
Block Tridiagonal Matrices
in Electronic Structure Calculations

Dan Erik Petersen
Department of Computer Science

Copenhagen University

A thesis submitted for the degree of

Doctor of Philosophy

April 30, 2008
Revised August 7, 2008

ii

c© Copyright 2008 Dan Erik Petersen

All rights reserved. No part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopy, recording,
or any information storage and retrieval system, without permission in writing from
the author.

System: LATEX 2ε

Typeface: Palatino 12pt

Submitted: April 30, 2008

Revised: August 7, 2008

iv

For truth and beauty.

vi

Summary

This thesis focuses on some of the numerical aspects of the treat-
ment of the electronic structure problem, in particular that of deter-
mining the ground state electronic density for the non–equilibrium
Green’s function formulation of two–probe systems and the cal-
culation of transmission in the Landauer–Büttiker ballistic trans-
port regime. These calculations concentrate on determining the so–
called Green’s function matrix, or portions thereof, which is the in-
verse of a block tridiagonal general complex matrix.

To this end, a sequential algorithm based on Gaussian elimination
named Sweeps is developed and compared to standard Gaussian
elimination, where it is shown to be qualitatively quicker for the
task of determining the block tridiagonal portion of the Green’s
function matrix. The Sweep algorithm is then parallelized via a
straightforward approach in order to enable moderate speedup and
memory distribution.

The well known block cyclic reduction algorithm first developed by
Gene Golub is then presented and analyzed for further expanding
our parallel options, and finally a new hybrid method that com-
bines block cyclic reduction and a form of Schur complement cal-
culation is introduced.

The parallel algorithms are then benchmarked and the new hybrid
method is shown to possess promising speedup characteristics for
common cases of problems that need to be modeled.

viii

Resumé

Denne afhandling fokuserer på nogle af de numeriske aspekter ved
løsningen af elektronstruktur problemet, specielt udregningen af
grundtilstandselektrontætheden i ikke–ligevægts Green’s funktion
formuleringen af to–elektrode systemer samt beregningen af trans-
mission af elektroner i Landauer–Büttiker regimet. Disse udregnin-
ger koncentrerer sig hovedsageligt om bestemmelsen af en Green’s
funktion matrix, eller dele deraf, som er en inversion af en blok tri-
diagonal generel matrix med komplekse elementer.

Til dette formål udvikles en “Sweeps” algoritme baseret på Gauss
eliminering. Denne sammenlignes med standard Gauss elimine-
ring, og det vises at Sweeps er kvalitativt hurtigere til beregningen
af den blok tridiagonale del af et Green’s funktion matrix. Denne
nye algoritme paralleliseres naivt for at udvinde et moderat spee-
dup og udnytte den kollektive hukommelse til rådighed i et net-
værk af samarbejdende maskiner.

Den velkendte blok cyklisk reduktions algoritme, oprindeligt be-
skrevet af Gene Golub, præsenteres og analyseres for at udvide vo-
res repertoire af parallele algoritmer. Derefter udvikles en ny mere
effektiv hybrid metode, der kombinerer blok cyklisk reduktion med
en form for Schur komplement beregning.

De parallele algoritmer bliver derefter målt på under kørsel i et
parallelt miljø, og den nye hybride metode vises at have fordelag-
tig speedup for typiske problemstillinger inden for modellering af
elektronstrukturer af to–elektrode systemer.

x

Acknowledgements

My acknowledgements go to many beyond those listed here — but espe-
cially those listed here — for making the past 3 years of life and work a
time I have enjoyed, am eternally grateful for, and will fondly remember
going forward into the great unknown.

To Stig Skelboe for giving me the independence and freedom in the work
I did, while at the same time guiding and protecting me from the pitfalls
and perils that can strike a Ph.D student.

To Per Christian Hansen for having the infectious youthful exuberance in
all he does that inspires to keep juggling matrices and vectors, and see
what comes out.

To Kurt Stokbro for the many fruitful hours of work which brought about
some great quantum simulation code and his family, for being open and
warm to me while visiting Stanford. Kurt proved one can easily discuss
Hartree–Fock theory and configuration interaction while waiting in line
at the tax office.

To Hansu–san, my Ph.D. partner–in–crime, for the countless hours spent
coding, discussing, grumbling and laughing. We never did find Scarlett
in Tokyo, but we did experience just about everything else Japan could
surprise us with.

To my brother Allan, whom I look up to1 and can always make me laugh.
In hindsight, my first experience with quantum mechanics was his room;
always in some state of quantum superposition, and if lucky, upon ob-
servation, would collapse to stark orderliness rather than remain a dense
entangled soup of indistinguishable particles.

To my parents, Elena and Erik, for all the love and support — os quiero
muchı́simo más que palabras pueden expresar.

To Pernille, my truth and beauty, for her strength, unwavering support,
and unconditional love. I can’t imagine life without you.

Østerbro, April 2008

Dan Erik Petersen

1He’s taller.

xii

Contents

1 Introduction 1
1.1 Life, the Universe and Everything 1
1.2 Overview . 2

2 Theory 5
2.1 Theoretical Background . 5

2.1.1 Basic Equations . 6
2.1.2 Born–Oppenheimer Approximation 7
2.1.3 The Schrödinger Equation 9
2.1.4 The Pauli Exclusion Principle 9
2.1.5 The Many–Body Wavefunction 10

2.2 Density Functional Theory . 11
2.2.1 Hohenberg–Kohn Theorem 12
2.2.2 Extension to the Degenerate Case 13
2.2.3 Kohn–Sham Approach . 15

2.3 Solving The Kohn–Sham Equations 18
2.3.1 Basis Sets . 18
2.3.2 Calculating the Hamiltonian 21
2.3.3 Calculating the Effective Potential 23

2.4 Electron Transport . 23
2.4.1 Classical Transmission . 24
2.4.2 The Landauer–Büttiker Picture 25
2.4.3 Non–Equilibrium Green’s Function Formalism 26
2.4.4 Making the Infinite Finite 27

2.5 Computational Approach . 29
2.6 The Block Tridiagonal Matrix . 31

2.6.1 Structure . 32
2.6.2 Properties . 32

2.7 Mathematical Notation . 34

xiii

CONTENTS

2.7.1 The Block Matrix Class . 34
2.7.2 Extracting a Block Tridiagonal Part 35
2.7.3 Extracting a Block Diagonal Part 35
2.7.4 Extracting a Sub–block . 35
2.7.5 Augmented Matrix . 36
2.7.6 Operation Count . 36
2.7.7 Block Elements vs. Scalar Elements 36

2.8 Pseudocode Notation . 37
2.8.1 Calling and Arguments 37
2.8.2 Assignment . 37
2.8.3 Arrays . 37
2.8.4 Loops . 38
2.8.5 Returning Values . 38
2.8.6 Process Count and Identification 39
2.8.7 Parallel Communication 39
2.8.8 Ownership and Distribution 39
2.8.9 Inverse Blocks . 40

3 Serial Algorithms 43
3.1 Block Gaussian Elimination . 43

3.1.1 Description . 43
3.1.2 Algorithm . 50
3.1.3 Complexity Analysis . 55

3.2 Sweep . 58
3.2.1 Description . 58
3.2.2 Algorithm . 60
3.2.3 Complexity Analysis . 64

4 Parallel Algorithms 69
4.1 Parallel Computing . 69

4.1.1 Hardware Model . 69
4.1.2 Memory Model and Data Distribution 71
4.1.3 An Example Distribution 72
4.1.4 Some Assumptions . 74

4.2 Parallel Sweep . 74
4.2.1 Description . 74
4.2.2 Algorithm . 75
4.2.3 Complexity . 80

4.3 Block Cyclic Reduction . 82

xiv

CONTENTS

4.3.1 Description . 83
4.3.2 Algorithm . 91
4.3.3 Complexity . 103
4.3.4 Stability . 109

4.4 Hybrid Method . 110
4.4.1 Description . 110
4.4.2 Algorithm . 125
4.4.3 Complexity . 130

5 Benchmarking 133
5.1 Benchmarking Serial Algorithms 133
5.2 Benchmarking Parallel Algorithms 134

5.2.1 Load Balancing . 134
5.2.2 Implementation . 137
5.2.3 Results . 138
5.2.4 Remarks . 146

6 Conclusion 161
6.1 Results . 161
6.2 Transmission . 162
6.3 Future Work . 162

A Article: Block Tridiagonal Matrix Inversion and Fast Transmission
Calculations 165

B Article: Krylov subspace method for evaluating the self-energy ma-
trices in electron transport calculations 183

C Article: Efficient Wave Function Matching Approach for Quantum
Transport Calculations 197

References 221

xv

CONTENTS

xvi

List of Figures

2.1 The Born–Oppenheimer approximation 8
2.2 Hohenberg–Kohn flow . 12
2.3 The Kohn–Sham ansatz bridge 16
2.4 Principal layers . 21
2.5 Self–consistent procedure flow chart 22
2.6 Two–probe system . 24
2.7 The Landauer–Büttiker picture 26
2.8 NEGF SCF flow . 30
2.9 Example block tridiagonal structures 33

3.1 Legend for execution diagrams 46
3.2 Gaussian elimination process . 47
3.3 Back solve process . 49
3.4 Back solve process (tridiagonal) 54
3.5 The sweep method for the full inverse 62
3.6 The sweep method for the block tridiagonal inverse 65

4.1 Von Neumann model of a sequential computer 70
4.2 Message–passing multiprocessor model 71
4.3 Simple block matrix distribution 72
4.4 Differing block dimension example of distribution 73
4.5 The parallelized sweep method 76
4.6 The block cyclic reduction method 84
4.7 The BCR reduction tree . 87
4.8 Corner production in BCR . 89
4.9 Center production in BCR . 91
4.10 The BCR production tree . 92
4.11 The BCR reduction phase . 98
4.12 The BCR reduction phase in reordered fashion 99
4.13 The BCR production phase . 104

xvii

LIST OF FIGURES

4.14 The BCR production phase in reordered fashion 105
4.15 The BCR method tree . 106
4.16 Node types in the BCR method tree 107
4.17 The Hybrid method . 111
4.18 Schur reduction phase for the corner processes 114
4.19 Schur production phase for the corner processes 117
4.20 Schur reduction phase for the center processes 119
4.21 Schur production phase for the center processes 126

5.1 Timing figures for α = 1 and block dimension d = 128. 140
5.2 Timing figures for α = 1 and block dimension d = 256. 141
5.3 Timing figures for α = 1 and block dimension d = 512. 142
5.4 Timing figures for α = 2 and block dimension d = 128. 143
5.5 Timing figures for α = 2 and block dimension d = 256. 144
5.6 Timing figures for α = 2 and block dimension d = 512. 145
5.7 Timing figures for α = 2.636 and block dimension d = 128. . . . 147
5.8 Timing figures for α = 2.636 and block dimension d = 256. . . . 148
5.9 Timing figures for α = 2.636 and block dimension d = 512. . . . 149
5.10 Timing figures for α = 3 and block dimension d = 128. 150
5.11 Timing figures for α = 3 and block dimension d = 256. 151
5.12 Timing figures for α = 3 and block dimension d = 512. 152
5.13 Simple BCR speedup . 155
5.14 Choosing α for block dimension d = 128. 157
5.15 Choosing α for block dimension d = 256. 158
5.16 Choosing α for block dimension d = 512. 159

xviii

List of Tables

3.1 Complexity analysis for Gaussian elimination 57
3.2 Complexity analysis for Sweep 66

4.1 Complexity analysis for parallelized Sweep 82
4.2 Complexity analysis for Block Cyclic Reduction 108
4.3 Complexity analysis for Schur Reduction/Production 131
4.4 Complexity analysis for the Hybrid method 132

xix

LIST OF TABLES

xx

List of Algorithms

3.1 GAUSSELIMINATEFULL(A, kfrom, kto) 51
3.2 BACKSOLVEFULL(A,DL,JL) . 52
3.3 GEINVERSEFULL(A) . 52
3.4 GAUSSELIMINATETRI(A, kfrom, kto) 53
3.5 BACKSOLVETRI(A,DL,JL) . 55
3.6 GEINVERSETRI(A) . 55
3.7 DIAGONALS(A,DL,DR) . 60
3.8 OFFDIAGONALSFULL(A,JL,JR,DiagA {G}) 61
3.9 SWEEPINVERSEFULL(A) . 61
3.10 OFFDIAGONALSTRI(A,TridA

{
JL,JR

}
,DiagA {G}) 63

3.11 SWEEPINVERSETRI(A) . 63
4.1 GAUSSELIMINATEPARALLEL(A) 77
4.2 DIAGONALSPARALLEL(A,DL,DR) 79
4.3 OFFDIAGONALSPARALLEL(A,TridA

{
JL,JR

}
,DiagA {G}) . . . 80

4.4 SWEEPINVERSEPARALLEL(A) . 81
4.5 REDUCEROWINDICES(iBCR, level) 93
4.6 PRODUCEROWINDICES(iBCR, level) 93
4.7 REDUCTIONINDICES(row, ielim) 94
4.8 REDUCE(ABCR,L,U, row, level, ielim) 95
4.9 REDUCEBCR(A,L,U, iBCR) . 96
4.10 CORNERPRODUCE(ABCR,L,U,GBCR, kfrom, kto) 100
4.11 CENTERPRODUCE(ABCR,L,U,G, kabove, kto, kbelow) 101
4.12 PRODUCEBCR(ABCR,L,U,G, iBCR) 102
4.13 INVERSEBCR(A) . 103
4.14 REDUCESCHUR(A) . 127
4.15 PRODUCESCHUR(A,L,U,G) . 129
4.16 INVERSEHYBRID(A, iBCR) . 130

xxi

LIST OF ALGORITHMS

xxii

Chapter 1

Introduction

In the beginning the universe was created. This has made a lot of people
very angry and has been widely regarded as a bad move.

Douglas Adams – The Hitchhiker’s Guide To The Galaxy

1.1 Life, the Universe and Everything

42
Forty–two. That might be the first thought for some when posed with the
Question of what the meaning of life, the universe, and everything is. This
is because in a fictional universe, this really was the answer to that Question,
and the result of millions of years of computing power, and indeed, why the
planet Earth came to be. It was in order to compute a more precise form of the
Question in order to better understand the Answer. Earth was not where the
computer was; it was the computer, complete with useful biological computing
elements. It took 10 million years to compute the Question, and unfortunately,
minutes from that final return statement, Earth was destroyed in order to make
way for a hyperspatial express route.

This thesis, however, strives not to satisfy this unsolved problem, but to try
to do what every scientist has done since history remembers: break the prob-
lem down into smaller1, more manageable questions, and attempt to answer
them one by one in the great hope of achieving a greater understanding of,

1Maybe much smaller.

1

1.2 Overview

indeed, life, the universe, and everything — or at least why a transistor might
behave the way it does — or how a molecule of water might bend. Oh, and to
do all this in less than 10 million years.

1.2 Overview

This thesis is divided into the following chapters and appendices, which will
be described here briefly. Chapter 1, the current chapter and not as sober and
serious as the rest, serves as the introduction.

Chapter 2 provides a brief theoretical background of electronic structure
theory and relevant computational methods that give rise to the particular
kind of linear algebraic matrix structure which this thesis has focused its ef-
forts on. The chapter ends with a notational guide to the mathematics and
programmatic constructs used later on.

Chapter 3 introduces a series of sequential algorithms that lay the founda-
tion for two different strategies for inverting our special matrix, namely stan-
dard Gaussian elimination and Sweeps. Furthermore, these are developed in
two variants that either calculate the full inverse, or only a specific portion of
it. A complexity analysis is carried out on all methods in order to characterize
them qualitatively.

Chapter 4 focuses on parallel algorithms for the inversion problem, where
we first start with a short overview of what we assume is our parallel com-
puting environment. Three algorithms are presented, where the first is a di-
rect parallelization of the sequential Sweeps method. Block cyclic reduction is
introduced and treated, and finally a Hybrid method combining block cyclic
reduction with a form of Schur complement calculation is presented. Again,
complexity analysis is carried out for each method.

Chapter 5 moves on to benchmark the parallel algorithms and determine
their execution characteristics in a practical setting. Speedup predictions are
carried out and compared to execution times, and remarks are made as to their
validity and what we can carry forward.

Chapter 6 concludes the thesis, with a brief overview of the significant con-
clusions drawn, and with a view towards further work.

A series of three articles is appended to the thesis, of which two have been
accepted for publication in the Journal of Computational Physics [1] and Phys-
ical Review B [2]. A third has been submitted to Physical Review B, and is
available from arXiv [3]. A fourth article [4] concerning the hybrid method is
currently in preparation in cooperation with Eric Darve and Song Li from Stan-

2

1.2 Overview

ford University, Kurt Stokbro and Stig Skelboe from the University of Copen-
hagen and Per Christian Hansen from the Technical University of Denmark.

Though there may be a degree of overlap between the body of this thesis
and [1], the methods presented in Chapters 3 and 4 are designed to return a
different result, serving a different purpose in electronic structure calculations.
The thesis body looks to determine the so–called ground state density of a
system, while [1] uses similar methods to calculate transmission characteristics
for systems that have already had their ground state densities determined.

3

1.2 Overview

4

Chapter 2

Theory

Thirty-one years ago [1949], Dick Feynman told me about his “sum over
histories” version of quantum mechanics. “The electron does anything it
likes,” he said. “It just goes in any direction at any speed, forward or back-
ward in time, however it likes, and then you add up the amplitudes and it
gives you the wave-function.” I said to him, “You’re crazy.” But he wasn’t.

Freeman Dyson

2.1 Theoretical Background

Since the discovery of the electron and the rise of quantum mechanics and
particle physics, it has been shown that many natural phenomena of interest
can be well explained by how electrons behave in the vast environment of
other electrons, nuclei, electromagnetic fields and other fundamental forces
that the universe exhibits.

The challenge addressed by this thesis stems ultimately from the problem
of describing and understanding how matter behaves. Quantum mechanics
and statistical mechanics have come a long way in providing theoretical mod-
els of electron behavior that account well for the behavior of matter under a
large variety of conditions, and equations have been devised and studied to
this effect.

However, we are not interested in pursuing a complete description of mat-
ter that can take account for any condition imaginable in the universe. Our
goal, being one of understanding the behavior of matter in our everyday lives,
allows us to limit ourselves to equations devised to describe the more mun-

5

2.1 Theoretical Background

dane behavior of matter, in comparison with the extreme conditions the uni-
verse can exhibit. We can thus omit relativistic effects, quantum electrodynam-
ics and electromagnetic fields in the model of our system.

Relativistic effects1 for atoms with an atomic number less than about 25
(Manganese) can be neglected, since it is only for heavier nuclei that core2 elec-
trons move at relativistic velocities. Ultimately, these effects can be included
via so–called relativistic effective core potentials in conjunction with the funda-
mental equation Eq. (2.1) we are about to present, but this will not be addressed
in this work.

The effects of quantum electrodynamics is not accounted for, as we will be
investigating the properties of matter that arise without invoking the condi-
tions that require describing the strong nuclear force explicitly, while magnetic
effects can be included as Zeeman terms in Eq. (2.1). Thus it is from the funda-
mental equations presented in the following section from which we take our
starting point.

2.1.1 Basic Equations

The many–body hamiltonian operator that governs the behavior of a system
of interacting electrons and nuclei in atomic units takes the form

Ĥ = −1

2

∑
i

∇2
i +

∑
i,I

ZI
|ri −RI | +

1

2

∑
i 6=j

1

|ri − rj|

−
∑
I

1

2MI

∇2
I +

1

2

∑
I 6=J

ZIZJ
|RI −RJ | ,

(2.1)

where summations over i and j correspond to electrons, and summations over
I and J correspond to nuclei. The kinetic energy terms employ the spatial
differential operator ∇ where the Ith nuclei, with atomic number ZI , has a
mass ratio of MI to that of an electron. The three dimensional vector positions
of the ith electron and Ith nuclei are denoted as ri and RI , respectively.

Examining Eq. (2.1), we can identify the five terms it is composed of as be-
ing, in order, the kinetic energy of the electrons, the attractive electron–nuclei
interaction, the electron–electron repulsive interaction, the kinetic energy of

1Relativistic effects are properties or behavior of matter that is only well–described by
incorporating the theory of relativity. This becomes necessary for high–energy physics.

2Core electrons are electrons occupying inner orbital shells and are thus tightly bound to
the positive nucleus and shielded from outside effects by weaker bound valence electrons in
outer orbital shells.

6

2.1 Theoretical Background

the nuclei, and the nuclei–nuclei repulsive interaction. This can be written
down in a compact form in the following manner:

Ĥ = T̂e(r) + V̂eN(r,R) + V̂ee(r) + T̂N(R) + V̂NN(R) (2.2)

where the various kinetic T̂ and potential V̂ operators depend on the positions
of the electron (e) and nuclei (N) positions r and R, respectively.

2.1.2 Born–Oppenheimer Approximation

One of the first reasonable steps we can take in order to make Eq. (2.1) more
tractable to solve is to employ what is known as the Born–Oppenheimer, or adi-
abatic, approximation.

The motivation behind this approximation is two–fold. The first, is that
Eq. (2.2) would be much more tractable to solve if it were separable, but the
electron–nuclei interaction term V̂eN(r,R) prevents this as it depends explicitly
on both the positions of the electrons r as well as the positions of the nuclei R.

The second motivating factor comes from the observation that the mass of
an electron is negligible in the face of the atomic masses in the system, i.e. that
MI � 1. Thus the nuclei, being orders of magnitude heavier compared to
the light, agile electrons, can be assumed to remain stationary from the point
of view of an electron. As the spatial configuration of nuclei might change,
we assume electrons will instantly find themselves adjusted to the new spatial
configuration of nuclei.

Thus we fix the spatial configuration of nuclei R to some value R0, as seen
in Fig. 2.1, effectively parameterizing our equations. In this way, we have sim-
plified our earlier problem in subsection 2.1.1 to that of considering a system of
moving electrons interacting with stationary nuclei as well as amongst them-
selves. Furthermore, in fixing the nuclei positions, the potential energy from
the nuclei–nuclei interaction becomes constant and is in the following expres-
sion of the hamiltonian contained in the term ENN . We are also able to effec-
tively disregard the kinetic energy T̂N(R0) of the nuclei, and omit it from our
new parametrized hamiltonian:

Ĥ = T̂e(r) + V̂eN(r; R0) + V̂ee(r) + ENN = Ĥe + ENN . (2.3)

The new term Ĥe is known as the electronic hamiltonian, as it describes the
motion of electrons in a fixed environment of atomic nuclei. It can be further
broken down into having terms of internal and external character by writing

Ĥe = T̂e(r) + V̂ext(r; R0) + V̂int(r) (2.4)

7

2.1 Theoretical Background

Born–Oppenheimer

Figure 2.1: Visualizing the Born–Oppenheimer approximation, where all nuclei are fixed in
space to a set of positions R0, while the electrons are still free to move. Any change in the
spatial configuration R0 of nuclei is assumed to happen slowly enough for the electrons to
adiabatically adapt to.

8

2.1 Theoretical Background

where we have classified the action of nuclei upon the electrons via an exter-
nal potential V̂ext, and the electron–electron interaction as that of an internal
potential V̂int.

2.1.3 The Schrödinger Equation

Having a hamiltonian in Eq. (2.3) that describes the energy in our system of
electrons helps us, but only brings us so far. We need a formulation of an
actual problem we can try to solve, and ideally, this problem is a connection to
how the real world behaves, and the solution to which tells us something about
the behavior of electrons in the real world. This is where the non–relativistic,
time–independent Schrödinger equation comes to our aid.

ĤeΨ = εeΨ (2.5)

This equation, a so–called eigenproblem and one of the fundamental postu-
lates of quantum mechanics, describes how the electronic hamiltonian oper-
ator Ĥe for a system of electrons is related to its stationary solutions. These
stationary solutions turn out to be the eigensolutions to the above equation,
where each eigenfunction solution Ψ is known as a many–body electronic wave-
function, and the associated eigenvalue εe represents the energy associated
with the eigenfunction.

The electronic wavefunction Ψ that enters into Eq. (2.5) describes the state
of all electrons in the system, and is a function of the set of the spatial loca-
tions of each electron {ri}. Furthermore, it is also affected by the set of nuclei
positions {R0} parametrically. The interpretation of Ψ can be likened to that
of a probability amplitude dictating the distribution of the electrons in space.
Finally, the electronic energy associated with each solution wavefunction also
depends implicitly on nuclei positions:

Ψ = Ψ({ri}; {R0}), εe = εe({R0}) (2.6)

From this point on, we assume implicitly the parametric dependence of the
wavefunction and energies on the positions of the nuclei {RI}, and we omit
this from our expressions.

2.1.4 The Pauli Exclusion Principle

From Eq. (2.3) we have a hamiltonian operator which dictates the behavior for
a given system ofN electrons moving about a fixed arrangement of atomic nu-
clei. This set of N electrons are described by their locations in space by the set

9

2.1 Theoretical Background

of their spatial coordinates {ri}. In order to fully describe the electrons, how-
ever, we have to include information on a fundamental property all electrons
possess: their spin1 state. To incorporate this property, the three dimensional
coordinates that make up the spatial coordinate r of an electron is augmented
with a fourth degree of freedom, the spin coordinate ω, and we can then write

x = {r, ω}. (2.7)

We are now able to fully describe the electrons in the many–body wave-
function in terms of the augmented coordinates x. This change, by itself, does
not affect us explicitly since the electronic hamiltonian Ĥe from Eq. (2.3) that
we apply in the Schrödinger equation Eq. (2.5) is not spin–dependent. This
change is useful for another reason, since we will use it to enforce a property
that electrons obey, known as the Pauli exclusion principle. This principle im-
poses the condition that no two electrons may possess the same quantum state
at the same point in space. In other words, they may not occupy both the same
position in space and have the same spin state.

This can be enforced by constructing the wave–function of the electrons Ψ

such that it is anti–symmetric2. Thus an interchange of any two electrons in the
system would change the sign of the wavefunction in the following manner:

Ψ(x1, . . . ,xi, . . . ,xj, . . . ,xN) = −Ψ(x1, . . . ,xj, . . . ,xi, . . . ,xN). (2.8)

2.1.5 The Many–Body Wavefunction

The many–body wavefunction can be interpreted as a probability amplitude
that describes the likelihood of finding an electron in a certain position in
space. A main property of the many–body wavefunction that we assume, is
the property that the wave function is normalized, i.e. for a wave function de-
scribing N electrons we have∫

|Ψ(r1, r2, . . . , rN)|2 dr1dr2 . . . drN = 1, (2.9)

and thus N electrons are described to exist in the system with unit probability.
The single–particle density in our N electron system is defined as

n(r) = N

∫∫
. . .

∫
|Ψ(r, r2, . . . , rN)|2 dr2dr3 . . . drN (2.10)

1Spin is a property of intrinsic angular momentum assigned to each electron.
2An anti–symmetric function obeys f(x, y) = −f(y, x) on the interchange of any two vari-

ables.

10

2.2 Density Functional Theory

which yields the intuitive result that integrating the single–particle density
over all of space will yield the total number of particles in the system, i.e.∫

n(r) dr = N. (2.11)

2.2 Density Functional Theory

Determining the ground state wave–function for the Schrödinger Eq. (2.5) in
terms of the many–body electron wave function Eq. (2.6) is only really tractable
for simple systems composed of relatively few electrons. Full configuration
interaction (FCI) methods, for example, even when adapted for massively par-
allel calculations [5, 6] still prove unable to handle large systems of molecules
due to the exponential increase in the number of variables as the number of
electron configurations in the search for the ground state wave function in-
creases.

One approach that transforms the many–body Schrödinger wave equation
into a far more tractable one–electron equation for numerical solution is that
provided via the density functional theory formalism, or DFT for short. A cen-
tral property of DFT is that it recasts the basic variable of our equations from
being the ground state electronic wave function Ψ0(r1, r2, . . . , rN) to that of the
ground state electron density n0(r), where

n0(r) =

∫∫
. . .

∫
|Ψ0(r, r2, . . . , rN)|2 dr2dr3 . . . drN (2.12)

and which effectively reduces the 3N degrees of freedom to minimize over
down to just 3 for an N–electron system.

By construction, basic DFT is a theory of the ground state condition of elec-
trons in a system, whereas FCI can handle excited states. However, many use-
ful properties of systems can be determined from the ground state.

One difficulty with DFT is that, although it is in principle an exact theory
of the ground state of a system, it is limited by the lack of knowing the ex-
act form the so–called exchange–correlation functional. Thus we employ ap-
proximations to this functional, which can have varying levels of sophistica-
tion and numerical overhead in calculation, while still providing acceptable
results. The results will then be exact ground state densities, but for a sys-
tem of electrons for which the approximated exchange–correlation functional
would apply. The trick is then to have the approximated exchange–correlation
functional reflect the behavior of the true functional as much as possible, but

11

2.2 Density Functional Theory

this is not the focus of this thesis. We will, however, give a brief overview of
basic DFT, starting with the fundamental work by Hohenberg and Kohn.

2.2.1 Hohenberg–Kohn Theorem

n0(r)

Ψ0({r})Ψi({r})

HK
V̂ext(r) + C

Figure 2.2: Visualizing the Hohenberg–Kohn implications, where C denotes a constant.

The seminal paper by Hohenberg and Kohn [7] laid the foundation of all
the modern methods based on DFT. The paper addressed the issue of deter-
mining the ground state properties of an electronic system with the electron
hamiltonian from Eq. (2.4) in a variational manner using the electron density of
a system rather than the electron wave function. Two theories by Hohenberg
and Kohn (HK), presented and proven in [7], are presented briefly here.

HK Theorem 1. For any system of multiple interacting particles in an external po-
tential V̂ext(r), the potential V̂ext(r) is determined uniquely, except for a constant C, by
the ground state particle density n0(r).

HK Corollary 1. Since the hamiltonian is thus fully determined, except for a constant
shift of the energy, it follows that the many–body wavefunctions for all states, both
ground and excited, are determined.

The first theorem by Hohenberg and Kohn tells us that if we are able to find
the correct ground state density of the system n0(r), then we have uniquely
determined all other properties of the many–body system.

HK Theorem 2. A universal functional for the energy E[n] in terms of the density
n(r) can be defined, valid for any external potential V̂ext(r). For any particular V̂ext(r),
the exact ground state energy of the system is the global minimum value of this func-
tional, and the density n(r) that minimizes the functional is the exact ground state
density n0(r).

12

2.2 Density Functional Theory

HK Corollary 2. The functionalE[n] alone is sufficient to determine the exact ground
state energy and density. In general, excited states of the electrons must be determined
by other means.

This second theorem lends us an approach in order to determine the de-
sired ground state density. The theorem proves that for any external poten-
tial we know that a functional E[n] exists whose global minimum is the exact
ground state energy. Furthermore, the actual density that minimizes E[n] will
be the ground state density n0(r). However, this is where the help stops. The
HK theorems tell us nothing of what shape or form this exact functional has.

An immediate issue is that the work put forth by Hohenberg and Kohn in
[7] only treats the case for many–body systems with a non–degenerate1 ground
state energy and at zero temperature. Mermin [8] extended the work to handle
nonzero temperatures, however, and the work of Levy [9, 10] and Lieb [11, 12,
13] provided improvements and clarifications, and importantly, incorporated
degenerate ground states into the realm of DFT. An approach and proof that
incorporates degenerate ground states follows in lieu of a proof for the non–
degenerate case here.

2.2.2 Extension to the Degenerate Case

We consider N electrons in an external potential V̂ext(r; R0) as defined in the
electronic hamiltonian Ĥe from Eq. (2.4) and proceed as done in [9, 14].

For all N–representable2 densities n(r), i.e. the densities constructible from an
arbitrary antisymmetric wave function Ψ(r) = Ψ(r1, r2, . . . , rN), we can define
the Levy–Lieb functional

F [n] = min
Ψ n(r)

〈Ψ(r)|T̂e(r) + V̂int(r)|Ψ(r)〉, (2.13)

where the minimum is taken over all wavefunctions Ψ(r) that construct the
density n(r) (cf. Eq. (2.10)). The functional F is universal in the sense that it
mentions nothing of the system we are dealing with nor of the external poten-
tial V̂ext(r; R0), i.e. it is independent of R0.

1A non–degenerate energy level of a system is one for which there exists only one electron
configuration, otherwise the energy level is said to be degenerate if multiple configurations
exist.

2The original paper [7] by Hohenberg and Kohn work with V–representable densities,
i.e. the densities that can be constructed for an arbitrary external potential V̂ext(r; R0).

13

2.2 Density Functional Theory

If we name E0 and n0(r) to be the ground state energy and density, respec-
tively, then the two basic theorems of DFT are

E[n] ≡
∫
V̂ext(r; R0)n(r) dr + F [n] ≥ E0 (2.14)

for all N–representable n(r), and∫
V̂ext(r; R0)n0(r) dr + F [n0] = E0. (2.15)

In order to prove the variational principle in Eq. (2.14), we introduce the
notation Ψn

min(r) for an electronic wave function that minimizes Eq. (2.13) such
that

F [n] = 〈Ψn
min|T̂e(r) + V̂int(r)|Ψn

min〉. (2.16)

Writing V̂ext(r; R0) =
∑

i V̂ext(ri; R0), we have∫
V̂ext(r)n(r) dr + F [n] = 〈Ψn

min|V̂ext(r; R0) + T̂e(r) + V̂int(r)|Ψn
min〉 ≥ E0, (2.17)

due to the ground state being the lowest energy level. This proves the inequal-
ity in Eq. (2.14). Using the property of the ground state once again, we have

E0 = 〈Ψ0(r)|V̂ext(r; R0) + T̂e(r) + V̂int(r)|Ψ0(r)〉
≤ 〈Ψn0

min(r)|V̂ext(r; R0) + T̂e(r) + V̂int(r)|Ψn0
min(r)〉. (2.18)

Subtracting the external potential from both, we obtain

〈Ψ0(r)|T̂e(r) + V̂int(r)|Ψ0(r)〉 ≤ 〈Ψn0
min(r)|T̂e(r) + V̂int(r)|Ψn0

min(r)〉. (2.19)

On the other hand, the definition of Ψn0
min tells us

〈Ψ0(r)|T̂e(r) + V̂int(r)|Ψ0(r)〉 ≥ 〈Ψn0
min(r)|T̂e(r) + V̂int(r)|Ψn0

min(r)〉, (2.20)

which is only possible if both sides of the expression are equal, i.e.

〈Ψ0(r)|T̂e(r) + V̂int(r)|Ψ0(r)〉 = 〈Ψn0
min(r)|T̂e(r) + V̂int(r)|Ψn0

min(r)〉. (2.21)

This leaves us with

E0 =

∫
V̂ext(r; R0)n0(r) dr + 〈Ψ0(r)|T̂e(r) + V̂int(r)|Ψ0(r)〉

=

∫
V̂ext(r; R0)n0(r) dr + 〈Ψn0

min(r)|T̂e(r) + V̂int(r)|Ψn0
min(r)〉

=

∫
V̂ext(r; R0)n0(r) dr + F [n0], (2.22)

14

2.2 Density Functional Theory

and thus we have proven Eq. (2.15).
We can also see how Eq. (2.21) tells us that DFT can handle systems with

both degenerate and non–degenerate ground states. If the system at hand has a
non–degenerate ground state, then Ψ0(r) = Ψn0

min, otherwise Ψn0
min corresponds

to one of the ground states, and the others can still be found. Therefore the
ground state density n0(r) can determine all ground state wave functions (or
wave function, in the non–degenerate case), from which further ground state
properties can be calculated. This means that all ground state properties are
essentially functionals of the ground state density. This lets us work with the
density n(r) as a basic variable, rather than the electronic wave function Ψ(r).

The relations derived here leave us with a methodology for determining
ground state properties of a many–body system. Nothing tells us, however,
how the function F in Eq. (2.13) is explicitly formed. If we can construct a sat-
isfying approximation to the true functional F [n], for Eq. (2.14), we can then
perform a minimization of this equation, and can accordingly obtain approx-
imations to both the true ground state energy E0 and the true ground state
density n0(r).

2.2.3 Kohn–Sham Approach

Many methods attempt to tackle the many–body DFT approach from the pre-
vious section, relying on approximations to F [n] via the Thomas–Fermi ap-
proach [14]. These methods suffer from the necessity to approximate the ki-
netic energy term T̂e(r). Unfortunately, this term contributes significantly to
the total energy, and as such, the Thomas–Fermi approach predicts a lack of
shell structure in atoms and the absence of chemical bonding in molecules and
solids, which is behavior clearly not observed in nature.

Based on this fallacy of the Thomas–Fermi approach in predicting behavior
of examined systems, it was not until the famous paper by Kohn and Sham
[15] that the task of devising good approximations to the energy functional
E[n] was satisfied.

The philosophy of the Kohn–Sham (KS) approach is to attempt to replace
the problem of a many–body system obeying the hamiltonian Eq. (2.1) with
a different auxiliary system that will have the same solution, but be easier to
solve. This approach is essentially an ansatz1, since nothing is known about
how to determine this auxiliary system.

1An ansatz is an assumed form for a mathematical statement that is not based on any
underlying theory or principle.

15

2.2 Density Functional Theory

n0(r)

Ψ0({r})Ψi({r})

HK HK0
n0(r)

ψi(r)

V̂KS(r)

ψi=1...N (r)

KS
V̂ext(r) + C

Figure 2.3: Visualizing the KS ansatz that bridges the true multi–particle wavefunction sys-
tem on the left with the auxiliary system on the right based on single–particle wavefunctions.

Essentially, the KS ansatz is the assumption that the ground state density of
the fully interacting multi–body system is equal to that of some other, system
where the electrons do not interact. This reduces the complexity of treating
a system of N mutually interacting electrons to that of treating N individual
non–interacting electrons, which is far more tractable to solve, and is readily
handled by numerical computation.

The KS ansatz is based on the following two assumptions:

KS Ansatz 1. The precise ground state density of a system can be represented1 by the
ground state density of an auxiliary system whose electrons do not interact.

This first assumption is visualized in Fig. 2.3 which connects the ground
state density n0(r) found for a non–interacting system with the true ground
state density of a fully interacting many–body system.

KS Ansatz 2. The auxiliary hamiltonian is formed such that it contains the regu-
lar kinetic energy operator T̂ = −1

2
∇, but the potential is replaced by an effective

potential V̂eff.

An extremely useful simplification that can be made in the second assump-
tion is that of using an effective potential V̂eff that is local. That is to say, an
electron at point r will only ‘feel’ its local neighborhood2. To see how the
single–electron KS approach ties in that of many–electron HK theory, we start
with the KS energy functional.

1HK theory [7] was based on a functional that is defined for all densities n(r) that can be
generated from an external potential V̂ext(r), i.e. is V –representable. This is in contrast to the
N–representable work by Levy and Lieb [9, 10, 11, 12, 13], and the functional F (cf. Eq. (2.13))
which is defined for any density n(r) derivable from a many–body wavefunction Ψ(r) com-
posed of N electrons.

2This is related to the concept of nearsightedness as first described by Walter Kohn [16, 17].

16

2.2 Density Functional Theory

The energy functional from the KS approach is

EKS[n] = T̂0[n] +

∫
n(r)

[
V̂ext(r) +

1

2
V̂Hartree(r)

]
dr + Exc[n] (2.23)

where T̂0 is the kinetic energy of a system with density n and lacking electron–
electron interactions. The term V̂Hartree is the classical Coulomb potential for
electrons, also known as the Hartree potential. Finally, EXC is the so–called
exchange–correlation energy. The first term and integral can be calculated ex-
actly, while the last term, the exchange–correlation functional, incorporates
both the exchange and correlation energies, as well as the ‘remainder’ of elec-
tron kinetic energy and anything else that might be lacking in order for the
energy functional EKS to be the true energy functional E from Eq. (2.14). It is
only this term for which we need to construct a satisfying, approximate func-
tional, since the form of the true functional is not known.

One of the simplest exchange–correlation functionals applied in DFT is the
local–density approximation (LDA) functional, first used and developed by
Kohn and Sham [15]. This functional calculates the exchange–correlation en-
ergy of a point in a system to being the same as that of a point in a homogenous
electron gas of the same density. The form and strategy in devising and con-
structing satisfactory EXC functionals is not central to the topic of this thesis,
but vast number of them exist and have been thoroughly studied [18, 19], and
can be used relatively interchangeably.

The advantage of the KS method over the Thomas–Fermi approach dealing
with the many–body system becomes clear when viewed in the light of how
each term in Eq. (2.23) contributes to the total ground density energy E0. It
turns out that the kinetic energy term T̂0 for the non–interacting electrons can
account for a large part of the full kinetic energy term T̂e for the many–body
interacting system [14]. Thus only a relatively small part of the energy con-
tributed to the functional EKS comes from EXC, and thus our calculated ground
state properties become relatively well approximated despite a rough estimate
of the exchange–correlation energy.

If we apply the variational principle [14] to Eq. (2.23), we get

δEKS[n]

δn(r)
=

δT̂0

δn(r)
+ V̂ext(r) + V̂Hartree(r) +

δEXC[n]

δn(r)
= µ (2.24)

where µ is the Lagrange multiplier associated with the constraint of keeping
the number of electrons in the system constant. We can now compare this with
a similar equation, but where we neglect electron–electron interactions, getting

17

2.3 Solving The Kohn–Sham Equations

δEKS[n]

δn(r)
=

δT̂0

δn(r)
+ V̂eff(r) = µ, (2.25)

where we have V̂eff as an effective potential that not only incorporates the nuclei
and external effects, but also the so–called effective potential of the other elec-
trons, although no explicit interaction is given. The equations Eq. (2.24) and
Eq. (2.25) are identical, provided

V̂eff(r) = V̂ext(r) + V̂Hartree(r) +
δEXC[n]

δn(r)
, (2.26)

whose solution we can find by solving a set of single–particle Schrödinger
equations for noninteracting particles for each electron in the system[

T̂ + V̂eff(r)
]
ψi(r) = εiψi(r), i = 1, 2, . . . , N (2.27)

with the density being constructed up from each electron’s fictitious1 wave
function ψi(r) like this

n(r) =
N∑
i=1

|ψi(r)|2. (2.28)

Thus we can present an overview of the KS single–particle equations, for
which we solve for the ground state density n0(r), in Eqs. (2.29)–(2.31).

V̂eff(r) = V̂ext(r) + V̂Hartree(r) + V̂XC(r) (2.29)
ĤKS(r) = T̂ (r) + V̂eff(r) (2.30)

ĤKS(r)ψi(r) = εiψi(r) (2.31)

One unanswered issue is that the effective potential from Eq. (2.29) depends
on the average location of the electrons in the system, and this is not known a
priori. As we will see in the following section, determining this is done via a
self–consistent approach, using an initial guess of the density n(r).

2.3 Solving The Kohn–Sham Equations

2.3.1 Basis Sets

In order treat the problem of dealing with the Schrödinger equation and its
associated wavefunction on a computer, the wavefunction itself is expanded

1The wave function is fictitious in the sense that, individually, they are not related to any
true physical description of the system, however, the consideration of them all together still
yields the physical result we are looking for.

18

2.3 Solving The Kohn–Sham Equations

into components of a basis set {φn} comprised of a total of n basis functions.

ψ(r) =
n∑
j=1

cjφj(r) (2.32)

The original wavefunction can then described as a column vector of coeffi-
cients with respect to the set of n basis functions like this:

ψ ≡ c = {c1, c2, . . . , cn}T , (2.33)

where the superscript (T) denotes transposition.
In principle, for an arbitrary wave function ψ(r) to be able to be described

exactly by a basis set expansion, a complete set of basis functions {φ∞} would
be needed, and thus an infinite number of coefficients ci would describe ψ(r).
Since this is not practical for implementation, a finite basis set is utilized, and
the wave function would be described exactly only in terms of the subspace
that the finite basis set would define.

If we look at how this affects the Schrödinger equation, either in Eq. (2.5)
or in Eq. (2.31), we substitute Eq. (2.32) into either one and obtain

n∑
j=1

cjĤφj(r) = ε
n∑
j=1

cjφj(r). (2.34)

We multiply both sides by φ∗i (r), where the superscript (∗) denotes complex
conjugation, getting

n∑
j=1

cjφ
∗
i (r)Ĥφj(r) = ε

n∑
j=1

cjφ
∗
i (r)φj(r). (2.35)

We then integrate both sides over r to get∫ n∑
j=1

cjφ
∗
i (r)Ĥφj(r) dr =

∫
ε

n∑
j=1

cjφ
∗
i (r)φj(r) dr. (2.36)

We can then move the integrals into the sums and obtain
n∑
j=1

cj

∫
φ∗i (r)Ĥφj(r) dr = ε

n∑
j=1

cj

∫
φ∗i (r)φj(r) dr, (2.37)

which we rewrite as1
n∑
j=1

Hijcj = ε
n∑
j=1

Sijcj, (2.38)

1 Hence, the coefficients c are determined by the Galerkin method, ensuring the residual
to be orthogonal to the space spanned by the n basis functions.

19

2.3 Solving The Kohn–Sham Equations

where the hamiltonian matrix H’s elements are

Hij =

∫
φ∗i (r)Ĥφj(r) dr (2.39)

and the overlap matrix S’s elements

Sij =

∫
φ∗i (r)φj(r) dr. (2.40)

The main result is that Eq. (2.38) shows us that we have transformed our
operator–based Schrödinger equation to the following matrix–based general-
ized eigenvalue problem:

Hc = εSc. (2.41)

From Eq. (2.40), we can see that if the chosen basis set {φ} is orthogonal, the
overlap matrix S reduces to the identity matrix I, and Eq. (2.41) reduces to the
regular eigenvalue problem Hc = εc.

We have a great deal of freedom with regard to choice of basis set, but the
more similar the basis functions φj are to the wave function ψ we want to re-
construct, the fewer basis functions are needed for an accurate result, and thus
the vector c is shorter. This has a beneficial effect on the resulting size of the
matrix problem Eq. (2.41) while at the same time potentially causing the basis
set to be non–orthogonal, and leaving us with a generalized eigenproblem to
solve, rather than a regular one.

Another important choice that can be made with respect to basis sets, is
the use of basis sets with compact support. Effectively, the constituent basis
functions in {φ} are constructed to be localized, such that they are non–zero in
a finite volume of space, and zero outside this local zone. This property will
lead to matrices H and S that are sparse1.

This localization of basis functions leads to the concept of principal layers in
the elongated linear systems we will be studying later on when introducing the
topic of two–probe systems. A set of principal layers is essentially minimally
sized slices through an elongated system where each slice only interacts with
its nearest neighbor slice, as seen in Fig. 2.4.

In real systems, electrons everywhere feel every other electron, irrespec-
tive of distance, however, the use of localized basis functions and the rise of

1A sparse matrix is one in which a large fraction of its elements are zero. This fraction may
vary according to definition, but a good guideline for defining a matrix to be sparse is when it
has enough non–zeros for them to be exploited for significant savings in time or storage under
algorithmic manipulation.

20

2.3 Solving The Kohn–Sham Equations

interaction range

principal layer

ii− 1i− 2 i + 1 i + 2

Figure 2.4: A set of principal layers in an elongated, linear system described with basis
functions with compact support are minimal sized layers arranged in such a way that any
layer i will only interact with its nearest neighbor layers i−1 and i+1 due to the limited range
of the basis functions.

principal layers is an accepted approximation of true behavior, again due to
Kohn’s description of nearsightedness [16, 17]. This effect of nearsightedness
will manifest itself clearly in the structure of the Hamiltonian, which we now
go on to discuss.

2.3.2 Calculating the Hamiltonian

Starting with the generalized eigenproblem Eq. (2.41), and a set of basis func-
tions {φ}, we can easily compute the overlap matrix S by Eq. (2.40). However,
the hamiltonian matrix H itself proves to be more difficult.

Looking at Eq. (2.39), we take Ĥ to be the Kohn–Sham hamiltonian from
Eq. (2.30). The KS hamiltonian is composed of a regular kinetic energy term
T̂ (r) and the effective potential V̂eff. Of these two terms, the effective poten-
tial is the more difficult one to calculate, as it depends on the electron density
n(r) that we are trying to seek (cf. Eq. (2.26)). This problem can be overcome
by solving for the effective potential using a self–consistent procedure. This is
visualized in Fig. 2.5.

The self–consistent procedure in determining the density n(r) that mini-
mizes Eq. (2.23) begins with an initial guess of the density nguess(r). From this
guess, we construct the effective potential V̂eff(r) from equation Eq. (2.26).

The effective potential is then used in the single–electron Schrödinger equa-
tion given in Eq. (2.27), from which we can obtain single–electron wave func-
tion solutions ψi(r). These solutions are then used in Eq. (2.28) in order to
reconstruct the density n′(r) in this non–interacting system. We then compare
this reconstructed density n′(r) to the original input density n(r) and accept it
as a converged density nscf(r) if they are equal to within a given tolerance.

21

2.3 Solving The Kohn–Sham Equations

n = n′

nguess(r) Veff[n] nnew(r)

n′ [Veff]

nscf(r)

density mixer

yes

no

Figure 2.5: The flow of the self–consistent procedure involved in calculating the electron
density n(r).

22

2.3 Solving The Kohn–Sham Equations

On the other hand, if the density n′(r) is not considered to have converged,
a new density is constructed via a density mixing strategy [20] in order to create
a new density nnew(r) that then enters the procedure from the top.

The procedure is then iterated a number of times until either convergence of
the density is attained, or an upper limit of iterations is reached. If convergence
is reached, a density nscf(r) is then returned which is the correct ground state
density for Eq. (2.23).

2.3.3 Calculating the Effective Potential

The effective potential (cf. Eq. (2.29)) consists of three terms, each of which is
described here. The external potential that each electron feels arises due to the
other nuclei, and we sum up the electrostatic potential caused by each nuclei
as

V̂ext(r) =
∑
I

ZI
|r−RI | . (2.42)

This term does not depend on the density, and as such, can be calculated a
single time and reused throughout the self–consistent procedure.

The Coulomb potential, or Hartree potential, is calculated by solving the
Poisson equation

∇2V̂Hartree(r) = −4πn(r), (2.43)

and tells us what the electrostatic potential is in the system given by the av-
erage location of the electrons. It has to be solved with appropriate boundary
conditions, which are dictated by the type of system we are studying. In the
case of isolated molecules, the boundary condition becomes one where the po-
tential asymptotically goes to zero the further we are from the molecule. In
the case of infinite bulk crystal systems, the boundary conditions become pe-
riodic. A third type of system, the two–probe system [21], will be treated in the
next section.

Finally, the exchange–correlation term accounts for all other effects, and
is here represented by a function that depends on the density and its higher
derivatives.

V̂XC(r) = f(n(r),∇n(r),∇2n(r)) (2.44)

The exact form of f will not be described further.

23

2.4 Electron Transport

2.4 Electron Transport

We now have both theory and a computational strategy in how to solve for
the ground state density on a computer. However, we still have no formalism
in describing and treating the case of electron flow that can happen between
materials when experiencing a finite difference in their chemical potentials. We
now introduce some theory and concepts that will help us do so, and set the
stage for the numerical techniques presented later in this thesis.

RCL

Figure 2.6: The two–probe system is composed of three distinct regions: the left (L) semi–
infinite electrode, the right (R) semi–infinite electrode, and a finite central (C) region, that may
contain some portion of the electrodes in order to ease the transition between central region
properties and those of the electrodes.

Ultimately, we will be describing the two–probe system, which is illustrated
in Fig. 2.6. One can imagine two electrodes, or probes, with a certain voltage
potential difference between them, i.e. bias, connecting to a device or molecule
from either side. On the nanoscopic scales for which we are seeking to under-
stand transmission, these electrodes can be well described as being two semi–
infinite electrodes that carry charge to and from the system and have their own
chemical and bias potentials. This two–probe model can fit many situations of
interest where we are interested in the electron transport taking place across a
molecule, device, or an interface.

But why do we need to resort to all this trouble in describing electron trans-
mission? We take our departure from classical physics, which has treated the
phenomenon of electrical behavior on the macroscopic scale since the discov-
ery of electricity.

24

2.4 Electron Transport

2.4.1 Classical Transmission

From classical physics we have that the conductance of a macroscopic conduc-
tor is well–described by Ohm’s law [22]:

G = σ
A

L
. (2.45)

Ohm’s law relates the conductance G to a single material property of the con-
ductor, namely its conductivity σ. Furthermore, two geometric properties of
the conductor affect conductance and they are the conductor’s cross–sectional
area A with respect to the direction of electric current, and its length L in this
direction.

However, as technology has advanced, we find ourselves dealing with con-
ductors of ever decreasing dimensions, such as those encountered in the field
of integrated circuit design, where it is common to discuss conductors mea-
sured in nanometers1, and at scales where individual atoms become resolved.
It has been shown that the Ohmic2 behavior of smaller and smaller conductors
breaks down in the face of quantum mechanical effects experienced at these
length scales. We now present a view of the world at the nanoscopic scale for
the two probe system in Fig. 2.6.

2.4.2 The Landauer–Büttiker Picture

The description that we turn to for describing the behaviour exhibited by tiny
devices or molecules under study, is known as the Landauer–Büttiker (LB)
approach to quantum transport [23, 24].

One of the important concepts in the LB picture of things is that of reser-
voirs. From Fig. 2.6 and [23], we see that we are considering two semi–infinite
electrodes, or reservoirs of electrons, which are joined by a tiny constriction
consisting of a small device or molecule that we wish to study the conductance
of.

The left and right reservoirs can be characterized by their electrochemical
potentials µL and µR, respectively, with a resulting bias potential Vbias being in-
terpreted as their difference and applied across the central device or molecule.
This is visualized in Fig. 2.7.

µL − µR = Vbias (2.46)

1one nanometer = 1 nm = 10−9 m
2by Ohmic, it is implied that the conductor adheres to Ohm’s law given in Eq. (2.45)

25

2.4 Electron Transport

µL

µR

Vbias

Figure 2.7: The Landauer–Büttiker picture of a device or molecule, represented by the red
circle, attached between two semi–infinite reservoirs with differing chemical potentials. The
difference in chemical potentials is illustrated as Vbias.

If there is no net bias potential, the system is said to be in equilibrium, and no
current flows, although the presence of the reservoirs may still affect the elec-
tron density of the central device or molecule. If the electrochemical potentials
are different, such that a net bias voltage exists, then the system is said to be in
non–equilibrium, and a current will flow. The reservoirs, being infinite in size,
will never empty or fill, and thus a steady–state of net electron transport will
take place over the central device or molecule. An important condition in the
LB picture is that there be no inelastic scattering of electrons within the central
region, such as electron–phonon interaction

The reservoirs themselves are said to be in local equilibrium, in the sense
that even though the system as a whole might not be in equilibrium, the reser-
voirs are seen to be in isolation. This is because the current flowing in them is
distributed among a large number of states, and thus the current density itself
is negligible. This is why we can regard the reservoirs as being unchanging
and the simple measure of electrochemical potential for the reservoirs suffices
as a basic property.

Another condition in the LB approach is that the wide, semi–infinite reser-
voirs connect smoothly to the central region, in the sense that electrons can exit
the central region without reflection. Although Landauer insisted that this be
the case when applying his formulas for conductance, the linear response of
the central region to an applied external field is free of this geometric assump-
tion and yields the same expressions for conductance.

26

2.4 Electron Transport

2.4.3 Non–Equilibrium Green’s Function Formalism

The attraction of the non–equilibrium Green’s function (NEGF) formalism for
dealing with the non–equilibrium case is that it is usually much easier to cal-
culate the Green’s function than to solve the eigenvalue problem presented by
the Schrödinger equation. Furthermore, many properties of the system being
studied can still be derived from the Green’s function.

First, we define the Green’s function:

(εS−H)G(ε) = I (2.47)

where the overlap matrix S arises instead of the identity matrix I since we
may have employed a non–orthogonal basis set in the expansion of our wave
functions ψi.

The Green’s function matrix relates how a point disturbance in the system,
being a perturbation of one of the coefficients cµi in the expansion of the wave
function, affects all other coefficients, and thus the whole of the rest of the
system.

There are two types of Green’s functions: the retarded and advanced Green’s
functions, which we name Gr and Ga. The difference lies in where the distur-
bance that the Green’s function represents originates from. In the case where
the point disturbance spreads from a single point in the system until the rest of
the system is affected, then we are dealing with the retarded Green’s function.
If the disturbance originates in the whole rest of the system which then collects
itself at a single point, then we have the advanced Green’s function.

It can be likened to throwing a rock into a pond. The rock hitting the water
will create a point disturbance, which will then spread outwards in the form
of circular waves until the whole rest of the system, i.e. the pond, is affected.
This would be the retarded Green’s function. However, in the mathematical
formulation, an equally correct solution exists, which is that the circular waves
originate from all around in the system, only to converge concentrically on a
single point, much as if time was running backwards. This would correspond
to the advanced Green’s function.

It is the retarded Green’s function which we desire, and in order for the
solution of Eq. (2.47) to yield the correct result, we perturb the energy ε slightly
in order to ensure this:

((ε+ ı̂δ+)S−H)Gr(ε) = I (2.48)
((ε− ı̂δ+)S−H)Ga(ε) = I (2.49)

where δ+ is an infinitesimal positive value, and ı̂ is the complex unit. From
now on, we consider ε to include this perturbation when necessary.

27

2.4 Electron Transport

2.4.4 Making the Infinite Finite

So far, we have been dealing with a system of infinite size. To be exact, we
have been looking at placing a molecule or device in a finite–sized central re-
gion C, and connecting it to two semi–infinite electrodes on either side, where
either electrode extends to infinity on its corresponding side of the device
(cf. Fig. 2.6). This leads to the following infinite hamiltonian,

H =

 HL VLC

VCL HC VCR

VRC HR

 . (2.50)

where

HL =



.

. . . hL33 vL32

vL23 hL22 vL21

vL12 hL11 vL10

vL01 hL00

 , (2.51)

HR =


hR00 vR01

vR10 hR11 vR12

vR21 hR22 vR23

vR32 hR33
. . .

.

 , (2.52)

and generally hLii = hLjj and hRii = hRjj for any i, j ≥ 0 since we regard the
electrodes to be an infinite, repeating bulk structure. Furthermore, vLij = vLkl
and vRij = vRkl for any i = j ± 1 ≥ 0 ∧ k = l ± 1 ≥ 0.

With regard to the coupling of the central region to the reservoirs,

VLC =


vL0c

 , and VCL =


vLc0

 . (2.53)

Likewise with the coupling to the right reservoir, we have

VCR =


vR0c

 , and VRC =


vRc0

 . (2.54)

28

2.5 Computational Approach

In order to solve the infinitely sized matrix equation Eq. (2.41) involving
the infinite hamiltonian Eq. (2.50), we need to transform it, and thus its related
discretized hamiltonian, into a finite system. This is done by transforming the
infinitely extended electrode portions of the matrix H, namely HL and HR,
into an equivalent pair of finite–sized self–energy contribution matrices ΣL and
ΣR for the left and right electrodes, respectively.

Various methods exist in order to do this, but in this thesis, the self–energies
have been developed via two different methodologies : the iterative scheme
[25], and via scattering states [2]1. Not only do these methods yield a finite
hamiltonian for us to consider, they perform this transformation theoretically
without approximation. The self–energies ΣL,R returned are of equal size to
HC , but are only nonzero in the corners, which will be detailed in Sec. 2.6.

Thus our original infinite sized hamiltonian will yield quantitatively and
qualitatively identical results to our finite system:

H ≡ HC + ΣL + ΣR (2.55)

2.5 Computational Approach

The full computational approach we consider in this thesis for the determina-
tion of ground state conditions and transmission in nanoscopic systems is that
of NEGF via a self–consistent field approach [21], much in the same spirit as
described earlier for calculating the effective potential V̂eff(r).

We present a rough program flow in Fig. 2.8, where the algorithm takes as
its starting point the light green boxes at the top, where we deal with deter-
mining the characteristics of the semi–infinite electrodes and their effect on the
central region. From a calculation of the effective potential for the bulk ma-
terial that represent the right and left electrodes, we then proceed to calculate
the self–energies the electrodes represent, and from here we can move towards
the actual self–consistent loop in the NEGF routine.

Here we begin with an educated guess as to what the electron density in
the system is, nguess(r), and calculate the elements of the hamiltonian matrix
Hij . This step implicitly also involves calculating the effective potential.

Once we have the hamiltonian H, we calculate the (retarded) Green’s func-
tion G(ε) for a certain energy ε that may or may not have the imaginary pertur-
bation as detailed in Eq. (2.49). From this Green’s function matrix, we can then
construct a new density based on n′(G), which we can compare to our original

1Included as appendix B.

29

2.5 Computational Approach

nnew(r)

nscf(r)

density mixer

yes

no

Hij

Gij(ε)

n′(G)

nguess(r)

GL,R
0 → ΣL,R

V̂ L,R
eff

n ≈ n′

Figure 2.8: The flow of the self–consistent procedure involved in calculating the current over
a two–probe system out of equilibrium.

30

2.6 The Block Tridiagonal Matrix

input density. If it is the same to within a given tolerance, we terminate with
a converged density nscf(r), otherwise a mixing strategy is called on in order
to construct a new density that should bring us closer to the true ground state
density.

The important fact to note from Fig. 2.8 is that the step in calculating the
Green’s function G has traditionally been the step involving the highest com-
plexity, being cubic in the order of electrons in the system. Furthermore, it is
also only necessary to determine the portion of G for which the overlap ma-
trix S is nonzero. This leads us to only need to determine G for a certain block
tridiagonal structure described next in Sec. 2.6. Improving this step, which in-
volves the inversion of a large matrix of a particular structure, is the goal of
this thesis.

Another characteristic to note is that a lot of weak parallelism is able to
be exploited from the program flow of NEGF. Typically, to construct the new
density, a large number of Green’s function matrices need to be evaluated for
a range of complex energy points [26] which can be done independently. Fur-
thermore, the calculation of the hamiltonian matrix elements also lends itself
to parallelization. This thesis focuses on the harder problem of parallelizing
the inversion of the matrix that leads to the Green’s function matrix, G, po-
tentially multiplying the number of processes that can effectively work on a
single problem.

2.6 The Block Tridiagonal Matrix

As it has been shown in the previous section, the Green’s function matrix G

is a central value in the computational DFT procedure. Furthermore, being
involved in the most algorithmically time consuming steps, with respect to
algorithmic complexity, it is of great interest to apply the steps using efficient
algorithms, both serial and in parallel.

We focus on the following block tridiagonal matrix

A = εS−HC −ΣL −ΣR (2.56)

where the Green’s function matrix we seek is G = A−1.

31

2.6 The Block Tridiagonal Matrix

2.6.1 Structure

The structure of A, subdivided into its commensurate sub–block element ma-
trices is resolved as

A =



a11 a12

a21 a22 a23

a32 a33 a34

.
an−1,n−2 an−1,n−1 an−1,n

an,n−1 ann


, . (2.57)

where we wish to note the notation of lower case bold letters aij denoting ma-
trices as elements of their upper case bold letter A block matrix. Furthermore,
the (i, j) indexing of these sub–block elements will correspond to their location
with regards to the rows and columns of block matrices in A

The self energy matrices ΣL,R, as previously mentioned, are only nonzero
in their corners, and usually overlap the locations corresponding to a11 and
ann, respectively:

ΣL =


σL11

 ΣR =


σRnn

 . (2.58)

The reason this is the case is usually because the central region of the two
probe system may incorporate several principal layers of the electrodes as a
buffer to ease the transition of the differing electronic state of a device in the
middle and the infinite bulk crystals surrounding it. The self energy matrices
σL11 and σRnn themselves correspond to the size of hL00 and hR00, respectively, and
represent the effect of the semi–infinite electrodes exactly [22].

2.6.2 Properties

Based on the properties of the overlap matrix S, the hamiltonian matrix H, the
self–energy matrices ΣL,R, and the energy ε, we can perhaps ascertain some
properties of A. The hamiltonian H (cf. Eq. (2.39)) is known to be both real
and Hermitian, so we have

HC =
[
HC
]† (2.59)

HC =
[
HC
]T (2.60)

32

2.6 The Block Tridiagonal Matrix

Figure 2.9: The block tridiagonal structures A involved in the calculation for an Au(111)
electrode Di–thiol benzene (DTB) system [27] on the left and an Au(111) electrode Aviram–
Ratner (AR) diode system [28] on the right. The block tridiagonal matrix for the DTB system is
a 5×5 block matrix with 928×928 scalar elements, while for AR on the right we have a 10×10
block system with 1295×1295 scalar elements.

where HT denotes transposition, and where H† denotes both transposition and
complex conjugation of the elements in H. The overlap matrix S (cf. Eq. (2.40))
also obeys these properties, and

S = S† (2.61)
S = ST (2.62)

The self–energies ΣL and ΣR are mostly all–zero, except for the sub–blocks
σL11 and σRnn. These blocks can generally be assumed to be complex, and more-
over are only Hermitian under certain conditions1. In the case of modeling
electron–phonon interactions or photonic effects, the self–energies may be non-
zero beyond their corners as dictated by Eq. (2.58), but in this thesis we only
look to model the effects of coupling of the central region with the semi–infinite
electrodes. Ultimately, we assume the nontrivial portion of the self–energies to
be generally dense in structure and complex.

Finally, the combination of these various matrices in constructing A also
depends on ε. The chosen energy value can vary from being real, to being
slightly perturbed as in Eq. (2.49), to being fully complex when following a

1A non–Hermitian self–energy can be generated through the use of a technique known as
k–point sampling.

33

2.7 Mathematical Notation

complex contour integral in the determination of a new density via the NEGF
program flow.

Since ε may be real or complex, we have developed the algorithms in this
thesis focusing on handling the most general case of a fully complex non–
symmetric A with dense square blocks aij on the block tridiagonal. Special
cases can arise for when A are symmetric and positive definite and in that
case, operations involving the LU factorization of blocks can be substituted
with Cholesky decompositions. This has not been implemented though, due
to the easily varying nature of A.

2.7 Mathematical Notation

In order to develop and document the algorithms and theory presented in this
paper, a series of notational conveniences have been adopted in order to do so.
It can be debated what notation would be more suited to convey the meaning
of what is written, but a notation that was most consistent with the published
work [1] and eventually [4] was chosen.

2.7.1 The Block Matrix Class

This chapter will introduce a series of algorithms on which the input is as-
sumed to be understood as a block tridiagonal matrix A (cf. Eq. (2.57)). The
block tridiagonal matrix A can be understood to belong to a class of matri-
ces such as Cr,s, but in order to specify the class of matrices which have block
structure, we define Bm,n to represent the matrices comprised of m× n blocks,
where all the constituent blocks have the correct sizes in terms of their neigh-
bor blocks, i.e. all blocks in a row have the same height and all blocks in a
column have the same width. Furthermore, each diagonal block is square, i.e.
belongs to Ck,k for some integer k > 0.

Thus a general matrix composed of r × s scalar elements can be thought of
as a block matrix of m× n matrix blocks,

Bm,n ≡ Cr,s, (2.63)

where 0 < m ≤ r and 0 < n ≤ s and keeping in mind that all diagonal blocks
are square.

34

2.7 Mathematical Notation

2.7.2 Extracting a Block Tridiagonal Part

A useful notation we wish to introduce is one that enables the extraction of the
block tridiagonal part of an arbitrary matrix B with respect to a given block
tridiagonal structure, A, into a block tridiagonal matrix C. This is written as:

C = TridA {B} (2.64)

This is only possible under certain conditions, namely that A,B ∈ Rr,s. This
leads to C ∈ Rr,s and that if A ∈ Bm,n, then C ∈ Bm,n. If B has any nonzero
elements outside the block tridiagonal as defined by A, they are lost.

Furthermore, for the sake of brevity in the specification of the algorithms in
this chapter, we group sequential arguments that are block tridiagonal extrac-
tions in the following manner:

TridA {B} ,TridA {C} , . . . ,TridA {Z} = TridA {B,C, . . . ,Z} (2.65)

2.7.3 Extracting a Block Diagonal Part

Similar to notation of extracting the block tridiagonal part of a block matrix,
we introduce notation that only extracts the block diagonal. This is written as:

C = DiagA {B} (2.66)

Again, this only possible under certain conditions, namely that A,B ∈ Rr,s.
This leads to C ∈ Rr,s and that if A ∈ Bm,n, then C ∈ Bm,n. If B has any
nonzero elements outside the block diagonal as defined by A, they are lost.

2.7.4 Extracting a Sub–block

Another useful notation we introduce enables us to extract a sub–block of a
known block matrix structure. We denote this by [A]ij , by which we mean
the matrix block on the (i, j)th block position in A’s block structure. From
Eq. (2.57), we know this to be

[A]ij = aij. (2.67)

This, however, extends to blocks off the block tridiagonal positions, which in
A are generally all–zero matrices, but for other matrices may have nontrivial
content, e.g. in G = A−1.

Also, we assume generally that the lower case bold letter refers to a block
element from its upper case block matrix counterpart, e.g. the block matrix

35

2.7 Mathematical Notation

element a to the block matrix A, the block matrix element g to the block matrix
G, etc.

2.7.5 Augmented Matrix

The algorithms developed in this paper are explained through the concept of
matrix augmentation. Thus in order to obtain the inverse of A, we augment it
with the identity matrix, I, obtaining

[
A I

]
=


a11 a12 i11

a21 a22 a23 i22

a32 a33 a34 i33

.

 , (2.68)

where each diagonal block of the identity matrix, iii has the same square block
size of the corresponding block aii of the matrix A, and are themselves identity
matrices. Then by a series of row operations that change the right hand side to
the identity matrix I, we can read the inverse G = A−1 on the left.[

A I
]⇐⇒row

ops

[
I A−1

]
=
[

I G
]

(2.69)

2.7.6 Operation Count

In order to analyze the complexity of the algorithms we develop, we are forced
to identify some basic operations we perform on our block tridiagonal ma-
trices. In this paper, we have identified and counted three types of matrix–
matrix operations, namely LU factorization, matrix–matrix multiplication and
matrix–matrix addition. These operations are represented by op(LU), op(×)

and op(+), respectively.

2.7.7 Block Elements vs. Scalar Elements

As a consequence of our work dealing with the class of block matrices Bm,n

we defined earlier, we will be dealing explicitly more often with operations on
the matrix blocks that make up these matrices as a whole than with the basic
operations that involve the scalar values making up these matrices.

Thus throughout the paper, we will imply that we are dealing with block
Gaussian elimination and with the basic matrix–matrix operations of addition,
multiplication as well as LU factorization of matrix blocks, rather than the scalar

36

2.8 Pseudocode Notation

operations and elements understood when dealing with regular matrices, un-
less expressly noted. This extends to row operations on block matrices involv-
ing the updating of whole matrices at a time, rather than on rows of single
scalars as usually expected when confronted with matrix row operations on
regular matrices in Rr,s.

2.8 Pseudocode Notation

In order to document the algorithms developed in this thesis, a customized
pseudo code was used that should mostly be self explanatory to read and un-
derstand. The pseudocode is not strict in its specification, and its purpose is
not to provide stringent proof of their behavior, but more for the purposes of
illustrating the algorithms which are described in this thesis. This short section
will attempt to clarify the notation used in the pseudocode.

2.8.1 Calling and Arguments

Algorithms themselves are indicated by the small cap font : ALGORITHM.
They are called with a certain number of arguments, for which any special
requirements are given by an initial Require statement. Any special require-
ments for the output or return state of the algorithm is given by an Ensure
statement following a possible require statement and before the code body of
the algorithm.

2.8.2 Assignment

Assignment of values from one variable to another is done using the assign-
ment symbol←. For example, we can write

aij ← aij + aiiaij (2.70)

where the original block matrix aij is replaced with the value represented by
the expression on the right hand side of the arrow. In this case, we have aij
being summed into by the product aiiaij .

2.8.3 Arrays

One dimensional arrays are specified with curly braces, and since we only use
them to store indices, we use the lower case symbol i for their identification.

37

2.8 Pseudocode Notation

An example array would be

i = {i1, i2, . . . , in}, (2.71)

where we show an array of length n composed of integers, which will be the
only type of content our one dimensional index arrays will contain. Append-
ing an integer to the end of the array is done like this:

i x in+1 = {i1, i2, . . . , in, in+1}. (2.72)

Obtaining the length of an array can be done using a length operator:

n = length of i. (2.73)

Extracting an element of an array at index j is done using bracket notation:

ij = i[j]. (2.74)

Finally, obtaining the last element of an array can be done with the end key-
word, as known from Matlab:

in = i[end]. (2.75)

2.8.4 Loops

We employ two kinds of loops in our pseudocode, namely for loops and while
loops. The while loops are given by the keyword while followed by a test
condition and will iterate until the test condition evaluates to be false. The
for loops are given by the keyword for and are followed by initialization of the
iterating variable, the keywords down to or up to , which indicate our iterating
variable to be decrementing or incrementing, and finally the value for which
the iterating variable is expected to terminate on reaching (inclusive). In this
thesis, all increments and decrements in this fashion have a magnitude of 1. In
relation to the test conditions, we define the boolean constants true and false.

2.8.5 Returning Values

Values are returned from functions via the keyword return followed by the
value or list of values to return.

38

2.8 Pseudocode Notation

2.8.6 Process Count and Identification

Once our algorithms are called in a parallel environment, where multiple pro-
cesses may be present, it will become necessary to have methods allowing us
to identify each process and to know how many processes there are available.
Thus, in order to obtain the number of processes available, we have the value
P. To determine the calling process’ id, we use the keyword myPID.

In the pseudocode as well as implementation, use the fact that the processes
are enumerated from 0 and upwards, such that for an environment with p

processes, we have process ids being 0, 1, . . . , p− 1, which can alternatively be
labeled p0, p1, . . . , pP−1.

2.8.7 Parallel Communication

With respect to communication between processes, we specify blocking send
and receive routines send and recv. They are blocking in the sense that they
first return when the recipient of the communication has acknowledged re-
ceiving the transmitted data, thus effectively blocking execution on the calling
process until the transaction is complete.

Non–blocking versions are also specified, named isend and irecv, that re-
turn a boolean request value requesttag with some identifying tag. This value
evaluates to true if the recipient has received the data, and false otherwise.
These calls return immediately, regardless of whether or not the recipient of
the transmission has received and acknowledged any data.

In connection with the non–blocking transmissions, we specify a call wait
for requesttag which will pause execution until the transaction represented by
requesttag is complete.

2.8.8 Ownership and Distribution

With parallelism comes distribution of memory among the processors, and as
we will be distributing ownership of the block tridiagonal matrix A and its
related LU factors L, U and Green’s function G in the same manner, each pro-
cess will need to know its domain of ownership. Due to the horizontal stripe
characteristic our implemented ownership regions will exhibit, each process
may need to only know the indices of the upper most and lower most rows it
owns. These are accessible via the values top and bot, respectively.

We also enable the ability to explicitly determine if the calling process owns
a certain row i by calling row i is mine, which returns true if the ith row is

39

2.8 Pseudocode Notation

owned by the calling process, and false otherwise. We can negate this expres-
sion by calling row i is not mine.

Another ownership issue we address in the pseudocode is a method of
determining on which process a certain block row of a block matrix resides.
This is accomplished by calling owner of row i, in order to determine what
process owns the ith row. Similarly, we have owner of aij , that enables us to
determine what process owns the block aij of a distributed block matrix A.

As data is distributed and occasionally needs sharing among processes, a
routine is facilitated in order to determine if a certain process owns a certain
nontrivial block of a block matrix that it might need for further calculations.
This is provided by the aij exists call, that returns a boolean value for true if
aij exists on the calling process, and false otherwise.

2.8.9 Inverse Blocks

A number of matrix blocks are listed in the pseudocode as being explicit in-
verses of some other block, e.g. gkk = a−1

kk or are involved with multiplica-
tion with these inverses. The calculation of these “inverses” happens through
partial pivoted LU factorization as provided by standard libraries such as LA-
PACK1. These block inverses are not calculated explicitly, and are preserved as
an LU decomposition

a = lu. (2.76)

When we need the result x = a−1b of a multiplication of an inverse block with
another block, we have (omitting pivoting)

ax = b

lux = b

ux = l−1b

x = u−1l−1b (2.77)

which can be handled by e.g. the LAPACK routine ZGESV, that handles calls
to ZGETRF for LU factorization of a, ZGETRS for performing the triangular
back solves via the BLAS2 routine ZTRSM, and a column swapping routine in
order to account for pivoting. The overall cost of this is counted as a single LU
factorization and what accounts as a single matrix multiplication. The routine

1Available from http://netlib.org/lapack.
2Available from http://netlib.org/blas.

40

2.8 Pseudocode Notation

ZGESV comes in handy for the calculation of certain upper LU factors for A

and an expression may be

ax = b

aiiuij = −aij

uij = −a−1
ii aij (2.78)

however, in the case of lower LU factors

xa = b

ljiaii = −aji

lji = −ajia
−1
ii (2.79)

LAPACK does not provide a routine for handling this reverse case, and a re-
placement was coded in order to handle this, using the factorization routine
ZGETRF, BLAS’s own ZTRSM triangular back solve routines appropriately,
as well as a row permutation routine to account for pivoting. As for the case
when we need to determine the explicit inverse, LAPACK provides the routine
ZGETRI that is equivalent to solving Eq. (2.77) where b = i.

Finally, as the value a−1
ii may need sharing among processes during parallel

computation, either the pivoting array and LU factorization may be sent, or
the original aii may be sent, and then the LU factorization is performed as
needed on either involved process. Ideally the LU factorization may be sent,
but sending just aii may prove itself easier to code for.

41

2.8 Pseudocode Notation

42

Chapter 3

Serial Algorithms

2 + 2 = 5
(for extremely large values of 2)

Per Christian Hansen’s t-shirt

3.1 Block Gaussian Elimination

One of the classical methods for solving a system of linear equations, and un-
der which we can determine the inverse of a matrix, is the method known as
Gaussian elimination. Where the original Gaussian elimination algorithm is
designed to work on general nonsingular matrices A of no particular internal
structure having scalars aij as elements, we adapt it to our block tridiagonal
problem A from Eq. (2.57) by converting all scalars in the algorithm to matrix
blocks aij , and changing operations such as division into ones incorporating
the inversion of matrix blocks. Furthermore, as the matrix A has no block
elements outside the block tridiagonal, we can take this into account for an
improved Gaussian elimination algorithm.

3.1.1 Description

Block Gaussian elimination, in this paper, comes in two varieties. A variety
that proceed downwards, eliminating the subdiagonal elements of A, and a
variety that proceeds upwards, eliminating the superdiagonal elements of A.
We first begin by describing the downwards eliminating variety, which is char-

43

3.1 Block Gaussian Elimination

acterized with the superscript L since the elimination procedure proceeds from
the upper left and down towards the lower right.

A block Gaussian elimination step is performed on the matrix given in
Eq. (2.68) by multiplying the first block row by the matrix cL1 = −a21a

−1
11 and

subsequently adding it to the second block row. This produces a zero block in
the (2, 1) position:

a11 a12 i11

a21 + cL1 a11 a22 + cL1 a12 a23 cL1 i11 i22

a32 a33 a34 i33

.

 =


a11 a12 i11

0 a22 − a21a
−1
11 a12 a23 a21a

−1
11 i11 i22

a32 a33 a34 i33

.

.
Next, a block Gaussian elimination step is performed by multiplying the

second row by the factor cL2 = −a32(a22 − a21a
−1
11 a12)−1 and then adding it to

the third row. This produces a zero block in the (3, 2) position. A recursive
routine that will complete a full downward block Gaussian elimination is now
defined:

dL11 = a11

dL22 = a22 − a21(dL11)−1a12

dL33 = a33 − a32(dL22)−1a23

...
dLii = aii − ai,i−1(dLi−1,i−1)−1ai−1,i

...
dLnn = ann − an,n−1(dLn−1,n−1)−1an−1,n

cL1 = −a21(dL11)−1

cL2 = −a32(dL22)−1

cL3 = −a43(dL33)−1

...
cLi = −ai+1,i(d

L
ii)
−1

...
cLn−1 = −an,n−1(dLn−1,n−1)−1.

The matrices dLii are the diagonal blocks of the resulting matrix on the left. It
can be seen that each diagonal block is calculated from the following relation:

dLii = aii + cLi−1ai−1,i, where i = 2, 3, . . . , n and dL11 = a11, (3.1)

and each row multiplication factor is:

cLi = −ai+1,i

(
dLii
)−1

, where i = 1, 2, . . . , n− 1. (3.2)

44

3.1 Block Gaussian Elimination

The similar upward procedure is characterized with the superscript R since
the elimination procedure moves from the lower right and up towards the up-
per left of A. The derivation of the upwards recursive expressions follows that
of the downwards elimination. Each diagonal block can be calculated from the
following relation:

dRii = aii + cRi+1ai+1,i, where i = n− 1, . . . , 2, 1 and dRnn = ann, (3.3)

and each row multiplication factor is:

cRi = −ai−1,i

(
dRii
)−1

, where i = n, . . . , 3, 2. (3.4)

After a complete downward or upward block Gaussian elimination sweep,
the augmented matrices, named [DL | JL] and [DR | JR] respectively, will look
as follows where the matrices JL and JR are lower and upper block triangular,
respectively:

[DL | JL] =


dL11 a12 i11

0 dL22 a23 cL1 i11 i22

0 dL33 a34 cL2,1i11 cL2 i22 i33

.
... . . .

 , (3.5)

[DR | JR] =


dR11 0 i11 cR2 i22 cR2,3i33 . . .

a21 dR22 0 i22 cR3 i33 . . .

a32 dR33 0 i33 . . .
.

 . (3.6)

We can see that DL and DR are the block row echelon forms of A after a full
downward or upward block Gaussian elimination sweep, respectively. Fur-
thermore, the following notation was introduced:

cRi cRi+1 . . . c
R
j = cRi,i+1,...,j where i < j

cLi cLi−1 . . . c
L
j = cLi,i−1,...,j where i > j

(3.7)

In this thesis, we will present figures that illustrate the execution of var-
ious algorithms, in order to visualize the work the algorithms perform. For
these figures, we present in Fig. 3.1 a legend that will hold generally, unless
otherwise explicitly redefined in a given figure. The first such figure is given
in Fig. 3.2 which showcases the downwards Gaussian elimination sweep re-
cently discussed in two forms: a full form as is the case for what has just been
discussed, and a block tridiagonal form which will be discussed later.

45

3.1 Block Gaussian Elimination

downwards GE (new/updated/inactive)

upwards GE (new/updated/inactive)

inverse (new/updated/inactive)

eliminated block

untouched block

deleted/disregarded blocks

identity matrix

−bii = −aii + dL
ii + dR

ii (updated/inactive)

Figure 3.1: Legend for the types of matrix blocks present in the execution diagrams of the
algorithms in this thesis, unless otherwise explicitly provided. The red blocks concern a matrix
B, presented in later in Sec. 3.2.

Assuming we have performed a full downwards elimination ending with
Eq. (3.5), we then proceed to back solve and start constructing the inverse G =

A−1. We begin with the block row echelon form Eq. (3.5) written out to include
the lower rows,

[DL | JL] =
dL11 a12 i11

0 dL22 a23 cL1 i22

.
... . . .

0 dLn−1,n−1 an−1,n cLn−2,...,1 cLn−2,...,2 · · · in−1,n−1

0 dLnn cLn−1,...,1 cLn−1,...,2 · · · cLn−1 inn

 ,

(3.8)

and where multiplication by the identity matrices iii in JL has been omitted.
We can then immediately solve for the lower block row of the Green’s func-
tion matrix G by inverting dLnn and multiplying it across the lower row in the
augmented matrix Eq. (3.8) yielding:

dL11 a12 i11

0 dL22 a23 cL1 i22

.
... . . .

0 dLn−1,n−1 an−1,n cLn−2,...,1 cLn−2,...,2 · · · in−1,n−1

0 inn gn1 gn2 · · · gn,n−1 gnn

 ,

(3.9)

46

3.1 Block Gaussian Elimination

DL JL

A I

execution order

I

TridA

{
JL

}
Figure 3.2: This figure presents the effect of a downwards Gaussian elimination sweep on
an example 7×7 block tridiagonal matrix A. The middle column shows the matrix JL during
a regular downwards Gaussian elimination sweep. A tridiagonal form is shown on the right
column, where we omit calculating any elements outside the block tridiagonal.

47

3.1 Block Gaussian Elimination

where

gni = (dLnn)−1[JL]ni =

{
(dLnn)−1cLn−1,...,i for 0 < i < n

(dLnn)−1 for i = n
(3.10)

In order to determine the second lowest block row of G, we first eliminate
the superdiagonal element an−1,n from the left hand side of the augmented
matrix and update the right hand side elements via

[JL]n−1,i − an−1,n(dLnn)−1[JL]ni ≡ [JL]n−1,i − an−1,ngni, (3.11)

where i = 1, . . . , n and subsequently multiplying across by the inverse of the
corresponding unmodified1 diagonal block on the left hand side of the aug-
mented matrix, yielding the (n− 1)th block row of the Green’s function matrix
G:

gn−1,i = (dLn−1,n−1)−1
(
[JL]n−1,i − an−1,ngni

)
(3.12)

We can then start a process of upwards row updates in the augmented matrix
terminating on the top row, yielding for each row

gn−1,i = (dLn−1,n−1)−1
(
[JL]n−1,i − an−1,ngni

)
,

gn−2,i = (dLn−2,n−2)−1
(
[JL]n−2,i − an−2,n−1gn−1,i

)
,

...
gji = (dLjj)

−1
(
[JL]ji − aj,j+1gj+1,i

)
,

...
g1i = (dL11)−1

(
[JL]1i − a12g2i

)
,

where i = 1, . . . , n, finally leaving us with the augmented matrix [I|G], from
which we can read the full inverse on the right hand side. We can also recog-
nize from e.g. Eq. (3.8) that [JL]ij = 0ij for j > i, and thus Eq. (3.12) can be
simplified for these cases such that

gij = (dLii)
−1
(
[JL]ij − ai,i+1gi+1,j

)
, for i > j

gij = −(dLii)
−1ai,i+1gi+1,j, for i ≤ j

(3.13)

for i = n− 1, n− 2, . . . , 1 and thus we save a trivial matrix addition operation.
The back solve process is visualized in Fig. 3.3, for the same example 7×7

block tridiagonal A treated in the figure for downwards Gaussian elimination.

1The value at [DL]n−1,n−1 is unaltered due to DL being upper block triangular as seen in
Eq. (3.8), and thus [DL]n,n−1 = 0n,n−1 means no modification is made to the diagonal block
above it.

48

3.1 Block Gaussian Elimination

DL JL

I G

execution order

Figure 3.3: Visualizing the back solving process for calculating the full inverse G of a block
tridiagonal matrix A with 7 diagonal blocks.

49

3.1 Block Gaussian Elimination

3.1.2 Algorithm

We now proceed to describe the process of determining G in an algorithmic
framework, where first we concentrate on developing a set of algorithms that
have the task of determining the full block matrix G. Once this is done, we look
to improve the performance of these algorithms by employing the fact that we
only desire the block tridiagonal part of G, namely TridA {G} and proceed to
describe the modified algorithms for this optimization.

3.1.2.1 The Full Inverse

The first step in determining the full inverse is to follow a series of block Gaus-
sian elimination steps on A terminating with the echelon form DL in Eq. (3.8),
which we perform by calling Alg. (3.1) GAUSSELIMINATEFULL with proper
arguments.

When determining G via Gaussian elimination, we only need to perform a
single downwards block elimination sweep from the top of A to the bottom.
However, we provide a generalized algorithm that can handle sweeping be-
tween any two distinct rows in A and in either a downwards or an upwards
fashion, for the sake of reusability further on. Thus this algorithm takes as ar-
guments not only the block tridiagonal structure A, but also a starting row kfrom

and a finishing row kto. It then proceeds to perform a series of row operations
that eliminate the subdiagonal blocks akfrom+1,kfrom , akfrom+2,kfrom+1, . . . , akto,kto−1 in
the case of downwards1 Gaussian elimination, or the superdiagonal blocks
akfrom−1,kfrom , akfrom−2,kfrom−1, . . . , akto,kto+1 in the case of upwards2 Gaussian elim-
ination.

The result of GAUSSELIMINATEFULL are the pair of matrices DL,R
kfrom→kto

and
JL,Rkfrom→kto

that correspond to the block row operations undertaken by block
Gaussian elimination from block row kfrom to block row kto. By the super-
script L,R, we mean that the algorithm can deliver matrices that correspond
to either downwards elimination from upper left to lower right, L, or upwards
elimination from lower left to upper right, R, depending on kfrom and kto. In the
special case of kfrom = 1 and kto = n, we obtain DL and JL as in Eq. (3.5), while
for kfrom = n and kto = 1, we get DR and JR as in Eq. (3.6).

Looking at Alg. (3.1) GAUSSELIMINATEFULL, we see how a downward
sweep is handled when the case on line 1 evaluates to be true. We initialize
the matrix DL by line 2, and we proceed to iterate for the remaining rows by

1In downwards elimination we have kfrom < kto.
2In upwards elimination we have kfrom > kto.

50

3.1 Block Gaussian Elimination

the for loop on line 3. The execution of line 4 determines all the subdiagonal
blocks in JL, while the for loop on line 5 takes care of determining all remain-
ing subdiagonal blocks on the current row. The last statement in the for loop
running over the remaining rows in A is on line 6, which updates the diagonal
block in DL for the current row in the iteration. The upwards sweep handled
by the case on line 9 is a mirror image of the downwards sweep, and is not
discussed further.

Algorithm 3.1 GAUSSELIMINATEFULL(A, kfrom, kto)

Require: A ∈ Bn,n, kfrom ∈ N, kto ∈ N, 0 < kfrom ≤ n, 0 < kto ≤ n, kfrom 6= kto

1: if kfrom < kto then downwards elimination
2: dLkfrom,kfrom

← akfrom,kfrom initialize
3: for i← kfrom up to kto − 1 do sweep down
4: cLi ← −ai+1,i(d

L
ii)
−1 1op(LU), 1op(×)

5: for j ← i− 1 down to kfrom do only for full inversion
6: cLi,...,j ← cLi cLi−1,...,j 1op(×)
7: dLi+1,i+1 ← ai+1,i+1 + cLi ai,i+1 1op(×), 1op(+)
8: return DL

kfrom→kto
,JLkfrom→kto

9: else upwards elimination
10: dRkfrom,kfrom

← akfrom,kfrom initialize
11: for i← kfrom down to kto + 1 do sweep up
12: cRi ← −ai−1,i(d

R
ii)
−1 1op(LU), 1op(×)

13: for j ← kto up to i+ 1 do only for full inversion
14: cRi,...,j ← cRi cRi+1,...,j 1op(×)
15: dRi−1,i−1 ← ai−1,i−1 + cRi ai,i−1 1op(×), 1op(+)
16: return DR

kfrom→kto
,JRkfrom→kto

Following a full Gaussian elimination sweep, we need to perform a back
solve sweep in order to produce the desired inverse G. This is done by the
Alg. (3.2) BACKSOLVEFULL that assumes as input arguments the output of a
full downwards block Gaussian elimination sweep resulting in Eq. (3.8).

The algorithm initializes by calculating the block gnn of the inverse on
line 1, and uses the for loop on line 2 to determine the entire bottom block
row of the inverse G. With this initialization, the algorithm loops over the
remaining rows in an upwards back solve sweep on line 4, where sub diago-
nal and diagonal blocks of the inverse are determined by the loop on line 5,
and where super diagonal blocks of the inverse are determined by the loop on
line 7, where we can save a trivial matrix addition operation.

The algorithm for determining the full inverse G is detailed in Alg. (3.3)

51

3.1 Block Gaussian Elimination

Algorithm 3.2 BACKSOLVEFULL(A,DL,JL)

Require: A, DL, JL ∈ Bn,n

Ensure: G = A−1 ∈ Bn,n

1: gnn ← (dLnn)−1 initialize: 1op(LU), 1op(×)
2: for j ← 1 up to n− 1 do determine the nth row
3: gnj ← gnn[JL]nj 1op(×)
4: for i← n− 1 down to 1 do eliminate upwards
5: for j ← 1 up to i do sub diagonals and diagonals
6: gij ← (dLii)

−1
(
[JL]ij − ai,i+1gi+1,j

)
1op(+), 2op(×)

7: for j ← i+ 1 up to n do super diagonals
8: gij ← −(dLii)

−1ai,i+1gi+1,j 2op(×)
9: return G

GEINVERSEFULL, and takes care of calling GAUSSELIMINATEFULL on line 1
to perform a full, downwards Gaussian elimination sweep followed by BACK-
SOLVEFULL on line 2 for a full back solve sweep in order to construct G.

Algorithm 3.3 GEINVERSEFULL(A)

Require: A ∈ Bn,n

Ensure: G = A−1 ∈ Bn,n

1: DL,JL ← GAUSSELIMINATEFULL(A, 1, n) full downwards elimination sweep
2: G← BACKSOLVEFULL(A,DL,JL) back–solve sweep
3: return G

3.1.2.2 The Block Tridiagonal Inverse

We are actually only interested in obtaining the same block tridiagonal struc-
ture of G that A has, i.e. we want TridA {G}. This motivates us to improve
Alg. (3.2) BACKSOLVEFULL and Alg. (3.3) GEINVERSEFULL to take advantage
of this fact, and we thus present an improved back solve in Alg. (3.5) BACK-
SOLVETRI.

This leads to the improved algorithm Alg. (3.6) GEINVERSETRI that calls
both GAUSSELIMINATEFULL and BACKSOLVETRI in sequence in order to give
us TridA {G} for a given block tridiagonal matrix A.

The algorithm Alg. (3.1) GAUSSELIMINATEFULL cannot be improved upon
in this case, as the improved Alg. (3.5) BACKSOLVETRI still needs the same full
output JL as delivered by GAUSSELIMINATEFULL. We do, however, present an
algorithm in Alg. (3.4) GAUSSELIMINATETRI that omits calculating elements of

52

3.1 Block Gaussian Elimination

J off the tridiagonal. This routine will be of use in the sweep approach based
algorithm introduced later in Sec. 3.2, but is included here due to its close rela-
tionship to GAUSSELIMINATEFULL.

The main difference between the optimized GAUSSELIMINATETRI and its
full version GAUSSELIMINATEFULL lies in the omission of the for loop on line 5
of GAUSSELIMINATEFULL that takes care of determining elements below the
block sub diagonal of JL. This, as we will see later, leads to a substantial dif-
ference in the computational complexity of the algorithm over GAUSSELIMI-
NATEFULL.

Algorithm 3.4 GAUSSELIMINATETRI(A, kfrom, kto)

Require: A ∈ Bn,n, kfrom ∈ N, kto ∈ N, 0 < kfrom ≤ n, 0 < kto ≤ n, kfrom 6= kto

1: if kfrom < kto then downwards elimination
2: dLkfrom,kfrom

← akfrom,kfrom initialize
3: for i← kfrom up to kto − 1 do sweep down
4: cLi ← −ai+1,i(d

L
ii)
−1 1op(LU), 1op(×)

5: dLi+1,i+1 ← ai+1,i+1 + cLi ai,i+1 1op(+), 1op(×)
6: return DL

kfrom→kto
,TridA

{
JLkfrom→kto

}
7: else upwards elimination
8: dRkfrom,kfrom

← akfrom,kfrom initialize
9: for i← kfrom down to kto + 1 do sweep up

10: cRi ← −ai−1,i(d
R
ii)
−1 1op(LU), 1op(×)

11: dRi−1,i−1 ← ai−1,i−1 + cRi ai,i−1 1op(+), 1op(×)
12: return DR

kfrom→kto
,TridA

{
JRkfrom→kto

}

The difference between BACKSOLVETRI and BACKSOLVEFULL also lies in
the replacement of a for loop, namely line 7 in BACKSOLVEFULL, with the
single statement on line 7 that ensures we only calculate the super diagonal
blocks. This, however, does not lead to the same sort of computational com-
plexity change that GAUSSELIMINATETRI exhibits, since the for loop on line 5
remains. The optimized back solve process can be seen in Fig. 3.4 where we
can see the necessity of calculating the entire subdiagonal portion of G, despite
only seeking the block tridiagonal.

Finally, Alg. (3.6) GEINVERSETRI has no true difference over the structure
of the unoptimized GEINVERSEFULL, other than taking care to call the opti-
mized version of the back solve routine.

53

3.1 Block Gaussian Elimination

TridA {G}

DL JL

I

execution order

Figure 3.4: Visualizing the back solving process for calculating the block tridiagonal portion
of the inverse TridA {G} of a block tridiagonal matrix A with 7 diagonal blocks.

54

3.1 Block Gaussian Elimination

Algorithm 3.5 BACKSOLVETRI(A,DL,JL)

Require: A,DL,JL ∈ Bn,n

Ensure: TridA {G} = TridA {A−1} ∈ Bn,n

1: gnn ← (dLnn)−1 initialize: 1op(LU), 1op(×)
2: for j ← 1 up to n− 1 do determine the nth row
3: gnj ← gnn[JL]nj 1op(×)
4: for i← n− 1 down to 1 do eliminate upwards
5: for j ← 1 up to i do propagate sub diagonals upwards
6: gij ← (dLii)

−1
(
[JL]ij − ai,i+1gi+1,j

)
1op(+), 2op(×)

7: gi,i+1 ← −(dLii)
−1ai,i+1gi+1,i+1 super diagonals: 2op(×)

8: return TridA {G}

Algorithm 3.6 GEINVERSETRI(A)

Require: A ∈ Bn,n

Ensure: TridA {G} = TridA {A−1} ∈ Bn,n

1: DL,JL ← GAUSSELIMINATEFULL(A, 1, n) full downwards elimination sweep
2: TridA {G} ← BACKSOLVETRI(A,DL,JL) solve up to the tridiagonal
3: return TridA {G}

3.1.3 Complexity Analysis

We now look to perform a complexity analysis on the algorithms presented in
this section such that we can make a qualitative assessment of their running
times, and to eventually compare the efficiency of the Gaussian elimination
approach to that of the sweep approach, presented in Sec. 3.2.

We will be considering the case of determining either G or TridA {G} us-
ing either GEINVERSEFULL or GEINVERSETRI, respectively. In this case, and
throughout this paper, we consider the case where A ∈ Bn,n, that is, it is a
square block tridiagonal matrix with n diagonal blocks.

3.1.3.1 Gaussian Elimination

Looking at Alg. (3.3) GEINVERSEFULL, we see that it calls a full Gaussian elim-
ination sweep on line 1 using GAUSSELIMINATEFULL followed by a back solve
sweep on line 2 with BACKSOLVEFULL. The block tridiagonal optimized ver-
sion Alg. (3.6) GEINVERSETRI has its optimization in the back–solving pro-
cess, and thus uses the same algorithm GAUSSELIMINATEFULL, however, as a
close relative to this algorithm is presented here in GAUSSELIMINATETRI, we

55

3.1 Block Gaussian Elimination

include complexity analysis for it here also.
Looking at GAUSSELIMINATEFULL, the for loop on line 3 will loop a total

of n− 1 times, generating n− 1 cLi factors from line 4, each costing an LU fac-
torization and a multiplication. Where GAUSSELIMINATEFULL and GAUSSE-
LIMINATETRI differ is in GAUSSELIMINATETRI’s lack of the for loop on line 5
that generates all the elements in JL below the block sub diagonal1. This for
loop will loop a total of 1, 2, . . . , n − 2 times, depending on how far we have
proceeded in block eliminations, for a total of 1

2
(n2− 3n+ 2) executions, deter-

mined using the arithmetic series identity

n∑
k=1

k = 1 + 2 + . . .+ n =
1

2
n(n+ 1). (3.14)

The matrix A is then updated to produce DL on line 7 in GAUSSELIMINATE-
FULL and on line 6 a total of n − 1 times, each time costing a matrix addition
and multiplication operation.

3.1.3.2 Back Solving

After a full downwards block Gaussian elimination sweep, the algorithms
BACKSOLVEFULL or BACKSOLVETRI are called to construct the inverse G or
TridA {G}, with the results of Alg. (3.1) GAUSSELIMINATEFULL and Alg. (3.4)
GAUSSELIMINATETRI, respectively.

Taking BACKSOLVEFULL, we initialize with a simple matrix inversion on
line 1 involving an LU factorization and a relative matrix multiplication. This
is the only LU factorization we need to explicitly calculate in this routine, pro-
vided we have saved the factorizations from GAUSSELIMINATEFULL. This is
followed by determination of the entire bottom block row of G, which involves
n − 1 multiplications. Finally, we sweep upwards, where blocks on and be-
low the diagonal are determined on line 6 and blocks strictly above the diag-
onal are determined on line 8. Since we assume we save the LU factorizations
performed in GAUSSELIMINATEFULL, line 6 will incur an addition operation
as well as what corresponds to two matrix multiplications, while line 8 only
needs two matrix multiplications.

The main difference between BACKSOLVEFULL and the optimized BACK-
SOLVETRI rests on line 8 in BACKSOLVEFULL, where in the tridiagonal opti-
mized version we only calculate the necessary super diagonal blocks. Thus

1similarly for line 13 in GAUSSELIMINATEFULL and JR with respect to elements above the
super diagonal.

56

3.1 Block Gaussian Elimination

the for loop becomes a single statement in BACKSOLVETRI on line 7 executed
a total of n− 1 times, needing two matrix multiplications each time.

All in all, line 6 in BACKSOLVEFULL is executed a total of n− 1, n− 2, . . . , 1

times as we propagate upwards in constructing G, while line 8 executes a total
of 1, 2, . . . , n−1 times as we proceed. The total amount of executions can again
be determined via Eq. (3.14), and we have a total of 1

2
n(n − 1) executions of

line 6 and line 8, each.

3.1.3.3 Results

Complexity Analysis for Gaussian Elimination

Calculation LU–factorizations Multiplications Additions
op(LU) op(×) op(+)

GAUSSELIMINATEFULL n− 1 1
2 (n2 + n− 2) n− 1

BACKSOLVEFULL 1 2n2 − n 1
2 (n2 − n)

GEINVERSEFULL n 1
2 (5n2 − n− 2) 1

2 (n2 + n− 2)
GAUSSELIMINATEFULL n− 1 1

2 (n2 + n− 2) n− 1
BACKSOLVETRI 1 n2 + 2n− 2 1

2 (n2 − n)
GEINVERSETRI n 1

2 (3n2 + 5n− 6) 1
2 (n2 + n− 2)

Table 3.1: This table illustrates the amount of basic operations performed in calculating ei-
ther the full inverse G of A, or only the block tridiagonal part of it TridA {G}, using the Gaus-
sian elimination algorithms presented in this section. The second, third and fourth columns
refer to the amount of basic matrix operations of LU–factorization, multiplication and addition
involved in each algorithm. The term n is the total amount of diagonal blocks in A ∈ Bn,n.

A summary of the complexity analysis results for Alg. (3.3) GEINVERSE-
FULL and Alg. (3.6) GEINVERSETRI is given in Table 3.1, where we have di-
vided the tally of operation counts up among the routines called by each algo-
rithm. We will focus mainly on the complexities of LU factorization and ma-
trix multiplication as they are cubic with respect to matrix dimension and will
dominate overall algorithmic cost, while addition is only quadratic and has a
far weaker influence on the total running time of the algorithm. It is, however,
included for the sake of completeness. As we can see, both algorithms have
the same linear O(n) complexity in terms of LU factorizations.

With respect to multiplications, even though GAUSSELIMINATETRI seeks
to only determine the block tridiagonal portion of G, it still has the overall
same quadratic complexity O(n2) as GAUSSELIMINATEFULL which calculates
the full inverse G. The only difference is that GEINVERSETRI has a slightly
cheaper cost factor of 1.5 versus a cost factor of 2.5 for GEINVERSEFULL.

57

3.2 Sweep

3.2 Sweep

As we saw in the previous section, the complexity for the standard Gauss elim-
ination algorithm in determining either G or TridA {G} is still quadratic. With
a different approach, we show in this section that it is possible to determine
the inverse with linear complexity. The work presented here is based on work
published in [1] which is included in appendix A.

3.2.1 Description

The new approach seeks to combine the results of a downwards and upwards
Gaussian elimination sweep on A that results in their echelon forms DL and
DR, respectively, in a way such that we remain with a matrix solely composed
of blocks on the main diagonal. This is because such a matrix is easy to work
with, as each row is independent of the others. With such a matrix, generating
the inverse is trivial.

Looking at these echelon forms, we see that they are both bidiagonal, where
the nonzero off–diagonal has elements identical to that of A. Combining the
echelon forms and A in the following manner, leaves us with the desired block
diagonal matrix form:

Combining the results obtained from Eqs. (2.68), (3.5), and (3.6) by employ-
ing the fact that

AG = I, DLG = JL, DRG = JR, (3.15)

the expression (
A−DL −DR

)
G = I− JL − JR (3.16)

is examined, which can be viewed as the following augmented matrix expres-
sion: [

B F
]

=
[

A I
]− [DL JL

]− [DR JR
]
, (3.17)

where

B =


a11 − dL11 − dR11

a22 − dL22 − dR22

a33 − dL33 − dR33

. . .

 (3.18)

58

3.2 Sweep

and

F =


−i11 −cR2 −cR2,3 −cR2,3,4 . . .

−cL1 −i22 −cR3 −cR3,4 . . .

−cL2,1 −cL2 −i33 −cR4 . . .

−cL3,2,1 −cL3,2 −cL3 −i44 . . .
...

...
...

... . . .

 . (3.19)

When B is subsequently reduced to the identity matrix I, F will simulta-
neously be transformed into the Green’s function matrix G. In other words,
the Green’s function matrix sought for can be expressed as G = B−1F. The
Green’s function matrix is:

G =



g11 g11c
R
2 g11c

R
2,3 . . . g11c

R
2,...,n

g22c
L
1 g22 g22c

R
3 . . . g22c

R
3,...,n

g33c
L
2,1 g33c

L
2 g33 . . . g33c

R
4,...,n

g44c
L
3,2,1 g44c

L
3,2 g44c

L
3 . . . g44c

R
5,...,n

...
...

...
gnnc

L
n−1,...,1 gnnc

L
n−1,...,2 gnnc

L
n−1,...,3 . . . gnn


,

(3.20)
where the following expression for the diagonal blocks of the Green’s function
matrix is introduced:

gii = −b−1
ii =

(−aii + dLii + dRii
)−1 where i = 1, 2, . . . , n. (3.21)

The matrices g11 and gnn can be found in a simplified manner, however, by
considering the e.g. the nth block from Eq. (3.21):

gnn =
(−ann + dLnn + dRnn

)−1
=
(
dLnn
)−1

, (3.22)

since dRnn = ann. This holds similarly for the first row of the Green’s function
matrix. From this, it is seen that the first and last diagonal blocks of the Green’s
function matrix correspond to the final blocks of upwards and downwards
sweeps of block Gaussian elimination, respectively, in the following manner:

g11 =
(
dR11

)−1 and gnn =
(
dLnn
)−1

. (3.23)

The off diagonal entries are then calculated via appropriate multiplications
with calculated diagonal block matrices and factors obtained during block
Gaussian elimination as follows using the notation given in Eq. (3.7):

gij = giic
R
i+1,i+2,...,j−1,j, for i < j (3.24)

gij = giic
L
i−1,i−2,...,j+1,j, for i > j. (3.25)

59

3.2 Sweep

3.2.2 Algorithm

We present here the process of determining the full G and TridA {G} via the
sweep method in an algorithmic framework as done before for the standard
Gaussian elimination method. Although the sweep algorithm was first devel-
oped with determining the block tridiagonal part of G in mind, we include for
completeness a variant of sweep that seeks to determine the full G that we can
compare to the earlier developed Gaussian elimination algorithm.

3.2.2.1 The Full Inverse

The sweep based algorithm for determining the full inverse G is presented in
Alg. (3.9), which combines two calls to Alg. (3.1) GAUSSELIMINATEFULL for
the upwards and downwards Gaussian elimination “sweeps” that give name
to the algorithm. This is then followed by Alg. (3.7) DIAGONALS that combines
the results of the sweeps and generates the block diagonals of the inverse G.
Finally, Alg. (3.8) OFFDIAGONALSFULL takes care of generating all the off–
diagonal blocks such that we have generated the full inverse G.

The algorithm DIAGONALS, called after the completion of both an upwards
and downwards Gaussian elimination step, seeks to determine the diagonal
blocks of G according to Eq. (3.21) along with the optimizations in Eq. (3.23)
for g11 and gnn. These optimizations are handled separately on line 1 and
line 4, while the combination of the upwards and downwards sweep results
as Eq. (3.21) is handled on line 3. This line is wrapped in a for loop that takes
care of iterating over all diagonal blocks except g11 and gnn.

Algorithm 3.7 DIAGONALS(A,DL,DR)

Require: A,DL,DR ∈ Bn,n

Ensure: DiagA {G} = DiagA {A−1} ∈ Bn,n

1: g11 ← (dR11)−1 1op(LU), 1op(×)
2: for i← 2 up to n− 1 do determine “inner” diagonal blocks
3: gii ← (−aii + dLii + dRii)

−1 2op(+), 1op(LU), 1op(×)
4: gnn ← (dLnn)−1 1op(LU), 1op(×)
5: return DiagA {G}

The procedure to handle the off diagonals of G is called right after the
diagonal blocks have been determined, and uses the results of the Gaussian
elimination sweeps as it calculates. Looping over all rows in G on line 1, sub
diagonal blocks are determined via line 2 while super diagonal elements are
determined on line 4.

60

3.2 Sweep

Algorithm 3.8 OFFDIAGONALSFULL(A,JL,JR,DiagA {G})
Require: A,JL,JR ∈ Bn,n, DiagA {G} = DiagA {A−1}
Ensure: G = A−1 ∈ Bn,n

1: for i← 1 up to n do loop over all block rows
2: for j ← i− 1 down to 1 do determine blocks under the diagoonal
3: gij ← gi,j+1c

L
j = gii[J

L]ij 1op(×)
4: for j ← i+ 1 up to n do determine blocks over the diagonal
5: gij ← gi,j−1c

R
j = gii[J

R]ij 1op(×)
6: return G

Finally, the procedure that determines the full inverse G for some A using
the sweeps algorithm is given in Alg. (3.9) SWEEPINVERSEFULL. It sequen-
tially executes a downwards Gaussian elimination sweep on line 1 followed
by an upwards sweep on line 2. These two sweeps are independent of each
other, and may be swapped in order. The diagonal blocks of G are then com-
puted on line 3, followed by the routine on line 4 that handles computing all
off diagonal blocks of G.

Algorithm 3.9 SWEEPINVERSEFULL(A)

Require: A ∈ Bn,n

Ensure: G = A−1 ∈ Bn,n

1: DL,JL ← GAUSSELIMINATEFULL(A, 1, n)

2: DR,JR ← GAUSSELIMINATEFULL(A, n, 1)

3: DiagA {G} ← DIAGONALS(A,DL,DR)

4: G← OFFDIAGONALSFULL(A,JL,JR,DiagA {G})
5: return G

A visualization of the sweep algorithm SWEEPINVERSEFULL working on
an example block tridiagonal A is given in Fig. 3.5. The figure shows how
as a downwards and upwards Gaussian elimination sweep on A, on the first
and second column from the left, respectively, combines via Eq. (3.21) and
Eqs. (3.23)–(3.25) to form B and G in the third and fourth columns from the
left, respectively.

This figure should only be taken as a rough assessment of how the mathe-
matics work, and not the algorithm itself, in that both the upwards and down-
wards Gaussian elimination sweeps are computed sequentially, and not in par-
allel. Furthermore, the construction of G is done first by sequentially deter-
mining DiagA {G} from a11 down to ann, and then the desired off diagonals.

61

3.2 Sweep

DRDL

execution order

I G

A A −I + JL + JR︸ ︷︷ ︸−A + DL + DR︸ ︷︷ ︸

Figure 3.5: Visualizing the sweep method for calculating the full inverse G of a block tridi-
agonal matrix A with 7 diagonal blocks.

62

3.2 Sweep

3.2.2.2 The Block Tridiagonal Inverse

Since we only desire the block tridiagonal portion of the inverse, we modify
the Sweep algorithm SWEEPINVERSETRI such that it only returns TridA {G}.
Since only the OFFDIAGONALSFULL call handles this, we present an optimized
version in Alg. (3.10) OFFDIAGONALSTRI which only returns the sub diagonal
and super diagonal blocks of G. This is done by replacing the for loops on
line 2 and line 4 in OFFDIAGONALSFULL with the single statements on line 3
and line 4 in OFFDIAGONALSTRI.

Algorithm 3.10 OFFDIAGONALSTRI(A,TridA

{
JL,JR

}
,DiagA {G})

Require: A,TridA

{
JL,JR

}
,DiagA {G} ∈ Bn,n, DiagA {G} = DiagA {A−1}

Ensure: G = A−1 ∈ Bn,n

1: g12 ← g11c
R
2 = g11[JR]12 handle first sub diagonal: 1op(×)

2: for i← 2 up to n− 1 do loop over nearly all block rows
3: gi,i−1 ← giic

L
i−1 = gii[J

L]i,i−1 sub diagonals: 1op(×)
4: gi,i+1 ← giic

R
i+1 = gii[J

R]i,i+1 super diagonals: 1op(×)
5: gn,n−1 ← gnnc

L
n−1 = gnn[JL]n,n−1 handle last super diagonal: 1op(×)

6: return TridA {G}

The Sweep based algorithm for determining the only block tridiagonal TridA {G}
is presented in Alg. (3.11) SWEEPINVERSETRI. This algorithm, precisely as for
the full inverse version, combines the results of an upwards and downwards
Gaussian elimination sweep. This is handled by two calls on line 1 and line 2
to Alg. (3.4) GAUSSELIMINATETRI which is optimized for producing only a
block tridiagonal result. This is then followed by Alg. (3.7) DIAGONALS on
line 3 that generates the block diagonal DiagA {G}, and finally only the off di-
agonal blocks that belong to the block tridiagonal of TridA {G} is produced
with Alg. (3.10) OFFDIAGONALSTRI on line 4.

Algorithm 3.11 SWEEPINVERSETRI(A)

Require: A ∈ Bn,n

Ensure: TridA {G} = TridA {A−1} ∈ Bn,n

1: DL,TridA

{
JL
}← GAUSSELIMINATETRI(A, 1, n)

2: DR,TridA

{
JR
}← GAUSSELIMINATETRI(A, n, 1)

3: DiagA {G} ← DIAGONALS(A,DL,DR)

4: TridA {G} ← OFFDIAGONALSTRI(A,TridA

{
JL,JR

}
,DiagA {G})

5: return TridA {G}

63

3.2 Sweep

A visualization of the sweep algorithm SWEEPINVERSETRI working on an
example block tridiagonal A is given in Fig. 3.6. The figure shows how as
a downwards and upwards Gaussian elimination sweep on A, on the first
and second column from the left, respectively, combines via Eq. (3.21) and
Eqs. (3.23)–(3.25) to form B and TridA {G} in the third and fourth columns
from the left, respectively.

This figure, just as the one for SWEEPINVERSEFULL, should only be taken
as a rough assessment of how the mathematics work, and not the algorithm
itself, in that both the upwards and downwards Gaussian elimination sweeps
are computed sequentially, and not in parallel. Furthermore, the construction
of G is done first by sequentially determining DiagA {G} from a11 down to ann,
and then the desired super and sub diagonal blocks.

3.2.3 Complexity Analysis

We now look to tabulate the matrix–matrix operation counts involved in both
the full and the tridiagonal optimized versions of the sweep algorithm. Look-
ing at Alg. (3.9) SWEEPINVERSEFULL we see that it is composed of two calls
to GAUSSELIMINATEFULL on line 1 and line 2, before a call on line 3 to gen-
erate the diagonal blocks of G and a call on line 4 to generate the rest of
G. The only difference between SWEEPINVERSEFULL and its optimized coun-
terpart Alg. (3.11) SWEEPINVERSETRI is that GAUSSELIMINATEFULL calls are
replaced with calls to GAUSSELIMINATETRI and the off diagonals calculated
are restricted to the sub and super diagonal blocks by calling OFFDIAGONAL-
STRI. Since we have the operation counts for both GAUSSELIMINATEFULL and
GAUSSELIMINATETRI, we focus now on the algorithms for which we have not
yet tabulated operation counts.

3.2.3.1 Diagonals

Both SWEEPINVERSEFULL and SWEEPINVERSETRI calls Alg. (3.7) in order to
generate the block diagonals of G. Looking at the algorithm, special cases are
made out of the first and last diagonal blocks of G, such that g11 and gnn, cal-
culated on line 1 and line 4, are handled separate from the n−2 other diagonal
blocks. These special cases each take a single LU factorization and something
equivalent to a matrix multiplication to calculate. Otherwise, the other n − 2

diagonal blocks are calculated on line 3, where each execution costs 2 addition
operations, an LU factorization, and the equivalent of a matrix multiplication.

64

3.2 Sweep

TridA {G}DRDL

execution order

I

A A −I + JL + JR︸ ︷︷ ︸−A + DL + DR︸ ︷︷ ︸

Figure 3.6: Visualizing the sweep method for calculating the block tridiagonal portion of the
inverse TridA {G} of a block tridiagonal matrix A with 7 diagonal blocks. This figure should
also be taken only as a rough assessment, much as for SWEEPINVERSEFULL. Note how as
the algorithm progresses, we need not calculated undesired elements of G as in the case for
GEINVERSETRI.

65

3.2 Sweep

3.2.3.2 Off Diagonals

The off diagonal blocks are calculated via Alg. (3.8) OFFDIAGONALSFULL in
the case of wanting all of G, or via Alg. (3.10) OFFDIAGONALSTRI for deter-
mining TridA {G}.

In the case of wanting all of G, OFFDIAGONALSFULL will loop line 1 a total
of n − 1 times, determining the blocks below the diagonal with line 2 and the
blocks above with line 4. Thus line 3 which calculates sub blocks is executed a
total of 1, 2, . . . , n−1 times for a total of 1

2
n(n−1) times (cf. Eq. (3.14)). Likewise,

line 5 for determining blocks above the diagonal is executed a total of n−1, n−
2, . . . , 1 times for the same total of 1

2
n(n− 1).

Looking at the block tridiagonal optimized OFFDIAGONALSTRI, the for
loops on line 2 and line 4 of OFFDIAGONALSFULL are replaced with single
statements such that we only determine the desired super and sub diagonal
blocks we need to complete TridA {G}. Thus the single statements of line 3
and line 4 in OFFDIAGONALSTRI are only executed a total of n − 2 times via
the for loop on line 2, where the last couple of statements are handled on line 1
and line 5, each costing a single multiplication.

3.2.3.3 Results

Complexity Analysis for Sweep

Calculation LU–factorizations Multiplications Additions
op(LU) op(×) op(+)

GAUSSELIMINATEFULL (up) n− 1 1
2 (n2 + n− 2) n− 1

GAUSSELIMINATEFULL (down) n− 1 1
2 (n2 + n− 2) n− 1

DIAGONALS n n 2n− 4
OFFDIAGONALSFULL 0 n2 − n 0
SWEEPINVERSEFULL 3n− 2 2n2 + n− 2 4n− 6
GAUSSELIMINATETRI (up) n− 1 2n− 2 n− 1
GAUSSELIMINATETRI (down) n− 1 2n− 2 n− 1
DIAGONALS n n 2n− 4
OFFDIAGONALSTRI 0 2n− 2 0
SWEEPINVERSETRI 3n− 2 7n− 6 4n− 6

Table 3.2: This table illustrates the amount of basic operations performed in calculating
either the full inverse G of A, or only the block tridiagonal part of it TridA {G}, using the
sweep algorithms presented in this section. The second, third and fourth columns refer to the
amount of basic matrix operations of LU–factorization, multiplication and addition involved
in each algorithm. The term n is the total amount of diagonal blocks in A ∈ Bn,n.

Looking at the results of tabulating the operation counts for SWEEPIN-

66

3.2 Sweep

VERSEFULL and SWEEPINVERSETRI in Table 3.2, we see that they have the
same order O(3n) LU factorizations and O(4n) additions. Where they differ
significantly is in the number of matrix multiplications, and we can see that
the tridiagonal optimized version of Sweeps has linear order O(7n) complex-
ity, while the calculation of all of G via Sweeps has quadratic order O(2n2).
This qualitative difference in complexity did not arise for the case of trying to
improve standard block Gaussian elimination presented earlier.

Comparing with Gaussian elimination, the Sweeps method has a slightly
better cost factor of 2 over GAUSSELIMINATEFULL’s factor of 2.5 regarding
matrix multiplications. Sweeps, however, is still a poorer choice for the task
of determining all of G due to it having 3 times as many LU factorizations
to perform. Using prefactor information from [29] for LU factorization and
matrix–matrix multiplication, it can be shown the flop count for GAUSSELIMI-
NATEFULL will be on the order of O(5.67n), while Sweeps will be on the order
of O(6n). Thus Gaussian elimination is still preferred for calculating all of G.

What is significant, however, is that when we only desire the block tridi-
agonal TridA {G}, we can qualitatively improve the speed of execution by
choosing SWEEPINVERSETRI over GEINVERSETRI, as SWEEPINVERSETRI has
linear complexity in the operation count, while GEINVERSETRI’s quadratic or-
der multiplication count lends itself as the poorer choice.

Thus we have developed a method that can successfully calculate the block
tridiagonal TridA {G} significantly faster than standard block Gaussian elimi-
nation.

67

3.2 Sweep

68

Chapter 4

Parallel Algorithms

If you were plowing a field, which would you rather use? Two strong oxen
or 1024 chickens?

Seymour Cray – Unverified

4.1 Parallel Computing

The architectures and implementations that immediately come to mind when
the words parallel and computing are encountered in the same sentence may
be many and varied, so we choose to begin this chapter with a short intro-
duction to the parallel computing model we assume is the environment our
algorithms work in.

4.1.1 Hardware Model

All computers are built from physical components known as hardware. In
the parallel computing environment assumed for our algorithms, we find the
basic building block to be a single machine which works in a sequential man-
ner. This fundamental piece of the system is also known as the von Neumann
model of a sequential computer, presented by John von Neumann in an incom-
plete report [30] in 1945, and conceptually by Konrad Zuse in a patent dating
from 1936.

The von Neumann architecture is visualized in Fig. 4.1, where we see how a
processor is connected to local memory storage via a system bus that is tasked

69

4.1 Parallel Computing

processor

memory

bus

Figure 4.1: The sequential computers involved in our calculations correspond to the Von
Neumann model, as visualized above, where the processor is connected to memory via a sys-
tem bus that transfers data and instructions to the processor for computation and results back
to memory for storage.

with routing data and instructions from memory to the processor for compu-
tation, and data back to memory for storage.

In order to move from the building block of the sequential computer to
a parallel multi–computer, we take a series of von Neumann machines and
connect them to a communications network, enabling them to communicate
with each other.

Each von Neumann machine only has direct access to its own memory stor-
age, and in order to access data on other machines it becomes necessary to
employ a message–passing scheme that can transmit desired data as well as
instructions between machines connected to the network. This scheme leads
to the message–passing multiprocessor model of a parallel computer, and it is
this machine we assume we are running our algorithms on.

One disadvantage of this parallel computing model is that as a program-
mer one has to explicitly manage the message passing and the sharing of data
in memory among available processes, and this will be reflected in the algo-
rithms presented. On the other hand, the programmer is relieved from the
task of having to avoid managing multiple processes trying to access the same
location in memory at the same time, which may lead to errors and undefined
behavior of the program.

Another distinct advantage of programming for this hardware and mem-
ory model is that it is a model that is in wide use. This is due to its flexibility
and cost effectiveness over other models, such as the shared memory multipro-

70

4.1 Parallel Computing

. . .

Figure 4.2: The parallel system assumed in this chapter corresponds to a network of Von
Neumann computers all connected via a networking switch, as shown above. Every sequen-
tial von Neumann machine only has direct access to its own memory on its system bus, and
inter–process communication via message–passing is needed for access to the memory of other
processes as well as coordination of program execution.

cessor which are notoriously expensive and difficult to expand with additional
hardware. Meanwhile, the message–passing multiprocessor composed of in-
dividual von Neumann machines can be more easily expanded upon by pur-
chasing relatively cheap individual von Neumann machines as required and
aggregating them to the message–passing network.

4.1.2 Memory Model and Data Distribution

Although we assume we are dealing with a multicomputer network architec-
ture, where each connected machine only has direct access to its own physical
memory, implementations exist where the collective memory storage facilities
in the network are considered shared memory to which all machines have di-
rect access. We, however, have chosen the simpler case where each computer
on the network only has direct access to the memory physically associated
with it, as seen in Fig. 4.1, relieving us from the earlier mentioned problems of
managing memory access for the cost of managing message passing. Thus in
order to access memory on other computers on the network, message passing
must be employed.

In choosing not to use a shared memory model, we write off the possibil-
ity of transparently using all storage on the network directly as a large mem-
ory pool. However, we need not conform to the limited memory resources

71

4.1 Parallel Computing

available to each machine on the network. We do this by implementing our
algorithms to tackle the block tridiagonal matrix inversion by distributing data
across the network.

This conceptually expands the available storage for solving our problems
from being limited by the amount found on the von Neumann machine with
the least amount of local memory to storage represented by pooling all mem-
ory on the network, where each machine has a responsibility to manage its
own physical portion of the pool. In this way, each process is responsible only
for a unique portion of data, and can access other data by posting a message
to the appropriate owning process. In this way, we minimize data replication
across all von Neumann machines that would otherwise be redundant and
limit the problem sizes we can handle.

Thus we distribute ownership of our block matrices among the available
processes such that each process has direct ownership of select portions of the
block matrices involved, and must rely on the other processes to have their
relevant portions in memory.

4.1.3 An Example Distribution

p0

p1

p2

p3

Figure 4.3: Visualizing a simple distribution of a block tridiagonal matrix of identical block
dimensions among P = 4 processes named p0, . . . , p3.

Looking at Fig. 4.3, we can obtain a sense of how we distribute the content
of a block tridiagonal matrix A among various processes. In the figure, we

72

4.1 Parallel Computing

have P = 4 processes sharing a block tridiagonal matrix with n = 16 diagonal
blocks of equal size.

In general, the block matrix to be distributed need not be block tridiagonal,
the distribution of data among processes need not be such that each process
owns the same number of rows, and the block elements themselves are not re-
quired to be of equal dimension1. The issue of how to distribute the block ma-
trices effectively for the sake of execution speed or memory will be discussed
later. An example of a different distribution is given in Fig. 4.4

p0

p1

p2

p3

Figure 4.4: Visualizing a distribution of a block tridiagonal matrix with differing block di-
mensions among P = 4 processes named p0, . . . , p3.

In the complexity analysis of the various algorithms, we will work under
the assumption that the P different processes will own m0,m1, . . . ,mP−1 rows
of A, in an ordered sequence from the top row of A to the bottom. This also
means that all processes together own the total number of rows in A:

P−1∑
i=0

mi = n. (4.1)

This expression will be used later in our complexity analysis.

1They are only required to be of dimension such that the matrix may belong to Br,s.

73

4.2 Parallel Sweep

4.1.4 Some Assumptions

In the methods presented in this chapter, we not only assume the block matri-
ces involved are distributed to begin with, but that each is distributed in the
same manner, such that the ownership arrangement of A will be identical to
that of the calculated portion of the inverse G, as well as the LU factors L and
U.

In this way we can depend on the fact that if aij is owned by process pi, that
same process will also own lij , uij and gij , for example. Furthermore, as we
distribute entire rows among processes, every block on a certain row of A, G,
L or U will be found on the same process.

It should be noted that other processes might have copies of blocks be-
longing to other processes used locally in other calculations. These copies are
retrieved via message–passing, but the ultimately the process responsible for
storing a nontrivial1 block on the (i, j)th location will be process owning the
ith row, pi.

4.2 Parallel Sweep

We saw in Sec. 3.2 a definition of a sweep based algorithm that could determine
the block tridiagonal portion of the inverse in an amount of time that scales
linearly with the block dimension n of A. In this section, we present a version
of this algorithm that has been adapted to the distributed memory layout of A

across a set of P processes.

4.2.1 Description

The first adaptation taken in order to parallelize the sweep algorithm is for it to
handle the distributed nature of A. This means that the Gaussian elimination
sweeps that proceed from the top and bottom will need to be “handed off”
to neighboring processes as they sweep through A. As we potentially have
multiple processes handling the storage of A, we can now perform these two
sweeps simultaneously, allowing for the eventuality of a downwards sweep
meeting a process currently performing an upwards sweep, or vice versa.

This should immediately yield a theoretical possible speedup of 2, as we
can have this proceed perfectly in parallel, as the only communication needed
is to hand off the sweeping task to a neighbor.

1All–zero blocks 0ij are not explicitly stored.

74

4.2 Parallel Sweep

A consequence of the now parallelized elimination sweeps is that once a
process has performed both an upwards and downwards sweep on its owned
elements, it can then immediately calculate its owned portion of the inverse G

independently of all other processes.
We can see a visualization of the parallelized sweeps working on an exam-

ple 7×7 block matrix A in Fig. 4.5, with much similarity to the original figure
for the sweep algorithm. We use the same legend as presented in Fig. 3.1. Here
we have divided A over 3 processes separated by the dashed lines, and inter–
process communication is indicated by arrows.

We see how each process hands off its elimination sweep to its nearest
neighbor, and in this case, we see how the upwards sweep has to wait for
the downwards sweep to complete in the middle process before being allowed
to continue. A middle process waiting for sweeps to arrive will handle the first
message request that comes along to continue the elimination, while the other
elimination pass will have to wait.

We can also see that although the sweeps will overlap at some point, the
blocks of the inverse will not be computed until all sweeps have terminated
on the owning process before construction of G begins.

4.2.2 Algorithm

We present here the process of determining TridA {G} via the new, parallelized
sweep method in an algorithmic framework. Having many similarities to the
sequential sweep method presented earlier, we will find the main differences
lie in the algorithm for handling the Gaussian elimination.

4.2.2.1 Gaussian Elimination

The algorithm that handles both the upwards and downwards Gaussian elim-
ination sweeps is found in Alg. (4.1) GAUSSELIMINATEPARALLEL. The first
feature one may notice is that the algorithm is split in two cases, such that we
can handle a sequential execution of elimination sweeps in case we only have
P = 1 processes available. This is done by line 1, which will call our sequential
Gaussian elimination routines one after the other, as was the case for Alg. (3.11)
SWEEPINVERSETRI, earlier.

Should we have more than one process available, P > 1, we then execute
the parallel case of the algorithm, on line 4. This parallel section of code is then
subdivided into tasks, where a task for the process that owns the topmost row
is on line 5, a task for the process that owns the bottommost row on line 24,

75

4.2 Parallel Sweep

execution order

A A −I + JL + JR︸ ︷︷ ︸−A + DL + DR︸ ︷︷ ︸

messages

finished

idle

active

DRDL I TridA {G}

Figure 4.5: Visualizing the parallelized sweep method for calculating the block tridiagonal
inverse TridA {G} of a block tridiagonal matrix A with 7 diagonal blocks.

76

4.2 Parallel Sweep

Algorithm 4.1 GAUSSELIMINATEPARALLEL(A)

Require: A ∈ Bn,n

1: if P = 1 then run in serial
2: DL,TridA

{
JL
}← GAUSSELIMINATETRI(A, 1, n)

3: DR,TridA

{
JR
}← GAUSSELIMINATETRI(A, n, 1)

4: else run in parallel
5: if myPID = 0 then top process starts the downwards sweep
6: DL,TridA

{
JL
}← GAUSSELIMINATETRI(A, top = 1, bot)

7: requestsend← isend abot,bot+1, dLbot,bot to 1
8: requestrecv← irecv abot+1,bot, dRbot+1,bot+1 from 1
9: wait for requestrecv

10: DR,TridA

{
JR
}← GAUSSELIMINATETRI(A, bot + 1, top = 1)

11: if myPID 6= 0 and myPID 6= P− 1 then other processes listen
12: requestabove← irecv atop−1,top, dLtop−1,top−1 from myPID−1
13: requestbelow← irecv abot+1,bot, dRbot+1,bot+1 from myPID+1
14: sweepdown, sweepup ← false
15: while not sweepdown or not sweepup do
16: if requestabove and not sweepdown then
17: DL,TridA

{
JL
}← GAUSSELIMINATETRI(A, top− 1, bot)

18: sweepdown ← true
19: requestdown← isend abot,bot+1, dLbot,bot to myPID+1
20: if requestbelow and not sweepup then
21: DR,TridA

{
JR
}← GAUSSELIMINATETRI(A, bot + 1, top)

22: sweepup ← true
23: requestup← isend atop,top−1, dRtop,top to myPID−1
24: if myPID = P− 1 then bottom process starts the upwards sweep
25: DR,TridA

{
JR
}← GAUSSELIMINATETRI(A, bot = n, top)

26: requestsend← isend atop,top−1, dRtop,top to myPID−1
27: requestrecv← irecv atop−1,top, dLtop−1,top−1 from myPID−1
28: wait for requestrecv
29: DL,TridA

{
JL
}← GAUSSELIMINATETRI(A, top− 1, bot = n)

30: return DL,DR,TridA

{
JL,JR

}

77

4.2 Parallel Sweep

and a task for all other processes on line 11. In the code, we recall that top and
bot are constants available to each process dictating which is their topmost and
bottommost owned row of A.

The topmost process immediately calculates a downwards Gaussian elimi-
nation sweep on its owned portion of A on line 6, before posting an immediate
send of results to its neighbor such that it may start work on the downwards
sweep on line 7. This transmission is immediate in the sense that the com-
mand returns control to the sending process regardless of whether or not the
receiving process has acknowledged receipt of the message. This is necessary
in order to avoid deadlock1, as the neighbor process might have completed an
upwards sweep and is trying to send data to the top process.

The immediate send is followed by an immediate receive command on line 8
that will wait for a message from the neighbor carrying information to com-
plete the upwards Gaussian elimination sweep. Though not strictly necessary,
this receive command is made immediate to match the immediate send, and
we wait for it to complete. Alternatively, we could use a blocking regular re-
ceive command recv. When reception is completed, the upwards Gaussian
elimination sweep has finished its pass through the lower processes, and the
top process can complete the full pass through A by executing line 10. This
entire behavior is mirrored by the bottom process on line 24.

The task the middle processes have to handle on line 11 is slightly more
complex. They risk receiving a message from either a neighbor process above
them or below them, but which comes first is not known deterministically.
Thus a form of listening strategy has to be employed, where an incoming mes-
sage has to be handled on a first–come first–served basis.

The listening by the middle processes is carried out by executing the im-
mediate receive commands on line 12 and line 13, which listen to incoming
messages from nearest neighbor processes. We furthermore define two flags
on line 14 that tell us whether or not the process has completed a downwards
or upwards sweep. The process then enters a while loop on line 15 that loops
until both elimination sweeps have passed it.

The while loop effectively polls the receive requests we are listening for to
complete, such that we can perform an elimination sweep. The requests, how-
ever, should only be acted on if the elimination sweep they represent has not
already been handled by the process, which we can check by the flags defined
on line 14. The code handling an incoming downwards Gaussian elimination

1Deadlock occurs when messages between processes are unable to complete because they
are blocked from completion as they wait indefinitely for other communication processes to
complete [31].

78

4.2 Parallel Sweep

sweep is on line 16 while the counterpart upwards sweep is handled on line 20.
In the case of a downwards Gaussian elimination sweep arriving at the lis-

tening process for the first time, the message receipt request flag evaluates to
true, while the sweep completion flag evaluates to false, and the code enclosed
by the case on line 16 executes. This is encompassed by a downwards elim-
ination sweep handled by GAUSSELIMINATETRI on line 17. We then set the
corresponding sweep completion flag to true so that we do not re–execute a
downwards sweep on repeated polling of the listening requests. Finally, an
immediate send of data is performed on line 19 to a neighbor process own-
ing rows below that will continue the downwards Gaussian sweep on A. The
message is immediate, such that the process can return to listening for and
handling an incoming request that might be waiting, and we can avoid a situ-
ation of deadlock. This entire behavior is mirrored for the case of an upwards
Gaussian elimination by the case on line 20.

4.2.2.2 Constructing the Inverse

As for the sequential version of sweep, once the Gaussian elimination sweeps
have taken place, we are now free to construct the desired inverse. The differ-
ence between the sequential and parallel version of sweep, is that individual
processes may have completed both Gaussian elimination passes earlier, and
are free to construct their part of G, even though the elimination sweeps may
not have terminated for other processes.

For those processes that have terminated the elimination sweeps, we have
Alg. (4.2) DIAGONALSPARALLEL that takes care of determining the diagonal
blocks of G, before we go on to determining the off diagonal blocks.

Algorithm 4.2 DIAGONALSPARALLEL(A,DL,DR)

Require: A,DL,DR ∈ Bn,n

Ensure: DiagA {G} = DiagA {A−1} ∈ Bn,n

1: if row 1 is mine then
2: g11 ← (dR11)−1 1op(LU), 1op(×)
3: for i← 2 up to n− 1 do determine “inner” diagonal blocks
4: if row i is mine then
5: gii ← (−aii + dLii + dRii)

−1 2op(+), 1op(LU), 1op(×)
6: if row n is mine then
7: gnn ← (dLnn)−1 1op(LU), 1op(×)
8: return DiagA {G}

79

4.2 Parallel Sweep

The algorithm takes directly after Alg. (3.7) DIAGONALS, developed for the
serial version of Sweeps, only in that some control code is inserted that assures
a statement constructing the diagonal block gii will only be executed if the ith
row belongs to the calling process.

The off diagonal blocks are handled by Alg. (4.3) OFFDIAGONALSPARAL-
LEL, and takes directly after Alg. (3.10) OFFDIAGONALSTRI, developed for the
serial version of Sweeps. The difference here is that control code is added to
ensure that statements constructing the off diagonal blocks gi,i−1 or gi,i+1 are
only executed if the ith row belongs to the calling process.

Algorithm 4.3 OFFDIAGONALSPARALLEL(A,TridA

{
JL,JR

}
,DiagA {G})

Require: A,TridA

{
JL,JR

}
,DiagA {G} ∈ Bn,n, DiagA {G} = DiagA {A−1}

Ensure: G = A−1 ∈ Bn,n

1: if row 1 is mine then
2: g12 = g11c

R
2 = g11[JR]12 1op(×)

3: for i = 2 . . . n− 1 do loop over all block rows
4: if row i is mine then
5: gi,i−1 = giic

L
i−1 = gii[J

L]i,i−1 sub–diagonals: 1op(×)
6: gi,i+1 = giic

R
i+1 = gii[J

R]i,i+1 super–diagonals: 1op(×)
7: if row n is mine then
8: gn,n−1 = gnnc

L
n−1 = gnn[JL]n,n−1 1op(×)

9: return TridA {G}

Finally, the algorithm that performs the steps necessary to calculating the
block tridiagonal TridA {G} in parallel, is presented in Alg. (4.4) SWEEPIN-
VERSEPARALLEL. The algorithm calls GAUSSELIMINATEPARALLEL on line 1,
which takes care of commencing both an upwards and downwards Gaussian
elimination sweep in parallel. It also handles the serial case for when P = 1.
Processes that have completed both an upwards and downwards sweep pro-
ceed immediately to constructing diagonal blocks on line 2, before computing
off diagonal blocks on line 3. Each process only computes blocks of the inverse
within its domain of responsibility for G, and thus the result is distributed
across processes in the same manner as A.

4.2.3 Complexity

In analyzing Alg. (4.4) for complexity, we see that we can break it down into
3 distinct phases, as given by the Gaussian elimination on line 1 by Alg. (4.1)
GAUSSELIMINATEPARALLEL, determination of the diagonal blocks on line 2

80

4.2 Parallel Sweep

Algorithm 4.4 SWEEPINVERSEPARALLEL(A)

Require: A ∈ Bn,n

Ensure: TridA {G} = TridA {A−1} ∈ Bn,n

1: DL,DR,TridA

{
JL,JR

}← GAUSSELIMINATEPARALLEL(A)

2: DiagA {G} ← DIAGONALSPARALLEL(A,DL,DR)

3: TridA {G} ← OFFDIAGONALSPARALLEL(A,TridA

{
JL,JR

}
,DiagA {G})

4: return TridA {G}

by Alg. (4.2) DIAGONALSPARALLEL, and the determination of the off diagonal
blocks on line 3 by Alg. (4.3) OFFDIAGONALSPARALLEL.

Starting with the Gaussian elimination phase, we can first identify the fact
that the basic operations carried out are done by the sequential algorithm
GAUSSELIMINATETRI, for which we have already determined complexities
earlier on. We can then relegate ourselves to determining how many rows
each process will call GAUSSELIMINATETRI with.

Looking at process p0, which owns the first m0 rows of A, it performs two
sweeps, where the first downwards sweep on line 6 covers m0 rows. The sec-
ond sweep on line 10 covers m0 + 1 rows. This is similar for the final process
pP−1 but with mP−1 and mP−1 + 1 rows, instead. A middle process pi, owning
mi rows, also performs two sweeps, on line 17 and line 21, but where each
sweep covers mi + 1 rows.

We can then calculate the total operation counts, using the tabulated com-
plexities for GAUSSELIMINATETRI in Table 3.1, and the LU decomposition
count becomes for the down sweeping eliminations become

op(LU) =
P−2∑
i=0

((mi + 1)− 1) + (mP−1 − 1)

=
P−1∑
i=0

mi − 1

= n− 1 (4.2)

and likewise for the upwards sweeping eliminations, giving us 2(n − 1) LU
factorizations for GAUSSELIMINATEPARALLEL. As the complexity for addi-
tions is the same in GAUSSELIMINATETRI as for LU factorizations, we also get
2(n−1) matrix additions for GAUSSELIMINATEPARALLEL. Multiplications, on
the other hand, have a factor 2 on top of this, giving us 4(n−1) multiplications.

Moving on to the calculation of diagonal blocks via DIAGONALSPARAL-
LEL, we can see that a middle process pi owning mi middle rows will have to

81

4.3 Block Cyclic Reduction

execute miop(LU), miop(×) and 2miop(+) operations. A corner process will
have to execute the same number of LU decompositions and multiplications,
but saves a little with respect to addition, in only having to calculate a total of
2(m0−1)op(+) and 2(mP−1−1)op(+), for the upper and lower process, respec-
tively. This sums up to be nop(LU), nop(×) and 2(n − 2)op(+) operations for
DIAGONALSPARALLEL.

Finally, we can count the operations for the off diagonal blocks obtained
with OFFDIAGONALSPARALLEL. A middle process pi owning mi rows exe-
cutes a total of 2miop(×) to calculate its owned off diagonal blocks, while the
corner processes executes a total of (2m0−1)op(×) and (2mP−1−1)op(×), for the
upper and lower process, respectively. This adds up to a total of 2(n− 1)op(×)

in total for all processes.

Complexity Analysis for parallelized Sweep

Calculation LU–factorizations Multiplications Additions
op(LU) op(×) op(+)

GAUSSELIMINATEPARALLEL 2n− 2 4n− 4 2n− 2
DIAGONALSPARALLEL n n 2n− 4
OFFDIAGONALSPARALLEL 0 2n− 2 0
SWEEPINVERSEPARALLEL 3n− 2 7n− 6 4n− 6

Table 4.1: This table illustrates the amount of basic operations performed in calculating the
block tridiagonal inverse TridA {G} using the parallelized sweep algorithms presented in this
section. The second, third and fourth columns refer to the amount of basic matrix operations
of LU–factorization, multiplication and addition involved in each algorithm. The term n is the
total amount of diagonal blocks in A ∈ Bn,n. Interesting to note is that the overall complexity
is identical to that of Alg. (3.11) SWEEPINVERSETRI.

Finally, we tabulate the complexity for SWEEPINVERSEPARALLEL in Table
4.1, and as we may expect, the overall complexity is identical to that of SWEEP-
INVERSETRI. This is because the only significant difference between the algo-
rithms is the incorporation of message passing to “hand–off” a sweep between
neighbor processes and the handling of only computing elements of G owned
by the calling process, while no change exists in the the numerical aspects of
the code.

4.3 Block Cyclic Reduction

Block cyclic reduction, or BCR, is born out of the technique called cyclic reduc-
tion, which was developed many decades ago by Gene Golub to deal with the
scalar tridiagonal systems that arise in solving finite element discretizations of

82

4.3 Block Cyclic Reduction

the Poisson equation in 2D. A historical treatment of its development is given
by Gander and Golub in [32]. In this paper, we consider the case of block cyclic
reduction, where the scalar elements of traditional cyclic reduction is replaced
with matrix blocks.

4.3.1 Description

Block cyclic reduction takes as its starting point our now familiar block tridi-
agonal matrix A and performs, in parallel, operations that effectively elimi-
nate the odd–numbered indices of the unknowns in what we call the reduction
phase. As we are working with block matrices, we effectively eliminate the
odd–numbered block columns and rows of A. This continues until we remain
with a single final block. Once the inverse corresponding to this final block is
calculated, we proceed with a production phase in order to calculate the rest of
TridA {G}.

The BCR method is visualized in Fig. 4.6, where we see first a reduction
phase bring A down to a single block aBCR

kk , from which we can calculate the
first block of the inverse, gBCR

kk . From there, the method proceeds through a
production phase in order to eventually yield the block tridiagonal part of the
inverse TridA {G}. As can be seen on the resulting inverse, some undesired
elements of the inverse need calculating, and is an effect of the fill–in charac-
teristics of the method, as we will see later.

4.3.1.1 Reduction

The reduction phase begins with the complete block tridiagonal A and seeks
to eliminate the odd–numbered rows/columns by a series of row operations.
This is accomplished in the following manner, we we take our augmented ma-
trix Eq. (2.68), where rows i, k are odd and row j is even:

.
aih aii aij iii

aji ajj ajk ijj
akj akk akl ikk

.

 . (4.3)

We eliminate the coupling element aji by a row operation involving row i the
factor lji = −ajia

−1
ii . Likewise, we eliminate ajk by a row operation involing

row k and the factor ljk = −ajka
−1
kk . It is no coincidence that these factors are

83

4.3 Block Cyclic Reduction

A

TridA {G} GBCR
gkk

aBCR
kk

reduction phase

production phase

Figure 4.6: The block cyclic reduction method eliminates half the number of block unknowns
in each reduction step, until it remains with a single block aBCR

kk . This block can then easily
be inverted to determine the first block of the inverse, gkk. A series of production steps is
then undertaken using stored LU factors from the reduction phase, that in the end produce
our desired block tridiagonal TridA {G}. A number blocks off the block tridiagonal is also
calculated but this number is linear O(n) with respect to the number of diagonal blocks in A.

84

4.3 Block Cyclic Reduction

lower case Ls, since Golub [32, 33] recognized that cyclic reduction is equiva-
lent to unpivoted Gaussian elimination on a permuted system, and the com-
puted factors are related to an LU factorization of this permuted system. The
U factors can be stored for later reconstruction of the inverse on the odd rows
and we have uij = −a−1

ii aij and ukj = −a−1
kk akj . Doing this, we obtain

.
aih aii aij iii uij

aBCR
jh 0ji aBCR

jj 0jk aBCR
jl lji ijj ljk

akj akk akl ukj ikk
.

 (4.4)

where we have implicitly “stored” the U factors on the right hand side of the
augmented matrix, and the updated elements on the left hand side, denoted
by aBCR are

aBCR
jj = ajj + ljiaij + ljkakj, (4.5)

aBCR
jh = ljiaih, (4.6)

aBCR
jl = ljkakl. (4.7)

On the elimination of the odd–numbered rows, we see that the remaining
even–numbered rows are only coupled to themselves, and we can imagine
that we have reduced our original block matrix A to one with half the num-
ber of rows and columns: ABCR. Looking at Eq. (4.4), we can ignore the odd
numbered rows, and we then are left with:

.
aBCR
jh aBCR

jj aBCR
jl ijj

.

 . (4.8)

This elimination of odd–numbered rows is highly parallel, in that each update
of the remaining even rows can be done fully in parallel. The subsequent re-
construction of the odd rows is equally parallel, as the computation of the U

factors mirrors that of the L factors. On the other hand, the “new” blocks aBCR
jh

and aBCR
jl can be considered fill–in, and will later need elimination.

This process of reduction continues until we are left with only one row,
namely aBCR

kk , where k denotes the row/column we finally reduce to. When
this is the case, we are left with the augmented system(

aBCR
kk ikk

)
. (4.9)

85

4.3 Block Cyclic Reduction

from which we can directly calculate the first block of the inverse, namely gkk:

gkk = (aBCR
kk)−1 (4.10)

The reduction phase of BCR is visualized in Fig. 4.7, where we start with
the full augmented matrix [A|I] on the left, and we visualize the “active” block
rows in an elimination tree on the right, where every arrow indicates a row
operation.

4.3.1.2 Corner Production

Once we have the first block of the inverse, gkk, we begin to work backwards,
and start the production phase. Where before we sought to eliminate the odd–
numbered rows of A, we now have to start producing about the kth row. The
types of productions fall into two categories: a corner production, and a center
production, for which we first describe the corner case here.

A corner production can be likened to a one–sided production, since we are
only expanding our inverse G in one direction from an originating row kfrom

to towards the row to be produced kto. This can either be in the upwards or
downwards direction in the case kto < kfrom or kto > kfrom, respectively.

The simplest BCR case that leads to a corner production can be taken in the
following augmented 2× 2 block system:

(
a11 a12 i11

a21 a22 i22

)
(4.11)

A single reduction operation then leads to the following system

(
a11 a12 i11

s l21 i22

)
, (4.12)

where s = a22 + l21a12 is the Schur complement using the computed LU fac-
tor l21 = −a21a

−1
11 . We have also determined its corresponding factor u12 =

−a−1
11 a12 during the reduction phase which will be needed during the produc-

tion step. With the Schur complement determined, we can calculate the inverse
g22 on the second row by inverting s and with this done, we are in the situation
prior to a corner production step.

86

4.3 Block Cyclic Reduction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IA

identity matrix (negative)

eliminated block

untouched block

1st reduction (new/updated/inactive)

2nd reduction (new/updated/inactive)

3rd reduction (new/updated/inactive)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

ABCR

execution order

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

L,U

L factors (new/inactive)

U factors (new/inactive)

Figure 4.7: This figure shows the full reduction phase in BCR for an example 15×15 block
matrix A. The modified matrix A is shown in the left column, while the center column il-
lustrates the preserved LU factors. The right column illustrates an elimination tree for this
example that may aid understanding in how after each set of odd–element eliminations, we
end up with a “reduced” system that is about half the size of the former system.

87

4.3 Block Cyclic Reduction

Continuing with Eq. (4.12) we might go through the following(
a11 a12 i11

i22 g22l21 g22

)
(4.13)(

a11 i11 − a12g22l21 −a12g22

i22 g22l21 g22

)
(4.14)(

i11 a−1
11 − a−1

11 a12g22l21 −a−1
11 a12g22

i22 g22l21 g22

)
(4.15)(

i11 a−1
11 + u12g22l21 u12g22

i22 g22l21 g22

)
(4.16)

and thus assuming we have g22 from the outset, we now have produced the
inverse blocks on the positions

g12 = u12g22, (4.17)
g21 = g22l21, (4.18)
g11 = a−1

11 + u12g22l21, (4.19)

which renamed in generalized terms of producing the row kto from knowing
the inverse on (kfrom, kfrom), we have the new block diagonal element gkto,kto

becoming
gkto,kto = (aBCR

kto,kto
)−1 + ukto,kfromgkfrom,kfromlkfrom,kto (4.20)

where we have used the LU factors stored during the reduction phase of BCR.
Furthermore, we use aBCR

kto,kto
in the above expression, as akto,kto may be updated

several times during the reduction phase. The off diagonal blocks can be de-
termined as

gkfrom,kto = gkfrom,kfromlkfrom,kto , (4.21)
gkto,kfrom = ukto,kfromgkfrom,kfrom . (4.22)

Reusing one of these results, we can save a multiplication and write Eq. (4.20)
as

gkto,kto = (aBCR
kto,kto

)−1 + gkto,kfromlkfrom,kto . (4.23)

These formulas hold in either case of an upwards or downwards corner pro-
duction, and presume only that we know gkfrom,kfrom as well as lkfrom,kto and ukto,kfrom ,
which are determined during the reduction phase of BCR. A visualization of
the corner production can be seen in Fig. 4.8.

88

4.3 Block Cyclic Reduction

gkfrom,kfromgkfrom,kto

gkto,kto gkto,kfrom

lkfrom,kto

ukto,kfrom

Figure 4.8: The corner production step in BCR originates from a row kfrom and produces
towards a row kto in the manner as seen above. Three new inverse blocks are produced, as
seen on the left, using the stored LU factors from the reduction phase of BCR, as seen on the
right.

4.3.1.3 Center Production

A center production takes care of the case when we need to produce a row kto

in between two already produced rows, kabove and kbelow as we construct G. A
simple case that leads to a center production in BCR can be seen by looking at
the following augmented system: a11 a12 i11

a21 a22 a23 i22

a32 a33 i33

 . (4.24)

Two reduction operations, originating from the 2nd row upwards and down-
wards, lead to the following system s11 s13 i11 l12

a21 a22 a23 i22

s31 s33 l32 i33

 , (4.25)

where we have used the computed LU factors l12 = −a12a
−1
22 and l32 = −a32a

−1
22 .

We have also determined the corresponding factors u21 = −a−1
22 a21 and u23 =

−a−1
22 a23 during the reduction phase which will be needed during the center

production step.
The inverse on the corner blocks can then be determined by(

g11 g13

g31 g33

)
=

(
s11 s13

s31 s33

)−1

. (4.26)

This can be understood easier if we take Eq. (4.24), swap row/column 1 and 2

89

4.3 Block Cyclic Reduction

and perceive it as a 2×2 block problem to obtain

 a22 a21 a23 i22

a12 a11 i11

a32 a33 i33

 , (4.27)

which we can compare directly to Eq. (4.11), in order to solve. This has been
done for the corner production case and using Eqs. (4.17)–(4.19), we can write

(
g11 g13

g31 g33

)
=

(
s11 s13

s31 s33

)−1

(4.28)(
g12

g32

)
=

(
g11 g13

g31 g33

)(
l12

l32

)
(4.29)

(
g21 g23

)
=

(
u21 u23

)(g11 g13

g31 g33

)
(4.30)

g22 = a−1
22 +

(
u21 u23

)(g11 g13

g31 g33

)(
l12

l32

)
(4.31)

Thus we have, again generalizing now in terms of an upper row kabove, a
middle row kto, and a bottom row kfrom, the following values for the inverse:

gkabove,kto = gkabove,kabovelkabove,kto + gkabove,kbelowlkbelow,kto , (4.32)
gkto,kabove = ukto,kabovegkabove,kabove + ukto,kbelowgkbelow,kabove , (4.33)

gkto,kto = (aBCR
kto,kto

)−1 + gkto,kabovelkabove,kto + gkto,kbelowlkbelow,kto , (4.34)
gkto,kbelow = ukto,kabovegkabove,kbelow + ukto,kbelowgkbelow,kbelow , (4.35)
gkbelow,kto = gkbelow,kabovelkabove,kto + gkbelow,kbelowlkbelow,kto , (4.36)

where we assume we have already determined from the outset the corner
blocks of the inverse gkabove,kabove , gkabove,kbelow , gkbelow,kabove and gkbelow,kbelow as well as
the LU factors lkabove,kto , lkbelow,kto and ukto,kabove , ukto,kbelow . Furthermore, aBCR

kto,kto
is not

necessarily equal to akto,kto since this block may be updated several times under
repeated reduction steps, as we mentioned earlier for the corner production
step. The center production step can also be visualized in these generalized
terms in Fig. 4.9, which can be loosely compared to Eq. (4.25).

The full production phase of BCR is visualized in Fig. 4.10, where we com-
mence with the results of the reduction phase ABCR on the left, and we visualize
the production by the elimination tree on the left.

90

4.3 Block Cyclic Reduction

ukto,kabove ukto,kbelow

lkabove,kto

lkbelow,kto

gkabove,kabove gkabove,kbelow

gkbelow,kabove gkbelow,kbelow

Figure 4.9: The center production step in BCR from the two rows kabove and kbelow towards a
center row kto can be seen to produce the blocks of G as seen above on the left, while using the
LU factors stored from the reduction phase as seen on the right. The lighter blocks on the left
are the produced inverse blocks, while the darkened corner blocks are assumed to have been
produced in an earlier stage of the BCR production phase.

4.3.2 Algorithm

We now proceed to formalize the BCR method in pseudocode, such that it is
relatively straight forward to implement, and that we may start to analyze the
algorithms that make it up.

4.3.2.1 Control Code

A nontrivial amount of the BCR method code consists of control code, in the
sense that it controls which rows are eliminate or produced, and what types of
production are called.

We begin by looking at Alg. (4.5) REDUCEROWINDICES. This algorithm
determines which rows we will be reducing towards, during a certain level of
elimination in the reduction phase of BCR. The rows it delivers depend on an
array of indices iBCR that tells us what part of the original matrix A we want
to perform BCR on. In the case of regular BCR as described in this section,
our input array of indices iBCR = {1, 2, . . . , n}, thus we consider all of A as
the problem to be solved with BCR. The reason this might be different than
expected will become clear when we introduce a Hybrid method in the next
section. The algorithm will finally return the appropriate indices ielim which
need to be reduced towards in order to complete the reduction step at the level
of elimination desired.

A counterpart to Alg. (4.5) REDUCEROWINDICES is an algorithm that will
eventually tell us what rows we need to produce about, during the production

91

4.3 Block Cyclic Reduction

GBCR

deleted/disregarded blocks

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

execution order

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

TridA {G}

L,U

identity matrix

L factors (new/used/inactive)

U factors (new/used/inactive)

inverse (new/used/inactive)

Figure 4.10: This figure shows the full production phase in BCR for an example 15×15 block
matrix A. The initialized inverse block matrix G from the reduction phase is shown in the left
column, where only gkk = (aBCR

kk)−1 has been calculated. Using the preserved LU factors, as
seen in the center column, a series of production steps will leave us with TridA {G} as seen at
the bottom. The elimination tree from the reduction phase is shown in the right column, and
guides us in the production phase, showing how we double the size of our computed portion
of G as we move down the levels of the tree.

92

4.3 Block Cyclic Reduction

Algorithm 4.5 REDUCEROWINDICES(iBCR, level)
1: stride← 2level−1

2: i← stride
3: ielim ← {}
4: while i ≤ length of iBCR do
5: ielim x iBCR[i]

6: i← i+ stride
7: return ielim

phase of BCR when we begin reconstructing parts of our desired inverse, G.
This is done by Alg. (4.6) PRODUCEROWINDICES, which takes the indices iBCR

representing the matrix we are trying to perform BCR on (cf. Alg. (4.5) REDUC-
EROWINDICES) and the level of the elimination tree we are trying to produce
from. The algorithm will then deliver a vector of indices iprod which indicate
the rows we will have to produce in order to accomplish the production step
and move one level down the elimination tree.

Algorithm 4.6 PRODUCEROWINDICES(iBCR, level)
1: stride← 2level

2: idx← 2level−1

3: iprod ← {}
4: while idx ≤ n do
5: iprod x idx
6: idx← idx + stride
7: return iprod

An auxiliary function in the quest to the reduction step, where we eliminate
about a certain row, is Alg. (4.7) REDUCTIONINDICES. The algorithm takes the
argument ielim, which is a vector of indices involved in the reduction steps at
a certain level in the reduction phase. The argument row tells us which row
in the block tridiagonal matrix represented by the indices ielim we are reducing
towards. The algorithm then assigns values to a quintet of indices, namely h,
i, j, k and l, which will be the indices telling us which blocks in ABCR will be
used in the reduction step (cf. Eq. (4.4)).

4.3.2.2 Reduction

The single reduction step is taken care of by Alg. (4.8) REDUCE, which is rela-
tively long and complex as it takes care of communication between processes

93

4.3 Block Cyclic Reduction

Algorithm 4.7 REDUCTIONINDICES(row, ielim)

1: h, i← −∞
2: j ← ielim[row]

3: k, l←∞
4: if row− 2 ≥ 1 then
5: h← ielim[row− 2]

6: if row− 1 ≥ 1 then
7: i← ielim[row− 1]

8: if row + 1 ≤ n then
9: k ← ielim[row + 1]

10: if row + 2 ≤ n then
11: l← ielim[row + 2]

12: return h, i, j, k, l

as well as the mathematical operations that carry out the reductions given in
Eqs. (4.5)–(4.7).

The very first call by REDUCE is to Alg. (4.7) REDUCTIONINDICES in order
to determine the indices h, i, j, k and l involved in the single reduction step as
shown in Eq. (4.4). REDUCE then has two cases, which are both mirror images
of each other, as the first case on line 2 executes if the row we are reducing
towards has a row above it that will be eliminated1, and the case on line 18
will execute if there is a row to be eliminated below.

Since the matrix A (and all other block matrices) may be distributed among
several machines with only direct access to their owned portions of the matri-
ces, we resort to message passing communication in order to share data among
them. Operating with the case on line 2, we have row i to be eliminated, and
row j to be updated accordingly. Looking at line 5 to line 8 we take care to
send the values in A to the owner of row j, such that it can proceed with work.
The owner of row i, once transmission is completed, can then calculate the cor-
responding factor uij used later in the production phase. The owner of row j

receives data via line 9 to line 12, at which point it will be ready to determine
the LU factor lji and to update aBCR

jj and aBCR
jh , if it exists. This communication,

of course, does not take place if rows i and j are owned by the same process.
The portion of REDUCE for the communication and work between row j and k
is similar to this, and is not described.

1In the manner BCR is specified here, this will always be the case. This is because we
choose to eliminate odd–indexed rows starting from the top. One could imagine BCR elimi-
nating odd–indexed rows whose numbering commences from the bottom of A.

94

4.3 Block Cyclic Reduction

Algorithm 4.8 REDUCE(ABCR,L,U, row, level, ielim)

1: h, i, j, k, l← REDUCTIONINDICES(row, ielim) get working indices
2: if i ≥ ielim[1] then if there is a row above
3: if row i is mine then
4: uij ← −(aBCR

ii)−1aBCR
ij 1op(LU), 1op(×)

5: if row i is mine and row j is not mine then
6: send (aBCR

ii)−1, aBCR
ij to owner of row j

7: if aBCR
ih exists then

8: send aBCR
ih to owner of row j

9: if row i is not mine and row j is mine then
10: recv (aBCR

ii)−1, aBCR
ij from owner of row i

11: if aBCR
ih exists then

12: recv aBCR
ih from owner of row i

13: if row j is mine then
14: lji ← −aBCR

ji (aBCR
ii)−1 1op(×)

15: aBCR
jj ← aBCR

jj + ljia
BCR
ij 1op(×), 1op(+)

16: if aBCR
ih exists then

17: aBCR
jh ← ljia

BCR
ih 1op(×)

18: if k ≤ ielim[end] then if there is a row below
19: if row k is mine then
20: ukj ← −(aBCR

kk)−1aBCR
kj 1op(LU), 1op(×)

21: if row k is mine and row j is not mine then
22: send (aBCR

kk)−1, aBCR
kj to owner of row j

23: if aBCR
kl exists then

24: send aBCR
kl to owner of row j

25: if row k is not mine and row j is mine then
26: recv (aBCR

kk)−1, aBCR
kj from owner of row k

27: if aBCR
kl exists then

28: recv aBCR
kl from owner of row k

29: if row j is mine then
30: ljk ← −aBCR

jk (aBCR
kk)−1 1op(×)

31: aBCR
jj ← aBCR

jj + ljka
BCR
kj 1op(×), 1op(+)

32: if aBCR
kl exists then

33: aBCR
jl ← ljka

BCR
kl 1op(×)

34: return ABCR,L,U

95

4.3 Block Cyclic Reduction

The full reduction phase of BCR is performed by Alg. (4.9) REDUCEBCR.
The algorithm takes as arguments the block matrix A and the array of indices
iBCR which defines what part of A we wish to perform BCR on. In the case of
performing simple BCR on all of A, as done in this section, we have iBCR =

{1, 2, . . . , n}. In this case, L and U will also simply be identity matrices I, and
it is only in the next section, when we introduce the Hybrid method, that these
arguments will differ from this.

Algorithm 4.9 REDUCEBCR(A,L,U, iBCR)

Require: A ∈ Bn,n

Ensure: ABCR,L,U ∈ Bn,n

1: k ← length of iBCR

2: h← log2(k)

3: for level = 1 up to h do
4: ielim ← REDUCEROWINDICES(iBCR, level) determine active rows
5: for row = 1 up to length of ielim do eliminate active rows
6: ABCR,L,U← REDUCE(A,L,U, row, level, ielim)

7: return ABCR,L,U

The first two lines of REDUCEBCR determines the height of the elimination
tree characterized by our reduction/production phases. In the case of plain
BCR, k on line 1 evaluates to n. The elimination tree, being a balanced binary
tree, will have a height characterized by the base 2 logarithm taken on the
number of nodes it has. This is performed on line 2, where h is taken to be the
integer part of log2(k). Thus

h = blog2(k)c (4.37)

where k denotes the size (number of diagonal blocks) of the tridiagonal system
undergoing BCR.

The for loop on line 3 then takes care of looping over every level of the
elimination tree, while the loop on line 5 will loop over all indices involved
at the respective level of elimination, and call Alg. (4.8) REDUCE for every in-
dex. These involved indices are provided by a preliminary call to Alg. (4.5)
REDUCEROWINDICES at the start of the outer for loop on line 4.

Once all levels of elimination have been processed, the algorithm returns
the modified block matrix ABCR, which now may have nonzero blocks away
from the block tridiagonal (cf. Fig. 4.7 and Fig. 4.11).

The full reduction phase and communication pattern for an example 15×15

block matrix A is shown in Fig. 4.11, where we have distributed data across 5

96

4.3 Block Cyclic Reduction

processes. It can be seen that initially, the reduction phase is highly parallel,
but as we proceed up the elimination tree, more and more processes will re-
main idle. In this case, we also only have nearest–neighbor communications,
but if A were larger and we might have more processes, communication will
stretch further.

Another figure that might aid understanding is presented in Fig. 4.12. Here
we show the reduction phase of BCR on the same example 15 × 15 block A,
where we have re–ordered the indices in A such that we can see how BCR cor-
responds to a downwards Gaussian elimination1 phase on all subdiagonals,
and subsequent fill–in, of the re–ordered A. This also leads to the strictly tri-
angular L and U matrices as might be expected of an LU factorization.

4.3.2.3 Production

The single reduction step is taken care of by Alg. (4.8) REDUCE, which is rela-
tively long and complex as it takes care of communication between processes
as well as the mathematical operations that carry out the reductions given in
Eqs. (4.5)–(4.7).

The production phase of BCR is characterized by one of two basic opera-
tions, namely those of corner and center productions. The corner production
step is detailed in Alg. (4.10) CORNERPRODUCE, and determines blocks of the
inverse as given by Eqs. (4.21)–(4.23) and as visualized in Fig. 4.8.

As the data may be distributed, the involved block rows kfrom and kto may
reside on different processes. Thus the first part of the algorithm via line 1 to
line 3 takes care of sending data from kfrom to kto, such that the process owning
kto can determine the inverse blocks belonging to it. The row owning kfrom can
then finish its job by determining gkfrom,kto done on line 4.

The process owning row kto will wait to receive data from the process own-
ing row kfrom via code between line 5 and line 7, before producing the inverse
blocks belonging to it on line 8 and line 9. If the same process owns rows kto

and kfrom, no message passing takes place, and the inverse blocks are calculated
quickly.

The center production step, given in in Alg. (4.11) CENTERPRODUCE han-
dles determining the inverse as given by Eqs. (4.32)–(4.36) and visualized by
Fig. 4.9. Again, as for REDUCE, and as seen on Fig. 4.9, 3 distinct rows are in-
volved named kabove, kbelow and kto, for the rows above, below and the row to
be produced, respectively.

1As first identified by Golub [32].

97

4.3 Block Cyclic Reduction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IA

identity matrix (negative)

eliminated block

untouched block

1st reduction (new/updated/inactive)

2nd reduction (new/updated/inactive)

3rd reduction (new/updated/inactive)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ABCR

execution order
messages

finished

idle

active
L factors (new/inactive)

U factors (new/inactive)

L,U

Figure 4.11: Visualizing the reduction phase of the block cyclic reduction method for calcu-
lating the block tridiagonal inverse TridA {G} of a block tridiagonal matrix A with 15 diagonal
blocks. The matrices are distributed among the processes according to the horizontal dashed
lines, and inter–process communications are indicated by arrows. Idle processes are indicated
by “−”, while working processes (not counting communication) are indicated by “+”. The L
and U factors are displayed on the right hand side of the augmented matrices, with blue and
green blocks, respectively.

98

4.3 Block Cyclic Reduction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 23 45 67 89 1011 1213 1415

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 23 45 67 89 1011 1213 1415

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 23 45 67 89 1011 1213 1415

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 23 45 67 89 1011 1213 1415

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 23 45 67 89 1011 1213 1415

IA

ABCR

identity matrix (negative)

eliminated block

untouched block

1st reduction (new/updated/inactive)

2nd reduction (new/updated/inactive)

3rd reduction (new/updated/inactive)

execution order

L factors (new/inactive)

U factors (new/inactive)

L,U

Figure 4.12: Visualizing the reduction phase of the block cyclic reduction method for calcu-
lating the block tridiagonal inverse TridA {G} of a block tridiagonal matrix A with 15 diagonal
blocks in reordered fashion. The L and U factors are displayed on the right hand side of the
augmented matrices, with blue and green blocks, respectively.

99

4.3 Block Cyclic Reduction

Algorithm 4.10 CORNERPRODUCE(ABCR,L,U,GBCR, kfrom, kto)

1: if row kfrom is mine then
2: if row kto is not mine then
3: send gkfrom,kfrom , lkfrom,kto to owner of row kto

4: gkfrom,kto ← gkfrom,kfromlkfrom,kto 1op(×)
5: if row kto is mine then
6: if row kfrom is not mine then
7: recv gkfrom,kfrom , lkfrom,kto from owner of row kfrom

8: gkto,kfrom ← ukto,kfromgkfrom,kfrom 1op(×)
9: gkto,kto ← (aBCR

kto,kto
)−1 + gkto,kfromlkfrom,kto 1op(×), 1op(+)

10: return GBCR

Communication for the process owning the upper row kabove is taken care of
by line 1 to line 6, as it passes messages to the processes owning kto and kbelow.
In a likewise manner, communication for the process owning the lower row
kbelow is done by line 8 to line 13. When their communications have completed,
they finish by performing the work necessary to complete parts of the inverse
that belong to them, namely Eq. (4.32) and Eq. (4.36) via line 7 and line 14,
respectively.

Finally, communication for the process owning the middle row kto is han-
dled by line 15 to line 19. When it has received this data, line 20 to line 22
handles the work of determining parts of G as dictacted by Eqs. (4.33)–(4.35).
Once a process has calculated their respective owned blocks of the inverse, the
method returns.

Something to note is the switched order of the send/receive operations
on lines 3,4 and 10,11 that involve direct communications between the pro-
cesses owning rows kabove and kbelow. This is due to the blocking nature of the
send/receive calls used in the algorithm, and in order to avoid deadlock, we
ensure that we pass information from kabove to kbelow, before passing informa-
tion from kbelow to kabove.

The full production phase of BCR is performed by Alg. (4.12) PRODUCE-
BCR. The algorithm takes as arguments the block matrix ABCR, as delivered
by the reduction phase completed by REDUCEBCR, as well as the associated
LU factors L and U. Furthermore, we specify a near–empty G, which has been
initialized to only contain gkk, determined simply after the full reduction phase
via Eq. (4.10).

Just as for REDUCEBCR, we supply an array of indices iBCR which define
what part of A we wish to perform BCR on. Again, in the case of performing

100

4.3 Block Cyclic Reduction

Algorithm 4.11 CENTERPRODUCE(ABCR,L,U,G, kabove, kto, kbelow)

1: if row kabove is mine then
2: if row kbelow is not mine then
3: send lkabove,kto to owner of row kbelow

4: recv lkbelow,kto from owner of row kbelow

5: if row kto is not mine then
6: send gkabove,kabove ,gkabove,kbelow , lkabove,kto to owner of row kto

7: gkabove,kto ← gkabove,kabovelkabove,kto + gkabove,kbelowlkbelow,kto 2op(×), 1op(+)
8: if row kbelow is mine then
9: if row kabove is not mine then

10: recv lkabove,kto from owner of row kabove

11: send lkbelow,kto to owner of row kabove

12: if row kto is not mine then
13: send gkbelow,kbelow ,gkbelow,kabove , lkbelow,kto to owner of row kto

14: gkbelow,kto ← gkbelow,kabovelkabove,kto + gkbelow,kbelowlkbelow,kto 2op(×), 1op(+)
15: if row kto is mine then
16: if row kabove is not mine then
17: recv gkabove,kabove ,gkabove,kbelow , lkabove,kto from owner of row kabove

18: if row kbelow is not mine then
19: recv gkbelow,kbelow ,gkbelow,kabove , lkbelow,kto from owner of row kabove

20: gkto,kabove ← ukto,kabovegkabove,kabove + ukto,kbelowgkbelow,kabove 2op(×), 1op(+)
21: gkto,kbelow ← ukto,kabovegkabove,kbelow + ukto,kbelowgkbelow,kbelow 2op(×), 1op(+)
22: gkto,kto ← (aBCR

kto,kto
)−1 + gkto,kabovelkabove,kto + gkto,kbelowlkbelow,kto 2op(×), 2op(+)

23: return GBCR

101

4.3 Block Cyclic Reduction

simple BCR on all of A, we have iBCR = {1, 2, . . . , n}, while in the next section,
when we introduce the Hybrid method, these arguments will differ.

Algorithm 4.12 PRODUCEBCR(ABCR,L,U,G, iBCR)

Require: ABCR,L,U ∈ Bn,n, [G]kk = [A−1]kk
Ensure: TridA {G} = TridA {A−1} ∈ Bn,n

1: stride← 2level−1 stride
2: for level = h down to 1 do
3: iprod ← PRODUCEROWINDICES(iBCR, level) determine rows to be produced
4: for i = 1 up to length of iprod do
5: kto ← iBCR[iprod[i]]

6: if i = 1 then case 1
7: kfrom ← iBCR[iprod[i] + stride]
8: GBCR ← CORNERPRODUCE(ABCR,L,U,GBCR, kfrom, kto)

9: if i 6= 1 and i = length of iprod then case 2
10: if iprod[end] ≤ length of iBCR − stride then case 2A
11: kabove ← iBCR[iprod[i]− stride]
12: kbelow ← iBCR[iprod[i] + stride]
13: GBCR ← CENTERPRODUCE(ABCR,L,U,GBCR, kabove, kto, kbelow)

14: else case 2B
15: kfrom ← iBCR[iprod[i]− stride]
16: GBCR ← CORNERPRODUCE(ABCR,L,U,GBCR, kfrom, kto)

17: if i 6= 1 and i 6= length of iprod then case 3
18: kabove ← iBCR[iprod[i]− stride]
19: kbelow ← iBCR[iprod[i] + stride]
20: GBCR ← CENTERPRODUCE(ABCR,L,U,GBCR, kabove, kto, kbelow)

21: return GBCR

4.3.2.4 Inversion

Finally, we can present the algorithm that will calculate, via BCR, the block
tridiagonal part of the inverse TridA {G} for an arbitrary block tridiagonal A

in Alg. (4.13) INVERSEBCR. Taking in only A as an argument, we first dictate
that all rows in A will be active indices in the BCR method, by specifying the
index array iBCR = {1, 2, . . . , n} on line 1.

The algorithm then launches into the first distinct phase of BCR, as seen in
Fig. 4.6, on line 2. After the reduction phase has completed, we prime the in-
verse G with the first block on line 3 as determined via Eq. (4.10). We can then

102

4.3 Block Cyclic Reduction

proceed with the production phase on line 4 by calling PRODUCEBCR with
the primed G and the results from REDUCEBCR. When this has completed,
we can extract TridA {G} from the result GBCR, of which the block tridiagonal
is a subset, and we can return and terminate execution.

Algorithm 4.13 INVERSEBCR(A)

Require: A ∈ Bn,n

Ensure: TridA {G} = TridA {A−1} ∈ Bn,n

1: iBCR ← {1, 2, . . . , n}
2: ABCR,L,U← REDUCEBCR(A, iBCR)

3: gBCR
kk = (aBCR

kk)−1 1op(LU), 1op(×)
4: TridA {G} ⊂ GBCR ← PRODUCEBCR(ABCR,L,U,GBCR, iBCR)

5: return TridA {G}

The entire production phase and communication pattern for an example
15×15 block matrix A is shown in Fig. 4.13, where we have distributed data
across 5 processes. It can be seen that initially, the production phase is highly
sequential, in that only the process owning gkk and its neighbors with respect
to the elimination tree have work to do. However, as we proceed down the
elimination tree, more and more processes can take up work, and the method
gains parallel efficiency.

A figure presenting a re–ordered version of Fig. 4.13 is given in Fig. 4.12.
Here we show the production phase of BCR on the same example 15×15 block
A, where we have re–ordered the indices in A just as before such that BCR can
be seen to be a downwards Gaussian elimination phase.

4.3.3 Complexity

In order to perform a complexity analysis on BCR, we can take advantage of
the properties of the elimination trees as seen earlier in Fig. 4.7 and Fig. 4.10 in
order to perform a worst–case operation count. Taking the same 15×15 block
example, we look at the elimination tree again in Fig. 4.15, where we have
labeled the individual row operations with arrows as the BCR method goes
through its reduction and production phases.

Blue arrows pointing upwards indicate a row operation in conjunction with
a center reduction step, while a red arrow heading upwards indicates a row
operation in relation to a corner reduction step. This counts for downwards
arrows, however here the corner/center steps are of the production type that
generate blocks of the inverse G.

103

4.3 Block Cyclic Reduction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
execution order

messages

finished

idle

active

GBCR L,U

TridA {G}

deleted/disregarded blocks

identity matrix

L factors (new/used/inactive)

U factors (new/used/inactive)

inverse (new/used/inactive)

Figure 4.13: Visualizing the production phase of the block cyclic reduction method for calcu-
lating the block tridiagonal inverse TridA {G} of a block tridiagonal matrix A with 15 diagonal
blocks. The matrices are distributed among the processes according to the horizontal dashed
lines, and inter–process communications are indicated by arrows. Idle processes are indicated
by “−”, while working processes (not counting communication) are indicated by “+”. The L
and U factors are displayed on the right hand side of the augmented matrices, with blue and
green blocks, respectively.

104

4.3 Block Cyclic Reduction

deleted/disregarded blocks

identity matrix

L factors (new/used/inactive)

U factors (new/used/inactive)

inverse (new/used/inactive)

execution order

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 23 45 67 89 1011 1213 1415

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 23 45 67 89 1011 1213 1415

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 23 45 67 89 1011 1213 1415

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 23 45 67 89 1011 1213 1415

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 23 45 67 89 1011 1213 1415

L,U

TridA {G}

GBCR

Figure 4.14: Visualizing the production phase of the block cyclic reduction method for calcu-
lating the block tridiagonal inverse TridA {G} of a block tridiagonal matrix A with 15 diagonal
blocks in reordered fashion. The L and U factors are displayed on the right hand side of the
augmented matrices, with blue and green blocks, respectively.

105

4.3 Block Cyclic Reduction

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

execution order

gkk = (aBCR
kk)−1

corner/center production

corner/center reduction

Figure 4.15: The above, in this case complete, binary tree resulting for a 15×15 block
matrix A being treated by block cyclic reduction. The red arrows correspond to corner re-
duction/production steps, while the blue arrows correspond to center reduction/production
steps. Linking the reduction phase on the left to the production phase on the right is the single
block inversion gkk = (aBCR

kk)−1 that initializes G.

106

4.3 Block Cyclic Reduction

h = !log2(n)"

count = 2h

count = n− 2h− 1

outside nodes:

inside nodes:

Figure 4.16: This diagram illustrates the different node types in the elimination tree of BCR
in terms of whether or not the node will cause a corner reduction/production step or a center
reduction/production step. Red nodes on the “outside” of the graph cause corner steps, while
blue nodes on the “inside” cause center steps. This is due to the fact that as BCR progresses,
the nodes on the outside will consistently be the first/last rows of ABCR. The root of the tree is
not counted, as operations involving it is the single block inversion gkk = (aBCR

kk)−1, as seen in
Fig. 4.15.

As can be seen, nodes in the tree fall into one of three categories: the root
node a88, an “inside” node, and an “outside” node. The root node is treated
separately, as the mathematical operations we will count for it are covered by
the large arrow in Fig. 4.15 where gkk = g88 is determined. The terms of inside
and outside node is clarified further in Fig. 4.16, which also provides a count
of the different node types for a tree with n nodes. Thus we see that outside
nodes will always perform either corner reduction/production steps, while
inside nodes will account for the center reduction/production operations. All
in all, there will be 2(n − 2h − 1) row operations due to inside nodes, as each
node updates both its neighbor nodes, and 2h row operations due to outside
nodes, as it only updates a single neighbor node.

In the reduction phase, each corner reduction needs a single LU factoriza-
tion, and two multiplications to determine the LU factors involved. A final
multiplication and addition are then needed in order to update A, leaving us
with a total of 1op(LU), 3op(×) and 1op(+) for each outside node in the elimi-
nation tree.

Regarding an inside node performing center reductions, there will be a
single LU factorization, and four multiplications in order to determine the
two pairs of LU factors generated as the node needs to update two neighbor
nodes, rather than the single neighbor node outside nodes have. The update
is then handled by two multiplications and two additions, leading to a total of

107

4.3 Block Cyclic Reduction

1op(LU), 6op(×) and 2op(+) for a single inside node.
Something to note is that the algorithm presented for reduction in Alg. (4.8)

REDUCE does not explicitly handle determining whether or not a−1
ii or a−1

kk have
already been factorized, but this should be done in order to save redundant LU
factorizations. Finally, before moving on to the production phase, generation
of gkk is performed requiring a single op(LU) and a final op(×) to determine
the inverse block explicitly.

Looking at Alg. (4.10) CORNERPRODUCE, we can count a total of 3op(×)

and a single op(+) to generate the 3 new inverse blocks. We can save an extra
LU factorization if we keep the values stored during the reduction phase, thus
we need not calculate (gBCR

kto,kto
)−1 again. This algorithm is called once for each

outside node in Fig. 4.16.
As for Alg. (4.11) CENTERPRODUCE, we count a total of 10op(×) and 6op(+)

in the generation of the 5 new blocks of the inverse, where again the algorithm
is only called once for each inside node in Fig. 4.16. Thus we can now tabulate
the operation count involved in BCR in Table 4.2.

Complexity Analysis for Block Cyclic Reduction

Calculation LU–factorizations Multiplications Additions
op(LU) op(×) op(+)

Reduction (outside) 2h 6h 2h

Reduction (inside) (n− 2h− 1) 6(n− 2h− 1) 2(n− 2h− 1)
Initialize gkk 1 1 0
Production (outside) 0 6h 2h

Production (inside) 0 10(n− 2h− 1) 6(n− 2h− 1)
INVERSEBCR n 16n− 20h− 15 8n− 12h− 8

Table 4.2: This table illustrates the amount of basic operations performed in calculating
the block tridiagonal inverse TridA {G} using the block cyclic reduction algorithm presented
in this section. The second, third and fourth columns refer to the amount of basic matrix
operations of LU–factorization, multiplication and addition involved in each algorithm. The
term n is the total amount of diagonal blocks in A ∈ Bn,n and h = blog2(n)c.

Looking at the results in Table 4.2, we see that BCR used to obtain the block
tridiagonal TridA {G} is a linear order method O(n) in the number of diagonal
blocks n of a block tridiagonal matrix A.

Although the prefactor of 16 in the number of matrix multiplies is rather
high compared to that of Alg. (3.11) SWEEPINVERSETRI which only has a factor
of 7, BCR betters Sweeps in the sense that the prefactor in the number of LU
factorizations is 1, where it is 3 for the Sweep algorithm. Furthermore, BCR
should have a far greater degree of parallelism over Sweep, despite the overall
higher operation count.

108

4.3 Block Cyclic Reduction

4.3.4 Stability

A lot of work has been done concerning the stability of BCR, starting with the
stabilization [34, 35] of the first unstable cyclic reduction algorithm developed
by Golub. As we can reformulate the process of BCR reduction with an equiv-
alent Gaussian elimination by finding a suitable block permutation matrix P,
we can discuss the stability of BCR elimination in terms of how Gaussian elim-
ination is stabilized.

In Gaussian elimination, one is able to employ the technique of either full
or partial pivoting in order to ensure stability, however, there is no known way
for doing this in BCR [36], due to the lack of block elements to pivot with and
the fact that the process of halving the number of unknowns at each step effec-
tively in parallel depends strongly on preserving the layout of block elements
in A.

From [32], and recognizing our inability to eliminate with anything but
diagonal pivots, we conclude that if elimination with the diagonal blocks is
stable, then cyclic reduction itself is stable. It has been noted [37, 33, 38, 39, 32]
that if A is strictly diagonally dominant or symmetric and positive definite,
then cyclic reduction will be stable.

By diagonal dominance, we understand the situation where the LU fac-
torization of diagonal blocks is well–behaved and stable. However, we do
note the possibility that it could be possible to have a system where Eq. (2.56)
may present ill–conditioned diagonal blocks. Subsequent updates of diagonal
blocks during the execution of the algorithm may also bring what were per-
haps well–conditioned blocks into an ill–conditioned state. These situations
however, have not happened in practice during the course of work presented
in this thesis.

As A is indexed by scalar elements over the basis orbitals of all the electrons
in a system, and we can order them arbitrarily, the organization of A into a
block tridiagonal form takes place due to an ordering of the orbitals from the
left electrode towards the right. This will eventually enable us to subdivide
the matrix A into blocks, where each diagonal block is related to the concept of
principal layers described earlier, and the off diagonal blocks show the coupling
of a principal layer with its nearest neighbor layers.

Due to this arbitrary ordering, it is difficult to determine whether or not the
matrix is diagonally dominant, but one can in a hand waving fashion argue
that due to nearsightedness and the left–to–right ordering of the orbitals, that
the orbital interactions represented in the diagonal blocks of A are stronger
than those in the off diagonal blocks. In other words, most orbitals within a

109

4.4 Hybrid Method

principal layer will interact far more strongly with orbitals within the layer,
than with orbitals in the nearest neighbor layers. Thus we can generally as-
sume A to be diagonally dominant, and BCR should be stable for many if not
all physical examples.

4.4 Hybrid Method

So far, we have seen methods that are effective at handling the problem of
inversion for the sequential case P = 1 in the case of sweeps and the parallel
case P ∼ n in the case of block cyclic reduction.

However, for cases easily encountered in electronic structure calculations,
the number n of diagonal blocks in A is typically much larger than the num-
ber of processes P available. These sorts of problems are typically handled on
individual workstations that have 2, 4, or maybe 8 cores, while n for a given
matrix A can generally be made large by looking at problems as large as pos-
sible that will fit in memory. This is usually the case since larger problem sizes
are closer approximations to reality, and are thus more desirable to solve.

The Hybrid method presented in this section seeks to parallelize the prob-
lem of inverting A effectively by combining the sequential efficiency of the
Gaussian elimination sweep based method, with the parallelism of block cyclic
reduction.

4.4.1 Description

For the Hybrid method, we assume that the number of processors available for
the task is generally much less than the number of diagonal blocks in A, such
that n� p. The Hybrid method itself is visualized in Fig. 4.17.

The method begins by reducing the system A to be inverted to a smaller
system ASchur which has on the order of 2P blocks in an approach that is em-
barrassingly parallel1. This approach is closely related to determining a Schur
complement. This smaller system should be more efficiently handled by BCR
as the number of rows it has is on the order of P.

The full block cyclic reduction method is then run on this reduced system
from which we obtain the inverse blocks GSchur = TridASchur {G}, correspond-
ing to a certain arrangement of blocks within G. From GSchur we then compute

1An embarrassingly parallel task is one that can be arbitrarily subdivided among a set of
processes and handled without communication.

110

4.4 Hybrid Method

≡

≡

ASchurA

TridA {G} GBCR
gkk

Figure 4.17: The Hybrid method is a method for the computation of the block tridiagonal
inverse TridA {G} of a block tridiagonal matrix A. This is accomplished by first performing a
series of Schur decompositions in parallel, without communication, followed by a BCR reduc-
tion phase until we can determine a single block of the inverse gkk. Following this, a BCR pro-
duction phase is used to reconstruct the block tridiagonal inverse for the Schur decomposed
matrix earlier, followed by a final production phase without communication to determine the
remainder of TridA {G}.

111

4.4 Hybrid Method

our desired TridA {G} by what corresponds to back solving using the Schur
complement, and which is again an embarrassingly parallel operation.

The first task of the Hybrid method is to reduce A to a smaller block tridiag-
onal system ASchur which will be more efficient for the BCR method to handle.
This is done on the basis of how A is divided among processes (cf. Fig. 4.3
or cf. Fig. 4.4), and involves two kinds of reduction operations, depending on
whether the rows of A belong to a corner process (myPID = 0 or myPID =

P− 1) or a central process (0 < myPID < P− 1).

4.4.1.1 Corner Schur Reduction

We take our original augmented matrix from Eq. (2.68), and partition each side
of it into 4 regions at row/column k, such that we have

[A|I] =


a11 a12 i11

a21 a22 a23 i22

.
ak,k−1 akk αkn ikk

αnk αnn ιnn

 (4.38)

where the block αnn now represents the rest of the block tridiagonal matrix A

for rows/columns k+1, k+2, . . . , n, andαkn andαnk are elongated blocks con-
taining ak,k+1 and ak+1,k, respectively. We then perform a downwards Gaussian
elimination sweep, as done in Eq. (3.5), where we stop on reaching row k, get-
ting

[ASchur|JSchur] =


a11 a12 i11

dL22 a23 l21 i22

. ◦
dLkk αkn ◦ ◦ lk,k−1 ikk
αnk αnn ιnn


(4.39)

where we have renamed the factors cLi = −ai+1,id
−1
ii in terms of the LU factors

li+1,i and the ◦ symbols indicate fill–in on the right hand side of the augmented
matrix. As we sweep down, we can at the same time calculate the LU factors
ui−1,i = −ai−1,ia

−1
ii . Thus we have calculated the Schur complement dLkk cor-

responding to the block matrix composed of the first k rows/columns of A:

112

4.4 Hybrid Method


a11 a12

a21 a22 a23

.
ak−1,k−2 ak−1,k−1 ak−1,k

ak,k−1 akk

 . (4.40)

The Schur reduction phase for the corner processes can be seen in Fig. 4.18.
When the reduction phase is complete, the Hybrid method passes off ASchur to
BCR, in order to determine the block tridiagonal matrix elements correspond-
ing to the reduced system (

dLkk αkn ikk
αnk αnn ιnn

)
. (4.41)

In the Hybrid method, however, the block structure within αnn will be pre-
served, and will be solved for via BCR. In the next section, we solve the above
reduced system differently, but only in order to yield the equations for how to
reconstruct the rest of TridA {G} once BCR returns with its calculated portion
of G.

4.4.1.2 Equations for the Solution of the Reduced System

Starting with a row operation between rows k and k + 1 ≡ n, using the LU
factor λnk = −αnk(dLkk)−1, we get

a11 a12 i11

dL22 a23 l21 i22

. ◦
dLkk αkn ◦ ◦ lk,k−1 ikk
0nk δLnn ◦ ◦ λnklk,k−1 λnk ιnn

 (4.42)

where δLnn = αnn + λnkαkn. At the same time, we can calculate the associated
LU factor υkn = −(dLkk)

−1αkn for later use. We can now solve for the inverse
on the bottom row by multiplying across it with (δLnn)−1, obtaining

a11 a12 i11

dL22 a23 l21 i22

. ◦
dLkk αkn ◦ ◦ lk,k−1 ikk

ιnn • • γn,k−1 γnk γnn

 (4.43)

113

4.4 Hybrid Method

ASchurASchur

execution order

A AI I

L,U L,U

Figure 4.18: The Schur reduction phase for the corner processes, where a Gaussian elimi-
nation sweep will yield a Schur complement block, represented by the final bright red block.
The LU factors l and u are stored, and their positions are given with blue and green blocks,
respectively.

114

4.4 Hybrid Method

and where we write • to indicate blocks of the inverse in order to save space.
We now multiply row k + 1 ≡ n with −αkn and add it to row k, and then
multiply across row k with (dLkk)

−1 to obtain
a11 a12 i11

dL22 a23 l21 i22

. ◦
ikk 0kn • • gk,k−1 gkk γkn

ιnn • • γn,k−1 γnk γnn

 (4.44)

where we have

gkk = (dLkk)
−1(ikk −αknγnk)

= (dLkk)
−1 + υknγnk (4.45)

and

gkn = −(dLkk)
−1αknγnn

= υknγnn (4.46)

where the LU factor υkn = −(dLkk)
−1αkn is the related LU factor to λnk, cal-

culated earlier. To reiterate, the solution of these Green’s function blocks is
accomplished by a BCR solution phase in the Hybrid method, but we are oth-
erwise free to choose a method. Once this is accomplished, we find ourselves
in the situation of having to determine the block tridiagonal inverse for the
first k rows/columns of A using the block gkk returned via BCR, and the LU
factors preserved during the Schur corner reduction phase.

4.4.1.3 Corner Schur Production

The corner Schur production phase seeks to determine the Green’s function
blocks gi+1,i, gi,i+1 and gii for the values i = k− 1, k− 2, . . . , 1, since we assume
the rest of TridA {G} has been determined. Looking now at gk,k−1, we have via
the row operation from Eq. (4.43) leading to Eq. (4.44) that

gk,k−1 = (dLkk)
−1(lk,k−1 −αknγn,k−1)

= (dLkk)
−1(lk,k−1 −αknγnklk,k−1)

= (dLkk)
−1(ik,k −αknγnk)lk,k−1

= ((dLkk)
−1 + υknγnk)lk,k−1

= gkklk,k−1 (4.47)

115

4.4 Hybrid Method

Thus we have defined gk,k−1 based only on the knowledge of what gkk is, and
an LU factor derived in the Schur decomposition of the 2×2 partitioned system
given in Eq. (4.40).

To obtain gk−1,k and gk−1,k−1, we perform a row operation upwards on
Eq. (4.44) using the stored LU factor uk−1,k, and multiply across row k − 1

with (dLk−1,k−1)−1, obtaining

a11 a12 i11

dL22 a23 l21 i22

.
... . . .

ik−1,k−1 0k−1,k • • • gk−1,k−1 gk−1,k •
ikk • • • gk,k−1 gkk •

ιnn • • • • • •


(4.48)

where

gk−1,k = (dLk−1,k−1)−1(−ak−1,kgkk)

= uk−1,kgkk (4.49)

and

gk−1,k−1 = (dLk−1,k−1)−1(ik−1,k−1 − ak−1,kgk,k−1)

= (dLk−1,k−1)−1 + uk−1,kgk,k−1 (4.50)

We can then use Eq. (4.47), Eq. (4.49) and Eq. (4.50) recursively in the pro-
duction of our desired tridiagonal portion of G as they are independent of
any relation to row k + 1 ≡ n, producing the following equations for i =

k − 1, k − 1, . . . , 1.

gi+1,i = gi+1,i+1li+1,i (4.51)
gi,i+1 = ui,i+1gi+1,i+1 (4.52)

gii = (dLii)
−1 + ui,i+1gi+1,i (4.53)

The derivation and formulas are mirrored for the case of the Schur reduc-
tion/production of the lower corner portion of A for process myPID = P− 1.
The corner Schur production phases are visualized in Fig. 4.19, for both the
upper and lower corner processes of A.

4.4.1.4 Center Schur Reduction

We now look at the Schur reduction that a process owning rows in A that are
neither at the top or bottom. We again take our original augmented matrix

116

4.4 Hybrid Method

ABCR,G L,U

execution order

L,UABCR,G

Figure 4.19: The Schur production phase for the corner processes, where the block tridiago-
nal portion of G is reconstructed on the corners once an initial inverse block is returned from
the BCR phase of the Hybrid method. The used LU factors in constructing the new (bright-
ened) inverse blocks is indicated by darkened LU blocks.

117

4.4 Hybrid Method

from Eq. (2.68), and now partition it at rows/columns j and k, such that we
have

α11 α1j ι11

αj1 ajj aj,j+1 ijj

aj+1,j aj+1,j+1
. . . ij+1,j+1

. ak−1,k
. . .

ak,k−1 akk αkn ikk
αnk αnn ιnn


(4.54)

where α11 now represents the block tridiagonal part of A for the first upper
rows 1, 2, . . . , j − 1, and αnn encompasses the block tridiagonal part of A for
the last lower rows k + 1, k + 2, . . . , n. The coupling matrices α1j , αj1, αkn
and αnk are elongated, where their nontrivial content corresponds to what
was aj−1,j , aj,j−1, an−1,n and an,n−1, respectively. The identity matrices ι11 and
ιnn are likewise sized to include the identity matrices i11, i22, . . . , ij−1,j−1 and
ik+1,k+1, ik+2,k+2, . . . , inn, respectively.

Looking at Eq. (4.54), we start a series of steps that seek to eliminate all
subdiagonal blocks aj+2,j+1, aj+3,j+2, . . . , ak,k−1 causing fill–in along column j

from row j + 2 down to row k. At the same time, we seek to eliminate the
superdiagonal block aj,j+1 with row j+1. This causes fill–in at position (j, j+2),
which we then eliminate with row j + 2, and so forth, until we have created a
final fill in block at position (jk). This procedure can be seen in Fig. 4.20,

If we perform the following permutation on A, where P is a block permu-
tation matrix, such that we have the following 3×3 block form,

PAP =

aj+1,j+1 aj+1,j+2 aj+1,j

aj+2,j+1
.
. . . ak−2,k−2 ak−2,k−1

ak−1,k−2 ak−1,k−1 ak−1,k

aj,j+1 ajj αj1
ak,k−1 akk αkn

α1j α11

αnk αnn


,

(4.55)

we can then see that the series of block eliminations in Fig. 4.20 corresponds
to the calculation of the Schur complement for the upper left 2×2 partition in

118

4.4 Hybrid Method

ASchur

A I

L,U

execution order

Figure 4.20: This figure shows the Schur reduction phase for a central process owning rows
in A. As the elimination proceeds, the bright red blocks indicate updates in A, and when they
have propagated to the corners of the section of A we have partitioned, we are finished, and
remain with the “reduce” block tridiagonal system as the bottom.

119

4.4 Hybrid Method

Eq. (4.55), leaving us with

PASchurP =

aj+1,j+1 aj+1,j+2 aj+1,j

.
dk−2,k−2 ak−2,k−1 fk−2,j

dk−1,k−1 fk−1,j ak−1,k

sjj sjk αj1
skj skk αkn
α1j α11

αnk αnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ij+1,j+1 � �

lj+2,j+1
. . . � �

◦ . . . ik−2,k−2 � �
◦ ◦ lk−1,k−2 ik−1,k−1 � �

lj,j+1 · · · lj,k−2 lj,k−1 ijj
◦ · · · lk,k−1lk−1,k−2 lk,k−1 ikk

ι11

ιnn



(4.56)

where the 2×2 block composed of sjj , sjk, skj and skk is the calculated Schur
complement, fij is fill–in in location (i, j) in A, ◦ denotes fill–in and � denotes
placeholder1 locations of the LU uji factors corresponding to the lij factors. It
is at this point that ASchur is passed off to a BCR solution process in order to
solve for the Green’s function blocks on the reduced system corresponding to
the lower 2×2 partition in Eq. (4.56).

4.4.1.5 Equations for the Solution of the Reduced System

Taking Eq. (4.56), we rename its larger partitions in the following manner

PASchurP =

 A′ F L0

S Y L1 IS

X Z IZ

 (4.57)

and which we now seek to continue to manipulate further to obtain G. This
phase is handled in the Hybrid method via BCR, but we perform it here ex-
plicitly in order to yield the equations that will tell us how to conduct the

1The � symbol in this case only indicates where a LU factor u would be found, and does
not represent actual content in the right hand side of the augmented matrix expression.

120

4.4 Hybrid Method

production phase to reconstruct TridA {G} for rows j, j + 1, . . . , k once BCR
has finished with the reduced system corresponding to(

S Y IS

X Z IZ

)
. (4.58)

Thus continuing from Eq. (4.57), we eliminate X with a row operation to obtain A′ F L0

S Y L1 IS

Z + LXY LXL1 LX IZ

 . (4.59)

This is followed by determining the inverse on the bottom row by multiplying
across with (Z + LXY)−1, getting A′ F L0

S Y L1 IS

IZ GZLXL1 GZLX GZ

 (4.60)

where GZ = (Z + LXY)−1. We then eliminate Y by multiplying the bottom
row by −Y and adding it to the middle row to get A′ F L0

S L1 −YGZLXL1 IS −YGZLX −YGZ

IZ GZLXL1 GZLX GZ

 (4.61)

where we can get the inverse on the second row by multiplying across with
S−1, yielding A′ F L0

IS S−1(L1 −YGZLXL1) S−1(IS −YGZLX) S−1(−YGZ)

IZ GZLXL1 GZLX GZ

 .

(4.62)
Looking at the inverse blocks on the positions corresponding to the Schur com-
plement S, we see

GS = S−1(IS −YGZLX) =

(
gjj gjk
gkj gkk

)
(4.63)

and thus we expect to return from the BCR phase in the Hybrid method with
the inverse blocks of G determined in these positions.

121

4.4 Hybrid Method

Looking at the adjacent blocks of the inverse in the positions corresponding
to L1 in Eq. (4.57), we see

GL1 = S−1(L1 −YGZLXL1) (4.64)
= S−1(IS −YGZLX)L1 (4.65)
= GSL1 (4.66)

which we can expand to get(
gj,j+1 · · · gj,k−2 gj,k−1

gk,j+1 · · · gk,k−2 gk,k−1

)
=

(
gjj gjk
gkj gkk

)(
lj,j+1 · · · lj,k−2 lj,k−1

◦ · · · lk,k−1lk−1,k−2 lk,k−1

)
=

(• · · · (gjjlj,k−2 + gjklk,k−1lk−1,k−2) (gjjlj,k−1 + gjklk,k−1)

• · · · (gkjlj,k−2 + gkklk,k−1lk−1,k−2) (gkjlj,k−1 + gkklk,k−1)

)
=

(• · · · (gjjlj,k−1lk−1,k−2 + gjklk,k−1lk−1,k−2) gj,k−1

• · · · (gkjlj,k−1lk−1,k−2 + gkklk,k−1lk−1,k−2) gk,k−1

)
=

(• · · · (gjjlj,k−1 + gjklk,k−1)lk−1,k−2 gj,k−1

• · · · (gkjlj,k−1 + gkklk,k−1)lk−1,k−2 gk,k−1

)
=

(• · · · gj,k−1lk−1,k−2 gj,k−1

• · · · gk,k−1lk−1,k−2 gk,k−1

)
=

(• · · · gj,k−2 gj,k−1

• · · · gk,k−2 gk,k−1

)
(4.67)

and thus we can express these blocks in terms of the stored LU factors l and the
inverse blocks GS returned by BCR. This leads us to obtaining our first desired
block of the inverse

gk,k−1 = gkjlj,k−1 + gkklk,k−1 (4.68)

and we can recognize the ability to generate recursively more blocks of the
inverse in GL1 using stored LU factors by

gji = gj,i+1li+1,i (4.69)
gki = gk,i+1li+1,i (4.70)

for i = k − 2, k − 3, . . . , j + 1. Thus we have back solved up to the following

122

4.4 Hybrid Method

form:



aj+1,j+1 aj+1,j+2 aj+1,j

.
dk−2,k−2 ak−2,k−1 fk−2,j

dk−1,k−1 fk−1,j ak−1,k

ijj
ikk

ι11

ιnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ij+1,j+1 ◦ ◦
lj+2,j+1

. . . ◦ ◦
◦ . . . ik−2,k−2 ◦ ◦
◦ ◦ lk−1,k−2 ik−1,k−1 ◦ ◦

gj,j+1 · · · gj,k−2 gj,k−1 gjj gjk • •
gk,j+1 · · · gk,k−2 gk,k−1 gkj gkk • •
• · · · • • • • • •
• · · · • • • • • •


.

(4.71)

4.4.1.6 Schur Center Production

We are now ready to look for a recursive method which can reconstruct the
block tridiagonal inverse for the rows j, j+ 1, . . . , k involved in the earlier cen-
ter Schur reduction phase. Working from Eq. (4.71), and looking first for gk−1,k,
we attain it by first eliminating ak−1,k and fk−1,j , and then multiplying across

123

4.4 Hybrid Method

by d−1
k−1,k−1, obtaining the inverse on row k − 1,

aj+1,j+1 aj+1,j+2 aj+1,j

.
dk−2,k−2 ak−2,k−1 fk−2,j

ik−1,k−1

ijj
ikk

ι11

ιnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ij+1,j+1 ◦ ◦
lj+2,j+1

. . . ◦ ◦

. . . ik−2,k−2 ◦ ◦
• · · · gk−1,k−2 gk−1,k−1 gk−1,j gk−1,k • •

gj,j+1 · · · gj,k−2 gj,k−1 gjj gjk • •
gk,j+1 · · · gk,k−2 gk,k−1 gkj gkk • •
• · · · • • • • • •
• · · · • • • • • •



(4.72)

where

gk−1,k = d−1
k−1,k−1(−ak−1,kgkk − fk−1,jgjk)

= uk−1,kgkk + uk−1,jgjk (4.73)

and

gk−1,k−1 = d−1
k−1,k−1(ik−1,k−1 − ak−1,kgk,k−1 − fk−1,jgj,k−1)

= d−1
k−1,k−1 + uk−1,kgk,k−1 + uk−1,jgj,k−1. (4.74)

Continuing this process, we can now define a recursion for i = k − 1, k −
2, . . . , j + 2 for determining the block tridiagonal portion of G on rows k −
1, k − 2, . . . , j + 1:

gii = d−1
ii + uijgji + ui,i+1gi+1,i (4.75)

gi−1,i = ui−1,jgji + ui−1,igii (4.76)
gi,i−1 = gijlj,i−1 + giili,i−1 (4.77)

with the final diagonal block defined similar to Eq. (4.75) becoming

gj+1,j+1 = d−1
i+1,i+1 + uj+1,jgj,j+1 + uj+1,j+2gj+2,j+1. (4.78)

124

4.4 Hybrid Method

Since we have been given gjj and gkk from the BCR phase, and with formu-
las Eq. (4.68) and Eq. (4.73) for gk−1,k and gk,k−1, we now have the full block
tridiagonal portion of G between rows j and k, inclusive.

4.4.2 Algorithm

We now present the algorithms that perform the Schur reduction and produc-
tion phases in the Hybrid method, along with the main algorithm for the Hy-
brid method that calls the Schur and BCR reduction and production phases
correctly to determine TridA {G} for a given A.

4.4.2.1 Schur Reduction

The Schur reduction phase is handled by Alg. (4.14) REDUCESCHUR, which
handles the three different cases of a process owning either an upper, lower, or
middle section of A.

For the case of a process owning the upper rows of A, we enter the case on
line 1. This section of the algorithm ensures that the process owning these up-
per rows commences a downwards elimination sweep, computing the Schur
complement of the matrix defined in Eq. (4.40). As computation proceeds, we
store the generated LU factors li,i−1 and ui−1,i on line 3 and line 4 for later use
in reconstructing G. The matrix A is updated on line 5. For the case of a pro-
cess owning the bottom rows of A, we execute the code handled by the case
on line 6, whose behavior is mirrored by that of the case of a process owning
the upper rows.

The case of a process owning some rows in the middle of A is handled by
the case on line 11, where we are tasked with two eliminations per iteration.
Thus a total of 4 LU factors are calculated on line 13, line 14, line 15, and line 16.
Furthermore, as we are calculating a Schur complement which is a 2×2 block
matrix (cf. Eq. (4.55) and Eq. (4.56)), we have 4 block updates per iteration, one
for each block in the Schur complement. This is performed on line 17, line 18,
line 19, and line 20.

In the case of a sequential case where P = 1, and by looking at the condi-
tionals for line 1, line 6 and line 11, we see that we execute the case for a process
owning the lower rows of A given by line 6. For two processes, we execute the
cases for line 1 and line 6, while the case for line 11 where a process might only
own some middle rows in A is only executed when P ≥ 3.

125

4.4 Hybrid Method

execution order

ABCR,G L,U

Figure 4.21: This figure shows the Schur production phase for a central process owning
rows in A. The process starts where we have been given the Green’s function blocks in the
corners gjj , gjk, gkj and gkk, as defined by Eq. (4.63). As production proceeds, the bright
yellow blocks indicate new computed elements of G, while the inert blocks of G are a dark
yellow, and involved blocks of G in the computation of new blocks are an intermediate yellow
color. Inert blocks of the LU factors are a lighter color than the current, active blocks being
used in the production of G blocks. We can finally see the production of the block tridiagonal
portion of the inverse TridA {G}, owned by the center process, at the bottom, where we have
discarded off diagonal elements that were necessary for the production process.

126

4.4 Hybrid Method

Algorithm 4.14 REDUCESCHUR(A)

1: if myPID = 0 and P > 1 then corner eliminate downwards
2: for i = top + 1 up to bot do dtop,top = atop,top

3: li,i−1 ← −ai,i−1d
−1
i−1,i−1 1op(LU), 1op(×)

4: ui−1,i ← −a−1
i−1,i−1ai−1,i 1op(×)

5: dii ← aii + li,i−1ai−1,i 1op(×), 1op(+)
6: if myPID = P− 1 then corner eliminate upwards
7: for i = bot− 1 down to top do dbot,bot = abot,bot

8: li,i+1 ← −ai,i+1d
−1
i+1,i+1 1op(LU), 1op(×)

9: ui+1,i ← −a−1
i+1,i+1ai+1,i 1op(×)

10: dii ← aii + li,i+1ai+1,i 1op(×), 1op(+)
11: if myPID 6= 0 and myPID 6= P− 1 and P > 1 then center eliminate down
12: for i = top + 2 up to bot do dtop+1,top+1 = atop+1,top+1

13: li,i−1 ← −ai,i−1d
−1
i−1,i−1 1op(LU), 1op(×)

14: ltop,i−1 ← −atop,i−1d
−1
i−1,i−1 1op(×)

15: ui−1,i ← −a−1
i−1,i−1ai−1,i 1op(×)

16: ui−1,top ← −a−1
i−1,i−1ai−1,top 1op(×)

17: dii ← aii + li,i−1ai−1,i 1op(×), 1op(+)
18: atop,top ← atop,top + ltop,i−1ai−1,top 1op(×), 1op(+)
19: ai,top ← li,i−1ai−1,top 1op(×)
20: atop,i ← ltop,i−1ai−1,i 1op(×)
21: return A,L,U

127

4.4 Hybrid Method

4.4.2.2 Schur Production

When the results for the Schur reduction phase is obtained, it is passed off to
a BCR method to solve the reduced system of equations. With these results,
we then calculate the remaining desired blocks of the inverse using Alg. (4.15)
PRODUCESCHUR.

This algorithm is also partitioned to handle the three different cases of a
process owning some top rows of A, bottom rows of A, or some rows exclud-
ing the top or bottom ones, much as Alg. (4.14) REDUCESCHUR does. This is
handled by the cases on line 1, line 6 and line 11, respectively.

For the case of a process owning some upper rows in A, we know that a
downwards sweeping corner reduction phase was performed, and we counter
this with an upwards sweeping corner production phase, as provided by the
recursion formulas Eqs. (4.51)–(4.53). We find these formulas implemented on
line 3, line 4 and line 5. The derivation and formulas for case of a process
owning lower rows in A is a mirror analogue to these.

The construction of TridA {G} becomes a little more complex for the case of
a process owning a section of middle rows, however, the order of reconstruc-
tion mirrors the order of derivation of the equations used.

The formation of the first two blocks gk,k−1 and gk−1,k, as given by Eq. (4.68)
and Eq. (4.73) respectively, is performed first on line 12 and line 13.

A for loop on line 14 generates a sequence of Green’s function blocks corre-
sponding to the top row of blocks in Eq. (4.67) and the associated back solved
Green’s function blocks using the calculated LU factors u (seen as placeholder
◦ symbols in Eq. (4.56)) obtained during the Schur reduction phase.

These off diagonal blocks can then be used in a second for loop on line 17
that takes care of generating most of the block tridiagonal of G belonging to
the calling process. This is done via calculations on line 18, line 19 and line 20
that correspond to Eqs. (4.75)–(4.77).

A final diagonal block is calculated on line 21 that takes care of catching the
only block missed by the for loop on line 17, corresponding to Eq. (4.78).

Finally, the algorithm that introduces the BCR method between the Schur
reduction and production phases, and gives us a single procedure to call to de-
termine TridA {G} for some block tridiagonal matrix A, is given in Alg. (4.16)
INVERSEHYBRID.

Overall, the algorithm is characterized by two phases, the first being one
of reduction of the full block tridiagonal system A of n × n blocks to one of a
single block akk, for which we can easily directly compute the corresponding
inverse gkk. This is done in a single call on line 3.

128

4.4 Hybrid Method

Algorithm 4.15 PRODUCESCHUR(A,L,U,G)

1: if myPID = 0 and P > 1 then corner produce upwards
2: for i = bot down to top + 1 do
3: gi,i−1 ← giili,i−1 1op(×)
4: gi−1,i ← ui−1,igii 1op(×)
5: gi−1,i−1 ← d−1

i−1,i−1 + ui−1,igi,i−1 1op(×), 1op(+)
6: if myPID = P− 1 then corner produce downwards
7: for i = top up to bot− 1 do
8: gi,i+1 ← giili,i+1 1op(×)
9: gi+1,i ← ui+1,igii 1op(×)

10: gi+1,i+1 ← d−1
i+1,i+1 + ui+1,igi,i+1 1op(×), 1op(+)

11: if myPID 6= 0 and myPID 6= P− 1 and P > 1 then center produce up
12: gbot,bot−1 ← gbot,topltop,bot−1 + gbot,botlbot,bot−1 2op(×), 1op(+)
13: gbot−1,bot ← ubot−1,botgbot,bot + ubot−1,topgtop,bot 2op(×), 1op(+)
14: for i = bot− 1 down to top + 1 do
15: gtop,i ← gtop,topltop,i + gtop,i+1li+1,i 2op(×), 1op(+)
16: gi,top ← ui,i+1gi+1,top + ui,topgtop,top 2op(×), 1op(+)
17: for i = bot− 1 down to top + 2 do
18: gii ← d−1

ii + ui,topgtop,i + ui,i+1gi+1,i 2op(×), 2op(+)
19: gi−1,i ← ui−1,topgtop,i + ui−1,igii 2op(×), 1op(+)
20: gi,i−1 ← gi,topltop,i−1 + giili,i−1 2op(×), 1op(+)
21: gtop+1,top+1 ← d−1

top+1,top+1 + utop+1,topgtop,top+1 + utop+1,top+2gtop+2,top+1

2op(×), 2op(+)
22: return G

129

4.4 Hybrid Method

The second main phase of INVERSEHYBRID is a production phase that takes
the easily calculated single inverse block gkk and generates the desired block
tridiagonal inverse TridA {G} using the LU factors saved during the reduction
phase.

Algorithm 4.16 INVERSEHYBRID(A, iBCR)

Require: A ∈ Bn,n

Ensure: TridA {G} = TridA {A−1} ∈ Bn,n

1: ASchur,L,U← REDUCESCHUR(A)

2: ABCR,L,U← REDUCEBCR(ASchur,L,U, iBCR)

3: gBCR
kk = (aBCR

kk)−1 1op(LU), 1op(×)
4: GBCR ← PRODUCEBCR(ABCR,L,U,GBCR, iBCR)

5: TridA {G} ⊂ GSchur ← PRODUCESCHUR(ABCR,L,U,GBCR)

6: return TridA {G}

4.4.3 Complexity

In analyzing the operation count for Alg. (4.16) INVERSEHYBRID, we can first
notice that the core of it on line 2, line 3 and line 4 is precisely identical to that
of Alg. (4.13) INVERSEBCR, although in this case, executed for a problem of
size (2P− 2)× (2P− 2), rather than n×n. Thus the earlier complexity analysis
for BCR will serve us here. This leaves us with determining the complexity of
the REDUCESCHUR and PRODUCESCHUR operations.

We will look at the case of a set of m rows in A being assigned to some
process p, upon which REDUCESCHUR and PRODUCESCHUR is called. The op-
eration count will differ for two distinct cases, namely on whether the m rows
assigned to process p are either somewhere in the middle of A, or if the rows
are at the top or bottom of A. In other words, that process pwill be performing
corner Schur reduction/productions or center Schur reduction/productions.

Starting with Alg. (4.14) REDUCESCHUR working on a section of A com-
posed of m rows. In the case of a corner process, we see on line 2 and line 7
that a total ofm−1 iterations are performed, each costing 1op(LU), 3op(×) and
1op(+). With respect to a center process, we see the loop on line 12 executes a
total of m− 2 times, with each pass costing 1op(LU), 8op(×) and 2op(+).

Next we look at Alg. (4.15) PRODUCESCHUR working on the same section
of A with m rows. For a corner process, we see the loop on line 2 and line 7
execute a total of m − 1 times, with each pass costing 3op(×) and 1op(+). The
case for the center process is slightly more complicated, but we see the loop on

130

4.4 Hybrid Method

line 14 execute for a total of m− 2 times, each pass costing 4op(×) and 2op(+).
The loop on line 17 executes m − 3 times, with each pass costing 6op(×) and
4op(+). Finally, single statements outside any loops cost the middle process
6op(×) and 4op(+).

Complexity Analysis for Schur Reduction/Production

Calculation LU–factorizations Multiplications Additions
op(LU) op(×) op(+)

REDUCESCHUR (corner) m− 1 3(m− 1) m− 1
PRODUCESCHUR (corner) 0 3(m− 1) m− 1
Total (corner) m− 1 6(m− 1) 2(m− 1)
REDUCESCHUR (center) m− 2 8(m− 2) 2(m− 2)
PRODUCESCHUR (center) 0 10(m− 2) 6(m− 2)
Total (center) m− 2 18(m− 2) 8(m− 2)

Table 4.3: This table illustrates the amount of basic operations performed in calculating
performing the Schur reduction/production procedures for a process owning m rows of A.
The second, third and fourth columns refer to the amount of basic matrix operations of LU–
factorization, multiplication and addition involved in each algorithm. The term m is the total
amount of diagonal blocks owned by the calling process, and may differ between processes.

We now generate the total operation count for performing the Schur reduc-
tion/production phases on a matrix A with n block rows, spread over a total
of P processes, where each process owns m0,m1, . . . ,mP−1 rows. We will use
Eq. (4.1) in deriving the total operation count.

In order to count the operations involved in total for the different operation
types in Table 4.3, we recognize the fact that for corner processes we have
a total of α(m − 1) operations, and for center processes we have β(m − 2)

operations in total, where α and β is some constant integer. This enables us to
develop the following general formula for an operation count:

ops = α(m0 − 1) + α(mP−1 − 1) +
P−2∑
i=1

β(mi − 2)

= α(m0 +mP−1)− 2α− 2β(P− 2) + β

P−2∑
i=1

mi

= βn+ (α− β)(m0 +mP−1)− 2α− 2β(P− 2) (4.79)

where α is the factor multiplied on m− 1 for the number of operations for cor-
ner processes, and β is the factor multiplied on m− 2 for the middle processes.
The formula takes its origin in the fact that the corner processes, with m0 and
mP−1 rows each, has a different operation count than the middle processes, and

131

4.4 Hybrid Method

we seek to generate an expression involving the total number of block rows n
using Eq. (4.1). Using Eq. (4.79), we can now generate the total operation count
for the Schur reduction/production phases in the Hybrid method, and they are
given below.

op(LU) = n− 2P + 2 (4.80)
op(×) = 18n− 12(m0 +mP−1)− 36P + 60 (4.81)
op(+) = 8n− 6(m0 +mP−1)− 16P + 28 (4.82)

If we assume we are in the case Hybrid was designed for, namely that n � P,
then

op(LU) → n (4.83)
op(×) → 18n (4.84)
op(+) → 8n, (4.85)

while assuming that m0 � n and mP−1 � n.
With regards to the BCR phase, after the Schur reduction phase over P pro-

cesses, then we have reduced A to a (2P − 2) × (2P − 2) system. Thus we can
use Table 4.2, substituting n with 2P− 2. This leads to a total of O(2P)op(LU),
O(32P)op(×) and O(16P)op(+) operations. Ultimately, if n� P, then the oper-
ations contributed by BCR will become negligible in the overall behavior of the
Hybrid method, and be dominated by the Schur phase costs. The BCR phase
for the Hybrid method has an elimination tree of depth h, where

h = blog2(2P− 2)c = 1 + blog2(P− 1)c (4.86)

as given by Eq. (4.37). We can see the results of the complexity analysis for the
Hybrid method in Table 4.4.

Complexity Analysis for the Hybrid Method

Calc. LU–facts. Multiplications Additions
op(LU) op(×) op(+)

Schur n− 2P + 2 18n− 12(m0 + mP−1)− 36P + 60 8n− 6(m0 + mP−1)− 16P + 28
BCR 2P− 2 32P− 20h− 47 16P− 12h− 24
Total n O(18n) O(8n)

Table 4.4: This table illustrates the amount of basic operations performed in calculating per-
forming calculating the block tridiagonal inverse of A using the Hybrid method. The second,
third and fourth columns refer to the amount of basic matrix operations of LU–factorization,
multiplication and addition involved in each algorithm.

132

Chapter 5

Benchmarking

There are two possible outcomes: if the result confirms the hypothesis, then
you’ve made a measurement. If the result is contrary to the hypothesis, then
you’ve made a discovery.

Enrico Fermi

5.1 Benchmarking Serial Algorithms

The serial algorithms presented in this thesis have not been explicitly bench-
marked. However, for the case of transmission calculations, a complexity anal-
ysis and execution time measurements have been carried out [1] on a symmet-
ric multiprocessor1, a Beowulf cluster2 as well as a personal laptop3.

It was shown that the Sweep based algorithm SWEEPINVERSETRI was a
superior choice over standard Gaussian elimination for determining the block
tridiagonal matrix TridA {G}, but beyond this a series of benchmarks were
carried out on a number of example block matrices A arising from relatively
recent literature. The examples, however, barely exceed n = 10 block rows for
A, if at all, and are not suited for parallel benchmarking for processes P > 2.

An issue to note is that the method employed in [1] was one consisting only
of a reduction phase, since only a single block of the inverse gij is needed to

1Sun Microsystems SunFire E25K with 72 UltraSPARC-IV+ dual–core chips @ 1.35 GHz &
384 GB of RAM.

2Niflheim cluster at the Technical University of Denmark composed of 434 IBM ThinkCen-
tre S50 (3.2 GHz P4, 2 GB) and 479 HP/Compaq EVO d510 (2.26 GHz P4, 1 GB) machines.

3Apple PowerBook with an IBM/Motorola PowerPC G4 @ 1.6 GHz & 2GB of RAM and an
Apple MacBook with an Intel Core 2 Duo @ 2.2 GHz & 2GB of RAM.

133

5.2 Benchmarking Parallel Algorithms

calculate transmission. This feature renders BCR and the Hybrid method as
possible candidates for this task also, and with greater possibility of speedup
than SWEEPINVERSEPARALLEL.

The size of the examples from the literature in [1] goes to show how an
efficient, scalable parallel algorithm for the treatment of block tridiagonal ma-
trices may help model far larger systems, and thus obtain results that are more
comparable with the real world.

5.2 Benchmarking Parallel Algorithms

5.2.1 Load Balancing

So far, we have not touched on the subject of load balancing. As we can more
or less arbitrarily subdivide the matrix A’s rows among several processes, we
can use our earlier complexity analysis in determining a possible strategy.

It must be said, however, that the complexity analysis has been worked
out assuming equal sized blocks of dimension d throughout A. This is not
usually the case, and very much dependent on the geometry of the two–probe
system being modeled. Some two probe systems, though, such as elongated
carbon nanotube systems or nanowire systems, may exhibit equal sized blocks
throughout, and would be well suited for strategies developed here.

5.2.1.1 Parallel Sweeps

With respect to sweeps, the load balancing affects the Gaussian elimination
portion called by Alg. (4.1) GAUSSELIMINATEPARALLEL differently than in the
construction phase of TridA {G}, managed by Alg. (4.2) DIAGONALSPARAL-
LEL and Alg. (4.3) OFFDIAGONALSPARALLEL.

This is due to the highly sequential dependency of GAUSSELIMINATEPAR-
ALLEL in passing the upwards and downwards sweeps on A along neighbor
processes. A downward sweep is essentially a sequential process, despite be-
ing run on multiple machines, since a process can only begin its portion of the
sweep when the sweep has passed through all processes above it. Likewise we
have a similar situation for the upwards sweep. Thus we can essentially arbi-
trarily change the row distribution of A among processes, without affecting
the Gaussian elimination phase running time of SWEEPINVERSEPARALLEL.

Furthermore, we can be reasonably assured that this stage will terminate
at more or less the same time for all processes, allowing for the fact that the
upwards/downwards sweeps will meet at a middle process pi in A, where

134

5.2 Benchmarking Parallel Algorithms

one of the sweeps will have to wait on the other to relinquish pi in order to be
able to progress.

However, for the reconstruction of TridA {G} the story is different regard-
ing load balancing. Here, when started, each process will already have enough
information in order to finish execution without communication. In other
words, this stage of SWEEPINVERSEPARALLEL is embarrassingly parallel, and
thus for all processes to terminate more or less at the same time, they will need
to be assigned a number of rows that ensures a more or less equal workload.

Assuming equal block sizes throughout G, the optimal workload will result
in the same number of rows assigned to each process. This has to take into ac-
count the fact that the corner processes perform a single op(×) less than a mid-
dle process, as seen in Alg. (4.3) OFFDIAGONALSPARALLEL, but this quickly
becomes negligible as the ration of n to P increases.

5.2.1.2 Block Cyclic Reduction

Block cyclic reduction has the behavior of relatively finely grained parallelism,
in the sense that each row update from an odd row to an even row, can be done
in parallel, on every level of the elimination tree.

This leads for the ideal situation to be that we have as many processes as
we have block rows n = P. This, will quickly lead to idle processes as BCR
moves up the elimination tree, losing half the available computing power at
each level. Although perhaps squandering resources, this is expected to be the
quickest execution profile for BCR. With respect to memory, this would lead to
the finest subdivision of block rows among processes, affording the possibility
of treating larger problems, i.e. larger block dimensions, though at the cost of
having to provide more hardware.

However, P = n is not the usual case for the sort of situation we envision
our algorithms to run under, as we expect the number of block rows n to be
much larger than the number of processes available for computation.

This will lead to fewer processes being “lost” moving up each level in the
reduction phase of BCR. However, BCR does have a great deal of redundancy1,
and we would lose efficiency as each process, having multiple rowsm assigned
to it, performs a large number of cyclic reduction steps largely in serial, before
having climbed up far enough in the elimination tree for message passing to
start happening. If this is the case, then we will see that it will be better to em-
ploy a uniform2 distribution of rows among processes, such that all processes

1The redundancy is approximately 2.7 [32].
2This is assuming constant block dimension d throughout A.

135

5.2 Benchmarking Parallel Algorithms

will reach the message passing levels of the elimination tree at more or less the
same time. This will avoid the case of a node having a child belonging to a
lightly loaded process eliminate far quicker than the other child belonging to
an overburdened process. Similarly, the under–burdened processes would ter-
minate their jobs sooner than other processes or have to wait on overburdened
processes to receive data before being able to continue.

Ultimately, the desire to preserve the parallel capability of BCR without
suffering too great a deal when processes own too many or an unequal amount
of rows each is the main inspirational factor in the development of the Hybrid
method.

5.2.1.3 Hybrid Method

For the Hybrid method, we assume the limit where the BCR phase of oper-
ations become negligible, and thus we can limit ourselves to considering the
Schur phase costs. As seen in the complexity analysis for the Schur reduc-
tion/production phases, a different operation count exists for a process belong-
ing either to a corner or a center process, where the significant difference lies
in the fact that while corner processes execute a total of O(6m) matrix multipli-
cations, the center proccesses will execute three times more such operations,
on the order of O(18m).

In order to approximate the number of flops executed by a corner or a cen-
ter process, we can take from [29], the fact that matrix multiplication1 between
two blocks of dimension d requires on the order of O(2d3) flops, while LU fac-
torization of a block of dimension d requires O(2

3
d3). We can then use the com-

plexities as tabulated earlier for INVERSEHYBRID, and for the corner process
we obtain

1op(LU) + 6op(×) = 1O

(
2

3
d3

)
+ 6O

(
2d3
)

=

(
2

3
+ 12

)
O(d3)

=

(
38

3

)
O(d3) (5.1)

1As done by BLAS.

136

5.2 Benchmarking Parallel Algorithms

while for the center process we have

1op(LU) + 18op(×) = 1O

(
2

3
d3

)
+ 18O

(
2d3
)

=

(
2

3
+ 36

)
O(d3)

=

(
110

3

)
O(d3) (5.2)

and their ratio leads to
α =

110

38
≈ 2.895, (5.3)

which tells us that in order for the corner processes to be equally burdened
as a center process, they must have 2.895m rows assigned versus only m rows
assigned for center processes. This leads us to a basic load balancing for the
Hybrid method, although with the caveat that we have assumed equal block
dimension throughout A.

In the serial case of P = 1 and even for P = 2, the Hybrid method only uses
corner Schur reduction/production operations, and the center variant only
comes into play for P ≥ 3. We can then calculate the theoretical speedup s

for P ≥ 3 processes by taking the ratio of the total cost if every block did cor-
ner Schur productions, to the cost of P − 2 processes performing center Schur
reduction/productions and only 2 processes performing corner Schur reduc-
tion/productions1. Thus the parallel efficiency becomes

s =
Pccorner

(P− 2)ccenter + 2ccorner

=
P

(P− 2) ccenter
ccorner

+ 2

=
P

α(P− 2) + 2
, (5.4)

where α is the ratio of cost between a Schur reduction/production of a center
process ccenter and the cost of a Schur reduction/production for a corner process
ccorner, for the same number of owned block rows, as calculated in Eq. (5.3).

5.2.2 Implementation

Unfortunately, the pseudocode as presented in this thesis has not been imple-
mented perfectly, and the operation counts differ compared to the complexity

1 This is the implemented case for the Hybrid method

137

5.2 Benchmarking Parallel Algorithms

analysis in this thesis. This is due to improved readability of the code and
quick implementation being prioritized at the cost of efficiency. Thus the op-
eration count for the implemented code is the following for a corner process

1op(LU) + 7op(×) = O

(
2

3
d3

)
+ 7O

(
2d3
)

=

(
2

3
+ 14

)
O(d3)

=

(
44

3

)
O(d3) (5.5)

while for the center process we have

1op(LU) + 19op(×) = O

(
2

3
d3

)
+ 19O

(
2d3
)

=

(
2

3
+ 38

)
O(d3)

=

(
116

3

)
O(d3) (5.6)

and their ratio leads to
α =

116

44
≈ 2.636, (5.7)

which is less of a difference than present for the pseudocode, but both pro-
cesses now execute with higher prefactors compared to before in that the cor-
ner process is now about 16% costlier, and the center process is 5.5% costlier.
The methods are qualitatively still linear in the execution time, with respect to
the number of diagonal blocks n in A, however.

5.2.3 Results

A set of general complex block tridiagonal A matrices were generated in the
same manner as presented in [1] and inverted using the parallel methods de-
scribed in the previous chapter, for 4 different parameters.

The first parameter we vary is the block dimension for every block in A.
This we assign up to 3 values to: d = {128, 256, 512}, and it is constant through-
out A, i.e. all blocks in A are of the same size. Next, we vary the block–
dimension of A, i.e. how many diagonal blocks it has. This we assign up
to 4 values: n = {128, 256, 512, 1024}. The third parameter we vary is how
many processes we have available to help determine the inverse. This varies as

138

5.2 Benchmarking Parallel Algorithms

P = {1, 2, 4, 8, 16, 32, 64}. Finally, we vary the load balancing by how we choose
to distribute our n available blocks over the P available processes, which we
can represent by the calculated value α = {1, 2, 2.636, 3}.

If α = 1, then a corner block is predicted to cost as much as a center block
to work with, and we would choose a uniform distribution of identical block
sizes over all of A. One of the available choices is α = 2, where a center pro-
cess is assumed to do double the work a corner process does, for an equal
assignment of m rows. Thus in order to load balance, the corner processes are
assigned twice the amount of rows that the center processes are allocated. In
the theoretical case, we would choose α ≈ 2.895 and in the implemented case
we would choose α ≈ 2.636. However, as we will see, even a rough estimate
of α = 2 will yield a strong improvement in speedup behavior over α = 1.
Ideally, corner processes should be assigned αm rows, as center processes are
allocated m rows each, where α is the value attained via the complexity anal-
ysis carried out earlier. This has been done, however, under the assumption
that the dimension of blocks in A is identical throughout.

5.2.3.1 Load Distribution with α = 1

For the uniform distribution of elements, the figures for block dimensions d =

{128, 256, 512} are presented in Fig. 5.1, Fig. 5.2 and Fig. 5.3, respectively. Each
figure is arranged a in a 4×2 pattern, accounting for the 4 possible choices
of the number of diagonal blocks in A, namely n = {128, 256, 512, 1024} and
wether we measure walltime or speedup.

The walltime measurements are carried out by measuring the time it takes
for all the participating processes to complete calculating TridA {G} for a given
algorithm. Speedup measurements are then made on the basis of these wall-
time measurements.

5.2.3.2 Load Distribution with α = 2

We have also tabulated the walltime and speedup results for an assumption
that α = 2, where A has been distributed such that corner processes are as-
signed 2m rows, while center processes are allocated m rows. For this ba-
sic distribution of rows, the figures for m = {128, 256, 512} are presented in
Fig. 5.4, Fig. 5.5 and Fig. 5.6, respectively. Each figure is arranged in the same
4×2 pattern, accounting for the 4 possible choices n = {128, 256, 512, 1024} and
wether we illustrate walltime or speedup results.

139

5.2 Benchmarking Parallel Algorithms

10
0

10
1

10
2

10
0

10
1

10
2

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 128
n = 128
α = 1.0

Sweeps
BCR
Hybrid

(a) Walltime for n = 128

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 128
n = 128
α = 1.0

Sweeps
BCR
Hybrid
Ideal

(b) Speedup for n = 128

10
0

10
1

10
2

10
0

10
1

10
2

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 128
n = 256
α = 1.0

Sweeps
BCR
Hybrid

(c) Walltime for n = 256

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 128
n = 256
α = 1.0

Sweeps
BCR
Hybrid
Ideal

(d) Speedup for n = 256

10
0

10
1

10
2

10
0

10
1

10
2

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 128
n = 512
α = 1.0

Sweeps
BCR
Hybrid

(e) Walltime for n = 512

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 128
n = 512
α = 1.0

Sweeps
BCR
Hybrid
Ideal

(f) Speedup for n = 512

10
0

10
1

10
2

10
0

10
1

10
2

10
3

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 128
n = 1024
α = 1.0

Sweeps
BCR
Hybrid

(g) Walltime for n = 1024

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 128
n = 1024
α = 1.0

Sweeps
BCR
Hybrid
Ideal

(h) Speedup for n = 1024

Figure 5.1: Timing figures for α = 1 and block dimension d = 128.

140

5.2 Benchmarking Parallel Algorithms

10
0

10
1

10
2

10
1

10
2

10
3

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 256
n = 128
α = 1.0

Sweeps
BCR
Hybrid

(a) Walltime for n = 128

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 256
n = 128
α = 1.0

Sweeps
BCR
Hybrid
Ideal

(b) Speedup for n = 128

10
0

10
1

10
2

10
1

10
2

10
3

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 256
n = 256
α = 1.0

Sweeps
BCR
Hybrid

(c) Walltime for n = 256

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 256
n = 256
α = 1.0

Sweeps
BCR
Hybrid
Ideal

(d) Speedup for n = 256

10
0

10
1

10
2

10
1

10
2

10
3

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 256
n = 512
α = 1.0

Sweeps
BCR
Hybrid

(e) Walltime for n = 512

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 256
n = 512
α = 1.0

Sweeps
BCR
Hybrid
Ideal

(f) Speedup for n = 512

10
0

10
1

10
2

10
1

10
2

10
3

10
4

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 256
n = 1024
α = 1.0

Sweeps
BCR
Hybrid

(g) Walltime for n = 1024

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 256
n = 1024
α = 1.0

Sweeps
BCR
Hybrid
Ideal

(h) Speedup for n = 1024

Figure 5.2: Timing figures for α = 1 and block dimension d = 256.

141

5.2 Benchmarking Parallel Algorithms

10
0

10
1

10
2

10
2

10
3

10
4

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 512
n = 128
α = 1.0

Sweeps
BCR
Hybrid

(a) Walltime for n = 128

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 512
n = 128
α = 1.0

Sweeps
BCR
Hybrid
Ideal

(b) Speedup for n = 128

10
0

10
1

10
2

10
2

10
3

10
4

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 512
n = 256
α = 1.0

Sweeps
BCR
Hybrid

(c) Walltime for n = 256

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 512
n = 256
α = 1.0

Sweeps
BCR
Hybrid
Ideal

(d) Speedup for n = 256

10
0

10
1

10
2

10
2

10
3

10
4

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 512
n = 512
α = 1.0

Sweeps
BCR
Hybrid

(e) Walltime for n = 512

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 512
n = 512
α = 1.0

Sweeps
BCR
Hybrid
Ideal

(f) Speedup for n = 512

10
0

10
1

10
2

10
2

10
3

10
4

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 512
n = 1024
α = 1.0

Sweeps
BCR
Hybrid

(g) Walltime for n = 1024

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 512
n = 1024
α = 1.0

Sweeps
BCR
Hybrid
Ideal

(h) Speedup for n = 1024

Figure 5.3: Timing figures for α = 1 and block dimension d = 512.

142

5.2 Benchmarking Parallel Algorithms

10
0

10
1

10
2

10
0

10
1

10
2

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 128
n = 128
α = 2.0

Sweeps
BCR
Hybrid

(a) Walltime for n = 128

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 128
n = 128
α = 2.0

Sweeps
BCR
Hybrid
Ideal

(b) Speedup for n = 128

10
0

10
1

10
2

10
0

10
1

10
2

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 128
n = 256
α = 2.0

Sweeps
BCR
Hybrid

(c) Walltime for n = 256

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 128
n = 256
α = 2.0

Sweeps
BCR
Hybrid
Ideal

(d) Speedup for n = 256

10
0

10
1

10
2

10
0

10
1

10
2

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 128
n = 512
α = 2.0

Sweeps
BCR
Hybrid

(e) Walltime for n = 512

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 128
n = 512
α = 2.0

Sweeps
BCR
Hybrid
Ideal

(f) Speedup for n = 512

10
0

10
1

10
2

10
0

10
1

10
2

10
3

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 128
n = 1024
α = 2.0

Sweeps
BCR
Hybrid

(g) Walltime for n = 1024

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 128
n = 1024
α = 2.0

Sweeps
BCR
Hybrid
Ideal

(h) Speedup for n = 1024

Figure 5.4: Timing figures for α = 2 and block dimension d = 128.

143

5.2 Benchmarking Parallel Algorithms

10
0

10
1

10
2

10
1

10
2

10
3

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 256
n = 128
α = 2.0

Sweeps
BCR
Hybrid

(a) Walltime for n = 128

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 256
n = 128
α = 2.0

Sweeps
BCR
Hybrid
Ideal

(b) Speedup for n = 128

10
0

10
1

10
2

10
1

10
2

10
3

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 256
n = 256
α = 2.0

Sweeps
BCR
Hybrid

(c) Walltime for n = 256

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 256
n = 256
α = 2.0

Sweeps
BCR
Hybrid
Ideal

(d) Speedup for n = 256

10
0

10
1

10
2

10
1

10
2

10
3

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 256
n = 512
α = 2.0

Sweeps
BCR
Hybrid

(e) Walltime for n = 512

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 256
n = 512
α = 2.0

Sweeps
BCR
Hybrid
Ideal

(f) Speedup for n = 512

10
0

10
1

10
2

10
1

10
2

10
3

10
4

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 256
n = 1024
α = 2.0

Sweeps
BCR
Hybrid

(g) Walltime for n = 1024

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 256
n = 1024
α = 2.0

Sweeps
BCR
Hybrid
Ideal

(h) Speedup for n = 1024

Figure 5.5: Timing figures for α = 2 and block dimension d = 256.

144

5.2 Benchmarking Parallel Algorithms

10
0

10
1

10
2

10
2

10
3

10
4

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 512
n = 128
α = 2.0

Sweeps
BCR
Hybrid

(a) Walltime for n = 128

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 512
n = 128
α = 2.0

Sweeps
BCR
Hybrid
Ideal

(b) Speedup for n = 128

10
0

10
1

10
2

10
2

10
3

10
4

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 512
n = 256
α = 2.0

Sweeps
BCR
Hybrid

(c) Walltime for n = 256

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 512
n = 256
α = 2.0

Sweeps
BCR
Hybrid
Ideal

(d) Speedup for n = 256

10
0

10
1

10
2

10
2

10
3

10
4

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 512
n = 512
α = 2.0

Sweeps
BCR
Hybrid

(e) Walltime for n = 512

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 512
n = 512
α = 2.0

Sweeps
BCR
Hybrid
Ideal

(f) Speedup for n = 512

10
0

10
1

10
2

10
2

10
3

10
4

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 512
n = 1024
α = 2.0

Sweeps
BCR
Hybrid

(g) Walltime for n = 1024

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 512
n = 1024
α = 2.0

Sweeps
BCR
Hybrid
Ideal

(h) Speedup for n = 1024

Figure 5.6: Timing figures for α = 2 and block dimension d = 512.

145

5.2 Benchmarking Parallel Algorithms

5.2.3.3 Load Distribution with α = 2.636

We here tabulate the walltime and speedup results for an assumption that
α = 2.636, which should be the case as our complexity analysis for our im-
plemented method has shown. Thus A has been distributed such that corner
processes are assigned approximately 2.636m rows, while center processes are
allocated m rows. As we can only distribute an integer value of rows among
processes, this distribution is performed such that we approximate α = 2.636

as much as possible.
For this distribution of rows, the figures for m = {128, 256, 512} are pre-

sented in Fig. 5.7, Fig. 5.8 and Fig. 5.8, respectively. Each figure is arranged in
the now familiar 4×2 pattern.

5.2.3.4 Load Distribution with α = 3

Finally, the speedup results for an assumption that α = 3 are given here, where
A has been distributed such that corner processes are assigned 3m rows, while
center processes are allocated m rows. For this distribution of rows, the fig-
ures for m = {128, 256, 512} are presented in Fig. 5.10, Fig. 5.11 and Fig. 5.12,
respectively. Each figure is arranged in the familiar 4×2 pattern.

5.2.4 Remarks

Overall, the figures do well in qualitatively representing the behavior of the
Sweeps, BCR and Hybrid algorithms. Some figures do exhibit an occasional
spurious result, and this is due to using measurements from a single run,
rather than over an ensemble of runs. Given more available computing time,
these averaging runs could be carried out, and the figures attained would be
less prone to such artifacts.

Notably, in all generated numerical cases and examples from the literature
[1], inversions were stable, with relative norm errors on the block tridiagonal
TridA {G} being on the order of about 10−10 or less. This lends support to
the notion that physical systems of interest will generally yield well–behaved
matrices prior to and during execution of the presented algorithms.

5.2.4.1 Sweeps

Unfortunately, the Sweeps method implemented has generally subpar behav-
ior for P = 2 processes compared to what is expected. Ideally, we expect near
perfect speedup from one to two processes, since the Gaussian elimination

146

5.2 Benchmarking Parallel Algorithms

10
0

10
1

10
2

10
0

10
1

10
2

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 128
n = 128
α = 2.636

Sweeps
BCR
Hybrid

(a) Walltime for n = 128

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 128
n = 128
α = 2.636

Sweeps
BCR
Hybrid
Ideal

(b) Speedup for n = 128

10
0

10
1

10
2

10
0

10
1

10
2

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 128
n = 256
α = 2.636

Sweeps
BCR
Hybrid

(c) Walltime for n = 256

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 128
n = 256
α = 2.636

Sweeps
BCR
Hybrid
Ideal

(d) Speedup for n = 256

10
0

10
1

10
2

10
0

10
1

10
2

10
3

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 128
n = 512
α = 2.636

Sweeps
BCR
Hybrid

(e) Walltime for n = 512

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 128
n = 512
α = 2.636

Sweeps
BCR
Hybrid
Ideal

(f) Speedup for n = 512

10
0

10
1

10
2

10
0

10
1

10
2

10
3

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 128
n = 1024
α = 2.636

Sweeps
BCR
Hybrid

(g) Walltime for n = 1024

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 128
n = 1024
α = 2.636

Sweeps
BCR
Hybrid
Ideal

(h) Speedup for n = 1024

Figure 5.7: Timing figures for α = 2.636 and block dimension d = 128.

147

5.2 Benchmarking Parallel Algorithms

10
0

10
1

10
2

10
1

10
2

10
3

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 256
n = 128
α = 2.636

Sweeps
BCR
Hybrid

(a) Walltime for n = 128

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 256
n = 128
α = 2.636

Sweeps
BCR
Hybrid
Ideal

(b) Speedup for n = 128

10
0

10
1

10
2

10
1

10
2

10
3

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 256
n = 256
α = 2.636

Sweeps
BCR
Hybrid

(c) Walltime for n = 256

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 256
n = 256
α = 2.636

Sweeps
BCR
Hybrid
Ideal

(d) Speedup for n = 256

10
0

10
1

10
2

10
1

10
2

10
3

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 256
n = 512
α = 2.636

Sweeps
BCR
Hybrid

(e) Walltime for n = 512

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 256
n = 512
α = 2.636

Sweeps
BCR
Hybrid
Ideal

(f) Speedup for n = 512

10
0

10
1

10
2

10
1

10
2

10
3

10
4

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 256
n = 1024
α = 2.636

Sweeps
BCR
Hybrid

(g) Walltime for n = 1024

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 256
n = 1024
α = 2.636

Sweeps
BCR
Hybrid
Ideal

(h) Speedup for n = 1024

Figure 5.8: Timing figures for α = 2.636 and block dimension d = 256.

148

5.2 Benchmarking Parallel Algorithms

10
0

10
1

10
2

10
2

10
3

10
4

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 512
n = 128
α = 2.636

Sweeps
BCR
Hybrid

(a) Walltime for n = 128

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 512
n = 128
α = 2.636

Sweeps
BCR
Hybrid
Ideal

(b) Speedup for n = 128

10
0

10
1

10
2

10
2

10
3

10
4

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 512
n = 256
α = 2.636

Sweeps
BCR
Hybrid

(c) Walltime for n = 256

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 512
n = 256
α = 2.636

Sweeps
BCR
Hybrid
Ideal

(d) Speedup for n = 256

10
0

10
1

10
2

10
2

10
3

10
4

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 512
n = 512
α = 2.636

Sweeps
BCR
Hybrid

(e) Walltime for n = 512

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 512
n = 512
α = 2.636

Sweeps
BCR
Hybrid
Ideal

(f) Speedup for n = 512

10
0

10
1

10
2

10
2

10
3

10
4

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 512
n = 1024
α = 2.636

Sweeps
BCR
Hybrid

(g) Walltime for n = 1024

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 512
n = 1024
α = 2.636

Sweeps
BCR
Hybrid
Ideal

(h) Speedup for n = 1024

Figure 5.9: Timing figures for α = 2.636 and block dimension d = 512.

149

5.2 Benchmarking Parallel Algorithms

10
0

10
1

10
2

10
0

10
1

10
2

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 128
n = 128
α = 3.0

Sweeps
BCR
Hybrid

(a) Walltime for n = 128

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 128
n = 128
α = 3.0

Sweeps
BCR
Hybrid
Ideal

(b) Speedup for n = 128

10
0

10
1

10
2

10
0

10
1

10
2

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 128
n = 256
α = 3.0

Sweeps
BCR
Hybrid

(c) Walltime for n = 256

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 128
n = 256
α = 3.0

Sweeps
BCR
Hybrid
Ideal

(d) Speedup for n = 256

10
0

10
1

10
2

10
0

10
1

10
2

10
3

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 128
n = 512
α = 3.0

Sweeps
BCR
Hybrid

(e) Walltime for n = 512

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 128
n = 512
α = 3.0

Sweeps
BCR
Hybrid
Ideal

(f) Speedup for n = 512

10
0

10
1

10
2

10
0

10
1

10
2

10
3

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 128
n = 1024
α = 3.0

Sweeps
BCR
Hybrid

(g) Walltime for n = 1024

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 128
n = 1024
α = 3.0

Sweeps
BCR
Hybrid
Ideal

(h) Speedup for n = 1024

Figure 5.10: Timing figures for α = 3 and block dimension d = 128.

150

5.2 Benchmarking Parallel Algorithms

10
0

10
1

10
2

10
1

10
2

10
3

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 256
n = 128
α = 3.0

Sweeps
BCR
Hybrid

(a) Walltime for n = 128

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 256
n = 128
α = 3.0

Sweeps
BCR
Hybrid
Ideal

(b) Speedup for n = 128

10
0

10
1

10
2

10
1

10
2

10
3

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 256
n = 256
α = 3.0

Sweeps
BCR
Hybrid

(c) Walltime for n = 256

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 256
n = 256
α = 3.0

Sweeps
BCR
Hybrid
Ideal

(d) Speedup for n = 256

10
0

10
1

10
2

10
1

10
2

10
3

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 256
n = 512
α = 3.0

Sweeps
BCR
Hybrid

(e) Walltime for n = 512

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 256
n = 512
α = 3.0

Sweeps
BCR
Hybrid
Ideal

(f) Speedup for n = 512

10
0

10
1

10
2

10
1

10
2

10
3

10
4

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 256
n = 1024
α = 3.0

Sweeps
BCR
Hybrid

(g) Walltime for n = 1024

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 256
n = 1024
α = 3.0

Sweeps
BCR
Hybrid
Ideal

(h) Speedup for n = 1024

Figure 5.11: Timing figures for α = 3 and block dimension d = 256.

151

5.2 Benchmarking Parallel Algorithms

10
0

10
1

10
2

10
2

10
3

10
4

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 512
n = 128
α = 3.0

Sweeps
BCR
Hybrid

(a) Walltime for n = 128

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 512
n = 128
α = 3.0

Sweeps
BCR
Hybrid
Ideal

(b) Speedup for n = 128

10
0

10
1

10
2

10
2

10
3

10
4

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 512
n = 256
α = 3.0

Sweeps
BCR
Hybrid

(c) Walltime for n = 256

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 512
n = 256
α = 3.0

Sweeps
BCR
Hybrid
Ideal

(d) Speedup for n = 256

10
0

10
1

10
2

10
2

10
3

10
4

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 512
n = 512
α = 3.0

Sweeps
BCR
Hybrid

(e) Walltime for n = 512

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 512
n = 512
α = 3.0

Sweeps
BCR
Hybrid
Ideal

(f) Speedup for n = 512

10
0

10
1

10
2

10
2

10
3

10
4

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

m = 512
n = 1024
α = 3.0

Sweeps
BCR
Hybrid

(g) Walltime for n = 1024

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

m = 512
n = 1024
α = 3.0

Sweeps
BCR
Hybrid
Ideal

(h) Speedup for n = 1024

Figure 5.12: Timing figures for α = 3 and block dimension d = 512.

152

5.2 Benchmarking Parallel Algorithms

sweep phase is composed of two independent elimination sweeps, where com-
munication is performed only in order to “pass the torch” among processes.

It is true that for multiple processes a center process may stall this behav-
ior, as e.g. an upwards elimination pass meets a process currently engaged in
processing the downwards elimination pass. However, in the case P = 2, both
processes should terminate their first passes at approximately the same time,
so time spent waiting should be minimal.

It turns out on closer inspection that one process takes twice the amount of
time to complete the GAUSSELIMINATEPARALLEL phase of SWEEPINVERSEP-
ARALLEL, than the other process, and this is indicative that one process man-
ages to pass the torch and receive data from the other process in order to con-
tinue work. The second process, however, seems to stall, and is behavior that
should be correctable.

One immediate feature that comes across in all speedup figures is that the
Sweeps method does scale to speedup values that is greater than two, some-
thing unexpected considering the fact that the method performs two distinct
elimination passes on A, and at first sight would seem only to scale accord-
ingly. The reason speedup progresses beyond this is that the complete inver-
sion algorithm also incorporates an embarrassingly parallel construction step
in generating A based on the results from the elimination sweep. This step can
take place for a process immediately after it has completed both the upward
and downward elimination passes, regardless of the status of its peers1.

Ultimately, we can use SWEEPINVERSEPARALLEL relatively flexibly in or-
der to distribute memory, without affecting speedup behavior or execution
times much. In the light of differing block dimensions throughout A, we can
arbitrarily distribute rows among processes, and still expect the Gaussian elim-
ination phase to terminate more or less at the same time for both corner pro-
cesses. The reconstruction phase, independent as it is, will then depend cubi-
cally on the dimension of the blocks owned by each process. Thus with dif-
fering block dimensions and differing assigned block rows, the reconstruction
phase execution times will differ among processes.

However, as center processes proceed on to construction of G before cor-
ner processes (since the elimination sweeps complete first for them), they will
likely have terminated construction earlier than other processes that start con-
struction later. One can then imagine assigning larger amounts of rows to
them, and thus in taking longer to construct G, they may terminate recon-

1As long as the neighbors have accepted any elimination sweep handoff the process has to
do.

153

5.2 Benchmarking Parallel Algorithms

struction at the same time as other processes owning rows closer to the top
and bottom that proceed to the reconstruction phase at later times.

5.2.4.2 Block Cyclic Reduction

For BCR, and in all cases where we have employed a uniform distribution, the
speedup follows the same curve with speedup trailing off and becoming less
and less efficient. However, as BCR should ideally be quickest to execute with
n = P, we are limited by the maximum of P = 64 in these figures, where we
have employed a minimum of n = 128. Thus in Fig. 5.13 is given a small exam-
ple, for n = 15 and n = 16, in order to see speedup behavior as n approaches
P.

The reason to use the form n = 24 − 1 = 15 means that the elimination tree
becomes complete and balanced, as seen in earlier figures in this paper, while
for n = 16, a single extra corner reduction/production takes place, and the
elimination tree appears as having an extra edge/node on top of the balanced
case for n = 15.

The results from Fig. 5.13 do not show any qualitative differences, and
while speedup is not very close to the ideal line, it seems to at least be con-
sistently rising with more and more processes added to the job. It would be
desirable, however, to have replicated this experiment for n = 128 or greater,
in order to have a more valid comparison to the speedup runs provided.

In the case of basic distribution, we do see a consistent break in the speedup
curve for n = 256 at P = 8. This may be related to the unfortunate use of a non–
uniform distribution. The reason this is unfortunate is that each elimination of
a leaf node in the elimination tree for BCR can be done in parallel, however
the parent of a leaf node, in the next level of elimination, needs to have had
both its children nodes eliminated first before it can be eliminated itself. As
we are using a non uniform distribution, the corner processes will have more
nodes to eliminate than a center process, and we may end up in the situation
that a node to be eliminated has to wait on a child node owned by a corner
process, while the other child node has already been eliminated as it belonged
to a center process that has less of a workload (due to fewer assigned rows).

Thus in the case of using BCR, the ideal is to use as many processes as
possible1 up to P = n, and in the case of P < n, with a uniform distribution
of α = 1. Again, this is all under the assumption of equal block dimensions
throughout A, and the situation may vary for unequal block dimensions.

1Providing communication costs eventually do not surpass computation costs.

154

5.2 Benchmarking Parallel Algorithms

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

BCR
Ideal

(a) n = 15

10
0

10
1

10
0

10
1

Number of Processors [proc]

S
pe

ed
up

 [1
]

BCR
Ideal

(b) n = 16

Figure 5.13: These two figures show that BCR does not suffer from qualitative differences
in speedup depending on whether the elimination tree becomes a complete binary tree for
n = 15, on the left, or an unbalanced tree and n = 16 on the right. In both cases, block
dimension d = 512, and for n = 15, up to P = 15 processes were used.

5.2.4.3 Hybrid

In nearly all cases1, the Hybrid method performs exceedingly well for the
speedup hop from P = 1 to P = 2. This is possible as the full n × n block
A reduces to a tiny 2 × 2 block system embarrassingly parallel, and the BCR
phase costs are negligible in the face of the Schur reduction/production costs.
This leads to ideal speedup.

A strong qualitative difference visible among all speedup figures, is the
poor performance the uniform distribution α = 1 case suffers from going from
P = 2 to P = 4. However, once this “hop” has happened, the uniformly dis-
tributed cases have relatively similar speedup to other cases of α. For the other
cases, we observe the elimination of poor speedup behavior present in the case
of α = 1, and have smooth speedup curves.

Another feature present in the speedup results for the Hybrid method is
that the curves stagnate and begin to turn downwards for high values of P.
This happens at lower values of P for lower values of n. This occurs since
the BCR phase of execution begins to become significant as the ratio of P to n

1There are a couple of spurious cases which would likely disappear if the timings used
were an average over an ensemble of benchmarks.

155

5.2 Benchmarking Parallel Algorithms

approaches 1.
This effect could be postponed by improving the relative efficiency of run-

ning the BCR algorithm over the Hybrid method, as we can see that BCR is an
order of magnitude slower than the Hybrid method. Improving BCR would
then lead to having BCR phase running times first begin to dominate for larger
values of P (assuming constant n) than the case is now. One could slow down
and spoil the performance of the Hybrid method in order to force this improve-
ment on the ratio, and though the speedup curves may improve in shape, total
running times would suffer.

It may also be noted that the Hybrid implementation is quicker than both
BCR and Sweeps as long as the BCR phase of execution remains relatively
modest. As it begins to dominate for certain cases and when P is large, the
Hybrid method may run slower and terminate later than Sweeps.

One question we seek to answer is for what choice of α the implemented
Hybrid method performs best. To help answer this, we present comments now
on both the given speedup figures for the Hybrid method, as well as introduce
the new figures given in Fig. 5.14, Fig. 5.15, and Fig. 5.16. These figures all
present the measured walltime for the Hybrid algorithm for differing block
dimension d, number n of block rows in A, and the parameter of interest α.

Each figure presents the measured walltime as a function of α on the left
column, and as a function of the number of participating processes P on the
right column. Both columns present the same data, but from differing perspec-
tives in an effort to answer our question.

Looking at the right column in all three figures, we can see how increasing
the number of participating processes generally decreases computation time,
up to a certain point where the BCR phase of the algorithm likely begins to
dominate. We can see that this point is reached for greater and greater values
of P as the size of A represented by n increases.

These curves also show how for α = 1, moving from 2 to 4 processes gen-
erally leads to an increase in computation time, which is also evidenced in the
speedup curves presented earlier. This feature is then largely eliminated by
choosing one of the other three tested values of α. As for these values, it is not
uniquely clear which value is preferable. Thus we can choose a lower value of
α, e.g. 2, for the sake of memory allocation concerns1 while still satisfying the
requirement for adequate speedup behavior.

1Assuming all participating processes have the same memory available and that we’re not
dealing with a symmetric multiprocessing architecture, a corner process would be using twice
as much memory than a central process for storing A, and would in turn limit our treatable
problem size.

156

5.2 Benchmarking Parallel Algorithms

1 1.5 2 2.5 3
2

3

4

5

6

7

8

9

10

11

α [1]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

p=1
p=2
p=4
p=8
p=16
p=32
p=64

(a) n = 128

10
0

10
1

10
1

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

α=1
α=2
α=2.636
α=3

(b) n = 128

1 1.5 2 2.5 3
4

6

8

10

12

14

16

18

20

α [1]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

p=1
p=2
p=4
p=8
p=16
p=32
p=64

(c) n = 256

10
0

10
1

10
1

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

α=1
α=2
α=2.636
α=3

(d) n = 256

1 1.5 2 2.5 3
5

10

15

20

25

30

35

40

α [1]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

p=1
p=2
p=4
p=8
p=16
p=32
p=64

(e) n = 512

10
0

10
1

10
1

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

α=1
α=2
α=2.636
α=3

(f) n = 512

1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

90

100

α [1]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

p=1
p=2
p=4
p=8
p=16
p=32
p=64

(g) n = 1024

10
0

10
1

10
1

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

α=1
α=2
α=2.636
α=3

(h) n = 1024

Figure 5.14: Choosing α for block dimension d = 128.

157

5.2 Benchmarking Parallel Algorithms

1 1.5 2 2.5 3
10

20

30

40

50

60

70

80

α [1]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

p=1
p=2
p=4
p=8
p=16
p=32
p=64

(a) n = 128

10
0

10
1

10
1.3

10
1.4

10
1.5

10
1.6

10
1.7

10
1.8

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

α=1
α=2
α=2.636
α=3

(b) n = 128

1 1.5 2 2.5 3
20

30

40

50

60

70

80

90

100

110

120

α [1]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

p=1
p=2
p=4
p=8
p=16
p=32
p=64

(c) n = 256

10
0

10
1

10
2

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

α=1
α=2
α=2.636
α=3

(d) n = 256

1 1.5 2 2.5 3
0

50

100

150

200

250

α [1]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

p=1
p=2
p=4
p=8
p=16
p=32
p=64

(e) n = 512

10
0

10
1

10
2

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

α=1
α=2
α=2.636
α=3

(f) n = 512

1 1.5 2 2.5 3
0

100

200

300

400

500

600

700

α [1]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

p=1
p=2
p=4
p=8
p=16
p=32
p=64

(g) n = 1024

10
0

10
1

10
2

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

α=1
α=2
α=2.636
α=3

(h) n = 1024

Figure 5.15: Choosing α for block dimension d = 256.

158

5.2 Benchmarking Parallel Algorithms

1 1.5 2 2.5 3
100

150

200

250

300

350

400

450

α [1]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

p=1
p=2
p=4
p=8
p=16
p=32
p=64

(a) n = 128

10
0

10
1

10
2.2

10
2.3

10
2.4

10
2.5

10
2.6

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

α=1
α=2
α=2.636
α=3

(b) n = 128

1 1.5 2 2.5 3
100

200

300

400

500

600

700

800

900

α [1]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

p=1
p=2
p=4
p=8
p=16
p=32
p=64

(c) n = 256

10
0

10
1

10
2.3

10
2.4

10
2.5

10
2.6

10
2.7

10
2.8

10
2.9

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

α=1
α=2
α=2.636
α=3

(d) n = 256

1 1.5 2 2.5 3
200

400

600

800

1000

1200

1400

1600

1800

α [1]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

p=1
p=2
p=4
p=8
p=16
p=32
p=64

(e) n = 512

10
0

10
1

10
3

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

α=1
α=2
α=2.636
α=3

(f) n = 512

1 1.5 2 2.5 3
0

500

1000

1500

2000

2500

3000

3500

α [1]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

p=1
p=2
p=4
p=8
p=16
p=32
p=64

(g) n = 1024

10
0

10
1

10
3

Number of Processors [proc]

M
ax

 W
al

lc
lo

ck
 T

im
e

[s
]

α=1
α=2
α=2.636
α=3

(h) n = 1024

Figure 5.16: Choosing α for block dimension d = 512.

159

5.2 Benchmarking Parallel Algorithms

Looking on the left column of figures Fig. 5.14, Fig. 5.15, and Fig. 5.16, we
would expect for α = 2.636 to have a minimum value for each curve, if this
value of α were to be universally optimal. This is not the case. However, what
we do find is that in many cases the value for α = 1 tends to be a maximum.
This can also be interpreted by looking at the right column, and seeing how
the black curves for α = 1 tend to be above all other choices of α. Thus α = 1

seems almost to be universally a poor choice.

160

Chapter 6

Conclusion

We can only see a short distance ahead, but we can see plenty there that
needs to be done.

Alan Turing

6.1 Results

A Sweep method has been developed that delivers a linear complexity algo-
rithm for the determination of the block tridiagonal elements of G. It has been
shown that this method is far more preferable to standard Gaussian elimina-
tion, and it has furthermore been parallelized, although with limited speedup.

A Hybrid method has been developed that provides good speedup figures
for system sizes that are typical for common applications of NEGF simula-
tions. Although speedup figures have only been tabulated for up to P = 64

processes, they have been promising and P = 64 more than covers what a
current personal workstation would have available.

The tridiagonal optimized methods presented in this thesis, with the ex-
ception of GEINVERSETRI, have all been implemented within an application
based on the semi–empirical extended Hückel framework for electron struc-
ture calculations. The code is proving itself already, delivering reliable results
for a range of situations, but the real task is for it to tackle systems as of yet
unprecedented size. The code is being used by research groups abroad.

An obvious immediate application for the Hybrid method is the simulation
of an experiment of a 70nm long carbon nanotube field–effect transistor [40].
It is an ideal candidate for study as preliminary simulations on reduced size

161

6.2 Transmission

systems have shown promising results that measurements achieved in experi-
ment can be numerically verified, and thus lend credibility to the program and
algorithms involved.

6.2 Transmission

A result not explicitly treated in this thesis, is the case of determining a portion
of the Green’s function matrix G for use in transmission calculations. In [1]1,
work was done in order to both prove the ability to use diagonal blocks of G for
transmission calculations, and that a method based on tridiagonal optimized
Sweeps was especially well suited for the task, being generally quicker, in all
tested cases. The method further enables the possibility of improved cache
usage, leading to impressive performance gains.

The task of transmission calculation should be equally solvable using the
parallelized SWEEPINVERSEPARALLEL, however BCR or the Hybrid method
may prove far more efficient, as they are capable of speedups greater than 2
and only a reduction phase is required in order to provide a single, sufficient
block gkk for which to determine transmission with.

6.3 Future Work

Further work can be done in the generation of speedup figures. One desire
is to run the parallel algorithms for greater process counts, in order to clarify
improving speedup behavior as seen earlier, e.g. for BCR. Furthermore, it is
also of interest to see how the different portions of code contributes to overall
running times. Rudimentary visualization confirms a maximum speedup of 2
for the Sweeps algorithm when considering only the elimination phase, and
may reveal characteristics for the BCR and Hybrid algorithms.

A more detailed complexity analysis of the algorithms, allowing for arbi-
trary variation on the block sizes of A is also of interest. This would potentially
allow for an improved deterministic method of assigning row possessions to
participating processes, and which can be decided prior to A being inverted.

Furthermore, the ability to tune between a generating a load balance more
optimized for efficiency in memory distribution and one optimized for exe-
cution speed is a desirable feature, especially as problem sizes approach hard-
ware limits. This, I suspect, may be a nontrivial problem, however, in the sense

1Included in appendix A.

162

6.3 Future Work

of the traveling salesperson problem1.
An analysis of the stability of the Hybrid method is also of interest, and

has not been rigorously analysed. In all generated numerical cases and exam-
ples from the literature [1], inversions were stable, with relative norm errors
on the block tridiagonal TridA {G} being on the order of about 10−10 or less.
Furthermore, transmission calculations were found to be attained with higher
accuracy [1].

Finally, further optimization can be performed on the implemented version
of Hybrid to bring it more closely in line with the theoretical operation count as
described in this thesis. This may possibly worsen the speedup curves slightly,
but should improve the algorithm’s prefactor cost in execution with respect to
problem size n and lead to quicker running times overall. A communications
issue affecting speedup for P = 2 for the Sweeps algorithm also needs clarifi-
cation.

1This class of problems belong to the class of NP–complete problems. They are problems
of “size” n for which no known algorithm exists that can solve them with a time written as a
polynomial of n, though a solution can be checked in polynomial time.

163

6.3 Future Work

164

Appendix A

Article: Block Tridiagonal Matrix
Inversion and Fast Transmission
Calculations

Accepted at the Journal of Computational Physics

Listed in references as [1].

165

Block tridiagonal matrix inversion and fast
transmission calculations

Dan Erik Petersen a,*, Hans Henrik B. Sørensen b, Per Christian Hansen b,
Stig Skelboe a, Kurt Stokbro c

a Department of Computer Science, University of Copenhagen, Universitetsparken 1, DK-2100 Copenhagen, Denmark
b Informatics and Mathematical Modelling, Technical University of Denmark,

Richard Petersens Plads, Bldg. 321, DK-2800 Lyngby, Denmark
c Nanoscience Center, University of Copenhagen, Universitetsparken 5d, DK-2100 Copenhagen, Denmark

Received 24 April 2007; received in revised form 15 November 2007; accepted 19 November 2007
Available online 8 December 2007

Abstract

A method for the inversion of block tridiagonal matrices encountered in electronic structure calculations is developed,
with the goal of efficiently determining the matrices involved in the Fisher–Lee relation for the calculation of electron
transmission coefficients. The new method leads to faster transmission calculations compared to traditional methods, as
well as freedom in choosing alternate Green’s function matrix blocks for transmission calculations. The new method also
lends itself to calculation of the tridiagonal part of the Green’s function matrix. The effect of inaccuracies in the electrode
self-energies on the transmission coefficient is analyzed and reveals that the new algorithm is potentially more stable
towards such inaccuracies.
� 2007 Elsevier Inc. All rights reserved.

PACS: 71.15.�m; 02.70.�c

Keywords: Matrix inversion; Electron transport; Transmission; Density functional theory

1. Introduction

Quantum transport simulations have become an important theoretical tool for investigating the electrical
properties of nanoscale systems, both in the semi-empirical approach [1–4] and full ab initio approach [5–8].
The basis for the approach is the Landauer–Büttiker model of coherent transport, where the electrical prop-
erties of a nanoscale constriction is described by the transmission coefficients of a number of one-electron
states propagating coherently through the constriction. The approach has been used successfully to describe
the electrical properties of a wide range of nanoscale systems, including atomic wires, molecules and interfaces

0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2007.11.035

* Corresponding author. Tel.: +45 35 32 14 00; fax: +45 35 32 14 01.
E-mail address: danerik@diku.dk (D.E. Petersen).

Available online at www.sciencedirect.com

Journal of Computational Physics 227 (2008) 3174–3190

www.elsevier.com/locate/jcp

[9–18]. In order to apply the method to semiconductor device simulation, it is necessary to handle systems
comprising millions of atoms, and this will require new, efficient algorithms for calculating the transmission
coefficient.

In this paper, ideas and calculations behind an algorithm that provides an improvement over a widely pop-
ular technique employed in the calculation of transmission coefficient of so-called two-probe systems [15] is
presented. A two-probe system consists of three regions: a left electrode region, a central scattering region
and a right electrode region. The electrode regions are semi-infinite periodic systems, and the scattering region
connects the two electrode regions. A one-electron tight-binding Hamiltonian is used to describe the electronic
structure of the system. The tight-binding Hamiltonian can be obtained from a semi-empirical tight-binding
description as obtained from an extended Hückel model [19] or through a first-principles approach as obtained
when using a self-consistent density-functional Kohn–Sham Hamiltonian [20].

In the pursuit of determining the electronic structure of molecules, bulk crystals and two-probe systems,
associated self-consistent DFT calculations, relevant Green’s functions and ultimately calculation of the trans-
mission of two-probe systems all involve the problem of matrix inversion in some form or another. This paper
deals with matrices of a block tridiagonal form, which lie at the center of the problems to be solved. Block
matrices will be denoted with uppercase bold letters, while lower case bold letters refer to sub-block matrices
of their uppercase counterparts.

Throughout this paper, it is assumed that block tridiagonal matrix, A, is dealt with and that it is to be
inverted in order to obtain the Green’s function matrix (or a part thereof). In the process of finding the
Green’s function matrix G ¼ A�1 that enters in DFT theory, the following equation sets up the problem [21]:

A ¼ eS�H� RL � RR: ð1Þ
In the above expression S is an overlap matrix, H is the Hamiltonian of the system and RL and RR are the

self-energies from the left and right semi-infinite electrodes, respectively. Furthermore, the matrix G depends
on the variable e that dictates the energy of an incoming one-electron coherent wave for which it is desired to
investigate the transmission through the system. The methods developed in this paper are designed for a fixed
value of e.

The individual blocks of the matrix A are denoted aij and are assumed to be dense, complex matrices along
the tridiagonal. The diagonal blocks are square matrices, while the off-diagonal blocks are typically rectangu-
lar. The structure of A for two relevant cases is shown in Figs. 1 and 2.

A method to obtain the Green’s function matrix G is now devised, much in the same spirit as [22]. In order
to do so, the matrix to be inverted, A, is augmented with the identity matrix, I.

Fig. 1. The block-tridiagonal and sparsity structure for the Au111–AR example [17]. The matrix is of dimension 1295� 1295, split up
along the diagonal in blocks of order 243, 162, 66, 79, 69, 84, 62, 62, 225, and 243 from upper left to lower right, along with corresponding
off-diagonal blocks.

D.E. Petersen et al. / Journal of Computational Physics 227 (2008) 3174–3190 3175

ð2Þ

Each diagonal block of the identity matrix, iii has the same square block size of the corresponding block aii of
the matrix A, and are themselves identity matrices.

The organization and shape of the matrix blocks in A are related to the topology of the two probe system.
Looking at, e.g. Fig. 1, portions of the electrodes can be identified as the regions comprised of larger blocks
towards the corner of the matrix, while the more sparsely populated central region of the system is identified as
a series of smaller matrix blocks in the center of A. The top left corner of A attaches to the left electrode, while
the lower right corner attaches to the right electrode.

The expression augmented matrix ½AjI� is equivalent to the equation AG ¼ I (cf. [23]). By manipulating the
augmented matrix through a series of operations such that the left side, A, is reduced to the identity matrix I,
we will obtain the augmented matrix ½IjG� where the inverse of A, namely G ¼ A�1, can be read on the right.
This is done by illustrating the forward and backward block Gaussian elimination steps, and then combining
the results.

Calculating all of G is ultimately not of interest. Only a block gij of G to be used in further transmission
calculations will be determined. It is the particular choice of gij and the procedure for its calculation that sep-
arates the new transmission calculation method from previous algorithms.

This paper is organized as follows. The notation and block Gaussian elimination technique on which
the methods used in this paper is based on is described in Section 2. Section 3 shows how the result
of block Gaussian elimination is used to generate the Green’s function matrix G. In Section 4, the
calculation of transmission values via a traditional method and a new method is explained. The new
method is then benchmarked against the traditional, baseline method, via a consideration of computa-
tional complexity, as well as measured speedup times in Section 5. The effects of perturbed surface Green’s
function matrices on the transmission accuracy, and conclusions on which portions of G would lead to
more accurate transmission calculations is considered in Section 6. Conclusions are finally presented in
Section 7.

Fig. 2. The block-tridiagonal and sparsity structure for the Au111–DTB example [18]. The matrix is of dimension 943� 943, split up
along the diagonal in blocks of order 243, 162, 88, 198 and 243 from upper left to lower right, along with corresponding off-diagonal
blocks.

3176 D.E. Petersen et al. / Journal of Computational Physics 227 (2008) 3174–3190

2. Forward and backward block Gaussian elimination

The forward procedure is characterized with the superscript L since the elimination procedure proceeds
from the left electrode towards the right.

A block Gaussian elimination step is performed on the matrix given in Eq. (2) by multiplying the first block
row by the matrix cL

1 ¼ �a21a�1
11 and subsequently adding it to the second block row. This produces a zero

block in the (2,1) position:

ð3Þ

Next, a block Gaussian elimination step is performed by multiplying the second row by the factor
cL

2 ¼ �a32ða22 � a21a�1
11 a12Þ�1 and subsequently adding it to the third row. This produces a zero block in

the (3,2) position. A recursive routine that will complete a full forward block Gaussian elimination is
now defined.

dL
11 ¼ a11 cL

1 ¼ �a21ðdL
11Þ
�1

dL
22 ¼ a22 � a21ðdL

11Þ
�1

a12 cL
2 ¼ �a32ðdL

22Þ
�1

dL
33 ¼ a33 � a32ðdL

22Þ
�1

a23 cL
3 ¼ �a43ðdL

33Þ
�1

..

. ..
.

dL
ii ¼ aii � ai;i�1ðdL

i�1;i�1Þ
�1

ai�1;i cL
i ¼ �aiþ1;iðdL

ii Þ
�1

..

. ..
.

dL
nn ¼ ann � an;n�1ðdL

n�1;n�1Þ
�1

an�1;n cL
n�1 ¼ �an;n�1ðdL

n�1;n�1Þ
�1

The matrices dL
ii are the diagonal blocks of the resulting matrix on the left. It can be seen that each diagonal

block is calculated from the following relation:

dL
ii ¼ aii þ cL

i�1ai�1;i; where i ¼ 2; 3; . . . ; n and dL
11 ¼ a11; ð4Þ

and each row multiplication factor is:

cL
i ¼ �aiþ1;iðdL

ii Þ
�1
; where i ¼ 1; 2; . . . ; n� 1: ð5Þ

The similar backward procedure is characterized with the superscript R since the elimination procedure
moves from the right electrode towards the left. The derivation of the backwards recursive expressions
follows that of the forward elimination. Each diagonal block can be calculated from the following
relation:

dR
ii ¼ aii þ cR

iþ1aiþ1;i; where i ¼ n� 1; . . . ; 2; 1 and dR
nn ¼ ann; ð6Þ

D.E. Petersen et al. / Journal of Computational Physics 227 (2008) 3174–3190 3177

and each row multiplication factor is:

cR
i ¼ �ai�1;iðdR

ii Þ
�1
; where i ¼ n; . . . ; 3; 2: ð7Þ

3. Combining the two procedures

After a complete forward and backward block Gaussian elimination sweep, the augmented matrices,
named ½DLjJL� and ½DRjJR�, respectively, will look as follows where the matrices JL and JR are lower and
upper block triangular, respectively:

ð8Þ

ð9Þ

Here, the following notation was introduced:

cR
1 cR

2 � � � cR
i ¼ cR

1;2;...;i

cL
i cL

i�1 � � � cL
1 ¼ cL

i;i�1;...;1

)
where i ¼ 1; 2; . . . ; n: ð10Þ

Combining the results obtained from Eqs. (2), (8), and (9) by employing the fact that

AG ¼ I; DLG ¼ JL; DRG ¼ JR; ð11Þ

the expression

ðA�DL �DRÞG ¼ I� JL � JR ð12Þ

is examined, which can be viewed as the following augmented matrix expression:

ð13Þ

where

B ¼

a11 � dL
11 � dR

11

a22 � dL
22 � dR

22

a33 � dL
33 � dR

33

. .
.

0BBBBB@

1CCCCCA ð14Þ

3178 D.E. Petersen et al. / Journal of Computational Physics 227 (2008) 3174–3190

and

F ¼

�i11 �cR
2 �cR

2;3 �cR
2;3;4 � � �

�cL
1 �i22 �cR

3 �cR
3;4 � � �

�cL
2;1 �cL

2 �i33 �cR
4 � � �

�cL
3;2;1 �cL

3;2 �cL
3 �i44 � � �

..

. ..
. ..

. ..
. . .

.

0BBBBBBBB@

1CCCCCCCCA
: ð15Þ

When B is subsequently reduced to the identity matrix I, F will simultaneously be transformed into the Green’s
function matrix G. In other words, the Green’s function matrix sought for can be expressed as G ¼ B�1F. The
Green’s function matrix is:

G ¼

g11 g11cR
2 g11cR

2;3 � � � g11cR
2;...;n

g22cL
1 g22 g22cR

3 � � � g22cR
3;...;n

g33cL
2;1 g33cL

2 g33 � � � g33cR
4;...;n

g44cL
3;2;1 g44cL

3;2 g44cL
3 � � � g44cR

5;...;n

..

. ..
. ..

. . .
. ..

.

gnncL
n�1;...;1 gnncL

n�1;...;2 gnncL
n�1;...;3 � � � gnn

0BBBBBBBBBB@

1CCCCCCCCCCA
; ð16Þ

where the following expression for the diagonal blocks of the Green’s function matrix is introduced:

gii ¼ �b�1
ii ¼ �aii þ dL

ii þ dR
ii

� ��1
where i ¼ 1; 2; . . . ; n: ð17Þ

Off-diagonal entries are then calculated via appropriate multiplications with calculated diagonal block matri-
ces and factors obtained during block Gaussian elimination as follows using the notation given in Eq. (10):

gij ¼ giic
R
iþ1;iþ2;...;j�1;j for i < j ð18Þ

gij ¼ giic
L
i�1;i�2;...;jþ1;j for i > j: ð19Þ

4. Computation of transmission

The calculation of transmission t, given by the following Fisher–Lee [24] relation obtained in non–equilib-
rium Green’s function theory, can be expressed as (cf. [21,25]):

t ¼ TrfGCLGyCRg: ð20Þ
Here ‘Tr’ denotes a matrix trace operation, and the dagger denotes Hermitian conjugation. Regarding
CL and CR, the superscripts indicate left and right electrode contact leads. These matrices are defined from
the electrode self-energy [21]:

CL ¼ ı̂ RL � RL
� �y� �

; CR ¼ ı̂ RR � RR
� �y� �

; ð21Þ

where ı̂ is the imaginary unit. These matrices are only non–zero in the ð1; 1Þ block for RL and CL, and in the
ðn; nÞ block for the case RR and CR (cf. [26–28]).

Two methods are now presented that can be used to calculate the transmission t given in Eq. (20).

4.1. Coupling method

The coupling method is by far the popular method of choice in the literature when transmission is to be
calculated via the Green’s function formalism (see [26–28]). The method is introduced here, and regarded
as the baseline method to compare the new transmission calculation method to later in the paper.

D.E. Petersen et al. / Journal of Computational Physics 227 (2008) 3174–3190 3179

In this method, the coupling between the left and right leads is calculated, and the transmission computed
accordingly. This coupling is denoted as gn1, and it resides as the lowest left corner of the Green’s function
matrix G. The calculation of transmission for a particular energy e then becomes (cf. [26]):

t ¼ Trfgn1c
L
11gyn1c

R
nng; ð22Þ

where cL
11 ¼ ½CL�11 and cR

nn ¼ ½CR�nn. Thus we introduce the notation ½��ij which delivers the ði; jÞ-block, with
respect to A’s block structure, of the bracketed expression. The main task is to find gn1. From Eq. (16) it is
seen that the expression for this matrix is:

gn1 ¼ gnncL
n�1cL

n�2 � � � cL
2 cL

1 ; ð23Þ

and we see that the only factors cL
i involved are all those computed in a downwards block Gaussian elimina-

tion sweep. The matrix gnn in Eq. (23) can be obtained by considering the nth block from Eq. (17):

gnn ¼ ð�ann þ dL
nn þ dR

nnÞ
�1 ¼ ðdL

nnÞ
�1
; ð24Þ

since dR
nn ¼ ann. This holds similarly for the first row of the Green’s function matrix. From this, it is seen that

the first and last diagonal blocks of the Green’s function matrix correspond to the final blocks of upwards and
downwards sweeps of block Gaussian elimination, respectively, in the following manner:

g11 ¼ ðdR
11Þ
�1 and gnn ¼ ðdL

nnÞ
�1
: ð25Þ

4.2. Overlap method

A new method that seeks to compute the transmission much like the baseline coupling method, however via
a different part of the Green’s function matrix, is now introduced.

Here, the idea is again based on the transmission formula Eq. (20), however the matrices dealt with change
from being a coupling between the leads to that of a coupling between two adjacent blocks somewhere in the
center of the system. This corresponds to centering calculations around a diagonal block of A. This will
require us to calculate the Green’s function for the kth block of interest, gkk.

The name of the method arises from the fact that calculation of a diagonal block involves a sweep of block
Gauss elimination from both the upper left and lower right of A which will overlap on the block of interest.

The motivation behind this approach is to avoid the work in having to calculate an off-diagonal block of
the Green’s function matrix after a series of block Gaussian elimination sweeps. This amounts to n� 1 matrix
multiplications. In the new method, overhead will arise due to calculations involving the self-energies
RL and RR, and the corresponding matrices CL and CR. However, these computations are less expensive
matrix addition operations, and they are negligible with increasing number of matrix blocks and block
sizes.

As we shall demonstrate below, it is advantageous to choose k corresponding to the smallest diagonal block
inside the block tridiagonal matrix A. Although this approach involves some additional computations with the
self-energy matrices and their corresponding coupling matrices, this overhead is acceptable due to the savings
involved in the cheaper matrix computations for the overlap method.

Choosing an arbitrary kth diagonal block, the transmission is given in the following expression, derived in
the appendix:

t ¼ Trfgkk½CL
#k�kkg

y
kk½CR

"k�kkg; ð26Þ

where the new self-energy related terms are given by Eqs. (48) and (49) in the Appendix. Using the nonzero
structure of the respective self-energies

PL and
PR we obtain the simpler relations

CL
#1

h i
11
¼ cL

11; CR
"1

h i
11
¼ ı̂ððdR

11Þ
y � dR

11Þ ð27Þ

CR
"n

h i
nn
¼ cR

nn; CL
#n

h i
nn
¼ ı̂ððdL

nnÞ
y � dL

nnÞ ð28Þ

3180 D.E. Petersen et al. / Journal of Computational Physics 227 (2008) 3174–3190

and for k = 2,. . .,n�1

½CL
#k�kk ¼ ı̂ððdL

kkÞ
y � dL

kkÞ � cR
kk; ½CR

"k�kk ¼ ı̂ððdR
kkÞ
y � dR

kkÞ � cL
kk: ð29Þ

5. Benchmark results

The methods introduced here were implemented in C++ within Atomistix’s Atomistix ToolKit, and comput-
ing times were obtained for calculating the transmission for 10 different energies e for several different systems.
These systems have been taken from the literature, and an overview of selected examples is presented in Table 1.

5.1. Operation count

In order to determine which transmission method may be algorithmically more efficient, the quantity of
matrix factorizations, multiplications and additions related to the three different methods available is recorded
in Table 2.

In Table 3 operation counts for the calculations of the full inverse of A as well as calculation of only the
block tridiagonal part of the inverse is included. This is done for both a Gauss elimination (GE) algorithm, as
well as the new method presented in this paper.

The block tridiagonal part of the inverse is of interest for further calculations carried out in Density Func-
tional Theory (DFT) via the Green’s function formalism, and results for the full inverse are included in order
to show how the new method in this paper, though suited for the block tridiagonal calculation, is ill-suited to
calculate the entire inverse, compared to traditional methods.

Looking at operation counts in Table 2 on obtaining various parts of the Green’s function matrix G, it is
seen that all choices require n LU factorizations, where n is the number of diagonal blocks in A.

Table 1
An overview of the test examples examined in this paper

Example systems

System Article Order n Block order

Al100+C7 [15] 444 5 128, 72, 16, 100, 128
AlLead+C7 [15] 296 5 72, 72, 20, 60, 72
Au111–AR [17] 1295 10 243, 162, 66, 79, 69, 84, 62, 62, 225, 243
Au111–TW [16] 1155 8 243, 162, 62, 70, 53, 70, 252, 243
Au111–DTB [18] 928 5 243, 162, 88, 198, 243
Fe–MgO–Fe [13,14] 228 5 54, 45, 30, 45, 54
nanotube4_4 – 576 4 128, 128, 192, 128

For each example the original paper related to the system, the dimension of the overall matrix A, the number of diagonal blocks n, and
finally the size of each of the diagonal blocks, from the upper left of A down to the lower right is listed.

Table 2
This table illustrates the amount of basic operations performed in calculating different blocks of G via either block Gauss elimination
(GE), the coupling method or overlap method

Green’s function sub-block operation count

Block Method LU-factorizations Multiplications Additions

gn1 GE n 3ðn� 1Þ n� 1
gnn GE n 2n� 1 n� 1
gkk GE n 4n� 2k � 1 2n� k � 1
gn1 Coupling n 3ðn� 1Þ n� 1
gnn Overlap n 2n� 1 n� 1
gkk Overlap n 2n� 1 nþ 1

The third, fourth and fifth columns refer to the basic matrix operations of LU-factorization, multiplication and addition. The term n is the
total amount of diagonal blocks in A; and k indicates which diagonal block in the Green’s function matrix G is used for transmission
calculations.

D.E. Petersen et al. / Journal of Computational Physics 227 (2008) 3174–3190 3181

In obtaining gn1, block Gauss elimination and the coupling method both require the same amount of oper-
ations to complete, and there is no advantage either way. Again, in obtaining the lower diagonal block gnn,
both block Gauss elimination and the overlap method require the same amount of matrix–matrix calculations.

The advantage of the overlap method over block Gauss elimination occurs when a central diagonal block
gkk is required. Here, only two more matrix–matrix additions over the overlap method for gnn is needed, while
for block Gauss elimination, a series of matrix–matrix multiplies and additions add up in order to back–solve
up towards the desired diagonal block. Thus the overlap method is better suited for determining diagonal
blocks than block Gauss elimination.

Looking at which block of the matrix G is cheapest to compute on the basis of Table 2, one would appar-
ently choose gnn. This, however, may not be the case since the table does not take into account differing block
sizes among the different sub-blocks in A and G. These differing sizes can lead to substantial changes in costs
regarding the basic operations of LU-factorization, matrix multiplication and matrix addition in the table.
The speedup results presented later in Section 5.2 and Table 4 will verify this.

With regard to the cost of the basic operations on a matrix block of order ni, then the amount of work for
each LU-factorization, multiplication and addition is on the order of 2=3n3

i , 2n3
i and 2n2

i , respectively.

5.1.1. Transmission calculation

To finally calculate transmission after successfully obtaining a sub-block of G, the Fisher–Lee relation (cf.
Eq. (20)) is invoked, and thus three matrix–matrix multiplications are incurred, as well as a matrix trace oper-
ation. However, the significant factor here among the different methods reviewed is that the final matrix block
dimensions in the Fisher–Lee relation may be different. Typically, due to the topology of the two-probe sys-
tem, the central region, and thus the kth diagonal block gkk, will be of smaller size than the corner blocks gnn or
gn1. Thus a significant prefactor cost in execution time can be saved by selecting the transmission method cen-
tered around the smallest Green’s function diagonal matrix block.

Table 3
This table illustrates the amount of basic operations performed in calculating either the full inverse G of A, or only the block tridiagonal
part of it, using different methods

Green’s function operation count

Calculation Method LU-factorizations Multiplications Additions

Full inv GE n 2n2 þ n� 2 1
2 ðn2 þ n� 2Þ

Trid inv GE n 1
2 ð3n2 þ 5n� 6Þ 1

2 ðn2 þ n� 2Þ
Full inv Paper 3n� 2 n2 þ 4n� 4 4n� 6
Trid inv Paper 3n� 2 7n� 6 4n� 6

The methods employed are block Gauss Elimination (GE), and the new method incorporating forward and backward Gaussian elimi-
nation sweeps (paper), as presented in Eq. (16). The third, fourth and fifth columns refer to the basic matrix operations of LU–
factorization, multiplication and addition. The term full inv refers to calculating the full inverse, while trid inv refers to obtaining only the
block tridiagonal part of the inverse. The term n is the total amount of diagonal blocks in A.

Table 4
This table illustrates the speedup achieved by using the new methods centered around diagonal blocks, relative to the baseline coupling
method using the off-diagonal block gn1

Speedup measurements

System Coupling – gn1 Overlap – gnn Overlap – gkk

Al100+C7 1.0000 1.2099 2.6557
AlLead+C7 1.0000 1.1916 2.0092
Au111–AR 1.0000 1.4211 3.2121
Au111–TW 1.0000 1.3721 2.8994
Au111–DTB 1.0000 1.3675 3.2537
Fe–MgO–Fe 1.0000 1.3064 1.8001
nanotube4_4 1.0000 1.2261 1.2477

The expression gn1 refers to the coupling method, while gnn and gkk refer to the overlap method performed on the nth and smallest
diagonal block, respectively. The overlap methods are always faster, and in particular those centred on the smallest, kth, diagonal block.

3182 D.E. Petersen et al. / Journal of Computational Physics 227 (2008) 3174–3190

Some overhead arises in choosing a central diagonal block in the shape of recalculating new matrices
½CL
#k�kk and ½CR

"k�kk for the transmission function Eq. (26) via Eqs. (27)–(29), but as these operations are cheaper
matrix–matrix addition operations on small matrices, this overhead is offset by the gains in being able to
employ smaller matrices in the more expensive matrix–matrix multiplication operations in the Fisher–Lee rela-
tion in Eq. (26).

5.1.2. Full inversion

With regard to determining the full inverse G from A, it is seen in Table 3 how block Gauss elimination
excels over the method in this paper in terms of costly LU factorizations. Although Gauss elimination has
about twice the number of matrix multiplies than the new method, Gauss elimination is still preferable when
taking into account that it only requires about a third LU factorizations compared to the new method. Thus
the new method is not suited for determining the full matrix G.

However, when requiring only the tridiagonal part of the inverse, as is the case for some DFT applications,
the new method is a better choice since it only requires on the order of n matrix–matrix multiplications, while
block Gauss elimination still requires on the order of n2 matrix–matrix multiplications.

5.2. Speedup results

For an overview of the speedup of the new methods relative to the baseline coupling method, see Table 4.
Overall, speedup improves in every case when moving from the coupling method to the overlap method. This
is not surprising, seeing how the main difference between these two methods, operation count–wise, is the lack
of extra matrix multiplications in order to obtain an off-diagonal Green’s function matrix block. Eliminating
this task will always lead to a faster method.

Performing calculations using the smallest diagonal block k over the first or nth block can also yield sig-
nificant improvements in execution time, depending on the topology of the two-probe system, and the subse-
quent block structure in A. The difference here is that it is no longer possible to ‘recycle’ one of the self-energy
terms that is assumed to be available from the outset, as well as different block size between gnn and gkk. Thus
in seeking a smaller diagonal matrix block to work with, appropriate self-energy terms must be determined
once again, and this leads to extra overhead.

However, it may pay off to select some central diagonal block over a corner diagonal block in order to cal-
culate transmission. This comes in the form of being able to work with smaller matrices, and thus matrix oper-
ation costs decrease. Crucially, matrix sizes may decrease such that memory requirements for matrix
operations can be fulfilled by lower level hardware caches, leading to significant speedup in execution time.
This effect is visible in Table 5, where significant speedup is achieved in the matrix–matrix operations involved
in the Fisher–Lee calculation.

Table 5
This table illustrates the speedup in the calculation of solely the Fisher–Lee relation (see Eq. (26)) achieved by using the new methods
centered around diagonal blocks, relative to the baseline coupling method using the off-diagonal block gn1

Speedup measurements – Fisher–Lee

System Coupling – gn1 Overlap – gnn Overlap – gkk Theoretical – n3

m3

Al100+C7 1.0000 1.0567 548.4500 512.000
AlLead+C7 1.0000 0.9546 47.4516 46.656
Au111–AR 1.0000 1.2654 170.6912 60.207
Au111–TW 1.0000 1.2788 275.6198 96.381
Au111–DTB 1.0000 1.2716 59.8502 21.056
Fe–MgO–Fe 1.0000 1.3186 7.1354 5.832
nanotube4_4 1.0000 0.9940 1.0178 1.000

The expression gn1 refers to the coupling method, while gnn and gkk refer to the overlap method performed on the nth and smallest
diagonal block, respectively. The final column indicates the theoretical speedup based on the Oðn3Þ cost of evaluating Eq. (26). The reason
for better speedup over theoretical prediction is due to improved cache usage by the smaller matrices dealt with when using gkk .

D.E. Petersen et al. / Journal of Computational Physics 227 (2008) 3174–3190 3183

Furthermore, as will be explored in Section 6 concerning transmission accuracy, depending on the system,
central matrix blocks may be less prone to perturbation from inaccurately calculated electrode surface Green’s
function matrices. This, however, varies from system to system, as well as incoming electron wave energies e.

6. Transmission accuracy

It has been shown that any block of the Green’s function matrix can be used in order to calculate trans-
mission and a new strategy employing diagonal blocks of G was developed. The question now is which part
of G might be used in order to achieve best accuracy in determining transmission. This section suggests that an
investigation of the accuracy achieved for a given block may lead to informed choices. The problem of the
selection of which matrix block is best concerning accuracy comes from the fact that in practice the self-ener-
gies of the electrodes, rL

11 and rR
nn, are not computed exactly. This is because in the Green’s function formalism

approach, the surface Green’s function matrices for the electrodes (and hence their corresponding self-ener-
gies) are typically determined through an iterative procedure [29] that only converges to the correct retarded
Green’s function matrix when a small positive imaginary perturbation is applied. This means that transmis-
sions are calculated for a slightly perturbed matrix eA, where the corner blocks a11 and ann are perturbed to
some degree through the inexact self-energies.

The matrix A here will denote the case when no imaginary perturbation is used and this can be done by
employing a different manner to converge the surface Green’s function matrices, such as a wave function
matching [30–32] approach. To investigate how this imaginary perturbation ultimately affects the Green’s func-
tion matrix that transmissions are calculated with, the inverses of an unperturbed case and a perturbed case are
compared. The perturbation on A is described as the added matrix P, defined as zero everywhere, except the
corner blocks p11 and pnn, that correspond to the corner blocks a11 and ann, both in size and location.

ð30Þ

The perturbation matrix, as seen in Eq. (30), is divided into 9 blocks, where the empty space denotes areas with
elements equal to zero. In a similar manner, the inverse G ¼ A�1 is subdivided into the same block sizes.

ð31Þ

To investigate the effect of the perturbation P the derivation of eG ¼ eA�1 is carried out:eG ¼ ½AðIþGPÞ��1 ¼ ðIþGPÞ�1
G: ð32Þ

If the perturbation is assumed to be small, such that the spectral radius satisfies qðGPÞ < 1, then the first
inverse term can be expressed via a geometric series.

3184 D.E. Petersen et al. / Journal of Computational Physics 227 (2008) 3174–3190

eG ¼ ðIþGPÞ�1
G ¼ G�GPGþGPGPG� � � � ð33Þ

Thus it can be seen that the difference in the perturbed and unperturbed inverses should be dominated by the
term GPG. If G is subdivided into row and column blocks, as follows, it will be possible to proceed and derive
a relatively compact expression for the structure of this first order correction term.

ð34Þ

such that

b1 ¼

g11

..

.

gn1

0BB@
1CCA; bn ¼

gn1

..

.

gnn

0BB@
1CCA ð35Þ

and

c1 ¼ g11 � � � g1nð Þ; cn ¼ gn1 � � � gnnð Þ: ð36Þ

With this notation, the first order perturbation term is written as follows:

GPG ¼ b1p11c1 þ bnpnncn: ð37Þ
It can be seen how the outer-product form of this expression will yield a dense matrix GPG, since G can

generally be assumed to be dense. This indicates that the correction term’s effect will depend directly on the
full structure of G, and thus no prediction can be made about the effect of the perturbation on G, without
calculating G itself.

We look at the first order perturbation at block ði; jÞ:
½GPG�ij ¼ ½b1p11c1 þ bnpnncn�ij ¼ gi1p11g1j þ ginpnngnj;

where the element gin describes the amplitude of an electron propagating from site i to site n in the system. For
most systems, this will decay as a function of the distance between orbitals at sites i and n, and thus the error
should be smallest for Green’s function blocks in the center of the cell, i.e., as far as possible from the elec-
trodes. Thus we can expect choosing central blocks in G should lead to more accurate transmission calcula-
tions for most systems.

6.1. Numerical example with random perturbation

The effect of a perturbation of the electrode’s surface Green’s function matrices on the Green’s function G

itself is here illustrated by a numerical example. The Hamiltonian matrix H and overlap matrix S associated
with Au111–AR is taken, and the matrix to be inverted is constructed as

A ¼ H� eS; where e ¼ 1:0: ð38Þ
The corner blocks of A, namely a11 and ann, are then perturbed with matrices p11 and pnn. The elements of

p11 and pnn are computed as:

p11 pij ¼ aijaij; where aij 2 a11; and ð39Þ
pnn pkl ¼ aklakl; where akl 2 ann: ð40Þ

where the factors aij and akl are normally distributed with zero mean and standard deviation 10�5.
Fig. 3 shows the results of the average difference of 100 perturbed inversions eG compared to G. From this

figure, it is seen that for this particular choice of system (H and S) and energy (e), the perturbation from the
iterated self-energies cause the inverse to be most inaccurate at the corner diagonal blocks. Thus, choosing the

D.E. Petersen et al. / Journal of Computational Physics 227 (2008) 3174–3190 3185

overlap method as the transmission calculation method would be on average best served by choosing a block
towards the center of the matrix, where the perturbation has the least effect. This choice is further motivated
by the fact that the center blocks typically are of smaller size, and matrix operations would be faster than oper-
ations with the corner diagonal blocks.

A problem with this analogy lies in the fact that one can not predict which Green’s function matrix block
would provide more accurate transmission results (see Eq. (37)), without calculating the Green’s function
matrix in the first place. This lends prediction to be prohibitive in general, when computing transmissions.
The best choice of action is then relying on the usual behavior of most two-probe systems as well as choosing
the fastest calculation method, leading us to pick a diagonal block towards the center of the system, which are
typically the least affected by the electrodes as well as the smallest in size.

7. Conclusion

This paper developed and introduced a new, faster method of calculating transmission for two-probe sys-
tems by using diagonal block matrices from the Green’s function matrix, gii, rather than the coupling method
found extensively in the literature that uses the corner off-diagonal block gn1.

This is done by developing a method for calculating any block matrix from the Green’s function matrix G

based on a series of Gauss eliminations carried out on the original matrix A.
To calculate transmission via a diagonal block of the Green’s function matrix G, upwards and downwards

block Gaussian elimination is performed that terminates overlapping over akk; and gkk is calculated (cf. Eq.
(17)).

Furthermore, the related coupling matrices (usually obtained via self-energy) used in the transmission for-
mula Eq. (26) are calculated via Eqs. (27)–(29), for the new, extended electrodes. This approach dispenses with
the need of a series of matrix–matrix multiplications compared to the coupling method (cf. Eq. (23)) in
exchange for cheaper matrix–matrix addition operations.

Execution time measurements indicated that centering transmission calculations on the Green’s function
matrix’s diagonal blocks was preferable, in that a series of matrix–matrix multiplications would be saved as

Fig. 3. The figure above illustrates the average element-wise difference expressed as log½meanðG� eGðpÞÞ� for p ¼ 1; . . . ; 100. The matrix G

corresponds to the Au111–AR example [17]. Element-wise differences range from about the same order down to about 18 orders of
magnitude smaller. The dark lines outline the original block tridiagonal structure of the original matrix A. The logarithm employed is the
base 10 logarithm. In this particular example for choice of electron energy e and A, the diagonal blocks in the center of the matrix suffer
least in terms of accuracy.

3186 D.E. Petersen et al. / Journal of Computational Physics 227 (2008) 3174–3190

well as centering on smaller diagonal matrix blocks offset the cost of re-calculating self-energy matrices. Fur-
thermore, the ability to choose smaller block matrices lends itself to the possibility of far better cache usage,
and hence greater performance gains.

Perturbation analysis revealed that it is not possible to determine the effect of perturbation in the electrode
self-energy matrices on the accuracy of the Green’s function, without explicitly calculating the Green’s func-
tion matrix. This eliminates the ability to predict which Green’s function matrix block would be an ideal
choice for the calculation of a two-probe system’s transmission with respect to accuracy. However, due to
the behavior of most two-probe systems, a central diagonal block choice is expected to yield more accurate
results.

Acknowledgments

This work was supported by Grant No. 2106-04-0017, ‘‘Parallel Algorithms for Computational Nano-Sci-
ence”, under the NABIIT program from the Danish Council for Strategic Research.

Appendix. Derivation of Eq. (26) for the Transmission

We commence with the expression in Eq. (1). As shown in (e.g., Golub and Van Loan [33]) Section 3.2.1, we
can represent a Gauss-elimination step as a matrix multiplication with a ‘‘Gauss transformation”. The same is
true for the block Gauss-elimination steps we use here, and thus we express a series of downwards Gauss-elim-
inations that terminate on row k by E#k. Similarly, a series of upwards Gauss-eliminations terminating on row
k is denoted by E"k. We then write the combination of Gauss-elimination sweeps that produce a matrix Zk as
follows:

Zk ¼ E#kAE"k: ð41Þ
Due to the structure of A, the matrix Zk is block diagonal as shown in Fig. 4. Given Zk, we can write the

Green’s function matrix as

G ¼ A�1 ¼ E"kZ�1
k E#k: ð42Þ

We can then insert this expression into the Fisher–Lee relation from Eq. (20), to obtain

t ¼ TrfðE"kZ�1
k E#kÞCLðE"kZ�1

k E#kÞyCRg ¼ TrfE"kZ�1
k E#kC

LEy#kðZ�1
k Þ
y
Ey"kC

Rg

¼ TrfZ�1
k E#kC

LE
y
#kðZ�1

k Þ
y
E
y
"kC

RE"kg ¼ TrfZ�1
k CL

#kðZ�1
k Þ
yCR
"kg ð43Þ

where we have introduced

CL
#k ¼ E#kC

LE
y
#k and CR

"k ¼ E
y
"kC

RE"k: ð44Þ

To derive Eq. (43) we used that the trace is invariant under matrix commutation [34].

Fig. 4. The zero/nonzero structure of Zk and Z�1
k .

D.E. Petersen et al. / Journal of Computational Physics 227 (2008) 3174–3190 3187

Eq. (43) can be further simplified. First note that both Zk and Z�1
k have the special zero/nonzero structure

shown in Fig. 4. Next, note that CL has nonzero elements in its (1,1)-block only, and hence the nonzeros in CL
#k

are confined to upper left blocks, as shown in Fig. 5. Similarly, the nonzeros of CR
"k are confined to the bottom

right blocks. Using the zero/nonzero structure of these matrices, it follows from the derivation illustrated in
Fig. 6 that:

t ¼ TrfZ�1
k CL

#kðZ�1
k Þ
yCR
"kg ¼ Trf½Z�1

k �kk½CL
#k�kk½Z

�1
k �
y
kk½CR

"k�kkg: ð45Þ

Fig. 5. The zero/nonzero structure of CL and CL
#k .

Fig. 6. Illustration of the derivation of Eq. (45) using the zero/nonzero structure of Figs. 4 and 5.

3188 D.E. Petersen et al. / Journal of Computational Physics 227 (2008) 3174–3190

Hence, we require only the kth diagonal block of Z�1
k , and we note that this corresponds to the kth diagonal

block of the Green’s function matrix G via Eq. (17). Thus ½Z�1
k �kk ¼ gkk; and ½Z�1

k �
y
kk ¼ g

y
kk.

Next we consider ½CL
#k�kk and ½CR

"k�kk. By means of Eq. (1) we can obtain the expression of a self-energy, e.g.,
RL, and via Eq. (21) we now determine our desired matrix for the transmission calculation:

½CL
#k�kk ¼ ½E#k ı̂ðRL � ðRLÞyÞEy#k�kk ¼ ı̂½E#kððeS�H� RR � AÞ � ðeS�H� RR � AÞyÞEy#k�kk

¼ ı̂½E#kðAy � A� ðRR � ðRRÞyÞÞEy#k�kk

¼ ı̂ð½E#kAEy#k�
y
kk � ½E#kAEy#k�kkÞ � ı̂½E#kðRR � ðRRÞyÞEy#k�kk: ð46Þ

Here we used that both S and H are Hermitian and therefore vanish in the expression. The first term
involving A is simplified via the fact that the ðk; kÞ-subblock of the block tridiagonal E#kA remains invariant
under the column operations by Ey#k, and thus ½E#kAEy#k�kk ¼ dL

kk. The last term, involving self-energies, is sim-
plified via Eq. (21). We get

½CL
#k�kk ¼ ı̂ððdL

kkÞ
y � dL

kkÞ � ½E#kCREy#k�kk: ð47Þ

Since E#k represents downwards elimination, the ðk; kÞ-block in E#kC
REy#k is left unaltered, i.e.,

½E#kCREy#k�kk ¼ ½CR�kk ¼ cR
kk. Hence:

½CL
#k�kk ¼ ı̂ððdL

kkÞ
y � dL

kkÞ � cR
kk: ð48Þ

Following a similar procedure, we obtain:

½CR
"k�kk ¼ ı̂ððdR

kkÞ
y � dR

kkÞ � cL
kk: ð49Þ

Thus we have all the terms necessary for the calculation of transmission via Eq. (43).

References

[1] P. Pernas, A. Martin-Rodero, F. Flores, Electrochemical–potential variations across a constriction, Phys. Rev. B 41 (1990)
8553–8556.

[2] W. Tian, S. Datta, Aharonov–Bohm-type effect in graphene tubules: a Landauer approach, Phys. Rev. B 49 (1994) 5097–5100.
[3] L. Chico, M. Sancho, M. Munoz, Carbon-nanotube-based quantum dot, Phys. Rev. Lett. 81 (1998) 1278–1281.
[4] A. de Parga, O.S. Hernan, R. Miranda, A.L. Yeyati, A. Martin-Rodero, F. Flores, Electron resonances in sharp tips and their role in

tunneling spectroscopy, Phys. Rev. Lett. 80 (1998) 357–360.
[5] N.D. Lang, Resistance of atomic wires, Phys. Rev. B 52 (1995) 5335–5342.
[6] K. Hirose, M. Tsukada, First-principles calculation of the electronic structure for a bielectrode junction system under strong field and

current, Phys. Rev. B 51 (1995) 5278–5290.
[7] M.B. Nardelli, Electronic transport in extended systems: application to carbon nanotubes, Phys. Rev. B 60 (1999) 7828–7833.
[8] M.B. Nardelli, J. Bernholc, Mechanical deformations coherent transport in carbon nanotubes, Phys. Rev. B 60 (1999) R16338–

R16341.
[9] J.J. Palacios, A.J. Pérez-Jiménez, E. Louis, J.A. Vergés, Fullerene-based molecular nanobridges: a first-principles study, Phys. Rev. B

64 (2001) 115411.
[10] P.A. Derosa, J.M. Seminario, Electron transport through single molecules: scattering treatment using density functional and Green

Function theories, J. Phys. Chem. B 105 (2001) 471–481.
[11] S.N. Yaliraki, A.E. Roitberg, C. Gonzalez, V. Mujica, M.A. Ratner, The injecting energy at molecule/metal interfaces:

implications for conductance of molecular junctions from an ab initio molecular description, J. Chem. Phys. 111 (1999) 6997–
7002.

[12] J. Taylor, H. Guo, J. Wang, Ab initio modeling of open systems: charge transfer, electron conduction, and molecular switching of a
C60 device, Phys. Rev. B 63 (2001) 121104.

[13] M. Stilling, K. Stokbro, K. Flensberg, Electronic transport in crystalline magnetotunnel junctions: effects of structural disorder, J.
Comput.-Aid. Mater. Des. 14 (2007) 141–149.

[14] M. Stilling, K. Stokbro, K. Flensberg, Crystalline magnetotunnel junctions: Fe–MgO–Fe, Fe–FeOMgO–Fe and Fe–AuMgOAu–Fe,
Nanotech 3 (2006) 39–42.

[15] M. Brandbyge, J.L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Density-functional method for nonequilibrium electron transport,
Phys. Rev. B 65 (2002) 165401.

[16] J. Taylor, M. Brandbyge, K. Stokbro, Theory of rectification in tour wires: the role of electrode coupling, Phys. Rev. Lett. 89 (2002)
138301.

[17] K. Stokbro, J. Taylor, M. Brandbyge, Do Aviram–Ratner diodes rectify? J. Amer. Chem. Soc. 125 (2003) 3674–3675.

D.E. Petersen et al. / Journal of Computational Physics 227 (2008) 3174–3190 3189

[18] K. Stokbro, J.L. Mozos, P. Ordejón, M. Brandbyge, J. Taylor, Theoretical study of the nonlinear conductance of di-thiol benzene
coupled to Au(111) surfaces via thiol and thiolate bonds, Comput. Mater. Sci. 27 (2003) 151–160.

[19] R. Hoffmann, An extended Hückel theory. I. Hydrocarbons, J. Chem. Phys. 39 (1963) 1397–1412.
[20] W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965) A1133–A1138.
[21] S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge Univ. Press, New York, 1996.
[22] E.M. Godfrin, A method to compute the inverse of an n-block tridiagonal quasi-Hermitian matrix, J. Phys.: Condens. Matter 3 (1991)

7843–7848.
[23] J.D. Gilbert, L. Gilbert, Linear Algebra and Matrix Theory, Academic Press Inc., 1995.
[24] D.S. Fisher, P.A. Lee, relation between conductivity and transmission matrix, Phys. Rev. B 23 (1981) 6851–6854.
[25] H. Haug, A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Springer-Verlag, Berlin, Heidelberg, 1996.
[26] P.S. Drouvelis, P. Schmelcher, P. Bastian, Parallel implementation of the recursive Green’s function method, J. Comp. Phys. 215

(2006) 741–756.
[27] S.V. Faleev, F. Léonard, D.A. Stewart, M. van Schilfgaarde, Ab initio tight-binding LMTO method for nonequilibrium electron

transport in nanosystems, Phys. Rev. B 71 (2005) 195422.
[28] O. Hod, J.E. Peralta, G.E. Scuseria, First-principles electronic transport calculations in finite elongated systems: a divide and conquer

approach, J. Chem. Phys. 125 (2006) 114704.
[29] M.P. López Sancho, J.M. López Sancho, J. Rubio, Highly convergent schemes for the calculation of bulk and surface Green

functions, J. Phys. F: Met. Phys. 15 (1985) 851–858.
[30] H.H. Sørensen, D.E. Petersen, P.C. Hansen, S. Skelboe, K. Stokbro, Efficient wave function matching approach for quantum

transport calculations, Phys. Rev. B, submitted for publication.
[31] P.A. Khomyakov, G. Brocks, V. Karpan, M. Zwierzycki, P.J. Kelly, Conductance calculations for quantum wires and interfaces:

mode matching and Green’s functions, Phys. Rev. B 72 (2005) 035450.
[32] T. Ando, Quantum point contacts in magnetic fields, Phys. Rev. B 44 (1991) 8017–8027.
[33] G.H. Golub, C.F. van Loan, Matrix Computations, Johns Hopkins University Press, London, 1996.
[34] S. Lang, Linear Algebra, Springer-Verlag, New York, 1987.

3190 D.E. Petersen et al. / Journal of Computational Physics 227 (2008) 3174–3190

Appendix B

Article: Krylov subspace method for
evaluating the self-energy matrices
in electron transport calculations

Accepted at Physical Review B

Listed in references as [2].

183

Krylov subspace method for evaluating the self-energy matrices in electron transport calculations

Hans Henrik B. Sørensen* and Per Christian Hansen
Department of Informatics and Mathematical Modelling, Technical University of Denmark, Building 321, DK-2800 Lyngby, Denmark

Dan Erik Petersen and Stig Skelboe
Department of Computer Science, University of Copenhagen, Universitetsparken 1, DK-2100 Copenhagen, Denmark

Kurt Stokbro
Nano-Science Center, University of Copenhagen, Universitetsparken 5, Building D, DK-2100 Copenhagen, Denmark

�Received 29 August 2007; revised manuscript received 4 March 2008; published 1 April 2008; corrected 3 April 2008�

We present a Krylov subspace method for evaluating the self-energy matrices used in the Green’s function
formulation of electron transport in nanoscale devices. A procedure based on the Arnoldi method is employed
to obtain solutions of the quadratic eigenvalue problem associated with the infinite layered systems of the
electrodes. One complex and two real shift-and-invert transformations are adopted to select interior eigenpairs
with complex eigenvalues on or in the vicinity of the unit circle that correspond to the propagating and
evanescent modes of most influence in electron transport calculations. Numerical tests within a density func-
tional theory framework are provided to validate the accuracy and robustness of the proposed method, which
in most cases is an order of magnitude faster than conventional methods.

DOI: 10.1103/PhysRevB.77.155301 PACS number�s�: 73.40.�c, 73.63.�b, 72.10.�d, 85.65.�h

I. INTRODUCTION

Quantum transport has been an important research subject
for more than a decade due to the ever-growing interest in
simulating and fabricating nanoscale electronic devices. In
particular, the experimental and theoretical investigation of
current-voltage �I-V� characteristics for molecules and
atomic structures placed between conducting electrodes has
attracted much effort.1–11 Most theoretical approaches are
based on the Landauer-Büttiker formulation of quantum
transport,12 where the electrical properties of a central inter-
face are described by the transmission coefficients of a num-
ber of one-electron states propagating coherently through the
system. The widely used Green’s function method13,14 and
the wave function matching method15–17 are two such tech-
niques. To apply these in practice and determine the current
through a device under finite bias, it is necessary to evaluate
the bulk modes or, correspondingly, the self-energy matrices
of each electrode for a considerable number of different en-
ergies �chemical potentials� and possibly k points.18 In many
cases, this represents the dominant part of the computational
work associated with electron transport calculations, assum-
ing that the Hamiltonian of the system has been provided.

In this paper we develop an efficient method for comput-
ing the self-energy matrices using an iterative Krylov sub-
space technique. The foundation of the method is the evalu-
ation of the self-energy matrices for the semi-infinite
electrodes from the solutions of the quadratic eigenvalue
problem �QEP� that arises for infinite periodic systems. This
approach has been suggested by Ando19 and studied by sev-
eral authors.15,16,20–23 It has been shown16,24 to be equivalent
to well-established iterative and recursive schemes.25,26 A
disadvantage of the latter schemes from a computational
point of view is the need to introduce a small imaginary part
in the energy in order to ensure that the iterations converge to
the correct retarded surface Green’s function. This imaginary
part forces complex arithmetic in the numerical algorithms

used, which is not always the case in the eigenproblem
approach.15,19

The key motivation for developing the proposed method
is the physical observation that only the propagating and the
slowly decaying evanescent modes in the bulk electrodes
contribute to the transmission of electrons through a semi-
conductor device of some extension.8 These modes corre-
spond to the solutions of the QEP that have complex eigen-
values in the vicinity of the unit circle. As recently suggested
by Khomyakov et al.,15 this makes it plausible to generate
reduced self-energy matrices on the basis of a few selected
solutions of the QEP, which include all the electrode-device
coupling information that is necessary to determine the cor-
rect transmission. To really exploit such an approach in prac-
tice, an algorithm to search for and compute only the desired
quadratic eigenpairs is required.

We will here consider the Arnoldi method27 combined
with a shift-and-invert strategy in order to obtain the QEP
solutions. These techniques have proven effective in obtain-
ing selected interior eigenvalues of large-scale general com-
plex eigenproblems.28–30 In addition, the recent surge of pa-
pers studying the Arnoldi procedure applied specifically to
polynomial matrix problems indicates that this is a success-
ful technique to build the Krylov subspace for QEPs.31–34

The algorithm we develop assumes real Hamiltonian matri-
ces �generalization to the complex case is described in Ap-
pendix A 2�, and targets the complex eigenvalues which are
on or inside the unit circle by applying shift-and-invert spec-

tral transformations to �1 /�2 and î /�2, where î is the imagi-
nary unit, and subsequently generating a Krylov subspace for
each with the Arnoldi method. Ritz pairs obtained by project-
ing the QEP onto the three Krylov subspaces give good ap-
proximations to the eigenpairs with eigenvalues close to the
corresponding shifts. We will show that this method of pro-
ceeding is both rigorous and efficient by applying it to vari-
ous Hamiltonians obtained using density functional theory

PHYSICAL REVIEW B 77, 155301 �2008�

1098-0121/2008/77�15�/155301�12� ©2008 The American Physical Society155301-1

�DFT� calculations with a localized basis of atomic
orbitals.35

This paper is organized as follows. In Sec. II we give a
brief exposition of our formalism for electron transport. The
Krylov subspace method is introduced in Sec. III with details
on its key parts: the Arnoldi method, the spectral transforma-
tions, and the convergence criterion. Typical convergence be-
havior is discussed in Sec. IV. The paper ends with numerical
examples in Sec. V and a few concluding remarks.

II. ELECTRON TRANSMISSION AND SELF-ENERGY
MATRICES

In this section we introduce our formalism, which com-
bines the well-established Green’s function method used for
electron transport calculations13,14,36 with the self-energy ma-
trices obtained with the eigenvalue approach of Ando19 as
used in the wave function matching �WFM� method.15–17

Our goal in combining the methods is to obtain, in the most
efficient way, the spectrum of transmission coefficients T�E�
for two-probe systems �see top illustration in Fig. 1� in order
to calculate the current I=2e / h�−�

� T�E��nF�E−�L�−nF�E
−�R��dE through the device, where E are the energies, nF is
the Fermi function, and �L and �R are the chemical poten-
tials of the left �L� and right �R� electron reservoirs.13,14

A. Two-probe setup

Consider a two-probe system, as illustrated in the lower
part of Fig. 1, where the device corresponds to the central
region �C� and the reservoirs are two semi-infinite electrodes
�L and R�. The system has been divided into principal layers
that interact only with nearest-neighbor layers and each layer
is assumed to be described by appropriate Hamiltonian Hi
and overlap Si matrices, where i is the layer number, as rep-
resented, e.g., in a basis of localized nonorthogonal atomic
orbitals. In this manner the Hamiltonian and overlap matrices

are block-tridiagonal infinite matrices, where the off-
diagonal blocks may be written Hi,j and Si,j. For the elec-
trode Hamiltonian and overlap matrices we use subscripts L
and R instead of numbers i , j. Notice also that the C region in
this setup contains at least one layer of each electrode, which
means that H1=HL and Hn=HR.

We refer the reader to Refs. 13, 14, and 36 for details on
how to apply the Green’s function method to the current
setup. Here we limit ourselves to writing the primary results:
First, the finite central region part of the infinite retarded
Green’s function matrix can be obtained as

GC
r = ��E + î��S − HC − �L − �R�−1, �1�

where � is an infinitesimal quantity, HC is the central region
Hamiltonian, and the effect of the semi-infinite electrodes is
accommodated through self-energy matrices �L and �R. Sec-
ond, the total transmission coefficient T�E� is then given by

T�E� = Tr��LGC
r �RGC

a � , �2�

where �L/R= î��L/R−�L/R
† � are coupling matrices and GC

a is
the advanced central Green’s function matrix, which is ob-

tained from Eq. �1� by using −î� as the infinitesimal imagi-
nary component in all terms �i.e., implicitly in �L and �R�.

We find that an efficient approach �see Appendix A 1� to
applying Eqs. �1� and �2� is to compute only a single diago-
nal block of GC

r in order to evaluate T�E�. The question
remains how to calculate the required self-energy matrices
�L/R in the most efficient manner.

B. Electrode self-energy matrices from QEPs

It is known that the surface Green’s function matrices for
a semi-infinite ideal electrode can be evaluated by recursive
techniques that take 2n−1 electrode layers into account in n
iterations.25,26 This is a fast and widely used approach to
obtain the self-energy matrices when employing the Green’s
function method.1,37

Another approach has been proposed by Ando,19 where
one constructs and solves an appropriate QEP �introducing
notation H	ES−H�

HL,L
† �k + �kHL�k + �k

2HL,L�k = 0, �3�

for k=1, . . . ,2ML, where ML is the number of orbitals local
to the unit cell of the left electrode and similarly for the right
electrode with L→R. The procedure to determine the non-
trivial solutions �i.e., the Bloch factors �k and electrode
modes �k� from Eq. �3�, and subsequently characterize these
as propagating or evanescent, right-going �+� or left-going
�−�, is well described in the literature �we refer the reader to
details in Refs. 15 and 16�.

Applying Ando’s approach via the formalism of the WFM
method yields expressions16

�0
L = − HL,L

† �BL
−�−1, �4�

�n+1
R = − HR,RBR

+ �5�

for the electrode self-energy matrices in the layers 0 and n

....

I

µL µR

Vb

VbDevice

HL HL HRHRH1 H2 H3 Hn−2Hn−1Hn

L C R

−∞, . . . , 0, 1, 2, . . . , n − 1, n, n + 1, . . . ,∞

FIG. 1. �Color online� Schematic representation of a two-probe
device with applied bias Vb. The top figure illustrates the Landauer-
Büttiker picture of coherent scattering between electron reservoirs
kept at chemical potentials �L and �R. The bottom figure shows the
device part modeled by two semi-infinite electrodes �L and R� and a
central region �C�, each divided into principal layers that interact
only with nearest-neighbor layers. The layers are described by
square Hamiltonian matrices Hi of varying sizes and numbered
i=−� , . . . ,�, as indicated.

SØRENSEN et al. PHYSICAL REVIEW B 77, 155301 �2008�

155301-2

+1 just outside the C region, where BL/R
� are the Bloch ma-

trices constructed from the solutions �k and �k �see the ex-
pressions in Ref. 16, in which the notation is FL/R��� for the
Bloch matrices, and �n��� and un��� for the solutions�. Af-
ter evaluating these self-energy matrices we use them in the
Green’s function method described above �we set �=0 in
this case, since the retarded Green’s function is already
uniquely defined by the self-energies16,21� and follow the
steps outlined in Appendix A 1.

C. Reduced self-energy matrices

From a numerical perspective, it is convenient to keep
only those eigenpairs from Eq. �3� that have eigenvalues �k
within specific intervals15

�min 	
�k
+
 	 1, 1 	
�k

−
 	 �min
−1 , �6�

for a reasonable choice of �min. Evanescent modes with
�k

outside these intervals are decaying or growing so fast that
they have negligible influence in a two-probe setup like ours.
The decisive factor in choosing �min is that the sets ��k

+� and
��k

−� of electrode modes included must be complete in the
sense that they can fully represent the transmitted and re-
flected waves �cf. the WFM formalism�.

In what follows, we exploit that a reasonable choice of
�min for transmission calculations with our setup is often of
the order 0.1.38 For example, in the case of the polar plot in
Fig. 2, where the Bloch factors with
�k
	1 of a 27-atom
Au�111� electrode unit cell are shown, the computationally
significant modes can be identified as the eigenvalues inside
the shaded area �i.e., by setting �min=0.1�. The numerical
results given in Sec. V illustrate this observation quantita-
tively. A proper formal analysis is left for a future
publication.39

III. KRYLOV SUBSPACE METHOD

In this section, we describe the Krylov subspace method
for evaluating the electrode self-energy matrices �0

L and
�n+1

R . The crucial assumption in the approach is that we may
strip the less important modes from the sets ��k

+� and ��k
−�,

and still obtain a good approximation to the self-energy ma-
trix to be used in transmission calculations. For simplicity,
we also assume that the electrode Hamiltonians are real, and
give in Appendix A 2 a prescription to generalize to the
complex case. Our current method, which targets the specific
modes that are most important, can be characterized as a
shift-and-invert Arnoldi method with adaptive subspace size.
We will describe the key ingredients of the method: the Ar-
noldi procedure, the spectral transformations, and the con-
vergence criterion. The goal is to present an alternative for
obtaining the self-energy matrices, which is faster than exist-
ing techniques.

A. Arnoldi procedure

The Krylov subspace of dimension m generated by an n

n matrix A and an initial vector v1 is given by
Km�A ,v1�	span�v1 ,Av1 ,A2v1 , . . . ,Am−1v1�.40 In order to
determine this space we apply the Arnoldi procedure27 which
generates an orthonormal basis �v1 , . . . ,vm� for Km�A ,v1�.
We use the numerically most stable scheme that employs the
modified Gram-Schmidt orthogonalization to successively
construct the orthonormal vectors vi. Algorithm I below lists
the steps of a continuable version of the Arnoldi procedure
which is initially called with a parameter k=1 and a random
starting vector v1. After m−1 iterations the n
m matrix
Vm= �v1 , . . . ,vm� is available.

The projection of the matrix A onto Km�A ,v1� is then
Hm=Vm

† AVm, where Hm is m
m and upper Hessenberg �i.e.,
it has zeros below its lower bidiagonal�. The matrix Hm is
also constructed by Algorithm I. Approximate solutions of
the eigenproblem Ax=�x can subsequently be obtained as
the so-called Ritz eigenpairs �� ,Vmy� of the projected eigen-
problem Hmy=�y. As m increases the Ritz pairs become in-
creasingly better approximations to certain eigenpairs of A
�we point to Refs. 38 and 39 for details�.

Algorithm I: Arnoldi procedure (continuable). Input:
k ,m�Z , A�Rn,n, Vk�Rn,k , Hk�Rk,k. Output:
Vm+1�Rn,m+1 , Hm+1�Rm+1,m+1.

�1� If k=1, v1=v1 / �v1�2
�2� for j=k ,k+1, . . . ,m do
�3� v=Av j
�4� for i=1,2 , . . . , j do
�5� hij =vi

Tv
�6� v=v−hijvi
�7� end
�8� hj+1,j = �v�2
�9� if hj+1,j =0, m= j, stop
�10� v j+1=v /hj+1,j
�11� end
One cannot know in advance how many steps will be

needed before the eigenpairs of interest are well approxi-
mated by Ritz pairs. If many steps are necessary, then solv-
ing the projected eigenvalue problem becomes costly. More-

0.2

0.4

0.6

0.8

1

Re(λ)

Im(λ)

0

π
2

π

3
2 π

FIG. 2. �Color online� Positions of the 243 complex eigenvalues
�blue �circles�� inside the unit disk for a Au�111� electrode with 27
atoms per unit cell at E=−2 eV. The 21 eigenvalues corresponding
to propagating modes �red �filled� dots� are located on the unit
circle. The modes of most significance in transmission calculations
are located within the green �shaded� area given by 0.1	
�
	1.

KRYLOV SUBSPACE METHOD FOR EVALUATING THE… PHYSICAL REVIEW B 77, 155301 �2008�

155301-3

over, when applying our Krylov method to evaluate the self-
energy matrices, we do not know the exact number of
eigenpairs wanted and cannot estimate the required dimen-
sion of the Krylov subspace.

The first difficulty can be circumvented by restarting the
Arnoldi method after a certain number of iterations using the
obtained information to generate a better starting vector, or
by deflating particular eigenvalues.41 However, this will not
improve on the second difficulty which requires an adaptive
maximum dimension of the Krylov subspace. In addition, we
observe in most of our applications that the gain from an
efficient restart procedure �e.g., as devised by Morgan and
Zeng42� does not outweigh the computational expense of the
restarting overhead. The typical size of the self-energy ma-
trices encountered is too small to make it beneficial to use
such techniques, which have been developed for large-scale
applications.

Therefore, we have chosen to employ a simple continua-
tion scheme instead of restarting, where a check for conver-
gence is performed after a given number of Arnoldi itera-
tions, and if we are not satisfied, the procedure simply
continues where it was left off. With the input parameter k,
the listed Arnoldi algorithm is able to generate an initial
Krylov subspace Km of a given dimension m, but also to
continue the process, augmenting the space with subsequent
calls. This allows us to perform iterations as long as the
approximations are unsatisfactory and/or there is doubt
whether all wanted eigenpairs have been found.

An important special case to be considered when applying
the Arnoldi procedure to solve an eigenvalue problem is that
of algebraically multiple eigenvalues. A Krylov subspace
method will, in theory, produce only one eigenvector corre-
sponding to a multiple eigenvalue. So determination of mul-
tiplicity is quite difficult. Several approaches exist that deal
with this problem, including deflation combined with effects
of round-off error,41 block Arnoldi procedures,41 and so-
called random restarts.42,43 The present Krylov method does
not incorporate any mechanisms to take algebraic multiplic-
ity into account because such cases do not occur in practice
for the applications of this work �eigenvalues will not be
identical to machine precision in any of the numerical ex-
amples, but only to within �10–11 digits; see Sec. IV�.

B. Shift-and-invert transformations

Iterative methods based on Krylov subspaces produce
Ritz values that converge fastest to the dominant part of the
eigenvalue spectrum given by the extremal eigenvalues.40 In
the current application, it is the interior of the eigenvalue
spectrum that is of interest, in particular the eigenvalues �
that satisfy �min	
�
	�min

−1 . To be able to find this part of the
spectrum efficiently, we employ a shift-and-invert strategy
which implies that the QEP in Eq. �3� is rewritten as

��2M + �C + K�c0 = 0, �7�

where

M = HL,L
T + �HL + �2HL,L, �8�

C = HL + 2�HL,L, �9�

K = HL,L, �10�

and

� =
1

� − �
. �11�

With this approach, the eigenvalues � of Eq. �3� have been
shifted by � and inverted while the eigenvectors c0 are un-
changed. Thus the dominant part of the spectrum of Eq. �7�
now corresponds to the eigenvalues of the original QEP clos-
est to the shift �.

The simplest and currently state-of-the-art technique for
solving Eq. �7� is by linearizing it to a generalized eigen-
value problem of twice the size.44 In our case M is nonsin-
gular and has size ML. Therefore, a linearization results in a
standard eigenvalue problem of size 2ML:

Ax = �x , �12�

where A is given by

A =
 0 I

− M−1K − M−1C
� , �13�

and the 2ML eigenvalues � are identical to the ones of Eq.
�7�. The eigenvectors of Eq. �12� are given by xT= �c0

T ,�c0
T�,

so that the original eigenvectors c0 can be selected as the first
ML elements of x.

If we assume that the Hamiltonian and overlap matrices
for the electrodes are real, then the spectrum of the QEP in
Eq. �3� is symmetric with respect to the real axis of the
complex plane, and the eigenvalues either are real or occur in
complex conjugate pairs.44 In addition, as seen by transpos-
ing Eq. �3�, the eigenvalues in this case also come in pairs, �
and 1 /�. We will use these properties to present a simplified
method for the extraordinary case of real HL and HL,L, and
subsequently discuss the steps required for the general com-
plex case in Appendix A 2.

The purpose of the current method is thus to determine
the eigenpairs �� ,c0� of Eq. �3� that satisfy �min	
�
	1 for
a given �min
0 �the pairs that satisfy 1	
�
	�min

−1 can sub-
sequently be obtained as ��−1 ,c0��. As is apparent from the
polar plot example in Fig. 2, the majority of the eigenvalues
with
�
	1 are located near the origin. Therefore, it is not
efficient to apply the shift �=0 in order to obtain the wanted
eigenvalues, which lie in the outskirts of the unit disk. In-
stead we may apply four different shifts, given by �

= �1 /�2 and �= � î /�2, in four separate Arnoldi proce-
dures. Each of these then covers a quarter slice of the unit
disk and produces Ritz values that converge fast to eigenval-
ues close to the given shift. Simple sorting techniques can be
employed in each Arnoldi procedure to take into account
only the portion of the Ritz pairs that is covered by a given
shift.

When applying the shift-and-invert strategy devised, two
of the shifts have to be complex. In practice this means
working in complex arithmetic or doubling the size of the
problem.45 However, in the case of real Hamiltonians it is
advantageous to search for the complex eigenvalues in con-

SØRENSEN et al. PHYSICAL REVIEW B 77, 155301 �2008�

155301-4

jugate pairs and thereby eliminate one of the complex shifts.
Moreover, this can be done almost entirely in real arithmetic
as follows.

Notice that Eq. �12� was obtained by linearizing the
shifted-and-inverted QEP written in Eq. �7�. We may also
reverse the order of the linearization and shift-and-invert op-
erations. By performing, e.g., a first companion linearization

of Eq. �3� that results in an eigenproblem Âx=�x of double
size, and subsequently a shift-and-invert transformation ar-

riving at �Â−�I�−1x=�x, we see that the matrix applied in
the Arnoldi procedures can also be written44

�Â − �I�−1 =
 − M−1Ĉ − M−1K

I − �M−1Ĉ − �M−1K
� , �14�

where

Ĉ = HL + �HL,L. �15�

The eigenpairs �� ,x� of �Â−�I�−1x=�x are exactly the
same as those of Eq. �12�. In addition, we may now consider
the combined spectral transformation for two conjugate
shifts � and ��, given by

T = �Â − �I�−1�Â − ��I�−1 =
Im��Â − �I�−1�

Im���
, �16�

which was originally proposed by Parlett and Saad.45 Apply-
ing the matrix T in the Arnoldi procedure generates approxi-
mate solutions to Tx=��x, where the eigenvalues are given
by

�� =
1

�� − ���� − ���
, �17�

which becomes extreme for conjugate eigenvalues � and ��

of Eq. �3� that are close to � and ��. In our case, the complex

shifts are purely imaginary: �= î�, where � is real. Then we
have ��= ��2+�2�−1 and, more importantly, the matrix T is
simply given by �−1 times the imaginary part of Eq. �14�,
written as

T =
− �−1 Im�M−1Ĉ� − �−1Im�M−1K�

Re�M−1Ĉ� Re�M−1K�
� , �18�

which is purely real. This makes it feasible to use real arith-
metic in all parts of the algorithm except for the initial com-
plex LU factorization of M, which is required for the matrix
multiplications by M−1.

C. Algorithm and convergence criterion

The algorithm for our Krylov method is composed of two
main parts, an iterative part that determines the wanted Ritz
pairs �� ,c0� which approximate the eigenpairs of the QEP in
Eq. �3�, and a noniterative part that sets up the Bloch matri-
ces and evaluates the self-energy matrix from these by direct
methods. The iterative part is organized as three independent
computations, one for each of the used shifts �. It consists of
the application of the Arnoldi procedure together with a

check for convergence plus the initial work to construct the
input matrices for Algorithm I. As described in the previous
section, the actual calculations will depend on whether the
shift is real or imaginary.

The key steps of the Krylov method for evaluating the
self-energy matrix �L of the left electrode are presented in
Algorithm II below. It is important to stress that the details of
each step are kept at a minimum to enhance the readability.
Furthermore, for evaluating the self-energy matrix �R of the
right electrode, the steps are exactly the same, except for the
substitution L→R of all super- and subscripts and the re-
moval of line 1 �this line is only required for left electrodes
in order to obtain �L from solutions ��−1 ,c0�, e.g., by trans-
posing Eq. �3��. In the rest of this section we will discuss the
main aspects of the algorithm.

Algorithm II: Krylov method to evaluate �L. Input: m�Z,
�min� �0,1�, HL ,HL,L ,HL,L

T �RML,ML. Output: �L�CML,ML.
�1� Exchange matrices HL,L and HL,L

T

�2� for �=1 /�2,−1 /�2, î /�2 do
�3� if � is real, calculate A from Eq. �13�
else calculate T from Eq. �18� and set A=T
�4� select random vector v1 of size 2ML
�5� apply Algorithm I to generate Km�A ,v1�
�6� solve the projected eigenproblem Hmy=�y
�7� if � is real, select all �� ,y� that satisfy �min	
�−1

+�
	1+�, and store the Ritz pairs �� ,c0�= ��−1+� ,Vmy�
that have Re���Re����
�
 / 2

else select all �� ,y� that satisfy �min	
�−1+�2
1/2	1+�,
and evaluate the eigenvalues � with the MR-2 method of
Ref. 44 and store the Ritz pairs �� ,c0�= �� ,Vmy� that have

Im���Im���

�
 / 2 .

�8� for all stored Ritz pairs �� ,c0�, find residual ��HL,L
T

+�HL+�2HL,L�c0�2, and check for convergence. If not satis-
fied, increase m appropriately and go to step 5

�9� end
�10� for all stored Ritz pairs �� ,c0� having �1+��−1	�

	1+�, calculate group velocity v �see Ref. 15�; discard the
pairs with v�0 �i.e., the left-going modes�

�11� evaluate BL
+ and �L=−HL,LBL

+ from the remaining
pairs

First consider the steps 3–8 composing the body of the
FOR loop, which are independently executed for the three
given shifts �. Each execution of these steps will determine
Ritz pairs that are located in the corresponding quarter-slices
of the unit disk. An illustration is shown in Fig. 3 for an
Al�100� electrode, where the distinct slices are indicated by
shaded areas and the current shifts by crosses. All wanted
Ritz pairs found independently for the given shifts are as-
sumed to be collected in a combined set when exiting the
loop at step 9.

Initially, in step 3, the linearized and shifted-and-inverted
matrix A to be applied in the Arnoldi procedure is deter-
mined from Eq. �13� if � is real and from Eq. �18� if � is
complex. Then a starting vector v1 is selected randomly in
step 4. A random starting vector is a reasonable choice in our
case, where no prior information about the approximated
eigenspace is available. In step 5 the Arnoldi procedure of
Algorithm I is called to generate a Krylov subspace of size
m, and in step 6, the corresponding eigenpairs �� ,y� of the

KRYLOV SUBSPACE METHOD FOR EVALUATING THE… PHYSICAL REVIEW B 77, 155301 �2008�

155301-5

shifted-and-inverted problem are found by solving the pro-
jected eigenproblem with a direct method. This is followed
by an elaborate selection scheme to determine which of the
available solutions �� ,y� correspond to wanted Ritz pairs
�� ,c0� that are located inside the valid quarter slice.

The selection scheme, as outlined in step 7, can be imple-
mented as two separate processes. The first selection process
is designed to identify those solutions �� ,y� that correspond
to eigenpairs of the original QEP which satisfy �min	
�

	1. It is important to realize, however, that, since all com-
putations are done in finite-precision arithmetic, there is no
guarantee that the propagating Bloch modes of the electrode
will have magnitudes
�
 exactly equal to 1. Even the left-
going propagating modes that are targeted in our case can
have
�

1. In practice, we therefore define the propagating
modes to be those Ritz pairs �� ,c0� that satisfy

�1 + ��−1 	
�
 	 1 + � �19�

where � is a small infinitesimal �set to 10−8 in our implemen-
tation�. In order to make sure that all propagating modes are
taken into consideration it is thus necessary to select all Ritz
pairs that satisfy �min	
�
	1+�.

To obtain the Ritz values � used in the selection process,
we have to transform the solutions �� ,y� of the projected
eigenproblem to the corresponding Ritz pairs �� ,c0� by re-
versing the shift-and-invert operation. The transformation
again depends on whether the shift � is real or imaginary. In
the case of real �, we have �=�−1+� from Eq. �11�. For

imaginary �, Eq. �17� can be rearranged to �2=�−1+�2,
which has two solutions of equal magnitude. This is suffi-
cient to allow selection on the basis of the magnitude
�
;
however, when it comes to obtaining the Ritz values � them-
selves, it is necessary to use other means for imaginary �,
e.g., by forming the Rayleigh quotient.40 In our case, and for
QEPs in particular, it is possible and computationally advan-
tageous to use alternatives to the Rayleigh quotient that work
with vectors and matrices of size ML instead of 2ML. Several
such techniques that are both fast and accurate have recently
been devised by Hochstenbach and van der Vorst.46 We will
adopt the MR-2 method of that paper, which yields �=� / �,
for � and � defined as

�

�
� = − Z̃HL,L

T c0, �20�

where Z̃ is the pseudoinverse of Z= �HL,Lc0 ,HLc0�. Since all
eigenvectors are unchanged by the shift-and-invert operation,
the c0 vectors applied here are the first ML elements of the
Ritz vectors Vmy.

The remaining selection process in step 7 should single
out the Ritz pairs that are inside the valid slice of the unit
disk. To this end, we can apply the inner product of
�Re��� , Im���� and �Re��� , Im����, given by

Re���Re��� + Im���Im��� =
�

�
cos � , �21�

where � is the angle between � and � in a polar representa-
tion of the complex plane. In order for � to be inside the

0.2

0.4

0.6

0.8

1

Im(λ)

0

π
2

π

3
2 π

0.2

0.4

0.6

0.8

1

Im(λ)

0

π
2

π

3
2 π

Re(λ)

0.2

0.4

0.6

0.8

1

Im(λ)

0

π
2

π

3
2 π

Re(λ)

FIG. 3. �Color online� Illustra-
tion of the complex eigenvalues
�blue �circles�� for the Al�100�
electrode at E=3 eV. The eigen-
values corresponding to the
wanted right-going modes �red
�filled� dots� can be separated ac-
cording to their location within
three distinct green �shaded� areas
of the unit disk and determined ef-
ficiently using shift-and-invert
spectral transformations to �1 /�2

and î /�2 �crosses�.

SØRENSEN et al. PHYSICAL REVIEW B 77, 155301 �2008�

155301-6

quarter slice that has � on the bisector we must have
�

	� /4 or equivalently cos ��1 /�2. For real shifts �
= �1 /�2, this observation yields the condition

Re���Re���

�

�
1

2
, �22�

and similarly for imaginary shift �= î /�2,

Im���Im���

�

1

2
, �23�

where the absolute value of the left-hand side is taken to
allow � to be in both the top and the bottom quarter slices.
Notice that the equality is removed since the �very rare�
event of � lying exactly on the border of two slices is already
taken into account in the condition for real �.

In step 8 of Algorithm II the check for convergence is
carried out. For each shift, the convergence condition is re-
garded as satisfied when all the Ritz pairs of interest that are
also located inside the valid quarter slice are identified and
accurate to a given tolerance. We estimate the accuracy of
the obtained pairs �� ,c0� by evaluating the corresponding
relative residual norm, which yields the following conver-
gence criterion:

��HL,L
T + �HL + �2HL,L�c0�2

norm�HL�
	 tol �24�

where tol is the convergence tolerance and norm�HL� is an
appropriate norm for matrix HL. In our implementation we
set tol=10−11 and apply the approximation norm�HL�
��diag�HL��2, that is, we include only the diagonal entries
of the two-norm of HL. These choices require very low com-
putational effort and give the correct result for all numerical
examples we have investigated.

In the event that the convergence check in step 8 of Al-
gorithm II is not satisfied, we assume that the dimension m
of the Krylov subspace Km�A ,v1� generated in step 5, is
insufficient. Therefore, we increase m by some fixed amount
and go back to step 5 to continue the Arnoldi procedure
where it was left off. In the current implementation, we
chose to increase the size of the Krylov subspace by �m
=m /2, where m is the initial value of m given as input. Our
experiments show that, for optimal efficiency with this �m,
it is favorable to have the initial m within the range 30–50 if
the sizes of the input matrices are of order less than 1000.
After convergence has been achieved, the final steps 10–11
of Algorithm II present the operations required to collect the
Ritz pairs that have been determined and subsequently obtain
the self-energy matrix.

IV. TYPICAL CONVERGENCE BEHAVIOR

In this section, we briefly exemplify the typical conver-
gence behavior of Algorithm II by monitoring the relative
residual norm of the wanted eigenpairs as a function of the
number of iterations. An expression for this norm for a given
eigenpair �� ,c0� is available as the left-hand side of Eq. �24�.
We will consider the Al�100� electrode at E=3 eV and pa-

rameter �min=0.1, which requires a total of 13 eigenpairs to
be determined �eight propagating modes and five evanescent
modes� from the three separate Arnoldi procedures. This ex-
ample corresponds to the situation illustrated in Fig. 3 and
represents a typical calculation for an Al�100� electrode with
18 atoms per unit cell �the size of the self-energy matrix is
72�.

In Fig. 4 we present curves showing the history of the
residual norms for the wanted eigenpairs in each of the sepa-
rate shift-and-invert Arnoldi procedures. We show only the
45 first iterations since this number is enough for conver-
gence in all cases. Also, only residuals for eigenpairs corre-
sponding to right-going modes are displayed.

The top figure of Fig. 4 illustrates the results from apply-
ing the shift �=1 /�2 and shows that the Arnoldi procedure
determines four different Ritz pairs with individual conver-
gence curves. Comparing with the corresponding polar plot
in Fig. 3 �top left�, we observe a fifth eigenvalue ��=0.95

+0.31î� located inside the valid quarter slice. This fifth ei-
genvalue represents a left-going mode and is thus discarded
in step 10 of Algorithm II. We also see by comparison with
Fig. 3 that the eigenpair with eigenvalues furthest from the
current shift �the cross� in the complex plane, in this case �4,
is the slowest to converge.

λ1 = 0.84
λ2 = 0.48
λ3 = 0.95 − 0.31ı̂
λ4 = 0.13

R
el

a
ti

v
e

re
si

d
u
a
l
n
o
rm

Iterations

10−2

10−4

10−6

10−8

10−10

10−12

10−14

10−16
0 5 10 15 20 25 30 35 40 45

σ = 1√
2

λ5 = −0.97 + 0.25ı̂
λ6 = −0.97 + 0.25ı̂

R
el

a
ti

v
e

re
si

d
u
a
l
n
o
rm

Iterations

10−2

10−4

10−6

10−8

10−10

10−12

10−14

10−16
0 5 10 15 20 25 30 35 40 45

σ = −1√
2

λ7 = 0.39 − 0.92ı̂
λ8 = −0.07 + 0.70ı̂
λ9 = −0.07 − 0.70ı̂
λ10 = −0.60 + 0.80ı̂
λ11 = −0.60 + 0.80ı̂
λ12 = 0.65 + 0.76ı̂
λ13 = 0.65 + 0.76ı̂

R
el

a
ti

v
e

re
si

d
u
a
l
n
o
rm

Iterations

10−2

10−4

10−6

10−8

10−10

10−12

10−14

10−16
0 5 10 15 20 25 30 35 40 45

σ = ı̂√
2

FIG. 4. �Color online� Convergence behavior of the Krylov al-
gorithm for the Al�100� electrode at E=3 eV. The figures show the
residual norm as a function of iterations for Ritz pairs that satisfy
0.1	
�
	1+�, in the case of shift-and-invert transformations to

�1 /�2 and î /�2, respectively.

KRYLOV SUBSPACE METHOD FOR EVALUATING THE… PHYSICAL REVIEW B 77, 155301 �2008�

155301-7

The middle figure of Fig. 4 shows the convergence of the
two Ritz pairs that are covered by the Arnoldi procedure with
�=−1 /�2 and correspond to right-going modes in the
present example. We note that �5 and �6 are nearly multiple
eigenvalues, and that the behavior of the residual norms,
where one eigenpair is available many iterations before its
counterpart, is typical in such a case. Here, in particular, we
see that eigenvalue �5 is determined to an accuracy of
�10−11 after 18 iterations before �6 even shows up as a Ritz
value of the projected eigenproblem. This indicates that �5
and �6 must be identical to around ten significant digits, and
that they cannot be distinguished in our Arnoldi procedure
before this accuracy is achieved. Without additional mecha-
nisms to deal with multiple eigenvalues this then implies an
upper bound condition on the value of the tol parameter.

The bottom figure of Fig. 4 shows the residual norm his-
tory of the remaining seven Ritz pairs required in the current
example. These are determined by the Arnoldi procedure

with imaginary shift �= î /�2 and correspond to filled dots in
the bottom polar plot of Fig. 3 which represent right-going
modes. We observe that the eigenvalue closest to �, here
denoted by �8, constitutes a complex conjugate pair together
with �9, and that these have exactly the same residual norm
curve �indistinguishable in the figure�, although they are ob-
tained separately as individual Ritz pairs in the algorithm.

In all residual norm figures, we see the trend that the
eigenvalues located far from the position of the shift are slow
to converge. This suggests that eigenvalues located in the
vicinity of the intersections between the unit circle and the
dividing lines of the four quarter slices will be the most
difficult to determine since they are furthest from the corre-
sponding shifts. The maximum distance from such an eigen-
value to � is 1 /�2, which is the same as from � to the origin.
This raises concern whether the many unwanted eigenvalues
close to the origin can become dominant compared to the
wanted border eigenvalues. Fortunately, this is not the case
because the unwanted eigenvalues close to the origin are
clustered and therefore easy to represent in the Krylov sub-
space with only a few iterations.40 We observe this in prac-
tice, e.g., from the bottom figure of Fig. 4, where the Ritz
pair corresponding to �12, which lies close to the worst-case
position on the unit circle, initially converges only slightly
slower than the Ritz pair for �8 positioned right next to the
shift.

V. NUMERICAL EXAMPLES

To illustrate the accuracy and practical aspects of the pro-
posed Krylov subspace method we present transmission cal-
culations for a metal-device-metal system that has been
widely studied in the literature. In addition, we compute the
current through this system at 1 and 2 V biases, and use the
parameter �min to investigate the significance of the evanes-
cent modes in obtaining the correct currents. Last, we apply
the method to evaluate the self-energy matrices of a variety
of electrodes �different types and sizes� and compare the ac-
tual measured CPU times47 with those required by conven-
tional methods.

A. Carbon wire between aluminum electrodes

To demonstrate the applicability of the proposed Krylov
subspace method, we first consider carbon chains coupled to
metallic electrodes, which have been investigated in detail
recently.1,5,6 Carbon atomic wires are interesting conductors
since the equilibrium conductance of short monatomic chains
varies with their length in an oscillatory fashion. We will
examine the two-probe system shown in Fig. 5 correspond-
ing to a straight wire of seven carbon atoms attached to
Al�100� electrodes �lattice constant 4.05 Å�. This structure
exhibits a local maximum in the oscillatory conductance
since it represents an odd-numbered C chain.5 In our con-
figuration, we fix the C-C distance to 2.5 bohrs and the dis-
tance between the ends of the carbon chain and the first plane
of Al atoms at 1.0 Å. We use single-� basis sets for both
types of atoms. The considered Al�100� electrode unit cell
consists of 18 atoms in four layers with identical unit cells
for the left and right electrodes. Notice that we do not use
any symmetry properties of the metallic electrode to reduce
the lateral size of the cells �as done, e.g., in Ref. 17� but
rather use the full size matrices in Algorithm II. The same
system has been studied by Brandbyge et al.1

We apply the proposed Krylov subspace method to calcu-
late the self-energy matrices �L and �R of the left and right
electrodes for a range of energies E� �−4 eV,4 eV� and for
different choices of the parameter �min. The self-energy ma-
trices are then used in the evaluation of the corresponding
transmission coefficients T�E�.

Figure 6 presents the results for bias voltages Vb=0, 1,
and 2 V in three cases of �min. These significant bias settings
are chosen for benchmarking and comparison reasons. The
�black� full curves corresponding to �min=0.1 reproduce the
transmission spectra obtained in Ref. 1 �for 0 and 1 V� ex-
actly except for the peak at E=3.63 eV �for 0 V�, which is
probably due to finer sampling in our work. In addition, we
have calculated the similar curve with the full sets of elec-
trode modes and the results are indistinguishable from those
with the setting �min=0.1 �and therefore not displayed in the
figure�. We note this as quantitative verification that the ex-
clusion of the rapidly decaying evanescent modes is plau-
sible in our setup.

We also see in Fig. 6 that the curves for the parameter
�min set to 0.1 �black �full�� and 0.5 �red �dashed�� are almost
identical, which indicates that the vast majority of the eva-
nescent modes �those satisfying
�
�0.5� have very little
influence on T�E� in the energy regime considered. However,
when �min is set to 0.99 �blue �dotted curves��, in which case
only propagating modes and very close to propagating
modes are included in the evaluation of self-energy matrices,

L C R

FIG. 5. Schematic illustration of the Al�100�-C7-Al�100� two-
probe system.

SØRENSEN et al. PHYSICAL REVIEW B 77, 155301 �2008�

155301-8

there are several noticeable deviations from the other curves.
Also inside the bias windows and especially for Vb=2 V, the
disregard of the evanescent modes produces errors in the
obtained transmission coefficients T�E�.

The deviations become even more evident in Fig. 7,
where the current is displayed as a function of the parameter
�min for nonzero bias voltages. As the value of �min is in-
creased from around 0.5 to 1, the computed current I starts to

depart significantly from the correct value. Therefore, we
anticipate that at least some slowly decaying evanescent
modes must be taken into account in order to describe the
transmission properties of the Al�100�-C7-Al�100� system.
Moreover, we see that this can be achieved in a rigorous and
systematic fashion by selecting �min appropriately when us-
ing the proposed Krylov subspace method to calculate the
self-energy matrices.

B. CPU run times

In this section we focus on the typical savings in the com-
putational time that can be achieved when computing the
self-energy matrices �L and �R with the proposed Krylov
subspace method. We will compare run times directly with
some conventional schemes usually applied in electron trans-
port calculations. Our aim is to illustrate a significant
speedup in calculating the self-energy matrices. This is of
interest in future efforts to model much larger systems, and,
in particular, for electrode unit cells that do not have any
lateral symmetry properties.

Table I presents the profiling results when applying three
different methods to calculate the same left self-energy ma-
trix �L for common types of electrodes and various matrix
sizes N. In every case we consider only the � point and use
single-� basis sets, except for Au�111� where a double-
�-polarized set is used. Since the computational cost can vary
significantly with E, the seconds listed represent the accumu-
lated time of 20 independent calculations at equidistant en-
ergies in the interval E� �−2 eV,2 eV�. We focus on the

−4 −3 −2 −1

λmin = 0.1
λmin = 0.5
λmin = 0.99

0 1 2 3 4
0

0

0

0.5

0.5

0.5

1

1

1

1.5

1.5

1.5

2

2

2

2.5

2.5

2.5

E (eV)

T
(E

)
T

(E
)

T
(E

)

Vb = 0 V

Vb = 1 V

Vb = 2 V

FIG. 6. �Color online� Transmission spectrum of the Al�100�-
C7-Al�100� system for different bias voltages Vb. The self-energy
matrices used in the T�E� calculations have been obtained at the �
point by the proposed Krylov subspace method with parameter �min

at several settings: 0.1 �black �full� curve�, 0.5 �red �dashed� curve�,
and 0.99 �blue �dotted� curve�. The bias windows are indicated by
the vertical dashed lines.

38.0

38.2

38.4

38.6

38.8

72

74

76

78

80

82

10010−110−2

λmin

I
(µ

A
)

I
(µ

A
)

(a) Vb = 1 V

(b) Vb = 2 V

FIG. 7. �Color online� Current as a function of the parameter
�min used by the Krylov subspace method for the Al�100�-C7-
Al�100� system with applied bias voltages Vb= �a� 1 and �b� 2 V.
The correct currents obtained by conventional methods are I
�38.4 and �77.0 �A, respectively, indicated here by the green
�dashed� lines.

TABLE I. CPU times in seconds for computing the left self-
energy matrix �L at 20 different energies E between −2 and 2 eV
for selected electrode types and matrix sizes N. The parameter �min

was set to 0.1.

Electrode type Size 2n iterative DGEEV Krylov

Lia 16 0.1 0.0 0.0

Feb 54 4.2 2.3 0.6

Al�100�c 72 4.9 3.3 0.8

Al�100�c 128 27.9 17.5 3.6

Au�111�d 243 167.2 73.7 11.5

�2,2� CNTe 64 3.6 2.4 0.7

�4,4� CNTe 128 26.0 14.4 2.9

�8,8� CNTe 256 208.8 118.8 17.0

�12,12� CNTe 384 608.4 373.6 45.6

�16,16� CNTe 512 1230.0 1403.9 121.5

�20,20� CNTe 640 1542.3 1125.7 148.0

aMeasurements from transmission calculations for ideal Li system.
bMeasurements from transmission calculations for Fe-MgO-Fe; see
geometry description in Ref. 10.
cMeasurements from transmission calculations for Al�100�-C7-
Al�100� described in this work �see also Ref. 1�.
dMeasurements from transmission calculations for Au�111�-BDT-
Au�111�; see, e.g., description in Ref. 11.
eMeasurements from transmission calculations for ideal armchair
�n ,n� carbon nanotubes; see, e.g., description in Ref. 4.

KRYLOV SUBSPACE METHOD FOR EVALUATING THE… PHYSICAL REVIEW B 77, 155301 �2008�

155301-9

profiling for general electrode configurations and do not use
lattice symmetries to reduce the order of the unit cells to
elementary size even when this is possible.17

In the third column of Table I the run times to compute
the correct self-energy matrices with the widely used itera-
tive scheme of López Sancho et al.26 are displayed. As the
error in �L obtained by this technique is reduced by 1 /2n

after n iterations �we denote this method as 2n iterative�, it
generally converges in n�22 steps. In addition, run times
for the conventional eigenvalue approach to evaluating the
self-energy matrices, in which a standard eigensolver is used
to determine the full set of modes, are presented in the fourth
column. For this version, we simply substituted part of our
Krylov subspace algorithm �steps 1–9 of Algorithm II� with
the state-of-the-art LAPACK routine DGEEV.47 In the last col-
umn the time required by the proposed Krylov subspace
method is shown. In all cases of the latter the parameter �min
was set to 0.1.

From the profiling results in Table I we see that the com-
putational time of the Krylov subspace method is signifi-
cantly reduced compared with the presently widely used
2n-iterative technique. Also the conventional eigensolver
scheme using DGEEV is typically faster than the 2n-iterative
algorithm �the exception for the �16,16� carbon nanotube
�CNT� is related to cache usage48�. A comparison of the tim-
ings in the last two columns verifies that the cost to evaluate
the self-energy matrices from only the few most important
modes of the electrodes, as in our Krylov subspace method,
is in general much lower than required by a direct eigen-
solver to determine all possible modes.

In order to illustrate the computational complexity of the
methods we show the CNT run times as a function of the
matrix size N in a logarithmic plot in Fig. 8. Clearly, all
methods have O�N3� complexity; however, the Krylov sub-
space method initially follows the typical O�N2� complexity
of the Arnoldi procedure49 until the cost of the shift-and-
invert operations becomes dominant. For N
500 we ob-

serve effects due to more and sometimes less favorable cache
usage. Overall, we see that the Krylov subspace method is
fastest by an order of magnitude for all but the smallest
cases.

It is important to point out that the obtained self-energy
matrices �L are in all cases applied in a subsequent transmis-
sion calculation of T�E� for the two-probe systems indicated
in Table I, and the results then checked against those of the
conventional methods �the resulting transmissions T�E� are
identical for the three methods in all cases of E to at least
three decimals�. Furthermore, the setting of the parameter
�min to 0.1 yields self-energy matrices evaluated from all the
modes that have phases � satisfying 0.1�
�
�1+�. This is
more than adequate for obtaining correct results to an accu-
racy of three decimals for all the systems considered in this
section. In practice, the parameter �min can often be selected

0.1 if lower accuracy in the T�E� calculation is satisfactory,
and this would show off the approach as even faster.

VI. CONCLUSIONS

In conclusion, we have developed an efficient and robust
Krylov subspace method for evaluating the self-energy ma-
trices that are required in electron transport calculations of
nanoscale devices. The method exploits the observation that
only the propagating and slowly decaying evanescent modes
in the electrodes are computationally significant for deter-
mining the transmission coefficients when the system is ap-
propriately set up.

The proposed method is based on the Arnoldi procedure
and applies carefully chosen shift-and-invert spectral trans-
formations to enhance the convergence toward the wanted
interior eigenpairs that correspond to significant modes. We
have investigated the convergence properties and shown that
the accuracy and efficiency are mainly controlled by two
parameters: the tolerance tol to be satisfied by of the relative
residuals of the obtained Ritz values and the parameter �min
that implicitly sets the number of modes taken into account.

In Sec. V we tested the Krylov subspace method on a
metal-device-metal system and compared it to conventional
methods. The applications show that the proposed method
can be applied to calculate the transmission characteristics in
a rigorous and systematic fashion and that the basic assump-
tion of only including selective solutions in the electrode
self-energy matrix is valid for many two-probe systems. The
overall saving in computational time achieved by the Krylov
subspace method is significant and in most cases more than
an order of magnitude in comparison with conventional
methods.

ACKNOWLEDGMENTS

The authors would like to thank J. Taylor and the people
at Atomistix for helpful discussions. This work was sup-
ported by the Danish Council for Strategic Research
�NABIIT� under Grant No. 2106-04-0017, “Parallel Algo-
rithms for Computational Nano-Science.”

Matrix size N

C
P

U
ti
m

e
(s

ec
s)

2n–Iterative

DGEEV

Krylov

10001000

500

100

100

100

1010

11

0.10.1

FIG. 8. �Color online� CPU times for computing the left self-
energy matrix �L plotted as a function of the size N of �L for a
range of armchair �n ,n� CNT electrodes, where n=1, . . . ,20. The
dotted and dashed lines indicate O�N2� and O�N3� computational
complexity, respectively.

SØRENSEN et al. PHYSICAL REVIEW B 77, 155301 �2008�

155301-10

APPENDIX A: COMPUTATIONAL DETAILS

1. Fast transmission calculation

We give the numerical steps to efficiently evaluate T�E�
via Eqs. �1� and �2�. From the outset, the computational costs
are reduced by taking into account that the self-energy ma-
trices are nonzero only in the corner blocks, that is,

GC =�
H1 − �1

L H1,2

H1,2
† H2 �

� � �

� Hn−1 Hn−1,n

Hn−1,n
† Hn − �n

R
�

−1

,

�A1�

where the self-energy blocks are numbered similarly to the
Hamiltonian blocks. We then select a given diagonal block k
and define self-energy matrices for every layer of the system,
as50–52

�i
L = Hi−1,i

† �Hi−1 − �i−1
L �−1Hi−1,i, − � � i 	 k , �A2�

�i
R = Hi,i+1�Hi+1 − �i+1

R �−1Hi,i+1
† , k 	 i � � , �A3�

which can be used to recursively evaluate the self-energy
matrices �k

L and �k
R when the matrices �1

L and �n
R �or �0

L and
�n+1

R of the semi-infinite electrodes� are available. The kth
block of the Green’s function matrix is now given by

Gk,k = �Hk − �k
L − �k

R�−1, �A4�

which corresponds to inverting the block of smallest size in
the system, if k is chosen accordingly. Finally Eq. �2� is
applied in a simplified version

T�E� = Tr��k
LGk,k �k

RGk,k
† � , �A5�

where the relation Gk,k
a = �Gk,k

r �† between the advanced �a�
and retarded �r� Green’s functions is used �Ga= �Gr�† is valid
when E is real, since H is Hermitian and �a= ��r�†; see Ref.
13�.

2. Generalization to complex Hamiltonian matrices and
k-point sampling

In the Krylov subspace method presented in this paper we
have assumed that the electrode Hamiltonian matrices are
real in order to simplify the computational procedures. We
now discuss the steps required to handle the case of complex
HL and HL,L, which is the case, e.g., when applying k-point
sampling �Algorithm II works only for the � point�.

As noted in Sec. III B, the assumption of real HL and HL,L
leads to simplifications with the shift-and-invert operations:

First, we may consider only right-going modes �� ,c0� with

�
	1 since the left-going modes are uniquely related as
��−1 ,c0�, and, second, we can use the spectral transformation
T in Eq. �18� to determine the wanted eigenpairs for the two
imaginary shifts �= � î /�2 simultaneously and in real arith-
metic.

In order to generalize the Krylov subspace method to
complex Hamiltonian matrices, it is thus necessary to deter-
mine the left-going modes satisfying 1	
�
	�min

−1 �i.e, lo-
cated outside the unit circle� directly, since there is no gen-
eral relation to the right-going modes �we note that it is
advantageous to change the shift positions to be outside the
unit circle, although this is not necessary for good conver-
gence�. Furthermore, we must abandon the T matrix and per-
form two independent shift-and-invert operations for �

= � î /�2. It is clear that all this is now done in complex
arithmetic and that the extra shift required will make the
general algorithm a little more expensive �as shown in Sec.
V B, the LU factorization required for each shift-and-invert
operation is the dominant cost of our approach�.

We have implemented the generalization and can illustrate
its applicability by converging the transmission spectrum of
the benzene di-thiol �BDT� molecule coupled to gold �111�
surfaces in Fig. 9 by 3
3 and 7
7 k-point sampling of the
Monkhorst type.53 The calculation setup used is exactly the
same as in Ref. 11 and the results can be confirmed.3,11 Also,
we have computed T�E� for each E and k with self-energy
matrices of both the 2n-iterative method and the Krylov sub-
space method and checked that the results are identical to
within three decimals. The CPU times required for, e.g., the
3
3 curve �eight k points� were 167 and 32 min for the two
methods, respectively, while the �-point curve takes 2.7 min
with Algorithm II. We conclude that the generalized Krylov
subspace algorithm is, in this case, 1.5 times slower �per k
point� than the real matrix version presented in Sec. III but
still more than five times faster than the commonly used
2n-iterative approach.

−4 −3 −2 −1

25 k-points
8 k-points
Γ-point

0 1 2 3 4
0

0.5

1

1.5

2

E − EF (eV)

T
(E

)

L C R

FIG. 9. �Color online� Transmission spectrum of the Au�111�-
BDT-Au�111� system for different k-point samplings and Vb=0.
The self-energy matrices used in the T�E� calculations have been
obtained by the generalized Krylov subspace method with param-
eter �min=0.1.

KRYLOV SUBSPACE METHOD FOR EVALUATING THE… PHYSICAL REVIEW B 77, 155301 �2008�

155301-11

*hhs@imm.dtu.dk
1 M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and K. Stok-

bro, Phys. Rev. B 65, 165401 �2002�.
2 M. Di Ventra, S. T. Pantelides, and N. D. Lang, Phys. Rev. Lett.

84, 979 �2000�.
3 S. V. Faleev, F. Léonard, D. A. Stewart, and M. van Schilfgaarde,

Phys. Rev. B 71, 195422 �2005�.
4 H. S. Gokturk, in Proceedings of the Fifth IEEE Conference on

Nanotechnology, 2005, Vol. 2, pp. 677–680.
5 N. D. Lang and P. Avouris, Phys. Rev. Lett. 84, 358 �2000�.
6 B. Larade, J. Taylor, H. Mehrez, and H. Guo, Phys. Rev. B 64,

075420 �2001�.
7 A. Nitzan and M. A. Ratner, Science 300, 1384 �2003�.
8 P. Pomorski, C. Roland, and H. Guo, Phys. Rev. B 70, 115408

�2004�.
9 M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour,

Science 278, 252 �1997�.
10 M. Stilling, K. Stokbro, and K. Flensberg, Mol. Simul. 33, 557

�2007�.
11 K. Stokbro, J.-L. Mozos, P. Ordejon, M. Brandbyge, and J. Tay-

lor, Comput. Mater. Sci. 27, 151 �2003�.
12 M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B

31, 6207 �1985�.
13 S. Datta, Electronic Transport in Mesoscopic Systems �Cam-

bridge University Press, Cambridge U.K., 1995�.
14 Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 �1992�.
15 P. A. Khomyakov and G. Brocks, Phys. Rev. B 70, 195402

�2004�.
16 P. A. Khomyakov, G. Brocks, V. Karpan, M. Zwierzycki, and P.

J. Kelly, Phys. Rev. B 72, 035450 �2005�.
17 K. Xia, M. Zwierzycki, M. Talanana, P. J. Kelly, and G. E. W.

Bauer, Phys. Rev. B 73, 064420 �2006�.
18 K. S. Thygesen and K. W. Jacobsen, Phys. Rev. B 72, 033401

�2005�.
19 T. Ando, Phys. Rev. B 44, 8017 �1991�.
20 P. S. Krstić, X.-G. Zhang, and W. H. Butler, Phys. Rev. B 66,

205319 �2002�.
21 D. H. Lee and J. D. Joannopoulos, Phys. Rev. B 23, 4997

�1981�.
22 S. Sanvito, C. J. Lambert, J. H. Jefferson, and A. M. Bratkovsky,

Phys. Rev. B 59, 11936 �1999�.
23 T. Shimazaki, H. Maruyama, Y. Asai, and K. Yamashita, J.

Chem. Phys. 123, 164111 �2005�.
24 J. Velev and W. Butler, J. Phys.: Condens. Matter 16, R637

�2004�.
25 F. Guinea, C. Tejedor, F. Flores, and E. Louis, Phys. Rev. B 28,

4397 �1983�.
26 M. P. Lopez Sancho, J. M. Lopez Sancho, J. M. L. Sancho, and

J. Rubio, J. Phys. F: Met. Phys. 15, 851 �1985�.
27 W. E. Arnoldi, Q. Appl. Math. 9, 17 �1951�.
28 M. N. Kooper, H. A. van der Vorst, S. Poedts, and J. P. Goedb-

loed, J. Comput. Phys. 118, 320 �1995�.
29 K. Meerbergen and D. Roose, IMA J. Numer. Anal. 16, 297

�1996�.

30 N. Nayar and J. M. Ortega, J. Comput. Phys. 108, 8 �1993�.
31 Z. Bai and Y. Su, SIAM J. Matrix Anal. Appl. 26, 640 �2005�.
32 L. Hoffnung, R.-C. Li, and Q. Ye, Linear Algebr. Appl. 415, 52

�2006�.
33 U. B. Holz, G. H. Golub, and K. H. Law, SIAM J. Matrix Anal.

Appl. 26, 498 �2004�.
34 Q. Ye, Appl. Math. Comput. 172, 818 �2006�.
35 First-principles DFT calculations are done with the commercial

software package ATOMISTIX TOOLKIT 2.0. We use norm-
conserved pseudopotentials for the core electrons and the local
density approximation for the exchange-correlation potential
�Ref. 1�. More details about the software can be found on the
company website �www.atomistix.com�.

36 P. N. C. Caroli, R. Combescot, and D. Saint-James, J. Phys. C 4,
916 �1971�.

37 M. B. Nardelli, Phys. Rev. B 60, 7828 �1999�.
38 A brief explanation for this is that, since the boundary layers of

the C region in our setup are given by principal electrode layers,
the evanescent modes that decay very fast do not “survive” the
propagation through these layers and therefore do not give any
components outside the sets ��k

+� and ��k
−� at the boundaries of

C.
39 H. H. B. Sørensen, D. E. Petersen, S. Skelboe, P. C. Hansen, and

K. Stokbro �unpublished�.
40 L. N. Trefethen and D. Bau, Numerical Linear Algebra �SIAM,

Philadelphia, 1997�.
41 Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst,

Templates for the Solution of Algebraic Eigenvalue Problems: A
Practical Guide �SIAM, Philadelphia, 2000�.

42 Ronald B. Morgan and M. Zeng, Linear Algebr. Appl. 415, 96
�2006�.

43 Z. Jia, J. Comput. Math. 17, 257 �1999�.
44 F. Tisseur and K. Meerbergen, SIAM Rev. 43, 235 �2001�.
45 B. N. Parlett and Y. Saad, Linear Algebr. Appl. 88–89, 575

�1987�.
46 M. E. Hochstenbach and H. A. van der Vorst, SIAM J. Sci.

Comput. 25, 591 �2003�.
47 All computations in this work were done on a Sun ULTRASPARC

IV dual-core CPUs �1350 MHz/8 MB L2-cache�. We use the
vendor-supplied Sun Performance Library that includes
platform-optimized versions of LAPACK routines.

48 For the armchair �16,16� CNT electrode �N=512� the call to
DGEEV produces an extremely high number of L2 cache misses,
many more than for the larger �18,18� CNT electrode �N=576�.
This causes the very poor run times of the DGEEVmethod for this
particular electrode.

49 G. W. Stewart, Matrix Algorithms �SIAM, Philadelphia, 2001�.
50 E. M. Godfrin, J. Phys.: Condens. Matter 3, 7843 �1991�.
51 D. E. Petersen, H. H. B. Sørensen, S. Skelboe, P. C. Hansen, and

K. Stokbro, J. Comput. Phys. 227, 3174 �2008�.
52 S. Y. Wu, J. Cocks, and C. S. Jayanthi, Phys. Rev. B 49, 7957

�1994�.
53 H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 �1976�.

SØRENSEN et al. PHYSICAL REVIEW B 77, 155301 �2008�

155301-12

196

Appendix C

Article: Efficient Wave Function
Matching Approach for Quantum
Transport Calculations

Article submitted to Physical Review B (preprint on
arXiv)

Listed in references as [3].

197

Efficient wave function matching approach for quantum transport

calculations

Hans Henrik B. Sørensen∗ and Per Christian Hansen

Informatics and Mathematical Modelling,

Technical University of Denmark, Bldg. 321, DK-2800 Lyngby, Denmark

Dan Erik Petersen, Stig Skelboe, and Kurt Stokbro

Department of Computer Science, University of Copenhagen,

Universitetsparken 1, DK-2100 Copenhagen, Denmark

(Dated: April 28, 2008)

Abstract

The Wave Function Matching (WFM) technique has recently been developed for the calculation

of electronic transport in quantum two-probe systems. In terms of efficiency it is comparable

with the widely used Green’s function approach. The WFM formalism presented so far requires

the evaluation of all the propagating and evanescent bulk modes of the left and right electrodes

in order to obtain the correct coupling between device and electrode regions. In this paper we

will describe a modified WFM approach that allows for the exclusion of the vast majority of the

evanescent modes in all parts of the calculation. This approach makes it feasible to apply iterative

techniques to efficiently determine the few required bulk modes, which allows for a significant

reduction of the computational expense of the WFM method. We illustrate the efficiency of

the method on a carbon nanotube field-effect-transistor (FET) device displaying band-to-band

tunneling and modeled within the semi-empirical Extended Hückel theory (EHT) framework.

1

Device Bulk electrodeBulk electrode

FIG. 1: (Color online) Schematic illustration of a nano-scale two-probe system in which a device

is sandwiched between two semi-infinite bulk electrodes.

I. INTRODUCTION

Quantum transport simulations have become an important theoretical tool for investi-

gating the electrical properties of nano-scale systems.1–5 The basis for the approach is the

Landauer-Büttiker picture of coherent transport, where the electrical properties of a nano-

scale constriction is described by the transmission coefficients of a number of one-electron

modes propagating coherently through the constriction. The approach has been used suc-

cessfully to describe the electrical properties of a wide range of nano-scale systems, including

atomic wires, molecules and interfaces.6–15 In order to apply the method to semiconductor

device simulation, it is necessary to handle systems comprising many thousand atoms, and

this will require new efficient algorithms for calculating the transmission coefficient.

Our main purpose in this paper is to give details of a method we have developed, based

on the WFM technique,16–18 which is suitable for studying electronic transport in large-scale

atomic two-probe systems, such as large carbon nanotubes or nano-wire configurations.

We adopt the many-channel formulation of Landauer and Büttiker to describe electron

transport in nano-scale two-probe systems composed of a left and a right electrode attached

to a central device, see Fig. 1. In this formulation, the conduction G of incident electrons

through the device is intuitively given in terms of transmission and reflection matrices, t

and r, that satisfy the unitarity condition t†t + r†r = 1 in the case of elastic scattering.

The matrix element tij is the probability amplitude of an incident electron in a mode i in

the left electrode being scattered into a mode j in the right electrode, and correspondingly

rik is the probability of it being reflected back into mode k in the left electrode. This simple

interpretation yields the Landauer-Büttiker formula3

G =
2e2

h
Tr[t†t], (1)

2

which holds in the limit of infinitesimal voltage bias and zero temperature.

To our knowledge, the WFM schemes presented so far in the literature requires the

evaluation of all the Bloch and evanescent bulk modes of the left and right electrodes in

order to obtain the correct coupling between device and electrode regions. The reason for

this is that it requires the complete set of bulk modes to be able to represent the proper

reflected and transmitted wave functions. In this paper we will describe a modified WFM

approach that allows for the exclusion of the vast majority of the evanescent modes in all

parts of the calculation. The primary modification can be pictured as a simple extension

of the central region with a few principal electrode layers. In this manner, it becomes

advantageous to apply iterative techniques for obtaining the relatively few Bloch modes and

slowly decaying evanescent modes that are required. We have developed such an iterative

method in Ref. 19, which allows for an order of magnitude reduction of the computational

expense of the WFM method in practice.

In this work, the proper analysis of the modified WFM approach is presented. The

accuracy of the method is investigated and appropriate error estimates are developed. As

an illustration of the applicability of our WFM scheme we consider a 1440 atom CNTFET

device of 14 nm in length. We calculate the zero-bias transmission curves of the device under

various gate voltages and reproduce previously established characteristics of band-to-band

tunneling.20 We compare directly the results of the modified WFM method to those of the

standard WFM method for quantitative verification of the calculations.

The rest of the paper is organized as follows. The WFM formalism used to obtain t and

r is introduced in Sect. II. In Sect. III we present our method to effectively exclude the

rapidly decaying evanescent modes from the two-probe transport calculations. Numerical

results are presented in Sect. IV. and the paper ends with a short summary and outlook.

II. FORMALISM

In this section we give a minimal review of the formalism and notation that is used

in the current work in order to determine the transmission and reflection matrices t and

r. This WFM technique has several attractive features compared to the widely used and

mathematically equivalent Green’s function approach.1,2 Most importantly, the transparent

Landauer picture of electrons scattering via the central region between Bloch modes of the

3

electrodes is retained throughout the calculation. Moreover, WFM allows one to consider the

significance of each available mode individually in order to achieve more efficient numerical

procedures to obtain t and r.

A. Wave function matching

The WFM method is based upon direct matching of the bulk modes in the left and

right electrode to the scattering wave function of the central region. For the most part this

involves two major tasks; obtaining the bulk electrode modes and solving a system of linear

equations. The available modes in the left and right electrodes are the solutions from the

corresponding ideal electrodes. These solutions can be characterized as either propagating

or evanescent (exponentially decaying) modes but only the propagating modes contribute

to G in Eq. (1). We may write G = (2e2/h)T , where

T =
∑
kk′

|tkk′|2 (2)

is the total transmission and the sum is limited to propagating modes k and k′ in the left and

right electrode, respectively. Notice, however, that the evanescent modes are still needed in

order to obtain the correct matrix elements tkk′. We will discuss this matter in Sect. IIIC.

We assume a tight-binding setup for the two-probe systems in which the infinite structure

is divided into principal layers numbered i = −∞, . . . ,∞ and composed of a finite central

(C) region containing the device and two semi-infinite left (L) and right (R) electrode

regions, see Fig. 2. The wave function is ψi(x) =
∑mi

j ci,jχi,j(x−Xi,j) in layer i, where χi,j

denotes localized non-orthogonal atomic orbitals andXi,j are the positions of the mi orbitals

in layer i. We represent ψi(x) by a column vector of the expansion coefficients, given by

ψi = [ci,1, . . . , ci,mi
]T , and write the wave function ψ extending over the entire system as

ψ = [ψT
−∞, . . . ,ψT

∞]T. We also assume that the border layers 1 and n of the central region

are always identical to a layer of the connecting electrodes.

We refer the reader to Refs. 16–18 for details on how to employ WFM to our setup. Here

and in the rest of this paper, we will use the following notation for the key elements: The

matrices Φ±
L = [φ±

L,1, . . . ,φ
±
L,mL

] contain in their columns the full set of mL left-going (−)

and mL right-going (+) bulk modes φ±
L,k of the left electrode, and the diagonal matrices

Λ±
L = diag[λ±

L,1, λ
±
L,2, . . . , λ

±
L,mL

] hold the corresponding Bloch factors.29 If trivial modes with

4

L C R︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
ψ0 ψ1 ψ2 ψn ψn+1ψn−1

In-

coming

Re-

flected

Trans-

mitted

Zero

· · ·

FIG. 2: (Color online) Schematic representation of WFM applied to layered two-probe systems,

where the central device region, consisting of layers i = 1, . . . , n, is attached to left and right

semi-infinite electrodes. The incoming propagating mode from the left electrode is scattered in

the central region and ends up as reflected and transmitted superpositions of propagating and

evanescent modes.

|φ+
L,k| = 0 or |φ−

L,k| = ∞ occur they are simply rejected. We assume that all the evanescent

bulk modes are (state-)normalized φ±†
L,kφ

±
L,k = 1, while all the Bloch bulk modes are flux-

normalized30 φ±†
L,kφ

±
L,k = dL/v±L,k, where v±L,k are the group velocities15,21 and dL is the layer

thickness. Similarly for the right electrode the matrices Φ±
R and Λ±

R are formed. We can

then define the Bloch matrices17 as B±
L = Φ±

LΛ±
L (Φ±

L)−1 and B±
R = Φ±

RΛ±
R(Φ±

R)−1. The

system of linear equations for ψC is subsequently written as

(ESC −HC)ψC = b, (3)

where E is the energy, ψC = [ψT
1 , . . . ,ψT

n]T is the central region wave function, and SC and

HC =



H1 + ΣL H1,2

H†
1,2 H2

. . .

. . .
. . .

. . .

. . . Hn−1 Hn−1,n

H†
n−1,n Hn + ΣR


(4)

are the tight-binding overlap and Hamiltonian matrices of the central region. The right-hand

side source term b = [bT
1 , 0T, . . . , 0T]T is specified by the expression

b1 = −(H̄†
0,1 + ΣLB

+
L)ψ0, (5)

where ψ0 is the incoming wave function (notice that this source term is defined for layer

1 and not layer 0, as is the case in Refs. 18 and 17). In Eq. (5) we have introduced the

5

overline notation H̄i ≡ ESi−Hi and H̄i,j ≡ ESi,j −Hi,j (also used below) to enhance the

readability.

The matrices ΣL and ΣR are the left and right self-energy matrices. We stress that for

the current setup, these matrices are identical to the self-energy matrices introduced in the

Green’s function formalism1 (to within an infinitesimal imaginary shift of E), and may be

evaluated by well-known recursive techniques22,23 or, more conveniently for WFM, in terms

of the Bloch matrices:16,17

ΣL = H̄†
0,1(H̄1 + H̄†

0,1(B
−
L)−1)−1H̄0,1, (6)

and

ΣR = H̄n,n+1(H̄n + H̄n,n+1B
+
R)−1H̄†

n,n+1, (7)

For notational simplicity in the following sections, we leave out the implied subscripts

L or R, indicating the left or right electrode, whenever the formalism is the same for both

(e.g, for symbols m, λk,φk,Φ
±,Λ±,B±,Σ, etc.).

B. Transmission and reflection coefficients

As a final step we want to determine the t and r matrices from the boundary wave

functions ψ1 and ψn that have been obtained by solving Eq. (3).

When the incoming wave ψ0 is specified to be the kth right-going mode φ+
L,k of the left

electrode, we can evaluate the kth column of the transmission matrix tk by solving

Φ+
Rtk = ψn, (8)

where Φ+
R is the mR ×mR column matrix holding the right-going bulk modes of the right

electrode (and here assumed to be non-singular). Similarly the kth column of the reflection

matrix rk is given by

Φ−
Lrk = ψ1 − λ+

L,kφ
+
L,k, (9)

where Φ−
L holds the left-going bulk modes of the left electrode. The flux normalization

ensures that t†t + r†r = 1.1

6

TABLE I: CPU times in seconds when using WFM for calculating t and r at 20 different energies

inside E ∈ [−2 eV; 2 eV] for various two-probe systems. The numbers of atoms in the central

region (electrode unit cell) are indicated. The four right-most columns show the CPU times spent

for computing the electrode bulk modes with dgeev and in this work vs. solving the central region

linear systems in Eq. (3) and the system with two extra principal layers on each side.

System Atoms Eq. (3) Eq. (3)(l = 2) dgeev This work

Fe–MgO–Fe 27(6) 0.8 0.9 1.3 1.1

Al–C×7–Al 74(18) 0.4 0.6 3.6 1.6

Au–DTB–Au 102(27) 8.1 13.5 91.0 28.2

Au–CNT(8,0)×1–Au 140(27) 11.4 16.6 77.6 17.1

Au–CNT(8,0)×5–Au 268(27) 45.3 50.3 83.6 17.8

CNT(8,0)–CNT(8,0) 192(64) 7.0 11.9 129.0 19.4

CNT(4,4)–CNT(8,0) 256(64|64) 7.2 12.4 121.5 21.0

CNT(5,0)–CNT(10,0) 300(40|80) 24.7 31.5 113.3 22.6

CNT(18,0)–CNT(18,0) 576(144) 172.2 225.5 1362.2 253.3

III. EXCLUDING EVANESCENT MODES

The most time consuming task of the WFM method is to determine the electrode modes,

which requires solving a quadratic eigenvalue problem.16 As examples, see the profiling

results listed in Table I, where we have used the method to compute t and r for a selection

of two-probe systems.31 The CPU timings show that to determine the electrode modes

by employing the state-of-the-art lapack eigensolver dgeev is, in general, much more

expensive than to solve the system of linear equations in Eq. (3). We expect this trend

to hold for larger systems as well. Therefore, in the attempt to model significantly larger

devices (thousands of atoms), it is of essential interest to reduce the numerical cost of

the electrode modes calculation. We argue that a computationally reasonable approach

is to limit the number of electrode modes taken into account, e.g., by excluding the least

important evanescent modes. In this section, a proper technique to do this in a rigorous and

systematic fashion is presented.

7

A. Decay of evanescent modes

The procedure to determine the Bloch factors λk and non-trivial modes φk of an ideal

electrode and subsequently characterize these as right-going (+) or left-going (−) is well

described in the literature.16–18,24 We note that only the obtained propagating modes with

|λk| = 1 are able to carry charge deeply into the electrodes and thus enter the Landauer

expression in Eq. (2). The evanescent modes with |λk| 6= 1, on the other hand, decay

exponentially but can still contribute to the current in a two-probe system, as the “tails”

may reach across the central region boundaries.

Consider a typical example of an electrode modes evaluation: We look at a gold electrode

with 27 atoms in the unit cell represented by 9 (sp3d5) orbitals for each Au-atom. Such a

system results in 243 right-going and 243 left-going modes. Fig. 3a shows the positions in the

complex plane of the Bloch factors corresponding to the right-going modes (i.e., |λk| ≤ 1)

for energy E = −1.5 eV. We see that there are exactly three propagating modes, which

have Bloch factors located on the unit circle. The remaining modes are evanescent, of which

many have Bloch factors with small magnitude very close to the origin.

Fig. 3b illustrates how the 243 left-going modes would propagate through 10 successive

gold electrode unit cells. The figure shows that the amplitudes of the three propagating

modes are unchanged, while the evanescent modes are decaying exponentially. In particular,

we note that the evanescent modes with Bloch factors of small magnitude are very rapidly

decaying and vanishes in comparison to the propagating modes after only a few layers.

In the following, we will exploit this observation and attempt to exclude such evanescent

modes from the WFM calculation altogether. Formally this can be accomplished if only the

electrode modes φk with Bloch factors λk satisfying

λmin ≤ |λk| ≤ λ−1
min, (10)

are computed and subsequently taken into account, for a reasonable choice of 0 < λmin < 1.

We adopt Eq. (10) as the key relation to select a particular subset of the available electrode

modes (as recently suggested in Ref. 17).

8

 0.2

 0.4

 0.6

 0.8

 1

Re{λ}

Im{λ}

0

π
2

π

3
2
π

(a)

1.0

0.5

0.0

-0.5

-1.0
0 1 2 3 4 5 6 7 8 9 10

R
e{

λ
l }

l (layers)

(b)

FIG. 3: (Color online) (a) Positions of the Bloch factors λk (|λk| ≤ 1) obtained for a bulk Au(111)

electrode with 27 atoms per unit cell at E = −1.5 eV. (b) Amplitudes of the corresponding

normalized electrode modes φk moving through 10 layers of the ideal bulk electrode. A total of

243 modes are shown of which 3 are propagating (colored/dashed) and the rest are evanescent

(circles/black).

B. Extra electrode layers

We will denote the mode matrices from which the rapidly decaying evanescent modes are

excluded via Eq. (10), and also the Bloch matrices and self-energy matrices obtained from

these, with a tilde, i.e., as Φ̃±, B̃± and Σ̃. The mode matrices holding the excluded modes

are denoted by a math-ring accent Φ̊±, so that

Φ± = [Φ̃±, Φ̊±], (11)

is the assumed splitting of the full set. All expressions to evaluate the Bloch and self-energy

matrices are unchanged as given in Sect. II (now (Φ̃±)−1 merely represents the pseudo-

inverses of Φ̃±). However, since the column spaces of Φ̃± are not complete, there is no

9

L C Rz }| { z }| { z }| {
ψ0 ψ

(l)
1 ψ

(0)
1 ψ2 ψ

(l)
nψ

(0)
n ψn+1ψn−1· · · · · ·· · ·

| {z } | {z }
l extra layers l extra layers

FIG. 4: (Color online) Two-probe system in which the C region boundaries are expanded by l

extra electrode layers.

longer any guaranty that WFM can be performed so that the resulting self-energy matrices

and, in turn, the solution ψC = [ψT
1 , . . . ,ψT

n]T of the linear system in Eq. (3), are correct.

In addition, it is clear that errors can occur in the calculation of t and r from Eqs. (8) and

(9) because the boundary wave functions ψ1 and ψn might not be fully represented in the

reduced sets Φ̃+
R and Φ̃−

L .

As explicitly shown in Refs. 16–18, the key to deriving Eq. (3) is twofold: fixing the layer

wave functions coming into the C region (e.g., in our case ψ+
1 = λ+

L,kφ
+
L,k and ψ−

n = 0) and

matching the layer wave functions across the C region boundaries (we remind the reader

that our setup has one more electrode layer on both sides of C compared to the setup of

Refs. 18 and 17).

The matching is accomplished by using theB± matrices, which by construction propagate

the layer wave functions in the bulk electrode,16–18 i.e.,

ψ±
j = (B±)j−iψ±

i , (12)

where subscript L is implied for the left electrode (i, j ≤ 1), and R for the right electrode

(i, j ≥ n). Notice that the Bloch matrices are always square and also invertible since any

trivial electrode are rejected from the outset in the current formalism. When the reduced

Bloch matrices B̃± are used instead of B±, however, the possible components of the wave

functions outside the column spaces of Φ̃± are not properly matched, and the boundary

conditions are not necessarily satisfiable.

In order to diminish the errors introduced by excluding evanescent modes, we propose

to insert additional electrode layers in the central region, see Fig. 4. As illustrated in the

previous section, this would quickly reduce the imprint of the rapidly decaying evanescent

modes in the boundary layer wave functions ψ̃1 and ψ̃n, which means that the critical

10

components outside the column spaces Φ̃± becomes negligible at an exponential rate in terms

of the number of additional layers. We emphasize that the inserted layers may be “fictitious”

in the sense that they can be accommodated by simple block-Gaussian-eliminations prior to

the solving of Eq. (3) for the original system.

The above modements are confirmed by the following analysis. In the particular case,

where l extra electrode layers are inserted and the border layers of the C region are identical

to the connecting electrode layers, we can write the boundary matching equations as16–18

ψ0 = (B̃+
L)−1ψ

(l)+
1 + (B̃−

L)−1ψ
(l)−
1 (13)

for the left boundary and

ψn+1 = B̃+
Rψ

(l)+
n + B̃−

Rψ
(l)−
n (14)

for the right boundary, where ψ
(l)+
1 = λ+

L,kφ
+
L,k and ψ

(l)−
n = 0 are fixed as boundary condi-

tions. We point out, that the l extra layers are bulk layers extending from each electrode

and therefore connected via the relation in Eq. (12) for L and R, respectively. Moreover,

since the electrode wave functions can always be expanded in the corresponding complete

set of bulk modes, we may write

ψ±
i = Φ±a±i = [Φ̃±, Φ̊±]

 ã±i
å±i

 , (15)

where a±i = [ã±T
i , å±T

i]T are vectors that contain the expansion coefficients and subscript L

is implied for the left electrode (i ≤ 1), and R for the right electrode (i ≥ n). Thus we may

consider the (unfixed) boundary wave functions entering Eqs. (13) and (14), by explicitly

writing

ψ
(l)−
1 = (B−

L)−lψ−
1 = [Φ̃−

L , Φ̊−
L]

 (Λ̃−
L)−lã−1

(Λ̊−
L)−lå−1

 , (16)

and

ψ(l)+
n = (B±

R)lψ+
n = [Φ̃+

R, Φ̊+
R]

 (Λ̃+
R)lã+

n

(Λ̊+
R)lå+

n

 , (17)

using the definition B± = Φ±Λ±(Φ±)−1. This shows that the critical components outside

the column spaces of Φ̃±
L and Φ̃±

R are given by coefficients (Λ̊−
L)−lå−1 and (Λ̊+

R)lå+
n , respec-

tively, and assuming we exclude most rapidly decaying of the evanescent modes according

to Eq. (10), that is, |λk| > λ−1
min for the diagonal elements of Λ̊−

L and |λk| < λmin for the

11

diagonal elements of Λ̊+
R, where λmin is less than 1, these coefficients always decrease as a

function of l.

We conclude that WFM with the reduced Bloch matrices B̃± approaches the exact case

with B± if additional electrode layers are inserted as suggested, and therefore, that the solu-

tion ψ̃C obtained from Eq. (3) when only a reduced set of bulk modes are used, approaches

the correct solution ψC accordingly.

C. Accuracy

As pointed out above, the exclusion of some of the evanescent modes from the mode

matrices Φ± may introduce errors because the column spaces in Φ̃± are incomplete. How-

ever, it is not obvious to which extend this influences the accuracy of the transmission and

reflection calculations from the scattering states solutions ψ
(l)−
1 and ψ

(l)+
n . It is therefore

important to be able to estimate and monitor the accuracy of the results obtained. We now

discuss how this can be done in a systematic fashion in terms of the parameter λmin and the

number l of extra electrode layers.

Consider first the accuracy of the transmission matrix t in the case of the extended two-

probe system in Fig. 4. Initially, for a specific incoming mode k, we would like to compare

the correct result obtained with the complete set of modes (cf. Eq. (8)),

tk =

t̃k

t̊k

 = [Φ̃+
R, Φ̊+

R]−1ψ(l)+
n , (18)

to the result obtained with the reduced mode matrix (denoted by a prime),

t′k =

t̃′k

0̊′

 = [Φ̃+
R, 0̊]−1ψ(l)+

n , (19)

where 0̊′ and 0̊ represents the zero vector and zero matrix of size m̊R and mR× m̊R, respec-

tively.

Notice that the important coefficients in tk and t′k for transmission calculations are the

ones representing the Bloch modes which enters the Landauer-Büttiker formula in Eq. (2).

Since these are never excluded they will always be located within the first m̃R elements, i.e.,

in t̃k and t̃′k. It then suffices to compare these parts of the transmission matrix which we

can do as follows.

12

From the properties of the pseudo inverse we are able to write the relation

(Φ̃+
R)−1[Φ̃+

R, Φ̊+
R] = [̃I, (Φ̃+

R)−1Φ̊+
R], (20)

where Ĩ is the identity matrix of order equal to the number of included modes m̃R. Using

the expression in Eq. (17) it then follows that

t̃k = (Λ̃+
R)lã+

n , (21)

and

t̃′k = t̃k + (Φ̃+
R)−1Φ̊+

R(Λ̊+
R)lå+

n , (22)

where the t̃′k expression clearly corresponds to the correct coefficients t̃k plus an error term.

We have already established in the previous section that the (Λ̊+
R)lå+

n factor in the error

term will decrease as a function of l. To ascertain that the total error term also decreases,

we look at the 2-norm of (Φ̃+
R)−1Φ̊+

R, which satisfies

||(Φ̃+
R)−1Φ̊+

R||2 ≤ m̊
1
2
R||(Φ̃+

R)−1||2, (23)

since ||Φ̊+
R||2 ≤ m̊

1
2
R when all evanescent modes are assumed to be normalized. The norm

||(Φ̃+
R)−1||2 can be readily evaluated and depends on the set of modes included via the param-

eter λmin but not on l. We then have that (Φ̃+
R)−1Φ̊+

R is independent of l, and consequently,

that the error term in Eq. (22) must decrease as a function of l.

Writing Eq. (22) as t̃′k = t̃k + ǫ̃k, where ǫ̃k holds the errors on the coefficients of the

kth column, we further obtain that the corresponding total transmission T ′ obtained from

Eq. (2) can be expressed as

T ′ = T +
∑
kk′

(t̃∗kk′ ǫ̃kk′ + ǫ̃∗kk′ t̃kk′ + |ǫ̃kk′|2) (24)

where T is the exact result and the summation is over the Bloch modes k and k′ in the left

and right electrode, respectively.

In the attempt to estimate the order of the error term in Eq. (24) we may (as a worst

case approximation) take all diagonal elements of Λ̊+
R to be equal to the maximum range

λmin of Eq. (10), which makes all elements ǫ̃kk′ proportional to λl
min. Thus we arrive at the

simple relation

|T ′ − T | ∼ λl
min +O(

(λl
min)

2
)
, (25)

13

which shows that the error decreases exponentially in terms of the number of extra layers l.

In practice, Eq. (25) can be adopted as a reasonable order of magnitude estimate of

the accuracy of T ′. Alternatively, we are able to directly monitor the error arising on the

boundary conditions, e.g., in terms of the coefficient vectors b̃L,k ≡ (Φ̃+
R)−1(ψ

(l)+
1 −λ+

L,kφ
+
L,k)

and b̃R,k ≡ (Φ̃−
R)−1ψ

(l)−
n , where ψ

(l)+
1 and ψ

(l)−
n are given by solving Eq. (3). It is clear that

|b̃L,k| = 0 and |b̃R,k| = 0 in the case where the boundary conditions are exactly satisfied.

Taking into account the similarity in the expressions for t̃′k and b̃R,k and assuming a similar

order of errors in ψ
(l)+
n and ψ

(l)−
n , we would also expect the same order of magnitude of

|ǫ̃k| and |b̃R,k|. This suggests another order of magnitude accuracy estimate from Eq. (24),

which is straight forward to monitor using the results available with the reduced set of bulk

modes:

|T ′ − T | ≤
∑

k

(2|t̃k||ǫ̃k|+ |ǫ̃k|2) ∼
∑

k

(2|t̃k||b̃R,k|+ |b̃R,k|2), (26)

where all the vector norms (e.g., |t̃k|2 =
∑

k′ |̃tkk′|2) are assumed to be taken over the

elements corresponding to propagating bulk modes k′ only.

Finally, we note without explicit derivation, that similar arguments for the reflection

matrix with columns r̃′k = (Φ̃−
L)−1(ψ

(l)−
1 − λ+

L,kφ
+
L,k) and the total reflection coefficient R′,

as presented above for t̃′k and T ′, results in the same accuracy expressions for |R′ − R| as

for |T ′ − T | in Eqs. (25) and (26), if we substitute t̃k → r̃k and b̃R,k → b̃L,k.

D. Example

To end this section, we exemplify the previous discussion quantitatively by looking at the

Au(111) electrode described earlier, and assuming a 128 atom (4 unit cells) device of zigzag-

(8,0) carbon nano tube (CNT) sandwiched between the gold electrodes, see the configuration

in Fig. 1. For energy E = −1.5 eV, we have calculated the deviation between the total

transmission obtained when all bulk modes are taken into account (T) and when some

evanescent modes are excluded (T ′) as specified with different settings of λmin. Deviations

are also determined for the corresponding total reflection coefficients (R and R′). Fig. 5

shows the results as a function of l, together with the estimate λl
min of Eq. (25) and the

estimate of Eq. (26) both for the transmission and reflection coefficients, where the higher

order terms have been neglected,

14

10−6

10−6

10−6

10−4

10−4

10−4

10−2

10−2

10−2

10 0

10 0

10 0

0 1 2 3 4 5 6 7 8 9 10

E
rr

or
E

rr
or

E
rr

or

l (layers)

λmin = 0.5

λmin = 0.3

λmin = 0.1

(λmin)l

|T̃ − T |
|R̃ − R|
Eq. (26)–L

Eq. (26)–R

FIG. 5: (Color online) Error (absolute) in the calculated total transmission (solid red lines) and

reflection (solid blue lines) coefficients T ′ and R′ as a function of l. The panels show the cases of

λmin set to 0.5, 0.3 and 0.1, which corresponds to 3, 14 and 31 Au bulk modes (out of 243, see

Fig. 3) taken into account, respectively. The dashed line indicate the theoretical accuracy estimate

λl
min. The yellow and green lines show error estimates obtained from Eq. (26).

We observe that the absolute error in the obtained transmission coefficients (red curves)

and reflection coefficients (blue curves) are generally decreasing as a function of l, following

the same convergence rate as λl
min (dashed line). Looking closer at results for neighbor l

values, we see that the errors initially exhibit wave-like oscillations. This is directly related

to the wave form of the evanescent modes that have been excluded (see the propagation of

the slowest decaying black curves in Fig. 3(b)), since the representation of these modes in

the reduced spaces Φ̃± (i.e., the expansion coefficients in ǫ̃k) may shift when l is increased.

In other words, although the norm of the errors |ǫ̃k| are decreasing as a function of l, the

15

FIG. 6: (Color online) Schematic illustration of a carbon nanotube (8,4) band-to-band tunneling

device. The carbon nanotube is positioned on Li surfaces next to an arrangement of three gates.

specific error ǫ̃kk′ on a given (large) coefficient of t̃′kk′ or r̃′kk′ may increase, which means

that the overall error term in Eq. (24) can go up. Fortunately, however, this is only a local

phenomenon with the global trend being rapidly decreasing errors.

Consider also the quality of the simple accuracy estimate of λl
min and the estimates ex-

pressed by Eq. (26) for the transmission coefficients (green curves) and reflection coefficients

(yellow curves), respectively. For relatively large λmin all estimates are very good. However,

for smaller values of λmin, only the latter two retain a high quality while the λl
min estimate

tends to be overly pessimistic. It is important to remember, that these estimates are by no

means strict conditions but they appear to give very reasonable estimates of the accuracy.

We note in passing, that the results in the top panel of Fig. 5 corresponds to using only

the propagating Bloch modes in the transmission calculation. Still we are able to compute

T and R to an absolute accuracy of three digits by inserting 2× 5 extra electrode layers in

the two-probe system. This is quite remarkable and shows promise for large-scale systems,

e.g., with nano-wire electrodes, for which the total number of evanescent modes available

becomes exceedingly great.

IV. APPLICATION

In this section we will apply the developed method to a nano-device consisting of a CNT

stretched between to two metal electrodes and controlled by three gates. The setup is

inspired by Appenzeller et al.20, and we expect this particular arrangement to be able to

display so-called band-to-band (BTB) tunneling, where one observes gate induced tunneling

from the valence band into the conduction band of a semi-conducting CNT and vice versa.

We show the configuration of the two-probe system in Fig. 6. The device configuration

16

contains 10 principal layers of a CNT(8,4), having 112 atoms in each. The diameter of the

tube and the principal layer length are 8.3 Å and 11.3 Å, respectively. The electrodes consist

of CNT(8,4) resting on a thin surfaces of Li, where the lattice constant of the Li layers is

stretched to fit the layer thickness of the CNT. The central region of the two-probe system

comprises a total of 1440 atoms. An arrangement of rectangular gates are positioned below

the carbon nanotube as indicated on the figure. In the plane of the illustration (length ×
height) the dimensions are as follows: Dielectric 108 Å× 5 Å; Gate-A 108 Å× 5 Å; Gate-B

20 Å × 5 Å. We set ǫ = 4 for the dielectric constant of the dielectric in order to simulate

SiO2 or Al2O3 oxides. All the regions are centered with respect to the electrodes so that the

complete setup has mirror symmetry in the length direction. In the direction perpendicular

to the illustration the configuration is assumed repeated every 19.5 Å as a super-cell.

We have obtained the density matrix of the BTB device by combining the NEGF for-

malism with a semi-empirical Extended Hückel model (EHT) using the parameterization

of Hoffmann25. From the density matrix we calculate Mulliken populations on each atom,

and represent the total density of the system as a superposition of Gaussian distributions

on each atom properly weighted by the Mulliken population. The width of the Gaussian

is chosen to be consistent with CNDO parameters26. The electrostatic interaction between

the charge distribution and the dielectrics and gates are then calculated and a Hartree like

term is included in the Hamiltonian and the set of equations are solved selfconsistently. The

resulting selfconsistent EHT model is closely related to the work of Ref.26, and a detailed

description of the model will be presented elsewhere27.

In order to adjust the charge transfer between the CNT and the Li electrodes we add

the term δǫS to the Li parameters. With an appropriate adjusted value of δǫ the carbon

nanotube becomes n-type doped. We adjust the value such that the average charge transfer

from Li to the nanotube at selfconsistency is 0.002 e per carbon atom in the electrode. The

Fermi energy is located at −4.29 eV, which is 0.07 eV below the conduction band of the

CNT(8,4).

In the following we fix VGate−A = −2.0 eV and vary the Gate-B potentials in the range

[−2 eV, 4 eV]. Note that we report the gate potentials as an external potential on the

electrons, and to translate the values into a gate potential of unit Volts the values must be

divided with −e.

In the left part of Fig. 7 we present the total selfconsistent potential induced by the three

17

gates on the carbon atoms in the CNT over the full extension of the device. The electrostatic

potential is shown with two similar curves displaced relative to each other with the energy

of the valence band and conduction band edge, respectively. In this way the curves not only

represent the electrostatic potential of the device, but also the position of the valence and

conduction band edges.

Along with this, in the right part of Fig. 7, we show the corresponding transmission

spectrum T (E), for four gate potentials VGate−B = −2.0 eV, 1.0 eV, 2.0 eV, and 4.0 eV.

−5

−4

−3

Vg=−2.0V
Vg=1.0V
Vg=2.0V
Vg=4.0V

10−4 10−3 10−2 10−1 10 0 10 1-5.5

-4.5

-3.5

0 2 6 8 10 124
T (E)Channel length [nm]

E
ne

rg
y

[e
V

]

FIG. 7: (Color online) Left panel: Representation of the electrostatic induced shift of the valence

and conduction band edges along the length of the device. Right panel: The transmission spectrum

for gate potentials VGate−B = −2.0 eV, 1.0 eV, 2.0 eV and 4.0 eV. The dotted line shows the position

of the Fermi level, and the solid line shows the transmission coefficient for an ideal (8,4) CNT.

From Fig. 7 we see how the bands are shifted upwards by an increasing amount as the

Gate-B potential is turned up. To begin with, e.g., for VGate−B = 1 eV, this results in

lower conduction since the conduction band bends away from the Fermi level and the Fermi

energy electrons need to tunnel through the central region. When the gate voltage is at

VGate−B = 2 eV the valence band almost reaches the conduction band in which case BTB

tunneling becomes possible. By increasing the gate voltage further more bands become

available for BTB tunneling and the effect is visible as a steady increase in the calculated

transmission T (E) just above the Fermi level.

The results for the Fermi level transmission, T (EF), corresponding to the T = 0 K unit

conduction G0, are displayed with the black curve in Fig. 8. It shows an initial conductance

for VGate−B = −2.0 V of the order of one, a subsequent drop by four orders of magnitude

18

0

10−4

10−3

10−2

10−1

10 0

10 1

-2 -1 1 2 3

T = 0K
T = 300K

4
Gate potential [eV]

C
on

du
ct

io
n

[G
0
]

FIG. 8: (Color online) Conduction in units of the conductance quantum G0 as a function of the

Gate-A potential. In the calculations we use a dielectric constant of 4, VGate−A = −2.0 eV, and

vary VGate−B from −2.0 eV to 4.0 eV as indicated.

around VGate−B = 2.0 V, and a final increase of one order of magnitude towards VGate−B =

4.0 V. We also display the results for the room temperature T = 300 K conductance(red

curve), which can be obtained from

G =

∫
dE T (E)

e(E−EF)/kBT

(1 + e(E−EF)/kBT)2
. (27)

The two conduction curves are similar, showing that the device is operating in the tunneling

regime rather than the thermal emission regime.

We next briefly comment on the comparison of the simulation with the experiment of

Appenzeller et al.20. In both cases the conduction curves have two branches, which we denote

Field Emission (FE) and Band to Band Tunneling (BTB). Initially, the conduction decreases

with applied gate potential due to the formation of a barrier in the central region, this is the

FE regime. For larger biases the conduction increases again due to BTB tunneling, this is

the BTB regime. The experimental device display thermal emission conduction and shows

a corresponding subthreshold slope, S, of kBT ln(10)/e ≈ 60 mV/dec in the FE regime.

The theoretical device, on the other hand, display tunneling conduction and has S ≈ 500

mV/dec in the FE regime. In the BTB regime, the theoretical device has S ≈ 2000 mV/dec,

while the experimental device show S ≈ 40 mV/dec.

The very different behaviour is due to the short channel length of the theoretical device.

The central barrier has a length of ≈ 5 nm, and at this length the electron can still tunnel

through the barrier. We see that the short channel length not only affects the subthreshold

slope of the FE regime, but also strongly influence the BTB regime. Work are in progress

19

T
(E

)

Energy [eV]

T (standard/dgeev)
T̃ (This work)
|T̃ − T |

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

10 0

10 1

-5.5 -5 -4.5 -4 -3.5

FIG. 9: (Color online) Error (absolute) in the calculated total transmission coefficients |T̃ − T | as

a function of energy E for the VGate−B = 2 V case.

for a parallel implementation of the methodology, which will make it feasible to simulate

larger systems, and thereby investigate the transition from the tunnelling to the thermal

emission regime.

All the above results have been calculated with the modified WFM method using pa-

rameters λmin = 0.1 and l = 1. Thus, the results presents a non trivial application of the

new method. To verify the transmission results in Fig. 9 we present a comparison with

the standard WFM method in Fig. 7. The figure shows that the transmissions curves are

identical to about three significant digits. The CPU time required for calculating a com-

plete transmission spectrum for Fig. 8 is (∼ 3 hours), while the corresponding calculation

presented in Fig. 9 with the standard WFM method took (∼ 35 hours). Thus, the overall

time saving achieved with the new method was therefore more than an order of magnitude.

The results in Table I indicates that similar timesavings can be expected for other systems

with non trivial electrodes.

V. SUMMARY

We have developed an efficient approach for calculating quantum transport in nano-scale

systems based on the WFM scheme originally proposed by Ando in reference [16]. In the

standard implementation of the WFM method for two-probe systems, all bulk modes of

the electrodes are required in order to represent the transmitted and reflected waves in a

complete basis. By extending the central region of two-probe system with extra electrode

20

principal layers, we are able to exclude the vast majority of the evanescent bulk modes

from the calculation altogether. Our final algorithm is therefore highly efficient, and most

importantly, errors and accuracy can be closely monitored.

We have applied the developed WFM algorithm to a CNFET in order to study the

mechanisms of band-to-band tunneling. The setup was inspired by reference [20], and the

calculation display features also observed in the experiment, however, due to the short chan-

nel length the theoretical device operates in the tunneling regime, while the experimental

device operates in the thermal emission regime.

By measuring the CPU-times for calculating transmission spectra of the CNFET two-

probe system and comparing to cost of the standard WFM method we have observed a

speed-up by more than a factor of 10. We see similar speedup for other non-trivial systems.

We therefore believe that this is an ideal method to be used with ab initio transport schemes

for large-scale simulations.

Acknowledgments

This work was supported by the Danish Council for Strategic Research (NABIIT) under

grant number 2106–04–0017, “Parallel Algorithms for Computational Nano–Science”.

∗ Electronic address: hhs@imm.dtu.dk

1 S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, Cambridge,

UK, 2005).

2 M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401

(2002).

3 M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207 (1985).

4 Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).

5 M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Science 278, 252 (1997).

6 S. V. Faleev, F. Léonard, D. A. Stewart, and M. van Schilfgaarde, Phys. Rev. B 71, 195422

(2005).

7 P. Pomorski, C. Roland, and H. Guo, Phys. Rev. B 70, 115408 (2004).

21

8 H. S. Gokturk, in Nanotechnology, 2005. 5th IEEE Conference on (2005), vol. 2, pp. 677–680.

9 M. Stilling, K. Stokbro, and K. Flensberg, in NSTI Nanotech 2006 Technical Proceedings (2006),

vol. 3, p. 39.

10 A. Nitzan and M. A. Ratner, Science 300, 1384 (2003).

11 M. Di Ventra, S. T. Pantelides, and N. D. Lang, Phys. Rev. Lett. 84, 979 (2000).

12 K. Stokbro, J.-L. Mozos, P. Ordejon, M. Brandbyge, and J. Taylor, Comp. Mat. Sci. 27, 151

(2003).

13 N. D. Lang and P. Avouris, Phys. Rev. Lett. 84, 358 (2000).

14 B. Larade, J. Taylor, H. Mehrez, and H. Guo, Phys. Rev. B 64, 075420 (2001).

15 P. A. Khomyakov and G. Brocks, Phys. Rev. B 70, 195402 (2004).

16 T. Ando, Phys. Rev. B 44, 8017 (1991).

17 P. A. Khomyakov, G. Brocks, V. Karpan, M. Zwierzycki, and P. J. Kelly, Phys. Rev. B 72,

035450 (pages 13) (2005).

18 G. Brocks, V. M. Karpan, P. J. Kelly, P. A. Khomyakov, I. Marushchenko, A. Starikov,

M. Talanana, I. Turek, K. Xia, P. X. Xu, et al., Ψk-Newsletter 80, 144 (2007), URL

http://www.psi-k.org/newsletters/News_80/newsletter_80.pdf.

19 H. H. B. S. rensen, P. C. Hansen, D. E. Petersen, S. Skelboe, and K. Stokbro, Physical Review B

(Condensed Matter and Materials Physics) 77, 155301 (pages 12) (2008), URL http://link.

aps.org/abstract/PRB/v77/e155301.

20 J. Appenzeller, Y.-M. Lin, J. Knoch, and P. Avouris, Phys. Rev. Lett. 93, 196805 (2004).

21 N. W. Ashcroft and D. N. Mermin, Solid State Physics (Brooks Cole, 1976).

22 F. Guinea, C. Tejedor, F. Flores, and E. Louis, Phys. Rev. B 28, 4397 (1983).

23 M. P. Lopez Sancho, J. M. Lopez Sancho, J. M. L. Sancho, and J. Rubio, J. Phys. F. 15, 851

(1985).

24 P. S. Krstić, X.-G. Zhang, and W. H. Butler, Phys. Rev. B 66, 205319 (2002).

25 R. Hoffmann, The Journal of Chemical Physics 39, 1397 (1963), URL http://link.aip.org/

link/?JCP/39/1397/1.

26 F. Zahid, M. Paulsson, E. Polizzi, A. W. Ghosh, L. Siddiqui, and S. Datta, J. of Chem. Phys.

123, 064707 (2005).

27 K. Stokbro and et al., unpublished.

28 D. S. Fisher and P. A. Lee, Phys. Rev. B 23, 6851 (1981).

22

29 Bloch’s theorem21 ψi = λkψi−1 for the ideal electrodes defines the phase factors λk ≡ eıqkd,

where qk is the complex wave number and d is the layer thickness, which are referred to as

Bloch factors throughout this paper.

30 When using the Landauer formula in Eq. (1) it is assumed that the electrode Bloch modes

carry unit current in the conduction direction. This can be conveniently accommodated by flux-

normalizing the Bloch modes, i.e., φ±
L,k → (dL/v±L,k)

1
2φ±

L,k, in the case of the left electrode.28

31 We should point out that the metallic electrodes in the two-probe systems considered in Table I

can be fully described by much smaller unit cells than indicated (often only a few atoms are

needed) and therefore the time spend on computing the bulk modes can be vastly reduced in

these specific cases. For a general method, however, which supports CNTs, nano wires, etc. as

electrodes, the timings are appropriate for showing the overall trend in the computational costs.

23

References

[1] Dan Erik Petersen, Hans Henrik B. Sørensen, Per Christian Hansen, Stig
Skelboe, and Kurt Stokbro. Block tridiagonal matrix inversion and fast
transmission calculations. Journal of Computational Physics, 2007. 2, 3, 34,
58, 133, 134, 138, 146, 162, 163, 165

[2] Hans Henrik B. Sørensen, Per Christian Hansen, Dan Erik Petersen, Stig
Skelboe, and Kurt Stokbro. Krylov subspace method for evaluating the
self-energy matrices in electron transport calculations. Physical Review B,
77:155301, 2008. 2, 29, 183

[3] Hans Henrik B. Sørensen, Dan Erik Petersen, Per Christian Hansen, Stig
Skelboe, and Kurt Stokbro. Efficient wave function matching approach
for quantum transport calculations. arXiv, (0804.4306v1), 2008. 2, 197

[4] Dan Erik Petersen, Song Li, Eric Darve, Per Christian Hansen, Stig Skel-
boe, and Kurt Stokbro. A hybrid method for the parallel calculation of the
green’s function matrix. in preparation, 2008. 2, 34

[5] P.J. Knowles and N.C. Handy. A new determinant-based full configura-
tion interaction method. Chemical Physics Letters, 111:315–321, 1984. 11

[6] Gian Luigi Bendazzoli and Stefano Evangelisti. A vector and paral-
lel full configuration interaction algorithm. Journal of Chemical Physics,
98(4):3141–3150, 1993. 11

[7] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Physical Review,
136:864–871, 1964. 12, 13, 16

[8] N. David Mermin. Thermal properties of the inhomogeneous electron
gas. Physical Review, 137(5A):1441–1443, 1965. 13

221

REFERENCES

[9] M. Levy. Universal variational functionals of electron densities, first-
order density matrices, and natural spin-orbitals and solution of the n-
representability problem. Proceedings of the National Academy of Sciences of
the United States of America, 76(12):6062–6065, 1979. 13, 16

[10] M. Levy. Electron densities in search of hamiltonians. Physical Review A,
26(3):1200–1208, 1982. 13, 16

[11] A. Shimony and H. Feshbach, editors. Physics as Natural Philosophy. MIT
Press, Cambridge, 1982. 13, 16

[12] E. Lieb. Density functionals for coulomb systems. International Journal of
Quantum Chemistry, 24:243–277, 1983. 13, 16

[13] R.M. Dreizler and J. da Providencia, editors. Density Functional Methods in
Physics. Plenum, New York, 1985. 13, 16

[14] R.O. Jones and O. Gunnarsson. The density functional formalism, its ap-
plications and prospects. Reviews of Modern Physics, 61(3):689–746, 1989.
13, 15, 17

[15] W. Kohn and L.J. Sham. Self-consistent equations including exchange and
correlation effects. Physical Review, 140(4A):1133–1138, 1965. 15, 17

[16] W. Kohn. Density functional and density matrix method scaling linearly
with the number of atoms. Physical Review Letters, 76(17):3168–3171, 1996.
16, 21

[17] E. Prodan and W. Kohn. Nearsightedness of electronic matter. Pro-
ceedings of the National Academy of Sciences of the United States of America,
102(33):11635–11638, 2005. 16, 21

[18] A.D. Becke. A new mixing of hartree-fock and local density-functional
theories. Journal of Chemical Physics, 98:1372–1377, 1993. 17

[19] Stefan Kurth, John P. Perdew, and Peter Blaha. Molecular and solid-state
tests of density functional approximations: Lsd, ggas, and meta-ggas. In-
ternational Journal of Quantum Chemistry, 75:889–909, 1999. 17

[20] G. Kresse and J. Furthmüller. Efficiency of ab-initio total energy calcula-
tions for metals and semiconductors using a plane-wave basis set. Com-
putational Materials Science, 6:15–50, 1996. 23

222

REFERENCES

[21] Kurt Stokbro, J. Taylor, M. Brandbyge, and H. Guo. Ab-initio non-
equilibrium green’s function formalism for calculating electron transport
in molecular devices. Lect. Notes Phys.: Intro. Mol. Electronics, 2005. 23, 29

[22] Supriyo Datta. Quantum transport: atom to transistor. Cambridge Univer-
sity Press, 2005. 24, 32

[23] R. Landauer. Spatial variation of currents and fields due to localized scat-
terers in metallic conduction. IBM Journal of Research and Development,
1(3):223, 1957. 25

[24] M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas. Generalized many-
channel conductance formula with application to small rings. Physical
Review B, 31(10):6207–6215, 1985. 25

[25] M.P. López-Sancho, J.M. López-Sancho, J.M.L. Sancho, and J. Rubio.
Highly convergent schemes for the calculation of bulk and surface green
functions. Journal of Physics F: Metal Physics, 15:851–858, 1985. 29

[26] M. Brandbyge, J.L. Mozos, P. Ordejón, J. Taylor, and Kurt Stokbro.
Density-functional method for nonequilibrium electron transport. Physi-
cal Review B, 65:165401, 2002. 31

[27] Kurt Stokbro, J. Taylor, M. Brandbyge, J.L. Mozos, and P. Ordejón. The-
oretical study of the nonlinear conductance of di-thiol benzene coupled
to au(111) surfaces via thiol and thiolate bonds. Computational Materials
Science, 27:151–160, 2003. 33

[28] Kurt Stokbro, J. Taylor, and M. Brandbyge. Do aviram-ratner diodes rec-
tify? Journal of the American Chemical Society, 125:3674–3675, 2003. 33

[29] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns
Hopkins University Press, second edition edition, 1989. 67, 136

[30] John von Neumann. First draft of a report on the edvac. Technical report,
Moore School of Electrical Engineering, University of Pennsylvania, 1945.
69

[31] Barry Wilkinson and Michael Allen. Parallel programming: techniques and
applications using networked workstations and parallel computers. Prentice-
Hall, 1999. 78

223

REFERENCES

[32] Walter Gander and Gene Golub. Cyclic reduction — history and appli-
cations. In Scientific Computing: Proceedings of the Workshop 10-12 March,
1997, pages 73–85, 1997. 83, 85, 97, 109, 135

[33] Don Heller. Some aspects of the cyclic reduction algorithm for block tridi-
agonal linear systems. SIAM Journal on Numerical Analysis, 13(4):484–496,
1976. 85, 109

[34] O. Buneman. A compact non-iterative poisson solver. Technical report,
Stanford Univ. Institute for Plasma Research, 1969. 109

[35] B.L. Buzbee, G.H. Golub, and C.W. Nielson. On direct methods for solv-
ing poisson’s equations. SIAM Journal on Numerical Analysis, 7(627-656),
1970. 109

[36] J. Lambiotte and R. Voigt. The solution of tridiagonal linear systems on
the cdc star100 computer. ACM Transactions on Mathematical Software,
1:308–329, 1975. 109

[37] H.S. Stone. Parallel tridiagonal equation solvers. ACM Transactions on
Mathematical Software, 1:289–307, 1975. 109

[38] Paul N. Swarztrauber. A parallel algorithm for solving general tridiagonal
equations. Mathematics of Computation, 33(145):185–199, 1979. 109

[39] Plamen Yalamov and Velisar Pavlov. Stability of the block cyclic reduc-
tion. Linear Algebra and its Applications, 249:341–358, 1996. 109

[40] J. Appenzeller, Y.-M. Lin, J. Knoch, and Ph. Avouris. Band-to-band tun-
neling in carbon nanotube field-effect transistors. Physical Review Letters,
93(19):196805, 2004. 161

[41] P. Arbenz and M Hegland. The stable parallel solution of general banded
linear systems. Technical Report 252, Computer Science Department at
ETH Zürich, 1996.

[42] R.W. Hockney. A fast direct solution of poisson’s equation using fourier
analysis. Journal of the Association for Computing Machinery, 8:95–113, 1965.

[43] H.S. Stone. An efficient parallel algorithm for the solution of a tridiag-
onal linear system of equations. Journal of the Association for Computing
Machinery, 20:27–38, 1973.

224

REFERENCES

[44] Paul N. Swarztrauber. A direct method for the discrete solution of separa-
ble elliptic equations. SIAM Journal on Numerical Analysis, 11:1136–1150,
1974.

[45] Elena M. Godfrin. A method to compute the inverse of an n-block tridiag-
onal quasi-hermitian matrix. Journal of Physics: Condensed Matter, 3:7843–
7848, 1991.

[46] Hartmut Haug and Antti-Pekka Jauho. Quantum Kinetics in Transport and
Optics of Semiconductors. Springer, 2008.

[47] D.S. Fisher and P.A. Lee. Relation between conductivity and transmission
matrix. Physical Review B, 23(12):6851–6854, 1981.

[48] Iain S. Duff and Henk A. van der Vorst. Developments and trends in the
paralle solution of linear systems. Parallel Computing, 25:1931–1970, 1999.

[49] R.G. Parr and W. Yang. Density-Functional Theory of Atoms and Molecules.
Oxford University Press, 1989.

[50] Attila Szabo and Neil S. Ostlund. Modern Quantum Chemistry: Introduction
to Advanced Electronic Structure Theory. Dover Publications, 1996.

[51] Richard M. Martin. Electronic structure: basic theory and practical methods.
Cambridge University Press, 2004.

225

	1 Introduction
	1.1 Life, the Universe and Everything
	1.2 Overview

	2 Theory
	2.1 Theoretical Background
	2.1.1 Basic Equations
	2.1.2 Born--Oppenheimer Approximation
	2.1.3 The Schrödinger Equation
	2.1.4 The Pauli Exclusion Principle
	2.1.5 The Many--Body Wavefunction

	2.2 Density Functional Theory
	2.2.1 Hohenberg--Kohn Theorem
	2.2.2 Extension to the Degenerate Case
	2.2.3 Kohn--Sham Approach

	2.3 Solving The Kohn--Sham Equations
	2.3.1 Basis Sets
	2.3.2 Calculating the Hamiltonian
	2.3.3 Calculating the Effective Potential

	2.4 Electron Transport
	2.4.1 Classical Transmission
	2.4.2 The Landauer--Büttiker Picture
	2.4.3 Non--Equilibrium Green's Function Formalism
	2.4.4 Making the Infinite Finite

	2.5 Computational Approach
	2.6 The Block Tridiagonal Matrix
	2.6.1 Structure
	2.6.2 Properties

	2.7 Mathematical Notation
	2.7.1 The Block Matrix Class
	2.7.2 Extracting a Block Tridiagonal Part
	2.7.3 Extracting a Block Diagonal Part
	2.7.4 Extracting a Sub--block
	2.7.5 Augmented Matrix
	2.7.6 Operation Count
	2.7.7 Block Elements vs. Scalar Elements

	2.8 Pseudocode Notation
	2.8.1 Calling and Arguments
	2.8.2 Assignment
	2.8.3 Arrays
	2.8.4 Loops
	2.8.5 Returning Values
	2.8.6 Process Count and Identification
	2.8.7 Parallel Communication
	2.8.8 Ownership and Distribution
	2.8.9 Inverse Blocks

	3 Serial Algorithms
	3.1 Block Gaussian Elimination
	3.1.1 Description
	3.1.2 Algorithm
	3.1.3 Complexity Analysis

	3.2 Sweep
	3.2.1 Description
	3.2.2 Algorithm
	3.2.3 Complexity Analysis

	4 Parallel Algorithms
	4.1 Parallel Computing
	4.1.1 Hardware Model
	4.1.2 Memory Model and Data Distribution
	4.1.3 An Example Distribution
	4.1.4 Some Assumptions

	4.2 Parallel Sweep
	4.2.1 Description
	4.2.2 Algorithm
	4.2.3 Complexity

	4.3 Block Cyclic Reduction
	4.3.1 Description
	4.3.2 Algorithm
	4.3.3 Complexity
	4.3.4 Stability

	4.4 Hybrid Method
	4.4.1 Description
	4.4.2 Algorithm
	4.4.3 Complexity

	5 Benchmarking
	5.1 Benchmarking Serial Algorithms
	5.2 Benchmarking Parallel Algorithms
	5.2.1 Load Balancing
	5.2.2 Implementation
	5.2.3 Results
	5.2.4 Remarks

	6 Conclusion
	6.1 Results
	6.2 Transmission
	6.3 Future Work

	A Article: Block Tridiagonal Matrix Inversion and Fast Transmission Calculations
	B Article: Krylov subspace method for evaluating the self-energy matrices in electron transport calculations
	C Article: Efficient Wave Function Matching Approach for Quantum Transport Calculations
	References

