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PREFACE v

Preface

The thesis entitled ”In pursuit of gene variation of consequence to human
health and disease” is submitted to the PhD School of The Faculty of Science
to meet the requirements of the obtaining a PhD degree at the University of
Copenhagen.

The work presented in this thesis contains two projects, that I atttached
in the Chapter 7. The first project was initiated from March 2019 primarily
at the Section for Computational and RNA Biology, Department of Biology,
Univeristy of Copenhagen, under the supervsion of professor Anders Krogh.
The second one was carried out in the period between July 2021 and November
2022, at the Machine Learning section, Department of Computer Science and
Center for Health Data Science (HeaDS), University of Copenhagen. The
Ph.D. project was financially supported by the China Scholarship Council
(201804910693) and the Graduate School of Sciences, University of Copen-
hagen.

The thesis is divided into two parts. Chapter 1 is an introduction for the
research of human genome, transcriptome and neural network. I also briefly
introduced the research aims and hypotheses, methods and summary of the
studies which I worked in the last almost four years (chapter 2 to 5). The
chapter 7 contains two papers, the first paper was supervised by Prof. Krogh
with the help of Christian Grønbæk and Prof. Pieor Fariselli. The second
paper described a generative decoder model, which was used on Cancer data
research. I collaborated with Viktoria Schuster, Iñigo Prada-Luengo and Prof.
Krogh with the big help from Thilde Terkelsen on this project.
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Abstract

From the invention of Sanger sequencing, to the birth of current high-
throughput and long-read methodologies, sequencing technology has become
an vital tool for scientific research. Biologists released the first version of the
human genome in 2001, and continued to refine it over the following years
until the complete and final genome sequence was published in 2022. In
parallel, the 1000 Genome project has revealed the extent of human genetic
variation and polymorphisms, filling a gap in our knowledge about the diver-
sity of the human mutational landscape. Transcriptome sequencing provides
a means to study the changes in gene expression patterns and related signal-
ing pathways affected by diseases and other biological processes. With the
advancement of computer science, machine learning has been introduced into
the field of biological and medical research. Using ML approaches scientists
hope to find the biological signals and patterns hidden within massive datasets.

The first chapter of this thesis provides an overview of the human genome,
transcriptome research and different machine learning algorithms, including
their applications in biological and medical research.

The last chapter centers around two projects I worked on during my Ph.D.
In the first project, simply called DNA prediction, we employed a Central
model, a Markov model and a bi-directional Markov model to estimate the
probability of the occurrence of four nucleotide types at a site based on its con-
text sequence - the input for these models were the human reference genome.
The results show that the base prediction of the human genome was above
50% on average, which should be compared to random guessing (25%). We
applied the predicted results to SNP databases, and found that the alternative
alleles showed higher probabilities than reference bases for somatic SNPs. In
addition, we developed a substitution model to calculate the base mutability.
Here, we found that the α matrix relies on a much smaller context sequences,
and in the prediction results of the model with one base to each side, we found
that cytosine (C) has a higher mutability to thymine (T) in CpG sites. Addi-
tionally, our substitution model fits the somatic mutations very well..
In the second project, we developed a generative nerual network consisting of
decoder and a Gaussian mixture model - hence, we called it a deep generative
decoder model. We applied the decoder model to the study of gene expression
data. We used normal individual bulk RNA sequencing samples from the GTEx
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database to train our model, and made a matrix to show how well the samples
can be clustered together by tissue type and their distribution within different
Gaussian components. We found that, except for three tissues with a small
sample size, the majority of tissue types independently dominated a Gaussian
component. Then, the cancer samples from the TCGA database were used to
evaluate whether our trained model could generate new data points and match
them to the correct Gaussian component of the corresponding tissue. Addition-
ally, our sophisticated model can be used to predict the probability of genes
being differentially expressed, by using the negative binomial distribution in
our model, which can be used for N-of-1 research. Compared to DESeq2, a com-
monly used method to obtain differential expressed genes (DEGs), the number
of DEGs provided by our model is much smaller. However, in the enrichment
expected fraction analysis of driver genes and the analysis of subtype-specific
related genes of breast cancer, our model shows a good performance.
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Resumé (Dansk)

Fra opfindelsen af   Sanger-sekventering, til fødslen af   nuværende high-
throughput -og long-read metoder, er sekventeringsteknologi blevet et vigtigt
redskab indenfor den videnskabelige forskning. Biologer fremlagde den første
version af det menneskelige genom i 2001, og fortsatte med at forfine dette
i mange år efter, indtil den fuldstændige og endelige genomsekvens blev of-
fentliggjort i 2022. Sideløbende har 1000 Genome-projektet afsløret omfanget
af menneskelig genetisk variation og polymorfier, og udfyldt et hul i vores viden
omkring variabiliteten af   det menneskelige mutationslandskab. Transkriptom-
sekventering giver os mulighed for at studere ændringer i genekspressionsmøn-
stre og relaterede enzym/protein signaler som påvirkes af sygdomme og andre
biologiske processer. Med de store fremskridt inden for datalogi, er maskin-
læring blevet en central del af den biologiske og medicinske forskning. Ved
at bruge maskinlærings-metoder håber forskere at kunne udlede de biologiske
mønstre, som ligger gemt i massive datasæt.

Det første kapitel i min Ph.d. afhandling giver et overblik over det hu-
mane genom, transkriptomforskning, samt forskellige maskinlæringsalgoritmer,
herunder deres anvendelser indenfor biologisk og medicinsk forskning.

Det sidst kapitel centrerer sig omkring to projekter, jeg har arbejdet på
under min Ph.d. I det første projekt, her kaldet DNA-forudsigelse, brugte vi en
central model, en Markov-model, samt en tovejs Markov-model til at estimere
sandsynligheden for forekomsten af hver af de   fire nukleotide på en specifik
position i genomet, baseret på kontekstsekvens - inputtet til disse modeller
var det humane referencegenom. Resultaterne viste, at basisforudsigelsen af
  det humane genom var over 50% i gennemsnit, hvilket skal sammenholdes
med et tilfældig gæt på 25%. Vi anvendte de forudsagte resultater med SNP-
databasen og fastslog, at de alternative alleler viste højere sandsynlighed end
referencebaser for somatiske SNP’er. Ydermere udviklede vi en substitution-
smodel til at beregne basismutabiliteten. Her fandt vi, at vores α-matrix er
afhængig af en mindre kontekstsekvens, og i vores output fra modellen med
en base til hver side, ser vi at cytosin (C) har en højere mutabilitet til thymin
(T) i CpG-regioner. Ydermere passer vores substitutionsmodel godt på de
somatiske mutationer.
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I det andet projekt udviklede vi en generativ model, som består af et deck-
oder neuralt netværk og en Gaussisk blandingsmodel, som vi kalder en dyb
generativ dekodermodel. Vi anvendte dekodermodellen til at studere genek-
spressionsmønstre. Normale individuelle RNA-sekventeringsdata fra GTEx-
databasen blev brugt til at træne vores model og vi generede et matrix for at
vise, hvorledes data kan grupperes efter vævstype og deres fordeling inden for
forskellige Gaussiske komponenter. Vi fandt, at bortset fra tre væv med kun
få prøver, dominerede størstedelen af   vævstyper hver især en af de Gaussiske
komponenter. Dernæst blev kræftprøver fra TCGA-databasen brugt til at eval-
uere hvorvidt vores trænede model kunne generere nye datapunkter og matche
disse med den korrekte Gaussiske komponent af det tilsvarende væv. Vores
sofistikerede model kan bruges til at forudsige sandsynligheden for at et gen er
differentielt udtrykt, ved at benytte den negative binomiale fordeling i vores
model, som kan bruges til N-af-1 forskning. Sammenlignet med DESeq2, en
populær og anvendt metode til at opnå differentielt udtrykte gener (DEG’er),
er antallet af DEG’er givet fra vores model en del mindre. Imidlertid viser
vores model en god præstation i den forventede berigelsesfraktionsanalyse af
drivergener, samt i analysen af   subtypespecifikke-relaterede brystkræft gener.
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1 CHAPTER 1. INTRODUCTION

1 Introduction

I n the 19th century, deoxyribonucleic acid (DNA) was for the first time
isolated by Friedrich Miescher, a doctor from Switzerland [1]. DNA was shown
to carry genetic information via a Pneumococcus experiment in 1928 [2].
Around 20 years later, Alfred Hershey and Martha Chase identified the genetic
function of DNA in 1952 [3]. One year after, J. D. Watson and F. H. C. Crick
reported the molecular structure of DNA [4], which had a profound influence
on the scientific research of the later generations. In 1957, Crick laid out the
central dogma of molecular biology, from DNA - to RNA - to proteins, which
suggested that genetic information only has one direction between DNA, RNA
and proteins [5]. These and many more important discoveries have laid a solid
foundation for biological studying. On the other hand, the development of
computer technology and the breakthrough in sequencing technology in the
recent 20 years provided us with the possibility of studying life on earth by
using big data.

At the core of an organisms’ genetic content are nucleic acids, bio-macro-
molecules located in cells. There are two types of nucleic acids, called DNA
and ribonucleic acid (RNA). DNA is a long polymer made up of repeating
units of four different nucleotides: adenine (A), thymine (T), cytosine (C) and
guanine (G). Normally, in living creatures, DNA is composed of two helical
strands and bound together tightly, according to base pairing rules (A = T,
and C ≡ G), with hydrogen bonds, so both chain of this double stranded DNA
have exactly the same genetic information. CG base pairs are more stable
than AT base pairs because of the extra hydrogen bond in CG pairs. Hence,
the binding strength of double chains is associated with the proportion of CG
content [6]. In eukaryotes, DNA is mainly stored in the nucleus of every cell,
with a samll amount in the mitochondria or chloroplast. DNA and histones
combine together to form a higher-order structure called chromosomes. The
human genome is comprised by 46 chromosomes, including sex chromosome
X and Y [7]. The entire DNA polymer may contain hundreds of millions of
nucleotides. For instance, chromosome one of the human genome, the largest
chromosome, has about 220 million base pairs [8]. There are around three
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billion base pairs in total in the human genome. However, in many species
only a small fraction of the genome encodes proteins. Only about 1.5% of the
human genome are protein-coding exons [9].

As for RNA, it has the similar structure to DNA. Commonly, RNA is a
single chain polymer and generally much shorter in length than DNA. Another
primary difference is that the base complementary to Adenine (A) is Uracil
(U) in RNA, while in DNA the nitrogenous base is Thymine (T) [10] . There
are essentially three kinds of RNA: 1. messenger RNA (mRNA) is the tem-
plate for protein synthesis that carries information from the DNA; 2. transfer
RNA (tRNA) which transfer amino acid by recognizing the genetic codons; 3.
ribosomal RNA (rRNA) also plays an important role in the process of protein
synthesis. It is a part of the ribosome that is responsible for translation in cells.

As science evolves, like physic, computer science and chemistry etc., so
does biologists’ understanding of DNA, RNA and other biological mechanisms.
Especially in recent years, scientists used varieties of biological data as research
materials, and then generated the results through computer processing, in-
cluding but not limited to sequence assembly, sequence alignment, prediction
of protein structure and gene expression analysis [11]. Moreover, scientists are
starting to use machine learning models that let computers learn and capture
the features of biological and medical datasets, which can help us in disease
research, drug discovery and more.

1.1 Human Genome

The human genome is constituted of 23 chromosome pairs, including one pair
of sex chromosome, each of which has hundreds or thousands genes (Figure
1.1). A gross estimation result showed that we have approximately 3.72*1013
cells [12] in the human body. All cells share the same genomic information.
Genes on every chromosome do not line up next to each other, there is an
intermediate intergenic region which could be regulatory elements or non-
coding DNA. For a long time, people divided DNA into coding and non-coding
DNA. The non-coding DNA is also commonly called ’Junk DNA’, for those
segments cannot be transcribe into functional RNA molecules [13]. With the
development of high-throughput sequencing technology however, people began
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to systematically study the function of non-coding regions. For example,
transcription factors can specifically recognize some non-coding DNA in the
vicinity of genes and interact with them to activate or inhibit gene expression.

During the DNA replication process, DNA repair mechanisms accurately
fix mistakes, which makes the human genome seem quite stable. However,
uncorrected nucleotide pairs will become permanent mutation in the next
cell division if these mismatched pairs remain after the DNA repair process
[14]. In another case, when a retrovirus enters the cells its RNA is converted
into a double-stranded DNA by reverse transcription. The reversed DNA
can be integrated into the infected cell’s genome [15]. In addition, under
the conditions of ionizing and ultraviolet radiations mutations of sequence or
structure of the DNA chain can be induced. These are some examples for
causes of mutations. Mutations that occur in somatic cells could have a chance
to be present in different tissues if they happened in the very early stage of
the cell development process, however these mutations cannot be inherited by
offspring. Mutations that occur in the chromosomes of germ cell can be passed
on to offspring.

Differences in the arrangement of the four nucleotides of A, T, C and G
in genome lead to the different species. Even a single nucleotide change can
make the difference in phenotypic characteristics in a population. And the
deletion or mutation of genetic information is also one of the sources of many
diseases. Therefore, it was an important step to obtain the full sequence infor-
mation of human genome. In 1984, the Human Genome Project (HGP) plan
was proposed by US government, then the great and largest biological collab-
oration between six countries was started in 1990. The first draft complete
sequence of the human genome was generated in 2001 [17]. The first complete
human genome was sequenced with Sanger sequencing [18]. The accuracy of
the Sanger sequencing method is up to 99.99%, however since the time and eco-
nomic costs are high it is difficult to apply widely. In 2004 and 2006 (Figure
1.2) two next-generation sequencing (NGS) technologies were introduced: 454
Life Science (Roche) and Solexa 1G (Illumina) [19, 20]. The advanced technol-
ogy of NGS brings us to the next chapter of sequencing. The final complete
genome with gapless assembly was finished in early2022 [21]. After the com-
plete human genome was released, the studies on human population genetics
and comparative genomics helped biologist acquire insight on genetic diversity
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Figure 1.1. Statistics of the number of genes and base pairs on
each human chromosome [16]

[22]. The international 1000 Genome Project, launched in 2008, aimed to cre-
ate the most detailed map of human genetic variation across individuals, which
can be used in biological and medical research [23]. The project declared more
than 88 million variants. 84.7 million single nucleotide polymorphisms (SNPs),
3,600,000 insertions/deletions (indels, shorter than 50 nt.), and around 60,000
structural variants were found [24].

1.1.1 DNA Sequencing and Genome Assembly
In 1977 the first generation of DNA sequencing methods was invented by
Sanger using the double-stranded termination method [25], and then the
chemical degradation method was invented by Maxam and Gillbert [26]. The
emergence of sequencing technology opened a new door in the field of biological
research, which made it possible to decipher genes, genomes, transcriptome
and proteome information. However, the low throughput was one of the fatal
factors affecting its widespread application. NGS technology was developed in
response to the increasing demand for sequencing throughput and time. NGS
platforms can sequence millions of DNA segments at a time for a single indi-
vidual via massively parallel sequencing method, which enables the sequencing
of a whole genome within a short period of time [18].
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Figure 1.2. Timeline of the development of sequencing technol-
ogy of each platforms. SBS: sequencing by synthesis; SMS: single
molecule sequencing; SBL: sequencing by ligation. [20]

Here we focus on three established technology platforms [27]: 1) 454 method
from Roche company. The basic principle is: one magnetic bead is used
for one fragment of DNA, and then generate one read information for this
fragment. When a dNTP is added to the template sequence, a pyrophosphoric
acid will be removed to identify the base by detecting this pyrophosphoric
acid. 2) ABI/SOLiD, ligation-sequencing, uses a mixture of single-chain fluo-
rescent probes containing 8 bases instead of dNTP. These probes are paired
with template DNA sequence according to the complementary base pairing
rule. Every two bases determine a fluorescence signal, it is also called two
probe-specific bases sequencing. 3) Illumina/Solexa method can sequence
the DNA fragment along with synthesis. In this technology, modified DNA
polymerase and dNTP with four kinds of fluorescent are added in the process
of sequencing. It only allows a single base involved in each cycle because of
the chemically cut 3’-hydroxyl-end of dNTP. And the nucleotide types can be
read according to the fluorescence carried by dNTP.

The increase in sequencing throughput and the decrease in cost have led
to the popularization of whole genome sequencing. NGS is getting more pop-
ular in the current research market, which is not only used in whole genome
sequencing and transcriptome sequencing, and further used in population
genomics, metagenomic sequencing, re-sequencing, cancer genome, genetic
disease research and metabolic fields. Nonetheless, the weakness of NGS is
obvious, the reads length around 250-300 bp for Illumina platform is too
short [28]. Therefore, third generation sequencing technologies were published
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Figure 1.3. Illustration of genome assembly. A. The workflow of
whole genome de novo assembly. B. The de Brujin graph approach.
Figure modified from[31]

by PacBio (Single Molecule Real-Time, SMRT) and Oxford Nanopore Tech-
nologies. Different from the first two, the biggest highlight is that they use
single molecular sequencing without doing PCR amplification. Ideally, the
read length could be as long as we need [28]. The SMRT technology won’t
bring artificial mutations, no GC bias because we don’t have to do the PCR.
Secondly, the average sequencing length is around 10kb, the longest read can
reach 54 kb. Another advantage is the accuracy rate of reads of up to 99%
after self-correction if the sequencing depth above 10. However, the error
rate for a single read is higher than the former two [29], and it is much more
expensive. In Nanopore sequencing the reads are even longer, up to 150kb
[28]. The other brilliant merit of Nanopore is that it can be used for RNA-seq
sequencing directly, circumventing reverse transcription and PCR [30].

As we solve the sequencing problem, another important question is how
do we assemble these reads in the right order. This drive the development
of genome assembly software. Basically, the core algorithm for short reads
assembly is using a de Brujin Graph (DBG) [32]. The software slices the
sequencing reads into substrings of length k, which is called k-mer. These
k-mers are used as nodes to build the DBG, from which then branches are
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Figure 1.4. The list of genome assembly softwares for short
reads. The + in the plot represents the evaluation in various as-
pects. Figure modified from[31]

remove if have low coverage or cannot be extended further. Thirdly, the DBG
needs to be disassembled to get contigs, and scaffolds can be further obtained
by mapping reads back to contigs. Pair-end reads will be used for closing gaps
(Figure 1.3) [31]. The genome assembly softwares normally used in the data
science market are shown in the Figure 1.4 [31].

Overlap-Layout-Consensus (OLC) is commonly used for 3rd generation se-
quencing assembly. In general, there are three steps for long reads assembly:
1) Pairwise alignment of all reads is conducted to find the overlap between
segments. The overlap length of two reads needs to be higher than a chosen
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threshold. 2) Obtain contigs by using the overlap information, and then gen-
erate scaffolds. 3) On the basis of reads quality, the sequence with the highest
quality score is found in all of the contigs, which is called consensus. The fi-
nal genome sequence can be obtained by using multi-sequence alignment for
consensus. There are a few softwares that can be used for the 3rd generation
sequencing assembly, including HGAP, Canu, FALCON, Flye and Miniasm[33].

1.1.2 Variants studies in Human Genome
Mutation and selection are essential and vital in the evolutionary process of
species, which can increase the polymorphism of organisms to better adapt to
environmental changes. Approximately, 60% mutations could have influence
on proteins but won’t cause harmful results for organisms [34]. These are
called neutral mutations. The frequency of these mutations and selections
fluctuates randomly [35, 36, 37]. However, the amount of mutations needs to
be controlled since the stability of the genome is vital. There are also a certain
percentage of harmful mutations which may affect the health or fertility of the
organism if some essential genes are mutated. Thus, it is important to study
the relationship between stability and plasticity of biological genome [38, 39].
One of the most common mutations is a SNP, which describes genomic loca-
tions where variation can occur [40].

In 2011, John C. Castle pointed that SNPs are more often detected in less
conserved regions of the genomic sequence. He revealed that regulatory loci
are highly conserved and have a low SNP rate. Furthermore, SNPs in coding
regions have high conservation scores together with low SNP rates. It is worth
mentioning that codon position three has the highest SNP rate and the lowest
SNP rates was found at codon position two, which is consistent with the de-
generacy of amino acids (Figure 1.5) [41].
Additionally, previous studies showed that the sequence context is one of the
factors which influence mutation rates [42, 43, 44, 45]. The research was based
on nucleotides neighboring SNPs, such as CpG dinucleotides. It was found
that base C more often mutated to T in human genome. Few studies have
used larger sequence contexts to study polymorphism rates. Varun Aggarwala
and Benjamin F Voight made a model that expands the sequence context up
to 7 bases, and this model could explain more than 81% of the variability in
substitution probabilities [46]. Another study showed that motifs are associ-
ated with mutations as well. A novel motif associated with A to G mutations
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Figure 1.5. The SNP rate and conservation scores across 3’ splice
sites. The y-axis shows the SNP rate (top) and Conservation score
from UCSC (bottom), x-axis shows the last 100 nt in introns and
first 50 nt in coding regions[41]

was identified via analyzing the mutation process in the human germline and
malignant melanoma [47]. Recently, we built a substitution model which was
based on the context dependent nucleotide probabilities to calculate the muta-
bility in human DNA. In our study, we found a significant C to T substitution
probability in GpG contexts, ranging from 0.48 to 0.72 [39].

1.2 Human Transcriptome
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T ranscriptomics is based on RNA sequencing, which can be used for study-
ing the gene expression and understanding the RNA regulations in cells. In
2005, Cheng J etc. indicated that around 5% of genomic sequences can be
covered by detectable transfrags [48]. The annotation of the human genome
was also limited, therefore the majority of the observed RNA fractions were
not from known transcriptions [49]. Fortunately, rapid advances in sequencing
technology have made up for that.

Unlike the genome, the transcriptome contains specific information about
the time point and space in tissues [50]. Under different conditions such as
environment and cell growth period the gene expression can be varied. As
research has continued to evolve, the methods of transcriptomics have become
increasingly diverse. For example, single cell sequencing is another great break-
through technology, which can research the heterogeneity across cells [51, 52].
However, a challenge we faced was how to isolate high-quality single cells. In
2014 a research group from Peking University successfully prepared high qual-
ity single cell transcriptome sequencing samples[53]. In 2016 PL Ståhl and
colleagues developed a high-resolution method to study which genes are active
in a tissue, and this method was named spatial transcriptomics [54]. I contrast
to classic transcriptomics, this method can provide positional information and
quantitative gene expression values. On the other hand, the research on human
disease based on transcriptomics has also made great progress. As mentioned
above, gene mutations may accompany the development of diseases. There
is much evidence that mutated genes can be used as a marker for disease di-
agnosis. A study published in Cancer Research found several dysregulated
transcripts which occurred many times in multiple cancer types [55]. In an-
other case, RNA-seq for help with the diagnosis of Mendelian genetic diseases
was first published in 2017 [56].

1.2.1 RNA Sequenceing and Downstream Analysis
Once scientists were able to sequence the human genome, they turned their
eyes to RNA sequencing. In the past decade, RNA-seq played an important
role in differential gene expression analysis [57]. Nowadays, RNA-seq has been
used in a lot of different aspects, including RNA structure, RNA translation,
single cell studies, spatial transcriptomics and RNA-protein interaction [58].
Unlike DNA sequencing, transcripts are much more complex and one gene
corresponds to more than one transcript because of alternative splicing [59].
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Figure 1.6. Library preparation schematic of different RNA se-
quencing methods. The black line shows the method for short reads
RNA-seq; green for long reads RNA-seq and blue presents the di-
rect RNA-seq methods for long reads RNA-seq. Figure modified
from [58]

Secondly, RNA is not stable enough for sequencing directly, with the exception
of Nanopore technology. Accordingly, we need to prepare a cDNA library
before sequencing [60, 61].
In order to obtain a good quality cDNA library purification is a vital step
after extracting RNAs since rRNA accounts for over 80% of the total RNA
[62]. Expression of rRNA is stable in different tissues, which means rRNA can
provide less useful information for our experiments. Thus, we purify RNA in
many of the cases to improve the utilization of mRNA sequencing data [63].
The poly(A) method is primarily used in eukaryotes because of structural
differences of the mRNA from prokaryotes. The eukaryotic mRNA has a 3’
poly(A) tail which can be enriched for by Oligo(dT) magnetic beads [64, 65].
Another method is the removal of rRNA which is often used in prokaryotes
RNA sequencing. The next step is to construct a cDNA library by reverse
transcribing the RNA. Here, we can choose to reverse transcribe mRNA first
and then fragment cDNA, or we can break the mRNA and then reverse tran-
scribe the fragments to cDNA (Figure 1.6) [58].

In continuation of the above topic we are going to talk about the existing
RNA sequencing platforms. Short-read sequencing technology from Illumina
has been used to sequence more than 90%of the published data deposited in
NCBI and other databases. This method is very robust, and multiple tests
and comparisons showed a strong correlation between intra- and inter-platform
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Figure 1.7. Comparison of three different RNA-seq methods.
Figure modified from [58]

results of RNA-seq [66, 67]. However, this method can introduce some artificial
biases and limit detection and quantitation of isoforms [68]. As for long-read
RNA-seq, PacBio technology was able to detect full length transcript cDNA
reads ( ˜ 15kb) which helped with annotating novel transcripts [69]. In addi-
tion it effectively reduces the false positive rate of splice junction sites (Figure
1.7), while in short-read RNA-seq this can only be done by relying on the
optimization of computing algorithms [70]. The nanopore method, long-read
direct RNA-seq, has obvious advantages as we discussed in the human genome
sequencing section. RNA base modifications have the potential to be detected
by this method and it facilitates the discovery of updates in the field of epi-
transcriptomics [30, 71, 58].

Long-read sequencing has advantages for the read length and is suitable
for studying the structural information of transcripts, like isoforms and splice-
junctions. The short-read RNA-seq method is applicable for gene quantification
and to study differentially expressed genes by comparing case and control.
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At present, short-read RNA-seq is still the most commonly used technology for
transcriptomics analysis. In order to productively utilize the biological data
from RNA-seq a range of software has been developed, from de novo assembly
or reads mapping to differential gene expression to pathway annotation in the
end [72, 73]. The first step is to map the fastq data to a reference transcriptome
or genome, after quality control using tools such as TopHat2 [74] or HISAT2
[75]. However, for some species, we don’t have reference genomes with high
quality annotation file. We then have to consider RNA-seq de nove assembly
[76]. Trinity is the first transcriptome de nove assembly tool developed inde-
pendently of genome assembly software [77]. There are some other tools such
as StringTie [78] and SOAPdenovo-Trans [79]. The next important step is to
quantify the abundance of transcripts. Previous studies have shown that the
quantitative process can be hugely affected by the use of different quantifica-
tion tools [80, 81, 82]. The five most commonly used tools are RSEM [83],
CuffLinks [84], eXpress [85], Kallisto [86] and Saiffish [87]. RSEM and eXpress
can quantify known genes, and RSEM uses an expectation maximization model
to assign ambiguous reads. They show a high accuracy of computing along with
a long calculating time. Kallisto and Saiffish are reference-free alignment soft-
wares with shorter run time, however they can generate bias.
After the expression matrix has been obtained, a statistical model can be es-
tablished for calculating the significantly differentially expressed transcripts.
The four most commonly used methods for this step are DESeq2 [88], edegR
[89], limma-voom [90] and EBseq [91]. Importantly, filtering and normalization
should be done before this step.
Regarding the annotation, there are several R packages available such as en-
richGO and enrichKEGG [92] for GO terms and KEGG [93] for pathway en-
richment analysis based on the differentially expressed genes we have found.
msigdbr is another R package which can be used for GTRD, TFT and Reac-
tome annotation based on MSigDB database [94].

1.2.2 Gene Expression in Human Disease Research
Human disease is an abnormal life activity process caused by the disorder of
autostable regulation under harmful effects. It may influence the function of
some or all tissues, organs and systems of a human. Many diseases can cause
mutations in genes or alter gene expression by turning transcription factors on
or off. With the development of sequencing technology gene expression values
became widely used in human disease research. For example, a study [95] used
scRNA-seq data to infer regulatory networks, and a new correlation metric
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was shown that can calculate the correlations among genes. The metric was
applied on mouse organs [96], a mouse model of Alzheimer disease [97] and
human pancreatic tissue of healthy people and type2 diabetes patients [98] for
generating regulatory networks [95].

Diabetes is one of the major diseases affecting humans, with many compli-
cations. Insulin signaling is the center of metabolic control and it can prevent
many chronic diseases including diabetes [99]. Research by Melissa L. Hancock
et al has shown that the binding of insulin receptors to promoters is mediated
by host cell factor 1 (a coregulator) and transcription factors. The lack of
insulin increases the risk of impaired binding of insulin receptor on chromatin
[100].
Gene expression data can also be sued together with DNA methylation data
in disease research. Recently, a study by Palou et al. integrated these two
data types to study cardiovascular disease [101].

Another serious human disease is cancer, recognized by the World Health
Organization as the second leading cause of death worldwide. Cancer kills
almost 10 million people every year. When oncogenes are activated cancer
occurs in the human body. Altered cells can proliferate uncontrollably and
eventually form tumors. Hence, understanding the pathogenesis of cancer and
pathways involved in it is of great importance. The development of RNA-seq
technology has opened up new horizons in cancer research. Breast cancer, one
of the most common cancers, has been found to be associated with the Wnt
signaling pathway. Typically, Wnt signalling is a conserved signaling pathway
that plays a vital role in cell proliferation, differentiation and survival and
calcium homeostasis [102, 103, 104, 105]. It is regulated by the β-catenin
signaling pathway in the cell nucleus. TCF/LEF, a family of transcription fac-
tors, was reported to mediate β-catenin signaling. However, in 2018 a research
group announced that they found Wnt/β - catenin pathway could regulate tar-
get genes independently by using whole transcriptome sequencing analysis[106].

The development of transcriptomics, including single-cell sequencing, long-
read sequencing, time- and spatially-resolved transcriptomics among others,
has helped scientists study and explain human diseases.
As we know, the change of gene expression values can directly reflect the impact
of disease or other factors on the organism. Most of the current methods
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use DEseq2 to calculate differentially expressed genes. Although the public
database is growing rapidly, it is still difficult to find good controls in the
process of disease. Therefore, in my second project, we developed a deep neural
network model to learn the features of the healthy individuals’ gene expression
data across all tissues. We hope the model could help with future disease
research.

1.3 Machine Learning

I n 1959, the term machine learning was coined by Arthur Samuel [107]. It is a
technique that expectes computer to learn knowledege like human beings, find-
ing useful knowledge and capture information features from vast amounts of
data. Compared to the human brain computers have a larger memory, faster
calculation speed and more stable computing capabilities. In the past few
decades, mathematicians and computer scientists have tried various methods
to improve the learning capability of machines. It is hoped that the computer
can handle complex scientific problems based on the excellent characteristics
mentioned above. To put this concept in simply, machine learning is a process
of using mathematical model with several different parameters to teach a
computer to use known information and to optimize the model [108], then find
the best solutions for the real problems. We should evaluate this optimized
model if it can solve the similar questions, afterwards.

Briefly, the machine learning method constitutes three parts: 1) Input
data, also referred to as the training set; 2) Modeling, the process by which a
machine learns according to a given algorithm; 3) the Model, form an efficient
model that captures the features behind the data with the optimal parameters.
According to the different training methods of machine learning, it can be
divided into three categories: supervised learning, unsupervised learning and
reinforcement learning [109]. The fist two approaches are more often used in
real-world problem-solving.
In supervised learning a mathematical model is trained on a dataset with
desired output (label) and then evaluated with test data [110]. The goal of
the model is to learn how to calculate the desired answer and get the correct
results when it faces new input [111]. Supervised learning can be used for
regression and classification tasks.
In unsupervised learning there is no label information on the training data.
The computer learns, generalizes and summarizes the features of the input
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dataset through the given mathematical model. In general, the interest is in
the patterns discovered by the model. It can be used for classification and
dimensionality reduction [112].

Machine learning is widely used to deal with a variety of real-world prob-
lems, including disease study, drug discovery, speech recognition and more
[113].

1.3.1 Markov Model
A Markov model is a kind of statistical model which can be used for probability
prediction [114]. It is a discrete time stochastic process with Markov property
in mathematics. During the Markov process for a given present state it is
irrelevant to predict the future state by using the past information. In other
words, the future state only relies on the current state. Markov models are
used as forecasting models in many areas, like price trends [115] and weather
prediction [116].

In biological research, Markov models are often used to explain biological
evolution. Choudhuri described that cis-regulatory elements prediction can
be used by first order Markov model [117]. As previous studies revealed that
the choice of bases is highly context dependent in human DNA [46, 38, 47].
The study of the first project in this thesis employed the Markov model to
predict probabilities of DNA nucleotides. Compared with the Central model,
which uses up to 7 bases in length to each side to predict the probability of
the observed nucleotide, however, for the Markov model, the probability of the
observed base is only related to its previous sequence. Thus, the first 14 bases
sequence of this nucleotide can be used to make predictions. The number of
free parameters is the same as the Central model. DNA has double strands,
therefore, we predicted the probability of a base both from the forward and
reverse side, where the model has 28 bases as context sequences [39].

1.3.2 Deep Neural Network
Deep neural networks are part of machine learning, inspired by the discovery
of different activation states in cats’ visual cells when they saw different ob-
jects [118, 119, 120], where many neurons were connected to each other [121].
Many such neural network models have been developed to deal with different
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structures of data and complicated problems, including but not limited to
Convolutional neural networks (CNN), Deep belief networks (DBN), Recur-
rent neural networks (RNN), Long Short term memory networks (LSTM),
Autoencoders (AE), Variational autoencoder (VAE) and Generative adver-
sarial networks (GAN). In this section, we mainly introduce CNN, RNN and
LSTM, three neural network models commonly used in biomedical research.
VAE and GAN models will go into the next section, which will introduce deep
generative models in detail.

There are several important factors for machine learning with neural net-
work models: 1) Data splitting - split the data into training set, testing set and
validation set. The training set is used for the calculation of model parameters,
and the validation set is used to evaluate the model performance and adjust
the hyperparameters, as well as to check whether there is overfitting in the
model training process. The testing set is used for the final model evaluation
[122]. 2) hyperparameters - one or some external parameters in the model that
need to be manually set, which cannot be trained through the training set
[123]. 3) Activation functions - it is used to form the nonlinear layers in deep
learning architecture and simulate the nonlinear transform from the input to
the output by combining with other layers. It can help improve the robust-
ness of the model, alleviate the problem of vanishing gradient and accelerate
convergence of the model. Choosing a suitable activation function is closely
related to if the model can effectively learn the training dataset [124]. Sigmoid,
tanh, ReLU, leaky ReLU, Maxout, softplus and softmax are some often used
activation functions. 4) Loss function - a mathematical function for evaluating
the difference between a model’s predicted value and the true value [125]. 5)
Optimization method - an algorithm for training models with gradient descent
in deep learning. Among them, the algorithms commonly used in biomedical
research are Stochastic Gradient Descent (SGD) - each sample can be used to
optimize the model, so the optimal θ can be calculated by randomly picking
a part of the samples [126, 127, 128]; Momentum (Gradient descent with
Momentum); root mean square prop (RMSprop); and Adam - an algorithm
that combines the Momentum and RMSprop together [129].

Another indispensable part of machine learning is to construct an appro-
priate neural network model architecture. Firstly, CNN is a neural network
model with many applications in image processing, speech and face recognition
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etc. directions [130, 131]. It can effectively retain the features of the training
set, and the complex problem is simplified by reducing the dimensionality of
a large number of parameters to a small number of parameters. Generally,
CNN is composed of Convolution layer, Pooling layer and Fully connected
layer [127]. Since the CNN model is very good at processing image data, many
biologists use this model to analyze medical image data. For instance, Kooi
published a study using the CNN model to detect lesions with mammography
[132]. Additionally, the CNN model can also be used for genome sequence
target prediction and protein structure prediction [133, 134, 135, 136]

Most neural network models have corresponding inputs and outputs. How-
ever, for sequential data, such as text data and biological DNA sequence data,
whose input is related to each other. It is necessary to develop a specialized
neural network architecture, which is what we call RNN. RNN can bring the
previous output results into the next hidden layer for training together. But
the downside of this model is also obvious, that is, short-term memory matters
much more than long-term memory. Therefore, it is limited in training on
longer sequential data [137, 138, 139]. Because of the advantages of the RNN
model, it was often employed to identify some specific input sequences on the
genome, detect the binding sites of transcription factors and DNA methylation,
and predict the secondary structure of proteins [140, 141, 142, 143].
LSTM is a derivative model of RNN, which optimizes the shortcomings of
RNN’s short-term memory impact. LSTM can capture important information
and ignore less important content when it is used for longer sequential data
training scenarios [144]. The application of this model is also very broad, such
as speech recognition, images analysis, disease prediction and stock forecast
[145, 146, 147, 148].

LSTM is also a good model for predicting the probability of DNA sequences.
In our previous work, we developed various LSTM models to predict the proba-
bility of nucleotides in the human genome, with one of the best models showing
an accuracy of nearly 54% [149]. Furthermore, Vinyals etc reported a possible
combination of CNN and LSTM together for automatically generating image
caption [150].
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1.3.3 Deep Generative Models
Deep generative models (DGM) are a class of methods that combine generative
models and deep learning. Since DGM has both the learning ability of deep
neural networks and the prediction ability of probability models, DGM can be
used to estimate the probability likelihood of each sample in the unsupervised
training loop, and then generate new samples that conform to this distribution
[151]. VAE and GAN are the two most popular methods.

GAN is a type of unsupervised algorithm, which is composed of a generator
and discriminator. During the training, the discriminator can be used to
automatically assess and continuously optimize the model, and the generator
is used to fit the distribution of real data and generate extremely realistic
new data [152]. Compared with other models, GAN can better simulate the
distribution of data. Second, GNA is less restrictive on generator functions.
And the Markov chain is not necessary for GAN. However, GAN has a serious
model collapse issue, where generator generates a large amount of the same
pattern of data, resulting in a lack of diversity of generated data [152, 153, 154].
Although GAN is difficult to train, much biomedical research is still based on
this model. For instance, GAN was used to predict the molecular process of
Alzheimer’s disease by using RNA-seq data in Jinhee Park’s group[155].

VAE is another type of DGM. The VAE model learns to capture data
features through encoder, and converts them into a low-dimensional and easy-
to-represent form in latent space, which can be decoded back to the original
real data as losslessly as possible through the decoder [156]. Compared with
GAN, VAE introduces latent variables, has a more complete mathematical
theory, and it is easier to train the model. We can reduce the dimensionality
of the latent space by methods like PCA, t-SNE, UMAP etc. or directly set
the latent space to 2D, and visualize these data points in a 2D plot because
the latent space has a good continuity during training [157, 156].
In biology, most models are not based on raw count data and require a few
data-processing steps, but deep generative models can be well compatible with
this [158]. Therefore, VAE is widely used in the analysis of both bulk-RNA-seq
and single cell RNA-seq data [159, 160].

Last year, V. Schuster and A. Krogh published a method to train a de-
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coder and presentation layer without an encoder. In this method, the decoder
can be self-trained by learning the presentation layer of training samples and
the weights of the decoder. In the comparison of the decoder and the au-
toencoder model in the image data, it is found that decoder can better learn
low-dimensional data [161].
Based on this work, they developed a new model called the Deep Generative
Decoder (DGD), which can be applied to single-cell gene expression data. This
DGD model consists of three parts: Representation, Gaussian mixture model
(GMM) and decoder. Among them, the representation has m-dimensions and
is learned as trainable parameters and participates in the entire training pro-
cess. As a kind of generative model, GMM is used to guide the data distri-
bution of latent space in the DGD model. The GMM consists of K mixture
components, each of which has a mean µ, and diagonal covariance

∑
and a

mixture coefficient c. As for decoder, it can be any kind of neural network
model [162, 163]. Since the DGD model can learn single-cell expression data
very well. Therefore, we applied this model, in parallel, to the gene expression
dataset of bulk-RNA seq data.
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2 Aims and Hypotheses

This section is intended to summarize the research aims and underlying as-
sumptions of my Ph.D. project. The primary goal is to study practical biolog-
ical questions by designing mathematical models.

2.1 Aims

• Project 1
The main question we studied in this project was how to predict the probability
of bases and their mutability in the human genome from the context. In detail,
we aim to: 1) Implement and evaluate the predictions of the Central model,
Markov Model and bidirectional Markov model for the bases at each position
in the human reference genome. And compare the prediction accuracy be-
tween the models. 2) Analyze the predictive capability of bidirectional Markov
model (BM14), with 28 bases as context, in different regions of the genome.
3) Investigate the prediction results of BM14 in variants. 4) Combine with the
BM14 model’s output, a substitution model is implemented to estimate the
base substitution rate of the known variants.

• Project 2
The goal is to build a neural network model that can be used for human disease
research. In this project, we aim to: 1) Train a deep generative decoder model
with the GTEx dataset and assess whether it can cluster samples from the same
original tissue. 2) Investigate whether the model can lead cancer samples to
their corresponding normal tissue clusters. 3) Calculate differentially expressed
genes and evaluate the potential application of the model in cancer research
and N-of-1 sample research.

2.2 Hypotheses

• Project 1
Previous studies have shown that in the process of biological evolution, the
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mutation and selection in chromosomal DNA is in a stable-variable balance.
The probability of a nucleotide at a particular position also depends on its
context sequences. Therefore, we hypothesize that each nucleotide in the hu-
man genome can be probabilistically predicted based on the information of its
neighboring bases, and then calculate the mutation rate based on the prediction
result and the information in the SNP database.

• Project 2
Gene expression data in disease tissue differs from corresponding normal tissue,
which can be identified by differential expression genes. However, one of the
limitations of such research is the lack of controls. We hypothesize that the
feature information of different normal tissues can be learned by developing
a deep generative decoder model. And when faced with disease samples, the
model has the potential to find its nearest normal tissue and identify differen-
tial expression genes.
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3 Methods and Dataset

This section summarizes the databases and datasets we used in my Ph.D.
projects. As well as briefly introducing methods.

3.1 Database

• We downloaded the human reference genome, version GRCh38.p13, and its
annotation bed files from NCBI and UCSC Table Browser, respectively.

• Different SNP datasets, including 1KPG variants data, ClinVar SNPs and
Somatic SNPs were downloaded from 1KGP, NCBI and COSMIC, respectively.

• Raw count files of gene expression data from Genotype-tissue Expression
normal individuals and The Cancer Genome Atlas dataset (TCGA) cancer
samples were downloaded from Recount3 platform.

• Cancer driver genes were downloaded from DriverDB3 database, and breast
PAM50 genes were obtained from R’s build-in ’genefu’ library.

3.2 Methods

• Project 1
The models are implemented in the C language, and count the
context sequences for each nucleotide by a Burrows-Wheeler trans-
form method. The details of the mathematics can be found
in the attached paper 1. The software is available at GitHub:
https://github.com/AndersKrogh/abwt/releases/tag/v1.2.1a

• Project 2
We developed a deep generative decoder model with an input layer-two hidden
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layers-an output layer architecture. The input layer has 50 dimensions, and
the two hidden layers have 500 and 8,000 hidden units, respectively. As for
the output layer, its unit number is consistent with the number of genes in the
training set. ReLU is used as the activation function in the model. The latent
space is presented by a Gaussian mixture model, which consists of 45 mixture
components. For each component, it has a 50-dimensional mean and diagonal
covariance vector. The model was used to train on GTEx dataset across all
tissues, and then we mainly studied Breast cancer. The details of the analysis
work can be found in the second attachment.
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4 Summary of the Projects

This section summarizes the mian results of the two projects included in the
Ph.D. thesis.

4.1 Project 1

Context dependency of nucleotide probabilities and variants in human DNA

Status: Published - BMC Genomcics

In the DNA prediction project, we first implemented the Central model to
predict the probabilities of nucleotides with a given context sequence size k.
Here, the central model can be simply written as, for the observed base xi at
the position i on genome DNA, its calculated probability is

P (xi|xi−k, . . . , xi−1, xi+1, . . . , xi+k).

We find that as k increases, the prediction accuracy also increases. However,
when k = 7, the model will have 3*42k = 0.8 billion free parameters. This
is the upper bound that our model can predict, because of the fixed size of
the human reference genome. In order to avoid the problem of overfitting, we
introduce the interpolation, that is, the predicted probabilities of the order k
model are used to regularize the model of order k + 1. The average prediction
accuracy of the Central model (k = 7)for the whole genome is around 49%.
Our best model, the bidirectional Markov model (BM14), achieves an average
prediction accuracy of over 51% for k = 14. In a predictive analysis of different
regions of the human genome, we found that the repetitive sequences have - as
expected - a higher accuracy. Different repeat types have great differences as
well, the simple repeat type is as high as 88%, but LINE1 is only about 63%.
Among all regions, the least accurate prediction was in the coding region, at
only 36%, but still higher than the random guessing (25%).
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We analyzed the performance of the BM14 model in the SNPs database.
We refer to the predicted probability of reference allele simply as Pref, and
the predicted probability of alternative allele as Palt. In the analysis of the
1KGP dataset, we did a density plot to show Pref - Palt across all SNP sites,
and we found that there is a peak on the right side close to 1. However, when
we removed the SNPs with low allele frequency (rare SNPs), a peak appeared
on the left side, which means Palt has a higher probability. The peak on the
Pref side has decreased, and the density plot is gradually symmetrical. In the
analysis of somatic SNPs, it was found that there is a clear trend of shifting to
higher Palt direction.
Based on the results of the BM14 model, we developed a substitution model
to estimate the SNPs’ substitution rate. In our study we found that in the
α matrix with k = 1 for CpG contexts, where C has a greater probability to
mutate towards T, which ranges from 0.48 to 0.72. In non-CpG contexts, its
maximum substitution rate is only 0.22.

4.2 Project 2

A generative model of normal tissue gene expression enables differential ex-
pression in cancer with one sample

Status: Manuscript in preparation

In this project, we used the gene expression counts data of healthy indi-
viduals from GTEx database to form a training set with 31 tissues, 17,072
samples, and 16,883 genes after removing low-expressed genes and non-protein-
coding genes to train our deep generative decoder model. The latent space
of the model is represented by a Gaussian Mixture model with 45 mixture
components.
After 200 epochs of training, our model can cluster samples of the same tissue
origin in a component. Visualizing the results, we found that almost all tissues
independently dominate a component except for the three tissues of bladder,
fallopian tube and cervix, which may be due to the small sample size. Uterus
and ovary share a component nearly half-and-half, probably because the two
tissues are too similar.
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We then wrote a function that uses the trained model to generate new data
points. The results showed that the majority of cancer samples we used could
be correctly matched to components corresponding to their tissues. On this
basis, we use the negative binomial distribution within the model to calculate
the probability of being a differential expression gene.
After the model could predict differential genes, our first work was to evaluate
the false positive rate of the obtained genes. We randomly selected a sample
from the breast tissue in the GTEx testset, pretending to be a disease sample,
and used the function to predict differentially expressed genes. At the same
time, we used the same samples as case, and then used all breast tissue samples
in the GTEx training set as controls to calculate differentially expressed genes
by DESeq2. We repeated the experiment for 20 tims. The results indicated
that our model gave nearly 0 genes (average 4.25 genes) when we set the
absolute value of log2FoldChange > 1 and P-adjust value < 0.01. However,
the average number of differentially expressed genes given by DESeq2 is over
75.
Following this, we assessed the predictive power of marker genes for breast
cancer. We took two datasets, the breast cancer driver genes and PAM50
genes. We compared the predicted ability of our model and DESeq2 for
marker genes in these two datasets by calculating enrichment scores. The
results showed that our model has a higher enrichment ratio for marker genes
than DESeq2, both in the multi-sample test and in the N-of-1 sample test for
the four subtypes of breast cancer.
In addition, we selected 7 genes for N-of-1 sample research of the four subtypes
of breast cancer, and we did this experiment 20 times for each subtype to show
the robustness of our model. The results left a deep impression on us. For
example, ERBB2 is a gene that is specifically up-regulated only in the HER-2
type, and our results showed that ERBB2 gene can be predicted in half of
the samples in the HER-2 type. But in the other three subtypes, the gene
was almost absent from the predicted significant gene list. Another example
is EGFR, a gene that is specifically down-regulated only in type Luminal B.
In our study, this gene could be found in almost all of the 20 experimentally
predicted significant gene list in Luminal B, with negative log2FoldChange
values of Luminal B type. In the other types, however, few can be found.
Interestingly, MMP11 is an up-regulated gene in HER-2, Luminal A and
Luminal B, but not in Basal-like type. Our results revealed that this gene
can be found in the list of significantly up-regulated genes in all of the 20
experiments in the first three subtypes, while basal-like also can find this gene
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13/20 times.

Furthermore, we expanded our study to 10 other cancers to evaluate our
model comprehensively.
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5 Conclusion and Perspectives

I n this Ph.D. thesis, we introduce three different models that can predict
nucleotide probability at that position based on its context sequences in human
genomic DNA. And the models have been packaged into software open for use.
The prediction results can help us better understand the structure of DNA. In
the prediction of different regions of the genome, it is found that the prediction
ability of the model for coding regions is limited. Probably because the genome
needs to have the ability to encode different proteins, while the high predictive
power means the low content information. Our further substitution model was
found to fit the observed mutations well, especially somatic mutations. Most
importantly, the α matrix can rely on smaller context sequences. In parallel,
our model was employed to predict the nucleotide probabilities of E. coli, A.
thaliana, C. elegans and S. cerevisiae genomes to assess the generalizability
of our model. Since our model is limited by the number of free parameters.
there is an upper bound to reliable prediction, we used LSTM, a deep neural
network model, in parallel to predict base probabilities on the human reference
genome. The predicted accuracy improved by about 2%.

Due to the development of sequencing technology, there has been an ex-
plosive growth of genome and transcriptome sequencing data. Among them,
gene expression data is an intuitive representation of the regulation of an
organism’s genes, and it is also an often used data type for studying disease
and other biomedical research. Therefore, in addition to developing simple
models for research and applications on DNA to help us study mutations and
genome structure. We find the deep neural network model, especially the
deep generative model, has advantages in the application of gene expression
data. In many cases of disease research, it is difficult to find suitable controls
to screen genes that are specifically overexpressed or suppressed by disease.
We found that it is possible to develop a deep generative decoder model that
uses GTEx healthy individuals as a training dataset to learn the differences
between human tissues and the intrinsic connections between genes from gene
expression data to help biomedical research and future applications.
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The results show that our model can cluster the samples of training set well
in different Gaussian components, and can correctly match untrained cancer
samples to components corresponding to their tissues.
DESeq2 is one of the standard tools for differential expression genes analysis.
Although this method can handle single-sample research, there will still be
artificial bias. Our model has better compatibility with single-sample data. In
the comparative analysis with DESeq2, our model outperformed DESeq2 both
in false positive rate and in enrichment analysis of cancer driver genes and
PAM50 genes. Secondly, our model can also identify breast cancer subtype-
specifically expressed genes when we did N-of-1 cancer research study.

Doctors also differ in how they treat and administer patients for different
subtypes of the same cancer. Therefore, identifying a patient’s cancer type is
critical. Taking breast cancer as an example, it is thought to have four different
subtypes: Basal-like, HER-2, Luminal A and Luminal B. However, some studies
indicated that Luminal B may potentially continue to be divided into different
subtypes. Based on the ideas mentioned above and the performance of our
model in current studies, maybe we can try to use TCGA-tumor data to train
the model to better distinguish different subtypes of cancer.
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Abstract
Background: Genomic DNA has been shaped by mutational processes through evolution. The cellular machinery for
error correction and repair has left its marks in the nucleotide composition along with structural and functional
constraints. Therefore, the probability of observing a base in a certain position in the human genome is highly
context-dependent.
Results: Here we develop context-dependent nucleotide models. We first investigate models of nucleotides
conditioned on sequence context. We develop a bidirectional Markov model that use an average of the probability
from a Markov model applied to both strands of the sequence and thus depends on up to 14 bases to each side of
the nucleotide. We show how the genome predictability varies across different types of genomic regions. Surprisingly,
this model can predict a base from its context with an average of more than 50% accuracy. For somatic variants we
show a tendency towards higher probability for the variant base than for the reference base. Inspired by DNA
substitution models, we develop a model of mutability that estimates a mutation matrix (called the alpha matrix) on
top of the nucleotide distribution. The alpha matrix can be estimated from a much smaller context than the
nucleotide model, but the final model will still depend on the full context of the nucleotide model. With the
bidirectional Markov model of order 14 and an alpha matrix dependent on just one base to each side, we obtain a
model that compares well with a model of mutability that estimates mutation probabilities directly conditioned on
three nucleotides to each side. For somatic variants in particular, our model fits better than the simpler model.
Interestingly, the model is not very sensitive to the size of the context for the alpha matrix.
Conclusions: Our study found strong context dependencies of nucleotides in the human genome. The best model
uses a context of 14 nucleotides to each side. Based on these models, a substitution model was constructed that
separates into the context model and a matrix dependent on a small context. The model fit somatic variants
particularly well.

Keywords: DNA context, Markov model, DNA substitution model

Background
The evolution of species can be followed in chromosomal
DNA, which has undergone mutations and selection, and
mutational processes have been essential for the develop-
ment of life on earth. On the other hand mutations need
to be controlled, because if an essential gene is mutated
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it may result in severe disease or loss of viability. This
balance between plasticity and stability is important for
sustaining stable life forms [1]. The question we ask in this
study is, how this balance is reflected in the local sequence
properties of human DNA and how the sequence context
affects mutations. More precisely, we consider models of
mutability that depend on the sequence context of e.g. k
bases on each side of the position in question.
It is well known that the sequence context influences

mutational processes. For instance, the mutation of C to T
ismuchmore common in CpG dinucleotides than in other

© The Author(s). 2022 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
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made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.
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contexts in the human genome [2, 3], and previous stud-
ies have reported that the immediate neighbouring bases
(up to a 7 base context) influence mutation rates [4–7].
Another study showed point mutations can be affected by
sequencemotifs [8]. The cellularmachinery includes com-
ponents for maintaining genome integrity, such as DNA
repair mechanisms, which result in mutational biases [9,
10] and other processes may lead to other biases. These
mechanisms together govern the intrinsic mutability. Fol-
lowing [11], we use the term mutability rather than muta-
tion rate, because we are not considering the detailed
evolutionary process and there is no time in our models,
although the same ideas are easily applicable to estimation
of context sensitive mutation rates.
Models of mutability can be estimated from observed

variants by simply estimating the probability of a muta-
tion given a context. However, such models are estimated
from fairly small and biased sets of variants without uti-
lizing the mutability foot-print in the genome. Here we
propose to split the context dependent mutability into a
nucleotide distribution and a variant part. The nucleotide
distribution can be estimated from the whole genome and
the variant part from variants, thereby allowing the two
parts to have different context sizes. Due to the size of the
human genome, the context dependent nucleotide distri-
bution can be estimated from a much larger context than
the variant part. The variant part can depend on a smaller
context and can thus be estimated from a small number of
variants.
In the first part of the paper, we focus on estimation of

the probability of observing a base in the genome, given a
context. One measure to quantify the context sensitivity is
predictability. In a random sequence of nucleotides with
no context sensitivity, we would only be able to predict a
given base with an accuracy of 25% (random guessing), so
this is the lower boundary of predictability. However, due
to the mutational biasses discussed above and the repeti-
tive nature of genomes, we would expect that a genome is
more predictable than a random sequence. We show that
a human genomic base can be predicted with an average
of 51% using our most sophisticated model.
In the second part of the paper, we estimate a mutability

model based on the context dependent nucleotide distri-
bution found. For a fixed context dependent nucleotide
distribution model, we show that the mutability is not
very sensitive to the context size of the variant part. We
compare to a simple mutability model conditioned on a 7
base context as in [5] and show that they differ between
different types of mutations.
Knowledge of the background probability is important

for a lot of models and the models described in this work
can form a basis for other modelling efforts in the future.
It has been shown, for instance, that a high-order Markov
model can improve motif discovery over a simple back-

ground model [12]. Similarly our models of mutability can
be useful in future studies of mutations in disease, where
the mutability can be used to e.g. identify unexpected
mutations.

Results
Context modeling of the human genome
In our first model, the Central model, (Fig. 1), we simply
estimate the conditional probability of a nucleotide given
k bases to each side. For base xi at a genomic position i
these probabilities are written as

P(xi|xi−k , . . . , xi−1, xi+1, . . . , xi+k).

They are estimated from the genomic frequencies of the 4
possible (2k+1)-mers of the given context. A k = 3model
corresponds to a neighbourhood of 7 as used in [5], and
we use this model as our baseline. Since we are estimating
frequencies from all positions on both strands, they are
automatically strand symmetric.
One can use other values of k as long as a model can be

reliably estimated. As the 4 probabilities sum to one, there
are 3 ∗ 42k free parameters in the model, so the k = 3
model has around 12,000 free parameters, which can eas-
ily be estimated from the 6 billion sites of the two strands
of the human genome. A k = 7 model has approximately
0.8 billion free parameters, and is thus the upper limit of
what we can hope to reliably estimate for a genome like
the human. Even with k = 7 there are many contexts that
occur only once or very rarely. To avoid over-fitting, we
have used an interpolated Central model in which a model
of order k is used to regularize a model of order k + 1 and
so on (see Methods). For our second model, we have used
a central model with k = 7 and interpolated from k = 4.
A Markov model of order k yields probabilities of the

four bases conditional on the k previous bases. A Markov
model also can be used to estimate from both strands, as
above, which means that for base i, it can give two differ-
ent probabilities: P(xi|xi−1, . . . , xi−k) on the direct strand
and P(x̂i|x̂i+1, . . . , x̂i+k) on the opposite strand, where x̂i
means the complementary base to base xi. Note that these
models are estimated from both strands as the central
models, which means that a model estimated using a 5’
context is identical to the complementary of a model esti-
mated using a 3’ context and therefore, without loss of
generality, we always assume 5’ models.
Our third model is a bidrectional Markov model (Fig. 1)

of order k = 14, interpolated from k = 8. It is called
bidirectional, because we use the average between the
probability of xi from one strand and the probability of
x̂i from the opposite strand as explained above. Note that
this model with k = 14 has the same number of free
parameters (3 ∗ 1014) as the central model with k = 7
described above, because both use 14 bases as context.
However, the bidirectional Markov model actually uses a
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Fig. 1 Illustration of the three models used. A DNA sequence is shown with the complement sequence below. The blue histograms illustrate
nucleotide probabilities. The central model with k = 7 (upper left) predicts the base in the middle from the adjacent nucleotides in the boxes to the
left and right. For this illustration, C has highest probability, which happens to coincide with the correct nucleotide at the position. The Markov
model (top right) of order k = 14 predicts a nucleotide from the previous 14. In this example A has highest probability although G is the actual
reference probability. The bidirectional model (bottom right) use the same model on the reverse complement strand. In this example C has the
highest probability, which coincides with the complement base at the position. The probabilities are translated to the direct strand and averaged
with the forward model

context of 28 bases for prediction, because of the averag-
ing over the two directions. This model is called BM14 in
the following.
We have developed a program written in C that imple-

ments these different models. Instead of saving counts for
each context, it dynamically calculates the count based on
a Burrows-Wheeler encoded genome [13] to save mem-
ory. The performance of our models can be evaluated by
the accuracy, which is the fraction of positions, where the
most probable base given the context equals the actual
base in the reference genome. The accuracy on the human
genome is shown in Fig. 2 for the different models men-
tioned above (Supplementary Table S1, S2).
For the baseline model there is a strong correlation

between the GC content and the accuracy on each chro-
mosome. In Supplementary Table S3, we show GC con-
tent [14] with the accuracy and find a Pearson correlation
of 0.90 for the baseline model with the lowest accuracy of
around 38% for Chromosome 2–6 that has GC content of
38–40% and the highest accuracy of around 42% for chro-
mosome 19, which has the highest GC content of 48%. For
the k = 7 central model and BM14, the picture is less clear.
Although they have correlations of 0.70 and 0.53 with GC
content, the two chromosomes with the best prediction
accuracy are chromosome 19 (GC 48%) and chromosome
Y (GC 40%) at opposite ends of the GC scale.
For estimating the performance shown in Fig. 2, we

have used leave-one-out cross-validation at the nucleotide
level. It means that when estimating the probabilities for
a given site in the genome, that site is excluded in the

counts for model estimation. Because the k-mers overlap,
one may argue that it is not proper cross-validation, but
more fulfilling a minimum requirement that the site itself
should not be used for estimating the model. Therefore
we have also done a chromosome-based cross-validation
for comparison and calculated the overall accuracies for
each chromosome using a model estimated from the other
chromosomes. The difference between nucleotide-based
and chromosome-based cross validation is only 0.5 per-
centage points (p.p.) on average, but for the Y chromo-
some, it is more than 3 p.p. (Supplementary Table S1, S2
and Supplementary Fig. S1). Chromosome Y is known
to differ from other chromosomes by being more hete-
rochromatic and contain mostly repetitive regions [15],
and therefore the model performs poorly on this chromo-
some when estimated only from other chromosomes.
With interpolation it is in principle possible to go

beyond k = 14, because for contexts with zero counts,
the probabilities are equal to a lower order estimate, so it
should adapt without over-fitting. We have not explored
higher k so much, but in Supplementary Fig. S2, we have
run the bi-directional Markov model from k = 10 to
k = 20 for different values of the interpolation constant
described in Methods. The figure shows results for chro-
mosome 20 and the model estimated from all the other
chromosomes. Up to k � 14 the models steeply improve
and are almost insensitive to the interpolation constant.
Above k = 14 we still see a monotonous improvement
that seems to level off at around 52% for the best model.
Chromosome 20 was chosen for this experiment, because
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Fig. 2 Prediction accuracy for the three models. Baseline with k = 3, Central model with k = 7 and the bidirectional Markov model with k = 14
(BM14). The bar-plot shows accuracy for each chromosome and average accuracy on the whole genome. Results using nucleotide-based
cross-validation

it is small and has a prediction accuracy similar to the
average for the BM14model. It clearly shows that interpo-
lation improves the model although not by a great deal for
k < 14. Importantly, interpolation at any strength ensures
that zero counts do not occur, which would otherwise
result in undefined probabilities.
The predictive performance of BM14 on different

regions in the human genome is shown in Fig. 3. As
expected, the model predicts repetitive sequences very
well with an overall accuracy of 64%, but there are quite
large differences between different types of repeats. The
most common type of repeat in the human genome,
the ALU sequences, is 87% correctly predicted, whereas
LINE1 for instance is only at 63% (Supplementary Table
S4). These differences are most likely due to differences in
conservation of the different types of repeats.
The probability of the nucleotide in the reference

genome given its context varies throughout the genome.
The density of this probability, which we call the refer-
ence probability, is shown for different genomic regions
in Fig. 4. For each feature except for CDS there are two
peaks of which one is due to repeats. However, in posi-
tions where the reference probability is above 0.4, repeats
account for a large proportion compared to other features.
(Supplementary Table S5).

To further elucidate the predictability across different
regions, we show in Fig. 5 the reference probabilities
across human 3’ and 5’ splice sites that averaged over all
introns annotated in Chromosome 1 (Chr1). The proba-
bility shows a large jump from a level of almost random
prediction (∼ 0.28) in the coding region to a fairly high
value (∼ 0.36) in the intron. The conservation plot in the
same figure presents an opposite trend.
To test whether the model can be improved for non-

repeat regions, we estimated a restricted model from
everything outside coding regions and repeats. There is
little difference between the restricted model and the full
one in terms of prediction accuracy or reference proba-
bility as seen in (Supplementary Fig. S3) and we did not
analyze this model further.
We briefly examined the performance of a bidirectional

Markov model on some other species. Because of the
smaller genome sizes, we used an interpolated bidirec-
tional Markov model of order k = 10 in this analysis. The
density plot of the reference probabilities (Supplementary
Fig. S4A) shows that a single main peak occurs for human
and E.coli genomes. A. thaliana, C. elegans and S. cere-
visiae have two peaks. The peak towards low probability is
enriched in coding sequence as can be seen from Supple-
mentary Fig. S4B, where the density is plotted separately
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Fig. 3 Prediction accuracies for BM14 in different regions across all chromosomes. The accuracy for different features on the chromosome 1 to Y, is
indicated by colored dots. The line shows the overall accuracy for each chromosome

for CDS regions and other regions. In positions where
the reference probability is above ∼ 0.55, the density of
human is higher than that of other species, which is most
likely caused by repeats in human genome.
In the other eukaryotic genomes the prediction accu-

racy of the models were 45% for C. elegans, 40% for A.
thaliana, and 38% for S. cerevisiae.

Variants
We next evaluated BM14 on variant datasets. We assume
that our models are valid for all genomes, and variants
found in population studies, such as the 1000 Genomes
Project (1KGP) [16], should be predicted with the same
accuracy as the corresponding positions in the refer-
ence genome. We identified ∼ 73 million bi-allelic single
nucleotide polymorphisms (SNPs) in the 1KGP. The prob-
ability of the reference (Pref ) was plotted against the
probability of the alternative (Palt) shown in Fig. 6 for the

k = 7 central model and BM14. The latter shows a larger
concentration of sites in the middle of the plot. Note the
unexpected asymmetry between the corners at Pref� 1
and Palt� 1 for both models.
This asymmetry is also reflected in the fact that the ref-

erence allele had the highest probability in 38.82% of cases
and the alternative allele in only 24.20% for BM14. The
density plot of Pref-Palt in Fig. 7A also shows a peak near
1 when all SNPs are used. However, when rare SNPs are
ignored, the right peak decreases in size and a peak in the
left side of the plot appears and the density becomes sym-
metric when only including SNPs with allele frequency
above 20%. The far majority of SNPs with a reference
probability higher than 0.875 in the 1KGP dataset belong
to repeats.
We also compared Pref and Palt for different types

of single nucleotide variants (SNVs) in coding (Fig. 7B)
and non-coding regions (Supplementary Fig. S5). Clin-
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Fig. 4 Density profile of reference probabilities in different genomic regions obtained with BM14

ically relevant mutations from the Clinvar database are
almost indistinguishable from 1KGP in coding regions
and indeed a Kolmogorov–Smirnov (KS) test gives a p-
value of 0.18 showing an insignificant difference (see Sup-
plementary Table S6). On the contrary, somatic mutations
have a clear tendency to mutate towards a more proba-
ble base (Palt > Pref ) supported by a p< 10−15 in the
KS test. In non-coding regions, the somatic mutations are
also shifted towards a higher probability for the alterna-
tive and have the same peak at high reference probability
as 1KGP.
To see if there is a difference between damaging and

benign SNPs, we show the same densities for Polyphen2
predictions [17] on Chr1 in Fig. 7C. On Chr1 there is a
total of 32,841 SNPs classified as benign and 15,299 SNPs
classified as damaging. There is a small, but significant (KS
test (p< 10−15, see Supplementary Table S6)), shift of the
damaging SNPs towards higher probability of the alterna-
tive allele. We saw that for only 21% of damaging SNPs
the reference allele had the highest probability whereas for
29% the alternative allele had the highest probability. For
benign SNPs, these numbers are 26.5% and 24%. This dif-
ference is highly significant (Chi-squared test p� 10−9,
see Supplementary Table S7).

Context-dependent models of substitutions
It is possible to estimate context dependent models of sin-
gle nucleotide substitutions from a set of known variants.
Since SNV sampling is very biased and variants are not
fully observed, the context size needs to be much smaller
than for the nucleotide distribution models described
above. In the previously mentioned work [5] a seven
nucleotide context is used. Here we want to explore the
possibility of using our genome models to obtain mod-
els of substitutions. The rationale is that to maintain the
context dependent nucleotide probabilities, they must be
reflected in the mutability.
We assume the genome has reached approximate equi-

librium. To keep this state, the mutability towards a
nucleotide should be higher, the higher the probability of
that nucleotide is in the given context. Therefore we set
the probability of a mutation from a to b to be propor-
tional to the probability of nucleotide b (in that context)
with a constant that depends on the nucleotides andwhich
can also depend on the context. This model is inspired by
the general time-reversible stationary Markov model [18,
19], in which the off-diagonal rates are μab = αabπb with
symmetric αab for nucleotides a �= b and the equilibrium
distribution P(a) = πa. Themathematical theory does not
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Fig. 5 Probabilities (top) and conservation score (bottom) of reference bases across 3’ and 5’ splice sites. The probabilities of the reference bases by
BM14 were averaged for each position for the first/last 100 nt in coding sequence and 500 nt in introns. The conservation score is PhastCons100Way
from the UCSC browser

apply directly here, because reversibility is too restrictive,
so we do not require the α matrix to be symmetric, but we
can still estimate an α matrix that best fits a set of variants.
For lack of a better term, we call α the “alpha matrix”.
Whereas the nucleotide distribution can be estimated

from the whole genome using large contexts, the αs must
be estimated from observed mutations. We hypothesize
that the αs are less context dependent, and thus can
be estimated from a smaller context than the nucleotide

distributions. Details of the estimation procedure is
described in Methods.
We estimated αs from all chromosomes except Chr1 for

symmetrical contexts of size 0, 3, 5, and 7 (k = 0, 1, 2, and
3) using SNPs from the 1KGP and the BM14 model for
the nucleotide distribution. The alpha matrix is shown in
Table 1 (left) for k = 0. Notice that it is essentially strand-
symmetric, but not symmetric in normal matrix-sense, so
it violates reversibility. Similarly, we estimated a simple
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Fig. 6 Triangle plot for probabilities of Ref-Alt alleles. Probabilities of reference and alternative alleles were estimated by the k = 7 central model
(upper right triangle) and the k = 14 bidirectional Markov model (BM14, lower left triangle) on SNPs from the 1000 Genomes Project

conditional model with a 7-mer context (k = 3) from the
same data, which is called the simple model in the follow-
ing. The simple model is similar to one of the models in
[5], but the variants used for estimation are slightly dif-
ferent. The models were then applied to Chr1 where we
calculated the probability of a mutation given the context
for all positions with an observed SNP. The total fraction
of sites with probability above 0.25 is very small for all
models, see Fig. 8A. In Fig. 8B the fraction of sites with

a certain mutability that has an observed SNP is plotted
against mutability for some of the models. Ideally these
should be linear, but we see a significant deviation from
linear for the simple model and for the α models with
k > 0. The models with k = 1–3 behave almost the same,
and up to a substitution probability of∼ 0.25 they are very
close to the simple model.
Above a mutability of 0.25, our models with k > 0 devi-

ate significantly from the diagonal line. It turns out that

Fig. 7 Density profiles of Pref - Palt for SNPs on Chromosome 1. A SNPs from 1KGP. The different lines represent SNPs with allele frequencies greater
than 0, 0.01, 0.1 and 0.2, respectively. SNP counts are shown in the legend after the dash. B Density profiles show variants of ClinVar, somatic
mutations (COSMIC) and 1KGP database in coding regions. C Densities of damaging and benign variants predicted by Polyphen-2 based on
HumanVar database and annotated on 1KGP database by ANNOVAR software
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Table 1 α matrixes for k = 0 and k = 1 estimated by
substitution model

A C G T

a α matrix, k = 0

A – 0.019 0.066 0.012

C 0.025 – 0.034 0.096

G 0.096 0.033 – 0.025

T 0.012 0.065 0.019 –

b α matrix, k = 1, CG sites only

ACG 0.041 – 0.041 0.717

CCG 0.035 – 0.066 0.555

GCG 0.062 – 0.035 0.566

TCG 0.043 – 0.048 0.483

a: The α matrix for k = 0 estimated from all chromosomes except Chr1. b: The part
of the α matrix for k = 1 corresponding to contexts with CG preceded by one base,
so they correspond to mutations of C in these contexts

these rare reference genome sites with high substitution
probability are mainly CpG sites. The alpha matrix for
k = 1 is shown in Table 1 for the CG contexts, where
it is evident that the C to T values are very large, rang-
ing from 0.48 to 0.72, which should be compared to the
largest α of 0.22 that is not a CG context, see (Supple-
mentary Table S8). For contexts where the T has high
probability according to the nucleotide distribution, the
substitution probabilities will become large, because it is
the product of α and the nucleotide probability. It suggests
– as expected – that these substitutions are very likely at
unselected positions.
We applied the model also to SNVs from Clinvar and

COSMIC as shown in Fig. 8C for k = 1 and for the sim-
ple model. The number of variants with mutability values

above 0.3 for the k = 1 model is relatively small. For Clin-
var only 296 SNVs out of 42000 have a mutability larger
than 0.3 and for COSMIC this number is 2760 out of
120000. It means that the data are noisy as seen in Fig. 8C,
but it is evident that the somatic SNVs from COSMIC fol-
low the model more closely than germline SNPs in this
domain.

Discussion
We developed context dependent models of the
nucleotide distribution in the human genome. The most
advanced one, a bi-directional Markov model with a
context of 14 nucleotides to each side, can predict a
nucleotide with 51% accuracy. We use interpolation from
lower orders, so it is in principle possible to go above
k = 14, but we saw that this did not change the model
very much, and the predictability of just above 50% is
close to an upper limit for this type of model.
In this work our objective has been to apply simple

interpretable models to the problem. Previous studies
have applied neural networks to the human genome by
sequence context to obtain DNA representations for other
tasks. This has been used for prediction of the effect
of non-coding variants [20] and the regulatory code of
the accessible genome [21], for instance. The DNAbert
model [22] is more related to the present work. It is a
transformer neural network, which in the pre-training
is trained to predict k-mers (k=3-6) from the surround-
ing sequence context. However, the focus is on using it
for other prediction tasks, and direct comparison to our
models is not possible. We have used neural networks
ourselves for the same task for prediction of bases from

Fig. 8 Substitution model. Model substitution probabilities shown for the models with context-insensitive α (k=0), the ones with α depending on 1,
2, and 3 bases to each side (k=1, 2, 3), and the simple model conditioned on the 3 bases to each side. The model substitution probability for a site is
the sum of the probabilities for the three possible substitutions. A The cumulative distribution of model substitution probabilities for all sites (solid
lines) and for SNPs (dashed) on Chr1 shown for the five models. Note that for all models there are very few sites with substitution probability above
0.3. B The fraction of sites on Chr1 with an observed variant in the 1000 Genomes project (1KGP) plotted against p. The y values are SNP counts in
small probability intervals (10−4) divided by total counts. The curves are smoothed with splines. Estimates are noisy for larger probabilities due to
low counts. C As B for SNPs in 1KGP, Clinvar and COSMIC for the k = 1 model and simple only. For latter two, counts are scaled so they sum to the
number of SNPs in the 1KGP set for Chr1. For high mutability values there are few SNPs, so the curves are very noisy especially for Clinvar
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the context [23]. Using a larger context in the neural net-
work leads to marginally better prediction accuracy, but
more importantly differences in performance depending
on context.
The high predictability of our model is, to a large extent,

due to repeats. It is interesting that approximately half
the human genome is said to be repetitive [24], which
superficially coincides with the predictability, but an exact
definition of repetitive regions is a challenge and some
report a higher repetitive fraction (see e.g. [25]). For A.
thaliana andC. elegans the predicability was 40% and 45%,
respectively, and they both have 12-13% repeats [26], and
although the model was of lower order, it suggests that
predictability could be used as a measure of the repeti-
tiveness of a genome. This, however, would require more
extensive analyses.
Not surprisingly, the predictability is highly dependent

on the type of the genomic region. Coding regions can
be predicted with only 36% accuracy, whereas Alu repeat
regions are at 87% and simple repeats even higher (Fig. 3).
When looking more closely at splice sites we see – as
expected – a negative correlation between conservation
and the probability of the reference base (Fig. 5), although
such a correlation is weak, when looked at genome wide
due to the lack of conservation of repeats. There are also
differences between chromosomes, where especially the
Y chromosome and Chr19 stand out with higher pre-
dictability than others, which is likely due to their high
repeat content.
The model was applied to the genomes of Arabidop-

sis thaliana, Caenorhabditis elegans, Escherichia coli, and
Saccharomyces cerevisiae. Due to the smaller genome
sizes a bidirectional Markov model with k = 10 was
used. The large differences between species observed is
an indication of quite different composition of genomes.
Interestingly some species have two peaks in the density
of the reference probability, which is partly explained by
differences between coding regions and non-coding.
We compared the probability of the reference allele to

the alternative allele on single nucleotide variants from
the 1000 Genomes Project. There is a peak with SNPs
that have a reference probability close to one, which skews
the distribution away from symmetry (Fig. 7A). Almost all
SNPs in this peak (with reference probabilities over 0.875)
fall in repeat regions and one possibility is that some of
them are mapping artefacts. They also have relatively low
allele frequencies, and when considering only SNPs with
high allele frequency, the plot becomes symmetric. There-
fore, another factor thatmay explain the asymmetry is that
the reference genome, which is not a genome of a single
individual, contains very few rare alleles.
The difference between the probability of the refer-

ence allele and the alternative allele for coding SNVs
in the 1000 Genomes Project was compared to SNVs

from somatic mutations and clinically relevant SNPs
from Clinvar (Fig. 7B). Here we see a statistically sig-
nificant shift of somatic SNVs towards higher probabil-
ity for the alternative allele, which suggest that somatic
mutations tend to favor more probable bases. Simi-
larly, we see a significant difference between damaging
and benign SNPs (as classified by ANNOVAR) as seen
in Fig. 7C. Surprisingly, the damaging SNPs seem to
have a higher probability according to our model than
benign ones.
The sequence models presented here estimate distribu-

tions of the bases for a given context and reflect inherent
properties of the cellular machinery responsible for repli-
cation, error correction, and so on, as well as the physical
properties of DNA, such as curvature and bendability.
A mutation that moves a base closer to this distribu-
tion is likely to be more probable than one that moves it
away, at least if selection is ignored. To explore this, we
have derived a model that takes the context dependent
nucleotide distribution into account.
In our model, we are assuming that the variation of a

site in the human DNA can be described by a context sen-
sitive continuous Markov model with a rate matrix that
is a product between the nucleotide distribution and an
“alpha matrix”. The alpha matrix can be estimated from
known variants and it can depend on a smaller context
than the model for the nucleotide distribution and can
be estimated from a relatively small number of SNVs. It
means that our model for mutability have a very large con-
text due to the context dependent nucleotide distribution
even if the alpha matrix uses a smaller context.
The model does not depend strongly on the context size

for the alpha matrix for contexts of the two neighbours or
larger (k ≥ 1). Our models behave very similarly to a sim-
ple mutability model, which is estimated from SNPs alone
and a context of three nucleotides to each side except in a
regime of very high mutability (Fig. 8B). Our models seem
to over-estimate the SNP mutability from 1KGP when the
values are larger than about 0.25. However, this is not the
case for somatic mutations, and the mutations seem to be
well-described by these models (Fig. 8C).
The model is inspired by the general time-reversible

model from evolutionary theory, which has six free
parameters corresponding to a symmetric alpha matrix,
and with rates depending on the equilibrium distribution.
However, although time-reversibility would be desirable,
it is not likely that the context dependent nucleotide dis-
tribution we estimate is an equilibrium distribution for
the entire genome. In fact, when inspecting the estimated
alpha matrix for zero context (Table 1) and a context of
one nucleotide to each side (Supplementary Table S8), it
is evident that it is not symmetric. For the latter there
are very large deviations from symmetry for contexts with
NCG, where N can be any base. In these contexts, αCT is
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consistently 10-20 times larger than αTC corresponding to
a strong tendency to mutate from CG to TG.
Even if the α matrix depends on a small context, the sub-

stitution still depends on the full context of the nucleotide
distribution. This construction is very attractive, because
substitutionmodels estimated from variants alone need to
have small contexts due to the limited number of variants
and the strong sampling biases.

Conclusions
There are strong context dependencies of nucleotides in
genomes. We have shown how one can estimate a model
of the nucleotide probabilities depending on contexts up
to 14 nucleotides to each side. Building on these models, it
was shown how it is possible to make models of mutations
that combine the context dependent nucleotide probabil-
ities with a mutation matrix, called the alpha matrix, to
givemutation probabilities (“mutabilities”) that depend on
the same large context. It was shown that these models
fit observed mutations very well and especially somatic
ones. Importantly, the alphamatrix can depend on amuch
smaller context of just one to three bases to each side and
does not depend strongly on this parameter.
These models can form the basis for a better under-

standing of human mutations and we believe it will be
possible to use them in a wide range of applications from
GWAS studies to analysis of somatic mutations.

Methods
Conditional probability models for the central base
The base at position i (chromosome, coordinate) in the
reference genome is called xi and the symmetric sequence
context around it is called

si(k) = xi−k , xi−k+1, . . . , xi−1, xi+1, xi+2, . . . , xi+k . (1)

If it is clear from the context which k, we call it si to ease
notation. To estimate the conditional probability of base b
at position i, we use the counts n(b|si) of the occurrences
in the same context throughout the reference genome (on
both strands):

P(b|si) = n(b|si) − δb,xi
N(si) − 1

, (2)

where

N(si) =
∑

b
n(b|si).

We use the Kronecker δb,xi , which is 1 if xi = b and other-
wise 0, to ensure that we only count other contexts, when
estimating probabilities at position i. This is leave-one-out
cross-validation and is discussed further below.
For large contexts, the counts become small and thus the

probabilities cannot be reliably estimated. To interpolate
between different orders of the model, we use regulariza-

tion by pseudo-counts obtained from the k − 1 model.
Specifically, for order k, we define pseudo-counts

r(b|si(k)) = γP(b|si(k − 1)),

where γ is the strength of pseudo-counts. Now the model
of order k is estimated as before, but using the actual
counts plus pseudo-counts,

P(b|si(k)) = n(b|si(k)) − δb,xi + r(b|si(k))
N(si(k)) − 1 + γ

.

The advantage of pseudo-counts is that they have minor
influence, when there is plenty of data (actual counts are
high), but have strong effect at low counts. With k = 4
counts are on average 6 ∗ 109/49 � 23000, so we assume
that psudo-counts are not needed. Therefore, our interpo-
lated model starts with unregularized estimates for k = 4,
and then use the pseudo-counts iteratively for k = 5 to
k = 7 for the interpolated model. We used a strength
of γ = 100 for the pseudo-counts (a few experiments
showed that the model is relatively robust to changes in γ ,
see below).

Markov models
In a Markov model of order k, the probability of a base
is conditioned on the k previous bases. If we redefine the
k-context in (1) to be the k previous bases,

si(k) = xi−k , xi−k+1, . . . , xi−1,

we can use exactly the same formulation as above. In this
case however, the context size is not 2k letters as above,
but only k letters. Therefore, one can estimate Markov
models up to sizes around k = 14 for the human genome,
and we used a model interpolated from k = 8 to k = 14
analogously to the central interpolated model described
above.
Due to the interpolation, larger k are possible, and we

performed a small experiment with k ranging from 10 to
20 and with four different values of the interpolation con-
stant γ resulting in Supplementary Fig. S2. These tests
were done only on chromosome 20 with a model esti-
mated from all chromosomes except 20. Although small
gains can be obtained with larger k values and different
γ , we decided to stick to our initial choice of k = 14 and
γ = 100.
Estimating a “forward” Markov model from both

strands of the human genome will automatically make it
strand-symmetric. For a given position in the genome, the
model can therefore give two sets of base probabilities:
one for the forward strand and one for the reverse strand.
Our final Markov probabilities are the average between
the two as described in the main text and referred to as
bidirectional.
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Cross-validation
Our way of estimating the conditional probability of see-
ing one of the four bases given the surrounding context
can be seen as a leave-one-out procedure. In particular,
the estimate depends on the reference base at the consid-
ered position as well as the context. To obtain an estimate
that is independent of the reference base at the position,
a natural way to proceed is to consider the average of the
four base-dependent estimates over all occurrences of the
given context. This average turns out to be equal to the
estimate that includes all positions. To see this, average (2)
over all sites (skipping the k dependence for clarity) gives
the probability of a base b:

P̄(b|s) = 1
N(s)

∑

b′
n(b′|s)n(b|s) − δb,b′

N(s) − 1
.

Here the base we are summing over is called b′
to distinguish it from the base b in question. Since∑

s n(b′|s)δb,b′ = n(b|s), we get

P̄(b|s) = 1
N(s)(N(s) − 1)

(N(s)n(b|s) − n(b|s)) = n(b|s)
N(s)

.

We also assessed our models by cross-validation by
chromosomes. One chromosome was used as test data,
and the remaining chromosomes as training data. We
repeated this step 24 times to calculate the fraction correct
predictions for each chromosome.

Substitution models
A simple model estimates mutability as the fraction of
all sites with context ŝ having a specific mutation. More
specifically,

PSimple(a → b|ŝ) = n(a → b|ŝ)
n(a|ŝ) . (3)

Here n(a → b|ŝ) is the number of observed mutations
a → b in context ŝ and n(a|ŝ) is the number of times we
see reference base a in context ŝ (as above). We use ŝ to
indicate that the context may be different from the con-
text s for the genome model above. We have used this
model with a symmetric context of three bases to each
side, which we call the simple model.
We will now derive a continuous time Markov model

with context dependent substitution rates μab|s that takes
the nucleotide distribution into account.We also assume a
constant evolutionary time, which is infinitesimally small
compared to the rates, so we can approximate the sub-
stitution probability by the first-order term in the Taylor
expansion of an exponential

P(a → b|s) � δa,b + μab|s,

where time is set to 1. The diagonal rates are
− ∑

b�=a μab|s, so in the following we will not write the
diagonal terms. For a stationary, reversible Markov model

with P(a|s) as equilibrium probabilities the rates can be
written as

P(a → b|s) � μab|s = αab|sP(b|s) (a �= b).

with a symmetric matrix αab. This is the general time-
reversible six-parameter model (see e.g. [19]). Inspired
by this model, we assume that mutability is given by the
same equation, but without requiring that the nucleotide
distribution is the equilibrium distribution and without
requiring that α is symmetric.
The above expression factorizes the rates into the

nucleotide distribution and the α-term that encapsulates
themutations. Nowwe assume the αs depend on a smaller
context ŝ than the context s for the genome model P(a|s),
so the above can be written as

P(a → b|s) � μab|s = αab|ŝP(b|s) (a �= b) (4)

In analogy with (3), P(a → b|s) = n(a → b|s)/n(a|s) with
s instead of ŝ, so combining with the above

n(a → b|s) � n(a|s)αab|ŝP(b|s) (a �= b)

To estimate the αs we sum over all contexts that contains
ŝ, which we write as s|ŝ ⊆ s, so

n(a → b|ŝ) =
∑

s|ŝ⊆s

n(a → b|s) � αab|ŝ
∑

s|ŝ⊆s

n(a|s)P(b|s)

The last sum depends only on the nucleotide distribu-
tion. It can be rewritten as a sum over all positions in the
genome, where the reference base, ri, equals a and where
the context is ŝ. We call this term Zab|ŝ,

Zab|ŝ= 1
n(a|ŝ)

∑

s|ŝ⊆s

n(a|s)P(b|s) = 1
n(a|ŝ)

∑

i|ri=a∧ŝ⊆si

P(b|si),

For convenience, it is normalized by n(a|ŝ), so it is the
average probability of base b over all positions with ref-
erence base a and context ŝ. As an estimate of α we then
have

αab|ŝ = 1
Zab|ŝ

n(a → b|ŝ)
n(a|ŝ) = PSimple(a → b|ŝ)

Zab|ŝ
Note that we can rewrite the original probability (4) in
terms of the simple model as

P(a → b|s) � P(b|s)
Zab|ŝ

PSimple(a → b|ŝ)

for ŝ ⊆ s. The factor is 1 when ŝ = s, so the models are
identical as they should be when they use the same con-
text. The equation directly shows how the wider context
from the genome model can modulate the simpler esti-
mate. If the probability of base b in context s is larger than
the mean Zab|ŝ, the mutability becomes larger than in the
simple model, and if it is smaller, the mutability becomes
smaller.
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The first order approximation assumes the rates are
small. When calculating the total mutability of a site, we
therefore use the approximation 1 − P(a → a|s) � 1 −
eμaa|s . For small α’s it makes little difference whether it is
the exponentiated form or not.

Data
The human reference genome, GRCh38.p13, was down-
loaded from NCBI (released March 2019 by Genome
Reference Consortium). We considered only primary
assemblies of chromosomes 1 to 22 and X, Y. Genomic
annotation bed files were downloaded from UCSC Table
Browser. These are 3’-UTR, 5’-UTR, CDS, Introns, Genes,
and Repeats. Conservation scores file (PhastCons100way)
was downloaded from the UCSC as well.
Variants were downloaded from the 1000 Genomes

project (released March 2019, phased 20190312_bial-
lelic_SNV_and_INDEL) in VCF format. The INDELs were
filtered from 1KGP dataset.
ClinVar (clinvar_20200310.vcf ) [27, 28] and somatic

mutations (CosmicCodingMuts.vcf and CosmicNonCod-
ingVariants.vcf ) [29] data were obtained from NCBI and
COSMIC, respectively.
The genomes and GFF files of Arabidopsis thaliana

(TAIR10.1), Caenorhabditis elegans (WBcel235),
Escherichia coli (str. K-12 substr. MG1655), Sac-
charomyces cerevisiae (R64) were downloaded from
NCBI.

Data analysis
Model implementation Counting of k-mers and estima-
tion of probabilities is implemented in the C programming
language. The program counts the contexts for each site
using a Burrows-Wheeler transform (BWT) [30] rather
than storing the k-mers, because it is much more efficient
for the interpolated models. The program is called pre-
dictDNA and relies on an index built with the program
makeabwt.
One program, called makeabwt, is used for construc-

tion of an index from a fasta file containing the genome
sequences. If there are multiple sequences, they are con-
catenated with termination symbols in between and the
suffixes are sorted. The BWT is constructed from the
sorted suffixes and saved. An FM index [31] is constructed
to ease the search of the BWT. To limit memory usage, the
values are stored in first-level checkpoints for every 216
positions as long integers (8 byte) and for every 256 posi-
tions the difference from the nearest first-level checkpoint
is stored as a short integer (two bytes). We used an index
containing both the forward and reverse complements
strands of the genome.
Another program, called predictDNA, use the index to

look up k-mers. This is done using the standard backward
search of the BWT/FM-index [31]. The size of the result-

ing suffix interval equals the number of the k-mers in the
genome and these are used for calculating the conditional
probabilities.
The advantage of using a BWT is that the index can be

used with any k and thus facilitates the interpolated mod-
els. An naive approach using table-lookup would require
a new table for each value of k and a table of 415 � 109
integers for k = 14, which corresponds to 4GB of memory
and this would become 16GB for k = 15, etc. The index
used for this work use around 8GB of memory.

Model Performance We calculated the probabilities of
the four bases for every position in the human genome
using the software predictDNA we developed. We tested
different k’s, but used the same interpolation constant,
γ = 100 , for all models. We counted the correct sites for
which the reference alleles gave the highest probabilities
of the four bases, to calculate the fraction correct for each
chromosome.
Furthermore, we overlapped the bed files with models’

outputs via bedtools [32, 33] to get the feature-specific
fraction correct and predicted probabilities. These were
used to obtain the performance of ourmodels for different
regions of human genome.
Based on CDS bed file and human genome fasta

file, we calculated average probabilities for the positions
around the human 3’ and 5’ splice sites. We included 500
nucleotides beforer and 100 after the 3’ splice site and,
similarly, 500 before and 100 after the 5’ splice. Besides, we
extracted the conservation scores of PhastCons100Way
for the same regions [34]. Those results were shown in
Fig. 5.

SNP Variants Analysis We kept only single nucleotide
bi-allelic variants in 1KGP, ClinVar and COSMIC
databases for the following analysis, and we filtered
INDELs. Based on central model and BM14 results, refer-
ence and alternative allele probabilities for each SNP sties
in these three databases were extracted. The triangle plots
(Fig. 6) were made by using reference probabilities against
alternative probabilities of all SNPs in 1KGP database.
In order to understand the possible asymmetry shown

by the cluster of many sites in the corners of the triangle
plot, we separated SNPs with allele frequency greater than
0, 0.01, 0.1 and 0.2. To present the different types of SNPs
in coding and non-coding parts, we did the density plots
also by using Pref minus Palt for SNPs in 1KGP, ClinVar
and COSMIC databases. Additionally, we used ANNO-
VAR software [35] to annotate benign and damaging SNPs
on 1KGP, which were predicted by PolyPhen2 [17]. These
are sites associated with single genetic disease.
We developed the subsitution model to estimate the

mutability of SNVs as described above. We estimated the
α matrix for k = 0, 1, 2, 3 for all SNPs 1KGP outside of
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Chr1. The model was applied to chromosome 1, where we
calculated the probability of a mutation from the BM14
and the alpha matrices. These were compared to observed
SNVs in 1KP, ClinVar, and COSMIC on Chr1.

Test Bi-directional Markov Model on Other Species
The bi-directional Markov model with was tested on the
chosen species and also human genome. We used k = 10,
γ = 100, and interpolated from k = 6, instead of using the
same parameters as BM14, that is because of the smaller
genome size of these species. The densities of the refer-
ence base probabilities were plotted (Supplementary Fig.
S4A). We separated the CDS and non-coding regions of
A.thaliana, C. elegans and S. cerevisiae according to the
GFF files andmade a density plot to show the distributions
of CDS and non-coding of these three species.

Software
Our software is open source and available at GiHub:
https://github.com/AndersKrogh/abwt/releases/tag/v1.2.
1a. We wrote several scripts in Perl and Python for data
analysis and these are all available in the GitHub release.
The usage of these scripts is described in README files.
All the figures made in R and this code is also available.

Abbreviations
BM14: Bidirectional Markov model with 14 bases as context; p.p.: percentage
points; CDS: Coding Sequence; Chr: Chromosome; Pref: Probability of
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Table S1: The predicted accuracy and cross validation of baseline model, k  = 3.

total correct total correct
1 230480065 88449502 0.383762 1 230480065 89886242 0.389996
2 240548028 91245767 0.379325 2 240548028 92736305 0.385521
3 198099967 75176460 0.379487 3 198099967 76409704 0.385713
4 189752565 71817909 0.378482 4 189752565 72982568 0.384620
5 181265162 68770233 0.379390 5 181265162 69910974 0.385683
6 170078432 64622953 0.379960 6 170078432 65676753 0.386150
7 158970017 61563427 0.387264 7 158970017 62561156 0.393541
8 144768070 54795829 0.378508 8 144768070 55693874 0.384711
9 121790280 46736090 0.383742 9 121790280 47496328 0.389985
10 133262493 51086053 0.383349 10 133262493 51903471 0.389483
11 134533646 50943862 0.378670 11 134533646 51754529 0.384696
12 133137642 51492163 0.386759 12 133137642 52311190 0.392911
13 97982998 37165783 0.379308 13 97982998 37790335 0.385683
14 90568005 34730400 0.383473 14 90568005 35297775 0.389738
15 84641219 32750038 0.386928 15 84641219 33277492 0.393159
16 81805817 32208050 0.393713 16 81805817 32700600 0.399734
17 82919922 33234391 0.400801 17 82919922 33730878 0.406789
18 80089284 30501920 0.380849 18 80089284 31000166 0.387070
19 58440710 24486635 0.419000 19 58440710 24842890 0.425096
20 63943723 24697782 0.386242 20 63943723 25084465 0.392290
21 40088313 15374295 0.383511 21 40088313 15621913 0.389687
22 39159489 15541934 0.396888 22 39159489 15784648 0.403086
X 154892834 58708281 0.379025 X 154892834 59585778 0.384690
Y 26414686 9994145 0.378356 Y 26414686 10148446 0.384197

Total 2937633367 1126093902 0.383334 Total 2937633367 1144188480 0.389493

Central Model, order k=3 (alpha = 100) Central Model, order k=3 (alpha = 100)

Chromosome Number of sites Fraction correct Chromosome Number of sites Cross 
Validation



Table S2: The predicted accuracy for Central model (k  = 7) and Bidir-Markov model (k  = 14).

total correct total correct
1 230478925 113814952 0.493819 1 230477064 117325638 0.509056 0.503261
2 240547772 115376423 0.479640 2 240547335 118970085 0.494581 0.491506
3 198099743 96126911 0.485245 3 198099351 99318219 0.501356 0.498554
4 189752429 92180027 0.485791 4 189752191 95820651 0.504978 0.502674
5 181264874 88608732 0.488836 5 181264370 91682968 0.505797 0.502634
6 170078312 82169320 0.483126 6 170078102 84914118 0.499265 0.496488
7 158969865 79257155 0.498567 7 158969599 81908691 0.515248 0.509518
8 144767982 70168345 0.484695 8 144767828 72514932 0.500905 0.495853
9 121789920 60514603 0.496877 9 121789290 62659881 0.514494 0.506384

10 133261869 65113913 0.488616 10 133260788 66945484 0.502364 0.497800
11 134533518 66481601 0.494164 11 134533294 68544761 0.509500 0.503384
12 133137410 66291292 0.497916 12 133137004 68419682 0.513904 0.510150
13 97982830 46914046 0.478799 13 97982536 48527934 0.495271 0.493617
14 90567813 44809395 0.494761 14 90567477 46246593 0.510631 0.509077
15 84641083 42237607 0.499020 15 84640845 43483462 0.513741 0.503680
16 81805649 41867514 0.511792 16 81805355 43006907 0.525722 0.516664
17 82919546 43550084 0.525209 17 82918900 44528474 0.537012 0.524948
18 80088914 39937510 0.498665 18 80088309 41085342 0.513000 0.505543
19 58440646 33047717 0.565492 19 58440534 34002677 0.581834 0.573294
20 63943011 31995875 0.500381 20 63941765 32723225 0.511766 0.506975
21 40087905 20299423 0.506373 21 40087191 21132708 0.527169 0.519941
22 39159105 20800461 0.531178 22 39158433 21336374 0.544873 0.537980
X 154892583 80792188 0.521601 X 154892149 84956352 0.548487 0.540570
Y 26414219 14284130 0.540774 Y 26413407 15429883 0.584169 0.551892

Total 2937625923 1456639224 0.495856 Total 2937613117 1505485041 0.512486 0.507172

The cross validation result of Bidir-Markov model shows on the right table. 

Fraction correct Cross Validation

Central Model, order k=4-7 (alpha = 100) Bidir, interpol. Markov chain, order k=8-14 (alpha = 100)

Chromosome Number of sites Fraction correct Chromosome Number of sites



Table S3: Spearman correlation of predicted accuracies and GC% for each Chromosome

Baseline Central Model (k = 7) BM14
1 41.72 0.383762 0.493819 0.509056
2 40.23 0.379325 0.479640 0.494581
3 39.67 0.379487 0.485245 0.501356
4 38.24 0.378482 0.485791 0.504978
5 39.51 0.379390 0.488836 0.505797
6 39.61 0.379960 0.483126 0.499265
7 40.70 0.387264 0.498567 0.515248
8 40.16 0.378508 0.484695 0.500905
9 41.28 0.383742 0.496877 0.514494
10 41.54 0.383349 0.488616 0.502364
11 41.54 0.378670 0.494164 0.509500
12 40.77 0.386759 0.497916 0.513904
13 38.55 0.379308 0.478799 0.495271
14 40.83 0.383473 0.494761 0.510631
15 42.03 0.386928 0.499020 0.513741
16 44.58 0.393713 0.511792 0.525722
17 45.32 0.400801 0.525209 0.537012
18 39.78 0.380849 0.498665 0.513000
19 47.94 0.419000 0.565492 0.581834
20 43.80 0.386242 0.500381 0.511766
21 40.94 0.383511 0.506373 0.527169
22 47.00 0.396888 0.531178 0.544873
X 39.53 0.379025 0.521601 0.548487
Y 40.03 0.378356 0.540774 0.584169

Spearman correlation 0.784518 0.579691 0.476625
Pearson correlation 0.897925 0.706432 0.532642

Spearman correlation of Accuracy - GC%

Chromosome GC% Fraction correct
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Table S5: The predicted average probabilities in different genome regions based on Bidir-Markov model, k = 14.

Chromosome CDs Intergenic Intronic UTR-3 UTR-5 Repeat
1 0.284398 0.403085 0.375882 0.316466 0.312159 0.475164
2 0.279192 0.383054 0.366286 0.314754 0.307805 0.461253
3 0.278367 0.396859 0.368700 0.313361 0.308536 0.466471
4 0.283072 0.385895 0.371263 0.314933 0.308952 0.461346
5 0.279506 0.396156 0.370164 0.311306 0.308938 0.470572
6 0.278677 0.387985 0.368093 0.315637 0.303838 0.466445
7 0.282557 0.415837 0.372873 0.316082 0.313052 0.485514
8 0.281892 0.393981 0.366793 0.313037 0.313177 0.463238
9 0.279441 0.404889 0.372060 0.312249 0.307835 0.477780

10 0.278189 0.396600 0.369809 0.313084 0.307314 0.475369
11 0.278581 0.416209 0.369960 0.311594 0.307849 0.478778
12 0.279281 0.414982 0.376775 0.321811 0.313894 0.482580
13 0.278639 0.382248 0.361672 0.310374 0.310420 0.459961
14 0.279622 0.406438 0.375560 0.317286 0.313113 0.480891
15 0.281748 0.424731 0.375462 0.324673 0.318428 0.486987
16 0.285458 0.427076 0.386496 0.323519 0.318401 0.501964
17 0.280311 0.468020 0.392803 0.319234 0.313653 0.534678
18 0.279760 0.433472 0.359645 0.317651 0.310302 0.501284
19 0.293708 0.505405 0.425240 0.341372 0.326675 0.554286
20 0.276961 0.421177 0.367999 0.310108 0.309141 0.484946
21 0.279895 0.428169 0.361199 0.315645 0.311104 0.490754
22 0.279257 0.465401 0.385303 0.328594 0.319071 0.525004
X 0.280497 0.427725 0.383470 0.312335 0.306479 0.482864
Y 0.307826 0.418311 0.395924 0.318556 0.317295 0.472119

Total average 0.281951 0.416821 0.375810 0.317236 0.311976 0.485010

Bidir, interpol. Markov chain, order k=8-14 (alpha = 100)                                        
Average Probability (Ref)



Table S6: Kolmogorov–Smirnov test of "Probability of Ref - Probability of Alt" distributions

Data: 1KGP ClinVar
D = 0.0070259p-value = 0.177

Data: 1KGP COSMIC
D = 0.10173 p-value < 2.2e-16

Data: ClinVar COSMIC
D = 0.10225 p-value < 2.2e-16

Data: Benign SNPs Damaging SNPs
D = 0.06165 p-value < 2.2e-16

alternative hypothesis: two-sided

Two sample Kolmogorov-Smirnov test

alternative hypothesis: two-sided

Two sample Kolmogorov-Smirnov test

alternative hypothesis: two-sided

Two sample Kolmogorov-Smirnov test

alternative hypothesis: two-sided

Two sample Kolmogorov-Smirnov test



Table S7: Chi-Squared of Damaging and Benign SNPs

Counts Ref-Highest Alt-Highest Rest SNPs
Damaging 3233 4449 7617
Benign 7864 8704 16273

Expected Ref-Highest Alt-Highest Rest SNPs
Damaging 3526.7 4180.1 7592.3
Benign 7570.3 8972.9 16297.7

X-squared = 61.325, df = 2, p-value=4.824e-14

Comparing only Alt highest to the rest

Counts Alt-Highest Rest SNPs
Damaging 4449 10850
Benign 8704 24137

Expected Alt-Highest Rest SNPs
Damaging 3526.7 11772.3
Benign 7570.3 25270.7

X-squared = 34.772, df = 1, p-value=3.707e-09

Pearson's Chi-squared test

Pearson's Chi-squared test



Table S8: The α matrix for k  = 1 estimated from all chromosomes except Chr1. 

A C G T A C G T
AAA 0.023 0.035 0.010 GAA 0.014 0.033 0.009
ACA 0.021 0.028 0.087 GCA 0.027 0.019 0.068
AGA 0.039 0.043 0.027 GGA 0.059 0.028 0.028
ATA 0.013 0.126 0.015 GTA 0.009 0.066 0.013
AAC 0.019 0.060 0.012 GAC 0.012 0.045 0.017
ACC 0.049 0.028 0.087 GCC 0.037 0.026 0.084
AGC 0.069 0.027 0.019 GGC 0.085 0.026 0.038
ATC 0.025 0.062 0.013 GTC 0.017 0.045 0.012
AAG 0.036 0.040 0.008 GAG 0.026 0.032 0.010
ACG 0.041 0.041 0.717 GCG 0.062 0.035 0.566
AGG 0.061 0.061 0.015 GGG 0.067 0.058 0.025
ATG 0.017 0.223 0.020 GTG 0.011 0.083 0.020
AAT 0.016 0.095 0.012 GAT 0.013 0.062 0.025
ACT 0.018 0.037 0.064 GCT 0.019 0.027 0.069
AGT 0.064 0.037 0.018 GGT 0.087 0.028 0.049
ATT 0.012 0.094 0.016 GTT 0.012 0.059 0.018
CAA 0.020 0.072 0.008 TAA 0.016 0.046 0.015
CCA 0.017 0.035 0.058 TCA 0.018 0.024 0.049
CGA 0.487 0.048 0.043 TGA 0.049 0.024 0.018
CTA 0.008 0.050 0.023 TTA 0.015 0.046 0.016
CAC 0.020 0.084 0.011 TAC 0.013 0.067 0.009
CCC 0.025 0.059 0.067 TCC 0.028 0.029 0.060
CGC 0.570 0.035 0.063 TGC 0.068 0.019 0.027
CTC 0.010 0.032 0.026 TTC 0.010 0.033 0.014
CAG 0.027 0.080 0.009 TAG 0.023 0.050 0.008
CCG 0.035 0.066 0.555 TCG 0.043 0.048 0.483
CGG 0.549 0.066 0.035 TGG 0.058 0.035 0.017
CTG 0.009 0.080 0.027 TTG 0.008 0.071 0.020
CAT 0.020 0.224 0.017 TAT 0.015 0.128 0.013
CCT 0.015 0.061 0.061 TCT 0.027 0.043 0.039
CGT 0.712 0.041 0.041 TGT 0.087 0.028 0.021
CTT 0.008 0.039 0.036 TTT 0.010 0.035 0.023

α matrix, k  = 1 α matrix, k  = 1 
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Figure S1: Chromosome based cross validations for baseline model and Bidir-Markov model. For
each chromosome, the overall prediction accuracy is calculated for a model is estimated from the
other chromosomes (chromosome-based cross validation). The overall average is weighted by
chromosome sizes. These are compared to the nucleotide-based cross validation accuracies used
in Figure 1.

2



10 12 14 16 18 20

0.
47

0.
48

0.
49

0.
50

0.
51

0.
52

0.
53

k

Fr
ac

tio
n 

co
rr

ec
t

γ=10
γ=50
γ=100
γ=150

Figure S2: Accuracy of the bi-directional k-th order Markov model for different strengths of
regularization, γ. Results are shown only for Chromosome 20 with the model estimated from all
the other chromosomes.
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bilities. Density profile of the reference probabilities for the full model was shown as a dark grey
line and the other for a model estimated on non-repeat and non-coding regions on Chromosome 1.
The yellow and gray vertical lines represent the median probabilities of restricted model and full
model, which are 0.286578 and 0.282368, respectively.

Reference probability

D
en

si
ty

Caenorhabditis elegans
Escherichia coli
Homo sapiens
Saccharomyces cerevisiae

Arabidopsis thaliana

0.0 0.2 0.4 0.6 0.8

0
1

2
3

4
5

6
7

D
en

si
ty

A.thaliana CDS
A.thaliana EXCDS
C.Elegans CDS
C.Elegans EXCDS
S.cerevisiae CDS
S.cerevisiae EXCDS

Reference probability

0
1

2
3

4
5

6
7

0.0 0.2 0.4 0.6 0.80.25 1.0 0.25

A B

Figure S4: Density profile of reference probabilities of different species. A. Those species were
estimated via 10-k context bidirectional Markov model, γ = 100 interpolated from 6. B. Density
plots of CDS regions and non-CDS for the species, which have two peaks in Figure S4A.
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Abstract
Differential gene expression analysis in bulk RNA sequencing data between disease and
control is challenging due to lack of good controls and the heterogeneous nature of the
samples. Here we present a deep generative model that frees us of the need for controls.
The model is trained on RNA-Seq data from normal tissue and tested on cancer samples.
For most cancer samples, the model infers representations in clusters of normal tissues
identical to the cancer origin. The overall probability of a cancer sample, which is given by
the model, is lower than that of an adjacent normal sample. This indicates that the model
can distinguish cancer from normal samples. From the model we can derive a p-value for
each gene in a sample. In a detailed analysis of breast cancer, we show that when
comparing a single cancer sample to the model without a paired control, the significant
genes are enriched in known cancer driver genes and marker genes for cancer subtypes.
This enrichment is much greater than in standard DESeq2 analysis with paired control
samples. In a control experiment comparing normal vs. normal the model barely finds any
false positives, whereas the standard comparison using DESeq2 results in hundreds of false
positives.

Introduction
Cellular function varies with cell type and environment. Differences in cell function can
largely be characterized by gene expression profiles, and analysis of gene expression data
has become a standard for studying differences in cells and tissues, in part driven by
advances in next-generation RNA sequencing (RNA-Seq) technologies. In many diseases,
such as cancer, gene expression patterns deviate strongly from those observed in normal
states. By identifying differentially expressed genes (DEGs), we can pinpoint genes involved
in the onset or progression of disease, which could present biomarkers or potential drug
targets in personalized treatment (Burska et al. 2014; Kamel and Al-Amodi 2017).
Despite the great potential of differential expression analysis, the methods employed for this
type of analysis are often found to have low reproducibility and return thousands of



significant DEGs (Cui et al. 2021), making a clinical interpretation challenging. This is to a
large extent due to the lack of good controls, which is a common problem in the study of
diseases. In cancer studies, controls are most often tissue samples from healthy individuals
(potentially matched on available clinical parameters) or, alternatively, normal adjacent
tissues (NATs) from the cancer patients themselves. The benefit of the latter is a reduction of
person-specific biological variance. However, NATs from cancer patients have been shown
to display field cancerization (Aran et al. 2017), meaning that these samples are not truly
normal. Inversely, normal samples from other individuals will display genetic heterogeneity
and are thus not suitable for direct comparison with classical methods, especially at low
sample numbers (Li et al. 2022; Vihinen 2022). Lastly, a general problem in relation to bulk
sequencing data is that samples differ in cell type composition. This problem may in part be
alleviated by taking this into account using weighted averages of the closest normal samples
(Rapin et al. 2014; Vivian et al. 2020).

The most generally applied method for differential expression analysis relies on count
statistics using negative binomial (NB) distributions to account for over-dispersion (Love,
Huber, and Anders 2014). Neural networks and Machine learning in general have been
increasingly applied to the field of transcriptomics in the last two decades. Applications range
from quality control using simple regression and mixture models (McDermaid et al. 2018)
over identifying DEGs and biomarkers using random forests (Abbas and El-Manzalawy
2020) or convolutional neural networks (Kakati et al. 2022) to digital pathology (Schmauch et
al. 2020) using multi-layer perceptrons. Other approaches have been suggested to learn
biologically meaningful representations from gene expression data (Altman et al. 2019)
present a variational autoencoder (Kingma and Welling 2013) trained on cancer
transcriptomes with the potential to predict therapeutic responses. Another generative neural
network, SOPHIE (Lee et al. 2022) identifies cancer-specific genes from a collection of
normal and cancer datasets. So far, available methods seem to either be limited to requiring
paired or manually curated controls or having to be trained on very specific datasets
including cancer samples.

In this work, we present a model of gene expression in normal tissue which addresses the
problem of finding good controls and enables differential expression analysis in cancer using
only a single sample. The model is an extension of the Deep Generative Decoder (DGD)
(Schuster and Krogh 2021, 2022) a generative neural network which learns a probabilistic
low-dimensional representation of the data.

Our model is trained on the Genotype-Tissue Expression (GTEx) data (Lonsdale et al. 2013)
with around 20,000 bulk samples from 31 different human tissues and 948 individuals.
Briefly, the model learns parameters with two goals. Firstly, the neural network parameters in
the decoder are learned to best describe all data in a low-dimensional space, the
representation. Secondly, the model learns a most probable representation for each sample
and returns a NB distribution over count values for each gene. For samples that are not from
normal tissue, such as cancer samples, we can infer a nearest representation in the model
to use as the control.This inferred control is informed by the whole training data instead of a
limited and biased set of control samples. We therefore expect it to yield a less noisy control
and more precise judgment of differential expression. In order to test this hypothesis, we
apply the model to cancer samples from the Cancer Genome Atlas (TCGA) program



(Cancer Genome Atlas Research Network 2008). From the NB distribution over gene
counts, we can derive a p-value for each gene in a sample and can thus identify a set of
significant DEGs. We focus on the analysis of breast cancer (BC) and calculate enrichment
of known cancer driver genes and subtype marker genes among the significant genes. This
is compared to a standard case-control analysis using DESeq2.
In conclusion, we find that our model of normal gene expression drastically improves
differential expression analysis by yielding fewer false positives and extending the analysis
to single cancer samples (N-of-one) without controls. We believe that this method can have
a significant impact on the utility of gene expression analysis, target identification and
therefore personalized treatment.

Results
The goal of our method is to construct a deep generative model that learns how genes are
expressed across human tissues. Our model, a deep generative decoder (DGD) (Schuster
and Krogh 2022) learns a low dimensional representation for every sample. The
representation (or latent) space has a dimension of 50 and representations are distributed
according to a mixture of Gaussians with 45 components, closely matching the number of
tissues covered in our data (Fig1A). A decoder neural network with several hidden layers
maps the latent space to sample space, resulting in a negative binomial distribution for each
gene (Fig. 1B). We infer the parameters of the representations, Gaussian mixture and
decoder by training our model on a random subset containing 90% of GTEx data (17072
samples), while leaving the remaining 10% (1903 samples) as a test set (Supplementary
Table S1).

A generative model of gene expression for bulk samples

After training, we first decided to evaluate whether the latent space of the DGD model
distinguishes different tissues. We first performed principal component analysis (PCA) of the
latent space (Fig. 2A), finding that the DGD is able to find well-separated representations.
Our learned Gaussian mixture model (GMM) over the latent space adds structure to
representations  and ideally, each mixture component should gather samples that originate
from the same tissue. To test this, we assign each sample to the GMM component with
highest probability and evaluate how samples are distributed across components (Fig. 2B).
The matrix shows that almost all GMM components are assigned to samples dominated by
only one tissue. Correspondingly, most tissues are represented by a few GMM components
– for most tissues only one. Interestingly, we observe that some tissues with known
biological substructure are divided across several GMM components. For example, the DGD
splits the subtypes of the brain in 8 components; the esophagus and adipose in 3; and colon
into 2. In summary, these results show that the DGD model learns how genes are expressed
across human tissues, while  being able to find separable low dimensional tissue
representations.



Finding closest-normal comparison sets for cancer samples

Next, we evaluated whether our model of normal gene expression could find meaningful
representations for cancer samples. To do so, we used our model (trained on GTEx) to find
representations for tumor samples (Supplementary Table S2) in The Cancer Genome Atlas
dataset (TCGA) by maximizing the probability of a representation for a cancer sample, while
leaving the decoder neural network and GMM parameters fixed (Fig. 3A). We interpret the
representation as the closest-normal sample to the tumor. To start with, we evaluated the
ability of our model to detect out-of-distribution examples (i.e. anomalous expression
profiles) by calculating the probability of each sample, given our model (Figure 3C). We
observe that TCGA-cancer samples generally have a much lower probability than GTEx
samples while TCGA-normal samples have intermediate probabilities. Afterwards, we
assessed if our model matches tumor samples to their healthy counterparts (Fig3B).  We
find that our model closely matches most tumors to their healthy normal and 11 out of 14
tissues have a classification percentage higher than 80%. The three tissues with low
classification accuracies are bladder, stomach and esophagus.

Detecting cancer differentially expressed genes without controls

We extended the DGD to detect differentially expressed genes. Our model performs a
two-tailed negative binomial test for the distribution generated from the closest-normal
representation (material and methods).To test the DGD, we focused on breast cancer, as
both TCGA  and GTEx contain a large number of samples (Fig. 4A). However, we perform
our experiments in an N-of-1 fashion to resemble common clinical settings.  As a
comparison, we benchmark the DGD against DEseq2 (Love, Huber, and Anders 2014), a
widely used statistical method to detect differentially expressed genes.

We first assess the specificity in a normal vs. normal analysis, using healthy breast tissue
from GTEx. It is assumed that there should be no or very few DEGs when comparing normal
samples and therefore the number of DEGs functions as a proxy to specificity. We randomly
selected 1 sample from the breast test set (42 samples) and compared against the 440
control samples from the training set using DEseq2, and we repeated this process 20 times.
We used the same random samples to compare the DGD model. The number of significant
genes of these are shown in Fig. 4B for varying p-adjusted values. We did the same analysis
using five randomly selected samples from the training set  as the comparison set (full line
and box plot in Fig. 4B). Ideally, this analysis should give no significant genes, but DEseq2
found many genes differentially expressed, calling the 179.05 and 76.15  genes for the 1
versus 5 and 1 versus all comparisons  ( p-adjusted < 0.01 & log fold-change >1). The DGD,
on the contrary, found almost no false positives with e.g. an average of 4.25 for 1 vs model.

To compare the sensitivity of the DGD and DEseq2 we analyzed their ability to correctly
identify marker genes known to be differentially expressed in breast cancer.  Two sets of
BC-related genes were curated for the purpose (I) driver genes from the DriverDBv3
database (Liu et al. 2020), and (II) the PAM50 (Parker et al. 2009) set of subtype-specific BC
genes (Materials and Methods). As a metric, we calculated a gene enrichment score, which



is the fraction of genes among the significant ones divided by the expected by random
chance.

We evaluated enrichment scores across PAM50 breast cancer subtypes, namely, basal-like,
HER2, luminal A and luminal B. For the purpose of this analysis we applied clinical filters to
ensure greater  homogeneity of samples (Supplementary Table S3). We performed
experiments similar to those described above, randomly selecting one sample (20
repetitions) and comparing it to the rest of the samples and the model for DEseq2 and DGD,
respectively. The DGD obtained higher enrichment scores than DEseq2 for all subtypes in
regards to both driver genes (DriverDBv3) and PAM50 genes (Fig. 4C). DGD obtained an
average enrichment score of 3.46, and attained a particularly high score for the luminal A
subtype in the PAM50 marker set. In comparison, the DEseq2 average score was 1.71,
without being high for any particular subtype (note that a score of 1 means no enrichment).
In summary, the results highlight how the DGD maintains a very high specificity without
sacrificing sensitivity.

Next, we selected a subset of PAM50 genes to evaluate whether the DGD captures the
expression differences between subtypes. Briefly, we used three criteria for inclusion of
genes in our downstream analysis: the gene was well-studied in breast cancer (Wirapati et
al. 2008), had a significant p-value in at least 10 replicates and had different expression
patterns across subtypes (Supplementary Table S4). Altogether, our filtering led to 28 across
the four subtypes. For each gene we evaluated whether the DGD detected differential
expression (i.e. a significant p-value) as well as the expression trend (i.e. upregulation or
downregulation). The DGD correctly determined 21 out of the 28 gene expression patterns
(Fig 4. D-G), obtaining similar performances across the subtypes. The best case was the
basal subtype (6 out 7 correctly determined), while the performance was identical for the rest
of the subtypes (5 out 7). Summarizing across genes, Errbb2, Esr1 and Pgr were correctly
called in all subtypes and Mlph and Mmp11 were correct in 3 out of 4. DGD only had bad
performances for Egfr and Tmem45, which were wrongly called in 2 out 4 and 3 out 4
subtypes, respectively. In short, these results show that the DGD is able to detect gene
expression patterns which are specific to breast cancer subtypes.

As a final analysis, we extended our model to the rest of TCGA cancers in order to evaluate
if the DGD could be applied to other cancer types. As above, we performed 1 versus model
experiments using 20 repetitions and we evaluated the enrichment score of the DriverDB
gene set for each cancer type. The DGD found more cancer marker genes than expected by
chance for all cancer types (mean enrichment score 2.33, mean range 1.27 - 4.00).
Specifically, the scores were higher for kidney renal clear & papillary cell carcinomas (mean
enrichment of 3.65 and 3.18, respectively) and thyroid carcinoma (mean enrichment 4.00).
Collectively, we here show that DGD is able to find marker genes across various cancer
subtypes.

Discussion
A lot of attention is currently directed towards single-cell RNA sequencing due its potential
higher resolution and recent advances in its scalability. However, bulk sequencing is still the
work-horse for clinical use. Differential expression analysis between disease and normal has



relied on solid statistical methods, but are challenged by the difficulty in obtaining suitable
control samples and large enough sample sizes. Here, we introduce a method that requires
no biological replicates and matched controls.. The model we present learns the gene
expression of normal tissue samples and generates a normal sample closest to the disease
sample at hand.

In order to assess the model’s capability to find meaningful representations and to
generalize unseen data, we evaluated the model on data held out during training. The model
clusters representations well in a tissue-dependent manner and typically assigns only one to
a few Gaussian mixture components to each tissue type.  Interestingly, we see that some of
the complex tissues are spread over several components. Most notably, brain tissue is
spread over eight components, whereas some other tissues are spread over two to three
components. We also see some tissue types mixed together. For some, this is not surprising
as several tissues are underrepresented in the data. Examples are the component that
comprises samples from uterus, ovary, fallopian tube and cervix, and the two components in
which small intestine and colon are mixed. These mixed clusterings additionally make sense
as their tissues stem from larger systems (female reproductive system and digestive tract),
which also explains some other mixed components such as one modeling colon and
stomach. Given that the representations are found in a completely unsupervised fashion, we
find the clustering to be remarkably interpretable.

Besides providing well clustered representations, the model of normal gene expression can
replace control samples in the differential gene analysis of a disease. This is achieved by
finding the closest normal representation in the model. The generated sample of this
representation is in turn used to compute a probability distribution for the expression counts
of each gene. As a sanity check, we calculated total probabilities of GTEx test, TCGA normal
and TCGA cancer samples and find that the probabilities derived from the model of normal
are highest for GTEx test data and decrease strongly with TCGA cancer as expected.
Probabilities for TCGA normal samples lie between the two, which is consistent with
previous findings that suggest that adjacent normal tissue carry traits of cancer (Aran et al.
2017) The separation we find seems to be much clearer than previously reported (Vivian et
al. 2020), although a direct comparison is difficult. When analyzing the quality of the
integration of cancer samples into latent space, we observe that most representations of
cancer samples are consistent with the tissue of origin. For most cancers, more than 80% of
samples end up in the expected tissue. These results are again consistent with (Vivian et al.
2020).

It is difficult to assess the performance of differential gene expression analysis without
knowing the ground truth. We have compared our approach to a standard analysis in two
ways using breast cancer as a case. Firstly, we assessed the specificity of our model and
DESeq2 by comparing normal vs normal as a negative control. While DESeq2 yields large
numbers of significant genes (1.75% of all genes, given log2FoldChange >1; P-adj < 0.05),
here interpreted as false positives, our model reports only 0.03% of the genes to be
differentially expressed under the same threshold. Secondly, we calculate the enrichment of
relevant known cancer genes among the significant genes derived from differential
expression analysis of breast cancer samples. In this positive control, we used a set of
known breast cancer driver genes and the PAM50 set of genes breast cancer subtypes. In
the general breast cancer case, we see consistently higher enrichment when using the DGD



compared to DESeq2. This is also true, in most part, for the cancer subtypes. However,
there are some outliers with respect to the expected driver genes. For instance TMEM45B
should be upregulated in the HER2 subtype, but is downregulated on average according to
our model. Same for MLPH gene, which should be downregulated in Luminal B, but our
model doesn’t detect this gene as significant in Luminal B subtype in any of the 20
experiments (Tishchenko et al. 2016). Yet, we do not expect a perfect concordance between
the PAM50 panel and tumor samples as there are many patient-specific factors that can
affect the expression of a gene. Another possible reason is that Luminal B is in some ways
more like Luminal A, and in some ways more like HER-2 (Yersal and Barutca 2014).
Altogether, our evaluation on breast cancer shows that, in this case, the DGD returns much
fewer false positives and a higher proportion of truly relevant genes compared to DESeq2.

The model introduced and discussed here presents an important step towards the use of
bulk gene expression analysis for precision medicine. Given the fact that the DGD does not
require paired control samples, the potential impact of the model for differential expression
analysis with single disease samples is immense. Because of the great performance on
even single samples, we see an especially high potential in application to rare diseases. .
Additionally, the results of differential expression analysis will contain much fewer false
positives, which will enable us to find genes that are truly involved in disease and thus
increase the possibility to find druggable targets and understand the disease on an individual
level as it has not been possible before with bulk data.

Methods
The model

Architecture and hyperparameters
The full model consists of the learned representation, a GMM as the parametrized
distribution over latent space and a decoder as presented in (Schuster and Krogh 2022).
Each representation of a sample receives a 50-dimensional vector initialized with zero. The
architecture of the decoder consists of an 50-dimensional input layer which is fed with the
representations, two hidden layers and an output layer with its units corresponding to the
number of genes in the data. The two hidden layers are of size 500 and 8000, respectively
and are immediately followed by ReLU activation (Fukushima 1975; “Rectified Linear Units
Improve Restricted Boltzmann Machines” n.d.). The output layer’s values are transformed
into expression counts by the Negative Binomial layer (NB layer). The gene-specific
dispersion parameters are initialized with 2. Unlike in the scDGD from (Schuster and Krogh
2022), the decoder outputs are passed through ReLU activation and scaled with the sample
gene expression mean in order to achieve a predicted gene expression value. The GMM
consists of 45 mixture components. The priors are a mollified Uniform with spread 7 and
sharpness 10 for the means, a Gaussian with mean 1 (corresponds to a standard deviation
of 0.1) and standard deviation 1 for the negative logarithmic diagonal covariance, and a
Dirichlet with alpha 5.

Training
The model is trained for 200 epochs with a batch size of 256. The optimizer of choice is
Adam (Kingma and Ba 2014) without weight decay and betas 0.5 and 0.9. Because the



representations are updated every epoch, decoder, representation and GMM have their own
optimizer instances with learning rates 1e-4, 1e-2 and 1e-2, respectively.

Evaluation
Representations for single test samples are learned as described in (Schuster and Krogh
2022). For each new datapoint, new representations are initialized from the component
means. This results in 45 representations per sample. These are trained on the frozen model
for 10 epochs, after which the best representations per sample are selected and trained for
another 50 epochs.

In order to learn a single representation for multiple samples, we assume that samples x are
conditionally independent:
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We can therefore simply obtain a single representation by using the summed negative
log-probability masses (the losses)  of all  samples of interest.

Differential expression
We extended the DGD to find differentially expressed genes for tumor samples. Learning
new representations for a set of tumor samples is performed as described above. The
learned representations are the closest-normal for each tumor. In our setup, we want to test
if counts for a given gene are significantly different between the tumor and the normal tissue
output of the neural network. Let be the re-scaled negative binomial distribution𝑁𝐵(𝑚
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The above expression yields an exact p-value for the negative binomial distributions.
However, it requires summing over all read counts across genes. For the sake of efficiency,
we therefore obtain an asymptotic p-value by summing over an evenly spaced grid of 104 in
the domain of .𝐾

Data

Data collection and processing



The raw gene count expression data from the Genotype-Tissue Expression (GTEx) and the
Cancer Genome Atlas (TCGA)  were downloaded from the Recount3 database
(https://rna.recount.bio/),using the built-in R packages. Additionally the  sample metadata files
were acquired through the  Recount3 platform (Wilks et al. 2021).
At the time of download (09th-Feb-2022) there were 31 different tissue types in GTEx and one
NA Study category, with a total of 19,214 individual samples (Supplementary Table S1). 133
samples from the NA Study class were removed from the dataset as they had no tissue
information, and the drop duplication function was used when we trained our model. We
employed the filterByExpr (Filter Genes By Expression Level) (Chen, Lun, and Smyth 2016), an
R function, to get rid of the low expressed genes by using the default parameters. For our
analysis we only retained protein coding genes based on the annotation file namely ‘GTEx gene’,
that was downloaded from UCSC Table Browser.  After filtering (Chen, Lun, and Smyth 2016))
the GTEx dataset  contained a total of 18,975 samples and 16,883 annotated protein coding
genes.

We matched the genes from the filtered GTEx set with those in the TCGA , and separated the
TCGA samples  into a Normal Adjacent set and Tumor set, in accordance with the metadata file.

TCGA tissue selection

To evaluate whether our model could learn and generate new data points that can correctly
match to the corresponding tissue of the GTEx dataset. We selected 12 different tissues under
three conditions: 1) The TCGA tissues must correspond to GTEx dataset. 2) Have at least 10
adjacent normal samples from each cancer-type (Zeng et al. 2019). 3) Include the Adrenal and
Brain tumor samples although they don’t have adjacent normal samples, because we would like
to compare our result with John Vivian’s work (Vivian et al. 2020). There are 6111 TCGA tumor
samples and 624 TCGA adjacent normal samples. (Supplementary Table S2)

TCGA breast cancer subset

To obtain a homogenous breast cancer (BC) dataset for testing we curated the TCGA BC
samples to only include primary tumors from women between 40-70 years of age. We excluded
samples with low tumor cell percentage (defined as < 50% ) or a high level of necrosis (defined
as > 5 %), in addition to samples from patients with known metastasis, stage iv or stage x
tumors, or prior cancer diagnosis. For a full list of selection criteria and columns from metadata
used for curation see Supplementary Table S4. The number of available BC samples for analysis
was reduced from 1256 to 395.

Cancer Driver Genes and PAM50 genes

We downloaded a list of cancer driver genes for each cancer type from DriverDBv3 (Liu et al.
2020).
The PAM50 gene set used for BC subtype classification (Basal, Luminal A, Luminal B and
Her2-enriched) (Parker et al. 2009) was downloaded though the R-package genefu (Gendoo et
al. 2016). As our model testing and comparison with DEseq2 pertained to the expression profile
of BC subtype tissue vs normal tissue (i.e. not between subtypes), we filtered the PAM50 dataset
to only include the genes which were specific to a single subtype, and/or which could distinguish



BC subtype(s) from normal tissue. We noted the expected directionality of each of the PAM50
genes (up or down regulated) for a contrast. The selection of genes were based in part on
literature (Coleman and Anders 2017; Vaca-Paniagua et al. 2015; Hu et al. 2013) and in part on
the robust normalized PAM50 scores (Gendoo et al. 2016). The PAM50 geneset was reduced to
34 genes.

Analysis

Evaluation of tissue specificity
Clustering performance of the model according to tissue type was evaluated based on the GMM
probability densities for each sample’s representation. For this purpose, all GTEx training
samples are assigned the GMM component that achieves the highest probability density for their
inferred representations. We calculate the percentage of each tissue per component as the
number of samples of a given tissue clustered in a given component divided by the total number
of samples assigned to this component.
𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =  # 𝑜𝑓 𝑡𝑖𝑠𝑠𝑢𝑒−𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑 𝑖𝑛 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

# 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡  𝑥 100

Matching TCGA to normal tissues
We use the TCGA data described in the Data section in order to evaluate the mapping of
unseen, out-of-distribution data onto the latent space. New representations for all 6111 TCGA
tumor samples are learned with the DGD trained on GTEx data. The resulting GMM probability
densities for the TCGA representations are used to evaluate how well new samples are matched
to the correct tissues of the training representation. We define the “correct” tissue as the tissue
that best represents a given GMM component. Our evaluation metric is the percentage of TCGA
samples of a given tissue matched to the corresponding GMM component with respect to the
total number of TCGA samples for this tissue.
% 𝑇𝐶𝐺𝐴 𝑖𝑛 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 =  # 𝑜𝑓 𝑇𝐶𝐺𝐴−𝑡𝑢𝑚𝑜𝑟 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 "𝑐𝑜𝑟𝑟𝑒𝑐𝑡" 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

# 𝑜𝑓 𝑇𝐶𝐺𝐴−𝑡𝑢𝑚𝑜𝑟 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑜𝑓  𝑡𝑖𝑠𝑠𝑢𝑒  𝑖𝑛 𝑡𝑜𝑡𝑎𝑙  𝑥 100

Bladder samples are evaluated differently due to the lack of a bladder-specific component in the
normal model. Instead, we evaluate a correct match as TCGA and GTEx bladder samples
assigned to the same component(s).

Comparing GTEx and TCGA gene expression predictions
The predicted gene expression of the model is given as the mean of a NB distribution, which is
the product of the NN output and the mean expression of the sample. We calculate the negative
log-probability mass (the reconstruction loss) of each sample across all 16,883 genes. We do
this for three datasets: GTEx test, TCGA-Adjacent normal and TCGA-Tumor. For this
comparison, we use subsets containing 10 tissues, namely Adrenal, Brain, Breast, Colon,
Kidney, Liver, Lung, Prostate, Stomach and Thyroid. For the analysis of each tissue, we
randomly select 100 samples from each set if the dataset has more than 100 samples, otherwise
we take all samples from the set. We apply this analysis for a pan-tissue comparison based on 8
tissues because Adrenal and Brain are missing in the TCGA-Adjacent subset. For a fair
comparison, we ensure equal numbers of samples for a given tissue across the three datasets. If
all datasets have more than 20 samples for a given tissue, we randomly select 20 samples from
each subset for that tissue. Otherwise, we choose the lowest number of samples available for a
tissue and subsample the other datasets down to that number. As an example, there are only 7
kidney samples in the GTEx test set. We thus select 7 samples from each TCGA dataset. The
sample numbers of TCGA tissues are shown in supplementary Table S1,S2.



Differential expression analysis in TCGA Breast Cancer
The cancer samples provide a unique opportunity to evaluate the capability of our model to
perform Differential expression analysis (DEA) due to known cancer driver genes. DEA
performed by our model is compared to DESeq2 and the resulting sets of DEGs are analyzed
with respect to their enrichment in cancer driver genes.
For a general comparison, we perform 30 multi-sample experiments using 5 random breast
cancer samples (cases) from the population of 40-50 year-old caucasian females. This leaves us
with 166 samples. Genes that result in absolut log2-fold changes greater than 1 and adjusted
P-values below 0.01 are accepted as differentially expressed. The enrichment score is then
given as the normalized number of DEGs belonging to the group of breast cancer driver genes or
PAM50 genes, respectively.

𝐸𝑆 = 𝑒𝑛𝑟𝑖𝑐ℎ𝑒𝑑 𝑐𝑎𝑛𝑐𝑒𝑟 𝑚𝑎𝑟𝑘𝑒𝑟 𝑔𝑒𝑛𝑒𝑠 * 16,883 𝑔𝑒𝑛𝑒𝑠
𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑔𝑒𝑛𝑒𝑠 * 𝑐𝑎𝑛𝑐𝑒𝑟 𝑚𝑎𝑟𝑘𝑒𝑟 𝑔𝑒𝑛𝑒𝑠

We perform a comparable DEA with DESeq2 using 5 random GTEx samples (control) under the
same conditions (40-50 year-old females).

We also perform single-sample analyses of the four available breast cancer subtypes: Basal-like
(84 samples), HER-2 (37 samples), Luminal A (176 samples) and Luminal B (84 samples), both
for our model and DEseq2. We randomly choose one sample from each of the four subtypes as
a case sample, and use all GTEx breast tissue samples (40-70 year-old females, 143 samples in
total) as controls in the DEseq2 method. The experiment is repeated 20 times for each subtype.

False positive analysis
In order to assess the quality of the model’s DEA, we perform an experiment to quantify its false
positive rate. We therefore select a random GTEx breast sample from the test set (42 samples)
as a false case sample. We perform DEA with both our model and DESeq2 to arrive at false
positive DEGs (absolute log2-fold change greater than 1) for a range of adjusted P-values
ranging from 0.01 to 0.1. We perform this 20 times and report the resulting DEGs as false
positives. As controls for DESeq2, we choose 5 controls, which are randomly selected from the
GTEx training set (440 samples). We also perform the analysis for DESeq2 using all breast
samples, mentioned above, as controls.

Enrichment analysis of Cancer Driver Genes for multiple cancer types
Eleven different cancer types are involved in this analysis including Breast cancer, which are
Adrenocortical Carcinoma, Bladder Urothelial Carcinoma, Brain lower Grade Glioma, Breast
Carcinoma, Colon Adenocarcinoma, Kidney cancer (Kidney Chromophobe, Kidney Renal Clear
Cell Carcinoma, Kidney Renal Papillary Cell Carcinoma), Liver Hepatocellular Carcinoma, Lung
Adenocarcinoma, Prostate Adenocarcinoma, Stomach Adenocarcinoma and Thyroid Carcinoma.
We perform 20 single-sample experiments for each of the cancer types. For each cancer type, its
respective cancer driver gene list was used in the enrichment score calculation.
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Gaussian Mixture Model (left). A generative neural network trained on GTEx maps
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distribution across bulk tissues, as illustrated in the heatmap (right).

1



−3 −2 −1 0 1 2 3
PC1

−2

−1

0

1

2

3

P
C

2

Artery
Bladder
Testis
Pancreas
Brain
Esophagus
Vagina
Skin
Pituitary
Nerve
Adipose
Lung
Colon
Liver
Stomach
Muscle

Heart
Thyroid
Kidney
Adrenal Gland
Minor Salivary Gland

Small Intestine
Whole Blood
Breast
Cells
Prostate
Spleen
Ovary
Uterus
Cervix
Fallopian Tube

0.5 74.90.6 98.31.1 1000.11.3

0.1 4 30.3 1.299.40.10.7

0.2

99.299.8100 83.3100 100 99.8

180.7 94.6

4.9 0.72

0.1 100 100 16.7

7525.7 0.4 0.44.9

2.8 1.22.8

0.2 0.1 3.45 1.5 0.81002.20.9 99.8 0.4100 0.11.3

2.2

0.30.20.1 0.2

0.4 100

0.2100

97 0.2 0.10.30.7 96

0.20.3 98.8

0.2 0.396.8 0.394

53.50.7 0.10.3

91.8 0.51 0.10.30.9

0.8100 0.2

0.42 0.198.5

1 100

14.598.1 0.3

3.948.5 0.195.1

99.1 0.20.3 0.2 1.440.10.7 4

99.8 9.9 0.10.3 0.1

99.7100

40.5 0.40.7 0.2 0.2

0.9 0.895.7 0.1 1.61 0.6 0.11

99.9

0.6

0.5 99.6

0.9 100

0.4

0.9 0.4 97.9

0.40.1 0.4

0.5

98.8 1.2

0.9 100

94.1 0.1

0.9

0.5

0.5

0.5

Adipose (2 types)

Artery (3 types)

Adrenal Gland

Brain (13 types)

Breast

Bladder

Cells (3 types)

Colon (2 types)

Cervix 2 types)

Esophagus ( 3 types)

Fallopian Tube

Heart (2 types)

Kidney (2 types)

Liver

Lung

Minor Salivary Gland

Muscle

Nerve

Ovary

Prostate

Pituitary

Pancreas

Spleen

Stomach

Small Intestine

Skin (2 types)

Thyroid

Testis

Uterus

Vagina

Whole Blood

Gaussian Components 

25

50

75

100
%

1254

247

2606
439

18

818

737

16

1421

8

849

91

224

585

160
773

594

172
235

259

325

232

345

171

1296

639

133

158

764

1155

348

Samples per component

12
75 46
4 125 24
5

84
9

24
289 23
1

31
6

24
4

14
1

62
6

61
2

10
1

35
2

32
8

26
0

38
4

44
9

25
5

31
0

97
81 6

13
4

31
7

54
9

41
2

27
6

81
7

76
4

15
7

50
6

23
1

10
2

12
1377
9

29
8

22
3

32
621 37
7

56
7

21
9

S
am

ples per tissue

A

B

Figure2: Representations for normal tissue. A. The PCA plot shows the clustering of 31
tissues in the latent space reduced from 50 dimensions to 2. Each dot corresponds to a
training sample. B. The matrix plot on the right shows the percentage of train samples
from each tissue (y-axis) in each Gaussian mixture component (x-axis). The tissue types
and component numbers are sorted for an optimal diagonal view. The number of samples
assigned to each component are given by the numbers below the x-axis.

2



0.0

0.5

1.0

1.5

2.0

Negative Log Probability

D
en

si
ty

9 10 11 12 13 14 15

GTEx
TCGA-Normal
TCGA-Tumor

Tumor

Closest-Normal
representation

for tumor

Find new 
representation

NN & GMM fixed

GTEx
TCGA-Tumor

0.7

0.1

0.2

0.2

0.2

84.810.1

97.6

0.5

0.2

1.5

84.4

0.6

0.7

0.9

33.7 0.2

2

0.7

0.7

0.2

0.4

96.8

26.5

0.6

49.5

0.2

4.6

0.4

0.2

14.4

0.2

0.4

1.4

1.7

92.4

80

95.2

0.5

0.2

0.2

0.7

92

0.5

0.1

0.8

0.2

0.5

85.8

2.9

1

20.6

11.5

0.4

21

0.4

5.7

0.2

4.8

0.4

0.2

0.1

0.4

0.4

0.7

0.2

0.2

1.4

0.2

98.6

0.2

0.6

0.2

0.4

0.2

0.2

0.2

7.2

0.3

0.5

0.9

0.6

24

2.5

2.4

0.5

1.2

4.4

4.5

9

0.3

0.5

0.6

0.2

12.7

0.2

1.7

0.3

0.2

8.3

0.3

1.2

96.7

1.3

2.2

0.8

0.7

2.2

1.5

8.1

1.4

5.6

2.4

1.9

0.6

1.3

31.2

0.6

0.3

0.4

13.8

1.5

0.4

0.7

0.4

Adrenal

Bladder

Brain Lower Grade Glioma

Breast

Colon

Esophageal

Kidney Chromophobe

Kidney Renal Clear Cell Carcinoma

Kidney Renal Papillary Cell Carcinoma

Liver

Lung Adenocarcinoma

Prostate

Stomach

Thyroid

Adipose
Artery

Adrenal Gland
Brain

Breast
Bladder

Cells
Colon

Cervix

Esophagus

Fallopian Tube
Heart

Kidney
Liver

Lung

Minor Saliva
ry Gland

Muscle
NerveOvary

Prostate
Pituitary

Pancreas
Spleen

Stomach

Small In
testine Skin

Thyroid
Testis

Uterus
Vagina

Whole Blood

25

50

75

%

A B

C

Figure3: Closest normal representation for cancers. A. Schematic representation for find-
ing the closest-normal representations for TCGA tumors. We find the representation by
maximizing the probability of the representation, while leaving the GMM and neural net-
work fixed. B. Negative log probability distributions for GTEx samples (test samples),
TCGA-normal and TCGA tumor samples. C. Matrix showing the percentage of TCGA
tumors assigned to GMM components. The rows represent TCGA tumor samples and the
columns show tissue-specific GMM components.

3



B

ED

C

A

Adjusted p-value
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0

200

400

600

800

1000

1200

D
E

G
s

Basal-like Luminal A Luminal BHER-2 Basal-like Luminal A Luminal BHER-2

−6

−4

−2

0

2

4

6

−6

−4

−2

0

2

4

6

−4

−2

0

2

4

6

4

2

0

-2

-4

-6

DriverDB PAM50

EGFR ERBB2 ESR1 MLPH MMP11 PGR TMEM45B

EGFR ERBB2 ESR1 MLPH MMP11 PGR TMEM45B

EGFR ERBB2 ESR1 MLPH MMP11 PGR TMEM45B

EGFR ERBB2 ESR1 MLPH MMP11 PGR TMEM45B

lo
g2

 F
ol

d-
C

ha
ng

e
lo

g2
 F

ol
d-

C
ha

ng
e

Basal-like HER2

Luminal A Luminal B

E
nr

ic
hm

en
t s

co
re

12

10

8

6

4

2
1
0

1400

Normal expression
Downregulated 

Upregulated 

DEseq2
DGD

Methods

P-value < 0.05

P-value > 0.05

Data
Healthy vs healthy:
    GTEx breast
Healthy vs cancer:
    GTEx breast
    TCGA-Tumor

GF

Figure4: Differential analysis of Breast cancer and its subtypes. A. Schematic overview of
the samples used in our experimental set-up. B. Control experiment comparing normal test
samples against the model (yellow) and against controls using DESeq2 (gray). 20 random
test samples were chosen (shown with dots) and summarized by the boxplots for different
cut-off on p-adjusted (x-axis). For DESeq2 the whole training set of breast tissue from
GTEx was used as the control.The mean is shown by the dashed gray line. We also tested
DEseq2 with a random subset of 5 controls and showed the mean in the solid gray line. C.
Enrichment score across breast cancer subtypes for driver genes and PAM50 genes between
our model and DESeq2. 20 random cancer samples were selected and compared to the
model (yellow) and GTEx samples of breast (gray, see Methods for sample selection). The
enrichment of cancer driver genes and PAM50 among the significant genes (p-adj<0.01)
is shown for each subtype of breast cancer. C. Comparison of enrichment score for Breast
cancer driver genes and PAM50 genes for DESeq2 and DGD. The enrichment scores were
calculated based on the set differentially expressed genes obtained by each method. D. 1
versus model (DGD) and 1 versus GTEx train (143 samples) breast cancer subtype specific
enrichment scores. D-G Breast cancer specific differential expression analysis on a subset
of 7 marker genes, using 20 repetitions. The box-plots are colored based on whether the
gene is known to be differentially expressed in a cancer subtype. The dots are colored
based on the p-value obtained by DGD in each replication experiment.

4



0

2

4

6

Breast Carcinoma

E
nr

ic
hm

en
t  

S
co

re

Adrenocortic
al Carcinoma

Bladder U
rothelial Carcinoma

Brain Lower G
rade Glioma

Colon Adenocarcinoma

Kidney Chromophobe

Kidney Renal Clear C
ell C

arcinoma

Kidney Renal Papillary Cell C
arcinoma

Liver H
epatocellular C

arcinoma

Lung Adenocarcinoma

Prostate Adenocarcinoma

Stomach Adenocarcinoma

Thyroid Carcinoma 

1

7

3

5

Figure5: The N-of-1 sample research of enrichment analysis for Cancer driver genes of
different cancer types. Single sample was randomly selected from each TCGA-tumor type
to calculate the differentially expressed genes by using our model. It was repeated 20
times for each cancer.

5



Ta
bl

e 
S1

 G
T

E
x 

sa
m

pl
es

Ti
ss

ue
 S

ite
 D

et
ai

l f
ie

ld
N

um
be

r 
of

 S
am

pl
e 

pe
r 

tis
su

e
N

um
be

r 
of

 S
am

pl
e 

in
 

tr
ai

ni
ng

 se
t

N
um

be
r 

of
 S

am
pl

e 
in

 te
st

 
se

t
Ti

ss
ue

 S
ite

 D
et

ai
l f

ie
ld

N
um

be
r 

of
 S

am
pl

e 
pe

r 
tis

su
e

N
um

be
r 

of
 S

am
pl

e 
in

 tr
ai

ni
ng

 se
t

N
um

be
r 

of
 S

am
pl

e 
in

 te
st

 se
t

A
di

po
se

 T
is

su
e

12
93

11
55

13
8

O
va

ry
19

5
17

6
19

A
dr

en
al

 G
la

nd
27

4
24

9
25

Pa
nc

re
as

36
0

32
7

33
A

rte
ry

13
98

12
59

13
9

Pi
tu

ita
ry

30
1

26
5

36
B

la
dd

er
21

18
3

Pr
os

ta
te

26
3

23
7

26
B

ra
in

29
31

26
25

30
6

M
in

or
 S

al
iv

ar
y 

G
la

nd
17

8
16

0
18

B
re

as
t

48
2

44
0

42
M

us
cl

e
88

1
77

5
10

6
ce

ll
92

0
82

6
94

Sk
in

14
20

13
02

11
8

C
er

vi
s U

te
ri

19
16

3
Sm

al
l I

nt
es

tin
e

19
3

17
1

22
C

ol
on

82
2

74
1

81
Sp

le
en

25
5

23
2

23
Es

op
ha

gu
s

15
77

14
29

14
8

St
om

ac
h

38
4

34
9

35
Fa

llo
pi

an
 T

ub
e

9
8

1
Te

st
is

41
0

34
9

61
H

ea
rt

94
2

85
2

90
Th

yr
oi

d
70

6
63

9
67

K
id

ne
y

98
91

7
U

te
ru

s
15

9
13

8
21

Li
ve

r
25

1
22

6
25

V
ag

in
a

17
3

16
0

13
Lu

ng
65

5
58

9
66

w
ho

le
 b

lo
od

85
2

77
2

80
N

er
ve

65
9

59
7

62
St

ud
y 

N
A

13
3

-
-



Ta
bl

e 
S2

 T
C

G
A

 tu
m

or
 sa

m
pl

es
 a

nd
 T

C
G

A
 a

dj
ac

en
t s

am
pe

s
Tu

m
or

 T
is

su
e

N
um

be
r 

of
 S

am
pl

e
A

dj
ac

en
t N

or
m

al
 T

is
su

e
N

um
be

r 
of

 S
am

pl
e

A
dr

en
oc

or
tic

al
 C

ar
ci

no
m

a
79

A
dr

en
al

0
B

la
dd

er
 U

ro
th

el
ia

l C
ar

ci
no

m
a

41
4

B
la

dd
er

19
B

ra
in

 L
ow

er
 G

ra
de

 G
lio

m
a

53
2

B
ra

in
0

B
re

as
t I

nv
as

iv
e 

C
ar

ci
no

m
a

11
42

B
re

as
t

11
4

C
ol

on
 A

de
no

ca
rc

in
om

a
50

5
C

ol
on

41
Es

op
ha

ge
al

 C
ar

ci
no

m
a

18
5

Es
op

ha
ge

al
13

K
id

ne
y 

C
hr

om
op

ho
be

66
K

id
ne

y
25

K
id

ne
y 

R
en

al
 C

le
ar

 C
el

l C
ar

ci
no

m
a

54
6

K
id

ne
y 

R
en

al
 C

le
ar

 C
el

l
72

K
id

ne
y 

R
en

al
 P

ap
ill

ar
y 

C
el

l C
ar

ci
no

m
a

29
1

K
id

ne
y 

R
en

al
 P

ap
ill

ar
y 

C
el

l
32

Li
ve

r H
ep

at
oc

el
lu

la
r C

ar
ci

no
m

a
37

4
Li

ve
r

50
Lu

ng
 A

de
no

ca
rc

in
om

a
54

2
Lu

ng
11

0
Pr

os
ta

te
 A

de
no

ca
rc

in
om

a
50

6
Pr

os
ta

te
52

St
om

ac
h 

A
de

no
ca

rc
in

om
a

41
6

St
om

ac
h

37
Th

yr
oi

d 
C

ar
ci

no
m

a
51

3
Th

yr
oi

d
59



Ta
bl

e 
S3

 C
lin

ci
al

 F
ilt

er
s f

or
 B

re
as

t C
an

ce
r 

Su
bt

yp
es

C
ol

um
n 

N
am

e
In

cl
ud

e
E

xc
lu

de
N

ot
e

gd
c_

ca
se

s.p
ro

je
ct

.p
rim

ar
y_

si
te

B
re

as
t

gd
c_

ex
pe

rim
en

ta
l_

st
ra

te
gy

R
N

A
-S

eq
gd

c_
ca

se
s.d

em
og

ra
ph

ic
.g

en
de

r
fe

m
al

e
gd

c_
ca

se
s.d

ia
gn

os
es

.tu
m

or
_s

ta
ge

st
ag

e 
iv

 &
 st

ag
e 

x
gd

c_
ca

se
s.s

am
pl

es
.sa

m
pl

e_
ty

pe
Pr

im
ar

y 
Tu

m
or

cg
c_

ca
se

_p
at

ho
lo

gi
c_

st
ag

e
St

ag
e 

IV
 &

 S
ta

ge
 X

cg
c_

sa
m

pl
e_

sa
m

pl
e_

ty
pe

Pr
im

ar
y 

Tu
m

or
cg

c_
ca

se
_a

ge
_a

t_
di

ag
no

si
s

40
-7

0
M

at
ch

 w
ith

 G
TE

X
cg

c_
ca

se
_n

ew
_t

um
or

_e
ve

nt
_a

fte
r_

in
iti

al
_t

re
at

m
en

t
N

O
 | 

N
A

cg
c_

ca
se

_p
rio

r_
di

ag
no

si
s

Y
es

cg
c_

ca
se

_g
en

de
r

FE
M

A
LE

cg
c_

sl
id

e_
pe

rc
en

t_
tu

m
or

_n
uc

le
i

50
M

in
im

um
cg

c_
sl

id
e_

pe
rc

en
t_

ne
cr

os
is

5
M

ax
im

um
cg

c_
sl

id
e_

pe
rc

en
t_

tu
m

or
_c

el
ls

50
M

in
im

um
cg

c_
sl

id
e_

pe
rc

en
t_

ne
ut

ro
ph

il_
in

fil
tra

tio
n

5
M

ax
im

um
xm

l_
hi

st
or

y_
of

_n
eo

ad
ju

va
nt

_t
re

at
m

en
t

Y
es

xm
l_

di
st

an
t_

m
et

as
ta

si
s_

pr
es

en
t_

in
d2

N
O

 | 
N

A
xm

l_
fir

st
_n

on
ly

m
ph

_n
od

e_
m

et
as

ta
si

s_
an

at
om

ic
_s

ite
s

N
A

gd
c_

ca
se

s.d
em

og
ra

ph
ic

.ra
ce

w
hi

te
O

nl
y 

if 
in

 G
TE

X
cg

c_
ca

se
_r

ac
e

W
H

IT
E

O
nl

y 
if 

in
 G

TE
X

cg
c_

dr
ug

_t
he

ra
py

_p
ha

rm
ac

eu
tic

al
_t

he
ra

py
_t

yp
e

W
e 

w
ou

ld
 li

ke
 to

 se
t t

hi
s t

o 
N

A,
 B

U
T 

if 
I d

o 
th

is
 w

e 
lo

se
 m

os
t s

am
pl

es
 a

s m
os

t p
at

ie
nt

s g
ot

 tr
ea

tm
en

t. 
So

, f
or

 n
ow

 I 
di

d 
C

he
m

o 
+

 N
A.

xm
l_

ra
di

at
io

n_
th

er
ap

y
Sa

m
e 

as
 a

bo
ve



Table S4 The number of times genes were identified as 
significant in each of the four subtypes and the direction of 

their expression
Gene Basal Her2 LumA LumB Basal Her2 LumA LumB
ANLN up up
BCL2 down 4
BIRC5 up up
CCNB1 up
CDC6 up up 3 2
CDH3 down down
CEP55 up up up
EGFR down 16
ERBB2 up 11
ESR1 down down up up 4 6 16 19
FGFR4 down down 1 5
FOXA1 down
FOXC1 down down 6 7
GPR160 down up up up 2 9 5 11
GRB7 up 8
KNTC2 up up
KRT14 down down down down 2 1
KRT17 down down
KRT5 down down 3 4
MELK up up
MIA down down down 4 1 5
MLPH down down 10
MMP11 up up up 19 20 20
MYBL2 up up 1 1
MYC down 4
NAT1 up
PGR down down up 9 7 10
PHGDH down down 6 9
RRM2 up 1
SFRP1 down down down 9 5 16
SLC39A6down down up up 1 13 12
TMEM45Bdown up 16 2
TYMS up up 1 1
UBE2T up up up 1 3

The threshold to identify significant gens:
log2FoldChange > 1 or < -1
P-adjust value < 0.05
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