The Generic Structure of the Optic Flow Field

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

The Generic Structure of the Optic Flow Field. / Olsen, Ole Fogh; Nielsen, Mads.

I: Journal of Mathematical Imaging and Vision, Bind 24, Nr. 1, 2006, s. 37-53.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Olsen, OF & Nielsen, M 2006, 'The Generic Structure of the Optic Flow Field', Journal of Mathematical Imaging and Vision, bind 24, nr. 1, s. 37-53.

APA

Olsen, O. F., & Nielsen, M. (2006). The Generic Structure of the Optic Flow Field. Journal of Mathematical Imaging and Vision, 24(1), 37-53.

Vancouver

Olsen OF, Nielsen M. The Generic Structure of the Optic Flow Field. Journal of Mathematical Imaging and Vision. 2006;24(1):37-53.

Author

Olsen, Ole Fogh ; Nielsen, Mads. / The Generic Structure of the Optic Flow Field. I: Journal of Mathematical Imaging and Vision. 2006 ; Bind 24, Nr. 1. s. 37-53.

Bibtex

@article{961d80c0474e11ddb7b4000ea68e967b,
title = "The Generic Structure of the Optic Flow Field",
abstract = "The optic flow field is defined such that along integral lines of the field the image intensity remains constant. For each time instance in an image sequence poles are created in the optic flow field at the position of spatial image singularities. We describe the generic flow singularities and the generic transitions of these over time. For classic analytic flow fields the classification of the generic topology is based on points of vanishing flow which can be further subdivided into repellers, attractors, whirls, and combinations hereof. We point out the resemblance, but also the important differences between the structure of the classical analytic flow field, and the structure of the optic flow field expressed through its normal flow. We conclude by giving a operational scheme for the detection of these singularities and events; and apply the scheme to two different examples within attention mechanism and the degree of turbulence in a flow field respectively.",
author = "Olsen, {Ole Fogh} and Mads Nielsen",
note = "Paper id:: 10.1007/s10851-005-3614-2",
year = "2006",
language = "English",
volume = "24",
pages = "37--53",
journal = "Journal of Mathematical Imaging and Vision",
issn = "0924-9907",
publisher = "Springer",
number = "1",

}

RIS

TY - JOUR

T1 - The Generic Structure of the Optic Flow Field

AU - Olsen, Ole Fogh

AU - Nielsen, Mads

N1 - Paper id:: 10.1007/s10851-005-3614-2

PY - 2006

Y1 - 2006

N2 - The optic flow field is defined such that along integral lines of the field the image intensity remains constant. For each time instance in an image sequence poles are created in the optic flow field at the position of spatial image singularities. We describe the generic flow singularities and the generic transitions of these over time. For classic analytic flow fields the classification of the generic topology is based on points of vanishing flow which can be further subdivided into repellers, attractors, whirls, and combinations hereof. We point out the resemblance, but also the important differences between the structure of the classical analytic flow field, and the structure of the optic flow field expressed through its normal flow. We conclude by giving a operational scheme for the detection of these singularities and events; and apply the scheme to two different examples within attention mechanism and the degree of turbulence in a flow field respectively.

AB - The optic flow field is defined such that along integral lines of the field the image intensity remains constant. For each time instance in an image sequence poles are created in the optic flow field at the position of spatial image singularities. We describe the generic flow singularities and the generic transitions of these over time. For classic analytic flow fields the classification of the generic topology is based on points of vanishing flow which can be further subdivided into repellers, attractors, whirls, and combinations hereof. We point out the resemblance, but also the important differences between the structure of the classical analytic flow field, and the structure of the optic flow field expressed through its normal flow. We conclude by giving a operational scheme for the detection of these singularities and events; and apply the scheme to two different examples within attention mechanism and the degree of turbulence in a flow field respectively.

M3 - Journal article

VL - 24

SP - 37

EP - 53

JO - Journal of Mathematical Imaging and Vision

JF - Journal of Mathematical Imaging and Vision

SN - 0924-9907

IS - 1

ER -

ID: 4850758