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Quantification of structure from medical images 
Ph.D. Thesis  

Arish Asif Qazi 

Abstract 
  

In this thesis, we present automated methods that quantify information from 
medical images; information that is intended to assist and enable clinicians 
gain a better understanding of the underlying pathology. The first part of the 
thesis presents methods that analyse the articular cartilage, segmented from 
MR images of the knee. The cartilage tissue is considered to be a key 
determinant in the onset of Osteoarthritis (OA), a degenerative joint disease, 
with no known cure. The primary obstacle has been the dependence on 
radiography as the ‘gold standard’ for detecting the manifestation of cartilage 
changes. This is an indirect assessment, since the cartilage is not visible on x-
rays. We propose Cartilage Homogeneity, quantified from MR images, as a 
marker for detection of the early biochemical alterations in the articular 
cartilage. We show that homogeneity provides accuracy, sensitivity, and 
information beyond that of traditional morphometric measures.  

The thesis also proposes a fully automatic and generic statistical framework 
for identifying biologically interpretable regions of difference (ROD) between 
two groups of biological objects, attributed by anatomical differences or 
changes relating to pathology, without a priori knowledge about the location, 
extent, or topology of the ROD. Based on quantifications from both 
morphometric and textural based imaging markers, our method has identified 
the most pathological regions in the articular cartilage. 

The remaining part of the thesis presents methods based on diffusion tensor 
imaging, a technique widely used for analysis of the white matter of the 
central nervous system in the living human brain. An inherent drawback of 
the traditional diffusion tensor model is its limited ability to provide detailed 
information about multi-directional fiber architecture within a voxel. This 
leads to erroneous fiber tractography results in locations where fiber bundles 
cross each other. We present a novel tractography technique, which 
successfully traces through regions of crossing fibers. Detection of crossing 
white matter pathways can improve neurosurgical visualization of 
functionally relevant white matter areas. We also present preliminary results 
of analysing the meshwork of the collagen fibers in the articular cartilage by 
high-resolution diffusion tensor imaging. 

Keywords—Osteoarthritis, Imaging Biomarkers, Knee Cartilage, Diffusion  
Tensor Imaging, Crossing Fibers, Brain. 
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Introduction 
 

maging has evolved to become an essential component of clinical research 
and practice. The purpose of medical imaging is to provide clinicians, such 
as radiologists, the ability to non-invasively see the underlying anatomy 

and physiology of (or parts of) the human body with the aim of facilitating 
clinical decision making. During the past century the field of medical imaging 
has advanced from the conventional 2D X-Rays to a variety of complex 3D 
imaging techniques such as, PET, MRI, CT, and microscopy. The imaging 
technology market worth at $7.7 billion in the United States, in 2007, is 
expected to rise to $11.4 billion in 2011 (BCC Research). With the increasing 
aging population in the western world the figures will continue to rise. 

The goal of medical image processing and analysis is to develop techniques 
that assist the clinician in both qualitative and quantitative interpretation of 
the useful information present in the image. The upsurge in development of 
cost effective imaging machinery has led to immense amount of data 
generation. Thus, the demand for automated methods for analysis and 
processing of the images is increasing; new and better techniques for 
quantitative analysis of the images are emerging.  

This thesis presents methods for both qualitative and quantitative analysis of 
medical images, with a focus on magnetic resonance (MR) images. The thesis 
is divided in two parts; the first part presents methods that aim to analyse the 
articular cartilage from MR images of the knee. The degeneration of the 
cartilage is a hallmark process in Osteoarthritis (OA), which is a joint disease. 
The second part of the thesis presents methods that aim to reconstruct and 
analyse using diffusion tensor imaging: (1) the complex orientation of major 
fiber pathways in the white-matter of the brain; and (2) the orientation of 
collagen fibers in the articular cartilage. 

Chapter 

1  

I 
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This thesis is based on research papers which have either been accepted or are 
currently in review. Only a subset of papers are selected for which the author 
of the thesis is the primary author. Each part of the thesis starts with an 
introduction to the contents along with the background information, which is 
followed by the relevant research papers, each assembled as a separate 
chapter with its own introduction.  

1.1 Purpose 

OA is a disease characterized by degeneration of the articular cartilage. There 
is no well documented cure for OA and current treatments are directed 
towards relief of symptoms. One of the primary reasons is that the disease is 
diagnosed relatively late in its course. This is due to the lack of a non-
invasive, accurate, and reproducible technique for measuring progression of 
OA. The purpose of the project, described in first part of the thesis, was to 
devise new imaging based markers, from already segmented articular 
cartilage, that are able to monitor progression of OA and offer a reliable 
detection of early OA. Moving a step forward, the next phase of the project 
was development of methods that aim at finding the most pathological 
regions in the articular cartilage. 

Diffusion MRI is a recent technique that can measure the random thermal 
motion of water molecules in a tissue. Diffusion Tensor (reconstructed from 
diffusion-weighted MR images) Imaging is a widely used technique to 
analyse the structure of white matter fiber bundles in the brain. A 
fundamental drawback of the traditional diffusion tensor model is that fiber 
crossings in the brain cannot be modelled, and which results in erroneous 
fiber tracts. Therefore, the purpose was to develop methods that could 
robustly reconstruct white matter fiber pathways in regions of crossing fibers. 

1.2 Contributions and Outline 

One of the main contributions of the thesis is proposing an imaging marker, 
“Cartilage Homogeneity”, quantified from the cartilage texture, as visualized 
by MRI. Cartilage homogeneity relates to early biochemical and structural 
changes undergoing in the cartilage and thereby is able to reliably detect early 
OA. For this purpose, an initial investigation of various textural measures, 
quantified from the cartilage, was also carried out. Results evaluating 
cartilage homogeneity as a possible imaging marker for OA are presented in 
Chapters 3 - 5. 

A novel and generic framework for finding the regions of most pathological 
changes in a biological object is presented. Preliminary experiments have been 
carried out on the articular cartilage. Initial results are discussed in Chapters 6 
– 7, and the framework is presented in Chapter 8. 
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A new multi-tensor tractography method for reconstruction of white matter 
fiber pathways is proposed and discussed in Chapter 10. The method is able 
to reconstruct fibers crossings in the corticospinal tract region of the brain. 
The method has been implemented to be an integral feature of the open 
source toolkit, TEEM (Kindlmann, 2007). 

Preliminary results on the investigation of the articular cartilage structure by 
high-resolution diffusion tensor imaging are presented in Chapter 11. 

The clinical data from the knee consists of various MR imaging modalities. 
The fused information from the various modalities combined with the 
developed methods may reveal new findings about the pathology of the 
disease. A first step in this direction is alignment of the data to one coordinate 
system. For this purpose an Affine/Rigid registration toolkit was developed. 
It should be noted here that due to a change in the direction of the Ph.D. 
research the fusion project was left as future work, but nonetheless the 
developed toolkit is available for online download (Qazi, 2007) and is 
currently being utilized by various researchers. 
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Osteoarthritis: Imaging and Biomarkers 
 

 

art I of the thesis consists of research papers that focus on two different, 
but interdependent avenues. The first three Chapters (3 - 5) are 
dedicated to investigating cartilage texture, from MRI, as a marker for 

evaluating progression of OA. Chapters 6 - 8 discuss methods that aim to find 
the most pathological regions in the articular cartilage, which lead to a 
maximum discrimination between two groups of OA subjects.  

This Chapter serves as an introduction to the background information, such 
as: quantification, imaging, and biomarkers of OA. 

2.1 Osteoarthritis (OA) 

OA is a chronic disease of the joints; in fact it is the most common joint 
disorder. It is the second leading cause of disability in the United States, 
affecting the lives of more than 20 million Americans (Lawrence et al., 2008), 
with an estimated economic cost of $65 billion annually (Burstein et al., 2000). 
Currently, there is no known cure for OA and the treatments are directed 
towards relief of symptoms. The prevalence of OA increases with age, and 
thus with an increase in longevity the impact of the disease is also expected to 
go up. Potential risk factors of OA have been identified to be systemic factors, 
such as increasing age, gender (high incidence of OA in women), and 
genetics, or biomechanical factors, such as obesity, occupational activity, and 
joint injury (Felson et al., 2000). 

Although the pathology of OA is well documented the etiology of the disease 
is a controversial subject. OA is generally seen as a disease characterized by 
degeneration of the articular cartilage or abnormality of the subchondral bone  

Chapter 

2  

P 
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Figure 2.2: The right human knee joint. (a) Shown from the front. (b) Saggital view.
(Reproduced from, Anatomy of the Human Body, by Henry Gray, 20th ed; Fig. 347. and Fig. 350). 

Figure 2.1: Bovine knee sample acquired from a local abattoir. (a) The knee joint: exposing the
femoral and patellar cartilages (b) Femoral cartilage. We can see that the cartilage surface has a
glass-like appearance, providing a smooth, elastic, friction-bearing surface that can bear
enormous loads. 
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(Creamer and Hochberg, 1997). The methods presented in this thesis focus on 
the articular cartilage only. 

Articular cartilage is a hyaline cartilage (60 - 80% of the total weight is water), 
with its nearly frictionless surface it is capable of resisting enormous loads 
and is able to distribute biomechanical forces across the bone surfaces. Figure 
2.1 shows an image of a bovine knee cartilage. Cartilage is an avascular and 
aneural tissue that is composed predominantly of an extracellular matrix. It is 
generally believed that the disruption of the extracellular matrix is the process 
that triggers OA (McCauley and Disler, 1998). Refer to Chapter 11 for more 
details on the composition and layout of the cartilage matrix. 

OA can occur in any joint, however, it is commonly found in weight-bearing 
joints, such as the knee and the hip. In this thesis the focus is on knee OA. 

 

 

Figure 2.3: A plain radiograph with manually outlined landmarks for measuring the JSW.  
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2.2 Knee Osteoarthritis 

The knee joint, shown in Figure 2.2, is the most common site affected by OA. 
The current accepted gold standard for monitoring knee cartilage 
degeneration is Arthroscopy (Ayral et al., 2005). Arthroscopy, however, is 
invasive and very expensive. Additionally, it does not allow visualization of 
internal cartilage structure and therefore is only limited to monitoring surface 
abnormalities. 

The most commonly used non-invasive imaging technique for monitoring 
progression of OA has been radiographs; however, recently MRI has emerged 
as a more promising technique. Both modalities are discussed in the following 
section. 

2.2.1 Imaging 

2.2.1.1 Radiography 

The most widely used imaging technique for assessment of OA is radiographs 
(Boegård and Jonsson, 1999). From radiographs, the joint space width (JSW), or 
the distance between the tibia and the femur bone is measured (the term joint 
space narrowing (JSN) is used to refer the longitudinal analysis of JSW). A plain 
radiograph is shown in Figure 2.3. 

The most widely used grading scale for OA is from radiographs and is 
referred to as the Kellgren and Lawrence (KL) index (Kellgren and Lawrence, 
1957). The scale varies from 0 – 4, where 0 is healthy and 4 is severe OA, and 
is determined by a radiologist who takes the appearances of JSN, osteophytes, 
sclerosis, and cysts into account. The grading scheme is listed in Table 2.1. 

An inherent problem with using radiographs is that they can only provide 
information about bone changes and not cartilage deformities, since the 
cartilage is not visible on radiographs. Therefore, JSN is an indirect evaluation 
of cartilage loss.  

Table 2.1: Kellgren and Lawrence Grading Scores 

Level  Remark  Definition 
0  Healthy  Healthy joint. 
1  Doubtful  Doubtful JSN and minute osteophytes. 
2  Minimal  Definite osteophytes and JSN. 
3  Moderate  Moderate diminution of joint space and 

some sclerosis. 
4  Severe  Joint space greatly impaired, severe 

sclerosis, and large osteophytes. 
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2.2.1.2 Magnetic Resonance Imaging 

In recent years, Magnetic Resonance Imaging (MRI) has emerged as a popular 
technique for imaging of the articular cartilage (Gold et al., 2006). Primarily, 
this is attributed to the superior soft tissue contrast provided by MRI, apart 
from no radiation or harmful side effects. Moreover, the technique is non-
invasive and allows direct high resolution visualizations of all the 
components of the joint, specifically the articular cartilage. The three-
dimensional information has led to development of methods that quantify 
morphological information from knee MRI, such as cartilage volume and 
cartilage thickness, for a review see (Eckstein et al., 2006). The following 
section will serve as a brief review of basic MRI principles, for more details 
refer to (Liang and Lauterbur, 1999). 

Basic Principles of MRI: A Brief Review 

MRI is based on the principles of Nuclear Magnetic Resonance (NMR) 
(Lauterbur, 1973). It measures spatial variations in the phase and frequency of 
radio frequency energy that is emitted and absorbed by an object. 

Protons and neutrons, in the nucleus of an atom, have an intrinsic angular 
momentum, called spin. A characteristic of the nuclei with an odd mass 
number is that they have spins in multiples of 1/ 2± . The charged nuclei with 
the spinning motion cause a magnetic dipole moment μ  in the direction of 
the spinning axis. The strength of the moment depends on the type of 
nucleus. There is an abundance of magnetic nuclei in the human body (H, C, 
Na, P, K). The most interesting nuclei for MRI is of hydrogen, since most of 

 

 

Figure 2.4: (a) A charged nuclei with a spin causes a magnetic moment μ . (b) When place in

an external magnetic field 0B , the spins precess around 0B with a frequency ω .  
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the body is constituent of water (or 2H O ), and hydrogen nuclei possess a 
strong magnetic moment. 

When placed in an external uniform magnetic field 0B  the magnetic moments 
tend to align with the magnetic field. The spins tend to align parallel or anti-
parallel to 0B , however, majority of the spins will be in the parallel state, or 
lower energy state, implying a net magnetization vector M along 0B . The 
spins are not exactly aligned with 0B  and due to this misalignment the nuclei 
experience a torque and precess around 0B  with frequency ω . The motion is 
similar to that of a spinning top, precessing or wobbling in the Earth’s 
gravitational field, as illustrated in Figure 2.4. The frequency ω  is also known 
as the Larmor frequency and is proportional to the strength of magnetic field 

0B  given as 

0Bω γ=  

where γ  is the constant of proportionality and is known as the gyromagnetic 
ratio. 

Next, a radio-frequency (RF) pulse 1B , at the characteristic Larmor frequency, 
is applied perpendicular to 0B , in the x-y traverse plane. The RF pulse excites 
the spins in the lower-energy state and causes a disruption in the equilibrium, 
thus there is an increase of nuclei in the anti-parallel state. This leads to a 
decrease in the longitudinal magnetization. This phenomenon is also known 
as magnetic resonance. 

Due to the application of 1B  the x-y components of the net magnetization 
vector M are made coherent and hence cause M to tilt away from 0B  into the 
x-y plane. Once the RF signal is removed, the nuclei realign themselves with 

0B  and thus, return to the equilibrium state. This process is known as 
relaxation. During relaxation the nuclei loose energy by emitting an RF signal, 
also known as the free-induction decay (FID) response signal. The FID signal is 
measured by a conductive coil place around the object being imaged. This 
measurement is processed and reconstructed to form a 3D MR image. 

The relaxation process is controlled by two important parameters, the 
relaxation times, 1T  and 2T . 1T  relaxation time is the time taken for magnetic 
moments of the displaced nuclei to return to equilibrium (realign with 0B ), 
leading to a gradual increase in longitudinal magnetization. This is also 
referred to as spin-lattice relaxation. 2T , also known as the spin-spin 
relaxation, measures the time required for the x-y component of the 
magnetization to decay leading to a decrease in traverse magnetization.  
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During the image acquisition the RF pulse 1B  is repeated at a pre-determined 
rate. The amount of time that exists between successive excitation pulses is 
known as the repetition time TR. The FID response signal can be measured at 
different times between the TR intervals. The time interval between the RF 
pulse and measurement of the FID signal is known as the echo time TE. 

The contrast in MR images is controlled by adjusting TR and TE for different 
tissue types (Rinck, 2001). This feature of MR makes it a very powerful 
imaging technique. Short TR and TE results in T1-weighted images while long 
TR and TE leads to T2-weighted images. Figure 2.5 shows a slice acquired 
from MR images of the knee and the brain. 

2.2.1.3 MR Appearance of Healthy Articular Cartilage 

The appearance of the articular cartilage depends on the type of MR sequence. 
Cartilage has high signal intensity relative to joint fluid and subchondral bone 
on T1-weighted images, while on T2-weighted images, cartilage has a low 
signal intensity when compared to the joint fluid and subchondral bone 
(Loeuille et al., 1998).  

With low-spatial resolution imaging the cartilage appears as a single 
homogenous layer. On high resolution images, acquired using high-field 
scanners, however, a laminar pattern of signal intensity can be seen (Jeffrey 
and Watt, 2003; Loeuille et al., 1998; McCauley and Disler, 1998). It was 
previously thought that this appearance was due to the different 
concentrations of water and proteoglycans throughout the articular cartilage, 
however, more recently this appearance has been attributed to the alignment 
of the collagen fibers in the cartilage (Burstein et al., 2000). It is a general 
consensus that this difference in contrast is because of the variations in 2T  
across the cartilage, and which arises because of the ‘magic angle’ effect 

 

 

Figure 2.5: Saggital slice from MR images of the (a) Knee, T1-weighted. (b) Brain, T2-weighted. 
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(Erickson et al., 1993). This effect is due to the anisotropic orientation of the 
collagen fibers, which lead to an increased 2T  when the fibers are at a 55  
angle with respect the main magnetic field. 

2.2.2 Biomarkers  

OA is a slowly progressed, chronic disease with no known cure. While the 
etiology of OA is still controversial it is a general consensus that OA is 
characterized by progressive destruction of the cartilage tissue and the 
subchondral bone. Research is on-going to discover drugs that could slow 
down this process. These drugs are referred to as disease modifying 
osteoarthritis drugs (DMOADS) (Abadie et al., 2004). However, to date no 
DMOADS have been discovered that are able to reverse the pathogenesis of 
OA. 

Biomarkers are used to indicate or measure a particular state of a biological 
process. To test the efficacy of a certain drug biomarkers that are sensitive to 
the outcome of the disease are needed. Current diagnosis of OA relies on 
clinical history and radiography. These techniques, however, rely on cartilage 
loss. Degeneration of the articular cartilage is an irreversible process because 
the cartilage has limited capacity to regenerate or repair itself (McCauley and 
Disler, 1998). Therefore, using radiographic outcome variables for clinical 
trials of potential DMOADS might not be feasible because they are insensitive 
to detection of early biological changes undergoing in the cartilage. By the 
time the first changes in radiological OA are detected, on average 13% of the 
cartilage has already degenerated (Jones et al., 2004). Additionally, 
radiographic changes are slow and typically last 2 - 3 years (Jones et al., 2004), 
resulting in expensive clinical trials. 

Therefore, sensitive clinical diagnostic biomarkers of cartilage degradation are 
needed. Markers that are able to target early OA would be able to identify 

 

Figure 2.6: Model of OA progression in the cartilage and the bone. The figure highlights the
different stages of the disease. Reproduced with permission from (Qvist et al., 2008). 
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individuals at high risk and predict response to early interventions. 
Biochemical markers such as CTX-I (bone turnover) and CTX-II (cartilage 
turnover) have been developed (Schaller et al., 2005), however, in this thesis 
we will only focus on imaging markers, quantified from MRI. 

Recently, MRI is widely being used to image the knee joint, and quantitative 
morphological measurements from MRI are being evaluated as a surrogate 
end point. OA is a complex, evolutionary disease and the pathogenesis of OA 
may be represented by the model proposed in (Qvist et al., 2008), shown in 
Figure 2.5. Current imaging markers from MRI such as Cartilage Volume and 
Cartilage Thickness focus on cartilage loss, which is directed to the late stages 
of the disease, as shown in Figure 2.5. However, as MRI research unfolds new 
parameters are emerging that aim to quantify early biochemical and 
physiological changes undergoing in the articular cartilage. Some of these 
include quantitative assessment of water and collagen concentration by MRI 

2T  relaxation time (Lüssea et al., 2000), concentration of glycosaminoglycan 
(GAG) molecules by delayed Gadolinium Enhanced MRI of the Cartilage 
(dGEMRIC) (Tiderius et al., 2003), analysis of cartilage structure by diffusion 
tensor imaging (DTI) (Filidoro et al., 2005), measurement of proteoglycan 
content by sodium MRI (Reddy et al., 1998). For more details, refer to 
excellent reviews by (Burstein, 2006; Burstein et al., 2000; Gold et al., 2006). 

In this thesis, the focus is to develop reliable imaging based markers of OA 
from MRI that focus on early detection and progression of the disease.  
Chapters 3 - 4 are dedicated to investing cartilage texture, quantified from 
existing segmentations of the articular cartilages from MRI, as a possible 
marker for early detection and progression of OA.  

When recruiting in clinical trials it is essential to be able to differentiate 
progressors of the disease from non-progressors. Currently both groups are 
included and this may result in loss of sensitivity to the measurement of 
disease progression. Thus, Chapter 5 looks at cartilage homogeneity as a 
possible marker for evaluating the progression in OA. Chapters 6 - 8 presents 
methods that based on an imaging marker, aim to find the most affected 
regions of the articular cartilage during the pathogenesis of OA. 
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Automatic Quantification of Cartilage 
Homogeneity 
Arish A. Qazi, Ole F. Olsen, Erik B. Dam, Jenny Folkesson, Paola Pettersen, and 

Claus Christiansen. In Proceedings of MICCAI, 2006. 

Abstract 

 steoarthritis (OA) is a degenerative joint disease that involves the 
wearing down of the articular cartilage. Typical setbacks have been 
quantifying progression and early detection of the disease. In this 

study, we develop a fully automatic method for investigating cartilage 
homogeneity as a potential maker for disease quantification. The method is 
evaluated on 114 manually and automatically segmented knee MR images 
from subjects with no, mild, or severe OA symptoms. To measure 
homogeneity we characterize the tibial and femoral compartments in each 
cartilage sheet by several statistical measures, and then evaluate their ability 
to quantify OA progression. This is done by statistically testing the 
discriminatory power of each measure in separating the groups of healthy 
subjects from those having OA. Our chosen measure outperforms a popular 
measure like cartilage volume in statistically discriminating the two groups. 
Through a scan-rescan evaluation, we show that the measure is reproducible.  
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3.1 Introduction 

The majority of the elderly population will at some point encounter 
osteoarthritis (OA) resulting in pain and reduced range of motion in mainly 
the knee and hip joints. For the worst cases, joint replacement surgery is even 
required. Currently, available treatments are directed towards relief of 
symptoms and at present no drugs have shown to consistently modify joint 
structure or reverse joint pathology (Altman, 2004). New, accurate and precise 
methods are needed in order to quantify the disease progression in clinical 
studies that determines the effect of potential treatments. A hallmark process 
in OA is cartilage breakdown. Therefore, typical disease progression 
quantifications have traditionally been: 

 Joint gap (between the femur and tibia on the knee joint) is an indirect 
measure of cartilage thinning from radiographs (X-ray) where the 
cartilage itself is not visible (Brandt et al., 1991).  

 Cartilage volume and thickness measured from magnetic resonance 
imaging (MRI) where the cartilage is visible (Folkesson et al., 2005b; 
Graichen et al., 2004). 

However, before thinning even begins, the cartilage loses its firm structure 
(Hollander et al., 1995). This structure is composed by the three layers of 
collagen fibers that allows absorption/expulsion of water and thereby ensures 
shock absorption. When this structure is breaking down, the first stage is 
swelling of the cartilage which is followed by thinning in the later stages 
(Calvo et al., 2004). Therefore, measures focusing on volume or thickness may 
not be adequate to capture the early stages of OA. 

The early loss of integrity could ideally be measured directly by quantifying 
the decrease in alignment of the collagen fibers in the three layers of the 
cartilage. In the future, this will possibly be done through analysis of very 
high resolution diffusion tensor MRI (Filidoro et al., 2005). Due to limitations 
in resolution and acquisition times, we settle for analysis of the intensities 
observed in regular MRI as a first step. Instead of measuring integrity of 
cartilage layer alignment directly, we therefore quantify “cartilage 
homogeneity”. 

In this paper, we investigate a number of measures for measuring cartilage 
homogeneity and evaluate their ability to quantify OA progression. Since 
there is no ground truth for cartilage homogeneity available, we cannot 
evaluate accuracy directly. Possibly, a validation could be performed based 
on histological slices of cartilage. However, due to the highly invasive nature 
of this, it is not suitable as a standard in vivo evaluation technique. 

We therefore evaluate accuracy indirectly by investigating the ability of the 
measures to separate healthy knees from knees with some degree of OA from 
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a collection of 114 knees. We evaluate the robustness of the method by 
comparing the measures obtained from both manual and automatic 
segmentations of the knees. Finally, we evaluate the reproducibility of the 
method through a scan-rescan evaluation where measures obtained from 31 
pairs of scans acquired a week in-between are compared. The investigation 
shows that a subset of the proposed measures separates healthy from OA 
more accurately than volume. Furthermore they are able to detect early stages 
of OA. 

3.1.1 Related Work 

Several studies have shown correlation between OA progression and the 
mean intensities from T2 MR scans (Naish et al., 2004). Analysis of structure 
has previously been applied to anatomical structures other than the cartilage. 
For example, the structure of trabecular bone can be quantified by fractal 
signature analysis (Buckland-Wright et al., 1996). Texture analysis is also used 
for osteoporosis progression analysis in the form of Minkowski functionals 
and scaling vectors (Raeth et al., 2006). 

The thin cartilage structure with a typical thickness of only a few voxels 
complicates the analysis. However, a few studies have done early feasibility 
studies on the use of diffusion tensor MRI (Basser et al., 1994b) for cartilage 
analysis. In a small in vitro study, it has been shown that the eigenvector 
orientations of the local diffusion tensor can separate cartilage layers that to 
some degree reflects the alignment of the collagenous fiber network in the 
articular cartilage (Filidoro et al., 2005). 

3.2 Methods 

3.2.1 Imaging 

A total of 114 right and left knees were examined by radiography and MRI. 
Using radiographs (X-rays) these 114 knees were classified by a radiologist as 
a 0 - 4 on the Kellgren-Lawrence (KL) (Kellgren and Lawrence, 1957) index 
where KL 0 represents healthy and KL 4 severe OA. Among the 114 subjects, 
51 are healthy (KL = 0) and 63 have OA (KL > 0). MR Image acquisition was 
done on an Esaote C-Scan low field 0.18T clinical scanner. The imaging 
sequence consisted of 3D, T1-weighted Gradient-Echo acquisition (GRE) (flip 
angle = 400, TR = 50 ms, TE = 16 ms). The field of view (FOV) was 120 mm. The 
scans were made through the sagittal plane with the image matrix of 256 x 256 
pixels, yielding a pixel size of 0.49 mm. A 110 contiguous slices, 0.8mm thick 
(0.7 - 0.9mm) were acquired in approximately 10 minutes.  

The medial compartment of the tibial and femoral cartilage sheets was 
manually segmented by a radiologist. For evaluating the robustness of our 
method the same set of cartilage sheets was automatically segmented using 
the method described in (Folkesson et al., 2005a). The segmentation is based 
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on a three class approximate k-Nearest Neighbor (kNN) classification scheme. 
For reproducibility evaluation the MR protocol was repeated a week later on 
a subset of 31 knees  

3.2.2 Cartilage Homogeneity 

We define cartilage homogeneity to be a measure of the signal intensity 
variation inside the segmented cartilage compartment. To quantify 
homogeneity we choose two types of statistical measures. 

3.2.2.1 First Order Statistical Measures 

The first order statistical measures rely on approximating the probability of 
observing a particular intensity at a randomly chosen location in the image. 
The measures are calculated from the gray scale histogram of the image 
defined by ( ) ;iH i n=  where ( 0,1... 1)n i Li = −  represents the number of 

occurrences for signal intensity i and L represents the number of distinct gray 
levels in the cartilage. Using the above formulation of the histogram we 
define the following measures: 
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When measuring entropy and uniformity the histogram is smoothed by 
decreasing the number of bins. ( )H i  then corresponds to the number of 
occurrences of intensities within a range defined by the bin width. The bin 
width is determined by the Freedman-Diaconis rule (Freedman and Diaconis, 
1981) and is chosen to be 100. Furthermore, to ensure invariance to change in 
the image quantization levels we normalize entropy by logarithm (base 2) of 
the quantization levels ( 4096q = ). 

3.2.2.2 Second Order Statistical Measures 

The second order statistical measures rely on the joint probability distribution 
of pairs of voxels in the image. This involves the estimation of the discrete 
second-order probability function ( , )dC i jθ  which represents the probability of 
occurrence of a voxel pair with gray levels i and j given the spacing between 
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the pair of voxels is d along a given direction θ. ( , )dC i jθ  is called the gray level 
co-occurrence matrix (GLCM) (Haralick et al., 1973). Due to the size of the 
knee cartilage (few mm thick) we only consider immediate neighboring 
voxels. Furthermore, in order to reduce the dimensionality we assume that 
the joint probabilities are directional independent. Therefore, we average the 
L L×  GLCM, where L is the number of gray levels in the image. 

In order to quantify the spatial dependence, (Haralick et al., 1973) suggests 14 
measures, each of which is extracted from the GLCM. A subset of the four 
most relevant measures are chosen:  
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3.3 Results 

3.3.1 Manual Segmentations 

The measures for both tibial and femoral cartilage sheets for each knee are 
grouped according to the KL indexes, healthy (KL = 0) or OA (KL > 0). To 
determine the significance of each the measure we use the t-test, the null 
hypothesis is that the two groups (healthy and OA) have the same mean. The 
null hypothesis can be rejected if the resulting p-value is less than a chosen 
level of significance α . Using 0.05α = , the following measures succeeded to 

 

 

Figure 3.1: Comparison of volume (left) and entropy (right) measure as a function of the KL
index.  
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discriminate healthy from OA: from first order measures it was standard 
deviation, uniformity and entropy, and from second order it was contrast.  

Table 3.1 lists the p-values for the first and second order measures for the 
tibial cartilage. The p-values are low suggesting that the measures can 
significantly discriminate healthy from OA. Volume of the knee cartilage has 
recently emerged as a popular measure for monitoring OA progression from 
MRI (Raynauld et al., 2006). To asses and compare the discriminatory power 
of our measures we also include p-values for volume, as in (Folkesson et al., 

2005b) volume of each cartilage is normalized by width of the subject's tibial 
plateau. Figure 3.1 shows the comparison between volume and entropy in 
capturing OA progression (due to space constraints we only show the 
comparison between volume and entropy). We can see that entropy 
( 0.0005p = ) outperforms volume ( 0.002p = ) in separating healthy from OA. 
Furthermore, it can also detect early OA. That is by separating KL 0 from KL 1 
( 0.001p = ). 

The first row of Table 3.2 lists the results for the femoral cartilage. Due to 
space constraint the results only list a subset of the most significant measures. 
The p-values are high which means that the measures are not able to 
discriminate the two groups. However, it was recently shown that accuracy of 
the thickness measurements from MR images is better in the weight bearing 
regions of femur (Koo et al., 2005). This is because the weight bearing region 
of the femur sustains contact with the tibia during the gait cycle. Thus, we 
approximate the load bearing region by the intersection of the two cartilage 
sheets. This is done by iteratively applying a 3D morphological dilation 
operator to the tibial cartilage region. The second row of Table 3.2 lists the 
results for the load bearing region of the femoral cartilage. The results slightly 

Table 3.1: P-values for separating KL 0 from KL > 0 
(manual segmentations of the tibial cartilage) 

Measure  p‐value 
Volume  0.002 
Mean signal intensity  0.1 
Standard deviation (SD)  0.0006 
Uniformity  0.002 
Entropy  0.0005 
GLCM: Contrast  0.007 
GLCM: Correlation  0.8 
GLCM: Energy  0.3 
GLCM: Homogeneity  0.1 

Table 3.2: P-values for separating KL 0 from KL > 0 
(manual segmentations of the femoral cartilage) 

Measure  Volume  SD  Uniformity  Entropy  GLCM: Contrast 
Full Femoral cartilage  0.3  0.4  0.06  0.2  0.1 
Load bearing region  0.3  0.05  0.01  0.02  0.1 
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improve. Subsequent results, for the femoral cartilage, are estimated only for 
the load bearing region. 

3.3.2 Automatic Segmentations 

The first and second row of Table 3.3 shows the results for automatically 
segmented tibial and femoral (load bearing) cartilage sheets. The p-values are 
low suggesting that the measures succeed to discriminate the two groups. For 
example, entropy ( 0.00004p = ) outperforms volume ( 0.001p = ) in separating 
healthy from OA. 

3.3.3 Reproducibility 

To assess the reproducibility of the measures we compute the mean 
percentage difference (%) and the correlation coefficient (r). Table 3.4 lists the 
reproducibility results for both the manual and automatic segmentations. 

The correlation coefficient can be close to 1 even if there is a considerable 
variation in the data (Altman and Bland, 1983). An alternate way is visual 
assessment of the relationship of two measures; by plotting their differences 
against their mean. This resultant plot is known as a Bland-Altman plot 
(Altman and Bland, 1983). According to Bland and Altman; if 95% of the 
differences lie within two standard deviations then we can conclude that the 
method is precise. Figure 3.2 shows a Bland-Altman plot for entropy of both 
manually segmented tibial and femoral cartilages. The percentage difference 
for entropy is low (less than 5%). Therefore, we can conclude that the measure 
is highly reproducible. 

Table 3.3: P-values for separating KL 0 from KL > 0  
(automatic segmentations of the tibial and femoral cartilages (load bearing)) 

Measure  Volume  SD  Uniformity  Entropy  GLCM: Contrast 
Tibial cartilage  0.001  0.00004  0.0002  0.00004  0.0003 
Femoral cartilage  0.004  0.02  0.003  0.002  0.1 

Table 3.4: Reproducibility evaluation 
(percentage difference (%) and correlation coefficient (r) for manual(m) and automatic(a) segmentation) 

Type  Volume  SD  Uniformity  Entropy  GLCM: Contrast 
m‐Tibial (%)  11.1  9.3  9.0  4.3  21.9 
m‐Tibial (r)  0.82  0.82  0.78  0.78  0.81 
m‐Femoral (%)  9.6  12.7  12.3  4.8  32.1 
m‐Femoral (r)  0.91  0.6  0.63  0.64  0.55 
a‐Tibial (%)  10.1  8.1  8.3  3.6  16.1 
a‐Tibial (r)  0.75  0.81  0.8  0.78  0.86 
a‐Femoral (%)  45.1  11.7  12.3  4.8  27.5 
a‐Femoral (r)  0.86  0.65  0.62  0.64  0.63 
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3.4 Conclusion 

The results of our evaluation show that cartilage texture might not be 
homogenous and may be utilized as a marker for disease progression. We 
quantify homogeneity by characterizing the manual and automatic 
segmentations of 114 knee cartilages by several statistical measures. To 
determine if the measures can quantify OA progression we do a t-test to 
evaluate their ability in separating groups of healthy subjects from those 
having OA. From a subset of measures that succeed we choose entropy to be 
the measure that (tibia: manual segmentation ( 0.0005p = ), automatic 
segmentation ( 0.00004p = )) can discriminate healthy from OA more 
confidently than cartilage volume (tibia: manual segmentation ( 0.002p = ), 
automatic segmentation ( 0.001p = )). Furthermore, the measure is also able to 
detect early progression of OA. Moreover, the measure is reproducible (tibia: 
% <= 4.3). Future work may involve: 

 Probing the surroundings of the cartilage.  

 Longitudinal studies. 

 Comparison with histological analysis of cartilage structure. 

 

 

Figure 3.2: Bland-Altman plot for entropy for manual segmentations of the tibial (left) and the
femoral (right) cartilage sheets. The dotted line represents two standard deviations of the
differences. 
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Arish A. Qazi, Jenny Folkesson, Paola Pettersen, Morten A. Karsdal, Claus 

Christiansen, and Erik B. Dam. Osteoarthritis and Cartilage, 2007. 

Abstract 

 artilage loss as determined either by magnetic resonance imaging 
(MRI) or by joint space narrowing in x-rays is the result of cartilage 
erosion. However, metabolic processes within the cartilage that later 

result in cartilage loss, may be a more accurate assessment method for early 
changes. 

Early biological processes of cartilage destruction are among other things, a 
combination of proteoglycan turnover, as a result of altered charge 
distributions, and local alterations in water content (edema). As water 
distribution is detectable by MRI, the aim of this study was to investigate 
cartilage homogeneity visualized by MRI related to water distribution, as a 
potential very early marker for early detection of knee osteoarthritis (OA).  

Design: 114 right and left knees from 71 subjects aged 22 to 79 years were 
scanned using a Turbo 3D T1 sequence on a 0.18T MRI Esaote scanner. The 
medial compartment of the tibial cartilage sheet was segmented using a fully 
automatic voxel classification scheme based on supervised learning. From the 
segmented cartilage sheet, homogeneity was quantified by measuring entropy 
from the distribution of signal intensities inside the compartment. For each 
knee an x-ray was acquired and the knees were categorized by the Kellgren 
and Lawrence (KL) Index and the joint space width (JSW) were measured. 

Chapter 

4  

C 



Separation of Healthy and Early Osteoarthritis  23

The P-values for separating the groups by each of JSW, cartilage volume, 
cartilage mean intensity, and cartilage homogeneity were calculated using the 
unpaired t-test.  

Results: The P-value for separating the group diagnosed as KL 0 from the 
group being KL 1 based on JSW, volume and mean signal intensity the values 
were 0.9P = , 0.4P =  and 0.0009P =  respectively. In contrast, the P-value for 
homogeneity was 0.0004P = . The precision of the measures assessed, as a 
test-retest root mean square coefficient of variation (RMS-CV%) was 3.9% for 
JSW, 7.4% for volume, 3.9% for mean signal intensity and 3.0% for 
homogeneity quantification. 

Conclusion: These data demonstrate that the distribution of components of 
the articular matrix precedes erosion, as measured by cartilage homogeneity 
related to water concentration. We show that homogeneity was able to 
separate early OA from healthy individuals in contrast to traditional volume 
and JSW quantifications. These data suggest that cartilage homogeneity 
quantification may be able to quantify early biochemical changes in articular 
cartilage prior to cartilage loss and thereby provide better identification of 
patients for OA trials who may respond better to medicinal intervention of 
some treatments. In addition, this study supports the feasibility of using low-
field MRI in clinical studies. 

Keywords—Knee Osteoarthritis, Early Detection, Magnetic Resonance 
Imaging, Homogeneity. 
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4.1 Introduction 

Osteoarthritis (OA) is a degenerative joint disease that is a major cause of 
disability. Degeneration of the articular cartilage in combination with an 
altered subchondral compartment are key features of OA (Conaghan et al., 
2006; Ding et al., 2005). In terms of quality of life and chronic disability OA is 
second only to cardiovascular diseases (Haq et al., 2003; McCauley and Disler, 
1998). It is estimated that more than one-third of the population above the age 
of 35 will at some point in their lives experience OA (McCauley and Disler, 
1998). At present there is no cure for OA as no drugs have been consistently 
shown to modify joint structure or even reverse joint pathology in face of the 
currently available treatments that are directed towards relief of symptoms 
(Altman, 2004). Research is on-going to discover disease-modifying anti-
osteoarthritis drugs/agents  (DMOADs) (Abadie et al., 2004). However to 
assess the effectiveness of DMOADs we need to quantify the structural 
changes undergoing in the cartilage during the early stages of the disease and 
for that early diagnosis of OA is essential. 

The current accepted standard for diagnosing knee OA and monitoring 
progression is measurement of the joint space width (JSW) (between the 
femur and tibia on the knee joint) from radiographs (Altman et al., 1996). This 
is an indirect evaluation as the cartilage is not visible in X-ray and is also 
potentially prone to diagnosing the disease relatively late in its course (Calvo 
et al., 2001). Recently, magnetic resonance imaging (MRI) has received much 
attention in assessment of the articular cartilage. This can be primarily 
attributed to the fact that MRI is non-invasive, provides excellent soft tissue 
contrast, high spatial resolution and moreover the articular cartilage can be 
directly visualized and quantified non-invasively from the MR scans 
(Eckstein et al., 2006; Pessis et al., 2003). This provides valuable information 
with regard to morphological and possibly biochemical parameters, that may 
be associated with the integrity of the articular cartilage. Quantitative 
measurements from MRI like cartilage volume and thickness measures are 
now being widely used to monitor progression of OA (Dam et al., 2005; 
Folkesson et al., 2005a; Pakin et al., 2002; Solloway et al., 1997).   

The pathology of OA involves changes in both the subchondral bone and 
articular compartment. Currently, late stage detection methods such as JSW 
or  Kellgren & Lawrence (KL) score represent subchondral bone changes as 
well as cartilage thinning (Buckland-Wright, 2004). Even early OA as detected 
by the KL score, may be the results of long ongoing biochemical processes 
leading to both bone and cartilage alterations. Thus, these techniques may not 
sufficiently identify patients which may have their cartilage disease 
attenuated or even reversed. Cartilage loss is only secondary to important 
biochemical changes in the articular cartilage. Prior to cartilage fibrillation, 
local edema and swelling are well-recognized features (AlHadlaq et al., 2004; 
Calvo et al., 2001; Calvo et al., 2004; Maiotti et al., 2000). These intrinsic 
changes in cartilage water content and spatial distributions are most likely 
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predecessors to the traditional cartilage loss detected by MRI and x-ray based 
techniques.  

In this study, we wanted to investigate whether MRI signal intensity 
measures, related to intrinsic water distributions, which may be a result of 
mal-metabolism in the articular cartilage, would be a sensitive marker for 
very early detection of OA.  

4.2 Materials and Methods 

4.2.1 Population 

The population for this study was formed from two subpopulations. The first 
was a normal population selected to have no or only minor OA symptoms 
with a broad age range from 22 to 73 years. The second was a group with 
known OA symptoms of various degrees. This composition was designed to 
ensure that a large healthy group could be compared to both a considerable 
group with early OA as well as a considerable group with more progressed 
OA. Secondly, the full population was thereby designed to be fairly 
representative of the general population. 

A total of 76 subjects (34 men and 42 women) from 22 to 79 years old were 
recruited to participate in the present study. Selection criteria ensured that 
none of the subjects had previous knee joint replacement, inflammatory 
arthritis in the knee, or any contraindication for performing MRI examination. 
Subjects underwent both clinical and radiological examinations and classified 
into groups of healthy subjects or OA patients according to the ACR 
(American College of Rheumatology) definition of OA.  From the total of 152 
knees, 13 were excluded due to poor image quality in either radiographs or 
MRI. From these 139 knees, 25 were used to train the automatic segmentation 
method, so a total of 114 knees (Table 4.1) were used for evaluation of the 
methods in the following.  

All participants signed approved information consent and the study was 
carried out in accordance with the principles of the Helsinki Declaration II 
and European Guidelines for Good Clinical Practice. The study protocol was 
approved by the local Ethical Committee.   

In this study, we focused on the medial compartment of the tibial cartilage 
since previous studies have shown that OA is more often observed in this 
compartment (Dunn et al., 2004). 

4.2.2 Imaging Protocol 

A total of 152 right and left knees were examined by radiography and MRI. 
Using radiographs (X-rays) these 152 knees were classified by a radiologist as 
0 - 4 on the Kellgren-Lawrence (KL) (Kellgren and Lawrence, 1957) index 
where KL 0 represents healthy and KL 4 severe OA (It should be noted here 
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that throughout the paper “healthy” refers to being radiologically healthy i.e. 
being classified by a radiologist as having a KL score of 0). The radiologist 
also measured the JSW as the narrowest gap between the tibia and the femur 
in the medial compartment.  The radiologist also marked the most medial and 
lateral points on the tibial plateau (excluding osteophytes). These points 
define the width of tibial plateau, which is a measure of the size of the knee. 

MRI Image acquisition was done on an Esaote C-Scan low field 0.18T clinical 
scanner. The imaging sequence consited of 3D, T1 weighted Gradient-Echo 
acquisition (GRE) (flip angle = 400, TR = 50 ms, TE = 16 ms). The field of view 
(FOV) was 120 mm. The scans were made through the sagittal plane with the 
image matrix of 256 x 256 pixels, yielding a pixel size of 0.49 mm. A 110 
contiguous slices, 0.8mm thick (0.7 - 0.9mm) were acquired in approximately 
10 minutes.  

For reproducibility evaluation, the protocol was repeated a week later on 31 
knees.  Table I lists the characteristics of these knees. 

4.2.3 Automatic Cartilage Segmentation  

The medial compartment of tibial cartilage sheets were automatically 
segmented using voxel classification based on supervised learning (Folkesson 
et al., 2005a). For the classification we used an approximate kNN classifier, 
which was implemented in an ANN (Approximate Nearest Neighbour) 
framework. To account for position variations of subjects in the scanner the 
centre of mass of each scan was shifted to the centre of mass of the scans in 

 

 

Figure 4.1: (a) Automatically segmented Sagittal slice (b) Cross section view of a segmented
tibial medial cartilage sheet. 
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the training set (Folkesson, 2006). Furthermore the computational time was 
significantly reduced by incorporating an efficient classification scheme (Dam 
et al., 2006a). Figure 4.1 shows an MR scan slice illustrating the automatic 
segmentation. From the segmented cartilage sheet cartilage mean signal 
intensity and volume for each subject was computed. The volume measure 
was normalized by the width of the subject’s tibial plateau (width of the 
bone). Additionally standard deviation of the signal intensities was also 
computed since standard deviation is another way of measuring dispersion or 
randomness. 

4.2.4 Quantification of Homogeneity 

Homogeneity was quantified by measuring entropy. Entropy is well-known 
in information theory (Shannon, 1948) as a measure of information content (or 
inversely randomness) present in the data. Entropy is measured from the 
signal intensity histogram, which represents the distribution of intensities 
present inside the cartilage compartment. 

A histogram H can be defined by the following formulation: ( ) ;iH i n=  where  
( 0,1... 1)n i Li = −  represents the number of occurrences for signal intensity i 

and L represents the number of distinct grey levels in the cartilage. The 
histogram is normalized by the total number of intensities N such that the 
histogram represents the probability distribution of the signal intensities – 
and thereby also becomes invariant to the cartilage volume. 

Furthermore, the intensity range was divided into equal sized bins. The bin 
width was chosen to be 100 using the Freedman-Diaconis rule (Freedman and 
Diaconis, 1981). Using this normalized binned histogram we calculated 
entropy as: 

Table 4.1: Characteristics of the evaluation set (knees = 114, participants = 71)* 

Factor  KL 0  KL 1  KL 2  KL 3 
Number of knees (K)  51  28  14  21 
Age (yrs)  45.2 ± 15.7  58.7 ± 11.2  67.5 ± 7  66.3 ± 6.7 
Females (%)  60%  71%  43%  48% 
Weight (kg)  72.4 ± 12.8  71.6 ± 10.1  89.8 ± 16.6  81.1 ± 11.6 
Height (m)  1.7 ± 0.09  1.7 ± 0.08  1.7 ± 0.09  1.6 ± 0.07 
BMI (kg/m2)  24.3 ± 3.6  24.8 ± 3.2  30.3 ± 4.2  28.8 ± 3.5 
Reproducibility 2nd Visit (knees = 31)         
Number of knees (K)  11  13  2  5 
Age (yrs)  52 ± 18.9  66.1 ± 7.2  65.2 ± 0.0  68 ± 4.5 
Females (%)  55%  77%  0%  0% 
Weight (kg)  69.8 ± 17.1  69.3 ± 8.0  87 ± 0.0  84 ± 11.6 
Height (m)  1.7 ± 0.1  1.68 ± 0.04  1.68 ± 0.0  1.75 ± 0.05 
BMI (kg/m2)  23.9 ± 4.7  24.5 ± 2.2  30.9 ± 0.0  27.3 ± 3.0 

* Values are mean ±  SD. KL refers to the Kellgren and Lawrence Index 
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Entropy quantifies cartilage with fewer, more dominant intensities as being 
more homogeneous. In the extreme, the most homogeneous distribution will 
only have a single intensity present – such a histogram can be described with 
very little information and therefore has minimal information content and 
minimal entropy value. In contrast, the higher the entropy value the more 
heterogeneous the cartilage will be. As an example, Figure 4.2(a) and Figure 
4.2(b) shows the histograms of knee cartilage with highest entropy as well as 
with the lowest entropy in the dataset. When assessing the information 
content, the specific intensities and their ordering in the histogram are 
irrelevant – this is illustrated by Figure 4.2(c) and Figure 4.2(d) where the 
same histograms are sorted by the bin size. The entropy value depends on 
whether many in-frequent intensities are present (heterogeneous, high 
entropy) or whether relatively few frequent intensities are dominant 
(homogeneous, low entropy). This is clearly visible in the sorted histogram in 

 

 

Figure 4.2: (a) Histogram of knee with highest entropy value in the dataset (KL 0) (b)
Histogram of knee with lowest entropy value (KL 3) (c) The same histogram in (a) but sorted
by the number of bins (d) The same histogram in (b) but sorted by the number of bins. The
more diseased you are the lower will be the entropy. 
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Figure 4.2(c) and Figure 4.2(d). Thereby, unlike a simpler measure like 
intensity standard deviation, entropy is not assuming that the intensity values 
follow a Gaussian distribution. 

4.2.5 Statistical Analysis  

To evaluate the significance of homogeneity as a biomarker for early detection 
of OA, the knees were divided in groups based on the KL index; and using 
the unpaired t-test, P-values for separating the groups based on entropy were 
calculated. A 0.05 level was used throughout the paper for statistical 
significance. The significance levels were compared to the significance levels 
of separating the same groups using JSW, traditional volume quantification 
and the mean signal intensity.  

The overall precision of the method was assessed using the test-retest root 
mean square coefficient of variation (RMS-CV%) of the entropy values (Gluer 
et al., 1995). For each subject the CV is defined as the standard deviation of a 
series of experiments divided by the mean.  The overall CV is expressed as an 
RMS of the subjects CVs.  

4.3 Results 

4.3.1 Cartilage Homogeneity Measure 

To assess the homogeneity we measured T1 intensities, which are correlated to 
distribution of water, as shown in Figure 4.2(a) and Figure 4.2(b) of a healthy 
knee compared to that of a KL 3 knee. From these the intensity standard 
deviation (SD) was seen to be lower in diseased cartilage compared to that of 
healthy cartilage (SD healthy versus SD OA, 0.001P < ). For further analysis 
we used entropy, which quantifies homogeneity as the information content, 
reflecting the complexity, of the intensity histogram as illustrated in Fig. 2. 
The entropy was lower in diseased cartilage compared to healthy (Entropy 
healthy versus Entropy OA, 0.001P < ). The precision of SD based on test-
retest RMS-CV% was 6.6% as compared to 3.0% precision of entropy. Based 
on these evaluations, we selected entropy as our preferred measure of 
cartilage homogeneity.  

4.3.2 JSW, Cartilage Volume, Intensity, and Entropy 
Quantifications  

From the automatically segmented cartilage sheets we quantified four 
different measures: JSW, Cartilage volume, Cartilage intensity, and Cartilage 
entropy. 

As shown in Figure 4.3(a) the JSW quantification was not able to separate the 
healthy group from KL 1 ( 0.9P = ). However, it was able to separate the 
healthy group from the rest ( 0.005P = ). 
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Traditional cartilage volume was estimated as described in materials and 
methods. As presented in Figure 4.3(b), volume calculation was not able to 
significant separate healthy from KL 1. However, a clear and significant trend 
with a decrease in cartilage volume for increase in KL score was found, as 
previously published (Folkesson et al., 2005b).  

To investigate to which degree the signal intensity level would directly be a 
suitable biomarker; as a consequence to the strong correlation to water 
content, we measured the mean cartilage intensity. As shown in Figure 4.3(c), 
the mean intensity failed to separate the group of healthy from the group of 
OA subjects. However, mean intensity provided a clear separation of healthy 
from KL 1 ( 0.0009P = ). The drop from KL 0 to KL 1 followed by a return to 
KL 0 level for KL 2 and 3 is consistent with the expected increase in water 

 

 

Figure 4.3: Comparison of (a) JSW (b) Volume (c) Mean signal intensity and (d) Entropy as a
function  of  the KL  index.    Entropy measure  can  separate  healthy  group  from KL  1 much
significantly when  compared  to  the  other measures. Moreover  it  can  also  separate  healthy
group from OA. 
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concentration in early OA due to swelling and followed by a loss of water 
content in the later stages. 

Lastly, as presented in Figure 4.3(d), the quantification of cartilage 
homogeneity by entropy was able to clearly separate healthy from OA 
subjects ( 0.0003P = ). Furthermore, entropy was also able to separate healthy 
from KL 1 subjects ( 0.0004P = ).  

The P-values for the different measures in separating the different groups 
using the medial tibial compartment are summarized in Table 4.2.  

4.3.3 Quantification Precision 

The precision of the four quantification methods – JSW, volume, mean 
intensity, and entropy – are also listed in Table 4.2. The precision of the JSW 
and automatic cartilage volume quantification were a RMS-CV% of 3.9% and 
7.4% respectively. In contrast, the RMS-CV% for mean intensity and entropy 
were 3.9% and 3.0%, respectively.  

4.4 Discussion 

We investigated whether intrinsic changes in the articular cartilage related to 
water distribution visualized by MRI would enable separation of early OA 
versus healthy individuals. We showed that measurement of cartilage 
homogeneity quantified by entropy enabled separation of healthy (KL 0) 
versus OA (KL > 0), and in addition allowed for separation of healthy from 
early OA (KL 1). Thus, entropy provides sensitivity and information beyond 
that of JSW, volume, and mean signal intensity quantifications.  

Cartilage loss is only secondary to important biochemical changes in the 
articular cartilage. These changes include protease expression of which Matrix 
metalloproteinases (MMP) (Sondergaard et al., 2006) and ADAM-TS (Glasson 
et al., 2005; Stanton H, 2005) are the most well-described pathological 
activities that result both in proteoglycan depletion and disruption of the 
collagen network and additionally this process is accompanied by local 
edema which may be the first signs of decreased cartilage quality.  

Table 4.2: P-values for separating KL 0 from KL 1 and KL 0 from KL > 0 

Type  JSW  Volume  Mean intensity   Entropy 
KL 0 vs KL 1  0.9  0.4  0.0009  0.0004 
KL 0 vs KL > 0  0.005  0.02  0.1  0.0003 
TEST-RETEST 
Measure  RMS‐CV (%) 
JSW  3.9 
Volume  7.4 
Mean signal intensity  3.9 
Entropy  3.0 
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The population for this study was selected such that it included a large 
normal population with no or only very minor OA symptoms. This ensured a 
fairly large number of subjects in the very early stages of OA where only few 
symptoms are present and thereby allowed an investigation of which 
cartilage quantifications could detect the early stages with statistical 
significance.  

The present investigation has been based on the use of the KL score as gold 
standard for estimation of degree of OA. This affects the interpretation of the 
current MRI data in two important ways. Firstly, it is known that inter-
observers differences may result in different annotations of KL score, in 
particular between KL 0 and KL 1 as well as KL 1 and KL 2  (Altman et al., 
1996; Vilalta et al., 2004). Secondly, articular cartilage is not visible by X-ray 
and only to a smaller extent is accounted for in the annotation of KL scoring 
compared to that of bone (Hart and Spector, 2003). As a result, the KL 
annotation may not distribute similar articular cartilage appearances in the 
same KL group and each KL group may as a consequence include very 
different presentation of articular cartilage health.  

With these difficulties in mind, the present separation of healthy versus KL 1 
may seem even more impressive, as undetected articular changes in KL 0 
which only are detectable by entropy could have been annotated differently, 
if the KL scoring system would have been more articular cartilage oriented. 
Taken together, this impressive identification of early OA changes by 
automated low field MRI raises the question whether entropy combined with 
cartilage alterations and subchondral turnover combined with KL 0 and KL 1 
would be more appropriate for selecting patients that would benefit from 
treatment compared to late stages of OA as identified by KL 2 to 4 scoring. 
Additionally damage to the articular cartilage can be even reversed in early 
stages before extensive fibrillation, chondrocyte mal-metabolism and 
differentiation in hypertrophic chondrocytes and apoptosis occurs.   

The effectiveness of the homogeneity quantification is related directly to 
biochemical changes within the cartilage. During the early stages of OA, 
before cartilage thinning begins, there is a reduction in proteoglycan content 
and disruption of the collagen framework. Initially this results in increased in 
water content, which leads to swelling of the cartilage (edema). Decreased 
proteoglycan content is believed to result in increased water content because 
loss of proteoglycan allows uncoiling of the remaining proteoglycan 
molecules which increase their negatively charged domain which in turn 
increases their hydrophilic nature thereby leading to an increase of water 
(Hollander et al., 1994; Jeffrey and Watt, 2003; McCauley and Disler, 1998). In 
addition chondrocytes in response to altered material properties tries to 
compensate by overproduction of proteoglycans (Adams and Brandt, 1991; 
Braunstein et al., 1990; Myers et al., 1990). On the T1 MR scans an increase of 
water leads to a decrease in the average signal intensity as water appears 
darker than healthy cartilage in T1 weighted MR (Disler et al., 2000). Thereby 
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the cartilage at the early stages of OA appears darker, and at the same time 
more homogeneous.  

A few studies have shown that structure of the collagen matrix is responsible 
for the magnetization transfer effect in articular cartilage (Kim et al., 1993; Seo 
et al., 1996). Thereby as shown in Figure 4.3(c) in the later stages, as the 
cartilage begins to disintegrate, the collagen content begins to diminish 
resulting in a decreased magnetization transfer effect and along with an 
overall reduction in water content we see a rise in the signal intensity. 
Therefore the cartilage homogeneity remains high (measured by lower 
entropy values) for the later stages of OA.  

The scanner used in this study is a low-field scanner whereas most recent 
work is focused on high field MRI. Low field scanners potentially lower costs 
along with the reduced scan time. Additionally It has been shown that studies 
done on low-field knee MRI found no clinically significant field-strength-
dependent differences in detection of meniscal and ACL tears, and concluded 
that the performance of low-field MRI equalled that of high-field MRI (Cotten 
et al., 2000; Ghazinoor et al., 2007). Thereby we expect homogeneity to result 
in a similar sensitivity on a high-field scanner though a validation study is 
still needed to reaffirm our claim. Additionally according to (Ghazinoor et al., 
2007) the scan resolution used in the this study is sufficient enough for 
evaluation of the articular cartilage. 

Alternative approaches for quantifying cartilage structure from MRI also 
exist. The T2 relaxation time is one of the first structural biomarkers based on 
MRI. It is related to both collagen matrix organization and water content. 
Lüssea et al showed a correlation between T2 and water content on 3 subjects 
in vivo (Lüssea et al., 2000). In recent years, the use of delayed Gadolinium-
enhanced MRI of Cartilage (dGEMRIC) to quantify the concentration of 
glycosaminoglycans (GAGs) in the cartilage has been investigated (Gold et al., 
2006). Using 1.5T turbo inversion recovery scans and 15 patients with early 
OA Tiderius et al showed significant loss of GAG (as measured by the 
dGEMRIC scores) in the diseased compartment compared to the healthy 
reference compartment ( 0.01)P <  (Tiderius et al., 2003). However, the 
dGEMRIC approach is semi-invasive and also more costly than regular MRI 
for use in clinical trials. Sodium MRI can also be used to measure the 
reduction of proteoglycan content in the cartilage. Using a test size of 12 
patients (9 healthy, 3 early OA) it was shown that Sodium MR imaging has a 
potential to be used for early detection of OA (Wheaton et al., 2004). A few 
studies have done early feasibility studies on the use of diffusion tensor MRI 
for cartilage analysis. In a small in vitro study using a 9.4T scanner, it has 
been shown that the eigenvector orientations of the local diffusion tensor can 
separate cartilage layers, which to some degree reflect the alignment of the 
collagenous fiber network in the articular cartilage (Filidoro et al., 2005).  
However, due to current limitations in resolution and low signal to noise 
ratio, only very limited results on in vivo subjects are available. 
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Compared to these structural quantifications based on sophisticated MR 
technology, our proposed cartilage homogeneity quantification may allow a 
detection of early OA with sensitivity and precision comparable to methods 
based on e.g. dGEMRIC and that too with low-cost equipment (low-field 
MRI). Furthermore Dray et al argued that T2 imaging, dGEMRIC and DWI are 
in their infancy and we still don’t have a robust way to monitor collagen 
changes (Dray et al., 2005). 

In conclusion, the use of cartilage homogeneity measured by entropy for 
detection and quantification of early OA and as an inclusion criterion of 
patients in longitudinal clinical trials could prove valuable and may thereby 
eventually aid in improving treatment efficacy.  
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5.1 Introduction 

uture DMOADs should ideally target early OA where it may still be 
reversible. Therefore, biomarkers that can separate healthy from early 
OA cross-sectionally as well as longitudinally are required. Cartilage 

Homogeneity is related to knee cartilage water distribution and altered 
proteoglycan distribution/integrity and may therefore be a suitable 
biomarker for very early OA. 

5.2 Objective 

The aim of this study was to evaluate the performance of the homogeneity 
measure in detecting the early changes in the knee cartilage over time and 
comparing it to volume quantification. 

5.3 Methods 

A population was scanned at baseline and after 21 months using a Turbo 3D 
T1 sequence (flip angle 40°, TR 50 ms, TE 16 ms, scan time 10 minutes, 
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resolution 0.7mm*0.7mm*0.8mm) on a 0.18T MRI Esaote scanner. At baseline 
there were 313 knees of which 25 were used for training of computer-based 
methods. The validation set had 288 right and left knees at baseline (subject 
aged: 21-81, females: 44%, BMI: 26.7 ± 4.3) and 243 at follow-up. The knees 
were examined by radiography and categorized by the Kellgren and 
Lawrence (KL) Index (with distribution [145, 88, 30, 24, 1] for KL 0 - 4). The 
medial compartments of the tibial and femoral cartilage sheets were 
segmented using a fully automatic voxel classification scheme and the 
cartilage volume and homogeneity were quantified. Homogeneity was 
quantified by measuring entropy from the MRI signal intensities – this 
quantifies cartilages with fewer, more dominant intensities as being more 
homogeneous. For precision evaluation, 31 knees were re-scanned a week 
after baseline. The healthy subjects at baseline were divided in two groups: 1) 
101 subjects that remained healthy at follow-up and 2) 25 subjects that 
progressed to early OA (KL 1). For each group and both volume and 
homogeneity changes over the 21 months were computed and the statistical 
significances based on an un-paired t-test were calculated. 

5.4 Results 

The scan-rescan precision (mean CV%) of volume and homogeneity were 
3.6% and 2.7%. Figure 5.1(a) shows that homogeneity succeeded in separating 
healthy from early OA (p < 0.05). Figure  5.1(b) shows that homogeneity 
succeeded (p < 0.05) in separating the progressors from non-progressors. The 
decrease in volume (4.0%) for the progressors was less than the decrease in 
entropy (5.6%) – in particular relative to the respective measurement 
precision.  
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Figure  5.1:  (a) Performance of cartilage homogeneity as a function of the KL-index.(b)
Performance of cartilage homogeneity in separating the progressors from non-progressors. 
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Osteoarthritic Cartilage is more 
Homogeneous than Healthy Cartilage – 
Identification of a Superior ROI Co-
localised with a Major Risk Factor for 
Osteoarthritis 
Arish A. Qazi, Erik B. Dam, Mads Nielsen, Morten A. Karsdal, Paola Pettersen.C, 

and Claus Christiansen. Academic Radiology, 2007. 

Abstract 

artilage loss as determined either by magnetic resonance imaging (MRI) 
or joint space narrowing by x-ray is the result of cartilage erosion. 
However, metabolic processes within the cartilage that later result in 

cartilage loss, may be a more sensitive assessment method for early changes. 
Recently it was shown that cartilage homogeneity visualized by MRI 
representing the biochemical changes undergoing in the cartilage, is a 
potential marker for early detection of knee osteoarthritis (OA) and is also 
able to significantly separate groups of healthy subjects from those having 
OA.  

The purpose of this study is twofold. Firstly, we wish to evaluate whether the 
results on cartilage homogeneity from the previous study can be reproduced 
using an independent population. 
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Secondly, based on the homogeneity framework we present an automatic 
technique that partitions the region of interest in the cartilage that contributes 
most to discrimination between healthy and OA subjects, and allows for 
identification of the most implicated areas in early OA. These findings may 
allow further investigation of whether cartilage homogeneity reveals a 
predisposition for OA, or whether it evolves as a consequence to disease and 
thereby can be used as a progression biomarker.  

Design: 283 right and left knees from 159 subjects aged 21 to 81 years were 
scanned using a Turbo 3D T1 sequence on a 0.18T MRI Esaote scanner. The 
medial compartment of the tibial cartilage sheet was segmented using a fully 
automatic voxel classification scheme based on supervised learning. From the 
segmented cartilage sheet, homogeneity was quantified by measuring entropy 
from the distribution of signal intensities inside the compartment.  Each knee 
was examined by radiography and the knees were categorized by the 
Kellgren and Lawrence (KL) Index. Next, based on a gradient descent 
optimisation technique, the cartilage region that contributed to the maximum 
statistical significance of homogeneity in separating healthy subjects from the 
diseased was partitioned. The generalizability of the region was evaluated by 
testing for over-fitting. Three different regularization techniques were 
evaluated for reducing over-fitting errors. 

Results: The p-values for separating the different groups based on cartilage 
homogeneity were ‐52 10P = ×  (KL 0 vs KL 1) and ‐71 10P = ×  (KL 0 vs KL > 0). 
Using the automatic gradient descent technique, the partitioned region was 
towards the peripheral part of the cartilage sheet. Using this region the p-
values for separating the different groups based on homogeneity were 

95 10P −= ×  (KL 0 vs KL 1) and 151 10P −= ×  (KL 0 vs KL > 0).  The precision of 
homogeneity for the partitioned region assessed as a test-retest root mean 
square coefficient of variation (RMS-CV %) was 3.3%.  Bootstrapping proved 
to be an effective regularization tool in reducing over-fitting errors.  

Conclusion: The validation study supported the use of cartilage homogeneity 
as a tool for early detection of knee OA and for separating groups of healthy 
subjects from diseased. Our automatic, unbiased partitioning algorithm based 
on a general statistical framework outlined the cartilage region of interest that 
best separated healthy from OA on the basis of homogeneity discrimination. 
We have shown that OA affects certain areas of the cartilage more distinctly, 
and these areas are more towards the peripheral region of the cartilage. We 
propose that this region corresponds anatomically to cartilage covered by the 
meniscus in healthy subjects. This finding may provide valuable clues in the 
early detection and monitoring of OA and thus may improve treatment 
efficacy.   

Keywords—Knee Osteoarthritis, Cartilage, Homogeneity, Image Processing, 
Segmentation, Magnetic Resonance Imaging, Meniscus. 



Identification of a Superior ROI Co-localised with a Major Risk Factor for 
Osteoarthritis  

39

6.1 Introduction 

Osteoarthritis (OA) is a degenerative joint disease that is a major cause of 
disability. Degeneration of the articular cartilage in combination with an 
altered subchondral compartment are key features of OA (Conaghan et al., 
2006; Ding et al., 2005). In terms of quality of life and chronic disability OA is 
second only to cardiovascular diseases (Haq et al., 2003; McCauley and Disler, 
1998). It is estimated that more than one-third of the population above the age 
of 35 will at some point in their lives experience OA (McCauley and Disler, 
1998). At present there are no accepted treatments for OA as no drugs have 
been consistently shown to modify joint structure or even reverse joint 
pathology in face of the currently available treatments that are directed 
towards relief of symptoms (Altman, 2004). Since the prevalence of OA 
increases with age, the increasing life span will increase the socio-economic 
impact of OA. Radiographic evidence of knee OA, the most commonly 
affected weight-bearing joint, can be found in one-third of those above the age 
of 63 (Felson et al., 1987). Research is on-going to discover disease-modifying 
anti-osteoarthritis drugs/agents (DMOADs) (Abadie et al., 2004). However to 
assess the effectiveness of DMOADs, quantification of the structural changes 
undergoing in the cartilage during the early stages of the disease is needed 
and for that early diagnosis of OA is essential, both for early identification as 
well as monitoring of response to treatment in the development of novel 
interventions for OA. 

The currently accepted standard for monitoring progression in knee OA is 
measurement of the joint space width (JSW) (between the femur and tibia on 
the knee joint) from radiographs (Altman et al., 1996). This is an indirect 
evaluation as the cartilage is not visible in X-ray and it is potentially prone to 
diagnosing the disease relatively late in its course (Calvo et al., 2001). A 
second technique available for detecting OA is arthroscopy – which even 
though invasive does not permit visualization of internal cartilage 
abnormalities. Recently, magnetic resonance imaging (MRI) has received 
much attention in assessment of the articular cartilage. This can be primarily 
attributed to the fact that MRI is non-invasive, provides good soft tissue 
contrast, high spatial resolution and moreover the articular cartilage can be 
directly visualized and quantified from the MR scans (Eckstein et al., 2006; 
Pessis et al., 2003). This provides valuable information with regards to 
morphological and possibly biochemical parameters, that may be associated 
with the integrity of the articular cartilage. Quantitative measurements from 
MRI like cartilage volume and thickness measures are now being widely used 
to monitor progression of OA (Dam, 2006; Folkesson et al., 2007a; Pakin et al., 
2002; Solloway et al., 1997).  

The pathology of OA involves changes in both the subchondral bone and 
articular compartments. Presently, late stage detection methods most 
certainly represent subchondral bone changes as well as cartilage thinning 
(Buckland-Wright, 2004), as measured by JSW or Kellgren & Lawrence (KL) 
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score (Kellgren and Lawrence, 1957). Even early OA, as detected by the KL 
score, may be the result of long ongoing biochemical processes leading to 
both bone and cartilage alterations. Thus, these techniques may not 
sufficiently identify patients which may have their cartilage disease 
attenuated or even reversed. 

Cartilage loss is only secondary to important biochemical changes in the 
articular cartilage. Prior to cartilage fibrillation, local articular edema and 
swelling are well-recognized features (AlHadlaq et al., 2004; Calvo et al., 2001; 
Calvo et al., 2004; Maiotti et al., 2000). These intrinsic changes in cartilage 
water content and spatial distribution are most likely predecessors to the 
traditional cartilage loss detected by MRI and x-ray based techniques.  

Recently, a novel approach for cartilage assessment was introduced, Cartilage 
Homogeneity (Qazi et al., 2006), which was based on the distribution of signal 
intensities inside the cartilage compartment and was affected by the changes 
in cartilage water content. Homogeneity performed statistically better than 
volume quantification in detecting early OA and for separating groups of 
healthy subjects from those having OA (Qazi et al., 2006). The technique was 
preliminarily evaluated on 114 knees.  

The knee is loaded asymmetrically (Biswal et al., 2002), where the medial 
compartment of the knee is subject to significantly higher loads relative to the 
lateral compartment which results in loss of cartilage integrity in the central 
regions of the medial compartment compared to other regions (Amin et al., 
2005; Biswal et al., 2002). Thereby, quantification of cartilage thickness is 
therefore probably most effectively performed in the central weight-bearing 
regions in the tibio-femoral joint, as they are subjected to most of the load 
over the gait cycle (Koo et al., 2005). However, these studies focus on the 
cartilage loss, which is secondary to the internal biochemical changes.  

The purpose of this study is twofold. First, we investigated whether the 
previous results on cartilage homogeneity were reproducible using an 
independent, larger population. Secondly, we wished to investigate whether 
unbiased investigation of internal structure, as measured by cartilage 
homogeneity, would identify the load-bearing region or alternative regions of 
interest, as the most dominant, pathological region for discriminating healthy 
from OA subjects. For this, we present an automatic, un-biased statistical 
framework for determining the region of interest with the best discriminatory 
power.  

6.2 Materials and Methods 

6.2.1 Population 

Two populations were used for this study. The first population, consisting of 
71 subjects contributing with 114 knees, was used in the previous study where 
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cartilage homogeneity was introduced (Qazi et al., 2006). The second 
population, independent of the first population, consisted of 88 subjects with 
a total of 169 knees.  

For the second part of the study – focusing on establishing the most 
pathological region of interest – the two populations were merged. This gave 
a total of 159 subjects (82 men and 77 women) from 21 to 81 years old. 

Both populations were selected to have a broad range of age as well as OA 
symptoms from no or only minor OA symptoms to severe symptoms. This 
composition was designed in order to ensure that a large healthy group could 

be compared to both a considerable group with early OA as well as a 
considerable group with more progressed OA. Additionally, the populations 
were thereby fairly representative of the general population. Selection criteria 
ensured that none of the subjects had previous knee joint replacement, 
inflammatory arthritis in the knee, or any contraindication for performing 
MRI examination. Subjects underwent both clinical and radiological 
examinations and were classified into groups of healthy subjects or OA 
patients according to the ACR (American College of Rheumatology) 
definition of OA.  From the total of 318 knees, 10 were excluded due to poor 
image quality in either radiographs or MRI. From the remaining 308 knees, 25 
were used to train the automatic cartilage segmentation method. So a total of 
283 knees (of which 114 were from the previous study, and 169 were from the 
new population) were used for evaluation of the methods in the following. 
Details for the 283 knees are given in Table 6.1. 

All participants signed approved information consent and the study was 
carried out in accordance with the principles of the Helsinki Declaration II 
and European Guidelines for Good Clinical Practice. The study protocol was 
approved by the local Ethical Committee.   

In this study, we focused on the medial compartment of the tibial cartilage 
since previous studies have shown that OA is most prevalent observed in this 
compartment (Dunn et al., 2004).   

Table 6.1: Characteristics of the evaluation set (knees = 283, participants = 159)* 

Factor  KL 0  KL 1  KL 2   KL 3  KL 4 
Number of knees (K)  140  87  31  24  1 

Age (yrs)  48.0 ± 16.7  62.7 ± 11.3  65.9 ± 7.4  67.4 ± 4.8  72.7 
Females (%)  46%  54%  48%  42%  100% 
Weight (kg)  75.3 ± 13.7  76.3 ± 13.6  84.7 ± 14.6  82.5 ± 11.6  84.8 
Height (m)  1.73 ± 0.09  1.7 ± 0.09  1.69 ± 0.09  1.7 ± 0.1  1.66 
BMI (kg/m2)  25.1 ± 4.0  26.4 ± 4.1  29.4 ± 3.7  28.8 ± 3.6  30.7 

* Values are mean ±  SD. KL refers to the Kellgren and Lawrence Index 
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6.2.2 Imaging Protocol 

A total of 283 right and left knees were examined and quantified by 
radiography and MRI. Using radiographs (X-rays) these knees were classified 
by a radiologist as 0 - 4 on the Kellgren-Lawrence (KL) (Kellgren and 
Lawrence, 1957) index where KL 0 represents healthy and KL 4 severe OA. 
The radiologist also marked the most medial and lateral points on the tibial 
plateau (excluding osteophytes). These points define the width of tibial 
plateau, which is a measure of the size of the knee. 

MRI Image acquisition was done on an Esaote C-Scan low field 0.18T clinical 
scanner, acquiring a Turbo 3D T1 sequence (40o flip angle, repetition time 50 
ms, echo time 16 ms). The scans were made through the sagittal plane with 
the resolution of 0.7 0.7mm mm×  in each slice and a slice thickness between 
0.7mm  and 0.9mm  but typically 0.8 .mm  The dimensions of the scans were 
256 256×  pixels with around 110 slices depending on the size of the knee. The 
approximate scan time was 10 minutes.  

For reproducibility evaluation, the protocol was repeated a week later on 31 
knees. 

6.2.3 Automatic Cartilage Segmentation  

The medial compartment of tibial cartilage sheets were automatically 
segmented using voxel classification based on supervised learning (Folkesson 
et al., 2007a). For the classification we used an approximate kNN classifier, 
which was implemented in an ANN (Approximate Nearest Neighbor) 
framework. To increase the precision of the method, a scheme was 
incorporated which accounted for variation in the subject’s position in the MR 
scanner (Folkesson, 2006). Furthermore the computational time was 
significantly reduced by incorporating an efficient classification scheme (Dam 
et al., 2006a). Figure 4.1(a) and Figure 4.1(b) shows an MR scan slice 
illustrating the automatic segmentation. From the segmented cartilage sheet, 
volume for each subject was computed by counting the number of cartilage 
voxels. The volume measure was normalized by the width of the subject’s 
tibial plateau. 

6.2.4 Quantification of Homogeneity 

Homogeneity was quantified by measuring entropy from the segmented 
cartilage sheet (Qazi et al., 2006). Entropy is well-known in information theory 
(Shannon, 1948) as a measure of information content (or inversely 
randomness) present in the data. Entropy is measured from the signal 
intensity histogram, which represents the distribution of intensities present 
inside the cartilage compartment. 
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A histogram H can be defined by the following formulation: ( ) ;iH i n=  where 
ni   ( 0,1... 1)i L= −  represents the number of occurrences for signal intensity i 

and L represents the number of distinct grey levels in the cartilage. The 
histogram was normalized by the total number of intensities N such that the 
histogram represented the probability distribution of the signal intensities – 
and thereby also became invariant to the cartilage volume. 

Furthermore, the intensity range was divided into B  equal sized bins. The bin 
width was chosen to be 100 using the Freedman-Diaconis rule (Freedman and 
Diaconis, 1981). Using this normalized binned histogram we calculated 
entropy as: 
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Entropy quantifies cartilage with fewer, more dominant intensities as being 
more homogeneous. In the extreme, the most homogeneous distribution will 
only have a single intensity present – such a histogram can be described with 
very little information and therefore has minimal information content and 
minimal entropy value. In contrast, the higher the entropy value the more 
heterogeneous the cartilage will be. As an example, Figure 4.2(a) and Figure 
4.2(b) shows the histograms of knee cartilage with highest entropy as well as 
with the lowest entropy in the dataset. When assessing the information 
content, the specific intensities and their ordering in the histogram are 
irrelevant. The entropy value depends on whether many in-frequent 
intensities are present (heterogeneous, high entropy) or whether relatively 
few frequent intensities are dominant (homogeneous, low entropy). Thereby, 
unlike a simpler, homogeneity-like measure like intensity standard deviation, 
entropy is not assuming that the intensity values follow a Gaussian 
distribution. Due to both the noise properties of MRI (that result in a Rician 
distribution (Gudbjartsson and Patz, 1995)) and partial volume effects, a 
Gaussian assumption is wrong. 

6.2.5 Statistical Analysis  

To evaluate the significance of homogeneity as a biomarker for early detection 
of OA and for separating the group of healthy subjects from those having OA, 
the knees were divided in groups based on the KL index; and using the 
unpaired student t-test, P-values for separating the groups based on entropy 
were calculated. A 0.05 level was used throughout the paper for statistical 
significance. The significance levels were computed for entropy measured on 
medial tibial cartilage sheet and then compared to the significance levels of 
separating the same groups using the cartilage volume quantification.  
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6.2.6 Cartilage Region Partitioning 

The quantification of homogeneity and the statistical analysis used for 
evaluating the significance of discrimination of healthy and OA subjects is 
described above where the cartilage is considered as one single region. The 
following presents an algorithm for partitioning the cartilage yielding the 
region of interest with most statistical, discriminatory power – i.e. the region 
that best distinguishes healthy from OA subjects. The algorithm is un-biased 
in the sense that no anatomical knowledge of the surrounding anatomical 
structures is incorporated.  

The partitioning algorithm consists of two phases, a cartilage division phase 
and a block-shrinking phase. In the division phase each cartilage was sliced in 
squared blocks (see Figure 6.1(a)) by mapping each cartilage sheet on a 
rectangular grid where the dimensions of the grid were determined by the 
height and width of the cartilage sheet. The number of rows and columns 
determine the size of each block. This grid ensures that a particular block 
corresponds to approximately the same anatomical area across all the 
cartilage sheets. As an example, Figure 6.1(a) shows a division of 16 blocks 
(resolution 4 x 4) on a sample cartilage.  

The block-shrinking phase searches for the region of interest – given by a set 
of blocks – most indicative of the pathology of the disease. This “importance” 
of a set of blocks is determined by the significance (p-value) of the separation 
of healthy from OA subjects based on entropy. In principle, all possible block 
sets could be tested. However, for small block sizes, the number of possible 
combinations makes exhaustive evaluation infeasible.  

 

Figure 6.1: Illustration of the partitioning algorithm for resolution 4 x 4 (a) Cartilage division
phase (b) Inserting boundary blocks in the queue (c) Partitioned cartilage. (d-f) Regions
partitioned by the algorithm on a sample cartilage under different resolutions. The areas
shaded in light gray are the partitioned regions (of high homogeneity discrimination). We can
see that these regions are more towards the non-central regions of the cartilage. (d) resolution
5 x 5 (e) 10 x 20 (f) 80 x 140.  
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Therefore, the block-shrinking phase starts with the entire cartilage sheet 
included in the region of interest, and then shrinks the region of interest by 
excluding those that increase the discriminatory power. The shrinking is done 
by iteratively evaluating whether the blocks at the periphery of the provisory 
region of interest should be excluded – this is done by comparing the 
discriminatory power of the two sets where the block is either included or 
excluded. Whenever a block is excluded, the periphery of the current region 
of interest changes, and new blocks are to be inspected. This process is 
illustrated in Figure 6.1 (a-c) for large blocks. In Figure 6.1(d-f) the results of 
applying the algorithm with decreasing block size is illustrated.  

With small blocks a huge number of possible resulting regions of interest 
exist. Thereby, there is a risk of over-fitting the solution to the training data – 
i.e. optimizing the region of interest to fit irrelevant details in the training data 
that are unlikely to appear in other groups. This is very likely to occur with 
relatively small training sets. Therefore, the generalizability (the ability to 
generalize to other populations) ability must be evaluated.  

To evaluate the generalization ability of the algorithm, the original set of 283 
knees randomly in was divided into two subsets, the training set and the test 
set, such that the KL distribution of each set resembled the original set. The 
training set consisted of 141 knees. The partitioning algorithm was evaluated 
on the training set and then the resulting region of interest was evaluated on 
the test set. The correspondence between the significance levels of 
homogeneity (measured by the p-value) for the training and test sets 
determined the generalizability of the algorithm.  

In case of low generalizability, implying over-fitting, this problem can often 
be solved by regularization of the region of interest.  Thereby, the region is 
enforced to be more regular and simpler – which lowers the ability to model 
minor (likely irrelevant) details and therefore often increases the 
generalizability.  

Three different regularization approaches were evaluated for their ability to 
enforce generalizability. The first approach regularized the region using 
geometric curve evolution by iterating the median filter (Cao, 2003). The 
second approach utilized binary morphological filtering on the region 
(Gonzalez and Woods, 2002). Both are standards approaches used in image 
processing to simplify regions. 

The third approach regularized the region of interest in two steps. It utilized a 
combination of simple binary morphological processing and a statistical 
methodology known as bootstrapping. Bootstrapping is a simple but 
powerful Monte Carlo method to assess statistical accuracy or to estimate a 
distribution from statistics from few samples (Efron and Tibshirani, 1993). For 
the bootstrap regularization method, the 283 knees were first divided in a test 
set of 142 knees and a training set of 141 knees. From the training set, a set of 
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70 knees was sampled while keeping the KL distribution similar to the 
original set. Then the partitioning algorithm was applied and the resulting 
region was pre-regularized using morphological filters (closing followed by 
opening, each with a 3x3 filter) giving a certain region of interest. This step 
was repeated 1000 times, each time taking a new, random set of 70 knees from 
the training set. The 1000 resulting regions were added together to form the 
Vote Map – where each block had a number of votes determined by how many 
of the 1000 trials included that block in the resulting region of interest. This 
Vote Map gives an estimate where the bootstrapping regularization simulates 
a much larger training set and thereby ensures regularization. The Vote Map 
was then finally thresholded at 500 to give the region of interest included in 
the majority of the random trials. 

The region of interest resulting from the bootstrap regularization was 
evaluated on the test set of 142 knees. We compared the resulting p-value 

 

 

Figure 6.2: Comparison of (a) Entropy: 114 knees and (b) Entropy: 169 knees. Comparison of 
(c) Volume and (d) Entropy as a function of the KL index for 283 knees.  Entropy measure can 
separate healthy group from KL 1 much significantly then volume quantification. Moreover it 
can also separate healthy group from OA. 
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with the significance of not using the partitioning algorithm (using the entire 
cartilage sheet) on this set. 

The bootstrap regularized region of interest was also tested for its ability to 
discriminate healthy from early OA (KL 0) on the basis of homogeneity. The 
overall precision of the methods was assessed using the test-retest root mean 
squared Coefficient of Variation  (RMS-CV%) of the entropy values (Gluer et 
al., 1995). For each subject, the CV is defined as the standard deviation of a 
series of experiments divided by the mean.  The overall CV is expressed as an 
RMS of the subjects CVs.  

6.3 Results 

6.3.1 Cartilage Volume and Homogeneity  

Figure 6.2(a) shows cartilage homogeneity as a function of the KL index for 
the old data set of 114 knees and Figure 6.2(b) shows it for the new set of 169 
knees. The first two columns of Table 6.2 list the p-values for the two datasets 
respectively.  

From the 283 (combining the above two data sets) automatically segmented 
un-partitioned cartilage sheets we quantified cartilage volume and cartilage 
entropy. 

Cartilage volume was computed as described in materials and methods. As 
presented in Figure 6.2(c), the cartilage volume measure was able to separate 
healthy from KL 1 and healthy from the diseased ( ‐36 10P = ×  (KL 0 vs KL 1), 

‐67 10P = ×  (KL 0 vs KL > 0)). However, when compared to homogeneity the 
significance levels were not so impressive. 

 

 

Figure 6.3: (a) and (b) shows the same knee (resolution 80 x 140) but with two different
executions of the partitioning algorithm on an independent data set of 141 knees. We can see
that after morphological processing the two regions are still different. We need a
regularization technique that enables us to have one generalized region that could point with
much confidence to the disease modifying regions. 
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As presented in Figure 6.2(d), the quantification of cartilage homogeneity by 
entropy was able to clearly separate healthy from OA subjects ( ‐71 10P = × ). 
Furthermore, entropy was also able to separate healthy from KL 1 subjects 
( 52 10P −= × ).  

The P-values for the measures in separating the different groups using the 
medial tibial compartment are summarized in Table 6.2. The precision of 
automatic cartilage volume quantification was a RMS-CV% of 7.4% 
respectively. In contrast, the RMS-CV% for entropy was 3.0%.  

6.3.2 Cartilage Partitioning 

Figure 6.1(d-f) illustrates on a sample tibial medial cartilage the region 
obtained as a result of executing the partitioning algorithm without 
regularization on the set of 283 knees using different block sizes. The figure 
also shows the p-values for each region of interest at the different resolutions. 
The resolution 80 x 140 was chosen such that the algorithm was executed at 
sub-voxel level (the mean dimensions of the medial tibial cartilage sheets 
were 40 x 70 voxels). Table 6.3 summarizes the generalizability results of the 
algorithm for the test and train sets on different resolutions for three random 
trails. For large block sizes (5x5 and 10x20) there is no over-fitting. For small 
blocks (80x140) there is severe over-fitting as the train and test p-values 
differs by several orders of magnitude. 

The results for the first two regularization techniques (morphological 

Table 6.2: P-values for separating KL 0 from KL 1 and KL 0 from KL > 0 

Type  Entropy 
(114 knees) 

Entropy 
(169 knees) 

Volume 
(283 knees) 

Entropy 
(283 knees) 

Entropy Partitioned 
(283 knees) 

KL 0 vs KL 1  3 x 10‐3  2 x 10‐3  6 x 10‐3  2 x 10‐5  5 x 10‐9 
KL 0 vs KL > 0  8 x 10‐4  4 x 10‐5  7 x 10‐6  1 x 10‐7  1 x 10‐15 

* Values are mean ±  SD. KL refers to the Kellgren and Lawrence Index 

 

Figure 6.4: (a) Combination of morphological processing and bootstrapping. The Vote Map
after 1000 randomised trials (b) Vote Map thresholded at 500 (c) The same knee from Fig. 3
(resolution 80 x 140) but after regularization. 



Identification of a Superior ROI Co-localised with a Major Risk Factor for 
Osteoarthritis  

49

processing and geometric curve evolution) and are not shown as they failed in 
reducing the train-test error. As an illustration, Fig. Figure 6.3(a-b) shows the 
partitioned regions obtained from executing the algorithm on two different, 
non-overlapping, random datasets (141 knees each) and then regularizing 
them by applying morphological processing. The difference in the resulting 
regions of interest demonstrates the lack of generalizability. 

Figure 6.4 illustrates the results for the third technique of bootstrap 
regularization. Figure 6.4(a) shows the Vote Map for the 80 x 140 resolution 
and Figure 6.4(b) shows the resulting region of interest (the thresholded map). 
Figure 6.4(c) also shows the region of interest in a sample knee cartilage sheet. 
Table 6.3 (last row) demonstrates the generalizability for this regularization 
method. The resulting p-values for train and test sets are very similar, and 
demonstrate no over-fitting. Table 6.4 lists the p-values when evaluating the 
significance of the region on the validation set.  

Finally, Table 6.2 (last column) shows the p-values for separating the different 
groups when using the regularized region of interest on the full set of 283 
knees. The precision of homogeneity for this region assessed, as a test-retest 
root mean square coefficient of variation (RMS-CV%) was 3.3%. 

6.4 Discussion 

These data validated the use of the novel parameter “cartilage homogeneity” 
on an independent population. The results supported that homogeneity, 
measured by entropy, is superior to other techniques in detecting early OA, as 
KL1 was significantly separated from KL0 – which is likely not so impressive 
using traditional techniques such as thickness and volume assessments. We 
further investigated the potential of the cartilage homogeneity techniques, 
and identified superior regions of interest that allowed for even better 
separation of healthy and OA individuals.  

Table 6.3: Generalizability evaluation of the partitioning algorithm 
(Table lists the p-values for three different random trials) 

Resolution  1  2  3 
  Train  Test  Train  Test  Train  Test 
5 x 5  3 x 10‐6  9 x 10‐7  1 x 10‐5  1 x 10‐6  4 x 10‐5  4 x 10‐7 
10 x 20  7 x 10‐8  5 x 10‐7  9 x 10‐9  5 x 10‐9  1 x 10‐9  8 x 10‐7 
80 x 140  1 x 10‐12  1 x 10‐6  1 x 10‐15  1 x 10‐5  3 x 10‐15  4 x 10‐4 
Regularization 
(80 x 140) 

4 x 10‐8  7 x 10‐9  4 x 10‐8  5 x 10‐9  5 x 10‐9  7 x 10‐8 

Table 6.4: Bootstrap Regularization using the Vote Map 
(P‐values for the evaluation set of 142 knees) 

Type  p‐value 
Whole cartilage  0.0002 
Regularized  0.000009 
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The results on the region of interest resulting from the partitioning algorithm 
demonstrate that – using homogeneity discrimination as the basis – a region 
of interest with a better, statistical separation of healthy and OA subjects is 
possible. In order to facilitate a region of sufficient detail to allow any feasible 
physiological interpretation related to the anatomy, a small block size in the 
partitioning is needed. However, the generalizability evaluation showed that 
as the block size went to voxel size or below, over-fitting was a problem. The 
immense number of possible block set combinations compared to the 
relatively small population allows adaptation to irrelevant details in the 
population and thereby ruin the ability to generalize to other populations (as 
shown in Table 6.3 for the non-regularized 80x140). To solve this problem, a 
bootstrap regularization scheme was introduced. The results show the 
regularization succeeds in eliminating over-fitting and ensures 
generalizability (as shown in Table 6.3, bottom row). The resulting region is 
illustrated in Figure 6.4(b) and Figure 6.4(c). We can see that the region is 
relatively simple, smooth and connected in few components.  

The results (Table 6.2) show that when applying the region of interest from 
the bootstrap regularized partitioning (Figure 6.4(c)), the separation of healthy 
and OA subjects based on homogeneity is stronger than when using the entire 
sheet ( 151 10P −= ×  compared to 71 10P −= × ) and far superior to volume 
quantification ( 67 10P −= × ). Furthermore, even if the region of interest is 
relatively small, the precision of the quantification is still comparable to the 
quantification from the full sheet (RMS CV 3.3% compared to 3.0%). For 
separation of healthy from early OA (KL 1), the bootstrap regularized region 
of interest is also stronger than when using the full sheet ( 95 10P −= ×  
compared to 52 10P −= × ).  

The effectiveness of the homogeneity quantification may be related to 
biochemical changes within the cartilage. During the early stages of OA, 
before cartilage destruction in terms on traditional volume assessment, there 
is altered proteoglycan distribution and disruption of the collagen framework. 
This is the consequence of chondrocytes which responds to altered material 
properties by compensation through overproduction of proteoglycans 
(Adams and Brandt, 1991; Braunstein et al., 1990; Myers et al., 1990), and in 
part through uncoiling of the remaining proteoglycan molecules which 
increase their negatively charged domain which in turn increases their 
hydrophilic nature thereby leading to an increase of water (Hollander et al., 
1994; Jeffrey and Watt, 2003; McCauley and Disler, 1998) – and thereby 
swelling of the cartilage (edema). On the T1 MR scans an increase of water 
leads to a decrease in the average signal intensity as water appears darker 
than healthy cartilage in T1 weighted MR (Disler et al., 2000). Thereby the 
cartilage at the early stages of OA (KL 1) appears darker, and at the same time 
more homogeneous (having lower entropy). Thus cartilage loss is only 
secondary to important biochemical changes in the articular cartilage.  
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Previous studies have shown that during OA the cartilage is not affected 
uniformly. In one study it was shown that cartilage lesions located in the 
central region of the medial compartment are prone to more rapid 
progression of cartilage loss than cartilage lesions in the anterior and posterior 
portions of the medial compartment (Biswal et al., 2002).  The region of 
interest resulting from the bootstrap regularized partitioning based on 
homogeneity results was far from corresponding to the central, load-bearing 
part of the cartilage - rather it outlines the peripheral part of the cartilage. We 
believe that the region that is being partitioned corresponds to the cartilage 
covered by the meniscus (Figure 6.4(c)). The menisci are wedge shaped 
cartilages that are interposed between the femoral condyles and the tibial 
plateau. The meniscus helps in stabilizing and assisting in the distribution of 
large loads across the joint (Messner and Gao, 1998).  Several studies have 
highlighted the importance of the meniscus in the development of OA. It has 
been shown that damage and loss to the meniscus affects the articular 
cartilage as shown by the increased risk of developing OA after meniscectomy 
(Bennett and Buckland-Wright, 2002). Furthermore, it was recently shown 
that meniscal tears and extrusions appear to be associated with progression of 
knee osteoarthritis (Berthiaume et al., 2005). Additionally Hunter et al have 
shown a strong association between meniscal tears and cartilage loss (Hunter 
et al., 2006). It has also been shown that there is considerable difference in the 
mechanical properties, e.g. load bearing, of the cartilage covered by the 
meniscus and the central region not covered by it (Thambyah 2006).  

Our automatic approach partitioned the region on the cartilage based on the 
only condition that the region was statistically most significant in separating 
groups of healthy subjects versus OA based on homogeneity. It is imperative 
to note that the partitioning was done without any prior knowledge of the 
meniscus.  Thereby our results support the fact that the meniscal region might 
be informative when evaluating the disease. Furthermore this region might 
also be informative when monitoring early OA, as the region has proved to be 
quite significant when separating groups of healthy subjects from early OA 
(Table 6.2). It should be noted here that the region was partitioned while 
minimizing the p-value for separating groups of healthy subjects from those 
having OA, therefore the fact that it could also significantly separate early OA 
further highlights the importance of the region. 

Highly interesting, this cross sectional study does not rule out that increased 
homogeneity is a genetic disposition for early OA. This observation is further 
nurtured by the fact that entropy seem to be indistinguishable between KL1 
through 3, albeit they all were significantly different from the group of 
healthy. This important question may be related to many assessment 
techniques by MRI with more focus on cartilage quality than traditional 
cartilage loss estimated by volume interpretations, and may thereby be 
related to intrinsic properties of cartilage quality and predisposition for OA. 
Longitudinal studies are needed to validate this novel homogeneity as a 
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measure for early OA, in which the possible progression needs to be 
established. 

In conclusion, the use of cartilage homogeneity measured by entropy for 
detection and quantification of early OA and as an inclusion criterion of 
patients in longitudinal clinical trials could prove valuable and may thereby 
eventually aid in improving treatment efficacy. Probing the meniscal region 
might provide valuable clues in the prevention, early detection and treatment 
of OA. 
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A Variational Method for Automatic 
Localization of the most Pathological ROI 
in the Knee Cartilage 
Arish A. Qazi, Erik B. Dam, Marco Loog, Mads Nielsen, Lauze.F, and Claus 

Christiansen. In Proceedings of SPIE Medical Imaging, 2008. 

Abstract 

steoarthritis (OA) is a degenerative joint disease characterized by 
degradation of the articular cartilage, and is a major cause of disability. 
At present, there is no cure for OA and currently available treatments 

are directed towards relief of symptoms. Recently it was shown that cartilage 
homogeneity visualized by MRI and representing the biochemical changes 
undergoing in the cartilage is a potential marker for early detection of knee 
OA. In this paper, based on homogeneity we present an automatic technique, 
embedded in a variational framework, for localization of a region of interest 
in the knee cartilage that best indicates where the pathology of the disease is 
dominant. The technique is evaluated on 283 knee MR scans. We show that 
OA affects certain areas of the cartilage more distinctly, and these are more 
towards the peripheral region of the cartilage. We propose that this region in 
the cartilage corresponds anatomically to the area covered by the meniscus in 
healthy subjects. This finding may provide valuable clues in the pathology 
and the etiology of OA and thereby may improve treatment efficacy. 
Moreover our method is generic and may be applied to other organs as well. 

Keywords—Image Processing, Segmentation, Level-Sets, Osteoarthritis, Knee 
Cartilage, MRI. 
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7.1 Introduction 

Osteoarthritis (OA) is a degenerative joint disease that is a major cause of 
disability. Degeneration of the articular cartilage in combination with an 
altered subchondral compartment are key features of OA (Conaghan et al., 
2006; Ding et al., 2005). At present there is no cure for OA as no drugs have 
been consistently shown to modify joint structure or even reverse joint 
pathology in face of the currently available treatments, that are directed 
towards relief of symptoms (Altman, 2004). Research is on going to discover 
disease-modifying anti-osteoarthritis drugs/agents (DMOADs) (Abadie et al., 
2004). However to assess the effectiveness of DMOADs we need to monitor 
and quantify the structural changes undergoing in the cartilage.  

The current accepted standard for diagnosing knee OA and monitoring 
progression is measurement of the joint space width (JSW) (between the 
femur and tibia on the knee joint) from radiographs (Altman et al., 1996). This 
is an indirect evaluation as the cartilage is not visible in x-rays and is also 
potentially prone to diagnosing the disease relatively late in its course (Calvo 
et al., 2001). Recently, magnetic resonance imaging (MRI) has received much 
attention in assessment of the articular cartilage. This can be primarily 
attributed to the fact that MRI is non-invasive, provides excellent soft tissue 
contrast, high spatial resolution and moreover the articular cartilage can be 
directly visualized and quantified non-invasively from the MR scans 
(Eckstein et al., 2006; Pessis et al., 2003). Quantitative measurements from MRI 
like cartilage volume and thickness measures are now being widely used to 
monitor progression of OA (Dam, 2006; Folkesson et al., 2007a; Pakin et al., 
2002; Solloway et al., 1997). 

However, cartilage loss is only secondary to important biochemical changes 
in the articular cartilage (AlHadlaq et al., 2004; Calvo et al., 2001; Calvo et al., 
2004; Maiotti et al., 2000). Recently, a novel approach for cartilage assessment 
from MRI was introduced, Cartilage Homogeneity (Qazi et al., 2007c), which 
was based on the distribution of signal intensities inside the cartilage 
compartment and was affected by the changes in cartilage water content. 
Homogeneity performed statistically better than other measures specifically 
volume quantification in detecting early OA and, for separating groups of 
healthy subjects from those having OA (Qazi et al., 2006). The technique was 
preliminarily evaluated on 114 knees.  

The knee is loaded asymmetrically (Biswal et al., 2002), where the medial 
compartment of the knee is subject to significantly higher loads relative to the 
lateral compartment which results in loss of cartilage integrity in the central 
regions of the medial compartment compared to other regions (Amin et al., 
2005; Biswal et al., 2002). Thereby, quantification of cartilage thickness is 
therefore probably most effectively performed in the central weight-bearing 
regions in the tibio-femoral joint, as they are subjected to most of the load 
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over the gait cycle (Koo et al., 2005). However, these studies focus on the 
cartilage loss, which is secondary to the internal biochemical changes. 

In this paper, we investigate whether internal structure, as measured by 
cartilage homogeneity, would identify the load-bearing region or alternative 
regions of interest, as the most dominant, pathological region for 
discriminating healthy from OA subjects. For this purpose as a first step we 
present an un-biased statistical framework for localization of a ROI. Next, for 
the ROI to be simple and anatomically plausible it is then embedded in a 
variational setting to result in a region that represents the most implicated 
regions in the cartilage.  

To our knowledge there has been no study made to date, which involves a 
fully automatic system for localization of a ROI in the knee cartilage. 
However variational techniques are quite popular in image segmentation. 
Pioneering works in this field include (Chan and Vese, 2001b; Mumford and 
Shah, 1985; Zhu and Yuille, 1996) notably the work by Mumford and Shah. In 
recent years variational segmentation techniques have often been based on 
level sets (Osher and Sethian, 1988) which offer many advantages, among 
others the implicit representation of regions and their contours. For the same 
reason the framework presented in this paper will make use of level sets. 

7.2 Materials and Methods 

This section outlines the data acquisition protocol, followed by quantification 
of cartilage homogeneity and the method for localization of a ROI.  

7.2.1 Imaging and Cartilage Segmentation 

For details refer to Chapter 6, Section 6.2. 

7.2.2 Localizing the ROI 

Localization of the ROI is a multi-step process where each of the individual 
steps is outlined below: 

7.2.2.1 Partitioning the Knee Cartilages 

In this step, each cartilage sheet is partitioned in squared blocks along the 
axial plane. A prerequisite to this step is that all cartilages must be aligned. 
This is achieved by mapping each cartilage on a rectangular grid where the 
dimensions of the grid are determined by the height and width of the 
cartilage sheet. This grid ensures that a particular block corresponds to 
approximately the same anatomical area across all the cartilages.  

This step can be thought as stacking the cartilage sheets on top of each other 
vertically and then cutting them from top to bottom. In principle the cartilages 
could also be aligned using non-rigid registration techniques however due to 
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the small size of the cartilage (few mm thick) and the unknown cartilage loss 
in diseased subjects this step might not be so trivial, therefore to begin with 
we settle for a simpler approach. 

The size of each block is determined by the desired resolution. As an example, 
Figure 7.1(a) shows a partition of 16 blocks (resolution 4× 4) on a sample 
medial tibial cartilage sheet.  

7.2.2.2 Block-Labeling 

The block-labeling step searches for the ROI – given by a set of blocks – most 
indicative of the pathology of the disease. In this paper, we propose the 
“importance” of a set of blocks to be determined by the statistical significance 
of cartilage homogeneity in separating healthy subjects (KL 0) from the 
diseased (KL > 0). The phase starts with the entire cartilage sheet included in 
the ROI, and then shrinks the ROI by excluding blocks such that the 
significance of homogeneity increases.  

In principle, all possible block sets could be tested. However, for small block 
sizes, the number of possible combinations makes exhaustive evaluation 
infeasible. 

Therefore to be computationally feasible and to have an un-biased ROI the 
shrinking is done by randomly picking a block and evaluating whether 
removing it leads to an increase in the significance of homogeneity. The block 
is excluded from the ROI whenever the significance increases. The algorithm 
randomly evaluates the blocks until the number of iterations T has been 
reached. In this way a block can be evaluated a number of times thus having a 
more robust and un-biased estimate.  

7.2.2.3 Block Significance: Statistical Power Analysis 

The significance of a block is determined by the statistical power. Statistical 
power is a measure of the ability (given as a probability) of a statistical test to 
reject a false null hypothesis H0: that two groups (healthy and diseased 
subjects in our case) have the same distribution, therefore there is no 
difference between them (Eng, 2003). Typically the purpose of power analysis 
is to estimate the number of individuals N (or the sample size) that will be 
required to give adequate power level when conducting a clinical trial. This is 
very crucial as a larger sample size implies more burden both in terms of cost 
and time. Therefore a feature that requires fewer individuals to indicate a 
statistical difference between groups such as healthy and diseased would be 
preferred.  

Thereby we use the sample size estimate to find the ROI in the cartilage that 
requires the least number of individuals based on homogeneity. The 
estimation of sample size depends on the following parameters (assuming 
that both distributions follow a Gaussian; if not then a non-parametric test can 



Localization of the most Pathological ROI in the Knee Cartilage 
  

57

be used): minimum expected difference between the different groups D (also 
known as the effect size), estimated measurement variability 2σ , desired 
statistical power β , significance criterion α , and whether the test is one-or 
two-tailed. Usually sample size N  is computed with a β = 0.8, α = 0.05, and a 
two-tailed test (Eng, 2003).  

The process is illustrated in Figure 7.1(a-c) for large blocks. Figure 7.1(d-f) 
illustrates the outcome of the algorithm with decreasing block size. In all the 
experiments 30000,T =  this ensures that each block is inspected a number of 
times in order to determine whether it should be included.  

The resolution 80×140 is chosen such that the algorithm is executed at sub-
voxel level (the mean dimensions of the medial tibial cartilage sheets are 
40×70 voxels).  

7.2.2.4   Regularization for Generalization and Plausibility of the ROI 

The ROI should bear two characteristics. Firstly, it should generalize to un-
seen data i.e. it should not fit to irrelevant details of a particular dataset that 
are unlikely to appear in other groups. Secondly, it should be regular enough 
to be anatomically plausible.   

To evaluate whether the region is generalizable the original set of 283 knees is 
randomly divided into two subsets, the train set and the test set of 141/142 
knees respectively. The algorithm (for a particular block size) is evaluated on 
the train set and then the resulting ROI is evaluated for a sample size estimate 
on the test set. This step is repeated a number of times, each time taking a 
different train-test pair. The variation of sample size on the test set determines 
how stable or generalizable the solution is. The second characteristic is 
evaluated more by visual inspection, as it is difficult to evaluate the simplicity 
and the anatomical plausibility of the region otherwise.  

In case the ROI does not adhere to the two characteristics, it is then 
regularized by embedding it in a variational setting. Thereby, the region is 
enforced to be simpler and more regular which lowers the ability to model 
minor (likely irrelevant) details and often increases the generalizability.  

Let I be the set of images, Ω  (having same dimensions as V) be the 
regularized ROI and V be a probability distribution map stating the 
probability of a block being inside the ROI. The probability of finding Ω  
given V, I is by ( | , )P V IΩ . Let the relation I V→ →Ω  hold due to the Markov 
Assumption which states that values in any state are influenced only by the 
values in the state that directly precedes it. Thus state V implies that we 
cannot extract more information from the images I then what is already 
present in V. We assume that V is a probability map which tells us how 
probable a certain block is in tracking the pathology of the disease. The ROI is 
regularized by segmenting V in a variational setting. Segmenting V can be 
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expressed in the framework of Bayesian inference by maximizing the 
conditional probability  
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The denominator in (7.1) does not depend on the estimated quantities and 
therefore can be neglected in the maximization. Additionally to be 
computationally more feasible we assume that the probabilities in V are 
mutually independent (a commonly used assumption). The first term in the 
numerator can be written 
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where D is the total number of blocks. This conditional probability can be 
interpreted as the goodness of fit, of Ω  to V.  Additionally we have 
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where 1xΩ =  is a block belonging to the ROI. Let 1Ω  represent these blocks 
and 2Ω  represent the blocks for which 0xΩ = . Thus we can write 
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Figure 7.1: Illustration of different steps of the algorithm (4×4). (a) Cartilage partitioning. (b) 
After 15 iterations of block labeling. (c) After T iterations. (d-f) Un-regularized ROI localized in 
a sample cartilage under different resolutions from 283 knees. The areas shaded in light gray 
belong to the ROI. (d) Resolution 5×5. (e) 10×20. (f) 80×140. 
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We assume the second term in the numerator i.e. the prior probability to only 
depend on the length of the boundary C separating the two regions ( 1Ω , 2Ω ) 

 ( ) ( )expP Cα υΩ −  7.5 

Taking the above into account, the a posteriori segmentation probability of Ω  
given the vote map V is determined by  
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Equivalently, one can minimize the negative logarithm of the above 
expression which is given by the energy functional   
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For minimizing this energy a level set function is introduced. Level sets yield 
a nice representation for functions and their boundaries and can describe 
topological changes in the segmentation permitting the splitting and merging 
of the contour (Osher and Sethian, 1988). 

Let boundary C in the functional (9) be represented as the zero level set of a 
function : Rϕ Ω→ with ( ) 0xϕ >  for 1x∈Ω  and ( ) 0xϕ <  for 2x∈Ω . We also 
introduce the Heaviside function ( )H ϕ   
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The energy can now be written 

 

 

Figure 7.2: (a) Variational regularization: Vote Map (L = 1000). (b) ROI from the Vote Map. (c) 
Regularized ROI (resolution 80×140) in a sample knee. 



Localization of the most Pathological ROI in the Knee Cartilage 
 

60
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The minimization can now be performed using a gradient descent equation 
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where ( )H ϕ′  is the derivative of the Heaviside function (also known as the 
dirac function).  

This functional (7.8) is then utilized to localize the regularized ROI from V. 
The technique above assumes the existence of V. V is computed by employing 
a statistical methodology known as bootstrap. Bootstrap is a simple but 
powerful Monte Carlo method to assess statistical accuracy or to estimate the 
sampling distribution from limited information (Efron and Tibshirani, 1993). 
For this, the data set is first divided in a train and a test set of 141/142 knees 
respectively. From the train set, a subset of size K  is repeatedly drawn with 
replacement. Then the algorithm from above is executed on this set and the 
resulting ROI is stored. This step is repeated L number of times (where L is a 
large number, typically at least equal to 1000), each time taking a new, 
random subset from the train set. The L resulting ROI maps are added 
together to form the Vote Map or V – where each location x has a number of 
votes determined by how many of the L trials included block x.  

Figure 7.2(a) shows a sample Vote Map (L = 1000) which is generated by 
sampling a subset of K = 70 knees from the train set while keeping the KL 
distribution similar to the original set.  

7.3 Results  

We begin by evaluating the initial ROI for the two characteristics. Then we 
show how the variational framework helps in regularizing the ROI. 

7.3.1 Generalization and Anatomical Plausibility 

Table 7.1 summarizes the generalization results of the algorithm using 
different block sizes, showing the average and the variation for the randomly 
sampled train and test sets. The average shows that as we go to finer 
resolutions we get a better sample size estimate-however the large variation 
of the test set shows that the ROI is not stable enough to be able to generalize 
to un-seen data. From visual inspection (Figure 7.1(c-f)) the ROI is not regular 
enough to be anatomically plausible. 

Therefore, to minimize the variation and increase the anatomical 
correspondence the ROI is regularized. 
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7.3.2 Regularization of the ROI 

We chose the 80× 140 resolution for regularization as a result of minimum 
variation on the test set. Figure 7.2 illustrates this regularization technique for 
a sample train set. Figure 7.2(a) shows the Vote Map for the 80× 140 resolution 
and Figure 7.2(b) shows the regularization contour in the Vote Map. Fig. 3(c) 
shows the resulting regularized ROI in a sample knee cartilage sheet. Table 
7.2(row 3) demonstrates the generalizability for this regularization method. It 
shows that with regularization we were able to decrease the sample size 
estimate of the test set along with the reduced variation. Additionally, from 
visual inspection the ROI is much more regular than for e.g. from Figure 
4.1(f).  

7.4 Conclusions 

The results on the region of interest resulting from the localization algorithm 
demonstrate that – using homogeneity discrimination as the basis – a region 
of interest with a better, statistical separation of healthy and OA subjects is 
possible. In order to facilitate a region of sufficient detail to allow any feasible 
physiological interpretation related to the anatomy, a small block size is 
needed. However, the immense number of possible block set combinations 
compared to the relatively small population allows adaptation to irrelevant 
details in the population and thereby ruins the ability to generalize to other 
populations (as shown in Table 7.1). To solve this problem, a regularization 

Table 7.1: Generalizability evaluation of the algorithm without regularization 
(The sample size estimates for 100 different random trials.) 

 
Resolution  Train (141 knees) 

(mean ± sd) 
Test (142 knees) 
(mean ± sd) 

1× 1  93 ± 49  89 ± 55 
2× 1  86 ± 42  95 ± 56 
3× 3  55 ± 20  75 ± 38 
5× 5  43 ± 15  76 ± 35 
10× 20  23 ± 06  56 ± 29 
20× 40  18 ± 05  56 ± 28 
80 × 140  14 ± 04  56 ± 27 

Table 7.2: Sample size evaluation of the regularized ROI 

 
Resolution  Train (mean ± SD)  Test (mean ± SD) 
1× 1/Full cartilage  79 ± 5  76 ± 5 
80× 140 (un‐regularized)  13 ± 3    55 ± 13 
80× 140 (regularized)  20 ± 2  46 ± 2 
Load‐Bearing  177 ± 35  171 ± 36 
Meniscus    69 ± 13    65 ± 10 

*Due to high CPU requirements the results are shown as an average of 3 different random trials. Calculation of 
one Vote Map (L = 1000, T = 30000) using 22 processors takes approximately 72 hours. 
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scheme is introduced. The results show the regularization succeeds in 
eliminating over-fitting and ensures generalizability (as shown in Table 7.2, 
row 3). The resulting region is illustrated in Figure 7.2(b) and Figure 7.2(c). 
We can see that the region is relatively simple, smooth and connected.  

Previous studies have shown that during OA the cartilage is not affected 
uniformly. In one study it was shown that cartilage lesions located in the 
central region of the medial compartment are prone to more rapid 
progression of cartilage loss than cartilage lesions in the anterior and posterior 
portions of the medial compartment (Biswal et al., 2002).  The region of 
interest resulting from the bootstrap regularized partitioning based on 
homogeneity results was far from corresponding to the central, load-bearing 
part of the cartilage - rather it outlines the peripheral part of the cartilage. We 
believe that the region that is being partitioned corresponds to the cartilage 
covered by the meniscus (Figure 7.2(c)). The menisci are wedge shaped 
cartilages that are interposed between the femoral condyles and the tibial 
plateau. The meniscus helps in stabilizing and assisting in the distribution of 
large loads across the joint (Messner and Gao, 1998).  Several studies have 
highlighted the importance of the meniscus in the development of OA. It has 
been shown that damage and loss to the meniscus affects the articular 
cartilage as shown by the increased risk of developing OA after meniscectomy 
(Bennett and Buckland-Wright, 2002). Furthermore, it was recently shown 
that meniscal tears and extrusions appear to be associated with progression of 
knee osteoarthritis (Berthiaume et al., 2005).  

Our automatic approach partitioned the region on the cartilage based on the 
only condition that the region was statistically most significant in separating 
groups of healthy subjects versus OA based on homogeneity. It is imperative 
to note that the partitioning was done without any prior knowledge of the 
meniscus.  Thereby our results support the fact that the meniscal region might 
be informative when evaluating the disease. 

Additionally, Table 7.2 (rows 4-5) shows that if we analyze manual 
delineations of the central weight bearing and meniscal regions of the 
cartilage then the latter performs better thereby indicating that the meniscal 
region is informative. Moreover our approach localizes the region 
automatically and with a better performance level.  

Our technique might also be applicable in delineating or regularizing a ROI in 
other organs. As a regularizer, for example, it can be utilized for spatial 
regularization of activation maps acquired from functional Magnetic 
Resonance Imaging (fMRI). Due to a low signal-to-noise ratio (SNR) in fMRI, 
the activation map consists of noise in the form of a number of scattered small 
islands. In recent years a few methods have been developed to regularize the 
noise present in these activation maps (Ou and Golland, 2005).  
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However as we will see that in contrast to our regularization approach these 
methods operate on patient specific activation maps and therefore may not be 
so general. It might also be interesting to probe our algorithm in localization 
of a ROI in the brain (for e.g. using annotated brain MR scans and suitable 
feature(s)) and compare that to the activation maps acquired using fMRI.  

In conclusion, the use of the method for finding the most implicated region 
could prove valuable and may thereby eventually aid in improving treatment 
efficacy. Future work aims at investigating to what extent our current 
regularization approach can benefit from incorporating learning techniques 
from data mining and machine learning into the regularization functional.  
Possibly this would provide improved means to come to an accurate 
definition of a biologically relevant ROI. 
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Identifying Regions of Difference for 
Sample Size Minimization 
Arish A. Qazi, Erik B. Dam, Marco Loog, and Mads Nielsen. [in review]. 

Abstract 

his paper attempts to answer, “where?”, in the context of a disease 
affecting a human organ. For this purpose, we propose a fully automatic 
statistical framework for identifying biologically interpretable regions of 

difference between two groups of biological objects. The method is built upon 
an energy minimization scheme, which finds the regions by minimizing the 
sample size required to measure the difference between the two groups. The 
method has been evaluated on synthetic data and clinical data from knee 
MRI. Based on quantifications from both morphometric and textural based 
imaging features we have identified the most pathological regions in the 
articular cartilage. We show that measurements from the resulting regions are 
reproducible and are able to generalize to unseen data; we achieve a 19 – 51% 
reduction in sample size. A reduction in sample size is highly desirable for 
clinical studies, since this reduces the number of participants, which translates 
to reduced costs and less patient burden. Additionally, identification of such 
regions can improve the clinical understanding of biological processes 
involved in the pathogenesis of a disease.  

Keywords—Cartilage, Osteoarthritis, Regions of Difference, Sample-Size 
Minimization, Magnetic Resonance Imaging. 
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8.1 Introduction 

The identification of most affected regions relating to physiological changes in 
a human organ can help in capturing the dynamics of the underlying 
pathology. These changes may be attributed to age, genetics, anatomical 
differences, or changes relating to pathology. For example, it is known that 
the articular cartilage undergoes morphometric changes during osteoarthritis 
(Eckstein et al., 2006). Characterization of where the difference between the 
healthy and the diseased is most pronounced can offer important clues about 
the pathophysiology of the disease.  

Studies involving identification of regions of differences in human organs 
have been carried out by various researchers. For instance, the distribution of 
morphometric changes in the brain caused by genetic, environmental factors 
or various neurodegenerative diseases has been investigated extensively 
(Andreasen et al., 1994; Dickerson et al., 2001; Pruessner et al., 2000; Raz et al., 
1998; Xu et al., 2000). Similar methods have been developed to analyze the 
articular cartilage. Hohe et al. observed signal intensity changes in the 
different regions of the patellar cartilage by dividing it into a number of pre-
defined sub-regions (Hohe et al., 2002). In a recent study, Wirth and Eckstein 
(Wirth and Eckstein, 2008) measured regional cartilage thickness in pre-
defined anatomically based regions of interest (ROIs). In a longitudinal study, 
Blumenkrantz et al. quantified differences in structural parameters of bone 
and cartilage by manually segmenting them in four distinct compartments 
(Blumenkrantz et al., 2004).  

The majority of these studies, however, rely on predefined ROIs. In fact, ROI-
based analysis is the current gold standard, specifically for brain atrophy 
measurements (Good et al., 2002). These methods, however, are labor-
intensive and typically can only focus on a limited number of ROIs. 
Moreover, they do not easily allow comparison of large subject groups. They 
are observer dependent and thus may result in low inter/intra observer 
reliability. Another inherent problem is that most often it is not known which 
region(s) might be most affected by the disease. Thereby, measurements from 
such methods may lack both sensitivity and specificity. 

In order to reliably and accurately detect structural anomalies and other 
pathological differences in an un-biased way, new techniques have been 
developed (Freeborough and Fox, 1998; Yushkevich et al., 2003). Voxel-Based 
Morphometry (VBM) is one such method. Proposed by Ashburner and 
Friston (Ashburner and Friston, 2000), VBM is increasingly being used to 
investigate differences in brain morphology between patient and control 
groups. The output of the method is a probabilistic map which indicates 
regions of significant gray matter or white matter concentration differences. 
VBM is widely being used as a tool to examine changes in brain morphometry 
during healthy aging (Good et al., 2001) or for various neurological conditions 
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including Alzheimer’s disease, and Semantic Dementia (Baron et al., 2001; 
Mummery et al., 2000). 

Similar to VBM analysis, Dam et al. (Dam et al., 2006b) computed 2D 
thickness maps of articular cartilage loss from knee MRI. The maps show 
regions of focal thickness loss in the cartilage.  

These techniques, however, are based on voxel-by-voxel statistical 
comparisons where it is assumed that each voxel represents the same 
anatomical position across all the images, and Bookstein (Bookstein, 2001) 
pointed out that imperfect registration might lead to interpreting the results 
as a characteristic of the disease, while in fact this effect might be caused by 
misalignment of the images. Although smoothing can help alleviate mis-
registration, the fundamental voxel correspondence problem still remains 
unsolved. Moreover, the voxel-wise analysis ignores the neighborhood of a 
voxel which may underscore the anatomical relationship of a voxel.  

Previously, we reported preliminary results on identification of regions of 
most pathological differences in the articular cartilage (Qazi et al., 2008; Qazi 
et al., 2007a). Both methods employ a computationally intensive 
bootstrapping technique, based on voxel-wise analysis, to identify a ROI, 
which is further regularized by curve evolution methods. The ROI problem is 
combinatorial and therefore, finding an optimal solution requires an 
exhaustive search, which makes the problem computationally intractable.   

The paper explores a new methodology, having statistical underpinnings and 
incorporating prior knowledge of neighborhood relationships between 
features, for finding regions of most pathological differences between patient 
groups. We formulate the problem in a smooth optimization scheme that 
minimizes the sample size required to measure differences between two 
groups. A reduction in sample size is highly desirable for clinical studies, 
since it reduces patient burden and costs. Given spatially normalized feature 
maps of objects belonging to two groups, the output of the method is a weight 
map, where each weight reflects the importance of the feature in separation of 
the two groups. The weight map represents the regions of difference (ROD), 
where a large weight indicates a region of high difference. The framework is 
generic and can incorporate any measure for determination of the ROD. 
Thereby, our framework is able to incorporate both atrophy measures 
directed towards morphometric differences and textural measures directed 
towards structural alterations. We evaluate the performance of the framework 
on both synthetic and clinical data from magnetic resonance (MR) images of 
the knee.  

The objective of the proposed method is to find the optimal feature weights 
that can discriminate two groups of objects. Linear Discriminant Analysis 
(LDA) is a standard, well-known machine learning technique used for 
dimensionality reduction of classification problems by finding a subset of 
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features that can capture the variability of the two groups (Duda et al., 2001). 
Therefore, as a good candidate to benchmark against, we compare the 
performance of our method to LDA. 

The paper is organized as follows. In Section 8.2 we present some background 
information. In Section 8.3 we present the framework for finding the most 
pathological ROD. In Section 8.4 we analyze the performance of the method 
on synthetic data. In Section 8.5 we evaluate the method using three different 
measures for finding the ROD in the cartilage.  

8.2 Preliminaries 

We start by introducing some necessary concepts concerning the types of 
errors and sample sizes. 

Clinical research is designed to determine if a specific treatment has an effect. 
Usually this is done by dividing the subjects into two groups, the treatment 
and placebo and then measuring the effective differences in measurements of 
a biomarker for the two groups.  

When conducting a clinical trial two types of errors must be considered: 
Type-1 (false positive) and Type-2 (false negative) (Lachin, 1981). A Type-1 
error is made when the results of a study indicate a difference between 
groups when in reality, there is no difference. The probability of a Type-1 
error is the p-value and if it is less than a threshold α , typically 0.05, the 
result is said to be statistically significant, meaning that inferences about a 
treatment effect based purely on the observed data will be correct.  

A Type-2 error occurs when the p-value fails to reach the required level of 
statistical significance, meaning that there is no observed difference between 
groups, when in fact there is. The probability of committing a Type-2 error is 
denoted by β , and its compliment β−(1 )  is known as the statistical power. A 
common value for power is 0.8 meaning that there is an 80% probability that 
the difference will be detected. 

An important aspect before any clinical study design is the estimation of the 
required sample size for detecting difference. This is crucial as a larger sample 
size implies more cost and time along with patient discomfort. The goal of 
sample size estimation is to reduce the chance of encountering the Type-1 and 
Type-2 errors. Given desired levels of α , andβ . Assuming normally 
distributed data, sample size N is calculated as (Lachin, 1981) 

 ( )( )
( )

( )22 2 2 2
1 2 1 2

2 2
1 21 2

( )

Z Z
N kα βσ σ σ σ

μ μμ μ

⎛ ⎞+ + +⎜ ⎟= =⎜ ⎟ −⎜ ⎟−⎝ ⎠

 8.1 
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Where μ1  and μ2  are group means, σ 2
1  and σ 2

2 are group variances. Both αZ  
and βZ  are probability cut-off points along the x-axis of a standard normal 

probability distribution. We define ( )α β= +
2

k Z Z . Equation 8.1 implies that 

both large differences between groups and smaller variances will reduce the 
number of participants needed in a trial.  

8.3 Methods 

This section describes the framework for determination of the ROD. 
Subsection 8.3.1 formulates finding the optimal ROD problem as an energy 
minimization scheme. Subsection 8.3.2 and Subsection 8.3.3 present the 
specifics related to implementation and evaluation of the generalization 
ability of the method. 

8.3.1 Regions of difference Identification by Sample Size 
Optimization (RISSO) 

The method assumes that the biological objects belonging to the two groups 
have been segmented and are spatially aligned. Additionally, the measure on 
which the ROD is being computed are known. We note here that our 
framework: 1) assumes the measure to be Gaussian distributed, and 2) 
requires that the measure is related to the pathology of the disease in 
question. 

The input to the RISSO framework is a collection of anatomically aligned 
objects that fall in one of the two groups: 1 2,G G  of size 1n  and 2n  respectively. 
Each object is represented by an n-dimensional feature map, for instance a 2-
D thickness map T. Let the significance of feature i, measured at a given 
anatomical location, be represented by weight iW , where = 0iW  means that 
the corresponding feature is not relevant in separating the two groups. The 
objective of the framework is to find the optimal n-dimensional weight map 
W  that minimizes the sample size, as given by equation 8.1. The weight map 
W represents the ROD and can possibly be defined as: 

( ) ⎧ ∈
= ⎨
⎩

1 if  ROD,
0 otherwise.

i
W i  

For many problems, in order to find the optimal solution, an exhaustive 
combinatorial search from the 2q  possible subsets of W is required, where q is 
the number of entries in W. Instead, we propose to define the solution as a 
smooth optimization problem by relaxing the domain of W to [0, ∞). In this 
continuous setting we can use variational techniques that will typically allow 
tractable optimization.  
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After determining the specific characteristics of the solution we formulate an 
objective function. From equation (8.1) we can see that devising a scheme that 
minimizes sample size will equivalently maximize the difference between the 
groups. The measurements from the two groups are denoted, 1X , 2X , given 
as 

1 21 2 3 1 2 3
1 1 1 1 1 2 2 2 2 2, , ... , , , ...n nX x x x x X x x x x⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦  

Thus, { },  where 1,2 ,k
jx j∈  represents a measurement for the kth subject, 

belonging to one of the two groups. The measurements are assumed to be 
normally distributed 

( ) ( )μ σ μ σΝ Ν1 1 1 2 2 2~ ,  and   ~ ,X X  

We wish to minimize the sample size necessary to distinguish 1X  from 2X . 
Hence, given that they can at all be distinguished, we may perform a 
transformation 

 

μ
μ μ

= + = +

= = −
−

1 1 1 0 2 1 2 0

1 0 1
2 1

 and 
1where   and 

X a X a X a X a

a a
 

 

so that μ μ= =1 21 and  0.  Equation (8.1) can be written as 

 σ σ

σ σ σ σ

∝ +

= =

2 2
1 2

1 21 1 0 1 2 0

,  

where  +  and  +

N

a a a a
 8.2 

Let [ , ]kjF W x  be the value of the measurement of a specific subject, after been 

weighted by W, and in short denoted as: [ ]k
jF W . For example, for the 2-D 

thickness map T, i iF W T= ⋅  (weighted mean thickness). 

Subsequently we have = 1 0+  andF a F a  

  

{ }

μ
∈

∈

−

∝
∑

∑

2

1,2

( [ ] )
j

k
j j

k G

j j

F W
N

n
 8.3 

where j indicates the two groups. We can formulate the problem as a 
minimizer for (8.3)  
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w a a j j
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n
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where [ ]
k
jF W  is the outcome measure for subject k. 

This formulation has an inherent drawback: The functional leads to good 
separation between groups but does not incorporate prior knowledge about 
the ROD. In biological settings, the anatomical position of a feature plays an 
important role and it is likely that neighboring locations are highly correlated. 
We also prefer a more regularized ROD, which will be less prone to over-
fitting and can be biologically interpreted as being anatomically plausible.  

To exploit the spatial nature of the features and to regularize we add a 
penalty term of the form ∇ .

p
W  By ∇ , we denote the gradient operator (or in 

the discrete setting a local difference operator), such that ∇
p

W  is a measure 

of the variation or smoothness of W. We select = 1p , resulting in ∇
1

W , the 
L1-norm of the gradient of the weight map. This term is known as zero-order 
variable fusion and was proposed by Land and Friedman (Land and 
Friedman, 1997). It has also been adapted for image segmentation by (Chan 
and Vese, 2001a). The effect of this term is to shrink the solution towards 
being piece-wise constant. Land and Friedman showed that when compared 
to other smoothing functionals, such as spline regression, variable fusion 
produces simpler interpretable solutions and is effective in case of sharp 
features (Land and Friedman, 1997). An alternate term could be ∇

2
W , 

however, the term does not produce sparsity in the differences of the features.  

Adding the regularization term ∇
1

W  to Equation (8.4) 
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The parameter λ  influences the extent of spatial regularization. Increasing 
values of λ  will in turn increase the smoothness of the ROD. Assuming that 
the feature maps relate meaningful anatomical neighborhood relationships, 
smoothness reflects the local correlation.  

In the end, our goal is to choose the optimal features. We prefer a more 
compact model. A simple model will be easier to interpret and will likely 
generalize better. Thus, we need a mechanism for feature selection and 
filtering out the redundant features.  
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Another motivation for feature selection is that the feature space might 
typically be much larger than the number of output variables. This is also 
known as the “large p, small n” paradigm (West, 2003). Such problems may 
not yield a unique solution but can be solved by eliminating redundant 
features.  

The smoothness term in (8.5) alone is not sufficient since it encourages 
sparsity in the differences of the features and not on the features. There have 
been methods proposed for regularization of the solution space, such as ridge 
regression (Hoerl and Kennard, 1970) and partial least squares (Wold, 1975). 
A disadvantage of such methods is that the resulting solution space is not 
very sparse. Proposed by Tibshirani (Tibshirani, 1996), the least absolute 
shrinkage and selection operator (LASSO) is similar to ridge regression except 
that it selects the important features while discarding the rest. Therefore, it 
produces coefficients that are exactly 0, yielding a sparse solution that may be 
more easily interpretable.  

Adding the 1L -regularization term to functional (8.5)  
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The parameter η > 0  controls the sparsity of the solution map W. The 
regularization terms in our functional are similar to the fused LASSO 
(Tibshirani et al., 2005), which was applied to 1-dimensional gene expression 
data. 

Furthermore, we impose two conditions on the map W. Firstly, we restrict the 
weights to being positive, since a negative weight for a feature is not directly 
interpretable. Secondly, we fix their sum to a constant number; the weights 
are relative which makes them invariant to scaling. So, to avoid a drift in the 
optimization scheme and to attain numerical stability we scale the sum of 
weights to a constant number. The functional changes to a constrained 
optimization of the form 
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8.7 

Optimizing functional (8.7) will yield a weight map that will identify regions 
of most discriminate changes between two groups of biological objects.  
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8.3.2 Optimization of the Functional 

The regularization term, 
1

Wη , in (8.7) is non-differentiable at 0,W =  
however,  since the weights are positive we can utilize smooth gradient based 
optimization techniques. A number of methods exist, such as the steepest 
descent, Newton method and quasi-Newton, for a review see (Nocedal and 
Wright, 1999). In our implementation, because of its efficiency in storage 
requirements (does not require computation of the Hessian matrix), and 
convergence rate, non-linear conjugate gradient (CG) descent is utilized to 
optimize functional (7).  

The method is iterative of the form α+ = +1l l l lW W d , where ld  is the search 
direction and is computed using the Polak-Ribere (Polak and Ribiere, 1969) 
update rule, α > 0l  is the step size determined using line search. We 
implement the line search using Brent’s method (Press et al., 2007). We have 
implemented the method in Matlab. 

The functional (8.7) is constrained by the non-negativity constraint on the 
weights. In order to optimize it as a bound constrained problem we utilize the 
gradient projection method (Kelley, 1999). Given the current iterate, the 
weights are projected and scaled to the desired range in order to form the new 
iterate. The weights are initialized by a constant value such that their sum is 
one. We experimented with random initializations of the weights and 
observed that the functional converged to the same minimum but the 
convergence rate was much slower.  

The optimization of functional (8.7) is a two-step process: First, we determine 
the parameters 0 1,a a  using the current estimate of the weight map. For this 
purpose we use linear regression. Next, we use these parameters to estimate 
F  followed by computing the regularization terms which finally leads to 
estimation of the functional. 

8.3.3 Finding the Optimal Regularization Parameters 

The parameters λ η  and    have an impact on the characteristics of the weight 
map and therefore their choice is crucial to the generalization ability of the 
ROD. In this paper, their values are selected using cross-validation. In cross-
validation the data set s is divided into equal parts of s K  observations, 
where K is the number of subsets. The parameters are then trained using −1K  
subsets and the accuracy of the resultant features is then tested on the thK  set.  

We choose = 3K . The parameters are selected by an optimization framework. 
Given an initial guess of λ η and   , they are optimized by minimizing the 
sample size on set 2. During optimization, for each specific value of λ η  and   , 
the sample size on set 2 is computed by evaluating the weight map estimated 
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by optimizing functional (8.7) on set 1. Therefore, there are two different 
optimizations taking place; optimization of λ η and    and optimization of the 
weight map. Both optimizations are carried out using the non-linear 
optimization framework discussed previously. The optimization is complex 
and may get stuck in local minima. In order to have stable estimates we use 
multiple guess vectors for λ η and   . The parameters that correspond to the 
minimum sample size on set 2 are chosen (see Algorithm 1). The weight map 
corresponding to the optimal parameters, λ η and   ,  is then evaluated on set 
3. The reduction of sample size on set 3, when compared to the sample size 
computed from a weight map with equal weights, or a “uniform weight 
map”, indicates whether the method is successful.  

8.3.4 LDA 

The LDA is a well-known scheme for feature extraction and dimensionality 
reduction (Duda et al., 2001). LDA projects the data onto a lower-dimensional 
vector space such that the ratio of the between-group distance to the with-
group distance is maximized, leading to maximum discrimination between 
the two groups. We compare the results of our method to those obtained from 
the LDA. In order to have a fair comparison to our method, we also compare 
the results to regularized LDA (Friedman, 1989), by regularizing the 
covariance matrix. The regularization parameter is optimized using cross-
validation, similar to the method listed in Algorithm 1, used for optimizing 
the parameters of our method. 

8.4 Results on Synthetic Data 

8.4.1 Construction 

In order to investigate whether the RISSO framework is able to detect 
localized regions of differences and is able to generalize, we start with an 
investigation of synthetic example. The synthetic data consists of 2-
dimensional (10 10× pixels) feature maps, belonging to one of two different 
groups (denoted by G1 and G2), with 200 features maps in each group. The G1 

maps are constructed by randomly sampling features from a Gaussian 

Algorithm 1: Finding the Optimal ROD 

split the data in 3 sets: S1, S2, and S3 
initialize guess vectors for  and λ η  

for each element in the  λ  guess vector 
    for each element in the η  guess vector 
       optimize using CG for N on S2, by varying  and λ η  on S1 

        store the returned optimized parameters and function value 
    end  
end 
choose   and λ η  corresponding to  the minimum function value 
use these parameters to optimize the weight map on S1 
evaluate the resultant weight map on S3 
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Figure 8.1: Simulated data. (a) Map, without noise, depicting the
ground truth ROD (white). (b) G2 map at an SNR of 0.4. (c) ROD, at
an SNR of 0.4, determined by Algorithm 1. (d) ROD, at an SNR of
0.4, after increasing the number of objects.  

distribution with mean 1. The G2 maps are similar in construction except that 
for predefined regions the features are sampled from a Gaussian distribution 
with mean 0. These regions, illustrated in Figure 8.1a, represent the “ground 
truth”, ROD.  

The feature maps are subjected to additive Gaussian noise. The intensity of 
the noise is varied to simulate different levels of signal-to-noise ratio (SNR), 
which is a measure of the quality of image acquisition and feature extraction. 
We define SNR as the ratio of the mean difference between groups divided by 
the standard deviation σ  of the noise ( σ1  in our case). As an example, 
Figure 8.1b illustrates a G2 feature map at an SNR of 0.4. The feature maps are 
subjected to Algorithm 1 to validate if the method is able to reconstruct the 
ground truth ROD, as in Figure 8.1a, and is able to generalize. 

8.4.2 Evaluation 

Table 8.1 lists the results obtained at different SNR levels. For each SNR the 
corresponding sample sizes for the ground truth ROD and the optimal ROD, 
for all the 3 sets are listed. For set 1, when compared to the ground truth 
sample size, the sample size estimates for the optimal ROD are lower and 
differ considerably. This implies over-fitting.  

For set 2 and set 3 the sample sizes from the optimal ROD are slightly higher 
than the ground truth sample sizes, however, more importantly the behaviour 
of sample size estimates for both sets is similar. This implies that apart from a 
reasonable reconstruction of ROD the method is able to generalize.  
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At a low SNR of 0.4 (Table 8.1, Figure 8.1b), however, the sample sizes from 
the optimal ROD (Figure 8.1c) are quite different when compared to those of 
the ground truth ROD. At a very low SNR the data available is not enough to 
discriminate the difference between the groups. To test this, we experimented 
by increasing the number of objects from 200 to 500 in each group. We were 
able to reduce the difference in sample sizes (last row of Table 8.1) between 
the ground truth and optimal ROD (Figure 8.1d).  

To appreciate the method, for set 3, we also list the sample sizes computed 
from a uniform weight map (UWM). These sample sizes are computed based 
on a weight map with equal weights for all the features. We can see that when 
compared to the sample sizes for the UWM, the sample sizes for the optimal 
ROD are much lower. This implies that the method is able to find a ROD that 
leads to a better separation of the groups, and is also able to generalize. 

The table also lists the sample sizes, computed using the LDA method. At a 
high SNR, the performance of LDA is similar to our method; however, as the 
SNR decreases (0.6 and lower) the performance of LDA goes down rapidly. 
At an SNR of 0.4, for example, the difference between the ground truth 
sample size and the sample size from the optimal ROD, for both, the LDA and 
its regularized version (R-LDA), is much larger when compared to our 
method. Moreover, the sample sizes for the optimal ROD, computed using the 
LDA, are higher than those obtained for the UWM. 

8.5 Results on Clinical Data 

The second evaluation of the proposed method is on clinical MR data of the 
tibial cartilage, which has been used in the study of Osteoarthritis (OA). OA is 
a degenerative joint disease that is characterized by degeneration of the 
articular cartilage (Ding, 2005) for which, at present, there is no effective cure 
and treatment is directed towards symptom relief.  

Table 8.1: SNR vs. Sample Size on Simulated Data*  

SNR  Set 1 
(GT)  

Set 1 
(ROD) 

Set 1 
(LDA) 

Set 1 
(R‐LDA) 

Set 2 
(GT) 

Set 2 
(ROD) 

Set 2 
(LDA) 

Set 2 
(R‐LDA) 

Set 3 
(UWM) 

Set 3 
(GT) 

Set 3 
(ROD) 

Set 3 
(LDA) 

Set 3 
(R‐LDA) 

2.0 0.42 0.38 0.3 0.44 0.43 0.47 0.65 0.44 1.66 0.38 0.40 0.53 0.41 

1.0 3.5 2.8 2.3 2.9 3.8 4.4 6.1 4.5 12 3.1 3.7 4.8 3.7 

0.6 14 10 7 7 15 18 26 28 41 12 16 23 25 

0.4 88 33 18 18 84 102 201 201 221 52 106 255 255 

0.4 103 77 58 60 79 99 159 148 221 74 92 131 127 

*GT is ground truth sample size. These have been calculated with the weights set to the binary, ground truth ROD, as 
shown in Figure 8.1a. UWM is sample size computed from a uniform weight map. R-LDA is regularized LDA. 
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Subsection 8.5.2 outlines the method for alignment of the cartilages. 
Subsection 8.5.3 outlines how the features are quantified from the aligned 
cartilages. These are the pre-requisites to the RISSO framework. Subsection 
8.5.5 presents the results from our method. Subsection 8.5.6 presents a 
comparison of the results from our method to those obtained from LDA.   

8.5.1 Data Characteristics  

A total of 286 knees (both left and right) from 159 subjects (82 men and 77 
women, age from 21 to 81 years old) were available (after exclusion of knees 
used for training the cartilage segmentation method). The knees were 
examined and quantified by radiography and MRI. Using radiographs (X-
rays) these knees were classified by a radiologist as 0 - 4 on the Kellgren-
Lawrence (KL) (Kellgren and Lawrence, 1957) index where KL 0 represents 
healthy and KL 4 severe OA. The number of subjects within each group was: 
KL0 (144), KL1 (88), KL2 (29), KL3 (24), and KL4 (1). MRI Image acquisition 
was done on an Esaote C-Scan low field 0.18T scanner, acquiring a Turbo 3D 
T1 sequence ( 40  flip angle, T 50ms,T 16ms).R E= =  

The scan resolution was 0.7 0.7mm mm×  with a slice thickness between 
0.7 0.9 .mm−  The dimensions of the scans were 256 256×  pixels with around 
110 slices. For more details refer to (Dam et al., 2007b). For reproducibility 
evaluation the MR protocol was repeated a week later on 31 knees. 

8.5.2 Cartilage Segmentation and Alignment 

The cartilages were segmented based on a supervised voxel classification 
scheme using a kNN classifier (Folkesson et al., 2007b). The sheets  were 
augmented by an anatomical coordinate system by fitting a deformable m-rep 
shape model to the segmented articular cartilage (Dam et al., 2007a). The m-
rep represents an object by a set of medial atoms, each associated with a 
position, radius, and directions to the boundary (Pizer et al., 2003). 

8.5.3 Feature Measurements 

In our experiments, we evaluated three measures: The first two relate to 
structural changes during the disease. For the articular cartilage these are the 
Cartilage Volume (Folkesson et al., 2007b), which determines cartilage loss, and 
Cartilage Thickness (Dam et al., 2006b), which may be particularly 
advantageous for the analysis of conditions related to focal thinning of the 
cartilage. To be invariant to the size of a subjects’ joint, both measures were 
normalized by width of the tibial plateau. 

The third measure relates to structure of biochemical changes undergoing in 
the cartilage. This is Cartilage Homogeneity (Qazi et al., 2007b) which relates to 
intrinsic changes in the articular cartilage water distribution, as visualized by 
MRI. Homogeneity was quantified by measuring entropy. Entropy is defined 
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to be a measure of randomness present in the data. The computation of 
homogeneity involves signal intensities therefore the scans were corrected for 
any intensity bias by a method proposed by Guillemaud (Guillemaud, 1998), 
which filters the image using homomorphic unsharp masking (Brinkmann et 
al., 1998a).  

To quantify feature maps each cartilage was divided in sub-regions, defined 
by the shape model, which extended from the surface of the cartilage to the 
cartilage-bone interface. The measurements were then computed for each sub-
region and projected onto a 2-dimensional representation of the cartilage. This 
resulted in a 2D feature map of measurements, where measurements from 
each sub-region are a feature.  

8.5.4 Intensity Non-uniformity Correction 

(Note that due to space constraints this specific section is omitted from the 
submitted version of the paper). 

A common MR image model assumes that the intensity values of the voxels of 
any given tissue class should be constant throughout. MR image data, 
however, is often corrupted by Radio Frequency (RF) field inhomogeneities, 
also known as the “bias field”. The presence of such an artifact can 
significantly reduce the accuracy of segmentation algorithms that rely on 
absolute pixel intensities. Thus, the intensity nonuniformity correction (NUC) 
is imperative for quantitative analysis of MR data. Various retrospective 
techniques have been proposed, for a review see (Hou, 2006).  

A common assumption is that the inhomogeneity field is multiplicative in 
nature (Wells et al., 1996) and consists of low-frequency components (Axel et 
al., 1987; Johnston et al., 1996). Mathematically this can be represented as 
follows 

 

Figure 8.2: Slice from a knee MR illustrating inhomogeneity correction 
by HUM. (a) before inhomogeneity correction. (b) corrected image. 
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 ( ) ( ) ( ) ( )measured correctedI X I X B X N X= × +  8.8 

Where ( )measuredI X  is the given image at voxel X, ( )B X is the true slowly varying 
bias field, and ( )N X  is the noise. The goal of any NUC method is to estimate 

( )correctedI X .   

The most intuitive approach from (8.8) is based on homomorphic unsharp 
masking (HUM) (Axel et al., 1987; Brinkmann et al., 1998b). HUM is a simple 
yet efficient approach and does not rely on any parametric representation of 
bias field. One of the main issues with this filter, however, is that it tends to 
underestimate the bias at tissue/background boundaries. There is no 
information in the background and still the filter tries to estimate the bias field 
based on neighborhood information. This in turn introduces a new 
illumination artifact at the tissue/background boundary. Guillemaud 
(Guillemaud, 1998) utilized normalized convolution to resolve this issue. Let 

( )M X  be 1 in the tissue region and 0 in the background then the bias field can 
be estimated as 

 ( )( )⎛ ⎞∗ ×
⎜ ⎟=
⎜ ⎟∗
⎝ ⎠

( ) log ( ) ( )
( ) exp

( ) ( )
measuredh X I X M X

B X
h X M X

 8.9 

where ( )h X  is a low-pass filter in the frequency domain. The bias field is 
estimated only on the tissue region and then extrapolated to the background. 
The Guillemaud filter works well to resolve the issue with HUM.  

The low-pass filter is defined by the cut-off frequency. A very low cut-off will 
have no effect on the resulting image, while a very high cut-off might have 
adverse effects on the image such as removal of useful information. Choosing 
the right cut-off might not be so trivial. Cho et al highlighted that it is difficult 
to choose the optimal cut-off since any specific cut-off will induce different 
segmentation results among a set of images (Cho et al., 2004). 

In this paper, we propose a new bottom-up approach to determine the 
optimal cut-off. As a first step, the cartilages are segmented without any 
NUC. Next, an intensity based measure (since NUC will induce intensity 
changes) known to statistically separate the two groups is quantified for all 
the images, for example using a t-test. In our case, this measure is cartilage 
homogeneity. The cut-off threshold is then varied over a pre-defined range 
and for each value a statistical significance level is computed. We compute the 
required sample size for separating the two groups. The level at which the 
sample size is minimum is taken to be the cut-off. The images are then 
corrected for based on the determined cut-off level and re-segmented. Figure 
8.2 illustrates example results obtained from the method. This method will 
ensure that a certain cut-off is not biased towards a specific image and at the 
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same time will not lead to loss of information in the filtered image, since it has 
been determined directly from the data.  

In our implementation, K-means clustering was used to generate the M map, 
and Butterworth filter was chosen as the low-pass filter. The method was also 
evaluated on a set of brain images created by adding known biases to the 
Montreal Brain Phantom with no added noise (Cocosco et al., 1997). 

8.5.5 Evaluation 

The 286 knees were divided randomly in 3 sets consisting of 95, 95 and 96 
knees respectively, and processed by Algorithm 1. The knees were divided in 
two groups, based on the KL index: healthy (KL = 0) and diseased (KL > 0). 
The sub-region resolution was chosen to be 10 20× . Experimentation with 
different resolutions revealed that both the resultant ROD and sample sizes 
were not sensitive to choice of the resolution, unless there are very few 
regions. Figure 8.3 illustrates the weight maps obtained at different 
resolutions in a sample cartilage. The resulting sample sizes are quite similar. 

 

Figure 8.3: Weight maps estimated with different sub-region sizes. 
The measure used was cartilage homogeneity. The resolution and
sample sizes are: (a) 5 10× , N=41. (b) 10 20× , N=40. (c) 20 40× , 
N=38. For visualization, the weights have been scaled to be between 
0 – 1. 
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Thus, at a lower resolution we can reduce the computation time significantly 
without affecting accuracy. We found the resolution 10 20×  to be a good 
trade-off between speed and accurate determination of the ROD.  

Considering the biological variation of the sets and to have robust estimate of 
the ROD, 50 runs of Algorithm 1 were executed, each time with a different 
randomization of the sets. The weight maps were averaged to result in the 
most pathological ROD in the knee cartilage. These steps were repeated for 
each of the 3 measures. 

Table 8.2 lists the results obtained. The median sample sizes both computed 
from the UWM and from the ROD, for the 3 sets are listed. The median is 
reported, since being less affected by outliers, it is a more stable measure, than 
the mean. The average reduction in sample sizes for the validation set, set 3, 
was: cartilage homogeneity (19%), cartilage volume (36%) and cartilage 
thickness (51%). In order to quantify whether the reduction in sample size 
was significant for set 3, we utilized the Wilcoxon Rank Sum test to compute 
p-values, listed in Table 8.2, testing the null hypothesis that there is no 
difference between the sample size from the UWM and the sample size from 
the ROD. Figure 8.4 illustrates the RODs in a sample cartilage.  

 

Table 8.3: Reproducibility Evaluation of the Method 

Measure 
UWM 
(CV %) 

ROD 
(CV %) 

Homogeneity  1.6  1.9 

Volume  8.6  11.1 

Thickness  3.2  4.3 

 

Table 8.2: Evaluation on Clinical Data (median sample sizes for 50 random trials)* 

Measure  Set 1  
(UWM)  

Set 1 
(ROD)  

Set 2 
(UWM)  

Set 2 
(ROD) 

Set 3 
(UWM)  

Set 3  
(ROD) 

Set 3  
(p‐values) 

Set3 
(% reduction) 

Homogeneity 75 27 77 50 75 61 0.04 19 

Volume 228 59 187 98 189 138 0.01 36 

Thickness         

RISSO 309 45 266 96 267 133 0.000001 51 

LDA 309  13  266  2021  267  1927  0.0000001  ‐621 

R-LDA 309  25  266  119  267  214  0.3  20 

*UWM is the sample size, computed from a weight map with equal weights for all features. R-LDA refers to regularized 
LDA. 
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Figure 8.4: The optimal ROD projected in a sample cartilage. 
(a) Cartilage Homogeneity. (b) Cartilage Volume. (c) Cartilage
Thickness.  

Table 8.3 lists the reproducibility results for the different measures, quantified 
from the UWM and the ROD. The reproducibility of the ROD was assessed 
using the test-retest root mean squared Coefficient of Variation (RMS-CV%). 

Figure 8.5, shows the mean and standard error of the mean (SEM) of the three 
measures for the different KL sub-groups. The figure compares the 
performance of the 3 measures, quantified from the UWM and the ROD.  

8.5.6 Comparison with LDA 

MRI studies often use cartilage thickness, as the marker for assessing cartilage 
damage in OA (Eckstein et al., 2006). Therefore, LDA was applied and 
compared to measurements of cartilage thickness. Table 8.2  lists the results 
obtained. The traditional LDA fails, with a 621% increase in sample size for 
set 3. The results improve for the regularized LDA, however, our method still 
performs much better with a 51% decrease in sample size for set 3, as 
compared to 20% by regularized LDA. 
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8.6 Discussion and Conclusions 

In this paper, we present a novel method, based on minimizing sample size to 
map out regions of differences between two groups of objects. We have 
validated the methodology on both synthetic and clinical data. 

On synthetic data, we have demonstrated that our method is able to 
generalize to unseen data (Table 8.1), and is also able to reconstruct the 
ground truth ROD (Figure 8.1d).  Additionally, we have compared the results 
to those obtained from the LDA. These results (Table 8.1) show that when 
compared to the LDA, our method is more robust and is able to perform 
reasonably well, specifically for data, which is corrupted with high levels of 
noise.  

We have demonstrated that our method is able to localize regions in the 
articular cartilage using both morphometric and textural based measures 
(Figure 8.4). We show that the resultant regions are able to generalize (Table 
8.2), lead to significant reductions in sample size (Table 8.2), and are 
reproducible (Table 8.3). The reduction in sample size is highly desirable for 
clinical studies since it will have a positive impact on the cost of the study. 
Additionally, the measures from the ROD are able to achieve a better 
quantification of the progression of the disease (Figure 8.5). For instance, for 
the UWM, both volume (Figure 8.5b) and thickness (Figure 8.5c) measures are 
not able to statistically separate the two groups of KL 0 and KL 1. The 
measurements, computed from the ROD, however, lead to a statistically 
significant (p < 0.001) separation. Similarly, the progression of the measures, 
computed from the ROD, with respect to the KL scores (specifically for 
thickness), follow a more natural, decreasing pattern as the disease 
progresses. 

We have also shown that the results obtained from the evaluation of our 
method on clinical data are better than the results obtained from the LDA 
(Table 8.2).  The increased performance of our method may be attributed to 

Figure 8.5: Comparing performance of the 3 measures quantified from UWM and the ROD. (a)
Cartilage Homogeneity. (b) Cartilage Volume. (c) Cartilage Thickness. 
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the regularization terms, specifically the spatial regularization that is 
integrated to be a part of functional (8.7). 

A limitation of the study is that the sensitivity of the method to mis-
registration is not evaluated. Imperfect registration might lead to false 
estimations of atrophy, in case of structural features. However, our cross-
validation evaluation would only improve from better alignment. 

The anatomical relevance of the ROD requires insight into cartilage 
degeneration. Previous studies have shown that during OA the cartilage is 
not affected uniformly and it is believed that cartilage lesions located in the 
central weight-bearing region of the medial compartment are prone to more 
rapid cartilage loss (Biswal et al., 2002). The RODs (Figure 8.4) are not 
corresponding to the central, load-bearing part of the cartilage for any of the 
measures. Rather they predominantly outline the peripheral part of the 
cartilage. We believe that the region outlined is partly a result of 
biomechanical factors affecting the cartilage.  

One such factor that has found to play an important role in OA progression is 
knee alignment, calculated as the hip-knee-ankle angle. Malalignment of the 
knee influences the neutral collinear state by shifting the load-bearing axis 
which in turn affects the load distribution of the knee. Previously, it has been 
shown by (Sharma et al., 2001) that the mechanical affects of alignment on 
load distribution eventually leads to OA progression in different 
compartments of the knee. Results from our study highlight the importance of 
mechanical factors in the etiology of the disease.  

Recently, (Williams et al., 2006) showed that reproducibility of cartilage 
thickness can be increased by excluding the edges of the cartilage sheet. In 
contrast, our study highlights a most significant region towards the 
periphery. Therefore, increasing the precision by trimming the boundary of 
the cartilage may potentially lead to measurements that are less sensitive to 
the disease pathology.   

 The ROD based on cartilage homogeneity differs from those based on 
cartilage volume and cartilage thickness. In contrast to the two measures of 
cartilage quantity, cartilage homogeneity is a measure of cartilage quality. 
Thus, our framework is able to differentiate focal changes undergoing in the 
different phases of the disease, as highlighted in (Qvist et al., 2008).  

In the future, we plan to evaluate our method on longitudinal data of the 
knee. This means that the computed ROD will present the regions of most 
changes over time. This may aid in understanding the pattern of biological 
changes undergoing in the articular cartilage over the course of time. 
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Additional Remarks (not part of the paper) 

The previous two methods (Chapters 6 – 7) attempt to solve the same problem 
presented in this Chapter, i.e. finding the most pathological regions in the 
articular cartilage. The methodologies, however, are quite different.  

Firstly, the previous two methods are essentially voxel-based, whereas the 
RISSO method collectively takes the voxels into account. Secondly, both the 
previous methods first use bootstrapping to compute a VoteMap (Chapter 6 
Section 6.2.6, Chapter 7 Section 7.2.2.4), and then use techniques (both 
methods utilize different techniques) for regularization of the VoteMap, 
whereas the regularization is embedded to be an inherent part of the RISSO 
functional. Thirdly, the first two methodologies result in a binary map 
indicating the ROI, whereas the RISSO framework results in a continuous 
weight map, which may be more meaningful and useful, since it indicates the 
relative importance of each feature. The RISSO framework is generic and can 
incorporate any imaging marker, whereas the other two methods are 
currently limited to Cartilage Homogeneity, and require modifications for 
incorporating other markers.  

The resultant regions from all the three methods may look similar; however, 
the actual numbers, or sample sizes from the RISSO framework are better. 
Therefore, because of its flexibility and performance, we choose the RISSO 
method as the best methodology, among the three proposed, to find the most 
discriminant regions in the articular cartilage. 
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Diffusion Tensor Magnetic Resonance 
Imaging 
 

art II of the thesis presents research papers that are directed towards 
analysing different anatomical structures by diffusion imaging. Chapter 
10 presents a novel method for robust reconstruction of the corticospinal 

tract from diffusion-weighted images of the brain. Chapter 11 presents a 
feasibility study of diffusion imaging for detecting early structural changes 
undergoing in the articular cartilage. 

This chapter serves as a brief introduction to white matter anatomy of the 
brain, followed by background information on specifics of diffusion imaging. 

9.1 White Matter Anatomy 

This section serves as a brief introduction to neuroanatomy, specifically to the 
white matter regions of the brain. For details refer to (Mori et al., 2006; Nolte 
and Sundsten, 2002).  

The brain is divided into three main parts: cerebrum, cerebellum, and the 
brain stem. The cerebrum is the largest part of the brain associated with 
functionality, such as consciousness and action. The cerebellum is associated 
with coordination of movement and balance. The brain stem is responsible for 
functions such as breathing, blood pressure, and temperature.  

The cerebrum further is divided in right and left hemispheres that are 
delineated by the body’s medial axis. Each hemisphere is further divided into 
five regions (known as lobes); frontal, parietal, temporal, occipital, and limbic, 
each with its own set of functionality (shown in Figure 9.1). 

Chapter 

9  

P 
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Figure 9.1: Lobes of the cerebral hemispheres. (Reproduced from, Anatomy of the Human Body, by
Henry Gray, 20th ed; Fig. 728.). 

At the heart of brain nervous system are neurons, nerve cells that transmit 
electrochemical signals in the brain. An example neuron is shown in Figure 
9.2. The cell body of the neuron integrates information from other neurons 
while the axon transmits information. The axons are surrounded by a 
segmented, fatty substance called myelin or the myelin sheath. Myelin is 
white in colour, while the tissue containing the cell body is coloured gray, 
thus dividing the brain into two main parts: white matter and gray matter. 
The gray matter is located around the surface of the brain, also known as the 
cerebral cortex. In contrast, the white matter consists of axonal pathways that 
interconnect the brain. Several axons bundled together are called white matter 
fiber tracts. Similar to network cables connecting the different workstations in 
a computer network, the task of white matter fiber tracts is to pass 
information between the brain’s functional regions.  

The white matter contains three types of fiber tracts: commissural, association, 
and projection. Commissural fiber tracts connect related regions of the two 
hemispheres of the brain. An example is the corpus callosum, containing 
more than 300 million axons (Nolte and Sundsten, 2002), the corpus callosum 
is the largest white matter fiber bundle in the human brain. Association fiber 
tracts (Figure 9.3a) connect structures in the same hemisphere, and typically 
have anterior-posterior trajectories. The superior longitudinal fasciculus and 
the cingulum are examples of association fibers. Finally, projection fibers 
travel along the superior-inferior axis and are mainly responsible for 
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Figure 9.2: Illustration of a neuron. Reproduced with permission from (O'Donnell, 2006). 

connecting the cerebral cortex to the lower part of the brain. An example of 
such fiber tract type is the corticospinal tract (CST) (Figure 9.3b), the largest 
descending pathway in the human brain, it is responsible for providing motor 
functions, such as limb movements. In this thesis, we focus on methods that 
aim to reconstruct the CST, as described in Chapter 10.  

9.2 Diffusion MRI 

Diffusion MRI is a fairly new technique which is based on measuring the 
random thermal motion of water molecules within a tissue, also known as the 
Brownian motion. The concept was realized in the mid-1980s and is based on 
the principles of nuclear magnetic resonance imaging (LeBihan et al., 1986; 
Merboldt et al., 1985; Taylor and Bushell, 1985). The first successful 
application of diffusion MRI emerged in the early 1990s when it was 
discovered that diffusion MRI can detect stroke in its acute phase (Warach et 
al., 1992). It was observed that in fibrous structures, such as the brain white 
matter, diffusion is anisotropic, i.e. direction dependent (Moseley et al., 1990). 
This property is highly desirable since it allows in-vivo measurements of the 
white matter fiber orientation within the brain. In the following text, we will 
briefly review the principles behind diffusion MRI, and the quantification of 
anisotropic diffusion in white matter of the brain. For more detailed reviews 
refer to (Bammer, 2003; Basser and Jones, 2002; Denis Le Bihan et al., 2001; 
Mori and Barker, 1999; Pierpaoli et al., 1996) 

Diffusion MRI is different from conventional MRI where contrast depends 
upon the tissue composition and is based on differences in water relaxation 
times,  the 21  and T T . On conventional MR, regardless of the spatial resolution 



Diffusion Tensor Magnetic Resonance Imaging 
  

89

 

Figure 9.3: White matter anatomy. (a) Association pathways. (b) Projection fibers: the motor
tract. (Reproduced from, Anatomy of the Human Body, by Henry Gray, 20th ed; Fig. 751. and Fig.
764). 

the white matter appears homogenous, which, of course, is not true, and 
therefore, the orientation of the white matter fiber tracts cannot be measured.  

The macroscopic process of diffusion can be described by Fick’s law which 
relates the molecular flux density J to the gradient of concentration C given as  

J D C= − ∇  

where D is the constant of proportionality and is known as the self-diffusion 
constant. In the above formulation, it is assumed that the diffusion is un-
restricted, as in a pure liquid, however, in biological tissues the diffusion is 
restricted by the local cellular structure of the tissue. Thus, instead the 
apparent diffusion constant (ADC) is measured by diffusion imaging. ADC is 
a function of diffusion time and the geometry of the tissue. 

To measure the diffusion from conventional MRI a pair of identical diffusion 
sensitizing linear magnetic field gradients are incorporated in a standard 
pulse-echo sequence (Stejskal and Tanner, 1965). The gradients cause the 
Larmor frequency of the spins to become spatially dependent to the direction 
of the gradient. The spins are dephased by the first gradient and rephased by 
the second. Only spins that are moving (or diffusing) in the direction of the 
gradient during the interval between the two gradient applications will 
experience a phase change. In case of no diffusion the change in phase will be 
zero and will result in a maximum echo signal. In case of diffusion, there will 



Diffusion Tensor Magnetic Resonance Imaging 
 

90

be a phase shift which will lead to signal attenuation in the image. The 
amount of attenuation is given by 

bADCA e−=  

where b is a factor describing gradient time and strength. The equation 
indicates that higher the ADC, the larger is the signal loss. The intensity of the 
signal is also affected by the 2T  relaxation. To know this, a non-diffusion 
weighted image 0S , is acquired. The measured signal S is then given by 

0bS AS=  

The ADC, for a specific gradient direction can then be estimated as 

0

1 ln bSADC
b S

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
 

9.2.1 Anisotropic Diffusion and the Tensor 

The white matter of the brain is a highly ordered structure. The diffusion in 
white matter is anisotropic, i.e. the diffusion is not same in all directions; 
diffusion parallel to the fiber direction is faster. It is generally believed that 
the myelin sheath is the major barrier to diffusion in the axon and thus is the 
primary contributor of anisotropy in the white matter of the brain (Beaulieu, 
2002). 

In case of anisotropy, the diffusion can no longer be represented by a single 
scalar, ADC. Instead, the diffusion is represented as a 3 3× , symmetric, 
positive definite matrix called the diffusion tensor, proposed by Peter Basser 
in 1994 (Basser et al., 1994a; Basser et al., 1994b). The matrix is derived from 
diffusivity measurements from at least six diffusion-weighted images (DWIs) 
using non-collinear, non-coplanar gradient directions, and a non-diffusion 2T -
weighted image. When diffusion is represented by a tensor then the resulting 
imaging is referred to as diffusion tensor MRI (DTI or DT-MRI). 

In DTI, it is assumed that the diffusion of water molecules can be described by 
a 3D, zero-mean multivariate Gaussian probability density function (PDF) 
given as 

( )
1

0 0
0 3

( ) ( ) ( )1| , exp
44 ( )

x x D x x
p x x

D

τ
τ

τπτ τ

−⎡ ⎤− − −
= ⎢ ⎥

⎣ ⎦
 

where D is the apparent diffusion tensor (ADT; for simplification we refer to 
ADT as the diffusion tensor), τ  is the diffusion time, x is the final position of 
the molecule, and 0x  is its initial position. The shape of an isosurface of this 
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Figure 9.4: Scalar maps estimated from the diffusion tensor, axial slice depicting (a) FA map.
(b) Direction of the principal eigenvector of the diffusion tensor, color-coded as, red: left-right,
blue: inferior-superior, green: anterior-posterior. 

PDF is a 3D concentric ellipsoid. The diffusion tensor is the mathematical 
representation of this ellipsoid and is proportional to the covariance matrix of 
the Gaussian distribution.  

In order to determine the principal diffusion directions the diffusion tensor is 
diagonalized. This provides three eigenvectors ( 1 2 3, ,e e e ) representing the 
principal axes of the ellipsoid fitted to the data, and their corresponding 
eigenvalues ( 1 2 3, ,λ λ λ ), which represent the ADC along the principal axes. 
The eigenvalues are invariant to the rotation of the tissue in the MRI magnet. 

There are several scalar measures, derived from the eigenvalues, which 
indicate the amount of anisotropy of the diffusion tensor, and the shape of the 
diffusion. Some of the most popular ones are given below: 

Fractional Anisotropy (FA): 
2 2 2

1 3 3
2 2 2
1 2 3

ˆ ˆ ˆ( ) ( ) ( )
2( )

λ λ λ λ λ λ
λ λ λ

− + − + −
+ +

 

λ̂  is the mean diffusion. FA measures how far the tensor is from a sphere, or 
the degree of anisotropy. FA values are between 0 (isotropic) and 1 (Basser 
and Pierpaoli, 1996). Figure 9.4a depicts a slice from an FA map of the brain, 
the bright regions are areas of high anisotropy.  

To describe the shape of the tensor we have the linear, planar, and spherical 
measures. These measure describe whether the shape of the diffusion 
ellipsoid is like a cigar (linear: LC ), pancake (planar: PC ), or sphere (spherical: 

SC ) (Westin et al., 2002). 
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Figure 9.5: Representation of the underlying diffusion by glyphs.  
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9.2.2 Tensor Visualization and Tractography 

The tensor is estimated for each voxel of the image, this poses a challenge for 
visualization. There are two ways to visualize the tensor. These are either 
plane (slice) wise or in three-dimensions.  

Planar visualization methods are voxel-based, where each voxel is 
represented by a descriptor, quantified from the tensor. For example, images 
maybe displayed of the anisotropy indices discussed above, as in Figure 9.4a. 
Alternatively, the principal eigenvector maybe visualized by color coding the 
direction, as in Figure 9.4b. The standard color scheme for the direction is: 
left-right is red, inferior- superior is blue, and anterior-posterior is green. The 
brightness of the color is usually scaled by FA. Another voxel-based 
visualization method uses three-dimensional icons to represent the tensor 
eigenspace. These icons are known as glyphs and maybe represented by 
ellipsoids or boxes, where the ellipsoid gives a more natural geometric 
representation of the tensor (Figure 9.5). 

In order to better understand and appreciate the information from the tensor 
3D visualization techniques have been developed. Among them, the most 
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popular and widely used technique is Streamline Tractography (Basser et al., 
2000). This is done by associating the principal eigenvector with the tangent to 
a curve. The curve may then be estimated by stepping in the direction of the 
tangent. In other words, the principal eigenvector is a vector field and we 
trace the path of a particle in that field. The trace is the curve tangent to the 
field. The resultant trajectory represents the underlying white matter fiber 
pathway. Since the velocity field is continuous an important consideration in 
tractography is interpolation, which usually is done by interpolating the 
tensor, component-wise. To estimate the path standard numerical methods 
for differential equations are utilized, such as fourth order Runga-Kutta, or 
the Euler method. During path generation tracking should stop in regions of 
low anisotropy, therefore path cut-off criterion normally employ FA 
thresholding. Figure 9.6 illustrates fiber tracts obtained after seeding in the 
corpus callosum. Most of the DTI images in the thesis were generated using 
3D Slicer, a software platform developed at the Brigham and Women’s 
Hospital, Harvard Medical School. The data processing was carried out using 
the TEEM toolkit (Kindlmann, 2007) (additional code was written by the 
author of the thesis for two-tensor processing and visualization). 

Usually, in the literature a single path from tractography is referred to as 
“fiber” or “tract”. Firstly, it should be noted here that the resultant trajectory 
has no direct correspondence to individual axons, since the resolution 
available is low (mm) and not enough to represent an axon ( mμ ). Also, a 
single path from tractography is smaller than a tract and several paths would 
have to be generated to estimate a fiber tract. Thus, in this thesis the term 
“trajectory” or the more common term “fiber” is used to describe a single path 
from tractography and “tract” is used to denote a collection of paths. This also 
highlights an important point that results from tractography should be 
treated as macroscopic delineations and not visualization of specific axons. 

A drawback of streamline tractography is that it fails in regions with high 
planar anisotropy. The planar anisotropy can be high in situations where 
within a voxel multiple fibers cross each other. In such scenario, there is no 
distinct eigenvector direction. The inability to resolve fiber crossings is a 
major drawback of traditional streamline tractography.  

Chapter 10 presents a new streamline tractography method for reconstruction 
of fibers in regions of crossings. It also gives an overview of the methods in 
the literature that attempt to resolve this problem. Figure 9.7 illustrates 
reconstruction of two-tensors at a seed point, and the fibers obtained from 
two-tensor tractography. 
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Figure 9.6: Tractography using a pre-defined ROI. Tracing the corpus callosum; the largest
white matter fiber bundle in the brain. 
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Figure 9.7: Two-tensor tractography. The cylinders depict the reconstructed two-tensors at a
seed location. 
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Abstract 

n inherent drawback of the traditional diffusion tensor model is its 
limited ability to provide detailed information about multidirectional 
fiber architecture within a voxel. This leads to erroneous fiber 

tractography results in locations where fiber bundles cross each other. This 
may lead to the inability to visualize clinically important tracts such as the 
lateral projections of the corticospinal tract. In this report, we present a 
deterministic two-tensor eXtended Streamline Tractography (XST) technique, 
which successfully traces through regions of crossing fibers. We evaluated the 
method on simulated and in vivo human brain data, comparing the results 
with the traditional single-tensor and with a probabilistic tractography 
technique. By tracing the corticospinal tract and correlating with fMRI-
determined motor cortex in both healthy subjects and patients with brain 
tumors, we demonstrate that two-tensor deterministic streamline 
tractography can accurately identify fiber bundles consistent with anatomy 
and previously not detected by conventional single tensor tractography. 
When compared to the dense connectivity maps generated by probabilistic 
tractography, the method is computationally efficient and generates discrete 
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geometric pathways that are simple to visualize and clinically useful. 
Detection of crossing white matter pathways can improve neurosurgical 
visualization of functionally relevant white matter areas. 

Keywords—Two-tensor Tractography, Diffusion Tensor Imaging, Crossing 
Fibers, Corticospinal Tract. 
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10.1 Introduction 

Diffusion-weighted MRI (DWI) provides a unique way to probe tissue 
microstructure by characterizing the random motion of water molecules 
within the tissue. Diffusion tensor imaging (DTI) represents the diffusion with 
a tensor model, allowing visualization of white matter fiber orientations 
corresponding to the preferred direction of water diffusion (Basser et al., 
2000). The reconstruction of fiber bundles, a process called tractography, is 
usually carried out by line propagation or streamline techniques using the 
principal eigenvector of the diffusion tensor (Basser et al., 2000; Conturo et al., 
1999). DTI is the first method able to demonstrate white matter architecture in 
vivo, and thus there has been much enthusiasm for its application to clinical 
neurosciences. 

DTI fiber tractography, however, is inaccurate in regions where fiber bundles 
intersect each other. Due to the orientational heterogeneity in such locations 
the principal eigenvector does not correspond to the fiber direction 
(Alexander et al., 2001), and thus the traditional diffusion tensor model fails to 
estimate the correct fiber orientations. For example, as shown in Figure 10.1, 
corticospinal tract (CST) fibers descending from the upper-extremity and face 
regions of motor cortex curve inferiorly and medially and intersect the 
superior longitudinal fasciculus (not shown in the figure), which traces 
anteroposteriorly through the corona radiata and the centrum semiovale. 
Thus, traditional tractography techniques depicting the CST actually trace 
only those fibers going to the leg area of the cortex and are unable to trace 
fibers going to the upper extremity area or the face area (Figure 10.1). 
Maintaining the continuity of those fibers is critical for preserving motor 
function for patients. Clinically, the hand is the most important function; so 
visualization of these fibers is particularly important. Motivated by this 
clinical need and by disappointing results from single tensor tractography, we 
investigated approaches to resolving crossing fibers with the particular goal 
of tracing the lateral projections of the CST fibers to the hand and face area. 

The limitation of the traditional tensor model in areas of crossing fibers has 
led to the development of new acquisition techniques along with more 
complex models of diffusion. One strategy to characterize the underlying 
complex fiber architecture is to quantify the diffusion function using the 
Fourier relationship first observed by (Stejskal and Tanner, 1965), between the 
diffusion function and the diffusion signal attenuation in q-space (Callaghan 
et al., 1988). Q-space imaging methods are essentially model-independent; 
they aim to directly measure the 3D probability diffusion function of water 
molecules. A number of approaches based on the q-space formalism have 
recently been proposed (Jansons and Alexander, 2003; Tournier et al., 2004; 
Tuch et al., 2003; Wedeen et al., 2000). These methods, however, require a 
large number of gradient directions (typically > 100), incurring long 
acquisition times, which make them impractical in a clinical setting. 
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Figure 10.1: Anatomic relationship of corticospinal tracts as they connect from the internal
capsule to the various motor regions of the cortex. Conventional single tensor tractography is
only able to demonstrate the fibers from the motor tracts (shown in yellow) leading to the leg
area of the motor cortex (turquoise) and cannot resolve those fibers leading to the hand (blue)
or face (magenta) areas. (Modified from Anatomy of the Human Body, by Henry Gray, 20th ed; Fig.
764.). 

Previous work has attempted to explicitly model the complexity of the DWI 
signal formation in the presence of multiple fibers (Alexander, 2005). A simple 
model is a mixture of Gaussian densities (Alexander et al., 2001; Blyth et al., 
2003), which can be thought of as a generalization of the single tensor model. 
A similar approach by (Behrens et al., 2003) modeled the underlying diffusion 
profile using infinite anisotropic components and a single isotropic 
component. It should be noted, however, that the constraints on the model 
parameters for the above are non-linear; therefore the optimization is time 
intensive, along with the problem of robustly yielding a global minimum for 
the objective function. Another inherent problem is that the model has no 
knowledge of the actual number of fibers present in a voxel, therefore 
accuracy may be reduced by representing the voxel with multiple fiber 
orientations when it can be better represented by a single fiber.  

Recently, (Peled et al., 2006) introduced a constrained bi-Gaussian model for 
analysis of crossing fibers with fewer model parameters, utilizing the 
information present in the single tensor. This two-tensor approach models a 
voxel containing two tracts using two cylindrical tensors (with identical 
eigenvalues), that lie in the plane spanned by the two largest eigenvectors of 
the single tensor fit. These physically realistic constraints contribute to the 
robustness of the fit even with a relatively small number of acquired gradient 
directions. 

Attempts have been made to incorporate complex models of diffusion in both 
deterministic (Blyth et al., 2003; Deriche and Descoteaux, 2007) and 
probabilistic tractography techniques (Behrens et al., 2007; Parker and 
Alexander, 2003; Staempfli et al., 2006). Due to the limitations of deterministic  
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Figure 10.2: Simulated data. (a) The simulated 60° fiber crossing. Inside the brown region
(middle), the two fibers are crossing each other. Outside the crossing region there is one
anisotropic tensor per fiber and the direction is color-coded. (b) Single tensor tractography
when seeded in the region bounded by the yellow box. (c) Connection map from probabilistic
tractography when seeded in the same region (voxels are color coded from 5000 (blue) to 4
(red) samples passing through the voxel). (d) Tractography based on XST.  
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algorithms such as lack of a measure describing certainty of the resultant 
trajectories, probabilistic tractography methods have been developed as an 
alternative. The majority of the probabilistic techniques differ from their 
deterministic counterparts by generating multiple streamlines from the seed 
point with random perturbations to the principal diffusion directions to 
generate a probability distribution of the fiber orientations.   

For some application domains such as neurosurgical planning and guidance, 
however, deterministic tractography has several advantages over probabilistic 
tractography. First, deterministic methods are fast and therefore may be used 
interactively. Second, visualization of the deterministic streamline trajectories 
is qualitatively similar to the expected white matter fiber tracts, whereas the 
output of probabilistic methods may be harder to visually interpret. Instead of 
recognizable and discrete geometric pathways, probabilistic methods 
generate a dense 3D volume of potential connectivities, which cannot be 
easily inspected except by further visualization methods (cutting planes, 
projections, isosurfaces, etc.). Thirdly, the connectivity maps from 
probabilistic tractography tend to leak into unexpected regions of the brain 
white matter (Descoteaux et al., 2007), as demonstrated in Figure 10.2.  

For these reasons as well as the widespread availability of deterministic 
methods, single-tensor deterministic streamline tractography has been widely 
applied for neurosurgery (Nimsky et al., 2005; Talos et al., 2003). In 
neurosurgery, defining critical white matter tracts has been particularly 
difficult as white matter tracts are not directly captured by conventional 
imaging and there is no reliable way to test for their presence, even using 
invasive intra-operative testing. Therefore tumors located near critical brain 
areas such as primary motor, sensory or language cortices or functionally 
significant white matter (WM) fiber tracts are difficult to resect maximally 
while avoiding postoperative neurological deficits. DTI tractography has been 
applied for identification of the motor pathway (Coenen et al., 2003; Holodny 
et al., 2001). However, the fiber crossing problem has been shown to affect 
single-tensor based fiber-tracking pyramidal tracts for neurosurgery 
(Kinoshita et al., 2005; Mikuni et al., 2007 ). 

The aim of this paper is to present a two-tensor deterministic tractography 
method that resolves some of the limitations of the common single-tensor 
deterministic streamline tractography method. The method presented, 
eXtended Streamline Tractography (XST), is a new technique based on the 
constrained two-tensor model estimation proposed in (Peled et al., 2006). We 
evaluate the performance of XST by comparing the results to those obtained 
from traditional single tensor tractography, and the probabilistic tractography 
technique proposed in (Behrens et al., 2007). The methods are compared by 
seeding in the internal capsule, and determining whether a method 
successfully reconstructs fiber bundles arising from the major divisions of  
primary motor cortex (face, hand, and leg), as identified by fMRI activation 
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maps in a healthy subject and in two patients with brain tumors in the region 
of the motor cortex. 

10.2 Materials and Methods  

10.2.1 Background Theory: Single Tensor Modeling and 
Tractography 

The diffusion of water molecules in time t can be described by a spatial 
probability density function Pt with a displacement x in time t. For isotropic 
media the diffusion is the same in all directions and can be described by a 
single constant ADC. For an anisotropic material, Pt reflects the tissue 
microstructure as more of the diffusion is parallel to the direction of the fiber 
than across it. For the traditional single tensor model the probability density 
function is a zero-mean multivariate Gaussian distribution (Basser et al., 
1994b). 

In a diffusion-weighted MRI experiment extra gradient pulses are introduced, 
and the amount of signal loss Sq when compared to the original signal S0 
(without diffusion weighting) is modeled by  the following equation (Basser, 
1995): 

 
0

ˆ ˆtbg Dg
qS S e−=  10.1 

where D is the apparent diffusion tensor (ADT). The eigenvalues of D are the 
apparent diffusion constants in the principal directions, ĝ  is a unit vector 
representing the direction of a diffusion gradient, and b is a factor describing 
the gradient timing and strength (LeBihan et al., 1986). To estimate the tensor 
D, Equation. (10.1) is usually solved by the linear least squares method. 

Based on the single tensor model, the most commonly used streamline 
tractography algorithm uses the direction of the principal eigenvector as a 
local fiber orientation (Basser et al., 2000). The method starts from an initial 
seed point, and the fibers are propagated by solving the following 3D path 
equation: 

 ( ) ( )ds t
r t

dt
=  

10.2 

where s(t) is the fiber curve path position at time t and r(t) is the local tangent 
orientation of the path. Equation. (10.2) can be numerically solved by Euler or 
Runga-Kutta integration schemes.  

10.2.2 Two-Tensor Model  

Equation. (10.1) describes the signal attenuation function for a single tensor 
model, which is described by a Gaussian function. The signal attenuation 



Resolving Crossings in the Corticospinal Tract by Two-tensor Streamline 
Tractography  

103

equation for a generalized two-tensor model can similarly be described by a 
weighted sum of two Gaussian functions: 

 ( )( )0 1
t t
a bbg D g bg D gS S fe f e− −= + −  10.3 

where S0 is again the base-line image acquired without diffusion weighting. 
Equation. (10.3) has 13 unknowns, compared to six in the single-tensor case 
(six parameters for each of the two diffusion tensors Da and Db plus the 
fraction factor f). Given the known noise-sensitivity of the single-tensor model 
(Bastin et al., 1998), the greater number of degrees of freedom is problematic 
for the two-tensor model. To address this, we use the constrained two-tensor 
model of (Peled et al., 2006), with only seven degrees of freedom. The model 
utilizes information from the single tensor fit; it assumes that both fiber tracts 
are constrained in the plane spanned by the first two principal 
eigenvectors ( )1 2ˆ ˆ,e e . A further assumption of the model is that the apparent 
diffusion constants parallel and perpendicular are same for both the fiber 
tracts. With the single tensor fit determining 3 degrees of freedom (orientation 
of 3ê  and minor eigenvalue 3λ ) the remaining free parameters are: 

 f: fraction of the first tensor, or the weighting factor,  

 aφ and bφ : the angles subtended in the plane by the principal directions 
of the two diffusion tensors and, 

 1λ : the principal eigenvalue which is assumed to be same for both the 
fiber tracts. 

Given the above constraints the two tensors are represented in the principal 
frame of the single tensor fit as: 

1 3 1 3

3 2 3 2

3 3

0 0
0 , 0

0 0 0 0

a a b b

a a a b b b

d d d d
D d d D d d

λ λ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

where 

{ }2 2
1 1 3cos sin , ,p p pd p a bφ λ φ λ= + ∈  

2 2
2 1 3sin cosp p pd φ λ φ λ= +  

( )3 1 3cos sinp p pd φ φ λ λ= −  

3λ  is calculated from the single tensor fit. Transforming the gradients into the 
new coordinate system the signal attenuation equation is then represented as: 
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0 1

t t
a bbG D G bG D G

qS S fe f e− −= + −  10.4 

In this work, Equation. (10.4) was solved using Levenberg-Marquardt non-
linear optimization. As in the single tensor case, the model can be fitted to 
every voxel however fitting a more complex model to the data may lead to a 
poor estimate of the underlying fiber orientation. The method assumes that 
the two fiber tracts are assumed to lie in the plane spanned by the first two 
eigenvectors of the single tensor fit. Therefore as suggested in (Peled et al., 
2006) only planar voxels were subjected to the more complex two-tensor fit 
where the degree of “planarity” was determined by Cp, which is Westin’s 
planar anisotropy index (Westin et al., 2002).  

10.2.3 eXtended Streamline Tractography (XST) 

To incorporate two principal diffusion directions we need to extend the 
traditional streamline method proposed in (Basser et al., 2000). To trace a 
continuous trajectory in the single tensor case, the integration scheme requires 
repeated tensor interpolation to derive a tensor at an arbitrary position. This is 
usually done by a weighted sum of neighboring tensors. With two rather than 
one tensor per sample, however, there is correspondence ambiguity inherent 
in the interpolation. Between two samples (each with two tensors), there are 
two ways of establishing correspondence, but the combinatorics become 
complex with the 2x2x2 sample neighborhood for trilinear interpolation or the 
4x4x4 neighborhood for tricubic interpolation. To avoid this complex 
correspondence problem, the diffusion weighted images (DWIs) were 
interpolated at each step along the estimated trajectory, and for each step the 
two tensors were estimated from the interpolated DWIs using Equation. 
(10.4). Thus the model-fitting here is performed after interpolation, which is in 
contrast to both previous work in single-tensor tractography, and in 
probabilistic tractography where model fitting is performed first, followed by 
model interpolation (Behrens et al., 2007). 

Although the correspondence problem is removed by performing the two-
tensor model fitting after interpolation, one of the two tensors must be chosen 
when tracing a specific fiber trajectory. For this we choose the tensor whose 
principal eigenvector has the least deviation from the incoming trajectory 
direction. The next decision to be made is when to stop tracing the trajectory. 
For single tensor tractography, the stopping criterion is normally based on 
detecting low anisotropy, since the direction of the tensor becomes more and 
more uncertain when the anisotropy is reduced. In two-tensor tractography, 
defining the stop criterion is more complex, since the methods are designed to 
trace through low (single-tensor) anisotropy regions. In this work, trajectories 
are terminated when linear anisotropy (as measured by Cl (Westin et al., 
2002)) falls below a given threshold (typically 0.2-0.3), when the radius of 
curvature becomes too small (2.3mm), or when the fraction of the chosen 
tensor component is lower than 0.1. Further, if the resultant trajectory is 
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shorter than a predefined length (40mm), it is discarded. These parameters 
were chosen by testing a range of values in a stepwise fashion, and were 
optimized for maximal depiction of the fiber tracts on one of the subjects, and 
then applied to other subjects.  

The fiber trajectories were seeded from hand-drawn regions of interest, and to 
ensure a dense set of trajectories, seed points were placed at nine evenly-
spaced points within each voxel. If the seed point was a region of crossing 
fibers (according to the planar measure threshold described earlier) then two 
separate trajectories were generated from the seed point, along the two tensor 
components. In our implementation we used cubic spline interpolation 
(Pajevic et al., 2002)  of the DWIs and fourth-order Runga-Kutta integration to 
solve Equation. (10.2).   

The method has been implemented as a part of the TEEM toolkit and can be 
downloaded from: http://teem.sourceforge.net/. 

10.2.4 Probabilistic Tractography 

In order to better understand the merits of the developed two-tensor stream-
line tractography method, it was compared to a recent probabilistic technique 
proposed by (Behrens et al., 2007). The probabilistic method is a part of FSL 
(FMRIB’s Software Library: http://www.fmrib.ox.ac.uk/fsl/). All the 
parameters for the method were the same as in (Behrens et al., 2007), although 
we recognize that some of the parameters for the probabilistic pre-processing 
phase can be optimized for different SNR levels. 

10.2.5 Synthetic Data Generation 

Based on Equation. (10.4), two anisotropic tensors with eigenvalues 1.7, 0.2, 
0.2 x 10-3 mm2/s  were simulated, corresponding to the eigenvalues in the 
splenium of the corpus callosum (Pierpaoli et al., 1996). The DWI’-s were then 
estimated for each voxel of the image. The number of gradient directions was 
55, with b = 1000 s/mm2, and 5 non-diffusion-weighted images. The fraction of 
signal for the two tensors was kept constant at 0.5. The fibers cross at the 
center of the image at an angle of 60°. Outside the crossing region the tensors 
were anisotropic and at the border they were chosen to be isotropic. 
Additionally, complex Gaussian noise was added to simulate SNRs of 18, 20, 
and 22.  Figure 10.2  (a) illustrates a simulated slice with a 60° fiber crossing at 
an SNR of 18. 

10.2.6 Human Brain Data 

Three subjects (2 patients) were included in the study. The patients had 
lesions in the region of the primary motor cortex. The study was approved by 
the Partner’s Institutional Review Board and informed consent was obtained 
from all participants. Subjects underwent the following MR imaging protocol 
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on a General Electric (Milwaukee, WI), 3T Signa scanner with Excite 14.0, 
using an 8-channel head coil and ASSET. High resolution whole brain T1-
weighted axial 3D SPGR (TR=7500ms, TE=30ms, matrix=256x256, 
FOV=25.6cm, FA=20°; imaging 176 slices of 1mm thickness) was acquired. 
Next, DWI was acquired with a multi-slice single shot diffusion weighted 
echo-planar-imaging (EPI) sequence (TR=14000ms, TE=76.6ms) consisting of 
55 gradient directions with a b-value of 1000 s/mm2, and 5 baseline T2 images. 
The FOV was 25.6cm. Imaging matrix was 128x128 with a slice thickness of 
2.6mm.  

10.2.7 Functional MRI (fMRI) Data 

Whole-brain functional images were acquired using a quadrature coil with a 
T2*-weighted EPI sequence sensitive to the blood oxygen-level-dependent 
(BOLD) signal (TR=2000ms, TE=30ms, matrix=128x128, FOV=25.6cm; imaging 
27 interleaved slices of 4mm thickness). For mapping motor areas, the tasks 
were self paced done at each subject’s comfort level. The fMRI activations 
were recorded for hand, leg, and lip motor areas. Irrespective of the task 
paradigm four task epochs of 30 seconds duration were interleaved with three 
10 second rest epochs for all the three motor tasks. SPM2 was used for 
reconstruction and analysis of the fMRI. The fMRI was subsequently aligned 
with the anatomical high resolution 3D-SPGR, and the baseline DWI scan. 

10.2.8 Experiments 

The performance of the methods was first compared in the synthetic data. 
Tractography from all methods (probabilistic, deterministic single-tensor, and 
XST) was generated in the simulated fiber crossing dataset. The performance 
of XST was then evaluated relative to the other methods in the human brain 
datasets, using seed regions of interest in the internal capsule. The generated 
fiber trajectories from the in vivo studies were evaluated by visual inspection 
based on the subject-specific fMRI activations. The methods were tested on a 
Pentium 4 processor, with 4GB of RAM. 

10.3 Results 

In this section, we show the results comparing the new two-tensor 
tractography method to traditional single tensor tractography and to a 
probabilistic tractography method, when applied to both simulated and in 
vivo brain data.  

10.3.1 Simulated Data 

Tracking results in the simulated fiber crossing data show performance 
differences across tractography methods (Figure 10.2). Figure 10.2a shows a 
slice through the data set in which the fibers cross at a 60° angle (brown 
region). Figure 10.2b illustrates the fiber tracts reconstructed from standard 
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single tensor tractography. The tractography was seeded in a region (yellow 
box) that can be best described by the single tensor fit. Ideally, one would 
expect the tractography trajectories to continue horizontally along the fiber in 
which they were seeded; instead as they enter the crossing region the fiber 
tracts diverge in the wrong direction. Figure 10.2c illustrates the connection 
probability map resulting from probabilistic tractography. The estimated 
pathways have leaked and are dispersed, which makes the main pathway of 
connectivity more difficult to comprehend. Figure 10.2d illustrates the fiber 
tracts obtained from the XST method. The tractography correctly follows the 
horizontal fiber direction through the fiber-crossing region.  

In summary, Figure 10.2 shows that single tensor deterministic tractography 
(Figure 10.2b) results in erroneous tracts, probabilistic tractography (Figure 
10.2c) results in too many tracts (i.e. the visualization is hard to comprehend), 
while XST (Figure 10.2d) is able to trace the two individual tracts through the 
crossing area, without dispersing or terminating early. 

10.3.2 In Vivo Fiber Tractography 

Figure 10.3 shows the single tensor and two tensor tractography results with 
the fMRI activation areas in the healthy subject. Both tractography methods 
were seeded in the posterior limb of the internal capsule within a manually 
drawn region of interest. Figure 10.3a,b shows the fiber trajectories as 
reconstructed by single tensor tractography. Figure 10.3a,b shows that single 
tensor tractography can only depict those motor fibers originating from the 
leg area (running superior-inferior): the hand and the lip fibers are not 
detected at all. Additionally, Figure 10.3a shows that some CST fibers crossing 
the pons diverge laterally likely due to the large number of crossing 
horizontal fibers in the pons. In contrast Figure 10.3c,d shows that XST is able 
to reconstruct fibers that are able to propagate to the different motor areas 
including hand and face.   

The probabilistic tractography results in a connection map indicating the 
confidence that each voxel is connected to the seed region. To compare the 
other methods to probabilistic tractography it was necessary to generate 
comparable images, therefore we generated maximum intensity projection 
(MIP) maps of single and XST based tractography. Figure 10.4 illustrates these 
maps for the healthy subject. Probabilistic tractography methods can in 
principle trace through regions of crossing fibers, but Figure 10.4c shows that 
in this example the method fails to depict the fibers going to the hand and lip 
areas. The figure depicts widespread dispersion but nevertheless, the majority 
of the streamlines (shown in yellow) fail to reconstruct the connections to the 
hand and lip fMRI activations. Figure 10.5 and Figure 10.6 illustrate the 
behavior of reconstructed fiber tracts in the patients. The figures not only 
confirm the results from the healthy subject, but additionally also show that 
two-tensor tractography depicts a higher number of trajectories around the 
tumor (Figure 10.5d and Figure 10.6d). This information is particularly of 
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Figure 10.3: Single tensor vs. XST when seeded in the internal capsule. Fibers from single
tensor tractography and the fMRI activation areas are shown in (a) coronal and (b) lateral
view. Note that where the CST passes through the pons, single tensor tractography
demonstrates divergent fibers leading into the cerebellum (region marked in red). Fibers from
the superior longitudinal fasciculus (SLF) (green) are also shown. (c) Fibers traced from XST
are shown in (c) coronal and (d) lateral view. The fibers are able to reach all three fMRI
activation areas. (d) shows areas of crossing between the SLF and CST. 
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Figure 10.4: Tracing the motor tract when seeded from the posterior limb of the internal
capsule. To generate a comparable visualization to probabilistic tractography for all methods, 
a coronal maximum intensity projection (MIP) map is shown for all tractography and fMRI
data, overlaid on a representative coronal anatomical image. (a) The FMRI activation areas. (b)
Single tensor tractography (voxels are color coded based on the number of trajectories passing
through them, followed by the MIP). (c) Probabilistic tractography. (d) two-tensor XST. In (b),
(c), and (d) the colored regions show voxels containing at least one fiber trajectory. 
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Figure 10.5: Single (a,b) vs. two-tensor XST (c,d) tractography results on a 64-year old 
caucasian female with left frontoparietal meningioma. Fibers were seeded in the internal
capsule and those intersecting fMRI activations were retained.  Three-dimensional surface 
models represent (a, c) fMRI areas for the leg (blue), hand (purple) and the lip (pink) and (b,
d) tumor (green). 
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Figure 10.6: Single (a,b) vs. two-tensor XST (c,d) tractography results on a 64-year old
caucasian male with right metastatic melanoma. Fibers were seeded in the internal capsule
and those intersecting fMRI activations were retained.  Three-dimensional surface models
represent (a, c) fMRI areas for the hand (purple) and the lip (pink) and (b, d) tumor (green).   
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interest for neurosurgical planning. Knowledge of the white matter tracts 
serving the hand is particularly clinically important in order to avoid a 
postoperative motor deficit. 

XST took approximately 1s to generate a single trajectory from a seed point. In 
contrast, the probabilistic tractography was a slower two-step process. A pre-
processing step which involved generating various parameters required for 
tractography was computed once for each subject. This step took 
approximately 48h, after which the next step of trajectory generation (based 
on a seed point) took approximately 10s.  

10.4 Discussion 

In this study, we evaluated whether multi-tensor tractography can be used to 
visualize fiber tracts in areas of multidirectional fiber architecture in the brain. 
Such areas are problematic for single tensor tractography methods because 
the single tensor model cannot describe the complexity. As highlighted in this 
report, areas of multidirectional diffusion are present in clinically important 
fiber tracts such as the CST. For resection of cerebral tumors, the correct 
depiction of motor pathways (specifically those that course laterally to the 
hand and face areas) is critical. If the motor pathway is damaged during the 
surgery the patient is likely to have a motor deficit (Kinoshita et al., 2005). 
Subcortical stimulation mapping is the clinical gold standard and the only 
functional method for identifying the motor pathways (Keles et al., 2004), 
however, this technique does not reveal the full 3D extent of the motor tract 
(Duffau et al., 2003). Recently fiber tracking based on the traditional tensor 
model has been widely applied for neurosurgical planning, specifically for 
preoperative assessment of functionally relevant white matter anatomy (Chen 
et al., 2007; Hendler et al., 2003; Niizuma et al., 2006; Wieshmann et al., 2000); 
however, inability of the method to trace through regions of crossing fibers, 
resulting in inaccurate depiction of the motor tract, is a major limitation 
(Berman et al., 2007; Kinoshita et al., 2005; Mikuni et al., 2007 ). In this report, 
we have shown that results from a multi-tensor tractography method can 
visualize motor fibers that could not be seen in the results from single-tensor 
tractography, and thus may be useful in surgical planning for resection of 
tumors adjacent to the corticospinal tract. 

A criticism for deterministic tractography is the lack of a measure describing 
confidence or uncertainty of the reconstructed trajectories. This may be a 
reason for the recent interest in probabilistic tractography techniques, since 
with those methods it is possible to quantify the degree of uncertainty in the 
principal diffusion direction. The connectivity maps from probabilistic 
tractography are no more than an indicator of the number of visitations that a 
certain trajectory underwent (from the seed point). For regions where there is 
a single dominant fiber pathway (such as the corpus callosum) the 
uncertainty in the principal diffusion direction is very small, therefore one 
would expect minimum dispersion in the connectivity maps. However, the 
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dispersed behavior of tracts shown in Figure 10.2c as a result of seeding in a 
single tensor region (mimicking the corpus callosum) is not what clinicians 
expect to see based on their neuroanatomical knowledge. The aim of any 
tractography algorithm is to reconstruct tracts that accurately correlate with 
the underlying white matter pathways. Given a 3D volume of connectivity 
maps with a dense map of frequent visitations it is extremely difficult to pick 
the most probable trajectory. In short, neurosurgeons want to know where the 
fiber pathways are located, not where they might be probable.   

A limitation of our study is that the sensitivity of the results regarding 
parameter selection (such as Cp, radius of curvature, and ROI for seeding) has 
not been thoroughly studied. With a different choice of parameters, such as 
denser seeding we may reconstruct a larger number of trajectories. The use of 
Cp as a criterion for classifying voxels with crossing fiber tracts is a 
simplification and more complex models can be considered. Previous works 
have used statistical methods such as an F-Test to decide whether it makes 
sense to fit a more complex model when the simpler model is enough to 
describe the data (Alexander et al., 2002). Our initial experiments with 
information criterion methods (Akaike, 1974; Schwarz, 1978) for model 
selection were not very promising. This might be because the two-tensor 
model (Peled et al., 2006) is constrained and comparing that to an 
unconstrained single tensor model might not be feasible. When evaluating the 
model selection criterion we need to formulate the inclusion of these 
constraints, which might not be trivial. Another limitation of this study is 
evaluating sensitivity of the method to different noise conditions; however, 
despite the low SNR on simulated data (Figure 10.2), the method is able to 
trace through successfully, and seems to be robust (in addition, it worked well 
on the in vivo data).  

In summary, a novel tractography method is presented that shows promise in 
resolving some of the issues with the traditional tractography, however, the 
method is still in development and more validation is required. Future work 
will involve a thorough clinical evaluation; a qualitative study on the 
behavior of the different parameters for XST based tractography, and 
development of a more robust criterion (to either replace or complement Cp) 
for quantification of goodness of fit of the underlying model. It would be 
interesting to carry out a comparison study of probabilistic tractography 
based on different models of diffusion, such as using the model proposed in 
(Peled et al., 2006). 

10.5 Conclusion 

Two-tensor deterministic tractography shows promise in resolving white 
matter pathways in areas of crossing fibers. We have shown that using the 
XST two-tensor deterministic streamline tractography method, it is possible to 
visualize white matter fiber tracts that are not obtainable using single tensor 
tractography approaches. Although probabilistic tractography results detect 
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more connected areas than single tensor stream-line tractography results, they 
show more dispersion than the results obtained using the presented two-
tensor method which is undesirable for neurosurgical planning. By 
reconstructing fibers traversing the internal capsule and comparing their 
trajectories to fMRI motor activations, we demonstrated that our approach 
could successfully trace critical motor pathways and may better delineate 
neurosurgically critical motor fibers than standard tractography.  
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Two-tensor Diffusion MRI Analysis 
Enables Visualization of Articular 
Cartilage Fiber Crossings 
Arish A. Qazi, Erik B. Dam, Sharon Peled, and Carl‐Fredrik Westin. Adapted 

from Abstract Published in the Proceedings of OARSI, 2008. 

n this chapter preliminary results on the feasibility of using DTI as a 
method for analysing the internal structure of the articular cartilage are 
presented. The chapter starts with background information on the 

structure and function of the cartilage, motivating DTI as a method for 
investigating the internal structure of the cartilage. 

11.1 Structure of the Articular Cartilage 

Normal articular cartilage is a hyaline cartilage with a glass-like appearance, 
providing a smooth, elastic, friction-bearing surface with the ability to 
withstand enormous loads (McCauley and Disler, 1998). The cartilage is 
composed primarily of an extracellular matrix synthesized by chondrocytes, 
which are the cells found in the articular cartilage (Temenoff and Mikos, 
2000). The extracellular matrix is composed primarily of water, collagen, and 
proteoglycans (Buckwalter and Mankin, 1997a). Water is the largest 
constituent comprising 60 - 80% of the total weight of the matrix; followed by 
collagen, comprising almost 60% of the dry weight (McCauley and Disler, 
1998). The collagen fibril network is responsible for providing the structural 
and tensile properties to the cartilage. Most of the collagen in the cartilage is 
type II with small amounts of type IX and type XI present. The third largest 
component of the cartilage is proteoglycan, large macromolecules comprising 
approximately 30% of the dry weight. The proteoglycans are composed of 
glycosaminoglycan (GAG) side chains bound to a protein core. The 
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Figure 11.1: The structure of the cartilage has been compared to an air tent. The meshwork of
the collagen fibers is similar to the surface of the tent. The proteoglycans are similar to a pump
that fills the collagen tent with water. Thus, damage to either the collagen or proteoglycans 
will lead to disruption in the meshwork causing degradation of the articular cartilage. 

proteoglycans are constrained within the collagen matrix and being strongly 
negatively charged they create a repulsive force which attracts water. This 
creates osmotic forces which are responsible for the swelling pressures in the 
articular cartilage.  

These three components together are responsible for the mechanical 
properties of the articular cartilage. The structure of the cartilage has been 
compared conceptually to an air-tent (McCauley and Disler, 1998), as shown 
in Figure 11.1. The meshwork of the collagen fibers is similar to the surface of 
the tent. The proteoglycans are similar to a pump that fills the collagen tent 
with water. Thus, damage to either the collagen or proteoglycans will lead to 
disruption in the meshwork causing degradation of the articular cartilage.  

The cartilage matrix is a highly structured tissue (Buckwalter and Mankin, 
1997a; Buckwalter et al., 1990). The matrix is divided into a number of zones 
based on the alignment of collagen fibers, as shown in Figure 11.2. The 
outermost zone of the cartilage is the superficial zone or the tangential zone. 
This zone has a relatively high content of collagen fibers, the collagen fibers 
are oriented parallel to the surface of the cartilage. 

Next, is the transitional zone, this zone makes up almost 40% of the cartilage 
thickness. Fibers in this zone have a more random orientation. Finally, in the 
radial zone of the cartilage the orientation is perpendicular to the surface of 
the cartilage. It is believed that the collagen content decreases and 
proteoglycan content increases from the surface of the cartilage to the 
cartilage-bone interface (McCauley and Disler, 1998). 

11.2 Purpose 

Loss of integrity within the collagen framework is regarded a hallmark 
process in cartilage degeneration, which is considered an important factor in 
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Figure 11.2: Schematic representation of the zonal alignment of collagen fibers (courtesy of
Anne-Bay Christine Jensen).  

the pathogenesis of OA (Buckwalter and Mankin, 1997b). During the early 
stages of the disease there is disruption in the collagen framework which 
leads to inclusion of water inside the cartilage and which in turn leads to 
swelling and softening of the cartilage. Detection of the disease at this stage is 
highly desirable because this occurs before cartilage loss; it is known that 
cartilage has limited capacity to regenerate itself (Buckwalter and Mankin, 
1997b). Therefore, present research is directed towards non-invasive 
techniques for early detection of OA.  

Diffusion tensor magnetic resonance imaging (DTI) can be employed to study 
anisotropic properties of tissues and is widely used for analyzing brain 
structures (Pierpaoli et al., 1996). The major constituent of the extracellular 
matrix is water, which is entrapped between the meshwork of collagen fibrils, 
which in turn have a highly ordered structure. These properties make the 
cartilage an ideal candidate for analysis by DTI. In limited capacity, DTI has 
been applied to study the alignment of the collagen framework in cartilage 
and it has been demonstrated that the direction of the eigenvector relates to 
characteristic variations in the zonal architecture of collagen fibers (Deng et 
al., 2007; Filidoro et al., 2005; Meder et al., 2006). A limitation of the standard 
DTI model, however, is that it allows only one fiber orientation per voxel. 
Thus, fiber orientation heterogeneity, such as crossings, cannot be modelled. 
Therefore, the aim of this study was to investigate that whether a two-tensor 
model enables visualization of fiber crossings within the mesh of collagen 
macrofibrillar bundles. This work is the first investigation of analysis of 
crossing fibers in the cartilage, using DTI. 
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Figure 11.3: Bruker BioSpin scanner. Location: Harvard Medical School, USA.  

11.3 Methods 

The measurements were performed on 2 cartilage-on-bone samples acquired 
from total knee replacement. The DTI data was acquired by applying a 
diffusion-weighted pulse-gradient spin-echo sequence, on a high-field 8.5T 
Bruker BioSpin (Figure 11.3), with imaging parameters: TR=2000ms, 
TE=14.5ms, δ=2.1ms, Δ=8ms. Two measurements with a b-value of 0 s/mm2, 
and 30 measurements with a b-value of 1000 s/mm2 applying diffusion 
gradients in 30 isotropically distributed directions, were performed. Using a 
10x10 mm2 FOV, a spatial resolution of 100x100x2000 µm3 was achieved. The 
total acquisition time (10 averages) was 23 hrs. The sequence was also 
validated on an Agarose phantom. 

For estimating two-fiber orientations, a recently proposed model was utilized 
(Peled et al., 2006). The model is a constrained bi-Gaussian model for analysis 
of crossing fibers, utilizing the information present in the single-tensor. This 
two-tensor approach models a voxel containing 2 fibers as 2 cylindrical 
tensors that lie in the plane spanned by the two largest eigenvectors of the  
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Figure 11.4: (a) B0 Image (b) Fiber orientations. 

single-tensor fit. Single-tensor was estimated for every voxel, whereas the 
two-tensor model was fitted only to “planar” voxels, as determined by the 
planar anisotropy (Cp) measure (Westin et al., 2002). Scalar measures, such as 
mean diffusivity (MD), and fractional anisotropy (FA) were estimated from 
the single-tensor. 

11.4 Results 

MD showed maximum values at the surface (1.6×10-3 mm2/s) and decreased 
at the cartilage-bone interface (0.9×10-3 mm2/s), whereas FA varied in 
between 0.02-0.31, and was maximal at the cartilage-bone interface. Figure 
11.2b depicts regions of fiber heterogeneity in a sample cartilage; these were 
predominant at the surface of the cartilage where the direction of the two 
eigenvectors was both parallel and perpendicular to the cartilage surface.  
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11.5 Conclusion 

Our study highlighted the feasibility of DTI for structural analysis of the 
articular cartilage. DTI is able to reconstruct the alignment of collagen fibers 
and maybe useful for monitoring early changes in the structure of the 
cartilage. A limitation of this study is the small number of samples and lack of 
histological comparison. Our findings (MD & FA) appear to be consistent 
with those reported in literature, however, additionally, we have shown that 
by describing the underlying diffusion by a more complex model, we are able 
to non-invasively visualize fiber crossings at the cartilage surface. This may 
help in understanding the dynamics of degradation in the articular cartilage 
during development of early OA.  

Acknowledgements: We sincerely thank Dr. Deborah Burstein and her team 
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Conclusions and Perspectives 
 

he first part of thesis presents methods that analyse the articular 
cartilage of the knee, with the aim of developing techniques that are able 
to reliably quantify the progression of OA. For this purpose, we 

investigated whether intrinsic textural changes in the articular cartilage, 
visualized by MRI, would be a possible marker for OA. We have shown that 
our marker Cartilage Homogeneity is sensitive to early structural changes in 
OA, and therefore maybe useful in clinical trials, testing the efficacy of a 
disease modifying anti-osteoarthritis drugs (DMOADs). The present 
investigation has been based on the use of the KL score as the gold standard 
for estimation of the degree of OA. Since the KL score is graded using x-rays 
and the articular cartilage is not visible on x-rays therefore as a result, the KL 
annotation may not distribute similar articular cartilage appearances in the 
same KL group and each KL group may as a consequence include very 
different presentation of articular cartilage health. With these difficulties in 
mind, the present separation of healthy versus KL 1 (i.e. detection of early 
OA) may seem even more impressive, as undetected articular changes in KL 0 
which only are detectable by cartilage homogeneity could have been 
annotated differently, if the KL scoring system would have been more 
articular cartilage oriented. Therefore, we expect that results from our 
methods will only improve when OA grading systems based on MRI become 
more common.  

Additionally, we have presented a novel and generic framework to map out 
regions of most pathological changes in a body region. We have 
demonstrated that our method is able to localize regions in the articular 
cartilage using both morphometric and textural based measures. To our 
knowledge, this work is the first fully automated method for finding the most 
pathological regions in the articular cartilage. Detection of such changes will 
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help capture the dynamics of the underlying pathology which can be used to 
improve diagnosis, prognosis, and possibly for assessing treatment efficacy. It 
will enable effective longitudinal analysis of both structural and biochemical 
alterations in the disease. The region of most discrimination can be extremely 
useful for clinical trials; it may be used as an inclusion criterion for 
participation. It would be interesting to utilize the framework for body organs 
other than the cartilage. For example, given maps of anisotropy measures 
from the brain, such as FA, from two groups, the region of most diffusion 
changes might reveal some important information about the underlying 
pathology.  

We have several different modalities of knee MR data in our archive. The 
results from the articular cartilage have been evaluated on T1-Weighted 
images. It would be interesting to combine and benefit from the 
complimentary information provided by the different modalities. The initial 
step in this direction requires the scans to be anatomically aligned. For this 
purpose a multi-modal image registration (MREG) toolkit was developed, 
which encompasses a fast multi-resolution scheme. Using the developed 
framework, future work may involve fusion of information for clues to better 
quantification of the underlying pathogenesis of the disease. 

The MR scanner used for the OA study is a low-field scanner; however, most 
of the scanners employed nowadays are high-field, typically having field 
strengths 1.5T or 3.0T. Low field scanners potentially lower both purchase 
and maintenance costs along with the reduced scan time and less patient 
discomfort. Therefore, low-field scanners are highly desirable for clinical 
trials. There is no doubt that high-field scanners provide images with a better 
resolution and SNR, but just because the images look “nicer” and pleasing to 
the eye is not a valid argument to invest in a high-field scanner. A study that 
evaluates the methods presented in this thesis on both a low-field and a high-
field scanner simultaneously is highly desirable. In this way, a direct 
comparison will aid in determining the pros and cons of using either scanner. 

The thesis also presents a novel two-tensor tractography technique, which 
successfully traces through regions of crossing fibers. Such areas are 
problematic for single tensor tractography methods because the single tensor 
model cannot describe the complexity.  Several different techniques have been 
proposed to resolve this; however, most of the methods are not clinically 
feasible and their output may be harder to visually interpret. We present a 
deterministic tractography approach that apart from being clinically feasible 
is fast and may be used interactively. Secondly, visualization of the 
trajectories from our method is qualitatively similar to the expected white 
matter fiber tracts. We have shown that results from our method can visualize 
motor fibers that could not be seen in the results from single-tensor 
tractography, and thus may be very useful clinically, such as in surgical 
planning, for resection of tumors adjacent to the corticospinal tract. To our 
knowledge, we are the first to reconstruct and visualize crossings in the motor 
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tract by a deterministic tractography method, and verify the results by fMRI. 
Using fMRI in combination with DTI is extremely useful. There is no ‘gold 
standard’ to validate the accuracy of the generated fiber pathways from 
tractography and since fMRI accurately localizes critical functional areas, 
therefore to some extent we can validate the existence of fiber trajectories by 
their functional relationship.  

A possible direction for the future is a robust model selection scheme. 
Currently, we use the planar anisotropy measure, Cp, as the decisive factor 
when making a choice in fitting the complex two-tensor or the traditional 
single-tensor model to diffusion measurements in a voxel. The use of Cp as a 
criterion for classifying voxels with crossing fibers is a simplification and we 
need a more reliable way to select the best model for representing the 
underlying diffusion. Also, during two-tensor tractography, we make a choice 
between one of the two-tensors as a possible direction in the path. A possible 
extension would be to allow the method to branch and follow both directions 
instead. Of course, this may lead to spurious fibers and therefore a 
methodology for reduction of spurious and unwanted fibers would have to be 
devised.  

We also present a feasibility study of using DTI for structural analysis of the 
articular cartilage. We show that DTI is able to reconstruct the alignment of 
collagen fibers and maybe useful for monitoring early changes in the 
structure of the cartilage. We have shown that by describing the underlying 
diffusion by a more complex model, we are able to non-invasively visualize 
fiber crossings, primarily at the cartilage surface. To our knowledge, this the 
first study which utilizes DTI to reveal fiber crossings in the matrix of the 
articular cartilage. This may help in understanding the dynamics of 
degradation in the articular cartilage during development of early OA. A 
limitation of the study is histological analysis, which is required to aid in 
understanding the underlying function. 

To conclude, the work presented in this thesis has tried to bridge the gap that 
exists between the methodological and the clinical schools of thought. We 
have presented methods that are simple to apprehend, yet clinically feasible. 
Though, the thesis has left many open problems but I hope that the material 
presented in the thesis may be enough to formulate those problems in a way, 
such that some day one might be able to solve them. 
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