*!*%.# *7-F#, /6 .%-#; %; 6)3;#c
."#,# 1)* #S%;. ;71" 1/-27.).%/* 2)."B

H2!*.$.+* />O ?$)6#.: /6 1:13#;)*8 ;7F+,)2";C> G# ,!@ -4!- ! 1:13# γ (5 -4# /"8)"!6, !83B)"!/4 K2
(+#+ ! <08,#? /!-4 :(,(-(5) 58 /"8)"!6 /8(5- 68"# -4!5 85<#2 (, ;)6# (99 (- <85-!(5, ! /"8)"!6 /8(5- / -4!- (,
,!9#+ G# ?#"5#

∆(K) _= {γ <@<0# (5 K | γ (, ,!9#}
G# ,!@ -4!- ! ;7F'+,)2" K′ 89 -4# !83B)"!/4 (, ;)6# (9 #!<4 1:13# γ (5 K′ (, ,!9#2 (+#+ <85-!(5, !- 0#!,-

85# ,!9# /"8)"!6 /8(5- /+ V>.(:!0#5-0@W (- (, ,!9# (9 -4#)"!/4

K′ \ ∆(K′)

"#6!(5(5) !9-#" "#68:(5) !00 ,!9# /"8)"!6 /8(5-, 9"86 K′ <85-!(5, 58 ,-"85)0@ <855#<-#? <86/85#5-,+ H5
)#5#"!0 3#X00 <!00 -4(, "#6!(5(5))"!/4 -4# ,#;%87)3 89 K′+

6@2+%2D />(P> H9 ! ,.7B)"!/4 K′ 89 -4# !83B)"!/4 K (, ,!9#2 -4#5 -4#"# #1(,- 58 (5"5(-# "#!0(S!70# <86/.B
-!-(85 /!-4 0@(5) #5-("#0@ 3(-4(5 K′+

T"889+ =;;7-# ."). K′ %; ;)6#)*8 ."). ;71")* %*!*%.# 1/-27.).%/* 2)." π #S%;.;D 1/*;%;.%*+ /*3:
/6 2,/+,)- 2/%*.; P%."%* K′B $%*1# ."# *7-F#, /6 1:13#; %* K′ %; !*%.#D ."#,# -7;. #S%;.) 1:13#
γ ⊆ K′ ;71" ."). γ)22#),; %*!*%.#3: -)*: .%-#; %* π B M7. ;%*1# K′ %; ;)6#D γ 1/*.)%*;) ;)6#
2,/+,)- 2/%*. /B $%*1# / 1)**/.)22#), %*!*%.#3: -)*: .%-#; %* π D 1#,.)%*3: *#%."#, 1)* γB !"7;
."#,# 1)* #S%;. */ %*!*%.# ,#)3%&)F3# 1/-27.).%/* 2)." %* K′B

5+%+::&%< />((> H9 -4# #5-("# !83B)"!/4 K 89 ! /"8)"!6 (, ,!9#2 (5 -4# ,#5,# 89 ?#9+ ;+L2 -4#5 -#"6(5!-#,+

b

100

T"889+ =*: %*!*%.# 1/-27.).%/* /* -7;. 1/,,#;2/*8 ./ ;/-# %*!*%.# 1/-27.).%/* 2)." π %* KB
R6 K %; ;)6#D ."#* 2#, !"#/,#- IBGJ ."#,# #S%;.; */ ;71" 1/-27.).%/* 2)."; P%."%* KB !"7; -7;.
.#,-%*).# /*)33 %*27.B

(/,/33),: IBGG %; /6 1/*;%8#,)F3# %*.#,#;. P"#* 8#)3%*+ 8%,#1.3: P%." 2,/+,)- .#,-%*).%/*B
5"#* 7;%*+ ."# ;%&#'1")*+# 2,%*1%23#);)*)%8 %* 2#,6/,-%*+ #B+B F/7*8#8)*1"/,%*+)*)3:;%;
?); 8#;1,%F#8 F: X3#*;.,72)*8 </*#; %* NX<JaOCD /, %* /."#, 2,/+,)-)*)3:;#;D P# P%33 %* +#*#,)3
P)*. ."#/,#- IBGJB

R* ."# *#S. ;#1.%/*D P# 3#),* "/P /*# 1)* 8%;1/>#, 67*1.%/*)3 %*#Q7)3%.%#; f ."# !,;. ,#Q7%,#'
-#*. %* ."#/,#- IBdB

/>J)*B&%.&*$?2:&$.+*# !*&:<#.#

e>#* P"#*) 2,/+,)- "); */ #S23%1%. %*.#,8#2#*8#*1#)-/*+ >),%)F3#;D /*# -): ;.%33 !*8 1/,,#'
3).%/*;)*8 ,#3).%/*;)-/*+ ."#- ."). "/38 6/,)33 ."# 2/;;%F3# >)37#; ."#: -):);;7-#B

(/*;%8#, !+7,# ID P"%1" %337;.,).#; ."# 2/;;%F3# ;./,#; 6/, ;/-# 2,/+,)- P%." .P/ %*.#+#,
>),%)F3#;D 1)*8 @B =*: 2),.%173), 2,/+,)- ;./,# 1/,,#;2/*8; ./) 2/%*. %* ZID)*8 ."# ,#)1")F3#
;./,#; ."). ."# 2,/+,)- 1)*);;7-#). ;/-# 2,/+,)- 2/%*. / %;) ;7F;#. M#!<4(/) ⊆ ZIB !"#
).7,# /6 ."%; ;#. -): F# #S.,#-#3: 1/-23%1).#8D :#. P# -): ;.%33 F# ;711#;;673 % #S.,)1.%*+ 6,/-
%. *#). ,#3).%/*;)-/*+ ."# >),%)F3#; ."). "/38 6/,)33 #3#-#*.; /6 M#!<4(/)B !"#)%- %; ./ !*8

`%+7,# I_ L%*#), />#,')22,/S%-).%/* ./ 2/;;%F3# 2,/+,)- ;./,#;B

;/-#)22,/S%-).%/* ."). %; #);%3:)*8 #6!1%#*.3: #S2,#;;#8)*8 -)*%273).#8D)*8 ."). %; ;)6# %*
."# ;#*;# .").)*: ,#)1")F3# 2,/+,)- ;./,# %;)3P):; 1/*.)%*#8 %* ."#)22,/S%-).%/*B

R* ."#%, gd 2)2#, N(ZgdOD Z)3FP)1";)*8 (/7;/. %*.,/871#8) >#,: 2/P#,673 6,)-#P/,A 6/,
)22,/S%-).%*+ ;.).#B !"# -#."/8)11/-23%;"#;)7./-).%1 8%;1/>#,: /6 (5:!"(!5- 0(5#!" "#0!-(85,
)-/*+ 2,/+,)- >),%)F3#; F:)F;.,)1.3: %*.#,2,#.%*+ 2,/+,)-; />#, ."# 8/-)%* /6 1/*>#S 2/3:'
"#8,)B `/, #)1" /6 ."# ;7FT#1. 3)*+7)+#[; 1/*;.,71.;D ."#:)22,/S%-).#8 %.; #66#1. /* ."# 1/*>#S
2/3:"#8,/* #*13/;%*+ ."# 2,/+,)- ;./,#B !"# -#."/8 %;)F3# ./ 8%;1/>#, %*>),%)*.; .").),# */.
#S23%1%. %* ."# 2,/+,)- .#S.D)*8 .").),# /6.#* */*'/F>%/7;B !"# 6/33/P%*+ ;-)33 #S)-23# %;
+%>#*);)*)22#.%&#,_

g

101

.* $;7FS: ? .* $ S D .* $: C
h
.* $ & D % c
& i J c
% i S c
. ; ? :jiJ kk Sji JC %2$-%* J c

C@.:2 ? % lJC h
%−−c
&mmc

n
C@.:2 ? % j: C h
% mmc
&−−c

n
%2$-%* & c

n

.* $;7FS: ? .* $ S D .* $: C
h

.* $ & c

.* $ % c
LG _

& i J c
% i S c
. ; ? : ji J kk S ji JC 3+$+ LI c 2:#2 3+$+ La c

La _
. ; ? % l JC 3+$+ LW c 2:#2 3+$+ LK c

LK _
. ; ? % j : C 3+$+ Lb c 2:#2 3+$+ Lg c

Lg _
%2$-%* & c

Lb _
% i % m G c
& i & − G c
3+$+ LK c

LW _
% i % − G c
& i & m G c
3+$+ La c

LI _
%2$-%* J c

n

!)F3# G_ $-)33 67*1.%/* ."). 1/-27.#; 1− @ ?6/, 1D @ > JC %*) ,/7*8)F/7. P):B

!)F3# G ;"/P;) ;-)33 67*1.%/* ."). 1/-27.#;)*8 ,#.7,*; 1 − @ %6 1D @ > J f "/P#>#,D ."#,#
%; */ 8%,#1. "/P ./ S 6,/- 1 /, 6,/- @B `%+7,# a %; /7.27. F: /7, %-23#-#*.).%/* /6 N(ZgdOD
F7%38%*+ /* N#)JKOD P"#* ,7* /* B =; 1)* F# ;##* F: %*;2#1.%*+ ."#)**/.).%/*; /6 ."#),1
./ ."# ,#.7,* ;.).#-#*. %* F3/1A gD P# ;.%33 !*8 ."). S = 1− @ P"#* ."# 67*1.%/* ,#.7,*; ')3/*+
P%." Q7%.#) 6#P /."#, 3%*#), ,#3).%/*; .").),# */. #);%3: 8%;1/>#,#8 F: ")*8B

!

90:;<

*

!3*#"#=#%#&>

;#5#3$#%#&>

3!#5#<#?%#&>

3!#5#;#?%#&@

'

!3'#"#=#%#&>

;#5#3$#%#&@

4

*34#"#$#%#&>

;#5#3=#%#&>

3!#5#<#?%#&>

3!#5#;#?%#&@

2

*32#"#;#5#3=#5#3$#%#&>

=#?%#&>

3!#5#<#?%#&>

3!#5#;#5#3=#?%#&@

6

436#"#;#5#3=#5#3$#%#&>

3!#5#3;#5#<#5#=#?%#&>

;#5#3=#?%#&>

3!#5#;#?%#&@

,

43,#"#<#5#3$#%#&>

;#5#3<#5#3=#%#&>

3!#5#<#?%#&>

3!#5#;#?%#&@

23*#"#;#5#3=#5#3$#%#&>

$#?%#&>

3!#5#<#?%#&>

3!#5#;#5#3$#?%#&@

634#"#;#5#3=#5#3$#%#&>

3;#5#<#5#=#?%#&>

3!#5#;#5#3=#?%#&>

3!#5#;#?%#&@

`%+7,# a_ L%*#), ,#3).%/*; 8%;1/>#,#8 F:)F;.,)1.3: %*.#,2,#.%*+ />#, ."# 8/-)%* /6 1/*'
>#S 2/3:"#8,)B 4/.# ."). */*'/F>%/7; ,#3).%/*;),# 8%;1/>#,#8B $2#1%!1)33:D). ."# ,#.7,* %* F3/1A
gD P# !*8 ."). S = 1− @D)3."/7+" 1)*8 @ ")># */ 8%,#1. "/P ./ SB

/>J>(5+*B21 =+:<@2,%&

= 1/*>#S 2/3:"#8,/* />#, ."# %*.#+#,; /6 8%-#*;%/* 5 %;) ;7F;#. T ⊆ Z5 ."). %; ."# %*.#,;#1.%/*
/6) !*%.# *7-F#, /6)6!*# ")36';2)1#; /6 Z5B !"%; 1/,,#;2/*8; ./) !*%.# 1/*T7*1.%/* /6 3%*#),
%*#Q7)3%.%#;D P"#,#) ;.,%1. %*#Q7)3%.: 8#!*#;)* /2#* ")36';2)1#)*8) */*';.,%1. %*#Q7)3%.: 8#'

d

102

!*#;) 13/;#8 ")36';2)1#B 5# P%33 P,%.# P5 6/, ."# ;#. /6 1/*>#S 2/3:"#8,) P%." 8%-#*;%/* 5B !P/
%-2/,.)*. 6#).7,#;),# P/,." */.%1%*+_

• !"# '+*B21 @-:: /6 /)*8 > %; ."# ;-)33#;. 1/*>#S 2/3:"#8,/* " ;71" ."). " ⊇ /∪ >B R. 1)* F#
;"/P* ."). ."%; #S%;.;)*8 %; 7*%Q7# +%>#* /)*8 >B 5"#* #Q7%22#8 P%." ;#. %*137;%/*); %.;
2),.%)3 /,8#,D %*.#,;#1.%/*); ."# 6##- /2#,).%/*)*8 <85:#1 4.00); %.; '8(5D P5 6/,-;) 3)..%1#
P%." ∅)*8 Z5); %.; ;-)33#;. ,#;2#1.%>#3: 3),+#;. #3#-#*.B !"%; %-2/,.)*. 2,/2#,.:)33/P;
7; ./ 3//A). %*1,#);%*+ ;#Q7#*1#; (/=)N ⊆ P5 /6 2/3:"#8,) %* P"%1")33 ."# 1/*;.,)%*.; /6
)* #3#-#*. /= /6 ."# ;#Q7#*1#),# ;).%;!#8 F: %.; ;711#;;/, /=+GD)*8 A*/P ."). ."#: P%33
")>#) 3#);. 722#, F/7*8B

• !"# ;#1/*8 %-2/,.)*. >%,.7# /6 P5 %; ."# #S%;.#*1# /6 P#33'8#!*#8 C.,2*.*38+=2%&$+%#∇ _
P5×P5 → P5D 8#!*#8 /*)*: /D > ∈ P5 ;71" ."). / ⊆ >B = P%8#*%*+'/2#,)./, F: 8#!*%.%/*
;).%;!#; .P/ 2,/2#,.%#;

GB / ⊆ /∇>)*8 > ⊆ /∇>B ?%B#B Y.00(/D >) ⊆ /∇>CB
IB `/,)*: %*1,#);%*+ 1")%* >J ⊆ >G ⊆ >I ⊆ · · · D ."# %*1,#);%*+ 1")%* /J ⊆ /G ⊆ /I · · ·
8#!*#8 F: /J _= >J)*8 /=+G _= /=∇>=+G ");). -/;.) !*%.# *7-F#, /6 ;.,%1. %*'
1,#);#;B

!"# ;#1/*8 2,/2#,.: #*;7,#; .").)*: ;#Q7#*1# /6 P%8#*%*+ /2#,).%/*; 1/*>#,+#; ./)* 72'
2#, F/7*8 %*) !*%.# *7-F#, /6 ;.#2;B $2#1%!1)33:D)3."/7+") ;#Q7#*1# /6 %*1,#);%*+3: 3)S 1/*'
;.,)%*.; -): +%># ,%;# ./)* %*!*%.# ;.,%1.3: %*1,#);%*+ ;#Q7#*1# (>=)N /6 2/3:"#8,)D P# 1)* 7.%3%&#
."# P%8#*%*+ /2#,)./, ./ !*8) !*%.# ?%* ."# ;#*;# ."). %. ,#)1"#; %.; 722#, F/7*8C ;#Q7#*1#
(/=)N ;71" ."). >= ⊆ /=B R* 2),.%173),D ."# -)S%-)3 #3#-#*. /6 ."# P%8#*#8 ;#Q7#*1# 1/*.)%*; ."#
722#, F/7*8 /6 (>=)NB !"%;)33/P; 7; ./ %.#,).%>#3: 2,/2)+).# 3%*#), %*>),%)*.; .",/7+"/7. ."#
2,/+,)-D !*8%*+ %*) !*%.# *7-F#, /6 ;.#2;) 1/*T7*1.%/* /6 3%*#), #Q7).%/*; 6/, #)1" 2,/+,)-
2/%*.D .").),# A*/P* ./)3P):; "/38). ."). 2/%*.B

!"# -#."/8 /6)F;.,)1. %*.#,2,#.).%/* />#, ."# 3)..%1# /6 1/*>#S 2/3:"#8,) %; P#33 8#;1,%F#8
%* ."# 3%.#,).7,#c /7, /P* 2,/+,)-;),#) ;.,)%+".6/,P),8 %-23#-#*.).%/* /6 N(ZgdOD 7;%*+ ."#
T!"6! T80@4#?"!0 Z(7"!"@ N#)JKO F: M)+*),) #.)3B 6/, P%8#*%*+)*8 F);%1 /2#,).%/*; /* 2/3:"#8,)B

/>K 4.E28'@&*32 Q%&=@#

H2!*.$.+* />(/> Z#- V = {x1D B B B D xN} 7# -4# ,#- 89 /"8)"!6 :!"(!70#,+ H5 -4# 980083(5)2 ! ;%&#'1")*+#
+,)2" (, ! /!(") = ()↓D)↑) 89 7(/!"-(-#)"!/4, 9"86 V -8 V 3(-4 0!7#0#? !"<,W

)↓ ⊆ V× {↓D=↓}× V

)↑ ⊆ V× {↑D ↑=}× V ?WC

34#"# [xi ↓→xj] !5? [xi→
=↓ xj] 8" [xi ↑→xj] !5? [xi→

↑= xj] (, 58- <85-!(5#? (5 -4# ,!6#)"!/4+

= ;%&#'1")*+# +,)2" %; 7;#8 ./ 1)2.7,# 8#!*%.# %*6/,-).%/*)F/7.) !*%.# 1/-27.).%/* 2)."D
); %;)22),#*. 6,/- ."# 6/33/P%*+ 8#!*%.%/*_

H2!*.$.+* />(I ?=22,/S%-).%/* /6 !*%.# 1/-27.).%/* 2).";C> $,(S#B<4!5)#)"!/4) = ()↓D)↑) (,
,!(? -8)22,/S%-).# π (99 98" #!<4 #?)# [xi ↓→xj] ∈)↓ 3# 4!:# π (!1→∗ !1′ (6/0(#, 1′' < 1(2 98" #!<4 #?)#

[xi→
=↓ xj] ∈)↓ 3# 4!:# π (!1→∗ !1′ (6/0(#, 1′' ≤ 1(2 !5? -4# !5!08)8., ,-!-#6#5-, 480? -".# 98")

↑+

RB#BD ."# +,)2";),#]-7;.'8#1,#);#^)*8]-7;.'%*1,#);#^ +,)2";B

H2!*.$.+* />(J ?$(X (/-2/;%.%/*C> Z#-) _ / → /′ !5? 4 _ /′ → /′′ 7# ,(S#B<4!5)#)"!/4,+ C4#
1/-2/;%.# > =)c 4 (, -4# ,(S#B<4!5)#)"!/4 > _ /→ /′′ 3(-4 #?)#,W

*+ [xi ↓→xj] ∈ >↓ (9 !5? 850@ (9 ∃= _ [xi→δGxk] ∈)↓ !5? [xk→δIxj] ∈ 4↓ 3(-4 δGD δI ∈ {=↓ D ↓} !5?
δG =↓ 8" δI =↓+

H

103

;+ [xi→
=↓ xj] ∈ >↓ (9 !5? 850@ (9 *+ ?8#, 58- !//0@2 !5? ∃= _ [xi→

=↓ xk] ∈)↓ !5? [xk→
=↓ xj] ∈ 4↓+

!5? ,.<4 -4!- -4# !5!08)8., ,-!-#6#5-, 480? 98" >↑+

R. %; #);: ./ ;"/P F: .,)*;%.%>%.: /6 <D ≤D >)*8 ≥D ."). %6 π _ / →+ /′)*8 τ _ /′ →+ /′′),#
!*%.# 1/-27.).%/* 2).";)22,/S%-).#8 F:))*8 4 ,#;2#1.%>#3:D ."#* ."# 1/-2/;%.# +,)2")c 4
)22,/S%-).#; ."# !*%.# 1/-27.).%/* 2)." πτ _ /→+ /′′B

H2!*.$.+* />(K ?!,)*;%.%># 13/;7,#C> Z#- [7# ! ,#- 89 ,(S#B<4!5)#)"!/4,+ C4# .,)*;%.%># 13/;7,# S([)
(, -4# ,6!00#,- ,#- S -4!- 9.0"00,

[⊆ S &*,
{
)c 4 |) _ /→ /′ ∈ S ∧ 4 _ /→ /′ ∈ S

}
⊆ S ?KC

C4(, ,#- #1(,-, !5? (, "5(-#2 7#<!.,# -4# 5.67#" 89 ?(99#"#5- ,(S#B<4!5)#)"!/4, 8:#" & :!"(!70#, (, "5(-#+

!"# .,)*;%.%># 13/;7,# /6) 2,/+,)-[; ;%&#'1")*+# +,)2"; ;7--),%&#; 2)." #66#1.;B e>#,: ,#)3'
%&)F3# !*%.# 1/-27.).%/* 2)." 1/,,#;2/*8; ./) +,)2" %* ."# 13/;7,#D +%>%*+ 7;) "5(-# 8#;1,%2.%/*
/6)33 1/-27.).%/* 2).";B R. %; 1/-27.)F3# F: ;.)*8),8 -#."/8;D #B+B); 8#;1,%F#8 %* N=ZEgKOB

5,%.%*+ $I _= {JD=↓ D ↓} × {JD ↑=D ↑} ?P%." $;.)*8%*+ 6/,]),,/P^CD P# -): #S2,#;;) ;%&#'
1")*+# +,)2") = ()↓D)↑));) -)2 V× V → $I_

H2!*.$.+* />(L ?$(X;); -)2;C> Z#-) = ()↓D)↑)2 !5? ?#"5#

)(xiD xj) _= ()↓(xiD xj)D)↑(xiD xj))

)↓(xiD xj) _=






↓ (9 [xi ↓→xj] ∈)↓
=↓ (9 [xi→

=↓ xj] ∈)↓
J 8-4#"3(,#

)↑(xiD xj) _=






↑ (9 [xi ↓→xj] ∈)↑
↑= (9 [xi→

↑= xj] ∈)↑
J 8-4#"3(,#

?bC

C4# 6!/) _ V× V → $I (, -4., 3#00B?#"5#? !5? <8""#,/85?, -8 #1!<-0@ 85# ,(S#B<4!5)#)"!/4+ $, !
,48"-4!5?2 3# 3(00 3"(-#)(x) _=)(xD x) !5?)(' _=)(xiD xj)+

!"# */.).%/*)(' _=)(xiD xj) %; 7;#673); -/,# .")* T7;. ;"/,.'")*8B Y*# -): 8#!*#)*
)3+#F,) /6 & × & -).,%1#; />#, $ID ;71" ."). ."# +,)2";)*8 -).,%1#;),# #Q7%>)3#*.D)*8 1/-'
2/;%.%/* %; -).,%S -73.%23%1).%/*B V)*: /6 ."# /2#,).%/*; P# 2#,6/,- /* ;%&#'1")*+# +,)2";),#
>#,: ;%-23: #S2,#;;#8)*8 #6!1%#*.3: 1/-27.#8 %* ."%; ,#2,#;#*.).%/*B !"# 8#.)%3;),# 3#6. /7.
"#,# 6/, ."# ;)A# /6 F,#>%.:B

/>L 4.E28'@&*32 62%D.*&$.+* C.$@ R+:<@2,%& &*,),2D=+$2*$ 45Q#

5#),# */P)3-/;. ,#)8: ./ %*.,/871#)* #S.#*8#8 ;%&#'1")*+# .#,-%*).%/* 2,%*1%23# F);#8 /*
."#/,#- IBdD F7.)33/P%*+ 6/, ;.,)%+".6/,P),8 1/-27.).%/* 7;%*+ ;%&#'1")*+# +,)2";)*8 1/*>#S
2/3:"#8,)B !"# %8#) %; ./D 6/, #)1" 2,/+,)- 2/%*. /D !*8) 2/3:"#8,/* T ⊇ M#!<4(/) 7;%*+ ."#
-#."/8 /6 ;#1.%/* IBWD)*8 ."#* F: P): /6 ;%&#'1")*+#)*)3:;%; ;"/P .").) 1/-27.).%/* >%;%.%*+
/ %*!*%.#3: -)*: .%-#; -7;. 3#)># T)*8 ."#,#6/,#)3;/ M#!<4(/) f ."7; 2,/>%*+ ."). / %; >%;%.#8
). -/;. !*%.#3: -)*: .%-#;B

/>L>(! *+$2 +* $@2 %2=%2#2*$&$.+* +; '+*B21 =+:<@2,%&

R. %; 17;./-),: ./ 1/-27.#P%.") 87)3 ,#2,#;#*.).%/* /6 1/*>#S 2/3:"#8,)D ;%*1# ;/-# /2#,).%/*;
),# F#;. ;7%.#8 6/, /*# ,#2,#;#*.).%/*D)*8 ;/-#-/,# #6!1%#*.3: %-23#-#*.#8 P%." ."# /."#,B !"#
!,;. ,#2,#;#*.).%/* %;) 1/*T7*1.%/* /6 1/*;.,)%*.;D #)1" /6 ."# 6/,-

<J +
5

!
==G

<=1= "# J ?gC

P"#,# "# %; /*# /6 {=D≥D>}B !"# /."#, %;) ;#. /6 /8(5-,D <08,."# /8(5-,D "!@,)*8 0(5#,B!"#;#),#
1)33#8D 7*8#, /*#D)#5#"!-8", /6 TD)*8) ;#. 6733 #*/7+" ./ 8#;1,%F# T %; 1)33#8))#5#"!-(5) ,@,-#6

GJ

104

σ2

σ1

σ3

`%+7,# W_ X#*#,)3 ;.,).#+:_ X%>#*) 2/3:"#8,/* T #*13/;%*+)33 ,#)1")F3# ;./,#;D ;"/P .").)*:
%*!*%.# 1/-27.).%/* -7;.). ;/-# 2/%*. 3#)># TB

6/, TB R*6/,-)33:D ."# 2/%*.; /6) -%*%-)3 +#*#,).%*+ ;:;.#- 7;#8 ./ ,#2,#;#*.) 2/3:"#8,/*
),# %.; >#,.%1#;D)*8 ,):;)*8 3%*#; 8#;1,%F# %.; 7*F/7*8#8 2),.;B V/;. /2#,).%/*; *##8#8 6/,
)F;.,)1. %*.#,2,#.).%/* %* ."# ;.:3# /6 N(ZgdO ,#Q7%,#; ."# +#*#,)./, ,#2,#;#*.).%/*B `/, ."# ;%&#'
1")*+# .#,-%*).%/*)*)3:;%;D P#[33 P)*. ."# 1/*;.,)%*.'6/,-B $2#1%!1)33:D P# P%33);;7-# .").)
2/3:"#8,/* %; /6 ."# 6/,-G

T =
{
!1 ∈ Z& | 9G(!1) ≥ J ∧ · · · ∧ 96(!1) ≥ J

}
?dC

?P%." #)1" 9((!1) = <(J +!&==G <
(
=1=C)*8 P#)3;/ P,%.#D)F7;%*+ */.).%/* ;3%+".3:D

T = { 9GD B B B D 96} ?HC

/>L>/ 6@2 2;;2'$ +; 45Q# +* :.*2&% 21=%2##.+*#

H2!*.$.+* />(M ?e66#1. /* 3%*#), #S2,#;;%/*;C> Z#-) 7# ! ,(S#B<4!5)#)"!/4 !5? 9 (!1) = !J+!&==G !=1=+
C4#5 3# ,!@ -4!-) 8#1,#);#; 9 (99 -4# 980083(5) 480?

GB ∀= _ != > J (6/0(#,)↓== = =↓ 8")↓== =↓
!= < J (6/0(#,)↑== = ↑= 8")

↑
== =↑

IB ∃= _ != > J !5?)↓== =↓ 8"
!= < J !5?)↑== =↑

?GJC

R%+=+#.$.+* />(N> Z#- π _ /→+ /′ 7# ! "5(-# <86/.-!-(85 /!-4 !5?) ! ,(S#B<4!5)#)"!/4 !//"81(6!-(5)
π + H9) ?#<"#!,#, 9 !, (5 ?#9+ ;+*I2 -4#5 π !0,8 ?#<"#!,#, 9 !, (5 ?#9+ ;+F+ H5 8-4#" 38"?,2 Q) ?#<"#!,#, 9 R
(6/0(#,

9 (π!1) < 9 (!1)
98" !5@ !1 ∈ N(π)+

T"889+ L#. ."#,# F# +%>#* 9 (!1) = !J +!&==G !=1=D !*%.# 1/-27.).%/* 2)." π)*8 ;%&#'1")*+# +,)2"
))22,/S%-).%*+ π B R6) 8#1,#);#; 9); %* 8#6B IBGgD ."#*

• */ .#,- !=xk %; #>#, %*1,#);#8 F: π D)*8

•). 3#);. /*# .#,- %; 8#1,#);#8 F: π B

(/*;#Q7#*.3:D 9);) P"/3# %; 8#1,#);#8 F: π B

G5# 1"//;# ./ ,#;.,%1. /7,;#3>#; ./ 13/;#8 2/3:"#8,)B 5# 1)* 8/ ."%; P%."/7. 3/;; /6 +#*#,)3%.:D ;%*1# /* Z& ."# /2#*
)*8 13/;#8)6!*# ")36 ;2)1#;),# ."# ;)-#B `/, #S)-23#D 1 > J ⇐⇒ 1− G ≥ J /* ZB

GG

105

/>L>I 62%D.*&$.+*S),2D=+$2*$ Q%&=@#

L#. %* ."# 6/33/P%*+ H(/) _= { 9GD B B B D 96} F#) !*%.# ;#. /6 3%*#), #S2,#;;%/*; ;71" ."). 6/,)*:
!1 ∈ M#!<4(/)D

9G(!1) ≥ J ∧ · · · ∧ 96(!1) ≥ J ?GGC

6@2+%2D />(O> H9 #!<4) _ /→ / ∈ S 3(-4) =)c) ?#<"#!,#, ,86# 9 ∈ H(/)2 -4#5 / (, ,!9#+
T"889+ !"# ."#/,#- %; 2,/>#8 >#,: ;%-%3),3: ./ ."#/,#- IBdB =;;7-# ."# 3#6. ")*8 ;%8# /6 ."#
."#/,#- ./ F# .,7#B L#. π = (/()N F#) ,#)3%&)F3# 1/-27.).%/* 2)." 2);;%*+ / %*!*%.#3: -)*:
.%-#;D)*8 #*7-#,).# ."# /117,,#*1#; /6 / %* π); α(D %B#B ∀(∈ N _ /α(= /B 9#!*#)(' _=
)/(c · · · c)/'−GD)*8 3#. ."# 13);; T) F# 8#!*#8);

T) _=
{
((D ') ∈ NI | (< ')*8) =)α(α '

}
?GIC

!"# ;#.
{
T) |) _ /→ / ∈ S

}
%; !*%.# ?;%*1# S %; !*%.#C)*8 ."# 13);;#;),# -7.7)33: 8%;T/%*.B M:

\)-;#:[; ."#/,#- %. ."#* 6/33/P; ."). ."#,# #S%;.;)* %*!*%.# ;7F;#. U = ('()N /6 N)*8) ;%&#'
1")*+# +,)2")J _ /→ / ∈ S ;71" ."). 6/,)*: .P/ (< ' %* UD)α(α ' =)JB

R6 P# */P .)A# (< ' < = 6,/- UD P# +#.

)J =)α(α= =)α(α ' c)α 'α= =)Jc)J ?GaC

M#1)7;# /6 ."#);;7-2.%/*D)J 8#1,#);#; ;/-# 9 ∈ H(/)B 9#!*# ?;%-%3), ./ IBdC_

π _ /J →∗ /→∗ /︸ ︷︷ ︸
πG

πα 'G
α 'I︷︸︸︷

→+ /

︸ ︷︷ ︸
πI

πα 'I
α 'a︷︸︸︷

→+ /

︸ ︷︷ ︸
πa

→+ · · ·

!"#* 6/,)*: %*%.%)3 ;./,# !1JD ."# ;#Q7#*1# (9 (π=!1J))=∈N %; ;.,%1.3: 8#1,#);%*+B M7. F#1)7;# 9 ∈
H(/)D)*8 π=!1J ∈ M#!<4(/)D #)1" 9 (π=!1J) ≥ JB !"#,#6/,# ."#);;7-2.%/* ."). π 2);;#; / %*!*%.#3:
-)*: .%-#; -7;. F# 6)3;#B (/*;#Q7#*.3:D /-7;. F# ;)6#B

I !:3+%.$@D

!"#)3+/,%."- %; +%>#* %* -71" +,#).#, 8#.)%3 ' F/." %* 2;#78/'1/8#)*8)1.7)3 P/,A%*+ 1/8# ' %*
N=$JWOB Z#,# P#[33 F# 1/*.#*. P%." /7.3%*%*+ ."# ;.#2;_

GB `%*8 %*>),%)*.; 7;%*+)F;.,)1. %*.#,2,#.).%/* %* ."# ;.:3# /6 (/7;/.)*8 Z)3FP)1";D ,#;73.'
%*+ %*) 2/3:"#8,/* P [/] 6/, #)1" 2,/+,)- 2/%*. /D ;71" ."). P [/] ⊇ M#!<4(/)B

IB X#*#,).# ;%&#'1")*+# +,)2"; 6/, #)1" 2,/+,)- 2/%*. /); G[/]B

aB (/-27.# ."# .,)*;%.%># 13/;7,# S /6 GB

WB `/, #)1" 2,/+,)- 2/%*. /D 3#. I [/] ⊆ S F# ."# %8#-2/.#*. ;%&#'1")*+# +,)2";) _ / → / %*
."# 13/;7,# S B

KB (/*;.,71. ,#;%87)3 "/P'+,)2" K′ 1/*.)%*%*+ ."# 2,/+,)- 2/%*.; / .").),# */. ;)6#_

?)C `/, #)1") ∈ I [/]_
• L#. P [/] = { 9G(!1) ≥ J ∧ · · · ∧ 96(!1) ≥ J}B
• R6) 8#1,#);#; 9= ?8#6B IBGgC 6/,). 3#);. /*# G ≤ = ≤ 6D ."#* / %; ;)6#B

bB R6 K′ 1/*.)%*; */ ;.,/*+3: 1/**#1.#8 1/-2/*#*.;D ."#* T .#,-%*).#;B R6 K′ ?8#, 1/*.)%*
;.,/*+3: 1/**#1.#8 1/-2/*#*.;D ."#* T -): */. .#,-%*).#D)*8 ."# ;.,/*+3: 1/**#1.#8
1/-2/*#*.;),# ."# 1:13%1 2),.; P"%1" ,%;A 3//2%*+ 6/,#>#,B

GI

106

J 5+*':-,.*3 ?2D&%F#

5# 2,#;#*.)* #S.#*;%/* /6 ."# ;%&#'1")*+# .#,-%*).%/* 2,%*1%23# /6 [L<MJG] ./ 2,/+,)-; P%."
%*.#+#, >)37#8 8).) .:2#;B !"# #S.#*8#8 ;%&#'1")*+# .#,-%*).%/* 2,%*1%23# %; ,#)3% .",/7+")
1/-F%*).%/* /6 2/3:"#8,)3 F/7*8; /* 2,/+,)- ;.).#D 8%;1/>#,#8 F:)F;.,)1. %*.#,2,#.).%/*D P%."
;%&#'1")*+#)*)3:;%;B

!"# -#."/8; ")># F##* %-23#-#*.#8 %* ."# (;2#1%)3%&#, II 6/,) ;7F;#. /6 %.; %*.#,*)3
3)*+7)+# B !"%; ;7F;#. 1/,,#;2/*8; ./ (2,/+,)-; P%."/7. 67*1.%/* 1)33;D 2/%*.#,)3%);%*+D
"). -#-/,:)*8 8:*)-%1)33/1).%/*B R. %; 23)**#8 ./ #S.#*8 ."# %-23#-#*.).%/* ./ ")*83#)
3),+#, ;7F;#. /6 (B

J>(?2:&$2, C+%F

$/-# P/,A F: Z#**: $%2-))*8 1/'P/,A#,;D); P#33); ,#1#*. P/,A F: $%)7'("#*+ U"//)*8
Z7+" =*8#,;/*D %; >#,: 13/;# %* ;2%,%. ./ ."# -#."/8; 2,#;#*.#8 "#,#B M/." ."#%, ;.,).#+%#; 6/,
8#.#,-%*%*+ .#,-%*).%/* %*>/3># !*8%*+ 8#1,#);#; %* 3%*#), #S2,#;;%/*; .").),# F/7*8#8 6,/-
F#3/PB

4.=D& &*, 5+:+* TU45P/VW 2#,6/,-)7./-).%1 8%;1/>#,: /6 F/7*8#8)*8 8#1,#);%*+ 3%*#), #S'
2,#;;%/*;D 3#)8%*+ ./ .#,-%*).%/*B !"%; %;)11/-23%;"#8 .",/7+" %.#,).%># 6/,P),8 2,/2)+).%/*
/6 %*>),%)*.; %* ."# 6/,- /6 2/3:"#8,)3 1/*#;B \)."#, .")* 8#;1,%F%*+ ;%&#'1")*+# F:) !*%.#)2'
2,/S%-).%/* ?); %; ."# 1);# P%." ;%&#'1")*+# +,)2";CD ."#: ,#3: /* P%8#*%*+ /2#,).%/*; ./ +%>#
,#;73.; %*) !*%.# *7-F#, /6 ;.#2;B

X@++ &*, !*,2%#+* TUX!PKVW #S.#*8 ."# */.%/* /6 ;%&#'1")*+# +,)2"; ./ !9"5#)"!/4,D P"%1"),#
1/*T7*1.%/*; /6 3%*#), %*.#,2),)-#.#, %*#Q7)3%.%#;B X,)2";),#)7+-#*8#8 F:).!"?,D P"%1"),#
F/7*8; /* 2,/+,)- ;.).#B !"#* %. %; ;"/P* ."). %*!*%.# 1/-2/;%.%/*; /6 ."#)6!*# +,)2"; P%33
>%/3).# /*# /6 ."#;# +7),8;B !#,-%*).%/* /6 ."#)*)3:;%; %; #*;7,#8 F: ,#871%*+)6!*# +,)2"; ./
)F;.,)1. +,)2";D P"%1"),# F);%1)33: ;%&#'1")*+# +,)2";B

J>/),2&# ;+% G-$-%2 9+%F

• 5/,A %; F#%*+ 8/*# /*) 3#;; 2,#1%;# >#,;%/* /6 ."# ;%&#'1")*+#)*)3:;%; P"%1" ,7*; %*
2/3:*/-%)3 .%-#B R* NL##JIO)*8 NM=LJWOD (B$B L##)*8 =-%, M#*'=-,)- %*>#;.%+).#)
Q7)8,).%1 P/,;.'.%-#)22,/S%-).%/* ./ $(!B (/,,#;2/*8#*1# P%." L##)*8 M#-'=-,)-
"); %*8%1).#8 .").),#)8)2.%F3# P%." 6#P -/8%!1).%/*; ./ ."# #S.#*8#8 ;%&#'1")*+# .#,-%'
).%/ 2,%*1%23# 2,#;#*.#8 "#,#B

• R. ;"/738 F# 6)%,3: #);: ./ #S.#*8 ."# ."#/,#-; 2,#;#*.#8 "#,# ./)33/P 1/*;.,)%*.; ./ F# 8%;'
T7*1.%/*; /6 1/*T7*1.%/*; /6 3%*#), %*#Q7)3%.%#;B (/*;.,)%*.; /6 ."%; 6/,- 1)* F# 8%;1/>#,#8
F: 7;%*+ #B+B 0,#;;F7,+#,),%."-#.%1 /, %*.#,2,#.%*+ />#, ."# 2/P#,;#. P(P&) /6 2/3:"#8,)B

• =*/."#, P): /6 8#.#,-%*%*+ ;%&#'1")*+# %; F: %*.#,2,#.).%/* />#, ."# 8/-)%* /6 2/3:"#8,)3
1/*#;D P"%1"),# I&'8%-#*;%/*)3 2/3:"#8,) 3%*#),3: ,#3).%*+ ;.).# F#6/,#)*8)6.#, #S#17'
.%/* /6) 1/-27.).%/* ;#+-#*.B !"%; %; ."# -#."/8 F#%*+ 7;#8 6/, .#,-%*).%/*)*)3:;%; %*
N$(JIOB R. P/738 F# %*.#,#;.%*+ ./ 1/-2),# ."# 13);;#; /6 2,/+,)-; ")*83#8 F: ."%; -#."/8
./ ."/;# ")*83#8 F: ."# #S.#*8#8 $(!B !"# 8%66#,#*1#;),# ;7F.3#_ R* /*# ,#;2#1.D 2/3:"#'
8,)3 1/*#; 1)2.7,# -/,# %*6/,-).%/* .")* ;%&#'1")*+# +,)2";D F#1)7;# 3%*#), %*.#,>),%)F3#
,#3).%/*;),# .)A#* %*./)11/7*.B R*)*/."#, ,#;2#1.D ."#: 1)2.7,# 3#;;_ P"#,# .P/ 8%;.%*1.
2)."; 1)* +%># ,%;# ./ .P/ 8%;.%*1. ;%&#'1")*+# +,)2";D ."# 2/3:"#8,)3 -#."/8 -7;. :%#38)
;%*+3# 1/*>#S "733 3),+# #*/7+" ./ 1/*.)%* F/."B

• V)*: 2,/+,)-; 8/ */. .#,-%*).# /*)33 %*27.D F7. ,#3: /* %-23%1%.);;7-2.%/*;)F/7. ."#
6/,- /6 %*27. F#%*+ 2);;#8 ./ ."#-B =* %8#) P); ,#1#*.3: ;7++#;.#8 F: 9,B 5B4B ("%* .").
P/738)33/P #S.#*8%*+ ."# 2,#;#*.#8 -#."/8 ./ !*8 ;)6# /"#<85?(-(85, /* %*27. 6/, P"%1"
) 2,/+,)- ;%&#'1")*+# .#,-%*).#;B

Ga

107

?2;2%2*'2#

N=ZEgKO =36,#8 oB ="/D </"* eB Z/21,/6.D)*8 <#66,#: 9B E33-)*B C4# N#,()5 !5? $5!0@,(, 89 \86/.-#"
$0)8"(-46,B =88%;/*'5#;3#: 07F3%;"%*+ (/-2)*:D GHgKB

N=$JWO <)-#; =>#,:)*8 $.#6)* $1"/7B $./22%*+ ('V%S_ 0e'.#,-%*).%/* #*;7,%*+ F%*8%*+'.%-# 8%>%;%/*B
0,/T#1.). \/;A%38# E*%>#,;%.#.;1#*.#,D IJJWB

N=>#JKO <)-#; =>#,:B $%&#'1")*+# .#,-%*).%/*)*8 F/7*8)*)3:;%; 6/,)* %-2#,).%># 3)*+7)+# P%." %*.#'
+#, 8).) .:2#;B 9RUE \#2/,.D <73: IJJKB

NM=LJWO =-%, M#*'=-,)-)*8 ("%* $// L##B = Q7)8,).%1'.%-# 2,/+,)- .#,-%*).%/*)*)3:;%;B E*8#,
2,#2),).%/*). V0R 6p, R*6/,-).%AD $)),F,p1A#*D X#,-)*:D IJJWB

N(ZgdO 0).,%1A (/7;/.)*8 4%1/3); Z)3FP)1";B =7./-).%1 8%;1/>#,: /6 3%*#), ,#;.,)%*.;)-/*+ >),%)F3#;
/6) 2,/+,)-B R* \859#"#5<# M#<8"? 89 -4# K(9-4 $55.!0 $\] ^H[TZ$&B^H[$\C ^@6/8,(.6 85
T"(5<(/0#, 89 T"8)"!66(5) Z!5).!)#,D 2)+#; dWfHgD !71;/*D =,%&/*)D GHgdB =(V 0,#;;D 4#P q/,AD
4qB

N#)JKO \/F#,./ M)+*),) #.)3B !"# 2),-) 2/3:"#8,) 3%F,),:D IJJJ'IJJKB E*%>#,;%.: /6 0),-)D
"..2_rrPPPB1;B7*%2,B%.r223rB

NX<JaO =,*# <B X3#*;.,72)*8 4#%3 9B </*#;B !#,-%*).%/*)*)3:;%;)*8 ;2#1%)3%&).%/*'2/%*. %*;#,.%/* %*
/66'3%*# 2),.%)3 #>)37).%/*B R* $\] C"!5,!<-(85, 85 T"8)"!66(5) Z!5).!)#, !5? ^@,-#6,B 9#2),.'
-#*. /6 (/-27.#, $1%#*1#D E*%>#,;%.: /6 (/2#*")+#*D IJJaB 0,#2,%*.B

NU=JKO $%)*'("#*+ U"//)*8 Z7+" =*8#,;/*B M/7*8#8 ;%&#'1")*+# .#,-%*).%/* ?8,)6.CB $1"//3 /6
(/-27.%*+D 4).%/*)3 E*%>#,;%.: /6 $%*+)2/,#D IJJKB

NL##JIO ("%* $//* L##B 0,/+,)- .#,-%*).%/*)*)3:;%; %* 2/3:*/-%)3 .%-#B [#5#"!-(:# T"8)"!66(5) !5?
\86/85#5- V5)(5##"(5) X_;D L4($ IWdgD Y1./F#, IJJIB

NL<MJGO ("%* $//* L##D 4#%3 9B </*#;D)*8 =-%, VB M#*=-,)-B !"# ;%&#'1")*+# 2,%*1%23# 6/, 2,/+,)-
.#,-%*).%/*B $\] ^H[TZ$& &8-(<#,D ab?aC_dGfHID IJJGB

N$(JIO Z#**: $%2-))*8V%1")#3 (/3/*B 0,)1.%1)3 -#."/8; 6/, 2,/>%*+ 2,/+,)- .#,-%*).%/*B R* *D-4 H5B
-#"5!-(85!0 \859#"#5<# 85 \86/.-#" $(?#? #̀"("<!-(85D >/37-# L4($ IWJWD 2)+#; WWIfWKWB $2,%*+#,
o#,3)+D IJJIB

GW

108

Termination analysis by the size-change principle

of programs in the untyped λ-calculus with arbitrary input

from a well-defined input-set

Nina Bohr, IT-University of Copenhagen

joint work with Neil D. Jones, University of Copenhagen

ninab@itu.dk

In an earlier work we have developed a method to safely analyse if call-by-value evaluation of a
single closed term in the untyped λ-calculus will terminate [1]. The termination analysis is done by
abstract interpretation. We have since extended this method, so that we can analyse if a λ-term will
always terminate when applied to any input from a well-defined input set of λ-terms. Both versions
of termination analysis can be fully automated.

The size-change principle for program termination was originally developed for first-order func-
tional programs whose parameter values have a well-founded size order [2]. The method from that
paper was the inspiration for the termination analysis of the untyped λ-calculus, but some new ideas
were also required:

i) To add rules for calls to the call by value evaluation inference rules for the λ-calculus. A state
s calls another state s′ if evaluation of s′ is an immediate sub-goal in the proof-tree for evaluation of
s. By this calls relation we can identify nontermination by the existence of an infinite call-sequence.

ii) An equivalent environment-based version of the λ-calculus is defined. A state e : ρ is an
expression together with an environment, that binds each free variable of e to a value of the form
v : ρ′. Substitution is replaced by a ”lazy substitution” that just updates the environment. An
important observation is then, that in an attempt to evaluate a closed expression in the empty
environment e : [], it will be the case that all calls and evaluations will be to states of the form e′ : ρ′

where e′ is a subexpression of e. This property makes it possible to use the set of subexpressions of
e as a finite set of program control points in the approximation.

iii) In order to apply the size change principle, we need a well-founded order where we can see
decrease in variable bindings [x 7→ e : ρ] in environments. This is based on two order-relations on
states. We have e : ρ � e′ : ρ′ if at some level in ρ a variable is bound to e′ : ρ′, also e : ρ � e′ : ρ′ if
e′ is a proper subexpression of e and the environments ρ and ρ′ are identical for the free variables
of e′. It is not possible infinitely to descend to a sub-environment without any increases of the
environments in between. When a variable is evaluated x : [x → ex : ρx] ⇓ ex : ρx we find decreases
x � y for all free variables y in ex.

iv) We can make a finite approximation by removing all environment components. This means
that we cannot look up a value for a variable in the environment, and we have to modify the variable-
evaluation rule. This modification makes evaluation in the approximation nondeterministic. It holds
that if e is a closed expression and there is a call-sequence e : [] →∗ e1 : ρ1 and e1 : ρ1 → e2 : ρ2, G

where G is the associated size change graph, then in the approximation e →∗ e1 and e1 → e2, G. It
is still possible to identify places for size-decreases. We can base the termination analysis on the set
of size change graphs for calls generated by abstract interpretation.

We often want to certify that a program will terminate when applied to any of its intended inputs.
The termination analysis of [1] is only concerned with one single λ-term (which can represent for
instance the Ackermann-function applied to 2 and 3). We have extended the λ-calculus to include
expressions where nonterminals from a tree-grammar may take the place of some subexpressions.
Such a nonterminal represents all the pure λ-terms, it can produce by the grammar in one or more
steps. For instance a nonterminal may represent an arbitrary church numeral, and then a term
in the extended λ-calculus may represent the Ackermann-function applied two arbitrary church

109

numerals. The termination analysis requires a careful definition of free variables and subexpressions
for nonterminals, such that we can generate size change graphs which are safe for each representable
pure term, even though the pure term may have fewer free variables than the extended term by
which it is represented. The inference rules for calls and evaluations are extended to also handle
nonterminals. A nonterminal will call each of the extended λ-expressions it can be rewritten to in
one step by a production in the grammar, this means that an extended expression may evaluate
to more than one value. If P is a closed expression in the extended language and Q is a closed
expression in the pure λ-calculus, which is one of the expressions that P represents, then the call-
graph for P : [] includes a subgraph which can simulate the call-graph for Q : []. The generated size
change graphs will not always be identical, but the size change graphs in the extended language can
never give rise to illegal termination certification.

We can then make a finite approximation of the extended λ-calculus by removing all environment
components. As when we approximated the pure λ-calculus, in this step we can rediscover all calls
with identical size change graphs. If our analysis certifies that evaluation of a closed extended
expression P ”terminates”, then this implies termination of all pure λ-expressions, that P represents.

References

[1] Neil D. Jones and Nina Bohr. Termination Analysis of the Untyped λ-Calculus. In Rewriting
Techniques and Applications: RTA 2004. Lecture Notes in Computer Science. Springer. June,
2004.

[2] Chin Soon Lee, Neil D. Jones and Amir M. Ben-Amram. The Size-Change Principle for Program
Termination. POPL 2001: Proceedings 28th ACM SIGPLAN-SIGACT Principles of Programming
Languages

110

IO Swapping Leads You There And Back Again
(Extended Abstract) ?

Akimasa Morihata, Kazuhiko Kakehi, Zhenjiang Hu, and Masato Takeichi

Department of Mathematical Informatics, University of Tokyo
{Akimasa Morihata,kaz,hu,takeichi}@mist.i.u-tokyo.ac.jp

1 Introduction

TABA (“There And Back Again”) [DG02], proposed by Danvy and Goldberg,
is a special but powerful programming pattern where a recursive function tra-
verses lists at return time. Their idea is that the recursive calls get us there
(typically to a empty list) and the returns get us back again while travers-
ing the list. A typical example is the symbolic convolution function cnv which
accepts two lists, [x0, x1, . . . , xn] and [y0, y1, . . . , yn], and computes a new list
[(x0, yn), (x1, yn−1), . . . , (xn, y0)]. This can be naively specified as follows.

cnv x y = zip x (reverse y)

This definition is not satisfactory; the list y is traversed by reverse to produce an
intermediate list which will be again traversed by zip. A clever TABA solution,
which avoids generation of the intermediate list, is as follows.

cnv x y = let ([],r) = walk x in r
where walk [] = (y,[])

walk (a:x’) = let (b:y’,r) = walk x’
in (y’,(a,b):r)

This program uses a bit unusual auxiliary function walk. When the input x is
empty, walk uses the input y directly as a return value, and its return value will
be traversed together while traversing x. Indeed this program is much different
from the initial specification, but it actually computes symbolic convolution
without the need of extra memory other than the resulting output.

TABA is truly tricky. It would be interesting to see whether there is a sys-
tematic way that may lead us to construct such TABA programs. One may wish
to use and manipulate TABA-like computations for constructing a new kind of
such iterations, i.e., iterations over some return values. In [DG02] Danvy and
Goldberg gave a set of clever TABA programs, but neither derivation nor ma-
nipulation of them were presented sufficiently. In a recent paper [DG05], they
? This is an extended abstract of the technical report [MKHT05]: A. Morihata,

K. Kakehi, Z. Hu, and M. Takeichi. Reversing iterations: IO swapping leads
you there and back again. Technical Report METR 2005-11, Department of
Mathematical Informatics, University of Tokyo, May 2005. Available from
http://www.keisu.t.u-tokyo.ac.jp/Research/METR/2005/METR05-11.pdf
This was submitted to GPCE young researchers workshop 2005.

111

fst (a,b) = a
snd (a,b) = b
head [x0,x1,. . .,xn] = x0
tail [x0,x1,. . .,xn] = [x1,x2,. . .,xn]
reverse [x0,x1,. . .,xn] = [xn,xn−1,. . .,x0]
map f [x0,x1,. . .,xn] = [f x0,f x1,. . .,f xn]
zip [x0,x1,. . .,xn] [y0,y1,. . .,yn] = [(x0,y0),(x1,y1),. . .,(xn,yn)]
foldr f e [x0,x1,. . .,xn] = f x0 (f x1 (· · · (f xn e)· · ·))
foldl f e [x0,x1,. . .,xn] = f (· · · (f (f e x0) x1)· · ·) xn

Fig. 1. Informal definitions of standard functions

showed how to derive TABA programs based on the two known transformations:
CPS transformation and defunctionalization [DN01]. Though being systematic,
the method is not constructive; that is to say, it is not incremental.

In this paper, we show a new and clear derivation of TABA programs by a
novel program transformation rule called IO swapping. It swaps input and out-
put values of a function, introduces iteration at return times and immediately
derives TABA programs. We also demonstrate manipulations of TABA. We can
incrementally construct bigger TABA programs from simpler TABA programs
by program calculation [BdM96], a transformational approach to carrying pro-
grams from their naive definition to their efficient equivalent. The ability to
manipulate TABA programs proves the effectiveness of program calculation.

Throughout the paper we use the notation of the functional programming
language Haskell [Bir98]. The symbol \ is used instead of λ for λ-expressions.
The symbol . denotes function composition. We use many standard Haskell
functions, whose informal definitions are given in Figure 1. We also assume that
the size of structured data we are treating is finite.

2 Calculational Programming and IO Swapping

2.1 Calculational Programming

Functional programming languages provide a constructive way of programming,
namely development of involved programs through composition of smaller and
simpler functions. To improve efficiency of such compositional programming
style, function fusion plays an important role, which fuses function composi-
tion into a single function and eliminates intermediate data structures passed
between them. In this paper we will intensively use the following fusion (promo-
tion) law [Bir89].

Theorem 1 (Fold Fusion).
f . foldr (⊕) e = foldr (⊗) e’

provided that f e = e’ and f (a ⊕ y) = a ⊗ (f y) hold for all a and y. #$

This theorem indicates that finding a proper operator ⊗ is enough for fusing
programs. Such calculation over programs, which is often referred as calculational

112

Fig. 2. The models of computation processes of foldl and foldl n

programming [BdM96] (or program calculation) is a powerful tool, as we later
see TABA programs can be manipulated using calculational programming.

2.2 IO Swapping for foldl

The new and effective transformation rule proposed in this paper is IO swapping,
which changes the view of functions: It “thinks upside down” about treatments
of data structures through literally swapping the input and the output. Before
going into the general framework, we explain the essence of the proposed trans-
formation using a typical function foldl in the following theorem.

Theorem 2 (IO Swapping for foldl).
The following two functions foldl and foldl n are equivalent.

foldl f e [] = e
foldl f e (a:x) = foldl f (f e a) x

foldl n f e x = let ([],r) = foldl’ x in r
where foldl’ [] = (x, e)

foldl’ (b:y) = let ((a:x’), r’) = foldl’ y
in (x’, f r’ a) #$

In foldl’ the initial input list x of foldl n is passed directly as the return
value of the termination condition, and destructed in its recursive call. In short,
this theorem achieves the transformation from foldl to its TABA form.

We make some remarks on the implications of this theorem. Pay attention to
how the result is computed using the function parameter f. While f is applied to
the accumulation parameter in the function foldl, it comes to the return value
of foldl n. This indicates the fact that IO swapping is a rule to swap the inputs
(arguments) and the outputs (return values) of the original function. If the input
list comes syntactically to the position as the output, consumption of lists in the

113

return value is a natural consequence. Figure 2 illustrates a computation process
of foldl and foldl n. Comparing two figures carefully, the idea of IO swapping
becomes much more obvious: Turning over the the figure of foldl looks almost
the same as that of foldl n! It is possible to liken the input list as a tower
where each floor stores a value. When the King, living at the top of this tower,
commands servants to gather the values, some go downward from the top to
the ground floor (like arguments) or others go upward from the ground floor
to the top (like return values), as the phrase “cdr down, cons up” indicates. If
the values in the tower are secretly rearranged upside-down, what these servants
gather up are exchanged. Instead of such rearrangement, the equivalent effect
can take place by transferring consumption of the list from the position of the
argument to that of the return value: A return value arranges the values in the
list, from the ground floor to the top, providing the reversed, upside-down order
of values.

2.3 IO Swapping

It is possible to reinforce Theorem 2 so that it can deal with many more functions.

Theorem 3 (IO Swapping).
The following two functions f1 and f2 are equivalent.

f1 x h0 = let r = f1’ x (g3 r h0) in r
where f1’ [] h = g0 h

f1’ (a:x’) h = let r = f1’ x’ (g2 a r h)
in g1 a r h

f2 x h0 = let ([], h, r’) = f2’ (x, g0 h) in r’
where f2’ ([], r) = (x, g3 r h0, r)

f2’ (b:y, r) = let (a:x’, h, r’) = f2’ (y, g1 a r h)
in (x’, g2 a r h, r’) #$

Theorem 3 swaps the inputs and outputs of the auxiliary functions. In the
definition of function f1, g1 manages the computation of return value, but it
manages that of accumulation parameter in f2. In contrast, g2 manages the
computation of the accumulation parameter in f1 but it manages that of return
value in f2. Applications of Theorem 3 are in [MKHT05].

3 Deriving TABA Programs by IO Swapping and Fusion

Now we show our derivation of TABA programs. We propose two methods: IO
swapping and program calculation. The former directly derives a TABA program
and the latter incrementally derives a bigger TABA program by promoting func-
tions into a smaller TABA program.

114

3.1 List Reversal

We start by demonstrating a derivation of TABA-style reverse by the first
method. Function reverse is defined by using foldl as follows.

reverse = foldl (\y a -> a:y) []

Applying Theorem 2 to reverse, we instantly get the following function
rev n, which is the TABA program for reverse.

rev n x = let ([],r) = rev’ x in r
where rev’ [] = (x,[])

rev’ (b:y) = let (a:x’,r’) = rev’ y
in (x’,a:r’)

3.2 Symbolic Convolution

Next we show a systematic derivation of the TABA program for cnv in the
introduction, starting from the following straightforward specification:

cnv x y = zip x (reverse y)

where we assume that x and y have the same length.
To derive TABA-style cnv we use the second method, program calculation,

for we already get the TABA program for reverse namely rev n in Section 3.1.
We derive the TABA program for cnv by promoting zip into rev n.

The function rev n can be described in terms of foldr for being suitable for
later fusion transformation.

rev n x = snd (foldr (\b (a:x’,r’)->(x’,a:r’)) (x,[]) x)

Now we calculate TABA program for cnv by promoting the functions into rev n.
cnv x y = zip x (rev n y)

⇒ zip x (snd (foldr (\b (a:x’,r)->(x’,a:r)) (y,[]) y))
⇒ snd (id zip (foldr (\b (a:x’,r)->(x’,a:r)) (y,[]) y) x)

where id zip (a,y) x = (a, zip x y)

To promote id zip into foldr in the above, we check the following two condi-
tions to apply the fusion law (Theorem 1).

id zip (y,[]) x ⇒ (y,[])
id zip ((\b (a:x’,r)->(x’,a:r)) b (a:x’,r)) x

⇒ (x’, (head x,a):zip (tail x) r)
⇒ step b (id zip (a:x’,r)) x

where step b r’ x = let (a:x’, r) = r’ (tail x)
in (x’, (head x,a):r)

Therefore, the fusion transformation gives
cnv x y = snd (foldr step (\x->(y,[])) y x)

which is actually the following program after unfolding the foldr.
cnv x y = snd (cnv’ y x)

where cnv’ [] = \x->(y,[])
cnv’ (b:y) = \x->let (a:x’,r) = cnv’ y (tail x)

in (x’,(head x,a):r)

115

Finally, we make the program more concise with some known calculations.
First, η-expansion to remove function values yields the following program, where
the case cnv’ [] [] is obtained from the assumption that length of x and y are
same.

cnv x y = let ([],r) = cnv’ y x in r
where cnv’ [] [] = (y,[])

cnv’ (b:y) (d:z) = let (a:x’,r) = cnv’ y z
in (x’,(d,a):r)

Next we eliminate the unnecessary parameter: The first argument of cnv’ is not
used at all for producing results. It derives the efficient TABA program for cnv.

cnv x y = let ([],r) = cnv’ x in r
where cnv’ [] = (y,[])

cnv’ (d:z) = let (a:x’,r) = cnv’ z
in (x’,(d,a):r)

3.3 List Reversal Revisited

As we have seen in successful derivation of cnv, program calculation works ef-
fectively if we have some TABA programs in hand. Making sure of it, we choose
rev n, which is obtained by IO swapping in Section 3.1, as a next example.

From the definition of cnv, we extract rev n as follows.

rev n x ⇒ map snd (zip x (reverse x))
⇒ map snd (cnv x x)

Starting from this equation, we obtain rev n by fusing map with cnv.

rev n x
= map snd (cnv x x)
⇒ map snd (snd (foldr (\a (b:y’,r)->(y’,(a,b):r)) (x,[]) x))
⇒ snd (id map snd (foldr (\a (b:y’,r)->(y’,(a,b):r)) (x,[]) x))

where id map f (a,b) = (a, map f b)

Now we apply Theorem 1 to fuse the above id map with foldr. With checking
the following conditions

id map snd (x,[]) ⇒ (x,[])
id map snd ((\a (b:y’,r)->(y’,(a,b):r)) a (b:y’,r))

⇒ (y’, b:map snd r)
⇒ (\a (b:y’,r)->(y’,b:r)) a (id map snd (b:y’,r))

we get

rev n x ⇒ snd (foldr(\a (b:y’,r)->(y’,b:r)) (x,[]) x)

which is exactly rev n in the form of foldr.
This process indicates that program calculation can be useful guidance for

developing TABA programs. We can also derive more involved programs, such
as the efficient palindrome detecting program. See [MKHT05].

116

4 Conclusion and Future Work

This paper presented a new approach to derive TABA programs systematically
using a novel technique called IO swapping, which swaps the outputs and inputs
of functions. Our approach confirms the competence of calculational program-
ming for deriving efficient program from naive definition through these transfor-
mations of programs.

Our belief is that the effect of IO swapping is not limited to derivation of
TABA. Investigation of some further applications still remains.

Acknowledgement

We are very grateful to Olivier Danvy for introducing us the TABA work and its
relation to defunctionalization and CPS transformation, and to Shin-Cheng Mu
and Keisuke Nakano for their inspiring discussions at the laboratory seminars.

References

[BdM96] R. Bird and O. de Moor. Algebras of Programming. Prentice Hall, 1996.
[Bir89] R. Bird. Algebraic identities for program calculation. Computer Journal,

32(2):122–126, 1989.
[Bir98] R. Bird. Introduction to Functional Programming using Haskell. Series in

Computer Science. Prentice Hall, 1998.
[DG02] O. Danvy and M. Goldberg. There and back again. In Proc. of the 7th Int.

Conf. on Functional programming, pages 230–234, 2002.
[DG05] O. Danvy and M. Goldberg. There and back again. Technical report,

BRICS Research Series RS-02-12. Extended version of an article to appear
in Fundamenta Informaticae, 2005.

[DN01] O. Danvy and L. R. Nielsen. Defunctionalization at work. In Proc. of the
3rd Int. Conf. on Principles and practice of declarative programming, pages
162–174, 2001.

[MKHT05] A. Morihata, K. Kakehi, Z. Hu, and M. Takeichi. Reversing iterations: IO
swapping leads you there and back again. Technical Report METR 2005-11,
Department of Mathematical Informatics, University of Tokyo, 2005.

117

On the Relations between Monadic Semantics

Andrzej Filinski
DIKU, University of Copenhagen, Denmark

andrzej@diku.dk

DIKU-IST Workshop on Foundations of Software
24 September 2005

A. Filinski On the relations between monadic semantics 2005-09-24

1

Background & motivation
Canonical reference for showing agreement of denotational semantics: [Reynolds
74: On the relation between direct and continuation semantics].

Not entirely undeserved reputation as a challenging paper.

Goals for the present work:

• Update [Reynolds 74] in light of more recent developments: computational
monads [Moggi 89], invariant relations [Pitts 96]. Tame some of the complexity:
encapsulate hard parts.

• Generalize to systematic treatment of agreement between specification and
implementation semantics of languages with multiple effects. Ideas should
apply to wide variety of paradigms: imperative, functional, logic, [concurrent?].

A. Filinski On the relations between monadic semantics 2005-09-24

2

A simple, untyped functional language
Syntax:

t ::= n | succ | x | λnx.t | λvx.t | t1 t2 [n ∈ N, x ∈ V]

Natural-number constants intended for observation of final results only; must
express proper computation using Church-coding, Y-combinator, etc.

Values:
v ::= n | succ | λnx.t | λvx.t

Big-step operational semantics: for closed t, define t ⇓ v by:

v ⇓ v

t1 ⇓ succ t2 ⇓ n

t1 t2 ⇓ n + 1
t1 ⇓ λnx.t′1 t′1[t2/x] ⇓ v

t1 t2 ⇓ v

t1 ⇓ λvx.t′1 t2 ⇓ v2 t′1[v2/x] ⇓ v

t1 t2 ⇓ v

For simplicity, no distinction between “type errors” (successor of non-number, etc.)
and divergence.

A. Filinski On the relations between monadic semantics 2005-09-24

118

3

Denotational semantics
Formulated with predomains. Notation: �·�: lifting-inclusion; f∗: strict extension;
ι1, ι2: injections; [f1, f2]: case-splitting. Two variants: direct and continuation.

Dd = Ed
⊥ Dc = (Ec → R) → R [R cppo]

Ed ∼= N + (Dd → Dd) Ec ∼= N + (Dc → Dc)

[[t]]d ∈ (V → Dd) → Dd [[t]]c ∈ (V → Dc) → Dc

[[n]]d = λρ.�ι1(n)� [[n]]c = λρ′.λk.k (ι1(n))

[[succ]]d = λρ.�ι2(λd.[λn.�ι1(n + 1)�, λf.⊥]∗d)� [[succ]]c = λρ′.λk.k (ι2(λd.λk.d [λn.k(ι1(n + 1)), λf.⊥]))

[[x]]d = λρ.ρ x [[x]]c = λρ′.λk.ρ′ x k

[[λnx.t]]d = λρ.�ι2(λd.[[t]]dρ[x 	→ d])� [[λnx.t]]c = λρ′.λk.k (ι2(λd.λk.[[t]]cρ′[x 	→ d] k))

[[λvx.t]]d = λρ.�ι2(λd.(λe.[[t]]dρ[x 	→ �e�])∗d)� [[λvx.t]]c = λρ′.λk.k (ι2(λd.λk.d(λe. [[t]]cρ′[x 	→ λk′.k′e] k)))

[[t1 t2]]d = λρ.[λn.⊥, λf.f ([[t2]]dρ)]∗([[t1]]dρ) [[t1 t2]]c = λρ′.λk.[[t1]]cρ′ [λn.⊥, λf.f ([[t2]]cρ′)k]

([[−]]c can be extended to language with control operators; [[−]]d cannot.)

Take R = N⊥. Then would expect, for closed t,

[λn.�n�, λf.⊥]∗([[t]]d(λx.⊥)) = [[t]]c(λx.⊥) [λn.�n�, λf.⊥]

Surprisingly hard to show. But nasty part is not the continuations.

A. Filinski On the relations between monadic semantics 2005-09-24

4

Showing agreement

Dd = Ed
⊥ Dc = (Ec → R) → R [R cppo]

Ed ∼= N + (Dd → Dd) Ec ∼= N + (Dc → Dc)

[[x]]d = λρ.ρ x [[x]]c = λρ′.λk.ρ′ x k

[[λnx.t]]d = λρ.�ι2(λd.[[t]]dρ[x 	→ d])� [[λnx.t]]c = λρ′.λk.k (ι2(λd.λk.[[t]]cρ′[x 	→ d] k))

[[t1 t2]]d = λρ.[λn.⊥, λf.f([[t2]]dρ)]∗([[t1]]dρ) [[t1 t2]]c = λρ′.λk.[[t1]]cρ′ [λn.⊥, λf.f([[t2]]cρ′) k]

Proof strategy: define relations (∼) ⊆ Dd × Dc and (≈) ⊆ Ed × Ec, such that

d ∼ d
′ ⇐⇒ (d = ⊥ ∧ d

′
= λk.⊥) ∨ (∃e ≈ e

′
. d = �e� ∧ d

′
= λk.k e

′
)

e ≈ e
′ ⇐⇒ (∃n. e = ι1(n) ∧ e

′
= ι1(n)) ∨

(∃f, f
′
. e = ι2(f) ∧ e

′
= ι2(f

′
) ∧ ∀d ∼ d

′
.f(d) ∼ f

′
(d

′
))

Then straightforward to show, by structural induction on t:

(∀x ∈ V. ρ x ∼ ρ′ x) ⇒ [[t]]dρ ∼ [[t]]cρ′

From which, desired result follows immediately. But does ∼ exist at all? Unlike
logical relation, not defined by induction on type structure. Yes: see [Reynolds 74].

A. Filinski On the relations between monadic semantics 2005-09-24

5

Plan

• Introduce metalanguage with recursive types. (Rather more general than needed
for expressing example language; in particular, accommodates multiple effects.)

• Compositionally translate example language to metalanguage (i.e., syntax-to-
syntax). Obtain both direct and continuation semantics as particular domain-
theoretic interpretations of metalanguage.

• Develop general principles for constructing type-indexed relations between inter-
pretations of metalanguage, together with general logical-relations lemma.

• Instantiate general framework to conclude agreement of the two semantics for
the example language.

A. Filinski On the relations between monadic semantics 2005-09-24

119

6

Metalanguage: syntax
Multi-monadic metalanguage, M3L (cf. [Moggi 89]). Parameterized by signature:
collection of base types b, effects e (partially ordered by behavior inclusion, �),
constants c (possibly denoting effectful functions).

Value and computation types:

τ ::= α | b | 1 | τ1 × τ2 | 0 | τ1 + τ2 | µα.τ | σ
σ ::= 〈e〉τ | σ1 × σ2 | τ → σ

∆ = (α1, . . . , αn). Kinding judgments: �∆ τ type, �∆ σ e-type.

Think of terms of e-type as representing parameterized e-computations.
(For products, parameter is 1 or 2; for functions, argument value.)

Terms:

M ::= c | x | () | (M1,M2) | fst(M) | snd(M) | inl(M) | inr(M) | void(M)
| case(M,x1.M1, x2.M2) | inµα.τ(M) | outµα.τ(M)
| λxτ .M | M1M2 | vale M | glete

σ x ⇐ M1.M2

Γ = (x1: τ1, . . . , xn: τn). Typing judgment: Γ �∆ M : τ .

A. Filinski On the relations between monadic semantics 2005-09-24

7

Kinding and typing rules
Kinding:

�∆ τ type
�∆ 〈e′〉τ e-type

(e � e′)
�∆ σ1 e-type �∆ σ2 e-type

�∆ σ1 × σ2 e-type

�∆ τ type �∆ σ e-type
�∆ τ → σ e-type

[admissible:
�∆ σ e′-type
�∆ σ e-type

(e � e′)]

Typing: (key rules)

Γ �∆ M : τ

Γ �∆ vale M : 〈e〉τ
Γ �∆ M1 : 〈e〉τ Γ, x: τ �∆ M2 : σ �∆ σ e-type

Γ �∆ glete
σ x ⇐ M1.M2 : σ

Definable: effect-inclusion

Γ �∆ M : 〈e〉τ
Γ �∆ ince,e′

τ M : 〈e′〉τ (e � e′) ince,e′
τ M ≡ glete

〈e′〉τ x ⇐ M.vale
′
x

A. Filinski On the relations between monadic semantics 2005-09-24

8

Domain-theoretic semantics of metalanguage
Interpretation of metalanguage signature:

• To every base type b, a cpo Bb.

• To every effect e, a [strong] monad (T e, ηe, �e) (Kleisli-triple formulation):
T eA cppo, ηe

A : A → TA, �e
A,B : TA × (A → TB) → TB; 3 laws.

• To every inclusion e � e′, a monad morphism ie,e′: ie,e′
A : T eA → T e′A; 2 laws.

Also, assignment must be functorial: ie,e = id, ie,e′′ = ie
′,e′′ ◦ ie,e′.

Determines (where θ ∈ Cpo∆ assigns interprets type variables from ∆):

• For every �∆ τ type, a cpo [[τ]]θ. More generally, mixed functorial action:
[[τ]]f : (Cpo↔

⊥)∆ → Cpo⊥; 2 laws. (Needed for defining [[µα.τ]].)

• For every �∆ σ e-type, a T e-algebra [[σ]]eθ = (D, γ : T eD → D); 2 laws. With
mixed functorial action: [[σ]]a : (Cpo↔

⊥)∆ → Cpo⊥; 1+2 laws.
Special case: algebras for lifting monad are the pointed cpos.

A. Filinski On the relations between monadic semantics 2005-09-24

120

9

Semantics of metalanguage (terms)
Interpretation: (continued)

• To every constant c : τ , an element Cc ∈ [[τ]].

Determines: (where ρ ∈ [[Γ]]θ =
∏

x∈dom Γ [[Γ(x)]]θ interprets variables from Γ)

• For every term Γ �∆ M : τ , a continuous function, [[M]]θ : [[Γ]]θ → [[τ]]θ. Sample
clauses:

[[x]]θ ρ = ρ x

[[vale M]]θ ρ = ηe([[M]]θ ρ)

[[glete
σ x ⇐ M1.M2]]θ ρ = γ ([[M1]]θ ρ �e (λa.ηe[[M2]]θ ρ[x �→ a]))

where (D, γ) = [[σ]]eθ

In particular:

[[glete
〈e〉τ x ⇐ M1.M2]]θ ρ = [[M1]]θ ρ �e λa.[[M2]]θ ρ[x �→ a]

[[ince,e′ M]]θ ρ = ie,e′([[M]]θ ρ)

A. Filinski On the relations between monadic semantics 2005-09-24

10

Translation of example language
Let c be an effect name, τN type interpreted as N, e.g., τN = µα.1 + α.
Take τE = µα.τN + (〈c〉α → 〈c〉α), and σD = 〈c〉τE. Let cerr : σD.

When FV (t) = {x1, . . . , xn}, define x1:σD, . . . , xn: σD � 〈|t|〉 : σD by

〈|x|〉 = x

〈|n|〉 = valc inτE
(inl(n))

〈|succ|〉 = valc inτE
(inr(λd.gletc

σD
e ⇐ d. case(outτE

e, n. valc inτE
(inl(n + 1)), f. cerr)))

〈|λn
x.t|〉 = valc inτE

(inr(λx.〈|t|〉))
〈|λv

x.t|〉 = valc inτE
(inr(λd.gletc

σD
e ⇐ d. (λx.〈|t|〉)(valc e)))

〈|t1 t2|〉 = gletc
σD

e ⇐ 〈|t1|〉. case(outτE
e, n. cerr, f. f 〈|t2|〉)

Consider now two interpretations of signature: primary and secondary. Each
determines semantics of metalanguage types, e-types, and terms: 〈[[−]], [[−]]〉.
Take T c as lifting monad, T c as continuation monad with answer type N⊥; then
[[σD]] = Dd and [[σD]] = Dc. Take Ccerr = ⊥ and Ccerr = λk.⊥; then for any
example-language term t, [[〈|t|〉]] (ρ|FV (t)) = [[t]]d ρ and [[〈|t|〉]] (ρ′|FV (t)) = [[t]]c ρ′.

A. Filinski On the relations between monadic semantics 2005-09-24

11

Relating interpretations
Relational interpretation of signature, wrt. two ordinary interpretations:

• To every base type b, an admissible (= inclusive) relation, Bb
r ∈ ARel〈Bb, Bb〉.

• To every effect e, a relational action T e
r : ARel〈A ,A 〉 → ARel〈T eA , T eA 〉,

such that:

1. ∀〈a , a 〉 ∈ R. 〈ηea , ηea 〉 ∈ T e
r R.

2. If ∀〈a , a 〉 ∈ R. 〈f a , f a 〉 ∈ T e
r S, then ∀〈t , t 〉 ∈ T e

r R. 〈t �ef , t �ef 〉 ∈ T e
r S.

3. If e � e′, then ∀(t , t) ∈ T e
r R. (ie,e′t , ie,e′t) ∈ T e′

r R.

Determines (given � s.t., ∀α ∈ ∆. �(α) ∈ ARel〈θ (α), θ (α)〉2):
• For every �∆ τ type, a relation r[[τ]]� ∈ ARel〈[[τ]]θ , [[τ]]θ 〉, e.g.,

r[[〈e〉τ]]� = T e
r

r[[τ]]� r[[τ → σ]]� = {〈f , f 〉 | ∀〈a , a 〉 ∈ r[[τ]]�†.〈f a , f a 〉 ∈ r[[σ]]�}

Fundamental theorem. Assume that for all c : τ , 〈Cc, Cc〉 ∈ r[[τ]]. Let Γ �∆ M : τ .
If ∀(xi: τi) ∈ Γ. 〈ρ (xi), ρ (xi)〉 ∈ r[[τi]]�, then 〈[[M]]θ ρ , [[M]]θ ρ 〉 ∈ r[[τ]]�.

A. Filinski On the relations between monadic semantics 2005-09-24

121

12

Constructing relations for µ-types
[[µα.τ]] = A, where φ : [[τ]][α	→A] → A isomorphism, [[inµα.τM]]ρ = φ([[M]]ρ).

Question: when does the meaning equation,

r[[µα.τ]] = {〈φ m , φ m 〉 | 〈m,m 〉 ∈ r[[τ]][α	→r[[µα.τ]]]}

have a solution? [Pitts 96] (paraphrased): enough to know:

• Domain [[µα.τ]] is a minimal invariant: fix(λf.φ ◦ [[τ]]f[α	→(f,f)] ◦ φ−1) = id.

This is ensured “for free” by standard inverse-limit construction.

• The relational action of τ respects the functorial action:

If 〈ϕ ,ϕ 〉 ∈ � ⇀↽r �′ and (a , a) ∈ r[[τ]]� then 〈[[τ]]fϕ a , [[τ]]fϕ a 〉 ∈ T⊥
r

r[[τ]]�′.

Standard verification for usual type constructors in τ . For 〈e′〉τ ′, follows from

assumptions on T e′
r , since [[〈e′〉τ ′]]fϕ = λt′.�t′ �e′ λa.i⊥,e′ ([[τ ′]]fϕ a)�.

[A bit trickier when τ can contain type variables other than α.]

A. Filinski On the relations between monadic semantics 2005-09-24

13

Constructing relational actions for effects
Syntactically

Suppose monad is definable in metalanguage, i.e., exists σT , Mη and M�, such
that T eA = [[σT]][α	→A], ηe

A = [[Mη]][α	→A], and �e
A,B = [[M�]][α	→A,β 	→B], in both

primary and secondary interpretation.

Given actions for all effects occurring in σT : can take T e
r R = r[[σT]][α	→(R,R)]. Then

action conditions ensured by Fundamental Theorem applied to Mη and M�.

Summary: if effect realized the same way in both semantics, its relational action
can be built from that of its constituent effects. (Cf. definable base types.)

As inverse image by monad morphisms

Given effects e � e′ and relational action for e′; define, for R ∈ ARel〈A ,A 〉,
T e

r R = {〈t , t 〉 | 〈ie,e′t , ie,e′t 〉 ∈ T e′
r R} ∈ ARel〈T eA, T eA 〉.

Action conditions follow from monad-morphism laws. E.g., if 〈a , a 〉 ∈ R, then

〈ηea , ηea 〉 ∈ T e
r R, because 〈ie,e′(ηea), ie,e′(ηea)〉 = 〈ηe′a , ηe′a 〉 ∈ T e′

r R.

Summary : if effect embeds into larger effect, can inherit relational action of that
effect.

A. Filinski On the relations between monadic semantics 2005-09-24

14

Direct and continuation semantics revisited
Three effects: l � c � k:

• l always interpreted as lifting monad, T lA = T lA = A⊥. T l
rR = {〈⊥,⊥〉} ∪

{〈�a �, �a �〉 | 〈a , a 〉 ∈ R}. In particular, r[[〈l〉τN]]� = {〈d, d〉 | d ∈ N⊥} = (=).

• k interpreted as continuation monad. Definable: σT k = (α → 〈l〉τN) → 〈l〉τN ,
Mηk = λa.λk.ka, M�k = λ(t, f).λk. t(λa.f a k). Determines il,kt = λk.k∗t,
T k

r R = {〈t , t 〉 | ∀k , k . (∀〈a , a 〉 ∈ R. k a = k a) ⇒ t k = t k }.
• c interpreted like l in primary semantics, like k in secondary. Relational action

given by inverse image of k-action: T c
r R = {〈t , t 〉 | 〈ic,k t , ic,k t 〉 ∈ T k

r R} =
{〈t , t 〉 | 〈il,k t , ik,k t 〉 ∈ T k

r R}.

In context of Reynolds’s original proof, corresponds to taking:

d ∼ d′ ⇐⇒ ∀k, k′.(∀e ≈ e′.k e = k′e′) ⇒ k∗d = d′k′

Weaker than d ∼ d′ ⇐⇒ (d = ⊥∧d′ = λk.⊥)∨ (∃e ≈ e′. d = �e�∧d′ = λk.k e′),
but still sufficient for equivalence proof, more robust.

A. Filinski On the relations between monadic semantics 2005-09-24

122

15

General principle: effect-embeddings

Primary semantics For reasoning (human and automated). Full(er) abstraction:
terms with indistinguishable behaviors should have equal denotations.

Secondary semantics: For implementation. Favor monadic representations that
can be efficiently realized.

Example: checked vs. unchecked exceptions (Java).

Given set E of exception names. Every e ⊆fin E determines an effect, ordered by
e � e′ ⇔ e ⊆ e′. 〈e〉τ is type of computations that may raise exceptions from e.

• Specification interpretation: T eA = A + e, keeps precise track of exception
behavior, separate handlers for each.

• Implementation interpretation: T eA = A + E. One global handler.

Ultimate consequence: All effects in language realized by the same universal
implementation monad (control + state).
Cf. types interpreted as subdomains of universal domain.

A. Filinski On the relations between monadic semantics 2005-09-24

16

Conclusions & future work
Summary:

• Extended standard logical-relation construction (incl. recursive types) to models
of effects. Enough extra semantic structure to justify dedicated investigation.

• Multimonadic metalanguage interesting in own right.

Future work:

• Extend to Kripke logical relations: relating models of dynamic name creation,
allocation of storage.

• Extend to parametric polymorphism, syntax/semantics relations (e.g., for com-
putational adequacy), . . .

• Application: modular construction of multi-effect object languages, with
call/cc+state-based implementation. (First cut: [Filinski 99: Representing
Layered Monads]: finite linear order on effects.)

A. Filinski On the relations between monadic semantics 2005-09-24

123

Infinitary Combinatory Reduction Systems

(Extended Abstract)

Jeroen Ketema1 and Jakob Grue Simonsen2

1 Department of Computer Science, Vrije Universiteit Amsterdam
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

jketema@cs.vu.nl
2 Department of Computer Science, University of Copenhagen (DIKU)

Universitetsparken 1, DK-2100 Copenhagen Ø, Denmark
simonsen@diku.dk

Abstract. We define infinitary combinatory reduction systems (iCRSs).
This provides the first extension of infinitary rewriting to higher-order
rewriting. We lift two well-known results from infinitary term rewriting
systems and infinitary λ-calculus to iCRSs:

1. every reduction sequence in a fully-extended left-linear iCRS is com-
pressible to a reduction sequence of length at most ω, and

2. every complete development of the same set of redexes in an ortho-
gonal iCRS ends in the same term.

1 Introduction

One of the main reasons for the initial research in infinitary rewriting was to
have a model of lazy or stream-based programming languages easily accessi-
ble to people familiar with term rewriting. Two notions of infinitary rewriting
were developed: infinitary (first-order) term rewriting systems (iTRSs) [1–3] and
infinitary λ-calculus (iλc) [3, 4]. However, the standard notion of rewriting em-
ployed to model higher-order programs is higher-order rewriting, and thus goes
beyond λ-calculus. The absence of a general notion of infinitary higher-order
rewriting thus constitutes a gap in the arsenal of the rewriting theorist bent on
modelling lazy or stream-based languages.

In the present paper we aim to plug this gap by investigating infinitary
higher-order rewriting.

As for iTRSs and iλc some finitary system needs to be chosen as a start-
ing point. We choose the notion of higher-order rewriting most familiar to the
authors, namely combinatory reduction systems (CRSs) [3, 5, 6].

The definition of infinitary combinatory reduction systems (iCRSs) consists
of a combination of the usual four-stage definition of CRSs and the corresponding
four-stage definition of iTRSs and iλc:

124

CRSs iTRSs/iλc
1a. Meta-terms
1b. Terms 1. Infinite terms
2. Substitutions 2. Substitutions
3. Rewrite rules 3. Rewrite rules
4. Rewrite relation 4. Rewrite relation

Given the definition of iCRSs, we seek to answer two of the most pertinent
questions asked for any notion of infinitary rewriting:

1. Are reduction sequences compressible to reduction sequences of length at
most ω?

2. Do complete developments of the same set of redexes end in the same term?

For iTRSs these questions have positive answers under assumption of respec-
tively left-linearity and orthogonality. For iλc the same holds as long as the
η-rule is not introduced. Apart from the definition of iCRSs, the main contri-
bution of this paper is that similar positive answers can be given in the case of
iCRSs.

The remainder of this paper is organised as follows. In Sect. 2 we give some
preliminary definitions, and in Sect. 3, we define infinite (meta-)terms and sub-
stitutions. Thereafter, in Sect. 4 we define infinitary rewriting and prove com-
pression, and in Sect. 5 we investigate complete developments. Finally, in Sect.
6 we give directions for further research.

2 Preliminaries

Prior knowledge of CRSs [6] and infinitary rewriting [3] is not required, but will
greatly improve the reader’s understanding of the text.

Throughout the paper we assume a signature Σ, each element of which has
finite arity. We also assume a countably infinite set of variables, and, for each
finite arity, a countably infinite set of meta-variables. Countably infinite sets are
sufficient, given that we can employ ‘Hilbert hotel’-style renaming. We denote
the first infinite ordinal by ω, and arbitrary ordinals by α,β, γ,

The set of finite meta-terms is defined as follows:

1. each variable x is a finite meta-term,
2. if x is a variable and s is a finite meta-term, then [x]s is a finite meta-term,
3. if Z is a meta-variable of arity n and s1, . . . , sn are finite meta-terms, then

Z(s1, . . . , sn) is a finite meta-term,
4. if f ∈ Σ has arity n and s1, . . . , sn are finite meta-terms, then f(s1, . . . , sn)

is a finite meta-term.

A finite meta-term of the form [x]s is called an abstraction. Each occurrence
of the variable x in s is bound in [x]s. If s is a finite meta-term, we denote by
root(s) the root symbol of s.

The set of positions of a finite meta-term s, denoted Pos(s), is the set of
finite strings over N, with ε the empty string, such that:

125

– if s = x for some variable x, then Pos(s) = {ε},
– if s = [x]t, then Pos(s) = {ε} ∪ {0 · p | p ∈ Pos(t)},
– if s = Z(t1, . . . , tn), then Pos(s) = {ε} ∪ {i · p | 1 ≤ i ≤ n, p ∈ Pos(ti)},
– if s = f(t1, . . . , tn), then Pos(s) = {ε} ∪ {i · p | 1 ≤ i ≤ n, p ∈ Pos(ti)}.

Given p, q ∈ Pos(s), we say that p is a prefix of q, denoted p ≤ q, if there
exists an r ∈ Pos(s) such that p · r = q. If r $= ε, then we say that the prefix
is strict and we write p < q. Moreover, if neither p < q nor q < p, then we say
that p and q are parallel, which we denote p ‖ q. We denote by s|p the subterm
of s at position p.

3 (Meta-)Terms and Substitutions

In iTRSs and iλc, terms are defined by means of introducing a metric on the
set of finite terms and subsequently taking the completion of the metric. That
is, taking the least set of objects containing the set finite terms such that every
Cauchy sequence converges [2,4,7]. Intuitively, in such a metric, two terms s and t
are close to each other if the first ‘conflict’ between them occurs ‘deep’ according
to some depth measure. In iTRSs, a conflict is a position p such that root(s|p) $=
root(t|p). In iλc, a conflict is defined similarly, but also takes into account α-
equivalence. The metric, denoted d(s, t), is defined as 0 when no conflict occurs
between s and t and otherwise as 2−k, where k denotes the minimal depth such
that a conflict occurs between s and t.

To define terms and meta-terms for iCRSs, we first define the notions of a
conflict and α-equivalence for finite meta-terms. In the definition we denote by
s[x → y] the replacement in s of the occurrences of the free variable x by the
variable y.

Definition 3.1. Let s and t be finite meta-terms. A conflict of s and t is a
position p ∈ Pos(s) ∩ Pos(t) such that:

1. if p = ε, then root(s) $= root(t),
2. if p = i · q for i ≥ 1, then root(s) = root(t) and q is a conflict of s|i and t|i,
3. if p = 0 · q, then s = [x1]s′ and t = [x2]t′ and q is a conflict of s′[x1 → y]

and t′[x2 → y], where y does not occur in either s′ or t′.

The finite meta-terms s and t are α-equivalent if no conflict exists [4].
We next define the depth measure D.

Definition 3.2. Let s be a meta-term and p ∈ Pos(s). Define:

D(s, ε) = 0
D(Z(t1, . . . , tn), i · p′) = D(ti, p′)

D([x]t, 0 · p′) = 1 + D(t, p′)
D(f(t1, . . . , tn), i · p′) = 1 + D(ti, p′)

Note that meta-variables are not counted by D. Changing the second clause to
D(Z(t1, . . . , tn), i · p′) = 1 + D(ti, p′) yields the ‘usual’ depth measure, which
counts the number of symbols in a position.

126

The measure D is employed in the definition of the metric, which is defined
precisely as in the case of iTRSs and iλc.
Definition 3.3. Let s and t be meta-terms. The metric d is defined as:

d(s, t) =
{

0 if s and t are α-equivalent
2−k otherwise,

where k is the minimal depth with respect to the measure D such that a conflict
occurs between s and t.

Following precisely the definition of terms in the case of iTRSs and iλc, we
define the meta-terms.
Definition 3.4. The set of meta-terms over a signature Σ is the metric com-
pletion of the set of finite meta-terms with respect to the metric d.
Note that, by definition of metric completion, the set of finite meta-terms is a
subset of the set of meta-terms.

The notions of a set of positions and a subterm of a finite meta-term carry
over directly to the meta-terms, we use the same notation in both cases.

The metric completion allows precisely those meta-terms such that the depth
measure D increases to infinity along all infinite paths in the meta-term. Thus,
by the definition of D and d, no meta-term has a subterm s such that there
exists an infinite string p over N with the property that each finite prefix q of p
is a position of s with root(s|q) a meta-variable. Informally, no meta-term has
an infinite chain of meta-variables.

Examples of candidate ‘meta-terms’ that are disallowed by the definition of
meta-term are:

Z(Z(. . . (Z(. . .))))
Z1(Z2(. . . (Zn(. . .))))

A construction that is allowed is an infinite number of finite chains of meta-
variables ‘guarded’ by abstractions or function symbols. For example, the fol-
lowing is allowed:

[x1]Z1([x2]Z2(. . . ([xn]Zn(. . .))))
If we had wanted to include ‘meta-terms’ with infinite chains of meta-variables
we should have used the usual depth measure on finite meta-terms instead of
the measure D.

We explain the reason for the exclusion of meta-terms with infinite chains of
meta-variables after the definition of substitutions. The idea of the exclusion of
certain meta-terms comes from iλc where it is possible to define subsets of the
set of infinite λ-terms by slightly changing the notion of the depth measure on
which the metric is based [4]. It is, for example, possible to define a subset in
which no λ-terms with infinite chains of λ-abstractions occur, i.e., subterms of
the form λx1.λx2 . . .λxn . . . are disallowed.

The terms can now be defined as in the finite case [3,5,6]. The only difference
is that meta-terms now occur in the definition instead of finite meta-terms.
Definition 3.5. The set of terms is the largest subset of the set of meta-terms,
such that no meta-variables occur in the meta-terms.

127

Note that the definition of meta-terms, as defined by the measure D, only
restricts meta-terms containing meta-variables, not meta-terms without meta-
variables. Hence, the set of terms is independent of the use of either D in Defini-
tion 3.3 or the usual depth measure. As a consequence, both the set of (infinite)
first-order terms and the set of (infinite) λ-terms are easily shown to be included
in the set of terms.

We next define substitutions. The required definitions are the same as in the
case of CRSs [3, 6], except that coinduction is employed instead of induction.
This is identical to what is done in the case of iTRSs and iλc with respect to
the finite systems they are based on. In the definitions we use x and t as a
short-hands for respectively the sequences x1, . . . , xn and t1, . . . , tn with n ≥ 0.
We assume n fixed in the next two definitions.
Definition 3.6. A substitution of the terms t for distinct variables x in a term
s, denoted s[x := t], is coinductively defined as:
1. xi[x := t] = ti,
2. y[x := t] = y if y does not occur in x,
3. ([y]s′)[x := t] = [y](s′[x := t]),
4. f(s1, . . . , sm)[x := t] = f(s1[x := t], . . . , sm[x := t]).

The above definition implicitly takes into account the variable convention [8] in
the third clause to avoid the binding of free variables by the abstraction.

Definition 3.7. An n-ary substitute is a mapping denoted λx1, . . . , xn.s or
λx.s, with s a term, such that:

(λx.s)(t1, . . . , tn) = s[x := t] . (1)

Reading Eq. (1) from left to right gives rise to the rewrite rule

(λx.s)(t1, . . . , tn) → s[x := t] .

This rule can be seen a parallel β-rule. That is, a variant of the β-rule from iλc
which substitutes for multiple variables simultaneously. The root of (λx.s) is
called the λ-abstraction and the root of the left-hand side of the parallel β-rule
is called the λ-application.

Definition 3.8. A valuation σ̄ is an extension of a function σ which assigns
n-ary substitutes to n-ary meta-variables. It is coinductively defined as:
1. σ̄(x) = x,
2. σ̄([x]s) = [x](σ̄(s)),
3. σ̄(Z(s1, . . . , sm)) = σ(Z)(σ̄(s1), . . . , σ̄(sm)),
4. σ̄(f(s1, . . . , sm)) = f(σ̄(s1), . . . , σ̄(sm)).

Similar to Definition 3.6, the above definition implicitly takes into account the
variable convention in the second clause to avoid the binding of free variables by
the abstraction.

Thus, applying a substitution means applying a valuation and proceeds in
two steps: In the first step each subterm of the form Z(t1, . . . , tn) is replaced by
a subterm of the form (λx.s)(t1, . . . , tn). In the second step Eq. (1) is applied to
each subterm of the form (λx.s)(t1, . . . , tn) as introduced in the first step.

128

In the light of the rewrite rule introduced just below Definition 3.7 the sec-
ond step can be viewed as a complete development of the parallel β-redexes
introduced in the first step. This is obviously a complete development in a vari-
ant of iλc. The variant has the parallel β-rule and a signature containing the
λ-application, the λ-abstraction, the abstractions, the meta-variables, and the
elements of Σ.

As in the finite case [5, Remark II.1.10.1], we need to prove that the appli-
cation of a valuation to a meta-term yields a unique term.

Proposition 3.9. Let s be a meta-term and σ̄ a valuation. There exists a unique
term that is the result of applying σ̄ to s.

Proof (Sketch). That the first step in applying σ̄ to s has a unique result is an
immediate consequence of being defined coinductively. We denote the result of
the first step by sσ. The set of parallel β-redexes in sσ is denoted U .

To prove that the second step also has a unique result we employ the rewrit-
ing terminology as introduced above. Although omitted, the definitions of a
development and a complete development can be easily derived from the iλc
definitions.

Note that to repeatedly rewrite the root of sσ by means of the parallel β-
redex, the root must look like

(λx.xi)(t1, . . . , tn) ,

with 1 ≤ i ≤ n and ti again such a redex. This is only possible if there exists in sσ

an infinite chain of such redexes which starts at the root. However, this requires
an infinite chain of meta-variables to be present in s, which is not allowed by the
definition of meta-terms. Thus, the root can only be rewritten finitely often in
a development. Applying the same reasoning to the roots of the subterms, gives
that a complete development is obtained by reducing the redexes in U in an
outside-in fashion. As all parallel β-redexes occur in U and as no λ-applications
and λ-abstractions occur in s the result of the complete development, which we
denote σ̄(s), is necessarily a term.

To show that each complete development ends in σ̄(s), note that we can view
each parallel β-redex (λx1, . . . , xn.s)(t1, . . . , tn) as a sequence of β-redexes:

(λx1(. . . ((λxn.s)tn) . . .))t1 .

This means that each complete development in our variant of iλc corresponds to
a complete development in iλc extended with some function symbols. As each
complete development in iλc ends in the same term, a result independent of
added function symbols, the complete developments of the second step must
also end in the same term. Hence, σ̄(s) is unique.)*

Let us now see why we excluded ‘meta-terms’ with infinite chains of meta-
variables from Definition 3.4. Consider the ‘meta-term’

Z(Z(. . . (Z(. . .)))) .

129

Applying the valuation that assigns to Z the substitute λx.x yields:

(λx.x)((λx.x)(. . . ((λx.x)(. . .))))

which has no complete development, as no matter how many parallel β-redexes
are contracted, it reduces only to itself and not to a term. This is inadequate,
as rewrite steps in iCRSs need to relate terms to terms.

The previous problem does not depend on only a single meta-variable be-
ing present in the ‘meta-term’. The same behaviour can occur with different
meta-variables of different arities. In that case, we can define a valuation that
assigns λx.y to each meta-variable Z in the ‘meta-term’ with y in x such that y
corresponds to an argument of Z which is a chain of meta-variables.

The above ‘meta-term’ still has the nice property that it exhibits confluence
with respect to the parallel β-rule. Unfortunately, there are ‘meta-terms’ that
do not have this property. Consider a signature with constants a and b and also
consider the ‘meta-term’

Z(a, Z(b, Z(a, Z(b, Z(. . .))))) .

Applying the valuation that assigns to Z the substitute λxy.y yields the ‘λ-term’
of Fig. 1. It reduces by means of two different developments to the λ-terms of
Fig. 2 and Fig. 3. These last two λ-terms have no common reduct with respect
to parallel β-reduction. They reduce only to themselves. Note that this problem
also occurs in iλc [4, Sect. 4].

(λxy.y)

!!!

a (λxy.y)

!!!

b (λxy.y)

!!!

a (λxy.y)

""
""

b ...

Fig. 1.

(λxy.y)

!!!

a (λxy.y)

!!!

a (λxy.y)

!!!

a (λxy.y)

""
""

a ...

Fig. 2.

(λxy.y)

!!!

b (λxy.y)

!!!

b (λxy.y)

!!!

b (λxy.y)

""
""

b ...

Fig. 3.

Concluding, when we allow ‘meta-terms’ with infinite chains of meta-variables
we have two problems. First, substitution in such a ‘meta-term’ does not always
yield a term. Second, substitution may yield distinct results, none of which are
terms. We can overcome these problems by not allowing infinite chains of meta-
variables to occur in meta-terms, as shown in Proposition 3.9.

130

4 Infinitary Rewriting

We continue to combine the definitions of iTRSs and iλc and those of CRSs. We
start with a definition that comes directly from CRS theory.

Definition 4.1. A finite meta-term is a pattern if each of its meta-variables
has distinct bound variables as its arguments. Moreover, a meta-term is closed
if all its variables occur bound.

We next define rewrite rules and iCRSs. In analogy to the rewrite rules of
iTRSs, the definition is identical to the one in the finitary case, but without the
finiteness restriction on the right-hand sides of the rewrite rules [1, 2].

Definition 4.2. A rewrite rule is a pair (l, r), denoted l → r, where l is a finite
meta-term and r is a meta-term, such that:

1. l is a pattern and of the form f(s1, . . . , sn) with f ∈ Σ of arity n,
2. all meta-variables that occur in r also occur in l, and
3. l and r are closed.

An infinitary combinatory reduction system (iCRS) is a pair C = (Σ, R) with Σ
a signature and R a set of rewrite rules.

As the rewrite rules of iTRSs and iλc only have finite chains of meta-variables
when their rules are considered as rewrite rules in the above sense, it follows
easily that iTRSs and iλc are iCRSs.

A context is a term over Σ ∪ {!} where ! is a fresh constant. One-hole
contexts are defined in the usual way. We now define redexes and rewrite steps.

Definition 4.3. Let l → r be a rewrite rule. Given a valuation σ̄, the term σ̄(l)
is called a l → r-redex. If s = C[σ̄(l)] for some context C[!] with σ̄(l) a l → r-
redex and p the position of the hole in C[!], then an l → r-redex, or simply a
redex, occurs at position p and depth D(s, p) in s. A rewrite step is a pair (s, t),
denoted s → t, such that a l → r-redex occurs in s = C[σ̄(l)] and such that
t = C[σ̄(r)].

We can now define what a transfinite reduction sequence is. The definition
copies the definition from iTRSs and iλc verbatim [2, 4].

Definition 4.4. A transfinite reduction sequence of ordinal length α is a se-
quence of terms (sβ)β<α+1 such that sβ → sβ+1 for all β < α. For each rewrite
step sβ → sβ+1, let dβ denote the depth of the contracted redex. The reduction
sequence is weakly convergent or Cauchy convergent if for every ordinal γ ≤ α
the distance between tβ and tγ tends to 0 as β approaches γ from below. The
reduction sequence is strongly convergent if it is weakly convergent and if dβ

tends to infinity as β approaches γ from below.

Notation 4.5. By s "α t, respectively s "≤α t, we denote a strongly conver-
gent transfinite reduction sequence of ordinal length α, respectively of ordinal
length less than or equal to α. By s " t we denote a strongly convergent trans-
finite reduction sequence of arbitrary ordinal length and by s →∗ t we denote a
reduction sequence of finite length.

131

As in [2–4], we prefer to reason about strongly converging reduction se-
quences. This ensures that we can restrict our attention to reduction sequences
of length at most ω by the so-called compression property. To prove the property
we need the following lemma and definitions.

Lemma 4.6. If s " t, then the number of steps contracting redexes at depths
less than d ∈ N is finite for any d.

Proof. This is exactly the proof of [2, Lemma 3.5].)*

Definition 4.7. A rewrite rule l → r is left-linear, if each meta-variable occurs
at most once in l. Moreover, an iCRS is left-linear if all its rewrite rules are
left-linear.

Definition 4.8. A pattern is fully-extended [9, 10], if, for each of its meta-
variables Z, and each abstraction [x] having Z in its scope, x is an argument of
Z. Moreover, an iCRS is fully-extended if the left-hand sides of all rewrite rules
are fully-extended.

Left-linearity and fully-extendedness ensure no redex is created by either
making two subterms equal in an infinite number of steps or by erasing some
variable in an infinite number of steps.

Theorem 4.9 (Compression). For every fully-extended, left-linear iCRS, if
s "α t, then s "≤ω t.

Proof (Sketch). Let s "α t, and proceed by ordinal induction on α. By [3,
Theorem 12.7.1] it suffices to show that the theorem holds for α = ω + 1: The
cases where α is 0, a limit ordinal, or a successor ordinal greater than ω + 1 do
not depend on the definition of rewriting.

For α = ω+1 it follows by Lemma 4.6 that we can write s "α t as s →∗ s′ "ω

s′′ → t, such that all rewrite steps in s′ "ω s′′ occur below the meta-variable
positions of the redex contracted in the step of s′′ → t. By fully-extendedness
and left-linearity it follows that a redex of which the redex contracted in s′′ → t
is a residual occurs in s′. Hence, we can contract the redex in s′, which yields a
term t′.

The result now follows if we can construct a strongly convergent reduction
sequence t′ "≤ω t. To construct such a reduction sequence, assume t0 = t′ and
construct for each d > 0 a reduction sequence td−1 →∗ td where all rewrite steps
occur at depths greater or equal to d − 1, and where d(td, t) ≤ 2−d. That the
construction of these reduction sequences is possible follows by a proof that is
similar to the proof of compression for iλc [4]. Using the fact that only finite
chains of meta-variables occur in meta-terms is essential to the proof. By the
requirements on the constructed reduction sequences, it follows that t0 →∗ t1 →∗

. . . →∗ td−1 →∗ td →∗ . . . t is a strongly convergent reduction sequence of length
at most ω. As s →∗ t′, we then have that s "≤ω t, as required.)*

132

The previous theorem does not hold in general for iCRSs that are not left-linear
or fully-extended. For left-linearity, this follows from the iTRS counterexample in
[2]. For fully-extendedness, this follows from the infinitary λβη-calculus in which
reduction sequences occur that are not compressible to reduction sequences of
length at most ω [3, 4]. The η-rule is not fully-extended.

5 Developments

In this section we prove that each complete development of the same set of
redexes in an orthogonal iCRS ends in the same term. As all the left-hand sides
of the rewrite rules in iCRSs are finite, the definition of orthogonality carries
over immediately from CRSs.
Definition 5.1. Let R = {li → ri | i ∈ I} be a set of rewrite rules.
1. R is non-overlapping if it holds that:

– each li → ri-redex that occurs at a position p in an lj → rj-redex with
i $= j occurs such that there exists a position q ≤ p with q ∈ Pos(lj) and
root(lj |p) a meta-variable,

– likewise for p $= ε and i = j.
2. R is orthogonal if it is left-linear and non-overlapping.
3. An iCRS is orthogonal if its set or rewrite rules is orthogonal.

In the remainder of this section we assume an orthogonal iCRS, a term s,
and a set U of redexes in s.

5.1 Descendants and Residuals

Before we can consider developments, we need to define descendants and resid-
uals. The definition of descendant across a rewrite step σ̄(l) → σ̄(r) follows the
definition of substitution, and is thus defined in two steps. The first step defines
descendants in σ̄(r) where only the valuation is applied and not Eq. (1). The
second step defines descendants across application of Eq. (1).

Given that the second step of the substitution is just a complete development
in a variant of iλc, the second step in the definition of descendants is just a variant
of descendants in iλc [3, 4]. For this reason, the step is not made explicit here.

We next give a definition of the first step. In the definition we denote by
0 the position of the subterm on the left-hand side of a λ-application and
also the position of the body of a λ-abstraction. By 1, . . . , n we denote the
positions of the subterms on the right-hand side of the λ-application. This
means that (λx.s)(t1, . . . , tn)|0 = (λx.s), λx.s|0 = s, and Z(t1, . . . , tn)|i =
(λx.s)(t1, . . . , tn)|i = ti for 1 ≤ i ≤ n. We denote by σ̄(l) → rσ the rewrite
step σ̄(l) → σ̄(r) when only the first step of the substitution applied to r.
Definition 5.2. Let l → r be a rewrite rule, σ̄ a valuation, and p ∈ Pos(σ̄(l)).
Suppose u : σ̄(l) → rσ. The set p/1u is defined as follows:
– if a position q ∈ Pos(l) exists such that p = q · q′ and root(l|q) = Z, then

define p/1u = {p′ · 0 · 0 · q′ | p′ ∈ P} with P = {p′ | root(r|p′) = Z},
– if no such position exists, then define p/1u = ∅.

133

Note that Pos(r) ⊆ Pos(rσ) by the notation of positions in subterms of the
form (λx.s)(t1, . . . , tn). From this it follows that P ⊆ Pos(rσ).

We can now give a complete definition of a descendant across a rewrite step.

Definition 5.3. Let u : C[σ̄(l)] → C[σ̄(r)] be a rewrite step, such that p is the
position of the hole in C[!], and let q ∈ Pos(C[σ̄(l)]). The set of descendants
of q across u, denoted q/u, is defined as q/u = {q} in case p ‖ q or p < q. In
case q = p · q′, it is defined as q/u = {p · q′′ | p′′ ∈ Q}, where Q is the set of
descendants of q′/1u′ with u′ : σ̄(l) → rσ across complete development of the
parallel β-redexes in rσ.

Descendants across a reduction sequence are defined as for iTRSs and iλc.

Definition 5.4. Let s0 "α sα and let P ⊆ Pos(s0). The set of descendants of
P across s0 "α sα, denoted P/(s0 "α sα), is defined as follows:

– if α = 0, then P/(s0 "α sα) = P ,
– if α = 1, then P/(s0 → s1) =

⋃
p∈P p/(s0 → s1),

– if α = β + 1, then P/(s0 "β+1 sβ+1) = (P/(s0 "β sβ))/(sβ → sβ+1),
– if α is a limit ordinal, then p ∈ P/(s0 "α sα) iff p ∈ P/(s0 "β sβ) for all

large enough β < α.

By orthogonality, if there exists a redex at a position p using a rewrite rule
l → r that is not contracted in rewrite step and if p has descendants across
the step, then there exists a redex at each descendant of p also employing the
rule l → r. Hence, there exists a well-defined notion of residual by strongly
convergent reduction sequences. We overload the notation ·/· to denote both the
descendant and the residual relation.

5.2 Complete Developments

We now define developments. Recall that we assume we are working in an or-
thogonal iCRS and that U is a set of redexes in a term s.

Definition 5.5. A development of U is a strongly convergent reduction sequence
such that each step contracts a residual of a redex in U . A development s " t is
complete if U/(s " t) = ∅.

To prove that each complete development of the same set of redexes ends
in the same term, we extend the technique of the Finite Jumps Developments
Theorem [3] to orthogonal iCRSs. The theorem employs notions of paths and
path projections. In essence, paths and path projections are ‘walks’ through
terms starting at the root and proceeding to greater and greater depths. An
important property of paths and path projections is that when a walk encounters
a redex to be contracted in a development, a ‘jump’ is made to the right-hand
side of the employed rewrite rule. It continues there until a meta-variable is
encountered, at which point a jump back to the original term occurs.

In the following definition, we denote by pu the position of the redex u in s.

134

Definition 5.6. A path of s with respect to U is a sequence of nodes and edges.
Each node is labelled either (s, p) with p ∈ Pos(s) or (r, p, q) with r a right-hand
side of a rewrite rule, p ∈ Pos(r), and q = pu with u ∈ U . Each directed edge is
either unlabelled or labelled with an element of N.

Every path starts with a node labelled (s, ε). If a node n of a path is labelled
(s, p) and if it has an outgoing edge to a node n′, then:

1. if the subterm at p is not a redex in U , then for some i ∈ Pos(s|p) ∩ N the
node n′ is labelled (s, p · i) and the edge from n to n′ is labelled i,

2. if the subterm at p is a redex u ∈ U with l → r the employed rewrite rule,
then the node n′ is labelled (r, ε, pu) and the edge from n to n′ is unlabelled,

3. if s|p is a variable x bound by an abstraction [x] occurring in the left-hand
side of the rule l → r of a redex u ∈ U , then the node n′ is labelled (r, p′ ·i, pu)
and the edge from n to n′ is unlabelled, such that (r, p′, pu) was the last node
before n with pu, root(r|p′) = Z, the unique position of Z in l is q, and
l|q·i = x.

If a node n of a path is labelled (r, p, pu) and if it has an outgoing edge to a node
n′, then:

1. if root(r|p) is not a meta-variable, then for some i ∈ Pos(r|p) ∩ N the node
n′ is labelled (r, p · i, pu) and the edge from n to n′ is labelled i,

2. if root(r|p) is a meta-variable Z, then the node n′ is labelled (s, q ·q′) and the
edge from n to n′ is unlabelled, such that l → r is the rewrite rule employed
in u, q is the position of u in s, and q′ is the unique position of Z in l.

We say that a path is maximal if it is not a proper prefix of another path. We
write a path P as a (possibly infinite) sequence of alternating nodes and edges
P = n1e1n2

Definition 5.7. Let P = n1e1n2 . . . be a path of s with respect to U . The
path projection of P is a sequence of alternating nodes and edges φ(P) =
φ(n1)φ(e1)φ(n2) . . . such that for each node n in P :

1. if n is labelled (t, p), then φ(n) is unlabelled if root(t|p) is a redex in U or a
variable bound by some redex in U and it is labelled root(t|p) otherwise,

2. if n is labelled (r, p, q), then φ(n) is unlabelled if root(r|p) is a meta-variable
and it is labelled root(r|p) otherwise.

For each edge e, if e is labelled i, then φ(e) has the same label, and if e is
unlabelled, then φ(e) is labelled ε.

Example 5.8. Consider the iCRS with the following rewrite rule l → r:

f([x]Z(x), Z ′) → Z(g(Z(Z ′))) .

Also, consider the terms s = f([x]g(x), a) and t = g(g(g(a))), the meta-term
r = Z(g(Z(Z ′))), and the set U containing the only redex in s. Obviously, s → t
is a complete development.

135

The term s has one maximal path with respect to U :

(s, ε) → (r, ε, ε) → (s, 10) →1 (s, 101) → (r, 1, ε) →1 (r, 11, ε)
→ (s, 10) →1 (s, 101) → (r, 111, ε) → (s, 2)

The term t has one maximal path with respect to U/U = ∅:

(t, ε) →1 (t, 1) →1 (t, 11) →1 (t, 111) .

The path projections of the maximal paths are respectively

· →ε · →ε g →1 · →ε g →1 · →ε g →1 · →ε · →ε a

and
g →1 g →1 g →1 a .

Let P(s,U) denote the set of path projections of maximal paths of s with
respect to U . The following result can be witnessed in the above example.

Lemma 5.9. Let u ∈ U and let s → t be the rewrite step contracting u. There is
a surjection from P(s,U) to P(t,U/u). Given a path projection φ(P) ∈ P(s,U),
its image under the surjection is acquired from φ(P) by deleting finite sequences
of unlabelled nodes and ε-labelled edges from φ(P).

Proof (Sketch). By straightforwardly, but very tediously, tracing through the
construction of paths, it is evident that the set of maximal paths of t with
respect to U/u can be obtained from the set of maximal paths of s with respect
to U by replacing or deleting nodes of the form (r, p, pu). If a maximal path of
t is obtained from a maximal path of s in this way, then they have identical
path projections, except that sequences of ε-labelled edges and unlabelled nodes
may have been deleted (due to the contraction of u). This establishes the desired
surjection. It is easy to see that the sequences of deleted edges can only be infinite
if there is an infinite chain of meta-variables in the right-hand side of the rule of
u, which is impossible by definition of meta-terms.)*

We next define a property for sets P(s,U): the finite jumps property. We also
define some terminology to relate a term to a set P(s,U).

Definition 5.10. If no path projection occurring in P(s,U) contains an infinite
sequences of unlabelled nodes and ε-labelled edges, then we say that U has the
finite jumps property. Moreover, we say that a term t matches P(s,U), if, for
all φ(P) ∈ P(s,U), and for all prefixes of φ(P) ending in a node n labelled f ,
we have that root(t|p) = f , where p is the concatenation of the edge labels in the
prefix (starting at the first node of φ(P) and ending at φ(n)).

We have the following.

Proposition 5.11. If U has the finite jumps property, then there exists a unique
term, denoted T (s,U), that matches P(s,U).

136

Proof. The proof is identical to the proof of Proposition 12.5.8 in [3].)*
We can now finally prove the Finite Jumps Developments Theorem:

Theorem 5.12 (Finite Jumps Developments Theorem). If U has the fi-
nite jumps property, then:
1. every complete development of U ends in T (s,U),
2. for any p ∈ Pos(s), the set of descendants of p by a complete development

of U is independent of the complete development,
3. for any redex u of s, the set of residuals of u by a complete development of

U is independent of the complete development, and
4. U has a complete development.

Proof (Sketch). The proof is identical to the proof of Proposition 12.5.9 in [3],
except that Lemma 5.9 is employed instead of tracing.)*

With the Finite Jumps Developments Theorem in hand, we can now precisely
characterise the sets of redexes having complete developments. This characteri-
sation seems to be new.

Lemma 5.13. The set U has a complete development if and only if U has the
finite jumps property.

Proof. To prove that the finite jumps property follows if U has a complete de-
velopment, suppose U does not have the finite jumps property. In this case there
is a path projection which ends in an infinite sequence of unlabelled nodes and
ε-labelled edges.

By Lemma 5.9 we have for each step s → t contracting a redex in U that
there is a surjection from P(s,U) to P(t,U/u) which deletes only finite sequences
of unlabelled nodes and ε-labelled edges. Hence, for all path projections we have
that the nodes and edges left after the contraction of a redex in U either stay
at the same distance from the first node of the path projection in which they
occur or move closer to the first node. But then it follows immediately by ordinal
induction that a path projection with an infinite sequence of unlabelled nodes
and ε-labelled edges is present after each development. In particular, such an
infinite sequence is present after the complete development. However, by defin-
ition of paths and path projections this means that a descendant of a redex in
U is present in the final term of the complete development. But this contradicts
the fact that no descendants of redexes in U exist in the final term of a complete
development. Hence, U has the finite jumps property.

That U has a complete development if it has the finite jumps property is an
immediate consequence of Theorem 5.12(4).)*

The result we were aiming at now follows easily.
Theorem 5.14. If U has a complete development then all complete develop-
ments of U end in the same term.

Proof. By Lemma 5.13, if U has a complete development then it has the finite
jumps property. But then each complete development of U ends in the same final
term by Theorem 5.12(1).)*

137

6 Further Directions

We have defined and proved the first results for iCRSs, but a number of questions
that have been answered for iTRSs and iλc remain open: Does there exist a
notion of meaningless terms [11] that allows for the construction of Böhm-like
trees? Can we prove a partial confluence property [2, 3, 11] showing infinitary
confluence up to equivalence of meaningless terms?

Furthermore, can the treatment of iCRS in this paper be extended to the
other formats of higher-order rewriting? The fact that CRSs have a clean sepa-
ration of abstractions (in terms and rewrite rules) and substitutions which is not
present in some of the other forms of higher-order rewriting [3] may constitute
a stumbling block in this respect.

Finally, it is as yet unclear how to relax the requirement that no infinite chains
of meta-variables are allowed in meta-terms while still retaining a meaningful
notion of substitution.

References

1. Dershowitz, N., Kaplan, S., Plaisted, D.A.: Rewrite, rewrite, rewrite, rewrite,
rewrite, TCS 83 (1991) 71–96

2. Kennaway, R., Klop, J.W., Sleep, R., de Vries, F.J.: Transfinite reductions in
orthogonal term rewriting systems. I&C 119 (1995) 18–38

3. Terese: Term Rewriting Systems. Cambridge University Press (2003)
4. Kennaway, J.R., Klop, J.W., Sleep, M., de Vries, F.J.: Infinitary lambda calculus.

TCS 175 (1997) 93–125
5. Klop, J.W.: Combinatory Reduction Systems. PhD thesis, Rijksuniversiteit

Utrecht (1980)
6. Klop, J.W., van Oostrom, V., van Raamsdonk, F.: Combinatory reduction systems:

introduction and survey. TCS 121 (1993) 279–308
7. Arnold, A., Nivat, M.: The metric space of infinite trees. Algebraic and topological

properties. Fundamenta Informaticae 3 (1980) 445–476
8. Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics. Second edn.

Elsevier Science (1985)
9. Hanus, M., Prehofer, C.: Higher-order narrowing with definitional trees. In

Ganzinger, H., ed.: Proc. of the 7th Int. Conf. on Rewriting Techniques and Ap-
plications (RTA’96). Volume 1103 of LNCS., Springer-Verlag (1996) 138–152

10. van Oostrom, V.: Higher-order families. In Ganzinger, H., ed.: Proc. of the 7th
Int. Conf. on Rewriting Techniques and Applications (RTA ’96). Volume 1103 of
LNCS., Springer-Verlag (1996) 392–407

11. Kennaway, R., van Oostrom, V., de Vries, F.J.: Meaningless terms in rewriting.
The Journal of Functional and Logic Programming 1 (1999)

138

DIKU/IST Worksthop, 2005/09/24

Multiset
discrimination for

acyclic data

Fritz Henglein

DIKU, University of Copenhagen

henglein@diku.dk

DIKU/IST Worksthop, 2005/09/24

Overview

� Discrimination: Partitioning input into
equivalence classes

� Basics: Types, equivalence classes,
discriminators

� Top-down MSD for unshared data
� Bottom-up MSD for shared data (briefly!)
� Discussion

DIKU/IST Worksthop, 2005/09/24

Multiset discrimination: The
problem

� Partition a sequence of inputs into equivalence
classes according to a given equivalence relation

� Examples:
� Same word occurrences in text

� Anagram classes of dictionary

� Equal terms or (sub)trees

� Equivalent states of finite state automaton

� Bisimulation classes of labeled transition system

� Note: Generalization of equality/equivalence to from
2 to n arguments.

139

DIKU/IST Worksthop, 2005/09/24

Multiset discrimination: The
problem...

� Occurs frequently as auxiliary or key step in other
problems; e.g.,
� Compiling:

� Symbol table management

� Is there a duplicate identifier in a formal parameter list?

� Optimization: Replace multiple equivalent data structures
by (pointers to) a single data structure

� Is frequently solved by use of hashing, possibly in
connection with sorting

DIKU/IST Worksthop, 2005/09/24

Multiset discrimination: The
techniques

� Worst-case optimal techniques for multiset
discrimination without hashing or sorting

� Basic idea (for string discrimination): Partition
multiset of strings according to first character,
then refine blocks according to second
character and so on

DIKU/IST Worksthop, 2005/09/24

MSD: Basic idea

Martin
Jan
Martin
Markus
Steffen
Martin

Martin
Martin
Markus
Martin

Martin
Martin
Markus
Martin

Martin
Martin
Markus
Martin

Martin
Martin
Martin

Jan

Steffen

Markus

140

DIKU/IST Worksthop, 2005/09/24

Basics: Values

� Universe U of first-order values:
� v ::= () | a | inl(v) | inr(v) | (v, v)
� a ::= <atomic values from finite set, e.g., characters>

� Examples of values:
(‘a’, ‘b’), inl(‘J’, inl(‘a’, inl(‘n’, inr())))

� Notation: The latter value is also denoted by [‘J’, ‘a’, ‘n’] and
“Jan”.

� Sizes of values (bit size of untyped representation):
(v,v’)	=	v	+	v’
inl(v)	=	inr(v)	= 1 +	v
()	= 0			
a	= O(log2	A), where a � A	

DIKU/IST Worksthop, 2005/09/24

Basics: Types

� Type:
A partial equivalence relation (per) on U; that is,
a subset S of U together with an equivalence
relation on S

� Type expressions:
� T ::= 1 | T * T | T + T | A | t | µt.T |

| Bag(T) | Set(T)
� A ::= <atomic type names, e.g., Char>

� Abbreviations: Seq(T) = µt. 1 + T * t
String = Seq(Char)
Bool = 1+1

DIKU/IST Worksthop, 2005/09/24

Basics: Types...

� Each type expression denotes a type:
� A: primitive values with built-in equality (e.g.,

characters with character equality)
� 1: { () } with () = ()
� T * T’: { (t, t’): t � T, t’ � T’ } with canonically

induced equivalence
� T + T’: { inl(t): t � T} U {inr(t’): t’ � T’} with

canonically induced equivalence
� t: Type bound to t in context

141

DIKU/IST Worksthop, 2005/09/24

Basics: Types...

� continued:
� µt.T: smallest per X such that X = T[X/t]
� Bag(T): { [v1...vn]: vi � T} where [v1...vn] =Bag(T)

[w1...wn] if vi =T w�(i) for some permutation � for
all i=1..n.

� Set(T): {[v1...vn]: vi � T} where [v1...vn] =Set(T)
[w1...wm] if:
� for all i there exists j such that vi =T wj, and
� for all j there exists i such that vi =T wj.

DIKU/IST Worksthop, 2005/09/24

Example equivalences:

� Consider the sequence “Jann”. It is an
element of Seq(Char), Bag(Char) and
Set(Char):
� As element of Seq(Char) it is equivalent to “Jann”,

but neither “nJan” nor “Jna”.
� As element of Bag(Char) it is equivalent to “Jann”

and “nJan”, but not “Jna”.
� As element of Set(Char) it is equivalent to “Jann”,

“nJan”, and “Jna”.

� [[4, 9, 4], [1, 4, 4], [9, 4, 4, 9], [4, 1]] =Set(Set(int)
[[1, 4, 1], [9, 4, 9, 9, 4]]

DIKU/IST Worksthop, 2005/09/24

Discriminator

� A discriminator for type T is a function
D[T]: �t. Seq(T*t) � Seq(Seq(t))
such that, if D[T][(l1,v1),...,(ln,vn)] = [V1,...,Vk]:
� V1... Vk is a permutation of [v1,..., vn];

� Iff li =T lj then there is a block Vh that contains both
vi and vj.

142

DIKU/IST Worksthop, 2005/09/24

Top-down Discrimination

� Polytypic definition of discriminators:
� D[T] [(l1,v1)] = [[v1]] for any T (* Note: O(1)! *)

� D[A] xss = DA xss (given discriminator for A)

� D[1] [(l1,v1),...,(ln,vn)] = [[v1,..., vn]]

� D[T*T] [((l11 , l12),v1),..., ((ln1 , ln2),vn)] =
let [B1,...,Bk] = D[T] [[(l11 , (l12,v1)),..., (ln1 , (ln2,vn))]

let (W1,...,Wk) = (D[T’] B1, ..., D[T’] Bk)
in concat (W1,...,Wk)

DIKU/IST Worksthop, 2005/09/24

Top-down discrimination...

� Polytypic definition contd.:
� D[T+T’] xss =

let (B1, B2) = splitTag xss
let (W1, W2) = (D[T] B1, D[T’] B2)
in concat (W1, W2)

� D[t] xss = Dt xss where Dt is discriminator bound
to t in context

� D[µt.T] xss = D[T] xss in context where t is bound
to D[µt.T] (recursive definition!)

DIKU/IST Worksthop, 2005/09/24

Discriminator combinators

� Note that the definitions of D[T+T’] and
D[T*T’] require D[T] and D[T’] only

� Thus for each type constructor *, + we can
define a corresponding discriminator
combinator, also denoted by *, + that
compose given discriminators for T, and T’ to
discriminators for T*T’ and T+T’, respectively.

� Note: Combinators are ML-typable, except
for recursively defined ones (require
polymorphic recursion)

143

DIKU/IST Worksthop, 2005/09/24

Example: Sequence
discriminator

� D[Seq(T)] = D[µt. 1 + T * t] =
= D[1 + T * t] with t := D[Seq(T)]
= D[1] + D[T*t] =
= D[1] + D[T] * D[Seq(T)]

� That is, D[Seq(T)] = f where f is recursively defined:
f = D[1] + D[T] * f

� E.g., D[Seq(Char)] is the canonical string
discriminator.

DIKU/IST Worksthop, 2005/09/24

Discrimination for bags and
sets

� We can discriminate for bag equivalence by:
� sorting the input labels (each of which is a

sequence) according to a common sorting order,
then

� eliminating successive equivalent elements (for
set equivalence only), and

� applying ordinary sequence discrimination to the
thus sorted sequences

DIKU/IST Worksthop, 2005/09/24

Weak sorting

� Weak sorting sorts each sequence in a multiset
according to some common sorting order.

� Basic idea:
� Associate each element with all the sequences it occurs in.
� Then traverse the elements and add them to their

sequences.
� In this fashion all sequences will contain their elements in

the same order.

144

DIKU/IST Worksthop, 2005/09/24

Optimal discrimination

� Theorem: D[T] xss executes in time O(|xss|)
for all type expressions T.

� Observation: The discriminators need not
always inspect all the input since
discrimination stops as soon as a singleton
equivalence class is identified.

DIKU/IST Worksthop, 2005/09/24

Applications:

� D[Seq(Char)]: Finding unique words and all their
ocurrences in a text

� D[Bag(Char)]: Finding the anagram classes of a dictionary
(set of words)

� D[µt. 1 + Bag(t) + (t * t)]: Discrimination of simple type
expressions under associativity and commutativity of
product type constructor in linear time (Zibin, Gil, Considine
[2003], Jha, Palsberg, Shao, Henglein [2003])

� D[µt. (String * Bag(t)) + (String * Set(t)) + (String *Seq(t))]:
Discriminating terms with associative, associative-
commutative and associative-commutative-idempotent
operators in linear time (word problem)

DIKU/IST Worksthop, 2005/09/24

Bottom-up discrimination

� Top-down discrimination is optimal for unshared
data.

� Consider a dag defined by:
n’0 = (n1, n1), n0 = (n1, n1)

n1 = (n2, n2)
...
nk = ((), ())

� Treating this as an element of
µt. (t+1) * (t+1) (trees!) would require time O(2k).

145

DIKU/IST Worksthop, 2005/09/24

Bottom-up discrimination

� The problem is that shared data (nodes, boxes,
references) may occur in multiple calls during top-
down MSD.

� Basic idea:
� Stratify nodes into ranks according to their heights in the

dag.
� Discriminate (partition) all nodes of the same rank in one

go. Do this in a bottom up fashion since discrimination of
rank k nodes requires discrimination according to rank k-1
nodes.

DIKU/IST Worksthop, 2005/09/24

Bottom-up discrimination

� Extend the type language with Box(T)
(pointers to values of type T under value
equivalence)
and Ref(T) (pointers to values of type T with
pointer equivalence)

� Theorem: D[T] S xss for store (graph) S and
input sequence xss executes in time and
space O(|S| + |xss|).

DIKU/IST Worksthop, 2005/09/24

Applications:

� D[µt. Box(Seq(String * t)) * Bool)]: Minimization of acyclic
finite state automata (Revuz [1992], Cai/Paige [1995])

� Construction of Reduced Ordered Binary Decision
Diagrams (ROBDD) without hashing (Henglein [2005])

� Compacting garbage collection (Ambus [2004], see plan-
x.org)

� Type-directed pickling (Kennedy [2004], Elsman [2004])
� Compacting garbage collection (Appel/Goncalves [1993])

146

DIKU/IST Worksthop, 2005/09/24

References (Acyclic MSD):
Paige, Tarjan, ``Three Partition Refinement

Algorithms'', SIAM J. Computing, 16(6):973-989,
1987 (Section 2: lexicographic sorting)

Cai, Paige, ``Look Ma, no hashing, and no arrays
neither'', POPL 1991 (applications of string msd)

Cai, Paige, ``Using multiset discrimination to solve
language processing problems without hashing'',
TCS 145(1-2):189-228, 1995 (based on POPL 1991
paper)

DIKU/IST Worksthop, 2005/09/24

References...

Paige, ``Optimal translation of user input in
dynamically typed languages'', unpublished
manuscript, 1991 (weak sorting, bag/set
equivalence, bottom-up msd for trees and dags)

Paige, ``Efficient translation of external input in a
dynamically typed language'', Proc. 13th World
Computer Congress, Vol. 1, 1994 (optimal-time
preprocessing of serialized input into internal data
structures)

DIKU/IST Worksthop, 2005/09/24

References...

Paige, Yang, ``High level reading and data
structure compilation'', POPL 1997
(underpinnings and refinement of efficient
preprocessing)

Zibin, Gil, Considine, ``Efficient algorithms for
isomorphisms of simple types'', POPL 2003
(application of basic msd to isomorphism with
distributivity)

147

DIKU/IST Worksthop, 2005/09/24

References (Cyclic MSD):
Note: Term ``MSD'' not used in works below.
Downey, Sethi, Tarjan, ``Variations on the

common subexpression problem'', JACM 1980
(list equivalence in cyclic graph)

Cardon, Crochemore, ``Partitioning a graph in
O(|A| log |V|, TCS 1982 (bag equivalence in
cyclic graph)

Paige, Tarjan, ``Three Partition Refinement
Algorithms'', SIAM J. Computing, 16(6):973-
989, 1987 (Section 3: coarsest partition
refinement; set equivalence in cyclic graph)

DIKU/IST Worksthop, 2005/09/24

Conclusions

� Optimal discriminators that can be generated
automatically from definition of equivalence relation
(can be extended to richer language for equivalence
classes)

� Note: No pointers required!
� Practical performance of handcoded MSD typically

comparable with hashing (in some cases better)
� References in strongly typed languages can be

made discriminable without making them
comparable or hashable

DIKU/IST Worksthop, 2005/09/24

Discussion
� MSD techniques (historically for strings and graphs) can be

”disassembled” into atomic components (*, +, µ,…) and then
orthogonally combined freely to arrive isassembly of MSD-
techniques

� Identification of type of discriminators has been crucial for
admitting inductive/polytypic definition of discriminators

� Discriminators stress ML-polymorphism: Reference
discrimination (semantically safe side effects, but prohibited by
ML reference typing) and discrimination for recursively defined
types (polymorphic recursion required)

� Reference discrimination (instead of equality) would be an easy
useful extension to ML without performance or semantic
penalties, yet support for linear-time discrimination (presently
requires O(n2) time using reference equality alone).

� Discriminators can be extended to cyclic data at cost of log(n)
factor. Requires more refined algorithmic techniques.

148

DIKU/IST Worksthop, 2005/09/24

Open questions

� Automatic generation of efficient (not handcoded)
discriminators ; e.g., by partial evaluation

� Algorithm engineering: I/O, cache-sensitivity analysis

� Empirical evaluation of MSD in a variety of applications
(e.g., ROBDDs, coalescing garbage collection, run-time
verification, type checking

� Identification of scenarios where ‘weak’ machine model
required by MSD is an advantage

� Extension of MSD to scoped values (e.g., alpha-
congruence), other extensions

DIKU/IST Worksthop, 2005/09/24

More information

� Paper(s) under preparationPlan-x.org/msd

149

Natural Numbers Type
in Call-by-Value

Based on CPS Semantics
Yoshihiko Kakutani
University of Tokyo

kakutani@is.s.u-tokyo.ac.jp

Call-by-Name Natural Numbers Type (1/2)

It is well-known that the (simply typed) call-by-name λ-calculus
can be extended with a natural numbers type N.

Γ � zero :N Γ � suc :N → N

Γ � M :A Γ � F :A → A

Γ � itA〈M, F 〉 :N → A

(it〈M, F 〉)(zero) = M

(it〈M, F 〉)((suc)N) = F ((it〈M, F 〉)N)

Call-by-Name Natural Numbers Type (2/2)

A natural numbers type is strong if the following holds.
(Otherwise, we call one a weak natural numbers type.)
If a term G satisfies G(zero) = M and G((suc)N) = F (GN) for
any N :N, then G = it〈M, F 〉 holds.

The strongness property implies the induction principle. For
example, let P be it〈λx. x, λf. λx. suc(fx)〉 :N → N → N. Since
P(zero)M = M and P((suc)N)M = (suc)(PNM) hold, P is
uniquely determined by the strongness and must be the
inductive definition of +.

150

Call-by-Value Calculus (1/4)

The aim of this work is to characterize a natural numbers type
for call-by-value languages in a similar way to the call-by-name
case.

The call-by-value λ-calculus is usually given by the CPS
translation:
M = N holds in the call-by-value λ-calculus if [[M]] = [[N]] holds
in the call-by-name λ-calculus.

Call-by-Value Calculus (2/4)

The CPS translation is defined inductively as follows:

[[c]]k = kc

[[x]]k = kx

[[λx. M]]k = k(λx. [[M]])

[[MN]]k = [[M]](λm. [[N]](λn. mnk))

Call-by-Value Calculus (3/4)

The call-by-value λ-calculus defined by the CPS translation is
exactly equivalent to the λC-calculus, which is an axiomatic
calculus introduced by Moggi.

V ::= c | x | λxA.M

letx be N in M ≡ (λx. M)N

letx be V in M = M [V/
x
]

λx. V x = V

letx be N in let y be L in M

= let y be (letx be N in L) in M

letx be M in x = M

151

Call-by-Value Calculus (4/4)

Side-effects make the difference between call-by-name and
call-by-value clear.

For example, while (λx. y)(µa. [b]z) = y holds in the call-by-name
λµ-calculus, (λx. y)(µa. [b]z) = µa. [b]z holds in the call-by-value
one. (Informally, µa.M is like callcc structure and [a]M is like
throw structure.)

Note that the call-by-value λµ-calculus, which also can be
defined by the CPS translation and axiomatizable, is a
conservative extension of the call-by-value λ-calculus.

Call-by-Value Natural Numbers Type (1/3)

The call-by-value λµ-calculus with a natural numbers type has
the following syntax.

M ::= · · · | zero | suc | it〈V, λx.W 〉

V, W, X ::= · · · | zero | suc | (suc)V

| it〈V, λx. W 〉 | (it〈V, λx. W 〉)X

A general form of it〈M, F 〉 is not allowed in order to define the
CPS translation properly.

Call-by-Value Natural Numbers Type (2/3)

A (weak/strong) natural numbers type N in the call-by-value
λµ-calculus is given by the following CPS translation. (The
codomain of the CPS translation is the call-by-name λ-calculus
with a (weak/strong) natural numbers type.)

. . .

[[zero]]k = k(zero)

[[suc]]k = k(suc)

[[it〈V, λx. W 〉]]k = [[V]](λv. k(it〈v, λx. X〉))

where [[W]]k = kX

152

Call-by-Value Natural Numbers Type (3/3)

The call-by-value λµ-calculus with a natural numbers type can
be axiomatized.

(it〈V, λx. W 〉)(zero) = V

(it〈V, λx. W 〉)((suc)X) = (λx. W)((it〈V, λx.W 〉)X)

The strongness property is also restricted to values:
If a value U satisfies (λy. U)(zero) = V and
(λy. U)((suc)X) = (λx. W)((λy. U)X) for any value X :N, then
λy. U = it〈V, λx. W 〉 holds.

Categorical Semantics (1/3)

It is known that control categories provide a sound and
complete class of models for the call-by-value λµ-calculus.
(Note that the call-by-value λ-calculus is also sound and
complete for control categories.)

The subcategory of a control category that consists of
effect-free morphisms is called its focus. An effect-free
morphism is called a focal map.

A term M is focal if
letx be M in let y be N in L = let y be N in let x be M in L for
any x, y, N and L.

Any value is focal but a focal term is not necessarily a value.

Categorical Semantics (2/3)

The call-by-value λµ-calculus with a (weak/strong) natural
numbers type is sound and for control categories with
(weak/strong) natural numbers types on their focuses.

(Precisely speaking, natural numbers types should be
parameterized. The details of the parameterization can be
found in another work with Hasegawa.)

For the completeness, there are two possible ways:
Modifying the CPS semantics and modifying the categorical
semantics.

153

Categorical Semantics (3/3)

A subcategory of the focus that satisfies the appropriate
conditions is called a value category.

Value categories are not unique for a control category and the
focus itself is a value category.

Control categories with (weak/strong) natural numbers types
on their value categories provide a sound and complete class of
models for the call-by-value λµ-calculus with a (weak/strong)
natural numbers type.

(Note that the parameterization still requires consideration of
the focuses.)

Further Work

Since values and focal terms coincide in function types, we
hope to fill a gap between values and focal terms. (However, we
have some negative answers.)

A natural numbers type is a kind of so-called inductive type.

While an inductive type is characterized by an initial algebra in
the call-by-name λ-calculus, such a type is characterized by an
initial algebra on values in the call-by-value calculus.

Conclusion

A natural numbers type for call-by-value languages is defined
by the CPS translation.

A sound and complete axiomatization of the call-by-value
λ-calculus with a natural numbers type is given.

It has been shown that the call-by-value λµ-calculus with a
natural numbers type is sound and complete for the categorical
semantics.

The above results can be generalized to general inductive
types.

154

����������	
�	����
�
������	�������

�������������
�����������

���

�
�
�������	���	��	

������������ ��!!"

#
��
��$

� ������������������	
%������������	�
�	����	�
������
���	�
�����

��	���	���

� ��&�'���
(�������
���	

�)�����	���	��
���������	
�	����
�
����

��	��������*�
�����
������
�������	���	���
+
� ����	
���
���	������
���������	
�����	�

� �����������
� �������	

,���(�	-
�
� ����

���������
������%�)�����	���	��

���������	
�	����
�
������	�������
� ./��
����������������������	
��	��	��
������
�	����������
�	������
� ���������
���	
���	��������
�������
�����	������
	���

��������
�

� ��������
�������-����	
����	��������(���������

�)��������	
�������
���������	�������	����
������� ��
�
�������-���%
� ���������
���	
���	�����

� ��������
�������-����	
�

155

����������)�������	

� ����%��������	
������������������
�	��������������	��
�0-�
���
�����������*���������������+�-��
(�
�����������	
���������

�)����������	(�����������
��������������������������
��������	(���

� ���������	����������	�������
� ����������������
�	��������	�����	����
����

-�����	��

	�����������
���'���������������	
����
��	(������	
��	��
� 1��$����%���0-�������
-����	
���-���	
�	����
��
(���
�

./�����%�2������34������
� �����������������������$�����$	���	����������%

� 2������

� 4������

� 5-�����	����	����������-
�	-
���
�)��������	�	�	�

�)��	����-��������0-��������	����������	-������
����
��������

� �	
�-���
�������������������������� ��-�

� 4����������������/��-��
�

� ��	
�%�4�������0-����������
�
�-�����(��
��� �
���-��
(����	�
�����
���

2������34������

�����������	
���

���������������
����������������������������������
�����������	
���

��������������������

���
��
�����
���
��

������ !
"#��	�������������������$%�&'������(�
����	����
�))�*��))��%
�$%�+'���� ������$��
����	���������*��))���
�$%�+,������(�
����	�������������������$%�,'������
����	���%
�))����--��%
!$%�,,������$��

�
&'��+'��+,��
,'��,,

�	
��	����	$%

156

����������������)��������	

�������������	
���

�������������
������ !
"#��	�������������������$%�&'������(�
����	����
�))�*��))��%
�$%�+'���� ������$��
����	���������*��))���
�$%�+,������(�
����	�������������������$%�,'������
����	���%
�))����--��%
!$%�,,������$��

.���"#�����
��
�����������

./��"#����%
��
�����������

.0��"#�����
��
������ ���%

.1��"#�����
��
������ ����

.2��"#�����
��
����������%

.3��"#����%
��
����������%

&'

&'

+, ,,
+'

+'
,'

&'&'

+, ,, &'

&'

��	����%�6	$��	�����������������7

.���"#�����
��
�����������

./��"#����%
��
�����������

.0��"#�����
��
������ ���%

.1��"#�����
��
������ ����

.2��"#�����
��
����������%

.3��"#����%
��
����������%

&'

&'

+, ,,
+'

+'
,'

&'&'

+, ,, &'

&'

� �����%�"&'���+��"+'!

�)��	��������	�-��	
%�

� ��	$�������	��-����	
���

	���
���
�+,��	��&'���*-
����+

�)�������	(�����	
��	���	������,,����
����	
���	��.3��	�.3

�4����$�

��&�'���
(�������
���	

� �	������8�����	���	��
���������	
�	����
�
����
��	���������������	
(���������������	������ ������
��	���������*!��"�#���
"�$�����	��+

� ���%�)����
�������	���	
���
���
����������
(�
�����
���	
�	��9:�	������-
���	
���	(�����$����
$���'�	-
��������

� #����
���	$�������&��	��������������������	
���
�-
���	
������%
� ��������
��
������	$'��(����������0-�
������
���
��
����

�����
���
�������
�	����&��������	
� ����
�������	(����
�����
������	�������
�-�

157

��&�'���
(�������
���	

� �$	�������	���
��
�����������0-�
���%�;����
��**9<�+�;=+�

��5��!��� �6�5�
�������(������
�6���
�����������5$����!
�����/����5$���2����5���$�!!

5

�

5

�

>9 �%������9��
���

��&�'���
(��(����� 5

�

5

�

>;%������;

;�

5

�

:::

**9<�+�;=+�
5

�

5

�

5

�

5

�

5

�

5

�

5

�

:::

5

�

5

�

5

�

5

�

5

�

5

�

)��������
(��������0-�
���

� 1���
�����	��	����	
�	�����	���%�

� >9��>�%���������/�����&������/���������>9��
��������&���>�

� >9��>�%���������/�����&������/���������>9��
��������&���>��
�
��*��?����	����?����+

� �

�

�

�

�

�

�

� �

�

�

�

�

� �

�
�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

72 72 72 72 7��/ 7��/

7��/ 72 7��/ 7��/ 7��/ 7��/

2�����
(��������0-�
�����	�������)��������	
�

�

�

�

�

�

�

� �

�

�

�

�

� �

�
�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

72 72 72 72 7��/ 7��/

7��/ 72 7��/ 7��/ 7��/ 7��/

�

�

�

�

2 ��/�2

��/

2 ��/

158

1������
(���&�'���
(�������
���	

� ��	�-�������-
�����%

� ����������&�'���
(��(�����������
���

� �-��	�����?�
9
 ��

�
 �:::������
��
��
�����������0-�
��

� �	���
�������*� �@+��������/���������>����������
(��
�
 �::: ��

@

� �����
��
����2���������	���%

� �������/���������0-�
��%���?��
9
 ��

�
 �:::��-�������

� �	���
��� ������%��-�����������A���%��

� �
�
 �:::� ��

�
����������������	������������>

� ���������	
%��������������
�	��	���
���
��
�����������0-�
�����
�
���������������������
(�����>:

� �	������������
��	
%�

�
���������������	��
����>����
���
'���-������
�:

�

�

�

�

����������	
�	����
�
������	�������

� ��	
�����������
�	����
��
�����	��-����	
��	���

	��	��-�

� ����������&�'���
(�������
���	
����
�������	��-���
	-���-���������
� �	��-�����&��������	
���	������
���������	
����	��
�����

� ����������/�������
	
'�
������
(�����
�	����&��������	
��
$�����
��
��������
������������������ ����
�����
�	�����	
��
(������
��-����

	������	-
���

���
����	
�����������)��������	

� �����
���	
���(-��
�������
	���
�������������-���
�����
���
����	
�

� �������
����	
������������*��
����������	
�	
�������+�
�
������	������������������

�)��������	
%��������	�������������	
�

�)����������	(��������������
���������(����%
� 5	���%��������
��������������
����	
���0-�
���

� .�(��%�������	
���������
����	
���0�:��	����������������	
�

159

����������	
���	���-��

9:2��-���������
�
������	������<��
������
����
���-����	
���	���������	
����	

�:)��������
����	
��������������������	
��	��-�@����
��	(�����	�	����
���
	��'������� ���(����������
(����

;:�B��������
	�����
��������������	
�$�������������
����������	
����	

�:�����
���	
������%�������$������������������

	����$����������'�		���������
����
�������
����	
�
��0-�
���

":2��-�
�C��	������
�������C����������������
	���
����������������
���	
������

���
����	
�����������)��������	

�������������	
���

�������������
������ !
"#��	�������������������$%�&'������(�
����	����
�))�*��))��%
�$%�+'���� ������$��
����	���������*��))���
�$%�+,������(�
����	�������������������$%�,'������
����	���%
�))����--��%
!$%�,,������$��

 ���"#��"4#

����4

��4�����
����4��

&'

 /��"#��"4#

�����4�
�
�����4�

 2��"#��"4#

������ ���4

�
�����4����4��

 3��"#��"4#

�����

���4

�

�����4��$����4��

 1��"#��"4#

����� ���

�

����4

�

����4��$���4��

&' &' +'
&'�,,

&'�,,

,' ,,

+'

,, ,'

+'

+'

�������
(����������

 ���"#��"4#

����4

��4�����
����4��

&'

 /��"#��"4#

�����4�
�
�����4�

 2��"#��"4#

������ ���4

�
�����4����4��

 3��"#��"4#

�����

���4

�

�����4��$����4��

 1��"#��"4#

����� ���

�

����4

�

����4��$���4��

&' &' +'
&'�,,

&'�,,

,' ,,

+'

,, ,'

+'

+'

� �����%�"&'���+��"+'!
� ����
�������-����	
%�

� ���8&'�+'�+,�,'�,,9��+7����������!���+���!!
� B������
	���%� 3��
�� 1

� .
������
�����	������&'����
����	
���
�� ���
�� 2���
��	
�������
(�
�
������$����	�����	-�(�
(����
����	
��*-
����+

� �,	��� 3��
��� 1����������
���
(��		�������	������
�������

160

����	
���
���	���������
����	
�
����������)��������	

����	
���
���	�������	���B���	�
� ������	�-��������	��-����	
������		�������������
� ��������������	�����	
���������
��%

� �	���������
�������
����	
���0-�
�������	���	�������	�-���
�����	��-����	

� �������	
�������	$(������
�	����	
(����	

������
�	��	
�
��

� ����	
�
(��������	
%
� ��
���
����
	
'�	
	�	
	-����
��
(���
�����-��
(%

�)��������
��-��%�
:4�:$� ��

 ��:4�:$� ��:4�: ��:4�:(� �

 ��:4�:(�

� ,-���	��
�-����	

��(�
����
���	���������
������	��	�� �
��������������	���
��-��������
���

5	
'�	
	�	
��1����
�
������:�����;���
�
�� ������:%
�	�

����:�:$/�
� ��
�

�����

�/����:�:(��

�! �9 ��

�

/

3

2

����8:%
��:4�:$/��:4�:$���:4�:��:4�:(�9

�
��:%
��:4�:$/

�
��:%
��:4�:

�
��:%
��:4�:

�
��:%
��:4�:(�

"�
��"���
:%
�

:4�:

 ��

�

"�
��"4���
:%
�

:4�:$/

 3�

"�
��"4���
:%
�

:4�:$�

 0�

"�
��"4�
�
:%
�

:4�:$�

 1�

"�
��"4�
�
:%
�

:4�:$/

 /� "�
��"4�/�
:%
�

:4�:$/

 2�

�

�

�

�

�

�

�

�

161

4���'
�������		��

� ��	�����������	$'(�����������
(�$���������	����������

�������		��

� �������
����	
������
��������	��������-����������

*�/�
��
�D�	���	
����	
���+
� ��
�����������
���������	���
����
	��
���������������	�
� �

(��������������	
���
����-���

�)
���&�������		���
�����-�-�����

��

� 2���������
�-��
(�������	�-��������	��������
�������		� ���
���	
(������������	
���
����-���

� �:(:��	��-
�	
���
(�E������������

����
��C

������������

����
��
������:�<�����������������5�

������<������5��<�	�

��������<!�
�����������:�����=5���<!�
����:����������

������<������5��<�	�
���������:�����=5���<!�
�������������:���!�
����<�:�

������:�<�����;����

������<%
�	�

���

����<�<$��
����:�
�

������<%
�	�
������<�<$��
������:�:(��
����<�:�

./������9��
�0-�������	��������������
������		�%

��%�&�����&�������'�%'�&��'��'�&��8
�
����������

��%�&�����&�����%'
��%�&�����&������(%'&)*�&��(�'�)*�&��

B�
���&���	
%��+�+) ��+, ��
�����
(������	
�%

��%�&�����&�%�+�%�&���+�����%'

������:�<�����;����

������<%
�	�

<4�<$�
����:44�<4
����<444�:44

������:�<�����;����

������<%
�	�

<444�<$�

����	
���
��%�>�
���������

� ����������-�(�����	�����������:�:������	��	
�
�����
��������������������-�(�����������������$����	
��	��
�	�����(���

�)
���&�������-��(����
� �	��-������������	
���	��������

� ������
(�����
��
�	-
����(�
� ./���
(�����
�	-��	-
����(�

� �	��������������	
%���
������-�
� �����������%��	-
�����/����������	����	����	����&��

162

���B.�)���	/�����	
�

� �$	����B.�����	/:�	����	�-��������	���* -�-!��+ �
��������������	���	��%�%��� "��%'���"��%'����)

� F-��������

��0-�����������������
����	
���	����C��
'�
C�����

� F-��� �(�
�����
����	

� �����������-�����
���������

:

<

:

<

:

<

:

<

:

<

:

<

�	
��-��	

� �����
�����
��/��
��	
�	���������������������	
��	�
���
����	
��������������������	

�)-�	����������	���	��
���������	
�	����
�
����
��	��������-
����*���	
(<$���+�����
����
���-����	
�

� ����	
�����	�-��������	��-����	
%
� ,�������������������
�����

� 6�
�����
	
'�	
	�	
�������
���
�

� ����-�����������������&��������	
��	
����-������

� ���B.�����	/�����	
�

163

164

Author Index

Akashi, Miyoko, 1
Andersen, Jesper, 80
Avery, James, 95

Bohr, Nina, 109

Castagna, Giuseppe, 79

Elsborg, Ebbe, 80

Filinski, Andrzej, 118
Frederiksen, Carl Christian, 155
Frisch, Alain, 79

Hagiya, Masami, 18
Henglein, Fritz, 80, 139
Hosoya, Haruo, 79
Hu, Zhenjiang, 24, 38, 111

Jones, Neil D., 14

Kakehi, Kazuhiko, 38, 111
Kakutani, Yoshihiko, 150

Ketema, Jeroen, 124

Lawall, Julia, 36
Liu, Dongxi, 38

Matsuzaki, Kiminori, 30
Mogensen, Torben Ægidius, 54
Morihata, Akimasa, 111
Muller, Gilles, 36

Nakano, Keisuke, 63
Nissen, Michael, 50

Olsen, Jørgen, 3

Simonsen, Jakob Grue, 80, 124
Skelboe, Stig, 11
Stefansen, Christian, 80

Takeichi, Masato, 7, 38, 111

Wang, Hao, 38

165

After Work
Copenhagen, Nyhavn

	00 A Frontmatters 05-07.pdf
	00 B Empty page.pdf
	00 C Preface.pdf
	00 D Preface_photo.pdf
	00 E Empty page.pdf
	01 Akashi Speech.pdf
	02 JOLS - DIKU -Tokyo workshop 20.09.2005.pdf
	03 Takeichi-IST2005002-1up.pdf
	04 Skelboe-DIKUpre.pdf
	05 Jones-Topps2005.pdf
	06 Hagiya-1up.pdf
	07 Hu-ohp-1up.pdf
	08 Matsuzaki_empty.pdf
	09 Lawall-Abstract.pdf
	10 Liu-BiXJ-1up.pdf
	11 Nissen Incrementalization of Axapta Report Programs-with-name.pdf
	12 Mogensen-dikuist.pdf
	13 Nakano-diku05.pdf
	14 Hosoya abstract.pdf
	15 Andersen-c2-paper.pdf
	16 Avery.pdf
	17 Bohr-hosct.pdf
	18 Morihata.pdf
	19 Filinski-slides-1up.pdf
	20 Simonsen-icrs1.pdf
	21 Henglein-DIKU-IST-talk.pdf
	22 Kakutani-DIKU-IST.pdf
	23 Frederiksen-Verification_of_Liveness_Properties-slides-1up.pdf
	24 A Empty page.pdf
	24 B author index.pdf

