
Two-Pass Greedy Regular Expression Parsing�

Niels Bjørn Bugge Grathwohl, Fritz Henglein, Lasse Nielsen,
and Ulrik Terp Rasmussen

Department of Computer Science, University of Copenhagen (DIKU)

Abstract. We present new algorithms for producing greedy parses for
regular expressions (REs) in a semi-streaming fashion. Our lean-log al-
gorithm executes in time O(mn) for REs of size m and input strings of
size n and outputs a compact bit-coded parse tree representation. It im-
proves on previous algorithms by: operating in only 2 passes; using only
O(m) words of random-access memory (independent of n); requiring only
kn bits of sequentially written and read log storage, where k < 1

3
m is

the number of alternatives and Kleene stars in the RE; processing the
input string as a symbol stream and not requiring it to be stored at all.
Previous RE parsing algorithms do not scale linearly with input size, or
require substantially more log storage and employ 3 passes where the first
consists of reversing the input, or do not or are not known to produce
a greedy parse. The performance of our unoptimized C-based prototype
indicates that our lean-log algorithm has also in practice superior per-
formance and is surprisingly competitive with RE tools not performing
full parsing, such as Grep.

1 Introduction

Regular expression (RE) parsing is the problem of producing a parse tree for
an input string under a given RE. In contrast to most regular-expression based
tools for programming such as Grep, RE2 and Perl, RE parsing returns not only
whether the input is accepted, where a substring matching the RE and/or sub-
REs are matched, but a full parse tree. In particular, for Kleene stars it returns
a list of all matches, where each match again can contain such lists depending
on the star depth of the RE.

An RE parser can be built using Perl-style backtracking or general context-
free parsing techniques. What the backtracking parser produces is the greedy
parse amongst potentially many parses. General context-free parsing and back-
tracking parsing are not scalable since they have cubic, respectively exponential
worst-case running times. REs can be and often are grammatically ambiguous
and can require arbitrary much look-ahead, making limited look-ahead context-
free parsing techniques inapplicable. Kearns [1] describes the first linear-time
algorithm for RE parsing. In a streaming context it consists of 3 passes: reverse

� This work has been partially supported by The Danish Council for Independent
Research under Project 11-106278, “Kleene Meets Church: Regular Expressions and
Types”. The order of authors is insignificant.

S. Konstantinidis (Ed.): CIAA 2013, LNCS 7982, pp. 60–71, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Two-Pass Greedy Regular Expression Parsing 61

the input, perform backward NFA-simulation, and construct parse tree. Frisch
and Cardelli [2] formalize greedy parsing and use the same strategy to pro-
duce a greedy parse. Dubé and Feeley [3] and Nielsen and Henglein [4] produce
parse trees in linear time for fixed RE, the former producing internal data struc-
tures and their serialized forms, the latter parse trees in bit-coded form; neither
produces a greedy parse.

In this paper we make the following contributions:

1. Specification and construction of symmetric nondeterministic finite automata
(NFA) with maximum in- and out-degree 2, whose paths from initial to final
state are in one-to-one correspondence with the parse trees of the under-
lying RE; in particular, the greedy parse for a string corresponds to the
lexicographically least path accepting the string.

2. NFA simulation with ordered state sets, which gives rise to a 2-pass greedy
parse algorithm using �m lgm� bits per input symbol and the original input
string, with m the size of the underlying RE. No input reversal is required.

3. NFA simulation optimized to require only k ≤ �1/3m� bits per input symbol,
where the input string need not be stored at all and the 2nd pass is simplified.
Remarkably, this lean-log algorithm requires fewest log bits, and neither state
set nor even the input string need to be stored.

4. An empirical evaluation, which indicates that our prototype implementation
of the optimized 2-pass algorithm outperforms also in practice previous RE
parsing tools and is sometimes even competitive with RE tools performing
limited forms of RE matching.

In the remainder, we introduce REs as types to represent parse trees, define
greedy parses and their bit-coding, introduce NFAs with bit-labeled transitions,
describe NFA simulation with ordered sets for greedy parsing and finally the
optimized algorithm, which only logs join state bits. We conclude with an em-
pirical evaluation of a straightforward prototype to gauge the competitiveness of
full greedy parsing with regular-expression based tools yielding less information
for Kleene-stars.

2 Symmetric NFA Representation of Parse Trees

REs are finite terms of the form 0, 1, a, E1 × E2, E1 + E2 or E∗
1 , where E1, E2

are REs.

Proviso. For simplicity and brevity we henceforth assume REs that do not con-
tain sub-REs of the form E∗, where E is nullable (can generate the empty string).
All results reported here can be and have been extended to such problematic
REs in the style of Frisch and Cardelli [2]. In particular, our implementation
BitC handles problematic REs.

REs can be interpreted as types built from singleton, product, sum, and list
type constructors [2,5]; see Figure 1. Its structured values T [[E]] represent the
parse trees for E such that the regular language L[[E]] coincides with the strings

62 N.B.B. Grathwohl et al.

T [[0]] = ∅
T [[1]] = {()},
T [[a]] = {a},

T [[E1 × E2]] = {(V1, V2) | V1 ∈ T [[E1]], V2 ∈ T [[E2]]},
T [[E1 + E2]] = {inl V1 | V1 ∈ T [[E1]]}

∪ {inr V2 | V2 ∈ T [[E2]]},
T [[E�

0]] = {[V1, . . . , Vn] | n ≥ 0∧
∀1 ≤ i ≤ n.Vi ∈ T [[E0]]}

(a) Regular expressions as types.

flat(()) = ε
flat(a) = a

flat((V1, V2)) = flat(V1)flat(V2)
flat(inl V1) = flat(V1)
flat(inr V2) = flat(V2)

flat([V1, . . . , Vn]) = flat(V1) . . . flat(Vn)

(b) Tree flattening.

code(()) = ε code(a) = ε
code((V1, V2)) = code(V1) code(V2) code([V1, . . . , Vn]) = 0 code(V1) . . . 0 code(Vn) 1

code(inl V1) = 0 code(V1) code(inr V2) = 1 code(V2)

(c) Bit-coding.

Fig. 1. The type interpretation of regular expressions and bit-coding of parses

E N〈E, qs, qf 〉

0
qs qf

1
qs

(implies qs = qf)

a
qs qf

a

E1 × E2

qs q′ qf
N〈E1, q

s, q′〉 N〈E2, q
′, qf 〉

E N〈E, qs, qf 〉

E1 + E2

qs

qs1 qf1

qs2 qf2

qf
0

1

0

1

N〈E1, q
s
1 , q

f
1 〉

N〈E2, q
s
2 , q

f
2 〉

E�
0

qs q′

qs0 qf0

qf

0

1

0

1

N〈E0, q
s
0, q

f
0 〉

Fig. 2. aNFA construction schema

obtained by flattening the parse trees:

L[[E]] = {flat(V) | V ∈ T [[E]]}.

We recall bit-coding from Nielsen and Henglein [4]. The bit code code(V) of
a parse tree V ∈ T [[E]] is a sequence of bits uniquely identifying V within
T [[E]]; that is, there exists a function decodeE such that decodeE(code(V)) = V .
See Figure 1 for the definition of code; the definition of decodeE is omitted for
brevity, but is straightforward. We write B[[. . .]] instead of T [[. . .]] whenever we
want to refer to the bit codings, rather than the parse trees. We use subscripts to
discriminate parses with a specific flattening: Ts[[E]] = {V ∈ T [[E]] | flat(V) = s}.
We extend the notation Bs[[. . .]] similarly.

Note that a bit string by itself does not carry enough information to deduce
which parse tree it represents. Indeed this is what makes bit strings a compact
representation of strings where the underlying RE is statically known.

The set B[[E]] for an RE E can be compactly represented by augmented non-
deterministic finite automaton (aNFA), a variant of enhanced NFAs [4] that has
in- and outdegree at most 2 and carries a label on each transition.

Two-Pass Greedy Regular Expression Parsing 63

Definition 1 (Augmented NFA) An augmented NFA (aNFA) is a 5-tuple
M = (Q,Σ,Δ, qs, qf) where Q is the set of states, Σ is the input alphabet, and
qs, qf are the starting states. The transition relationΔ ⊆ Q×(Σ ∪ {0, 1, 0, 1})×Q
contains directed, labeled transitions: (q, γ, q′) ∈ Δ is a transition from q to q′

with label γ, written q
γ−→ q′.

We call transition labels in Σ input labels ; labels in {0, 1} output labels ; and
labels in {0, 1} log labels.

We write q
p� q′ if there is a path labeled p from q to q′. The sequences

read(p), write(p) and log(p) are the subsequences of input labels, output labels,
and log labels of p, respectively.

We write: JM for the join states {q ∈ Q | ∃q1, q2. (q1, 0, q), (q2, 1, q) ∈ Δ}; SM

for the symbol sources {q ∈ Q | ∃q′ ∈ Q, a ∈ Σ. (q, a, q′)}; and CM for the choice
states {q ∈ Q | ∃q1, q2. (q, 0, q1), (q, 1, q2) ∈ Δ}.

If M is an aNFA, then M is the aNFA obtained by flipping all transitions
and exchanging the start and finishing states, that is reverse all transitions and
interchange output labels with the corresponding log labels.
�

Our algorithm for constructing an aNFA from an RE is a standard Thompson-
style NFA generation algorithm modified to accomodate output and log labels:

Definition 2 (aNFA construction) We write M = N〈E, qs, qf 〉 when M is
an aNFA constructed according to the rules in Figure 2.

Augmented NFAs are dual under reversal; that is, flipping produces the aug-
mented NFA for the reverse of the regular language.

Proposition 2.1. Let E be canonically constructed from E to denote the reverse
of L[[E]]. Let M = N〈E, qs, qf 〉. Then M = N〈E, qf , qs〉.

This is useful since we will be running aNFAs in both forward and backward
(reverse) directions.

Well-formed aNFAs—and Thompson-style NFAs in general—are canonical
representations of REs in the sense that they not only represent their language
interpretation, but their type interpretation:

Theorem 2.1 (Representation). Given an aNFA M = N〈E, qs, qf 〉, M out-
puts the bit-codings of E:

Bs[[E]] = {write(p) | qs p� qf ∧ read(p) = s}.

3 Greedy Parsing

The greedy parse of a string s under an RE E is what a backtracking parser
returns that tries the left operand of an alternative first and backtracks to try
the right alternative only if the left alternative does not yield a successful parse.
The name comes from treating the Kleene star E� as E×E�+1, which “greed-
ily” matches E against the input as many times as possible. A “lazy” matching

64 N.B.B. Grathwohl et al.

interpretation of E� corresponds to treating E� as 1+E×E�. (In practice, mul-
tiple Kleene-star operators are allowed to make both interpretations available;
e.g. E� and E�� in PCRE.)

Greedy parsing can be formalized by an order � on parse trees, where V1�V2

means that V1 is “more greedy” than V2. The following is adapted from Frisch
and Cardelli [2].

Definition 3 (Greedy order) The binary relation � is defined inductively on
the structure of values as follows:

(V1, V2) � (V ′
1 , V

′
2) if V1 � V ′

1 ∨ (V1 = V ′
1 ∧ V2 � V ′

2)
inl V0 � inl V ′

0 if V0 � V ′
0

inr V0 � inr V ′
0 if V0 � V ′

0

inl V0 � inr V ′
0

[] � [V1, . . .]
[V1, . . .] � [V ′

1 , . . .] if V1 � V ′
1

[V1, V2, . . .] � [V1, V
′
2 , . . .] if [V2, . . .]� [V ′

2 , . . .]

The relation � is not a total order; consider for example the incomparable ele-
ments (a, inl ()) and (b, inr ()). The parse trees of any particular RE are totally
ordered, however:

Proposition 3.1. For each E, the order � is a strict total order on T [[E]].

In the following, we will show that there is a correspondence between the struc-
tural order on values and the lexicographic order on their bit codings.

Definition 4 For bit sequences d, d′ ∈ {0, 1}� we write d ≺ d′ if d is lexico-
graphically strictly less than d′; that is, ≺ is the least relation satisfying

1. ε ≺ d if d �= ε
2. b d ≺ b′ d′ if b < b′ or b = b′ and d ≺ d′.

Theorem 3.1. For all REs E and values V, V ′ ∈ T [[E]] we have V � V ′ iff
code(V) ≺ code(V ′).

Corollary 3.1. For any RE E with aNFA M = N〈E, qs, qf 〉, and for any string
s, min� Ts[[E]] exists and

min
�

Ts[[E]] = decodeE(min
≺

{write(p) | qs p� qf ∧ read(p) = s}).

Proof. Follows from Theorems 2.1 and 3.1.
�
We can now characterize greedy RE parsing as follows: Given an RE E and string
s, find bit sequence b such that there exists a path p from start to finishing state
in the aNFA for E such that:

1. read(p) = s,
2. write(p) = b,
3. b is lexicographically least among all paths satisfying 1 and 2.

This is easily done by a backtracking algorithm that tries 0-labeled transi-
tions before 1-labeled ones. It is atrociously slow in the worst case, however:
exponential time. How to do it faster?

Two-Pass Greedy Regular Expression Parsing 65

4 NFA-Simulation with Ordered State Sets

Our first algorithm is basically an NFA-simulation. For reasons of space we only
sketch its key idea, which is the basis for the more efficient algorithm in the
following section.

A standard NFA-simulation consists of computing Reach∗(S, s) where

Reach∗(S, ε) = S

Reach∗(S, a s′) = Reach∗(Reach(S, a), s′)

Reach(S, a) = Close(Step(S, a))

Step(S, a) = {q′ | q ∈ S, q
a−→ q′}

Close(S′) = {q′′ | q′ ∈ S′, q′
p� q′′,write(p) = ε}

Checking qf ∈ Reach∗({qs}, s) determines whether s is accepted or not. But how
to construct an accepting path and in particular the one corresponding to the
greedy parse?

We can log the set of states reached after each symbol during the NFA-
simulation. After forward NFA-simulation, let Si be the NFA-states reached after
processing the first i symbols of input s = a1 . . . an. Given a list of logged state
sets, the input string s and the final state qf , the nondeterministic algorithm
Path∗ constructs a path from qs to qf through the state sets:

Path(Si, q) = (q′, p) where q′ ∈ Si, q
′ p� q, read(p) = ai

Path∗(S0, q) = p′ · p where (q′, p) = Path(S0, q), q
s p′
� q′, read(p′) = ε

Path∗(Si, q) = p′ · p where (q′, p) = Path(Si, q), p
′ = Path∗(Si−1, q

′)

Calling write(Path∗(Sn, q
f)) gives a bit-coded parse tree, though not necessarily

the lexicographically least.
We can adapt the NFA-simulation by keeping each state set Si in a particular

order: If Reach∗({qs}, a1 . . . ai) = {qi1, . . . qiji} then order the qij according to the
lexicographic order of the paths reaching them. Intuitively, the highest ranked
state in Si is on the greedy path if the remaining input is accepted from this
state; if not, the second-highest ranked is on the greedy path, if the remaining
input is accepted; and so on.

The NFA-simulation can be refined to construct properly ordered state se-
quences instead of sets without asymptotic slow-down. The log, however, is ad-
versely affected by this. We need �m lgm� bits per input symbol, for a total of
�mn lgm� bits.

The key property for allowing us to list a state at most once in an order state
squence is this:

Lemma 4.1. Let s, t1, t2, and t be states in an aNFA M , and let p1, p2, q1, q2 be

paths in M such that s
p1� t1, s

p2� t2, and t1
q1� t, t2

q2� t. If write(p1) ≺ write(p2)
then write(p1q1) ≺ write(p2q2)

Proof. Application of the lexicographical ordering on paths.
�

66 N.B.B. Grathwohl et al.

5 Lean-Log Algorithm

After the ordered forward NFA-simulation with logging, the algorithm Path
above can be refined to always yield the greedy parse whend traversing the
aNFA in backwards direction. Since the join states JM of an aNFA M become
the choice states CM of the reverse aNFA M we only need to construct one “di-
rection” bit for each join state at each input string position. It is not necessary
to record any states in the log at all, and we do not even have to store the input
string. This results in an algorithm that requires only k bits per input symbol
for the log, where k is the number of Kleene-stars and alternatives occurring in
the RE. It can be shown that k ≤ 1

3m; in practice we can observe k << m.
Our optimized algorithm is described in Figure 3 below. The forward pass

keeps the aNFA and the current character in memory, requiring a O(m) words
of random access memory, writing nk bits to the log, and discarding the input
string. Finally, the backward pass also requires O(m) words of random access
memory and reads from the log in reverse write order. The log is thus a 2-phase
stack: In the first pass it is only pushed to, in the second pass popped from.

Both LClose and LStep run in time O(m) per input symbol, hence the forward
pass requires time O(mn). Likewise, the backward pass requires time O(mn).

LClose keeps track of visited states and returns the states reached ordered
lexicographically according to the paths reaching them. Hence, the following
theorem can be proved:

Theorem 5.1. For any regular expression E and symbol sequence s, if Ll =
LSim(s), and d = LTrace(Ll, q

f), then decodeE(d) = min� Ts[[E]].

6 Evaluation

We have implemented the optimized algorithms in C and in Haskell, and we
compare the performance of the C implementation with the following existing
RE tools:

RE2: Google’s RE implementation, available from [6].
Tcl: The scripting language Tcl [7].
Perl: The scripting language Perl [8].
Grep: The UNIX tool grep.
Rcp: The implementation of the algorithm “DFASIM ” from [4]. It is based on

Dubé and Feeley’s method [3], but altered to produce a bit-coded parse tree.
FrCa: The implementation of the algorithm“FrCa” algorithm used in [4]. It is

based on Frisch and Cardelli’s method from [2].

In the subsequent plots, our implementation of the lean-log algorithm is referred
to as BitC.

The tests have been performed on an Intel Xeon 2.5 GHz machine running
GNU/Linux 2.6.

Two-Pass Greedy Regular Expression Parsing 67

(Q,L) ⊕ (Q′, L′) = (Q · Q′, L ∪ L′)

LClose(q, L) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

([q], L) q
a−→ q′, a ∈ Σ

LClose(q0, L)⊕ LClose(q1, L) q
0−→ q0, q

1−→ q1

LClose(q′, L ∪ {q′ �→ t}) q
t−→ q′, t ∈ {0, 1}, q′ �∈ dom(L)

([], L) otherwise

LStep([], a, (Q,L)) = (Q,L)

LStep(q · qs, a, (Q,L)) =

{
LStep(qs, a, (Q, L)⊕ LClose(q, L)) q

a−→ q′

LStep(qs, a, (Q, L)) otherwise

LSim′([],Q,L) =

{
L if qs ∈ Q

⊥ otherwise

LSim′(a · s′, Q,L) =

{
LSim(s′, Q′, L · L) if (Q′, L) = LStep(Q, a, ([], ∅)), Q′ �= []

⊥ otherwise

LSim(s) = let (Q0, L0) = LClose(qs, []) in LSim′(s,Q0, [L])

(a) Forward pass.

LTrace(L · L, q) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[] if q = qs

LTrace(L · L, q′) · γ if q
γ−→ q′, γ ∈ {0, 1}

LTrace(L, q′) if q
γ−→ q′, γ ∈ Σ

LTrace(L · L, q′) if q
L[q]−→ q′, L[q] ∈ {0, 1}

(b) Backward pass.

Fig. 3. Forward and backward pass algorithm

6.1 Pathological Expressions

To get an indication of the “raw” throughput for each tool, a� was run on
sequences of as (Figure 4a). (Note that the plots use log scales on both axes, so
as to accommodate the dramatically varying running times.) Perl outperforms
the rest, likely due to a strategy where it falls back on a simple scan of the input
instead. FrCa stores each position in the input string from which a match can
be made, which in this case is every position. As a result, FrCa uses significantly
more memory than the rest, causing a dramatic slowdown.

The expression (a|b)�a(a|b)n with the input (ab)n/2 is a worst-case for DFA-
based methods, as it results in a number of states exponential in n. Perl has
been omitted from the plots, as it was prohibitively slow. Tcl, Rcp, and Grep
all perform orders of magnitude slower than FrCa, RE2, and BitC (Figure 4b),
indicating that Tcl and Grep also use a DFA for this expression. If we fix n to
25, it becomes clear that FrCa is slower than the rest, likely due to high memory
consumption as a result of its storing all positions in the input string (Figure 4c).
The asymptotic running times of the others appear to be similar to each other,
but with greatly varying constants.

68 N.B.B. Grathwohl et al.

100 101 102 103 104 105 106 107 108

Bytes

10−3

10−2

10−1

100

101

102

103
S

ec
on

ds

BitC
RE2
Perl
Tcl
Rcp
FrCa

(a) a�, input an.

101 102 103 104

Bytes

10−3

10−2

10−1

100

101

102

103

104

S
ec

on
ds

BitC
RE2
Grep
Tcl
Rcp
FrCa

(b) (a|b)�a(a|b)n, input (ab)n/2.

101 102 103 104 105 106 107 108

Bytes

10−3

10−2

10−1

100

101

102

103

104

S
ec

on
ds

BitC
RE2
Grep
Tcl
Rcp
FrCa

(c) (a|b)�a(a|b)25, input (ab)n/2.

Fig. 4

100 101 102 103 104 105

Bytes

10−3

10−2

10−1

100

101

102

103

S
ec

on
ds

BitC
RE2
Tcl
Rcp
FrCa

(a) (a?)nan, input an.

101 102 103 104

Bytes

10−3

10−2

10−1

100

101

102

103

S
ec

on
ds

BitC
RE2
Tcl
Rcp
FrCa

(b) an(a?)n, input an.

Fig. 5

Two-Pass Greedy Regular Expression Parsing 69

105 106 107

Bytes

10−3

10−2

10−1

100
S

ec
on

ds

BitC
RE2
Grep
Perl
Tcl
Rcp

(a) #4

105 106 107

Bytes

10−3

10−2

10−1

100

101

S
ec

on
ds

BitC
RE2
Grep
Perl
Tcl
Rcp

(b) #7

105 106 107

Bytes

10−3

10−2

10−1

100

101

S
ec

on
ds

BitC
RE2
Grep
Perl
Tcl
Rcp

(c) #8

Fig. 6. Comparison using various e-mail expressions. The numbers in the captions refer
to the regexes in [9, Table 1].

For the backtracking worst-case expression (a?)nan in Figure 5a, BitC per-
forms roughly like RE2.1 In contrast to Rcp and FrCa, which are both highly
sensitive to the direction of non-determinism, BitC has the same performance
for both (a?)nan and an(a?)n (Figure 5b).

6.2 Practical Examples

We have run the comparisons with various “real-life” examples of REs taken
from [9], all of which deal with expressions matching e-mail addresses. In Fig. 6b,
BitC is significantly slower than in the other examples. This can likely be ascribed
to heavy use of bounded repetitions in this expression, as they are currently just
rewritten into concatenations and Kleene stars in our implementation.

1 The expression parser in BitC failed for the largest expressions, which is why they
are not on the plot.

70 N.B.B. Grathwohl et al.

In the other two cases, BitC’s performance is roughly like that of Grep. This
is promising for BitC since Grep performs only RE matching, not full parsing.
RE2 is consistently ranked as the fastest program in our benchmarks, presumably
due to its aggressive optimizations and ability to dynamically choose between
several strategies. Recall that RE2 performs greedy leftmost subgroup matching,
not full parsing. Our present prototype of BitC is coded in less than 1000 lines
of C. It uses only standard libraries and performs no optimizations such as NFA-
minimization, DFA-construction, cached or parallel NFA-simulation, etc. This is
future work.

7 Related Work

The known RE parsing algorithms can be divided into four categories. The
first category is Perl-style backtracking used in many tools and libraries for
RE subgroup matching [10]; it has an exponential worst case running time, but
always produces the greedy parse and enables some extensions to REs such
as backreferences. Another category consists of context-free parsing methods,
where the RE is first translated to a context-free grammar, before a general
context-free parsing algorithm such as Earleys [11] using cubic time is applied.
An interesting CFG method is derivatives-based parsing [12]. While efficient
parsers exist for subsets of unambiguous context-free languages, this restriction
propagates to REs, and thus these parsers can only be applied for subsets of
unambiguous REs. The third category contains RE scalable parsing algorithms
that do not always produce the greedy parse. This includes NFA and DFA based
algorithms provided by Dubé and Feeley [3] and Nielsen and Henglein [4], where
the RE is first converted to an NFA with additional information used to parse
strings or to create a DFA preserving the additional information for parsing.
This category also includes the algorithm by Fischer, Huch and Wilke [13]; it
is left out of our tests since its Haskell-based implementation often was not
competitive with the other tools. The last category consists of the algorithms
that scale well and always produce greedy parse trees. Kearns [1] and Frisch and
Cardelli [2] reverse the input; perform backwards NFA-simulation, building a log
of NFA-states reached at each input position; and construct the greedy parse tree
in a final forward pass over the input. They require storing the input symbol
plus m bits per input symbol for the log. This can be optimized to storing bits
proportional to the number of NFA-states reached at a given input position [4],
although the worst case remains the same. Our lean log algorithm uses only 2
passes, does not require storing the input symbols and stores only k < 1

3m bits
per input symbol in the string.

Two-Pass Greedy Regular Expression Parsing 71

References

1. Kearns, S.M.: Extending Regular Expressions. PhD thesis, Columbia University
(1990)

2. Frisch, A., Cardelli, L.: Greedy Regular Expression Matching. In: Dı́az, J.,
Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142,
pp. 618–629. Springer, Heidelberg (2004)

3. Dubé, D., Feeley, M.: Efficiently Building a Parse Tree From a Regular Expression.
Acta Informatica 37(2), 121–144 (2000)

4. Nielsen, L., Henglein, F.: Bit-coded Regular Expression Parsing. In: Dediu, A.-H.,
Inenaga, S., Mart́ın-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 402–413.
Springer, Heidelberg (2011)

5. Henglein, F., Nielsen, L.: Regular expression containment: Coinductive axiomati-
zation and computational interpretation. In: Proc. 38th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (POPL). SIGPLAN Notices,
vol. 46, pp. 385–398. ACM Press (January 2011)

6. Cox, R.: RE2, https://code.google.com/p/re2/
7. Ousterhout, J.: Tcl: An Embeddable Command Language. In: Proc. USENIX

Winter Conference, pp. 133–146 (January 1990)
8. Wall, L., Christiansen, T., Orwant, J.: Programming Perl. O’Reilly Media,

Incorporated (2000)
9. Veanes, M.V.M., de Halleux, P., Tillmann, N.: Rex: Symbolic Regular Expression

Explorer. In: Proc. 3d Int’l Conf. on Software Testing, Verification and Validation,
Paris, France. IEEE Computer Society Press (April 6-10 2010)

10. Cox, R.: Regular Expression Matching can be Simple and Fast
11. Earley, J.: An Efficient Context-Free Parsing Algorithm. Communications of the

ACM 13(2), 94–102 (1970)
12. Might, M., Darais, D., Spiewak, D.: Parsing with derivatives: a functional pearl.

In: ACM SIGPLAN Notices, vol. 46, pp. 189–195. ACM (2011)
13. Fischer, S., Huch, F., Wilke, T.: A Play on Regular Expressions: Functional Pearl.

In: Proc. of the 15th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2010, pp. 357–368. ACM, New York (2010)

https://code.google.com/p/re2/

	Two-Pass Greedy Regular Expression Parsing
	1
Introduction
	2
Symmetric NFA Representation of Parse Trees
	3
Greedy Parsing
	4
NFA-Simulation with Ordered State Sets
	5
Lean-Log Algorithm
	6
Evaluation
	6.1
Pathological Expressions
	6.2
Practical Examples

	Related Work
	References

