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Abstract

Algorithms for network problems play an increasingly important
role in modern society. The graph structure of a network is an abstract
and very useful representation that allows classical graph algorithms,
such as Dijkstra and Bellman-Ford, to be applied. Real-life networks
often have additional structural properties that can be exploited. For
instance, a road network or a wire layout on a microchip is typically
(near-)planar and distances in the network are often defined w.r.t. the
Euclidean or the rectilinear metric. Specialized algorithms that take
advantage of such properties are often orders of magnitude faster than
the corresponding algorithms for general graphs.

The first and main part of this thesis focuses on the development of
efficient planar graph algorithms. The most important contributions
include a faster single-source shortest path algorithm, a distance oracle
with subquadratic preprocessing time, an O(n log n) time algorithm
for the replacement paths problem, and a min st-cut oracle with near-
linear preprocessing time. We also give improved time bounds for
computing various graph invariants such as diameter and girth.

In the second part, we consider stretch factor problems for geomet-
ric graphs and graphs embedded in metric spaces. Roughly speaking,
the stretch factor is a real value expressing how well a (geo-)metric
graph approximates the underlying complete graph w.r.t. distances.
We give improved algorithms for computing the stretch factor of a
given graph and for augmenting a graph with new edges while mini-
mizing stretch factor.

The third and final part of the thesis deals with the Steiner tree
problem in the plane equipped with a weighted fixed orientation met-
ric. Here, we give an improved theoretical analysis of the strength
of pruning techniques applied by many Steiner tree algorithms. We
also present an algorithm that computes a so called Steiner hull, a
structure that may help in the computation of a Steiner minimal tree.
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This thesis is submitted in partial fulfilment of the requirements for the Ph.D.
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1 Introduction

Algorithms for network problems play an increasingly important role in mod-
ern society. They find numerous applications in transportation, communi-
cation networks, production and inventory planning, facility location and
allocation, and VLSI design, to name just a few areas.

Since real-world network problems are often of considerable size, the de-
velopment of efficient algorithms for these problems has been an active and
important area of research for many years.

A network can be represented as a graph which may be either weighted or
unweighted and directed or undirected, depending on the application. Since
we are dealing with networks which often represent road maps, wires on a
microchip, etc., the underlying graph is often planar, meaning that it can
be embedded in the plane such that no two edges cross, and/or geometric,
meaning that it is embedded in Euclidean space, where the weight of an edge
is equal to the Euclidean distance between its endpoints.

In this thesis, we focus on algorithms for the following classes of graphs:
planar graphs, graphs in arbitrary metric spaces, and graphs in geometric and
fixed orientation metric spaces. For planar graphs, we present new and faster
algorithms for shortest paths, for min cuts, and for computing various graph
invariants. For graphs in (geo-)metric spaces, we are mainly interested in
computing their so called detour and/or stretch factor and we give improved
algorithms for computing these quantities. We also look at the Steiner tree
problem for fixed orientation metrics.

In Sections 2, 3, and 4, we give an overview of the problems we consider
and we state our new results and present some of the main ideas involved.
We conclude in Section 5 with a summary as well as ideas for future research.
The papers containing our research results can be found in the appendix.

2 Planar Graphs

Real-world networks such as road maps and electrical circuits tend to be
planar or “nearly” planar. From an algorithmic point of view, it is therefore
natural to consider network problems for planar graphs. Often, enforcing
planarity allows a network problem to be solved efficiently.
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2.1 Toolbox

Before presenting our results, let us give a short overview of some of the main
tools applied in efficient planar graph algorithms. We make use of these tools
to obtain our results.

Separator theorem The first and perhaps most important is the cele-
brated separator theorem of Lipton and Tarjan [22]. It gives a linear-time
algorithm for splitting an n-vertex plane graph G into two subgraphs of ap-
proximately the same size such that the number of vertices shared by the
two graphs is small, namely O(

√
n). We call such vertices boundary vertices.

A standard technique for solving a planar graph problem, one which we
use extensively in this thesis, is to apply the separator theorem together with
divide-and-conquer: the separator theorem splits G in two, the problem is
recursively solved for the subgraphs, and the two solutions are combined into
a solution for G.

r-division Another well-known variant, which we also use in some of our
papers, is not to solve the problem recursively but instead to apply the sep-
arator theorem recursively until the subgraps have a certain size. Typically,
some preprocessing is then made for each subgraph which can be used to
speed up an algorithm for the problem for G. The result of this repeated
application of the separator theorem is a so-called r-division of G, where r
is some parameter in (0, n). Introduced by Frederickson [12], an r-division
consists of O(n/r) subgraphs each of size O(r) and each containing O(

√
r)

boundary vertices. Distinct subgraphs only share boundary vertices.

Cycle separator theorem A stronger version of Lipton and Tarjan’s re-
sult is Miller’s cycle separator theorem [25]. Here, it can be assumed that
all boundary vertices are on a Jordan curve which does not cross any edges
of G. This property has proven very useful and we make extensive use of
Miller’s theorem in several of our papers.

Dense distance graph Fakcharoenphol and Rao [10] defined what they
called the dense distance graph of a plane graph G. It is obtained by first
applying the cycle separator theorem of Miller recursively to G. The resulting
recursive subdivision can be represented as a tree, where the root corresponds
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to G and each leaf corresponds to a single edge. The various subgraphs
obtained are called pieces. A piece containing r vertices has O(

√
r) boundary

vertices and the dense distance graph is obtained by adding, for each piece P ,
an edge between every pair of boundary vertices; the weight of the edge is set
to the weight of the shortest path in P between its endpoints. Fakcharoenphol
and Rao show how to compute the dense distance graph in O(n log3 n) time
and that, given this graph, distance queries in G can be answered in Õ(

√
n)

time 1. We use the dense distance graph in a different way to obtain our min
st-cut oracle.

Multiple-source shortest paths The final tool that deserves attention
is the multiple-source shortest path algorithm of Klein [19]. With O(n logn)
preprocessing, this algorithm can answer in O(logn) time shortest path dis-
tance queries between vertices u and v, where u is any vertex of G and v is
a vertex of some fixed face of G. This algorithm has proven extremely useful
together with Miller’s cycle theorem and has lead to faster algorithms for
several fundamental planar graph problems. We also use this algorithm as
well as the ideas behind it in some of our papers.

2.2 Shortest paths

From an algorithmic point of view, computing shortest paths is one of the
most fundamental graph problems and has received a lot of attention. The
classical Dijkstra’s algorithm can be implemented to solve the single-source
shortest path (SSSP) problem for digraphs with non-negative edge weights
in O(m+n logn) time, where m is the number of edges and n is the number
of vertices of the graph. The Bellman-Ford algorithm can also deal with
negative weight edges and solves the SSSP problem in O(mn) time, assuming
that no cycles of negative weight are present.

For planar n-vertex digraphs, an optimal O(n) time algorithm for the
SSSP was presented in [16]. However, like Dijkstra’s algorithm, this linear
time algorithm assumes that all edge weights are non-negative.

For planar n-vertex digraphs with arbitrary real edge weights (and no
negative cycles), Lipton, Rose, and Tarjan [21] gave an algorithm that runs
in O(n3/2) time. Henzinger, Klein, Rao, and Subramanian [16] obtained a
(not strongly) polynomial bound of Õ(n4/3). A major breakthrough was due

1The Õ-notation is defined like O-notation but log-factors are ignored.
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to Fakcharoenphol and Rao [10] who gave a near-linear time algorithm. More
precisely, their algorithm runs in O(n log3 n) time and requires O(n logn)
space. It makes use of the recursive subdivision and the dense distance
graph mentioned above. Later, Klein, Mozes, and Weimann [20] improved
time to O(n log2 n) and space to O(n).

One of the main contributions in this thesis is an improvement of the
algorithm in [20]. Our algorithm runs in O(n log2 n/ log log n) time and also
requires linear space [26].

The new idea in our algorithm is relatively simple. Klein, Mozes, and
Weimann [20] apply the cycle separator theorem of Miller together with
divide-and-conquer, solving the problem in O(n log2 n) time by using O(n log n)
time at each of the O(log n) recursion levels. We show that instead of splitting
the graph in two at each level, we obtain an n/p-division, thereby splitting
the graph into O(p) subgraphs, for a suitable choice of p. The problem is
recursively solved for each such graph and the solutions are combined into a
solution for the entire graph. The recursion depth is now only O(log n/ log p)
and we show that the solutions can be merged in O(n log n + npα(n)) time,
where α(n) is the inverse Ackermann function. It then follows easily that the
total running time of our algorithm is

O

(

log n

log p
(n log n + npα(n))

)

.

By setting n log n = npα(n), i.e., p = log n/α(n), we obtain the desired
O(n log2 n/ log log n) time bound.

2.3 Replacement paths

Communication networks are in general not static but may change due to
link failures. In such cases, alternative lines of communication need to be
established and it may be of interest to determine the “quality” of such lines.

This motivates the replacement paths problem (RPP): given two vertices
s and t in a graph G with non-negative edge lengths and given a shortest
path P (the line of communication) in G from s to t, compute, for each edge
e on P , the length of a shortest path in G from s to t that avoids e.

Another variant of the RPP, which we do not consider here, requires the
actual replacement path for each choice of e to be reported.

For undirected graphs, the RPP can be solved in time O(m+n log n) [24]
and O(mα(m, n)) [27], respectively (the latter bound assumes a stronger
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model of computation). The directed case can be solved in O(mn+n2 log log n)
time [14].

For planar n-vertex digraphs, an O(n log3 n) time recursive algorithm was
given in [8]. Klein, Mozes, and Weimann [20] showed how to avoid recursion
and improved running time to O(n log2 n). Space requirement is linear.

In this thesis, we show how to shave off another log-factor, thereby obtain-
ing an O(n log n) time algorithm [39]. Space requirement is linear. Whereas
the algorithms in [8] and [20] use Klein’s multiple-source shortest path algo-
rithm as a black-box, we instead take a more direct approach and adapt his
algorithm to the replacement paths problem. We show that the replacement
paths can be computed by maintaining a dynamic shortest path tree (as well
as its dual) which changes as the choice of the edge e on P changes (using
the above notation). During the course of the algorithm, the length of the
replacement path that avoids e can be extracted from the corresponding dy-
namic shortest path tree. Using top trees [2], each elementary tree operation
takes O(log n) time. By proving that the total number of changes to the
dynamic trees is linear, we obtain our O(n log n) time algorithm.

2.4 Distance oracle

Above, we considered shortest path problems where the source and/or target
vertex is fixed. Now, suppose we need to answer distance queries where we
know neither vertex in advance. The problem is to build a data structure
that can answer such queries efficiently, preferably in constant time.

Thorup [28] gave an oracle for approximate distance queries in planar
digraphs with near-linear preprocessing time. An exact distance oracle for
n-vertex planar digraphs can be constructed using Θ(n2) time and space. It
is obtained by applying the quadratic time all-pairs-shortest path algorithm
of Frederickson [12] and storing the distances between all pairs of vertices.

It was open whether this quadratic bound could be improved. A main re-
sult of our thesis is that this is indeed the case: there is an oracle for exact dis-
tance queries requiring subquadratic time and space for preprocessing. More
precisely, we show that a time and space bound of O(n2 log log n/ log n) is
achievable for unweighted and undirected planar graphs and O(n2(log log n)4/ log n)
is achievable for weighted planar digraphs [41, 42]2. The O(n2 log log n/ log n)

2The O(n2 log log n/ logn) bound for unweighted and undirected planar graphs is not
stated in [41] but it follows by applying the same ideas as in [42].
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time algorithm generalizes to the larger class of subgraph-closed
√

n-separable
graphs for which an r-division can be found efficiently. This includes impor-
tant subclasses such as graphs of bounded genus.

Of course, this is only a slight improvement of the time and space bounds
of Frederickson’s algorithm [12] and has no practical applications but it is
interesting from a theoretical point of view since it shows that the lower
bound is not quadratic.

2.5 Graph invariants

A graph invariant is a property of a graph that depends only on the abstract
structure of the graph. Three important graph invariants that we focus on
are:

• diameter (maximum distance between any pair of vertices),

• Wiener index (sum of all-pairs shortest path distances).

• girth (length of the shortest cycle in the graph),

2.5.1 Diameter and Wiener Index

For planar graphs, it was open whether subquadratic time algorithms exist
for computing the diameter (Problem 6.2 in [7]) and Wiener index[6]. We
solve both of these open problems by showing how the ideas in our distance
oracle can be used to obtain algorithms with the same running time for
computing the diameter and Wiener index [41, 42].

2.5.2 Girth

Eppstein [9] showed that the girth of a planar graph can be computed in
linear time but only when the girth is bounded by a constant. Recently, it was
shown how to find the girth in O(n log n) time without this assumption [30].
However, these results assume that the graph is undirected and unweighted.
For planar unweighted digraphs, Weimann and Yuster [30] gave an O(n3/2)
time algorithm and they asked whether a faster algorithm exists.

We answer this in the affirmative by exhibiting an O(n log3 n) time al-
gorithm [37]. Our algorithm applies to planar digraphs with arbitrary real
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edge weights. It computes the girth and can be extended to output the cor-
responding cycle in time proportional to its size (unless a negative weight
cycle exists in which case our algorithm reports its existence).

Our girth algorithm is relatively straightforward: apply the cycle separa-
tor theorem of Miller and recursively compute the girth of the two subgraphs.
Then use an efficient Dijkstra variant due to Fakcharoenphol and Rao [10] to
compute the smallest weight of a cycle crossing the separator. The minimum
of these three values is the girth of the entire graph.

2.6 Min st-cut oracle

Another important graph problem is that of finding min cuts. Given two
vertices s and t in an undirected graph G with non-negative edge weights, a
min st-cut in G is a set of edges of minimum weight whose removal leaves
s and t in distinct connected components. The all-pairs min cut problem
(APMCP) is the problem of finding a minimal collection of cuts such that
for each pair of vertices s and t, the collection contains a min st-cut. Gomory
and Hu [13] showed how all these cuts can be compactly represented in a tree,
where:

• the nodes of the tree correspond one-to-one with the vertices of G,

• the minimum edge weight on the unique simple s-to-t path in the tree
is the weight of a min st-cut in G, and

• removing this edge from the tree partitions the nodes into two sets S
and T which is a partition of the vertices of G corresponding to a min
st-cut.

We call such a tree a Gomory-Hu tree of G. Gomory and Hu also showed
that this tree can be obtained using just n − 1 calls to a min cut algorithm,
where n is the number of vertices of G. This results in an O(n2 log n) time
algorithm for planar graphs using the fastest known min cut algorithm for
such graphs [4].

For planar graphs, it has been shown that the following problem is dual
equivalent to the APMCP [15] (meaning that one problem can be transformed
into the other in linear time): given a weighted and undirected graph G, find
a basis of minimum weight for the cycle space of G. This problem, called
the minimum cycle basis problem (MCBP), is of independent interest since

12



it has applications in such diverse areas as electrical circuit theory, algorithm
analysis, chemical and biological pathways, periodic scheduling, and graph
drawing.

2.6.1 An Õ(n3/2) time algorithm

The MCBP (and hence the APMCP) can be solved in O(n2) time for planar
n-vertex graphs [3]. We show that this is optimal by presenting a family
of planar graphs of arbitrarily large size n such that any cycle basis of the
graph has total size Θ(n2) [38]. We then show how to break the quadratic
time barrier by computing a cycle basis implicitly, using O(n3/2 log n) time
and O(n3/2) space. From this result, we obtain a Gomory-Hu tree within the
same time and space bounds. We show how to derive from it an oracle for min
st-cut queries. More precisely, with O(n3/2 log n) time and O(n3/2) space for
preprocessing, min st-cut weight queries can be answered in constant time per
query. The previous best time/space bound for such an oracle was quadratic.

The oracle is obtained by performing the following steps. First, the
APMCP is implicitly solved for the input graph G by implicitly solving the
MCBP for the dual graph (here, we make use of the above dual equivalence).
The algorithm applies the cycle separator theorem of Miller and recursively
finds a minimum cycle basis of the two subgraphs defined by the separator
cycle. Additional cycles that cross the separator are then computed and we
end up with a superset of the minimum cycle basis. A greedy algorithm is
then applied to extract the basis from this superset. This algorithm consid-
ers cycles in order of non-decreasing weight and adds a cycle if it separates
a pair of faces not separated by previously added cycles.

2.6.2 An Õ(n) time algorithm

Since a Gomory-Hu tree has a linear size representation, it is natural to ask
if a linear or near-linear time Gomory-Hu tree algorithm exists. A main
contribution of this thesis is a proof that such an algorithm indeed exists [5].
To obtain this result, we depart from the greedy approach above. Instead,
we rely on a property inherent in the Gomory-Hu tree construction which
allows us to consider cycles in any order. The addition of the first cycle splits
the graph in two and we can consider the two subgraphs separately.

The problem with this approach is that we may get bad splits of the
graph. In order to obtain efficient running time, we make use of the recursive

13



subdivision of Fakcharoenphol and Rao to guide our algorithm. We start by
separating faces incident to pieces at the bottom-level of the subdivision and
then move up the tree. The faces that are hard to separate are at the higher
levels of the tree. We show that when we reach these levels, not too many
pairs of faces are left to separate.

This approach allows us to obtain in O(n log6 n) time and O(n logn) space
a tree defining the nesting of cycles in the basis for the dual graph. From
this, we obtain a Gomory-Hu tree of the primal in additional linear time.
We then make use of an algorithm due to Kaplan and Shafrir [18] to answer
path weight queries in a tree in constant time with O(n logn) preprocessing
time. Applying this algorithm to the Gomory-Hu tree, we obtain our min
st-cut oracle. Total preprocessing time is O(n log6 n) and space requirement
is O(n log n).

3 Stretch Factor and Maximum Detour

Given a connected and undirected graph G with non-negative edge weights, a
spanning subgraph S of G is called a t-spanner of G if for all pairs of vertices
u and v in G, the shortest path distance dS(u, v) between u and v in S is at
most t times longer than the shortest path distance dG(u, v) between them
in G. We say that S has stretch t. Observe that t ≥ 1.

In the following, we focus mainly on geometric graphs. Here, the under-
lying graph is the complete geometric graph on a given set P of points in the
plane. A sparse spanner for P with small stretch can be viewed as a compact
representation of all the pairwise distances for points in this set. Finding
such a spanner that also keeps other cost measures low, like weight, degree,
and diameter, is important in many areas including VLSI design, distributed
computing, and robotics.

3.1 Stretch factor

We consider a sort of dual to the spanner problem. Here, we are given a
connected geometric graph G and we need to find the smallest t ≥ 1 such
that G is a t-spanner of the underlying complete graph. We call this smallest
value the stretch factor of G. An equivalent definition of stretch factor is the
maximum, over all pairs of distinct input points p and q, of the ratio between
the distance between p and q in G and the Euclidean distance ‖pq‖.
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Agarwal et al. [1] showed how to compute the stretch factor of paths, trees,
and cycles in near-linear time. Cabello and Knauer [6] gave an O(n logk+1 n)
expected time algorithm for geometric graphs with treewidth k.

An open problem is whether the stretch factor of a plane geometric graph
can be computed in subquadratic time [1]. In our distance oracle paper [42],
we show how to obtain an O(n2(log log n)c/ log n) time algorithm, where c is
a constant, thereby solving this open problem.

3.2 Maximum detour

We achieve a better time bound for the related maximum detour problem.
Given a connected straight-line embedded plane geometric graph G, the max-
imum detour of G is defined as the stretch factor of G except that we consider
all pairs of points of G, i.e., vertices as well as interior points of edges of G.
This problem can be solved in O(n2) time but it was open whether a sub-
quadratic time algorithm existed. We solve this open problem by exhibiting
an algorithm with O(n3/2 log3 n) running time [35].

In order to achieve this bound, we apply the separator theorem of Lip-
ton and Tarjan [22] to separate our graph in two. The maximum detour of
the two subgraphs is recursively computed. The shortest paths between the
remaining pairs of points that we need to consider must cross the separa-
tor. Furthermore, a property of maximum detour allows us to restrict our
attention to pairs of points belonging to the same face. We obtain colourings
of the points on each face, defined by the separator vertices that shortest
paths must go through. From these colourings, we can reduce the problem
to a number of maximum detour problems for trees and efficiently solve them
with the algorithm in [1].

A more careful analysis reveals that the running time of our algorithm
is O(nk log3 n), where k is the separator size. Since graphs of bounded
treewidth have bounded size separators, we thus obtain an O(n log3 n) time
algorithm if the input graph has bounded treewidth.

3.3 Best shortcuts

Most algorithms construct networks from scratch, but frequently one is in-
terested in extending an already given network with a number of edges such
that the stretch factor of the resulting network is minimized.
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Farshi et al. [11] considered the following problem: given a graph G =
(V, E) with m edges and n vertices embedded in a metric space, find a vertex
pair (u, v) ∈ V 2 (called a shortcut) such that the stretch factor of G∪{(u, v)}
is minimized. They gave an O(n4) time and O(n2) space algorithm for this
problem together with various approximation algorithms.

We show how to improve running time to O(n3 log n) while maintaining
quadratic space requirement [34]. In fact, our algorithm not only computes
the best shortcut but the stretch factor of every edge obtained from G by a
single edge-augmentation.

The main idea of the algorithm is the following. Instead of explicitly
considering all pairs of endpoints of the edge to be added to G, we fix only
one endpoint and parameterize the position of the other. We show that the
information required to obtain the stretch factors of edge-augmented graphs
for all parameter choices can be represented as a set of upper envelopes of
piecewise linear functions. Calculating the stretch factor for all parameter
values corresponding to the feasible positions of the other edge endpoint can
then be efficiently obtained as upper envelope function values. As a result,
we shave off almost a linear factor in running time compared to the algorithm
in [11].

We conjecture that our algorithm is near-optimal for the following reason.
Computing all-pairs shortest path distances in the input graph seems to be
necessary to solve the problem. The fastest all-pairs shortest path algorithm
for general graphs runs in time cubic in n (ignoring log-factors) and it is
conjectured that this cannot be significantly improved.

The best known lower bound for the best shortcut problem is only Ω(n2)
so a gap of more than a linear factor remains.

An open problem asked in [11] is whether there exists a linear-space al-
gorithm with o(n4) running time. The algorithm described above runs in
O(n3 log n) time but requires O(n2) space. We show how to obtain a trade-off
between time and space in this algorithm to obtain a linear-space algorithm
with O((n4 log n)/

√
m) time [23]. Since we may assume that G consists of at

most two connected components (otherwise, no single edge can connect the
graph and the problem is trivial), m = Ω(n) and we solve this open problem.

3.4 Weighted fixed orientation metrics

The algorithm in [1] for computing the stretch factor of paths, trees, and
cycles is somewhat involved and only runs in low expected running time.
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Complicated parametric search techniques are relied on to also obtain low
worst-case running time but at the cost of some extra log-factors in running
time.

We consider the same problem but for weighted fixed orientation met-
rics [31] in the plane. Each such metric is defined by a set of weighted fixed
orientations and the distance between two points is the length of a shortest
path between them consisting of line segments with orientations from this
set; each segment is weighted by the weight of its orientation.

These metrics have received attention due to their application in VLSI
design, where wires on a chip are typically restricted to having a small number
of orientations. It seems natural to consider the stretch factor problem in this
setting since low-stretch networks are well-connected and may be desirable
in VLSI design.

We give an O(σn log2 n) time algorithm to find the stretch factor of an
n-vertex path, where σ is the number of fixed orientations [36]. For the L1-
metric (a special type of fixed orientation metric), we generalize our algorithm
to d dimensions, where the running time is O(n logd n). At the cost of an
extra log-factor in running time, we can find the stretch factor of trees and
cycles as well. Our algorithms do not rely on any advanced data structures
or techniques as in the Euclidean metric and should be relatively simple to
implement.

4 Steiner Trees in Fixed Orientation Metrics

The Euclidean Steiner tree problem is a classical geometric problem dating
back to Fermat in the 17th century [17]. It asks for a minimum length tree
spanning a given set of points in the Euclidean plane. Such a tree is called
a Steiner minimal tree. This problem differs from the MST problem in that
new points may be added to shorten the tree. To distinguish between the
two types of points, given points are referred to as terminals and new points
are called Steiner points. The Euclidean Steiner tree problem is known to be
NP-hard.

As mentioned earlier, (weighted) fixed orientation metrics have received
attention in later years due to their use in VLSI design. A good candidate
network of wires interconnecting a set of pins on a chip is one of minimal
length. For this reason, the Steiner tree problem for fixed orientation metrics
is well-studied from an algorithmic point of view.
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4.1 Bounding the number of full Steiner trees

Unfortunately, the Steiner tree problem for fixed orientation metrics is also
NP-hard (in fact NP-complete). Yet, exact algorithms exist that can solve
even very large instances. Perhaps the most powerful algorithm is GeoSteiner [29]
that solves many instances consisting of several thousand terminals in a rea-
sonable amount of time for the Euclidean and fixed orientation metrics.

The GeoSteiner algorithm uses a two-phase approach to solve the prob-
lem. In the first phase, a set of so called full components is generated. Full
components are Steiner minimal trees for terminal subsets with the require-
ment that all leaves are terminals and all interior vertices are Steiner points.
Every Steiner minimal tree can be partitioned into full components and they
can therefore be regarded as building blocks to form such a tree.

The first phase generates a set of full components guaranteed to contain
a subset defining the full components of a Steiner minimal tree. Various
pruning techniques are applied to keep the size of this set small. In a second
phase, full components from this set are concatenated to form a Steiner
minimal tree.

Experimental results suggest that for n terminals randomly distributed
with uniform distribution in a unit square, the number of full components
generated in the first phase is only O(n). This can help explain why GeoSteiner
is so powerful. A matching theoretical bound has not been shown, however.
What has been shown is that, for any K > 2, the expected number of full
components generated which span exactly K terminals in the L1-plane is
O(n(log log n)K−2) [43].

Our contribution is an improvement of this bound to O(nπK) which re-
duces to O(n) for fixed K [33]. We also give bounds for full components in
higher dimensions.

A linear bound on the total number of full components generated is yet
to be found. We managed to reduce this problem to one of proving that
the value of a certain integral is less than one. Unfortunately, the domain
of integration is extremely complex and of high dimension and we estimated
that on a modern pc, it would take thousands of years to compute the exact
value of this integral. Experiments suggest that the value is indeed less than
one and we hope that one day, finding a computer-assisted proof is feasible.
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4.2 Steiner hull

A way to speed up the computation of a Steiner minimal tree in the plane
is to first compute a subset of the plane guaranteed to contain such a tree.
Such a set is called a Steiner hull. If a small Steiner hull can be obtained, it
will give some structural properties of a solution which can then be used to
speed up the computation.

Winter [32] considered a certain type of Steiner hull in the Euclidean
plane. It is formed by starting with the convex hull of the set of terminals
and then repeatedly cutting off triangles from this set satisfying certain con-
ditions. He proved that all triangles are part of a Delaunay triangulation
and obtained an O(n log n) time algorithm to find the Steiner hull.

We consider a similar type of Steiner hull in the uniform orientation
metrics, a subclass of the class of fixed orientation metrics, where orientations
are uniformly distributed [40]. As in the Euclidean plane, we show that this
Steiner hull can be obtained by starting with (a superset of) the convex hull
of the set of terminals and then repeatedly cutting triangles from this set.
We cannot use the Delaunay triangulation to identify the triangles however.
Instead, we use a Euclidean MST to separate the problem. We prove that
the total time to solve the subproblems is O(σn logn), where σ is the number
of uniform orientations.

Experimental results, which are not included in this thesis, suggest that
for the octilinear metric in particular (where horizontal, vertical, and diagonal
orientations are allowed), rather tight Steiner hulls are obtained for many
smaller point sets and we hope that these can be used to obtain faster Steiner
tree algorithms.

5 Concluding Remarks

We presented improved algorithms for a number of planar graph problems.
In particular, we gave better time bounds for computing shortest paths, re-
placement paths, and various graph invariants, and we gave distance and min
cut oracles with better preprocessing time and space bounds. For geometric
graphs, we presented faster algorithms for computing the stretch factor and
maximum detour, and for graphs embedded in metric spaces, we showed how
to efficiently augment them with new edges while minimizing stretch factor.
Finally, we considered the Steiner tree problem in the plane equipped with
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a weighted fixed orientation metric. We gave an algorithm to compute a
Steiner hull and we gave a stronger theoretical analysis of the strength of
pruning techniques applied by Steiner tree algorithms such as GeoSteiner.

We see several directions for future research. For planar graphs, current
focus is on the min st-cut problem. The best known bound is O(n logn).
We believe that O(n log log n) time is achievable. For the replacement paths
problem, is Θ(n log n) the true complexity? Since single-source shortest path
distances in planar graphs with non-negative edge weights can be computed
in linear time, it would not surprise us if the replacement paths problem also
admits an O(n) time algorithm. For the distance oracle, Wiener index, and
diameter problems, is there a “truly” subquadratic time algorithm, i.e., an
algorithm with O(nc) running time for constant c < 2? We believe so, at
least for the diameter problem.

For the stretch factor problems, it would be interesting to extend the edge-
augmenting algorithm to handle not just one but, say, a constant number
of edges. However, it seems difficult to apply our ideas to this more general
problem. For the maximum detour resp. stretch factor problem for geometric
plane graphs, we conjecture that a near-linear resp. truly subquadratic time
algorithm exists.

For the Steiner tree problem, we would like to prove a linear bound on
the number of full components generated by GeoSteiner. Due to lack of com-
puting power, our current approach of a computer-assisted proof involving
the computation of a very complicated integral is infeasible. We hope that a
better analysis can lead to a simpler integral that may be solvable now or in
the near future.
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Summary (in Danish)

Algoritmer for netværksproblemer spiller en stadig større rolle i det moderne
samfund. Et netværks grafstruktur er en abstrakt og meget nyttig repræsen-
tation, som gør det muligt at anvende klassiske graf-algoritmer s̊asom Di-
jkstra og Bellman-Ford. Netværk fra virkelighedens verden har ofte andre
strukturelle egenskaber, som kan udnyttes. For eksempel er et vejnet eller
wire-layoutet p̊a en mikrochip typisk (næsten) planart og afstande i netværk-
et er ofte defineret ved den Euklidiske eller den rektilineære metrik. Spe-
cialiserede algoritmer, der udnytter s̊adanne egenskaber, er ofte væsentligt
hurtigere end de tilsvarende algoritmer for generelle grafer.

I den første og primære del af denne afhandling fokuseres p̊a udvik-
lingen af effektive algoritmer for planare grafer. De vigtigste bidrag er en
hurtigere algoritme for korteste-vej-problemet, et afstands-orakel med sub-
kvadratisk præprocesseringstid, en O(n log n)-tids-algoritme for replacement
paths-problemet og et min st-cut-orakel med næsten lineær præprocesse-
ringstid. Vi opn̊ar desuden bedre køretider til bestemmelse af forskellige
graf-invarianter s̊asom diameter og girth.

I den anden del betragtes stretch factor-problemer for geometriske grafer
samt grafer indlejret i metriske rum. Stretch factor er groft sagt en reel
værdi, der angiver, hvor godt en (geo-)metrisk graf tilnærmer den under-
liggende komplette graf mht. afstande. Vi præsenterer forbedrede algoritmer
til bestemmelse af stretch factor af en given graf og til at udvide en graf med
nye kanter, s̊aledes at stretch factor minimeres.

I den tredje og sidste del af afhandlingen behandles Steiner-træ-problemet
i planen udstyret med en vægtet fixed orientation-metrik. Vi giver en forbedret
teoretisk analyse af styrken ved pruning-teknikker anvendt af flere Steiner-
træ-algoritmer. Vi præsenterer desuden en algoritme, der bestemmer et
s̊akaldt Steiner hull, en struktur, der kan gøre bestemmelsen af et minimalt
Steiner-træ nemmere.
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Abstract

For an undirected n-vertex planar graph G with non-negative edge-weights, we consider the
following type of query: given two vertices s and t in G, what is the weight of a min st-cut in G?
We show how to answer such queries in constant time with O(n log4 n) preprocessing time and
O(n log n) space. We use a Gomory-Hu tree to represent all the pairwise min cuts implicitly.
Previously, no subquadratic time algorithm was known for this problem. Since all-pairs min cut
and the minimum cycle basis are dual problems in planar graphs, we also obtain an implicit
representation of a minimum cycle basis in O(n log4 n) time and O(n log n) space and an explicit
representation with additional O(C) time and space where C is the size of the basis.

These results require that shortest paths be unique. We deterministically remove this as-
sumption with an additional log2 n factor in the running time.

1 Introduction

A minimum cycle basis is a minimum-cost representation of all the cycles of a graph and the all-
pairs min cut problem asks to find all the minimum cuts in a graph. In planar graphs the problems
are intimately related (in fact, equivalent [7]) via planar duality. We give the first sub-quadratic
algorithm for these problems, running in O(n log4 n) time. In the following, we consider undirected,
graphs with non-negative edge weights.

All-pairs min cut The all-pairs min cut problem is to find the minimum st-cut for every pair s, t
of vertices in a graph G. Gomory and Hu [6] showed that these minimum cuts can be represented
by an edge-weighted tree such that:

• the nodes of the tree correspond one-to-one with the vertices of G,

• for any distinct vertices s and t, the minimum edge weight on the unique simple s-to-t path
in the tree has weight equal to the min st-cut weight in G, and

• removing the corresponding minimum weight edge from the tree partitions the nodes into two
sets S and T that is a partition of the vertices in G corresponding to a min st-cut.

∗School of Electrical Engineering and Computer Science, Oregon State University, glencora@eecs.orst.edu,
www.glencora.org

†Department of Computer Science, University of Copenhagen, koolooz@diku.dk,
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We call such a tree a Gomory-Hu tree or GH tree. Gomory and Hu also showed how to find such
a tree with n − 1 calls to a minimum cut algorithm. To date, this is the best known method for
general graphs and results in an O(n2 log n)-time algorithm for planar graphs using the best-known
algorithm for min st-cuts in planar graphs[8, 9, 4]. There is an algorithm for unweighted graphs
that beats the n− 1 times minimum cut time bound [3].

Minimum cycle basis A cycle basis of a graph is a set of independent cycles. Viewing a cycle
as an incidence vector in {0, 1}E , a set of cycles is independent if their vectors are independent
over GF (2). The weight of a set of cycles is the sum of the weights of the cycles. The minimum-
cycle basis (MCB) problem is to find a cycle basis of minimum weight. This problem dates to the
electrical circuit theory of Kirchhoff [13] in 1847 and has been used in the analysis of algorithms
by Knuth [15]. For a complete survey, see [10]. The best known algorithm in general graphs takes
time O(mω) where ω is the exponent for matrix multiplication [2].

An embedded planar graph is a mapping of the vertices to distinct points and edges to non-
crossing curves in the plane. A face of the embedded planar graph is a maximal open connected set
of points that are not in the image of any embedded edge or vertex. Exactly one face is unbounded
and it is called the infinite face. We identify a face with the embedded vertices and edges on its
boundary.

For a simple cycle C in a planar embedded graph G, let int(C) resp. ext(C) denote the open
bounded resp. unbounded subset of the plane defined by C. We refer to the closure of these sets as
int(C) and ext(C), respectively. We say that a pair of faces of G are separated by C in G and that
C separates this pair if one face is contained in int(C) and the other face is contained in ext(C). A
set of simple cycles of G is called nested if, for any two distinct cycles C and C ′ in that set, either
int(C) ⊂ int(C ′), int(C ′) ⊂ int(C), or int(C) ⊂ ext(C ′).

Hartvigsen and Mardon [7] prove that if G is planar, then there is a minimum cycle basis
whose cycles are simple and nested in the drawing in the embedding. As such, one can represent a
minimum cycle basis of a planar embedded graph as an edge-weighted tree such that:

• the nodes of the tree correspond one-to-one with the faces of the planar embedded graph, and

• each edge in the tree corresponds to a cycle in the basis, namely the cycle that separates the
faces in the components resulting from removing said edge from the tree.

Hartvigsen and Mardon also gave an O(n2 log n)-time algorithm for the problem that was later
improved to O(n2) by Amaldi et. al. [2].

1.1 Planar duality

In planar graphs, the MCB and GH problems are related via planar duality.
Corresponding to every connected planar embedded graph G (the primal) there is another

connected planar embedded graph (the dual) denoted G∗. The faces of G are the vertices of G∗ and
vice versa. The edges of G correspond one-to-one with those of G∗. Cycles and cuts are equivalent
through duality:

In a connected planar graph, a set of edges forms a cycle in the primal iff it forms a cut
in the dual. [18]
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Equivalence between minimum cycle bases and GH trees Just as cuts and cycles are
intimately related via planar duality, so are the all-pairs min cut and minimum cycle basis problems.
In fact, Hartvigsen and Mardon showed that they are equivalent in the following sense:

Theorem 1. For a planar embedded graph G, a tree T represents a minimum cycle basis of G if
and only if T is a Gomory-Hu tree for G∗ (after mapping the node-face relationship to a node-vertex
relationship via planar duality). (Corollary 2.2 [7])

Herein, we focus on the frame of reference of the minimum cycle basis. Our algorithm works by
finding a minimum (weight) cycle that separates two faces f and g. By duality, this cycle is a min
fg-cut in G∗. We recurse on as-yet unseparated faces, gradually building the tree T that represents
the minimum cycle basis and is the also GH-tree (for the dual graph). This alone will not achieve
a sub-quadratic running time. In order to beat quadratic time, we guide the recursion with planar
separators and use precomputed distances to efficiently find the minimum separating cycles.

1.2 Planar separators

A decomposition of a graph G is a set of subgraphs P1, . . . , Pk such that the union of vertex sets
of these subgraphs is the vertex set of G and such that every edge of G is contained in a unique
subgraph. We call P1, . . . , Pk the pieces of the decompostion. The boundary vertices of a piece Pi

is the set of vertices u in that piece such that there exists an edge (u, v) in G with v /∈ Pi

By recursive application of Miller’s Cycle Separator Theorem [16] to a planar embedded graph
G, we obtain a recursive subdivision where at each level, a piece with r vertices and s boundary
vertices is divided into two subpieces each of which has at most 2r/3 vertices and at most 2s/3+c

√
r

boundary vertices, for some constant c. The recursion stops when only one edge remains in a piece.
We define the O(log n) levels of the recursive decomposition in the natural way: level 0 consists of
one piece (G) and level i-pieces are obtained by applying the Cycle Separator Theorem to each level
i−1-piece. We represent the recursive subdivision as a binary tree, called the subdivision tree (of G),
with level i-pieces corresponding to vertices at level i in tree. Parent/child and ancestor/descendant
relationships between pieces correspond to their relationships in the subdivision tree.

Fakcharoenphol and Rao [5] show how to find a recursive subdivision such that for each piece,
its boundary vertices belong to a constant number of faces. We shall make the assumption that all
boundary vertices are on the external face of the piece. This will simplify the description of the
algorithm. Using results from [5], our results can easily be extended to the general case.

Dense distance graphs For a piece P , the internal dense distance graph of P or intDDG(P )
is the complete graph on the set of boundary vertices of P , where the weight of each edge (u, v)
is equal to the shortest path distance between u and v in P . The union of internal dense distance
graphs of all pieces in the recursive subdivision of G is the internal dense distance graph (of G), or
simply intDDG. Fakcharoenphol and Rao showed how to compute intDDG in O(n log3 n) time [5];
Klein improved this to O(n log2 n) [14].

The external dense distance graph of P or extDDG(P ) is the complete graph on the set of
boundary vertices of P where the weight of an edge (u, v) is the shortest path distance between u
and v in G \E(P ). The external dense distance graph of G or extDDG is the union of all external
dense distance graphs of the pieces in the recursive subdivision of G.

Theorem 2. The external dense distance graph of G can be computed in O(n log3 n) time.
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Proof. Fakcharoenphol and Rao compute intDDG bottom-up by applying a variant of Dijkstra to
obtain intDDG(P ) for a piece P from the internal dense distance graphs of its two children. A
similar algorithm can compute extDDG(P ) from the external dense distance graph of the parent
of P and the internal dense distance graph of the sibling of P . Hence, we can obtain extDDG
with a top-down algorithm after having found intDDG. Running time matches the time to find
intDDG.

1.3 Overview of the algorithm

We gradually build up the tree representing the minimum cycle basis. Initially the tree is a star
centered at a root r and each leaf corresponding to a face in the graph (including the infinite face).
We update the tree to reflect the cycles that we add iteratively to the basis. When the first cycle
C is found, we create a new node xC for the tree, make C a child of the root and make all the faces
that C encloses children of C. Each non-face node in the tree corresponding to a cycle C defines a
region R, defined as the subgraph of G contained in the closed subset of the plane defined by the
interior of C and the exterior of the children (if any) of C. We say that R is bounded by C, that C
is a bounding cycle of R, and that R contains the child regions and/or child faces defined by the
tree. The tree of regions is called the region tree. We observe the following:

A pair of faces not yet separated by a basis cycle belong to the same region.

The root r will remain a special region that represents the entire plane. We only add cycles to
the basis that nest with the cycles found so far. Whenever the basis is updated, the region tree is
updated accordingly. This is illustrated in Figure 1. We show how to efficiently update the region
tree in Section 5.

In the final tree, all faces have been separated: each face is the only face-child of a region. We
call such a region tree a complete region tree. Mapping each face to its parent, creating a tree with
one node for each face in the graph, will create the tree representing the minimum cycle basis.
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Figure 1: A graph with faces a through g; four nesting cycles A through D (left). A region tree for
cycles A,B and C (center). A region tree for cycles A through D (right).

Our algorithm is guided by the recursive subdivision of G. Starting at the deepest level of the
recursive subdivision, we separate all pairs of faces of G that have an edge in a common piece of
the subdivision. Each (nesting) separating cycle is added to the region tree.

Suppose we are at level i and that our algorithm has been applied to all levels deeper than i:
every pair of faces that have an edge in a common subpiece have been separated. Consider some

4
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level i-piece P and suppose two faces f1 and f2 of G both sharing edges with P have not yet been
separated. Let P1 and P2 be the two child pieces of P in the recursive subdivision. Since all pairs
of faces sharing edges with P1 and all pairs of elementary faces sharing edges with P2 have already
been separated, w.l.o.g. f1 shares edges with P1 and f2 shares edges with P2.

Since f1 and f2 have not been separated, they must belong to a common region R in the region
tree. There cannot be any other pair of faces f ′

1 and f ′
2 in R which share edges with P . For

otherwise, assume w.l.o.g. that f ′
1 and f ′

2 share edges with P1 and P2, respectively. Since all pairs
of faces sharing edges with a common child of P have already been separated and since f1, f2, f ′

1,
and f ′

2 all belong to R, f ′
1 = f1 and f ′

2 = f2, a contradiction.
Let the region subpieces of P be the subgraphs defined by the non-empty intersections between

P and regions defined by the region tree. We say that a region R is associated with a region
subpiece PR and that PR is associated with R if PR = P ∩ R is not empty. The boundary nodes
∂PR of PR are the boundary nodes that are inherited from P . The above shows that in each region
subpiece PR of P , at most one pair of faces need to be separated. These constructs are illustrated
in Figure 2. In Section 4, we show how to separate such a pair in time O(|PR| log3 |PR|) and show
that this amounts to O(|P | log3 |P |) time over all region subpieces of P . This will imply that our
algorithm spends O(n log3 n) time at level i in the recursive decomposition. Summing over all
levels, this gives a total running time of O(n log4 n).

f

g

Figure 2: The dotted edges are the edges belonging to the boundaries of a piece P and P ’s children
P1 and P2. f is a face of P1 and g is a face of P2. The solid black edges are the bounding cycle of
a region R. The three shaded regions are three child regions of R. The thick grey edges are the
edges of region subpiece PR. (The remaining edges of the graph are the thin, grey edges.) The
intersection of a minimum separating cycle for f and g with P uses only edges of PR.

1.4 Results

The bulk of the paper will be devoted to presenting the details of the region tree algorithm outlined
in the previous section. In Section 3, we will show how to find the region subpieces that contain
unseparated faces. In Section 4, we will show how to find the minimum separating cycle for each
of those pairs of unseparated faces. In Section 5, we will show how to update the region tree given
that separating cycle. Together these three sections will prove the main result of our paper:
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Theorem 3. A complete region tree of a planar undirected n-vertex graph with non-negative edge
weights can be found in O(n log4 n) time and O(n log n) space.

The region tree algorithm has several uses as previously indicated. For example, if we wish to
compute the Gomory-Hu tree of G (assuming G is connected), first find the complete region tree
T of G∗ (this assumes that G∗ is simple which can be achieved by adding new vertices on edges
without increasing the asymptotic complexity of the problem). Since T is complete, every node x
of T corresponding to a face of G∗ is the only face-child of a node u in T . Contract, in T , the edge
ux and identify the resulting node with face x. The resulting tree is exactly the tree that represents
the minimum cycle basis of G∗. By Theorem 1, mapping the faces of G∗ represented in this tree
to their corresponding vertices in G builds the Gomory-Hu tree for G. This gives:

Theorem 4. A Gomory-Hu tree of an n-vertex connected undirected planar graph with non-negative
edge weights can be computed in O(n log4 n) time and O(n log n) space.

Given the Gomory-Hu tree, one finds a minimum st-cut by finding the minimum weight edge
on the s-to-t path in the tree. With O(n log n) preprocessing time, on can answer such queries in
O(1) time using a tree-product data structure [12], giving:

Theorem 5. With O(n log4 n) time and O(n log n) space for preprocessing, the weight of a min
st-cut between for any two given vertices s and t of an n-vertex planar, undirected graph with
non-negative edge weights can be reported in constant time.

In Section 6, we will show how to explicitly find the cycles given the complete region tree, giving
the following results:

Theorem 6. Without an increase in preprocessing time or space, the min st-cut oracle of Theorem 5
can be extended to report cuts in time proportional to their size.

Theorem 7. The minimum cycle basis of an undirected planar graph with non-negative edge weights
can be computed in O(n log4 n + C) time and O(n log n + C) space, where C is the total size of the
cycles in the basis.

Theorem 8. The minimum cycle basis of an undirected and unweighted planar graph can be com-
puted in O(n log4 n) time and O(n log n) space.

Proof. The faces of a planar embedded graph excluding the infinite face define a (not necessarily
minimum) cycle basis with O(n) edges. The result now follows from Theorem 7.

2 Preliminaries

To simplify the presentation of the algorithm and the analysis, we make a few structural assumptions
on the input graph. These assumptions are not truly restrictive.

2.1 Simplifying structural assumptions

Simple faces We assume that each face in the graph is simple: each vertex appears only once
on the (boundary of the) face. We can achieve this by triangulating the graph with infinite-weight
edges. This will simplify the faces. For each face f of the original graph, identify a face f ′ of the

6



A

triangulated graph that is enclosed by f in the inherited embedding. The min f ′g′-cut will not use
any infinite-weight edge: the cut contains the same set of edges as in the min fg-cut in the original
graph. Likewise, the set of cycles in a minimum cycle basis in the original graph are mapped to
the set of finite-weight cycles in a minimum-cycle basis of the triangulated graph.

Degree three We assume that each vertex has degree 3. This can be achieved by triangulating
the faces of the dual graph with ε weight edges, where ε is much smaller than the smallest weight
edge. We use ε weight rather than 0 weight to aid in the next structural assumption. As in the
above triangulation, we can map between minimum cycle bases and min cuts in the original graph
and the degree-three graph. Triangulating the dual will increase the size of the faces of the primal,
but the faces will remain simple: assuming that faces are simple and that vertices have degree three
are compatible assumptions. Each vertex v in the original graph is mapped to a tree Tv of ε-weight
edges in the degree-three graph.

Unique shortest paths We assume that between any pair of vertices there is a unique shortest
path. To make this assumption a reality one can add a tiny, random fraction � ε to the weight of
each edge and make the probability of having non-unique shortest paths arbitrarily small. Since
this fraction is much smaller than the ε used above, we guarantee that any shortest path that enters
and leaves a tree Tv of ε-weight edges does so exactly once. Theorem 11 in Section 7 gives a more
robust, deterministic way to avoid this assumption that requires a log2 n-increase in the running
time of our algorithm.

Every region is bounded by a cycle The root of the region tree described in Section 1.3 was
a special region corresponding to the entire graph. We can treat this region as any other region by
bounding the graph by a zero-weight cycle, and so treat every region as having a bounding cycle.

2.2 Isometric cycles

In a planar embedded graph, a simple cycle C is said to cross another simple cycle C ′ if {C,C ′} is
not nested.

A cycle C in a graph is said to be isometric if for any two vertices u, v ∈ C, there is a shortest
path in the graph between u and v which is contained in C. A set of cycles is said to be isometric
if all cycles in the set are isometric. The following two results will prove useful.

Lemma 1. Assume that shortest paths in a graph G are unique. The intersection between an
isometric cycle and a shortest path in G is a (possibly empty) shortest path. The intersection between
two distinct isometric cycles C and C ′ in G is a (possibly empty) shortest path; in particular, if G
is a planar embedded graph, C and C ′ do not cross.

Proof. Let C be an isometric cycle and let P be a shortest path intersecting C. Let u resp. v be
the first resp. last vertex of intersection between C and P for some orientation of P . Since C is
isometric, there is a shortest path P ′ in C between u and v. Since shortest paths are unique, P ′ is
the subpath of P between u and v. Hence, the intersection between C and P is shortest path P ′.
This shows the first part of the lemma.

Let C ′ 6= C be an isometric cycle. Then C ∩C ′ is a set of vertex-disjoint paths. We claim that
there can be at most one such path. To see this, let u and v be distinct vertices on paths Pu and
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Pv. Let P1 and P2 be the two edge-disjoint paths in C between u and v. Define P ′
1 and P ′

2 similarly
for C ′. Since C and C ′ are isometric, we may assume that, say, P1 and P ′

1 are shortest paths. By
uniqueness of shortest paths, P1 = P ′

1 so Pu = Pv, implying that C ∩C ′ is a path. If we pick u and
v as the first and last vertex on this path, it follows that C ∩ C ′ is a shortest path.

Lemma 2. Any minimum cycle basis of a graph is isometric. (Proposition 4.4 [7])

It follows from these two lemmas that the minimum cycle basis that our algorithm constructs
is isometric and nested.

2.3 Top trees

We will represent the region tree using the top tree data structure [1]. This will allow us to find
the lowest common ancestor lca(x, y) of two vertices x and y and determine whether one vertex is
a descendant of another in logarithmic time and also to update the region tree efficiently as we add
cycles to the basis (the latter is described in Section 5). We will also make use of the operation
jump(x, y, d), which for two vertices x and y in a top tree finds in logarithmic time the vertex of
distance d (in terms of edges) from x on the simple path between x and y.

If the top tree represents a weighted tree, it can report the weight of a simple path in logarithmic
time, given the endpoints of this path.

3 Finding region subpieces

In Section 1.3, we defined the region subpieces of a piece as the intersection between a region and
a piece (Figure 2). In this section, we show how to identify the region subpieces and the edges that
are in them. We start by identifying the set of regions RP whose corresponding region subpieces of
piece P each contain a pair of unseparated faces (Section 3.1). For each region R ∈ RP we initialize
the corresponding region subpiece PR as an empty graph. For each edge e of P we determine to
what region subpieces e belongs using least-common-ancestor and ancestor-descendent queries in
the region tree (Section 3.2). In Section 3.3 we show how to do all this in O(r log2 n) time where r
is the size of P .

3.1 Identifying region subpieces

Since each edge is on the boundary of two faces, we start by marking all the faces of G that share
edges with P in O(r) time. Since a pair of unseparated faces in P are siblings in the region tree, we
can easily determine the regions that contain unseparated faces. So, in O(r) time we can identify
RP , the set of regions with unseparated faces in P . We will need the following bound on the size
of RP in our analysis, illustrated in Figure 3.

Lemma 3. |RP | = O(
√

r).

Proof. Let S be the separator cycle applied to P to obtain its children P1 and P2. We may assume
that P1 is contained in int(S) and that P2 is contained in ext(S). Let F1 be the set of faces
containing edges of P1 and not edges of P2 and let F2 be the set of faces containing edges of P2

and not edges of P1.
Any region R ∈ RP must contain at least one face of each F1 and F2. So, if C is the cycle

bounding R, either int(C) contains S or C crosses S.

8



A

P1 P2

Figure 3: A piece P is given by the boundaries (dotted) by its two child pieces P1 and P2. RP is
a nesting set (solid cycles), each containing a pair of unseparated faces (grey). Since these faces
must be separated by the child pieces, each bounding cycle (except for one outer cycle) in RP must
cross the dotted lines, resulting in a bound on |RP |.

If int(C) contains S then we claim that no other cycle bounding a region in RP has this
property. To see this, suppose for the sake of contradiction that there is another such cycle C ′

bounding a region R′ ∈ RP . Since the cycles nest, either int(C) ⊂ int(C ′) or int(C ′) ⊂ int(C).
Assume w.l.o.g. the former. Then all faces of F1 are contained in the interior of a face of R′. But
this contradicts the assumption that R′ contains at least one face from F1.

We may therfore restrict our attention to regions R ⊆ RP whose bounding cycle C crosses S.
Let C be the set of all cycles bounding regions of RP and let T be the corresponding region tree.
We will show that every region R ∈ RP that has at most one child region must contain at least
one face of F1 ∩ F2. Since each face F1 ∩ F2 is adjacent to at least one vertex of S and since each
vertex can be adjacent to at most three faces (since G has degree 3), |F1 ∩F2| = O(|S|) = O(

√
r).

The number of regions with more than one child region is bounded by the number of regions with
no child regions, implying that |RP | = O(

√
r).

Let R be a region with no child region in T and let C be the cycle bounding R. Since the
children of R are exactly the faces in int(C) and since C crosses S, R contains at least one face of
F1 ∩ F2. No other region can contain the child faces of R. The number of regions containing no
other region is therefore O(

√
r).

Now, let us give the same bound on the number of regions of T with exactly one child region.
Let R be the region associated with such a node and let R′ be its unique child region. Let C and
C ′ be corresponding bounding cycles. Then int(C ′) ⊂ int(C). We may assume that R does not
contain any faces of F1∩F2 since the number of such faces is O(

√
r), as shown above. Then C and

C ′ must cross S in exactly the same set of boundary vertices and in the same order.
Let P1, . . . , Pk be the minimal subpaths of C between vertices of S (Pi does not cross S).

Define P ′
1, . . . , P

′
k similarly for C ′ such that Pi and P ′

i start and end in the same boundary vertex,
i = 1, . . . , k. By Lemma 1, Pi = P ′

i for all i except i = j for some j. Let Cj be the cycle
Pj ∪ P ′

j . Then the set of faces of G in R all belong to int(Cj). Since either int(Cj) ⊂ int(S) or
int(Cj) ⊂ ext(S) and since R contains no faces of F1 ∩ F2, all faces of G in R are contained in
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either F1 or F2. This is a contradiction, since R ∈ RP .

3.2 Identifying edges of region subpieces

Region subpieces are composed of two types of edges: internal edges and boundary edges. Let R be
a region and let C be the bounding cycle of R. An edge e is an internal edge of a region subpiece
R if the faces on either side of e are enclosed by C. An edge e is a boundary edge of R if e is an
edge of C. Every edge is an internal edge for exactly one region subpiece: Lemma 4 shows how
we can identify this region. We can also determine if an edge is a boundary edge for some region
(Lemma 5). However, an edge can be a boundary edge for several region subpieces. We show how
to deal with this potential problem efficiently in Section 3.3.

Lemma 4. Let e be an edge of G and let f1 and f2 be the faces adjacent to e. Then e is an internal
edge of a region R iff R is the lowest common ancestor of f1 and f2 in the region tree.

Proof. There must exist some region R satisfying the lemma. Let C be its bounding cycle. Then
both f1 and f2 are contained in int(C) and it follows that R must be a common ancestor of f1 and
f2. If R′ is another common ancestor then either R is an ancestor of R′ or R′ is an ancestor of
R. If R is an ancestor of R′ then R′ is contained in a face of R so e cannot belong to R. But this
contradicts the choice of R. Hence, R = lca(f1, f2).

Iterating over each edge e of P , we can find the region R for which e is an internal edge. If
R ∈ RP , we add e to the corresponding region subpiece PR. The total time to add internal edges
to their corresponding region subpieces is O(r log n).

Lemma 5. Let e be an edge of G and let f1 and f2 be the faces adjacent to e. Let R′ be the lowest
common ancestor of f1 and f2 in the region tree. Then e is a boundary edge of a region R iff R is
a descendant of R′ and one of f1, f2 is a descendant of R.

Proof. Assume first that e ∈ C, where C is the cycle bounding R. Then exactly one of the faces f1

and f2 is in int(C) and the other is in ext(C). Assume w.l.o.g. that f1 ∈ int(C) and f2 ∈ ext(C).
Then f1 is a descendant of R and since f2 is not, R must be a descendant of R′.

Now assume that R is a descendant of R′ and that, say, f1 is a descendant of R. Then f2 is not
a descendant of R since otherwise, R′ could not be an ancestor of R. This implies that e ∈ C.

Let R be a region in RP and let C be the bounding cycle of R. Let P1 and P2 be the children
of P and let B be the union of boundary vertices of P1 and P2. We have seen (in the proof of
Lemma 3) that the intersection between C and P are subpaths in P between pairs of vertices of B.
We shall refer to these as cycle paths (of C). Consider the following algorithm to find cycle paths.

Cycle path identification algorithm Pick a boundary vertex u ∈ B. For every edge e adjacent
to u (there are at most three such edges), check to see if e is a boundary edge of R. If there
is no such edge, then there is no cycle path through u. If there is, walk along C starting with
e until another vertex in B encountered. Add all visited edges to the boundary subpiece.
Repeat this process for every vertex in B.

Using Lemma 5 and the top tree, this process takes O((
√

r + |C ∩PR|) log n) time since a constant
number of tree queries is required for every edge of C in PR and for every vertex in B.
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If the cycles are edge-disjoint over all regions R ∈ RP , then the cycle paths will also be
edge-disjoint. By the above discussion, the time to find all the region subpieces is O((|RP |

√
r +

|P |) log n) = O(r log n). However, the cycles are not necessarily edge disjoint. We overcome this
complication in the next section.

3.3 Efficiently identifying boundaries of region subpieces

Since cycles will share edges, the total length of cycle paths over all cycles can be as large as
O(r3/2). However, we can maintain the efficiency of the cycle path identification algorithm by
using a compact representation of each cycle path. The compact representation consists of edges
of P and cycle edges that represent paths in P shared by multiple cycle paths.

View each edge of G as two oppositely directed darts and view the cycle bounding a region as
a clockwise cycle of darts. The following is a corollary of Lemma 1.

Corollary 1. If two isometric cycles C and C ′ of G share a dart, then either int(C) ⊆ int(C ′) or
int(C ′) ⊆ int(C).

Let F be the forest representing the ancestor/descendant relationship between the bounding
cycles of regions in RP . By Lemma 3, there are O(

√
r) bounding cycles and since we can make

descendent queries in the region tree in O(log n) time per query, we can find F in O(r log n) time.
Let d be the maximum depth of a node in F (roots have depth 0). For i = 0, . . . , d, let Ci be the
set of cycles corresponding to nodes at depth i in F . As a result of Lemma 1:

Corollary 2. For any i ∈ {0, . . . , d}, every pair of cycles in Ci are pairwise dart-disjoint.

Bottom-up algorithm

We find cycle paths for cycles in Cd, then Cd−1, and so on. The cycles in Cd are dart disjoint, so
any edge appears in at most two cycles of Cd. We find the corresponding cycle paths using the
cycle path identification algorithm in near-linear time. While Corollory 2 ensures that the cycles
in Cd are mutually dart-disjoint, they can share darts with cycles in Cd−1. In order to efficiently
walk along subpaths of cycle paths Q that we have already discovered, we use a binary search tree
(BST) to represent Q. We can also process the BST such that, given two nodes in Q, the weight
of the corresponding subpath of Q can be determined in logarithmic time.

To find the cycle paths of a cycle C ∈ Cd−1 that bounds a region R, we emulate the cycle path
identification algorithm: start walking along a cycle path Q of C, starting from a vertex of B, and
stop if you reach an edge e = uv that has already been visited (linear search). In this case, e must
be an edge of a cycle path Q′ of a cycle C ′ ∈ Cd. By Lemma 1, the intersection of Q and Q′ is a
single subpath and so we can use the BST to find the last vertex w common to Q and Q′ (binary
search). We add to PR an edge uw of weight equal to the weight of the u-to-w subpath of Q to
compactly represent this subpath. If w ∈ B, we stop our walk along Q. Otherwise we continue
walking (and adding edges to the corresponding region subpiece) in a linear fashion, alternating
between linear and binary searches until a boundary vertex is reached. See Figure 4.

We have shown how to obtain region subpieces for cycles in Cd and in Cd−1. In order to repeat
the above idea to find cycle paths for cycles in Cd−2, we need to build BSTs for cycle paths of cycles
in Cd−1. Let Q be one such cycle path. Q can be decomposed into subpaths Q1Q

′
1 · · ·QkQ

′
k, where

Q1, . . . , Qk are paths obtained with linear searches and Q′
1, . . . , Q

′
k are paths obtained with binary
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linear

binary

Figure 4: Finding a cycle path (highlighted straight line) for a cycle C ∈ Cd−1 between boundary
nodes of P1 and P2 (grey dashed lines) is found by alternating linear (solid) and binary (dotted)
searches. Binary searches corrrespond to cycle paths of region subpieces (shaded) bounded by
cycles in Cd.

searches (possibly Q1 and/or Q′
k are empty). To obtain a binary search tree T for Q, we start with

T the BST for Q1. We extract a BST for Q′
1 from the BST we used to find Q′

1 and merge it into
T . We continue merging with BSTs representing the remaining subpaths.

Once BSTs have been obtained for cycle paths arising from Cd−1, we repeat the process for
cycles in Cd−2, . . . , C0.

Running time We now show that the bottom-up algorithm runs in O(r log2 n) time over all
region subpieces. We have already described how to identify boundary vertices that are starting
points of cycle paths in O(r log n) time. It only remains to bound the time required for linear and
binary searches and BST construction.

A subpath identified by a linear search consists only of edges that have not yet been discovered.
Since each step of a linear search takes O(log n) time, the total time for linear searches is O(r log n).

The number of cycle paths corresponding to a cycle C is bounded by the number of boundary
vertices, O(

√
r). We consider three types of cycles paths. Those where

1. all edges are shared by a single child of C in F ,

2. no edges are shared by a child, and

3. some but not all edges are shared by a single child.

Cycle paths of the first type are identified in a single binary search for a total of O(r) such searches
over all cycles in C ∈ F . Cycle paths of the second type do not require binary search. For a cycle
path Q in the third group, Q can only share one subpath with each child (in F) cycle by Lemma 1;
hence, there can be at most two binary searches per child. Summing over all such cycles, the total
number of binary searches is O(

√
r).

In total there are O(r) binary searches. Each BST has O(r) nodes. In traversing the binary
search tree, an edge is checked for membership in a given cycle path using Lemma 5 in O(log n)
time. Each binary search therefore takes O(log r log n) = O(log2 n) time. The total time spent
performing binary searches is O(r log2 n).

It remains to bound the BST construction time. We merge BSTs T1 and T2 in O(min{|T1|, |T2|} log(|T1|+
|T2|})) = O(min{|T1|, |T2|} log n) time by inserting elements from the smaller tree into the larger.
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When forming a BST for a cycle path of a cycle C, it may be necessary to delete parts of
cycle paths of children of C. By Lemma 1, these parts intersect int(C) and will not be needed for
the remainder of the algorithm. The total number of deletions is O(r) and they take O(r log r)
time to execute. So, ignoring deletions, notice that paths represented by BSTs are pairwise dart
disjoint (due to Corollary 2). Applying the following lemma with k = log n and W = r then gives
Theorem 9.

Lemma 6. Consider a set of objects, where each object o is assigned a positive integer weight
w(o). Let merge(o, o′) be an operation that replaces two distinct objects o and o′ by a new object
whose weight is at most w(o) + w(o′). Assume that the time to execute merge(o, o′) is bounded by
O(min{w(o), w(o′)}k) for some value k. Then repeating the merge-operation on pairs of objects in
any order until at most one object remains takes O(kW log W ) time where W is the total weight of
the original objects.

Proof. We only need to consider the hard case where in beginning, all objects have weight 1 and
at termination, exactly one object of weight W remains. Furthermore, we may assume that the
weight of merge(o, o′) is exactly w(o) + w(o′) for two objects o and o′.

Consider running the algorithm backwards: starting with one object of weight W , repeatedly
apply an operation split that splits an object of weight at least two into two new objects of positive
integer weights such that the sum of weights of the two equals the weight of the original object.
Assume that split runs in time proportional to the smaller weight of the two new objects times k.
If we can give a bound of O(kW log W ) for this algorithm, we also get a bound on the algorithm
stated in the theorem.

The running time for the new algorithm satisfies:

T (w) ≤ k max
1≤w′≤bw/2c

{T (w′) + T (w − w′) + cw′}

for integer w > 1 and constant c > 0. It is easy to see that the right-hand side is maximized when
w′ = bw/2c. This gives T (W ) = O(kW log W ), as desired.

Theorem 9. The region subpieces of a piece of size r can be identified in O(r log2 n) time.

4 Separating a pair of faces

In this section we show how to find the minimum fg-separating cycle for the unique pair of faces
f, g in a region subpiece PR. We assume that the region subpiece is given to us by the work in
Section 3. We emulate the algorithm due to Reif [17] to find the minimum separating cycle.

We will use an operation of cutting open planar embedded graph G along a path X: duplicate
every edge of X and every internal vertex of X and create a new, simple face whose boundary is
composed of edges of X and their duplicates. The resulting graph is denoted GX .

Paths P and Q cross if there is a quadruple of faces adjacent to P and Q that cover the set
product {left of P , right of P} × {left of Q, right of Q}.

4.1 Reif’s minimum separating cycle algorithm

Let X be the shortest path between any vertex on the boundary of f and any vertex on the boundary
of g. Reif uses the fact that, since X is a shortest path, there is a minimum gf -separating cycle,
C, that crosses X only once:
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Theorem 10. Let X be the shortest g-to-f path. For each vertex x ∈ X, let Cx be the minimum
weight cycle that crosses X exactly once and does so in x. Then a minimum fg-separating cycle
is a cycle Cx of minimum weight. Further, Cx is the shortest path between duplicates of x in GX .
(Proposition 3 [17], originally due to Itai and Shiloach [11].)

Reif computes, for every vertex x ∈ X, the minimum separating cycle Cx. Finding Cx amounts
to finding a shortest x-to-x′ path in GX , where x′ is the duplicate of x. The running time of the
algorithm is bounded by divide and conquer: start with x, the midpoint of X in terms of the
number of vertices, and recurse on the subgraphs obtained by cutting along Cx. The algorithm
takes O(n log n) time using the O(n) algorithm for shortest paths in planar graphs.

Our goal is to emulate Reif’s algorithm in time O((|∂PR|2 + |PR|) log3 |PR|). In order to attain
this running time, we must deal with the following peculiarities:

• X is not contained entirely in PR. For a vertex x ∈ X that is outside PR, we will compute
Cx by composing distances in extDDG and intDDG between restricted pairs of boundary
vertices of PR. We call such cycles external cycles. We show how to find these cycles in
Section 4.4.

• For vertices x ∈ X that are inside PR, Cx may not be contained by PR. We find Cx by first
modifying extDDG to disallow paths from crossing X. We call such cycles internal cycles.
We show how to find these cycles in Section 4.3.

• extDDG corresponds to distance in G, not GX . We compute modified dense distance graphs
to account for this (Section 4.2).

We can compute X with Dijkstra using O((|∂PR|2 + |PR|) log |PR|) time. In the next two sections
we show how to find all the internal cycles and external cycles in time O((|∂PR|2 + |PR|) log3 |PR|)
time. The minimum length cycle over all internal and external cycles is the minimum fg-separating
cycle in G.

f
g

external
cycle

internal
cycle

X

Figure 5: An external and internal cycle separating faces f and g in a region subpiece, whose
boundary vertices are given by the bold vertices.

4.2 Modifying the external dense distance graph

We use extDDG to create extDDGX , the dense distance graph that corresponds to distances
between boundary vertices of PR when the graph is cut open along X. Let B be the set of
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boundary vertices of PR. Cutting G open along X duplicates vertices of B that are in X, cre-
ating B′. extDDGX can be represented as a table of distances between every pair of vertices of
B′: extDDGX(x, y) = ∞ if x is a copy of y or if x and y are separated in GX outside PR and
extDDGX(x, y) = extDDG(x, y) otherwise.

We describe how to determine if x and y are separated in GX outside PR. The portions of
X that appear outside PR form a parenthesis of (a subset of) the boundary vertices, illustrated
in Figure 6. By travelling along X we can mark the start and endpoints of these parentheses.
By walking along the boundary of the subpiece starting at a vertex a, we can easily determine
the vertices b that are cut off by a part of the parenthesis and set the corresponding distance in
extDDGX to ∞. For vertex a, this will take O(|∂PR|) time. Repeating for every boundary vertex
of PR takes a total of O(|∂PR|2) time.

Figure 6: Modifying the external dense distance graph. (Left) X is given by the solid line and the
boundary of the subpiece is given by the dotted line. The parts of X outside the subpiece form a
parenthesis. (Right) In GX , the only finite distances from a in extDDGX correspond to the thick
lines. The shaded area represents the new face created by cutting along X.

4.3 Finding internal cycles

Let D = V (X ∩ PR). Let D be ordered according to the order of the vertices along X. For
each vertex x ∈ D, we compute the shortest x-to-x′ paths in GX where x′ is the copy of x in
GX . We do this using Dijsktra’s algorithm on the cut-open graph induced by the vertices in
PR (GX [PR]) and the modified dense distance graph: extDDGX . Each cycle can then be found in
O((|PR|+|∂PR|2) log |PR|) time. Let xm be the midpoint vertex of D according to the order inherited
from X. Cxm splits PR and extDDGX into two parts (not necessarily balanced). Recursively
finding the cycles through the midpoint in each graph part1 results in log |D| levels for a total of
O((|PR|+ |∂PR|2) log |PR| log |D|) = O((|PR|+ |∂PR|2) log2 |PR|) time to find all the internal cycles.

4.4 Finding external cycles

We show that every external cycle is composed of a single edge ab in the unmodified extDDG and
a shortest path πab between boundary vertices of PR in G that does not cross X.

Using the modified Dijkstra algorithm of Fakcharoenphol and Rao (Section 3.2.2 and 3.2.2 [5]),
we can compute all such cycles in O(|∂PR|2 log2 |PR|) time if extDDGX and intDDGX are given.

1In order to properly bound the running time, one must avoid repeating long paths in the subproblems: in a
subproblem resulting from divide and conquer, we remove degree-two vertices by merging the adjacent edges.

15



A

intDDGX can be found in O((|∂PR|2 + |PR|) log3 |PR|) time by cutting open X and using the
algorithm of Fakcharoenphol and Rao. Note that we need to compute intDDGX from scratch
because X has been cut open and because PR is no longer a subgraph of G due to the compact
representation presented in Section 3.3.

In order to compute all the external cycles, one enumerates over all pairs a, b of vertices that
are split exactly once by the parenthesis given by X, summing dB(a, b) and extDDG(a, b). Since
there are O(|∂PR|) boundary vertices, there are O(|∂PR|2) such cycles. The minimum-weight such
cycle is the minimum separating cycle that crosses X outside PR.

It remains to prove the required structure of the external cycles.

Lemma 7. The shortest external cycle is composed of a single edge ab in the unmodified extDDG
and a shortest path πab between boundary vertices of PR in G that does not cross X.

Proof. Let C be the shortest external cycle that separates faces f and g. By Theorem 10, C is
a cycle that crosses X exactly once, say at vertex x. Further, C is a shortest path P between
duplicates of x in the graph GX . Since C must separate f and g, C must enter PR. Starting at x
and walking along C in either direction from X, let a and b be the first boundary vertices that C
reaches. Let πab be the a-to-b subpath of C that does not cross X. Since C is a shortest path in
GX , πab is the shortest path between boundary vertices as given in the theorem.

Let πx be the a-to-b subpath of C that does cross X. By definition of a and b, πx contains
no vertices of PR except a and b. Further, πx must be the shortest such path, as otherwise, C
would not be the shortest fg-separating cycle. Therefore, πx must correspond to the edge ab in
extDDG.

5 Adding a separating cycle to the region tree

Above, we showed how to find a compact representation of a minimum cycle cycle C separating a
pair of faces in a region R. This cycle should be added to the basis we are constructing and in this
section, we show how to update the region tree T accordingly. As in the previous section, let PR

be the region subpiece P ∩R of piece P .
When C is added to the partial basis, R is split into two regions, R1 and R2. Equivalently,

in T , R will be replaced by two nodes R1 and R2. The children F of R will be partitioned into
children F1 of R1 and F2 of R2. Define R1 to be the region defined by the children of R that are
contained to the left of C. Likewise define R2 to be the region for the children to the right of C.
We describe an algorithm that finds F1 and detects whether F1 is contained by int(C) or ext(C).
Finding F2 is symmetric. The algorithms take O(|Fi| log3 n+(|PR|+ |∂PR|2) log n) time and so we
can identify the smaller side of the partition in O(min{|F1|, |F2|} log3 n+(|PR|+|∂PR|2) log n) time.
This will imply that the total time for all region tree updates during the course of the algorithm is
O(n log4 n) (see proof of Lemma 6).

Updating the region tree Given the smaller side of the partition, we use cut-and-link operations
to update T in O(min{|F1|, |F2|} log n) additional time. See Figure 1 for an illustration. Assume,
w.l.o.g., that F1 is the smaller set. If F1 is contained by int(C) then update T by: cutting the
edges between R and each element in F1, linking each element in F1 to R1, making R the parent
of R1, identifying R with R2. If F1 is contained by ext(C) then update T by: cutting the edges

16



A

between R and each element in F1, linking each element in F1 to a new node u, making u the
parent of R; identifying R with R1 and u with R2.

5.1 Partitioning the faces

R is represented compactly: vertices in G[R] of degree 2 are removed by merging the adjacent edges
creating super edges. Each super edge is associated with the first and last edge on the corresponding
path. In addition to partitioning the faces, we must find the compact representation for the two
new regions, R1 and R2.

R

C

left of C

right
of C

Figure 7: C (bold cycle) is given with a counterclockwise orientation. The children of R (boundary
given by thin cycle) adjacent and to the right of C are grey. The edges to the left of C (and not
on C) will never reach a boundary edge of R: therefore the left of C forms int(C). Vertices of L
are given by dark circles.

The algorithm for finding F1 starts with an empty set and consists of three steps:

Left root vertices Identify the set L of vertices v on C having an edge emanating to the left of
C; also identify, for each v ∈ L, the two edges on C incident to v (in G, not the compact
representation).

Search Start a search in R from each vertex of L avoiding edges on C or emanating to the right
of C; for each super edge ê of R visited, find the first (or last) edge e on the path represented
by ê.

Add For each pair of faces f1, f2 adjacent to e, find the two children of R in T having f1 and f2

as descendants, respectively, and add these nodes to F1.

This algorithm correctly builds F1: The algorithm visits all super edges ê that are strictly inside
R and on the left side of C. Let A1 and A2 be the children of R that are added corresponding to
edge e. Ai is a region or a face of G: let Ci be the bounding cycle. Since fi is a descendent of Ai,
fi is contained by int(Ci). Since e is in C1 and C2: so must ê. A1 and A2 are therefore the child
regions of R on either side of ê.

The algorithm can easily determine if F1 is contained by int(C) or ext(C): let f1 and f2 be
the adjacent faces of a searched edge e. Lemma 5 tells us if e is in the bounding cycle of R. If it
is, then F1 must be contained by ext(C): otherwise, the search could never reach an edge on the
cycle bounding R (since edges of C are not visited) and F1 must be contained by int(C).
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Analysis

The above-described algorithm can be implemented in O(|F1| log3 n + (|PR|+ |∂PR|2) log n) time.
Finding the left-root vertices is the trickiest part; while |L| = O(|F1|), |L| could be much smaller
than the number of vertices in C, even in the compact representation. We give details in Section 5.2.
Assuming that left-root vertices can be found quickly, we analyze the remaining steps.

Search step The total number of super edges that must be searched is O(|F1|) since each super
edge is incident to two elements of F1. The search can be done by DFS or BFS in linear time,
starting with vertices of L. Given a super edge ê found by this search, we find the first or last edge
e (of G) on the path the super edge represents; this takes O(1) time since e is associated with ê.

In order for this to work, we need to identify, for each v ∈ L, the set of super edges incident to
v which are not on C and which do not emanate to the right of C. Since G has degree three, so
has the compact representation of R since all faces and isometric cycles in G are simple. It follows
that no super edge incident to v emanates to the right of C. To identify the super edge incident to
v which is not on C, we can apply Lemma 5 to the first edge on each of the three super edge paths.

Add step The faces f1 and f2 incident to an edge e can be found in constant time using the
graph representation of G. Applying Lemma 5 to e (to check if F1 is contained by int(C) or ext(C))
takes O(log n) time. Finding the children of R that are ancestors of f1 and f2 also takes O(log n)
time using the operations jump(R, f1, 1) and jump(R, f2, 1) in the top tree for T . The total time
spent adding is O(|F1| log n).

5.2 Finding left-root vertices

We show how to find the set L of left-root vertices along C in O(|F1| log3 n + |C| log n) time where
|C| is the number of super edges in the compact representation of C. As a result of Section 4, C
has O(|PR|+ |∂PR|2) super edges and of three different types corresponding to: edges in extDDG
and intDDG(PR), and edges and cycle paths in PR. We will show how to use binary search to
prune certain super edges of C that do not contain vertices of L. Assume for now that each super
edge is on the boundary of a child region (as opposed to a child face) of R that is to the left of C.
We will show how to relax this assumption in Section 5.2.3.

The following lemma is the key to using binary search along C:

Lemma 8. Let P be the shortest u1-to-u2 path in G that is also a subpath of C. For i = 1, 2, let ei

be the edge on P incident to ui and let ri be the child-region of R that is left of C and is bounded
by ei. Then r1 = r2 if and only if no interior vertex of P belongs to L.

Proof. The “if” part is trivial.
By our assumption, r1 and r2 are regions, not faces. Their bounding cycles must therefore be

isometric. If r1 = r2 then Lemma 1 implies that P is a subpath of the boundary of r1: no interior
vertex of P could belong to L in this case. This shows the “only if” part.

5.2.1 Shortest path covering

In order to use Lemma 8, we cover the left-root vertices of C with two shortest paths P and Q.
Let r be a vertex that is the endpoint of a super edge of C. Since C is isometric, there is a unique
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edge e such that C is the union of e and two shortest paths P ′ and Q′ between r and the endpoints
of e. Note that e could be in the interior of a super edge of C. The paths P and Q that we use to
cover L are prefixes of P ′ and Q′.

To find e, we first find ê, the super edge that contains e. Since P and Q are shortest paths and
shortest paths are unique, the weight of each path is at most half the weight of the cycle. To find ê,
simply walk along the super edges of C and stopping when more than half the weight is traversed:
ê is the last super edge on this walk.

Given ê, we continue this walk according to the type of super edge that ê is. If ê corresponds to
a cycle path, then, by definition, all the interior vertices of ê have degree two in R and so cannot
contain a left-root vertex; there is no need to continue the walk. P and Q are simply the paths
along C from r to ê’s endpoints. This takes O(|C|) time.

If ê is an edge of intDDG(PR) or extDDG, we continue the walk. We describe the process for
intDDG(PR) as extDDG is similar: we continue the walk started above through the subdivision
tree of PR that is used to find intDDG(PR). ê is given by a path of edges in the internal dense
distance graph of PR’s children in the subdivision tree. We may assume that we have a top tree
representation of the shortest path tree containing this path and so we can find the child super edge
êc that contains e using binary search taking O(log2 n) time. Recursing through the subdivision
tree finds a cycle path or edge that contains e for a total of O(log3 n) time.

When we are done, P and Q are paths of super edges from extDDG or intDDG(PR). P and Q
each have O(|C|+ log n) super edges and they are found in O(|C|+ log3 n) time.

5.2.2 Building L

Using Lemma 8, we will decompose P into maximal subpaths P1, . . . , Pk such that no interior vertex
of a subpath belongs to L. Each subpath Pi will be associated with the child region of R to the
left of C that is bounded (partly) by Pi. We repeat this process for Q and find L in O(k) time by
testing the endpoints of the subpaths.

Let ê be one of the O(|C|+log n) super edges of P . ê is either an edge of extDDG or intDDG(PR).
Suppose ê is in intDDG(PR). We can apply Lemma 8 to the first and last edges on the path that ê
represents, and stop if there are no vertices of L in the interior of the path. Otherwise, with the top
tree representation of the shortest path tree containing the shortest path representing ê, we find
the midpoint of this path and recurse. If ê is in extDDG, the process is similar. Adjacent subpaths
may still need to be merged after the above process, but this can be done in time proportional to
their number.

How long does it take to build L? Let ê be a super edge representing subpath Pê of P and let
m be the number of interior vertices of Pê belonging to L. Then there are m leaves in the recursion
tree for the search applied to ê. We claim that the height of the recursion tree is O(log2 n). Let
S be some root-to-leaf path in the recursion tree. If ê is in intDDG(PR), S is split into O(log n)
subpaths, one for each level of the subdivision tree; in each level, the corresponding subpath is
halved O(log n) times before reaching a single edge. If ê is in extDDG, the search may go root-
wards in the subdivision tree but once we traverse down, we are in intDDG and will thus not go
up again. The depth of the recursion tree is still O(log2 n).

At each node in the recursion tree, we apply two top tree operations to check the condition in
Lemma 8 and one top tree operation to find the midpoint of a path for a total of O(log n) time.
The total time spent finding the m vertices of L in Q is O(m log3 n) time. If m = 0, we still need
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O(log n) time to check the condition in Lemma 8. Summing over all super edges of P , the time
required to identify L is O(|C| log n + |L| log3 n) = O(|C| log n + |F1| log3 n), as desired.

5.2.3 Handling faces

We have assumed that every child of R incident to and left of C is a region, not a face. Lemma 8 is
only true for this case: boundaries of faces need not be isometric, and so the intersection between a
face and shortest path may have multiple components. However, notice that after the triangulation
of the primal followed by the triangulation of the dual, every face f of G is bounded by a simple
cycle of the form e1P1e2P2e3P3 where e1, e2, and e3 are edges and P1, P2, and P3 are tiny-weight
shortest paths (see Section 2.1). Call the six endpoints of edges e1, e2, e3 the corners of f . We
associate each edge of f with the path containing it among the six paths e1, e2, e3, P1, P2, and P3.

We present a stronger version of Lemma 9 which implies the correctness of the left-root vertex
finding algorithm even when children of R are faces, not regions:

Lemma 9. Let P be the shortest u1-to-u2 path in G that is also a subpath of C. For i = 1, 2, let ei

be the edge on P incident to ui and let ri be the child of R to the left of C and containing ei. Then

1. if neither r1 nor r2 are faces, then r1 = r2 if and only if no interior vertex of P belongs to L,

2. if exactly one of r1, r2 is a face then some interior vertex of P belongs to L,

3. if both r1 and r2 are faces and r1 6= r2 then some interior vertex of P belongs to L,

4. if both r1 and r2 are faces, r1 = r2, and e1 and e2 are associated with different subpaths of r1

then some interior vertex of P is a corner of r1 or belongs to L,

5. if both r1 and r2 are faces, r1 = r2, and e1 and e2 are associated with the same subpath of r1

then no interior vertex of P belongs to L.

Proof. Part 1 is Lemma 8 and parts 2 and 3 are trivial. For part 4, we may assume that P is fully
contained in the boundary of r1 since otherwise, some interior vertex of P belongs to L. Since e1

and e2 are associated with different subpaths of r1, it follows that some interior vertex of P is a
corner of r1. For part 5, we may assume that e1 6= e2. Then e1 and e2 are on the same (tiny weight)
shortest path in r1 so P must be contained in the boundary of r1. It follows that no interior vertex
of P belongs to L.

Using Lemma 9 instead of Lemma 8, our L-finding algorithm will also identify corners of faces
incident to P . Since each face has only 6 corners but contributes at least two vertices to L, this
will not increase the asymptotic running time.

5.3 Obtaining new regions

While we have found the required partition of the children of R and updated the region tree
accordingly, it remains to find compact representations of the new regions R1 and R2. Recall that
we only explicitly find one side of the partition, w.l.o.g., F1.

To find R1, start an initially empty graph. In the search step, we explicitly find all the super
edges of R1 that are not on the boundary of C. Remove these edges from R and add them to

20



A

R1. The remaining super edges are simply subpaths of C between consecutive vertices of L. These
edges can be added to R1 without removing them from R.

The super edges left in R are exactly those in R2. However, there may be remaining degree-two
vertices that should be removed by merging adjacent super edges. All such vertices, by construction,
must be in L, and so can be removed quickly.

That super edges are associated with the first and last edges on their respective paths is easy
to maintain given the above construction. The entire time required to build the new compact
representation is O(|F1|).

6 Reporting min cuts

By Theorem 5, we can report the weight of any min st-cut in constant time. We extend this to
report the cuts themselves in time proportional to their size. Size refers to the number of edges
in the cut. We will show how to report a minimum separating cycle for a given pair of faces in
G∗ in time proportional to the number of edges in the cycle. By duality of the min cuts and min
separating cycles, this will prove Theorem 6.

In this section, we do not assume that the graph has degree 3. The edges added to achieve that
may increase the number of edges in a cycle. However, we can still compute T , the region tree
of G∗, with the degree-3 assumption. We will rely only on the relationship between faces in G∗,
which did not change in the construction for the degree-3 assumption. Since cycles in the min cycle
basis are boundaries of regions represented by T , this tree also reflects the ancestor/descendant
relationships between cycles in the min cycle basis.

Consider a cycle C. By Lemma 5 the set of darts in C that are not in an ancestor of C form a
path (possibly equal to C). It follows that the set of darts in C that are not in any strict ancestor
of C also form a path, denoted P (C). Using the next lemma, we can succinctly represent any cycle
using these paths. See Figure 8 for an illustration.

Lemma 10. Let C = C0, C1, C2, . . . be the ancestral path to the root of T for C. C can be written
as the concatenation of the path P (C), prefixes of P (C1), P (C2), . . . , P (Ck−1), a subpath of P (Ck)
and suffixes of P (Ck−1), . . . , P (C2), P (C1), in that order.

P(C)
P(C1)

P(C2)

C

d2(C1)d1(C1)

Figure 8: A succinct representation of a cycle in the min cycle basis.
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Proof. Let Ck be the root-most cycle that shares a dart d with C: d is in P (Ck). By Lemma 5, the
intersection of C with Ck is a single path: it must be a subpath P ′ of P (Ck). Let Q = C \ P ′. By
the definition of P (Ck−1), the start of Q must be the start of P (Ck−1) and the end of Q must be
the end of P (Ck−1). The remainder of the proof follows with a simple induction.

Let d1(C) be the last dart of C before P (C) and let d2(C) be the first dart of C after P (C).
Suppose additionally that we know, for every dart d, the cycle C(d) for which d ∈ P (C).

6.1 Finding the min separating cycle

If we are given d1(C), d2(C), and P (C) for every cycle (node) in T and C(d) for every dart d, we
can find the minimum fg-separating cycle C in O(|C|) time by the following procedure. First we
can find the node in T corresponding to C in O(1) time using the oracle (Theorem 5). To find C,
walk along C, starting with P (C), until you reach the end. Let C1 = C(d2(C)) and walk along
P (C1) starting with d2(C). Suppose we are at dart d along C. Let Ci = C(d). Walk along P (Ci)
until either you reach its end or you hit dart d1(Ci−1). In the first case, continue the process with
d2(Ci). In the second case, continue the process with the first dart of P (Ci−1). By Lemma 10, this
process will eventually reach the start of P (C).

6.2 Preprocessing step

It remains to show how to precompute d1(C), d2(C), P (C) for every cycle in T and C(d) for every
dart. We find these using the top tree representation of T with O(n log n) preprocessing time.

Let f` and fr be the faces to the left and right of a dart d. Then it follows easily from Lemma 5
and the clockwise orientation C(d) that C(d) is the bounding cycle of region jump(lca(f`, fr), fr, 1)
and can be found in O(log n) time.

We can easily construct P (C) from the set of darts with C(d) = C. The ordering can be found
just using the endpoints of these darts so that we can walk along P (C) as required in the previous
section.

To find d1(C) and d2(C), we work from leaf to root in T as in the bottom-up algorithm of
Section 3.3. We will show how to find d2(C). Finding d1(C) is symmetric. For cycle C we
can easily find the last dart d` of P (C). Consider the darts do leaving the endpoint of P (C) in
counterclockwise order, in the embedding, starting with the reverse of d`, we test if do is on the
boundary of C using Lemma 5 in O(log n) time. As we test darts we remove them from further
consideration as they will be in the interior of all ancestor cycles. In total, this takes O(n log n)
time.

7 Lex-shortest paths

Let w : E → R be the weight function on the edges of G. So far, we have assumed uniqueness of
shortest paths in G between any two vertices w.r.t. w. We now show how to avoid this assumption.
We assume in the following that the vertices of G are given indices from 1 to n. For V ′ ⊆ V , define
I(V ′) as the smallest index of vertices in V ′.

As shown in [7], there is another weight function w′ on the edges of G such that for any pair
of vertices in G, there is a unique shortest path between them w.r.t. w′ and this path is also a
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shortest path w.r.t. w. Furthermore, for two paths P and P ′ between the same pair of vertices in
G, w′(P ) < w′(P ) exactly when one of the following three conditions is satisfied:

1. P is strictly shorter than P ′ w.r.t. w,

2. P and P ′ have the same weight w.r.t. w and P contains fewer edges than P ′,

3. P and P ′ have the same weight w.r.t. w and the same number of edges and I(V (P )\V (P ′)) <
I(V (P ′) \ V (P )).

A shortest path w.r.t. w′ is called a lex-shortest path and a shortest path tree w.r.t. w′ is called a
lex-shortest path tree.

The properties of w′ allow us to apply this function instead of w in our algorithm. In the
following, we show how to do this efficiently.

We first use a small trick from [7]: for function w, a sufficiently small ε > 0 is added to the
weight of every edge. This allows us to disregard the second condition above. When comparing
weights of paths, we may treat ε symbolically so we do not need to worry about precision issues.
The tricky part is efficiently testing the third condition.

We need to make modifications to every part of our algorithm in which the weights of two
shortest paths are compared. All such comparisons occur when we (1) apply the Dijkstra variant
of Fakcharoenphol and Rao [5] and (2) find a shortest path covering of an isometric cycle C in
Section 5.2.1.

Note that in making the graph degree three (Section 2.1), we used an ε weight on the introduced
edges. To combine this with lex-shortest paths, we make ε � ε so that shortest paths will still
be chosen to have the fewest edges (in the original graph) and run along the trees introduced to
make vertices degree three. Using both ε and ε in the symbolic comparisons does not increase the
asymptotic run time.

7.1 Dijkstra

Let us first adapt Dijkstra to compute lex-shortest paths. The type of shortest path weight com-
parisons in [5] are of the form D(u) + d(u, v) < D(u′) + d(u′, v), where u, v, u′, and v′ are vertices,
D(u) and D(u′) are the distances from the root of the partially built tree to u and u′, respectively,
and d(u, v) and d(u′, v) are the weights of edges (u, v) and (u′, v). Here, an edge can belong to G,
be a cycle edge (see Section 3.3), or an edge of an external or internal dense distance graph.

For simplicity, assume first that all edges considered by Dijkstra belong to G. Then we can test
whether D(u)+d(u, v) < D(u′)+d(u′, v) as follows. Let T be the partially built shortest path tree
rooted at a vertex r and let Q and Q′ be the lex-shortest paths from r to u and u′, respectively.
If the first two lex-shortest conditions are inconclusive, we need to check if I(V (Q) \ V (Q′)) <
I(V (Q′) \ V (Q)).

Letting a = lca(u, u′,) in T , V (Q)\V (Q′) is the set of vertices on Q[a, u], excluding a. Similarly,
V (Q′)\V (Q) is the set of vertices on Q′[a, u′], excluding a. It follows from this that by representing
T as a top tree, we can find the smallest index in the two sets in logarithmic time. Using top trees,
we can also deal with cycle edges in the same way by keeping, for each such edge, the smallest index
of its interior vertices. These indices can be found during the construction of region subpieces in
Section 3.1 without an increase in running time.
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7.2 Internal dense distances

We also need to handle edges from internal and external dense distance graphs. Let us first
consider the problem of computing lex-shortest path trees in intDDG. As before, we compute
shortest path trees for pieces bottom-up. Let P be a piece with children P1 and P2 and assume
that we have computed lex-shortest path trees in both of them. Assume also that every edge in
intDDG(P1)∪ intDDG(P2) is associated with the smallest index of interior vertices on the path in
G that the edge represents. This information can be computed bottom-up during the construction
of intDDG without increasing running time.

Let T be a partially built shortest path tree in P and with the above defintions, consider the
problem of testing whether D(u)+d(u, v) < D(u′)+d(u′, v). Let (a, ua) and (a, u′a) be the first edges
on Q[a, u] and Q′[a, u′], respectively. Define QG and Q′

G as the paths in G represented by Q and Q′,
respectively. Let i1 = I(V (QG[ua, u])), i′1 = I(V (Q′

G[u′a, u
′])), i2 = I(V (QG[a, ua]) \ V (Q′

G[a, u′a])),
and i′2 = I(V (Q′

G[a, u′a]) \ V (QG[a, ua])). By definition of a, QG[ua, u] and Q′
G[u′a, u

′] are vertex-
disjoint. Hence, we need to find the four indices and check if min{i1, i2} < min{i′1, i′2}.

Each edge of T belongs to intDDG(P1)∪ intDDG(P2) and is thus associated with the smallest
index of interior vertices on the path in G represented by that the edge. Top tree operations on T
as above then allow us to find i1 and i′1 in logarithmic time.

To find i2 and i′2, we consider two cases: (a, ua) and (a, u′a) belong to the internal dense distance
graph for the same child of P or they belong to different graphs. In the first case, assume that,
say, (a, ua), (a, u′a) ∈ intDDG(P1). Then we can decompose these two edges into shortest paths in
the same shortest path tree in intDDG(P1) and we can recursively find i2 and i′2. In the second
case, assume that, say, (a, ua) ∈ intDDG(P1) and (a, u′a) ∈ intDDG(P2). Since the lex-shortest
paths representing these edges in intDDG(P1) and intDDG(P2) are edge-disjoint and since T is a
partially built lex-shortest path tree in P , QG[a, ua] and Q′

G[a, u′a] share no vertices except a. Thus,
i2 is the smallest index of vertices in V (QG[a, ua]) \ {a} and we can obtain this index in constant
time from the index of ua and the index associated with edge (a, ua) which is the smallest index of
interior vertices on QG[a, ua]. Similarly, we can find i′2 in constant time.

Since the subdivision tree has O(log n) height, the recursion depth of the above algorithm is
O(log n), implying that we can determine whether D(u) + d(u, v) < D(u′) + d(u′, v) in O(log2 n)
time. Hence, lex-shortest path trees in intDDG can be computed in a total of O(n log5 n) time.

7.3 External dense distances

Computing lex-shortest path trees in extDDG within the same time bound is very similar so we
only highlight the differences. Having computed lex-shortest path trees in intDDG bottom-up, we
compute lex-shortest path trees in extDDG top-down. For a piece P , we obtain lex-shortest path
trees from lex-shortest path trees in its sibling and parent pieces. We can then use an algorithm
similar to the one above to find lex-shortest path trees in P . At each recursive step, we either go
up one level in extDDG or go to intDDG. It follows that the recursive depth is still O(log n) so
lex-shortest path trees in extDDG can be found in O(n log5 n) time.

7.4 Distances in region subpieces

We also apply Dijkstra in Section 4 for a region subpiece PR. First, we computed shortest path X
between two faces of the region subpiece in O((|∂PR|2 + |PR|) log |PR|) time using Dijkstra. With
an algorithm similar to the one above, we can instead compute a lex-shortest path between the
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two faces in O((|∂PR|2 + |PR|) log |PR| log2 n) time. Next, we cut open the region subpiece along
this path and computed a shortest path in GX between each pair of duplicate vertices on the two
copies of X. Using Reif’s algorithm, we obtained a time bound of O((|∂PR|2 + |PR|) log3 |PR|). We
need to find similar shortest paths but with respect to weight function w′.

For each pair of duplicate vertices corresponding to a vertex x ∈ X, we assign the index of
x to both of them. Then the lex-shortest path between the two vertices in GX w.r.t. w must be
the shortest path w.r.t. w′. Hence, using the above Dijkstra algorithm, the total time spent on
computing shortest paths w.r.t. w′ for PR is O((|PR|+ |∂PR|2) log3(|PR|) log2 n).

7.5 Shortest path coverings

In Section 5.2.1, we gave an algorithm to find the unique edge e = (u, v) on isometric cycle C such
that the two shortest paths from a fixed vertex r on C to u and to v cover all vertices of C and
all edges except e. We showed how to do this in O(|C|+ log3 n) time, where |C| is the size of the
compact representation of C obtained in Section 4. We need to modify the algorithm to deal with
lex-shortest paths.

Recall that to find e, a linear search of the super edges of C from r was first applied to find the
super edge ê of C such that the shortest path in G representing ê contains e. As above, we may
assume that every super edge of C is associated with the smallest index of interior vertices on the
path it represents. Hence, by keeping track of the smallest interior vertex index for super edges
visited so far in the linear search as well as the smallest interior vertex index for edges yet to be
visited, we can find ê in O(|C|) time w.r.t. lex-shortest paths.

Having found ê, we need to apply binary search on a path representing ê in a lex-shortest path
tree. We do this by first finding the midpoint of this path as in Section 5.2.1. If the two halves
have the same weight and the same number of edges, we can use a top tree operation on each
half to determine which half has the smallest index. It follows that all binary searches to find e
take O(log3 n) time. The total time to find e is thus O(|C| + log3 n), which matches the time in
Section 5.2.1.

As a result, we have:

Theorem 11. The Theorems 3 through 7 hold without the shortest-path uniqueness assumption
with only an additional O(log2 n) factor in the preprocessing time.

8 Concluding remarks

We gave an oracle for min st-cut weight queries in a planar undirected graph with non-negative
edge weights. Construction time is O(n log4 n) and space requirement is O(n log n), where n is the
size of the graph. The actual cut can be reported in time proportional to its size. We obtained
this oracle from a Gomory-Hu tree algorithm with the same time and space bounds. Previously, no
subquadratic time algorithm was known. We also showed how to compute an implicit representation
of a minimum cycle basis in O(n log4 n) time and O(n log n) space and an explicit representation
with additional O(C) time and space where C is the size of the basis.

In order to obtain our results, we needed shortest paths to be unique. We showed how to
deterministically remove this assumption at the cost of an extra log2 n-factor in running time.
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Abstract. Given a graph embedded in a metric space, its dilation is
the maximum over all distinct pairs of vertices of the ratio between their
distance in the graph and the metric distance between them. Given such
a graph G with n vertices and m edges and consisting of at most two
connected components, we consider the problem of augmenting G with an
edge such that the resulting graph has minimum dilation. We show that
we can find such an edge in O((n4 log n)/

√
m) time using linear space

which solves an open problem of whether a linear-space algorithm with
o(n4) running time exists. We show that O(n2 log n) time is achievable
if G is a simple path or the union of two vertex-disjoint simple paths.
Finally, we show how to find an edge that maximizes the dilation of the
resulting graph in O(n3) time with O(n2) space and in O(n3 log n) time
with linear space.

1 Introduction

Given a set of cities, represented by points in the plane, consider the problem
of finding a road network that interconnects these cities. We seek a network
with low cost in which no large detours are required to get from any city to any
other city, that is, the road distance between the two cities should be at most a
constant factor larger than the Euclidean distance between them. Typical cost
measures of the network include size, length, diameter, and maximum degree.

Spanners are networks in which the largest detour is small, and the problem
of finding a low-cost spanner for a given point set has received a lot of attention
in recent years [3,5,6].

Typically however, one is not interested in constructing a network from scratch
but rather to modify a given network. Consider the following problem. Suppose
� This research has been partially funded by the Netherlands Organisation for Scien-

tific Research (NWO) under FOCUS/BRICKS grant number 642.065.503.
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we are given a network and we would like to extend it with new edge connections
to reduce the largest detour. A cost is involved in adding a connection and we can
only afford to add, say, a constant k ≥ 1 number of connections. The problem is
to pick these connections such that the largest detour in the resulting network
is minimized.

When k = 1, an optimal edge to add is called a best shortcut. Farshi et al. [4]
considered the problem of finding a best shortcut in a graph embedded in an
arbitrary metric space and showed how to solve it in O(n4) time with O(n2)
space and in O(n3m + n4 log n) time with linear space (linear in the size of the
input graph), where n is the number of vertices and m is the number of edges of
the given network. Various approximation algorithms with faster running times
were also presented. The authors posed the following open problem: is there an
(exact) algorithm with running time o(n4) using linear space?

An algorithm with O(n3 log n) running time was presented in [7]. It has O(n2)
space requirement however, leaving the problem in [4] open.

In this paper, we present a linear-space algorithm with O((n4 log n)/
√

m)
running time. Since it may be assumed that the input graph consists of at most
two connected components (otherwise, the problem is trivial), m = Ω(n). Hence,
we solve the open problem in [4].

For more special types of graphs, we give faster algorithms. We show how to
obtain O(n2 log n) running time when the graph is a simple path or the union
of two vertex-disjoint simple paths.

Finally, we consider the problem of finding a worst shortcut, i.e. an edge that
maximizes the largest detour of the resulting graph. This relates to a problem
in [1] where edge-deletions were considered. We show how to solve this for general
graphs in O(n3) time with O(n2) space and in O(n3 log n) time with linear space.

The organization of the paper is as follows. In Section 2, we give some defin-
itions and introduce some notation. In Section 3, we present our algorithm for
computing a best shortcut in a graph embedded in a metric space together with
the algorithms for special types of graphs. In Section 4, we present the algo-
rithm for finding a worst shortcut in a graph. Finally, we make some concluding
remarks in Section 5.

2 Definitions and Notation

Given a non-empty set M , a metric on M is a function d : M × M → R such
that for all x, y, z ∈ M ,

d(x, y) ≥ 0
d(x, y) = 0 ⇔ x = y

d(x, y) = d(y, x)
d(x, y) ≤ d(x, z) + d(z, y).

The pair (M, d) is called a metric space.
Let G = (V, E) be a graph embedded in metric space (V, d). We regard G

as a weighted graph where each edge e ∈ E is assigned cost d(e). For any two
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vertices u, v ∈ V , we define dG(u, v) as the length of a shortest path between u
and v in G. If no such path exists, we define dG(u, v) = ∞.

If u 	= v, the dilation (or detour) between u and v is defined as dG(u, v)/d(u, v)
and is denoted by δG(u, v). The dilation δG of G is defined as

δG = max
u,v∈V,u�=v

δG(u, v).

We define a shortcut (in G) as a vertex pair (u, v) ∈ V × V and call it a best
shortcut resp. worst shortcut if it minimizes resp. maximizes δG∪{(u,v)}.

3 Finding a Best Shortcut

In the following, let G = (V, E) be a graph embedded in metric space (V, d). In
this section, we present our algorithm for finding a best shortcut in G. Due to
space constraints, we only consider the case where G is connected. The discon-
nected case may be handled in a way similar to that in [7].

3.1 Staircase Functions

We start by introducing so called staircase functions as in [7]. Let u, v, w1, w2 ∈ V
be given with u 	= v. Define G′ as the graph obtained by augmenting G with
shortcut e = (w1, w2).

A shortest path from u to v in G′ either avoids e, visits e in direction w1 → w2,
or visits e in direction w2 → w1. Hence,

δG′(u, v) = min{dG(u, w1) + d(w1, w2) + dG(w2, v),
dG(u, w2) + d(w2, w1) + dG(w1, v),
dG(u, v)}/d(u, v).

Let us assume that dG(u, w2) < dG(u, w1) + d(w1, w2). Then no shortest path
from u in G′ visits e in direction w1 → w2. Thus, letting

x = dG(u, w2) + d(w2, w1)
a = 1/d(u, v)
b = dG(w1, v)/d(u, v)
c = δG(u, v),

we have

δG′(u, v) = min{ax + b, c} =
{

ax + b for x ≤ (c − b)/a
c for x ≥ (c − b)/a

.

If we keep u, v, and w1 fixed, we see that a, b, and c are constants and that the
dilation between u and v in G′ may be expressed as a piecewise linear function
δ(u,v,w1)(x) of x = dG(u, w2) + d(w2, w1).

We define staircase function s(u,w1) : [0, ∞) → [0, ∞) by

s(u,w1)(x) = max{δ(u,v,w1)(x)|v ∈ V \ {u}}.

Note that this function is piecewise linear and non-decreasing.
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3.2 The Algorithm

In this section, we present our O((n4 log n)/
√

m) time algorithm with linear
space for finding a best shortcut in G. In fact, we will show a more general result.
Letting M be a positive function of n and m with M = O(n2), we present an
algorithm with O(M +n) space requirement (in addition to the space for storing
G and a representation of the metric space) that finds a best shortcut in G in
time O((mn4 + n5 log n)/(M

√
M) + (n4 log n)/

√
M).

In the following, let v1, . . . , vn be an arbitrary ordering of the vertices of G.
Pseudo-code of the algorithm is shown in Figure 1. To simplify the code and the
following analysis, we have made the following assumptions:

√
M is an integer

that divides n and M/n is an integer that divides
√

M . It should be clear how
to modify the algorithm to handle the case where these assumptions are not
satisfied without affecting the asymptotic time and space bounds.

Let us give a high-level overview of the algorithm before proving its correctness
and bounding its time and space requirement. The main ideas are similar to those
in [7]: build a table T with n2 entries, one entry for each vertex pair, and fill

1. set δmin := ∞ and let umin, vmin be uninitialized vertex variables
2. for i := 1 to n −

√
M step

√
M

3. for j := 1 to n −
√

M step
√

M

4. initialize a table T [i, . . . , i +
√

M − 1][j, . . . , j +
√

M − 1]
5. with all entries set to zero
6. for r := i to i +

√
M − M/n step M/n

7. for s := 1 to n − M/n step M/n
8. for a := r to r + M/n − 1
9. compute and store SSSP distances in G with source va

10. for b := s to s + M/n − 1
11. compute and store SSSP distances in G with source vb

12. for a := r to r + M/n − 1
13. for b := s to s + M/n − 1
14. let (w1, u) = (va, vb)
15. compute staircase function s(u,w1)

16. for c := j to j +
√

M − 1
17. let w2 = vc

18. if dG(u, w2) < dG(u, w1) + d(w1, w2)
19. set T [a][c] := max{T [a][c], s(u,w1)(dG(u, w2) + d(w2, w1))}
20. free memory used to store SSSP distances
21. repeat lines 4 to 19 with the values of i and j swapped and
22. store values in another table T ′[j, . . . , j +

√
M − 1][i, . . . , i +

√
M − 1]

23. for r := i to i +
√

M − 1
24. for s := j to j +

√
M − 1

25. if r �= s and max{T [r][s], T ′[s][r]} < δmin

26. set δmin := max{T [r][s], T ′[s][r]}
27. set (umin, vmin) := (vr, vs)
28. return (umin, vmin) as a best shortcut

Fig. 1. Pseudo-code for algorithm to find a best shortcut in G
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in entries such that, at termination, max{T [u][v], T [v][u]} equals δG∪{(u,v)} for
each pair of distinct vertices (u, v).

However, now we only have O(M) space available so we subdivide T into
n2/M sub-tables each of width and height

√
M , see Figure 2.

Fig. 2. T is decomposed into n2/M sub-tables. Here, n/
√

M = 4. If the entries of T in
the two marked sub-tables are computed then max{T [u][v], T [v][u]} = δG∪{(u,v)} can
be obtained for all M vertex pairs (u, v) belonging to those two subtables.

We only keep two sub-tables in memory at a time. More precisely, for i =
1, . . . , n/

√
M and j = 1, . . . , n/

√
M , we fill in entries of the sub-table in row i

and column j and entries of the sub-table in row j and column i (this is the
reason why lines 4 to 19 in the pseudo-code are repeated with indices i and j
swapped) and from these entries we obtain max{T [u][v], T [v][u]} for vertex pairs
in those two sub-tables.

In the following, we show the correctness of the algorithm and then bound its
running time and space requirement.

Correctness. In order to prove the correctness of the algorithm it is enough to
show that each value max{T [r][s], T ′[s][r]} computed in line 25 equals δG∪{(vr,vs)}
for r 	= s since (r, s) covers all distinct pairs in {1, . . . , n}2 throughout the course
of the algorithm.

So consider any i-iteration and any j-iteration of the algorithm. At the end
of each iteration of the for-loop in lines 7 to 20, we have (with w1 = wa and
w2 = wc),

T [a][c] = max{s(u,w1)(dG(u, w2) + d(w2, w1))|u ∈ {vs, . . . , vs+M/n−1},

dG(u, w2) < dG(u, w1) + d(w1, w2)}.

or T [a][c] = 0 if there is no u ∈ {vs, . . . , vs+M/n−1} such that dG(u, w2) <

dG(u, w1) + d(w1, w2), for a = r, . . . , r + M/n − 1 and c = j, . . . , j +
√

M − 1,
a 	= c. Hence, at the end of each iteration of the for-loop in lines 6 to 20,

T [a][c] = max{s(u,w1)(dG(u, w2) + d(w2, w1))|u ∈ V,

dG(u, w2) < dG(u, w1) + d(w1, w2)}
=max{δG∪{(w1,w2)}(u, v)|u, v∈V, u	=v, dG(u, w2)<dG(u, w1)+d(w1, w2)}.
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for a = i, . . . , i +
√

M − 1 and c = j, . . . , j +
√

M − 1, a 	= c (this is well-defined
since u = w2 satisfies dG(u, w2) < dG(u, w1) + d(w1, w2).

Similarly, after lines 21 to 22,

T ′[c][a] = max{δG∪{(w1,w2)}(u, v)|u, v ∈ V, u 	= v, dG(u, w1) < dG(u, w2) + d(w2, w1)}.

for a = i, . . . , i +
√

M − 1 and c = j, . . . , j +
√

M − 1, a 	= c.
For any u ∈ V , any w1 ∈ {vi, . . . , vi+

√
M−1}, and any w2 ∈ {vj, . . . , vj+

√
M−1}

withw1 	= w2, eitherdG(u, w2) < dG(u, w1)+d(w1, w2) ordG(u, w1) < dG(u, w2)+
d(w2, w1) for otherwise we get the contradiction

dG(u, w2) + d(w2, w1) ≤ dG(u, w1)
≤ dG(u, w2) − d(w1, w2)
< dG(u, w2) + d(w2, w1).

Hence, after lines 6 to 22,

max{T [a][c], T ′[c, a]} = max
u,v∈V,u�=v

δG∪{(w1,w2)}(u, v) = δG∪{(w1,w2)}.

for a = i, . . . , i +
√

M − 1 and c = j, . . . , j +
√

M − 1, a 	= c. This shows the
correctness of the algorithm.

Space Requirement. As for space requirement, we observe that each table
takes up

√
M

2
= M space. In lines 8 to 11, we store shortest path distances

from O(M/n) vertices to all vertices in G. This takes up a total of O(M) space.
Staircase function s(u,w1) can be represented using O(n) space since it consists
of O(n) line segments. Hence, the algorithm uses O(M + n) space.

Running Time. What remains is to bound the running time of the algorithm.
The total time spent in lines 4 to 5 is O(n2). The total number of iterations of the
for-loop in lines 7 to 19 is (n/

√
M)2(

√
M/(M/n))(n/(M/n)) = n5/(M2

√
M).

If we use Dijkstra’s SSSP algorithm in lines 9 and 11, the total time spent in
lines 8 to 11 is

O((n5/(M2
√

M))(M/n)(m + n log n)) = O((n4/(M
√

M))(m + n log n)).

Computing staircase function s(u,w1) in line 15 can be done in O(n log n) time
since it is the upper envelope of O(n) line segments (or halflines) and each line
segment can be found in constant time using the precomputed shortest path
distances. Since the total number of iterations of the for-loop in lines 13 to 19
is (n5/(M2

√
M))(M/n)2 = n3/

√
M , it follows that the time spent in line 15

throughout the course of the algorithm is O((n4 log n)/
√

M).
The number of iterations of the for-loop in lines 16 to 19 is (n3/

√
M)

√
M =

n3. The test in line 18 can be performed in constant time using the precom-
puted shortest path distances. Computing value s(u,w1)(dG(u, w2) + d(w2, w1)
can be done in O(log n) time with binary search since s(u,w1) is a non-decreasing
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piecewise linear function. Hence, the time spent in lines 16 to 19 throughout the
course of the algorithm is O(n3 log n).

Adding up, it follows that the total time spent in lines 4 to 20 is

O((n4/(M
√

M))(m + n log n) + (n4 log n)/
√

M + n3 log n)

which is
O((mn4 + n5 log n)/(M

√
M) + (n4 log n)/

√
M)

since M = O(n2). A similar argument shows that the total time spent in lines
21 to 22 is

O((mn4 + n5 log n)/(M
√

M) + (n4 log n)/
√

M).

Finally, the total time spent in lines 23 to 27 is O(n2).
We have now shown the following.

Theorem 1. A best shortcut in G can be found in O((mn4+n5 log n)/(M
√

M)+
(n4 log n)/

√
M) time using O(M + n) space.

Note the tradeoff between time and space. Setting M = m + n solves the open
problem in [4].

Corollary 1. A best shortcut in G can be found in O((n4 log n)/
√

m) time using
linear space.

Also note that by setting M = n2, it follows that a best shortcut can be found
in O(n3 log n) time using O(n2) space which is the result in [7].

Next, we consider special types of graphs and show that we can achieve faster
running times for these.

3.3 Best Shortcut of Two Vertex-Disjoint Simple Paths

In this section, we assume that G is the union of two simple vertex disjoint
simple paths L1 and L2. We will show that a best shortcut in G can be found
in O(n2 log n) time.

Clearly, we may restrict our attention to finding shortcuts that connect L1
and L2. In the following, let (w1, w2) denote a shortcut and assume w.l.o.g. that
w1 ∈ L1 and w2 ∈ L2. Let G′ denote the graph G ∪ {(w1, w2)}. Denote the
endpoints of L1 by v1 and v3 and the endpoints of L2 by v2 and v4. We do not
yet know how to pick w1 and w2 so let us regard them as variables and introduce
real parameters x1, x2, x3, and x4, defined by

x1 = dG(v1, w1) + d(w1, w2) + dG(w2, v2),
x2 = dG(v3, w1) + d(w1, w2) + dG(w2, v4),
x3 = dG(v3, w1) + d(w1, w2) + dG(w2, v2),
x4 = dG(v1, w1) + d(w1, w2) + dG(w2, v4),

see Figure 3.
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Fig. 3. Definition of four parameters for two vertex-disjoint simple paths

Now, let us express the dilation between vertices u ∈ L1 and v ∈ L2 by these
parameters. First define

δ1
G′(u, v) =

x1 − dG(u, v1) − dG(v, v2)
d(u, v)

,

δ2
G′(u, v) =

x2 − dG(u, v3) − dG(v, v4)
d(u, v)

,

δ3
G′(u, v) =

x3 − dG(u, v3) − dG(v, v2)
d(u, v)

,

δ4
G′(u, v) =

x4 − dG(u, v1) − dG(v, v4)
d(u, v)

.

The following lemma shows how to express δG′(u, v) as a function of x1, x2, x3,
and x4.

Lemma 1. δG′(u, v) = max{δ1
G′(u, v), δ2

G′(u, v), δ3
G′(u, v), δ4

G′(u, v)}.

Proof. Define Lw1vi as the subpath of L1 from w1 to vi, i = 1, 3. Similarly, define
Lw2vi as the subpath of L2 from w2 to vi, i = 2, 4. Then δG′(u, v) ≥ δ1

G′(u, v),
δG′(u, v) ≥ δ2

G′(u, v), δG′(u, v) ≥ δ3
G′(u, v), and δG′(u, v) ≥ δ4

G′(u, v).
Furthermore,

δG′(u, v) = δ1
G′(u, v) ⇔ u ∈ Lw1v1 and v ∈ Lw2v2 ,

δG′(u, v) = δ2
G′(u, v) ⇔ u ∈ Lw1v3 and v ∈ Lw2v4 ,
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δG′(u, v) = δ3
G′(u, v) ⇔ u ∈ Lw1v3 and v ∈ Lw2v2 ,

δG′(u, v) = δ4
G′(u, v) ⇔ u ∈ Lw1v1 and v ∈ Lw2v4 .

Since u ∈ L1 = Lw1vi ∪ Lw1v3 and v ∈ L2 = Lw2v2 ∪ Lw2v4 , we have δG′(u, v) =
max{δ1

G′(u, v), δ2
G′(u, v), δ3

G′(u, v), δ4
G′(u, v)}. ��

From Lemma 1, it follows that

δG′ = max{δL1 , δL2 , max
i=1,2,3,4

{ max
u∈L1,v∈L2

δi
G′(u, v)}}.

We now give an algorithm that finds a vertex pair (w1, w2) that maximizes
the value maxu∈L1,v∈L2 δ1

G′(u, v). By symmetry, it is enough to show that this
problem can be solved in O(n2 log n) time in order to prove our claim.

For each pair of distinct vertices u and v, δ1
G′(u, v) is a linear and non-

decreasing function of x1. Thus, maxu∈L1,v∈L2 δ1
G′(u, v) is a piecewise linear,

non-decreasing function of x1 consisting of O(n2) line segments (and one halfline)
and it can be found in O(n2 log n) time.

Having found this upper envelope function, we determine an x1-value for
each pair of vertices w1 and w2 and compute the corresponding value of the
upper envelope function. Using binary search, this takes O(log n) time for each
vertex pair. The pair (w1, w2) with the largest value is the pair maximizing
maxu∈L1,v∈L2 δ1

G′(u, v).
We have now obtained the following result.

Theorem 2. If G is the union of two vertex-disjoint simple paths, a best short-
cut in G can be found in O(n2 log n) time.

3.4 Best Shortcut of a Simple Path

We now show how to find a best shortcut in G when G is a simple path L.
Let v1 and v2 be the end vertices of L. By symmetry, we may restrict our

attention to shortcuts (w1, w2) where dG(w1, v1) < dG(w2, v1). And when finding
a pair (u, v) achieving the dilation of δG′ , G′ = G ∪ {(w1, w2)}, we only need to
consider pairs where dG(u, v1) < dG(u, v2).

We will present an algorithm for the above problem with O(n2 log n) running
time. The basic idea is the same as in Section 3.3. We introduce real parameters
x1, x2, x3, and x4, defined by

x1 = d(w1, w2) + dG(w1, w2),
x2 = dG(v1, w1) + d(w1, w2) + dG(w2, v2),
x3 = dG(v1, w1) + d(w1, w2) + dG(w2, v1),
x4 = dG(v2, w2) + d(w1, w2) + dG(w1, v2),

see Figure 4. And we define
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Fig. 4. Definition of four parameters for simple path

δ1
G′(u, v) = min{x1 − dG(u, v)

d(u, v)
, δG(u, v)},

δ2
G′(u, v) = min{x2 − dG(u, v1) − dG(v, v2)

d(u, v)
, δG(u, v)},

δ3
G′(u, v) = min{x3 − dG(u, v1) − dG(v, v1)

d(u, v)
, δG(u, v)},

δ4
G′(u, v) = min{x4 − dG(u, v2) − dG(v, v2)

d(u, v)
, δG(u, v)}.

We have the following result.

Lemma 2. δG′(u, v) = max{δ1
G′(u, v), δ2

G′(u, v), δ3
G′(u, v), δ4

G′(u, v)}
Proof. For each pair of vertices u′, v′ ∈ L, define Lu′v′ as the subpath of L from
u′ to v′. As in the proof of Lemma 1, we have δG′(u, v) ≥ δ1

G′(u, v), δG′(u, v) ≥
δ2
G′(u, v), δG′(u, v) ≥ δ3

G′(u, v), and δG′(u, v) ≥ δ4
G′(u, v).

Furthermore,

u, v ∈ Lw1w2 ⇒ δG′(u, v) = δ1
G′ ,

u ∈ Lv1w1 , v ∈ Lw2v2 ⇒ δG′(u, v) = δ2
G′ ,

u ∈ Lv1w1 , v ∈ Lv1w2 ⇒ δG′(u, v) = δ3
G′ ,

u ∈ Lw1v2 , v ∈ Lw2v2 ⇒ δG′(u, v) = δ4
G′ .

Since either u, v ∈ Lw1w2 , or u ∈ Lv1w1 , v ∈ Lw2v2 , or u ∈ Lv1w1 , v ∈ Lv1w2 , or
u ∈ Lw1v2 , v ∈ Lw2v2 , the lemma follows. ��
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We can now use an algorithm similar to that in Section 3.3 to find a best shortcut
in G in O(n2 log n) time. The only difference is that we get upper envelopes not
just of halflines but also of line segments as in Section 3. This gives us the
following result.

Theorem 3. If G is a simple path, a best shortcut in G can be found in O(n2 log n)
time.

4 Finding a Worst Shortcut

We now describe an algorithm for a different problem, that of finding a worst
shortcut in G. We assume that G is connected. Furthermore, we only allow vertex
pairs (w1, w2) such that w1 	= w2 and such that (w1, w2) is not already an edge
in G since any other vertex pair would be a trivial worst shortcut.

We will need the following observation. Suppose that (w1, w2) is a worst short-
cut and let u and v be a pair of vertices such that δG′ = δG′(u, v). Then if
dG(u, w2) < dG(u, w1) + d(w1, w2), we may assume that w2 is a vertex in {w′

2 ∈
V |dG(u, w′

2) < dG(u, w1) + d(w1, w
′
2)} that maximizes dG(u, w′

2) + d(w′
2, w1).

The following algorithm finds a worst shortcut in G. A main loop iterates over
all vertices w1. In the following, consider one of these iterations.

For each u, a vertex w2 is picked (if any) such that dG(u, w2) < dG(u, w1) +
d(w1, w2), w1 	= w2, (w1, w2) /∈ E, and such that dG(u, w2) + d(w2, w1) is maxi-
mized and the maximum of δG′(u, v) over all v 	= u is computed. Over all u, this
gives at most n dilation values and we keep the largest of them together with a
w2 giving this dilation.

This is done for all w1, again giving at most n dilation values and we pick the
largest of them together with the (w1, w2)-pair giving this dilation.

From the observation above and the observation from Section 3.2 that either
dG(u, w2) < dG(u, w1) + d(w1, w2) or dG(u, w1) < dG(u, w2) + d(w2, w1) for all
u and w1 	= w2, it follows that the algorithm picks a worst shortcut in G.

If we precompute APSP distances using, say, the algorithm in [2], we obtain
an O(n3) time algorithm with O(n2) space requirement. We can also obtain
linear space requirement but then in each iteration of the main loop, we have
to compute SSSP distances with source w1 and with source u for each u. With
Dijkstra’s algorithm, this gives O(n3 log n) running time.

Theorem 4. A worst shortcut in G can be found in O(n3) time with O(n2)
space requirement and in O(n3 log n) time with linear space requirement.

5 Concluding Remarks

In this paper, we considered the problem of finding a best shortcut in a graph
G with at most two connected components embedded in a metric space. We
presented an algorithm with O((n4 log n)/

√
m) running time and linear space

requirement, where n is the number of vertices and m is the number of edges in
G. This solves an open problem of whether an o(n4) time algorithm with linear
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space requirement exists for this problem. We showed that if G is a simple path or
the union of two simple vertex-disjoint paths, a best shortcut in G can be found in
O(n2 log n) time. Finally, we considered the problem of finding a worst shortcut
in G. We gave an O(n3) time algorithm with O(n2) space requirement and an
O(n3 log n) time algorithm with linear space requirement for this problem.

It would be interesting to consider the more general case where a fixed number
of edges are inserted and to consider edge-removals. Another direction for future
research is to consider other special types of graphs like cycles and trees. Finally,
not much is known about lower bounds on running time. It is quite easy to show
that to find a best shortcut it is sometimes necessary to look at all entries of the
n × n-matrix defining the metric. Can this Ω(n2) bound be improved?
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Abstract. Given an n-vertex planar directed graph with real edge lengths
and with no negative cycles, we show how to compute single-source short-
est path distances in the graph in O(n log2 n/ log log n) time with O(n)
space. This improves on a recent O(n log2 n) time bound by Klein et al.

1 Introduction

Computing shortest paths in graphs is one of the most fundamental problems
in combinatorial optimization with a rich history. Classical shortest path al-
gorithms are the Bellman-Ford algorithm and Dijkstra’s algorithm which both
find distances from a given source vertex to all other vertices in the graph. The
Bellman-Ford algorithm works for general graphs and has running time O(mn)
where m resp. n is the number of edges resp. vertices of the graph. Dijkstra’s
algorithm runs in O(m + n log n) time when implemented with Fibonacci heaps
but it only works for graphs with non-negative edge lengths.

We are interested in the single-source shortest path (SSSP) problem for pla-
nar directed graphs. There is an optimal O(n) time algorithm for this problem
when all edge lengths are non-negative [3]. For planar graphs with arbitrary real
edge lengths and with no negative cycles, Lipton, Rose, and Tarjan [7] gave an
O(n3/2) time algorithm. Henzinger, Klein, Rao, and Subramanian [3] obtained a
(not strongly) polynomial bound of Õ(n4/3). Later, Fakcharoenphol and Rao [2]
showed how to solve the problem in O(n log3 n) time and O(n log n) space. Re-
cently, Klein, Mozes, and Weimann [6] presented a linear space O(n log2 n) time
recursive algorithm.

In this paper, we improve on this by exhibiting a linear space algorithm with
O(n log2 n/ log log n) running time. The speed-up comes from a reduction of the
recursion depth of the algorithm in [6] from order log n to order log n/ log log n.
Each recursive step now becomes more involved and to deal with this, we show a
new technique for using a certain property, called the Monge property, in graphs
that do not necessarily posses that property. Both [2] and [6] showed how to
partition a set of distances that are not Monge, into subsets, each of which
is Monge. Exploiting this property, the distances within each subset can be
processed efficiently. Here we extend that technique by exhibiting sets of Monge
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distances whose union is a superset of the distances we are actually interested
in. We believe this technique may be useful in solving other problems as well,
not necessarily in the context of the Monge property.

From observations in [6], our algorithm can be used to solve bipartite pla-
nar perfect matching, feasible flow, and feasible circulation in planar graphs in
O(n log2 n/ log log n) time. From observations in [1], our algorithm generalizes
to bounded genus graphs.

The organization of the paper is as follows. In Section 2, we give some def-
initions and review some basic results, most of them related to planar graphs.
Our algorithm is very similar to that of Klein et al. so in Section 3, we give an
overview of some of their ideas. We then show how to improve the running time
in Section 4. Finally, we make some concluding remarks in Section 5.

2 Preliminaries

In the following, G = (V, E) denotes an n-vertex planar directed graph with real
edge lengths and with no negative cycles. For vertices u, v ∈ V , let dG(u, v) ∈
R ∪ {∞} denote the length of a shortest path in G from u to v. We extend
this notation to subgraphs of G. We will assume that G is triangulated such
that there is a path of finite length between each ordered pair of vertices of G.
The new edges added have sufficiently large lengths so that finite shortest path
distances in G will not be affected.

Given a graph H , let VH and EH denote its vertex set and edge set, re-
spectively. For an edge e ∈ EH , let l(e) denote the length of e (we omit H in
the definition but this should not cause any confusion). Let P = u1, . . . , um

be a path in H , where |P | = m. For 1 ≤ i ≤ j ≤ m, P [ui, uj] denotes
the subpath ui, . . . , uj . If P ′ = um, . . . , um′ is another path, we define PP ′ =
u1, . . . , um−1, um, um+1, . . . , um′. Path P ′ is said to intersect P if VP ∩ VP ′ 6= ∅.

Define a region R to be the subgraph of G induced by a subset of V . In G,
the vertices of VR adjacent to vertices in V \VR are called boundary vertices (of
R) and the set of boundary vertices of R is called the boundary of R. Vertices
of VR that are not boundary vertices of R are called interior vertices (of R).

The cycle separator theorem of Miller [8] states that, given an m-vertex plane
graph, there is a Jordan curve C intersecting O(

√
m) vertices and no edges such

that between m/3 and 2m/3 vertices are enclosed by C. Furthermore, this Jordan
curve can be found in linear time.

Let r ∈ (0, n) be a parameter. Fakcharoenphol and Rao [2] showed how to
recursively apply the cycle separator theorem so that in O(n log n) time, (a plane
embedding of) G is divided into O(n/r) regions with the following properties:

1. Each region contains at most r vertices and O(
√

r) boundary vertices,
2. No two regions share interior vertices,
3. Each region has a boundary consisting of O(1) faces, defined by simple cycles.

We refer to such a division as an r-division of G. The bounded faces of a region
are its holes. We will assume that for each region R in an r-division, R is con-
tained in the bounded region defined by one of the cycles C in the boundary of
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R. This can always be achieved by adding a new cycle if needed. We refer to C
as the external face of R.

For a graph H , a price function is a function p : VH → R. The reduced cost
function induced by p is the function wp : EH → R, defined by

wp(u, v) = p(u) + l(u, v)− p(v).

We say that p is a feasible price function for H if for all e ∈ EH , wp(e) ≥ 0.
It is well known that reduced cost functions preserve shortest paths, meaning

that we can find shortest paths in H by finding shortest paths in H with edge
lengths defined by the reduced cost function wp. Furthermore, given p and the
distance in H w.r.t. wp from a u ∈ VH to a v ∈ VH , we can extract the original
distance in H from u to v in constant time [6].

Observe that if p is feasible, Dijkstra’s algorithm can be applied to find short-
est path distances since then wp(e) ≥ 0 for all e ∈ EH . The distancesdH(s, u)
from any s ∈ VH are an example of a feasible price function u 7→ dH(s, u). This
assumes that dH(s, u) <∞ for all u ∈ VH , as we have assumed above.

A matrix M = (Mij) is totally monotone if for every i, i′, j, j′ such that
i < i′, j < j′, Mij ≤Mij′ implies Mi′j ≤Mi′j′ . Totally monotone matrices were
introduced by Aggarwal et al. [9], who gave an algorithm, nicknamed SMAWK,
that, given a totally monotone n×m matrix M , finds all column minima of M in
just O(n + m) time. A matrix M = (Mij) is convex Monge if for every i, i′, j, j′

such that i < i′, j < j′, we have Mij +Mi′j′ ≥Mij′ +Mi′j . It is immediate that
if M is convex Monge then it is totally monotone. Thus SMAWK can be used
to find the column minima of a convex Monge matrix. The algorithm in [6] uses
a generalization of SMAWK to so called falling staircase matrices, due to Klawe
and Kleitman [4]. Klawe and Kleitman’s algorithm finds all column minima in
O(mα(n) + n) time, where α(n) is the inverse Ackerman function.

3 The Algorithm of Klein et al.

In this section, we give an overview of the algorithm of [6]. Let s be a vertex of G.
To find SSSP distances in G with source s, the algorithm finds a cycle separator
C with O(

√
n) boundary vertices that separates G into two subgraphs, G0 and

G1. Let r be any of these boundary vertices. The algorithm consists of five stages:

Recursion: SSSP distances from r are computed recursively in G0 and G1.

Intra-part boundary distances: Distances in Gi between every pair of boundary
vertices of Gi are computed in O(n log n) time using the algorithm of [5] for
i = 0, 1.

Single-source inter-part boundary distances: A variant of Bellman-Ford is used
to compute SSSP distances in G from r to all boundary vertices on C. The
algorithm consists of O(

√
n) iterations. Each iteration runs in O(

√
nα(n)) time

using an algorithm of Klawe and Kleitman [4]. This stage takes O(nα(n)) time.



C

Single-source inter-part distances: Distances in the previous stage are used to
modify G such that all edge lengths are non-negative without changing the
shortest paths. Dijkstra’s algorithm is then used in the modified graph to obtain
SSSP distances in G with source r. Total running time for this stage is O(n log n).

Rerooting single-source distances: The computed distances from r in G form
a feasible price function for G. Dijkstra’s algorithm is applied to obtain SSSP
distances in G with source s in O(n log n) time.

The last four stages of the algorithm in [6] run in a total of O(n log n) time.
Since there are O(log n) recursion levels, the total running time is O(n log2 n).
We next describe how to improve this time bound.

4 An Improved Algorithm

The main idea is to reduce the number of recursion levels by applying the cycle
separator theorem of Miller not once but several times at level of the recursion.
More precisely, for a suitable p, we obtain an n/p-division of G in O(n log n)
time. For each region Ri in this n/p-division, we pick an arbitrary boundary
vertex ri and recursively compute SSSP distances in Ri with source ri. This is
similar to the first stage of the algorithm in [6], except that we recurse on O(p)
regions instead of just two.

We will show how all these recursively computed distances can be used to
compute SSSP distances in G with source s in O(n log n + npα(n)) additional
time. This bound is no better than the O(n log n) bound of the original algorithm
but does result in fewer recursion levels. Since the size of regions is reduced
by a factor of p for each recursion level, the depth of the recursion is only
O(log n/ log p). Furthermore, by recursively applying the separator theorem of
Miller as done by Fakcharoenphol and Rao [2], the subgraphs at the kth recursion
level defines an r-division of G where r = n/pk. This r-division consists of O(n/r)
regions each containing at most r vertices, implying that the total time spent
at the kth recursion level is O(n/r(r log r + rpα(r))) = O(n log n + npα(n)).
Summing over all O(log n/ log p) levels, it follows that the total running time of
our algorithm is

O

(

log n

log p
(n log n + npα(n))

)

.

To minimize this expression, we set n log n = npα(n), so p = log n/α(n). This
gives the desired O(n log2 n/ log log n) running time.

It remains to show how to compute SSSP distances in G with source s in
O(n log n + npα(n)) = O(n log n) time, excluding the time for recursive calls.
Assume that we are given an n/p-division of G and that for each region R, we
are given SSSP distances in R with some boundary vertex of R as source. Note
that the number of regions is O(p) and each region contains at most n/p vertices
and O(

√

n/p) boundary vertices.
The main technical difficulty arises from the existence of holes. We will first

describe a generalization of [6] using multiple regions instead of just two, but
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assuming that no region has holes. In this case, as is the case in [6], all of
the boundary vertices in a region are cyclically ordered on its external face. In
section 4.4 we show how to handle the existence of holes.

Without holes, the remaining four steps of the algorithm are very similar
to those in the algorithm of Klein et al. We give an overview here and go into
greater detail in the subsections below. Each step takes O(n log n) time.

Intra-region boundary distances: For each region R, distances in R between each
pair of boundary vertices of R are computed.

Single-source inter-region boundary distances: Distances in G from an arbitrary
boundary vertex r of an arbitrary region to all boundary vertices of all regions
are computed.

Single-source inter-region distances: Using the distances obtained in the previous
stage to obtain a modified graph, distances in G from r to all vertices of G are
computed using Dijkstra’s algorithm on the modified graph.

Rerooting single-source distances: Identical to the final stage of the original
algorithm.

4.1 Intra-region Boundary Distances

Let R be a region. Since R has no holes, we can apply the multiple-source
shortest path algorithm of [5] to R since we have a feasible price function from
the recursively computed distances in R. Total time for this is O(|VR| log |VR|)
time which is O(n log n) over all regions.

4.2 Single-source Inter-region Boundary Distances

Let r be some boundary vertex of some region. We need to find distances in G
from r to all boundary vertices of all regions. To do this, we use a variant of
Bellman-Ford similar to that in stage three of the original algorithm.

Let R be the set of O(p) regions, let B ⊆ V be the set of boundary vertices
over all regions, and let b = |B| = O(p

√

n/p) = O(
√

np). Note that a vertex in
B may belong to several regions.

Pseudocode of the algorithm is shown in Figure 1. Notice the similarity with
the algorithm in [6] but also an important difference: in [6], each table entry
ej [v] is updated only once. Here, it may be updated several times in iteration
j since more than one region may have v as a boundary vertex. For j ≥ 1, the
final value of ej[v] will be

ej [v] = min
w∈Bv

{ej−1[w] + dR(w, v)}, (1)

where Bv is the set of boundary vertices of regions having v as boundary vertex.

To show the correctness of the algorithm, we need the following two lemmas.
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1. initialize vector ej [v] for j = 0, . . . , b and v ∈ B
2. ej [v] := ∞ for all v ∈ B and j = 0, . . . , b
3. e0[r] := 0
4. for j = 1, . . . , b
5. for each region R ∈ R
6. let C be the cycle defining the boundary of R
7. ej [v] := min{ej [v], minw∈VC

{ej−1[w] + dR(w, v)}} for all v ∈ VC

8. D[v] := eb[v] for all v ∈ B

Fig. 1. Pseudocode for single-source inter-region boundary distances algorithm.

Lemma 1. Let P be a simple r-to-v shortest path in G where v ∈ B. Then P
can be decomposed into at most b subpaths P = P1P2P3 . . ., where the endpoints
of each subpath Pi are boundary vertices and Pi is a shortest path in some region
of R.

Lemma 2. After iteration j of the algorithm in Figure 1, ej[v] is the length of
a shortest path in G from r to v that can be decomposed into at most j subpaths
P = P1P2P3 . . . Pj, where the endpoints of each subpath Pi are boundary vertices
and Pi is a shortest path in a region of R.

Both lemmas are straightforward generalizations of the corresponding lemmas
in [6]. They imply that after b iterations, D[v] holds the distance in G from r to
v for all v ∈ B. This shows the correctness of our algorithm.

Line 7 can be executed in O(|VC |α(|VC |)) time using the technique of [6]
using the distances dR(w, v) which have been precomputed in the previous stage
for all v, w ∈ VC . It is important to note that the techniques of [6] only apply
since we have assumed that all boundary vertices of R are cyclically ordered on
its external face. Thus, each iteration of lines 4–7 takes O(bα(n)) time, giving
a total running time for this stage of O(b2α(n)) = O(npα(n)). Recalling that
p = log n/α(n), this bound is O(n log n), as desired.

4.3 Single-source Inter-region Distances

In this step we need to compute, for each region R, the distances in G from r
to each vertex of R. We apply a nearly identical construction to the one used in
the corresponding step of [6].

Let R be a region. Let R′ be the graph obtained from R by adding a new
vertex r′ and an edge from r′ to each boundary vertex of R whose length is set to
the distance in G from r to the boundary vertex. Note that dG(r, v) = dR′(r′, v)
for all v ∈ VR, so it suffices to find distances in R′ from r′ to each vertex of VR.

Let rR be the boundary vertex of R for which distances in R from rR to all
vertices of R have been recursively computed. Define a price function φ for R′ as
follows. Let BR be the set of boundary vertices of R and let D = max{dR(rR, b)−
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dG(r, b)|b ∈ BR}. Then for all v ∈ VR′ ,

φ(v) =

{

dR(rR, v) if v 6= r′

D if v = r′.

Lemma 3. Function φ defined above is a feasible price function for R′.

Proof. Let e = (u, v) be an edge of R′. By construction, no edges enter r′ so
v 6= r′. If u 6= r′ then φ(u) + l(e)− φ(v) = dR(rR, u) + l(u, v)− dR(rR, v) ≥ 0 by
the triangle inequality so assume that u = r′. Then v ∈ BR so φ(u)+l(e)−φ(v) =
D + dG(r, v)− dR(rR, v) ≥ 0 by definition of D. This shows the lemma. ⊓⊔

Price function φ can be computed in time linear in the size of R and Lemma 3
implies that Dijkstra’s algorithm can be applied to compute distances in R′ from
r′ to all vertices of VR in O(|VR| log |VR|) time. Over all regions, this is O(n log n),
as requested.

We omit the description of the last stage where single-source distances are
rerooted to source s since it is identical to the last stage of the original algorithm.
We have shown that all stages run in O(n log n) time and it follows that the total
running time of our algorithm is O(n log2 n/ log log n). It remains to deal with
holes in regions.

4.4 Dealing with Holes

In Sections 4.1 and 4.2, we made the assumption that no region has holes. In
this section we remove this restriction. This is the main technical contribution of
this paper. As mentioned in Section 2, each region of R has at most a constant
number, h, of holes.

Intra-region boundary distances: In Section 4.1 we used the fact that all bound-
ary vertices of each region are on the external face, to apply the multiple-source
shortest path algorithm of [5]. Consider a region R with h holes. If we apply [5]
to R we get distances from boundary vertices on the external face of R to all
boundary vertices of R. This does not compute distances from boundary vertices
belonging to the holes of R. Consider one of the holes of R. We can apply the
algorithm of [5] with this hole considered as the external face to get the distances
from the boundary vertices of this hole to all boundary vertices of R. Repeating
this for all holes, we get distances in R between all pairs of boundary vertices
of R in time O(|VR| log |VR|+ h|VR| log |VR|) = O(|VR| log |VR|) time. Thus, the
time bound in Section 4.1 still holds when regions have holes.

Single-source inter-region boundary distances: It remains to show how to com-
pute single-source inter-region boundary distances when regions have holes. Let
C be the external face of region R. Let HR be the directed graph having the
boundary vertices of R as vertices and having an edge (u, v) of length dR(u, v)
between each pair of vertices u and v.
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As usual in this context, we say that we relax an edge if it is being considered
by the algorithm as the next edge in the shortest path. Line 7 in Figure 1 relaxes
all edges in HR having both endpoints on C. We need to relax all edges of HR.
In the following, when we say that we relax edges of R, we really refer to the
edges of HR.

To relax the edges of R, we consider each pair of cycles (C1, C2), where C1

and C2 are C or a hole, and we relax all edges starting in C1 and ending in C2.
This will cover all edges we need to relax.

Since the number of choices of (C1, C2) is O(h2) = O(1), it suffices to show
that in a single iteration, the time to relax all edges starting in C1 and ending in
C2 is O((|VC1

|+|VC2
|)α(|VC1

|+|VC2
|)), with O(|VR| log |VR|) preprocessing time.

We may assume that C1 6= C2, since otherwise we can relax edges as described
in Section 4.2.

Before going into the details, let us give an intuitive and informal overview
of our approach. We transform R in such a way that C1 is the external face of
R and C2 is a hole of R. Let P be a simple path from some vertex r1 ∈ VC1

to some vertex r2 ∈ VC2
. Let RP be the graph obtained by “cutting along P”

(see Figure 2). Note that every shortest path in RP corresponds to a shortest
path in R that does not cross P . We will show that we can relaxing all edges
in HR from C1 to C2 with respect to distances in RP can be done efficiently.
Unfortunately, relaxing edges w.r.t. RP will not suffice since shortest paths in
R that do cross P are not represented in RP . To overcome this obstacle we will
identify two particular paths Pr and Pℓ such that for any u ∈ C1, v ∈ C2 there
exists a shortest path in R that does not cross both Pr and Pℓ. Then, relaxing
all edges between boundary vertices once in RPr

and once in RPℓ
suffices to

compute shortest path distances in R. More specifically, let T be a shortest path
tree in R from r1 to all vertices of C2. The rightmost and leftmost paths in T
satisfy the above property (see Figure 3).

We now proceed with the formal description. In the following, we define
graphs, obtained from R, that are needed in our algorithm. It is assumed that
these graphs are constructed in a preprocessing step. Later, we bound the time
to construct them.

We transform R in such a way that C1 is the external face of R and C2

is a hole of R. We may assume that there is a shortest path in R between
every ordered pair of vertices, say, by adding a pair of oppositely directed edges
between each consecutive pair of vertices of Ci in some simple walk of Ci, i = 1, 2
(if an edge already exists, a new edge is not added). The lengths of the new edges
are chosen sufficiently large so that shortest paths in R and their lengths do not
change. Where appropriate, we will regard R as some fixed planar embedding of
that region.

We say that an edge e = (u, v) with exactly one endpoint on path P emanates
right (left) of P if (a) e is directed away from P , and (b) e is to the right (left) of
P in the direction of P (see e.g., [5] for a more precise definition). If e is directed
towards P , then we say that e enters P from the right (left) if (v, u) emanates



C

right (left) of P . We extend these definitions to paths and say, e.g., that a path
Q emanates right of path P if there is an edge of Q that emanates right of P .

For a simple path P from a vertex r1 ∈ VC1
to a vertex r2 ∈ VC2

, take a copy

RP of R and remove P and all edges incident to P in RP . let
←−
E resp.

−→
E be the

set of edges that either emanate left resp. right of P or enter P from the left

resp. right. Add two copies,
←−
P and

−→
P , of P to RP . Connect path

←−
P resp.

−→
P to

the rest of RP by attaching the edges of
←−
E resp.

−→
E to the path, see Figure 2. If

(u, v) ∈ ER, where (v, u) ∈ EP , we add (u, v) to both
←−
P and

−→
P in RP .

P

r1

−→
P

←−
P

R RP

C1 P1

P2C2

u′1

v′|C2|+1v′1

u′|C1|+1

r2

Fig. 2. Region RP is obtained from R essentially by cutting open at P the “ring”
bounded by C1 and C2.

A simple, say counter-clockwise, walk u1, u2, . . . , u|C1|, u|C1|+1 of C1 in R
where u1 = u|C1|+1 = r1 corresponds to a simple path P1 = u′

1, . . . , u
′
|C1|+1

in

RP . In the following, we identify ui with u′
i for i = 2, . . . , |C1|. The vertex r1 in

R corresponds to two vertices in RP , namely u′
1 and u′

|C1|+1
. We will identify

both of these vertices with r1. Similarly, a simple, say clockwise, walk of C2 in
R from r2 to r2 corresponds to a simple path P2 = v′1, . . . , v

′
|C2|+1

in RP . We
make a similar identification between vertices of C2 and P2.

In the following, when we say that we relax all edges in RP starting in vertices
of C1 and ending in vertices of C2, we really refer to relaxing edges in HR with
respect to the distances between the corresponding vertices of P1 and P2 in RP .
More precisely, suppose we are in iteration j. Then relaxing all edges entering a
vertex v ∈ VC2

in RP means updating

ej[v] := min
u∈VC1

{ej−1[v], ej−1[u] + dRP
(u′, v′)}.

It is implicit in this notation that if u = r1, we relax w.r.t. both u′
1 and u′

|C1|+1

and if v = r2, we relax w.r.t. both v′1 and v′|C2|+1
.

The fact that in RP P1 and P2 both belong to the external face implies (see
Lemma 4.3 in [6] or the appendix):

Lemma 4. Relaxing all edges from VC1
to VC2

in RP can be done in O(|VC1
|+

|VC2
|) time in any iteration of Bellman-Ford. ⊓⊔
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As we have mentioned, relaxing edges between boundary vertices in RP does
not suffice since shortest paths in R that cross P are not represented in RP .
Let T be a shortest path tree in R from r1 to all vertices of C2. A rightmost
(leftmost) path P in T is a path such that no other path Q in T emanates right
(left) of P . Let Pr and Pℓ be the rightmost and leftmost root-to-leaf simple paths
in T , respectively; see Figure 3(a). Let vr ∈ C2 and vℓ ∈ C2 denote the leaves of
Pr and Pℓ, respectively.

(b)(a)

r1 r1

u

T

Pr

Pℓ win

wout

x

v

Tv

vℓ
vr

Pr

Pℓ

Q

vℓ
vr

Fig. 3. (a): The rightmost root-to-leaf simple path Pr and the leftmost root-to-leaf
simple path Pℓ in T . (b): In the proof of Lemma 5, if Q first crosses Pr from right to
left and then crosses Pℓ from right to left then there is a u-to-v shortest path in R that
does not cross Pℓ.

In order to state the desired property of Pr and Pℓ we now define what we
mean when we say that path Q = q1, q2, q3, . . . crosses path P . Let out0 be the
smallest index such that qout0 does not belong to P . We recursively define ini

to be smallest index greater than outi−1 such that qini
belongs to P , and outi

to be smallest index greater than ini such that qouti
does not belong to P . We

say that Q crosses P from the right (left) with entry vertex vin and exit vertex
vout if (a) vin = qini

and vout = qouti−1 for some i > 0 and (b) qini−1qini
enters

P from the right (left) and (c) qouti−1qout emanates left (right) of P .

Lemma 5. For any u ∈ VC1
and any v ∈ VC2

, there is a simple shortest path
in R from u to v which does not cross both Pr and Pℓ.

Proof. Let Q be a simple u-to-v shortest path in R which is minimal with respect
to the total number of time it crosses Pr and Pℓ. If Q does not cross Pr or Pℓ,
we are done, so assume it crosses both. Also assume that Q crosses Pr first. The
case where Q crosses Pℓ first is symmetric. Let win and wout be the entry and
exit vertices of the first crossing, see Figure 3(b). There are two cases:

– Q first crosses Pr from left to right. In this case Q must cross Pℓ at the
same vertices. In fact, it must be that all root-to-leaf paths in T coincide
until wout and that Q crosses them all. In particular, Q crosses the root-to-v
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path in T , which we denote by Tv. Since Tv does not cross Pr, the path
Q[u, wout]Tv[wout, v] is a shortest u-to-v path in R that does not cross Pr.

– Q first crosses Pr from right to left. Consider the path S = Q[u, wout]Pr[wout, vr].
We claim that Q does not cross S. To see this, assume the contrary and let
w′ denote the exit point corresponding to the crossing. Since Q is simple,
w′ /∈ Q[u, wout]. So w′ ∈ Pr[wout, vr], but then Q[u, wout]Pr[wout, w

′]Q[w′, v]
is a shortest path from u to v in R that crosses Pr and Pℓ fewer times than
Q. But this contradicts the minimality of Q.
Since Q first crosses Pr from right to left and never crosses S, its first crossing
with Pℓ must be right-to-left as well, see Figure 3(b). This implies that Q
enters all root-to-leaf paths in T before (not strictly before) it enters Pℓ. In
particular, Q enters Tv. Let x be the entry vertex. Then Q[u, x]Tv[x, v] is a
u-to-v shortest path in R that does not cross Pℓ. ⊓⊔

The algorithm: We can now describe our Bellman-Ford algorithm to relax all
edges from vertices of C1 to vertices of C2. Pseudocode is shown in Figure 4.

Assume that RPl
and RPr

and distances between pairs of boundary vertices
in these graphs have been precomputed. In each iteration j, we relax edges from
vertices of VC1

to all v ∈ VC2
in RPℓ

and in RPr
(lines 9 and 10). Lemma 5

implies that this corresponds to relaxing all edges in R from vertices of VC1
to

vertices of VC2
. By the results in Section 4.2, this suffices to show the correctness

of the algorithm.
Lemma 4 shows that lines 9, 10 can each be implemented to run in O(|VC1

|+
|VC2
|) time. Thus, each iteration of lines 6–10 takes O((|VC1

| + |VC2
|)α(|VC1

|+
|VC2
|)) time, as desired.

1. initialize vector ej [v] for j = 0, . . . , b and v ∈ B
2. ej [v] := ∞ for all v ∈ B and j = 0, . . . , b
3. e0[r] := 0
4. for j = 1, . . . , b
5. for each region R ∈ R
6. for each pair of cycles, C1 and C2, defining the boundary of R
7. if C1 = C2, relax edges from C1 to C2 as in Section 4.2
8. else (assume C1 is external and that dRPr

and dRPℓ
have been precomputed)

9. ej [v] := min{ej [v], minw∈VC1
{ej−1[w] + dRPr

(w′, v′)}} for all v ∈ VC2

10. ej [v] := min{ej [v], minw∈VC1
{ej−1[w] + dRPℓ

(w′, v′)}} for all v ∈ VC2

11. D[v] := eb[v] for all v ∈ B

Fig. 4. Pseudocode for the Bellman-Ford variant that handles regions with holes.

It remains to show that RPr
and RPℓ

and distances between boundary ver-
tices in these graphs can be precomputed in O(|VR| log |VR|) time Shortest path
tree T in R with source r1 can be found in O(|VR| log |VR|) time with Dijkstra
using the feasible price function φ obtained from the recursively computed dis-
tances in R. Given T , we can find its rightmost path in O(|VR|) time by starting
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at the root r1. When entering a vertex v using the edge uv, leave that vertex on
the edge that comes after vu in counterclockwise order. Computing RPr

given
Pr also takes O(|VR|) time. We can next apply Klein’s algorithm [5] to compute
distances between all pairs of boundary vertices in RPr

in O(|VR| log |VR|) time
(here, we use the non-negative edge lengths in R defined by the reduced cost
function induced by φ). We similarly compute Pℓ and pairwise distances between
boundary vertices in RPℓ

. We can finally state our result.

Theorem 1. Given a planar directed graph G with real edge lengths and no
negative cycles and given a source vertex s, we can find SSSP distances in G
with source s in O(n log2 n/ log log n) time and linear space.

5 Concluding Remarks

We gave a linear space algorithm for single-source shortest path distances in
a planar directed graph with arbitrary real edge lengths and no negative cy-
cles. The running time is O(n log2 n/ log log n), which improves on the previous
bound by a factor of log log n. As corollaries, bipartite planar perfect match-
ing, feasible flow, and feasible circulation in planar graphs can be solved in
O(n log2 n/ log log n) time. The true complexity of the problem remains unset-
tled as there is a gap between our upper bound and the linear lower bound. Is
O(n log n) time achievable?
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Appendix

The proofs of Lemmas 2 and 4 are very similar to those in [6]. The (easy) proof
of the space complexity in Theorem 1 was omitted due to lack of space.

Proof of Lemma 2

We need to show that after iteration j of the algorithm in Figure 1, ej[v] is
the length of a shortest path in G from r to v that can be decomposed into at
most j subpaths P = P1P2P3 . . . Pj , where the endpoints of each subpath Pi are
boundary vertices and Pi is a shortest path in a region of R.

The proof is by induction on j ≥ 0 (and very similar to the proof of Lemma
4.2 in [6]). When j = 0, ej [r] = 0 and ej[v] = ∞ for all v ∈ B \ {r} after line 3
and the base case holds.

Suppose j > 0 and that the lemma holds for j − 1. Consider a shortest path
P in G from r to a v ∈ B that can be decomposed into subpaths P1P2P3 . . . Pj ,
where the endpoints of each subpath Pi are boundary vertices and Pi is a shortest
path in a region of R. We need to show that after iteration j, ej[v] is the length
of P .

Subpath P ′ = P1P2 . . . , Pj−1 is a shortest path in G from r to a w ∈ B which
can be decomposed into at most j − 1 subpaths as above. Furthermore, there
is a region R ∈ R such that v and w are boundary vertices of R and Pj is a
shortest path in R from w to v.

At some point in iteration j, we reach line 7 with C being the cycle defining
the boundary of R and v, w ∈ VC . By the induction hypothesis, ej−1[w] is the
length of P ′. Since ej [v] is set to a value of at most ej−1[w] + dR(w, v), ej [v] is
at most the length of P .

Let us show the other inequality. For any w ∈ B, ej−1[w] is clearly the
length of some path in G from r to w that can be decomposed into at most
j − 1 subpaths, where each subpath is a shortest path in a region between two
boundary vertices of that region. Hence, when ej [v] is updated in line 7, its value
is the length of some path in G from r to v that can be decomposed into at most
j such subpaths. This shows that ej [v] is at least the length of P , completing
the proof.

Proof of Lemma 4

We need to show that relaxing all edges from VC1
to VC2

in RP can be done in
O(|VC1

|+ |VC2
|) time in any iteration of Bellman-Ford.

We only sketched a proof in the main paper. Let paths P1 and P2 and |P1|×
|P2|matrix A be defined as in the proof sketch. We need to show that the column-
minima of A can be found in O(|VC1

|+ |VC2
|) time. As shown in the main paper,

this amounts to showing that for 1 ≤ k < k′ ≤ |P1| and 1 ≤ l < l′ ≤ f(i), we
have Akl + Ak′l′ ≥ Akl′ + Ak′l.

Since the cycle P1

←−
P P2

−→
P is the external face of RP and since RP is planar,

any pair of paths in RP from u′
k to v′l and from u′

k′ to v′l′ must intersect in some



C

−→
P

←−
P

RP

P1

P2

u′1

v′|C2|+1v′1

u′|C1|+1

u′k
w

v′l′
v′l

u′k′

Fig. 5. The situation in the proof of Lemma 4. Any pair of paths in RP from u′

k to v′

l

and from u′

k′ to v′

l′ must intersect in some w ∈ VRP
.

w ∈ VRP
, see Figure 5. Let bk = ej−1[uk] and b′k = ej−1[uk′ ] (recall that we

identified uk with u′
k and uk′ with u′

k′). Then

Akl + Ak′l′ = (bk + dRP
(u′

k, w) + dRP
(w, v′l)) + (bk′ + dRP

(u′
k′ , w) + dRP

(w, v′l′ ))

= (bk + dRP
(u′

k, w) + dRP
(w, v′l′ )) + (bk′ + dRP

(u′
k′ , w) + dRP

(w, v′l))

≥ (bk + dRP
(u′

k, v′l′)) + (bk′ + dRP
(u′

k′ , v′l))

= Akl′ + Ak′l,

as requested.

Proof of Theorem 1

Proof. We analyzed the running time in the main paper. To bound the space,
first note that finding an n/p-division of G using the algorithm of [2] requires
O(n) space. Klein’s algorithm [5] and Dijkstra also has linear space requirement.
The recursively computed distances take up a total of O(pn

p ) = O(n) space. In
the intra-region boundary distances stage, the total memory used for storing
distances is O(p(

√

n/p)2) = O(n). In the single-source inter-region boundary
distances stage, we need to bound the space for our Bellman-Ford variant. The
size of each table is O(b) = O(n). Since we only need to keep tables from the
current and previous iteration in memory, Bellman-Ford uses O(n) space. It is
easy to see that the last two stages use O(n) space. Hence the entire algorithm
has linear space requirement.
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Bounding the Expected Number of Rectilinear
Full Steiner Trees

Christian Wulff-Nilsen
Department of Computer Science, University of Copenhagen, Copenhagen, Denmark

Given a finite set Z of n points, called terminals, in R
d ,

the Rectilinear Steiner Tree Problem asks for a tree of
minimal L1-length spanning Z . An optimal solution has
a unique decomposition into full Steiner trees (FSTs).
By using geometric properties and combinatorial argu-
ments, we bound the expected number of FSTs satis-
fying simple necessary conditions for being part of an
optimal solution. More specifically, we show that the
expected number of FSTs spanning exactly K terminals
and satisfying the empty lune property, a weak ver-
sion of the bottleneck property, and the so-called empty
hyperbox property is O(n(log log n)2(d−1)) for K = 3
and O(n(log log n)d−1 logK −2 n) for K > 3, assuming ter-
minals are randomly distributed in a hypercube with a
uniform distribution. In the plane, we improve an ear-
lier bound by showing that the expected number of FSTs
with the Hwang form spanning exactly K terminals and
satisfying the empty lune property and the so-called dis-
joint lunes property is O(nπK ). © 2009 Wiley Periodicals, Inc.
NETWORKS, Vol. 00(00), 000–000 2009

Keywords: rectilinear Steiner minimal tree; full component;
expected bound; Hwang form; empty lune property; bottleneck
property

1. INTRODUCTION

Let Z be a set of n < ∞ points, called terminals, in Rd ,
d ≥ 2. The Rectilinear Steiner Tree Problem (RSTP) asks for
a tree of minimal L1-length spanning Z . The RSTP is known
to be NP-complete [3].

The RSTP is different from the minimum spanning tree
problem since new points, called Steiner points, may be added
to shorten the tree. An optimal solution to the RSTP is called
a rectilinear Steiner minimal tree (RSMT).

One of the main applications of the RSTP in the plane is
in the area of VLSI design. Here, an important objective is
to minimize the total length of wire interconnecting a set of
pins. Typically, wires are restricted to having horizontal and
vertical orientations only, making an RSMT of the set of pins
a good candidate net.
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At present, GeoSteiner [7] is probably the fastest exact
algorithm for the RSTP in the plane. It uses a two-phase
approach to construct an RSMT. In the first phase, a set F of
so called full Steiner tree (FST) components is generated such
that some subset of F is guaranteed to constitute the full com-
ponents of an RSMT. In the second phase, full components
of F are concatenated to form an RSMT; see [6].

In the first phase, pruning techniques are applied to min-
imize |F |. An FST is pruned if it does not have certain
properties. As FSTs of an RSMT can be assumed to have
these properties, surviving FSTs can always be concatenated
in the second phase to form an RSMT.

Although simple, the pruning techniques of GeoSteiner
appear to be very powerful. Experimental results suggest that
the expected number of surviving FSTs grows only linearly
in n when terminals are randomly distributed in a square with
a uniform distribution.

No theoretical linear bound has been found however. The
best known bound on the expected number of surviving FSTs
spanning a fixed number K ≥ 4 of terminals in the plane
is O(n(log log n)K−2) [8]. Also, it has been shown that the
expected number of FSTs spanning exactly two terminals is
O(n) (this bound also holds in higher dimensions) and that the
expected number of FSTs spanning �(n) terminals is O(1)

[5]. All these bounds are obtained by assuming the above dis-
tribution of terminals. For surviving FSTs spanning exactly
three terminals, an O(n) (worst-case) bound is known for any
distribution of terminals [2]. To the author’s knowledge, no
non-trivial bounds are known in dimensions higher than two.

In this article, we improve the bounds of [8] by showing
that the expected number of surviving FSTs spanning a fixed
number K ≥ 4 of terminals in the plane is O(nπK ), assuming
a random distribution of terminals. This bound is achieved by
requiring FSTs to have three properties, namely, the Hwang
form, the empty lune property, and the so-called disjoint lunes
property.

Furthermore, we bound the expected number of FSTs
spanning exactly K ≥ 3 terminals in dimension d > 2
when FSTs are required to have three simple necessary
properties and when terminals are randomly distributed in
a hypercube with a uniform distribution on each axis. We
obtain a bound of O(n(log log n)2(d−1)) for K = 3 and
O(n(log log n)d−1 logK−2 n) for K > 3.

NETWORKS—2009—DOI 10.1002/net
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FIG. 1. An RSMT of a set of ten terminals. Black nodes are terminals and
white nodes are Steiner points. The RSMT consists of four full components.

The article is organized as follows. In Section 2, we give
various definitions and introduce some notation. In Section
3, we present the empty lune property and the disjoint lunes
property and, using these properties, we prove our bound in
the plane. In Section 4, we consider three properties which
hold for FSTs of RSMTs in arbitrary dimensions, namely, the
empty lune property, the bottleneck property, and the empty
hyperbox property. These properties are then used to prove
our bounds in higher dimensions. Finally, we make some
concluding remarks in Section 5.

2. DEFINITIONS AND NOTATION

If A ⊆ Rd is a subset of Rd , we denote the interior of A
by A◦. If x ∈ Rd is a point in Rd , we write its ith component
as x[i]. We define πi : Rd → R to be the ith projection map,
(x[1], . . . , x[d]) �→ x[i].

Given two points p, q ∈ Rd , we write the L1- and L2-
distance between them as L1(p, q) and L2(p, q), respectively.
The L1- resp. L2-length of a vector v is written as ‖v‖1 resp.
‖v‖2.

In the following, we will assume that we are given a set
Z of n points, called terminals, in Rd , d ≥ 2, and that these
terminals are randomly distributed in an axis-aligned hyper-
cube, say in U = [0, 1]d , with a uniform distribution on each
axis.

We define a Steiner tree as a tree spanning a subset of
Z and possibly containing Steiner points. As we are inter-
ested in minimal length networks, we may assume that no
Steiner point has degree less than three. In fact, we will
require Steiner points to have degree exactly three. This gives
no loss in generality because we allow degenerate trees, i.e.,
trees with zero-length edges.

A full Steiner tree (FST) is a Steiner tree in which all
terminals are leaves and all edges ending at terminals have
length strictly greater than zero. Any RSMT of Z has a unique
decomposition into FSTs; see Figure 1. We refer to an FST
spanning exactly K ≥ 2 terminals as a K-FST.

We call a property of an FST necessary if all FSTs of any
RSMT have this property.

Given points p, q ∈ Rd , the lune L(p, q) of p
and q is defined as the set of points with distance at

most L1(p, q) to both p and q, i.e., L(p, q) = {r ∈
Rd | max{L1(p, r), L1(q, r)} ≤ L1(p, q)}. We define the lune
of an edge of a Steiner tree to be the lune of the endpoints of
the edge and we define the lunes of a Steiner tree to be the
lunes of its edges.

Let e = (u, v) be an edge of some Steiner tree embedded in
Rd . Where appropriate, we will regard e as representing any
shortest (w.r.t. the L1-metric) path between u and v. It is easy
to see that the union of all these shortest paths is the smallest
axis-aligned hypercube containing u and v. If p ∈ Rd is a
point then we define the distance L1(e, p) = L1(p, e) between
e and p to be the distance between p and this hypercube.

We say that a subet S of Rd is empty if the interior S◦ of S
contains no terminals of Z .

3. FSTS IN TWO DIMENSIONS

We start by considering FSTs in the plane. In this section,
we prove that the expected number of K-FSTs having the
Hwang form and satisfying the empty lune property and the
disjoint lunes property is O(nπK ) for K ≥ 4.

3.1. The Hwang Form

Hwang [4] showed that FSTs of an RSMT in the plane can
be assumed to have a very restricted form, the Hwang form.
An FST with this form consists of a backbone defined by two
terminals, a root z1 and a tip zk ; see Figure 2. The backbone
consists of a long and a short leg. Terminal z1 is incident to
the long leg and zk is incident to the short leg. Alternating
line segments attach terminals to the long leg. There are two
main types of FSTs with the Hwang form: a type one FST
has no terminals attached to the short leg (except the tip) and
a type two FST has exactly one terminal attached to the short
leg (in addition to the tip).

In Ref. [8], the algorithm used by GeoSteiner to gener-
ate FSTs is presented. It grows FSTs along their backbones
as follows. First, a root and a direction of the long leg is
selected. Then a line is swept in the direction of the long leg

FIG. 2. The two types of FSTs with the Hwang form (up to rotation by a
multiple of 90◦ and reflection through the axes).
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FIG. 3. The lunes of the edges of a partially grown FST. [Color figure can
be viewed in the online issue, which is available at www.interscience.wiley.
com.]

and terminals intersected by this line are recursively attached
to the backbone. At each step, various pruning techniques are
applied to the partially generated FST. If pruned, the partial
FST is not grown any further. If a partial FST defines an FST,
it is stored in a set of candidate FSTs.

This idea of growing FSTs will prove useful in our analysis
in the next section.

3.2. Obtaining the Bound

To obtain our bound, we need two simple necessary prop-
erties of FSTs in two dimensions, the empty lune property and
the disjoint lunes property. The first property requires lunes
of an FST to be empty and the second property requires lunes
of an FST to have disjoint interiors. An example of the lunes
of a partially grown FST is shown in Figure 3.

To show that the empty lune property is a necessary prop-
erty of FSTs, suppose for the sake of contradiction that a
terminal z belongs to the interior of some lune L(u, v) of an
RSMT T . The removal of (u, v) splits T into two components,
one containing u and one containing v. Assume w.l.o.g. that z
and u belong to the same component. Then adding edge (v, z)
reconnects T and shortens its L1-length, a contradiction.

The following lemma shows that the disjoint lunes prop-
erty is also a necessary property of FSTs.

Lemma 1. The lunes of two distinct edges belonging to the
same FST of an RSMT in the plane have disjoint interiors.

Proof. If one of the edges is a backbone edge or if the
two edges are not on the same side of the backbone then the
lemma is clearly satisfied.

Now, consider two edges (s, z) and (s′, z′), where s and s′
are Steiner points on the backbone and z and z′ are terminals
on the same side of the backbone; see Figure 4. Assume
w.l.o.g. that the backbone is horizontal, that L1(s, z) ≥
L1(s′, z′), and that (s, z) is to the left of (s′, z′). Let zp be
the horizontal line segment to the left of z having length
L1(s, z) = L2(s, z).

Suppose for the sake of contradiction that L(s, z) and
L(s′, z′) share interior points. Then z′ must belong to tri-
angle �szp and not to line segment sp. This implies that
L1(z, z′) < L1(z, s). Removing edge (s, z) and adding edge
(z, z′) therefore shortens the RSMT, a contradiction. ■

Let K ≥ 4 be given. To prove our bound for K , suppose
we have grown a partial FST F with terminals z1, . . . , zk−1,

where zk−1 is the last terminal added. Let zk be the next
terminal to be added.

Lemma 2. With the above definitions, the expected number
of candidates for zk is at most π if zk is neither the tip nor a
terminal attached to the short leg of the FST.

Proof. Recall that U is the square in which the n termi-
nals are distributed and let L be the union of lunes of edges
in the partially grown FST F. Then the remaining n − k + 1
terminals are randomly distributed in U \ L with a uniform
distribution. Let A be the area of U \ L.

Let zk = (xk , yk) be a candidate terminal. For conve-
nience, assume that the Steiner point sk−1 attached to zk−1 is
located at the origin and that zk belongs to the first quadrant.
Letting sk be the new Steiner point attached to sk−1 and zk ,
we have sk = (xk , 0) (here we use the assumption that zk is
not a tip and not a terminal attached to the short leg of the
FST).

As zk is a candidate terminal, lunes L(sk−1, sk) and
L(sk , zk) contain no terminals in their interiors.

The area of L(sk−1, sk) ∪ L(sk , zk) is 1
2 (x2

k + y2
k) = 1

2 r2,
where r is the Euclidean distance from zk to the origin.
As sk−1, sk , zk ∈ U , at least half of L(sk−1, sk) ∪ L(sk , zk)

is contained in U . Thus, by Lemma 1, at least half of
L(sk−1, sk) ∪ L(sk , zk) is contained in U \ L.

By the above, if a terminal in the first quadrant has
Euclidean distance r to the origin, the probability that it is
a zk-candidate is no more than(

1 − r2

4A

)n−k

,

and we see that 1 − r2/(4A) > 0, giving the upper bound
2
√

A on r.
Given r, h > 0, the region

C(r, h) = {
p ∈ R2+|r ≤ ‖ p ‖2 ≤ r + h

}
has area

π

4
((r + h)2 − r2) = π

2
rh + π

4
h2.

FIG. 4. The lunes of an FST of an RSMT have disjoint interiors. [Color
figure can be viewed in the online issue, which is available at www.
interscience.wiley.com.]
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FIG. 5. The situation in the proof of Lemma 2. [Color figure can be viewed
in the online issue, which is available at www.interscience.wiley.com.]

A terminal in C(r, h) has Euclidean distance at least r to the
origin; see Figure 5. By the above, the probability that it is a
zk-candidate is no more than (1 − r2/(4A))n−k .

As the expected number of terminals in C(r, h) is at most

(n − k + 1)
(π

2
rh + π

4
h2

)
/A,

the expected number of candidate terminals in C(r, h) is
bounded by

(
1 − r2

4A

)n−k

(n − k + 1)
(π

2
rh + π

4
h2

)
/A.

Integrating, we obtain a bound E on the expected number of
zk-candidates,

E ≤
∫ 2

√
A

r=0

(
1 − r2

4A

)n−k

(n − k + 1)
π

2A
rdr

= π(n − k + 1)

2A

∫ 2
√

A

r=0

(
1 − r2

4A

)n−k

rdr

= π(n − k + 1)

2A


−2A

(
1 − r2

4A

)n−k+1

n − k + 1




2
√

A

r=0

= π .

■

Using Lemma 2, we are now ready for the main result of
this section.

Theorem 1. Given n terminals randomly distributed in a
square with a uniform distribution, the expected number of K-
FSTs with the Hwang form satisfying the empty lune property
and the disjoint lunes property is O(nπK ) for any K ≥ 4.

Proof. Let us fix a root z1, a direction of the backbone,
and the quadrant of z1 containing the first backbone terminal
z2. As there are n possible choices of z1, four directions of
the backbone, and two possible quadrants of z1 containing z2

for each of these four directions, the theorem will follow if

we can show that the expected number of K-FSTs with these
fixed choices is O(πK ).

By symmetry, assume that the backbone direction is to the
right and denote the terminals from left to right in the K-FST
by z1, . . . , zK .

First, let us count the expected number of type one K-FSTs
satisfying the above. By Lemma 2, the total expected number
of choices for z2, . . . , zK−1 is at most πK−2. By regarding the
point at which the long and the short legs meet as a degree
two Steiner point, it follows from the proof of Lemma 2 that
the expected number of choices for zK is at most π when
the other K − 1 terminals are fixed. Hence, the expected
number of type one K-FSTs with the above fixed choices
is O(πK−1).

Now, let us count the expected number of type two K-FSTs
satisfying the above. Lemma 2 implies that the total expected
number of choices for z2, . . . , zK−1 is at most πK−2. Hence,
assuming z1, . . . , zK−2 are fixed, it remains to show that the
expected number of choices of pair (zK−1, zK ) is bounded by
some constant independent of K . Note that, as terminals are
ordered from left to right, zK−1 is the tip and zK is attached
to the short leg.

By symmetry, we may assume that the tip zK−1 is above
the long leg; see Figure 6. Let sK−2 and sK−1 be the Steiner
points attached to zK−2 and zK−1, respectively, and let s be
the point at which the long and the short leg meet. We will
regard s as a degree two Steiner point.

Recall that U is the square in which the n terminals are dis-
tributed and let L be the union of lunes in the partially grown
FST defined by terminals z1, . . . , zK−2. Then the remaining
n − K + 2 terminals are randomly distributed in U \ L with
a uniform distribution. Let A be the area of U \ L.

Consider a random choice of zK−1 and zK such
that the resulting K-FST has the Hwang form. Define
L̂(zK−1, sK−1) and Ľ(zK−1, sK−1) as the upper and lower
half of L(zK−1, sK−1), respectively. Observe that as Steiner
points and terminals belong to U and as we assume that
our FST satisfies the disjoint lunes property, at least half
of each of the lunes L(sK−2, s), L(s, sK−1), L(zK−1, sK−1),
and L(zK , sK−1) are contained in U \L. Furthermore, at least
half of Ľ(zK−1, sK−1) and at least half of L̂(zK−1, sK−1) are
contained in U \ L.

FIG. 6. The situation in Theorem 1 for type two FSTs. Lunes of edges

are shown. The coloured area shows the set Ľ(zK−1, sK−1) ∪ L(zK , sK−1).
[Color figure can be viewed in the online issue, which is available at www.
interscience.wiley.com.]
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The area of L̂(zK−1, sK−1) ∪ L(s, sK−1) is at least 1/8 of
the area of L(s, zK−1). Thus, letting r1 denote the Euclidean
distance between sK−2 and zK−1, the probability that S1 =
L(sK−2, s)∪L(s, sK−1)∪L̂(zK−1, sK−1) contains no terminals
in its interior is less than

(
1 − r2

1

16A

)n−K

.

Similarly, letting r2 denote the Euclidean distance between
zK−1 and zK , the probability that S2 = Ľ(zK−1, sK−1) ∪
L(zK , sK−1) contains no terminals in its interior is less than

(
1 − r2

2

16A

)n−K

.

As S1 ∩ S2 = ∅, the probability that lunes L(sK−2, s),
L(s, sK−1), L(zK−1, sK−1), and L(zK , sK−1) contain no ter-
minals in their interiors is less than

(
1 − r2

1

16A

)n−K (
1 − r2

2

16A

)n−K

.

Integrating w.r.t. r1 and r2, it follows easily from the proof of
Lemma 2 that the expected number of choices of (zK−1, zK )

is less than (4π)2. ■

4. HIGHER DIMENSIONS

We now turn our attention to d > 2 dimensions.
In this section, we prove that the expected number of
K-FSTs having the empty lune property, a weak ver-
sion of the bottleneck property, and the empty hyper-
box property is O(n(log log n)2(d−1)) for K = 3 and
O(n(log log n)d−1 logK−2 n) for K > 3.

We start by presenting the three properties and show that
they are necessary properties of FSTs in arbitrary dimensions.
The empty lune property and the (weak) bottleneck property
are well known in two dimensions and are immediately gener-
alized to arbitrary dimensions. The empty hyperbox property
is new and we shall prove that it is in fact a necessary property.

4.1. Empty Lune Property

Recall from Section 3.2 that a Steiner tree has the empty
lune property if each of its lunes is empty. The proof that
this property is a necessary property of FSTs is immediately
generalized to arbitrary dimensions.

4.2. Bottleneck Property

Consider two terminals z1, z2 ∈ Z and let P be a sim-
ple path between z1 and z2 in the complete graph C of Z
in the space (Rd , L1). Let lP denote the length of a longest
edge on P and let P(z1, z2) be the set of all simple paths in

C between z1 and z2. Then the bottleneck Steiner distance
lb(z1, z2) between z1 and z2 is defined as

lb(z1, z2) = min{lP|P ∈ P(z1, z2)}. (1)

We say that a Steiner tree T satisfies the bottleneck prop-
erty if for all pairs of terminals z1 and z2 in T , all edges on
the path in T between z1 and z2 have length at most lb(z1, z2).

It has been shown that in the plane, any RSMT of Z sat-
isfies the bottleneck property. In particular, any FST of an
RSMT satisfies this property, implying that it is a necessary
property of FSTs. Furthermore,

lb(z1, z2) = lMST(z1, z2)

for all pairs of terminals z1, z2 ∈ Z , where lMST(z1, z2) is the
length of a longest edge on the path between z1 and z2 in an
MST of Z in (Rd , L1). These two results are easily generalized
to arbitrary dimensions.

We say that a Steiner tree satisfies the weak bottleneck
property if all its edges have length at most the length of a
longest MST edge. Note that a Steiner tree having the bottle-
neck property also has the weak bottleneck property. Hence,
the weak bottleneck property is a necessary property of FSTs.

4.3. Empty Hyperbox Property

Given points p, q ∈ Rd , we define B(p, q) to be the smallest
axis-parallel hyperbox containing p and q.

If T is a Steiner tree, we say that it satisfies the empty
hyperbox property if for all edges (u, w) and (v, w) of T inci-
dent to the same Steiner point w, the hyperbox B(u, v) is
empty; see Figure 7.

The following lemma shows that the empty hyperbox
property is a necessary property of FSTs. It can be viewed
as a generalization of the empty corner rectangle property in
the plane presented in [8].

Lemma 3. Any RSMT of Z satisfies the empty hyperbox
property.

Proof. Let (u, w) and (v, w) be edges of an RSMT of Z
incident to the same Steiner point w. Suppose for the sake of
contradiction that z is a terminal in B(u, v)◦. Steiner point w
must belong to B(u, v) for otherwise, edges (u, w) and (v, w)

would overlap, contradicting the optimality of the RSMT of
Z containing the edges. It follows that

L1(w, u) + L1(w, v) = L1(u, v).

Either L1(z, u) ≤ L1(w, u) or L1(z, v) ≤ L1(w, v) for
otherwise, we would have

L1(u, v)

= L1(z, u) + L1(z, v) > L1(w, u) + L1(w, v) = L1(u, v).

By symmetry, we may assume that L1(z, u) ≤ L1(w, u);
see Figure 8. Consider removing edge (w, u). This splits the
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FIG. 7. Hyperbox B(u, v). [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

RSMT into two components, Cu containing u and Cw con-
taining w. We consider two cases, z ∈ Cu and z ∈ Cw, and
we will show that we reach a contradiction in both cases.

Assume first that z ∈ Cu. On each axis c, u[c] is the point
in πc(B(u, v)) farthest from the projection of edge (w, v) on
axis c, as shown in Figure 8. Since z ∈ B(u, v)◦,

L1(z, (w, v)) < L1(u, (w, v)),

so connecting z to edge (w, v) reconnects the tree and
decreases the length of the tree, a contradiction. Note that
we have disregarded the degeneracy where w = u, as in this
case, the empty lune property is violated.

Now, assume that z ∈ Cw. As L1(z, u) ≤ L1(w, u), recon-
necting the tree by adding edge (z, u) decreases the length of
the tree unless L1(z, u) = L1(w, u).

So assume L1(z, u) = L1(w, u). In the RSMT, z has at
least one incident edge. As this edge may be embedded such
that it consists of axis-parallel line segments, there is a point
p ∈ B(u, v)◦ on this edge such that L1(p, u) �= L1(w, u).
Repeating the above for p instead of z, we again obtain a
shorter tree. ■

4.4. Half FSTs

In our analysis, we will regard the topology of an FST as
a terminal connected by an edge to the root of a binary tree
T . All leaves in T are terminals and all interior vertices are
Steiner points.

We refer to binary trees like T as half FSTs (HFSTs). An
HFST spanning exactly K terminals is called a K-HFST. A
1-HFST is a terminal and for K > 1, a K-HFST is obtained
by merging a K1-HFST and a K2-HFST, where K1 +K2 = K ,
i.e., by connecting the roots of the two HFSTs to a common
Steiner point.

Consider an FST T with topology T . An HFST contained
in T induces a subtree in T . We also refer to this subtree as
an HFST and as a K-HFST if it spans exactly K terminals.

We say that an (H)FST is interesting if it satisfies the empty
lune property, the weak bottleneck property, and the empty
hyperbox property. As the three properties are necessary, only
interesting (H)FSTs can be part of an RSMT of Z .

Note that all 1-HFSTs are trivially interesting. We say that
two interesting HFSTs are mergable if the HFST obtained by
merging them is interesting.

In the following, we will bound the expected number of
interesting (H)FSTs.

4.5. Bounding the Longest MST Edge

To make use of the weak bottleneck property, we need a
bound on the expected length of a longest MST edge. The
main ideas in the proofs of this section are similar to those in
[8].

We will need the following well-known result which we
state as a lemma.

Lemma 4. For any point p ∈ Rd, ‖p‖1 ≤ √
d‖p‖2.

The following lemma bounds the probability of long MST
edges.

Lemma 5. Suppose n > 4, let D be a constant and let C =
D d

√
log n/n. The probability that there exists an MST edge

(zi, zj) in the L1-metric such that L1(zi, zj) > C is bounded

by n2−Dd/(2(2d)d).

Proof. Let e = (zi, zj) be a pair of distinct terminals. We
will bound the probability that e is a long MST edge.

Suppose e is an MST edge and let m = 1
2 (zi + zj) be the

midpoint of e. Define

H =
{

p ∈ Rd |L1(p, m) ≤ 1

2
L1(zi, zj)

}
,

B =
{

p ∈ Rd |L2(p, m) ≤ 1

2
√

d
L1(zi, zj)

}
.

See Figure 9 for an illustration when d = 2.
If p ∈ B then by Lemma 4,

L1(p, m) ≤ √
dL2(p, m) ≤ 1

2
L1(zi, zj),

showing that B ⊆ H.

FIG. 8. When edge (w, u) is removed, the RSMT may be linked in one
of the two ways shown. In both cases, the length of the tree is reduced.
[Color figure can be viewed in the online issue, which is available at www.
interscience.wiley.com.]
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FIG. 9. The three sets H, B, and H considered in the proof of Lemma 5,
here shown for d = 2.

Let H be the hypercube with center m and sidelength
1
d L1(zi, zj), i.e.,

H =
[

m[1] − 1

2d
L1(zi, zj), m[1] + 1

2d
L1(zi, zj)

]
× · · ·

×
[

m[d] − 1

2d
L1(zi, zj), m[d] + 1

2d
L1(zi, zj)

]
. (2)

If p ∈ H then

L2(p, m) ≤
√

d

(
1

2d
L1(zi, zj)

)2

= 1

2
√

d
L1(zi, zj),

so p ∈ B. Thus, we have the inclusions H ⊆ B ⊆ H. Note
that as L1(zi, zj) > 0 and d > 1,

1

2
L1(zi, zj) >

1

2
√

d
L1(zi, zj),

showing that zi, zj /∈ H.
Consider some axis c, let Uc = πc(U) be the projection of

the unit hypercube on axis c, and let Hc = πc(H). Suppose
Hc � Uc. We claim that then Uc � Hc holds.

To see this, assume otherwise. Then H has larger side-
length than U . As we saw above, zi, zj /∈ H. Hence, there is an
axis c′ such that zi[c′] /∈ Hc′ = πc′(H). As L1(m[c′], zi[c′]) =
L1(m[c′], zj[c′]), we also have zj[c′] /∈ Hc′ .

By assumption, zi, zj ∈ U . Hence Hc′ ⊂ Uc′ = πc′(U).
This gives us

|Uc| ≤ |Hc| = |Hc′ | < |Uc′ | = |Uc|,
a contradiction.

As m ∈ H ∩ U , the above shows that at least half of Hc

is contained in Uc if Hc � Uc and this clearly also holds if
Hc ⊆ Uc. It follows that at least 1

2d of H is contained in U .
The volume of H is ( 1

d L1(zi, zj))
d so the volume of H ∩U

is at least (
1

2d
L1(zi, zj)

)d

.

If e is an MST edge then by the empty lune property, L(zi, zj)

contains no terminals in its interior. Let p ∈ H. Then

L1(p, zi) ≤ d · 1

d
L1(zi, zj) = L1(zi, zj)

and similarly, L1(p, zj) ≤ L1(zi, zj). Thus, H ⊆ L(zi, zi)

and it follows that if e is an MST edge then H◦ contains
no terminals. From this and from the above, we get

Pr(e is an MST edge and L1(zi, zj) > C)

≤ Pr(H◦ empty|L1(zi, zj) > C)

≤
(

1 −
(

1

2d
C

)d
)n−2

=

1 − (n − 2)

( 1
2d C

)d

n − 2




n−2

≤ e−(n−2)(1/(2d)C)d

= e−(n−2)(1/(2d)D d
√

log n/n)d

= n−(1/(2d)D)d(n−2)/n

≤ n−Dd/(2(2d)d),

where the last inequality follows from the assumption n > 4.
Finally, we obtain the desired bound on the probability of

long MST edges:

Pr(∃ MST edge (zi, zj) such that L1(zi, zj) > C)

≤
(

n
2

)
n−Dd/(2(2d)d) ≤ n2−Dd/(2(2d)d).

■

We conclude this section with the following corollary
which bounds the expected length of a longest MST edge
(and hence also the expected length of a longest RSMT edge).

Corollary 1. With high probability, the length of a longest
edge in MST(Z) under the L1-metric is O( d

√
log n/n). The

expected length of a longest MST edge is O( d
√

log n/n).

Proof. Choose D such that 2 − Dd/(2(2d)d) < −1/d
(any value greater than 2d d

√
4 + 2/d will do). By Lemma

5, the probability that there exists an MST edge longer than
D d

√
log n/n is bounded by n2−Dd/(2(2d)d). By the choice of D,

this probability approaches 0 as n approaches ∞, showing
the first claim.

Note that, as all terminals are in U , an MST edge can never
be longer than d. Thus, the expected length of a longest MST
edge is at most

(1 − n2−Dd/(2(2d)d))D d
√

log n/n + n2−Dd/(2(2d)d)d

≤ D d
√

log n/n + d d
√

1/n

≤ (D + d) d
√

log n/n.
■
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FIG. 10. All terminals mergable with z are confined to hypercube Hz.

4.6. Bounding the Number of 2-HFSTs

We will bound the expected number of interesting K-
HFSTs, K ≥ 2, as this will make it easy to bound the expected
number of interesting FSTs. In this section, we focus on the
case where K = 2.

Consider any interesting 2-HFST. As it satisfies the weak
bottleneck property, the L1-distance between the two termi-
nals spanned by the HFST is at most two times the length
dMST of a longest edge in an MST of Z . Thus, if z ∈ Z is a
given terminal then all terminals mergable with z are confined
to the hypercube Hz centered at z and having sidelength 4dMST

(in fact, they are confined to an even smaller set, namely, the
L1-ball centered at z and having radius 2dMST). See Figure 10.

By Corollary 1, the expected value of dMST is at most
k d
√

log n/n for some constant k. As terminals are uniformly
distributed, the expected number of terminals in hypercube
Hz is bounded by the volume of Hz times n (as U has volume
1), i.e.,

n(k d
√

log n/n)d = O(log n).

It follows that the expected number of interesting 2-HFSTs
is O(n log n).

4.7. Maximal Terminals

In the following, we will obtain an even tighter bound on
the expected number of interesting 2-HFSTs by considering
empty hyperbox pruning as well.

FIG. 11. A set of terminals in the plane of which five (marked black) are
maximal in the set of terminals. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

FIG. 12. If K2-HFST H2 is mergable with K1-HFST H1 then H2 is fully
contained in hypercube C2. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

To do this, we need the following definitions. Let z, z′ ∈ Z
be two given terminals. Then z is said to be dominated by z′ if
z[c] < z′[c] for all c = 1, . . . , d. If Z ′ ⊆ Z , a terminal is said
to be maximal in Z ′ if it belongs to Z ′ and is not dominated
by any terminal in Z ′; see Figure 11.

Maximal terminals and empty hyperboxes are related in
the following way. Let z be a terminal, let Zdom ⊂ Z be the
set of terminals dominated by z, and let z′ be any terminal in
Zdom.

Lemma 6. With the above definitions, z′ is maximal in Zdom

iff B(z, z′) is empty.

Proof. Suppose the hyperbox B(z, z′) spanned by z and
z′ is not empty and let z′′ �= z, z′ be a terminal in B(z, z′)◦.
As z′ ∈ Zdom, we have z′[c] < z[c] for all axes c. Hence,
z′′ ∈ Zdom and z′′[c] > z′[c] on all axes c, showing that z′ is
not maximal in Zdom.

Now, suppose z′ is not maximal in Zdom. Then there is a
terminal z′′ in Zdom such that z[c] > z′′[c] > z′[c] on all axes
c. It follows that z′′ ∈ B(z, z′)◦. ■

By making suitable transformations, we see from Lemma
6 that the problem of finding empty hyperboxes is equivalent
to finding maximal terminals. From this it follows that an
upper bound on the expected number of maximal terminals
is also an upper bound on the expected number of terminals
that span empty hyperboxes with z.

Buchta [1] showed that, under our assumption that termi-
nals are randomly distributed inU with a uniform distribution,
the expected number of maximal terminals in Z is

1

(d − 1)! logd−1 n + γ

(d − 2)! logd−2 n + O(logd−3 n)

= O(logd−1 n),

where γ = 0.577 . . . is Euler’s constant.
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To bound the expected number of interesting 2-HFSTs,
let Cz be the hypercube with center at some terminal z and
having sidelength 4dMST. Recall that the expected number of
terminals in Cz is O(log n) and note that these terminals are
uniformly distributed in Cz.

Thus, by combining the weak bottleneck property and the
empty hyperbox property, the above shows that the expected
number of 2-HFSTs containing z is O((log log n)d−1). The
total expected number of interesting 2-HFSTs is therefore
O(n(log log n)d−1).

4.8. Bounding the Number of K-HFSTs

To bound the expected number of interesting K-FSTs for
K ≥ 3, we will start by bounding the expected number of
interesting K-HFSTs for K ≥ 2. We already have a bound
for K = 2. The corollary to the following lemma bounds the
expected number of interesting K-HFSTs for all other values
of K as well.

Lemma 7. Let K1, K2 ≥ 1 be given, let K = K1 + K2, and
assume that 3 ≤ K ≤ n. The expected number of interesting
K-HFSTs obtained by merging interesting K1-HFSTs with
interesting K2-HFSTs is O(mK1 mK2 log n/n), where mK1 resp.
mK2 is the expected number of interesting K1-HFSTs resp.
K2-HFSTs.

Proof. Let H1 be any interesting K1-HFST. We will
prove the lemma by showing that the expected number of
interesting K2-HFSTs mergable with H1 is O(mK2 log n/n).

Let C1 ⊆ U be the smallest axis-aligned hypercube con-
taining H1; see Figure 12. As H1 contains O(K1) edges, the
expected sidelength of C1 is

O(K1dMST ) = O( d
√

log n/n).

Letting l1 denote the sidelength of C1, define C2 to be
the hypercube having the same center as C1 and having
sidelength

l2 = l1 + 2(K2 + 1)dMST.

Let H2 be an interesting K2-HFST mergable with H1. Any
simple path in H2 ending at the root of H2 contains at most
K2 − 1 edges. The distance from the root of H1 to the root of
H2 is at most 2dMST. Hence, H2 is fully contained in C2.

If we translate C2 inside U , the expected number of inter-
esting K2-HFSTs fully contained in C2 is unchanged. As the
volume of C2 is O(log n/n), the expected number of interest-
ing K2-HFSTs in C2 is O(mK2 log n/n) if C2 is contained in
U . Clearly, this also holds when C2 is not contained in U . ■

Corollary 2. For any K ≥ 2, the expected number of
interesting K-HFSTs is O(n(log log n)d−1 logK−2 n).

Proof. The proof is by induction on K . If K = 2, the
corollary follows from the above. Now assume that K > 2
and that the corollary holds for all values less than K .

To show the induction step, we will apply Lemma 7. Pick
any K1, K2 ≥ 1 such that K1 + K2 = K . Assume w.l.o.g. that
K1 ≤ K2.

If K1 > 1, the induction hypothesis implies that the
expected number of interesting K-HFSTs obtained by merg-
ing interesting K1-HFSTs with interesting K2-HFSTs is

O(n(log log n)2(d−1) logK1+K2−3 n)

= O(n(log log n)2(d−1) logK−3 n).

If K1 = 1, this expected number is

O(n(log log n)d−1 logK2−1 n) = O(n(log log n)d−1 logK−2 n),

as the number of interesting 1-HFSTs is n. It follows that the
total expected number of of interesting K-HFSTs is

O(n(log log n)d−1 logK−2 n),

as requested. ■

4.9. Bounding the Number of FSTs

The above results allow us to prove the main result of this
section.

Theorem 2. For any dimension d ≥ 2, the expected
number of interesting 3-FSTs is O(n(log log n)2(d−1)), and
if K > 3, the expected number of interesting K-FSTs is
O(n(log log n)d−1 logK−2 n).

Proof. The bound on the expected number of interesting
3-FSTs follows from the ideas at the end of Section 4.7. The
bound for K > 3 follows from Corollary 2 and from the
observation that any K-FST can be regarded as a K-HFST by
adding a degree two Steiner point to an edge of the K-FST
and rooting the tree at this Steiner point. ■

5. CONCLUDING REMARKS

We bounded the expected number of FSTs satisfying
the empty lune property, a weak version of the bottleneck
property, and the empty hyperbox property in the space
(Rd , L1), d ≥ 2, when terminals are randomly distributed
in a hypercube with a uniform distribution. We showed
that the expected number of such FSTs spanning exactly
K ≥ 3 terminals is O(n(log log n)2(d−1)) for K = 3 and
O(n(log log n)d−1 logK−2 n) for K > 3.

In the plane, we showed that the expected number of K-
FSTs with the Hwang form satisfying the empty lune property
and the disjoint lunes property is O(nπK ) for any K ≥ 4. This
improves the bound of [8].

In two dimensions, experimental results suggest that the
expected number of FSTs with the Hwang form satisfying
the empty lune property and the disjoint lunes property grows
exponentially in n. This makes it unlikely that our bound of
Section 3 can be improved significantly without considering
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other properties of FSTs. It appears (again from experimental
results) that making use of the bottleneck property in addition
to the empty lune property and the Hwang form is sufficient
to obtain a linear expected bound.

Experiments in dimensions higher than two suggest that
the empty lune property, the bottleneck property, and the
empty hyperbox property are not sufficient to obtain even
a polynomial bound on the expected number of FSTs.
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Let G = (V , E) be an undirected graph with n vertices embedded in a metric space. We
consider the problem of adding a shortcut edge in G that minimizes the dilation of the
resulting graph. The fastest algorithm to date for this problem has O (n4) running time
and uses O (n2) space. We show how to improve the running time to O (n3 log n) while
maintaining quadratic space requirement. In fact, our algorithm not only determines the
best shortcut but computes the dilation of G ∪ {(u, v)} for every pair of distinct vertices u
and v .

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In areas such as VLSI design, telecommunication, and distributed systems, a problem often arising is that of intercon-
necting a set of sites in a network of small cost. There are many different ways of measuring the cost of a network, such as
its size, total length, minimum and maximum degree, diameter, and dilation (also known as stretch factor).

Spanners are sparse or economic representations of networks, making them important geometric structures in the areas
mentioned above. They have received a great deal of attention in recent years, see e.g. [7,2,8].

A t-spanner is a graph embedded in a metric space such that, for any pair of vertices in this graph, the graph distance
between them is at most t times their metric distance. The smallest t such that a graph is a t-spanner is called the dilation
of the graph.

Most algorithms construct networks from scratch, but frequently one is interested in extending an already given network
with a number of edges such that the dilation of the resulting network is minimized.

Farshi et al. [3] considered the following problem: given a graph G = (V , E) with n vertices embedded in a metric space,
find a vertex pair (u, v) ∈ V × V (called a shortcut) such that the dilation of G ∪ {(u, v)} is minimized. They gave a trivial
O (n4) time and O (n2) space algorithm for this problem together with various approximation algorithms.

In this paper, we present an O (n3 log n) time and O (n2) space algorithm for the above problem. This algorithm not only
computes the best shortcut but returns a table T with a row and a column for every vertex in G such that for any pair of
distinct vertices u and v , T (u, v) is the dilation of G ∪ {(u, v)}.

The organization of the paper is as follows. In Section 2, we give various basic definitions and assumptions. In Section 3,
we present one of the key ideas of the paper which gives a more efficient way of obtaining the dilation of edge-augmented
graphs. We present our algorithm and prove its correctness in Sections 4 and 5, we show that the above time and space
bounds hold. In Section 6, we consider the case where the given graph is disconnected. Finally, we make some concluding
remarks and pose open problems in Section 7.
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Fig. 1. (a) A staircase step and (b) the upper envelope (thick line segments) of a set of four staircase steps.

2. Basic definitions and assumptions

Let G = (V , E) be an undirected graph embedded in metric space (V ,d) and assume that G is connected.
Given two vertices u, v ∈ V , a shortest path between u and v is a path in G between u and v for which the sum of

lengths of the edges of the path is minimal. We denote by dG(u, v) the length of such a path.
We define the dilation δG(u, v) of a pair of distinct vertices u, v ∈ V as dG(u, v)/d(u, v). The dilation of G is defined as

δG = max
u,v∈V , u �=v

δG(u, v).

In the following, G denotes an undirected, connected graph (V , E) embedded in metric space (V ,d) and we define
n = |V |.
3. Upper envelope of functions

In this section, we consider the upper envelope of certain functions which will help us to compute the dilation of graphs
obtained from G by the addition of a shortcut (a single edge).

Let u, v , and w1 be three fixed vertices of G such that u �= v and let w2 be a fourth vertex of G (not fixed).
Let G ′ = G ∪ {e} be the graph obtained by adding shortcut e = (w1, w2) to G . Suppose that dG(u, w2) < dG(u, w1) +

d(w1, w2). Then no shortest path in G ′ from u traverses e in the direction w1 → w2. Let x = dG(u, w2) + d(w2, w1). Since
we have not fixed w2, we can regard x as a non-negative variable depending on w2.

Let us analyze how δG ′ (u, v) changes as a function of x. For x = 0, if x + dG(w1, v) > dG(u, v) then a shortest path
between u and v in G ′ cannot traverse e in direction w2 → w1. By the above, a shortest path between u and v in G is also
a shortest path between u and v in G ′ . This will also hold when x increases so δG ′ (u, v) is just a constant function of x.

Now, suppose x + dG(w1, v) � dG(u, v) for x = 0. Then there will be a shortest path from u to v in G ′ with a subpath
traversing e in direction w2 → w1 (by the inequality dG(u, w2) < dG(u, w1)+d(w1, w2) above). As x increases it gets more
and more expensive to use this subpath and thus δG ′ (u, v) increases; the increase in δG ′ (u, v) is a linear function of the
increase in x. Eventually, x + dG(w1, v) � dG(u, v) and it will be cheaper to use a shortest path from u to v in the original
graph G so δG ′ (u, v) will no longer increase but stay constant (as a function of x).

To be more precise, define constants a = 1/d(u, v), b = dG(w1, v)/d(u, v), and c = δG(u, v). Then x � (c − b)/a is equiv-
alent to the inequality x + dG(w1, v) � dG(u, v) above, giving

δG ′(u, v) = min{c,ax + b} =
{

c if x � c−b
a ,

ax + b if x � c−b
a .

Hence, the dilation between u and v in G ′ may be expressed as a piecewise linear function δ(x) of the length x � 0 of a
shortest path among those paths in G ′ from u to w1 having e as their last edge.

We refer to the graph of δ(x) as a staircase step, see Fig. 1(a). Assuming (c − b)/a > 0, the part of the graph on interval
[0, (c − b)/a] is a line segment with slope a, which we refer to as the left leg of δ(x).

If (c − b)/a � 0, we define the left leg of δ(x) to be the degenerate line segment with slope a starting and ending in the
point (0, δ(0)).

The part of the graph on interval [max{0, (c − b)/a},∞) is a horizontal halfline, called the right leg of δ(x).
We define the slope of δ(x) to be the slope a of its left leg.
The left and right leg of δ(x) meet in a single point. We refer to this point as the tip of δ(x).
Now, suppose we fix only u and w1. For each v ∈ V \ {u}, we obtain a staircase step expressing the dilation between u

and v in G ′ . We define s(u,w1) to be the staircase function representing the upper envelope of the union of all these staircase
steps as a function of x � 0, see Fig. 1(b). Note that this function is piecewise linear and non-decreasing.
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4. The algorithm and its correctness

In this section, we present our algorithm and prove its correctness.
Initially, dG(u, v) is computed and stored for each (u, v) ∈ V × V , and a table T with an entry for each ordered pair of

vertices of G is initialized.
Let (w1, w2) be a pair of distinct vertices of V . At termination, entry T (w1, w2) will hold the maximum dilation in G ∪

{(w1, w2)} over a certain set of vertex pairs. Similarly, entry T (w2, w1) will hold the maximum dilation in G ∪ {(w1, w2)}
over another set of vertex pairs. As we shall see, the union of these two sets cover all pairs of distinct vertices, implying
that

max
{

T (w1, w2), T (w2, w1)
} = δG∪{(w1,w2)}. (1)

A subsequent step may update T in Θ(n2) time such that T (w1, w2) = δG∪{(w1,w2)} for all w1 �= w2. A best shortcut is
then a pair (w1, w2) minimizing T (w1, w2).

The algorithm consists of a loop which iterates over all vertices of G . Let w1 be the vertex in the current iteration. First,
staircase functions s(u,w1) are computed for each u ∈ V . Then for each vertex w2 �= w1, entry (w1, w2) in T is set to

T (w1, w2) = max
{

s(u,w1)(x)
∣∣ u ∈ V , dG(u, w2) < dG(u, w1) + d(w1, w2)

}
,

where x = dG(u, w2) + d(w2, w1). This is well-defined since u = w2 satisfies dG(u, w2) < dG(u, w1) + d(w1, w2). Note that
x and the inequality in the definition of T (w1, w2) are the same as in the previous section.

The following theorem shows the correctness of our algorithm.

Theorem 1. When the above algorithm terminates, (1) holds for each pair (w1, w2) of distinct vertices.

Proof. Let (w1, w2) be any pair of distinct vertices of G and let G ′ = G ∪ {(w1, w2)}. For any u ∈ V for which dG(u, w2) <

dG(u, w1) + d(w1, w2) holds,

s(u,w1)

(
dG(u, w2) + d(w2, w1)

) = max
v∈V \{u} δG ′(u, v).

Similarly, for any u ∈ V for which dG(u, w1) < dG(u, w2) + d(w2, w1) holds,

s(u,w2)

(
dG(u, w1) + d(w1, w2)

) = max
v∈V \{u} δG ′(u, v).

Furthermore, for any u ∈ V , either dG(u, w2) < dG(u, w1) + d(w1, w2) or dG(u, w1) < dG(u, w2) + d(w2, w1) for otherwise
we get the contradiction

dG(u, w2) + d(w2, w1) � dG(u, w1)

� dG(u, w2) − d(w1, w2)

< dG(u, w2) + d(w2, w1),

where the strict inequality follows from the assumption that w1 �= w2. Thus, at termination,

max
{

T (w1, w2), T (w2, w1)
} = max

u,v∈V , u �=v
δG ′(u, v) = δG ′ ,

as requested. �
5. Running time and space requirement

In this section, we show that the algorithm of the previous section has O (n3 logn) running time and O (n2) space
requirement. We will need the following lemma.

Lemma 1. Given vertices u and w1 , the graph of staircase function s(u,w1) consists of O (n) line segments and one halfline and can
be computed in O (n log n) time when dG(w1, v) and dG(u, v) are precomputed for all v ∈ V . Furthermore, when this graph is given,
s(u,w1)(x) can be computed in O (log n) time for any x � 0.

Proof. Note that when dG(w1, v) and dG(u, v) are precomputed for all vertices v , each staircase step may be computed in
constant time.

We represent the graph of s(u,w1) as a polygonal chain P . To construct P , we start by computing each staircase step
and the tip with maximum x-coordinate, say xmax. The upper envelope of P to the right of xmax is the upper envelope of
O (n) horizontal halflines and may be computed in O (n) time. The upper envelope of P on interval [0, xmax] is the upper
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envelope of O (n) line segments. We use the algorithm of Hershberger [5] to compute this upper envelope in O (n log n)

time. It follows that P may be constructed in O (n log n) time.
Clearly, P consists of line segments and exactly one halfline. We need to show that the number of line segments is O (n).
Consider constructing P by iteratively adding staircase steps in non-decreasing order of slope. Let Pi be the upper

envelope of the first i staircase steps.
Upper envelope P1 consists of exactly one line segment (and one halfline). For i > 1, the left leg of the ith staircase step

si intersects Pi−1 at most once due to the order of staircase steps. Since the right leg is horizontal, it cannot intersect Pi−1
more than once. Hence, Pi has at most two more line segments than Pi−1.

One fine point: a degeneracy may occur if the left leg of si overlaps with a line segment of Pi−1. It is easy to see that in
this case, Pi cannot contain more line segments than Pi−1, again due to the order of the staircase steps.

Since there are O (n) staircase steps, the above shows that P consists of O (n) line segments.
Since s(u,w1) is a non-decreasing function of x, we may apply a binary search in P to compute s(u,w1)(x) for any x � 0.

Since P consists of O (n) line segments, this takes O (log n) time. �
We are now ready for the main result of this section.

Theorem 2. The algorithm described in Section 4 has O (n3 log n) running time and O (n2) space requirement.

Proof. To prove the time bound, first observe that computing all-pairs shortest paths takes O (n3) time with the Floyd–
Warshall algorithm [4] (faster algorithms exist, see e.g. [1], but they will not improve the asymptotic running time of our
algorithm).

Furthermore, the graph of each staircase function is computed exactly once throughout the course of the algorithm.
Hence, by Lemma 1, the total time spent on computing these functions is O (n3 log n). Once the staircase functions have
been computed, computing an entry of T takes O (n log n) time by Lemma 1. Since T has n2 entries, computing T takes
O (n3 log n) time. When all entries in T have been computed, finding the best shortcut takes O (n2) time. Hence, the total
running time of the algorithm is O (n3 log n).

Space requirement is bounded by that of the Floyd–Warshall algorithm and the space for storing the staircase functions,
the shortest path lengths, and the table T . The Floyd–Warshall algorithm requires Θ(n2) space. Clearly, T and the shortest
path lengths can be stored using a total of Θ(n2) space. In each iteration of the algorithm, we only store n staircase
functions. By Lemma 1, they take up a total of O (n2) space. �
6. Disconnected graph

Recall our assumption that G is connected. In this section, we show that some simple modifications of our algorithm
allow us to handle the case where G is disconnected without affecting the worst-case running time and space requirement
of the algorithm.

Note that if G consists of more than two connected components, G has infinite dilation and no single edge can be added
to G to reduce the dilation, making the problem we consider trivial. Since there are efficient algorithms for determining
the connected components of a graph, we may therefore restrict our attention to the case where G consists of exactly two
connected components and assume that these two components have been computed.

So let G1 = (V 1, E1) and G2 = (V 2, E2) be the subgraphs defining the two connected components of G . For all shortcuts
(w1, w2) ∈ V 1 × V 1 ∪ V 2 × V 2, we set T (w1, w2) = ∞ since they leave the graph disconnected and hence leave the dilation
of the graph unchanged.

As for the other entries in T , consider a pair of vertices (w1, w2) in V 1 × V 2 and let G ′ = G ∪ {(w1, w2)}. Let u �= v be
two vertices of V . If u, v ∈ V 1 or u, v ∈ V 2 then clearly δG ′(u, v) = δG(u, v).

Now assume that v ∈ V 1 and u ∈ V 2. Then

δG ′(u, v) = ax + b,

where x = dG(u, w2) + d(w2, w1), a = 1/d(u, v), and b = dG(w1, v)/d(u, v). Comparing this with the results of Section 3,
we see that we in effect obtain staircase steps with no right leg. We let s(u,w1) denote the staircase function representing
the upper envelope of the staircase steps obtained from each v ∈ V 1 as a function of x.

To determine all entries T (w1, w2) of T where (w1, w2) ∈ V 1 × V 2, we make the following small changes to the algo-
rithm of Section 4. The loop only iterates over vertices w1 ∈ V 1. Furthermore, we only compute staircase functions s(u,w1)

for u ∈ V 2 and we set

T (w1, w2) = max
{
δG1 , δG2 , max

{
s(u,w1)(x)

∣∣ u ∈ V 2
}}

for each w2 ∈ V 2 with x defined as above.
By the above it follows that, at termination, the modified algorithm satisfies

max
{

T (w1, w2), T (w2, w1)
} = δG∪{(w1,w2)}

for all distinct pairs of vertices w1 and w2 in G .
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Computing the graph of staircase function s(u,w1) is done in O (n log n) time using the algorithm of Hershberger [5] (as
in the proof of Lemma 1, we pick a maximum x-value in order to consider line segments instead of halflines. Pick, say, the
largest x-value ever needed by the algorithm). The graph of s(u,w1) has complexity O (n) and when it is given, s(u,w1)(x) can
be computed in O (log n) time for any x � 0; the proof of these claims is similar to the proof of Lemma 1.

From the above and from the results of Section 5, it follows easily that all entries of T can be computed in O (n3 log n)

time using O (n2) space when G is disconnected.

7. Concluding remarks

We presented an O (n3 logn) time and O (n2) space algorithm for the problem of computing the best shortcut of a graph
G = (V , E) with n vertices embedded in a metric space. This improves upon a previous bound of O (n4) time and O (n2)

space [3]. Our algorithm in fact solves a harder problem, namely that of computing the dilation of G ∪ {(u, v)} for each pair
of distinct vertices u and v .

Based on ideas of this paper, the open problem stated in [3] of whether there exists a linear space algorithm with o(n4)

running time for finding the best shortcut is solved in [6]. We pose the following problems. Is our algorithm optimal in
terms of running time? Is it possible to extend our results to the more general case of adding a constant number of edges
to G?
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Abstract. Let G be a plane graph where each edge is a line segment. We
consider the problem of computing the maximum detour of G, defined
as the maximum over all pairs of distinct points p and q of G of the
ratio between the distance between p and q in G and the distance |pq|.
The fastest known algorithm for this problem has Θ(n2) running time
where n is the number of vertices. We show how to obtain O(n3/2 log3 n)
expected running time. We also show that if G has bounded treewidth,
its maximum detour can be computed in O(n log3 n) expected time.

1 Introduction

Given a geometric graph G, its stretch factor (or dilation) is the maximum over
all pairs of distinct vertices u and v of the ratio between the distance between u
and v in G and the Euclidean distance |uv| between u and v.

A spanner is a network with small stretch factor. Spanners that keep other
cost measures low, such as size, weight, degree, and diameter, are important
structures in areas such as VLSI design, distributed computing, and robotics.
For more on spanners, see [5,9,10].

An interesting dual problem is that of computing the stretch factor of a given
geometric graph. In this paper, we consider a related problem, namely that of
computing the maximum detour of a plane graph where edges are line segments.
Maximum detour is defined like stretch factor except that the maximum is taken
over all pairs of distinct points of the graph, i.e., interior points of edges as well
as the vertices.

If the graph is planar then its stretch factor can be computed in Θ(n2) time,
where n is the number of vertices, by applying the APSP algorithm in [6]. This
bound also holds for the problem of computing the maximum detour of a plane
graph [1]. It is an open problem whether subquadratic time algorithms exist.

For more special types of graphs such as paths, trees, cycles, and graphs
having bounded treewidth, faster algorithms are known for the stretch factor
and maximum detour problem [1,2].

In this paper, we show how to compute the maximum detour of a plane graph
with n vertices in O(n3/2 log3 n) expected time, thereby solving the open problem

S.-H. Hong, H. Nagamochi, and T. Fukunaga (Eds.): ISAAC 2008, LNCS 5369, pp. 740–751, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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of whether a subquadratic time algorithm exists for this problem. We also show
that if the graph has bounded treewidth, its maximum detour can be computed
in O(n log3 n) expected time.

The organization of the paper is as follows. In Section 2, we give various defi-
nitions and introduce some notation. In Section 3, we make use of the separator
theorem by Lipton and Tarjan which enables us to apply the divide-and-conquer
paradigm to the input graph. We define colourings of points of a face of the
graph in Section 4, show some properties of these colourings and how to effi-
ciently compute them. In Section 5, we show how the colourings give an efficient
way of computing the maximum detour between points on a face of the graph
and this in turn gives an efficient algorithm for computing the maximum detour
of the entire graph. Finally, we make some concluding remarks in Section 6.

2 Definitions and Notation

Let G = (V, E) be a plane graph where each edge is a line segment and let PG

be the set of points of G (vertices as well as interior points of edges). Given two
points p, q ∈ PG, we define dG(p, q) as the length of a shortest path in G between
p and q, where the length of a path is measured as the sum of the Euclidean
lengths of the (parts of) edges on this path. If there is no such path, we define
dG(p, q) = ∞. If p �= q then the detour δG(p, q) between p and q (in G) is defined
as the ratio dG(p, q)/|pq|. The maximum detour δG of G is the maximum of this
ratio over all pairs of distinct points of PG.

Where appropriate, we will regard a plane graph as the set of points belonging
to the graph. So for instance, if G and H are plane graphs then G∩H is the set
of points belonging to both G and H . If well-defined, we will regard the resulting
point set as a graph.

For a graph G, we let |G| denote its size, i.e. the number of vertices plus the
number of edges in G. Given two subsets P1 and P2 of the set PG of points of
G, we define

δG(P1, P2) = max
p∈P1,q∈P2,p�=q

δG(p, q).

If p is a point of G and P ⊆ PG, we write δG(p, P ) = δG(P, p) instead of
δG({p}, P ) and we write δG(P ) as a shorthand for δG(P, P ). We extend these
definitions to subgraphs, edges, and vertices by regarding them as sets of points.

Given paths P = p1 → p2 → . . . → pr and Q = q1 → q2 → . . . → qs, where
pr = q1, we let PQ denote the combined path p1 → p2 → . . . → pr−1 → q1 →
q2 → . . . → qs. For a vertex v, we let v → P denote the path v → p1 → p2 →
. . . → pr.

3 Separating the Problem

In all the following, let G = (V, E) be an n-vertex plane graph in which edges
are line segments. We seek to compute δG in O(n3/2 log3 n) expected time. We
will assume that G is connected since otherwise, the problem is trivial.
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To compute δG, we apply the divide-and-conquer paradigm. Our strategy is
in some ways similar to that in [2], the main difference being that in the merge
step we use face colourings (Section 4) whereas range searching is used in [2].

In this section, we separate G into two smaller graphs, GA and GB , of roughly
the same size. We recursively compute δG(GA) and δG(GB) and in Section 5, we
describe an algorithm for efficiently obtaining the maximum detour δG(GA, GB).

To separate our problem, we use the separator theorem of Lipton and Tar-
jan [8]. This gives us, in O(n) time, a partition of V into three sets, A, B, and
P , such that the following three properties hold

1. no edge joins a vertex in A with a vertex in B,
2. neither A nor B contains more than n/2 vertices, and
3. P contains no more than 2

√
2

1−
√

2/3

√
n vertices.

We refer to vertices of P as portals. We must have P �= ∅ since otherwise, one
of the sets A and B would be empty by property 1, implying that |A| = n or
|B| = n, contradicting property 2. In the following, let k ≥ 1 denote the number
of portals and let p1, . . . , pk denote the portals.

Having found this partition, we compute and store shortest path lengths from
each portal to each vertex of V . Using Dijkstra’s SSSP algorithm with, say,
binary heaps, this can be done in O(n log n) time for each portal, giving a total
running time of O(n3/2 log n).

Let GA be the subgraph of G induced by A∪P and let GB be the subgraph of
G induced by B ∪P . We construct GA and GB and recursively compute δG(GA)
and δG(GB). Clearly,

δG = max{δG(GA), δG(GB), δG(GA, GB)}.

In the following, we deal with the problem of computing δG(GA, GB).
We will need the following lemma which is a generalization of a result in [4]

(we omit the proof since it is virtually identical to that in [4]).

Lemma 1. Maximum detour δG is achieved by a pair of co-visible points.

This result allows us to consider only detours between pairs of points of the
same face of G (here we include the external face). In all the following, let f
be a face of G, let fA = f ∩ GA, and let fB = f ∩ GB . We will show how to
compute δG(fA, fB) in O(|f |k log2 n) expected time. From this it will follow that
δG(GA, GB) can be found in O(n3/2 log2 n) expected time.

We will assume that f is an internal face of G. The external face is dealt
with in a similar way. We also assume that fA and fB do not share any edges
since any edge e shared by them must have portals as both endpoints and the
detours from points in e to all points in G will be considered in the two recursive
calls that compute δG(GA) and δG(GB), respectively. Hence, we may disregard
e when computing δG(fA, fB).

We assume that f is simple. The case where f is non-simple is handled in a
similar way.
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4 Colouring Points

In this section, we define colourings of points of f . As we shall see in Section 5,
these colourings will prove helpful when computing δG(fA, fB). More specifically,
they will speed up shortest path computations between pairs of points in f by
indicating, for each point pair, which portal is on some shortest path between
those two points.

Face f is defined by a simple cycle v1 → v2 → . . . → vnf
→ v1 such that the

interior of f is to the left as we walk in the direction specified by the vertices.
For a point p ∈ f , we let df (p) denote the Euclidean length of the path from

v1 to p that visits vertices in the order specified above. We define an order <f
v1

of the set of points of f as follows. For two points p and q of f , p <f
v1

q if and
only if df (p) < df (q). Order p >f

v1
q is defined in a similar way. In the following,

we assume that the sum of lengths of all edges in f and df (vi) for all vi ∈ f are
precomputed.

By starting the walk in any other vertex vi of f , we can similarly define orders
<f

vi
and >f

vi
. It is easy to see that determining whether e.g. p <f

vi
q holds for

any points p, q ∈ f can be done in constant time using the above precomputed
values. Where appropriate, we will regard the points of f (or fA or fB) occuring
between two points w.r.t. order <f

vi
as an interval of points.

In the following, let a be a vertex in fA and let a′ ∈ f ∩ V be its successor
w.r.t. <f

a . We now consider associating with a a colouring of points in fB using
colours c1, . . . , ck. A point p ∈ fB is given colour ci if portal pi is on a shortest
path in G from a to p. In case of ties, pick the colour such that the corresponding
portal has minimum distance to a in G. In case of further ties, pick the colour
with the smaller index. We let ca(p) denote the colour assigned to p.

We will show that colours occur in intervals as we walk around fB with each
colour assigned to at most one interval. Furthermore, we will show that the order
of these intervals is induced by an order of the portals which we define next.

Let u0 and u1 be distinct vertices of G connected by an edge and consider a
portal pi. Choose edge (u1, u2) ∈ E such that u2 is on a shortest path from u1
to pi and such that u0 → u1 → u2 makes the sharpest possible left turn at u1 (if
a left turn is not possible we regard the least possible right turn as a sharpest
possible left turn and we regard a turn of angle π as a left turn of angle π).

Repeat this procedure by picking, for j = 3, . . . , r, an edge (uj−1, uj) such
that uj is on a shortest path from uj−1 to pi and such that uj−2 → uj−1 → uj

makes the sharpest possible left turn at uj−1; here, r is the smallest index such
that uj = pi. The resulting path u1 → u2 → . . . → ur is uniquely defined
and is a shortest path from u1 to pi. We denote it by

←−
Pi(u0, u1). We define

←−
Pi

′(u0, u1) = u0 → ←−
Pi(u0, u1). In the following, we will write

←−
Pi resp.

←−
P ′

i as a
shorthand for

←−
Pi(a′, a) resp.

←−
P ′

i (a
′, a), where a and a′ are defined as above.

For two distinct portals pi and pj we write pi ≺f
a pj if pi ∈ ←−

Pj or if
←−
P ′

i makes
a sharper left turn than

←−
P ′

j at some shared interior vertex. As an example, in

Figure 1, pi ≺f
a pj since

←−
P ′

i makes a sharper left turn than
←−
P ′

j at vertex v.
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Lemma 2. If paths
←−
Pi and

←−
Pj split at a vertex v they cannot meet after v.

Lemma 3. The relation ≺f
a above is a strict total order of the portals.

We now show the relation between the order ≺f
a of portals and the order <f

a of
vertices in fB.

Theorem 1. Let p and q be two distinct points of fB and assume that ca(p) = ci

and ca(q) = cj, i �= j. Then pi ≺f
a pj if and only if p <f

a q.

Proof. By symmetry, it is enough to show that if pi ≺f
a pj then p <f

a q.
So assume that pi ≺f

a pj. Since ca(q) = cj , we have pi /∈ ←−
Pj . It follows that

there is a vertex v at which
←−
Pi and

←−
Pj split and

←−
P ′

i makes a sharper left turn at
v than

←−
Pj

′. By Lemma 2, the two paths do not meet again after v. In particular,
←−
Pi does not cross

←−
Pj , see Figure 1.

a
a′

pq

f

v

pi
Pp

pj

Pq

a
a′

pq

f

pj

piPp

Pq

v

a
a′

pq

f

pi

pj

Pq

Pp

v

Fig. 1. The possible situations in the proof of Theorem 1 when pi ≺f
a pj

Let Pp be a shortest path from pi to p. Then Pp cannot intersect
←−
Pj since then

pi and pj would both be on a shortest path from a to q with dG(a, pi) < dG(a, pj),
contradicting the assumption that ca(q) = cj.

Let Pq be a shortest path from pj to q. Then
←−
Pi cannot intersect Pq since oth-

erwise, pi and pj would both be on a shortest path from a to p with dG(a, pj) <
dG(a, pi), contradicting the assumption that ca(p) = ci.

Furthermore, Pq cannot intersect Pp. For assume it did. Then there would be
a shortest path from a to p through pj and a shortest path from a to q through
pi. If dG(a, pi) < dG(a, pj) then ca(q) �= cj and if dG(a, pj) < dG(a, pi) then
ca(p) �= ci. Hence, dG(a, pi) = dG(a, pj). But then i < j would imply ca(q) �= cj

and i > j would imply ca(p) �= ci, contradicting the colours assigned to p and q.
It follows from the above that paths

←−
PiPp and

←−
PjPq do not intersect except in

the vertices they share until reaching v, see Figure 1. This implies that p <f
a q,

showing the theorem. ��

Corollary 1. Interval fB can be split up into O(k) sub-intervals such that points
in the same sub-interval are assigned the same colour w.r.t. vertex a ∈ fA.

If the sub-intervals of Corollary 1 are picked such that they have maximal size,
we refer to them as colour intervals of a.

We now show how the colour intervals of a can be computed efficiently.
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Lemma 4. The order of colour intervals of a can be computed in O(k log2 n)
time assuming O(kn log n) time for preprocessing. The preprocessing step is in-
dependent of a and f .

Proof. We will prove the lemma by presenting a data structure that, given dis-
tinct portals pi and pj , determines whether pi ≺f

a pj and does so for any a and f .
We will show how to construct this data structure in O(kn log n) time such that
it can determine whether pi ≺f

a pj in O(log n) time. This will allow us to sort
the portals according to ≺f

a in time O(k log2 n) time using a sorting algorithm
like merge or heap sort since such an algorithm performs O(k log k) comparisons.
This result together with Theorem 1 will show the lemma.

We first show how to construct the data structure. In the following, let E′ be
the set of directed edges obtained by regarding each edge of E as two oppositely
directed edges.

With each edge e = (u, v) ∈ E′ and each portal pi, we associate pointers
πj(e, i), j = 0, . . . , je. Pointer πj(e, i) points to the edge ej of

←−
Pi(e) such that

the number of edges between e and ej in
←−
Pi(e) is 2j − 1, see Figure 2. Here, je

is the largest j such that ej exists. Note that je = O(log n) so the total number
of pointers over all edges e and all portals pi is O(kn log n).

pi

e

e1

π3(e, i)

π1(e, i)

π0(e, i)

π2(e, i)
e2

e0

e3

Fig. 2. Example with π-pointers from edge e to edges e0 = π0(e, i), e1 = π1(e, i),
e2 = π2(e, i), and e3 = π3(e, i) on

←−
Pi(e). Here, je = 3.

It is easy to show that all π-pointers can be computed in O(kn log n) time.
Now, given these pointers, for any edge e and any portals pi and pj , binary
search allows us to determine, in O(log n) time, the vertex at which

←−
Pi(e) and

←−
Pj(e) split. If they do not split, binary search will also detect this and determine
whether pi ∈ ←−

Pj(e) or pj ∈ ←−
Pi(e). From this it follows that we can determine

whether pi ≺f
a pj in O(log n) time, given these pointers. ��

Theorem 2. Endpoints of colour intervals of a can be computed in O(k log2 n)
time assuming O(kn log n) preprocessing time. The preprocessing step is inde-
pendent of a and f .

Proof. We start by computing the order of colour intervals of a. By Lemma 4,
this can be done in O(k log2 n) time with O(kn log n) preprocessing time. Let π
be the permutation of {1, . . . , k} such that pπ(1) ≺f

a . . . ≺f
a pπ(k).
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We then compute the colour of the first point bmin and the last point bmax of
fB w.r.t. the order <f

a . This can be done in time proportional to the number k
of colours since SSSP lengths for each portal have been precomputed.

If ca(bmin) = ca(bmax) then by Theorem 1, all points between bmin and bmax
have this colour. In this case, the algorithm associates this colour with the sub-
interval between the two vertices and returns (the sub-interval is not stored
explicitly, only its end vertices bmin and bmax).

Otherwise, a vertex b ∈ fB is picked, such that the number of edges in
fB before resp. after b w.r.t. the order <f

a is (approximately) the same, and
its colour ca(b) is computed. Let i be the index such that cπ(i) = ca(b). The
algorithm calls itself recursively on vertices between bmin and b with colours
cπ(1), . . . , cπ(i). And it calls itself recursively on vertices between b and bmax with
colours cπ(i), . . . , cπ(k).

The recursion stops when bmin and bmax are the endpoints of a single edge
e of fB. If ca(bmin) = ca(bmax), the algorithm associates this colour with e and
returns. Otherwise, we need the following simple observation: there is a point p on
e such that all points on bminp have colour ca(bmin) and all points on pbmax have
colour ca(bmax). Furthermore, p can be computed in O(1) time, given these two
colours. The algorithm associates the two colours with their respective segments
of e and returns.

When the algorithm terminates, each colour ci is associated with O(log n) sub-
intervals and their union defines the colour interval of a with colour ci. Finding
the colour intervals of a from these O(k log n) sub-intervals takes O(k log n) time.
What remains is to show that the algorithm above has O(k log2 n) running time.

Let T (m, k) be a function expressing the time for the above algorithm where
m is the number of edges of fB and k is the number of colours. If we assume
that vertices of fB are stored in an array then the point b that splits points of
fB into two equal halves can be found in O(1) time. Thus, there is a constant
c′ > 0 such that the algorithm uses at most c′k time steps excluding time spent
in recursive calls. There is also a constant c′′ such that T (m, k) ≤ c′′k when
m ≤ 2. Let c = max{c′, c′′}. Then (ignoring floors and ceilings)

T (m, k) ≤ ck + T (m/2, k1) + T (m/2, k2).

where m > 2 and k1, k2 ∈ {1, . . . , k}, k1 + k2 = k + 1.
Let T̃ (m, k) be the running time T (m, k) minus a value of c log n charged to

each split vertex b encountered in the current and in recursive calls. Then it
can be shown by induction on m ≥ 2 that T̃ (m, k) < ck log m, implying that
T (m, k) ≤ ck log m + xc log n, where x is the total number of split vertices. This
number is proportional to the number of sub-intervals returned by the algorithm
which is O(k log m). ��

Note that a colour interval I need not be closed, i.e. one or both of the endpoints
need not belong to I. We conclude this section with the following simple result
which will prove useful when we compute detours between points that may be
interior points of edges.
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Lemma 5. Let p a point of edge e = (u, v) of G and let q be a point in G.
Suppose that pi is on a shortest path from u to q and that pj is on a shortest
path from v to q. Then either pi or pj is on a shortest path from p to q.

Proof. A shortest path from p to q goes through either u or v. ��

5 The Detour of Points in a Face

In this section, we show how to compute δG(fA, fB) in O(|f |k log2 n) expected
time.

We start by computing, for each edge e = (u, v) ∈ fA, O(k) colour intervals
of u and of v using O(k log2 n) time (with O(kn log n) preprocessing) and take
the union of the endpoints of these colour intervals. This gives O(k) smaller
sub-intervals which we associate with e. The total running time for this over all
edges is O(|f |k log2 n).

Now, let P be one of the sub-intervals associated with edge e = (u, v). Then
there are i, j ∈ {1, . . . , k} such that cu(p) = ci and cv(p) = cj for all p ∈ P .
Hence, for any point q ∈ P , pi is on a shortest path from u to q and pj is on a
shortest path from v to q. Lemma 5 implies that for any point p ∈ e and any
point q ∈ P , either pi or pj is on a shortest path from p to q.

We refer to P as a type 1-interval (of e) if ci �= cj and a type 2-interval (of e)
if ci = cj .

For any edge e of fA and any type i-interval P of e, i = 1, 2, we may assume
that P is a closed interval having endpoints in vertices of fB. For otherwise,
we could compute the maximum detour between e and the first resp. last edge
e′ of P (all other edges of P have endpoints in vertices of fB). Computing
δG(e, e′) is a constant-size problem (when SSSP lengths for each portal have
been precomputed) since we know that for each point p ∈ e and each point
p′ ∈ e, there is a shortest path from p to p′ through either of two portals pi and
pj . Thus, it takes O(1) time to compute δG(e, e′) (see also [1]). Over all e and
P , this amounts to O(|f |k) time.

The value δG(fA, fB) is computed in two phases. In phase i, the maximum
detour between points in edges of fA and points in associated type i-intervals is
computed, i = 1, 2.

5.1 Phase 1

We will show that phase 1 takes O(|f |k) time when shortest path lengths from
portals and colour intervals have been computed.

The algorithm for this phase is straightforward. For each edge e of fA it
considers all edges e′ of each type 1-interval of e and computes δG(e, e′) in
constant time.

To show that phase 1 takes O(f |k|) time, we need to show that the number of
edge pairs (e, e′) is O(f |k|). To this end, we introduce a so called dual colouring
of vertices of fA for each vertex of fB. Let b be a vertex of fB. Then vertex
a ∈ fA is given dual colour cb(a), defined as the colour ca(b).
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Assigning dual colours to all vertices of fA partitions this set into maximal
sub-intervals with vertices in each sub-interval having the same dual colour. We
call these sub-intervals the dual colour intervals of b. These dual colour intervals
will help us bound the number of edge pairs (e, e′). First, we need two lemmas.

Lemma 6. Let b be a vertex of fB and let a, a1, a2 be vertices of fA such that
a1 <f

b a <f
b a2, cb(a1) = cb(a2) = ci, and cb(a) = cj, i �= j. Then for any vertex

a′ of fA, cb(a′) �= cj if either a′ <f
b a1 or a′ >f

b a2.

Lemma 7. The number of dual colour intervals of a vertex b ∈ fB is O(k).

Proof. Let N(k) be the maximum number of dual colour intervals of b when
the number of distinct colours in these intervals is exactly k. We will show that
N(k) ≤ 2k − 1. The proof is by induction on k ≥ 1. If k = 1 then there is only
one dual colour interval and we have N(k) = 1 = 2k − 1.

Now, suppose that k > 1 and that N(k′) ≤ 2k′−1 for all k′ less than k. Let ci

be the colour of the first dual colour interval w.r.t. the order <f
b . By Lemma 6,

there is a finite number r of dual colour intervals with colour ci (in fact at most
k). Let I1, . . . , Is be the intervals between each consecutive pair of these dual
colour intervals and let k1, . . . , ks be the number of colours in each of them. Note
that s ≥ r −1. Also note that by the choice of ci and by Lemma 6, two points in
two different I-intervals cannot have the same colour since for at least one of the
two intervals, the colour of the dual colour interval preceding and succeeding it
is ci. From this and from the fact that the I-intervals do not contain colour ci,∑s

j=1 kj = k − 1. Applying the induction hypothesis, this gives

N(k) ≤ r+
s∑

j=1

N(kj) ≤ r+
s∑

j=1

2kj −1 = r−s+2(k−1) ≤ 1+2(k−1) = 2k−1.

��
We are now ready to bound the running time for the phase 1 algorithm.

Theorem 3. Phase 1 runs in O(|f |k) time.

Proof. Consider edges e = (u, v) ∈ fA and e′ = (u′, v′) ∈ fB such that e′ is an
edge of a type 1-interval of e. Let ci = cu(u′) = cu(v′) and let cj = cv(u′) =
cv(v′). Since u′ is a vertex of fB, dual colours cu′(u) = ci and cu′(v) = cj are
well-defined and since i �= j by assumption, these two dual colours are distinct,
implying that two dual colour intervals of b meet at e.

It follows by the above and by Lemma 7 that for each e′, O(k) edges e are
picked. Thus, the total number of edge pairs considered by the algorithm is
O(|f |k). By our earlier discussion, this suffices to show the theorem. ��

5.2 Phase 2

We now consider the problem of computing the maximum detour between points
of edges of fA and points of type 2-intervals.
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For any pair (e, P ), where e is an edge of fA and P is a type 2-interval of e,
there is a portal pi such that for any point p ∈ e and any point q ∈ P , pi is on a
shortest path from p to q. In the following, we consider all such pairs for a fixed
pi. We will show that computing the maximum detour δi over all these pairs can
be done in O(|f | log2 |f |) expected time. From this, it will follow that phase 2
takes O(|f |k log2 |f |) expected time.

Before showing how to compute δi, we need the idea of a canonical decompo-
sition of fB, defined next.

Canonical Decomposition. Define b1, . . . , bm as the interval of vertices of fB

ordered according to <f
a for some arbitrary vertex a ∈ fA. Consider splitting

this interval at vertex bj = b�m/2� and repeat this process recursively on the two
sub-intervals, stopping when an interval containing only two vertices is reached.
This gives us O(m) = O(|f |) intervals of total size O(|f | log |f |) which we refer to
as canonical intervals. The subgraphs of fB induced by these canonical intervals
are referred to as canonical subgraphs. The set of these subgraphs, which we
denote by C, can be found in O(|f | log |f |) time.

Every sub-interval of b1, . . . , bm can be decomposed into O(log |f |) canonical
intervals in O(log |f |) time. This is easily seen by applying a greedy algorithm
that picks canonical intervals as large as possible. We refer to such a decompo-
sition as a canonical decomposition.

Let e be an edge of fA. By the assumption earlier that type 2-intervals end in
vertices and by Theorem 1, the union of all type 2-intervals of e of colour ci is
exactly the set of points of fB between two vertices of b1, . . . , bm. We compute a
canonical decomposition of the sub-interval between these two vertices and add
a pointer to e from each canonical subgraph corresponding to canonical intervals
in this decomposition. This is done for all e in fA.

When finished we have a total of O(|f | log |f |) pointers from canonical sub-
graphs in C to edges of fA. Note that some canonical subgraphs may contain
pointers to several edges. The total time spent on constructing C and on finding
pointers is O(|f | log |f |).

Observe that δi is the maximum of δG(e, C) over all pairs consisting of an
edge e ∈ fA and a canonical subgraph C ∈ C with a pointer to e. We now show
how to compute this maximum in O(|f | log2 |f |) expected time.

Sweep-plane Algorithm. To efficiently compute the maximum over pairs of
edges and canonical subgraphs, we will use the idea of lifting and lowering points
followed by a sweep-plane algorithm as described in [7]. In order to do this, we
consider the following decision problem below: given δ ∈ R, is δi ≥ δ? If we can
answer this quickly we can compute δi in low expected time using a randomized
algorithm by Chan [3] as described in [7].

For each canonical subgraph C ∈ C, we lift each point p ∈ C to height
dG(pi, p). And for each edge e ∈ fA, we lower each point p ∈ e to height
−dG(p, pi). Since we have precomputed SSSP lengths for portal pi, this lift-
ing/lowering can be done in O(|f | log |f |) time since the total size of all canonical
subgraphs and edges is O(|f | log |f |).
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Let e be a vertex in fA and let C be a canonical subgraph with a pointer to
e. Then it is clear that the height difference between a point p ∈ e and a point
q ∈ C equals dG(p, q).

For each lifted and lowered point p, we associate a cone extending downwards
from p and spanning an angle of α = 2 arctan(1/δ). Then as shown in [7], δi ≥ δ
if and only if a cone of a lowered point of some edge is contained in a cone of a
lifted point of some canonical subgraph with a pointer to that edge.

Now, we sweep a plane over the cones. The sweep-plane is parallel to the
x-axis and forms an angle of (π − α)/2 with the xy-plane. During the sweep, we
maintain, for each canonical subgraph C, the intersection between the sweep-
plane and the upper envelope of lifted points of C together with lowered points
in edges that C points to. If it is detected that a cone of a lowered point is
contained in a cone of a lifted point, the algorithm reports that δi ≥ δ and if no
such event occurs, the algorithm reports that δi < δ.

It follows from the results of [7] that maintaining intersections between the
sweep-plane and upper envelopes takes a total of O(|f | log2 |f |) time since the
number of sweep-plane event points is O(|f | log |f |) and each event point takes
O(log |f |) time to handle. However, this is under the assumption that no cone of
a lifted resp. lowered point is contained in the interior of another cone of a lifted
resp. lowered point (see [7] for details). It can be shown that this assumption is
satisfied if we only consider values δ ≥ max{δG(GA), δG(GB)}.

So by recursively computing δG(GB) and δG(GA) before computing δG(GA, GB)
it follows that the above decision problem can be solved in O(|f | log2 |f |) time and
Chan’s algorithm gives us the following result.

Theorem 4. Phase 2 runs in O(|f |k log2 |f |) expected time.

We have shown that δG(GA, GB) can be computed in O(n3/2 log2 n) expected
time. Due to space constraints, we leave the details for recursively computing
δG(GA) and δG(GB). But it can be shown that the time spent in a level of the
recursion tree is O(n3/2 log2 n) and we get the main result of our paper.

Theorem 5. The maximum detour of a plane graph with n vertices can be com-
puted in O(n3/2 log3 n) expected time.

The second main result of this paper shows that if the graph has bounded
treewidth (see definition in [2]), faster running time can be obtained.

Theorem 6. The maximum detour of a plane graph with n vertices and bounded
treewidth can be computed in O(n log3 n) expected time.

The proof of Theorem 6 follows easily from our results above and from [2].

6 Concluding Remarks

In this paper, we showed how to compute the maximum detour of a plane graph
in O(n3/2 log3 n) expected time. This is an improvement over the best known
algorithm with Θ(n2) running time. We also showed that if the graph has
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bounded treewidth, its maximum detour can be computed in O(n log3 n) ex-
pected time.

We believe that by using parametric search as described in [1], we can obtain an
algorithm computing the maximum detour of a plane graph in O(n3/2 polylog n)
worst-case timeand inO(n polylog n)worst-case timewhen thegraphhasbounded
treewidth.

It would be interesting to try to beat the quadratic time bound also for the
problem of computing the stretch factor of a plane geometric graph. This problem
appears harder since pairs of vertices achieving the maximum detour need not
be co-visible.

References

1. Agarwal, P.K., Klein, R., Knauer, C., Langerman, S., Morin, P., Sharir, M., Soss,
M.: Computing the Detour and Spanning Ratio of Paths, Trees and Cycles in 2D
and 3D. Discrete and Computational Geometry 39(1), 17–37 (2008)

2. Caballo, S., Knauer, C.: Algorithms for Graphs With Bounded Treewidth Via
Orthogonal Range Searching, Berlin (manuscript, 2007)

3. Chan, T.M.: Geometric applications of a randomized optimization technique. Dis-
crete Comput. Geom. 22(4), 547–567 (1999)

4. Ebbers-Baumann, A., Klein, R., Langetepe, E., Lingas, A.: A Fast Algorithm for
Approximating the Detour of a Polygonal Chain. Comput. Geom. Theory Appl. 27,
123–134 (2004)

5. Eppstein, D.: Spanning trees and spanners. In: Sack, J.-R., Urrutia, J. (eds.) Hand-
book of Computational Geometry, pp. 425–461. Elsevier Science Publishers, Ams-
terdam (2000)

6. Frederickson, G.N.: Fast algorithms for shortest paths in planar graphs, with ap-
plications. SIAM J. Comput. 16, 1004–1022 (1987)

7. Langerman, S., Morin, P., Soss, M.: Computing the Maximum Detour and Span-
ning Ratio of Planar Paths, Trees and Cycles. In: Alt, H., Ferreira, A. (eds.) STACS
2002. LNCS, vol. 2285, pp. 250–261. Springer, Heidelberg (2002)

8. Lipton, R.J., Tarjan, R.E.: A Separator Theorem for Planar Graphs. STAN-CS-
77-627 (October 1977)

9. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University
Press, Cambridge (2007)

10. Smid, M.: Closest point problems in computational geometry. In: Sack, J.-R., Urru-
tia, J. (eds.) Handbook of Computational Geometry, pp. 877–935. Elsevier Science
Publishers, Amsterdam (2000)



F

Computing the Maximum Detour of a Plane Graph in Subquadratic Time 13

Appendix

Proof of Lemma 2

Suppose the lemma does not hold. Let w be a vertex where
←−
Pi and

←−
Pj meet after

v. Assume w.l.o.g. that
←−
Pi makes a sharper left turn at v than

←−
Pj . Replacing the

subpath of
←−
Pj from v to w by the subpath of

←−
Pi from v to w gives a shortest

path from a to pj but this contradicts the assumption that
←−
P ′

j makes the sharpest
possible left turn at v.

Proof of Lemma 3

Let pi1 , pi2 , and pi3 be three distinct portals. Clearly, pi1 ≺f
a pi2 or pi2 ≺f

a pi1 ,
showing that the relation ≺f

a is total.

We need to show that pi1 ≺f
a pi2 and pi2 ≺f

a pi1 cannot both hold and we
need to show transitivity: if pi1 ≺f

a pi2 and pi2 ≺f
a pi3 then pi1 ≺f

a pi3 .

To show the first part, suppose for the sake of contradiction that pi1 ≺f
a pi2

and pi2 ≺f
a pi1 . Then we cannot have pi1 ∈

←−
Pi2 and we cannot have pi2 ∈

←−
Pi1 .

Consider the first vertex v at which paths
←−
Pi1 and

←−
Pi2 split. Then they cannot

meet after v by Lemma 2. But this implies that one of the two paths
←−
Pi′

1
and

←−
Pi′

2
cannot make a sharper left turn than the other path at any shared interior

vertex, a contradiction.

To show transitivity, suppose pi1 ≺f
a pi2 and pi2 ≺f

a pi3 . We need to show

that either pi1 ∈
←−
P i3 or that

←−
Pi1

′ makes a sharper left turn than
←−
P ′

i3
at some

interior vertex of
←−
P ′

i3 .

Assume first that pi1 ∈
←−
Pi2 . If pi2 ∈

←−
Pi3 then pi1 ∈

←−
Pi3 (Figure 3(i)). If

pi2 /∈ ←−Pi3 then
←−
Pi2

′ makes a sharper left turn than
←−
Pi3

′ at some interior vertex

v of
←−
Pi3

′. If v ∈ ←−Pi1 \ {pi1} (Figure 3(ii)) then
←−
Pi1

′ makes a sharper left turn

than
←−
Pi3

′ at v. And if v /∈ ←−Pi1 \ {pi1} (Figure 3(iii)) then pi1 ∈
←−
Pi3 . In all cases,

pi1 ≺f
a pi3 .

(i) (ii) (iii) (iv) (v) (vi)
a

pi1

pi2

pi3

pi3

pi1 pi3

pi2

a
v

pi1

pi2

a

v

v

a

pi1

pi3

pi2

v

wa

pi1
pi2

pi3

a

w

v

pi1

pi2

pi3

Fig. 3. The six cases considered in Lemma 3.



F

14 Computing the Maximum Detour of a Plane Graph in Subquadratic Time

Now, assume that pi1 /∈ ←−Pi2 . Then
←−
Pi1

′ makes a sharper left turn than
←−
Pi2

′

at some interior vertex v of
←−
Pi2

′. If pi2 ∈
←−
Pi3 (Figure 3(iv)) then

←−
Pi1

′ makes a

sharper left turn than
←−
Pi3

′ at v. If pi2 /∈ ←−Pi3 then let w be a vertex such that←−
Pi2

′ makes a sharper left turn than
←−
Pi3

′ at w. If w ∈ ←−Pi1 (Figure 3(v)) then
←−
Pi1

′

makes a sharper left turn than
←−
Pi3

′ at w. And if w /∈ ←−Pi1 (Figure 3(vi)) then
←−
Pi1

′

makes a sharper left turn than
←−
Pi3

′ at v. So again, pi1 ≺f
a pi3 .

Part of the Proof of Lemma 4

In this section, we show how to prove that all π-pointers can be computed in
O(kn log n) time. More specifically, given a portal pi, we show how to compute
pointers πj(e, i), e ∈ E, j = 1, . . . , je, in a total of O(n log n) time.

For each edge (u, v) of E′, we colour it white if a shortest path from u to pi

goes through v, that is, if dG(u, pi) = |uv| + dG(v, pi). Otherwise, we colour it
black.

Now, for each vertex v of G, we consider the edges of E′ starting or ending in
v in counter-clockwise order. For each edge (u, v) ending in v, we add a pointer
to the previous (in the counter-clockwise order) white edge (v, w) that starts in
v. Note that (v, w) is the edge satisfying that u → v → w makes the sharpest
possible left turn such that (v, w) is on a shortest path in G from v to pi.

Next, we consider the edges of E′ in some order e1, . . . , e|E′|. For edge e1 =

(u1, v1), we compute
←−
Pi(e1) by starting in v1 and then computing subsequent

vertices using the pointers just added. We colour e1 red and as we visit the edges

of
←−
Pi(e1), we colour them red as well.

We then compute pointers πj(e, i) for each edge e ∈ ←−P ′
i (e1) and for each

j = 0, . . . , je. Below, we show how to do this efficiently.

For edge ej , j > 1, we do exactly the same as for e1 except that we stop
when reaching a red edge. All visited edges including ej are coloured red and
π-pointers are computed for each of these edges.

The above algorithm is correct since it computes π-pointers for all edges.
Its running time, excluding the time to compute π-pointers, is O(n log n). To
see this, note that sorting edges counter-clockwise for each vertex takes a total
of O(n log n) time. Colouring edges black and white takes O(n) time. Finally,

visiting (parts of) paths
←−
Pi(ej) takes time proportional to the number of edges

coloured red which is O(n).

What remains is to show how to compute π-pointers in O(n log n) time. We
observe that πj(e, i), j = 0, . . . , je, can be computed in a total of O(log n) time

if π-pointers of all edges of
←−
Pi(e) have been computed. This follows easily from

repeated applications of the identity πj(e, i) = πj−1(πj−1(e, i), i), j > 0 (see
Figure 2). Hence, by computing π-pointers in the opposite order of the order in
which edges are coloured red, we obtain all π-pointers in O(n log n) time.
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Proof of Lemma 6

Let a′ be a vertex of fA such that either a′ <f
b a1 or a′ >f

b a2. Portal pi is on
some shortest path P1 from a1 to b. Pick P1 such that the subpath P ′

1 from a1

to pi makes sharpest possible left turns as described in the previous section. In
a similar way, we define P2 and P ′

2 for a2. Note that any path from a to b must
intersect either P ′

1 or P ′
2, see Figure 4.

pi pi

pj pj

pj

pi

b

a2
a1a

b

a2
a1a

b

a2
a1a

fff

Fig. 4. The situations considered in the proof of Lemma 6.

Portal pj is on a shortest path P from a to b. Pick P such that the subpath
P ′ from a to pj makes sharpest possible left turns. Path P ′ cannot cross P1

for otherwise ca(b) 6= cj, and pj /∈ P ′
1 for otherwise ca1

(b) 6= ci. Similarly, P ′

cannot cross P2 for otherwise ca2
(b) 6= ci, and pj /∈ P ′

2 for otherwise ca2
(b) 6= ci.

Furthermore, pj cannot belong to the subpath shared by P1 and P2 from pi to
b since then ca(b) 6= cj .

It follows that any shortest path from a′ to pj crosses either P ′
1 or P ′

2. This
implies that cb(a

′) = ca′(b) 6= cj , as requested.

More Details on the Sweep-Plane Algorithm

We left out some details in the description of the sweep-plane algorithm which we
now consider. We will show that the assumption that no cone of a lifted (lowered)
point is contained in another cone of a lifted (lowered) point is satisfied when
δ ≥ max{δG(GA), δG(GB)}

For suppose that δ ≥ δG(GB) and consider two points p and p′ belonging to
the same canonical subgraph.

Let h be the height of p and let h′ be the height of p′. Assume w.l.o.g. that
h ≥ h′. Then

h− h′ = dG(p, pi)− dG(p′, pi).

We know that dG(p, p′) ≤ δG(GB)|pp′| ≤ δ|pp′|. This gives

h− h′

|pp′| =
dG(p, pi)− dG(p′, pi)

|pp′| ≤ dG(p, p′)

|pp′| ≤ δ,
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showing that the cone associated with p′ cannot belong to the interior of the
cone associated with p. A similar argument shows that with δ ≥ δG(GA), no
cone of a lowered point is contained in the interior of another cone of a lowered
point.

Non-simple Faces

Suppose f is non-simple. The walk of f defined in the beginning of Section 4
still applies if we inflate the edges and allowing an edge to be visited twice, see
Figure 5(a). Then running through the arguments of the preceding sections, it
can be seen that all results still hold (as an example, compare Figure 5(b) with
Figure 1).

f f

a a′

q

p

pj

pi

v

(b)(a)

Fig. 5. (a): The walk of f when f is non-simple. (b): Theorem 1 holds also when f is
non-simple.

Dealing with Recursive Calls

In the paper, we showed how to compute δG(GA, GB) in O(n3/2 log2 n) time. In
this section, we present an algorithm that recursively computes δG(GA) (com-
puting δG(GB) is dealt with in a similar way) and we will analyze its running
time. From this analysis it will follow that δG can be computed in O(n3/2 log3 n)
expected time.

Let nA = |A| be the number of vertices of A. We start by applying the
separator theorem to GA which partitions A into three sets, A1, A2, and CA

such that no edge joins a vertex in A1 with a vertex in A2, neither A1 nor A2

contains more than nA/2 vertices, and CA contains no more than 2
√

2

1−
√

2/3

√
nA

vertices. Let GA1
be the subgraph of GA induced by A1 ∪ CA and let GA2

be
the subgraph of GA induced by A2 ∪ CA. We have

δG(GA) = max{δG(GA1
), δG(GA2

), δG(GA1
, GA2

)}.
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In the following, we will present an algorithm for computing δG(GA1
, GA2

). From
this it will easily follow how to handle subgraphs in any recursion level.

Let P be the set of portals for G and let PA = P ∪ CA. Given a vertex
a1 ∈ A1 and a vertex a2 ∈ A2, any path in G from a1 to a2 must contain at
least one vertex of PA. Thus, by defining PA as the set of portals for GA, most
of the results we presented in order to compute δG(GA, GB) now also apply to
the problem of computing δG(GA1

, GA2
). However, three problems need to be

dealt with.

The first problem is that GA may be disconnected and it causes problems
when defining cyclic orderings of faces. We deal with this as follows. Let f be a
face of G such that f∩A 6= ∅. Then as the cyclic ordering of the vertices of f∩A,
we use that which is induced by the cyclic ordering of vertices of f . Essentially,
this defines faces of GA where “holes” are allowed.

The second problem is that of computing SSSP distances from each portal of
PA to all vertices in GA. The running time for this should depend on the size of
GA, not the size of G. To obtain this, note that we only need to compute SSSP
distances from portals of CA since we have computed distances from each portal
in P to all vertices of G and in particular to vertices of GA.

So consider a portal pi ∈ CA. We compute SSSP distances from pi to ver-
tices in GA using Dijkstra’s algorithm but with a different initialization. We are
already given distances from pi to portals in P so we add these portals to the
priority queue and associate a shortest path distance from pi to each of them. We
also add pi to the priority queue and set the shortest distance from pi to itself
equal to zero. The rest of the algorithm runs like normal Dijkstra on GA. This
way, we find SSSP distances in G from pi to all vertices in GA in O(nA log nA)
time. Since |CA| = O(

√
nA), computing SSSP distances for all portals of CA

takes a total of O(n
3/2
A log nA) time.

The third and final problem we need to deal with is determining the order of
colour intervals of f ∩GA2

for each vertex of f ∩GA1
where f is a face. Lemma 4

states that the order of colour intervals of a vertex of fA can be computed in
O(k log2 n) time with O(kn log n) time for preprocessing. Looking at the proof
of the lemma, we see that the preprocessing step only considers portals of G,
not the set of portals PA for GA. It thus needs to be recomputed for GA. But
a priori, this requires that we look at the entire graph G since shortest paths
from vertices in GA to portals in PA need not be fully contained in GA. This
will make our recursive algorithm too slow.

We modify the preprocessing step for GA as follows. We compute π-pointers
for each vertex of GA and each portal of PA as in the proof of Lemma 4 except
that when finding a path to a portal pi ∈ PA we stop if we reach a portal of P
(or as before, if we reach a red edge or pi).

This modification gives O(kAnA log nA) preprocessing time where kA = |PA|.
We now show how this preprocessing can be used to efficiently determine whether
pi ≺f

a pj for two distinct portals pi, pj ∈ PA where a is a vertex of GA1
belonging

to a face f of G.
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Let a′ be the successor of a in f w.r.t. <f
a. To determine whether pi ≺f

a pj ,

we apply binary searches as before in paths
←−
Pi(a

′, a) and
←−
Pj(a

′, a). If a split is

detected, or if it is detected that pi ∈
←−
Pj(a

′, a) or pj ∈
←−
Pi(a

′, a) then we can
correctly decide if pi ≺f

a pj .
The only problem that may arise is if both binary searches end in an edge e

from which there are no π-pointers and it still has not been determined whether
pi ≺f

a pj . But in this case, one of the endpoints of e must be a portal of PA and

this portal must belong to both
←−
Pi(a

′, a) and
←−
Pj(a

′, a) implying that no colour
intervals of a will get colour ci or cj . Hence, it is irrelevant whether pi ≺f

a pj

and we may simply delete the two portals in the algorithm that sorts portals.
When the sorting algorithm terminates, the order of the remaining portals will
give the order of colour intervals of a.

With the above three modifications, we get an algorithm that computes
δG(GA1

, GA2
) in O(kAnA log2 nA) expected time. We compute δG(GA1

) and
δG(GA2

) recursively where the portals for GA1
are defined as those that be-

long to PA ∩ GA1
together with those obtained when applying the separator

theorem to GA1
(and similarly for GA2

).
More generally, consider a subgraph G′ in some node of the recursion tree. If

the size of G′ is less than some constant, a brute-force algorithm that computes
APSP-distances for vertices in G′ is applied to find δG(G′) in constant time.

Otherwise, let Gc1
and Gc2

be the subgraphs in the two child nodes obtained
by applying the separator theorem to G′. Let P ′ be the set of portals of G′.
Then for i = 1, 2, the set of portals of Gci

is defined as the union of P ′ ∩ Gci

and the set of portals obtained by applying the separator theorem to Gci
.

Let kp denote the number of portals of G′ that are also portals of the subgraph
of G belonging to the parent node of the node containing G′, let k′ be the
number of additional portals of G′, and let n′ be the number of vertices of G′.
Then similar arguments as above show that δG(Gc1

, Gc2
) can be computed in

O((kp + k′)n′ log2 n′) expected time. Since k′ = O(
√

n′), this can be rewritten

as O(kpn
′ log2 n′ + n′√n′ log2 n′).

Clearly, the sum of O(n′√n′ log2 n′) over all non-leaf nodes of the recursion
tree is O(n3/2 log2 n). Let us bound the sum of O(kpn′ log2 n′) over all these
nodes. Let T (n′, kp) denote the total time spent in the subtree of the recursion
tree rooted at a node containing a graph with n′ vertices and sharing kp portals
with the subgraph in the parent node. Then

T (n′, kp) ≤ T (n′/2, k1 + c
√

n′) + T (n′/2, k2 + c
√

n′) + O(kpn′ log2 n′),

where c = 2
√

2

1−
√

2/3
and k1 + k2 ≤ kp.

It follows that the sum of all kp in the ith level of the recursion tree is

O(
∑i

j=0 2j
√

n/2j) so the total time spent in this level is

O(
i

∑

j=0

2j
√

n/2jn/2i log2 n) = O(n3/2 log2 n
i

∑

j=0

2j/2−i).
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Since
∑i

j=0 2j/2−i ≤ ∑i
j=0 2j−i <

∑∞
j=0 2−j = 2 and since there are O(log n)

recursion levels, we have now obtained the result in Theorem 5.

Proof of Theorem 6

The treewidth of a graph is, in a sense, a measure of the complexity of graph.
The following definition and lemma are taken from [2].

A tree decomposition of a graph G = (V, E) is a pair (X, T ), where X =
{Xi ⊆ V |i ∈ I} is a collection of subsets of V (called bags), and a tree T = (I, F )
with a node set I such that

1. V = ∪i∈IXi

2. For every edge (u, v) ∈ E there is some bag Xi ∈ X such that u, v ∈ Xi

3. For all u ∈ V , the nodes {i ∈ I|u ∈ Xi} form a connected subtree of T

The width of a tree decomposition ({Xi|i ∈ I}, T ) is maxi∈I |Xi| − 1. The
treewidth of G is the minimum width over all tree decompositions of G.

Lemma 8. Let w ≥ 1 be a constant. Given a graph G = (V, E) with n > w + 1
vertices and treewidth at most w, we can find in linear time a partition of V into

three subsets A, B, and P such that

1. no edge joins a vertex in A with a vertex in B,

2. A and B each have between n
w+1 − w and nw

w+1 vertices,

3. P contains no more than w vertices, and

4. adding edges between the vertices of P does not change the treewidth.

If we apply Lemma 8 to G instead of the separator theorem by Lipton and
Tarjan we get the subgraph GA of G induced by A∪P and the subgraph GB of
G induced by B∪P . Since the number of portals is at most w, we may compute
δG(GA, GB) in O(wn log2 n) = O(n log2 n) time.

To recursively compute δG(GA), we define graph G′ as the graph obtained
by removing all edges of G not belonging to GA and adding an edge between
each pair of portals of G. The cost of each such edge is set to the distance in G
between the corresponding pair of portals. Note that the number of edges added
is constant.

When we regard G′ as a point set, we disregard edges added between portals.
Observe that for each pair of points p and q in G′, dG′(p, q) = dG(p, q).

Since G′ has treewidth at most w by Lemma 8, an inductive argument shows
that δG(GA) = δG′(GA) can be computed in O(n log3 n) expected time. A similar
argument shows that δG(GB) can be computed in O(n log3 n) expected time.
This proves Theorem 6.
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Computing the Stretch Factor of Paths, Trees, and Cycles in Weighted

Fixed Orientation Metrics

Christian Wulff-Nilsen∗

Abstract

Let G be a connected graph with n vertices embedded
in a metric space with metric δ. The stretch factor
of G is the maximum over all pairs of distinct vertices
u, v ∈ G of the ratio δG(u, v)/δ(u, v), where δG(u, v) is
the metric distance in G between u and v. We con-
sider the plane equipped with a weighted fixed orienta-
tion metric, i.e. a metric that measures the distance
between a pair of points as the length of a shortest
path between them using only a given set of σ ≥ 2
weighted fixed orientations. We show how to compute
the stretch factor of G in O(σn log2 n) time when G is
a path and in O(σn log3 n) time when G is a tree or a
cycle. For the L1-metric, we generalize the algorithms
to d-dimensional space and show that the stretch factor
can be computed in O(n logd n) time when G is a path
and in O(n logd+1 n) time when G is a tree or a cycle.
All algorithms have O(n) space requirement. Time and
space bounds are worst-case bounds.

1 Introduction

Designing modern microchips is a complicated process
involving several steps. One of these steps, the so called
routing step, deals with the problem of finding a layout
of wires on the chip interconnecting a given set of pins.

Many factors need to be taken into consideration
when finding such a layout. An important measure is
the total wire length. Minimizing this will help reduce
heat generation, space on the chip, and signal delay. For
this reason, Steiner minimal trees play an important role
in VLSI design.

Due to manufacturing limitations, wires are typically
restricted to having a finite set of fixed orientations.
This has lead to an interest in the so called fixed ori-
entation metrics, initially considered by Widmayer et
al. [21], where the distance between a pair of points is
the length of a shortest path between them using a fixed
set of orientations.

Routing is typically performed in several layers with
only one orientation allowed in each layer. Some lay-
ers may be more easily congested than others and thus,
some orientations of wires may be less desirable than

∗Department of Computer Science, University of Copenhagen,
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others [22]. For this reason, fixed orientatation met-
rics with a weight associated with each orientation have
been considered.

Steiner minimal trees in the plane equipped with
the rectilinear metric and more recently in general
(weighted) fixed orientation metrics have received a
great deal of attention [11, 13, 14, 7, 6, 18, 4, 5, 19].
A disadvantage of using Steiner minimal trees is that
wire distance between some pairs of pins may be very
large compared to the shortest possible distance. As
a consequence, signal delay will be high between such
pairs.

To obtain networks with small detours between any
pair of points, spanners have been considered. For t ≥ 1,
a t-spanner for a set of points is a network interconnect-
ing the points such that the distance in the network
between any pair of the given points is at most t times
longer than the shortest possible distance between them.
The smallest t for which the network is a t-spanner is
called the stretch factor of the network. Computing
networks with small stretch factors is an active area of
research. For more on spanners, see e.g. [17, 8, 20].

An interesting dual problem is the following: given a
network interconnecting a set of n points in the plane,
what is the stretch factor of this network?

Surprisingly, the fastest known algorithm for comput-
ing the stretch factor of a Euclidean network is a naive
one that computes all-pairs shortest paths. If the net-
work is planar, all-pairs shortest paths can be computed
in O(n2) time [9], giving a quadratic time algorithm for
computing the stretch factor of the network.

For simpler types of graphs, faster algorithms exist.
For instance, it has been shown that the stretch fac-
tor of a path in the Euclidean plane can be found in
O(n log n) expected time and that the stretch factor of
trees and cycles can be found in O(n log2 n) expected
time [1, 15]. Using parametric search gives (rather com-
plicated) O(npolylog n) worst-case time algorithms for
these types of networks.

To our knowledge, the problem of efficiently comput-
ing the stretch factor of networks in weighted fixed ori-
entation metrics has not received any attention. Since
these metrics may be used to approximate other metrics
and due to their applications in VLSI design mentioned
above, we believe this problem to be an important one.

In this paper, we give an O(σn log2 n) worst-case
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time algorithm for computing the stretch factor of an
n-vertex path embedded in the plane with a weighted
fixed orientation metric defined by σ ≥ 2 vectors. For
the L1-metric, we generalize the algorithm to d ≥ 3 di-
mensions. Here, the running time is O(n logd n). At the
cost of an extra log n-factor in running time, we show
how to compute the stretch factor of trees and cycles.
All algorithms have O(n) space requirement. Compared
to the complicated worst-case time algorithms for the
Euclidean metric, our algorithms are relatively simple
and should be easy to implement.

The organization of the paper is as follows. In Sec-
tion 2, we make basic definitions and observations and
introduce some notation. In Section 3, we consider the
problem of computing the stretch factor of paths in the
plane equipped with the L1-metric. We give a new way
of expressing the stretch factor which enables us to de-
velop an efficient algorithm for this problem. Using
simple linear transformations, we generalize the algo-
rithm to arbitrary weighted fixed orientation metrics in
Section 4 and in Section 5, we generalize it to higher
dimensions. Using ideas of [15], we show how to effi-
ciently compute the stretch factor of trees in Section 6.
In Section 7, we present an algorithm that computes
the stretch factor of cycles. In Section 8, we show how
to modify the algorithms to compute a pair of vertices
achieving the stretch factor of the path, tree, or cycle.
Finally, we make some concluding remarks in Section 9.

2 Basic Definitions and Observations

Let G be a graph embedded in a metric space with met-
ric d. For two vertices u and v in G, we define dG(u, v)
as the d-length of a shortest path P between u and v in
G, i.e.

dG(u, v) =
∑

(x,y)∈EP

d(x, y),

where EP is the set of edges of P . If u and v belong
to distinct connected components of G then we define
dG(u, v) = ∞.

For distinct vertices u and v in G, the detour δG(u, v)
between u and v in G is defined as dG(u, v)/d(u, v). The
stretch factor δG of G is the maximum detour over all
pairs of distinct vertices of G, i.e.

δG = max
u,v∈G,u6=v

δG(u, v).

Given two subgraphs G1 and G2 of G, we define

δG(G1, G2) = max
u∈G1,v∈G2,u6=v

δG(u, v).

Points and vectors in Rd, d ≥ 2, will be written in
boldface. Unless otherwise stated, subsets of Rd that
we consider are assumed to be closed.

v0

v1
v2

v3

v4

v5 v6

v7

Figure 1: A unit circle in a weighted fixed orientation
metric with σ = 4.

In all the following, let V denote a finite set of σ ≥ 2
vectors v0, . . . , vσ−1 all belonging to the upper half-
plane. The weighted fixed orientation metric dV is de-
fined as follows. Letting vσ+i = −vi for i = 0, . . . , σ−1,
the unit circle in dV is the boundary of the convex hull
of v0, . . . , v2σ−1, see Figure 1.

We assume that all vectors, regarded as points, are
on this boundary since any vectors that are not can be
discarded without changing the metric.

Furthermore, we assume that vectors are ordered
counter-clockwise starting with v0 and that v0, extends
horizontally to the right. The latter can always be
achieved by rotating the plane.

Drawing lines through the 2σ vectors partitions the
plane into 2σ wedge-shaped regions. For i = 0, . . . , 2σ−
1, the region Wi defined by vectors vi and v(i+1) mod 2σ

is called the ith V-cone. For a point p, we refer to p+Wi

as the ith V-cone of p.
Let p, q ∈ R2. It can be shown that if q belongs to

the ith V-cone of p then a shortest path from p to q in
the metric dV consists of line segments each of which is
parallel to either vi or v(i+1) mod 2σ.

For p ∈ R2, r ≥ 0, we define BV(p, r) as the closed
disc in dV with center p and radius r, that is,

BV(p, r) = {q ∈ R2|dV(p, q) ≤ r}.

The L1-metric in the plane is a special type of fixed
orientation metric, defined by vectors (1, 0) and (0, 1).
More generally, in Rd, the L1-distance between two
points p = (p1, . . . , pd) and q = (q1, . . . , qd) is

L1(p, q) =

d
∑

c=1

|qc − pc|.

For p ∈ Rd and r ≥ 0, we let B1(p, r) denote the
closed L1-ball in Rd with center p and radius r, i.e.

B1(p, r) = {q ∈ Rd|L1(p, q) ≤ r}.

3 Stretch Factor of Paths in the L1-Plane

In this section, we show how to compute the stretch
factor of an n-vertex path embedded in metric space
(R2, L1) in O(n log2 n) time and O(n) space.
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In the following, let P = p1 → p2 → · · · → pn be an
n-vertex path in the plane. We will make the simplifying
assumption that all vertices of P are distinct. For if they
were not, we would have δP = ∞ and checking whether
all vertices are distinct can be done in O(n log n) time.

In all the following, let N = {1, . . . , n}. For i ∈ N and
δ > 0, let Bi(δ) denote the L1-disc B1(pi, ri(δ)), where
radius ri(δ) = LP

1 (pi, pn)/δ. The following lemma re-
lates these discs to the stretch factor of P .

Lemma 1 With the above definitions, the stretch factor
of P is δP = inf{δ > 0|Bj(δ) * Bi(δ)∀i, j ∈ N, i 6= j}.

Proof. Let δ > 0. For any i, j ∈ N ,

LP
1 (pi, pj)

δ
=

|LP
1 (pi, pn) − LP

1 (pj , pn)|

δ
= |ri(δ) − rj(δ)|.

Hence,

δP < δ ⇔ ∀i, j ∈ N, i 6= j : L1(pi, pj) > |ri(δ) − rj(δ)|

⇔ ∀i, j ∈ N, i 6= j : L1(pi, pj) > ri(δ) − rj(δ)

⇔ ∀i, j ∈ N, i 6= j : L1(pi, pj) + rj(δ) > ri(δ)

⇔ ∀i, j ∈ N, i 6= j : Bj(δ) * Bi(δ).

�

The idea of our algorithm is to see how much the size
of the above defined L1-discs can be increased before
at least one of them includes another L1-disc. By
Lemma 1, this will then give us the stretch factor of
path P .

For each i ∈ N and for w = 1, 2, 3, 4, define Pw(i)
as the set of vertices of P \ {pi} belonging to the wth
quadrant of pi. Lemma 1 gives

δP = max
w=1,2,3,4

max
i∈N

inf{δ > 0|Bj(δ) * Bi(δ)∀pj ∈ Pw(i)}.

Hence, δP is the maximum of four δ-values, one for
each value of w. In the following, let us therefore restrict
our attention to w = 1 and on computing

max
i∈N

inf{δ > 0|Bj(δ) * Bi(δ)∀pj ∈ P1(i)} (1)

(the other quadrants are handled in a similar way).

The following lemma gives a useful way of determin-
ing whether Bj(δ) is contained in Bi(δ) when pj belongs
to the first quadrant of pi.

Lemma 2 Let pi be a given vertex and let pj ∈ P1(i).
For δ > 0, define ri(δ) and rj(δ) as the rightmost points
in Bi(δ) and Bj(δ), respectively (see Figure 2). Then

Bj(δ) ⊆ Bi(δ) ⇔ ri(δ) · (1, 1) ≥ rj(δ) · (1, 1).

(1, 1)

ri(δ)pi

pj

rj(δ)

Figure 2: The situation in Lemma 2.

Proof. The point rj(δ) is to the right of pj and belongs
to the first quadrant of pi, implying that L1(pi, rj(δ)) =
L1(pi, pj) + rj(δ). Since Bj(δ) ⊆ Bi(δ) if and only if
L1(pi, pj) + rj(δ) ≤ ri(δ), we have

Bj(δ) ⊆ Bi(δ) ⇔ L1(pi, rj(δ)) ≤ ri(δ)

⇔ rj(δ) ∈ Bi(δ)

⇔ (rj(δ) − ri(δ)) · (1, 1) ≤ 0,

since vector (1, 1) is normal to the part of the boundary
of Bi(δ) in the first quadrant of pi. �

Recall that, for any i ∈ N , ri(δ) = LP
1 (pi, pn)/δ.

Hence, the dot product ri(δ) · (1, 1) of Lemma 2 is an
affine function of 1/δ, i.e. on the form a(1/δ)+ b, where
a and b are constants. Denote this function by fi.

Associate with each pi a lower envelope function li of
1/δ, defined by

li(1/δ) = min{fj(1/δ)|pj ∈ P1(i)}.

Recall that our goal is to compute (1). The following
lemma relates this value to the intersection between fi

and li.

Lemma 3 There is at most one intersection point be-
tween fi and li on interval ]0,∞[. If 1/δ′ is such a point
then

δ′ = inf{δ > 0|Bj(δ) * Bi(δ)∀pj ∈ P1(i)}.

If there is no intersection point then for any δ > 0 and
any pj ∈ P1(i), Bj(δ) * Bi(δ).

Proof. Figure 3 illustrates the lemma.
For any point p in the first quadrant of pi, the value

p · (1, 1) is minimized when p = pi. It follows that
fi(1/δ) < li(1/δ) for all sufficiently small 1/δ. Hence,
since the graph of li on ]0,∞[ is a chain of line segments
(and one halfline) whose slopes decrease as we move
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(b)(a)

fi

fj

fk

1/δ
1/δ1 1/δ2

li

pi

pj
pk

(0, 0)

Figure 3: Illustration of Lemma 3. (a): L1-discs Bi(δ),
Bj(δ), and Bk(δ) for two values of δ: δ1 (bold bound-
aries) and δ2. (b): The corresponding functions fi, fj,
and fk. Lower envelope li is shown in bold. The dis-
tances in (a) between the dotted line and the black parts
of L1-discs correspond to values of functions fi, fj , and
fk at 1/δ1 and 1/δ2 in (b). Note that Bk(δ2) ⊆ Bi(δ2).
For all 1/δ < 1/δ2, Bj(δ) * Bi(δ) and Bk(δ) * Bi(δ).

from left to right, there is at most one intersection point
1/δ′ between fi and li on interval ]0,∞[.

If intersection point 1/δ′ exists, the above shows that,
on interval ]0,∞[, fi(1/δ) < li(1/δ′) if 1/δ < 1/δ′ and
fi(1/δ) > li(1/δ′) if 1/δ > 1/δ′. And if no intersection
point exists then fi is below li on interval ]0,∞[.

Lemma 2 shows that Bj(δ) ⊆ Bi(δ) if and only if
fi(1/δ) ≥ fj(1/δ). Hence, Bj(δ) * Bi(δ) for all pj

in the first quadrant P1(i) of pi if and only fi(1/δ) <
li(1/δ). This shows the lemma. �

For each i ∈ N , let δi = 1/xi, where xi is the inter-
section point between fi and li. If no such point exists,
set δi = 0. Lemma 3 shows that (1) equals maxi∈N δi.

What remains therefore is the problem of computing
the intersection (if any) between fi and li for all i.

A naive algorithm for this problem computes, for each
i ∈ N , lower envelope li in O(n log n) time (this is possi-
ble by Lemma 4 of Section 3.2) and then the intersection
between fi and li in O(log n) time. The total running
time is O(n2 log n).

A slightly faster algorithm computes, for each i, the
intersection between fi and fj for each pj ∈ P1(i). The
leftmost of these is then the intersection between fi and
li. This gives a total running time of O(n2).

Note that, for any j ∈ N , the lower envelope of fj is
fj itself. Hence, the two algorithms above apply two
extremes of the following strategy: for each i ∈ N ,
compute the leftmost of the intersections between fi

and lower envelopes associated with subsets of points
in P1(i). The first algorithm considers, for each i ∈ N ,
only one subset (namely P1(i)) whereas the second al-
gorithm considers |P1(i)| subsets (each containing one
element of P1(i)).

In the next section, we present a faster algorithm
which applies a strategy somewhere in between these
two extremes.

3.1 The Algorithm

To simplify the description of the algorithm, we will
leave out some of the details and return to them in Sec-
tion 3.2 and Section 3.3, where we show how to obtain
O(n log2 n) running time and O(n) space requirement.

The algorithm stores vertices of P in a balanced bi-
nary search tree T of height Θ(log n) which is similar to
a 1-dimensional range tree. Let V be the set of vertices
of P . If V contains exactly one vertex, the root r of T
is a leaf containing this vertex. Otherwise, r contains
the median m of x-coordinates of vertices of V (in case
of ties, order the vertices on the y-axis) and the subtree
rooted at the left resp. right child of r is defined recur-
sively for the set of vertices of V with x-coordinates less
or equal to resp. greater than m.

Each node v of T corresponds to a subset Sv of ver-
tices of P , namely those vertices stored at the leaves
of the subtree of T rooted at v. We refer to these Sv-
subsets as canonical subsets.

Note that each vertex pi of P belongs to Θ(log n)
canonical subsets, namely those corresponding to ver-
tices visited on the path from the root of T to the leaf
containing pi.

In addition to a median, we associate with each node
of T a lower envelope of line segments. This lower enve-
lope is initially empty and will be dynamically updated
during the course of the algorithm.

After having constructed T , the algorithm makes a
pass over the vertices of P in order of descending y-
coordinate. In case of ties, vertices are visited from
right to left.

The following invariant will be maintained through-
out the course of the algorithm: for each vertex v of T ,
the lower envelope associated with v is the lower enve-
lope of fi-functions of vertices in Sv visited so far.

When a vertex pi of P is visited, the invariant is
maintained by adding fi to the Θ(log n) lower envelopes
associated with vertices on the path from the root of T
to the leaf containing pi.

When the algorithm visits a vertex pi, it needs to find
the intersection between fi and li. As we saw earlier,
explicitly computing li is too time-consuming.

Instead, we make use of our invariant which ensures
that lower envelopes of visited vertices of all canonical
subsets are given. The vertices in the first quadrant
of pi have all been visited and the set P1(i) of these
vertices is therefore the union of visited vertices of the
canonical subsets to the right of pi. So the intersection
between fi and li is the leftmost of the intersections be-
tween fi and the lower envelopes associated with these
canonical subsets, see Figure 4.
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leftmost intersection

fi

Figure 4: The intersection between fi and li is the left-
most of the intersections between fi and lower envelopes
associated with canonical subsets to the right of pi.
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Figure 5: (a) Eight points shown with x-coordinates
1, . . . , 8. The set of points with x-coordinate greater
than 3 is the union of two canonical subsets. (b) The two
canonical subsets are found by picking right children on
the path (shown in bold) from the root of the range tree
to the leaf with median 3. Picked children are coloured
black.

Since canonical subsets may overlap, not all canonical
subsets to the right of pi are needed. The idea is to pick
a small number in order to minimize running time.

The algorithm picks canonical subsets (or more pre-
cisely, nodes of T corresponding to canonical subsets)
as follows. Let vi be the leaf of T associated with pi.
For each vertex v on the path from the root r of T to
vi, the canonical subset associated with the right child
of v is picked unless this child itself is on the path from
r to vi, see Figure 5.

It is easy to see that the visited vertices in the union
of the picked canonical subsets are exactly the vertices
of P1(i). Since the height of T is Θ(log n), the number
of picked canonical subsets is O(log n).

One fine point: if there are vertices of P above pi

and with the same x-coordinate as pi, they may not
all belong to the picked canonical subsets even though
they belong to P1(i). We may ignore these however,
since they will be picked when second quadrants are
handled.

Intersections between fi and each of the lower en-
velopes of the picked canonical subsets are then com-
puted and the leftmost of these is picked as the inter-
section between fi and li.

From these intersections, the value (1) is obtained.
This is repeated for the other three quadrants, giving
the stretch factor of P .

3.2 Running Time

In the description of the algorithm above, we left out
some details. We now focus on them in order to analyze
the running time of the algorithm.

It is easy to see that tree T can be constructed top-
down in O(n log n) time. In the y-descending pass over
the vertices of P , maintaining our invariant requires
adding each fi-function to O(log n) lower envelopes.
Finding these lower envelopes takes O(log n) time by
a traversal from the root to a leaf of T using the medi-
ans at vertices to guide the search. The following lemma
shows that each insertion of a fi-function into a lower
envelopes takes O(log n) amortized time.

Lemma 4 Let l1, . . . , lk be k lines in the plane with pos-
itive slope and let L be the lower envelope of these lines
on interval ]0,∞[. Constructing L incrementally can be
done in O(log k) amortized time per line. Furthermore,
L consists of at most k − 1 line segments and exactly
one halfline.

Proof. We may assume that lines are added to L in
the order l1, . . . , lk. For i = 1, . . . , k, let Li be the lower
envelope of l1, . . . , li.

For i > 1, suppose that Li−1 has been computed and
that the set Qi−1 of points on the graph of Li−1 where
line segments meet are ordered from left to right in a
red-black tree. Then computing the at most two inter-
sections between li and Li−1 can be done in O(log i)
time using two binary searches in the tree. When inter-
sections have been found (if any), Li is obtained from
Li−1 in O(qi−1 log qi−1) time, where qi−1 is the number
of points of Qi−1 that need to be removed to obtain Li,
i.e. the number of points of Qi−1 above li.

Since a point is removed at most once and each new
line increases the number of points defining the lower
envelope by at most two, it follows that the total time
spent on constructing the lower envelopes in the order
L1, . . . , Lk is O(k log k).

Since slopes of the line segments (and the halfline)
defining the graph of L decrease from left to right, each
of the k lines contribute with at most one line segment
to the graph of L. Exactly one of the lines contribute
with a halfline to the graph of L. Thus, the graph of L
consists of at most k − 1 line segments and exactly one
halfline. �
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Next, we need to analyze the time it takes to com-
pute the intersection between fi and li for each i. This
involves picking O(log n) canonical subsets and comput-
ing the intersection between fi and the lower envelopes
associated with these subsets.

Clearly, the time it takes to find the canonical sub-
sets is bounded by the height of T which is Θ(log n).
Since each lower envelope l is a monotonically increas-
ing function and its graph consists of line segments (and
one halfline), computing the intersection between fi and
l can be done in O(log n) time by using a data struc-
ture like a red-black tree to represent the ordered list of
points of l where line segments meet.

It follows that our algorithm has O(n log2 n) running
time.

3.3 Improving Space Requirement

By Lemma 4, space requirement of our algorithm is
Θ(n log n) since this is the amount of space required to
store all lower envelopes. We now show how to improve
space requirement to linear without affecting running
time.

We modify the algorithm so that, instead of mak-
ing only one y-descending pass over the vertices of P ,
it makes h(T ) passes (for each of the four quadrants),
where h(T ) is the height of T .

In the kth pass, only lower envelopes at level k-nodes
of T are updated; all other nodes of T contain empty
lower envelopes. And only intersections between fi-
functions and lower envelopes at level k of T are com-
puted.

The modified algorithm is correct since it computes
exactly the same intersections as the old algorithm.

In each y-descending pass, the time spent on a vertex
pi of P is bounded by the time to add fi to a lower
envelope, and the time to compute the intersection be-
tween fi and a lower envelope (if any). Hence, the total
time spent in each pass is bounded by O(n log n). Since
there are h(T ) = Θ(log n) passes, the total running time
is O(n log2 n).

The modified algorithm has O(n) space requirement
since T has O(n) nodes and since storing lower en-
velopes at one level of T requires O(n) space by
Lemma 4. This gives the first main result of the pa-
per.

Theorem 5 The stretch factor of an n-vertex path in
(R2, L1) can be computed in O(n log2 n) time and O(n)
space.

4 Weighted Fixed Orientation Metrics

Recall that dV denotes a weighted fixed orientation met-
ric defined by a set V of σ ≥ 2 vectors in the plane.

In this section, we generalize the algorithm of the pre-
ceding section to dV . The idea is simple: we apply a cer-
tain linear transformation to the vertices of P so that
ith V-cones are mapped to first quadrants and then use
the algorithm of Section 3. This is done for all V-cones,
giving an algorithm with O(σn log2 n) time and O(n)
space requirement.

First, we observe that Lemma 1 also applies to the
weighted fixed orientation metrics: simply define Bi(δ)
as BV(pi, ri(δ)), where ri(δ) = dP

V (pi, pn)/δ, and re-
place L1 by dV in the proof. This gives us

δP = max
1≤w≤2σ

max
i∈N

inf{δ > 0|Bj(δ) * Bi(δ)∀pj ∈ Pw(i)},

where Pw(i) is the set of vertices of P \ {pi} belonging
to the wth V-cone of pi. We restrict our attention to
computing

max
i∈N

inf{δ > 0|Bj(δ) * Bi(δ)∀pj ∈ P1(i)} (2)

(the other V-cones are handled in a similar way).
Let v0 and v1 be the first and second vector of V

respectively. It is easy to find the linear transformation
T of the plane that maps v0 to (1, 0) and v1 to (0, 1).
This allows us to generalize Lemma 2.

Lemma 6 Let pi be a given vertex and let pj ∈ P1(i).
For δ > 0, let ri(δ) and rj(δ) be the rightmost point in
Bi(δ) and Bj(δ) respectively. Then

Bj(δ) ⊆ Bi(δ) ⇔ T (ri(δ)) · (1, 1) ≥ T (rj(δ)) · (1, 1),

where T is defined as above.

Proof. Let v0 and v1 be defined as above. Applying
the ideas of the proof of Lemma 2, it follows easily that
Bj(δ) ⊆ Bi(δ) if and only if path rj(δ) → ri(δ) →
ri(δ)v1 does not make a right turn at ri(δ).

Since T maps the triangle with corners (0, 0), v0, and
v1 to the triangle with corners (0, 0), (1, 0), and (0, 1),
linearity of T implies that Bj(δ) ⊆ Bi(δ) if and only if
path T (rj(δ)) → T (ri(δ)) → T (ri(δ)v1) does not make
a right turn at T (ri(δ)).

Since the vector from T (ri(δ)) to T (ri(δ)v1) and vec-
tor (−1, 1) have the same orientation,

Bj(δ) ⊆ Bi(δ) ⇔ (T (rj(δ)) − T (ri(δ))) · ̂(−1, 1) ≥ 0

⇔ (T (rj(δ)) − T (ri(δ))) · (1, 1) ≤ 0.

�

By defining affine functions fi by fi(1/δ) = T (ri(δ)) ·
(1, 1) and li by

li(1/δ) = min{fj(1/δ)|pj ∈ P1(i)}

for i ∈ N , Lemma 6 and the results of Section 3 show
that the value (2) may be computed in O(n log2 n) time
using O(n) space. Since there are 2σ V-cones to con-
sider, we thus obtain the following generalization of
Theorem 5.
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Theorem 7 Let V be a set of σ ≥ 2 vectors defining
a weighted fixed orientation metric dV on R2. Then
the stretch factor of an n-vertex path in (R2, dV) can be
computed in O(σn log2 n) time and O(n) space.

5 Higher Dimensions

In this section, we generalize the algorithm of Section 3
to higher dimensions. In metric space (Rd, L1), d ≥ 3,
we will show how to compute the stretch factor of an
n-vertex path in O(n logd n) time using O(n) space.

In the following, assume that path P = p1 → p2 →
· · · → pn is embedded in (Rd, L1), where d ≥ 3. For
i ∈ N , let Bi(δ) and ri(δ) be defined as in Section 3.

First, we observe that Lemma 1 also holds in d di-
mensions. This gives us

δP = max
1≤w≤2d

max
i∈N

inf{δ > 0|Bj(δ) * Bi(δ)∀pj ∈ Pw(i)},

where Pw(i) is the set of vertices of P \{pi} belonging to
the wth orthant1 of pi for some ordering of the orthants.
We assume that

O1(i) = {p ∈ Rd|p[c] ≥ pi[c]∀c}

is the first orthant of pi and we restrict our attention
to computing

max
i∈N

inf{δ > 0|Bj(δ) * Bi(δ)∀pj ∈ P1(i)} (3)

(the other orthants are handled in a similar way).
The following lemma generalizes Lemma 2 to higher

dimensions.

Lemma 8 Let pi be a given vertex and let pj ∈ P1(i).
For δ > 0, let

ri(δ) = (pi[1] + ri(δ), pi[2], pi[3], . . . , pi[d])

rj(δ) = (pj [1] + rj(δ), pj [2], pj [3], . . . , pj [d])

and let e be the d-dimensional vector with d ones. Then

Bj(δ) ⊆ Bi(δ) ⇔ ri(δ) · e ≥ rj(δ) · e.

Proof. Similar to the proof of Lemma 2, we have

Bj(δ) ⊆ Bi(δ) ⇔ L1(pi, rj(δ)) ≤ ri(δ)

⇔ rj(δ) ∈ Bi(δ).

Let B1
i (δ) be the part of the boundary of Bi(δ) be-

longing to O1(i). Then B1
i (δ) contains the points

pi + ri(δ)ej , j = 1, . . . , d, where ej is the jth unit vec-
tor. Since ri(δ) ∈ Bi(δ), the hyperplane H containing
B1

i (δ) is defined by H = {p ∈ Rd|(p − ri(δ)) · e = 0}.

1An orthant is the higher dimensional equivalent of a quadrant.

A d-dimensional coordinate system has 2d orthants.

Since pi is an interior point of Bi(δ) and since (pi −
ri(δ)) · e < 0, it follows that, for any point p ∈ P1(i),
(p − ri(δ)) · e ≤ 0 if and only if p ∈ Bi(δ). Hence,

Bj(δ) ⊆ Bi(δ) ⇔ rj(δ) ∈ Bi(δ)

⇔ (rj(δ) − ri(δ)) · e ≤ 0.

�

For each i ∈ N , we define affine function fi by fi(1/δ) =
ri(δ) ·e, where ri and e are defined as in Lemma 8 and
we define lower envelope function li as in Section 3.

Since Lemma 3 holds with the fi- and li-functions
defined as above, it follows that the problem we are
facing is to compute the intersection between fi and
li (if any) for all i. We deal with this problem in the
next subsection where we generalize the algorithm of
Section 3.1 to d dimensions.

5.1 The Algorithm

In Section 3.1, we used a 1-dimensional range tree. To
compute the stretch factor of path P in d dimensions,
we now consider a (d − 1)-dimensional range tree.

First, a binary search tree T is constructed on the
first coordinate of the vertices of P as described in
Section 3.1. Each node v of T is associated with a
(d−2)-dimensional range tree for the vertices in canon-
ical subset Sv restricted to their last d − 1 coordinates.
This construction is repeated recursively for the (d−2)-
dimensional range tree. The recursion stops when we
reach a 1-dimensional range tree for coordinate d − 1.

We associate lower envelopes only with nodes of the
1-dimensional range trees. Note that range trees are not
defined for coordinate d. In this way, coordinates d − 1
and d correspond to coordinates x and y in Section 3.1
respectively.

The algorithm then visits vertices of P in order of
descending d-coordinate. In case of ties, vertices are
visited from right to left on axis d − 1.

Let pi be the vertex currently being visited. The algo-
rithm needs to update all lower envelopes corresponding
to canonical subsets in 1-dimensional range trees that
contain pi.

This is done as follows. All nodes of the (d − 1)-
dimensional range tree whose canonical subsets con-
tain pi are visited. Each of their associated (d − 2)-
dimensional range trees are visited recursively. When
the nodes of a 1-dimensional range tree are visited, the
function fi corresponding to pi is inserted into their
associated lower envelopes.

For vertex pi, the algorithm also needs to compute in-
tersections between fi and lower envelopes correspond-
ing to canonical subsets which are to the right of pi on
axes 1 to d − 1.

This is done as follows. Let r be the root and let
vi be the leaf containing pi in the (d − 1)-dimensional
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range tree. For each node v on the path from r to vi

the (d − 2)-dimensional range tree associated with the
right child of v is visited recursively unless this child
itself is on the path from r to vi. When reaching a
1-dimensional range tree, intersections between fi and
lower envelopes are found as described in Section 3.1.

The correctness of the above algorithm follows by gen-
eralizing the arguments of Section 3.1.

5.2 Running Time

We will now show that the algorithm described above
has O(n logd n) running time. In our analysis, we as-
sume that dimension d ≥ 3 is a constant.

As shown in [3], a (d− 1)-dimensional range tree can
be constructed in O(n logd−2 n) time. For each vertex pi

of P , finding the lower envelopes in which fi is to be in-
serted takes O(logd−1 n) time. To see this, note that the
algorithm recurses on O(log n) (d−2)-dimensional range
trees associated with nodes of the (d − 1)-dimensional
range tree. For each of these range trees, the algorithm
recurses on O(log n) (d−3)-dimensional range trees and
so on. Thus, the total time to visit lower envelopes in
which fi is to be inserted is O(logd−1 n).

Since it takes O(log n) time to insert fi into a lower
envelope, the total time spent on inserting fi-functions
into lower envelopes is O(n logd n).

A similar argument shows that it takes O(n logd n)
time to compute intersections between fi-functions and
lower envelopes. Hence, the total running time of the
algorithm is O(n logd n).

5.3 Improving Space Requirement

The above algorithm does not have linear space re-
quirement. For instance, constructing the (d − 1)-
dimensional range tree using the algorithm of [3] re-
quires O(n logd−2 n) space. By generalizing the idea of
Section 3.3, we will modify our algorithm so that space
requirement is improved to O(n) without affecting run-
ning time.

The algorithm above makes one pass over the vertices
of P in order of descending d-coordinate. We modify it
so that it makes hd−1

d−1 passes, where hd−1 is the height
of the (d − 1)-dimensional range tree.

We enumerate the passes using a (d− 1)-dimensional
vector C. Each entry of C is a number between 1 and
hd−1. Note that hd−1 = Θ(log n) and that hd−1 is an
upper bound on the height of all other range trees (since
they all correspond to smaller sets of vertices of P ).

Vector C can attain Θ(logd−1 n) values and each of
these values determine which parts of the range trees we
are interested in in the current pass. More specifically,
C[i] = k indicates that we are interested only in level k
of all (d− i)-dimensional range trees, i = 1, . . . , d−1. If
some (d− i)-dimensional range tree has height less than

C[i], it means that we are not interested in any levels
of that tree in the current pass.

Consider a given pass of the vertices of P . We con-
struct the (d − 1)-dimensional range tree as before ex-
cept that we only associate (d − 2)-dimensional range
trees with nodes at depth C[1]. For each of these
(d−2)-dimensional range trees, we only associate (d−3)-
dimensional range trees with nodes at depth C[2] and
so on. We refer to these range trees as restricted range
trees.

Since canonical subsets associated with nodes at the
same level of a range tree are disjoint, it follows eas-
ily that restricted range trees can be constructed in
O(n log n) time (since d is assumed to be a constant).
Thus, the total time spent on constructing restricted
range trees over all passes is O(n logd n).

In each pass, we only update those lower envelopes
allowed by C. The time spent on this for a given vertex
pi of P and a given pass is O(log n) since there is at
most one lower envelope in which fi is to be inserted
in the current pass and it takes O(log n) time to find it
and update it.

Similarly, computing the intersection between lower
envelopes and a given vertex of P in a given pass takes
O(log n) time. Thus, the total time spent in each pass is
O(n log n). Since there are Θ(logd−1 n) passes, the total
running time of the modified algorithm is O(n logd n),
that is, the same as the original algorithm.

As for space requirement, we observe that the space
required to represent restricted range trees is O(n) and
the space used for storing lower envelopes in a given pass
is O(n) since for a given vertex pi of P , fi is stored in
at most one lower envelope in the current pass. This
gives us the following generalization of Theorem 5.

Theorem 9 The stretch factor of an n-vertex path in
(Rd, L1) can be computed in O(n logd n) time and O(n)
space.

6 Stretch Factor of Trees

In this section, we generalize our algorithms for paths to
trees. We will show that the stretch factor of a tree with
n vertices can be computed in O(σn log3 n) time for the
weighted fixed orientation metrics and in O(n logd+1 n)
time in the space (Rd, L1) using O(n) space.

Let us focus on space (Rd, L1). The weighted fixed
orientation metrics are handled in a similar way.

Let T be a tree with n vertices p1, . . . , pn embedded
in (Rd, L1). We use the idea of [15] to compute the
stretch factor of T . First, T is partitioned into two
subtrees T1 and T2 sharing a single vertex p such that
each subtree contains between n/4 and 3n/4 vertices.
As shown in [15], this can be done in O(n) time. Then
the stretch factors of T1 and T2 are found recursively.
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What remains is to determine value δT (T1, T2) if it is
larger than either δT1

or δT2
.

Let I1 and I2 be indices of vertices in T1 and T2 re-
spectively and let I = I1 ∪ I2 be the indices of vertices
in T . Let m = maxi∈I2 L1(pi, p) and let δ > 0. For
each i ∈ I, let Bi(δ) be the L1-ball B1(pi, ri(δ)), where

ri(δ) =

{

(m + LT
1 (pi, p))/δ if i ∈ I1,

(m − LT
1 (pi, p))/δ if i ∈ I2.

Note that ri(δ) ≥ m for all i ∈ I1 and 0 ≤ ri(δ) ≤ m
for all i ∈ I2.

Lemma 10 With the above definitions, δT (T1, T2) =
inf{δ > 0|Bj(δ) * Bi(δ)∀(i, j) ∈ I1 × I2, i 6= j}.
Furthermore, for c = 1, 2, δT ≥ inf{δ > 0|Bj(δ) *
Bi(δ)∀i, j ∈ Ic, i 6= j}.

Proof. Let δ > 0. For any (i, j) ∈ I1 × I2, i 6= j,

LT
1 (pi, pj)

δ
=

LT
1 (pi, p) + LT

1 (pj , p)

δ
= ri(δ) − rj(δ).

Hence,

δT (T1, T2) < δ ⇔ ∀(i, j) ∈ I1 × I2, i 6= j :

L1(pi, pj) >
LT

1 (pi, pj)

δ
= ri(δ) − rj(δ)

⇔ ∀(i, j) ∈ I1 × I2, i 6= j : Bj(δ) * Bi(δ).

This shows the first part of the lemma.
To show the second part, let δ > 0 and i, j ∈ Ic,

i 6= j, be given. Since ri(δ) − rj(δ) = (|LT
1 (pi, p) −

LT
1 (pj , p)|)/δ,

Bj(δ) ⊆ Bi(δ) ⇒ L1(pi, pj) ≤
|LT

1 (pi, p) − LT
1 (pj , p)|

δ

≤
LT

1 (pi, pj)

δ
⇒ δ ≤ δT .

It follows that

δT ≥ sup{δ > 0|Bj(δ) ⊆ Bi(δ) for some i, j ∈ Ic, i 6= j}

= inf{δ > 0|Bj(δ) * Bi(δ)∀i, j ∈ Ic, i 6= j}.

�

Corollary 11 With the above definitions, δT ≥
inf{δ > 0|Bj(δ) * Bi(δ)∀i, j ∈ I, i 6= j} with equality if
δT = δT (T1, T2).

Proof. Lemma 10 implies that

δT ≥ δT (T1, T2)

= inf{δ > 0|Bj(δ) * Bi(δ)∀(i, j) ∈ I1 × I2, i 6= j}

and that, for c = 1, 2,

δT ≥ inf{δ > 0|Bj(δ) * Bi(δ)∀i, j ∈ Ic, i 6= j}.

�

Corollary 11 shows that if we pick the maximum of
δT (T1), δT (T2), and the value

inf{δ > 0|Bj(δ) * Bi(δ)∀i, j ∈ I, i 6= j}, (4)

then we obtain the stretch factor of T . Computing (4) is
done exactly as for paths in O(n logd n) time and O(n)
space.

It follows from the above that our algorithm has
O(log n) recursion levels and uses O(n logd n) time per
level. This gives the following result.

Theorem 12 The stretch factor of a tree with n
vertices embedded in (Rd, L1) can be computed in
O(n logd+1 n) time and O(n) space.

The above arguments also apply to the weighted fixed
orientation metrics, giving the following theorem.

Theorem 13 Let V be a set of σ ≥ 2 vectors defining
a weighted fixed orientation metric dV on R2. Then the
stretch factor of a tree with n vertices in (R2, dV) can
be computed in O(σn log3 n) time and O(n) space.

7 Stretch Factor of Cycles

We now show how to compute the stretch factor of an
n-vertex cycle in O(σn log3 n) time for the weighted
fixed orientation metrics and in O(n logd+1 n) time in
the space (Rd, L1) using O(n) space.

We will restrict our attention to the space (R2, L1)
since the weighted fixed orientation metrics are handled
in a similar way and since generalizing the results of this
section to higher dimensions follows from ideas similar
to those of Section 5. So let C be a an n-vertex cycle
p1 → p2 → · · · → pn → p1 embedded in (R2, L1).

The problem of computing the stretch factor of C is
harder than for paths since there are now two possible
paths between each pair of distinct vertices.

To handle this, it will prove useful to replace C by
a 2n-vertex path P = q1 → · · · → q2n, where qi =
qn+i = pi for i = 1, . . . , n.

For i = 1, . . . , 2n and for δ > 0, let Bi(δ) denote the
L1-disc B1(qi, ri(δ)), where ri(δ) = LP

1 (qi, q2n)/δ. Let
mC denote half the length of C.

With these definitions, we obtain the following result
which is similar to Lemma 1.

Lemma 14 With the above definitions, the stretch fac-
tor of C is δC = inf{δ > 0|Bj(δ) * Bi(δ)∀1 ≤ i, j ≤
2n, i 6= j, LP

1 (qi, qj) ≤ mC}.

Proof. The proof follows by applying the ideas of the
proof of Lemma 1 and from the observation that

δC = max{
LP

1 (qi, qj)

L1(qi, qj)

∣

∣1 ≤ i, j ≤ 2n, i 6= j,

LP
1 (qi, qj) ≤ mC}.
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For 1 ≤ i ≤ 2n and for w = 1, 2, 3, 4, define Pw(i) as the
set of vertices of P \{pi} belonging to the wth quadrant
of qi. Lemma 14 gives

δC = max
w=1,2,3,4

max
1≤i≤2n

inf{δ > 0|Bj(δ) * Bi(δ)∀qj ∈ Pw(i),

LP
1 (qi, qj) ≤ mC}.

Hence, restricting our attention to first quadrants, the
problem of computing

max
1≤i≤2n

inf{δ > 0|Bj(δ) * Bi(δ)∀qj ∈ P1(i),

LP
1 (qi, qj) ≤ mC} (5)

is essentially the same as the problem of computing (1)
of Section 3 except for one thing: only pairs of indices
i, j, where LP

1 (qi, qj) ≤ mC , are allowed.
Note that Lemma 2 also applies in this section. Let

us therefore associate fi- and li-functions to each vertex
qi of P . We define fi as in Section 3 and define li by

li(1/δ) = min{fj(1/δ)|qj ∈ P1(i), L
P
1 (qi, qj) ≤ mC}.

For 1 ≤ i ≤ 2n, let δi = 1/xi, where xi is the inter-
section point between fi and li. If no such point exists,
set δi = 0. Then it follows easily from the results of
Section 3 that (5) equals max1≤i≤2n δi

What remains is to compute values xi for all i. In the
following, we describe an algorithm for this problem.

The algorithm stores vertices of P in a 1-dimensional
range tree T . Unlike in Section 3.1 however, vertices are
not ordered in ascending x but by ascending distance to
q1 in P . We will denote the leaves of T from left to
right by q1, . . . , q2n.

Let v be a node of T and let Tv be the subtree of T
rooted at v. Associated with v is a 1-dimensional range
tree for those vertices of P stored in the leaves of Tv.
This range tree is of the form described in Section 3.1
and will be updated in the same way.

Vertices of P are then considered in order of descend-
ing y (as in Section 3.1). Let qi be the current vertex.
Then range trees associated with nodes of T need to
be updated w.r.t. qi. These nodes are the nodes on
the path from the root of T to the leaf containing qi

since their associated range trees are exactly those that
contain qi.

What remains in the processing of qi is to compute
the intersection between fi and li. This involves com-
puting intersections between fi and lower envelopes in
range trees associated with nodes of T . However, only
range trees containing vertices all of distance at most
mC to qi in P should be considered.

Such range trees are picked as follows. First, O(log n)
subtrees of T are picked such that they cover all leaves

associated with vertices of P having distance at most
mC to pi. This is done using an algorithm similar to the
range query algorithm of Section 5.1 of [3] with query
range [LP

1 (p1, pi) − mC , LP
1 (p1, pi) + mC ]. Then the

range trees picked are those associated with roots of
these subtrees.

The intersections between fi and lower envelopes in
the picked range trees are found as described in Sec-
tion 3.1. The leftmost of these intersections is then the
intersection xi between fi and li.

When all vertices of P have been considered in the
y-descending path of vertices, the value (5) is found as
max1≤i≤2n δi, where δi = 1/xi.

The running time of the above algorithm is
O(n log3 n). This follows easily from the results of Sec-
tion 3.2 and from the fact that the number of range
trees considered for each vertex of P is O(log n).

Linear space requirement is obtained by making
O(log2 n) y-descending passes instead of one pass. In
each pass, only range trees associated with nodes at a
certain depth of T are considered and only nodes at a
certain depth of each of the range trees associated with
nodes of T are considered. We will leave out the details
since they are similar to those of Section 3.3.

Generalizing the above to higher dimensions and to
weighted fixed orientation metrics gives the following
theorems.

Theorem 15 The stretch factor of a cycle with n
vertices embedded in (Rd, L1) can be computed in
O(n logd+1 n) time and O(n) space.

Theorem 16 Let V be a set of σ ≥ 2 vectors defining
a weighted fixed orientation metric dV on R2. Then the
stretch factor of a cycle with n vertices in (R2, dV) can
be computed in O(σn log3 n) time and O(n) space.

8 Finding a Vertex Pair Achieving the Stretch Fac-

tor

In the previous sections, we have considered the prob-
lem of computing the stretch factor of paths, trees, and
cycles. Suppose that we are also interested in actually
finding a pair of vertices for which the detour between
them equals the stretch factor of the graph.

The algorithms described above are easily modified
to find such a pair without affecting the time and space
bounds. To achieve this, we make the following small
change to the data structures defining lower envelope
functions as follows. Let l be a lower envelope function
considered during the course of the algorithm. Then we
associate with every line segment (and halfline) of l the
fj-function defining this segment.

Now, suppose the stretch factor of the graph has been
found. This value corresponds to a computed intersec-
tion between an fi-function and a lower envelope func-
tion for some i. The above modification then allows
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us to find, in constant time, a vertex pj such that the
stretch factor of the graph is achieved as the detour be-
tween pi and pj .

In fact, we can obtain a slightly stronger result which
we state in the following theorem.

Theorem 17 Without affecting time and space bounds,
all algorithms described above can be modified to com-
pute, for every vertex pi, a vertex pj maximizing the
detour between pi and pj .

9 Concluding Remarks

Given an n-vertex path P embedded in metric space
(Rd, L1), d ≥ 2, we showed how to compute the stretch
factor of P in O(n logd n) worst-case time. For a gen-
eral weighted fixed orientation metric in the plane, we
gave an O(σn log2 n) time algorithm, where σ ≥ 2 is
the number of fixed orientations. We generalized our
algorithms to trees and cycles at the cost of an extra
log n-factor in running time. All our algorithms have
O(n) space requirement.

An obvious question is whether our algorithms are
optimal with respect to running time. In the Euclidean
plane, an Ω(n log n) lower bound is known for paths
(and thus also for trees) and it is easily extended to the
weighted fixed orientation metrics (for fixed σ). Thus,
in the plane, there is a gap of log n for paths and log2 n
for trees between our time bounds and this lower bound.

It should be possible to modify the algorithms pre-
sented in [15] for computing the stretch factor of paths,
trees, and cycles in the Euclidean plane to handle the
rectilinear plane and possibly the more general weighted
fixed orientation metrics. This would give an O(n log n)
expected time algorithm for paths and an O(n log2 n)
expected time algorithm for trees and cycles. Is it pos-
sible to extend the ideas of this paper to handle other
classes of graphs?

Finally, we believe that it is possible to handle more
general fixed orientation metrics in higher dimensions
using the ideas of this paper.
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Girth of a Planar Digraph with Real Edge
Weights in O(n log3 n) Time

Christian Wulff-Nilsen ∗

Abstract

The girth of a graph is the length of its shortest cycle. We give
an algorithm that computes in O(n log3

n) time and O(n) space the
(weighted) girth of an n-vertex planar digraph with arbitrary real edge
weights. This is an improvement of a previous time bound of O(n3/2),
a bound which was only valid for non-negative edge-weights. Our
algorithm can be modified to output a shortest cycle within the same
time and space bounds if such a cycle exists.

1 Introduction

The girth of an unweighted graph is the length of a shortest cycle in the
graph or ∞ if the graph is acyclic. It is a well-studied graph characteristic
and has been shown to be related to numerous other properties of graphs,
including vertex degree, diameter, connectivity, maximum genus, and vertex
colourings [2, 4]. For instance, it is easy to see that for a graph containing a
cycle, its girth is at most twice its diameter plus one.

The problem of computing the girth of a graph has received some atten-
tion. An O(mn) time algorithm is known where m and n are the number of
edges and vertices, respectively [6]. Finding the length of a shortest cycle of
even length can be done in O(n2) time [11].

In this paper, we focus on the problem of computing the girth of planar
graphs. For this class of graphs, faster algorithms are known. A linear
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time algorithm is presented in [3] but it only applies when the graph has
bounded girth. For general planar graphs, Djidjev gave an O(n5/4 log n)
time algorithm. This can be improved to O(n log2 n) time by applying the
minimum cut algorithm of [1] to the dual graph. Recently, it was shown how
to find the girth in O(n log n) time [10].

All these results for planar graphs assume that the graph is undirected.
For planar digraphs, Weimann and Yuster [10] gave an O(n3/2) time algo-
rithm and they asked whether a faster algorithm exists.

The girth of a graph is defined for unweighted graphs but this definition
immediately extends to the case where edges have real weight. Of the above
algorithms for planar graphs, only the O(n log2 n) time algorithm in [1] and
the O(n3/2) time algorithm in [10] can handle weighted graphs and only if all
edge weights are non-negative. The O(n log2 n) time algorithm only applies
when the graph is undirected.

We consider the most general version of the problem for planar graphs.
We show how to find the girth of an n-vertex planar digraph with arbi-
trary real edge weights (non-negative as well as negative) in O(n log3 n) time
and O(n) space. In particular, we answer the question by Weimann and
Yuster [10] of whether an o(n3/2) time algorithm exists for computing the
girth of a planar digraph. Our algorithm can output a shortest cycle within
the same time and space bounds, assuming such a cycle exists.

The organization of the paper is as follows. In Section 2, we introduce
some basic definitions and notation. We give our algorithm for computing
the girth of a planar digraph in Section 3 and in Section 4, we show how
to extend this algorithm to output a shortest cycle. Finally, we make some
concluding remarks in Section 5.

2 Definitions and Notation

For a graph H , we let VH and EH denote its vertex and edge set, respectively.
Let G = (V, E) be a digraph with real edge weights defined by weight function
w : E → R. For vertices u, v ∈ V , we let dG(u, v) denote the length of a
shortest path in G from u to v w.r.t. w (we omit w in the notation but this
should not cause any confusion). If no path from u to v exists, we define
dG(u, v) = ∞ and if there is a path from u to v containing a negative-weight
cycle, dG(u, v) = −∞.

The (weighted) girth of G is the length of a shortest cycle in G w.r.t. w. If

2
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G is acyclic, we define its girth to be ∞. If G contains a negative-weight cycle
C, cycles of arbitrarily large negative weight can be obtained by traversing
C sufficiently many times so in this case, we define the girth of G to be −∞.

3 Computing the Girth

In the following, let G = (V, E) be an n-vertex planar digraph with real edge
weights defined by weight function w : E → R. In this section, we show how
to compute the girth of G in O(n log3 n) time and O(n) space.

We may assume that G contains no negative-weight cycles since the al-
gorithm in [5] can detect such cycles within our time and space bounds. If a
negative-weight cycle is present, our algorithm outputs −∞ as the girth of
G.

We will assume that G is triangulated with pairs of oppositely directed
edges. If it is not, this can be achieved by adding edges of sufficiently high
weight W so that finite shortest path distances in G will not be affected. We
define

W = 1 + 2
∑

e∈E′

|w(e)|,

where E ′ is the set of edges in the original graph. This way, we avoid dealing
with infinite shortest path distances. And we can still detect the case where
the girth is ∞ in the original graph since this holds if and only if the girth
of the triangulated graph is at least 1 +

∑
e∈E′ |w(e)|.

We will identify G with a fixed plane embedding of the graph.
Next, we apply the linear time cycle separator theorem of Miller [9] to

G. This gives a simple cycle C in G (ignoring edge orientations) containing
O(

√
n) vertices such that at most 2n/3 vertices of G are in the closed bounded

region R1 resp. closed unbounded region R2 of the plane defined by C. Let
G1 resp. G2 be the subgraph of G containing the set of vertices and edges
of G in R1 resp. R2. If an edge of G belongs to both R1 and R2, i.e., to C,
then we only add it to one of the two subgraphs, say G1. This ensures that
G1 and G2 are edge-disjoint.

We recursively compute the girth g1 of G1 and the girth g2 of G2. Let g
denote the length of a shortest cycle in G that contains at least two vertices
of C. Any simple cycle in G that is neither fully contained in G1 nor in G2

must contain at least two vertices of C. Thus, min{g1, g2, g} is the girth of
G so let us consider the problem of computing g.

3
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Let H be the complete digraph with vertex set VH = VC and with weight
function wH : EH → R defined by wH(u, v) = min{dG1

(u, v), dG2
(u, v)} for

all distinct u, v ∈ VH .
For any u, v ∈ VH , a shortest path from u to v in G can be decomposed

into subpaths each of which has the property that it is a shortest path in
either G1 or in G2 with both its endpoints on C. It follows that dH(u, v) =
dG(u, v).

We apply the algorithm in [7] to compute dG1
(u, v) and dG2

(u, v) for all
u, v ∈ VC using a total of O(n log2 n) time over all recursion levels. Hence,
we obtain H and its edge weights in this amount of time over all recursion
levels.

Any shortest cycle in G containing at least two vertices of C can be
decomposed into subpaths each having the property above. Hence, such a
cycle has the same length as a shortest cycle in H so H has girth g.

What remains therefore is to find the length of a shortest cycle in H . We
will show how to do this in O(n log2 n) time. Since there are O(log n) recur-
sion levels, this will imply that the girth of G can be obtained in O(n log3 n)
time.

Let u1, . . . , um be the vertices of C. To compute the girth g of H , we will
compute, for i = 1, . . . , m, the length gi of a shortest cycle in H containing
ui. Then it is clear that we can obtain the girth of H as g = min{g1, . . . , gm}.

We first reduce our problem to one where all edge weights are non-
negative. This is done as follows. We compute single source shortest path
distances with source, say, u1, using the O(n log2 n) time Bellman-Ford vari-
ant of [5] (in fact, it can be done in only O(nα(n)) time with ideas from [8]
but this will not improve our bound).

Then in O(|EH|) = O(n) additional time, we can obtain the reduced cost
w+

H(e) of each edge e = (ui, uj) of H (w.r.t. wH):

w+

H(e) = dH(u1, ui) + wH(e) − dH(u1, uj).

By the triangle inequality, w+

H ≥ 0 and it is easy to see that for any cycle in
H , its length w.r.t. wH is identical to its length w.r.t. w+

H . This gives us the
desired reduction.

For each pair of vertices ui and uj in H , we let d+

H(ui, uj) denote the
shortest path distance from ui to uj in H w.r.t. w+

H .
Now, let us consider the problem of computing gi for some i. Since

gi = min{d+

H(ui, uj) + w+

H(uj, ui)|j = 1, . . . , m, j 6= i}, we can obtain this

4
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value in O(m) = O(
√

n) time in addition to the time for computing single
source shortest path distances from ui w.r.t. w+

H . And since w+

H ≥ 0, we can
apply the Dijkstra variant of [5] to compute these distances in O(m log2 n) =
O(

√
n log2 n) time. Over all i, this is O(n log2 n), as desired.

It follows from the above that we can find the girth of H in O(n log2 n)
time and we can conclude this section with the following result.

Theorem 1. The girth of an n-vertex planar digraph with real edge weights
can be computed in O(n log3 n) time and O(n) space.

Proof. We have shown the time bound above and since the algorithms in [5,
7, 8, 9] all require O(n) space, this bound also holds for our algorithm.

4 Finding a Shortest Cycle

We now show how to extend the algorithm of the previous section to compute
a shortest cycle in G within the same time and space bounds. We may assume
that G contains no negative-weight cycles since otherwise, a shortest cycle
does not exist.

With the definitions above, it suffices to find in O(n log2 n) time and O(n)
space a shortest cycle in G containing at least two vertices of C. As already
noted, such a cycle corresponds to a shortest cycle in H . The algorithm
above finds vertices ui and uj of C such that a shortest path Pij in H from
ui to uj followed by the edge (uj, ui) is a shortest cycle C ′ in H . The edges
on Pij can be found by traversing the shortest path tree in H rooted at ui.
Since this shortest path tree has already been computed, we can thus find
all edges of C ′ within the required time and space bounds.

What remains is to replace each edge e of C ′ by a simple shortest path
Pe in G between its endpoints. We will show how to do this in O(n logn)
additional time.

To obtain these paths, we need to take a closer look at the multiple-source
shortest path algorithm of Klein [7] which we applied to find the weights of
edges of H . For Gi, i = 1, 2, his algorithm maintains a dynamic tree data
structure, which is initally a shortest path tree in Gi rooted at, say, u1, then
at u2, and so on. To obtain the weights of edges of H , this data structure is
repeatedly queried, first for the distance in Gi from u1 to all other vertices
of C, then from u2, et cetera.
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Now, we also need the actual paths in the shortest path trees correspond-
ing to these distances. Once the edges of C ′ have been identified, we can
run Klein’s algorithm again. During the course of this second run of the
algorithm, we can query the dynamic tree data structure to obtain the paths
corresponding to edges of C ′. Querying for a single vertex on a path takes
O(log n) time so the total time is O(k log n), where k is the total number of
vertices (with repetitions) over all paths.

For this strategy to work, k should not be too big. We will ensure this by
modifying Dijkstra without increasing its time and space bounds such that
C ′ will have the least number of edges among all shortest cycles in H . We
then show that none of the paths defining edges of C ′ will share any edges
of G, implying that k = O(n) and hence that a shortest cycle in G can be
found in O(n log3 n + k log n) = O(n log3 n) time and O(n) space.

To output a shortest cycle in H with the minimum number of edges, we
modify the Dijkstra algorithm in [5]. We will not go through all the details
but assume that the reader is familiar with the paper.

During the course of that algorithm, we maintain not only shortest path
distances w.r.t. w+

H but also w.r.t. the unit weight function. Now, whenever
there is a tie between which vertex to pick next from the heap, we pick one
for which the number of edges on a shortest path from the root of the par-
tially built shortest path tree to ui is minimized. This can be incorporated
into the algorithm without increasing its time and space bounds by lexico-
graphically ordering vertices, first according to weighted and then according
to unweighted distances from the root of the shortest path tree.

It remains to show that if C ′ is a shortest cycle in H and it is picked such
that it has the minimum number of edges then none of the shortest paths in
G corresponding to edges of C ′ share edges.

So let P1 and P2 be shortest paths in G corresponding to distinct edges
e1 = (ui, uj) and e2 = (ui′, uj′) in H , respectively. Assume for the sake of
contradiction that e = (u, v) is an edge shared by P1 and P2. Let P be the
subpath of C ′ starting in uj and ending in ui′. Without increasing the length
of C ′, the subpath P1PP2 of C ′ can be replaced by the path P ′ defined as
the prefix of P1 ending in v followed by the suffix of P2 starting in v. Since
G1 and G2 are edge-disjoint, either P1 and P2 both belong to G1 or both
belong to G2. Hence, P ′ is a path in either G1 or in G2 so we can replace e1

and e2 by the edge (ui, uj′) in H . But this reduces the number of edges of
C ′ without increasing its length, contradicting the choice of the cycle.

It follows that none of the shortest paths in G corresponding to edges of
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C ′ share edges. By the above, this suffices to show the following.

Theorem 2. A shortest cycle in an n-vertex planar digraph with real edge
weights can be computed in O(n log3 n) time and O(n) space, assuming such
a cycle exists.

If G has girth −∞, a shortest cycle does not exist. But we can still output
a negative-weight cycle within our time and space bounds by applying the
algorithm in [5].

5 Concluding Remarks

We showed how to compute the girth of an n-vertex planar digraph with
real edge weights in O(n log3 n) time and O(n) space. This is a significant
improvement over the previous best bound of O(n3/2) which only applied
to planar digraphs with non-negative edge weights. We also showed how to
output a shortest cycle without an increase in time or space, assuming such
a cycle exists.

In [5], it is suggested that the results of that paper can be generalized
to the class of bounded genus graphs. If this is true, we believe that a
generalization of our algorithm to this class is also achievable.
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Minimum Cycle Basis and All-Pairs Min Cut

of a Planar Graph in Subquadratic Time

Christian Wulff-Nilsen ∗

March 13, 2010

Abstract

A minimum cycle basis of a weighted undirected graph G is a ba-
sis of the cycle space of G such that the total weight of the cycles in
this basis is minimized. If G is a planar graph with non-negative edge
weights, such a basis can be found in O(n2) time and space, where n

is the size of G. We show that this is optimal if an explicit represen-
tation of the basis is required. We then present an O(n3/2 log n) time
and O(n3/2) space algorithm that computes a minimum cycle basis
implicitly. From this result, we obtain an output-sensitive algorithm
that explicitly computes a minimum cycle basis in O(n3/2 log n + C)
time and O(n3/2 + C) space, where C is the total size (number of
edges and vertices) of the cycles in the basis. These bounds reduce
to O(n3/2 log n) and O(n3/2), respectively, when G is unweighted. We
get similar results for the all-pairs min cut problem since it is dual
equivalent to the minimum cycle basis problem for planar graphs.
We also obtain O(n3/2 log n) time and O(n3/2) space algorithms for
finding, respectively, the weight vector and a Gomory-Hu tree of G.
The previous best time and space bound for these two problems was
quadratic. From our Gomory-Hu tree algorithm, we obtain the fol-
lowing result: with O(n3/2 log n) time and O(n3/2) space for prepro-
cessing, the weight of a min cut between any two given vertices of G

can be reported in constant time. Previously, such an oracle required
quadratic time and space for preprocessing. The oracle can also be
extended to report the actual cut in time proportional to its size.

∗Department of Computer Science, University of Copenhagen, koolooz@diku.dk,
http://www.diku.dk/hjemmesider/ansatte/koolooz/
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1 Introduction

A cycle basis of a graph is a set of cycles that gives a compact representation
of the set of all the cycles in the graph. Such a representation is not only
of theoretical interest but has also found practical use in a number of fields.
One of the earliest applications is in electrical circuit theory and dates back
to the work of Kirchhoff [17] in 1847. Knuth [18] used them in the analysis
of algorithms. Furthermore, cycle bases play an important role in chemical
and biological pathways, periodic scheduling, and graph drawing [15]. See
also [4, 5, 6, 8, 20, 23, 25].

In many of the above applications, it is desirable to have a cycle basis of
minimum total length or, more generally, of minimum total weight if edges of
the graph are assigned weights. The minimum cycle basis problem, formally
defined below, is the problem of finding such a cycle basis. For a survey of
applications and the history of this problem, see [14].

Let us define cycle bases and minimum cycle bases. Let G = (V, E) be
an undirected graph. To each simple cycle C in G, we associate a vector x
indexed on E, where xe = 1 if e belongs to C and xe = 0 otherwise. A set
of simple cycles of G is said to be independent if their associated vectors are
independent over GF (2). The vector space over this field generated by these
vectors is the cycle space of G and a maximal independent set of simple cycles
of G is called a cycle basis of G. Any cycle basis of G consists of m − n + c
cycles, where m is the number of edges, n the number of vertices, and c is
the number of connected components of G [26].

Assume that the edges of G have real weights. Then a minimum cycle
basis (MCB) of G is a cycle basis such that the sum of weights of edges of the
cycles in this basis is minimized. The MCB problem (MCBP) is the problem
of finding an MCB of G.

The MCBP is NP-hard if negative edge weights are allowed [12]. The
first polynomial time algorithm for graphs with non-negative edge weights
was due to Horton [14]. His idea was to first compute a polynomial size set
of cycles guaranteed to contain an MCB. In a subsequent step, such a basis
is then extracted from this set using a greedy algorithm. Running time is
O(m3n). This was improved in a sequence of papers [7, 9, 2, 16, 21, 1] to
O(mω), where ω is the exponent of matrix multiplication.

For planar graphs with non-negative edge weights, an O(n2 log n) algo-
rithm was presented in [12]. This was recently improved to O(n2) [1].

It is well-known that a cycle in a plane graph corresponds to a cut in

2



I

the dual plane graph. Using this fact, Hartvigsen and Mardon [12] showed
that the following problem is dual equivalent to the MCBP for planar graphs
(meaning that one problem can be transformed into the other in linear time):
find a minimal collection of cuts such that for any pair of vertices s and t,
this collection contains a minimum s-t cut. We refer to this problem as
the all-pairs min cut problem (APMCP). It follows from this result that the
quadratic time bound in [1] also holds for the APMCP for planar graphs.

We prove that quadratic running time for the MCBP for planar graphs
is optimal by presenting a family of planar graphs of arbitrarily large size for
which the total length (number of edges) of all cycles in any MCB is Θ(n2).
Due to the correspondence between cycles in the primal and cuts in the dual,
this lower bound also holds for the APMCP for planar graphs.

We then present an algorithm with O(n3/2 log n) running time and O(n3/2)
space requirement that computes an MCB of a planar graph implicitly. From
this result, we get an output-sensitive algorithm with O(n3/2 log n + C) time
and O(n3/2 + C) space requirement, where C is the total size of cycles in
the MCB that the algorithm returns. For unweighted planar graphs, these
bounds simplify to O(n3/2 log n) and O(n3/2), respectively. Since the MCBP
and the APMCP are dual equivalent for planar graphs, we get similar bounds
for the latter problem.

The weight vector of a weighted graph G is a vector containing the weights
of cycles of an MCB in order of non-decreasing weight. Finding such a vector
has applications in chemistry and biology [3]. From our implicit representa-
tion of an MCB, we obtain an O(n3/2 log n) time and O(n3/2) space algorithm
for finding the weight vector of a planar graph. The best previous bound was
O(n2), obtained by applying the algorithm in [1].

A Gomory-Hu tree, introduced by Gomory and Hu in 1961 [10], is a
compact representation of minimum weight cuts between all pairs of vertices
of a graph. Formally, a Gomory-Hu tree of a weighted connected graph G is
a tree T with weighted edges spanning the vertices of G such that:

1. for any pair of vertices s and t, the weight of the minimum s-t cut is
the same in G and in T , and

2. for each edge e in T , the weight of e equals the weight of the cut in
G, defined by the sets of vertices corresponding to the two connected
components in T \ {e}.

Such a tree T is very useful for finding a minimum s-t cut in G since we
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only need to consider the cuts of G encoded by the edges on the simple path
between s and t in T . Gomory-Hu trees have also been applied to solve the
minimum k-cut problem [24].

For planar graphs, quadratic time and space is the best known bound for
finding such a tree. The bound can easily be obtained with the algorithm
in [1]. From our MCB algorithm, we obtain an algorithm that constructs a
Gomory-Hu tree in only O(n3/2 log n) time and O(n3/2) space.

An important corollary of the latter result is that with O(n3/2 log n) time
and O(n3/2) space for preprocessing, a query for the weight of a min cut
(or max flow) between two given vertices of a planar undirected graph with
non-negative edge weights can be answered in constant time. Previously,
quadratic preprocessing time and space was required to obtain such an oracle.
The actual cut can be reported in time proportional to its size.

The organization of the paper is as follows. In Section 2, we give some
definitions and notation and state some basic results. We give the quadratic
lower bound for an explicit representation of an MCB of a planar graph in
Section 3. In Section 4, we mention the greedy algorithm which has been
applied in previous papers to find an MCB. Based on it, we present a new
divide-and-conquer algorithm in Section 5. We first only desccribe how to
deal with cycles that have not been recursively computed. In Section 6, we
give an implementation of this algorithm with the desired time and space
bounds. In Section 7, we extend the algorithm to deal with the recursively
computed cycles as well and we again bound time and space. The corollaries
of our result are presented in Section 8. In order for our ideas to work, we
need shortest paths to be unique. We show how to ensure this in Section 9.
Finally, we give some concluding remarks in Section 10.

2 Definitions, Notation, and Basic Results

In the following, G = (V, E) denotes an n-vertex plane, straight-line embed-
ded, undirected graph. This embedding partitions the plane into maximal
open connected sets and we refer to the closure of these sets as the elemen-
tary faces (of G). Exactly one of the elementary faces is unbounded and we
call it the external elementary face (of G). All other elementary faces are
called internal.

A Jordan curve J partitions the plane into an open bounded set and an
open unbounded set. We denote them by int(J ) and ext(J ), respectively.
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C2

(a)

R(C4,B) R(C5,B)

R(C1,B) R(C2,B)

(b)

R(C3,B)

R∞(B)R∞(B)

R(C1,B)

R(C2,B)
R(C5,B)

R(C4,B)

R(C3,B)
C3

C1

C5
C4

Figure 1: (a): A nested set B of five cycles C1, C2, C3, C4, C5 defining five
internal regions and an external region R∞(B) (white). (b): The region tree
T (B) of B.

We refer to the closure of these sets as int(J ) and ext(J ), respectively.
We say that a pair of elementary faces of G are separated by a Jordan

curve J if one face is contained in int(J ) and the other face is contained in
ext(J ).

A set of simple cycles of G is called nested if, for any two distinct cycles
C and C ′ in that set, either int(C) ⊂ int(C ′), int(C ′) ⊂ int(C), or int(C) ⊂
ext(C ′). A simple cycle C is said to cross another simple cycle C ′ if {C, C ′}
is not nested.

For cycles C and C ′ in a nested set B, we say that C is a child of C ′ and
C ′ is the parent of C (w.r.t. B) if int(C) ⊂ int(C ′). We also define ancestors
and descendants in the obvious way. We can represent these relationships in
a forest where each tree vertex corresponds to a cycle of B.

For any cycle C ∈ B, we define internal region R(C,B) as the subset
int(C) \ (∪i=1,...,kint(Ci)) of the plane, where C1, . . . , Ck are the children (if
any) of C, see Figure 1(a).

The external region R∞(B) is defined as the set R
2 \ (∪i=1,...,kint(Ci)),

where C1, . . . , Ck are the cycles associated with roots of trees in the forest
defined above. Collectively, we refer to the internal regions and the external
region as regions.

With C1, . . . , Ck defined as above for a region R (internal or external),
we refer to the internal regions R(Ci,B) as the children of R and we call R
the parent of these regions. Again, we can define ancestors and descendants
in the obvious way. Note that the external region is the ancestor of all other
regions. We can thus represent the relationships in a tree where each vertex
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corresponds to a region. We call it the region tree of B and denote it by
T (B), see Figure 1(b).

Note that for two cycles C and C ′ in B, C is a child of C ′ if and only
if R(C,B) is a child of R(C ′,B). Hence, the region tree T (B) also describes
the parent/child relationships between cycles of B.

The elementary faces of G belonging to a region R are the elementary
faces of R. For each child Ci of R, int(Ci) is called a non-elementary face
of R. If R is an internal region R(C,B), the external face of R is the subset
ext(C) of the plane and we classify it as a non-elementary face of R. Col-
lectively, we refer to the elementary and non-elementary faces of R as its
faces.

A cycle C in G is said to be isometric if for any two vertices u, v ∈ C,
there is a shortest path in G between u and v which is contained in C. A set
of cycles is said to be isometric if all cycles in the set are isometric.

The dual G∗ of G is a multigraph having a vertex for each elementary
face of G. For each edge e in G, there is an edge e∗ in G∗ between the vertices
corresponding to the two faces of G adjacent to e. The weight of e∗ in G∗ is
equal to the weight of e in G. We identify elementary faces of G with vertices
of G∗ and since there is a one-to-one correspondence between edges of G and
edges of G∗, we identify an edge of G with the corresponding edge in G∗.

Assume in the following that G is connected. Given a vertex u ∈ V , we
let T (u) denote a shortest path tree in G with source u. The dual of T (u) is
the subgraph of G∗ defined by the edges not in T (u). It is well-known that
this subgraph is a spanning tree in G∗ and we denote it by T̃ (u).

A Horton cycle of G is a cycle obtained by adding a single edge e to a
shortest path tree in G rooted at some vertex r. We denote this cycle by
C(r, e). For a subset V ′ of V , we let H(V ′) denote the set of Horton cycles
of G obtained from shortest path trees rooted at vertices of V ′.

For any graph H , we let VH and EH denote its vertex and edge set,
respectively. If w : E → R is a weight function on the edges of G, we say
that a subgraph H of G has weight W ∈ R if

∑
e∈EH

w(e) = W .

3 A Tight Lower Bound

In this section, we show that there are planar graphs of arbitrarily large size
for which the total length of cycles in any MCB is quadratic. This implies
that the quadratic time algorithm in [1] is optimal.
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The instance Gn containing n vertices is defined as follows. Let v1, . . . , vn

be the vertices of Gn. For i = 1, . . . , n − 1, there is an edge ei = (vi, vi+1) of
weight 0. For i = 1, . . . , n − 2, there is an edge e′i = (v1, vi+2) of weight 1.

Since Gn has m = 2n−3 edges, any MCB of Gn consists of m−n+1 = n−2
cycles. In such a basis, every cycle must contain at least one of the edges e′i,
i = 1, . . . , n − 2. Hence, the cycles in any MCB of Gn have total weight at
least n − 2.

For i = 1, . . . , n−2, let Ci be the cycle containing edges e1, . . . , ei+1, e
′
i in

that order. It is easy to see that the set of these cycles is a cycle basis of G.
Furthermore, their total weight is n−2 so by the above, they must constitute
an MCB of Gn. In fact, it is the unique MCB of Gn since in any other cycle
basis, some cycle must contain at least two weight 1 edges, implying that the
total weight is at least n − 1.

The cycles in the unique MCB of Gn clearly have quadratic total length.
This gives the following result.

Theorem 1. There are instances of planar graphs of arbitrarily large size
n for which the cycles in any MCB for such an instance have total length
Ω(n2).

In Section 5, we show how to break the quadratic time bound by com-
puting an implicit rather than an explicit representation of an MCB.

4 The Greedy Algorithm

In the following, G = (V, E) denotes an n-vertex plane, straight-line embed-
ded, undirected graph with non-negative edge weights. We may assume that
G is connected since otherwise, we can consider each connected component
separately. We require that there is a unique shortest path in G between any
two vertices. In Section 9, we show how to avoid this restriction.

The algorithm in Figure 2 will find an MCB of G (see [12, 19]). We call
this algorithm the generic greedy algorithm and we call the MCB obtained
this way a greedy MCB (GMCB) (of G). We assume that ties in the ordering
in line 2 are resolved in some deterministic way so that we may refer to the
cycle basis output in line 5 as the GMCB of G. The following two results are
from [12].

Lemma 1. The GMCB is isometric and nested and consists of Horton cycles.
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1. initialize B = ∅
2. for each simple cycle C of G in order of non-decreasing weight,
3. if there is a pair of elementary faces of G separated by C and not by

any cycle in B,
4. add C to B
5. output B

Figure 2: The generic greedy algorithm to compute the GMCB of G.

Lemma 2. For every pair of elementary faces of a plane undirected graph H
with non-negative edge weights, the GMCB of H contains a minimum-weight
cycle C in H that separates those two faces. Cycle C is the first such cycle
considered when applying the generic greedy algorithm to H.

Our algorithm is essentially the generic greedy algorithm except that we
consider a smaller family of cycles in line 2. The main difficulty in giving an
efficient implementation of the greedy algorithm is testing the condition in
line 3. Describing how to do this constitutes the main part of the paper.

5 Divide-and-Conquer Algorithm

The family of cycles that we pick in line 2 of the generic greedy algorithm is
obtained with the divide-and-conquer paradigm.

To separate our problem, we apply the cycle separator theorem of Miller [22]
to G. This gives in linear time a Jordan curve J intersecting O(

√
n) ver-

tices and no edges of G such that the subgraph G1 of G in int(J ) and the
subgraph G2 of G in ext(J ) each contain at most 2n/3 vertices. We let VJ

denote the set of vertices on J and refer to them as boundary vertices of G.
As in G, we assume that shortest paths in G1 and G2 are unique. In

Section 9, we show how to avoid this assumption.
For i = 1, 2, let Bi be the GMCB of Gi. Let B′

i be the subset of cycles of
Bi containing no vertices of VJ .

Lemma 3. With the above definitions, B′
1 ∪B′

2 ∪H(VJ ) contains the GMCB
of G.

Proof. Let B be the GMCB of G and let C be a cycle of G not belonging to
B′

1 ∪ B′
2 ∪H(VJ ). We need to show that C /∈ B.
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By Lemma 1, we may assume that C is isometric. Furthermore, C /∈
B1 ∪ B2 since otherwise, C would belong to B1 ∪ B2 \ (B′

1 ∪ B′
2) and hence

to H(VJ ) since it is isometric and since shortest paths are unique. Since
C /∈ H(VJ ), C does not contain any vertices of VJ so it belongs to Gi, where
i ∈ {1, 2}. In particular, it is considered by the generic greedy algorithm in
the construction of Bi.

Since C /∈ Bi, Lemma 2 implies that every pair of elementary faces (f1, f2)
of Gi, where f1 ⊆ int(C) and f2 ⊆ ext(C), must be separated by some cycle
of Bi having smaller weight than that of C (or a cycle having the same weight
as C but considered earlier in the generic greedy algorithm). We claim that
this statement also holds when replacing Bi by B and Gi by G. If we can show
this, it will imply that C is not added to B by the generic greedy algorithm.

So let (f1, f2) be a pair of elementary faces of G with f1 ⊆ int(C) and
f2 ⊆ ext(C). There is an elementary face f ′

1 of Gi containing f1 and an
elementary face f ′

2 of Gi containing f2. Since C belongs to Gi, f ′
1 ⊆ int(C)

and f ′
2 ⊆ ext(C). By the above, there is a cycle of Bi which is shorter

than C and which separates f ′
1 and f ′

2. This cycle also separates f1 and f2

and it follows that f1 and f2 are separated by a cycle in B having weight
smaller than that of C. This shows that C /∈ B, completing the proof of the
lemma.

Lemma 3 suggests the following divide-and-conquer algorithm for our
problem: recursively compute GMCB’s B1 and B2 of G1 and G2 and obtain
B′

1 and B′
2 from these sets, compute H(VJ ), and extract from B′

1∪B′
2∪H(VJ )

the GMCB of G by applying the generic greedy algorithm to this smaller set
of cycles. Pseudocode of this algorithm is shown in Figure 3 (it is assumed
that a brute-force algorithm is applied to find the GMCB of G when G has
constant size). We call it the recursive greedy algorithm.

We will show how to implement the top-level of the recursion in O(n3/2 log n)
time and O(n3/2) space. Since each step of the recursion partitions the graph
into two subgraphs of (almost) the same size [22], it will follow that these
bounds hold for the entire algorithm.

Since the algorithm constructs the GMCB, Lemma 1 implies that B is
isometric and nested at all times. Thus, B represents a set of regions that
change during the course of the algorithm. More specifically, when the algo-
rithm starts, B = ∅ and there is only one region, namely the external region
R∞(B). Whenever a cycle C is added to B in line 5, the region R containing
C is replaced by two new regions, one, R1, contained in int(C) and one, R2,
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1. recursively compute GMCB’s B1 and B2 of G1 and G2, respectively
2. initialize B = ∅
3. for each cycle C ∈ B′

1 ∪ B′
2 ∪H(VJ ) in order of non-decreasing weight,

4. if there is a pair of elementary faces of G separated by C and not by
any cycle in B,

5. add C to B
6. output B

Figure 3: The recursive greedy algorithm to compute the GMCB of G. For
i = 1, 2, B′

i is the set of cycles of Bi not containing any vertices of H(VJ ).

contained in ext(C). We say that C splits R into R1 and R2. We call R1 the
internal region and R2 the external region (w.r.t. R and C). Figure 4 gives
an illustration.

The following lemma relates the test in line 4 to the two regions generated
by the split.

Lemma 4. The condition in line 4 in the recursive greedy algorithm is sat-
isfied if and only if C splits a region into two each of which contains at least
one elementary face.

Proof. Let R be the region containing C and suppose that C splits R into
R1 and R2.

Consider two elementary faces of G separated by C. No cycle of B sepa-
rates them if and only if the two faces belong to the same region. Hence, the
condition in line 4 is satisfied if and only if C separates a pair of elementary
faces both belonging to R. The latter is equivalent to the condition that
there is an elementary face in R1 and an elementary face in R2.

5.1 Contracted and Pruned Dual Trees

Lemma 4 shows that if we can keep track of the number of elementary faces
of G in regions during the course of the algorithm, then testing the condition
in line 4 is easy: it holds if and only if the number of elementary faces of
G in each of the two regions obtained by inserting C is at least one. In the
following, we introduce so called contracted dual trees and pruned dual trees
that will help us keep track of the necessary information. First, we need the
following lemma.

10



I

C

R

R

C

R1

C

R2

Figure 4: Adding a cycle C to B splits a region R into internal region R1

and external region R2.

Lemma 5. Let H be a plane graph with non-negative edge weights and as-
sume that shortest paths in H are unique. Let C be an isometric cycle in H
and let P be a shortest path in H between vertices u and v. If both u and
v belong to int(C) then P is contained in int(C). If both u and v belong to
ext(C) then P is contained in ext(C).

Proof. Suppose that u, v ∈ int(C) and assume for the sake of contradiction
that P is not contained in int(C). Then there is a subpath P ′ of P between
a vertex u′ ∈ C and a vertex v′ ∈ C such that P ′ is not contained in C. Since
C is isometric, there is a shortest path P ′′ contained in C between u′ and v′.
But since P ′ is a subpath of P , P ′ is also a shortest path between u′ and v′.
Since P ′ 6= P ′′, this contradicts the uniqueness of shortest paths in H .

A similar proof holds when u, v ∈ ext(C).

For a region R and a boundary vertex v belonging to R, the contracted
dual tree T̃R(v) is the tree obtained from dual tree T̃ (v) by contracting each
edge (u, u′), where u and u′ are elementary faces in G both contained in the
same non-elementary face of R, see Figure 5.

An important observation is that there is a one-to-one correspondence
between the vertices of T̃R(v) and the faces of R. We assign the colour white

11
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v

R

v

R

T̃ (v) T̃R(v)

x

Figure 5: Contracted dual tree T̃R(v) is obtained from T̃ (v) by contracting
edges between elementary faces belonging to the same non-elementary face
(bold edges and white interior) of R. For this instance, applying the pruning
procedure to obtain T̃ ′

R(v) removes x and its adjacent edge in T̃R(v).

resp. black to those vertices of T̃R(v) corresponding to elementary resp. non-
elementary faces of R, see Figure 5. We identify each edge in T̃R(v) with the
corresponding edge in T̃ (v).

To ease the presentation of our ideas, we assume for now that only cycles
from H(VJ ) are encountered in line 3 of the recursive greedy algorithm. In
Section 7, we show how to handle cycles from B′

1 ∪ B′
2 as well.

So consider some iteration of the algorithm where a cycle C = C(v, e) ∈
H(VJ ) has just been picked in line 3 and assume that all cycles added to B
so far all belong to H(VJ ). Cycle C should be added to B only if B ∪ {C} is
nested. We will now show how to detect whether this is the case using the
contracted dual trees.

If there is a region R containing v such that T̃R(v) contains e then e (in G)
belongs to R (since otherwise, e would have been contracted in T̃R(v)). Since
each cycle in B is isometric and since shortest paths are unique, Lemma 5
implies that B ∪ {C} is nested. And the converse is also true: if B ∪ {C} is
nested then there is a region R containing C. In particular, R contains e so
this edge must belong to T̃R(v).

It follows that detecting whether B ∪ {C} is nested amounts to checking
whether e is present in T̃R(v) for some region R.

Now, assume that B ∪ {C} is nested (otherwise, we can discard C) and
let us see how the contracted dual trees can help us check the condition in

12
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line 4 of the recursive greedy algorithm.
Define R to be the region containing C. Since e belongs to R, this edge

belongs to the contracted dual tree T̃R(v). Let v1 and v2 be the end vertices
of e in T̃R(v). Removing e from T̃R(v) splits this tree into two subtrees, one,
T̃1, attached to v1 and one, T̃2, attached to v2. By Lemma 4, the condition
in line 4 is satisfied if and only if T̃1 and T̃2 each contain at least one white
vertex.

Unfortunately, both of these two subtrees may contain many black ver-
tices so for performance reasons, a simple search in these trees to determine
whether they contain white vertices is infeasible.

We therefore introduce pruned (contracted) dual tree T̃ ′
R(v), defined as

the subtree of T̃R(v) obtained by removing a black degree one vertex and
repeating this procedure on the resulting tree until all degree one vertices
are white, see Figure 5. We refer to this as the pruning procedure.

Lemma 6. With the above definitions, e ∈ T̃ ′
R(v) if and only if T̃1 and T̃2

both contain white vertices.

Proof. If T̃1 contains only black vertices then the pruning procedure will
remove all vertices in T̃1. In particular, the procedure removes v1. Similarly,
if T̃2 contains only black vertices then v2 is removed. In both cases, e is
removed so e /∈ T̃ ′

R(v).
Conversely, if both T̃1 and T̃2 contain white vertices then the pruning

procedure does not remove all vertices from T̃1 and does not remove all
vertices from T̃2. Since no step of this procedure disconnects the resulting
graph, it follows that neither v1 nor v2 is removed so e ∈ T̃ ′

R(v).

Lemma 6 shows that once T̃ ′
R(v) is given, it is easy to determine whether

both T̃1 and T̃2 contain white vertices and hence whether the condition in
line 4 is satisfied: simply check whether e ∈ T̃ ′

R(v).
Note that if line 4 is satisfied, e ∈ T̃ ′

R(v) and hence e ∈ T̃R(v). By the
above, this implies that B ∪ {C} is nested. This shows that we only need
T̃ ′

R(v) to test the condition in line 4.

5.2 Inserting a Cycle

In the previous subsection, we introduced contracted and pruned dual trees
and showed how the latter can be used to test the condition in line 4 of the
recursive greedy algorithm for cycles in H(VJ ). In this subsection, we show

13
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u

C

T (u)

T̃ (u)

Figure 6: If u ∈ ext(C) then the subgraph of T̃ (u) in int(C) is a tree.

how to maintain regions and contracted and pruned dual trees when such
cycles are added to B in line 5. We first need the following lemma.

Lemma 7. Let C be an isometric cycle in G and let u ∈ V . If u ∈ ext(C)
resp. u ∈ int(C) then the elementary faces of G in int(C) resp. in ext(C)
are spanned by a subtree of T̃ (u). If u ∈ ext(C) ∩ int(C), i.e., u ∈ C, then
these two subtrees are obtained by removing the single edge of T̃ (u) having
one end vertex in int(C) and one end vertex in ext(C).

Proof. Suppose that u ∈ ext(C), see Figure 6. Let F be the forest defined by
the subgraph of shortest path tree T (u) consisting of the edges belonging to
int(C) and not to C. Since C is isometric and since shortest paths are unique,
the edges of G belonging to int(C) and not to C or F define a connected
component in the dual of G. Since all these edges belong to T̃ (u), it follows
that the elementary faces of G in int(C) are spanned by a subtree of T̃ (u),
as desired.

A similar argument shows that if u ∈ int(C) then the elementary faces
of G in ext(C) are spanned by a subtree of T̃ (u).

Finally, assume that u ∈ C. There is at least one edge in T̃ (u) with
one end vertex in int(C) and one end vertex in ext(C) since otherwise, T̃ (u)
would be disconnected. There cannot be more than one such edge since that
would contradict the first part of the lemma. This shows the second part.

14
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v
e

e

R1

R2
C = C(v, e)

T̃R(v)

R

Figure 7: Faces of R belonging to R1 resp. R2 are identified by visiting the
subtree of contracted dual tree T̃R(v) consisting of gray resp. white vertices.

Now, let us return to the problem of maintaining regions and contracted
and pruned dual trees. Initially, B = ∅ so the contracted and pruned dual
trees are simply the dual trees T̃ (v) for each boundary vertex v ∈ VJ . And
there is only one region, namely the external region R∞(B).

Now, suppose C = C(v, e) ∈ H(VJ ) has just been inserted into B in line
5, see Figure 7. Let R be the region such that C splits R into internal region
R1 and external region R2. We need to identify the faces of R belonging
to R1 and to R2. This can be done with two searches in contracted dual
tree T̃R(v). One search starts in the end vertex of e belonging to int(C) and
avoids e (visiting the gray vertices in Figure 7). The other search starts in
the end vertex of e belonging to ext(C) and also avoids e (visiting the white
vertices in Figure 7). It follows from Lemma 7 and from the definition of
contracted dual trees that the first search identifies the faces of R that should
belong to R1 and the second search identifies those that should belong to R2.

We also need to form one new face for R1, namely the face defined by
ext(C). We denote this face by fR1

. Similarly, we need to form a new face
for R2, defined by int(C), and we denote this face by fR2

.
Next, we update contracted dual trees. The only ones affected are those of

the form T̃R(u), where u ∈ R. There are three cases to consider: u ∈ int(C),
u ∈ ext(C), and u ∈ C.

Case 1: Consider first a contracted dual tree T̃R(u) with u ∈ int(C). Then
u ∈ R1 so we need to discard T̃R(u) and construct T̃R1

(u). We obtain the
latter from the former by contracting all edges of T̃R(u) having both end
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vertices in ext(C) to a single vertex (this is possible by Lemma 7). We
identify this new vertex with the new face fR1

of R1.

Case 2: Now, assume that u ∈ ext(C). Then u ∈ R2 so T̃R(u) should be
replaced by T̃R2

(u). We do this by contracting all edges of T̃R(u) having both
end vertices in int(C) to a single vertex (again, we make use of Lemma 7)
and we identify this vertex with the new face fR2

of R2.

Case 3: Finally, assume that u ∈ C. Now, u belongs to both R1 and R2

so we need to discard T̃R(u) and construct T̃R1
(u) and T̃R2

(u). To do this,
we first identify the edge e′ in T̃R(u) having one end vertex u1 in int(C) and
one end vertex u2 in ext(C). Then we construct the two trees T1 and T2

formed by removing e′ from T̃R(u) with u1 ∈ T1 and u2 ∈ T2. We let T ′
1 be

T1 augmented with the edge from u1 to fR1
and let T ′

2 be T2 augmented with
the edge from u2 to fR2

.
It follows from Lemma 7 that T ′

1 is the contracted dual tree T̃R1
(u) for

R1 and that T ′
2 is the contracted dual tree T̃R2

(u) for R2.
We have described how to update contracted dual trees when C is added

to B. We apply the same method to update pruned dual trees. The only
difference is that the pruning procedure needs to be applied whenever a
change is made to a pruned dual tree.

6 Implementation

Above, we gave an overall description of the algorithm when only cycles of
H(VJ ) are considered. We now go into more details and show how to give an
efficient implementation of this algorithm. We start by describing the data
structures that our algorithm makes use of. The main objects involved are
regions, contracted dual trees, and pruned dual trees and we consider them
in the following.

6.1 Regions

Associated with a region R is a face list F(R) which is a linked list containing
the faces of R. An entry of F(R) corresponding to a face f is assigned the
colour white resp. black if f is elementary resp. non-elementary. If it is
black, it has a bidirected pointer to the child of R contained in f . This gives

16



I

f

AR(f)

f

u

u′

T̃ (v)

u

u′
Data structure
for edge (u, u′)

v

Eu′(T̃R(v))

u

u′

Data structure for region R

V(T̃R(v))

Eu(T̃R(v))

Data structure for T̃R(v)

F(R)

Figure 8: Illustration of data structures and some of their associated pointers.

a representation of the region tree T (B). If the entry is white, it points to
the corresponding elementary face of G. The entry also points to the entire
data structure for R.

Associated with the f -entry of F(R) is also an array AR(f) with an entry
for each boundary vertex in VJ . The entry of AR(f) for a boundary vertex
v belonging to R has a bidirected pointer to vertex f in contracted dual tree
T̃R(v), see Figure 8. It also has a bidirected pointer to vertex f in pruned
dual tree T̃ ′

R(v) if that vertex has not been deleted by the pruning procedure.
All other entries of AR(f) point to null.

6.2 Contracted and Pruned Dual Trees

Associated with a contracted dual tree T̃R(v) is a vertex list V(T̃R(v)) which
is a linked list with an entry for each vertex of T̃R(v). The entry for a vertex u
points to the entry of F(R) for the face of R corresponding to u. Associated
with the u-entry of V(T̃R(v)) is also an edge adjacency list Eu(T̃R(v)), a linked
list representing the edges adjacent to u in T̃R(v). Each list entry contains a
pointer to the u-entry of vertex list V(T̃R(v)) (allowing us to find the head
of Eu(T̃R(v)) in constant time) as well as a bidirected pointer to an edge
data structure. The edge data structure thus contains two pointers, one for
each of its end vertices. Furthermore, it contains a bidirected pointer to the
corresponding edge in dual tree T̃ (v), see Figure 8.

We keep a similar data structure for pruned dual tree T̃ ′
R(v). Both data
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structures need to support edge contractions, edge insertions, and edge dele-
tions and the data structure for T̃ ′

R(v) also needs to support the pruning
procedure. We describe how to do this in the following.

6.2.1 Edge contraction

We only describe edge contractions for contracted dual trees since pruned
dual trees can be dealt with in a similar way. Assume we have a set Ec of
edges (or edge data structures) in T̃R(v) to be contracted to a single new
vertex vc and that these edges span a subtree of T̃R(v). We assume that we
have a pointer to the entry of F(R) corresponding to vc.

To contract an edge e ∈ Ec, we first remove the pointer to the edge of dual
tree T̃ (v) corresponding to e. Traversing the two pointers associated with e,
we find an entry in list L1 = Eu1

(T̃R(v)) and an entry in list L2 = Eu2
(T̃R(v)),

where u1 and u2 are the end vertices of e in T̃R(v).
We remove those two entries in L1 and L2 and then merge the two lists

to one list L since the new vertex is adjacent to edges adjacent to u1 and u2

except e. If L1 is appended to the tail of L2, we make every entry in L1 point
to the u2-entry in vertex list V(T̃R(v)). Otherwise, we make every entry in
L2 point to the u1-entry in that list. For performance reasons, we append
the shorter of the two lists to the tail of the other.

We repeat the above for each edge of Ec and we end up with a single
entry in V(T̃R(v)) representing the new vertex vc. We make this entry point
to the entry of F(R) corresponding to vc and we update the pointer to the
v-entry in the associated array.

How long does it take to contract edges? We will need the following
lemma in our analysis (the proof can be found in the appendix).

Lemma 8. Consider a set of objects, each assigned a positive integer weight.
Let merge(o, o′) be an operation that replaces two objects o and o′ by a new
object whose weight is the sum of the weights of o and o′. Assume that the
time to execute merge(o, o′) is bounded by the smaller weight of objects o
and o′. Then repeating the merge-operation on pairs of objects in any order
until at most one object remains takes O(W log W ) time where W is the total
weight of the original objects.

Fix a v ∈ VJ and consider the set of contracted dual trees of the form
T̃R(v) generated during the course of the algorithm. Each time a cycle from
H(VJ ) is added to B, at most two new edges are inserted into trees of this
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form (case 3 in Section 5.2). Hence, there are O(n) edges in total. It then fol-
lows easily from Lemma 8 and from the way we concatenate lists during edge
contractions that the total time spent on edge contractions in all contracted
dual trees of the form T̃R(v) is O(n log n). Since the number of choices of
v is O(

√
n), we get a bound of O(n3/2 log n) time for all edge contractions

performed by the algorithm.

6.2.2 Edge deletion

We also describe this only for contracted dual trees. So suppose we are to
delete an edge e = (u1, u2) from T̃R(v). We need to form two new trees, T1

and T2. Let T1 be the tree containing u1 and let T2 be the tree containing
u2. For i = 1, 2, a simple search (say, depth-first) in T̃R(v) starting in ui and
avoiding e finds the vertices of Ti in time proportional to the size of this tree.
By alternating between these two searches (i.e., essentially performing them
in parallel), we can find the vertices of the smaller of the two trees in time
proportional to the size of that tree.

Suppose that, say, T1 is the smaller tree. Then we can form the two data
structures for T1 and T2 in time proportional to the size of T1: extract the
entries of vertex list V(T̃R(v)) that should belong to T1 and form a new vertex
list containing these entries. The old data structure for T̃R(v) now becomes
the new data structure for T2 after the entries have been removed. We also
need to remove the pointer between e and the corresponding edge in dual
tree T̃ (v) and remove e from the edge adjacency lists but this can be done
in constant time.

The following lemma, which is similar to Lemma 8, immediately implies
that the total time for edge deletions is O(n3/2 log n) (the proof of the lemma
is in the appendix).

Lemma 9. Consider an object o with a positive integer weight W . Let split
be an operation that splits an object of weight at least two into two new objects
of positive integer weights such that the sum of weights of the two equals the
weight of the original object. Assume that split runs in time proportional to
the smaller weight of the two new objects. Then repeating the split-operation
in any order, starting with object o, takes O(W log W ) time.
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6.2.3 Edge insertion

The only situation where edge insertions are needed is in case 3 of Section 5.2.
With our data structure, this can clearly be done in constant time per inser-
tion.

6.2.4 Pruning procedure

Finally, let us describe how to implement the pruning procedure for pruned
dual trees. Recall that this procedure repeatedly removes black degree one
vertices until no such vertices exist.

We only need to apply the pruning procedure after an edge contraction
and after an edge deletion (edge insertions are not needed in pruned dual
trees since these edges will be removed by the pruning procedure). Let us
only consider edge deletions since edge contractions are similar.

Consider a pruned dual tree T̃ ′
R(v) and suppose the algorithm removes

an edge e = (u1, u2) from this tree. This forms two new trees T1 and T2,
containing u1 and u2, respectively. In T1, only u1 can be a black degree
one vertex since in T̃ ′

R(v), no vertices had this property. Checking whether
u1 should be removed takes constant time. If it is removed, we repeat the
procedure on the vertex that was adjacent to u1. We apply the same strategy
in T2, starting in u2.

The total time spent in the pruning procedure is proportional to the
number of vertices removed. Since the number of vertices only decreases and
since the initial number of vertices in all pruned dual trees is O(n3/2), the
total time spent by the pruning procedure is O(n3/2).

6.3 The Algorithm

Having described the data structures involved and how they can support the
basic operations that we need, let us show how to give an efficient imple-
mentation of our algorithm. Still, we only consider cycles from H(VJ ) in the
for-loop.

6.3.1 Initialization

First, we consider the initialization step. Applying the separator theorem of
Miller gives us J and VJ in linear time. For each boundary vertex v, we need
to compute shortest path tree T (v) and shortest path distances from v in G.

20



I

This can be done in O(n log n) time with Dijkstra’s algorithm for a total of
O(n3/2 log n) time (in fact, a shortest path tree can be computed in linear
time [13] but this will not improve the overall running time of our algorithm).
We also need to compute dual trees T̃ (v) and this can easily be done in
O(n3/2) additional time. These dual trees are also the initial contracted and
pruned dual trees. Since we need all three types of trees during the course
of the algorithm, three copies of each dual tree are initialized.

The algorithm then recursively computes B1 and B2. It is assumed that
the recursive calls also return the weights of cycles in these sets.

Our algorithm needs to extract B′
1 and B′

2 from these sets. This is done
as follows. For every shortest path tree T (v) that has been computed in
recursive calls (we assume that these trees are kept in memory), we mark
vertices of T (v) belonging to VJ . Then we mark all descendants of these
vertices in T (v) as well. Now, a Horton cycle C(v, e) obtained by adding e
to T (v) contains a vertex of VJ if and only if at least one of the end vertices
of e is marked. Since the total size of all recursively computed shortest path
trees is bounded by the total space requirement which is O(n3/2), it follows
that B′

1 and B′
2 can be extracted from B1 and B2 in O(n3/2) time.

The cycles in B′
1∪B′

2∪H(VJ ) need to be sorted in order of non-decreasing
weight. We are given the weights of cycles in B′

1 ∪B′
2 from the recursive calls

and we can compute the weights of cycles in H(VJ ) in a total of O(n3/2) time
using the shortest path distances computed above. Hence, sorting the cycles
in B′

1 ∪ B′
2 ∪H(VJ ) can be done in O(n3/2 log n) time.

6.3.2 Testing condition in line 4

Next, we consider the for-loop of the algorithm for some cycle C = C(v, e) ∈
H(VJ ). As we saw in Section 5.1, testing the condition in line 4 amounts
to testing whether dual edge e in T̃ (v) is present in some pruned dual tree.
Recall that we keep pointers between edges of dual trees and pruned dual
trees. Since we remove a bidirected pointer between an edge data structure
and the corresponding edge in a dual tree whenever it is contracted or deleted
in a pruned dual tree, we can thus execute line 4 in constant time.

6.3.3 Inserting a cycle

Line 5 requires more work and we deal with it in the following. Suppose we
are about to add the above cycle C to B in line 5. With the pointer associated
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with e, we find the corresponding edge data structure in a contracted dual
tree T̃R(v). Traversing pointers from this data structure, we find the data
structure for R in constant time. This region should be split into two new
regions R1 and R2, where R1 is the internal and R2 the external region w.r.t.
R and C. We need to identify the boundary vertices and the of faces in R
that belong to R1 and R2, respectively.

6.3.4 Identifying boundary vertices in R1 and R2

We first identify the set δ(R) of boundary vertices of VJ belonging to R by
traversing any one of the arrays AR(f) associated with an entry of F(R) and
picking the vertices not having null-pointers. This takes O(

√
n) time. Since

the total number of times we add a cycle to B is O(n), total time for this
during the course of the algorithm is O(n3/2).

We will extract three subsets from δ(R): the subset δint(R, C) of vertices
belonging to int(C), the subset δext(R, C) belonging to ext(C), and the subset
δ(R, C) belonging to C.

If we can find these three subsets, we also obtain sets δ(R1) and δ(R2)
of boundary vertices for R1 and R2, respectively, since δ(R1) = δ(R, C) ∪
δint(R, C) and δ(R2) = δ(R, C) ∪ δext(R, C).

The following lemma bounds the time to find the three subsets. The
proof is somewhat long and can be found in the appendix.

Lemma 10. With the above definitions, we can find in O(
√

n) time the sets
δint(R, C), δext(R, C), and δ(R, C) with O(n3/2 log n) time and O(n3/2) space
for preprocessing.

Lemma 10 implies that the total time spent on computing sets of bound-
ary vertices over all regions generated by the algorithm is O(n3/2) (plus
O(n3/2 log n) time for preprocessing).

6.3.5 Identifying faces of R1 and R2

Having found the boundary vertices belonging to R1 and R2, we next focus
on the problem of identifying the faces of R belonging to each of the two new
regions.

As previously observed (see Figure 7), we can identify the faces of R1

resp. R2 with, say, a depth-first search in T̃R(v) starting in the end vertex of
e belonging to int(C) resp. ext(C) and avoiding e. We use the edge adjacency
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lists to do this. By alternating between the two searches, we can identify the
smaller set of faces in time proportional to the size of this set.

Let us assume that internal region R1 contains this smaller set (the case
where external region R2 contains the set is similar). The search in T̃R(v)
visited the entries of V(T̃R(v)) corresponding to faces in R1. Since each such
entry points to the corresponding entry in F(R), we can thus identify the
faces in this face list that should belong to F(R1).

We can extract these faces in time proportional to their number and thus
form the face lists F(R1) and F(R2) in this amount of time. By reusing the
arrays associated with entries of F(R), we do not need to form new arrays for
F(R1) and F(R2). However, we need to set the pointers of some entries of
these arrays to null. For R1, the new null-pointers are those corresponding to
boundary vertices of δext(R, C) since these are the boundary vertices of R not
belonging to R1. And for R2, the new null-pointers are those corresponding
to boundary vertices of δint(R, C).

Since we index the arrays by boundary vertices, we can identify pointers
to be set to null in constant time per pointer. Pointers that are set to null
remain in this state so we can charge this part of the algorithm’s time to the
total number of pointers which is O(n3/2).

We also need to associate a new face with the data structure for R1 and
for R2 (i.e., faces fR1

and fR2
in Section 5.2). And we need to initialize an

array for each of these two faces. This takes O(
√

n) time which is O(n3/2)
over all regions.

6.3.6 Contracted and pruned dual trees for R1 and R2

What remains is to construct contracted and pruned dual trees for R1 and
R2. Due to symmetry, we shall only consider contracted dual trees. We have
already given an overall description of how to do this in Section 5.2. As we
showed,

1. for each u ∈ δint(R, C), we obtain T̃R1
(u) from T̃R(u) by contracting all

edges belonging to ext(C),

2. for each u ∈ δext(R, C), we obtain T̃R2
(u) from T̃R(u) by contracting all

edges belonging to int(C), and

3. for each u ∈ δ(C), we obtain T̃R1
(u) and T̃R2

(u) from T̃R(u) by removing
the unique edge in T̃R(u) having one end vertex in int(C) and one end
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vertex in ext(C).

In Section 6.2, we described how to support edge contraction, edge deletion,
and edge insertion such that the total time is O(n3/2 log n). The only detail
missing is how to efficiently find the edges to be contracted or removed in
the three cases above. We consider these cases separately in the following.

Case 1: Assume that δint(R, C) 6= ∅ and let u ∈ δint(R, C). With a depth-
first search in T̃R(v) as described above, we can identify all faces of R be-
longing to ext(C) in time proportional to the number of such faces. We can
charge this time to the number of edges in T̃R(u) that are to be contracted.

For each such face f , we can mark the corresponding vertex in T̃R(u) by
traversing the pointer associated with entry u of array AR(f). Again, we can
charge the time for this to the number of edges to be contracted.

Now, we need to contract all edges of T̃R(u) whose end vertices are both
marked. In order to do this efficiently, we need to make a small modification
to the contracted dual tree data structure in Section 6.2.

More precisely, we make the contracted dual trees rooted at some vertex.
The choice of root is not important and may change during the course of
the algorithm. What is important is that each non-root vertex now has a
parent. By checking, for each marked non-root vertex whether its parent is
also marked, we can identify the edges to be contracted in time proportional
to the number of such edges. Of course this only works if the parent of a
vertex can be obtained in constant time. Let us show how the contracted
dual tree data structure can be adapted to support this.

Recall that each vertex of a contracted dual tree T̃R(v) is associated with
an edge-adjacency list Eu(T̃R(v)) containing the edges adjacent to u in T̃R(v).
We now require the edge from v to its parent (if defined) to be the located
at the first entry of this list. This allows us to find parents in constant time.

How do we ensure that the parent edge is always located at the head of
the list? This is not difficult after an edge insertion or deletion so let us focus
on edge contractions. When an edge e = (u1, u2) is contracted, either u1 is
the parent of u2 or u2 is the parent of u1. Assume, say, the former. Then the
parent of u1 becomes the parent of the new vertex obtained by contracting
e. When the two edge adjacency lists are merged, one of the two heads of
the two old lists should thus be the head of the new list. This can easily be
done in constant time.
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Case 2: This case is similar to case 1.

Case 3: We need an efficient way of finding the unique edge e in T̃R(u)
having one end vertex in int(C) and one end vertex in ext(C). We do as
follows: first we mark the entries in F(R) corresponding to the set of faces
of R belonging to int(C) or the set of faces of R belonging to ext(C). The
set we choose to mark is the smaller of the two. We do this with “parallel”
searches in T̃R(v) as described above, using time proportional to the number
of marked faces.

We mark the corresponding vertices of T̃R(u) (using pointers from the
arrays associated with entries of F(R)). By Lemma 7, these form a subtree
of T̃R(u) so we can find e by starting a search in any marked vertex of T̃R(u)
and stopping once we encounter a vertex which is not marked. Then e is the
last edge encountered in the search. This search also takes time proportional
to the number of marked faces.

Hence, constructing the contracted and pruned dual trees for R1 and
R2 takes time proportional to the number of marked faces. Lemma 9 then
implies that the total time for this during the course of the algorithm is
O(n3/2 log n).

Having constructed the contracted and pruned dual trees for R1 and R2,
what remains before adding C to B is to add bidirected pointers between
entries of the array associated with the new face in F(R1) resp. F(R2) and
the new vertex in the contracted/pruned dual tree for R1 resp. R2. Since
the size of the array is O(

√
n), this can clearly be done in a total of O(n3/2)

time.
This concludes the description of the implementation of our algorithm.

We have shown that it runs in O(n3/2 log n) time and requires O(n3/2) space.

7 Recursively Computed Cycles

So far, we have assumed that only cycles from H(VJ ) are encountered in line
3 of the recursive greedy algorithm. Now, we show how to deal with cycles
from B′

1 ∪ B′
2. In the following, we only consider B′

1 since dealing with B′
2 is

symmetric.
The overall idea is the following. When a cycle C ∈ H(VJ ) is added to B,

all cycles of B′
1 that cross C are marked. If in the for-loop, a cycle C ∈ B′

1 is
picked, it is skipped if it is marked since the GMCB is nested by Lemma 1.
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C = C(v, e)
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Figure 9: (a): Neither R(C ′,B1), R(C ′′,B1), nor R(C ′′′,B1) are ancestors of
R(fJ ,B1) and only R(C ′,B1) and R(C ′′,B1) are ancestors of both R(f1,B1)
and R(f2,B1). Thus, C crosses C ′ and C ′′ and not C ′′′. (b): Both R(C ′,B1)
and R(C ′′,B1) are ancestors of R(fJ ,B1) and only R(C ′,B1) is an ancestor
of neither R(f1,B1) nor R(f2,B1). Thus, C crosses C ′ and not C ′′.

Otherwise, C must be fully contained in some region of the form R(C ′,B),
C ′ ∈ B. Then C is added to B if and only if C separates a pair of elementary
faces of R(C ′,B).

We will assume that the recursive invocation of the algorithm in G1 re-
turns region tree T (B1) in addition to B1.

By applying Lemma 2, we see that every pair of elementary faces of G1 is
separated by some cycle of B1. Hence, each region associated with a vertex
u of T (B1) contains exactly one elementary face of G1 and we assume that
the recursive call has associated this face with u. We let R(f,B1) denote the
region containing elementary face f .

We use the conditions in the following lemma to identify those cycles of
B′

1 that should be marked whenever a cycle of H(VJ ) is added to B.

Lemma 11. Let C = C(v, e) ∈ H(VJ ). If e does not belong to G1 then C
does not cross any cycle of B′

1. Otherwise, let f1 and f2 be the elementary
faces of G1 adjacent to e and let fJ be the elementary face of G1 containing
J . Then the set of cycles C ′ ∈ B′

1 that C crosses are precisely those which
satisfy one of the following two conditions:
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1. R(C ′,B1) is not an ancestor of R(fJ ,B1) and is an ancestor of both
R(f1,B1) and R(f2,B1) in T (B1) (Figure 9(a)),

2. R(C ′,B1) is an ancestor of R(fJ ,B1) and is an ancestor of neither
R(f1,B1) nor R(f2,B1) in T (B1) (Figure 9(b)).

The proof can be found in the appendix.
The next lemma will simplify the test in line 4 of the recursive greedy

algorithm for C ∈ B′
1. Again, the proof is in the appendix.

Lemma 12. Suppose that in the recursive greedy algorithm, C ∈ B′
1 is the

cycle currently considered and assume that it does not cross any cycle of the
partially constructed GMCB B of G. If J ⊂ ext(C) then all descendants of
C in region tree T (B1) belong to the GMCB of G. If J ⊂ int(C) then all
cycles of non-descendants of C in T (B1) belong to the GMCB of G.

Now, we are ready to describe how the algorithm deals with cycles from
B′

1. Each cycle in this set is in one of three states: active, passive, or cross
state.

Initially, all cycles in B′
1 are active. When a cycle from H(VJ ) is added

to B, Lemma 11 is applied to identify all cycles from B′
1 that cross this cycle.

These cycles have their state set to the cross state.
When the algorithm encounters a cycle C ∈ B′

1 in the for-loop, C is
skipped if it is in the cross state.

If C is active, it is completely contained in some region R. There are two
cases to consider: J ⊂ ext(C) and J ⊂ int(C). We assume that J ⊂ ext(C)
since the case J ⊂ int(C) is similar. We need to determine whether C should
be added to B. By Lemma 4, this amounts to checking whether there are two
elementary faces of R which are separated by C. By Lemma 12, we know
that the elementary faces of R belonging to int(C) are exactly the elementary
faces of the region R′ in int(C) that was generated when C was added to B1

during the recursive call for G1.
Hence, we add C to B if and only if the number of elementary faces in R

is strictly larger than the number of elementary faces in R′.
If C is added to B, region R is split into two smaller regions. Let R1 be

the internal region and let R2 be the external region. Since J ⊂ ext(C),
Lemma 12 implies that the cycles belonging to int(C) that are added to
B during the course of the algorithm are exactly C and its descendants in
T (B1). We therefore do not need to maintain R1 or any regions contained in
int(C).
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Instead, we make all descendants of C in T (B1) passive. When a passive
cycle is encountered by the algorithm, there is no need to update regions or
contracted or pruned dual trees and the cycle is simply added to B.

Now, let us consider R2. In order to obtain this region, we replace all
faces of R belonging to int(C) with a single new face defined by int(C). And
we contract all edges in int(C) to a single black vertex in all contracted and
pruned dual trees for R.

This completes the description of the extension of our algorithm that
deals with cycles from B′

1 ∪ B′
2.

7.1 Implementation

Let us show how to give an efficient implementation of the above algorithm
for cycles from B′

1 ∪ B′
2. Due to symmetry, we may restrict our attention to

B′
1 in the following.

7.1.1 Identifying cross state cycles

The first problem is to identify the cycles of B′
1 that should be in the cross

state when a cycle C = C(v, e) ∈ H(VJ ) is added to B.
To solve this problem, we apply Lemma 11. Checking whether e belongs

to G1 takes constant time. If e is not an edge of G1 then no new cycles will
be in the cross state. Otherwise, we obtain in constant time the elementary
faces f1 and f2 adjacent to e in G1 since these are the end vertices of e in
the dual of G1.

We assume that we can compute lowest common ancestors in T (B1) effi-
ciently. We can use the data structure of Harel and Tarjan [11] for this.

Let a1 be the lowest common ancestor of R(f1,B1) and R(f2,B1) in
T (B1), see Figure 10. Let a2 be the lowest common ancestor of R(f1,B1) and
R(fJ ,B1). Let a3 be the lowest common ancestor of R(f2,B1) and R(fJ ,B1).
Finally, let P be the path in T (B1) containing R(fJ ,B1) and its ancestors.

A cycle C ′ ∈ B′
1 satisfies the first condition in Lemma 11 if and only if

it is not associated with a vertex on P and if it is associated with a1 or an
ancestor of a1 (Figure 10(a)). And it satisfies the second condition if and
only if it is associated with a vertex on P and not with a2, a3, or an ancestor
of either of these two vertices (Figure 10(b)).

To identify cycles that satisfy the first condition, we start at a1 and walk
upwards in T (B1), marking cycles as we go along. The process stops when a
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a1 = a2

R(fJ ,B1)R(f2,B1)

(b)

R(f1,B1)

a2 = a3

R(fJ ,B1)

a1

R(f2,B1)

(a)

R(f1,B1)

a3P

P P

P

P

Figure 10: (a): Cycles associated with a1 or an ancestor of a1 and not with
a vertex on P are exactly those that satisfy the first condition in Lemma 11.
(b): Cycles associated with a vertex on P and not with a2, a3, or an an-
cestor of either a2 or a3 are exactly those satisfying the second condition in
Lemma 11.

vertex on P is reached.
To identify cycles satisfying the second condition, we instead move up-

wards in T (B1) along P , starting in R(fJ ,B1). We stop when the root of
T (B1) or when a2 or a3 is reached.

Although this strategy works, it is slow since the same cycles may be con-
sidered several times during the algorithm. To remedy this, we first observe
that when identifying cycles associated with vertices from a1 to P , we may
stop if we encounter a cycle that is already in the cross state since then all
its ancestors which are not on P must also be in this state.

Next, we observe that when identifying cycles associated with vertices on
P , we always consider them from bottom to top. Hence, by keeping track
of the bottommost b vertex on P whose associated cycle is not in the cross
state, we can start the next traversal of P from b. If the cycle associated with
a2 or with a3 is already in the cross state, we need not consider any vertices.
Otherwise, we walk upwards in P from b, changing the state of cycles to the
cross state and stop if a2 or a3 is reached.

It follows that we can identify cycles satisfying one of the two conditions
and change their state in time proportional to the number of cycles whose
state changes as a result of this. Hence, the total time for this is bounded
by the size of T (B1) which is linear.
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7.1.2 Testing condition in line 4

In the following, let C be an active or passive cycle in B′
1 just encountered

by our algorithm. We will assume that J ⊂ ext(C). The case J ⊂ int(C)
is similar.

We first need to determine whether C should be added to B. This is trivial
if C is passive since passive cycles should always be added. And as noted in
Section 7, no pruned dual trees need to be updated after the insertion of a
passive cycle.

So assume that C is active. Let R be the region containing C and let R′

be the region in int(C) that was generated when C was added to B1 during
the construction of the GMCB of G1. As we showed above, determining
whether C should be added to B amounts to checking whether the number
of elementary faces in R is strictly larger than the number of elementary
faces in R′.

We can easily extend our region data structure to keep track of the num-
ber of elementary faces in each region without increasing the time and space
bounds of our algorithm. By recording this information for R′ during the re-
cursive call for G1, it follows that we can determine in constant time whether
R contains more elementary faces than R′.

Of course, this only works if we can quickly identify R and R′. Identifying
R′ is simple since this region is associated with the vertex vC of region tree
T (B1) associated with C.

To identify R, let RvC
be the region associated with vC in T (B1). Since

B1 is the GMCB of G1, each pair of elementary faces of G1 is separated by
some cycle of B1. It follows that RvC

contains exactly one elementary face
fvC

of G1. We may assume that this face was associated with vC during the
construction of B1 so that we can obtain this face in constant time from vC .

Face fvC
is also an elementary face in G and it belongs to R. Recall from

Section 6.1 that there is a bidirected pointer between R and each elementary
face of G belonging to R. Hence, we can obtain R from fvC

in constant time
It follows from the above that we can check if C should be added to B in

constant time.

7.1.3 Inserting a cycle

Now, suppose C should be inserted into B. We first make cycles of B′
1 passive

according to Lemma 12. This can be done with, say, a depth-first search in
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T (B1) starting in the vertex vC of T (B1) associated with C and visiting
descendants of this vertex. The search stops when a vertex associated with a
passive cycle is encountered. Each search identifies the vertices of T (B1) that
are associated with cycles whose state changes from non-passive to passive.
And since we stop a search when a passive cycle is encountered, all searches
take total time proportional to the size of T (B1) which is O(n).

Next, we need to update regions and contracted and pruned dual trees.
Let R1 be the internal region and let R2 be the external region w.r.t. R
and C. As we showed in the overall description of the algorithm, the only
problem that we need to consider is how to construct R2 and its contracted
and pruned dual trees. We showed that this amounts to replacing all faces
of R belonging to int(C) with a single new face defined by int(C) and to
contract all edges in int(C) to a single black vertex in all contracted and
pruned dual trees for R.

We will show how to find the faces of R belonging to int(C) in time
proportional to their number. Applying the charging schemes introduced in
Section 6.3, this will suffice to prove the desired time and space bounds for
the entire algorithm.

Identifying non-elementary faces: Consider an active cycle C ′ associ-
ated with a descendant u of the vertex vC of T (B1) associated with C. If
C ′ was previously considered in the for-loop of our algorithm, it must have
been added to B (by Lemma 12). This implies that int(C ′) must be a non-
elementary face of R since otherwise, C ′ would be passive, see Figure 11. The
converse holds as well: any non-elementary face of R belonging to int(C) is
realized by int(C ′) for such a cycle C ′ previously considered in the for-loop.

It follows that we can find all non-elementary faces of R belonging to
int(C) by identifying the active descendants of C in T (B1) that have already
been considered in the for-loop. Since all active cycles associated with de-
scendants of C are to become passive, we can charge the time for finding these
faces to the number of cycles whose state changes from active to passive.

Identifying elementary faces: What remains is to identify the elemen-
tary faces of R belonging to int(C). Recall that we have associated with each
vertex u of T (B1) the unique elementary face of G1 contained in the region
associated with u. Vertex vC and its descendants in T (B1) are thus asso-
ciated with exactly the elementary faces of G1 belonging to int(C). These
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R

R2

C
R1

C1

C2

Figure 11: Solid cycles belong to the partially constructed GMCB B of G.
All descendants of vertices of T (B1) associated with solid cycles are passive
and thus do not define faces of R. For this instance, C1 and C2 define the
non-elementary faces of R.

faces are also elementary faces in G.
It follows that the elementary faces of R belonging to int(C) are asso-

ciated with exactly the descendants of C corresponding to active cycles not
already considered by the algorithm. Using the same charging scheme as
above, we can also identify these faces within the required time and space
bounds.

We have shown how to implement the entire recursive greedy algorithm to
run in O(n3/2 log n) time and O(n3/2) space and we can conclude this section
with the main result of our paper.

Theorem 2. Given an n-vertex planar, undirected graph G = (V, E) with
non-negative edge weights, the following implicit representation of the GMCB
B of G can be computed in O(n3/2 log n) time and O(n3/2) space:

1. a set of trees T1, . . . , Tk in G rooted at vertices v1, . . . , vk, respectively,

2. a set of triples (i, e, w) representing the cycles in B, where i ∈ {1, . . . , k},
e = (u, v) ∈ E \ETi

, and w ∈ R, where u and v are vertices in Ti. The
pair (i, e) represents the cycle in B formed by concatenating e and the
two paths in Ti from vi to u and from vi to v, respectively. The value
of w is the weight of this cycle,

3. the region tree T (B) where each vertex points to the associated region,
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4. a set of regions. Each region is associated with the unique elementary
face of G contained in that region. Each internal region R(C,B) is
associated with the triple representing C.

8 Corollaries

In this section, we present results all of which follow from Theorem 2. The
first is an output-sensitive sensitive algorithm for computing an MCB.

Corollary 1. A minimum cycle basis of an n-vertex planar, undirected graph
with non-negative edge weights can be computed in O(n3/2 log n+C) time and
O(n3/2 + C) space, where C is the total length of all cycles in the basis.

Proof. Follows immediately from Theorem 2.

A stronger result holds when the graph is unweighted:

Corollary 2. A minimum cycle basis of an n-vertex planar undirected, un-
weighted graph can be computed in O(n3/2 log n) time and O(n3/2) space.

Proof. Let G be an n-vertex planar, undirected, unweighted graph. The
internal elementary faces of G define a cycle basis of of G of total length
O(n). Hence, since G is unweighted, an MCB of G has total length O(n).
The result now follows from Corollary 1.

Since the all-pairs min cut problem is dual equivalent to the MCB problem
for planar graphs, we also get the following two results.

Corollary 3. All-pairs min cuts of an n-vertex planar, undirected graph
with non-negative edge weights can be computed in O(n3/2 log n + C) time
and O(n3/2 + C) space, where C is the total length of the cuts.

Proof. Let G be an n-vertex planar, undirected graph with non-negative edge
weights. As shown in [12], if G is connected, we can solve the APMCP for
G by solving the MCBP for the dual G∗ of G.

We may assume that G is connected since otherwise, we can consider each
connected component separately. We cannot immediately solve the MCBP
for G∗ since this is a multigraph. But we can avoid an edge of the form (u, u)
by splitting it into two edges (u, v) and (v, u) whose sum of weights equal
the weight of (u, u). And we can avoid multi-edges in a similar way. Let
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G′ be the resulting planar graph. It is easy to see that G′ has size O(n).
Furthermore, an MCB B of G′ can be transformed into an MCB of G∗ in
time proportional to the total size of cycles in B. The result now follows
from Corollary 1.

Corollary 4. All-pairs min cuts of an n-vertex planar, undirected, unweighted
graph can be computed in O(n3/2 log n) time and O(n3/2) space.

Proof. This result is easily obtained by combining ideas in the proofs of
Corollary 2 and Corollary 3.

Next, we present our subquadratic time and space algorithm for finding
the weight vector of a planar graph.

Corollary 5. The weight vector of an n-vertex planar, undirected graph with
non-negative edge weights can be computed in O(n3/2 log n) time and O(n3/2)
space.

Proof. From Theorem 2, we obtain an implicit representation of the GMCB
B for the input graph. We then compute the weights of all cycles in B using
linear time and space. Sorting them takes O(n log n) time. This gives the
weight vector of the input graph in a total of O(n3/2 log n) time and O(n3/2)
space.

From Theorem 2, we also obtain a faster algorithm for computing a
Gomory-Hu tree of a planar graph.

Corollary 6. A Gomory-Hu tree of an n-vertex connected, planar, undirected
graph with non-negative edge weights can be computed in O(n3/2 log n) time
and O(n3/2) space.

Proof. The following algorithm constructs a Gomory-Hu tree for G [26]: a
tree T spanning a collection of vertex sets S1, . . . , St is maintained, starting
with S1 = V . At each step, a set Si is picked such that |Si| > 1 and any
two distinct vertices u, v ∈ Si are chosen. Set Si is then regarded as the root
of T and each subtree of T , i.e., each tree in T \ {Si}, is collapsed into a
single supernode. A min u-v cut in the resulting graph is found, partitioning
V into two subsets, V1 and V2, where u ∈ V1 and v ∈ V2. Tree T is then
modified by splitting Si into two vertices, Si1 and Si2 , where Si1 = Si∩V1 and
Si2 = Si ∩ V2. The two vertices are connected by a new edge whose weight
equals the size of the min cut found. Finally, each subtree of the old T is
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connected to Si1 if the corresponding supernode was in the same partition as
u in the cut. Otherwise, the subtree is connected to Si2 .

Let us show how to implement this algorithm to obtain the desired time
and space bounds. We first apply Theorem 2 to the dual G∗ of G, giving
an implicit representation of the GMCB of G∗. By Lemma 2, each cycle C
in this basis is a minimum-weight cycle that separates some pair of faces f1

and f2 in G∗. Let u1 and u2 be the vertices of G corresponding to f1 and f2,
respectively. By duality of the GMCBP and the APMCP [12], the edges of
C are the edges of a min u1-v1 cut in G of weight equal to the weight of C.

Now, pick any cycle C in the GMCB of G∗. As the initial min cut in
the Gomory-Hu tree algorithm, we pick the one corresponding to C. This
separates the initial set Si = S1 = V into two sets Si1 and Si2 , where Si1 is
the set of vertices of G corresponding to faces of G∗ in int(C) and Si2 is the
set of vertices of G corresponding to faces of G∗ in ext(C). Now, T consists
of vertices Si1 and Si2 and an edge (Si1 , Si2). The weight of this edge is equal
to the weight of C. Since we are given the weight of C from Theorem 2, we
can this obtain the weight of edge (Si1, Si2) in constant time.

Note that for each pair of vertices u and v in Si1 , there is a min u-v cut
defined by a cycle of B which is a descendant of C in T (B). And for each
pair of vertices u and v in Si2 , there is a min u-v cut defined by a cycle of B
which is a non-descendant of C in T (B).

Hence, we have separated our problem in two and we can recursively
compute the Gomory-Hu tree for G by splitting region tree T (B) in two at
each recursive step. The recursion stops when we obtain a set Si of size one.
At this point, we obtain the elementary face f of G∗ correponding to the
vertex in Si using part four of Theorem 2. The vertex of G corresponding to
f in G∗ is then the unique vertex in Si.

Let us analyze the running time of this algorithm. Applying Theorem 2
takes O(n3/2 log n) time and O(n3/2) space. Note that in the algorithm above,
we do not need to compute the vertices in the Si-sets until they have size one.
So each step of the algorithm, where the current Si-set has size greater than
one, can be implemented to run in constant time. And we can also execute
a step where |Si| = 1 in constant time using the fourth part of Theorem 2 to
find the vertex in Si.

Since the GMCB of G∗ contains O(n) cycles, it follows that the algorithm
runs in linear time and space, in addition to the time and space in Theorem 2.
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Finally, we present our oracle for answering min cut queries.

Corollary 7. Let G be an n-vertex planar, undirected graph with non-negative
edge weights. With O(n3/2 log n) time and O(n3/2) space for preprocessing,
the weight of a min cut between any two given vertices of G can be reported
in constant time. The cut itself can be reported in time proportional to its
size.

Proof. We may assume that G is connected since otherwise, we can consider
each connected component separately. We first construct a Gomory-Hu tree
T of G. By Corollary 6, this can be done in O(n3/2 log n) time and O(n3/2)
space. By definition of Gomory-Hu trees, answering the query for the weight
of a min cut between two vertices u and v of G reduces to answering the
query for the minimum weight of an edge on the simple path between u and
v in T .

It is well-known that any tree with m vertices has a vertex v such that
the tree can be split into two subtrees, each rooted at v and each containing
between m/4 and 3m/4 vertices. Furthermore, this separator can be found
in linear time.

We find such a separator in T and recurse on the two subtrees. We stop
the recursion at level log(

√
n). The total time for this is O(n logn).

Let S be the subtrees at level log(
√

n). We observe that these trees are
edge-disjoint and their union is T . Furthermore, |S| = O(

√
n) and each

subtree has size O(
√

n). The boundary vertices of a subtree S ∈ S are the
vertices that S shares with other subtrees in S. Vertices of S that are not
boundary vertices are called interior vertices of S. We let B be the set of
boundary vertices over all subtrees in S. It is easy to see that |B| = O(

√
n).

For each boundary vertex b ∈ B, we associate an array with an entry for
each vertex of T . The entry corresponding to a vertex v 6= b contains the
edge of minimum weight on the simple path in T between b and v.

Since |B| = O(
√

n), it follows easily that we can construct all these arrays
and fill in their entries in a total of O(n3/2) time and space. This allows us
to answer queries in T in constant time when one of the two vertices belongs
to B.

We associate each vertex v of T not belonging to B with the unique
subtree Sv in S containing v as an interior vertex.

Associated with v is also an array with an entry for each S ∈ S \ {Sv}.
This entry contains the vertex b of B belonging to Sv such that any path
from v to S contains b. Note that for any other vertex v′ of Sv, any path

36



I

from v′ to S also contains b. From this observation and from the fact that
|S| = O(

√
n), it follows that we can compute the arrays associated with

interior vertices in all subtrees using a total of O(n3/2) time and space.
Finally, we associate with v an array with an entry for each vertex v′ of

Sv. This entry contains the edge of minimum weight on the simple path in
Sv from v to v′. Since Sv has size O(

√
n), the entries in this array can be

computed in O(
√

n) time. Over all interior vertices of all subtrees of S, this
is O(n3/2) time.

Now, let us describe how to answer a query for vertices u and v in T . In
constant time, we find the subtrees Su, Sv ∈ S such that u ∈ Su and v ∈ Sv.
If Su = Sv or if u or v belongs to B, we can answer the query in constant
time with the above precomputations.

Now, assume that Su 6= Sv and that u and v are interior vertices. We
find the boundary vertex b of Su such that any path from u to Rv contains
b. Let P1 be the simple path in Su from u to b and let P2 be the simple path
in T from b to v. For i = 1, 2, the above precomputations allow us to find
the least-weight edge ei on Pi in constant time. Let e be the edge of smaller
weight among e1 and e2. Returning the weight of e then answers the query
in constant time.

To show the last part of the corollary, observe that when the weight of
edge e is output by the above algorithm, the set of edges in the corresponding
cut is defined by a cycle Ce in the GMCB B of G∗. During the construction
of Gomory-Hu tree T (see Corollary 6), we can associate e with the implicit
representation of Ce from Theorem 2. Hence, given e, we can output Ce in
time proportional to its size. This completes the proof.

9 Obtaining Lex-Shortest Path Trees

Let w : E → R be the weight function on the edges of G. In Section 4, we
assumed uniqueness of shortest path in G between any two vertices w.r.t.
w. We now show how to avoid this assumption. We assume in the following
that the vertices of G are given indices from 1 to n.

By results in [12], there is another weight function w′ on the edges of G
such that for any pair of vertices in G, there is a unique shortest path between
them w.r.t. w′ and this path is also a shortest path w.r.t. w. Furthermore, for
two paths P and P ′ between the same pair of vertices in G, w′(P ) < w′(P )
exactly when one of the following three conditions is satisfied:
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1. P is strictly shorter than P ′ w.r.t. w,

2. P and P ′ have the same weight w.r.t. w and P contains fewer edges
than P ′,

3. P and P ′ have the same weight w.r.t. w and the same number of edges
and the smallest index of vertices in VP \VP ′ is smaller than the smallest
index of vertices in VP ′ \ VP .

A shortest path w.r.t. w′ is called a lex-shortest path and a shortest path tree
w.r.t. w′ is called a lex-shortest path tree.

The properties of w′ allow us to apply this function instead of w in our
algorithm. What we need to describe is how to compute lex-shortest paths
efficiently.

As shown in [12], lex-shortest paths between all pairs of vertices in G
can be computed in O(n2 log n) time. We need something faster. In the
following, we show a stronger result, namely how to compute a lex-shortest
path tree in O(n log n) time. Since we only need to compute shortest paths
from O(

√
n) boundary vertices at the top-level of the recursion, this will give

a total time bound of O(n3/2 log n).
We also need to find lex-shortest path trees in subgraphs of G when

recursing and we need to compute them w.r.t. the same weight function w′.
By the above, this can be achieved simply by keeping the same indices for
vertices in all recursive calls.

Now, let s ∈ V be given and let us show how to compute the lex-shortest
path tree in G with source s in O(n logn) time.

We first use a small trick from [12]: for function w, a sufficiently small
ǫ > 0 is added to the weight of every edge. This allows us to disregard the
second condition above. When comparing weights of paths, we may treat ǫ
symbolically so we do not need to worry about precision issues.

We will apply Dijkstra’s algorithm with a few additions which we describe
in the following. We keep a queue of distance estimates w.r.t. w as in the
standard implementation. Now, consider any point in the algorithm. Let
d be the distance estimate function. Consider an unvisited vertex v with
current distance estimate d[v] < ∞ and predecessor vertex p.

Suppose that at this point, the algorithm extracts a vertex p′ from Q
which is adjacent to v in G and suppose that d[p′] + w(p′, v) = d[v]. The
central problem is to decide whether v should keep p as its predecessor or
get p′ as its new predecessor. In the following, we show how to decide this
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in O(logn) time. This will suffice to give an O(n logn) time algorithm that
computes the lex-shortest path tree in G with source s.

Let P be the path in the partially constructed lex-shortest path tree T
from s to p followed by edge (p, v). Let P ′ be the path in T from s to p′

followed by edge (p′, v). Note that P and P ′ both have weight d[v] w.r.t. w.
Hence, P is shorter than P ′ w.r.t. w′ if and only if the third condition above
is satisfied. In other words, v should keep p as its predecessor if and only if
this condition is satisfied.

Let q be the lowest common ancestor of p and p′ in T . Paths P and P ′

share vertices from s to q. Then they split up and do not meet before v.
Let Q be the subpath of P from the successor of q to p. Let Q′ be the

subpath of P ′ from the successor of q to p′. Testing the third condition above
is equivalent to deciding whether the smallest vertex index in VQ is smaller
than the smallest vertex index in VQ′.

We assume that for each vertex u in T , we have pointers p0[u], . . . , pku
[u]

and values m0[u], . . . , mku
[u] ∈ {1, . . . , n}. For i = 0, . . . , ku, pi[u] points to

the ancestor a of u in T for which the number of edges from a to u is 2i.
And mi[u] is the smallest vertex index on the path in T from a to u. The
value of ku is defined as the largest i such that pi[u] is defined. Note that
ku = O(log n).

Since P and P ′ have the same number of edges, the same holds for Q
and Q′. From this observation, it follows that we can apply binary search
on the pointers defined above to find lowest common ancestor q in O(logn)
time. And with these pointers and the mi-values, we can partition Q and Q′

into O(logn) intervals in O(log n) time and find the smallest index in each
interval in constant time per interval. Hence, we can decide whether the
smallest vertex index in VQ is smaller than the smallest vertex index in VQ′

in logarithmic time, which gives the desired.
The only problem that remains is how to compute pointers and mi-values

during the course of the algorithm. Whenever the partially constructed lex-
shortest path tree is extended with a new vertex u, we need to compute
p0[u], . . . , pku

[u] and m0[u], . . . , mku
[u] ∈ {1, . . . , n}. But this can easily be

done in O(log n) time using the pi-pointers and mi-values for the ancestors
of u in T .

We can now conclude this section with the following theorem. Since we
did not make use of planarity in this section, we get a more general result,
which we believe to be of independent interest.
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Theorem 3. A lex-shortest path tree in an undirected graph with m edges
and n vertices can be computed in O((m + n) log n) time.

Proof. Follows by combining the above with a standard implementation of
Dijkstra’s algorithm.

10 Concluding Remarks

We showed that finding a minimum cycle basis of an n-vertex planar, undi-
rected, connected graph with non-negative edge weights requires Ω(n2) time,
implying that a recent algorithm by Amaldi et al. is optimal. We then pre-
sented an algorithm with O(n3/2 log n) time and O(n3/2) space requirement
that computes such a basis implicitly.

From this result, we obtained an output-sensitive algorithm requiring
O(n3/2 log n + C) time and O(n3/2 + C) space, where C is the total length
of cycles in the basis that the algorithm outputs. For unweighted graphs, we
obtained O(n3/2 log n) time and O(n3/2) space bounds.

Similar results were obtained for the all-pairs min cut problem for planar
graphs since for planar graphs, this problem is known to be dual equivalent
to the minimum cycle basis problem.

As corollaries, we obtained algorithms that compute the weight vector
and a Gomory-Hu tree of a planar n-vertex graph in O(n3/2 log n) time and
O(n3/2) space. The previous best bound was quadratic.

From the Gomory-Hu tree algorithm, we derived an oracle for answering
queries for the weight of a min cut between any two given vertices. Pre-
processing time is O(n3/2 log n) and space is O(n3/2). Quadratic time and
space was previously the best bound for constructing such an oracle. Our
algorithm can output the actual cut in time proportional to its size.
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Appendix

Proof of Lemmas 8 and 9

Let us first prove Lemma 8. We only need to consider the hard case where in
beginning, all objects have weight 1 and at termination, exactly one object
of weight W remains.

Consider running the algorithm backwards: starting with one object of
weight W , repeatedly apply an operation split that splits an object of weight
at least two into two new objects of positive integer weights such that the
sum of weights of the two equals the weight of the original object. Assume
that split runs in time proportional to the smaller weight of the two new
objects. If we can give a bound of O(W log W ) for this algorithm, we also
get a bound on the algorithm stated in the theorem.

The running time for the new algorithm satisfies:

T (w) ≤ max
1≤w′≤⌊w/2⌋

{T (w′) + T (w − w′) + cw′}

for integer w > 1 and constant c > 0. It is easy to see that the right-hand
side is maximized when w′ = ⌊w/2⌋. This gives T (W ) = O(W log W ), as
desired.

The above proof also holds for Lemma 9.

Proof of Lemma 10

We need to show that for a cycle C = C(v, e) ∈ H(VJ ) belonging to a region
R, sets δint(R, C), δext(R, C), and δ(R, C) can be computed in O(

√
n) time

with O(n3/2 log n) preprocessing time and O(n3/2) space.
First, observe that since C is completely contained in R, δ(R, C) is the

subset of all boundary vertices belonging to C. Hence, this subset does not
depend on R. We will thus refer to it as δ(C) in the following.

Let v0, . . . , vr−1 be the boundary vertices encountered in that order in a
simple, say clockwise, walk of J and let J = J0J1 · · · Jr−1 be a decompo-
sition of J into smaller curves where Ji starts in vi and ends in v(i+1) mod r,
i = 0, . . . , r−1. Each curve Ji is completely contained in an elementary face
of G and we let f(Ji) denote this face.

In our proof, we need the following lemma and its corollary.
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Lemma 13. Let P be a shortest path in G from a vertex u to a vertex v.
Then a vertex w belongs to P if and only if dG(u, w) + dG(w, v) = dG(u, v).

Proof. If w belongs to P then clearly dG(u, w) + dG(w, v) = dG(u, v). And
the converse is also true since shortest paths in G are unique.

Corollary 8. Let C = C(v, e) be defined as above. Let w ∈ V and assume
that single-source shortest path distances in G with sources v and w have
been precomputed. Then determining whether w belongs to C can be done in
constant time.

Proof. Let u1 and u2 be the end vertices of e and let P1 resp. P2 be the
shortest paths in G from v to u1 resp. u2. Since C is isometric, both P1

and P2 belong to C and the union of their vertices is exactly the vertices of
C. Hence, determining whether w belongs to C is equivalent to determining
whether w belongs to P1 or to P2. The result now follows from Lemma 13.

We will assume that single-source shortest path distances in G with each
boundary vertex as source have been precomputed. As observed earlier, this
can be done in O(n3/2 log n) time and O(n3/2) space. Corollary 8 then allows
us to find the set δ(C) of boundary vertices belonging to C in O(r) = O(

√
n)

time. We may assume that we have the boundary vertices on C cyclically
ordered according to how they occur on J in a clockwise walk of that curve.

In the following, let vi = v (so C = C(vi, e)). Consider two consecutive
vertices vi1 and vi2 of δ(C) in this cyclic ordering. We assume that i2 6= i
since the case i2 = i can be handled in a similar way. There are two possible
cases:

1. the boundary vertices (excluding vi1 and vi2) encountered when walking
from vi1 to vi2 along J all belong to int(C), or

2. they all belong to ext(C).

Let vi3 be the predecessor boundary vertex of vi2 on J (i.e., i3 = (i2 −
1) mod r), see Figure 12. Then elementary face f(Ji3) belongs to int(C) if
and only if the first case above holds. This follows from the fact that J does
not cross any edges of G.

Lemma 14 below shows how we can check whether f(Ji3) belongs to
int(C). First, let u and v be the end vertices of e and let Pu and Pv be
the shortest paths from vi to u and v, respectively. Suppose w.l.o.g. that vi2
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v = vi
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Figure 12: (a) The first condition and (b): the second condition in Lemma 14.

belongs to Pu, see Figure 12. Let u′ be the predecessor of vi2 on Pu. This
is well-defined since i2 6= i. If vi2 6= u, let u′′ be the successor of vi2 on Pu.
Otherwise, let u′′ = v (so u′′ is the vertex 6= u′ adjacent to vi2 on C). Let
v′ resp. v′′ be the predecessor resp. successor of vi2 in a clockwise walk of
f(Ji3).

For three points p, q, r in the plane, let W (p, q, r) be the wedge-shaped
region with legs emanating from p and with right resp. left leg containing q
resp. r.

Lemma 14. With the above definitions, f(JI3) belongs to int(C) if and only
if one of the following conditions hold:

1. Pu is part of a clockwise walk of C (when directed from vi to u) and
W (vi2, u

′, u′′) contains W (vi2 , v
′, v′′) (Figure 12(a)),

2. Pu is part of a counter-clockwise walk of C (when directed from vi to
u) and W (vi2 , u

′′, u′) contains W (vi2, v
′, v′′) (Figure 12(b)).

Proof. Assume first that Pu is part of a clockwise walk of C, see Figure 12(a).
Then int(C) is to the right of the directed path u′ → vi2 → u′′. Since G is
straight-line embedded, f(JI3) belongs to int(C) if and only if W (vi2 , u

′, u′′)
contains W (vi2 , v

′, v′′).
Now, assume that Pu is part of a counter-clockwise walk of C, see Fig-

ure 12(b). Then int(C) is to the right of the directed path u′′ → vi2 →
u′. Thus, f(JI3) belongs to int(C) if and only if W (vi2, u

′′, u′) contains
W (vi2, v

′, v′′).
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Lemma 14 and the above discussion show that to efficiently determine
whether the boundary vertices between vi1 and vi2 belong to int(C) or to
ext(C), we need to quickly find u′, u′′, v′, and v′′ and determine whether Pu

is part of a clockwise or counter-clockwise walk of C.
By keeping a clockwise ordering of vertices of all elementary faces, we can

find v′ and v′′ in constant time. For each shortest path tree in G rooted at a
boundary vertex, we assume that each non-root vertex is associated with its
parent in the tree. This allows us to find also u′ in constant time.

As for u′′, suppose we have precomputed, for each boundary vertex vj and
each w ∈ V \ {vj}, the successor of vj on the path from vj to w in shortest
path tree T (vj). Depth-first searches in each shortest path tree allow us to
make these precomputations in O(n3/2) time and space.

Now, since shortest paths are unique, the subpath of Pu from vi2 to u is a
path in shortest path tree T (vi2) and u′′ is the successor of vi2 on this path.
With the above precomputations, we can thus find u′′ in constant time.

Finally, to determine whether Pu is part of a clockwise walk of C, we do
as follows. We first find the elementary faces adjacent to e in G. They can
be obtained from dual tree T̃ (vi) in constant time. We can also determine in
constant time which of the two elementary faces belongs to int(C) since that
elementary face is a child of the other in T̃ (vi). Let fuv be the elementary
face in the interior of C. We check if the edge directed from u to v is part of
a clockwise or counter-clockwise walk of fuv. Again, this takes constant time.
If it is part of a clockwise walk of fuv then Pu is part of a clockwise walk of
C (Figure 12(a)) and otherwise, Pu is part of a counter-clockwise walk of C
(Figure 12(b)).

This concludes the proof of Lemma 10.

Proof of Lemma 11

Assume first that e is not an edge of G1. Let P1 and P2 be the two shortest
paths in G from v to the end vertices of e, respectively. Since e is not in
G1, it must belong to G2. Hence, the intersection between C and G1 is the
union of paths Q, where Q is a subpath of either P1 or P2 with both its end
vertices in VJ . Each such path Q is a shortest path in G1. It then follows
from Lemma 5 that C does not cross any cycle of B′

1.
Now, assume that e belongs to G1 and let f1, f2, and fJ be defined as in

the lemma. Let C ′ ∈ B′
1 be given. We consider two cases: J ⊂ int(C ′) and

J ⊂ ext(C ′).
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Assume first that J ⊂ int(C ′). Then R(C ′,B1) is an ancestor of R(fJ ,B1).
Since vertex v of C belongs to VJ , part of C is contained in int(C ′).

It follows that if C does not cross C ′ then e is contained in int(C ′). The
converse is also true. For if e is contained in int(C ′) then by Lemma 5, both
P1 and P2 are contained in int(C ′), implying that C does not cross C ′.

Thus, C crosses C ′ if and only if e is not in int(C ′), i.e., if and only
if f1 and f2 are both contained in ext(C ′). The latter is equivalent to the
condition that R(C ′,B1) is an ancestor of neither R(f1,B1) nor R(f2,B1) in
T (B1). Hence, C crosses C ′ if and only if the second condition of the lemma
is satisfied.

Now, assume that J ⊂ ext(C ′). Then R(C ′,B1) is not an ancestor of
R(fJ ,B1). Again, Lemma 5 shows that C crosses C ′ if and only if e is not
in ext(C ′), i.e., if and only if f1 and f2 are both contained in int(C ′). This
holds if and only if R(C ′,B1) is an ancestor of both R(f1,B1) and R(f2,B1)
in T (B1). It follows that C crosses C ′ if and only if the first condition of the
lemma is satisfied.

Proof of Lemma 12

Assume first that J ⊂ ext(C) and let C ′ be a descendant of C in T (B1).
We need to show that C ′ is added to B. Since C ′ ∈ B1, there is a pair of
elementary faces f1 and f2 in G1 which are separated by C ′ and not by any
other cycle in B1. Let f1 be contained in int(C ′) and let f2 be contained
in ext(C ′). Note that f2 is contained in int(C) since otherwise, C would
separate f1 and f2.

Since J ⊂ ext(C) and since no cycle of B crosses C, all cycles of B \ B′
1

belong to ext(C). Hence, no cycle of H(VJ )∪B′
1 ∪B′

2 \{C ′} separates f1 and
f2. Since the set of cycles in the GMCB of G is a subset of H(VJ ) ∪B′

1 ∪B′
2

by Lemma 3 and since C ′ ∈ B′
1, it follows that C ′ is added to B.

Now assume that J ⊂ int(C). Since no cycle of B crosses C, all cycles of
B \ B′

1 belong to int(C). A similar argument as the above then shows that
all cycles of B1 belonging to ext(C) must be part of the GMCB of G. These
cycles are exactly the those that are not descendants of C in T (B1).

48



J

Solving the Replacement Paths Problem for Planar Directed Graphs in
O(n log n) Time

Christian Wulff-Nilsen∗

Abstract

In a graph G with non-negative edge lengths, let P be a

shortest path from a vertex s to a vertex t. We consider

the problem of computing, for each edge e on P , the length

of a shortest path in G from s to t that avoids e. This is

known as the replacement paths problem. We give a linear-

space algorithm with O(n log n) running time for n-vertex

planar directed graphs. The previous best time bound was

O(n log2 n).

1 Introduction

Computing shortest paths in graphs is a classical prob-
lem in combinatorial optimization with applications
in numerous areas such as communication networks.
These networks are in general not static but may change
due to link failures. In such cases, alternative lines of
communication need to be established and it may be of
interest to determine the “quality” of such lines.

This motivates the replacement paths problem
(RPP): given two vertices s and t in a graph G with
non-negative edge lengths and given a shortest path P
(the line of communication) in G from s to t, compute,
for each edge e on P , the length of a shortest path in
G from s to t that avoids e (if no such path exists, the
length is defined to be infinite). More motivation for
the RPP is given in [3].

The RPP is a well studied problem. For undi-
rected graphs with m edges and n vertices, algorithms
are known with running time O(m + n log n) [8] and
O(mα(m,n)) [9], respectively (the latter applying to a
stronger model of computation).

The directed case is harder since it has an Ω(m
√

n)
lower bound [5]. The trivial algorithm that removes
each edge on shortest path P in turn and applies
Dijkstra’s algorithm to the resulting graph gives a time
bound of O(mn + n2 log n). Recently, this bound
was improved to O(mn + n2 log log n) [4]. Roditty
and Zwick [10] present a randomized algorithm with
Õ(m

√
n) running time for unweighted, directed graphs.

See also [2].
For planar directed graphs, an O(n log3 n) time

∗Department of Computer Science, University of Copenhagen.

recursive algorithm is given in [3]. Klein, Mozes, and
Weimann [7] show how recursion can be avoided and
improve the time bound to O(n log2 n) using linear
space.

Our contribution is to improve the time bound of [7]
for planar graphs by giving a linear space algorithm
with O(n log n) running time. Our result is obtained
by an adaptation of the O(n log n) time multiple-source
shortest path algorithm of Klein [6] to the RPP.

The organization of the paper is as follows. In
Section 2, we give some definitions, introduce some
notation, and present some basic results that will prove
useful later on. A large part of this section is taken
from [6]. In Section 3, we show how the RPP can be split
into two simpler sub-problems. Before presenting our
algorithm, we show how to efficiently solve a problem
related to the RPP in Section 4. The ideas introduced
here will be a stepping stone towards obtaining our
main result. We then give the algorithm for the first
sub-problem in Section 5 and bound its time and space
requirements in Section 6. In Section 7, we present an
efficient algorithm for the other sub-problem. Finally,
we make some concluding remarks in Section 8.

2 Definitions, Notation, and Toolbox

Let G = (V,E) be a graph with non-negative edge
lengths. For an edge e ∈ E, let lG(e) denote its length
in G. For vertices, u, v ∈ V , dG(u, v) is the length of a
shortest path in G from u to v w.r.t. lG. If there is no
such path, dG(u, v) =∞. We let VG resp. EG denote V
resp. E.

We can assume w.l.o.g. that all shortest paths con-
sidered are simple. For a simple path P = v1 → · · · →
vm in a directed graph G, lG(P ) =

∑m−1

i=1
lG(vi, vi+1)

denotes its length and for 1 ≤ i ≤ j ≤ m, P [vi, vj ] is the
subpath vi → · · · → vj . We let fP be the flow in G as-
signing values to edges and reverses of edges of G as fol-
lows: for each edge (u, v) of P , fP (u, v) = −fP (v, u) = 1
and for all other edges/reverses of edges, fP is zero.

Let T be a spanning tree in a directed graph
G = (V,E) and let T be rooted at a vertex s. For
a v ∈ V , T [v] is the simple path from s to v in T .
We say that edge (u, v) ∈ E is relaxed (w.r.t. T ) if
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Figure 1: The dual (white vertices and dotted edges)
of a spanning tree (solid edges) in a plane graph (black
vertices and solid and dashed edges).

dT (s, u)+lG(u, v) ≥ dT (s, v) and that (u, v) is unrelaxed
(w.r.t. T ) otherwise. Observe that all edges of ET are
relaxed. For an unrelaxed edge (u, v), removing the edge
in T ending in v and reconnecting T by adding (u, v) is
called relaxing (u, v). It is well-known that if all edges
of E are relaxed w.r.t. T , T is a shortest path tree in G
with source s.

Assume in the following that G is plane. Then
since T is a spanning tree of G, the edges of E \ ET

define a spanning tree T ∗ in the dual of G rooted at the
external face of G (see [6]) and T ∗ contains all unrelaxed
edges of G, where we identify each edge of G with its
corresponding edge in the dual of G. We call T ∗ the
dual of T (in G), see Figure 1. For each edge e in T ,
the corresponding dual edge is directed from the face
to the left of e (in the direction of e) to the face to
the right of e. For an edge (u, v) in T ∗, we define
lT∗(u, v) = dT (s, u) + lG(u, v) − dT (s, v). A leafmost
unrelaxed edge (in G w.r.t. T ) is an unrelaxed edge in
G (and hence it belongs to T ∗) w.r.t. T none of whose
proper descendant edges in (the undirected version of)
T ∗ are unrelaxed in G w.r.t. T .

Given a plane directed graph G = (V,E), let G∞

be a plane graph obtained by adding a vertex v∞ to the
interior of the external face of G and an edge from v∞ to
each vertex on the external face of G. For edges (u, v),
(v, x), and (v, y) in G∞, we say that (v, x) is left (right)
of (v, y) w.r.t. (u, v) if (v, x) occurs strictly between
(v, y) and (u, v) in counter-clockwise (clockwise) order.

Given an edge (v, y) on a simple path P in G, we
say that an edge (v, x) emanates left (right) from P if
either there is an edge (u, v) preceding (v, y) on P and
(v, x) is left (right) of (v, y) w.r.t. (u, v) or if v is the
first vertex of P and belongs to the external face of G
and (v, x) is left (right) of (v, y) w.r.t. the edge from v∞
to v in G∞.

Given another simple path Q in G and a vertex

u ∈ VP ∩ VQ, we say that Q leaves P from the left
(right) at u if there is an edge (u, v) of Q starting in u
which emanates left (right) from P . And we say that
Q enters P from the left (right) at u if there is an edge
(v, u) of Q ending in u such that the reverse edge (u, v)
emanates left (right) from P .

If both P and Q start in the same vertex s and end
in the same vertex t, we say that Q is left (right) of P
if the edges of positive flow in fQ − fP define counter-
clockwise (clockwise) cycles only (this definition is by
Weihe [11] and is specialized in [6]).

For two spanning trees T1 and T2 in G, T1 is left of
T2 if for all v ∈ V , path T1[v] is left of T2[v]. If T is a
shortest path tree in G with source s, we call it a right-
most shortest path tree if every other shortest path tree
in G with source s is left of T .

An s-rooted spanning tree T in G is right-short if
the following holds for all v ∈ V : if P is a simple path in
G from s to v that is right of T [v] and lG(P ) ≤ lG(T [v])
then P = T [v]. A right-most shortest path tree is right-
short [6]. The following result from [6] will prove useful.

Lemma 2.1. Relaxing a leafmost unrelaxed edge in an
r-rooted right-short spanning tree T in G yields an r-
rooted right-short spanning tree in G that is left of T .

We will need two dynamic tree data structures
which represent and maintain, respectively, a rooted
spanning tree T and its dual T ∗ and which support the
following operations:

replace(e, e′): replaces edge e by edge e′.

sum(x): returns the sum of lengths of edges from the
root to vertex x.

find(): returns a leafmost unrelaxed edge

change(x,∆): for each edge e on the path between x
and the root, the length of e is increased by the
real number ∆ if e points towards the root and
decreased by ∆ otherwise.

Top trees [1] support the above in logarithmic time per
operation, see [6]. Note that the change-operation can
be extended to subpaths of the path between x and the
root by applying the operation twice.

3 Simplifying the Problem

In the following, let G = (V,E) be an n-vertex plane
directed graph with non-negative edge lengths and let
P = (v0 = s) → v1 → · · · → vm−1 → (vm = t)
be a shortest path in G from a vertex s to a vertex
t. For i = 1, . . . ,m, let ei denote the edge (vi−1, vi).
By transforming G if necessary, we may assume that s
belongs to the external face of G. Since we are only



J

Case 3

s

t

ei

vi1

P

Case 4

s

t

ei

vi1

vi2

P

Q

Q

vi2

Case 1

s

t

ei

vi1

vi2

Q

P

Case 2

s

t

ei

vi1

vi2

Q

P

Figure 2: The four possible cases for shortest path Q.

interested in shortest paths ending in t, we may assume
that this vertex has no outgoing edges.

Let ei ∈ EP and let us analyze the structure of a
shortest path Q in G from s to t avoiding ei. Since P is
a shortest path in G, Q can be chosen such that it has
a decomposition Q = Q1Q2Q3 where Q1 = P [s, vi1 ],
Q3 = P [vi2 , t] for some 0 ≤ i1 < i ≤ i2 ≤ m, and Q2 is
a path in G from vi1 to vi2 containing no vertices of P
except vi1 and vi2 .

There are now four possible cases (see Figure 2):

Case 1: Q leaves P from the left at vi1 and enters P
from the left at vi2

Case 2: Q leaves P from the left at vi1 and enters P
from the right at vi2

Case 3: Q leaves P from the right at vi1 and enters P
from the right at vi2

Case 4: Q leaves P from the right at vi1 and enters P
from the left at vi2

Our algorithm for the RPP consists of four phases
where in phase p, p = 1, 2, 3, 4, shortest paths of the
form Q above are restricted to having the structure in

case p. After these phases, we have four distance values
for each edge ei. The minimum of these four values is
then the length of a shortest path in G from s to t that
avoids ei.

In the following, we consider each phase separately.
Due to symmetry, we may restrict our attention to
phases 1 and 2. We start with phase 1 and consider
phase 2 in Section 7.

We remove from G edges (u, v), v 6= t, for which
either (u, v) or (v, u) emanates right from P since these
edges will not be needed in phase 1. Note that G may
contain more than one connected component. If so, we
remove all components except the one containing P .
Now, P belongs to the external face of G and is part
of a counter-clockwise walk of that face.

By adding edges to interior faces of G while keeping
G planar, we may assume that for each v ∈ V , there is
a path in G from s to v sharing no edges with P . We
pick the lengths of these new edges sufficiently large
so that finite shortest path distances will not decrease.
With this modification of G, there is a shortest path
tree in G rooted at s avoiding any given set of edges
of P . Furthermore, we can ensure that these edges are
avoided by increasing their lengths by a sufficiently large
value (M+ defined below). Note that P remains on the
external face of G after these edges have been added.

Clearly, phase 1 corresponds to solving the RPP for
the modified graph G. The idea is to use a dynamic
tree data structure to maintain a shortest path tree in
G that initially avoids em, then em−1, then em−2, and
so on until a shortest path tree avoiding e1 is obtained.
During this process, the distances in G from s to t in the
intermediate trees are computed. This is similar to the
idea behind the multiple-source shortest path algorithm
of Klein [6]. Indeed, we rely heavily on many of the
results from that paper.

4 Solving a Related Problem

To simplify the presentation of our algorithm, we first
consider a related problem. In this section, we show
how to solve this problem in O(n log n) time. The ideas
involved will prove useful in Sections 5, 6, and 7 where
we present the RPP-algorithm.

The problem we consider is the following: for i =
0, . . . ,m − 1, compute the length of a shortest path in
G from s to t avoiding every edge on P [vi, t]. We call it
the Forbidden Suffix Paths Problem (FSPP).

In the following, let M+ < ∞ be a value such that
any simple path in G has length strictly less than M+.
Pick, say, M+ = 1 +

∑
e∈E lG(e).

We now present an O(n log n)-time algorithm for
the FSPP. Pseudo-code is given in Figure 3.
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1. compute a rightmost shortest path tree T in G
with source s

2. for i = m, . . . , 1
3. lG(ei) := lG(ei) + M+

4. while there exists an unrelaxed edge
5. relax a leafmost unrelaxed edge
6. output dT (s, t)

Figure 3: The FSPP algorithm.

Theorem 4.1. The algorithm in Figure 3 solves the
FSPP for G and can be implemented to run in
O(n log n) time with O(n) space requirement.

Proof. Clearly, the algorithm solves the FSPP for G by
outputting the desired distances in reverse order.

We maintain T and its dual T ∗ using top trees
supporting the operations of Section 2.

Note that edge lengths change during the course
of the algorithm. Instead of explicitly making these
changes in the underlying graph G, we choose an
implementation maintaining the correct edge lengths in
T and its dual T ∗. This works since ET ∪ ET∗ = E so
we still keep track of the lengths of all edges in G.

Maintaining edge lengths in T : In line 3, we
increase lT (ei) by M+ if ei ∈ T . Otherwise, we do
nothing.

Now, suppose a new edge (u, v) is about to be
inserted into T in line 5. The algorithm needs to
compute lG(u, v), the length of the edge to be inserted
into T . Edge (u, v) is not already in T so (u, v) ∈ T ∗.
Thus, its length in T ∗ can be obtained in O(log n) time
since lT∗(u, v) = |sum(v) − sum(u)| where the sum-
operation is applied to T ∗ . We can then use the
following formula to determine lT (u, v) in O(log n) time:

lT (u, v) = lG(u, v) = lT∗(u, v) + dT (s, v)− dT (s, u)

= lT∗(u, v) + sum(v)− sum(u),

where the sum-operation is applied to T . We used the
definition lT∗(u, v) = dT (s, u) + lG(u, v)− dT (s, v).

Maintaining edge lengths in T ∗: In line 3,
either ei ∈ T or ei /∈ T . If ei /∈ T then no distances from
s in T change. Since lT∗(u, v) = dT (s, u) + lG(u, v) −
dT (s, v) for all edges (u, v) ∈ T ∗, no edge lengths in
T ∗ change except for lT∗(ei) which is increased by M+.
This update can be performed in O(log n) time with two
change-operations.

If on the other hand ei ∈ T then dT (s, u) increases
by M+ for all vertices u in the subtree T ′ of T rooted at
the vertex of ei furthest from s. For all other vertices u
of T , dT (s, u) does not change. Thus, the edges of T ∗

whose lengths change are those between vertices of T ′

ei

s

T ′

Figure 4: When the length of edge ei changes in T then
the edges of T ∗ whose lengths change form a single path
(solid edges).

and vertices not in T ′. These edges form a single path
in (the undirected version of) T ∗ (see Figure 4 and [6])
and so they can be updated with at most two change-
operations. This takes O(log n) time.

When an edge is inserted into T ∗ in line 5, we can
compute its length in O(log n) time using ideas similar
to those above for T .

Right-shortness invariant: We have now given
an implementation where each execution of line 3 takes
O(log n) time. As observed in [6], each relaxation can
be performed within the same time bound and so can
line 6 if we use the sum(t)-operation on T .

What remains therefore is to give an O(n) bound
on the total number of relaxations. Before doing this,
we will need the following invariant: each tree generated
by the algorithm is right-short.

To show this invariant, first observe that the initial
tree is a rightmost shortest path tree and thus right-
short. To see that line 3 preserves right-shortness,
consider iteration i and let l1 resp. l2 be length function
lG just before resp. after line 3 is executed. Assume
that T is right-short w.r.t. l1 and let v ∈ V be given.
We need to show that l2(Q) > l2(T [v]) for any simple
path Q 6= T [v] in G from s to v that is right of T [v].

So let Q be such a path. Suppose first that T [v] does
not contain ei. If ei ∈ Q then l2(Q) ≥ M+ > l2(T [v])
where the last inequality follows from the assumption
that there is a path in G from s to v avoiding every
edge of P . So assume ei /∈ Q. Then l2(Q) = l1(Q) >
l1(T [v]) = l2(T [v]) by right-shortness of T w.r.t. l1.

Now, suppose that ei ∈ T [v]. Then also ei ∈ Q since
ei is part of a counter-clockwise walk of the external
face of G and Q is simple and right of T [v]. Then
l2(Q) = l1(Q) + M+ > l1(T [v]) + M+ = l2(T [v]) by
right-shortness of T w.r.t. l1.

We conclude that line 3 preserves right-shortness
and Lemma 2.1 implies that lines 4 and 5 also preserve
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Ti2[v]Ti3[v]
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w
Ti1[v] = T1[v]

Figure 5: Path Ti4 [v] must leave T1[v] from the left at
a vertex w after entering this path from the right. But
this contradicts the right-shortness of Ti4 [v].

right-shortness. This shows the invariant.
Bounding the number of relaxations: We are

now ready to give the O(n) bound on the total number
of relaxations. Consider any edge e = (u, v) of G. Let k
be the total number of trees generated by the algorithm
and let Ti be the ith tree, i = 1, . . . , k. We will show
that the set of indices of the trees containing e is a
consecutive subsequence of the cycle (1 . . . k). This will
imply that e is relaxed at most once, giving the desired
linear bound on the total number of relaxations (the
same idea is used in [6]).

Consider four trees Ti1 , Ti2 , Ti3 , Ti4 , where 1 ≤ i1 <
i2 < i3 < i4 ≤ k. Assume for the sake of contradiction
that either e ∈ Ti1 , Ti3 and e /∈ Ti2 , Ti4 or that e ∈
Ti2 , Ti4 and e /∈ Ti1 , Ti3 . We will only consider the first
case. The second case is similar. We may assume that
i1 = 1. The situation is shown in Figure 5.

By the right-shortness invariant and Lemma 2.1,
Tij′

[v] is to the left of Tij
[v] for 1 ≤ j < j′ ≤ 4. Since

Ti2 [v] is to the left of Ti1 [v], since Ti3 [v] is to the left of
Ti2 [v], and since e /∈ Ti2 [v], Ti3 [v] must leave Ti1 [v] from
the left and enter Ti1 [v] from the right. Since e ∈ Ti3 [v],
Ti3 [v] does not enter Ti1 [v] from the right at v.

Since e /∈ Ti4 [v] and since Ti4 [v] is to the left of
Ti3 [v], we must have that Ti4 [v] leaves Ti1 [v] from the
left at some vertex w after entering this path from the
right. Tree Ti1 = T1 is a shortest path tree in the
original graph so the subpath P1 of Ti1 [v] from w to
v is no longer than the subpath P4 of Ti4 [v] from w to
v in the graph containing Ti4 . This follows from the
observation that the two subpaths do not contain edges
of P . But since P1 is to the right of P4, Ti4 [v] cannot
be right-short, contradicting the invariant.

We conclude that e is relaxed at most once. Hence,
the total number of relaxations performed by the algo-
rithm is O(n) and the O(n log n) time bound follows.
Space is clearly linear.

v8 = t

v2 v3
v4

v5

v6

v1

v7

e2
e3

e8 = e′8

e′7

e′6e′5e′4
e′2

e′3

e7

e6

e5
e4

e1

v0 = s

Figure 6: Graph G′ is obtained from G by adding edges
e′i for i = 2, . . . ,m− 1, here shown for an instance with
m = 8.

5 The Algorithm

In this section, we present our algorithm for phase 1 of
the RPP. Define graph G′ = (V ′, E′) where V ′ = V and
E′ is obtained from E by adding edge e′i = (vi−1, t) of
length lG′(e′i) = dG(vi−1, t) + M+ for i = 2, . . . ,m − 1.
We also define e′m = em. Note that G′ is planar
with new interior faces defined by triangles eie

′

ie
′

i+1 for
i = 2, . . . ,m − 1, see Figure 6. When convenient, we
regard G as a subgraph of G′.

Pseudo-code of our algorithm is shown in Figure 7.
Notice the similarity with the FSPP algorithm in Fig-
ure 3.

Theorem 5.1. The algorithm in Figure 7 solves the
RPP for G.

Proof. First, observe that in any iteration i, lG′(ej) ≥
M+ for j = i, . . . ,m and lG′(e′j) ≥M+ for j = 2, . . . ,m
when line 3 has just been executed. When line 6 is
reached, dT (s, vj) is thus the length of a shortest path
in G from s to vj that avoids edges ei, . . . , em, for
j = 1, . . . ,m. In particular, in lines 9 and 11, dT (s, t)
is the length of a shortest path in G from s to t that
avoids edges ei, . . . , em.

Since i + 1 > m if and only if we are in iteration
i = m, the correct value for that iteration is thus output
in line 11.

Now, assume that we are in iteration i < m so that
lines 6 to 10 are executed instead of line 11. In line 8,
lG′(e′j) = dG(vj−1, t) + M+ −M+ = lG(P [vj−1, t]) for
j = i + 1, . . . ,m. Hence, dT (s, vj−1) + lG′(e′j) is the
length of a shortest path in G from s to t that avoids
edges ei, . . . , ej−1 and uses edges ej , . . . , em.

There is a shortest path Q in G from s to t
avoiding ei which can be decomposed into Q1Q2Q3,
where Q1 = P [s, vi1 ] and Q3 = P [vi2 , t] for some
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1. compute a rightmost shortest path tree T in G′

with source s
2. for i = m, . . . , 1
3. lG′(ei) := lG′(ei) + M+

4. while there exists an unrelaxed edge
5. relax a leafmost unrelaxed edge
6. if i + 1 ≤ m
7. for j = i + 1, . . . ,m, lG′(e′j) := lG′(e′j)−M+

8. compute
d = minj=i+1,...,m{dT (s, vj−1) + lG′(e′j)}

9. output min{dT (s, t), d}
10. for j = i + 1, . . . ,m, lG′(e′j) := lG′(e′j) + M+

11. else output dT (s, t)

Figure 7: RPP algorithm for phase 1.

0 ≤ i1 < i ≤ i2 ≤ m, and where Q2 is a shortest path in
G from vi1 to vi2 sharing no vertices with P except vi1

and vi2 . Combining this with the above observations,
it follows that in line 9, min{dT (s, t), d} is the length of
a shortest path in G from s to t that avoids ei. This
shows the correctness of the algorithm.

6 Bounding Time and Space

We now give an implementation of the algorithm in
Figure 7 and show that it has O(n log n) running time
and O(n) space requirement.

We maintain T , its dual T ∗ (in G′), and their edge
lengths (and not the edge lengths in G′ explicitly) as
in the proof of Theorem 4.1. Since only edges of G are
relaxed in line 5 (all other edges of G′ have length at
least M+), we can use arguments similar to those in that
proof to conclude that the total number of relaxations
performed in line 5 is O(n). Each execution of lines 9
and 11 takes O(log n) time with the sum-operation of
Section 2.

We claim that each execution of lines 3, 7, and
10 also takes logarithmic time. From the proof of
Theorem 4.1, this is true for line 3 so let us consider
line 7 (line 10 is handled in a similar way).

Since lG′(e′j) ≥ M+ for j = i + 1, . . . ,m when this
line is reached, none of these edges belong to T so no
edge lengths in T are affected in this line. It follows
that e′i+1, . . . , e

′

m all belong to T ∗ and they all need to
decrease in length by M+. Since these edges are on the
same simple path in T ∗, we can make this update with
the change-operation in T ∗ in O(log n) time.

The above shows that if we ignore line 8, the
algorithm can be implemented to run in O(n log n) time.
In the following, we therefore focus on the problem of
efficiently computing the value d.

8.1. remove from T the edge e ending in t and
reconnect by adding e′i+1

8.2 for all edges e′ ∈ E \ {em} adjacent to t,
lG′(e′) := lG′(e′) + M+

8.3. while there exists an unrelaxed edge
8.4. relax a leafmost unrelaxed edge
8.5. let e′j be the edge of T ending in t
8.6. let d = dT (s, t)
8.7. if i + 1 ≤ j − 1
8.8. for j′ = i + 1, . . . , j − 1,

lG′(e′j′) := lG′(e′j′) + M+

8.9 for all edges e′ ∈ E \ {em} adjacent to t,
lG′(e′) := lG′(e′)−M+

8.10. remove e′j from T and reconnect by adding the
edge e from line 8.1

Figure 8: Sub-routine of RPP algorithm computing the
value d in iteration i.

The idea is to relax leafmost unrelaxed edges
as in line 5 while ensuring that they all belong to
{e′i+1, . . . , e

′

m}. To guarantee that only O(n) edges are
relaxed throughout the course of the algorithm, we in-
crease, in each iteration, the length of certain edges by
M+ so that they will not be relaxed again. We will show
that these edges can be assumed not to belong to T in
subsequent iterations which ensures that the algorithm
remains correct.

Line 8 is expanded to the sub-routine in Figure 8.
We now prove its correctness.

Looking at lines 4 to 7 in Figure 7, we see that just
before line 8.1 is executed, all edges of E′\{e′i+1, . . . , e

′

m}
are relaxed. Hence, just after the execution of this line,
only edges adjacent to t in G′ can be unrelaxed. Line 8.2
has the effect that no edges of E \{em} adjacent to t are
relaxed during the sub-routine. Combining this with the
observation that in line 8.2, all edges in {e′2, . . . , e′i} have
length at least M+ whereas all edges in {e′i+1, . . . , e

′

m}
have length strictly less than M+ and e′i+1 ∈ T , it
follows that when line 8.2 has just been executed, all
unrelaxed edges of G′ belong to {e′i+2, . . . , e

′

m} during
the while-loop in lines 8.3 and 8.4.

Line 8.10 therefore ensures that T is the same at
the beginning and end of the sub-routine. And line 8.9
ensures that this also holds for edge lengths of E′ except
those changed in line 8.8.

The above observations imply that if line 8.8 is
omitted, the correct value of d is computed in line 8.6
since in that line, edges {e′i+1, . . . , e

′

m} are all relaxed
w.r.t. T so dT (s, t) = min{dT (s, vj−1) + lG′(e′j)|j =
i + 1, . . . ,m}. Theorem 5.1 then implies that the entire
algorithm is correct. Lemma 6.2 below shows that this
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vm = t

vm−1

v1

eiei′

v
Q2

vi2
vi1

vj−1

vj′−1

e′je′j′

vi

Q′2

v0 = s

Figure 9: In the proof of Lemma 6.2, paths Q2 and Q′

2

must share a vertex v.

is also true if we include line 8.8. First, we need the
following result.

Lemma 6.1. Just before an edge e′j ∈ {e′i+2, . . . , e
′

m}
is relaxed in the sub-routine in Figure 8, all edges in
{e′i+1, . . . , e

′

j−1} are relaxed.

Proof. Since initially, e′i+1 ∈ T and since leafmost edges
are relaxed, the lemma follows.

Lemma 6.2. Let J = {i + 1, . . . , j − 1} be the set of
indices j′ in line 8.8 of iteration i in Figures 7 and 8
and let 1 ≤ i′ < i. Let Gi resp. Gi′ be the graph G′ just
after line 7 has been executed in iteration i resp. i′, but
with the length of edge e′j′ redefined as dG(vj′−1, t) for
all j′ ∈ J . Then there is a shortest path in Gi′ from s
to t avoiding each such edge.

Proof. Let Q′ be a shortest path in Gi′ from s to t and
suppose it contains e′j′ for some j′ ∈ J . Let Q be the
path from s to t in T in line 8.5 of iteration i. Then
Q is a shortest path in Gi from s to t avoiding ei and
containing e′j .

Since the restriction of T to E is right-short, Q
can be decomposed into Q1Q2, where Q1 is a subpath
P [s, vi1 ] of P and Q2 is a path from vi1 to t containing
no vertices of P except vi1 and vj−1 and containing e′j
as the last edge, see Figure 9.

We may also assume that Q′ can be decomposed
into Q′

1Q
′

2, where Q′

1 is a subpath P [s, vi2 ] of P and Q′

2

is a path from vi2 to t containing no vertices of P except
vi2 and vj′−1 and containing e′j′ as the last edge.

We claim that i1 ≥ i2, as shown in Figure 9. For
suppose i1 < i2. Note that i′ < i and i + 1 ≤ j′ < j.
When traversing P from s to t, we thus encounter vi1 ,
vi2 , ei′ , ei, vj′−1, and vj−1 in that order. Hence, Q
and Q′ both avoid ei and ei′ so these paths must be

of equal length in Gi. We know that the algorithm
relaxes e′j in line 8.4 of iteration i. By Lemma 6.1, just
before this event occurs, e′j′ must be relaxed. But since
lGi

(Q) = lGi
(Q′), e′j must be relaxed as well at this

point in time, a contradiction.
It follows that when traversing P from s to t, we

encounter vi2 , vi1 , ei, vj′−1, and vj−1 in that order. Due
to planarity, this is only possible if Q2 and Q′

2 share a
vertex v, see Figure 9. Then Q2[v, t] and Q′

2[v, t] have
the same length in Gi′ , implying that Q′[s, v]Q[v, t] is a
shortest path from s to t in Gi′ . Since this path avoids
e′j′ for all j′ ∈ J , the lemma follows.

Theorem 6.1. The algorithm in Figures 7 and 8 solves
the RPP for G and can be implemented to run in
O(n log n) time using O(n) space.

Proof. We have already argued that the algorithm is
correct when line 8.8 in Figure 8 is omitted. And
Lemma 6.2 states that even if an edge in line 8.8 was
not increased in length by M+, the algorithm would not
find a shorter path from s to t in subsequent iterations.
This shows that the full algorithm is correct.

Proving the time bound is split into two parts: first,
we ignore the time for relaxations and give an O(n log n)
time bound for the remaining algorithm. Then we show
that the total number of relaxations is O(n). Since each
relaxation can be performed in logarithmic time with
our top tree data structure, the claim will follow.

We now consider the first part. If we exclude line
8, we have previously argued that the remaining lines
can be executed in a total of O(n log n) time. So let us
consider the sub-routine in Figure 8.

In line 8.1, we need to update the graph structure
of T and T ∗ as well as edge lengths in these trees.
The former can be accomplished with the replace-
operation. As for the latter, we need to compute the
length of the new edge e′i+1 in T . This can be achieved in
O(log n) time as in the proof of Theorem 4.1. Similarly,
we can compute the length of the new edge e in T ∗ in
O(log n) time.

For every other edge (u, t) adjacent to t in G′, (u, t)
belongs to T ∗. Its old length (i.e., before the update) in
T ∗ is dT (s, u)+ lG′(u, t)− (dT (s, v)+ lG′(e)), where e =
(v, t). Its new length is dT (s, u)+ lG′(u, t)− (dT (s, vi)+
lG′(e′i+1)). Hence, the length of (u, t) in T ∗ should
increase by ∆ = dT (s, v)+lG′(e)−(dT (s, vi)+lG′(e′i+1)).

Since ∆ is independent of the choice of (u, t), the
lengths in T ∗ of all edges adjacent to t except e and e′i+1

should increase by ∆. Since the set of these edges form
at most three simple paths in T ∗, a constant number of
change-operations suffice to make this update.

We have shown that line 8.1 can be executed in
O(log n) time. A similar argument shows the same
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bound for line 8.10.
Lines 8.2, 8.8, and 8.9 can also be executed in

O(log n) time (since none of the edges in those three
lines belong to T , the argument for line 7 applies). And
line 8.6 also takes logarithmic time since dT (s, t) can be
obtained as sum(t) in T .

Now, let us focus on the second part of the proof:
giving an O(n) bound on the total number of relax-
ations. Previously, we showed this for line 5 so we only
need to consider the relaxations performed in line 8.4.

We first observe that when the length of an edge is
increased in line 8.8, it will never again drop below M+.

Now, consider some iteration i and suppose ki edges
are relaxed in line 8.4. Since leafmost unrelaxed edges
are relaxed and since the edge e′i+1 initially belonging to
T has length lG′(e′i+1) < M+, there must be at least ki

edges in {e′i+2, . . . , e
′

j} of length strictly less than M+

in line 8.5. Since the lengths of edges e′i+2, . . . , e
′

j−1

are increased by M+ in line 8.8, at least ki − 1 of these
lengths are increased from a value below to a value equal
to or above M+.

By the above observation, we can use a charging
scheme to obtain the following bound on the total
number of relaxations in line 8.4 over all m iterations of
the for-loop in lines 2 to 11:

m∑

i=1

ki = m +
m∑

i=1

(ki − 1) ≤ m + |{e′2, . . . , e′m}|

= 2m− 1 < 2n.

It follows that the algorithm can be implemented to
run in O(n log n) time. It is easy to see that space
requirement is linear.

7 Phase 2

Above, we showed how to solve the phase corresponding
to case 1 in Section 3. We now consider phase 2, i.e. we
restrict our attention to shortest paths Q in G from s
to t avoiding an edge of P with Q leaving P from the
left and entering P from the right, see Figure 2.

The algorithm for phase 2 is similar to that of
Section 5. The main difference lies in the modification
of G and the construction of G′ = (V ′, E′).

We modify G essentially by making an incision in G
from s to t along P (see Figure 10) and removing edges
not needed in phase 2.

More formally, we start by removing path P \ {t}
and its incident edges. Then two copies,

←−
P = (←−v0 =

←−s ) → ←−v1 → · · · → (←−vm = t) and
−→
P = (−→v0 = −→s ) →

−→v1 → · · · → (−→vm = t), of P are inserted. These paths
share only the last vertex t.

For i = 0, . . . ,m − 1, we add to G the edge (←−vi , u)
for each edge (vi, u) emanating left from P at v in the

←−e8

v3

←−v4

←−v5 ←−v6

←−v7

←−e3

←−e7

←−e6

←−e5

←−e4

−→v1 −→v2
−→v3 −→v4

−→v5

−→v6

−→v7

−→e2 −→e3
−→e4

−→e5

−→e6

−→e7

−→e8 = e′8

e′2

←−v1

←−v2←−e2

e′3
e′4

e′5

e′6
e′7

−→e1

−→v0 = −→s

←−v0 =←−s

←−e1

←−v8 = −→v8 = t

Figure 10: Graph G′, obtained from G in phase 2 by
adding edges e′i for i = 2, . . . ,m− 1, here shown for an
instance with m = 8.

original graph G. Similarly, we add to G the edge (u,−→vi )
for each edge (u, vi) in G entering P from the right in
the original graph G. The lengths of the inserted edges
are identical to those in the original graph. Note that←−
P and

−→
P belong to the external face of G.

As in phase 1, we add edges to interior faces of G
while keeping G planar such that for each v ∈ V , there

is a path in G from←−s to v sharing no edges with
←−
P ∪−→P .

We pick the lengths of these new edges sufficiently large
so that finite shortest path distances will not decrease.
We can perform this modification without having edges

entering
←−
P or leaving

−→
P . With this modification of G,

there is a shortest path tree in G′ rooted at ←−s avoiding

any given set of edges of
←−
P ∪ −→P . And we can ensure

that these edges are avoided by increasing their lengths

by M+. Note that
←−
P ∪−→P remains on the external face

of G after these edges have been added.
For i = 1, . . . ,m, let ←−ei = (←−−vi−1,

←−vi ) and −→ei =
(−−→vi−1,

−→vi ). Phase 2 corresponds to solving the following
problem on the modified graph G: for i = 1, . . . ,m,
compute the length of a shortest path in G from ←−s to
t that avoids edges ←−ei and −→ei . We will refer to this
problem as the RPP for G.

Graph G′ = (V ′, E′) is obtained from G by adding,
for i = 2, . . . ,m−1, the edge (−→vi , t) of length dG(vi, t)+
M+, where M+ is defined as in Section 4. We let e′i
denote this edge, see Figure 10. We also define e′m = −→em.
Note that G′ is planar and of size O(n). In G′, we set
the length lG′(−→ei ) of −→ei equal to M+.

The algorithm for phase 2 is shown in Figures 11
and 12. We now prove that it is correct and has the
desired time and space bounds.

Using ideas from Section 6, it follows that the
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1. compute a rightmost shortest path tree T in G′

with source ←−s
2. for i = m, . . . , 1
3. lG′(←−ei ) := lG′(←−ei ) + M+

4. while there exists an unrelaxed edge
5. relax a leafmost unrelaxed edge
6. if i + 1 ≤ m
7. for j = i + 1, . . . ,m, lG′(e′j) := lG′(e′j)−M+

8. compute
d = minj=i+1,...,m{dT (s,−−→vj−1) + lG′(e′j)}

9. output min{dT (s, t), d}
10. for j = i + 1, . . . ,m, lG′(e′j) := lG′(e′j) + M+

11. else output dT (s, t)

Figure 11: RPP algorithm for phase 2.

8.1. remove from T the edge e ending in t and
reconnect by adding e′m

8.2 for all edges e′ ∈ E \ {−→em} adjacent to t,
lG′(e′) := lG′(e′) + M+

8.3. while there exists an unrelaxed edge
8.4. relax a leafmost unrelaxed edge
8.5. let e′j be the edge of T ending in t
8.6. let d = dT (s, t)
8.7. if j + 1 ≤ m
8.8. for j′ = j + 1, . . . ,m,

lG′(e′j′) := lG′(e′j′) + M+

8.9 for all edges e′ ∈ E \ {em} adjacent to t,
lG′(e′) := lG′(e′)−M+

8.10. remove e′j from T and reconnect by adding the
edge e from line 8.1

Figure 12: Sub-routine of RPP algorithm for phase 2.

entire algorithm is correct if line 8.8 is omitted. And
Lemma 7.2 below shows that this also holds with this
line included.

Lemma 7.1. Just before an edge e′j ∈ {e′i+1, . . . , e
′

m−1}
is relaxed in the sub-routine in Figure 12, all edges in
{e′j+1, . . . , e

′

m} are relaxed.

Proof. Since initially, e′m ∈ T and since leafmost edges
are relaxed, the lemma follows.

Lemma 7.2. Let J = {j+1, . . . ,m} be the set of indices
j′ in line 8.8 of iteration i in Figures 11 and 12 and let
1 ≤ i′ < i. Let Gi resp. Gi′ be the graph G′ just after
line 7 has been executed in iteration i resp. i′, but with
the length of edge e′j′ redefined as dG(vj′−1, t) for all

j′ ∈ J . Then there is a shortest path in Gi′ from ←−s to
t avoiding each such edge.

We omit the proof since it is similar to that of
Lemma 6.2. We can now bound the time and space
used for phase 2.

Theorem 7.1. The algorithm in Figure 11 and Fig-
ure 12 can be implemented to run in O(n log n) time
using O(n) space.

Again, we omit the proof since it is similar to that of
Theorem 6.1.

By symmetry, phases 3 and 4 can be executed
within the same bounds as phases 1 and 2. This gives
us the following result.

Theorem 7.2. For a directed planar n-vertex graph
with non-negative edge-lengths, the replacement paths
problem can be solved in O(n log n) time with O(n)
space.

8 Concluding Remarks

Given an n-vertex planar directed graph G with non-
negative edge lengths and given a shortest path P in
G from a vertex s to a vertex t, we presented a linear-
space algorithm that computes, for each edge e ∈ P , the
length of a shortest path in G from s to t that avoids
e. Running time is O(n log n), improving on a bound of
O(n log2 n) by Klein, Mozes, and Weimann.
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Abstract

Given a set Z of n < ∞ points in the plane and an integer λ � 2, we consider the problem of finding a λ-Steiner hull of Z, i.e.,
a region containing every Steiner minimal tree for Z in the λ-metric. We define a λ-Steiner hull λ-SH(Z) of Z as a set obtained
by a maximal sequence of removals of certain open wedge-shaped regions from an initial hull followed by a simplification of its
boundary. A perhaps surprising result is presented, namely that a Euclidean MST for Z can be used to decompose the problem of
finding λ-SH(Z) into subproblems. Each of these can then be solved recursively using linear searches combined with a sweep line
approach. Using this result, we present an algorithm computing λ-SH(Z). This algorithm has O(λn logn) running time and O(λn)

space requirement which is optimal for constant λ. We prove that λ-SH(Z) is independent of the order of removals of the open
wedge-shaped regions.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Computational geometry; Uniform orientation metric; Steiner tree problem; Steiner hull; Minimum spanning tree

1. Introduction

The classical Steiner tree problem is the problem of computing a Steiner minimal tree (SMT), i.e., a tree of mini-
mum Euclidean length, spanning a given set of points in the plane [3]. It is distinguished from the minimum spanning
tree problem in that new points may be added to shorten the tree. This makes the problem much harder—in fact, it has
been shown to be NP-hard.

Steiner minimal trees are useful for routing in VLSI design [4]. Here, an important objective is to interconnect a
set of pins on a chip using minimum total wire length. Due to manufacturing limitations however, the orientation of
wires have typically been restricted to horizontal and vertical only, making the L1-metric more suitable for measuring
the cost of a network.

More recently, routing using an arbitrary number of uniformly distributed wire orientations has become feasible.
For this reason, the uniform orientation metric has received some attention in recent years.

This metric is defined as follows. Given an integer λ � 2, the set of uniform orientations or λ-orientations is the
set of angles iω, i = 0, . . . , λ − 1, where ω = π/λ. A line segment, half-line, or line l is said to be uniformly oriented
if the angle between l and the x-axis is a uniform orientation. The λ-distance dλ between two points is the length of a

E-mail address: koolooz@diku.dk.

0925-7721/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.comgeo.2007.10.002
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shortest path of uniformly oriented line segments between the points and we refer to dλ as the λ-metric or the uniform
orientation metric. Note that the 2-metric is the L1-metric.

A λ-tree is a tree in the plane such that all edges consist of uniformly oriented line segments. The Steiner tree
problem in the uniform orientation metric (USTP) is to find a λ-tree of minimal length spanning a finite set Z of
points or terminals in the plane. We refer to such a tree as a Steiner minimal λ-tree (λ-SMT) for Z. Additional Steiner
points may be incorporated to shorten the tree. Like the Euclidean Steiner tree problem, the USTP is NP-hard [2].

In the Euclidean metric, a Steiner hull of a given set Z of terminals is a subset of the plane containing every SMT
for Z. The convex hull CH(Z) of Z is an example of a Steiner hull of Z. Having a tight Steiner hull can make the
computation of an SMT easier since the number of feasible topologies is reduced as the number of terminals on the
boundary of a Steiner hull increases. Furthermore, a non-simple Steiner hull results in the decomposition of an SMT
into SMTs for smaller terminal subsets.

Winter [7] presented an O(n logn) time algorithm for computing a Steiner hull of n terminals. The algorithm starts
with CH(Z) and then iteratively removes certain open wedge-shaped regions to obtain smaller and smaller Steiner
hulls.

In this paper, we consider Steiner hulls for the λ-metric. We define a λ-Steiner hull of Z to be a subset of the plane
known to contain every λ-SMT for Z.

We will address the problem of efficiently finding a tight λ-Steiner hull of Z. We consider a type of λ-Steiner hull,
referred to as λ-SH(Z), which in many ways is similar to that presented in [7] for the Euclidean metric.

We will show that this λ-Steiner hull can be constructed in O(λn logn) time using O(λn) space and prove that
this is optimal under the assumption that λ is a constant. This assumption seems reasonable since in VLSI design,
λ is typically much smaller than n (to the author’s knowledge, λ-values of 2 and 4 are probably the most widely used
today).

The paper is organized as follows. In Section 2, we make various definitions and some simple observations. In
Section 3, we prove that a certain set λ-SH′(Z), from which λ-SH(Z) is easily derived, is a λ-Steiner hull of Z. Letting
n equal the number of terminals, we then present a naive O((λn)3) time algorithm computing this set. In Section 4,
we show how a Euclidean MST can be used to decompose the problem of finding λ-SH′(Z) into smaller problems
each of which can be solved recursively. The results of Section 5 enable us to efficiently check if a region of our
partially constructed λ-Steiner hull can be removed. To do this we use a sweep line algorithm for preprocessing. This
improves running time to O((λn)2). In Section 6, we show how to construct λ-SH(Z) by performing linear searches
“in parallel” at each level of the recursion. In Section 7, we show that λ-SH(Z) can be found in time O(λn logn)

using O(λn) space. We show that this is optimal for constant λ. In Section 8, we prove that λ-SH(Z) does not depend
on the order of removals of open wedge-shaped regions. Finally, we make some concluding remarks in Section 9.

2. Definitions and basic properties

Since we will be dealing with different types of points, we will reserve the letter z for terminals, s for Steiner
points, u, v, and w for vertices (terminals and Steiner points), and other letters for regular points.

Let p and q be two points in the plane. If pq is uniformly oriented, there is a unique shortest path from p to q in
the λ-metric, namely the line segment pq . Otherwise, the set of shortest paths from p to q in the λ-metric constitutes
a parallelogram prqr ′. The shortest paths prq and pr ′q from p to q are called the critical paths from p to q and r

and r ′ are called corner points of the critical paths.
The λ-lune of p and q denoted Lλ(p,q) is defined as the set Lλ(p,q) = {s ∈ R2 | dλ(s,p) < dλ(p,q)∧dλ(s, q) <

dλ(p,q)}, see Fig. 1.
If a, b, and c are three distinct points in the plane then we define � abc as the smaller non-negative angle between

line segments ba and bc.
Let l be a half-line emanating from a point p and let lx be the horizontal half-line emanating from p and lying to

the right of p. Then we say that l has direction θ ∈ [0,2π[ if the counter-clockwise angle from lx to l equals θ .
Given a simple polygon P , we define a clockwise walk of P to be a walk of the boundary of P such that the interior

of P is to the right during the walk. For a tree T embedded in the plane, consider inflating its edges. An outer walk
of T is then called clockwise if the “interior” of T is to the right during the walk.

For any subset X of R2 we let X◦ denote the interior of X. We shall assume that all subsets of the plane considered
in this paper are closed unless otherwise stated.
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Fig. 1. The λ-lune Lλ(p,q) (dark area) of points p and q , here shown for λ = 2.

(a) (b)

Fig. 2. (a) W ∩ S is the union of simple polygons. (b) λ-CH(Z), here shown for λ = 2. The dashed polygon shows CH(Z).

Suppose that la and lb are uniformly oriented half-lines emanating from a common point p. Then we let W(la, lb)

denote the open wedge-shaped region of points hit when sweeping a halfline emanating from p counter-clockwise
from la to lb . Halfline la is called the right leg and lb is called the left leg of W(la, lb). Let θ denote the counter-
clockwise angle from la to lb. If θ = 	2λ/3
ω then W(la, lb) is called a λ-wedge (of p) and if θ = ω, W(la, lb) is
called a λ-cone (of p). If pa �= p is a point on la and pb �= p is a point on lb then we define W(p,pa,pb) = W(la, lb).

The λ-Steiner hulls that we will consider in this paper are constructed by iteratively removing regions bounded by
λ-wedges from an initial hull. We need to make sure that each such region does not contain any part of any λ-SMT
for Z. In particular it should not contain any terminals.

This motivates the following definition. Let S be a simple polygon and let W be a λ-wedge of a terminal z ∈ S. Then
W ∩S is a union of regions bounded by simple polygons. One of these regions, say R′, contains z on its boundary, see
Fig. 2(a). Suppose that R = W ◦ ∩ R′ is non-empty and contains no terminals of Z. Then W is called safe (in S), R is
called a safe region (of S) and the removal of R from S is called a safe removal (from S). We say that R is bounded
by W .

We refer to a subpath of the boundary of S connecting two consecutive terminals as a boundary subpath (of S).
If R is a safe region of S then the part I of the boundary of S intersecting R is free of terminals and thus I is fully
contained in a boundary subpath p. Let z1 be the terminal of the safe λ-wedge bounding R and let z2 and z3 be the
end terminals of p. Then we say that R is bounded by z1, z2, and z3 and we refer to z1 as the base terminal of R.

Let z0, . . . , zr−1 be a cyclic ordering of the terminals on the boundary of the convex hull CH(Z) of Z. For i =
0, . . . , r −1, let Pi be the parallelogram consisting of all the shortest paths between zi and zi+1 in the λ-metric (indices
are modulo r). The λ-convex hull λ-CH(Z) of Z is then defined as λ-CH(Z) = CH(Z) ∪ ⋃r−1

i=0 Pi , see Fig. 2(b).
In the following, we will let λ-SH′(Z) denote a set obtained by a maximal sequence of safe removals from the

initial hull λ-CH(Z).
Note that for each set S obtained in such a maximal sequence, all concave angles of the boundary of S are at

terminals. This implies that all safe regions removed are convex. Also note that the line segments bounding these
regions are all uniformly oriented.
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We obtain λ-SH(Z) from λ-SH′(Z) by replacing each boundary subpath of λ-SH′(Z) by a critical path between
the two terminals defining the endpoints of that boundary subpath; the critical paths are chosen such that all corner
points are right turns in a clockwise walk of λ-SH(Z). If the line segment l between the two terminals is uniformly
oriented, the boundary subpath is replaced by l.

As we shall see, λ-SH(Z) is a λ-Steiner hull and it is independent of the chosen maximal sequence of safe removals.

3. λ-Steiner hull

For now, let us consider λ-SH′(Z). We will return to λ-SH(Z) in Section 6.
In this section, we prove that λ-SH′(Z) is a λ-Steiner hull of Z. We do this by showing that λ-CH(Z) is a λ-Steiner

hull of Z and that each safe removal does not cut off any part of any λ-SMT T for Z. The former is shown in Lemma 4
below. To show the latter we will show that after a safe removal,

(1) no terminal is cut off;
(2) no Steiner point of T is cut off;
(3) no part of any edge of T is cut off.

The first part follows by definition of a safe λ-wedge. The second part is shown in Lemma 2 below and the third
part in Lemma 3. We need the following result.

Lemma 1. Let (u, v) be any edge of a λ-SMT. No vertex of the λ-SMT can lie in the λ-lune Lλ(u, v).

Proof. If w is a vertex in Lλ(u, v), we may assume that the λ-SMT contains a path from w to u not containing v.
Since dλ(w,v) < dλ(u, v), the λ-SMT can be shortened by deleting (u, v) and adding (w,v), a contradiction. �
Lemma 2. Let S be a λ-Steiner hull of terminal set Z and let S′ be the set obtained by a safe removal from S. Then
all Steiner points of any λ-SMT for Z belong to S′.

Proof. Let W be a safe λ-wedge of a terminal z and let T be a λ-SMT for Z. Suppose for the sake of contradiction
that the safe region R of S bounded by W contains a Steiner point s of T . Pick s such that its Euclidean distance
to z is maximized over all Steiner points of T contained in R. Since the angle between the legs of W is 	2λ/3
ω and
since the angle between Steiner tree edges of s is at most (	2λ/3
 + 1)ω [1] there exists an edge (s, v) in T such that
v ∈ W . Since S is a λ-Steiner hull of Z, (s, v) is fully contained in S and since s ∈ R, we have v ∈ R.

By the choice of s, v must be a terminal. But this contradicts the assumption that R is a safe region. �
Lemma 3. Let S be a λ-Steiner hull of terminal set Z and let S′ be the set obtained by a safe removal from S. Then
all edges of any λ-SMT for Z are fully contained in S′.

Proof. Let W(l1, l2) be a safe λ-wedge of a terminal z and let T be a λ-SMT for Z. We claim that the safe region R

bounded by W(l1, l2) does not intersect any edge of T .
Assume, for the sake of contradiction, that (u, v) is an edge of T intersecting R. By Lemma 2, (u, v) must cross

W(l1, l2)
◦. Without loss of generality, assume that u belongs to the halfplane of the line through l1 not containing l2,

see Fig. 3.
Suppose that the line segment from z to u makes angle θu with the x-axis, that the line segment from z to v

makes angle θv with the x-axis, that l1 makes angle θ1 with the x-axis, and that l2 makes angle θ2 with the x-axis.
By rotating about z by a multiple of ω if necessary, we may assume that 0 � θu < ω and we have the inequalities
θu � θ1 < θ2 � θv .

Let Cu be the set of points having λ-distance at most dλ(u, z) to u. We assume that θu > 0. The case θu = 0 is
handled similarly. Since (u, v) crosses W(l1, l2)

◦ we have θv < π + ω. The intersection of Cu and the λ-cone of u

containing z is a triangle �uab and line segment ab makes angle  θu

ω
�ω + π−ω

2 with the x axis. Since⌈
θu

ω

⌉
ω + π − ω

2
< θ2 � θv < π + ω =

⌈
θu

ω

⌉
ω + π <

⌈
θu

ω

⌉
ω + π − ω

2
+ π,
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Fig. 3. The situation in the proof of Lemma 3.

and since z ∈ ab, v must belong to the halfplane of the line through ab not containing u. Since Cu is convex, v /∈ Cu

implying that dλ(u, v) > dλ(u, z). Symmetrically, dλ(u, v) > dλ(v, z). Hence, z belongs to Lλ(u, v) contradicting
Lemma 1. �

By applying Lemmas 2 and 3 to a λ-Steiner hull containing λ-CH(Z) (pick say the entire plane) it is easy to show
the following.

Lemma 4. λ-CH(Z) is a λ-Steiner hull of Z.

We have now shown the main result of this section.

Theorem 5. λ-SH′(Z) is a λ-Steiner hull of Z.

A naive way of computing λ-SH′(Z) is as follows. First we initialize S = λ-CH(Z). Then for each terminal in S

and each λ-wedge W of z, we check if W bounds a safe region by computing the simple polygon R′ of W ∩ S

containing z and checking each terminal for inclusion in R = R′ ∩ W ◦. If R contains no terminals, we set S := S \ R

and repeat the algorithm on S.
Recalling that a safe region is convex with a boundary consisting of uniformly oriented line segments, it can be

determined whether a region is safe in O(λn) time. Since a terminal can be a base terminal O(λ) times throughout the
course of the algorithm and since there are O(λn) candidate safe regions in each iteration, it follows that the above
algorithm can be implemented to run in O((λn)3) time using O(n) space. We will show how to find λ-SH′(Z) more
efficiently.

4. MST regions

Let Z be a terminal set. In the following, let M denote a fixed Euclidean MST for Z. The boundary subpaths of
λ-CH(Z) together with the edges of M partition λ-CH(Z) into faces or MST regions.

We will show that computing λ-SH′(Z) can be restricted to each MST region. The following lemma will prove
useful.

Lemma 6. M ⊆ λ-SH′(Z).

Proof. We show that if S is any partially constructed λ-SH′(Z) then S contains M . The proof is by induction on the
number r � 0 of safe regions removed. Since M ⊆ CH(Z) ⊆ λ-CH(Z), this holds when r = 0.

Now suppose that after the removal of r safe regions, M ⊆ S. For the sake of contradiction, suppose there is a safe
region R such that M � S \ R. Let z be the base terminal of R and suppose that, looking from z, r1 respectively r2 is
the first point of intersection between the boundary of S and the left respectively right half-line of the safe λ-wedge
bounding R.
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Fig. 4. Removing a safe region splits a subregion into two smaller subregions.

Since R contains no terminals, there must be an edge e of M crossing R. By the induction hypothesis, e must cross
zr1 in a point p and zr2 in a point q . Let z1, z2 be end terminals of e such that z1p and qz2 are not contained in R.

If we remove e from M we split M into two components one containing say z1 and z and the other containing z2.
Since � pzq � π

2 , we also have � z1zz2 � π
2 , implying that |e| = |z1z2| > |z2z|. Thus, by adding edge (z2, z), a new

tree M ′ spanning Z is obtained and |M ′| < |M|, a contradiction. Thus M ⊆ S \ R. �
Consider a clockwise walk of M visiting the terminals of an MST region RMST in the order z0, . . . , zm. A terminal

may appear several times in this list since it may be visited more than once. Now consider a safe region R of λ-CH(Z)

bounded by z0, zm and a base terminal z. By Lemma 6, R is fully contained in RMST, hence z = zi for some i ∈
{0, . . . ,m}. The removal of R separates RMST into a subregion containing the terminals z0, . . . , zi and a subregion
containing the terminals zi, . . . , zm. Generalizing, we have

Theorem 7. Consider a subregion induced by terminals zi1, . . . , zi2 . If a safe region is bounded by zi1 , zi2 , and some
base terminal zi then zi ∈ {zi1, . . . , zi2}. The removal of this safe region partitions the subregion into two smaller
subregions, one containing zi1, . . . , zi and one containing zi, . . . , zi2 (Fig. 4).

Theorem 7 yields a recursive algorithm that removes safe regions from an MST region. Unfortunately, since we do
not yet have a strategy for searching for base terminals, this result alone does not improve the O((λn)3) asymptotic
running time of our brute-force algorithm from Section 3. However, in Section 6 we shall present a clever strategy for
finding base terminals.

5. Finding safe regions

Let M and RMST be defined as in the preceding section. In this section we will show that, given a λ-wedge of a
terminal of (a subregion of) RMST, we can determine whether this λ-wedge bounds a safe region in constant time with
O(λn logn) preprocessing time. The idea is to use the fact that terminals in RMST are all on the same path in the MST.
Thus, instead of checking each terminal for inclusion in a candidate safe region, we simply check if the path crosses
the boundary of that region. To do this efficiently, we will need the following definitions.

Let zk /∈ {z0, zm} be a terminal of RMST. Let d ∈ {0, . . . ,2λ − 1} and let l be the half-line emanating from zk with
direction dω. If e = (zi, zi+1) is an edge of RMST we say that e is d-visible from zk if l avoids edges and terminals of
RMST before intersecting e in its interior looking from zk , see Fig. 5. If zj �= zk is a terminal of RMST we say that zj

is d-visible from zk if l avoids edges and terminals of RMST before intersecting zj looking from zk .
Let R be a subregion of RMST induced by terminals zi1 , . . . , zi2 and suppose that zk ∈ R. To simplify the analysis,

we assume that zk /∈ {zi1, zi2}; the case zk ∈ {zi1, zi2} is handled in a similar way. We make the following simple
observations.

Any edge of R (i.e., an edge (zi, zj ) with i1 � i, j � i2) has an oppositely directed edge in R if and only if it does
not belong to the boundary of R, see Fig. 6. We say that an edge respectively terminal on the boundary of R bounds R.
If zk has an ingoing edge e in R that bounds R, this edge is unique and we refer to the endpoint of e opposite zk as
in(zk). We define out(zk) similarly.
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Fig. 5. Edges and terminals d-visible from zk for d = 0, . . . ,7 and λ = 4. Bold edges and white terminals are d-visible from zk .

Fig. 6. An edge bounds R if and only if it has no oppositely directed edge. The boundary subpath between zi1 and zi2 is shown as dashed line
segments.

As above, let l be the half-line emanating from zk with direction dω. Let e = (zi , zi+1) be an edge of R which is
d-visible from zk and let l′ be the line through e. Imagine walking along l starting at zk . Then we cross e from the
outside of R if and only if e bounds R and zk belongs to the right halfplane of l′ looking from zi to zi+1. If a terminal
zj /∈ {zi1, zi2} of R is d-visible from zk then we cross zj from the outside of R if and only if in(zj ) and out(zj ) exist
and zk belongs to W(zj , in(zj ),out(zj ))

◦.
Theorem 9 below relates the above definitions to safe regions. We need the following lemma.

Lemma 8. With the above definitions, suppose that zk is a base terminal of a safe region of R. If an edge e of R is
d-visible from zk then halfline l crosses e from the outside of R looking from zk . If a terminal zj /∈ {zi1, zi2} in R is
d-visible from zk then l crosses zj from the outside of R looking from zk .

Proof. We only show the first part of the lemma. The second part is shown similarly. Let e be an edge of R which is
d-visible from zk . Suppose for the sake of contradiction that l does not cross e from the outside of R looking from zk .
Since l bounds a safe region with base terminal zk , l must intersect the boundary subpath P between zi1 and zi2 (at
least) twice since we leave R and then enter R again when moving from zk to e. Let p respectively q be the first
respectively second such intersection when looking from zk . Let p0 = zi1 , pr+1 = zi2 and let p1, . . . , pr be the corner
points of P when moving from zi1 to zi2 . Pick r1 and r2 such that p belongs to pr1pr1+1 and such that q belongs to
pr2pr2+1.

Since the only concave angles of the boundary of the current λ-Steiner hull are at terminals, we must have the
situation depicted in Fig. 7. Since no edges or terminals of RMST belong to P \ {zi1, zi2}, it follows that RMST is
contained in polygon S = ppr1+1pr1+2 · · ·pr2qp and thus isolated from the rest of the MST M , a contradiction. �

We are now ready for the main result of this section. Theorem 9 below gives necessary and sufficient conditions
for two half-lines to bound a safe region. The theorem assumes that terminals are in general position, which in this
setting means that no two terminals are on the same uniformly oriented line. See Appendix A for details about how
this restriction can be removed.
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Fig. 7. The situation leading to a contradiction in the proof of Lemma 8.

Fig. 8. The impossible situation in the proof of Theorem 9.

Theorem 9. Let R and zk �= zi1, zi2 be defined as above. Let l1 and l2 be half-lines emanating from zk and having
directions d1ω and d2ω such that W(l2, l1) is a λ-wedge. Then the following two statements are equivalent.

(1) W(l2, l1) ⊆ W(zk, zk+1, zk−1) and for m = 1,2, if an edge e in R is dm-visible from zk then lm crosses e from the
outside of R looking from zk .

(2) W(l2, l1) is a safe λ-wedge in R.

Proof. Assume that (1) is satisfied. For m = 1,2, let pm be the first intersection point between lm \ {zk} and an
edge of R, a terminal of R, or the boundary subpath P between zi1 and zi2 . The existence of pm follows from the
assumption W(l2, l1) ⊆ W(zk, zk+1, zk−1).

Since terminals are in general position, pm cannot be a terminal. If pm belonged to the interior of an edge e =
(zj , zj+1) of R then e would be dm-visible from zk implying that lm would cross e from the outside of R looking
from zk . But zkpm ⊆ R. For m = 1,2 we conclude that pm belongs to P .

We also need to check that, when moving from zi1 to zi2 along P , we first pass p1 and then p2. If we assume the
opposite (see Fig. 8) then, since edges (zk−1, zk) and (zk, zk+1) are consecutive in the path of edges from zi1 to zi2

in R and terminals are in general position, there can be no path of edges connecting zk and zi1 , a contradiction.
The above shows that no edges cross the boundary of the candidate safe region R′ bounded by W(l2, l1). Thus, R′

contains no terminals and so (1) ⇒ (2). The other implication follows from Lemma 8. �
We find d-visible edges and terminals in RMST using an O(n logn) time and O(n) space sweep line algorithm for

each of the 2λ values of d . The algorithm is straightforward and so we will not discuss it further.
Using Theorem 9 we can now determine in O(1) time whether a terminal is a base terminal in (a subregion of)

RMST once d-visible edges and terminals in RMST have been found. This improves the running time of our algorithm
to O((λn)2).

We will now turn our attention to λ-SH(Z) and show how to compute this set using only O(λn logn) time and
O(λn) space.

6. Parallel linear searches

In this section, we will describe an efficient way of searching through the terminals of a (subregion of) RMST.
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Fig. 9. The regions considered in the proof of Theorem 10.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 10. Illustrating the algorithm for λ = 4. (a) Initial λ-Steiner hull λ-CH(Z). (b)–(f) Successive removals of safe regions. (g) λ-SH(Z). MST
edges respectively boundary subpaths shown as solid respectively dashed line segments. Note that boundary subpaths are not maintained in the
actual algorithm.

Recall that, in order to compute λ-SH(Z), we do not need the boundary subpaths of λ-SH′(Z) but only the terminals
on the boundary of λ-SH′(Z) and the order in which they occur. Theorem 9 shows that we do not need to maintain
the boundary subpaths throughout the course of the algorithm.

With the above in mind and using the recursive algorithm of Section 4, the overall algorithm that removes safe
regions in RMST is as follows. For any subregion R induced by terminals zi1, . . . , zi2 we find a base terminal in R and
recursively remove safe regions in the two new subregions. If no base terminal is found we terminate.

We check for base terminals in the order zi1+1, zi2−1, zi1+2, zi2−2, . . . . In effect, we perform two linear searches in
parallel, one visiting terminals in the order zi1+1, zi1+2, . . . and one visiting the terminals in the order zi2−1, zi2−2, . . . .
The idea is that a long search time is compensated for by an even (good) split of the subregion (or termination if no
base terminal exists) whereas an uneven (bad) split is compensated for by a short search time.

Note that we no longer check if zi1 and zi2 are base terminals since safe regions with either of these terminals as
base terminals would only affect the boundary subpaths.

Fig. 10 illustrates the various steps of the algorithm on an instance consisting of ten terminals. Before proving time
and space bounds for this algorithm, we need the following theorem which shows that λ-SH(Z) is in fact a λ-Steiner
hull of Z.

Theorem 10. The set λ-SH(Z) is a λ-Steiner hull of Z.

Proof. Let R be a subregion of an MST region in λ-SH′(Z) and let zi1, . . . , zi2 be the terminals of R. Let zi1rzi2 be
the critical path from zi1 to zi2 making a right turn at r and let zi1r

′zi2 be the critical path from zi1 to zi2 making a left
turn at r ′. Let P be the boundary subpath in λ-SH′(Z) between zi1 and zi2 .
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We claim that no terminal belongs to the interior of the bounded region R′ bounded by P and zi1r
′zi2 . For suppose

that zi is such a terminal. Let l1 respectively l2 be the half-line emanating from zi having the same direction as the
half-line emanating from r ′ and intersecting zi1 respectively zi2 , see Fig. 9.

We may assume that zi is the only terminal in W(l2, l1) ∩ R′. But then W(l2, l1) contains a safe region with base
terminal zi , contradicting the fact that no safe regions can be removed from λ-SH(Z). We conclude that the interior
of R′ contains no terminals.

Now let R′′ be the bounded region bounded by P and zi1rzi2 . We will show that the interior of R′′ contains no part
of any λ-SMT for Z. By the above, the interior of R′′ contains no terminals of Z and by using a similar argument as
in Lemma 2, it follows that R′′ contains no Steiner points of any λ-SMT for Z. It is then easy to see that no edges of
any λ-SMT for Z intersect the interior of R′′.

Applying the above to each subregion of λ-SH′(Z) shows the theorem. �
7. Running time and space requirement

In this section, we show that our algorithm computing λ-SH(Z) has worst-case running time O(λn logn) and
O(λn) space requirement where n is the number of terminals. We show that, regarding λ as constant, this is optimal.

Theorem 11. The algorithm presented above has O(λn logn) worst-case running time.

Proof. We can find CH(Z), M , and the MST regions of M in O(n logn) time. Consider any MST region R and let
r be the number of terminals (with repetitions) on the subpath in R induced by the clockwise walk of M . We need to
show that it takes O(λr log r) time to remove safe regions from R.

Since we make 2λ calls to the sweep line algorithm, the total time spent on this is O(λr log r). Now let t (k) denote
the highest number of terminals checked in any subregion R′ of R containing exactly k terminals. Here we also count
terminals checked in recursive calls to subregions of R′. We claim that

t (k) � (2k − 3) lgk − 1. (1)

We show (1) by induction on k � 2. The base case is trivial since then we perform no checks. Now let k > 2 and
assume that (1) holds for all values smaller than k. To show (1) for k, suppose first that R′ contains no base terminals.
Then we search through k − 2 terminals before terminating, i.e., we search through k − 2 terminals.

Now suppose instead that we find a base terminal in R′ after having checked i terminals. Since we search in
parallel from both ends of the path in R′, we split R′ into one subregion containing 	(i + 1)/2
 + 1 terminals and one
subregion containing k − 	(i + 1)/2
 terminals.

By the above,

t (k) � max
{
k − 2, max

i=1,...,k−2

{
t
(⌊

(i + 1)/2
⌋ + 1

) + t
(
k − ⌊

(i + 1)/2
⌋) + i

}}
.

Using the induction hypothesis, it can be shown that the right-hand side is at most (2k − 3) lgk − 1. This completes
the induction. Thus, in all parallel linear searches we check at most O(r log r) terminals for a given direction. Clearly
the time to check the first set of statements in the generalized version of Theorem 9 is at most a constant times the
maximum possible degree of any node in an MST. It is well known that this degree is six [6] and since we need to
check O(λ) directions, the total time spent on removing safe regions in R is O(λr log r). �
Theorem 12. The algorithm presented above has O(λn) space requirement.

Proof. MST M and CH(Z) require O(n) storage. Since the (clockwise) walk of M has length O(n) we can represent
all paths of terminals encountered in the algorithm using a total of O(n) space. Each terminal has O(λ) d-visible
terminals and edges. The space requirement for all calls to the sweep line algorithm is O(n). Clearly, we can represent
λ-SH(Z) using O(n) space. This shows that the entire algorithm uses O(λn) space. �
Theorem 13. For constant λ, the algorithm presented above is optimal.
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Proof. Clearly, any algorithm that computes λ-SH(Z) must use Ω(n) space. The terminals of Z on the boundary of
the initial λ-Steiner hull λ-CH(Z) of the algorithm are exactly the terminals belonging to the boundary of CH(Z).
Since these terminals remain on the boundary of the partially constructed λ-Steiner hull throughout the course of the
algorithm, the boundary of λ-SH(Z) must also contain all terminals belonging to the boundary of CH(Z).

Clearly, the boundary of λ-SH(Z) is a simple polygon with O(n) vertices. Since the convex hull of the vertices
on a simple polygon with O(n) vertices can be determined in O(n) time [5], it follows that any algorithm computing
λ-SH(Z) uses Ω(n logn) time. �
8. Uniqueness of λ-SH(Z)

In this section, we show that λ-SH(Z) is uniquely defined in the sense that it does not depend on the chosen
maximal sequence of safe removals from λ-CH(Z). The uniqueness proof is quite similar to that in [7] for the Steiner
hull in the Euclidean metric.

We let C(zi1 , zi2) denote the path of terminals encountered when walking along the boundary of λ-SH(Z) starting
in zi1 and ending in zi2 where zi1 and zi2 belong to the same MST region. We need the following two lemmas.

Lemma 14. Let R be a subregion induced by terminals zi1, . . . , zi2 . If zk is a base terminal in R then zk ∈ C(zi1 , zi2).

Proof. Suppose the lemma does not hold. Then there exists a maximal sequence of safe removals from R such that
λ-SH(Z) contains a subregion R′ in R induced by terminals zj1 , . . . , zj2 where j1 < k < j2. Let S be the safe region
in R bounded by zi1 , zi2 , and zk and let W be the λ-wedge bounding S. Then W is safe in R′, a contradiction. �

If k is the smallest index such that zk is a base terminal in subregion R then the removal of the corresponding safe
region in R is called canonical. A maximal sequence of safe removals from R is said to be canonical if all its safe
removals are canonical.

Lemma 15. If λ-SH(Z) is obtained by some maximal sequence of safe removals from λ-CH(Z) then the same polygon
can be obtained by a canonical sequence.

The proof of Lemma 15 is in Appendix A. We now present the main result of this section.

Theorem 16. λ-SH(Z) does not depend on the chosen maximal sequence of safe removals from λ-CH(Z).

Proof. This follows from Lemma 15 and the fact that every canonical sequence of safe removals from λ-CH(Z)

yields the same λ-SH(Z). �
9. Concluding remarks

In this paper, we defined a region λ-SH(Z) known to contain every λ-SMT for Z. Letting n = |Z|, we presented an
O(λn logn) time and O(λn) space algorithm that computes this set by removing open wedge-shaped regions from an
initial hull. We proved that our algorithm is optimal in both time and space for constant λ and showed that λ-SH(Z)

is independent of the order of removals of open wedge-shaped regions.
A possible improvement to the algorithm would be to flip suitable critical paths of λ-SH(Z). This would yield a

smaller hull (which would not contain every λ-SMT but at least one) but it would not increase the number of terminals
on the boundary of the hull. However, it would restrict the feasible locations of Steiner points further thus possibly
making it easier to compute a λ-SMT for Z.
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Fig. A.1. The situation in the proof of the generalized version of Theorem 9.

Appendix A. Theorem 9 generalized

In Theorem 9 we assumed that terminals were in general position. In this section we show how to remove this re-
striction. So suppose that the terminals of Z have arbitrary locations. We claim that, with the definitions in Theorem 9,
the following two sets of statements are equivalent.

(1) z1 is not d2-visible from zk and z2 is not d1-visible from zk .
For m = 1,2, if an edge e in R is dm-visible from zk then lm crosses e from the outside of R looking from zk .
For m = 1,2, if a terminal zj /∈ {zi1, zi2} in R is dm-visible from zk then lm crosses zj from the outside of R

looking from zk .
If zi1 is d1-visible from zk then W(zi1, zk,out(zi1))

◦ contains no edges ending in zi1 .
If zi2 is d2-visible from zk then W(zi2, in(zi2), zk)

◦ contains no edges ending in zi2 .
(2) W(l2, l1) is a safe λ-wedge in R.

Assume that (1) is satisfied. To show (2) we only consider the cases not covered by Theorem 9. Letting pm be as
in the proof of Theorem 9, suppose for the sake of contradiction that pm is a terminal zj . The third statement in (1)

implies that zj ∈ {zi1, zi2}. If zj = zi1 then l1 must intersect zi1 and zi1 is d1-visible from zk .
Let e1 be the edge directed from zi1 to out(zi1). The right side of e1 looking from zi1 belongs to the outside

of R. Since the interior of zkzi1 contains no terminals then, as shown in Fig. A.1, e must intersect the interior of
W(zi1 , zk,out(zi1)), contradicting (1). We show zj �= zi2 similarly.

We can exclude the situation in Fig. 8 since z1 is not d2-visible from zk and z2 is not d1-visible from zk . Thus,
(1) ⇒ (2).

Now suppose that (2) holds. Since l1 is the left leg of W , l1 cannot intersect zi1 and l2 cannot intersect zi2 . For
m = 1,2 we have, by Lemma 8, that if a terminal zj /∈ {zi1 , zi2} in R is dm-visible from zk then lm crosses zj from the
outside of R looking from zk .

Finally suppose that say zi1 is d1-visible from zk . No edges of R can cross the safe region in R bounded
by W(l2, l1). In particular, no edges in R with endpoint in zi1 can cross this safe region. It follows that
W(zi1 , zk,out(zi1))

◦ contains no edges with endpoint in zi1 . This shows (2) ⇒ (1).

Appendix B. Proof of Lemma 15

Let S be any maximal sequence of safe removals from λ-CH(Z) and suppose that the first safe removal in S of
some safe region R, bounded by zi1 , zi2 , and some base terminal, is not canonical. We will show that we can substitute
R by the canonical removal of a safe region R′ bounded by zi1 , zi2 , and a base terminal zk , followed by an appropriate
maximal sequence of safe removals such that λ-SH′(Z) remains the same. By repeating this procedure a sufficient
number of times, the lemma follows.

By Lemma 14, zk ∈ C(zi1 , zi2) when applying sequence S. Let S′ denote the subsequence of S beginning with the
removal of R and ending with zk being added to the boundary.

Let S′′ denote the subsequence of S′ consisting of the safe removals of regions bounded by terminals of the form
zj1 , zj2 , and some base terminal where i1 � j1 < k < j2 � i2. The sequence S′′ followed by the sequence S′ \ S′′
yields the same boundary as S′. Hence, we may assume that S′′ is a prefix of S′.



K

C. Wulff-Nilsen / Computational Geometry 40 (2008) 1–13 13

We start by removing R′. This splits our MST region into a subregion R1 containing zi1, . . . , zk and a subregion R2
containing zk, . . . , zi2 . Suppose C(zi1 , zk) has an intermediate terminal and let zh be the successor of zi1 in C(zi1 , zk).
There is a safe region R̄ bounded by zi1 , zj , and base terminal zh for some j ∈ {k + 1, . . . , i2}. If W is the λ-wedge
bounding R̄ then W is safe in R1. We remove the corresponding safe region from R1 and repeat the procedure on
C(zh, zk) if it has intermediate terminals.

We can apply the same procedure to C(zk, zi2). Thus, we have modified our sequence S into another sequence
starting with a canonical removal without affecting the resulting λ-SH′(Z).
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Wiener Index and Diameter of a Planar Graph in Subquadratic Time

Christian Wulff-Nilsen∗

Abstract

We solve two open problems by proving the existence
of subquadratic time algorithms for computing the
Wiener index, defined as the sum of all-pairs short-
est path distances, and the diameter, defined as the
maximum distance between any vertex pair, of an un-
weighted planar graph. We do this by exhibiting al-
gorithms with O(n2 log log n/ logn) running time and
O(n) space requirement where n is the number of ver-
tices of the graph.

1 Introduction

A molecular topological index is a value obtained from
the graph structure of a molecule such that this value
(hopefully) correlates with physical and/or chemical
properties of the molecule. Perhaps the most studied
molecular topological index is the so called Wiener in-
dex, a generalization of a definition given by Wiener
in 1947 [8]. The Wiener index of a graph (weighted
or unweighted) is defined as the sum of distances be-
tween all pairs of vertices of the graph. Computing
the Wiener index is essentially equivalent to comput-
ing the average distance between vertex pairs.

The Wiener index can clearly be computed in the
amount of time it takes to compute APSP distances.
For special types of graphs, faster algorithms are
known. Linear time algorithms are known for cac-
tii [9] and benzenoid systems [2] and recently Cabello
and Knauer [1] gave near-linear time algorithms for
graphs of bounded treewidth. More specifically, they
showed that the Wiener index of an n-vertex graph
of treewidth k ≥ 3 can be found in O(n logk−1 n)
time. All bounds hold for graphs with arbitrary non-
negative edge weights.

For planar graphs, the Wiener index can be found in
quadratic time using the algorithm of Frederickson [4].
One of the main open problems in this context con-
cerns the existence of a subquadratic time algorithm
for such graphs.

Another important quantity is the diameter of a
graph, defined as the maximum distance between any
vertex pair. With Frederickson’s algorithm, the diam-
eter of a planar graph can be found in quadratic time
but it is open whether a subquadratic time algorithm
exists (Problem 6.2 in [3]).

∗Department of Computer Science, University of Copen-
hagen, koolooz@diku.dk

In this paper, we solve both of these open
problems for planar unweighted graphs. We do
this by exhibiting algorithms with running time
O(n2 log log n/ logn) and space requirement O(n)
where n is the number of vertices.

The organization of the paper is as follows. In Sec-
tion 2, we give various definitions and introduce some
notation. We mention a result by Frederickson [4]
in Section 3, a result that allows us to divide a pla-
nar graph into regions with some nice properties. In
Section 4, we rely on this result to obtain our sub-
quadratic time algorithm for computing the Wiener
index of a planar graph. In Section 5, we show how a
simple modification gives an algorithm with the same
time bound for computing the diameter of a planar
graph. Finally, we make some concluding remarks in
Section 6.

2 Definitions and Notation

In all the following, G = (V, E) is an unweighted
planar graph with n vertices. For u, v ∈ V , we let
dG(u, v) denote the length of a shortest path in G
between u and v.

Given a subgraph H of G, we let VH denote its
vertex set.

Given subsets U1, U2 ⊆ V , we define∑
(U1, U2) =

∑
u∈U1

∑
v∈U2

dG(u, v).

We omit G in the notation but this should not cause
any confusion. For a vertex u and a subset U of V ,
we write

∑
(U, u) as a shorthand for

∑
(U, {u}).

We let
∑

G denote the sum of all-pairs shortest
path distances in G, i.e.

∑
G = 1

2

∑
(V, V ), and we

refer to it as the Wiener index of G.
A region of G is a subset R of vertices of G. A

boundary vertex of R is a vertex in R which is adjacent
in G to a vertex in V \ R. Vertices of R that are not
boundary vertices are called interior vertices (of R).

We let log denote the base 2 logarithm.

3 r-division of a Planar Graph

By applying the separator theorem of Lipton and Tar-
jan [6] recursively to a given planar graph, Frederick-
son [4] obtained the following result which we state as
a lemma.

1
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Lemma 1 Given a parameter r ∈ (0, n) (which may
depend on n), an n-vertex planar graph can be di-
vided into Θ(n/r) regions each of which contains at
most r vertices and O(

√
r) boundary vertices. Fur-

thermore, each interior vertex is contained in exactly
one region. Finding such a division can be done in
O(n log n) time.

For parameter r, we refer to the division in Lemma 1
as an r-division (of the graph). If R1, . . . , Rk ⊆ V are
the regions obtained, we denote the r-division by the
tuple (R1, . . . , Rk).

Finding an r-division for a suitable value of r is
essential in our algorithms.

4 Wiener Index of a Planar Graph

In this section, we show how to compute the Wiener
index

∑
G of G in O(n2 log log n/ logn) time. We

will assume that G is connected since otherwise the
problem is trivial.

The first step of our algorithm is to compute an r-
division (R1, . . . , Rk) of G for some parameter r which
we specify later. For now, just regard r as some
function of n. We will show how to compute

∑
G

in O(n2/
√

r + nrO(
√

r)) time. From this and from a
suitable choice of r, the first result of the paper will
follow.

In the following, let B be the set of boundary ver-
tices over all regions R1, . . . , Rk. We precompute
shortest path distances from each vertex in B to all
vertices in V . Since |B| = O(n/

√
r), this can be done

in O(n2/
√

r) time using the linear time SSSP algo-
rithm in [5] for each vertex in B. From these dis-
tances, we obtain values

∑
(B, V ) and

∑
(B, B) in

O(n2/
√

r) time.
Observe that

∑
(B, V ) − 1

2

∑
(B, B) is the sum of

all shortest path distances in G between vertex pairs
(u, v) for which either u or v (or both) is a boundary
vertex. Since, by Lemma 1, each interior vertex be-
longs to exactly one region, we can thus obtain

∑
G

as the sum∑
(B, V )− 1

2

∑
(B, B)+

1
2

k∑
i=1

∑
(Ri \ B, V \ (Ri ∪B)) +

∑
(Ri \ B, Ri \ B).

Let R be one of the regions R1, . . . , Rk. In the
following, we focus on the problem of computing∑

(R \ B, V \ (R ∪ B)) and
∑

(R \ B, R \ B). If
we can show that these two quantities can be com-
puted in O(n

√
r + rO(

√
r)) time, it will follow that∑

G can be computed in O(n2/
√

r + nrO(
√

r)) time
since k = Θ(n/r).

Let us start with the easy part, that of computing∑
(R \ B, R \ B). We do this by computing shortest

path distances in G between each pair of vertices in
R. To do this efficiently, we take the subgraph of G
induced by R and add to it an edge between each pair
of boundary vertices of R; the length of this edge is
equal to the distance in G between those two vertices
(we do not add an edge between a pair of boundary
vertices already connected by an edge). We then run
an APSP algorithm like Floyd-Warshall on the result-
ing graph.

Since shortest path distances from boundary ver-
tices of R to all vertices in G (and in particular to all
boundary vertices in R) have been precomputed, it
follows that we can compute shortest path distances
in G between each pair of vertices in R in O(r3) time.
Hence, we can compute

∑
(R\B, R\B) in O(r3) time.

Now, to compute
∑

(R \ B, V \ (R ∪ B)), let
C1, . . . , Cs be the connected components of the sub-
graph of G induced by R. Then∑

(R \ B, V \ (R ∪B)) =
s∑

i=1

∑
(VCi \ B, V \ (R ∪B)). (1)

Let C be one of these connected components, let
nC = |VC |, and let p1, . . . , pt be the boundary vertices
of R belonging to C. In the following, we show how to
compute

∑
(VC \B, V \(R∪B)) in O(nt+n

O(t)
C ) time.

It will then follow that the left-hand side of (1) can
be computed in O(n

√
r + rO(

√
r)) time since each of

the O(
√

r) boundary vertices of R belongs to exactly
one connected component.

To compute
∑

(VC \B, V \ (R∪B)), the basic idea
is the following. Given some vertex u ∈ V \ (R ∪
B), suppose we have precomputed, for each boundary
vertex pi, i = 1, . . . , t,

1. the number ni,u of vertices v in VC \B for which i
is the smallest j such that dG(u, v) = dG(u, pj)+
dC(pj , v),

2. the sum Di,u of distances in C from pi to each of
these vertices in VC \ B.

Then∑
(VC \ B, u) =

t∑
i=1

ni,udG(u, pi) + Di,u, (2)

see Figure 1.
Given these precomputations, we can thus obtain∑
(VC \ B, u) in O(t) time and from this it follows

that
∑

(VC \B, V \(R∪B)) can be computed in O(nt)
time.

In order to perform the above precomputations ef-
ficiently we need the following key observation.

Lemma 2 Let u ∈ V \ (R ∪B) and let i ∈ {1, . . . , t}
be given. Then ni,u and Di,u are completely deter-
mined by shortest path distances in C and values
dG(u, pj)− dG(u, p1) for j = 1, . . . , t.
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p2

R
C

p3

p1

u

Figure 1: Graph instance for which component C
has t = 3 boundary vertices p1, p2, and p3 of R
and where (n1,u, D1,u) = (4, 7), (n2,u, D2,u) = (4, 6),
and (n3,u, D3,u) = (1, 1). Also

∑
(VC \ B, u) =∑t

i=1 ni,udG(u, pi) + Di,u = 43.

Proof. Let v ∈ VC \ B. Any path from u to v in
G must contain at least one of the boundary vertices
p1, . . . , pt. Hence, the following two conditions are
equivalent:

1. i is the smallest j such that dG(u, v) =
dG(u, pj) + dC(pj , v),

2. dG(u, pi)−dG(u, pj) ≤ dC(v, pj)−dC(v, pi) holds
for 1 ≤ j ≤ t with strict inequality for 1 ≤ j < i.

Since dG(u, pi)−dG(u, pj) = (dG(u, pi)−dG(u, p1))−
(dG(u, pj)− dG(u, p1)), the above shows that ni,u de-
pends only on shortest path distances in C and values
dG(u, pj) − dG(u, p1), j = 1, . . . , t. Clearly, this also
holds for Di,u. !

Before proceeding, let us define a map φ : V \ (R ∪
B)→ Zt by

φ(u)[j] = dG(u, pj)− dG(u, p1),

for j = 1, . . . , t. Let p be a point in φ(V \ (R ∪ B))
and let u be a vertex in V \ (R∪B) such that φ(u) =
p. Associate with p values np(i) and Dp(i) for i =
1, . . . , t, defined by

np(i) = ni,u,

Dp(i) = Di,u.

By Lemma 2, this is well-defined since np(i) and Dp(i)
do not depend on the choice of u ∈ φ−1({p}).

The strategy now is to precompute np- and Dp-
values for each p ∈ φ(V \ (R ∪B)) and then, for each
u ∈ V \ (R ∪ B), compute p = φ(u) and obtain, for

i = 1, . . . , t, nu,i and Du,i as the precomputed values
np(i) and Dp(i), respectively. Function φ will act in
a way similar to a hash function in that it maps a
key (a vertex u) into a hash (the point p = φ(u)) to
obtain a value (np(i) and Dp(i) for i = 1, . . . , t).

For this strategy to work well, we need the following
lemma which shows that the number of points in φ(V \
(R∪B)) is small compared to V \ (R ∪B) and hence
that we only need to compute a small number of np-
and Dp-values.

Lemma 3 φ(V \(R∪B)) ⊆ {−(nC−1), . . . , nC−1}t.

Proof. Let u ∈ V \ (R ∪ B) and let j ∈ {1, . . . , t}
be given. Since C is connected there is a simple path
in C from p1 to pj and this path consists of at most
nC − 1 edges. Thus, dG(p1, pj) ≤ dC(p1, pj) ≤ nC − 1
and the triangle inequality implies

−(nC − 1) ≤ dG(u, pj)− dG(u, p1) ≤ nC − 1.

This shows the lemma since φ(u)[j] = dG(u, pj) −
dG(u, p1). !

We are now ready to describe how to compute∑
(VC \ B, V \ (R ∪ B)). We first initialize a t-

dimensional table T with an entry T [p] for each point
p ∈ {−(nC − 1), . . . , nC − 1}t. Associated with
T [p] are two t-dimensional vectors to hold values
(np(1), . . . , np(t)) and (Dp(1), . . . , Dp(t)). Initially,
all entries of T are unmarked. The initialization step
takes a total of O(t(2nC − 1)t) = O(nO(t)

C ) time.
For each u ∈ V \(R∪B), we compute point p = φ(u)

in O(t) time (this is possible since SSSP distances
in G have been precomputed for each boundary ver-
tex). Assume first that entry T [p] is unmarked. Then
we mark it and compute the np- and Dp-values and
store them in the vectors associated with T [p]. By
Lemma 2, computing and storing these values can
clearly be done in time polynomial in nC (a weak
analysis but it suffices). From these values, we com-
pute

∑
(VC \ B, u) in O(t) time.

If T [p] is already marked then we do not compute
np- and Dp-values. Instead we perform a lookup in T
at entry T [p] to obtain

∑
(VC \ B, u) in O(t) time.

Clearly, we compute np- and Dp-values at most
once for each p ∈ {−(nC −1), . . . , nC −1}t. It follows
that the above algorithm computes

∑
(VC \B, V \(R∪

B)) in O(nt + n
O(t)
C ) time.

From the above and from (1), we get the following
result.

Lemma 4 For each region R, values
∑

(R\B, V \(R∪
B)) and

∑
(R\B, R\B) can be computed in O(n

√
r+

rO(
√

r)) time assuming shortest path distances from
each boundary vertex of R to each vertex in G have
been precomputed.
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We are now ready for our first result.

Theorem 5 The Wiener index
∑

G of an un-
weighted planar n-vertex graph G can be computed
in O(n2 log log n/ logn) time and O(n) space.

Proof. Computing shortest path distances from each
boundary vertex to each vertex in G can be done in
O(n2/

√
r) time.

Applying Lemma 4 to each of the Θ(n/r) regions in
the r-division of G gives us

∑
G in O(n2/

√
r+nrc′√r)

time for some constant c′.
We pick r = (c log n/ log log n)2 where c > 0 is some

constant (to be specified). For n > 2c we have log n >
c, and for n > 4 we have log log n > 1. Thus, for
n > max{2c, 4},

rc′√r < (c log n)2c′c log n/ log log n

< (log n)4c′c log n/ log log n

= n4c′c,

since (log n)log n/ log log n = n. It follows that if we
choose c < 1/(4c′), we have rc′√r = O(nε), where
ε < 1. With this choice of r, the total running time
of the algorithm is

O(n2/
√

r + nrc′√r) = O(n2 log log n/ logn + n1+ε)

= O(n2 log log n/ logn),

as requested.
Simple modifications of the algorithm described

above allows us to obtain linear space requirement
without affecting running time. Due to space con-
straints, we omit the details. !

5 Diameter of a Planar Graph

The following theorem shows that we can obtain a
similar time bound for computing the diameter of an
unweighted planar graph.

Theorem 6 The diameter of an n-vertex planar
graph with non-negative edge weights can be com-
puted in O(n2 log log n/ logn) time and O(n) space.

Proof. We can apply ideas similar to those above for
the Wiener index problem. The only essential differ-
ence is that instead of variables ni,u and Di,u (see
Section 4) we introduce variables Li,u for each i and
u that keep track of the longest distance in C from pi

to the set of vertices specified in the definition of ni,u.
We can then use the identity

max(VC \ B, u) = max
1≤i≤t

{dG(u, pi) + Li,u}

instead of (2). !

Note that our two algorithms do not rely on planarity
except when computing an r-division and SSSP dis-
tances in linear time. Our results can therefore be
extended to the larger class of unweighted subgraph-
closed

√
n-separable graphs for which separators can

be found efficiently [5].

6 Conclusion

We solved two open problems, the existence of sub-
quadratic time algorithms for computing the Wiener
index and diameter of an unweighted planar graph.
We did this by exhibiting O(n2 log log n/ logn) time
algorithms where n is the number of vertices. Both
algorithms have linear space requirement.

It remains open whether “truly” subquadratic time
algorithms exist, i.e. algorithms with O(nc) running
time for constant c < 2.

In a forthcoming paper, we extend our results
to planar graphs with arbitrary non-negative edge
weights. The new ideas we introduce in that paper
allow us to solve also the stretch factor problem for
planar graphs in subquadratic time. In another paper,
we show how similar ideas give a faster algorithm for
computing shortest path distances between k = O(n2)
pairs of vertices in a planar graph for large k.
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Wiener Index, Diameter, and Stretch Factor of a Weighted

Planar Digraph in Subquadratic Time

Christian Wulff-Nilsen ∗

Abstract

We consider the following three open problems: can the Wiener index (sum of all-
pairs shortest path distances) and diameter of a planar digraph with arbitrary real edge
weights and with no cycles of negative weight, and the stretch factor of a plane undi-
rected geometric graph (maximum over all pairs of distinct vertices of the ratio between
the graph distance and the Euclidean distance between the two vertices) be computed in
subquadratic time? We present a theorem that allows us to solve all three problems by
giving O(n2(log log n)4/ logn) worst-case time algorithms for the Wiener index and diam-
eter problems and an O(n2(log log n)4/ logn) expected time algorithm for the stretch fac-
tor problem, where n is the size of the graph. Another corollary of the theorem is that
an oracle for exact distance queries in a planar digraph with arbitrary real edge weights
and no negative weight cycles can be constructed in subquadratic time. More gener-
ally, for a parameter S = O(n1/5/ log8/5 n), exact distance queries can be answered in
O(S log4 S/ log n) time per query with O(n2/S) preprocessing time, improving on previous
results when log4 S = o(log n).
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1 Introduction

We consider the problems of computing the Wiener index (sum of all-pairs shortest path (APSP)
distances) and diameter (maximum distance between any vertex pair) of a digraph with real
edge weights and no negative weight cycles, and the problem of computing the stretch factor of
an undirected geometric graph (maximum over all pairs of distinct vertices of the ratio between
the graph distance and the Euclidean distance between the two vertices). For planar graphs, all
three problems can be solved in quadratic time by applying Frederickson’s APSP algorithm [6]
but it is open whether subquadratic time algorithms exist (see [2], [3], and [1], respectively).

In this paper, we solve these three open problems. More precisely, we present algorithms for
the Wiener index and diameter problems with O(n2(log log n)4/ log n) worst-case running time
and an algorithm for the stretch factor problem with O(n2(log log n)4/ log n) expected running
time, where n is the size of the graph. All three results are derived from a new theorem and it
is our hope that this theorem can be applied to other planar graph problems.

From this main theorem, the following result also follows easily for an n-vertex planar
digraph with arbitrary real edge weights and with no cycles of negative weight: for a parameter
S = O(n1/5/ log8/5 n), distance queries can be answered in O(S log4 S/ log n) time per query
with O(n2/S) preprocessing time. Djidjev [4] gets O(S) query time with O(n2/S) preprocessing
time for S = O(

√
n). Our result is better for small S, i.e., when log4 S = o(log n). And in

particular, we obtain an oracle for exact distance queries with O(n2(log log n)4/ log n) = o(n2)
preprocessing time; the previous best result was to precompute all-pairs shortest path distances
in quadratic time.

To obtain our results, we use ideas from [10] of obtaining a so-called r-division of G and
performing heavy preprocessing in each region of the r-division to speed up computations in the
main algorithm. However, [10] only applies to unweighted, undirected planar graphs so many
new ideas are also needed.

The organization of the paper is as follows. In Section 2, we introduce some notation and
give some basic definitions and results. In Section 3, we describe a generic algorithm which we
will later apply to all the problems we consider. The description of the algorithm is split into
two subsections. In Subsection 3.1, we describe the preprocessing step and in Subsection 3.2,
we describe the main algorithm. We also bound the running time of the entire algorithm. The
results are summed up in our main theorem, Theorem 2. In Section 4, we apply this theorem
to the problems described above to obtain the desired time bounds. Finally, we make some
concluding remarks in Section 5.

2 Definitions, Notation, and Basic Results

In this section, we introduce some notation and definitions and present some basic results.
For a digraph G = (V,E), we define VG = V and EG = E. Suppose G has real edge weights

and no negative weight cycles. For u, v ∈ V , we let dG(u, v) denote the length of a shortest path
in G from u to v. If no such path exists, we define dG(u, v) = ∞.

In the rest of this section, let G = (V,E) be a triangulated n-vertex planar digraph with
a planar embedding. For a subset S of the plane, the restriction of G to S is defined as the
intersection between G and S when regarding G as a point set.

A Jordan curve C partitions the plane into a bounded region, called the interior of C, and
an unbounded region, called the exterior of C. We let Int(C) resp. Ext(C) denote the restriction
of G to the interior resp. exterior of C, and we let Int(C) resp. Ext(C) denote the restriction
of G to the closure of the interior resp. exterior of C. We omit G in these definitions but this
should not cause any confusion.

Define a region R (of G) to be the subgraph of G induced by a subset of V . In G, the
vertices of VR that are adjacent to vertices in V \ VR are called boundary vertices (of R) and
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the set of boundary vertices of R is called the boundary of R which we denote by ∂R. Vertices
of VR that are not boundary vertices of R are called interior vertices (of R).

Let r ∈ (0, n) be a parameter. Fakcharoenphol and Rao [5] showed how to recursively apply
the cycle separator theorem of Miller [9] such that in O(n log n) time, (the plane embedding of)
G is divided into O(n/r) regions satisfying:

1. each region contains at most r vertices and O(
√

r) boundary vertices,

2. no two regions share interior vertices,

3. each region has a boundary contained in O(1) faces, defined by simple cycles.

We refer to such a division as an r-division of G. The bounded faces of a region are its holes.
We may assume that all vertices of faces containing the boundary of a region are boundary
vertices of that region. Furthermore, we make the assumption that for each region R in an
r-division, R is contained in Int(C) for one of the cycles C in the boundary of R. This can
always be achieved by adding a new cycle if needed. Cycle C is the external face of R.

Consider an r-division of G consisting of regions R1, . . . , Rp. For each region Ri, let CRi

denote the set of faces defining the boundary of Ri. Note that |CRi
| = O(1).

Given a region Ri and a face C ∈ CRi
, define URi,C as the set of vertices of G belonging to

Int(C) resp. Ext(C) if C is a hole resp. the external face of Ri.

Lemma 1. With the above definitions, let i ∈ {1, . . . , p}. For any C ∈ CRi
, any u ∈ URi,C, and

any v ∈ VRi
, every shortest path in G from u to v contains a boundary vertex of Ri belonging

to C. Furthermore, ∪C∈CRi
URi,C is the set of vertices of V not belonging to Ri.

3 A Generic Algorithm

In this section, G = (V,E) denotes an n-vertex planar digraph with non-negative edge weights.
We assume that G is triangulated (if not, triangulate it with oppositely directed infinite weight
edges). We compute a planar embedding of G and identify G with this embedding. From this
we obtain an r-division of G for some parameter r which we leave unspecified for now.

We will assume that single-source shortest path (SSSP) distances in G with each of the
O(n/

√
r) boundary vertices as sources have been precomputed. Using the algorithm of [7], this

takes O(n n√
r
) time. For each boundary vertex p, we also precompute dG(u, p) for all u ∈ V .

By reversing edges of G, we can again apply the algorithm of [7] to obtain these distances in
O(n n√

r
) time. We refer to all these distances as boundary vertex distances (in G).

Let us start by describing the problem that the generic algorithm should solve. In the
following, let R be one of the regions in the r-division of G. Let C be one of the cycles in CR

and let p1, . . . , pt be the boundary vertices of R belonging to C. Assume that in a simple walk
of C, p1, . . . , pt are visited in that order. Let U = UR,C .

By Lemma 1, for any u ∈ U and v ∈ VR, dG(u, v) = dG(u, pi) + dG(pi, v) for some pi ∈ C.
We make the assumption that dG(u, v) = dG(u, pi) + dR(pi, v). This does not hold in general
but can be satisfied as follows. For each cycle C ′ ∈ CR \ {C}, add to R an edge (u, v) for each
pair of boundary vertices u and v of R belonging to C ′. The weight of this edge is equal to the
length of a shortest path in G from u to v among paths with all interior vertices belonging to
UR,C′ . If no such path exists, the edge is omitted. Note that the complexity of the problem
does not increase with the addition of these edges.

Now, the problem is to find, for each u ∈ U , a colouring of the vertices of R using t colours
which we denote by indices 1, . . . , t. For i = 1, . . . , t, a vertex v ∈ R should be assigned colour i
if dG(u, v) = dG(u, pi)+dR(pi, v). Ties may be resolved in any way. We refer to such a colouring
as a u-colouring (of R).
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Drc(w)

Dw
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iw

T2
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ilc

irc

Figure 1: When queried with u, Dw returns an integer iw representing an Iw-colouring of R
w.r.t. u. Here, T S, T2, and T3 denote a tree set, a level 2-table, and a level 3-table, respectively.

3.1 Preprocessing Step

The main part of the generic algorithm is preceeded by a preprocessing step which we describe
in this subsection. In the following, assume that R, C, U , and p1, . . . , pt are defined as above.
We make the assumption that C is a hole. Hence, R is contained in Ext(C). The case where C
is the external face is dealt with in a similar way.

The main algorithm should find a u-colouring of R w.r.t. each u ∈ U . The preprocessing
step does not depend on u but to make it more clear how this step can speed up computations
in the main algorithm, we assume in the following that we are given some unspecified u ∈ U .

Let It = {1, . . . , t}. For non-empty subset I ⊆ It, define an I-colouring of R as a colouring
of the vertices of R with colours in I. We extend this definition to subgraphs of R and to
subsets of vertices of R. When less specific, we call an I-colouring of R an |I|-colouring of R.
When convenient, we will regard an I-colouring of a set A of vertices as a map c : A → I.

An I-colouring of R w.r.t. u is an I-colouring of R where a vertex v ∈ R is given colour i
only if dG(u, pi) + dR(pi, v) ≤ dG(u, pj) + dR(pj, v) for all j ∈ I, with ties resolved in any way.
Given a subset A of vertices of R, an I-colouring of A w.r.t. u is defined as an I-colouring of A
which can be extended to an I-colouring of R w.r.t. u.

For an index set I = {i1, . . . , im} with i1 < i2 < . . . < im, define the lower subset of I as
the set {i1, . . . , i⌈m/2⌉} and define the upper subset of I as the set {i⌈m/2⌉+1, . . . , im}.

The generic algorithm should find an It-colouring of R w.r.t. u. The idea is to obtain this
colouring recursively from an I1-colouring and an I2-colouring of R w.r.t. u, where I1 (I2) is
the lower (upper) subset of It.

In the preprocessing step of the algorithm, a balanced binary tree T is constructed that
reflects this recursion. We refer to this tree as the main tree. Associated with each vertex w of
T is a subset Iw of It.

Main tree T and these subsets are defined as follows. The root r of T is associated with
Ir = It. For each vertex w of T , if |Iw| = 1 then w is a leaf of T . Otherwise, w has a left child
which is associated with the lower subset of Iw and has a right child which is associated with
the upper subset of Iw. We let Tw denote the subtree of T rooted at w.

For each non-leaf vertex w of T , we let lc(w) resp. rc(w) denote the left resp. right child
of w. With each such w we associate a data structure called Dw. When queried with u in the
main algorithm, Dw returns an integer that identifies an Iw-colouring of R w.r.t. u.

Data structure Dw is illustrated in Figure 1. It consists of a two-dimensional table Tw called
the level 1-table (of w). Associated with each entry Tw(i, j) of Tw is a data structure called a
tree set. It represents a set of binary trees and there is a one-to-one map from this set into a
higher-dimensional table, also associated with entry Tw(i, j). We call this table a level 2-table.
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With each entry of this table, a higher-dimensional level 3-table is associated.
Each level 3-table entry associated with Dw corresponds to an Iw-colouring of R. When Dw

is queried with u in the main algorithm, this vertex will be mapped to a level 3-table entry that
corresponds to an Iw-colouring of R w.r.t. u. A unique number is assigned to each level 3-table
entry and if u is mapped to entry number x then x is the key value that uniquely identifies that
Iw-colouring of R w.r.t. u. It is this key value that Dw returns when queried with u.

In the preprocessing step, the actual colourings associated with level 3-entries will be needed.
These colourings will be computed bottom-up in main tree T . In the following, we consider a
non-leaf vertex w of T and describe the components of data structure Dw associated with w.
We assume that colourings of level 3-table entries associated with descendants of w in T have
already been computed.

3.1.1 Level 1-Table

The index of each row of level 1-table Tw is an integer representing an Ilc(w)-colouring of R
w.r.t. some vertex and the index of each column is an integer representing an Irc(w)-colouring
of R w.r.t. some vertex. There is a row resp. column for each level 3-table entry associated with
Dlc(w) resp. Drc(w) and each entry of Tw is associated with the two colourings corresponding to
the entry’s row and column, respectively.

In the main algorithm, data structures Dlc(w) and Drc(w) are recursively queried with vertex
u, giving integers ilc and irc identifying, respectively, an Ilc(w)-colouring and an Irc(w)-colouring
of R w.r.t. u. From these, we obtain entry (ilc , irc) in Tw, see Figure 1.

In case lc(w) is a leaf of T then there is only one Ilc(w)-colouring of R w.r.t. u so we define
ilc = 1 and Tw has only one row. And similarly, if rc(w) is a leaf of T then irc = 1 and Tw has
only one column.

In the following, we describe the tree set and the level 2-table and level 3-tables associated
with the entry (ilc , irc) of Tw that u is mapped to in the main algorithm.

3.1.2 Tree Set

The tree set data structure is essentially a compact representation of a certain set of binary
trees and has a recursive definition. It is either a leaf or a non-leaf. If it is a leaf it represents
one binary tree which itself is a leaf.

If it is a non-leaf it consists of a pair of arrays and each entry of these arrays represents
a root of a set of binary trees. An entry corresponding to a root r points to two recursively
defined tree sets representing, respectively, left and right subtrees of a binary tree with root r.
Taking all combinations of left and right subtrees that those two tree sets represent gives all
binary trees with root r.

Let T S be the tree set associated with the entry (ilc , irc) of Tw that we consider and let
Ai and Aj be the two arrays representing the roots of binary trees of T S. The entries of Ai

correspond to vertices of a shortest path Pi in R from boundary vertex pi to a suitable vertex
v ∈ R where i is the colour of v in the Ilc(w)-colouring of R w.r.t. u, see Figure 2. Similarly,
the entries of Aj correspond to vertices of a shortest path Pj in R from boundary vertex pj to
v where j is the colour of v in the Irc(w)-colouring of R w.r.t. u. This is well-defined since the
two colourings are independent of which u-vertex is mapped to entry (ilc , irc) in Tw. Vertex v
is chosen such that i resp. j is neither the first nor last index of Ilc(w) resp. Irc(w).

For each vertex v′ ∈ Pi, two shortest paths in R are associated: the subpath Pi(v
′) of Pi

from pi to v′ and a shortest path P ′
i (v

′) from pj(v′) to v′ where j(v′) is the colour of v′ in the
Irc(w)-colouring of R w.r.t. u. Path P ′

i (v
′) is chosen such that it does not cross Pi(v

′), i.e.,
Pi(v

′) ∪ P ′
i (v

′) contains no cycles when edges are considered to be undirected.
The union of Pi(v

′) and P ′
i (v

′) partitions R into two smaller regions, R1 and R2, both
containing Pi(v

′) and P ′
i (v

′). Boundary vertices pi and pj(v′) partition C into two subpaths
5
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v

Pj

pj

pi

u

pj(v′)

v′

P ′
i (v

′)

Pi

C

R1

R2
R2

Pi(v
′)

I2
lc(w)

I1
lc(w) I1

rc(w) I2
rc(w)

Figure 2: Associated with each vertex v′ ∈ Pi are two paths, Pi(v
′) and P ′

i (v
′). For this example,

the dashed resp. dotted curve illustrates the portion of C containing boundary vertices with
indices in Ilc(w) resp. Irc(w).

which induce a partition of Ilc(w) into two smaller index sets, I1
lc(w) and I2

lc(w), and induce a

partition of Irc(w) into index sets, I1
rc(w) and I2

rc(w), see Figure 2.
Two shortest paths are similarly associated with each vertex of Pj. We omit the definition

since it is symmetric to the above.
The main algorithm will search in Ai (or in Aj) to pick vertex v′ in such a way that for

m = 1, 2, each vertex of Rm can be assigned a colour from Im
lc(w)∪Im

rc(w) in an Iw-colouring of R
w.r.t. u. In other words, the problem of colouring vertices of R is divided into two subproblems.

In the preprocessing step, we need to consider all possible choices of v′. For each such choice,
we recurse on the two subproblems to obtain the two tree sets that the v′-entry of Ai (or Aj)
points to. It may be necessary to redefine the given Ilc(w)- and Irc(w)-colourings obtained from
Dlc(w) and Drc(w), respectively, to ensure that the colour pair in Ilc(w) × Irc(w) for each vertex
of Rm belongs to Im

lc(w) × Im
rc(w), m = 1, 2. We omit the details but it can be shown that these

redefinitions depend only on the choice of indices i and j(v′). Hence, these computations can
be performed in the preprocessing step instead of the main algorithm.

The recursion stops when there is no choice of v satisfying the index requirement above.
Each leaf of T S then has an associated subregion of R and two colourings of this subregion with
colours from subsets of Ilc(w) and Irc(w), respectively.

The main algorithm will search in Ai if dG(u, pi)+dR(pi, v) ≥ dG(u, pj)+dR(pj , v) and in Aj

otherwise. If the search is in Ai then v′ is picked such that it is the first vertex of Pi such that
dG(u, pi) + dR(pi, v

′) ≥ dG(u, pj(v′)) + dR(pj(v′), v
′) (if the search is in Aj, v′ is picked similarly

in Pj). Binary search is applied to find this vertex. It can be shown that with this choice of v′,
we get the above division of our colouring problem into two subproblems.

Observe that with each choice of u, a certain binary tree of T S is traversed in the main
algorithm. We refer to this traversal as a u-traversal of T S. Lemma 3 below shows that Iw-
colourings of R w.r.t. u-vertices traversing the same binary tree are in some sense related. The
following lemma will also be needed.

Lemma 2. Each binary tree represented by T S has O(|Iw|) vertices.

Proof. (Sketch) It is easy to see that |I1
lc(w)∪I1

rc(w)|+ |I2
lc(w)∪I2

rc(w)| = |Ilc(w)∪Irc(w)|+2. And
since v was chosen such that i resp. j is neither the first nor last index of Ilc(w) resp. Irc(w), we
have |I1

lc(w) ∪ I1
rc(w)|, |I2

lc(w) ∪ I2
rc(w)| < |Ilc(w) ∪ Irc(w)|. This implies that the number of leaves

in a tree represented by T S is at most l(|Iw|), where l : N → N is defined by

l(k) =

{

max{l(k1) + l(k2)|k1 + k2 = k + 2, k1, k2 < k} if k > 4
1 if k ≤ 4,

It can be shown by induction on k ≥ 3 that l(k) ≤ k − 2 which implies the lemma.
6
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Lemma 3. Let U ′ be a subset of vertices of U all traversing the same binary tree in T S. Then
there are O(|Iw|) sets V1, . . . , Vm of vertices whose union is VR such that for k = 1, . . . ,m and
for each u′ ∈ U ′ there is a 2-colouring of Vk which is an Iw-colouring of Vk w.r.t. u′.

Proof. (Sketch) Let u ∈ U ′ and let A1, . . . , Ap be the sets of vertices of regions associated with
leaves of the binary tree traversed by u. From the construction of T S and the definition of
u-traversal, it follows that ∪p

k=1Ak = VR.
Let k ∈ {1, . . . , p} be given and let lk denote the leaf with which the region with vertex set

Ak is associated. Let c : Ak → I and c′ : Ak → I ′ be the colourings of Ak associated with
lk, where I ⊆ Ilc(w) and I ′ ⊆ Irc(w). From the way the v′-vertices are chosen by the main
algorithm, it follows that for each x ∈ Ak, either c(x) or c′(x) is a colour of x in an Iw-colouring
of R w.r.t. u. It can be shown that the total number of distinct colour pairs for vertices in
regions associated with leaves of a tree T of T S is O(|Iw|). The lemma then follows by letting
V1, . . . , Vm be maximal sets each containing vertices with identical colour pairs.

3.1.3 Level 2-Table

We now describe the level 2-tables associated with Dw. Recall that there is a tree set associated
with each entry of the level 1-table Tw. For each such tree set T S there is a one-to-one map φ
from the set of binary trees that T S represents to entries of a level 2-table. In the following,
we define this map and table.

Let c ∈ N be a constant such that each tree represented by T S has at most c|Iw| non-leaf
vertices. Such a constant exists by Lemma 2. Let nR = O(r) be the number of vertices of R.
Arbitrarily assign a unique number in {0, . . . , nR − 1} to each of these vertices.

Consider a tree T represented by T S. Its root corresponds to an entry in one of the two
arrays at the top-level of T S. This entry is uniquely defined by the choice of array and the
choice of v′-entry. The array is uniquely determined by the value of a single bit and v is uniquely
determined by its number in the above assignment. It follows that the root of T is uniquely
defined by a pair in {0, 1} × {0, . . . , nR − 1} which we may regard as a pair in {0, . . . , nR − 1}2.

Applying the above recursively to the subtrees of T , it follows that T is uniquely defined by
a vector in {0, . . . , nR − 1}2c|Iw |. We define φ(T ) to be this vector and with this definition, φ is
one-to-one. The level 2-table T2 associated with T S represents the set {0, . . . , nR − 1}2c|Iw |.

3.1.4 Level 3-Table

Let U ′ be a set of vertices of U that traverse the same tree in T S. Then φ(U ′) = {v} for some
vector v corresponding to an entry in T2.

Let V1, . . . , Vm be defined as in Lemma 3. Then the same lemma implies that for each
u′ ∈ U ′ it is enough to specify 2-colourings of V1, . . . , Vm to specify an Iw-colouring of R w.r.t.
u′. The following lemma shows that each of these 2-colourings can be specified by an integer in
{0, . . . , nR} and that this integer can be computed efficiently.

Lemma 4. Let i and j be distinct indices in Iw. With the above definitions, there is a map
f : U ′ → {0, . . . , nR} and {i, j}-colourings c0, . . . , cnR

of R such that for each u ∈ U ′, cf(u)

is an {i, j}-colouring of R w.r.t. u. Assuming dG(u, pi) and dG(u, pj) are given, f(u) can be
computed in O(log r) time for any u ∈ U ′ with preprocessing time polynomial in r.

The O(log r) time bound is obtained by using binary search in the O(r) possible {i, j}-
colourings of R. We omit the details.

We associate with T2-entry v a level 3-table T3. This table represents the set {0, . . . , nR}m,
where m is the number of sets in Lemma 3. This lemma and Lemma 4 show how u-vertices can
be mapped in the main algorithm to entries in T3 such that if two vertices of U are mapped to
the same entry then they induce identical colourings of R. In the preprocessing step, the proper
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colourings are computed for each level 3-table entry. It is easy to see that each such colouring
can be computed in time polynomial in r.

We enumerate all entries of level 3-tables associated with vertex w of main tree T with
integers 1, . . . ,mw, where mw is the total number of such entries. In the main algorithm, when
a query vertex u ∈ U is mapped to level 3-table entry with integer k then k is the integer
returned. By the above, this value defines an Iw-colouring of R w.r.t. u.

It can be shown that the number of level 3-table entries associated with main tree T is
O(rO(

√
r log r)). Since the colouring associated with each entry can be computed in time polyno-

mial in r, we get the following result.

Theorem 1. The number of level 3-table entries associated with main tree T and the total time
spent in the preprocessing step are O(rO(

√
r log r)), assuming boundary vertex distances are given.

3.2 Main Algorithm

We are now ready to describe the main algorithm. It is applied to each u ∈ U . Let u be one such
vertex. We start at the root r of T and recursively find two integers, ilc and irc , representing,
respectively, an Ilc(r)-colouring and an Irc(r)-colouring of R w.r.t. u. Using these integers as
indices, we obtain the tree set T S associated with entry (ilc , irc) in level 1-table Tr.

We perform a u-traversal in T S which gives us a binary tree and we map this tree to a
vector defining an entry in the level 2-table associated with T S. Let T3 be the level 3-table
associated with this entry.

Finally, we use the algorithm implicit in Lemma 4 to obtain the correct entry of T3. The
integer associated with this entry is then returned as that representing a u-colouring of R.

Let us bound the time it takes to map a u-vertex to a level 3-table entry. We have pre-
computed the main tree T with associated data structures and boundary vertex distances in
G. At a vertex w of T , it takes O(|Iw| log r) time to perform a u-traversal. This follows easily
from Lemma 2 and the fact that binary search is applied to arrays of tree sets. Lemma 4 then
implies that the total time spent at vertex w is O(|Iw| log r) (ignoring preprocessing which is
polynomial in r). Summing over all w, this is O(t log2 r), which gives the following result.

Lemma 5. Given main tree T with associated data structures and given boundary vertex dis-
tances in G, the main algorithm obtains the integer representing a u-colouring of R in time
O(t log2 r) for any u ∈ U with preprocessing time polynomial in r.

We can now present our main theorem in which we fix r, state our generic algorithm, and
bound its running time.

Theorem 2. With the above definitions, suppose r = (c log n/(log log n)2)2 where c is a con-
stant. If c is sufficiently small then there is a constant ǫ < 1, an integer N = O(nǫ), a map
f : U → {1, . . . , N}, and It-colourings c1, . . . , cN of R where cf(u) is a u-colouring of R for all
u ∈ U . The integers f(u) for u ∈ U and colourings c1, . . . , cN can be computed in a total of
O(nǫ + |U | log n) time with O(n2(log log n)2/ log n) preprocessing time (independent of U and
R).

Proof. (Sketch) We start by precomputing boundary vertex distances in G in a total of O(n2/
√

r)
time.

In the main algorithm, vertices of U are mapped to integers in the range {1, . . . ,N}, where
N is the total number of level 3-table entries. By Theorem 1 and Lemma 5 this takes a total
of O(rc′

√
r log r + |U |√r log2 r) time for some constant c′. So to show one part of the theorem,

that integers f(u) for u ∈ U can be computed in a total of O(nǫ + |U | log n) time for some
constant ǫ < 1, we will pick constant c such that

√
r log2 r = O(log n), rc′

√
r log r = O(nǫ), and

n2/
√

r = O(n2(log log n)2/ log n). This will also show N = O(nǫ).
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With the choice of r, it can be shown that for sufficiently large n, rc′
√

r log r ≤ n16c′c. By
setting c < 1/(16c′), we have rc′

√
r log r = O(nǫ) with ǫ < 1. Also,

√
r log2 r = O(log n) and

n2/
√

r = O(n2(log log n)2/ log n), as requested.
To bound the time to compute the colourings, we recall that each colouring can be ob-

tained in time polynomial in r. Thus, the total time to compute all colourings is O(NrO(1)) =
O(rO(

√
r log r)). This is O(nǫ) for c sufficiently small.

4 Applications of the Generic Algorithm

In this section, we apply the generic algorithm to obtain subquadratic time algorithms for
computing the Wiener index and diameter of a planar digraph with real edge weights, and the
stretch factor of a plane undirected geometric graph. We also present our algorithm for distance
queries.

We start with the Wiener index problem for a planar digraph G = (V,E) with real edge
weights. For V1, V2 ⊆ V , define

∑

(V1, V2) =
∑

v1∈V1

∑

v2∈V2
dG(v1, v2). We extend this defini-

tion to subgraphs of G by summing over their vertex sets. Then 1
2

∑

(V, V ) is the Wiener index
of G.

Theorem 3. The Wiener index of an n-vertex planar digraph with real edge weights and no
negative weight cycles can be computed in O(n2(log log n)4/ log n) time.

Proof. Let G be an n-vertex planar digraph. We only consider the case where G has non-negative
edge weights. Arbitrary real edge weights are dealt with in the appendix. We start by triangu-
lating G and computing an r-division R of G in O(n log n) time with r = (c log n/(log log n)2)2

for constant c satisfying Theorem 2.
By Lemma 1,

∑

G =
1

2

∑

R∈R





∑

(R,R) +
∑

C∈CR

∑

(UR,C , R)



 .

Let R ∈ R be given. We will show how to compute
∑

(R,R) and
∑

C∈CR

∑

(UR,C , R) in
O(|CR|nǫ +n log n) time for some constant ǫ < 1. Since each cycle occurs in at most two regions
and since there are O(n/r) regions it will follow from this that

∑

G can be computed in time

O
(n

r
nǫ +

n

r
n log n

)

= O

(

n1+ǫ

r
+

n2 log n

(log n/(log log n)2)2

)

= O(n2(log log n)4/ log n).

To compute
∑

(R,R), let R′ be the graph obtained from R by adding an edge between each
pair of boundary vertices of R. The weight of each edge is equal to the distance in G from the
start to the end vertex of the edge. We compute APSP distances in R′ and obtain

∑

(R,R) by
adding up all these distances. The time it takes to add edges and compute their weights is O(r)
time, given the precomputed boundary vertex distances. It then takes O(r3) time to compute
APSP distances by using an algorithm like Floyd-Warshall. Thus,

∑

(R,R) can be computed
in time polylogarithmic in n.

What remains is to show that
∑

C∈CR

∑

(UR,C , R) can be computed in O(|CR|nǫ + n log n)

time for some constant ǫ < 1 with O(n2(log log n)2/ log n) preprocessing time. So let C ∈ CR

be given and let p1, . . . , pt be the boundary vertices of R belonging to C.
By Theorem 2, there is a constant ǫ′ < 1, an integer N = O(nǫ′), a map f : UR,C →

{1, . . . , N}, and It-colourings c1, . . . , cN of R such that cf(u) is a u-colouring of R for all u ∈
UR,C . The integers f(u) for u ∈ UR,C and colourings c1, . . . , cN can be computed in a total of
O(nǫ′ + |UR,C | log n) time with O(n2(log log n)2/ log n) preprocessing time.

Let M ∈ {1, . . . , N}. For the colouring cM of R corresponding to M , we compute
∑

({pi}, Vi,M )
for i = 1, . . . , t, where Vi,M is the set of vertices of R with colour i. We also compute the
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number |Vi,M | of vertices in Vi,M . This can clearly be done in time polynomial in r which is
poly-logarithmic in n. Over all i and M , this is Õ(nǫ′) = O(nǫ) time for some constant ǫ < 1.

Now, for a u ∈ UR,C , let Mu = f(u). Then

∑

({u}, R) =
t

∑

i=1

dG(u, pi)|Vi,Mu
| +

∑

({pi}, Vi,Mu
). (1)

Given the above precomputations, it follows that
∑

({u}, R) can be computed in O(t) time.
Hence,

∑

(UR,C , R) can be computed in O(nǫ+|UR,C |t) = O(nǫ+|UR,C |
√

r) time with O(n2(log log n)2/ log n)
preprocessing time.

Adding this up over all C ∈ CR and using the fact that
∑

C∈CR
|UR,C | ≤ n, it follows that

∑

C∈CR

∑

(UR,C , R) can be computed in

O(|CR|nǫ + n
√

r) = O(|CR|nǫ + n log n/(log log n)2)

time in addition to the O(|CR|nǫ′ +n log n) time spent in Theorem 2 and O(n2(log log n)2/ log n)
preprocessing time.

Next, the diameter of a planar graph.

Theorem 4. The diameter of an n-vertex planar digraph with real edge weights and no negative
weight cycles can be computed in O(n2(log log n)4/ log n) time.

Proof. The proof is similar to that of Theorem 3. The only essential difference is that we
compute maxv∈Vi,Mu

dG(pi, v) instead of
∑

({pi}, Vi,Mu
) and use the identity

max
v∈VR

dG(u, v) = max

{

dG(u, pi) + max
v∈Vi,Mu

dG(pi, v)|i = 1, . . . , t

}

instead of (1).

Let G = (V,E) be a plane undirected geometric graph. For V1, V2 ⊆ V , let δG(V1, V2) =
max{dG(v1, v2)/|v1v2|2|v1 ∈ V1, v2 ∈ V2, v1 6= v2}. Extend this definition to subgraphs of G by
taking the maximum over their vertex sets. the stretch factor of G is δG(V, V ).

Theorem 5. The stretch factor of an n-vertex plane undirected geometric graph can be computed
in O(n2(log log n)4/ log n) expected time.

Proof. Let G be an n-vertex plane undirected geometric graph. We first compute an r-division of
a triangulation of G (the triangulation is not of the embedding of G) with r = (c log n/(log log n)2)2

for constant c satisfying Theorem 3 and compute boundary vertex distances.
Let R be a region in this r-division. We will show how to compute δG(UR,C , R) for all

C ∈ CR using a total of O(|CR|nǫ + n log n) expected time for some constant ǫ < 1 with
O(n2(log log n)2/ log n) preprocessing time. It will follow from this that the stretch factor of G
can be computed in O(n2(log log n)4/ log n) expected time.

Let C ∈ CR and let p1, . . . , pt be the boundary vertices of R belonging to C. By Theorem 2,
there is a constant ǫ′ < 1, an integer N = O(nǫ′), a map f : UR,C → {1, . . . ,N}, and It-
colourings c1, . . . , cN of R such that cf(u) is a u-colouring of R for all u ∈ UR,C . The integers

f(u) for u ∈ UR,C and colourings c1, . . . , cN can be computed in a total of O(nǫ′ + |UR,C | log n)
time with O(n2(log log n)2/ log n) preprocessing time.

For M = 1, . . . , N , define the group UM as the set of u ∈ UR,C such that f(u) = M . All
vertices in the same group induce identical colourings of R.

Consider one such group UM and let i ∈ {1, . . . , t} be given. Lift each vertex v ∈ Vi,M to
height dG(pi, v) on the z-axis, where Vi,M is the set of vertices of R with colour i in the colouring
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cM associated with group UM . Furthermore, lower each vertex u of UM to height −dG(u, pi).
Each lifting/lowering of a vertex takes constant time given the precomputed boundary vertex
distances. The sets Vi,M over all i and M can be computed in Õ(nǫ′) = O(nǫ) time for some
ǫ > 0.

Observe that the height difference between any lowered vertex u and any lifted vertex v is
equal to dG(u, v). Now, arbitrarily divide UM into O(|UM |/√r) subsets each containing O(

√
r)

vertices. Applying the algorithm of [1] to the (lowered) vertices in each of these subsets and to
the (lifted) vertices in Vi,M gives δG(UM , Vi,M ) in expected time

O

( |UM |√
r

(
√

r + |Vi,M |) log(
√

r + |Vi,M |)
)

= O

(

|UM |
(

1 +
|Vi,M |√

r

)

log r

)

.

Summing over all i, we see that δG(UM , R) can be found in expected time

O(|UM |(t + r/
√

r) log r) = O(|UM |
√

r log r).

Hence, δG(UR,C , R) can be found in O(|UR,C |
√

r log r) expected time. Over all C ∈ CR, this is
O(n

√
r log r) = O(n log n/ log log n). This shows the theorem.

We strongly believe that by using parametric search as in [1], it is possible to compute the
stretch factor of G in O(n2(log log n)O(1)/ log n) worst-case time.

Finally, we present our algorithm to answer distance queries.

Theorem 6. Let S = O(n1/5/ log8/5 n) be a parameter. With O(n2/S) preprocessing time,
exact distance queries in an n-vertex planar digraph with arbitrary real edge weights and no
negative weight cycles can be answered in O(S log4 S/ log n) time per query.

The proof can be obtained from a slightly more general version of Theorem 2. Details can
be found in the appendix. For log4 S = o(log n), Theorem 6 is an improvement over the result
in [4]. By setting S = log2 n/(log log n)4, we obtain an oracle for exact distance queries with
subquadratic preprocessing time.

Corollary 1. With O(n2(log log n)4/ log n) preprocessing time, exact distance queries in an
n-vertex planar digraph with arbitrary real edge weights and no negative weight cycles can be
answered in constant time per query.

5 Concluding Remarks

We showed how to compute the Wiener index and diameter of an n-vertex planar digraph with
real edge edge weights and no negative weight cycles in O(n2(log log n)4/ log n) worst-case time
and the stretch factor of an n-vertex plane undirected geometric graph in O(n2(log log n)4/ log n)
expected time. Previously, it was open whether any of these three problems could be solved in
subquadratic time.

We also gave an algorithm that answers distance queries in an n-vertex planar digraph with
real edge weights and no negative cycles in O(S log4 S/ log n) time per query with O(n2/S)
preprocessing time for S = O(n1/5/ log8/5 n), improving on previous results when log4 S =
o(log n). In particular, we obtained an oracle for exact distance queries with subquadratic
preprocessing time.

All our results are obtained by applying the same generic algorithm. We hope that this
algorithm may yield faster algorithms for other planar graph problems.

We pose the following questions: can we obtain “truly” subquadratic running time, i.e. O(nc)
time for some constant c < 2? Can our results be generalized to a larger class of graphs such as
the class of subgraph-closed

√
n-separable digraphs with real edge weights? All our algorithms

have space requirement only bounded by running time. Is it possible to obtain, say, linear space
requirement for the Wiener index and diameter problems as for unweighted undirected planar
graphs [10]? What about lower bounds on running time?
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Figure 3: In (a) and (b), paths represented by abstract edges e1 = (v1, v
′
1) and e2 = (v2, v

′
2) can

be chosen such that they do not cross. In (c) they have to cross.

Appendix

Abstract Edges

Recall that we added edges to R in the beginning of Section 3 to ensure that for any u ∈ U
and any vertex v ∈ R, dG(u, v) = dG(u, pi) + dR(pi, v) for some pi ∈ C. We shall refer to these
additional edges as abstract edges since we do not specify any embedding of them. Using the
algorithm of [7], we can compute the length of all abstract edges within the desired time bound.

When convenient, we regard an abstract edge between two boundary vertices of R belonging
to a cycle C ′ as a shortest path between the vertices having all its interior vertices in UR,C′ .
By definition, the weight of the abstract edge is equal to the length of this path. The following
lemma will prove useful as it allows us to obtain information about such paths without explicitly
knowing them (see Figure 3).

Lemma 6. Let C ′ ∈ CR \ {C} and let e1 = (v1, v
′
1) and e2 = (v2, v

′
2) be abstract edges, where

v1, v
′
1, v2, v

′
2 ∈ C ′. Then the paths represented by e1 and e2 may be chosen such that they do

not cross if and only if there is a cyclic walk of C ′ that visits v1, v′1, v2, and v′2 in one of the
following two orders:

1. v1, v
′
1, v2, v

′
2 (where possibly v′1 = v2 or v1 = v′2),

2. v1, v
′
1, v

′
2, v2 (where possibly v′1 = v′2 or v1 = v2).

Proof. This is an easy consequence of planarity and the fact that the interior vertices of the
shortest paths represented by e1 and e2 are all contained in Int(C ′) or all contained in Ext(C ′).

Subdividing the colour problem

In Section 3.1.2, we claimed that the choice of v′ gave the desired division of our colouring
problem into two subproblems. We now fill in the details.

Recall the requirement that v′ had to satisfy in order to be chosen. Clearly, this vertex
always exists. For symmetry reasons, let us restrict our attention to the case where it is found
by a search in Ai. Then the following conditions must be satisfied:

1. dG(u, pi) + dR(pi, v
′) ≥ dG(u, pj(v′)) + dR(pj(v′), v

′) and

2. dG(u, pi) + dR(pi, v
′′) < dG(u, pk) + dR(pk, v

′′) for any vertex v′′ ∈ VPi(v′) \ {v′} and any
k ∈ Irc(w).

That v′ gives the desired division of our colouring problem is shown in the following lemma.

Lemma 7. Suppose v′ satisfies the above. Then for m = 1, 2, there is an Iw-colouring of Rm

w.r.t. u where each vertex of Rm is assigned a colour from Im
lc(w) ∪ Im

rc(w).
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Pi(v
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Figure 4: A shortest path in R from pk to a intersects either P ′
i (v

′) or Pi(v
′) \ {v′} in some

vertex v′′.

Proof. By symmetry, it suffices to show the lemma for m = 1. So let a be a vertex in R1. We
will show that in an Iw-colouring of R1 w.r.t. u, a can be assigned a colour in I1

lc(w) ∪ I1
rc(w).

Pick k ∈ Iw such that dG(u, pk)+dR(pk, a) ≤ dG(u, pk′)+dR(pk′ , a) for all k′ ∈ Iw. Suppose
that k /∈ I1

lc(w) ∪ I1
rc(w) (otherwise, the lemma holds). Then a shortest path in R from pk to a

must contain some vertex v′′ ∈ Pi(v
′) ∪ P ′

i (v
′). Assume first that v′′ ∈ P ′

i (v
′), see Figure 4(a).

Since the search for v′ was in Ai, we have dG(u, pi) + dR(pi, v
′) ≥ dG(u, pj(v′)) + dR(pj(v′), v

′),
implying that any vertex on P ′

i (v
′), and in particular v′′, can be assigned colour j(v′) in an

Iw-colouring of R1 w.r.t. u. This implies that a can be assigned colour j(v′) ∈ I1
rc(w) in such a

colouring, as requested.
Now, suppose v′′ ∈ Pi(v

′)\{v′}, see Figure 4(b). Either k ∈ Ilc(w) or k ∈ Irc(w). If k ∈ Ilc(w)

then we may assign colour i ∈ I1
lc(w) to a in an Iw-colouring so assume that k ∈ Irc(w). Then

dG(u, pi) + dR(pi, v
′′) < dG(u, pk) + dR(pk, v

′′), again since the search was in Ai. By the choice
of k and the triangle inequality,

dG(u, pk) + dR(pk, v
′′) + dR(v′′, a) = dG(u, pk) + dR(pk, a)

≤ dG(u, pi) + dR(pi, a)

≤ dG(u, pi) + dR(pi, v
′′) + dR(v′′, a),

implying that dG(u, pk)+dR(pk, v
′′) ≤ dG(u, pi)+dR(pi, v

′′). But this contradicts the inequality
above. Hence, the lemma holds in all cases.

By applying Lemma 7 recursively at each node of T S, we can obtain the desired decom-
position of the colouring problem. But for this to work, we also need to address the following
problem which we briefly mentioned in the main paper. In the preprocessing step, let clc and
crc be the Ilc(w)- and Irc(w)-colourings that are obtained recursively from data structures Dlc(w)

and Drc(w), respectively. Since an Iw-colouring of R w.r.t. u need not be unique, it may happen
that the desired Iw-colouring in Lemma 7 cannot be obtained from colourings clc and crc .

In this case, these two colourings need to be modified as follows. For m = 1, 2 and any vertex
a ∈ Rm, if clc(a) /∈ Im

lc(w), redefine clc(a) := i. And if crc(a) /∈ Im
rc(w), redefine crc(a) := j(v′).

Note that these redefinitions do not depend on u so as we claimed previously, they can be
performed in the preprocessing step instead of the main algorithm.

Now, clearly clc(a) ∈ Im
lc(w) and crc(a) ∈ Im

rc(w) for each vertex a ∈ Rm, m = 1, 2. And it

follows easily from the proof of Lemma 7 that for each vertex a ∈ Rm, either clc(a) or crc(a) is
the colour of a in an Iw-colouring of R w.r.t. u. This gives the desired division of the colouring
problem into two subproblems.
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Running time of the algorithm is not affected since each colouring can be modified in O(r)
time, giving a total additional time of O(r

√
r log r) in the preprocessing step.

Two more details are needed. First, in Figure 2, the index set Iw associated with region R
consists of indices which are consecutive in cycle C. This is not the case for regions at deeper
levels of recursion (for instance, the indices associated with R2 in Figure 2 are not consecutive
in C) but all our arguments still carry through in this case.

Finally, the recursively defined regions should not share vertices except those on shortest
paths bounding the regions (for instance, regions R1 and R2 share only vertices of Pi(v

′)∪P ′
i (v

′)).
This can always be achieved since shortest paths may be chosen such that they do not cross.
For instance, when dividing region R1 into two smaller regions, the two shortest paths defining
this division can be chosen such that they do not cross Pi(v

′) ∪ P ′
i (v

′).

Proof of Lemma 2

To prove the lemma, we need the following result.

Lemma 8. In the above tree set construction, |I1
lc(w)∪I1

rc(w)|+|I2
lc(w)∪I2

rc(w)| = |Ilc(w)∪Irc(w)|+2

and |I1
lc(w) ∪ I1

rc(w)|, |I2
lc(w) ∪ I2

rc(w)| < |Ilc(w) ∪ Irc(w)|.

Proof. The first part follows from the observation that Ilc(w) ∪ Irc(w) = I1
lc(w) ∪I1

rc(w) ∪I2
lc(w) ∪

I2
rc(w) and that i and j(v′) are the only indices of Ilc(w) ∪ Irc(w) shared by I1

lc(w) ∪ I1
rc(w) and

I2
lc(w) ∪ I2

rc(w).

To show the second part, suppose vertex v′ corresponds to an entry in array Ai. Set I1
lc(w)

contains an index k which is either the first or the last index of Ilc(w). By the choice of v, i is
neither the first nor last index of Ilc(w) so k 6= i. The only index of Ilc(w) shared by I1

lc(w) and

I2
lc(w) is i so k /∈ I2

lc(w). Hence, k /∈ I2
lc(w)∪I2

rc(w), implying that |I2
lc(w)∪I2

rc(w)| < |Ilc(w)∪Irc(w)|.
A similar argument shows that |I1

lc(w) ∪ I1
rc(w)| < |Ilc(w) ∪Irc(w)|. The inequalities also follow if

v′ corresponds to an entry in Aj.

We can now prove Lemma 2. Consider a tree represented by T S. Lemma 8 implies that the
number of leaves in this tree is at most l(|Iw|), where l : N → N is defined by

l(k) =

{

max{l(k1) + l(k2)|k1 + k2 = k + 2, k1, k2 < k} if k > 4
1 if k ≤ 4,

where we used the fact that there is no choice for v when |Iw| ≤ 4 in the algorithm that
constructs T S. Since the number of non-leaf nodes is one less than the number of leaves, the
lemma will follow if we can show that l(k) ≤ k − 2 for k ≥ 3.

The proof is by induction on k ≥ 3. If k = 3, we have l(k) = 1 = k − 2 by definition so
assume that k > 3 and that the induction hypothesis holds for smaller values than k. Let k1, k2

be given where k1 + k2 = k + 2 and k1, k2 < k. Then l(k1) + l(k2) ≤ k1 + k2 − 4 = k− 2. Hence,

l(k) = max{l(k1) + l(k2)|k1 + k2 = k + 2, k1, k2 < k} ≤ k − 2,

as requested.

Proof of Lemma 3

We need the following result.

Lemma 9. Given a binary tree T of T S, the total number of distinct colour pairs associated
with leaves of T is O(|Iw|).
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Proof. Let T be a tree of T S. For any of its non-leaf vertices, if there are k indices associated
with this vertex then the total number of indices associated with its two children is k + 2 by
Lemma 8. Hence, if m is the number of non-leaf vertices of T then the total number of indices
associated with leaves of T is 2m + |Iw| which is O(|Iw|) by Lemma 2.

Let I ⊆ Ilc(w) and I ′ ⊆ Irc(w) be the index sets and let A be the subset of vertices associated
with a leaf of T . By the above, the lemma will follow if we can show that the number of distinct
colour pairs in I × I ′ of vertices in A is O(|I ∪ I ′|).

Since we are in a leaf of T , we have that for any such colour pair (i, j), either i is the first
or last index of I or j is the first or last index of I ′. This implies that the number of distinct
colour pairs is at most 2|I ∪ I ′|, as requested.

We are now ready to prove Lemma 3. Let u ∈ U ′. Define A1, . . . , Ap as the subsets of
vertices associated with leaves of the binary tree traversed by u. From the construction of T S
and the definition of u-traversal, it follows that ∪p

k=1Ak is the set of vertices of R.
Let k ∈ {1, . . . , p} be given and let lk denote the leaf with which Ak is associated. Let

c : Ak → I and c′ : Ak → I ′ be the colourings of Ak associated with lk, where I ⊆ Ilc(w) and
I ′ ⊆ Irc(w).

From the way we choose v′-vertices, it follows that for each x ∈ Ak, either c(x) or c′(x) is
a colour of x in an Iw-colouring of R w.r.t. u. The lemma follows from Lemma 9 by letting
V1, . . . , Vm be maximal sets each containing vertices with identical colour pairs.

Proof of Lemma 4

Assume first that D = dR(pi, pj) < ∞. For any u ∈ U ′, the triangle inequality implies that
|dG(u, pi) − dG(u, pj)| ≤ D. Observe that if dG(u, pi) − dG(u, pj) = −D then there is an {i, j}-
colouring of R w.r.t. u where all vertices of R have colour ci. And if dG(u, pi) − dG(u, pj) = D
then there is an {i, j}-colouring where all vertices of R have colour cj .

Consider adding a new vertex u to G and edges ei = (u, pi) and ej = (u, pj). Set the weights
of ei and ej such that x = −D, where x = dG(u, pi) − dG(u, pj). Now, consider adjusting the
weights such that x is increased continuously from −D to D.

Initially, all vertices of R have colour ci in the {i, j}-colouring of R w.r.t. u. There are event
points in [−D,D], where the colouring changes. Such changes occur exactly when dG(u, pi) +
dR(pi, v) = dG(u, pj) + dR(pj, v), i.e. when x = dR(pj, v) − dR(pi, v) for some vertex v ∈ R.

Since there are nR vertices in R, we have shown that there are at most nR + 1 distinct
{i, j}-colourings and that each colouring corresponds to an interval between two consecutive
event points in [−D,D]. By ordering the event points, we can apply binary search to find, in
O(log r) time, the interval corresponding to an {i, j}-colouring of R w.r.t. a u ∈ U ′, assuming
we are given dG(u, pi) and dG(u, pj). This shows the lemma when D < ∞.

Now, assume that D = ∞ and let u ∈ U ′. Then for any vertex v ∈ R, if dR(pi, v) < ∞ then
v can be assigned colour ci in an {i, j}-colouring of R w.r.t. u. And if dR(pj, v) < ∞ then v can
be assigned colour cj in an {i, j}-colouring of R w.r.t. u. Finally, if dR(pi, v) = dR(pj , v) = ∞
then v can be assigned either of the two colours ci and cj in an {i, j}-colouring of R w.r.t. u.
This shows the lemma when D = ∞.

Proof of Theorem 1

Let us bound the time for the preprocessing step and the size of the data structure obtained.
We will assume that boundary vertex distances in G have been precomputed, and that for each
region R′ in the r-division of G and for each cycle C ∈ CR′ , SSSP distances in Int(C) (or in
Ext(C) if R′ ⊆ Int(C)) have been precomputed for each boundary vertex of R′ belonging to C.
The latter precomputation allows us to efficiently compute the lengths of all abstract edges of
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R′. The total time to compute all boundary vertex distances and lengths of abstract edges over
all regions is O(n2/

√
r) if the linear time SSSP algorithm of [7] is applied.

From the description and analysis of the preprocessing step, it is easy to see that it has
running time at most a factor polynomial in r larger than the number of level 3-table entries,
given the above precomputations (here we also use Lemma 6). We will show that the main tree
T and its associated data structures contain a total of O(rO(

√
r log r)) level 3-table entries. This

will imply that the total running time of the preprocessing step is O(rO(
√

r log r)) in addition to
the O(n2/

√
r) time above.

Let w be a vertex of T . We prove by induction on the height ≥ 0 of subtree Tw that the total
number of level 3-table entries associated with w is at most rc1|Iw| log(|Iw|) for some constant c1.
Since T has O(

√
r) vertices, this will show our claim.

If the height is zero then Tw is a leaf. Since a leaf has no associated data structure, our
claim trivially holds in this case.

Now, suppose the height is at least one and that the induction hypothesis holds for smaller
heights. Since the level 1-table Tw associated with w has a row resp. column for each level
3-table entry associated with lc(w) resp. rc(w), it follows from the induction hypothesis that
Tw has at most rc1⌈|Iw|/2⌉ log(⌈|Iw|/2⌉) rows and at most rc1(|Iw|−⌈|Iw|/2⌉) log(|Iw|−⌈|Iw|/2⌉) columns.

Consider some entry of Tw. The associated level-2 table has at most rc2|Iw| entries for some
constant c2. The number of level 3-table entries associated with each entry of that level-2 table
is at most rc3|Iw| for some constant c3. Hence, the total number of level 3-table entries associated
with a single entry of Tw is at most rc4|Iw| where c4 = c2c3.

Since the height is at least one, we have |Iw| > 1, implying that ⌈|Iw|/2⌉ < 3
4 |Iw|. From

this and the above, it follows that the total number of level 3-table entries associated with w is
at most

rc1(⌈|Iw|/2⌉+|Iw|−⌈|Iw|/2⌉) log(⌈|Iw|/2⌉)+c4|Iw| = rc1|Iw| log(⌈|Iw |/2⌉)+c4|Iw|

< rc1|Iw| log( 3
4
|Iw|)+c4|Iw|

= rc1|Iw| log(|Iw|)+c1 log( 3
4
)|Iw|+c4|Iw|

Thus, if we choose c1 sufficiently large, i.e. such that c1 log(3
4) ≤ −c4 then the total number of

level 3-table entries associated with w is at most rc1|Iw| log(|Iw|), as requested.

Proof of Lemma 5

Let u ∈ U be given. Let w be any non-leaf vertex of main tree T and assume that we are given
the two integers ilc and irc representing, respectively, an Ilc(w)-colouring and an Irc(w)-colouring
of R w.r.t. u. We will show that we can obtain the integer representing an Iw-colouring of R
w.r.t. u in O(|Iw| log r) time. This will imply the lemma since T has height O(log r), since the
sum of the sizes of index sets associated with vertices of the same depth in T is O(|Iw|), and
since |Iw| = t when w is the root of T .

We can obtain the tree set T S associated with entry (ilc , irc) of the level 1-table of w in
constant time. It suffices to show that the binary tree of T S traversed by u can be found in
O(|Iw| log r) time. For suppose this tree is given. Then a depth-first traversal of it gives the
vector mapping the tree to an entry of the associated level 2-table in O(|Iw|) time by Lemma 2.
And given this entry, we can find the entry in the appropriate level 3-table in O(|Iw| log r) time
with preprocessing time polynomial in r by Lemmas 3 and 4.

To show that the tree of T S traversed by u can be found in O(|Iw| log r) time we will show
that the vertex v′ can be found with binary search in one of the two arrays Ai and Aj. This
will show our claim since the tree traversed by u has O(|Iw|) vertices by Lemma 2.
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Deciding which of the two arrays Ai and Aj should be searched can be done in constant
time since this involves determining whether dG(u, pi) + dR(pi, v) ≥ dG(u, pj) + dR(pj, v) and
since boundary vertex distances have been precomputed.

Suppose w.l.o.g. that the algorithm decides to search in Ai. Then dG(u, pi) + dR(pi, v) ≥
dG(u, pj)+ dR(pj , v). Vertex v′ should be picked such that it is first on Pi satisfying dG(u, pi)+
dR(pi, v

′) ≥ dG(u, pj(v′)) + dR(pj(v′), v
′).

Suppose for some vertex v′′ on Pi, dG(u, pi) + dR(pi, v
′′) < dG(u, pj(v′′)) + dR(pj(v′′), v

′′),
where j(v′′) is the colour of v′′ in the Irc(w)-colouring of R w.r.t. u. Then this inequality holds
when replacing v′′ with any vertex preceding v′′ in Pi since Pi is a shortest path in R.

Thus, we can find v′ as follows. Start with v′′ as the middle vertex of Pi. If dG(u, pi) +
dR(pi, v

′′) ≥ dG(u, pj(v′′)) + dR(pj(v′′), v
′′) then v′ cannot be any of the vertices succeeding v′′ in

Pi since it is the first vertex satisfying dG(u, pi)+dR(pi, v
′) ≥ dG(u, pj(v′))+dR(pj(v′), v

′). Hence,
we can exclude half the vertices. On the other hand, if dG(u, pi) + dR(pi, v

′′) < dG(u, pj(v′′)) +
dR(pj(v′′), v

′′) then the above shows that v′ cannot be any of the vertices preceding v′′ in Pi and
again we can exclude half the vertices.

It follows that binary search can be applied to find v′. Since boundary vertex distances have
been precomputed and since Ai and Aj have O(r) entries, it follows that it takes O(log r) time
to find v′. A similar argument can be applied to searches in deeper levels of tree set T S. From
the discussion above, this suffices to prove the lemma.

Proof of Theorem 2

We start by precomputing boundary vertex distances in G in a total of O(n2/
√

r) time.
In the main algorithm, vertices of U are mapped to integers in the range {1, . . . ,N}, where

N is the total number of level 3-table entries. By Theorem 1 and Lemma 5 this takes a total of

O(rc′
√

r log r + |U |
√

r log2 r)

time for some constant c′. So to show one part of the theorem, that integers f(u) for u ∈ U can
be computed in a total of O(nǫ + |U | log n) time for some constant ǫ < 1, we will pick constant c
such that

√
r log2 r = O(log n), rc′

√
r log r = O(nǫ), and n2/

√
r = O(n2(log log n)2/ log n). This

will also show N = O(nǫ).
For sufficiently large n,

rc′
√

r log r = (c log n/(log log n)2)2c′(c log n/(log log n)2) log((c log n/(log log n)2)2)

≤ (c log n)(4c′c log n/(log log n)2) log(c log n)

≤ (c log n)(8c′c log n/(log log n)2) log log n

≤ (log n)16c′c log n/ log log n

= 216c′c log n

= n16c′c.

By setting c < 1/(16c′), we have rc′
√

r log r = O(nǫ) with ǫ < 1. Also,

√
r log2 r = O((log n/(log log n)2)(log log n)2) = O(log n).

And finally, n2/
√

r = O(n2(log log n)2/ log n), as requested.
To bound the time to compute the colourings, we observe that each colouring can be ob-

tained in time polynomial in r. Thus, the total time to compute all colourings is O(NrO(1)) =
O(rO(

√
r log r)). This is O(nǫ) for c sufficiently small.
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Proof of Corollary 1

Let G be defined as above. We start by applying Theorem 2 to G. Total running time for this
is O(n2(log log n)2/ log n + n

r n log n) = O(n2(log log n)4/ log n).
We may assume that distances in G from each boundary vertex to all vertices of G and dis-

tances in G between each pair of vertices belonging to the same region have been precomputed.
We may also assume that each vertex of G is associated with a region containing that vertex.

Consider one of the regions R in the r-division. We may assume that colourings c1, . . . , cN

of R are stored in arrays such that for any u ∈ V \ VR, the colour of each vertex of R w.r.t. the
u-colouring cf(u) of R can be found in constant time.

Now, suppose we need to answer a query for distance dG(u, v). We find a region R containing
v in constant time. We then obtain the colour i of v in the colouring cf(u) of R, also in constant
time. Since cf(u) is a u-colouring of R, we have dG(u, v) = dG(u, pi) + dR(pi, v) so we can find
dG(u, v) in constant time with the above precomputations.

Proof of Theorem 6

We can generalize the result in Corollary 1 by obtaining a tradeoff between running time and
space requirement. The idea is to apply a slightly more general version of Theorem 2.

First, we compute an r-division of G with r unspecified for now. In O(n2/
√

r + r3) time, we
precompute distances in G from each boundary vertex to all vertices of G and distances in G
between each pair of vertices belonging to the same region. We may assume that each vertex
of G is associated with a region containing that vertex.

For each region R, we do as follows. For each choice of U and C (defined as in Section 3), we
partition the boundary vertices of R belonging to C into O(m) groups, each containing O(t/m)
vertices, where t is the number of boundary vertices of R. For each group, we apply Theorem 2
but still with r unspecified and with the restriction that shortest paths are only allowed to use
boundary vertices in that group.

Now, suppose we need to answer a query for distance dG(u, v). We find a region R containing
v in constant time. In the proof of Corollary 1, we obtained in constant time a colour i of v
such that dG(u, v) = dG(u, pi) + dR(pi, v). Now, we instead obtain O(m) colours, one for each
group. For one of these colours i, dG(u, v) = dG(u, pi) + dR(pi, v) so we can find the distance in
G from u to v in O(m) time.

From the above and from the proof of Theorem 2, it follows easily that the total preprocessing
time is

O

(

nr2 +
n2 log2 r√

r
+ nr

c
√

r log r

m

)

for some constant c.
Setting m = 2c

√
r log2 r/ log n, we get a preprocessing time of

O

(

nr2 +
n2 log2 r√

r
+ n2

c
√

r log2 r

m

)

= O

(

nr2 +
n2 log2 r√

r
+ n2

1
2

log n

)

= O

(

nr2 +
n2 log2 r√

r
+ n3/2

)

which is O(nr2 + n2 log2 r√
r

) since r = O(n). When r = O(n2/5 log4/5 n), we get O(n2 log2 r√
r

)

preprocessing time and query time is O(m) = O(
√

r log2 r/ log n). Or if we let S =
√

r/ log2 r =
O(n1/5/ log8/5 n), we get O(n2/S) preprocessing time and O(S log4 S/ log n) query time, as
requested.
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Allowing arbitrary real weight edges

So far, we have only considered non-negative edge weights. We now show how Theorems 3, 4,
and 6, and Corollary 1 can be generalized to graphs with arbitrary real edge weights and no
negative weight cycles.

Theorem 3

First, Theorem 3. Let w : E → R be the weight function for graph G and let w̃ be the reduced
weight function w̃ : E → R, defined by

w̃(u, v) = dG(x, u) + w(u, v) − dG(x, v)

for each edge (u, v) ∈ E, where x is any (fixed) vertex of G and dG is the shortest path
distance function for G induced by w. Clearly, G has non-negative edge weights w.r.t. w̃
and it is well-known that shortest paths are preserved when switching from w to w̃. Let d̃G

be the shortest path distance function induced by w̃. Note that for any vertices u, v ∈ V ,
d̃G(u, v) = dG(x, u) + dG(u, v) − dG(x, v) (telescoping sum).

For subsets V1, V2 ⊆ V , define
∑

(V1, V2) =
∑

v1∈V1

∑

v2∈V2
dG(v1, v2) as before and define

˜∑(V1, V2) =
∑

v1∈V1

∑

v2∈V2
d̃G(v1, v2)

We start by precomputing boundary vertex distances in (G,w) with source x. This can
be done in O(n log2 n) time with the algorithm in [8]. Next, we precompute boundary vertex
distances in (G, w̃) in O(n2/

√
r) = O(n2(log log n)2/ log n) time. From these distances and from

SSSP distances in (G,w) with source x, we can obtain boundary vertex distances in (G,w) in
O(n2/

√
r) = O(n2(log log n)2/ log n) time.

Now, apply Theorem 2 to (G, w̃). Going through the proof of Theorem 3, we see that what
needs to be shown is that for each region R,

∑

(R,R) can be computed in time polynomial in
r and that

∑

({u}, R) can be computed in O(t) time for each C ∈ CR and each u ∈ UR,C with
O(n2(log log n)2/ log n) preprocessing time.

The former is clear since for each edge e ∈ R, w(e) can be obtained from w̃(e) in constant
time. This follows from the assumption that SSSP distances in (G,w) with source x have been
precomputed. So let us focus on computing

∑

({u}, R).
As observed in the paper,

∑

({u}, VR) =

t
∑

i=1

dG(u, pi)|Vi,Mu
| +

∑

({pi}, Vi,Mu
),

where we also use the fact that shortest paths remain unchanged when switching from w to w̃,
implying that Vi,Mu

remains the same.
Since boundary vertex distances in (G,w) have been precomputed,

∑t
i=1 dG(u, pi)|Vi,Mu

| can
be computed in the desired O(t) time bound. So let us consider

∑t
i=1

∑

({pi}, Vi,Mu
). We have

∑

({pi}, Vi,Mu
) =

∑

v∈Vi,Mu

dG(pi, v)

=





∑

v∈Vi,Mu

(dG(x, pi) + dG(pi, v) − dG(x, v))



 − |Vi,Mu
|dG(x, pi) +

∑

v∈Vi,Mu

dG(x, v)

=
˜∑

({pi}, Vi,Mu
) − |Vi,Mu

|dG(x, pi) +
∑

({x}, Vi,Mu
).

Value |Vi,Mu
|dG(x, pi) can be obtained in constant time and so can

∑

({x}, Vi,Mu
) if we precom-

pute this sum for each Vi,Mu
-subset (here, we use the fact that SSSP distances in (G,w) with

source x have been precomputed). We can also precompute ˜∑({pi}, Vi,Mu
) as described in the

main paper (since we have now applied Theorem 2 to (G, w̃)).
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It follows that
∑

({u}, VR) can be computed in O(t) time with O(n2(log log n)2/ log n) pre-
processing time, as requested.

Theorem 4

For the proof of Theorem 4 to be generalized to arbitrary real edge weights, we need to show
that

max
v∈VR

dG(u, v) = max

{

dG(u, pi) + max
v∈Vi,Mu

dG(pi, v)|i = 1, . . . , t

}

can be computed in O(t) time with O(n2(log log n)2/ log n) preprocessing time (the rest of the
proof is similar to that of Theorem 3). And this reduces to showing that maxv∈Vi,Mu

dG(pi, v)
can be computed in O(t) time over all i with O(n2(log log n)2/ log n) preprocessing time.

We use the same preprocessing as above for Theorem 3. For set Vi,Mu
, we have distances

d̃G(pi, v) for each v ∈ Vi,Mu
and from these we can obtain dG(pi, v) in a total of O(|Vi,Mu

|)
additional time. By picking the largest such distance dG(pi, v) in the preprocessing step, we
can obtain maxv∈Vi,Mu

dG(pi, v) in constant time so that maxv∈VR
dG(u, v) can be computed in

O(t) time, as requested. The total preprocessing time is not increased since the total size of all
Vi,Mu

-sets is O(r
√

r log r).

Theorem 6 and Corollary 1

It suffices to consider Theorem 6. The extension is trivial: precompute SSSP distances in G
with source x (defined above). Now, to answer distance query dG(u, v), we first obtain d̃G(u, v)
using the algorithm for graphs with non-negative edge weights. We then compute dG(u, v) in
O(1) additional time using the formula

dG(u, v) = d̃G(u, v) + dG(x, v) − dG(x, u).
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