
Grid-enabling Non-computer Resources

Ph.D. Dissertation
Martin Rehr

Department of Computer Science
University of Copenhagen

Copenhagen, Denmark
Submission date: August 31th, 2010

Acknowledgments

The greatest thanks I owe to my advisor, Professor Brian Vinter who arranged my Ph.D.
stipend and with his never-ending pipeline of research ideas and positive minded ap-
proach to problem solving has been a major inspiration through the project. In addition
to his great knowledge, Brian has introduced me to the world of research through his
worldwide network of research partners as well as letting me attend several international
conferences and Ph.D. summer schools.

In the spring of 2009 Dr. Toni Cortes from the Barcelona Supercomputing Center
kindly hosted me for six months despite the fact that he didn’t know neither me, Brian or
any other from our research team prior to accepting hosting me. I’m deeply thankful to
Toni for the enthusiasm he showed to my project and the many hours he spent discussing
various aspects and solutions with me. Besides Toni a big thanks goes to his Ph.D.
student Jonathan Marti who developed the Oraculo predictor which is used in the last
part of the project and with whom I had many joyful discussions regarding the the
prediction system. I would also like to thank Ernest Artiaga for teaching me how to
generate various representations of huge scientific data sets using his graph generation
script. Lastly I’ll like to thank all the people I met at BSC for making my stay very
enjoyable.

In Copenhagen Jonas Bardino has been a great companion both developing and
managing the Minimum intrusion Grid as well as discussing the technical aspects of
my research and verifying my papers before submission. My former Ph.D. colleague
Rasmus Andersen has been a great travel companion at various conferences and sum-
mer schools. He and I have had endless discussions during my research about various
technical aspects and he has been a great inspiration when it comes to improving my
scientific writing skills.

Last but not least my beautiful girlfriend Vibeke deserves a big hug for supporting
me through the project, cheering me at the sour hours where nothing worked the way
it was supposed, as well as supporting my sometimes odd working schedule, my late
Friday discussion sessions, all the times where I favored work above social activities,
and all the travels, specially the six months in Barcelona where she took care of the
farm all by her self.

The presented research is funded by “Det frie forskningsrad for natur og univers”.

i

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Public Resource Computing . 2
1.3 Grid for the Public . 3
1.4 Non-computer Resources . 3
1.5 Challenges We Are Facing . 6
1.6 The Grid Concept . 7

1.6.1 Accessing Resources . 7
1.6.2 Interactive Shell . 7
1.6.3 Sensors and Laboratory Equipment 7
1.6.4 Office Roaming Grids . 8

1.7 Grid Middlewares . 8
1.7.1 First Generation Grids . 9
1.7.2 Second Generation Grids . 9
1.7.3 Grid Scheduling . 11
1.7.4 Grid Scalability . 11
1.7.5 Job Fault Tolerance . 12
1.7.6 Runtime Environments . 13
1.7.7 Virtual Organizations . 13
1.7.8 Security: Authentication and Anonymity 15
1.7.9 Grid Storage . 15
1.7.10 Connecting Resources to the Grid 16
1.7.11 Choosing a Grid Middleware 17

1.8 Presented Work . 17
1.8.1 The One-Click Grid Resource Model 18
1.8.2 The PS3TM Grid Resource Model 18
1.8.3 Application Porting and Tuning on The Cell-BE Processor . . . 19
1.8.4 The Remote Memory Library 19

1.9 Contributions . 20
1.10 Publications . 20

ii

2 The One-Click Grid Resource Model 22
2.1 The MiG Scheduler . 22
2.2 The One-Click VMware Player Model 24
2.3 The Java One-Click Model . 25
2.4 Remote File Access . 27

2.4.1 Block Size Estimation . 27
2.5 Checkpointing . 28

2.5.1 Transparent Checkpointing . 28
2.5.2 Semi-transparent Checkpointing 29

2.6 Experiments . 29
2.6.1 One-Click as a Concept . 29

2.7 One-Click Summary . 30

3 The PS3TM Grid Resource Model 32
3.1 About the PS3TM Game Console . 32
3.2 The PS3TM Grid as a Resource . 33
3.3 The PS3-LIVECD . 34
3.4 The MiG PS3-LIVECD . 34

3.4.1 Security . 35
3.4.2 Sandboxing . 35
3.4.3 File Access . 35

3.5 The Execution Environment . 35
3.6 Experiments . 37

3.6.1 Job Overhead and File Performance 37
3.6.2 Protein Folding . 37

3.7 PS3-LIVECD Summary . 38

4 Application Porting and Tuning on The Cell-BE Processor 39
4.1 The Cell-BE Processor . 39
4.2 Porting Towards the Cell-BE . 41

4.2.1 Task and Memory-parallelization 41
4.2.2 The Nqueens Solution . 42

4.3 Register-line Optimizations . 43
4.3.1 Recursive vs. Iterative Methods 43
4.3.2 Branch Prediction and Elimination 43
4.3.3 The Nqueens Solution . 44

4.4 Data Parallelization . 44
4.4.1 The Nqueens Solution . 45

4.5 Instruction Parallelization . 46
4.5.1 The Nqueens Solution . 46

4.6 Nqueens Summary . 47

iii

5 The Remote Memory Library 48
5.1 Memory Management . 49
5.2 Kernel-level vs. User-level . 49
5.3 The Remote Swap Framework . 50
5.4 The Remote Memory Library . 50
5.5 Page Eviction . 50
5.6 Page Retrieval . 51
5.7 Page Blocks . 51
5.8 The Memory Server . 52
5.9 Implementation Details . 53

5.9.1 UDP vs. TCP . 53
5.9.2 Nagle’s Algorithm . 53
5.9.3 The Local Page Table . 54

5.10 Memory Allocation . 55
5.11 Page Eviction . 56
5.12 Page Retrieval . 56
5.13 Experiments . 60
5.14 Sequential Data Access . 60
5.15 Linux Disk Swap . 62
5.16 Sequential Data Access with Writes 62
5.17 Scattered Memory Access . 63
5.18 Scattered Memory Access with Write 64
5.19 Lattice Boltzmann . 64
5.20 Fast Fourier Transform . 64
5.21 Barnes-Hut . 66
5.22 Experiment Summary . 68
5.23 Initial Remote Memory Library Summary 68

6 Prediction Based Page Prefetching 70
6.1 Oraculo . 71
6.2 Combining Oraculo with The Remote Memory Library 73
6.3 Online Prediction Problem . 84
6.4 Experiments . 84
6.5 Sequential Data Access . 85
6.6 Sequential Data Access with Writes 86
6.7 Scattered Memory Access . 88
6.8 Scattered Memory Access with Write 89
6.9 Lattice Boltzmann . 91
6.10 Fast Fourier Transform . 91
6.11 Barnes-Hut . 93
6.12 Simulated Network Latency . 95

iv

6.13 Experiment Summary . 97

7 Future work 99

8 Conclusion 101

A Publication 1 109

B Publication 2 124

C Publication 3 135

D Publication 4 142

E Publication 5 151

F Publication 6 172

v

Chapter 1

Introduction

1.1 Motivation
The scientific modeling community has a seemingly endless need for processing power
as new areas of modeling arise steadily and existing models become increasingly fine
grained and realistic. To be able to keep up with the growing demand for processing
power the Cluster Computing paradigm[SSB+95] was introduced in the early 90’s as a
cheap alternative to full scale supercomputers due to the falling prices and increasing
performance of commodity hardware such as CPU’s, memory, storage and network.
With the increasing capacity of the network infrastructures connecting the research fa-
cilities the idea of interconnecting the supercomputers at different research facilities into
one infrastructure arose and was formulated as the Grid Computing paradigm[KF99].
The Grid vision was and still is a computing infrastructure where services are provided
through a plug in the wall just like the electrical power grid. However, providing 230
Volt @ 50 Hz∗ is a simple protocol compared to the overall complexity of the devices ca-
pable of communicating by TCP/IP and therefore the current Grid systems are largely
stuck with the first generation implementations which merely gathers geographically
displaced supercomputers into one computing infrastructure.

While Grid Computing emerged the Berkeley University introduced Public Re-
source Computing (PRC) in the form of the SETI@home[ACK+02] project, which
later turned into the BOINC[And04] framework. The PRC paradigm is a subset of
the Grid paradigm focusing on the personal computing devices that are located outside
the supercomputer facilities, which has been demonstrated to have a huge computation
potential. However PRC computing is not real Grid Computing as the executed appli-
cations are tightly coupled to the executing resources opposed to Grid resources that
are capable of executing arbitrary applications using arbitrary resources. A number of
research projects have shown ways to combine PRC computing and Grid Computing,

∗European standard for electricity

1

the first using BOINC resources within a Grid infrastructure[MBC04] and the latter by
using sandboxing techniques[aBV06] to provide a generic execution environments to
public resources enrolled in Grid Computing. While this is a step in the right direc-
tion the current state of Grid computing is still far from the original paradigm, namely
providing services through a plug in the wall. What we are aiming at in this disserta-
tion is bringing the Grid Computing paradigm one step closer to its goal by reaching
a broader range of Grid resources in what we call non-computer devices. We define
such devices as TCP/IP capable devices, which do not per default have the nature of a
general purpose computer. Such devices include, but is not limited to, game consoles,
sensor networks, laboratory equipment, telescopes and so forth.

1.2 Public Resource Computing
Public Resource Computing (PRC) is a subset of Grid Computing, and even though
many PRC projects denote themselves as Grid Computing projects they are not. Con-
ceptually there are two major differences between PRC computing and Grid Computing:

• Donating resources vs. sharing resources

PRC systems are based on public resource donation

Grid systems are based on resource sharing

• Generic vs. Fixed applications

PRC resources are tightly coupled to a specific application

Grid resources are capable of executing arbitrary applications

These two differences are tightly coupled, in order to share resources and submit ar-
bitrary jobs to a computing infrastructure, the resources attached to the infrastructure
must be capable of executing arbitrary applications from the infrastructures point of
view. PRC projects have the advantages of a simpler framework, from the point of
view of the framework developers, because they require the donors of the resources to
install a client for each project in which they wish to enroll. Furthermore it’s required
that the target applications are re-written to comply with the PRC framework, which
consumes time if applicable at all due to source code restrictions regarding availability
and licenses. The BOINC project was introduced in 2004 to avoid installing a client
for each project a given resource is enrolled in. This framework provides one resource
manager for all BOINC compliant PRC projects with the possibilities to chose between
them, but it doesn’t solve the fundamental issues regarding portability and flexibility.
While the first generation Grids were not suited for PRC computing[And04] the second
generation Grids provide a perfect platform for public resources[aBV06] because they
deliver the same functionality as the BOINC framework but without the need to modify

2

the target applications. According to the BOINC web page† it takes about three man-
months to deploy a BOINC project from an existing application, in addition to that a
midrange project server is needed which requires hosting, administration and mainte-
nance. In contrast once the research is familiar with Grid infrastructures there will be a
minimal overhead deploying new projects as the applications doesn’t need to be ported
and there is no investment in additional hardware.

1.3 Grid for the Public
Delivering services through a plug in the wall managed by a Grid infrastructure first
of all requires services to deliver. PRC computing has shown that the public is willing
to donate their personal computers to science without getting anything in return apart
from a scoring list, which shows the amount of computation time delivered by each
resource. The philosophy of Grid Computing is sharing resources instead of merely
donating them, that is, resource donors get computation credits in return for their dona-
tions, which can either be used for future computations or possible sold to users in need
of credits. However for this to work there is a bootstrap problem, if there are no services
to take advantage of why should resource owners offer their services to a Grid infras-
tructure. But if nobody offers their resources, how are there going to be any services
available? One of the major issues getting the Grid paradigm pushed outside the super-
computing facilities is the administration time and space overhead connecting resources
to most of the current Grid middlewares. While this is acceptable in the supercomput-
ing environment with associated administrators hired to customize the supercomputer
towards the specific needs of the scientists using them, this is a major limitation when
pushing the Grid to the public as a cumbersome and time consuming installation will
keep out all but the most hard-core techies from the Grid environment. When pushing
the Grid one step further namely to the non-computing devices a minimal Grid client
footprint becomes increasingly important as such devices have minimalistic hardware
setups compared to supercomputers and personal computers. Therefore a minimalistic
Grid client footprint and easy connectivity to the infrastructure is vital getting the public
to use Grid as a service infrastructure.

1.4 Non-computer Resources
Combining public resource computing and Grid Computing such that public resources
can be utilized in a global Grid infrastructure was a major step towards fulfilling the
Grid paradigm: “Providing services through a plug in the wall”. However the paradigm

†http://boinc.berkeley.edu/trac/wiki/BoincIntro

3

Power Grid

Figure 1.1: The variety of sources generating electricity in a power grid

is still not fulfilled, one of the next steps towards fulfilling the paradigm is reaching fur-
ther out regarding resources. Like the power Grid utilizes various sources for generating
electricity to the end users, figure1.1, computation Grids should utilize all sorts of com-
putational devices to provide the services oriented infrastructure envisioned, figure1.2.
However, this is not trivial as every resource class expansion increases the complexity of
the overall system due to the heterogeneity of the connected resources. The traditional
vector supercomputers are the most homogeneous architecture within the high perfor-
mance computing (HPC) community. But due to the high prices on those installations
and the falling prices and increasing performance of commodity hardware the cluster
computer arose, which is merely a collection of homogeneous personal computers with
a high-speed network interconnection. Even though the individual machines used for
building cluster computers are homogeneous within each cluster setup new program-
ming paradigms had to be developed as the communication went from communicating
internally through the memory bus to externally using the network interconnection. For
this purpose various systems such as PVM[Sun90] and MPI[For94] were developed.
When expanding the resource pool from cluster computers to personal computers (PC)
located outside the research facilities heterogeneity arises to a higher level regarding
CPU architecture, processor power, memory, processing, disk, operating system, net-
work bandwidth and latency. The group of PCs however are homogeneous vs the class
of non-computer resources which includes every TCP/IP interconnected devices.

4

Grid

Figure 1.2: The variety of sources enrolled in a computation grid

The heterogeneity of non-computer devices will show in various ways:

• Processor Architecture

Most PC’s comply with the X86/X86 64 architecture, unlike the non-computer
devices

• Memory

non-computer devices generally have smaller amount of memory than PC’s

• Disk

non-computer devices often have very limited or no disks at all

• Operating system

Many variations of embedded operating systems exist

The last and most important thing is that non-computer devices are often embedded
devices without any possibility for extensions of the hardware. The device hierar-
chy/heterogeneity is sketched in figure1.3

5

Supercomputers

Residential Devices

Mobile Devices

Homogene

Heterogene

NON-Computer
devices

Clustercomputers

Figure 1.3: The homogeneous/heterogeneous relation of different devices

1.5 Challenges We Are Facing
The Grid paradigm‡ is a very loose definition, one could define services as merely the
ping and echo services and the Grid paradigm would be fulfilled. However in our per-
spective Grid services should be defined as the sum of all possible services that TCP/IP
interfaced devices are capable of delivering. In reality most Grid implementations are
still in their cradle in the sense that the resources they are able to handle are limited
to supercomputer installations. Only a few systems have expanded to include personal
computers located outside the supercomputer facilities in their resource pool, as this
requires that the middleware is capable of handling the autonomous and heterogeneous
nature of such resources. The goal of this project is to take the Grid resource pool
one step further namely to the non-computer resources for computational services. We
concentrate on computational services as these are the most hardware bound services
and lie within the domain of existing Grid and cluster systems which make them com-
parable. In any case the frameworks and protocols needed to connect them to a Grid
infrastructure will be applicable for all the services the devices are capable of delivering.

‡Providing services through a plug in the wall

6

1.6 The Grid Concept
The Grid computing concept[Fos02] defines a service oriented infrastructure on top
of the Internet. The development of Grid middlewares has so far mainly focused on
scientific computing, however a global Grid infrastructure should target all Internet
capable devices. To achieve this goal several issues have to be considered.

1.6.1 Accessing Resources
As the majority of working Grid resources currently are machines for scientific com-
puting, and the majority of scientific applications comply with a Unix like environment,
the common way to access a Grid resource today is through batch jobs written and sub-
mitted as shell scripts. However with the goal of connection all capable Internet devices
several different execution models have to be considered.

1.6.2 Interactive Shell
The first obvious extension to the default batch execution model is the interactive shell.
This allow the Grid user to define which type of shell is needed combined with the
information provided for normal batch type of jobs such as architecture, memory con-
sumption, disk usage, runtime environments and the activation time of the shell. The
interactive shell is a valuable tool when developing Grid applications, regarding com-
patibility between the development and execution environment. Beside that, the inter-
active shell provides the possibility to perform cross-platform computing as the client
platform doesn’t need to be the same as the shell provided by the Grid middleware.

Interactive Graphical Environments The interactive graphical environment is a nat-
ural extension to the interactive shell. This allow the Grid users to request individ-
ual graphical applications as well as full graphical desktops on various platforms and
thereby provide full cross-platform desktop computing to the Grid end user.

1.6.3 Sensors and Laboratory Equipment
Connecting sensors and laboratory equipment to a Grid infrastructure would let scien-
tists fetch information from those devices through the Grid. The scientists should be
able to requests the status of a given sensor by sending a request through the Grid and
the sensor should be able to notify the scientists about changes in the sensor environ-
ment.

7

1.6.4 Office Roaming Grids
The Grid infrastructure could also be used in an office environment. The resources here
could be both printers and displays, as well as personnel. If one enters a meeting locality
with e.g. a display wall[SBA07], it should be possible to acquire that display wall as
a resource, by submitting a job to the Grid. This could increase the effectiveness of a
meeting, as much time is wasted connecting projectors to individual laptops. Likewise
printers could be acquired through the Grid middleware. Last but not least internal
support personnel could be a Grid resource, by letting the Grid users acquire personnel
through a Grid middleware, This would require some locality parameters of resources
and clients in the Grid environment.

1.7 Grid Middlewares
Grid middlewares can be categorized into two types of Grids. global Grids and office
Grids. Office Grids are designed to operate on a local network behind a firewall where
global Grids are designed to work globally using the entire Internet. Companies and
research institutions with sensible data tend to use office Grids to be sure their data and
applications never leave the corporate computers. The first working Grid middleware
was an office Grid named Condor[BLL91], this office Grid has later been extended with
global Grid interconnection such that it can be used as a hybrid Grid. Several other
office Grid implementations exists such as Datasynapse[misa], Sun Grid Engine[misc]
(SGE) and Entropia[misb].

In this thesis we will concentrate on the global Grids, as the principles used in global
Grids apply to office Grids as well. The first working global Grid was Globus[Fos06],
this Grid middleware was build using existing software packages with additional Grid
protocols for assembling supercomputer installations for simulations into one compu-
tation infrastructure. Globus is by many regarded as the defacto standard and many
Grid middlewares such as as gLite[gLi] and NorduGRID ARC[EEE+03] are based on
the Globus model. However these first generation Grids have limitations when it comes
to connecting non-supercomputer resources outside the research facilities regarding us-
ability, connectivity, scalability and administration. To overcome these issues a next
generation of Grid middlewares have started to arise such as the XtreemOS[CFJ+08]
and the Minimum intrusion Grid[KV05]. Both middlewares are being designed and
implemented from scratch using the experience gained using the first generation mid-
dlewares to improve the overall functionality of the Grid system.

8

MDS Storage

Resource Finder Data

Gatekeeper

Job manager

Job Control

Proxy

Client

Resource

Figure 1.4: The abstract Globus+ model

1.7.1 First Generation Grids
The first generation Grid middlewares, hereafter denoted as Globus+, use a thin Grid
infrastructure and a thick Client/Resource infrastructure. Figure 1.4 shows an abstract
overview of the Globus+ design. The jobs executed in Globus+ environments are
generic applications which means that the applications don’t need to be rewritten when
used in a Grid context. To submit a job, a user needs to generate a proxy certificate, as
the resource accepting the job needs a method to identify the user towards the storage
element when input/output files are received/sent to the storage element as well as the
result of the job. Proxy certificates have several shortcomings, firstly a proxy certificate
can’t be revoked once issued, which means that a user with evil purposes can’t be ex-
cluded from the Grid before an outstanding active proxy certificate expires. The default
expiration time is 12 hours, but the user can specify as long as a year for the proxy cer-
tificate to expire. Secondly if the proxy certificate expires while a job, submitted with
that proxy certificate, is executing, the delivery of the result to the storage element fails,
and thereby the computation time is wasted.

1.7.2 Second Generation Grids
Minimum intrusion Grid (MiG) This Grid is is one example of a second genera-
tion. which is a stand-alone platform and doesn’t inherit code from any earlier Grid
middlewares. The philosophy behind the MiG system is to provide a Grid infrastruc-
ture that imposes as few requirements on both users and resources as possible to ensure
a minimum amount of software to be installed and administrated by users and resource
owners. A native resource only needs to create a local MiG user on the system and sup-
port inbound SSH[Ven07] and outbound HTTPS[mis02]. Alternatively a Sandboxed

9

Grid ResourceClient

Scheduler

Storage

Job Description
Data

Job Request
Data

Figure 1.5: The abstract MiG model

resource[aBV06], which is a pull based model, only needs outbound HTTPS. The user
is required to have an X.509[HFPS99] certificate which is signed by a source that is
trusted by MiG, and a web browser that supports HTTP, HTTPS and X.509 certificates.

Because MiG keeps the Grid system disjoint from both users and resources, as
shown in Figure 1.5, the Grid system appears as a centralized black box[Vin05] to both
users and resources. This allows all middleware upgrades and troubleshooting to be ex-
ecuted locally within the Grid without any intervention from neither users nor resource
administrators. The jobs executed on MiG are, like with the Globus+ Grids, generic
applications, which don’t need to be rewritten when executed through the Grid system.
The MiG system doesn’t use proxy certificates, as the resources identify themselves to
the Grid system by their public SSH key and users identify themself by their X.509
certificate. An executing job identifies itself to the Grid system by a unique session-id
which is created by the Grid system when the job is started and deleted when the job
is finished. By using that session-id, the job is allowed to send/receive files to/from the
Grid system.

XtreemOS is another example of a second generation Grid system. While it deals
with with the same issues regarding first generation Grids as MiG it takes the opposite
approach. While MiG imposes minimum intrusion on users and resources, XtreemOS
imposes maximum intrusion of both users and resources as the operating system of
both user and resource machines are replaces by a Grid operating system namely the
XtreemOS. The system uses single sign on by using the standard login and password
procedure known from traditional Unix systems, the user receives the credentials needed
to transparently use the storage and resources in which he is associated without the need
to re-authenticate.

10

1.7.3 Grid Scheduling
One of the most important tasks the Grid middleware has is distributing jobs among the
connected resources in the most efficient way. The first generation of Grids leaves the
task of finding a proper resource for a given job to the client submitting the job. The
Grid middleware provides the client with a list of connected resources which the client
can ask to take the job. All resources in the list are then asked for the waiting time for
execution and the shortest one is chosen. This approach has a huge connection overhead
and does not scale with respect to the number of nodes in a Grid system. Furthermore
it has a built-in race condition if two clients try to submit a job at the same time, the
two jobs might end up at the same resource. This means one of the jobs will be stuck
waiting in the local queue at the resource to which it was submitted, even though there
are other free Grid resources which could have taken the job. Different meta-schedules
such as Gridway[HHML05] and Gridbus[dANV+05] have been made as add-ons for
the first generation Grid middlewares, but they are not an integrated part of the Grid
system.

The second generation Grids are designed with scheduling as a central part of the
system. This means that the Grid system has complete track of the jobs executing,
regarding which resources are executing them, as well as how long the jobs have been
executing. Because the middleware is in full control of job submission jobs can be
resubmitted to another resource if the resource executing them fail and they can be
killed by the middleware if the upper time limit of the job is exceeded. The global Grid
scheduling mechanism is occasionally denoted as a strong scheduler, because some of
the first generation Grid systems denote their job placement as scheduling, due to the
scheduling taking place at the local resource e.g. the queue system on a cluster.

1.7.4 Grid Scalability
The Grid goal is to provide a service infrastructure on top of the Internet and therefore
scalability is a vital issue, because the amount of Internet devices worldwide is huge
and growing widely, currently there is more than 1.8 billion users connected to the
Internet§. As the first generation middlewares have no Grid scheduler the client contacts
each connected resource every time it has a job to submit. While this works well for
Grids with a small amount of users and resources, it doesn’t scale to a full size global
Grid with billions of users and resources. To give an example the circumference of
the earth is about 40000 km which means that at every surface point there is at most
half that distance to the point located furthest away namely 20000 km which means
that the average distance between any user and resource in a global Grid is 10000 km,
with a speed of light of 2.998 ∗ 108 m/s this gives an average round-trip latency of:
1.000∗107 m
2.998∗108 m/s

∗ 2 = 0.0667 seconds with just a thousand resources this is an average of

§http://www.Internetworldstats.com/stats.htm

11

60 seconds in latency discovering the resource best suited for the job giving the best
possible network latency namely the speed of light. In this calculation we have not
considered the fact that handling the request also takes time and the fact that the Grid
system itself will become one large distributed denial of service attack on the connected
resources, when enough users try to submit jobs concurrently.

The second generation of Grids ensures scalability with respect to users and re-
sources by making the middleware resource aware such that the jobs can be submitted
to the best fitted resources by the built-in scheduler without contacting each possible
resource before submitting the job. The MiG system takes the approach of letting the
resources contact the Grid system whenever it’s ready to take a job. Upon a job re-
quest, the Grid system matches the requesting resource by the jobs currently in the
waiting queue and provides the best fitted job¶. This means that no overhead connec-
tions are made‖ as well as it’s possible for the Grid system to perform load balancing
and price auctioning of jobs. Last but not least, it means that the time for submitting
a job to the Grid system is constant, as it’s accepted and queued by the Grid mid-
dleware even if all current resources are occupied. This method makes it possible
to keep the resource and client anonymous to each other which might be essential in
some environments[MSVR07]. As all communication between user and resources goes
through the Grid middleware, the Grid system in itself has to be a distributed system
for this to scale.

1.7.5 Job Fault Tolerance
For a Grid system to be useful some level of fault tolerance has to be enforced. This
applies both to the middleware functionality and the resources. The Grid middleware
should be fault tolerant to a high extent, whereas the resources are more difficult to
control from a middleware point of view as it’s not always obvious if a job failure is
due to an error within the job or within the resource executing it. A Grid job should not
fail just because the resource executing it fails. However detecting automatically why a
job fails is not trivial, so one has to decide a fault scheme for jobs. The first generation
middlewares have no mechanism for handling failing resources due to the missing Grid
scheduler, the second generation middlewares have the possibility to resubmit a job if
the resource fails. There are two ways to determine if a job or resource fails without
contacting the resource from the middleware, the first one is if the resource connects
to the Grid middleware with the message that it’s ready for a new job, and the Grid
middleware knows the resource already has a job, the second is if there is a upper
time-limit on a job and it’s exceeded without the resource delivering an answer. Which

¶The best fitted jobs depends on the configuration of the scheduler
‖Provided there is always at least one job in the queue which fits the resource contacting the Grid

middleware

12

decision to make when a job fails is up to the middleware to decide. The MiG approach
is to resubmit the job X ∗∗ times before failing the job, and only then notify the user that
the job has failed.

1.7.6 Runtime Environments
An important part of a Grid system is dynamic runtime environments which allow the
resource owners to specify which software packages are available at a given resource.
The Grid user specifies which runtime environments are required by the job submitted
to the Grid, and it’s then up to the Grid middleware to match the resources with the job
and find a resource which is capable of executing the submitted job. As an extension
to runtime environments, the MiG group is currently expanding the middleware with
zero install††. This allows a Grid job to download and install packages needed by the
Grid jobs in pure user-space, and thereby the amount of resources capable of executing
any given job is increased significantly as the Grid job is no longer dependent of which
software packages the resources is offering. The effect is that the resources become
gradually more software homogeneous as these packages are made available for the
different resource hardware architectures.

1.7.7 Virtual Organizations
To provide a service oriented infrastructure on top of the Internet, where one is able
to share all kind of resources, it’s essential for any Grid system to be able to organize
users and resources into Virtual Organizations[FKT01] (VOs). Virtual Organizations
can assure resource owners that the resources they provide for the Grid are only used
for the projects which lie within the VOs they accept for the resource. From the user
perspective it’s assured that the jobs they submit are processed by a resource within the
specified VOs. This can be a critical issue if the job contains sensible information, in
which the job submitter is not willing or allowed to expose to non-trusted resources or
users.

Different Grid systems implement VOs in different ways, the first generation Grid
middlewares use Virtual Organization Membership Service VOMS[ACC+03]. This is
implemented as a service separate from the Grid middleware itself, and is administrated
by the owners of the virtual organizations. It works by keeping a database of user/re-
source mappings. Each organization has to set up it’s own VO server and administrate
the user accounts and user/resource mappings on that particular server. When a user
wants to use resources within a certain VO the VOMS server is contacted and returns
∗∗The value of X is set by the Grid administrators, but it’s possible to specify it individually for each

job
††http://zero-install.sourceforge.net

13

Figure 1. The abstract MiG model

Fig. 1 depicts the way MiG separates the users and re-
sources with a Grid layer, which users and resources se-
curely access through one of a number of MiG servers. The
MiG model resembles a classic client server model where
clients are represented by either users or resources. The
servers are represented by the Grid itself, which in the case
of MiG is a set of actual computers, not simply a proto-
col for communicating between computers. Upon contact-
ing Grid any client can request to either upload or down-
load a file. Users in turn can additionally submit a file to the
job-queue while resources can request a job.

Most of the actual functionality is located at the MiG
servers, where it can be fully maintained and controlled by
the MiG developers. Thus, in addition to minimizing the
user and resource requirements, the Grid layer simplifies
consistent deployment of new versions of the software.

The security infrastructure relies on all entities: users,
MiG-servers and resources, being identified by a signed cer-
tificate and a private key. The security model is based on
sessions and as such requires no insecure transfers or stor-
age of certificates or proxy-certificates as it is seen with
other Grid middlewares. Users communicate securely with
the server by means of the HTTPS protocol using certifi-
cates for two-sided authentication and authorization. Server
communication with the resources is slightly more compli-
cated as it combines SSH and HTTPS communication to
provide secure communication and the ability to remotely
clean up after job executions.

Job management and monitoring is very similar to file
access so it is also done either through the web-interface or
with the MiG-executables. Users simply submit jobs to the
MiG-server, which in turn handles everything from schedul-
ing and job hand out to input and output file management.
An important aspect is that a job is not scheduled to a re-
source before the resource is ready to execute it. Resources
request jobs from the MiG-server when they become ready.
The MiG-server then seeks to schedule a suitable job for ex-
ecution at the resource. If one is found, the job with input
files is immediately handed out to the resource, otherwise
the resource is told to wait and request a job again later.

Upon completion of a job, the resource hands the result
back to the MiG-server which then makes the result avail-
able to the user through her home directory. In order to keep
the middleware source as portable and easy-to-read as pos-
sible, as much of the project as possible must be imple-
mented in Python since it provides a very clear syntax, a
high level of abstraction and it allows rapid development.
Another language may only substitute Python if it is strictly
required.

2. VOMS and CAS

The authorization system for virtual organizations in
Globus, gLite and NorduGrid is called Virtual Organization
Membership Service (VOMS). In VOMS the VO’s have
a hierarchical group based structure with groups and sub-
groups and users can be a member of one or more groups.

2.1. VOMS

VOMS work by allowing the user to request a proxy-
certificate that verifies VO membership from any VOMS
server. If the VOMS server has information to the end that
the requesting users is in fact member of the desired VO
it returns the proxy-certificate. Using that proxy-certificate
the user may then continue to submit the desired job to a re-
source that accepts the VO proxy-certificate. The process is
shown in figure 2.

Figure 2. VO membership certificate in VOMS

When presented with a proxy-certificate the resource
verifies that the user is member of an accepted VO and con-
tinues the authorization process. The resource may maintain
a list locally with banned users and deny a user access even
though VO membership has been confirmed by the VOMS
server through the proxy-certificate.

2.2. CAS

Community Authorization Service, CAS, which is part
of the Globus toolkit[8][7], seeks to provide a more fine

Figure 1.6: The abstract VOMS model

a proxy certificate, if the user is verified as a member of the given VO. This proxy
certificate is then used when submitting jobs to the Grid. When a user contacts a Grid
resource using a VO proxy certificate, the resource contacts the VOMS servers, which it
has been configured to be a part of, and checks whether it’s allowed to take the proposed
job. If the resource is allowed to take the job it takes it, otherwise it rejects it, and the
client has to try another resource. An overview of VOMS is shown in figure 1.6. This
method has several shortcomings, firstly the VOMS proxy certificates can’t be revoked,
which means that the user is allowed to submit jobs to the VO as long as the proxy
certificate is active. This is an option the user specifies when generating the certificate.
Secondly the VO proxy certificates can’t be combined, which means that the user has to
keep track of several certificates and manually try to submit his jobs to several VOs if
he wishes to execute his job in either VO X or VO Y, which is very inflexible. Thirdly
the manual administration of user accounts, is unnecessary as the Grid system already
has this information about it’s users.

The second generation Grids implements Virtual Organizations as central part of
the Grid systems. This is possible due to the global Grid scheduler that has information
of which VOs each user and resource are affiliated with. Thereby there is no need
for additional authentication and verification when submitting jobs, as the scheduler
knows prior to submitting the jobs which resources should be considered for the jobs
submitted by any given user. The MiG system defines virtual organizations as Virtual
Grids VGrids[KB06]. An overview is shown in figure 1.7.

VGrids eliminate the redundancy and possible extra point of failure of verifying
VOs through a third party system (VOMS server), as well as the administrative over-
head of managing an extra user database at the VOMS server. Furthermore VGrid
resources have significantly lower administration overhead, as VOMS resources need
to be configured to communicate with the right VOMS servers to verify which VOs
they are part of. This is eliminated in MiG as the user/resource mapping is a part of the
MiG scheduler’s knowledge of the system, and thereby a resource is never granted a job
which is not addressed for one of its specified VGrids. VGrids are administrated by the
Grid users and can be created dynamically. Resource owners can specify through the

14

grained access control than simply membership of a VO.
CAS works by introducing a new abstraction level in the
system called roles. Roles are similar to sub-groups in a VO
except that roles are not only associated with a set of re-
sources but also with the operations that may be performed
on the resources, i.e. a specific role may only provide read
privileges to a data-set but not write privileges. The process
that implements this mechanism is identical to the overall
VOMS process as shown in figure 2.

2.3. GridShib

GridShib[5] is a project which seeks to replace ordinary
VOMS and CAS systems with a Shibboleth[1] based au-
thorization model. One of the driving motivations for Grid-
Shib is the same as one of the primary motivations for MiG,
namely the need for user privacy.

3. Virtual Organizations in MiG: VGrids

The MiG design has made it easy to obtain a lot of
the Grid features that was previously very hard to imple-
ment. The development of MiG in general has greatly ben-
efited from the knowledge and mistakes learned by the first
middleware that appeared. The VOMS approach of proxy-
certificates is cumbersome and represents some concerns on
manageability and security, as an example it is not possible
to revoke a proxy-certificate. How to address these issues
was discussed for some time in the MiG team.

We seek a model that supports the anonymity required
by MiG, and which does not introduce proxy-certificates,
a concept which is entirely eliminated from the MiG de-
sign and which should not be re-introduced in order to
support VOs. At the same time we also need to keep
the anonymity between user and resource and provide the
strong-scheduling capabilities found in MiG. Another im-
portant observation from real-world Grids is that many large
resources are hard to connect to Grid since they run on user
group quota allocations and often use a fair-share schedul-
ing mechanism. In order to support access to a resource
from Grid by two independent user groups, complex sub-
mission handling or even multiple Grid entry-points must
often be introduced, both of which increase the complex-
ity of managing resources towards Grid and thus decreases
motivation to join a Grid system. We believe it is impera-
tive to support the natural regulation mechanisms in local
sites, and we also believe that local administration of Grid
related options should be kept at a minimum, according to
the project name, minimum intrusion grid.

The proposed solution is an entirely different approach
to virtual organizations. In its nature Grid seeks to allow
a set of users to share a set of resources, while VOs seek
to control which users of a Grid share which resources, in

essence a VO becomes a subset of a Grid. With this in mind
we choose Grids as our basic mechanism and treats a VO as
Grid-whithin-a-Grid, or Virtual Grids, VGrids (figure 3).

A VGrid appears to a user almost as an ordinary Grid, it
has users, compute-resources and data-resources. As MiG
seeks to hide much of the Grid complexity to the user, all
data-resources a user has access to are presented in the form
of a unified file-system, and VGrid data-resources appear as
subdirectories in the users home-directory.

Resources never see the identity of the users due to the
anonymity feature of MiG. It therefore makes no sense for
resources to maintain a local list of banned users as in tradi-
tional middleware. If a resource joins a VGrid it grants ac-
cess to all users within it.

In fact, today there are no resources in the ordinary MiG
Grid any longer, all resources are located in a VGrid.

Figure 3. VGrids are integrated by design.

3.1. Authorization Structure in VGrids

The set of allowed users in a VGrid consist of two types,
owners and members. All valid MiG users are allowed to
create new VGrids and can then include any other user they
know of as either co-owners of the VGrid or ordinary mem-
bers of the VGrid. The user who creates it automatically be-
comes an owner of the new VGrid. Owners can add and re-
move other owners and members, but a VGrid must always
have at least a single owner. Besides having the authoriza-
tion to manage other owners and members an owner also
has the privileges as regular members, that is to access the
resources in the VGrid and the files belonging to the VGrid.

The authorization structure is hierarchical and as such
similar to the structure of VO’s. If you have owner or mem-
ber rights of a VGrid you automatically have the same rights
on all sub VGrids. This means that an owner of VGrid V0
is also an owner of V0/V1 and V0/V1/V2 but not the other
way round, i.e. some VGrids may have owners that are not
even members of the parent VGrid if this is desired.

Figure 1.7: The abstract MiG VGrids model

MiG system which VGrids their resource should be a part of. This has to be done with
permission from the VGrid owner for mutual agreement about participation. VGrids
can have sub-VGrids and thereby a whole hierarchy of VGrids can be designed. A
member of a VGrid has access to all sub-VGrids, but not the other way around.

1.7.8 Security: Authentication and Anonymity
The first generation Grid middlewares uses proxy certificates to verify themselves to-
wards the Grid resources. The second generation Grid middlewares uses various ap-
proaches to avoid the usage of proxy certificates.

In the MiG system anonymity is a vital design issue and thereby the users and re-
sources should never communicate directly. Users authenticate themselves to the MiG
system by a x509 certificate, signed by a CA accepted by the MiG administration group.
All communication goes through the MiG system, and thereby users and resources are
never in direct contact. Instead of proxy certificates the MiG system uses session-id’s
for authentication between the resources and the Grid system. Each session-id is unique
and active as long as the job assigned to the resource is active, thereby the Grid system
can authenticate the resource uniquely by the job session-id.

1.7.9 Grid Storage
To make Grid systems useful one has to have a place to put files, this is referred
to as a Grid storage element. The first generation Grid systems use the GridFTP
protocol[LT01] which is a Grid extension to the traditional FTP protocol[Gie78]. This
means that users have to explicitly consider where to store their files, and make sure to
specify the right GridFTP server when describing their Grid jobs.

The second generation Grid system takes a different approach by letting the Grid
users access files according to the POSIX standard. This means that the Grid files are
accessed by the Grid users and their jobs transparently without explicitly stating where
the file is located.

15

In the MiG system each user has an associated home directory like the standard
*NIX operating systems. Files for the different VGrids in which the user is enrolled
appears as subdirectories, with the name of the VGrid, within the home directory of the
MiG user. The MiG home directory is mounted on the local filesystem using FUSE[iU]
and the different storage elements the system uses internally is transparent to the user.

When a user submits a job to the Grid he specifies which inputfiles are needed for
the job, all relative to the root of the users home directory. This directory structure is
then mapped to the resource and the input files are accessed relative to that structure
by the job executables. This combined with the FUSE file system approach enables
users to make a test-run of their Grid jobs locally before submitting them to the Grid,
thus eliminating the problem with specifying inputfiles correctly which every Grid user
struggles with every time a new project is deployed to Grid.

One major shortcoming of the Grid computing model regarding storage is when the
input files are huge (in order of GB or TB), but each job only uses a small part of that
inputfile. In many of these cases, the time transferring the data from the storage nodes
to the computation nodes largely exceeds the computation time of the job. To solve
this problem the MiG system has the Transparent Remote File Access[AV05] which
is a user level remote file access mechanism capable of remotely accessing only the
parts of the files needed by the executing Grid application. This is done at runtime and
transparent to the application writer.

1.7.10 Connecting Resources to the Grid
A limiting factor for Grid computing to reach the public is the administrative task of
connecting a resource. Most Grid systems require a huge amount of software to be
installed on a potential Grid resource and several ports have to be opened in the firewall
protecting these resources.

The requirements for connecting a resource to the MiG system on the opposite is
just inbound SSH and outbound HTTPS, a Unix user account and cURL[cUR] for the
native resources. Still this has shown to be an obstacle for access to the large amount
of resources located outside the supercomputer facilities. To gain access to these re-
sources, which mostly use the windows operating system, a sandboxed model execut-
ing a Linux execution environment with the appropriate Grid client software inside a
Virtual Machine[aBV06]. This model uses a full pull model, requiring only outbound
HTTPS.

16

1.7.11 Choosing a Grid Middleware
As non-computer devices in this thesis are defined as TCP/IP capable devices, a Grid
middleware which supports, the broadest range of resource types has to be chosen. The
following requirements must be met to cover the broadest range of devices.

• Minimal Software footprint

Minimal disk consumption by Grid middleware on the resources

• Minimal Memory footprint

Minimal middleware memory consumption on the resources

• NAT compliance

Resources are possibly behind a router or firewall

• Fault tolerance

Resources may join and leave frequently

The office Grids are excluded per default as we want to operate globally. This leaves
the choice between the first generation middlewares and the second generation mid-
dlewares. The first generation middlewares has a much larger software and memory
footprint on the resources than the first generation middlewares, they are not NAT com-
pliant and they do not have any degree of fault tolerance due to the lack of a global Grid
scheduler. Based on these observations the choice was between the Minimum intrusion
Grid and the XtreemOS which is currently the only two operating second generation
Grid middlewares. As the XtreemOS middleware imposes maximum intrusion on both
resources and clients due to the replacement of the entire operating system, the Mini-
mum intrusion Grid was chosen as it operates purely in user-space both on the resource
and the user side.

1.8 Presented Work
In the last section we introduced different types of Grid middlewares and introduced
the requirements put on the middlewares in order to be able to handle non-computer re-
sources. From the Grid middleware perspective the main issues regarding non-computer
resources are the heterogeneity both hardware and operating system wise, the minimal
hardware setup and the unreliable nature of such devices. The unreliability is due to the
fact that computer resources which are not owned by a supercomputing centers tend to
join and leave the Grid infrastructure frequently compared to HPC installations, as sci-
entific computing is not the main purpose for non-computer devices. In this section we
present the different approaches taken in this dissertation to use non-computer devices
for scientific Grid Computing.

17

1.8.1 The One-Click Grid Resource Model
The initial research done during this dissertation was to make a framework that targets
as many of the immediate problems connecting lightweight Grid resources as possible.
The considerations taken into account are:

• Minimal Grid software foot-print

• Hardware independence

• OS independence

• NAT firewall independence

• Checkpointing support

• Remote File Access support

• Sandboxing

The model is described in detail in chapter 2 and presents an minimal resource approach
requiring merely a Java virtual machine and support for outgoing HTTPS. This frame-
work targets all Java capable devices and works without installing any Grid specific
software. By using the Java virtual machine, Sandboxing, Hardware and OS indepen-
dence is provided to the same extent as the virtual machine. The framework supports
checkpointing and remote file access through the Grid infrastructure. The limitations
of the framework is that the applications supported by the framework must be written
in Java and use special methods for file access and checkpointing. While Java may not
be the obvious choice for HPC this framework represents a valuable proof of concept
regarding the minimal requirements for connecting resources to a Grid framework and
has proved valuable when introducing Grid Computing to new users. The framework is
fully functional and is deployed as part of the Minimum intrusion Grid.

1.8.2 The PS3TM Grid Resource Model
With the release of the SONY PS3

TM
it was announced that it would have native support

for the FOLDING@home project. Due to its low price and powerful Cell-BE processor
and NVIDIA graphics card it is an attractive non-computer devices for general scientific
computing and not just FOLDING@home.

18

To Grid-enable the PS3TM platform the following requirements need to be met:

• Minimal Grid software footprint

• Sandboxing

• NAT firewall compliance

• Remote File Access support

Grid enabling the PS3TM is presented in chapter3. This model presents the LIVECD
which when loaded by the PS3TM boots into a sandboxed Linux environment where
no access can be obtained to the local disk. The graphics card can not be utilized
for computation by this environment, because it’s protected by the PS3TM hypervisor,
however the graphics card memory is utilized for temporary storage and remote file
access can be obtained through the remote file access library. The framework is fully
functional and is deployed as a part of the Minimum intrusion Grid.

1.8.3 Application Porting and Tuning on The Cell-BE Processor
Porting existing sequential scientific applications to the architectures of the new non-
computing devices such as PS3TM with its Cell-BE processor is quite a challenge if
the full potential of the resource is to be harnessed. Chapter 4 represents the porting
of an X86 application to the Cell-BE architecture and encounters the challenges and
considerations to make when programming towards the new architectures.

1.8.4 The Remote Memory Library
While the initial research done represents two different models for connecting non-
computer devices to Grid infrastructures we have still not found a generic solution to
connecting all non-computer devices to Grid infrastructures. To address this problem
we decided to take two steps back and look at what we learned from the initial work.
One of the greatest challenges within Grid systems and specially the non-computer
devices is the heterogeneity of the resources. So how do we solve this problem ?

Sandboxing is a major topic within Grid Computing outside the supercomputing
centers as it provides an isolated execution environment which can not compromise the
hosting device. Furthermore sandboxes can provide virtualization of the architectures
of the executing devices, such that the Grid application programmer doesn’t need to
worry about the architecture of the devices executing his application. Currently we
have transparent virtualization of CPU architectures through the scientific byte code
machine[AB08] virtualization of storage through the remote file access library[AV05]
but we have no way of virtualizing memory transparently through the Grid infrastruc-
ture. To solve this issue we set out to make a User-Level remote swap library for Grid

19

resources. This is represented in the chapter “Remote Memory” which is the main re-
search subject in this dissertation. The goal is to provide memory through the Grid
infrastructure to resources which are lacking physical memory to fulfill the memory
requirements of a given job. This closes the virtualization circle for HPC non-computer
resources as well as for Public resources in general. The initial framework has been
designed, implemented, tested and proved fully functional in a real Grid scenario, as
presented in chapter5.

In addition to the initial remote memory framework prediction-based prefetching
has been added in collaboration with the researchers at Barcelona Supercomputing Cen-
ter BSC, who have made an event based predictor for predicting file usage in a Grid
framework. It has been adapted to work with the remote memory framework to predict
which memory blocks are likely to be used in the near feature, based on the memory
reference sequence seen in the past.

1.9 Contributions
The research presented in this dissertation contributes with the design, implementa-
tion and experimentation validation of the framework: “The One-Click Grid Resource
Model” for Grid enabling all Java capable TCP/IP devices, followed by the design,
implementation and experimental validation of the framework: “The PS3TM Grid Re-
source Model” for Grid enabling the PlaystationR© 3 game console. These two initial
frameworks are followed by defining requirements for porting existing sequential ap-
plications to the new vector-based architectures such as the Cell-BE and experimental
comparison between the performance of an application ported from the X86 architec-
ture to the Cell-BE architecture. The final contribution is the design, implementation
and experimental validation of a Grid memory framework that makes Grid resources
memory homogeneous by providing memory transparently to limited resources through
the Grid infrastructure using prediction-based memory prefetching.

1.10 Publications
The work presented in this dissertation has resulted in the following published papers:

• [MB10] Martin Rehr and Brian Vinter, The User-level Remote Swap Library, Ac-
cepted for The 12th IEEE International Conference on High Performance Com-
puting and Communications 2010, Melbourne, Australia, To Appear

• [RV09] Martin Rehr and Brian Vinter, Application Porting and Tuning on the
Cell-BE Processor, 9th International Workshop on State-of-the-Art in Scientific
and Parallel Computing 2008, Trondheim, Norway

20

• [RB08] Martin Rehr and Brian Vinter, The PS3 Grid-Resource Model, The 2008
International Conference on Grid Computing and Applications, Las Vegas, USA

• [aBV07] Martin Rehr and Brian Vinter, The One-Click Grid-Resource Model,
High Performance Computing Conference 2007, Houston, USA

Additional the following book chapters have been published:

• [ARV09] Rasmus Andersen, Martin Rehr, and Brian Vinter, Cycle-Scavenging in
Grid Computing, Grid Technology and Applications: Recent Developments

• [VAR+09] Brian Vinter, Rasmus Andersen, Martin Rehr, et al., Towards a Ro-
bust and Reliable Grid Middleware, Grid Technology and Applications: Recent
Developments

21

Chapter 2

The One-Click Grid Resource Model

The “One-Click Grid Resource Model” started out as a proof of concept. Opposed
to the several hundred of megabytes required to get a Globus+ resource running, what
would be the minimum requirements for a MiG resource. Would it be possible to create
and run a Grid resource just by visiting a URL in a browser? For this to work several
requirements has to be met by the Grid middleware. Firstly the Grid middleware must
support a full pull model∗, since most machines targeted by this model will be located
behind a NATed firewall. Secondly the Grid middleware must support an automatic cre-
ation and re-authentication of the connected resources, to avoid human administration.
The full length paper published on the the One-Click Grid resource model can be found
in appendix A.

2.1 The MiG Scheduler
The MiG scheduler plays an important role for the research described in this chapter,
this section will give an overview of how the MiG scheduler operates. When a resource
is ready to execute a job it sends a job request to the Grid system. The Grid system
has a queue of jobs submitted by the Grid users, and upon a job request the scheduler
traverses the queue to find the job which matches the resource who send the job request.
The requesting resource and the jobs in queue are matched by the following parameters

• Architecture

• CPU count

• Node count

• Maximum CPU time
∗All communication is initiated by the resource

22

• Maximum Memory usage

• Maximum disk usage

• Runtime environments

• VGrid settings

All jobs are filtered against the above criteria, whereafter the job to be executed is
scheduled by one of the following schemes

• First fit

Find the first job that can be run on the resource

• Best fit

Find the job which has the highest score regarding the match between job and
resource

• Fair fit

This is the “Best fit” Scheduler modified to include job age

• Max throughput

Select matching job with lowest CPU time

• Random

Find the jobs that fit the resource and choose one of them at random

• FIFO

Like “First fit”, but takes job arrival time into account

When the right job has been found for the requesting resource, a job description file is
generated by the Grid system and sent to the resource, which then retrieves the appro-
priate input files, the executables, and starts executing the job. The scheduler marks the
job as executing and gives it a start time stamp. Thereby the Grid middleware has the
possibility to check if executing jobs exceeds their maximum execution time. If that
happens the job is re-queued to wait for another resource to pick it up. The job can
be re-queued X times before the job is marked as failed†. This ensures some degree
of fault tolerance, which offers the possibility for resources to join and leave the Grid
without discarding the jobs running on the leaving resources. If 100% fault tolerance

†The value of X is set by the Grid administrators, but it’s possible to specified it individually for each
job

23

has to be guaranteed, one has to sacrifice the possibility of failing jobs which contin-
uously exceeds their upper time limit. This is due to the fact that it’s not possible to
detect whether the exceedance of the upper time limit is due to a faulty job, a job that
executes too long compared to the given upper time limit, or a job which constantly is
assigned a resource which leaves the Grid system before it’s finished.

2.2 The One-Click VMware Player Model
The first version of the The One-Click Grid resource model uses the Java Applet[javb]
and VMware Player[vmw] as a virtual machine with a Linux Sandboxed Grid envi-
ronment as execution environment. This works by a browser initiating a connection
to the MiG system through HTTPS. If the resource hasn’t been connected before, the
MiG server creates a new resource configuration file and generates a 32 char long ran-
dom key, which is given back to the resource used for further identification. When the
resource has been created, or recognized, the MiG system responses with the HTML
description of the MiG Java Applet. When the Applet is loaded into the browser, the
files needed for the MiG-VMplayer image are downloaded and the VMplayer is started
with the downloaded image. When the browser leaves the MiG resource site, etc. when
its closed, refreshed, or the forward/back button is pushed, the execution of the VM-
player is stopped and the files downloaded are removed, leaving the local resource in
the same state as before the MiG server was accessed. Alternatively one could leave
the VMplayer open, when leaving the MiG resource site, and make it up to the user
to stop the VMplayer manually. The advantage of leaving the VMplayer open is that
the currently running image, and Grid job, will not be killed, if the user accidentally
refreshes, closes, or hits the forward/back button of the browser. However, closing the
VMplayer and cleaning up all the files gives the most transparent behavior, as the user
will expect the execution to stop whenever he leaves the “One-Click” site. Whether the
MiG image files should be left on the resource, to avoid downloading the files every
time the resource is started can be considered, but a method for time stamping the im-
ages, which makes it possible to detect whether the local image is up-to-date with the
server image should be introduced.

This model has the advantage of providing a full Sandboxed Linux execution en-
vironment for the Grid system through a virtual machine, which means that existing
Linux Grid jobs can be processed by this framework without any modification. This
model has several drawbacks, firstly it depends on third party software, The VMware
Player, to be installed as it’s not a part of a standard desktop. Secondly it breaks the
Java Applet Security model[java] as the Linux image has to be downloaded and saved
locally to the disk of the host system and the Java Applet has to start a native process,
the VMware Player. This can be circumvented by packing the Applet into a jar file
and signing it by the Java jar-signer tool. Still, when the jar file is signed, the default

24

browser setting is to alert the user that the default security setting is violated, and ask
if the user permits this. This has two downsides, firstly it’s never good promotion for a
web-based system, that the first thing the user is met with is a security alert telling him
that the system is about to compromise the security of his system. Secondly if the user is
convinced to say yes, the Applet has write permissions to the hard-drive and execution
permissions of arbitrary code on the system. This can result in bad behavior either by
accident, bugs in the framework, or if the Applet is compromised by an evil third part.
The default Java Applet security model prevents the Applet to download code from any
other machine than the one where the Applet was loaded, but as this is URL based, it
can be compromised by an evil attender by altering the DNS information and thereby
download arbitrary code for execution.

2.3 The Java One-Click Model
To address the security issues introduced by the VMware Player model, and the fact that
the installation of third party software is not minimum intrusion, a different approach to
the One-Click model was taken.

The primary goal was to create a model which does not violate the Applet Security
Model, ASM, enabling the possibility of using the Applet as a trusted sandboxed execu-
tion environment for unknown Java bytecode (The Grid jobs). The Java virtual machine
allows us to load and execute Java bytecode located on a remote server directly without
writing it to local disk. Thereby it’s possible to load and execute remote Java bytecode
within a Java Applet without violating the ASM, as long as the Applet and the bytecode
are located at the same server.

The Java Applet technology makes it is possible to turn a web browser into a MiG
sandbox without installing any additional software. This is done automatically when
the user accesses “MiG One-Click”‡, which loads an Applet into the web browser. This
Applet works as a Grid resource script and is responsible for requesting pending jobs,
retrieving and executing granted jobs, and delivering the results of the executed jobs to
the MiG server.

To make the Applet work as a resource script, several issues must be addressed. First
of all ASM disallows local disk access. Because of this both executables and input/out-
put files must be accessed directly at the Grid storage. Secondly, only executables that
are located at the same server as the initial Applet are permitted to be loaded dynami-
cally. Thirdly, text output of the Applet is written to the web browsers Java console and
is not accessible by the Grid middleware.

When the Applet is granted a job by the MiG server, it retrieves a specification of
the job which specifies executables and input/output files. The Applet then loads the

‡The URL accessed to activate the web browser as a sandboxed MiG Java resource is called “MiG
One-Click”, as it requires one click to activate it.

25

Browser

One-Click Applet
Job-Control File-Access Checkpointing

Grid Job

Figure 2.1: The structure of a One-Click job

executable from the Grid, this is made possible by the MiG server which sets up a URL
from the same site as the resource Applet was originally loaded which points to the
location of the executables. This allows unknown executables to be loaded and comply
with the ASM restrictions on loading executables. Figure 2.1 shows the structure of
a One-Click job. Executables that are targeted for the MiG One-Click model must
comply with a special MiG One-Click framework, which defines special methods for
writing stdout and stderr of the application to the MiG system§. Normally the stdout
and stderr of the executing job is piped to a file in the MiG system, but a Java Applet, by
default, writes the stdout and stderr to the web browsers Java console. It has not been
possible to intercept this native output path. Input and output files that are specified in
the job description must be accessed directly at the Grid storage unit since the ASM
rules prohibits local file access. To address this issue the MiG One-Click framework
provides file access methods that transparently provide remote access to the needed
files. Note that the MiG system requires input files and executables to be uploaded to
the MiG server before job submission which ensures that the files are available at the
Grid storage unit.

In addition to the browser Applet, a Java console version of the MiG resource has
been developed to enable the possibility of retrieving and executing MiG One-Click
jobs as a background process. This requires only a Java virtual machine. To obtain the
desired security model, a customized Java security policy is used, which provides the
same restrictions as the ASM.

§The result of a MiG job is the stdout/stderr and the return code of the application that is executed.

26

2.4 Remote File Access
The One-Click executing framework that was introduced above also provides transpar-
ent remote file access to the jobs that are executed. The MiG storage server supports
partial reads and writes, through HTTPS, of any file that is associated with a job. When
the resource Applet accesses files that are associated with a job, a local buffer is used
to store the parts of the file that are being accessed. If a file position which points out-
side the local buffer is accessed, the MiG server is contacted through HTTPS, and the
buffer is written to the MiG server if the file is opened in write mode. The next block of
data is then fetched from the server and stored into the buffer and finally the operation
returns to the user application. The size of the buffer is dynamically adjusted to utilize
the previously observed bandwidth optimally.

2.4.1 Block Size Estimation
To achieve the optimal bandwidth for remote file access it is necessary to find the opti-
mal block size for transfers to and from the server. In this case the optimal block size
is a trade off between latency and bandwidth. We want to transfer as large a block as
possible without excessive latency increment since the chance of transferring data that
will not be used increases with the block size.

We define the optimal block size bsopt as the largest block where a doubling of the
block size does not double the time to transfer it. This can be expressed the following
way:

t(x) ∗ 2 > t(x ∗ 2) ∀x < bsopt (2.4.1)

t(x) ∗ 2 < t(x ∗ 2) ∀x > bsopt (2.4.2)

t(x) = time to trans f er block o f size x

We do not want block sizes below bsopt as the time t used to transfer a block of size x
is less than doubled when the block size is doubled. On the other hand we don’t want
‘too large’ block sizes as we do not know if the retrieved data is going to be used or
discarded due to a seek operation beyond the end of the local buffer.

As the One-Click resources can be placed at any sort of connection, and the band-
width of the connection thus may differ greatly from one resource to another, it is not
possible to use a fixed block size and reach a good ratio between bandwidth and latency
at an arbitrary type of connection.

The simplest approach would be to use a fixed bsopt based on empirical tests on the
most common connections.

A less trivial, but still simple, approach would be to measure the time it takes to
connect to the server and then choose a block size which ensures the transfer time of

27

that block to be a factor of x larger than the time to connect, to make sure that the
connection overhead does not exceed the time of the actual data transfer.

The chosen approach is to estimate bsopt from the time spent transferring block x−1
with the time of transferring block x, starting with an initial small¶ block size bs0 and
then doubling the block size until a predefined cutoff ratio CR is reached. After each
data transfer the bandwidth bwx is calculated and compared to the bandwidth of the
previous transfer bwx−1. If the ratio is larger than the predefined CR:

bwx

bwx−1
> CR (2.4.3)

then the block size is doubled:
bsx+1 = bsx ∗ 2 (2.4.4)

As the block size is doubled in each step the theoretical CR to achieve bsopt should be
2, since there is no incentive to increase block size once the latency grows linearly with
the size of the data that is transferred. However in reality, one needs to get a CR below
2 to achieve bsopt. This is due to the fact that all used block sizes are powers of 2, and
one cannot rely on the optimal block size to match a power of 2.

Therefore to make sure to get a block size above bsopt you need a lower CR. Empir-
ical tests showed that a CR about 1.65 yields good results, see section 2.6

Additional extensions include adapting to the frequency of random seeks in the
estimation of the CR. A large amount of random seeks to data placed outside the range
of the current buffer will cause new blocks to be retrieved in each seek. Therefore the
block size should be lowered in those cases to minimize the latency of each seek.

2.5 Checkpointing
One-Click resources will join and leave the Grid dynamically, which means that jobs
with large running time have a high probability of being terminated before they finish
their execution. To avoid wasting already spent CPU-cycles a checkpointing mechanism
is build into the Applet framework. Two types of checkpointing have been considered
for inclusion, transparent checkpointing and semi-transparent checkpointing.

2.5.1 Transparent Checkpointing
All to the author known transparent checkpoint mechanisms provided to work with Java,
require the JVM to be replacement or access to the /proc file system on Linux/Unix
operating system variants, as the default JVM does not support storing program counter

¶An initial small block size gives a good result as many file accesses applies to small text files such
as configuration files.

28

and stack frame. Since our goal is to use a web browser with the Java Applet as a
Grid resource neither of those solutions are satisfactory, since both the replacement of
the JVM and access to the /proc file system violates the Java Applet security model.
Furthermore most One-Click resources will be running the Windows operating system
which do not support the /proc file system.

2.5.2 Semi-transparent Checkpointing
Since transparent checkpointing is not applicable to the One-Click model, we went on
to investigate what we call semi-transparent checkpointing. Semi-transparent check-
pointing covers that the One-Click framework provides a checkpoint method for doing
the actual checkpoint, but the application programmer is still responsible for calling the
checkpoint method when the application is in a checkpoint safe state.

The checkpoint method stores the running Java object on the MiG server through
HTTPS. Since it can only store the object state, and not stack information and program
counters, the programmer is responsible for calling the checkpoint method at a point in
the application, where the current state of the execution may be restored from the object
state only. To restart a previously checkpointed job, the resource Applet framework first
discovers that a checkpoint exists and then loads the stored object.

To ensure file consistency as part of the checkpoint, the framework also supports
checkpointing of modified files, which is done automatically without involving the ap-
plication writer. Open files are checkpointed if the job object includes a reference to the
file.

2.6 Experiments
To test the One-Click model we established a controlled test scenario. Eight identical
Pentium 4, 2.4 GHz machines with 512 MB ram were used for tests.

2.6.1 One-Click as a Concept
The test application used, is an exhaustive algorithm for folding proteins written in Java.
This was changed to comply with the Applet framework.

A protein sequence of length 26 was folded on one machine, which resulted in a
total execution time of 2 hours, 45 minutes and 33 seconds. The search space of the
protein was then divided into 50 different subspaces using standard divide and con-
queror techniques. The 50 different search spaces were submitted as jobs to the Grid,
which provides an average of 6 jobs per execution machine and 2 extra jobs to prevent
balanced execution. The search spaces on their own also provide unbalanced execution

29

as the valid protein configurations vary from one search space to another and thus re-
sults in unbalanced execution times. The experiment was made without checkpointing
the application. The execution of the 50 jobs completed in 29 minutes and 8 seconds, a
speedup of 5.7 for 8 machines. While this result would be considered bad in a cluster
context it is quite useful in a Grid environment.

To test the total overhead of the model, a set of 1000 empty jobs was submitted to the
Grid with only one One-Click execution resource connected. The 1000 jobs completed
in 19935 seconds, which translates to an overhead of approximately 20 seconds per job.

2.7 One-Click Summary
The One-Click resource model presents a framework for connecting all Java capable
TCP/IP devices into a Grid infrastructure without the need for the resource administra-
tor to install any additional software beside the Java Virtual Machine. If the device has
a web-browser supporting Applet, the resource is started by accessing a URL which
downloads a Java Applet and sets up the Grid resource framework needed to retrieve
jobs, execute them, and deliver the results. This can also be done from a console by
manually downloading the resource jar file and security policy for the MiG server.

The contribution of this model is to provide an easy way of connecting Java re-
sources to the Grid environment, as well as stretching how little effort is needed to
connect a potential resource to the Grid, if one has the right framework. This model has
a great educational value when teaching Grid systems, as students can easily generate
their own VGrids for testing purposes, connect several One-Click resources and write
simple Grid programs with a minimal effort.

At the cost of easy usage the “One-Click” model has several limitations, these are
stretched below

• Applications must be written in Java

• Applications must comply with the One-Click framework

• Applications must apply to ASM

• The total memory usage is limited to 64 MB including the Grid framework

• Special methods must be used to catch output

• Special methods must be used for file access

These shortcomings are a compromise between security and flexibility, as the One-Click
framework is designed to work inside a Java Applet, and we don’t want to break with

30

ASM, there is no way around them. This approach is chosen as we want to guarantee
that the host system is not compromised by the Grid middleware or jobs‖

‖One can never guaranty 100% security, but if this system breaks security, it’s the security of ASM
that is broken, and thereby all machines using Applets is at risk, and the assumption is that this will be
quickly discovered and fixed by the Java vendors

31

Chapter 3

The PS3TM Grid Resource Model

The release of the PlaystationR© 3 (PS3TM) introduced a whole new standard for game
consoles with its Cell Broadband Engine[CRDI05], Cell BE processor. This processor
is a heterogeneous multicore processor with a theoretical peak performance of 153,6
GFLOPS in single precision and 10.98 GFLOPS in double precision∗. According to
Sony more than 9 million PS3TM was sold worldwide[son] at the end of 2007. If one
could combine them all in a Grid infrastructure this would sum up to a theoretical peak
performance of 1382.4 peta-FLOPS in single precision and 98.82 peta-FLOPS in dou-
ble precision. The main core of the Cell BE is an IBM 64 bit power processor, PPC64,
which is the core running the operating system. By using a PPC64 core as primary core,
the Cell processor can be used out of the box, due to the fact that operating systems for
the PPC64 architecture are already available. The full length paper published on the the
PS3TM Grid resource model can be found in appendix C.

3.1 About the PS3TM Game Console
Contrary to other game consoles, the PS3TM officially supports alternative operating
systems besides the default Sony Game OS. Even though other game consoles can be
modified to boot alternative operating systems, this requires either an exploit of the
default system or a replacement of the BIOS. Replacing the BIOS is intrusion on the
highest level, expensive at a large volume and not usable beyond the academic perime-
ter. Security exploits are most likely to be patched within the next firmware update,
which makes this solution unusable in any scenario. Beside the difficulties in modify-
ing other game consoles towards our purposes, the processors used by the game con-
soles currently on the market, except for the PS3TM, are not of any interest for scientific
computing.

∗The PS3TM Cell has 6 SPE’s available for applications. Each SPE is running at 3.2 GHz and capable
of performing 25.6 GFLOPS in single precision and 1.83 GFLOPS in double precision.

32

PS3 Hypervisor Virtualization Layer

SPU GPU AUDIO
GbE

WiFi

ATA

HDD/CD

USB

HID

BlueTooth

PPU

SPU
FS*

Audio/Video*

ALSA
**

FB

PS3
VRAM
MTD

GbE*

Network

TCP/IP

Storage*

SCSI

HDD** CD

OHCI/
EHCI*

USB** PPU

PS3PF*

PS3 Hardware

PS3 Linux Kernel

 *
**

PS3 Hypervisor Linux drivers provided by SONY
Linux drivers NOT included on the PS3LIVE CD

Figure 3.1: An overview of the PS3TM Hypervisor structure for the PS3-LIVECD

The fact that the PS3TM is low priced from a HPC point of view, equipped with a
high performance vector processor, and supports alternative operating systems, makes
it interesting as a Grid resource. Third party operating systems work on top of the
Sony GameOS, which acts as a hypervisor for the guest operating system. See figure
3.1. The hypervisor controls which hardware components are accessible from the guest
operating system. Unfortunately the GPU is not accessible by guest operating systems†,
which is a pity, as it in itself is a powerful vector computational unit with a theoretical
peak performance of 1.8 tera-FLOPS in single precession. However 252 MB of the 256
MB GDDR3 ram located on the graphics card can be accessed through the hypervisor,
The hypervisor reserves 32 MB of main memory and 1 of the 7 SPE’s available in the
PS3TM version of the Cell processor‡. This leaves 6 SPE’s and 224 MB of main memory
for guest operating systems.

3.2 The PS3TM Grid as a Resource
The PS3TM supports alternative operating systems, making the transformation into a
Grid resource rather trivial, as a suitable Linux distribution and an appropriate Grid
client are the only requirements. However if you target a large amount of PS3’s this

†It is not clear whether it’s to prevent games to be played outside Sony GameOS, due to DRM issues,
or due to the exposure of the GPU’s register-level information

‡The Cell processor consists of 8 SPE’s, but in the PS3TM one is removed for yield purposes, if one
is defective it is removed, if none is defective a good one is removed to assure that all PS3’s have exactly
6 SPE’s available for applications, to preserve architectural consistency

33

becomes cumbersome. Furthermore if the PS3’s located beyond the academic perime-
ter are to be reached, minimal administrational work form the donor of the PS3TM is
a vital requirement. The FOLDING@HOME[BEJ+09] project has managed to make
an agreement with Sony to place their client as an embedded part of the PS3’s Sony
GameOS, the BOINC projects are not Grid computing, but public resource computing,
which differs by the fact that their projects targets specific projects written towards us-
ing a special framework, Grid computing supports a native execution environment for
all applications, providing no need for rewriting the application towards a Grid context.

The approach presented here minimizes the workload required transforming a PS3TM

into an powerful Grid resource by using a LIVECD. Using this CD, the PS3TM is booted
directly into a Grid enabled Linux system. The LIVECD comes in two versions, a sand-
boxed version which isolated the Grid execution environment from existing systems in-
stalled, and a dedicated version where the LIVECD has unlimited§ access to the PS3’s
hardware.

3.3 The PS3-LIVECD
Several requirements must be met by the Grid middleware to support the described
LIVECD. First of all the Grid middleware must support resources which can only be
accessed through a pull based model, which means that all communication is initiated
by the resource, i.e. the PS3-LIVECD. This is required because the PS3’s targeted
by the LIVECD are most likely located behind a NATed router. Secondly, the Grid
middleware needs a scheduling model where resources are able to request specific types
of jobs, e.g. a resource can specify that only jobs which are targeted the PS3TM hardware
model can be executed. Thirdly the Grid middleware should support resubmission of
timed out jobs, as PS3’s used for other purposes than being a Grid resource, e.g. gaming,
join and leave the Grid system frequently, and thereby the Grid middleware should be
able to handle this event, without failing the Grid jobs.

3.4 The MiG PS3-LIVECD
The idea behind the LIVECD is to boot the PS3TM by inserting a CD, containing the
Linux operating system and the appropriate Grid clients. Upon boot, the PS3TM con-
nects to the Grid and requests Grid jobs without any human interference. Several issues
must be dealt with. First of all the PS3TM must not be harmed by flaws in the Grid
middleware nor exploits through the middleware, Secondly the Grid jobs may not harm
the PS3TM neither by intention nor by faulty jobs. This is especially true for sandboxed
version where an exploit may cause exposure of personal data.

§Besides the limits introduced by the hypervisor

34

3.4.1 Security
To keep faulty Grid middleware and jobs from harming the PS3TM, both versions of
the LIVECD use the operating system as a security layer. The Grid client software
and the executed Grid jobs are both executed as a dedicated user, who does not have
administrational rights of the operating system. The MiG system logs all relations
between jobs and resources, thus providing the possibility to track down any job.

3.4.2 Sandboxing
The sandboxed version of the LIVECD operates in a sandboxed environment to protect
the donated PS3TM from faulty middleware and jobs. This is done by excluding the
device driver for the PS3TM HDD controller from the Linux kernel used, and keeping
the execution environment in memory instead. Furthermore, the support for loadable
kernel modules is excluded, which prevents Grid jobs from loading modules into the
kernel, even if the OS is compromised and root access is achieved.

3.4.3 File Access
Enabling file access to the Grid client and jobs without having access to the PS3’s
harddrive is done by using the graphics card’s VRAM as a block device. As main
memory is a limited resource¶, using the VRAM as a block device is therefore a great
advantage compared to the alternative of using a ram disk which would decrease the
amount of main memory available for the Grid jobs. However the total amount of
VRAM is 252 MB and therefore Grid jobs requiring input/output files larger than 252
MB are forced to use a remote file access framework[AV05].

3.5 The Execution Environment
The PS3-LIVECD is based on the Gentoo Linux[Lin] PPC64 distribution with a cus-
tomized kernel[ext] capable of communicating with the PS3TM hypervisor. Gentoo
catalyst[Cat] was used as build environment, this provides the possibility of config-
uring exactly which packages to include on the LIVECD, as well as providing the pos-
sibility to apply a custom made kernel and initrd script.The kernel was modified in
different ways, firstly loadable modules support was disabled to prevent potential evil
jobs, which manages to compromise the OS security, from modifying the kernel mod-
ules. Secondly the frame- buffer driver has been modified to make the VRAM appear
as a memory technology device, MTD, which means that the VRAM can be used as a

¶The PS3TM only has 224 MB of main memory for the OS and applications

35

block device. The modification of the frame-buffer driver also included freeing 18 MB
of main memory occupied by the frame-buffer used in the default kernel‖.

The modified kernel ended up consuming 7176 kB of the total 229376 kB main
memory for code and internal data structures, leaving 222200 kB for the Grid client
and jobs. Upon boot the modified initrd script detects the block device to be used as
root file system∗∗ and formats the detected device with the ext2 filesystem, reserving
2580 kB for the superuser, leaving 251355 kB for the Grid client and jobs††. When the
block device has been formatted, the initrd script sets up the root file system by coping
writable directories and files from the CD to the root file system. Read-only directories,
files, and binaries are left on the CD and linked symbolically to the root filesystem
keeping as much of the root filesystem free for Grid jobs as possible. The result is that
the root file system only consumes 1.6 MB of the total space provided by the used block
device.

When the Linux system is booted the LIVECD initiates the communication with
MiG through HTTPS. This is done by sending a unique key identifying the PS3TM to
the MiG system, if this is the first time the resource connects to the Grid a new profile
is created dynamically. The response to the initial request is the Grid resource client
scripts, these are generated dynamically upon the request. By using this method its
guaranteed that the resource always has the newest version of the Grid resource client
scripts, disabling the need for downloading a new CD upon a Grid middleware update.
When the Grid resource client script is executed the request of Grid jobs is initiated
through HTTPS.Within that request a unique resource identifier is provided, giving the
MiG scheduler the necessary information about the resource such as architecture, mem-
ory, disk space and a upper time-limit. Based on these parameters the MiG scheduler
finds a job suited for the PS3TM and places it in a job folder on the MiG system. From
this location the PS3TM is able to retrieve the job consisting of job description files,
input-files, and executables. The location of these files is returned within the result of
the job request, and is a HTTPS URL including a 32 character random string gener-
ated upon the job request and deleted when the job terminates. At job completion the
result is delivered to the MiG system which verifies that it’s the correct resource (by
the unique resource key) which delivers the result of the job. If it’s a false deliver‡‡ the
result is discarded, otherwise its accepted. And the PS3TM resource requests a new job

‖As the hypervisor isolates the GPU from the operating system, the display is operated by having the
frame-buffer writing the data to be displayed to an array in main memory, which is then copied to the
GPU by the hypervisor
∗∗The sandboxed version uses VRAM, the dedicated version uses the real harddrive provided through

the hypervisor
††This is true for the sandboxed version, the dedicated version uses the total disk space available,

which is specified through the Sony Game OS
‡‡ The resource keys doesn’t match, the time limit has been violated, or another resource is executing

the job, due to a rescheduling

36

when the result of the previous one has been delivered.

3.6 Experiments
Testing the PS3TM Grid Resource model was done establishing a controlled test scenario
consisting of 8 PS3’s in their own VGrid. The experiments performed included of a
model overhead check, a file system benchmark using VRAM as a block device, and
application performance, using a protein folding application.

3.6.1 Job Overhead and File Performance
The total overhead of the model was tested by submitting 1000 empty jobs to the Grid
with only one PS3TM connected. The 1000 jobs completed in 12366 seconds, which
translates to an overhead of approximately 13 seconds per job. The performance of the
VRAM used as a block device was tested by writing a 96 MB file sequentially. This
was achieved in 1.5 seconds, resulting in a bandwidth of 64 MB/s. Reading the written
file was achieved in 9.6 seconds, resulting in a bandwidth of 10 MB/s. This shows
that writing to the VRAM is a factor of approximately 6.5 faster than reading from
the VRAM, which was an expected result as the nature of VRAM is write from main
memory to VRAM, not the other way around.

3.6.2 Protein Folding
Protein folding is a compute intensive algorithm for folding proteins. It requires a small
input and generates a small output, and is embarrassing parallel which makes it very
suitable for Grid computing. In this experiment, a protein of length 27 was folded on
one PS3TM resulting in a total execution time of 57 minutes and 16 seconds. The search
space was then divided into 17 different subspaces using standard divide and conquer
techniques. The 17 different search spaces were then submitted as jobs to the Grid,
which adds up to 4 jobs for each of the 4 nodes used in the experiment plus one extra
job to ensure unbalanced execution. Equivalently, the 17 jobs were distributed among 8
nodes, yielding 2 jobs per node plus one extra job. The execution finished in 18 minutes
and 50 seconds using 4 nodes giving a speedup of 3.04. The 8 node setup finished the
execution in 10 minutes and 56 seconds giving a speedup of 5.23, this is shown in figure
3.2. These results are considered quite useful in a Grid setup. It should be noted that the
unbalanced execution scheme provided to simulate that Grid executions is most likely
unbalanced, results in 7 of the 8 nodes, in the 8 node setup, to idle while the last node
is executing the last job.

37

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7 8 9

Sp
ee

d
up

Number of nodes

Figure 3.2: The speedup achieved using the PS3-LIVECD for protein folding with 4
and 8 nodes

3.7 PS3-LIVECD Summary
The PS3-LIVECD framework presented here provides a method for connection all
PS3’s to a Grid infrastructure, with minimal administrational work both on the Grid
administration side and on the resource owner side. This is essential to reach the huge
amount of PS3’s located outside the academic perimeter. Two versions of the PS3-
LIVECD have been presented, one which operates in a sandboxed environment, and
one where the Grid environment has full access to the PS3’s hardware. The first ver-
sion is targeted resource owners outside the academic perimeter, where the latter are
targeted resources dedicated to scientific computing through the Grid middleware. The
sandboxed version is isolated from the harddrive of the system, by removing the HDD
driver from the Linux kernel and removing support for loadable module support from
the kernel, thereby the harddrive is totally isolated from the Grid execution environment
and can’t be compromised. This is essential as the Grid middleware then can guarantee
the safety of the resource even though unknown binaries, the Grid jobs, are executed.

The shortcoming of this model compared with the FOLDING@HOME client pro-
vided inside the Sony GameOS, is that the PS3TM needs to be rebooted with the CD/DVD
in the drive, and thereby is a little more intrusive than just starting an application within
the Sony GameOS. The advantage of our model is that it provides a fully functional
Linux Grid execution environment, capable of executing any scientific application writ-
ten for the Cell BE processor.

38

Chapter 4

Application Porting and Tuning on The
Cell-BE Processor

To verify that non-computer resource contributes the the Grid environment in the tra-
ditional HPC context, an application has been ported from the X86 architecture to the
PS3TM architecture∗.

In this section a step by step porting of an nqueen[nqu48][Dij72] application written
by Takaken[Tak] is covered. This Takaken solution to the nqueens problem is a small
piece of code based on bitmasks and recursion and is highly optimized towards the X86
architecture. The full length paper published on the this topic can be found in appendix
B.

4.1 The Cell-BE Processor
The Cell processor located in the PS3TM is a heterogeneous multi core processor con-
sisting of 9 cores. The Primary core is an IBM 64 bit power processor (PPC64) with
2 hardware threads. This core is the link between the operating system and the 8 pow-
erful working cores, called the SPE’s for Synergistic Processing Element. The power
processor is called the PPE for Power Processing Element, all cores are connected by
an Element Interconnect Bus (EIB). Figure 4.1 shows an overview of the Cell archi-
tecture. The cores are connected by an Element Interconnect Bus (EIB) capable of
transferring up to 204 GB/s at 3.2 GHz. Each SPE is dual pipe-lined, has a 128x128 bit
register file and 256 kB of on-chip memory called the local store. Data is transferred
asynchronously between main memory and the local store through DMA calls handled
by a dedicated Memory Flow Controller (MFC). An overview of the SPE is shown in
figure 4.2. By using the PPE as primary core, the Cell processor can execute PPC64
applications out of the box, however these will only use the PPE core. To use the SPE

∗This is the Cell BE architecture with only 6 available SPE’s

39

BEI

IOIF_1

IOIF_0

PPE

Element Interconnect Bus (EIB)

SPE0 SPE2 SPE4 SPE6

SPE1 SPE3 SPE5 SPE7

MICXIO
XIO

BEI

IOIF

MIC

PPE

SPE

XIO

Cell Broadband Engine Interface

I/O interface

Memory Interface Controller

Power Processor Element

Synergistic Processor Element

Rambus XDR I/O

Figure 4.1: An overview of the Cell architecture

Synergistic Processor Element (SPE)

Even pipeline

Local Store

Memory Flow Controller
(MFC)

Instruction Prefetch and Issue Unit

Register File

Odd pipeline

Element Interconnect Bus (EIB)

Figure 4.2: An overview of the SPE cores

40

cores it’s necessary to develop code specifically for the SPE’s, which includes setting
up a memory communications scheme using DMA through the MFC. For a in-depth
description of the Cell BE architecture, please look at the Master Thesis by Mohammad
Jowkar[Jow07]

4.2 Porting Towards the Cell-BE
To make the Cell BE perform at a high level, one has to consider several levels of
parallelization, including task-, memory-, data and instruction-level parallelization. The
application ported is a divide and conquer algorithm for finding how many ways to place
N queens safely at an NxN chess board according to the common chess rules.

4.2.1 Task and Memory-parallelization
As the PS3TM architecture can be viewed as a 6 node†, the SPE’s, cluster[SSB+95] on
a chip with a front end, the PPE, splitting an application into smaller tasks is done by
the same principles as when parallelizing towards a cluster computer. However due to
the limited amount of local store, 256 kB, available at the SPE’s for both code and data,
one has to consider the size of each task. This means that an application which would
be best parallelized by a bag of task model in a cluster setup, might be best parallelized
by a pipelined setup using the Cell processor.

Task-parallelization The first step of porting an application to the Cell is to paral-
lelize it task wise, using the PPE as a task manager and the SPE’s as computation units.
This is done by analyzing the application, picking the right method for parallelization
including analyzing if data and code for each task fits into the 256 kB local store of the
SPE’s, and if not, which method one wishes to use to make it fit. The two possibili-
ties here are either to split the data-set for each task into smaller data-sets or to use a
pipelined setup, where the code is split among 2,4 or 8 SPE’s each performing some
piece of the computation.

Memory-parallelization Each SPE has its own MFC controller running in its own
thread, meaning that main memory can be accessed through DMA asynchronously re-
garding computation. This gives the possibility of effective memory latency hiding,
as the MFC writes data directly from the EIB to the local store without involving the
computational unit. Thereby the data for iteration i+1 can be retrieved while computing
iteration i, this is known as double buffering.

†The PS3TM has only 6 SPE’s available for applications

41

a communication scheme between the PPE and the SPE using DMA transfers
through the MFC has to be chosen. Most applications will use at least double
buffering to hide memory latency, and some applications need to use multi-
buffering to keep the computation unit busy, this all depends of the computation
intensiveness of the task.

2.1.3 The nqueen solution In the nqueens example, code and data fits into
the local store of each SPE, and therefore a bag-of-task model is used, where
each SPE requests a task from the PPE, gets the input data, compute the result,
deliver the result to the PPE and request a new task. As the input- and output-
data for the nqueens application is quite small and the compute intensive part of
the application is quite large, double buffering is sufficient for keeping the SPE’s
busy, hiding the memory latency efficiently. This first step reduced the execution
time of placing 18 queens on an 18x18 chess board from 278.878 seconds on a
Pentium 4 running at 3,2 GHz to 69.456 seconds when executed on a Playstation
32 giving a speedup of 4. The application has been compiled with both the GCC
compiler and IBM’s XLC compiler the result is shown in figure 3. It’s seen that
in this case the GCC compiler produces code which is significantly faster than
the code produced by the XLC compiler.

 0

 50

 100

 150

 200

 250

 300

P4@3.2 PS3 (6 SPEs)

S
e
c
o
n
d
s

Execution times placing 18 queens

278.878

69.456

119.474

GCC
XLC

Fig. 3. Execution times for the task parallelized nqueens application

2 Note the PS3 only has 6 SPE’s

Figure 4.3: Execution times for the task parallelized nqueens application

Furthermore each MFC is capable of issuing 16 simultaneous DMA transfers giving
a high level of possible multi-buffering‡. When porting an application, a communication
scheme between the PPE and the SPE using DMA transfers through the MFC has to be
chosen. Most applications will use at least double buffering to hide memory latency,
and some applications need to use multi-buffering to keep the computational unit busy,
this all depends of the computational intensiveness of the task.

4.2.2 The Nqueens Solution
In the nqueens example, code and data fit into the local store of each SPE, and therefore
a bag-of-task model is used, where each SPE requests a task from the PPE, gets the
input data, computes the result, delivers the result to the PPE and requests a new task.
As the input and output data for the nqueens application is quite small and the compute
intensive part of the application is quite large, double buffering is sufficient for keeping
the SPE’s busy, hiding the memory latency efficiently. This first step reduced the exe-
cution time of placing 18 queens on an 18x18 chess board from 278.878 seconds on a
Pentium 4 running at 3,2 GHz to 69.456 seconds when executed on a PlaystationR© 3 §

giving a speedup of 4. The application has been compiled with both the GCC compiler
and IBM’s XLC compiler, the result is shown in figure 4.3. It’s seen that in this case
the GCC compiler produces code which is significantly faster than the code produced
by the XLC compiler.

‡Where data for iteration i+1,i+2, ..., i+n is retrieved in iteration i
§Note the PS3TM only has 6 SPE’s

42

2.2 Register-line optimizations

The Cell BE SPE’s are SIMD vector cores each operating on a 128 bit register-
line, which can be divided into 2x64 bit longs, 4x32 bit int’s, 8x16 shorts or
16x16 bytes. This results in scalar operations to be mapped down to an atomic
sequence of register-line operations. as the scalar has to be put in it’s preferred
slot of the register-line see figure 4. The compute intensive part of the code

Byte Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Byte

Short

Int

Long

Fig. 4. The preferred slot in a register line for the different data types

should be fitted to use 128 register-line operations instead of scalars, as this will
eliminate the rotate and shuffle instructions needed to get the scalar into the
correct preferred slot.

2.2.1 Recursive vs. iterative methods If the application to be ported is of
an recursive nature, one might consider to transform the computation intensive
part into an iterative method, as the limited local store of 256 kB is exhausted
quite quickly if deep recursions are reached. Furthermore the use of recursive
methods might slow down execution if the data used in the compute intensive
part is fitted into the 2 kB register file, as local parameters is pushed to the
stack upon a function call.

2.2.2 Branch prediction and elimination The Cell processor has no hard-
ware branch predictor, but the instruction set contains a branch hinting instruc-
tion. However if the programmer has no clue on what branch is to be taken, and
the piece of code within each branch is fairly small, branch elimination can be
done by calculating both results selecting the right result based on the branch
condition. This has two advancements, it eliminates branch misses and it op-
erates directly on register-lines whereas normal branch operations operates on
scalars. Using these two methods the overall penalty of branching can be reduced
quite impressingly.

2.2.3 The nqueen solution The compute intensive part of the presented
nqueen application was transformed from a recursive algorithm, to an iterative

Figure 4.4: The preferred slot in a register line for the different data types

4.3 Register-line Optimizations
The Cell BE SPE’s are SIMD[Sun00] vector cores each operating on a 128 bit register-
line, which can be divided into 2x64 bit longs, 4x32 bit int’s, 8x16 shorts or 16x16
bytes. This results in scalar operations to be mapped down to an atomic sequence of
register-line operations, as the scalar has to be put in its preferred slot of the register-
line see figure 4.4. The compute intensive part of the code should be fitted to use 128
register-line operations instead of scalars, as this will eliminate the rotate and shuffle
instructions needed to get the scalar into the correct preferred slot.

4.3.1 Recursive vs. Iterative Methods
If the application to be ported is of a recursive nature, one might consider to transform
the compute intensive part into an iterative method, as the limited local store of 256
kB is exhausted quite quickly if deep recursions are reached. Furthermore, the use of
recursive methods might slow down execution if the data used in the compute intensive
part is fitted into the 2 kB register file, as local parameters are pushed to the stack upon
a function call.

4.3.2 Branch Prediction and Elimination
The Cell processor has no hardware branch predictor, but the instruction set contains a
branch hinting instruction. However if the programmer has no clue on what branch is
to be taken, and the piece of code within each branch is fairly small, branch elimination
can be done by calculating both results and selecting the right result based on the branch
condition[IBM07]. This has two advantages, it eliminates branch misses and it operate
directly on register-lines whereas normal branch operations operates on scalars. Using
these two methods the overall penalty of branching can be reduced quite impressively.

43

algorithm using the described register-line optimizations and branch elimination
techniques. This resulted in an execution time reduction from 69.456 seconds
to 42.486 seconds, giving a speedup of 1.63 compared to the task parallelized
code, and a speedup of 6.55 compared with the Pentium 4 running at@3.2 GHz
execution. Furthermore the performance of the iterative scalar version of the
algorithm was measured, all versions was compiled with both the GCC and
XLC, the results are shown in figure 5. It’s seen that the recursive scalar code
overall performs a little better than the scaler iterative code, but that the XLC
compiler produces faster binaries when used on the iterative code. Finally it’s
seen that the XLC compiler produces 15% faster binaries from the register-
line code compared to GCC. These results shows that the GCC produces faster
binaries in the common case3 whereas XLC produces faster binaries when the
application is tuned towards the Cell SPE’s architecture.

 0

 50

 100

 150

 200

 250

 300

P4@
3.2

Recur. PS3 (6 SPEs)

Itt. PS3 (6 SPEs)

Reg. PS3 (6 SPEs)

S
e
c
o
n
d
s

Execution time placing 18 queens

278.878

69.456

119.474

91.616

116.977

49.918 42.486

GCC
XLC

Fig. 5. Execution time comparisons between the different optimizations

2.3 Data parallelization

As mentioned the Cell BE SPE cores are SIMD vector cores, which offers data
parallelization as an optimization parameter, Each SPE core is capable of per-
forming 4 integer operations, 8 short operations or 16 byte operations per instruc-
tion. If the data has an integer SIMD nature, etc. integer matrix multiplication,
3 Applications written for traditional single core architectures

Figure 4.5: Execution time comparisons between the different optimizations

4.3.3 The Nqueens Solution
The compute intensive part of the presented nqueen application was transformed from a
recursive algorithm, to an iterative algorithm using the described register-line optimiza-
tions and branch elimination techniques. This resulted in an execution time reduction
from 69.456 seconds to 42.486 seconds, giving a speedup of 1.63 compared to the task
parallelized code, and a speedup of 6.55 compared with the Pentium 4 execution run-
ning at 3.2 GHz. Furthermore the performance of the iterative scalar version of the
algorithm was measured, all versions was compiled with both the GCC and XLC, the
results are shown in figure 4.5. It’s seen that the recursive scalar code overall performs a
little better than the scaler iterative code, but that the XLC compiler produces faster bi-
naries when used on the iterative code. Finally it’s seen that the XLC compiler produces
15% faster binaries from the register-line code compared to GCC. These results show
that the GCC produces faster binaries in the common case¶ whereas XLC produces
faster binaries when the application is tuned towards the Cell SPE’s architecture.

4.4 Data Parallelization
As mentioned, the Cell BE SPE cores are SIMD vector cores, which offer data par-
allelization as an optimization parameter. Each SPE core is capable of performing 4
integer operations, 8 short operations or 16 byte operations per instruction. If the data
has an integer SIMD nature, for example integer matrix multiplication, one can effec-
tively vectorize by loop-unrolling, doing four integer operations in each loop shortening
the total loop length by a factor of four. Otherwise if the application has a divide and

¶Applications written for traditional single core architectures

44

one can effectively vectorize by loop-unrolling, doing four integer operations in
each loop shortening the total loop length by a factor of four. Otherwise if the
application has an divide and conquer nature one can vectorize by doing four
branches simultaneously. The performance gain of branch vectorization depends
heavily on the balance of the four branches, as the amount of leaves traversed is
the worst case of the four branches.

2.3.1 The nqueens solution The compute intensive part of the presented
nqueens application is based upon a divide and conquer algorithm, this algo-
rithm was vectorized by investigating four branches simultaneously, The exe-
cution time of the vectorized code placing 18 queens was reduced from 42.486
seconds to 41.248 seconds, which is considered an insignificant speedup, the re-
sult is shown in figure 6. An analyze of the vectorized code showed that the

 0

 50

 100

 150

 200

 250

 300

P4@
3.2

Reg. PS3 (6 SPEs)

Vec. PS3 (6 SPEs)

S
e

c
o

n
d

s

Execution times placing 18 queens

278.878

49.918 42.486 45.390 41.248

GCC
XLC

Fig. 6. Execution times for the vectorized nqueens application

average depth reached in the search tree increased by 0.3 due to unbalanced
branch vectorization. The presented nqueens application has a search space of
N!, this means that solving the problem for more than 14 queens eliminates the
advantage of branch vectorization. Performance measurements shows that when
placing 20 queens the branch vectorized code gets slower than the register-line
optimized code figure 7. This is due to additional operations needed to test
when all four branches within the vector has met their termination criteria. To
make the branch vectorized code perform better, one could try to balance the

Figure 4.6: Execution times for the vectorized nqueens application

conquer nature, one can vectorize by doing four branches simultaneously. The perfor-
mance gain of branch vectorization depends heavily on the balance of the four branches,
as the amount of leaves traversed is the worst case of the four branches.

4.4.1 The Nqueens Solution
The compute intensive part of the presented nqueens application is based on a divide
and conquer algorithm. This algorithm was vectorized by investigating four branches
simultaneously. The execution time of the vectorized code placing 18 queens was re-
duced from 42.486 seconds to 41.248 seconds, which is considered an insignificant
speedup, the result is shown in figure 4.6. An analysis of the vectorized code showed
that the average depth reached in the search tree increased by 0.3 due to unbalanced
branch vectorization. The presented nqueens application has a search space of N!, this
means that solving the problem for more than 14 queens eliminates the advantage of
branch vectorization. Performance measurements show that when placing 20 queens,
the branch vectorized code gets slower than the register-line optimized code, figure 4.7.
This is due to additional operations needed to test when all four branches within the
vector have met their termination criteria. To make the branch vectorized code perform
better, one could try to balance the branches placed within each vector. This has not
been done with the presented nqueens application, as it’s believed by the author that the
amount of processing power needed to balance the branches within the vectors is equal,
or exceeds, the processing power needed to solve the problem itself.

45

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

P4@
3.2

Reg. PS3 (6 SPEs)

Vec. PS3 (6 SPEs)

S
e
c
o
n
d
s

Execution times placing 20 queens

17189.177

3092.517 2625.236 2924.959 2627.630

GCC
XLC

Fig. 7. Execution times for the register-line and branch-vectorized nqueens

branches placed within each vector. This has not been done with the presented
nqueens application, as it’s believed by the authors that the amount of process-
ing power needed to balance the branches within the vectors is equal, or exceeds,
the processing power needed to solve the problem it self.

2.4 Instruction parallelization

As the Cell BE is dual pipelined, one pipeline for computation and one for
management, it’s possible to perform load/store instructions from/to the local
store while a computation instructions is being performed, this is specially usable
within loops over datasets, where it’s clear which data is needed next. This is
one of the optimization tasks which the compiler is capable of doing, but as the
Cell BE processor is fairly new, the compilers doesn’t optimize this as effectively
as one would like, however it’s possible to optimize this by hand at assembler
level.

2.5 Summary

When porting an application from a traditional single core application etc. the
X86 to the Cell BE architecture, at least task- and memory-parallelization should
be chosen as the PPE of the Cell in itself performs poorly, see figure 8. The core
computation part of the task- and memory-level parallelized application can be
compiled directly on the SPE’s and thereby requires no rewriting. As mentioned

Figure 4.7: Execution times for the register-line and branch-vectorized nqueens

4.5 Instruction Parallelization
As the Cell BE is dual pipelined, one pipeline for computation and one for management,
it’s possible to perform load/store instructions from/to the local store while a computa-
tion instructions is being performed, this is specially usable within loops over data-sets,
where it’s clear which data are needed next. This is one of the optimization tasks which
the compiler is capable of doing.

4.5.1 The Nqueens Solution
To measure how effectively the compiler interleaves the computation and data manage-
ment instructions, the iterative register-line version‖ of the nqueens application com-
piled with the IBM XLC compiler has been profiled by using the Cell-BE system
simulator[nqu]. The result of this was that approximately 13.9% of all instructions
are instruction parallelized∗∗. However the profiling revealed that 8.5% of all clock-
cycles are used waiting on load/stores between the register-file and the local store. This
indicates there is still room for improvement, which can be done either by eliminating
local store access by using registers if possible, or doing instruction level parallelizing
by hand at assembler level. This has not been looked further into.

‖The iterative register-line version was the one performing best
∗∗Called dual-instructions in Cell-BE terminology

46

4.6 Nqueens Summary
When porting an application from a traditional single core application, i.e. the X86, to
the Cell BE architecture, at least task and memory-parallelization should be chosen as
the PPE of the Cell in itself performs poorly, see figure 4.8. The core computational

 0

 100

 200

 300

 400

 500

 600

P4@
3.2

Cell PPE

S
e
c
o
n
d
s

Execution times placing 18 queens

278.878

457.264

593.711 GCC
XLC

Fig. 8. Execution times for the PPE nqueens application

the speedup gained using the task- and memory-level parallelization is 4 on
6 SPE’s. Moving from the tasks- and memory-level parallelized version to the
register-line version with branch elimination improved the speedup from 4 to 6.5
using 6 SPE’s, but this required a rewrite of the compute intensive part using
203 lines of code opposed to the 75 lines of code used in the original recursive
version. The vectorized version resulted in 348 lines of code, but didn’t perform
at all, due to unbalanced branch-vectors, however if one has a well balanced
branch-vectors or data is SIMD applicable one can expect a vectorized version
to perform well, but it’s not possible to reach beyond a speedup of 128/X, where
X is the size of each data entry in the vector, compared to a register-line version.

3 Conclusion

The basic principles of porting a X86 application towards the Cell BE archi-
tecture has been presented in this paper as well as tuning methods includ-
ing memory-, data-, and instruction-level parallelization. The porting of the
nqueens test application shows that the execution time placing 18 queens on
an 18x18 chess board was reduced from 278.878 seconds on a Pentium 4 running
at 3.2 GHz to 69.457 yielding a speedup of 4 just by applying standard task-
and memory-parallelization known from cluster computing. This was achieved
without rewriting the compute intensive part towards the Cell BE architecture.
Rewriting the compute intensive part towards the Cell-BE architecture reduced
the execution time of placing 18 queens to 42.486 seconds, yielding a speedup

Figure 4.8: Execution times for the PPE nqueens application

part of the task and memory-level parallelized application can be compiled directly on
the SPE’s and thereby requires no rewriting. As mentioned, the speedup gained using
the task and memory-level parallelization is 4 on 6 SPE’s. Moving from the tasks-and
memory-level parallelized version to the register-line version with branch elimination
improved the speedup from 4 to 6.5 using 6 SPE’s, but this required a rewrite of the
compute intensive part using 203 lines of code as opposed to the 75 lines of code used
in the original recursive version. The vectorized version resulted in 348 lines of code,
but didn’t perform at all, due to unbalanced branch-vectors. However, if one has a well
balanced branch-vector or data is SIMD applicable, one can expect a vectorized version
to perform well, but it’s not possible to reach beyond a speedup of 128/X, where X is
the size of each data entry in the vector, compared to a register-line version.

47

Chapter 5

The Remote Memory Library

In the perfect world a computing device would hold sufficient physical memory to allow
all running processes and their data in memory. Naturally this is not the case and we
thus need mechanisms to administrate the available physical memory to help optimize
utilization of the hardware. This task is traditionally performed by the OS memory
manager, which has knowledge of the memory in use by the active processes running at
the system. However when moving from a homogeneous system with a single operating
system to a global Grid environment with billions of autonomous machines and operat-
ing systems there is no longer any global memory manager and therefore the memory is
managed autonomously be each individual machine connected to a Grid infrastructure.
Our goal is to change that by introducing a Grid memory manager that is responsible
for the memory used by the Grid jobs executed on the connected resources. Instead
of replacing the memory managers of the connected resources we aim at interposing a
Grid memory layer at user-level between the operating system and the Grid application
at the local resources. This means that we utilize the local operating system memory
manager and merely monitor the amount of memory the Grid application uses while
executing the Grid jobs. Thereby it’s possible to control the amount of physical mem-
ory used by the executing Grid application and aid the resource with memory through
the Grid infrastructure when needed. By interposing the memory library at user-level
it’s possible to deploy the memory library at the resources at runtime along with the
Grid jobs without interference from the resource owner. This is vital as modifications
to the operating system of the donated resources is both an administrative burden on the
resource owners and a security risk. The full length paper published on the The Remote
Memory Library can be found in appendix D.

48

5.1 Memory Management
All modern computer architectures have a memory management unit and use an oper-
ating system, which provides a full virtual address space to each process. This gives
the processes an impression of having exclusive access to a system where the upper
limit of memory is bound only by the hardware architecture. While providing a full
virtual address space for each process is a powerful abstraction, it also places a large
responsibility on the OS to manage the available physical memory. Traditionally this is
achieved by swapping memory to disk when the system runs short on physical memory.
If the system exhausts the available disk space for swapping, the OS has to decide what
to do. Typically the policy is killing a process to free up memory.

5.2 Kernel-level vs. User-level
The OS memory manager is responsible for swapping page-frames between physical
memory and secondary memory, typically a hard-disk. In Linux the swap device is
implemented as a generic block device, which makes it easy to change swap-target
implementation as one can plug these directly into the kernel just by emulating the
behavior of a block device. This approach has the advantage that the memory manager
is left unmodified and works independently of which underlying media is actually used
as storage for the swapped out memory. The downside to this approach is that it requires
administrator privileges to deploy such a block device into the kernel, and implicitly that
the administrator will have to trust the code that is added to the memory manager since
it will run with kernel privileges.

While the kernel-level approach is easy to implement due to the cleaner interface
with the OS, the user-level model is more flexible in a Grid context since it overrides
the local memory manager and thus provides a homogeneous swapping mechanism to
the Grid resources without requiring administration privileges or implicit trust to the
swapping module. This enables the Grid infrastructure to fully control the amount of
physical memory that the executing application is allowed to use on the resource ∗.
The user-level model however has several drawbacks, primarily that you have to imple-
ment a new memory manager to work on top of the native memory manager. However
reusing most of the OS memory manager and overloading only a few functionalities
such as allocation of memory, freeing memory and swapping pages in and out of phys-
ical memory may be sufficient. Another drawback of the user-level approach is that it
invokes frequent switching between user- and kernel-level, which results in an execu-
tion time overhead compared to the native model where everything is done in kernel
space. In addition an overhead in memory consumption is imposed because the user-
level library must maintain a set of internal data structures to keep track of the state and

∗Naturally it’s not possible to utilize more physical memory than present at the resource

49

location of pages that are used by the application. Last but not least a user-level library
doesn’t have access to the hardware supported status bits of the process page-table,
which has the effect that the widely used LRU eviction algorithm is not applicable †

Despite the overhead of the user-level approach compared to the kernel-level ap-
proach, we choose to make our remote swap library run at user-level. This is chosen
because it imposes fewer requirements for deployment in Grid environments, as well
as the opportunity to change the page replacement algorithms with algorithms that are
more suited towards a Grid environment.

5.3 The Remote Swap Framework
The Remote Swap framework consists of two components namely a memory server and
a Remote Memory Library (RML). This memory library is interposed in user-level be-
tween the OS and the user process on the executing Grid resource to provide a transpar-
ent user-level swap mechanism. It’s responsible for allocating memory, freeing memory
and evicting pages to the remote memory server, as well as bringing pages back into
physical memory, when they are once again needed.

5.4 The Remote Memory Library
The goal of making RML transparent to both the user application and the underlying OS
implies that RML should support all the memory routines that are available to the ap-
plication writer in the original environment. In this initial version of RML, Linux heap
memory is the target for remote swapping, making the libc routines malloc, calloc, re-
alloc and free the ones supported in RML. Rather than re-writing and maintaining these
routines, they are merely overloaded with the purpose of maintaining a local page-table
in RML to keep track of the pages in use by the user process. The actual memory alloca-
tion is done by calling the generic memory routines in libc from within the overloaded
routines. This is illustrated in figure 5.1.

5.5 Page Eviction
When the user process reaches its physical memory limit pages need to be evicted.
The target pages are found using the second chance FIFO evict strategy rather than the
LRU strategy, which is used by most OSs, because LRU is not feasible in a user-level
environment. When the pages to be evicted are found, they are protected in read mode
to ensure consistency by preventing any other active user threads from modifying them

†LRU uses the hardware page referenced bit, which is not accessible at user-level

50

malloc()

Application

malloc()

Update pagetable

return malloc()

return malloc()

libc

Remote Memory Library

Figure 5.1: The flow of a malloc call from the user application

during eviction. If the chosen pages were modified while resident in memory, they are
sent to the remote memory server through the network. The physical memory used for
the evicted pages are then released and the virtual pages are protected in order to detect
when the user process tries to access them.

5.6 Page Retrieval
When the user process tries to access a protected page, the kernel will send, an access
violation signal to the user process. This signal is intercepted by RML, which checks
the state of the violated page in its local page-table. If the page has previously been
swapped out, a page request is sent to the remote server in order to retrieve the page.
The server responds with the page data, which is placed into the correct page slot and
control is given back to the user process which can continue execution. This is shown
in figure 5.2. If RML doesn’t have any information about the violated page the access
violation signal is forwarded to the user process which then has to handle the signal.

5.7 Page Blocks
The memory manager in modern OSs arrange memory into an abstraction called page-
frames, which is blocks of contiguous bytes. In the same manner RML arranges blocks
of contiguous pages into what we call page blocks in order to swap out and retrieve
several contiguous pages in a single evict or retrieve operation. This is beneficial if
the executing application has a sequential memory access pattern across page blocks,
that is the byte access pattern within a page block can be scattered as long as it doesn’t
access bytes outside the page block or its adjacent neighbors. Not all scientific applica-
tions have a strictly sequential memory access pattern, but even then they may still take

51

Memory Server

Kernel

Server
Application

Remote Memory Library

Kernel

Resource

(1)

(2)

User Space

Kernel Space

Figure 5.2: The flow of swapping in a page from the remote server. (1) The kernel
catches a page access violation which is sent to the user process but intercepted by
RML and transformed into a server page request. (2) The server responds with the page
needed which is transferred to the client and mapped into the right position in memory
and control is given back to the user process

.

advantage of using blocks of pages when evicting or retrieving pages. This is clarified
in the experiments section. The optimal number of pages to block into one page block
is dependent on the network latency between the client and the memory server, and
the memory access pattern of the executing application. In this first version of RML
the page block size (PBS) is provided to the framework before execution. Adaptive
adjustment towards the needs of the executing algorithm is subject for future work.

5.8 The Memory Server
The memory server is a user-level process communicating with the clients through a
TCP socket. Two kinds of services are offered by the memory server: Page send and
page retrieve. When the client asks for a service the index of the page to send/retrieve is
sent along with the request. The server stores the pages in memory and uses a hash table
with the page index as key and the memory address where the page is stored locally at
the memory server as value. When a page is received at the server the page index is
looked up in the hash table to check if memory has previously been allocated for the
specific page due to an earlier swap-out. If the page has an entry in the hash table the
memory associated with it is reused, otherwise memory is allocated for the new page
and the key/value pair is inserted into the hash table.

Upon a page retrieve request the server makes a lookup in the hash table, if the page
index is present in the hash table the server responds with the data associated with the
page index otherwise an error message is sent to the client.

52

5.9 Implementation Details
The current implementation of RML is bound to the Linux kernel, but is portable to any
page based operating system that supports virtual memory and functions to manipulate
the virtual page tables such as mmap, mremap, munmap and mprotect or equivalents.
In addition to the page table manipulation functions, support for overloading the default
signal handler is required in order to detect page access violations at user-level. RML
is loaded in between the system level libraries such as libc and the user application by
using the LD PRELOAD environment variable. This way the library can be a part of
any Grid job without involving the resource owner, as it’s delivered along with the Grid
application and loaded as a part of the Grid job. When the library is initialized malloc,
calloc, realloc and free is overloaded and thereby every call to these functions passes
through RML, which means that the user application doesn’t need to use customized
memory functions in order to use the framework, this is what provides the transparency
to user applications.

5.9.1 UDP vs. TCP
The pages transferred between the client and the server can either be sent using UDP or
TCP. Using UDP might give better performance as it has no transmission control proto-
col overhead. However reliability is required in order to be sure that pages are properly
sent between the client and the server. The ordering might be omitted if it’s just guar-
anteed that a whole page is sent in one chunk, because we don’t care if page X arrives
before Y if the time span is short. Looking at the Linux operating system revealed that
the default maximum transmission unit (MTU) of the network interfaces is 1500 bytes,
with a default page size of 4096, this means that the data corresponding to one page
is not guaranteed to arrive in the correct order. Therefore using UDP would require
an implementation of reliability and ordering mechanisms as a part of the framework.
Because these features are incorporated in TCP and are what differentiates UDP from
TCP the latter was chosen as the communication protocol for the framework.

5.9.2 Nagle’s Algorithm
Congestion control in TCP/IP internetworks introduced by J. Nagle[Nag84] is incorpo-
rated in most TCP stacks of modern operating systems with the purpose to eliminate
network flooding when sending small packages. A TCP/IPv4 package has 40 bytes of
header which means sending eg. 1 byte at a time will impose a huge overhead and
possible flooding of the network if a large amount of small messages are sent. Nagle’s
algorithm solves this issue by buffer messages until enough data is available to fill the
maximum TCP package payload or a timeout occurs. However, this strategy performs
poorly in a real-time system like the RML, where no network traffic is present until a

53

page fault arrives and a small page request header of 16 bytes is sent to the server in
order to receive the faulting page data. The client page request of 16 bytes is hardly
enough to fill the maximum TCP package payload on any modern network. Thereby
each page fault request is delayed by the timeout of Nagle’s algorithm unless page faults
occur frequently enough to be piggy-backed on the ACKs sent to the server when page
data is received. Since this behavior is not feasible in RML, Nagle’s algorithm is dis-
abled by configuring the TCP socket used for communication between the client and
the server with the TCP NODELAY option.

5.9.3 The Local Page Table
RML uses a local page table in order to keep track of the pages managed by RML. The
initial version only supports 32 bit applications, because the page table is implemented
as an array using page indexes‡ to lookup information. In a 64 bit environment a new
data structure is needed as an array for 64 bit addressing even when using page indexes,
will consume all available memory if possible at all. In this case a more advanced
data structure such as hash tables or other key → value based data structures has to
be considered. In order to keep track of the pages administrated by RML each page is
associated with a local page state and a previous and next pointer to maintain a page
activated order used when evicting pages. Last but not least an allocation counter is
kept in order to keep track of the number of active allocations associated with each
page. This is used when freeing memory to detect when a page becomes inactive.
Pages managed by RML can be in the following states:

Unused Pages that are not yet managed by RML

System Pages that are never evicted, these includes the page table itself as well as the
buffers used for retrieving pages from the remote server.

Allocated Pages which are a part of an allocation but have not yet been referenced,
this means that no real memory is mapped to the virtual pages. These pages are pro-
tected in no-access mode, that is the first time the executing application tries to reference
a page in state Allocated a page access violation will occur, this is trapped by RML and
the page is re-protected in mode write where after the page state is changed to dirty.

Read Pages that have been swapped in as a result of a read access violation is pro-
tected in mode read. If the executing application tries to modify a page in mode read
an access violation will occur, this is trapped by RML and the page is re-protected in
mode write where after the page state is changed to dirty.

‡Page address divided by the page size

54

Second chance When searching for pages to evict, pages that are not evicted are
marked as second chance and protected in no-access mode in order to detect if they are
accessed between evicts. If accessed between evicts an access violation is trapped by
RML and the second chance flag is removed.

Out Pages that are no longer present in memory have their virtual page slot mapped
in no-access mode meaning that RML will detect an access-violation signal if the page
is accessed by the application. If the page is in mode out the page will be retrieved from
the server and mapped into the right position in memory before execution is returned to
the application which continues.

Dirty Pages that are up for eviction are transmitted to the memory server and then
unmapped from memory. The data of pages that have previously been evicted is already
present at the remote server and therefore only data of pages that have been modified
since the last evict is send to the server.

Padding Pages that are a part of a page block but not a part of the allocations man-
aged by RML. That is, a page block consists of several contiguous pages, but it’s not
guaranteed that all of those pages are active and controlled by RML. These pages are
marked as padded which means that they are ignored by RML when modifying page
blocks.

5.10 Memory Allocation
In order to avoid re-implementing the existing memory allocation routines, RML merely
uses the original malloc, calloc and realloc routines to allocate memory. When allocat-
ing a chunk of memory, the address returned by the original allocator along with the
chunk size is translated into page indexes. These indexes are used as keys for a local
page table containing the page state information. The first and the last page are typically
used by the original allocator to store internal information about the allocated memory
and thereby these are mapped to real memory, the pages in between are merely marked
as allocated both at operating system level and in the local RML page table. These
pages are access protected by RML using the mprotect routine in order to detect when
they are activated. The framework then returns the allocated memory address to the
running application which continues its execution. When one of the newly allocated
access protected pages is accessed by the running application, an access violation sig-
nal is thrown by the kernel. This signal is caught by RML and the page is looked up
in the local page table. If the page is marked as allocated, but not yet used, the page is
re-protected in mode write, the page table is updated, and execution is returned to the
running application.

55

5.11 Page Eviction
The user-level approach makes it possible to regulate the real memory usage of a single
application without considering other active applications on the system. When a page
becomes active, either by activating a new page or swapping in a previously used page,
it’s checked if the upper active page limit has been reached. If the limit is reached pages
are chosen for eviction using the second chance FIFO algorithm and thereafter protected
in read mode, to prevent other active threads from modifying the pages during eviction.
Modified pages are then sent to the remote server along with a header containing the
page indexes. Finally the page states are changed to swapped-out and the real memory
is freed by mmap’ing the evicted pages in protection none. This atomically frees the
real memory and maps the virtual pages in no access mode. The evicted pages are
now resident at the remote memory server until they are once again accessed from the
running application.

5.12 Page Retrieval
When pages are swapped out they are protected in no-access mode, this means that
whenever the executing application accesses such a page, an access violation signal is
sent by the kernel and trapped by RML. The page causing the access violation is looked
up in the local page table and if the page is found to be resident at the memory server,
a page request is sent. The server will respond with the requested page data, which
is received in a local buffer reserved for swap-in page data. When the data is fully
received, the receive buffer is protected in mode read to detect future modifications,
used to determine if the page should be written back to the server upon its next swap-out.
When the receive buffer is protected the page is put into the right position in memory
by using the mremap routine. This routine atomically updates the kernel virtual page
table keeping other threads from accessing the page until the page is in a write safe
state§. Finally the page is marked in RML as swapped-in, the page retrieve buffer is
re-allocated using mmap for future swap-in’s and the execution is returned to the thread
which accessed the swapped-out page.

Remapping pages One of the major challenges creating a user-level swap library is
putting page data atomically into the right virtual memory slot when pages are swapped
in, that is the executing threads should not be able to access the swapped in memory
pages before the received data is fully in place. This is not trivial as the virtual page slot
needs to be in write mode in order to place the received data into the right slot, however

§Without the remap routine one would need to make the target page writeable, in order to copy data
from the buffer page to the target page slot. This would allow other user threads to modify the page
before it’s completely in place.

56

Parrent virtual page table Child virtual page tableReal memory

Shared Page X0

....

Page X1

Shared Page X2

Page X3

Page XN

Shared Page X0

....

Page X1

Shared Page X2

Page X3

Page XN

Page X0

Page X1

Copy of Page X1

Page X2

Page X3

Copy of Page X3

Copy of Page XN

Page XN

....

Figure 5.3: The memory layout of parent and child just after a fork

this will allow other user-level threads to access the page while RML is putting the data
into place. We therefore need a mechanism for protecting the swapped in pages from
executing user-level threads while the RML thread receives the page data and places
it in the correct memory slot. This was first solved by using a fork/join model, where
pages managed by RML is mapped in shared mode, which ensures that only the virtual
page table is copied during a fork and not the actual page data. This means that the data
of a shared page X is accessible both from parent and child, but with different access
restrictions through their individual virtual page tables. The memory layout of parent
and child just after a fork is shown in figure 5.3 where it’s seen how the shared virtual
pages of parent and child maps to the same real memory pages.

When the page data received from the server needs to be put into the right location
a child is forked and the child’s virtual target page slot is re-protected in mode write in
order to copy the received data to it. As the child has its own virtual page table this will
not affect the parent virtual page table and therefore the data can be safely copied to the
right location by the child without any execution threads being able to read or write to
it while being copied. This is shown in figure 5.4

The fork/join model were fully operational but turned out to have several issues
regarding performance and scalability. The poor scalability was caused by the fact that
when one maps a memory page as shared, a /dev/zero file-descriptor is attached to it. In
a 32 bit Linux system with a page size of 4096 bytes, where user processes are allowed
to use 3 GB of application memory this will result in 1048576 file descriptors, which
consumes kernel memory and is far above the default amount of file descriptors allowed

57

Client

Page fault X
caught

Request page

Receive page
into swap-

buffer

Fork

Wait for child to
exit

Protect page X
in mode WRITE

Copy receive
buffer to page X

Join

Protect page X
in mode WRITE

Continue
execution

Figure 5.4: The flow of the fork/join page fault scheme

58

fork/join mremap
Execution time 1395.634 seconds 4.110 seconds

Speedup - 340

Table 5.1: Initializing and reading an 128 MB array with a 64 MB real memory limit

by the kernel. While the fork/join setup is applicable in a 32 bit system by tuning kernel
parameters, when moving to 64 bit architectures the number of shared pages which
each result in a file descriptor increases beyond what’s applicable. Therefore we set out
to find another solution and discovered that the mremap routine was what we needed.
This routine is capable of atomically moving a page from one virtual page slot into
another without touching the page data. What it actually does is to update the virtual
page table of the user process such that the data remains in it physical location merely
updating the entries in the virtual page table. This method has several advantages, firstly
it eliminates the file descriptor problem as pages no longer need to be mapped in mode
shared, secondly it eliminates the fork/join scenario and thereby the overhead of fork
and joining child processes. Last but not least data doesn’t need to be copied from the
receive buffer and into the right memory slot which saves time. Finally as it’s merely
the virtual page address that is modified, the right protection flags can be set on the page
before it’s remapped and thereby the page is in the right state as soon as the mremap
routine returns.

Validating the performance gain obtained when moving from the fork/join model
to the mremap model we set up an experiment initializing an array of 128 MB data by
writing a byte to every index of the array and then reading it sequentially byte for byte
afterwards. With a page size of 4096 bytes this results in 32768 pages being evicted
and retrieved once during the execution when RML has a limit of 64 MB real memory
usage. The execution time of this experiment dropped from 23 minutes and 15 seconds
using the fork/join model to 4 seconds using the mremap model, which is a considerable
speedup of 340. The result is shown in table 5.1

59

5.13 Experiments
To validate the Remote swap library and document its performance, experiments were
done in an isolated execution environment. This consisted of a PlaystationR© 3 execution
node and an dual quad core Intel Xeon running at 1.60 GHz with 8 GB RAM as memory
server. These machines were interconnected through a 1 Gb/s switch and controlled
by the Minimum intrusion Grid[KV05]. The PlaystationR© 3 was chosen as execution
device because it represents a unextendible hardware device with a powerful processor
but a limited amount of memory, namely 224 MB for the OS and user applications. As
a reference machine without swap we used a Cell-BE QS22 blade. The reason for using
an isolated high-bandwidth network with only one node, rather than a full Grid setup
with a slower network and a number of nodes, is to validate the performance of the
transparent user-level model under optimal conditions. If the model doesn’t perform
well under these conditions it will never perform in a real Grid system.

The RML framework has been tested with special designed highly I/O bound se-
quential memory access and scattered memory access applications, as well as real sci-
entific applications. Each of the applications were tested with different page block sizes
to evaluate how this influences the performance. The results of the experiments are
covered in the following sections.

5.14 Sequential Data Access
The sequential data access tests were done by allocating N bytes of memory using mal-
loc and then initializing the memory to make sure it was mapped to physical memory.
Then a timer was started and the time spent traversing the memory start-to-end in 10
iterations (reading each byte to produce a checksum) was measured. Finally the perfor-
mance was compared to the execution without swap on the Cell-BE QS22. This test is
highly I/O bound as the only computation done by the executing machine is one integer
addition per byte that is read. The performance of this execution with page block sizes
1 and 64 is shown in figure 5.5. The experiment shows that RML outperforms swap
to disk significantly, as the memory consumption increases. Furthermore, the perfor-
mance increases with the page block size until it starts to converge at 64 pages per block,
which is were the bandwidth of the network is saturated. This is shown in Figure 5.6.
We found the steep raise in disk swap execution time when the memory consumption
reaches 1024 MB peculiar, as we are only performing sequential reads while measuring
time and would expect the disk and its caches to be able to prefetch the pages needed.
Thereby we would expect the execution time to raise no more than linearly with respect
to the memory consumed and perform better than a user-level remote swap library as
this algorithm is highly I/O bound. To investigate this further we settled out to take a
closer look at the Linux swapping scheme.

60

64 128 256 512 1024 2048

Megabytes

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

T
im

e
(S

ec
o

n
d

s)

Sequential memory access

NO-SWAP QS22 Cell Blade

File swap PS3

Remote swap PS3

Remote swap PS3 (PBS 64)

Figure 5.5: Sequential memory access performance

256 512 1024 2048

Megabytes

32

64

128

256

512

1024

2048

T
im

e
(S

ec
o

n
d

s)

Sequential memory access

Remote swap PS3

Remote swap PS3 (PBS 2)

Remote swap PS3 (PBS 4)

Remote swap PS3 (PBS 8)

Remote swap PS3 (PBS 16)

Remote swap PS3 (PBS 32)

Remote swap PS3 (PBS 64)

Remote swap PS3 (PBS 128)

Figure 5.6: Sequential remote memory performance with increasing page block sizes

61

64 128 256 512 1024 2048 4096

Megabytes

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

T
im

e
(S

ec
o
n

d
s)

Sequential memory access with different swap file sizes

Swap file (256 MB)

Swap file (512 MB)

Swap file (1024 MB)

Swap file (2048 MB)

Swap file (4096 MB)

Remote swap

Figure 5.7: Linux file swap performance

5.15 Linux Disk Swap
In this experiment we executed the sequential memory access program described in the
last section using different swap file sizes to see if the execution time was affected by
the size of the swap device. All swap files were made using dd with a block size of
4096 bytes. The result of the executions is shown in figure 5.7. This experiment shows
that disk swap performance is highly dependent on the swap file size, which was an
unexpected result. We discovered the reason for this by looking into the Linux kernel
source code where we found that when half of the disk swap space is filled the memory
manager starts to remove swapped-in pages from the swap device to prevent it from
running out of space. The effect is that all swapped-in pages are marked as dirty and
thereby needs to be re-written to disk when they are once again swapped out. This is
what causes the steep raise in execution time, when the swap device becomes half full,
as the sequential experiment doesn’t perform any writes in the 10 iterations that are
used for time measurement.

In the rest of the experiments we continued to use a 2 GB swap file to show how the
artifact of the Linux kernels half-full dirty mark strategy will be expressed within the
scientific applications used in the experiments.

5.16 Sequential Data Access with Writes
In this test we used the sequential test described in the previous section and performed
a write to each page accessed after its data had been read. The result is shown in
figure 5.8. This experiment shows that even though a write was done to every page, it
didn’t eliminate the half-full Linux swap artifact, but the gap is smaller compared to

62

64 128 256 512 1024 2048

Resolution

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

T
im

e
(S

ec
o

n
d

s)

Sequential memory access with writes

NO-SWAP QS22 Cell Blade

File swap PS3 (2 GB file)

Remote swap PS3

Remote swap PS3 (PBS 64)

Figure 5.8: Sequential memory access with writes performance

the execution without writes. This is due to the fact that the Linux kernel in addition to
marking the page dirty also removes it from the page cache and the swap device, which
consumes time compared to the alternative of leaving the page on disk and then just
writing it back out when needed. Beside the effect of the half-full artifact, it is observed
that the execution time increases when using disk swap compared to remote swapping.
This is caused by the mechanical structure of a disk, which causes the average seek
time to rise as the amount of swapped out pages increases. As in the experiment without
writes, the performance increases with the page block size until it converges at 64 pages
per block, when the bandwidth of the network is saturated.

5.17 Scattered Memory Access
This test was designed similarly to the sequential access test, but instead of reading the
pages in a sequential manner the data is read one page at a time, starting with the first
page followed by the last page and then the second page followed by the second last
page, this pattern is used until all pages are read. The result is shown in figure 5.9.
This test shows that the execution time when swapping to disk is increasing relatively
more than the execution time when swapping to the remote location. That is caused
by the fact that disk swap can no longer take advantage of block prefetch combined
with larger seek times when searching for the page to swap in, even before the half-full
artifact arises. As with the sequential tests the performance increases with the size of
the page blocks until the network is saturated at a block size of 64 pages.

63

64 128 256 512 1024 2048

Megabytes

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

T
im

e
(S

ec
o

n
d

s)

Scattered memory access

NO-SWAP QS22 Cell Blade

File swap PS3 (2 GB file)

Remote swap PS3

Remote swap PS3 (PBS 64)

Figure 5.9: Scattered memory access performance

5.18 Scattered Memory Access with Write
This test is like the scattered access test described above, but with one write to each
page like in the sequential write test. The result of this test is shown in figure 5.10. As
with the sequential write test, the gap between Linux swap to disk and RML decreases
compared to the execution without writes and the half-full artifact of the Linux swap
is still present. The performance increases with the size of the page blocks until the
network is saturated at a block size of 64 pages.

5.19 Lattice Boltzmann
OpenLB[slBc] is a free library for lattice Boltzmann simulations. In this experiment we
used the forcedPoiseuille2d example provided in the package with different resolution
sizes. The results of this test is shown in figure 5.11, which displays that swapping to
the remote location outperforms disk swap with a factor of 6 and is 11 times slower than
no-swap execution with a resolution of 2048 and a page block size of 4, which proved
to be the optimal page block size for this application (figure 5.12). The half-full artifact
is clearly visible in this test.

5.20 Fast Fourier Transform
Fftw[FJ05] is a free implementation of discrete Fourier transformation. In this test
we use Fftw to transform a vector of random complex numbers to their corresponding
Fourier values and back to the original values. The result of this test is shown in figure

64

64 128 256 512 1024 2048

Megabytes

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

T
im

e
(S

ec
o

n
d

s)

Scattered memory access with writes

NO-SWAP QS22 Cell Blade

File swap PS3 (2 GB file)

Remote swap PS3

Remote swap PS3 (PBS 64)

Figure 5.10: Scattered memory access with writes performance

1024 2048

Resolution

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

T
im

e
(S

ec
o
n

d
s)

forcedPoiseuille2d

NO-SWAP QS22 Cell Blade

File swap PS3 (2 GB file)

Remote swap PS3

Remote swap PS3 (PBS 4)

112 196 304 436 592 772 976 1204 2033

Memory consumption (MB)

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

T
im

e
(S

ec
o
n

d
s)

Figure 5.11: Lattice Boltzmann performance

65

1024 2048

Resolution

128

256

512

1024

2048

4096

T
im

e
(S

ec
o

n
d

s)

forcedPoiseuille2d

Remote swap PS3

Remote swap PS3 (PBS 2)

Remote swap PS3 (PBS 4)

Remote swap PS3 (PBS 8)

Remote swap PS3 (PBS 16)

112 196 304 436 592 772 976 1204 2033

Memory consumption (MB)

128

256

512

1024

2048

4096

T
im

e
(S

ec
o

n
d

s)

Figure 5.12: Lattice Boltzmann performance with increasing page block sizes

5.13, which displays that swapping to the remote location outperforms swapping to disk
with a factor of 21 using a vector of 16777216 complex numbers and a page block size
of 2. The slowdown compared to native executing at this instance is 4. Furthermore it
shows that a page block size of 1 is the optimal when we reach a vector size of 67108864
complex numbers.

5.21 Barnes-Hut
The Barnes-Hut[BH86] algorithm is an O(nlogn) algorithm for performing N-Body
force simulations. In this experiment we have used the code that is provided by one
of the authors J. Barnes (the code can be downloaded from his ftp site[Bar]). The
experiments were performed with the tree-body 6 test data, provided in the original
source package, with a variable number of bodies and a random seed of 12345. The
results is shown in figure 5.14, which displays that remote swap outperforms swap to
disk by a factor of 6 and is a factor of 4 slower than native execution in real memory,
when using 4194304 bodies and a page blocks size of 8, which is the optimal page block
size (figure 5.15) for this application. It should be noted that the difference between
swapping to disk and swapping to a remote memory location increases as the number
of bodies grows and that the half-full artifact is present in this experiment.

66

524288 1048576 2097152 4194304 8388608 16777216 33554432 67108864

Number of transformed compex numbers

0.125
0.25
0.5

1
2
4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384
32768
65536

T
im

e
(S

ec
o
n

d
s)

FFTW Remote swap vs. Disk Swap vs. Memory

NO-SWAP QS22 Cell Blade

File swap PS3 (2 GB file)

Remote swap PS3 (PAGESIZE 1)

Remote swap PS3 (PAGESIZE 2)

Remote swap PS3 (PAGESIZE 4)

20 36 67 131 259 515 1027 2051

Memory consumption (MB)

0.125
0.25
0.5

1
2
4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384
32768
65536

T
im

e
(S

ec
o
n

d
s)

Figure 5.13: FFTW performance

524288 1048576 2097152 4194304 8388608

Number of Bodies

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

T
im

e
(S

ec
o
n

d
s)

Barnes-Hut N-Body

NO-SWAP QS22 Cell Blade

File swap PS3

Remote swap PS3

Remote swap PS3 (PBS 8)

107 212 424 845 1681

Memory consumption (MB)

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

T
im

e
(S

ec
o
n

d
s)

Figure 5.14: Barnes-Hut performance

67

524288 1048576 2097152 4194304 8388608

Number of Bodies

64

128

256

512

1024

2048

4096

T
im

e
(S

ec
o

n
d

s)

Barnes-Hut N-Body

Remote swap PS3

Remote swap PS3 (PBS 2)

Remote swap PS3 (PBS 4)

Remote swap PS3 (PBS 8)

Remote swap PS3 (PBS 16)

107 212 424 845 1681

Memory consumption (MB)

64

128

256

512

1024

2048

4096

T
im

e
(S

ec
o

n
d

s)

Figure 5.15: Barnes-Hut performance with increasing page block sizes

5.22 Experiment Summary
The experiments show that swapping to a remote memory server outperforms swapping
to disk on the PlaystationR© 3 platform, both in the tests that are designed specially
towards the framework, as well as in the generic scientific applications, which have not
been modified in order to work with the framework. The speedup varies from 6 to 21
in the tested scientific applications and the slowdown varies from 4 to 11 compared
to native executions. We have also shown that Linux disk swap has serious issues
when it comes to scientific applications. The conservative strategy of removing pages
from the swap device, whenever it becomes half-full, is poorly suited for scientific
applications, due to their nature of initializing data and performing several iterations on
the same data set, which means that the same pages are accessed several times without
any renewal. Furthermore devices that are dedicated to scientific applications should
favor the scientific application over other processes running at the system regarding
CPU and memory.

5.23 Initial Remote Memory Library Summary
The initial Remote Memory Library presents a method for providing remote swap to
global Grid infrastructures. Opposed to previous presented models, we present a fully
transparent user-level library, which can be submitted along with the Grid jobs elimi-
nating the need to modify neither the OS of the executing Grid resource nor the Grid
application to execute. Furthermore the user-level approach makes it possible to throttle
the real memory usage of the running job, through the Grid middleware, and thereby

68

increase the pool of resources capable of fulfilling the memory requirements of a given
job. Last but not least the user-level approach ensures that only pages that are used by
the Grid application are subject for eviction. The disadvantages of using the transparent
user-level approach is the time overhead of passing signals, page mappings and page
protections between kernel- and user-level, as well as the space overhead of keeping
a local process page table within the framework as one can’t access the page data-
structures of the kernel from user-level.

Experiments show that the framework is operational and despite the introduced
overhead still outperforms swapping to disk by a factor of 6 in the worst case. In the
best case the framework outperforms swapping to disk with a factor of up to 21.

69

Chapter 6

Prediction Based Page Prefetching

The remote memory library introduced in the last chapter uses on-demand paging,
which is the paging scheme used by most memory managers when retrieving pages
from secondary memory. The remote memory library targets paging in Grid environ-
ments where the capacity of the network is the limiting factor regarding how fast pages
can be swapped in. The capacity of computer networks grows constantly regarding
bandwidth, but with respect to latency the upper limit is constant, namely the speed of
light. As this upper limit can’t be moved, on demand paging through a network will al-
ways be limited by the round-trip time of a page request and answer between the client
and the memory server. With this in mind we set out to find out if we could take ad-
vantage of the increasing bandwidth of networks by applying a prefetching scheme to
the remote memory library, such that instead of sending one page upon every page fault
we can send several pages. Obviously sending the right pages is crucial as pages which
are not needed will still consume bandwidth, memory and processing power at both the
client and the server side. The question is, how do we decide which pages are needed
in the near future. The novel solution is to send the pages X+1, X+2, . . . , X+N when
page X fails. This performs well for applications that have a purely sequential memory
access pattern, but will perform poorly with applications which have a non-sequential
memory access pattern. This was shown in the experiments of the initial remote mem-
ory library. In this chapter we introduce page prefetching using event-based prediction.
That is based on the page fault pattern of the executing application what pages are likely
to be used in the near future. While this is not well suited for desktop applications it’s
greatly suited for scientific applications as these often traverse the same data set over
and over. Furthermore scientific applications that are well suited for Grid computing are
often executed several times using different parameters which can prove to be an advan-
tage if the page access pattern of one execution is saved within the Grid infrastructure
for future executions.

70

Root

A (1)

1: add_event(A) 2: add_event(B)

Root

A (1)

B (1)

B (1)

3: add_event(A)
Root

A (2)

B (1)

B (1)

A (1)

A (1)

4: add_event(D)
Root

A (2)

B (1)

B (1)

A (1)

A (1)D (1)

D (1)

Figure 6.1: Structure of the Oraculo Trie adding the sequence A, B, A, D

6.1 Oraculo
The prediction mechanism chosen for the remote memory library is named Oraculo
and is designed for file predictions using Tries[KL96][KL01] optimized for Grid envi-
ronments. Oraculo is developed at Barcelona Supercomputer Center where I spent six
months during which the initial integration of the remote memory library and Oraculo
was done. Oraculo is an event-based prediction that predicts a series of events based
on the previously recorded events. Oraculo provides two services which is 1) Adding
events, 2) Getting an event sequence based on an event and the last sequence of events.
The Trie used in Oraculo has a root to which the disjoint set of all events are attached as
nodes. Each successor of the root is itself a root of what is denoted as a Trie partition.

Adding events The Trie is build from left to right and every time a new event is added
a new partition is created, if no partition representing the event is present, at the partition
root level. If a partition representing the event is present a counter within the node is
increased to indicate the number of times the event has occurred. In addition to the new
partition presenting the new event all previous partitions represents the previous event
sequence and therefore the node is added to those as well. Figure 6.1 shows the process
of adding the event sequence “A”, “B”, “A”, “D”. Firstly “A” is added as a new partition
of the root, when the event “B” arrives it’s added as a new partition as well as added to

71

the original partition “A”, when the second “A” event arrives the first “A” node counter
is updated as well as the last added node “B” is appended with a new node “A”. Lastly
“D” arrives which is added to the original partition after the “A” which had just updated
it’s counter from 1 to 2, it’s added to the “B” partition and finally a new partition “D” is
created.

Pruning the Trie If all events are disjoint the first partition will consist of all the
events E added to the Trie, the second will consist of E-1 and so forth until the E’ed
partition which will consist of exactly the last event. Thereby a lot of redundant data is
represented in the Trie. To reduce the memory consumption and the time traversing the
Trie, the Trie depth can be reduced without loosing sequence information, but merely
the number of times the sequence has occurred. Oraculo uses a Trie depth of three,
which has proven sufficient for making good predictions. This, however can be fine
tuned toward special needs as well as pruning the amount of partitions in the Trie and
the amount of nodes within each partition is supported. Pruning the number of nodes
in each partition is done when a new event is added to a partition with no room for
additional nodes. Then all the node values are divided by two and the nodes with values
below 1 is deleted, if no nodes have values below 1 the new node is not added, but the
newly computed node values are kept and eventually nodes will be removed from the
partition when new events arrive. Three schemes for pruning the partitions is available.
1) FIFO, removes the oldest partition, 2) LRU removes the least recently used partition.
3) LRU-USAGE selects the 30% least recently used partitions and removes the one with
the lowest aggregated node values.

Predicting events When predicting future events, Oraculo is given an event sequence
as input that is matched against the Trie by using each suffix of the provided input in
the matching process. For example given the sequence “B”, “A” first B, A is matched
against the Trie and then A is matched against the Trie. The result of the prediction will
be “B”, “D”, this is sketched in figure 6.2. When the Trie grows from representing a
few sequences, as shown in our example, and to a Trie that represents millions of dif-
ferent sequences a mechanism for eliminating all but the relevant predictions is needed.
Oraculo keeps a counter at each node representing the number of times the event repre-
sented by the node is found in the current path of events. By introducing a probability
threshold paths containing nodes below a given probability threshold are not taken into
account when the prediction set is generated.

72

Predict events from: {B,A}
Suffixes: {B,A}, {A} Root

A (2)

B (1)

B (1)

A (1)

A (1)D (1)

D (1)
Prediction: {B, D}

Figure 6.2: Oraculo predicting events based on the input sequence B, A

6.2 Combining Oraculo with The Remote Memory Li-
brary

The main purpose of the Remote Memory Library is to aid memory-limited Grid re-
sources with additional memory through the Grid framework. Extending the remote
memory framework with page-based prediction can be done either by performing the
prediction at client or server side. The page prediction itself requires both memory and
processing power and therefore it was chosen to perform the prediction server side as
our focus is using the Grid infrastructure to get the highest possible performance out of
the connected resources.

Prediction The free dictionary[Dic] defines the term ‘prediction’ as: “Something
foretold or predicted; a prophecy”, if one look up ‘prophecy’ it’s defined as: “An in-
spired utterance of a prophet, viewed as a revelation of divine will”. From this definition
a prediction is eventually going to fail when used in computer environments because
these don’t comply with prophets or divine wills. This means that when trying to pre-
dict the pages that an application will be needing in the future it is bound to fail at some
point. Based on that observation the overall design philosophy behind the memory pre-
diction framework presented in this chapter is: “Always handle real page faults first”
This means that if a real page fault occurs while handling predicted pages the real page
fault is always handled immediately.

Server incorporation Oraculo has been incorporated with the memory server such
that the page indexes requested by the client are added to Oraculo as events. When a

73

Client

Page fault X
caught

Signal comm thread
Enter Mutex

Request
page X and
predictions

Leave
Mutex

Page X
received and

remaped

Signal exe thread

Continue
execution

Execution Thread Communication Thread

Receive and
remap

predictions

Evict pages

Figure 6.3: Receiving a faulting page and the corresponding predictions is handled in a
separate communication thread

page request has been served and the page data is sent to the client, Oraculo is asked to
make a prediction based on the faulting page index. The prediction returned by Oraculo
is a list of page indexes which is sent to the client one at a time in a header followed by
the corresponding page data.

Client incorporation At the client side the library has been modified to handle in-
coming predicted pages asynchronously to the computation threads. The communica-
tion between the execution thread and communication thread is done by synchronizing
barriers. When the communication thread is idle it holds a barrier waiting for a page
fault to occur, the barrier is reached when the execution thread faults and signals the
communication thread to receive the faulting page. The communication thread then
sends a page request message to the server, which responds with the page, adds the
page fault event to Oraculo and makes a prediction that is sent to the client one page at
a time. When the client communication thread receives the faulting page, it signals the
faulting execution thread that the page has arrived. The execution thread then continues
while the communication thread receives the predicted pages from the server. This is
shown in figure 6.3.

Figure 6.3 is a simplified overview of the client design as the asynchronous page re-
ceiving requires several combinations of the presented synchronization mechanisms in
order to ensure page consistency when having multiple threads causing multiple page
faults either to the same page, to pages which are a part of a prediction, or to pages
which are not present at the client nor in the pipeline of pages to receive. In addition
to the barriers described above the synchronization mechanisms used in the original

74

Client ServerNetwork

Page fault X

Execution Comm.

Barrier W.

Barrier S.
Barrier R.Barrier W.

Predict for X
Remap X
Barrier S.

Barrier R.

Resume
Execution

Send page X

Send predict P1
Send predict P2
Send predict PNReceive P1

Remap P1-PN

Receive P2

Receive PN

Barrier W.

Barrier S. = Barrier Signal
Barrier W. = Barrier Wait
Barrier R. = Barrier Reached

Recieve X
Add event X

Request X

Enter Mutex

Leave Mutex

Evict pages

Figure 6.4: Barriers are used to synchronize between the execution thread and the com-
munication thread

URSL framework is used. That is a global mutex for handling simultaneous page faults
caused by multiple execution threads and the mremap routine for atomically remapping
received pages into the right memory slot. A detailed execution flow using the syn-
chronization methods described above is shown in figure 6.4 This figure shows how the
execution thread accesses a page that is swapped out resulting in an access violation sig-
nal to be caught by URSL. The execution thread enters the page fault mutex to ensure
that only one page fault is handled at a time, and meets the communication thread in
a barrier. The communication thread then requests the page at the memory server that
responds with the page data which is received and remapped by the communication
thread, where after the faulting execution thread is met in a page ready barrier mean-
ing that that the faulting page has arrived. The execution thread leaves the page fault
mutex and continues execution while the communication thread receives and remaps
the predicted pages until all are received. Finally pages are evicted in order to free up
memory.

Predicted pages Predicted pages arrive at the client with a header that describes the
page position in memory and page data which is received into a buffer reserved for

75

predictions. A page header is sent along with each page instead of just sending the
complete list of predicted pages in advance. This is done to be able to interleave the data
of real page faults with the predicted pages and therefore it’s not possible to generate a
page receive order in advance. To avoid wasting network bandwidth, the server keeps
track of which pages are active at the client, and ignores these pages if they occur in the
predicted page list. In addition to saving bandwidth, this also saves processing power
at the client which would otherwise have to check the received predictions in order to
avoid overwriting pages that are active in memory. When the complete list of predicted
pages is received into the client receive buffer the pages are remapped into the right
position in memory using the mremap routine. In an optimal scenario where every
predicted page is needed in the near future, and the communication thread is capable
of receiving and remapping predicted pages before they are needed, not only do we
get the latency hiding of receiving the pages asynchronously to execution, we also get
the advantage of not receiving page faults as the pages are already in place when they
are accessed. Thus eliminating the kernel-level overhead of trapping the signal and
the user-level overhead of catching and processing the signal. Unfortunately the world
is not perfect and therefore scenarios will appear where page faults arrive while the
communication thread is busy handling predictions initiated by an earlier page fault.

Page faults while predicting When a page fault occurs while the communication
thread is receiving predicted pages from the server, an interrupt flag is raised by the
execution thread in order to tell the communication thread that a new page fault has
occurred. Thereafter the execution thread enters a waiting barrier until the communi-
cation thread signals that the page causing the fault has been retrieved and remapped.
The communication thread checks the page fault interrupt flag between each retrieval
of predicted page data. If the interrupt flag has been raised the communication thread
handles the interrupting page fault and then continues the retrieval of predicted pages.
The communication thread needs to take several scenarios into account when a predict
interrupting page fault occurs, these are listed below:

• Faulting page already received and remapped

• Faulting page already received, but not yet remapped

• Faulting page in predicted set, and sent by server, but not yet received by client

• Faulting page in predicted set, but not yet sent from server

• Faulting page is not in the set of predicted pages

Page already received and remapped This is the simplest of the page fault interrupt
scenarios as the faulting page was predicted by the server and thereafter received and

76

Client

Page fault X
caught

Enter Mutex

Execution Thread

Signal exe thread

Raise
interrupt
flag: X

Check
interrupt flag:

X

Communication Thread

Receive
predicted
page Pn-3

Receive
predicted
page Pn-4

Leave
Mutex

Page X already
received and

remapped

Continue
execution

Wait for
signal

Receive
predicted
page Pn-1

Check
interrupt flag:

NONE

Check
interrupt flag:

NONE

Until prediction finished

Figure 6.5: A page fault arrives while predicting, but the faulting page has already been
received and remapped as a part of the active prediction

remapped by the client immediately after the page fault occurred in the execution thread.
In this case the communication doesn’t need to contact the memory server but merely
need to signal the execution thread that the page is swapped in and the execution thread
can continue with its computation. This is shown in figure 6.5

Page already received, but not yet remapped This situation is similar to the above,
except that the page has only been received and not yet remapped by the communication
thread. Therefore the communication needs to remap the page into the right virtual
memory slot before signaling the main thread that the page is swapped in and ready to
use.

Page in predicted set, and sent by server, but not yet received by client In the
two previous scenarios the faulting page was already received by the client as a part of
an active prediction and thereby the communication thread didn’t need to contact the
memory server in order to handle the page fault. On the contrary this scenario requires
the communication thread to contact the memory server, as the only information the
client has about the page is that it’s located at the memory server. The server receives
the predict interrupting page request and finds that the page has already been sent to the

77

Client ServerNetwork

Page fault X

Execution Comm.

Barrier W.

Barrier S.
Barrier R.Barrier W.

Predict for X
Remap X
Barrier S.

Barrier R.

Resume
Execution

Send page X

Send predict P1

Receive P1
Receive P2

Send predict P2

Request X

Barrier S. = Barrier Signal
Barrier W. = Barrier Wait
Barrier R. = Barrier Reached

Page fault Y

Send predict PN

Barrier W. Request Y

Receive Pn=Y

Receive PN

Barrier W.

Remap Pn=Y
Barrier S.

Barrier R.

Resume
Execution

Raise Flag Y

Add event X
Receive X

Enter Mutex

Leave Mutex

Enter Mutex

Leave Mutex

Evict pages

Send predict Pn = Y

Ignore request Y

 Remap
{P1-PN}\Pn=Y

Figure 6.6: A page fault arrives while predicting, a request is sent to the server which
finds that the page has already been sent to the client

client as a part of the predictions currently being processed. Thereby the server merely
ignores the request and continues sending the predicted pages it was processing when
the interrupt page fault arrived. The client will receive the faulting page in the sequence
of predicted pages unaware whether the server predicted it or responded to the issued
page request. When the faulting page is received it’s remapped into the right virtual
memory slot and the a signal is sent to the faulting execution thread that the page has
arrived and execution can continue. This is shown in figure 6.6

Page in predicted set, but not yet sent from server From the perspective of the
communication thread this is the same scenario as the one described above, the page is
not yet received from the server and therefore a page request is sent. The server receives
the request and finds that the page is in the list of predicted pages but has not yet been
sent to the client. The server then sends the page immediately and removes it from the
list of predicted pages.

Page is not in the set of predicted pages This scenario is handled like the above,
except that the page is not in the predicted set and is therefore not removed from the
predicted list after it has been sent. When the server receives the page request the

78

Client ServerNetwork

Page fault X

Execution Comm.

Barrier W.

Barrier S.
Barrier R.Barrier W.

Predict for X
Remap X
Barrier S.

Barrier R.

Resume
Execution

Send page X

Send predict P1

Receive P1
Receive P2

Send predict P2

Request X

Barrier S. = Barrier Signal
Barrier W. = Barrier Wait
Barrier R. = Barrier Reached

Page fault Y

Send predict PN
Add event Y
Send page Y

Barrier W. Request Y

Receive Y

Remap P1-PN
Receive PN

Barrier W.

Remap Y
Barrier S.

Barrier R.

Resume
Execution

Raise Flag Y

Add event X
Receive X

Enter Mutex

Leave Mutex

Enter Mutex

Leave Mutex
Evict pages

Figure 6.7: A page fault arrives while predicting, a request is sent to the server which
finds that the page fault is not in the predicted set and interleave the requested page in
between the predictions

page data is sent in between the predicted pages such that the page request is handled
immediately. This is shown in figure 6.7

Evicting pages In order to enforce the upper memory limit of the executing applica-
tion, pages need to be evicted when allocated memory is activated or pages are retrieved
from the memory server. Ideally eviction can be done asynchronously to the execution
thread but this requires the time gap between page faults to be large enough to hold
the time spent receiving predictions and evicting pages, see figure 6.8. When predicted
pages are remapped into the correct virtual page slot the state of the page in the local
page table is modified, likewise the state of evicted pages is changed after eviction.
These actions are performed by the communication thread that in order to modify the
page table needs to enter the page table mutex. The execution threads queue up for
the page table mutex if it’s busy when they need to enter it, this is not possible for the
communication thread as it will result in a deadlock. This is shown in figure 6.9. If
the mutex is available the communication thread remaps the predicted pages and evicts
pages to the server, otherwise an evict starvation flag is raised and the remap/eviction
action is postponed until a page out fault occurs, as the mutex will then be acquired

79

Client

Page fault X
caught

Signal comm thread
Enter Mutex

Request
page X and
predictions

Leave
Mutex

Page X
received and

remaped

Signal exe thread

Continue
execution

Execution Thread Communication Thread

Receive and
remap

predictions

Evict pages

Page fault Y
caught

Figure 6.8: The execution time after page fault X is large enough for the predictions
and eviction to complete before the page fault Y arrives

by the faulting execution thread. This is shown in figure 6.10. While this solution is
deadlock safe with respect to remapping predicted pages and evicting pages it also in-
troduces a possible bottleneck. This is because the mutex is not solely entered as a result
of page faults caused by accessing swapped out pages. The access violation could be
caused by writing to a clean page that is in mode read or a newly allocated page which
have not been referenced yet, this could result in the communication thread idling until
the next page fault caused by access to a swapped out page occurs, even though the star-
vation flag is raised. However this is a necessary cost as exclusive access to the local
page table is required whenever the page states are changed. Several more fine grained
mutex strategies exist, such as letting the communication thread continuously try to ob-
tain the page table mutex when the starvation flag is raised. This, however will impose
a significant overhead compared to the used strategy of waiting until the next swapped
out page fault occurs. Another strategy could be using page-based mutexes instead of
one global mutex for all pages. This, however would impose a significant space and
time overhead as mutexes consume memory and entering them impose synchronization
overheads.

Communication thread overview With all the URSL communication thread details
covered, a complete overview can be found in figure 6.11.

80

Client

Page fault X
caught

Mutex
Entered

Execution Thread Communication Thread

Receive
prediction

Pn-2

Receive
prediction

Pn-1

Enter Mutex

Remap
predictions

Evict pages

Executing

Barrier Wait

Receive
prediction

Pn

Barrier
Reached

Dead lock

Figure 6.9: A page fault arrives after the last predicted page has arrived at the commu-
nication thread, but before the remap is done. The execution thread enters the mutex
and waits for the page ready barrier to be reached. If the communication thread is put
in the queue for entering the mutex a deadlock will occur as the execution thread holds
the mutex and waits for a signal from the communication thread, which will not arrive
before the communication thread enters the mutex

81

Client Communication Thread

Page fault
arrived

Request/Receive/
Remap faulting

page

If evict starvation

Evict Pages

Remap
predictions

Receive
predictions

Remap
predictions

Page fault
barrier wait Evict Pages

If Mutex entered

Signal main thread

Else: Mark evict starvation

Main thread has left Mutex

Barrier wait

Main thread has entered Mutex

Figure 6.10: When the predicted page data is received from the server, the mutex is
entered if possible, and the predicted pages are remapped whereafter pages are evicted
to the remote memory server. If the mutex can not be entered, a starvation flag is raised
and the page remapping and eviction is performed when the next page out fault arrives,
as the faulting execution thread will then enter the page table mutex

82

Client Communication Thread

While
pending
pages

Page fault
arrived Evict pages

Request/Receive/
Remap faulting

page

Receive
predicted

page

Signal main
thread

Check for new
"interrupt" page

fault

Evict required ?

Interrupt page received ? Remap
"interrupt"

page

If new page fault Check
page state

If remapped

"Page ready"

If received

Remap
page

Sent page
request

If not present

Try
entering
Mutex

If Mutex entered

Evict pages

Remap
predictions

Page fault
barrier wait

If Mutex
not entered

Leave Mutex

Figure 6.11: The client communication thread

83

6.3 Online Prediction Problem
Oraculo uses event-based prediction, we base our events on the request of faulting pages
that arrives at the memory server. To get the most accurate prediction it would be
preferable to base the events on the memory access pattern of the executing application.
This, however is not feasible due to the enormous amount of events that would be
generated. In order to make accurate and efficient predictions a relatively small number
of representative events should be used. Furthermore the fact that the page referenced
bit is not available from user-level means that in order to record the memory access
pattern of the executing application every page would have to be protected in no-access
mode meaning that every page access would result in a page fault to be handled by the
framework. This would degrade performance to an extent where the framework would
be useless.

Because we don’t have any information about the referenced pages it’s not possible
to make feedback to the remote memory server about which of the predicted pages were
actually used, and which were just discarded during an evicting without ever being used.
The result is that a successful prediction can actually destroy the event sequence of
future events. Take for example the page access sequence “a, b, c, d, e, f” where “a, b,
c, d, e” is recorded by Oraculo. Lets say page “a” faults and is requested at the memory
server, Oraculo then returns “a” and along with “a” the predictions “b, c, d, e”. The
predicted pages are received and remapped before they are accessed and thereby the
next page fault that occurs is when accessing page “f”. This event is added to Oraculo
and eventually if “b, c, d, e,” is predicted every time page “a” faults the probability of
this prediction is degraded, as the new event sequence when faulting “a” will be, “a, f”
as “f” is the page faulting after “a”. This means that a successful prediction actually
messes up the previous measured events, this can not be solved as long as there is no
feedback to the predictor from the client.

6.4 Experiments
Like the initial URSL experiments, the experiments performed using predictions were
made in an isolated execution environment using a PlaystationR© 3 and a memory server
interconnected through a 1 Gb/s switch. The memory server, however, was upgraded
between the two experiments to a duel core Intel Xeon running at 1.88 GHz with 32 GB
of memory. The PlaystationR© 3 has 224 MB memory of total memory for the OS and
applications and it’s observed that the executing application is using approximately 175
MB of real memory when swapping to disk. In order to avoid that the machine used for
the experiments runs out of real memory, the real memory limit in URSL is set to 128
MB. URSL in itself uses 16 MB for the local page table and 4 MB for the buffer used to
store predicted pages before they are remapped into their correct virtual memory slots.

84

This is in total 148 MB of real memory, which should be a sufficient limit in respect of
the total 175 MB memory in order to avoid that the OS kills the experiment due to an
out of memory error. In the performed experiments the Oraculo system is configured
not to use partition pruning and node pruning, as the current implementation of Oraculo
is made in Java and the pruning of the Trie will result in the Java garbage collector to be
initialized arbitrarily. Because it can not be controlled by the system designer this may
cause two similar executions to provide ambiguous results. The Trie depth however is
enforced to be no deeper than three as the time adding events and searching for them
will otherwise increase beyond the reasonable. Furthermore Trie depth pruning doesn’t
need to involve the Garbage collector as the memory of a removed node is reused for the
arriving event that caused the pruning. In a production system one could port Oraculo
to C or C++ and then free up memory of the pruned partitions whenever this is suitable
with respect to the execution flow between the remote memory server and the URSL
client. To compare the performance of URSL with and without prediction the initial
experiments were repeated using the new framework with predictions, the result of the
experiments is described in the following sections.

6.5 Sequential Data Access
Similar to the sequential access experiment presented in the URSL chapter 5, the execu-
tion was performed by allocating N bytes of memory using malloc and then initializing
the memory to make sure it was mapped to physical memory. After memory initial-
ization a timer was started and the time spent traversing the memory start-to-end in 10
iterations reading each byte to produce a checksum was measured. This test is highly
I/O bound as the only computation done by the executing machine is one integer ad-
dition per byte that is read. The result of this experiment using prediction is shown in
figure 6.12. In this experiment the prefetching version using Oraculo outperforms the
original URSL framework by a factor of 2.5 when using a page block size of one, but
when the page block size of the original framework is raised to 64, where the network
bandwidth is saturated, the framework using the Oraculo predictor is outperformed by a
factor of 2.2. Using naive prefetching by increasing the page block size till the network
bandwidth is saturated results in optimal prefetching when the running application is
purely sequential, because every prefetched byte is used by the running application.
In addition the naive block prefetching doesn’t consume processing power, but most
importantly the pages prefetched are used by the application without causing any page
access violations. Finally the simple URSL framework without predictions uses a sin-
gle thread model where the Oraculo prediction model uses a communication thread to
receive predicted pages from the memory server. This in itself consumes time due to
context switching and synchronizing barriers which need to be met in order for the com-
munication thread to communicate with the faulting execution thread. To see how close

85

64 128 256 512 1024 2048

Megabytes

2

4

8

16

32

64

128

256

512

1024

2048

4096

T
im

e
(S

ec
o
n

d
s)

Sequential memory access

Remote swap PS3

Remote swap PS3 (PBS 64)

Remote swap PS3 using Oraculo

Figure 6.12: Performance of sequential memory access using prediction

the Oraculo prediction scheme could get to the naive block prefetching with a highly
I/O bound application we repeated the experiment using a learning iteration in order to
feed Oraculo with the page fault sequence before measuring the time of executing the
10 iterations. Thereby Oraculo has knowledge of the page sequence before the time
measurement begins. The result of this experiment is shown in figure 6.13. Using the
learning iteration lowered the gap between using Oraculo prefetching and optimal naive
block prefetching, but still the optimal naive block prefetching is faster by a factor of
1.4, due to the overheads of catching page faults using a communication thread and
actually performing the predictions.

6.6 Sequential Data Access with Writes
In this test we used the sequential test described in the previous section and performed
a write to each page accessed after its data had been read. The result is shown in figure
6.14. This experiment reveals that when performing a write to every page read, the
naive prefetching using a page block size of 64 still performs better than the Oraculo
prediction based solution. However the performance gap between the optimal naive
and the prediction based solution is smaller than in the last experiment where no pages
were written back to the server, namely a factor of 1.6. In this test each page read
is modified which means they are written back to the server when evicted from real
memory. The prediction based solution have two advantages over the original version,
namely that pages are evicted asynchronously to execution if possible, however with
the amount of computation performed in this experiment the most likely course is that

86

64 128 256 512 1024 2048

Megabytes

2

4

8

16

32

64

128

256

512

1024

T
im

e
(S

ec
o
n

d
s)

Sequential memory access

Remote swap PS3 (PBS 64)

Remote swap PS3 using Oraculo

Remote swap PS3 using Oraculo with a learning itteration

Figure 6.13: Performance of sequential memory access using prediction with a learning
iteration

64 128 256 512 1024 2048

Megabytes

2

4

8

16

32

64

128

256

512

1024

2048

4096

T
im

e
(S

ec
o
n

d
s)

Sequential memory access with writes

Remote swap PS3

Remote swap PS3 (PBS 64)

Remote swap PS3 using Oraculo

Figure 6.14: Performance of sequential memory access with writes using prediction

87

64 128 256 512 1024 2048

Megabytes

2

4

8

16

32

64

128

256

512

1024

2048

T
im

e
(S

ec
o
n

d
s)

Sequential memory access with writes

Remote swap PS3 (PBS 64)

Remote swap PS3 using Oraculo

Remote swap PS3 using Oraculo with a learning itteration

Figure 6.15: Performance of sequential memory access with writes and a learning iter-
ation using prediction

evictions are bulked, meaning that when the predicted pages have been received they
are remapped and first then pages are evicted. This means that if for example 128 pages
were received as a part of a page fault and the following predict, then 128 pages need to
be evicted in order to free up memory for the arriving pages. Because we need to evict
128 pages at once they can be bulked into one evict and thereby only one write is issued
for all of the 128 pages. Like with the sequential experiment we remade the experiment
using a learning iteration before measuring time over the 10 iterations. The result of
this experiment is shown in figure 6.15. Like the sequential experiment without writes
the execution with a learning iteration decreases the gap between the naive page block
prefetcher and the Oraculo based prediction, but still it doesn’t outperform the optimal
naive page block prefetcher which is faster by a factor of 1.2.

6.7 Scattered Memory Access
This test was designed similarly to the sequential access test, but instead of reading the
pages in a sequential manner the data is read one page at a time, starting with the first
page followed by the last page and then the second page followed by the second last
page, this pattern is used until all pages are read. The result is shown in figure 6.16.
Like the experiment using sequential access, the prefetching version using Oraculo out-
performs the original URSL framework by a factor of 2.4 when using a page block
size of one, but when the original framework uses the optimal naive prefetching with

88

64 128 256 512 1024 2048

Megabytes

2

4

8

16

32

64

128

256

512

1024

2048

4096

T
im

e
(S

ec
o
n

d
s)

Scattered memory access

Remote swap PS3

Remote swap PS3 (PBS 64)

Remote swap PS3 with Oraculo

Figure 6.16: Scattered memory access performance using prediction

a page block size of 64 the Oraculo version is outperformed by a factor of 2.1. The
introduction of a learning iteration shows the same pattern as with the sequential data
access and the prediction based prefetching is outperformed by the optimal naive page
block based prefetching by a factor of 1.5. The result is shown in figure 6.17. Actually
the prediction based prefetching performs a bit worse compared to the sequential ver-
sion, which indicates that the predictor is not making the correct predictions even with
a learning iteration. This indicates that the online prediction problem has an effect in
this experiment where pages are accessed in an uneven way.

6.8 Scattered Memory Access with Write
This experiment is performed like the above scattered experiment, but with a write to
each page like in the sequential with write experiment. The result is shown in figure
6.18. Like in the sequential with write experiment the performance of the Oraculo
predicted prefetching performs better than in the scattered experiments without write,
but it still doesn’t outperform the initial naive page block prefetching which is faster
by a factor of 1.7. The same is the case if we use a learning iteration, performance
gets better, but doesn’t outperform the naive page block prefetching which is faster by
a factor of 1.3. This is shown in figure 6.19.

89

64 128 256 512 1024 2048

Megabytes

2

4

8

16

32

64

128

256

512

1024
T

im
e

(S
ec

o
n

d
s)

Scattered memory access

Remote swap PS3 (PBS 64)

Remote swap PS3 with Oraculo

Remote swap PS3 using Oraculo with a learning itteration

Figure 6.17: Performance of scattered memory access using prediction with a learning
iteration

64 128 256 512 1024 2048

Megabytes

2

4

8

16

32

64

128

256

512

1024

2048

4096

T
im

e
(S

ec
o
n

d
s)

Scattered memory access with writes

Remote swap PS3

Remote swap PS3 (PBS 64)

Remote swap PS3 with Oraculo

Figure 6.18: Performance of scattered memory access with writes using prediction

90

64 128 256 512 1024 2048

Megabytes

2

4

8

16

32

64

128

256

512

1024

2048

T
im

e
(S

ec
o
n

d
s)

Scattered memory access with writes

Remote swap PS3 (PBS 64)

Remote swap PS3 with Oraculo

Remote swap PS3 using Oraculo with a learning itteration

Figure 6.19: Performance of scattered memory access with writes using prediction and
a learning iteration

6.9 Lattice Boltzmann
The Lattice Boltzmann experiment performed in chapter 5 was repeated using the Orac-
ulo prediction prefetching, the result of this test is shown in figure 6.20. This experiment
reveals that the Oraculo based prediction is a factor of 1.3 faster than the optimal naive
prefetching using a page block size of 4. Lattice Boltzmann is an iterative application
and therefore a page fault pattern can easily be obtained using a learning iteration. The
experiment was repeated using a learning which showed no significant speed up. This
result is shown in figure 6.21. The reason why the learning iteration didn’t provide
any significant speed-up is because the application have a non-sequential memory ac-
cess pattern that causes the pages to be evicted and retrieved several times during one
iteration. Thereby the predictor is capable of providing correct predictions before the
first iteration of the application is done. A more fine grained definition of the learning
iteration than merely using what the application defines as the first iteration is needed if
a learning iteration is to be useful in this scenario.

6.10 Fast Fourier Transform
The fftw experiment performed in chapter 5 was repeated using the Oraculo predic-
tion prefetching, the result of this test is shown in figure 6.22. This test reveals that
the Oraculo prediction based prefetching outperforms the naive page-based prediction
though only slightly namely by a factor of 1.2. Because fftw is not an iterative ap-

91

1024 2048

Resolution

4

8

16

32

64

128

256

512

1024

2048

4096
T

im
e

(S
ec

o
n

d
s)

forcedPoiseuille2d

Remote swap PS3

Remote swap PS3 (PBS 4)

Remote swap PS3 using Oraculo

112 196 304 436 592 772 976 1204 1456 2033

Memory consumption (MB)

4

8

16

32

64

128

256

512

1024

2048

4096
T

im
e

(S
ec

o
n

d
s)

Figure 6.20: Lattice Boltzmann performance using prediction

1024 2048

Resolution

4

8

16

32

64

128

256

512

1024

2048

4096

T
im

e
(S

ec
o
n

d
s)

forcedPoiseuille2d

Remote swap PS3 (PBS 4)

Remote swap PS3 using Oraculo

Remote swap PS3 using Oraculo with a learning itteration

112 196 304 436 592 772 976 1204 1456 2033

Memory consumption (MB)

4

8

16

32

64

128

256

512

1024

2048

4096

T
im

e
(S

ec
o
n

d
s)

Figure 6.21: Performance of Lattice Boltzmann using prediction and a learning iteration

92

524288 1048576 2097152 4194304 8388608 16777216 33554432 67108864

Number of transformed compex numbers

0.5

1

2

4

8

16

32

64

128

256

512

1024

T
im

e
(S

ec
o
n

d
s)

FFTW

Remote swap PS3

Remote swap PS3 with Oraculo

20 36 67 131 259 515 1027 2051

Memory consumption (MB)

0.5

1

2

4

8

16

32

64

128

256

512

1024

T
im

e
(S

ec
o
n

d
s)

Figure 6.22: Fftw performance using prediction

plication Oraculo is having a hard time learning the event sequence of faulting pages.
Therefore we tried to modify the type of events added to Oraculo such that instead of
using the absolute page indexes as events we used the delta indexes. That is the distance
δ = Xn − Xn−1 Where Xn−1 is the page index of the last faulting page and Xn is the page
index of the current page fault. Thereby we get an memory access sequence based on
the variety of pages instead of the absolute values. Because a lot more similar events
will happen e.g. the delta distance of 1 is much more likely than the absolute page in-
dex X the probability threshold used by Oraculo was lowered from 0.5 to 0.01 as initial
tests showed that this value was the optimal regarding the hit rate of the received pre-
dicted pages. The result of the fftw experiment using delta prediction with a probability
threshold of 0.01 is shown in figure 6.23. This experiment shows that using predictions
based on the delta value instead of the absolute page indexes halves the execution time
of fftw which means that the Oraculo prediction based version outperforms the naive
page block prefetching method by a factor 2.

6.11 Barnes-Hut
The Barnes-hut experiment is performed like in chapter 5, and the result is shown in fig-
ure 6.24. It’s seen that the naive page block prefetching algorithm outperforms Oraculo
prediction by a factor of 1.3 when using a page blocks size of 8 in the naive prediction.
Delta prediction was tried with this experiment, but didn’t improve performance. The
Barnes-Hut application has long execution time and therefore only one step of the sim-

93

524288 1048576 2097152 4194304 8388608 16777216 33554432 67108864

Number of transformed compex numbers

0.5

1

2

4

8

16

32

64

128

256

512

1024
T

im
e

(S
ec

o
n

d
s)

FFTW

Remote swap PS3

Remote swap PS3 with Oraculo

Remote swap PS3 with Oraculo delta

20 36 67 131 259 515 1027 2051

Memory consumption (MB)

0.5

1

2

4

8

16

32

64

128

256

512

1024
T

im
e

(S
ec

o
n

d
s)

Figure 6.23: Fftw performance using delta prediction

524288 1048576 2097152 4194304 8388608

Number of Bodies

64

128

256

512

1024

2048

4096

8192

T
im

e
(S

ec
o

n
d

s)

Barnes-Hut N-Body with prediction

Remote swap PS3

Remote swap PS3 (PBS 8)

Remote swap PS3 with Oraculo

107 212 424 845 1681

Memory consumption (MB)

64

128

256

512

1024

2048

4096

8192

T
im

e
(S

ec
o

n
d

s)

Figure 6.24: Barnes-Hut performance with prediction

94

ulations was performed in this experiment. Further analyses of the Barnes-Hut memory
access pattern is needed to fine tune the prediction based prefetcher towards this appli-
cation, which is a subject for further investigation.

6.12 Simulated Network Latency
All the above experiments were performed in a low latency high bandwidth network in
order to see how the presented solutions perform at their optimal conditions. However
in order to use the presented framework in a real Grid environment latency has to be
taken into account. Therefore support for simulated higher latencies was implemented
into the server part of the framework. When the server receives a request for a page,
it sleeps an number of milliseconds (t latency) to simulate round-trip latency before
sending the data of the faulting page to the client. Predictions are thereafter sent with-
out any latency, as they are written to the network as successors to the faulting page,
and thereby no extra latency is required. If an interrupt page fault arrives at the server
while sending predictions, the t latency milliseconds are simulated by starting a timer
continuing sending predictions until the t latency milliseconds have passed by. Then
the interrupt page fault is severed whereafter the server continues to send the remaining
predicted pages. This is done to simulate a realistic scenario where predicted pages are
sent to the client while the interrupt page request is on its way through the network. If
the transmission of a prediction finishes after an interrupt page has arrived, but before
the t latency milliseconds have passed, the remaining milliseconds is slept before han-
dling the request. Additional latency is not put on page evictions as evicted pages are
sent without blocking from the client and thereby will be received at the server before
the next page fault request arrives. Thereby the evict latency is implicitly applied by the
simulated latency associated with the successive page fault.

To verify the effect of higher latencies, the above experiments were repeated us-
ing the server with simulated latency set to 40 ms which corresponds to the latency
between my home ADSL line and the university network where the memory server is
located. The sequential memory access used as the first experiment was executed with
these new settings. This is an I/O bound test that is easy to predict due to the fact it’s
purely sequential. The result of this experiment is shown in figure 6.25. This experi-
ment shows that the original framework with the naive page block prefetching outper-
forms the Oraculo based prediction without learning by a factor of 6, this is due to the
amount of page faults which occurs within the first iteration before Oraculo learns the
page sequence. For example in the execution using 2048 MB of memory 524288 page
faults occur in each iteration which each have a round-trip latency of 40 ms. This gives
20972 seconds of accumulated latency just waiting for responses on page requests. In
the naive page block prefetching strategy using 64 pages per request the accumulated
latency in each iteration is 327 seconds as the amount of page faults is lowered by a

95

64 128 256 512 1024 2048

Megabytes

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

T
im

e
(S

ec
o
n

d
s)

Sequential memory access with 40 ms network latency

Remote swap PS3 (PBS 64)

Remote swap PS3 with Oraculo

Remote swap PS3 using Oraculo with a learning itteration

Figure 6.25: Performance of sequential memory access using prediction

factor corresponding to the amount of pages sent per request. In order to clarify the per-
formance obtained if the predictor has knowledge of the page sequence in advance we
used a learning iteration before starting measuring execution time. This resulted in the
predictor outperforming the naive prefetching method by a factor of 2.5 due to the asyn-
chronous nature of the version using Oraculo prediction. That is, the predicted pages
are sent while the execution thread performs it’s work and while interrupting page faults
occur. The result is that the latency of predicted pages are hidden as they are streamed to
the client while the application performs execution whereas the naive method pays the
latency for every page fault. This, however, depends highly on the success of the predic-
tor and the success of using a learning iteration. In effect the sequential, the scattered
and the Lattice Boltzmann experiments are very successful with high latencies and a
learning iteration. Performance of the fftw and Barnes-Hit experiments in the simulated
latency environment is not presented, as they didn’t terminate within the experiment
time frame. The reason is that they are not iterative and thereby a learning iteration is
not easily obtained. Effectively providing meaningful page fault learning sequences for
such applications are subject for further research. The Lattice Boltzmann experiment
in a high latency, high bandwidth environment on the other hand was very successful
with a speed-up of 10 at the most memory consuming experiment and the gap between
the naive page block prefetching and the prediction based prefetching is growing as the
memory consumption grows. The result of the Lattice Boltzmann experiment using
simulated latencies is shown in figure 6.26.

96

1024 2048

Resolution

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

T
im

e
(S

ec
o

n
d

s)

forcedPoiseuille2d 40 ms network latency

Remote swap PS3 (PBS 4)

Remote swap PS3 using Oraculo with a learning itteration

112 196 304 436 592 772 976 1204 1456 2033

Memory consumption (MB)

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

T
im

e
(S

ec
o

n
d

s)

Figure 6.26: Performance of scattered memory access with writes using prediction and
a learning iteration

6.13 Experiment Summary
The experiments made in chapter 5 were re-executed using the presented prediction
based prefetching and the performance was compared to the performance obtained us-
ing the optimal page block sizes for each experiment in the original URSL framework.
In a low latency, high bandwidth network setup the naive page block prefetching method
outperforms the prediction-based framework when performing the highly I/O bound ex-
periments, namely sequential, sequential with write, scattered and scattered with write.
When it comes to the real scientific applications, the Lattice Boltzmann experiment
using the prediction based framework outperforms the naive page block prefetching
scheme with a factor of 1.3. Lattice Boltzmann is an iterative scientific application
traversing the data set over and over meaning that the page fault sequence can be easily
obtained, however in each iteration the memory pages are received and evicted sev-
eral times and therefore a learning iteration didn’t provide any significant speedup in
the low latency, high bandwidth scenario as pages are already correctly predicted and
prefetched in an early state of the iteration. A more fine grained learning iteration is to
be defined in order to make a learning iteration useful in this scenario.

The fftw application is non-iterative and therefore there is no novel way of providing
a page fault sequence in advance, instead we tried to use the delta value of page faults
instead of real values. Using absolute page indexes the naive page block prefetcher is
outperformed by a factor of 1.2, and when using delta indexes for predictions the per-
formance is increased by a factor of two outperforming the naive page block prefetcher

97

with a factor of 2. The Barnes-Hut experiments didn’t prove any significant speed-
up compared to the naive page block prefetcher, to improve this a closer study of this
applications page access pattern is required.

The Oraculo predictor was on par with the naive page block prefetcher and the delta
prediction provided no significant improvement.

Moving the experiments from a low latency, high bandwidth network to a high
latency, high bandwidth network was done by introducing simulated latencies to the
framework. The sequential memory access experiment were re-executed introducing
a 40 ms simulated round trip latency. This experiment shows that without a learning
iteration the naive page block prefetcher outperforms the prediction based prefetch-
ing scheme due to the amount of page faults occurring in the first iteration until the
predictor learns the page fault sequence. When using a learning iteration before start-
ing time measurements the prediction based prefetcher outperform the naive page block
prefetching scheme with a factor of 2.5 The sequential with write, scattered memory ac-
cess and scattered memory access with writes were not measured but expected to show
similar results as the previous experiments with these applications showed that they be-
haved similar to each other. The Lattice Boltzmann experiments showed really good
results using the simulated high latency network when the predictor was provided with
an initial page fault sequence, namely by outperforming the naive page block prefetcher
with a factor of 10. The fftw and Barnes-Hut were not applicable in the simulated
high-latency scenario and due to their non-iterative nature a proper learning execution
method was not found.

The results show that using a page-based prediction system performs very well in a
high latency high bandwidth environment compared to the naive page block prefetching
mechanism when it comes to iterative applications with an initial page fault sequence
obtained in advance. In the experiments performed the prediction based prefetching
method didn’t perform well with the non-iterative applications, specially not in the high
latency scenario where the experiments were dropped due to the long lasting executions
in each experiment. This is regarded to be a matter of defining new ways of gathering
events for the page predictor or a matter of pre-recording the page fault sequence of
these executions and saving them for further use. A method for effectively making
learning executions for arbitrary applications and providing them effectively to the ex-
ecution resource through the Grid environment is subject for further research.

98

Chapter 7

Future work

The research presented in this dissertation approaches Grid-enabling non-Computer re-
sources for scientific computing. During the first part of the project we found that mem-
ory shortage was one of the major issues when connecting non-Computer resources to
Grid infrastructures and therefore the last part of the project is concentrated on provid-
ing memory to Grid resources through the Grid infrastructure. The presented research
covers the design, implementation and analysis of a frame work that is still in it’s early
state and therefore there are several possibilities of improvement. In this chapter we
will sum up the open ends this dissertation leaves and suggestions for further progress
within the topic.

With respect to prediction based prefetching, the sequence of events used for pre-
dicting future events is a subject for further research. In this dissertation the page fault
indexes or their delta’s are used, but it might be that there are more efficient ways
of representing page fault events regarding predicting future events. Another research
topic which is left open is finding a general way of obtaining learning sequences of
the executing applications through the Grid framework automatically. That is the event
sequence is recorded and adjusted by the Grid middleware in order to provide an op-
timal starting sequence which can be provided along with the Grid job when starting
a new execution. The high latency, high bandwidth experiments revealed that a good
starting event sequence is crucial for deployment in real Grid environments regarding
performance.

In addition to the event sequence optimizations a future topic is making the memory
servers an incorporated part of the Grid infrastructure, so that when a Grid job is submit-
ted to the Grid infrastructure, the scheduler decides which resource should execute the
job based on the requirements of the job. If it turns out that the most suitable resource
is one which doesn’t have sufficient memory to execute the application, the Grid infras-
tructure could use the remote memory framework to provide the additional memory to
the resource. In order to minimize latency a memory server close to the resource and
with enough free memory should be used. In addition multiple memory server could

99

be connected in a raid-0 or raid-1 fashion in order to boost either bandwidth, reliabil-
ity or both using raid-10. Furthermore support for automatic checkpointing could be
embedded into the framework. The time transferring memory and execution states to
a remote location is often a show-stopper when it comes to checkpointing, but when
using a remote memory framework the majority of the memory in use by a running ap-
plication is already located at the a memory server in the Grid framework. Performing
a checkpoint will then require much less effort than in the usual case where the whole
memory footprint is located on the client at the time of a checkpoint.

Finally an interesting project could be to incorporate the remote memory framework
into a virtual machine such as VirtualBox[Wat08]. By embedding the framework in
the virtual machine neither the guest operating system, nor the guest applications will
ever be aware of the fact that memory is transferred to a remote destination. This might
prove to perform better than the current system as the overhead of catching and handling
page faults at user-level might be reduced if not removed depending on the design and
implementation chosen.

100

Chapter 8

Conclusion

Non-Computer resources are a broad term for a variety of different computer devices.
In the presented work we focused on Grid enabling non-computer devices for scien-
tific applications. Firstly “The One-Click Grid Resource Model” was presented which
demonstrated a framework for connecting all Java capable Internet devices, with a min-
imum amount of work both from the Grid administrators and the resource owners. This
model requires existing Java applications to be modified to use the framework, how-
ever the modifications are minimal, as it’s only a question of calling a different Java
main method, and using a customized set of operations for stdout/stderr and file-access.
While Java is not the obvious choice for scientific computing, this framework repre-
sents a valuable proof of concept regarding the minimal requirements for connecting
resources to a Grid framework and has proved valuable when introducing Grid comput-
ing to new users. The framework is fully functional and is deployed as part of the Mini-
mum intrusion Grid. The “One-Click resource model” resulted in a paper published and
presented at the HPCC07[aBV07] conference in Houston, Texas in September 2007.

Secondly the “PS3TM Grid Resource-model” was presented, which introduces a way
to connect PlaystationR© 3’s into a Grid infrastructure. The PS3TM represents a powerful
computational resource as each machine has a theoretical peek performance of 153,6
GFLOPS in single precision. With more than 9 millions sold this sums up to a quite
powerful resource even if only a fraction of them are gathered. The result of this re-
search is a LIVECD which boots the PS3TM into a sandboxed Linux Grid execution
environment. It cannot harm any existing operating system or data, as the execution
environment doesn’t have access to the HDD controller of the PS3TM. The shortcoming
of this model is that file access is limited to using 252 MB of the GPU’s VRAM as
block-device, and the write speed to the VRAM is limited to 10 MB/s which is quite
slow. The “PS3TM Grid Resource-model” resulted in a paper published and presented
at the GCA08[RB08] conference in Las Vegas, Nevada in July 2008.

To show that non-computer resources represent a real value to the Grid environment,
an X86 application was ported to the PS3TM architecture. This was done to verify the

101

power of the PS3TM as well as addressing some of the issues to be taken into account
when choosing to use a non-computer resource for computation. This work resulted in
the paper ”Application Porting and Tuning on the Cell-BE Processor” presented at the
PARA08[RV09] conference in Trondheim, Norway in May 2008.

The initial research showed that one shortcoming of non-Computer devices is the
amount of memory available at those devices. As non-Computer devices are often non-
extendible when it comes to hardware more physical memory can not simply be added.
Furthermore the amount of general purpose disk present at the devices might severely
be limited and un-utilizable for swap. To address these issues we presented the The
Remote Memory Library which provides memory-limited Grid resources with memory
through the Grid infrastructure. The Remote Memory Library presents a method for
providing remote swap to global Grid infrastructures. We present a fully transparent
user-level library, which can be submitted along with the Grid jobs eliminating the
need to modify neither the OS of the executing Grid resource nor the Grid application
to execute. Furthermore the user-level approach makes it possible to throttle the real
memory usage of the running job, through the Grid middleware, and thereby increase
the pool of resources capable of fulfilling the memory requirements of a given job.
Last but not least the user-level approach ensures that only pages that are used by the
Grid application are subject for eviction. The disadvantages of using the transparent
user-level approach is the time overhead of passing signals, page mappings and page
protections between kernel- and user-level, as well as the space overhead of keeping
a local process page table within the framework as one can’t access the page data-
structures of the kernel from user-level.

While the widely used on-demand paging scheme performs well in a low latency
high bandwidth network, it comes short when moving to a real high latency Grid envi-
ronment. To address this we added asynchronous event based prediction to the frame-
work in order to use the growing bandwidth of computer networks for latency hiding.
Experiments showed that the asynchronous prediction based page prefetching scheme
performed well in high latency, high bandwidth environments using iterative scientific
applications. The non-iterative applications didn’t show usable performance in the high
latency, high bandwidth network, this however is regarded as a matter of gathering use-
ful initial event sequences for these kinds of applications which is a subject for further
research.

102

Bibliography

[AB08] Rasmus Andersen and Brian Vinter, The scientific byte code virtual ma-
chine, in Arabnia [Ara08], pp. 175–181.

[aBV06] Rasmus Andersen and Brian Vinter, Harvesting idle windows cpu cycles
for grid computing, GCA (Hamid R. Arabnia, ed.), CSREA Press, 2006,
pp. 121–126.

[aBV07] Martin Rehr and Brian Vinter, The one-click grid-resource model, HPCC
(Ronald H. Perrott and Barbara M. Chapman and Jaspal Subhlok and Ro-
drigo Fernandes de Mello and Laurence Tianruo Yang, ed.), Lecture Notes
in Computer Science, vol. 4782, Springer, 2007, pp. 296–308.

[ACC+03] Roberto Alfieri, Roberto Cecchini, Vincenzo Ciaschini, Luca
dell’Agnello, Ákos Frohner, Alberto Gianoli, Károly Lörentey, and
Fabio Spataro, VOMS, an authorization system for virtual organizations,
European Across Grids Conference (F. Fernández Rivera, Marian Bubak,
A. Gómez Tato, and Ramon Doallo, eds.), Lecture Notes in Computer
Science, vol. 2970, Springer, 2003, pp. 33–40.

[ACK+02] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan
Werthimer, Seti@home: an experiment in public-resource computing,
Commun. ACM 45 (2002), no. 11, 56–61.

[And04] David P. Anderson, Boinc: A system for public-resource computing and
storage, GRID ‘04: Proceedings of the 5th IEEE/ACM International
Workshop on Grid Computing (Washington, DC, USA), IEEE Computer
Society, 2004, pp. 4–10.

[Ara08] Hamid R. Arabnia (ed.), Proceedings of the 2008 international conference
on grid computing & applications, gca 2008, las vegas, nevada, usa, july
14-17, 2008, CSREA Press, 2008.

[ARV09] Rasmus Andersen, Martin Rehr, and Brian Vinter, Cycle-scavenging in
grid computing, Grid Technology and Applications: Recent Develop-

103

ments (H.R: Arabina G.A. Gravvanis, J.P. Morrison and D.A. Power, eds.),
Nova Science Publishers Inc., Hauppauge, NY, USA, 2009, p. Chapter 5.

[AV05] Rasmus Andersen and Brian Vinter, Transparent remote file access in the
minimum intrusion grid, WETICE ’05: Proceedings of the 14th IEEE In-
ternational Workshops on Enabling Technologies: Infrastructure for Col-
laborative Enterprise (Washington, DC, USA), IEEE Computer Society,
2005, pp. 311–318.

[Bar] Joshua Edward Barnes, ftp://ftp.ifa.hawaii.edu/pub/barnes/treecode.

[BEJ+09] Adam L. Beberg, Daniel L. Ensign, Guha Jayachandran, Siraj Khaliq, and
Vijay S. Pande, Folding@home: Lessons from eight years of volunteer
distributed computing, IPDPS ‘09: Proceedings of the 2009 IEEE Interna-
tional Symposium on Parallel&Distributed Processing (Washington, DC,
USA), IEEE Computer Society, 2009, pp. 1–8.

[BH86] Josh Barnes and Piet Hut, A hierarchical O(N log N) force-calculation
algorithm, Nature 324 (1986), no. 6096, 446–449.

[BLL91] Allan Bricker, Michael Litzkow, and Miron Livny, Condor technical sum-
mary, Tech. report, May 06 1991.

[Cat] Gentoo Catalyst, http://www.gentoo.org/proj/en/releng/

catalyst.

[CFJ+08] Toni Cortes, Carsten Franke, Yvon Jégou, Thilo K̃ielmann, Domenico
Laforenz, Brian Matthews, Christine M̃orin, Luis Pablo Prieto, and
Alexander Reinefeld, Xtreemos: a Vision for a Grid Operating System,
Technical report 4, XtreemOS European Integrated Projet, May 2008.

[CRDI05] Thomas Chen, Ram Raghavan, Jason Dale, and Eiji Iwata, Cell broad-
band engine architecture and its first implementation, IBM devel-
operWorks (2005), http://www.ibm.com/developerworks/power/
library/pa-cellperf.

[cUR] cURL, http://curl.haxx.se/.

[dANV+05] Marcos Dias de Assuno, Krishna Nadiminti, Srikumar Venugopal, Tianchi
Ma, and Rajkumar Buyya, An integration of global and enterprise grid
computing: Gridbus broker and xgrid perspective., GCC (Hai Zhuge
and Geoffrey Fox, eds.), Lecture Notes in Computer Science, vol. 3795,
Springer, 2005, pp. 406–417.

104

http://www.gentoo.org/proj/en/releng/catalyst
http://www.gentoo.org/proj/en/releng/catalyst
http://www.ibm.com/developerworks/power/library/pa-cellperf
http://www.ibm.com/developerworks/power/library/pa-cellperf
http://curl.haxx.se/

[Dic] The Free Dictionary, http://www.tfd.com.

[Dij72] Edsger W. Dijkstra, Chapter i: Notes on structured programming, 72–82.

[EEE+03] Paula Eerola, Tord Ekelöf, Mattias Ellert, John Renner Hansen, Aleksandr
Konstantinov, Balázs Kónya, Jakob Langgaard Nielsen, Farid Ould-Saada,
Oxana Smirnova, and Anders Wäänänen, The nordugrid architecture and
tools, CoRR physics/0306002 (2003).

[ext] PS3 Linux extensions, ftp://ftp.uk.linux.org/pub/linux/

Sony-PS3.

[FJ05] Matteo Frigo and Steven G. Johnson, The design and implementation of
FFTW3, Proceedings of the IEEE 93 (2005), no. 2, 216–231, Special issue
on ‘Program Generation, Optimization, and Platform Adaptation”.

[FKT01] Ian Foster, Carl Kesselman, and Steven Tuecke, The anatomy of the Grid:
Enabling scalable virtual organization, The International Journal of High
Performance Computing Applications 15 (2001), no. 3, 200–222.

[For94] Message Passing Interface Forum, Mpi: A message-passing interface
standard, 1994.

[Fos02] Ian Foster, The grid: A new infrastructure for 21st century science,
Physics Today 55(2) (2002), 42–47.

[Fos06] Ian T. Foster, Globus toolkit version 4: Software for service-oriented sys-
tems, J. Comput. Sci. Technol. 21 (2006), no. 4, 513–520.

[Gie78] Michel Gien, A file transfer protocol (ftp)., Computer Networks 2 (1978),
312–319.

[gLi] gLite, www.glite.org.

[HFPS99] R. Housley, W. Ford, W. Polk, and D Solo, Internt x.509 public key in-
frastrucure certificate and crl profile, RFC 2459 Edition, January 1999,
http://www.ietf.org/rfc/rfc2459.txt.

[HHML05] Jose Herrera, Eduardo Huedo, Rubn S. Montero, and Ignacio Martn
Llorente, Porting of scientific applications to grid computing on gridway.,
Scientific Programming 13 (2005), no. 4, 317–331.

[IBM07] Cell broadband engine programming handbook, 2007, http:

//www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/

9F820A5FFA3ECE8C8725716A0062585F/$file/CBE_Handbook_v1.

1_24APR2007_pub.pdf, pp. 891–703.

105

ftp://ftp.uk.linux.org/pub/linux/Sony-PS3
ftp://ftp.uk.linux.org/pub/linux/Sony-PS3
www.glite.org
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/9F820A5FFA3ECE8C8725716A0062585F/$file/CBE_Handbook_v1.1_24APR2007_pub.pdf
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/9F820A5FFA3ECE8C8725716A0062585F/$file/CBE_Handbook_v1.1_24APR2007_pub.pdf
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/9F820A5FFA3ECE8C8725716A0062585F/$file/CBE_Handbook_v1.1_24APR2007_pub.pdf
http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/9F820A5FFA3ECE8C8725716A0062585F/$file/CBE_Handbook_v1.1_24APR2007_pub.pdf

[iU] Filesystem in Userspace, http://fuse.sourceforge.net/.

[java] Java applet security, http://java.sun.com/security/

javaone97-whitepaper.html.

[javb] Java applets, http://Java.sun.com/applets.

[Jow07] Mohammad Jowkar, Exploring the Potential of the Cell Processor for
High Performance Computing, Master’s thesis, University of Copenhagen,
Denmark, August 2007.

[KB06] Henrik Hoey Karlsen and Brian Vinter, Vgrids as an implementation of
virtual organizations in grid computing, WETICE, IEEE Computer Soci-
ety, 2006, pp. 175–180.

[KF99] Carl Kesselman and Ian Foster, The grid: Blueprint for a new computing
infrastructure, Morgan Kaufmann Publishers, San Francisco, CA., 1999.

[KL96] Thomas M. Kroeger and Darrell D. E. Long, Predicting file system ac-
tions from prior events, ATEC ‘96: Proceedings of the 1996 annual con-
ference on USENIX Annual Technical Conference (Berkeley, CA, USA),
USENIX Association, 1996, pp. 26–26.

[KL01] Tom M. Kroeger and Darrell D. E. Long, Design and implementation
of a predictive file prefetching algorithm, Proceedings of the General
Track: 2002 USENIX Annual Technical Conference (Berkeley, CA,
USA), USENIX Association, 2001, pp. 105–118.

[KV05] Henrik Hoey Karlsen and Brian Vinter, Minimum intrusion grid - the
simple model, WETICE ’05: Proceedings of the 14th IEEE Interna-
tional Workshops on Enabling Technologies: Infrastructure for Collabo-
rative Enterprise (Washington, DC, USA), IEEE Computer Society, 2005,
pp. 305–310.

[Lin] Gentoo Linux, http://www.gentoo.org.

[LT01] L. Liming and S. Tuecke, GridFTP protocol ANL category: ? march 2001
expires: August 2001 page 1 of 21 gridFTP: Protocol extensions to FTP
for the grid, February 27 2001.

[MB10] Martin Rehr and Brian Vinter, The User-level Remote Swap Library,
HPCC, 2010, To Appear.

106

http://fuse.sourceforge.net/
http://java.sun.com/security/javaone97-whitepaper.html
http://java.sun.com/security/javaone97-whitepaper.html
http://Java.sun.com/applets
http://www.gentoo.org

[MBC04] D S Myers, A L Bazinet, and M P Cummings, Expanding the reach of
grid computing: Combining globus- and boinc-based systems, Journal of
Parallel and Distributed Computing (2004).

[misa] Dataynapse, http://www.datasynapse.com.

[misb] Entropia (SGE), www.entropia.com.

[misc] Sun Grid Engine (SGE), http://gridengine.sunsource.net/.

[mis02] Network working group E. rescorla request for comments: 2818 RTFM,
inc. category: Informational may 2000 HTTP over TLS, March 27 2002.

[MSVR07] Yassene Mohammed, Ulrich Sax, Fred Viezens, and Otto Rienhoff, Short-
comings of current grid middlewares regarding privacy in healthgrids.,
Stud Health Technol Inform 126 (2007), 322–9.

[Nag84] J. Nagle, Congestion Control in IP/TCP Internetworks, RFC 896, January
1984.

[nqu] IBM Full-System Simulator for the Cell Broadband Engine Processor,
http://www.alphaworks.ibm.com/tech/cellsystemsim.

[nqu48] Berliner Schachgesellschaft 3 (1848), 363.

[RB08] Martin Rehr and Brian Vinter, The PS3 Grid-Resource Model, in Arabnia
[Ara08], pp. 90–95.

[RV09] Martin Rehr and Brian Vinter, Application Porting and Tuning on the Cell-
BE Processor, Proceedings of the PARA 08, 9th International Workshop
on State-of-the-Art in Scientific and Parallel Computing, Lecture Notes in
Computer Science, Springer, December 2009, accepted for publication.

[SBA07] Daniel Stødle, John Markus Bjørndalen, and Otto J. Anshus, A system for
hybrid vision- and sound-based interaction with distal and proximal tar-
gets on wall-sized, high-resolution tiled displays, ICCV-HCI (Michael S.
Lew, Nicu Sebe, Thomas S. Huang, and Erwin M. Bakker, eds.), Lecture
Notes in Computer Science, vol. 4796, Springer, 2007, pp. 59–68.

[slBc] Open source lattice Boltzmann code, http://www.openlb.org.

[son] Sony sales, http://www.sony.net/SonyInfo/IR/financial/fr/
07q4_eleki.pdf.

107

http://www.datasynapse.com
www.entropia.com
http://gridengine.sunsource.net/
http://www.alphaworks.ibm.com/tech/cellsystemsim
http://www.sony.net/SonyInfo/IR/financial/fr/07q4_eleki.pdf
http://www.sony.net/SonyInfo/IR/financial/fr/07q4_eleki.pdf

[SSB+95] T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband, U. A. Ranawake, and
C. V. Packer, BEOWULF: A parallel workstation for scientific computa-
tion, Proceedings of the 24th International Conference on Parallel Pro-
cessing (Oconomowoc, WI), 1995, pp. I:11–14.

[Sun90] V. S. Sunderam, Pvm: A framework for parallel distributed computing,
Concurrency: Practice and Experience 2 (1990), 315–339.

[Sun00] Michael Sung, SIMD parallel processing, http://www.ai.mit.edu/
projects/aries/papers/writeups/darkman-writeup.pdf.

[Tak] Takaken, http://www.ic-net.or.jp/home/takaken/e/queen/

index.html.

[VAR+09] Brian Vinter, Rasmus Andersen, Martin Rehr, Jonas Bardino, and Henrik
Karlsen, Towards a robust and reliable grid middleware, Grid Technology
and Applications: Recent Developments (H.R: Arabina G.A. Gravvanis,
J.P. Morrison and D.A. Power, eds.), Nova Science Publishers Inc., Haup-
pauge, NY, USA, 2009, p. Chapter 10.

[Ven07] Girish Venkatachalam, The openssh protocol under the hood, Linux J.
2007 (2007), no. 156, 6.

[Vin05] Brian Vinter, The Architecture of the Minimum intrusion Grid (MiG),
Communicating Process Architectures 2005, sep 2005.

[vmw] VMware Player, http://www.vmware.com/products/player.

[Wat08] Jon Watson, Virtualbox: bits and bytes masquerading as machines, Linux
J. 2008 (2008), no. 166, 1.

108

http://www.ai.mit.edu/projects/aries/papers/writeups/darkman-writeup.pdf
http://www.ai.mit.edu/projects/aries/papers/writeups/darkman-writeup.pdf
http://www.ic-net.or.jp/home/takaken/e/queen/index.html
http://www.ic-net.or.jp/home/takaken/e/queen/index.html
http://www.vmware.com/products/player

Appendix A

Publication 1

Proceedings of High Performance Computing and Communications, Third International
Conference, HPCC 2007, Houston, USA, September 26-28, 2007
ISBN: 978-3-540-75443-5, pp. 296-308
Martin Rehr, Brian Vinter: The One-Click Grid-Resource Model

109

The One-Click Grid-resource model

Martin Rehr and Brian Vinter

Department of Computer Science
University of Copenhagen
Copenhagen, Denmark
{rehr, vinter}@diku.dk

Abstract. This paper introduces the One-Click Grid resource, which
allows any computer with a Java enabled web browser to safely provide
resources to Grid without any software installation. This represents a vast
increase of the number of potential Grid resources that may be made
available to help public interest research. While the model does make
restrictions towards the application writer, the technology provides a real
Grid model and supports arbitrary binaries, remote file access and semi-
transparent checkpointing. Performance numbers show that the model
is usable even with browsers that are connected to the Internet through
relatively weak links, i.e. 512 kb/s upload speeds. The resulting system
is in use today, and freely available to any research project.

1 Introduction

Grid Computing and Public Resource Computing, PRC, provide increasingly in-
teresting means of obtaining computational resources. Grid Computing is mostly
used for connecting university supercomputers, while PRC is predominantly used
by research projects for harvesting PC based idle CPU-cycles for a small number
of research projects. However, even though the two fields appear closely related,
little effort has been made to combine them to a system that offers the flexibility
of Grid computing with the resource richness of the PRC model.

1.1 Motivation

Harvesting ’free’ cycles through PRC is of great interest since a modern PC is
powerful and highly underutilized, and as such cycle harvesting provides a huge
calculation potential if one combines millions of them in a computing Grid[1].

Most known Grid systems such as ARC[2] which is based on the Globus
toolkit[3] and Condor[4] are unsuitable for PRC computing, as they work under
the underlying assumption that the resources are available at anytime, which
PRC resources by their very nature are not.

To extend the PRC concept to actual Grid computing, security and instal-
lation of software on the donated resource are vital issues. All, to the authors
known, PRC projects requires the donor to install software on the resource that
should contribute, which alone eliminates users from donating resources from

computers that they do have administrative rights on. The software installa-
tion also opens for possible exploits and requires the donor to perform updates
on that software. This is not desirable and may reduce the amount of donated
resources.

Ensuring the safety of a donated resource while it executes a Grid job in
a PRC context is an all important topic since all free resources will vanish if
the model proves harmful to the hosts. Contrary to standard PRC tasks, a
Grid job may take any form and include the execution of any binary. Thus it is
necessary to take precautions to ensure that the execution of Grid jobs cannot
harm donated resources neither from intention nor by accident.

This paper addresses some of the problems that need to be solved in order to
combine PRC computing and Grid Computing. Our goal is to design a Grid PRC
secure sandbox model, where Grid jobs are executed in a secure environment
and no Grid or application specific software is needed on the donated resource.
Furthermore we ensure that resources may be in a typical PRC context, i.e.
located behind a Network Address Translation router and a firewall and thus
that the model may be used without modifications to firewalls or the routers.

1.2 Related Work

BOINC[5] is a middleware system providing a framework, which has proved
the concept of PRC, and is widely used by scientific research projects such
as SETI@HOME[6] and FOLDING@HOME[7]. MiG-SSS[8] is a Screen Saver
Science model built to combine PRC with Minimum intrusion Grid, MiG[9][10].
Our work differs from BOINC by aiming at a full Grid model, and differs from
both BOINC and MiG-SSS by aiming at no Grid specific software installation
on the client.

2 Web browsers and Java

To reach our stated goal of no Grid specific software installation and no modi-
fication of the donated machines firewall settings, we are forced to use software
which is an integrated part of a common Internet connected resource.

We found that amongst the most common software packages for any PC
type platform there is a Java enabled web browser. The web browser provide a
common way of securely communicating with the Internet, which is allowed by
almost all firewall configurations of the resources we target.1 The web browser
itself provides us with a communication protocol, but it does not by itself, provide
a safe execution environment, however all of the most common graphics enabled
web browsers have support for Java applets[11], that are capable of executing
Java byte-code located on a remote server.

1 Resources located behind firewalls that do not support outgoing HTTPS is consid-
ered out of range for this PRC, however it is not unseen that outbound HTTPS is
blocked.

The Java applet security model[12], ASM, prevents the Java byte-code ex-
ecuted in the applet from harming the host machine and thereby provides the
desired sandbox effect for us to trust the execution of unknown binaries on do-
nated resources.

The choice of web browsers and Java applets as the execution framework,
results in some restrictions on the type of jobs that may be executed in this
environment:

– Applications must be written in Java
– Applications must apply to ASM
– The total memory usage is limited to 64 MB including the Grid framework
– Special methods must be used to catch output
– Special methods must be used for file access

By accepting the limitations described above, a web browser may become a Grid
resource simply by entering a specific URL. This triggers the load and execution
of an applet which acts as our Grid gateway and enables retrieving and executing
a Java byte-code based Grid job. The details of this process is described next.

3 The Applet Grid Resource

Several changes to the Grid middleware are needed to allow Java applets to act
as Grid resources. First of all the Grid middleware must support resources which
can only be accessed through a pull based model, which means that all commu-
nication is initiated by the resource, i.e. the applet. This is required because the
ASM rules prevents the applet from initiating listening sockets, and to meet our
requirement of functioning behind a firewall with no Grid specific port modifica-
tions. Secondly, the Grid middleware needs a scheduling model where resources
are able to request specific type of jobs, e.g. a resource can specify that only jobs
which are tagged to comply to the ASM can be executed.

In this work the Minimum intrusion Grid[9], MiG, is used as the Grid mid-
dleware. The MiG system is presented next, before presenting how the Applet
Grid resource and MiG work together.

3.1 Minimum intrusion Grid

MiG is a stand alone Grid platform, which does not inherit code from any earlier
Grid middlewares. The philosophy behind the MiG system is to provide a Grid
infrastructure that imposes as few requirements on both users and resources as
possible. The overall goal is to ensure that a user is only required to have a
X.509 certificate which is signed by a source that is trusted by MiG, and a web
browser that supports HTTP, HTTPS and X.509 certificates. A fully functional
resource only needs to create a local MiG user on the system and to support
inbound SSH. A sandboxed resource, which can be used for PRC, only needs
outbound HTTPS[8].

Because MiG keeps the Grid system disjoint from both users and resources,
as shown in Figure 1, the Grid system appears as a centralized black box[9]
to both users and resources. This allows all middleware upgrades and trouble
shooting to be executed locally within the Grid without any intervention from
neither users nor resource administrators. Thus, all functionality is placed in a
physical Grid system that, though it appears as a centralized system in reality
is distributed. The basic functionality in MiG starts by a user submitting a job

Grid

Client Resource

Resource

Resource
Client

Client

Client

Fig. 1: The abstract MiG model

to MiG and a resource sending a request for a job to execute. The resource then
receives an appropriate job from MiG, executes the job, and sends the result to
MiG that can then inform the user of the job completion. Since the user and the
resource are never in direct constant, MiG provides full anonymity for both users
and resources, any complaints will have to be made to the MiG system that will
then look at the logs that show the relationship between user and resource.

3.1.1 Scheduling The centralized black box design of MiG makes it capable
of strong scheduling, which implies full control of the jobs being executed and
the resource executing them. Each job has an upper execution time limit, and
when the execution time exceeds this time limit the job is rescheduled to another
resource. This makes the MiG system very well suited to host PRC resources, as
they by nature are very dynamic and frequently join and leave the Grid without
notifying the Grid middleware.

3.2 The MiG Applet Resource

As explained above, all that is required for a PRC resource to join MiG is a sand-
box and support for outgoing HTTPS. However, the previous solution[8] requires
installation of non standard software to activate and execute the sandbox.

The Java applet technology makes it is possible to turn a web browser into a
MiG sandbox without installing any additional software. This is done automat-
ically when the user accesses “MiG One-Click”2, which loads an applet into the
web browser. This applet functions as a Grid resource script and is responsible
for requesting pending jobs, retrieving and executing granted jobs, and delivering
the results of the executed jobs to the MiG server.

To make the applet work as a resource script, several issues must be ad-
dressed. First of all ASM disallows local disk access. Because of this both exe-
cutables and input/output files must be accessed directly at the Grid storage.
Secondly only executables that are located at the same server as the initial ap-
plet are permitted to be loaded dynamically. Thirdly text output of the applet
is written to the web browser’s Java console and not accessible by the Grid
middleware.

When the applet is granted a job by the MiG server, it retrieves a specifi-
cation of the job which specifies executables and input/output files. The applet
then loads the executable from the Grid, this is made possible by the MiG server
which sets up an URL from the same site as the resource applet was originally
loaded which points to the location of the executables. This allows unknown
executables to be loaded and comply with the ASM restrictions on loading exe-
cutables. Figure 2 shows the structure of an One-Click job. Executables that are

Browser

One-Click Applet
Job-Control File-Access Checkpointing

Grid Job

Fig. 2: The structure of an One-Click job

2 The URL accessed to activate the web browser as a sandboxed MiG Java resource
is called “MiG One-Click”, as it requires one click to activate it.

targeted for the MiG One-Click model must comply with a special MiG One-
Click framework, which defines special methods for writing stdout and stderr
of the application to the MiG system3. Normally the stdout and stderr of the
executing job is piped to a file in the MiG system, but a Java applet, by default,
writes the stdout and stderr to the web browsers Java console. We have not
been able to intercept this native output path. Input and output files that are
specified in the job description must be accessed directly at the Grid storage
unit since the ASM rules prohibits local file access. To address this issue the
MiG One-Click framework provides file access methods that transparently pro-
vide remote access to the needed files. Note that the MiG system requires input
files and executables to be uploaded to the MiG server before job submission
which ensures that the files are available at the Grid storage unit.

In addition to the browser applet a Java console version of the MiG resource
has been developed, to enable the possibility of retrieving and executing MiG
One-Click jobs as a background process. This requires only a Java virtual ma-
chine. To obtain the desired security model, a customized Java security policy
is used, which provides the same restrictions as the ASM.

3.3 Remote File Access

The One-Click executing framework that was introduced above also provides
transparent remote file access to the jobs that are executed. The MiG storage
server supports partial reads and writes, through HTTPS, of any file that is
associated with a job. When the resource applet accesses files that are associated
with a job, a local buffer is used to store the parts of the file that are being
accessed. If a file position which points outside the local buffer is accessed, the
MiG server is contacted through HTTPS, and the buffer is written to the MiG
server if the file is opened in write mode. The next block of data is then fetched
from the server and stored into the buffer and finally the operation returns to
the user application. The size of the buffer is dynamically adjusted to utilize the
previously observed bandwidth optimally.

3.3.1 Block size estimation To achieve the optimal bandwidth for remote
file access it is necessary to find the optimal block size for transfers to and from
the server. In this case the optimal block size is a trade off between latency and
bandwidth. We want to transfer as large a block as possible without excessive
latency increment since the chance of transferring data that will not be used
increases with the block size.

We define the optimal block size bsopt as the largest block where a doubling
of the block size does not double the time to transfer it. This can be expressed
the following way:

t(x) ∗ 2 > t(x ∗ 2) ∀x < bsopt (3.1)

t(x) ∗ 2 < t(x ∗ 2) ∀x > bsopt (3.2)
3 The result of a MiG job is the stdout/stderr and the return code of the application

that is executed.

t(x) = time to transfer block of size x

We do not want block sizes below bsopt as the time t used to transfer a block of
size x is less than doubled when the block size is doubled. On the other hand
we don’t want ‘too large’ block sizes as we do not know if the retrieved data
is going to be used or discarded due to a seek operation beyond the end of the
local buffer.

As the One-Click resources can be placed at any sort of connection, and
the bandwidth of the connection thus may differ greatly from one resource to
another, it is not possible to use a fixed block size and reach a good ratio between
bandwidth and latency at an arbitrary type of connection.

The simplest approach would be to use a fixed bsopt based on empirical tests
on the most common connections.

A less trivial, but still simple, approach would be to measure the time it takes
to connect to the server and then choose a block size which ensures the transfer
time of that block to be a factor of x larger than the time to connect, to make
sure that the connection overhead does not exceed the time of the actual data
transfer.

The chosen approach is to estimate bsopt from the time spent transferring
block x− 1 with the time of transferring block x, starting with an initial small4

block size bs0 and then doubling the block size until a predefined cutoff ratio
CR is reached. After each data transfer the bandwidth bwx is calculated and
compared to the bandwidth of the previous transfer bwx−1. If the ratio is larger
than the predefined CR:

bwx

bwx−1
> CR (3.3)

then the block size is doubled:

bsx+1 = bsx ∗ 2 (3.4)

As the block size is doubled in each step the theoretical CR to achieve bsopt

should be 2, since there is no incentive to increase block size once the latency
grows linearly with the size of the data that is transferred. However in reality,
one need to get a CR below 2 to achieve bsopt. This is due to the fact that all
used block sizes are powers of 2, and one cannot rely on the optimal block size
to match a power of 2.

Therefore to make sure to get a block size above bsopt you need a lower CR.
Empirical tests showed that a CR about 1.65 yields good results, see section 5.2

Additional extensions include adapting to the frequency of random seeks in
the estimation of the CR. A large amount of random seeks to data placed outside
the range of the current buffer will cause new blocks to be retrieved in each seek.
Therefore the block size should be lowered in those cases to minimize the latency
of each seek.
4 An initial small block size gives a good result as many file accesses applies to small

text files such as configuration files.

4 Checkpointing

PRC resources will join and leave the Grid dynamically, which means that
jobs with large running time have a high probability of being terminated be-
fore they finish their execution. To avoid wasting already spent CPU-cycles
a checkpointing mechanism is build into the applet framework. Two types of
checkpointing have been considered for inclusion, transparent checkpointing and
semi-transparent checkpointing.

4.1 Transparent Checkpointing

All to the authors known transparent checkpoint mechanisms provided to work
with Java, require the JVM to be replacement or access to the /proc file system
on Linux/Unix operating system variants, as the default JVM does not support
storing program counter and stack frame. Since our goal is to use a web browser
with the Java applet as a Grid resource neither of those solutions are satisfactory,
since both the replacement of the JVM and access to the /proc file system
violates the Java applet security model. Furthermore most PRC resource will
be running the Windows operating system which do not support the /proc file
system.

4.2 Semi-transparent Checkpointing

Since transparent checkpointing is not applicable to the One-Click model, we
went on to investigate what we call semi-transparent checkpointing. Semi-trans-
parent checkpointing covers that the One-Click framework provides a checkpoint
method for doing the actual checkpoint, but the application programmer is still
responsible for calling the checkpoint method when the application is in a check-
point safe state.

The checkpoint method stores the running Java object on the MiG server
through HTTPS. Since it can only store the object state, and not stack in-
formation and program counters, the programmer is responsible for calling the
checkpoint method at a point in the application, where the current state of the
execution may be restored from the object state only. To restart a previously
checkpointed job, the resource applet framework first discovers that a checkpoint
exists and then loads the stored object.

To ensure file consistency as part of the checkpoint, the framework also sup-
ports checkpointing of modified files, which is done automatically without involv-
ing the application writer. Open files are checkpointed if the job object includes
a reference to the file.

5 Experiments

To test the One-Click model we established a controlled test scenario. Eight
identical Pentium 4, 2.4 GHz machines with 512 MB ram were used for tests.

5.1 One-Click as concept

The test application used, is an exhaustive algorithm for folding proteins written
in Java. This was changed to comply with the applet framework.

A protein sequence of length 26 was folded on one machine, which resulted
in a total execution time of 2 hours, 45 minutes and 33 seconds. The search
space of the protein was then divided into 50 different subspaces using standard
divide and conqueror techniques. The 50 different search spaces were submitted
as jobs to the Grid, which provides an average of 6 jobs per execution machine
and 2 extra jobs to prevent balanced execution. The search spaces on their own
also provide unbalanced execution as the valid protein configurations vary from
one search space to another and thus results in unbalanced execution times. The
experiment was made without checkpointing the application. The execution of
the 50 jobs completed in 29 minutes and 8 seconds, a speedup of 5.7 for 8
machines. While this result would be considered bad in a cluster context it is
quite useful in a Grid environment.

To test the total overhead of the model, a set of 1000 empty jobs was sub-
mitted to the Grid with only one One-Click execution resource connected. The
1000 jobs completed in 19935 seconds, which translates to an overhead of ap-
proximately 20 seconds per job.

5.2 File access

To achieve the best bandwidth cutoff ratio CR several experiments has been
made. In the experiments a 16 MB file was read 100 times by the One-Click
resource on a 20 Mb/s broadband Internet connection. All experiments start
with an initial block size of 2048 (211) bytes. The first experiment was run with
a CR of 0, which means that the block size is doubled in every transfer. The
result is shown in figure 3.

 64

 128

 256

 512

 1024

 2048

 4096

2^10 2^12 2^14 2^16 2^18 2^20 2^21 2^24

La
te

nc
y

(m
se

c)

Block-size (Bytes)

 0.5

 1

 2

 4

2^10 2^12 2^14 2^16 2^18 2^20 2^21 2^24

B
an

dw
id

th
 R

at
io

Block-size (Bytes)

Fig. 3: The upper figure shows the latency as a function of the block size, the lower figure shows

the bandwidth ratio bwx
bwx−1

as a function of the block size. Between block size 218 and 220

the latency starts to raise and the bandwidth ratio starts to fall. This is where the cutoff is
chosen to avoid excessive raise in latency

The figure shows how that the latency starts to raise dramatically between
block size 218 and 220 and the bandwidth to latency ratio starts to fall at those
block sizes. The bandwidth to latency ratio between block size 218 and 220 lies
in the interval from 1.25 to 1.75. Based on these observations we performed the
same test with a CR of 1.5. The result is shown in figure 4.

 32

 64

 128

 256

 512

2^10 2^12 2^14 2^16 2^18 2^20 2^21

La
te

nc
y

(m
se

c)

Block-size (Bytes)

Fig. 4: The latency as a function of the block size with CR 1.5

This shows that a CR of 1.5 is too low as block sizes of 221 occur and we
want the block sizes to be between 218 and 220 to limit the maximum latency.
Therefore the CR must be between 1.5 and 1.75. The test was then run with
CR 1.55, 1.60, 1.65, 1.70 and 1.75. The result is shown in figure 5.

We observe that a CR of 1.75 is too high, as only a few block sizes of 219

occur and no block sizes of 220 occurs. A CR of 1.55 results in a few block sizes
of 221 which is above the block sizes we want. 1.60 represents the block sizes we
want and block size 220 is well represented. A CR of 1.65 represents block size
219 well and a few block sizes of 220 is reached as well, and a CR 1.70 represents
block size 220 but no block sizes of 221 are represented. We choose a CR of 1.65
as block size 220 is considered the braking point where the latency starts to grow
excessively, therefore we do not want it to be to well represented, but we want
it to be represented, which is exactly the case at a CR of 1.65.

To verify the previous finding that the CR value should be 1.65 a test ap-
plication, which traverses a 16 MB file of random 32 bit integers was developed.
First the application was tested against the framework, where fixed block sizes
were used, and then the application was tested against the framework, where
the dynamic block sizes with a CR of 1.65 were used. The results are shown i
figure 6.

The experiment shows, as expected, that the execution time decreases as the
block sizes increase in the experiments with static block sizes. The execution time
in the experiments with the dynamic block sizes all reside around 256 seconds5

which are satisfactory, as this shows that compared to largest static buffer size of

5 With the exception of 3 runs, which are classified as outliers

 32

 64

 128

 256

 512

2^10 2^12 2^14 2^16 2^18 2^20 2^21

La
te

nc
y

(m
se

c)

Block-size (Bytes)

 32

 64

 128

 256

 512

2^10 2^12 2^14 2^16 2^18 2^20 2^21

La
te

nc
y

(m
se

c)

Block-size (Bytes)

 32

 64

 128

 256

 512

2^10 2^12 2^14 2^16 2^18 2^20 2^21

La
te

nc
y

(m
se

c)

Block-size (Bytes)

 32

 64

 128

 256

 512

2^10 2^12 2^14 2^16 2^18 2^20 2^21

La
te

nc
y

(m
se

c)

Block-size (Bytes)

 32

 64

 128

 256

 512

2^10 2^12 2^14 2^16 2^18 2^20 2^21

La
te

nc
y

(m
se

c)

Block-size (Bytes)

Fig. 5: The latency as a function of the block size with CR 1.55, 1.60, 1.65, 1.70, 1.75

 32

 64

 128

 256

 512

 1024

 2048

 4096

2^10 2^12 2^14 2^16 2^18 2^20

E
xe

cu
tio

n-
tim

e
(s

ec
)

Block-size (Bytes)

 64

 128

 256

 512

E
xe

cu
tio

n-
tim

e
(s

ec
)

25 runs with dynamic blocksize

Fig. 6: The execution time as a function of the block size and the execution time with dynamic
block sizes and a CR of 1.65

interest6, the execution time loss using a dynamic buffer size is at most a factor
of four. The reader should note that this type of application is the worst case for
dynamic buffer sizing as all the data are read sequentially. If the integers were
read in random order, the dynamic buffer size execution would perform much
better.

5.3 Checkpointing

The next obvious performance issue is to test the overhead of performing a
checkpoint operation within a process. This was tested by submitting jobs that
allocate heap memory in the range from 0 kB to 8192 kB. Each job first allocates
X kB, where X is in the order power of 2, and does 10 checkpoints, which saves
the entire heap space. The performance was first tested on a 20 Mb/s broadband
Internet connection. The test was then repeated using a more modest 2048/512
kb/s broadband Internet connection. The result of these tests is shown in figure 7.
In the first test, using the 20 Mb/s connection, the checkpoint time is constant

 1

 2

 4

 8

 16

 32

2^0 2^2 2^4 2^6 2^8 2^10 2^12 2^14

C
he

ck
po

in
t t

im
e

(s
ec

s)

Allocated heap memory (bytes)

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

2^0 2^2 2^4 2^6 2^8 2^10 2^12 2^14

C
he

ck
po

in
t t

im
e

(s
ec

s)

Allocated heap memory (bytes)

Fig. 7: The time spend checkpointing on a 20 Mb/s and a 2048/412 kb/s Broadband Internet

as the memory size grows. We can conclude from this, that the overhead of
serializing the Java object is dominating compared to the actual network transfer
time. The opposite is the case when we examine the results of the 2048/512 kb/s
connection. Here we see that the time spent grows linearly with the size of the
allocated memory, from which we may conclude that on a 512 kb/s connection
the bandwidth is, not surprisingly, the limiting factor.

6 The largest static buffer of interest is 217 as this is where the time gained by doubling
the buffer, levels out.

6 Conclusion

In this work we have demonstrated a way to combine Grid computing with PRC,
the One-Click framework, without the need to install any PRC client software
on the donating resource.

The use of Java applets provides a secure sandboxed executing environment
that prevents the executing Grid jobs from harming the donated machine. The
disadvantage of this approach is that all jobs must be written in Java and in
addition comply with the presented framework, including the Java Applet Secu-
rity Model. However the modifications that are needed to port an existing Java
application are limited to using special methods for stdout and stderr, applying
to the Java applet security model, and using the One-Click framework for re-
mote file access. The One-Click framework also includes the means to provide
semi-transparent checkpointing of the applications at runtime.

The Minimum intrusion Grid supports the required pull-job model for re-
trieving and executing Grid jobs on a resource located behind a firewall without
the need to open any ingoing ports. By using the One-Click approach any com-
puter with a web browser that can execute Java applets can become a Grid
resource for PRC simply by entering the MiG One-Click URL. Once the user of
the donated computer wishes to stop the execution, the browser is simply closed
down or pointed to another URL, and the execution stops. The MiG system de-
tects this event, by a timeout, and resubmits the job to another resource, where
the job is resumed from the latest checkpoint that was made.

Experiments have been performed to find the optimal block size for the re-
mote file transfer that the framework includes. The experiments show that dou-
bling the block size in each transfer gives the optimal tradeoff between bandwidth
and latency as long as the CR is below 1.65.

The experiments also show that the dynamic block sizes approach increases
the execution time by of factor of four compared to the execution time reached
with the largest static block size in a worst case scenario.

The building checkpointing mechanism has an overhead of 15 seconds per
checkpoint on a 2.4GHz P4 and the One-Click framework overall is causing
approximately 20 seconds of overhead to each execution, compared to local exe-
cution. Despite of this a considerable speedup is reached in the presented protein
experiment.

References

1. I. Foster, The Grid: A New Infrastructure for 21st Century Science, Physics
Today, 55(2):42-47,(2002)

2. NorduGrid, (http://www.nordugrid.org)
3. Globus Toolkit, (http://www.globus.org/toolkit)
4. Condor Project, (http://www.cs.wisc.edu/condor)
5. Berkeley Open Infrastructure for Network Computing, (http://boinc.berkeley.edu)
6. SETI@home, (http://setiathome.berkeley.edu)

7. Folding@Home, (http://folding.stanford.edu)
8. Rasmus Andersen, Brian Vinter; Harvesting Idle Windows CPU Cycles for

Grid Computing, Proceedings of (2006) International Conference on Grid
Computing & Applications (GCA’06/ISBN #:1-60132-014-0/CSREA), Ed-
itor: Hamid R. Arabnia, pp.: 121-126, Las Vegas, USA, (2006)

9. B. Vinter ‘The architecture of the Minimum intrusion Grid: MiG” In Com-
municating Process Architectures: pp. 189-201 Broenink J, Roebbers H,
Sunter J, Welch P, Wood D (eds.) IOS Press, (2005)

10. Henrik Hoey Karlsen, Brian Vinter, “Minimum intrusion Grid - The Sim-
ple Model,” wetice, pp. 305-310, 14th IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprise (WET-
ICE’05), (2005)

11. Java Applets, (http://Java.sun.com/applets)
12. Java Applet Security, (http://Java.sun.com/sfaq)

Appendix B

Publication 2

Proceedings of the PARA 08, 9th International Workshop on State-of-the-Art in Scien-
tific and Parallel Computing, Trondheim, Norway, May 13-16, 2008
Accepted for publication December 2009
Martin Rehr, Brian Vinter: Application Porting and Tuning on the Cell-BE Pro-
cessor

124

Application porting and tuning for the
CELL-BE processor

Martin Rehr and Brian Vinter

Department of Computer Science
University of Copenhagen

Copenhagen, Denmark
{rehr, vinter}@diku.dk

Abstract. The Cell is a heterogeneous multi-core processor, consisting
of 9 cores with a peak performance in excess of 100 giga-operations per
second. To make the Cell processor provide more that a fraction of that
performance, a very high level of parallelism is needed as well as a num-
ber of basic, but very important code optimizations. This paper covers
the process of porting an existing recursive application to the Cell pro-
cessor, and the steps needed to achieve high performance. Optimization
methods such as the four levels of parallelism supported by the Cell,
task-, memory-, data-, and instruction-level parallelization are covered
as well as branch elimination. The final performance numbers show that
the Cell processor outperforms traditional processor architectures quite
impressingly if an application is ported properly.

1 Introduction

Intel cancelled the Pentium 4, 4 GHz in 2004 due to heating issues, we still
haven’t seen it and never will. Moore’s law[6] is still going strong, which means
the number of transistors per square-inch doubles approximately every two years.
Using the increasing amount of transistors for increasing cache-sizes and deeper
pipelines are no longer improving performance significantly. This has led to the
design of multi-core processors, some of which are just extensions of the old
processor design making it easy to apply existing applications to them, but
making it hard to gain any significant performance increase. However Sony, IBM
and Toshiba have developed the Cell Broadband Engine (Cell BE[4]) which is
a powerful heterogeneous multi-core chip capable of doing 204 GFLOPS single
precision and 14 GFLOPS double precision, using a whole new architecture. To
get near this kind of performance one has to carefully tune the applications
towards this architecture.

1.1 The Cell BE

The Cell processor is a heterogeneous multi core processor consisting of 9 cores,
The Primary core is an IBM 64 bit power processor (PPC64) with 2 hardware
threads. This core is the link between the operating system and the 8 powerful

working cores, called the SPE’s for Synergistic Processing Element. The power
processor is called the PPE for Power Processing Element, all cores are connected
by an Element Interconnect Bus (EIB). Figure 1 shows an overview of the Cell
architecture. The cores are connected by an Element Interconnect Bus (EIB)

BEI

IOIF_1

IOIF_0

PPE

Element Interconnect Bus (EIB)

SPE0 SPE2 SPE4 SPE6

SPE1 SPE3 SPE5 SPE7

MICXIO
XIO

BEI

IOIF

MIC

PPE

SPE

XIO

Cell Broadband Engine Interface

I/O interface

Memory Interface Controller

Power Processor Element

Synergistic Processor Element

Rambus XDR I/O

Fig. 1. An overview of the Cell architecture

capable of transferring up to 204 GB/s at 3.2 GHz. Each SPE is dual pipe-
lined, has a 128x128 bit register file and 256 kB of on-chip memory called the
local store. Data is transferred asynchronously between main memory and the
local store through DMA calls handled by a dedicated Memory Flow Controller
(MFC). An overview of the SPE is shown in figure 2. By using the PPE as

Synergistic Processor Element (SPE)

Even pipeline

Local Store

Memory Flow Controller
(MFC)

Instruction Prefetch and Issue Unit

Register File

Odd pipeline

Element Interconnect Bus (EIB)

Fig. 2. An overview of the SPE cores

primary core, the Cell processor can be used out of the box, due to the fact
that existing operating systems support the PPC64 architecture. Thereby it’s
possible to boot a PPC64 operating system on the Cell processor, and execute
PPC64 applications, however these will only use the PPE core. To use the SPE

cores it’s necessary to develop code specifically for the SPE’s, which includes
setting up a memory communications scheme using DMA through the MFC.

2 Porting towards the Cell

To make the Cell BE perform at a high level one has to consider several levels of
parallelization, including task-, memory-, data-and instruction-level paralleliza-
tion. As an experiment an nqueen[2][5] application written by Takaken[9] has
been ported from the X86 architecture to the Cell architecture. The nqueen
problem is solved by using a divide and conquer algorithm for finding how many
ways to place N queens safely at an NxN chess board according to the common
chess rules.

2.1 Task-and memory-parallelization

As the Cell BE architecture can be viewed as an 8 node (the SPE’s) cluster[7]
on a chip with a front end (The PPE) splitting an application into smaller tasks
is done by the same principles as when parallelizing towards a cluster computer.
However due to the limited amount of local store (256 kB) available at the SPE’s
for both code and data, one has to consider the size of each task. This means
that an application which would be best parallelized by a bag of task model in
a cluster setup, might be best parallelized by a pipelined setup using the Cell
processor.

2.1.1 Task-parallelization The first step of porting an application to the
Cell is to parallelize it task wise, using the PPE as a task manager and the
SPE’s as computation units. This is done by analyzing the application, picking
the right method for parallelization including analyzing if data and code for
each task fits into the 256 kB local store of the SPE’s, and if not, which method
one wishes to use to make it fit. The two possibilities here are either to split
the data-set for each task into smaller data-sets or to use a pipelined setup,
where the code is split among 2,4 or 8 SPE’s each performing some piece of the
computation.

2.1.2 Memory-parallelization Each SPE has its own MFC controller run-
ning in its own thread, meaning that main memory can be accessed through
DMA asynchronously regarding computation. This gives the possibility of ef-
fective memory latency hiding, as the MFC writes data directly from the EIB
to the local store without involving the computational unit. Thereby the data
for iteration i+1 can be retrieved while computing iteration i, this is known as
double buffering.

Furthermore each MFC is capable of issuing 16 simultaneous DMA transfers
giving a high level of possible multi-buffering1. When porting an application,
1 Where data for iteration i+1,i+2, ..., i+n is retrieved in iteration i

a communication scheme between the PPE and the SPE using DMA trans-
fers through the MFC has to be chosen. Most applications will use at least
double buffering to hide memory latency, and some applications need to use
multi-buffering to keep the computational unit busy, this all depends of the
computational intensiveness of the task.

2.1.3 The nqueens solution In the nqueens example, code and data fit into
the local store of each SPE, and therefore a bag-of-task model is used, where
each SPE requests a task from the PPE, gets the input data, computes the
result, delivers the result to the PPE and requests a new task. As the input and
output data for the nqueens application is quite small and the compute intensive
part of the application is quite large, double buffering is sufficient for keeping
the SPE’s busy, hiding the memory latency efficiently. This first step reduced
the execution time of placing 18 queens on an 18x18 chess board from 278.878
seconds on a Pentium 4 running at 3,2 GHz to 69.456 seconds when executed
on a Playstation 32 giving a speedup of 4. The application has been compiled
with both the GCC compiler and IBM’s XLC compiler, the result is shown in
figure 3. It’s seen that in this case the GCC compiler produces code which is

a communication scheme between the PPE and the SPE using DMA transfers
through the MFC has to be chosen. Most applications will use at least double
buffering to hide memory latency, and some applications need to use multi-
buffering to keep the computation unit busy, this all depends of the computation
intensiveness of the task.

2.1.3 The nqueen solution In the nqueens example, code and data fits into
the local store of each SPE, and therefore a bag-of-task model is used, where
each SPE requests a task from the PPE, gets the input data, compute the result,
deliver the result to the PPE and request a new task. As the input- and output-
data for the nqueens application is quite small and the compute intensive part of
the application is quite large, double buffering is sufficient for keeping the SPE’s
busy, hiding the memory latency efficiently. This first step reduced the execution
time of placing 18 queens on an 18x18 chess board from 278.878 seconds on a
Pentium 4 running at 3,2 GHz to 69.456 seconds when executed on a Playstation
32 giving a speedup of 4. The application has been compiled with both the GCC
compiler and IBM’s XLC compiler the result is shown in figure 3. It’s seen that
in this case the GCC compiler produces code which is significantly faster than
the code produced by the XLC compiler.

 0

 50

 100

 150

 200

 250

 300

P4@3.2 PS3 (6 SPEs)

S
e
c
o
n
d
s

Execution times placing 18 queens

278.878

69.456

119.474

GCC
XLC

Fig. 3. Execution times for the task parallelized nqueens application

2 Note the PS3 only has 6 SPE’s

Fig. 3. Execution times for the task parallelized nqueens application

significantly faster than the code produced by the XLC compiler.

2 Note the PS3 only has 6 SPE’s

2.2 Register-line optimizations

The Cell BE SPE’s are SIMD[8] vector cores each operating on a 128 bit register-
line, which can be divided into 2x64 bit longs, 4x32 bit int’s, 8x16 shorts or 16x16
bytes. This results in scalar operations to be mapped down to an atomic sequence
of register-line operations, as the scalar has to be put in its preferred slot of the
register-line see figure 4. The compute intensive part of the code should be fitted

2.2 Register-line optimizations

The Cell BE SPE’s are SIMD vector cores each operating on a 128 bit register-
line, which can be divided into 2x64 bit longs, 4x32 bit int’s, 8x16 shorts or
16x16 bytes. This results in scalar operations to be mapped down to an atomic
sequence of register-line operations. as the scalar has to be put in it’s preferred
slot of the register-line see figure 4. The compute intensive part of the code

Byte Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Byte

Short

Int

Long

Fig. 4. The preferred slot in a register line for the different data types

should be fitted to use 128 register-line operations instead of scalars, as this will
eliminate the rotate and shuffle instructions needed to get the scalar into the
correct preferred slot.

2.2.1 Recursive vs. iterative methods If the application to be ported is of
an recursive nature, one might consider to transform the computation intensive
part into an iterative method, as the limited local store of 256 kB is exhausted
quite quickly if deep recursions are reached. Furthermore the use of recursive
methods might slow down execution if the data used in the compute intensive
part is fitted into the 2 kB register file, as local parameters is pushed to the
stack upon a function call.

2.2.2 Branch prediction and elimination The Cell processor has no hard-
ware branch predictor, but the instruction set contains a branch hinting instruc-
tion. However if the programmer has no clue on what branch is to be taken, and
the piece of code within each branch is fairly small, branch elimination can be
done by calculating both results selecting the right result based on the branch
condition. This has two advancements, it eliminates branch misses and it op-
erates directly on register-lines whereas normal branch operations operates on
scalars. Using these two methods the overall penalty of branching can be reduced
quite impressingly.

2.2.3 The nqueen solution The compute intensive part of the presented
nqueen application was transformed from a recursive algorithm, to an iterative

Fig. 4. The preferred slot in a register line for the different data types

to use 128 register-line operations instead of scalars, as this will eliminate the
rotate and shuffle instructions needed to get the scalar into the correct preferred
slot.

2.2.1 Recursive vs. iterative methods If the application to be ported is
of a recursive nature, one might consider to transform the compute intensive
part into an iterative method, as the limited local store of 256 kB is exhausted
quite quickly if deep recursions are reached. Furthermore, the use of recursive
methods might slow down execution if the data used in the compute intensive
part is fitted into the 2 kB register file, as local parameters are pushed to the
stack upon a function call.

2.2.2 Branch prediction and elimination The Cell processor has no hard-
ware branch predictor, but the instruction set contains a branch hinting instruc-
tion. However if the programmer has no clue on what branch is to be taken,
and the piece of code within each branch is fairly small, branch elimination can
be done by calculating both results and selecting the right result based on the
branch condition[3]. This has two advantages, it eliminates branch misses and
it operate directly on register-lines whereas normal branch operations operates
on scalars. Using these two methods the overall penalty of branching can be
reduced quite impressively.

2.2.3 The nqueens solution The compute intensive part of the presented
nqueen application was transformed from a recursive algorithm, to an iterative
algorithm using the described register-line optimizations and branch elimination
techniques. This resulted in an execution time reduction from 69.456 seconds

to 42.486 seconds, giving a speedup of 1.63 compared to the task parallelized
code, and a speedup of 6.55 compared with the Pentium 4 execution running
at 3.2 GHz. Furthermore the performance of the iterative scalar version of the
algorithm was measured, all versions was compiled with both the GCC and
XLC, the results are shown in figure 5. It’s seen that the recursive scalar code

algorithm using the described register-line optimizations and branch elimination
techniques. This resulted in an execution time reduction from 69.456 seconds
to 42.486 seconds, giving a speedup of 1.63 compared to the task parallelized
code, and a speedup of 6.55 compared with the Pentium 4 running at@3.2 GHz
execution. Furthermore the performance of the iterative scalar version of the
algorithm was measured, all versions was compiled with both the GCC and
XLC, the results are shown in figure 5. It’s seen that the recursive scalar code
overall performs a little better than the scaler iterative code, but that the XLC
compiler produces faster binaries when used on the iterative code. Finally it’s
seen that the XLC compiler produces 15% faster binaries from the register-
line code compared to GCC. These results shows that the GCC produces faster
binaries in the common case3 whereas XLC produces faster binaries when the
application is tuned towards the Cell SPE’s architecture.

 0

 50

 100

 150

 200

 250

 300

P4@
3.2

Recur. PS3 (6 SPEs)

Itt. PS3 (6 SPEs)

Reg. PS3 (6 SPEs)

S
e
c
o
n
d
s

Execution time placing 18 queens

278.878

69.456

119.474

91.616

116.977

49.918 42.486

GCC
XLC

Fig. 5. Execution time comparisons between the different optimizations

2.3 Data parallelization

As mentioned the Cell BE SPE cores are SIMD vector cores, which offers data
parallelization as an optimization parameter, Each SPE core is capable of per-
forming 4 integer operations, 8 short operations or 16 byte operations per instruc-
tion. If the data has an integer SIMD nature, etc. integer matrix multiplication,
3 Applications written for traditional single core architectures

Fig. 5. Execution time comparisons between the different optimizations

overall performs a little better than the scaler iterative code, but that the XLC
compiler produces faster binaries when used on the iterative code. Finally it’s
seen that the XLC compiler produces 15% faster binaries from the register-
line code compared to GCC. These results show that the GCC produces faster
binaries in the common case3 whereas XLC produces faster binaries when the
application is tuned towards the Cell SPE’s architecture.

2.3 Data parallelization

As mentioned, the Cell BE SPE cores are SIMD vector cores, which offer data
parallelization as an optimization parameter. Each SPE core is capable of per-
forming 4 integer operations, 8 short operations or 16 byte operations per in-
struction. If the data has an integer SIMD nature, for example integer matrix
multiplication, one can effectively vectorize by loop-unrolling, doing four inte-
ger operations in each loop shortening the total loop length by a factor of four.
Otherwise if the application has a divide and conquer nature, one can vectorize
by doing four branches simultaneously. The performance gain of branch vector-
ization depends heavily on the balance of the four branches, as the amount of
leaves traversed is the worst case of the four branches.
3 Applications written for traditional single core architectures

2.3.1 The nqueens solution The compute intensive part of the presented
nqueens application is based on a divide and conquer algorithm. This algorithm
was vectorized by investigating four branches simultaneously. The execution time
of the vectorized code placing 18 queens was reduced from 42.486 seconds to
41.248 seconds, which is considered an insignificant speedup, the result is shown
in figure 6. An analysis of the vectorized code showed that the average depth

one can effectively vectorize by loop-unrolling, doing four integer operations in
each loop shortening the total loop length by a factor of four. Otherwise if the
application has an divide and conquer nature one can vectorize by doing four
branches simultaneously. The performance gain of branch vectorization depends
heavily on the balance of the four branches, as the amount of leaves traversed is
the worst case of the four branches.

2.3.1 The nqueens solution The compute intensive part of the presented
nqueens application is based upon a divide and conquer algorithm, this algo-
rithm was vectorized by investigating four branches simultaneously, The exe-
cution time of the vectorized code placing 18 queens was reduced from 42.486
seconds to 41.248 seconds, which is considered an insignificant speedup, the re-
sult is shown in figure 6. An analyze of the vectorized code showed that the

 0

 50

 100

 150

 200

 250

 300

P4@
3.2

Reg. PS3 (6 SPEs)

Vec. PS3 (6 SPEs)

S
e

c
o

n
d

s

Execution times placing 18 queens

278.878

49.918 42.486 45.390 41.248

GCC
XLC

Fig. 6. Execution times for the vectorized nqueens application

average depth reached in the search tree increased by 0.3 due to unbalanced
branch vectorization. The presented nqueens application has a search space of
N!, this means that solving the problem for more than 14 queens eliminates the
advantage of branch vectorization. Performance measurements shows that when
placing 20 queens the branch vectorized code gets slower than the register-line
optimized code figure 7. This is due to additional operations needed to test
when all four branches within the vector has met their termination criteria. To
make the branch vectorized code perform better, one could try to balance the

Fig. 6. Execution times for the vectorized nqueens application

reached in the search tree increased by 0.3 due to unbalanced branch vectoriza-
tion. The presented nqueens application has a search space of N!, this means that
solving the problem for more than 14 queens eliminates the advantage of branch
vectorization. Performance measurements show that when placing 20 queens, the
branch vectorized code gets slower than the register-line optimized code, figure 7.
This is due to additional operations needed to test when all four branches within
the vector have met their termination criteria. To make the branch vectorized
code perform better, one could try to balance the branches placed within each
vector. This has not been done with the presented nqueens application, as it’s
believed by the authors that the amount of processing power needed to balance
the branches within the vectors is equal, or exceeds, the processing power needed
to solve the problem itself.

2.4 Instruction parallelization

As the Cell BE is dual pipelined, one pipeline for computation and one for
management, it’s possible to perform load/store instructions from/to the local
store while a computation instructions is being performed, this is specially usable
within loops over data-sets, where it’s clear which data are needed next. This is
one of the optimization tasks which the compiler is capable of doing.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

P4@
3.2

Reg. PS3 (6 SPEs)

Vec. PS3 (6 SPEs)

S
e
c
o
n
d
s

Execution times placing 20 queens

17189.177

3092.517 2625.236 2924.959 2627.630

GCC
XLC

Fig. 7. Execution times for the register-line and branch-vectorized nqueens

branches placed within each vector. This has not been done with the presented
nqueens application, as it’s believed by the authors that the amount of process-
ing power needed to balance the branches within the vectors is equal, or exceeds,
the processing power needed to solve the problem it self.

2.4 Instruction parallelization

As the Cell BE is dual pipelined, one pipeline for computation and one for
management, it’s possible to perform load/store instructions from/to the local
store while a computation instructions is being performed, this is specially usable
within loops over datasets, where it’s clear which data is needed next. This is
one of the optimization tasks which the compiler is capable of doing, but as the
Cell BE processor is fairly new, the compilers doesn’t optimize this as effectively
as one would like, however it’s possible to optimize this by hand at assembler
level.

2.5 Summary

When porting an application from a traditional single core application etc. the
X86 to the Cell BE architecture, at least task- and memory-parallelization should
be chosen as the PPE of the Cell in itself performs poorly, see figure 8. The core
computation part of the task- and memory-level parallelized application can be
compiled directly on the SPE’s and thereby requires no rewriting. As mentioned

Fig. 7. Execution times for the register-line and branch-vectorized nqueens

2.4.1 The nqueens solution To measure how effectively the compiler inter-
leaves the computation and data management instructions, the iterative register-
line version4 of the nqueens application compiled with the IBM XLC compiler
has been profiled by using the Cell-BE system simulator[1]. The result of this
was that approximately 13.9% of all instructions are instruction parallelized5.
However the profiling revealed that 8.5% of all clock-cycles are used waiting on
load/stores between the register-file and the local store. This indicates there is
still room for improvement, which can be done either by eliminating local store
access by using registers if possible, or doing instruction level parallelizing by
hand at assembler level. This has not been looked further into.

2.5 Summary

When porting an application from a traditional single core application, i.e. the
X86, to the Cell BE architecture, at least task-and memory-parallelization should
be chosen as the PPE of the Cell in itself performs poorly, see figure 8. The
core computational part of the task-and memory-level parallelized application
can be compiled directly on the SPE’s and thereby requires no rewriting. As
mentioned, the speedup gained using the task and memory-level parallelization
is 4 on 6 SPE’s. Moving from the tasks-and memory-level parallelized version to
the register-line version with branch elimination improved the speedup from 4 to
6.5 using 6 SPE’s, but this required a rewrite of the compute intensive part using
203 lines of code opposed to the 75 lines of code used in the original recursive
version. The vectorized version resulted in 348 lines of code, but didn’t perform
at all, due to unbalanced branch-vectors, however if one has a well balanced
4 The iterative register-line version was the one performing best
5 Called dual-instructions in Cell-BE terminology

 0

 100

 200

 300

 400

 500

 600

P4@
3.2

Cell PPE

S
e

c
o

n
d

s

Execution times placing 18 queens

278.878

457.264

593.711 GCC
XLC

Fig. 8. Execution times for the PPE nqueens application

the speedup gained using the task- and memory-level parallelization is 4 on
6 SPE’s. Moving from the tasks- and memory-level parallelized version to the
register-line version with branch elimination improved the speedup from 4 to 6.5
using 6 SPE’s, but this required a rewrite of the compute intensive part using
203 lines of code opposed to the 75 lines of code used in the original recursive
version. The vectorized version resulted in 348 lines of code, but didn’t perform
at all, due to unbalanced branch-vectors, however if one has a well balanced
branch-vectors or data is SIMD applicable one can expect a vectorized version
to perform well, but it’s not possible to reach beyond a speedup of 128/X, where
X is the size of each data entry in the vector, compared to a register-line version.

3 Conclusion

The basic principles of porting a X86 application towards the Cell BE archi-
tecture has been presented in this paper as well as tuning methods includ-
ing memory-, data-, and instruction-level parallelization. The porting of the
nqueens test application shows that the execution time placing 18 queens on
an 18x18 chess board was reduced from 278.878 seconds on a Pentium 4 running
at 3.2 GHz to 69.457 yielding a speedup of 4 just by applying standard task-
and memory-parallelization known from cluster computing. This was achieved
without rewriting the compute intensive part towards the Cell BE architecture.
Rewriting the compute intensive part towards the Cell-BE architecture reduced
the execution time of placing 18 queens to 42.486 seconds, yielding a speedup

Fig. 8. Execution times for the PPE nqueens application

branch-vector or data is SIMD applicable one can expect a vectorized version to
perform well, but it’s not possible to reach beyond a speedup of 128/X, where X
is the size of each data entry in the vector, compared to a register-line version.

3 Conclusion

The basic principles of porting an X86 application towards the Cell BE ar-
chitecture has been presented in this paper as well as tuning methods including
memory-, data-, and instruction-level parallelization. The porting of the nqueens
test application shows that the execution time for placing 18 queens on an 18x18
chess board was reduced from 278.878 seconds on a Pentium 4 running at 3.2
GHz to 69.457 seconds, yielding a speedup of 4 just by applying standard task-
and memory-parallelization techniques known from cluster computing. This was
achieved without rewriting the compute intensive part towards the Cell BE archi-
tecture. Rewriting the compute intensive part towards the Cell-BE architecture
reduced the execution time of placing 18 queens to 42.486 seconds, yielding a
speedup of 6.5 compared to a Pentium 4 running at 3.2 GHz. The vectorized
version of the nqueens application didn’t yield any speedup as the average depth
reached in the search tree increased by a factor of 0.3 neglecting the performance
gain reached by investigating the four branches simultaneously. To gain speedup
by vectorizing, the vector-branches need to be balanced, or the data needs to
have a SIMD nature.

References

1. IBM Full-System Simulator for the Cell Broadband Engine Processor. http://www.
alphaworks.ibm.com/tech/cellsystemsim.

2. Berliner Schachgesellschaft, 3:363, 1848.
3. Cell broadband engine programming handbook. pages 891–703,

2007. http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/

9F820A5FFA3ECE8C8725716A0062585F/$file/CBE_Handbook_v1.1_24APR2007_

pub.pdf.
4. Thomas Chen, Ram Raghavan, Jason Dale, and Eiji Iwata. Cell broadband engine

architecture and its first implementation. IBM developerWorks, 2005. http://www.
ibm.com/developerworks/power/library/pa-cellperf.

5. Edsger W. Dijkstra. Chapter i: Notes on structured programming. pages 72–82,
1972.

6. Gordon E. Moore. Cramming more components onto integrated circuits. Electronics,
38,8, 1965. ftp://download.intel.com/research/silicon/moorespaper.pdf.

7. T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband, U. A. Ranawake, and C. V.
Packer. BEOWULF: A parallel workstation for scientific computation. In Pro-
ceedings of the 24th International Conference on Parallel Processing, pages I:11–14,
Oconomowoc, WI, 1995.

8. Michael Sung. SIMD parallel processing. 2000. http://www.ai.mit.edu/projects/
aries/papers/writeups/darkman-writeup.pdf.

9. Takaken. http://www.ic-net.or.jp/home/takaken/e/queen/index.html.

Appendix C

Publication 3

Proceedings of the 2008 International Conference on Grid Computing & Applications,
GCA 2008, Las Vegas, Nevada, USA, July 14-17, 2008
ISBN: 1-60132-068-X, pp. 90-95
Martin Rehr, Brian Vinter: The PS3TM Grid-Resource Model

135

The PS3 R© Grid-resource model

Martin Rehr and Brian Vinter
eScience center, University of Copenhagen, Copenhagen, Denmark

Abstract—This paper introduces the PS3 R© Grid-resource
model, which allows any Internet connected Playstation 3
to become a Grid Node without any software installation.
The PS3 R© is an interesting Grid resource as each of
the over 5 millions sold world wide contains a powerful
heterogeneous multi core vector processor well suited for
scientific computing. The PS3 R© Grid node provides a native
Linux execution environment for scientific applications.
Performance numbers show that the model is usable when
the input and output data sets are small. The resulting system
is in use today, and freely available to any research project.

Keywords: Grid, Playstation 3, MiG

1. Introduction

The need for computation power is growing daily as an
increasing number of scientific areas use computer modeling
as a basis for their research. This evolution has led to a
whole new research area called eScience. The increasing
need of scientific computational power has been known for
years and several attempts have been made to satisfy the
growing demand. In the 90’s the systems evolved from vector
based supercomputers to cluster computers which is build of
commodity hardware leading to a significant price reduction.
In the late 90’s a concept called Grid computing[7] was
developed, which describes the idea of combining the different
cluster installations into one powerful computation unit.

A huge computation potential beyond the scope of cluster
computers is represented by machines located outside the
academic perimeter. While traditional commodity machines
are usually PC’s based on the X86 architecture a whole new
target has turned up with the development and release of the
Sony Playstation 3 (PS3 R©). The heart of the PS3 R© is the
Cell processor, The Cell Broadband Engine Architecture (Cell
BE)[4] is a new microprocessor architecture developed in a
joint venture between Sony, Toshiba and IBM, known as STI.
Each company has their own purpose for the Cell processor.
Toshiba uses it as a controller for their flat panel televisions,
Sony uses it for the PS3 R©, and IBM uses it for their High
Performance Computing (HPC) blades. The development of
the Cell started out in the year 2000 and involved around 400
engineers for more than four years and consumed close to
half a billion dollars. The result is a powerful heterogeneous
multi core vector processor well suited for gaming and High
Performance Computing (HPC)[8].

1.1. Motivation

The theoretical peak performance of the Cell processor in
the PS3 R© is 153,6 GFLOPS in single precision and 10.98
GFLOPS in double precision[4]1. According to the press more
than 5 million PS3’s have been sold worldwide at October
2007. This gives a theoretical peak performance of more
than 768.0 peta-FLOPS in single precision and 54.9 peta-
FLOPS in double precision, if one could combine them all
in a Grid infrastructure. This paper describes two scenarios
for transforming the PS3 R© into a Grid resource, firstly the
Native Grid Node (NGN) where full control is obtained of
the PS3 R©. Secondly the Sandboxed Grid Node (SGN) where
several issues have to be considered to protect the PS3 R© from
faulty code, as the machine is used for other purposes than
Grid computing.

Folding@Home[6] is a scientific distributed application for
folding proteins. The application has been embedded into the
Sony GameOS of the PS3 R©, and is limited to protein folding.
This makes it Public Resource Computing as opposed to our
model which aims at Grid computing, providing a complete
Linux execution environment aimed at all types of scientific
applications.

2. The Playstation 3

The PS3 R© is interesting in a Grid context due to the
powerful Cell BE processor and the fact that the game console
has official support for other operating systems than the default
Sony GameOS.

2.1. The Cell BE

The Cell processor is a heterogeneous multi core processor
consisting of 9 cores, The Primary core is an IBM 64 bit power
processor (PPC64) with 2 hardware threads. This core is the
link between the operating system and the 8 powerful working
cores, called the SPE’s for Synergistic Processing Element.
The power processor is called the PPE for Power Processing
Element, figure 1 shows an overview of the Cell architecture.
The cores are connected by an Element Interconnect Bus (EIB)
capable of transferring up to 204 GB/s at 3.2 GHz. Each SPE

1. The PS3 R© Cell has 6 SPE’s available for applications. Each SPE is
running at 3.2 GHz and capable of performing 25.6 GFLOPS in single
precision and 1.83 GFLOPS in double precision.

BEI

IOIF_1

IOIF_0

PPE

Element Interconnect Bus (EIB)

SPE0 SPE2 SPE4 SPE6

SPE1 SPE3 SPE5 SPE7

MICXIO
XIO

BEI

IOIF

MIC

PPE

SPE

XIO

Cell Broadband Engine Interface

I/O interface

Memory Interface Controller

Power Processor Element

Synergistic Processor Element

Rambus XDR I/O

Figure 1. An overview of the Cell architecture

Synergistic Processor Element (SPE)

Even pipeline

Local Store

Memory Flow Controller
(MFC)

Instruction Prefetch and Issue Unit

Register File

Odd pipeline

Element Interconnect Bus (EIB)

Figure 2. An overview of the SPE

is dual pipelined, has a 128x128 bit register file and 256 kB
of on-chip memory called the local store. Data is transfered
asynchronously between main memory and the local store
through DMA calls handled by a dedicated Memory Flow
Controller (MFC). An overview of the SPE is shown in figure
2.

By using the PPE as primary core, the Cell processor can
be used out of the box, due to the fact that many existing
operating systems support the PPC64 architecture. Thereby
it’s possible to boot a PPC64 operating system on the Cell
processor, and execute PPC64 applications, however these will
only use the PPE core. To use the SPE cores it’s necessary to
develop code specially for the SPE’s, which includes setting
up a memory communications scheme using DMA through
the MFC.

2.2. The game console

Contrary to other game consoles, the PS3 R© officially sup-
ports alternative operating systems besides the default Sony
Game OS. Even though other game consoles can be modified
to boot alternative operating systems, this requires either an
exploit of the default system or a replacement of the BIOS.
Replacing the BIOS is intrusion at the highest level, expensive
at a large volume and not usable beyond the academic perime-
ter. Security exploits are most likely to be patched within the
next firmware update, which makes this solution unusable in
any scenario. Beside the difficulties modifying other game
consoles towards our purposes, the processors used by the
game consoles currently on the market, except for the PS3 R©,

PS3 Hypervisor Virtualization Layer

SPU GPU AUDIO
GbE

WiFi

ATA

HDD/CD

USB

HID

BlueTooth

PPU

SPU
FS*

Audio/Video*

ALSA
**

FB

PS3
VRAM
MTD

GbE*

Network

TCP/IP

Storage*

SCSI

HDD** CD

OHCI/
EHCI*

USB** PPU

PS3PF*

PS3 Hardware

PS3 Linux Kernel

 *
**

PS3 Hypervisor Linux drivers provided by SONY
Linux drivers NOT included on the PS3LIVE CD

Figure 3. An overview of the PS3 R© Hypervisor structure
for the Grid-resource model

are not of any interest for scientific computing.
The fact that the PS3 R© is low priced from a HPC point

of view, equipped with a high performance vector processor,
and supports alternative operating systems, makes it interesting
both as an NGN node and an SGN node. All sold PS3’s
can be transformed to a powerful Grid resource with a little
effort from the owner of the console. Third party operating
systems work on top of the Sony GameOS, which acts as a
hypervisor for the guest operating system. See figure 3. The
hypervisor controls which hardware components are accessible
from the guest operating system. Unfortunately the GPU is
not accessible by guest operating systems2, which is a pity,
as it in itself is a powerful vector computation unit with
a theoretical peak performance of 1.8 tera-FLOPS in single
precession. However 252 MB of the 256 MB GDDR3 ram
located on the graphics card can be accessed through the
hypervisor, The hypervisor reserves 32 MB of main memory
and 1 of the 7 SPE’s available in the PS3 R© version of the Cell
processor3. This leaves 6 SPE’s and 224 MB of main memory
for guest operating systems. Lastly a hypervisor model always
introduces a certain amount of performance decrease, as the
guest operating system does not have direct access to the
hardware.

3. The PS3 R© Grid resource

The PS3 R© supports alternative operating systems, making
the transformation into a Grid resource rather trivial, as a
suitable Linux distribution and an appropriate Grid client are
the only requirements. However if you target a large amount
of PS3’s this becomes cumbersome. Furthermore if the PS3’s

2. It is not clear whether it’s to prevent games to be played outside Sony
GameOS, due to DRM issues or due to the exposure of the GPU’s register-
level information

3. The Cell processor consists of 8 SPE’s, but in the PS3 R© one is removed
for yield purposes, if one is defective it is removed, if none is defective a
good one is removed to assure that all PS3’s have exactly 6 SPE’s available
for applications, to preserve architectural consistency

located beyond the academic perimeter are to be reached,
minimal administrational work form the donator of the PS3 R©

is a vital requirement. Our approach minimizes the workload
required transforming a PS3 R© into a powerful Grid resource by
using a LIVECD. Using this CD, the PS3 R© is booted directly
into a Grid enabled Linux system. The NGN version of the
LIVECD is targeted at PS3’s used as dedicated Grid nodes,
and uses all the available hardware of the PS3 R©, whereas the
SGN version uses the machine without making any change4

to it, and is targeted at PS3’s used as entertainment devices as
well as Grid nodes.

3.1. The PS3-LIVECD

Several requirements must be met by the Grid middleware
to support the described LIVECD. First of all the Grid
middleware must support resources which can only be
accessed through a pull based model, which means that
all communication is initiated by the resource, i.e. the
PS3-LIVECD. This is required because the PS3’s targeted by
the LIVECD are most likely located behind a NAT router.
Secondly, the Grid middleware needs a scheduling model
where resources are able to request specific types of jobs,
e.g. a resource can specify that only jobs which are targeted
the PS3 R© hardware model can be executed.

In this work the Minimum intrusion Grid[11], MiG, is
used as the Grid middleware. The MiG system is presented
next, before presenting how the PS3-LIVECD and MiG work
together.

3.2. Minimum intrusion Grid

MiG is a stand-alone Grid platform, which does not inherit
code from any earlier Grid middlewares. The philosophy
behind the MiG system is to provide a Grid infrastructure
that imposes as few requirements on both users and resources
as possible. The overall goal is to ensure that a user is only
required to have a X.509 certificate which is signed by a source
that is trusted by MiG, and a web browser that supports HTTP,
HTTPS and X.509 certificates. A fully functional resource
only needs to create a local MiG user on the system and to
support inbound SSH. A sandboxed resource, the pull based
model, only needs outbound HTTPS[1].

Because MiG keeps the Grid system disjoint from both
users and resources, as shown in Figure 4, the Grid system
appears as a centralized black box[11] to both users and
resources. This allows all middleware upgrades and trouble
shooting to be executed locally within the Grid without any
intervention from neither users nor resource administrators.
Thus, all functionality is placed in a physical Grid system
that, though it appears as a centralized system in reality is
distributed. The basic functionality in MiG starts by a user
submitting a job to MiG and a resource sending a request for
a job to execute. The resource then receives an appropriate job
from MiG, executes the job, and sends the result to MiG that

4. One has to install a boot loader to be able to boot from CD’s

Grid

Client Resource

Resource

Resource
Client

Client

Client

Figure 4. The abstract MiG model

can then inform the user of the job completion. Since the user
and the resource are never in direct contact, MiG provides full
anonymity for both users and resources, any complaints will
have to be made to the MiG system that will then look at the
logs that show the relationship between users and resources.

3.2.1. Scheduling. The centralized black box design of MiG
makes it capable of strong scheduling, which implies full
control of the jobs being executed and the resource execut-
ing them. Each job has an upper execution time limit, and
when the execution time exceeds this time limit the job is
rescheduled to another resource. This makes the MiG system
very well suited to host SGN resources, as they by nature are
very dynamic and frequently join and leave the Grid without
notifying the Grid middleware.

4. The MiG PS3-LIVECD

The idea behind the LIVECD is booting the PS3 R© by
inserting a CD, containing the Linux operating system and the
appropriate Grid clients. Upon boot, the PS3 R© connects to the
Grid and requests Grid jobs without any human interference.
Several issues must be dealt with. First of all the PS3 R© must
not be harmed by flaws in the Grid middleware nor exploits
through the middleware, Secondly the Grid jobs may not harm
the PS3 R© neither by intention nor by faulty jobs. This is
especially true for SGN resources where an exploit may cause
exposure of personal data.

4.1. Security

To keep faulty Grid middleware and jobs from harming the
PS3 R©, both the NGN and SGN model use the operating system
as a security layer. The Grid client software and the executed
Grid jobs are both executed as a dedicated user, who does
not have administrational rights of the operating system. The
MiG system logs all relations between jobs and resources, thus
providing the possibility to track down any job.

4.2. Sandboxing

The SGN version of the LIVECD operates in a sand-
boxed environment to protect the donated PS3 R© from faulty
middleware and jobs. This is done by excluding the device
driver for the PS3 R© HDD controller from the Linux kernel

used, and keeping the execution environment in memory
instead. Furthermore, the support for loadable kernel modules
is excluded, which prevents Grid jobs from loading modules
into the kernel, even if the OS is compromised and root access
is achieved.

4.3. File access

Enabling file access to the Grid client and jobs without
having access to the PS3’s hard drive is done by using the
graphics card’s VRAM as a block device. Main memory is
a limited resource5, therefore using the VRAM as a block
device is a great advantage compared to the alternative of
using a ram disk, which would decrease the amount of main
memory available for the Grid jobs. However the total amount
of VRAM is 252 MB and therefore Grid jobs requiring
input/output files larger than 252 MB are forced to use a
remote file access framework[2].

4.4. Memory management

The PS3 R© has 6 SPE cores and a PPE core all capable of
accessing the main memory at the same time, through their
MFC controllers. This results in a potential bottleneck in the
TLB, as it in the worst case ends up thrashing, which is a
known problem in multi core processor architectures. TLB
thrashing can be eliminated by adjusting the page size to fit
the TLB, which means that all pages have an entry in the TLB.
This is called huge pages, as the page size grows significantly.
The use of huge pages has several drawbacks, one of them is
swapping. Swapping in/out a huge page results in a longer
execution halt as a larger amount of data has to be moved
between main memory and the hard drive.

The Linux operating system implements huge pages as a
memory mapped file, this results in a static memory division
of traditional pages and huge pages, using different memory
allocators. The operating system and standard shared libraries
use the traditional pages which means the memory footprint
of the operating system and the shared libraries has to be
estimated in order to allocate the right amount of memory for
the huge pages. Opposite to a cluster setup where the execution
environment and applications are customized to the specific
cluster, this can’t be achieved in a Grid context6. Therefore a
generic way of addressing the memory is needed. Furthermore
future SPE programming libraries will most likely use the de-
fault memory allocator. This and the fact that no performance
measurement clarifying the actual gain of using huge pages
could be found, led to the decision to skip huge pages for the
PS3-LIVECD.

At last it’s believed by the authors that the actual applica-
tions which could gain a performance increase by using huge
pages is rather insignificant, as the the majority of applications
will be able to hide the TLB misses by using double- or
multi buffering, as memory transfers through the MFC are
asynchronous.

5. The PS3 R© only has 224 MB of main memory for the OS and applications
6. Specially in MiG where the user and resources are anonymous to each

other

5. The execution environment

The PS3-LIVECD is based on the Gentoo Linux[9] PPC64
distribution with a customized kernel[5] capable of communi-
cating with the PS3 R© hypervisor. Gentoo catalyst[3] was used
as build environment, this provides the possibility of configur-
ing exactly which packages to include on the LIVECD, as well
as providing the possibility to apply a custom made kernel and
initrd script. The kernel was modified in different ways, firstly
loadable modules support was disabled to prevent potential
evil jobs, which manages to compromise the OS security,
from modifying the kernel modules. Secondly the frame-
buffer driver has been modified to make the VRAM appear
as a memory technology device, MTD, which means that the
VRAM can be used as a block device. The modification of
the frame-buffer driver also included freeing 18 MB of main
memory occupied by the frame-buffer used in the default
kernel7.

The modified kernel ended up consuming 7176 kB of the
total 229376 kB main memory for code and internal data
structures, leaving 222200 kB for the Grid client and jobs.
Upon boot the modified initrd script detects the block device
to be used as root file system8 and formats the detected device
with the ext2 filesystem, reserving 2580 kB for the superuser,
leaving 251355 kB for the Grid client and jobs9. When the
block device has been formatted, the initrd script sets up the
root file system by coping writable directories and files from
the CD to the root file system. Read-only directories, files,
and binaries are left on the CD and linked symbolically to the
root filesystem keeping as much of the root filesystem free for
Grid jobs as possible. The result is that the root file system
only consumes 1.6 MB of the total space provided by the used
block device.

When the Linux system is booted the LIVECD initiates
the communication with MiG through HTTPS. This is done
by sending a unique key identifying the PS3 R© to the MiG
system, if this is the first time the resource connects to the
Grid a new profile is created dynamically. The response to
the initial request is the Grid resource client scripts, these are
generated dynamically upon the request. By using this method
it’s guaranteed that the resource always has the newest version
of the Grid resource client scripts, disabling the need for
downloading a new CD upon a Grid middleware update. When
the Grid resource client script is executed the request of Grid
jobs is initiated through HTTPS. Within that request a unique
resource identifier is provided, giving the MiG scheduler the
necessary information about the resource such as architecture,
memory, disc space and an upper time-limit. Based on these
parameters the MiG scheduler finds a job suited for the PS3 R©

and places it in a job folder on the MiG system. From this
location the PS3 R© is able to retrieve the job consisting of

7. As the hypervisor isolates the GPU from the operating system, the
display is operated by having the frame-buffer writing the data to be displayed
to an array in main memory, which is then copied to the GPU by the
hypervisor

8. The SGN version uses VRAM, DGN version uses the real hard drive
provided through the hypervisor

9. This is true for the SGN version, the NGN version uses the total disc
space available, which is specified through the Sony Game OS

job description files, input-files, and executables. The location
of these files is returned within the result of the job request,
and is a HTTPS URL including a 32 character random string
generated upon the job request and deleted when the job
terminates. At job completion the result is delivered to the
MiG system which verifies that it’s the correct resource (by
the unique resource key) which delivers the result of the job.
If it’s a false deliver10 the result is discarded, otherwise it’s
accepted. And the PS3 R© resource requests a new job when
the result of the previous one has been delivered.

6. Experiments

Testing the PS3 R© Grid-resource model was done establish-
ing a controlled test scenario consisting of a MiG Grid server
and 8 PS3’s. The experiments performed included a model
overhead check, a file system benchmark using VRAM as
a block device, and application performance, using a protein
folding and a ray tracing application.

6.1. Job overhead and file performance

The total overhead of the model was tested by submitting
1000 empty jobs to the Grid with only one PS3 R© connected.
The 1000 jobs completed in 12366 seconds, which translates
to an overhead of approximately 13 seconds per job. The
performance of the VRAM used as a block device was tested
by writing a 96 MB file sequentially. This was achieved in
1.5 seconds, resulting in a bandwidth of 64 MB/s. Reading
the written file was achieved in 9.6 seconds, resulting in a
bandwidth of 10 MB/s. This shows that writing to the VRAM
is a factor of approximately 6.5 faster than reading from the
VRAM, which was an expected result as the nature of VRAM
is write from main memory to VRAM, not the other way
around.

6.2. Protein folding

Protein folding is a compute intensive algorithm for folding
proteins. It requires a small input and generates a small output,
and is embarrassing parallel which makes it very suitable for
Grid computing. In this experiment, a protein of length 27
was folded on one PS3 R© resulting in a total execution time
of 57 minutes and 16 seconds. The search space was then
divided into 17 different subspaces using standard divide and
conquer techniques. The 17 different search spaces were then
submitted as jobs to the Grid, which adds up to 4 jobs for each
of the 4 nodes used in the experiment plus one extra job to
ensure unbalanced execution. Equivalently, the 17 jobs were
distributed among 8 nodes, yielding 2 jobs per node plus one
extra job. The execution finished in 18 minutes and 50 seconds
using 4 nodes giving a speedup of 3.04. The 8 node setup
finished the execution in 10 minutes and 56 seconds giving a
speedup of 5.23, this is shown in figure 5. These results are
considered quite useful in a Grid setup as opposed to a cluster
setup where this would be considered bad.

10. The resource keys doesn’t match, the time limit has been violated, or
another resource is executing the job, due to a rescheduling

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7 8 9

Sp
ee

d
up

Number of nodes

Figure 5. The speedup achieved using the PS3-LIVECD
for protein folding with 4 and 8 nodes

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5 6 7 8 9

Sp
ee

d
up

Number of nodes

Figure 6. The speedup achieved using the PS3-LIVECD
for ray tracing with 4 and 8 nodes

6.3. Ray tracing

Ray tracing is compute intensive, requires a small amount of
input and generates a large amount of output. This experiment
uses a Ray tracing code written by Eric Rollings[10], this has
been modified from a real time ray tracer to a ray tracer which
writes the rendered frames to files in a resolution of 1920x1080
(Full HD). The final images are jpeg compressed to reduce the
size of the output. A total of 5000 frames were rendered in
78 minutes and 6 seconds on a single PS3 R©, the search space
was then divided into 25 equally large subspaces. These were
submitted as jobs to the Grid resulting in a total of 25 jobs,
which adds up to 6 jobs per node plus one extra in the 4 node
setup, and 3 jobs per node plus one extra in the 8 node setup.
The execution time using 4 nodes was 32 minutes and 23
seconds giving a speedup of 2.41 and the execution time using
8 nodes was 25 minutes and 12 seconds giving a speedup of
3.09, this is sketched in figure 6. While the speedup achieved
with 4 nodes is quite useful in a Grid context, the speedup
gained using 8 nodes is quite disappointing. The authors

believe this is due to network congestion when the rendered
frames are sent to the MiG storage upon job termination.

7. Conclusion

In this work we have demonstrated a way to use the
Sony Playstation 3 as a Grid computing device, without the
need to install any client software on the PS3 R©. The use
of the Linux operating system provides a native execution
environment suitable for the majority of scientific applications.
The advantage of this is that existing Cell applications can be
executed without any modifications. A sandboxed version of
the execution environment has been presented which denies
access to the hard drive of the PS3 R©. The advantage of this
is that donated PS3’s can’t be compromised by faulty or evil
jobs, the disadvantage is the lack of file access, which is solved
by using the VRAM of the PS3 as block device.

The Minimum intrusion Grid supports the required pull-
job model for retrieving and executing Grid jobs on a re-
source located behind a firewall without the need to open
any incoming ports. By using the PS3-LIVECD approach any
PS3 R© connected to the Internet can become a Grid resource by
booting it with the LIVECD. When a Grid connected PS3 R© is
shut down the MiG system will detect this event, by a timeout,
and resubmit the job to another resource.

Experiments show that the ray tracing application doesn’t
scale well, due to the large amount of output data resulting in
network congestion problems. Opposite to this, a considerable
speedup is reached when folding proteins despite of the model
overhead of 13 seconds applied to each job.

References

[1] Rasmus Andersen and Brian Vinter. Harvesting idle windows
cpu cycles for grid computing. In Hamid R. Arabnia, editor,
GCA, pages 121–126. CSREA Press, 2006.

[2] Rasmus Andersen and Brian Vinter. Transparent remote file
access in the minimum intrusion grid. In WETICE ’05: Pro-
ceedings of the 14th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprise, pages
311–318, Washington, DC, USA, 2005. IEEE Computer Soci-
ety.

[3] Gentoo Catalyst. http://www.gentoo.org/proj/en/releng/catalyst.

[4] Thomas Chen, Ram Raghavan, Jason Dale, and Eiji Iwata. Cell
broadband engine architecture and its first implementation. IBM
developerWorks, 2005. http://www.ibm.com/developerworks/
power/library/pa-cellperf.

[5] PS3 Linux extensions. ftp://ftp.uk.linux.org/pub/linux/
Sony-PS3.

[6] Folding@home. http://folding.stanford.edu.

[7] Ian Foster. The grid: A new infrastructure for 21st century
science. Physics Today, 55(2):42–47, 2002.

[8] Mohammad Jowkar. Exploring the Potential of the Cell
Processor for High Performance Computing. Master’s thesis,
University of Copenhagen, Denmark, August 2007.

[9] Gentoo Linux. http://www.gentoo.org.

[10] Eric Rollings. Ray tracer. http://eric rollins.home.mindspring.
com/ray/ray.html.

[11] Brian Vinter. The Architecture of the Minimum intrusion Grid
(MiG). In Communicating Process Architectures 2005, sep
2005.

Appendix D

Publication 4

IEEE HPCC-10, the 12th edition of the highly successful International Conference
on High Performance and Communications (HPCC), Melbourne, Victoria, Australia,
September 1-3, 2010. Proceedings to appear
Martin Rehr, Brian Vinter: The User-level Remote Swap Library

142

The User-level Remote Swap Library
Martin Rehr and Brian Vinter

eScience center, University of Copenhagen, Copenhagen, Denmark

Abstract—This paper introduces the User-level Remote Swap
Library, URSL, which enables memory-homogeneous Grid execution.
This is obtained by letting the Grid infrastructure supply a remote
memory bank to the connected resources. Insufficient memory at the
contribution computer resource in a Grid is a major limitation when
users seek to get high throughput in a Grid infrastructure, simply
because a number of the available computers do not offer enough
memory for the user job to run. URSL bypasses the lack of memory
by offering the required memory as part of the Grid infrastructure
in the form of a user-level swapping resource. A set of dedicated
memory servers provide the additional memory that the computing
resources then access remotely through the Grid infrastructure.
Utilization of the extra memory is obtained without modifications to
neither the operating system of the host resource nor the executed
applications. The paper includes experiments that are made in an
isolated Grid framework, and shows that the framework is fully
operational, transparent and outperforms swapping to local disk
in both the synthetic micro-benchmarks and in real-life scientific
applications.

Keywords: Remote Swap, Grid

I. INTRODUCTION

The scientific modeling community has a seemingly endless
need for processing power as new areas of modeling arise
steadily and existing models become increasingly fine grained
and realistic. To be able to keep up with the growing demand
for processing power the Grid[13] paradigm was introduced
in the late 90’s with the purpose of providing an infrastructure
that combines super-computer installations located at different
research institutions into one high performance infrastructure
which in turn enables sharing the computer resources among
the researchers across organizations. In the same period Berke-
ley University introduced Public Resource Computing (PRC)
in the form of the SETI@home[4] project, which later turned
into the BOINC[3] framework. The PRC paradigm differs
from the Grid computing paradigm by focusing on the large
set of computing devices that are located outside the super-
computer facilities, which has been demonstrated to have a
huge computation potential. At the time of writing the most
successful PRC project FOLDING@home[8] has a total of
325638 active CPU’s that contribute a theoretical total of 4432
TFLOPS1, which potentially makes it the second fastest super-
computer installation in the world right now2. A number of

1According to their web-site:http://fah-web.stanford.edu/cgi-bin/main.py?
qtype=osstats

2According to the Top-500 list of the worlds fastest super-computer
installations at November 2009 (http://www.top500.org/list/2009/11/100). The
Top 500 list is based on the Linpack benchmark suite, which is not applicable
to a PRC environment, therefore the comparison is theoretical.

research projects have shown ways to combine PRC com-
puting and PRC computing, the first using BOINC resources
within a Grid infrastructure[16] and the latter by harvesting
generic windows resources[1] and Playstation 3 resources[17]
in a Grid environment. This work provides a possibility
of utilizing the processing power that was previously only
applicable to PRC computing in a Grid infrastructure, because
the resources would not offer enough memory for the Grid
jobs. While PRC resources offer a huge boost to the theoretical
processing power that is available in a Grid infrastructure it
also introduces a number of new challenges. Using millions
of PRC resources is necessarily more heterogeneous than a
few super-computer installations, which impacts the size of
the set of resources that are capable of executing any given
job and thus the overall utilization of the Grid system. There
are four levels of homogeneity, which needs to be addressed:
Hardware-, OS-, disk- and memory-homogeneity. Hardware-
and OS-homogeneity may be addressed by wrapping the Grid
execution environment into a virtual machine image, disk-
homogeneity may be applied by using a remote file library[2],
but so far there is no mechanism for providing memory
homogeneity in a Grid framework. We propose the Remote
User-Level swap framework in order to enable memory homo-
geneity to Grid computing and thus increase the total system
utilization3 This framework provides Grid resources with a
mechanism for seamlessly accessing memory that is located in
the Grid infrastructure, without modifying neither the resource
nor the job that is executed.

A. Related Work

Several research groups have looked into the idea of
swapping to a remote machine rather than a local disk. D.
Comer and J. Griffioen[10] present a model where a dedicated
memory server is used to store pages that are swapped out
by the clients. E. Markatos and G. Dramitinos[14] present a
reliable remote memory pager that makes use of free memory
in the nodes of a cluster. E. Anderson and J. Neefe[5] present
a user-level remote memory pager that targets Network Of
Workstations (NOW’s). R.T. Mills, C. Yue, A. Stathopoulos
and D.S. Nikolopoulos[15] presents a user-level remote mem-
ory system for scientific applications that uses local disk and
dedicated memory servers. R. Chu et. al.[9] present remote
memory paging using NOW’s in a Grid environment.

The kernel-level models presented in most of the previous
work are poorly suited for global Grid environments, because
these models require modifications to the operating system of

3Providing the throughput is bound by memory constraints

the executing host resources. While this is acceptable in an
isolated homogeneous cluster environment it’s difficult if not
impossible to deploy in global Grid environments that have
thousands of executing hosts and host administrators. With
this in mind we chose to extend the existing solutions by
combining the idea of dedicated memory servers that was
presented by D. Comer and J. Griffioen and the user-level
idea presented by E. Anderson and J. Neefe integrated with
the Grid approach taken by Chu et al. But opposed to the
previous user-level solutions, which requires the use of non-
standard memory routines, our solution works transparently
to the application and thereby transparently to the application
writer and ultimately the Grid user. This leads to a solution that
differs from the previous work by providing a Remote Mem-
ory framework for global Grid environments with resources
ranging from the traditional cluster computer installations all
the way to PRC devices. That is, a solution which is deployed
through the Grid infrastructure and is fully transparent to both
the execution hosts and to the application writer.

II. THE GRID INFRASTRUCTURE

The Grid computing paradigm is a natural extension to
cluster computing, that aims at assembling a global network of
computation resources into one shared, although not parallel,
infrastructure. Where the devices used in cluster computers
are homogeneous, the devices used in a Grid system are
heterogeneous, in all aspects of the hardware configuration,
the resource location, and the administrative domain they run
within. In this work we aim at improving the usability of
Grid resources by providing them with more memory than
they offer locally. By letting the Grid infrastructure provide a
memory service to supplement local memory, the Grid may
take advantage of resources, which would otherwise be idle
because no jobs fit the memory they offer. The end result is
that the total utilization of the Grid system is increased as a
broader set of resources are capable of executing the pending
Grid jobs.

A. Grid Resource Memory

In the perfect world a computing device would hold suffi-
cient physical memory to allow all running processes and their
data in memory. Naturally this is not the case and we thus need
mechanisms to administrate the available physical memory to
help optimize utilization of the hardware. This is usually done
through the OS memory manager, which has global knowledge
of the memory usage of all running processes in the system.
However, changes to the operating system is a limiting factor
in the adaptation of any system, thus in this work we aim at
deploying a user-level swap library, which is placed between
the OS and the application and intercepts memory needs before
they reach the OS memory manager. Using this approach
we introduce a Grid-enabled memory manager that runs non-
intrusively at any Grid resource.

1) Memory management: All modern computer architec-
tures have a memory management unit and use an operating
system, which provides a full virtual address space to each

process. This gives the processes an impression of having
exclusive access to a system where the upper limit of memory
is bound only by the hardware architecture. While providing
a full virtual address space for each process is a powerful
abstraction, it also places a large responsibility on the OS to
manage the available physical memory. Traditionally this is
achieved by swapping memory to disk when the system runs
short on physical memory. If the system exhausts the available
disk space for swapping, the OS has to decide what to do.
Typically the policy is killing a process to free up memory.

2) Kernel-level vs. user-level: The OS memory manager
is responsible for swapping page-frames between physical
memory and secondary memory, typically a hard-disk. In
Linux the swap device is implemented as a generic block
device, which makes it easy to change swap-target implemen-
tation as one can plug these directly into the kernel just by
emulating the behavior of a block device. This approach has
the advantage that the memory manager is left unmodified and
works independently of which underlying media is actually
used as storage for the swapped out memory. The downside
to this approach is that it requires administrator privileges to
deploy such a block device into the kernel, and implicitly that
the administrator will have to trust the code that is added to
the memory manager since it will run with kernel privileges.

While the kernel-level approach is easy to implement due
to the cleaner interface with the OS, the user-level model is
more flexible in a Grid context since it overrides the local
memory manager and thus provides a homogeneous swapping
mechanism to the Grid resources without requiring admin-
istration privileges or implicit trust to the swapping module.
This enables the Grid infrastructure to fully control the amount
of physical memory that the executing application is allowed
to use on the resource 4. The user-level model however has
several drawbacks, primarily that you have to implement a
new memory manager to work on top of the native memory
manager. However reusing most of the OS memory manager
and overloading only a few functionalities such as allocation
of memory, freeing memory and swapping pages in and out
of physical memory may be sufficient. Another drawback of
the user-level approach is that it invokes frequent switching
between user- and kernel-level, which results in an execution
time overhead compared to the native model where everything
is done in kernel space. In addition an overhead in memory
consumption is imposed because the user-level library must
maintain a set of internal data structures to keep track of the
state and location of pages that are used by the application.
Last but not least a user-level library doesn’t have access to the
hardware supported status bits of the process page-table, which
has the effect that the widely used LRU eviction algorithm is
not applicable 5

Despite the overhead of the user-level approach compared to

4Naturally it’s not possible to utilize more physical memory than present
at the resource

5LRU uses the hardware page referenced bit, which is not accessible at
user-level. A workaround can be made, but introduces a significant overhead
due to switching between user- and kernel-level

malloc()

Application

malloc()

Update pagetable

return malloc()

return malloc()

libc

Remote Memory Library

Fig. 1. The flow of a malloc call from the user application

the kernel-level approach, we choose to make our remote swap
library run at user-level. This is chosen because it imposes
fewer requirements for deployment in Grid environments,
as well as the opportunity to change the page replacement
algorithms with algorithms that are more suited towards a Grid
environment.

III. THE REMOTE SWAP FRAMEWORK

The Remote Swap framework consists of two components
namely a memory server and a Remote Memory Library
(RML). This memory library is interposed in user-level be-
tween the OS and the user process on the executing Grid
resource to provide a transparent user-level swap mechanism.
It’s responsible for allocating memory, freeing memory and
evicting pages to the remote memory server, as well as
bringing pages back into physical memory, when they are once
again needed.

A. The Remote Memory Library

The goal of making RML transparent to both the user
application and the underlying OS implies that RML should
support all the memory routines that are available to the
application writer in the original environment. In this initial
version of RML, Linux heap memory is the target for remote
swapping, making the libc routines malloc, calloc, realloc and
free the ones supported in RML. Rather than re-writing and
maintaining these routines, they are merely overloaded with
the purpose of maintaining a local page-table in RML to keep
track of the pages in use by the user process. The actual
memory allocation is done by calling the generic memory
routines in libc from within the overloaded routines. This is
illustrated in figure 1.

1) Page eviction: When the user process reaches its phys-
ical memory limit pages need to be evicted. The target pages
are found using the second chance FIFO evict strategy rather
than the LRU strategy, which is used by most OSs, because
LRU is not feasible in a user-level environment. When the
pages to be evicted are found, they are protected in read
mode to ensure consistency by preventing any other active user
threads from modifying them during eviction. If the chosen
pages were modified while resident in memory, they are sent to

Memory Server

Kernel

Server
Application

Remote Memory Library

Kernel

Resource

(1)

(2)

User Space

Kernel Space

Fig. 2. The flow of swapping in a page from the remote server. (1) The
kernel catches a page access violation which is sent to the user process but
intercepted by RML and transformed into a server page request. (2) The server
responds with the page needed which is transferred to the client and mapped
into the right position in memory and control is given back to the user process.

the remote memory server through the network. The physical
memory used for the evicted pages are then released and the
virtual pages are protected in order to detect when the user
process tries to access them.

2) Page retrieval: When the user process tries to access a
protected page, the kernel will send, an access violation signal
to the user process. This signal is intercepted by RML, which
checks the state of the violated page in its local page-table.
If the page has previously been swapped out, a page request
is sent to the remote server in order to retrieve the page. The
server responds with the page data, which is placed into the
correct page slot and control is given back to the user process
which can continue execution. This is shown in figure 2. If
RML doesn’t have any information about the violated page
the access violation signal is forwarded to the user process
which then has to handle the signal.

3) Page blocks: The memory manager in modern OSs ar-
range memory into an abstraction called page-frames, which is
blocks of contiguous bytes. In the same manner RML arranges
blocks of contiguous pages into what we call page blocks in
order to swap out and retrieve several contiguous pages in
a single evict or retrieve operation. This is beneficial if the
executing application has a sequential memory access pattern
across page blocks, that is the byte access pattern within a page
block can be scattered as long as it doesn’t access bytes outside
the page block or its adjacent neighbors. Not all scientific
applications have a strictly sequential memory access pattern,
but even then they may still take advantage of using blocks
of pages when evicting or retrieving pages. This is clarified
in the experiments section. The optimal number of pages to
block into one page block is dependent on the network latency
between the client and the memory server, and the memory
access pattern of the executing application. In this first version
of RML the page block size is provided to the framework
before execution. Adaptive adjustment towards the needs of
the executing algorithm is subject for future work.

B. The Memory Server

The memory server is a user-level process communicating
with the clients through a TCP socket. Two kinds of services
are offered by the memory server: Page send and page retrieve.
When the client asks for a service the index of the page to
send/retrieve is sent along with the request. The server stores
the pages in memory and uses a hash table with the page index
as key and the memory address where the page is stored locally
at the memory server as value. When a page is received at the
server the page index is looked up in the hash table to check
if memory has previously been allocated for the specific page
due to an earlier swap-out. If the page has an entry in the
hash table the memory associated with it is reused, otherwise
memory is allocated for the new page and the key/value pair
is inserted into the hash table.

Upon a page retrieve request the server makes a lookup in
the hash table, if the page index is present in the hash table the
server responds with the data associated with the page index
otherwise an error message is sent to the client.

IV. IMPLEMENTATION DETAILS

The current implementation of URSL is bound to the Linux
kernel, but is portable to any page based operating system
that supports virtual memory and functions to manipulate
the virtual page tables such as mmap, mremap, munmap
and mprotect or equivalents. In addition to the page table
manipulation functions, support for overloading the default
signal handler is required in order to detect page access
violations at user-level. URSL is loaded in between the system
level libraries such as libc and the user application by using the
LD PRELOAD environment variable. This way the library can
be a part of any Grid job without involving the resource owner,
as it’s delivered along with the Grid application and loaded as
a part of the Grid job. When the library is initialized malloc,
calloc, realloc and free is overloaded and thereby every call
to these functions passes through URSL, which means that
the user application doesn’t need to use customized memory
functions in order to use the framework, this is what provides
the transparency to user applications.

A. Memory allocation

In order to avoid re-implementing the existing memory
allocation routines, URSL merely uses the original malloc,
calloc and realloc routines to allocate memory. When allocat-
ing a chunk of memory, the address returned by the original
allocator along with the chunk size is translated into page
indexes. These indexes are used as keys for a local page
table containing the page state information. The first and the
last page are typically used by the original allocator to store
internal information about the allocated memory and thereby
these are mapped to real memory, the pages in between are
merely marked as allocated both at operating system level
and in the local URSL page table. These pages are access
protected by URSL using the mprotect routine in order to
detect when they are activated. The framework then returns
the allocated memory address to the running application which

continues its execution. When one of the newly allocated
access protected pages is accessed by the running application,
an access violation signal is thrown by the kernel. This signal
is caught by URSL and the page is looked up in the local page
table. If the page is marked as allocated, but not yet used, the
page is re-protected in mode write, the page table is updated,
and execution is returned to the running application.

B. Page eviction

The user-level approach makes it possible to regulate the
real memory usage of a single application without considering
other active applications on the system. When a page becomes
active, either by activating a new page or swapping in a
previously used page, it’s checked if the upper active page limit
has been reached. If the limit is reached pages are chosen for
eviction using the second chance FIFO algorithm and there-
after protected in read mode, to prevent other active threads
from modifying the pages during eviction. Modified pages are
then sent to the remote server along with a header containing
the page indexes. Finally the page states are changed to
swapped-out and the real memory is freed by mmap’ing the
evicted pages in protection none. This atomically frees the
real memory and maps the virtual pages in no access mode.
The evicted pages are now resident at the remote memory
server until they are once again accessed from the running
application.

C. Page retrieval

When pages are swapped out they are protected in no-access
mode, this means that whenever the executing application
accesses such a page, an access violation signal is sent by
the kernel and trapped by URSL. The page causing the access
violation is looked up in the local page table and if the page
is found to be resident at the memory server, a page request
is sent. The server will respond with the requested page data,
which is received in a local buffer reserved for swap-in page
data. When the data is fully received, the receive buffer is
protected in mode read to detect future modifications, used
to determine if the page should be written back to the server
upon its next swap-out. When the receive buffer is protected
the page is put into the right position in memory by using the
mremap routine. This routine atomically updates the kernel
virtual page table keeping other threads from accessing the
page until the page is in a write safe state6. Finally the page
is marked in URSL as swapped-in, the page retrieve buffer is
re-allocated using mmap for future swap-in’s and the execution
is returned to the thread which accessed the swapped-out page.

6Without the remap routine one would need to make the target page write-
able, in order to copy data from the buffer page to the target page slot. This
would allow other user threads to modify the page before it’s completely in
place.

64 128 256 512 1024 2048

Megabytes

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

T
im

e
(S

ec
o

n
d

s)

Sequential memory access

NO-SWAP QS22 Cell Blade

File swap PS3

Remote swap PS3

Remote swap PS3 (PBS 64)

Fig. 3. Sequential memory access performance

V. EXPERIMENTS

To validate the Remote swap library and document its
performance, experiments were done in an isolated execution
environment. This consisted of a Playstation 3 execution node
and an dual quad core Intel Xeon running at 1.60 GHz
with 8 GB RAM as memory server. These machines were
interconnected through a 1 Gb/s switch and controlled by the
Minimum intrusion Grid[12]. The Playstation 3 was chosen as
execution device because it represents a unextendible hardware
device with a powerful processor but a limited amount of
memory, namely 224 MB for the OS and user applications.
As a reference machine without swap we used a Cell-BE
QS22 blade. The reason for using an isolated high-bandwidth
network with only one node, rather than a full Grid setup with
a slower network and a number of nodes, is to validate the
performance of the transparent user-level model under optimal
conditions. If the model doesn’t perform well under these
conditions it will never perform in a real Grid system.

The URSL framework has been tested with special designed
highly I/O bound sequential memory access and scattered
memory access applications, as well as real scientific applica-
tions. Each of the applications were tested with different page
block sizes to evaluate how this influences the performance.
The results of the experiments are covered in the following
subsections.

A. Sequential data access

The sequential data access tests were done by allocating
N bytes of memory using malloc and then initializing the
memory to make sure it was mapped to physical memory.
Then a timer was started and the time spent traversing the
memory start-to-end in 10 iterations (reading each byte to
produce a checksum) was measured. Finally the performance
was compared to the execution without swap on the Cell-BE
QS22. This test is highly I/O bound as the only computation
done by the executing machine is one integer addition per
byte that is read. The performance of this execution with page
block sizes 1 and 64 is shown in figure 3. The experiment
shows that URSL outperforms swap to disk significantly, as the
memory consumption increases. Furthermore, the performance
increases with the page block size until it starts to converge

256 512 1024 2048

Megabytes

32

64

128

256

512

1024

2048

T
im

e
(S

ec
o

n
d

s)

Sequential memory access

Remote swap PS3

Remote swap PS3 (PBS 2)

Remote swap PS3 (PBS 4)

Remote swap PS3 (PBS 8)

Remote swap PS3 (PBS 16)

Remote swap PS3 (PBS 32)

Remote swap PS3 (PBS 64)

Remote swap PS3 (PBS 128)

Fig. 4. Sequential remote memory performance with increasing page block
sizes

64 128 256 512 1024 2048 4096

Megabytes

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

T
im

e
(S

ec
o

n
d

s)

Sequential memory access with different swap file sizes

Swap file (256 MB)

Swap file (512 MB)

Swap file (1024 MB)

Swap file (2048 MB)

Swap file (4096 MB)

Remote swap

Fig. 5. Linux file swap performance

at 64 pages per block, which is were the bandwidth of
the network is saturated. This is shown in Figure 4. We
found the steep raise in disk swap execution time when the
memory consumption reaches 1024 MB peculiar, as we are
only performing sequential reads while measuring time and
would expect the disk and its caches to be able to prefetch the
pages needed. Thereby we would expect the execution time
to raise no more than linearly with respect to the memory
consumed and perform better than a user-level remote swap
library as this algorithm is highly I/O bound. To investigate
this further we settled out to take a closer look at the Linux
swapping scheme.

1) Linux disk swap: In this experiment we executed the se-
quential memory access program described in the last section
using different swap file sizes to see if the execution time was
affected by the size of the swap device. All swap files were
made using dd with a block size of 4096 bytes. The result of
the executions is shown in figure 5. This experiment shows
that disk swap performance is highly dependent on the swap
file size, which was an unexpected result. We discovered the
reason for this by looking into the Linux kernel source code
where we found that when half of the disk swap space is
filled the memory manager starts to remove swapped-in pages
from the swap device to prevent it from running out of space.
The effect is that all swapped-in pages are marked as dirty and

64 128 256 512 1024 2048

Resolution

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

T
im

e
(S

ec
o

n
d

s)

Sequential memory access with writes

NO-SWAP QS22 Cell Blade

File swap PS3 (2 GB file)

Remote swap PS3

Remote swap PS3 (PBS 64)

Fig. 6. Sequential memory access with writes performance

thereby needs to be re-written to disk when they are once again
swapped out. This is what causes the steep raise in execution
time, when the swap device becomes half full, as the sequential
experiment doesn’t perform any writes in the 10 iterations that
are used for time measurement.

In the rest of the experiments we continued to use a 2 GB
swap file to show how the artifact of the Linux kernels half-
full dirty mark strategy will be expressed within the scientific
applications used in the experiments.

B. Sequential data access with writes

In this test we used the sequential test described in the
previous section and performed a write to each page accessed
after its data had been read. The result is shown in figure 6.
This experiment shows that even though a write was done to
every page, it didn’t eliminate the half-full Linux swap artifact,
but the gap is smaller compared to the execution without
writes. This is due to the fact that the Linux kernel in addition
to marking the page dirty also removes it from the page cache
and the swap device, which consumes time compared to the
alternative of leaving the page on disk and then just writing
it back out when needed. Beside the effect of the half-full
artifact, it is observed that the execution time increases when
using disk swap compared to remote swapping. This is caused
by the mechanical structure of a disk, which causes the average
seek time to rise as the amount of swapped out pages increases.
As in the experiment without writes, the performance increases
with the page block size until it converges at 64 pages per
block, when the bandwidth of the network is saturated.

C. Scattered memory access

This test was designed similarly to the sequential access
test, but instead of reading the pages in a sequential manner
the data is read one page at a time, starting with the first page
followed by the last page and then the second page followed
by the second last page, this pattern is used until all pages are
read. The result is shown in figure 7. This test shows that the
execution time when swapping to disk is increasing relatively
more than the execution time when swapping to the remote
location. That is caused by the fact that disk swap can no
longer take advantage of block prefetch combined with larger

64 128 256 512 1024 2048

Megabytes

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

T
im

e
(S

ec
o

n
d

s)

Scattered memory access

NO-SWAP QS21 Cell Blade

File swap PS3 (2 GB file)

Remote swap PS3

Remote swap PS3 (PBS 64)

Fig. 7. Scattered memory access performance

64 128 256 512 1024 2048

Megabytes

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

T
im

e
(S

ec
o

n
d

s)

Scattered memory access with writes

NO-SWAP QS22 Cell Blade

File swap PS3 (2 GB file)

Remote swap PS3

Remote swap PS3 (PBS 64)

Fig. 8. Scattered memory access with writes performance

seek times when searching for the page to swap in, even before
the half-full artifact arises. As with the sequential tests the
performance increases with the size of the page blocks until
the network is saturated at a block size of 64 pages.

D. Scattered memory access with write

This test is like the scattered access test described above,
but with one write to each page like in the sequential write
test. The result of this test is shown in figure 8. As with the
sequential write test, the gap between Linux swap to disk and
URSL decreases compared to the execution without writes and
the half-full artifact of the Linux swap is still present. The
performance increases with the size of the page blocks until
the network is saturated at a block size of 64 pages.

E. Lattice Boltzmann

OpenLB[18] is a free library for lattice Boltzmann sim-
ulations. In this experiment we used the forcedPoiseuille2d
example provided in the package with different resolution
sizes. The results of this test is shown in figure 9, which
displays that swapping to the remote location outperforms disk
swap with a factor of 6 and is 11 times slower than no-swap
execution with a resolution of 2048 and a page block size of
4, which proved to be the optimal page block size for this
application (figure 10). The half-full artifact is clearly visible
in this test.

1024 2048

Resolution

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

T
im

e
(S

ec
o

n
d

s)

forcedPoiseuille2d

NO-SWAP QS22 Cell Blade

File swap PS3 (2 GB file)

Remote swap PS3

Remote swap PS3 (PBS 4)

112 196 304 436 592 772 976 1204 2033

Memory consumption (MB)

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

T
im

e
(S

ec
o

n
d

s)

Fig. 9. Lattice Boltzmann performance

1024 2048

Resolution

128

256

512

1024

2048

4096

T
im

e
(S

ec
o

n
d

s)

forcedPoiseuille2d

Remote swap PS3

Remote swap PS3 (PBS 2)

Remote swap PS3 (PBS 4)

Remote swap PS3 (PBS 8)

Remote swap PS3 (PBS 16)

112 196 304 436 592 772 976 1204 2033

Memory consumption (MB)

128

256

512

1024

2048

4096

T
im

e
(S

ec
o

n
d

s)

Fig. 10. Lattice Boltzmann performance with increasing page block sizes

F. Fast Fourier Transform

Fftw[11] is a free implementation of discrete Fourier trans-
formation. In this test we use Fftw to transform a vector
of random complex numbers to their corresponding Fourier
values and back to the original values. The result of this test
is shown in figure 11, which displays that swapping to the
remote location outperforms swapping to disk with a factor of
21 using a vector of 16777216 complex numbers and a page
block size of 2. The slowdown compared to native executing at
this instance is 4. Furthermore it shows that a page block size
of 1 is the optimal when we reach a vector size of 67108864
complex numbers.

G. Barnes-Hut

The Barnes-Hut[6] algorithm is an O(nlogn) algorithm for
performing N-Body force simulations. In this experiment we
have used the code that is provided by one of the authors
J. Barnes (the code can be downloaded from his ftp site[7]).
The experiments were performed with the tree-body 6 test
data, provided in the original source package, with a variable
number of bodies and a random seed of 12345. The results

524288 1048576 2097152 4194304 8388608 16777216 33554432 67108864

Number transformed compex numbers

0.125
0.25

0.5
1
2
4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384
32768
65536

T
im

e
(S

ec
o

n
d

s)

FFTW Remote swap vs. Disk Swap vs. Memory

NO-SWAP QS22 Cell Blade

File swap PS3 (2 GB file)

Remote swap PS3 (PAGESIZE 1)

Remote swap PS3 (PAGESIZE 2)

Remote swap PS3 (PAGESIZE 4)

20 36 67 131 259 515 1027 2051

Memory consumption (MB)

0.125
0.25

0.5
1
2
4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384
32768
65536

T
im

e
(S

ec
o

n
d

s)

Fig. 11. FFTW performance

524288 1048576 2097152 4194304 8388608

Number of Bodies

64

128

256

512

1024

2048

4096

8192

16384

32768

65536
T

im
e

(S
ec

o
n

d
s)

Barnes-Hut N-Body

NO-SWAP QS22 Cell Blade

File swap PS3

Remote swap PS3

Remote swap PS3 (PBS 8)

107 212 424 845 1681

Memory consumption (MB)

64

128

256

512

1024

2048

4096

8192

16384

32768

65536
T

im
e

(S
ec

o
n

d
s)

Fig. 12. Barnes-Hut performance

is shown in figure 12, which displays that remote swap
outperforms swap to disk by a factor of 6 and is a factor
of 4 slower than native execution in real memory, when using
4194304 bodies and a page blocks size of 8, which is the
optimal page block size (figure 13) for this application. It
should be noted that the difference between swapping to disk
and swapping to a remote memory location increases as the
number of bodies grows and that the half-full artifact is present
in this experiment.

VI. EXPERIMENT SUMMARY

The experiments show that swapping to a remote memory
server outperforms swapping to disk on the Playstation 3
platform, both in the tests that are designed specially towards
the framework, as well as in the generic scientific applications,
which have not been modified in order to work with the
framework. The speedup varies from 6 to 21 in the tested
scientific applications and the slowdown varies from 4 to 11
compared to native executions. We have also shown that Linux
disk swap has serious issues when it comes to scientific appli-
cations. The conservative strategy of removing pages from the
swap device, whenever it becomes half-full, is poorly suited

524288 1048576 2097152 4194304 8388608

Number of Bodies

64

128

256

512

1024

2048

4096

T
im

e
(S

ec
o

n
d

s)

Barnes-Hut N-Body

Remote swap PS3

Remote swap PS3 (PBS 2)

Remote swap PS3 (PBS 4)

Remote swap PS3 (PBS 8)

Remote swap PS3 (PBS 16)

107 212 424 845 1681

Memory consumption (MB)

64

128

256

512

1024

2048

4096

T
im

e
(S

ec
o

n
d

s)

Fig. 13. Barnes-Hut performance with increasing page block sizes

for scientific applications, due to their nature of initializing
data and performing several iterations on the same data set,
which means that the same pages are accessed several times
without any renewal. Furthermore devices that are dedicated
to scientific applications should favor the scientific application
over other processes running at the system regarding CPU and
memory.

VII. CONCLUSION

In this work we have presented a method for providing
remote swap to global Grid infrastructures. Opposed to pre-
vious presented models, we present a fully transparent user-
level library, which can be submitted along with the Grid
jobs eliminating the need to modify neither the OS of the
executing Grid resource nor the Grid application to execute.
Furthermore the user-level approach makes it possible to
throttle the real memory usage of the running job, through the
Grid middleware, and thereby increase the pool of resources
capable of fulfilling the memory requirements of a given job.
Last but not least the user-level approach ensures that only
pages that are used by the Grid application are subject for
eviction. The disadvantages of using the transparent user-
level approach is the time overhead of passing signals, page
mappings and page protections between kernel- and user-level,
as well as the space overhead of keeping a local process page
table within the framework as one can’t access the page data-
structures of the kernel from user-level.

Experiments show that the framework is operational and
despite the introduced overhead still outperforms swapping to
disk by a factor of 6 in the worst case. In the best case the
framework outperforms swapping to disk with a factor of up
to 21.

REFERENCES

[1] Rasmus Andersen and Brian Vinter. Harvesting idle windows cpu cycles
for grid computing. In Hamid R. Arabnia, editor, GCA, pages 121–126.
CSREA Press, 2006.

[2] Rasmus Andersen and Brian Vinter. Transparent remote file access in
the minimum intrusion grid. In WETICE ’05: Proceedings of the 14th
IEEE International Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprise, pages 311–318, Washington, DC, USA,
2005. IEEE Computer Society.

[3] David P. Anderson. Boinc: A system for public-resource computing and
storage. In GRID ‘04: Proceedings of the 5th IEEE/ACM International
Workshop on Grid Computing, pages 4–10, Washington, DC, USA,
2004. IEEE Computer Society.

[4] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan
Werthimer. Seti@home: an experiment in public-resource computing.
Commun. ACM, 45(11):56–61, 2002.

[5] Eric A. Anderson and Jeanna M. Neefe. An exploration of network ram.
Technical report, Berkeley, CA, USA, 1994.

[6] Josh Barnes and Piet Hut. A hierarchical O(N log N) force-calculation
algorithm. Nature, 324(6096):446–449, December 1986.

[7] Joshua Edward Barnes. ftp://ftp.ifa.hawaii.edu/pub/barnes/treecode.
[8] Adam L. Beberg, Daniel L. Ensign, Guha Jayachandran, Siraj Khaliq,

and Vijay S. Pande. Folding@home: Lessons from eight years of
volunteer distributed computing. In IPDPS ‘09: Proceedings of the 2009
IEEE International Symposium on Parallel&Distributed Processing,
pages 1–8, Washington, DC, USA, 2009. IEEE Computer Society.

[9] Rui Chu, Nong Xiao, Yongzhen Zhuang, Yunhao Liu, and Xicheng Lu.
A distributed paging ram grid system for wide-area memory sharing. In
IPDPS. IEEE, 2006.

[10] Douglas Comer and James Griffioen. A new design for distributed
systems: The remote memory model. In USENIX, editor, Proceedings
of the Summer 1990 USENIX Conference: June 11–15, 1990, Anaheim,
California, USA, pages 127–136, Berkeley, CA, USA, Summer 1990.
USENIX.

[11] Matteo Frigo and Steven G. Johnson. The design and implementation of
FFTW3. Proceedings of the IEEE, 93(2):216–231, 2005. Special issue
on ‘Program Generation, Optimization, and Platform Adaptation”.

[12] Henrik Hoey Karlsen and Brian Vinter. Minimum intrusion grid -
the simple model. In WETICE ’05: Proceedings of the 14th IEEE
International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprise, pages 305–310, Washington, DC, USA, 2005.
IEEE Computer Society.

[13] Carl Kesselman and Ian Foster. The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann Publishers, 1998.

[14] Evangelos P. Markatos and George Dramitinos. Implementation of a re-
liable remote memory pager. In USENIX Annual Technical Conference,
pages 177–190, 1996.

[15] Richard Tran Mills, Chuan Yue, Andreas Stathopoulos, and Dimitrios S.
Nikolopoulos. Runtime and programming support for memory adapta-
tion in scientific applications via local disk and remote memory. J. Grid
Comput., 5(2):213–234, 2007.

[16] D S Myers, A L Bazinet, and M P Cummings. Expanding the reach of
grid computing: Combining globus- and boinc-based systems. Journal
of Parallel and Distributed Computing, 2004.

[17] Martin Rehr and Brian Vinter. The ps3 grid-resource model. In Hamid R.
Arabnia, editor, GCA, pages 90–95. CSREA Press, 2008.

[18] Open source lattice Boltzmann code. http://www.openlb.org.

Appendix E

Publication 5

Recent Developments in Grid Technology and Applications. G.A. Gravvanis, J.P. Mor-
rison, H.R. Arabnia and D.A. Power, Editors, Chapter 5, ISBN: 978-1-60692-768-7
Rasmus Andersen, Martin Rehr, Brian Vinter: Cycle-Scavenging in Grid Com-
puting

151

Cycle-Scavenging in Grid Computing 141

Chapter 1

CYCLE-SCAVENGING IN GRID COMPUTING

Rasmus Andersen, Martin Rehr, and Brian Vinter∗

University of Copenhagen, Department of Computer Science

PACS 05.45-a, 52.35.Mw, 96.50.Fm.Keywords: .

Key Words: cycle scavenging, Grid Computing, Public Resource Computing, Minimum
intrusion Grid, Virtual MachinesAMS Subject Classification: 53D, 37C, 65P.

Abstract

Grid Computing and Public Resource Computing systems each provide means of
obtaining and utilizing distributed computational resources. In this chapter we explore
the benefits and potential of combining the two fields into a system that offers the
flexibility of Grid Computing and the resource richness of the cycle-scavenging PRC
systems.

Important aspects of a combined effort include host system security, application
security, platform independence, and resource managementand control.

Sandboxing technology accommodates these requirements, and two different mod-
els offered by the Minimum intrusion Grid are presented. Both of them use virtual ma-
chines to sandbox Grid Computing jobs on idle personal desktop computers and have
proved to close the gap between Grid Computing and Public Resource Computing.

∗E-mail address: vinter@diku.dk

142 R. Andersen, M. Rehr, and B. Vinter

1 Introduction

Cycle scavenging, or Screen Saver Science, is an increasingly popular computing paradigm
used within many fields of science that seek to tap the enormous amount of unused pro-
cessing power from the millions of computers connected to the Internet. The paradigm is
best known from the many successful Public Resource Computing, PRC,projects, such as
SETI@Home, where the idle time cycles are used for a dedicated scientific application.

Grid Computing [6] and PRC each provide increasingly interesting means of obtaining
computational resources. Grid Computing is mostly used for connecting university super-
computers, while PRC is predominantly used by research projects for harvesting PC-based
idle CPU cycles for a small number of research projects. However, eventhough the two
fields appear closely related, little effort has been made to combine them into a system that
offers the flexibility of Grid computing with the resource richness of the PRC model.

One of the Grid promises is to make it possible to share and effectively use distributed
resources on an unprecedented scale. Specifically, this includes harnessing the unused ca-
pacity of idle desktop PCs. Harnessing ’free’ cycles through PRC is of great interest since
a modern PC is powerful and highly underutilized, and as such cycle harvesting provides
huge calculation potential if one combines millions of them in a computing Grid. A lot
of research has been done to Grid-enable idle resources, yet no widely accepted system to
effectively scavenge idle cycles, in particular idle Windows cycles, has been found. Most
known Grid systems such as ARC which is based on the Globus toolkit and Condor [3]
are unsuitable for PRC computing, as they work under the underlying assumption that the
resources are available indefinitely, while PRC resources are transientby nature.

Ensuring the safety of a donated resource while it executes a Grid job in a PRC context
is an all important topic since all free resources will vanish if the model proves harmful
to the hosts. Contrary to standard PRC tasks, a Grid job may take any form and include
the execution of any binary. Therefore it is necessary to take precautions to ensure that the
execution of Grid jobs cannot harm donated resources neither intentionally nor by accident.

Extending the PRC concept to actual Grid Computing, security and installation of soft-
ware on the host resource are equally important issues to a successfulsolution. All PRC
projects known to the authors require the donor to install software on the resource that
should contribute, which alone eliminates users from donating resources from computers
that they do not have administrative rights on. The software installation also opens up
possible exploits and requires the donor to perform updates on that software. This is not
desirable and may reduce the amount of donated resources.

Our goal is to design Grid PRC sandbox models that with a minimal effort from the
resource owner can execute Grid jobs in a secure environment. This chapter addresses the
problems that need to be solved in order to combine PRC and Grid Computing by scav-
enging idle desktops for general scientific use. First of all, under the restrictions mentioned
above, a method to gain access to the CPU cycles on the idle resource must befound. In
this aspect, security is a major issue. Ideally, a resource owner should neither install any
software nor execute any foreign applications that, intentionally or not, could compromise
his system. Secondly, the resource, possibly hidden by a Network Address Translation
router and a firewall, must be attached to the Grid without forcing modification torouters
or firewalls. Thirdly, it must be ensured that a given resource has installed the correct soft-

Cycle-Scavenging in Grid Computing 143

ware base that a given Grid job requires. Finally, we introduce extra features to improve
the model; for instance, a method to predict the idle time period of a resource in advance.
Using this method, a job with a time deadline is submitted to a resource that is predictedto
be available in the specified time frame.

The approach taken here is to use virtual machines to provide a sandbox that by default
includes everything needed to execute Grid jobs and completely separates them from the
resource host system. This separation ensures that, on the one hand, agrid job cannot
compromise the host system, and on the other hand, the grid job is protected from other
users of the system. Two different models have been implemented: Firstly the The MiG-
SSS, which is based on system virtual machines that execute an entire linux guest operating
system specifically designed as a Grid resource. Secondly, the One-Click MiG Applet
Resource, which is based on Java applet technology and enables users with a standard Java-
enabled web browser to donate their idle time PCs with a single click on a website, thereby
starting a Java applet capable of executing Grid jobs written for this framework.

1.1 Related Work

BOINC [2] is a software platform that allows many different distributed computing projects
to utilize idle volunteered computer resources. Many Public Resource Computing systems
use BOINC, and research groups can with little effort create new projects. A project in-
volves a set of applications that will be run in a BOINC client on a user’s resource. As
such, BOINC could be used for this project by running the proposed virtual machine as the
project application.

A few projects have been found to combine Screen Saver Science with Gridcomputing,
for instance the Entropia Virtual Machine [4], which is a commercial product, and the
survey [5] that is merely an extensive introduction to the approach of using virtual machines
for Grid computing.

2 Sandboxing in a Grid Context

Although virtualization was introduced several decades ago, the concept is now more pop-
ular than ever and has revived in a multitude of computer system aspects thatbenefit from
properties such as platform independence and increased security. One of those applications
is Grid computing, where the ultimate goal of combining and utilizing distributed, heteroge-
neous resources as one big virtual supercomputer necessitates these properties. Regarding
utilization of the public’s computer resources for grid computing, virtualization, in the sense
of virtual machines, is a necessity for fully leveraging the true potential of Grid computing.
Without virtual machines, experience shows that people are, with good reason, reluctant to
put their resources on a grid since they have to not only install and managea software code
base, but also allow native execution of unknown and untrusted programs. All these issues
can be eliminated by introducing virtual machines.

eScience, modelling scientific problems using computers, has driven the development
of Grid technology, and as the simulations get more and more accurate, the amount of data
and needed compute power increase equivalently. Many research projects have already
made the transition to Grid platforms to accommodate the immense requirements for data

144 R. Andersen, M. Rehr, and B. Vinter

and computational processing. Using this technology, researchers gainaccess to many
networked computers at the cost of a highly heterogeneous computing platform. Obviously,
maintaining application versions for each resource type is tedious and troublesome, and
results in a deploy-port-redeploy cycle. Further, different hardware and software setups
on computational resources complicate the application development drastically. One never
knows to which resource a job is submitted in a grid, and while it is possible to assist each
job with a detailed list of hardware and software requirements, researchers are better left
off with a virtual workspace environment that abstracts a real executionenvironment.

Hence, a virtual execution environment spanning the heterogeneous resource platform
is essential in order to fully leverage the grid potential. From the view of applications, this
would render a resource access uniform and thus allow the much easier ”compile once run
anywhere” strategy; researchers can write their applications, compile them for the virtual
machine and have them executed anywhere in the Grid.

Due to the renewed popularity of virtualization over the last few years, virtual machines
are being developed for numerous purposes and therefore exist in many designs, each of
them in many variants with individual characteristics. Despite the variety of designs, the
underlying technology encompasses a number of properties beneficial for Grid Computing:

Platform Independence: In a grid context, where it is intrinsic to move around appli-
cation code as freely as application data, it is highly profitable to enable applications to
be executed anywhere in the grid. Virtual machines bridge the architectural boundaries of
computational elements in a grid by raising the level of abstraction of a computersystem,
thus providing a uniform way for applications to interact with the system. Given a common
virtual workspace environment, grid users are provided with a compile-once-run-anywhere
solution.

Furthermore, a running virtual machine is not tied to a specific physical resource; it can
be suspended, migrated to another resource and resumed from where itwas suspended.

Host Security: To fully leverage the computational power of a grid platform, security is
just as important as application portability. Today, most grid systems enforcesecurity by
means of user and resource authentication, a secure communication channel between them,
and authorization in various forms. However, once access and authorization is granted,
securing the host system from the application is left to the operating system.

Ideally, rather than handling the problems after system damage has occurred, harmful
- intentional or not - grid applications should not be able to compromise a grid resource in
the first place.

Virtual machines provide stronger security mechanisms than conventional operating
systems, in that a malicious process running in an instance of a virtual machineis only
capable of destroying the environment in which it runs, i.e. the virtual machine.

Application Security: Conversely to disallowing host system damage, other processes,
local or running in other virtualized environments, should not be able to compromise the
integrity of the processes in the virtual machine.

System resources, for instance the CPU and memory, of a virtual machine are always
mapped to underlying physical resources by the virtualization software. The real resources

Cycle-Scavenging in Grid Computing 145

are then multiplexed between any number of virtualized systems, giving the impression
to each of the systems that they have exclusive access to a dedicated physical resource.
Thus, grid jobs running in a virtual machine are isolated from other simultaneous grid jobs
running in other virtual machines on the same host as well as possible local users of the
resources.

Resource Management and Control: Virtual machines enable increased flexibility for
resource management and control in terms of resource usage and site administration. First
of all, the middleware code necessary for interacting with the Grid can be incorporated in
the virtual machine, thus relieving the resource owner from installing and managing the
grid software. Secondly, usage of physical resources like memory, disk, and CPU usage of
a process is easily controlled with a virtual machine.

Performance: As a virtual machine architecture interposes a software layer between the
traditional hardware and software layers, in which a possibly differentinstruction set is im-
plemented and translated to the underlying native instruction set, performance is typically
lost during the translation phase. Despite of recent advances in new virtualization and trans-
lation techniques, and the introduction of hardware-assisted capabilities, virtual machines
usually introduce performance overhead and the goal remains achievingnear-native perfor-
mance only. The impact depends on system characteristics and the applications intended to
run in the machine.

To summarize, virtual machines are an appealing technology when combining Grid
Computing and PRC because they solve the conflict between the grid users at the one end
of the system and resource providers at the other end. Grid users want exclusive access
to as many resources as possible, as much control as possible, secure execution of their
applications, and they want to use certain software and hardware setups. At the other end,
introducing virtual machines on resources enables resource owners toservice several users
at once, to isolate each application execution from other users of the system and from the
host system itself, to provide a uniform execution environment, and managed code is easily
incorporated in the virtual machine.

3 Enabling the sandboxes for the Grid

The main problem with scavenging personal computers is that the vast majorityare hidden
behind a NAT router, i.e. they do not have global IP address and are therefore not reachable
from the Internet. Hence, to enable the sandbox for Grid Computing, caremust be taken to
circumvent the missing inbound Internet access. Naturally, this issue is highly dependent on
the Grid middleware in question. In this work, the sandboxes are designed for the Minimum
intrusion Grid, MiG, which is presented next, before the details of how to tailorthe two
sandboxes for MiG are explained.

3.1 Minimum intrusion Grid

MiG [8] [7] is a stand-alone approach to Grid that does not depend on any existing systems,
i.e. it is a completely new platform for Grid computing. The philosophy behind theMiG is

146 R. Andersen, M. Rehr, and B. Vinter

Figure 1: The abstract MiG model

to provide a Grid infrastructure that imposes as few requirements on usersand resources as
possible.

The idea is to ensure that users only need a signed X.509 certificate, trusted by Grid,
and a web browser that supports HTTP and HTTPS. A resource only needs to create an
MiG user on the system and to support inbound ssh and outbound HTTPS.Initially, the
resource must register to the MiG system using a certificate.

By keeping the Grid system disjoint from both users and resources, as shown in Figure
1, this model allows the Grid system to appear as a centralized black-box to both users and
resources, and all upgrades and trouble shooting can be performed locally within the Grid
without intervention from neither users nor resource administrators. Thus, all functionality
is placed in a physical Grid system that, although it appears as centralized system, in reality
is a distributed system itself.

The basic functionality in MiG starts with users submitting jobs to MiG and resources
sending requests for jobs. A resource then receives an appropriatejob from MiG, executes
the job, and sends the result to MiG that can inform the user of the job completion. Thus,
MiG provides full anonymity; users and resources interact only with MiG, never with each
other.

3.1.1 Scheduling

The centralized black box design of MiG makes it capable of strong scheduling, which
implies full control of the jobs being executed and the resource executing them. Each job
has an upper execution time limit, and when the execution time exceeds this time limit the
job is rescheduled to another resource. This makes the MiG system very well suited to host
PRC resources, as they by nature are very dynamic and frequently join and leave the Grid
without notifying the Grid middleware.

Cycle-Scavenging in Grid Computing 147

3.2 Cycle-Scavenging using System Virtual Machines

In MiG-SSS, the screen saver model based on system virtual machine, thebasic idea is to
let resource owners install a sandbox to provide a secure execution environment in which
the Grid job is completely isolated from the host machine and vice versa. Such asandbox
can take the shape of a virtual machine, which is exactly the approach that we have taken
in this work. Two techniques can be used to provide a virtual machine: Emulation and
Virtualization[5]. Emulation provides the functionality of the target processor completely in
software, which makes it a very secure approach. Also, the ability to emulateone processor
type on any other processor type makes it ideal for this scenario. However, the method of
interpreting the entire guest operating system, rather than running it on the native hardware,
results in a significant performance drawback. When emulating a PC architecture on a PC, a
compatibility layer that enables the target code to be run directly on the host processor, can
reduce the performance penalty. On the other hand, virtualization partitionshardware in
multiple contexts, thus enabling running multiple operating systems on the same hardware
resources simultaneously. Several virtualization approaches exist[6]:

• Bare-metal Architecture

• Para-virtualization

• Full Virtualization, also known as Transparent Virtualization, or Hosted Architecture

The Bare-metal Architecture approach runs the guest operating systemin Ring 0, the
most privileged protection level in x86 architectures. Running multiple operating systems
in the same protection level could potentially result in one of the systems compromising the
other. Clearly, this approach is not acceptable for resource owners.The Para-virtualization
approach needs to modify the host system by interposing a hypervisor between the operating
system and the hardware. The hypervisor then takes on the Ring 0 and theoperating system
must be explicitly ported to run in Ring 1. These modifications to the host operating system
exclude this approach. The Full Virtualization approach has performance drawbacks, but is
the most secure and thus chosen. As shown in Figure 2, the virtual machineallows a guest
operating system to run as an application in the host operating system. The virtual machine
emulates the underlying hardware, thus creating a secure sandbox that allows an application
written for one operating system, e.g. Linux, to be executed in another, e.g.Windows.

The performance penalties are mitigated by kernel support that enables itto run most
of the target application code directly on the host processor, thus achieving near native
speed. Regarding security, the virtual machine is a user space processthat cannot do any
harm to the host system as long as the permanent storage is protected properly. If the
virtual machine is destroyed by a malicious application, the host system is not affected, and
the virtual machine can start afresh. The following such solutions exist for the Windows
platform:

• VirtualPC

• VMWare

• VirtualBox

148 R. Andersen, M. Rehr, and B. Vinter

Windows Application 1 Windows Application 2

Linux
App 1 App 2

Linux

Guest OS (Linux)

Host OS (Windows)

Hardware

Figure 2: Full Virtualization

• Qemu + Qemu Accelerator Module

Having downloaded and installed one of the virtual machines, a resource owner only
needs to install a screen saver that starts the virtual machine upon activation and a tailor-
made Linux image that is capable of running the Grid resource software automatically. In
this manner, when the resource goes into screen saver mode, the virtual machine is activated
and the Linux guest operating system is booted. The details of how to Grid-enable the
hosted Linux system are explained next.

3.2.1 The MiG Linux Guest OS

As explained above, all that is required for a resource to join MiG, is to create a grid user
account and support for incoming SSH and outgoing HTTPS. So basically, the MiG Linux
image can be built using any Linux distribution that runs an x86 system. Since the vir-
tual machine provides a standardized virtualized set of hardware, compatibility amongst
the wide range of different hardware setups on the resources will notbe an issue. The main
concerns with respect to the distribution is the size and the start-up time. Both issues mat-
ter only for practical reasons, the size should be minimized to avoid an excessively large
download, and, naturally, the start-up time should be minimized as much as possible. In
order to circumvent the missing inbound Internet access on resources that use NAT, it must
be ensured that all communication is initiated by the resource. In MiG, this was easily in-
tegrated by small changes that only apply for sandboxes. In addition, it allows for directing
jobs that users point out as Public Resource Computing jobs directly to a free sandbox. The
generic MiG Linux Image consists of a kernel and a Ram-disk that altogethertake up less
than 3 MB. An online generator modifies the generic image by giving it a uniqueresource
name and a session id needed for requesting a job. Further, the resource owner can choose
the size of a hard disk image file to provide as storage for the sandbox. Thus, certified
resource owners can have a complete image built with a unique key allowing thesandbox

Cycle-Scavenging in Grid Computing 149

to automatically request and execute Grid jobs. In the standard MiG model, the identity
of a resource requesting a job is verified by keeping the public SSH key ofthe resource
in the MiG system and copying all job files to the resource over SSH. The sandbox model
however, is modified to use a pull model on the resource where all files aretransferred us-
ing HTTPS. Hence, a firewall in front of a resource only needs to be open for HTTP and
HTTPS to allow the resource to run Grid jobs.

3.2.2 Runtime Environments

Once the basic sandbox is in place, it is possible to execute user applicationswithin the
virtual Linux machine. Many applications can be passed as executables from the Grid job
and these need no further components to execute. Other, commonly used, applications may
benefit from a preinstalled runtime environment, such as they are found onordinary Grid
resources.

Installing runtime environments in the sandboxed environment could be done as on a
conventional resource, which however would require the PC owners topersonally maintain
the sandboxed Linux distribution; this model is obviously not desirable. Alternatively the
sandbox image could be distributed with the initial Linux image, but this would greatly
increase the size of the distribution image and in addition be a very static model.

The chosen solution allows individual research groups to maintain runtime environ-
ments for the sandboxed resources and at the same time allows the individualPC owners
to control which runtime environments are downloaded and at which time. The runtime
environments are kept in individual virtual disk-partitions, in the form of asingle file. The
PC owner can download individual runtime environments from the VGrids, MiG’s notion
of a virtual organization, that maintain the runtime environments and when a job that uses a
runtime environment is received by the sandboxed resource, the virtualLinux machine will
mount the file system that contains the runtime environment. This way each runtimeenvi-
ronment is kept isolated from the rest of the system, and can easily be built and maintained
by the research groups that need them to be available for their executions.

3.3 Cycle-Scavenging using Java Applets

As explained above, all that is required for a PRC resource to join MiG is a sandbox and
support for outgoing HTTPS. The previous solution presented above requires installation
of non standard software to activate and execute the sandbox. In this model, “MiG One-
Click”1 the work imposed on the resource donor is taken to the extreme: No softwareinstall
is needed.

To reach our stated goal of no Grid specific software installation and no modification of
the donated machines firewall settings, we are forced to use software which is an integrated
part of a common Internet connected resource.

We found that amongst the most common software packages for any PC typeplatform
there is a Java enabled web browser. The web browser provides a common way of securely

1The URL accessed to activate the web browser as a sandboxed MiG Javaresource is called “MiG One-
Click”, as it requires one click to activate it.

150 R. Andersen, M. Rehr, and B. Vinter

communicating with the Internet, which is allowed by almost all firewall configurations of
the resources we target.2

The web browser provides us with a communication protocol, but it does notby itself
provide a safe execution environment, however all of the most common graphics enabled
web browsers have support for Java applets that are capable of executing Java byte-code
located on a remote server.

The Java applet security model, ASM, prevents the Java byte-code executed in the ap-
plet from harming the host machine and thereby provides the desired sandbox effect for us
to trust the execution of unknown binaries on donated resources.

The choice of web browsers and Java applets as the execution framework results in
some restrictions on the type of jobs that may be executed in this environment:

• Applications must be written in Java

• Applications must apply to ASM

• The total memory usage is limited to 64 MB including the Grid framework

• Special methods must be used to catch output

• Special methods must be used for file access

By accepting the limitations described above, a web browser can be turned into a Grid
resource simply by entering a specific URL. This triggers the load and execution of an applet
which acts as our Grid gateway and enables retrieving and executing a Java byte-code based
Grid job. The details of this process are described next.

3.3.1 The Applet Grid Resource

Several changes to the Grid middleware are needed to allow Java applets to act as Grid
resources. First of all the Grid middleware must support resources which can only be ac-
cessed through a pull based model, which means that all communication is initiatedby the
resource, i.e. the applet. This is required because the ASM rules prevents the applet from
initiating listening sockets, and to meet our requirement of functioning behind afirewall
with no Grid specific port modifications. Secondly, the Grid middleware needsa schedul-
ing model where resources are able to request specific type of jobs, e.g. a resource can
specify that only jobs which are tagged to comply to the ASM can be executed.

The Java applet technology makes it is possible to turn a web browser into a MiG
sandbox without installing any additional software. This is done automatically when the
user accesses the MiG One-Click web page, which loads an applet into the web browser.
This applet functions as a Grid resource script and is responsible for requesting pending
jobs, retrieving and executing granted jobs, and delivering the results ofthe executed jobs
to the MiG server.

To make the applet work as a resource script, several issues must be addressed. First of
all ASM disallows local disk access. Because of this both executables andinput/output files

2Resources located behind firewalls that do not support outgoing HTTPSis considered out of range for this
PRC, however it is not unseen that outbound HTTPS is blocked.

Cycle-Scavenging in Grid Computing 151

Figure 3: The structure of a One-Click job

must be accessed directly at the Grid storage. Secondly only executablesthat are located
at the same server as the initial applet are permitted to be loaded dynamically. Thirdly text
output of the applet is written to the web browser’s Java console and not accessible by the
Grid middleware.

When the applet is granted a job by the MiG server, it retrieves a specification of the
job which specifies executables and input/output files. The applet then loads the executable
from the Grid, this is made possible by the MiG server which sets up an URL from the
same site as the resource applet was originally loaded which points to the location of the
executables. This allows unknown executables to be loaded and comply with the ASM
restrictions on loading executables. Figure 3 shows the structure of a One-Click job.

Executable jobs that are targeted for the MiG One-Click model must comply with a
special MiG One-Click framework, which defines special methods for writing stdout
andstderr of the application to the MiG system3. Normally the stdout and stderr of the
executing job is piped to a file in the MiG system, but a Java applet, by default, writes the
stdout and stderr to the web browsers Java console. We have not beenable to intercept this
native output path. Input and output files that are specified in the job description must be
accessed directly at the Grid storage unit since the ASM rules prohibits local file access. To
address this issue the MiG One-Click framework provides file access methods that trans-
parently provide remote access to the needed files. Note that the MiG system requires input
files and executables to be uploaded to the MiG server before job submissionwhich ensures
that the files are available at the Grid storage unit.

In addition to the browser applet a Java console version of the MiG resource has been
developed, to enable the possibility of retrieving and executing MiG One-Clickjobs as a
background process. This requires only a Java virtual machine. To obtain the desired secu-
rity model, a customized Java security policy is used, which provides the same restrictions
as the ASM.

3The result of a MiG job is the stdout/stderr and the return code of the application that is executed.

152 R. Andersen, M. Rehr, and B. Vinter

3.3.2 Checkpointing

PRC resources will join and leave the Grid dynamically, which means that jobs with large
running time have a high probability of being terminated before they finish their execution.
To avoid wasting already spent CPU-cycles a checkpointing mechanism is build into the
applet framework. Two types of checkpointing have been considered for inclusion, trans-
parent checkpointing and semi-transparent checkpointing.

Transparent Checkpointing All to the authors known transparent checkpoint mecha-
nisms provided to work with Java, require the JVM to be replacement or access to the /proc
file system on Linux/Unix operating system variants, as the default JVM does not support
storing program counter and stack frame. Since our goal is to use a web browser with the
Java applet as a Grid resource neither of those solutions are satisfactory, since both the re-
placement of the JVM and access to the /proc file system violates the Java applet security
model. Furthermore most PRC resource will be running the Windows operating system
which do not support the /proc file system.

Semi-transparent Checkpointing Since transparent checkpointing is not applicable to
the One-Click model, we went on to investigate what we call semi-transparentcheck-
pointing. Semi-transparent checkpointing covers that the One-Click framework provides
a checkpoint method for doing the actual checkpoint, but the application programmer is
still responsible for calling the checkpoint method when the application is in a checkpoint
safe state.

The checkpoint method stores the running Java object on the MiG server through
HTTPS. Since it can only store the object state, and not stack information and program
counters, the programmer is responsible for calling the checkpoint method at a point in the
application, where the current state of the execution may be restored fromthe object state
only. To restart a previously checkpointed job, the resource applet framework first discovers
that a checkpoint exists and then loads the stored object.

3.4 MiG Features

To improve and simplify the sandboxes further, MiG contains two components that apply:
Strong scheduling and remote file access.

3.4.1 Scheduling

Contrary to the majority of the existing Grid middlewares, where several levelsof schedul-
ing results in jobs being submitted to a resource where another level of scheduling takes
place, MiG makes the scheduling for fairness much simpler as the local scheduling comes
before the Grid scheduling. Thus, a single job is never left waiting a long time for CPU
cycles once it has been submitted to a resource.

Existing Screen Saver Science systems all target problems that have many,usually mil-
lions, of independent tasks that often run for tens or hundreds of hours. Once a task has
been assigned to a computer it will be processed while the computer is in screen saver mode.
Processing is suspended if the screensaver is suspended and similarly resumed again along

Cycle-Scavenging in Grid Computing 153

with the screensaver. An artefact of this model is that one never knows when the result of a
given task is ready, and it is very hard to determine if the task has been lostor if it is simply
only allowed to proceed very slowly.

For applications such as computational chemistry this model is very poorly suited. The
number of tasks is usually in the tens or hundreds and it is often the case thatanalyses of
the results can only start once the result of every task is in.

This is easily addressed by putting an upper time limit on each job, and if the time limit
is exceeded, the job is resubmitted to another resource. However, in order to schedule a
job with a deadline to a screen saver resource, we need to know how long the resource is
available, i.e. how much time it takes before the screen saver is deactivated.To predict
the available time slot of a screen saver resource, we use exponential average on an hourly
basis, which has proved to converge against the actual resource idle timequite fast.

3.4.2 Remote File Access

One difficulty that users report when using Grid is file access, since filesthat are used by
Grid jobs must be explicitly uploaded to a Grid storage element and result files must also
be downloaded explicitly. The MiG model introduces home catalogs for all Gridusers, and
all file references are relative to this home catalog. This eliminates all naming problems,
since MiG provides one simple access entry to a user’s home catalog. Furthermore, using
the MiG Remote File Access library [1], applications running on a Linux resource - as the
ones used in the MiG-SSS model - can, transparently and without recompilingor relink-
ing applications, access application input and output files remotely, thus onlydownloading
needed data and only uploading modified data.

The same ideas have been implemented in the One-Click Model which also provides
transparent remote file access to the jobs that are executed. The MiG storage server supports
partial reads and writes, through HTTPS, of any file that is associated witha job. When the
resource applet accesses files that are associated with a job, a local buffer is used to store the
parts of the file that are being accessed. If a file position which points outside the local buffer
is accessed, the MiG server is contacted through HTTPS, and the bufferis written to the
MiG server if the file is opened in write mode. The next block of data is then fetched from
the server and stored into the buffer and finally the operation returns to theuser application.
The size of the buffer is dynamically adjusted to utilize the previously observed bandwidth
optimally.

3.4.3 Block size estimation

To achieve the optimal bandwidth for remote file access it is necessary to findthe optimal
block size for transfers to and from the server. In this case the optimal block size is a
trade off between latency and bandwidth. We want to transfer as large a block as possible
without excessive latency penalty since the chance of transferring datathat will not be used
increases with the block size.

We define the optimal block sizebsopt as the largest block where a doubling of the block
size does not double the time to transfer it. This can be expressed the following way:

t(x) ∗ 2 > t(x ∗ 2) ∀x < bsopt (1)

154 R. Andersen, M. Rehr, and B. Vinter

t(x) ∗ 2 < t(x ∗ 2) ∀x > bsopt (2)

t(x) = time to transfer block of size x

We do not want block sizes belowbsopt as the timet used to transfer a block of sizex
is less than doubled when the block size is doubled. On the other hand we don’t want ‘too
large’ block sizes as we do not know if the retrieved data is going to be usedor discarded
due to a seek operation beyond the end of the local buffer.

As the One-Click resources can be placed at any sort of connection, and the bandwidth
of the connection thus may differ greatly from one resource to another, itis not possible to
use a fixed block size and reach a good ratio between bandwidth and latency at an arbitrary
type of connection.

The simplest approach would be to use a fixedbsopt based on empirical tests on the
most common connections.

A less trivial, but still simple, approach would be to measure the time it takes to connect
to the server and then choose a block size which ensures the transfer time of that block to
be a factor ofx larger than the time to connect, to make sure that the connection overhead
does not exceed the time of the actual data transfer.

The chosen approach is to estimatebsopt from the time spent transferring blockx − 1
with the time of transferring blockx, starting with an initial small4 block sizebs0 and
then doubling the block size until a predefined cutoff ratioCR is reached. After each data
transfer the bandwidthbwx is calculated and compared to the bandwidth of the previous
transferbwx−1. If the ratio is larger than the predefinedCR:

bwx

bwx−1
> CR (3)

then the block size is doubled:

bsx+1 = bsx ∗ 2 (4)

As the block size is doubled in each step the theoreticalCR to achievebsopt should be2,
since there is no incentive to increase block size once the latency grows linearly with the
size of the data that is transferred.

However in reality, one need to get aCR below2 to achievebsopt. This is due to the
fact that all used block sizes are powers of2, and one cannot rely on the optimal block size
to match a power of2.

Therefore to make sure to get a block size abovebsopt you need a lowerCR. Empirical
tests showed that aCR about1.65 yields good results, see section 4.2

Additional extensions include adapting to the frequency of random seeksin the estima-
tion of theCR. A large amount of random seeks to data placed outside the range of the
current buffer will cause new blocks to be retrieved in each seek. Therefore the block size
should be lowered in those cases to minimize the latency of each seek.

4An initial small block size gives a good result as many file accesses applies to small text files such as
configuration files.

Cycle-Scavenging in Grid Computing 155

4 Experiments

To test the One-Click model we established a controlled test scenario. Eightidentical Pen-
tium 4, 2.4 GHz machines with512 MB ram were used for tests.

4.1 One-Click as concept

The test application used is an exhaustive algorithm for folding proteins written in Java.
This was changed to comply with the applet framework.

A protein sequence of length26 was folded on one machine, which resulted in a total
execution time of2 hours,45 minutes and33 seconds. The search space of the protein was
then divided into50 different subspaces using standard divide and conqueror techniques.
The50 different search spaces were submitted as jobs to the Grid, which provides an av-
erage of6 jobs per execution machine and2 extra jobs to prevent balanced execution. The
search spaces on their own also provide unbalanced execution as the valid protein config-
urations vary from one search space to another and thus results in unbalanced execution
times. The experiment was made without checkpointing the application. The execution
of the 50 jobs completed in29 minutes and8 seconds, a speedup of5.7 for 8 machines.
While this result would be considered bad in a cluster context it is quite useful in a Grid
environment.

To test the total overhead of the model, a set of1000 empty jobs was submitted to the
Grid with only one One-Click execution resource connected. The1000 jobs completed in
19935 seconds, which translates to an overhead of approximately20 seconds per job.

4.2 File access

To achieve the best bandwidth cutoff ratioCR several experiments has been made. In the
experiments a16 MB file was read 100 times by the One-Click resource on a20 Mb/s
broadband Internet connection. All experiments start with an initial block size of 2048
(211) bytes. The first experiment was run with aCR of 0, which means that the block size
is doubled in every transfer. The result is shown in figure 4.

The figure shows how the latency starts to raise dramatically between block size 218

and220 and the bandwidth to latency ratio starts to fall at those block sizes. The bandwidth
to latency ratio between block size218 and220 lies in the interval from1.25 to 1.75. Based
on these observations we performed the same test with aCR of 1.5. The result is shown in
figure 5.

This shows that aCR of 1.5 is too low as block sizes of221 occur and we want the
block sizes to be between218 and220 to limit the maximum latency. Therefore theCR
must be between1.5 and1.75. The test was then run withCR 1.55, 1.60, 1.65, 1.70 and
1.75. The result is shown in figure 6.

We observe that aCR of 1.75 is too high, as only a few block sizes of219 occur and
no block sizes of220 occurs. ACR of 1.55 results in a few block sizes of221 which is
above the block sizes we want.1.60 represents the block sizes we want and block size220

is well represented. ACR of 1.65 represents block size219 well and a few block sizes
of 220 is reached as well, and aCR 1.70 represents block size220 but no block sizes of
221 are represented. We choose aCR of 1.65 as block size220 is considered the braking

156 R. Andersen, M. Rehr, and B. Vinter

Figure 4: The left figure shows the latency as a function of the block size,the right figure
shows the bandwidth ratiobwx

bwx−1
as a function of the block size. Between block size218

and220 the latency starts to raise and the bandwidth ratio starts to fall. This is where the
cutoff is chosen to avoid excessive raise in latency

point where the latency starts to grow excessively, therefore we do notwant it to be to well
represented, but we want it to be represented, which is exactly the caseat aCR of 1.65.

To verify the previous finding that theCR value should be1.65 a test application, which
traverses a16 MB file of random 32 bit integers was developed. First the application was
tested against the framework, where fixed block sizes were used, and then the application
was tested against the framework, where the dynamic block sizes with aCR of 1.65 were
used. The results are shown i figure 7.

The experiment shows, as expected, that the execution time decreases asthe block sizes
increase in the experiments with static block sizes. The execution time in the experiments
with the dynamic block sizes all reside around 256 seconds5 which are satisfactory, as this
shows that compared to largest static buffer size of interest6, the execution time loss using
a dynamic buffer size is at most a factor of four. The reader should notethat this type of
application is the worst case for dynamic buffer sizing as all the data are read sequentially.

5With the exception of 3 runs, which are classified as outliers
6The largest static buffer of interest is217 as this is where the time gained by doubling the buffer, levels out.

Figure 5: The latency as a function of the block size withCR 1.5

Cycle-Scavenging in Grid Computing 157

Figure 6: The latency as a function of the block size withCR 1.55, 1.60, 1.65, 1.70, 1.75

Figure 7: The execution time as a function of the block size and the execution timewith
dynamic block sizes and aCR of 1.65

158 R. Andersen, M. Rehr, and B. Vinter

Figure 8: The time spent checkpointing on a20 Mb/s and a 2048/412 kb/s Broadband
Internet

If the integers were read in random order, the dynamic buffer size execution would perform
much better.

4.3 Checkpointing

The next obvious performance issue is to test the overhead of performing a checkpoint
operation within a process. This was tested by submitting jobs that allocate heapmemory
in the range from0 kB to 8192 kB. Each job first allocatesX kB, whereX is in the order
power of2, and does10 checkpoints, which saves the entire heap space. The performance
was first tested on a20 Mb/s broadband Internet connection.

The test was then repeated using a more modest2048/512 kb/s broadband Internet con-
nection. The result of these tests is shown in figure 8.

In the first test, using the20 Mb/s connection, the checkpoint time is constant as the
memory size grows. We can conclude from this, that the overhead of serializing the Java
object is dominating compared to the actual network transfer time. The oppositeis the case
when we examine the results of the2048/512 kb/s connection. Here we see that the time
spent grows linearly with the size of the allocated memory, from which we may conclude
that on a512 kb/s connection the bandwidth is, not surprisingly, the limiting factor.

The experiments also show that the dynamic block sizes approach increases the execu-
tion time by of factor of four compared to the execution time reached with the largest static
block size in a worst case scenario.

The building checkpointing mechanism has an overhead of15 seconds per checkpoint
on a2.4GHz P4 and the One-Click framework overall is causing approximately20 seconds
of overhead to each execution, compared to local execution. Despite of this, a considerable
speedup is reached in the presented protein experiment.

5 Conclusion

This work has shown how to eliminate the factors that have previously impededthe fusion
of Public Resource Computing and Grid Computing to effectively utilize idle CPU cycles
from desktop machines for any kind of Grid job.

Cycle-Scavenging in Grid Computing 159

The prohibiting factors include NAT-hidden resources, means to utilize Windows desk-
tops, the workload required by a non-expert resource owner to installand manage all re-
source software, and the security issues involved with installing a large software base on
the resource.

Using sandboxing technology we have successfully eliminated all of these limitations.
Two models exist, the MiG-SSS and the One-Click model. In the MiG-SSS model, resource
donors download a bundle consisting of a screen saver, a virtual machine, and a special MiG
Linux image in order to share their idle resources. The MiG One-Click model lowers the
workload imposed on the resource owner to only requiring a visit on a web page.

The MiG system has proved flexible enough to easily deal with computers behind net-
work address translators, and mobile processes and automatic resubmission of jobs solve
the problem with resources that are cut off the network or leave the screen saver mode.

Using the MiG-SSS approach, a desktop computer volunteers as a Grid resource upon
screen saver activation, and as soon as the screen saver is deactivated, the executing job
either stops or migrates. Thus, the resource owner is completely unaffected by the Grid
job. The users submitting jobs to the public resources gain access to a virtualized Linux
environment where standard Linux applications can run unmodified.

In the One-Click framework, resource owners can contribute without installing any
client software at all. By using Java Applet technology, the resource owner simply points a
Java-enabled browser to the MiG One-Click URL which will load an applet acting as a Grid
resouce. Once the user of the donated computer wishes to stop the execution, the browser is
simply closed down or pointed to another URL, and the execution stops. The MiG system
eventually detects this event, by a timeout, and resubmits the job to another resource, where
the job is resumed from the latest checkpoint that was made.

The use of Java applets provides a secure sandboxed executing environment that pre-
vents the executing Grid jobs from harming the donated machine. The disadvantage of this
approach is that all jobs must be written in Java and in addition comply with the presented
framework, including the Java Applet Security Model. However the modifications that are
needed to port an existing Java application are limited to using special methods for stdout
and stderr, applying to the Java applet security model, and using the One-Click framework
for remote file access. The One-Click framework also includes means to provide semi-
transparent checkpointing of the applications at runtime.

Experiments have been performed to find the optimal block size for the remote file
transfer that the framework includes. The experiments show that doubling the block size in
each transfer gives the optimal tradeoff between bandwidth and latency as long as the CR
is below 1.65.

References

[1] Rasmus Andersen and Brian Vinter,Transparent remote file access in the minimum
intrusion grid, WETICE ’05: Proceedings of the 14th IEEE International Workshops
on Enabling Technologies: Infrastructure for Collaborative Enterprise (Washington,
DC, USA), IEEE Computer Society, 2005, pp. 311–318.

160 R. Andersen, M. Rehr, and B. Vinter

[2] David P. Anderson,Boinc: A system for public-resource computing and storage, GRID
’04: Proceedings of the Fifth IEEE/ACM International Workshop on GridComputing
(Washington, DC, USA), IEEE Computer Society, 2004, pp. 4–10.

[3] Allan Bricker, Michael Litzkow, and Miron Livny,Condor Technical Summary, Version
4.1b, 1992.

[4] Brad Calder, Andrew A. Chien, Ju Wang, and Don Yang,The entropia virtual ma-
chine for desktop grids, VEE ’05: Proceedings of the 1st ACM/USENIX international
conference on Virtual execution environments (New York, NY, USA), ACM, 2005,
pp. 186–196.

[5] Renato J. Figueiredo, Peter A. Dinda, and José A. B. Fortes,A case for grid
computing on virtual machines, ICDCS ’03: Proceedings of the 23rd International Con-
ference on Distributed Computing Systems (Washington, DC, USA), IEEE Computer
Society, 2003.

[6] Ian Foster and Carl Kesselman,The grid: blueprint for a new computing infrastructure,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, November1998.

[7] Henrik Hoey Karlsen and Brian Vinter,Minimum intrusion grid - the simple model,
WETICE ’05: Proceedings of the 14th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprise (Washington, DC, USA),
IEEE Computer Society, 2005, pp. 305–310.

[8] Brian Vinter,The Architecture of the Minimum intrusion Grid (MiG), Communicating
Process Architectures 2005, sep 2005, pp. –.

Appendix F

Publication 6

Recent Developments in Grid Technology and Applications. G.A. Gravvanis, J.P. Mor-
rison, H.R. Arabnia and D.A. Power, Editors, Chapter 10, ISBN: 978-1-60692-768-7
Brian Vinter, Rasmus Andersen, Martin Rehr, Jonas Bardino, and Henrik Karlsen:
Towards a Robust and Reliable Grid Middleware

172

In: ISBN:
Editor: © 2007 Nova Science Publishers, Inc.

Chapter

TOWARDS A ROBUST AND RELIABLE GRID MIDDLEWARE

Brian Vinter, Rasmus Andersen, Martin Rehr, Jonas Bardino and
Henrik Karlsen

University of Copenhagen, Department of Computer Science

Abstract

 This chapter describes the philosophy behind a new Grid model, the Minimum intrusion
Grid, MiG. The idea behind MiG is to introduce a ‘fat’ Grid infrastructure which allows much
‘slimmer’ Grid installations on both the user and resource side. Components that differentiate
MiG from Globus and similar models include a zero-size Grid code base that is required to be
installed on client or resource computers, mandatory payment and pricing of Grid services,
end-to-end anonymity between consumers and producers and approximating the perception of
a PC by means of Grid computing. In addition MiG provides a new, simpler approach to
Virtual Organizations and a seamless integration of the Public Resource Computing model
into Grid.

1. The idea behind the Grid

In the mid 1990’s when Grid first was introduced, the idea of getting computing resources
from a socket in the wall helped create a giant hype around Grid-computing. Since then one
could argue that, as money has been poured into Grid research, the ambition level of the same
research has dropped proportionally; to the point where Grid today often appears to be merely
web-services in another wrapping! Grid research and Grid systems seem to be severely
limited by initial choices made towards location, naming and security aspects in Grid. Most,
or even all, of these were not obviously wrong, or were not at all wrong at the time they were
made, but in the end we have ended up with a Grid model that is a long way from providing
computing resources from a socket in the wall, particularly for commercial enterprises and in
particular for private users.

Grid computing is just around the top of the hype-curve, and while large demonstrations
of Grid middleware exist, including Globus toolkit[8] and NorduGrid ARC[9], the tendency
in Grid middleware these days is towards a less powerful model, Grid services, than what was

Brian Vinter et al.

available previously. This reduction in sophistication is driven by a desire to provide more
stable and manageable Grid systems. While striving for stability and manageability is
obviously right, doing so at the cost of features and flexibility is not so obviously correct.

The Minimum intrusion Grid, MiG, is a project that aims to design a new platform for
Grid computing which is driven by a stand-alone approach to Grid, rather than integration
with existing systems. The goal of the MiG project is to provide a Grid infrastructure where
the requirements on users and resources alike, to join Grid, are as small as possible – thus the
minimum intrusion part. While striving for minimum intrusion, MiG still seeks to provide a
feature rich and dependable Grid solution.

2. Grid Middleware

The driving idea behind the Minimum intrusion Grid project is to develop a Grid middleware
that allows users and resources to install and maintain a minimum amount of software to join
the Grid. MiG will seek to allow very dynamic scheduling and scale to a vast number of
processors. As such MiG will close the gap between the existing Grid systems and popular
“Screen Saver Science” systems, like SETI@Home.

2.1 Philosophy behind MiG

“The Minimum intrusion Grid”, this really is the philosophy - we want to develop a Grid
middleware that makes as few requirements as possible. The working idea is to ensure that a
user needs only a signed x509 certificate, trusted by Grid, and a web-browser capable of
secure HTTP, HTTPS. A resource on the other hand must also hold a trusted x509 certificate
and in addition create a user – the Grid user – who can use secure shell, ssh, to enter the
resource and once logged on can open HTTPS connections to the outside. The requirements
then become:

User Resource
Must have certificate Yes Yes
Must have outbound HTTPS Yes Yes
Must have inbound SSH No Yes1

Table 1. Requirements for using MiG

3. What’s wrong with the classic Grid systems?

While there are many Grid middleware systems available most of them are based on, or
descendents of, the Globus toolkit. Thus the description below addresses what the author
believe to be shortcomings in the Globus toolkit, and not all issues may be relevant to all Grid
systems.

1 Some resource models in MiG, known as sandboxes, do not even require inbound ssh.

36

Towards A Robust and Reliable Grid Middleware

3.1 Single point of failure

Contrary to popular claim, all existing Grid middlewares hold a central component that, if it
fails, requires the user to manually choose an alternative. While the single point of failure
may not truly be a single point, but comply with some level of redundancy, none of the
components scale with the size of the Grid. Thus even for a Grid of infinite size a finite
number of failures are required to make the overall Grid fail

3.2 Lack of scheduling

The classic Grid systems perform a job-to-resource mapping. However, an actual scheduling
with a metric of success is not available. Work is underway in this in the community
scheduler[16] but for this scheduler to work, the resources need to be exclusively signed over
to Grid, i.e. a machine can not be accessed both through Grid and a local submission system.

User

User

User

User

GIIS

Resource

Resource

Resource

Resource

Resource

Resource

User

User

User

User

GIIS

Resource

Resource

Resource

Resource

Resource

Resource

Scheduling layout of the Globus Grid model

3.3 Poor scalability

The time taken to perform the job-to-resource mapping in the current systems scales linearly
with the number of sites that are connected. This is already proving to be a problem in
NorduGrid, which is one of the largest known Grids, though only 36 sites are connected.
Imagining tens of thousands of connected sites is not likely. In the Grid service model
scalability issues are more or less eliminated by absence of a single system view from a user
perspective and thus forces the user to visit every site on the Grid before making a decision
on where to place a new job.

37

Brian Vinter et al.

3.4 No means of implementing privacy

The job submission API at the users machine communicates directly with all the potential
sites, thus all sites know the full identity of all jobs on the Grid. This means that the grid user
does not only reviles his or her full identity and intentions to the resource that end up
executing the job, which in itself is bad enough, full disclosure is given to all participating
resources in the Grid. Thus if one wish to make a map of ‘who-does-what’ on the Grid all that
is needed is to place a resource on the Grid and log all incoming requests. There is not even a
need to accept any jobs at all, simply to receive requests and the reject them.

3.5 No means of utilizing ‘cycle-scavenging’

Cycle-scavenging, or Screen Saver Science, utilizes spare CPU cycles when a machine is
otherwise idle. This requires an estimate on how long the machine will be available and all
classic Grid systems just assume that a free resource will be available indefinitely. Cycle
scavenging in Grid has been partly demonstrated in NorduGrid by connecting a network of
workstations running Condor, to NorduGrid, but Grid itself has no means of screen-saver
science.

3.6 Requires a very large installation on each resource and on the user site

The middleware that must be installed on a resource to run NorduGrid, which is probably the
most robust of the well known Grid middlewares, is more than 367 MB including hundreds of
components. All of which must be maintained locally. This means that donating resources to
Grid is associated with significant costs for maintenance; this naturally limits the willingness
to donate resources.

3.7 Firewall dependency

To use the existing middlewares special communication ports to the resource must be opened
in any firewall that protects a resource. This is an obvious limitation for growing Grid since
many system administrators are reluctant towards such port-openings. One project that seeks
to address this problem is the centralized-gateway-machine project under the Nordic Data
Grid Facility[17] that receives jobs and submits them to the actual resource using SSH.

3.8 Highly bloated middleware

The existing middleware solutions provide a very large set of functions that are placed on
each site, making the software very large and increasing the number of bugs, thus the need for
maintenance, significantly.

38

Towards A Robust and Reliable Grid Middleware

3.9 Complex implementation using multiple languages and packages

Many current Grid middlewares have reused a large amount of existing solutions, for data-
transfer, authentication, authorization, queuing, etc. These existing solutions are written in
various languages and thus the Grid middleware uses more than 6 programming languages
and several shell types, in effect raising the cost of maintaining the package further. The
many languages and shells also limit portability to other platforms. The Globus project have
acknowledged this as a problem and have switched entirely to Java for implementing their
middleware.

4 Design Criteria for the Minimum intrusion Grid

All MiG component must design and implement a functional Grid system with a minimal
interface between the Grid, the users, and the resources. The successful MiG middleware
implementation holds the following properties.

4.1 Non-intrusive

Resources and users must be able to join Grid with a minimum of effort and with a minimum
software installation. The set of requirements that must be met to join Grid must also be
minimal. “Minimal” in this context should be interpreted rigidly, meaning that if any
component or functionality in MiG can be removed from the resource or user end, this must
be done, even if adding the component at the resource or user end would be easier.

4.2 Scalable

MiG must be able to contain tens of thousands, even millions, of resources and users without
the size of the system impacts performance. Even individual PCs should be able to join as
resources. For a distributed system, such as MiG, to be truly scalable it is necessary that the
performance of the system is not reduced as the number of associated computers grows.

4.3 Autonomous

MiG should be able to perform an update of the Grid without changing the software on the
user or resource end. Thus compatibility problems that arise from using different software
versions should be eliminated by design. To obtain this feature it is necessary to derive a
simple and well defined protocol for interaction with the Grid middleware. Communication
within the Grid can be arbitrarily complex though since an autonomous Grid architecture
allows the Grid middleware to be upgraded without collaboration from users and resources.

39

Brian Vinter et al.

4.4 Anonymous

Users and resources should not see the identity of each other if anonymity is desired. This is a
highly desirable feature for industrial users that are concerned with revealing their intentions
to competing companies. A highly speculative, example could be two pharmaceutical
companies A and B. Company A may have spare resources on a computational cluster for
genome comparisons, while B may be lacking such resources. In a non-anonymous Grid
model, company B will be reluctant to use the resources at company A since A may be able to
derive the ideas of B from the comparisons they are making. However, in a Grid that supports
anonymous users, A will not know which company is running which comparisons which
makes the information far less valuable. In fact many comparisons will be likely to be part of
research projects that map genomes and will thus reveal nothing but information that is
already publicly available.

4.5 Fault tolerance

Failing machines or processes within the Grid should not stop users or resources from using
the Grid. While obvious, the lack of fault tolerance is apparent in most Grid middlewares
today. The consequences of lacking fault tolerance range from fatal to annoying. Crashes are
fatal when a crashed component effectively stops users from running on Grid, i.e. a hierarchy
of Meta Directory Servers.

If a resource that runs users’ processes crash it becomes costly for the users that are
waiting for the results of the now lost jobs. Finally crashes are merely annoying when a
crashed component simply does not reply and thus slows down the users interactions with the
Grid because of timeouts.

4.6 Firewall compliant

MiG must be able to run on machines behind firewalls, without requiring new ports to be
opened in the firewall. While this requirement is quite simple to both motivate and state,
actually coping within the restraints of this point may prove highly difficult.

4.7 Strong scheduling

MiG provides real scheduling, not merely job-placement, but it needs to do so without
requiring exclusive ownership of the connected resources. Multi-node scheduling should be
possible as should user-defined scheduling for dynamic subtasking. In effect MiG also
supports meta-computing2.

2 Metacomputing is a concept that precedes Grid computing. The purpose of metacomputing is to create a large
virtual computer for executing a single application.

40

Towards A Robust and Reliable Grid Middleware

4.8 Cooperative support

In order to improve the meta-computing qualities, MiG provides access to shared user-
defined data-structures. Through these data-structures a MiG based Grid system can support
collaborating applications and thus improve the usability of Grid.

5 The abstract MiG model

The principal idea behind MiG is to provide a Grid system with an overall architecture that
mimics a classic, and proven, model – the Client-Server approach. In the Client-Server
approach the user sends his or her job to the Grid and receives the result. The resources, on
the other hand, send a request and receive a job. After completing the job the resource sends
the result to the Grid which can forward the reply to the user.

GRID

User

User

User

User

Resource

Resource

Resource

GRID

User

User

User

User

Resource

Resource

Resource

The abstract MiG model

The Grid system should be disjoint from both the users and the resources, thus the Grid
appears as a centralized black-box to both users and resources.

This model allow us to remain in full control of the Grid, thus upgrades and trouble
shooting can be performed locally within Grid, rather than relying on collaboration from a
large number of system administrators. In addition, moving all the functionality into a
physical Grid system, lowers the entry level that is required for both users and resources to
join, thus increasing the chances that more users and resources do join the Grid.

In MiG, storage is also an integrated component and users will have their own ‘home
directory’ on MiG, which can be easily accessed and referenced directly in job-descriptions
so that all issues with storage-elements and replica catalogues is entirely eliminated.

For a user to join, all that is required is an x509 certificate which is signed by a certificate
authority that is trusted by MiG. Accessing files, submitting jobs and retrieving results can the
all be done through a web-browser that supports certificate based HTTPS. As a result the user
need not install any software to access Grid and if the certificate is carried on a personal
storage device, e.g. a USB key, a user can access Grid from any internet enabled machine.

The requirements for resources to join MiG should also be an x509 certificate, but in
addition the resource must create a Grid account in which Grid jobs are run. Initially MiG
requires that this user can SSH into the account, some resources are run in a sandboxed pull
mode instead but these are not described in this chapter..

41

Brian Vinter et al.

6 The simple MiG model

In a simple version of the MiG model there's only a single node acting as the Grid. Clients
and resources then communicate indirectly through that Grid-node. The interface between the
user and Grid should be as simple as possible. The exact protocol remains a topic for
investigation but, if possible, it will be desirable to use only the HTTP protocol or a similar
widely used, and trusted, protocol. Towards the resources the protocol should be equally
simple, but in this case, as we also desire that no dedicated Grid service is running on the
resource, one obvious possibility is to use the widely supported SSH protocol.

When submitting a job, the user sends it to the Grid machine which stores the job in a
queue. At some point a resource requests a job and the scheduler chooses a job to match the
resources that are offered. Once the job is completed the results are sent back to MiG. The
user is informed that the job has completed and can now access MiG and retrieve the results.

GRID

User

User

User

User

Resource

Resource

GRID

User

User

User

User

Resource

Resource

The simple MiG model

6.1 Considering the simple model

The simple model of course, is quite error-prone as the single Grid machine becomes both a
single point of failure and a bottleneck which is not acceptable. The obvious solution is to add
more Grid machines which can act as backup for each other.

7 The full MiG model

The obvious flaw in using the client-server model is that achieving robustness is inherently
hard in a centralized server system where potential faults include:

• Crashed processes
• Crashed computers
• Segmented networks
• Scalability issues

To correctly function in the presence of errors, including the above, error redundancy is
needed. The desired level of redundancy is a subject to further investigations, but should
probably be made dynamic to map the requirements of different systems. To address the
performance issues Grid itself must be distributed so that users can contact a local Grid
server. Thus workload will be distributed through the physical distribution of users.

42

Towards A Robust and Reliable Grid Middleware

Once a job arrives at a Grid server the server must ensure that the job is “deposited” at a
number of other servers, according to the current replication rate. The user should not receive
an acknowledgement of submission before the job has been correctly received and stored at
the required number of servers.

Once a resource has completed a job the resource is expected to deliver the result. If,
however, the client has not provided a location for placing the result, the resource can still
insist on uploading the results. To facilitate this, the Grid should also host storage to hold
results and user input-files, if a resource cannot be allocated at the time the client submits his
job.

To facilitate payment for resources and storage a banking system should be implemented.
To allow inter-organization resource exchange, the banking system should support multiple
banks. Dynamic price-negotiation for the execution of a job is a very attractive component
that is currently a research topic. Supporting price-negotiations in a system such as MiG
where no central knowledge is available is an unsolved problem that must be addressed in the
project. Likewise, scheduling in a system with no central coordination is very hard.

GRID

GRID

GRID

Resource

Resource

Resource

Resource

User

User

User

GRID

GRID

GRID

Resource

Resource

Resource

Resource

User

User

User

The full MiG model

7.1 Considering the full model

One topic for further investigations is: how do we schedule on multiple Grid servers? In
principle we would prefer complete fairness, so that the order in which jobs are executed is
not dependent on where they are submitted, i.e. to which MiG node. Such a full coordination
between all nodes in MiG for each job-submission is not realistic since it will limit scalability,
thus a model that allows scalability while introducing some level of load-balancing and
fairness will have to be invented.

43

Brian Vinter et al.

8 MiG Components

8.1 Storage in MiG

One difficulty that users report when using Grid is file access. Since files that are used by
Grid jobs must be explicitly uploaded to a Grid storage element, result files must be
downloaded equally explicitly. On the other hand it is a well known fact that the expenses
associated with a professional backup strategy often prohibit smaller companies from
implementing such programs, and relies on individual users to do the backup - a strategy that
naturally results in a large loss of valuables annually. Some interesting statistics include:

• 80% of all data is held on PCs (Source, IDC)
• 70% of companies go out of business after a major data loss (Source, DTI)
• 32% of data loss is due to user error (Source, Gartner Group)
• 10% of laptops are stolen annually (Source, Gartner Group)
• 15% of laptops suffer hardware failure annually (Source, Gartner Group)

By using the Grid, we do not just gain access to a series of computational resources, but
also to a large amount of storage. Exploitation of this storage is already known about from
peer-to-peer systems, but under “well-ordered'' conditions it can be used for true Hierarchal
Storage Management, HSM. When working with HSM the individual PC or notebook only
has a working copy of the data which is then synchronized with a real dataset located on Grid.
By introducing a Grid based HSM system, MiG offers solutions to two important issues at
one time; firstly Grid jobs can now refer directly to the dataset in the home-catalog thus
eliminating the need for explicit up- and down-loads of files between the PC and Grid.
Second, and for many smaller companies much more importantly, we can offer a
professionally driven storage-system with professional backup solutions, either conventional
backup systems or, more likely, simple replica based backup - the latter is more likely
because disks are becoming rapidly less expensive and keeping all data in three copies is
easily cheaper than a conventional backup-system and the man-power to run it. A Grid based
HSM system also allows small companies to outsource the service while medium and large
companies can chose to either outsource or implement a Grid HSM in-house. Thus by
introducing Grid based HSM, Grid can offer real value to companies that are not limited by
computational power and these companies will thus be "Grid integrated" when Grid becomes
the de-facto IT infrastructure.

GRID
ResourceUser

Disk

GRID
ResourceUser

Disk

MiG Storage support

44

Towards A Robust and Reliable Grid Middleware

8.2 Scheduling

Scheduling in Grid is currently done at submission-time and usually a scheduled task is
submitted to a system where another level of scheduling takes place. In effect the scheduling
of a job provides neither fairness for users nor optimal utilization of the resources that are
connected to the Grid, and the current scheduling should probably just be called job-
placement. Furthermore, the current model has a built in race-condition since the scheduling
inquires all resources and submits to the one with the lowest time-to-execute. If two or more
jobs are submitted at the same time they will submit to the same resource, but only one will
get the expected timeslot. The MiG model makes scheduling for fairness much simpler as the
local scheduling comes before the Grid scheduling in the proposed model.

Scheduling for the best possible resource utilization is much harder and of much more
value. The problem becomes one that may be described as: given the arrival of an available
resource, and an existing set of waiting jobs, which job is chosen for the newly arrived
resource so that the global utilization will be as high as possible?

The above is in the common case where jobs are more frequent than resources, in the rare
case that resources are more abundant than jobs, the same problem is valid on the arrival of a
job.

When scheduling a job, future arrivals of resources are generally not known, i.e., we are
dealing with an on-line scheduling problem. On-line scheduling is an active research area,
initiated as early as 1966 and continued in hundreds of papers, see and for a survey. This
problem, however, differs from all these on-line scheduling problems investigated previously
in that the resources, not the jobs, arrive over time in the common case. The problem also has
some similarity with on-line variable-sized bin packing , but again with a twist that has not
been considered before; the bins, not the items to be packed, arrive on-line.

8.3 Security and Secrecy

In Grid, security is inherently important, and the MiG system is designed be at least as secure
as the alternative systems. The simple protocols and minimal software based on the resources
make this goal easy to achieve, but still the mechanisms for security must be investigated.
Secrecy is much harder and is currently not addressed in Grid. Privacy will mean much
towards achieving secrecy but other issues are also interesting topics of research. I.e. if a data
file is considered valuable, e.g. a genomic data sequence, how can we hold the contents of
that file secret to the owner of the resource? In other words, can MiG provide means of
accessing encrypted files without asking the users to add decryption support to his
application?

GRID
ResourceUser

Disk

UID

UID+SID

SID

SID

GRID
ResourceUser

Disk

GRID
ResourceUser

Disk

UID

UID+SID

SID

SID

45

Brian Vinter et al.

Anonymity and security model

8.4 Fault-tolerance

In a full Grid system errors can occur at many levels and failures must be tolerated on MiG
nodes, resources, network connections and user jobs. Any single instance of these errors must
be transparent to the user. More complex errors of course, or combinations of the simple
errors, cannot fully be hidden from the users, i.e. if a user is on a network that is segmented
from the remaining internet we can do nothing to address this.

Achieving fault tolerance in a system such as MiG is merely a question of never loosing
information when a failure occurs, e.g. keeping redundant replicas of all information. shows
how a submitted job is replicated when it is submitted.

GRID

GRID

GRID
User

GRID

1. Submit

2. Replica 1

3. Replica 2

4. OK

GRID

GRID

GRID
User

GRID

1. Submit

2. Replica 1

3. Replica 2

4. OK

Replicating a new job

Recovering from a failure is then a simple matter of detecting the failure and restoring the
required number of replica’s as shown in where the number of replicas is three.

46

Towards A Robust and Reliable Grid Middleware

GRID

GRID

GRID
User

GRID

2. Replica 1

3. Replica 2

1. Failure detection

GRID

GRID

GRID
User

GRID

2. Replica 1

3. Replica 2

1. Failure detection

Recovering from a failure

8.5 Load balancing and economics

Load balancing in distributed systems is an interesting and well investigated issue. However
load balancing for, potentially, millions of resources while maintaining a well defined
measure of fairness is still an unsolved issue. However adding economics to the equation
actually makes this easier. Since MiG should support a market oriented economy, where the
price for executing a job is based on demand and supply, this introduces a simple notion of
fairness which is that resources should optimize their income while users should minimize
their expenses.

In case there are more jobs than resources, which is the common case, the next job to
execute is the job that is willing to pay most for the available resource. In case two or more
jobs bid the same for the resource the oldest of the bidders is chosen.

In the rare case that there are more resources offering their services than there are jobs
asking for a resource, the next available job is sent to the resource that will sell its resources
cheapest. In case more resources bid at the same price, the one that have been waiting the
longest wins the bid.

8.6 Shared data-structures for MiG

When people with little knowledge of Grid computing are first introduced to Grid, they often
mistake it for meta-computing and expect the Grid to behave as one large parallel processor
and not a large network of resources. This misunderstanding is quite natural, since such a
Grid computing model would be highly desirable for some applications, of course most
parallel applications cannot make use of such an unbalanced virtual parallel processor.

47

Brian Vinter et al.

However, to support the applications that can make use of Grid as a meta-computing system,
to address this MiG provides support for shared data-structures which are hosted on Grid.

Users who wish to utilize MiG for meta-computing may currently use one of four
approaches

1. Shared files
2. MiGSpace communication
3. SQL database
4. CSP

The use of shared files are often seen in applications that are executed on a LAN and is
quite simple, though not very powerful. Because, MiG works with a Grid based home-
directory and runtime access to the files in this catalog, rather than a pure copy-semantics as
commonly seen with Grid.

MiGSpace communication is in the tradition of Linda. Similar to the Linda tuple space,
tuples provide the granularity for shared entities in MiGSpace. Single variable based
granularity is ineffective in high latency environments. Communication latency is of
significance to the task grain size in distributed shared memory systems. When
communication latency increases, the grain size must be coarser to achieve good
performance. Document based granularity like that found in xSpace is overly specialized. In
contrast to JavaSpaces, tuples in MigSpace are flexible ordered collections of typed elements,
similar to those found in Linda. Arrays, sets and matrices remain relatively common data
structures in scientific computing, even though object oriented designs and languages have
become more popular. MiGSpace supports matrices and arrays with its simple tuple approach.
If desired is very easy to develop a tuple-to-object bridge. The following is a formal definition
of tuples in MigSpace:

A tuple consists of finite collections of ordered typed elements. Each element can be an
actual or a formal. The following notation for a tuple is used:

<P1, P2, P3, ...Pj>,
where Pi is an element.
A tuple consists of only actuals. Actuals have a type and a value. The
following is an example of a tuple with three elements in which all are actuals:
<1int, ”John”string, 2int>
Applications may this write actuals to the MiGSpace and read by using formals. Since

parallel programming with tuple-spaces is a well established paradigm, a large set of
algorithms that are designed for use with tuple-spaces. MiGSpace extends the classic tuple-
space model by introducing the option of reading and writing entire sub-spaces, this is
introduced to help hide latency over wide area networks.

Spaces in MiGSpaces are implemented as files and thus inherit their full security model
from the file-level security.

The SQL interface is quite straight forward, applications may access a MiG hosted SQL
database through a MiG enabled ODBC interface that seamlessly wraps all SQL queries in
the MiG security mechanisms and forwards the request to the MiG server-side SQL engine.
Likewise the reply is wrapped in the security layer and returned to the ODBC layer at the
execution host where the ODBC library translates the reply into standard ODBC format.

CSP, Communication Sequential Processes, is a well established model for designing and
implementing concurrent applications[ref]. In CSP the communication mechanism is
synchronous channels and in MiG-CSP these channels have been extended to a Grid

48

Towards A Robust and Reliable Grid Middleware

environment. The channels too are implemented as files and thus inherit the entire security
model from the MiG file modes.

8.7 Accounting/Price-negotiations

Grid becomes really interesting once users can purchase resources on Grid, thus transforming
Grid from a resource sharing tool into a market place. To support this vision, MiG does not
only do accounting but also support a job bourse, where the price for a task can be
dynamically negotiated between a job and a set of resources. Such dynamic price-setting is
also a known subject, but combining it with load-balancing and fairness in a truly distributed
system has not been investigated.

8.8 User defined scheduling

An advanced extension of the online-scheduling problem is the subtasking problem, where a
job may be divided into many subjobs. If the subtasks have a natural granularity the task is
trivial and known solutions exist, including functioning systems, such as SETI@Home. If, on
the other hand, a subtask can be selected that solves the largest possible problem on the given
resource, the problem becomes very hard and no system provides means for this today.

Job (2GB)

Request (2GB)

Job (2GB)

Request (2GB)

Dynamic sub-scheduling

When comparing with on-line bin packing, this variant of the problem has one further
twist to it; the size of an item (a subtask) may depend on which other items are packed in the
same bin, since the data needed by different subtasks may overlap.

MiG has developed a model where a job can be accompanied with a function for efficient
sub-tasking. The demonstration application for this will be a new version of the Grid BLAST
application, which is used in Bio-Science for genome comparisons. The efficiency of BLAST
depends on two parameters; input-bandwidth and available memory. We currently developing
a dynamic subtasking algorithm that creates subjobs fitted for resources as they become
available.

8.9 Graphics rendering on Grid

Currently Grid is used exclusively for batch job processing. However for Grid to truly meet
the original goal of “computing from a plug in the wall”, graphics and interactivity is needed.

49

Brian Vinter et al.

In this respect MiG makes things more complex than the existing middlewares since MiG
insists on maintaining anonymity, e.g. we insist that a process can render output to a screen-
buffer that it cannot know the address of.

The solution to this problem is similar to the storage model. A ‘per-user’ frame-buffer is
hosted in the MiG infrastructure, and resources can render to this, anonymous, region. Users
on the other hand can choose to import this buffer into their own frame-buffer and thus
observe the output from their processes without the hosts of these processes knowing the
identity of the receiver. The approach for anonymous rendering in MiG is sketched in .

GRID

User

Resource

Resource
GRID

User

Resource

Resource

Anonymous graphics rendering in MiG

9 Virtual Organisations

Facilitating the organization and work of Virtual Organizations is amongst the premiere
advantages of Grid computing. In [4] it is stated that “the real and specific problem that
underlies the Grid concept is coordinated resource sharing and problem solving in dynamic,
multi-institutional virtual organizations.” Resource sharing in this context is not only about
files, but access to all kinds of resources like computational power, external data, software
and specialized hardware. When sharing resources in loosely organized collaborations, such
as virtual organizations, one need the ability to apply a number of rules and conditions which
define the policy of the individual collaborations. Thus, seen at the utmost abstraction level, a
virtual organization is a set of well defined individuals who share a well defined set of
resources. While essential to Grid computing, Virtual Organizations are defined purely as
concept in Grid computing and not strictly defined by a protocol or similar. The most
widespread implementation of Virtual Organizations is the Virtual Organization Membership
Service, VOMS, which essentially works by allowing the user to request a proxy-certificate
from a given Virtual Organization, using that proxy-certificate the user may then continue to
submit the desired job to a resource that accepts the VO proxy-certificate.

50

Towards A Robust and Reliable Grid Middleware

9.1 VOMS

VOMS work by allowing the user to request a proxy certificate that verifies VO membership
from any VOMS server. If the VOMS server has information to the end that the requesting
users is in fact member of the desired VO it returns the proxy-certificate. Using that proxy-
certificate the user may then continue to submit the desired job to a resource that accepts the
VO proxy-certificate. The process is shown in figure 2.

V
O
M
S

Authorization
Database

Resource

Request

Authentication

VOMS Pseudo
Certificate

Query

U
S
E
R

VOMS Pseudo
Certificate

V
O
M
S

Authorization
Database

Resource

Request

Authentication

VOMS Pseudo
Certificate

Query

U
S
E
R

VOMS Pseudo
Certificate

Figure 2. VO membership certificate in VOMS

When presented with a proxy-certificate the resource verifies that the user is member of
an accepted VO and continues the authorization process. The resource may maintain a list
locally with banned users and deny a user access even though VO membership has been
confirmed by the VOMS server through the proxy-certificate.

9.2 CAS

Community Authorization Service, CAS, which is part of the Globus toolkit[8][7], seeks to
provide a more fine grained access control than simply membership of a VO. CAS works by
introducing a new abstraction level in the system called roles. Roles are similar to sub-groups
in a VO except that roles are not only associated with a set of resources but also with the
operations that may be performed on the resources, i.e. a specific role may only provide read
privileges to a data-set but not write privileges. The process that implements this mechanism
is identical to the overall VOMS process as shown in figure 2.

9.3. GridShib

GridShib[5] is a project which seeks to replace ordinary VOMS and CAS systems with a
Shibboleth[1] based authorization model. One of the driving motivations for Grid-Shib is the
same as one of the primary motivations for MiG, namely the need for user privacy.

51

Brian Vinter et al.

9.4 VGrids

The MiG design has made it easy to obtain a lot of the Grid features that was previously very
hard to implement. The development of MiG in general has greatly benefited from the
knowledge and mistakes learned by the first middleware that appeared. The VOMS approach
of proxy certificates is cumbersome and represents some concerns on manageability and
security, as an example it is not possible to revoke a proxy-certificate. Solutions to these
issues was discussed for some time in the MiG team. We seek a model that supports the
anonymity required by MiG, and which does not introduce proxy-certificates, a concept
which is entirely eliminated from the MiG design and which should not be re-introduced in
order to support VOs. At the same time we also need to keep the anonymity between user and
resource and provide the strong-scheduling capabilities found in MiG. Another important
observation from real-world Grids is that many large resources are hard to connect to Grid
since they run on user group quota allocations and often use a fair-share scheduling
mechanism. In order to support access to a resource from Grid by two independent user
groups, complex submission handling or even multiple Grid entry-points must often be
introduced, both of which increase the complexity of managing resources towards Grid and
thus decreases motivation to join a Grid system. We believe it is imperative to support the
natural regulation mechanisms in local sites, and we also believe that local administration of
Grid related options should be kept at a minimum, according to the project name, minimum
intrusion grid. The proposed solution is an entirely different approach to virtual organizations.
In its nature Grid seeks to allow a set of users to share a set of resources, while VOs seek
to control which users of a Grid share which resources, in essence a VO becomes a subset of
a Grid. With this in mind we choose Grids as our basic mechanism and treats a VO as Grid-
whithin-a-Grid, or Virtual Grids, VGrids (figure 3). A VGrid appears to a user almost as an
ordinary Grid, it has users, compute-resources and data-resources. As MiG seeks to hide
much of the Grid complexity to the user, all data-resources a user has access to are presented
in the form of a unified file-system, and VGrid data-resources appear as subdirectories in the
users home-directory. Resources never see the identity of the users due to the anonymity
feature of MiG. It therefore makes no sense for resources to maintain a local list of banned
users as in traditional middleware. If a resource joins a VGrid it grants access to all users
within it.

In fact, today there are no resources in the ordinary MiG Grid any longer, all resources
are located in one or more VGrids.

52

Towards A Robust and Reliable Grid Middleware

VGrids are integrated by design.

The set of allowed users in a VGrid consist of two types, owners and members. All valid
MiG users are allowed to create new VGrids and can then include any other user they know
of as either co-owners of the VGrid or ordinary members of the VGrid. The user who creates
it automatically becomes an owner of the new VGrid. Owners can add and remove other
owners and members, but a VGrid must always have at least a single owner. Besides having
the authorization to manage other owners and members an owner also has the privileges as
regular members, that is to access the resources in the VGrid and the files belonging to the
VGrid.

The authorization structure is hierarchical and as such similar to the structure of VO’s. If
you have owner or member rights of a VGrid you automatically have the same rights on all
sub VGrids. This means that an owner of VGrid V0 is also an owner of V0/V1 and V0/V1/V2
but not the other way round, i.e. some VGrids may have owners that are not even members of
the parent VGrid if this is desired the MiG servers and the client never communicate directly
with the resources, everything goes through the central MiG servers. This means that the
input files needed to execute a job must first be uploaded to the server from where the
resource can retrieve the file before executing the job. After a job has been executed the
outputfiles are uploaded by the resource to the server and the user can download the file or
use it in new job submissions or simply leave the file at the server where it may be safely
stored.

To support file sharing between members of a VGrid, a directory is created on the server
where all members are allowed to read and write. It looks just like any other directory in the
members home directories, but the files within it are readable and writable by all VGrid
members.

One of the observed complications with the VOMS model is the problem of having two
user groups with each their allocation on a large resource that both accesses their allocation
through Grid. In the VGrid model this becomes extremely easy, and both allocation quotas
and fair share scheduling is supported by default and without requiring any administration on
the local resource. Upon creating a VGrid the owners of that VGrid can add resources to it.
As in the original MiG model a resource is simply an ordinary user account that allow
incoming ssh and outgoing https. The administrator of a resource allocation simply creates an
account on the resource, as he would do with a new member of his research team, and
registers that account with the VGrid. From that point the VGrid can use the resource, but
locally at the resource the VGrid use appears simply as the use of an ordinary, untrusted, user.

VGrids have a number of additional advantages and features compared to the VOMS
approach. One is custom optimized job submission When a VGrid is created two web-page
references are automatically generated within the MiG namespace. A public page that can be
accessed by all Internet users where the owners can promote and publish information about
the project, and a private page which is only accessible by members of the VGrid. Within the
private page a custom job submission page may be created, using HTML. This page can be
optimized to the special purpose of the VGrid, often in the form of an application portal to
Grid execution by the VGrid owner using a set of predefined names for the HTML controls in
a HTML form which has the MiG server as target. The MiG server generates a job
description file based on the values of the HTML controls when it receives the form and
submits it to the execution queue of the VGrid on behalf of the user. All usual HTML controls

53

Brian Vinter et al.

are thereby available for the VGrid owners when they create their specialized submit page as
well as Cascading Style Sheets (CSS), a technology often used in conjunction with HTML to
create a set of web pages with a consistent look.

Another special component is the VGrid Monitor and Statistics. A Grid monitor with a
snapshot of the current state of the Grid and a web page with various statistics e.g. the total
number of jobs the Grid has processed are two features that have been a part of most Grid
middlewares for some time. Besides an overall monitor and statistics page for the complete
Grid, the same information is available for the separate VGrids. The default is that the VGrid
monitor and statistics pages are only accessible by members of the VGrid, but the owners can
change this to make the information public available.

VGrids also allow for easy information sharing. A WIKI is a special kind of website
where users can easily add and edit pages and content. It is a very simply way for a group of
people to collaborate and together create and maintain information. Perhaps the most known
WIKI is the wikipedia [3] where Internet users together have created an encyclopedia that at
the time of this writing has more than 950.000 articles and more than 900.000 registered users
that maintain the information. This is big-scale collaboration! The fundamental technology
behind a WIKI is HTTP and HTML, technologies as MiG is build upon and compatible with.
It is possible to install a WIKI back-end on the MiG server and let the owners of MiG VGrids
make WIKI functionality available on VGrid pages that can be accessible to the public or to
members only.

11 Conclusions

The purpose of this paper is to motivate the work on a new Grid middleware, the Minimum
intrusion Grid, MiG. MiG is motivated in a set of claimed weaknesses of the existing Grid
middleware distributions, and a desire to develop a model for Grid computing that is truly
minimum intrusion.

The proposed model will provide all the features known in today's Grid systems, and a
few more, while lowering the requirements for a user to simply having an X.509 certificate,
and for a resource to have a certificate and create a Grid-user who can access the resource
through SSH.

While MiG is still in its very initial stage, users can already submit jobs and retrieve their
results, while maintaining complete anonymity from the resource that executes the job.

References

[1] R. L. Graham, Bounds for Certain Multiprocessing Anomalies, Bell Systems Technical
Journal, vol 45, 1563--1581, 1966

[2] Y. Azar, On-Line Load Balancing, Online Algorithms: The State of the Art, Springer-Verlag,
1998, A. Fiat and G. J. Woeginger (ed.), Lecture Notes in Computer Science, vol. 1442

[3] J. Sgall, On-Line Scheduling, Online Algorithms: The State of the Art, Springer-Verlag,
1998, A. Fiat and G. J. Woeginger (ed.), Lecture Notes in Computer Science, vol. 1442

[4] J. Csirik, An On-Line Algorithm for Variable-Sized Bin Packing, Acta Informatica, 26, pp
697--709, 1989.

[5] J. Csirik and G. Woeginger, On-Line Packing and Covering Problems, Online Algorithms:

54

Towards A Robust and Reliable Grid Middleware

The State of the Art, Springer-Verlag, 1998, A. Fiat and G. J. Woeginger (ed.), Lecture Notes
in Computer Science, vol. 1442

[6] L. Epstein and L. M. Favrholdt, On-Line Maximizing the Number of Items Packed in
Variable-Sized Bins, Eighth Annual International Computing and Combinatorics Conference
(to appear), 2002

[7] I. Foster. The Grid: A New Infrastructure for 21st Century Science. Physics Today,
55(2):42-47, 2002.

[8] I. Foster, C. Kesselman. The Globus Project: A Status Report. Proc. IPPS/SPDP '98
Heterogeneous Computing Workshop, pp. 4-18, 1998.

[9] P. Eerola et al. "Building a Production Grid in Scandinavia". IEEE Internet Computing, 2003,
vol.7, issue 4, pp.27-35.

[10] R. Fielding et al, RFC2616 Hypertext Transfer Protocol -- HTTP/1.1,
http://www.rfc.net/rfc2616.html, The Internet Society, 1999 .

[11] T. Ylonen, SSH - Secure login connections over the internet, Proceedings of the 6th Security
Symposium, p 37, 1996.

[12] S. F. Altschul et al., Basic local alignment search tool, J. Mol. Biol. 215:403-10, 1990.
[13] G. Barish and K. Obraczka, World Wide Web Caching: Trends and Techniques, IEEE

Communications Magazine Internet Technology Series, May 2000.
[14] Minimum intrusion Grid - The Simple Model, Henrik H Karlsen and Brian Vinter, in proc. of

ETNGRID 2005 (to appear)
[15] Transparent Remote File Access in the Minimum Intrusion Grid, Rasmus Andersen and Brian

Vinter, in proc. of ETNGRID 2005 (to appear)
[16] The Community Scheduler Framework, http://csf.metascheduler.org, 2005.
[17] The Nordic Data Grid Facility, NDGF, www.ndgf.org, 2003.
[18] Data Clinic, http://www.dataclinic.co.uk/data-backup.htm

55

	Introduction
	Motivation
	Public Resource Computing
	Grid for the Public
	Non-computer Resources
	Challenges We Are Facing
	The Grid Concept
	Accessing Resources
	Interactive Shell
	Sensors and Laboratory Equipment
	Office Roaming Grids

	Grid Middlewares
	First Generation Grids
	Second Generation Grids
	Grid Scheduling
	Grid Scalability
	Job Fault Tolerance
	Runtime Environments
	Virtual Organizations
	Security: Authentication and Anonymity
	Grid Storage
	Connecting Resources to the Grid
	Choosing a Grid Middleware

	Presented Work
	The One-Click Grid Resource Model
	The PS3™ Grid Resource Model
	Application Porting and Tuning on The Cell-BE Processor
	The Remote Memory Library

	Contributions
	Publications

	The One-Click Grid Resource Model
	The MiG Scheduler
	The One-Click VMware Player Model
	The Java One-Click Model
	Remote File Access
	Block Size Estimation

	Checkpointing
	Transparent Checkpointing
	Semi-transparent Checkpointing

	Experiments
	One-Click as a Concept

	One-Click Summary

	The PS3™ Grid Resource Model
	About the PS3™ Game Console
	The PS3™ Grid as a Resource
	The PS3-LIVECD
	The MiG PS3-LIVECD
	Security
	Sandboxing
	File Access

	The Execution Environment
	Experiments
	Job Overhead and File Performance
	Protein Folding

	PS3-LIVECD Summary

	Application Porting and Tuning on The Cell-BE Processor
	The Cell-BE Processor
	Porting Towards the Cell-BE
	Task and Memory-parallelization
	The Nqueens Solution

	Register-line Optimizations
	Recursive vs. Iterative Methods
	Branch Prediction and Elimination
	The Nqueens Solution

	Data Parallelization
	The Nqueens Solution

	Instruction Parallelization
	The Nqueens Solution

	Nqueens Summary

	The Remote Memory Library
	Memory Management
	Kernel-level vs. User-level
	The Remote Swap Framework
	The Remote Memory Library
	Page Eviction
	Page Retrieval
	Page Blocks
	The Memory Server
	Implementation Details
	UDP vs. TCP
	Nagle's Algorithm
	The Local Page Table

	Memory Allocation
	Page Eviction
	Page Retrieval
	Experiments
	Sequential Data Access
	Linux Disk Swap
	Sequential Data Access with Writes
	Scattered Memory Access
	Scattered Memory Access with Write
	Lattice Boltzmann
	Fast Fourier Transform
	Barnes-Hut
	Experiment Summary
	Initial Remote Memory Library Summary

	Prediction Based Page Prefetching
	Oraculo
	Combining Oraculo with The Remote Memory Library
	Online Prediction Problem
	Experiments
	Sequential Data Access
	Sequential Data Access with Writes
	Scattered Memory Access
	Scattered Memory Access with Write
	Lattice Boltzmann
	Fast Fourier Transform
	Barnes-Hut
	Simulated Network Latency
	Experiment Summary

	Future work
	Conclusion
	Publication 1
	Publication 2
	Publication 3
	Publication 4
	Publication 5
	Publication 6

