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REGULAR EXPRESSION USAGE
Regular expressions are amongst the most
widely used DSLs along with Excel and SQL.
Despite this, they are ill-behaved from a pro-
grammer’s perspective. The language inter-
pretation of regular expressions as regular lan-
guages makes it difficult to use REs as a data
extraction tool, even though this is what they
are often used for.

For example, the expression

a?b+ (a+ b)? is not the same as (a+ b)?,

but they denote the same language

LJa?b+ (a+ b)?K = LJ(a+ b)?K.

In Perl-style implementations, this problem is
addressed with subgroup matching:

(a*b)︸ ︷︷ ︸
1

|(a|b)︸ ︷︷ ︸
2

*

but this behaves poorly in conjunction with
Kleene stars:

abababa︸ ︷︷ ︸
lost!

b︸︷︷︸
2

?︸︷︷︸
1

TYPE INTERPRETATION
An RE E can be interpreted as a type, with
T JEK denoting a set of parse trees:

T J0K = ∅
T J1K = {()}
T JaK = {a}

T JE1E2K = T JE1K× T JE2K
T JE1 + E2K = T JE1K+ T JE2K

T JE?1K = {[v1, ..., vn] | vi ∈ T JE1K}
A parser tells the programmer how the in-

put string matches E; with a?b+ (a+ b)? and
“aaaaab” it is one of:

inl 〈[a, a, a, a, a], b〉
inr [inl a, inl a, inl a, inl a, inl a, inr b].

Define bit-codes BJ·K for typed trees such that:

∀E . T JEK ∼= BJEK
⊆ {0, 1}?

AUTOMATA REPRESENTATION
Theorem 1 ([2, 3]). Paths in a Thompson NFA
correspond 1-to-1 to parse trees.
Theorem 2 ([3]). The greedy parse tree corre-
sponds to the “leftmost” path.
So: bit-code of greedy parse ←→ leftmost path.
We can annotate a Thompson NFA to output
bit-codes, producing an aNFA.
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PATH TREES

A

We maintain the set of paths through an aNFA in a path tree. Internal
nodes represent states wherefrom paths differ. If we associate a buffer
with each edge, it suffices to store the structure of the tree and its
leaf nodes, not the internal nodes. As the internal nodes represent
the points where paths differ, the contents of the root buffer prefixes
all parse trees that can be produced by reading the remaining input.
Hence, it can be output immediately.
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x00 := 0

9

x01 := 1

x0 := 0

·

·

7
x100 := 0

8
x101 := 1

x10 := 0

4
x11 := 1

x1 := 1

xε := ε

Abstract an ε-closure and leave only the
labelled tree structure and the leaves.

Associate a buffer to each internal edge
of the path tree.

SIMULATION
For each input symbol, the path tree is expanded at the leaves by following the aNFA transitions.
We maintain uniqueness of the leaves by marking repetitions as dead; this corresponds to the
greedy-leftmost disambiguation strategy. After a tree has been expanded it is contracted by
combining buffers on the paths from the root to the leaves.

B
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After consuming one
“b” some leaves are
dead, marked  . The
tree is then contracted.
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After consuming two
“b”s and contraction.
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DETERMINIZATION
We can use the path tree simulation to de-
terminize and disambiguate an aNFA, us-
ing the path trees as states and associating
buffer updates with each transition. This
corresponds to the streaming string trans-
ducers of Alur et al. [1]. The root buffer
xε represents output. Such a transducer
thereby does streaming parsing of regular
expressions.

The pictured transducer outputs some-
thing immediately after the first “b” has
been read and the next input symbol is
known. Only then can we know which of
a?b and (a+ b)? parses the input.
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x0, x00, x10, x100 := 0
x01, x1, x11, x101 := 1

a/

x0 := (x0)(x00)
x1 := (x1)(x10)(x100)
x00, x100, x10 := 0
x01, x101, x11 := 1

b/

x0 := (x0)(x01)
x1 := (x1)(x10)(x101)0
x10 := 0
x11 := 1

b/
xε := (xε)(x1)(x11)
x0, x00 := 0
x1, x01 := 1

a/
xε := (xε)(x1)(x10)
x0, x00 := 0
x1, x01 := 1

a/
xε := (xε)(x0)(x00)
x0, x00 := 0
x1, x01 := 1

b/
x0, x00 := 0
x1, x01 := 1
xε := (xε)(x0)(x01)

OPTIMAL STREAMING
LetCE(w) be the set of strings prefixed byw that is in the language ofE. The optimally streaming
function can be formulated as follows:
Definition 1 (Optimally streaming function [4]). The optimally streaming function corresponding
to PE(·) is

OE(w) =
l
{PE(w′) | w′ ∈ CE(w)}

Intuitively, at reading input w, an optimally streaming parsing function must output the
longest prefix of the set of paths reaching an accepting state. It requires a PSPACE-complete
analysis to get optimal streaming, but for non-pathological expressions our approach suffices.


