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Abstract

Density estimation employed in multi-pass global illumination algorithms gives

cause to a trade-off problem between bias and noise. The problem is seen most

evident as blurring of strong illumination features. This thesis addresses the

problem, presenting four methods that reduce both noise and bias in estimates.

Good results are obtained by the use of anisotropic filtering. Two methods han-

dles the most common cases; filtering illumination reflected from object surfaces.

One methods extends filtering to the temporal domain and one performs filtering

on illumination from participating media. The applicability of the algorithms is

demonstrated through a series of tests.
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Resumé

Et antal af globale belysnings metoder benytter sig af densitets beregninger for

at tilnærme sig indirekte belysning. Denne densitets beregning foretages p̊a et

stokastisk udpluk. Under rekonstruktion af indirekte belysning, reduceres støjen

fra det stokastisk udpluk af densitets beregningen. Desværre betyder denne støj

reducering, at der indføres en systematisk fejl. Denne ses som en udglatning af

ellers tydelige karakteristika i belysningen. Den nærværende afhandling griber

dette problem an gennem fire metoder, der reducere b̊ade støjen og den system-

atisk fejl. Gode resultater opn̊as gennem rotationsvariant udglatning. To af

de præsenterede metoder h̊andterer problemet for de mest almindelige tilfælde.

En metode udglatter i tid s̊avel som i rum, mens den fjerde metode foretager

udglatning for gennemskinnelige medier.
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1
Introduction

Since the first photographic film was exposed and developed, reality has been
a fragile concept. At the whims of spiteful dictators, ruthless journalists, or
inspired designers, the minds and eyes of the people has been cheated, swayed
and manipulated. Whether it is Stalin removing an unwanted commissar from
official memory, or a multi-million dollar corporation performing a race-change
of actors in their adverts, image manipulation has been the weapon of choice.
Obviously, image manipulation raises numerous important moral issues and
implications, for despite its dubious history, photography is still a source of
great credibility. The significants of these moral implications are not trifle and
can hardly be underestimated. They greatly impact on society as the legal
system is challenged. Interesting and important as these implications are, they
will not be discussed further. On the contrary, this thesis will, albeit on a very
small scale, attempt to make them even more far reaching.

This thesis is a contribution to the field of photorealistic image synthesis. It
presents four contributing methods; photon differentials, photon differentials for

participating media, temporal photon differentials and diffusion based photon

mapping. The first three methods are novel contributions developed during the
research period of this Ph.D., while the latter is an improvement of a method
developed as part of my master thesis.

In photorealistic image synthesis, the goal is often to graphically render virtual
scenes such that they appear indistinguishable from what could be produced
with real world photography. This can be archived by simulating the transport
of electromagnetic radiation within the virtual scene. With this as purpose,
one can attempt to solve the rendering equation. The rendering equation was
introduced to computer graphics, from the field of radiative heat transfer, by
Kajiya [1986]. A group of algorithms that attempts to solve the rendering
equation are called global illumination methods.

If we were to broadly categorize global illumination methods, we could in one
end of a spectrum place those methods that depend on stochastic sampling, eg.
path tracing [Kajiya 1986], bidirectional path tracing [Yves and Willems 1993]
and metropolis light transport [Veach and Guibas 1997]. These methods use
monte carlo integration to solve the rendering equation. The advantage of these
methods is that they converge towards the true solution. The disadvantage is
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CHAPTER 1. INTRODUCTION

that results are noisy, and that convergence is slow even when variance reduction
techniques such as importance sampling are used.

Further down our spectrum, we have a large group of global illumination algo-
rithms that employ density estimation in order to eliminate noise in the solu-
tions. This group of algorithms has primary focus in this thesis. Specifically,
these algorithms are faced with a prominent trade-off problem between variance
and a systematic error (bias). The developed methods presented in the thesis
improves on this trade-off. They achieve this by employing anisotropic filtering
in the reproduction of indirect illumination. This procedure gives a high illumi-
nation accuracy, improving the trade-off between bias and variance considerably
as compared to conventional methods. As will become apparent there is a lot
to gain tackling this trade-off problem efficiently.

1.1 Thesis overview

At top-level, this thesis is split into four parts; Part I is an evaluation of the
problem addressed, Part II describes methods developed to handle the most
common cases, Part III extends as to handle animated scenes as well as scenes
containing translucent media, and Part IV is the appendix. The order of the
methods in Part II and Part III reflects the chronological development of the
thesis. Here follows a more exhaustive survey of the four parts:

Part I consists of two introductory chapters. The first of these gives a brief
theoretical exposition of statistical density estimation. It clarifies the trade-off
problem between bias and variance, and gives a brief survey of density estima-
tors that seek to alleviate this problem. The second chapter explains density
estimation in the context of computer graphics. Specifically, it identifies the
different issues, global illumination methods are faced with when employing
density estimation.

Part II examines diffusion based photon mapping and photon differentials. Both
methods seek to improve the trade-off between bias and variance using different
forms of anisotropic filtering. Diffusion based photon mapping uses a non-
linear diffusion process to control the filtering, while photon differentials traces
beams of light by differentiating their path as they propagate through the virtual
scene. Photon differentials was first introduced in [Schjøth et al. 2007] and
later extended in [Schjøth et al. 2009] (not yet accepted), whereas diffusion
based photon mapping was introduced in [Schjøth et al. 2006] and extended in
[Schjøth et al. 2008]. The last chapter in this part examines and compares the
two proposed methods and a conventional global illumination method. In this
analysis two different objective image quality measures are used to make the
comparison as objective as possible.

In Part III two novel methods are presented, namely temporal photon differ-
entials and photon differentials for participating media. The former, employs
anisotropic filtering in the temporal as well as the spatial domain. This allows
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1.1. THESIS OVERVIEW

it handle certain forms of temporal aliasing. The latter extends photon differ-
entials such that anisotropic filtering can be used to reconstruct illumination
from translucent media.

Finally, Part IV is the appendix. The appendix contains a simple method for
reducing a specific form of bias. Furthermore, the appendix contains a technical
report by Sporring et al. [2009] that extends on a method by Igehy called ray

differentials [1999]. The method and its extension is essential to many of the
methods developed in this thesis. At the time of writing the technical report is
still in the process of being registered.
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Part I

Density Estimation
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2
Statistical density estimation

This chapter aims to give an overview of density estimation. The primary
contribution to this sections comes from a well-known book by Silverman [1986]
and the more resent work of Wand and Jones [1995].

At top-level density estimation can be classified as either parametric density es-
timation or non-parametric density estimation. The purpose of non-parametric
density estimation is that of finding the unknown function which best fits a set
of data samples. In statistics the unknown function is the Probability Density

Function (pdf ). The definite integral of a pdf, f , defines the probability of a an
event, X, within an interval;

P (a < X < b) =

∫ b

a

f(x)dx. 2.1

If the integral of the pdf stretches the entire interval it is equal one, that is–the
probability that the event should happen within the interval between minus
infinity to infinity is a 100%. The pdf can provide important information about
the data it is modelled to fit and is seen used for many purposes in statistics.
For instance geyser eruptions over time, suicide rate after treatment, or–in the
field of computer graphics–illumination intensity over a scene.

Parametric density estimation is another approach to finding the pdf of a
dataset. In parametric density estimation a known function is modeled as to
best fit a density of discrete samples. This approach might yield bad results
when prior knowledge of the dataset is not adequate. If for example a dataset
best resembling a bimodal pdf is described as a normal distribution, then the
multimodal nature of the dataset would be missed. If on the other hand prior
knowledge is adequate, and a simple function fits the data, then the method
can be much faster than the non-parametric density estimate.

We will limit ourselves to the non-parametric case as this is the one primarily
used in computer graphics, the reason being that the illumination of a scene
seldom can be described adequately by a simple function. Henceforth, when re-
ferring to density estimation, it should be assumed to be non-parametric density
estimation.
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CHAPTER 2. STATISTICAL DENSITY ESTIMATION

Kernel K(x)

Uniform
1
2 if ∣x∣ < 1,
0 otherwise

Epanechnikov
3
4 (1− x2) if ∣x∣ < 1,
0 otherwise

Biweight
15
16 (1− x2)2 if ∣x∣ < 1,
0 otherwise

Gaussian 1√
2�

exp
(
− 1

2x
2
)

Table 2.1: Common univariate kernel functions

2.1 The kernel estimator

A general non-parametric density estimator is the kernel estimator. The ker-
nel estimator approximates a density function by weighting the samples of a
dataset by their distance to the position, for which the density function is to be
approximated. This is done using a kernel function.

The univariate kernel estimator is defined by

f̂(x) =
1

nℎ

n∑

i=1

K

(
x− xi

ℎ

)
2.2

where n is the number of data, ℎ is the bandwidth, and K is the kernel function.
For each position x of f̂(x), all samples, xi, are weighted by the kernel function
centered over x.

The kernel estimator can be understood in two ways; either as a sum of kernel
functions, each centered over a sample, xi, or as a kernel centered over each
position x of f̂(x), such that it weights each sample, xi, by its distance.

The kernel function should integrate to one,

∫ ∞

−∞
K(x)dx = 1, 2.3

as the kernel density estimate itself otherwise would not integrating to one and
therefore would not be a pdf. The kernel function is most often itself a pdf
and it is usually symmetric and unimodal. Table 2.1 is a table of different
univariate kernel functions common to statistics. With the exception of the
Gaussian kernel they all reach zero at a given limit. The kernel functions are
illustrated in Figure 2.1 as well.

Because of the additive form of the the kernel estimator, the estimated density
function inherits the differentiability and continuity of the kernel function used
in the estimate. Another property of the kernel estimator is that it constitutes
a smoothing of the density function. In fact the estimated density function
converges not to the true density function but to the true density function
convolved with the kernel.
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2.1. THE KERNEL ESTIMATOR
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Figure 2.1: The Uniform, the Epanechnikov, the Biweight, and the Gaussian
kernel function.

The bandwidth determines the degree of smoothing of the density function, it
has a huge impact on its form. In the next section, we will investigate its impact
on the kernel estimator using a virtual scene.

2.1.1 A simple analysis

Figure 2.2 is a rendering of a constructed scene used in this and later analyses.
In this artificial scene we have a wave, which is illuminated from above by
collimated light. Light from the light source (outside the image) is refracted
through the wave creating a caustic on the plane beneath. Because the focus
point of the light is beneath the plane, envelopes of light creates two narrow
bands of high intensity illumination. Between the two bands, the illumination
intensity is higher than outside. Along the length of the plane, the caustic in
one side slowly fades out. On the opposite side, the caustic is cut off because of
the limited extend of the wave. Along the width of the plane, the caustic is on
one side cut off by the border of the plane and on the other by the wave. The
vertical box can be ignored in this part of the analysis. The red line along the
length of the plane is an artificial overlay its function to be explained later.

In the rendering only indirect illumination is visualized. The illumination has
been reconstructed from a large distribution of samples that has been gathered
by stochastically emitting light rays from the light source.

Reducing the reconstruction problem to one dimension we sample a slice of the
distribution along the red line in Figure 2.2. This gives us the distribution
illustrated in Figure 2.3.
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CHAPTER 2. STATISTICAL DENSITY ESTIMATION

Figure 2.2: The figure is a rendering of a virtual scene, in which a wave is
illuminated from above by collimated light. Refraction of light creates a caustic
on the plane beneath the wave. In the rendering only indirect illumination is
shown.

Figure 2.3: Part of the distribution used to reconstruct the caustic in Figure 2.2.
The part was sampled from the distribution along the red line.
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Figure 2.4: Kernel density estimates of the distribution shown in Figure 2.3.
The function plotted in (a) was estimated with a bandwidth of 0.008 while (b)
was estimated with a bandwidth of 0.04. Both estimates was done using the
Epanechnikov kernel.
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2.1. THE KERNEL ESTIMATOR

The two plots in Figure 2.4 are univariate kernel density estimates of the distri-
bution in Figure 2.3. They illustrate that the bandwidth size has an important
impact on form of the estimator, f̂ . In fact the plots reveal an important prob-
lem inherent to density estimation; namely that of selecting a bandwidth that
gives the most suitable result. The rather imprecise term ’suitable’ is used, be-
cause the suitability of the result depends on its utilization. A human observer
might want an estimate with details, while an estimate used for differentiation
preferable is noise free.

The first estimate, Figure 2.4(a), has been estimated with a small bandwidth.
It contains a lot of details including the two peaks corresponding to the two
high intensity bands in the rendering, Figure 2.2. We observe that a lot of noise
is visible along the tail of the plot. Must obvious are the last two samples in
the right side of the function; these each stand alone as the bandwidth is much
smaller than the span in-between these, and between these and the rest of the
function.

One way to eliminate noise in the estimate is to increase the bandwidth and
thereby the smoothing. This has been done in Figure 2.4(b). Here we see that
the tail noise is more or less gone such that the gradual fadeout is more smooth.
Unfortunately, two ill-effects of the smoothing has also become apparent: first
of all the bimodal form of the function is gone as the two peaks has ’melted’
together; secondly, the high intensity part of the curve is much reduced, likewise
has contrasts between high and low intensity parts been leveled out.

This analysis suggest that a wish for detail preservation is at odds with the
noise removal. In the following a less heuristic analysis is used to identify this
common kernel density estimation problem.

2.1.2 Estimation accuracy

In statistics an objective mathematical measure is often used to quantify the
accuracy of an estimate. Such a measure can be used to define the discrepancy
of an estimator, f̂ , compared to the true density, f .

Most often there is a trade-off between variance and bias. Variance is the
random error caused by the finite nature of the distribution, while the bias is
the systematic error induced by the density estimator. If large values for the
bandwidth are used, a smoothing of the density function is incured. The result is
a reduction in variance, but an increase in bias. Small values on the other hand
means less smoothing, more variance, and a less biased result. This trade-off
can be quantified using the Mean Integrated Square Error (MISE).

MISE can be defined as

MISE(f̂) =

∫ (
Ef̂(x)− f(x)

)2
dx+

∫
var f̂(x)dx, 2.4

where the first integral is the square bias, the second is the variance, and E is
the expectation value. Accordingly, the accuracy of the estimate depends on

11



CHAPTER 2. STATISTICAL DENSITY ESTIMATION

the sum of the variance and the square bias, thus a dependency exists between
variance and bias. This will be elaborated.

It is known [Silverman 1986] that the expectation value of the kernel density
estimate is

Ef̂(x) =

∫
1

ℎ
K

(
x− y

ℎ

)
f(y)dy. 2.5

Together with Equation 2.4, this tells us that the difference between the ex-
pected value of f̂ and f is the convolution of f with the kernel, K, and f itself.
This difference depends on the size of the bandwidth, since it scales the ker-
nel. It is possible to express MISE in a form such that the dependency on the
bandwidth is more tractable.

Restricting the kernel function such that it satisfies
∫

K(y)dy = 1,

∫
yK(y)dy = 0 and

∫
y2K(y)dy < ∞, 2.6

it is possible to formulate the expected value of f̂ by Taylor expansion as

Ef̂(x) ≈ 1

2
ℎ2f ′′(x)

∫
y2K(y)dy + o(ℎ2). 2.7

Similarly, the variance of the kernel density estimate can be approximated:

Var(f̂(x)) ≈ 1

nℎ

∫
K(y)2dyf(x) + o

(
(nℎ)−1

)
. 2.8

Collectively, Equation 2.7 and 2.8 makes it possible to expand Equation 2.4, this
leads to an extensive formulation of the mean square error of the kernel density
estimator. Wand and Jones [1995] has reduced this expression, by removing
higher-order terms, formulating a useful approximation, which they call the
asymptotic mean integrated square error (AMISE). By definition the asymptotic
mean integrated square error of the kernel density estimator is

AMISE(f̂) =
1

4
ℎ4

∫
y2K(y)dy

∫
f ′′(x)2dx+

1

nℎ

∫
K(y)2dy, 2.9

and from this the mean integrated square error is expressed as

MISE(f̂) = AMISE(f̂) + o
(
(nℎ)−1 + ℎ4

)
. 2.10

From the definition of AMISE, the influence of the bandwidth is more easily
interpreted. In the equation the contribution from the first term is the integrated
square bias, while the contribution from second term is integrated variance. As
can be seen, the integrated variance is inversely proportional to the nℎ. That
is, we need to decrease the number of samples or the bandwidth in order to
decrease the variance. However, increasing the bandwidth has a huge impact
on the bias as the integrated square bias is proportional to ℎ4. In other word
increasing the bandwidth will decrease the error caused by bias. Unfortunately,
decreasing the bandwidth will increase the error caused by variance. This is the
trade-off problem between variance and bias that we considered in our simple
analysis, Section 2.1.1.

12



2.1. THE KERNEL ESTIMATOR

Another point to consider is the influence of f ′′ on the bias. The magnitude
second derivative of f is large, where f changes rapidly. It is a measure of
the curvature of f . This means the more ’spiky’ the function is the lower the
bandwidth needs to be in order to keep the bias low. This of course conflicts with
the error caused by variance, which will increase as the bandwidth decreases. A
natural conclusion is that high contrast functions needs more samples to keep
the overall error down.

Returning to the trade-off problem, a balance needs to be found between vari-
ance and bias. For different measures a bandwidth can be found, which gives
the optimal balance for that particular measure.

2.1.3 Optimal bandwidth

From Equation 2.9 it is possible to find, which bandwidth for the kernel density
estimator that reduces the asymptotic mean integrated square error best. Wand
and Jones [1995] has derived the optimal AMISE bandwidth;

ℎopt = 5

√ ∫
K(y)2dy

n
(∫

y2K(y)dy
)2 ∫

f ′′(x)2dx
. 2.11

The usefulness of this equation is limited by the fact that the optimal bandwidth
depends on the unknown function f ′′. As expected, the optimal bandwidth
is decreased if the curvature of f is high. Likewise, the optimal bandwidth
decreases, if the number of samples in the estimate increases.

One way to circumvent the unknown term in Equation 2.11 is to assume that
the distribution describes some known function such as the a normal function.
If, however, the unknown function for example is mulitmodal, then estimating
it based on a normal function will over smooth the estimate, perhaps causing
the mulitmodal nature of the function to be lost.

As we shall touch on later, AMISE might not be the best measure upon which
to balance the trade-off between bias and variance.

2.1.4 Summary

A kernel density estimate f̂ , is a kernel smoothed version of the true density
function, f , in addition to random error. Increasing the number of samples will
reduce the variance making the estimate converge to the true density function
convolved with the kernel. If the bandwidth at the same time goes toward zero,
then our estimate will converge to f . Adjusting the bandwidth controls the
trade-off between bias and variance.

It is possible to improve this trade-off by adapting the bandwidth over an es-
timate such that it is inversely proportional to the local density. A class of
estimator that tries to achieve this is called adaptive kernel estimators.

13



CHAPTER 2. STATISTICAL DENSITY ESTIMATION

2.2 Adaptive kernel estimators

Adaptive kernel estimators seek to minimize MISE by varying the bandwidth
over the estimate. In areas with low density, adaptive kernel estimators reduce
noise by using a broad bandwidth, while they at the same time preserve details
in high density areas by using a small bandwidth.

Two well-known adaptive kernel estimators are the local-bandwidth kernel esti-

mator and the variable-bandwidth kernel estimator [Simonoff 1996].

2.2.1 The local-bandwidth kernel estimator

The equation for the local-bandwidth method can be defined as,

f̂(x) =
1

nℎ(x)

n∑

i=1

K

(
x− xi

ℎ(x)

)
, 2.12

where n is the total number of samples, and ℎ(x) is a bandwidth function.

The most common local-bandwidth kernel estimator is the k’th nearest neighbor
kernel estimator. For this estimator, the bandwidth function uses the distance
from x to the k’th nearest sample as the bandwidth. This means that the
bandwidth varies depending on the local density of the data. In effect the
bandwidth changes from being small in high density areas to being large in low
density areas. The result is that bias seen in areas with sharp transitions in
density is reduced.

Figure 2.5(a) shows a k’th nearest neighbor kernel estimate of the distribution in
Figure 2.3. As can be seen from the curve, the bimodal nature of the function is
preserved, while the tail is still smooth. Unfortunately, in both sides the curves
continues to the limit of the plot without becoming zero. This is a general
problem as the k’th nearest neighbor kernel estimator will never become zero,
even outside the domain. Another problem with the k’th nearest neighbor
kernel estimator is that, unlike the kernel density estimator, it does not inherit
the differentiability and continuity of the kernel function used in the estimate,
since the distance function is not continuous.

2.2.2 The variable-bandwidth kernel estimator

The equation for the variable-bandwidth kernel estimator is,

f̂(x) =
1

n

n∑

i=1

1

ℎ(xi)
K

(
x− xi

ℎ(xi)

)
. 2.13

Whereas the k ’th nearest neighbor estimator adapts the local bandwidth based
on a measure of density, the bandwidth varying kernel estimator uses a different
bandwidth for each observed sample, xi, to weight the estimate. Most often a

14
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Figure 2.5: Estimates of the distribution shown in Figure 2.3. The function
plotted in (a) was estimated with the k’th nearest neighbor kernel estimator
using k = 25, while (b) was estimated with variable-bandwidth kernel estimator
using the k’th nearest neighbor kernel estimator to estimate the individual kernel
bandwidths with k = 25. Both estimates was done using the Epanechnikov
kernel.

pilot estimate of the unknown density is used to vary the bandwidth [Simonoff
1996]. With ℎ(xi) = ℎv f̃(xi)

−1/2. Where the pilot, f̃ , is estimated with a
fixed-bandwidth kernel estimator.

In Figure 2.5(b) we have used the k’th nearest neighbor kernel estimator to de-
cide the bandwidth of each individual sample and then used variable-bandwidth
kernel estimator to estimate the function from the distribution in Figure 2.3.
In this simple case the variable-bandwidth kernel estimator exhibits superior
qualities. Both high intensity peaks are preserved, the tail is smooth and curve
reached zero in both ends. Like the kernel density estimator, it, furthermore,
inherits the differentiability and continuity of the kernel function used in the
estimate.

The obvious drawback of the variable-bandwidth kernel estimator is that it can
be expensive to estimate bandwidths for each individual sample.

2.2.3 Multivariate kernel density estimation

Expanding the number of dimensions complicates matters as the kernel shape
achieves more degrees of freedom. This means that a number of bandwidths
are needed to control kernel shape and size. Defining these bandwidths with a
matrix, H, the multivariate kernel density estimator can be expressed as

f̂(x) =
1

n
√

detHd×d

n∑

i=1

Kd

(
(x− xi)

TH−1
d×d(x− xi)

)
, 2.14

where d is the dimensionality of the estimator and Kd is a multivariate kernel
function. The matrix H is called the bandwidth matrix [Simonoff 1996; Wand
and Jones 1995]. It should be symmetric and positive semidefinite.
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Defined as a diagonal matrix, the bandwidth matrix controls the kernel shape
and size along the coordinate axes. The full matrix lets the kernel assume any
orientation. Restricting the bandwidth matrix to H = ℎ2Id, Equation 2.14 is
reduced to

f̂(x) =
1

nℎd

n∑

i=1

Kd

(
(x− xi)

T (x− xi)

ℎ2

)
2.15

where the single parameter, ℎ, is the bandwidth the multivariate kernel K.

The important difference between Equation 2.14 and 2.15 is that the former
allows for an anisotropic kernel to be used in the estimate, while the latter uses
an isotropic kernel.

2.3 Summary

In this introductory chapter non-parametric density estimation has been ex-
amined. From analyses it was shown that a trade-off exists between bias and
variance and that this trade-off can be balanced using an objective quality mea-
sure. Furthermore, this chapter has described two adaptive density estimation
methods that seek to improve the mentioned trade-off. In the following chapter
we shall see how kernel density estimation is employed in graphics and what
issues its usage effects.
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3
Density Estimation in Computer

Graphics

As mentioned in the introduction, a group of unbiased global illumination meth-
ods exists, which is based primarily on Monte Carlo ray-tracing. The advantages
of the these methods is that they can simulate all possible light paths, they have
low memory consumption, they can be used on scenes with arbitrary geome-
try, and they converge towards the true solution. Unfortunately, they converge
slowly. As an alternative, a group of biased global illumination methods uses
density estimation to achieve a faster convergence rate; the most popular of
these being photon mapping [Jensen and Christensen 1995]. By means of den-
sity estimation the illumination function is convolved with a smoothing kernel.
The advantage is that noise is removed, but as explained in the Chapter 2, the
trade-off is the introduction of a systematic error (bias).

The images in Figure 3.1 illustrates how this trade-off between variance and bias
manifests itself in computer graphics. Both images were rendered with photon
mapping with the same number of samples, but with different bandwidths. The
left image was rendered with a small bandwidth, for which reason noise in the
indirect illumination stands out. In the right image a large bandwidth was used
resulting in a low noise level. The smoothing incurred by the large bandwidth
can be quite pleasing especially where the illumination changes slowly. However,
when the illumination contains high contrasts as in the vicinity of caustics and
shadows, details are lost. In the right image, details and even whole parts of
the caustics, otherwise visible in the left image, has disappeared.

This bias defect is one of the most common and most visible. However, as we
shall see in the following, bias imposed by kernel density estimation is cause to
other types defects often seen to computer graphics.

3.1 Types of bias

When density estimation is used in computer graphics, a number of bias related
effects may follow. The effects and the degree to which they are expressed,
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(a) (b)

Figure 3.1: Underwater images of a stair. The images demonstrate how biased
global illumination methods often need to balance between noise and blurring.
Both images was creates with photon mapping; image (a) was rendered using a
small bandwidth while (b) was rendered using a large bandwidth.

depend on the global illumination method. It is possible to categorize these
effects. We will adopt the terminology used by Schregle in [Schregle 2003]
and supplemented by Herzog et al. in [Herzog et al. 2007a]. As such, density
estimation, when employed in computer graphics, gives cause to boundary bias,
proximity bias, topological bias, and occlusion bias.

Boundary bias is seen as a darkening of illumination along polygon edges. It
exists because the density estimate extends beyond the boundaries of the particle
distribution. That is, the estimator assumes the distribution to be unbounded.
This problem is similar to the boundary problem seen when filtering images
in Image Analysis. In Figure 3.2(a) it is seen as a darkening right before the
caustic extends beyond the object upon which it is reflected.

Proximity bias is visible as blurring of edges of caustics and other sharp
illumination features. It occurs, when the kernel crosses the boundary of such
illumination features. The reason being, that energy from both sides of the
boundary contributes to the local estimate, thus displacing energy to areas
where it should not be present. This is the basic density estimation bias prob-
lem explained in Section 2.1. The effect of proximity bias is illustrated in Fig-
ure 3.2(b), where the edge of the caustic slowly fades out.

Topological bias sometimes occurs when density estimation based global il-
lumination algorithms assume that geometric surfaces are locally planar. This
assumption often means that a two dimensional kernel density estimate is per-
formed on a three dimensional dataset. The result is that when surface curvature
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3.1. TYPES OF BIAS

(a)

(c)

(b)

(d)

(a) (b) (c) (d)

Figure 3.2: Rendering of a virtual scene. A wave is illuminated from above
by collimated light creating a caustic on the plane beneath. The rendering
demonstrates four common bias defects (highlighted in red): (a) boundary bias,
(b) proximity bias, (c) topological bias, and (d) occlusion bias. In the rendering
only indirect illumination has been shown.
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is strong, the density is overestimated, as the support area is underestimated.
Typically, this defect is visible in corners. Figure 3.2(c) is an example of topo-
logical bias. Along the border between the floor and the wall, the caustic has an
artificial increase of intensity; this is topological bias and is due to the fact that
when the illumination of the wall is estimated, samples from the floor are also
used in the estimate and vice versa. If only samples from either the wall or the
floor had been used, then the result would have been a darkening of illumination
caused by boundary bias.

Occlusion bias shows itself as light leakage. In Figure 3.2(d) the backside
of the thin vertical box is illuminated, even though it should not (only indirect
illumination resulting directly from specular refraction is visualized). This false
illumination occurs, because samples from the other side of the thin vertical box
are included in the density estimate.

This terminology will be used henceforth to distinguish between different types
of bias. The next section will explain density estimation, as it is used in photon
mapping. It will help build the foundation for our developed methods.

3.2 Density estimation in photon mapping

In photon mapping, indirect illumination is reconstructed through a series of
queries to the photon maps. A photon map is a collection of “photons” created
during the particle tracing phase–a phase in which photons are reflected around
a scene using Monte Carlo ray tracing. Each query is used to estimate the
reflected radiance at a surface point as the result of a local photon density
estimate. This estimate is called the radiance estimate.

The accuracy of the radiance estimate is controlled by two important factors: the
resolution of the photon map, and the number of photons used in each radiance
estimate. If few photons are used in the radiance estimate, then noise in the
illumination becomes visible. If many photons are used, then edges and other
sharp illumination features, such as those caused by caustics, are blurred. It is
impossible to avoid either of these adverse effects, unless an excessive number of
photons are stored in the photon map. This is the mentioned trade-of problem
between variance versus bias as it manifests itself in photon mapping.

3.2.1 The radiance estimate

In his book Jensen [2001] derives an equation that approximates the reflected
radiance at a point, x, using the photon map. This is done by rewriting the
reflected radiance term of the rendering equation such that it involves an integral
over radiant power incident per unit area rather than radiance incident across
the hemisphere. An approximation of the radiant power incident per unit area
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is obtained using the k nearest photons around the point, x. In this way the
equation for the reflected radiance becomes

Lr(x, !) ≈ L̂r(x, !) =
1

�ℎ(x)2

k∑

i=1

fr(x, !i, !)Φi, 3.1

where Φi is the radiant power represented by the i’th photon, fr is the bidi-

rectional reflectance distribution function (abbreviated BRDF), and ℎ(x) is the
radius of a sphere encompassing the k nearest photons, such that �ℎ(x)2 is the
sphere’s cross-sectional area through its center. The radius is dependent on x
because its size is decided by the photon density in the proximity of x. In the
context of density estimation, the radiance estimate is a bivariate isotropic k’th
nearest neighbor kernel estimate with ℎ(x) as the bandwidth.

As mentioned, the bandwidth is important because its size controls the trade-
of between variance and bias. A small bandwidth gives a limited support of
photons in the estimate; it reduces the bias, but increases the variance of the
estimate. Inversely, estimating the radiance using a large bandwidth results in
an increase in bias and a decrease in variance.

Using a k’th nearest neighbor search to decide the bandwidth, Jensen helps
limit bias and variance in the estimate by smoothing more, where the photon
density is sparse, and less where the photon density is dense.

The radiance estimate in Equation 3.1 is simple insofar as it weights each photon
in the estimate equally. In the thesis by Jensen [1996] the radiance estimate is
refined such that filtering is used to weight each photon according to its distance
to the point of estimation.

It is possible to reformulate the radiance estimate to a general form such that
it can be used with different filtering techniques. We formulate this general
radiance estimate as

L̂r(x, !) =
1

�ℎ(x)2

k∑

i=1

K

(
(x− xi)

T (x− xi)

ℎ(x)2

)
fr(x, !i, !)Φi, 3.2

where xi is the position of the i’th photon and K(y) is a bivariate kernel func-
tion.

3.3 Bias reduction

As density estimation became relevant to computer graphics, so did the trade-of
problem between variance and bias. Numerous papers address this issue; some
of these go beyond common kernel density techniques.
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3.3.1 Local-bandwidth based methods

Photon mapping usually depends on k’th nearest neighbor kernel estimate to
improve the trade-of between bias and variance. However, Jensen [1995] pro-
posed an extended method. The method is called differential checking, and it
reduces bias by making sure that the kernel does not cross boundaries of dis-
tinct lighting features. This is done by expanding the bandwidth; ensuring that
the estimate does not increase or decrease drastically, when more photons are
included in the estimate.

Myszkowsky [1997] suggested to solve the problem in much the same way as
Jensen did with differential checking. However, he made the method easier
to control and more robust with respect to noise. Myszkowsky increases the
bandwidth iteratively, estimating the radiance in each step. If new estimates
differ more from previous estimates than is attributable to variance, the iter-
ation stops as the difference is assumed to be caused by bias. More recently,
Schregle [2003] followed up Myszkowskys work using the same strategy, but op-
timizing speed and usability. Speed is optimized by using a binary search for
the optimal bandwidth. This search starts in a range between a maximum and
a minimum user-defined bandwidth. The range is split up, and the candidate
whose error is most likely to be caused by variance, not bias, is searched.

Redner et al. [1995] used b-splines to approximate the illumination function
from a particle density distribution. The b-spline function is composed of a
number of basis functions, each associated with a control point. The advantage
of this form of representation is that the illumination function is easy to evaluate
and manipulate and that the storage consumption is negligible. The method
is faced with the same dilemma as the kernel density estimator as the number
of basis functions used in the representation determines the smoothness of the
illumination function.

Shirley et al. [1995] introduced an algorithm for estimating global illumination.
Like photon mapping this algorithm uses density estimation to approximate the
illumination from particles generated during a Monte Carlo-based particle trac-
ing step. However, unlike photon mapping the algorithm is view-independent,
and for this reason the illumination is tied to the geometry. Kernel bandwidths
was estimate for groups of photons per surface by a simple heuristic; namely,
the square root of the surface area divide by the surface hits multiplied by a user
defined constant. They called the algorithm the density estimation framework,
and they refined it in a series of papers.

Bias control was not considered in the first edition of their framework, but in
the paper by Walter et al. [1997] they extended the framework to handle bias
near polygonal boundaries. This was done by converting the density estimation
problem into one of regression. In this way they could use common regression
techniques to eliminate boundary bias.

Later, in his PhD thesis, Walter [1998] reduced bias by controlling the band-
width of the estimate using statistics to recognize noise from bias. Benefiting
from the field of human perception he used a measure for controlling the band-
width such that noise in the estimate was imperceptible to the human eye.
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Walter recognized that if bias was to be significantly reduced using his method,
then perceptual noise had to be accepted in the vicinity of prominent edges
and other strong lighting features. This is a common problem that also affects
differential checking and both Schregle’s and Myszkowsky’s method. Hence, in
the proximity of strong features such as the edges of a caustic the bandwidth
stops increasing, and the foundation on which the estimate is made is supported
by few photons. This means that when estimates are made close to edges, the
support is limited and noise may occur.

The difference between Jensen’s, Myszkowsky’s, Schregle’s, and Walter’s algo-
rithms mainly lie in their method of detecting structure and the degree of change
in bandwidth a given proximity of such structure entails. They can be classified
as local-bandwidth estimators that use isotropic kernels.

Schjøth et al. [2006; 2007; 2008] suggested a bias reducing method inspired by
diffusion filtering. Their method use a structure tensor to shape-adapt the kernel
of the density estimate in order for it to smooth along edges and structures. The
structure tensor is constructed from the first order structure of the photon map,
which is estimated in an in-between pass. Similar to Jensen’s, Myszkowsky’s,
Schregle’s, and Walter’s methods, their method can be classified as a local-
bandwidth kernel estimator, the difference being that they use an anisotropic
kernel.

3.3.2 Photon splatting

A group of methods uses the concept of splatting. Common for these methods is
that they employ some form of the variable bandwidth density estimator; each
sample (eg. photon hit) is associated with a bandwidth that is used to estimate
its contribution to the illumination. The main difference between these lie in
how they selects kernel bandwidths.

In comparison to the other density estimation methods these are also faced
with difficulty of finding an optimal bandwidth, however, the problem is aggra-
vated because local density data typically is not available when estimating the
radiance.

Much like Shirley et al. [1995], Stürzlinger and Bastos [1997] also used splat-
ting. They employed the same heuristic to estimate the photon-bandwidth, but
aimed for real time rendering. Also, their method was geometry dependent, and
photons was grouped and given the same bandwidth depending on the surface
they had hit.

Their method was extended by Lavignotte and Paulin [2003] who made the
method adaptive. In a first iteration a pilot estimate is found using a large
fixed bandwidth. For subsequent iteration bias and variance in each pixel is
estimated. If variance bias was low the pixel was accepted. On the other hand
if bias was high and variance low, then a new image was estimated using a lower
bandwidth. This proceeds until all pixels are accepted. The method depends
on many user defined parameters. Problematically, one of these is the initial
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bandwidth; which, if chosen too low induces bias, or if chosen too high, raises
the estimation time prohibitively (for each iteration the bandwidth is lowered
one quarter of the former bandwidth).

In a method, proposed by Collins [1994], the relation between bundles of photons
are tracked as they are traced from the light source. At photon hit positions
this relation is used to decide the bandwidth of a Gaussian kernel placed over
each photon in the bundle. Collins’ method is geometry dependent as photon
energy is deposited on illumination maps attached to scene objects.

A method with similar trends, has more recently been suggested by Herzog et

al. [2007b]. In their method an individually kernel bandwidth for each particle
is decided by the path traveled by the particle, as the bandwidth size is inversely
proportional to probability of the particle path. Their method is an extension
of ray maps [Bala and Dutre 2005]; a method that compensated for topological
and boundary bias by finding the nearest photons based on their path through
space.

In [2007] Schjøth in et al. also suggested a method based on photon splatting;
they called it photon differentials. Unlike other splatting methods, which all
used isotropic kernels during illumination reconstruction, kernels used by their
method was anisotropic.

While Schjøth et al. [2006; 2007; 2008] also used an anisotropic kernel, the
kernels in that method affect a number of photons based on an average of the
local structure. Photon differentials uses an individually shaped kernel for each
photon. This means that each local estimate is based on the correlation of a
number of fixed kernels; each of which is shaped according to the structure of
the illumination. In effect, photon differentials is more accurate and handles
corners better.

3.4 Summary

This chapter has explained the role of density estimation in computer graphics.
In the first part, it was demonstrated that classical density estimation pass on
the trade-off problem between bias and variance described in Chapter 2. This
led to a categorization of the bias defects common to many global illumination
methods based on density estimation. In the last part of this chapter, a number
of methods attempting to reduce the trade-off problem was summarized. Among
these, two methods developed by the author was briefly described. Namely,
diffusion based photon mapping and photon differentials. The following chapters
will describe these method in-depth.
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4
Diffusion based Photon Mapping

Particle tracing algorithms are frequently used in photo realistic image synthesis.
They usually employ two passes - a first pass in which particles representing light
are emitted from light sources and reflected around a scene, and a second pass
which generates an image of the scene using the light transport information
from the first pass. The advantage of particle tracing algorithms is that they
effectively simulate all possible light paths. In particular they can simulate
lighting phenomena such as color bleeding and caustics.

However, particle tracing algorithms are faced with a severe problem. In the
particle tracing pass, particles are stochastically emitted from the light sources
and furthermore often stochastically traced through possible light paths. This
procedure induces noise. Some particle tracing methods use density estimation
to eliminate this noise during illumination reconstruction. Unfortunately, the
noise reduction imposes a systematic error (bias) seen as a blurring of sharp
illumination features. This is not necessarily a bad effect when concerned with
slowly spatially changing illumination, but it becomes an important problem
when the illumination intensity changes quickly such as when concerned with
caustics and shadows. This problem is describe more thoroughly in Chapter 2.

The method presented in this chapter was first published in [Schjøth et al. 2006].
In later publications [Schjøth et al. 2007; Schjøth et al. 2008] the method has
been improved and investigated more thoroughly.

The advantage of the presented algorithm is that it reduces noise and in addition
preserve strong illumination features such as those seen in caustics. It has been
implemented in photon mapping. Photon mapping is a popular particle tracing
algorithm developed by Henrik Wann Jensen [1996].

Our algorithm is based on a filtering method called nonlinear anisotropic dif-

fusion. Nonlinear anisotropic diffusion is a popular method commonly used in
image processing, it has the property of smoothing along edges in an image in-
stead of across edges [Weickert 1998]. Thus it preserves structures in an images
while smoothing out noise.

We use diffusion filtering on densities of photons during the illumination recon-
struction. As such our method is a numerical solution to the diffusion equation
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geared toward photon tracing. The effect is that our method uses a shape
adapting anisotropic kernel.

As described in Section 3.3, the methods by Jensen, Myszkowsky, Schregle,
and Walter all employ forms of the local-bandwidth kernel density estimator
to reconstruct illumination and they all use isotropic kernels in the density
estimate. In the context of diffusion filtering these methods are comparable
to isotropic diffusion. The difference between the methods mainly lie in their
method of detecting structure and the degree of change in bandwidth a given
proximity of such structure entails.

In contrast our method employs an anisotropic kernel that allows it to smooth
along edges and structures. Therefore, in the proximity of edges a radiance
estimate performed by our method will have more support than other methods.

McCool [1999] use anisotropic diffusion filtering to reduce noise and preserve
structure in Monte Carlo rendering. He processes the rendering in image space
using a coherence map. The coherence map consist partly of world space in-
formation about object orientation and depth and partly of image space infor-
mation about color contrast. His filtering of illumination is based on structure
derived solely from color contrast.

Our algorithm differs from McCool’s as we use anisotropic filtering only in the
illumination reconstruction phase. We work with photon distributions in world
space and not with pixel contrasts in image space. To our knowledge anisotropic
diffusion has not been employed in connection with the illumination reconstruc-
tion of particle tracing algorithms.

(a) (b)

Figure 4.1: Rendering of caustics created by two interlinked toruses. Region
zoom of image rendered using (a) regular photon mapping and (b) our method.

Figure 4.1 illustrates two renderings; one using regular photon mapping and the
other using our method. The images show how our method reproduces caustics
in higher detail than regular photon mapping using the same number of photons.

4.1 Diffusion filtering

In physics diffusion is the flow of matter caused by differences in concentration.
Generally, we know that matter moves from areas with high concentration to
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areas with low concentration with the purpose of reaching equilibrium. This
flow is described by Fick’s first law

J = −D∇C, 4.1

which states that the flux, J, is dependent on the diffusivity D, and the con-
centration gradient ∇C, where C : ℝd × ℝ+ → ℝ, D ∈ ℝ

d×d, and d is the
dimensionality. Here the concentration gradient is the change in concentration
over the volume: ∇C = i∂C∂x + j∂C∂y + k∂C

∂z , where i,j and k are orthogonal
unit vectors. The diffusivity is the controlling factor, it is a coefficient of the
matter which diffuses. The negative sign of the diffusivity indicates that the
flux is moving down the concentration gradient as one would assume. Further
described by Crank [2004]

Combining Fick’s law with the continuity equation, yields the diffusion equation

∂C

∂t
= div(D∇C). 4.2

If the continuity equation1, ∂�/∂t = −div(J), is used to express the physical
principal of mass conservation it states that if matter is moving out of a differ-
ential volume then the amount of matter within the volume is decreasing. The
negative sign is canceled out by the negative sign in Fick’s law when Fick’s law
is inserted into the continuity equation. In the equation the divergence operator
is defined as div(V) = ∂Vx

∂x +
∂Vy

∂y + ∂Vz

∂z + ..., where V is an arbitrary vector.
Another notation for divergence is ∇⋅, but the former is preferred as the latter
is more common in image processing.

The diffusion equation states that matter is preserved. That given a movement
of matter in time caused by a flux, a change in concentration occurs within a
differential volume. This flux we know to be dependent on the diffusivity and
the concentration gradient.

4.1.1 Diffusion in image processing

In image processing diffusion is used as a means of smoothing images. Intu-
itively, diffusion can be understood as an erosion of an image. If one think of an
image as a landscape where the topology is described by the pixel intensities,
then diffusing the image causes peaks and valleys to level out and small cracks
and fissures to vanish.

In image processing the diffusion equation becomes

∂tI = div(D∇I), 4.3

here ∂tI is the shorthand notation for ∂I
∂t where I is the image. t should be

understood as the degree of smoothing/diffusion of the image. This will be
explained in context of scale-space later.

1The continuity equation is a fundamental equation in physics. It is used in electromag-
netic theory as well as quantum mechanics and fluid dynamics. In electromagnetic theory �

represents charge, in quantum mechanics it is the probability density and fluid dynamics it is
density of fluid.
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Nonlinear isotropic diffusion

Nonlinear diffusion filtering was introduced to scale-space by Perona and Ma-
lik [1990]. The purpose was to contrive an alternative to Gaussian scale-space.
Gaussian scale-space is a convolution of an image with a Gaussian kernel over
time, where time is defined as the size of the kernel. What this basically means
is that time is synonymous with the degree of image smoothing. Scale-space is a
multi-scale representation of an image. In the context of diffusion, convolution
with a Gaussian is the same as linear isotropic diffusion, that is the diffusivity
is a constant, the image is diffused equally in all directions. Lindeberg gives
a good introduction to scale-space in ”Scale-space: A framework for handling

image structures at multiple scales” [Lindeberg 1996].

The problem with Gaussian scale-space is that ridges and edges moves spa-
tially when moving through time, making tracking of corresponding structures
cumbersome. Perona and Malik’s solution to the problem was what they called
anisotropic diffusion. A filtering process which preserved edges while smoothing
intra-regions. They introduced the diffusion equation and described the diffu-
sivity by a scalar function. This function controlled the degree of diffusion in
the image locally and it was suggested that it should depend on the gradient
of the actual image (scale-space smoothed), thus making the process nonlinear.
Perona-Malik’s function for the diffusivity is given by the equation:

g(∇I) =
C

1+
(

∣∇I∣
K

)1+� , � > 0
4.4

C is a constant suggested to be 1 by Perona and Malik [1990] and �, also a
constant, should be greater than 0. Together with �, the constant K decides
the threshold for the diffusion. The function is drawn in Figure 4.2, with � = 3,
C = 1, and K = 0.3. Now K decides when the function starts to monotonically
decrease and � the steepness of the decline. In practice what it means is, that
K is the threshold deciding what is considered an edge and what is considered
noise, and � controls the smoothness of transition. It is intuitive that high
frequency noise, such as salt and peber noise, can cause trouble if considered an
edge by the diffusivity function. Of course adjusting K and � is necessary, but
for images where noise is pronounced and edges are weak, the problem remains.
To circumvent this, Perona and Malik suggested that the parameters should be
adjusted dynamically using local estimates of noise and contrast. However, this
method can still cause edge information to be lost.

For this reason and other2 Catté et al. [1992] proposed pre-smoothing the gra-
dient, using this regularized version, as a basis for Perona-Malik’s diffusivity
function. The advantage of using this regularized gradient is that noise and
insignificant details will be ignored when finding the gradient. The solution was
found to be stable and theoretically more sound than Perona-Malik’s.

Returning to Perona-Malik’s diffusitivity function, Equation 4.4, it is important
to note that the image gradient, ∇I, is time dependent, this makes Perona-
Malik’s diffusion filter nonlinear.

2Another problem was that the method was not stable, meaning that images very similar
could produce different solutions [Catté et al. 1992; Weickert 1998].
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Figure 4.2: Parona-Malik’s diffusivity function, g(∇I) = C/(1 + (∣∇I∣/K)1+�),
with the parameters: � = 3, C = 1, and K = 0.3

Nonlinear anisotropic diffusion

Another approach to diffusion filtering has been well studied by Weickert [1998].
Instead of using a scalar function to represent the diffusivity, the idea is to
use a symmetric positive semidefinite matrix called the diffusion tensor, D ∈
ℝ

d×d were d is the dimensionality of the image. The diffusion tensor should
adapt locally as to describe the structure of the image. Depending on how the
tensor is constructed, this makes the diffusion filtering capable of either edge-
or coherence-enhancing smoothing.

The diffusion tensor depends on the image gradient. As with the regularized
version of Perona-Malik’s diffusion equation the image gradient is pre-smoothed.
A notation for this is ∇I� which means ∇(G� ∗ I), that is the image, I, is
convolved with a kernel, G�, where sigma is the standard deviation of the
kernel. From this we get the following formulation of Equation 4.3

∂tI = div(D(I�)∇I). 4.5

In Weickert’s terminology this form of diffusion filtering is called anisotropic,
while diffusion with a scalar diffusivity function, as with Perona-Malik’s diffu-
sion, is called isotropic. The difference being that the diffusion is parallel to the
structure gradient in the isotropic case, as opposed to the anisotropic case where
the diffusion can be parallel to the structure, perpendicular to the gradient.

An advantage of anisotropic diffusion is that it, unlike isotropic diffusion, is
capable of smoothing along edges and structures thereby avoiding the problem
of isotropic diffusion where noise along edges is not removed. Another advan-
tage is that anisotropic diffusion can connect discontinuities and gabs in image
structure. This can be used in image restoration.

The diffusion tensor can be constructed in several ways. One of the earlier
methods is to use the regularized gradient and its orthogonal as eigenvector
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for the diffusion tensor. If the eigenvector parallel to the regularized gradient
is v1 ∥ ∇I�, and its orthogonal, perpendicular to the regularized gradient is
v2 ⊥ ∇I�, then their corresponding eigenvalues can be given by

�1 = g(∇I�),

�2 = 1,
4.6

here g is the diffusivity function as the one given by Perona-Malik in Equation
4.4. This way of construction will cause the diffusion to enhance edges and
structures in the image, in much the same way as the regularized version of
Perona-Malik’s diffusion filtering, the difference being that smoothing will occur
along edges and structures, hence it is anisotropic in the terminology of Weickert.

However, using the regularized gradient as a descriptor for image structure,
as seen above, is not optimal. One disadvantage is that it cannot distinguish
between corners and edges. Another, that even though it detects edges quite
well the overall orientation of structure is not always distinguished. For a more
throughly argumentation of why the regularized gradient as a structure descrip-
tor is ill-posed see Weickert [1998; 1999].

The structure tensor is a more advanced structure descriptor introduced
to diffusion filtering by Weickert in ”Multiscale Texture Enhancement” [1995].
The advantage of structure tensor is that even though it does not contain more
information than the gradient descriptor, it is, unlike the gradient, possible to
smooth it without losing important structure information. Being able to smooth
the structure descriptor makes the orientation information less perceptible to
noise, while taking the structure descriptor into scale-space.

In this thesis the theoretical well-posedness of the structure tensor as used in
diffusion filtering will not be discussed. A throughly account of this has been
done by Weickert in his book [1998] another more contemporary examination
has been made by Brox et al. in [2004]. The structure tensor is the tensor
product of the gradient, in this case we will use the regularized gradient giving
us

S(∇I�) = ∇I� ⊗∇I�. 4.7

The result is a symmetric semidefinite matrix with orthonormal eigenvectors
describing the image structure. This matrix can now be smoothed component-
wise with a suitable kernel, this gives

S�(∇I�) = G� ∗ (∇I� ⊗∇I�), 4.8

where G� is the kernel and � is the kernels standard deviation also called the
integration scale. Let the eigenvectors of the structure tensor be denoted v1 and
v2 and its corresponding eigenvalues �1 and �2 where �1 ≥ �2. what this means
is that v1 is the normal to the structure while v2 is parallel to the structure.

Now given the structure tensor it is possible to construct the diffusion tensor
D(S�(∇I�)). Depending on whether the diffusion should be coherence- or edge-
enhancing, this can be done in different ways. Common to these is that diffusion
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tensors should be constructed with the same eigenvectors as the structure ten-
sor. The difference is that the eigenvalues of the diffusion tensor should be
transformed to either enhance edges or coherence. This is in many ways similar
to constructing the diffusion tensor using the regularized gradient as structure
descriptor but instead of using the gradient, we here use the eigenvalues of the
structure tensor to construct the diffusion tensors eigenvalues.

For edge-enhancement the eigenvalues can be constructed as in Equation 4.6
the only difference being that diffusivity function should depend �1 so that the
eigenvalues of the diffusion tensor is given by �1 = g(�1) and �2 = 0.

For coherence-enhancement Weickert proposes in [1998] to construct the eigen-
values in the following way

�1 = �,

�2 =

{ � if �1 = �2,

�+ (1− �) exp
(

−C
(�1−�2)2m

)
else,

4.9

here � should be a small positive constant. It is deciding the amount of dif-
fusion over structures and the minimum amount in isotropic areas. C is the
threshold for anisotropy and m is the steepness of the transition from isotropy to
anisotropy. The measure for anisotropy is difference of the eigenvalues, (�1−�2),
of the structure tensor.

Having transformed the eigenvectors either using the edge-enhancing scheme
from Equation 4.6 or the coherence-enhancing scheme in Equation 4.9 it is now
possible to construct the diffusion tensor. As mentioned the eigenvectors to be
used should be the eigenvectors of the structure tensor.

Constructing the diffusion tensor using the structure tensor we get the following
formulation of Equation 4.3

∂tI = div(D(S�(∇I�))∇I). 4.10

This is Weickert’s nonlinear anisotropic diffusion equation.

In image processing, nonlinear diffusion is a well-studied concept. Since it was
introduced by Perona-Malik in [1990], numerous papers has been written on the
subject. It is generally known to been theoretically well-founded and, moreover,
results has shown to be visually impressive for both the isotropic and anisotropic
method. Both methods has played a huge part in the field of scale-space, which
is partly the reason for their success.

4.1.2 Summary

In this section diffusion has been introduced. First diffusion has been introduced
as a classical theory in physics and afterwards an account of how this theory
has been adapted in image processing has been presented. The intention of this
chapter has been to prepare the reader to the following. In particular Weickert’s
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nonlinear anisotropic diffusion equation is important as it will be the base of
some of the filtering strategies which will be presented in this thesis.

It is important to note that the diffusion equation, as it is presented here, is
continuous. In practice, discretization of the diffusion equation is necessary
in order to do numerical computations. For this reason numerous numerical
methods has been developed, both explicit, semi-explicit, and combinations of
these [Mrázek 2001; Weickert 1998]. When implementing nonlinear diffusion
filtering, these methods should be weighted both in respect to stability and
efficiency.

In this thesis we will not give an account of these different numerical methods.
The reason being that these all have been developed to work on images. In this
thesis we will present a discretization of the diffusion equation which works with
densities instead of pixels.

4.2 Diffusion filtering in photon mapping

To be able to use anisotropic diffusion filtering in photon mapping, we have
to be able to describe the structure of the photon map, to get some guidance
as how to adapt the filtering. Furthermore, we need to be able to adapt the
kernel according to the structure description, and it is necessary to normalize
the adapted kernel estimate to preserve energy, when the kernel changes shape.

4.2.1 Structure description

The gradient of the illumination function denotes the orientation in which the
illumination has maximal intensity change, and therefore describes the first
order structure of the illumination. This information will be used to steer the
filtering.

As the illumination function is estimated in the radiance estimate, the differen-
tiated radiance estimate approximates the gradient of the photon map.

To differentiate the radiance estimate we combine the generalized radiance es-
timate from Equation 3.2, with a suitable kernel function. Furthermore, it is
convenient to simplify the radiance estimate by assuming that all surfaces hit
by photons are ideal diffuse reflectors. This means that the BRDF, fr, is con-
stant regardless of the incoming and outgoing direction of light. In this way
the BRDF need not be differentiated, as it does not depend on the position, x,
which is the variable in respect to which we differentiate.

This of course is a radical assumption, as photons can be affected much by the
type of surfaces they encounter. However, photons are only stored on diffuse
or glossy surfaces, so the surfaces involved in the radiance estimate are likely
to contain a diffuse element and need therefore not differ much from an ideal
diffuse surface. Using a constant BRDF to estimate the structure descriptor
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only affects the diffusion. In effect we will have equal diffusion regardless of the
incoming directions of the photons. However, the radiance will still be estimated
using the true BRDF.

If we were to differentiate the BRDF, then our algorithm would not be able to
handle arbitrary BRDF’s, as we would have to know the BRDF in order to do
so. In effect we would not retain the beneficial qualities of photon mapping.
Another solution would be to perform reverse engineering, to numerically esti-
mate the BRDF in question. However, this approach is both cumbersome and
computationally expensive.

Additionally, we have to make a constraint on the generalized radiance estimate.
The estimate should use a fixed bandwidth for ℎ(x), such that the bandwidth
is independent of x, effectively reducing the radiance estimate to a common
multivariate kernel estimator rather than the k’th nearest neighbor estimator.
This is not a severe constraint. The advantage of the k’th nearest neighbor
search is its ability to reduce bias. This ability is important in the radiance
estimate, however, when estimating the gradient smoothing is an advantage, as
the gradient is perceptible to noise.

Combining a simplified version of the generalized radiance estimate with the
two-dimensional Epanechnikov kernel we get

L̂r(x, !⃗) =
2fr
�ℎ2

n∑

i=1

(
1− (x− xi)

T (x− xi)

ℎ2

)
Φi, 4.11

This equation can be differentiated giving us the gradient function of the esti-
mated illumination function. Differentiating Equation 4.11 with respect to the
j’th component of x gives the partial derivative

∂L̂r(x, !⃗)

∂xj
=

4fr
�ℎ2

n∑

i=1

−xj − xij

ℎ2
Φi. 4.12

As seen from Figure 4.3, the gradient of the photon map is a plausible structure
descriptor. Figure 4.3a is a distribution of photons and Figure 4.3b is a gradient
field of the distribution. The gradient vectors are calculated using the photons
nearest the center of each quadrant in the grid of the field. The gradient vectors
along the edges of the distribution are those with greatest magnitude, and the
vectors are as expected perpendicular to edges and structures.

As explained in Section 4.1.1, a more advanced way is to describe the first order
structure is with the structure tensor. The advantage of the structure tensor
is that even though it does not contain more information than the gradient
descriptor, it is, unlike the gradient, possible to smooth it without losing im-
portant structure information. Being able to smooth the structure descriptor
makes the orientation information less perceptible to noise.

The structure tensor is the tensor product of the gradient. If we denote the
gradient of the photon map as ∇P, where P is the photon map, then in three
dimensions the structure tensor is given by

S = ∇P⊗∇P =

⎛
⎝

P 2
x PxPy PxPz

PxPy P 2
y PyPz

PxPz PyPz P 2
z

⎞
⎠ . 4.13
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(a) (b)

Figure 4.3: (a) Cardioid shaped photon distribution created by light reflection
within a metal ring, (b) gradient field of the photon distribution in (a).

In our method we use the structure tensor to describe the structure of the photon
map.

To improve performance we can reduce the dimensionality of the problem. This
can be done in the density estimate by projecting local photons and gradient
vectors onto the tangent plane to the surface at the estimation point. If the
local photons and gradient vectors then are transformed into the two dimen-
sional tangent space spanned by the tangent and the bi-normal then all further
estimations can be performed in two dimensions. In the Appendix A it is de-
scribed how to project photons into the tangent plane while reducing the bias
associated with high surface curvature.

After projection the structure tensor can be formulated as a 2x2 matrix. Perfor-
mance wise this is important as the eigenvalues and eigenvectors of the structure
tensor are needed to steer the diffusion. The following estimates are performed
in two dimensions. Note, however, that they could just as well have been done
in three dimensions.

4.2.2 Diffusion tensor

As explained the diffusion tensor can be constructed to either promote edge-
enhancing diffusion or coherence-enhancing diffusion. To preserve the finer
structures of the illumination during reconstruction we employ edge-enhancing
diffusion. This is achieved by constructing the diffusion tensor using information
derived from a structure descriptor. Specifically, we can use the eigenvectors
and eigenvalues of the structure tensor to construct the diffusion tensor.

The orientation of the local edge structure is contained in the structure ten-
sor. The primary eigenvector, v1, of the structure tensor is simply the gradient,
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which is perpendicular to the local edge orientation. The secondary eigenvector,
v2, points in the direction parallel to the structure. The corresponding eigenval-
ues, �1 and �2, gives the degree of change in the directions of the eigenvectors.

To achieve edge-enhancing diffusion the diffusion tensor should be constructed
such that smoothing occurs parallel to the edges and not across them. The
eigenvectors and eigenvalues of the diffusion tensor describe respectively the
main directions of diffusion and the amount of diffusion in the corresponding
direction. Hence, by constructing the diffusion tensor from the eigenvectors of
the structure tensor, diffusion can be steered to enhance the edges.

In our method the diffusion tensor is constructed as

D = M diag(�1, �2) MT , 4.14

where M is [v2v1] and diag(⋅) is the diagonal matrix containing the eigenvalues
of D along the diagonal.

It remains to determine the amount of diffusion. That is the eigenvalues, � of
D:

�1 = 1,

�2 =
1

1+
(
�1

q

)1+� , � > 0, 4.15

where the secondary eigenvalue, �2, is estimated using a function diffusivity
function, Equation 4.4. The diffusivity coefficient, q, decides when the function
starts to monotonically decrease and � the steepness of the decline. In practice,
q is the threshold deciding what value of the primary eigenvalue of the structure
tensor, �1, is considered an edge and what is considered noise, and � controls
the smoothness of transition. The primary eigenvalue of the structure tensor
should be normalized such that its range over the photon map is from zero to
one. Section 4.3 demonstrates how different values of k affect the diffusion.

We have now constructed a diffusion tensor which favors diffusion parallel to
structures while limiting diffusion perpendicular to structures. We will utilize
this tensor, such that it controls the filtering of the photon map.

4.2.3 The diffusion based radiance estimate

The next step is to use the diffusion tensor to shape the kernel of the radiance
estimate such that it smooths along structures and edges. To do this we have
to shape our kernel in some way.

The kernel density estimator is isotropic insofar the single parameter, ℎ, controls
the filtering. As such smoothing occurs equally in all directions.

Consider a simple two dimensional normal distribution:

f(x) =
1

2��1�2
exp

(
− (x1 − �1)

2

√
2�1

− (x2 − �2)
2

√
2�2

)
, 4.16

37



CHAPTER 4. DIFFUSION BASED PHOTON MAPPING

where �1 and �2 are the standard deviations with respect to the axes and � is
the center of the distribution. Here we have a Gaussian kernel whose shape is
specified by the two parameters for the standard deviation. Unfortunately, this
equation only gives control in two directions.

However, generalizing the equation to d dimensions, we can use an inversed d×d
covariance matrix, Σ−1, to shape the normal distribution:

f(x) =
1

(2�)d/2
√
detΣ

exp

(
− (x− �)TΣ−1(x− �)

2

)
. 4.17

Using a matrix we are not limited to control the shape of the Gaussian kernel in
only two directions. If we for example had shaped our Gaussian kernel to form
an ellipse, we could rotate this kernel by rotating the covariance matrix. The
equation will remain normalized as the determinant of a matrix is rotational
invariant. So the shape of normal distribution in Equation 4.17 is controlled by
the covariance matrix.

We can use Equation 4.17 to extend the generalized radiance estimate from
Equation 3.2. To generalize the shape adapting properties we use the Maha-
lanobis distance from Equation 4.17 to shape the kernel. The Mahalanobis
distance is a statistical distance. It is given by:

(
d(x,y)

)2
= (x− y)TΣ−1(x− y). 4.18

As the shape of the kernel should be controlled by the diffusion tensor, we
use the tensor in place of the covariance matrix. We can then reformulate the
generalized radiance estimate as:

L̂r(x, !⃗) =
1

ℎ2
√
detD

n∑

i=1

K

(
(x− xi)

TD−1(x− xi)

ℎ2

)
⋅

⋅ fr(x, !⃗i, !⃗)Φi.

4.19

We now have a general diffusion based radiance estimate, which filters the pho-
ton map adapting the shape of the kernel according to the diffusion tensor. Or
to be even more general, we have a radiance estimator, which estimates the il-
lumination function taking into consideration the structure of the photon map,
such that edges and structures are preserved.

4.2.4 Implementation

Implementation of our method can differ depending on which structure descrip-
tor is used. However, we propose to use the structure tensor, and for this reason,
we need to estimate it, or have it available during the radiance estimate in order
to construct the diffusion tensor.

We do this using a preprocessing step that approximates the gradient of the
photon map. The preprocessing step occurs between the photon tracing pass
and the rendering pass. To approximate the gradient we sample it at all photon
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positions. The advantage of this procedure is that we can store the local gradient
along with the photon, and thus we do not need a separate gradient map.
Additionally, we know the sampling positions to be located on a surface, as
photons are only stored in connection with a surface. This is useful as the
gradient is only relevant at surface positions.

During the radiance estimate we calculate the structure tensors at the photon
positions near x. In this way we can estimate the local structure tensor as the
weighted average of the surrounding structure tensors. Smoothing the structure
tensor reduces noise, and furthermore gives a broader foundation from which to
steer the filtering after.

Weickert operates with two important smoothing parameters, namely integra-
tion scale and noise scale. These refer to the smoothing parameter of the gra-
dient and the structure tensor respectively. In relation to our method the noise
scale is the bandwidth used to estimate the gradient in the preprocessing step
and the integration scale is the bandwidth used to smooth the structure tensor.
Weickert suggests that the best results are attained if the noise scale is lower
than the integration scale. Through experimentation we have found this to be
true for diffusion based photon mapping too, although the the amount that they
differ seems to have little importance.

Having calculated the local structure tensor, we construct the diffusion tensor as
described in the former section. This then is used in the general diffusion based
radiance estimate together with a suitable kernel. We use the same bandwidth
for smoothing the structure tensor as for the general diffusion based radiance
estimate.

4.3 Evaluation and comparison

To evaluate, we compare our proposed method to regular k’th nearest neighbor
photon mapping. Furthermore, we demonstrate that our method avoids a spe-
cific drawback common to many existing bias reducing algorithms, and finally
we evaluate the computational performance of our algorithm using three test
scenes of varying complexity. For consistency the Epanechnikov kernel is used
in all estimations.

To facilitate the evaluation of our method, we have constructed a synthetic
photon distribution. The constructed distribution is seen in Figure 4.4. It is
rather simple, yet it contains both edges and ridges and circular and rectangular
shapes. The distribution consists of 48 000 photons.

4.3.1 The k’th nearest neighbor photon mapping

The first row of Figure 4.5 is a test suite of the constructed distribution created
using regular k’th nearest neighbor photon mapping. The suite is created by
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Figure 4.4: A synthetically constructed photon distribution consisting of 48 000
photons (fewer photons are shown in the figure for the purpose of visualization).

combining the Epanechnikov kernel with the general radiance estimate from
Equation 3.2.

It is seen from the suite that the noise level decreases slowly with respect to the
number of photons per estimate. Bias is visible as a clearly identifiable blurring
of shape edges. In addition, boundary bias is seen along the boundaries of the
images. It should be clear that the bias increases as the noise is reduced. This
phenomenon is directly related to the bias versus variance trade-off accounted
for earlier. Another thing to notice is how the thin line losses intensity as the
number of photons per estimate is increased. This happens because the energy
of the line is spread out over a larger area as the smoothing increases.

4.3.2 Anisotropic diffusion based photon mapping

We use the diffusion based radiance estimate together with the Epanechnikov
kernel. In contrast to regular photon mapping we do not use the k nearest
neighbor method to reduce bias, instead we use a fixed bandwidth letting the
shape adaption reduce bias.

We first find a suitable bandwidth. This is done using a large value of the
diffusivity coefficient q from Equation 4.15. In this way the kernel will remain
rotational invariant, as it will not adapt according to structure. Estimating the
radiance with a uniform Epanechnikov kernel using different bandwidths, we
then find the bandwidth which reduces noise to an acceptable level.

Using this bandwidth we test the diffusion based radiance estimate by iteratively
decreasing the value of the diffusivity coefficient such that the kernel starts to
adapt its shape according to the structure described by the structure tensor.
The result of this procedure is illustrated in the second row of Figure 4.5.

40



4.3. EVALUATION AND COMPARISON

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.5: Visualizations of a constructed distribution estimated using different
photon mapping methods. The first row was estimated with k’th nearest
neighbor photon mapping using the (a) 1200, (b) 600, (c) 300, and (d) 150
nearest photons. The second row was estimated with anisotropic diffusion
based photon mapping using a diffusivity coefficient, q, of (e) 0.8, (f) 0.4,
(g) 0.2, and (h) =0.1. The third row was estimated with isotropic diffusion
based photon mapping using a diffusivity coefficient, q, of (i) 0.8, (j) 0.4, (k)
0.2, and (l) 0.1.
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From the results of the diffusion based radiance estimate we see that edges are
enhanced as the diffusivity coefficient is decreasing. Comparing the results to
those of k’th nearest neighbor photon mapping visualized in the first row of Fig-
ure 4.5, we see that anisotropic diffusion based photon mapping has improved
the trade-off between bias and variance significantly. For instance comparing
Figure 4.5d with Figure 4.5h we see that even though the bias level is compa-
rable low for the two images, noise is clearly visible in Figure 4.5d. Increasing
the bandwidth for k’th nearest neighbor photon mapping as to make the noise
level comparable to Figure 4.5h we would at least have to use 600 photons per
estimate which in turn would increase bias well beyond the level seen Figure
4.5h.

Another thing to notice is the thinnest line in the constructed distribution. We
know that this line has photon distribution as dense as the two other shapes in
the distribution. For this reason the thin line should be just as intense as the
other shapes. However, as estimates are smoothed using a larger bandwidth
and thus more photons per estimate, the energy is spread out. Comparing the
results it is seen that the anisotropic diffusion based radiance estimate is most
successful in preserving the energy of the thin line, as it has almost the same
intensity as the other shapes.

4.3.3 Isotropic diffusion based photon mapping

In order to compare our proposed method to existing bias reducing algorithms,
we have developed a method mimicking these. This method we term isotropic

diffusion based photon mapping. Similar to the existing algorithms, isotropic
diffusion based photon mapping reduce the size of the bandwidth in the prox-
imity of edges. However, it uses the structure tensor to detect structure and the
diffusivity function to determine to what degree bandwidth should be decreased.
As we have shown, the structure tensor is a plausible structure descriptor, we
expect isotropic diffusion based photon mapping to exhibit the same bias re-
ducing qualities as existing methods and therefore to be a reasonable proxy for
these.

The approach for isotropic diffusion based photon mapping is quite similar to the
one for anisotropic photon mapping. First we find the fixed bandwidth, which
reduces the visible noise to an acceptable level. Then we iteratively reduce the
diffusivity coefficient. However, in contrast to the anisotropic case, we construct
the diffusion tensor such that the kernel shape remains rotational invariant. This
is done using the result of the diffusivity function as the eigenvalue for both the
primary and secondary eigenvector of the diffusion tensor.

The result of this approach is seen in third row of Figure 4.5. Comparing the
results with those of regular photon mapping, first row, we see that isotropic
diffusion based photon mapping has a superior bias vs. variance trade-off. How-
ever, the results also reveal that noise along structure edges becomes apparent
as the diffusivity coefficient decreases. The reason for this is that as the diffu-
sivity coefficient is decreasing so is the support area for the estimate. Hence,
radiance estimates made near prominent structure is based on a reduces number
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of photons, causing noise to appear. This is a problem inherent to existing bias
reducing techniques used in particle tracing algorithms.

Comparing the results in second row of Figure 4.5 with those in the third row
it becomes apparent that anisotropic diffusion based photon mapping does not
suffer the same degree adverse effects as its isotropic counterpart. Inspecting
the structure edges of Figure 4.5h and Figure 4.5l it is seen that noise is much
less pronounced in the anisotropic case. The reason for this is that anisotropic
diffusion based photon mapping adapts the filtering according to structure and
therefore does not limit the support area near prominent structure in the same
degree as its isotropic counterpart.

We find it reasonable to conclude that anisotropic diffusion based photon map-
ping offers an improved trade-off between bias and variance as compared to
existing bias reducing techniques used in particle tracing.

4.3.4 Performance

In order to test the performance of our proposed algorithm we have set up three
different test scenes of varying complexity. The image sets in Figure 4.6, 4.7 and
4.8 are renderings of the three scenes in order of increasing complexity. Each set
contains one image rendered using diffusion based photon mapping and three
images rendered using regular k’th nearest neighbor photon mapping.

The (d) images were created with our method using a diffusivity coefficient of
q=0.2 and with � equal to one. The (a), (b) and (c) images were created
with regular photon mapping using (a) the same number of photon as (d), (b)
the approximately same rendering time as (d), and (c) with a visual quality
comparable to (d). For all images created with regular photon mapping the
number of photons per estimate was regulated for an optimal trade-off between
bias and variance.

Figure 4.6 is a low complexity scene containing a simple caustic created by a
translucent cylinder. The contours of the caustics in the images 4.6a and 4.6b
are clearly blurred as compared to their counterpart in image 4.6d. The same is
evident for the image series in Figure 4.7 and Figure 4.8. This means that even
with a substantial increase of photons in the photon map for regular photon
mapping, our method still offers a better trade-off between bias and variance.

Table 1 lists the rendering times for the image series in Figure 4.6, 4.7 and 4.8.
The rendering times for each scene are relative to a scene rendering using a low
resolution photon map. Consulting Table 1 we see that for all three test scenes,
our method is more than twice as fast as k’th nearest neighbor photon mapping,
when comparing the rendering times of the results with similar visual quality.
This is because five to six times as many photons are needed in regular photon
mapping to achieve the same visual quality as with the proposed method. At
equal rendering time it is evident from the image series that our method produce
sharper edges than regular photon mapping.
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Scene Method Figure
Photons in
photon map

Total
time

Cylinder
KNN

- 5,000 1.0
4.6a 20,000 1.1
4.6b 25,000 1.2
4.6c 160,000 2.3

Anisotropic filtering 4.6d 20,000 1.2

Metal
ring

KNN

- 20,000 1.0
4.7a 40,000 1.2
4.7b 45,000 1.3
4.7c 160,000 2.7

Anisotropic filtering 4.7d 40,000 1.3

Water
KNN

- 50,000 1.0
4.8a 70,000 1.1
4.8b 120,000 1.7
4.8c 520,000 3.7

Anisotropic filtering 4.8d 70,000 1.7

Table 4.1: Performance results of the images in Figure 4.6, 4.7, and 4.8. The
rendering times are relative to a low photon resolution rendering. For each scene
the three first images have been rendered using k ’th nearest neighbor photon
mapping (KNN) while the last image has been rendered using diffusion based
photon mapping.

Consulting Table 1 we see that for all three test scenes, regular photon map-
ping needs five to six times as many photons to achieve the same visual quality.
This means that rendering times for regular photon mapping are more than
twice those for our method for renderings with comparable visual quality. Fur-
thermore, the difference in rendering times increases favorably to our method,
concurrent with scene complexity.

4.4 Summary

In this chapter we have presented a method extending particle tracing. Our
method is a numerical solution to the diffusion equation adapted to photon
mapping. The methods enhance edges and structures of prominent illumination
features by shape adapting the filter kernel according to the structure of the
photon map. In contrast, existing bias reducing methods only adapts the size
of the kernel.

We have evaluated our method using a simple constructed photon distribution
and a number of test scenes. In the evaluation we demonstrate that our method
achieves a superior trade-off between variance and bias as compared to regular
photon mapping based on the k’th nearest neighbor method, with no substan-
tial increase in computer time. Furthermore, we substantiate that our method
alleviates an edge problem common to existing popular methods.
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(a) (b)

(c) (d)

Figure 4.6: Caustic produced by a translucent cylinder posed on a plane. (d)
rendered using our method. (a) rendered using regular photon mapping and the
same amount of photons as (d), (b) using approximately the same rendering time
as (d) and (c) with a visual quality comparable to (d).
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(a) (b)

(c) (d)

Figure 4.7: A cardioid shaped caustic created by a metal ring. (d) rendered
using our method. (a) rendered using regular photon mapping and the same
amount of photons as (d), (b) using approximately the same rendering time as
(d) and (c) with a visual quality comparable to (d).
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(a) (b)

(c) (d)

Figure 4.8: Caustics created from water waves. (d) rendered using our method.
(a) rendered using regular photon mapping and the same amount of photons
as (d), (b) using approximately the same rendering time as (d) and (c) with a
visual quality comparable to (d).
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Photon Differentials

Monte Carlo sampling is used in a number of global illumination algorithms. The
stochastic nature of Monte Carlo sampling induces variance that may require a
large number of samples to be reduced to an acceptable level. Particle tracing
algorithms is a group of Monte Carlo based Global Illumination algorithms
that employs density estimation in order to reduce this variance. The density
estimate imposes a trade-off between variance and a bias [Silverman 1986]. Bias
is noticeable as a blurring of the illumination. This is not necessarily a bad effect
when concerned with low frequency illumination, but it becomes an important
problem when the illumination intensity changes quickly such as near caustics
and shadow-borders.

In this chapter we present a method that enhances edges and structures of
prominent illumination features improving the trade-off between variance and
bias. The method was published in [Schjøth et al. 2007] and extended in [Schjøth
et al. 2009].

The photon mapping algorithm usually employs two steps: a first step in which
photons representing light are traced from the light sources and around the
scene, and a second step in which the light transport information generated
during the first step is used to reconstruct indirect illumination.

Many of the photons traced during the first step have neighbors that tend to
follow the same path. We exploit this coherence by tracing imaginary bundles
of photons along each trace. Each of our photons represents a beam of light that
expands, contracts and reshapes, according to the reflections and refraction it
undergoes as it propagates through the scene. This is achieved by using ray

differentials.

Ray differentials is a technique introduced by Igehy [1999] that traces two vir-
tual rays along with each real ray by differentiating its position and direction
as it traverse the scene. This translates into ray footprints which we use to
shape the kernels employed in the density estimate such that they adapt to the
illumination structure. In effect we improve the trade-off between variance and
bias as compared to other particle tracing algorithms. Alternatively, we could
have kept track of the spatial relation between closely related photons as they
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(a) (b)

Figure 5.1: Underwater view of seabed. The water is completely clear such that
no light scattering occurs. Image (a) rendered using regular photon mapping
and (b) using our method. Both images were rendered using a photon map
containing 20000 photons.

are traced through the scene. Unfortunately, the relation between photons of-
ten becomes meaningless as their paths diverge too much because of the scenes
geometric content.

Figure 5.1 illustrates two renderings: one using regular photon mapping and the
other using our method. Both are rendered using the same number of photons.
As can be seen from the images, our method reproduces caustics with finer
details than regular photon mapping.

5.0.1 The kernel function

In photon mapping the kernel function, K(y), is a function that weights a
photons flux depending on the photons distance to the estimation point, x. It is
usually a symmetric unimodal function that decreases monotonically; weighting
photons near x higher than those farther away. In photon mapping the kernel
weight should be zero for −1 ≥ y ≥ 1. This is necessary in order to keep the
computational cost down, as it allows us to work with a limited data set in each
radiance estimate. For instance, were we to use an unnormalized Gaussian kernel
then we would have to use the entire photon map in each radiance estimate
as not to lose energy due to its unbounded form–this would be prohibitively
expensive.

Table 5.1 lists a number of kernel functions suited for the equations used in
this chapter. The presented kernel functions are not divide with the area they
cover as is usual in classic statistics. As such they are not them self probability

50



5.1. RAY DIFFERENTIALS

Kernel K(y)

Cone
(1−

√
∣y∣
g )/(1− 2

3g ) if ∣y∣ < 1, g ≥ 1,

0 otherwise

Epanechnikov
2(1− ∣y∣) if ∣y∣ < 1,
0 otherwise

Silverman

3(1− ∣y∣)2 if ∣y∣ < 1,
0 otherwise
4(1− ∣y∣)3 if ∣y∣ < 1,
0 otherwise

Table 5.1: Kernel functions

density functions and do not integrate to one over the domain. The reason for
this deviation will become apparent later.

The use of a kernel function helps improve the trade-off between bias and vari-
ance. Different kernel functions have different efficiency with the Epanechnikov
kernel yielding the best trade-off between variance and bias. However, the dif-
ference in trade-off improvement is slight and, accordingly, the choice of kernel
should be based on other considerations such as computational efficiency and
differentiability. [Silverman 1986; Wand and Jones 1995; Simonoff 1996].

Through this chapter we use Silverman’s second order kernel function [Silverman
1986], see Table 5.1. It is not as efficient as the Epanechnikov kernel in regard
to the variance/bias trade-off, nor is it as computational inexpensive. However,
it is differentiable down to the first order, which is an important property for
diffusion based photon mapping.

5.1 Ray differentials

In ray differentials, a parameterized ray is differentiated in order to estimate its
propagation as it traverse a scene. Igehy [1999] demonstrated the technique on
texture filtering. Later, Suykens et al. [2001] expanded ray differentials as to
include glossy and diffuse reflection, and Per H. Christensen et al. [2003] used
ray differentials to perform efficient multi-resolution caching of geometry and
textures. Recently, Sporring et al. [2009] (See Appendix B) have extended ray
differentials such that the full differentials for a parameterized ray are evaluated.
Here follows a short introduction to ray differentials.

A parameterized ray is defined by its origin, x, and its direction, !. The differ-
ential of a ray is the partial derivative of its position and direction with respect
to some initial set of variables. The derivatives can be described compactly by
the Jacobian matrix, e.g. the differentials of the position, x, in respect to some
initial variables u and v can be written as

Dx =

⎡
⎣

∂x
u

∂x
v

∂y
u

∂y
v

∂z
u

∂z
v

⎤
⎦ =

[
Dux Dvx

]
, 5.1
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Figure 5.2: Transfer of a ray and its differential vectors from x to x′.

where Dx is the Jacobian matrix transforming from Cartesian coordinates to a
the coordinates u and v. The derivatives describe the spread of the ray beam
as it is traced through a scene. The directional derivatives give the rate and
direction of change of the ray beam’s spread, while the positional derivatives
describe its relative size at a given position. In the terminology of Suykens et

al. [2001], the derivatives multiplied by a finite distance at the offset is the ray’s
differential vectors. We use Dux to denote a positional differential vector and
Du! to denote a directional differential vector; here both with respect to the
variable, u.

When a ray intersects an object its positional differential vectors are usually
projected down onto the tangential surface of the object at the intersection
point. Here they span a parallelogram, see Figure 5.2. This parallelogram is
the ray’s footprint.

A ray traced through a scene can go through reflections, refractions and trans-
fers. These are simple operations which can be differentiated. The derivatives of
a ray going through such interactions can then be computed with respect to the
initial offset using the Chain Rule. We refer to Appendix B for the derivatives
of these operations.

5.2 Photon differentials

In the following we propose to use ray differentials in connection with photon
mapping in order to keep track of the spread of beams of ’photons’ as they are
traced trough a scene. We call these beams, photon differentials.
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Photon differentials are traced through the scene much like ordinary photons;
they are stochastically emitted from the light sources, possibly using stratified
sampling, and they are traced and stored in a caustics map following the rule
that only photon beams having followed a light path from the light source going
through one or more specular reflections or refractions before being reflected
on a diffuse surface toward the viewer are stored. In the notation of Heckbert
[1990] the definition for this light path is LS+DE.

Unlike ordinary photon tracing, the differentials of the photons are accounted
for as they are traced through the scene. This is done by keeping track of the
positional and directional differential vectors, updating them using Igehys [1999]
equations as they are reflected and refracted through the scene.

A photon differential is stored along with information about the positional differ-
ential vectors. The exact information stored depends on whether or not filtering
is used. Furthermore, it is possible to store in a way that either optimizes for
speed or for storage. This is explained later in this section.

In the following we will describe light source sampling and lighting reconstruc-
tion. We explain how filtering is performed, and finally we addresses some of
the issues concerned with photon differentials.

5.2.1 Emission from a light source

Given a point light source emitting radiant power, Φl, uniformly in all directions,
the total radiant exitance, Mtotal, leaving the surface of a unit sphere centered
around the point light source is

Mtotal =
Φl

4�
. 5.2

Emitting, npd, photon differentials, each represents a fraction of the total radiant
power of the light sources. If each photon differential spans a fraction of the
area of the unit sphere equal to Apd = 4�/npd, then a photon differential carries
an amount of radiant power equal to

Φpd = ApdMtotal 5.3

=
Φl

npd
. 5.4

As the photon differential is traced around the scene, the area of the parallelo-
gram spanned by the positional differential vectors changes, Apd → A′

pd. This
is illustrated in Figure 5.2.

When the photon differential has been traced around the scene, and has been
projected down onto a surface its irradiance can be calculated as

Epd = Φpd/A
′
pd. 5.5

The irradiance of the photon differential is used to reconstruct the indirect
illumination.
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In complete analogy to the isotropic point light source, we also consider an area
source emitting uniformly in all directions: for a diffuse light source of area Al,
the radiant exitance is

Mtotal =
Φl

Al
. 5.6

Assigning the initial area Apd = Al/npd to a photon differential, it will carry
the radiant power:

Φpd = ApdMtotal =
Φl

npd
. 5.7

The irradiance due to a photon differential incident on a diffuse surface is then
found exactly as in Equation 5.5 (where the area A′

dp is a modification of the
initial photon differential area Adp. The initial area is modified according to
the path which the photon followed and projected onto the surface where the
photon is incident).

5.2.2 Lighting reconstruction

Irradiance is radiant power incident per unit area at a point x on a surface. If
we consider irradiance due to radiant power incident from one particular solid
angle the irradiance will have a directional dependency as well. We have

E(x,!) =
dΦ(x,!)

dA
. 5.8

By the definition of radiance it follows that

Li(x,!) =
d2Φ(x,!)

(nx ⋅ !)d!dA
=

dE(x,!)

(nx ⋅ !)d!
5.9

or, in other words,
Li(x,!)(nx ⋅ !)d! = dE(x,!). 5.10

Then the reflected radiance at x in direction ! is [Nicodemus et al. 1977]

Lr(x,!) =

∫

Ωx

fr(x,!
′,!)Li(x,!)(nx ⋅ !′)d!′

5.11

=

∫

Ωx

fr(x,!
′,!)dE(x,!). 5.12

Using this equation, it is possible to approximate the reflected radiance term of
the rendering equation using irradiance due to the radiant power incident from
a particular solid angle. This irradiance is exactly what we obtain from the
photon differentials, see Equation 5.5. We have

Lr(x,!) ≈ L̂r(x,!) =

n∑

pd=1

fr(x,!pd,!)ΔEpd(x,!pd), 5.13

where n is the number of photon differentials whose footprints overlap x, and
Epd(x,!pd) is the irradiance of the footprint. When finding the overlap, the
footprint of each photon differential is centered around the intersection point.
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Mpd

Geometry space Filter space 

 

xpd ^

^ 

xpd xpdvD x

xpduD x

xpdvD

xpduD x

Figure 5.3: 2D illustration of a transformation from geometry space to filter
space by the matrix Mpd. The ellipse inside the parallelogram is the footprint
of the photon differential. When transformed into filter space the ellipse becomes
a unit circle.

In practice n is found by collecting the photon differentials nearest to x and
rejecting the photon differentials not affecting the estimate. Only the photon
differentials within a certain fixed radius need to be collected. The radius is
limited to half the length of the longest positional differential vector in the
photon map. Photon differentials further away do not affect the estimate.

5.2.3 Kernel smoothing

Equation 5.13 provides no smoothing when estimating the illumination. To
provide kernel smoothing we reformulate the equation such that

L̂r(x,!) =

n∑

pd=1

fr(x,!pd,!)K
(
(x− xpd)

TMT
pdMpd(x− xpd)

)
ΔEpd(x,!pd).

5.14

K is a kernel function from Tabel 5.1, and Mpd is the matrix that transforms
from world coordinates into a coordinate system in which the surface normal and
the positional differential vectors, Dux and Dvx, are basis vectors. This trans-
formation is illustrated in Figure 5.3. We use half the length of the differential
vectors, as we center the footprint around the photon differentials intersection
point, xpd.

Conceptually, each photon differential is associated with an ellipsoid, which
in practice works as a three dimensional anisotropic kernel. The ellipsoid is
spanned by the positional differential vectors and the surface normal of the
object intersected by the photon differential, see Figure 5.4. When filtering, we
estimate the irradiance of a photon differential, Epd, using the cross-sectional
area, Apd, of the ellipsoid. This cross-section is an ellipse contained within
the parallelogram spanned by the positional differential vectors of the photon
differential. The area of the ellipse is estimated as

Apd =
1

4
�∣Dux×Dvx∣. 5.15
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xpd 

n 

x

Apd

o 

xpdvD x

xpduD

Figure 5.4: Filter kernel of a photon differential illustrated as an ellipsoid. The
size and shape of the kernel is defined by the surface normal of the intersected
object and the positional differential vectors of the photon differential.

With kernel smoothing we further improve the trade-off between variance and
bias. It gives the freedom to choose a suitable kernel depending on the task and
purpose.

5.2.4 Implementation

When emitting photon differentials from a light source, the initial size of the
photon differential’s footprint is a smoothing factor that affects the final image.
The size of the footprint corresponds to the bandwidth in the radiance estimate.
In effect, a large initial footprint will reduce noise by promoting bias, whereas a
small initial footprint will have the opposite effect. The initial footprint size is
either set manually or as a function of the number of photons. When changing
the initial footprint size, it is important to adjust the radiant power of the
photon differentials such that their irradiance remains constant. In other words,
we want to balance the equation, Epd = Φpd/Apd, such that we neither add nor
subtract from the total spectral energy of the scene. In this paper we control
the footprint size and thus the trade-off between variance and bias using a
parameter, s.

The transformation matrix, Mpd, is a 3 by 3 matrix. It is either stored along
with the photon differentials demanding an additional 401 bytes per photon
differential, or the matrix can be constructed during run-time thereby demand-
ing only 24 extra bytes per photon differential in order to store the positional
differential vectors. In our implementation we use the former procedure as the
latter imposes an overhead on the estimation time.

A problem is that photon differentials provide no security for the support size
of an estimate in a given area. This means that if the footprints of the photon
differentials are small or oblong in an area with low photon density, noise may
appear. To help this problem, we suggest that density control [Suykens and
Willems 2000] is employed. Note, however, that we do not use density control
in our implementation.

136 bytes for the matrix and 4 bytes for the area of the footprint.
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5.3 Summary

In this chapter we investigated the use of ray differentials for light reconstruction
in photon mapping, presenting a method we call photon differentials. First part
of the chapter shortly described the photon differentials in the context of den-
sity estimation using this context to compare it to existing global illumination
methods based on density estimation. From this comparison we saw that the
main difference is that photon differentials uses an anisotropic kernel together
with the variable kernel density estimator. Following this a short introduction
to ray differentials was given. This introduction was continued with a thorough
description of photon differentials followed by a few relevant implementation
details.

In the next chapter photon differentials will be investigated in a comparison
study with conventional photon mapping and diffusion based photon mapping.
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6
Analysis

This chapter investigates different approaches that seek to alleviate the trade-of
problem described in Chapter 2. The methods that are compared and examined
are; traditional photon mapping [Jensen 1996], diffusion based photon map-
ping [Schjøth et al. 2006; Schjøth et al. 2008], and photon differentials [Schjøth
et al. 2007]. Chapter 3 shortly describes photon mapping, Chapter 4 exam-
ines diffusion based photon mapping while photon differentials is described in
Chapter 5.

The three methods each take advantage of different smoothing schemes in or-
der to improve the trade-of between variance and bias. In terms of density
estimation, these schemes can be categorized as adaptive kernel estimators, see
Section 2.2. Jensen’s photon mapping and the diffusion based approach are
local-bandwidth kernel estimators the main difference being that Jensen uses
an isotropic kernel that adapts its size in relation to the k ’th nearest neighbor
distance, while the diffusion based approach uses an anisotropic kernel which
is shaped by the first order structure of the photon distribution. Comparably,
photon differentials uses an anisotropic variable bandwidth estimator based on
ray differentials.

The diagrams in Figure 6.1, illustrates the difference between the density esti-
mates of the compared methods. Figure 6.1(a) illustrates Jensen’s k ’th nearest
neighbor approach. The ’x’ marks kernel center–the estimation point–and the
large circle the extend and shape of the kernel. The encircled dots are ’photons’
in a distribution that approximates illumination forming the broad rounded line
illustrated in grey.

A density estimate can either be thought of as placing a kernel over the dis-
tribution with the estimation point as center, or as placing a kernel over each
sample point. Following that thought, the larger circle in 6.1(a) illustrates the
former idea while the smaller circles surrounding the sample points illustrates
the latter. The circles surrounding the samples points have been scaled down
to accommodate illustration. They should have had the same size as the large
circle for the illustration to be in measure.

Figure 6.1(b), illustrates the approach used with diffusion based photon map-
ping. Here, a single rotational variant kernel is found for each density estimate
based on an average of the distribution’s first order structure.
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(a) Regular photon map-
ping

(b) Diffusion based photon
mapping

(c) Photon differentials

Figure 6.1: The diagrams illustrates the conceptual difference between the den-
sity estimates used by the methods investigated in this chapter. ’x’ marks
the estimation point and the center of the kernel, the kernels shape and size
is illustrated by the black line surround all the encircled dots. The encircled
dots are ’photons’ in a distribution that approximates illumination forming the
broad rounded line illustrated in grey and the black line surround each photon
illustrates the shape of the kernel placed over each.

The approach used by photon differentials is illustrated in Figure 6.1(c). The
shape of the kernel used with this approach is better adapted to the structure
of the illumination. Each sample point has its own kernel. Together these
convolute to a kernel that resembles the shape of the illumination more closely
than both traditional and diffusion based photon mapping.

We evaluate the methods in two simple case studies. The cases are simple scenes
that both produce a caustic; one scene creates a caustic by refraction and the
other by reflection. The purpose of these case studies is to compare the methods
ability to reproduce fine structures in indirect lighting.

6.1 Image Quality Measures

In the evaluation of the different renderings, we make use of two different ob-
jective image quality measures. Objective image quality measures differ from
subjective image quality measures in that they are quantitative, and results
are reproducible. Where subjective measures are typically based on qualita-
tive analysis using human observers, objective measures automatically predict
perceived image quality based on some mathematical model. Objective image
quality measures can be grouped in measures that are generically mathemat-
ical and measures that specifically are based on models of the human visual
system (HVS). From the former group we use the well known Mean Integrated

Square Error (MISE) and from the latter group we use the Structural SIMilarity

(SSIM) index; a method introduced by Wang et al. [2004].
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The Mean Square Error (MSE) is a measure of the difference at a fixed point
between an estimator and the function or quantity to be estimated. Similarly,
MISE estimates the mean square error of an estimator, but in contrast to MSE
the error is estimated over the entire real line. As discussed in Section 2.1.2,
MISE is the error of the estimator encompassing both variance and bias. In
statistical density estimation, MISE is a standard tool for analysis; it is often
used to obtain rate of convergence and optimal bandwidth for kernel density
estimators [Silverman 1986; Wand and Jones 1995; Simonoff 1996].

Likewise, MSE is well known and widely used measure. It is easy to estimate
and optimize and results have a clear meaning. However, as a quality measure
MSE is inconsistent with the human visual system [Girod 1993; Teo and Heeger
1994; Wang and Bovik 2002].

The SSIM index measures the similarity between two images; typically a ref-
erence image and its degraded counter part. An index of one means that the
two images are identically while a measure of zero means that the images have
no similarity. The SSIM method separates image information about contrast,
luminance, and structure. These separated components are compared between
the two images, and the results are weighted together to a finale similarity index.

SSIM has been noted as a better image quality measure. Kanters, in his Ph.D.
thesis [2007], compares different objective image quality measures–including
both generic mathematical and the complex HVS based measures–against re-
sults using human observers. Kanters asserts that, ”Of all the tested error mea-
sures, the Structural Similarity Measure (SSIM) probably resembles the human
observer results best.”

Cad́ık and Slav́ık [2004] evaluates two different image quality measurement ap-
proaches; a structural based approach, represented by SSIM, and a traditional
approach, represented by the Visible Differences Predictor. They conclude “that
the structural based approach outperforms the traditional approach for involved
input stimuli.”

6.2 Refraction

The first case presented is that of a diacaustic created by refraction of light
through a simple sinusoidally shaped water wave. Although sinusoidal waves are
not the most accurate model for simulating real world water waves, combinations
of sinusoidal waves are often used in computer graphics to simulate waves in open
water. We find the sinusoidal wave to be well suited for this case study due to
its simplicity.

The two case studies are diagrammed in Figure 6.2. Figure 6.2(a) is a diagram
of the first case study, it illustrates the interaction between a finite number of
collimated light rays–approximating sunlight–and a sinusoidally shaped water
wave. The transmission into water causes the light rays to refract, thus creating
a caustic where they intersect the bottom line. The form of the caustic depends
on the shape of the wave, the distance to the bottom line, and the refractive
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(a) (b)

Figure 6.2: Diagram of the case study scenes. (a) Illustrates a sinusoidal shaped
water wave illuminated from above by a finite number of collimated light rays.
(b) Illustrates a clipped metal ring illuminated by a finite number of collimated
light rays.

Figure 6.3: Rendering of the refraction case study scene. Rendered with photon
differentials using 20 000 photons.

indices of the media in which the rays traverse. In this case light rays create
two bright points focused where the ray coherence is high. In-between these
focal points is a slightly less bright area. On either side of this region the ray
coherence is low, giving the darkest areas.

Figure 6.3 is a rendering of the first case study. The image was rendered with
photon differentials using 20 000 photons. The rendering mirror the diagram
quite closely; high intensity in the narrow bands of the focal areas, lower in-
tensity in between and lowest intensity on either side of the region bordered
by the areas of focus. Now, to approximate the caustics most accurately, how
narrow should the focus bands be? How sharp should the edges be? In regular
photon mapping the answer can be found in classical density estimation. A
kernel density estimate f̂ , is a kernel smoothed version of the true function, f
in addition to random error. Increasing the number of samples will reduce the
variance, making the estimate converge to the true function convolved with the
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(a) (b)

Figure 6.4: Refraction case study - reference images. (a) is a rendering of
the caustic seen in the refraction case study scene, Figure 6.3. The image
was created with k ’th nearest neighbor photon mapping using a photon map
containing 4 million photons. (b) visualizes part of the photon distribution used
to create (a). Only 2 000 photons are shown as to facilitate visualization.

kernel. If the bandwidth at the same time goes to zero, then our estimate will
converge to f . Adjusting the bandwidth controls the trade-of between bias and
variance.

In k ’th nearest neighbor photon mapping, the bandwidth is variable. It is de-
termined by the number of photons used in each radiance estimate. To increase
the accuracy of the lighting function the total number of photons should be
increased thus decreasing the bandwidth. Similarly, our method will converge
toward the true lighting function as the total number of photons increase and
initial differential size decreases.

As a reference image the scene has been rendered with 4 million photons using
regular photon mapping. The camera has been positioned as to solely capture
the caustic. Figure 6.4(a) shows this rendering, while Figure 6.4(b) reproduces
part of the used photon distribution.

6.3 Reflection

The diagram of the reflection case study, Figure 6.2(b), is that of a clipped metal
ring illuminated by a finite number collimated light rays. The rays reflection
inside the metal ring creates envelopes of light that intersects a plane, stopping
them from meeting in the classic cusp known from the bottom of coffee cups.
The interaction creates two distinct focal points on the plane. Furthermore, the
plane is shadowing itself forming a dark area with shadow borders in the middle
of the plane.

Figure 6.5(a) is a reference image of the caustic rendered with regular photon
mapping using a photon map containing 4 million photons. In Figure 6.5(b)
part of the photon distribution used in the rendering is shown. As with the
refraction case study scene the camera has been positioned as to solely capture
the caustic.

6.4 Optimal bandwidth

The bandwidth for the k ’th nearest neighbor photon mapping is the number of
photons per radiance estimate, k. In diffusion based photon mapping the band-
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(a) (b)

Figure 6.5: Reflection case study - reference images. (a) is a rendering of the
caustic seen in the reflection case study scene. The image was created with
k ’th nearest neighbor photon mapping using a photon map containing 1 million
photons. (b) visualizes part of the photon distribution used to create (a). Only
2 000 photons are shown as to facilitate visualization.

width depends on two parameters; the diffusivity coefficient, q, and the support
radius, ℎ. For our anisotropic variable bandwidth estimator it is the smoothing
parameter, s, which decides the initial size of the photon differential’s footprint.
For a photon map with a fixed number of photons the optimal bandwidth is
the bandwidth that gives the best trade-of between variance and noise. The
optimal bandwidth depends on the measure used.

To find the optimal bandwidth for the three methods we employ MISE and
SSIM as image quality measures. With MISE, the optimal bandwidth is found
as the one that yields the smallest error as compared to the reference image.
For SSIM the optimal bandwidth is the one, for which the similarity with the
reference image is highest.

Using a photon map containing 20 000 photons we render the scene with the
same camera placement as that used to render the reference image. We do this
a number of times increasing the bandwidth for each rendering. This yields a
number of images, for which we estimate MISE in respect to the reference image.
Likewise, we estimate the similarity between these images and the reference
image using the SSIM measure.

Figure 6.6 shows three graphs where MISE is plotted against the bandwidth for
the refraction case study . The leftmost graph, (a), is for regular photon map-
ping, the center, (b), is for diffusion based photon mapping, while the rightmost
graph, (c), is for differential photon mapping. Diffusion based photon mapping
is a special case as bias/variance trade-of depends on both the diffusivity coef-
ficient and the support radius–to compare the diffusivity coefficient is plotted
against MISE using the optimal support radius. The three graphs reflect how
noise initially is the predominantly cause of error. As the bandwidth increases
the noise is reduced and the error decreases. This changes as bias increases
and slowly becomes the main source of error making the error level rise again.
Minima of the graphs are the optimal bandwidth for MISE.

The graphs in Figure 6.7 plots SSIM index against the bandwidth for the first
case study. These manifest the same trend as the graphs plotting MISE against
the bandwidth. In the graphs the similarity is initially low but rapidly increases
with the bandwidth. This increase reaches its maximum where noise gives way
for bias. The maxima of the graphs are at the optimal bandwidths for SSIM
measure.
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Figure 6.6: Graphs plotting bandwidth against the mean integrated square er-
ror. The measured images are renderings of the refraction case study using a
photon map containing 20 000 photons. Graph 6.6(a) is based on images ren-
dered using regular photon mapping, graph 6.6(b) is based on images rendered
using diffusion based photon mapping, while graph 6.6(c) is based on images
rendered using photon differentials.

The left image-column of Figure 6.8 shows images of the refraction case study
scene rendered at MISE-optimal bandwidth. The first image-row is rendered
using regular photon mapping, the second is rendered using diffusion based
photon mapping and the last image-row is rendered using differential photon
mapping. The images contain clearly visible noise indicating that MISE favors
noise over bias to a higher degree than a human observer probably would. This
substantiates the postulation, discussed above, that MISE might not be a good
image quality assessor. The second image-column of Figure 6.8 shows the images
of the case study scene rendered at SSIM-optimal bandwidth. These images
contain less noise and is possible closer to the results that would be obtained
from a trials with human observers.

6.4.1 Comparison

Evaluating our method we compare against standard photon mapping and dif-
fusion based photon mapping at optimal bandwidths. The images in Figure
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Figure 6.7: Graphs plotting bandwidth against structural similarity index. The
measured images are renderings of the refraction case study using a photon
map containing 20 000 photons. Graph 6.7(a) is based on images rendered
using regular photon mapping, graph 6.7(b) is based on images rendered using
diffusion based photon mapping, while graph 6.7(c) is based on images rendered
using photon differentials.

Method Optimal MISE bandwidth Optimal SSIM bandwidth

KNN

(a) MISE = 0.0405 (b) SSIM = 0.8650

DPM

(c) MISE = 0.0224 (d) SSIM = 0.8912

PD

(e) MISE = 0.0232 (f) SSIM = 0.9014

Figure 6.8: Renderings of the refraction case study scene using a photon map
containing 20 000 photons. First image-row rendered with regular k ’th nearest
neighbor photon mapping (KNN), the second image-row was rendered with
diffusion based photon mapping (DPM), and the last image-row was rendered
with photon differentials (PD). First image-column was rendered at the optimal
bandwidth for MISE while second image-column was rendered at the optimal
bandwidth for SSIM.
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Method Optimal MISE bandwidth Optimal SSIM bandwidth

KNN
(a) n = 155 000, MISE = 0.0239 (b) n = 155 000, SSIM = 0.8878

(c) n = 460 0000, MISE = 0.0125 (d) n = 460 0000, SSIM = 0.9011

DPM

(e) n = 45 000, MISE = 0.0165 (f) n = 45 000, SSIM = 0.9010

Figure 6.9: Renderings of the refraction case study scene. The images in the first
two image-rows was rendered using regular k ’th nearest neighbor photon map-
ping (KNN), while the images in the last two rows was rendered using diffusion
based photon mapping (DPM). Images in the left image-column was rendered
at optimal MISE-bandwidth while the images in the right image-column was
rendered at optimal SSIM-bandwidth. The number of photons in the photon
map used to render the individual images is denoted by n.

6.8 and 6.9 are renderings of the refraction scene. The images in Figure 6.8
were rendered with the three methods all using a photon map containing 20 000
photons.

The images, Figure 6.9(a)(d), were found by increasing the number of photons
contained in the photon map until the image quality measure for the optimal
bandwidths was approximately the same as that for photon differentials, Fig-
ure 6.8(e)(f). From this we see that in order to achieve a MISE comparable
to our method using standard photon mapping, the photon map had to be in-
creased from 20 000 photons to 155 000 photons. See Figure 6.9(a) and 6.8(a).
From Table 6.1 we see that this increase causes the number of floating point op-
erations needed to render the image using standard photon mapping to exceed
that needed to render the image of similar quality–according to MISE–using
photon differential. Furthermore, comparing the two images, Figure 6.8(e) and
6.9(a), a human observer would perhaps not judge the images to be of similar
quality, probably voting in favor of our method.

Using an image quality measure more compatible to the human visual sys-
tem, the SSIM index distinguishes photon differentials even more as a superior
method. To achieve the same SSIM index with standard photon mapping as
with photon differentials the number of photons in the photon map must be
increased from 20 000 to 460 000. This increase causes the floating point opera-
tions needed to render the image using standard photon mapping to increase to
almost seven times that needed to render an image of similar quality–according
to SSIM–using photon differential, refer to Table 6.1.

Comparing photon differentials with diffusion based photon mapping the results
are more equal. At optimal MISE bandwidth diffusion based photon mapping
actually outperforms photon differentials with a margin, see Figure 6.8(c) and
(e). The image, 6.8(c), produced by diffusion based photon mapping contains
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Case
Study Method Figure

Photons
in map

MISE
Number of
FPOs [109]

SSIM
index

Number of
FPOs [109]

Refraction

Regular
6.8(a)(b) 20 000 0.0405 0.70 0.8650 1.59
6.9(a)(b) 155 000 0.0239 5.01 0.8878 7.42
6.9(c)(d) 460 000 0.0125 12.88 0.9011 15.95

DPM
6.8(c)(d) 20 000 0.0224 1.03 0.8912 2.81
6.9(e)(f) 45 000 0.0165 2.22 0.9010 4.91

Differentials 6.8(e)(f) 20 000 0.0232 2.26 0.9014 2.28

Reflection

Regular
6.10(a)(b) 20 000 0.0451 0.51 0.8419 1.37
6.10(c)(d) 190 000 0.0238 4.45 0.8816 6.64
6.10(e)(f) 380 000 0.0179 9.46 0.8931 11.42

DPM
6.10(g)(h) 20 000 0.0204 1.01 0.8783 2.60
6.10(i)(j) 22 000 0.0203 1.11 0.8819 3.18
6.10(k)(l) 33 000 0.0180 1.74 0.8940 4.81

Differentials 6.10(m)(n) 20 000 0.0178 2.51 0.8821 3.15

Table 6.1: Performance results for regular photon mapping, diffusion based
photon mapping (DPM), and photon differentials. The tabel lists the number
of floating point operations (FPOs) need to render the scene with a given number
of photons in the photon map, at optimal values of the mean integrated square
error (MISE) and the structural similarity (SSIM) index.

a lot of noise and additional ringing along the edges and might not be the first
choice in a human trial. At optimal SSIM bandwidth, however, diffusion based
photon mapping needs more than twice as many photons in order to achieve
the same similarity index as photon differentials resulting in an expenditure of
twice as many floating point operations, see Figure 6.8(f) and 6.9(f).

The reflection case study is investigated in the same manner as the first. Here we
see a similar trend, but the performance of our method is not quite as good. At
similar MISE, k ’th nearest neighbor photon mapping uses almost twenty times
as many photons as with photon differentials (Figure 6.10(e) and 6.10(m)). At
similar SSIM index standard k ’th nearest neighbor photon mapping uses around
seven times as many photons as our method, see Figure 6.10(d) and 6.10(n).
Consulting Tabel 6.1 we see that the gain in computational performance for this
scene is not as high as for the first case study. Understandably, the performance
gain is highly scene dependent.

Computational performance and image quality measures for optimal bandwidths
can be seen in Tabel 6.1.

6.5 Summary

In this chapter we have examined and compared photon differentials, regular
k ’th nearest neighbor photon mapping and diffusion based photon mapping
using two simple case studies. We used two different image quality measures to
find the optimal bandwidth for the methods in order to make the comparison as
objective as possible. The image quality measures used were the mean integrated
square error and the structural similarity index.

From this examination we render probably that with a map of photon differen-
tials one obtains a better caustic quality with far less photons than both regular
and diffusion based photon mapping. This potentially saves a large amount of
time in renderings that require caustics with high quality edges. We argue that
with conventional photon mapping it takes an enormous amount of photons
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Method Optimal MISE bandwidth Optimal SSIM bandwidth

KNN

(a) n = 20 000, MISE = 0.0451 (b) n = 20 000, SSIM = 0.8419

(c) n = 190 0000, MISE = 0.0238 (d) n = 190 0000, SSIM = 0.8816

(e) n = 380 0000, MISE = 0.0179 (f) n = 380 0000, SSIM = 0.8931

DPM

(g) n = 20 000, MISE = 0.0451 (h) n = 20 000, SSIM = 0.8419

(i) n = 22 0000, MISE = 0.0203 (j) n = 22 0000, SSIM = 0.8819

(k) n = 33 0000, MISE = 0.0180 (l) n = 33 0000, SSIM = 0.8940

PD

(m) n = 20 0000, MISE = 0.0178 (n) n = 20 0000, SSIM = 0.8821

Figure 6.10: Renderings of the refraction case study scene. The images was ren-
dered at optimal bandwidth using regular k ’th nearest neighbor photon map-
ping (KNN), diffusion based photon mapping (DPM), and photon differentials
(PD). Images in the columns from left to right was rendered at optimal MISE-
bandwidth and optimal SSIM-bandwidth. The number of photons in the photon
map used to render the individual images is denoted by n.
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to generate caustics of the quality needed, for example, for animation feature
films. In large scenes the additional memory required to store the footprints of
the photons might be a problem.
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7
Temporal Photon Differentials

The temporal aspects of rendering animated scenes have less focus in the graph-
ics community than more classical fields such as global illumination, texturing,
animation, fluid simulation, and real–time rendering. In spite of this, rendering
animated scenes with global illumination methods produces some interesting
problems. The perhaps most prominent problem is due to the fact that the
temporal domain is discretized at a often very low resolution.

Feature films usually sport a frame rate around 25 frames per second (fps). De-
spite the fact that the human eye is much more perceptible than 25 fps, this
frame rate still gives a seemingly fluid motion when a film is produced with a
traditional movie camera. However, were we to produce a feature film of an ani-
mated virtual scene using an unmodified global illumination method at a frame
rate of 25 fps, fluid motion is not guarantied. A typical unmodified global illu-
mination method produces images at instant time in the temporal domain. This
procedure can induce temporal aliasing, which is seen as an adverse stroboscopic
effect where the illumination changes rapidly over time. A traditional-camera
produced feature film will avoid this problem because the camera has non-zero
exposure time. This means that camera-perceived illumination is averaged over
the exposure time. In effect, high frequency motion is blurred and therefore
seems fluid. This effect is often called motion blur. A temporal aliasing defect
not solved by this blurring is the wagon-wheel effect, which is seen as a back-
wards turning of spoked wheels due to temporal under sampling. However, as
our method does not address this particular problem, it will not be discussed
further here.

Brute force methods, such as the accumulation buffer [Haeberli and Akeley
1990], average together in-between frames in order to achieve motion blur. These
methods can achieve arbitrary high accuracy, but are often prohibitively expen-
sive as full renderings typically have to be made of a large number of in-between
frames.

Different global illumination methods also address temporal aliasing by simu-
lating motion blur. Distributed ray tracing [Cook et al. 1984] achieves motion
blur by stochastically sampling the temporal domain as well as the spatial.
Myszkowski et al. [2001] adaptively controlled the temporal and spatial sam-
pling resolution by examining local variations of indirect illumination over time
and space in a pilot estimate.
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With a method they called time dependent photon mapping, Cammarano and
Jensen [2002] extended photon mapping such that indirect illumination was
estimated using a four dimensional photon map that expanded into the temporal
domain. In this manner photons were filtered not only based on their spatial
position, but also their temporal.

A problem common to the discussed methods is that they all need to be able to
draw some amount of information from in-between frames in order to achieve
motion blur for illumination that is moving quickly. If the frame rate is too low
to capture the motion of the illumination, the illumination will need excessive
smoothing in order to avoid the stroboscopic effect. Having this information
available places certain restrictions on the animated scene; because a scene de-
scription is needed at arbitrary time steps, movement of scene elements either
needs to be described as a an analytic function, or movement has to be interpo-
lated between frames. The analytical approach is by far the best but demands
a certain complexity of the of the animation application, as well as a tight link
between this and the rendering software. The interpolative approach is error
bound as the animation curve might not be linear. Furthermore, some acceler-
ator for ray-object intersection (such as a bsp-tree) typically needs to be either
rebuild, or at least updated an extra number of times equal to the number
in-between frames needed.

In this chapter, we propose a method that produces motion blur, and which
neither needs in-between frames, nor to over-smooth indirect illumination with
high temporal frequency. Our proposed method is an extension of photon dif-
ferentials [Schjøth et al. 2007]. It takes advantage of ray differentials [Igehy
1999] and their extension into the temporal domain by Sporring et al. [2009]
(See Appendix B). We call this method temporal photon differentials.

7.1 Temporal photon differentials

In our method each photon represents a beam of light that expands, contracts
and reshapes in space as well as time, as it propagates through the scene. We
keep track of a photon’s coherence by deriving the first order structure of its
direction and position with respect to both time and space as it traverse the
scene.

Representing a photon as a parametrized ray with origin in x and the directing
!, we describe the derivatives of a photon with two Jacobian matrices; one for
the positional derivatives and one for the directional derivatives. The positional
derivatives are then given by

Dx =
[
Dux Dvx Dtx

]
, 7.1

where Dx is the Jacobian of the positional derivatives, and Dux, Dvx and Dtx

are column vectors that describe the positional derivatives with respect to the
scalar variables u, v, and t. Similarly, we write the directional derivatives of the
photon as

D! =
[
Du! Dv! Dt!

]
. 7.2
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Exactly, as with photon differentials (See Chapter 5), Du!, Dv!, Dux and
Dvx are spatially dependent differential vectors. The directional and positional
differential vectors with respect to time are new to photon differentials; they
are noted as Dt! and Dtx in the above equations. For a scene, in which the
light sources are static, these time dependent differential vectors will, initially,
be zero. If the scene, additionally, is completely static, they will remain zero-
vectors through out the photon’s traversal of the scene. In this specific case, our
method will behave exactly as ordinary photon differentials: the photons will
expand and contract depending on the reflections and refraction encountered
during tracing, and their spatial dependent positional differential vectors will
form a footprint, which is used in the reconstruction of the indirect illumination.

If, on the other hand, we have a dynamic scene, photon differentials, interacting
with a non-static scene element, will attain non-zero time dependent differen-
tial vectors. In this case, the derivatives of a dynamic scene-element’s surface
positions or normals with respect to time will be non-zero:

Dtn ∕= 0, 7.3

or

Dtq ∕= 0, 7.4

where n is a surface normal to the element and q is a position on the element’s
surface. This again will affect the time dependent derivatives of a photon inter-
acting with the scene element.

Sporring et al. reiterates ray differentials such that the full differentials for a
parameterized ray are evaluated. This allows for an extension of parameters
such that the derivatives of a ray can be considered with respect to time. From
Sporring et al.’s equations for transfer, reflection and refraction, we observe
that non-zero time-dependent element differentials (eg. Dtq) propagate through
these interactions to the differentials of the interacting photon. We exploit this
behaviour such that a footprint from a photon differential traveling in a dynamic
scene not only describes the spatial coherence of the ray, but also the temporal
coherence of the ray.

When a photon differential hits a surface, its positional differential vectors are
by transfer projected onto the surface’s tangent plane at the intersection point.
The spatial footprint of the photon differential is the area on the tangent plane
of a parallelogram spanned by the positional differential vectors as illustrated in
Chapter 5, Figure 5.2. The spatial footprint can be used to shape an anisotropic
filter kernel as illustrated in Figure 7.1.

The time dependent positional differential vector, Dtx, tells us either how the
photon’s footprint is going to behave over consecutive frames, or how the foot-
print has behaved in former frames. In the former case, the direction of Dtx

predicts the direction on the surface that the footprint will move, and the mag-
nitude of the vector predicts how far the footprint is likely to move. Basically,
the magnitude and the direction of Dtx depends on the estimation method used
to calculate the time derivatives of an element, which again depends on the ge-
ometry representation. In the present method, we simply use finite differences
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xDv

xDu

Figure 7.1: Spatial filter kernel shaped by the positional differential vectors,
Dux and Dvx.

x’pd

x

xDt
xpd
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xpd xDt
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Figure 7.2: Temporal filter kernel shaped by a spatial kernels translation along
time dependent differential vector.

and triangle meshes. Except for the last frame, in which we use backward dif-
ferences, we estimate the time dependent differentials using forward differences.
When we want to predict how a footprint is going to behave, having intersected
a moving element, we estimate the element’s positional time derivatives by

Dtqf = ts(qf+1 − qf ), 7.5

where Dtqf is derivatives of the vertex qf with respect to time at frame step
f , and ts is the shutter time. The shutter time is a parameter for how much
trust we put in our prediction. Generally, however, it works as a smoothing
parameter for the time dependent footprint that decides how much motion blur
we induce.

The time dependent footprint constitutes an integration of the spatial footprint
over the time dependent differential vector such that the spatial footprint is
elongated along the vector. We achieve this by translating the spatial footprint
along the time dependent differential vector. As in the spatial case, the time
dependent footprint describes a filter kernel. In Figure 7.2(a), Dtxpd is the
time dependent differential vector, xpd is the center of the spatial kernel, and
x is the estimation point for which the kernel weight is estimated. The kernel
is translated along Dtx to the point, x′

pd, on the line segment, (xpd → xpd +
Dtxpd), where x′

pd is the point on the segment having the shortest distance
to the estimation point, x. Using x′

pd as center for the spatial kernel, the
resulting time dependent kernel will achieve an elongated shape as illustrated
in Figure 7.2(b).

The irradiance of the time dependent photon differential is estimated as

Epd = Φpd/Apd 7.6
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l
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x||Dt
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Figure 7.3: The area of the temporal kernel is the sum of spatial kernel area
and the area of a triangle with sides lengths l and ∣Dtx∣.

where Φpd is the radiant flux carried by the photon, and Apd is the surface area
to which the radiant flux is incident. For the time dependent photon differential,
this area is the area of the time dependent kernel. Referring to Figure 7.3 this
area is calculated as

Apd =
1

4
�∣Dux×Dvx∣+ l∣Dtx∣, 7.7

where the first term is the area of the spatial kernel and the second term is the
area of a rectangle. One side of the rectangle is the length of the time dependent
differential vector and the other is the length of the spatial kernel in a direction
perpendicular to the time dependent differential vector.

Having defined the time dependent kernel as well as the irradiance of the photon
differential, we can now formulate a radiance estimate for temporal photon
differentials.

7.1.1 The temporal radiance estimate

Reflected radiance from temporal photon differentials can be estimated by

L̂r(x,!) =

n∑

pd=1

fr(x,!pd,!)K
(
(x− x′

pd)
TMT

pdMpd(x− x′
pd)
)
ΔEpd(x,!pd),

7.8

where x′
pd is the translated center of spatial kernel, ΔEpd is the irradiance of the

temporal photon differential, and Mpd is a matrix that transforms from world
coordinates to the filter space of the spatial kernel (See Chapter 5).

The temporal radiance estimate can be extended as to include filtering in time.
One intuitive approach is to weight the part of the differential which is closest
in time the highest, where the time is estimated form the photon hit point. This
can be achieved using a simple univariate kernel as those presented in Table 2.1.
To the kernel, we input a distance along the time dependent differential vector,
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Dtxpd, relative to furthest point of the kernel along negative Dtxpd. This is
illustrated in Figure 7.3.

With time filtering the temporal radiance estimate is formulated as

L̂r(x,!) =

n∑

pd=1

fr(x,!pd,!)Ks

(
(x− x′

pd)
TMT

pdMpd(x− x′
pd)
)

Kt

(
xt − x′

pd

ℎt

)
ΔEpd(x,!pd), 7.9

where Ks is a bivariate kernel function (See Table 5.1), Kt is a univariate kernel
function, ℎt is the length of the temporal kernel along Dtxpd, and xt is the
furthest point of the kernel in the direction −Dtxpd.

With the formulation of the temporal radiance estimate, we now have a method
which reconstructs indirect illumination based on a virtual scenes dynamics.
This allows for motion blur. In the following we will make a simple analysis of
the method.

7.2 Results

We first test our proposed method using a case study. The case study is a
simple animated scene in which a sinusoidal wave slowly moves. The wave is
illuminated from above by collimated light which it refracts such that the light
form caustics on a plane beneath the wave. A virtual camera is placed such that
the caustics are clearly visible. The case study is quite similar to the one studied
in Chapter 6. The most significant difference being that the scene studied in
this chapter is animated.

We have rendered the scene using temporal photon differentials, and Cam-
marano and Jensen’s time dependent photon mapping. The images in Figure 7.4
are renderings of the same frame, but at different shutter times, ts. They were
rendered using temporal photon differentials and a photon map containing only
1000 photons. From the images we see that the temporal photon differentials
assume the expected behaviour. As the exposure time increases the caustics
are blurred acquiring a comets tail away from the direction of movement. This
is the behaviour chosen at implementation time. We could just as well have
placed the time dependent kernel centered over the photon intersection point
and likewise have centered the time filtering or we could just have centered the
filtering. As it is, the time differential is ’trailing’ after the photon both in
respect to placement and filtering. As we shall see, though it is hardly visible,
the same strategy has been implemented for time dependent photon mapping.

The renderings in Figure 7.5 have all except (a) been created with time depen-
dent photon mapping. Additionally, all images was rendered using the same
exposure time, namely 9. Figure 7.5(a) has been included for comparison, it
was rendered using temporal photon differentials and is a copy of the image in
Figure 7.4 with shutter time 9. First of all, what we see from image 7.5(b) is that
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Figure 7.4: Renderings of the case study scene using temporal photon differen-
tials. The number under the renderings indicate shutter time, ts.
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Figure 7.5: Renderings of the case study. The first column was rendered using
photon map of only 10 000 photons in the map. Image (a) was rendered using
temporal photon differentials the rest using time dependent photon mapping.
Of the three rightmost columns the topmost row was rendered using a photon
map containing 480 000 photons while the bottom row was rendered using a
photon map containing 40 000 photons. From left to right the three columns
were rendered using 1, 3, and 7 in-between frames. The shutter time for all
images is 9.
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the bias versus variance trade-off provided by time dependent photon mapping
is too poor to produce palpable caustics. For this reason a much higher number
photons have been used to render the images in the three leftmost columns.
Of these, the top row is based on a photon map containing as much as 480 000
photons while the bottom row is based on a photon map contain 40 000 photons.
From left to right the temporal resolution increases from 1 to 3 to 7 in-between
frames. The spatial bandwidth for the renderings was chosen as to decrease
noise to an acceptable level. This leads to the perhaps most important obser-
vation, namely that a low temporal resolution produces visible bands that can
only be removed by filtering beyond what removes normal noise. This compli-
cates matter, as an increase of photons no longer is a guarantee for high quality
illumination.

Photon differentials are free of this concern as the blurring is based on the first
order derivatives of object movement and not on finite animation steps. In the
implementation presented here one additional frame is need in order to estimate
the derivatives.

The images in Figure 7.2 present a more complex–all though very artificial–
scene in which a cylinder is rotating counterclockwise around its one end. This
rotation means that the speed of the cylinder will increase as we move from the
turning point down the length of the cylinder. As a result the produced caustic
becomes more blurred when refracted from the high speed end of the cylinder.
Figure 7.6(a) gives the solution provided by temporal photon differentials while
the images in Figure 7.6(b) and 7.6(c) was produced with time dependent photon
mapping. All images were rendered with the same number of photons contained
in the photon map. However, the two latter images was rendered with different
bandwidths. From these two images we see that at this obviously low temporal
resolution an increase in bandwidth can help remove the temporal bands that
time dependent photon mapping is prone to. The price, however, is an unwanted
blurring of the front of the caustic.

Finally, Figure 7.7 solely depicts the photons’ time differentials as they are
projected down on the plane beneath the cylinder. A high exposure time has
been used as to facilitate the illustration. The image confirms that the time
differential vectors become longer when refracted from the high speed end of
the cylinder, thus elongating the time dependent kernel used in the temporal
radiance estimate.

7.3 Summary

In this chapter we have presented a global illumination method for rendering
animated scenes. Our method elegantly handles time filtering such that frames
can be rendered on a one to one basis. In contrast to similar dynamic scene
renderer, our method do not need in-between frames in order to avoid temporal
aliasing.
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(a)

(b)

(c)

Figure 7.6: Rendering of a rotating cylinder. All images was render with a shut-
ter time of 4. Figure 7.6(a) was rendered using temporal photon differentials.
Figure 7.6(b) and 7.6(c) was render using time dependent photon mapping the
former using 100 photons per radiance estimate and the latter using 250 photons
in the radiance estimate.
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Figure 7.7: Projected time differentials from a rotating glass cylinder.
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8
Photon Differentials for participating

media

In this chapter a novel approach for rendering translucent media such as smoke,
fire, and water is presented. The approach is based on photon differentials dis-
cussed in Chapter 5 and published in [Schjøth et al. 2007]. Similar to photon
differentials, our approach employs a modified form of ray differentials (intro-
duced by Igehy [1999] and extended by Sporring et al. [2009] (See Appendix B)
in order to decide the shape and size of anisotropic kernels used in the recon-
struction of indirect illumination.

The main additions are that we employ an extra set of heuristics in order to
handle photon differentials exposed to diffuse reflection and scattering inside
media, and that we employ three dimensional anisotropic kernels in the density
estimate.

Furthermore, when reconstructing indirect illumination, we estimate the exact
integral of the kernel contribution as opposed to the numerical approximation
used by other methods. This gives a higher precision when estimating the
illumination.

Media for which the interaction of visible light does not primarily occur on
the surface–but also heavily inside–are computationally expensive to simulate;
not only is it necessary to account for every possible light interaction on the
surface, it is also necessary to account for every possible interaction at every
point inside the medium. In order to simulate lights propagation through such
media the common approach in graphics is to solve to the radiative transfer

equation (RTE).

8.1 Radiative transfer equation

The radiative transfer equation describes light transport in a medium which
absorbs, emits, and scatters light [Chandrasekhar 1950]. As is customary in
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graphics, we will refer to such a medium as a participating medium. For a
medium which does not emit light, the integral form of the RTE is

L(x,!) = Tr(x,xs)L(xs,!) 8.1a

+

∫ s

0

Tr(x,xt)�s(xt)

∫

Ω4�

p(xt,!,!t)L(xt,!t) d!t dt. 8.1b

In this form, the RTE integrates over a line segment, 0 to s, and over all in-
coming directions, Ω4�. The equation involves the scattering properties of the
material: the extinction coefficient �t, which describes the attenuation of light
per unit distance traveled through the material; the scattering coefficient �s,
which describes the amount of light that is scattered per unit distance; and the
phase function p, which describes the amount of light that is scattered from one
direction to another. The first term is called the direct transmission term and
the second term is called the in-scattering term (denoted Ls in the following).
In the equation, Tr is the transmittance between two point defined as

Tr(x,x
′) = e

∫
x

x
′ �t(x)dx. 8.2

The diagram in Figure 8.1 illustrates how radiance arrives at the eye from
different sources.

(      ), rT

Figure 8.1: Radiance arriving at the point x from the direction !, consists
of radiance coming from direct transmission and in-scattering radiance having
suffered single or multiple scattering events inside the participating medium.

Typically, it is only feasible to find a solution to the radiative transfer equa-
tion by numerical integration. A common approach, called ray marching, is to
take small steps along the ray; at each step estimating the incoming radiance,
Ls. This approach assumes that incoming radiance and material properties are
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constant over segments between the steps. The difficulty in solving the RTE
stems from the in-scattering term, which is recursive. The integral in this term
accumulates in-scattered radiance that must be found by again solving the RTE.

8.2 Related work

Two common approaches that attempt to solve RTE are path tracing [Pat-
tanaik and Mudur 1993] and volumetric photon mapping [Jensen and Chris-
tensen 1998].

Path tracing is a rendering technique based purely on Monte Carlo integration.
For each step taken along a ray, the in-scattered radiance is found by stochasti-
cally tracing rays from xt, thus sampling the integral of the in-scattering term.
The problem with path tracing is that estimates contain variance. Even with
the use of variance reduction techniques, such as importance sampling, a huge
number of samples are required to eliminate all visible noise in an image. The
advantage is that results are unbiased and converge (albeit slowly) to the exact
solution.

Photon mapping is a two pass method, which is much faster than path tracing,
but produces biased results. When used to render participating media, the
process is as follows: in the first pass photons are stochastically scattered around
in the medium storing the position and radiant power of a photon where the
photon suffers a scattering event; in the second pass rays are traced from the
eye. Where these eye rays pass through a participating medium, ray marching
is employed gathering up the nearest photons at each step so as to approximate
incoming radiance by density estimation.

Gathering photons at intervals along the ray can be problematic; the procedure
introduces a user-defined parameter which controls a trade-off between com-
putation time and estimation accuracy. As Jarosz et al. [2008] problematizes,
taking too large steps along the ray may result in missed photons during the
gathering process. On the other hand taking too small steps means that photons
might be counted more than once. In both cases estimates are suboptimal.

Jarosz et al. avoid this multiple query problem by making a single gathering of
photons per eye ray in a beam radiance estimate. In order to achieve this, each
photon is associated with a kernel bandwidth that defines the extent to which
a photon’s energy is spread. In the context of density estimation Jarosz et al.

employ a variable kernel density estimator (see Section 2.2) to estimate the ra-
diance arriving along the eye ray. In order to find individual kernel bandwidths
Jarosz et al. discuss to possible approaches, one is to simple use a fixed band-
width for each kernel (this in fact reduces estimator to a common kernel density
estimator), and the other is to use a pilot estimate. In the pilot estimate, the
bandwidth for each photon is found as the distance to the photon’s k’th nearest
neighbor.

We avoid the multiple query problem using the same approach as Jarosz et al.;
gathering photons along the eye ray in such a way that duplicates are avoided.
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However, unlike their method our method need not perform a potentially ex-
pensive pilot estimate in order to find individual photon bandwidths. We derive
photon bandwidths by keeping track of the photon’s differentials as it is reflected
and scattered around the virtual scene and through translucent media. When
a photon is scattered or suffers a diffuse reflection, we handle the spread of
the photon’s differentials using a heuristic similar to Herzog et al.’s [2007b] ray
splatting method. This means that the bandwidth of a scattered photon in our
method is proportional to the probabilistic path of the photon.

Furthermore, while Jarosz et al. use an isotropic variable kernel estimator in
their beam radiance estimate, we use an anisotropic variable kernel density
estimate. This approach will improve the trade-off between bias and variance
for our method, as we will be able to smooth along prominent structures and
not over.

8.3 Photon splatting for participating media

The goal of the following is to evaluate the RTE from the contributions of each
individual photon scattering. As with photon mapping, our method stochasti-
cally emits photons from light sources; probabilistically tracing them around in
the scene and inside participating media. Photons suffering a scattering event
inside a media is stored. In the second pass this information is used to recon-
struct in-scattered radiance. Radiance from an eye ray that passes through a
participating media, is estimated by gathering photons in its proximity. Each
collected photon individually contributes to the radiance based on extent of the
scattering event, which again is found from the estimated differential of the
photon.

Radiance is defined in terms of radiant power Φ that flows through an element
of area dA. The energy flows in a directional volume described by an element of
solid angle d!, and the radiance is the part of the energy flow, which projects
to the area dA. Mathematically,

L =
d2Φ

dA⊥ d!
=

d2Φ

cos � dAd!
,

where dA⊥ is projected area and � is the angle between the surface normal of
the area dA and the direction ! of the solid angle d!. This definition works well
when light scatters from surface to surface, but when light scatters in a volume
there is no surface normal to describe the projected area. Instead, we use the
total scattering cross section of the particles that scatter light in an element of
volume dV . This cross section is [Siegel and Howell 2002]

dAs = �s dV.

When inserted in place of the projected area in the definition of radiance (dA⊥ =
dAs), it provides a way to describe the scattered radiance in a volume. Using
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this description of scattered radiance in a volume, the in-scattering term of the
RTE becomes [Jensen and Christensen 1998]

Ls(x,!) =

∫ s

0

Tr(x,xt)�s(xt)

∫

4�

p(xt,!,!t)
d2Φ

�s(xt) dV d!t
d!t dt

=

∫ s

0

Tr(x,xt)

∫

4�

p(xt,!,!t)
d2Φ

dV
dt.

From this formulation Jensen and Christensen [1998] solves the RTE by numer-
ical integration:

L(x,!) ≈ Tr(x,xs)L(xs,!)

+

s∑

i=1

Tr(x,xi)

(
k∑

p=1

p(xi,!,!p)
ΔΦp

Vi

)
Δi, 8.3

where the outermost Riemann sum is an approximate integration of the in-
scattered radiance along the eye ray, such that s is the number of segments, Δi,
with corresponding sampling points xi; and the innermost Riemann sum is a k
nearest neighbors density estimate of the in-scattered radiance at each sampling
point. In the local in-scattered radiance estimate Vi is the volume (of the kernel)
the sphere encompassing the nearest neighbors, such that Vi = 4�r3i /3, with ri
being the distance to the k’th nearest neighbor of the sampling point, xi.

In contrast to the solution provided by Jensen and Christensen our solution
does not estimate radiance as an average over a segment at determined sample
points, instead we estimate the exact contribution from each photon based on
its overlap with the eye ray. We let photons contribute to the radiance reaching
the eye, by distributing a photon’s radiant power to the eye ray. Radiant power,
contributing to an eye ray, is attenuated by the medium in-between the eye and
the point on the eye ray closest to the scattering event and is then summed
up. The contribution from a scattering event to an eye ray depends on the
proximity of the scattering event and the extent to which the radiant power of
the scattering event is spread. Our numerical solution is

L(x,!) ≈ Tr(x,xs)L(xs,!) +

n∑

i=1

Tr(x,xi)p(xi,!i,!)
ΔΦi

Vi
wi, 8.4

where n is the number of scattering events contributing to the eye ray, ΔΦi is
the radiant power of scattering event i, Vi is the volume to which the radiant
power is spread, and xi is the point on the eye ray with the shortest distance
to center of the scattering event. In the above equation,

wi = 2

∫ 1
2Δt

K(y(t))dt 8.5

is the integrated kernel weight over the part of the line segment, Δt, overlapped
by the scattering event (see Figure 8.2), where K(y) is a radially symmetric
unimodal kernel function, and

y(t) =
√
t2 + y2s 8.6
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t
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s

Figure 8.2: The amount of radiant power distributed to an eye ray from a
scattering event depends on the extent of the event, ℎ, the shortest distance
between the event center and the eye ray, ys, and energy carried by the scattering
photon.

is the distance from the kernel center to the line segment. In the equation, ys,
is the shortest distance between the line segment and the kernel center.

As in Chapter 5, the kernel functions in this chapter, deviate from those common
to classical statistics insofar that they do not integrate to unity. The reason is
that the kernel is divided by the volume, V , outside the kernel function as seen
in Equation 8.4.

As the kernel function is given with respect to the distance, y, from the kernel
center and not the position on the line segment t, a change of variable helps
reduce the problem. We change variables such that we integrate over y instead
of t.

From Pythagoras’ theorem we have that

t =
√
y2 − y2s 8.7

and, taking the derivative with respect to y, we get

dt =
y√

y2 − y2s
dy 8.8

Substituting this in to Equation 8.5 we get a change of variables:

wi = 2

∫ ℎ

ys

K(y)
y√

y2 − y2s
dy. 8.9

In the most simplistic case we use a simple uniform kernel function such that

K(y) =

{
1 if y < ℎ,
0 otherwise.

8.10

Solving Equation 8.9 with the uniform kernel function we simply get that

wi = 2
√

ℎ2 − y2s . 8.11
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Figure 8.3: Transformation from geometry space to filter space by the matrix
Mpd. The ellipsoid on the left is the footprint of the photon differential. When
transformed into filter space the ellipsoid becomes a unit sphere.

Using a more advanced kernel, the equation becomes somewhat more involved.

A useful and inexpensive kernel is the Epanechnikov kernel [Silverman 1986].
In three dimensions, the Epanechnikov kernel is

K(y) =

{
5
2

(
1−

(
y
ℎ

)2)
if y < ℎ,

0 otherwise.
8.12

Using Equation 8.9 together with the Epanechnikov kernel function we inte-
grate along that part of the line segment which is encompassed by the sphere
surrounding the scattering event. Thus, we get that

wi =
10

3ℎ2

√
(ℎ2 − y2)3. 8.13

Extending the radiance estimate to include photon differentials we calculate
the integrated kernel weight, wi, using an anisotropic kernel shaped by the
photon differential. As illustrated in Figure 8.3, the photon differentials define
a coordinate system in which the differential vectors are basis vectors. In this
filter space we estimate the shortest distance between the scattering event and
the eye ray as

y2pd = (x− xi)
TMT

pdMpd(x− xi), 8.14

where the matrix Mpd transforms to filter space.

This modified distance is then used to calculate the integrated kernel weight.
Taking into account that kernel radius in filter space is one, the weight for the
anisotropic Epanechnikov kernel is

wi =
10

3∣Mpd!∣ (1− (x− xi)
TMT

pdMpd(x− xi))
3/2, 8.15

where ! is the normalized direction of the eye ray. Additionally, the volume,
Vi, has to be estimated differently as the kernel is no longer isotropic. Instead
of estimating it as the volume of a sphere it is estimated as an skewed ellipsoid,

Vi =
1

6
�∣(Dux×Dvx) ⋅Dwx∣, 8.16
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Figure 8.4: The volume of the kernel defined by the differentials vectors.

such that the ellipsoid is fitted into a parallelepiped in which the differential
vectors, Dux, Dvx and Dwx define the edges (See Figure 8.3).

With the modified volume estimation from Equation 8.16 and the integrated
weight from Equation 8.15, Equation 8.4 now gives a solution to the RTE that
is based on photon differentials. It remains to determine the differential vectors.

8.4 Photon differentials in volume rendering

In the context of classical statistics Jensen and Christensen use a k’th nearest
neighbor estimator in their solution. In contrast, both Jarosz et al.’s and our
method employ the variable bandwidth estimator. However, instead of making
a pilot estimate to decide the bandwidth of each sampling point as is done in
Jarosz et al.’s method, we base the bandwidth on the ray path of the photon.

Photon differentials employ ray differentials in order to keep track of the spread
of beams of ’photons’ as they are traced trough a scene. Chapter 5 described
how this concept can be used to estimate radiance reflected from surfaces such
that prominent illumination features are preserved.

In the following, we expand the theory so that photon differentials can be used in
conjunction with participating media. In order to achieve this, we describe the
behaviour of photon differentials inside participating media and, furthermore,
how photon differentials can be reflected on diffuse surfaces. However, in a num-
ber of cases, our photon differentials behave like ’ordinary’ photon differentials.
We emit photon differentials in the same manner as described in Chapter 5,
and we reflect, refract and transfer photon differentials as derived by Sporring
et al. [2009] (See Appendix B). Similarly, we use the same notation such that
the directional derivatives of a photon with a position x and a direction ! is
described as

D! =
[
Du! Dv! Dw!

]
, 8.17

where D! is the Jacobian of ! and Du!, Dv! and Dw! are column vectors
that describe the directional derivatives with respect to the scalar variables u,
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v, and w, these we call the directional differential vectors. Likewise, we describe
the positional derivatives of a photon by

Dx =
[
Dux Dvx Dwx

]
, 8.18

whereDx is the Jacobian of x andDux,Dvx andDwx are positional differential
vectors.

As we trace our photon differentials around the scene, we only keep track of
differential vectors with offset in u and v, because reflections and refractions
occur after transfer onto tangent surface planes. Differential vectors with offset
in w are only valid inside participating media. Therefore, these are only stored in
connection with these. When storing a photon in connection with a participating
medium the differential vector Dwx is given the same direction as that of the
photon at scattering time. Its magnitude is set to be the same as either Dux’s
or Dvx’s whichever has the greatest. In this way the kernel shape will always
be in a state between a sphere and a oblate spheroid.

As with conventional photon mapping, we employ importance sampling to trace
photons around the scene and inside participating media.

8.4.1 Scattering

As a photon moves inside a participating medium it can either exit the medium,
be scattered, or be absorbed. A photon suffering a scattering event inside a
participating media after having moved a distance s attains a position and
direction given by

x′ = x+ s!, 8.19a

!′ = !. 8.19b

Using Monte Carlo integration, the distance a photon moves before a scattering
event occurs can be estimated as [Siegel and Howell 2002]

s = − ln(�)

�t
, 8.20

where � ∈]0, 1] is a random variable for the interaction. If we assumes that
ds → 0, the photon differentials approach

dx′ = dx+ s d!, 8.21

d!′ = d!. 8.22

When a photon is scattered, it is designated a new direction from importance
sampling of the phase function. With photon differentials we handle this with
a simple heuristic. First we estimate the new direction !′, and then we find
quaternion that represents the rotation from our original direction ! to the new
direction.
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This quaternion is used to rotate the positional and directional differential vec-
tors, dx and d!, to the new direction !′.

Furthermore, we scale the area of the differential foot print by the following
heuristic

k =
1

4�p
, 8.23

where p is the probability that a photon with the direction ! will assume the
direction !′ when scattered. In the equation, k is constructed such that, given
a number of photon differentials, with of equally sized foot prints, whose area
in total is equal to the surface area of a unit sphere, the scaling will preserve
the total area independent of the phase function used (for large datasets).

The new two dimensional area of the footprint would be estimated as

A′ =
1

4
�k∣Dux×Dvx∣, 8.24

which equals multiplying the differential vectors by
√
k. The reasoning behind

this heuristic is the same as that of Christensen et al. [2003]: directions in which
many rays are sent have a high ray coherence, in contrast, directions which
are sparsely sampled have a low coherence. Translated to photon differentials;
differentials sent in directions which are heavily sampled should become more
narrow, and, likewise, differentials sent in sparsely sampled directions become
more broad. We achieve this by scaling the differentials by

√
k.

8.4.2 Diffuse reflection

Diffuse reflections are handled in much the same way as with scatterings. As is
typical in graphics, a diffuse surface is importance sampled proportional to the
cosine-weighted solid angle over a unit hemisphere. For a photon differential
that has an already defined footprint area we use a heuristic similar to that
used for scattering. The new area is found by

A′ = Ak 8.25

where

k =
1

2�p
, 8.26

Again, p is the probability that a photon with the direction ! will assume
the direction !′ when reflected. As was the case for scattering, we rotate the
differential vectors into the new sampled direction, !′, and multiply them by√
k.

This simple heuristic is not limited to diffuse surfaces; it can in fact be used
with any brdf that can be importance sampled. The disadvantage is that our
heuristic does not contributes to the anisotropy of the kernel as it ignores surface
curvature and therefore scales the differential vectors uniformly.
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8.5 Results

To validate the proposed method we use three test scenes. One scene without
volume caustics and two with volume caustics. To compare our method, we
have made three renderings of each scene. A reference rendering with a huge
number of photons and two renderings with a low number of photons. The two
low resolution renderings are rendered with our method and with conventional
volumetric photon mapping. For all renderings the optimal bandwidth have
been found by a human observer. Observe, that we are not evaluating the full
method insofar that the our integration scheme, Section 8.3, is not implemented
in the compared method.

The first scene contains heterogeneous smoke illuminated by a large area light
source, Figure 8.5. In the scene a faceted sphere is surrounded by warm smoke
rising from the floor. This scene contains no prominent volume caustics. It does,
however, demonstrate our methods capability in handling heterogeneous media
in diffuse environments. The reference image was rendered using 3 000 000 pho-
tons while the test images was rendered using a photon map containing 80 000
photons. Comparing the references image, Figure 8.5(a), with the image ren-
dered using conventional volumetric photon mapping, Figure 8.5(b) we see that
even though the reference image contain finer details the advantage in quality
gained by using huge photon map is slight. However, comparing the reference
image with image rendered with our method (Figure 8.5(c)) an interesting prob-
lem is exposed. Namely, that our method has loss of illumination intensity in
light scattered from the smoke. The explanation for this loss boundary bias.
As with ordinary photon differentials, the virtual beam is only considered as a
single ray. This means that a differential footprint might very well overlap a
polygonal border, resulting in a loss of energy near borders (See Section 3.1).
Volumetric photon mapping, which is based on the k’th nearest density esti-
mate, compensates partially for boundary bias in the local density estimate;
the kernel size decreases near borders as the local density i diminished. In con-
trast photon differentials offer no compensation and the method is therefore
especially susceptible to heterogeneous smoke that often have a large surface
area for the three dimensional footprints to overlap.

The second scene also contains heterogeneous smoke, see Figure 8.5. In this
scene a narrow beam of laser light is emitted from the ceiling of a Cornell box.
From there it penetrates a volume of heterogeneous smoke before it hits a faceted
silver hemisphere on the floor. The hemisphere reflects the incoming light in
a number of different directions. As in the former case, the reference image
was rendered using 3 000 000 photons while test images was rendered with a
map of 80 000 photons. Comparing against the reference image, Figure 8.5(a),
it is obviously that volumetric photon mapping, Figure 8.5(b), is not able to
reproduce the finer details of the volume caustics. Only two of the three reflected
ray are visible and that only partially. The reason for this is that smoothing
has all but removed them. In comparison we see from the Figure 8.5(c) that
photon differentials exhibit a superior variance-bias trade-off reproducing all of
the five reflected volume caustics distinctly.

The last image set, Figure 8.5, is that of a sphere illuminated by a small area
light source within a volume of homogeneous smoke. The refraction of light
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through the sphere creates a volume caustic. Here the test images was rendered
using only 10 000 photons while the reference image was rendered with the usual
3 000 000 photons. From the images we see that the volume caustic created by
our method is more distinct that the one created by volumetric photon mapping
and a photon map containing the same number of photons. The image contain
some noise an the method has not reproduced the narrow high intensity beam
in the middle of the caustic visible in the reference image.

8.6 Summary

In this chapter we have introduced a method for rendering participating media.
The method extends on photon differentials as it keeps track of a photon dif-
ferentials as they are scattered through translucent materials. This procedure
allows us to shape rotational invariant kernels which can be used to estimate
reflected radiance as a variable kernel density estimate. We, therefore, achieve
a superior trade-off between variance and bias, yielding a more detailed repro-
duction of volume caustics. However, one disadvantage of the method is that it
is susceptible to boundary bias.

8.7 Future work

In the presented work we have integrated our method with the usual two-pass
approach: in a first pass photons are emitted, traced, and stored; and in the
second pass in photons are collected along eye rays, and the contribution of each
photon is estimated.

We suggest to reverse the process. In order to do this we would employ a
Voronoi diagram for 3D line segments. The Voronoi diagram would be used to
store those eye rays that move through a participating medium. Then, instead
of gathering scattering events near rays from the eye, we would distribute energy
from scattering events to nearby eye rays. The radius in which light would be
distributed from a scattering event, and the radiance contribution to the eye
ray from such an event, would be estimated as described in this Chapter.

The advantage of this approach is that not only would we avoid the multiple
query problem described in Section 8.2, also we would be able to avoid storing
a potential huge amount of photons. The Voronoi diagram is complicated to
built, but k nearest neighbor queries can be made in logarithmic time.
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(a) 3 million photons in map (b) 80 000 photons in map

(c) 80 000 photons in map

Figure 8.5: Renderings of a Cornell box containing heterogeneous smoke. Warm
smoke diffuses from the and into the box. It surrounds a faceted sphere levitating
in midair. Images (a) and (b) was rendered using conventional photon mapping
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(a) 3 million photons in map (b) 80 000 photons in map

(c) 80 000 photons in map

Figure 8.6: Renderings of a Cornell box containing heterogeneous smoke. A
narrow beam of collimated light shoots from the ceiling traveling through het-
erogeneous smoke before hitting a faceted silver hemisphere. Images (a) and (b)
was rendered using conventional photon mapping

98



8.7. FUTURE WORK

(a) 3 million photons in map (b) 10 000 photons in map

(c) 10 000 photons in map

Figure 8.7: Renderings of a glass sphere illuminated from a small area light
source. Both light source and glass sphere is inside homogeneous smoke. Images
(a) and (b) was rendered using conventional photon mapping
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9
Conclusion

The theme of this thesis has been anisotropic kernel density estimation. We
have introduced four methods that make use of this technique.

We first took it in use developing diffusion based photon mapping. This method
employs an anisotropic local-bandwidth kernel density estimator to reconstruct
indirect illumination. For each surface estimate point a rotational invariant
kernel is shaped based on the first order structure of the illumination. We
found that diffusion based photon mapping was superior to conventional photon
mapping when reconstruction high contrast illumination.

However, as we saw in Chapter 2 an estimator exists that can be more precise
than the local bandwidth estimator. Photon differentials use an anisotropic
variable bandwidth estimator to reproduce indirect illumination. This estimator
employs an individual kernel for each sampling point. These individual kernels
are shaped by differentiating the path traveled by the photon.

Chapter 6 made it apparent that photon differentials can outperform both con-
ventional photon mapping as well as diffusion based photon mapping. Further-
more, this chapter made use of two different objective image quality measures,
namely MISE and SSIM. These were used to balance the trade-off between bias
and variance. From the images produced using these methods, it was rendered
probably that of these two measures, SSIM would choose the balance best suited
for illumination reconstruction to a human audience.

In Chapter 7 photon differentials was extended such that anisotropic filtering
was perform both in the spatial as well as the temporal domain. This extension
meant that precise motion blur could be obtained at a very low temporal resolu-
tion. This should be seen on contrast to conventional methods that usually need
a number of in-between frames in order avoid temporal aliasing when rendering
fast moving object.

Finally, the last chapter introduced a method capable of performing anisotropic
filtering on illumination scattered from a translucent media. Results showed
that while the method has potential it is still faced with some hampering issues.

It should be clear from reading this thesis that a lot can be gained from
anisotropic filtering. Its use, however, is not at all straight forward. The obvious
question is whether the difficulty is worth the gain. The answer from this thesis
is in most cases yes.
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A
Dimensionality reduction in photon

mapping

In photon mapping the surface is presumed to be locally flat. This is reflected by
the fact that the radiance estimate performs a two dimensional density estimate
on a three dimensional data set, namely the photon map. The consequence of
this assumption is that when the surface curvature is high and the photon
density is low the error of the radiance estimate can be significant. As an
example this error is sometimes evident as an unnatural increase and decrease in
illumination intensity near corners. In Figure 4.8a and 4.8b the phenomenon is
visible where the caustics are crossing from one wall to the other. Schregle [2003]
refers to this error as topological bias.

One way to increase the accuracy of the radiance estimate is to ensure that the
photons lie in the same plane. This can be achieved by projecting the photons
along their incoming direction onto the tangent plane to the surface at the
estimation point. This calculation can be performed in the radiance estimate
as:

t =
n⋅(x−xp)

n⋅!p
, A.1

xproj = xp + !pt, A.2

where x is the estimation point on a surface, and n is the surface normal at
that point. xp is the position of the photon and !p is the photons incoming
direction. Then xproj is the new projected position of the photon.

Figure A.1a,b illustrates the projection of photons onto the a tangent plane to
a surface point. At the surface point a radiance estimate is performed and a
circle around the point illustrates the radius in which photons are collected. In
A.1a the density estimate is performed close to an outward corner, while the
estimate in A.1b is close to an inward corner. In A.1a the photons 1, 2 and 3
are resolved correctly. However, photon 4 is not part of the k nearest photons
and does not contribute to the radiance estimate even though it should. Similar
for A.1b, photons 2 and 3 are resolved correctly, while photon 1 is incorrectly
ignored.
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MAPPING

The problem with this method is that it can only guarantee that photons within
the search radius are resolved correctly. Photon outside the search radius which
should have contributed to radiance estimate are ignored. Havran et al. [2005]
has solved this problem by storing photon paths, searching for the k nearest of
these instead of searching for photon hit positions. In this way both boundary
bias and topological bias is eliminated.

However, our method still has the advantage that it is simple to implement and
still resolves certain defects of topological bias such as those seen in Figure 4.8a
and 4.8b are reduced. Furthermore, it affects a dimensionality reduction which
can be useful in advanced radiance estimation.

x

1

2

3

4

1’ 2’ 4’ 3’

n

(a)

x

1

2

3

1’2’ 3’

n

(b)

Figure A.1: Two diagrams illustrating the projection of photons onto the tan-
gent plane of the surface at the estimation point, x. The photons are projected
along their incoming direction.
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B
Space and Time Ray Differentials

Jon Sporring, Lars Schjøth, and Kenny Erleben

Abstract

We consider rays bundles emanating from a source such as a camera or

light source, and for a particular ray, we estimate the ray density in the

neighbourhood using a first order approximation. This work is a general-

ization of ray differentials [Igehy 1999], and our contribution is to rederive

the equations from the literature in a principled fashion, which allows for

a generalization both with respect to surface models and time derivatives,

and possibly more. Applications are primarily ray tracing and photon

splatting.

B.1 Ray differential

In this article we consider reflection and refraction of light rays off and through
surfaces as illustrated in Figure B.1, and we will derive the full first order struc-
ture of these processes both with respect to nearby light rays and across time.

Consider a point and a viewing direction V ,P ∈ ℝ
3, and a simple 2 dimensional

surface x ∈ ℝ
3, such that

v = x− P , B.1a

V =
v

∥v∥ . B.1b

We use column vectors, hence ∥v∥ =
√
vTv. Following [Igehy 1999; Schjøth

et al. 2007] we calculate the partial derivative of P and V with respect to
x, and we will use the notation of differentials [Magnus and Neudecker 1988].
Differentials are rooted in Taylor series, i.e. consider an analytical function f :
ℝ → ℝ, and write its Taylor series as,

f(x+Δx) = f(x) + f ′(x)Δx+O(Δx2), B.2
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Figure B.1: Transfer, Reflection, and Refraction illustrated for a flat surface.
Black arrows are ray directions, green arrow is the normal for the green surface
patch.

where O is the remainder in Landau notation, and f ′ is the first order derivative
of f ′. We may reorder (B.2) to become,

Δf = f(x+Δx)− f(x) = f ′(x)Δx+O(Δx2), B.3

and for infinitesimal small Δx’s we may ignore the remainder and write,

df = f ′(x)dx. B.4

The extension to vector and matrix equations is straight forward, since their
Taylor series are element wise Taylor series. We use the same notation except
the derivative now is the Jacobian matrix, e.g. for vector equations such as
V ∈ ℝ

n → ℝ
m and x ∈ ℝ

n, the Jacobian of V with respect to the variable x is
DxV who’s ij’th entry is ∂Vi

∂xj
. Hence, the j’th column is the change vector of V

when only considering the i’th coordinate direction. The Jacobian with respect
to the full space of parameters is often just written as DV for convenience.
Matrix equations may be vectorized by simple reordering of their elements,
hence avoiding tensor notation. The differential embodies the full first order
structure of a function, and a first order estimate of the change is obtained by
replacing the infinitesimals with finite values, i.e. dx with Δx.

From (B.1) we may calculate the differential of dV as,

dV =
(dv)(vTv)1/2 − v(vTv)−1/2vT dv

vTv
B.5a

=
vTvI3 − vvT

(vTv)3/2
dv B.5b

=
vTvI3 − vvT

(vTv)3/2
(dx− dP ), B.5c
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where I3 is the 3×3 identity matrix. We are now able to calculate the complete
first order structure of V given the first order structure of P and x, and with
that, we are able to make linear approximation of changes in V given changes
in P and x. E.g. if P is constant, then dP = 0, and

dV =
vTvI3 − vvT

(vTv)3/2
dx, B.6

From this form, we can easily identify the matrix of partial derivatives as

dV

dx
=

vTvI3 − vvT

(vTv)3/2
. B.7

The partial derivative of V with respect to P is similarly found its negative.

If x is a plane, then a natural parametrization will be a set of orthogonal
axes spanning the plane, and to continue the example assume that the plane is
orthogonal to the third axis, then

dx =

⎡
⎣
1 0
0 1
0 0

⎤
⎦
[
dx1

dx2

]
B.8

Assuming that we are currently viewing in direction v∗ which passes through

coordinate
[
x1 x2

]T
and corresponding to V ∗, then the first order approxima-

tion to V ∗+ΔV when
[
x1 +Δx1 x2 +Δx2

]T
is calculated by evaluating dV

using dx1 = Δx1 and dx2 = Δx2, i.e.

ΔV =
vTvI3 − vvT

(vTv)3/2

⎡
⎣
1 0
0 1
0 0

⎤
⎦
[
Δx1

Δx2

]
. B.9

If x instead is a sphere of radius 1, we may more naturally use the spherical
parametrization,

x =

⎡
⎣
x
y
z

⎤
⎦ =

⎡
⎣
cos� sin �
sin� sin �

cos �

⎤
⎦ , B.10

such that

dx =

⎡
⎣
− sin� sin � d�+ cos� cos � d�
cos� sin � d�+ sin� cos � d�

− sin � d�

⎤
⎦ B.11a

=

⎡
⎣
− sin� sin � cos� cos �
cos� sin � sin� cos �

0 − sin �

⎤
⎦
[
d�
d�

]
B.11b

= R d�, B.11c

where R and � are defined as indicated above.
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As a note, parallel rays can be implemented by enforcing dV = 0 and P non-
constant.

The differentials are in know way limited static scenes and cameras. In (B.8)
we may add a time derivative as

dx =
[
Dx1

x Dx2
x Dtx

]
⎡
⎣
dx1

dx2

dt

⎤
⎦ B.12

where Dix are vectors of partial derivatives as indicated. I.e. if the plane moves

with a unit speed along the third coordinate axis, then Dtx =
[
0 0 1

]T
, and

if we wish to estimate the change in V as after 1 unit of time, then we evaluate
using dt = 1.

B.2 Transfer, Reflection, and Refraction

Following [Igehy 1999] we will sketch an iterative process, where a ray orig-
inates from a source at location P in direction V , is firstly transferred to a
surface patch at position Q with direction W , and then in parallel reflected
and refracted from the patch in directions Wreflect and Wrefract respectively.
The patch position and reflection and refraction directions respectively are used
as source of the ray for next iteration.

B.2.1 Transfer

For a parametrized ray, a transfer onto a surface at distance s the resulting
position and view vectors become,

Q = P + sV , B.13a

W = V . B.13b

We will assume that the surface is given implicitly as a scalar function F : ℝ3 →
ℝ, where

0 = F (Q), B.14

and we will assume that there exists a method for solving for the smallest s∗ > 0,
where

0 = F (P + s∗V ), B.15

The surface normal, N , must exist at Q and will be parallel to DFT .

The differentials are found to be

dQ = dP + V ds+ s∗ dV , B.16a

dW = dV . B.16b

The differential ds is directly related to the curvature of the patch at s∗. For
convenience we will in the remainder of this article use the symbol s to denote
s∗.
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B.2.2 Reflection

Given a ray transferred to a surface, reflection is given by

Qreflect = Q, B.17a

Wreflect = V − 2(V TN)N . B.17b

Hence, the differentials are, dQreflect = dQ, and

dWreflect = dV − 2
(
(dV T N + V T dN)N + (V TN)dN

)
B.18a

=
(
I3 − 2NNT

)
dV − 2

(
V TNI3 +NV T

)
dN . B.18b

B.2.3 Refraction

Given a ray transferred to a surface, refraction is given by

Qrefract = Q, B.19a

Wrefract = �V − �N , B.19b

where

� = �V TN +
√

�, B.20a

� = 1− �2
(
1−

(
V TN

)2)
, B.20b

and � is the ration of refraction indices of the material bordered by the discussed

surface. An often use approximation near � = 1 is � ≃
(
V TN

)2
, which we

will refrain from, since the refraction ratio between water and air is typically
� = 1.33.

The differentials are found to be, dQrefract = dQ, and assuming that � is con-
stant,

dWrefract = �dV − d�N − �dN B.21a

= �dV −Nd�− �dN . B.21b

using d� = 2�2
(
V TN

) (
dV T N + V T dN

)
, we see that

d� = �(dV TN + V T dN) +
d�

2
√
�

B.22a

= �(dV TN + V T dN) +
�2V TN(dV TN + V T dN)√

�
B.22b

= �(NT dV + V T dN) +
�2V TN(NT dV + V T dN)√

�
B.22c

= �

(
1 +

�V TN√
�

)
NT dV + �

(
1 +

�V TN√
�

)
V T dN . B.22d
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Gathering terms we find that

dWrefract =

(
�I3 − �

(
1 +

�V TN√
�

)
NNT

)
dV

−
(
�I3 + �

(
1 +

�V TN√
�

)
NV T

)
dN . B.23

B.3 Surface Models

A number of differentials described above depend on the surface of intersection.
We will now evaluate the differentials to full depth for a number of popular and
practical surface models.

B.3.1 Flat Surface

For a planar surface with normal N and passing through the point Q0 we have
that

0 = (Q0 −Q)TN . B.24

Hence,

0 = (Q0 − P − sV )TN , B.25

and

s =
(Q0 − P )TN

V TN
. B.26

The full differential of ds is found as follows,

ds =

(
d
(
(Q0 − P )

T
N
)) (

V TN
)
−
(
(Q0 − P )

T
N
)
d
(
V TN

)

(V TN)
2 B.27a

=

(
(dQ0 − dP )

T
N + (Q0 − P )

T
dN

)
− s

((
dV T

)
N + V T dN

)

V TN
B.27b

=

(
NT (dQ0 − dP ) + (Q0 − P )

T
dN

)
− s

(
NT dV + V T dN

)

V TN
B.27c

=
NT

V TN
dQ0 −

NT

V TN
dP +

(Q0 − P )
T − sV T

V TN
dN − sNT

V TN
dV . B.27d

Combining terms we have:

dQ = KdP + sKdV + (I3 −K) dQ0 +LdN , B.28a

dW = dV , B.28b

dWreflect =
(
I3 − 2NNT

)
dV , B.28c

dWrefract =

(
�I3 − �

(
1 +

�V TN√
�

)
NNT

)
dV . B.28d
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where

K = I3 −
V NT

V TN
, B.29a

L =
V (Q0 − P )

T − sV V T

V TN
. B.29b

Typically, a triangle will be parametrized by its 3 vertices, Q0, Q1 and Q2, and
a more natural parametrization of changes is in terms of the vertices. Such a
parametrization allows us to further develop dN . Assume that,

n = (Q2 −Q0)× (Q1 −Q0), B.30

To be consistent with respect to models for reflection and refraction, we will
assume that nTV < 0, otherwise we will interchange Q1 and Q2. For n

TV < 0
we find,

N =
n

∥n∥ , B.31a

dN =
nTnI3 − nnT

(nTn)3/2
dn, B.31b

dn = (dQ2× − dQ0×)(Q1 −Q0) + (Q2× −Q0×)(dQ1 − dQ0) B.31c

= (Q2× −Q0×)(dQ1 − dQ0)− (Q1× −Q0×)(dQ2 − dQ0) B.31d

= (Q0× −Q1×)dQ2 + (Q2× −Q0×)dQ1 + (Q1× −Q2×)dQ0, B.31e

where for simplicity we convert used the matrix form of cross products, a×b =
a×b = bT×a = −b×a, where

c =

⎡
⎣
c1
c2
c3

⎤
⎦⇒ c× =

⎡
⎣

0 −c3 c2
c3 0 −c1
−c2 c1 0

⎤
⎦ , B.32

Using

J =
nTnI3 − nnT

(nTn)3/2
, B.33

we find that

dQ = KdP + sKdV + (I3 −K +LJ(Q1× −Q2×)) dQ0

+LJ(Q2× −Q0×)dQ1 +LJ(Q0× −Q1×)dQ2, B.34

For stationary, flat surfaces dN = 0 and dQi = 0, i = 0 . . . 2, and we may write
dQ = KdP + sKdV in agreement with [Igehy 1999]. The rays and spatial
differentials are illustrated in Figure B.2. In Figure B.3 are examples of time
differentials shown.
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(a) (b) (c)

(d)

Figure B.2: Transfer, Reflection, and Refraction for Flat surfaces. Black arrows
are ray directions, green is triangle normal, blue and red arrow illustrate the
row vectors of dP /d�, dQ/d�, dV /d�, and dW /d� as relevant.
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(a) (b) (c)

(d) (e)

(f) (g) (h)

Figure B.3: Time differentials for Flat surfaces. Yellow arrows denote imposed
and resulting time derivatives. Subfigures (a)-(c) shows imposed velocities in
three orthogonal directions on the origin, P , (d)-(e) shows imposed rotational
velocities in viewing direction V , and (f)-(h) shows imposed velocities in three
orthogonal directions on one of the vertices.
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(a) (b) (c)

Figure B.4: Phong shading assumes fish scale geometry. A triangle, B.4(a),
shaded with Phong’s model, B.4(b), expresses a complexity not supported by
the real geometry. One way of conceptualizing this model is to think of the
triangle as consisting of fish scales, B.4(c); in this mindset every point on the
surface of the triangle is associated with an independent local plane or fish scale
whose normal is interpolated from the corners of the triangle.

B.3.2 Phong Surface

Phong shading uses a triangle as a base geometry but imposes varying normals
across it. Since the flatness of the triangle contradicts the changing normals, we
prefer to think of this as a fish scale model as illustrated in Figure B.4.

In the Phong we assume a plane represented by the 3 vertices of a triangle, Q0,
Q1, and Q2, and corresponding vertex normals N0, N1, and N2. To calculate
the intersection of the view ray with the triangle we use the Flat surface model
(B.24) by using the triangle normal,

nflat = (Q2 −Q0)× (Q1 −Q0) B.35a

Nflat =
nflat

∥nflat∥
B.35b

For visualization, reflection and refraction we construct an linearly interpo-
lated normal from the three vertex normals. Note that the flat normal and
interpolated vertex normal most often won’t coincide, and as a consequence
dQ/dNphong will not span the triangle. Hence, for the Phong surface model
we use Nflat for calculating Q and only concern oureselves with dQ/dNflat. As
for the Flat model, we find the point of intersection by solving 0 = (Q0 − P −
sV )TNflat, as

s =
(Q0 − P )TNflat

V TNflat
. B.36

such that

dQ = KdP + sKdV + (I3 −K +LJflat(Q1× −Q2×)) dQ0 B.37

+LJflat(Q2× −Q0×)dQ1 +LJflat(Q0× −Q1×)dQ2, B.38

dW = dV , B.39
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where

K = I3 −
V NT

flat

V TNflat
, B.40a

L =
V (Q0 − P )

T − sV V T

V TNflat
, B.40b

Jflat =
nT

flatnflatI3 − nflatn
T
flat

(nT
flatnflat)3/2

. B.40c

To interpolate the vertex normals at the point of intersection, Q, we calculate
the Barycentric coordinates,

Q = �0Q0 + �1Q1 + �2Q2, B.41

where �0, �1, and �2 are homogeneous Barycentric coordinates such that �0 +
�1+�2 = 1. The Barycentric coordinates are then used to interpolate the vertex
normals as,

n = �0N0 + �1N1 + �2N2, B.42a

N =
n

∥n∥ . B.42b

Assuming that a ray passing through P with direction V , and that it intersects
a triangle within vertices Q0, Q1, and Q2, then 0 ≤ �i ≤ 1, and we may find
the Barycentric coordinates using Möller and Trumbore’s algorithm [Möller and
Trumbore 1997]: Let

E0 = Q1 −Q0, B.43a

E1 = Q2 −Q0, B.43b

T = P −Q0 B.43c

then

�1 =
(V × T )TE1

(V ×E0)TE1
B.44a

=
�TE1

TE1
B.44b

�2 =
(V × T )TE0

(V ×E1)TE0
B.44c

=
�TE0

�TE0
, B.44d

where � = V × T ,  = V ×E0, � = V ×E1, and �0 = 1− �1 − �2.

The differential, dN , is now found to be,

dN =
nTnI3 − nnT

(nTn)3/2
dn, B.45a

dn = N0d�0 + �0dN0 +N1d�1 + �1dN1 +N2d�2 + �2dN2. B.45b
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Since,

d�0 = −d�1 − d�2, B.46a

d�1 =
(d�TE1 + �T dE1)

TE1 − �TE1(d
TE1 + T dE1)

(TE1)2

=
TE1(E

T
1 d� + �T dE1)− �TE1(E

T
1 d + T dE1)

(TE1)2

=
TS1d� − �TS1d +ET

1

(
�T − �T

)
dE1

TS1
, B.46b

d�2 =
(d�TE0 + �T dE0)�

TE0 − �TE0(d�
TE0 + �T dE0)

(�TE0)2

=
�TE0(E

T
0 d� + �T dE0)− �TE0(E

T
0 d� + �T dE0)

(�TE0)2

=
�TS0d� − �TS0d� +ET

0

(
��T − ��T

)
dE0

�TS0�
, B.46c

where S1 = E1E
T
1 , and S0 = E0E

T
0 . Thus we find that

dN = J

(
�0dN0 + �1dN1 + �2dN2

+ (N1 −N0)

(
TS1d� − �TS1d +ET

1

(
�T − �T

)
dE1

TS1

)

+ (N2 −N0)

(
�TS0d� − �TS0d� +ET

0

(
��T − ��T

)
dE0

�TS0�

))

B.47a

= J

(
�0dN0 + �1dN1 + �2dN2

+
(
Δ1

TS1 +Δ2�
TS0

)
d� −Δ1�

TS1d −Δ2�
TS0d�

+Δ2E
T
0

(
��T − ��T

)
dE0 +Δ1E

T
1

(
�T − �T

)
dE1

)
B.47b

where J = nTnI3−nnT

(nTn)3/2
, Δ1 = (N1−N0)

TS1
, and Δ2 = (N2−N0)

�TS0�
. For simplicity we

convert cross products into matrix form, a× b = a×b = bT×a = −b×a, where

c =

⎡
⎣
c1
c2
c3

⎤
⎦⇒ c× =

⎡
⎣

0 −c3 c2
c3 0 −c1
−c2 c1 0

⎤
⎦ , B.48

hence,

d� = dV×T + V×dT = V×dT − T×dV , B.49a

d = dV×E0 + V×dE0 = V×dE0 −E0×dV , B.49b

d� = dV×E1 + V×dE1 = V×dE1 −E1×dV , B.49c
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implying that

dN = J

(
�0dN0 + �1dN1 + �2dN2

+
(
Δ1

(
�TS1E0× − TS1T×

)

+Δ2

(
�TS0E1× − �TS0T×

) )
dV

+
(
Δ1

TS1 +Δ2�
TS0

)
V×dT

+
(
Δ2E

T
0

(
��T − ��T

)
−Δ1�

TS1V×
)
dE0

+
(
Δ1E

T
1

(
�T − �T

)
−Δ2�

TS0V×
)
dE1

)
. B.50

Since dE0 = dQ1 − dQ0, dE1 = dQ2 − dQ0, dT = dP − dQ0, we find that

dN = J

(
�0dN0 + �1dN1 + �2dN2

+
(
Δ1

(
�TS1E0× − TS1T×

)
+Δ2

(
�TS0E1× − �TS0T×

))
dV

+
(
Δ1

TS1 +Δ2�
TS0

)
V×dP

+
(
Δ1

(
�T − T

)
S1V× +Δ2

(
�T − �T

)
S0V×

+Δ2Ξ0 +Δ1Ξ1

)
dQ0

−
(
Δ2Ξ0 +Δ1�

TS1V×
)
dQ1

−
(
Δ1Ξ1 +Δ2�

TS0V×
)
dQ2

)
B.51

where Ξ0 = ET
0

(
��T − ��T

)
, and Ξ1 = ET

1

(
�T − �T

)
.

Gathering terms for reflection and refraction we find that

dWreflect =
(
I3 − 2NNT

)
dV − 2

(
V TNI3 +NV T

)
dN

=
(
I3 − 2NNT

)
dV

+M

(
�0dN0 + �1dN1 + �2dN2

+
(
Δ1

(
�TS1E0× − TS1T×

)

+Δ2

(
�TS0E1× − �TS0T×

) )
dV

+ (Δ1
TS1 +Δ2�

TS0)V×dP

+
(
Δ1

(
�T − T

)
S1V× +Δ2

(
�T − �T

)
S0V×

+Δ2Ξ0 +Δ1Ξ1

)
dQ0

−
(
Δ2Ξ0 +Δ1�

TS1V×
)
dQ1

−
(
Δ1Ξ1 +Δ2�

TS0V×
)
dQ2

)
. B.52a

119



APPENDIX B. SPACE AND TIME RAY DIFFERENTIALS

and

dWreflect = M�0dN0 +M�1dN1 +M�2dN2

+
(
I3 − 2NNT +M

(
Δ1

(
�TS1E0× − TS1T×

)
+

Δ2

(
�TS0E1× − �TS0T×
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)
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where M = −2
(
V TNI3 +NV T

)
J , and

dWrefract =

(
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(
1 +

�V TN√
�

)
NNT

)
dV

−
(
�I3 + �

(
1 +

�V TN√
�

)
NV T

)
dN B.53

so that
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from which it follows that
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(
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where H = −
(
�I3 + �

(
1 + �V TN√

�

)
NV T

)
J .

An example of the rotational derivatives using the Phong surface model is shown
in Figure B.5, and resulting velocities in Figure B.6.

B.4 Conclusion

In this article we have reiterated [Igehy 1999; Schjøth et al. 2007], and evalu-
ated the full differentials of linear rays emanating from a source and intersecting
a surface given on implicit form in a principled manner taking reflection and
refraction into account. We have further given closed form solutions for two
surface models: flat and Phong. Our differentials are simpler and are more con-
sistent than [Igehy 1999], and they allow for easy extension to other parameters
than viewing directions. Specifically, we have considered change in ray origin,
allowing for parallel rays, and change in time, allowing for movies.

Conceptually, we model ray bundles instead of rays and obvious applications are
ray tracing and photon splatting, but the methodology is naturally and easily
extended to all phenomena well approximated by first order Taylor series.
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(a) (b) (c)

(d)

Figure B.5: Transfer, Reflection, and Refraction for Phong surfaces. Black
arrows are ray directions and interpolated normal, green is triangle normal,
blue and red arrow illustrate the row vectors of dP /d�, dQ/d�, dV /d�, and
dW /d� as relevant. Note that dQ/d� vectors do not lie in the triangular plane.
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(a) (b) (c)

(d) (e)

Figure B.6: Time differentials for Phong surfaces. Yellow arrows denote imposed
and resulting time derivatives. Subfigures (a)-(c) shows imposed velocities in
three orthogonal directions on the origin, P , (d)-(e) shows imposed rotational
velocities in viewing direction V .
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(a) (b) (c)

(d) (e)

Figure B.7: Time differentials for Phong surfaces. Yellow arrows denote imposed
and resulting time derivatives. Subfigures (a)-(c) shows imposed velocities in
three orthogonal directions on one of the vertices, and (d)-(e) shows imposed
rotational velocities the same vertex normal.
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Möller, T. and Trumbore, B. 1997. Fast, minimum storage ray-triangle inter-
section. journal of graphics tools 2, 1, 21–28.
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