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Abstract

According to the World Health Organization cardiovascular diseases (CVDs)
are the number one cause of death globally. Two thirds of women and half
of men who die suddenly resulting from CVDs have no previously recognized
symptoms. This indicates that much more people are actually at risk than the
current methods identify, and therefore it is relevant to look into new methods.
Lumbar aortic calcified deposits have been shown to relate to CVD risk, but
are not yet widely used. Hence, we investigate methods that can help to detect
lumbar aortic calcified deposits and examine their influence on CVD risk to
optimally target timely intervention and to better identify people at risk.
The goal is to create an automatic system for the detection of lumbar aor-
tic calcifications, which can find the aorta and subsequently calcifications in
the aorta on X-ray images, and convert the findings to a CVD risk. To im-
prove segmentation of calcifications in the aorta two calcification shape priors
are developed: The first is inspired from geostatistics and based on a method
called Kriging, while the second is a texton-based generative shape model us-
ing a minimal description length model selection, which is applied to both
lumbar aortic calcification data as well as other natural image data. Further-
more a new methodology based on the concept of renormalization group theory
(RGT) is introduced and used in the context of multi-scale image segmentation.
Another important aspect is the clinical relevance of lumbar aortic calcifica-
tions. Several biomarkers are developed and their clinical relevance tested.
The biomarkers are also combined to form the morphological atherosclerotic
calcification distribution (MACD) index, and the newly formed MACD index,
and its relation to mortality in post menopausal women, is analyzed.

The proposed calcification shape priors produce promising results. The method
based on Kriging improves the sensitivity and the Jaccard index of calcification
test data, but the largest improvement comes with the texton-based generative
shape model. It improves the Jaccard index of calcification segmentations by
50%, which indicates that it can be successfully used as a prior distribution
in statistical segmentation of calcifications on X-ray image data. Additionally,
RGT provides a new approach for multi-scale image segmentation that could
be an alternative to parts of the fully automatic system. The examination of
different biomarkers shows that simple statistical modeling can help to identify

ix



Abstract

potential imaging markers. Especially, the MACD index seems to be a more
sensitive predictor of CVD mortality based on lumbar X-rays than the current
gold standard, the AC24 radiographic scoring of atherosclerotic plaques.

We can conclude that there is still some way to a fully automatic system of
detecting aortic calcified deposits, but that the assessment of the shape, size,
number, distribution, and extent of lumbar aortic calcifications may aid in
identifying people at risk of dying from CVDs and thus in the future help
those in most need of treatment.



Resume

Ifplge Verdenssundhedsorganisationen er hjertekarsygdomme (HKS) globalt
set den storste arsag til dgdsfald. To tredjedele af kvinder og halvdelen af
mand som dgr pludseligt pga. hjertekarsygdomme har ikke tidligere haft
nogen symptomer. Det betyder at mange flere mennesker har risiko for fa
hertekarsygdomme end nuveerende metoder identificerer, og derfor er det rele-
vant at forske i nye metoder. Forkalkninger i lumbal aorta har vist sig at vaere
relateret til risikoen for at fa hjertekarsygdomme, men brugen heraf er endnu
ikke saerlig udbredt. Derfor arbejder vi pa metoder som kan finde forkalkninger
i lumbal aorta automatisk og undersgge deres betydning for risikoen for at fa
hjertekarsygdomme, sa man kan rette tidlige indgreb imod de rigtige mennesker
og identificere dem som har den stgrste risiko at udvikle hjertekarsygdomme.
Vores formal er at lave et fuldt automatisk system til at finde forkalkninger
i rgntgenbilleder. Det skal dels kunne finde lumbal aorta og efterfglgende
forkalkninger deri og konvertere det til en risiko for at udvikle hjertekarsyg-
domme. For at forbedre segmenteringen af forkalkninger i aorta, udvikles
to modeller for forkalkningernes form: den fgrste er inspireret af geostatis-
tik og baseret pa en metode som man kalder Kriging, mens den anden er
baseret pa textons og bruger en minimal description lenght model selection
og er anvendt pa rgntgenbilleder af forkalkninger i aorta of andre naturlige
billeder. Desuden introducerer vi en ny metode baseret pa et koncept som
kaldes renormaliseringsgruppeteorie (RGT) og bruger metoden til multi-scale
billede segmentering. Et andet aspekt er den kliniske relevans af forkalkninger
i aorta. Flere biomarkgrer bliver udviklet osg deres kliniske betydning under-
sggt. Biomarkgrerne er ogsa kombineret til det morphological atherosclerotic
calcification distribution (MACD) indeks og dets relation til dgdeligheden af
kvinder som har passeret overgangsalderen er analyseret.

Modellerne for forkalkningernes form, som vi forslar, giver lovende resultater.
Den metode som er baseret pa Kriging forbedrer sensitiviteten og Jaccard in-
dekset pa vores traenings data, men den stgrste forbedring opnar modellen
baseret pa textons. Den forbedrer Jaccard indekset med 50%, som indikerer
at vores model kan blive brugt til statistisk segmentering af forkalkninger i
rontgenbilleder. Yderligere forsyner RGT os med en ny made at lave multi-
scale billede segmentering pa og kunne veare et alternativ til dele af vores
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automatiske system. Undersggelsen af forskellige biomarkgrer viser at simple
statistiske modeller kan hjalpe med at identificere potentielle billede markgrer.
Iseer MACD ser ud til at veere en mere sensitiv maling til at forudsige dede-
ligheden fra hjertekarsygdomme baseret pa rgntgenbilleder end den nuvarende
standard, AC24.

Slutteligt kan vi konkludere, at der stadig er et stykke vej til et helt automa-
tisk system til at finde forkalkninger, men at maling af form, stgrrelse, antal,
fordeling og omfang af forkalkninger i aorta kan bidrage til at identificere men-
nesker, som har den storste risiko for at dg af hjertekarsygdomme, og som
derfor har mest brug for behandling.
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Chapter 1

Introduction

According to the World Health Organization (WHO) |1] the number one cause
of death globally that claims more deaths than any other single cause are
cardiovascular diseases (CVDs). CVDs are defined as the class of diseases
that involve the heart and/or blood vessels [2]. Alone in 2004 an estimated
17.1 million people died from CVDs which equals 29% of all global deaths.
Projections by the WHO show that CVDs will remain the single leading cause
of death and by 2030 almost 23.6 million people worldwide will die from them.
Especially, in the United States (U.S.) CVDs are a major problem and are
the leading cause of death (table 1.1) claiming 35.3% of all deaths in 2005
equaling a CVD related death every 37 seconds. In fact, CVDs are such a big
problem that the U.S. National Center for Health Statistics [3| states that the
life expectancy in the U.S. would increase by almost seven years if all forms
of major CVDs were eliminated. In contrast, if all forms of cancer would be
eliminated the gain in life expectancy would only amount to 3 years.

Table 1.1: U.S. causes of death in 2005 (based on mortality figures) [4]. Cardiovascular
diseases (CVDs) are the leading cause of death.

Cause of Death Number of victims
CVD 864,480
Cancer 559,312
Accidents 117,809
Alzheimer’s Disease 71,599
HIV (Aids) 12,543




Chapter 1. Introduction

1.1 Purpose

One of the reasons for CVDs being the number one cause of death is that
two thirds of women and half of men who die suddenly from CVDs have no
previously recognized symptoms [5-7|. This is the case because traditional
prevention strategies fail to recognize that cardiovascular events also occur
in subjects in low and intermediate risk groups. Akosah et. al [8] showed
that 70% of a group of 222 young adults (men < 55 years and women < 65
years) were hospitalized for myocardial infarction despite being categorized
as low risk candidates by traditional prophylaxis methods. Hence, the current
categorization in CVD risk groups seems to assign candidates that are actually
at high risk of dying from CVD to a low risk group. Therefore, mortality can
not be reduced in low risk groups by traditional methods and there exists a
need for new methods especially aimed at prevention.

An early indicator of the risk of death by CVDs are calcified deposits
in the vascular system. This is the reason why in this dissertation I
want to investigate methods that can help detect calcified deposits
and examine their influence on CVD risk to optimally target timely
intervention and to better identify people at risk.

1.2 Outline

The dissertation is divided into two major parts: Part I (chapter 3-5) deals
with medical imaging of calcifications and part II (chapter 6-7) focuses on the
relevance of especially lumbar aortic calcifications in relation to CVD risk.

In chapter 2 some background knowledge needed to understand the dissertation
is provided. The underlying causes of cardiovascular diseases, atherosclerosis,
is introduced (section 2.1) as well as an overview of medical imaging of car-
diovascular diseases given (section 2.2). Finally, the clinical tools to assess
cardiovascular disease risk are described (section 2.3).

Part I of the dissertation consists of research papers that focus on the devel-
opment of automated methods for the detection of calcifications. Here the
contribution to the automated methods, especially in the calcification detec-
tion process, is described. The work is divided into two chapters. In chap-
ter 3 an excursion into a method from geostatistics called Kriging leads to a
method called "Dense Iterative Contextual Pixel Classification using Kriging".
In chapter 4 a texton-based generative shape model using a minimal descrip-
tion length model selection is developed and applied on calcification data as
well as other natural image data. Finally, a new methodology based on the
concept of renormalization group theory (RGT) is introduced, which is an es-
sential tool in statistical physics. In chapter 5 RGT is used in the context of
multi-scale image segmentation.



1.2. Outline

Part II of the dissertation deals with the clinical relevance of particularly lum-
bar aortic calcified deposits. In chapter 6 several biomarkers based on lumbar
aortic calcified deposits are developed and their clinical relevance tested. Then
the biomarkers are via a selection process based on Cox regression combined
to form the morphological atherosclerotic calcification distribution (MACD)
index. Finally, the newly formed MACD index and its relation to mortality in
post menopausal women is examined in chapter 7.

The dissertation concludes in chapter 8 with a short summary, a discussion
and perspectives for future research within the field.
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Chapter 2

Risk Assessment of Cardiovascular
Diseases

In order to be able to assess CVD risk as early as possible the underlying
causes of CVDs need to be understood. Hence, this chapter provides some
background knowledge. First, the pathology of one of the underlying causes
of cardiovascular diseases, atherosclerosis, is introduced (section 2.1). Then
an introduction to part I of the dissertation is given in section 2.2 where an
overview of medical imaging of cardiovascular diseases is given, and the overall
project, which this dissertation was part of, is detailed. In the introduction to
part IT (section 2.3) current clinical tools to assess cardiovascular disease risk
are described.

2.1 Causes of Cardiovascular Diseases

While CVDs refer to any disease that affects the cardiovascular system the
underlying cause of CVDs is usually atherosclerosis [10]. Atherosclerosis is
a disease that affects the arteries (figure 2.1), which are the blood vessels
that carry oxygen-rich blood to one’s heart and the rest of one’s body. As
its name (athero = soft, pasty material; sclerosis = hardening) suggests it is
a process where fatty substances, such as cholesterol, cellular waste material
and calcium form a calcified deposit in the media of an artery. The reason
for substances entering the media is usually a damage of the endothelium,
the innermost lining, of an artery. The endothelium gets damaged if it is
for example exposed to elevated lipid levels, high blood pressure or tobacco
smoking [11]. The resulting calcified deposit in the media of an artery is then
called a plaque (figure 2.1).

Plaques can grow large enough to reduce or even block the blood flow through
an artery. On the one hand, plaques can become stable (figure 2.2(c)) with
a large necrotic core and a strong calcified cap and subsequently narrow the
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elastica interna

endothelial

Artery

fibroblast

Figure 2.1: The anatomy of an artery showing the intima, made up of endothelial cells as
well as the elastica interna, the media and adventitia. (Picture taken from [9], modifica-
tion and reprint according to Creative Commons Attribution-NonCommercial-ShareAlike
2.5 License).

artery. On the other, they can become instable (figure 2.2(b)) and rupture.
Ruptured plaques (figure 2.2(d)) can cause the formation of blood clots that
can travel through the arteries and cause a blockage in any other part of the
body. If a blood clot blocks a coronary artery it can lead to a heart attack or
if it travels to the brain it can cause a stroke. In the case that the clot ends up
in the lung it can lead to a pulmonary embolism and even in the extremities a
blood clot can cause significant damage and eventually lead to gangrene [12].
The goal is to identify calcified deposits, because they are an expression of
atherosclerosis and detectable by medical imaging modalities.

2.2 Introduction to Part I:
Medical Imaging of Atherosclerosis

Since the aforementioned atherosclerosis develops over decades |14] earlier de-
tection of subclinical atherosclerosis may allow timely intervention and lead to
better identification of people at risk. Hereby atherosclerosis imaging plays a
large role. There exist a multitude of modalities to evaluate atherosclerosis,
both invasive and non-invasive [15, 16].

Invasive methods like quantitative coronary angiography (QCA), intravascu-
lar ultrasound (IVUS) and optical coherence tomography (OCT) have all been
shown to be able to assess atherosclerosis [15]. But all three modalities are also
reserved for small scale studies due to the inherent risks of invasive procedures.
Furthermore, use of QCA is only advisable to aid interventional treatment of



2.2. Introduction to Part I:
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Figure 2.2: A cross section of an artery illustrates the different stages of plaque development:
(a) shows a fatty streak, (b) a stable, (c) an unstable and (d) a ruptured plaque.

patients at intermediate risk [17] due to the relatively large exposure to ioniz-
ing radiation (16 mSv [18]).!

But there exist many alternatives to invasive imaging procedures. Ultrasound
(US), computed tomography (CT), magnetic resonance imaging (MRI) and X-
ray are all non-invasive imaging techniques that have developed markers that
relate to CVD risk.

Ultrasound can be used to visualize the carotid intima-media thickness (IMT)
that has been shown to be associated with atherosclerosis [19] and is thus a
marker for CVD. Additionally, US is cost-efficient and does not expose pa-
tients to harmful radiation. A downside of US is though that IMT is measured
in a different vascular bed than the coronary arteries and that it is operator
dependent [20].

Imaging of atherosclerosis in the coronary arteries can be done with CT [21].

IThe natural background radiation per year amounts to ca. 3 mSv and a coast to coast flight over the
U.S. exposes a person to a radiation dose of 0.03 mSv [18]
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Figure 2.3: The AC24 is constructed by projecting the abdominal aortic calcifications
(AACs) to the corresponding aorta wall. The degree of lesion occupation is graded: 0
for no AAC, 1 for AACs occupying less than 1/3 of the wall they are projected onto, 2 for
AACs occupying more than 1/3, but less than 2/3 in the projection, and 3 for a 2/3 or more
occupation of the wall. Summed up the degrees of lesion occupation lead to an AC24 score
ranging between 0 and 24. The schematic view is adopted from [13].

CT of the coronary arteries is able to quantify the degree of coronary artery cal-
cification (CAC) in the Agatson score with good reproducibility [22,23], which
provides a strong measure of cardiovascular risk [24] independently from, and
potentially more powerful than, traditional risk factors such as smoking [25].
Atherosclerosis imaging in C'T is usually performed with two types of scanners,
electron-beam computed tomography and multi-row detector CT. Coronary
CT is widely available and its downsides are only its cost [26] and the expo-
sure to moderate levels of radiation (3 mSv [18]).

MRI is a non-invasive modality to assess atherosclerosis in different vascular
beds. MRI has been able to quantify atherosclerosis and responses to treat-
ment, but only in the aorta and the carotid arteries [27-29]. The reason for
this is that MRI measurements are challenged by the size of the smaller arteries
and assessment of the coronary arteries is especially difficult due to cardiac and
respiratory motion artifacts. So although its advantage is the lack of exposure
to harmful radiation, its disadvantages are the inaccessibility of the coronaries
and its cost.

Finally, it has been demonstrated that abdominal aortic calcifications (AACs)
detectable by lateral lumbar radiographs are strong predictors of cardiovascu-
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Table 2.1: Summary of imaging techniques used in atherosclerosis including some of their
advantages and disadvantages.

Advantages Disadvantages
QCA | widely available | invasive

radiation (16mSv)
IVUS | widely available | invasive

OCT | high resolution | invasive

complex
US cost-efficient different vascular bed (carotid arteries)
no radiation operator dependent

cT widely available | cost
radiation (3 mSv)

MRI | no radiation coronaries inaccessible
cost
X-ray | cost-efficient different vascular bed (lumbar aorta)

widely available | radiation (1.5 mSv)

lar morbidity and mortality [10]. They correlate strongly with coronary artery
calcifications and can hence predict the risk of coronary artery problems [30].
Therefore in X-rays the state of the art methodology to estimate CVD risk is
the abdominal aortic calcification score (AC24) proposed by the Framingham
study group [13]. The AC24 is constructed by projecting the abdominal aortic
calcifications (AACs) to the corresponding aorta wall (see figure 2.3). So while
an advantage of X-rays is the wide availability of the modality, a disadvantage
is the exposure to a low level of harmful radiation (0.3 - 1.5 mSv [18,31]) as
well as the fact that the assessment of AC24 is again made in a different vas-
cular bed than the coronaries.

A summary of the mentioned advantages and disadvantages of the different
imaging techniques can be seen in table 2.1.

2.2.1 Choice of Modality and Region of Interest in the Body

In this dissertation the approach will be to examine abdominal aortic calcifica-
tions as observed in standard lumbar radiographs (see figure 2.4). As already
discussed AACs are strong predictors of cardiovascular morbidity and mortal-
ity [10]. The reasons for choosing X-ray images of the AACs in contrast to for
example using MRI are threefold:

e X-ray is still one of the most widely available imaging modality besides
ultrasound and compared to imaging of carotid plaques via ultrasound
taking a lumbar aortic X-ray is not as operator dependent [20].

e The gold standard for vertebral fracture diagnosis are standard radio-
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Figure 2.4: Illustrations of abdominal aortic calcifications (AACs) in a lumbar aortic X-ray
for ease highlighted by a black square around some of them.

graphs |32]. This means every time it needs to be clinically assessed if a
vertebral fracture is present, an X-ray of the spine is taken, which then
also can be used for CVD risk assessment.

e In clinical studies for drug development against osteoporosis [33,34] inclu-
sion criteria are, besides other metabolic factors, low BMD as measured
by DXA scans or radiographically confirmed vertebral fractures. Further-
more, spinal lateral radiographs are used to measure efficacy, so every
subject in osteoporosis trials has at least one standard radiograph taken.
And in some adverse effect studies AC24 scorings of lumbar radiographs
have been requested to examine the effect of osteoporosis treatment on
the cardiovascular system leading to even more subjects in clinical trials
where an X-ray of the lumbar spine is taken.

That spinal fracture is assessed by standard radiographs and the availability
of large, long duration studies from clinical osteoporosis trials are big advan-
tages when examining abdominal aortic calcifications. For all subjects that
have participated in a clinical osteoporosis trial, the AAC scoring can then
be performed without additional ionizing radiation exposure or cost as these
images are already available. Furthermore, historical data from clinical trials
can be used to develop new AAC markers and verify them.

As already stated there exists a need to intervene in the early stages of CVDs
and to develop methods to enable CVD risk scoring of large populations either
in clinical trials or in a screening setup. But the CVD risk examination of
a larger population is only possible if it can be done fast, cheap and is eas-
ily accessible. By choosing X-rays we provide a cheap, widely available and
inexpensive modality.

10
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Figure 2.5: This shows how we apply the CVD Pipeline on lumbar aortic X-ray images.
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Figure 2.6: A schematic description of the CVD Pipeline that allows for automatic annota-
tion of calcifications in aortic X-ray images.

2.2.2 Automating the Measurement of Imaging Biomarkers on Lum-
bar Aortic Radiographs

When trying to make CVD risk scoring available for larger populations, the
real cost arises from the human involvement, e.g. the radiologists that have to
spent time on AC24 scorings of lumbar aortic X-rays. Therefore, it is essen-
tial to provide automated scoring frameworks to admit the possibility of large
population studies in order to identify further risk factors of CVDs.

To meet this challenge we have developed a machine-learning based approach
[35] for automatic annotation of calcified deposits in lumbar aortic X-ray
images that we call "CVD pipeline" (see figure 2.5). The CVD pipeline is
comprised of several steps: a pre-processing, a vertebra-processing, an aorta-
processing and a calcification-processing stage. A diagram describing the CVD
pipeline can be seen in figure 2.6.

11
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Pre-Processing

The pre-processing in the CVD pipeline consists of an image normalization
which is a prerequisite for achieving robust pixel classification results on images
from different X-ray machines. This can be achieved with standard intensity
normalization techniques, such as subtraction of the mean and division with
the standard deviation. Another possibility is to normalize the intensities
according to models from physics that describe the scattering of v-rays.

Vertebra- and Aorta-Processing

The second step of the CVD pipeline deals with of finding the vertebrae in the
image. This is done by generating a vertebrae template that consists of six
regions of interest, the five vertebral classes defined in [36] and a background
class, and then applying a random forest classifier [37|. The classifier is trained
on 100,000 sampled points from the five foreground classes using Gaussian
derivative features up to third order on scales 0.18, 0.56 and 1.78 mm [38].
On the basis of the classification results a shape model is used to identify the
lumbar vertebrae, L1-L4.

Next the aorta is defined on the basis of the identified vertebra via an aorta
position posterior, where we marginalize over all possible vertebra shapes [38].
Once we have found the aorta we use it as our region of interest in the search
for calcifications.

Calcification-Processing

The calcification processing combines two things, the classification output of
a pixel classifier and prior knowledge about the location and shape of calcified
deposits.

For the classification we employ a random forest classifier |37] with seven fea-
tures: Gradient Magnitude at the scales 0.56 and 1.78 mm, Hessian Coherence
at 1.78 mm, the second Gaussian derivative in y-direction at the scales 0.18
and 0.56 mm as well as the third Gaussian derivative in x- as well as y-direction
at a scale of 0.56 mm. 2 After identifying the features the classifier is trained
on 100,000 points and a five fold cross validation is used; in this case five fold
means % of our data is used for training and é is tested on.

A weakness of a pixel-based classification is that it does not use contextual
knowledge. The feature space is not well separated and hence the output from
the pixel classification is noisy. Calcification priors can distill contextual in-
formation from the image. They enhance the result by using image intensity,
shape and statistical information since these properties of the X-rays can help

2The seven features are found by training the classifier on 100,000 points from manual annotations of
the aorta template of a separate data set and then employing a sequential floating forward feature selection
(SFFS) [39].
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to predict shape and distribution of the calcifications.

Hence, in the CVD pipeline several calcification priors are used: First, we
combine the output of the pixel classifier with a calcification likelihood map.
The map is constructed by registering all manual annotations of the training
set into a common normalized coordinate system [40] and then turning this
calcification histogram through normalization into a probability map. The cal-
cification likelihood map ensures that calcifications that are placed in unlikely
places are subdued, while calcifications in very likely places in the aorta are
emphasized. Second, we learn a shape model of the calcifications from the
manual annotations and then impose the same shape statistics of the training
data onto our segmentation result.

Challenges for the CVD Pipeline

The CVD pipeline consists of several steps that each face their own obstacles.
Furthermore, since we deal with historical clinical trial data, our X-ray images
are afflicted by clutter, occlusions and a low signal-to-noise ratio and object
boundaries are hardly visible. This naturally challenges the processing as a
whole. An example X-ray image can be seen in figure 2.7.

In the vertebra stage the biggest problem is to identify the lumbar vertebrae,
L1-L4, correctly. A shape model of the 4 lumbar vertebrae can also falsely
detect the thoracic vertebra T12-L3 or L2-L5 and hence predict a wrong
aorta. Furthermore, vertebrae are sometimes only partially visible and can
then not be identified by the vertebra shape model. Additionally, the ver-
tebrae boundaries can appear smeared or even duplicate, because the X-ray
procedure projects the three-dimensional vertebrae into two dimensions.

The conditional shape model of the aorta given the vertebrae depends on the
vertebrae, but also on potential calcifications. Therefore it needs to be able
to take the vertebrae as well as potential calcifications into account to define
a region of interest for further processing. Especially, if the vertebrae predic-
tion step fails, e.g. can not match the vertebrae shape model to the actual
vertebrae, it can be seen that the conditional shape model is very sensitive
to false positives (vertebrae boundary pixels that look like potential calcifica-
tions). Finally, since the biological shape variation of the aortas occurs on a
curved manifold, a more complicated shape model might be needed.

Setting aside the problems that arise from trying to detect the vertebra and
the aorta, the detection of calcified deposits in X-ray images itself has various
challenges. First, the calcified plaques are small objects of low contrast and
large variability in shape, size and appearance and therefore affected by back-
ground noise, e.g., noise from Compton scattering. Second, because the X-ray
is a 2-dimensional projection the calcifications are often totally or partially
occluded by other physiological structures, such as the lowest ribs, part of the

13
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Figure 2.7: Here an example X-ray image is shown, where one clearly sees the four lumbar
vertebrae. To the left of the vertebrae the aorta is located, but it is hard to see since it
is less prominent than the vertebrae. It is inside the aorta that we try to detect calcified
deposits.
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(b)

Figure 2.8: Here we can see a typical pipeline result based on the image in figure 2.7. (a)
We can see the manual annotation of the vertebrae and the aorta outline (white) as well as
the calcifications (red). (b) In the middle the automatically retrieved vertebrae and aorta
outline (green) as well as a probability map of the calcifications (yellow to red) are shown.
(c) The overlap of the calcification segmentation with the manual annotation is displayed;
yellow indicates true positives, blue indicates false positives and red indicates false negatives.

hip or folds of fat in obese persons. Third, other structures, e.g. calcifications
in the bowels or parts of vertebral cortical bone, have a similar appearance in
the image.

An example of an automatic calcification segmentation of the CVD pipeline
is shown in figure 2.8. The picture displays a manual annotation besides the
automated segmentation result and also a comparison of the two. The perfor-
mance and limitations of the CVD pipeline, especially concerning the calcifi-
cation shape modeling, will be examined in chapters 3 and 4.

2.2.3 Application of Renormalization Group Theory in Medical
Imaging

In section 2.2.2 the CVD pipeline and its focus on detecting lumbar aortic cal-
cifications has been described. A key feature of the CVD pipeline is the pixel
classifier that is used to segment the calcifications inside a given region of in-
terest. But it has its limitations. When dealing with high resolution images
the computational time is extensive. And since it classifies each pixel for itself,
it can not take spatial interactions between pixels into account and therefore
requires us to use calcification shape priors to re-introduce spatial coherency.
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Hence, we have investigated methods to replace the pixel classifier by other
image segmentation algorithms. To do this we developed a new method for
image segmentation based on renormalization group theory (RGT) which is
especially interesting for images with a high resolution and where very long
spatial interactions play a role (see figure 2.9). A strength of RGT is that
it can as described in [41] and [42] evolve energy functions correctly between
different scales when employing a hierarchical approach. At every scale the
resulting energy function can then be optimized by the optimizer of choice.
Hence, for large problems RGT can be applied to general segmentation tech-
niques to construct an appropriate hierarchical version of the problem.

Segmentation problems in general can be solved by 3 different approaches -
local optimizing techniques, global optimizing techniques and stochastic meth-
ods. Local optimizing techniques are e.g. active contour [43|, active appear-
ance [44] or level set models [45]. A problem of active contour or active ap-
pearance models is their inability to handle topology changes. Level sets can
handle those, but since level sets essentially employ gradient descent methods
one runs into problems again. Most of the functionals one deals with in medi-
cal imaging are far from convex, so level sets only yield local optima. Global
optimizers like graphcut [46], on the other hand, guarantee to find the global
optimum. The problem lies here in the computational tractability in terms
of time and memory consummation, as soon as the connectivity of the graph
becomes dense. But this exactly is the case in medical images, where high

Figure 2.9: First an X-ray of our study population (resolution 570 dpi). Then a small part of
the former X-ray, showing a row of three calcifications (800 by 400 pixels). To separate the
3 calcifications correctly from each other, the high resolution as well as the several hundred
pixels long interactions inside the calcifications are important.
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Table 2.2: Specifications of the EU SCORE card [49] and the Framingham Coronary Heart
Disease Risk Score (Framingham score) [50].

EU SCORE Framingham score
Age Age

Smoking status Smoking status
Total cholesterol Total cholesterol

Systolic blood pressure | Systolic blood pressure
High-density lipoprotein
Hypertension treatment status

resolution as well as long interactions ranges play a role. Stochastic methods,
markov chain monte carlo (MCMC) methods [47] or simulated annealing [48],
also find the global optimum. But similarly they present a computational chal-
lenge. Especially if long range interactions are of importance, the convergence
time is a problem.

In chapter 5 RGT will be applied to one of the above methods to improve
tractability showing how hierarchical processing of large images with long spa-
tial interactions is possible.

2.3 Introduction to Part II:
Diagnostic Tools for Cardiovascular Disease Risk

From the image processing approach to CVD risk assessment we now move into
the clinical evaluation of CVD risk. Besides the imaging modalities introduced
in chapter 2.2 to assess CVD risk, there exist also other markers of CVD risk,
such as metabolic biomarkers, which are used in clinical practice. If one is able
to process large population studies by automating the measurement of imag-
ing biomarkers (see chapter 2.2.2) the performance of the imaging biomarkers
needs to be compared to already established clinical measures of CVD risk.

2.3.1 Current Metabolic Biomarkers for CVDs

Already in 1981 a list of 246 coronary risk factors had been compiled [51]. Later
on, risk scoring systems for use in the clinical management of cardiovascular
risk in Europe, the EU SCORE card [49], as well as in the US, the Framing-
ham Coronary Heart Disease Risk Score (Framingham score) [50], have been
developed. The EU SCORE is a combination of the age, smoking status, levels
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of total cholesterol and systolic blood pressure, while the Framingham score is
comprised of the same variables plus the high-density lipoprotein (HDL) and
the hypertension treatment status (see table 2.2).

The second part of this dissertation (chapter 6-7) will give an example of a
comparison between newly developed markers relating to the geometrical out-
line of calcified deposits in lumbar aortic X-ray images and the established EU
SCORE and Framingham score.

Overall this dissertation is comprised of a theoretical approach to
the automated segmentation of calcified deposits and its practical
application on data from existing clinical osteoporosis trials. While
part I creates the technical basis for the automated segmentation and
the development of new imaging biomarkers, part II evaluates the
performance of imaging biomarkers compared to established clin-
ical measures. Together the two parts can hopefully improve the
understanding of CVD risk and thereby optimally target timely in-
tervention and better identify people at risk.

18



I

Medical Imaging of Lumbar Aortic
Calcifications

19






ART I of the dissertation consists of research papers that focus on the develop-
ment of automated methods for the detection of lumbar aortic calcifications.
The contributions to the automated methods were done in the calcification
processing stage of the CVD pipeline.

The first chapter gives an overview over a method from geostatistics called
Kriging and leads to a "Dense Iterative Contextual Pixel Classification using
Kriging". Chapter 4 introduces a texton-based generative shape model using
a minimal description length model selection that is applied on the lumbar
aortic calcification data as well as natural image texture data. In chapter 5
we make an excursion into the world of statistical physics. A method based
on renormalization group theory (RGT) is used to derive a new approach for
multi-scale image segmentation that could be an alternative approach to parts
of the CVD pipeline.
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Chapter 3

Dense Iterative Contextual Pixel
Classification Using Kriging

This chapter is based on the manuscript "Dense Iterative Contextual Pixel Classification
Using Kriging" by Melanie Ganz, Marco Loog, Sami Brandt and Mads Nielsen published
in the proceedings of the IEEE Computer Society Workshop on Mathematical Methods in
Biomedical Image Analysis, 2009.

Abstract In medical applications, segmentation has become an ever more important
task. One of the competitive schemes to perform such segmentation is by means of pixel
classification. Simple pixel-based classification schemes can be improved by incorporat-
ing contextual label information. Various methods have been proposed to this end, e.g.,
iterative contextual pixel classification, iterated conditional modes, and other approaches
related to Markov random fields. A problem of these methods, however, is their computa-
tional complexity, especially when dealing with high-resolution images in which relatively
long range interactions may play a role. In the following, a new method based on Kriging
is proposed that makes it possible to include such long range interactions, while keeping
the computations manageable when dealing with large medical images.

3.1 Introduction

In medical applications, image segmentation tasks become ever more impor-
tant to aid quantitative analysis. In this paper, we focus on the application of
medical imaging to aid the diagnosis and prognosis of cardiovascular diseases
(CVDs) |52,53|. Images are traditionally segmented by e.g. active contour [54],
active appearance |55 or level set models [56]. Competitors to these models,
especially in the domain of medical imaging, are pixel-wise classifiers [57]. To
achieve even better segmentations, in cooperation with pixel-wise classification,
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various methods have been developed that take contextual information in the
images into account. Examples are iterated conditional modes (ICM) [58],
iterative contextual pixel classification (IPCP) |59] or Markov Random Fields
(MRF) [48].

A pure pixel-wise classification takes only the contributions of a neighborhood
in the image into account when assigning the class label to a pixel. It does
not consider any other class labels in its decision. The technique of I[CM on
the contrary employs contextual knowledge. It is divided in two steps: First,
the pixels are classified by a pixel-wise classifier. Second, the neighboring class
labels are included into a label decision. An advanced version of ICM was
presented by Loog and van Ginneken [59]|. Their ICPC method went a step
further than ICM by creating a simultaneous dependency of a class label on
surrounding image values and class labels.

A problem of these methods, however, lies in their computational burden when
dealing with high resolution images like medical data. Additionally, if also long
range interactions are present in the image, the convergence of the methods
often becomes an issue.

We propose a new model that can be applied after a pixel-wise classification,
Dense Iterative Contextual Pixel Classification (DICPC). It employs the con-
text of all class labels and can take long range interactions into account. We
implement this by approximating the contextual interactions in label space
with a linear model based on Kriging [60]. With this approximation it be-
comes feasible to converge to an optimal segmentation in manageable time,
even for high-resolution images with a long interaction ranges.

This chapter is organized as follows: Section 3.2 restates the problem and
gives an introduction to a statistical interpretation of segmentation and Krig-
ing. Section 3.3 introduces the DICPC algorithm. Section 3.4 introduces the
problem on which we exemplify our method. It concerns the difficult task of
quantifying aortic calcifications. Information on the study population and the
exact classification settings are presented there as well as evaluation meth-
ods. The results can be found in section 3.5, while section 3.6 comprises the
discussion and conclusion.

3.2 Problem Description

Let an image I = ([,...,1,) of the size n be described by its pixel values
I;. In a pixel classification scheme, there exists a feature vector f, for each
pixel that consists of one or multiple features, e.g. intensity values or filter
responses, at the pixel location i. The matrix F = (ﬁ, . f_,;) is comprised
of all the feature vectors. The labels for every pixel ¢ also shape a vector,
¢ = (c1,...,¢,), that consists of the class label at each pixel location. Class
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labels are part of the set I' = (1,2,...,v), where ~ is finite.
The problem lies now in finding the optimal segmentation C* for the image /.

3.2.1 Statistical Interpretation

To find the optimal segmentation C* we pursue a maximum-a-posteriori (MAP)
approach®. In a MAP estimation the optimal segmentation is given as

C* = argmax P(C|I), (3.1)
Cern
where I is the set of all possible segmentations.
There exist different approaches to solve (3.1). Assuming conditional indepen-
dence of C' we can rewrite it to

C* = argmax | [ P(Ci|C-. 1), (3.2)

ceC

where C; denotes the label for a pixel 7. Additionally assuming a Markov
property |62] holds in the label space this can be transformed into

C* = argmax H P(C;i|Cn,, I). (3.3)
cec ;
Here Cly, are the neighborhood labels of a pixel ¢ . This equation can now
be taken as the starting point to describe the different techniques mentioned
before.
In order to approximate (3.1) and to move toward the optimal segmentation
C™* one can iteratively update the labeling of single pixels. This is somewhat
reminiscent of Besag’s iterated conditional models [58] and means that if two
alternate segmentations C; and Cy are provided, one can decide pixel by pixel
if the segmentation should be updated or not.
A way of optimizing such an iterative procedure has been presented as ICPC
in [59]. The ICPC algorithm is based on a simple classification result, so it
avoids calculating conditional properties explicitly. Neither is a clique formal-
ism needed as in an MRF approach. A problem of ICPC is though that one
can end the optimization in a local optimum, instead of the global optimum.
There is no guarantee that one deals with a convex energy function and it can
therefore not be guaranteed to reach the global optimum.
Our method, DICPC, is based on the outcome of a classification. It possesses
all the benefits of ICPC, but on the contrary to ICPC it provides a convex
functional for the common distributions (Gaussian, Poisson) and can therefore
be guaranteed to be solved by a second order optimization method.

3The MAP approach equals a Bayesian minimal risk approach [61] for the risk function of all wrong
classifications being equally risky.
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3.2.2 Kriging

Kriging [63,64] is a geostatistical method that is used to spatially interpolate
the value zy at any location 7y from irregularly sampled data z at N points
7n. This is done by the local affine model zy = z(7) such that

N
20 = Wo + Z W;Z; = Wo + thZ, (34)

i=1

where wy is an offset and w; is the weight applied to z;. If we regard the z; as
realizations of random variables Z; and request our measure to be unbiased,
E(Zy— Zy) = 0, we can define the estimation variance

0'123 = Var(Zo — Zo) (35)
Using the linear model we can simplify this to

o = Var(Z,) + Var(wg + zEtZ) —2Cov(Zy, wo + th)

. (3.6)
= 0 + W'Cw — 2w'Cov(Zy, Z),

where C is the covariance matrix of Z. Cov(Zy, Z) is a column vector of
covariances between data points a locations 7; and 7; that can be calculated
based on the assumption of spatial stationarity from the entries in C. We
minimize the estimation variance after the weights w; by solving

ow

This results in the simple Kriging system

= 2Cov(Z, Z)i — 2Cov(Zy, Z) = 0. (3.7)

Cov(Z, 2)iw = 2Cov(Zy, Z), (3.8)

which can be solved for the interpolation weights @ and is in our case expanded
to include the necessary condition 0 < w; < 1 in order to avoid negative
weights.

3.2.3 Application of Kriging

The same principle of Kriging can with regularly distributed samples be applied
to an image and has been used for image restoration [65]. Kriging is as stated
in (3.4) based on a linear estimation model. In the case of a segmentation
task where manual segmentations are available, one can learn the weights that
minimize the estimation variance, o%, from the manual segmentations Syan
via the linear model

20,man — W0,man + U_;;angman- (39)
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Then we use these weights to compose a linear model for the automated seg-
mentations
20,aut = Wo,man + w;]angaut- (310)

This is possible because we may assume that the covariance structure of the
manual segmentations can be transferred to the automated segmentation. The
weights of the linear model can then be applied to the automated segmentation
Saut in a filtering manner to give a kriged estimate of the segmentation

K(Saut> =k x Saut7 (311)

where k is a 2D-filter built from the weights wy.,. Because our method is
based on this type of filtering the computational cost stays low compared to
ICM and ICPC. Using this formulation of simple Kriging, we now turn to our
application in pixel-based segmentation.

3.3 DICPC - Dense Iterative Contextual Pixel Classifi-
cation

The solution for an optimal contextual segmentation has the form of (3.3),

C* = argmax HP Ci|Cn,, I). (3.12)

ceC

Using Bayes formula this can be transformed into

C* = argmaXH P(1|C;,Cn,)P(Ci|Ch;)

cec
Z( log(P(I|C;, C)) — log(P(CH[Cv,))) 1
= argmin 0 5 —lo JCN,)) ).
gec ' g(P N; g N,
If we assume independence of C'y, and I, we can write this as
- argngmz( log(P(I]C))) —log(P(C'i\C’Ni))) (3.14)
(S

3.3.1 Gaussian Distributions

To solve (3.14) we need to define P(I|C;) and P(C;|Cly;). For now we assume
that both are Gaussian distributed, but we will relax this assumption later.
A probability prior P(C;|Cl;,) for the segmentation C' can be formulated as
follows

P(Ci|Cn,) = G,(C; — K(Cy))
1 (C; — K(Cy))? (3.15)
= e~ )
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Furthermore, we assume also separability of the image pixels and therefore
define P(I|C;) =[], P(1:|C;) to be of the form

P(L|C;) = G, (I; — Cy)
= eXp —_ .
V2o 207
In the case of a Gaussian prior P(C;|Cl,) and a Gaussian likelihood P(I;|C;),

the posterior distribution is Gaussian again and in that case a closed form
solution exists for (3.14). Plugging in P([;|C;) and P(C;|Cl;) into (3.16) leads

to

202 207

where a = log(2mo0;). We replace K (C;) with kC; according to the definition
of (3.11) and get

Ee=) (a GO (G (ks C"))z) : (3.18)

: 202 202
7

Due to the Parseval theorem the energy is preserved in the Fourier trans-
form, so the cost can be equivalently computed in the Fourier domain. The
minimization in the Fourier domain is performed by differentiating the en-
ergy functional with respect to the real and imaginary parts of the Fourier
coefficients and setting the result to zero. This way we arrive at

c*:rl( ji . ) (3.19)
1+ @ (k)*(K)

where @ is the ratio between the neighborhood and the global variance, F
describes the Fourier transform and I = F(I) as well as k' = F (k') = F(k—1).

3.3.2 Other Distributions

If P(I;|C;) and P(C;|Cy,) are not Gaussian, but e.g. Laplace distributed, the
energy function of (3.17) changes to

B, =Y (a Il L K(Ci)‘) , (3.20)

202 2072

i

A solution to (3.20) can be found via variational methods by any approach
for total variation minimization. In the case of distributions where the mode
of the distribution is the same as its mean this solution is equal to the MAP
solution. Thus, for the Laplacian distribution the MAP solution is identical to
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the minimum variance solution. In the case of other distributions, it depends
on the distribution if the total variation minimization equals the MAP solution.
To exemplify this we derive the solution again with the help of a gradient
descent method; the same solution can be found with the iterative update
equation

I = Za@IN —log(P(

n)) = log(P(Iy,))) (3.21)

where ¢ gives the number of the iteration, a the step size and afNi a partial
derivative after I;. The solution of the update equation (3.21) is given by

' = Z y(log(2mao;)

! 1 1 (3.22)
2 2
— (G = L)" + O,_iz(li — K(1;))")
We can solve this by first neglecting the constant factor advancing to
1
I''~ Y ——(C; - L) I, — K(I;))* 3.23
>, + (L - K(L)Y, (323)

i

We get to the optimal segmentation when the image I**! is the same as I
before the iteration. Therefore the changes between I* and I**! should vanish:

D (Ci = I + w1 - K(I})* = 0. (3.24)

i

We arrive at the same optimal solution as given in (3.19)

cr=F! ( C = ) : (3.25)
1+ w(k)*(k)

3.3.3 DICPC algorithm

All in all, the contextual classification approach that is proposed looks as
follows:

1. Learn the weights ,,,, from manual segmentations and construct a 2D-
filter k.

2. Define a distribution to be used in the prior P(C;|Cl,).
3. Define a distribution to be used in the conditional probability P(/;|Cly;).

4. Use a direct or a variational approach to solve (3.14).
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Figure 3.1: The graph displays one of the original images and a manual as well as an
automatic segmentation of a calcification. Note how much background noise there is present
in the automatic segmentation.

3.4 Methods

3.4.1 Study population

The study population used in this paper is the EPI follow-up population,
which was part of the multi-centered PERF Study [66]. The EPI part of the
PERF study was an epidemiological study addressing the role of a number
of metabolic risk factors in the pathogenesis of CVD and osteoporosis [67|
carried out in Ballerup, Denmark, in 1992 and 2001. Three trained radiologists,
unaware of the patients conditions, annotated the vertebrae, the aorta and the
calcifications in the digitized X-ray images. They used Sectra radiological
reading units and annotation software implemented in MatLab (Mathworks,
MA, USA).

Five images where randomly selected and 18 patches with one or multiple
calcifications as illustrated in figure 3.1 were acquired. The testing of the
different methods was performed on these 18 calcification patches.
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3.4.2 Evaluation Methods

To measure the compliance of an annotation A; and the outcome of a classifi-
cation As, first the Jaccard index [68] is used. This is a quantification measure
for segmented areas. The ratio of the number of pixels present in both seg-
mentations to the total number of pixels in the segmentations is taken. The
Jaccard index varies from 0 which equals no overlap to 1 corresponding to
complete overlap,
= |A; N Ayl
AL U Ay

Furthermore we use sensitivity rse,s and specificity rgpe. to evaluate the per-
formance of our contextual classification methods.

Note that these measurements require the images to have the same resolution.
Furthermore, the errors of 7jacc, 7sens and 7gpec increase with smaller objects.

(3.26)

3.4.3 Classification and Kriging Settings

We use a k-Nearest-Neighbor classifier [69] with & = 25. Training pixels are
selected with a bias toward calcified pixels, meaning that 30% of the training
pixels chosen are calcified pixels which are defined according to the manual
annotations. The features used were the intensity, the gradient magnitude,
the Hessian trace, the Hessian determinant and the Hessian eigenvalues, an
adaption of Koenderink’s shape classification measure [70] and the ratio of the
difference and sum of the Hessian eigenvalues. All features were calculated at
three different scales, corresponding to 2, 5 and 17 mm.

In our method, we learn the Kriging filter for calcifications from manual seg-
mentations by calculating the weights for a seven by seven neighborhood in
which we krig to the central pixel. This way we arrive at a seven by seven filter
that is used as & in (3.11). In principle one can use any size neighborhood,
since the filtering process is computationally very fast even for large filters.

3.4.4 Comparison to other methods

To investigate the performance of our method we compare it to post-processing
methods used for the segmentation of lumbar aortic calcifications.

Disk Morphology

The morphological operations used are an opening and a closing with a disk
of the size of 1 mm. We chose 1 mm in order to remove pixel noise, but not
parts of calcifications.
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Biological Morphology

The morphological operations used are an opening and a closing with struc-
turing elements derived from biological findings. Larsen et al. showed in [71]
that the size of lumbar aortic calcifications is approx. 54 3 mm in height and
24+ 1 mm in width. According to these findings the first structuring element
was designed to remove everything smaller than a standard deviation of a cal-
cification in size. Therefore we used a disk of the size of 1 mm for the opening.
For the closing, we made use of a rectangular structuring element of the size
of one standard deviation of a calcification in width (1 mm) and one standard
deviation of a calcification in height (3 mm).

3.5 Results

The pure pixels classification as well as the pixel classification in correspon-
dence with the three different methods, disk morphology (figure 3.2(a)), bio-
logical morphology (figure 3.2(b)) and DICPC (figure 3.2(c)), were evaluated
for the 18 calcification patches at the kNN threshold (70% to 30% sampling
leads to a threshold of ;—g) In general we can observe that the Kriging produces
results that are much closer to the original pixel classification than the mor-
phological operations. The morphology imprints the shapes of its structuring
elements onto the pixel classification result and produces harsh boundaries.
The Kriging, on the contrary, makes the pixel classification boundaries finer
and even prescinds structures out of the background around the calcifications.
The average values for the Jaccard index, sensitivity and specificity for the 18
patches are given in table 3.1. We can observe that the Kriging Prior increases
the Jaccard index and the sensitivity compared to all other methods while
leaving the specificity unchanged compared to the pure pixel classification.

Furthermore the statistical significance of difference between the means of the
different methods was tested via a paired one-sided Student’s t-test. The t-tests
confirmed that the in figure 3.2 observed differences of the Kriging compared
to the other methods are significant for the Jaccard index, the sensitivity and
the specificity. The results of the tests are shown in figures 3.3(a),3.3(b),3.3(c).

3.6 Discussion and Conclusion

When dealing with high resolution medical images that present long range
interactions one runs into computational problems when trying to use standard
contextual classification techniques like ICM or ICPC. This is why we compare
our new method to other techniques, disk and biological morphology, which
are common post-processing methods for this application.
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(a) The result of the disk mor- (b) The result of the biological  (c) The result of DICPC.
phology. morphology.

Figure 3.2: Results for different morphological operations and DICPC. The morphology im-
prints the shapes of its structuring elements onto the pixel classification result and produces
harsh boundaries. The Kriging, on the contrary, makes the pixel classification boundaries
finer and even prescinds structures out of the background around the calcifications.

Table 3.1: The area overlap results for the population at the kNN threshold (70% to 30%
sampling leads to a threshold of %) We can observe that the Kriging Prior increases the
Jaccard index and the sensitivity compared to all other methods while leaving the specificity
virtually unchanged compared to the pure pixel classification.

Pure Pixel Disk Biological = Kriging
Classification =~ Morphology Morphology  Prior
Jaccard index 40% 35% 34% 41%
Sensitivity 0.60 0.41 0.43 0.62
Specificity 0.96 0.99 0.98 0.95

We observe that our new method, DICPC, improves the sensitivity and the
Jaccard index, while it leaves the specificity almost unchanged. The other
methods, disk morphology and biological morphology, even lower the Jaccard
index and the sensitivity while improving the specificity inconsiderably. The
lowering of the Jaccard index and the sensitivity is caused by the relatively
harsh boundaries that the morphological operations produce in contrast to the
Kriging.

Kriging and therefore DICPC is only the first step in the right direction. A
weakness of DICPC is the linear model that underlies Kriging. It implies only
pairwise interactions. The goal is to develop a contextual method that is as
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fast and computationally feasible as DICPC, but based on joint probabilities
of the class labels. The next chapter introduces such a method based on texton
dictionaries.
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(a) Comparison of the Jaccard index of the different methods

0 Pixel Classification Disk Morphology Simple Morphology DICPC

(b) Comparison of the sensitivity of the different methods
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(c) Comparison of the Specificity of the different methods

Figure 3.3: The graph displays the results for the paired Student’s t-tests between the
different methods for the Jaccard index, sensitivity and specificity. The stars indicate the
outcome of a paired one-tailed Students’ t-test: x < 0.05, xx < 0.01 and **x < 0.001. The in
figure 3.2 observed differences of the Kriging compared to the other methods are significant
for the Jaccard index, the sensitivity and the specificity.
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Chapter 4

A Texton-based Generative Shape Model

and MDL Model Selection for Statistical
Analysis of Archipelago-Like Textures

This chapter is based on the manuscript "Patch-based Generative Shape Model and MDL
Model Selection for Statistical Analysis of Archipelagos" by Melanie Ganz, Mads Nielsen
and Sami Brandt published in the proceedings of the International Workshop on Ma-
chine Learning in Medical Imaging (MLMI) in conjunction with MICCAI 2010 and the
manuscript "A Texton-based Generative Shape Model and MDL Model Selection for Sta-
tistical Analysis of Archipelago-Like Textures" by Melanie Ganz, Mads Nielsen and Sami
Brandt currently submitted for publication.

Abstract In the following we propose a statistical generative shape model for
archipelago-like structures. These kind of structures occur, for instance, in medical images,
where our intention is to model the appearance and shapes of calcifications in X-ray images.
The generative model is constructed by (1) learning a patch-based dictionary for possible
shapes, (2) building up a time-homogeneous Markov model to model the neighborhood
correlations between the patches, and (3) automatic selection of the model complexity
by the minimum description length principle. The generative shape model is proposed
as a probability distribution of a binary image where the model is intended to facilitate
sequential simulation. Our results show that a relatively simple model is able to generate
structures visually similar to the training images. Furthermore, we use the shape model as
a shape prior in the statistical segmentation of calcifications, where the area overlap with
the ground truth shapes improved significantly compared to the case where the prior was
not used.

4.1 Introduction

In the field of computer vision as well as medical imaging one essential prob-
lem is the handling of texture. Textures have a wide-spread nature: they
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>
regular near-regular irregular near-stochastic stochastic

Texture Spectrum

Figure 4.1: The textures from regular to stochastic (Image courtesy of Wen-Chieh Lin [72]).

(a)

Figure 4.2: Tllustrations of archipelago-like structures (a) in nature, (b) in a lumbar aortic
X-ray and (c) in geostatistics.

can be classified as either regular or stochastic and there exists a broad spec-
trum of textures between those two extremes [72] (figure 4.1). Archipelago-like
structures (see figure 4.2) would fall in the category of near-stochastic texture.
In this case, traditional methods for texture as well as shape modeling fail
and other methods, likely based on statistics, are needed. An example of a
recent statistical method in signal, image, and video processing is "sparse rep-
resentations" [73]. Under the assumption that natural images admit a sparse
decomposition, a dictionary is learned from training data and can be used for
any canonical texture problem: synthesis, classification, segmentation, com-
pression or shape from texture.

We have adopted the sparsity method on two problem areas:
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1. Texture synthesis which can be used to solve several practical problems
in computer vision, graphics, and image processing from geostatistical
modeling of water beds |74,75| over handling occlusions in 3D reconstruc-
tion [76] to inpainting problems [77].

2. Texture segmentation which can be used in many biological segmentation
problems that deal with archipelago-like structures, e.g., brain lesions as
observed in MRI [78] or calcified deposits in the arteries observed by X-
ray [52] or CT imaging methods [79].

In this chapter, we will develop a method for texture synthesis and texture
based segmentation and focus on two application areas, medical image seg-
mentation problems and natural image texture synthesis. First, we will define
our statistical objective (section 4.2) before describing our generative shape
model (section 4.3) and how we intend to use it in the case of segmentation
(section 4.4). Then we will present our experiments (section 4.5). On the one
hand, the texture synthesis will be examined on natural image data, e.g. water
and fire. On the other, in the medical domain an example of lumbar aortic X-
ray projections will be used, where our goal is to automatically segment lumbar
aortic calcifications that are related to cardiovascular disease (CVD) [10,30,80].
We will finish with a short discussion of the achieved results (section 4.6) and
conclude with an evaluation of our proposed algorithm (section 4.7).

4.2 Statistical Objective

In our medical imaging application we are interested in a general segmenta-
tion problem, namely segmenting calcifications from the background in the
lower abdominal aorta in X-ray images. We model the aorta through a latent
variable model with the values one and zero for calcifications and background,
respectively, and estimate the posterior distribution by combining the likeli-
hood of the pixel data with a shape prior given by our generative shape model.
The posterior distribution is then given by

p(ulc) o« p(c[u)p(u), (4.1)
where u = (ug,us, ..., ur) is our latent variable vector, a vector of unknown
binary pixel labels of the image matrix I, and ¢ = (¢y, ¢o, ..., ¢r) is the binary,

hard classification vector, which is a function of the image I, corresponding to
the pixel [ =1,2,..., L.

The likelihood function is constructed as follows. In addition to the hard classi-
fication c, the classifier returns pixel classification probabilities 7, = P(¢; = 0)
of the pixel [ being zero. Conversely, 1 — 7, = P(¢; = 1) is the probability of
the pixel [ being one. Let 7, = |¢; — | be the pixel wise residual. Then one
can divide the discrete outcomes for the residual in four possible cases:
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1. If u; = 0 and ~; > 0.5, it follows that ¢;, = 0 and ¢; = u;. Thus, r;, = 0.
2. If u; =0 and v; < 0.5, it follows that ¢, = 1 and ¢ # u;. Thus, r, = 1.
3. Ify; =1and 1 —~; > 0.5, it follows that ¢; = 1 and ¢; = u;. Thus, r; = 0.
4. If uy =0 and 1 —-,; < 0.5, it follows that ¢, = 0 and ¢; # w;. Thus, r, = 1.

Now we assume for the residual the discrete distribution { P(r; = 0), P(r; = 1)} =
{mazx{~;,1 —v},min{y,1 —v}}, where we use v;,l =1,2,..., L, as the pa-
rameters of the residual distribution, that models the noise distribution or the
probabilities for correct and misclassification, respectively. This choice yields
the likelihood function

plefw) =TT (=)™ (= )1 = )t =n)™
=L a—mwm (4.2)

Our goal is to construct the shape prior p(u) that statistically models the
structures of archipelagos shown in figure 4.2.

4.3 Generative Shape Model

To construct a prior model for archipelago-like structures, we first build a
texton dictionary (section 4.3.1) that contains the patch prototypes in which
the structures are represented as building blocks. This dictionary will subse-
quently be used to define texture models based on texton frequencies learnt
from training images. The grammar that models the neighborhood relations
between the textons will be constructed via two different Markov mesh ran-
dom fields (Section 4.3.2). The texton size m x m and number of patches k
in the dictionary will be selected by the minimum description length (MDL)
principle (section 4.3.4), which completes our prior model for archipelago-like
textures.

4.3.1 Texton Dictionary

To construct the texton codebook, we extract n training textons by sliding a
window of the size m X m over each training image. Some example training
images are shown in figure 4.3. Let the matrix X contain the n training textons
each stacked into a column vector. The textons are to be summarized by the
m? x k texton dictionary D that contains the binary patch prototypes and
that minimizes

E=|X - DAJZ,. (43)
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(a) (b)

Figure 4.3: (a) Some training images of lumbar aortic calcifications. (b) An example of a
dictionary retrieved from training on all training images for a model with the patch size m
— 2 and the cluster number k£ — 4.

1: Initialize the k cluster centers randomly

2: while Cluster centers change do

3: Find the nearest center for each data point via the Hamming distance
Update the cluster centers by calculating the mean of all data points belonging to
a cluster and projecting it back to the binary manifold*

4: end while

Algorithm 1: Binary K-Means

where, for a fixed j, a;; = 1 for only one ¢ = 4', while a;; = 0 when ¢ # 7' [81]
and |||/, indicates the Frobenius norm. A has the size kxn and thus represents
the sparse representation of X in terms of D. In general, we should minimize
(4.3) over both D and A, but because it is a combinatory discrete optimization
problem, we are satisfied by approximating the solution. We thus divide the
problem into two parts:

1. We find the texton dictionary D via clustering the training textons by
utilizing a binary version of the K-means [82] algorithm (Algorithm 1),
where the Euclidean distance used in our earlier work [83] has been re-
placed by the Hamming distance.

2. We find the optimal A, given the dictionary D, by picking up the proto-
type for each 7 that minimizes 4.3.

Clearly, the dictionary is not globally optimal, but it gives us a fair model
class with varying patch sizes m x m and number of clusters k. The model
selection, i.e., determining m and k will be described in section 4.3.4.
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Figure 4.4: The causal neighborhood N5, for the patch v; which is a subset of the image
represented by the latent variable vector u (a) in the 2-neighborhood and (b) 4-neighborhood
Markov mesh random field model.

4.3.2 Texton Grammar Models

Our texton dictionary does not yet describe the archipelago-like structures
well, even though we could easily generate a random image that has a similar
texton histogram by trivially counting the occurrence of each patch in the
training images and generating a random image by drawing random patches
from the empirical patch distribution. The problem is that the neighboring
patches are not independent, i.e., the neighbor patches significantly constrain
the outcome of a patch.

To take these neighbor correlations into account we develop two different causal
contextual texton grammar models. The models are called contextual because
they are based on spatial interaction and take the neighborhood of a pixel
into account. Furthermore, a contextual model can be classified as either
causal or non causal depending on the nature of the neighborhood. In causal
models, the concept of the past of a pixel is introduced. In this case the past
neighborhood of a pixel refers to a neighborhood that has already been fixed
and only that neighborhood influences the label of the current pixel. Causal
Markov random fields (MRF') are generally called Markov mesh random fields
(MMRF) or simply Markov meshes. MMRF models are advantageous, because
when designing a prior it needs to be taken in consideration that sampling from
it should be feasible. Furthermore, different visiting orders of the patches in
the image can be considered. In the following, we will for clarity use a specific
simple visiting order instead of a general one, but we will generalize it in section
4.3.3.

In the two MMREF models we will introduce below, the probability distribution

4This is equivalent to finding the cluster centers in the squared Hamming distance.
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of our latent variable vector u is dependent on the patches vi,vo,..., vy we
divide the image into

p(u):p(VbVQ?"'aVN)' (44)
The probability distribution of the patches becomes

p(vi, Ve, ..., vy) = p(v1)p(va|vy) ... p(VN|V1, Vo, ..., VN_1)

Markov

2 [Ipwdne ) (45

where A, denotes the causal neighborhood of v;, i =1,2,..., N and N is the
total number of distinct patches of size m x m in the image. This construction
allows sequential simulation of the patch distribution by first drawing the patch

vy from p(vy) at time point 1, then vy from p(vy|vy) at time point 2, and so on.
The first model we consider is a 2-neighborhood MMRF. By using a 2-neighborhood
MMREF we assume that the current patch probability depends only on the two
neighbors that have previously been processed (see figure 4.4(a)). Therefore

the causal neighborhood used in (4.5) has the form

No(v) = N2(¥) (1 {v1, Ve, o V) (4.6)

The second model is a 4-neighborhood MMRF model where the current patch
probability depends on those elements of a 4-neighborhood that have been
processed. The neighborhood can be seen in figure 4.4(b). This model is
chosen for better spatial symmetry when compared to the 2-neighborhood
model. Accordingly Ny, (v) changes to

N, (v) = J\/f,li(v) N{vi, Vo, ..., VN_1}. (4.7)

The probability distributions introduced above can be estimated from the 3-
or 5-dimensional histogram H of patch labels and their neighborhoods N‘i or

4
N

4.3.3 Visiting Order

To complete the description of our shape prior, we will in the following intro-

duce the indexing iy, o, . . ., 2y that defines a patch visiting order. Let us define
the indexing for the original patches as shown in figure 4.5(a). The patches
can be visited in various orders, such as iy = 1,10 = 2,i3 = 3,...,iy = N, as

above, to which we will refer as simple visiting order, or at random, such as
iy = 25,09 =5,i3=9,...,ix = 73, see figure 4.5(b).

Since we have chosen to sample sequentially from our prior, instead of using
global optimization techniques like e.g. graphcut [46], it is instructive to show
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(a) (b)

Figure 4.5: Different patch visiting orders of the latent variable vector u: (a) The original
simple patch order. (b) An example of a different causal visiting order - a random visiting
order.

how the visiting order affects the prior distribution. Sequential sampling is
based on the factorization

p(u) =p(vi,va, ..., VN) = D(Viy, Vigy - -+, Viy)
=p(vi,) - P(Vip[Viy) - - D(Vin | Viys Vigs -+ Viy_y)
= p(vi) - p(Vis Ne,, (V) - p(vin [Ny, (9)), (4.8)
where the visiting order iy, 45, ...,y affects for which patches the approxima-

tion, following from the Markov assumption, is made.

We experimented with two visiting orders. In the case of the 2-neighborhood
MMREF we choose to use the simple visiting order, whereas in the case of the
4-neighborhood MMRF we apply a random visiting order. In summary, the
resulting priors render as

p(u) = p(vi) - p(valN, (V) . p (VN [Ny (V) (4.9)
where in the 2-neighborhood case
N, (v) = N2 (v) N {vi,va,...vy_1} (4.10)
and in the 4-neighborhood case
Ne, (V) = NS (v) N {vi, va, ... viv_a )} (4.11)

4.3.4 Model Selection

To use our proposed model we need to find the optimal cluster number k& and
optimal patch size m and estimate the transition probabilities for our Markov
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model. We decided to use MDL [84] for the model selection due to its tangible
definition of the model selection problem as the best model is defined to have
the minimal lossless transmission code length. MDL exactly fits to our purpose,
since we are dealing with a binary problem for which it is easy to construct a
compression model. Moreover, MDL provides a natural definition for noise, as
noise is considered everything that can not be compressed by the model [85].
Let us first derive the code length for our model using a two-part coding model.
The total code length of our model in bits is

L = Lpu + Lyes, (4.12)

where L, = Lp + Ly is the code length of the model parameters and L, the
code length of the residual. We choose to code D simply as a binary matrix,
so one needs m? x k bits to encode it, hence

Lp = m? x k + [logy(max k)] + [log, (maxm)], (4.13)

J

k m

where the latter two terms, code lengths for £ and m, are constant and can thus
be dropped. The content of A can be encoded by using the time-homogeneous
Markov model as soon as the 3- or 5-dimensional histogram H of patch labels
and their causal neighborhoods is available. The histogram can be encoded
either, if sparse, by storing its N,,, non-zero bin indices, and the counts in such
bins; or otherwise by storing the counts in all the bins. In this way, assuming
an ideal coding method,

L = 10 (N - [10g5 ()17 + [Toga(Non)1, K - [oga()]) — 3 o),
N————

-~

H

data

(4.14)

where the conditional probability pj, = p(vi,|Ny, (v)) of the patch & is com-
puted from the histogram H.
Finally, let us consider the residual encoding, where the residual of our model
is ¢ = X — DA and each pixel can obtain only values {—1,0,1}. We can
thus code € by only transmitting the indices of first the negative and then
the positive entries of the residual. In this way the code length for € in bits
becomes

Lres =dq [10g2(NpiX)—| + 10g2 [q—|> (415)
——
q

where ¢ is the number of non-zero residuals and NV is the number of pixels in
the image. The latter term is bounded by log, [ Npix| and can thus be dropped.
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4.4 Sampling from the Posterior with the Shape Prior

Let us consider the simulation of the posterior (4.1) to obtain realizations for
the latent variable u as

p(u|c) Ep(vi1>vi2a"->vi1\r|c)' (416)

If the likelihood function is separable, we may use the same causal construc-
tion with which the prior was designed. Hence, the posterior at time point 1
becomes

p(vilvvizv SR Vin‘c) = p(vil |c)p(vi2‘vi17 C) e 'p(vin|vilvvi27 sy Vi C),
(4.17)
where
p(ViN|Vi17Vi27 s 7ViN717 ) X p(c‘viﬂvigu .. ViNfl)p(ViUV?é’ L 7ViN,1>

OCH% (L =) "p(Viys Vigs -+, Vi, ) (4.18)

Here [ denotes the element of the latent variable vector u and v, and 1 — v,
are again the probabilities of the pixel [ having the label 0 or 1.

We thus assume that the posterior is similarly sequentially simulated by first
drawing the patch v;, from p(v;,|c) at time point 1, then v;, from p(v;,|v1,c)
at time point 2, etc.

The same sampling strategy will be used for drawing samples from the shape
prior in section 4.5.

4.5 Experiments

4.5.1 Modeling different Shape Distributions
Model Selection

In our experiments for the lumbar aortic x-ray data, we used a training set of 18
manually annotated calcifications (figure 4.3(a)). The manual annotations are
binary, where the value 1 equals a calcified pixel, while the value 0 corresponds
to a background pixel. We parametrized the model class with the set of all
pairs of patch sizes and cluster numbers {m, k}, m € {2,4,6,8,10} and k €
{2,4,8,16,32}, over which we optimized the compression code length for the
2- as well as the 4-neighborhood. The results as per-pixel-normalized code
lengths are shown in table 4.1(a) and 4.1(b). MDL selected the models m = 2,
k =4 and m = 4, k = 2 for the 2- and the 4-neighborhood cases, respectively.
The learnt dictionary of patches for the model m = 2 and k£ = 4 is displayed
in figure 4.3(b).
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Table 4.1: The code length per pixel in bits. The color spectrum red to blue indicates the size of the code
length. One can see that MDL most of the time selects small patch sizes and a small number of clusters.

(a) Calcification, 2-neighborhood. (b) Calcification, 4-neighborhood.
m\k 2 4 8 16 32 m\k 2 4 8 16 32
2(0.12 0.09 0.09 19.23 n.a. 2(0.51 0.93 3.45 44.29 n.a.
4 0.17 0.15 0.78 4| 0.44 1.17 0.48 1.25 2.16
6 | 0.36 1.02 6| 0.67 0.75 1.59
81 0.50 0.33 0.31 0.98 81 0.67 0.52 0.51 1.33
10 | 0.61 0.48 0.32 0.35 1.10 10 | 0.72 0.67 0.48 0.54 1.29
(c) Water, 2-neighborhood. (d) Water, 4-neighborhood.
m\k 2 4 6 8 12 16 m\k 2 4 6 8 12 16
2(1.82 0.28 0.25 0.24 18.29 18.49 2| 11.38 7.85 8.05 12.99 31.16 31.35
4| 3.15 1.83 1.37 4 4.10 4.18
6|3.85 2.21 1.98 1.92 1.59 1.60 6 4.75 2.99 2.89
8| 4.36 3.38 2.83 2.30 2.16 1.99 8 4.70 2.85 2.74
10 | 4.70 3.54 2.98 2.87 2.52 2.49 10 4.94 4.00
(e) Geostatistical Channels, 2-neighborhood. (f) Geostatistical Channels, 4-neighborhood.
m\k 2 4 6 8 12 16 m\k 2 4 6 8 12 16
2 0.77 0.83 16.87 19.57 2(12.32 12.68 8.30 8.58 29.64 32.90
4] 2.35 2.72 5.80 4 4.49 4.45 4.92 5.21 8.11
6| 275 245 2.22 2.31 3.19 5.06 6 3.37 4.61 6.39
8|3.44 2.69 2.64 2.83 3.35 4.99 8 3.28 3.20 3.31 4.48 5.77
10 | 3.87 3.43 3.14 3.21 3.85 5.34 10 4.16 4.29 5.79
(g) Fire, 2-neighborhood. (h) Fire, 4-neighborhood.
m\k 2 4 6 8 12 16 m\k 2 4 6 8 12 16
2 0.98 0.97 0.82 0.71 17.96 2 5.66 8.20 4.67 30.28 30.61
4| 2.09 41 2.61 4.58 4.04 4.29
6258 224 208 2.01 2.05 2.27 6
8282 2.52 236 2.26 2.27 2.43 8 2.93 2.83 2.87
10 | 3.07 2.78 2.58 2.52 2.52 2.66 10 2.92 2.89

The corresponding experiments were conducted for binary images of natural
textures, such as water, geostatistical channel systems and fire (figure 4.7(a)-
(c)) with k € {2,4,6,8,12,16}; the results are displayed in table 4.1(c)-(h). In
the case of water, MDL selected the model m = 2, k = 8 and m = 8, k = 16
for the 2- and the 4-neighborhood, respectively. For the image of geostatistical
channel systems the MDL optimum was achieved at m = 2, k =4 and m = 8, k
= 6 for the 2- and the 4-neighborhood. Finally, MDL yields the minimal code
length for m = 2, k = 12 and m = 4, k = 2 for the 2- and the 4-neighborhood,
respectively, for the natural image of fire. In general, we can observe that MDL
most of the time selects small patch sizes and a small number of clusters.
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(a) Calcification, 2- (b) Calcification, 4-
neighborhood neighborhood

Figure 4.6: Texture synthesis results for calcification data for the 2- and 4-neighborhood
MMRF model. In the case of the calcifications, the 2-neighborhood MMRF seems to produce
a more adequate simulation than the 4-neighborhood MMRF model.

Texture Synthesis

One way of testing a generative shape model is to synthesize textures from
the learnt model. If the prior model is good, simulated textures should resem-
ble real calcification textures. We simulated the prior with the MDL selected
parameters as explained in Section 4.3.2; using textures from real images (c.f.
figure 4.2(b) and 4.7(a)-(c)). Figure 4.6 illustrates the results for the calcifica-
tion shape distribution, whereas the synthesis results for water, geostatistical
channel systems and fire are shown in figure 4.7(d)-(i). It can be seen that the
shapes are qualitatively similar to original shapes. It can also be seen that the
2-neighbor model with the simple visiting order produced superior results to
the 4-neighborhood model with the random visiting order.

4.5.2 Statistical Shape Segmentation

To complete the experiments, we apply the generative shape model as a shape
prior on a test set of 38 images displaying lumbar aortic X-ray data. In 30
of the 38 images radiologists have identified at least one calcification in the
lumbar aorta while 8 images were judged to have no calcifications. We use
the shape prior as described in Section 4.4 with a 2-neighborhood model and
the simple visiting order together with the likelihood function. The pixel-
wise likelihood was constructed from the pixel classification probabilities, as
explained in section 4.2, where the initial segmentation is performed by a
Random Forests classifier [37] with a set of 7 Gaussian derivative features,
trained by manual annotations of calcified lesions.

To measure the performance of our segmentation, we draw S = 20 samples
u™, n = 1,2...,5 from the posterior distribution p(u|c) and estimate the
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(d) Water, 2-neighborhood  (e) Geostatistical channels, 2- (f) Fire, 2-neighborhood
neighborhood

(g) Water, 4-neighborhood  (h) Geostatistical channels, 4- (i) Fire, 4-neighborhood
neighborhood

Figure 4.7: Texture synthesis results. In (a)-(c) the original natural image data is shown,
whereas the synthesis results for the 2-neighborhood MMRRF model can be seen in (d) - (f)

and for the 4-neighborhood MMRF model in (g)-(i). In general the 2-neighborhood MMRF
produces better results than the 4-neighborhood MMRF model.

expected value of a chosen scoring function feya(U; Wany), where u,,, denotes

49



Chapter 4. A Texton-based Generative Shape Model and MDL Model Selection for
Statistical Analysis of Archipelago-Like Textures

the ground truth annotation,
E{feval(u; Uann |C)} = / feval(u; uann)p(u|c)du
1 n
~ § Z foval(u( )7 uann)

= foval(u; uann)- (419)

We compare the resulting mean score with the value of feya(Uref; Uann ), where
u,.r is the classification probability map thresholded at 0.5. As evaluation
function fova(W; Wan,) we use the Jaccard Index [68]

o |[u N Iann|

— 4.20
TASEANE (4.20)

feval (u, uann)

where I, and I,,, are u and u,,, in image matrix form, respectively. Thus
the Jaccard index measures the area overlap between the binary segmenta-
tion results and the manual annotation, which we assume to be our ground
truth. In the case were no calcifications were present in the manual aorta the
area overlap is defined to be 0. The numerical results for fey.(u; wa,,) and
feval (Urer; Wann ) are given in table 4.2. It can be seen that our method improves
the classification results on average by 50% for all 38 as well as for only the 30
images with calcifications present. The improvement vs. simple thresholding is
statistically significant according to a pairwise two-sided t-test with the value
of p = 0.000001 as well as p = 0.0000001 in the two cases. Visual comparison
of the manual annotation compared to our result is displayed in figure 4.8 for
one of the subjects with the most improvement (from 0.143 to 0.337) and in
figure 4.9 for one of the subjects with the least improvement (from 0.407 to
0.411). In figure 4.10 a detailed look at a segmentation with and without our
prior is given.

4.6 Discussion

In our experiments, using MDL proved itself to be successful for choosing
the optimal patch size and number of clusters. MDL chose small patch sizes
supporting the limited amount of training data. Furthermore, it not only pro-
duced visually good results, but even though a simple local model was chosen
the texture synthesis was able to produce global structures. In the case of
more training data and a more complicated MMRF model with many patch
prototypes, it is possible for MDL to select a model with a larger patch size
m and cluster number k. In this case it might also be useful to use a more
sophisticated coding method, e.g., universal coding [86].
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Table 4.2: Evaluation of the segmentation results using the Jaccard index against the manual
annotation. The Jaccard index improves by 50% after applying the proposed shape prior
on a test set of 38 and 30 images displaying lumbar aortic X-ray data, respectively.

For all 38 test images | Mean + Standard Deviation

feval(ureﬁ U—ann) 0.10 £ 0.11

feval(u; uann) 0.15 £ 0.14

For 30 test images with calcifications | Mean + Standard Deviation

fcval(urcf; uann) 0.13 £ 0.11

fcval(u; uann) 0.19 +£ 0.13

An alternative to MDL would have been to use cross validation. But because
we deal with a very limited amount of training data, cross validation is not an
optimal choice for us since in order to derive parameters cross validation di-
vides the data further in a training, validation and testing subset. Conversely,
MDL can take all training data into account at the same time when trying to
optimize parameters.

Another observation was the remarkable difference between the 2- and the
4-neighborhood synthesis results. The 2-neighborhood produced much more
realistic structures. Reasons for this could be that the simple visiting order
used with the 2-neighborhood model supports the Markov constraint, while the
4-neighborhood with the random visiting order lays down global constraints
that are not in accordance with the Markov assumption. In practice, fixing two
distant patches constrains all selections of allowed patches in between the two
patches, while the Markov assumption constrains only neighboring patches.
Additionally, the 2-neighborhood model is also in better accordance with the
limited amount of training data and therefore outperforms the 4-neighborhood
model.

In general, our model performs well in the case of texture synthesis in com-
parison to earlier models based on patch MMREF models for near stochastic
texture as for example described in [87]. But a thorough evaluation of our
algorithm in comparison to other near stochastic texture synthesis algorithms
as done in |72] for near regular texture has still to be made.

The segmentation experiments show that our prior improves the Jaccard index
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() Foval(W; Uann) = 0.143

(b) Foval (W Uann) = 0.337

Figure 4.8: One of the subjects where the spatial prior improves the segmentation the most
(from 0.143 to 0.337). In each image on the left the manual annotation of the vertebrae and
the aorta outline (white) as well as the calcifications (red), in the middle the automatically
retrieved vertebrae and aorta outline (green) as well as a probability map of the calcifications
(yellow to red) and on the right the overlap of the two where yellow indicates true positives,
blue indicates false positives and red indicates false negatives are shown.

by 50% (see table 4.2) and that the improvement is statistically significant.
This is the case for all 38 images, of which 8 images have no calcifications
present and therefore the Jaccard index is zero, as well as for the 30 images
that all have calcifications present.

But Table 4.2 also indicates that the mean of the Jaccard index is low and its
standard deviation high.

The main reason that the mean of the Jaccard index on our data set is low is
that the fully automatic classification of calcifications, where first the verte-
brae need to be detected and then the aorta region of interest defined before
segmenting calcifications, is a very hard task. Figures 4.8 and 4.9 display two
results from our dataset that exemplify how difficult the problem is. Further-
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() Foval(W; Uann) = 0.407

(b) Foval(W; Uann) = 0.411

Figure 4.9: One of the subjects where the spatial prior improves the segmentation the least
(from 0.407 to 0.411). In each image on the left the manual annotation of the vertebrae and
the aorta outline (white) as well as the calcifications (red), in the middle the automatically
retrieved vertebrae and aorta outline (green) as well as a probability map of the calcifications
(yellow to red) and on the right the overlap of the two where yellow indicates true positives,
blue indicates false positives and red indicates false negatives are shown.

more, two experts only have an Jaccard index of approx. 0.50 when scoring
the same image underlining the fact that the segmentation of calcifications is
a hard task. Finally, the Jaccard index is also low, because it is a very harsh
measure to use in our problem. Our Jaccard index values can not be compared
to values achieved in, e.g., brain imaging where two large areas are compared
to each other. Alternatively, the number of correctly classified pixels or Co-
hen’s x [88| could be used to measure the inter-rater agreement for categorical
items such as pixels. However, these measures will be dominated by the very
large class of non-calcified pixels, and in the case of Cohen’s x individual pixel
scorings cannot be considered statistically independent.

Similar reasons apply to the question why the variance of our segmentation
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(a)

Figure 4.10: Calcification segmentation result: (a) manual annotation (ground truth), (b)
the corresponding pixel-wise classification probabilities, (¢) conditional mean @ = % S ul®
of the posterior. Compare especially (b) and (c) to see how much background noise the
proposed patch-based prior removes.

results is so high. Not only is the Jaccard index as described above a harsh
measure for our problem, but on images with only a few or very small calcifi-
cations even a small number of false positives or false negatives leads to a large
difference in the Jaccard index. Hence, the Jaccard index is in our application
very sensitive to small changes and leads to a large standard deviation of our
results. Another reason for the large standard deviation is the large variation
in our images. A large biological variation over different subjects as well as
large differences in image quality, make the preconditioning steps - finding
the vertebrae and defining the aorta region of interest - more challenging and
conversely lead to variable segmentation results and hence variable Jaccard
indexes.

It is difficult to compare our work to earlier approaches for segmentation of
calcifications in X-rays as was done in |89] and [90].

On the one hand, the results of [89] can not be directly compared with our
results, since the preconditions are different. While in [89] the aorta is derived
based on manually given landmark points at the corners and midpoints of the
first four lumbar vertebrae, in our setup the vertebrae are found automatically
without employing manual annotations. Since our experiments have shown
that small errors in the vertebrae segmentation influence the calcification seg-
mentation results greatly, we can not compare our results to the results given
in [89]. On the other hand, the Jaccard index for the classification of calcifi-
cations is not given in [89] and the number of correctly classified pixels and
Cohen’s x that are given are dominated by a large background class, which as
mentioned skews the values of the given measures.

Comparison of the calcification segmentation results to [90] is also not straight
forward, since it is also not a fully automatic approach, but assumes that the
corner points of the vertebrae have been indicated and hence also differs in the
preconditions from our setup. Furthermore, the Jaccard index is given, but
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not for complete images but for 48 areas that were selected from 10 X-rays.
This can not be directly compared to the performance on full images where all
areas are taken into account.

4.7 Conclusion

In this paper, we have proposed a generative model and MDL model selection
for structures resembling archipelagos. The model is based on a patch-based
description of the shapes combined with a Markov Mesh Random Field model
that takes patch correlations into account. Our selection for the dictionary, the
binary K-means-clustered texton prototypes, seems reasonable even though it
is not strictly optimal in the Frobenius norm. However, searching for the
optimal codebook is itself a combinatory optimization problem and less im-
portant in practice. As far as the MMRF model is concerned, our synthesis
results showed that a simple local model based on only a few training exam-
ples can capture complex global structures and generate visually sound results.
The visiting order was shown to influence the results greatly, whereas we con-
cluded that a visiting order which is in accordance with the Markov assumption
should be used. Our segmentation results, based on the proposed prior shape
distribution, were promising and improved the area overlap by 50%. This in-
dicates that our shape model can be successfully used as a prior distribution in
statistical segmentation of calcifications on X-ray image data. An interesting
direction in the future could be to introduce an appropriate multi-resolution
extension of the generative model, which could take even longer interactions
between patches into account.
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Chapter 5

Application of Renormalization Group
Theory to Multi-Scale Image
Segmentation Problems

This chapter is based on work done under supervision of Pushmeet Kohli during the stays
abroad at Microsoft Research Cambridge, UK and is currently in preparation.

Abstract We propose an approach for image segmentation that is based on deduct-
ing energy potentials from images in a multi-scale fashion with Renormalization Group
Transformations (RGT) in order to make exact segmentations of large images possible. By
combining RGT with state of the art segmentation techniques we present a novel approach
to multi-scale image segmentation algorithms. Our experiments show that RGT leads to
improved segmentations compared to other common multi-scale image segmentation tech-
niques.

5.1 Introduction

In the last years image processing applications such as segmentation or restora-
tion have become increasingly important. While segmentation problems used
to be solved by approximate techniques such as simulated annealing [48] or
iterated conditional modes [91], today they are mostly solved via graphical
approaches [46| or inference algorithms, e.g. belief propagation |92|. As the
resolution of the images being processed increases |93], the need for fast and
efficient multi-scale energy minimization techniques arises. We propose an ap-
proach for deducting energy potentials from images in a multi-scale fashion
based on Renormalization Group Transformations (RGT) in order to make
exact segmentations of large images possible.
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Related Work There are many multi-scale segmentations methods available
and the related work is nicely reviewed in [94]. Note that most multi-scale
approaches assume that the energy functions of the image that is being seg-
mented is of the same form at different scales, while in fact one should try to
evolve the energy function correctly over different scales. We will try to do
that by employing RGT.

RGT is a method from statistical physics and most of the work related to it
has been done in statistical or solid state physics. RGT has been used to ex-
plain phase transitions in physical systems [95|, e.g. magnets or fluids which
are alike in having fluctuations in structure over a vast range of sizes, but has
also been applied in quantum electrodynamics [96]. Two of the most promi-
nent protagonists of RGT in solid state physics were Leo P. Kadanoff [95] and
Kenneth G. Wilson [41], who applied RGT to the Kondo effect [97].

The basis of especially Kadanoft’s and Wilson’s RGT calculations of phase
transitions were 2D Ising models [98], which are a simpler form of a Markov
Random field (MRF) [99]. RGT can approximate the analytical solution of a
two dimensional (2D) Ising model and describe phase transitions of the mate-
rial that is modeled. This suggests itself to be applied on images, which can
be interpreted as 2D Ising models.

In computer vision there have been few papers that have tried to apply RGT
on images. The first to transfer RGT from solid state physics to images was
Basilis Gidas [42,100]. Further work was done later by Petrou et al. [101-103].
When Gidas and Petrou presented the renormalization group approach their
calculations were computationally hardly tractable, because of the loss of lo-
cality of the model at the coarser stages. By combining RGT with state of
the art segmentation techniques we present in the following a computationally
efficient and novel approach to multi-scale image segmentation problems.

In section 5.2 we introduce our notation and the energy function that we choose
to transform, while in section 5.3 we introduce the reader to the general con-
cept of multi-scale image segmentation. Then we show how to transform the
energy function with the help of RGT and give details of RGT for a specific
choice of mapping and grid in section 5.4. Finally, section 5.5 covers the exper-
iments and section 5.6 offers a discussion and conclusions and describes future
work.

5.2 Notation

In this section, we will use a random field model to formulate the image segmen-
tation problem. The random field X has a set of n nodes V = {1,2,3,...,n} as
well as a neighborhood system A that connects pairs of nodes. Each random
variable z; € X is associated with one lattice point ¢« € V and takes one value
from the label set £ = {l1,l5,...,lx}. All possible label sets, x, form the set
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High
" " Resolution
v v 4
Resolution

Figure 5.1: A description of our problem: We want to segment e.g. a gigapixel image at high
resolution. We could do this following the high resolution path left to right, but often this

is not feasible. Therefore in this section we exploit several options to employ low resolution
versions of the image or the energy to segment the high resolution image.

of labelings L = L.
Transferred to image segmentation, z; represents the assigned label of the 7th
image pixel, while V corresponds to the set of all image pixels and N to the
set of all edges in a given neighborhood. An optimal image segmentation,
x*, based on the data, D, is then given by the maximum-a-posteriori (MAP)
estimate

x* = argmax P(x|D) = arg min F(x), (5.1)

x€L xeL

where the energy function £ : £ — R can in principle be defined freely. But
for most computer vision problems and in our case, the energy function is of
the form of an Ising model |98|,

EB(x) = Z¢z‘ + Z Gij, (5.2)

eV i,jeEN

where the label set consists of only two labels, foreground (fg) and background
(bg). In our application the unary potentials ¢; are derived from the color of
the pixels and appearance models that are constructed from user marked brush
strokes as shown in [104,105], while the pairwise interaction terms ¢;; are con-
structed from edge features g(, j) based on the color difference of neighboring
pixels and defined as ¢;; = g(i, j) for i # j and 0 otherwise.

Further we define two mappings: A mapping M : V — V' that maps the pixels
of the original image I to the set of pixels V' in the low resolution version I'
of the image and a mapping K : L — L' that connects the space of labelings
L of V to the space of labelings L' of V'

5.3 Multi-scale Image Segmentation

The principle behind multi-scale image segmentation can be seen in figure 5.1.
One starts out with a high resolution image I and wants to end up with a high
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resolution segmentation x*. For images of reasonable size one can do that
simply via a high resolution energy £ that is minimized according to eq. 5.1,
but for large images this gives rise to a large scale optimization problem which
is computationally extremely expensive or even unfeasible to solve. Therefore
it is better to first solve the problem at low resolution and to obtain a coarse
labeling of the high resolution problem. The low resolution problem can be
constructed in a multitude of ways. Two of the most common are:

Low Resolution Energy Function from a Low Resolution Image Tra-
ditional multi-scale methods as [106,107| define the low resolution energy func-
tion E' by using a low resolution version I' of the image I. The coarse energy
function E' is hereby simply of the same form as (5.2), but based on V' instead
of V.

Low Resolution Energy Function from the Original Energy Function
Another approach is to define the coarse grid energy E' directly from the po-
tentials of the original energy function E. This is done by summing over the
unary variables that comprise the coarse node V' and likewise over the pairwise
potentials defined between the nodes V that V' contains.

The coarse energy function can then be minimized to extract a partial label-
ing of the original image /, which can in turn be refined to a solution for the
whole image I by another optimization on a small subset of pixels only. The
partial labeling based on the coarse energy E' can be computed via different
approaches, either via a Boundary Band Approach [106] or via a min-marginal
approach [108]. We will in the following use a hybrid approach made up of a
combination of the two that was also introduced and detailed in [108].
Finally, the coarse labeling is projected back to the high resolution problem
and a solution for the original image obtained.

5.4 Using RGT for Multi-scale Image Segmentation

In general, RGT deals with energy functions of physical systems. It can be
used as described in [41] and [42] to evolve energy functions between different
representational scales, e.g. a coarse and a fine scale of a physical system. In
the following we introduce a new way of defining the low resolution energy
function E' on the basis of the original energy function.’

5.4.1 Energy Function Model

The energy function F of a two spin state Ising Model is in general given as in
(5.2). For simplicity we base the following derivation on a simple spin model

5The approach presented is due to [109]. Other approaches are explained in [110], e.g. the method of
neglect and the method of potential moving [111].
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(¢; = hs; and ¢;; = ks;s; ) leading to
E:thmLstisj, (5.3)
i (i5)

where s; is the spin state (+1 or —1) of the spin located at the site i and h
and k are the unary and pairwise interaction factors. Furthermore we define
the block spin \S; to be made up of several spins s;, s;,etc. Then the mapping
M : s — S maps the spins s at high resolution to the block spins S at low
resolution, where the mapping K : L — L! connects the two labeling spaces,
L and L/, at high and low resolution.

Statistically, the probability of the labelings L! of the coarse energy function
E' can be described by the sum of the probabilities of the original labelings L,

e P = Z e Pl (5.4)

acL

where a is a labeling € L.
We can derive the functional form of E' via linear operator perturbation theory
[112|, which divides our coarse energy in a linear term, Fy, and a higher order
term, V/,

E'=Ey+V. (5.5)

The linear term of the coarse energy function should look as similar as pos-
sible to the interaction term of our original energy function and describe the
interaction between spins inside one block, S7, so we set it to

E() = k’z Z 5iSj- (56)
I ijel
The higher order term, V, is then outlining the interaction between spins in

different blocks,
V = ]{JZ Z 5iSj- (57)

I#J i€l je

Now we can change equation 5.4 to

e_El _ Z e—Eo(a) . e—V(a) (58)
a€L
— (V) 2tk 59)

where
ZGGL e_EO(a) . e_v(a)

-V -
<€ >0 - ZaEL e—Eo(a) (5.10)
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Figure 5.2: The graph shows the triangulation used by Kadanoff.

is the expectation value of e™". In the expression above

Zo(k)™ =) e "o@ (5.11)

acL

describes the partition function for m blocks of spins s; that are mapped to
St. Zy is a normalizing constant.

Now all we need is an expression for <€_V>0. Via an expansion in orders of V'
and with the formula log(z) = (z — 1) — 2(z — 1)? + O(2®) [113] we get

(€)= e~ Viota((V2),=()5)+o(v?) (5.12)
Our final expression for the coarse energy function is then

B = —m log(Zo(k)) + (V) — % (V) — (Vi) +O(V¥).  (5.13)

5.4.2 Kadanoff’s Block Spin Method

The mapping M used to downsample the image can be chosen in a multitude
of ways. It can be an interpolation based down sampling algorithm like [114],
a majority vote mapping or even a mapping where one specific spin in each
block determines the value of the larger block S;. An optimal representation
is one of the key points and choices in the application of RGT.

Furthermore, one can choose many different type of grids, that then determine
how the sums over the spins ¢ and j in the energy function are calculated.
Obvious choices here are a standard pixel grid or a triangular lattice. In the
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following let us present a more detailed calculation based on a majority vote
mapping and a triangular lattice.

We assume a block spin configuration on a triangular lattice by Kadanoff [115]
as shown in figure 5.2, where block spins are defined by a mapping M that
groups three spins together and computes the block spin S; via a majority
rule:

Sy = sign (S} + 57+ 57), (5.14)

where S} is the jth spin in the Ith block. Then we define a set of spins that

make up Sy R
or={S},57.5}}. (5.15)

For a set of 3 spins with 2 states each, the labeling space L is made up of 2% = 8
possible configurations. The block spin S7 has only two possible labelings, but
4 different labelings of the original spins are mapped to each coarse labeling
Ll
Lh=4+1 L£={{+1,+1,+1},{=1,+1,+1}, {+1, =1, +1} , {+1, +1, —-1}}
(5.16)
£h=-1 L£={{-1,-1,-1},{+1, -1, -1}, {-1,+1, -1}, {-1, -1, +1}}
reflecting the original 8 configurations.
We can apply this choice of mapping and grid to our coarse energy function
given in (5.13). To do this we need to find the expression for (V'),. Since
according to (5.7) V couples nearest neighbor blocks, we can determine it

from figure 5.2 to be
Viy = k(S3)(S] + 5%) (5.17)

and therefore
(Vis)o = 2k (S157),
=2k (51),(S7)y (5.18)

since the blocks comprising S; and S; are independent of each other. One can
evaluate the average for all configurations given in (5.16) and one gets

(Vis)o = 2k (k)*> S8, (5.19)

I£J

where ¢(k) = % and the coarse energy pairwise coupling k' = 2k¢(k)?.

So the coarse energy function is to first order given by

E'(Sp) = —m log(Zo) + K'Y S1S;+O(V?) (5.20)
I#£J
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The same expansion can be conducted for one order higher, giving

1
E'(Sp) = —m log(Zy) + K Y S1S) — ik;" > 85783, (5.21)
I£J I4J
where
" 2 2 6_3k _ ek 4

is the modified coupling parameter for the higher order interactions at the
coarser scale.

The unary term in E can be derived in the same way by expansion and is at
coarse resolution changed to

E'=hY s, (5.23)
I

where h' = 3¢(k).

5.5 Experiments and Results

5.5.1 Segmentation Quality

In section 5.4 we have derived the form of an RGT low resolution energy.
In this section we examine the achieved segmentation quality of the different
methods for constructing the smaller energy minimization problem. Therefore,
we compare segmentation results of the low resolution energy function derived
via RGT (Sgar) with a) a low resolution energy function derived from a low
resolution image (Sprr) and b) a low resolution energy function calculated
from the high resolution energy function (Sprg). The downsampling function
used in the three methods is thereby the same, the difference is only that
we add appropriate couplings in front of the downsampled energy (Sgrer) or
that the image (Spgr) or the energy (Sprg) is being downsampled. We also
present the segmentation result of the original high resolution image (Sggy).
The segmentations were made via the graphcut algorithm [116], which can
optimize a submodular energy functions as in our case (k = —1) exactly in
polynomial time.

First, we present the four segmentations for three different images, in figures
5.3, 5.4 and 5.5. One can see slight differences between the three low resolution
segmentations, especially in the fine structures as for example around the bag
that the man holds in figure 5.3. If one measures the area overlap between the
manual annotation and the three segmentations via the Jaccard index J [68],
where the area overlap between two binary segmentations S; and S, is given
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(d) (e) ()

Figure 5.3: We display (a) the original image, (b) the user marked brush strokes used to
initialize the segmentation and the four segmentations, (¢) Sgrr, (d) SLrr, (€) SLre and
(f) Srar. One can see slight differences between the three low resolution segmentations,
especially in the fine structures as for example around the bag that the man holds.

by
_[S1N Sy

O S1U S,

the segmentations have basically the same area overlap as shown in table 5.1.
But if we compare the quality of partial labelings generated from different
coarse energy functions, we can see differences between the three low resolu-
tion segmentation approaches as can be observed in figure 5.6. The traditional
approach of constructing the energy from the low resolution outperforms the
approach of constructing the energy from the original energy function. Fur-
ther, using RGT to construct the coarse energy outperforms both of the other
methods.

J(S1, S5) (5.24)

5.5.2 Segmentation Time

Besides the segmentation quality we also analyze the computational time
needed for the different segmentations. The results can be seen figure 5.7
and they show that the smaller energy minimization problem constructed by
downsampling a high resolution energy is the slowest approach, while our pro-
posed RGT based method to minimize the energy minimization problem is the
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(d) (e) ()

Figure 5.4: Again we display (a) the original image, (b) the user marked brush strokes used
to initialize the segmentation and the four segmentations, (c) Sgrr, (d) SLrr, (€) SLrr and
(f) Srer- In this picture one can not see large differences between the different segmentation
algorithms, but it is still interesting to look at the bottom boundary of the bear, where the
algorithms differ.

Table 5.1: Evaluation of the segmentation results using the Jaccard index against the manual
annotation. Notice that the improvements can not be captured by the Jaccard index.

(a) To figure 5.3 (b) To figure 5.4 (c) To figure 5.5
| Mean Median | Mean Median | Mean Median
SLRI 0.97 0.97 SLRI 0.97 0.96 SLRI 0.92 0.92
Srre | 0.97 0.97 Srre | 0.96 0.96 Srtre | 0.92 0.92
Srar | 0.97 0.97 Srar | 0.96 0.96 Srar | 0.92 0.92
fastest.

5.6 Discussion and Conclusion

Our experiments show that RGT can be applied to multi-scale image seg-
mentation problems. Using multi-scale image segmentation techniques we can
reduce the size of an image segmentation problem and make it tractable and
solvable. RGT offers to conduct the multi-scale approach by correctly evolv-
ing energy functions over different scales instead of assuming that the energy

66



5.6. Discussion and Conclusion

Figure 5.5: Yet again we display (a) the original image, (b) the user marked brush strokes
used to initialize the segmentation and the four segmentations, (¢) Syrr, (d) SLrr, (e)
Srre and (f) Sgar. In the plant image it is especially interesting to look at the left side of
the plant. RGT seems to be able to separate the leaves on the lower left of the plant much
better than any other method.

functions are of the same form at every scale, an assumption that underlies
the other two methods. The mappings M and K can be chosen dependent on
the problem and the need for exact or approximate inference.

The goal for the further development of the RGT transformation on images
is to proceed in a more structured manner. Instead of choosing an arbitrary
mapping and to see what effect this has, one could attempt to choose the
optimal mapping and method of coarsening. A principle component type of
analysis of different cluster variables could help to choose the optimal mapping
and method of coarsening.

In conclusion, we need to experiment with further applications of RGT to be
able to demonstrate clearly that it can be the solution to a wide range of prob-
lems, but our preliminary results support the notion that RG'T provides an
interesting solution to multi-scale energy minimization problems.
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Labelling Accuracy (%)
Labelling Accuracy (%)

Unlabelled Variable (%) Unlabelled Variables (%)

(a) (b)

Labelling Accuracy (%)

Unlabelled Variables (%)

(c)

Figure 5.6: We display for the images shown in figures 5.3, 5.4 and 5.5 how the accuracy of
the partial solutions derived at low resolution changes as we increase the number of unlabeled
variables. The RGT approach achieves better labeling accuracy, especially if the number of

unlabeled variables is increased.

.sLRI .SLRE .SRGT

Segmentation Time [sec]

Man Bear Plant

Figure 5.7: We display the computational time for the different methods of constructing
the smaller energy minimization problem for the images of the man, the bear and the plant
shown in figures 5.3, 5.4 and 5.5. RGT has the lowest segmentation time of the three

segmentation methods.
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Clinical Application of the Imaging of
Lumbar Aortic Calcifications
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ART II of the dissertation consists of research papers that focus on the clinical
relevance of lumbar aortic calcifications.

In chapter 6 several biomarkers are developed and their clinical relevance
tested. Then the biomarkers are combined to form the morphological atheroscle-
rotic calcification distribution (MACD) index and the MACD index and its
relation to mortality in post menopausal women is examined in chapter 7.
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Chapter 6

Abdominal Aortic Calcified Deposits and
their Relationship to Mortality in Post
Menopausal Women

This chapter is based on the manuscript "Abdominal Aortic Calcified Deposits and their Re-
lationship to Mortality in Post Menopausal Women" by Melanie Ganz, Marleen de Bruijne,
Erik B. Dam, Paola Pettersen, Morten A. Karsdal, Claus Christiansen and Mads Nielsen
currently in preparation and on the manuscript "MACD - an Imaging Marker for Cardio-
vascular Disease" by Melanie Ganz, Marleen de Bruijne and Mads Nielsen published in the
proceedings of the SPIE Medical Imaging conference, San Diego, CA, USA, 2010.

Abstract Abdominal aortic calcifications (AACs) correlate strongly with coronary
artery calcifications and can be predictors of cardiovascular mortality. We investigated
whether size, shape, and distribution of AACs relate to mortality and how such prognostic
markers perform compared to the state-of-the-art AC24 marker introduced by Kauppila et
al. For 308 post-menopausal women we quantified the number of AACs and the percentage
of the abdominal aorta that the lesions occupied in terms of their area, simulated plaque
area, thickness, wall coverage and length. We analyzed inter-/intra-observer reproducibility
and predictive ability of mortality after 8-9 years. This was done via Cox regression with
and without adjustment for biological risk factors leading to hazard ratios (HR). The
coefficient of variation was below 25% for all markers. The strongest individual predictors
were the number of calcifications (HR=2.4, p<0.001) and the simulated area percentage
(HR=2.96, p<0.001) of a calcified plaque and, unlike AC24 (HR=1.66, p<0.001), they
were predictive of mortality after adjusting for traditional risk factors. In a combined Cox
regression model the strongest complementary predictors were the number of calcifications
and the percentage of the aorta area they occupied. Hence, morphometric markers of AAC
quantified from radiographs may be a useful tool for screening and monitoring risk of CVD
mortality.
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6.1 Introduction

Cardiovascular diseases (CVDs) are the most prevalent cause of death in Eu-
rope [117] and the United States [118]. This is the case despite general ac-
ceptance that a healthy lifestyle and risk factor management can prevent the
development of CVDs |6]. Furthermore, two-thirds of women who die sud-
denly from CVDs have no previously recognized symptoms. Thus, effective
and broadly applicable indicators of cardiovascular risk may prompt timely
intervention.

Current non-invasive modalities for imaging atherosclerosis are radiographs, ul-
trasound, computed tomography (CT) and magnetic resonance imaging (MRI)
[119]. Ultrasound is used to visualize the carotid intima-media thickness
(IMT), because carotid IMT has been shown to be associated with atheroscle-
rosis [19], and is thus a marker for CVD. Multi-slice CT is able to quantify the
degree of coronary artery calcification (CAC) with good reproducibility [22,23],
which provides a strong measure of cardiovascular risk 24| independently from,
and potentially more powerful than, traditional risk factors such as smok-
ing [25]. MRI is a non-invasive modality to assess atherosclerosis in different
vascular beds. However, MRI measurements are challenged by the size of the
smaller arteries and assessment of the coronary arteries is especially difficult
due to cardiac and respiratory motion artifacts [120].

An alternative to examining coronary arteries for calcification is to assess the
abdominal aorta. Although calcifications of the coronary arteries can also be
assessed by radiographs, we focus on radiographic examination of the abdomi-
nal aorta, because abdominal aortic calcifications (AACs) are strong predictors
of cardiovascular morbidity and mortality 10|, correlate strongly with coro-
nary artery calcifications, and may hence predict the risk of coronary artery
diseases [30,80]. The state of the art methodology to estimate CVD risk from
lumbar aortic radiographs is the abdominal aortic calcification score (AC24)
proposed by the Framingham study group [13]. A big advantage is that such
AAC scoring can, for example in the case of post-menopausal women, be per-
formed without additional ionizing radiation exposure or cost as these images
are already performed in osteoporosis trials |33, 34].

We investigated if the morphometric aspects of calcifications quantified from
plain radiographs could become useful novel markers of AACs. Due to the
semi-quantitative grading of the AC24 score, such markers from abdominal
aortic examinations could potentially be more sensitive, in particular to assess
the potential significance of smaller calcifications. We outlined the boundaries
of the calcified deposits in the lumbar aortic region on radiographs of post
menpausal women and quantified the number of calcified deposits as well as
the percentage of the abdominal aorta covered by calcifications in terms of
area, simulated-plaque area, thickness, wall coverage, and length. These po-
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tential AAC markers were evaluated for precision and their ability to predict
CVD-related mortality.

6.2 Materials and Methods

6.2.1 Study Population

In 1992-93, 686 post menopausal women living in the Copenhagen area in
Denmark were recruited via a household postal survey to participate in the
EPI study [67] addressing the role of a number of metabolic risk factors in the
pathogenesis of CVD and osteoporosis and were examined radiologically. The
follow-up of the EPI study was the Prospective Epidemiological Risk Factors
(PERF) study [66], which was performed after 8.5 years. PERF was initiated
to obtain further insight into the epidemiology and pathogenesis of menopause-
related diseases, particularly osteoporosis.

Of the original 686 participants, we chose those whose interval between their
first and second clinic visit was 8-9 years, with known alive/mortality status,
who were post menopausal and whose lumbar aorta was visible on a single
radiograph at baseline and at follow-up. This left us with 308 subjects. In-
formation about causes of death was obtained from the Central Registry of
the Danish Ministry of Health and the death causes were grouped into three
groups: CVD, cancer and other death causes.

6.2.2 Metabolic and Physical Measurements

At baseline, demographic information and CVD risk parameters such as age,
weight, height, body mass index (BMI), waist and hip circumferences, sys-
tolic and diastolic blood pressure (BP), treated hypertension, treated diabetes,
smoking, regular alcohol and daily coffee consumption, and weekly fitness ac-
tivity were collected. Using a blood analyzer (Cobas Mira Plus, Roche Di-
agnostics Systems, Hoffman-La Roche, Basel, Switzerland), measurements of
fasting glucose and a lipid profile (total cholesterol, triglycerides, low-density
lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-
C), apolipoprotein A and B (ApoA and ApoB respectively) and lipoprotein(a)
(Lp(a))) were obtained. On the basis of these measurements, the composite
risk markers, systemic coronary risk evaluation (SCORE) [49] and Framing-
ham score [50], were calculated. The SCORE is a combination of the age,
smoking status, levels of total cholesterol and systolic blood pressure, while
the Framingham score is comprised of the same variables plus the HDL-C and
the hypertension treatment status.
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Figure 6.1: A manual annotation of an X-ray: In blue we see distinct vertebra points, in
green the aorta wall and in red the calcifications.

6.2.3 Radiographic Analysis

The lateral X-ray images of the lumbar aorta (L1-L4) were acquired on film in
1992 and again in 2001, and digitized in 2007,/2008 using a DosimetryProAd-
vantage scanner (Vidar, Herndon, USA), providing an image resolution of 570
dpi on a 12-bit gray scale. Three trained radiologists without prior knowledge
of the patients’ conditions manually annotated the corners and mid points of
the vertebrae (L1-L4), the corresponding abdominal aorta walls, and calcifi-
cations in the digitized images. The three radiologists had ten, eight and five
years of experience. They used radiological reading units (Sectra, Linkoping,
Sweden) and annotation software specifically implemented for that task in Mat-
Lab (The MathWorks, Natick, USA), which allowed them to change brightness
and contrast, zoom in and out, and to edit outlines, as seen in figure 6.1.

The AC24 [15] was constructed by projecting the AACs to the corresponding
aorta wall. Then the aortic sections adjacent to each vertebra L1-L4 were
graded by the degree of lesion occupation: 0 for no AACs, 1 for AACs occupy-
ing less than 1/3 of the wall they were projected onto, 2 for AACs occupying
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Figure 6.2: A schematic overview of the AC24 scoring adopted from [13].

more than 1/3, but less than 2/3 in the projection, and 3 for a 2/3 or more oc-
cupation of the wall. The degree of lesion occupation of the projections to the
anterior and posterior aorta wall for all four lumbar vertebrae was summed,
leading to an AC24 score ranging between 0 and 24. In addition to the AC24
scores provided by the radiologists, the outlines of the calcifications were used
in an alternative computer-based computation of the AC24. The AC24 scoring
is illustrated in figure 6.2.

For all images with calcifications, annotations were performed by one of the
three radiologists. For a subset of 8 images, annotations by two radiologists
were made twice in order to evaluate inter- and intra-observer precision. Re-
outlining was performed blinded to earlier outlines and separated by approxi-
mately six to eight weeks.

6.2.4 AAC Markers

Besides measuring the AC24 there is more information to gain from the AACs.
Therefore several potential severity scores relating to the geometrical outline of
the calcified deposits in the lumbar aortic region were examined. The proposed
AAC markers were automatically computed from the radiologist’s computer-
assisted outlines of calcified deposits in the radiographs:
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Calcified Plaque

. Necrotic Core

. Simulated Necrotic Core

Figure 6.3: Left: A schematic visualization of a plaque similar to what can be seen in histol-
ogy. The calcified plaque is surrounded by an area of necrotic tissue. Right: The simulated
area tries to imitate the area of necrotic tissue as seen in histology by a morphological
dilation of the calcified plaque.

e Area percentage (Area %): The percentage of the area of the lumbar
aorta adjacent to L1-L4 occupied by AACs.

e Simulated area percentage (Sim. area %): We estimated the size of the
underlying atherosclerotic inflammation from the area and shape of the
observed AACs since X-ray analysis can only visualize the calcified core of
the AACs. The extent of the atherosclerotic inflammation was simulated
by a morphological dilation [121]| with a circular structuring element of
radius 200 pixels (approx. 8.9 mm). The size of the structuring element
was derived by a parameter study on a subset of the data and it was
confirmed to be biologically sensible by comparing with histology and
image analysis observations which estimated the size of the atherosclerotic
inflammation surrounding the calcified plaque to be between 3 mm [122]
and 5-10 mm [123|. An illustration of this computer-based simulation of
the full plaque area is given in figure 6.3. The simulated area percentage
is the percentage of the lumbar aorta covered by the simulated plaques,
including both calcified core and simulated inflamed area.

e Thickness percentage (Thickness %): The average thickness of the AACs
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Figure 6.4: A schematic view of the different AAC markers

along the aorta wall relative to the aorta width.

e Wall percentage (Wall %): The percentage of the anterior and posterior
lumbar aorta wall covered by projections of AACs.

e Length percentage (Length %): The fraction of the length of the aorta
where AACs were present at any position (anterior, posterior or internal).

e Number of calcified deposits (NCD): The number of distinct AACs visible
in each radiograph.

A schematic view of the six proposed markers can be seen in figure 6.4. We ex-
amined the degree to which these markers could be reliably established on the
basis of manual annotations of X-ray images, and evaluated their association
to mortality, also when adjusted for metabolic or physical markers.

6.2.5 Statistical Analysis

Kendall’s coefficient of concordance 7 [124] was used to assess the level of
agreement between AC24 scorings of calcified images made by radiologists di-
rectly on the original X-rays and AC24 scorings by the computer, based on
the radiologist’s annotated outlines. To measure the inter- and intra-observer
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variability of the manual annotations of radiologists on the eight images al-
located specifically for this purpose, we used the Jaccard Index A [68] . We
computed the ratio of the area identified as calcified in two outlines, divided
by the area identified as calcified in at least one outline:

4= AN A

A1 U Az

where A; and A, are binary annotations. The Jaccard Index varies from 0 for
no agreement to 1 for complete agreement. Typically, Cohen’s x |88] would
be used to measure the inter-rater agreement for categorical items such as
pixels. However, the statistics will be dominated by the very large class of
non-calcified pixels, and individual pixel scorings cannot be considered statis-
tically independent.
The inter- and intra-observer variability of the AAC markers computed from
the radiologists’ outlines was analyzed on the eight images by the mean coef-
ficients of variation (CV).
The predictive power of mortality in terms of hazard ratio (HR) per standard
deviation change of the individual AAC scorings was calculated with the help
of a Cox regression analysis, also known as survival analysis. A basic overview
over survival analysis is given in [125], while a thorough coverage of the subject
can be found in [126].
The basis of the Cox regression model is the examination of the behavior of
the hazard function with respect to ¢ different environmental parameters. The
hazard function is given by

h(t; z;) = ho(t) exp(zL5), (6.1)

where t is the time and z; with ¢ = 1, ..., n are the ¢g-dimensional environmental
parameter vectors for each individual patient ¢ in the study, A is an unknown
baseline hazard function used to model the hazard without environmental in-
fluences and 3 is a g-dimensional vector giving the coefficient estimates of a
Cox regression of the result status (e.g. dead or alive) to the predictors in z;.
The Cox regression tries to estimate the regression parameters 5 and measure
their significance.

In all Cox regression analyses, we use the marker values for the complete pop-
ulation and vary the binary outcome variable (e.g. CVD dead = 1, alive or
other dead = 0) according to the group of interest we focus on.

First we used Cox regression analysis on the image markers to test their in-
dividual prognostic power. In the Cox regression the outcome variable was
the time of death and survivors were right censored. This analysis was per-
formed on unadjusted markers as well as markers adjusted with three different
sets of biological variables: a) a model consisting of age, smoking status and
triglyceride levels, b) the SCORE [49] and ¢) Framingham score [50] (Model
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Figure 6.5: A schematic overview of the study population.

a) consists of age, smoking status and triglyceride levels, because in a com-
bined model including all physical /metabolic parameters only age, smoking,
and triglyceride level persisted after elimination of insignificant contributions.).
We adjusted by combining the biological variables of each set into one new vari-
able by a linear weighting with their S-weights derived by a Cox regression.
This new variable was then included in another Cox regression model for the
imaging marker we adjusted. The resulting S-weight for the imaging marker
determined the biologically adjusted prognostic power.

Furthermore, to analyze the complementarity of the AAC markers we build a
Cox regression model with all variables and then successively deleted the least
significant marker until only significant markers were left. Hereby significance
of the marker ¢ was given as the model weight 3, being significantly different
from zero (p<0.05). This way, single markers that complemented each other
and gave supplementary information were identified.

6.3 Results

The data consisted of baseline images taken in 1992 of 308 subjects. Of these,
121 subjects had no calcifications at baseline or follow-up. Of the remaining
187 subjects, 52 had died before follow-up due to cancer (n—27), CVD (n—20)
or other causes (n=5), and 135 surviving subjects had varying degrees of ab-
dominal aortic calcification at baseline or follow-up. A schematic overview of
the study population is given in figure 6.5, while an overview of the physical
and metabolic measurements is given in table 6.1.

The radiologist and computer-based AC24 scores for the images of calcification
in the 135 subjects calcified images were in excellent agreement (Kendall’s 7
= 0.97, p<0.0001).
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Table 6.1: The mean and standard deviation of the measured metabolic and physical mark-
ers.

Physical/Metabolic markers Population Survivors Deceased
(n—308) (n=256) (n=52)

Age (years) 60.3 + 7.5 59.3 £ 7.1 65.6 = 7.0
Waist (cm) 80.7 £ 109 [ 80.2 £9.9 83.1 £ 124
Waist-to-hip ratio 0.80 £ 0.08 [ 0.80 £0.08 | 0.83 £ 0.10
Body Mass Index (frackgm?) | 24.7 + 3.9 24.7 + 3.8 25.1 + 4.6
Smoking (%) 37 33 58
Systolic BP (mm Hg) 127 + 21 125 £ 20 136 £ 26
Diastolic BP (mm Hg) 77 £+ 10 76 + 10 77T+ 11
Hypertension (%) 16 15 17
Glucose (mmol/L) 5.44 +1.27 [ 537099 [ 5.79 + 2.17
Total cholesterol (mmol/L) 644+ 119 6.36 £1.14 | 6.85 £ 1.33
Triglycerides (mmol/L) 1.24 £ 0.75 1.15 £ 0.56 1.69 + 1.25
LDL-C (mmol/L) 289+ 082 | 285+0.80 | 3.07+0.93
HDL-C (mmol/L) 1.77 £ 048 1.77 £ 044 1.74 + 0.62
ApoB/ApoA 057+ 0.18 | 0.56 = 0.17 | 0.64 + 0.23
Lp(a) (mg/dL) 2144+ 217 | 2194220 184+ 198
EU SCORE 2.60 £ 2.58 2.16 £ 2.12 4.73 £ 3.45
Framingham 14.75 £ 3.54 | 14.21 £+ 3.46 | 17.31 £ 2.74

From the eight images with four annotations each, the mean Jaccard Index
between the two radiologists’ AAC outlines was 51% area overlap for the inter-
observer variation and 56% area overlap for the intra-observer variation (see
figure 6.6 for an example). Separately, the two radiologists had an intra-
observer variability of 53% and 59% area overlap, respectively. The CV values
for the AAC marker precision on the same set of eight images were between
12.5% and 24.9% (table 6.2).

The mean values and respective standard deviations of each of the AAC mark-
ers is reported in table 6.3. One can easily see that they all have a relation
to identifying the people that are dying of CVD or CVD/cancer, because all
markers show elevated values in the CVD-death and cancer-death group com-
pared to the survivors.

Table 6.4 shows that the simulated area percentage and number of calcifica-
tions (NCDs) have the largest individual predictive power (HR=2.96, p<0.001
and HR—2.44, p<0.001) for CVD-mortality. The hazard ratios (HRs) for the
simulated area percentage and NCD were between 2.0 - 2.96 and 1.76 - 2.44
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Figure 6.6: An X-ray of a participant in the EPI follow-up population: (a) an annotation by
a radiologist, (b) a second annotation by the same radiologist and (c¢) an annotation done
by another radiologist. Notice how although the outlines of the annotated calcifications do
not vary much, the first radiologists misses several calcifications completely. This is often
what leads to a low area overlap when comparing annotations from different radiologists.

Table 6.2: The inter- and intra-observer mean coefficients of variation =+ their standard error
for the AAC markers based on the inter-intra-observer test population. The coefficients of
variation are all below 25% and therefore we can measure the AAC markers with reasonable
accuracy.

Inter-Intra-Observer | Inter-Observer CV % Intra-Observer CV %
Population + standard error + standard error
Area 23.9 + 4.7 24.7 £ 4.9

Sim. area % 249 + 5.4 20.4 + 5.3
Thickness % 171+ 3.3 16.1 £ 3.6

Wall % 121 £ 2.1 12.9 + 2.7
Length % 12.1 £ 2.0 12.9 +£ 2.7
NCD 19.4 + 3.1 16.6 £ 3.5

respectively for the CVD-death group and between 1.68 - 2.37 and 1.69 - 2.28
respectively for the combined CVD /cancer-death group. All HRs were sig-
nificantly different from unity (p<0.01) both before and after adjusting for
three different biological models, so the ratio of the probability of dying in the
CVD or CVD/cancer death group versus the rest is significantly larger than 1.
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Table 6.3: The mean + one standard deviation of all the imaging markers stratified for the different
subsets of patients. One can see large differences in the AAC markers measurements in the survivor
group and the CVD, cancer and CVD/cancer groups of deceased. Note especially that the 5 subjects
that died of other causes are can not be discerned from the survivors with the help of the AAC markers.

All Survivors CVD Cancer CVD/Can. Other
(n=308) (n=256) (n=20) (n=27) (n=47) (n=5)
AC24 1.67 £ 255 | 1.35 £ 234 | 3.50 £235 | 3.41 +£3.23 | 3.45 £ 2.86 | 1.35 + 2.36
Area % 0.6 +1.2 0.5+ 1.1 1.0 £0.9 1.6 £18 1.3+£1.5 0.5+1.1
Sim. area % 11 + 17 8.9+ 15.7 24 £+ 16 25+ 24 25+ 21 8.7+ 155
Thickness % 11 £+ 20 9.0 £ 19 17 £ 16 25+ 28 21+ 24 8.7+19
Wall % 1.03 £1.83 | 0.79 £ 1.64 | 2.08 £ 1.70 | 2.51 £+ 2.68 | 2.33 £+ 2.30 | 0.80 £+ 1.63
Length % 7.5 £ 128 6.0+ 11.7 | 154 £11.2 | 173 £17.6 | 16.5 £ 15.1 5.9 +11.6
NCD 38+ 7.7 2.6 £6.4 85+65 [116+134|103+11.0| 2.6 6.3

AC24s unadjusted individual predictive power was lower (HR=1.66, p<0.001).
After adjustment for the three different biological models the significance of
the HRs for AC24 was reduced and in some cases removed, leading to a HR
between 0 and 1.66 for the CVD-death group and between 1.29 and 1.64 for
the CVD/cancer-death group.

The results of the combined predictive power of the seven imaging markers
can be seen for the CVD and the CVD/cancer group in table 6.5. First the
non-adjusted hazard ratios from table 6.4 are stated again and then two elim-
ination models are shown. When combining the markers in a Cox regression
model, only area percentage and NCD remained significant (paea < 0.001,
pnep < 0.001) with negative and positive regression coefficients respectively.

6.4 Discussion

We evaluated whether a radiologist’s manual scoring of the AC24 correlated
with a computer-based scoring of the AC24 derived from a radiologist’s manual
outline of the calcifications on a digitized radiograph. The Kendall’s coefficient
of concordance showed the two scorings were in excellent agreement. We also
evaluated inter- and intra-observer variability of manual annotations using the
Jaccard Index and coefficients of variation of the AAC markers, including the
AC24. Although the Jaccard Index showed that the variation in the outlined
calcified deposits was high, the coefficients of variation for the AC24 and the
other AAC markers based on the outlines were relatively low. These results

6In parentheses the 95% confidence intervals of the relative risk is shown and the symbols *, * and |
denote the significance corresponding to p < 0.05, p < 0.01 and p < 0.001, respectively.
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Table 6.4: The hazard ratio per standard deviation increase in marker values stratified into death cause
and adjusted for physical /metabolic markers, EU SCORE and Framingham score respectively.® Note only

the simulated area and NCD are significant for the CVD group after any adjustments.

Hazard Ratio Hazard Ratio Hazard Ratio Hazard Ratio
Not adjusted Bio adj. SCORE adj. Fram. adj.
AC24
CVD 1.66 (1.25-2.19)7 NS 1.38 (1.02-1.86)* NS
CVD/Can. | 1.64 (1.35-2.00) T | 1.31 (1.06-1.63)* | 1.40 (1.13-1.72)* | 1.29 (1.02-1.63)*
Area %
CVD 1.60 (1.16-2.20) * NS NS NS
CVD/Can. | 1.68 (1.36-2.09) T | 1.32 (1.04-1.66)* | 1.47 (1.16-1.86)* | 1.34 (1.04-1.72)*
Sim. area %
CVD 2.96 (1.76-4.99) T | 2.00 (1.15-3.49)* | 2.46 (1.41-4.27)* | 2.27 (1.26-4.09)*
CVD/Can. | 2.37 (1.73-3.25) T | 1.68 (1.20-2.34)* | 1.96 (1.40-2.73)" | 1.79 (1.26-2.54)*
Thickness %
CVD NS NS NS NS
CVD/Can. | 1.45(1.20-1.75) NS 1.27 (1.04-1.55)* NS
Wall %
CVD 1.50 (1.16-1.95) * NS NS NS
CVD/Can. | 1.60 (1.34-1.91) T | 1.26 (1.04-1.53)* | 1.42 (1.17-1.73)" | 1.30 (1.05-1.62)*
Length %
CVD 1.55 (1.18-2.04) * NS NS NS
CVD/Can. | 1.61 (1.34-1.95) T | 1.26 (1.03-1.55)* | 1.42 (1.16-1.73)" | 1.29 (1.03-1.62)*
NCD
CVD 2.44 (1.72-3.48) T | 1.76 (1.20-2.60)* | 2.20 (1.48-3.26)" | 2.04 (1.34-3.12)f
CVD/Can. | 2.28(1.79-2.90) T | 1.69 (1.30-2.21)" | 2.00 (1.53-2.62)" | 1.86 (1.40-2.47)"

demonstrated that even though the outlining of the individual plaques is a
challenging task, the resulting markers based on the annotations provided rea-
sonably precise measurements.

In the course of the 8-9 years of the study 52 people died, of whom 20 died from
CVD-related causes and 27 from cancer. The Cox regression models showed
similar correlations to CVD and CVD/cancer mortality for the different mark-
ers. The simulated area percentage and the number of calcified deposits could
individually predict CVD and CVD/cancer death and contained additional in-
formation for CVD mortality even after adjustments for age, triglycerides and
cholesterol and the SCORE model and Framingham score. Hence, in this post
hoc study, the simulated area percentage and the number of calcified deposits
predicted CVD mortality independently from traditional risk factors, in con-
trast to AC24. A reason for this could be that the AC24 does not discriminate
between severity and spread of individual calcifications.

Our experiments with Cox regression elimination models showed that the haz-
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Table 6.5: The individual hazard ratios per standard deviation for the markers in the CVD
and the CVD/cancer group as well as two Cox regression elimination models. First the
non-adjusted hazard ratios from table 6.4 are stated again and then two elimination models
are shown, where  denotes the logistic regression coefficient of the given marker in the
combined elimination models.® Only area percentage and NCD are left after a backward
marker selection.

CVD: | CVD elim.: | CVD/cancer: | CVD/cancer elim.:
B - std B std B std B - std
AC24 1.667 - 1.647 -
Area % 1.60* | b — -3.847 1.687 b — -2.397
Sim. area % | 2.967 - 2.377 -
Thickness % | 1.32 - 1.457 -
Wall % 1.50* - 1.607 -
Length % 1.55* - 1.617 -
NCD 2447 | b = 2.767 2.287 b — 1.887

ard of dying of CVD or CVD/cancer was proportional to the number of cal-
cifications and inversely proportional to their area. Therefore, our hypothesis
is that many small plaques play a relevant role for the hazard of dying of
CVD or CVD/cancer. Biologically this can be explained by the fact that the
risk of death due to myocardial infarct (MI) may be related to the number
of active plaques [127|. During plaque development, smaller plaques develop
into larger complicated lesions that either rupture or become stable plaques.
Smaller lipid-laden plaques with high turnover have been identified as those
most likely to rupture and result in MI [128,129]. Thus, a large number of
smaller calcifications may indicate a higher risk of rupture than few large,
stable, calcifications in the same area. This higher emphasis on the number
of calcifications, rather than the total calcium burden, may reflect aspects of
vulnerability that help improve the CVD-mortality prediction, as observed in
this work.

The sample size is a limitation of the present study. The relatively small pop-
ulation with only 20 CVD deaths, a limited representation of ethnicity and
gender and a mixture of death causes may limit the utility of generalizing
our results. Therefore, the presented findings need to be validated in larger,
independent studies. Although the current analysis is based on manual an-
notations by trained radiologists, the annotation procedure can in principle
be automated. A first step toward automated detection and segmentation of
aortic calcifications from radiographs has been provided by de Bruijne [89],
Lauze, F. et al. |90] and Petersen, K. et al. |35] .
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Compared to markers of CVD obtained with other imaging modalities, such
as carotid IMT or CAC, a clear advantage of using standard radiographs is the
availability of large, long duration clinical studies about osteoporosis |33, 34|.
The radiographic images derived from osteoporosis trials of post menopausal
women could then be used at the same time for cardiovascular risk stratifi-
cation in these women. This way the clinical applicability of AAC markers
could be increased. Furthermore, historical trial data can be used to verify the
developed AAC markers and can improve understanding of CVD death risk
factors.

6.5 Conclusion

As shown above, simple statistical modeling can help to identify potential
imaging markers. While AC24 captures essential information about AACs,
our results demonstrate that some of these novel morphometric markers of
AACs identified in this study, i.e., the number and the simulated area percent-
age of a calcified plaque in the abdominal aorta, may capture complementary
information. Further steps can be taken by building combined biological and
imaging markers or by developing even more AAC markers and repeating the
same procedure as above. Although it is left to show the clinical applicability
and reproducibility of the newly identified markers, this statistical approach
for marker development seems to be a step in the right direction and the pro-
posed radiographic AAC markers may enable improved monitoring of CVD
mortality risk.
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Chapter 7

Distribution, Size, Shape, Growth
Potential and Extent of Abdominal
Aortic Calcified Deposits Predict
Mortality in Post Menopausal Women

This chapter is based on the highly accessed manuscript "Distribution, Size, Shape, Growth
Potential and Extent of Abdominal Aortic Calcified Deposits Predict Mortality in Post
Menopausal Women" by Mads Nielsen, Melanie Ganz, Francois Lauze, Paola C. Pettersen,
Marleen de Bruijne, Thomas B. Clarkson, Erik B. Dam, Claus Christiansen and Morten

A. Karsdal published in the journal BMC Cardiovascular Disorders 2010, 10:56.

Abstract Aortic calcification is a major risk factor for death from cardiovascular
disease. We investigated the relationship between mortality and the composite markers of
number, size, morphology and distribution of calcified plaques in the lumbar aorta. 308
post menopausal women aged 48-76 were followed for 8.3 £ 0.3 years, with deaths related
to cardiovascular disease, cancer, or other causes being recorded. From lumbar X-rays at
baseline the number (NCD), size, morphology and distribution of aortic calcification lesions
were scored and combined into the Morphological Atherosclerotic Calcification Distribution
(MACD) index. The hazard ratio for mortality was calculated for the MACD and for three
other commonly used predictors: the EU SCORE card, the Framingham Coronary Heart
Disease Risk Score (Framingham score), and the gold standard Aortic Calcification Severity
score (AC24) developed from the Framingham Heart Study cohorts. For the 10% subjects
at highest risk of CVD death the SCORE card and the Framingham score resulted in a
mortality hazard ratio of 4.9 (p < 0.01) and 0, respectively. The MACD index revealed the
best predictive power for identification of patients at 10% highest risk of mortality, with a
hazard ratio of 15.6 (p < 0.001). This study indicates that the MACD index may provide
a more sensitive predictor of mortality from aortic calcification than the commonly used

AC24 and SCORE/Framingham score systems.
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7.1 Background

Cardiovascular diseases (CVDs) remain the most common cause of death in the
developed world, even though vast epidemiological and interventional studies
have demonstrated significant declines in CVD prevalence with adherence to
a healthy lifestyle, and the identification and management of risk factors [6].
Since two thirds of women who die suddenly from CVD have no previously
recognized symptoms [6], it is essential to find effective indicators of cardio-
vascular risk that may prompt timely intervention.

Biomarkers and biochemical markers are receiving increased attention for their
potential prognostic value, and for identification of those patients in most need
of intervention [130]. An extensive list of more than 200 potential CVD risk
factors has been compiled [51] and multivariate analysis models, such as the
EU SCORE card [49] and the Framingham Coronary Heart Disease Risk Score
(Framingham score) [50], have been developed to estimate the risk of CVD
death. However, more information may be provided by in-depth analysis of
already-established risk factors.

Recently, several interesting findings have been reported on abdominal aortic
calcifications as a CVD risk factor: i) Premature parental CVD has been asso-
ciated with abdominal aortic calcification [131]. ii) Abdominal aortic calcium
levels were significantly related to coronary calcium levels independent of the
usual risk factors [132,133]. iii) In type II diabetes patients, abdominal aortic
calcification was shown to constitute an independent risk factor of clinical vas-
cular disease [134]. iv) An increased total-to-high density lipoprotein (HDL)
cholesterol ratio increased the risk of presence of aortic calcification [135]. v)
Lumbar aortic calcifications in bone densitometer images have been shown to
constitute an independent risk factor of CVD [136]. Hence, abdominal aortic
calcification is an important risk factor for CVD.

Further investigations have indicated that it is rather the number of active
lipid-laden remodeling, growing, plaques, rather than the total burden of
calcified plaques, including stable plaques, that is related to cardiovascular
death [137]. Also the number, distribution and size of calcified plaques have
been shown to relate to mortality |[138|. As the aortic calcification severity
score (AC24) assesses, in terms of lesions, only the extent of calcification in the
aorta, we developed a broader morphological atherosclerotic calcification dis-
tribution (MACD) index specifically to score the number, length, width, shape,
and distribution of abdominal aortic calcifications (AAC) found in lumbar X-
rays of post menopausal women. This index was created to further understand
the composition of the plaque burden in relation to cardiovascular death. Low
dose computed tomography might have been used to evaluate coronary calci-
fications for screening purposes [139], however its cost is a limiting factor.
We evaluated whether each risk included in the composite MACD marker per-
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Figure 7.1: Lateral lumbar X-ray with calcifications in the lower region without (a) and
with (b) computer-mediated annotations performed by a radiologist.

sisted after correction for generalized risk assessments used in the SCORE
card [49], the Framingham score [50| or individual risk factors, such as smok-
ing, cholesterol or triglycerides levels.

7.2 Methods

7.2.1 Subjects

In 1992-93, 686 post menopausal women living in the Copenhagen area in Den-
mark were recruited via a household postal survey to participate in a study
addressing the role of a number of metabolic risk factors in the pathogenesis
of CVD and osteoporosis [67].

Follow-up was performed after 8.5 years and information about all 95 individu-
als who died in the observation period was obtained from the Central Registry
of the Danish Ministry of Health.

7.2.2 Markers

At baseline, information was collected on demographics and known risk param-
eters such as age, weight, height, body mass index (BMI), waist and hip cir-
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cumferences, systolic and diastolic blood pressure (BP), treated hypertension,
treated diabetes, smoking, regular alcohol and daily coffee consumption, and
weekly fitness activity. Using a blood analyzer (Cobas Mira Plus, Roche Diag-
nostics Systems, Hoffman-La Roche, Basel, Switzerland), fasting glucose levels
and lipid profiles, consisting of total cholesterol, triglycerides, LDL-cholesterol
(LDL-C), HDL-cholesterol (HDL-C), apolipoproteins (ApoA and ApoB) and
lipoprotein a (Lp(a)), were obtained.

On basis of these measurements, the composite risk SCORE card [49] and
Framingham score [50| were both calculated based on the gender, age, systolic
blood pressure, total cholesterol, and smoking status; and the Framingham
score also based on HDL-C.

Lateral X-rays of the lumbar aorta (L1-L4 vertebrae) were taken at baseline
and at follow-up. The images were digitized using a Vidar DosimetryPro Ad-
vantage scanner providing an image resolution of 570 dpi on a 12-bit gray
scale. Trained, blinded radiologists annotated the digitized images on a Sec-
tra radiological reading unit using annotation software developed in Matlab
(Mathworks, MA, USA) (figure 7.1). The radiologists were instructed to an-
notate the 6 points used for vertebral height measurements on L1-L4 [140],
to delineate the aorta, and finally to outline every individual calcified deposit
visible in the lumbar aorta and note their possible association to the anterior
and/or posterior wall. The software enabled digital zooming and editing [53].
The inter- and intra- observer variability was tested by three radiologists an-
notating the same 16 randomly selected images.

Geometric data relating to the calcified deposits in the L1-1.4 region was quan-
tified as follows:

e Area percentage (Area %): The percentage of the aorta lumen area occu-
pied by calcified deposits.

e Simulated area percentage (Sim. area %): As X-rays only capture the cal-
cified core and not the biological extent of atherosclerotic lesions, we im-
plemented a statistically validated method [138], in which the atheroscle-
rotic plaque size was estimated from the area and form of the observed
calcified lesion, and the resulting area percentage was recorded. The es-
timation was done using a grass-fire equation based on a morphological
dilation [121] with a circular structuring element of radius 200 pixels cor-
responding to 8.9 mm. The biological extent of atherosclerotic lesions
around an elongated calcified lesion was estimated to be larger than the
biological extent of atherosclerotic lesions around a circular calcification
of similar size. Thus, equal areas of calcification but of different shapes
were given different scores (see figure 7.2).

e Thickness percentage (Thickness %): The average thickness of the calci-
fied deposits along the aorta wall, expressed as a percentage of the aorta
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Figure 7.2: For a given amount of calcified tissue, one can see schematically how the AC24,
the NCD and the MACD can be influenced differently by variations in calcification mor-
phology and distribution.

width.

e Wall percentage (Wall %): The percentage of the aorta wall covered by
calcified deposits.

e Length percentage (Length %): The percentage of the length of the aorta
in which a calcified deposit was present, in any position (anterior, poste-
rior or internal).

e Number of Calcified Deposits (NCD): The number of distinct calcified
deposits.

The relationship between these individual markers and CVD mortality in this
cohort has already been demonstrated |138]. Furthermore, two novel composite
markers were created:

1. Morphological Atherosclerotic Distribution (MAD) factor:
The simulated plaque area divided by the area estimates the portion of
the biological atherosclerotic process which is not detected by X-rays.

2. Morphological Atherosclerotic Calcification Distribution (MACD) index:
The NCD multiplied by the MAD factor. Biologically that can be un-

93



Chapter 7. Distribution, Size, Shape, Growth Potential and Extent of Abdominal Aortic
Calcified Deposits Predict Mortality in Post Menopausal Women

derstood as the number of plaques multiplied by the disease potential
described by the MAD factor.

7.2.3 Statistical Analysis

Patients were stratified into survivors and deceased. The latter were sub-
stratified into CVD-related, cancer-related and other-cause deaths. Since can-
cer and CVD have many risk factors in common, an additional group contain-
ing all cancer or CVD deaths was created to increase numbers and improve
statistical significance.

To test the prognostic power, metabolic and physical parameters and AAC
markers were used in separate Cox-regression models with the time of death as
the outcome variable while right-censoring survivors. Significance was tested as
the model weight being significantly different from zero. To test if one marker
carried additional prognostic power compared to the remaining markers, a
model including all elementary metabolic/physical parameters was sequen-
tially stripped for the insignificant markers until significance persisted for all
markers. To test if an AAC marker carried prognostic power in addition to the
other AAC markers and/or metabolic/physical markers, each marker was com-
pared in combined stripped models. Separate models for CVD, CVD/cancer
and all-cause death were created.

As CVD and CVD/cancer death rates were 6.5% and 15.2% respectively, a
10% percentile cut-off was used to separate subjects at high risk from those
(90%) at normal risk. Hazard ratios were computed, adjusted for the influence
of other risk parameters by combining all other risk factors into Cox-regression
models.

7.3 Results

Of the 686 post menopausal women enrolled in the original study in 1992-
93, 95 died prior to follow-up with 52 (55%) of them having baseline X-ray
examinations in which the full lumbar (L1-L4) aorta was visible on a single
radiograph. Of these 52 deaths, 20 (38%) were due to CVD, 27 (52%) to can-
cer and 5 (10%) to other causes. Another 129 women had relocated from the
Copenhagen area or did not want to participate in the follow-up study and
provided no clinical data for it. Of the 462 women completing the follow-up
visit, lumbar aorta from 256 (55%) were visible on a single radiograph (figure
7.3). This compares with the aorta visibility percentage reported in earlier
studies [136]. Therefore in total, 308 (52 plus 256) women were included in
the current analysis. Baseline demographics and risk parameters showed no

"The symbols *, * and T denote the significance corresponding to p < 0.05, p < 0.01 and p < 0.001,
respectively.
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Figure 7.3: Of 557 post menopausal women who completed an 8.5 year follow-up study, 55%
of those alive at follow-up and 55% of those who were deceased had useful X-rays with the
full abdominal aorta visible in a single X-ray. Thus, the study population included in this
analysis consisted of a total of 308 women: 256 survivors and 52 deceased.

difference between the discontinued women and those completing the study.

Observer reproducibility, assessed by three radiologists scoring the same 16 X-
rays, three times each, resulted in an inter- and intra- observer area overlap [68|
of 56% and 60% respectively, showing good reproducibility [40]. These anno-
tations were used to compute the AC24 that ranges from 0 to 24 based on the
length of the vertebral sections affected by calcified deposits [13]. Most of the
physical and metabolic markers provided prognostic separation of the groups of
survivors and deceased as depicted in tables 7.1 and 7.2. In a combined model
including all physical/metabolic parameters only age, smoking, and triglyc-
eride level persisted after elimination of insignificant contributions. All three
parameters were positively associated with death. These were combined into
one parameter denoted "combined metabolic/physical parameter" (HR per
SD— 2.94 (2.18-3.95), p<0.001) for further analysis. All imaging-based AAC
markers showed higher values in the CVD, cancer, and combined CVD/cancer
groups than in the survivor group (table 7.3) and independently and signifi-
cantly predicted death in the CVD and combined CVD /cancer groups (table
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Table 7.1: Population characteristics of the study population stratified into survivors and
deceased (all-cause) expressed as meantstandard deviation. Most of the physical and
metabolic markers provide a subtle separation of the groups of survivors and deceased.

Physical/Metabolic markers Population Survivors Deceased
(n=308) (n=256) (n=>52)

Age (years) 60.3 + 7.5 59.3 £ 7.1 65.6 = 7.0
Waist (cm) 80.7 £ 109 | 802499 | 83.1+124
Waist-to-hip ratio 0.80 £ 0.08 [ 0.80 £0.08 | 0.83 £ 0.10
Body Mass Index (frackgm?) | 24.7 + 3.9 24.7 + 3.8 25.1 + 4.6
Smoking (%) 37 33 58
Systolic BP (mm Hg) 127 + 21 125 £ 20 136 £ 26
Diastolic BP (mm Hg) 77 £+ 10 76 + 10 77T+ 11
Hypertension (%) 16 15 17
Glucose (mmol/L) 5.44 +1.27 [ 537099 [ 5.79 + 2.17
Total cholesterol (mmol/L) 6.44 + 1.19 6.36 + 1.14 6.85 = 1.33
Triglycerides (mmol/L) 1.24 £ 0.75 1.15 £ 0.56 1.69 + 1.25
LDL-C (mmol/L) 289+ 082 | 285+0.80 | 3.07+0.93
HDL-C (mmol/L) 1.77 £ 048 1.77 £ 044 1.74 + 0.62
ApoB/ApoA 057 +0.18 | 0.56 = 0.17 | 0.64 + 0.23
Lp(a) (mg/dL) 2144+ 217 | 2194220 184+ 198
EU SCORE 2.60 £ 2.58 2.16 £ 2.12 4.73 + 3.45
Framingham 14.75 £ 3.54 | 14.21 £+ 3.46 | 17.31 £ 2.74

7.4, column 2). This significance persisted for simulated Area, NCD, MAD
factor, and MACD also when adjusted for the combined metabolic/physical
parameter, EU SCORE, or Framingham score. AC24, wall% and length%
all maintained a significant prediction under adjustment in the CVD/cancer
group, but did not have sufficient statistical power in the smaller CVD group
(table 7.4).

In a combined elimination model using all elementary calcification markers,
only the number of calcified deposits (NCD) (positive association to death)
and area % (negative association to death) persisted in the CVD group and
the CVD/cancer group. The composite marker MACD showed highest pre-
dictability in all tests and also higher predictability (but not significantly so)
than the combined elimination models of the elementary calcification markers.
In the CVD deaths group, the highest 10% of NCD or MACD scores were sig-
nificantly associated with death. This did not hold for AC24 or area% values in
the same group (table 7.5). This relation persisted but with decreasing hazard
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Table 7.2: Hazard ratios of all-cause death (HR) per standard deviation of
metabolic/physical markers and their 95% confidence interval (CI) based on a Cox regression
model as well as for a sequentially stripped model including all metabolic/physical markers.”
Not all of the metabolic/pgysical markers have a significant hazard ratio and in a stripping
model only age, smoking and triglycerides prevail in this population.

Physical/ HR per SD HR per SD
Metabolic markers | [95% CI] Alone | [95% CI] Comb.
Age 2.25" (1.67-3.03) | 2.417 (1.75-3.31)
Waist 1.29%* (1.01-1.65) NS
Waist-to-hip ratio | 1.37* (1.12-1.67) NS

Body Mass Index NS NS
Smoking 1.37* (1.08-1.73) | 1.50* (1.17-1.94)
Systolic BP 1.53" (1.20-1.94) NS
Diastolic BP NS NS
Hypertension NS NS
Glucose 1.23* (1.03-1.46) NS

Total cholesterol 1.44* (1.12-1.86) NS
Triglycerides 1.517 (1.29-1.76) | 1.467 (1.22-1.75)
LDL-C NS NS
HDL-C NS NS
ApoB/ApoA 1.45* (1.14-1.83) NS

Lp(a) NS NS

EU SCORE 1.797 (1.51-2.13) Not Incl.
Framingham 2.63" (1.87-3.71) Not Incl.

ratios when adjusted by standard composite metabolic/physical markers (EU
SCORE or Framingham score) or the combined metabolic/physical parameter
in the elimination model from table 7.2. Similar results were obtained in the
CVD/cancer group with slightly lower hazard ratios and higher significance
levels due to the larger population.

7.4 Discussion

We investigated whether more information could be obtained from calcified de-
posits in the abdominal aorta to better predict CVD death than the gold stan-
dard AC24 score, which was developed from the Framingham Heart Study co-
horts. We hypothesized that the presence of many small, spatially distributed,
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Table 7.3: Stratification of abdominal aortic calcification marker values according to cause of death shown
as mean =+ standard deviation. One can observe quite a difference between the values of the AAC markers
of the survivors and the CVD, cancer and CVD /cancer group. Conversely, there is virtually no difference
between the survivors and the 5 subjects that died of other causes.

All Survivors CVD Cancer CVD/Can. Other
(n=308) (n=256) (n=20) (n=27) (n=47) (n=5)
AC24 1.67 £ 255 | 1.35 £ 234 | 3.50 £235 | 3.41 +£3.23 | 3.45 £ 2.86 | 1.35 + 2.36
Area % 0.6 +1.2 0.5+ 1.1 1.0 £0.9 1.6 £18 1.3+£1.5 0.5+1.1
Sim. area % 11 + 17 8.9+ 15.7 24 £+ 16 25+ 24 25+ 21 8.7+ 155
Thickness % 11 £+ 20 9.0 £ 19 17 £ 16 25+ 28 21+ 24 8.7+19
Wall % 1.03 £1.83 | 0.79 £ 1.64 | 2.08 £ 1.70 | 2.51 £+ 2.68 | 2.33 £+ 2.30 | 0.80 £+ 1.63
Length % 7.5 £ 128 6.0+ 11.7 | 154 £11.2 | 173 £17.6 | 16.5 £ 15.1 5.9 +11.6
NCD 38+ 7.7 2.6 £6.4 85+65 [116+134|103+11.0| 2.6 6.3

radiographically visible calcified deposits of varying shape in the lumbar aorta
had a stronger relation to CVD death than the AC24 segment-wise scoring of
the extent of calcified deposits on the aortic wall.

The AC24 score |13] quantifies the burden of calcified plaques in the aorta by
segment-wise scoring of the calcified deposit coverage of the aortic wall. We in-
vestigated whether additional aspects of the outline of the individual plaques
may be associated with the progression and/or prognosis of atherosclerosis.
We analyzed the area %, thickness %, wall % and length % of the abdominal
aorta covered by calcification and the number of distinct calcified deposits.
Furthermore, we calculated the simulated plaque area in which the atheroscle-
rotic plaque size was estimated from the area and form of the observed calci-
fied lesion. Lastly, two composite markers were created: i) The morphologi-
cal atherosclerotic distribution (MAD) factor was constructed by dividing the
simulated plaque area with the absolute plaque area. ii) The morphological
atherosclerotic calcification distribution (MACD) index is given by the NCD
multiplied by the MAD factor.

In the present cohort, eight different markers (AC24, area %, simulated area
%, wall%, length%, NCD, MAD and MACD) exhibited a significant hazard
ratio per standard deviation increase for death in the combined CVD/cancer
group when adjusted for physical /metabolic markers, the EU SCORE, and the
Framingham score respectively. However, only four markers (simulated area
%, NCD, MAD and MACD) had sufficient power in risk segregation of CVD
mortality when adjusted by physical/metabolic markers, the EU SCORE and
the Framingham score. The composite MAD factor showed increased sensitiv-
ity to CVD compared to cancer mortality. The reason for this may be that
the MAD factor essentially scores how small and widely distributed the indi-
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Table 7.4: Hazard ratio per standard deviation increase in marker value stratified into death cause and
adjusted for physical /metabolic markers, the EU SCORE, and the Framingham score respectively.” Only
the simulated area, NCD, MAD and MACD persist after adjusting for physical/metabolic markers, the

EU SCORE, and the Framingham score.

Hazard Ratio

Hazard Ratio

Hazard Ratio

Hazard Ratio

Not adjusted Bio adj. SCORE adj. Fram. adj.
AC24
CVD 1.66 (1.25-2.19)1 NS 1.38 (1.02-1.86)* NS
CVD/Can. 1.64 (1.35-2.00) T | 1.31 (1.06-1.63)* | 1.40 (1.13-1.72)* | 1.29 (1.02-1.63)*
Area %
CVD 1.60 (1.16-2.20) * NS NS NS
CVD/Can. 1.68 (1.36-2.09) T | 1.32 (1.04-1.66)* | 1.47 (1.16-1.86)* | 1.34 (1.04-1.72)*
Sim. Area %
CVD 2.96 (1.76-4.99) T | 2.00 (1.15-3.49)* | 2.46 (1.41-4.27)* | 2.27 (1.26-4.09)*
CVD/Can. 2.37 (1.73-3.25) T | 1.68 (1.20-2.34)* | 1.96 (1.40-2.73)" | 1.79 (1.26-2.54)*
Thickness %
CVD NS NS NS NS
CVD/Can. 1.45(1.20-1.75) | NS 1.27 (1.04-1.55)* NS
Wall %
CVD 1.50 (1.16-1.95) * NS NS NS
CVD/Can. 1.60 (1.34-1.91) T | 1.26 (1.04-1.53)* | 1.42 (1.17-1.73)T | 1.30 (1.05-1.62)*
Length %
CVD 1.55 (1.18-2.04) * NS NS NS
CVD/Can. 1.61 (1.34-1.95) T | 1.26 (1.03-1.55)* | 1.42 (1.16-1.73)T | 1.29 (1.03-1.62)*
NCD
CVD 2.44 (1.72-3.48) T | 1.76 (1.20-2.60)* | 2.20 (1.48-3.26)T | 2.04 (1.34-3.12)%
CVD/Can. 2.28(1.79-2.90) T | 1.69 (1.30-2.21)" [ 2.00 (1.53-2.62) | 1.86 (1.40-2.47)"
MAD
CVD 3.37 (1.83-6.21) T | 2.44 (1.22-4.89)* | 3.02 (1.55-5.86)* | 2.85 (1.44-5.64)*
CVD/Can. 2.19 (1.58-3.04) T | 1.58 (1.11-2.26)* | 1.83 (1.29-2.59)t | 1.74 (1.22-2.48)*
MACD index
CVD 5.22 (2.40-11.36) T | 3.17 (1.48-6.78)* | 4.36 (1.97-9.66)" | 4.22 (1.79-9.97)1
CVD/Can. 2.99 (2.05-4.35) T | 2.01 (1.37-2.95)" | 2.43 (1.64-3.59)T | 2.27 (1.51-3.41)%

vidual calcified plaques appear. When the MAD factor was combined with
the number of calcified plaques, which as an individual parameter alone was
shown to be a strong predictor of mortality, the resulting MACD index dis-
played superior predictive power over any other marker. The MACD index
produced hazard ratios >4 per standard deviation increase in the CVD death
group, even after adjustment for metabolic/physical factors.
In trying to identify which tool would be most useful in clinical practice to
identify CVD patients at highest risk of death, we found, from applying the
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Table 7.5: Hazard ratio for high risk subjects based on 90% threshold in the CVD deaths
group.” Here one can directly compare the performance of the different markers. NCD and
MACD are best at identifying high risk subjects in this population.

AC Marker Hazard Ratio AC24 Area% NCD MACD index
Adjusted by Alone

None NS NS 10.9 (4.4-27)" 15.6 (6.3-38)"
EU SCORE 4.9 (1.9-13)* NS NS 8.5 (3.2-23)"  13.2 (4.9-35)"
Framingham NS NS NS 10.8 (4.1-28)T  15.7 (6.1-40)"
All metabolic/ | 10.1 (4.1-25)" NS NS 7.2 (2.8-18)F 9.8 (3.7-26)f
physical

various scoring systems to post menopausal subjects who had died from CVD,
that the MACD index is potentially a better predictor of mortality. For the
10 % highest risk subjects the MACD index produced a hazard ratio for death
of 10 and more even after adjustment for metabolic and physical markers,
while the hazards ratios for the AC24 and the Framingham score were both
insignificant, and the EU SCORE, had a value of the hazard ratio of 5.

7.5 Conclusion

In conclusion, assessment of the shape, size, number, distribution, and extent
of lumbar aortic calcifications may aid in identifying patients at risk of CVD
death and thus most in need of treatment. Since atherosclerosis is a systemic
disease in which lumbar aortic calcifications occur, increasing attention has
been devoted to the correlation between the number of lumbar aortic calcifi-
cations in radiographs and coronary calcifications [141]. [10, 141, 142] suggest
that radiographs provide equally valuable information on CVD and offer the
advantage of simplicity for in-office quantification. Some studies even suggest
the number of lumbar aortic calcifications is an independent predictor of CVD
events [141|. Importantly, only the calcified core of an atherosclerotic lesion is
detected in X-rays whereas the surrounding necrotic tissue and region of high
remodeling and fibrosis are not detectable. Hence, the actual pathologically
involved area is underestimated in radiographs. Consequently, the morpholog-
ical enlargement of plaques (used in the MAD factor and thereby the MACD
index) may carry information related to the projected area of the inflammatory
processes and indirectly indicate an increased risk. This additional information
may result in a better prediction of mortality risk than the current state-of-
the-art, the AC24 radiographic scoring of atherosclerotic plaques.

The present study has its limitations. Its findings are only valid for a follow-
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up period of 8.5 years and may not necessarily apply to shorter follow-ups.
For short follow-up times, the predictive power could possibly be based only
on the total plaque burden as described by the AC24 score. Furthermore, the
present population is restricted in size, geographical and ethnic content to post
menopausal Danish women. Therefore, the present study needs validation in
other populations and longer term clinical settings.

101



Chapter 7. Distribution, Size, Shape, Growth Potential and Extent of Abdominal Aortic
Calcified Deposits Predict Mortality in Post Menopausal Women

102



Chapter 8

Discussion and Conclusions

8.1 Summary

The main goal of the presented work was to make CVD preventive diagnostics
available for clinical studies or even screening programs through low cost imag-
ing. Our proposed framework for automated segmentation of calcified deposits
including the contributions to the calcification shape priors and the evaluation
of the developed biomarkers on clinical trial data was the first step in that
direction.

In the first part of the dissertation we focused on the development of different
calcification shape priors that could be used within a fully-automatic frame-
work for detection of lumbar aortic calcifications, called the CVD pipeline.
Two different approaches were proposed: In chapter 3 we used a method from
geostatistics, called Kriging, to try to include knowledge learned from training
data about the spatial correlations between different pixels in the output of
a pixel classifier. We observed that our new method, DICPC, improved the
sensitivity and the Jaccard index on our test set of calcification data. But
DICPC was only the first step in the right direction and its weakness was the
linear model that underlies Kriging which implies only pairwise interactions.
Hence, going one step further, in chapter 4 we proposed a new way of not only
learning some spatial characteristics from training data, but a whole patch
representation of the training data. Such a representation can capture the
statistical nature of a given texture and enforce it on testing data. Applied by
itself it can be used in texture synthesis, in combination with a pixel classifier
it can improve the spatial coherence of classifier output. Our segmentation
results, based on the proposed shape prior, were promising and improved the
Jaccard index by 50%. This indicates that the shape model can be success-
fully used as a prior in statistical segmentation of calcifications on X-ray image
data.

In chapter 5 we made an excursion into the world of statistical physics. A
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method based on renormalization group theory (RGT) was used to derive a
new approach for multi-scale image segmentation that could be an alternative
to parts of the CVD pipeline. Our experiments showed that RGT can be ap-
plied to multi-scale image segmentation problems. Furthermore, by using RGT
we reduced the size of the image segmentation problem and made it tractable
and solvable by a global image segmentation algorithm such as graphcut. But
this still needs to be applied on our calcification data to show its applicability
on medical data.

Part two of the dissertation dealt with the development of imaging biomarkers
based on manual annotations or the classification output of the CVD pipeline.
In chapter 6 a number of markers were measured and then a special type of
backward selection via Cox regression was used to identify the most promi-
nent combination of measurements that relate to death by CVDs. Our results
pointed out the fact that simple statistical modeling can help to identify poten-
tial imaging markers and demonstrated that some of these novel morphometric
markers of abdominal aortic calcifications may capture complementary infor-
mation when assessing CVD risk.

Finally, in chapter 7 the statistical modeling lead to the formation of the mor-
phological atherosclerotic calcification distribution (MACD) index. MACD
could be shown to significantly relate to the risk of death and to outperform
standard metabolic CVD biomarkers such as the EU SCORE [49] and the
Framingham score [50] as well as to outperform the current gold standard on
radiographs, the AC24 score, when identifying patients especially at risk.

8.2 Discussion and Conclusions

"The scientific method is based on the principle that observation
is the judge of whether something is so or not. All other aspects
and characteristics of science can be understood directly when we
understand that observation is the ultimate and final judge of the
truth of an idea.”™

In this dissertation different image processing methods have been applied to
test if automatic segmentation of calcifications in lumbar aortic X-rays is pos-
sible. Furthermore, the hypothesis that image analysis of calcified deposits in
the lumbar aorta can quantify CVD risk of death has been tested. The results
have provided new insights into the relation between imaging biomarkers of
the lumbar aorta and CVD risk of death, but have also highlighted some re-
maining challenges.

For example, the CVD pipeline is still suffering from overall low Jaccard in-
dex values compared to radiologists’ readings. There are several reasons for

8From "The Meaning of It All: Thoughts of a Citizen Scientist" by Richard P. Feynman
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this. First, the fully automatic detection of calcifications is very challenging
as already described in section 2.2.2. The fact that there are no ground truths
available and that two radiologists have only ca. 50% area overlap with each
other does not make the task easier. Second, the area overlap measure we use,
the Jaccard index, is a very strict measure. For example, if an x-ray has no
calcifications present in the manual annotation and the CVD pipeline finds one
calcification, the Jaccard index drops to zero. Hence, one can not compare the
Jaccard index we achieved to index values achieved in e.g. brain segmentation
where two large areas are compared to each other. Third, the scores that relate
to biological findings e.g. AC24 do not suffer as much as the area overlap and
are actually quite robust [35] which indicates that the CVD pipeline is on the
way to make fully automatic segmentation possible.

Despite the obstacles we have met in the CVD pipeline project, the new sci-
entific results produced within it until now, e.g. a new way of modeling tex-
tures [83] and the static SMC sampler [38], show that one can not be ambitious
enough. Even if at present applicability in clinical trials is out of question, the
results achieved until now show that it is not impossible to get there. Espe-
cially, once digital X-rays of more recent studies (and hence of higher quality)
and from different populations, that help to increase e.g. the generalization
ability of the shape models, are in place, the CVD pipeline can be tested again
and re-evaluated versus the performance of radiologists. If these steps are
taken, then clinical trial availability is maybe only some years away.
Furthermore, while the application of RGT on image segmentation and energy
minimization is clearly still in its fledgling stages, the results encourage to ex-
plore the subject more deeply. And the mere existence of the RGT approach
shows how fertile inter-disciplinary work can be. Just as biologists have been
involved in the development of the new biomarkers and have helped to inter-
pret the statistical findings, transferring RGT onto images was only possible
because of the very different background an education in theoretical physics
offers. In the end working in the field of medical imaging is exciting and in-
teresting, because many disciplines — biology, chemistry, computer science and
physics — meet and something new is created by combining knowledge from all
fields.

Finally, the work regarding the development of new biomarkers, e.g. MACD,
has confirmed the fruitfulness of a statistical approach. When trying to gain
new insights about e.g. a disease, it can be beneficial to not make a hypothesis
first and then perform statistical tests until the same hypothesis is confirmed,
but to let the data guide the search for a new hypothesis. Of course statistics
alone can not explain biology, but it can maybe lead to us to new insights
about our problem.
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8.3 Future Work

While the application of Kriging and our proposed dense iterative contextual
pixel classification (DICPC) was a first try at modeling spatial relations be-
tween classification output, the modeling of textures via a generative shape
model based on a sparse texton dictionary was more successful. An interesting
future direction for the texton approach could be to apply the textons also
for non-binary images. In this case a different basis of the dictionary, e.g.
ridgelets [143| or wedgelets [144], might be necessary. Furthermore, an appro-
priate multi-resolution extension of the generative model could be introduced
that would be able to take even longer interactions between patches into ac-
count and as a consequence improve the segmentation further.

With respect to the CVD pipeline as a whole, it is clear that the performance of
the calcifications shape priors depends greatly on the performance of the pixel
classifier. This could be improved by either trying to select better features or
by choosing a different classifier. But regardless of the performance that can
be achieved on the EPI [67] and PERF 66| data sets available to us, it is left
to show the applicability of the CVD pipeline for clinical trials by applying
it to different data sets to be sure not to overfit to the data the pipeline was
developed on. This can be done by conducting transfer experiments where we
train the pipeline on one data set and then show its efficiency on another data
set of a different population.

The RGT approach could be extended in several ways. On the one hand, dif-
ferent grid structures and mappings should be tested. On the other hand, to
really get a broad spectrum of people interested in the method it should be
extended to multi-labels, so rather a Potts than an Ising model.

The possibilities for future work in the realm of biomarkers are extensive. On
top of the list is the development of new imaging biomarkers, possibly even on
CT images acquired in the Danish Lung Cancer Screening Trial [145] instead of
on X-ray images. Second, all newly developed markers including MACD need
to be validated again, since the current findings are only based on a population
that is restricted in size, geographical and ethnic content to post menopausal
Danish women. A validation of our findings in other populations and longer
term clinical settings would substantiate them further for use in clinical trials.
Third, an option could be to combine the imaging and metabolic biomarkers
for CVD risk assessment or to even try to relate to sth. else than CVD death
when building risk assessment models.

Through the presented research I have made progress in identifying
the relations of CVD risk to abdominal aortic calcifications as im-
aged by X-rays, but also identified new questions that need to be
answered. So the work presented in this dissertation is meant to be
part of a bigger effort by the medical imaging community to pre-
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vent cardiovascular diseases by developing even better biomarkers
for CVD risk and by making CVD preventive diagnostics through
low cost imaging available.
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