Exponential resolution lower bounds for weak pigeonhole principle and perfect matching formulas over sparse graphs
Publikation: Bidrag til bog/antologi/rapport › Konferencebidrag i proceedings › Forskning › fagfællebedømt
Dokumenter
- Exponential Resolution Lower Bounds for Weak
Forlagets udgivne version, 622 KB, PDF-dokument
We show exponential lower bounds on resolution proof length for pigeonhole principle (PHP) formulas and perfect matching formulas over highly unbalanced, sparse expander graphs, thus answering the challenge to establish strong lower bounds in the regime between balanced constant-degree expanders as in [Ben-Sasson and Wigderson'01] and highly unbalanced, dense graphs as in [Raz'04] and [Razborov'03,'04]. We obtain our results by revisiting Razborov's pseudo-width method for PHP formulas over dense graphs and extending it to sparse graphs. This further demonstrates the power of the pseudo-width method, and we believe it could potentially be useful for attacking also other longstanding open problems for resolution and other proof systems.
Originalsprog | Engelsk |
---|---|
Titel | 35th Computational Complexity Conference, CCC 2020 |
Redaktører | Shubhangi Saraf |
Forlag | Schloss Dagstuhl - Leibniz-Zentrum für Informatik |
Publikationsdato | 1 jul. 2020 |
Sider | 1-24 |
Artikelnummer | 28 |
ISBN (Elektronisk) | 9783959771566 |
DOI | |
Status | Udgivet - 1 jul. 2020 |
Begivenhed | 35th Computational Complexity Conference, CCC 2020 - Virtual, Online, Tyskland Varighed: 28 jul. 2020 → 31 jul. 2020 |
Konference
Konference | 35th Computational Complexity Conference, CCC 2020 |
---|---|
Land | Tyskland |
By | Virtual, Online |
Periode | 28/07/2020 → 31/07/2020 |
Navn | Leibniz International Proceedings in Informatics, LIPIcs |
---|---|
Vol/bind | 169 |
ISSN | 1868-8969 |
Antal downloads er baseret på statistik fra Google Scholar og www.ku.dk
ID: 251867082