Similar to the way flight simulators has revolutionized airplane training, we are helping to drastically improve education globally.
We have built the **platform** to create and consume **3D virtual learning experiences across devices**

- ✓ Virtual reality
- ✓ Browsers
- ✓ Smart devices

immersive

...as real-world simulations anytime, anywhere.
Immersive learning using Labster has a significant impact on:

knowledge, motivation and self-efficacy

Source: BMC, 2016
See

labster.com/research

+15 publications in international journals
+10 in review to be published in the foreseeable future
Danmark is seen as a leader
Simulation technology developed in Denmark is now used at over 300 institutions globally
What is it that we do well in Denmark?

- Leading digitized country
- Highly educated country
- Reliable infrastructure (incl. digital)
- Stable society and government institutions
- Known for good education and critical thinkers
Are we on the verge of a new Nordic teaching?
...yes, if we are willing to invest in good digital content (e.g. how about spending 88 million on getting the best digital content to Denmark?)
thank you

Watch our TED talk and read Nature’s take on how we change the training and education industry globally

TED

1,280,397 total views

Watch Labster co-founder Michael Bodekaer on ted.com

nature

Simulated labs are booming

Oct 3rd, 2018
Significant **product effects** scientifically validated in the **world’s best scientific journal**

<table>
<thead>
<tr>
<th>Learning Outcomes (z-score)</th>
</tr>
</thead>
<tbody>
<tr>
<td>76%</td>
</tr>
<tr>
<td>101%</td>
</tr>
</tbody>
</table>

- Traditional training
- Labster
- Combination*

* Traditional teaching combined with the use of Labster simulations. See "Improving biotech education through gamified laboratory simulations", Nature Biotechnology, 2014
DUGFRISK FORSKNING FRA SORØ SCIENCE TALENTER I SIDSTE UGE

Jeg er blevet mere sikker på, at jeg har evnerne til at arbejde i et laboratorie efter at have spillet virtual reality simulationen.

Virtual reality simulationer med et naturvidenskabligt indhold, som den jeg lige har gennemført, ville øge min interesse for naturvidenskab.

Hvis jeg havde mulighed for at spille virtual reality simulationer med et naturvidenskabligt indhold, ville det øge sandsynligheden for at jeg vælger en naturvidenskabelig linje på gymnasiets
Grundig data analyse og nem fortolkning giver underviserne AHA oplevelser

<table>
<thead>
<tr>
<th>Mission Id</th>
<th>Quiz Id</th>
<th>Attempts</th>
<th>Correct on Test</th>
<th>Time</th>
<th>Using Theory</th>
<th>Theory Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>SequenceSample</td>
<td>Quiz_Sequencing</td>
<td>1.260</td>
<td>72.0%</td>
<td>34.099 sec.</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>SequenceSample</td>
<td>Quiz_Data1</td>
<td>1.160</td>
<td>80.0%</td>
<td>39.613 sec.</td>
<td>16.0%</td>
<td>22.484 sec.</td>
</tr>
<tr>
<td>DataAnalysis</td>
<td>Quiz_Data2</td>
<td>1.260</td>
<td>76.0%</td>
<td>47.792 sec.</td>
<td>12.0%</td>
<td>14.056 sec.</td>
</tr>
<tr>
<td>DataAnalysis</td>
<td>Quiz_Data3</td>
<td>1.260</td>
<td>80.0%</td>
<td>28.400 sec.</td>
<td>20.0%</td>
<td>8.724 sec.</td>
</tr>
<tr>
<td>DataAnalysis</td>
<td>Quiz_Data4</td>
<td>1.800</td>
<td>40.0%</td>
<td>76.492 sec.</td>
<td>48.0%</td>
<td>31.567 sec.</td>
</tr>
<tr>
<td>DataAnalysis</td>
<td>Quiz_Data5</td>
<td>1.260</td>
<td>80.0%</td>
<td>49.418 sec.</td>
<td>24.0%</td>
<td>23.313 sec.</td>
</tr>
<tr>
<td>DataAnalysis</td>
<td>Quiz_Data6</td>
<td>1.260</td>
<td>84.0%</td>
<td>45.657 sec.</td>
<td>20.0%</td>
<td>45.748 sec.</td>
</tr>
<tr>
<td>Recreate</td>
<td>Quiz_UserSurvey</td>
<td>1.000</td>
<td>100.0%</td>
<td>4.074 sec.</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Recreate</td>
<td>Quiz_UserSurvey2</td>
<td>1.000</td>
<td>100.0%</td>
<td>2.429 sec.</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Recreate</td>
<td>Quiz_UserSurvey3</td>
<td>1.000</td>
<td>100.0%</td>
<td>2.886 sec.</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

In the secondary data analysis, we assemble all the reads and try to interpret the data. What should we do first before starting the secondary analysis?

- Trim out the adapters
- Assemble reference genome
- Perform SNP analysis
- In-silico correction

Answer Choices (per attempt)