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Abstract

This dissertation addresses variational formulation of segmentation problems us-

ing prior knowledge. Variational models are among the most successful approaches

for solving many Computer Vision and Image Processing problems. The models

aim at finding the solution to a given energy functional defined to describe a Com-

puter Vision task through energy minimization.

Image segmentation, as an ill-posed problem, is still a major challenge in Com-

puter Vision. Due to the presence of noise, clutter and occlusion, the use of image

information alone often gives poor segmentation results. To overcome this prob-

lem, prior knowledge is needed to obtain the desired solution. The introduction of

shape priors in particular, has proven to be an effective way to segment objects of

interests.

Firstly, we propose a prior-based variational segmentation model to segment ob-

jects of interest in image sequences, that can deal with shape deformations and

at the same time is robust to noise, clutter and occlusions. The proposed model

is based on the Chan-Vese functional coupled with a frame-to-frame interaction

term as a shape prior. In order to deal with severe occlusions, we combine the

prior-based segmentation model with a novel variational contour matching algo-

rithm in order to detect and locate the occlusion. By having information about the

occlusion, the segmentation results can be improved.

Variational segmentation models suffer from the existence of local minima due to

the non-convexity of the energy functionals. The non-convex functionals are usu-

ally minimized by methods based on gradient descent, which leads to undesired so-

lutions. This makes the initialization critically important to get satisfactory results.

To overcome the local minima problem, we propose a novel variational segmen-

tation model in a global minimization framework by convexifying the Chan-Vese

model to obtain the global minimizers. This convex formulation can be regarded



as a continuous counterpart of the Graph-cuts in the discrete segmentation mod-

els. The convex model is then extended by adding a shape prior term in order to

segment the object of interest.

Many objects have high variability in shape and orientation. This often leads to

unsatisfactory results, when using a segmentation model with single shape tem-

plate. One way to solve this is by using more sophisticated shape models. We

propose to incorporate shape priors from a shape sub-manifold of pose-invariant

planar contours into both the Chan-Vese model and its convex formulation to seg-

ment an object of interest in a sequence of images. We apply the models to track

the viewpoint onto 3D rigid object.

The prior-based object segmentation models encounter the problem of shape align-

ment, where pose invariant parameters complicate the optimization of the model.

To overcome the common numerical problems associated with the step size of the

pose parameters in the discretization of the pose model, we propose a novel gradi-

ent procedure for the pose estimation based on the construction of the Riemannian

structure on the group of transformations and a derivation of the corresponding

pose energy gradient.

Finally, we show that the convex energy functional can be extended and used for

segmenting data on manifolds into multi-regions with constant properties. We

implement the adaptation of the model to data that is represented by triangular

meshes.
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Chapter 1

Introduction

1.1 Background

Modern life has been greatly influenced by computer vision and image processing from dig-

ital communication, entertainment, medicine, security, and so on. The fast development and

wide use of imaging science and technology such as video cameras, satellite imaging, Mag-

netic Resonance Imaging (MRI), Computed Tomography (CT), Radar, Ultrasound, and more,

have provided huge amount of data. As a consequence, the need for challenging applica-

tions/processes in artificial vision has increased which demands more efficient, accurate and

stable mathematical models and algorithms to process and interpret the data. The range of

applications of computer vision and image processing is large including tracking of objects in

image sequences, scene understanding, image retrieval, object recognition, and segmentation

to name a few. Those applications or processes involved can be classified into three categories:

low-level vision, which includes basic operation such as edge detection, mid-level vision, such

as segregating objects from the background and high-level vision that gives semantic meaning

to the images such as face recognition.

The extraction of information from images is highly difficult due to the complexity and

diversity of images, even for human vision, for example: finding relationship between 3D

world and 2D image plane, inferring the depth, finding how pixels are grouped and segmented,

and etc. Mathematically speaking, the problems in computer vision and image processing are

ill-posed inverse problems.
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1. INTRODUCTION

In this dissertation, we are dealing with the segmentation problem which is one of the chal-

lenging processes in computer vision and image processing. This important process provides

crucial information for a variety of high level applications, such as 3D reconstruction, video

surveillance, object recognition, activity recognition, etc. The objective of segmentation is to

partition a given image into semantically meaningful regions or objects with consistent proper-

ties. This is a very difficult problem to solve with many challenges depending on the data and

applications especially since the definition of objects or regions is subjective. In the case of

object segmentation, for instance, although the object of interest in a given image is known, it

may change its pose, viewpoint, illumination, etc., which puts additional constraints on the seg-

mentation process. Moreover, the presence of noise, clutter and occlusions, which commonly

appear, can lead to inconsistent segmentation results.

There are several cues which can be used to distinguish an object from the background

in a given image. Low-level information or local image features (edges, gray values, etc)

that follow some basic assumptions, such as gray level uniformity or edge coherence, can be

used for segmentation. However, in many cases, those assumptions are usually insufficient to

segment objects of interest, for example due to missing or misleading information. Therefore,

higher-level information such as motion, color distribution, smoothness, texture, pose, shape,

etc., are needed to make the segmentation models more robust. As in human vision which

tends to integrate low-level and high-level information, most real-life applications need to have

some prior knowledge about the regions or objects of interest beforehand. Figure 1.1 shows

some examples of images for segmentation that require some prior knowledge. Consider the

ultrasound example (d). Segmentation of the heart chamber is not an easy task since the edges

are not obvious and the intensities can mislead the result. Therefore, prior knowledge such

as motion, shape and information about the patient (age, gender, health conditions, etc.) are

needed.

(a) Natural (b) Texture (c) MRI (d) Ultrasound

Figure 1.1: Different Type of Images.
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1.2 Segmentation Models

Due to the importance of the prior knowledge in the segmentation process, mathematical

modeling of prior knowledge and its integration into segmentation models become critical. We

are in particular interested in segmentation of meaningful regions or objects using some prior

knowledge such as region characteristics, occlusion information, smoothness in term of the

total variation and the shape of the objects.

1.2 Segmentation Models

Many approaches have been proposed to solve the segmentation problems such as thresholding,

clustering, region-growing, split and merge, watershed, statistical models, variational methods,

and graph-based approaches to name a few. The survey of all approaches is beyond the scope of

this dissertation. We are interested in approaches based on energy minimization which provide

an exciting way to solving imaging and vision problems and have been successfully applied to

segmentation problems.

In general, the energy-based approaches can be classified into approaches based on a con-

tinuous or discrete setting. In the continuous setting, the methods are usually based on a vari-

ational approach. This includes active contours or snakes [81], geodesic active contour [26],

geodesic active region [112], the Mumford-Shah model [103], region competition [150], active

contour without edges [30], etc. In the discrete setting on the other hand the approaches are

usually graph-based. This includes the well-known graph-cuts methods [17, 84].

The energy-based approaches formulate the segmentation problem into an optimization

problem which can be expressed in several forms depending on the data and application. The

idea of the approaches is that the segmentation process is performed by minimizing a given

energy or cost functional with respect to the unknown of the problem whose optimal solution

corresponds to the object of interest in the given image. The optimization problem can be

formulated as

argmin
u

E(u), (1.1)

where E(u) is an energy functional and u can be contours or an approximation of an image.

This way of formulating the segmentation problems allows us to conveniently incorporate some

prior knowledge, such as regularizers and shape priors, into the energy functionals in order to

obtain satisfactory results.
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1. INTRODUCTION

Contour Representations

Contours and their evolutions can be represented using parametric or non-parametric models.

In parametric representation models, the contours Γ are represented explicitly by using, for

instance: a polygon [138] or a spline [13, 43], and driven by control points.

In non-parametric representation models, which are used in this dissertation, the contours

are represented implicitly by higher dimensional functions. Although this way of represent-

ing the contours makes the evolution of the contours computationally more expensive, it has

several advantages, such as: topological changes such as splitting and merging are handled

automatically, discretization is done on a fixed grid, and the contour does not need to be repa-

rameterized, avoiding numerical instabilities.

The level set methods, introduced by Dervieux and Thomasset [51] more than three decades

ago and rediscovered a few years later by Osher and Sethian [108], have proven to be successful

as numerical schemes for dealing with moving fronts and interfaces and have been widely used

in the areas of image processing, computer vision and computer graphics. The idea is that a

contour Γ⊂Rn is represented implicitly by the zero-level set of a higher dimensional Lipschitz

function φ : Ω→ R, where Ω ⊂ Rn is an open region. The level set function φ is defined as

follows: 
φ(x) > 0 for x ∈Ωint

φ(x) = 0 for x ∈ Γ

φ(x) < 0 for x ∈Ωout ,
(1.2)

where Ωint and Ωout are, respectively, the region inside and outside Γ (see Figure 1.2). The

geometric characteristics such as the unit normal and the mean curvature, and the motion of

the contour can then be computed with this level set function. See [107] for more details.

Figure 1.2: The curve Γ is represented by the zero-level set of the function φ .
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1.2 Segmentation Models

Variational Approaches

Variational approaches are defined in a continuous setting and are mathematically well defined.

There are many problems in computer vision and image analysis that can be formulated in a

variational framework: Given an energy or cost functional which describes a specific task in

computer vision, the energy is then minimized with respect to the unknowns of the problem to

find an optimal solution. The variational models can be written as follows: For a given energy

functional E(u) with the unknown u

inf

{
E(u) =

∫
Ω

f
(
x,u(x),∇u(x)

)
dx, u ∈V

}
, (1.3)

the optimal solution u∗, defined in an appropriate space V , can be obtained by minimizing E(u)

such that

u∗ = argmin
u∈V

E(u). (1.4)

The calculus of variations provides a framework for finding the minimum of a functional in

which the fundamental theorem of this approach, the Euler-Lagrange equation, gives a nec-

essary condition for u∗ to be the minimum of E(u) by computing the first variation if E is

continuous and differentiable:
∂E
∂u

= 0. (1.5)

The (local) minima can then be computed by using the gradient descent/ascent method until

the steady state:
∂u
∂ t

=±∂E
∂u

, (1.6)

where t is an artificial time variable. The shape derivative tool, proposed by Delfour and

Zolezio in [48], can also be used to find the Euler-Lagrange equation of the corresponding

region-based energy functional, see [6] in which Aubert et al. described the use of calculus of

variations and the shape derivative tool for variational image segmentation problems.

1.2.1 The Active Contour Models

The active contour models can be classified into edge-based and region-based models. The

models originated by the snakes of Kass, Witkin and Terzepoulos [81] who proposed a spline-

based parametric model that imposes the alignment of the contour with the local minima de-

fined by image gradients while maintaining its smoothness by minimizing an energy functional
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of the form

ESnake(Γ) =
∫ 1

0

{
α|Γ′(p)|2 +β |Γ′′(p)|2−|∇I(Γ(p))|

}
d p, (1.7)

where α and β are some weight parameters, Γ(p) denotes an explicit parametric contour and I

is a given image. The first two terms are the regularization terms which impose the smoothness

of the contour. The last term is the data term which attracts the contour toward the image

gradients. This model is dependent on the chosen parametrization of the initial contour Γ(p) =

(x(p),y(p))∈Ω, p∈ [0,1] and the contour Γ has to be initialized close to the object of interest.

Caselles et al. [26] proposed a geometrically intrinsic model of geodesic active contour

(GAC). This model reformulates the segmentation as the problem of finding a geodesic contour,

i.e. a contour of smallest length, in a Riemannian space whose metric is induced by image

gradients. The energy functional is given by

EGAC(Γ) =
∫ 1

0
g(|∇I(Γ(p))|)|Γ′(p)|d p

=
∫ L(Γ)

0
g(|∇I(Γ(s))|)ds,

(1.8)

where ds is the Euclidean length element, L(Γ) is the Euclidean length of the contour Γ, defined

by L(Γ) =
∫ 1

0 |Γ′(p)|d p =
∫ L(Γ)

0 ds and g is an edge detector function. This energy can be seen

as a weighted length of the contour Γ. The energy functional of GAC EGAC is independent on

the parametrization of the contour. This implies that the model can be realized in the level set

framework [108], as done in [26]. This is not the case for the Snakes model (1.7).

The above models are examples of edge-based models. The edge-based models encounter

problems if the objects or regions of interest have diffused edges, especially since the given

image is usually presmoothed at a certain scale that can remove some image information at

boundaries. This problem can be overcome by using region-based models that smooth the re-

gions while preserving the boundaries. Most region-based segmentation models such as the

works of Zhu and Yuille [150], Paragios and Deriche [112], Chan and Vese [30], Jehan-Besson

et al. [75], etc., are influenced by the Mumford-Shah functional [102, 103]. The key assump-

tion of the region-based models is that meaningful image regions are homogeneous in terms of

their intensities, color or texture.
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1.2 Segmentation Models

The Mumford-Shah Functional

Mumford and Shah (MS) in [102] and [103] observed that a large class of images can be

decomposed into homogeneous regions. They proposed to approximate a given image I : Ω 7→

R on a domain Ω with a piecewise smooth function u by minimizing the energy functional

EMS(u,Γ) = λ

∫
Ω

(I−u)2 dx+ν

∫
Ω\Γ
|∇u|2 dx+ |Γ|, (1.9)

simultaneously with respect to u and the set of discontinuities Γ (the region boundaries). The

first term is a data fidelity term which enforces the function u to be close to the given image,

the second term is a regularizing term which smoothes the segmented image while preserv-

ing discontinuities of u across the boundaries defined by Γ and the last term is a regularizing

term that penalizes the length of the region boundaries. λ and ν are weight parameters. This

functional was also formulated in a discrete setting by Geman and Geman [67] using Markov

Random Fields.

There have been several approaches proposed for solving the Mumford-Shah functional,

for instance: A coarse to fine method proposed by Blake and Zisserman [14], Γ-convergence

proposed by Ambrosio and Tortorelli [2], finite difference approximation by Gobbino [104],

finite-element approximation by Bourdin and Chambolle [15], the level-set implementations

by Chan and Vese [30], etc.

The Chan-Vese Model

Chan and Vese (CV) [30] proposed a two-phase level set-based active contour model to detect

objects whose boundaries are not necessarily defined by image gradients. This is a particu-

lar case of the minimal partition problem of the Mumford and Shah functional [103]. The

model approximates a given image I : Ω 7→ R by a piecewise constant instead of a piecewise

smooth function where the active contour evolves by minimizing the difference between the

intensity values of the two regions (regions inside and outside the contour) and mean intensity

values inside and outside the contour, respectively. This can be done by minimizing the energy

functional

ECV (Γ,µ1,µ2) = λ

{∫
int(Γ)

(I−µ1)2 dx+
∫

ext(Γ)
(I−µ2)2 dx

}
+ |Γ|, (1.10)

7



1. INTRODUCTION

where µ1,µ2 are mean intensity values inside and outside the contour respectively, λ is a weight

parameter, and |Γ| is the length of the contour. The energy functional is then formulated using

the level set method:

ECV (φ ,µ1,µ2) = λ

{∫
Ω

(I−µ1)2 H(φ)dx+
∫

Ω

(I−µ2)2 (1−H(φ))dx

}
+
∫

Ω

δ (φ)|∇φ |dx,

(1.11)

where H(φ) denotes the Heaviside function

H(t) =
{

1, t > 0,
0, t ≤ 0,

(1.12)

and δ (φ) denotes the delta function

δ (t) =
{

+∞, t = 0,
0, elsewhere,

s.t.
∫

∞

−∞

δ (t)dt = 1, (1.13)

and the region mean intensity values can be computed in terms of the level set function by

µ1 =
∫

Ω
I(x)H(φ(x))dx∫
Ω

H(φ(x))dx
, (1.14)

µ2 =
∫

Ω
I(x)(1−H(φ(x)))dx∫
Ω
(1−H(φ(x)))dx

. (1.15)

Keeping µ1,µ2 fixed, this functional is minimized by gradient descent on φ

∂φ

∂ t
= |∇φ |

[
div
(

∇φ

|∇φ |

)
−λ

{
(I−µ1)2−λ (I−µ2)2

}]
,

φ(x,0) = φ0(x), x ∈Ω,

(1.16)

where t > 0 is an artificial time variable. Figure 1.3 shows the segmentation of a synthetic

image into two regions using the Chan-Vese model, where the initial contour (left) is evolved

(middle) by solving (1.16) until the steady state to obtain the optimal solution (right).

The extension of the two-phase Chan-Vese model into a multi-phase one is straightfor-

ward. Vese and Chan (VC) [142] have proposed a multi-phase segmentation model using the

Mumford-Shah model in a level set framework. In their work, in order to segment n regions, N

level set functions {φi}N
i=1 are needed where N = log2(n). For an illustration, assume that we

would like to segment an image into four regions, see Figure 1.4. The energy functional (1.11)
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1.2 Segmentation Models

Figure 1.3: An example of contour evolution in image segmentation using the Chan-Vese model.

can then be formulated in the form:

EVC(Φ,µ) =λ

{∫
Ω

(I−µ11)2 H(φ1)H(φ2)dx+
∫

Ω

(I−µ10)2 H(φ1)(1−H(φ2))dx

+
∫

Ω

(I−µ01)2 (1−H(φ1))H(φ2)dx

+
∫

Ω

(I−µ00)2 (1−H(φ1))(1−H(φ2))dx

}
+
∫

Ω

δ (φ1)|∇φ1|dx+
∫

Ω

δ (φ2)|∇φ2|dx,

(1.17)

where µ = (µ11,µ10,µ01,µ00) is a constant vector of mean intensity values for each region, and

Φ = (φ1,φ2) is a vector of two level set functions. See [142] for details.

Figure 1.4: Two level set functions are needed to segment four regions using the multi-phase
model of Vese and Chan [142].
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1.2.2 Convex Formulation of the Active Contour Models

Most energy functionals of the active contour models are non-convex, which makes the initial-

ization critical to obtain optimal solutions. The models are prone to get stuck in local minima

since they are usually minimized by gradient descent methods. In practice, local minima can

be avoided if the initialization is close enough to the desired solution.

In order to deal with the existence of local minima, Chan et al. [32] propose to convexify

the energy functional of the piecewise constant Mumford-Shah functional [103] of Chan and

Vese [30] by extending the Chan-Vese functional (1.10) and its minimization in such a way

that the result can be transformed into a global minimizer of the original problem by simple

thresholding. This method is based on observations of Strang [136] on maximal flows through

a continuous domain in which the coarea formula of Fleming and Rishel [58] is the primary

tool.

The idea is the following: Let I : Ω 7→ R be an input image where Ω ⊂ Rn is the image

domain and consider the following energy functional

E(Σ,µ1,µ2) = Per(Σ;Ω)+λ

{∫
Σ

(I(x)−µ1)2 dx+
∫

Ω\Σ
(I(x)−µ2)2 dx

}
, (1.18)

where λ is a weight parameter, Σ⊂Ω denotes a subset of Ω, and Per(Σ;Ω) denotes the perime-

ter of Σ. The segmentation is carried out by solving the following optimization problem

min
µ1,µ2∈R;Σ⊂Ω

E(Σ,µ1,µ2), (1.19)

which looks for the best approximation to the image I(x) in the L2 sense among all functions

that take only two values µ1,µ2. The problem of (1.18) is solved by two alternating steps where

in the first step µ1,µ2 are computed for fixed Σ using the usual formula

µ1 =
1
|Σ|

∫
Σ

I(x)dx and µ2 =
1
|Ω\Σ|

∫
Ω\Σ

I(x)dx, (1.20)

and the second step updates the Σ for fixed µ1,µ2.

As pointed out by Chan et al. [32], if µ1,µ2 ∈{0,1} and I(x) is taken to be the characteristic

function 1Ω(x), then the minimization problem of 1.19 reduces to the image denoising model

of Rudin, Osher and Fatemi [128] for binary functions.

In the level set framework of Chan and Vese [30], the boundary of Σ, i.e. ∂Σ, is represented
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1.2 Segmentation Models

by the zero-level set of function φ . The energy functional (1.18) can then be written in the level

set framework as

ECV (φ ,µ1,µ2) =
∫

Ω

|∇Hε(φ)|dx+λ

∫
Ω

Hε(φ)(I(x)−µ1)2 +(1−Hε(φ))(I(x)−µ2)2 dx,

(1.21)

where λ ∈ R and the function Hε is a regularized Heaviside function. The associated Euler-

Lagrange equation is given by

∂φ

∂ t
= |∇φ |

[
div
(

∇φ

|∇φ |

)
−λ

{
(I(x)−µ1)2− (I(x)−µ2)2

}]
. (1.22)

The equation (1.22) has the same steady state solutions as:

∂φ

∂ t
= div

(
∇φ

|∇φ |

)
−λ

{
(I(x)−µ1)2− (I(x)−µ2)2

}
, (1.23)

which is the Euler-Lagrange equation of the following energy functional:

∫
Ω

|∇φ(x)|dx+λ

∫
Ω

{
(I(x)−µ1)2− (I(x)−µ2)2

}
φ(x)dx. (1.24)

The energy functional (1.24) does not have a minimizer in general since it is linear in φ . By

carrying out the gradient descent of (1.23), the level set function φ approaches ±∞ depending

on the sign of φ due to the nonuniqueness of representation with level sets. To get rid of this,

the function φ is restricted such that 0≤ φ(x)≤ 1 for all x ∈Ω.

As proposed and proven by Chan et al. [32], by introducing an auxiliary variable u, and for

fixed µ1,µ2 ∈ R, a global minimizer for the energy functional (1.18) can be found by solving

the following convex minimization problem

min
0≤u≤1

∫
Ω

|∇u(x)|dx+λ

∫
Ω

{
(I(x)−µ1)2− (I(x)−µ2)2

}
u(x)dx, (1.25)

by setting Σ = {x : u(x) > γ} for almost any choice of γ ∈ [0,1].

Another version of (1.25) was proposed by Mory and Ardon [101], referred to as the fuzzy

region competition for convex two-phase segmentation by solving

min
0≤u≤1

{∫
Ω

|∇u(x)|dx+λ

∫
Ω

{
u(x)(I(x)−µ1)2 +(1−u(x))(I(x)−µ2)2

}
dx
}

, (1.26)
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where

µ1 =
∫

Ω
u(x)I(x)dx∫
Ω

u(x)dx
and µ2 =

∫
Ω
(1−u(x))I(x)dx∫
Ω
(1−u(x))dx

. (1.27)

See [32] and [101] for details. By having a convex functional, a global solution can be obtained,

even by using local optimization methods such as gradient descent. Figure 1.5 shows the

comparison of the segmentation of a horse using the same value of λ between the original

Chan-Vese model (1.11) and convex formulation of the Chan-Vese model (1.26). In Chapter 4

we will extend the convex formulation of the Chan-Vese model (1.25) by adding an additional

shape prior term in order to segment an object of interest in an image.

Figure 1.5: Segmentation of a horse with the Chan-Vese model (left) and convex formulation of
the Chan-Vese model (right).

In the past three years, since the convex formulation of the Mumford-Shah model was

introduced by Chan et al. [32], some work has been done to extend the Mumford-Shah seg-

mentation models from two-region into multi-region problems such as in Pock et al. [118],

Zach et al. [147], Lellmann et al. [89], Chambolle et al. [29], Pock et al. [117], Berkels

[11], Olsson et al. [105], Brown et al. [23], etc. In the simplest form, the piecewise constant

Mumford-Shah model of Chan and Vese, can be regarded as a continuous version of the Potts

model [121]. This model tries to partition the continuous domain Ω into n subdomains {Ωi}n
i=1

by minimizing the energy functional

E({Ωi}n
i=1) = λ

n

∑
i=1

∫
Ωi

(I(x)−µi)2 dx+
n

∑
i=1
|∂Ωi|, (1.28)

where I(x) is an image, |∂Ωi|measures the lengths of the boundaries of the disjoint subdomains

Ωi, i = 1, ...,n and µi, i = 1, ...,n are constants. In order to obtain the global minimum of the
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1.3 Prior Knowledge in Segmentation Problems

energy functional (1.28), Zach et al. in [147] proposes the following energy functional

E(u) =
∫

Ω

(
λ

n

∑
i=1

(I(x)−µi)2 ui +
n

∑
i=1
|∇ui|

)
dx, (1.29)

with simplex constraints ui ≥ 0 and ∑
n
i=1 ui = 1, i = 1, ...,n. A similar formulation with slightly

different regularization, but with the same simplex constraints, is also proposed by Lellmann

et al. [89]:

E(u) =
∫

Ω

(
λ

n

∑
i=1

(I(x)−µi)2 ui +

√
n

∑
i=1
|∇ui|2

)
dx. (1.30)

We will use the energy functional of (1.30) and adapt it to the multi-region segmentation prob-

lems on the manifold in Chapter 7.

1.3 Prior Knowledge in Segmentation Problems

Since segmentation problems are generally ill-posed, unconstrained segmentation models give

unsatisfactory results, particularly in the presence of noise, clutter and occlusions. Therefore,

prior knowledge is needed to constrain the segmentation process in order to extract meaningful

regions or objects in an image.

In general, we would like to segment a given image I by finding a contour Γ that separates

an object and its background by minimizing an energy functional of the form:

E(Γ) = EData(I,Γ)+λEPrior(Γ). (1.31)

The first term on the right hand side is the data fidelity term and the second term is the prior

knowledge about the objects or regions of interest, and λ is a weight parameter which controls

the influence of the prior knowledge in the segmentation process.

This energy functional can also be modeled in a Bayesian framework as in [150]. In order

to find a contour Γ, one maximizes the posterior probability of the form:

P(Γ|I) ∝ P(I|Γ)P(Γ), (1.32)

which is equivalent to minimizing its negative log-likelihood

− logP(Γ|I) ∝− logP(I|Γ)− logP(Γ), (1.33)
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such that − logP(I|Γ) = EData(I,Γ) and − logP(Γ) = EPrior(Γ). This shows that the data fi-

delity term is related to the probability of the intensity distribution I given a contour Γ and the

prior knowledge term is related to the a priori probability for a given contour Γ.

The characteristic of prior knowledge needed to segment an object of interest in a given

image varies depending on the features that distinguish the object from its background. Local

priors such as smoothness constraints and global priors such as shape constraints can be used

in the segmentation process. While local models using intensity and curvature models such

as in [95] have been successfully applied to segmentation problems, global models are more

robust to severe occlusion which is one of the most difficult problems to deal with.

1.3.1 Total Variation

In most active contour models in Section 1.2, the prior term is a local smoothness term EPrior(Γ)=

|Γ| which constrains the contour Γ to be as smooth as possible. A particularly interesting prior

is the smoothness term of the Total Variation (TV) functional of a function u:

TV (u) =
∫

Ω

|∇u|dx, (1.34)

where

∇u =
(

∂u
∂x

,
∂u
∂y

)T
, |∇u|=

√(
∂u
∂x

)2
+
(

∂u
∂y

)2
. (1.35)

The TV functional has been used in many applications related to image processing. It was

introduced as a PDE-based model for edge-preserving noise removal by Rudin, Osher and

Fatemi (ROF) in [128]. The idea of this model is to denoise a noisy image I by using the TV

functional (1.34) as a regularization term and with an L2 fidelity term in the ROF functional

EROF(u) =
∫

Ω

|∇u|dx+λ

∫
Ω

(u− I)2 dx. (1.36)

The main advantage of the TV model is that it disfavors small oscillations such as noise but

allows for sharp discontinuities such as edges. TV (u) is finite for any bounded functions, even

for discontinuous functions as long as u does not have infinitely large jumps. The TV norm has

an interesting geometrical property that it can be decomposed into an integral of the length of

all level sets of u which can be expressed by using the coarea formula of Fleming and Risher

[58] ∫
Ω

|∇u|dx =
∫

∞

−∞

Per({x : u(x) > γ})dγ, (1.37)
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where one integrates the perimeter of the set {x : u(x) > γ} for all values of γ . This formula is

used to express energy functionals and the constraints in terms of super level sets in Subsection

1.2.2. See [32] for details.

1.3.2 Shape Priors

Enforcing a prior knowledge about the shape of objects is a natural way to help the segmen-

tation process to segment meaningful objects from images, especially in the presence of noise

which results in spurious boundaries, and of occlusions that cause overlaps of object bound-

aries. In fact, these situations always happen in real applications. However, the integration of

global shape constraints into the segmentation process is non-trivial. Consequently, when deal-

ing with shape priors for segmentation problems, we need to start defining the shape, the set of

admissible shapes and its properties, and a way to compare shapes, that is a distance measure

between two shapes. There are several ways to enforce shape constraints in a segmentation

process using active contour models. Many approaches incorporate an additional shape prior

term into the segmentation energy functional

E(Γ) = EData(I,Γ)+λ1ESmoothness(Γ)+λ2EShape(Γ,Γ0), (1.38)

where Γ0 is a template of the shape of interest and EShape(Γ,Γ0) measures the distance between

Γ and Γ0. This way of integrating the shape knowledge has been used in some work, such as

Cremers et al. [37, 43], Chen et al. [34], Rousson and Paragios [124, 125], Zang and Freedman

[149], Cremers and Soatto [40], Rousson and Cremers [126], Chan and Zhu [31], Bresson et

al. [22], Foulonneau et al. [59], and references therein. The cumbersome part of this approach

is having to adjust the parameters λ1,λ2 to balance the fidelity term EData, the smoothness

term ESmoothness and the shape prior term EShape according to the level of noise, clutter and

occlusions, and to the confidence in the model.

The shape prior term EShape, which measures the distance between the evolving curve Γ

and a reference shape Γ0 is naturally defined by

EShape(Γ,Γ0) =
∫ 1

0

(
Γ(s)−Γ0(s)

)2
ds. (1.39)

Since we are interested in using implicit representations of the contours, the idea of (1.39) can

be used in terms of level set functions where the contours Γ and Γ0 are the zero-level set of φ

15
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and φ0 respectively, such that we get a new energy functional

EShape(φ ,φ0) =
∫

Ω

(
φ(x)−φ0(x)

)2
dx. (1.40)

The reference shape φ0 can be a template of a silhouette such as in [122] or a shape obtained

from a shape model which is built using some learning procedure [22, 34, 38, 39, 57, 90, 124,

141] or a result from previous a segmentation process especially in tracking applications such

as in [100, 149]. The three possibilities are used in the work of this dissertation. Figure 1.6 is

an example of the segmentation of a horse using the Chan-Vese model with an additional shape

prior term.

It is important that the variation of reference shape is not far away from the shape being

segmented in order to obtain optimal segmentation results. This makes the shape variability due

to the non-rigidity of the object, noise, occlusions, the changes in the object pose, illumination,

camera’s view point, and etc., one of the most important issues to deal with. This issue is

mainly handled by using statistical models based on Principal Component Analysis (PCA) that

can model global variations samples within the training set, such as in [21, 35, 90, 141] or by

using more complex models such as in [38, 39, 44, 56].

Pose Invariance

Objects in the image can have different scales, orientation, etc compared to the shape of refer-

ence. This causes one of the main difficulties in dealing with shape prior based models, that

is, the need to align the shape of reference to the shape being segmented such that the shape

of reference is invariant with respect to a group of transformations. Pose parameters such as

scaling, rotation and translation can be taken into account either in explicit or implicit manner.

In an explicit manner such as in [34, 90, 122, 124, 141], the pose parameters are optimized

during the segmentation process, which makes the problem more complex. The shape prior

term (1.40) can then be written as

EShape(s,R,a,φ ,φ0) =
∫

Ω

(
φ(x)−φ0(sRx+a)

)2
dx, (1.41)

where s is a scaling parameter, R is a rotation matrix, and a is a translation vector.

As noted by Cremers et al. [39], optimization to obtain optimal transformation parameters

in an explicit manner has several drawbacks. When the optimization is done by using gradient

descent method, one needs a careful tuning process, in numerical experiments, to determine
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an appropriate time step for each parameter to guarantee the stability. It is also unclear how

to alternate between the updates of the respective parameters and how often one should iterate

each gradient descent equation. To overcome those problems, an implicit manner can be used,

such as using intrinsic alignment proposed by Cremers et al. [39], moment-based shape priors

of Foulonneau et al. [59], etc. In this dissertation we use the explicit manner due to the

simplicity in deriving the gradient descent equations and in their implementations and propose

a way to solve the time step issue in Chapter 6.

Figure 1.6: Segmentation of a horse in Figure 1.5 is improved by adding a shape prior term.

1.4 Contributions/Summaries of the Papers

Motivated by the strong mathematical foundation, being independent of grid-bias and hav-

ing a convenient way to integrate prior knowledge, especially the shape priors, we use vari-

ational segmentation models, instead of graph-based models, for solving segmentation prob-

lems. Other motivations of this choice that are the recent progresses in the convex formulation

of the Mumford-Shah models and the fast numerical schemes for solving TV-based models

such as in [20, 70] and the references therein. In this dissertation, we propose region-based

active contour models of Chan and Vese with additional prior knowledge, such as occlusion in-

formation, shape knowledge and the total variation as the smoothness term, in order to improve

the robustness of the models in the presence of noise, clutter and occlusions.

The content of this dissertation is based on the result of joint work with Niels Chr. Over-

gaard, David Gustavssson, Christian Gosch, Amael Delaunoy, Emmanuel Prados, Christoph

Schnoerr, Mads Nielsen and Anders Heyden, which has been presented in [46, 62, 63, 64, 65,

66, 71, 72, 109]. We summarize the main contributions of the dissertation as follows:
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Variational Segmentation of Image Sequences using Region-Based Active Con-
tours and Deformable Shape Priors

Chapter 2 is a reformatted and slightly modified version of paper [63] without affecting the

content or the results. Here we address the problem of segmentation of nonrigid, moving

objects in image sequences in the presence of noise, clutter and occlusions by using region-

based active contours of Chan and Vese [30] augmented with a frame-to-frame interaction

term as a shape prior. In order to take advantage of the prior knowledge obtained from the

segmentation of previous frames, we propose to use the interaction term EI = EI(Γ,Γ0) which

penalizes deviations of the current active contour Γ from the previous one, Γ0. Instead of using

the shape prior energy term as in (1.41), we formulate our shape energy term as

EI(Γ,Γ0) = min
T

∫
int(Γ)

φ0(T−1x)dx, (1.42)

where φ0 : Ω→ R denotes the level set function of the contour Γ0, and the minimum is taken

over the group of Euclidean transformations T : R2 → R2 which preserves the orientation of

the plane. The benefit of our interaction term EI is that its L2-gradient can be computed easily

by

∇ΓEI(Γ,Γ0) = φ0(x) = φ(Γ0;x) (x ∈ Γ),

and that this gradient is small if Γ is close to the shape prior Γ0, and large if the active contour is

far from the shape prior. The prior-segmentation model can then be formulated as the following

energy functional

E(Γ) = ECV (Γ)+λEI(Γ,Γ0), (1.43)

where ECV is a reduced Chan-Vese functional (1.10), and λ > 0 is a coupling constant which

determines the strength of the interaction. The energy (1.43) is then minimized using the

gradient descent method in a level set framework for each frame in the image sequence.

The performance of the model is illustrated with experiments on synthetic and real image

sequences.

Nonrigid Variational Object Segmentation with Occlusion Detection in Image Se-
quences

Chapter 3 is the result of merging papers [66, 72] with minor modifications without affecting

the content or the results. We deal with the problem of segmentation of nonrigid objects that
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are partially occluded in image sequences using the segmentation method in Chapter 2 coupled

with a variational contour matching formulation between two consecutive contours as a reg-

istration using the geometry-constrained diffusion equation [3]. The presence of occlusions,

such as overlapping objects or the superposition of an object to another object, is one of the

major problems in the segmentation of image sequences. While minor occlusions can usually

be handled by using shape priors, severe occlusion is still a big problem. As formulated in

(1.43) we need to tune the coupling constant λ to define the strength of the shape prior influ-

ence in the segmentation, which depends on the data and applications. In the presence of severe

occlusions, we need to set λ high enough to be able to segment the object of interest, but this

can cause the segmentation of the current frame to be very close to the previous one, which

limits the capability of the model to capture object deformations. To overcome this problem, it

is necessary to detect and locate the occlusions. If we have information about the occlusions,

we can either use a spatially and temporally adaptive λ , or reconstruct the occluded region to

improve the robustness of the segmentation models.

To detect and locate the occlusions, suppose we have two closed contours Γ1 and Γ2 in the

image domain Ω as the results of segmentation using (1.43). Let Φ = Φ(x) : Ω→ R2 such

that Φ(Γ1) = Γ2 is a mapping that can be expressed in the form Φ(x) = x +U(x), where the

vector valued function U = U(x) = (u1(x),u2(x))T : Ω→ R2 is called the displacement field

associated with Φ. We can then find the optimal mapping by minimizing the energy functional

E[Φ] =
1
2

∫
Ω

|∇u1(x)|2 + |∇u2(x)|2 dx. (1.44)

The mapping Φ(x) is an estimation of the displacement of the boundary of an object between

two frames. By finding the displacement of the contour, a consistent displacement of the in-

tensities inside the closed curve Γ1 can also be found. Φ maps Γ1 onto Γ2 and pixels inside

Γ1 are mapped inside Γ2. This displacement field which only depends on displacement of the

contour, can then be used to map the intensities inside Γ1 onto Γ2. After the mapping, the in-

tensities inside Γ1 and Γ2 can be compared and classified as the same or different value. After

the occlusions are detected and located using deviations from predicted intensities, the miss-

ing intensities in the occluded regions can be reconstructed. After reconstructing the occluded

regions in the novel image, the segmentation can then be improved. Experimental results on

synthetic and real image sequences are shown.
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Continuous Cuts for Prior-Based Image Segmentation

Chapter 4 is a reformatted and slightly modified version of paper [62] without affecting the

content or the results. We propose a novel prior-based variational object segmentation method

in a global minimization framework of [32] which unifies image segmentation and image

denoising. The idea of the proposed method is to extend the convex minimization prob-

lem (1.25) by adding an additional shape constraint in order to segment an object of inter-

est in a given image. Inspired by the shape prior energy term of (1.41) and the fact that

∇φ EShape(s,R,a,φ) = 2(φ(x)− φ0(sRx + a)), the energy functional in the convex problem of

(1.25) can then be reformulated by adding a shape prior term EShape such that

min
0≤u≤1

∫
Ω

|∇u|dx+λ

∫
Ω

{
(I(x)−µ1)2− (I(x)−µ2)2 +

(
û−1Ωp(sRx+a)

)}
u(x)dx, (1.45)

where 1Ωp is the characteristic function of a shape prior template, û is a ’frozen’ u which is

updated after finding a solution to (1.45), and s,R,a are a scaling parameter, a rotation matrix

and a translation vector. Experimental results demonstrate the performance and robustness of

the method to segment objects of interest in real images.

View Point Tracking of Rigid Objects using Region-Based Segmentation Model
and Shape Priors from Shape Submanifolds

Chapter 5 is a reformatted and slightly modified version of paper [71] without affecting the

content or the results. We propose to use the region-based image segmentation models of [30]

and [32] with shape priors from the shape submanifold of [98] to segment an object of interest

in a sequence of images and use the object contours to infer and to track the viewpoint onto a

3D rigid object.

Assume we have a collection of silhouettes of a known object that corresponds to the object

from different view point. These shapes can be regarded as samples of an object-specific

submanifold of the manifold of all planar shapes that is parameterized by the view sphere.

Taking into account the geometry of this submanifold and interpolating the shape samples

accordingly, the viewpoint of a moving camera, or object pose relative to the observer can be

tracked by segmenting a given sequence {I1, . . . , In} of n images depicting a moving object by

using the Chan-Vese model in (1.11) coupled with a shape prior energy based on [34] and [123]
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in the level set framework, but allowing only for Euclidean transformations:

EShape(s,R,a,φ ,φ0) =
∫

Ω

(
H(φ(x))−H(φ0(sRx+a))

)2
dx, (1.46)

where φ0 is the shape prior template. As an alternative, we also use the convex segmentation

model (1.45). The contour Γi, represented as the zero-level set of function φ0 from the previous

segmentation, is used for initialization and as a weak prior for the segmentation of image Ii+1.

This approach replaces explicit 3D object models by the corresponding invariant shape sub-

manifolds that are learnt from a sufficiently large number of image contours, and is applicable

to arbitrary objects.

Pose Invariant Shape Prior Segmentation using Continuous Cuts and Gradient
Descent on Lie Groups

Chapter 6 is a reformatted and slightly modified version of paper [109] without affecting the

content or the results. We consider segmentation with pose invariant shape priors using con-

tinuous cuts as an extension of Chapter 4. The shape prior energy term is based on the L2

shape dissimilarity measure and with pose invariance under the full (Lie-) group of similarity

transforms in the plane. We consider shape priors f which are generated from a single shape

template f0 by similarity transforms T = T (θ ,σ ,a):

f (x) = f0(T−1(x)); T (x) = a+ eσ

[
cosθ −sinθ

sinθ cosθ

]
x. (1.47)

The prior energy is then defined by

EPrior(u) = min
T

∫
Ω

(u(x)− f0 ◦T−1(x))2 dx. (1.48)

The minimum of (1.48) is found by gradient descent in the (Lie-) group of similarity transfor-

mations. This requires the derivatives:

∂

∂a
E(θ ,σ ,a) =−〈 f −u,∇x f 〉, ∂

∂θ
E(θ ,σ ,a) =−〈 f −u,∇x f T J(·−a)〉,

and
∂

∂σ
E(θ ,σ ,a) =−〈 f −u,∇x f T (·−a)〉,

(1.49)

where J = R(−θ)T R′(−θ) = [ 0 1
−1 0 ], to be computed. Notice that the x-derivatives are com-

puted on the transformed prior f = f0 ◦T−1 - not on the template f0.

21



1. INTRODUCTION

To overcome the common numerical problems associated with step size control for trans-

lation, rotation and scaling in the discretization of the pose model, a new gradient descent pro-

cedure for the pose estimation is proposed based on the construction of a Riemannian structure

on the group of transformations and a derivation of the corresponding pose energy gradient.

The gradient descent differential equation for the pose transform T = T (θ ,σ ,a) is

d
dt

T (t) =−∇E(T (t)), T (0) = T0, (1.50)

where the corresponding gradient of EPrior, ∇E = (∇θ E,∇σ E,∇aE), has the components:

∇aE =
〈 f −u,−∇x f 〉
‖∇x f‖2 , ∇θ E =

〈 f −u,−∇x f T J(·−a)〉
‖ |x−a|∇x f ‖2 ,

and ∇σ E =
〈 f −u,−∇x f T (·−a)〉
‖ |x−a|∇x f ‖2 ,

(1.51)

which is used in the implementation of gradient descent search for the optimal pose parameters.

The use of this gradient in the descent gives an automatic step-size control. Also, it allows us to

use a single step-size which will work simultaneously for all four variables used to parameterize

the group. Together with efficient numerics for TV-minimization such as in [27], we get a fast

and reliable implementation of the model.

Convex Multi-Region Segmentation on Manifolds

Chapter 7 is a reformatted and slightly modified version of paper [46] without affecting the

content or the results. Here we propose to adapt the convex segmentation model of (1.30) in

order to segment data defined on a manifold into a set of regions with uniform properties and

show how to optimize the energy for a manifold represented by triangular meshes.

First we rewrite the convex multi-region model in (1.30) using a general data term s(x):

min
u∈K

{∫
Ω

< u,s > dx + λ

∫
Ω

|∇u|dx
}

, (1.52)

where K is a simplex constraint, i.e. the set of functions u : Ω→Rm such that for all x ∈Ω and

i ∈ [1..m], ui(x) ≥ 0 and ∑
m
i=1 ui(x) = 1; |∇u(x)| is the total variation of u that corresponds to√

∑i |∇ui(x)|2, where |.| denotes the L2 norm; m denotes the number of regions and s(x) is an

m-dimensional vector, while si(x) indicates the affinity of the data at point x with region i. The
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energy functional of (1.52) can then be formulated as follows:

min
u∈K

{∫
S

< u,s > dσ +
∫

S
λ |∇Su|dσ

}
, (1.53)

where now the vector-valued function u is defined on a Riemannian manifold S instead of Ω,

|.| is the Riemannian norm, ∇S is the intrinsic gradient on S and dσ is the manifold’s element

measure. Consider a manifold represented by triangular meshes, with S j as the jth triangle of

the mesh and U = {uk} a discrete relaxation variable on the mesh, then the energy (1.53) can

be rewritten as

∑
j
∑
k

〈
uk,
∫

S j

φksdσ

〉
+λ

∫
S j

|∇Su|dσ , (1.54)

where φk : S→ R is the piecewise affine, interpolating basis function such that φk(xk) = 1

and φk(xi) = 0 if i 6= k. The total variation term is formulated explicitly using fundamental

forms. The choice of the data term s depends on the application. For segmentation of a given

image I using the piecewise constant Mumford-Shah model of Chan and Vese [30], we define

s(x) = (I(x)− µ)2 where µ are the mean values of the regions. In another example, such as

the radiance segmentation from multiple views in 3D reconstruction problems, we can define

s(x) = (I ◦π(x)−µ)2 where π is the projection of x on image I.
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Chapter 2

Variational Segmentation of Image
Sequences using Region-Based Active
Contours and Deformable Shape
Priors

This chapter is a reformatted and slightly modified version of paper [63] without affecting

the content or the results. In this chapter we address the problem of segmentation in image se-

quences using region-based active contours and level set methods. We propose a novel method

for variational segmentation of image sequences containing nonrigid, moving objects. The

method is based on the classical Chan-Vese model augmented with a novel frame-to-frame in-

teraction term, which allow us to update the segmentation result from one image frame to the

next using the previous segmentation result as a shape prior. The interaction term is constructed

to be pose-invariant and to allow moderate deformations in shape. It is expected to handle the

appearance of occlusions which otherwise can make segmentation fail. The performance of the

model is illustrated with experiments on synthetic and real image sequences.

2.1 Introduction

The segmentation of objects in image sequences is an important and difficult problem in com-

puter vision with applications to e.g. video surveillance. This is a difficult process in computer
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vision, with the purpose of dividing a given image into one or several meaningful regions or

objects. This process is more difficult when the objects to be segmented are moving and non-

rigid. The shape of nonrigid, moving objects may vary a lot along image sequences due to, for

instance, deformations or occlusions, which puts additional constraints on the segmentation

process.

There have been a number of methods proposed and applied to the segmentation prob-

lems. Active contours are powerful methods for image segmentation; either boundary-based

such as snakes [81] and geodesic active contours [26], or region-based such as geodesic ac-

tive region [113] and Chan-Vese models [30], which are formulated as variational problems.

Those variational formulations perform quite well and have often been applied using level

sets. Active contour based segmentation methods often fail due to noise, clutter and occlu-

sion. In order to make the segmentation process robust against these effects, shape priors

have been proposed to be incorporated into the segmentation process. In recent years, many

researchers have successfully introduced shape priors into segmentation methods such as in

[22, 31, 34, 36, 39, 40, 42, 90, 124, 125, 126, 139, 141] and references therein.

We are interested in segmenting nonrigid moving objects in image sequences. When the ob-

jects are nonrigid, an appropriate segmentation method that can deal with shape deformations

should be used. The application of active contour methods for segmentation in image sequences

gives promising results. In [68], a snake-based segmentation is proposed, specifically designed

to improve robustness against occlusion in the context of tracking. In [100, 111, 113], variants

of the classical Chan-Vese model are used as the basis for segmentation. In [100], for instance,

it is proposed to simply use the result from one image as an initializer in the segmentation of

the next.

The main purpose of this chapter is to propose and analyze a novel variational segmentation

method for image sequences, that can both deal with shape deformations and at the same time

is robust to noise, clutter and occlusions. The proposed method is based on minimizing an

energy functional containing the classical Chan-Vese functional as one part and a term that

penalizes the deviation of the shape being segmented from the previous shape as a second

part. The second part of the functional is based on a transformed distance map to the previous

contour, where different transformation groups, such as Euclidean, similarity or affine, can be

used depending on the particular application.
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2.2 Theoretical Background

2.2.1 Region-Based Segmentation

We begin with a brief review of the classical Chan-Vese segmentation model [30]. In this

model a gray scale image is considered to be a real valued function I : Ω→ R defined on the

image domain Ω ⊂ R2, usually a rectangle. A point x ∈ Ω is often referred to as a pixel, and

the function value I = I(x) as the pixel value, or the gray scale value. The Chan-Vese model

is an active contour model. The idea is to find a contour Γ, by which we mean a finite union

of disjoint, simple, closed curves in Ω, such that the image I is optimally approximated by a

single gray scale value µint on int(Γ), the inside of Γ, and by another gray scale value µext on

ext(Γ), the outside of Γ. The optimal contour Γ∗ and the corresponding pair of optimal gray

scale values µ∗ = (µ∗int,µ∗ext) are defined as the solution of the variational problem

ECV (µ
∗,Γ∗) = min

µ,Γ
ECV (µ,Γ), (2.1)

where ECV is the well-known Chan-Vese functional

ECV (µ,Γ) = α

∫
Γ

dσ+β

{
1
2

∫
int(Γ)

(I(x)−µint)2 dx

+
1
2

∫
ext(Γ)

(I(x)−µext)2 dx
}

,

(2.2)

which corresponds to the piecewise constant Mumford-Shah model [103] in the special case of

two subregions. Here dσ denotes the arc length element, and α,β > 0 are weight parameters.

The first term in ECV is the total length of the contour: It serves to regularize the optimal

contour. The second term is the fidelity term, which penalizes deviations of the piecewise

constant image model from the actual image I.

For any fixed contour Γ, not necessarily the optimal one, it turns out that the best choice of

the gray scale values µ = (µint,µext) corresponds to the mean value of the pixel values inside

and the outside Γ, respectively

µint = µint(Γ) =
1

| int(Γ)|

∫
int(Γ)

I(x)dx, (2.3)

µext = µext(Γ) =
1

|ext(Γ)|

∫
ext(Γ)

I(x)dx. (2.4)

Here the symbol |A| denotes the area of the subset A⊂ R2. Now, if we introduce the so-called
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“reduced” Chan-Vese functional

ER
CV (Γ) := ECV (µ(Γ),Γ), (2.5)

then the optimal contour Γ∗ can be found by solving the simpler minimization problem

ER
CV (Γ∗) = min

Γ
ER

CV (Γ). (2.6)

Once Γ∗ is found we have µ∗ = µ(Γ∗), of course. The minimization problem in (2.6) is solved

using a gradient descent procedure, which will be recalled in the Subsection 2.2.3, after the

material on the level set representation and the kinematics of moving surfaces have been pre-

sented.

2.2.2 The Level Set Method

A simple closed curve Γ can be represented as the zero level set of a function φ : R2→ R as

Γ = {x ∈ R2 ; φ(x) = 0}. (2.7)

The sets int(Γ) = {x ; φ(x) < 0} and ext(Γ) = {x ; φ(x)≥ 0} are then the inside and the outside

of Γ, respectively. Geometric quantities such as the outward unit normal n and the curvature κ

can be expressed in terms of φ as

n =
∇φ

|∇φ |
and κ = ∇ · ∇φ

|∇φ |
. (2.8)

The function φ is usually called the level set function for Γ, cf. e.g. [107].

A curve evolution, that is, a time dependent curve t 7→ Γ(t) can be represented by a time

dependent level set function φ : R2×R→ R as Γ(t) = {x ∈ R2 ; φ(x, t) = 0}. Let us consider

the kinematics of curve evolutions. It does not make sense to “track” points as there is no way

of knowing the tangential motion of points on Γ(t). The important notion is that of normal

velocity. The normal velocity of a curve evolution t 7→ Γ(t) is the scalar function defined by

v(Γ)(x) =
d
dt

Γ(t)(x) :=−∂φ(x, t)/∂ t
|∇φ(x, t)|

(x ∈ Γ(t)). (2.9)

The normal velocity is independent of the curve representation, in particular of the choice of

level set function φ for Γ, and is therefore a geometric property of the evolution, cf. [133].
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The set of possible normal velocities v = v(Γ) of moving contours t 7→ Γ(t) passing through

the contour Γ at time t = 0 is an infinite dimensional vector space. This vector space can be

endowed with a natural scalar product and a corresponding norm, cf. [133]

〈v,w〉Γ =
∫

Γ

v(x)w(x)dσ and ‖v‖2
Γ = 〈v,v〉Γ, (2.10)

where v,w are normal velocities. In the following we therefore denote the vector space of

normal velocities at Γ by L2(Γ).

2.2.3 Gradient Descent Evolution

The scalar product (2.10) is important in the construction of gradient descent flows for energy

functionals E(Γ) defined on curves. Suppose v ∈ L2(Γ) is a fixed normal velocity, and let t 7→
Γ(t) be any moving contour which satisfies Γ(0) = Γ, and (d/dt)Γ(0) = v. Then the Gâteaux

variation dE(Γ)v of the functional E = E(Γ) at the contour Γ is defined as the derivative

dE(Γ)v :=
d
dt

E(Γ(t))
∣∣∣
t=0

. (2.11)

Suppose there exists a function ∇E(Γ) ∈ L2(Γ) such that E’s Gâteaux variation dE(Γ)v at Γ

can be expressed in terms of the scalar product (2.10) in the following manner

dE(Γ)v = 〈∇E(Γ),v〉Γ for all v ∈ L2(Γ). (2.12)

Then the vector ∇E(Γ) is called the L2-gradient of E at Γ. It is unique if it exists. The

gradient descent flow for the problem of minimizing E(Γ) can now be defined as the initial

value problem
d
dt

Γ(t) =−∇E(Γ(t)), Γ(0) = Γ0, (2.13)

where Γ0 is an initial contour specified by the user.

As an example, relevant for the application in this work, notice that the L2-gradient of the

reduced functional ER
CV defined in (2.5) is given by

∇ER
CV (Γ) = ακ +β

[1
2
(I−µint(Γ))2− 1

2
(I−µext(Γ))2], (2.14)

where κ = κ(x) is the curvature at x ∈ Γ. If we combine the definition of gradient descent evo-

lution in (2.13) with (2.9) for the normal velocity, then we get the gradient descent procedure
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in the level set framework

∂φ

∂ t
=
(

ακ +β
[1

2
(I−µint(Γ))2− 1

2
(I−µext(Γ))2])|∇φ |, (2.15)

with φ(x,0) = φ0(x), where φ0 is the level set function for the initial contour Γ0. It is understood

that the gray scale values µint(Γ) and µext(Γ) are given by (2.3) and (2.4), respectively.

2.3 Remarks about Minimization of the Chan-Vese Functional

As stated in the previous section, the segmentation of a given image is obtained by finding

the pair (Γ∗,µ∗) which solves the minimization problem of (2.1), where µ ∈ R2 and Γ range

over the set of admissible contours. The commonest and most straight forward way to obtain

the solution of (2.1) is to apply a gradient descent procedure to the functional ECV . In our

particular case, two different gradient descent procedures can be constructed: In the first of

these, the functional ECV = ECV (Γ,µ) is minimized simultaneously with respect to both the

contour Γ and the intensity parameters µ , by finding a path t 7→ (Γ(t),µ(t)) which solves the

system of descent differential equations
d
dt

µ(t) =−∇µECV (Γ(t),µ(t))

d
dt

Γ(t) =−∇ΓECV (Γ(t),µ(t))
, (2.16)

where the initial state (Γ(0),µ(0)) = (Γ0,µ0) is specified by the user.

The second gradient descent method, which is actually the one described in the previous

section, is based on the following observation: If we choose an admissible contour Γ and keep

it fixed, then the fidelity term of the Chan-Vese functional

1
2

∫
int(Γ)

(I(x)−µint)2 dx+
1
2

∫
ext(Γ)

(I(x)−µext)2 dx, (2.17)

is a simple quadratic function of µ = (µint,µext) ∈R2. Therefore µ 7→ ECV (Γ,µ) is minimized

(uniquely) by the vector µ = µ(Γ) whose components are given by (2.3) and (2.4). Using this

result we find that

min
Γ,µ

ECV (Γ,µ) = min
Γ

{
min

µ
ECV (Γ,µ)

}
= min

Γ
ECV (Γ,µ(Γ)).

(2.18)
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Therefore, if we define the so-called “reduced” Chan-Vese functional by (2.5), then we see

that the segmentation is given by the contour Γ∗ which solves the minimization problem of

(2.6).

In order to implement the gradient descent scheme (2.13) for the reduced Chan-Vese func-

tional we must compute the L2-gradient of ER
CV (Γ). To do this we apply the chain rule to the

definition of the reduced functional

∇ΓER
CV (Γ) = ∇ΓECV (Γ,µ(Γ))

= (∇ΓECV )(Γ,µ(Γ))+(∇µECV )(Γ,µ(Γ)) · (∇Γµ)(Γ),
(2.19)

where (∇Γµ)(Γ) denotes the L2-gradient of the vector-valued functional Γ 7→ µ(Γ) ∈ R2. It

seems as if we have to compute (∇Γµ)(Γ) in order to get the L2-gradient of the reduced func-

tional. It is important, however, to recall that µ(Γ) minimizes µ 7→ ECV , hence

(∇µECV )(Γ,µ(Γ)) = 0, (2.20)

hence we have proven the often overlooked fact that

∇ΓER
CV (Γ) = (∇ΓECV )(Γ,µ(Γ)), (2.21)

which explains the gradient descent procedure introduced in the previous section.

2.4 Segmentation of Image Sequences

2.4.1 A Variational Updating-Model

In this section we are going to present the basic principles behind our variational model for

updating segmentation results from one frame to the next in an image sequence. See [65] for

details.

Let I j : Ω→ R, j = 1, . . . ,N, be a succession of frames from a given image sequence.

Also, for some integer k, 1 ≤ k ≤ N, suppose that all the frames I1, I2, . . . , Ik−1 have already

been segmented, such that the corresponding contours Γ1,Γ2, . . . ,Γk−1 are available. In order

to take advantage of the prior knowledge obtained from earlier frames in the segmentation of

Ik, we propose the following method: If k = 1, i.e. if no previous frames have actually been

segmented, then we just use the classical Chan-Vese model, as presented in Section 2.2. If
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k > 1, then the segmentation of Ik is given by the contour Γk which minimizes an augmented

Chan-Vese functional of the form

EA
CV (Γk−1,Γ) := ER

CV (Γ)+ γEI(Γk−1,Γ), (2.22)

where ER
CV is the reduced Chan-Vese functional defined in (2.5), EI = EI(Γk−1,Γ) is an inter-

action term, which penalizes deviations of the current active contour Γ from the previous one,

Γk−1, and γ > 0 is a coupling constant which determines the strength of the interaction. The

precise definition of EI is described in the next subsection.

Figure 2.1: The initialization (green contour) and segmentation results of a person (red contour)
in an image sequence using the Chan-Vese model.

2.4.2 The Interaction Term

The interaction EI(Γ0,Γ) between a fixed contour Γ0 and an active contour Γ, used in (2.22),

may be chosen in several different ways. Two common choices are the so-called pseudo-

distances, cf. [40], and the area of the symmetric difference of the sets int(Γ) and int(Γ0), cf.

[31]. We have found that none of the mentioned contour interactions satisfy our needs, and we

have therefore chosen to introduce a new pose-invariant interaction term.

To describe this interaction term, let φ0 : Ω→ R denote the signed distance function asso-

ciated with the contour Γ0, that is, the function

φ0(x) =

{
dist(x,Γ0) for x ∈ ext(Γ0),

−dist(x,Γ0) for x ∈ int(Γ0).
(2.23)

Then the interaction EI = EI(Γ0;Γ) is defined by the formula

EI(Γ0,Γ) = min
T

∫
int(Γ)

φ0(T−1x)dx, (2.24)
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where the minimum is taken over the group of Euclidean transformations T : R2→ R2 which

preserves the orientation of the plane, that is, transformations T which are compositions of

translations and rotations (but not reflections). Minimizing over groups of transformations is a

standard devise to obtain pose-invariant interactions, see [31] and [40].

For any given contour Γ, let T = T (Γ) denote the transformation which minimizes the

expression on the right hand side of (2.24). Since this is an optimization problem T (Γ) can

be found using gradient descent. For simplicity of presentation, suppose we only consider the

group of translations Ta : x 7→ x + a, a ∈ R2, and want to determine the optimal translation

vector a = a(Γ). Then we have to solve the optimization problem

min
a

∫
int(Γ)

φ0(x−a)dx.

The optimal translation a(Γ) can then be obtained as the limit, as time t tends to infinity, of the

solution to initial value problem

ȧ(t) =
∫

int(Γ)
∇φ0(x−a(t))dx , a(0) = 0. (2.25)

Similar gradient descent schemes can be devised for rotations and scalings (in the case of

similarity transformation), cf. [31].

2.4.3 The Gradient Descent Equations

The augmented Chan-Vese functional (2.22) is minimized using standard gradient descent as

described in Section 2.2. That is, we solve the initial value problem

d
dt

Γ(t) =−∇EA
CV (Γk−1,Γ(t))

:=−∇ER
CV (Γk−1,Γ(t))− γ∇EI(Γk−1;Γ(t)),

(2.26)

with the initial contour Γ(0) = Γk−1, and pass to the limit t→∞. Here ∇ER
CV is the L2-gradient

of the reduced Chan-Vese functional, see Eq. (2.14), and ∇EI is the L2-gradient of the interac-

tion EI , which is given by the formula

∇EI(Γk−1,Γ;x) = φk−1(T (Γ)x), (for x ∈ Γ), (2.27)

as is easily verified. Here φk−1 is the signed distance function for Γk−1.
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Notice that the L2-gradient of the reduced functional ER
CV defined in (2.5) is given by (2.14).

If we combine the definition of gradient descent evolutions in (2.13) with (2.9) for the normal

velocity, then we get the gradient descent procedure for the proposed model in the level set

framework

∂φ

∂ t
=

(
ακ +β

[1
2
(I−µint(Γ))2− 1

2
(I−µext(Γ))2]

+γφk−1(T (Γ)x)
)
|∇φ |, (2.28)

with φ(x,0) = φ0(x), where φ0 is the level set function for the initial contour Γ0. Again it is

understood that the gray scale values µint(Γ) and µext(Γ) are given by (2.3) and (2.4), respec-

tively.

2.5 Remarks about the Interaction Term

In this section we give a motivation for the particular choice of shape dissimilarity measure

that we use for the contour interaction term in this work.

Let us recall the setting: As before, let Γ denote the active contour and Γ0 the contour

corresponding to the shape prior. Also, let φ = φ(x) and φ0 = φ0(x) denote the signed distance

functions associated with Γ and Γ0, respectively, where x is a generic point in the image domain

Ω. Notice that, for any x ∈ Ω fixed, φ(x) = φ(Γ;x) is actually a functional of the contour Γ.

This observation will be important in the discussion below.

Now, if we disregard pose invariance for the moment, (e.g. by assuming that Γ0 is already

optimally aligned with Γ in the appropriate sense,) then the shape interaction term proposed in

this work has the form

Eshape(Γ,Γ0) =
∫

int(Γ)
φ0(x)dx. (2.29)

We wish to compare (2.29) with two other popular choices for the shape dissimilarity measure.

The first of these is the classic area of the symmetric difference, which has been used in [31],

and [122]

ESD
shape(Γ,Γ0) = area(Σ4Σ0). (2.30)

Here we have used the notation Σ4Σ0 := (Σ∪Σ0)\(Σ∩Σ0) to denote the symmetric difference
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of the two sets Σ = int(Γ), Σ0 = int(Γ0). The second one is the so-called pseudo-distance

EPD
shape(Γ,Γ0) =

1
2

∫
Ω

[φ(x)−φ0(x)]2 dx, (2.31)

which has been studied, with various minor modifications, in [124], [114], and [40].

2.5.1 Area of the Symmetric Difference

As a dissimilarity measure, area of the symmetric difference (2.30) has several desirable fea-

tures: it is symmetric with respect to the contours Γ and Γ0, that is, ESD
shape(Γ,Γ0)= ESD

shape(Γ0,Γ),

and ESD
shape(Γ,Γ0) = 0 if and only if Γ = Γ0. Moreover, for Γ0 fixed, it is easy to compute the

L2-gradient of ESD
shape with respect to Γ. In fact, if 1Σ and 1Σ0 denote the characteristic functions

(or indicator functions) of Σ and Σ0, respectively, then we may write (2.30) as

ESD
shape(Γ,Γ0) =

∫
Ω

[1Σ(x)−1Σ0(x)]
2 dx

=
∫

Ω

[1Σ(x)−21Σ(x)1Σ0(x)+1Σ0(x)
2]dx

=
∫

Ω

[1−21Σ0(x)]dx+ const.,

so ESD
shape is an area-based functional whose Gâteaux derivative is

dESD
shape(Γ,Γ0)v =

∫
Γ

[1−2 ·1Σ0(x)]v(x)dσ(x), (2.32)

for any normal variation v : Γ→R of the active contour. It follows that the L2-gradient is given

by

∇ΓESD
shape(Γ,Γ0) = 1−21Σ0(x) (x ∈ Γ). (2.33)

This formula reveals a shortcoming of ESD
shape as interaction term; The L2-gradient has the same

magnitude, ±1, no matter if Γ is close to the prior shape Γ0 or not. So if ESD
shape is used as

dissimilarity measure in a segmentation model with priors, then the prior will either be ignored,

if the coupling constant has a value below a certain threshold value, or the prior will overrule

the shape information contained in the fidelity term, if the coupling constant is greater than

the threshold value. This means that ESD
shape is unsuitable for segmentation models where prior

information should be adaptable to image information.

Notice that the L2-regularization term, proposed for image registration in a paper by Lukas
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and Kanade [93], is exactly equal to ESD
shape(Γ,Γ0) when shapes are represented by binary im-

ages, as above.

2.5.2 The Pseudo-Distance

The pseudo-distance (2.31) is symmetric, i.e., EPD
shape(Γ,Γ0) = EPD

shape(Γ0,Γ), and equals zero

if and only if the contours are equal. The main drawback with the pseudo-distance is that it

is difficult to compute its L2-gradient, which is needed in gradient descent PDEs for function-

als containing the pseudo-distance. To explain this problem, assume that Γ0 is fixed, let the

function v : Γ→ R be a normal variation of the active contour Γ, and observe that the Gâteaux

derivative of EPD
shape with respect to Γ is given by

dEPD
shape(Γ,Γ0)v =

∫
Ω

(φ(Γ,x)−φ0(x))dφ(Γ;x)vdx, (2.34)

where dφ(Γ;x)v denotes the Gâteaux derivative of the functional Γ→ φ(Γ;x), x ∈ Ω fixed,

which must be computed. For x ∈ Ω let PΓx denote the point on Γ which is closest to x. The

mapping Ω 3 x→ PΓx ∈ Γ is well-defined for almost all points in Ω, and we refer to PΓx as the

projection of x onto Γ. The Gâteaux derivative with respect to Γ of the signed distance mapping

can be expressed in terms of the projection mapping as

dφ(Γ;x)v =−v(PΓx), (2.35)

so (2.34) becomes

dEPD
shape(Γ,Γ0)v =−

∫
Ω

(φ(Γ,x)−φ0(x))v(PΓx)dx, (2.36)

which is not easily expressed as a curve integral of the form
∫

Γ
F(x)v(x)dσ(x). This ex-

plains the difficulty in computing ∇ΓEPD
shape. The derivatives computed in [40, 114, 124] are

not Gâteaux derivatives (or shape derivatives) in our sense, c.f. [133] or [48], but rather the

first variation of EPD
shape with respect to φ , computed as if the set of signed distance functions φ

is a vector space.

36



2.6 Experimental Results

2.5.3 Proposed Interaction Term

The main benefit of our interaction term Eshape defined in (2.29) is that its L2-gradient can be

computed easily by

∇ΓEshape(Γ,Γ0) = φ0(x) = φ(Γ0;x) (x ∈ Γ),

and that this gradient is small if Γ is close to the shape prior Γ0, and large if the active contour

is far from the shape prior. However, Eshape(Γ,Γ0) is not symmetric in Γ and Γ0, which may

in general be considered a drawback. However, in our particular application, where we want

to use shape information from a previous image frame (Γ0) to guide the segmentation in the

current frame (Γ), the lack of symmetry does not seem to be such a big issue. After all, there is

no obvious symmetry between past and present! Suppose instead that we wanted to segment

an image sequence simultaneously, by considering the stack of frames as a three-dimensional

object, then it would be relevant to use a symmetric interaction term between the contours in

the individual frames.

2.6 Experimental Results

In this section we present the results obtained from experiments using synthetic and real image

sequences. We use the Chan-Vese model to segment a selected object with approximately

uniform intensity of the first frame of each image sequence. The proposed method is then

applied to segment the next frames of the image sequences sequentially frame-by-frame, where

the segmentation result in one frame is used as the initial contour in the next one. Since we

do not have the prior model of the object of interest, it is important to get a good result of the

first frame in order to get better results in the next frames. The minimization of the functional,

giving the optimal contour, is obtained from the gradient descent procedure (2.26) which has

been implemented in the level set framework outlined in Section 2.2. In all experiments, the

initial contour in the first frame is given manually, as a circle, located inside the object of

interests. Note that not all frames of each image sequences are shown in the figures.

As illustrated in Figure 2.1, the Chan-Vese model is capable of segmenting an object of

interest in an image sequence without any problems. Further such results can be found in

[100]. However, as pointed out in the reference, the Chan-Vese method will have problems if

occlusions appear in the image which cover the whole or parts of the object being segmented.
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Figure 2.2: The initialization (green contour) and segmentation results (red contour) of a nonrigid
object in a synthetic image sequence with additive Gaussian noise. First, second, and third rows:
without interaction term and increasing α . Fourth row: with interaction term.

Figure 2.2 shows the segmentation results for a nonrigid object in a synthetic image sequence,

where occlusions appear. The Chan-Vese method fails to segment the object of interest when it

reaches the occlusion, even when we increase the regularization weight α to get more regular

results (Rows 1-3). Using the proposed method, we obtain much better results (Last Row).

In Figure 2.3, we show the experiment of segmenting a car (white van) which passes

through the obstacle in a traffic sequence. The Chan-Vese method fails to segment the car

when it reaches the lamp post (first column). This result can then be improved by increasing α ,

but it is still unable to segment the car when partly occluded, instead the contour is disappear-

ing near the lamp post when α is too large (second column). This problem can be overcome by

adding the interaction term (third and fourth column), where we use different value of α to see

the influence of the regularization term coupled with the interaction term with the same value

of γ . As we can see from Fig. 2.4 using large α the contour is unable to pass the lamp post

while we get better results by using the proposed method, even with small α .

Another experiment is given in Figure 2.5 where a walking person being segmented is

partly covered by another person. Without interaction term, the segmentation results are poor

when we use small α (first column). The results can then be improved using larger α , but
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Algorithm 1 The algorithm for segmentation of N frames image sequence from the second
frame I2...IN .
INPUT: Current frame Ik and the level set function from the previous frame φk−1
OUTPUT: Optimal level set function φk.

1. Initialization Initialize the level set function φk = φk−1.

2. Computation Compute the optimal translation vector and then the gradient descent of
(2.26).

3. Re-initialization Re-initialize the level set function φk.

4. Convergence Stop if the level set evolution converges, otherwise go to step 2.

this limits the deformation of the contour especially in the first frame (second column). The

proposed method prevents the segmentation of the wrong object and give better results, as is

clearly shown. In this experiment, the coupling constant γ is varied to see the influence of the

interaction term on the results (third and fourth columns). The contour is only slightly affected

by the prior if γ is small. On the other hand, if γ is too large, the contour will be close to a

similarity transformed version of the prior.

2.7 Conclusions

We have presented a novel method for variational segmentation of image sequences containing

nonrigid, moving objects. The proposed method is formulated as variational problem, with one

part of the functional corresponding to the Chan-Vese model and another part corresponding

to the pose-invariant interaction with a shape prior based on the previous contour. The optimal

transformation as well as the shape deformation are determined by minimization of an energy

functional using a gradient descent scheme. Experimental results are shown on synthetic and

real image sequences and its performance looks promising.
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Figure 2.3: The initialization (green contour) and segmentation results (red contour) of a car which
passes through a lamp post in a traffic sequence. First and second columns: without interaction term
and increasing α . Third and fourth columns: with interaction term and increasing α .
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Figure 2.4: Segmentation results taken from the fourth row of Figure 2.3. Left: without interaction
term. Right: with interaction term.
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Figure 2.5: The initialization (green contour) and segmentation results (red contour) of a person
that partly occluded by another person in a human walking sequence. First and second columns:
without interaction term and increasing α . Third and fourth columns: with interaction term and
increasing γ .

42



Chapter 3

Nonrigid Variational Object
Segmentation with Occlusion
Detection in Image Sequences

This chapter is the result of merging papers [66, 72] with minor modifications without

affecting the content or the results. Here we address the problem of nonrigid object segmenta-

tion in image sequences in the presence of occlusions. The proposed variational segmentation

method is based on a region-based active contour of the Chan-Vese model augmented with a

frame-to-frame interaction term as a shape prior. The interaction term is constructed to be pose-

invariant by minimizing over a group of transformations and to allow moderate deformation in

the shape of the contour. The segmentation method is then coupled with a novel variational

contour matching formulation between two consecutive contours which gives a mapping of the

intensities from the interior of the previous contour to the next. With this information occlu-

sions can be detected and located using deviations from predicted intensities and the missing

intensities in the occluded regions can be reconstructed. After reconstructing the occluded re-

gions in the novel image, the segmentation can then be improved. Experimental results on

synthetic and real image sequences are shown.
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3.1 Introduction

Object segmentation is one of the most important processes in computer vision which aims at

extracting the object of interests lying in the image. This is a very difficult process since the

object of interests could be diverse, complex and the understanding on them vary according

to each individual. The process becomes more difficult when the objects to be segmented are

moving and nonrigid and even more when occlusions appear. The shape of nonrigid, moving

objects may vary a lot along image sequences due to, for instance, deformations or occlusions,

which puts additional constraints on the segmentation process.

Numerous methods have been proposed and applied to this problem. Active contours are

powerful methods for image segmentation; either boundary-based such as geodesic active con-

tours [26], or region-based such as Chan-Vese models [30], which are formulated as varia-

tional problems. Those variational formulations perform quite well and have often been ap-

plied based on level sets. Active contour based segmentation methods often fail due to noise,

clutter and occlusion. In order to make the segmentation process robust against these effects,

shape priors have been proposed to be incorporated into the segmentation process, such as in

[22, 31, 34, 37, 40, 41, 90, 124, 141]. However, major occlusions is still a big problem. In

order to improve the robustness of the segmentation methods in the presence of occlusions, it

is necessary to detect and locate the occlusions [68, 85, 137]. Then using this information, the

segmentation can be improved. For example, [139] proposed that the spatial order information

in the image model is used to impose dynamically shape prior constraints only to occluded

boundaries.

This chapter focuses on the region-based variational approach to segment a nonrigid object

that may be partially occluded in image sequences. In particular, we would like to distinguish

real shape deformations of the object from apparent shape deformations due to occlusions. We

propose and analyze a novel variational segmentation method for image sequences, that can

both deal with shape deformations and at the same time is robust to noise, clutter and occlu-

sions. The proposed method is based on minimizing an energy functional containing the stan-

dard Chan-Vese functional as one part and a term that penalizes the deviation from the previous

shape as a second part. The second part of the functional is based on a transformed distance

map to the previous contour, where different transformation groups, such as Euclidean, similar-

ity or affine, can be used depending on the particular application. This variational framework is

then augmented with a novel contour flow algorithm, giving a mapping of the intensities inside
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the contour of one image to the inside of the contour in the next image. Using this mapping,

occlusions can be detected and located by simply thresholding the difference between the trans-

formed intensities and the observed ones in the novel image. By using occlusions information,

the occluded regions are reconstructed to improve the segmentation results.

3.2 Segmentation of Image Sequences

In this section, we describe the region-based segmentation model of Chan-Vese [30] and a

variational model for updating segmentation results from one frame to the next in an image

sequence.

3.2.1 Region-Based Segmentation

The idea of the Chan-Vese model [30] is to find a contour Γ such that the image I is optimally

approximated by a gray scale value µint on int(Γ), the inside of Γ, and by another gray scale

value µext on ext(Γ), the outside of Γ. The optimal contour Γ∗ is defined as the solution of the

variational problem,

ECV (Γ∗) = min
Γ

ECV (Γ), (3.1)

where ECV is the Chan-Vese functional,

ECV (µ,Γ) = α|Γ|+β

{
1
2

∫
int(Γ)

(I(x)−µint)2 dx+
1
2

∫
ext(Γ)

(I(x)−µext)2 dx
}

, (3.2)

where |Γ| is the arc length of the contour, α,β > 0 are weight parameters, and

µint =
1

| int(Γ)|

∫
int(Γ)

I(x)dx, (3.3)

µext =
1

|ext(Γ)|

∫
ext(Γ)

I(x)dx. (3.4)

The gradient descent flow for the problem of minimizing a functional ECV (Γ) is the solution

to initial value problem:

d
dt

Γ(t) =−∇ECV (Γ(t)), Γ(0) = Γ0, (3.5)

where Γ0 is an initial contour. Here ∇ECV (Γ) is the L2-gradient of the energy functional
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ECV (Γ), cf. e.g. [133] for definitions of these notions. Then the L2-gradient of ECV is

∇ECV (Γ) = ακ +β
[1

2
(I−µint(Γ))2− 1

2
(I−µext(Γ))2], (3.6)

where κ is the curvature.

In the level set framework [107], a curve evolution, t 7→ Γ(t), can be represented by a time

dependent level set function φ : R2×R→ R as Γ(t) = {x ∈ R2 ; φ(x, t) = 0}, φ(x) < 0 and

φ(x) > 0 are the regions inside and the outside of Γ, respectively. The normal velocity of

t 7→ Γ(t) is the scalar function dΓ/dt defined by

d
dt

Γ(t)(x) :=−∂φ(x, t)/∂ t
|∇φ(x, t)|

(x ∈ Γ(t)) . (3.7)

Recall that the outward unit normal n and the curvature κ can be expressed in terms of φ as

n = ∇φ/|∇φ | and κ = ∇ ·
(
∇φ/|∇φ |

)
.

Combined with the definition of gradient descent evolutions (3.5) and the formula for the

normal velocity (3.7) this gives the gradient descent procedure in the level set framework:

∂φ

∂ t
=
(

ακ +β
[1

2
(I−µint(Γ))2− 1

2
(I−µext(Γ))2])|∇φ |,

where φ(x,0) = φ0(x) represents the initial contour Γ0.

3.2.2 The Interaction Term

The interaction EI(Γ0,Γ) between a fixed contour Γ0 and an active contour Γ may be regarded

as a shape prior and be chosen in several different ways, such as the area of the symmetric

difference of the sets int(Γ) and int(Γ0), cf. [31], and the pseudo-distances, cf. [40].

Let φ = φ(x) and φ0 = φ0(x) denote the signed distance functions associated with Γ and

Γ0, respectively, where x is a generic point in the image domain Ω. By assuming that Γ0 is

already optimally aligned with Γ in the appropriate sense, then the interaction term proposed

here has the form:

EI(Γ,Γ0) =
∫

int(Γ)
φ0(x)dx . (3.8)

The main benefit of our interaction term defined in (3.8) is that its L2-gradient can be

computed easily:

∇ΓEI(Γ,Γ0) = φ0(x) = φ(Γ0;x) (x ∈ Γ)
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and that this gradient is small if Γ is close to the shape prior Γ0, and large if the active contour

is far from the shape prior. However, EI(Γ,Γ0) is not symmetric in Γ and Γ0, which may

in general be considered a drawback. However, in our particular application, where we want

to use shape information from a previous image frame (Γ0) to guide the segmentation in the

current frame (Γ), the lack of symmetry does not seem to be such a big issue.

The proposed interaction term is constructed to be pose-invariant and to allow moderate

deformations in shape. Let a ∈R2 is a group of translations. We want to determine the optimal

translation vector a = a(Γ), then the interaction EI = EI(Γ0,Γ) is defined by the formula,

EI(Γ0,Γ) = min
a

∫
int(Γ)

φ0(x−a)dx. (3.9)

Minimizing over groups of transformations is the standard device to obtain pose-invariant in-

teractions, see [31] and [40].

Since this is an optimization problem a(Γ) can be found using the gradient descent proce-

dure. The optimal translation a(Γ) can then be obtained as the limit, as time t tends to infinity,

of the solution to initial value problem

ȧ(t) =
∫

int(Γ)
∇φ0(x−a(t))dx , a(0) = 0 . (3.10)

Similar gradient descent schemes can be devised for rotations and scalings (in the case of

similarity transforms), cf. [31].

3.2.3 Using the Interaction Term in Segmentation of Image Sequences

Let I j : Ω→ R, j = 1, . . . ,N, be a succession of N frames from a given image sequence. Also,

for some integer k, 1 ≤ k ≤ N, suppose that all the frames I1, I2, . . . , Ik−1 have already been

segmented, such that the corresponding contours Γ1,Γ2, . . . ,Γk−1 are available. In order to

take advantage of the prior knowledge obtained from earlier frames in the segmentation of

Ik, we propose the following method: If k = 1, i.e. if no previous frames have actually been

segmented, then we just use the standard Chan-Vese model, as presented in Sect. 3.2.1. If

k > 1, then the segmentation of Ik is given by the contour Γk which minimizes an augmented

Chan-Vese functional of the form,

EA
CV (Γk−1,Γk) := ECV (Γk)+ γEI(Γk−1,Γk), (3.11)
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where ECV is the Chan-Vese functional, EI = EI(Γk−1,Γk) is an interaction term, which pe-

nalizes deviations of the current active contour Γk from the previous one, Γk−1, and γ > 0 is a

coupling constant which determines the strength of the interaction. See Algorithm 2.

The augmented Chan-Vese functional (3.11) is minimized using standard gradient descent

(3.5) described in Sect. 3.2.1 with ∇E equal to

∇EA
CV (Γk−1,Γk) := ∇ECV (Γk)+ γ∇EI(Γk−1;Γk), (3.12)

and the initial contour Γ(0) = Γk−1. Here ∇ECV is the L2-gradient (3.6) of the Chan-Vese

functional, and ∇EI the L2-gradient of the interaction term, which is given by the formula,

∇EI(Γk−1,Γk;x) = φk−1(x−a(Γk)), (for x ∈ Γk). (3.13)

Here φk−1 is the signed distance function for Γk−1.

Algorithm 2 The algorithm for segmentation of N frames image sequence from the second
frame I2...IN .
INPUT: Current frame Ik and the level set function from the previous frame φk−1
OUTPUT: Optimal level set function φk.

1. Initialization Initialize the level set function φk = φk−1.

2. Computation Compute the optimal translation vector and then the gradient descent of
(3.12).

3. Re-initialization Re-initialize the level set function φk.

4. Convergence Stop if the level set evolution converges, otherwise go to step 2.

3.3 Occlusion Detection by Contour Matching

In this section we are going to present a variational solution to a contour matching problem.

We start with the theory behind the contour matching problem and then describe the algorithm

we use to implement it to detect and locate the occlusions.
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Figure 3.1: Given two closed curves Γ1 and Γ2 contained in two images F1 and F2, Φ maps F1
onto F2 such that Γ1 is mapped onto Γ2.

3.3.1 A Contour Matching Problem

Suppose we have two simple closed curves Γ1 and Γ2 contained in the image domain Ω. Find

the “most economical” mapping Φ = Φ(x) : Ω→R2 such that Φ maps Γ1 onto Γ2, i.e. Φ(Γ1) =

Γ2, see Figure 3.1. The latter condition is to be understood in the sense that if α = α(γ) :

[0,1]→ Ω is a positively oriented parametrization of Γ1, then β (γ) = Φ(α(γ)) : [0,1]→ Ω is

a positively oriented parametrization of Γ2 (allowing some parts of Γ2 to be covered multiple

times).

To present our variational solution of this problem, let M denote the set of twice differential

mappings Φ which maps Γ1 to Γ2 in the above sense. Loosely speaking

M = {Φ ∈C2(Ω;R2) |Φ(Γ1) = Γ2}.

Moreover, given a mapping Φ : Ω→ R2, not necessarily a member of M, then we express Φ

in the form Φ(x) = x +U(x), where the vector valued function U = U(x) : Ω→ R2 is called

the displacement field associated with Φ, or simply the displacement field. It is sometimes

necessary to write out the components of the displacement field; U(x) = (u1(x),u2(x))T .

We now define the “most economical” map to be the member Φ∗ of M which minimizes

the following energy functional:

E[Φ] =
1
2

∫
Ω

‖DU(x)‖2
F dx , (3.14)

where ‖DU(x)‖F denotes the Frobenius norm of DU(x) = [∇u1(x),∇u2(x)]T , which for an

arbitrary matrix A∈R2×2 is defined by ‖A‖2
F = tr(AT A). That is, the optimal matching is given

by

Φ
∗ = argmin

Φ∈M
E[Φ] . (3.15)
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Using that, E[Φ] can be written in the form

E[Φ] =
1
2

∫
Ω

|∇u1(x)|2 + |∇u2(x)|2 dx , (3.16)

it is easy to see that the Gâteaux derivative of E[Φ] is given by

dE[Φ;V ] =
∫

Ω

∇u1(x) ·∇v1(x)+∇u2(x) ·∇v2(x)dx

=
∫

Ω

tr(DU(x)T DV (x))dx ,

for any displacement field V (x) = (v1(x),v2(x))T . After integration by parts we find that the

necessary condition for Φ∗(x) = x+U∗(x) to be a solution of the minimization problem (3.15)

takes the form

0 =−
∫

Ω

∆U∗(x) ·V (x)dx , (3.17)

for any admissible displacement field variation V = V (x). Here ∆U∗(x) = (∆u1(x),∆u2(x))T

is the Laplacian of the vector valued function U∗ = U∗(x). Since every admissible mapping Φ

must map the initial contour S1 onto the target contour S2, it can be shown that any displacement

field variation V must satisfy

V (x) ·nS2(x+U∗(X)) = 0 for all x ∈ S1 . (3.18)

Notice that this condition only has to be satisfied precisely on the curve S1, and that V =V (x) is

allowed to vary freely away from the initial contour. The interpretation of the above condition

is that the displacement field variation at x ∈ S1 must be tangent to the target contour S2 at the

point y = Φ(x). In view of this interpretation of (3.18) it is not difficult to see that necessary

condition (3.17) implies that the solution Φ∗ of the minimization problem (3.15) must satisfy

the following Euler-Lagrange equation:

0 =

{
∆U∗− (∆U∗ ·n∗S2

)n∗S2
, on S1,

∆U∗, otherwise,
(3.19)

where n∗S2
(x) = nS2(x+U∗(x)), x ∈ S1, is the pullback of the normal field of the target contour

S2 to the initial contour S1. The standard way of solving (3.19) is to use the gradient descent

method: Let U = U(t,x) be the time-dependent displacement field which solves the evolution
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PDE
∂U
∂ t

=

{
∆U− (∆U ·n∗S2

)n∗S2
, on S1,

∆U, otherwise,
(3.20)

where the initial displacement U(0,x) = U0(x) ∈M specified by the user, and U = 0 on ∂Ω,

the boundary of Ω (Dirichlet boundary condition). Then U∗(x) = limt→∞U(t,x) is a solution

of the Euler-Lagrange equation (3.19).

Notice that the PDE (3.20) coincides with the so-called geometry-constrained diffusion

introduced in [3]. Thus we have incidentally found a variational formulation of the non-rigid

registration problem considered there.

Implementation. Following [3], a time and space discrete algorithm for solving the geometry-

constrained diffusion problem can be found by iteratively convolving the displacement field

with a Gaussian kernel and then project the deformed contour Γ1 back onto contour Γ2 such

that the constraints are satisfied (see Algorithm 3). The algorithm needs a initial registration

provided by the user. In our implementation we have translated Γ1 and projected it onto Γ2 and

used this as the initial registration. This gives good results in our case where the deformation

and translation is quite small. Dirichlet boundary condition - zero padding in the discrete

implementation - have been used. By pre-registration and embedding the image into a larger

image, the boundary conditions seems to be a minor practical issue. The displacement field

is diffused using convolution in each of x and y coordinates independently with a fix time

parameter.

Algorithm 3 The algorithm for the contour matching
INPUT : Contours Γ1 and Γ2.
OUTPUT : Displacement field D.

1. Initial displacement field Initial registration of the contours.

2. Diffusion Convolve the displacement field using a Gaussian kernel.

3. Deformation Deform Γ1 by applying the displacement field D.

4. Projection Project the deformed Γ1 onto Γ2 (i.e. find the closest point on the contour
Γ2).

5. Updating the displacement field Update the displacement field according to matching
points on the contour Γ2

6. Convergence Stop if the displacement field is stable, otherwise go to step 2.

51



3. NONRIGID VARIATIONAL OBJECT SEGMENTATION WITH OCCLUSION
DETECTION IN IMAGE SEQUENCES

3.3.2 Occlusion Detection

The mapping Φ = Φ(x) : Ω→R2 such that Φ maps Γ1 onto Γ2 is an estimation of the displace-

ment (motion and deformation) of the boundary of an object between two frames. By finding

the displacement of the contour, a consistent displacement of the intensities inside the closed

curve Γ1 can also be found. Φ maps Γ1 onto Γ2 and pixels inside Γ1 are mapped inside Γ2.

This displacement field which only depends on displacement - or registration - of the contour

(and not on the image intensities) can then be used to map the intensities inside Γ1 onto Γ2.

After the mapping, the intensities inside Γ1 and Γ2 can be compared and then be classified as

the same or different value. Since we can still find the contour in the occluded area, therefore

we can also compute the displacement field even in the occluded area.

Implementation. Occlusions are detected by comparing the predicted and the observed in-

tensities inside the segmented object. Unfortunately the displacement field is not exact: it

is an estimation of the contour displacement and simultaneously an interpolation of the dis-

placement for pixels inside Γ1. The intensities in the deformed frame must be interpolated.

The interpolation can either be done in the deformed (Lagrange) coordinate or in the original

(Euler) coordinate. The next neighbor interpolation scheme in the Euler coordinate has been

used. Both the deformed and the current frames are filtered using a low-pass filter to decrease

differences due to the interpolation and to the displacement.

The deformed frame, FDe f ormed
p (x), and the current frame, Fc(x), are compared pixel by

pixel using some similarity measures. The absolute differences |FDe f ormed
p (x)−Fc(x)| are used

in our experiments. Different similarity measures require different degree of low-pass filter-

ing. A simple pixel by pixel similarity measure requires more filtering, while a patch based

similarity measure may require less or none low-pass filtering. See Algorithm 4.

3.3.3 Re-segmentation

After the occlusion has been detected, the segmentation can be further improved by again

employing the previously described Chan-Vese-method augmented with an interaction term.

However, in this second stage, the integration is only performed over the area of the image

where no occlusion has been detected. This procedure treats the occluded area in the same way

as a part of the image with missing data as in [9], which is reasonable. Another way is that

the occluded region can be reconstructed in order to improve further the segmentation results.

Let ΩOcc be the occlusion masks, e.g. the output after implementing Algorithm 4. Here we
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Algorithm 4 The algorithm for occlusion detection using the displacement field to predict the
contents in the next frame inside a contour.
INPUT: The previous frame Fp, the current frame Fc, displacement field D
OUTPUT: Occlusion mask.

1. Deformation Deform Fp using displacement field D into FDe f ormed
p .

2. Interpolation Interpolate FDe f ormed
p to get in intensities in each grid point.

3. Low-pass filtering Low-pass filter the images FDe f ormed
p and Fc.

4. Similarity measure Compare FDe f ormed
p and Fc inside contour Γ2 using a similarity mea-

sure to get a similarity measure for each pixel.

5. Thresholding Find occlusions by thresholding in the similarity measure image.

reconstruct the occluded regions ΩOcc by assigning the intensity values in the occluded regions

with the mean value of the intensities inside the contour but excluding the occluded regions,

e.g.:

I(x) = µint,∀x ∈ΩOcc (3.21)

where

µint = µint(Γ) =
1

| int(Γ)\ΩOcc|

∫
int(Γ)\ΩOcc

I(x)dx. (3.22)

3.4 Experimental Results

Following the Algorithm 2, we implement the proposed model to segment a selected object

with approximately uniform intensity frame-by-frame. The minimization of the functional

is obtained by the gradient descent procedure (3.12) implemented in the level set framework

outlined in Section 3.2.1. Since the Chan-Vese segmentation model finds an optimal piecewise-

constant approximation to an image, this model works best in segmenting object that has nearly

uniform intensity.

The choice of the coupling constant γ is done manually. It is varied to see the influence of

the interaction term on the segmentation results. The contour is only slightly affected by the

prior if γ is small. On the other hand, if γ is too large, the contour will be close to a similarity

transformed version of the prior. To choose a proper γ is rather problematic in segmentation

of image sequences. Using strong prior can give good results when the occlusions occur, but
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when segmenting the image frame where occlusions do not occur, the results will be close to

the prior.

In Figure 3.2, we show the segmentation results for a nonrigid object in a synthetic image

sequence, where occlusion (the gray bar) occurs. Another experiment on a human walking

image sequence shown in Figure 3.5 where an occlusion (the superposition of another person)

occurs. In both experiments, the standard Chan-Vese method fails to segment the selected

object when it reaches the occlusion (Top Row). The result can be improved by adding a

frame-to-frame interaction term as proposed in (3.11) (Bottom Row). In these experiments, we

use quite large γ to deal with occlusions. As we can see on the last frame in Figure 3.5, the

result is close to a similarity transformed of the prior although intensities in between the legs

are different from the object.

Figure 3.2: Segmentation of a nonrigid object in a synthetic image sequence with additive Gaus-
sian noise. Top Row: without the interaction term, noise in the occlusion is captured. Bottom Row:
with interaction term, we obtain better results.

Figure 3.3: Left: Deformation field. Right: Frame 4 after deformation according to the displace-
ment field onto Frame 5.

As described in Section 3.3.1 and Section 3.3, occlusion can be detected and located by

deforming the current frame according to the displacement and compare the deformed frame
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Figure 3.4: Detected occlusions in the synthetic image sequence.

Figure 3.5: Segmentation of a walking person partly covered by an occlusion in the human walking
sequence. Top Row: without interaction term, and Bottom Row: with interaction term

Figure 3.6: Detected occlusion in the human walking sequence.

with the next frame (inside the contour S2). By using the segmentation results of the image

sequences, we implement the Algorithm 3 and 4. First we compute the displacement field

based on the segmentation results of two frames. In Figure 3.3, we show the displacement field

of Frame 4 and 5. With this displacement field, we can do full deformation of the Frame 4 onto

Frame 5 (Figure 3.3 right) and then compare the intensities between Frame 5 and deformed

Frame 4. By comparing, we can then classify the intensities as having the same or different

value by thresholding. In Figure 3.4 and Figure 3.6, we show the occluded regions in the Frame
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1-5 of Figure 3.2 and in the Frame 2 of Figure 3.5, respectively.

After we reconstruct the occluded regions, we implement the Algorithm 2 again by using

smaller coupling constant γ in order to allow more deformation of the contours. As we can

see from Figure 3.7 and Figure 3.8, the results are better if we reconstruct the occluded regions

than the ones without reconstruction.

Figure 3.7: Segmentation of the synthetic image sequence by using smaller coupling constant than
the one in Figure 3.2. Top row: without reconstruction of the occluded regions. Bottom row: after
the occluded regions are reconstructed.

Figure 3.8: Segmentation of the human walking sequence when by using smaller coupling constant
than the one in Figure 3.5. Top row: without reconstruction of the occluded regions. Bottom row:
after the occluded region is reconstructed.

3.5 Conclusions

We have presented a method for segmentation and occlusion detection of image sequences

containing nonrigid, moving objects. The proposed segmentation method is formulated as
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variational problem in the level set framework, with one part of the functional corresponding

to the Chan-Vese model and another part corresponding to the pose-invariant interaction with

a shape prior based on the previous contour. The optimal transformation as well as the shape

deformation are determined by minimization of an energy functional using a gradient descent

scheme. The segmentation results can then be used to detect the occlusions by the proposed

method which is formulated as a variational contour matching problem. By using occlusion

information, the segmentation can be further improved by reconstructing the occluded regions.

Preliminary results are shown and its performance looks promising.
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Chapter 4

Continuous Cuts for Prior-Based
Object Segmentation

This chapter is a reformatted and slightly modified version of paper [62] without affecting

the content or the results. Here we propose a novel prior-based variational object segmenta-

tion method in a global minimization framework which unifies image segmentation and image

denoising. The idea of the proposed method is to convexify the energy functional of the Chan-

Vese method in order to find a global minimizer, so called continuous cuts. The method is

extended by adding an additional shape constraint into the convex energy functional in order

to segment an object using prior information. We show that the energy functional including a

shape prior term can be relaxed from optimization over characteristic functions to optimization

over arbitrary functions followed by a thresholding at an arbitrarily chosen level between 0 and

1. Experimental results demonstrate the performance and robustness of the method to segment

objects in real images.

4.1 Introduction

Object segmentation is one of the most important and challenging processes in computer vision

which aims at extracting objects of interest from a given image. The segmentation results are

then used as input for many applications such as recognition, tracking, and classification. The

object of interest may exhibit variability in pose and shape which makes segmentation difficult

and still a major topic of research.
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Many approaches have been proposed to solve the object segmentation problem. In partic-

ular, variational methods for image segmentation have had great success such as snakes [81],

geodesic active contours [26], geodesic active region [113] and the Chan-Vese method [30].

Yet, the main drawback of those methods is the existence of local minima due to non-convexity

of the energy functionals. Minimizing those functionals by gradient descent methods makes

the initialization critical. A number of methods have been proposed to find global minima such

as [4, 20, 32]. Their approaches give promising results, but it is unclear how to integrate shape

constraints.

Integrating shape priors into active contour methods has been proven to improve the ro-

bustness of the segmentation methods in the presence of occlusions, clutter, and noise in the

images. Various methods have been proposed to address shape prior integration into segmen-

tation process such as [34, 39, 90, 122, 125, 141] and the references therein.

This chapter suggests a novel variational approach to prior-based segmentation by adding

a shape prior into the global minimization framework using the Mumford-Shah [103] and the

Chan-Vese [30] models. The segmentation process is carried out concurrently with the denois-

ing of the image and the transformation of the shape prior to the object of interest. The idea

of the proposed method is to use the relaxation of the non-convex energy functional of the

Chan-Vese model to the minimization over all functions in such a way that the minimizer of

the extended functional can be transformed into the minimizer for the original model by simple

thresholding as done in [32]. This method is often called continuous cuts and the relaxed en-

ergy functional can then be minimized by gradient descent methods to find a global minimum.

The main contribution of this chapter is to extend this method to also include a shape prior term

while maintaining the relaxation property.

4.2 Continuous Cuts

Minimizing the variational formulation of the Chan-Vese method [30] by gradient descent

methods can get stuck in local minima due to the non-convexity of the energy functional.

In order to overcome this, Chan et al. [32] propose to convexify the energy functional of the

Chan-Vese method [30]. By introducing an auxiliary variable u, the Chan-Vese method can be
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reformulated as the following non-convex minimization problem

min
u=1Σ(x)

{
Es(u) =

∫
Ω

|∇u|

+λ

∫
Ω

{(
I(x)−µ1

)2−
(
I(x)−µ2

)2
}

udx
}

,

(4.1)

where 1Σ(x) denotes a characteristic function of a subset Σ of Ω and λ ,µ1,µ2 ∈ R and I(x) is

the given image. In the next step (4.1) is relaxed to the convex problem

min
0≤u≤1

Es(u), (4.2)

where now u is an arbitrary function bounded between 0 and 1. If u(x) is a minimizer of (4.2),

then the set Γ(µ) = {x ∈Ω,u(x) > µ} has to be a minimizer of the Mumford-Shah functional

[103] for a.e. µ ∈ [0,1], implying that the solution to (4.1) can be obtained by thresholding

u at an arbitrary threshold between 0 and 1, for details see [32]. By having a convex energy

functional, we can get a global minimum by using a standard gradient descent method. Notice

that (4.2) is not strictly convex which means that it can have several global minima.

4.3 Shape Priors for Continuous Cuts

We would now like to introduce an additional shape prior term into (4.1) and the natural choice

is to use a shape prior energy of the form

Ep(u) =
∫

Ω

(u−1Ωp)
2 dx, (4.3)

where 1Ωp is the characteristic function of the shape prior template. Inspired by the fact that

∇Ep(u) = 2(u−1Ωp), we consider the minimization problem

min
u=1Σ(x)

{
Esp(u)

= Es(u)+ γ

∫
Ω

(
û−1Ωp(x)

)
udx

}
,

(4.4)

where γ ∈ R and û is a ’frozen’ u which is updated after finding a solution to (4.4). We further

relax (4.4) to

min
0≤u≤1

Esp(u). (4.5)
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Figure 4.1: Motivation for using the shape prior as in (4.4)

Note that (4.5) still preserves the convexity of (4.2) with respect to u. The reason for not

using u directly is that we would like to preserve the property that the solution to (4.4) can be

obtained from the solution to (4.5) by a simple thresholding. Also note that the shape prior

term
(
û− 1Ωp(x)

)
has the property that it is positive on {û ≥ µ}\Ωp pushing u to zero and

negative on Ωp\{û ≥ µ} pushing u to one, which is driving the set {û ≥ µ} towards Ωp, see

Figure 4.1. We are now ready to prove the main theorem of this chapter:

Theorem 4.3.1 For any given µ1,µ2 ∈ R and û ∈ R2, a global minimizer of (4.4) is also a
global minimizer of (4.5).

Proof We use the coarea formula and the proof in [32] with additional shape prior term∫
Ω

(û−1Ωp)u(x)dx

=
∫ 1

0

∫
Ω∩{x:u(x)>µ}

(û−1Ωp)dxdµ.

Setting Γ(µ) := {x : u(x) > µ}, for any u(x) ∈ L2(Ω) such that 0≤ u(x)≤ 1 for all x ∈Ω,

we have (4.5) is equal to

min
u,µ1,µ2

{∫ 1

0

{
Per(Γ(µ);Ω)

+λ

∫
Γ(µ)

(I(x)−µ1)2 dx+λ

∫
Ω\Γ(µ)

(I(x)−µ2)2 dx

+γ

∫
Γ(µ)

(û−1Ωp)dx
}

dµ−C

}
,

where
∫ 1

0 Per(Γ(µ);Ω)dµ =
∫

Ω
|∇u| and C =

∫
Ω
(I(x)−µ2)2 dx is independent of u. It follows
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Figure 4.2: The evolution of u(x) (top row) and the corresponding histogram (bottom row). First
column: initial. Middle columns: intermediate results. Right column: final results

that if u(x) is a minimizer of (4.5), then it is also a minimizer of (4.4).

Corollary 4.3.2 The solution to (4.4) can be obtained from the solution to (4.5) by thresholding
at an arbitrary level between 0 and 1.

In order to make (4.5) invariant with respect to similarity transformations, the convex min-

imization problem of (4.5) is reformulated by adding transformation parameters, as in [34],

with the respect to the shape prior 1Ωp

min
0≤u≤1,s,θ ,a

{
Es + γ

∫
Ω

(
û−1Ωp(sRx+a)

)
u
}

, (4.6)

for the scaling s, translation vector a, and rotation matrix R(θ):

R(θ) =
(

cosθ −sinθ

sinθ cosθ

)
.

Notice that the minimization problem of (4.6) is no longer convex in all unknowns, but the

convexity with respect to u facilitates the computation of the transformation parameters. To

minimize (4.5), the constrained minimization problem is reformulated as the unconstrained

minimization problem by adding a penalty term ν(u)

min
u

{
Ee

sp(u) = Esp(u)+α

∫
Ω

ν(u)
}

, (4.7)

where ν(ξ ) := max{0,2|ξ − 1
2 |−1} and α > λ

2 ‖(I(x)−µ1)2−(I(x)−µ2)2‖L∞(Ω). This proce-

dure is exactly the one used in [32] and it can be proven in the same way that a solution to (4.7)
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is also a solution to (4.5). The function ν(ξ ) is then regularized as νε(ξ ) by a small constant

ε > 0 to smooth the sharp bend at 0 and 1. We choose regularized ν as the following:

νε(ξ ) =
−ξ if ξ <−ε,

−ξ +25(ε +ξ )2 if −ε ≤ ξ < ε,
0 if ε ≤ ξ < 1− ε,

−1+ξ +25(ε +1−ξ )2 if 1− ε ≤ ξ < 1+ ε,
ξ −1 if 1+ ε ≤ ξ ,

where ε > 0 is a small constant. In [32], it is proven that by adding a penalty term ν (4.6) has

the same set of minimizers as (4.7) (without the shape prior term γ
∫

Ω

(
û−1Ωp(sRx+a)

)
udx).

4.4 Implementation and Results

The proposed energy functional (4.6) is minimized with respect to u and the transformation

parameters s,R,a by gradient descent method. The evolution equations associated with the

Euler-Lagrange equations of (4.6) are the following

∂u
∂ t

= ∇ · ( ∇u
|∇u|

)−αν
′
ε(u)

−λ

((
I(x)−µ1

)2−
(
I(x)−µ2

)2
)

(4.8)

−γ
(
û−1Ωp(sRx+a)

)
,

∂ s
∂ t

= γ

∫
Ω

∇1Ωp(sRx+a)uRxdx, (4.9)

∂θ

∂ t
= γ

∫
Ω

∇1Ωp(sRx+a)us
dR
dθ

xdx, (4.10)

∂a
∂ t

= γ

∫
Ω

∇1Ωp(sRx+a)udx, (4.11)

where ν
′
ε(u) denotes the derivative of νε(u). Here the gradient descent of u (4.8) is coupled

with gradient descents of the transformation parameters which update dynamically the trans-

formation parameters to map 1Ωp and û in the best possible way (see Algorithm 5).

We implement the proposed method to segment objects in images. As shown in Figure 4.2,

u(x) takes values between 0 and 1 during the evolution and at convergence, it is very close to

being binary. The values of u(x) at the end accumulate near 0 and 1, as shown in the histograms

of u(x). The regularized exact penalty term νε(ξ ) in (4.7) prevents them to be 0 and 1. Figure

4.3 and 4.4 show the segmentation results of a bird [94] and a cup. The given images are used
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Algorithm 5 Algorithm for minimizing the proposed segmentation functional
INPUT: I,u,1Ωp ,s,θ ,a,α,λ ,γ,∆t
OUTPUT: Optimal u

1. Compute µ1 and µ2 as mean intensities of region inside and outside the contour.

2. Compute the transformation parameters using (4.9), (4.10), and (4.11).

3. Transform the prior.

4. Update u using (4.8).

5. Repeat until convergence.

as the initial of u(x) and the contours are represented by u(x) = 0.5. As we can see, at the

convergence state, global minima are found and the segmentation results can then be improved

to segment objects of interest by adding shape priors, which are segmented manually and are

then transformed to different pose, despite the presence of occlusions.

4.5 Conclusions

We have proposed a novel variational region-based active contour method for prior-based ob-

ject segmentation in a global minimization framework. The method is based on convexifying

the energy functional of Chan-Vese method and adding a shape prior term as a constraint to

segment an object whose global shape is given. The energy functional can be relaxed from

optimization over characteristic functions to over arbitrary functions followed by a threshold-

ing at an arbitrarily chosen level between 0 and 1. Experimental results demonstrate desirable

performance of the method to segment objects of interest in the images.
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4. CONTINUOUS CUTS FOR PRIOR-BASED OBJECT SEGMENTATION

Figure 4.3: Segmentation of a bird using continuous graph cuts and its corresponding u. Top row:
without a shape prior. Bottom row: with a shape prior.

Figure 4.4: Segmentation of a cup using continuous graph cuts and its corresponding u. Top row:
without a shape prior. Bottom row: with a shape prior.
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Chapter 5

View Point Tracking of Rigid Objects
using Region-Based Segmentation
Model and Shape priors from Shape
Submanifolds

This chapter is a reformatted and slightly modified version of paper [71] without affecting

the content or the results. Here we study the task to infer and to track the viewpoint onto a

3D rigid object by observing its image contours in a sequence of images. To this end, we

consider the manifold of invariant planar contours and learn the low-dimensional submanifold

corresponding to the object contours by observing the object off-line from a number of different

view-points. This submanifold of object contours can be parametrized by the view sphere and,

in turn, be used for keeping track of the object orientation relative to the observer, through

interpolating samples on the submanifold in a geometrically proper way. Our approach replaces

explicit 3D object models by the corresponding invariant shape submanifolds that are learnt

from a sufficiently large number of image contours, and is applicable to arbitrary objects.

5.1 Introduction

The representation of planar shapes has been a focus of research during the last few years

[82, 98, 99, 134]. By mathematically separating similarity transforms and potentially also repa-
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rameterizations from other deformations of planar curves, an invariant representation of planar

shapes is obtained in terms of a smooth manifold embedded in a Euclidean space. Furthermore,

distances between shapes can be computed that are only sensitive to shape deformations, by de-

termining the geodesic path between the corresponding points of the shape manifold (Fig. 5.3

below provides an illustration).

Here we adopt this representation and show that it is accurate enough to infer the change in

aspect of a given rigid 3D object, represented by a point on the view sphere, just by observing

2D shapes of its silhouette in a given image sequence – see the left panel of Fig. 5.1 below.

To this end, we assume to be given a collection of silhouettes of any known object, that

we represent one-to-one by a corresponding set of points on the view sphere. These data

can be acquired off-line by observing the object from different directions. We regard these

shapes as samples of an object-specific submanifold of the manifold of all planar shapes, that

is parameterized by the view sphere. Taking into account the geometry of this submanifold and

interpolating the shape samples accordingly, we show that either the viewpoint of a moving

camera, or object pose relative to the observer, can be tracked by observing deformations of

the object’s silhouette in an image sequence.

We point out the 3D models are not utilized in this work, besides illustrating graphically

various points below. Rather, a sample set of object contours observed from different view-

points, along with the information to what object they belong, define the input data. Our results

are novel and relevant, for instance, for reaching and maintaining a reference position relative

to a moving object, through vision based control, in man-made and industrial scenes.

Related work. Related work has been published recently in [45, 56, 80, 87]. Etyngier et

al. [56] use Laplacian eigenmaps [10] for embedding a set of training shapes into a low di-

mensional standard Euclidean space. They present a method for projecting novel shapes to

the submanifold representing the training samples, in order to model a shape prior for image

segmentation. Similarly, Lee and Elgammal [87] use locally linear embedding (LLE) [127] to

learn separately a configuration manifold of human gaits and a view manifold corresponding

to a circle on the view sphere, based on a tensor factorization of the input data.

While nonlinear Euclidean embeddings (Laplacian eigenmap, LLE) of locally connected

similarity structures (weighted adjacency graphs) are employed in [56, 87], we use directly the

intrinsic manifold of invariant shapes as developed in [82, 98]. Statistical models based on this

manifold have been elaborated in [45, 80] for deformable objects and shapes of classes of rigid

objects, respectively, in connection with image segmentation and computational anatomy.
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By contrast, we focus on tracking and pose estimation of a single rigid object, based on contour

deformations and the corresponding shape submanifold. This approach is novel. Our work

may be regarded as a learning-based approach for associating views and contours of arbitrary

objects, that is both more general and easier to apply than earlier work on model-based contour

representations of specific objects [55, 143].

5.2 Shape Model, Object Representation, Learning

We work with the elastic closed pre-shape space covering closed regular two-dimensional

curves, proposed in [98]. A regular curve α : [0,1] 7→ R2 is represented by α(t) = α0 +∫ t
0 eΦ(t)eiΘ(t) dt, with the integrand denoting a velocity function along the curve. eΦ(t) describes

the curve speed, while Θ(t) is the tangent angle relative to the real axis in the complex plane.

To achieve invariance under translation, the integral constant α0 is left out, and shapes are rep-

resented by pairs (Φ,Θ) as elements of a vector space of functions denoted by H. To also

achieve scale and rotation invariance and to restrict to closed regular curves, further constraints

turn H into the space of pre-shapes C:

C :=

(Φ,Θ) ∈H :

∫ 1
0 eΦ(t)eiΘ(t) dt = 0 (closure)∫ 1
0 eΦ(t) dt = 1 (scale)∫ 1
0 Θ(t)eΦ(t) dt = π (rotation)

 . (5.1)

So, curves are restricted to length 1 and an angle function average of π . Note that this is an

arbitrary choice, we adopted π from [98]. Invariance with respect to reparameterizations is

not handled intrinsically, since it would raise a considerable additional computational burden.

Instead, shapes are matched by dynamic programming, following [129].

The elastic Riemannian metric [146] used on C is

〈(p1, t1),(p2, t2)〉(Φ,Θ) := a
∫ 1

0
p1(t)p2(t)eΦ(t) dt +b

∫ 1

0
t1(t)t2(t)eΦ(t) dt (5.2)

with constants a,b ∈ R that weight the amount of stretching and bending, and with tangent

vectors (p{1,2}, t{1,2}) at (Φ,Θ). [98] proposes ways to numerically approximate geodesics

on a discrete representation of C, as well as to approximate the inverse exponential map by

gradient descent on C. Another recent representation of elastic shape is discussed in [78], also

cf. [97], which allows for faster computations. However, rotation invariance is not easy to
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Figure 5.1: Illustration of a view sphere. Right hand: indicated are three sampled contours of an
airplane seen from a camera from points on the view sphere. The object is located in the center of
the sphere. Left hand: illustration of the shape sub-manifold. The green lines between sphere and
manifold indicate corresponding points, the blue arrow indicates a point that is interpolated using,
in this case, three points which are neighbors on the sphere. This specific object was taken from
the Princeton 3D shape benchmark [131].

achieve. [79] introduces an optimization approach to find minimal geodesics between orbits

under the action of rotations and reparameterizations.

View Sphere Sampling. The input data of our approach are given samples on the view sphere

S2 from any object, at known positions (see Fig. 5.1). These data are acquired off-line and

result in a sample set of points in C.

5.3 Pose Inference and Tracking on the View Sphere

This section describes a model that we use for modeling motion of a point on the sphere that

represents the object’s shape in a submanifold of C, as well as a simple scheme to predict posi-

tions locally. We also explain how we keep track of points on the view sphere that correspond

to shapes measured from images in an image sequence. To avoid confusion with tracking an

object in the image plane, we call the process of tracking the position on the view sphere sphere

tracking.

Motion Model. We model a mass point on the sphere as motion in a potential field V (x) =

m ·g ·(x−P)2, together with a friction component. m is a constant inertia, g weights the impact

of V , and β in Equation (5.3) weights the impact of friction. The motion is governed by the
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differential equation

−2 ·m ·g · (s(t)−P)︸ ︷︷ ︸
−∇V

−β · ṡ(t)︸ ︷︷ ︸
Stokes friction

= m · s̈(t) . (5.3)

This is applied to a point in the tangent space of the group of 3D rotations, i.e. s(t),P ∈ TSO3,

with rotations representing motions of a point on the sphere S2. The corresponding exponential

and logarithmic maps for SO3 can be efficiently computed in closed form. The “center of

gravitation” P is updated whenever a new measurement Pk is available. Fig. 5.2 shows an

illustration of the motion model following a path of points P.

Figure 5.2: Representing and tracking shape changes as motions on the view sphere. Blue: mea-
surements Pk. Red: path s(t) of the mass point. Magenta: predicted points. The start point of the
trajectory is at the far left end. The green grid lines indicate the underlying sphere.

Predictions. Given past measurements pi ∈ S2, we would like to predict s(t) locally. Assume

to be given a new measurement Pk at time tk, and the motion model to be at point s(tk). We

then follow the trajectory governed by (5.3) until the distance d(s(tk),Pk) has been traveled, say

at time t ′k, so that d(s(tk),s(t ′k)) = d(s(tk),Pk), and then continue for an additional fixed time

period ∆t = t ′k− tk to obtain the prediction

ppred := s(t ′k +∆t) . (5.4)

As illustrated in Fig. 5.2, this simple “mechanical” model can result in rather sensible paths

and corresponding predictions of shape changes, as detailed below.

Shape Interpolation. Interpolation of shapes on the view sphere at a point s ∈ S2 is realized

by Karcher means using a local neighborhood M of sampled shapes around s. The empirical

Karcher mean is

µ = argmin
m∈C

|M|

∑
i=1

ai ·d(m, pi)2 , (5.5)

with d(·, ·) the geodesic distance on C, and weights ai ≥ 0 with ∑i ai = 1. µ can in practice
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Figure 5.3: Illustration of shape interpo-
lation with Karcher means in the closed
pre-shape space C. The corners repre-
sent the original shapes, the other con-
tours are interpolations weighted with
their barycentric coordinates. The cor-
ner curves are randomly chosen from the
MPEG-7-CE1 shape data base.

Figure 5.4: Keeping track of the spheri-
cal position: Shape ck and position tk are
known, as well as a new shape q. What
is the (approximate) position tk+1 on the
view sphere corresponding to q?

be calculated by gradient descent [115]. Fig. 5.3 illustrates the interpolation of three shapes

depicted at the corners of the triangle.

Keeping Track of the Spherical Position. Assume that we know initially a point ck ∈ C

and the corresponding position tk ∈ S2. Now, suppose a new shape q ∈ C is to be considered,

typically delivered by an image segmentation algorithm that tracks an object over a number of

frames (see the next section). Fig. 5.4 illustrates the following problem: We wish to determine

a point ck+1 ∈ C at tk+1 ∈ S2 on the sub-manifold modeled by the samples pi from the view

sphere at spherical coordinates ti ∈ S2, that is as close as possible to q. That is, we would like

to minimize the geodesic distance d(m,q) = ‖Logm(q)‖m by minimizing

F(m,q) = ‖Logm(q)‖2
m , (5.6)
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where m results from minimizing (5.5),

m(t) = argmin
m̃∈C

(
|M|

∑
i=1

ai(t) ·d(m̃, pi)2

)
(5.7)

with both the neighborhood M and the weights ai depending on the spherical position t. We

then solve at frame k +1

t?k+1 = argmin
t

F(m(t),q) (5.8)

using non-linear conjugate gradient descent on the view sphere, as follows: choose b`,1,b`,2 ∈

R3 to be orthonormal basis vectors of the tangent space Tt`(S2), and a small constant ∆ >

0. Notice that in the following equations, Exp and Log denote the exponential and inverse

exponential maps on the sphere S2, not on the pre-shape space C.

trans : T (S2)×S2×S2 7→ T (S2), v2 = trans(v1, t1, t2) (5.9)

is a function that takes a tangent vector at t1 and translates it along a geodesic from t1 to t2.

Then, let t0 = t?k , β−1 = 0, d̃−1 = 0, and

v` =
2

∑
i=1

b`,i ·
F(m(Expt`(∆ ·b`,i)),q)−F(m(t`),q)

∆
(5.10)

d` = −v` +β`−1d̃`−1 (5.11)

t`+1 = Expt`(α ·d`) (5.12)

d̃` = trans(d`, t`, t`+1) (5.13)

ṽ` = trans(v`, t`, t`+1) (5.14)

β` =
[v`+1− ṽ`]>v`+1

v>` v`
. (5.15)

v` takes the role of the gradient direction, in the tangent space of S2 at the current point t`.

d` is the search direction, computed from the gradient v` and the previous search direction d̃`−1,

with factor β`−1 calculated using the Polak-Ribière variant of the non-linear conjugate gradient

method in Equation (5.15), which is more robust than the Fletcher-Reeves variant according

to [106]. The rest of the above equations are needed to adapt to the geometry of the sphere.

Specifically, we need to translate tangent vectors to the current iterate t` to be able to combine

them, and we need to go back to the sphere using the exponential map.

In order to find a step length R 3 α > 0 for use in Equation (5.12), we use a standard line
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search procedure with the Armijo or sufficient decrease condition

F(m(Expt`(α ·d`)),q)≤ F(m(t`),q)+ c ·α · (v>` d`) , 0 < c < 1 . (5.16)

Figures 5.5 and 5.6 depict paths on the view sphere.

5.4 Segmentation and Image Contours

There are several possibilities to obtain contours from actual images, and to track contours

while they are moving in the image plane. We have so far applied two methods: the well

known region-based segmentation method of the Chan-Vese [30] and the related, more recent

method from [32]. Since [32] finds a global optimum and is suitable if the images contain

only a more or less homogeneous background and a single object. In more complex scenes

containing clutter and heterogeneous background the level set method that only finds local

optima is advantageous. We sketch these two approaches below, and how results from the

sphere tracking are used as prior for steering the segmentation process.

Level sets. Our implementation of level set segmentation uses the image energy from [30] and

additionally the curvature diffusion regularization term from [49], replacing the more common

mean curvature term in the evolution in all our experiments. We also optionally use a prior

energy based on [34] and [123]:

EShape =
∫

Ω

[H(φ(x))−H(φ0(sRx+a))]2 dx. (5.17)

H denotes the Heaviside function, φ and φ0 are the embedding functions of the evolving contour

and the prior contour, respectively and the scale s ∈ R, translation a ∈ R2, and rotation matrix

R(θ) =
(

cosθ −sinθ

sinθ cosθ

)
.

Differentiating (5.17) with respect to the transformation parameters yields

dE
ds

= −
∫

Ω

Rx [H(φ(x))−H(φ0(sRx+a))] ·H ′(φ0(sRx+a) ·∇φ0(sRx+a)dx,

dE
dθ

= −
∫

Ω

[H(φ(x))−H(φ0(sRx+a))] ·H ′(φ0(sRx+a) · s · dR
dθ
·∇φ0(sRx+a)dx,

dE
da

= −
∫

Ω

[H(φ(x))−H(φ0(sRx+a))] ·H ′(φ0(sRx+a) ·∇φ0(sRx+a)dx,
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which we use in a gradient descent to solve mins,θ ,a EShape.

Global Segmentation Method. The variational segmentation model of [30] suffers from the

existence of local minima due to the non-convexity of the energy functional. Segmentation

results depend on the initialization. To overcome this limitation, Chan et al. [32] propose

algorithms which are guaranteed to find global optima as follows: For a normalized grey scale

image I(x) : Ω 7→ [0,1] on the domain Ω and constants λ ,µ1,µ2 ∈R, a global minimizer u can

be found by minimizing the convex functional

min
0≤u≤1

∫
Ω

|∇u|dx+λ

∫
Ω

{(I(x)−µ1)2− (I(x)−µ2)2}u(x)dx . (5.18)

As mentioned and proven in [32] that if u(x) is a solution of (5.18), then for almost every

γ ∈ [0,1] 1{x : u(x) > γ}(x) is a global minimizer of [30].

In order to segment an object of interest in the image plane, we modify (5.18) by adding an

additional term as shape prior

min
0≤u≤1

∫
Ω

|∇u|dx+λ

∫
D
{(I(x)−µ1)2− (I(x)−µ2)2 +(û(x)− ũ(x))}u(x)dx , (5.19)

where û is a ’frozen’ u which gets updated after each time step in the numerical implementa-

tion, and ũ is the prior template. We would like (5.19) to be invariant with respect to Euclidean

transformations of the object in the 2D image plane. To this end, we add transformation pa-

rameters, as in [34], of the fixed û with respect to the prior ũ by minimizing

EShape =
∫

Ω

[û(x)− ũ(sRx+a)]u(x)dx. (5.20)

As a result, we obtain

min
u,s,R,a

∫
Ω

|∇u|dx+λ

∫
Ω

{(I(x)−µ1)2− (I(x)−µ2)2 +(û(x)− ũ(sRx+a))}u(x)dx , (5.21)

which is minimized by gradient descent. This functional is no longer convex in all unknowns,

but the convexity with respect to u facilitates the computation of the transformation parameters.

Possible Priors. Points on the view sphere predicted by the motion model can be used to

provide a prior when segmenting subsequent frames of an image sequence. This can be done

in several ways — the most obvious is to take the shape at ppred ∈ S2 from Equation (5.4) as a

template. To incorporate the prior into the segmentation method, it is most appealing to impose

75



5. VIEW POINT TRACKING OF RIGID OBJECTS USING REGION-BASED
SEGMENTATION MODEL AND SHAPE PRIORS FROM SHAPE SUBMANIFOLDS

a vector field defined on a contour C that drives C along a geodesic in shape space towards

the prior; this appears to be a sensible choice and has been proposed amongst others in [80].

Parametric active contour methods seem to be naturally suited for this sort of modification,

since they work directly on points lying on the contour. For the implicit level set method

[30, 107] or the method described in [32], applying a vector field that is defined only on the

level set defining the interface is a little more involved. Imposing a flow along a geodesic

in the implicit framework for other distance measures has been proposed, e.g., in [132]. The

prior we use is a single shape predicted by the motion model on the view sphere. The shape

is interpolated using a weighted Karcher mean and converted to a binary image. This binary

image is then used as a prior for segmentation.

5.5 Experiments and Evaluation

Figures 5.5 and 5.6 show the results of the following experiment: for a given sequence {I1, . . . , In}
of images depicting a moving object, the contour c1 and view sphere position t1 for the first

image were initialized manually. Then, using the methods from Sections 5.3 and 5.4, for each

subsequent image Ii+1 the contour ci+1 and the respective view sphere point ti+1 were updated.

The contour ci from the previous image was used for initialization and as a weak prior for the

segmentation of image Ii+1. The segmentation result from Ii+1 was then used to calculate ti+1,

starting at ti, using the method described in Section 5.3.

In Fig. 5.6, an occluding object was added in a different scene, which could be successfully

handled by using ci as prior template for the segmentation algorithm. For these experiments,

the level set algorithm was used. The figures depict a few snapshots from the whole sequences,

which respectively consist of 100 and 50 frames each. These experiments show that the sphere

tracking mechanism is capable of keeping track of the view sphere position fairly well, given

a sufficient number of samples on the view sphere for interpolating the shape submanifold

corresponding to the object. Fig. 5.7 shows results for a real recorded sequence.

5.6 Conclusions and Further Work

We presented a method that combines techniques from elastic shape manifold modeling, seg-

mentation and optimization, to track the change of pose of a 3D object through tracking its

contour. While the given contours of the object are currently sampled more or less uniformly
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Figure 5.5: Experiment tracking the view sphere position using only the segmented contours from
a sequence of images. Right: shown are measurements obtained on the view sphere, for the com-
plete sequence. Left: a few images from the sequence are shown, the corresponding interpolated
contours from the shape space C to their right. The initial position t0 ∈ S2 and shape s0 were given
manually. Then for each image, the result from the previous one was used as initialization. A
region based level set segmentation was used, with a curvature regularization term after [49].

on the view sphere, an adaptive sampling strategy may be investigated in future work: the

amount of contour change depends on the position on S2 and the object in question. Advanced

sampling should adapt the density of points in areas of rapid shape change on S2, thus exploit-

ing the geometry of the shape submanifold already during data acquisition. However, in our

experiments sampling 162 points appeared to be sufficient.

Another point concerns initialization, which is currently done manually. Automatic initial-

ization may be achieved for example by a voting scheme on the first few frames, for sequences

where the first few contours can be extracted well enough by any extraction method.

Regarding the segmentation prior, another option is to investigate weighted combination of

a local neighborhood of shapes around ppred to create a template with a “fuzzy” boundary, in

order to take more into account inherent uncertainties of the predicted path of shapes.

A last matter worth mentioning is computation speed. Specifically, potential for speed-up

is in the numerical calculation of the Log map for C.

77



5. VIEW POINT TRACKING OF RIGID OBJECTS USING REGION-BASED
SEGMENTATION MODEL AND SHAPE PRIORS FROM SHAPE SUBMANIFOLDS

Figure 5.6: Sphere tracking experiment with occlusion. The top row shows the tracked view
sphere path on the right (the arrows indicate the direction of motion), and an illustration of the
image sequence on the left. The color coding shows the corresponding contours and view sphere
positions. Using the resulting shape from each previous frame to create a prior for the segmentation
algorithm enables the sphere tracking to keep going for this sequence, where a small occluding
object moves in front of the object. Each row shows the area of interest from 3 subsequent frames
with the superimposed segmentation result, followed by the contour representing the shape tracked
on the view sphere.
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Frame 0 Frame 97

Figure 5.7: Sphere tracking with a real recorded sequence totalling 97 frames. Roughly every
20th is shown. Indicated in each frame are the segmentation result (green) and aligned interpolated
shape (red). Difficult situations where the view tracking goes wrong are indicated in red, yellow
are situations which are just ok. The time line on the bottom indicates the situation for the whole
97 frames.The spheres on the right indicate the inferred view positions along the sequence.
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Chapter 6

Pose Invariant Shape Prior
Segmentation using Continuous Cuts
and Gradient Descent on Lie Groups

This chapter is a reformatted and slightly modified version of paper [109] without affecting

the content or the results. Here we propose a novel formulation of the Chan-Vese model for

pose invariant shape prior segmentation as a continuous cut problem. The model is based on

the classic L2 shape dissimilarity measure and with pose invariance under the full (Lie-) group

of similarity transforms in the plane. To overcome the common numerical problems associ-

ated with step size control for translation, rotation and scaling in the discretization of the pose

model, a new gradient descent procedure for the pose estimation is introduced. This procedure

is based on the construction of a Riemannian structure on the group of transformations and a

derivation of the corresponding pose energy gradient. Numerically, this amounts to an adap-

tive step size selection in the discretization of the gradient descent equations. Together with

efficient numerics for TV-minimization we get a fast and reliable implementation of the model.

Moreover, the theory introduced is generic and reliable enough for application to more general

segmentation and shape models.
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6.1 Introduction

The celebrated model of T. Chan and L. Vese [30] for piecewise constant, two-phase segmen-

tation of a gray scale image I : Ω→R+ can be formulated as follows: Among all characteristic

functions u = 1Σ of measurable sets Σ, contained in the bounded (image) domain Ω⊂ R2, and

all pairs of real numbers c = (c0,c1), find u∗ = 1Σ∗ ,c∗ = (c∗0,c
∗
1) which minimizes the following

energy

ECV(u,c) = J(u)+
λ

2

{
〈1−u,(I− c0)2〉+ 〈u,(I− c1)2〉

}
, (6.1)

where λ > 0 is a fixed weight, J(u) =
∫

Ω
|∇u|dx is the total variation of u, and 〈u,v〉=

∫
Ω

uvdx

is the L2 inner product between u and v. Recall that for u = 1Σ, J(u) = Per(Σ), the perimeter

(in Ω) of Σ, i.e. the length of the boundary Γ = ∂Σ in Ω.

Traditionally, and originally [30], minimization of (6.1) was formulated in the level set

framework of Osher an Sethian [107, 108, 130] by setting u = H(φ), where H denotes the

Heaviside function, and φ : Ω→ R an embedding function used to represent the image object

implicitly as Σ = {x∈Ω ; φ(x) > 0}. This highly non-linear optimization problem is solved us-

ing gradient descent, which, in the level set framework, corresponds to the following evolution

PDE for the active contour Γ(t) := ∂Σ(t) = {x ∈Ω ; φ(x, t) = 0},

∂φ

∂ t
= div(

∇φ

|∇φ |
)+

λ

2
[
(I− c0)2− (I− c1)2] |∇φ |,

where t is an artificial time parameter and φ = φ(x, t) a time dependent level set function. At

every instant in this evolution, the gray value estimates c0,c1 are updated according to

c0 = c0(u) =
〈1−u, I〉
〈1−u,1〉

and c1 = c1(u) =
〈u, I〉
〈u,1〉

. (6.2)

One of the most inspiring discoveries in recent years, due to Chan, Esedouḡlu and Nikolova

[32], is that, for any fixed c, the minimization (6.1) with respect to binary label functions u may

be solved exactly by considering a convex relaxation of the problem, where the set of admissible

u’s is enlarged to:

K := {u ∈ BV(Ω) ; 0≤ u(x)≤ 1 for all x ∈Ω}. (6.3)

In fact, it was shown in [32] that if u ∈ K minimizes (6.1), then for almost all thresholds
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t ∈ (0,1) the function

ut(x) =
{

1 if u(x) > t
0 otherwise

(x ∈Ω), (6.4)

is a global minimizer for the original problem. The proof is recalled in Section 6.2.1. Thus,

global minimizers of the Chan-Vese model can be found by truncation of the solution to an

easier, unilaterally constrained, convex variational problem. The use of this truncation property

is referred to as the continuous (graph) cut method, and problems formulated in this manner

can be solved efficiently using fast algorithms for TV-minimization. See, e.g., Chambolle [27].

The problem of including a priori shape information into the segmentation process has been

studied extensively within the level set framework for the last decade or so [31, 40, 90, 123,

124]. The common approach is to include a interaction energy between object Σ and a prior

shape Σ′ into the segmentation functional. If f denotes the characteristic function of the prior

shape Σ′, then a typical shape prior segmentation functional looks like

E(u,c, f ) = ECV(u,c)+
γ

2
‖u− f‖2, (6.5)

where γ > 0 is a fixed coupling constant for the interaction, and ‖u‖=
√
〈u,u〉 is the L2 norm.

The shape interaction in (6.5) may be interpreted geometrically as ‖u− f‖2 = Area(Σ4Σ′),

i.e. the area of the symmetric set difference between the sets Σ and Σ′, c.f. [31] and [123].

The segmentation is now obtained by minimization of the functional (6.5) with respect to the

(binary) label functions u, gray values c and f ∈ F, where F denotes a class of prescribed

shape priors. This formulation is quite general. A specific example, considered in this chapter,

is segmentation with pose invariant priors. In this case F = { f = f0 ◦T}T∈G, where the binary

function f0 is a shape template, and T ranges over a group of transformations G, e.g. the group

of similarity transformations.

Since continuous cuts have emerged as an alternative to level sets for minimization of the

CV- and other segmentation models, it is natural to ask if known shape prior segmentation

models can be reformulated as variational problems possessing the important truncation prop-

erty, which allow them to be solved using TV-minimization algorithms. One such attempt has

been made in [62], see Section 6.2.2, but it does not go all the way.

The purpose of the present work is to formulate the shape prior segmentation model (6.5)

as a continuous cut problem. This is achieved by reformulating the problem as a CV model

(see Section 6.3.1). We specifically consider shape priors which are pose invariant under the
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group of similarity transforms, which involves optimization over a Lie group. In order to

solve this problem efficiently and reliably, we develop a theory for gradient descent on Lie

groups (Section 6.3.3). The problem here is, essentially, to construct a Riemannian structure

on the Lie group. The new theory eliminates the problems associated with step-size selection

in discretizations of the gradient descent ODEs usually encountered in segmentation models

with pose estimation.

6.2 Background: Relaxation in the CV Model

6.2.1 Relaxation in the CV Model

In this section we briefly describe the theory behind the continuous cut solution for the CV

model and its connection to the ROF denoising model and TV-minimization. Let us consider

the minimization of (6.1) over the set of label functions u ∈ K defined in (6.3), and gray values

c ∈ R2. In this setting ECV is a bi-convex functional, that is, convex in each of its arguments

u and c, separately, when the other is kept fixed. However, ECV is not jointly convex. One

therefore uses a method referred to as the CV-algorithm, which alternates between optimization

in u and c: If an initial state (u0,c0) is given, then a minimizing sequence (uk,ck) is constructed

by

uk+1 = argmin
u∈K

ECV(u,ck), (6.6)

ck+1 = argmin
c∈R2

ECV(uk+1,c). (6.7)

The sub-problem (6.7) is a simple quadratic optimization whose solution is readily given by the

formulas in (6.2) with u = uk+1. We therefore proceed to describe the theory and algorithms

for the continuous cut solution of the sub-problem (6.6). If c is fixed then the minimization of

(6.1) over K is equivalent to minimization over K of the energy

Ê(u) = J(u)+
λ

2
〈(I− c1)2− (I− c0)2,u〉 := J(u)+ 〈g,u〉, (6.8)

where g = (λ/2)[(I− c1)2− (I− c0)2] is the data term. We now prove the result in Chan et

al. [32] referred to in the Introduction, that minimization of Ê over binary u’s can be obtained

from the solution of the convex variational problem infu∈K Ê(u) by truncation. For u ∈ BV (Ω),

let ut denote the function defined in (6.4). We have the result
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The Truncation Lemma If u ∈ K solves infK Ê, then so does ut for almost all t ∈ [0,1].

Proof The coarea formula, J(u)=
∫ 1

0 J(ut)dt, and the layer cake representation 〈g,u〉=
∫ 1

0 〈g,ut〉dt,

together yield Ê(u) =
∫ 1

0 Ê(ut)dt. Since ut ∈ K it is admissible, and Ê(ut)≥ Ê(u) for all t, by

assumption, the integrand on the left hand side of
∫ 1

0 Ê(ut)− Ê(u)dt = 0 must be zero for

almost all t ∈ [0,1].

In Chan et al. [32], the minimum was approximated by solving a degenerate parabolic

PDE for u (the gradient descent PDE) with an exact penalty term to ensure that the constraint

0≤ u≤ 1 is satisfied at all times. This PDE was implemented with an explicit finite difference

scheme, and is therefore rather slow. We have chosen another method, introduced by Aujol

and Chambolle [61] and used successfully by Bresson et al. [20]. This consists of minimizing

a variant of (6.8) which has been regularized slightly by infimal convolution with a quadratic

function:

inf
v∈BV,u∈K

{
J(v)+

1
2θ
‖v−u‖2 + 〈g,u〉

}
, (6.9)

where θ > 0 is a parameter. This problem is solved iteratively using what we call the ABC-

algorithm: If (v0,u0) denotes an initial guess, then a minimizing sequence is given by the pair

(vn,un) where

vn+1 = argmin
v∈BV

{
J(v)+

1
2θ
‖v−un‖2}= un−θ PrC(un/θ), (6.10)

un+1 = argmin
u∈K

{ 1
2θ
‖vn+1−u‖2 + 〈g,u〉

}
= PrK(vn−θg). (6.11)

The first of these problems is the classical Rudin-Osher-Fatemi (ROF) image denoising model

[128] with un as input image. The second one is a simple L2-optimization. Both problems are

strictly convex, thus admits unique solutions, and, as indicated, their optima can be expressed

in terms of L2-projections onto closed convex sets: the first projection is onto C, which is the

L2-closure of the set {divξ ; ξ ∈ C1(Ω;R2), |ξ (x)| ≤ 1∀x ∈ Ω}, c.f. Chambolle [27]. The

second projection is onto K, defined above. The latter is easy to compute, indeed PrK f (x) =

min(1,max(0, f (x))) for x ∈ Ω), for any square L2 function f : Ω→ R. To minimize the

ROF functional (6.10) we use a variant of the fast and reliable algorithm for TV-minimization

proposed by Chambolle [27, 28].
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6.2.2 Continuous Cuts for Prior-Based Object Segmentation

Chapter (4) contains an attempt to include shape priors into continuous cut segmentation that

considers the model (6.5) where f = f0 ◦ T is pose invariant under the group of similarity

transformations T of the plane, i.e. the variational problem

inf
u,c,T

{
E(u,c,T ) := ECV(u,c)+

γ

2
‖u− f0 ◦T‖2}. (6.12)

This problem cannot be solved by continuous cuts (for c and T fixed) simply by enlarging the

admissible label functions from the binary u’s to u ∈ K. The problem, of course, lies in the

quadratic interaction term, which seems to “spoil” the Truncation Lemma. As proposed in

[62] this problem is circumvented by the following construction: If (u0,c0,T 0) denotes an ini-

tial guess then a minimizing sequence (uk,ck,T k) is (essentially) constructed by the following

procedure:

ck+1 = c(uk) using formula (6.2). (6.13)

T k+1 = T k−∆t
∂

∂T
E(uk,ck+1,T k) time step ∆t > 0 (6.14)

uk+1 = argmin
u∈K

ECV(u,ck+1)+
γ

2
〈u− f0 ◦T k+1,uk− f0 ◦T k+1〉 (6.15)

Here we observe that by freezing one occurrence of u = uk in the quadratic interaction term,

update step (6.15) becomes linear in u, hence solvable by continuous cut methods. In [62] this

minimization was performed using the gradient descent PDE from [32]. Our aim is to improve

the above method by formulating the problem in such a way that the model itself, not only the

algorithm, satisfies the truncation property.

6.3 The Shape Prior Segmentation Model

6.3.1 The Basic Energy Functional

Our reformulation of the functional (6.5) is based on the following observation: If the label

function u : Ω→ {0,1} is binary, and we define an image model by Imodel = Imodel(u,c) =

c0(1−u)+ c1u, then it is easy to see that the CV-functional (6.1) may be rewritten as:

ECV(u,c) = J(u)+
λ

2
‖I− Imodel‖2. (6.16)
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This suggests the following model for shape prior segmentation: If f : Ω→ R denotes a (pos-

sibly fuzzy) shape prior, that is 0 ≤ f (x) ≤ 1 on Ω, then we associate an image model to f

given by Iprior = Iprior( f ,b) = b0(1− f )+ b1 f . We now pose shape prior segmentation as the

minimization over all binary label functions u of the following functional:

E(u,c, f ,b) = ECV +Eprior = J(u)+
λ

2
‖I− Imodel‖2 +

µ

2
‖Imodel− Iprior‖2. (6.17)

Notice that close to convergence, it is reasonable to expect that b0 ≈ c0 and b1 ≈ c1. Assuming

that exact equality holds here, we find that

µ

2
‖Imodel− Iprior‖2 =

µ

2
(c1− c0)2‖u− f‖2, (6.18)

which corresponds to the interaction term in (6.5) if we set γ = µ(c1− c0)2. We will use this

simplification in Section 6.3.2.

Let us consider the minimization of (6.17) with respect to u and c when prior data b and f

are kept fixed. After completion of squares in (6.17) we find that

E(u,c, f ,b) = J(u)+
λ + µ

2

∥∥Imodel− (
λ

λ + µ
I +

µ

λ + µ
Iprior)

∥∥2

+
λ + µ

2

{
λ

λ + µ
‖I‖2 +

µ

λ + µ
‖Iprior‖2−

∥∥ λ

λ + µ
I +

µ

λ + µ
Iprior

∥∥2
}

.

(6.19)

Only the first square depends on the (binary) u and c. So updating u and c is equivalent to

solving the following CV-problem:

inf
{

J(u)+
λ + µ

2
[
〈1−u,(Ieff− c0)2〉+ 〈u,(Ieff− c1)2〉

]}
. (6.20)

Here Ieff = λ

λ+µ
I + µ

λ+µ
Iprior is an effective image obtained as a convex combination of the

observed image I and the prior image Iprior. The problem (6.20) has the truncation property,

and may be solved by the CV-algorithm (6.6), (6.7), using continuous cuts. This solution is a

minimizer of (6.17).

Suppose that c and u have been updated and are now held fixed. Returning to the energy

E, written in the original form (6.17), we optimize with respect to prior image model Iprior =

b0(1− f )+ b1 f . An easy calculation shows the optimal gray scales b = (b0,b1) are given by
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the formulas:

b0 =
〈1− f , Imodel〉
‖1− f‖2 and b1 =

〈 f , Imodel〉
‖ f‖2 .

With these values fixed, we proceed to update the pose of the shape prior f , which is the subject

of the next few sections.

6.3.2 Pose Invariant Prior Interaction Energy

Let f0 : Ω→R denote a shape template of class C1
0(Ω), and T : R2→R2 a similarity transfor-

mation, that is, a mapping of the form y = T (x) = µ−1R−1(x−a), x ∈ R2, where R ∈ SO(2)

denotes rotation, µ > 0 a scaling factor, and a ∈ R2 translation. We define the shape prior

f as the transformed template T ∗ f0 : R2→ R by the formula f (x) = T ∗ f0(x) = ( f0 ◦T )(x) =

f0(T (x)) for all x∈R2. If T is sufficiently close to the identity map then, clearly, T ∗ f0 ∈C1
0(Ω),

so that the support of the prior will remains inside the image domain Ω.

In this chapter we use the simplification of (6.17) in (6.18) and consider a pose invariant

prior interaction defined by the energy,

Eprior(u) = inf
T
‖u−T ∗ f0‖2 = inf

T

∫
Ω

(u(x)− f0(T (x)))2 dx, (6.21)

where the infimum is taken over the group of similarity transforms T in the plane. The follow-

ing (natural) parametrization is used throughout:

a ∈ R2, µ = eσ (σ ∈ R), and R(θ) =
[

cosθ −sinθ

sinθ cosθ

]
(θ ∈ R). (6.22)

The pose parameters θ ,σ and a are collected in a vector p = (p1, p2, p3, p4) := (θ ,σ ,a) ∈R4,

the corresponding map is occasionally denoted T = T (p), and the shape prior becomes f (x) =

T ∗ f0(x) = T (p)∗ f0(x) = f0(e−σ R(−θ)(x−a)).

Now, the infimum in (6.21) is usually computed by applying a gradient descent proce-

dure to the function R4 3 p 7→ E(p) := ‖u− T (p)∗ f0‖2/2. That is, one solves a system of

ODE:s given by p′(t) =−∇E(p(t)), with respect to an artificial time parameter t, and the ob-

tain the optimal pose p∗ as p∗ = limt→∞ p(t). This method requires the computation of the

partial derivatives ∂E(p)/∂ pi for every component pi of p. A simple calculation shows that

∂E(p)/∂ pi = 〈T (p)∗ f0− u,∂T (p)∗ f0/∂ pi〉, so we begin with the partials ∂T (p)∗ f0(x)/∂ pi.
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By the chain rule,

∂

∂a
T ∗ f0(x) = −∇xT ∗ f0(x) =−∇x f (x) (two components!)

∂

∂θ
T ∗ f0(x) = −∇xT ∗ f0(x)T J(x−a) =−∇x f (x)T J(x−a)

∂

∂σ
T ∗ f0(x) = −∇xT ∗ f0(x)T (x−a) =−∇x f (x)T (x−a)

where J = R(−θ)T R′(−θ) = [ 0 1
−1 0 ] is the clockwise rotation by π/2 radians. Notice that−∇x f

appears in all the formulas, with the x-derivative computed after transformation of the template.

It follows from the above formulas that the partial derivatives of E(p) are given by

∂

∂a
E(θ ,σ ,a) =−〈 f −u,∇x f 〉, ∂

∂θ
E(θ ,σ ,a) =−〈 f −u,∇x f T J(·−a)〉,

and
∂

∂σ
E(θ ,σ ,a) =−〈 f −u,∇x f T (·−a)〉.

(6.23)

These integrals are effectively computed on the support of −∇x f , that is, over a neighborhood

of the boundary of the shape prior.

The traditional way to proceed is to iteratively update the pose parameters a,θ and σ using

(essentially) the schemes a(t + ∆ta) = a(t)−∆ta · ∂E/∂a, θ(t + ∆tθ ) = θ(t)−∆tθ · ∂E/∂θ ,

and σ(t + ∆tσ ) = σ(t)−∆tσ · ∂E/∂σ . This is problematic; in order for this method to work

properly the time steps ∆ta,∆tθ and ∆tσ have to be chosen differently, and with great care. This

is not only unsatisfying from a theoretical view point but it also limits the practical applicability

of the method; not least because the delicate choice of time steps tends to be time-consuming.

We address this problem in the next section.

6.3.3 The Gradient Construction

The group of similarity transformations constitutes a four-dimensional manifold that we de-

note M (i.e., M is a Lie group). Any point p ∈M may be represented by the coordinates

p = (θ ,σ ,a) using (6.22), which may be regarded as a (almost global) parametrization of

a neighbourhood of the identity map in M. If E : M→ R is a differentiable function then

dE(p) : TpM→R denotes the differential of E at p∈M, where TpM is the tangent space of M

at p. In the local coordinates the differential may be expressed as dE = ∂E
∂a da+ ∂E

∂θ
dθ + ∂E

∂σ
dσ .

Suppose that TpM is equipped with a scalar product (·, ·)p, then we may define the gradient of
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E at p as the unique vector ∇E(p) ∈ TpM which satisfies the relation

(∇E(p),v)p = dE(p)v, ∀v ∈ TpM. (6.24)

The metric ds2 = |da|2 +dθ 2 +dσ2 defines a scalar product which, as already noted, is insuf-

ficient for the construction of a reliable gradient descent scheme for E(p) = ‖u−T (p)∗ f0‖2/2.

Our goal is to define a Riemannian structure on M which is better suited for this task.

Let a function f : M×R2 → R be defined by f (p,x) = T (p)∗ f (x) = f0(T (p)x). Since

the shape template f0 ∈ L2(R2), the mapping p 7→ f (p, ·) is a function f : M→ L2(R2). Now,

L2(R2) comes with an inner product 〈·, ·〉, so it is natural to define the scalar product on TpM

as the pullback by f of the L2-inner product to the tangent space TpM,

(v,w)p = 〈d f (p)v,d f (p)w〉, (v,w ∈ TpM) (6.25)

where d f (p) : TpM→ Tf (p)L2(R2) ≡ L2(R2) denotes the differential of f . By the chain rule,

d f = −(Dx f0 ◦T )dT , so in view of the identity dT = DT dp = DxT (p)DT (0)dp (which uses

the group structure of M) we see that d f = −∇x f T DT (0)dp, where DT (0) is the linear map

given by the block matrix: DT (0) =
[
I2×2 J(x−a) (x−a)

]
.

As before, J = [ 0 1
−1 0 ]. With this calculation we find that

〈d f (p)v,d f (p)w〉= 〈−∇x f T DT (0)dp(v),−∇x f T DT (0)dp(w)〉

= dp(v)T 〈1,DT (0)T
∇x f ∇x f T DT (0)〉dp(w) := dp(v)T G(p)dp(w),

where G(p) denotes the metric tensor on TpM expressed in the coordinates p. If we de-

fine M = ∇x f ∇x f T then G(p) = 〈1,g(p, ·)〉 where g(p, ·) : R2 → R4×4 is given by g(p,x) =

DT (0)T MDT (0), which equals M MJ(x−a) M(x−a)

(x−a)T JT M (x−a)T JT MJ(x−a) (x−a)T JM(x−a)

(x−a)T M (x−a)T MJ(x−a) (x−a)T M(x−a)


This expression is, unfortunately, too complicated for our present purpose, so we need to make

some simplification. This is achieved by approximating the structure tensor M by the simpler

tensor 1
2 |∇x f |2I2×2. (There are some compelling reasons for doing so! For instance g3,3 +
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g4,4 = |∇x f |2|x−a|2.) With this simplification we get

g(p,x) = |∇x f |2
 I2×2 J(x−a) (x−a)

(x−a)T JT |x−a|2 (x−a)T J(x−a)
(x−a)T (x−a)T J(x−a) |x−a|2

 ,

where we notice that, in fact, the matrix elements g4,3 = g3,4 = 0 because J is skew-symmetric.

Finally, if we choose a—the center of rotation and scaling—such that 〈|∇x f |2,x−a〉= 0, that

is, as the barycenter of the mass-distribution dm = |∇x f |2 dx, then the metric tensor G = 〈1,g〉

has the following diagonal form:

G(p) =

‖∇x f‖2I2×2 0 0
0 ‖|x−a|∇x f ‖2 0
0 0 ‖|x−a|∇x f ‖2

 . (6.26)

Equivalently, (dp,dp)p = ‖∇x f‖2 |da|2 + ‖|x− a|∇x f ‖2(dθ 2 + dσ2). It follows from (6.25)

and the formulas (6.23), that the corresponding gradient of E has the components:

∇aE =
〈 f −u,−∇x f 〉
‖∇x f‖2 , ∇θ E =

〈 f −u,−∇x f T J(·−a)〉
‖ |x−a|∇x f ‖2 ,

and ∇σ E =
〈 f −u,−∇x f T (·−a)〉
‖ |x−a|∇x f ‖2 .

(6.27)

This is the gradient used in our implementation of gradient descent search for the optimal pose

parameters. Its use amounts to an adaptive step-size control in the numerical discretization of

the associated system of ODEs.

6.4 Experiments

The method presented in Section 6.3 was implemented in MATLAB with the following specifics:

For the minimization of (6.17) (in the form (6.19)) we used the ABC-algorithm (6.10) and

(6.11) with the parameter θ = 0.5 and a variant of Chambolle’s algorithm [28, Eq. (12)], im-

plemented with periodic boundary conditions, for the TV-minimization in (6.10). This was

alternated with an update of the pose of the prior, using gradient descent with the new gradient

(6.27).

The experiments presented here are limited to a proof-of-concept level. The first experi-

ment (Figure 6.1) shows the CV segmentation with and without the shape prior, and with added
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Figure 6.1: Experiment 1: First row: The original image, 212×320 pixels (left), the active con-
tour Γ = {x ;u(x) = .5} in CV-segmentation without priors after 100 iterations (middle), and the
corresponding segmentation (right). Second row: The shape template, the active contour and the
shape prior after 150 iterations, and the final segmentation. Final row: segmentation of the image
contaminated with 15% Gaussian noise using 200 iterations. Parameters: µ = .4, λ = .1, θ = .5
and step-size ∆t = .75.

noise. The segmentation result is displayed as a cut-out from the original image by multipli-

cation with the optimal label function u. This verifies the binary character of u. The second

experiment (Figure 6.2) shows how the search evolves for three different initializations. As

shown, the method may not always converge to the wanted solution. In fact, the prior contour

may sometimes even shrink and disappear. These cases correspond, however, to quite plausible

local minima for the pose energy, and this behavior is not unexpected in a local optimization

method. More details are found in the figure captions.

6.5 Conclusions

This chapter contains two central contributions. Firstly, the reformulation in (6.17) of the shape

prior segmentation model in (6.5), which leads to a minimization problem which can be solved

using continuous cut methods. Secondly, the derivation of the gradient expressions (6.27),

which is the basis for a stable and efficient gradient descent scheme for prior pose optimization.

We believe that the ideas introduced here can be extended to cover more general and complex
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shape prior segmentation models. In particular it would be interesting to see if the ideas can be

applied to pose problems in three dimensions.
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Figure 6.2: Experiment 2: Shape prior segmentation with three different initial poses (top row).
Evolution after (approximately) 12, 25, 50, 100 and 200 iterations (rows 2–6). The run-time for
100 iterations is about 25 CPU-seconds. In the final phase of the segmentation, object previously
detected outside the prior disappears. With the third initialization the he shape prior gets stuck
in a local minimum. Such behavior cannot be ruled out when we work with local optimization
methods. Image size and parameter settings are as in Experiment 1.
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Chapter 7

Convex Multi-Region Segmentation on
Manifolds

This chapter is a reformatted and slightly modified version of paper [46] without affecting

the content or the results. Here we address the problem of segmenting data defined on a mani-

fold into a set of regions with uniform properties. In particular, we propose a numerical method

when the manifold is represented by a triangular mesh. Based on recent image segmentation

models, our method minimizes a convex energy and then enjoys significant favorable proper-

ties: it is robust to initialization and avoid the problem of the existence of local minima present

in many variational models. The contribution of this chapter is threefold: firstly we adapt

the convex image labeling model to manifolds; in particular the total variation formulation.

Secondly we show how to implement the proposed method on triangular meshes, and finally

we show how to use and combine the method in other computer vision problems, such as 3D

reconstruction. We demonstrate the efficiency of our method by testing it on various data.

7.1 Introduction

Image segmentation aims to partition a given image into several meaningful regions based on

certain attributes such as intensity, texture, color, etc. This problem is one of the most challeng-

ing and important problems in computer vision. We address the problem of segmenting data

defined on manifolds (typically a 2-surface in R3) into multiple regions of piecewise constant

attributes. The ability to solve such a problem offers significant new possibilities in a number
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(a) (b) (c)

Figure 7.1: Example of segmentation on a manifold. (a) The Input textured surface. (b) The
triangular representation of the surface with the retrieved contour (in red). (c) Surface colored with
the mean values of the segmented regions (and surface shading).

of applications. For example, in 3D reconstruction (see Jin et al. [76]), a segmentation into

piecewise constant data of the reconstructed surface allows to naturally introduce constraints

on the material of the scene.

7.1.1 Global Multi-Region Segmentation

Many approaches have been proposed to solve image segmentation problems. In particular, via

gradient descents, variational methods for image segmentation have had a great success, such

as snakes [81], geodesic active contours [26], geodesic active region [113] and the Chan-Vese

models [30]. Yet, the main drawback of those methods is the existence of local minima due to

the non-convexity of the energy functionals. Minimizing those functionals by gradient descent

methods makes the initialization critical.

To obtain global minima, some previous image segmentation works have used different

optimization techniques: For example the graph-cuts in a fully discrete setting, see [18, 83,

84] and the references therein. Nevertheless, while binary segmentation methods based on

graph-cuts assure to get a global minima, multi-region segmentation algorithms are based on

sequences of graph-cuts which cannot guarantee a global optimization.

Recently, some authors have tried to handle the problem in another direction. Instead

of working on the optimization techniques in order to compute the minima of non-convex

problems, they have reformulated the energy in order to get a fully convex problem [4, 20,
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29, 32, 88, 118, 147]. These segmentation techniques are based on TV-regularizers and aim at

finding characteristic functions that minimize the objective functions. Obtaining global minima

becomes easy and can be done by simply performing a gradient descent. Also the initialization

problem vanishes: the algorithm can start from any initialization and obtains the same result.

The multi-region segmentation models proposed by [29, 88, 147] are rather similar, the work

of Pock et al. [118] (inspired form Ishikawa’s [74]) differs from the fact that it deals with

ordered labels and uses a regularization term which favors transitions between nearby labels.

This makes sense in their stereo application where the ordering is due to depth, but it is not the

case when we deal with independent labels. Here, we adopt the model of [29, 88, 147] which

is more appropriate to the applications we have in mind (the fact that real-life scenes are made

by a finite number of independent materials, in 3D reconstruction problems) and we adapt this

image labeling model to manifolds.

7.1.2 Data Segmentation on Manifolds

Manifolds such as surfaces are common in computer graphics as well as computer vision.

Although data segmentation on surfaces has been recently used on implicit representations

(see for example [76, 86]), explicit representations such as triangular meshes are natural and

intuitive representations. Mesh representations have been widely used in 3D reconstruction,

see for example [1, 47, 135], and recently in [1, 120, 148], which takes advantage of various

recent evolution methods. These allow us to naturally deal with topological changes (necessary

property e.g. in 3D shape estimation problems formulated within a variational framework). In

a number of applications, particularly in graphics, this is the only representation one has at

ones disposal. In this work, after adapting the image segmentation model to manifolds, we

show how to implement the proposed method on triangular meshes.

Mesh segmentation has been used in computer graphics to decompose meshes into sig-

nificant parts, but previous work mainly focus on the geometric aspects, the choice and the

representations of features to use (like the curvature). We refer to [5] for a recent survey of

those techniques, as in this work we focus in segmenting data on the mesh.

However, the problem of segmenting data like texture on manifolds has not received much

attention until now, and is quite different from the geometric decomposition of a mesh. In

[116], authors take into account both texture information and curvature, but their approach is

based on a fast marching algorithm, which needs to be initialized using initial points. Moreover

as their segmentation method is not convex, different regions sharing the same properties may
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result in different labels. The same problem also occurs in [110], where watershed filtering was

used. Contrary to those methods, the approach we propose is global and robust to initialization.

Finally, let us note that the segmentation model we consider is based on a total variation

regularization. Although this regularization has been previously used on implicit surfaces (see

[12] with applications to texture synthesis), it has not received much attention in Lagrangian

methods. In the finite elements literature, one can find some papers dealing with the Laplace-

Beltrami operator ∇S ·∇Su which corresponds to the gradient of the squared regularization term∫
S |∇Su|2dσ (see for example [50, 53]). To our knowledge there does not exist work dealing

with the gradient of the total variation in this framework. Let us note here that the Laplace-

Beltrami operator is linear while the term associated with the gradient of the total variation

∇S · ∇Su
|∇Su| is nonlinear. Moreover, the theoretical analysis and the numerical algorithms of

[50, 53] are completely based on this linearity property.

7.1.3 Contributions

First, we adapt the image convex model of [20, 29, 32, 88, 147] to manifolds. Then we show

how to implement the method when the manifold is represented by a triangular mesh. Finally,

we explain how our multi-region segmentation method could be incorporated into potential

computer vision applications such as 3D reconstruction.

7.2 Multi-Region Segmentation Model

In this section, we describe the convex image segmentation model we propose. To make this

model comprehensible and intuitive, let us first remind of the region-based active contour

model of Chan and Vese [30]. Here we show that the energy functional of Chan and Vese,

which is the piecewise constant case of the Mumford-Shah model ([103]), can be recast as a

convex functional in order to find the global minimizer of the original energy functional.

7.2.1 Convex Two-Phases Model

The Chan-Vese model [30], which is formulated in the level set framework, partition a given

image into two subregions. For a given image I, the idea is to find a subset Σ of a bounded

domain Ω ⊂ RN , whose boundary ∂Σ is represented by the zero level set of function φ : Ω→
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RN . This is done by minimizing the energy functional

min
φ ,µ1,µ2

∫
Ω

{
Hε(φ)(I(w)−µ1)2 +(1−Hε(φ))(I(w)−µ2)2 +λ |∇Hε(φ)|

}
dω , (7.1)

where λ ∈ R, µ1,µ2 ∈ R and Hε is a regularized Heaviside function, which models a charac-

teristic function (see [30]).

Since the energy functional (7.1) is not convex, minimizing it by gradient descent methods

can get stuck in local minima. By relaxing the characteristic function Hε(φ) by an arbitrary

function u bounded between 0 and 1, Chan et al. [32] showed that minimizing (7.1) can be

rewritten as the following convex minimization problem:

min
0≤u≤1

{∫
Ω

{
u(w)(I(w)−µ1)2 +(1−u(w))(I(w)−µ2)2

}
dω +λ

∫
Ω

|∇u|dω

}
, (7.2)

µ1 and µ2 being fixed, in R. As proven in [20, 32], if u(x) is a minimizer of (7.2), then for a.e.

µ ∈ [0,1], the set Σ(µ) = {x ∈ Ω,u(x) > µ} is a minimizer of the Mumford-Shah functional

[103], implying that the solution to (7.1) can be obtained by thresholding u at any arbitrary

threshold between 0 and 1.

7.2.2 Extension to Multi-Region Segmentation

Recently, several authors [29, 88, 147] have extended the convex formulation (7.2) to multi-

region segmentation:

min
u∈K

{∫
Ω

< u(w),s(w) > +λ |∇u(w)|dω

}
, (7.3)

where K is the set of function u : Ω→Rm such that for all w∈Ω and p∈ [1..m], up(w)≥ 0 and

∑
m
p=1 up(w) = 1. |∇u(w)| corresponds to

√
∑p |∇up(w)|2, where |.| denotes the L2 norm. m

denotes the number of labels and s(w) is an m-dimensional vector; sp(w) indicates the affinity

of the data at point w with class p. The convex domain naturally allow direct competition

between the labeling.

7.3 Multi-Region Segmentation on Manifolds

In this section we extend the multi-region convex model (7.3) on a manifold, and we show

how to optimize the associated energy for a manifold represented by a mesh. To our best

99



7. CONVEX MULTI-REGION SEGMENTATION ON MANIFOLDS

knowledge, these convex formulations (7.2,7.3) have been defined only on open subsets of RN

which correspond to image domains, as described in the previous section.

Let S be a Riemannian manifold. Typically, S could be a smooth 2D surface of R3. Energy

(7.3) is adapted as follows:

min
u∈K

{∫
S

< u(x),s(x) > +λ |∇Su(x)|dσ

}
, (7.4)

where now the functions u are defined on S instead of Ω, |.| is the Riemannian norm, ∇S is the

intrinsic gradient on S and dσ is the manifold’s element measure (surface’s area measure for

2D manifolds).

Now, let us consider a manifold represented by a mesh. The following results apply to

manifolds with any topology. Let X be a (piecewise linear) polyhedron representation of the

surface S, defined by a set of vertices xk : X = {xk} and let l be the cardinality of X (the number

of vertices). As in the finite elements literature, we define φk : S→ R as the piecewise affine,

interpolating basis function such that φk(xk) = 1 and φk(xi) = 0 if i 6= k. The vector valued

field U = {uk} is defined on all vertices x of the polyhedron X. U can be naturally extended on

S by a piecewise affine vector valued field on S. We denote this extension u(x) = ∑k ukφk(x).

To make it easier to read, we assume that the manifold is a 2D surface of R3. However, the

following method applies to any dimension. Let S j be the jth triangle of the mesh. The multi-

region segmentation energy can then be rewritten as

∑
j
∑
k

〈
uk,
∫

S j

φk(x)s(x)dσ

〉
+λ

∫
S j

|∇Su(x)|dσ , (7.5)

where u is constrained to be in K. The first term of (7.5) is explicitly written with respect

to U. In order to make the total variation term explicit with respect to U, we first consider a

local parametrization (α,β ) on the manifold. Following [52, 77], we rewrite the right term of

Equation (7.5) using fundamental forms:

∇Su =
[

∂x
∂α

∂x
∂β

][
E F
F G

]−1[uα

uβ

]
, and then

|∇Su|=

√[
uα uβ

][E F
F G

]−1[uα

uβ

]
,

where E =
∂x
∂α
· ∂x

∂α
, F =

∂x
∂α
· ∂x

∂β
and G =

∂x
∂β
· ∂x

∂β
are coefficients of the first fundamental
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form (see [52, 77]). uα and uβ are partial derivatives of u with respects to α and β respec-

tively. Considering the mesh representation, we parameterize the triangle S j by x(α,β ) =

x j,1 + α
−−−−→x j,1x j,2 + β

−−−−→x j,1x j,3 where x j,1, x j,2 and x j,3 are the three vertices associated with

the triangle S j and where (α,β ) ∈ T = {(α,β )|α ∈ [0,1] and β ∈ [0,1−α]}. We then have∫
S j
|∇Su(x)|dσ = ∫

T

√
∑
p

up
2
α
G−2upα

·upβ
F+up

2
β
E dαdβ . (7.6)

upα
and upβ

are partial derivatives of up with respects to α and β respectively. Here the reader

will easily verify that E, F, G, upα
and upβ

are constant functions on S j and that their respective

values are equal to E j = |x j,2−x j,1|2, F j =< x j,2−x j,1,x j,3−x j,1 >, G j = |x j,3−x j,1|2, up
j
α

=

u j,2 p−u j,1 p and up
j
β

= u j,3 p−u j,1 p, where u j,1, u j,2 and u j,3 are the values of u at vertices

x j,1, x j,2 and x j,3 respectively. Now the term inside the integral of (7.6) does not depend on α

and β . The convex multi-region segmentation energy on the meshed manifold becomes:

E(U) = ∑
j
∑
k

〈
uk,
∫

S j

φk(x)s(x)dσ

〉
+

λ

2 ∑
j

√
∑
p

up
j
α

2
Gj−2up

j
α ·up

j
β
Fj +up

j
β

2
Ej . (7.7)

7.3.1 Optimization Method

When the (surface) manifold is represented by a mesh, the convex multi-region segmentation

model then leads to optimizing the convex energy (7.7) with respect to U ∈ Rl×m, with the

convex constraint U ∈ K; K being the set {U s.t. ∀k, ∑p uk p = 1 and ∀p, uk p ≥ 0}. This

convex constrained optimization problem on Rl×m can be solved by the projected gradient

method [16], which consists in generating the sequence U t via

Ut+1 = Pro jK(Ut − τ∇E(Ut)) , (7.8)

for a fixed time step τ > 0, until |Ut−Ut−1|∞ ≤ δ , a small constant. Pro jK is the projection on

the convex set K. In other words, we iteratively process gradient descent steps and projections

of the uk on the set K. These projections can be done via Michelot’s algorithm [96]. From

energy (7.7) we easily obtain

∂E
∂uk p

(U) = ∑
j∈N(k)

[∫
S j

φk(x)s(x)dσ

]
p
− λ

2
Q (ξ + ε)−

1
2 , (7.9)
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where Q = (u j,2 p−uk p)(G j−F j)+(u j,3 p−uk p)(E j−F j), ξ is the term in the squared root of

(7.7), and N(k) is the 1-ring neighborhood of vertex k. As in [32], we regularize the term ξ by

incorporating a small value ε inside the squared root to avoid instabilities when the gradient of

u is 0.

Let us remind now that, as underlined by [54], the notion of gradient depends on the un-

derlying scalar product. If we chose the pointwise scalar product < U,V >pw= ∑k < uk,vk >,

then the components of ∇E(Ut) directly coincide with ∂E
∂uk p

(U). Nevertheless the associate

pointwise metric is not efficient for minimizing energies of the form
∫
S f (u(x)) dσ since the

distance between two discrete fields U and V does not take into account the area of the trian-

gle. On the other hand, the L2 scalar product < U,V >L2=
∫
S < u(x),v(x) > dσ is much more

relevant. Also in this case the gradient becomes

∇E(U) = M−1 ∂E
∂U

(U) , (7.10)

where the matrix M is the mass matrix defined by Mi j = Idm
∫
S φi(x)φ j(x) dσ . Moreover one

classically approximates M by the diagonal mass lumping M̃, where M̃ii is the area of the

Voronoi dual cell of xi times the identity matrix Idm, see e.g. [54].

7.3.2 Applications

In the previous sections the data term of the segmentation model s is assumed to be known

(Equation 7.4). In the applications, this term also depends on some parameters that have to be

optimized. The convex problem can be solved by alternating optimization of the parameters in

a bi-convex way. For fixed parameters of s we update u and vice-versa. u is updated according

to the method presented in Section 7.3.1. In practice we update the parameters of s every r

update iterations of u (r is chosen arbitrary; we fix r = 10 in our experiments).

Piecewise Constant Data Segmentation

Let us consider the case where the data we want to segment are assumed to be piecewise

constant. Here a natural expression for sp(x) is to use the squared error between the scalar or

vector-valued data C(x) at the point x and the value µp associated with the label p (µp having

the same dimension as the data):

sp(x) = (C(x)−µp)T (C(x)−µp) .

102



7.3 Multi-Region Segmentation on Manifolds

The optimization of the energy (7.4) with respect to µp gives:

µp =
∫
S up(x) C(x)dσ∫

S up(x)dσ
,

which corresponds to the mean value of the data of the associated region. Note that the previous

model can be easily extended to any probability density function Dp. For example, Dp can be a

multivariate gaussian density function of mean µp and covariance Σp, and then we would have:

sp(x) =− ln(Dp(x,µp,Σp)) , with

Dp(x,µp,Σp) =
1

m
√

2π|Σ|
e−

1
2 (C(x)−µp)T Σ−1

p (C(x)−µp) .

Segmentation in 3D Reconstruction Problems

Such segmentation framework can be incorporated in 3D Reconstruction applications. In

such applications, it can be interesting to segment a particular region, or all parts of the surface

sharing the same reflectance properties. In 3D reconstruction, most of the variational methods

yield to minimizing an energy of the form

E(S) = ∑
i

∫
S

g(x)
xi ·n
x3

i,z
νS(x) dσ , (7.11)

see for example [47, 76, 77]. Moreover, if we choose

g(x) =
m

∑
p=1

up(x)(Ii(πi(x))−µp)T (Ii(πi(x))−µp) ,

where πi(x) is the projection of the surface point x into the ith image and Ii : w 7→ Ii(w) is the
function which associates to each pixel w, its color on the ith image. We then get an extension
of the stereoscopic segmentation method proposed by [145] to the case where the surface is
composed of more than two regions of piecewise constant radiance. Also, contrary to our
method, the segmentation approach proposed in [145] is subject to local minima. Finally, the
optimization of the energy (7.4) with respect to µp gives:

µp =

∫
S up(x) ∑i Ii(πi(x))

x ·n
x3

z
νS,i(x)dσ∫

S up(x)∑i
x ·n
x3

z
νS,i(x)dσ

.
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If we chose g(x) =

m

∑
p=1

up(x)(Ii(πi(x))−ρpN(x) ·L)T (Ii(πi(x))−ρpN(x) ·L),

where N(x) is the normal to the surface at the point x and L is the vector corresponding to the
light source illuminating the scene, then we get an extension of the (Lambertian) multi-view
shape from shading method proposed by [76] for surfaces with piecewise constant albedo. In
the same way, contrary to our approach, the method proposed by [76] is limited to two regions
segmentation and is strongly subject to local minima. The optimization of energy (7.4) with
respect to the albedo gives:

ρp =

∫
S up(x) ∑i Ii(πi(x))N(x) ·Lx ·n

x3
z

νS,i(x)dσ∫
S up(x)(N(x) ·L)2 ∑i

x ·n
x3

z
νS,i(x)dσ

.

The theoretical and experimental study of these algorithms will be the topic a future work.

7.4 Experiments

In order to validate the proposed multi-region segmentation approach on meshes, we present

different experiments on synthetic as well as realistic data. In practice as explained in pre-

vious section, the segmentation is solved by alternating between region parameters and the

segmentation variable U, with a known number of regions. The algorithm complexity is lin-

early dependent on the number of facets and the number of classes. Experiments have been run

on a 2.66GHz linux machine and take about 20 seconds on a mesh of 200,000 facets and for

a 4 regions segmentation. The values of λ have been manually chosen in each example but a

value of 0.01 gives reasonable results in most cases.

7.4.1 The Two Region Case

Figures 7.2 and 7.3 show examples of our algorithm using a synthetic image mapped onto

a mesh for the Stanford bunny model. Noise has been added to the image. Here, we show

that our algorithm performs well on the given example and that the final solution is binary.

Moreover it is robust to the initialization of the scalar function U. Note that the retrieved

solution that has been displayed is the auxiliary value u, and not the segmented constant values

µ1 and µ2. Also because the energy functional is convex in u only and the values µ1 and µ2

are optimized during the evolution, they can be assigned to the region corresponding to either
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(a) (b) (c)

Figure 7.2: Segmentation result on the synthesized Stanford bunny surface. (a) Input shaded ob-
ject. (b) Input mesh with synthetic texture mapping. (c) Input textured mesh (shaded visualization)
and final contour (in red).

u = (1,0) or u = (0,1), this explains why the last initialization do not show the same values

of u but an inverted one. In practice, although the total functional is not fully convex, we

obtain the same results and really similar µ1 and µ2 for each example. We respectively obtain

(µ1 = 140.778 , µ2 = 231.003), (µ1 = 140.746 , µ2 = 231.01), (µ1 = 140.75 ,µ2 = 231.03 )

and (µ1 = 230.992 , µ2 = 140.765) for the four different initializations. Note that in the

last column, values of µ1 and µ2 are inverted and the solution u as well. In this example,

geodesic active contours or level sets methods would tend to the closest local minima from the

initialization as the texture is not clearly binary. Nevertheless, as the method is global here,

segmenting a particular region should be done using additional cues.

Figure 7.4 present segmented surfaces from real-world textures that have been mapped

onto a mesh, in the case of the two-phases segmentation. We show different examples from

classical images used in segmentation. Note that the segmentation is done on the mesh using

the method described in this chapter and not on an image. The experiments show three different

non binary images and their segmentation into two different regions. As expected the results

are binary even though the initial values of the segments are random values. The mean values

of each region is estimated during the process as described before, and the parameters λ can

be adjusted to add more smoothness to the segmentation. As shown by experiments, even

though the initialization is random and the parameters of each region are computed during the

evolution, the algorithm still converges to the desired solution as a binary solution.
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Figure 7.3: The evolution on the synthesized bunny surface. Different initialization of U (first
row); Intermediate values of U (second row); The obtained solution U (third row); The obtained
mean values (fourth row) with shading.

7.4.2 Dealing with Multiple Regions

Here we show the efficiency of the proposed method when dealing with multiple regions. Dif-

ferent examples are shown, first with synthetic textures on which noise has been added, and
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Figure 7.4: Segmentation results on meshes in the two-region segmentation on three different
examples. From top to bottom: Input textured mesh; Mesh shape where the segmentation is per-
formed and the initial random value of one component of U; Recovered mean values of each region;
Segmented object.

then on meshes textured by real-world images like previous examples. Note that the number of

regions is initially given and is not automatically estimated.

In Figure 7.5, the experiment shows noisy texture on meshes, the segmentation result using

K-Means, and the result of our TV-based algorithm on meshes. Because the K-Means algo-
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Figure 7.5: Segmentation results on meshes in the multi-region case on synthesized examples
inspired from [88]. (a) Input textured mesh (same shape as previous Butterfly and Horses data). (b)
Clustering using K-Means algorithm. (c) Recovered mean values of each region obtained by our
approach.

rithm does not take into account the spatial coherence of points, the result is noisy. On the other

hand, the TV regularization allows coherence in the scene and the segmentation is close to the

expected solution. In addition to be robust to initialization, our approach is robust to noise.

We then tested our multi-region segmentation approach on various data from real-world

images [94], see Figure 7.6. Let us emphasize here that the initialization was random and the

number of regions was initially given.

As an example, we applied our approach to segment mean curvature on a mesh using three

different regions. Figure 7.7 shows that we are able to segment some concave and convex parts

of the mesh.

Finally, in Figure 7.8, we show the examples of a 3D mesh obtained by 3D reconstruction

algorithms, as the one in [135, 148]. The last row shows the obtained color-based labeling

(into three regions). Even though the texture is far from being binary, the segmentation is the

expected one. For instance in the result, we nicely recover the skin, the pant and the shirt. Here
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Figure 7.6: Segmentation results on meshes in the multi-region case. Top row: Horse data set
and its segmentation for three regions. Bottom row: Four regions labeling of the Butterfly data. (a)
Input textured mesh; (b) Recovered mean values of each region obtained by our approach; (c) One
of the segmented regions.

again, initialization was random.

For comparison of the convex image multi-region segmentation model (7.3) with other

methods, we refer to [88] which shows quantitative and qualitative comparisons with belief

propagation, sequential belief propagation, graph cuts with alpha-expansion, graph cuts with

alpha-beta swap and sequential tree reweighted belief propagation methods. The experiments

show that the generated labeling is comparable to state-of-the-art discrete optimization meth-

ods.

7.5 Conclusions

In this chapter we propose a variational method for segmenting data on manifolds into regions

of constant properties. The convex formulation makes the proposed model robust to initializa-

tion. Moreover, the total variation regularizer makes the method robust to noise. We show how
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(a) (b)

(c) (d)

Figure 7.7: Segmentation results on mesh curvature in 3 regions. (a) Input mesh. (b) Mean
Curvature visualization. (c) Simple thresholding of the mean curvature. (d) Segmentation result of
the mean curvature into three regions with our approach.

to implement the method, in particular how to compute the gradient of the total variation term,

when the surface has a discrete representation as triangular meshes. We have demonstrated

the efficiency of our method by testing it on various synthetic and realistic data from computer

vision applications.
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Figure 7.8: Segmentation result on a colored mesh obtained by multiview stereo algorithm. Front
view (top row) and back view (bottom row). Original input colored mesh and the associated 3D
shape (left). Result of the segmentation into three regions obtained by our algorithm (middle).
Recovered mean values displayed for each region (right).
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Chapter 8

Discussion and Future Work

Discussion

In this dissertation, we have presented prior-based variational segmentation models which in-

corporate low-level image features such as color, intensities and edges, together with higher-

level visual knowledge such as occlusion information, smoothness constraint and shape priors

to extract meaningful regions or objects from images, image sequences and manifolds. We

have proposed using both local and global segmentation models of Chan and Vese with addi-

tional pose invariant shape prior constraints, which can be single known template, a result from

a previous frame or a shape from shape manifolds.

First, we have presented a novel method for variational segmentation of image sequences

containing nonrigid, moving objects. The proposed method is formulated as a variational prob-

lem, with one part of the functional corresponding to the Chan-Vese model and another part

corresponding to the pose-invariant interaction term as a shape prior based on the previous

contour. The optimal transformation as well as the shape deformation are determined by mini-

mization of an energy functional using a gradient descent scheme. We have further coupled the

proposed segmentation model with a registration process of two contours from the segmenta-

tion results of the previous frames in order to detect the occlusions, which is formulated as a

variational contour matching problem. By using this occlusion information, the segmentation

results can be further improved by reconstructing the occluded regions.
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One of the main drawbacks of the variational segmentation models is that the energy func-

tional is non-convex hence the initialization is critical in order to obtain global minima. There-

fore, we have proposed a novel variational region-based active contour method for prior-based

object segmentation in a global minimization framework. The method is based on convexifying

the energy functional of the Chan-Vese method and adding a shape prior term as a constraint

to segment an object whose global shape is given. We have shown and proven that the en-

ergy functional can be relaxed from optimization over characteristic functions to over arbitrary

functions followed by a thresholding at an arbitrarily chosen level between 0 and 1.

As it is beneficial to have more sophisticated shape models in order to cope with the high

variability of the object shape, we have presented a method that combines techniques from

elastic shape manifold modeling, segmentation and optimization, to track the change of pose

of a 3D object through tracking its contour. Both local and global models of the Chan-Vese with

additional shape prior terms, have been proposed for the segmentation of the image sequences.

It is worth to mention that although global models can be used in the view tracking application,

local models that find local minima may be preferable.

The shape priors, used as additional terms in the segmentation models, need to be invariant

with respect to a certain group of transformation. Since we use explicit manners to obtain the

pose parameters, we have to determine an appropriate time step for each parameter to guar-

antee the stability which needs a careful tuning process. To overcome the common numerical

problems associated with step size, we have proposed a new pose invariant shape prior model.

This leads to a minimization problem which can be solved using continuous cut methods and

to a derivation of the gradient expressions that is used as the basis for a stable and efficient

gradient descent scheme for prior pose optimization.

Finally, we have proposed to a variational method for segmenting data on manifolds into

several regions of constant properties. The convex formulation makes the proposed model

robust to initialization and to noise. As many real applications, such as in Computer Graphics,

use data which are represented by meshes to model objects, we have implemented the method

to segment surfaces, which have discrete representations such as triangular meshes. We have

then demonstrated the efficiency of the method by experiments on various synthetic and real

data from computer vision applications.

114



Future work

It is worth to mention several directions of future work. First we would like to incorporate more

prior knowledge into the segmentation models such as motion [24] and texture information

[73] to improve the robustness of the models. For segmentation of image sequences, it is

reasonable to use dynamics and segmentation results from several previous frames instead of

one previous frame as been proposed. Since it is necessary to handle the occlusions, we need

to use better occlusion models and to use the spatial order information in the image model to

dynamically impose prior only to occluded boundaries such as in [140]. We would also like

to investigate more sophisticated shape models, especially non-rigid objects, which can better

handle the variability of the shape of the objects such as in [33, 56, 57] or by using multi-

reference shape priors as proposed in [60]. Regarding the drawbacks of optimization to obtain

optimal transformation parameters in explicit manner, it would be interesting to investigate the

use of implicit pose invariant such as in [39, 59]. So far we have used piecewise constant

Mumford-Shah model which approximate the regions with constant values. Then it would

be interesting to investigate to use piecewise smooth Mumford-Shah model which is more

reasonable, instead of piecewise constant one, such as the work of Pock et al. [119] that

proposed an algorithm for minimizing the piecewise smooth Mumford-Shah functional which

is obtained by using functional lifting in higher dimension and convex relaxation. Another

possible extension is to use a non-local extension of Total Variation such as in [19, 25, 69]

which allows more flexibility in the regularization.

For convex multi-region segmentation problems, there are several directions of research.

Firstly, since most of the proposed models so far cannot guarantee globally optimal solutions,

therefore we would like to address this issue by investigating recent work in [7, 23] which

are based on using a specific representation of the problem due to Lie et al. [91, 92]. As

another important improvement regarding the numerical schemes for solving Total Variation

based models, it would be interesting to further investigate the use of fast numerical schemes

based on dual formulation such as in [8]. Finally, we consider the integration of shape priors

to segment multi-objects of interest, for instance the work by Vu and Manjunath [144] in a

discrete setting, into the convex multi-region models.
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