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4 Chvátal-Gomory Rank 1 Cuts used in a Dantzig-Wolfe Decomposition of
the Vehicle Routing Problem with Time Windows 53

5 Clique Inequalities Applied to Vehicle Routing Problem with Time Win-
dows 73

6 A Note on Valid Inequalities for a Dantzig-Wolfe Decomposition of an
Integer Program 99

III Conclusion 119

7 Conclusion 121

8 Summery in Danish 125

IV Other Contributions 127

9 A Branch-and-Cut Algorithm for the Elementary Shortest Path Problem
with Resource Constraints 129

10 Optimal Routing with Failure Independent Path Protection 147

v



Contents

11 Liner Shipping Revenue Management with Empty Container Repositioning171

vi



Part I

Introduction

1





Chapter 1

Introduction

Simon Spoorendonk
DIKU Department of Computer Science, University of Copenhagen

1 Motivation

In the industry many resources are spent on handling the challenges in complex planning prob-
lems. The increasing need for more detailed and precise plans to larger planning problems
makes decision support tools indispensable. Operations research strives to support the deci-
sion making by providing a number of tools such as mathematical modeling and mathematical
programming. Mathematical modeling is used to formulate problems in a concrete way using
mathematical equations, whereas mathematical programming covers solution methods for the
mathematical formulations. These approaches have been known for more than sixty years and
their popularity have been consolidated through the several commercial software packages,
that have become available in the last twenty years. These packages provide general purpose
algorithms based on mathematical formulations and have been very successful; partly due
too increased computer power, but primarily due to algorithmic improvements. Practical
applications of mathematical programming can be found within the railway, airline, and the
maritime industries, see e.g. Huisman [5], Bélanger et al. [1], Christiansen et al. [2]. Text-
books on mathematical programming and solution methods in the areas of transportation
and production planning can be found in, e.g., Toth and Vigo [16], Golden et al. [4], Pinedo
[12], Pochet and Wolsey [13].

1.1 Mathematical Modeling and Programming

Generally speaking mathematical modeling can be described as a set of variables, that are used
to represent decisions in a problem and a set of equations (or inequalities) denoted constraints,
that are used to limit the amount of valid decisions. For example, in production planning the
decisions are the amount of products produced on a machine and a constraint could be an
overall maximum capacity of products, that can be produced on the machine. The constraints
define the feasible solution space of a problem, i.e., a polytope in a multi-dimensional space
that contains all valid solutions to the problem (assuming that the problem is bounded).
The objective function is a function of the variables, that guides the process to a solution
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in the feasible solution space, where the objective function reaches the global minimum (or
maximum). In production planning it could be a function minimizing the overall production
cost. When variables are continuous, and the constraints and the objective function are
linearized, we have a linear program (LP). When integrality is imposed on the variables, it is
denoted an integer program (IP) or a mixed integer program (MIP) if both types of variables
exists. The two latter problem types are the type of problems considered in this thesis.

Many problems can be formulated as MIPs and solution methods have received a lot of
attention during the years. The solution methods can roughly be split into three approaches:

• Exact algorithms are exact in the sense that the solution found is proven to be optimal,
i.e., there does not exist any other solution with a better objective function value. Exact
algorithms for MIPs are often based on enumeration schemes and may be impractical
in practice due to long running times.

• Heuristics are often used if it is not imperative that an optimal solution is found and
if running time is a factor. In this case, good solutions a sought but with no guarantee
w.r.t. solution quality.

• Approximation algorithms are basically heuristics that have a solution quality guarantee.

Although, exact algorithms appear less attractive from a practical point of view due to long
computation times, the study of exact methods often give insight into the problem behavior
that may be hard to grasp. Furthermore, the improvement of exact methods are pushing the
boundaries for their usefulness, hence many heuristic nowadays are based on exact approaches
or incorporate them to solve subproblems. The solution method investigated in this thesis is
an exact solution algorithm.

1.2 Exact Methods

Many exact methods are based on the branch-and-bound paradigm. A branch-and-bound
algorithm searches a tree, where each branch represents a split of the solution space. Starting
in the root node, a problem can be split in two by dividing the feasible region of an integer
variable in the middle (note rounding can be used to tighten the new regions as the variable
must be integer in a feasible solution). Relaxations of the problem are used in each node
of the branch tree, to calculate lower bounds (in case of a minimization objective function).
Each time an improved feasible solution (an upper bound) is found in the branch tree, it is
possible to fathom part of the branch tree if the gap between the lower and upper bounds are
zero. A simple way to calculate a lower bound is to use the LP relaxation of the MIP, i.e., to
consider the enlarged solution space where integer variables are allowed to obtain continuous
values.

A well studied way to improve the lower bound calculation is the use of cutting planes.
Cutting planes (or cuts) are inequalities for the solution space of the problem that cuts off
some of the current fractional solution, i.e., the non-integer solution obtained by the LP
relaxation. The cuts must be valid inequalities, i.e., they may never be able to cut off any
feasible solutions. Combining cutting planes with the branching paradigm is known as a
branch-and-cut algorithm. Branch-and-cut algorithms are among the best general purpose
solvers for arbitrary MIPs due to the very general framework that are used. Both LP solvers
and cut generators for general cutting planes in MIPs have been widely studied, see e.g.,
Nemhauser and Wolsey [10], Wolsey [18].
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Even though branch-and-cut algorithms are well tuned algorithms, there do exist problems
where these algorithms fall short. Problem formulations may be very structured, i.e., there are
certain variable sets where some constraints are non-overlapping. In this case, it is possible
to use the Dantzig-Wolfe decomposition principle to decompose the problem into smaller
subproblems that have their solutions combined in a master problem, see e.g., Martin [9]. The
master problem is often small in the number of constraints but may have a large (worst case
exponential) number of variables. Often a decomposition is sought such that the subproblems
(also denoted pricing problems) are easy to solve. An LP relaxation of the master problem
is a different way of calculating the lower bound of the non-decomposed original problem
and may in many cases be a better bound. The drawback is that the subproblem must be
solved iteratively until the master problem objective value cannot be minimized further. This
is also known as column generation, since subproblems solution gives rise to new columns
in the master problem. When considering the decomposition lower bound with branching,
it is denoted a branch-and-price algorithm or an integer column generation algorithm, see
e.g., Desaulniers et al. [3], Lübbecke and Desrosiers [8]. Note, that current branch-and-price
algorithms are not as generic as branch-and-cut algorithms, since a valid decomposition of the
problem must be added by the user. Also the subproblem algorithms are often very problem
specific and do only apply for few problem types. These are reasons why very few commercial
branch-and-price algorithms are available and that non of these are used as general purpose
MIP solvers.

It is possible to combine the ideas of cutting planes with the column generation approach.
This is denoted a branch-and-cut-and-price algorithm. However, adding cuts is not as straight
forward as in branch-and-cut algorithms. The cut scenario can be viewed from two angles:

• Cuts expressed in the original formulation.

• Cuts expressed in the master problem formulation.

The first case have some relation with the second case, since it possible to decompose any
cut expressed in the original problem into a cut expressed in the master problem formulation,
see Villeneuve et al. [17]. This approach is fairly easy to implement, as it only gives rise to
changed objective function coefficients in the subproblem and otherwise leaves the number of
variables at status quo. However, it is not always obvious how to separate cuts in the original
formulation when only regarding the master problem. For combinatorial derived cuts, it is
possible to map the master problem solution back to a solution in the original problem, but
for general purpose cuts, e.g., cuts that rely on optimal simplex tableaus etc., the separation
may prove very difficult. Indeed, combinatorial cuts based on the original formulation is the
most popular approach in branch-and-cut-and-price algorithms.

The second case addresses cutting planes derived directly on the master problem formula-
tion. This may be either combinatorial cuts based on the master problem structure or general
purpose cuts. Neither of these cuts have a clear representation in the original problem and it
can be difficult to incorporate their impact into the subproblems. Different approaches have
been suggested such as expressing the change as a non-linear objective function or adding
additional variables in the subproblems. Both approaches changes the complexity aspect of
the subproblem and can result in much higher computational effort to solve the subproblems.
This case is less studied both theoretically and experimentally and is the main focus of this
thesis.
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2 Goals

The focus of this thesis is on the application of cutting planes in a column generation context.
The main goals can be summarized as:

• Investigate how to apply cutting planes derived from the master problem formulation.

• Use experiments to investigate the impact of the cutting planes on the subproblems
complexity, on the quality of the lower bounds for the master problem, and the overall
running time of the branch-and-cut-and-price algorithm.

• Describe the theoretical basis for explaining the connection between cuts for the master
problem formulation and the relation to the original problem formulation.

When investigating the application of cuts, it is the goal to consider cuts based both on
combinatorial aspects and from the family of general purpose cuts. Many problems decompose
into a set partitioning master problem for which very efficient combinatorial cuts a known,
e.g., the clique inequalities. A general purpose cut family is the Chvátal-Gomory cuts that
have been known for years and is implemented in any commercial branch-and-cut algorithm
nowadays.

It is the goal, that the additional cuts can be incorporated into the existing subproblem
algorithms as efficiently as possible and by changing any special purpose algorithms as little
as possible. The increased complexity (and thereby potentially increased running times) of
the subproblems is a trade-off with the quality of the lower bound obtained in the master
problem. The running time saved by exploring fewer branch nodes due to the improved lower
bound is hopefully overshadowing the increased effort put in solving the subproblems.

A description in generic terms of the cutting plane process and the relation between the
the original problem formulation and the master problem formulation are hoped to bring an
understanding to this field and provide a common basis for future research.

3 Contributions

The main contributions of the thesis is summarized in the points below.

• It is shown, theoretically and experimentally, how to apply the Chvátal-Gomory cuts of
rank 1, known from branch-and-cut algorithms for general MIPs, to the vehicle routing
problem with time windows. Furthermore, it is shown how to incorporate this into
a dynamic programming algorithm for the subproblem. The approach appears very
successful and it is possible to solve several previously unsolved instances from the
benchmarks of Solomon [14].

• It is shown how to apply the clique inequalities, a combinatorial cut for the set parti-
tioning problem, to the vehicle routing problem with time windows.

• A generic framework is presented showing how cutting planes interact between the
original formulation and the master problem formulation and how this is modeled in
branch-and-cut-and-price algorithms. Examples are given on how previous work with
cutting planes fit into this framework.

A more detailed description of the contributions of each chapter can be found in the reading
guide in the following Section 4.
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4 Reading Guide

Following is a chapter-wise guide for reading this thesis.

Chapter 2: Preliminaries on Cut and Column Generation. This chapter is as a short introduc-
tion into BCP algorithms. Also, it presents the basic concepts and notation used throughout
the thesis. The experienced reader may skip this chapter.

4.1 Part II: Cut and Column Generation

This part concerns the main topic of the thesis. That is, how to apply cutting planes in a
BCP algorithm based on the master problem formulation.

Chapter 3: Subset-Row Inequalities Applied to the Vehicle Routing Problem with Time Win-
dows. The paper presents how a subset of the Chátal-Gomory cuts may be applied to the
master problem of a decomposition of the vehicle routing problem with time windows. It
is shown how each cut in the master problem increases the complexity of the subproblem
and how this is be handled in a dynamic programming algorithm. Experimental results were
carried out on the Solomon instances and it was possible so solve several previously unsolved
instances with this new approach. Furthermore, experiments showed that the cuts improved
the lower bounds to an extend that significantly reduced the size of the branch tree. The
paper is co-authored with Mads Jepsen, Bjørn Petersen, and David Pisinger and has been
published in the journal Operation Research, see Jepsen et al. [7].

Chapter 4: Chvátal-Gomory Rank 1 Cuts used in a Dantzig-Wolfe Decomposition of the Ve-
hicle Routing Problem with Time Windows. This paper is an extension of the work done in
Jepsen et al. [7], where it is shown how any Chátal-Gomory rank 1 cut can be applied to the
vehicle routing problem with time windows. Experimental results showed that it was possible
to solve even more instances without branching. However, the cut separation times were
substantial. The work is co-authored by Bjørn Petersen and David Pisinger and have been
published as a book chapter in a book on recent advances within vehicle routing problems,
see the chapter by Petersen et al. [11] in the book edited by Golden et al. [4].

Chapter 5: Clique Inequalities Applied to Vehicle Routing Problem with Time Windows. Fol-
lowing the line of work done on cutting planes in the master problem for the vehicle routing
problem with time windows, this paper presents the application of the clique inequalities.
Data structures to represent the cliques in a dynamic programming algorithm for the sub-
problem are described and experiments have been carried out. Although the experiments
show some promise with regard to the quality of the lower bounds, the complexity of the
subproblems are overwhelming. However, the paper contributes with the description of an
application of a combinatorial cut for the master problem and could be the basis of further
research in this area. This is joint work with Guy Desaulniers. The work has been submitted
for publication.

Chapter 6: A Note on Cutting Planes in Dantzig-Wolfe Decompositions of Integer Programs.
This paper describes a general methodology to apply cutting planes derived from the master
problem variables. The main contribution is a description of the relation between the variables
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of the original formulation and the variables of the master problem and how it is possible
to reformulate the original problem into an equivalent augmented problem such that valid
inequalities of the master problem are represented. This is joint work with Guy Desaulniers
and Jacques Desrosiers.

4.2 Part III: Conclusion

This part of the thesis concludes on the work presented in Part II.

Chapter 7: Conclusion. This chapter contains the concluding remarks and discussion of po-
tential directions for future research.

Chapter 8: Summary in Danish. This chapter contains a Danish summary of the thesis.

4.3 Part IV: Other Contributions

This part of the thesis presents contributions that involves column generation or cutting
planes, but is not directly connected with the main topic of applying cutting planes in the
master problem. The first paper is a branch-and-cut algorithm for a specific type of the
constrained shortest path problem, which is a very common subproblem encountered in many
branch-and-cut-and-price algorithms. The two latter papers present branch-and-price algo-
rithms for practical problems in the telecommunication and maritime industries.

Chapter 9: Branch-and-Cut Algorithm for the Elementary Shortest Path Problem with a Ca-
pacity Constraint. Elementary shortest path problems with resource constraints occur as a
subproblem in many decompositions. This paper presents a very efficient branch-and-cut
algorithm that regards a single capacity constraint. This is joint work with Mads Jepsen
and Bjørn Petersen. The paper has been submitted for publication. An earlier version has
been published as a technical report at the Department of Computer Science, University of
Copenhagen, see Jepsen et al. [6].

Chapter 10: Optimal Routing with Failure Independent Path Protection. This paper presents
a practical application of the column generation approach in the telecommunication industry.
The problem to solve is to find a collection of paths in a telecommunication network, that cov-
ers a given bandwidth demand and follows a certain backup policy. Experimental results that
the implemented backup strategy gives significant bandwidth savings. This is co-authored
with Thomas K. Stidsen, Bjørn Petersen, Kasper Bonne, and Martin Zachariasen. The paper
has been submitted for publication. An earlier version has been published in Proceedings of
the International Network Optimization Conference (INOC) with additional authors Frans
Rambach and Moritz Kiese, see Stidsen et al. [15].

Chapter 11: Liner Shipping Revenue Management with Empty Container Repositioning. A
practical problem in the shipping industry is the amount of empty containers that has to
be transported from high import areas to low import areas, e.g., from Europe and North
America to Asia. This paper presents a column generation algorithm for revenue management
of a liner shipping company that takes the transportation of empty containers into account.
Experiments show that the column generation algorithm is superior compared to commercial

8



Introduction

solvers working in the original problem formulation. This is joint work with Berit Løfstedt
and David Pisinger.
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Chapter 2

Preliminaries on Cut and Column

Generation

Simon Spoorendonk

DIKU Department of Computer Science, University of Copenhagen

1 Basic Concepts

This chapter presents the Dantzig-Wolfe decomposition by Dantzig and Wolfe [6] for inte-
ger programs, see e.g., Wolsey [19], Lübbecke and Desrosiers [12], and how this is used in
conjunction with column and cut generation in a branch-and-bound algorithm. This is not
intended to be an in-depth survey, but primarily a guide to the understanding of the basic
mechanisms of the Dantzig-Wolfe decomposition and column and cut generation in that con-
text. For more details, see e.g., Barnhart et al. [3], Lübbecke and Desrosiers [12], Vanderbeck
and Savelsbergh [17].

Consider an integer program (IP) where the constraint matrix is block-angular, meaning
that the constraint matrix is divided in blocks of non-zero variable coefficients, where some of
the blocks are independent with regard to the rows (constraints). This IP is referred to as the
original problem or the compact formulation. When applying the Dantzig-Wolfe decomposi-
tion principle to the IP, an integer programming master problem containing the constraints
given by the dependent blocks is obtained. The new variables correspond to feasible solu-
tions subject to the constraints of each of the independent blocks. The linear relaxation of
the master problem (the linear programming master problem) is found by column generation,
where only a subset of variables from the master problem is considered. The reduced problem
is denoted the restricted linear programming master problem and is iteratively expanded by
solving a subproblem or pricing problem to identify the most promising feasible solutions of
the independent blocks, such that the objective can be improved. When no improvements are
possible, the relaxation is solved and a lower bound of the IP is obtained. When embedding
this relaxation as a bounding procedure into a branch-and-bound algorithm, it is referred to
as a branch-and-price or an integer column generation algorithm.

As in a branch-and-cut algorithm, the lower bound can be improved with the use of
cutting planes and lead to what is known as a branch-cut-and-price (BCP) algorithm. The
cutting plane approach is divided in two cases: i) where cutting planes are derived from valid
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inequalities of the original problem formulation, and ii) where the cutting planes are derived
from valid inequalities of the master problem formulation. The former method is well studied
and have been applied in many practical cases, as opposed to the latter method which is much
less studied.

Throughout this chapter, we will exemplify the decomposition, and column and cut gen-
eration on the generalized assignment problem. The chapter is organized as follows: Section 2
contains a presentation of the Dantzig-Wolfe decomposition for an IP, in Section 3 the column
generation approach is presented, in Section 4 we present the use of cutting planes, and in
Section 5 a short description of branching rules is found.

2 Dantzig-Wolfe Decomposition

The general idea behind decomposing the IP is to use knowledge about the problem structure
to reformulate the problem into another equivalent problem that is more desirable, e.g., with
regard to complexity, computational running time, or quality of obtainable lower bounds.
The Dantzig-Wolfe decomposition exploits a block-angular structure in problems, i.e., in-
dependent submatrices of the coefficient matrix. We specifically consider the discritization
version (compared to the convexification approach) of the decomposition, see e.g., Vanderbeck
[16], Vanderbeck and Savelsbergh [17], since the main goal of this thesis is to apply cutting
planes on the integer master problem formulation. Consider the block-angular IP:

(IP)

min
∑

k∈K

ckxk (1)

s.t.
∑

k∈K

Akxk ≤ b (2)

Dkxk ≤ dk k ∈ K (3)

xk ∈ Z
nk
+ k ∈ K (4)

where K is the set of blocks, and Ak and Dk are the constraints submatrices for the dependent
and the independent blocks respectively. Constraints (2) where the blocks depend on each
other are referred to as the linking constraints. The matrix structure is depicted left in Figure
1.

The constraints (3) given by the |K| independent matrix blocks and the integrality con-

A1 A2 A3

D1

D2

D3

A′

Figure 1: The block-angular IP (left) illustrated for blocks K = {1, 2, 3} by the constraint matrices
A1, A2, A3 and D1, D2, D3 is reformulated into the IPM (right) illustrated by the matrix A′. The
matrix A′ of the IPM contains fewer rows, but an exponential number of variables compared to the
constraint matrix of the IP.
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straints (4) are used to define the |K| domains:

Xk =
{

xk ∈ Z
nk
+ : Dkxk ≤ dk

}

k ∈ K

The IP can be rewritten into the smaller (in the number of constraints) problem

min
∑

k∈K

ckxk

s.t.
∑

k∈K

Akxk ≤ b

xk ∈ Xk k ∈ K

containing only the constraints given by the upper matrix blocks Ak for k ∈ K. That is, xk

must satisfy the constraints of block Dk before to be part of the smaller problem. For each
k ∈ K, there exists a finite set of integer points {xkp}p∈P k and a finite set of integer rays

{xkr}r∈Rk , see Nemhauser and Wolsey [14], such that

xk =
∑

p∈P k

xkpλkp +
∑

r∈Rk

xkrλkr,
∑

p∈P k

λkp = 1

λkp ∈ {0, 1} p ∈ P k, k ∈ K

λkr ∈ Z+ r ∈ Rk, k ∈ K

Substitute this into the IP, and the integer programming master problem (IPM) is obtained:

(IPM)

min
∑

k∈K

(
∑

p∈P k

(ckxkp)λkp +
∑

r∈Rk

(ckxkr)λkr)

s.t.
∑

k∈K

(
∑

p∈P k

(Akxkp)λkp +
∑

r∈Rk

(Akxkr)λkr) ≤ b

∑

p∈P k

λkp = 1 k ∈ K

λkp ∈ {0, 1} p ∈ P k, k ∈ K

λkr ∈ Z+ r ∈ Rk, k ∈ K

This problem contains a smaller number of constraints than the IP problem, but it may have
an exponential number of variables. The reformulation of the IP into the IPM is illustrated
in Figure 1 with IP on the left and the IPM on the right.

It may happen that the master problem formulation is the starting point when solving
problems with BCP algorithms, e.g., for the cutting stock problem. It may be desirable to
have the original formulation at hand to derive cutting planes and determining branching
rules. Villeneuve et al. [18] discuss how to obtain the original formulation without knowing
it before-hand. Even if it is possible to obtain the original formulation, it is pointed out that,
it may be difficult to find a suitable original formulation. However, this is an essential insight
and is especially important when considering cutting planes and branching schemes.

Example 1. The generalized assignment problem (GAP) is in general given as: There are
a number of agents and a number of tasks. Any agent can be assigned to perform any
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task, incurring some cost and profit that may vary depending on the agent-task assignment.
Moreover, each agent has a budget, and the sum of the costs of tasks assigned to it are not
allowed to exceed this budget. It is required to find an assignment in which all agents do not
exceed their budget and total profit of the assignment is maximized.

Let M be the set of agents, let N be set of tasks, let pij be the profit of agent i performing
task j, let wij be the cost of task j for agent i, let bi be the budget of agent i, and let xij be
the binary variable indicating if agent i performs task j. The mathematical model is given
as:

max
∑

i∈M

∑

j∈N

pijxij (5)

s.t.
∑

i∈M

xij ≤ 1 j ∈ N (6)

∑

j∈N

wijxij ≤ bi i ∈ M (7)

xij ∈ {0, 1} i ∈ M, j ∈ N (8)

Decomposition is applied, keeping (6) as the linking constraints and (7) as the constraints
in the |M | block-angular matrices. Let xi = {xij : j ∈ N} be a solution (assignment of
tasks j) for agent i, then the domain of feasible assignments for agent i are written as Xi =
{xi ∈ {0, 1}|N | :

∑

j∈N wijxij ≤ bi} which is the 0-1 knapsack polytope. Noting that all Xi

for i ∈ M are finite, it is sufficient to consider only the extreme points {xp
i }p∈P i . Hence,

xi =
∑

p∈P i x
p
i λpi,

∑

p∈P i λpi = 1, and λpi ∈ {0, 1}. By substitution, the IMP is obtained:

max
∑

i∈M

∑

p∈P i

(
∑

j∈N

pijx
p
ij)λpi (9)

s.t.
∑

i∈M

∑

p∈P i

(xp
ij)λpi ≤ 1 j ∈ N (10)

∑

p∈P i

λpi = 1 i ∈ M (11)

λpi ∈ {0, 1} p ∈ P i, i ∈ M (12)

3 Column Generation

The LP relaxation of the IPM denoted the LP master problem (LPM) can be used to calculate
lower bounds when solving the IPM with a branch-and-bound algorithm. In the LPM the
decision variables λkp and λkr of the IPM are all continuous. That is:
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LPM

RLPM

Generated

columns

Figure 2: Column generation. The LPM explicitly contains all variables whereas the RLPM contains
a subset. The RLPM grows in the number of variables as new columns are generated.

(LPM)

min
∑

k∈K

(
∑

p∈P k

(ckxkp)λkp +
∑

r∈Rk

(ckxkr)λkr) (13)

s.t.
∑

k∈K

(
∑

p∈P k

(Akxkp)λkp +
∑

r∈Rk

(Akxkr)λkr) ≤ b (14)

∑

p∈P k

λkp = 1 k ∈ K (15)

λkp ≥ 0 p ∈ P k, k ∈ K (16)

λkr ≥ 0 r ∈ Rk, k ∈ K (17)

To overcome the huge number of columns in the LPM, the idea is to enumerate a small subset
of the columns and then generate columns as needed. Only a subset of variables in the LPM
is considered and this gives rise to the restricted LP master problem (RLPM). Generating
new columns is done by solving a subproblem (SP) for each of the domains Xk by using
information from the current solution of the RLPM, more precisely, the value of the dual
vector π and dual value µk. Figure 2 illustrates the relation between the LPM and the RLPM
with regard to the number of variables, and illustrates how the RLPM is growing in the
number of columns for each iteration of the column generation process.

By modifying the objective function in the SPs, one can identify columns with negative
reduced cost that can become part of the RLPM. Recall the simplex method that when using
Dantzig’s pivot rule the most negative reduced cost non-basic variable is chosen to enter the
basis of an LP minimization problem, see Hamacher and Klamroth [9] for details. Let π and
µ be the dual vectors for constraints (14) and (15), respectively. The reduced cost of a column
in the kth SP can be calculated as:

c̄kp = (ck − πAk)xkp − µk p ∈ P k

c̄kr = (ck − πAk)xkr r ∈ Rk

for the extreme points p and rays r, respectively. To find the column with the least cost zk,
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subproblems k ∈ K are solved:

(SP)
zk = min (ck − πAk)x − µk

s.t. Dkx ≤ dk

x ∈ Z
n
+

The column generation terminates when no columns with negative reduced cost exists, that
is, when zk ≥ 0 for all the SPs k ∈ K. When the SP is finite an the objective value is
negative, i.e., zk < 0, then the solution is an extreme point xkp that gives rise to the column
[(ckxkp), (Akxkp), 1]T in the RLPM. If the SP is unbounded, i.e., zk = −∞, it gives rise to
an extreme ray xkr and the column [(ckxkr), (Akxkr), 0]T is added. If an optimal solution is
obtained for each SP and an upper bound UB of the IPM is known, it is possible to obtain
a lower bound LB of the IPM calculated as LB = UB −

∑

k∈K zk.
A general method to speed up the convergence of the column generation process, is to

solve the subproblems heuristically and add several negative reduced cost columns in the same
iteration. Note, that the lower bound calculation for the IPM is only valid for true lower
bounds or optimal solutions for the SPs. In practice, Dantzig-Wolfe decomposition is often
used such that the subproblems can be solved with combinatorial algorithms, e.g., dynamic
programming algorithms, that are faster than solving subproblems with general IP solvers.
The column generation method is also denoted delayed column generation to distinguish it
from an a priori enumeration of all columns for the entire master problem.

Example 2. Continuing with the GAP. The LPM is written as the linear relaxation of the
IPM formulation (9)-(12) of the GAP:

max
∑

i∈M

∑

p∈P i

(
∑

j∈N

pijx
p
ij)λpi (18)

s.t.
∑

i∈M

∑

p∈P i

(xp
ij)λpi ≤ 1 j ∈ N (19)

∑

p∈P i

λpi = 1 i ∈ M (20)

λpi ≤ 0 p ∈ P i, i ∈ M (21)

When considering the RLPM, the subproblem to solve is a minimization version of the 0-1
knapsack problem for each agent. Let π and µ be the dual vectors of (19) and (20) respectively,
then the subproblem i ∈ M is given as:

min
∑

j∈N

(−pij − πj)xij − µi (22)

s.t.
∑

j∈N

wijxij ≤ bi (23)

xij ∈ {0, 1} j ∈ N (24)

4 Cutting Planes

Cutting planes are valid inequalities for the IP or the IPM that cuts of a part of the fractional
solution given by the RLPM, and can thereby increase the objective value. Adding cutting
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Valid inequalities
derived from original variables

Figure 3: Following the same approach as illustrated on Figure 1, the valid inequalities (light gray)
for the IP are reformulated in the IPM. This makes it uncomplicated to handle dual variables of the
valid inequalities.

planes to the IPM can greatly improve the lower bound obtained by the RLPM and result in
fewer branch nodes to be examined in the branch tree.

Valid inequalities for the original problem, the IP, can be readily used in a BCP algorithm
by considering the valid inequalities as part of the original problem formulation and therefore
also part of the reformulation into the IPM. That is, valid inequalities for the original problem
are still valid when reformulated in the master problem. This is explained in details in
Villeneuve et al. [18]. Given a valid inequality for the IP:

∑

k∈K

αkxk ≤ β

that is a linear combination of the original variables, it decomposes in the IPM to be:

∑

k∈K

(
∑

p∈P k

(αkxkp)λkp +
∑

r∈Rk

(αkxkr)λkr) ≤ β (25)

Let ν be the dual variable of (25). Then the reduced cost of a column in subproblem k is
calculated as:

c̄kp = (ck − πAk − ναk)xkp − µk p ∈ P k

c̄kr = (ck − πAk)xkr − µk r ∈ Rk

for the extreme points p and rays r, respectively. Figure 3 illustrates this reformulation for a
given set of valid inequalities added before the decomposition and how they are decomposed
into constraints in the master problem.. Figure 4 illustrates the iterative process in a BCP
algorithm, where both the number of columns and rows grow over time. When embedded
into a BCP algorithm, the valid inequalities based on the IP only affects the cost of the
variables in the subproblem. Hence, in most cases this approach does not affect any specially
designed algorithms for solving the subproblem, making the cutting planes a very powerful
tool. This approach is widely used, see e.g., Fukasawa et al. [8] for the capacitated vehicle
routing problem, Kohl et al. [11] for the vehicle routing with time windows, Alves and Valério
de Carvalho [1] for the multiple length cutting stock problem.

Consider the valid inequality for the IPM:
∑

k∈K

(
∑

p∈P k

αkpλkp +
∑

r∈Rk

αkrλkr) ≤ β (26)

17



Chapter 2

Column

Cut

Figure 4: The RLPM is growing in both dimensions, when both column and cut generation is done.
Naturally, this adds to the complexity of reoptimizing the RLPM, but good lower bounds are often
obtained. The crux of the matter is how to correctly determine the coefficient in the cuts, when
generating columns such that the reduced cost can be calculated.

Let σ be the dual variable of (26), then the reduced cost of a column in subproblem k is
calculated as:

c̄kp = (ck − πAk)xkp − µk − σαkp p ∈ P k

c̄kr = (ck − πAk)xkr − σαkr r ∈ Rk

for the extreme points p and rays r, respectively. Observe, that when αkxkp = αkp and
αkxkr = αkr, then (25) is equivalent to (26). Otherwise the calculation of the last term −σαkp

(or −σαkr) in the objective function of the above subproblems may not be straightforward,
since αkp (or αkr) can depend on Ak and point xkp (or ray xkr).

The iterative process (as depicted in Figure 4) for adding cuts on the master problem
variables (26) are similar to the process of applying cutting planes derived from the original
variables (25). But as mentioned above, the calculation of the cut coefficient for the generated
problems may be more problematic than for the cuts derived on the original variables. Recall
that the IPM is a reformulation of the IP problem, which means that valid inequalities for
the IPM cannot necessarily be expressed in the original variables in an obvious way. In
order to formulate such a valid inequality (26) in terms of original variables, it may be
necessary to add additional variables and constraints to the IP. This may result in more
complicated subproblems, because the added variables and constraints are decomposed into
the subproblems thereby raising their complexity and changing the characteristics. As a
result, any special purpose algorithm designed to solve the old subproblems may be unusable
when considering the new augmented subproblems.

BCP algorithms that make use of cutting planes derived from the IPM formulation have
received less attention in the literature compared to adding cutting planes derived from the
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IP formulation. To our best knowledge the work in this area (not considering this thesis) is
limited to the following contributions: Nemhauser and Park [13] present circuit constraints for
the edge coloring problem, where the subproblem is solved with a branch-and-cut algorithm.
Belov and Scheithauer [4] present Chvátal-Gomory cuts for the one-dimensional cutting stock
problem and the multiple length one-dimensional cutting stock problem, where the subprob-
lem is solved with an approximation to obtain a lower bound used in a branch-and-bound
algorithm. In Belov and Scheithauer [5], this is extended to the two-dimensional two-stage
cutting stock problem and also the Gomory mixed-integer cuts are added. Baldacci et al. [2]
present clique inequalities for the capacitated vehicle routing problem where the subproblem
is solved by an enumeration scheme based on dynamic programming. Desaulniers et al. [7]
apply a subset of the Chvátal-Gomory cuts for the vehicle routing problem with time windows
using a method introduced by Jepsen et al. [10] (see Chapter 3), where the subproblem is
solved using a dynamic programming algorithm. However, none of the papers discusses the
connection between the original formulation and the master problem although this can be
considered a key issue in order to prove correctness of the valid inequalities and to develop
algorithms that are more efficient than brute-force methods. This is the main topic of this
thesis, and in Chapters 3 to 5 examples with cut and column generation on the vehicle routing
problem with time windows are given. This is concluded in Chapter 6 by a description of a
general framework for cutting planes in BCP algorithms.

Example 3. A valid cutting plane for the original formulation (5)-(8) of the GAP is the
cover inequalities, see Wolsey [19]. For i ∈ N let C ⊆ M be cover where

∑

j∈C wij > bi. A
cover inequality for i is given as:

∑

j∈C

xij ≤ |C| − 1 (27)

Inequality (27) decomposes into the IPM formulation (9)-(12) as:
∑

p∈P i

(
∑

j∈C

x
p
ij)λpi ≤ |C| − 1 (28)

Given the dual variable ν of (28), subproblem (22)-(24) for i ∈ M is modified to:

min
xi∈Xp

∑

j∈N

(−pij − πj)xij −
∑

j∈C

(wijν)xij − µi

Note, that since the cover inequalities are separable for each agent i ∈ M , it is possible to
apply these cuts directly into the SP. Indeed, the cuts do not provide any improvement in the
RLPM since all columns are already valid assignments.

The IPM constraints (9)-(12) of the GAP can be recognized as a set packing polytope.
A well known valid inequality for this polytope is the clique inequality, see Wolsey [19]. Let
Q ⊆

⋃

i∈M P i be a clique such that there for all pairs of paths in p, q ∈ Q, p ∈ P i, q ∈ P h and
p 6= q exist a j ∈ N where x

p
ij = x

q
hj. Then the clique inequality is given as:

∑

p∈Q

λpi ≤ 1 (29)

Given the dual variable σ of (29), subproblem (22)-(24) for i ∈ M is modified to:

min
xi∈Xp

∑

j∈N

(−pij − πj)xij − µi −

{

σ xi ∈ Q

0 otherwise

19



Chapter 2

This is clearly a non-linear objective function, and it may not seem obvious how to cal-
culate this last term in the 0-1 knapsack problem. In Spoorendonk and Desaulniers [15]
(Chapter 5) an example is given on how to handle clique inequalities in the vehicle routing
problem with time windows.

5 Branching

To obtain integrality, it may be necessary to perform branching. This is not a main focus
area of this thesis and will only be handled briefly.

For traditional integer programs, branching may be done by choosing an integer variable
that has a fractional value and create two branches. One branch where the value of the
variables is less than or equal to the rounded down value of the variables, and another branch
where the variables must have values greater than or equal to the rounded up value. In BCP
algorithms, a branch on an original variable can be done in the master problem the same way
as adding cutting planes on the variables from the original formulation as described in Section
4. For example, branching on variable xk

i from the original formulation with the fractional
value a 6∈ Z results in cutting planes

xk
i ≤ ⌊a⌋ ∨ xk

i ≥ ⌈a⌉

that are decomposed into the two branch cutting planes

∑

k∈K

(
∑

p∈P k

(xkp
i )λkp +

∑

r∈Rk

(xkr
i )λkr) ≤ ⌊a⌋

and
∑

k∈K

(
∑

p∈P k

(xkp
i )λkp +

∑

r∈Rk

(xkr
i )λkr) ≥ ⌈a⌉

in the master problem.

Branching directly on the master problem variables can give rise to the complications
similar to cutting on master problem variables. Hence, this approach must be followed care-
fully to avoid an explosion in running time due to complication of the subproblems. See
Vanderbeck [16], Villeneuve et al. [18] for a detailed discussion on branching schemes.
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[1] C. Alves and J.M. Valério de Carvalho. A stabilized branch-and-price-and-cut algorithm
for the multiple length cutting stock problem. Computers & Operations Research, 35(4):
1315–1328, 2008. doi: 10.1016/j.cor.2006.08.014.

[2] R. Baldacci, N. Christofides, and A. Mingozzi. An exact algorithm for the vehicle routing
problem based on the set partitioning formulation with additional cuts. Mathematical

Programming, 115(2):351–385, 2008. doi: 10.1007/s10107-007-0178-5.

[3] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance.
Branch-and-price: Column generation for solving huge integer programs. Operations

Research, 46(3):316–329, 1998. doi: 10.1287/opre.46.3.316.

20



Preliminaries on Cut and Column Generation

[4] G. Belov and G. Scheithauer. A cutting plane algorithm for the one-dimensional cutting
stock problem with multiple lengths. European Journal of Operations Research, 141(2):
274–294, 2002. doi: 10.1016/S0377-2217(02)00125-X.

[5] G. Belov and G. Scheithauer. A branch-and-cut-and-price algorithm for one-dimensional
stock cutting and two-dimensional two-stage cutting. European Journal of Operations

Research, 171(1):85–106, 2006. doi: 10.1016/j.ejor.2004.08.036.

[6] G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations

Research, 8(1):101–111, 1960. doi: 10.1287/opre.8.1.101.

[7] G. Desaulniers, F. Lessard, and A. Hadjar. Tabu search, partial elementarity, and gen-
eralized k-path inequalities for the vehicle routing problem with time windows. Trans-

portation Science, 42(3):387–404, 2008. doi: 10.1287/trsc.1070.0223.

[8] R. Fukasawa, H. Longo, J. Lysgaard, M. Poggi de Aragão, M. Reis, E. Uchoa, and R.F.
Werneck. Robust branch-and-cut-and-price for the capacitated vehicle routing problem.
Mathematical Programming, 106(3):491–511, 2006. doi: 10.1007/s10107-005-0644-x.

[9] H. W. Hamacher and K. Klamroth. Linear and Network Optimization. Vieweg, 2000.

[10] M. Jepsen, B. Petersen, S. Spoorendonk, and D. Pisinger. Subset-row inequalities applied
to the vehicle-routing problem with time windows. Operations Research, 56(2):497–511,
2008. doi: 10.1287/opre.1070.0449.

[11] N. Kohl, J. Desrosiers, O. B. G. Madsen, M. M. Solomon, and F. Soumis. 2-path cuts for
the vehicle routing problem with time windows. Transportation Science, 33(1):101–116,
1999. doi: 10.1287/trsc.33.1.101.
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Abstract

This paper presents a branch-and-cut-and-price algorithm for the vehicle routing prob-
lem with time windows. The standard Dantzig-Wolfe decomposition of the arc flow for-
mulation leads to a set partitioning problem as the master problem and an elementary
shortest path problem with resource constraints as the pricing problem. We introduce
the subset-row inequalities, which are Chvatal-Gomory rank-1 cuts based on a subset of
the constraints in the master problem. Applying a subset-row inequality in the master
problem increases the complexity of the label-setting algorithm used to solve the pricing
problem since an additional resource is added for each inequality. We propose a modi-
fied dominance criterion that makes it possible to dominate more labels by exploiting the
step-like structure of the objective function of the pricing problem. Computational ex-
periments have been performed on the Solomon benchmarks where we were able to close
several instances. The results show that applying subset-row inequalities in the master
problem significantly improves the lower bound, and in many cases makes it possible to
prove optimality in the root node.
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1 Introduction

The vehicle routing problem with time windows (VRPTW) can be described as follows: A set
of customers, each with a demand, needs to be serviced by a number of vehicles all starting
and ending at a central depot. Each customer must be visited exactly once within a given time
window, and the capacity of the vehicles must not be exceeded. The objective is to service
all customers traveling the least possible distance. In this paper we consider a homogenous
fleet, i.e., all vehicles are identical.

The standard Dantzig-Wolfe decomposition of the arc flow formulation of the VRPTW
is to split the problem into a master problem (a set partitioning problem) and a pricing
problem (an elementary shortest path problem with resource constraints (ESPPRC), where
capacity and time are the constrained resources). A restricted master problem can be solved
with delayed column generation and embedded in a branch-and-bound framework to ensure
integrality. Applying cutting planes either in the master or the pricing problem leads to a
branch-and-cut-and-price algorithm (BCP).

Kohl et al. [23] implemented a successful BCP algorithm for the VRPTW by applying
subtour elimination constraints and two-path cuts. Cook and Rich [8] generalized the two-
path cuts to the k-path cuts. Common for these BCP algorithms is that all applied cuts
are valid inequalities for the VRPTW, i.e., the original arc flow formulation, and contain
a structure making it possible to handle values of the dual variables in the pricing problem
without increasing the complexity of the problem. Fukasawa et al. [17] refer to this as a robust

approach in their paper, where a range of valid inequalities for the capacitated vehicle routing
problem are used in a BCP algorithm. The topic of column generation and BCP algorithms
has been surveyed by Barnhart et al. [1] and Lübbecke and Desrosiers [27].

Dror [13] showed that the ESPPRC is strongly NP-hard, hence a relaxation of the ESP-
PRC was used as a pricing problem in earlier BCP approaches for the VRPTW. The relaxed
pricing problem where non-elementary paths are allowed is denoted the shortest path prob-
lem with resource constraints (SPPRC) and can be solved in pseudo-polynomial time using
a label-setting algorithm, which was initially done by Desrochers [11]. To improve lower
bounds of the master problem, Desrochers et al. [12] used 2-cycle elimination, which was later
extended by Irnich and Villeneuve [20] to k-cycle elimination (k-cyc-SPPRC) where cycles
containing k or less nodes are not permitted.

Beasley and Christofides [2] proposed to solve the ESPPRC using Lagrangian relaxation.
However, recently label-setting algorithms have become the most popular approach to solve
the ESPPRC; see e.g. Dumitrescu [14] and Feillet et al. [16]. When solving the ESPPRC
with a label-setting algorithm a binary resource for each node is added, which increases the
complexity of the algorithm compared to solving the SPPRC or the k-cyc-SPPRC. Righini
and Salani [32] developed a label-setting algorithm using the idea of Dijkstra’s bi-directio-
nal shortest path algorithm that expands both forward and backward from the depot and
connects routes in the middle, thereby potentially reducing the running time of the algorithm.
Furthermore Righini and Salani [32] and Boland et al. [3] proposed a decremental state space
algorithm that iteratively solves a SPPRC by applying resources that force nodes to be visited
at most once. Recently Chabrier [5], Danna and Le Pape [9], and Salani [33] successfully solved
several previously unsolved instances of the VRPTW from the benchmarks of Solomon [34]
using a label-setting algorithm for the ESPPRC.

In this paper, we extend the BCP framework to include valid inequalities for the master
problem, more specifically by applying the subset-row (SR) inequalities to the set partitioning
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master problem. Nemhauser and Park [28] developed a similar BCP algorithm for the edge
coloring problem, but to our knowledge no such algorithms for the VRPTW have been pre-
sented. Applying the SR inequalities leads to an increased complexity of the pricing problem
since each inequality is represented by an additional resource. To improve the performance of
the label-setting algorithm, we introduce a modified dominance criterion that handles the re-
duced cost calculation in a reasonable way. Moreover, the SR inequalities potentially provide
better lower bounds and smaller branch trees.

The paper is organized as follows: In Section 2 we give an overview of the Dantzig-Wolfe
decomposition of the VRPTW and describe how to calculate the reduced cost of columns
when column generation is used. In Section 3 we introduce the SR inequalities and show that
the separation problem is NP-complete. In Section 4 we review the basics of a label-setting
algorithm for solving the ESPPRC and show how to handle the modified pricing problem
in the same label-setting algorithm. For details regarding label-setting algorithms (including
bi-directionality) we refer to Desaulniers et al. [10], Irnich and Desaulniers [19], Irnich [18],
Righini and Salani [31]. An algorithmic outline and computational results, using the Solomon
benchmark instances, are presented in Section 5. Section 6 concludes the paper.

2 Decomposition

Let C be the set of customers, let the set of nodes be V = C ∪ {o, o′} where {o} denotes the
depot at the start of the routes and {o′} denotes the depot at the end; and let E = {(i, j) :
i, j ∈ V, i 6= j} be the edges between the nodes. Let K be the set of vehicles with |K|
unbounded, each vehicle having capacity D, and let di be the demand of customer i ∈ C and
do = do′ = 0. Let ai be the beginning and bi be the end of the time window for node i ∈ V .
Let si be the service time for i ∈ V and let tik be the time vehicle k ∈ K visits node i ∈ V ,
if k visits i. Let cij be the travel cost on edge (i, j) ∈ E and let xijk be a variable indicating
whether vehicle k ∈ K traverses edge (i, j) ∈ E. Last let τij = cij + si > 0 be the travel time
on edge (i, j) ∈ E plus the service time of customer i. The three-index flow model (Toth and
Vigo [36]) for the VRPTW is:

min
∑

k∈K

∑

(i,j)∈E

cijxijk (1)

s.t.
∑

k∈K

∑

(i,j)∈δ+(i)

xijk = 1 ∀i ∈ C (2)

∑

(i,j)∈δ+(o)

xijk =
∑

(i,j)∈δ−(o′)

xijk = 1 ∀k ∈ K (3)

∑

(j,i)∈δ−(i)

xjik −
∑

(i,j)∈δ+(i)

xijk = 0 ∀i ∈ C, ∀k ∈ K (4)

∑

(i,j)∈E

dixijk ≤ D k ∈ K (5)

ai ≤ tik ≤ bi ∀i ∈ V, ∀k ∈ K (6)

xijk(tik + τij) ≤ tjk ∀(i, j) ∈ E, ∀k ∈ K (7)

xijk ∈ {0, 1} ∀(i, j) ∈ E, ∀k ∈ K (8)
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Here (2) ensures that every customer i ∈ C is visited, while (3) ensures that each route starts
and ends in the depot. Constraint (4) maintains flow conservation, while (5) ensures that the
capacity of each vehicle is not exceeded. Constraints (6), (7) ensure that the time windows
are satisfied. Note that (7) together with the assumption that τij > 0 for all (i, j) ∈ E

eliminates sub-tours. The last constraints define the domain of the arc flow variables. Note
that a zero-cost edge xoo′k between the start and end depot must be present for all vehicles
for (3) to hold if not all vehicles are used.

The standard Dantzig-Wolfe decomposition of the VRPTW, see e.g. Desrochers et al.
[12], leads to the following master problem:

min
∑

p∈P

∑

(i,j)∈E

cijαijpλp (9)

s.t
∑

p∈P

∑

(i,j)∈δ+(i)

αijpλp = 1 ∀i ∈ C (10)

λp ∈ {0, 1} ∀p ∈ P (11)

where P is the set of all feasible routes, the binary constant αijp is one if and only if edge
(i, j) is used by route p ∈ P , and the binary variable λp indicates whether route p is used.
The master problem can be recognized as a set partitioning problem, and the LP relaxation
may be solved using delayed column generation. Let π ∈ R be the dual variables of (10) and
let π0 = 0. Then the reduced cost of a route p is:

cp =
∑

(i,j)∈E

cijαijp −
∑

(i,j)∈E

πjαijp =
∑

(i,j)∈E

(cij − πj)αijp (12)

The pricing problem becomes an ESPPRC where the cost of each edge is cij = cij − πj

for all edges (i, j) ∈ E. When applying cuts during column generation we will distinguish
between valid inequalities for the VRPTW constraints (2)-(8) and valid inequalities for the
set partitioning constraints (10)-(11).

Consider a valid inequality for the VRPTW constraints (2)–(8) in terms of the arc flow
variables x:

∑

k∈K

∑

(i,j)∈E

βijxijk ≤ β0 (13)

When decomposed into the master problem, inequality (13) is reformulated as:

∑

p∈P

∑

(i,j)∈E

βijαijpλp ≤ β0 (14)

Let µ ≤ 0 be the dual variable of (14). The reduced cost of a column p is then

cp =
∑

(i,j)∈E

cijαijp −
∑

(i,j)∈E

πjαijp − µ
∑

(i,j)∈E

βijαijp

=
∑

(i,j)∈E

(cij − πj − µβij)αijp (15)

Compared to (12) an additional coefficient µβij is subtracted from the cost of edge (i, j)
and the complexity of the pricing problem remains unchanged if we use the edge costs cij =
cij − πj − µβij .
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Now, consider adding a valid inequality for the set partitioning master problem (10)–(11)
that cannot be written as a linear combination of the arc flow variables:

∑

p∈P

βpλp ≤ β0 (16)

Let σ ≤ 0 be the dual variable of (16). The reduced cost of a column p is:

ĉp = cp − σβp =
∑

(i,j)∈E

cijαijp − σβp (17)

In addition to the reduced cost computed for a column p in (15) the cost −σβp must be
considered. To reflect the possible extra cost −σβp it may be necessary to modify the pricing
problem by adding constraints or variables, thereby increasing its complexity.

3 Subset-Row Inequalities

The set of valid inequalities for the set packing problem is a subset of the set of valid inequali-
ties for the set partitioning problem since the latter problem is a special case of first-mentioned.
Two well-known valid inequalities for the set packing problem are the clique and the odd-hole
inequalities, where the first is known to be facet-defining for the set partitioning problem
(Nemhauser and Wolsey [29]).

Since the master problem is a set partitioning problem, it would be obvious to go in this
direction when looking for valid inequalities for the master problem. Consider the separation
of a clique or an odd-hole inequality. The undirected conflict graph G′(P,E′) is defined as
follows: Each column is a vertex in G′ and the edge set is given as:

E′ =







(p, q) :
∑

(i,j)∈δ+(i)

αijp = 1 ∧
∑

(i,j)∈δ+(i)

αijq = 1, i ∈ C, p, q ∈ P, p 6= q







That is, an edge is present if the two columns p and q have coefficient one in the same row. In
a VRPTW context it reads: Two routes are conflicting if they are visiting the same customer.
A clique in G′ leads to the valid clique inequality:

∑

p∈P̂

λp ≤ 1 (18)

where P̂ ⊆ P are the columns corresponding to the vertices of a clique in G′. A cycle visiting
an odd number of vertices P in G′ leads to the valid odd-hole inequality:

∑

p∈P̂

λp ≤

⌊

|P̂ |

2

⌋

(19)

where P̂ ⊆ P are the columns corresponding to the vertices visited on the cycle in G′.
However, when column generation is applied, it is not obvious how to reflect the reduced cost
of (18) or (19) in the pricing problem since there is no specific knowledge of the columns of
the master problem when solving the pricing problem.
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Example 1

SR inequalities derived from the conflict graph of a set packing problem. In the LP-solution
to Aλ ≤ 1 all λ variables are 1

2
, which results in two violated SR inequalities:

• With |S| = 3 and k = 2 due to variables λ1, λ2, and λ3 giving the set of rows S =
{r1, r2, r3}

• With n = 5 and k = 2 due to variables λ1, λ2, λ3, λ4, and λ5 giving the set of rows
S = {r1, r3, r4, r5, r6}

λ1 λ2 λ3 λ4 λ5

r1 1 1 ≤ 1
r2 1 1 ≤ 1
r3 1 1 ≤ 1
r4 1 1 ≤ 1
r5 1 1 ≤ 1
r6 1 1 ≤ 1

Set packing problem Aλ ≤ 1.

u u

u

u

u

λ1 λ2

λ3

λ4

λ5

r1

r2 r3r4

r5r6

Corresponding conflict graph.

Inspired by the above inequalities (18) and (19) we introduce the subset-row inequalities

(SR inequalities). These inequalities are specifically linked to the rows (rather than the
columns) of the set packing problem, hence making it possible to identify the coefficient of a
column in an SR inequality.

Definition 1. Consider the set packing structure

X = {λ ∈ B
|P | : Aλ ≤ 1} (20)

with the set of rows M and columns P , and a |M | × |P | binary coefficient matrix A. The SR

inequality is defined as:
∑

p∈P

⌊

1

k

∑

i∈S

αip

⌋

λp ≤

⌊

|S|

k

⌋

(21)

where S ⊆ M and 0 < k ≤ |S|.

Example 1 illustrates some SR inequalities derived from the conflict graph of a set packing
problem.

Given a column p ∈ P we need to have
∑

i∈S αip ≥ k to get a non-zero coefficient of
λp in (21). For the master problem of VRPTW the coefficient matrix can be translated as
αip =

∑

(i,j)∈δ+(i) αijp, i.e., αip is the sum of all the outgoing edges of a customer i. Hence,

⌊

1

k

∑

i∈S

αip

⌋

=









1

k

∑

i∈S

∑

(i,j)∈δ+(i)

αijp









which is only 1 or larger when k or more customers of S are visited on route p.
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Proposition 1. The SR inequalities (21) are valid for the Set Packing structure X.

Proof. The proof follows directly from Chavtal-Gomory’s procedure to construct valid in-
equalities (Wolsey [37]). Scale the |S| inequalities

∑

p∈P αipλp ≤ 1 for each row i ∈ S ⊆ M

from (20) with 1

k
≥ 0 and add them:

∑

p∈P

1

k

∑

i∈S

αipλp ≤
|S|

k

Flooring on left side and right side leads to (21).

Observe that, when the coefficient
⌊

1

k

∑

i∈S αip

⌋

evaluates to 0 or 1 for all p ∈ P and

the right hand side
⌊

|S|
k

⌋

= 1 then the set of SR inequalities (21) is a subset of the clique

inequalities (18).

From Definition 1 it is clear that the SR inequalities are Chvatal-Gomory rank-1 cuts, see
Chvatal [6]. Eisenbrand [15] has shown that the separation problem is NP-complete for general
Chvatal-Gomory rank-1 cuts. However, in some special cases polynomial time separation is
possible, e.g. the maximally violated mod-k cuts for a fixed k by Caprara et al. [4]. Since the
SR inequalities are another special case, the separation problem will be investigated further.

3.1 Separation of Subset-Row Inequalities

The separation problem of SR inequalities is defined as follows: Given the current LP-solution
λ where λp < 1 for all p ∈ P , and let n be the size of S. For some fixed values n and k where
1 < k ≤ n, find the most violated SR inequality. Using the binary variable xi to denote
whether i ∈ S this can be stated as:

max
∑

p∈P

⌊

1

k

∑

i∈M

aipxi

⌋

λp −
⌊n

k

⌋

(22)

s.t.
∑

i∈M

xi = n (23)

xi ∈ {0, 1} ∀i ∈ M (24)

The corresponding decision problem SR-DECISION asks whether

∑

p∈P

⌊

1

k

∑

i∈M

aipxi

⌋

λp ≥ c (25)

is feasible subject to (23) and (24), where 1 ≤ c < n and c ∈ Z. Since we may multiply (25)
by any coefficient 1

γ
> 0, the coefficient bounds λp < 1 and c < n can be softened to

λp <
1

γ
, c <

n

γ
(26)

This leads to the following proposition:

Proposition 2. The separation problem SR-DECISION is NP-complete.
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Example 2

Illustration of the transformation 3CNF-SAT to SR-DECISION. Given the 3CNF-SAT ex-
pression

φ = (x1 ∨ ¬x1 ∨ ¬x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4)

the matrix A = (aij) becomes

1 . . . m m + 1 . . . . . . m + n m + n + 1
C1 . . . Cm x1 . . . . . . xn

1 x1 1 1
2 ¬x1 1 1 1

x2 1 1
... ¬x2 1 1

x3 1 1
¬x3 1 1
x4 1 1

2n ¬x4 1 1

2n + 1 1
2n + 2 1 1 1 1 1 1 1 1
2n + 3 1 1 1 1 1 1 1 1

while we set k = 3, λp = 1 for p ∈ P and c = 8.

Proof. We will show the statement by reduction from 3-conjunctive normal form satisfiability
(3CNF-SAT). Given an expression φ written in three-conjunctive normal form, the 3CNF-
SAT problem asks whether there is an assignment of binary values to the variables such that
φ evaluates to true. An expression is in three-conjunctive normal form when it consists of
a collection of disjunctive clauses C1, . . . , Cm of literals, where a literal is a variable xi or a
negated variable ¬xi, and each clause contains exactly three literals.

Let x1, . . . , xn be the set of variables which occurs in the clause φ. We transform the
3CNF-SAT instance to a SR-DECISION instance by constructing a matrix A = (aij) with
2n + 3 rows and m + n + 1 columns, i.e., M = {1, . . . , 2n + 3} and P = {1, . . . ,m + n + 1}.

The rows 1, . . . , 2n of matrix A corresponds to literals x1,¬x1, x2,¬x2, . . . , xn,¬xn, while
columns j = 1, . . . ,m correspond to clauses C1, . . . , Cm, and columns j = m + 1, . . . ,m + n

correspond to variables x1, . . . , xn.
We now define matrix A as follows: For j = 1, . . . ,m let aij = 1 iff the corresponding

literal appears in clause Cj . For j = 1, . . . , n let ai,j+m = 1 iff the corresponding literal is
xj or ¬xj. For j = m + n + 1 let aij = 0. The last three rows of A are defined as follows:
For j = 1, . . . ,m + n let a2n+1,j = 0, while a2n+1,m+n+1 = 1. For j = 1, . . . ,m + n + 1 let
a2n+2,j = a2n+3,j = 1. Finally we set k = 3, λp = 1 for all p ∈ P and c = m + n + 1. Note
that all coefficients are within the bounds (26) for γ sufficiently large. An example of the
transformation is illustrated in Example 2.

With the chosen constants, the SR-DECISION problem (25) reads

∑

p∈P

⌊

1

3

∑

i∈M

aipxi

⌋

≥ m + n + 1 = |P |
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which is satisfied if and only if

∑

i∈M

aipxi ≥ 3 ∀p ∈ P

As the last three rows of A always must be chosen, it is equivalent to

2n
∑

i=1

aipxi ≥ 1 ∀p = 1, . . . ,m + n

(i) Assume that there is a feasible assignment of binary values to x1, . . . , xn such that
φ evaluates to true in the 3CNF-SAT instance. In the corresponding SR-DECISION
problem choose row i if and only if the corresponding literal is true in φ. Since exactly
n literals are true, we will in this way choose n rows. Since at least one literal is true
in each clause, and each column 1, . . . ,m corresponds to a clause in A we will get a
contribution of at least one in each of these columns. Moreover, since exactly one of xi

and ¬xi is true in φ we will get a contribution of exactly one in column m+1, . . . ,m+n.
Hence, the corresponding SR-DECISION problem is true.

(ii) Assume on the other hand that SR-DECISION is true. Let P ′ ⊆ P be the set of rows
corresponding to the solution. By assumption |P ′| = n. First we notice that exactly
one of the rows corresponding to the literals xi and ¬xi is chosen. This follows from
the fact that we have n columns m+1, . . . ,m+n which needs to be covered by n rows,
and each row covers exactly one column. For each literal in φ let xi or ¬xi be true if
the corresponding row was chosen in SR-DECISION. Each variable will be well-defined
due to the above argument. Moreover, since the rows P ′ must cover at least one api = 1
for each column j = 1, . . . ,m, we see that each clause in φ becomes true.

Since the reduction is polynomial, and SR-DECISION obviously is in NP, we have proved
the statement.

Example 3 shows that typical separation problems of SR inequalities actually possess the
properties assumed in the NP-completeness proof.

4 Label-Setting Algorithm

When solving the pricing problem, it is noted that finding a route with negative reduced
cost corresponds to finding a negative cost path starting and ending at the depot, i.e., an
ESPPRC. Our ESPPRC algorithm is based on standard label setting techniques presented
by e.g. Beasley and Christofides [2], Dumitrescu [14], Feillet et al. [16], Chabrier [5], Danna
and Le Pape [9]; hence in the following we mainly focus on the dominance criterion used for
handling the modifications stemming from the SR inequalities of the master problem.

The ESPPRC can be formally defined as: Given a weighted directed graph G(V,E) with
nodes V and edges E, and a set of resources R. For each edge (i, j) ∈ E and resource r ∈ R

three parameters are given: A lower limit ar(i, j) on the accumulation of resource r when
traversing edge (i, j) ∈ E; an upper limit br(i, j) on the accumulation of resource r when
traversing edge (i, j) ∈ E; and finally an amount cr(i, j) of resource r consumed by traversing
edge (i, j) ∈ E. The objective is to find a minimum cost path p from a source node o ∈ V to
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Example 3

To illustrate that the bounds (26) indeed are realistic consider the case k = 3. Choose
γ = m+n+1

β
where β = n−2

3
or β = n−1

3
depending on which of the expressions that evaluates

to an integral value. The right hand side of (25) evaluates to

c ·
1

γ
= (m + n + 1) ·

β

m + n + 1
= β

where an integral value of β gives

β =
⌊n

3

⌋

< n

The value of λ gives

λp ·
1

γ
= 1 ·

β

m + n + 1
≤ 1 ∀p ∈ P

Hence all bounds are valid according to the separation problem (22)-(24).

a target node o′ ∈ V , where the accumulated resources of p satisfy the limits for all resources
r ∈ R. Without loss of generality, we assume that the limits must be satisfied at the start of
each edge (i, j), i.e., before cr(i, j) has been consumed.

Remark that equivalent upper and lower limits and consumptions on the nodes can be
“pushed” onto the edges, e.g., the ingoing edges of the node.

For the pricing problem of the VRPTW, the resources are demand d, time t, a binary
visit-counter for each customer v ∈ C and reduced cost c. Note that also the reduced cost is
considered a resource. When considering the pricing problem of the VRPTW, the consump-
tions and upper and lower limits of the resources at each edge (i, j) in ESPPRC are:

ad(i, j) = 0, bd(i, j) = D − dj , cd(i, j) = dj ∀(i, j) ∈ E

at(i, j) = ai, bt(i, j) = bi, ct(i, j) = τij ∀(i, j) ∈ E

av(i, j) = 0, bv(i, j) = 1, cv(i, j) = 1 ∀v ∈ V : v = j, ∀(i, j) ∈ E

av(i, j) = 0, bv(i, j) = 1, cv(i, j) = 0 ∀v ∈ V : v 6= j, ∀(i, j) ∈ E

ac(i, j) = −∞, bc(i, j) = ∞ , cc(i, j) = cij ∀(i, j) ∈ E

In the label-setting algorithm labels at node v represent partial paths from o to v. The
following attributes for a label L are considered:

v(L) The current end-node of the partial path represented by L.
c(L) The sum of the reduced cost along path L.
r(L) The accumulated consumption of resource r ∈ R along path L.

A feasible extension ǫ ∈ E(L) of a label L is a partial path starting in a node v(L) ∈ V

and ending in the target node o′, that does not violate any resources when concatenated with
the partial path represented by L.

In the following it is assumed that all resources are bounded strongly from above, and
weakly from below. This means that if the current resource accumulation of a label is below
the lower limit on a given edge, it is allowed to fill up the resource to the lower limit, e.g.,
waiting for a time window to open. This means that two consecutive labels Lu and Lv related
by an edge (u, v), i.e., Lu is extended and creates Lv, where v(Lu) = u and v(Lv) = v, must
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satisfy

r(Lv) ≤ br(u, v), ∀r ∈ R (27)

r(Lv) = max{r(Lu) + cr(u, v), ar(u, v)}, ∀r ∈ R (28)

Here (27) demands that each label Lu satisfies the upper limit br(u, v) of resource r cor-
responding to edge (u, v), while (28) states that resource r at label Lv corresponds to the
resource consumption at label Lu plus the amount consumed by traversing edge (u, v), re-
specting the lower limit ar(u, v) on edge (u, v).

A simple enumeration algorithm could be used to produce all these labels, but to limit
the number of labels considered, dominance rules are introduced to fathom labels which do
not lead to an optimal solution.

Definition 2. A label Li dominates label Lj if

v(Li) = v(Lj) (29)

c(Li) ≤ c(Lj) (30)

E(Lj) ⊆ E(Li) (31)

In other words, the paths corresponding to labels Li and Lj should end at the same node
v(Li) = v(Lj) ∈ V , the path corresponding to label Li should cost no more than the path
corresponding to label Lj, and finally any feasible extension of Lj is also a feasible extension
of Li.

Feillet et al. [16] suggested to consider the set of nodes that cannot be reached from a
label Li and compare the set with the unreachable nodes of a label Lj in order to determine
if some extensions are impossible. Or in other words: update the node resources in an eager
fashion instead of a lazy. The following definition is a generalization of Definition 3 in Feillet
et al. [16].

Definition 3. Given a start node o ∈ V , a label L, and a node u ∈ V where v(L) = u a node

v ∈ V is considered unreachable if v has already been visited on the path from o to u or if a

resource window is violated, e.g.:

∃r ∈ R r(L) + ℓr(u, v) > br(v)

where ℓr(u, v) is a lower bound on the consumption of resource r on all feasible paths from u

to v. The node resources are then given as: v(L) = 1 indicates that node v ∈ V is unreachable

from node v(L) ∈ V , and v(L) = 0 otherwise.

Determining if (31) holds can be quite cumbersome because the straightforward definition
demands that we calculate all extensions of the two labels. Therefore, a sufficient criterion
for (31) is sought that can be computed faster. If label Li has consumed less resources than
label Lj then no resources are limiting the possibilities of extending Li compared to Lj, hence
the following proposition can be used as a relaxed version of the dominance criterion.

Proposition 3. Desaulniers et al. [10]. If all resource extension functions are non-decreasing,

then label Li dominates label Lj if:

v(Li) = v(Lj) (32)

c(Li) ≤ c(Lj) (33)

r(Li) ≤ r(Lj) ∀r ∈ R (34)
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Using Proposition 3 as a dominance criterion is a relaxation of the dominance criterion
of Definition 2 since only a subset of labels satisfying (29), (30) and (31) satisfies inequalities
(32), (33) and (34).

4.1 Solving the Modified Pricing Problem

Consider some valid SR inequality of the form (21),

∑

p∈P

⌊

1

k

∑

i∈S

αip

⌋

λp ≤

⌊

|S|

k

⌋

where S ⊆ M and 0 < k ≤ |S|. Let σ ≤ 0 be the corresponding dual variable when solving
the master problem to LP-optimality. From (17) the reduced cost of a column in the VRPTW
master problem is:

ĉp = cp − σ

⌊
∑

i∈S

∑

(i,j)∈δ+(i) αijp

k

⌋

=
∑

(i,j)∈E

cijαijp − σ

⌊
∑

i∈S

∑

(i,j)∈δ+(i) αijp

k

⌋

(35)

We analyze how this additional cost can be handled in the label-setting algorithm for ESP-
PRC.

Let V (L) be the nodes visited on the partial path of label L. The cost of a label L can
then be expressed as:

ĉ(L) = c(L) − σ

⌊

|S ∩ V (L)|

k

⌋

(36)

A new resource m can be used to compute the coefficient of penalty σ for label L, i.e.,
m(L) = |S ∩V (L)|, the number of customers involved in the cut. Note that the consumption
of resource m is 1 for each e.g. outgoing edge of the involved customers. Therefore the
usual dominance criterion of Proposition 3 can be used. Note that in case Li dominates Lj ,
c(Li) ≤ c(Lj) and m(Li) ≤ m(Lj) so ĉ(Li) ≤ ĉ(Lj) since −σ > 0. Hence the penalty term
must only be considered on the last edge to the target node to compute the reduced cost ĉ(L)
of path L. However, further labels can be eliminated by exploiting the structure of (36).

For a label L let

T (L) = |S ∩ V (L)| mod k

be the number of visits made to S since the last penalty was paid for visiting k nodes in S.
Recall E(L) as the set of feasible extensions from the label L to the target node o′ and note
that when label Li dominates label Lj, their common extensions are E(Lj) due to (31). The
following cost dominance criterion is obtained for a single SR inequality:

Proposition 4. If T (Li) ≤ T (Lj), v(Li) = v(Lj), ĉ(Li) ≤ ĉ(Lj), and r(Li) ≤ r(Lj) ∀r ∈ R,

then label Li dominates label Lj.

Proof. Consider any common extension ǫ ∈ E(Lj). Since T (Li) ≤ T (Lj) the relation between
the number of future penalties for the two labels when concatenated with ǫ is:

⌊

|S ∩ ǫ| + T (Li)

k

⌋

≤

⌊

|S ∩ ǫ| + T (Lj)

k

⌋
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This leads to the following relation between the costs:

ĉ(Li + ǫ) = ĉ(Li) + c(ǫ) − σ

⌊

|S ∩ ǫ| + T (Li)

k

⌋

≤ ĉ(Lj + ǫ) = ĉ(Lj) + c(ǫ) − σ

⌊

|S ∩ ǫ| + T (Lj)

k

⌋

Hence label Li dominates label Lj.

Proposition 5. If T (Li) > T (Lj), v(Li) = v(Lj), ĉ(Li)−σ ≤ ĉ(Lj), and r(Li) ≤ r(Lj) ∀r ∈
R, then label Li dominates label Lj .

Proof. Consider any common extension ǫ ∈ E(Lj). Since T (Li) > T (Lj) the relation between
the number of future penalties for the two labels when concatenated with ǫ is:

⌊

|S ∩ ǫ| + T (Li)

k

⌋

≥

⌊

|S ∩ ǫ| + T (Lj)

k

⌋

(37)

Since 0 ≤ T (Lj) < T (Li) ≤ k it is clear that the left hand side of (37) is at most one unit
larger than the right hand side, i.e., label Li will pay the penalty at most one more time than
label Lj. Hence,

⌊

|S ∩ ǫ| + T (Li)

k

⌋

− 1 ≤

⌊

|S ∩ ǫ| + T (Lj)

k

⌋

That is, the additional cost of extending Li with ǫ is at most −σ more than extending Lj

with ǫ. This leads to the following relation between the costs:

ĉ(Li + ǫ) = ĉ(Li) + c(ǫ) − σ

⌊

|S ∩ ǫ| + T (Li)

k

⌋

= ĉ(Li) − σ + c(ǫ) − σ

(⌊

|S ∩ ǫ| + T (Li)

k

⌋

− 1

)

≤ ĉ(Lj) + c(ǫ) − σ

⌊

|S ∩ ǫ| + T (Lj)

k

⌋

= ĉ(Lj + ǫ)

Hence label Li dominates label Lj.

Observe that if T (Li) + |S ∩ ǫ| < k for all ǫ ∈ E(Lj), it is not possible to visit S enough
times to trigger a penalty, i.e., the temporary penalty to the cost of Li can be disregarded.

In case of several SR inequalities, the new dominance criterion is as follows:

Proposition 6. Let Q = {q : σq < 0∧Tq(Li) > Tq(Lj)}. Then label Li dominates label Lj if:

v(Li) = v(Lj) (38)

ĉ(Li) −
∑

q∈Q

σq ≤ ĉ(Lj) (39)

r(Li) ≤ r(Lj) ∀r ∈ R (40)

Proof. The validity of (39) follows directly from Propositions 4 and 5. The validity of (38)
and (40) follows from Proposition 3.
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5 Computational Results

The BCP algorithm has been implemented using the BCP framework and the open source
linear programming solver CLP, both parts of the framework COIN [7]. All tests are run on
an Intel R© Pentium R© 4 3.0 GHz PC with 4 GB of memory.

The benchmarks of Solomon [34] follow a naming convention of DTm.n. The distribution
D can be R, C and RC, where the C instances have a clustered distribution of customers,
the R instances have a random distribution of customers, and the RC instances are a mix of
clustered and randomly distributed customers. The time window T is either 1 or 2, where
instances of type 1 have tighter time windows than instances of type 2. The instance number
is given by m and the number of customers is given by n.

The outline of the BCP algorithm presented in this paper is as follows:

Step 1. Choose an unprocessed branch node. If the lower bound is above the upper bound,
then fathom branch node.

Step 2. Solve the LP master problem.

Step 3. Solve the pricing problem heuristically. If columns with negative reduced cost
have been found, then add them to the master problem and go back to Step 2.

Step 4. Solve the pricing problem to optimality. Update the lower bound. If the lower
bound is above the upper bound, then fathom the branch node. If some new columns have
been found, then add them to the master problem and go to Step 2.

Step 5. Separate SR inequalities. If any violated cuts are found, then add them to the
master problem and go to Step 2.

Step 6. If the LP solution is fractional then branch and add the children to the set of
unprocessed branch nodes. Mark the current node as processed and go to Step 1.

We allow a maximum of 400 variables and 50 cuts to be generated in each of steps 3, 4,
and 5 respectively. The pricing-problem heuristic is based on the label-setting algorithm but
a simpler heuristic dominance criterion is used. If a label Li dominates Lj on cost, demand

and time it is regarded as dominated and Lj is discarded. That is, no concern is taken to
the node resources. The separation of SR inequalities is done with a complete enumeration
of all inequalities with |S| = 3 and k = 2. Let B be the set of basic variables in the current
LP solution and C be the set of customers, then the separation can be done in O(|C|3|B|).
Preliminary tests showed that SR inequalities with different values of n and k seldom appeared
in the VRPTW instances, hence no separation of these inequalities was done.

The branch tree is explored with a best-bound search strategy, i.e., the node with the
lowest lower bound is chosen first, breaking ties based on the LP result of the strong branching.
We have adapted the branching rule used by Fukasawa et al. [17]: For a subset of customers
S ⊂ C the number of vehicles to visit that set is either two or greater than or equal to four,
i.e.,

∑

k∈K

∑

(i,j)∈δ+(S)

(xijk + xjik) = 2

and
∑

k∈K

∑

(i,j)∈δ+(S)

(xijk + xjik) ≥ 4

We are using the cut library of Lysgaard [25] to separate candidate sets for branching, which
is an implementation of the heuristic methods described in Lysgaard et al. [26].
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Author(s) CPU SpecINT SpecCFP Normalized

Irnich and Villeneuve [20] P3 600 MHz∗ 295 204 0.23
Chabrier [5] P4 1.5 GHz 526 606 0.52
Jepsen et al. [this paper] P4 3.0 GHz 1099 1077 1.00

Table 1: Comparison of computer speed. Based on CPU2000 benchmarks from SPEC [35]. (∗) benchmarks
are given for P3 650 MHz since no benchmarks were available for P3 600. The normalized value is an average
of SpecINT and SpecCFP.

5.1 Running Times

To give a fair comparison between running times of our algorithm and the two most recent
algorithms presented by Irnich and Villeneuve [20] and Chabrier [5], the CPU speed is taken
into account. This is done according to the CPU2000 benchmarks reported by The Standard
Performance Evaluation Corporation SPEC [35]. Table 1 gives the integer and floating point
benchmark scores and a normalized value, e.g. our computations were carried out on a
computer approximately twice as fast as that of Chabrier.

A comparison of running times is shown in Table 2. To save space we only report results
on what we consider hard instances, i.e., the Solomon instances that were closed by either
Irnich and Villeneuve [20] or Chabrier [5] and by us.

Our algorithm outperforms those of Irnich and Villeneuve and Chabrier for 17 out of 22
instances. Seven of these instances were solved without any SR inequalities. In these cases,
the faster running times were probably due to the bi-directional label-setting algorithm.

With the introduction of SR inequalities our algorithm becomes competitive with the
algorithm based on solving k-cyc-SPPRC (e.g. instances R104.100, RC104.100, RC107.100,
RC108.100, and R211.50) and clearly outperforms the ESPPRC based algorithm on the harder
instances (e.g., instances R210.50, RC202.100, RC205.100, and RC208.25). In some cases
when solving the C1 and C2 instances the BCP algorithm tails off leading to slow solution
times or no solution at all. However, this must be seen in the light of a simple implementation
and no use of other cutting planes than the SR inequalities.

5.2 Comparing Lower Bounds in the Root Node

Table 3 reports the lower bounds obtained in the root node of the master problem with and
without SR inequalities and with best bounds obtained by Irnich and Villeneuve [20] using
k-cyc-SPPRC. Again we only report results on what we consider the hard instances from
Table 2 plus the instances closed by us.

As seen, the lower bounds obtained with SR inequalities are improved quite significantly
for most of the instances. Moreover, in most cases the problems are solved without branching.
Out of the 32 instances considered, the gap was closed in the root node in 8 instances due
to the ESPPRC and in an additional 16 instances due to the SR inequalities. However, one
needs to take into account that the running time of solving the root node is increased due to
the increased difficulty of the pricing problems.
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Irnich and Villeneuve [20] Chabrier [5] Jepsen et al.
[this paper]

Instance Time (s) Time (s) Time (s) Speedup

R104.100 268106.0 - 32343.9 1.9 / -

RC104.100 986809.0 - 65806.8 3.4 / -
RC107.100 42770.7 - 153.8 64.0 / -
RC108.100 71263.0 - 3365.0 4.9 / -

R203.50 217.1 3320.9 50.8 1.0 / 34.0
R204.25 123.1 171.6 7.5 3.8 / 11.9
R205.50 585.7 531.0 15.5 8.6 / 17.8
R206.50 22455.3 4656.1 190.9 27.1 / 12.7
R208.25 321.9 741.5 ∗

2.9 25.5 / 133.0
R209.50 142.4 195.4 16.6 2.0 / 6.1
R210.50 11551.4 65638.6 ∗

332.7 8.0 / 102.6
R211.50 21323.0 - 10543.8 0.5 / -

RC202.50 241.6 13.0
∗10.7 5.2 / 0.6

RC202.100 124018.0 19636.5 312.6 91.2 / 32.7
RC203.25 1876.0 5.1 ∗

0.7 616.4 / 3.8
RC203.50 54229.2 4481.5 ∗

190.9 65.3 / 12.2
RC204.25 - 13.0 ∗

2.0 - / 3.4
RC205.50 52.6 10.6

∗5.9 2.1 / 0.9
RC205.100 13295.9 15151.7 221.2 13.8 / 35.6
RC206.50 469.1 9.4

∗8.2 13.2 / 0.6
RC207.50 - 71.1 ∗

21.5 - / 1.7
RC208.25 - 33785.3 78.4 - / 224.1

Table 2: Comparison of running time. Speedup is calculated based on the normalized values in Table 1 and
are versus Irnich and Villeneuve and Chabrier respectively. Results with (∗) are based on an algorithm without
the SR inequalities. Results in boldface indicate the fastest algorithm after normalization. (-) indicates that
no running times were provided by the author(s) or that the instance was not solved.
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Irnich and Villeneuve [20] Jepsen et al. [this paper]

Instance UB k LB LB(1) LB(2)

R104.100 971.5 3 955.8 956.9 971.3
R108.100 932.1 4 913.9 913.6 932.1

R112.100 948.6 3 925.9 926.8 946.7

RC104.100 1132.3 3 1114.4 1101.9 1129.9
RC106.100 1372.7 4 1343.1 1318.8 1367.3
RC107.100 1207.8 4 1195.4 1183.4 1207.8

RC108.100 1114.2 3 1100.5 1073.5 1114.2

R202.100 1029.6 0 933.5 1022.3 1027.3
R203.50 605.3 4 598.6 598.6 605.3

R203.100 870.8 2 847.1 867.0 870.8

R204.25 355.0 4 349.1 350.5 355.0

R205.50 690.1 4 682.8 682.9 690.1

R206.50 632.4 4 621.3 626.4 632.4

R207.50 575.5 4 557.4 564.1 575.5

R208.25 328.2 4 327.1 328.2 328.2

R209.50 600.6 4 599.9 599.9 600.6

R209.100 854.8 3 834.4 841.5 854.4
R210.50 645.6 4 633.1 636.1 645.3
R211.50 535.5 4 526.0 528.7 535.5

RC202.50 613.6 4 604.5 613.6 613.6

RC202.100 1092.3 3 1055.0 1088.1 1092.3

RC203.25 326.9 4 297.7 326.9 326.9

RC203.50 555.3 4 530.0 555.3 555.3

RC203.100 923.7 0 693.7 922.6 923.7

RC204.25 299.7 4 266.3 299.7 299.7

RC205.50 630.2 4 630.2 630.2 630.2

RC205.100 1154.0 3 1130.5 1147.7 1154.0

RC206.50 610.0 4 597.1 610.0 610.0

RC206.100 1051.1 3 1017.0 1038.6 1051.1

RC207.50 558.6 4 504.9 558.6 558.6

RC208.25 269.1 4 238.3 269.1 269.1

RC208.50 476.7 3 422.3 472.3 476.7

Table 3: Comparison of root lower bounds. LB by Irnich and Villeneuve is the best lower bound obtained with
k-cyc-SPPRC and valid inequalities, LB(1) is with ESPPRC and LB(2) is with ESPPRC and SR inequalities.
Lower bounds in boldface indicate lower bounds equal to the upper bound. Instances in boldface are the
Solomon instances closed by us.
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25 customers 50 customers 100 customers

Class No. Prev. Jepsen et al. Prev. Jepsen et al. Prev Jepsen et al.

[this paper] [this paper] [this paper]

R1 12 12 12 12 12 10 12
C1 9 9 9 9 9 9 9
RC1 8 8 8 8 8 8 8

R2 11 11 11 9 9 1 4
C2 8 8 8 8 7 8 7
RC2 8 8 8 8 7 3 5

Summary 56 56 56 55 52 39 45

Table 4: Summary of solved Solomon instances. No. is the number of instances in that class, and for 25, 50
and 100 customers the two columns refers to the number of instances previously solved to optimality and the
number of instances solved to optimality by us.

Instance UB LB Vehicles Tree LP Timeroot(s) Timevar(s) TimeLP(s) Time (s)

R108.100 932.1 932.1 10 1 132 5911.71 5796.04 77.36 5911.74
R112.100 948.6 946.7 10 9 351 55573.68 199907.03 1598.63 202803.94
R202.100 1029.6 1027.3 8 13 514 974.51 730.04 4810.47 8282.38
R203.100 870.8 870.8 6 1 447 54187.15 48474.45 3973.42 54187.40
R207.50 575.5 575.5 3 1 107 34406.92 34282.47 118.69 34406.96
R209.100 854.8 854.4 5 3 337 31547.45 74779.58 2978.42 78560.47
RC203.100 923.7 923.7 5 1 402 14917.18 13873.53 1025.65 14917.36
RC206.100 1051.1 1051.1 7 1 179 339.63 159.33 171.34 339.69

Table 5: Instances closed by Jepsen et al. [this paper]. UB is the optimal solution found by us, LB is lower
bound at the root node, Vehicles is the number of vehicles in the solution, Tree is the number of branch nodes,
LP is the number of LP iterations, Timeroot is the time solving the root node, Timevar is time spent solving
the pricing problem, TimeLP is the time spent solving LP problems, and Time is the total time.

5.3 Closed Solomon Instances

Table 4 gives an overview of how many instances were solved for each class of the Solomon
instances. We were able to close 8 previously unsolved instances. We did not succeed to solve
four previously solved instances (R204.50, C204.50, C204.100, and RC204.50).

Information on all solved Solomon instances can be found in Tables 6–8 in Appendix A.
Furthermore Table 5 provides detailed information of the instances closed in this paper. The
solutions can be found in Tables 9–16 in Appendix B.

6 Concluding Remarks

The introduction of the SR inequalities significantly improved the results of the BCP al-
gorithm. This made it possible to solve 8 previously unsolved instances from the Solomon
benchmarks.
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Except for four cases (R204.50, C204.50 and C204.100 solved with k-cyc-SPPRC by Irnich
and Villeneuve [20] and RC204.50 solved by Danna and Le Pape [9]) our BCP algorithm is
competitive and in most cases superior to earlier algorithms within this field. With minor
modifications in the definition of the conflict graph the SR inequalities can be applied to the
k-cyc-SPPRC algorithm using the same cost-modified dominance criterion as described in this
paper. Preliminary results by Jepsen et al. [21] have shown that the lower bounds obtained
in a BCP algorithm for VRPTW using the k-cyc-SPPRC algorithm and SR inequalities are
almost as good as those obtained using the approach presented in this paper. This seems
to be a promising direction of research in order to solve large VRPTW instances, since the
ESPPRC algorithm is considerably slower than the k-cyc-SPPRC algorithm when the number
of customers increases.

Moreover, we note that the SR inequalities can be applied to any set packing problem.
That is, they can be used in BCP algorithms for other problems with a set packing problem
master problem. One only needs to consider how the dual variables of the SR inequalities
are handled in the pricing problems, however this is not necessarily trivial and must be
investigated for the individual pricing problems.

Adding SR inequalities to the master problem means that the pricing problem becomes a
shortest path problem with non-additive non-decreasing constraints or objective function. By
modifying the dominance criterion, we have shown that this is tractable in a label-setting al-
gorithm. A further discussion of shortest path problems with various non-additive constraints
can be found in Pisinger and Reinhardt [30]. The development of algorithms which efficiently
handle non-additive constraints is important to increase the number of valid inequalities which
can be handled.

A Results on Solomon Instances

This appendix contains detailed information about solved Solomon instances. The first col-
umn of the tables is the instance name, then three columns for the branch-and-cut-and-price
algorithm with ESPPRC and with ESPPRC and SR-inequalities follow. The columns are the
lower bound in the root node, the number of branch tree nodes and the total running time.
A (-) means that the instance was not solved. The last two columns are the optimal upper
bound and a reference to the authors who were the first to solve that instance, disregarding
Desrochers et al. [12] who solved many of the instances with a different calculation of the
travel times making it hard to compare with later solutions. The author legend is:

C: Chabrier [5]
CR: Cook and Rich [8]
DLP: Danna and Le Pape [9]
IV: Irnich and Villeneuve [20]
JPSP: Jepsen et al. [this paper]
KDMSS: Kohl et al. [23]
KLM: Kallehauge et al. [22]
L: Larsen [24]
S: Salani [33]
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with ESPPRC with ESPPRC and SR

Instance LB Tree Time (s) LB Tree Time (s) UB Ref.

R101 617.1 1 0.02 617.1 1 0.02 617.1 KDMSS

R102 546.4 3 0.13 547.1 1 0.09 547.1 KDMSS

R103 454.6 1 0.11 454.6 1 0.11 454.6 KDMSS

R104 416.9 1 0.12 416.9 1 0.12 416.9 KDMSS

R105 530.5 1 0.02 530.5 1 0.02 530.5 KDMSS

R106 457.3 5 0.29 465.4 1 0.10 465.4 KDMSS

R107 424.3 1 0.12 424.3 1 0.12 424.3 KDMSS

R108 396.9 3 0.31 397.3 1 0.24 397.3 KDMSS

R109 441.3 1 0.06 441.3 1 0.06 441.3 KDMSS

R110 438.4 17 1.16 444.1 3 0.29 444.1 KDMSS

R111 427.3 3 0.23 428.8 1 0.13 428.8 KDMSS

R112 387.1 13 1.19 393.0 1 0.52 393.0 KDMSS

C101 191.3 1 0.13 191.3 1 0.13 191.3 KDMSS

C102 190.3 1 0.53 190.3 1 0.53 190.3 KDMSS

C103 190.3 1 0.80 190.3 1 0.80 190.3 KDMSS

C104 186.9 1 3.29 186.9 1 3.29 186.9 KDMSS

C105 191.3 1 0.17 191.3 1 0.17 191.3 KDMSS

C106 191.3 1 0.14 191.3 1 0.14 191.3 KDMSS

C107 191.3 1 0.20 191.3 1 0.20 191.3 KDMSS

C108 191.3 1 0.37 191.3 1 0.37 191.3 KDMSS

C109 191.3 1 0.62 191.3 1 0.62 191.3 KDMSS

RC101 406.7 5 0.20 461.1 1 0.09 461.1 KDMSS

RC102 351.8 1 0.05 351.8 1 0.05 351.8 KDMSS

RC103 332.8 1 0.19 332.8 1 0.19 332.8 KDMSS

RC104 306.6 1 0.52 306.6 1 0.52 306.6 KDMSS

RC105 411.3 1 0.06 411.3 1 0.06 411.3 KDMSS

RC106 345.5 1 0.10 345.5 1 0.10 345.5 KDMSS

RC107 298.3 1 0.29 298.3 1 0.29 298.3 KDMSS

RC108 294.5 1 0.67 294.5 1 0.67 294.5 KDMSS

R201 460.1 3 0.44 463.3 1 0.27 463.3 CR+KLM

R202 410.5 1 0.61 410.5 1 0.61 410.5 CR+KLM

R203 391.4 1 0.80 391.4 1 0.80 391.4 CR+KLM

R204 350.5 19 18.40 355.0 1 7.51 355.0 IV+C

R205 390.6 3 1.62 393.0 1 1.06 393.0 CR+KLM

R206 373.6 3 1.67 374.4 1 0.93 374.4 CR+KLM

R207 360.1 5 4.03 361.6 1 1.39 361.6 KLM

R208 328.2 1 2.87 328.2 1 2.87 328.2 IV+C

R209 364.1 9 4.99 370.7 1 2.26 370.7 KLM

R210 404.2 3 1.52 404.6 1 1.04 404.6 CR+KLM

R211 341.4 29 38.17 350.9 1 22.62 350.9 KLM

C201 214.7 1 0.84 214.7 1 0.84 214.7 CR+L

C202 214.7 1 3.00 214.7 1 3.00 214.7 CR+L

C203 214.7 1 3.02 214.7 1 3.02 214.7 CR+L

C204 213.1 1 7.00 213.1 1 7.00 213.1 CR+KLM

C205 214.7 1 1.10 214.7 1 1.10 214.7 CR+L

C206 214.7 1 1.75 214.7 1 1.75 214.7 CR+L

C207 214.5 1 2.70 214.5 1 2.70 214.5 CR+L

C208 214.5 1 1.85 214.5 1 1.85 214.5 CR+L

RC201 360.2 1 0.25 360.2 1 0.25 360.2 CR+L

RC202 338.0 1 0.58 338.0 1 0.58 338.0 CR+KLM

RC203 326.9 1 0.72 326.9 1 0.72 326.9 IV+C

RC204 299.7 1 1.95 299.7 1 1.95 299.7 C

RC205 338.0 1 0.62 338.0 1 0.62 338.0 L+KLM

RC206 324.0 1 0.87 324.0 1 0.87 324.0 KLM

RC207 298.3 1 0.88 298.3 1 0.88 298.3 KLM

RC208 269.1 1 78.42 269.1 1 78.42 269.1 C

Table 6: Instances with 25 customers.
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with ESPPRC with ESPPRC and SR

Instance LB Tree Time (s) LB Tree Time (s) UB Ref.

R101 1043.4 3 0.14 1044.0 1 0.09 1044.0 KDMSS

R102 909.0 1 0.27 909.0 1 0.27 909.0 KDMSS

R103 769.3 13 4.98 772.9 1 2.02 772.9 KDMSS

R104 619.1 21 33.29 625.4 1 6.73 625.4 KDMSS

R105 892.2 29 2.78 893.7 5 1.15 899.3 KDMSS

R106 791.4 5 1.41 793.0 1 0.83 793.0 KDMSS

R107 707.3 11 5.56 711.1 1 4.76 711.1 KDMSS

R108 594.7 789 1723.29 607.4 23 1601.68 617.7 CR+KLM

R109 775.4 77 20.11 783.3 7 11.54 786.8 KDMSS

R110 695.1 9 3.38 697.0 1 1.46 697.0 KDMSS

R111 696.3 41 19.21 707.2 1 3.67 707.2 CR+KLM

R112 614.9 165 169.26 630.2 1 35.67 630.2 CR+KLM

C101 362.4 1 0.47 362.4 1 0.47 362.4 KDMSS

C102 361.4 1 1.59 361.4 1 1.59 361.4 KDMSS

C103 361.4 1 6.06 361.4 1 6.06 361.4 KDMSS

C104 358.0 1 1564.88 358.0 1 1564.88 358.0 KDMSS

C105 362.4 1 0.49 362.4 1 0.49 362.4 KDMSS

C106 362.4 1 0.69 362.4 1 0.69 362.4 KDMSS

C107 362.4 1 0.97 362.4 1 0.97 362.4 KDMSS

C108 362.4 1 1.55 362.4 1 1.55 362.4 KDMSS

C109 362.4 1 3.62 362.4 1 3.62 362.4 KDMSS

RC101 850.1 39 5.60 944.0 1 2.12 944.0 KDMSS

RC102 721.9 127 60.41 822.5 1 8.68 822.5 KDMSS

RC103 645.3 9 8.56 710.9 1 40.05 710.9 KDMSS

RC104 545.8 1 5.71 545.8 1 5.71 545.8 KDMSS

RC105 761.6 21 7.22 855.3 1 4.31 855.3 KDMSS

RC106 664.5 11 3.35 723.2 1 3.88 723.2 KDMSS

RC107 603.6 7 4.60 642.7 1 4.49 642.7 KDMSS

RC108 541.2 5 15.88 594.8 5 260.95 598.1 KDMSS

R201 791.9 1 4.97 791.9 1 4.97 791.9 CR+KLM

R202 698.5 1 9.88 698.5 1 9.88 698.5 CR+KLM

R203 598.6 25 355.99 605.3 1 50.80 605.3 IV+C

R204 - - 506.4 IV

R205 682.9 35 118.12 690.1 1 15.45 690.1 IV+C

R206 626.4 47 288.00 632.4 1 190.86 632.4 IV+C

R207 564.1 141 15400.44 575.5 1 34406.96 575.5 JPSP

R208 - - - -

R209 599.9 3 24.45 600.6 1 16.63 600.6 IV+C

R210 636.1 49 332.70 645.3 3 18545.61 645.6 IV+C

R211 528.7 31 44644.89 535.5 1 10543.81 535.5 IV+DLP

C201 360.2 1 42.07 360.2 1 42.07 360.2 CR+L

C202 360.2 1 67.05 360.2 1 67.05 360.2 CR+KLM

C203 359.8 1 214.88 359.8 1 214.88 359.8 CR+KLM

C204 - - 350.1 KLM

C205 359.8 1 64.18 359.8 1 64.18 359.8 CR+KLM

C206 359.8 1 38.91 359.8 1 38.91 359.8 CR+KLM

C207 359.6 1 72.81 359.6 1 72.81 359.6 CR+KLM

C208 350.5 1 55.79 350.5 1 55.79 350.5 CR+KLM

RC201 684.8 1 3.00 684.8 1 3.00 684.8 L+KLM

RC202 613.6 1 10.69 613.6 1 10.69 613.6 IV+C

RC203 555.3 1 190.88 555.3 1 190.88 555.3 IV+C

RC204 - - 442.2 DLP

RC205 630.2 1 5.88 630.2 1 5.88 630.2 IV+C

RC206 610.0 1 8.17 610.0 1 8.17 610.0 IV+C

RC207 558.6 1 21.53 558.6 1 21.53 558.6 C

RC208 - 476.7 1 1639.40 476.7 S

Table 7: Instances with 50 customers.
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with ESPPRC with ESPPRC and SR

Instance LB Tree Time (s) LB Tree Time (s) UB Ref.

R101 1631.2 57 20.08 1634.0 3 1.87 1637.7 KDMSS

R102 1466.6 1 4.39 1466.6 1 4.39 1466.6 KDMSS

R103 1206.8 19 55.78 1208.7 1 23.85 1208.7 CR+L

R104 - 971.3 3 32343.92 971.5 IV

R105 1346.2 113 126.96 1355.2 5 43.12 1355.3 KDMSS

R106 1227.0 147 511.07 1234.6 1 75.42 1234.6 CR+KLM

R107 - 1064.3 3 1310.30 1064.6 CR+KLM

R108 - 932.1 1 5911.74 932.1 JPSP

R109 - 1144.1 19 1432.41 1146.9 CR+KLM

R110 - 1068.0 3 1068.31 1068.0 CR+KLM

R111 - 1045.9 39 83931.48 1048.7 CR+KLM

R112 - 946.7 9 202803.94 948.6 JPSP

C101 827.3 1 3.02 827.3 1 3.02 827.3 KDMSS

C102 827.3 1 12.92 827.3 1 12.92 827.3 KDMSS

C103 826.3 1 33.89 826.3 1 33.89 826.3 KDMSS

C104 822.9 1 4113.09 822.9 1 4113.09 822.9 KDMSS

C105 827.3 1 5.34 827.3 1 5.34 827.3 KDMSS

C106 827.3 1 7.15 827.3 1 7.15 827.3 KDMSS

C107 827.3 1 6.55 827.3 1 6.55 827.3 KDMSS

C108 827.3 1 14.46 827.3 1 14.46 827.3 KDMSS

C109 827.3 1 20.53 827.3 1 20.53 827.3 KDMSS

RC101 1584.1 59 56.62 1619.8 1 12.39 1619.8 KDMSS

RC102 - 1457.4 1 76.69 1457.4 CR+KLM

RC103 - 1257.7 3 2705.78 1258.0 CR+KLM

RC104 - 1129.9 7 65806.79 1132.3 IV

RC105 1472.0 191 309.83 1513.7 1 26.73 1513.7 KDMSS

RC106 - 1367.3 37 15891.55 1372.7 S

RC107 - 1207.8 1 153.80 1207.8 IV

RC108 - 1114.2 1 3365.00 1114.2 IV

R201 - 1143.2 1 139.03 1143.2 KLM

R202 - 1027.3 13 8282.38 1029.6 JPSP

R203 - 870.8 1 54187.40 870.8 JPSP

R204 - - - -

R205 - - - -

R206 - - - -

R207 - - - -

R208 - - - -

R209 - 854.8 3 78560.47 854.8 JPSP

R210 - - - -

R211 - - - -

C201 589.1 1 203.34 589.1 1 203.34 589.1 CR+KLM

C202 589.1 1 3483.15 589.1 1 3483.15 589.1 CR+KLM

C203 588.7 1 13070.71 588.7 1 13070.71 588.7 KLM

C204 - - 588.1 IV

C205 586.4 1 416.56 586.4 1 416.56 586.4 CR+KLM

C206 586.0 1 594.92 586.0 1 594.92 586.0 CR+KLM

C207 585.8 1 1240.97 585.8 1 1240.97 585.8 CR+KLM

C208 585.8 1 555.27 585.8 1 555.27 585.8 KLM

RC201 - 1261.7 3 229.27 1261.8 KLM

RC202 - 1092.3 1 312.57 1092.3 IV+C

RC203 922.6 11 34063.95 923.7 1 14917.36 923.7 JPSP

RC204 - - - -

RC205 - 1154.0 1 221.24 1154.0 IV+C

RC206 - 1051.1 1 339.69 1051.1 JPSP

RC207 - - - -

RC208 - - - -

Table 8: Instances with 100 customers.
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B Solutions of Closed Solomon Instances

Cost Route

8.8 53
119.2 70, 30, 20, 66, 65, 71, 35, 34, 78, 77, 28
105.4 92, 98, 91, 44, 14, 38, 86, 16, 61, 85,100, 37
84.1 2, 57, 15, 43, 42, 87, 97, 95, 94, 13, 58

106.5 73, 22, 41, 23, 67, 39, 56, 75, 74, 72, 21, 40
114.6 52, 88, 62, 19, 11, 64, 63, 90, 32, 10, 31
78.4 6, 96, 59, 99, 93, 5, 84, 17, 45, 83, 60, 89

107.3 26, 12, 80, 68, 29, 24, 55, 4, 25, 54
93.2 27, 69, 76, 3, 79, 9, 51, 81, 33, 50, 1

114.6 18, 7, 82, 8, 46, 36, 49, 47, 48

932.1 10

Table 9: Solution of R108.100. The left column is
the cost of the routes and the total cost. The right
column is a comma separated list indicating the cus-
tomers visited on the routes in the order of visit and
the total number of routes.

Cost Route

78.1 6, 94, 95, 87, 42, 43, 15, 57, 58
115.8 2, 41, 22, 75, 56, 23, 67, 39, 25, 55, 54
117.4 28, 76, 79, 78, 34, 35, 71, 65, 66, 20, 1
128.2 31, 62, 19, 11, 63, 64, 49, 36, 47, 48
62.8 53, 40, 21, 73, 74, 72, 4, 26
98.0 52, 88, 7, 82, 8, 46, 45, 17, 84, 5, 89
76.4 12, 80, 68, 24, 29, 3, 77, 50

100.5 61, 16, 86, 38, 14, 44, 91,100, 37, 59, 96
67.6 18, 83, 60, 99, 93, 85, 98, 92, 97, 13

103.8 27, 69, 33, 81, 9, 51, 30, 32, 90, 10, 70

948.6 10

Table 10: Solution of R112.100.

Cost Route

8.8 53
93.6 52, 62, 63, 90, 10, 32, 70

177.2 83, 45, 82, 48, 47, 36, 19, 11, 64, 49, 46, 17, 5, 60, 89
223.8 50, 33, 65, 71, 29, 76, 3, 79, 78, 81, 9, 51, 20, 66, 35, 34, 68, 77
140.2 27, 69, 1, 30, 31, 88, 7, 18, 8, 84, 86, 91,100, 37, 98, 93, 59, 94
67.1 40, 73, 41, 22, 74, 2, 58

148.9 28, 26, 21, 72, 75, 39, 67, 23, 56, 4, 54, 55, 25, 24, 80, 12
170.0 95, 92, 42, 15, 14, 38, 44, 16, 61, 85, 99, 96, 6, 87, 57, 43, 97, 13

1029.6 8

Table 11: Solution of R202.100.

Cost Route

24.2 53, 40, 58
142.1 27, 69, 1, 76, 3, 79, 78, 81, 9, 66, 71, 35, 34, 29, 68, 77, 28
187.3 89, 18, 45, 46, 36, 47, 48, 19, 11, 62, 88, 7, 82, 8, 83, 60, 5, 84, 17, 61, 91,100, 37, 98, 93, 59, 94
183.3 95, 92, 97, 42, 15, 43, 14, 44, 38, 86, 16, 85, 99, 96, 6, 87, 57, 41, 22, 74, 73, 2, 13
190.3 50, 33, 51, 71, 65, 20, 30, 32, 90, 63, 64, 49, 10, 70, 31, 52
143.6 26, 21, 72, 75, 39, 67, 23, 56, 4, 55, 25, 54, 24, 80, 12

870.8 6

Table 12: Solution of R203.100.
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Cost Route

202.5 27, 31, 7, 48, 47, 36, 46, 45, 8, 18, 6, 37, 44, 14, 38, 16, 17, 5, 13
130.5 2, 42, 43, 15, 23, 39, 22, 41, 21, 40
242.5 28, 12, 3, 33, 50, 1, 30, 11, 49, 19, 10, 32, 20, 9, 35, 34, 29, 24, 25, 4, 26

575.5 3

Table 13: Solution of R207.50.

Cost Route

146.8 52, 7, 82, 83, 18, 6, 94, 13, 87, 57, 15, 43, 42, 97, 92, 37,100, 91, 93, 96
198.7 95, 99, 59, 98, 85, 5, 84, 61, 16, 44, 14, 38, 86, 17, 45, 8, 46, 36, 49, 48, 60, 89
205.9 27, 69, 31, 88, 62, 47, 19, 11, 64, 63, 90, 30, 51, 71, 9, 81, 33, 79, 3, 77, 68, 80, 24, 54, 26
157.6 28, 12, 76, 29, 78, 34, 35, 65, 66, 20, 32, 10, 70, 1, 50
145.8 40, 2, 73, 21, 72, 75, 23, 67, 39, 25, 55, 4, 56, 74, 22, 41, 58, 53

854.8 5

Table 14: Solution of R209.100.

Cost Route

139.4 81, 54, 72, 37, 36, 39, 42, 44, 41, 38, 40, 35, 43, 61, 68
172.8 90, 65, 83, 64, 85, 63, 89, 76, 23, 21, 48, 18, 19, 49, 22, 20, 51, 84, 56, 66
241.4 69, 98, 88, 53, 82, 99, 52, 86, 87, 9, 10, 47, 17, 13, 74, 59, 97, 75, 58, 77, 25, 24, 57
211.0 1, 3, 5, 45, 60, 12, 11, 15, 16, 14, 78, 73, 79, 7, 6, 8, 46, 4, 2, 55,100, 70
159.1 91, 92, 95, 62, 33, 32, 30, 27, 26, 28, 29, 31, 34, 50, 67, 94, 93, 71, 96, 80

923.7 5

Table 15: Solution of RC203.100.

Cost Route

8.4 90
186.6 81, 94, 67, 84, 85, 51, 76, 89, 48, 25, 77, 58, 74
168.6 92, 71, 72, 42, 39, 38, 36, 40, 44, 43, 41, 37, 35, 54, 93, 96
180.9 65, 83, 64, 95, 62, 63, 33, 30, 31, 29, 27, 28, 26, 32, 34, 50, 56, 91, 80
189.6 61, 2, 45, 5, 8, 7, 79, 73, 78, 53, 88, 6, 46, 4, 3, 1,100, 70, 68
120.9 82, 99, 52, 86, 57, 23, 21, 18, 19, 49, 20, 22, 24, 66
196.1 69, 98, 12, 14, 47, 16, 15, 11, 59, 75, 97, 87, 9, 13, 10, 17, 60, 55

1051.1 7

Table 16: Solution of RC206.100.
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Chvátal-Gomory Rank-1 Cuts used
in a Dantzig-Wolfe Decomposition
of the Vehicle Routing Problem with
Time Windows
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Abstract

This chapter shows how Chvátal-Gomory (CG) rank-1 cuts can be used in a branch-
and-cut-and-price algorithm for the vehicle routing problem with time windows (VRPTW).
Using Dantzig-Wolfe decomposition we split the problem into a set partitioning problem
as master problem and an elementary shortest path problem with resource constraints as
pricing problem. To strengthen the formulation we derive general CG rank-1 cuts based
on the master problem formulation. Adding these cuts to the master problem means that
an additional resource is added to the pricing problem for each cut. This increases the
complexity of the label algorithm used to solve the pricing problem since normal dom-
inance tests become weak when many resources are present and hence most labels are
incomparable. To overcome this problem we present a number of improved dominance
tests exploiting the step-like structure of the objective function of the pricing problem.
Computational experiments are reported on the Solomon test instances showing that the
addition of CG rank-1 cuts improves the lower bounds significantly and makes it possible
to solve a majority of the instances in the root node of the branch-and-bound tree. This
indicates that CG rank-1 cuts may be essential for solving future large-scale VRPTW
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problems where we cannot expect that the branching process will close the gap between
lower and upper bounds in reasonable time.

Keywords: Vehicle routing problem with time windows, Dantzig-Wolfe decomposition,
Chvatal-Gomory rank-1 cuts.

1 Introduction

In the vehicle routing problem with time windows (VRPTW) we are given a set of customers
with an associated demand and a number of identical vehicles. The task is to find a set
of minimum-length routes starting and ending at a central depot such that each customer is
visited exactly once within a given time window, and the capacity of each vehicle is respected.

The standard Dantzig-Wolfe decomposition of the arc flow formulation of the VRPTW
is to split the problem into a master problem (a set partitioning problem with a convexity
constraint, stating that all customers should be visited with a limited number of vehicles) and
a pricing problem (an elementary shortest path problem with resource constraints (ESPPRC),
where capacity and time are the constrained resources). Delayed column generation may be
used to solve the LP-relaxed master problem, which can be used as lower bound in a branch-
and-bound algorithm to reach integrality. Applying cutting planes either in the master or the
pricing problem leads to a branch-and-cut-and-price algorithm (BCP).

BCP algorithms have been frequently used to solve the VRPTW, e.g., Kohl et al. [25], Cook
and Rich [6], Larsen [26], Kallehauge et al. [24], Irnich and Villeneuve [22], Chabrier [4], Danna
and Le Pape [7], Salani [31]. In all cases the valid inequalities have been based on the orig-
inal arc flow formulation of the VRPTW, i.e., the inequalities added are valid for both the
original arc formulation and the master problem. Fukasawa et al. [16] refer to this as a robust
approach. Recently Jepsen et al. [23] showed how the subset row (SR) inequalities, which are
valid inequalities for the set partitioning problem, successfully can be applied to VRPTW in
a column generation context. In their computational results they report solving 8 out of 18
previously unsolved instances from the set of benchmarks by Solomon [33]. In a following
paper Desaulniers et al. [9] added fast pricing heuristics and improved cutting policies for
the SR inequalities to obtain even better results by closing an additional 5 instances. The
latter approaches are denoted non-robust according to the classification by Fukasawa et al.
[16], since the complexity of the pricing problem is increased when SR inequalities are added
to the master problem.

Jepsen et al. [23] showed that the separation of SR inequalities is NP-hard and that the
inequalities can be recognized as a subset of the Chvátal-Gomory (CG) rank-1 cuts. A simple
enumeration algorithm was used to separate the SR inequalities for sets of rows of size three,
and even for such small sets the computational results were very good as mentioned above.
Not surprisingly the separation of CG rank-1 cuts is also known to beNP-hard, see Eisenbrand
[13]. Fischetti and Lodi [15] used the CG rank-1 cuts as cutting planes in an integer problem
and showed how the separation can be formulated as a mixed integer problem. They obtained
lower bounds when optimizing over the first Chvátal closure, i.e., adding violated CG rank-1
cuts, and were the first to report an optimal solution to one instance from MIPLIB 3.0 by
Bixby et al. [1]. These results motivate the incorporation of the CG rank-1 cuts in a BCP
algorithm.

The pricing problem of the Dantzig-Wolfe decomposition of VRPTW, i.e., the ESPPRC,
was shown to beNP-hard by Dror [11]. Commonly the ESPPRC has been solved with labeling

54
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algorithms, see Dumitrescu [12], Feillet et al. [14], Righini and Salani [29, 30], Boland et al.
[2]. Due to the difficulty of the ESPPRC most earlier approaches solved relaxations of the
ESPPRC, see Desrochers et al. [10], Irnich and Villeneuve [22]. For a general introduction to
resource constrained shortest path problems, see Desaulniers et al. [8], Irnich and Desaulniers
[21], Irnich [20]. Jepsen et al. [23] provides an introduction of the SR inequalities and how
their application in the master problem leads to an additional resource per inequality in the
pricing problem. Furthermore, it is shown how the dominance criteria of the label algorithm
can be improved.

In this chapter we extend the work by Jepsen et al. [23] to include general CG rank-1
cuts for the Set Partitioning master problem. Each cut results in a new resource constraint
in the ESPPRC pricing problem. As the resource extension functions are non-decreasing any
dynamic programming algorithm for the ESPPRC can be used to solve the resulting problem.
However, the addition of new resources means that more labels become incomparable when
using a traditional dominance test, and hence the number of labels in the dynamic program-
ming explodes. To overcome this problem we exploit the fact that in the pricing problem
it is sufficient to find a cost-minimal solution, and not all Pareto-optimal solutions. Due to
this fact we may temporarily replace each label with a number of equivalent labels such that
resources become comparable in the dominance test. This approach considerably decreases
the number of labels generated in the dynamic programming algorithm. As demonstrated in
the computational results we can in this way solve the ESPPRC pricing problem even when
several hundreds of CG rank-1 cuts have been added, and hence several hundreds of resources
are to be dealt with in the label algorithm.

The chapter is organized as follows: In Section 2 we give an overview of the Dantzig-Wolfe
decomposition of the VRPTW and describe how to calculate the reduced cost of columns when
delayed column generation is used. For completeness we review the CG rank-1 cuts and their
separation, as described by Fischetti and Lodi [15], in Section 3. Furthermore, we clarify
how to use these techniques in a VRPTW context. In Section 4 the improved dominance
criteria of the label algorithm are described. An algorithmic outline, implementation details,
and computational results using the Solomon benchmark instances are presented in Section
5. Section 6 provides some concluding remarks.

2 Decomposition

Let C be the set of customers, and let the set of nodes be V = C ∪{o, o′} where o denotes the
depot at the start of the routes and o′ denotes the depot at the end. Each customer i ∈ C
has a demand di while we set do = do′ = 0. Each node i ∈ V has an associated service si and
a time windows [ai, bi] in which it should be visited.

Let E = {(i, j) : i, j ∈ V, i 6= j} be the set of arcs between the nodes. The set of vehicles
K is sufficiently large, e.g., |K| = V , such that the convexity constraint is not binding, and
each vehicle has capacity D. If vehicle k ∈ K service node i ∈ V then the variable tik denotes
the arrival time of the vehicle. Let cij be the travel cost on arc (i, j) ∈ E and let xijk be the
variable indicating whether vehicle k ∈ K traverses arc (i, j) ∈ E. The overall travel time τij
on arc (i, j) ∈ E depends on the travel time of the arc and the service time si at customer i.
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The 3-index flow model (Toth and Vigo [34]) for the VRPTW becomes:

min
∑
k∈K

∑
(i,j)∈E

cijxijk (1)

s.t.
∑
k∈K

∑
(i,j)∈δ+(i)

xijk = 1 ∀i ∈ C (2)

∑
(i,j)∈δ+(o)

xijk =
∑

(i,j)∈δ−(o′)

xijk = 1 ∀k ∈ K (3)

∑
(j,i)∈δ−(i)

xjik −
∑

(i,j)∈δ+(i)

xijk = 0 ∀i ∈ C, ∀k ∈ K (4)

∑
(i,j)∈E

dixijk ≤ D k ∈ K (5)

ai ≤ tik ≤ bi ∀i ∈ V, ∀k ∈ K (6)
xijk(tik + τij) ≤ tjk ∀(i, j) ∈ E, ∀k ∈ K (7)
xijk ∈ {0, 1} ∀(i, j) ∈ E, ∀k ∈ K (8)

Constraints (2) ensure that every customer i ∈ C is visited, and (3) ensures that each route
starts and ends in the depot. Constraint set (4) ensure flow conservation for each vehicle
k. Note that a zero-cost arc xoo′k between the start and end depot must be present for all
vehicles to allow an empty tour in case not all vehicles are needed. The constraint set (5)
ensures that the capacity of each vehicle is not exceeded and constraint sets (6) and (7) ensure
that the time window constraints are satisfied. Note that (7) together with the assumption
that τij > 0 for all (i, j) ∈ E eliminates all sub-tours. The last constraint define the domain
of the arc flow variables.

The standard Dantzig-Wolfe decomposition of the VRPTW, see e.g. Desrochers et al.
[10], leads to the following master problem:

min
∑
p∈P

∑
(i,j)∈E

cijαijpλp (9)

s.t
∑
p∈P

∑
(i,j)∈δ+(i)

αijpλp = 1 ∀i ∈ C (10)

λp ∈ {0, 1} ∀p ∈ P (11)

where P is the set of all feasible routes, the binary constant αijp is one if and only if arc
(i, j) is used by route p ∈ P , and the binary variable λp indicates whether route p is used.
The master problem is a set partitioning problem and the LP relaxation can be solved using
delayed column generation, i.e., consider a restricted master problem containing a subset of
the columns P and generate additional columns as needed. For the remainder of this chapter
the master problem will refer to the the restricted problem. Let πi ∈ R for all i ∈ C be the
dual values of (10) and let π0 = 0. Then the reduced cost of a route p is:

cp =
∑

(i,j)∈E

cijαijp −
∑

(i,j)∈E

πjαijp =
∑

(i,j)∈E

(cij − πj)αijp (12)

The pricing problem is an ESPPRC where the cost of each arc is cij = cij − πj for all arcs
(i, j) ∈ E.
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Valid inequalities based on the VRPTW constraints (2)-(8), i.e.,∑
k∈K

∑
(i,j)∈E

βijxijk ≤ β0 (13)

are handled as follows (Note that βij can be dependent on a vehicle k but then different pricing
problems must be considered). Let µ be the dual values of (13), then an additional µβij for
all arcs (i, j) ∈ E has to be subtracted from the reduced cost of a route, i.e., by subtracting
the dual value from the arc cost in the the pricing problem, i.e., cij = cij − πj − µβij .

Consider adding a valid inequality for the set partitioning master problem (10)–(11) that
cannot be written as a linear combination of the arc flow variables, i.e.,∑

p∈P
βpλp ≤ β0 (14)

Let σ ≤ 0 be the dual values of (14), then an additional σβp has to be subtracted when
calculating the reduced cost of the column, i.e, the new reduced cost is ĉp = cp − σβp. To
handle the cost −σβp it is necessary to modify the pricing problem by adding constraints or
variables, thereby increasing its complexity.

3 Chvátal-Gomory Rank-1 Cuts

CG cuts are well known valid inequalities for integer programming problems, see Gomory
[17], Chvatal [5]. However, in a BCP context these cuts have been given little attention.
Except for the recent papers by Jepsen et al. [23], Desaulniers et al. [9] only an early attempt
by Nemhauser and Park [28] has been found where general mixed-integer cuts for the master
problem is applied. Nemhauser and Park [28] solved the pricing problem as a MIP by adding
additional variables and constraints to take the dual values of the applied cuts into account.
As noted in Jepsen et al. [23], the SR inequalities are a subset of the CG cuts, and since the
SR inequalities were successfully used for VRPTW an obvious extension is to include a larger
set of the CG cuts into the BCP framework. Hence, in the following the focus will be on the
CG rank-1 cuts and their separation starting with the general case as described by Fischetti
and Lodi [15]. Next we specify the form of CG rank-1 cuts for the master problem of the
VRPTW and formulate the separation problem based the presented theory. Last we briefly
discuss the interpretation of the SR inequalities with regards to the CG cuts.

Consider an IP problem:

min{cλ : Aλ ≤ b, λ ≥ 0, λ ∈ Zn}

where A is a m× n matrix, N = 1, . . . , n is the set of indices of variables, and M = 1, . . . ,m
is the set of indices of constraints. The two polyhedra

PLP = {λ ∈ Rn : Aλ ≤ b, λ ≥ 0}
PIP = conv{λ ∈ Zn : Aλ ≤ b, λ ≥ 0} = conv(PLP ∩ Zn)

describe the solution space of the linear relaxation PLP and the convex hull of the integer
solutions in PLP . It is assumed that all coefficients of A and b are integer. A CG cut is a
valid inequality for PIP given as:

buAcλ ≤ bubc
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where u ≥ 0 is called the CG multiplier vector. The inequality is said to have rank-1 with
respect to Aλ ≤ b and λ ≥ 0. Higher rank cuts are obtained by considering systems that also
contain lower rank CG cuts, e.g., a rank-2 cut is based on Aλ ≤ b and λ ≥ 0 and some rank-1
cuts. Note that given the above assumptions on the integrality of A and b, undominated CG
cuts only arise for rational CG multipliers ui ∈ [0, 1), for all i = 1, . . . ,m, see Schrijver [32].

The first Chvátal closure of PLP is defined as the polyhedron:

P1 = {λ ≤ 0 : Aλ ≤ b, buAcλ ≤ bubc, u ≥ 0 ∀u ∈ Rn}

Clearly PIP ⊆ P1 ⊆ PLP but even more interesting is it, that P1 ⊂ PLP iff PIP 6= PLP . The
better approximation of PIP is obtained, since it is possible to use a CG cut to cut off a
fractional vertex λ∗ ∈ PLP corresponding to the basis B by choosing multipliers u equal to
the ith row of B−1 where i is the row associated with any fractional part of λ∗, see Gomory
[17, 18].

The separation problem is stated by Fischetti and Lodi [15] as:

Definition 1. Given a point λ∗ ∈ PLP . The CG separation problem consists of finding a CG
cut that is violated by λ∗, i.e., find u ≥ 0 for u ∈ Rn such that buAcλ > bubc, or prove that
no such u exist.

Eisenbrand [13] showed that the separation problem is NP-hard and computational results
performed by Fischetti and Lodi [15] indicate that separation times can be cumbersome.

Given a fractional solution λ∗ ∈ PLP the maximally violated CG cut γλ ≤ γ0, where
γ = buAc and γ0 = bubc for some CG multipliers u ≥ 0 for u ∈ Rn can be found by solving
the following MIP:

max γλ∗ − γ0 (15)
γj ≤ uAj ∀j ∈ N (16)
γ0 > ub− 1 (17)
ui ≥ 0 ∀i ∈M (18)
γj ∈ Z ∀j ∈ N ∪ {0} (19)

Note that only basis variables with non-zero values can contribute to the violation of the
CG rank-1 cut. Hence, all zero valued variables can be left out of the formulation and their
coefficients can be calculated after the CG multipliers are identified. This reduces the size of
the MIP problem in both the number of variables and constraints.

Furthermore Fischetti and Lodi [15] suggest to reformulate the problem in order to obtain
a stronger formulation and numerical stability. Based on the fact that the CG multipliers of
undominated cuts are less than 1, bounding them from above provides a stronger formulation.
However, later observations showed that the MIP heuristics performed much better without
these bounds. To obtain numerical stability a slack variable fj ∈ [0, 1− δ] (e.g., δ = 0.01) is
introduced for each coefficient αj .

Equivalent solutions to the separation problem can result in CG rank-1 cuts of different
strength with respect to PIP . A strong cut tends to be sparse, i.e., the number of non-zero
entries is small. In order to obtain stronger and sparser cuts the objective function is modified
by adding a small penalty wi (e.g., wi = 0.0001) for the selection of a multiplier ui.
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Let N(λ∗) is the set of non-zero basis variables. This leads to the following formulation
of the separation problem:

max
∑

j∈N(λ∗)

γjλ
∗
j − γ0 −

∑
i∈M

wiui (20)

fj = uAj − γj ∀j ∈ N(λ∗) (21)
f0 = ub− γ0 (22)
0 ≤ fj ≤ 1− δ ∀j ∈ N(λ∗) ∪ {0} (23)
ui ≥ 0 ∀i ∈M (24)
γj ∈ Z ∀j ∈ N(λ∗) ∪ {0} (25)

The model (20)-(25) can be modified to handle systems as Aλ ≥ b and Aλ = b by modifying
the bounds of the CG multipliers, i.e., removing (24) and letting u be a free variables is a
way to handle equations.

For VRPTW the the CG rank-1 cuts are based on the master problem constraints (10).
The set partitioning constraints give rise to cuts with CG multipliers u ∈ R|C|, since they
are equalities. However, since the CG cuts will be used in a column generation context two
equally sparse cuts at separation time might not be equally sparse after column generation.
This is especially the case for CG rank-1 cuts with negative multipliers in a minimization
problem, where cuts tend to become very dense when columns price into the master problem.
Hence, we restrict ourselves to consider CG rank-1 cuts with non-negative multipliers for the
VRPTW.

The CG rank-1 cuts for the VRPTW with respect to the master problem (9)-(11) and
with non-negative CG multipliers are given as:

∑
p∈P

∑
i∈C

ui
∑

(i,j)∈δ+(i)

αijp

λp ≤ ⌊∑
i∈C

ui

⌋
(26)

Given a fractional solution λ∗ for the master problem (9)-(11) the most violated CG cut
of rank-1 can be found by solving the following MIP:

max
∑

p∈P (λ∗)

γpλ
∗
p − γ0 −

∑
i∈C

wiui (27)

fp =
∑

(i,j)∈δ(i)+
αijpui − γp ∀p ∈ P (λ∗) (28)

f0 =
∑
i∈C

ui − γ0 (29)

0 ≤ fp ≤ 1− δ ∀p ∈ P (λ∗) ∪ {0} (30)
0 ≤ ui ∀i ∈ C (31)
γj ∈ Z+ ∀p ∈ P (λ∗) ∪ {0} (32)

Again it is possible to reduce the number of variables by only considering the non-zero basis
variables.
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From Jepsen et al. [23] we recall the SR inequalities for the VRPTW based on the master
problem (9)-(11): ∑

p∈P

1
k

∑
i∈S

∑
(i,j)∈δ+(i)

αijp

λp ≤ ⌊1
k
|S|
⌋

(33)

where S ⊆ C and 0 < k ≤ |S|. This is equivalent to the set of CG rank-1 cuts where |S| of
the CG multipliers are equal to 1

k and the rest are equal to 0, i.e., a very sparse CG multiplier
vector. A SR cut can also be interpreted as a mod-k cut proposed by Caprara et al. [3]. The
mod-k cuts are CG rank-1 cuts with multipliers in the set {0, 1

k , . . . ,
k−1
k }, i.e., a SR cut is a

mod-k cut with |S| multipliers equal to 1
k and the rest are equal to 0. Extending the SR cut

to allow a row (customer) to be present multiple times in S, i.e., let S be a multiset, leads to
an SR cut with maximal |S| multipliers in the set {0, 1

k , . . . ,
k−1
k }. That is, the CG multiplier

of a row is raised by 1
k for each time it is present in S. This is indeed also a mod-k cut.

4 Label Algorithm

Finding a route with negative reduced cost in the pricing problem corresponds to finding
a negative reduced cost path starting and ending at the depot, i.e., an ESPPRC. In the
following sections we formally describe the ESPPRC and show how the pricing problem can
be solved when new resources are introduced as a consequence of adding CG cuts.

4.1 The Pricing Problem

Assuming that no cuts have been added, the ESPPRC can be formally defined as: Given a
weighted directed graph G(V,E) with nodes V and arcs E, and a set of resources R. For
each arc (i, j) ∈ E and resource r ∈ R three parameters are given: A lower limit ar(i, j) on
the accumulation of resource r when traversing arc (i, j) ∈ E; an upper limit br(i, j) on the
accumulation of resource r when traversing arc (i, j) ∈ E; and finally an amount cr(i, j) of
resource r consumed by traversing arc (i, j) ∈ E. The objective is to find a minimum cost
path p from a source node o ∈ V to a target node o′ ∈ V , where the accumulated resources
of p satisfy the limits for all resources r ∈ R. Without loss of generality we assume that the
limits must be satisfied at the end of each arc (i, j), i.e., after cr(i, j) has been consumed.

If the nodes have associated some resource consumptions and some upper and lower limits
on the accumulated resources are present, these can be expressed by equivalent resource
constraints on the arcs (e.g. the incoming arcs of the node).

For the pricing problem of VRPTW the resources are load d, time t, and a binary visit-
counter for each customer v ∈ C. When considering the pricing problem of VRPTW, the
consumptions and upper and lower limits of the resources at each arc (i, j) in ESPPRC are:

ad(i, j) = 0, bd(i, j) = D − dj , cd(i, j) = dj ∀(i, j) ∈ E
at(i, j) = ai, bt(i, j) = bi, ct(i, j) = τij ∀(i, j) ∈ E
av(i, j) = 0, bv(i, j) = 1, cv(i, j) = 1 ∀v ∈ V : v = j, ∀(i, j) ∈ E
av(i, j) = 0, bv(i, j) = 1, cv(i, j) = 0 ∀v ∈ V : v 6= j, ∀(i, j) ∈ E

In the label algorithm labels at node v represent partial paths from o to v. The following
attributes for a label L are considered:
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v(L) The current end-node of the partial path represented by L.
c(L) The sum of the reduced cost along path L.
r(L) The accumulated consumption of resource r ∈ R along path L.

A feasible extension ε ∈ E(L) of a label L is a partial path starting in node v(L) ∈ V and
ending in the target node o′ without violating any resource constraints when concatenated
with the partial path represented by L.

In the following it is assumed that all resources are bounded strongly from above, and
weakly from below. This means that if the current resource accumulation of a label is below
the lower limit on a given arc, it is allowed to fill up the resource to the lower limit, i.e.,
waiting for a time window to open. This means that two consecutive labels Lu and Lv related
by an arc (u, v), i.e., Lu is extended and creates Lv, where v(Lu) = u and v(Lv) = v, must
satisfy

r(Lv) ≤ br(u, v), ∀r ∈ R (34)
r(Lv) = max{r(Lu) + cr(u, v), ar(u, v)}, ∀r ∈ R (35)

Here (34) demands that each label Lv satisfies the upper limit br(u, v) of resource r corre-
sponding to arc (u, v), while (35) states that resource r of Lv corresponds to the resource
consumption at label Lu plus the amount consumed by traversing arc (u, v), respecting the
lower limit ar(u, v) on arc (u, v). Other authors refer to (35) as a resource extension function,
see e.g. Desaulniers et al. [8].

A simple enumeration algorithm could be used to produce all these labels, but to limit
the number of labels considered, dominance rules are introduced to fathom labels which do
not lead to an optimal solution.

Definition 2. A label Li dominates label Lj if

v(Li) = v(Lj) (36)
c(Li) ≤ c(Lj) (37)
E(Lj) ⊆ E(Li) (38)

In other words, the paths corresponding to labels Li and Lj should end at the same node
v(Li) = v(Lj) ∈ V , the path corresponding to label Li should cost no more than the path
corresponding to label Lj , and finally any feasible extension of Lj is also a feasible extension
of Li. Notice that we are only interested in one cost-minimal path and not all pareto-optimal
paths, hence our dominance rule is tighter than the one used in e.g. Desaulniers et al.
[8], Irnich and Desaulniers [21].

Feillet et al. [14] suggested to consider the set of nodes that cannot be reached from a
label Li and compare the set with the unreachable nodes of a label Lj in order to determine if
some extensions are impossible and thereby potentially dominate where else not possible, since
vold(Li) ≤ vold(Lj) ⇒ vnew(Li) ≤ vnew(Lj) but vnew(Li) ≤ vnew(Lj) 6⇒ vold(Li) ≤ vold(Lj).
Or in other words: update the node resources in an eager fashion instead of a lazy one. The
following definition is a generalization of Feillet et al. [14][Definition 3].

Definition 3. Given a start node o ∈ V , a label L, and a node u ∈ V where v(L) = u a node
v ∈ V is considered unreachable if v has already been visited on the path from o to u or if a
resource window is violated, i.e.:

∃r ∈ R r(L) + `r(u, v) > br(v)
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where `r(u, v) is a lower bound on the consumption of resource r on all feasible paths from u
to v. The node resources are then given as: v(L) = 1 indicates that node v ∈ V is unreachable
from node v(L) ∈ V , and v(L) = 0 otherwise.

To determine if (38) holds can be quite cumbersome, as the straightforward definition
demands that we calculate all extensions of the two labels. Therefore a sufficient criterion for
(38) to hold is sought which can be computed faster. If label Li has consumed less resources
than label Lj then no resources are limiting the possibilities of extending Li compared to Lj ,
hence the following proposition can be used as a relaxed version of the dominance criteria.

Proposition 4. Desaulniers et al. [8]. If all resource extension functions are non-decreasing,
then label Li dominates label Lj if:

v(Li) = v(Lj) (39)
c(Li) ≤ c(Lj) (40)
r(Li) ≤ r(Lj) ∀r ∈ R (41)

Using Proposition 4 as a dominance criteria is a relaxation of the dominance criteria of
Definition 2 since only a subset of labels satisfying (36), (37), and (38) satisfies inequalities
(39), (40), and (41).

4.2 Solving the Pricing Problem with New Resources

Recall that a CG rank-1 cut (26) for the VRPTW master problem (9)–(11) is:

∑
p∈P

∑
i∈C

ui
∑

(i,j)∈δ+(i)

αijp

λp ≤ ⌊∑
i∈C

ui

⌋

Let σ ≤ 0 be the corresponding dual variable when solving the master problem to LP-
optimality. The reduced cost of column p in the VRPTW master problem is:

ĉp = cp − σ

∑
i∈C

ui
∑

(i,j)∈δ+(i)

αijp

 =
∑

(i,j)∈E

cijαijp − σ

∑
i∈C

ui
∑

(i,j)∈δ+(i)

αijp


We analyze how this additional cost can be handled in the label algorithm for ESPPRC.

Let V (L) = {i ∈ V : i(L) = 1} be the nodes visited on the partial path of label L. The
reduced cost of L can then be expressed as:

ĉ(L) = c(L)− σ

 ∑
i∈V (L)

ui

 (42)

A new resource m can be used to compute the coefficient of penalty σ for label L, i.e.,
m(L) =

∑
i∈V (L) ui, is the unfloored amount involved in the cut. Note that the consumption

of resource m is ui for each outgoing (incoming) arc of the customers i ∈ C. Even though
the update of resource ĉ is defined by a decreasing function, the usual dominance criteria
of Proposition 4 can still be used, because in case Li dominates Lj , c(Li) ≤ c(Lj) and
m(Li) ≤ m(Lj) so ĉ(Li) ≤ ĉ(Lj) since −σ > 0. Note that the resource ĉ can be ignored
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during the label algorithm and only be considered at the last arc to the target node to
compute the reduced cost ĉ(L) of path L from c(L) and m(L).

Since all resource extension functions (including m(L)) are non-decreasing we can apply
the label algorithm described in the previous section to solve the ESPPRC, using the domi-
nance rule from Proposition 4 for the extended set of resources. However, as further cuts are
added and hence more resources are to be compared in (41) the dominance rule is satisfied
very rare. In order to overcome this problem, we note the following property of constraint
(42)

ĉ(L) = c(L)− σ bm(L)c = c(L) + kσ − σ bm(L)− kc (43)

for any integer k. Hence a label (ĉ(L), r(L),m(L)) is equivalent to a label (ĉ(L)−kσ, r(L),m(L)−
k), meaning that we can make resources comparable in (41) at the cost of modifying c(L) in
(40) and vice versa. This is the main idea in Proposition 5, 6 and 7 to be presented.

For a label L let

T (L) =

 ∑
i∈V (L)

ui

 mod 1

be the amount involved in the cut since the last penalty was paid, i.e., the fractional part of∑
i∈V (L) ui. Recall E(L) as the set of feasible extensions from the label L to the target node

o′ and note that when label Li dominates label Lj , their common extensions are E(Lj) due
to (38). The following cost dominance criteria are obtained for a single CG rank-1 cut:

Proposition 5. If T (Li) ≤ T (Lj), v(Li) = v(Lj), ĉ(Li) ≤ ĉ(Lj), and r(Li) ≤ r(Lj) ∀r ∈ R,
then label Li dominates label Lj.

Proof. Consider any common extension ε ∈ E(Lj). Since T (Li) ≤ T (Lj) the relation between
the number of future penalties for the two labels when concatenated with ε is:⌊∑

i∈ε
ui + T (Li)

⌋
≤

⌊∑
i∈ε

ui + T (Lj)

⌋

This leads to the following relation between the costs:

ĉ(Li + ε) = ĉ(Li) + c(ε)− σ

⌊∑
i∈ε

ui + T (Li)

⌋

≤ ĉ(Lj) + c(ε)− σ

⌊∑
i∈ε

ui + T (Lj)

⌋
= ĉ(Lj + ε)

Hence, label Li dominates label Lj .

Proposition 6. If T (Li) > T (Lj), v(Li) = v(Lj), ĉ(Li)−σ ≤ ĉ(Lj), and r(Li) ≤ r(Lj) ∀r ∈
R, then label Li dominates label Lj.

Proof. Consider any common extension ε ∈ E(Lj). Since T (Li) > T (Lj) the relation between
the number of future penalties for the two labels when concatenated with ε is:⌊∑

i∈ε
ui + T (Li)

⌋
≥

⌊∑
i∈ε

ui + T (Lj)

⌋
(44)
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Since 0 ≤ T (Lj) < T (Li) < 1 it is clear that the left hand side of (44) is at most one unit
larger than the right hand side, i.e., label Li will pay the penalty at most one more time than
label Lj . Hence, ⌊∑

i∈ε
ui + T (Li)

⌋
− 1 ≤

⌊∑
i∈ε

ui + T (Lj)

⌋
That is, the additional cost of extending Li with ε is at most −σ more than extending Lj
with ε. This leads to the following relation between the costs:

ĉ(Li + ε) = ĉ(Li) + c(ε)− σ

⌊∑
i∈ε

ui + T (Li)

⌋

= ĉ(Li)− σ + c(ε)− σ

(⌊∑
i∈ε

ui + T (Li)

⌋
− 1

)

≤ ĉ(Lj) + c(ε)− σ

⌊∑
i∈ε

ui + T (Lj)

⌋
= ĉ(Lj + ε)

Hence label Li dominates label Lj .

Observe that if T (Li)+
∑

i∈ε ui < 1 for all ε ∈ E(Lj), it is not possible to trigger a penalty,
i.e., the temporary penalty to the cost of Li can be disregarded.

In case of several CG rank-1 cuts, the new dominance criteria are as follows:

Proposition 7. Let Q = {q : σq < 0∧Tq(Li) > Tq(Lj)}. Then label Li dominates label Lj if:

v(Li) = v(Lj) (45)

ĉ(Li)−
∑
q∈Q

σq ≤ ĉ(Lj) (46)

r(Li) ≤ r(Lj) ∀r ∈ R (47)

Proof. The validity of (46) follows directly from Propositions 5 and 6. The validity of (45)
and (47) follows from Proposition 4.

5 Experimental Results

The experimental study is intended to show how much it is possible to strengthen the lower
bound by adding CG rank-1 cuts, while still being able to solve the corresponding pricing
problem in reasonable time. The SR inequalities have already proved their worth, see Jepsen
et al. [23], Desaulniers et al. [9], but in both cases only sets of rows with size 3 were included,
i.e., CG rank-1 cuts with precisely 3 non-zero entries in the CG multiplier vector. Hence, it is
expected that the introduction of a separation routine for denser CG multiplier vectors could
improve the lower bounds further. Using the exact separation routine for the CG rank-1 cuts
is expected to be time consuming, but for test purposes it is interesting to see how well the
column generation reacts to these cuts and also how much the lower bounds are improved.
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5.1 Settings

The test instances are the well known benchmarks introduced by Solomon [33]. The bench-
marks are divided into two series, both of which are again divided into a C (customers are
grouped in larger clusters), an R (customers are distributed randomly), and an RC (a mix of
the two previous) series. Of the 56 instances with 100 customers five instances are unsolved
at the time of writing. Furthermore, 16 of the solved instances have not yet been solved in
the root node of the branch-and-bound tree. We will only consider the R and RC instances,
since all C instances can be solved in the root node without cutting planes, see Jepsen et al.
[23], Desaulniers et al. [9].

The experiments were performed on a Pentium 4 3.0 GHz with 1 GB RAM. The basic BCP
algorithm was developed with the framework COIN, see Lougee-Heimer [27]. The exact MIP-
based CG rank-1 separation procedure is a slight modified version of a procedure provided
by Hunsaker [19]. The MIPs were solved using CPLEX 9.1 with a maximal running time of
3600 seconds.

An exact separation procedure for a limited set of the SR inequalities have been devel-
oped exploiting the SSE2 vector-processing instructions intended for multimedia floating-
point purposes which are present in all x86 processors since the introduction of Pentium 4
in 2001. The separation routine is an exact enumeration of SR inequalities with multipliers
ui ∈ {0, 1

k , . . . ,
k−1
k } for i ∈ C where

∑
i∈C ui = n

k , and 0 < k < n ≤ |C| and k and n are
integer, i.e., mod-k cuts with restriction on the sum of the multipliers.

Our implementation of the brute-force evaluation of all sub-multisets of rows of size n,
can evaluate the SR inequalities (33) in constant time for each sub-multiset using the vector-
processing capabilities. This makes it possible to separate all violated cuts in time |S|n/n!
when |P | ≤ 16, where S is the set of rows and P is the set of basis columns. Still, the
complexity is so high that we cannot expect to separate inequalities with more than seven
non-zero coefficients in reasonably time.

Note that our implementation of the BCP algorithm is not competitive with the recent
implementation by Desaulniers et al. [9]. Also it is slower than the one used in Jepsen et al.
[23] due to the implementation of the more general dominance criteria in the label algorithm.
However, the point of our experiments is to study the quality of the lower bounds, i.e., the
number of branch nodes, compared to the increase in computational time of the pricing
problem by adding various cuts. These conclusions hold for all implementations based on the
same decomposition.

5.2 Lower Bounds

Table 1 and 2 show the lower bounds obtained in the root node when different cutting policies
are applied.

The cutting policies are:

“no” No cutting planes
“n = 3” SR cuts with n = 3 and k = 2
“n ≤ 5” Like option n = 3 and with n = 5 and k = 2, 3
“n ≤ 7” Like option n ≤ 5 and with n = 7 and k = 2, 3, 4
“CG1” General CG rank-1 cuts

A maximum of 50 cuts violating more than 0.0001 are added in each iteration. No time
limit was imposed, but the space limit of 1 GB RAM prevented some instances to run to
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Table 1: Lower bound comparison for the 1-series.
Instance no n = 3 n ≤ 5 n ≤ 7 CG1 UB

R101 1631.2 1634.0 1636.3 1636.3 1637.7 1637.7
R102 1466.6 1466.6 1466.6 1466.6 1466.6 1466.6
R103 1206.8 1208.7 1208.7 1208.7 1208.7 1208.7
R104 956.9 971.3 971.5 971.5 971.5 971.5
R105 1346.2 1355.2 1355.3 1355.3 1355.3 1355.3
R106 1227.0 1234.6 1234.6 1234.6 1234.6 1234.6
R107 1053.3 1064.3 1064.6 1064.6 1064.6 1064.6
R108 913.6 932.1 932.1 932.1 932.1 932.1
R109 1134.3 1144.1 1146.7 1146.9 1146.9 1146.9
R110 1055.6 1068.0 1068.0 1068.0 1068.0 1068.0
R111 1034.8 1045.9 1047.3 - - 1048.7
R112 926.8 943.5 - - - 948.6
RC101 1584.1 1619.8 1619.8 1619.8 1619.8 1619.8
RC102 1406.3 1457.4 1457.4 1457.4 1457.4 1457.4
RC103 1225.6 1257.7 1258.0 1258.0 1258.0 1258.0
RC104 1101.9 1129.9 - - - 1132.3
RC105 1472.0 1513.7 1513.7 1513.7 1513.7 1513.7
RC106 1318.8 1367.3 1371.9 1372.7 1372.7 1372.7
RC107 1183.4 1207.8 1207.8 1207.8 1207.8 1207.8
RC108 1073.5 1114.2 1114.2 1114.2 1114.2 1114.2

completion.
Upper bounds in the “UB” column are optimal values or best known upper bounds.

Entries in tables marked with an asterisk ∗ are from Danna and Le Pape [7], entries marked
with a double-asterisk ∗∗ are from Desaulniers et al. [9], and entries marked with a triple-
asterisk ∗∗∗ are from Jepsen et al. [23]. A dash indicates that our implementation failed due
to memory limitation. Entries in bold face indicate optimal integer solution.

Of the 28 solved instances one instance (R102) was solved without adding any cuts. The
lower bounds for all remaining instances were considerably improved by adding “n = 3” cuts
resulting in integer solutions for 15 of the 27 remaining (17 out of 33 when considering the
results of Desaulniers et al. [9]). When adding “n ≤ 5” cuts improvements were present in
all but one instance (RC201) resulting in further five integer solutions of the 10 remaining
instances that could be solved with this approach. Of the remaining four instances solved
with “n ≤ 7” cuts, two showed no improvement and two resulted in integer solutions. The last
two instances were solved to integrality when applying CG rank-1 cuts. Hence, we succeeded
in closing the gap between the upper and lower bound for all the instances that we were able
to solve within the memory limit.

Tables 1 and 2 also show that the SR inequalities provide almost as good lower bounds as
general CG rank-1 cuts. For “n = 7” the SR inequalities become time consuming to separate,
and hence in practical applications one should confine to “n = 3” or “n ≤ 5”.

Table 3 presents an overview of problems solved in the root node as reported in this chapter
or by Jepsen et al. [23] or Desaulniers et al. [9]. Column “solved” refers to the number of
instances solved to optimality at the time of writing and “total” refers to the total number
of instances. Results from the C-series are included for completeness.

As already noted, adding SR inequalities and CG rank-1 cuts greatly strengthens the
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Table 2: Lower bound comparison for the 2-series.
Instance no n = 3 n ≤ 5 n ≤ 7 CG1 UB

R201 1140.3 1143.2 1143.2 1143.2 1143.2 1143.2
R202 1022.3 1027.3 1029.6 1029.6 1029.6 1029.6
R203 867.0 870.8 870.8 870.8 870.8 870.8
R204 - - - - - ∗∗731.3
R205 939.0 - - - - 949.8
R206 866.9 ∗∗875.9 - - - 875.9
R207 ∗∗790.7 ∗∗794.0 - - - 794.0
R208 - - - - - ∗701.2
R209 841.5 ∗∗∗854.8 - - - 854.8
R210 889.4 - - - - 900.5
R211 - - - - - ∗∗746.7
RC201 1256.0 1261.7 1261.7 1261.7 1261.8 1261.8
RC202 1088.1 1092.3 1092.3 1092.3 1092.3 1092.3
RC203 922.6 923.7 923.7 923.7 923.7 923.7
RC204 - - - - - ∗783.5
RC205 1147.7 1154.0 1154.0 1154.0 1154.0 1154.0
RC206 1038.6 1051.1 1051.1 1051.1 1051.1 1051.1
RC207 947.4 - - - - 962.9
RC208 - - - - - ∗∗776.5

Table 3: Summary of instances solved in the root node.
Instance no n = 3 n ≤ 5 n ≤ 7 CG1 solved total

C1 9 9 9 9 9 9 9
C2 8 8 8 8 8 8 8
R1 1 5 8 9 10 12 12
R2 0 4 5 5 5 8 11
RC1 0 5 6 7 7 8 8
RC2 0 4 4 4 5 6 8
All 18 35 40 42 44 51 56

lower bounds. Of the 56 instances 35 were previously reported solved in the root node by
Jepsen et al. [23], Desaulniers et al. [9]. With our additional cutting planes we were able
to solve an additional nine instances in the root node of the remaining 16 previously solved
instances. Note that all the instances we were able to solve were solved in the root node.
The remaining seven instances, which have previously been solved with “n = 3”, could not
be solved with the current implementation due to hardware limitations. Hence, there exists
12 Solomon instances (seven solved with branching and five unsolved) where CG rank-1 cuts
could potentially improve the lower bound in the root node.

5.3 Running Times of the Pricing Problem

Table 4 and 5 contain the results obtained when solving the instances to optimality using
different cutting planes. In column “CPU” we report the CPU-time in seconds for solving the
last pricing problem, while column “cuts” gives the number of cuts applied. Column “BB”
indicates the number of branch-and-bound nodes considered. As before, a dash in the tables
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indicates that a memory insufficiency had occurred. Entries marked with a double-asterisk
∗∗ are from Desaulniers et al. [9].

Table 4: Running time for pricing problem and number of branch-and-bound nodes for the
1-series. 1) Data log-files were lost during machine upgrade.

no n = 3 n ≤ 5 CG1
Instance CPU BB CPU cuts BB CPU cuts BB CPU cuts BB

R101 0.1 11 0.1 2 3 0.1 4 3 0.1 15 1
R102 0.2 1 0.2 0 1 0.2 0 1 0.2 0 1
R103 0.4 15 1.3 33 1 1.3 33 1 1.3 33 1
R104 5.8 - 910.5 328 3 - - 11 - - 1
R105 0.1 55 0.2 52 3 0.2 56 1 0.2 56 1
R106 0.5 147 4.8 114 1 4.8 114 1 4.8 114 1
R107 2.2 - 46.1 224 3 78.4 242 1 78.4 242 1
R108 13.0 - 244.8 192 1 244.8 192 1 244.8 192 1
R109 0.3 - 1.6 127 17 8.7 374 3 10.0 367 1
R110 1.1 - 26.0 269 1 26.0 269 1 26.0 269 1
R111 1.5 - 36.6 175 39 293.7 379 - - - -
R112 35.9 - - - 91 - - - - - -
RC101 0.1 59 0.2 69 1 0.2 69 1 0.2 69 1
RC102 0.3 - 1.4 140 1 1.4 140 1 1.4 140 1
RC103 1.2 - 42.8 276 3 49.1 290 1 49.1 290 1
RC104 15.6 - 569.2 237 7 - - - - - -
RC105 0.2 191 0.5 73 1 0.5 73 1 0.5 73 1
RC106 0.3 - 3.5 250 37 16.5 543 5 21.6 572 1
RC107 1.4 - 4.3 85 1 4.3 85 1 4.3 85 1
RC108 9.7 - 86.7 175 1 86.7 175 1 86.7 175 1

The tables show that adding “n ≤ 5” cuts and “CG1” cuts is relatively cheap with respect
to the running time of the pricing problem, while decreasing the number of branch-and-bound
nodes significantly e.g., in instances R109, RC106, and R202.

If we had access to “ideal” heuristics for the pricing problem (with low running time and
high solution quality) we would only need to solve one pricing problem to optimality in each
branch-and-bound node. The running time of the overall algorithm would then be dictated
by the running time for optimally solving the pricing (CPU) and the number of branch-and-
bound nodes (BB). With the exception of R202 (where massive paging occurred due to lack
of memory) the lower bound on the running time “BB × CPU” is not increasing when n
grows and “CG1” cuts are applied. This shows, that good heuristics for the pricing problem
can make the addition of SR and CG-1 cuts attractive for the overall running time.

6 Concluding Remarks

We have demonstrated that it is possible to apply general CG rank-1 cuts derived from the
master problem formulation in a BCP algorithm for VRPTW. As each cut results in the
introduction of a new resource in the pricing problem it was necessary to develop new, tighter
dominance rules for use in the pricing algorithm.

Our computational experiments indicate that the addition of CG rank-1 cuts leads to
significantly improved lower bounds. In our tests the cuts made it possible to close the gap
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Table 5: Running time for pricing problem and number of branch-and-bound nodes for the
2-series.

no n = 3 n ≤ 5 CG1
Instance CPU BB CPU cuts BB CPU cuts BB CPU cuts BB

R201 0.2 - 0.4 15 1 0.4 15 1 0.4 15 1
R202 2.9 - 3.0 24 13 419.6 132 1 419.6 132 1
R203 83.2 - 505.6 35 1 505.6 35 1 505.6 35 1
R204 - - - - - - - - - - -
R205 1.5 - - ∗∗345 ∗∗9 - - - - - -
R206 131.7 - - ∗∗171 ∗∗1 - - - - - -
R207 - - - ∗∗24 ∗∗1 - - - - - -
R208 - - - - - - - - - - -
R209 6.5 - - ∗∗248 ∗∗3 - - - - - -
R210 - - - ∗∗266 ∗∗5 - - - - - -
R211 - - - - - - - - - - -
RC201 0.2 - 0.3 25 3 0.3 25 3 0.3 29 1
RC202 0.6 - 1.7 26 1 1.7 26 1 1.7 26 1
RC203 58.8 11 185.2 15 1 185.2 15 1 185.2 15 1
RC204 - - - - - - - - - - -
RC205 1.0 - 1.8 21 1 1.8 21 1 1.8 21 1
RC206 1.7 - 4.6 23 1 4.6 23 1 4.6 23 1
RC207 - - - ∗∗210 ∗∗5 - - - - - -
RC208 - - - - - - - - - - -

between the upper and lower bounds in the root node of the branch-and-bound tree for 44
of the 51 currently solvable instances from Solomon’s test library. This is an additional 9 in-
stances compared to previous results. The increased complexity of the pricing problem caused
by CG rank-1 cuts do affect the running time of the pricing problems but not significantly.

This indicates that CG rank-1 inequalities may be essential when solving larger instances
to optimality, as one cannot expect that the branching process will close the gap between the
upper and lower bound in reasonable time. Note that one should also take into account the
additional time spent in each branch node since the number of LP iterations increases when
valid inequalities are added. As for classical branch-and-cut algorithms it will always be a
question when to add cuts and when to start branching.

Another important note is the separation time of the CG rank-1 cuts which can indeed
be very time consuming. Also the current MIP-based heuristics only finds a limited number
of violated cuts as the main effort is put in cut violation quality not violated cut quantity.
We suggest that MIP-based heuristics which focus on finding numerous violated CG rank-1
cuts could improve the performance of the BCP algorithm. Fortunately the SR inequalities
generally give rise to almost as tight lower bounds as general CG rank-1 cuts, while being
easier to handle in the pricing problem (due to integer modulo operations, see Jepsen et al.
[23]). For n = 7 the separation of SR inequalities takes almost one hour, making them too
expensive to separate. For n ≤ 5 the inequalities can be separated in a couple of minutes.
So until more efficient separation methods have been developed, one should only apply SR
inequalities for n ≤ 5.

During our experiments we noticed that specific values of the CG multipliers u occurred
more frequently than others. For instance, multiplier vectors u ∈ {0, 1

2}
|C| occurred very
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frequently, showing that it is promising to investigate these inequalities further (note that
the SR inequalities for a given n with k = 2 are a subset of these inequalities). Knowing the
structure of promising CG rank-1 inequalities will make it possible to develop fast, specialized
separation heuristics and better handling of these specific inequalities in the pricing problem.
Adapting the separation algorithm by Caprara et al. [3] for maximally violated mod-k cuts
in the master problem could be an interesting direction of research.
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Abstract

This work presents an exact branch-and-cut-and-price algorithm for the vehicle routing
problem with time windows (VRPTW) where the well-known clique inequalities are used
as cutting planes defined on the set partitioning master problem variables. It shows
how these cutting planes affect the dominance criterion applied in the pricing algorithm,
which is a labeling algorithm for solving resource-constrained elementary shortest path
problems. The idea of using cutting planes defined on the master problem variables has
been recently developed: Chvátal-Gomory rank 1 cuts were applied for the VRPTW.
However, to our knowledge, this is a first attempt at incorporating for the VRPTW a set
of valid inequalities specialized for the set partitioning polytope. Computational results
show that the use of clique inequalities improves the lower bound at the root node of the
search tree and reduces the number of nodes in this tree.

1 Introduction

Given an unlimited number of identical vehicles with a specified capacity, and a set of cus-
tomers, each with a demand to fulfill and a delivery time window, the vehicle routing problem
with time windows (VRPTW) consists of finding a set of routes starting and ending at a cen-
tral depot such that each customer is visited exactly once within its time window, the capacity
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of each vehicle is respected, and the total length of the routes is minimized. The VRPTW
can be modeled using an arc-flow formulation. Applying the Dantzig-Wolfe decomposition
principle on this formulation decomposes the problem into a master problem (a set partition-
ing problem) and a pricing problem that corresponds to an elementary shortest path problem
with resource constraints (ESPPRC), where capacity and time are the constrained resources.
Column generation is then used to solve the LP-relaxed master problem and provides a lower
bound. Such lower bounds are exploited in a branch-and-bound algorithm to reach integral-
ity. The resulting method is called branch-and-price (BP) or branch-and-cut-and-price (BCP)
when cutting planes are also generated.

As shown by the large number of references on exact methods in the survey of Kallehauge
et al. [16] and the recent paper of Desaulniers et al. [7], the VRPTW has been extensively
studied in the literature. Nevertheless, the most successful exact methods still struggle at
solving VRPTW instances of medium size (i.e., involving around 100 customers) when the
time windows are relatively wide compared to the average travel time between two customer
locations. Consequently, research on exact methods for this problem is still very active.

Since the seminal work of Desrochers et al. [8] in 1992, BP and BCP algorithms have been
the leading methodologies for solving the VRPTW. Because the ESPPRC is strongly NP-
hard, Desrochers et al. [8] proposed a BP algorithm where the pricing problem is a shortest
path problem with resource constraints (SPPRC) that allows cycles (except cycles involving
two customers, called 2-cycles) and, thus, yields a relaxation and possibly large integrality
gaps. Two research trends have been followed to reduce these gaps. In the first trend, the
pricing problem is strengthened. Irnich and Villeneuve [14] developed a k-cycle elimination
procedure for the SPPRC for arbitrary integer values of k that forbids the generation of
routes containing at least one `-cycle with ` ∈ {2, 3, . . . , k}, where an `-cycle is a subpath
composed of ` arcs that starts and ends at the same node. In parallel, several researchers
devised algorithms for solving the ESPPRC. Feillet et al. [11] were the first to propose a
successful label-setting algorithm for the ESPPRC where one resource is required for each
customer to impose elementarity. Several improvements of this algorithm were proposed by
Chabrier [4], Boland et al. [3], and Righini and Salani [21, 22]. As reported in Desaulniers
et al. [7], the use of the ESPPRC as a pricing problem significantly reduces the integrality
gap for most instances. However, the ESPPRC remains very difficult to solve and, for some
medium-sized instances with wide time windows, it seems impossible to solve the LP-relaxed
master problem in a reasonable time.

In the second research trend, cutting planes are generated to tighten the LP-relaxed master
problem. Kohl et al. [17] introduced the k-path cuts that force a total flow of at least k vehicles
into subsets of customers that cannot be serviced by less than k vehicles. Such cuts can be
defined using arc-flow variables and rewritten in terms of the master problem variables after
applying the Dantzig-Wolfe decomposition principle. Therefore, their treatment only implies
a modification of the arc costs in the pricing problem. Recently, Jepsen et al. [15] proposed
subset row inequalities that are directly defined on the master problem variables. These
inequalities form a subset of the Chvátal-Gomory rank 1 inequalities for the set partitioning
polytope. Later, Petersen et al. [20] generalized this work to include all Chvátal-Gomory rank
1 cuts. These inequalities significantly reduce integrality gaps. However, they complexify the
solution of the pricing problem because each cut requires one additional resource and the
standard dominance procedure to identify Pareto-optimal labels in the labeling algorithm
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cannot be used. In a very recent paper, Baldacci et al. [1] used a set partitioning formulation
for the capacitated vehicle routing problem and applied clique inequalities to strengthen
its linear relaxation. Their solution method consists of first eliminating a large number of
variables using a reduced cost criterion before solving the resulting model with a commercial
integer programming solver. The application of this criterion requires the a priori computation
of a dual solution for the linear relaxation. To do so, they use an additive bounding method
that solves in its last step the linear relaxation of a modified set partitioning model using
column generation. Based on the observation that the dual values of the clique inequalities
are non-positive, the pricing problem is solved by an extensive enumeration scheme based on
dynamic programming that disregards these dual values but ensures that all negative reduced
cost columns can be found. This procedure performs very well on small, tightly constrained
instances, but has memory issues when the number of feasible candidate paths in the pricing
problem is too large.

In this paper, we follow this second research trend by studying the use of clique inequalities
defined on the master problem variables in the context of the VRPTW. As opposed to the
work of Baldacci et al. [1], we propose to consider the dual values of the clique inequalities
directly into the labeling algorithm to avoid an extensive enumeration of candidate paths. We
believe that such an alternative to extensive enumeration must be sought to derive a scalable
BCP algorithm that can solve the most difficult VRPTW instances (e.g., those allowing more
than 50 customers per route). To handle the dual values of these inequalities in the labeling
algorithm, we introduce an approximate representation of a clique and develop a modified
dominance criterion. To assess the usefulness of the clique cuts, we performed computational
experiments on a subset of the well-known VRPTW instances of Solomon [24]. The results
show that combining the clique inequalities with the subset row inequalities improves the
lower bounds and reduces the number of nodes in the search tree.

The paper is organized as follows. In Section 2, the VRPTW is formulated mathematically
while, in Section 3, a basic BCP algorithm is described. Section 4 provides an overview on
the separation of the clique inequalities and how they may be applied in a BCP algorithm
for the VRPTW when the pricing problem is an ESPPRC solved by a labeling algorithm.
Computational results are reported in Section 5, and concluding remarks are made in Section
6.

2 Problem Formulations

In this section, we present two formulations for the VRPTW, namely, an arc-flow formulation
and a set partitioning formulation. Let C be the set of customers and K the set of available
vehicles such that |K| is sufficiently large for not imposing a constraint on the number of
vehicles that can be used in a solution (e.g., |K| = |C|). The arc-flow formulation is defined
on a network G = (N,A), where N and A are the node and arc sets, respectively. The node
set N contains one node for each customer i ∈ C and two nodes, o and o′, representing the
depot at the start and the end of the routes, respectively. Thus, N = C ∪ {o, o′}. Each
customer i ∈ C has a demand di, an associated service time si, and a time window [ai, bi]
in which it should be visited (i.e., service must start within this interval). To simplify the
notation, we set do = do′ = so = so′ = 0 and [ao, bo] = [ao′ , bo′ ] = [0, H], where H is the length
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of the planning horizon. The arc set A is given by A = {(i, j) : i, j ∈ N, i 6= j, ai + τij ≤
bj , di + dj ≤ D} \ {(o′, o)}, where D is the vehicle capacity and τij is the travel time between
locations i and j plus the service time si at i. In this set definition, the last two conditions
ensure that the same vehicle can visit consecutively locations i and j according to the time
and load restrictions. Denote by cij the travel cost along arc (i, j) ∈ A.

Two types of variables are used. The binary variable xijk indicates whether or not vehicle
k ∈ K traverses arc (i, j) ∈ A. The continuous variable tik provides the start of service time
at node i ∈ N if vehicle k ∈ K visits node i. Its value is irrelevant otherwise.

Using this notation as well as δ−(i) = {j ∈ N | (j, i) ∈ A} and δ+(i) = {j ∈ N | (i, j) ∈ A},
the arc-flow model for the VRPTW is given by:

min
∑
k∈K

∑
(i,j)∈A

cijxijk (1)

s.t.
∑
k∈K

∑
j∈δ+(i)

xijk = 1 ∀i ∈ C (2)

∑
j∈δ+(o)

xojk =
∑

i∈δ−(o′)

xio′k = 1 ∀k ∈ K (3)

∑
j∈δ−(i)

xjik −
∑

j∈δ+(i)

xijk = 0 ∀i ∈ C, ∀k ∈ K (4)

∑
(i,j)∈A

dixijk ≤ D ∀k ∈ K (5)

xijk(tik + τij − tjk) ≤ 0 ∀(i, j) ∈ A, ∀k ∈ K (6)
ai ≤ tik ≤ bi ∀i ∈ N, ∀k ∈ K (7)
xijk ∈ {0, 1} ∀(i, j) ∈ A, ∀k ∈ K. (8)

The objective function (1) aims at minimizing the total travel costs. Constraints (2) specify
that every customer i ∈ C must be visited by exactly one vehicle. Constraints (3) and
flow conservation constraints (4) define a path structure between o and o′ for each vehicle
k. Constraints (3) also guarantee that each route starts and ends at the depot. Note that
a zero-cost variable xoo′k is considered for each vehicle to allow an empty route in the case
where not all |K| available vehicles are needed. Constraint set (5) ensures that the capacity
of each vehicle is not exceeded. Constraints (6) and (7) impose the time window restrictions.
Note that (6) together with the assumption that τij > 0 for all (i, j) ∈ A \ {o, o′} eliminates
all sub-tours. The last constraints (8) define the domain of the arc-flow variables.

Keeping (2) as the linking constraints and applying the Dantzig-Wolfe decomposition
principle (Dantzig and Wolfe [5]) on the arc-flow model (1)-(8) leads to the following set
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partitioning formulation of the VRPTW:

min
∑
p∈P

( ∑
(i,j)∈p

cij
)
λp (9)

s.t.
∑
p∈P

αipλp = 1 ∀i ∈ C (10)

λp ≥ 0 ∀p ∈ P (11)
λp binary ∀p ∈ P (12)

where P is the set of all feasible o− o′ paths (routes) in G, the binary parameter αip is equal
to one if and only if node i ∈ N is used in route p ∈ P , and the binary variable λp indicates
whether or not route p ∈ P is selected in the solution. Set partitioning constraints (10) ensure
that each customer i ∈ C is visited by exactly one vehicle. The definition of set P considers all
the other problem constraints that define the feasibility of a route. In general, for a practical
VRPTW instance, this set partitioning model contains a huge number of variables and can
be solved using a BCP method.

3 Branch-and-Cut-and-Price

As mentioned in the introduction, a BCP method consists of a column generation method
embedded in a branch-and-cut method (see Barnhart et al. [2], Desaulniers et al. [6], Lübbecke
and Desrosiers [18]). In this context, model (9)-(12) is called the integer master problem and
its linear relaxation (9)-(11) the master problem. Column generation is an iterative method for
solving the master problem. At each iteration, it solves a so-called restricted master problem
(RMP) and a pricing problem. The RMP is simply the master problem restricted to a subset
of its variables λp. The size of this subset increases at each iteration. The RMP is thus a
linear program that can be solved by the simplex algorithm. The pricing problem plays the
role of determining which columns (variables) should be added to the RMP at each iteration.
It aims at finding negative reduced cost columns. When no such columns exist, the current
RMP solution is optimal for the master problem and the column generation method stops.

For the VRPTW, each variable λp, p ∈ P , is associated with a feasible route in G. The
reduced cost cp of such a variable is:

cp =
∑

(i,j)∈p

cij −
∑

(i,j)∈p

πj =
∑

(i,j)∈p

(cij − πj) (13)

where πj ∈ R for all j ∈ C are the dual values of (10) and πo′ = 0. To determine if there
exists negative reduced cost variables, one can find the shortest feasible path from o to o′ in
G, where the cost of each arc (i, j) ∈ A is cij = cij − πj . Feasibility is enforced by resource
constraints (see Irnich and Desaulniers [13]). A resource is a quantity that accumulates along
a path and is restricted at each node to take a value within a prespecified resource interval,
called a resource window. For the VRPTW, the set of resources R contains a loading resource
(r = load) to ensure that vehicle capacity is satisfied, a time resource (r = time) to respect
the customer time windows, and a binary resource r = custi) for each customer i ∈ C to
ensure path elementarity.
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The pricing problem thus corresponds to an ESPPRC. If its optimal value is negative at
a given iteration, then the computed shortest path provides a negative reduced cost path
variable that can be added to the RMP before starting a new iteration. Additional negative
reduced cost paths (when also computed while solving the pricing problem) can also be used
to generate more than one column. Otherwise, the column generation algorithm stops.

As shown by Dror [9], the ESPPRC is strongly NP-hard when considering loading and
time resources. It can be solved using a labeling algorithm such as those proposed by Feillet
et al. [11] and Chabrier [4]. In such a dynamic programming method, labels represent partial
paths that are extended (using so-called extension functions) in all feasible directions from
the source node o. Each label L (a vector with R + 1 components) stores the cost of the
partial path Tcost(L) and the current value Tr(L) of each resource r ∈ R. For the VRPTW,
the extension along an arc (i, j) of a label L representing a partial path ending at node i
proceeds as follows to create a new label L′ representing a partial path ending by the arc
(i, j):

Tcost(L′) = Tcost(L) + cij − πj (14)
Tload(L′) = Tload(L) + dj (15)
Ttime(L′) = max{Ttime(L) + τij , aj} (16)

Tcust`(L
′) =

{
Tcustj (L) + 1 if ` = j
max{Tcust`(L), U`(L′)} otherwise

∀` ∈ C, (17)

where U`(L′) indicates whether or not there exist no feasible extensions of label L′ reaching
node ` ∈ C (` is unreachable from L). Assuming that the arc durations satisfy the triangle
inequality, U`(L′) is equal to 1 if Tload(L′) + d` > D or Ttime(L′) + τj` > b`, and 0 other-
wise. Label L′ corresponds to a feasible path if it respects the resource windows, that is, if
Tload(L′) ∈ [0, D], Ttime(L′) ∈ [aj , bj ], and Tcust`(L

′) ∈ [0, 1] for all ` ∈ C. It is discarded if
this is not the case.

To avoid enumerating all feasible paths in G, only Pareto-optimal labels (i.e., labels that
are not proven to be dominated by other labels) are kept during the execution of the algorithm.
When using non-decreasing extension functions as it is the case for the VRPTW, the label
dominance criterion can be stated as follows.

Proposition 1 (Desaulniers et al. [6]). Let L and L′ be two labels representing partial paths
ending at the same node. Label L dominates label L′ (which can be discarded) if

Tcost(L) ≤ Tcost(L′) (18)
Tr(L) ≤ Tr(L′) ∀r ∈ R. (19)

When equality holds for all label components, one of the two labels must be kept.

Recently, efficient bidirectional labeling algorithms have been proposed by Righini and
Salani [21, 22]. These algorithms extend forward labels from the source node o and backward
labels from the sink node o′ before joining forward and backward labels to create feasible
o−o′ paths. In this context, the extension of the backward labels requires backward extension
functions that are different from the forward ones (14)-(17). Furthermore, dominance applies
only between forward labels or between backward labels.
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In a BCP method, cutting planes can be added to tighten the master problem when
its computed solution is fractional. When no violated valid inequalities can be identified,
branching decisions are imposed, yielding a branch-and-bound search tree. Note that cutting
planes can be added throughout this tree. Note also that after adding cutting planes or
imposing a branching decision, the master problem and the pricing problem are updated in
consequence, and column generation is again performed to re-optimize the modified master
problem and compute a new lower bound.

Different types of branching decisions can be imposed either in the master problem or in
the pricing problem. In our implementation, we branch (as in Desrochers et al. [8], Desaulniers
et al. [7]) on the total flow on an arc (i, j) ∈ A (with i 6= o and j 6= o′) which must be either
0 or 1 in an integer solution. For imposing a flow of 0 on arc (i, j), we simply remove (i, j)
from A in the pricing problem, while for imposing a flow of 1 on this arc, we remove all arcs
(i, j′) ∈ A such that j′ 6= j and all arcs (i′, j) ∈ A such that i′ 6= i. For both decisions, we
remove from the current RMP all columns λp such that path p contains a removed arc.

Various families of valid inequalities can also be considered for the VRPTW. In the lit-
erature, most of them, such as the 2-path cuts proposed by Kohl et al. [17], can be defined
as linear combinations of the arc-flow variables xijk and rewritten in terms of the master
problem variables λp. In this case, their treatment does not pose a problem with regard to
the complexity of the pricing problem as their dual values simply affect the arc costs.

The subset row (SR) inequalities introduced by Jepsen et al. [15] are, however, a set of valid
inequalities directly defined on the master problem variables, which cannot be expressed as
linear combinations of the arc-flow variables. These inequalities form a subset of the Chvátal-
Gomory (CG) rank 1 cuts for the set partitioning polytope. Given the CG multipliers ugi ≥ 0
for i ∈ C, a CG rank 1 cut (indexed by g) for model (9)-(12) is expressed as:∑

p∈P

⌊∑
i∈C

ugiαip

⌋
λp ≤

⌊∑
i∈C

ugi

⌋
. (20)

The SR inequalities considered by Jepsen et al. [15] (and also by Desaulniers et al. [7]) are
obtained using a CG multiplier equal to 1

2 for exactly three constraints (10) and a zero
multiplier for all the other constraints. As shown by their computational results, the use of
these inequalities can significantly improve the lower bound computed at the root node. On
the other hand, it increases the difficulty of the ESPPRC pricing problem as each cut requires
one additional resource.

Petersen et al. [20] extended this work and showed how any CG rank 1 cut (20) can be
applied when using a BCP method for solving model (9)-(12). In this case, the reduced cost
of a variable λp also depends on the positive coefficients b

∑
i∈C u

g
iαipc of the CG cuts and

their corresponding dual values. As discussed next, the computation of these coefficients in
a labeling algorithm is not straightforward because of their stepwise nature. Let CG1 be
the set of CG rank 1 cuts added to the master problem and denote by βg the non-positive
dual variable associated with cut g ∈ CG1 and by ug the CG multiplier vector of size |C|
defining this cut. For each cut g ∈ CG1, an additional resource is defined. This resource
computes the current fractional part of

∑
i∈C u

g
iαip, that is, for a label L representing a

partial path that visits the customer node set C(L), the value of this resource is given by
T g(L) =

∑
i∈C(L) u

g
i −b

∑
i∈C(L) u

g
i c. It is not restricted by resource windows. In the labeling
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algorithm, the forward extension of a label L along an arc (i, j) ∈ A to create a new label L′

proceeds as follows for the cost and cut components:

T g(L′) = (T g(L) + ugi ) (mod 1) ∀g ∈ CG1 (21)

Tcost(L′) = Tcost(L) + cij − πj −
∑
g∈CG1

T g(L)+ug
i≥1

βg. (22)

The computation of the components Tr(L′), r ∈ R, is performed using the previous extension
functions (15)-(17).

The use of the CG rank 1 cuts also requires modifying the dominance criterion as follows.

Proposition 2 (Petersen et al. [20]). Let L and L′ be two labels representing partial paths
ending at the same node. Label L dominates label L′ (which can be discarded) if

Tcost(L)−
∑
g∈CG1

T g(L)>T g(L′)

βg ≤ Tcost(L′) (23)

Tr(L) ≤ Tr(L′) ∀r ∈ R. (24)

This dominance criterion is a generalization of the one proposed by Jepsen et al. [15], but
it is equivalent when considering only the SR inequalities.

The separation of the CG rank 1 cuts is an NP-hard problem (see Eisenbrand [10]). As
proved by Jepsen et al. [15], the separation of the SR cuts is also NP-hard. Consequently,
Jepsen et al. [15] and Desaulniers et al. [7] considered only the SR inequalities involving
exactly three constraints and used enumeration to find the violated ones.

4 Clique Inequalities

Clique inequalities are well-known valid inequalities for the set packing and set partitioning
polytopes (see Padberg [19], Schrijver [23]). In particular, they are facet defining for the
master problem polytope conv{λ ∈ R|P | :

∑
p∈P αipλp = 1, ∀i ∈ C, λp ∈ {0, 1},∀p ∈ P}.

In this section, we discuss how these inequalities can be applied to strengthen the master
problem formulation (9)-(11) when solved by column generation.

A clique is defined on a conflict graph G = (V,E) that is undirected. Its vertex set V
contains one vertex for each route p ∈ P , that is, V = P . Its edge set E contains an edge
between two vertices p and q of V if routes p and q have at least one customer in common (p
and q are said to be in conflict or conflicting), that is,

E = {(p, q) : p, q ∈ P, p 6= q,∃ i ∈ C such that αip = αiq = 1}.

Thus, an edge (p, q) identifies a conflict between p and q for which the variables λp and λq
cannot both take value 1 in a feasible integer solution. A clique W is a maximal subset of
vertices of V such that (p, q) ∈ E for all pairs p, q ∈W , p 6= q.
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Given a clique W ⊆ P in G, the corresponding clique inequality is expressed as:∑
p∈W

λp ≤ 1. (25)

It simply says that at most one of the variables λp, p ∈ W , can be set at 1 in a feasible
solution of the integer master problem (9)-(12).

Given a fractional-valued solution to the master problem, the separation of the most-
violated clique inequality can be done on the conflict graph G, where each vertex is given a
weight equal to the value of the corresponding variable. A maximal weight clique in G provides
a most-violated clique inequality. This separation problem is known as the maximum weighted
clique problem and is strongly NP-hard (see Schrijver [23]).

Given the complexity of solving this separation problem, we use a separation heuristic
that is described in the following subsection. Afterwards, we propose a representation of the
clique inequalities which facilitates their treatment in the labeling algorithm used for solving
the pricing problem. Next, we introduce the additional resources required in the ESPPRC
pricing problem for handling these inequalities and develop a new dominance criterion for the
labeling algorithm. Finally, we discuss a special case of clique inequalities.

4.1 Separation Heuristic

As proposed by Hoffman and Padberg [12], a simple heuristic for identifying violated clique
inequalities is to look for cliques that are each built from an initially chosen constraint (10).
This row is used to determine an initial set of routes (vertices) to put in the clique. Figure 1
provides a pseudo-code of this heuristic procedure. Given a fractional-valued solution to the
master problem (9)-(11), let PF be the index set of the variables λp that take a fractional
value in this solution. For each row i ∈ C, the heuristic starts by identifying the set idIn ⊆ PF
of routes p with a non-zero coefficient αip in row i and the set idOut ⊆ PF of routes with a
zero entry in this row (thus, PF = idIn ∪ idOut). The routes in idIn will all be part of the
clique under construction. Note that the sum of the values of the variables associated with
these routes is equal to 1. Then, all routes in idOut that are conflicting with all routes in idIn
are added to a candidate set idCand of routes. If this set is empty, then no violated clique
inequalities involving all the routes in idIn exist and the procedure proceeds to the next row
i ∈ C. Otherwise, there exists at least one such clique that defines a violated inequality. In this
case, a greedy procedure, named Greedy-Add-Routes, is used to add routes of fractional-
valued variables to the routes in idIn. These additional routes allow to compute by how
much the inequality under construction is violated. If this violation exceeds a prespecified
parameter value min violation, then the same greedy procedure is called to complete the
clique by also considering the routes in P \PF . The identified violated inequalities are stored
in the set idCliques.

The Greedy-Add-Routes procedure, detailed in pseudo-code of Figure 2, takes as input
two sets of routes: idClique and idCand. The idClique set contains two-by-two conflicting
routes that will be part of the clique. The idCand set is composed of routes that are candidates
to be added to the clique. The procedure starts by sorting the set idCand in decreasing order
of the routes’ density (i.e., the number of customers they contain). Then respecting this order,
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Find-Cliques

1 for each row i ∈ C
2 do idCand← ∅
3 idIn← Routes-In-Row(i) ∩ P F

4 idOut← Route-Not-In-Row(i) ∩ P F

5 for each route p in idOut
6 do if p is conflicting with all routes in idIn
7 then add p to idCand
8 if idCand 6= ∅
9 then idClique← Greedy-Add-Routes(idIn,Cand)

10 if Compute-Violation(idClique) ≥ min violation
11 then add Greedy-Add-Routes(idClique, P \ P F ) to idCliques
12 return idCliques

Figure 1: Pseudo-code for finding clique inequalities.

Greedy-Add-Routes(idClique, idCand)
1 sort idCand in decreasing order of density
2 for each route p in idCand
3 do if p is conflicting with all routes in idClique
4 then add p to idClique
5 return idClique

Figure 2: Pseudo-code of the greedy procedure for adding routes to the current idClique set.

the routes are added to the idClique set if they are conflicting with the current routes in this
set. Note that, when this procedure is called in Step 9 of the Find-Cliques procedure, there
is no need to verify if the routes in idCand are conflicting with the columns in the initial
idClique set as this was already verified in Step 6.

4.2 Clique Representation

When column generation is used for solving the master problem, only a subset of its columns
are known at the end of the solution process, namely, those present in the restricted master
problem. Clique inequalities are defined using the routes of these known columns. However,
a route p generated after adding a cut can conflict with all routes in the corresponding
clique and can thus be added to the clique to yield a larger clique and a stronger inequality.
Consequently, the reduced cost of the corresponding variable λp should also depend on the
dual value of the cut. Therefore, this value must be taken into account by the labeling
algorithm when solving the pricing problem. This means that, when creating a new label
at a node j ∈ N in the labeling algorithm, one must check, for every clique cut, whether
or not the addition of node j yields a partial path (route) that now conflicts with all routes
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in the clique. If so, one must subtract from the label’s reduced cost the dual value of the
corresponding cut. This check, called hereafter the CC check (for clique conflict check), can
be very time consuming when cliques involve large numbers of routes. In this section, we
propose an approximate representation of a clique that, in practice, reduces the time required
to perform this CC check. As we will see in the next subsection, this representation also
increases the number of dominated labels that can be discarded during the execution of the
labeling algorithm. Nevertheless, such an approximate representation does not come for free.
Some weaknesses regarding the strength of the computed clique inequalities will be pointed
out during the description of this representation.

Let αq =
(
αiq
)
i∈C for all q ∈ P . Consider a clique W and a newly generated route

p ∈ P \W . To verify if p is in conflict with all routes in W using a complete representation
of W , one has to check if αp is orthogonal with αq for each route q in W . This CC check
requires O(|W ||C|) operations. To reduce the (practical) complexity of this operation, we
rather use an approximate representation that considers only a subset of the rows in C and
a subset of the routes in W . To describe this representation, let us start with preliminary
notation and definitions. Let idRows(p) ⊆ C be the set of customers visited in route p ∈ P .

Definition 1. Let i be a customer in C, and p and q be two routes in P . A constraint in
(10) indexed by i (more briefly, row i) is said to be a conflicting row for p and q if both routes
visit customer i, that is, if i ∈

(
idRows(p) ∩ idRows(q)

)
.

Definition 2. Let W be a clique. The set χ(W ) ⊆ C of conflicting rows of W is given by

χ(W ) =
⋃

p,q∈W
p 6=q

(
idRows(p) ∩ idRows(q)

)
.

In other words, row i ∈ C belongs to χ(W ) if i is conflicting for at least one pair of distinct
routes p and q in W .

Let W be a clique and denote by idConfPairsi(W ) ⊆ W ×W the set of pairs of routes
p and q in W for which row i ∈ C is conflicting.

Definition 3. Let W be a clique. A minimal subset χmin(W ) of conflicting rows of W is a
subset of χ(W ) such that⋃

i∈χmin(W )

idConfPairsi(W ) = {(p, q) : p, q ∈W,p 6= q} (26)

and idConfPairsi(W ) \

 ⋃
j∈χmin(W )\{i}

idConfPairsj(W )

 6= ∅, ∀i ∈ χmin(W ).(27)

Condition (26) ensures that all pairs of routes in W is conflicting with respect to at least
one row in subset χmin(W ) (that is, W would still be a clique if the set of constraints (10)
was restricted to the subset of indices in χmin(W )), while condition (27) guarantees the
minimality of this subset (that is, the first condition would not hold if any row is removed
from the subset).
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Find-Minimal-Subset(idClique)
1 idCurSet← ∅
2 for each row i ∈ C
3 do idConfPairs(i)← ∅
4 for each pair of routes p and q in idClique
5 do if i is conflicting for p and q
6 then idCurSet← idCurSet ∪ {i}
7 add (p, q) to idConfPairs(i)
8 Sort idCurSet in increasing order of the cardinality of idConfPairs(i), i ∈ idCurSet
9 for each row i ∈ idCurSet

10 do idRemove← 1
11 for each pair of routes (p, q) ∈ idConfPairs(i)
12 do if 6 ∃j ∈ idCurSet \ {i} such that (p, q) ∈ idConfPairs(j)
13 then idRemove← 0
14 if idRemove = 1
15 then remove i from idCurSet
16 return idCurSet

Figure 3: Pseudo-code for finding a minimal subset of conflicting rows of a clique.

The minimal subset of conflicting rows of a given clique is not unique. Finding a minimal
subset of minimal cardinality is NP-hard: it corresponds to a set covering problem where each
pair of routes in the clique defines a covering constraint, and each constraint in (10) requires
a binary variable with a cost coefficient of 1. Given this complexity, for finding a minimal
subset for a clique W , we rather resort to a heuristic procedure that starts from the set of
conflicting rows χ(W ) and sequentially removes rows from it until satisfying condition (27).
The pseudo-code of this procedure, called Find-Minimal-Subset, is given in Figure 3. In
steps 1 to 7, the set χ(idClique) of conflicting rows of idClique and the set idConfPairs(i)
of conflicting pairs of routes for each row i ∈ C are built. In Step 8, the rows i in the
set idCurSet = χ(idClique) are sorted in increasing order of the cardinality of their set
idConfPairs(i). This sort favors finding a minimal subset of low cardinality. Then, in Steps
9 to 15, the rows in idCurSet are removed sequentially from this subset if they do not meet
condition (27). The set idCurSet returned in Step 16 is a minimal set of conflicting rows of
idClique.

The proposed approximate representation is based on the following observation.

Observation 1. Let W be a clique and χmin(W ) a minimal subset of its conflicting rows.
Let p be a newly generated route. If p is in conflict with all routes in W when considering
only the rows in χmin(W ), then p is also in conflict with all these routes when all rows i ∈ C
are considered.

Observation 1 provides a sufficient condition to identify a route that can be used to enlarge
a clique. This sufficient condition is, however, not a necessary one as shown by the following
example.
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Example 1. Consider a set of rows (customers) C = {1, 2, 3}, a clique W = {1, 2} and two
newly generated routes a and b that are both conflicting with routes 1 and 2. The columns
of all these four routes, restricted to the three rows in C, are shown below.

p = 1 2 a b

1 1
1 1 1

1 1 1

In this case, there exists a single minimal subset of conflicting rows of W , namely, χmin(W ) =
{3}. Considering only this row, route a would be declared in conflict with routes 1 and 2,
while route b would not be identified as such.

Given a clique W , the number of conflicting rows in a minimal subset χmin(W ) is at
most

∑|W |−1
i=1 i = |W |(|W |−1)

2 , i.e., the number of rows in this subset is O(min{|C|, |W |2}).
Consequently, when |C| > |W |2, considering only a minimal subset of conflicting rows when
performing the CC check can clearly accelerate this operation. This approximate CC check
might, however, result in a slightly weaker clique inequality because certain newly generated
routes may not become part of the clique even though they are actually conflicting with all
routes in this clique (when all rows are considered in the check). On the other hand, note
that a stronger inequality defined on a superset of this clique and including these routes can
be generated at a later stage. This enlarged clique would yield a different minimal subset of
conflicting rows.

An approximate representation of a clique W based on a minimal subset χmin(W ) is now
available. It is composed of the vectors vp(χmin(W )), ∀p ∈W , where vp(χmin(W )) is the sub-
vector of the column αp restricted to the rows in χmin(W ). This representation can be made
more compact by noticing that a newly generated route is in conflict with a route p ∈W if it is
also conflicting with a route q ∈W , q 6= p, such that vq(χmin(W )) ≤ vp(χmin(W )). It is easy
to prove that there are no pairs of routes p and q in W such that vq(χmin(W )) < vp(χmin(W ))
(otherwise, χmin(W ) would not be a minimal subset of conflicting rows of W ). Consequently,
one can eliminate from the representation all vectors vp(χmin(W )), except one, that are equal.
For a clique W , we denote by Γ(W ) the resulting set of routes used in the representation.
This representation, called a key set, is defined as follows.

Definition 4. Given a clique W and a minimal set χmin(W ) of its conflicting rows, the key
set of W is composed of the sub-vectors vp(χmin(W )), ∀p ∈ Γ(W ).

To accelerate the CC check, one can therefore use the key set of a clique W (based on
a minimal subset χmin(W )) instead of its complete representation. However, this approach
poses a problem since the key set would grow for each route p added to the clique such that
vp(χmin(W )) 6≥ vq(χmin(W )) for at least one route q ∈ Γ(W ). Also, two routes generated in
the same column generation iteration could exclude one another from entering the clique if
they were not conflicting with each other. This is another weakening of the clique represen-
tation that can lead to the separation of another almost identical clique with a different key
set. To avoid these drawbacks, we propose to add in a clique W only the routes p for which
vp(χmin(W )) ≥ vq(χmin(W )) for at least one route q ∈ Γ(W ). This restriction, called the
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clique admissibility rule, guarantees that all added routes conflict with each other (since they
all contain at least one of the key set sub-vectors which all conflict), and allows to always keep
the same key set as new routes are added to the clique. A route p satisfying the admissibility
rule of a clique W is said to be admissible to enlarge clique W .

The usage of this approximate clique representation and the clique admissibility rule is
illustrated in the following example.

Example 2. Consider five routes p = 1, . . . , 5 that define the key set of a clique W with
respect to a minimal subset χmin(W ) and three newly generated routes p = a, b, c. Their
respective sub-vectors vp(χmin(W )) are given below.

p = 1 2 3 4 5 a b c

1 1 1
1 1 1 1
1 1 1 1 1 1

1 1 1 1
1 1 1

1 1 1

With the proposed representation, routes a and b are admissible to enlarge W because
va(χmin(W )) ≥ v1(χmin(W )) and vb(χmin(W )) ≥ v4(χmin(W )). However, even though
route c conflicts with all routes in the key set, it is inadmissible to enlarge W because
vc(χmin(W )) 6≥ vp(χmin(W )) for p = 1, . . . , 5.

4.3 Modified Pricing Problem and Labeling Algorithm

Let Ω be the set of cliques W defining the inequalities (25) considered in the master problem
at a given moment during the execution of the BCP algorithm and let ζW be the non-positive
dual variable associated with the clique inequality (25) for W ∈ Ω. The treatment of these
inequalities has an impact on the definition of the pricing problem. Indeed, the reduced cost
of a variable λp now depends on the dual values of these inequalities, that is,

cp =
∑

(i,j)∈p

(cij − πj)−
∑

W∈Ω:p∈W
ζW . (28)

Therefore, the labeling algorithm used to solve the pricing problem must be modified to
account for these modified reduced costs. With the key set representation of a clique and the
clique admissibility rule, it is easy to determine if a route p is admissible to enlarge a clique W
when p is completely known. However, this is not an easy task when p is under construction
in the labeling algorithm. In this section, we discuss how this can be done.

The first required modification to the labeling algorithm consists of adding new compo-
nents to the labels that enable to determine if a path is admissible to enlarge a clique. For
each clique W ∈ Ω, |χmin(W )| + 1 binary resources are defined and the corresponding com-
ponents are added to each label (these components are stored as bitvectors to save memory
space). For a label representing a partial path p, the first |χmin(W )| of these resource values
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indicate, until it is proven that p can enlarge W , whether or not each customer of the minimal
subset χmin(W ) has been visited along p. Thus, they represent the sub-vector vp(χmin(W ))
and are compared in the CC check to the key set vectors of W . When the CC check is positive
(that is, p is admissible to enlarge W ), these resource values are set to 0 and never changed in
the subsequent label extensions. Furthermore, the dual value ζW is subtracted from the label
(reduced) cost component. For a label L, these resource components are denoted TWcust`(L),
` ∈ χmin(W ). The other additional resource component, denoted TWinadm(L), simply indicates
whether or not p is inadmissible to enlarge the clique: it is equal to 1 if p is inadmissible,
and 0 otherwise. Consequently, if TWinadm(L) = 0, then TWcust`(L) = 0, ∀` ∈ χmin(W ), and any
complete path obtained by extending L until reaching the sink node provides a route that can
be added to the clique W . The set of all these new resources for all cliques in Ω is denoted
Q.

With these additional resources, the labeling algorithm can be applied for solving exactly
the modified pricing problem if the dominance criterion of Proposition 1 considers the set
R∪Q instead of only R. However, given the large number of resources required by each clique
inequality, the dominance criterion becomes weaker as clique inequalities are added and the
difficulty of solving the pricing problem drastically increases. This was mentioned earlier by
Jepsen et al. [15] and Petersen et al. [20] when adding CG cuts in a column generation context.
To improve the performance of their labeling algorithms, these authors have exploited the
facts that only minimal cost paths are sought and that the CG cuts all have non-positive
dual values, i.e., they can be considered as penalties in the pricing problem since they are
subtracted. Indeed, a label L can dominate another label L′ if the difference between the
cost of L′ and that of L is at least equal to the maximal sum of the penalties that L can pay
when further extended toward the sink node, while L′ would not pay them. This observation
allows to neglect the resources defined for the inequalities in the dominance criterion (see
Proposition 2). A similar trick was used by Chabrier [4] to increase dominance when the set
of customers visited by a partial path includes at most two customers that do not belong to
the set of customers visited by another (possibly dominating) partial path.

The dominance criterion we propose is very similar to the one developed for the CG
inequalities, although some adjustments must be done because clique inequalities do not have
as nice properties as CG inequalities. This criterion is stated in the following proposition.

Proposition 3. Let L and L′ be two labels representing partial paths ending at the same
node. Label L dominates label L′ (which can be discarded) if

Tcost(L)−
∑

W∈ΩLL′

ζW ≤ Tcost(L′) (29)

Tr(L) ≤ Tr(L′) ∀r ∈ R, (30)

where ΩLL′ = {W ∈ Ω : TWinadm(L) = 1and
(
TWinadm(L′) = 0or∃ ` ∈ χmin(W )such thatTWcust`(L) >

TWcust`(L
′)
)
} is the set of cliques W for which the penalty ζW could be paid in a feasible ex-

tension of L along an arc sequence, while it would not be paid when extending similarly
L′.

Proof. The proof is done for a single clique W ∈ Ω and can be trivially extended for the
whole clique set Ω. To prove that L dominates L′ when (29)–(30) hold, we show that i)
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F (L′) ⊆ F (L), and ii) Tcost(L) + f(L, ε) ≤ Tcost(L′) + f(L′, ε) for all ε ∈ F (L′), where F (J)
is the set of feasible extensions (along arc sequences) of a label J and f(J, ε) is the difference
between the cost of label J and that of the path obtained by extending label J using extension
ε. Observe that, for any label J ,

f(J, ε) =
{
farc(ε) if TWinadm(J) = 0 or TWinadm(J ⊕ ε) = 1
farc(ε)− ζW otherwise,

(31)

where farc(ε) is the sum of the reduced costs (cij−πj) of the arcs (i, j) traversed in extension
ε, and J ⊕ ε denotes the label created by extending J using extension ε. Note also that
farc(ε) ≤ f(J, ε) because ζw ≤ 0.

Assume that relations (29)–(30) are satisfied. Given that all extension functions of the
resources r ∈ R are non-decreasing, relations (30) imply that F (L′) ⊆ F (L). Now, to show
that Tcost(L) + f(L, ε) ≤ Tcost(L′) + f(L′, ε) for all ε ∈ F (L′), we consider the following four
cases.

Case 1: TWinadm(L) = 0.

In this case, W 6∈ ΩLL′ and f(L, ε) = farc(ε). Consequently, relation (29) writes as

Tcost(L) ≤ Tcost(L′)
⇒ Tcost(L) + farc(ε) ≤ Tcost(L′) + farc(ε)
⇒ Tcost(L) + f(L, ε) ≤ Tcost(L′) + farc(ε) ≤ Tcost(L′) + f(L′, ε).

Case 2: TWinadm(L) = 1, TWinadm(L′) = 1, and TWcust`(L) ≤ TWcust`(L
′), ∀` ∈ χmin(W ).

In this case, W 6∈ ΩLL′ . Furthermore, because TWcust`(L) ≤ TWcust`(L
′), ∀` ∈ χmin(W ),

one can deduce that TWinadm(L⊕ε) ≥ TWinadm(L′⊕ε) and f(L, ε) ≤ f(L′, ε). Consequently,
from relation (29), we find that

Tcost(L) ≤ Tcost(L′)
⇒ Tcost(L) + f(L, ε) ≤ Tcost(L′) + f(L, ε) ≤ Tcost(L′) + f(L′, ε).

Case 3: TWinadm(L) = 1, TWinadm(L′) = 1, and ∃ ` ∈ χmin(W ) such that TWcust`(L) > TWcust`(L
′).

In this case, W ∈ ΩLL′ . Consequently, relation (29) writes as

Tcost(L)− ζW ≤ Tcost(L′)
⇒ Tcost(L) + farc(ε)− ζW ≤ Tcost(L′) + farc(ε)
⇒ Tcost(L) + f(L, ε) ≤ Tcost(L′) + farc(ε) ≤ Tcost(L′) + f(L′, ε).

Case 4: TWinadm(L) = 1 and TWinadm(L′) = 0.

In this case, W ∈ ΩLL′ and the proof is identical to that of the case 3.
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The dominance criterion of Proposition 3 gives the possibility to dominate more labels
than when dominance is done using the criterion of Proposition 1 with the set R∪Q. Indeed,
the latter criterion allows no dominance in the above cases 3 and 4, whereas the former
criterion can identify dominated labels in these cases.

To further increase the number of dominated labels, condition (29) can be relaxed by
considering the notion of unreachable customer as defined in Section 3. Indeed, if, for a clique
W ∈ Ω, TWinadm(L) = 1 and U`(L) = 1 for all ` ∈ χmin(W ) such that TWcust`(L) = 0, then W
can be excluded from the set ΩLL′ , that is, the penalty ζW can be disregarded in (29).

Finally, remark that the use of minimal subsets of conflicting rows (instead of the whole
sets of conflicting rows) in the proposed clique representation increases the possibility of
dominating labels simply because less clique resources are needed.

4.4 A Special Case of Clique Inequalities

As mentioned in Section 3, the SR inequalities (20) used by Jepsen et al. [15] and Desaulniers
et al. [7] for the VRPTW are obtained using a CG multiplier equal to 1

2 for exactly three
constraints in (10) and a zero multiplier for all the other constraints. For a given subset B of
three customers in C, such an inequality can be rewritten as:∑

p∈PB

λp ≤ 1, (32)

where PB ⊆ P is the subset of routes visiting at least two customers in B. It is easy to see that
this SR inequality is in fact a clique inequality (25) that can be represented with a minimal
subset of conflicting rows containing the three rows (10) associated with the customers in B
and the key set composed of the three vectors (1, 1, 0)>, (1, 0, 1)>, and (0, 1, 1)>. Hence, the
SR inequalities used by Jepsen et al. [15] and Desaulniers et al. [7] are a special case of the
clique inequalities. Nevertheless, because these SR inequalities only require a single additional
resource each to be treated, it is more advantageous to treat them as SR inequalities than as
clique inequalities that would necessitate four extra resources each.

5 Computational Experiments

We conducted computational experiments to assess the use of the clique inequalities (25) when
the VRPTW is solved by the BCP method described in Section 3. To do so, we compare the
results of two different solution methods. The first method, denoted SR, corresponds to a BCP
method in which only subset row cuts are added as cutting planes. For this method, we used
the code, the heuristic strategies, and the parameter setting that were used by Desaulniers
et al. [7]. In particular, we applied the same heuristics for generating rapidly negative reduced
cost columns, avoiding in most column generation iterations the use of an exact (and often
highly time-consuming) dynamic programming algorithm for solving the ESPPRC pricing
problem. Also, we considered only SR cuts defined with exactly three constraints and did
not reoptimize the modified master problem to optimality after adding cuts in a branch-and-
bound node (in this case, the lower bound of the node corresponds to the bound computed
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before adding cuts). The second method, denoted CLIQUE, is the same as the first one
except that violated clique inequalities can be added when no violated SR inequalities are
found. Because the SR cuts defined with three constraints are also clique cuts as discussed
in Section 4.4, this method can be seen as a method applying only clique cuts in which a
special case of the clique cuts (the SR cuts) are favored and treated more efficiently. The
generation of clique cuts are subject to the following rules which are similar to those applied
for the SR cuts. The most violated clique cut must be violated by at least 0.1 before adding
any cuts and cuts violated by less than 0.01 are not added. The maximal number of cuts
added per iteration is 20. Furthermore, a clique cut can only be added if the minimal subset
of conflicting rows of its clique differ by at least 20 % with the minimal subset of conflicting
rows of all already generated clique cuts. Finally, we do not consider clique cuts defined for
cliques represented by a minimal subset containing more than 31 conflicting rows (always
allowing the use of efficient bitwise operations when using a 32-bit processor).

The experiments were conducted on a subset of the well-known VRPTW benchmark
instances of Solomon [24]. Solomon created 56 instances, each involving 100 customers. They
can be divided into 3 classes according to the spatial distribution of the customers: the
customer locations are clustered in the C class, randomly distributed in the R class, and
partly clustered and partly randomly distributed in the RC class. Furthermore, each class
contains two series of instances. In the 1-series instances (C1, R1, and RC1), the time windows
are relatively narrow, while they are much wider in the 2-series instances (C2, R2, and RC2).
The 1-series instances are, in general, easier to solve than the 2-series instances. To the best
of our knowledge, 5 of these 56 instances (all R2 and RC2 instances) have not yet been solved
to optimality (see Desaulniers et al. [7]). For the unsolved instances, even their initial master
problems (that is, without any cuts) have not yet been solved when using column generation
with the ESPPRC as a pricing problem. Consequently, the clique inequalities presented in
this paper cannot be useful for the moment to help solving these instances.

Our tests focused only on the R1 and RC1 instances. The C1 and C2 instances were
not considered because they can all be solved in the root node of the search tree without
adding any cuts. The 19 R2 and RC2 were not considered for three reasons: i) 5 of them
cannot be solved with the proposed methodology; ii) 8 of the 14 others can be solved in
the root node by considering only the SR inequalities; and iii) for most of the remaining
ones, the computational times are highly dependent on the number of times the ESPPRC
pricing problem is solved with the exact dynamic programming algorithm. The instances are
identified with the usual notation, that is, for example, RC105 indicates the fifth instance of
the 1-series in the RC class.

All computational experiments were performed on a machine with 12 GB of memory
equipped with a 64-bit Dual Core AMD Opteron processor 275 clocked at 2.2 GHz and a Linux
operating system. The BCP method was implemented using the Gencol library (version 4.5)
that is commercialized by Kronos Inc and represents the resource values as 32-bit integers.
All restricted master problems were solved using the CPLEX solver, version 10.1.1.

The computational results reported in this section are divided into four parts. First, we
investigate the use of the key set representation of a clique compared to its full representation.
Second, we compare the root node lower bounds obtained by the SR and CLIQUE methods.
Third, we compare the total running times for solving the VRPTW instances with both
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Complete Key set

Avg. Avg. Avg. Avg.
rows cols rows cols

Instance CPU LB cuts in χ in clique CPU LB cuts in χmin in Γ

R104 4542 971.0 21 29.7 27.3 3163 971.0 20 10.8 14.0
R106 163 1234.4 6 30.0 27.0 122 1234.4 6 11.5 14.3
R108 3710 932.1 4 29.8 24.8 3964 932.1 8 10.9 15.1
R109 211 1144.0 5 28.4 23.8 255 1144.2 9 9.2 12.6
R110 1171 1067.5 45 27.5 23.7 711 1067.7 36 9.4 12.9
R111 544 1045.5 13 25.5 19.8 406 1045.4 6 8.2 9.0
R112 17118 946.0 20 29.3 27.3 16126 946.4 37 13.6 21.9

RC103 1182 1257.7 11 25.3 25.6 751 1257.7 2 5.0 6.0
RC104 9698 1129.3 5 29.6 30.2 8353 1129.3 8 10.5 16.3

Table 1: Complete representation and key set representation results.

methods. Finally, we provide average separation times for the SR and the clique cuts.

5.1 Clique Representation Results

With the first experiments, we want to assess the effectiveness of using the key set clique
representation (as proposed in Section 4.2) instead of the complete representation. In these
tests, we used, with both representations, the CLIQUE method for solving the master problem
augmented with SR and clique cuts at the root node of the search tree. In Table 1, we report
the results obtained for the R1 and RC1 instances for which clique inequalities were generated
with a set of conflicting rows involving less than 32 rows (that is, χ(W ) ≤ 31 for a clique
W ). This condition ensures that the generated clique inequalities are admissible for both
representations, allowing a fair comparison.

For each instance and for both representations, this table indicates the total computational
time in seconds for solving the master problem at the root node (CPU), the lower bound
reached (LB), the total number of clique cuts generated (cuts), the average number of rows in
χ(W ) or χmin(W ) for representing a clique W , and the average number of columns in a clique
W or in Γ(W ). From these results, we make the following observations. Firstly, for 3 of the 9
instances, the lower bound is stronger with the key set representation, while it is weaker for 1
instance. This might be surprising because the clique cuts are stronger when the cliques are
completely represented, but as we are using a heuristic separation procedure, this is plausible.
Secondly, the key set representation yields faster computational times for 7 of the 9 instances.
For the other two instances, these times are slightly higher because more cuts were generated,
yielding additional master problem reoptimizations. Overall, the average computational time
is reduced by 12% when using the key set representation. Finally, we can attribute this gain
in computational time to the fact that the key set representation is much more compact than
the complete representation. Indeed, the number of rows and columns considered are reduced
by averages of 65% and 47%, respectively, when using the key set representation.

In summary, for the tested instances, the key set representation yields an average reduction
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of 12% of the computational time. It also reduces memory consumption. Most importantly,
it allows to generate and handle efficiently clique inequalities for cliques yielding more than
31 conflicting rows but less than 31 rows in a minimal subset of conflicting rows.

5.2 Lower Bound Results

In this section, we provide the lower bounds achieved by three methods (no cuts, SR, and
CLIQUE) at the root node of the search tree. As opposed to what was used to obtain
the integrality results presented in the next subsection (see the beginning of Section 5),
the modified master problem was reoptimized to optimality after adding cuts for computing
these lower bounds. Given that, at the root node, the CLIQUE method applies first all SR
inequalities used by the SR method, the lower bounds produced by these three methods are
always non-decreasing (in the order no cuts, SR, CLIQUE) for each instance. These lower
bounds are reported in Table 2. In this table, the UB column gives the optimal value. The
LB columns provide the lower bounds for each method, where a value in bold face indicates
that the lower bound is equal to the upper bound. In these columns for the SR and CLIQUE
methods, “id” (for identical) means that it was impossible for the corresponding method to
improve the previous lower bound on the same line because it was equal to the upper bound.
The “gap cl.” columns for the SR and CLIQUE methods gives the percentage of the integrality
gap of the no cuts method closed by the cuts (= 100

(
UB−LBi

UB−LBnocuts

)
, i = SR,CLIQUE).

Finally, for the CLIQUE method, the “gap cl. SR” column specifies the percentage of the
integrality gap of the SR method closed by the clique cuts (= 100

(
UB−LBCLIQUE

UB−LBSR

)
. In these

columns, a “-” appears when the corresponding LB column contains “id”.

These results indicate that the clique cuts can be useful to improve the lower bound quality
at the root node of the search tree for 13 of the 20 instances tested. For the other 7 instances,
the lower bounds reached by the SR method were already equal to their corresponding upper
bounds. Out of these 13 instances, the clique cuts succeeded to improve the lower bound
in 10 cases, totally closing the integrality gap for 2 instances (R105 and R108). In fact, the
average integrality gap of the SR method closed by the clique cuts is 38%. This average is
significant.

The lower bounds using clique inequalities are not as impressive as those obtained by the
CG rank 1 cuts used in Petersen et al. [20]. This can be partially explained by the cut adding
rules used in our algorithm (see the beginning of Section 5). Indeed, we do not add any
violated inequalities if none of them is violated by at least 0.1, we use a heuristic separation
routine for finding violated cliques, and we limit the size of the cliques (number of rows in
the minimal subset) defining the cuts. This is in contrast with the work of Petersen et al. [20]
where they added all inequalities violated by at most 0.0001 and used an exact separation
procedure that was restricted to one hour of computational time at each call. Their goal was to
obtain the best possible lower bounds and not necessarily to reduce the overall computational
times.
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no cuts SR CLIQUE
Instance UB LB LB gap cl. LB gap cl. gap cl. SR

R101 1637.7 1631.2 1634.0 43.1 % 1634.0 43.1 % 0 %
R102 1466.6 1466.6 id - id - -
R103 1208.7 1206.8 1208.7 100.0 % id id -
R104 971.5 956.9 970.5 93.1 % 971.3 98.6 % 80.0 %
R105 1355.3 1346.2 1355.2 98.9 % 1355.3 100.0 % 100.0 %
R106 1234.6 1227.0 1234.4 97.4 % 1234.4 97.4 % 0 %
R107 1064.6 1053.3 1063.3 88.5 % 1063.9 93.8 % 46.2 %
R108 932.1 913.6 932.0 99.5 % 932.1 100.0 % 100.0 %
R109 1146.9 1134.3 1144.0 77.0 % 1144.2 78.6 % 6.9 %
R110 1068.0 1055.6 1067.0 91.9 % 1067.6 96.8 % 60.0 %
R111 1048.7 1034.8 1045.3 75.5 % 1045.9 80.0 % 17.6 %
R112 948.6 926.8 945.8 87.2 % 946.9 92.2 % 39.3 %

RC101 1619.8 1584.1 1619.8 100.0 % id id -
RC102 1457.4 1406.3 1457.4 100.0 % id id -
RC103 1258.0 1225.6 1257.5 98.5 % 1257.7 99.1 % 40.0 %
RC104 1132.3 1101.9 1129.7 91.4 % 1129.9 92.1 % 7.7 %
RC105 1513.7 1472.0 1513.7 100.0 % id id -
RC106 1372.7 1318.8 1367.5 90.4 % 1367.5 90.4 % 0 %
RC107 1207.8 1183.4 1207.8 100.0 % id id -
RC108 1114.2 1073.5 1114.2 100.0 % id id -

Table 2: Lower bounds achieved by the no cuts, SR and CLIQUE methods.

5.3 Integer Solution Results

Using the SR and CLIQUE methods, we solved to optimality the 20 R1 and RC1 instances.
Table 3 presents the statistics of these experiments. For each instance and each method, it
provides the total computational time in seconds (CPU), the total number of cuts generated
(cuts), and the total number of nodes in the branch-and-bound search tree (BB). For the
CLIQUE method, the numbers of SR and clique inequalities are given in parenthesis in the
“cuts” column. Again, in the columns for the CLIQUE method, “id” means that, for the
instance in question, the CLIQUE method coincides with the SR method because the instance
could be solved in the root node without generating any clique inequalities.

From these results, we observe that clique inequalities were generated for 12 of the 13
instances which could not be solved in the root node with the SR method. For 8 of these 13
instances, the addition of clique inequalities reduced the number of branch-and-bound nodes
as expected with stronger lower bounds, while this number increased for a single instance
(R109). However, the computational times are, in general, longer with the CLIQUE method.
In fact, they slightly decreased for only 3 instances, while they considerably increased for
the instances R109, R111, and R112. For these instances, much more cuts were generated
by the CLIQUE method and yielded a large number of additional reoptimizations that were
not compensated by the decrease in the number of nodes for the R111 and R112 instances.
Nevertheless, we can expect that using the clique inequalities may be competitive when the
search trees are large, thereby trading the solution of many pricing problems for fewer but
harder ones.
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SR CLIQUE

Instance CPU cuts BB CPU cuts (SR/clique) BB

R101 9 16 15 9 16 (16/0) 15
R102 3 0 1 id id id
R103 20 82 1 id id id
R104 2332 351 11 3990 347 (271/76) 5
R105 28 154 3 35 155 (154/1) 3
R106 88 139 3 104 152 (139/13) 3
R107 347 216 5 479 198 (171/27) 3
R108 1527 265 3 1249 285 (265/20) 1
R109 942 466 47 2373 865 (676/191) 91
R110 420 227 5 533 241 (208/33) 5
R111 5246 972 95 13667 1299 (739/560) 91
R112 17484 576 21 55226 666 (414/252) 11

RC101 28 107 1 id id id
RC102 194 194 1 id id id
RC103 1055 277 5 961 279 (277/2) 3
RC104 14294 372 25 14343 382 (346/37) 15
RC105 26 59 1 id id id
RC106 5240 943 87 4279 668 (616/52) 47
RC107 229 159 1 id id id
RC108 2203 192 1 id id id

Table 3: Integer solution results for the SR and CLIQUE methods.

5.4 Separation Results

In Table 4, we present results on the procedures used to separate the SR and clique inequalities
in the CLIQUE method. For each instance and for each procedure, this table specifies the
total number of times that the procedure was called, the total number of cuts generated
(cuts), the total time in seconds spent in the procedure, and the average time per call.

Comparing the overall time spent in both separation procedures with the total com-
putational time reported in Table 3 for the CLIQUE method, we observe that the overall
separation time is, in general, relatively small, but it can sometimes be quite significant (up
to 25% for instance R109). Because the SR separation routine is always invoked first and the
clique separation routine is not invoked when violated SR inequalities are found, the num-
ber of calls to the first routine is always greater than that of the second one. For certain
instances (in particular, R111 and R112), the clique routine is however called several times
per branch-and-bound node to generate a large number of clique cuts. Finally, we remark
that the average time per call required by the clique routine is, in general, much smaller than
that of the SR routine. Thus, this gives room for a more extensive separation procedure for
the clique inequalities that could further help improving the quality of the lower bounds.
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SR separation clique separation

Instance called cuts total time avg. time called cuts total time avg. time

R101 10 16 < 1 < 0.1 7 0 < 1 < 0.1
R102 0 0 0 0.0 0 0 0 0.0
R103 6 82 1 0.2 0 0 0 0.0
R104 33 271 176 5.3 15 76 19 1.3
R105 13 154 5 0.4 2 1 < 1 0.2
R106 14 139 21 1.5 5 13 1 0.2
R107 18 171 75 4.2 8 27 3 0.4
R108 19 265 86 4.5 1 20 4 4.0
R109 189 676 521 2.8 142 191 89 0.6
R110 20 208 88 4.4 7 33 3 0.4
R111 303 739 986 3.3 251 560 1120 4.5
R112 76 414 751 9.9 51 252 310 6.1

RC101 10 107 2 0.2 0 0 0 0.0
RC102 19 194 29 1.5 0 0 0 0.0
RC103 23 277 78 3.4 3 2 < 1 0.1
RC104 47 346 228 4.9 21 37 11 0.5
RC105 6 59 2 0.3 0 0 0 0.0
RC106 107 616 352 3.3 60 52 35 0.6
RC107 13 159 35 2.7 0 0 0 0.0
RC108 17 192 48 2.8 0 0 0 0.0

Table 4: Separation results for the SR and clique inequalities.

6 Conclusion

This paper is a first step towards adding special purpose cuts for the master problem in a
BCP algorithm for the VRPTW. It considers clique inequalities defined directly on the mas-
ter problem variables and shows how to deal with their dual values directly in the labeling
algorithm used for solving the ESPPRC pricing problem. In particular, it proposes an ap-
proximate representation of a clique and a modified dominance criterion that allows for an
efficient treatment of the clique inequalities. The computational results shows that these in-
equalities are helpful, in general, to reduce the number of branch-and-bound nodes to explore.
However, the overall computational times are, in general, slower when applying them due to
the number of additional master problem reoptimizations to perform.

We think that the proposed methodology can be improved to yield much better results.
For example, a better separation heuristic could be used and the strategy always favoring the
generation of SR cuts before that of clique cuts could be revised. Such developments will be
the subject of future research.
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Abstract

Given a Dantzig-Wolfe decomposition of an integer linear program, this note presents
a general framework for formulating, on the original integer formulation, valid inequalities
derived on the integer master problem. It is possible to model these inequalities by adding
new variables and constraints to the original formulation. This clarifies the connection
between variables in the original formulation and the decomposed formulation and makes
it easier to show the correctness of valid inequalities for the master problem, and to show
how the additional inequalities may give rise to an augmented subproblem. Examples on
how to apply this framework are given for the vehicle routing problem with time windows,
the edge coloring problem, and the cutting stock problem.

Keywords: Dantzig-Wolfe decomposition, column generation, cutting planes

1 Introduction

Branch-and-price is already established as the leading solution methodology for many large-
scale integer programming problems. The use of cutting planes has received increasing atten-
tion, but has mostly been limited to specialized implementations within branch-and-cut-and-
price algorithms. This paper presents a general framework on the use of cutting planes that
are available on some integer master problem structures in the context of column generation.
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It is a generalization and a formalization of the work initially presented in Jepsen et al. [12]
(and later used in Desaulniers et al. [7]) in which, given a Dantzig-Wolfe decomposition of the
vehicle routing problem with time windows (VRPTW), a subset of the Chvátal-Gomory rank-
1 cuts derived from the set partitioning master problem formulation was successfully applied.
This work was later extended in Petersen et al. [16] to include all Chvátal-Gomory rank-1
cuts. In both papers it is shown that the additional cutting planes lead to an augmentation of
the subproblem. To be more specific, the subproblem which is a resource constrained shortest
path problem and additional resources are added for each cut. The augmented subproblem in-
directly indicates that there exist an augmented formulation of the original multi-commodity
network flow model of the VRPTW that includes the Chvátal-Gomory rank-1 cuts based on
the integer master problem formulation.

In Spoorendonk and Desaulniers [18] clique inequalities are applied to the VRPTW and
the augmented number of resources due to the the additional cutting planes are handled in
the labeling algorithm for the subproblem. Baldacci et al. [1] apply clique inequalities to the
capacitated vehicle routing problem, but here the subproblem is solved by an enumeration
scheme based on dynamic programming.

In Nemhauser and Park [14] one can find an early example of the use of cutting planes
derived on the integer master problem of a column generation solution approach for the
edge coloring problem. Inequalities are added in the master problem and modelled in the
subproblem which is solved by branch-and-bound. Other examples are found in Belov and
Scheithauer [3, 4] for various cutting stock problems. In the first paper, Chvátal-Gomory
cuts of any rank are used on the one-dimensional cutting stock problem and the multiple
length one-dimensional cutting stock problem. In the second, both Chvátal-Gomory cuts and
Gomory mixed integer cuts are used on the one-dimensional cutting stock problem and the
two-dimensional two-stage cutting problem. Cuts are added in the master problem and the
subproblem is solved with a branch-and-bound algorithm using an approximation algorithm
to calculate lower bounds but no connection is made to variables in the original solution space.

The emphasis in this note is solely on how to apply cutting planes derived on integer
master problem formulations given a Dantzig-Wolfe decomposition of an integer program.
Section 2 recaps the Dantzig-Wolfe decomposition and introduces the notation used through-
out the remainder of the note. Section 3 introduces the general framework that describes an
augmentation of the original formulation such that it includes the valid inequalities derived
from the integer master problem formulation. Examples on how to apply and interpret the
presented framework are provided in Section 4.

2 Dantzig-Wolfe Decomposition

Dantzig-Wolfe decomposition for linear programs was introduced by Dantzig and Wolfe [5].
Detailed surveys on column generation, branch-and-price, and branch-and-cut-and-price al-
gorithms for the decomposition of integer linear programs may be found in Barnhart et al.
[2], Lübbecke and Desrosiers [13]. Following is the Dantzig-Wolfe decomposition, almost as
presented in Lübbecke and Desrosiers [13]. We have specifically chosen the discretization
version, see Vanderbeck [20], as we want to apply general cuts to an integer master problem
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formulation. Consider the |K|-block-angular linear integer problem (IP):

min
∑
k∈K

ckxk (1)

s.t.
∑
k∈K

Akxk ≤ b (2)

Dkxk ≤ dk k ∈ K (3)

xk ∈ Znk
+ k ∈ K (4)

This can be rewritten into the smaller (in the number of constraints) problem:

min
∑
k∈K

ckxk

s.t.
∑
k∈K

Akxk ≤ b

xk ∈ Xk, k ∈ K

containing only the upper matrix blocks Ak for k ∈ K. However, xk belongs to the domain
Xk = {xk ∈ Znk

+ : Dkxk ≤ dk}, that is, xk must satisfy the constraint matrix block Dk to be
part of the smaller problem. In Nemhauser and Wolsey [15] it is shown that, for each k ∈ K,
there exits a finite set of integer points {xkp}p∈Pk and a finite set of integer rays {xkr}r∈Rk

such that

xk =
∑
p∈Pk

xkpλkp +
∑
r∈Rk

xkrλkr,
∑
p∈Pk

λkp = 1, and λkp ∈ {0, 1}, p ∈ P k, λkr ∈ Z+, r ∈ Rk.

Substituting this into IP, the following integer master problem (IMP) is obtained:

min
∑
k∈K

(
∑
p∈Pk

(ckxkp)λkp +
∑
r∈Rk

(ckxkr)λkr) (5)

s.t.
∑
k∈K

(
∑
p∈Pk

(Akxkp)λkp +
∑
r∈Rk

(Akxkr)λkr) ≤ b (6)

∑
p∈Pk

λkp = 1 k ∈ K (7)

λkp ∈ {0, 1} p ∈ P k, k ∈ K (8)

λkr ∈ Z+ r ∈ Rk, k ∈ K (9)

IMP contains a smaller number of constraints than the original IP but it does have an expo-
nential number of variables. The linear relaxation of IMP, denoted LMP, is often solved using
column generation where π and µk, k ∈ K are the vector of dual variables for constraints (6)
and (7), respectively. Only a subset of variables in LMP is considered and this gives rise to
a restriction of LMP, denoted the restricted linear programming master problem (RLMP).
Generating new columns is done by solving a subproblem for each of the domains Xk de-
fined using information from the current solution of the RLMP, more precisely, the values
of the dual variables π and µk. To find a column with the least reduced cost, the following
subproblems for k ∈ K are solved:

min
x∈Xk

(ck − πAk)x− µk (10)
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If (10) is unbounded the solution is an integer ray in Rk; otherwise it provides a new integer
point in P k if the objective value is negative. The column generation process stops if the
objective value is null for all subproblems k ∈ K.

Now consider a valid inequality for the original IP (1)-(4):∑
k∈K

αkxk ≤ β

that is, a linear combination of the original xk variables. Decomposed in LMP, the above
inequality reads: ∑

k∈K
(
∑
p∈Pk

(αkxkp)λkp +
∑
r∈Rk

(αkxkr)λkr) ≤ β (11)

with the associated dual variable ν. Therefore adding valid inequalities directly from the
original IP affects the coefficients in the objective function of the subproblems (10) which
becomes:

min
x∈Xk

(ck − πAk − ναk)x− µk

Consider next a valid inequality for the decomposed IMP (5)-(9):∑
k∈K

(
∑
p∈Pk

αkpλkp +
∑
r∈Rk

αkrλkr) ≤ β (12)

with the dual variable σ in the corresponding linear relaxation. Then negative reduced cost
columns are found by solving the following subproblems, for k ∈ K:

min
x∈Xk

(ck − πAk)x− µk − σαkp (13)

As above, if (13) is unbounded the solution is an integer ray in Rk; otherwise it provides a
new integer point in P k if the objective value is negative. Column generation stops when all
subproblems return a zero objective value.

Note, that when αkxkp = αkp and αkxkr = αkr then (11) is equivalent to (12). Otherwise
the calculation of the last term −σαkp (or −σαkr) in the objective function of the above
subproblems may not be straightforward since αkp (or αkr) can depend on the constraint
matrix Ak and the extreme point xkp (or extreme ray xkr). This is the focus of the remainder
of this paper.

3 An Augmented IP Formulation

In the following we present a general method for describing in IP (1)-(4) valid inequalities
derived from IMP (5)-(9). This is done through the introduction of new variables and con-
straints to the formulation of IP that are used to model the valid inequalities for IMP. We
denote this the augmented IP formulation. The decomposition of the augmented IP formula-
tion is equivalent with IMP where the valid inequalities are added. Also, the decomposition
shows how the subproblems are augmented with regard to variables and constraints (from
the additional variables and constraints in the augmented IP formulation).
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Let f(Ak, xkp) be a function that calculates the coefficient αkp for λkp (function f(Ak, xkr)
calculates coefficient αkr for λkr) given the constraints matrix Ak and an integer point xkp

(integer ray xkr) of domain Xk. That is,

f(Ak, xkp) = αkp and f(Ak, xkr) = αkr.

Let yk be a variable in the augmented formulation of IP such that:

yk = f(Ak, xk) k ∈ K (14)

meaning that ykp = f(Ak, xkp) and ykr = f(Ak, xkr) for extreme points and rays of the
polytope of the kth block in the augmented IP. The valid inequality (12) derived in IMP can
then be expressed in the augmented IP as:∑

k∈K
yk ≤ β. (15)

Let C be the index set of such valid inequalities derived for the IPM of the form:∑
k∈K

(
∑
p∈Pk

fi(Ak, xkp)λkp +
∑
r∈Rk

fi(Ak, xkr)λkr) ≤ βi i ∈ C (16)

With the use of (14) and (15) the augmented IP formulation is:

min
∑
k∈K

ckxk (17)

s.t.
∑
k∈K

Akxk ≤ b (18)∑
k∈K

yki ≤ βi i ∈ C (19)

Dkxk ≤ dk k ∈ K (20)

yki = fi(Ak, xk) i ∈ C, k ∈ K (21)

yki ∈ R i ∈ C, k ∈ K (22)

xk ∈ Znk
+ k ∈ K (23)

The above augmented IP still has a |K|-block-angular structure with (18) and (19) acting as
the linking constraints while the |K| blocks apart from (20) also include new constraints (21)
and variables (22). This leads to the following augmented IMP:

min
∑
k∈K

(
∑
p∈Pk

(ckxkp)λkp +
∑
r∈Rk

(ckxkr)λkr) (24)

s.t.
∑
k∈K

(
∑
p∈Pk

(Akxkp)λkp +
∑
r∈Rk

(Akxkr)λkr) ≤ b (25)

∑
k∈K

(
∑
p∈Pk

ykpi λkp +
∑
r∈Rk

ykri λkr) ≤ βi i ∈ C (26)

∑
p∈Pk

λkp = 1 k ∈ K (27)

λkp ∈ {0, 1} p ∈ P k, k ∈ K (28)

λkr ∈ Z+ r ∈ Rk, k ∈ K (29)
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where the constraints (26) are a reformulation of the valid inequalities given by (16). Let
σi, i ∈ C be the dual variables for constraints (26) in the corresponding LMP. Then column
generation is performed by solving the following subproblems, for k ∈ K, in replacement of
(10):

min
x∈Xk

(ck − πAk)x− µk −
∑
i∈C

σiyi (30)

s.t. yi = fi(Ak, x) i ∈ C (31)
yi ∈ R i ∈ C (32)

The addition of variables and constraints in the augmented IP, and consequently in the
subproblems, may invalidate special purpose algorithms that were previously used for solving
(10), see e.g., Section 4.1. However, several examples exist where an augmented IP formulation
and a harder subproblem proves worthwhile, e.g., Jepsen et al. [12] and Desaulniers et al. [7].
Note that functions fi(Ak, xk) need not be linear in the subproblem, for example if dynamic
programming is used to solve it. But for (31) to hold in the linear programming case, it may
be necessary to add several constraints and/or variables per subproblem.

In case the new inequalities depend on other inequalities added previously, e.g., in the
case of Chvátal-Gomory cuts of rank higher than 1, the suggested framework may be used
iteratively. Alternatively the function f(Ak, x) in the subproblem may be reformulated into
fi(Ak, y0, . . . , yi−1, x) such that the function includes the y-variables that are the coefficients
of the previously added valid inequalities, see Section 4.4.

4 Applications

This section shows some examples of how to interpret and use the theory presented above.

4.1 Chvátal-Gomory rank-1 cuts for the VRPTW

This is an example of how the work presented in Jepsen et al. [12] and Petersen et al. [16]
fits into the proposed framework. Note that the subset row inequalities considered in Jepsen
et al. [12] (and in Desaulniers et al. [7]) can be written as Chvátal-Gomory rank-1 cuts with
exactly three non-zero Chvátal-Gomory multipliers equal to 1

2 .
The VRPTW is defined on a directed graph G = (V,A) with node set V and arc set A.

It can be described as finding the set of least cost paths for the set K of vehicles originating
from a depot split in a start o and a target o′ depot such that the node set N = V \ {o, o′}
is covered exactly once. All nodes must be visited within a given time window [ai, bi] for a
node i, and a node i have a load di that accumulates for a vehicle k and may never exceed
the capacity Dk. Vehicles can be left unused by using the zero cost arc (o, o′). Let the binary
variable xkij indicates the use of arc (i, j) by vehicle k and the variable tki indicates the time of
vehicle k at node i if vehicle k visits node i (and is otherwise irrelevant). Let δ−(i) and δ+(i)
be the set of other end nodes for the in- and outgoing arcs of node i. Given the cost ckij and
the traveling time τkij of arc (i, j) for vehicle k, the three index formulation for the VRPTW
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with M being a big constant is:

min
∑
k∈K

∑
(i,j)∈A

ckijx
k
ij (33)

s.t.
∑
k∈K

∑
j∈δ+(i)

xkij = 1 i ∈ N (34)

∑
j∈δ+(o)

xkoj =
∑

i∈δ−(o′)

xkio′ = 1 k ∈ K (35)

∑
j∈δ−(i)

xkji −
∑

j∈δ+(i)

xkij = 0 i ∈ N, k ∈ K (36)

∑
(i,j)∈A

dix
k
ij ≤ Dk k ∈ K (37)

tki + τkij −M(1− xkij) ≤ tkj (i, j) ∈ A, k ∈ K (38)

ai ≤ tki ≤ bi i ∈ V, k ∈ K (39)

xkij ∈ {0, 1} (i, j) ∈ A, k ∈ K (40)

Where the objective function (33) minimizes the overall travel cost, constraints (34) ensures
that nodes are visited exactly once, (35) ensures that all vehicles leaves and enters the depot
once, (36) ensures flow conservation at the nodes for all vehicles, (37) ensures that the capacity
of the vehicles are not exceeded, (38) and (39) ensures that nodes are visited within their
time window, and (40) ensures that are either used or not.

Keeping (34) as the linking constraints and (35)-(40) in the subproblem constraint set
Xk (separable for each k ∈ K), the above IP formulation decomposes into the following IMP
(with no extreme rays):

min
∑
k∈K

∑
p∈Pk

ckpλkp (41)

s.t.
∑
k∈K

∑
p∈Pk

θkpi λkp = 1 i ∈ N (42)

∑
p∈Pk

λkp = 1 k ∈ K (43)

λkp ∈ {0, 1} p ∈ P k, k ∈ K (44)

where θkpi is 1 if node i is on the path p covered by vehicle k and zero otherwise. In LMP, let
π and µ be the dual vectors for constraints (42) and (43), respectively. The subproblems are
elementary shortest path problems with resource constraints (ESPPRC) where the resources
are load and time:

min
x∈Xk

∑
(i,j)∈A

ckijxij −
∑
i∈N

πi
∑

(i,j)∈δ+(i)

xij − µk

A Chvátal-Gomory rank-1 cut for IMP on constraints (42) is written as:

∑
k∈K

∑
p∈Pk

⌊∑
i∈N

uiθ
kp
i

⌋
λkp ≤

⌊∑
i∈N

ui

⌋
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where ui ∈ [0, 1[ is the Chvátal-Gomory multiplier of the ith constraint of (42). The coefficient
function f(Ak, xkp) may be formulated as follow:

f(Ak, xkp) =

∑
i∈N

ui
∑

j∈δ−(i)

xkpji


That is, for a set Ω of Chvátal-Gomory rank-1 cuts, and a small ε > 0 (used to model strict
less than), this can be modeled by adding the zero cost variables ykh for h ∈ Ω and k ∈ K to
the original VRPTW formulation (33)-(40) together with the following constraints:

∑
k∈K

ykh ≤

⌊∑
i∈N

uhi

⌋
h ∈ Ω (45)∑

i∈N
uhi

∑
j∈δ−(i)

xkji − (1− ε) ≤ ykh ≤
∑
i∈N

uhi
∑

j∈δ−(i)

xkji h ∈ Ω, k ∈ K (46)

ykh ∈ Z h ∈ Ω, k ∈ K (47)

where (46) and the integrality requirement (47) model the floor function f(Ak, xkp). In the
augmented IMP (and LMP), the added inequalities (45) appears as:

∑
k∈K

∑
p∈Pk

(ykph )λkp ≤

⌊∑
i∈N

uhi

⌋
h ∈ Ω

with dual vector σ. In the augmented subproblem k ∈ K we have, besides x ∈ Xk, new
variables yh for each Chvátal-Gomory rank-1 cut with the cost −σh, and new constraints due
to (46)-(47):

min
x∈Xk

∑
(i,j)∈A

ckijxij −
∑
i∈N

πi
∑

(i,j)∈δ+(i)

xij − µk −
∑
h∈Ω

σhyh

s.t.
∑
i∈N

uhi
∑

j∈δ−(i)

xji − (1− ε) ≤ yh ≤
∑
i∈N

uhi
∑

j∈δ−(i)

xji

y ∈ Z

In the VRPTW, the new variables yh can be modelled as a resource such that the subprob-
lem remains an ESPPRC. Dynamic programming algorithms denoted labeling algorithms are
used to solve the ESPPRC. Let Ω be the set of Chvátal-Gomory rank-1 cuts and let a partial
path be represented by a label L = (Tcost, (Tnh

)h∈N , TD, TT , (Tch)h∈Ω) consisting of the cost
and all the resource consumptions of the partial path, i.e., (Tnh

)h∈N is the number of visits to
the nodes (in this case 0 or 1 due to elementary), TD is the load, TT is the time, and (Tch)h∈Ω

are the Chvátal-Gomory rank-1 cut resources. Labels are extended from node to node via
the connecting arc using resource extension functions, see e.g., Desaulniers et al. [6], Irnich
[10] for a detailed description. In subproblem k extending label L on arc (i, j) ∈ A to create
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label L̄ (if feasible considering resource limits) is done by the following extension functions:

T̄cost = Tcost + ckij − πj −
∑
h∈Ω

Tch
+uh

i ≥1

σh

T̄nj = Tnj + 1
T̄nh

= Tnh
h ∈ N \ {j}

T̄D = TD + dj

T̄T = max{TT + τkij , aj}
T̄ch = (Tch + uhi ) mod 1 h ∈ Ω

At a given node of the network, a label may dominate other labels using the following domi-
nance criterion:

Proposition 1. (Desaulniers et al. [6]) Let L and L̄ be two labels representing partial paths
ending at the same node. Label L dominates label L̄ (which can be discarded) if

T̄cost ≤ Tcost
T̄r ≤ Tr r ∈ {(nh)h∈N , D, T, (ch)h∈Ω}

This dominance criterion has been improved in the case of Chvátal-Gomory rank-1 cut
resources:

Proposition 2. (Petersen et al. [16]) Let L and L̄ be two labels representing partial paths
ending at the same node. Label L dominates label L̄ (which can be discarded) if

T̄cost −
∑
h∈Ω
Tch

>T̄ch

σh ≤ Tcost

T̄r ≤ Tr r ∈ {(nh)h∈N , D, T}

This last dominance criterion is a generalization of the one proposed in Jepsen et al. [12],
but is equivalent when considering only the subset row inequalities.

Subproblem running time complexity: For the VRPTW, the subproblem (an ESP-
PRC) is strongly NP-hard. Hence, adding additional resources does add complexity to the
problem but exponential worst case running time is already expected. This is not the case
when considering a relaxation of the subproblem such as the non-elementary version, the
shortest path problem with resource constraints (SPPRC), that has been widely applied for
the VRPTW, see e.g., Irnich and Villeneuve [11]. The SPPRC is weakly NP-hard and can be
solved in pseudo-polynomial time, but adding additional resources due to the Chvátal-Gomory
rank-1 cuts may indeed increase this pseudo-polynomial factor.

Another example is taken from the multi-depot vehicle scheduling problem, see Riberio
and Soumis [17], where the subproblems are shortest path problems in an acyclic graph
and are therefore solvable in polynomial time. When cuts are added, the new subproblems
become resource constrained, that is, SPPRCs (still on an acyclic graph) and the running
time complexity goes from polynomial to pseudo-polynomial.
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Special cases: As already indicated at the end of Section 2 the framework presented here
includes the formulation of cuts as expressed in (11), that is, in terms of the original variables
of IP. Let

f(Ak, xkp) = θkxkp and f(Ak, xkr) = θkxkr.

Then (14) and (15) provides an equivalent formulation of (11). This can easily be verified by
substitution of the f -function and the y-variables in (19) and (21). Two examples in the area
of vehicle routing are the rounding cut on the total cost and the cut on the total number of
vehicles used, see Desrosiers et al. [8]:

f1(Ak, xkp) =
∑

(i,j)∈Ak

ckijx
kp
ij

f2(Ak, xkp) =
∑

(o,j)∈Ak

xkpoj

A third example is the one used in Gamache et al. [9], a cut on the cost of a pilot schedule
in the preferential bidding system, i.e., a cut on the cost of a single block k of the diagonal
constraint set. The f -function of other indices than the kth returns 0 in this application.
Again the y variable can be modeled as an additional resource variable, indeed the actual
cost of the generated path (not its reduced cost). Such a cut is formulated with an f -function
and a y-variable using (14) and (15) in the IP augmented formulation, transferred into the kth
subproblem, and directly controls the cost of the generated columns. This cut is extremely
strong and in some cases closes integrality gaps up to 99%.

4.2 Clique inequalities for the VRPTW

In Spoorendonk and Desaulniers [18] it is shown how clique inequalities can be applied. Recall
the definition of the VRPTW given in Section 4.1. For a given clique W of paths, the clique
inequality defined on constraints (42) of the integer master problem (41)-(44) is:∑

k∈K

∑
p∈Pk

θkpλkp ≤ 1

where θkp is 1 if path p ∈ W and zero otherwise. Spoorendonk and Desaulniers [18] suggest
an approximate description of the clique denoted a key set that can easily be interpreted in
a column generation context. Let χ(W ) ⊆ N be the set of conflicting rows (constraints (42))
with respect to the paths in W , i.e., rows where at least two paths in W have a nonzero
coefficient (the paths visit the same customer), and let the minimal subset χmin(W ) ⊆ χ(W )
be the subset of conflicting rows such that no row can be disregarded when all columns in
the clique must conflict. It is observed that, given a new path p that conflicts with all paths
in W when only considering χmin(W ), then p is also in conflict with all paths in W when
considering all rows in N . Hence, a new path p can enlarge W if it conflicts with all paths in
W with respect to the rows in χmin(W ).

The approximate representation of a clique W based on a minimal subset χmin(W ) is
now available. It is composed of the vectors vp(χmin(W )), ∀p ∈ W , where vp(χmin(W ))
is the subvector of the column resulting from p restricted to the rows in χmin(W ). This
representation can be made more compact by noticing that a newly generated path is in
conflict with a path p ∈ W if it is also conflicting with a path q ∈ W , q 6= p, such that
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vq(χmin(W )) ≤ vp(χmin(W )). It is easy to prove that there are no pairs of paths p and q
in W such that vq(χmin(W )) < vp(χmin(W )) (otherwise, χmin(W ) would not be a minimal
subset of conflicting rows of W ). Consequently, one can eliminate from the representation
all vectors vp(χmin(W )), except one, that are equal. For a clique W , we denote by Γ(W )
the resulting set of paths used in the representation. This representation, called a key set, is
defined as follows.

Definition 1. (Spoorendonk and Desaulniers [18]) Given a clique W and a minimal set
χmin(W ) of its conflicting rows, the key set of W is composed of the subvectors vp(χmin(W )),
∀p ∈ Γ(W ).

A newly generated path p is added in a clique W only if vp(χmin(W )) ≥ vq(χmin(W )) for
at least one path q ∈ Γ(W ). This restriction guarantees that all added paths conflict with
each other (since they all contain at least one of the key set subvectors which all conflict),
and allows to always keep the same key set as new paths are added to the clique. A path p
satisfying this check is said to be admissible to enlarge W .

Given the key set of W , the coefficient function f(Ak, xkp) may be formulated as:

f(Ak, xkp) = max
q∈Γ(W )

 ∑
i∈χmin(W )

vqi(χmin(W ))∑
j∈χmin(W ) vqj(χmin(W ))

∑
j∈δ−(i)

xkpji


where vqi(χmin(W )) is the ith entry in subvector vq(χmin(W )). Let Ω be the set of cliques,
then the VRPTW formulation (33)-(40) is augmented with the non-zero cost variables yKW
for W ∈ Ω and k ∈ K and the constraints:∑

k∈K
ykW ≤ 1 W ∈ Ω (48)

∑
i∈χmin(W )

vqi(χmin(W ))

 ∑
j∈δ−(i)

xkji − 1

+ 1 ≤ ykW q ∈ Γ(W ),W ∈ Ω, k ∈ K (49)

ykW ∈ {0, 1} W ∈ Ω, k ∈ K (50)

where constraints (49) and (50) model the maximization term of f(Ak, xkp). In the IMP
(41)-(44) constraints (48) decompose into:∑

k∈K

∑
p∈Pk

(ykpW )λpk ≤ 1 W ∈ Ω

with dual vector σW . In the augmented subproblem, we have new variables yW for the cliques
with costs −σW and new constraints due to (49)-(50):

min
x∈Xk

∑
(i,j)∈A

ckijxij −
∑
i∈N

πi
∑

(i,j)∈δ+(i)

xij − µk −
∑
W∈Ω

σW yW

s.t.
∑

i∈χmin(W )

vqi(χmin(W ))

 ∑
j∈δ−(i)

xkji − 1

+ 1 ≤ yW q ∈ Γ(W ),W ∈ Ω

yW ∈ {0, 1} W ∈ Ω
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It is possible to implement the additional constraints using resources in the constrained short-
est path subproblem. The first requirement consists of adding new components to the labels
that enable to determine if a path is admissible to enlarge a clique. For each clique W ∈ Ω, de-
fine |χmin(W )|+1 binary resources and add the corresponding components to each label. For
a label L representing a partial path p, the first |χmin(W )| of these resource values indicate,
until it is proven that p can enlarge W , whether or not each customer of the minimal subset
χmin(W ) has been visited along p. Thus, they represent the subvector vp(χmin(W )) and are
compared to the key set vectors of W to determine if p is admissible to enlarge W . If the
check is positive, these resource values are set to 0 and never change in the subsequent label
extensions. Furthermore, the dual value σW is subtracted from the label cost component. For
a label L, these resource components are denoted T Wni

, i ∈ χmin(W ). The other additional
resource component, denoted T Winadm, simply indicates whether or not p is inadmissible to
enlarge the clique: it is equal to 1 if p is inadmissible, and 0 otherwise. The set of all these
new resources for all cliques in Ω is denoted Q.

With these additional resources, the labeling algorithm can be applied for solving exactly
the subproblem if the dominance criterion of Proposition 1 considers the set {(nh)h∈N , D, T, (ch)h∈C}∪
Q. However, as for the Chvátal-Gomory rank-1 cuts it is possible to improve on this domi-
nance criterion.

Proposition 3. (Spoorendonk and Desaulniers [18]) Let L and L̄ be two labels representing
partial paths ending at the same node. Label L dominates label L̄ (which can be discarded)
if

T̄cost −
∑

W∈ΩLL̄

σW ≤ Tcost

T̄r ≤ Tr ∀r ∈ {(nh)h∈N , D, T, (ch)h∈C},

where ΩLL̄ = {W ∈ Ω : T̄ Winadm = 1 and
(
T̄ Winadm = 0 or ∃ i ∈ χmin(W ) such that T Wni

> T̄ Wni

)
}

is the set of cliques W for which the penalty σW could be paid in a feasible extension of L
along an arc sequence, while it would not be paid when extending similarly L̄.

Again, as with the Chvátal-Gomory rank-1 cuts, the checking of whether or not a label is
in a clique slows down the labeling algorithm.

4.3 Odd circuit constraints in the edge coloring problem

This example is from the paper by Nemhauser and Park [14]. The edge coloring problem on
the graph G = (V,E) with the set of colors K is to find the minimum number of colors used
to color G such that no adjacent edges have the same color, i.e., no two edges with a common
end node can have the same color. A solution can also be seen as a set of matchings with
different colors where a matching is a set of edges that do not share any end points.

Let zk be the binary variable indicating if color k is used by some edges or not, and let
xke be the binary variable indicating if edge e is colored by the color k. Let δ(i) be the set of
edges connected to i, and let E(S) be the set of edges with both end points in the node set
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S ⊆ V . The edge coloring problem on the graph G with the set of colors K is given as:

min
∑
k∈K

zk (51)

s.t.
∑
k∈K

xke ≥ 1 e ∈ E (52)∑
e∈δ(i)

xke ≤ 1 i ∈ V, k ∈ K (53)

|E|zk ≥
∑
e∈E

xke k ∈ K (54)

zk ∈ {0, 1} k ∈ K (55)

xke ∈ {0, 1} e ∈ E, k ∈ K (56)

Where the objective function (51) minimizes the number of colors, constraints (52) ensures
that all edges are assigned at least one color, (53) ensures that no adjacent edges have the
same color, (54) ensures that the color variable is set if any edges are assigned that color, and
(55) and (56) define the domain of the variables.

Let (52) be the linking constraints and let (53)-(56) separable by k ∈ K be in the sub-
problem constraint set Xk. Then the above IP decomposes into the IMP:

min
∑
k∈K

∑
m∈Mk

(zkm)λkm (57)

s.t.
∑
k∈K

∑
m∈Mk

(xkme )λkm ≥ 1 e ∈ E (58)

∑
m∈Mk

λkm = 1 k ∈ K (59)

λkm ∈ {0, 1} m ∈Mk, k ∈ K (60)

where Mk is the set of matchings, i.e., integer points, for subproblem k. Given the dual
vectors π and µ in LMP for constraints (58) and (59), respectively, the subproblem k ∈ K is:

min
x∈Xk

z −
∑
e∈E

πexe − µk (61)

For U ⊆ V a matching can cover no more than
⌊

1
2 |U |

⌋
edges from E(U). The matching

constraints are given as:∑
k∈K

∑
m∈Mk

θkmλkm ≥

⌈
|E′|⌊
1
2 |U |

⌋⌉ U ⊆ V,E′ ⊆ E(U)

where

θkm =
{

1 if E(m) ∩ E′ 6= ∅
0 otherwise

for the set of edges E(m) of the matching m. For a circuit given as a subgraph C = (U,E′)
where |U | is odd, the odd circuit constraint is given as:∑

k∈K

∑
m∈Mk

θkmλkm ≥ 3
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Given an odd circuit C we have the coefficient function:

f(Ak, zkm, xkm) = min

{
1,
∑
e∈C

xkme

}

That is, given a set of odd circuit constraints Ω, the additional constraints to the edge coloring
problem (51)-(56) are:∑

k∈K
ykC ≥ 3 C ∈ Ω (62)

ykC −
∑
e∈C

xke ≤ 0 C ∈ Ω, k ∈ K (63)

ykC ∈ {0, 1} C ∈ Ω, k ∈ K (64)

where constraints (63) and (64) model f(Ak, zkm, xkm). In the IMP (57)-(60), constraints
(62) decompose into:∑

k∈K

∑
m∈Mk

(ykmC )λkm ≥ 3 C ∈ Ω

with dual vector σ. In the integer subproblem (61) we have the additional variables yC for
the circuits with costs −σC and the new constraints due to (63)-(64):

min
x∈Xk

z −
∑
e∈E

πexe − µk −
∑
C∈Ω

σCyC

s.t. yC −
∑
e∈C

xe ≤ 0 C ∈ Ω

yC ∈ {0, 1} C ∈ Ω

As mentioned in the introduction, in Nemhauser and Park [14] the augmented subproblem is
solved to optimality with a branch-and-bound algorithm.

4.4 Chvátal-Gomory rank H ≥ 1 cuts for the one-dimensional cutting stock
problem

Belov and Scheithauer [3] have shown how to apply Chvátal-Gomory cuts of rank higher than
or equal to one for the one-dimensional cutting stock problem.

The one-dimensional cutting stock problem is to minimize the number of stocks of a given
length used to produce a certain amount of small items of a given width. Valério de Carvalho
[19] presented an arc flow model for this problem. Let B be the stock length and let I be the
set of items, each with a demand bi and a width wi. Let G = (V,A) be a directed graph with
B+1 nodes in V = {0, 1, . . . , B} and arc set A = {(i, j) : 0 ≤ i ≤ j ≤ B and j−i = wl, l ∈ I}.
Hence, there is an arc between two nodes if there is an item of the corresponding size. Let z
be the integer variable determining the number of stocks used, and xij be an integer variable
contributing to the amount of item l with size j − i = wl. Let δ−(i) and δ+(i) be the other
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end nodes for the in- and outgoing arcs of node i ∈ V . The arc flow model is given as:

min z (65)

s.t.
∑

(j,j+wi)∈A

xj,j+wi = bi i ∈ I (66)

∑
δ−(i)

xji −
∑
δ+(i)

xij = 0 i ∈ V \ {0, B} (67)

∑
j∈δ+(0)

x0j =
∑

i∈δ−(B)

xiB = z (68)

xij ∈ Z+ (i, j) ∈ A (69)
z ∈ Z+ (70)

where the objective function (65) minimizes the number of stocks, constraints (66) ensures
that the demand of each item is met, (67) ensures flow conservation in the nodes meaning
that the cutting patterns are connected such that all waste is at the end of stock, (68) ensures
that any stock initiated for cutting is also completed (i.e., each integer amount of flow in the
graph represents a stock being cut), and (69) and (70) define the domains of the variables.

Leaving (66) as the linking constraints and constraints (67)-(70) as the subproblem con-
straint set X, the above IP decomposes into the IMP that is the well-known Gilmore-Gomory
model:

min
∑
p∈P

λp (71)

s.t.
∑
p∈P

θpi λp = bi i ∈ I (72)

λp ∈ Z+ p ∈ P (73)

where P is the set of patterns (extreme rays) and θpi =
∑

(j,j+wi)∈A x
p
j,j+wi

, i.e., the number
of times item i is in pattern p ∈ P . Given the dual vector π in LMP for constraints (72), the
subproblem is:

min 1−
∑
i∈I

πi
∑

(j,j+wi)∈A

xj,j+wi (74)

s.t.
∑
δ−(i)

xji −
∑
δ+(i)

xij = 0 i ∈ V \ {0, B} (75)

∑
j∈δ+(0)

x0j =
∑

i∈δ−(B)

xiB = 1 (76)

xij ∈ {0, 1} (i, j) ∈ A (77)

Note that patterns with zero items are not generated, hence the 1 in the objective function
of the subproblem and as the cost coefficient of the λ variables. Also there are no convexity
constraint in the IMP (71)-(73) since all patterns with a non-zero number of items are extreme
rays of the subproblem. Finally, a single unit of flow is sufficient in (76) to define an extreme
ray. Subproblem (74)-(77) is a shortest path problem in the acyclic graph G, but it may also
be reformulated into a 0-1 knapsack problem, i.e., let θpi = xpi for the subproblem min{1 −∑

i∈I πixi :
∑

i∈I wixi ≤ B, xi ∈ Z+, i ∈ I}.
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Let Ω be the set of Chvátal-Gomory cuts for the IMP (71)-(73). The cuts of higher rank
depends on the lower ranked cuts, hence the coefficient of a variable is calculated as a recursive
function. Let Ωh ⊂ Ω be the cuts of lower rank than cut h ∈ Ω, let Φp

i be the coefficient of
variable p for cut i ∈ Ωh, and let ζi be the right-hand side of cut i. The recursion of Φp

h and
ζh is given as:

Φp
h =

∑
i∈I

uiθ
p
i +

∑
i∈Ωh

uiΦ
p
i

 , ζh =

∑
i∈I

uibi +
∑
i∈Ωh

uiζi


for the Chvátal-Gomory multipliers −1 < ui < 1, i ∈ I ∩ Ωh. A Chvátal-Gomory cut h ∈ Ω
can be formulated as:

∑
p∈P

∑
i∈I

uiθ
p
i +

∑
i∈Ωh

uiΦ
p
i

λp ≤
∑
i∈I

uibi +
∑
i∈Ωh

uiζi

 .
The coefficient function for the cut h ∈ Ω is given as:

fh(A, xp) =

∑
i∈I

uiθ
p
i +

∑
i∈Ωh

uiΦ
p
i

 .
Belov and Scheithauer [3] propose an approach where fh(A, xp) is substituted into the ob-
jective function of the subproblem, leading to the non-linear problem (for the dual vector σ
associated with the cuts Ω and constraints (75)-(77) defining the polytope X):

min
x∈X

1−
∑
i∈I

πi
∑

(j,j+wi)∈A

xj,j+wi −
∑
h∈Ω

σhΦh (78)

To solve this problem the non-linear objective function of (78) is approximated by a linear
function and used as a lower bound in a branch-and-bound algorithm.

Alternatively, fh(A, xp) can be linearized in a similar fashion as for the Chvátal-Gomory
rank-1 cuts presented in Section 4.1. Consider a discretized (into |K| blocks) but equivalent
model of the arc flow model (65)-(70):

min
∑
k∈K

zk (79)

s.t.
∑
k∈K

∑
(j,j+wi)∈A

xkj,j+wi
= bi i ∈ I (80)

∑
δ−(i)

xkji −
∑
δ+(i)

xkij = 0 i ∈ V \ {0, B}, k ∈ K (81)

∑
j∈δ+(0)

xk0j =
∑

i∈δ−(B)

xkiB = zk k ∈ K (82)

xkij ∈ {0, 1} (i, j) ∈ A, k ∈ K (83)

zk ∈ {0, 1} k ∈ K (84)

The decomposition results in the same IMP (71)-(73) and k ∈ K identical subproblems that
are equal to the subproblem (74)-(77). The set Ω of Chvátal-Gomory cuts is modeled in the
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discretized arc flow formulation (79)-(84) with the use of a small ε > 0 and the variables ykh.
The coefficient θki and the recursions of Φk

j and ζki are equivalent with those given for the
extreme ray p, but now considering variables in the kth block. The additional constraints
are:

∑
k∈K

ykh ≤

∑
i∈I

uibi +
∑
i∈Ωh

uiζi

 h ∈ Ω (85)

∑
i∈I

uiθ
k
i +

∑
i∈Ωh

uiΦk
i − (1− ε) ≤ ykh ≤

∑
i∈I

uiθ
k
i +

∑
i∈Ωh

uiΦk
i k ∈ K,h ∈ Ω (86)

ykh ∈ Z+ h ∈ Ω (87)

Note that, since all subproblems are identical (the set of feasible patterns P k = P for all
k ∈ K), only one subproblem needs to be solved, and it suffices to consider variable yh in the
subproblem and its value (yph) for column p. Hence, constraints (85) are formulated in the
augmented IMP as:

∑
p∈P

(yph)λp ≤

∑
i∈I

uibi +
∑
i∈Ωh

uiζi

 h ∈ Ω

with dual vector σ. The subproblem, besides constraints (75)-(77) defining the polytope X,
is:

min
x∈X

1−
∑

(j,j+wi)∈A

πixj,j+wi −
∑
h∈Ω

σhyh

s.t.
∑
i∈I

uiθi +
∑
i∈Ωh

uiΦi − (1− ε) ≤ yh ≤
∑
i∈I

uiθi +
∑
i∈Ωh

uiΦi h ∈ Ω

yh ∈ Z h ∈ Ω

It is possible to model the subproblem as an SPPRC with additional resources for each cut
(again in a similar fashion as for the VRPTW). However, it is imperative that the resources
are updated in increasing order of rank due to the recursive nature of the coefficients.

5 Final Remarks

The framework presented in this paper provides a fundamental insight on the use of cut-
ting planes in branch-and-cut-and-price algorithms. A detailed description of the connection
between cutting planes in the decomposed master problem formulation and the original for-
mulation is given. Such a connection is very important for understanding the use of cutting
planes (and branching methods) and makes it possible to verify the correctness of the cutting
planes in a reliable fashion.

The authors hope that this framework encourages the development of general purpose
cutting planes (such as the Chvátal-Gomory cuts) and combinatorial cuts (such as the clique
inequalities) for both the original and the master problem formulations. Indeed we should be
delighted that there are two polytopes to derive cuts from. Of course one must keep in mind
that there is a trade off by considering an augmented integer formulation that is of higher
dimension than the original problem.
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Chapter 7

Conclusion

Simon Spoorendonk
DIKU Department of Computer Science, University of Copenhagen

1 Summing Up

This thesis has investigated how to use cutting planes in branch-and-cut-and-price (BCP)
algorithms. Experimental results are reported for the vehicle routing problem with time win-
dows (VRPTW), where cuts based on the master problem formulation of a Dantzig-Wolfe
decomposition have been applied. This includes both the general purpose mixed integer
programming cutting planes known as Chv́atal-Gomory cuts and the combinatorial derived
clique inequalities that are well known strong valid inequalities for the set partitioning poly-
tope. These investigations spurred a general framework, that in details describe how to apply
cutting planes in BCP algorithms, and how cutting planes derived from the master problem
may be interpreted in the original problem by augmenting it.

In Chapter 3 and Chapter 4 it was shown how the Chv́atal-Gomory cuts can be applied
to a decomposition model of the VRPTW. In the former paper, it was shown how a small
subset of the Chv́atal-Gomory cuts, denoted subset-row inequalities, can be applied in the set
partitioning master problem, and how to incorporate their dual costs into the pricing problem
(the elementary shortest path problem) with the use of additional resources. This algorithm
was at the time of publication, the most successful exact solution method for the VRPTW.
In the latter paper, these results were extended to include all Chv́atal-Gomory cuts of rank
1. However, a slightly more complicated dominance criterion made the pricing problem much
harder to solve in practice when more general Chv́atal-Gomory cuts than the subset-row
inequalities were considered. Running times could not be improved compared to the former
approach, but on several occasions it was possible to close the optimality gap completely in
the root node. This indicates, that there is a potential gain since the number of nodes in the
branch-and-bound tree is reduced, meaning that hopefully fewer pricing problems must be
solved to optimality.

Chapter 5 extended the work on VRPTW by applying clique inequalities to the master
problem. Again, the dual costs of the cutting planes can be handled with additional resources
in the pricing problem. However, this time a resource is needed for each of the conflicting
rows in the clique when such a cut is applied. In the paper it was shown how a reduced set of
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conflicting rows can be used to represent a clique. Obviously this leads to a potentially much
harder pricing problem, and computational results also indicated that this approach was not
competitive with an algorithm considering only the subset-row inequalities.

Chapter 6 summed up the experiences gained in the previous chapters and presents a
general framework, that describes the correspondence between cutting planes in the master
problem and original formulation. The main insight is, that cutting planes in master problem
can be expressed in an augmented original formulation where the addition of variables and
constraints are used to model the cuts. A decomposition of the augmented original problem
is then shown to be equivalent with a master problem containing the cutting planes, and the
new pricing problems are augmentations of the pricing problems without any cuts present.
In case the cutting planes can be expressed solely with the use of the variables from the
original problem, there is no use for additional variables in the original problem or in the
pricing problems. Examples of the application of the framework is given for Chvátal-Gomory
rank 1 cuts and clique inequalities for the VRPTW, odd circuits constraints for the edge
coloring problem, and Chvátal-Gomory cuts of arbitrary rank for the 1-dimensional cutting
stock problem. This framework presents a novel way of interpreting cutting planes in BCP
algorithms, and can hopefully be used to ease the development of future cutting planes for
BCP algorithms.

When applying Chvátal-Gomory cuts of arbitrary rank, it should be mentioned that sev-
eral experiments were carried out during this thesis for the 1-dimensional cutting stock prob-
lem, the 2-dimensional vector packing problem, and the generalized assignment problem.
However, none of the experiments were particularly successful and suggests that some prob-
lems are not suitable for cutting planes derived in the master problem. A reason may be,
that the objective coefficients in these problems seldom differ much (e.g., all stocks have the
cost 1 in the cutting stock problem), resulting in an optimality gap that often is a very small
integer value. A valid lower bound is obtained by rounding up the LP solution value, and
when applying cuts it may only result in a slight increase in the fractional value and not
lead to an increased lower bound. Another noticeable thing is, that although the pricing
problem (a knapsack problem) is weakly NP-hard it does not seem difficult enough to justify
the increased running time between the normal pricing problem and the augmented pricing
problem. That is, the original pricing problem appears to be too easy to justify the extra
effort of the cutting planes.

2 Concluding Remarks

Based on the successful work with the VRPTW (with the subset-row inequalities), the less
successful work (the Chvátal-Gomory rank1 cuts and clique inequalities), and the above
experiments on various packing-like problems, it can be concluded that one needs to be very
careful in choosing which cutting planes to include for a given problem. It appears that
the pricing problem of the decomposed problem treated should be hard to solve even before
cutting planes for the master problem are considered. Most likely, the best results would
be achieved if the pricing problem is strongly NP-hard to begin with (as was the case for
VRPTW and not for packing-like problems). In this way the effect of the augmentation is
less significant (at least complexity wise). Also, for the cutting planes to be effective in the
master problem it is preferable to have a large deviation in objective coefficient values and
large gaps. The latter is true for any cutting plane algorithm, but since cutting planes for the
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master problem can be computationally expensive it is truly important to have it in mind if
the BCP algorithm is to be successful.

3 Directions for Future Research

There are plenty of known cutting planes to investigate and apply in BCP algorithms. As
indicated in Chapter 6 the trick is to formulate the master problem cutting plane in the
augmented original formulation. This may need some creative reverse engineering, but based
on the work in this thesis it does seem possible. I am suggesting to explore the possibilities
within both combinatorial and general mixed integer cuts for master problem formulation.

Based on the success story for VRPTW and my less successful experiments with packing-
like problems, it would be interesting to further investigate how hard a problem needs to
be (with respect to the decomposed master and subproblems) such that the expensive pro-
cedure of using cutting planes derived from the master problem formulation pays off. It
may be possible to devise a classification scheme of problems based on some measurement
(e.g., running time complexity) to categorize problem formulations. In this perspective, there
may be potential in experimenting with decompositions leading to strongly NP-hard pricing
problems.

With the link between cutting planes in the master problem and the augmented original
formulation described in Chapter 6, it could be interesting to consider a branch-and-cut
algorithm for the augmented original formulation. Is it possible to exploit the knowledge
from the decomposition or will any possible improvements be lost in the higher dimensional
polytope?
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Summary in Danish

Simon Spoorendonk
DIKU Department of Computer Science, University of Copenhagen

1 Resume

Denne afhandling omhandler Dantzig-Wolfe dekomponering af heltalsproblemer med specielt
henblik p̊a at tilføje snit i det dekomponerede problem. Dantzig-Wolfe dekomponering benyttes
ofte p̊a heltalsproblemer (de originale problemer) med strukturelle egenskaber, der gør, at de
med fordel kan opdeles i mindre dele (delproblemer), hvis løsninger samles i et master problem.
For at løse master problemet kan man benytte kolonnegenering p̊a den lineære relaksering.
Ved kolonnegenering tilføjes løsninger fra delproblemerne (udtrykt som kolonner) undervejs i
løsningsprocessen indtil ingen kolonner kan forbedre den lineære løsning af master problemet.
P̊a denne m̊ade benyttes kun en brøkdel af de eksponentielt mange mulige kolonner (vari-
able) i master problemet. Løsningen til den lineære relaksering benyttes som grænseværdi i
en branch-and-bound algoritme til at finde en heltalsløsning.

Et snit er en lovlig ulighed til problemet, som bortskærer en fraktional løsning. Dvs. en
løsning til den lineære relaksering bortskæres uden at bortskære en heltalsløsninger. N̊ar s-
nit benyttes sammen med kolonnegenering kaldes det en branch-and-cut-and-price algoritme.
N̊ar et snit tilføjes i master problemet skal den duale omkostning fra snittene medtages i
omkostningsberegningerne for de generede kolonner. Hvis et snit kan opskrives som en linear
kombination af variable i det originale problem er dette ligetil, da kun omkostningen for de
enkelte variable i delproblemerne ændrer sig. Det skal dog nævnes, at selvom kun omkostnin-
gen ændrer sig kan delproblemerne godt skifte karakter. Dette bemærkes især, hvis specielt
designede algoritmer benyttes til løsning af delproblemerne. Snit udledt fra det originale prob-
lem benyttes ofte i branch-and-cut-and-price algoritmer, derimod er det mindre velstuderet
at benytte snit defineret direkte p̊a variable i master problemet. En af udfordringerne er, at
omkostningsberegningerne for nye kolonner bliver mere komplekse, da det muligvis ikke er
muligt at udtrykke den duale omkostning p̊a snittet ved alene at ændre p̊a omkostningen af
variablerne i delproblemet. I denne ph.d. afhandling vises det, hvorledes et snit defineret p̊a
master problem variable kan beskrives i det originale problem.

Det videnskabelige hovedbidrag præsenteres i fire artikler. Den første artikel omhandler
brug af subset-row uligheder, som er en delmængde af den generelle familie af Chvátal-Gomory
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snit, i ruteplanlægningsproblemet med tidsvinduer (eng.: the vehicle routing problem with
time windows). I denne artikel beskrives hvorledes snittene p̊a master problemet kan imple-
menteres i den dynamiske programmeringsalgoritme til delproblemet p̊a en effektiv m̊ade.
Resultaterne er meget lovende, og med de nye snit var det muligt at finde optimale løsninger
til adskillige hidtil uløste problemer. I den anden artikel bygges videre p̊a dette resultat,
og teorien udvides s̊aledes, at alle Chvátal-Gomory rang-1 snit kan tilføjes til ruteplanlægn-
ingsproblemet med tidsvinduer. Resultaterne er ikke nær s̊a imponerende som i den forrige
artikel, men det vises, at det er muligt at finde særdeles gode grænseværdier ved tilføjelsen
af denne familie af snit.

I den tredje artikel betragtes klike (eng.: clique) uligheder, som er et kombinatorisk snit
til master problemet for ruteplanlægningsproblemet med tidsvinduer. I tr̊ad med arbejdet i
de forrige artikler, beskrives i denne artikel hvorledes klike ulighederne kan behandles i al-
goritmen for delproblemet. Eksperimentelle resultater indikerer, at der er en gevinst mht.
grænseværdien, men at hastigheden p̊a algoritmen forringes i de fleste tilfælde. I den afslut-
tende fjerde artikel præsenteres en generel ramme for brug af snit i branch-and-cut-and-price
algoritmer. Med rammen beskrives hvorledes snit i det originale og master problemet er for-
bundet, og specielt vises det, at snit defineret p̊a variable i master problemet kan beskrives
ved at betragte et udvidet originalt problem. Artiklen giver en beskrivelse og en indsigt til snit
i branch-and-cut-and-price algoritmer, som forh̊abentlig kan føre til mere forskning indenfor
dette omr̊ade.

Udover hovedbidraget er der medtaget yderligere tre artikler som er udarbejdet under
ph.d.-forløbet. Den første artiklen præsenterer en snitalgoritme for det ressourcebegrænsede
korteste vej problem, der ofte ses som delproblem ved dekomponering. Algoritmen er i bestemte
tilfælde klart overlegen i forhold til klassiske algoritmer baseret p̊a dynamisk programmer-
ing. Den anden artikel præsenterer en kolonnegenereringsalgoritme til et beskyttelsessys-
tem indenfor rutning af telekommunikation i et fibernetværk. Det ønskes at identificere
primær- og backup-veje s̊aledes at alt b̊andbredde er under den bedste beskyttelse. En kolon-
negenereringsmodel, hvor en kolonne definerer parret best̊aende af en primær- og en backup-
vej, bliver beskrevet, og udførte tests viser, at dette beskyttelsessystemet er yderst effektivt.
Den tredje artikel omhandler indkomststyring i liner shipping virksomheder, hvori omfordeling
af containere behandles. Da verden er delt i eksport/import zoner (fx. fra Asien til Europa) er
omfordelingen af containere et reelt problem, da kapaciteten p̊a skibene ellers er misvisende.
Der præsenteres en kolonnegenereringsmodel, hvor en kolonne er en plan for transport af et
produkt fra en forsyningshavn til en efterspørgselshavn. Ved brug af denne algoritme er det
muligt at løse problemer af et langt større omfang end hidtil.
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lem with Resource Constraints
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Simon Spoorendonk

DIKU Department of Computer Science, University of Copenhagen

Abstract

This paper introduces a branch-and-cut (BAC) algorithm for the elementary short-
est path problem with resource constraints (ESPPRC), which commonly appears as a
subproblem in column generation based algorithms, e.g., in the classical Dantzig-Wolfe
decomposition of the capacitated vehicle routing problem. Specifically, we consider an
undirected graph with arbitrary edge costs (i.e., negative cost cycles may appear) and
with resources that are equally constrained at all nodes and arcs. A mathematical model
and valid inequalities are presented, including a new family of valid inequalities denoted
the generalized capacity inequalities. Experimental tests are performed on a set of gener-
ated instances with graphs of high edge density and a set of instances from the literature.
Traditionally, labeling algorithms have been the dominant solution method for the ESP-
PRC, but experimental results show that the BAC algorithm is superior on all the tested
instances.

Keywords: Branch-and-cut algorithm, elementary shortest path problem with resource
constraints

In revision. Preliminary version published as a technical report, 2008
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1 Introduction

The elementary shortest path problem with resource constraints (ESPPRC) can informally be
stated as the problem of finding a shortest path between two nodes in a graph where resources
are accumulated along the path, and where the amount of resources are constrained.

In this paper, we consider the case where the graph is undirected and edge costs are
allowed to take on any value. Furthermore, we demand that the path is simple such that no
nodes are visited more than once. The resources considered in this paper are all bounded such
that the lower and upper bound of the amount of a resource that are accumulated along the
path is equal for all nodes and edges. We assume, that the resource lower bounds are zero and
that the accumulations are monotone increasing and only performed at the nodes. This type
of globally constrained resource compares to the vehicle capacity known from the capacitated
vehicle routing problem, where the resource accumulates a positive value (demand) at each
node and the upper bound (capacity of the vehicle) may not be exceeded.

It is now possible to give a more formal statement of the ESPPRC. Let G = (V,E) be
an undirected graph with nodes V and edges E. Let a cost ce be associated with each edge
e ∈ E, let dr

i be a positive resource accumulation associated to each node i ∈ V for each
resource r ∈ R, and let Qr be the upper bound on the resource r. Then given a source node
s ∈ V and a target node t ∈ V ; find a path between s and t with minimum cost satisfying
that the sum of the resource r from at each of the visited nodes is not more than Qr for all
r ∈ R.

The ESPPRC defined as above is NP-hard in the strong sense. This is easily verified
by reduction from the longest path problem. The definition of the ESPPRC varies in the
literature, especially with regard to edge costs, resource bounds, and resource accumulations.

Beasley and Christofides [7] presented a mathematical model (very similar to the one used
in this paper) and performed experimental tests using a branch-and-bound algorithm based
on Lagrangian dual bounds. Dumitrescu and Boland [15] presented a labeling algorithm that
was improved by preprocessing based on resource availability. Carlyle et al. [10] proposed a
Lagrangian relaxation algorithm where paths with cost between the Lagrangian bound and
the current upper bound are found using the k-shortest path algorithm by Carlyle and Wood
[9]. Common for these approaches are that they all assume that the graph have no negative
cost cycles. This makes it easier to ensure simplicity of the path, since it cannot pay off to
visit a node more than once. The ESPPRC in this form is weakly NP-hard, and results of
the algorithms presented above are therefore not directly comparable to the results in this
paper.

Another common definition is to consider resource bounds individually for each node (or
edge). In this case, it is often necessary to consider an undirected graph, because the direction
of the path determines the correct resource accumulation at a given node. Such resources
compare to the time in the vehicle routing problem with time windows, where the resource
(time) accumulates for each edge and the nodes must be visited within a resource window (a
time window defined by a minimum and a maximum arrival time for a node). Such resources
are said to be locally constrained. Dror [14] proved that the ESPPRC with a single globally
constrained resource and a single locally constrained resource is NP-hard in the strong sense.
Feillet et al. [16] presented a labeling algorithm where the simplicity of the path is ensured with
the use of an additional globally constrained resource per node. Chabrier [11] improved on
the labeling algorithm by applying various bounding procedures to avoid extending unwanted
paths. Righini and Salani [24] proposed a bi-directional labeling algorithm where paths are
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extended from both the source node and the target node until a given middle of a monotone
increasing resource is reached, e.g., when half the time was consumed on the path. The partial
paths are then combined to construct a full path. Independently, Boland et al. [8] and Righini
and Salani [25] proposed to extend the labeling algorithm by relaxing the node resources and
adding them incrementally until the path is simple. In the former paper, this is referred to
as a state space augmentation algorithm, and in the latter, it is denoted a decremental state

space relaxation algorithm. Furthermore, Righini and Salani [25] propose to use the result of
the relaxed problem in a branch-and-bound algorithm.

The algorithms presented above are mainly labeling algorithms. As mentioned in Beasley
and Christofides [7], even the algorithms based on Lagrangian relaxation make use of a dy-
namic programming algorithm if negative costs cycles are allowed. The strength of the la-
beling algorithms is, that the locally constrained resources are easily implemented, since the
paths are build piece by piece such that resource limits can be checked at every step. In fact,
non-linear functions for accumulation of resources can be handled easily, see e.g., Desaulniers
et al. [12]. Generally, labeling algorithms are assumed to perform well on a sparse graphs
with tightly constrained resources, since this yields a very reduced solution space to search,
i.e., few states in the dynamic programming table needs to be searched. However, when the
graph is dense and the resources are loosely constrained, the labeling algorithms get closer to
a full enumeration of all paths.

Modeling of resources (accumulation and bounds) is limited in branch-and-cut (BAC)
algorithms that are based on linear programming (which is the case in this paper). Glob-
ally constrained resources with positive accumulation can be modeled as single knapsack
constraints (and remain simple to model with negative accumulation). Locally constrained
resources with positive accumulation can be modeled for a directed graph with the use of
the Miller-Tucker-Zemlin (MTZ) constraints, see Miller et al. [22]. This gives rise to |E|
additional constraints and |V | variables per resource. Another modeling approach gives rise
to |V | constraints and |E| variables per resource, see e.g., Ascheuer et al. [1, 2]. A different
approach is to relax the resource constraints and, in a cutting plane fashion, make use of the
infeasible path inequalities which cuts of any path (or partial path) that violates a resource
bound. In Ascheuer et al. [2] a BAC algorithm for the traveling salesman problem with time
windows makes use of the three modeling approaches described above. Results indicate that
the infeasible path inequalities are to be preferred.

When considering the ESPPRC as a subproblem in a column generation context, an-
other issue comes up. Recent branch-and-cut-and-price algorithms, see e.g., Jepsen et al.
[20], Petersen et al. [23], Desaulniers et al. [13], Spoorendonk and Desaulniers [27], Baldacci
et al. [5], make use of cutting planes where the dual values are not directly subtractable
from the edge costs, which has previously been the preferred approach, see e.g., Fukasawa
et al. [18]. The subtraction of such dual values depend on the complete path and can be
very cumbersome to overcome in labeling algorithms. However, when following the ideas in
Spoorendonk et al. [28] it is clarified how to model the additional costs in the subproblem,
whereupon the BAC algorithm can be applied.

Results by Ascheuer et al. [2] for the traveling salesman problem with time windows
indicate, that it is expensive (in running time) in a BAC algorithm, to use either of the
modeling approaches for locally constrained resources, i.e., the time windows. However,
when only globally constrained resources are considered, it seem likely that a BAC algorithm
can be competitive with labeling algorithms. So, although locally constrained resources can
be modeled in a BAC algorithm, it is not within the scope of this paper to investigate
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that approach. The reason for considering an undirected graph in this paper is mainly for
simplicity. The BAC algorithm can easily be extended to the directed case by doubling the
number of variables in the mathematical formulation. Neither of the separation routines are
affected by this (except for the doubling of variables).

The main contribution of this paper is the introduction of a BAC algorithm for solv-
ing the ESPPRC. This includes a 2-index mathematical model and a presentation of valid
inequalities with emphasis on the introduction of the generalized capacity inequalities. The
computational results indicate that the BAC algorithm is competitive with labeling algorithms
when considering dense graphs, and even more so when the resources are loosely constrained.

The paper is outlined as follows: Section 2 presents work on BAC algorithms for problems
that are related to the ESPPRC and Section 3 contains a formal integer programming model
of the ESPPRC. Section 4 describes the cutting planes used in the BAC algorithm and
the computational results are found in Section 5. Section 6 holds concluding remarks and
suggestions for further research.

2 Related Work

Bauer et al. [6] suggested to solve the ESPPRC by a BAC algorithm, but to our knowledge
nothing further has been published in the literature, although several BAC algorithms exist
for problems related to the ESPPRC. Bauer et al. [6] consider the knapsack constrained circuit
problem (KCCP) where a minimal capacitated cycle in a graph is sought. This is equivalent
to the ESPPRC if one node is fixed in the KCCP, since this node can be spilt into a source and
a target node in the ESPPRC. A BAC algorithm was implemented to solve the KCCP where
the demand of the nodes was given with unit weights. This variant is denoted the cardinality
constraint circuit problem. The instances considered by Bauer et al. [6] have positive edge
costs, but negative cost cycles would not affect the algorithm.

In the prize collecting traveling salesman problem (PCTSP), see e.g., Balas [3, 4], a prize
is collected at each visited node and a minimum amount of accumulated prizes must be
collected on the tour. That is, the edge costs are positive but the prizes may yield an overall
negative solution value. The difference with this variant of the TSP and the ESPPRC is,
that in the PCTSP a minimum amount of prizes need to be collected, which forces some of
the intermediate nodes to be visited. This is not the case for the ESPPRC as defined in this
paper.

In the orienteering problem, see e.g., Fischetti et al. [17], the profit of visiting the nodes is
maximized and the length of the tour is bounded by a maximum length. The only difference
compared to the definition of the ESPPRC of this paper is, that the resource accumulation
is on the edges instead of in the nodes. The instances considered by Fischetti et al. [17] have
positive edge costs, but again negative cost cycles would not affect the algorithm.

3 Mathematical Models

This section presents a flow model for the ESPPRC in the undirected graph G. Recall
the resource demand dr

i for nodes i ∈ V , and the resource upper bound Qr for resource
r ∈ R. Let the binary variable xe indicate the flow on edge e ∈ E. When describing
the model some shorthand notation will be used. For a set of nodes S ⊆ V let the set
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of edges δ(S) = {(i, j) : i ∈ S ∧ j ∈ V \ S} denote the edges between S and V \ S where
δ(i) is shorthand for δ({i}) when the node set S consists of a single node i ∈ V . Let
E(S) = {(i, j) : i ∈ S ∧ j ∈ S} be the set of edges between the nodes in S. Let the short-hand
notation

x(T ) =
∑

e∈T

xe

indicate the flow in the edge set T . Let the shorthand notation yi =
∑

e∈δ(i) xe/2 indicate
the flow in node i ∈ V \ {s, t}, and for a set of nodes S ⊆ V let

y(S) =
∑

i∈S

yi

be the flow in that node set. The mathematical model of the ESPPRC is then:

min
∑

e∈E

cexe (1)

s.t. x(δ(s)) = 1 (2)

x(δ(t)) = 1 (3)

x(δ(i)) = 2yi i ∈ V \ {s, t} (4)
∑

i∈V

dr
i yi ≤ Qr r ∈ R (5)

x(E(S)) ≤ y(S) − yi i ∈ S, S ⊂ V, |S| ≥ 2 (6)

xe ∈ {0, 1} e ∈ E (7)

The objective function (1) minimizes the overall edge cost. Constraints (2) and (3) ensure
that the source node and the target node are end points of the path. Constraints (4) are the
flow conservation constraints. Constraints (5) impose the resource constraints. Constraints
(6) impose connectivity and subtour elimination. Finally, constraints (7) define the domain
of the variables. Note, that yi ∈ {0, 1} due to (2), (3), (6), and (7).

This model has |E|+|V −2| variables and an exponential number of constraints due to (6).
In a BAC algorithm, these constraints will be relaxed and separated when violated to ensure
feasibility. That is, when disregarding constraints (6) the model have |V | + |R| constraints.

4 Cutting Planes

This section presents the inequalities used in the BAC algorithm: The generalized subtour
elimination constraints (constraints (6) the mathematical model), the 0-1 knapsack cover
inequalities, and the generalized capacity inequalities for the ESPPRC.

4.1 Generalized Subtour Elimination Constraints

These constraints are generalizations of the subtour elimination constraints known from the
traveling salesman problem, which are also valid for ESPPRC on the form:

x(E(S)) ≤ |S| − 1 ∀S ⊂ V (8)
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Restricting the constants on the right-hand side to reflect the actual node flow provides a
tighter inequality, since yi ≤ 1 for all i ∈ V \ {s, t}. The generalized subtour elimination
constraints can be written on either of the forms:

x(E(S)) ≤ y(S) − yi ∀i ∈ S,∀S ⊂ V (9)

x(δ(S)) ≥ 2yi ∀i ∈ S,∀S ⊂ V \ {s, t} (10)

Separation of (9) and (10) can be done by solving a minimum cut problem from each node
i ∈ V \ {s, t} to the target node t (or the source node s) on the induced graph of the LP
solution (x⋆, y⋆) with edge weights we given as:

we =

{

x⋆
e e ∈ E \ {(s, t)}

M e = (s, t)

where M is a sufficiently large constant to ensure that s and t are on the same side of the
cut, see Wolsey [30].

4.2 0-1 Knapsack Cover Inequalities

A 0-1 knapsack cover inequality for a set of nodes S ⊆ V where
∑

i∈S dr
i > Qr for some r ∈ R

is given as:

y(S) ≤ |S| − 1 (11)

The inequality states, that if a set of nodes violates the upper bound on the resource r, then
not all nodes in the set can be visited by the path. The 0-1 knapsack cover inequality (11)
can be rewritten as

∑

i∈S

(1 − yi) ≥ 1 (12)

Given the LP solution (x∗, y∗), the separation problem becomes finding a cover S, i.e, a set
S ⊆ V satisfying

∑

i∈S dr
i > Qr for some r ∈ R such that

∑

i∈S

(1 − y∗i ) < 1 (13)

in which case the corresponding 0-1 knapsack cover inequality (11) is violated. The most
violating (11) is identified by minimizing the left-hand side of (13) for all r ∈ R, i.e., by
solving:

ζ = min
r∈R

{

min
S⊆V

{

∑

i∈S

(1 − y∗i )zi :
∑

i∈S

dr
i zi > Qr, z ∈ {0, 1}|V |

}}

If ζ ≥ 1, no cover that violates (11) exists. The separation problem consists of |R| mini-
mization versions of the well known 0-1 knapsack problem, see Kellerer et al. [21], Wolsey
[30].

Jepsen and Spoorendonk [19] suggested to exploit the fact that, since yi ≤ 1 for all
i ∈ V \ {s, t, }, the flow through a set of nodes S can be less than 2 in an LP solution. That
is, scaling the right-hand side of (11) with half the flow x(δ(S)) yields

y(S) ≤
1

2
(|S| − 1)x(δ(S)) (14)
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When x(δ(S)) < 2, there are cases where the inequality (14) is violated and the normal 0-1
knapsack cover inequality (11) is not. Jepsen and Spoorendonk [19] suggested an enumeration
scheme to separate the inequalities. Their results indicated, that (14) did improve the lower
bound in the root node, but had a negative effect on the convergence of the BAC algorithm.
Therefore, this family of inequalities are not pursued further in this paper.

4.3 Generalized Capacity Inequalities

This subsection introduces a family of inequalities inspired by the fractional capacity in-
equalities of the capacitated vehicle routing problem (CVRP), see Toth and Vigo [29]. The
generalized capacity inequalities are given as:

1

2
Qrx(δ(S)) ≥

∑

i∈S

dr
i yi S ⊆ V \ {s, t}, r ∈ R (15)

The inequalities ensure that a set S of nodes are visited according to their demand, e.g., if
2/3 of the resource is consumed in S, then the flow in and out of S should be at least 4/3.
An example of a violated (15) can be seen in Figure 4.3.

The validity of (15) is proved in the following proposition:

Proposition 1. The generalized capacity inequalities (15) are valid for the ESPPRC.

Proof. If y(S) = 0 then x(δ(S)) = 0, therefore both the left-hand side and the right hand side
evaluate to 0. If y(S) ≥ 1 then x(δ(S)) ≥ 2 and due to the resource constraint (5) for resource
r, the right-hand side can never evaluate to more than Qr which will be the minimal value of
the left-hand side, i.e., in this case the resource constraint (5) for resource r dominates the
generalized capacity inequality.

Given an LP solution (x⋆, y⋆) the separation problem of (15) is the problem of finding a
set S ⊆ V \ {s, t} for a resource r ∈ R such that

1

2
Qrx⋆(δ(S)) <

∑

i∈S

dr
i y

⋆
i

⇔
1

2
Qrx⋆(δ(S)) −

∑

i∈S

dr
i y

⋆
i +

∑

i∈V

dr
i <

∑

i∈V

dr
i

⇔
1

2
Qrx⋆(δ(S)) +

∑

i∈S

dr
i (1 − y⋆

i ) +
∑

i∈V \S

dr
i <

∑

i∈V

dr
i

Separating (15) for an be done by solving |R|(|V | − 2) different minimum cut problems one
from each node h ∈ V \ {s, t} to the target node t for each resource r ∈ R. The problems
are solved as maxflow problems using the same procedure as for separating (9) and (10).
The maxflow problem for each h is solved on a directed graph induced from the LP solution
(x⋆, y⋆), i.e., edges are split into opposite directed arcs, and the arcs into h are disregarded.
The edge weights eij are given as:

wij =















1

2
Qrx⋆

hj + dr
j i = h, j ∈ V \ {h, t}

1

2
Qrx⋆

it + dr
i (1 − y⋆

i ) i ∈ V \ {s, t} , j = t
1

2
Qrx⋆

ij i ∈ V \ {h, t}, j ∈ V \ {h, t}

M i = s, j = t
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Consider the fractional solution given by
the graph to the right with different frac-
tional edge values indicated by the dotted
and dashed lines. The nodes are numbered
0, . . . , 5 where a path is sought from node 0
to 0. For a single resource, the resource de-
mands are given as d = {0, 2, 2, 2, 2, 1} and
the resource upper bound Q is 5.

Consider a generalized capacity inequality
(15) covering the node set S = {1, 2, 3} result-
ing in a fractional flow x⋆(δ(S)) = x⋆

01 +x⋆
03 =

4

3
through the node set. The corresponding

(15) is violated since

1

2
Qx⋆(δ(S)) =

10

3
�

∑

i∈S

diy
⋆
i =

12

3

0

1

4

2

3

5
2/3

1/3

Figure 1: A violated generalized capacity inequality (15).

where M is a sufficiently large constant to ensure that s and t are on the same side of the
cut. The induced graph is denser than the induced graph used for separating (9) and (10),
therefore the separation of (15) is expected to be slower.

5 Computational Results

The experiments begin with an investigation of the impact of the parameter settings for
the cut generation of the generalized subtour elimination constraints (9). Next, the impact
of the generalized capacity inequalities (15) are investigated. For the parameter test, we
consider 10 of the harder problems of the generated instances. This is followed by a lower
bound comparison on the generated instances using different separation strategies. Last is
a comparison of the BAC algorithm and a labeling algorithm. We use a labeling algorithm,
that is implemented as described in Righini and Salani [24]. For the known instances, the
comparison is made with the results obtained in Righini and Salani [25]. The mathematical
model for the ESPPRC presented in this paper contains an exponential number of constraints,
so it is not possible to input it directly into a general purpose mixed integer solver such as
ILOG’s CPLEX. However, it is possible to model the globally constrained resources in a
similar way as the locally constrained resources, e.g., with the MTZ constraints. Such a
model can be plugged into CPLEX and solved directly, but preliminary results indicate that
this approach is always significantly slower than using the BAC algorithm proposed in this
paper.

All experiments are performed on a 2.66 GHz Intel(R) Xeon(R) X5355 machine with 8 GB
memory using CPLEX 10.2. The BAC algorithm is implemented using callback functions for
the cut generation, which is available in the CPLEX callable library. The tests are performed
using the default CPLEX parameters. This includes the generation of cuts for general mixed-
integer programs such as Chvátal-Gomory, mixed-integer rounding, and disjunctive cuts.
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Also, the 0-1 knapsack covers are included in the CPLEX default settings and preliminary
tests indicated, that the separation time nor the change in lower bounds were much affected
by the cuts. Therefore, we have not performed any further tests of the 0-1 knapsack covers
but rely on the CPLEX default settings.

5.1 The Benchmark Instances

A set of benchmarks derived from the CVRP instances (divided in series A, B, E, G, M,
and P) available at http://www.branchandcut.org has been generated. Here, the source
and target nodes are chosen by splitting the node representing the depot in two. To identify
sufficiently hard instances of the ESPPRC, we have used the BAC algorithm for the ESPPRC
in a simple column generation algorithm for the CVRP, see e.g., Baldacci et al. [5] for the
details on mathematical models. We have not included results for the CVRP, since it is not
in the scope of this paper. Note, that for all the generated instances there is a valid upper
bound of 0, since they are constructed from a column generation algorithm. The instances
are named from the derived CVRP instances, which are given as letter indicating the series
followed by the number of nodes and vehicles (the latter is not used for the ESPPRC). At
the end a number, indicating the final iteration number of our column generation algorithm,
is added, e.g., the instance P-n50-k7-92 is from the P-series and consists of 50 nodes (where
7 vehicles are used for the CVRP), and is from iteration 92. The ESPPRC instances are
gathered in the SPPRCLIB available at http://www.diku.dk/~spooren/spprclib.htm.

Beside the generated instances, we consider the instances used in Feillet et al. [16], Righini
and Salani [24, 25] with 100 nodes and a single globally constrained resource (the capacity
resource). These instances are derived from the benchmarks by Solomon [26] for the vehicle
routing problem with time windows, where the time constraints have been discarded. For
the c101, r101, and rc101, three different distributions of nodes are chosen, and ten instances
have been created for each distribution, where the resource bounds (capacity) range from 10
to 100 in steps of 10. We consider only instances with bounds of 60 and above. Additionally,
we have extended the set of instances by setting bounds to 200, 500, 700, and 1000. A larger
resource bound results in loosely constrained instances, that are expected to be harder to solve
to optimality. The instances are named according to the series and a tenth of the capacity,
e.g., c 100 09 is from the c101 instance, with capacity 90.

5.2 Impact of the Parameters for the Generalized Subtour Elimination

Constraints

The setting of the parameters for the generation of violated generalized subtour elimination
constraints (6) can have a huge influence on the computation time of the BAC algorithm. A
low threshold on violation will result in good lower bounds and fewer branch nodes, but a
slower convergence in each node, while the opposite is true for a high threshold. Also, the
number of violated cuts added in each iteration can influence the convergence and the time
spent when reoptimizing the LP-problem.

Figure 2 shows a plot with two axes given as the violation threshold and number of cuts
to add per iteration. The requirement of violation is ranging from 0.1 to 1 in steps of 0.1, and
the number of cuts to add is starting at 1 and then from 10 to 100 in steps of 10. The vertical
axis indicates the average time spent. The time for each instance is scaled to the interval
]0, 1] where 1 is the maximum time given for all the parameter settings for that instance.
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Figure 2: Parameter test for the generalized subtour elimination constraints (9). Above is a plot of
the average time given the violation threshold and the number of cuts to add.

From Figure 2, it is observed that the best parameter setting appears to be to add 1 cut
per iteration with a violation of at least 0.4. This indicates that the cut separation time is
insignificant compared to solving the LPs.

5.3 Investigating the Generalized Capacity Inequalities

Note, that the generalized capacity inequalities (15) can substitute the generalized subtour
elimination constraints (9) in the model (1)-(7), since any infeasible integer solution will be
violated by some generalized capacity inequality. However, due to the computational expen-
sive separation routine for constraints (15), a cut policy was chosen such that constraints
(15) are only separated (and possible added) whenever no violated constraints (9) are sepa-
rated (using the default parameters found above). Preliminary tests indicated, that due to
a computational expensive separation routine for constraints (15), the cuts were not worth
the effort. A slow separation was expected since the max-flow calculations are done on very
dense graphs compared to the very sparse graph used in the separation of constraints (9).
However, we believe that constraints (15) may become useful, e.g., with the use of a faster
heuristic separation routine.

Figure 3 shows, as before, a plot of the violation threshold, number of cuts to add per
iteration, and average time. The time is calculated without the separation time of constraints
(15), and therefore only indicates if the convergence of the BAC is improved or not, when con-
straints (15) are added. Figure 3 indicates that a large violation threshold (≥ 0.8) is preferred
for constraints (15) and that, the convergence of the BAC algorithm is faster when few of the
constraints (15) are added. Figure 4 substantiate this result, as it can be seen that almost no
cuts are added with violation thresholds 0.8 and higher. Although the generalized capacity
inequalities (15) are a theoretically interesting set of inequalities, our tests have shown that
in their current form and with the proposed exact separation routine, the inequalities do not
appear to be computationally competitive.
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Figure 3: Parameter test for the generalized capacity inequalities (15). Above is a plot of the average
time given the violation threshold and the number of cuts to add.
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Figure 4: Parameter test for the generalized capacity inequalities (15). Above is given the average
scaled number of generalized capacity inequalities added with different violation thresholds when
solving the instances, i.e., with a violation threshold of 0.1 the number of cuts are decreased by about
50 % compared to the setting with a violation threshold of 0.01.
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5.4 Lower Bound Comparison

Table 1 sums up the root lower bounds (root) and the number of branch nodes (nodes) for
three different cut separation parameter settings. A ‘-’ entry in the branch node columns
indicates that the BAC algorithm timed out at 600 seconds. The three parameter settings
tested are:

• GSEC is the BAC algorithm where at most 1 violated generalized subtour elimination
constraint (9) with a minimum violation of 0.01 is added per iteration.

• GCI is the BAC algorithm with the GSEC parameter setting and when no violated (9)
are found then at most 1 violated generalized capacity inequality (15) with a minimum
violation of 0.01 is added.

• default is the BAC algorithm where at most 1 violated generalized subtour elimination
constraint (9) with a minimum violation of 0.4 is added per iteration.

The optimal solution is given in the rightmost column.
When comparing the parameter settings GSEC and GCI, it is obvious that the general-

ized capacity inequalities (15) improve the lower bounds considerably. The average gap is
decreased by 63% when comparing the two settings, this includes the instances that timed
out and potentially could have improved the lower bound further. Surprisingly, the number
of branch nodes does not decrease proportionally with the size of the gap. That is, for the
instances that did not time out, the average gap is closed by 76% but with only 7% fewer
branch nodes. In several cases, the number of branch nodes actually increases considerably
(A-n63-k9-157, B-n45-k6-54, P-n50-k10-24, P-n55-k10-44). This indicates that (15) compli-
cates the branch decisions. The comparison of the settings GSEC and default is more as
expected: A worse lower bound with the default setting leads to more branch nodes. How-
ever, the previous test for the generalized subtour elimination (9) constraints showed, that
this setting was the fastest on average.

5.5 Comparison with a Labeling Algorithm

Table 2 shows the running time of the BAC algorithm (BAC time (s)) with default parameters
compared to the running time of our implementation of a labeling algorithm (LA) (LA time
(s)) for the generated instances. The time limit was set to two hours and a timeout is indicated
with a ’-’ in the table. The rightmost column presents the speed up if both algorithms
finished. The BAC algorithm clearly outperforms the labeling algorithm. That is, in all 45
instances. However, it is worth noting that when the solution is near 0 (which is and upper
bound for all instances since they are generated as pricing problems in a column generation
algorithm) then the labeling algorithm performs much better than on the instances that
contains much negativity. That is, the label algorithm is faster when there are less negativity
in the problem whereas the BAC algorithm appears to be more robust. It should be noted
that the implementation of our labeling algorithm may be improved, but it is doubtful, that
it will be competitive with the BAC algorithm for the instances with a speed up of more than
100.
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GSEC GCI default

Name nodes root nodes root nodes root solution

A-n54-k7-149 231 -90877 - -41213 280 -109018 -12492

A-n60-k9-57 1641 -98206 - -64557 3071 -118437 -1000

A-n61-k9-80 205 -63534 92 -41032 462 -73397 -23549

A-n62-k8-99 133 -103839 - -47340 301 -122973 -35969

A-n63-k9-157 122 -63082 492 -38929 113 -78190 -24189

A-n63-k10-44 127 -76475 149 -51035 280 -80765 -32561

A-n64-k9-45 358 -92812 157 -65209 425 -104686 -50550

A-n65-k9-10 152 -93117 129 -58526 189 -103936 -42835

A-n69-k9-42 72 -56453 - -53299 179 -60410 -43290

A-n80-k10-14 84 -121510 45 -112483 120 -128508 -105283

B-n45-k6-54 277 -95588 497 -88761 502 -103214 -74278

B-n50-k8-40 166 -105497 - -41212 237 -128488 -12832

B-n52-k7-15 25 -85997 22 -79129 59 -90278 -74998

B-n57-k7-20 12 -876421 19 -876421 328 -882924 -867154

B-n66-k9-50 239 -81006 28 -38097 1195 -94120 -26520

B-n67-k10-26 184 -55180 178 -26808 343 -63086 -21924

B-n68-k9-65 150 -88375 - -55175 342 -99383 -31001

B-n78-k10-70 344 -91021 - -54330 480 -101516 -44333

E-n76-k7-44 117 -30127 115 -25885 338 -32038 -22214

E-n76-k10-72 239 -36569 164 -31404 138 -38613 -25241

E-n76-k14-102 3163 -28126 - -16153 3992 -31018 -1

E-n76-k15-40 3747 -25752 - -17526 4993 -28675 -1

E-n101-k8-291 48 -8296 - -7398 197 -9472 -4266

E-n101-k14-158 1468 -25748 - -22729 1350 -30882 -3590

G-n262-k25-316 669 -1434843 - -1434843 1510 -1434883 -1426535

M-n101-k10-97 40 -35323 37 -34758 76 -37825 -32628

M-n121-k7-260 89 -162680 - -161424 147 -164742 -160097

M-n151-k12-15 338 -87899 - -85488 822 -92880 -79996

M-n200-k16-143 6 -199411 4 -199411 118 -201772 -198792

M-n200-k17-12 4 -121506 1 -121210 7 -121506 -121210

P-n50-k7-92 950 -18594 1152 -12245 1319 -21516 -2

P-n50-k8-19 160 -89868 40 -89848 207 -90606 -83307

P-n50-k10-24 197 -19811 608 -11971 443 -21975 -2965

P-n51-k10-30 1028 -23812 - -18488 1588 -27061 -2

P-n55-k7-116 84 -27065 36 -22945 105 -28094 -17824

P-n55-k8-260 101 -18839 145 -11377 167 -22237 -3573

P-n55-k10-44 913 -21448 2197 -11798 1192 -25131 -1090

P-n55-k15-88 5971 -26723 - -20135 4781 -28128 -2

P-n60-k10-24 242 -26948 137 -21183 301 -29289 -15001

P-n60-k15-8 1495 -21889 1889 -13812 1507 -24674 -534

P-n65-k10-102 2390 -18923 - -10975 2532 -21424 -3

P-n70-k10-12 2 -72264 1 -70317 21 -73460 -70317

P-n76-k4-41 1 -88276 1 -88276 1 -88276 -88276

P-n76-k5-16 6 -108884 10 -108884 24 -108884 -107633

P-n101-k4-174 174 -19656 165 -19041 395 -19887 -17702

Table 1: Comparison of the number of branch nodes and lower bounds for the generated instances
using three different cut separation strategies.
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Name BAC time (s) LA time (s) speed up

A-n54-k7-149 6.96 1735.23 249.3

A-n60-k9-57 36.55 242.64 6.6

A-n61-k9-80 4.44 - ∞
A-n62-k8-99 17.94 - ∞
A-n63-k9-157 3.16 - ∞
A-n63-k10-44 2.12 693.80 327.3

A-n64-k9-45 14.57 - ∞
A-n65-k9-10 4.43 - ∞
A-n69-k9-42 1.76 3246.72 1844.7

A-n80-k10-14 12.14 - ∞

B-n45-k6-54 1.32 - ∞
B-n50-k8-40 11.01 - ∞
B-n52-k7-15 1.00 - ∞
B-n57-k7-20 1.74 - ∞
B-n66-k9-50 66.93 - ∞
B-n67-k10-26 4.62 - ∞
B-n68-k9-65 11.88 - ∞
B-n78-k10-70 24.30 - ∞

E-n76-k7-44 6.02 - ∞
E-n76-k10-72 1.19 - ∞
E-n76-k14-102 14.77 45.19 3.1

E-n76-k15-40 19.59 151.59 7.7

E-n101-k8-291 8.08 - ∞
E-n101-k14-158 37.84 - ∞

G-n262-k25-316 53.00 - ∞

M-n101-k10-97 3.12 - ∞
M-n121-k7-260 34.46 - ∞
M-n151-k12-15 78.03 - ∞
M-n200-k16-143 3.18 - ∞
M-n200-k17-12 17.75 - ∞

P-n50-k7-92 2.42 104.22 43.1

P-n50-k8-19 0.36 - ∞
P-n50-k10-24 0.72 2.91 4.0

P-n51-k10-30 2.18 4.06 1.9

P-n55-k7-116 0.58 2275.07 3922.5

P-n55-k8-260 1.20 133.45 111.2

P-n55-k10-44 2.14 14.69 6.9

P-n55-k15-88 3.97 44.73 11.3

P-n60-k10-24 1.04 110.20 106.0

P-n60-k15-8 1.95 2.50 1.3

P-n65-k10-102 6.65 163.48 24.6

P-n70-k10-12 0.24 - ∞
P-n76-k4-41 1.85 - ∞
P-n76-k5-16 0.57 - ∞
P-n101-k4-174 11.25 - ∞

Best 45 0

Table 2: Time comparison of the BAC algorithm and the labeling algorithm.

142



A Branch-and-Cut Algorithm for the Elementary Shortest Path Problem with ...

Name BAC time (s) DSSR time (s)

c 100 06 0.36 0.21

c 100 07 0.38 0.18

c 100 08 0.53 1.34

c 100 09 0.62 2.02

c 100 10 1.14 7.68

c 100 20 0.82 n.a.

c 100 50 3.07 n.a.

c 100 70 2.70 n.a.

c 100 100 4.43 n.a.

r 100 06 0.75 34.64

r 100 07 0.85 143.63

r 100 08 1.35 281.62

r 100 09 1.04 1002.30

r 100 10 0.80 -

r 100 20 2.09 n.a.

r 100 50 26.96 n.a.

r 100 70 16.25 n.a.

r 100 100 1.76 n.a.

rc 100 06 0.23 0.35

rc 100 07 0.66 0.92

rc 100 08 0.90 1.77

rc 100 09 0.36 1.40

rc 100 10 0.77 7.33

rc 100 20 1.08 n.a.

rc 100 50 4.10 n.a.

rc 100 70 4.17 n.a.

rc 100 100 6.47 n.a.

Best 28 (13) 2

Table 3: Time comparison of the BAC algorithm and the labeling algorithm (Righini and Salani [25]).

In Table 3 the BAC algorithm is compared to the results obtained with the decremental
state-space relaxation (DSSR) algorithm by Righini and Salani [25] (recall from Section 1
that this a specialized labeling algorithm). The running times for the two algorithms are
given in the columns (BAC time (s)) and (DSSR time (s)). Since Righini and Salani [25]
performed their tests on a 1.6 GHz Intel (R) Pentium 4(R) with 512 MB memory, and an
exact time comparison with our machine is hard, so we have not included the speed up factor.
’-’ indicates that the algorithm timed out after one hour, the ’n.a.’ entry indicates that no
result is available for that instance.

Although the DSSR algorithm is faster on two instances out of the 15 comparable cases, it
is only marginally better (even when taken their slower machine into account). There is a clear
tendency, that when the capacity increases (i.e., when the ESPPRC becomes more loosely
constrained) the running times of the DSSR algorithm increase significantly. The running
times are also generally increasing for the BAC algorithm when the capacity increases (except
for r 100 100), but not as drastically as for the DSSR algorithm. Results are not available
for the DSSR algorithm for the extended instances (with capacity from 200 and above), but
if the tendency from the smaller instances continues, then the DSSR algorithm will probably
not be able to solve the larger instances within the time limit. The BAC algorithm is clearly
superior for the loosely constrained instances.
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6 Concluding Remarks

This paper introduces a BAC algorithm for solving the ESPPRC. The algorithm clearly
outperformed the labeling algorithms (our own implementation of the one describes in Righini
and Salani [24] as well as the one by Righini and Salani [25]) for the tested instances. Labeling
algorithms have been the preferred solution approach up until now, but the experimental
results presented in this paper suggest otherwise. Furthermore, the generalized capacity
inequalities were introduced as a set of valid inequalities for the ESPPRC. It can be concluded
that the inequalities improve the lower bounds significantly. However, this comes at a cost
of complicating the branch decision, and leads to a large amount of additional branch nodes.
Also, the exact separation routine takes a considerable amount of time. This is due to solving a
maxflow problem on an almost complete graph. That is, the generalized capacity inequalities
improve the lower bound, but lead to increased running times.

Future research could include the adaption of more valid inequalities known from related
problems, e.g., two-matching inequalities, comb inequalities, and infeasible path inequalities.
Another interesting direction is the conditional cuts by Fischetti et al. [17]. Such cuts resemble
a specialized branch rule, as they cut off some of the branch tree after solving a subproblem
that finds the optimal solution for the subtree. Another natural extension of the work pre-
sented in this paper is to extend the BAC algorithm to include locally constrained resources.
This would lead to a larger mathematical formulation and will most definitely pose a serious
challenge for future research.
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Abstract

Reliable communication has become crucial in today’s information society. Modern
communication networks are required to deliver reliable communication to their cus-
tomers. Unfortunately, protection against network failures significantly hampers efficient
utilization of network investments, because the associated routing problems become much
harder. In this paper we present a rigorous mathematical analysis of one of the most
promising protection methods: Failure independent path protection. We present an LP
model which is solved by column generation. The subproblem is proven to be strongly
NP-hard, but still solvable for medium sized networks through the use of specialized dy-
namic programming algorithms. This enables us to evaluate the performance of failure
independent path protection for 8 networks with up to 37 nodes and 57 links. The results
indicate that only between 3% and 8% extra network capacity is necessary when com-
pared to the capacity required by complete rerouting (which is the absolute lower bound

In revision. Preliminary conference paper published in the proceedings of the International Network Optimiza-
tion Conference (INOC), 2007
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for single link failure protection).

Keywords: Failure independent path protection, column generation, protection capacity
minimization

1 Introduction

Today’s information society relies increasingly on advanced communication networks. This
has led to massive investments in increased communication network capacity. In order to
utilize these investments the network operators perform traffic engineering, i.e., they route
communication to maximize the utilization of the capital invested in the communication
network.

Most of the backbone networks which today carry long distance communication traffic use
path based routing, i.e., a communication connection between two points in the network is
established along one or more fixed paths. Despite the huge success of the packet switched
Internet, path based routed network technology will continue to be the dominant technique
of backbone networks, because traffic engineering can be performed much more efficiently
than in packet switched networks. Examples of such path switched network technologies are
SDH/SONET or DWDM networks or circuit switched network technologies like PSTN/ISDN.
Furthermore, the new Multi Path Label Switching (MPLS) [34] protocol enables packets to
be routed on fixed paths.

The standard model of a path switched communication network is a directed graph
G = (V,A) consisting of a set of nodes V and a set of arcs A. The nodes correspond to
telecommunication switches. The telecommunication switches route the communication sig-
nals through cables. We will assume that all cables enable bidirectional communication and
therefore we will model one cable using two arcs, one each way between the end nodes. We
assume that a static communication connection demand is given which requires one-way com-
munication between an origin node ok and a terminating node dk of volume ρk for a set of
demands k ∈ K. For each demand k we should construct a single primary (or working) path
from ok to dk, and all the required volume of traffic ρk should be sent over this primary path
(i.e., traffic should be non-bifurcated).

Communication networks are increasingly required to be reliable. If we cannot trust our
messages to reach the receiver, the use of a communication network is limited. Communication
networks are prone to failures and many different types of failures can occur. Switches (nodes)
can lose power, experience software and hardware failures, etc. Cables (arcs) can be cut by
entrepreneurs or by natural disasters. For simplicity, in this paper we will only consider single
cable failures, i.e., simultaneous failure of the two arcs which correspond to a cable. This is
a well-known and widely used simplification [15, 26].

Multiple cable failures can occur in networks, but are less probable. Several cables can fail,
if, e.g., a switch fails or a single cable failure in a lower network layer may result in multiple
failures in the upper layers. These kind of network errors are of increasing importance but
they also make network protection significantly harder, e.g., the problem of finding failure
independent paths is NP-complete in the face of multiple cable failures [17].

When a cable fails, the network operator either has to repair the cable or re-route the failed
paths around the failure. Because repairing a cable can take considerable time, rerouting is
an interesting alternative. The main problem with rerouting is that enough capacity needs to
be available on the remaining non-failed cables to enable rerouting. Traffic engineering which
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takes into account the possibility of a cable failure becomes significantly more complex, but
is again important in order to utilize network investments.

In this paper we assume that traffic which is routed along one primary paths is rerouted
along the same backup (or protection) path. Hence rerouted traffic is non-bifurcated. The
cost function is simple: We assume that a linear cost term ca for using capacity on arc a has
to be paid. The required capacity of an arc is the maximum capacity required for all failure
situations (the network should be able to accommodate necessary rerouting). The total cost
of the network is the sum of costs over all arcs. It should be noted that in our model arcs
have no capacity bounds — in contrast to the well-known multi-commodity flow model [1].

In Figure 1(a) two paths are established, from node 2 to node 6 and from node 5 to
node 9, both with a volume of 1, that is, (o1, d1, ρ1) = (2, 6, 1) and (o2, d2, ρ2) = (5, 9, 1). In
Figure 1(a) — and all the other figures in this paper — we have only drawn the bidirectional
cables, and not the two corresponding arcs for each cable, in order not to complicate the figures
unnecessarily. The necessary capacity of a cable corresponds to the sum of the necessary arc
capacities for that cable. Given the paths chosen in Figure 1(a) an arc capacity of 1 is then
required on the arcs (2, 4), (4, 6), (5, 7) and (7, 9), resulting in a total required Non-Failure
(NF) network capacity of 4. In Figure 1(b) the cable between node 5 and node 7 fails resulting
in the failure of arc (5, 7) and arc (7, 5). This results in a communication breakdown for the
path from node 5 to node 9.
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(b) A cable break

Figure 1: Path switched routing.

In order to protect communication against a cable failure, a rerouting strategy needs to
be planned for each possible cable failure, i.e., a protection method needs to be installed.
(Because rerouting methods protect against failures, we will use rerouting methods and pro-
tection methods interchangeably.) The importance of network reliability and the importance
of minimizing network investments have resulted in a large number of rerouting methods. It is
beyond the scope of this paper to review these and we refer the reader to [15] for a recent and
comprehensive survey. One of the promising methods is p-cycle protection. This is a clever
extension of the well-known ring protection scheme, which significantly improves the capac-
ity requirements necessary for protection [15, 31]. Furthermore, the use of p-cycles enable
fast protection of communication, as provided by ring protection. Despite these promising
features, p-cycles have not (yet) achieved widespread application.

In this paper we will consider traffic engineering optimization methods for the Failure
Independent Path Protection (FIPP) method for path switched networks. In this protection
method the backup path for a given demand is independent of the failure related to the
primary path, i.e., independent of which of the cables in the primary path have failed. This
protection method is also called Shared Backup Path Protection in [15] or Global Backup
Path Protection in [6].

The outline of the paper is as follows. In Section 2 we give a brief description of different
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path protection methods. This leads us to focus on the FIPP method for which we give a
mathematical model in Section 3. In the same section we also present a column generation
algorithm to solve a relaxed model and discuss the computational complexity of the sub-
problem. In Section 4 we then present and discuss the results when applying the column
generation algorithm to a number of test cases. In Section 5 we discuss possible extensions
and in Section 6 we draw some conclusions.

2 Path protection method

The classic path protection method employed in path switched networks is 1+1 protection.
Figure 2(a) shows how the 1+1 protection method can be used to protect the path connections
from Figure 1. In 1+1 protection, two cable disjoint paths (and hence arc disjoint paths) are
established and actively used. If an arc fails on one path, the other path will survive and
enable the receiving node to restore communication by just switching to the other incoming
signal. This method is simple, there are well-defined standards, but the required network
capacity is always at least twice the required non-failure network capacity. The total network
capacity required in the example in Figure 2(a), assuming the same demands, is 10. Notice
in particular that a capacity of 2 is required on arc (5, 6).
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Figure 2: Capacity sharing illustrated.

2.1 Comparing path protection methods

We now define two measures: Restoration Over Build (ROB) network capacity and Relative
Restoration Over Build (RROB) network capacity.

ROB: The extra network capacity necessary to ensure protection, i.e., the network capacity
for both routing and protection minus the NF network capacity, assuming shortest path
routing. In the example from Figure 2(a), ROB = 10 − 4 = 6.

RROB: The relative extra network capacity necessary to ensure protection, i.e., the ROB
network capacity divided by the NF network capacity. In the example from Figure 2(a),
RROB = 10−4

4
= 1.5, meaning that 1+1 protection in this case costs 150% extra

network capacity compared to the necessary non-failure network capacity.

The FIPP method is a slight variation of 1+1 protection: Instead of actively sending data
packets on both paths, one path is designated the primary path and only when that path fails
will the data packets be sent along the backup path. In Figure 2(b) the same two protected
connections as in Figure 2(a) are shown, but now there is a primary path (full line) and a
backup path (dashed line) for each path. But the required network capacity has decreased.
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The arc (5, 6) now only needs a capacity of 1, because the backup paths are not being used
at the same time. This concept is called sharing and is possible because we only guarantee
protection against single cable failures and because the two primary paths are cable disjoint.
For the FIPP method, the NF network capacity is again 4, but the ROB network capacity is
now 9, which leads to an RROB network capacity of 1.25.

In order to utilize the path protection methods traffic engineering has to be performed in
order to minimize the RROB network capacity. When working with 1+1 protection this is a
well-studied problem for which there exist polynomial-time algorithms [4, 33]. This is not the
case for the FIPP method. Because of the possibility of sharing the capacity for the backup
paths, the best choice of primary path and backup path for each end-to-end demand node
pair becomes interdependent.

A practical solution to the FIPP traffic engineering problem is studied in [23]. In order to
simplify the problem, the dependency between different protected communication connections
is ignored in [23]. Instead, the focus is on algorithms which can find pairs of disjoint paths,
where the cost of backup paths is assumed to be some constant factor cheaper than the
primary paths. Because of the sharing possibility it is reasonable that the capacity costs
for each arc of the backup path are less than the capacity costs for each arc of the primary
path. Even this simplified problem is NP-hard [23] and a number of different heuristics are
suggested to find good, though not optimal, solutions to the problem. This line of research
is continued in [22]. It should be emphasized that the cost model for backup paths used in
[22, 23] is approximate. We quantify the exact relationship between costs for primary and
backup paths in Section 3.1 and prove that the resulting optimization problem is strongly
NP-hard.

In [26] the full FIPP traffic engineering problem is considered. A column generation
approach, similar to the approach in this paper, is considered. The same mathematical
model for the column generation master problem is formulated, but the subproblem is not

formulated. This means that if an optimal solution is required, the full set of disjoint paths
has to be pre-generated, and this is only feasible for small networks.

2.2 Different path protection methods

The Failure Independent Path Protection method is just one example of a path protection
scheme, and there are a number of other methods. The different path protection methods
all use one primary path, but protect the primary path in different ways. In Figure 3, which
is (partly) taken from [6], six path protection methods are presented. If the path protection
methods are only allowed to choose the backup path based on the failed cable, this list
is complete, but a number of additional variations exists, some of which are described in
Section 2.3.

Full Backup Path Protection (FBPP)

Theoretically FBPP [24], see Figure 3(a), is the most efficient path protection method. (This
method is not included in [6].) Given a primary path, each cable which can fail on the
primary path is protected by a unique backup path. There are no limitations regarding these
backup paths, except they are, obviously, not allowed to use any of the two failed arcs in the
cable which they protect. This gives the highest possible freedom in choosing the cheapest
protection paths and all the other path protection methods are more restrictive in the choice
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Figure 3: Different path protection schemes.

of backup paths and hence more costly.

Segment Backup Path Protection (SEBPP)

SEBPP, see Figure 3(b), protects segments (sets of cables) of the primary path with the same
backup path. Hence several cables in the same segment are forced to share backup paths.

Failure Independent Path Protection (FIPP)

FIPP, see Figure 3(c), limits the choice of backup path even further, such that only one
backup path is allowed. This forces the backup path to be cable disjoint with the primary
path.

Local Backup Path Protection (LBPP)

LBPP [24], see Figure 3(d), performs a local protection, i.e., the rerouting paths are required
to lead from one node of the failed cable to the other node of the failed cable. This resembles
the classical span protection, but in this case different reroute paths may be chosen for each
connection.
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Local Destination Rerouting (LDR)

LDR [2], see Figure 3(e), is a variation of local protection, where the connection paths are
rerouted directly to the end node of the connection. LDR preserves the fast rerouting time
of Local Backup Path Protection, but is more efficient regarding ROB network capacity.

Front Dynamic Backup Path Protection (FDBPP)

FDBPP, see Figure 3(f), is another variation of local protection, where the connection path is
rerouted from the start node to the end node of the failed cable. To the best of our knowledge
this type of protection has not been suggested anywhere else and is only included to make
the list of path protection methods complete. We do not expect the FDBPP method to be
implemented anywhere.

2.3 Further variations

The description of the different path protection schemes is very simplified and a number of
variations can be added. Here we briefly mention two of these.

Stub-release is a technique which can be applied to further lower the required network
capacity. The idea is that in case of a failed cable, the unharmed parts of the primary path,
which are not in use any longer, are released and can be used for protection [25]. Stub-release
can improve the capacity efficiency of each method, with the exception of the Local Backup
Path Protection method, at the price of a more complicated protection scheme.

To speed up the recovery process, Hashkin protection can be applied [16]. The idea is
to loop-back the communication signals at the switch just before the failed cable, to where
the backup path starts. Hashkin protection minimize packet-loss, but requires more network
capacity and cannot be used in Local Backup Path Protection and Local Dynamic Backup
Path Protection.

2.4 Motivation for FIPP

Out of the 6 different types of path protection described in Section 2.2, we only consider the
FIPP method in this paper.

FIPP is the only path protection method for which the protection action does not depend
on which cable actually fails — it is failure independent. This makes FIPP the simplest of
the path protection methods. Furthermore, the complex switching schemes take place at the
start node of the connection path, which may be an advantage in future networks. It is not

the most capacity efficient path protection method. The most efficient method is FBPP, but
FBPP requires administration of a large number of backup paths. Furthermore, in Section 4
we demonstrate that the FIPP method is indeed a very efficient protection method, when
optimal routing of the primary path and the backup path is performed.

The main disadvantage with the FIPP method is the relatively long restoration time, i.e.,
the time it takes to restore communication. This is because of the notification time – which
is the backward communication time between the node which observes the failure and the
node from which the connection paths originates. We have illustrated the notification time
by dotted arrows in Figure 3 for the path protection methods for which this is necessary. For
a more complete discussion of restoration time, we refer to [6].
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3 LP model and column generation approach

In this section we start by defining the FIPP optimization problem formally. Then we present
an LP model for a relaxed version of the FIPP optimization problem, the so-called fractional

FIPP optimization problem. The LP model has an exponential number of variables, and
hence we solve it using column generation. In Section 3.1 we describe the associated pricing
problem (or subproblem). A MIP model for solving the subproblem is given in Section 3.2,
and in Section 3.3 we show that the subproblem is in fact strongly NP-hard. Finally, in
Section 3.4 we give a labeling algorithm for solving the subproblem, and summarize our
column generation algorithm in Section 3.5.

Given, as previously defined, a directed graph G = (V,A) with nodes V and arcs A. For
each failure situation s ∈ S we have a set of failed arcs Fs ⊆ A. There is a cost ca for using
one unit of capacity of an arc a. We further assume to know a static set of demand node pairs
for which protected connections using the FIPP method should be established. A directed
connection between an origin node ok and a terminating node dk with a volume of ρk should
be established for each demand k ∈ K. The optimization objective is to minimize the cost of
the required capacity when applying the FIPP method to protect the established connections.
This means that for each demand a pair of directed failure disjoint paths needs to be found:
A primary path ppri and a backup path pbac, both connecting node ok to node dk. Such a
pair of failure disjoint paths is denoted a path pair π = (ppri, pbac). The objective in the FIPP
problem is to find a path pair for each demand k ∈ K, such that the total cost of the capacity
required is minimized. Note that the capacity required by an arc is the maximum capacity
required taken over all failure situations.

Given these definitions we are ready to present an LP model for the fractional FIPP
optimization problem. In this problem we allow more than one path pair to accommodate
the flow required by a demand. Let Pk be the set of path pairs that can satisfy demand k,
that is, the set of primary/backup paths that connect origin node ok with terminating node
dk. Let Pk(a) ⊆ Pk be the subset of path pairs for which the primary path uses arc a ∈ A.
Similarly, let Pk(a, s) ⊆ Pk be the set of path pairs for which the primary path fails and the
backup path uses arc a ∈ A \ Fs in failure situation s ∈ S. Finally, let variable λk

π denote
the amount of communication flow through path pair π ∈ Pk, and let variable θa denote the
capacity required for arc a ∈ A.

FIPP

minimize:

∑

a∈A

ca · θa (1)

subject to:

∑

π∈Pk

λk
π ≥ ρk ∀ k ∈ K (2)

∑

k∈K

∑

π∈Pk(a)

λk
π +

∑

k∈K

∑

π∈Pk(a,s)

λk
π ≤ θa ∀ s ∈ S, a ∈ A \ Fs (3)

λk
π, θa ∈ R+
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The objective function is given by (1) and it is the cost of the summed network capacity.
The demand constraint (2) ensures that enough capacity is established on the path pairs. The
capacity constraint (3) ensures that enough capacity is allocated to route the communication
on each arc a in each failure situation s which does not disrupt the arc.

The problem with this LP-model is that the number of path pairs grows exponentially
with the network size, and hence the complete model can only be solved for small network
sizes. Instead, we will use a column generation algorithm such that only a subset of the path
pairs is generated. The optimization subproblem to generate new path pairs with negative
reduced costs is given in Section 3.1, and in Section 3.5 the column generation algorithm is
given.

It is clear that the fractional FIPP optimization problem is a relaxation of the original
FIPP optimization problem which is NP-hard [32]. The hardness of the fractional FIPP
optimization problem on the other hand is still an open problem. The LP model can there-
fore be used for lower bounding in a branch-and-price algorithm for the FIPP optimization
problem. The bound can however be weak, because the bound of the relaxed FIPP model
is equivalent to the bound of the relaxed FBPP model, if the primary paths consists of one
link. For primary paths of one link, each of the backup paths for the FBPP model can be
constructed by generating path pairs, i.e., the one hop primary path and different backup
paths. For primary paths which are not one hop however, the relaxed FIPP model and the
relaxed FBPP model are not equivalent, because in the FIPP model the feasible backup paths
are more limited than the feasible backup paths for the FBPP model. In other words, it will
depend on the network and the communication demand how good a bound the relaxed FIPP
model can deliver compared to the bound of the FBPP model.

3.1 Subproblem: Quadratic Cost Disjoint Path Problem

For the master problem for FIPP optimization problem let αk ≥ 0, k ∈ K, be the dual
variables associated with the (negated version of) constraint (2), and let βs

a ≥ 0, s ∈ S,
a ∈ A \Fs, be the dual variables associated with constraint (3). Our task is to decide if there
exists a pair of primary and backup paths π = (ppri, pbac) from some origin node ok to some
terminating node dk with negative reduced cost for some k ∈ K.

The reduced cost of a pair of paths (ppri, pbac) is computed as follows. The cost of an arc
a ∈ ppri is

∑

s∈S βs
a, while the cost of an arc a ∈ pbac is

∑

s∈S:Fs∩ppri 6=∅ βs
a. Note the asymmetry

in the definition of arc costs in primary and secondary paths: For an arc on the primary path
the cost is the sum taken over all failure situations, while for an arc on the backup path the
sum is only taken over the failure situations that affect an arc on the primary path. The total
reduced cost of (ppri, pbac) is now

−αk +

primary path cost
︷ ︸︸ ︷

∑

a∈ppri

∑

s∈S

βs
a +

backup path cost
︷ ︸︸ ︷

∑

a∈pbac

∑

s∈S:Fs∩ppri 6=∅

βs
a

The Quadratic Cost Disjoint Path Problem (QCDPP) is to compute a pair of paths π =
(ppri, pbac) with minimum total cost. The name of the problem comes from the fact there
is a pairwise (or quadratic) dependence on the cost of the backup path as a function of the
primary path. Since the dual variables βs

a are non-negative, there clearly exists an optimal
solution where both the primary path ppri and the backup path pbac are simple. Hence in the
following we require that the paths ppri and pbac are simple and arc disjoint.
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3.2 MIP model for QCDPP

A primary path is defined by the binary variables xa for all a ∈ A and a backup path is
defined by the binary variables ya for all a ∈ A. We define the sets δ+(i) as the arcs going
out of node i ∈ V and δ−(i) as the set of arcs going into node i ∈ V . We again use the set of
failed arcs Fs and define the cardinality of the set as |Fs|, i.e., the number of arcs which fails
in situation s ∈ S. The binary variables us for all s ∈ S detect whether the primary path is
interrupted by failure s and the binary variables vs for all s ∈ S detect whether the backup
path is interrupted by failure s. Furthermore, the auxiliary variables za

s for all s ∈ S and all
a ∈ A detect if the primary path is interrupted by failure s at the same time as the backup
path use arc a.

QCDPP

minimize:

ck
reduced = −αk +

primary path cost
︷ ︸︸ ︷

∑

a∈A

∑

s∈S

βs
a · xa +

backup path cost
︷ ︸︸ ︷

∑

a∈A

∑

s∈S

βs
a · z

a
s (4)

subject to:

∑

a∈δ+(i)

xa −
∑

a∈δ−(i)

xa =







1 i = ok

−1 i = dk

0 otherwise
∀ i ∈ V (5)

∑

a∈δ+(i)

ya −
∑

a∈δ−(i)

ya =







1 i = ok

−1 i = dk

0 otherwise
∀ i ∈ V (6)

|Fs| · us ≥
∑

a∈Fs

xa ∀ s ∈ S (7)

|Fs| · vs ≥
∑

a∈Fs

ya ∀ s ∈ S (8)

us + vs ≤ 1 ∀ s ∈ S (9)

za
s ≥ us + ya − 1 ∀ s ∈ S, a ∈ A (10)

xa, ya, us, vs ∈ {0, 1}, zs
a ∈ [0, 1] (11)

The objective function (4) is the reduced cost ck
reduced of the two disjoint paths. The

first double sum calculates the costs for the primary path. The second double sum then
calculates the cost for the backup paths. Notice that each arc a in the backup path only costs
βs

a in situation s if the primary path is disrupted in failure situation s. This is detected by
the variable za

s . Finally the dual value αk from constraint (2) is subtracted to calculate the
corresponding reduced cost. Both the primary path variables x and the backup path variables
y are constrained to form paths by constraint (5) and (6), respectively. The path disruption
variables, u for the primary path and v for the backup path, are set by constraint (7) and (8)
respectively. Variables u and v are then used in constraint (9) to ensure failure disjointness of
the paths. In constraint (10) the auxiliary variable za

s is forced to the value 1 if the primary
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path is disrupted in situation s and the backup path uses the arc a. Finally the domains of
the variables are given by constraint (11).

We consider two variants of failure situations: In the single arc failure variant there is
one failure situation for each arc in A. In the single link failure variant there is one failure
situation for each pair of opposite arcs, i.e., when the corresponding undirected edge is broken.

In Section 3.3 it is proved that the sub-problem above is NP-hard. However, if instead
the primary paths were pre-calculated and the task was to find the best usage of the primary
paths, at the same time finding the best backup paths, the sub-problem would be a simple
shortest path problem (with links of the primary path removed from the network).

3.3 NP-hardness of QCDPP

We now prove that QCDPP is strongly NP-hard for the single arc and single link failure
variants. First we present the proof for the single arc variant and then we indicate how this
leads to an NP-hardness proof for the single link variant. In the single arc variant the set
of failure situations S is identical to the set of arcs A. The decision version of QCDPP with
single arc failures is formally defined as follows (where the constant term −αk in the objective
function of QCDPP is ignored).

INSTANCE: Directed graph G = (V,A), pairwise (integer and non-negative) costs β
f
a for all

ordered pairs of arcs (a, f) ∈ A×A, origin node ok ∈ V , terminating node dk ∈ V and integer
C.

QUESTION: Does there exist a pair of simple arc disjoint paths π = (ppri, pbac) from ok to
dk in G such that

∑

a∈ppri

∑

f∈A

βf
a +

∑

a∈pbac

∑

f∈ppri

βf
a ≤ C ?

We prove that this problem is NP-complete by reduction from 3-SATISFIABILITY (3SAT) [14].
It is obvious that the decision version of QCDPP is in NP, since given π = (ppri, pbac) we can
compute the corresponding cost and compare it to C in polynomial time.

Let (U,C) be an instance of 3SAT, where U = (x1, x2, . . . , xn) is a finite set of n variables
and C = (c1, c2, . . . , cm) is a set of clauses where |ci| = 3, i = 1, . . . ,m. We assume without
loss of generality that each variable appears in at least one clause.

Based on the 3SAT instance we create an instance of the QCDPP with the structure
illustrated in Figure 4. The graph consists of two chains of arcs – the so-called top chain and
the bottom chain. Two node disjoint paths from ok to dk must necessarily have the property
that one of the paths travels through the top chain while the other travels through the bottom
chain. By assigning costs appropriately, we will force the primary path to use the bottom
chain and the backup path to use the top chain.

We will first assume that we seek two node disjoint paths from ok to dk in this graph. Later
we describe how we can modify the graph so that the paths become arc disjoint. Furthermore,
the graph that is shown is a directed multigraph, and later we also describe how this graph
can be transformed into an ordinary directed graph.

The arcs in the top chain are denoted variable arcs, while the arcs in the bottom chain are
denoted clause arcs. For each clause ci ∈ C we have 8 parallel arcs, one for each combination
of assignments for the three literals; these assignments are denoted 000, 001, 010 etc. As
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x1 = 1

xn = 0

000

111

x2 = 1

111

x2 = 0

xn = 1

x1 = 0

000

001

c2

001

dkok

c1
cm

Figure 4: Graph construction for NP-completeness proof.

an example, for the clause (x1 ∨ x2 ∨ x̄3) the assignment 011 means that x1 = 0, x2 = 1
and x3 = 0. Note that an assignment different from 000 corresponds to a satisfied clause.
Similarly, we have two variable arcs for each variable xj, one arc for xj = 0 and one arc for
xj = 1.

We will now assign pairwise costs β
f
a for all ordered pairs of arcs (a, f) ∈ A × A. We set

β
f
a = 0 for all (a, f) ∈ A × A except from the following pairs:

• For a clause arc a corresponding to the assignment 000 we have β
f ′

a = 1 for one arbitrary
variable arc f ′ (say, the arc corresponding to x1 = 0). This means that if the arc a is

used by a primary path from ok to dk then the cost of a is
∑

f∈A β
f
a = 1.

• For a variable arc a and clause arc f , if the variable assignment given by arc a does not

match the clause assignment given by arc f , then β
f
a = 1. As an example, the variable

arc a corresponding to x3 = 1 has β
f
a = 1 for the arc f corresponding to the clause

(x1 ∨ x2 ∨ x̄3) with assignment 011. In Table 1 an extended example on how costs are
assigned for variable arcs is given.

Since we assume that each variable appears in at least one clause, each variable edge a

has cost at least 1 as a primary edge, since there will be at least one clause assignment
that does not match with the variable assignment given by a.

Finally, we set C = 0 in the QCDPP instance. Now we prove that we have YES-instance
for QCDPP if and only if we have a YES-instance for 3SAT.

Consider a YES-instance for QCDPP, that is, an instance with zero cost. Such an instance
must have a primary path ppri following the clause arcs from ok to dk, since the variable arcs
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Assignment x1 = 0 x1 = 1 x2 = 0 x2 = 1 x3 = 0 x3 = 1

000 0 1 0 1 1 0
001 0 1 0 1 0 1
010 0 1 1 0 1 0
011 0 1 1 0 0 1
100 1 0 0 1 1 0
101 1 0 0 1 0 1
110 1 0 1 0 1 0
111 1 0 1 0 0 1

Table 1: Costs β
f
a associated with variable arcs a for clause f being equal to (x1 ∨ x2 ∨ x̄3).

have positive costs as primary path arcs. Consequently, the backup path pbac must follow
the variable arcs from ok to dk. Since the total cost of the solution π = (ppri, pbac) is zero,
all arcs of the path ppri correspond to clauses being satisfied (i.e., are different from the
clause assignments 000 which have cost 1 as primary path arcs). Also, since the total cost of
π = (ppri, pbac) is zero, the variable arcs followed by pbac match the assignments in the clause
arcs. Therefore, assigning the variables xj, j = 1, . . . , n, to the values indicated by the path
pbac gives a satisfying assignment for the 3SAT-instance.

For the other direction, consider a YES-instance for 3SAT. By letting pbac follow the
variable arcs in the QCDPP instance as given by a satisfying 3SAT-assignment, and letting
ppri follow the clause arcs corresponding to the 3SAT-assignment, we obtain a solution to
QCDPP of total cost zero.

By splitting each node in the graph (apart from ok and dk) – that is, replacing the node
with an arc (u, v), and connecting all in-coming arcs to u and all out-going arcs to v – we
force the paths to be edge disjoint. Furthermore, the multigraph can be transformed into an
ordinary directed graph G by replacing each arc in the multigraph by a sequence of two arcs,
and assigning pairwise costs appropriately. Thus we have the following:

Theorem 1 The decision version of QCDPP when reduced to single arc failures is NP-

complete even when all pairwise costs are 0 or 1 (and only distinct pairs of arcs can have

non-zero costs).

Consider the directed graph G resulting from the above construction. If, for each arc
in G, we add an arc in the opposite direction we obtain a graph G′, where bidirectional
communication is feasible for each underlying link. Consider the single link failure variant
of QCDPP for the graph G′, where the costs are assigned as in the construction above, but
where the β

f
a costs are replaced with βl

a costs (where l corresponds to a link). Since the
primary and backup paths in G′ should be simple, no backward arcs in G′ will ever be used,
and therefore we obtain the following:

Theorem 2 The decision version of QCDPP when reduced to single link failures is NP-

complete even when all pairwise costs are 0 or 1 (and non-overlapping pairs of arcs and links

can have non-zero costs).
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3.4 Labeling algorithm for the QCDPP

The QCDPP can be formulated as a Shortest-Path Problem with Resource Constraints (SP-
PRC). The SPPRC is a common subproblem in many graph based problems when using a
column generation based algorithm, e.g., the Vehicle Routing Problem with Time Windows
[20, 21] and the Crew Pairing Problem [8]. In the following we will shortly define the SPPRC,
discuss complexity issues and the application of recent developments within this area, and
describe the basic labeling algorithm. Last we will present the reformulation of the QCDPP
into an SPPRC.

The SPPRC can be stated as: Given a weighted directed graph G′ = (V ′, A′) with nodes
V ′ and arcs A′, and a set of resources R. For each node i ∈ V ′ and arc (i, j) ∈ A′ there
is a weight of each resource r ∈ R that is determined by a (not necessarily linear but often
constant) function, as well as a lower and upper limit on r. For a sub-path in G′ there is a
resource accumulation of resource r ∈ R when visiting node i or traversing arc (i, j), i.e., an
amount of resource r is accumulated on the path. The total amount of r must respect the
lower and upper limits of r in when arriving at node i ∈ V ′ or when using arc (i, j) ∈ A. The
increase in resource consumption and cost of a path when extended along an arc is defined by
a function, that are sometimes denoted resource extension functions, see [18]. The objective
is to find a minimum cost path from an origin node o ∈ V ′ to an destination node d ∈ V ′,
where the resources satisfy the limits for all resources r ∈ R. In many cases it suffices to have
the limits of the resources only at the nodes; in these cases the limits on the edges can be
made non-binding.

The SPPRC is NP-hard in the weak sense when the number of resources is a constant
and can be solved with dynamic programming based labeling algorithms in pseudo-polynomial
time. An extension of the SPPRC is the node elementary version; the elementary shortest path
problem with resource constraints (ESPPRC) where paths must be simple. The elementarity
constraint can be enforced with the use of a binary resource for each node to indicate if the
node is visited on the path and solved as an SPPRC. The ESPPRC is strongly NP-hard,
see [11]. However, if G′ does not contain negative weight cycles the additional resources can
be disregarded since a least weight path that is simple will always exist, hence the problem
can be solved in pseudo-polynomial time. Although the reformulation (see details below)
of the QCDPP into a SPPRC leads to a graph with no negative weight cycles, the number
of resources amounts to one binary resource per failure scenario, i.e., one per two arcs in
G for the single link failure case in the QCDPP. That is, the number of resources in the
SPPRC depends on the input of the QCDPP, hence the complexity of the labeling algorithm
is exponential when regarding the reformulation of the QCDPP. Also, it is important to note
that the reformulation of the QCDPP into a SPPRC results in a non-constant extension
function where the weight of the arcs on the backup path depend on the failure scenarios that
are affected by the primary path.

A comprehensive overview of work related to SPPRC is outside the scope of this article,
but we will briefly discuss some recent results. For further details on mathematical models and
solution methods we refer the reader to the survey of Irnich and Desaulniers [19]. Dynamic
programming based methods denoted labeling algorithms are to date the most dominant
approach to solving the SPPRC. However, recently Carlyle et al. [7] present a Lagrangian
relaxation based method. The approach is applicable for problems with no negative weight
cycles and shows good results when few resources are considered. However, due to the nature
of the non-constant extension function on the arc weights in our reformulation this approach
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is not directly applicable; also we consider a large number of resources which may limit the
effect of the Lagrangian relaxation.

Dumitrescu and Boland [12] present an improved preprocessing for the SPPRC (with
no negative cost cycles) and embed it into a labeling algorithm. They present resource
lower bound calculations using Lagrangian relaxation, hence solving a shortest path problems.
Again this approach is not applicable in our case due to the arc weight extension function in
our reformulation. Furthermore, this approach have very limited use when only considering
binary resources, which is indeed the case for our reformulation, since the resource bounds
are already very tight. Feillet et al. [13] address the ESPPRC and propose to consider
unreachable nodes instead of visited nodes with the binary resources. The unreachability of a
node is determined based on limits on other resources. In our context this would correspond
to deciding if a failure scenario cannot be triggered. However, this is difficult to decide without
actually visiting the arcs of the scenario, since triggering a scenario does not directly depend
on other resources but on the topology of the graph. Therefore the unreachability concept
cannot readily be used in our case.

A very successful labeling algorithm by Righini and Salani [27] showed how a significant
speedup can be gained by using a bi-directional approach. That is, based on a monotone
resource (e.g., the number of nodes on the path) a breaking point is chosen (e.g., when half
the nodes have been visited) and the labeling algorithm is run from both sides. By splicing
paths starting at the origin node o with a reverse path coming from the destination node
d one can construct a full path. For this method to work all extension functions must be
reversible which unfortunately is not the case for our objective function. Boland et al. [5]
and Righini and Salani [28] independently proposed to relax the state-space of the labeling
algorithm such that only a subset of resources are considered to begin with. Any violated
resource is then added iteratively until a feasible path has been found. By construction of the
graph and the definition of the objective function used in our reformulation, it is doubtful that
this approach would perform satisfactory since relaxing resources would yield zero weight arcs
in the associated backup path, making it necessary to add resources until all feasible backup
paths are covered.

In a labeling algorithm the labels represent partial paths that are extended (using the
extension functions) in all feasible directions from the origin node o. Each label L (a vector
with R+1 components) stores the cost of the partial path Tcost(L) and the current value Tr(L)
of each resource r ∈ R. To avoid enumerating all feasible paths in G′, only Pareto-optimal
labels (i.e., labels that are not proved to be dominated by other labels) are kept during the
execution of the algorithm. When using non-decreasing extension functions (which is the case
for the reformulation of QCDPP), the label dominance criterion can be stated as follows.

Proposition 1 ([9]) Let L and L′ be two labels representing partial paths ending at the same

node. Label L dominates label L′ (which can be discarded) if

Tcost(L) ≤ Tcost(L
′)

Tr(L) ≤ Tr(L
′) ∀r ∈ R.

When equality holds for all label components, one of the two labels must be kept. Figure 5
summarizes the concept of a labeling algorithm. The initial state is represented by the label
Lo at the starting node. This label is enqueued on a priority queue Q that keeps track of all
unprocessed labels. The algorithm runs until all labels have been processed. In each iteration
the next label L from Q is dequeued. The set of nodes (FEASIBLE EXTENSION(L)) that
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Initialize label Lo

ENQUEUE(Q,Lo)
while Q is not empty

L := DEQUEUE(Q)
for each node i ∈ FEASIBLE EXTENSION(L)

Li := EXTEND LABEL(L, i)
if i = d

then ENQUEUE(S,Li)
else ENQUEUE(Q,Li)

REMOVE DOMINATED(Q)
return S

Figure 5: Pseudo-code for labeling algorithm.

are feasible extensions of the partial path represented by L, with regard to connectivity and
resource limits, is determined. L is extended to these nodes using the resource extension
functions (implemented in EXTEND LABEL(L, i)) to create the new label Li for node i. If
the extended label Li is extended to the end node d it is stored as a solution in the queue S

otherwise Li is enqueued on Q for future processing. Last Q is cleaned for dominated labels
so only Pareto-optimal labels remain.

Next, we consider the transformation of the QCDPP stated as (4)-(11) into a SPPRC
Recall the graph G = (V,A) for the QCDPP where a minimum cost primary and backup
path pair must be found from ok ∈ V to dk ∈ V over all k ∈ K. Let V ′ = {i′ : i ∈ V } be a
copy of all nodes in V and let A′ = {(j′, i′) : (i, j) ∈ A, i′, j′ ∈ V ′} be a reversed version of
all arcs in A connecting the nodes in V ′, and let A′′

k = {(dk, d′k) : dk ∈ A, d′k ∈ A′} be the arc
connecting the two node and arc sets for demand pair k. The transformed graph for the kth
demand pair is then G′

k = (V ∪ V ′, A ∪ A′ ∪ A′′
k) where a primary path will be sought in the

first part of the graph with nodes V , then by the arc (dk, d
′
k) the search is switched to the

other part of the graph consisting of the nodes V ′ where a reverse backup path is found. G′
k

is illustrated on Figure 6. For each failure situation s ∈ S it must be ensured that no arcs
from Fs is used on the backup path if any of the arcs in Fs was used on the primary path. A
binary resource is added for each failure situation s ∈ S. Hence, the set of resources have size
|S|. Let a label L consist of 1 + |S| components, Tcost(L) to store the cost of the path and
Ts(L) for s ∈ S to store the bit value of the failure situation resources. Ts(L) will be set to
one if the failure scenario s is triggered on the primary path, and resource limits are enforced
on the arcs when extending labels. The upper bound for resource s ∈ S when extending a
label on arc a′ are given as 0 for a′ ∈ A′∧a ∈ Fs and 1 otherwise. That is, a label L cannot be
extended on arc (i′, j′) ∈ A′ with (j, i) ∈ Fs for s ∈ S on the backup path if arc a ∈ Fs is used
on the primary path, i.e., the resource value Ts(L) = 1 and the upper bound for s on (i′, j′)
is 0. Hence, in Figure 5 the end node of a is not in the set FEASIBLE EXTENSION(L).
Recall that the cost of the backup path depends on the arcs used on the primary path and
that βs

a ≥ 0 and αk ≤ 0. The extension along an arc a of a label L (implemented in EXTEND
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Backup path

Primary pathok

o
′
k

dk

d
′
k

Figure 6: The transformed graph for the kth demand pair. The backup path part of the graph
is a reversion of the primary path part, i.e., the path found is a forward directed primary
path and a reversed backup path.

LABEL(L, i)) proceeds as follows to create a new label L′:

Tcost(L
′) = Tcost(L) +







∑

s∈S βs
a a ∈ A

∑

s∈S:Ts(L)=1
βs

(j,i)
a = (i′, j′) ∈ A′

−αk a ∈ A′′
k

Ts(L
′) =

{

1 a ∈ Fs

max{Ts(L), 0} otherwise
s ∈ S

Both extension functions are non-decreasing, hence the dominance criterion of Proposition 1
can be applied in the labeling algorithm. For the kth pricing problem; a path represented by
label L ending in o′k have the cost:

ck
reduced = −αk +

primary path cost
︷ ︸︸ ︷

∑

a∈A(L)

∑

s∈S

βs
a +

backup path cost
︷ ︸︸ ︷

∑

a=(i′,j′)∈A′(L)

∑

s∈S:Ts(L)=1

βs
(j,i) (12)

where A(L) and A′(L) are the set of arcs used in A and A′ respectively. Minimizing expression
(12) is equivalent to the objective function stated in (4) and the path found by the labeling
algorithm can trivially be split into a primary and a backup path.
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Initialize αk , βs
a

k = 1
do

k′ := k

do

SOLVE QCDPP(k, αk , βs
a)

k := k + 1

while c
p,k
reduced ≥ 0 and k′ 6= k

Update set of path pairs
SOLVE FIPP with new set of path pairs
Update αk , βs

a

while k′ 6= k

Figure 7: Column Generation algorithm.

3.5 Column Generation Algorithm

Given the LP model in Section 3 we can now apply column generation to solve the model,
where the subproblem described in Section 3.2 is either solved using a MIP solver or the
labeling algorithm described in Section 3.4. Below we briefly describe the column generation
algorithm (Figure 7).

In the column generation algorithm in Figure 7 we first initialize αk and βs
a with artificial

values: αk =
∑

a∈A ca and βs
a = ca

|S| (where S is the set of failure situations). This means that
it is always profitable to include a path pair of primary and backup paths for each demand
k. After entering the main loop, promising path pairs are found based on the current values
of αk and βs

a. The resulting paths are then added to the set of path pairs and the master
problem is solved with the new set of path pairs. This process continues until no negative
reduced-cost path pair for any demand can be found.

4 Results

In this section the efficiency of the FIPP protection method is tested on 8 different networks.
Basic network data for the 8 networks is given in Table 2. We have chosen to use the simple
demand matrix Dkl = 1 for each pair of nodes.

In Table 3 and Table 4 we compare the computation times when the QCDPP subproblem
is solved using the SPPRC labeling algorithm and a standard MIP solver, respectively.

It can be seen from Table 3 and Table 4 that the SPPRC labeling algorithm is significantly
faster on all tested networks. Furthermore, two of the networks, Norway and Ta1, cannot be
solved using the MIP solver due to excessive memory consumption.

Given the column generation algorithm, we are now able to calculate the optimal protec-
tion capacity required for relaxed FIPP protection (Table 5). We find the results in Table 5
interesting because it shows how efficient the relaxed FIPP method is. The FIPP method use
at most 8% extra network capacity compared to the theoretical lower bound achieved using
Complete Rerouting [30] and on average only 4% extra network capacity. We acknowledge
that this is only part of the story and that the moment the demands are required to be integer,
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Network Nodes Edges Avg. Node No.
Degree Demands

Cost239 [3] 11 26 4.73 55
Europe 13 21 3.23 78
Newyork [29] 16 49 6.12 120
Ta1 [29] 24 51 4.25 276
FranceSND [29] 25 45 3.60 300
Norway [29] 27 51 3.77 351
USA [10] 28 45 3.21 378
Cost266 [29] 37 57 3.08 666

Table 2: Tested networks and their characteristics.

Network Rows Columns Iter Time
Initial Final PerIt PerDem Total CG CGPct

Cost239 [3] 705 81 1451 42.81 0.78 32 11 1 4.56
Europe [29] 498 99 470 46.38 0.59 8 1 1 36.36
Newyork [29] 2472 169 5292 47.44 0.40 108 2438 1875 76.94
Ta1 [29] 2826 327 4013 43.88 0.16 84 17612 17385 98.71
FranceSND [29] 2280 345 2944 57.76 0.19 45 235 191 81.29
Norway [29] 2901 402 3704 58.96 0.17 56 1177 967 82.22
USA [10] 2358 423 3076 60.30 0.16 44 156 77 49.65
Cost266 [29] 3858 723 6516 62.29 0.09 93 2050 1051 51.29

Table 3: SPPRC labeling algorithm results. Rows: Number of rows in LP. Initial: Initial
number of master problem columns. Final: Final number of master problem columns. PerIt:
Number of columns added per iteration. PerDem: Number of columns added per iteration
per demand. Iter: Number of column generation iterations. Total: Total running time in
seconds. CG: Total column generation running time in seconds. CGPct: Column generation
(label) solve time as percentage of total time.

i.e., that for each demand the entire communication flow is routed on the same primary path
and the same backup path, the ROBB is going to increase.

5 Future Research

The mathematical model we on which we base our results is by choice constructed to be as
simple as possible. A number of additional model features can be incorporated into the model
and some of these may certainly change the above conclusions. In this section we will briefly
describe the two model refinements which we regard as the most important.

Firstly, in the current model we consider the demands as a volume of communication ρk

to be established between two nodes in the network. In the fractional FIPP problem this
volume may be divided between a number of path pairs and this is probably not desirable for
the communication customers. Instead, each customer should be offered one path pair with
a certain volume of traffic — corresponding to the original FIPP problem. For the model
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Network Rows Columns Iter Time
Initial Final PerIt PerDem Total CG CGPct

Cost239 [3] 705 81 677 1.00 0.02 597 154 145 93.77
Europe [29] 498 99 307 1.00 0.01 209 31 31 98.36
Newyork [29] 2472 169 2328 1.00 0.01 2160 6491 5943 91.56
Ta1 [29] 2826 - - - - - - - -
FranceSND [29] 2280 345 1408 1.00 0.00 1064 9434 9356 99.17
Norway [29] 2901 - - - - - - - -
USA [10] 2358 423 1532 1.00 0.00 1110 2406 2304 95.77
Cost266 [29] 3858 - - - - - - - -

Table 4: MIP results. Rows: Number of rows in LP. Initial: Initial number of master problem
columns. Final: Final number of master problem columns. PerIt: Number of columns
added per iteration. PerDem: Number of columns added per iteration per demand. Iter:
Number of column generation iterations. Total: Total running time in seconds. CG: Total
column generation running time in seconds. CGPct: Column generation (MIP) solve time as
percentage of total time.

Network NP capacity CR RROB FIPP RROB Difference

Cost239 86 0.13 0.19 0.06
Europe 158 0.57 0.65 0.08
Newyork 412 0.19 0.24 0.05
Ta1 733 0.76 0.78 0.02
FranceSND 9825 0.66 0.67 0.01
Norway 61 0.59 0.61 0.02
USA 1273 0.50 0.55 0.05
Cost266 14587 0.62 0.64 0.02

Avg. 0.50 0.54 0.04

Table 5: FIPP protection method comparison. NP capacity: Non-Protected required network
capacity. CR RROB: Complete Rerouting [30] required network capacity relative to NP
capacity. FIPP RROB: FIPP required network capacity relative to NP capacity. Difference:
Absolute difference between RROB for CR and FIPP.

presented in Section 3, this results in more variables, and furthermore, these variables have to
be binary variables. Hence, to solve this model to optimality, a branch-and-price optimization
algorithm is necessary.

Secondly, in the current model there is no bound on the capacity θa of an arc a ∈ A. In
real-life applications, capacities are acquired in modular amounts and economies of scale can
be modeled. Modular capacities can be included into the model by changing the right hand
side of constraint (3) to a sum of integer variables, as shown in the modified constraint (13)
below:

∑

k∈K

∑

π∈Pk(a)

λk
π +

∑

k∈K

∑

π∈Pk(a,s)

λk
π ≤

∑

m

Cm · θa,m ∀ s ∈ S, a ∈ A \ Fs

Here the capacity variables θa,m ∈ Z+ correspond to different types of connections, each
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possessing a capacity Cm. The objective function is then modified to include different prices
for each type of technology. The price pr. capacity unit reflect the economies of scale.

6 Conclusion

In this paper we presented an LP model for the fractional Failure Independent Path Protection
(FIPP) optimization problem. The LP model was solved using column generation. We
analyzed the subproblem, proved it to be strongly NP-hard and devised a labeling algorithm
for solving the subproblem more efficiently. Finally, we evaluated the capacity efficiency of
the FIPP method on a number of network instances. The results indicate that the FIPP
method appears to be a very efficient protection method — on average only requiring 4%
more network capacity than complete rerouting, the absolute lower bound for single link
failure protection.
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Abstract

Repositioning of empty containers pose a significant cost in shipping due to the large
difference in export and import between some parts of the world, e.g., North America
and Asia. Dejax and Crainic [9] estimate, that movement of empty containers comprise
up to 40% of all container movements. This paper presents a revenue management model
for a liner shipping company where the repositioning of empty containers is taken into
account. The booking model aims at maximizing the profit of transported cargo in a net-
work, subject to the cost and availability of empty containers. The model is an augmented
multi-commodity flow problem with additional inter-balancing constraints to control repo-
sitioning of empty containers. An arc flow formulation is Dantzig-Wolfe decomposed to a
path flow formulation, where the LP relaxation is solved with a delayed column generation
algorithm. A feasible IP solution is hereafter found by rounding down the LP solution
and adjusting flow balance constraints with leased containers. Computational results are
reported for eight instances based on real-life shipping networks. Solving the path flow
model with a simple column generation algorithm outperforms solving the arc flow model
with the CPLEX barrier solver even for very small instances. The proposed algorithm is
able to solve instances with 234 ports, and 293 vessels for 9 time periods in 34 minutes.
The integer solutions found by rounding are computed in less than 5 seconds and the
gap is within 0.01% of the LP upper bound, which is well below the uncertainty of the
input data. The solved instances are quite large compared to computational results in
the reviewed literature on models for empty container repositioning.

171



Chapter 11

1 Introduction

This paper presents a revenue management model for strategic planning within a liner ship-

ping company. A revenue management model is a strategic tool that given a schedule and
a fleet over time decides which orders are profitable to transport with the planed capac-
ity. A mathematical model is presented for maximizing the profit of cargo transportation
while considering the possible cost of repositioning empty containers. The model is denoted
revenue management with repositioning of empty containers (RMREC). Empty containers
tend to accumulate at import intensive regions due to a significant imbalance in world trade.
Therefore, repositioning empty containers to export intensive regions impose a large cost on
liner shippers. RMREC incorporates the potential repositioning cost such that the profit of
an order takes into account the derived demand for empty containers. As opposed to most
models RMREC permits load rejection, since we believe, that an unprofitable order may be
rejected due to capacity constraints in the liner shipping network.

A liner shipping company is a shipping operator with a public itinerary and schedule
visiting certain ports at a given service frequency. The objective is to maximize profit for
freighting optional cargo between ports. A liner shipping company differs from industrial

shipping, where the objective is to minimize the transportation cost of delivering all cargo,
and from tramp shipping, where the objective is to maximize the profit of optional cargo
while delivering obligated cargo. Current practice with regards to empty containers is to have
conservative stock policies and empty deadweight on vessels to ensure sufficient availability
of empty containers. With RMREC, we hope to reduce deadweight on board vessels and
to minimize stock of empty containers. Furthermore, sensitivity analysis may be applied to
identify bottlenecks in the shipping network and help price commodities according to demand
and empty repositioning cost. Lastly, the model may be used to investigate alternative leasing
policies for liner shippers.

The strategic booking decision of a liner shipper considering empty container reposition-
ing can be described as a specialized multi-commodity flow problem with inter-balancing
constraints to control the flow of empty containers. A commodity in logistic terms is a pair
(O,D), where O is the origin and D is the destination of a container demand. The set of
commodities is denoted K. The network is represented by a graph G = (N,A), where the
node set N represents the ports and the arc set A represent the scheduled itineraries. The
capacity associated with each edge is determined by the assignment of vessels to the schedule.
The objective is to find a set of feasible paths in the network such that the profit of routing
cargo between the (O,D) port pairs is maximized.

The classical formulation of the standard multi-commodity flow problem is the arc flow
formulation with |K||A| variables and |A| + |K||N | constraints due to flow conservation at
every node. Although the number of variables is polynomially bounded, it will be huge for a
global shipping network. In addition, a large constraint set results in poor performance for
the simplex method. Dantzig-Wolfe decomposition can be applied to generate a path flow
formulation with only |A|+|K| constraints. However, the number of variables in the path flow
formulation may exponential. To circumvent this problem we use delayed column generation,
as it can be proven that at most |K|+ |A| paths carry positive flow [1]. The pricing problem
is a shortest path problem, where the cost of a path represents the reduced cost of a path
variable.

RMREC is an augmented multi-commodity flow problem where the extra constraints stem
from the inter-balancing constraints which ensure repositioning or leasing of empty containers
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at nodes with a positive net flow. Due to the structure of the dual problem, the arc costs
of the pricing problem for RMREC are positive resulting in a polynomially solvable pricing
problem. As containers cannot be split, RMREC is an integer multi-commodity flow problem
which is NP-hard. A nice property of the path flow formulation is, that flow conservations
constraints are implicitly satisfied on a path. Hence, a feasible integer solution can be obtained
by rounding down all fractional variables and supplying empty containers through a leasing
variable at nodes with violated inter-balancing constraints.

Solving both standard and augmented integer multi-commodity flow problems is a well-
studied area within airline management, e.g., crew scheduling [10] and fleet assignment [11, 3]
where a branch-and-price algorithm on the path flow formulation is used to find an integer
solution. The integer variables of these known problems are mostly binary. However, the
integer variables of RMREC are large integer numbers because demands are expressed in
containers as the total demand between any two (O,D) port pair. Because the number of
containers transported in a global shipping network is huge, rounding down the fractional
part of demands may be considered insignificant. This is confirmed by experimental results
in this paper. Therefore, we consider the LP relaxation of RMREC and obtain a heuristic
integer solution by rounding down the LP solution of the path flow model.

The contribution of this paper is to present an augmented multi-commodity flow formu-
lation of the container transportation problem considering repositioning of empty containers
(RMREC). A basic arc flow model of RMREC is decomposed into a path flow model. The LP
relaxation of RMREC is solved with a delayed column generation algorithm. Computational
results are reported for eight instances based on real life shipping networks. The results show
that the delayed column generation algorithm for the path flow model clearly outperforms
solving the arc flow model with the CPLEX barrier solver. Instances with up to 234 ports
and 293 vessels for 9 time periods were solved in less than 34 minutes with the column gener-
ation algorithm. The largest instance solved for 12 time periods contains 151 ports and 222
vessels and was solved in less than 75 minutes. It is shown, that high quality integer solutions
within 0.01% from the LP upper bound of the path flow formulation can be found by a simple
rounding heuristic.

The following section describes related work. Section 3 describes the network representa-
tion used throughout this paper. Section 4 presents the arc flow model, and Section 5 presents
the decomposed path flow model and the pricing problem used in the delayed column genera-
tion algorithm. Section 6 reports our computational results on eight generated test instances.
Section 7 provides some concluding remarks and future work of RMREC.

2 Literature Overview

According to Ronen et al. [16] papers on optimization based decision support systems within
shipping are scarce. There is an increasing interest in operations research within the area
of shipping, but most papers concern scheduling and routing of vessels. Furthermore, most
papers are concerned with industrial and tramp shipping. Within the area of liner shipping
only a few references are found and they concern deployment of vessels [16]. Christiansen
et al. [5] describe models for designing shipping networks for a traditional liner operation as
well as for a hub-and-spoke liner network. According to the paper, a booking is accepted if
there is space available on a vessel. This may lead to non-optimal decisions since the space
may be used more profitably by demands in subsequent ports on the route. However, the
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issue of empty container availability is not regarded as a component of cargo profitability,
although the connection to profit is evident. The paper encourages research into the area of
revenue management and booking models, but very little work has been published on this
subject as mentioned by [16, 5].

The airline industry holds several similarities with the booking models and flow constraints
encountered in the maritime industry. Especially with regard to the relation of the underlying
network structure. RMREC was originally inspired by Bartodziej and Derigs [2] who present
a revenue management model for Cargo Airlines. The model is a special multi-commodity
flow problem which is solved by column generation.

Hane et al. [11] solve an airline fleet assignment problem as a multi-commodity problem,
where air-crafts need repositioning and where aggregation of the graph is considered. De-
saulniers et al. [10] solve a crew scheduling problem using multi-commodity flows, where the
problem of repositioning crew is mentioned, but not thoroughly treated. Bélanger et al. [3]
solve a fleet assignment problem with time-windows as a multi-commodity flow problem.

Empty container repositioning can be regarded as empty flow in a network. Empty flows
have been studied within all areas of the transportation sector because they represent a
significant cost. In a survey on empty flows, Dejax and Crainic [9] estimate that up to 40% of
all movements for rail cars and containers are empty. The need for models considering empty
and loaded movements simultaneously is emphasized. Crainic et al. [7] present a multi mode
multi-commodity location-distribution problem with inter-depot balancing requirements. The
model is primarily a location problem deciding the number and locations of inland depots for
empty vehicles. However, it also determines the empty flows between depots according to the
inter-balancing constraints. The model has been tested on data from a European company,
which operated 23 major European ports at the time. A large reduction in the number of
inland depots is reported, which along with management of the empty flows represent a 47%
annual saving for the company. An international liner shipping company of today will span
the globe and service hundreds of ports. Furthermore, container vessels have increased from
5,9% to 9% of the world fleets total deadweight capacity [16] from 1995 to 2001.

Crainic et al. [8] present a dynamic and stochastic model for the empty container allocation
problem. The context is an international shipping company with focus on the land operations,
i.e., movements between customers and depots. The paper gives a very thorough description
of the container trade with regards to the space and time of events along with the complex
issue of asymmetric substitution between container-types. A single- and a multi-commodity
model with containers as commodities are presented using a time-space network in a rolling
horizon manner.

Shen and Khoong [17] present a decision support system for empty container distribution
planning for a shipping company at port level. The paper describes a network optimization
model and a heuristic to solve the problem but actual implementation and results are not
reported.

Cheung and Chen [4] have developed a two stage stochastic network model for the dynamic
empty container allocation problem. The model minimizes the total cost of repositioning or
leasing containers at deficit ports and is highly related to Crainic et al. [8].

Li et al. [13] present the empty container problem as a non standard inventory model at
a port to reduce holding of redundant empty containers. The paper also explores finite and
infinite horizon methods.

The above papers all assume no load rejection as competition in the trade is fierce. Hence
simultaneous optimization of loaded movements is irrelevant. Shintani et al. [18] are the first
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to discuss the possibility of rejecting unprofitable cargo, but within the context of designing
container ship networks with regard to empty container repositioning. The model is a knap-
sack formulation choosing the ports to call, with an underlying model choosing the optimal
port calling sequence under the assumption that all demand is satisfied in ports called. Repo-
sitioning of empty containers is only allowed in case of excess capacity making the cost of
the repositioning negligible. The incurred cost is the penalty cost of storing or leasing empty
containers. Using a genetic algorithm, results are reported for a model with 20 ports in Asia.

None of the above papers solve problems of a size corresponding to present shipping
networks. Cheung and Chen [4] perform experiments for 3 randomly generated networks,
where the largest instance has 10 ports, 6 voyages/vessels and 42 time periods. Shintani et al.
[18] solve test instances for 5-8 ports out of 20 potential ports. The number of voyages/vessels
is not declared. The number of time periods is 52.

3 Network Representation

RMREC may be modeled as a multi-commodity flow problem with inter-balancing constraints
having as objective to maximize the profit of the demanded flow in a capacitated network.

The network consists of a set of unique ports P connected by the services offered by the
liner shipping company. All services are cyclic. Since a service may take months to rotate,
the network must be modeled over time. Let T be the set of time periods.

A time-space network is created as a graph G = (N,A), where N = {pt | p ∈ P, t ∈ T}
is the set of nodes. Let A = AG

⋃

AR and let AG = {(pt, pt+1) | pt, pt+1 ∈ N} be the set
of ground arcs representing the stock at a port between two subsequent time periods. Let
AR = {(pt, qt′) | pt, qt′ ∈ N, t ≤ t′, p 6= q} be the set of travel arcs representing a voyage
on a vessel between two ports p, q ∈ P departing at time t ∈ T and arriving at time t′ ∈ T .
The capacity of an arc a ∈ AR is given by the capacity of the vessels on the service at that
specific time. An illustration of the time-space network may be seen in Figure 1 where time
spans the x-axis and space, i.e., the geographical location of ports spans the y-axis.

travel arc ar ∈ A
R

Ground arc ag ∈ A
G

A1

B1

A2

B2

XTime

Y

Space

Figure 1: Example of time-space network - dotted arcs are ground arcs.

Each origin Ok and destination DK of commodity k is given by a port p ∈ P and time
t ∈ T . For instance the tuple (Ok,Dk, dk, sk) = (BUA08, BRV09, 2000, 220), means that the
origin Ok is Buenos Aires (BUA) in month 08, the destination Dk is Bremerhaven (BRV) in
month 09, the demand is 2000 TEU (twenty foot container type) and the sales price sk is 220.
The origin and destination time may be thought of as a time window for the delivery of the
commodity.
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In RMREC no consideration is taken for substitution of container types and it is assumed
that all demands are accounted for with the smallest container type, enabling us to scale all
larger container types to the smallest container type.

The granularity of time may be defined in two ways resulting in networks with different
properties. T may represent the schedule directly if all events for a set of voyages is defined by
a point in time, i.e., the voyage of a vessel gives rise to a totally ordered set of time units. This
is illustrated in Figure 2. The resulting graph is directed, acyclic and can be topologically
sorted. Hence, finding a shortest path can be done in O(N + A) time.

travel arc ar ∈ A
R

Ground arc ag ∈ A
G

XTime

Y

Space

A1 A2

B2 B3

C3 C4

D5 D6

A9 A10

Figure 2: Time-space network with the schedule as time units. Service 1: A → B → C →
D → A, vessel v1,1 departing A at time t = 1 vessel v1,2 departing A at time t = 2.

The network will be very sparse, but may increase the number of path variables for a
commodity, if the time windows of the commodities are not tight. Each vessel represents an
itinerary and has its own nodes and arcs in the network. However, several vessels offer the
same service with regard to visited ports on a voyage. This means, that there may be several
daily departures from a port heading to the same destination. Figure 2 illustrates the issue: a
commodity from port A1 to port C4 can be serviced by four possible paths with an identical
geographical port sequence (A → B → C). This can be avoided by tight time windows, but
finding a feasible itinerary for a commodity may then become a problem. RMREC is intended
for long-term planning preferably spanning 6 months or more. If a very time detailed network
is applied on a problem with hundreds of ports with several daily departures, the network
will be extremely large, making it impractical to solve. Hence, it seems reasonable to search
for a more compact representation.

The shipping network may also be described by representing each port in a given time
interval and aggregating all arrival and departure events to/from this port within the specified
period. This definition of time gives a less detailed, but more compact graph, where the paths
of the individual vessels are aggregated into a path per rotation for the given time period.
This will lead to fewer variables as well as fewer constraints in the path flow formulation.

Compared to the graph representing the detailed time-space network, the compact graph
is not acyclic. In the compact graph a service can rotate within a single time period (see
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Figure 3), and the services may contain cycles within them (see Figure 4). If a service takes
more than one time period to rotate, then an itinerary is a directed path from port ht to port
ht+i, where i represents the number of time periods it takes the vessel to rotate (see Figure
5). However, if the time unit is set to one month, we believe most services will rotate in a
single time period. RMREC is intended for long term planning and a detailed schedule is not
needed at this point. Hence, the compact aggregated time definition is preferred.

4 Arc Flow Formulation

Although the integer version of RMREC is NP-hard, the LP relaxation may be solved in
polynomial time. The challenge lies in the expected size of a liner shipping network and the
number of periods in the planning horizon, which result in very large LPs.

In the arc flow formulation we have a set of commodities K, defined on a graph with nodes
N and arcs A. The unit cost of arc (i, j) for commodity k is denoted ck

ij . The non-negative

integer variable xk
ij is the flow on arc (i, j) of commodity k. The capacity of arc (i, j) is uij

and dk is the demand for commodity k. Finally, Ok is the origin of commodity k and Dk is
the destination. A commodity in the network is defined as the tuple (Ok,Dk, dk, sk) which
represents a demand of dk from node Ok = pt to node Dk = qt′ with a sales price per unit of
sk.

The standard multi-commodity flow model does not consider the supply of empty contain-
ers. Inter-balancing constraints are applied to every node to account for availability of empty
containers. The constraints require, that the amount of containers arriving at a port must be
at least the amount of containers leaving the port for all commodities. Therefore, we get a
demand for empty containers depending on the actual allocation of loaded commodities. The
inter-balancing constraints also introduce a new set of variables representing leased containers
at a node. The cost of leasing is modeled in the objective. Let ci

l be the cost of leasing a con-
tainer at port i, while li is the leasing variable at port i. If the demand for empty containers
are seen as commodities, a set of empty commodities with no revenue and a derived demand
is needed. In the arc flow formulation a set of empty commodities must be defined consisting
of every possible (O,D) pair with no upper bound on the flow and with no sales price. The
set would be huge and the constraints redundant, as they do not impose bounds on the flow.
The only purpose of the constraints would be to define origin and destination of empty flows.
Since flow conservation is redundant and defining origin and destination of empty flows is
already done by the inter-balancing constraints, an empty super commodity without flow
conservation constraints may be defined in the arc flow model. The empty super commodity
is defined for all arcs in the network, allowing empty flows to start and end anywhere needed
in the network. The empty super commodity has no flow conservation constraints and appear
in the objective with a cost and in the bundled capacity and inter-balancing constraints. For

A1 B1 C1

Figure 3: Service A → B → C → A rotates within one time period.
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A1 B1

C1

D1

Figure 4: Service A → B → C → B → D → A with an internal cycle.

A1 B1 C1 D2 A2

Figure 5: Service A → B → C → D → A rotates in two time periods.

convenience the commodity set is split into the loaded commodities and the empty super
commodity: Let KF be the set of commodities with a cargo, a sales price and a demand. Let
ke for all arcs in A be the empty super commodity with no cargo, no sales price and a demand
implicit derived from KF . Finally, let K = KF ∪Ke. Load rejection and capacity constraints
mean that demand may not be met for all demand pairs. The net flow of commodity k at the
origin node reveals the quantity of demand transported in the network and hence the revenue
of commodity k. The cost of transport, leasing and the empty super commodity must be
subtracted. RMREC with a profit maximizing objective, an empty super commodity, leasing
variables, load rejection and inter-balancing constraints is stated as:

max
∑

k∈KF

∑

j∈N

sk(xk
Okj − xk

jOk
) −

∑

k∈K

∑

(ij)∈A

ck
ijx

k
ij −

∑

i∈N

ci
ll

i (1)

s.t.
∑

j∈N

xk
ij −

∑

j∈N

xk
ji ≤ dk i = OK k ∈ KF (2)

∑

j∈N

xk
ji −

∑

j∈N

xk
ij ≤ dk i = Dk k ∈ KF (3)

∑

j∈N

xk
ij −

∑

j∈N

xk
ji = 0 i ∈ N \ {Ok,DK} k ∈ KF (4)

∑

k∈K

xk
ij ≤ uij (i, j) ∈ A (5)

∑

k∈K

∑

j∈N

xk
ij −

∑

k∈K

∑

j∈N

xk
ji − li ≤ 0 i ∈ N (6)

xk
ij ∈ Z+ k ∈ K, (i, j) ∈ A (7)

li ∈ Z+ i ∈ N (8)

The objective (1) is to maximize the profit of the demanded flow of all commodities in
K on the arcs. Constraints (2)-(4) are the flow conservation constraints which ensure flow
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of a demand from origin to destination. Furthermore, the flow is bounded by the demanded
quantity dk. Constraints (5) are the bundle constraints ensuring that the flow of all com-
modities do not exceed the capacity of the arcs. Constraints (6) are the inter-balancing
constraints which gives a derived demand for the empty super commodity and leased con-
tainers. Constraints (7)-(8) ensure non-negative and integral flow and leasing variables. The
formulation is polynomial in the input size as the number of variables is O(|K||A|+ |N |) and
the number of constraints is O(|N ||K|+ |A|+ |N |). Although the problem size is polynomially
bounded, models of large networks have a vast number of variables and a substantial number
of constraints, which deteriorates the performance of the simplex algorithm [19].

It should be noted that when a container is leased, it remains in the network for the
remainder of the period. This corresponds to long-term leasing for the first period and short
term leasing in the last periods. The cost of a leasing variable should depend on the amount
of time periods remaining in T at the node where it is leased. Off-leasing, that is terminating
the lease of a container, can be modeled by defining an off-leasing variable and making cost
dependent on the net leasing between in- and off-leasing variables at the nodes. This changes
the objective function (1) to:

max
∑

k∈KF

∑

j∈N

sk(xk
Okj − xk

jOk
) −

∑

k∈K

∑

(i,j)∈A

ck
ijx

k
ij −

∑

i∈N

ci
l(l

i
in − lioff )

and the inter-balancing constraints (6):
∑

k∈K

∑

j∈N

xk
ij −

∑

k∈K

∑

j∈N

xk
ji − liin + lioff ≤ 0 i ∈ N

The above model assumes off-leasing can occur at any port. Off-leasing can be restricted to
certain ports by defining off-leasing variables accordingly. When the container is leased the
remainder of the optimization period is paid for. When it is off leased the remainder of the
optimization period at the off-leasing point is refunded.

Various services are offered by leasing companies, that own half the maritime container
fleet worldwide, see [12]. Leasing services vary from one-trip and round-trip leases to short-,
medium- and long-term leasing ranging from one month to 42 months, see [20]. For the
current RMREC, it is chosen to model leasing on a monthly basis, i.e., one time period,
which may range from a single month to the entire time period optimized upon. However,
the leasing mode may be altered, if different leasing services is explored.

5 Path Flow Formulation

Solving the LP relaxed RMREC model has several advantagds:

• Although there is a polynomial bound on the number of variables in the arc flow formu-
lation, it is a large polynomial factor. Even though the number of paths in the network
may be exponential, it depends on how dense the network is. If the network is sparse,
like in most liner shipping networks, there will be few path variables for each commodity
k ∈ K.

• The network size of an international liner shipping company means that column gener-
ation is our only hope to solve the problem in reasonable time. This is true, even for
the LP relaxation.
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• An LP-solution to the path flow formulation can be transformed to a feasible IP solution
to RMREC by rounding, as flow conservation is respected implicitly in the path variables
(see figures 6 and 7). This makes it possible to translate the solution directly into
itineraries for the demand pairs.

A B C D

E F

x1

AB
= 5 x1

BC
= 2.75

x1

BE
= 2.25

x1

CD
= 5

x1

EF
= 2.25

x1

F C
= 2.25

Figure 6: A fractional solution to the arc flow model: Containers may be split at every node.
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δ
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δ
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δ
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(p2)f(p2) = 2.25

δ
F C

(p1)f(p1) = 0, δ
F C

(p2)f(p2) = 2.25

Figure 7: Fractional solution to the path flow model: Containers may only be split at the
origin.

The RMREC given as the arc flow model (1)-(8) has block-angular structure with |KF |
subproblems given by the flow conservation constraints for each full commodity. The commod-
ity subproblems are tied together by the bundle constraints, i.e., the arc capacity constraints,
and the inter-balancing constraints regarding the supply of empty containers. Using Dantzig-
Wolfe decomposition we get a master problem considering paths for all commodities, and
a subproblem defining the possible paths for each commodity k ∈ K. Due to the the flow

decomposition theorem (Chapter 3.5 in [1]), which states that every nonnegative arc flow can
be represented as a nonnegative path and cycle flow, this can be formulated such that master
variables define the flow of a commodity on a path, and the subproblem find valid paths for
that commodity.

Let p be a path connecting Ok and Dk and Pk be the set of all paths belonging to
commodity k. The flow on path p is denoted by the variable f(p). The binary indicator δij(p)
is one if and only if arc (i, j) is on the path p. Finally, ck

p =
∑

(i,j)∈A δij(p)ck
ij is the cost of

path p for commodity k. The master problem is:

max
∑

k∈KF

∑

p∈Pk

(sk − ck
p)f(p) −

∑

(i,j)∈A

cKE

ij xKE

ij −
∑

i∈N

ci
ll

i (9)
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subject to
∑

k∈KF

∑

p∈Pk

δij(p)f(p) + xKE

ij ≤ uij (i, j) ∈ A (10)

∑

p∈Pk

f(p) ≤ dk k ∈ KF (11)

∑

k∈KF

∑

p∈Pk

∑

j∈N

(δij(p) − δji(p))f(p) + x
KE

ij − x
KE

ji − li ≤ 0 i ∈ N (12)

f(p) ∈ Z+ p ∈ Pkk ∈ KF (13)

xKE

ij ∈ Z+ (i, j) ∈ A (14)

li ∈ Z+ i ∈ N (15)

Where the xk
ij variables are replaced by xk

ij =
∑

p∈Pk
δij(p)f(p) according to the flow

decomposition theorem for all k ∈ KF . The subproblems for commodities k ∈ KF are given
by the polytopes:

Pk =
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The convexity constraints for the individual subproblems (11) bound the flow between the
(Ok,Dk) pair from above (a maximal flow of dk is possible). The extreme points of Pk model
a path between the (Ok,Dk) pair.

The exponential number of variables is handled by considering only a small subset in a
restricted master problem. Paths/columns are then generated on the fly using delayed column
generation. The dual variables corresponding to the three constraint sets are:

• wij for each (i, j) ∈ A corresponding to the bundle constraints (10)

• σk corresponding to the convexity constraints (11) for each commodity k ∈ K

• αi corresponding to the inter-balancing constraints (12) for each port i ∈ N .

The reduced cost ĉ of a path p ∈ Pk is then given by the variable f(p) in subproblem k ∈ KF

is given as:

ĉp = sk −
∑

(i,j)∈A

δij(p)
(

ck
ij − wij

)

− σk − αOk + αDk

Note that the dual values αi cancel each other out for intermediate ports on a path in
constraints (12), i.e., only the supply port Ok and the demand port Dk of a path are affected
by these constraints.

As the subproblems are only dependent on the arc variables xij the constant terms given
by commodity k may be treated isolated implying:

∑

(i,j)∈A

δij(p)(ck
ij + wij) < sk − σk − αOk + αDk
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Minimizing
∑

(i,j)∈A(cij + wij)xij when finding an extreme point of Pk will return the
path variable with the best reduced cost for the subproblem belonging to k. The subproblem
corresponds to an ordinary shortest path problem with positive arc costs as cij , wij ≥ 0:

min
∑

(ij)∈A

(cij + wij)xij (16)

s.t.
∑

j∈N

xij −
∑

j∈N

xji = 1 i = OK (17)

∑

j∈N

xji −
∑

j∈N

xij = 1 i = Dk (18)

∑

j∈N

xij −
∑

j∈N

xji = 0 i ∈ N \ {Ok,DK} (19)

xij ∈ {0, 1} (i, j) ∈ A (20)

6 Computational Results

The experimental results are performed on data based on real life shipping networks. The test
instances are created from a snapshot of the Containership Databank [6] from 2005. The set
P of ports (and hence the set N of nodes) and the set of arcs A with capacities are created
from [6] services. Cost and demand functions are generated randomly but such that both
profitable and unprofitable products are present, demands are asymmetric in the sense that
an area such as Asia should have more export than import (and vice versa for, e.g., Europe
and North America), the total demand must exceed the capacity of the network for some
areas, and the profit of some products must be able to support the price of leasing containers.
Liner shipping operators are chosen so that the instances vary in size from 34 ships to 316
ships. Test instances are named according to the number of ships in the fleet. Please note
that instance 293 is larger than instance 316 in terms of the number of ports and unique
rotation legs, see Table 1.

Test instance Ports Unique rotation legs Average out degree Fleet capacity in TEU

34 44 101 2.295 21035

62 60 104 1.733 111004

98 58 122 2.103 348356

136 96 198 2.063 383179

159 117 253 2.162 422796

222 151 326 2.156 633719

293 234 565 2.415 846447

316 185 455 2.459 992479

Table 1: Test instances - instance name denotes the fleet size, e.g., 34 has a fleet size of 34
ships

All tests were performed on a Intel(R) Xeon(R) CPU 2.66 GHz processor with 8 GB
RAM. As LP solver we have tested both CPLEX 10.2 and the open source CLP solver from
COIN-OR. All tests were performed with the CPLEX Barrier solver, CPLEX dual simplex
solver and the CLP dual simplex solver. The best results for the arc flow model were obtained
with CPLEX barrier solver and the best results for the path flow model were obtained with
CLP dual simplex. Computational results are stated for the best results for each model for
1,3,6,9 and 12 time periods. The models are solved to LP-optimality. For larger test instances
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the arc flow model cannot be generated with the available memory. In all tests where it has
been possible to generate the arc flow model, the objective value for the two models are
identical. This confirms the correctness of the path flow model and the implementation of
the column generation algorithm.

In the following we compare performance of the arc flow and the path flow model for test
instances with 1 and 3 time periods, where the arc flow model can be generated for most
instances. Next we present results for the solution times for large instances using the path
flow model in conjunction with delayed column generation. For the path flow model all test
instances up to 9 time periods can be solved within an hour. For 12 time periods all tests
that may be generated with the available memory are solved in less than 75 minutes. Lastly,
we present the integer solutions for a simple rounding heuristic applied to the LP solutions of
the path flow model. The IP solutions presented are within a very reasonable distance of the
LP upper bound and the gap is sufficiently small to discard the need for a branch-and-price
algorithm as well as more sophisticated heuristics.

6.1 Arc flow and path flow compared

The result tables and graphs abbreviate the arc flow model to A and the path flow model to
P. The size of the respective models is stated as m × n. MEM indicates that memory was not
sufficient for the process to complete. The size of the LP for the arc flow model is calculated
for comparison with the size of the master problem of the path flow model. Column time

denotes the CPU time in seconds to solve the respective model, while iter denotes the
number of iteration for the column generation algorithm. The arc flow model is solved in one
LP iteration.

Table 2 shows the relative performance of the arc flow model and the path flow model
for 1 and 3 time periods respectively. The path flow formulation in conjunction with delayed
column generation outperforms the arc flow model by a wide margin even for small instances.
The size of the LPs for the column generation algorithm is surprisingly small and the column
generation algorithm is at least two orders of magnitude faster than the arc flow model for
one time period and three orders of magnitude faster for three time periods.

arc flow model path flow model

Test no. m × n objective time m × n objective time iter

34-01 21860 × 9605 2.59 · 1007 4.76 360 × 378 2.59 · 1007 0.02 4

62-01 35732 × 20684 1.21 · 1009 23.30 506 × 542 1.21 · 1009 0.03 4

98-01 60448 × 28832 5.37 · 1009 46.40 674 × 889 5.37 · 1009 0.06 4

136-01 166020 × 80646 4.32 · 1009 180.00 1131 × 1589 4.32 · 1009 0.20 6

159-01 264249 × 122401 4.27 · 1009 407.00 1413 × 2155 4.27 · 1009 0.31 8

222-01 416779 × 193304 7.92 · 1009 952.00 1754 × 2285 7.92 · 1009 0.34 5

293-01 1237583 × 510835 1.1 · 1010 1670.00 2987 × 4008 1.1 · 1010 1.03 8

316-01 878790 × 357690 1.22 · 1010 1140.00 2570 × 3352 1.22 · 1010 0.70 6

34-03 252718 × 85663 7.9 · 1007 580 1168 × 2962 7.9 · 1007 0.40 5

62-03 501300 × 209232 4.3 · 1009 1730 1771 × 2159 4.3 · 1009 0.63 10

98-03 844638 × 305330 1.98 · 1010 5420 2407 × 3638 1.98 · 1010 1.73 15

136-03 2245890 × 823602 1.55 · 1010 5690 3930 × 5863 1.55 · 1010 2.98 11

159-03 3518550 × 1244586 2.04 · 1010 10600 4886 × 8894 2.04 · 1010 6.34 18

222-03 5860293 × 2075114 2.62 · 1010 57600 6310 × 10039 2.62 · 1010 14.10 16

293-03 16257902 × 5260738 - MEM 10382 × 16620 3.65 · 1010 38.20 14

316-03 11965115 × 3829015 - MEM 9185 × 14097 5.06 · 1010 33.50 24

Table 2: Test instances for 1 and 3 time periods

Figures 8(a)–8(b) plot the solution time of the algorithms as a function of the size of the
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LP model. The unit |N |+ |A|+ |K| is chosen at the x−axis because it is the decisive factors in
the size of the LP constraint set for both models. Figure 8(a) shows a fast growth in solution
time for the arc flow model (full lines). Using a logarithmic scale in Figure 8(b) it is seen
that the growth is exponential. The solution times of the path flow model (dotted lines) grow
more moderately. Figures 8(c)–8(d) correspond to figures 8(a)–8(b) when considering three
time periods. Again, Figure 8(d) shows an exponential growth of the arc flow model (the two
largest instances could not be generated due to memory limitations).
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Figure 8: Relative performance of the arc flow and path flow model, 1 and 3 time periods

6.2 Solution of large instances

We now consider the solution times for 6, 9 and 12 time periods. The arc flow model cannot
be generated for the largest instances and hence is not discussed further in this section.

Table 3 shows that test instances with 6 time periods solved with the path flow model
complete within 10 minutes. The master problems are small compared to the arc flow model
and the number of iterations is reasonable. The sparsity of the networks probably results in
few path variables for a commodity, which leads to relatively fast convergence of the delayed
column generation algorithm. Notice that test 316 is slower than test 293 in spite of a smaller
LP. This might be specific for test 316 but may also be due to degeneracy, ǫ rounding or many
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arc flow model path flow model

Test no. m × n objective time m × n objective time iter

34-06 1066630 × 341650 2.49 · 1008 3410 2380 × 11070 2.49 · 1008 4.56 7

62-06 2325144 × 906684 9.18 · 1009 7300 3799 × 5305 9.18 · 1009 5.70 19

98-06 3951400 × 1346390 5.03 · 1010 35100 5235 × 7989 5.03 · 1010 8.61 12

136-06 3552132 × 10282128 - MEM 8407 × 15251 3.9 · 1010 43.70 17

159-06 5310627 × 15903588 - MEM 10366 × 24020 4.09 · 1010 104.00 24

222-06 9339332 × 27929628 - MEM 13918 × 25635 7.29 · 1010 206.00 23

293-06 22762597 × 74147688 - MEM 22231 × 41419 7.71 · 1010 480.00 23

316-06 17078785 × 56225975 - MEM 20147 × 36229 1.18 · 1011 586.00 29

34-09 767917 × 2441692 4.98 · 1008 12500 3592 × 11205 4.98 · 1008 5.7 9

62-09 2134956 × 5595156 - MEM 5906 × 12790 1.78 · 1010 48.7 89

98-09 3176366 × 9500606 - MEM 8165 × 14201 7.11 · 1010 66.1 21

136-09 8302998 × 24496164 - MEM 13020 × 24212 7.17 · 1010 186.0 41

159-09 12274875 × 37445355 - MEM 15919 × 51822 7.36 · 1010 404.0 28

222-09 22172150 × 67565663 - MEM 21812 × 42444 1.26 · 1011 618.0 17

293-09 52866028 × 175158501 - MEM 34252 × 69529 1.37 · 1011 2010.0 27

316-09 17078785 × 56222321 - MEM 31643 × 63309 2.18 · 1011 3120.0 45

34-12 1364464 × 4377904 - MEM 4804 × 20557 3.69 · 1008 20 5

62-12 3587508 × 9502560 - MEM 7607 × 36750 1.4 · 1010 125 27

98-12 5183822 × 15650086 - MEM 10242 × 39919 8.62 · 1010 210 18

136-12 15092328 × 44953488 - MEM 17681 × 36455 1.24 · 1011 329 30

159-12 22176291 × 68270220 - MEM 21518 × 87218 9.42 · 1010 1780 48

222-12 40655981 × 125020921 - MEM 29818 × 67841 1.72 · 1011 4240 32

293-12 95531887 × 319187701 - MEM 46302 × 114088* - MEM 25*

316-12 74721600 × 252239000 - MEM 43369 × 90759* - MEM 40*

Table 3: Test instances for 6, 9 and 12 time periods. * indicates the size of the LP and the
last iteration of the process when aborting due to insufficient memory

cache misses. Test instances with 9 time periods may all be completed in less than one hour.
All but the two largest tests, 293 and 316 complete within 12 minutes. The number of columns
in the two largest test instances is significant. Again we see test 316 needing more time and
iterations to complete than test 293 although the LP is smaller. The increased solution time
seems to be problem specific and it is interesting to note that the network of test 316 is denser
than that of test 293. This supports the theory that the sparsity of shipping networks is a
key to success for the path flow model and the column generation algorithm. For 9 time
periods we see that the number of iterations varies from 9 to 89. However, execution times
still grow steadily and the size of the LPs is reasonable considering the size of the networks.
For 12 time periods the LPs have reached a critical size and tests 293 and 316 do not have
sufficient memory to complete — the * indicates the size of the LP and the iteration just
before the process was aborted. The number of iterations for the remaining test instances
is reasonable and the solution times are still within 75 minutes which is good for such large
models representing a shipping network for a whole year.

Figure 9(a)-9(b) show the solution time of the path flow model for 1,3,6,9 and 12 time
periods as a function of LP size. It is seen that the growth in solution times is relatively
steady for 3 time periods. Figure 9(a) shows an exponential tendency for the graphs of 9 and
12 time periods, where the LPs have reached a critical size. The trend is even more explicit
in figure 9(b) where the graphs are plotted on a logarithmic scale. The trend is particular
for the larger test instances, which have denser networks and hence, more path variables per
commodity. The exponential tendency is very clear in the graph of 12 time periods although
the two largest tests did not complete.

The delayed column generation method shows good convergence for the generated test
instances, and methods to reduce the master problem constraint set has not been required.
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Figure 9: Relative performance of the path flow model - 1,3,6,9 and 12 time periods
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We are able to solve instances of large shipping networks spanning 9 months in less than
one hour. For 12 months the two largest instances cannot be generated with the available
memory, but the remaining tests which have a significant size are solved within 75 minutes.
The convergence is suspected to be correlated to the sparsity of the networks. The results of
the tests show that the column generation technique is very effective for solving RMREC for
sparse networks. The path flow model and column generation algorithm outperforms solving
the arc flow model by a wide margin. It appears that the number of path variables for real life
liners is very modest and therefore the number of variables in the restricted master problem is
relatively small. Services, capacities and ports are based on the real world, the cost structure
is randomly generated. This indicates that RMREC will perform well on real life problems,
but the real partition of surplus/deficit zones for empty containers and the commodity set of
a real life instance might be harder to solve than the generated instances presented in this
paper.

6.3 Quality of integer solutions and speed of rounding heuristic

In this section we present the integer solutions obtained by a simple rounding heuristic of
the LP solution provided by the path flow model. We show that the integer solutions have
a very small gap to the LP upper bound. An integer solution to RMREC is obtained by
rounding down all fractional variables. At nodes with violated inter-balancing constraints we
supply empty containers through the leasing variable to maintain feasibility. Table 4 shows
the integer solutions obtained by rounding. For each test instance we report the fraction of
fractional basis variables (Frac/basis), the percentage of fractional basis variables (Frac %),
the fractional moves as a percentage of total moves (Rounded %), the gap (obj gap) and gap
percentage (gap %) between the LP and IP solution and the CPU time in seconds (time).

Table 4 shows that 10 out of 38 ( ≈ 26%) of the LP solutions are already integer. Test
instance 34 is integer throughout. The remaining integer LP solutions are found in time
periods one and three. 20 out of 38 (≈ 53%) LP solutions have less than 10% fractional basis
variables. The highest percentage among the remaining 18 LP solutions is 21.8%. The most
fractional solutions seems to be test instances with 9 time periods. Despite having more than
20% fractional basis variables the amount of flow rounded is never more than 0.3% of the
total flow and the gap percentage in terms of the objective value is never higher than 0.01%.
This confirms that the rounded integer solution is a good solution in terms of the gap to
the LP upper bound. This is probably due to generally large flows on path variables making
the rounding insignificant. Execution times are mostly less than one second but on larger
instances execution times rise to at most 5 seconds. The optimal integer solution might be
slightly better, but given a gap percentage less than 10−4 the computation time needed for
a branch-and-price algorithm does not seem justified since the gap is smaller than the data
uncertainty.

7 Concluding Remarks

We have presented a mathematical model for the container revenue management problem
considering empty repositioning and solved it to near-optimality using delayed column gener-
ation and rounding. To the best of our knowledge a revenue management model considering
empty repositioning has not been presented in the literature before. The mathematical model
is surprisingly simple. The inter-balancing constraints, which ensure repositioning of empty
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Test Frac/basis Frac % Rounded % obj gap gap % time

34-01 0/183 0.0 0.0 0 0.0 0.01

62-01 0/214 0.0 0.0 0 0.0 0.01

98-01 0/331 0.0 0.0 0 0.0 0.01

136-01 10/538 1.9 2.7 · 10−4 13800 3.2 · 10−6 0.01

159-01 0/464 0.0 0.0 0 0.0 0.02

222-01 0/836 0.0 0.0 0 0.0 0.02

293-01 23/1430 1.6 2.2 · 10−4 2940 2.7 · 10−6 0.06

316-01 28/1210 2.3 2.5 · 10−4 34100 2.8 · 10−6 0.05

34-03 0/588 0.0 0.0 0 0.0 0.02

62-03 46/723 6.4 1.4 · 10−3 81900 1.9 · 10−6 0.03

98-03 116/1020 11.4 1.06 · 10−3 271000 1.37 · 10−5 0.03

136-03 0/1680 0.0 0.0 0 0.0 0.08

159-03 16/1500 1.1 1.32 · 10−4 62000 3.05 · 10−6 0.15

222-03 324/2600 12.5 1.81 · 10−3 767000 2.93 · 10−5 0.20

293-03 375/4450 8.4 1.41 · 10−3 902000 2.47 · 10−5 0.48

316-03 161/3620 4.4 5.03 · 10−4 518000 1.02 · 10−5 0.36

34-06 0/1060 0.0 0.0 0 0.0 0.04

62-06 102/1330 7.7 1.7 · 10−3 457000 4.98 · 10−5 0.10

98-06 290/1960 14.8 1.37 · 10−3 1340000 2.66 · 10−5 0.14

136-06 453/3290 13.8 2.17 · 10−3 1610000 4.13 · 10−5 0.36

159-06 401/3130 12.8 1.88 · 10−3 1620000 3.96 · 10−5 0.56

222-06 969/5060 19.1 2.40 · 10−3 3850000 5.28 · 10−5 0.86

293-06 1114/9460 11.8 2.14 · 10−3 3650000 4.74 · 10−5 2.01

316-06 1281/7660 16.7 2.04 · 10−3 5220000 4.44 · 10−5 1.55

34-09 0/1560 0.0 0.0 0 0.0 0.10

62-09 259/1990 13.0 3.22 · 10−3 1810000 1.02 · 10−4 0.21

98-09 673/3080 21.8 2.18 · 10−3 3770000 5.30 · 10−5 0.29

136-09 744/4800 15.5 2.44 · 10−3 4260000 5.94 · 10−5 0.82

159-09 637/4910 13.0 1.89 · 10−3 2960000 4.03 · 10−5 1.27

222-09 1568/7610 20.6 3.05 · 10−3 8070000 6.41 · 10−5 1.99

293-09 1838/13900 13.2 2.39 · 10−3 7540000 5.49 · 10−5 4.93

316-09 2357/11500 20.5 2.61 · 10−3 12900000 5.92 · 10−5 3.70

34-12 0/2030 0.0 0.0 0 0.0 0.15

62-12 50/2470 2.0 4.53 · 10−4 366000 2.61 · 10−5 0.38

98-12 532/3300 16.1 1.25 · 10−3 2870000 3.32 · 10−5 0.49

136-12 630/6280 10.0 1.63 · 10−3 5470000 4.41 · 10−5 1.46

159-12 984/6410 15.4 2.18 · 10−3 4870000 5.17 · 10−5 2.30

222-12 2163/10600 20.3 3.05 · 10−3 13500000 7.89 · 10−5 3.59

293-12 - - - - - -

316-12 - - - - - -

Table 4: Rounded integer solutions - 1-12 time periods
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containers, results in an augmented multi-commodity flow problem. It appears that these
constraints do not complicate the model to an extent where the solution time is affected.
However, it should be noted that in real life instances the mapping of surplus and deficit
zones can make it harder to fulfill the inter-balancing constraints. Furthermore, test results
show that the inter-balancing constraints ensure transportation of low profitable products
before repositioning empty containers to deficit ports [14]. This demonstrates the importance
of considering empty container repositioning in a booking model for Liner shipping. Another
strength of RMREC is its ability to route products along the cheapest path. The size of the
instances created and solved in this paper are significantly larger than previously reported in
the reviewed literature.

Solving the LP-relaxed model with delayed column generation turned out to be very
successful compared to solving the arc flow model with CPLEX barrier solver. The column
generation algorithm is at least two orders of magnitude faster for one time period and three
orders of magnitude faster for three time periods. The path flow formulation of RMREC
solved by a simple delayed column generation algorithm is able to solve all instances for 6
time periods in 586 seconds. For 9 time periods test instance 316 containing 1665 nodes (185
ports in 9 periods), 5575 arcs and 24403 commodities is solved in 3120 seconds. For 12 periods
the two largest test instances cannot be solved within the space limit. The largest instance
completed contains 1812 nodes (151 ports in 12 periods), 5573 arcs and 22433 commodities
and is solved in 4240 seconds. A rounding heuristic is applied to the LP solutions of the
path flow model with great success. The heuristic finds a solution in less than 5 seconds. All
integer solutions have a gap to the LP upper bound of at most 0.01% which is well below the
data uncertainty.

A suggestion for future work is to study the start and end conditions for RMREC, using a
rolling horizon schedule. The aspect of continuous networks is also theoretically interesting.
Substitution of containers could also be investigated further. It is believed that substitution
can be implemented with success for RMREC. The model may be generalized in many ways,
e.g., by defining a minimum bound in ship capacity utilization. Some of the modifications
may result in hard pricing problems, but we believe that even a complex pricing problem
may be solved in reasonable time as the graph may be split into subgraphs according to
time periods, and since paths are generally very short. Furthermore, pricing problems may
be parallelized to decrease solution times. Reinhardt [15] solve a multi-objective shortest
path problem for liner shipping with non-additive costs. These techniques could be relevant
for RMREC because it is likely that several criteria needs to be taken into account when
defining the attractiveness of a path and various strategic goals may have a non-additive
cost structure. To fully incorporate the transportation problem of an international liner
shipping company, a model could be developed that considers the transport of containers
from customer to customer. An obvious area of future work is to incorporate booking and
empty repositioning into routing/scheduling decisions of the vessel fleet as the overall cost of
running a liner shipping company is the fixed cost of committing to a schedule.
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