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Abstract

The proposed project will address some of the fundamental issue<iemftalgorithms and
data structures, ranging from pseudo-random hashing, to the exdstédeterministic dictio-
naries with constant update and look-up time, to graph algorithms.

The applicant is a leading figure in the area of efficient algorithms and tatdges. For
the last 14 years he has been in the USA where the area has its strondha@dyrant will
facilitate his return to the University of Copenhagen and will enable him e mini-center
of excellence: a new focal point that will boost the research in efficagorithms and data

structures in Europe.



Project description

Efficient Algorithms and Data Structures (with references to some related work of mine) Al-
gorithms is one of the main areas of computer science, botérins of teaching and research. It
is relevant to the processing of data whenever we need $eaalotions, hence for a lot of science
and industry. Suppose, for example, that we want to solvellem involvingn variables. A trivial
exhaustive search algorithm might try all combinationswigeer, even if each variable has only two
options, there are"2ombinations, which igxponentialand ifn > 70, then this is too much even

if all the worlds computers worked on it for a year. In algonits we try to find solutions in time
polynomialif not linear in the number of variables. Since any general enough protseyi¥-hard

or worse, we will have to understand and exploit the spe@#ine of the problem at hand. Take
a classic problem like that of sortimgnumbers. Sorting is commonly needed in the processing of
data. A naive algorithm like Insertion Sort takes one nundighe time, scanning for its position
among those already sorted @in?) total time. The O’ represents an unspecified constant depend-
ing on the concrete computer used. Our focus in algorithrasysptotic performance with— co.

The more sophisticated Quick Sort solves the proble®(inlogn) expected time, allowing us to
handle much larger data sets. | myself have the record wittigamithm sorting integer or floating
point numbers irO(n,/loglogn) expected time [25]. It is still a major open problem if integiean

be sorted in linear time. Generally speakingalgorithmswe try to understand how well we can
solve combinatorial problems making the most efficient dssmputational resources such as time
and space. The discipline is theoretical in that we try tovpritat our solutions are efficient for all
possible inputs, or alternatively, in expectation for aegivnput distribution.

Many algorithms researchers have their main focus on degihich kind of problems can be
solved in polynomial time (see e.qg., [49]). In particulat NP-hard optimization problems, a lot
of effort is put into understanding how good an approxinratiee can guarantee in polynomial time
(my papers [4, 11, 27] follow this line of work). However, aglne above sorting example, | am very
interested in morefficient algorithmsvhere polynomial time is not enough, but where we try to get
the running time closer to linear. The underlying motivatie to understand how to deal with large
data sets. Very concretely, it is not uncommon to deal wita dats with, say; > 10° elements. On
today’s computer, simple instructions like a memory lookale about 107 seconds. A quadratic
algorithm usingn? instructions would take more than 30 years. The issue is@iaggo be resolved

by more powerful computers, it is only going to get worse:dize of the problems considered tends



to grow with the size of the memory which again tends to grotMeast as fast as the processor
speed. The need for more efficient algorithms is therefoee gowing. Parallel computers might

save a facton, but the principal problem remains: we still need low degrelynomial time. Also,

to minimize communication delays, we would still want thdiuidual processor to do as much work
locally as possible. This proposal considers hashing wisielqually relevant in sequential, parallel,

and distributed settings.

An important part of efficient algorithms is data structuvdsere the focus is on how we can
efficiently represent information. The planar distancecler&om my selected paper [43] is a good
example where | reduce the space needed for fast queriestti@mnivial O(n?) to O(nlogn). In
dynamic data structures we also want to support changegeaffic e.g., in priority queues [48],
we can insert numbers and extract the minimum. Priority geere used both directly and inside
many greedy algorithms, e.g., to speed up shortest pathseated graphs. The dynamic graph
algorithms from [26] can maintain the bridges in a dynamiapdy, and this has lead to efficient
implementations of classic inductive proofs in matchingatty. One of the most fundamental data
structures is a dictionary or hash table which allows usdoesand look up information associated
with keys. The problem is a bottleneck for many kinds of datalysis including the processing of
high volume data streams. It also forms the inner loop of neggrithms. The problem has been
central to computing as long as we have had computers (myohe38, 52, 53] follow this line
of work). The study of efficient (not just polynomial) algibmns and data structures has long proud
tradition within computer science including the Turing aslsaof Knuth, Hopcroft, and Tarjan.

Finally note that the theory is not practice, but theory ceae @ great basis for practice. The
Google founders came from a back-ground in theory/mathemaiy student Stephen Alstrup’s
start-up Octoshape is another good example, and | hopettatiéh will join University of Copen-
hagen promoting start-ups. | myself got the AT&T Fellow Hofar my technological impact (part
of my AT&T job is to consult on the application of theory in arete practical projects, e.g., speech

recognition, Internet traffic routing, management, andyans wireless including iPhones etc.).

Aim for technical understanding Algorithms is trying to understand how we can most efficigntl
solve computational problems. One can distinguish betvwertypes of contributions. We have
the problem pioneers that broaden the field identifying ngpes$ of problems, and we have the
technical pioneers like me who try to deepen the field, dgmtpnew powerful techniques to solve

the problems. The two sides are in a dynamic interplay. Whenpreblems are identified, the



first task is to understand how they can be addressed withirextechniques. This also provides
us with a better understanding of the breadth of these tqaksi If existing techniques do not
provide a satisfactory solution and if the problem hasastelevance, then the problem solvers are
challenged to develop new powerful techniques that thelpnolpioneers, in turn, may later apply
to more new problems. A good analog is medicine, thinkingrobfems as diseases and algorithms
as treatments. Studying new diseases like the bird flue isrirapt, but so is a new treatment for an
old disease like cancer. If your goal is to treat people, themay be less important exactly what
the disease is. In fact, the big hope is to find treatmentsabgt for many types of diseases. Data
structures is a great example of this generality since wesfon black-boxes that help in algorithms
addressing many different problems.

The frontier of our technical abilities is often best seeprimblems of well-known importance but
where existing techniques have been exhausted with ndagatisy solution in sight. This is when
we know that original technical ideas are needed. To iliistthe type of research | aim for, let
me quote a referee report on my selected paper “Compact sracleesachability and approximate
distances in planar digraphs” [43[he paper considers the problem of constructing a data &irac
for static directed planar graphs supporting reachabilifyeries and approximate distance queries.
For reachability queries [is there a directed path from orextex to another] the author achieves
O(1) time with space hlogn). Previously no data structure was known with constant timeigaer
and using ¢n?) space! The data structure for approximate distances is aegeization of the
reachability data structure. The main technical contribus of the paper are contained within
the reachability result (the decomposition of a planar drapto a set of 2-layered graphs and the

dipath decomposition of these; amazingly simpl@he problems considered have previously been

intensively studied by many authpksit the present paper is the first to make essential progmss

the problems. | consider the results of the paper to be brealgh results Note that simplicity is

a virtue. Generally we prefer proofs to be simple, and it gipalarly important that algorithms are
simple if we hope for practical impact.

Fundamentally speaking, my focus is more on solutions tmaproblems. What really excites
me are new simple elegant techniques with the power to spiperitant problems. The last crite-
ria means that my starting point is always an importantl (gievant) problem beyond our current
capabilities. The problem itself is not the only target. Hoge is for surprising and powerful solu-
tions/techniques with potential impact beyond the probtemsidered. It is this focus on solutions

and technical understanding that has lead me to breakths@pmanning from pure mathematics [33],



to theory [26, 50, 43, 47, 48, 44, 38, 39] to practice [15, 15,3B] (see [19] for context of [20]).

Plans, feasibility, and novelty For my kind of research, novelty and feasibility are not tddaend

in the initial plans and approaches. This is basic theaktiesearch looking for novel, surpris-
ing, simple, and powerful techniques. The feasibility a§thbjective is to be found in the general
approach and skills, as documented by my track record. Bue is nicely illustrated by the fol-
lowing quote from the expert referee report on my paper “Ti@mum k-way cut of bounded size
is fixed-parameter tractable” with Kawarabayashi [28he techniques used in the algorithm are
very ingenious and were never before used for parameteriziggkablems. The paper is completely
elementary and self-contained (in particular, no toolsvirgraph minor theory is used). In fact, the
paper essentially contains no proofs: once they explairatgerithm, it is all obvious! This does
not mean that the algorithm is trivial: the ideas are quitenatural and it is not obvious in the be-
ginning why this approach should work at all, but apparentigytido. Having such a “simple” proof
should be considered as big plughe point here is that the novel successful approach wasunaha
to the expert (I was not an expert but had the outsiders fresghiration), so even if | had put it in
a project plan, then it would not have been feasible-lookingact, since the technique is simple,
if it had been natural, then it would have been found long agoreover, we tried lots of novel
approaches before we got this one to work. More generathybh#sic requirements for STOC/FOCS
level research is that the problem should be important aeadebhnique surprising. Thus we are
looking for surprisingly powerful ideas, but those you caihplan for. Many ideas are developed,
tried, and failed as work with the problem. When first you hdeeright idea, it often does not take
so long to check if it works. Before you have proved that an megks, you do not know if you
are on the right track. Finally, with ambitious targets,réhis a very good chance that the problem

will turn out too hard, if not be impossible. Staying focuseda single ambitious target is thus very

risky.

A feasible flexible general approach My research strategy is not unique but shared by many
successful researchers in theory. Striving for excellehadten aim at ambitious targets with a
significant risk of failure. To make it statistically fealgbl work on multiple ambitious targets. This
is possible because there are no real investments assbwiiitethis research on a particular target
(no expensive experimental setup): if you are stuck on orgetaand another is more promising,

then there is no real cost involved in switching. The targatsuld be unrelated so that the failure of



one does not imply failure of the other. Moreover, flexiilis key. Even if | do not hit a specific
target, | often generate ideas with interesting consecgeti@at are fully publishable, possibly at a
other conferences. The feasibility depends crucially asqeal intuition and experience. What are
the most important challenges where | with my particulaeriéd have a reasonable chance of making
a significant difference? Most importantly for being sustekin the field, am | still generating new
ideas? or is it time to stop and switch to something else?s8taily the strength and feasibility
is demonstrated by my CV. My three STOC/FOCS papers from 2014 pm hashing, to data
structure lower bounds, to graph algorithms, demonstyatiy parallel work on different directions.
The above strategy also works very well with students whealapaithe ambition level for the
individual student, e.qg., giving projects | am sure areif#dago beginning students. Note here that |
had lots of papers even with Master’s students. It has neear b problem for me recruiting students

with the right kind of talent.

Conrete targets

Below | present some of the concrete targets that will be demned, starting from things | have
a quite clear idea on how to approach, and moving to the motstiaos. Other problems, e.g.,
related to shortest paths, will also be considered. Gdgenaill use my broad strength to embrace

the different interests of PhDs, PostDocs, and visitingatarators.

Pseudo-random hashing This is my most practical/applied direction. Hashing isdis®ery-
where in sequential and parallel computing, including maases of large data sets and high volume
streams where speed is essential. Conceptually a hashduscsia function mapping keys to ran-
dom values, but for most applications this is impossiblé sexjuires storing a random hash value for
each possible key. Pseudo-random hashing is an area whéremaics/theory can have a major
impact, proving that implementable hash functions prowmportant probabilistic guarantees akin
to those of the impossible truly random hash functions, thet they are not vulnerable to bad input
distributions. A good example of the issue is linear probartgch provides a very popular and effi-
cient implementation of hash tables. Giving birth to anialyd algorithms in 1963, Knuth showed
that linear probing works well with truly random hashing éixpectation and with low variance for
any given input), but linear probing had a reputation of rahg reliable. Indeed, if standard mul-
tiplicative hashing is used, then the input from typical Daifaicks leads to very unreliable perfor-

mance [54]. In my paper [38] with Patrascu, we proved thasthmplest possible tabulation hashing



provides unexpectedly strong guarantees. The schemiediédes back more than 30 years to Carter
and Wegman [55]. Keys are viewed as consisting oharacters. We initialize tablesTy, ..., T¢
mapping characters to random hash codes. Axkey(Xy,...,Xq) is hashed tdy x| & - -- & Te[X],
where® denotes xor. Note that while we could not represent trulgoamtables over all keys, with
8-bit characters, we can easily store the random charaatiksst; in fast cache, and that is why the
scheme is very fast. However, the scheme is not even 4-indepég yet we showed that it provides
many of the guarantees that are normally obtained via higkdependence, e.g., Chernoff-type con-
centration, min-wise hashing, linear probing, and cuckashing. A referee of [38] puts it nicely:
The authors of this paper are far too modest when discussmgiportance of this work. At first
glance tabulation hashing looks like a blunt instrumentttisaboth inadequate (being 3- but not
4-independent) and lacking the kind of structure worthy ebtiatical study. Their results contradict
all these intuitions and upend a lot of conventional wisdédmparticular, linear probing is robust
with no bad input if we use simple tabulation hashing.

The project aims to provide a much better understanding wfthe promise of simple random-
ized algorithms can be realized with simple implementabEhHunctions. What useful properties of
truly random functions can be realized in practice? | warttphasize that while the hash functions
considered are simple, the analysis is not. Collaz’ famons-8 termination conjecture from 1937
is an extreme example of how hard it can be to analyze evenrtipest algorithm. We are aiming
at hashing algorithms so simple that it is like magic if theyrkv This follows the theory-practice
tradition of Knuth, but diverges from more hard-core thewhjch in its focus on specific theoretical
measures often sacrifices practicality. Providing a magteal understanding of simple practical
schemes, the ambitious hope is to move hashing practicéémses not vulnerable to bad input.

A major limitation of simple tabulation hashing is that thee@off bounds are only for highly
biased variables. This is acceptable in the above haslstalbiere we haven= ©(n) bins so the
probability of ending in a given bin is/h, but it does not work if we use the hashing to distribute
loads on a limited number of parallel machines. | am hopd&folyever, that a small twist will lead
to general Chernoff and Hoeffding style bounds with some efdkponential concentration that
we (assuming true randomness) use everywhere in randomligedthms and statistics. Note here
that classic bounded dependence only gives polynomialesaration. Thus the hope is a simple
hashing scheme providing the distributional propertieg th one of the main motivations for the
use of random hash functions. This will also have impact @ugs-random number generators.

An example, not based on tabulation, is in connection withssegilarity estimation via min-



hashing [10], used in data mining, clustering, machineniegy; plagiarism detection, etc. There
are basically two approaches to get confidence: (1) applyhaghingk times independently, or
(2) bottomk sampling. With truly random hashing, the two options yieddysimilar performance.
However, if we use the simplest 2-independent multiplaashift hashing, then with (1) we may
get a bias by a factor dd(logn) no matter how larg& is. However, with (2), thanks to negative
correlation, | am hopeful that the expected error is clostéO(1/+/k) with truly random hash-
ing. | am even hopeful that this would also work for priorignspling [16], generalizing similarity
estimation to weighted sets. The difference between (1)Y2nidlustrates nicely the subtlety of the
area. Pseudo-random hash functions are far from randomit dather delicate to understand

which types of randomized algorithms that can be implentewiéh realistic hash functions.

Deterministic dictionaries Hashing is used in all the best implementations of dictimsarboth
randomized and deterministic. Chaining and linear probilogva us to support updates and queries
in expected constant time [17]. Using more sophisticatethaas, we know how to make the
guery deterministic constant time, but the updates areratidomized [22, 13]. If we want both
updates and queries to be deterministic, then the best carbmmd known i©(/logn/loglogn).
This uses the general dynamic predecessor search struatienased with Andersson [3]. The
bound is optimal for dynamic predecessor searching (segyalearest integer) and that is even
if we allow randomization. The question is if we can do befibeideterministic dictionaries. A most
fundamental question is if there exist deterministic dicéiries allowing both updates and look-ups
in constant time. This would be wonderful with wide consetes since a dictionary is the most
basic fundamental data structure. | consider this is the mgsortant derandomization question left
in theoretical computer science.

Most likely the truth is negative in the sense that there ip@dect deterministic solution, but
how do we prove it? Computer science is riddled with thingshimktare impossible, but where we
cannot prove it, and sometimes we do find surprising solattorseemingly impossible problems.
Data structures is one of the areas where we do have matchpey and lower bounds for many
problems and with Patrascu | have found some fundamentata@ms [39, 34]. So far, however,
no one has any techniques offering such a separation beweterministic and randomized solu-
tions. What appears the most promising strategy for a lowantas to consider the insertion of
n elements, and as in [23], divide them into epochs of expaainincreasing sizes, the smallest

one being the most recent. We would hope to prove that a |pakigorithm has to make something



in the style of a binary search to find out which epoch a key wasried in, if any. This kind of
argument would lead to af(loglogn) lower bound, and is consistent with known upper-bound
techniques. On the upper-bound side there are severadejaestions to consider, e.g., improving

the update time for deterministic dynamic predecessockear

Graph algorithms Recall that | deliberately work in parallel on different ditens, always look-
ing for techniques to make a significant difference on imguaralgorithmic problems. Within graph
algorithms, | will study the coloring of 3-colorable grapikich is my all-time favorite approx-
imation problem. Contrasting the easy 2-coloring, it is ftee first NP-hard problem students
are taught. The question is how well we can color 3-coloraioéhs in polynomial time, and it
has engaged many of the most famous theoretical computntists [5, 8, 9, 12, 14, 28, 56]. |
will involve Ken-Ichi Kawarabayashi (Tokyo, Japan) whoseesgth is on the graph theory side
of graph algorithms, complementing my own more algorithivackground. We will also involve
Carsten Thomassen (DTU, Denmark) who is an expert on the paphdheory side of coloring.
Nobody has been able to do anything combinatorially abaiptioblem since Blum at FOCS’90
[8]. Semi-definite programming (SDP) has been applied ahdwsted, and the current best results
are obtained balancing the combinatorial and the SDP appesa Our target is to improve things
on the combinatorial side, developing a stronger undedstgrof the nature of 3-colorable graphs.
Given how many famous people had worked on the problem, Ighibtinis would be the most un-
realistic target, but Ken-Ichi and | may already have out fir®gress: a way to witness certain
monochromatic sets in 3-colorable graphs based on bipastjganders. This should lead to the first
combinatorial improvement in 22 years, and also improveothezall bounds when combined with
the latest SDP. The big dream, however, is to get a subpoligi@mproximation factor.

We expect to work on several other approximation problenggaph algorithms, e.g., the long-
standing 2- o(1) factor fork-way cut (the problems we proved fixed-parameter tractab[@9]).
It happens that | do have the best approximation factor knfmwnthe similar-lookingk-terminal
cut problem [27], but that was using linear programming. éH&e general idea is to bring in more
combinatorial understanding, complementing all the reeenk based on linear and semi-definite

programming.

Milestones The concept of milestones is rather peculiar when you atargdor surprising ideas.

However, as intermediate goals in efficient algorithms, jystihave to find a new way, allowing you



to do better than anyone else. The more significant and sitegethe improvement, the stronger
a venue you publish in. A good example is in connection witoBring where Ken and | already
think we see a path to the first combinatorial improvementiy@ars. Even if this would not close
the problem, | do expect that such a result would steer isteaeSTOC/FOCS. We can view as
milestones all targets above for which | stated that | amaalyehopeful about a way. Another view
is that many interesting discoveries are expected thrauigihe project. Except for first year PhD

students, | expect each member to be part of 1-3 STOC/FOCS/3&kdiscoveries a year.

The Danish perspective

Denmark has already committed strongly to algorithms aedtlteory of computing, particularly
at Arhus University with no less than three impressive centérsxcellence from the Danish Na-
tional Research Foundation (BRICS,MADALGO,and CTIC). We haveslfage fromArhus with
the Danish Elite Research award from 2010 and Rasmus PaghTtdmith a Danish Sapere Aude
Starting Grant from 2011. Denmark has a very strong standiadgorithms in Europe, only dom-
inated by Israel. My return to Denmark would neverthelessgoin a new level of international
strength, visibility, and recognition in fundamental aigfoms and data structures.

As mentioned in my CV, | am the only one in the world who is on thé@aial board of all
the top three journals for algorithmic research. In paléicli am area editor of “algorithms and
data structures” for ACM's flagship scientific journhl ACM No one else in Denmark is on any
of them, but Arge is on the editorial board of the fourth cleofdgorithmica Likewise, when
we look at the top theory conferences STOC/FOCS, | have beenRDs9 This is almost twice
that of the rest of Denmark combined. The main reason for mongtpresence on these edito-
rial boards and PCs is my research. | have 26 STOC/FOCS papeth whnearly thrice that
of anyone else in Denmark. Peter Bro Miltersen frémhus is second with 9 STOC/FOCS pa-
pers. At the top algorithms conference SODA | have 23 papérewserth Brodal fromArhus is
second with 10 SODA papers. These are the strongest verarasgigneral algorithmic perspec-
tive (see, e.g.yww. en. wi ki pedi a. or g/ wi ki / Li st _of _conput er _sci ence_conf erences). My
h-factor [Google Scholar] is 44. Within algorithms in DeminalLars Arge is second at 34. | am
Fellow of the ACM in algorithms and data structures. In Derkrtie only other ones with this
highest ACM rank in computer science are Christian Sendedghensen fronfrhus in databases,
Neil Jones retired from DIKU in programming languages, aieB Bjgrner retired from DTU in

formal methods.
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The focuses of the centers Arhus are different. MADALGO is focused on geometric algo-
rithms and external memory hierarchies (this shows, engd\rge’s strong record in computational
geometry with 10 SoCG papers) whereas | work on more geng@iitimic issues. The connection
between MADALGO and Christian S. Jensen in spatial data hasggsing to be very interesting.
CTIC is further away with its focus on complexity, cryptogngpand games (other subareas of theo-
retical computer science covered by STOC/FOCS). Neverth#iese are many interesting connec-
tions, and | expect many fruitful collaborations wilithus, e.g., we need a subquadratic algorithm
to even consider data so large that the external memory tede&Vith my interest in hashing and
hash tables | overlap more in interests with Rasmus Pagh gethier we would form the strongest
group for this in the world. At some stage it would be obviooisus join forces and create a bigger
center together.

Mathematically my main connection and inspiration in Derkna Carsten Thomassen from
DTU. When | was an undergraduate at DTU, he advised me on hoppimach famous problems
that have defeated many researchers; namely to work flegiblgeveral such high gain targets
in parallel, switching between them and following your imapon so that a problem that is too
hard does not stop you. This organic approach to targetsnbegtanning has lead both of us to
many breakthroughs. Combining his back ground in graph yheth my more algorithmic back
ground will yield a strong force in algorithmic graph theevirere we would also bring in Ken-Ichi
Kawarabayashi from Japan.

| hope to return as a uniting figure for algorithms in Denmddlespite being mostly out of the
country, | have collaborated with many Danish algorithnseeechers, e.g., Milterserhus) in [2],
Pagh (ITU) in [32], Alstrup (ITU), Rauhe (ITU), and Ggrtz (DY [1], Bille (DTU) in [7], and |
have a paper in the workings with Argérhus). My international collaborators will give seminars
and broadly boost algorithmic activity in the region, bustrequires a solid visitor budget to invite
them. Otherwise | will be the visitor touring the world witkpenses paid by my collaborators, and
with much less benefit to Denmark.

| want to emphasize that compared with the centerrinus, what | apply for now is small.
Think of it as the difference between a big party where the hoss around making sure everyone is
happy, and a smaller event with a few friends where you regityo talk.Arhus has done an amazing
job with many PostDocs and great events. My talent is foraxedeand to collaborate, inspire, and
guide on a more personal level, using my broad strength aperiexce within algorithms and data

structures. This is why | only want a (much cheaper) seleatinni-center where | can be more

11



directly involved in the research activities (less managere leader).

Project members

| would devote 50% of my total work time exclusively to thisopgct at the University of Copen-
hagen. Furthermore | would spend 25% of my time on regulaihieg, adding up to at least 75%
of my total time in Copenhagen with the vision of re-estaltighmyself permanently. The project
includes a PhD student at all times: one in years 1-3, androgedrs 4—6 (last year paid by the
department). Moreover the project includes a Post Doc imsy2a3. Except for first year PhD stu-
dents, | expect each member to be part of 1-3 STOC/FOCS/SO@RAdmscoveries a year. Finally,
to establish a new focal point in the area, it is desirableaieeta changing prominent visitor for col-
laboration and inspiration. The exact cost will depend anwisitor. Sometimes we will have long
term visitors that need some salary, e.g., a US professaldyasical with 70% pay from home insti-
tution. At other times, we will have short term visitors naepno salary, but more travel expenses.
Expected visitors are current collaborators like Kawayalohi, Patrascu, Zwick, but generally | will
aim to invite those behind the most exiting new developmezigted to our research.

Related to the project, | am heading the hiring a new tenarektassistant professor in algorithms
at the University of Copenhagen. | will also have a PhD stuétem the department. Finally, when
we have had some years to get established, | hope to getaiterfunding for a Post Doc for years

4-5.
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