Multi-task Learning of Pairwise Sequence Classification Tasks Over Disparate Label Spaces
Publikation: Bidrag til bog/antologi/rapport › Konferencebidrag i proceedings › Forskning › fagfællebedømt
Dokumenter
- AugensteinSøgaard
Indsendt manuskript, 742 KB, PDF-dokument
We combine multi-task learning and semi-supervised learning by inducing a joint embedding space between disparate label spaces and learning transfer functions between label embeddings, enabling us to jointly leverage unlabelled data and auxiliary, annotated datasets. We evaluate our approach on a variety of tasks with disparate label spaces. We outperform strong single and multi-task baselines and achieve a new state of the art for aspect-based and topic-based sentiment analysis.
Originalsprog | Engelsk |
---|---|
Titel | Proceedings, 16th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies : (Long Papers) |
Antal sider | 11 |
Vol/bind | 1 |
Forlag | Association for Computational Linguistics |
Publikationsdato | 2018 |
Sider | 1896–1906 |
DOI | |
Status | Udgivet - 2018 |
Begivenhed | 16th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - New Orleans, USA Varighed: 1 jun. 2018 → 6 jun. 2018 |
Konference
Konference | 16th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies |
---|---|
Land | USA |
By | New Orleans |
Periode | 01/06/2018 → 06/06/2018 |
Links
- https://arxiv.org/abs/1802.09913
Indsendt manuskript
Antal downloads er baseret på statistik fra Google Scholar og www.ku.dk
Ingen data tilgængelig
ID: 195047317