Exponential resolution lower bounds for weak pigeonhole principle and perfect matching formulas over sparse graphs

Publikation: Bidrag til bog/antologi/rapportKonferencebidrag i proceedingsForskningfagfællebedømt

Dokumenter

We show exponential lower bounds on resolution proof length for pigeonhole principle (PHP) formulas and perfect matching formulas over highly unbalanced, sparse expander graphs, thus answering the challenge to establish strong lower bounds in the regime between balanced constant-degree expanders as in [Ben-Sasson and Wigderson'01] and highly unbalanced, dense graphs as in [Raz'04] and [Razborov'03,'04]. We obtain our results by revisiting Razborov's pseudo-width method for PHP formulas over dense graphs and extending it to sparse graphs. This further demonstrates the power of the pseudo-width method, and we believe it could potentially be useful for attacking also other longstanding open problems for resolution and other proof systems.

OriginalsprogEngelsk
Titel35th Computational Complexity Conference, CCC 2020
RedaktørerShubhangi Saraf
ForlagSchloss Dagstuhl - Leibniz-Zentrum für Informatik
Publikationsdato1 jul. 2020
Sider1-24
Artikelnummer28
ISBN (Elektronisk)9783959771566
DOI
StatusUdgivet - 1 jul. 2020
Begivenhed35th Computational Complexity Conference, CCC 2020 - Virtual, Online, Tyskland
Varighed: 28 jul. 202031 jul. 2020

Konference

Konference35th Computational Complexity Conference, CCC 2020
LandTyskland
ByVirtual, Online
Periode28/07/202031/07/2020
NavnLeibniz International Proceedings in Informatics, LIPIcs
Vol/bind169
ISSN1868-8969

Antal downloads er baseret på statistik fra Google Scholar og www.ku.dk


Ingen data tilgængelig

ID: 251867082