Ansatte – Københavns Universitet

Best laid plans of lions and men

Publikation: Bidrag til bog/antologi/rapportKonferencebidrag i proceedingsForskningfagfællebedømt

Dokumenter

We answer the following question dating back to J. E. Littlewood (1885-1977): Can two lions catch a man in a bounded area with rectifiable lakes? The lions and the man are all assumed to be points moving with at most unit speed. That the lakes are rectifiable means that their boundaries are finitely long. This requirement is to avoid pathological examples where the man survives forever because any path to the lions is infinitely long. We show that the answer to the question is not always "yes" by giving an example of a region R in the plane where the man has a strategy to survive forever. R is a polygonal region with holes and the exterior and interior boundaries are pairwise disjoint, simple polygons. Our construction is the first truly two-dimensional example where the man can survive. Next, we consider the following game played on the entire plane instead of a bounded area: There is any finite number of unit speed lions and one fast man who can run with speed 1 + ϵ for some value ϵ > 0. Can the man always survive? We answer the question in the affirmative for any constant ϵ > 0.

OriginalsprogEngelsk
Titel33rd International Symposium on Computational Geometry (SoCG 2017)
RedaktørerBoris Aronov, Matthew J. Katz
Antal sider16
ForlagSchloss Dagstuhl - Leibniz-Zentrum für Informatik
Publikationsdato2017
Artikelnummer6
ISBN (Elektronisk)978-3-95977-038-5
DOI
StatusUdgivet - 2017
Begivenhed33rd International Symposium on Computational Geometry - Brisbane, Australien
Varighed: 4 jul. 20177 jul. 2017
Konferencens nummer: 33

Konference

Konference33rd International Symposium on Computational Geometry
Nummer33
LandAustralien
ByBrisbane
Periode04/07/201707/07/2017
NavnLeibniz International Proceedings in Informatics
Vol/bind77
ISSN1868-8969

Antal downloads er baseret på statistik fra Google Scholar og www.ku.dk


Ingen data tilgængelig

ID: 188448934