Isabelle Augenstein
Professor
Natural Language Processing
Universitetsparken 1, 2100 København Ø
- 2022
- Published
Fact Checking with Insufficient Evidence
Atanasova, Pepa Kostadinova, Simonsen, Jakob Grue, Lioma, Christina & Augenstein, Isabelle, 2022, In: Transactions of the Association for Computational Linguistics. 10, p. 746-763Research output: Contribution to journal › Journal article › Research › peer-review
- Published
Few-Shot Cross-Lingual Stance Detection with Sentiment-Based Pre-Training
Hardalov, M., Arora, Arnav, Nakov, P. & Augenstein, Isabelle, 2022, In: Proceedings of the International Joint Conference on Artificial Intelligence. 36, 10, p. 10729-10737.Research output: Contribution to journal › Conference article › Research › peer-review
- Published
Generating Fluent Fact Checking Explanations with Unsupervised Post-Editing
Jolly, S., Atanasova, Pepa Kostadinova & Augenstein, Isabelle, 2022, In: Information (Switzerland). 13, 10, p. 1-18 500.Research output: Contribution to journal › Journal article › Research › peer-review
- Published
Generating Scientific Claims for Zero-Shot Scientific Fact Checking
Wright, Dustin, Wadden, D., Lo, K., Kuehl, B., Cohan, A., Augenstein, Isabelle & Wang, L. L., 2022, Generating Scientific Claims for Zero-Shot Scientific Fact Checking. Association for Computational LinguisticsResearch output: Chapter in Book/Report/Conference proceeding › Article in proceedings › Research › peer-review
- Published
Habilitation Abstract: Towards Explainable Fact Checking
Augenstein, Isabelle, 2022, In: KI - Künstliche Intelligenz. 36, p. 255–258Research output: Contribution to journal › Journal article › Research › peer-review
- Published
Information fusion as an integrative cross-cutting enabler to achieve robust, explainable, and trustworthy medical artificial intelligence
Holzinger, A., Dehmer, M., Emmert-Streib, F., Cucchiara, R., Augenstein, Isabelle, Ser, J. D., Samek, W., Jurisica, I. & Díaz-Rodríguez, N., 2022, In: Information Fusion. 79, p. 263-278 16 p.Research output: Contribution to journal › Journal article › Research › peer-review
- Published
Long-Tail Zero and Few-Shot Learning via Contrastive Pretraining on and for Small Data
Rethmeier, Nils & Augenstein, Isabelle, 2022, In: Computer Sciences & Mathematics Forum . 3, 18 p., 10.Research output: Contribution to journal › Journal article › Research › peer-review
- Published
Longitudinal Citation Prediction using Temporal Graph Neural Networks
Holm, Andreas Nugaard, Plank, B., Wright, Dustin & Augenstein, Isabelle, 2022, Proceedings of the Workshop on Scientific Document Understanding co-located with 36th AAAI Conference on Artificial Inteligence (AAAI 2022). CEUR, 8 p. (CEUR Workshop Proceedings).Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings › Research
- Published
Machine Reading, Fast and Slow: When Do Models “Understand” Language?
Ray Choudhury, S., Rogers, Anna & Augenstein, Isabelle, 2022, Proceedings of the 29th International Conference on Computational Linguistics. Association for Computational Linguistics (ACL), p. 78–93Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings › Research › peer-review
- Published
Modeling Information Change in Science Communication with Semantically Matched Paraphrases
Wright, Dustin, Pei, J., Jurgens, D. & Augenstein, Isabelle, 2022, Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, p. 1783-1807 25 p.Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings › Research
ID: 180388519
Most downloads
-
1423
downloads
Mapping (Dis-)Information Flow about the MH17 Plane Crash
Research output: Contribution to conference › Paper › Research
Published -
288
downloads
Multi-task Learning of Pairwise Sequence Classification Tasks Over Disparate Label Spaces
Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings › Research › peer-review
Published -
195
downloads
Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)
Research output: Book/Report › Book › Research › peer-review
Published