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Abstra
tA

ording to the World Health Organization 
ardiovas
ular diseases (CVDs)are the number one 
ause of death globally. Two thirds of women and halfof men who die suddenly resulting from CVDs have no previously re
ognizedsymptoms. This indi
ates that mu
h more people are a
tually at risk than the
urrent methods identify, and therefore it is relevant to look into new methods.Lumbar aorti
 
al
i�ed deposits have been shown to relate to CVD risk, butare not yet widely used. Hen
e, we investigate methods that 
an help to dete
tlumbar aorti
 
al
i�ed deposits and examine their in�uen
e on CVD risk tooptimally target timely intervention and to better identify people at risk.The goal is to 
reate an automati
 system for the dete
tion of lumbar aor-ti
 
al
i�
ations, whi
h 
an �nd the aorta and subsequently 
al
i�
ations inthe aorta on X-ray images, and 
onvert the �ndings to a CVD risk. To im-prove segmentation of 
al
i�
ations in the aorta two 
al
i�
ation shape priorsare developed: The �rst is inspired from geostatisti
s and based on a method
alled Kriging, while the se
ond is a texton-based generative shape model us-ing a minimal des
ription length model sele
tion, whi
h is applied to bothlumbar aorti
 
al
i�
ation data as well as other natural image data. Further-more a new methodology based on the 
on
ept of renormalization group theory(RGT) is introdu
ed and used in the 
ontext of multi-s
ale image segmentation.Another important aspe
t is the 
lini
al relevan
e of lumbar aorti
 
al
i�
a-tions. Several biomarkers are developed and their 
lini
al relevan
e tested.The biomarkers are also 
ombined to form the morphologi
al atheros
leroti

al
i�
ation distribution (MACD) index, and the newly formed MACD index,and its relation to mortality in post menopausal women, is analyzed.The proposed 
al
i�
ation shape priors produ
e promising results. The methodbased on Kriging improves the sensitivity and the Ja

ard index of 
al
i�
ationtest data, but the largest improvement 
omes with the texton-based generativeshape model. It improves the Ja

ard index of 
al
i�
ation segmentations by
50%, whi
h indi
ates that it 
an be su

essfully used as a prior distributionin statisti
al segmentation of 
al
i�
ations on X-ray image data. Additionally,RGT provides a new approa
h for multi-s
ale image segmentation that 
ouldbe an alternative to parts of the fully automati
 system. The examination ofdi�erent biomarkers shows that simple statisti
al modeling 
an help to identifyix



Abstra
tpotential imaging markers. Espe
ially, the MACD index seems to be a moresensitive predi
tor of CVD mortality based on lumbar X-rays than the 
urrentgold standard, the AC24 radiographi
 s
oring of atheros
leroti
 plaques.We 
an 
on
lude that there is still some way to a fully automati
 system ofdete
ting aorti
 
al
i�ed deposits, but that the assessment of the shape, size,number, distribution, and extent of lumbar aorti
 
al
i�
ations may aid inidentifying people at risk of dying from CVDs and thus in the future helpthose in most need of treatment.

x



ResumeIfølge Verdenssundhedsorganisationen er hjertekarsygdomme (HKS) globaltset den største årsag til dødsfald. To tredjedele af kvinder og halvdelen afmænd som dør pludseligt pga. hjertekarsygdomme har ikke tidligere haftnogen symptomer. Det betyder at mange �ere mennesker har risiko for fåhertekarsygdomme end nuværende metoder identi�
erer, og derfor er det rele-vant at forske i nye metoder. Forkalkninger i lumbal aorta har vist sig at værerelateret til risikoen for at få hjertekarsygdomme, men brugen heraf er endnuikke særlig udbredt. Derfor arbejder vi på metoder som kan �nde forkalkningeri lumbal aorta automatisk og undersøge deres betydning for risikoen for at fåhjertekarsygdomme, så man kan rette tidlige indgreb imod de rigtige menneskerog identi�
ere dem som har den største risiko at udvikle hjertekarsygdomme.Vores formål er at lave et fuldt automatisk system til at �nde forkalkningeri røntgenbilleder. Det skal dels kunne �nde lumbal aorta og efterfølgendeforkalkninger deri og konvertere det til en risiko for at udvikle hjertekarsyg-domme. For at forbedre segmenteringen af forkalkninger i aorta, udviklesto modeller for forkalkningernes form: den første er inspireret af geostatis-tik og baseret på en metode som man kalder Kriging, mens den anden erbaseret på textons og bruger en minimal des
ription lenght model sele
tionog er anvendt på røntgenbilleder af forkalkninger i aorta of andre naturligebilleder. Desuden introdu
erer vi en ny metode baseret på et kon
ept somkaldes renormaliseringsgruppeteorie (RGT) og bruger metoden til multi-s
alebillede segmentering. Et andet aspekt er den kliniske relevans af forkalkningeri aorta. Flere biomarkører bliver udviklet osg deres kliniske betydning under-søgt. Biomarkørerne er også kombineret til det morphologi
al atheros
leroti

al
i�
ation distribution (MACD) indeks og dets relation til dødeligheden afkvinder som har passeret overgangsalderen er analyseret.Modellerne for forkalkningernes form, som vi forslår, giver lovende resultater.Den metode som er baseret på Kriging forbedrer sensitiviteten og Ja

ard in-dekset på vores trænings data, men den største forbedring opnår modellenbaseret på textons. Den forbedrer Ja

ard indekset med 50%, som indikererat vores model kan blive brugt til statistisk segmentering af forkalkninger irøntgenbilleder. Yderligere forsyner RGT os med en ny måde at lave multi-s
ale billede segmentering på og kunne være et alternativ til dele af vores



Resumeautomatiske system. Undersøgelsen af forskellige biomarkører viser at simplestatistiske modeller kan hjælpe med at identi�
ere potentielle billede markører.Især MACD ser ud til at være en mere sensitiv måling til at forudsige døde-ligheden fra hjertekarsygdomme baseret på røntgenbilleder end den nuværendestandard, AC24.Slutteligt kan vi konkludere, at der stadig er et stykke vej til et helt automa-tisk system til at �nde forkalkninger, men at måling af form, størrelse, antal,fordeling og omfang af forkalkninger i aorta kan bidrage til at identi�
ere men-nesker, som har den største risiko for at dø af hjertekarsygdomme, og somderfor har mest brug for behandling.
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Chapter 1Introdu
tionA

ording to the World Health Organization (WHO) [1℄ the number one 
auseof death globally that 
laims more deaths than any other single 
ause are
ardiovas
ular diseases (CVDs). CVDs are de�ned as the 
lass of diseasesthat involve the heart and/or blood vessels [2℄. Alone in 2004 an estimated17.1 million people died from CVDs whi
h equals 29% of all global deaths.Proje
tions by the WHO show that CVDs will remain the single leading 
auseof death and by 2030 almost 23.6 million people worldwide will die from them.Espe
ially, in the United States (U.S.) CVDs are a major problem and arethe leading 
ause of death (table 1.1) 
laiming 35.3% of all deaths in 2005equaling a CVD related death every 37 se
onds. In fa
t, CVDs are su
h a bigproblem that the U.S. National Center for Health Statisti
s [3℄ states that thelife expe
tan
y in the U.S. would in
rease by almost seven years if all formsof major CVDs were eliminated. In 
ontrast, if all forms of 
an
er would beeliminated the gain in life expe
tan
y would only amount to 3 years.
Table 1.1: U.S. 
auses of death in 2005 (based on mortality �gures) [4℄. Cardiovas
ulardiseases (CVDs) are the leading 
ause of death.Cause of Death Number of vi
timsCVD 864,480Can
er 559,312A

idents 117,809Alzheimer's Disease 71,599HIV (Aids) 12,543

1



Chapter 1. Introdu
tion1.1 PurposeOne of the reasons for CVDs being the number one 
ause of death is thattwo thirds of women and half of men who die suddenly from CVDs have nopreviously re
ognized symptoms [5�7℄. This is the 
ase be
ause traditionalprevention strategies fail to re
ognize that 
ardiovas
ular events also o

urin subje
ts in low and intermediate risk groups. Akosah et. al [8℄ showedthat 70% of a group of 222 young adults (men ≤ 55 years and women ≤ 65years) were hospitalized for myo
ardial infar
tion despite being 
ategorizedas low risk 
andidates by traditional prophylaxis methods. Hen
e, the 
urrent
ategorization in CVD risk groups seems to assign 
andidates that are a
tuallyat high risk of dying from CVD to a low risk group. Therefore, mortality 
annot be redu
ed in low risk groups by traditional methods and there exists aneed for new methods espe
ially aimed at prevention.An early indi
ator of the risk of death by CVDs are 
al
i�ed depositsin the vas
ular system. This is the reason why in this dissertation Iwant to investigate methods that 
an help dete
t 
al
i�ed depositsand examine their in�uen
e on CVD risk to optimally target timelyintervention and to better identify people at risk.1.2 OutlineThe dissertation is divided into two major parts: Part I (
hapter 3-5) dealswith medi
al imaging of 
al
i�
ations and part II (
hapter 6-7) fo
uses on therelevan
e of espe
ially lumbar aorti
 
al
i�
ations in relation to CVD risk.In 
hapter 2 some ba
kground knowledge needed to understand the dissertationis provided. The underlying 
auses of 
ardiovas
ular diseases, atheros
lerosis,is introdu
ed (se
tion 2.1) as well as an overview of medi
al imaging of 
ar-diovas
ular diseases given (se
tion 2.2). Finally, the 
lini
al tools to assess
ardiovas
ular disease risk are des
ribed (se
tion 2.3).Part I of the dissertation 
onsists of resear
h papers that fo
us on the devel-opment of automated methods for the dete
tion of 
al
i�
ations. Here the
ontribution to the automated methods, espe
ially in the 
al
i�
ation dete
-tion pro
ess, is des
ribed. The work is divided into two 
hapters. In 
hap-ter 3 an ex
ursion into a method from geostatisti
s 
alled Kriging leads to amethod 
alled "Dense Iterative Contextual Pixel Classi�
ation using Kriging".In 
hapter 4 a texton-based generative shape model using a minimal des
rip-tion length model sele
tion is developed and applied on 
al
i�
ation data aswell as other natural image data. Finally, a new methodology based on the
on
ept of renormalization group theory (RGT) is introdu
ed, whi
h is an es-sential tool in statisti
al physi
s. In 
hapter 5 RGT is used in the 
ontext ofmulti-s
ale image segmentation. 2



1.2. OutlinePart II of the dissertation deals with the 
lini
al relevan
e of parti
ularly lum-bar aorti
 
al
i�ed deposits. In 
hapter 6 several biomarkers based on lumbaraorti
 
al
i�ed deposits are developed and their 
lini
al relevan
e tested. Thenthe biomarkers are via a sele
tion pro
ess based on Cox regression 
ombinedto form the morphologi
al atheros
leroti
 
al
i�
ation distribution (MACD)index. Finally, the newly formed MACD index and its relation to mortality inpost menopausal women is examined in 
hapter 7.The dissertation 
on
ludes in 
hapter 8 with a short summary, a dis
ussionand perspe
tives for future resear
h within the �eld.

3
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Chapter 2Risk Assessment of Cardiovas
ularDiseasesIn order to be able to assess CVD risk as early as possible the underlying
auses of CVDs need to be understood. Hen
e, this 
hapter provides someba
kground knowledge. First, the pathology of one of the underlying 
ausesof 
ardiovas
ular diseases, atheros
lerosis, is introdu
ed (se
tion 2.1). Thenan introdu
tion to part I of the dissertation is given in se
tion 2.2 where anoverview of medi
al imaging of 
ardiovas
ular diseases is given, and the overallproje
t, whi
h this dissertation was part of, is detailed. In the introdu
tion topart II (se
tion 2.3) 
urrent 
lini
al tools to assess 
ardiovas
ular disease riskare des
ribed.2.1 Causes of Cardiovas
ular DiseasesWhile CVDs refer to any disease that a�e
ts the 
ardiovas
ular system theunderlying 
ause of CVDs is usually atheros
lerosis [10℄. Atheros
lerosis isa disease that a�e
ts the arteries (�gure 2.1), whi
h are the blood vesselsthat 
arry oxygen-ri
h blood to one's heart and the rest of one's body. Asits name (athero = soft, pasty material; s
lerosis = hardening) suggests it isa pro
ess where fatty substan
es, su
h as 
holesterol, 
ellular waste materialand 
al
ium form a 
al
i�ed deposit in the media of an artery. The reasonfor substan
es entering the media is usually a damage of the endothelium,the innermost lining, of an artery. The endothelium gets damaged if it isfor example exposed to elevated lipid levels, high blood pressure or toba

osmoking [11℄. The resulting 
al
i�ed deposit in the media of an artery is then
alled a plaque (�gure 2.1).Plaques 
an grow large enough to redu
e or even blo
k the blood �ow throughan artery. On the one hand, plaques 
an be
ome stable (�gure 2.2(
)) witha large ne
roti
 
ore and a strong 
al
i�ed 
ap and subsequently narrow the5



Chapter 2. Risk Assessment of Cardiovas
ular Diseases
Artery

Figure 2.1: The anatomy of an artery showing the intima, made up of endothelial 
ells aswell as the elasti
a interna, the media and adventitia. (Pi
ture taken from [9℄, modi�
a-tion and reprint a

ording to Creative Commons Attribution-NonCommer
ial-ShareAlike2.5 Li
ense).artery. On the other, they 
an be
ome instable (�gure 2.2(b)) and rupture.Ruptured plaques (�gure 2.2(d)) 
an 
ause the formation of blood 
lots that
an travel through the arteries and 
ause a blo
kage in any other part of thebody. If a blood 
lot blo
ks a 
oronary artery it 
an lead to a heart atta
k orif it travels to the brain it 
an 
ause a stroke. In the 
ase that the 
lot ends upin the lung it 
an lead to a pulmonary embolism and even in the extremities ablood 
lot 
an 
ause signi�
ant damage and eventually lead to gangrene [12℄.The goal is to identify 
al
i�ed deposits, be
ause they are an expression ofatheros
lerosis and dete
table by medi
al imaging modalities.2.2 Introdu
tion to Part I:Medi
al Imaging of Atheros
lerosisSin
e the aforementioned atheros
lerosis develops over de
ades [14℄ earlier de-te
tion of sub
lini
al atheros
lerosis may allow timely intervention and lead tobetter identi�
ation of people at risk. Hereby atheros
lerosis imaging plays alarge role. There exist a multitude of modalities to evaluate atheros
lerosis,both invasive and non-invasive [15, 16℄.Invasive methods like quantitative 
oronary angiography (QCA), intravas
u-lar ultrasound (IVUS) and opti
al 
oheren
e tomography (OCT) have all beenshown to be able to assess atheros
lerosis [15℄. But all three modalities are alsoreserved for small s
ale studies due to the inherent risks of invasive pro
edures.Furthermore, use of QCA is only advisable to aid interventional treatment of6



2.2. Introdu
tion to Part I:Medi
al Imaging of Atheros
lerosis

(a) A fatty streak develops insidethe intima. (b) A fatty streak 
an also de-velop into an unstable plaque witha thin �brous 
ap and a fatty 
ore.
(
) Often, an unstable plaqueevolves into a stable plaque witha large ne
roti
 
ore and a thi
k�brous 
ap. (d) An unstable plaque 
an even-tually rupture and lead to a blood
lot.Figure 2.2: A 
ross se
tion of an artery illustrates the di�erent stages of plaque development:(a) shows a fatty streak, (b) a stable, (
) an unstable and (d) a ruptured plaque.patients at intermediate risk [17℄ due to the relatively large exposure to ioniz-ing radiation (16 mSv [18℄).1But there exist many alternatives to invasive imaging pro
edures. Ultrasound(US), 
omputed tomography (CT), magneti
 resonan
e imaging (MRI) and X-ray are all non-invasive imaging te
hniques that have developed markers thatrelate to CVD risk.Ultrasound 
an be used to visualize the 
arotid intima-media thi
kness (IMT)that has been shown to be asso
iated with atheros
lerosis [19℄ and is thus amarker for CVD. Additionally, US is 
ost-e�
ient and does not expose pa-tients to harmful radiation. A downside of US is though that IMT is measuredin a di�erent vas
ular bed than the 
oronary arteries and that it is operatordependent [20℄.Imaging of atheros
lerosis in the 
oronary arteries 
an be done with CT [21℄.1The natural ba
kground radiation per year amounts to 
a. 3 mSv and a 
oast to 
oast �ight over theU.S. exposes a person to a radiation dose of 0.03 mSv [18℄7
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Figure 2.3: The AC24 is 
onstru
ted by proje
ting the abdominal aorti
 
al
i�
ations(AACs) to the 
orresponding aorta wall. The degree of lesion o

upation is graded: 0for no AAC, 1 for AACs o

upying less than 1/3 of the wall they are proje
ted onto, 2 forAACs o

upying more than 1/3, but less than 2/3 in the proje
tion, and 3 for a 2/3 or moreo

upation of the wall. Summed up the degrees of lesion o

upation lead to an AC24 s
oreranging between 0 and 24. The s
hemati
 view is adopted from [13℄.CT of the 
oronary arteries is able to quantify the degree of 
oronary artery 
al-
i�
ation (CAC) in the Agatson s
ore with good reprodu
ibility [22,23℄, whi
hprovides a strong measure of 
ardiovas
ular risk [24℄ independently from, andpotentially more powerful than, traditional risk fa
tors su
h as smoking [25℄.Atheros
lerosis imaging in CT is usually performed with two types of s
anners,ele
tron-beam 
omputed tomography and multi-row dete
tor CT. CoronaryCT is widely available and its downsides are only its 
ost [26℄ and the expo-sure to moderate levels of radiation (3 mSv [18℄).MRI is a non-invasive modality to assess atheros
lerosis in di�erent vas
ularbeds. MRI has been able to quantify atheros
lerosis and responses to treat-ment, but only in the aorta and the 
arotid arteries [27�29℄. The reason forthis is that MRI measurements are 
hallenged by the size of the smaller arteriesand assessment of the 
oronary arteries is espe
ially di�
ult due to 
ardia
 andrespiratory motion artifa
ts. So although its advantage is the la
k of exposureto harmful radiation, its disadvantages are the ina

essibility of the 
oronariesand its 
ost.Finally, it has been demonstrated that abdominal aorti
 
al
i�
ations (AACs)dete
table by lateral lumbar radiographs are strong predi
tors of 
ardiovas
u-8



2.2. Introdu
tion to Part I:Medi
al Imaging of Atheros
lerosisTable 2.1: Summary of imaging te
hniques used in atheros
lerosis in
luding some of theiradvantages and disadvantages.Advantages DisadvantagesQCA widely available invasiveradiation (16mSv)IVUS widely available invasiveOCT high resolution invasive
omplexUS 
ost-e�
ient di�erent vas
ular bed (
arotid arteries)no radiation operator dependentCT widely available 
ostradiation (3 mSv)MRI no radiation 
oronaries ina

essible
ostX-ray 
ost-e�
ient di�erent vas
ular bed (lumbar aorta)widely available radiation (1.5 mSv)lar morbidity and mortality [10℄. They 
orrelate strongly with 
oronary artery
al
i�
ations and 
an hen
e predi
t the risk of 
oronary artery problems [30℄.Therefore in X-rays the state of the art methodology to estimate CVD risk isthe abdominal aorti
 
al
i�
ation s
ore (AC24) proposed by the Framinghamstudy group [13℄. The AC24 is 
onstru
ted by proje
ting the abdominal aorti

al
i�
ations (AACs) to the 
orresponding aorta wall (see �gure 2.3). So whilean advantage of X-rays is the wide availability of the modality, a disadvantageis the exposure to a low level of harmful radiation (0.3 - 1.5 mSv [18, 31℄) aswell as the fa
t that the assessment of AC24 is again made in a di�erent vas-
ular bed than the 
oronaries.A summary of the mentioned advantages and disadvantages of the di�erentimaging te
hniques 
an be seen in table 2.1.2.2.1 Choi
e of Modality and Region of Interest in the BodyIn this dissertation the approa
h will be to examine abdominal aorti
 
al
i�
a-tions as observed in standard lumbar radiographs (see �gure 2.4). As alreadydis
ussed AACs are strong predi
tors of 
ardiovas
ular morbidity and mortal-ity [10℄. The reasons for 
hoosing X-ray images of the AACs in 
ontrast to forexample using MRI are threefold:
• X-ray is still one of the most widely available imaging modality besidesultrasound and 
ompared to imaging of 
arotid plaques via ultrasoundtaking a lumbar aorti
 X-ray is not as operator dependent [20℄.
• The gold standard for vertebral fra
ture diagnosis are standard radio-9
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Figure 2.4: Illustrations of abdominal aorti
 
al
i�
ations (AACs) in a lumbar aorti
 X-rayfor ease highlighted by a bla
k square around some of them.graphs [32℄. This means every time it needs to be 
lini
ally assessed if avertebral fra
ture is present, an X-ray of the spine is taken, whi
h thenalso 
an be used for CVD risk assessment.
• In 
lini
al studies for drug development against osteoporosis [33,34℄ in
lu-sion 
riteria are, besides other metaboli
 fa
tors, low BMD as measuredby DXA s
ans or radiographi
ally 
on�rmed vertebral fra
tures. Further-more, spinal lateral radiographs are used to measure e�
a
y, so everysubje
t in osteoporosis trials has at least one standard radiograph taken.And in some adverse e�e
t studies AC24 s
orings of lumbar radiographshave been requested to examine the e�e
t of osteoporosis treatment onthe 
ardiovas
ular system leading to even more subje
ts in 
lini
al trialswhere an X-ray of the lumbar spine is taken.That spinal fra
ture is assessed by standard radiographs and the availabilityof large, long duration studies from 
lini
al osteoporosis trials are big advan-tages when examining abdominal aorti
 
al
i�
ations. For all subje
ts thathave parti
ipated in a 
lini
al osteoporosis trial, the AAC s
oring 
an thenbe performed without additional ionizing radiation exposure or 
ost as theseimages are already available. Furthermore, histori
al data from 
lini
al trials
an be used to develop new AAC markers and verify them.As already stated there exists a need to intervene in the early stages of CVDsand to develop methods to enable CVD risk s
oring of large populations eitherin 
lini
al trials or in a s
reening setup. But the CVD risk examination ofa larger population is only possible if it 
an be done fast, 
heap and is eas-ily a

essible. By 
hoosing X-rays we provide a 
heap, widely available andinexpensive modality. 10
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tion to Part I:Medi
al Imaging of Atheros
lerosis
Lumbar Aortic 

X-ray Image
CVD Pipeline CVD Imaging Biomarker

Prior Knowledge

Figure 2.5: This shows how we apply the CVD Pipeline on lumbar aorti
 X-ray images.
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Figure 2.6: A s
hemati
 des
ription of the CVD Pipeline that allows for automati
 annota-tion of 
al
i�
ations in aorti
 X-ray images.2.2.2 Automating the Measurement of Imaging Biomarkers on Lum-bar Aorti
 RadiographsWhen trying to make CVD risk s
oring available for larger populations, thereal 
ost arises from the human involvement, e.g. the radiologists that have tospent time on AC24 s
orings of lumbar aorti
 X-rays. Therefore, it is essen-tial to provide automated s
oring frameworks to admit the possibility of largepopulation studies in order to identify further risk fa
tors of CVDs.To meet this 
hallenge we have developed a ma
hine-learning based approa
h[35℄ for automati
 annotation of 
al
i�ed deposits in lumbar aorti
 X-rayimages that we 
all "CVD pipeline" (see �gure 2.5). The CVD pipeline is
omprised of several steps: a pre-pro
essing, a vertebra-pro
essing, an aorta-pro
essing and a 
al
i�
ation-pro
essing stage. A diagram des
ribing the CVDpipeline 
an be seen in �gure 2.6.
11



Chapter 2. Risk Assessment of Cardiovas
ular DiseasesPre-Pro
essingThe pre-pro
essing in the CVD pipeline 
onsists of an image normalizationwhi
h is a prerequisite for a
hieving robust pixel 
lassi�
ation results on imagesfrom di�erent X-ray ma
hines. This 
an be a
hieved with standard intensitynormalization te
hniques, su
h as subtra
tion of the mean and division withthe standard deviation. Another possibility is to normalize the intensitiesa

ording to models from physi
s that des
ribe the s
attering of γ-rays.Vertebra- and Aorta-Pro
essingThe se
ond step of the CVD pipeline deals with of �nding the vertebrae in theimage. This is done by generating a vertebrae template that 
onsists of sixregions of interest, the �ve vertebral 
lasses de�ned in [36℄ and a ba
kground
lass, and then applying a random forest 
lassi�er [37℄. The 
lassi�er is trainedon 100,000 sampled points from the �ve foreground 
lasses using Gaussianderivative features up to third order on s
ales 0.18, 0.56 and 1.78 mm [38℄.On the basis of the 
lassi�
ation results a shape model is used to identify thelumbar vertebrae, L1-L4.Next the aorta is de�ned on the basis of the identi�ed vertebra via an aortaposition posterior, where we marginalize over all possible vertebra shapes [38℄.On
e we have found the aorta we use it as our region of interest in the sear
hfor 
al
i�
ations.Cal
i�
ation-Pro
essingThe 
al
i�
ation pro
essing 
ombines two things, the 
lassi�
ation output ofa pixel 
lassi�er and prior knowledge about the lo
ation and shape of 
al
i�eddeposits.For the 
lassi�
ation we employ a random forest 
lassi�er [37℄ with seven fea-tures: Gradient Magnitude at the s
ales 0.56 and 1.78 mm, Hessian Coheren
eat 1.78 mm, the se
ond Gaussian derivative in y-dire
tion at the s
ales 0.18and 0.56 mm as well as the third Gaussian derivative in x- as well as y-dire
tionat a s
ale of 0.56 mm. 2 After identifying the features the 
lassi�er is trainedon 100,000 points and a �ve fold 
ross validation is used; in this 
ase �ve foldmeans 4
5
of our data is used for training and 1

5
is tested on.A weakness of a pixel-based 
lassi�
ation is that it does not use 
ontextualknowledge. The feature spa
e is not well separated and hen
e the output fromthe pixel 
lassi�
ation is noisy. Cal
i�
ation priors 
an distill 
ontextual in-formation from the image. They enhan
e the result by using image intensity,shape and statisti
al information sin
e these properties of the X-rays 
an help2The seven features are found by training the 
lassi�er on 100,000 points from manual annotations ofthe aorta template of a separate data set and then employing a sequential �oating forward feature sele
tion(SFFS) [39℄. 12



2.2. Introdu
tion to Part I:Medi
al Imaging of Atheros
lerosisto predi
t shape and distribution of the 
al
i�
ations.Hen
e, in the CVD pipeline several 
al
i�
ation priors are used: First, we
ombine the output of the pixel 
lassi�er with a 
al
i�
ation likelihood map.The map is 
onstru
ted by registering all manual annotations of the trainingset into a 
ommon normalized 
oordinate system [40℄ and then turning this
al
i�
ation histogram through normalization into a probability map. The 
al-
i�
ation likelihood map ensures that 
al
i�
ations that are pla
ed in unlikelypla
es are subdued, while 
al
i�
ations in very likely pla
es in the aorta areemphasized. Se
ond, we learn a shape model of the 
al
i�
ations from themanual annotations and then impose the same shape statisti
s of the trainingdata onto our segmentation result.Challenges for the CVD PipelineThe CVD pipeline 
onsists of several steps that ea
h fa
e their own obsta
les.Furthermore, sin
e we deal with histori
al 
lini
al trial data, our X-ray imagesare a�i
ted by 
lutter, o

lusions and a low signal-to-noise ratio and obje
tboundaries are hardly visible. This naturally 
hallenges the pro
essing as awhole. An example X-ray image 
an be seen in �gure 2.7.In the vertebra stage the biggest problem is to identify the lumbar vertebrae,L1-L4, 
orre
tly. A shape model of the 4 lumbar vertebrae 
an also falselydete
t the thora
i
 vertebra T12-L3 or L2-L5 and hen
e predi
t a wrongaorta. Furthermore, vertebrae are sometimes only partially visible and 
anthen not be identi�ed by the vertebra shape model. Additionally, the ver-tebrae boundaries 
an appear smeared or even dupli
ate, be
ause the X-raypro
edure proje
ts the three-dimensional vertebrae into two dimensions.The 
onditional shape model of the aorta given the vertebrae depends on thevertebrae, but also on potential 
al
i�
ations. Therefore it needs to be ableto take the vertebrae as well as potential 
al
i�
ations into a

ount to de�nea region of interest for further pro
essing. Espe
ially, if the vertebrae predi
-tion step fails, e.g. 
an not mat
h the vertebrae shape model to the a
tualvertebrae, it 
an be seen that the 
onditional shape model is very sensitiveto false positives (vertebrae boundary pixels that look like potential 
al
i�
a-tions). Finally, sin
e the biologi
al shape variation of the aortas o

urs on a
urved manifold, a more 
ompli
ated shape model might be needed.Setting aside the problems that arise from trying to dete
t the vertebra andthe aorta, the dete
tion of 
al
i�ed deposits in X-ray images itself has various
hallenges. First, the 
al
i�ed plaques are small obje
ts of low 
ontrast andlarge variability in shape, size and appearan
e and therefore a�e
ted by ba
k-ground noise, e.g., noise from Compton s
attering. Se
ond, be
ause the X-rayis a 2-dimensional proje
tion the 
al
i�
ations are often totally or partiallyo

luded by other physiologi
al stru
tures, su
h as the lowest ribs, part of the13
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ular Diseases

Figure 2.7: Here an example X-ray image is shown, where one 
learly sees the four lumbarvertebrae. To the left of the vertebrae the aorta is lo
ated, but it is hard to see sin
e itis less prominent than the vertebrae. It is inside the aorta that we try to dete
t 
al
i�eddeposits. 14
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tion to Part I:Medi
al Imaging of Atheros
lerosis

(a) (b) (
)Figure 2.8: Here we 
an see a typi
al pipeline result based on the image in �gure 2.7. (a)We 
an see the manual annotation of the vertebrae and the aorta outline (white) as well asthe 
al
i�
ations (red). (b) In the middle the automati
ally retrieved vertebrae and aortaoutline (green) as well as a probability map of the 
al
i�
ations (yellow to red) are shown.(
) The overlap of the 
al
i�
ation segmentation with the manual annotation is displayed;yellow indi
ates true positives, blue indi
ates false positives and red indi
ates false negatives.hip or folds of fat in obese persons. Third, other stru
tures, e.g. 
al
i�
ationsin the bowels or parts of vertebral 
orti
al bone, have a similar appearan
e inthe image.An example of an automati
 
al
i�
ation segmentation of the CVD pipelineis shown in �gure 2.8. The pi
ture displays a manual annotation besides theautomated segmentation result and also a 
omparison of the two. The perfor-man
e and limitations of the CVD pipeline, espe
ially 
on
erning the 
al
i�-
ation shape modeling, will be examined in 
hapters 3 and 4.2.2.3 Appli
ation of Renormalization Group Theory in Medi
alImagingIn se
tion 2.2.2 the CVD pipeline and its fo
us on dete
ting lumbar aorti
 
al-
i�
ations has been des
ribed. A key feature of the CVD pipeline is the pixel
lassi�er that is used to segment the 
al
i�
ations inside a given region of in-terest. But it has its limitations. When dealing with high resolution imagesthe 
omputational time is extensive. And sin
e it 
lassi�es ea
h pixel for itself,it 
an not take spatial intera
tions between pixels into a

ount and thereforerequires us to use 
al
i�
ation shape priors to re-introdu
e spatial 
oheren
y.15



Chapter 2. Risk Assessment of Cardiovas
ular DiseasesHen
e, we have investigated methods to repla
e the pixel 
lassi�er by otherimage segmentation algorithms. To do this we developed a new method forimage segmentation based on renormalization group theory (RGT) whi
h isespe
ially interesting for images with a high resolution and where very longspatial intera
tions play a role (see �gure 2.9). A strength of RGT is thatit 
an as des
ribed in [41℄ and [42℄ evolve energy fun
tions 
orre
tly betweendi�erent s
ales when employing a hierar
hi
al approa
h. At every s
ale theresulting energy fun
tion 
an then be optimized by the optimizer of 
hoi
e.Hen
e, for large problems RGT 
an be applied to general segmentation te
h-niques to 
onstru
t an appropriate hierar
hi
al version of the problem.Segmentation problems in general 
an be solved by 3 di�erent approa
hes -lo
al optimizing te
hniques, global optimizing te
hniques and sto
hasti
 meth-ods. Lo
al optimizing te
hniques are e.g. a
tive 
ontour [43℄, a
tive appear-an
e [44℄ or level set models [45℄. A problem of a
tive 
ontour or a
tive ap-pearan
e models is their inability to handle topology 
hanges. Level sets 
anhandle those, but sin
e level sets essentially employ gradient des
ent methodsone runs into problems again. Most of the fun
tionals one deals with in medi-
al imaging are far from 
onvex, so level sets only yield lo
al optima. Globaloptimizers like graph
ut [46℄, on the other hand, guarantee to �nd the globaloptimum. The problem lies here in the 
omputational tra
tability in termsof time and memory 
onsummation, as soon as the 
onne
tivity of the graphbe
omes dense. But this exa
tly is the 
ase in medi
al images, where high
1

2

3 (a) 3

1

2

(b)Figure 2.9: First an X-ray of our study population (resolution 570 dpi). Then a small part ofthe former X-ray, showing a row of three 
al
i�
ations (800 by 400 pixels). To separate the3 
al
i�
ations 
orre
tly from ea
h other, the high resolution as well as the several hundredpixels long intera
tions inside the 
al
i�
ations are important.16



2.3. Introdu
tion to Part II:Diagnosti
 Tools for Cardiovas
ular Disease Risk
Table 2.2: Spe
i�
ations of the EU SCORE 
ard [49℄ and the Framingham Coronary HeartDisease Risk S
ore (Framingham s
ore) [50℄.EU SCORE Framingham s
oreAge AgeSmoking status Smoking statusTotal 
holesterol Total 
holesterolSystoli
 blood pressure Systoli
 blood pressureHigh-density lipoproteinHypertension treatment statusresolution as well as long intera
tions ranges play a role. Sto
hasti
 methods,markov 
hain monte 
arlo (MCMC) methods [47℄ or simulated annealing [48℄,also �nd the global optimum. But similarly they present a 
omputational 
hal-lenge. Espe
ially if long range intera
tions are of importan
e, the 
onvergen
etime is a problem.In 
hapter 5 RGT will be applied to one of the above methods to improvetra
tability showing how hierar
hi
al pro
essing of large images with long spa-tial intera
tions is possible.2.3 Introdu
tion to Part II:Diagnosti
 Tools for Cardiovas
ular Disease RiskFrom the image pro
essing approa
h to CVD risk assessment we now move intothe 
lini
al evaluation of CVD risk. Besides the imaging modalities introdu
edin 
hapter 2.2 to assess CVD risk, there exist also other markers of CVD risk,su
h as metaboli
 biomarkers, whi
h are used in 
lini
al pra
ti
e. If one is ableto pro
ess large population studies by automating the measurement of imag-ing biomarkers (see 
hapter 2.2.2) the performan
e of the imaging biomarkersneeds to be 
ompared to already established 
lini
al measures of CVD risk.2.3.1 Current Metaboli
 Biomarkers for CVDsAlready in 1981 a list of 246 
oronary risk fa
tors had been 
ompiled [51℄. Lateron, risk s
oring systems for use in the 
lini
al management of 
ardiovas
ularrisk in Europe, the EU SCORE 
ard [49℄, as well as in the US, the Framing-ham Coronary Heart Disease Risk S
ore (Framingham s
ore) [50℄, have beendeveloped. The EU SCORE is a 
ombination of the age, smoking status, levels17



Chapter 2. Risk Assessment of Cardiovas
ular Diseasesof total 
holesterol and systoli
 blood pressure, while the Framingham s
ore is
omprised of the same variables plus the high-density lipoprotein (HDL) andthe hypertension treatment status (see table 2.2).The se
ond part of this dissertation (
hapter 6-7) will give an example of a
omparison between newly developed markers relating to the geometri
al out-line of 
al
i�ed deposits in lumbar aorti
 X-ray images and the established EUSCORE and Framingham s
ore.Overall this dissertation is 
omprised of a theoreti
al approa
h tothe automated segmentation of 
al
i�ed deposits and its pra
ti
alappli
ation on data from existing 
lini
al osteoporosis trials. Whilepart I 
reates the te
hni
al basis for the automated segmentation andthe development of new imaging biomarkers, part II evaluates theperforman
e of imaging biomarkers 
ompared to established 
lin-i
al measures. Together the two parts 
an hopefully improve theunderstanding of CVD risk and thereby optimally target timely in-tervention and better identify people at risk.

18



IMedi
al Imaging of Lumbar Aorti
Cal
i�
ations
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Part I of the dissertation 
onsists of resear
h papers that fo
us on the develop-ment of automated methods for the dete
tion of lumbar aorti
 
al
i�
ations.The 
ontributions to the automated methods were done in the 
al
i�
ationpro
essing stage of the CVD pipeline.The �rst 
hapter gives an overview over a method from geostatisti
s 
alledKriging and leads to a "Dense Iterative Contextual Pixel Classi�
ation usingKriging". Chapter 4 introdu
es a texton-based generative shape model usinga minimal des
ription length model sele
tion that is applied on the lumbaraorti
 
al
i�
ation data as well as natural image texture data. In 
hapter 5we make an ex
ursion into the world of statisti
al physi
s. A method basedon renormalization group theory (RGT) is used to derive a new approa
h formulti-s
ale image segmentation that 
ould be an alternative approa
h to partsof the CVD pipeline.
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Chapter 3Dense Iterative Contextual PixelClassi�
ation Using KrigingThis 
hapter is based on the manus
ript "Dense Iterative Contextual Pixel Classi�
ationUsing Kriging" by Melanie Ganz, Mar
o Loog, Sami Brandt and Mads Nielsen publishedin the pro
eedings of the IEEE Computer So
iety Workshop on Mathemati
al Methods inBiomedi
al Image Analysis, 2009.Abstra
t In medi
al appli
ations, segmentation has be
ome an ever more importanttask. One of the 
ompetitive s
hemes to perform su
h segmentation is by means of pixel
lassi�
ation. Simple pixel-based 
lassi�
ation s
hemes 
an be improved by in
orporat-ing 
ontextual label information. Various methods have been proposed to this end, e.g.,iterative 
ontextual pixel 
lassi�
ation, iterated 
onditional modes, and other approa
hesrelated to Markov random �elds. A problem of these methods, however, is their 
omputa-tional 
omplexity, espe
ially when dealing with high-resolution images in whi
h relativelylong range intera
tions may play a role. In the following, a new method based on Krigingis proposed that makes it possible to in
lude su
h long range intera
tions, while keepingthe 
omputations manageable when dealing with large medi
al images.
3.1 Introdu
tionIn medi
al appli
ations, image segmentation tasks be
ome ever more impor-tant to aid quantitative analysis. In this paper, we fo
us on the appli
ation ofmedi
al imaging to aid the diagnosis and prognosis of 
ardiovas
ular diseases(CVDs) [52,53℄. Images are traditionally segmented by e.g. a
tive 
ontour [54℄,a
tive appearan
e [55℄ or level set models [56℄. Competitors to these models,espe
ially in the domain of medi
al imaging, are pixel-wise 
lassi�ers [57℄. Toa
hieve even better segmentations, in 
ooperation with pixel-wise 
lassi�
ation,23



Chapter 3. Dense Iterative Contextual Pixel Classi�
ation Using Krigingvarious methods have been developed that take 
ontextual information in theimages into a

ount. Examples are iterated 
onditional modes (ICM) [58℄,iterative 
ontextual pixel 
lassi�
ation (IPCP) [59℄ or Markov Random Fields(MRF) [48℄.A pure pixel-wise 
lassi�
ation takes only the 
ontributions of a neighborhoodin the image into a

ount when assigning the 
lass label to a pixel. It doesnot 
onsider any other 
lass labels in its de
ision. The te
hnique of ICM onthe 
ontrary employs 
ontextual knowledge. It is divided in two steps: First,the pixels are 
lassi�ed by a pixel-wise 
lassi�er. Se
ond, the neighboring 
lasslabels are in
luded into a label de
ision. An advan
ed version of ICM waspresented by Loog and van Ginneken [59℄. Their ICPC method went a stepfurther than ICM by 
reating a simultaneous dependen
y of a 
lass label onsurrounding image values and 
lass labels.A problem of these methods, however, lies in their 
omputational burden whendealing with high resolution images like medi
al data. Additionally, if also longrange intera
tions are present in the image, the 
onvergen
e of the methodsoften be
omes an issue.We propose a new model that 
an be applied after a pixel-wise 
lassi�
ation,Dense Iterative Contextual Pixel Classi�
ation (DICPC). It employs the 
on-text of all 
lass labels and 
an take long range intera
tions into a

ount. Weimplement this by approximating the 
ontextual intera
tions in label spa
ewith a linear model based on Kriging [60℄. With this approximation it be-
omes feasible to 
onverge to an optimal segmentation in manageable time,even for high-resolution images with a long intera
tion ranges.This 
hapter is organized as follows: Se
tion 3.2 restates the problem andgives an introdu
tion to a statisti
al interpretation of segmentation and Krig-ing. Se
tion 3.3 introdu
es the DICPC algorithm. Se
tion 3.4 introdu
es theproblem on whi
h we exemplify our method. It 
on
erns the di�
ult task ofquantifying aorti
 
al
i�
ations. Information on the study population and theexa
t 
lassi�
ation settings are presented there as well as evaluation meth-ods. The results 
an be found in se
tion 3.5, while se
tion 3.6 
omprises thedis
ussion and 
on
lusion.3.2 Problem Des
riptionLet an image I = (I1, . . . , In) of the size n be des
ribed by its pixel values
Ii. In a pixel 
lassi�
ation s
heme, there exists a feature ve
tor ~fi for ea
hpixel that 
onsists of one or multiple features, e.g. intensity values or �lterresponses, at the pixel lo
ation i. The matrix F = (~f1, . . . , ~fn) is 
omprisedof all the feature ve
tors. The labels for every pixel i also shape a ve
tor,
~c = (c1, . . . , cn), that 
onsists of the 
lass label at ea
h pixel lo
ation. Class24



3.2. Problem Des
riptionlabels are part of the set Γ = (1, 2, . . . , γ), where γ is �nite.The problem lies now in �nding the optimal segmentation C⋆ for the image I.3.2.1 Statisti
al InterpretationTo �nd the optimal segmentation C⋆ we pursue a maximum-a-posteriori (MAP)approa
h3. In a MAP estimation the optimal segmentation is given as
C⋆ = argmax

C∈Γn

P (C|I), (3.1)where Γn is the set of all possible segmentations.There exist di�erent approa
hes to solve (3.1). Assuming 
onditional indepen-den
e of C we 
an rewrite it to
C⋆ = argmax

C∈C

∏

i

P (Ci|C¬i, I), (3.2)where Ci denotes the label for a pixel i. Additionally assuming a Markovproperty [62℄ holds in the label spa
e this 
an be transformed into
C⋆ = argmax

C∈C

∏

i

P (Ci|CNi
, I). (3.3)Here CNi

are the neighborhood labels of a pixel i . This equation 
an nowbe taken as the starting point to des
ribe the di�erent te
hniques mentionedbefore.In order to approximate (3.1) and to move toward the optimal segmentation
C⋆ one 
an iteratively update the labeling of single pixels. This is somewhatreminis
ent of Besag's iterated 
onditional models [58℄ and means that if twoalternate segmentations C1 and C2 are provided, one 
an de
ide pixel by pixelif the segmentation should be updated or not.A way of optimizing su
h an iterative pro
edure has been presented as ICPCin [59℄. The ICPC algorithm is based on a simple 
lassi�
ation result, so itavoids 
al
ulating 
onditional properties expli
itly. Neither is a 
lique formal-ism needed as in an MRF approa
h. A problem of ICPC is though that one
an end the optimization in a lo
al optimum, instead of the global optimum.There is no guarantee that one deals with a 
onvex energy fun
tion and it 
antherefore not be guaranteed to rea
h the global optimum.Our method, DICPC, is based on the out
ome of a 
lassi�
ation. It possessesall the bene�ts of ICPC, but on the 
ontrary to ICPC it provides a 
onvexfun
tional for the 
ommon distributions (Gaussian, Poisson) and 
an thereforebe guaranteed to be solved by a se
ond order optimization method.3The MAP approa
h equals a Bayesian minimal risk approa
h [61℄ for the risk fun
tion of all wrong
lassi�
ations being equally risky. 25



Chapter 3. Dense Iterative Contextual Pixel Classi�
ation Using Kriging3.2.2 KrigingKriging [63, 64℄ is a geostatisti
al method that is used to spatially interpolatethe value z0 at any lo
ation ~r0 from irregularly sampled data ~z at N points
~rN . This is done by the lo
al a�ne model z0 = z(~r0) su
h that

z0 = w0 +

N∑

i=1

wizi = w0 + ~wt~z, (3.4)where w0 is an o�set and wi is the weight applied to zi. If we regard the zi asrealizations of random variables Zi and request our measure to be unbiased,
E(Z0 − Ẑ0) = 0, we 
an de�ne the estimation varian
e

σ2
E = Var(Z0 − Ẑ0). (3.5)Using the linear model we 
an simplify this to

σ2
E = Var(Z0) + Var(w0 + ~wt ~Z)− 2Cov(Z0, w0 + ~wt ~Z)

= σ2 + ~wt
C~w − 2~wtCov(Z0, ~Z),

(3.6)where C is the 
ovarian
e matrix of ~Z. Cov(Z0, ~Z) is a 
olumn ve
tor of
ovarian
es between data points a lo
ations ~ri and ~rj that 
an be 
al
ulatedbased on the assumption of spatial stationarity from the entries in C. Weminimize the estimation varian
e after the weights wi by solving
∂σ2

E

∂ ~w
= 2Cov(~Z, ~Z)~w − 2Cov(Z0, ~Z) = 0. (3.7)This results in the simple Kriging system
Cov(~Z, ~Z)~w = 2Cov(Z0, ~Z), (3.8)whi
h 
an be solved for the interpolation weights ~w and is in our 
ase expandedto in
lude the ne
essary 
ondition 0 ≤ wi ≤ 1 in order to avoid negativeweights.3.2.3 Appli
ation of KrigingThe same prin
iple of Kriging 
an with regularly distributed samples be appliedto an image and has been used for image restoration [65℄. Kriging is as statedin (3.4) based on a linear estimation model. In the 
ase of a segmentationtask where manual segmentations are available, one 
an learn the weights thatminimize the estimation varian
e, σ2

E , from the manual segmentations Smanvia the linear model
z0,man = w0,man + ~wt

man~zman. (3.9)26



3.3. DICPC - Dense Iterative Contextual Pixel Classi�
ationThen we use these weights to 
ompose a linear model for the automated seg-mentations
z0,aut = w0,man + ~wt

man~zaut. (3.10)This is possible be
ause we may assume that the 
ovarian
e stru
ture of themanual segmentations 
an be transferred to the automated segmentation. Theweights of the linear model 
an then be applied to the automated segmentation
Saut in a �ltering manner to give a kriged estimate of the segmentation

K(Saut) = k ∗ Saut, (3.11)where k is a 2D-�lter built from the weights ~wman. Be
ause our method isbased on this type of �ltering the 
omputational 
ost stays low 
ompared toICM and ICPC. Using this formulation of simple Kriging, we now turn to ourappli
ation in pixel-based segmentation.3.3 DICPC - Dense Iterative Contextual Pixel Classi�-
ationThe solution for an optimal 
ontextual segmentation has the form of (3.3),
C⋆ = argmax

C∈C

∏

i

P (Ci|CNi
, I). (3.12)Using Bayes formula this 
an be transformed into

C⋆ = argmax
C∈C

∏

i

P (I|Ci, CNi
)P (Ci|CNi

)

= argmin
C∈C

∑

i

(

− log(P (I|Ci, CNi
))− log(P (Ci|CNi

))
)

.
(3.13)If we assume independen
e of CNi

and I, we 
an write this as
C⋆ = argmin

C∈C

∑

i

(

− log(P (I|Ci))− log(P (Ci|CNi
))
)

. (3.14)3.3.1 Gaussian DistributionsTo solve (3.14) we need to de�ne P (I|Ci) and P (Ci|CNi
). For now we assumethat both are Gaussian distributed, but we will relax this assumption later.A probability prior P (Ci|CNi

) for the segmentation C 
an be formulated asfollows
P (Ci|CNi

) = Gσ(Ci −K(Ci))

=
1√
2πσi

exp
(

− (Ci −K(Ci))
2

2σ2
i

) (3.15)27



Chapter 3. Dense Iterative Contextual Pixel Classi�
ation Using KrigingFurthermore, we assume also separability of the image pixels and thereforede�ne P (I|Ci) =
∏

i P (Ii|Ci) to be of the form
P (Ii|Ci) = Gσ(Ii − Ci)

=
1√
2πσ

exp
(

− (Ii − Ci)
2

2σ2

)

.
(3.16)In the 
ase of a Gaussian prior P (Ci|CNi

) and a Gaussian likelihood P (Ii|Ci),the posterior distribution is Gaussian again and in that 
ase a 
losed formsolution exists for (3.14). Plugging in P (Ii|Ci) and P (Ci|CNi
) into (3.16) leadsto

EG =
∑

i

(

a+
(Ii − Ci)

2

2σ2
+

(Ci −K(Ci))
2

2σ2
i

)

, (3.17)where a = log(2πσσi). We repla
e K(Ci) with k∗Ci a

ording to the de�nitionof (3.11) and get
EG =

∑

i

(

a+
(Ii − Ci)

2

2σ2
+

(Ci − (k ∗ Ci))
2

2σ2
i

)

. (3.18)Due to the Parseval theorem the energy is preserved in the Fourier trans-form, so the 
ost 
an be equivalently 
omputed in the Fourier domain. Theminimization in the Fourier domain is performed by di�erentiating the en-ergy fun
tional with respe
t to the real and imaginary parts of the Fourier
oe�
ients and setting the result to zero. This way we arrive at
C⋆ = F−1

(

Ĩi

1 +̟(k̃′)⋆(k̃′)

)

, (3.19)where ̟ is the ratio between the neighborhood and the global varian
e, Fdes
ribes the Fourier transform and Ĩ = F(I) as well as k̃′ = F(k′) = F(k−1).3.3.2 Other DistributionsIf P (Ii|Ci) and P (Ci|CNi
) are not Gaussian, but e.g. Lapla
e distributed, theenergy fun
tion of (3.17) 
hanges to

EL =
∑

i

(

a +
|Ii − Ci|
2σ2

+
|Ci −K(Ci)|

2σ2
i

)

, (3.20)A solution to (3.20) 
an be found via variational methods by any approa
hfor total variation minimization. In the 
ase of distributions where the modeof the distribution is the same as its mean this solution is equal to the MAPsolution. Thus, for the Lapla
ian distribution the MAP solution is identi
al to28



3.3. DICPC - Dense Iterative Contextual Pixel Classi�
ationthe minimum varian
e solution. In the 
ase of other distributions, it dependson the distribution if the total variation minimization equals the MAP solution.To exemplify this we derive the solution again with the help of a gradientdes
ent method; the same solution 
an be found with the iterative updateequation
I t+1 =

∑

i

α∂INi

(
− log(P (CNi

|I tNi
))− log(P (I tNi

))
)
, (3.21)where t gives the number of the iteration, α the step size and ∂INi

a partialderivative after Ii. The solution of the update equation (3.21) is given by
I t+1 =

∑

i

γ(log(2πσσi)

− 1

σ2
(Ci − Ii)

2 +
1

σ2
i

(Ii −K(Ii))
2)

(3.22)We 
an solve this by �rst negle
ting the 
onstant fa
tor advan
ing to
I t+1 ≈

∑

i

− 1

σ2
(Ci − Ii)

2 +
1

σ2
i

(Ii −K(Ii))
2, (3.23)We get to the optimal segmentation when the image I t+1 is the same as I tbefore the iteration. Therefore the 
hanges between I t and I t+1 should vanish:

∑

i

(Ci − I ti )
2 +̟(I ti −K(I ti ))

2 = 0. (3.24)We arrive at the same optimal solution as given in (3.19)
C⋆ = F−1

(

C̃

1 +̟(k̃′)⋆(k̃′)

)

. (3.25)3.3.3 DICPC algorithmAll in all, the 
ontextual 
lassi�
ation approa
h that is proposed looks asfollows:1. Learn the weights ~wman from manual segmentations and 
onstru
t a 2D-�lter k.2. De�ne a distribution to be used in the prior P (Ci|CNi
).3. De�ne a distribution to be used in the 
onditional probability P (Ii|CNi

).4. Use a dire
t or a variational approa
h to solve (3.14).29



Chapter 3. Dense Iterative Contextual Pixel Classi�
ation Using Kriging

Figure 3.1: The graph displays one of the original images and a manual as well as anautomati
 segmentation of a 
al
i�
ation. Note how mu
h ba
kground noise there is presentin the automati
 segmentation.3.4 Methods3.4.1 Study populationThe study population used in this paper is the EPI follow-up population,whi
h was part of the multi-
entered PERF Study [66℄. The EPI part of thePERF study was an epidemiologi
al study addressing the role of a numberof metaboli
 risk fa
tors in the pathogenesis of CVD and osteoporosis [67℄
arried out in Ballerup, Denmark, in 1992 and 2001. Three trained radiologists,unaware of the patients 
onditions, annotated the vertebrae, the aorta and the
al
i�
ations in the digitized X-ray images. They used Se
tra radiologi
alreading units and annotation software implemented in MatLab (Mathworks,MA, USA).Five images where randomly sele
ted and 18 pat
hes with one or multiple
al
i�
ations as illustrated in �gure 3.1 were a
quired. The testing of thedi�erent methods was performed on these 18 
al
i�
ation pat
hes.
30



3.4. Methods3.4.2 Evaluation MethodsTo measure the 
omplian
e of an annotation A1 and the out
ome of a 
lassi�-
ation A2, �rst the Ja

ard index [68℄ is used. This is a quanti�
ation measurefor segmented areas. The ratio of the number of pixels present in both seg-mentations to the total number of pixels in the segmentations is taken. TheJa

ard index varies from 0 whi
h equals no overlap to 1 
orresponding to
omplete overlap,
rJacc =

|A1 ∩A2|
|A1 ∪A2|

(3.26)Furthermore we use sensitivity rSens and spe
i�
ity rSpec to evaluate the per-forman
e of our 
ontextual 
lassi�
ation methods.Note that these measurements require the images to have the same resolution.Furthermore, the errors of rJacc, rSens and rSpec in
rease with smaller obje
ts.3.4.3 Classi�
ation and Kriging SettingsWe use a k-Nearest-Neighbor 
lassi�er [69℄ with k = 25. Training pixels aresele
ted with a bias toward 
al
i�ed pixels, meaning that 30% of the trainingpixels 
hosen are 
al
i�ed pixels whi
h are de�ned a

ording to the manualannotations. The features used were the intensity, the gradient magnitude,the Hessian tra
e, the Hessian determinant and the Hessian eigenvalues, anadaption of Koenderink's shape 
lassi�
ation measure [70℄ and the ratio of thedi�eren
e and sum of the Hessian eigenvalues. All features were 
al
ulated atthree di�erent s
ales, 
orresponding to 2, 5 and 17 mm.In our method, we learn the Kriging �lter for 
al
i�
ations from manual seg-mentations by 
al
ulating the weights for a seven by seven neighborhood inwhi
h we krig to the 
entral pixel. This way we arrive at a seven by seven �lterthat is used as k in (3.11). In prin
iple one 
an use any size neighborhood,sin
e the �ltering pro
ess is 
omputationally very fast even for large �lters.3.4.4 Comparison to other methodsTo investigate the performan
e of our method we 
ompare it to post-pro
essingmethods used for the segmentation of lumbar aorti
 
al
i�
ations.Disk MorphologyThe morphologi
al operations used are an opening and a 
losing with a diskof the size of 1 mm. We 
hose 1 mm in order to remove pixel noise, but notparts of 
al
i�
ations.
31



Chapter 3. Dense Iterative Contextual Pixel Classi�
ation Using KrigingBiologi
al MorphologyThe morphologi
al operations used are an opening and a 
losing with stru
-turing elements derived from biologi
al �ndings. Larsen et al. showed in [71℄that the size of lumbar aorti
 
al
i�
ations is approx. 5± 3 mm in height and
2 ± 1 mm in width. A

ording to these �ndings the �rst stru
turing elementwas designed to remove everything smaller than a standard deviation of a 
al-
i�
ation in size. Therefore we used a disk of the size of 1 mm for the opening.For the 
losing, we made use of a re
tangular stru
turing element of the sizeof one standard deviation of a 
al
i�
ation in width (1 mm) and one standarddeviation of a 
al
i�
ation in height (3 mm).3.5 ResultsThe pure pixels 
lassi�
ation as well as the pixel 
lassi�
ation in 
orrespon-den
e with the three di�erent methods, disk morphology (�gure 3.2(a)), bio-logi
al morphology (�gure 3.2(b)) and DICPC (�gure 3.2(
)), were evaluatedfor the 18 
al
i�
ation pat
hes at the kNN threshold (70% to 30% samplingleads to a threshold of 17

25
). In general we 
an observe that the Kriging produ
esresults that are mu
h 
loser to the original pixel 
lassi�
ation than the mor-phologi
al operations. The morphology imprints the shapes of its stru
turingelements onto the pixel 
lassi�
ation result and produ
es harsh boundaries.The Kriging, on the 
ontrary, makes the pixel 
lassi�
ation boundaries �nerand even pres
inds stru
tures out of the ba
kground around the 
al
i�
ations.The average values for the Ja

ard index, sensitivity and spe
i�
ity for the 18pat
hes are given in table 3.1. We 
an observe that the Kriging Prior in
reasesthe Ja

ard index and the sensitivity 
ompared to all other methods whileleaving the spe
i�
ity un
hanged 
ompared to the pure pixel 
lassi�
ation.Furthermore the statisti
al signi�
an
e of di�eren
e between the means of thedi�erent methods was tested via a paired one-sided Student's t-test. The t-tests
on�rmed that the in �gure 3.2 observed di�eren
es of the Kriging 
omparedto the other methods are signi�
ant for the Ja

ard index, the sensitivity andthe spe
i�
ity. The results of the tests are shown in �gures 3.3(a),3.3(b),3.3(
).3.6 Dis
ussion and Con
lusionWhen dealing with high resolution medi
al images that present long rangeintera
tions one runs into 
omputational problems when trying to use standard
ontextual 
lassi�
ation te
hniques like ICM or ICPC. This is why we 
ompareour new method to other te
hniques, disk and biologi
al morphology, whi
hare 
ommon post-pro
essing methods for this appli
ation.32



3.6. Dis
ussion and Con
lusion

(a) The result of the disk mor-phology. (b) The result of the biologi
almorphology. (
) The result of DICPC.Figure 3.2: Results for di�erent morphologi
al operations and DICPC. The morphology im-prints the shapes of its stru
turing elements onto the pixel 
lassi�
ation result and produ
esharsh boundaries. The Kriging, on the 
ontrary, makes the pixel 
lassi�
ation boundaries�ner and even pres
inds stru
tures out of the ba
kground around the 
al
i�
ations.Table 3.1: The area overlap results for the population at the kNN threshold (70% to 30%sampling leads to a threshold of 17
25 ). We 
an observe that the Kriging Prior in
reases theJa

ard index and the sensitivity 
ompared to all other methods while leaving the spe
i�
ityvirtually un
hanged 
ompared to the pure pixel 
lassi�
ation.Pure Pixel Disk Biologi
al KrigingClassi�
ation Morphology Morphology PriorJa

ard index 40% 35% 34% 41%Sensitivity 0.60 0.41 0.43 0.62Spe
i�
ity 0.96 0.99 0.98 0.95We observe that our new method, DICPC, improves the sensitivity and theJa

ard index, while it leaves the spe
i�
ity almost un
hanged. The othermethods, disk morphology and biologi
al morphology, even lower the Ja

ardindex and the sensitivity while improving the spe
i�
ity in
onsiderably. Thelowering of the Ja

ard index and the sensitivity is 
aused by the relativelyharsh boundaries that the morphologi
al operations produ
e in 
ontrast to theKriging.Kriging and therefore DICPC is only the �rst step in the right dire
tion. Aweakness of DICPC is the linear model that underlies Kriging. It implies onlypairwise intera
tions. The goal is to develop a 
ontextual method that is as33



Chapter 3. Dense Iterative Contextual Pixel Classi�
ation Using Krigingfast and 
omputationally feasible as DICPC, but based on joint probabilitiesof the 
lass labels. The next 
hapter introdu
es su
h a method based on textondi
tionaries.

34



3.6. Dis
ussion and Con
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(b) Comparison of the sensitivity of the di�erent methods
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(
) Comparison of the Spe
i�
ity of the di�erent methodsFigure 3.3: The graph displays the results for the paired Student's t-tests between thedi�erent methods for the Ja

ard index, sensitivity and spe
i�
ity. The stars indi
ate theout
ome of a paired one-tailed Students' t-test: ⋆ < 0.05, ⋆⋆ < 0.01 and ⋆⋆⋆ < 0.001. The in�gure 3.2 observed di�eren
es of the Kriging 
ompared to the other methods are signi�
antfor the Ja

ard index, the sensitivity and the spe
i�
ity.
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Chapter 4A Texton-based Generative Shape Modeland MDL Model Sele
tion for Statisti
alAnalysis of Ar
hipelago-Like TexturesThis 
hapter is based on the manus
ript "Pat
h-based Generative Shape Model and MDLModel Sele
tion for Statisti
al Analysis of Ar
hipelagos" by Melanie Ganz, Mads Nielsenand Sami Brandt published in the pro
eedings of the International Workshop on Ma-
hine Learning in Medi
al Imaging (MLMI) in 
onjun
tion with MICCAI 2010 and themanus
ript "A Texton-based Generative Shape Model and MDL Model Sele
tion for Sta-tisti
al Analysis of Ar
hipelago-Like Textures" by Melanie Ganz, Mads Nielsen and SamiBrandt 
urrently submitted for publi
ation.Abstra
t In the following we propose a statisti
al generative shape model forar
hipelago-like stru
tures. These kind of stru
tures o

ur, for instan
e, in medi
al images,where our intention is to model the appearan
e and shapes of 
al
i�
ations in X-ray images.The generative model is 
onstru
ted by (1) learning a pat
h-based di
tionary for possibleshapes, (2) building up a time-homogeneous Markov model to model the neighborhood
orrelations between the pat
hes, and (3) automati
 sele
tion of the model 
omplexityby the minimum des
ription length prin
iple. The generative shape model is proposedas a probability distribution of a binary image where the model is intended to fa
ilitatesequential simulation. Our results show that a relatively simple model is able to generatestru
tures visually similar to the training images. Furthermore, we use the shape model asa shape prior in the statisti
al segmentation of 
al
i�
ations, where the area overlap withthe ground truth shapes improved signi�
antly 
ompared to the 
ase where the prior wasnot used.
4.1 Introdu
tionIn the �eld of 
omputer vision as well as medi
al imaging one essential prob-lem is the handling of texture. Textures have a wide-spread nature: they37



Chapter 4. A Texton-based Generative Shape Model and MDL Model Sele
tion forStatisti
al Analysis of Ar
hipelago-Like Textures

Figure 4.1: The textures from regular to sto
hasti
 (Image 
ourtesy of Wen-Chieh Lin [72℄).

(a) (b) (
)Figure 4.2: Illustrations of ar
hipelago-like stru
tures (a) in nature, (b) in a lumbar aorti
X-ray and (
) in geostatisti
s.
an be 
lassi�ed as either regular or sto
hasti
 and there exists a broad spe
-trum of textures between those two extremes [72℄ (�gure 4.1). Ar
hipelago-likestru
tures (see �gure 4.2) would fall in the 
ategory of near-sto
hasti
 texture.In this 
ase, traditional methods for texture as well as shape modeling failand other methods, likely based on statisti
s, are needed. An example of are
ent statisti
al method in signal, image, and video pro
essing is "sparse rep-resentations" [73℄. Under the assumption that natural images admit a sparsede
omposition, a di
tionary is learned from training data and 
an be used forany 
anoni
al texture problem: synthesis, 
lassi�
ation, segmentation, 
om-pression or shape from texture.We have adopted the sparsity method on two problem areas:38



4.2. Statisti
al Obje
tive1. Texture synthesis whi
h 
an be used to solve several pra
ti
al problemsin 
omputer vision, graphi
s, and image pro
essing from geostatisti
almodeling of water beds [74,75℄ over handling o

lusions in 3D re
onstru
-tion [76℄ to inpainting problems [77℄.2. Texture segmentation whi
h 
an be used in many biologi
al segmentationproblems that deal with ar
hipelago-like stru
tures, e.g., brain lesions asobserved in MRI [78℄ or 
al
i�ed deposits in the arteries observed by X-ray [52℄ or CT imaging methods [79℄.In this 
hapter, we will develop a method for texture synthesis and texturebased segmentation and fo
us on two appli
ation areas, medi
al image seg-mentation problems and natural image texture synthesis. First, we will de�neour statisti
al obje
tive (se
tion 4.2) before des
ribing our generative shapemodel (se
tion 4.3) and how we intend to use it in the 
ase of segmentation(se
tion 4.4). Then we will present our experiments (se
tion 4.5). On the onehand, the texture synthesis will be examined on natural image data, e.g. waterand �re. On the other, in the medi
al domain an example of lumbar aorti
 X-ray proje
tions will be used, where our goal is to automati
ally segment lumbaraorti
 
al
i�
ations that are related to 
ardiovas
ular disease (CVD) [10,30,80℄.We will �nish with a short dis
ussion of the a
hieved results (se
tion 4.6) and
on
lude with an evaluation of our proposed algorithm (se
tion 4.7).4.2 Statisti
al Obje
tiveIn our medi
al imaging appli
ation we are interested in a general segmenta-tion problem, namely segmenting 
al
i�
ations from the ba
kground in thelower abdominal aorta in X-ray images. We model the aorta through a latentvariable model with the values one and zero for 
al
i�
ations and ba
kground,respe
tively, and estimate the posterior distribution by 
ombining the likeli-hood of the pixel data with a shape prior given by our generative shape model.The posterior distribution is then given by
p(u|c) ∝ p(c|u)p(u), (4.1)where u = (u1, u2, . . . , uL) is our latent variable ve
tor, a ve
tor of unknownbinary pixel labels of the image matrix I, and c = (c1, c2, . . . , cL) is the binary,hard 
lassi�
ation ve
tor, whi
h is a fun
tion of the image I, 
orresponding tothe pixel l = 1, 2, . . . , L.The likelihood fun
tion is 
onstru
ted as follows. In addition to the hard 
lassi-�
ation c, the 
lassi�er returns pixel 
lassi�
ation probabilities γl = P (cl = 0)of the pixel l being zero. Conversely, 1 − γl = P (cl = 1) is the probability ofthe pixel l being one. Let rl = |cl − ul| be the pixel wise residual. Then one
an divide the dis
rete out
omes for the residual in four possible 
ases:39



Chapter 4. A Texton-based Generative Shape Model and MDL Model Sele
tion forStatisti
al Analysis of Ar
hipelago-Like Textures1. If ul = 0 and γl ≥ 0.5, it follows that cl = 0 and cl = ul. Thus, rl = 0.2. If ul = 0 and γl < 0.5, it follows that cl = 1 and cl 6= ul. Thus, rl = 1.3. If ul = 1 and 1−γl ≥ 0.5, it follows that cl = 1 and cl = ul. Thus, rl = 0.4. If ul = 0 and 1−γl < 0.5, it follows that cl = 0 and cl 6= ul. Thus, rl = 1.Now we assume for the residual the dis
rete distribution {P (rl = 0), P (rl = 1)} =
{max {γl, 1− γl} , min {γl, 1− γl}}, where we use γl,l = 1, 2, . . . , L, as the pa-rameters of the residual distribution, that models the noise distribution or theprobabilities for 
orre
t and mis
lassi�
ation, respe
tively. This 
hoi
e yieldsthe likelihood fun
tion

p(c|u) =
∏

l

(
γ1−cl
l γcl

l

)1−ul
(
(1− γl)

cl(1− γl)
1−cl
)ul

=
∏

l

γ1−ul

l (1− γl)
ul. (4.2)Our goal is to 
onstru
t the shape prior p(u) that statisti
ally models thestru
tures of ar
hipelagos shown in �gure 4.2.4.3 Generative Shape ModelTo 
onstru
t a prior model for ar
hipelago-like stru
tures, we �rst build atexton di
tionary (se
tion 4.3.1) that 
ontains the pat
h prototypes in whi
hthe stru
tures are represented as building blo
ks. This di
tionary will subse-quently be used to de�ne texture models based on texton frequen
ies learntfrom training images. The grammar that models the neighborhood relationsbetween the textons will be 
onstru
ted via two di�erent Markov mesh ran-dom �elds (Se
tion 4.3.2). The texton size m × m and number of pat
hes kin the di
tionary will be sele
ted by the minimum des
ription length (MDL)prin
iple (se
tion 4.3.4), whi
h 
ompletes our prior model for ar
hipelago-liketextures.4.3.1 Texton Di
tionaryTo 
onstru
t the texton 
odebook, we extra
t n training textons by sliding awindow of the size m ×m over ea
h training image. Some example trainingimages are shown in �gure 4.3. Let the matrixX 
ontain the n training textonsea
h sta
ked into a 
olumn ve
tor. The textons are to be summarized by the

m2 × k texton di
tionary D that 
ontains the binary pat
h prototypes andthat minimizes
E = ‖X−DA‖2fro , (4.3)40



4.3. Generative Shape Model

(a) (b)Figure 4.3: (a) Some training images of lumbar aorti
 
al
i�
ations. (b) An example of adi
tionary retrieved from training on all training images for a model with the pat
h size m= 2 and the 
luster number k = 4.1: Initialize the k 
luster 
enters randomly2: while Cluster 
enters 
hange do3: Find the nearest 
enter for ea
h data point via the Hamming distan
eUpdate the 
luster 
enters by 
al
ulating the mean of all data points belonging toa 
luster and proje
ting it ba
k to the binary manifold44: end while Algorithm 1: Binary K-Meanswhere, for a �xed j, aij = 1 for only one i = i′, while aij = 0 when i 6= i′ [81℄and ‖‖fro indi
ates the Frobenius norm. A has the size k×n and thus representsthe sparse representation of X in terms of D. In general, we should minimize(4.3) over bothD and A, but be
ause it is a 
ombinatory dis
rete optimizationproblem, we are satis�ed by approximating the solution. We thus divide theproblem into two parts:1. We �nd the texton di
tionary D via 
lustering the training textons byutilizing a binary version of the K-means [82℄ algorithm (Algorithm 1),where the Eu
lidean distan
e used in our earlier work [83℄ has been re-pla
ed by the Hamming distan
e.2. We �nd the optimal A, given the di
tionary D, by pi
king up the proto-type for ea
h j that minimizes 4.3.Clearly, the di
tionary is not globally optimal, but it gives us a fair model
lass with varying pat
h sizes m × m and number of 
lusters k. The modelsele
tion, i.e., determining m and k will be des
ribed in se
tion 4.3.4.
41
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al Analysis of Ar
hipelago-Like Textures
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(b)Figure 4.4: The 
ausal neighborhood Nvi
for the pat
h vi whi
h is a subset of the imagerepresented by the latent variable ve
tor u (a) in the 2-neighborhood and (b) 4-neighborhoodMarkov mesh random �eld model.4.3.2 Texton Grammar ModelsOur texton di
tionary does not yet des
ribe the ar
hipelago-like stru
tureswell, even though we 
ould easily generate a random image that has a similartexton histogram by trivially 
ounting the o

urren
e of ea
h pat
h in thetraining images and generating a random image by drawing random pat
hesfrom the empiri
al pat
h distribution. The problem is that the neighboringpat
hes are not independent, i.e., the neighbor pat
hes signi�
antly 
onstrainthe out
ome of a pat
h.To take these neighbor 
orrelations into a

ount we develop two di�erent 
ausal
ontextual texton grammar models. The models are 
alled 
ontextual be
ausethey are based on spatial intera
tion and take the neighborhood of a pixelinto a

ount. Furthermore, a 
ontextual model 
an be 
lassi�ed as either
ausal or non 
ausal depending on the nature of the neighborhood. In 
ausalmodels, the 
on
ept of the past of a pixel is introdu
ed. In this 
ase the pastneighborhood of a pixel refers to a neighborhood that has already been �xedand only that neighborhood in�uen
es the label of the 
urrent pixel. CausalMarkov random �elds (MRF) are generally 
alled Markov mesh random �elds(MMRF) or simply Markov meshes. MMRF models are advantageous, be
ausewhen designing a prior it needs to be taken in 
onsideration that sampling fromit should be feasible. Furthermore, di�erent visiting orders of the pat
hes inthe image 
an be 
onsidered. In the following, we will for 
larity use a spe
i�
simple visiting order instead of a general one, but we will generalize it in se
tion4.3.3.In the two MMRF models we will introdu
e below, the probability distribution4This is equivalent to �nding the 
luster 
enters in the squared Hamming distan
e.42



4.3. Generative Shape Modelof our latent variable ve
tor u is dependent on the pat
hes v1,v2, . . . ,vN wedivide the image into
p(u) = p(v1,v2, . . . ,vN). (4.4)The probability distribution of the pat
hes be
omes

p(v1,v2, . . . ,vN) = p(v1)p(v2|v1) . . . p(vN |v1,v2, . . . ,vN−1)

Markov∼=
N∏

i=1

p(vi|Nvi
(v)), (4.5)where Nvi

denotes the 
ausal neighborhood of vi, i = 1, 2, . . . , N and N is thetotal number of distin
t pat
hes of size m×m in the image. This 
onstru
tionallows sequential simulation of the pat
h distribution by �rst drawing the pat
h
v1 from p(v1) at time point 1, then v2 from p(v2|v1) at time point 2, and so on.The �rst model we 
onsider is a 2-neighborhoodMMRF. By using a 2-neighborhoodMMRF we assume that the 
urrent pat
h probability depends only on the twoneighbors that have previously been pro
essed (see �gure 4.4(a)). Thereforethe 
ausal neighborhood used in (4.5) has the form

Nvi
(v) = N 2

vi
(v) ∩ {v1,v2, . . . ,vN−1} . (4.6)The se
ond model is a 4-neighborhood MMRF model where the 
urrent pat
hprobability depends on those elements of a 4-neighborhood that have beenpro
essed. The neighborhood 
an be seen in �gure 4.4(b). This model is
hosen for better spatial symmetry when 
ompared to the 2-neighborhoodmodel. A

ordingly Nvi

(v) 
hanges to
Nvi

(v) = N 4
vi
(v) ∩ {v1,v2, . . . ,vN−1} . (4.7)The probability distributions introdu
ed above 
an be estimated from the 3-or 5-dimensional histogram H of pat
h labels and their neighborhoods N 2

vi
or

N 4
vi
.4.3.3 Visiting OrderTo 
omplete the des
ription of our shape prior, we will in the following intro-du
e the indexing i1, i2, . . . , iN that de�nes a pat
h visiting order. Let us de�nethe indexing for the original pat
hes as shown in �gure 4.5(a). The pat
hes
an be visited in various orders, su
h as i1 = 1, i2 = 2, i3 = 3, . . . , iN = N , asabove, to whi
h we will refer as simple visiting order, or at random, su
h as

i1 = 25, i2 = 5, i3 = 9, . . . , iN = 73, see �gure 4.5(b).Sin
e we have 
hosen to sample sequentially from our prior, instead of usingglobal optimization te
hniques like e.g. graph
ut [46℄, it is instru
tive to show43
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(b)Figure 4.5: Di�erent pat
h visiting orders of the latent variable ve
tor u: (a) The originalsimple pat
h order. (b) An example of a di�erent 
ausal visiting order - a random visitingorder.how the visiting order a�e
ts the prior distribution. Sequential sampling isbased on the fa
torization
p(u) = p(v1,v2, . . . ,vN) ≡ p(vi1 ,vi2, . . . ,viN )

= p(vi1) · p(vi2 |vi1) . . . p(viN |vi1 ,vi2, . . . ,viN−1
)

∼= p(vi1) · p(vi2 |Nvi2
(v)) . . . p(viN |NviN

(v)), (4.8)where the visiting order i1, i2, . . . , iN a�e
ts for whi
h pat
hes the approxima-tion, following from the Markov assumption, is made.We experimented with two visiting orders. In the 
ase of the 2-neighborhoodMMRF we 
hoose to use the simple visiting order, whereas in the 
ase of the4-neighborhood MMRF we apply a random visiting order. In summary, theresulting priors render as
p(u) ∼= p(v1) · p(v2|Nv2

(v)) . . . p(vN |NvN
(v)), (4.9)where in the 2-neighborhood 
ase

Nvi
(v) = N 2

vi
(v) ∩ {v1,v2, . . .vN−1} (4.10)and in the 4-neighborhood 
ase

Nvi
(v) = N 4

vi
(v) ∩ {v1,v2, . . .vN−1} . (4.11)4.3.4 Model Sele
tionTo use our proposed model we need to �nd the optimal 
luster number k andoptimal pat
h size m and estimate the transition probabilities for our Markov44



4.3. Generative Shape Modelmodel. We de
ided to use MDL [84℄ for the model sele
tion due to its tangiblede�nition of the model sele
tion problem as the best model is de�ned to havethe minimal lossless transmission 
ode length. MDL exa
tly �ts to our purpose,sin
e we are dealing with a binary problem for whi
h it is easy to 
onstru
t a
ompression model. Moreover, MDL provides a natural de�nition for noise, asnoise is 
onsidered everything that 
an not be 
ompressed by the model [85℄.Let us �rst derive the 
ode length for our model using a two-part 
oding model.The total 
ode length of our model in bits is
L = Lpar + Lres, (4.12)where Lpar = LD+LA is the 
ode length of the model parameters and Lres the
ode length of the residual. We 
hoose to 
ode D simply as a binary matrix,so one needs m2 × k bits to en
ode it, hen
e

LD = m2 × k + ⌈log2(max k)⌉
︸ ︷︷ ︸

k

+ ⌈log2(maxm)⌉
︸ ︷︷ ︸

m

, (4.13)where the latter two terms, 
ode lengths for k andm, are 
onstant and 
an thusbe dropped. The 
ontent of A 
an be en
oded by using the time-homogeneousMarkov model as soon as the 3- or 5-dimensional histogram H of pat
h labelsand their 
ausal neighborhoods is available. The histogram 
an be en
odedeither, if sparse, by storing its Nnnz non-zero bin indi
es, and the 
ounts in su
hbins; or otherwise by storing the 
ounts in all the bins. In this way, assumingan ideal 
oding method,
LA = min(Nnnz · ⌈log2(n)⌉2 +

Nnnz

⌈log2(Nnnz)⌉, k3 · ⌈log2(n)⌉)
︸ ︷︷ ︸

H

−
∑

log2(p̂k)
︸ ︷︷ ︸

data

,(4.14)where the 
onditional probability p̂k = p(vik |Nvi
k
(v)) of the pat
h k is 
om-puted from the histogram H .Finally, let us 
onsider the residual en
oding, where the residual of our modelis ǫ = X − DA and ea
h pixel 
an obtain only values {−1, 0, 1}. We 
anthus 
ode ǫ by only transmitting the indi
es of �rst the negative and thenthe positive entries of the residual. In this way the 
ode length for ǫ in bitsbe
omes

Lres = q ⌈log2(Npix)⌉+ log2 ⌈q⌉
︸ ︷︷ ︸

q

, (4.15)where q is the number of non-zero residuals and Npix is the number of pixels inthe image. The latter term is bounded by log2 ⌈Npix⌉ and 
an thus be dropped.45



Chapter 4. A Texton-based Generative Shape Model and MDL Model Sele
tion forStatisti
al Analysis of Ar
hipelago-Like Textures4.4 Sampling from the Posterior with the Shape PriorLet us 
onsider the simulation of the posterior (4.1) to obtain realizations forthe latent variable u as
p(u|c) ≡ p(vi1 ,vi2, . . . ,viN |c). (4.16)If the likelihood fun
tion is separable, we may use the same 
ausal 
onstru
-tion with whi
h the prior was designed. Hen
e, the posterior at time point 1be
omes

p(vi1 ,vi2 , . . . ,vin |c) = p(vi1|c)p(vi2 |vi1, c) . . . p(vin |vi1 ,vi2, . . . ,vin−1
, c),(4.17)where

p(viN |vi1 ,vi2, . . . ,viN−1
, c) ∝ p(c|vi1,vi2, . . . ,viN−1

)p(vi1 ,vi2 , . . . ,viN−1
)

∝
∏

l

γ1−ul

l (1− γl)
ulp(vi1 ,vi2, . . . ,viN−1

) (4.18)Here l denotes the element of the latent variable ve
tor u and γl and 1 − γlare again the probabilities of the pixel l having the label 0 or 1.We thus assume that the posterior is similarly sequentially simulated by �rstdrawing the pat
h vi1 from p(vi1 |c) at time point 1, then vi2 from p(vi2 |v1, c)at time point 2, et
.The same sampling strategy will be used for drawing samples from the shapeprior in se
tion 4.5.4.5 Experiments4.5.1 Modeling di�erent Shape DistributionsModel Sele
tionIn our experiments for the lumbar aorti
 x-ray data, we used a training set of 18manually annotated 
al
i�
ations (�gure 4.3(a)). The manual annotations arebinary, where the value 1 equals a 
al
i�ed pixel, while the value 0 
orrespondsto a ba
kground pixel. We parametrized the model 
lass with the set of allpairs of pat
h sizes and 
luster numbers {m, k}, m ∈ {2, 4, 6, 8, 10} and k ∈
{2, 4, 8, 16, 32}, over whi
h we optimized the 
ompression 
ode length for the2- as well as the 4-neighborhood. The results as per-pixel-normalized 
odelengths are shown in table 4.1(a) and 4.1(b). MDL sele
ted the models m = 2,
k = 4 and m = 4, k = 2 for the 2- and the 4-neighborhood 
ases, respe
tively.The learnt di
tionary of pat
hes for the model m = 2 and k = 4 is displayedin �gure 4.3(b). 46



4.5. ExperimentsTable 4.1: The 
ode length per pixel in bits. The 
olor spe
trum red to blue indi
ates the size of the 
odelength. One 
an see that MDL most of the time sele
ts small pat
h sizes and a small number of 
lusters.(a) Cal
i�
ation, 2-neighborhood.m\k 2 4 8 16 322 0.12 0.09 0.09 19.23 n.a.4 0.26 0.17 0.15 0.24 0.786 0.36 0.26 0.21 0.27 1.028 0.50 0.33 0.28 0.31 0.9810 0.61 0.48 0.32 0.35 1.10
(b) Cal
i�
ation, 4-neighborhood.m\k 2 4 8 16 322 0.51 0.93 3.45 44.29 n.a.4 0.44 1.17 0.48 1.25 2.166 0.67 0.62 0.58 0.75 1.598 0.67 0.52 0.51 0.57 1.3310 0.72 0.67 0.48 0.54 1.29(
) Water, 2-neighborhood.m\k 2 4 6 8 12 162 1.82 0.28 0.25 0.24 18.29 18.494 3.15 1.83 1.37 0.82 0.72 0.946 3.85 2.21 1.98 1.92 1.59 1.608 4.36 3.38 2.83 2.30 2.16 1.9910 4.70 3.54 2.98 2.87 2.52 2.49

(d) Water, 4-neighborhood.m\k 2 4 6 8 12 162 11.38 7.85 8.05 12.99 31.16 31.354 4.10 3.82 4.18 3.62 3.72 3.156 4.75 3.83 3.45 3.15 2.99 2.898 4.70 3.92 3.66 3.22 2.85 2.7410 4.94 4.00 3.67 3.41 3.02 3.00(e) Geostatisti
al Channels, 2-neighborhood.m\k 2 4 6 8 12 162 1.13 0.77 0.83 1.07 16.87 19.574 2.35 1.85 1.89 1.67 2.72 5.806 2.75 2.45 2.22 2.31 3.19 5.068 3.44 2.69 2.64 2.83 3.35 4.9910 3.87 3.43 3.14 3.21 3.85 5.34
(f) Geostatisti
al Channels, 4-neighborhood.m\k 2 4 6 8 12 162 12.32 12.68 8.30 8.58 29.64 32.904 4.49 3.73 4.45 4.92 5.21 8.116 3.60 3.37 3.58 3.74 4.61 6.398 3.74 3.28 3.20 3.31 4.48 5.7710 4.16 3.61 3.58 3.77 4.29 5.79(g) Fire, 2-neighborhood.m\k 2 4 6 8 12 162 1.20 0.98 0.97 0.82 0.71 17.964 2.09 1.85 1.65 1.69 1.68 1.836 2.58 2.24 2.08 2.01 2.05 2.278 2.82 2.52 2.36 2.26 2.27 2.4310 3.07 2.78 2.58 2.52 2.52 2.66

(h) Fire, 4-neighborhood.m\k 2 4 6 8 12 162 3.13 5.66 8.20 4.67 30.28 30.614 2.61 3.92 4.58 3.42 4.04 4.296 3.21 3.17 3.19 3.03 3.35 3.278 3.19 3.07 2.93 2.83 2.87 3.0310 3.18 3.17 3.02 2.92 2.89 3.14The 
orresponding experiments were 
ondu
ted for binary images of naturaltextures, su
h as water, geostatisti
al 
hannel systems and �re (�gure 4.7(a)-(
)) with k ∈ {2, 4, 6, 8, 12, 16}; the results are displayed in table 4.1(
)-(h). Inthe 
ase of water, MDL sele
ted the model m = 2, k = 8 and m = 8, k = 16for the 2- and the 4-neighborhood, respe
tively. For the image of geostatisti
al
hannel systems the MDL optimum was a
hieved atm = 2, k = 4 andm = 8, k= 6 for the 2- and the 4-neighborhood. Finally, MDL yields the minimal 
odelength for m = 2, k = 12 and m = 4, k = 2 for the 2- and the 4-neighborhood,respe
tively, for the natural image of �re. In general, we 
an observe that MDLmost of the time sele
ts small pat
h sizes and a small number of 
lusters.47



Chapter 4. A Texton-based Generative Shape Model and MDL Model Sele
tion forStatisti
al Analysis of Ar
hipelago-Like Textures

(a) Cal
i�
ation, 2-neighborhood (b) Cal
i�
ation, 4-neighborhoodFigure 4.6: Texture synthesis results for 
al
i�
ation data for the 2- and 4-neighborhoodMMRF model. In the 
ase of the 
al
i�
ations, the 2-neighborhood MMRF seems to produ
ea more adequate simulation than the 4-neighborhood MMRF model.Texture SynthesisOne way of testing a generative shape model is to synthesize textures fromthe learnt model. If the prior model is good, simulated textures should resem-ble real 
al
i�
ation textures. We simulated the prior with the MDL sele
tedparameters as explained in Se
tion 4.3.2, using textures from real images (
.f.�gure 4.2(b) and 4.7(a)-(
)). Figure 4.6 illustrates the results for the 
al
i�
a-tion shape distribution, whereas the synthesis results for water, geostatisti
al
hannel systems and �re are shown in �gure 4.7(d)-(i). It 
an be seen that theshapes are qualitatively similar to original shapes. It 
an also be seen that the2-neighbor model with the simple visiting order produ
ed superior results tothe 4-neighborhood model with the random visiting order.4.5.2 Statisti
al Shape SegmentationTo 
omplete the experiments, we apply the generative shape model as a shapeprior on a test set of 38 images displaying lumbar aorti
 X-ray data. In 30of the 38 images radiologists have identi�ed at least one 
al
i�
ation in thelumbar aorta while 8 images were judged to have no 
al
i�
ations. We usethe shape prior as des
ribed in Se
tion 4.4 with a 2-neighborhood model andthe simple visiting order together with the likelihood fun
tion. The pixel-wise likelihood was 
onstru
ted from the pixel 
lassi�
ation probabilities, asexplained in se
tion 4.2, where the initial segmentation is performed by aRandom Forests 
lassi�er [37℄ with a set of 7 Gaussian derivative features,trained by manual annotations of 
al
i�ed lesions.To measure the performan
e of our segmentation, we draw S = 20 samples
u
(n), n = 1, 2 . . . , S from the posterior distribution p(u|c) and estimate the48



4.5. Experiments

(a) Water, original (b) Geostatisti
al 
hannels, orig-inal (
) Fire, original
(d) Water, 2-neighborhood (e) Geostatisti
al 
hannels, 2-neighborhood (f) Fire, 2-neighborhood
(g) Water, 4-neighborhood (h) Geostatisti
al 
hannels, 4-neighborhood (i) Fire, 4-neighborhoodFigure 4.7: Texture synthesis results. In (a)-(
) the original natural image data is shown,whereas the synthesis results for the 2-neighborhood MMRRF model 
an be seen in (d) - (f)and for the 4-neighborhood MMRF model in (g)-(i). In general the 2-neighborhood MMRFprodu
es better results than the 4-neighborhood MMRF model.expe
ted value of a 
hosen s
oring fun
tion feval(u;uann), where uann denotes
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Chapter 4. A Texton-based Generative Shape Model and MDL Model Sele
tion forStatisti
al Analysis of Ar
hipelago-Like Texturesthe ground truth annotation,
E{feval(u;uann|c)} =

∫

feval(u;uann)p(u|c)du

≈ 1

S

∑

n

feval(u
(n);uann)

= feval(u;uann). (4.19)We 
ompare the resulting mean s
ore with the value of feval(uref ;uann), where
uref is the 
lassi�
ation probability map thresholded at 0.5. As evaluationfun
tion feval(u;uann) we use the Ja

ard Index [68℄

feval(u;uann) =
|Iu ∩ Iann|
|Iu ∪ Iann|

, (4.20)where Iu and Iann are u and uann in image matrix form, respe
tively. Thusthe Ja

ard index measures the area overlap between the binary segmenta-tion results and the manual annotation, whi
h we assume to be our groundtruth. In the 
ase were no 
al
i�
ations were present in the manual aorta thearea overlap is de�ned to be 0. The numeri
al results for feval(u;uann) and
feval(uref ;uann) are given in table 4.2. It 
an be seen that our method improvesthe 
lassi�
ation results on average by 50% for all 38 as well as for only the 30images with 
al
i�
ations present. The improvement vs. simple thresholding isstatisti
ally signi�
ant a

ording to a pairwise two-sided t-test with the valueof p = 0.000001 as well as p = 0.0000001 in the two 
ases. Visual 
omparisonof the manual annotation 
ompared to our result is displayed in �gure 4.8 forone of the subje
ts with the most improvement (from 0.143 to 0.337) and in�gure 4.9 for one of the subje
ts with the least improvement (from 0.407 to0.411). In �gure 4.10 a detailed look at a segmentation with and without ourprior is given.4.6 Dis
ussionIn our experiments, using MDL proved itself to be su

essful for 
hoosingthe optimal pat
h size and number of 
lusters. MDL 
hose small pat
h sizessupporting the limited amount of training data. Furthermore, it not only pro-du
ed visually good results, but even though a simple lo
al model was 
hosenthe texture synthesis was able to produ
e global stru
tures. In the 
ase ofmore training data and a more 
ompli
ated MMRF model with many pat
hprototypes, it is possible for MDL to sele
t a model with a larger pat
h size
m and 
luster number k. In this 
ase it might also be useful to use a moresophisti
ated 
oding method, e.g., universal 
oding [86℄.50



4.6. Dis
ussionTable 4.2: Evaluation of the segmentation results using the Ja

ard index against the manualannotation. The Ja

ard index improves by 50% after applying the proposed shape prioron a test set of 38 and 30 images displaying lumbar aorti
 X-ray data, respe
tively.For all 38 test images Mean ± Standard Deviation
feval(uref ;uann) 0.10 ± 0.11
feval(u;uann) 0.15 ± 0.14For 30 test images with 
al
i�
ations Mean ± Standard Deviation

feval(uref ;uann) 0.13 ± 0.11
feval(u;uann) 0.19 ± 0.13An alternative to MDL would have been to use 
ross validation. But be
ausewe deal with a very limited amount of training data, 
ross validation is not anoptimal 
hoi
e for us sin
e in order to derive parameters 
ross validation di-vides the data further in a training, validation and testing subset. Conversely,MDL 
an take all training data into a

ount at the same time when trying tooptimize parameters.Another observation was the remarkable di�eren
e between the 2- and the4-neighborhood synthesis results. The 2-neighborhood produ
ed mu
h morerealisti
 stru
tures. Reasons for this 
ould be that the simple visiting orderused with the 2-neighborhood model supports the Markov 
onstraint, while the4-neighborhood with the random visiting order lays down global 
onstraintsthat are not in a

ordan
e with the Markov assumption. In pra
ti
e, �xing twodistant pat
hes 
onstrains all sele
tions of allowed pat
hes in between the twopat
hes, while the Markov assumption 
onstrains only neighboring pat
hes.Additionally, the 2-neighborhood model is also in better a

ordan
e with thelimited amount of training data and therefore outperforms the 4-neighborhoodmodel.In general, our model performs well in the 
ase of texture synthesis in 
om-parison to earlier models based on pat
h MMRF models for near sto
hasti
texture as for example des
ribed in [87℄. But a thorough evaluation of ouralgorithm in 
omparison to other near sto
hasti
 texture synthesis algorithmsas done in [72℄ for near regular texture has still to be made.The segmentation experiments show that our prior improves the Ja

ard index51
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tion forStatisti
al Analysis of Ar
hipelago-Like Textures

(a) feval(u;uann) = 0.143

(b) feval(u;uann) = 0.337Figure 4.8: One of the subje
ts where the spatial prior improves the segmentation the most(from 0.143 to 0.337). In ea
h image on the left the manual annotation of the vertebrae andthe aorta outline (white) as well as the 
al
i�
ations (red), in the middle the automati
allyretrieved vertebrae and aorta outline (green) as well as a probability map of the 
al
i�
ations(yellow to red) and on the right the overlap of the two where yellow indi
ates true positives,blue indi
ates false positives and red indi
ates false negatives are shown.by 50% (see table 4.2) and that the improvement is statisti
ally signi�
ant.This is the 
ase for all 38 images, of whi
h 8 images have no 
al
i�
ationspresent and therefore the Ja

ard index is zero, as well as for the 30 imagesthat all have 
al
i�
ations present.But Table 4.2 also indi
ates that the mean of the Ja

ard index is low and itsstandard deviation high.The main reason that the mean of the Ja

ard index on our data set is low isthat the fully automati
 
lassi�
ation of 
al
i�
ations, where �rst the verte-brae need to be dete
ted and then the aorta region of interest de�ned beforesegmenting 
al
i�
ations, is a very hard task. Figures 4.8 and 4.9 display tworesults from our dataset that exemplify how di�
ult the problem is. Further-52



4.6. Dis
ussion

(a) feval(u;uann) = 0.407

(b) feval(u;uann) = 0.411Figure 4.9: One of the subje
ts where the spatial prior improves the segmentation the least(from 0.407 to 0.411). In ea
h image on the left the manual annotation of the vertebrae andthe aorta outline (white) as well as the 
al
i�
ations (red), in the middle the automati
allyretrieved vertebrae and aorta outline (green) as well as a probability map of the 
al
i�
ations(yellow to red) and on the right the overlap of the two where yellow indi
ates true positives,blue indi
ates false positives and red indi
ates false negatives are shown.more, two experts only have an Ja

ard index of approx. 0.50 when s
oringthe same image underlining the fa
t that the segmentation of 
al
i�
ations isa hard task. Finally, the Ja

ard index is also low, be
ause it is a very harshmeasure to use in our problem. Our Ja

ard index values 
an not be 
omparedto values a
hieved in, e.g., brain imaging where two large areas are 
omparedto ea
h other. Alternatively, the number of 
orre
tly 
lassi�ed pixels or Co-hen's κ [88℄ 
ould be used to measure the inter-rater agreement for 
ategori
alitems su
h as pixels. However, these measures will be dominated by the verylarge 
lass of non-
al
i�ed pixels, and in the 
ase of Cohen's κ individual pixels
orings 
annot be 
onsidered statisti
ally independent.Similar reasons apply to the question why the varian
e of our segmentation53
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al Analysis of Ar
hipelago-Like Textures
(a) (b) (
)Figure 4.10: Cal
i�
ation segmentation result: (a) manual annotation (ground truth), (b)the 
orresponding pixel-wise 
lassi�
ation probabilities, (
) 
onditional mean ū = 1

N

∑
u
(n)of the posterior. Compare espe
ially (b) and (
) to see how mu
h ba
kground noise theproposed pat
h-based prior removes.results is so high. Not only is the Ja

ard index as des
ribed above a harshmeasure for our problem, but on images with only a few or very small 
al
i�-
ations even a small number of false positives or false negatives leads to a largedi�eren
e in the Ja

ard index. Hen
e, the Ja

ard index is in our appli
ationvery sensitive to small 
hanges and leads to a large standard deviation of ourresults. Another reason for the large standard deviation is the large variationin our images. A large biologi
al variation over di�erent subje
ts as well aslarge di�eren
es in image quality, make the pre
onditioning steps - �ndingthe vertebrae and de�ning the aorta region of interest - more 
hallenging and
onversely lead to variable segmentation results and hen
e variable Ja

ardindexes.It is di�
ult to 
ompare our work to earlier approa
hes for segmentation of
al
i�
ations in X-rays as was done in [89℄ and [90℄.On the one hand, the results of [89℄ 
an not be dire
tly 
ompared with ourresults, sin
e the pre
onditions are di�erent. While in [89℄ the aorta is derivedbased on manually given landmark points at the 
orners and midpoints of the�rst four lumbar vertebrae, in our setup the vertebrae are found automati
allywithout employing manual annotations. Sin
e our experiments have shownthat small errors in the vertebrae segmentation in�uen
e the 
al
i�
ation seg-mentation results greatly, we 
an not 
ompare our results to the results givenin [89℄. On the other hand, the Ja

ard index for the 
lassi�
ation of 
al
i�-
ations is not given in [89℄ and the number of 
orre
tly 
lassi�ed pixels andCohen's κ that are given are dominated by a large ba
kground 
lass, whi
h asmentioned skews the values of the given measures.Comparison of the 
al
i�
ation segmentation results to [90℄ is also not straightforward, sin
e it is also not a fully automati
 approa
h, but assumes that the
orner points of the vertebrae have been indi
ated and hen
e also di�ers in thepre
onditions from our setup. Furthermore, the Ja

ard index is given, but54



4.7. Con
lusionnot for 
omplete images but for 48 areas that were sele
ted from 10 X-rays.This 
an not be dire
tly 
ompared to the performan
e on full images where allareas are taken into a

ount.4.7 Con
lusionIn this paper, we have proposed a generative model and MDL model sele
tionfor stru
tures resembling ar
hipelagos. The model is based on a pat
h-baseddes
ription of the shapes 
ombined with a Markov Mesh Random Field modelthat takes pat
h 
orrelations into a

ount. Our sele
tion for the di
tionary, thebinary K-means-
lustered texton prototypes, seems reasonable even though itis not stri
tly optimal in the Frobenius norm. However, sear
hing for theoptimal 
odebook is itself a 
ombinatory optimization problem and less im-portant in pra
ti
e. As far as the MMRF model is 
on
erned, our synthesisresults showed that a simple lo
al model based on only a few training exam-ples 
an 
apture 
omplex global stru
tures and generate visually sound results.The visiting order was shown to in�uen
e the results greatly, whereas we 
on-
luded that a visiting order whi
h is in a

ordan
e with the Markov assumptionshould be used. Our segmentation results, based on the proposed prior shapedistribution, were promising and improved the area overlap by 50%. This in-di
ates that our shape model 
an be su

essfully used as a prior distribution instatisti
al segmentation of 
al
i�
ations on X-ray image data. An interestingdire
tion in the future 
ould be to introdu
e an appropriate multi-resolutionextension of the generative model, whi
h 
ould take even longer intera
tionsbetween pat
hes into a

ount.
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Chapter 5Appli
ation of Renormalization GroupTheory to Multi-S
ale ImageSegmentation ProblemsThis 
hapter is based on work done under supervision of Pushmeet Kohli during the staysabroad at Mi
rosoft Resear
h Cambridge, UK and is 
urrently in preparation.Abstra
t We propose an approa
h for image segmentation that is based on dedu
t-ing energy potentials from images in a multi-s
ale fashion with Renormalization GroupTransformations (RGT) in order to make exa
t segmentations of large images possible. By
ombining RGT with state of the art segmentation te
hniques we present a novel approa
hto multi-s
ale image segmentation algorithms. Our experiments show that RGT leads toimproved segmentations 
ompared to other 
ommon multi-s
ale image segmentation te
h-niques.
5.1 Introdu
tionIn the last years image pro
essing appli
ations su
h as segmentation or restora-tion have be
ome in
reasingly important. While segmentation problems usedto be solved by approximate te
hniques su
h as simulated annealing [48℄ oriterated 
onditional modes [91℄, today they are mostly solved via graphi
alapproa
hes [46℄ or inferen
e algorithms, e.g. belief propagation [92℄. As theresolution of the images being pro
essed in
reases [93℄, the need for fast ande�
ient multi-s
ale energy minimization te
hniques arises. We propose an ap-proa
h for dedu
ting energy potentials from images in a multi-s
ale fashionbased on Renormalization Group Transformations (RGT) in order to makeexa
t segmentations of large images possible.57



Chapter 5. Appli
ation of Renormalization Group Theory to Multi-S
ale ImageSegmentation ProblemsRelated Work There are many multi-s
ale segmentations methods availableand the related work is ni
ely reviewed in [94℄. Note that most multi-s
aleapproa
hes assume that the energy fun
tions of the image that is being seg-mented is of the same form at di�erent s
ales, while in fa
t one should try toevolve the energy fun
tion 
orre
tly over di�erent s
ales. We will try to dothat by employing RGT.RGT is a method from statisti
al physi
s and most of the work related to ithas been done in statisti
al or solid state physi
s. RGT has been used to ex-plain phase transitions in physi
al systems [95℄, e.g. magnets or �uids whi
hare alike in having �u
tuations in stru
ture over a vast range of sizes, but hasalso been applied in quantum ele
trodynami
s [96℄. Two of the most promi-nent protagonists of RGT in solid state physi
s were Leo P. Kadano� [95℄ andKenneth G. Wilson [41℄, who applied RGT to the Kondo e�e
t [97℄.The basis of espe
ially Kadano�'s and Wilson's RGT 
al
ulations of phasetransitions were 2D Ising models [98℄, whi
h are a simpler form of a MarkovRandom �eld (MRF) [99℄. RGT 
an approximate the analyti
al solution of atwo dimensional (2D) Ising model and des
ribe phase transitions of the mate-rial that is modeled. This suggests itself to be applied on images, whi
h 
anbe interpreted as 2D Ising models.In 
omputer vision there have been few papers that have tried to apply RGTon images. The �rst to transfer RGT from solid state physi
s to images wasBasilis Gidas [42,100℄. Further work was done later by Petrou et al. [101�103℄.When Gidas and Petrou presented the renormalization group approa
h their
al
ulations were 
omputationally hardly tra
table, be
ause of the loss of lo-
ality of the model at the 
oarser stages. By 
ombining RGT with state ofthe art segmentation te
hniques we present in the following a 
omputationallye�
ient and novel approa
h to multi-s
ale image segmentation problems.In se
tion 5.2 we introdu
e our notation and the energy fun
tion that we 
hooseto transform, while in se
tion 5.3 we introdu
e the reader to the general 
on-
ept of multi-s
ale image segmentation. Then we show how to transform theenergy fun
tion with the help of RGT and give details of RGT for a spe
i�

hoi
e of mapping and grid in se
tion 5.4. Finally, se
tion 5.5 
overs the exper-iments and se
tion 5.6 o�ers a dis
ussion and 
on
lusions and des
ribes futurework.5.2 NotationIn this se
tion, we will use a random �eld model to formulate the image segmen-tation problem. The random �eldX has a set of n nodes V = {1, 2, 3, . . . , n} aswell as a neighborhood system N that 
onne
ts pairs of nodes. Ea
h randomvariable xi ∈ X is asso
iated with one latti
e point i ∈ V and takes one valuefrom the label set L = {l1, l2, . . . , lk}. All possible label sets, x, form the set58



5.3. Multi-s
ale Image Segmentation
Figure 5.1: A des
ription of our problem: We want to segment e.g. a gigapixel image at highresolution. We 
ould do this following the high resolution path left to right, but often thisis not feasible. Therefore in this se
tion we exploit several options to employ low resolutionversions of the image or the energy to segment the high resolution image.of labelings L = Ln.Transferred to image segmentation, xi represents the assigned label of the ithimage pixel, while V 
orresponds to the set of all image pixels and N to theset of all edges in a given neighborhood. An optimal image segmentation,
x
⋆, based on the data, D, is then given by the maximum-a-posteriori (MAP)estimate

x
⋆ = argmax

x∈L
P (x|D) = argmin

x∈L
E(x), (5.1)where the energy fun
tion E : Ln → R 
an in prin
iple be de�ned freely. Butfor most 
omputer vision problems and in our 
ase, the energy fun
tion is ofthe form of an Ising model [98℄,

E(x) =
∑

i∈V

φi +
∑

i,j∈N

φij, (5.2)where the label set 
onsists of only two labels, foreground (fg) and ba
kground(bg). In our appli
ation the unary potentials φi are derived from the 
olor ofthe pixels and appearan
e models that are 
onstru
ted from user marked brushstrokes as shown in [104,105℄, while the pairwise intera
tion terms φij are 
on-stru
ted from edge features g(i, j) based on the 
olor di�eren
e of neighboringpixels and de�ned as φij = g(i, j) for i 6= j and 0 otherwise.Further we de�ne two mappings: A mappingM : V → V l that maps the pixelsof the original image I to the set of pixels V l in the low resolution version I lof the image and a mapping K : L → L
l that 
onne
ts the spa
e of labelings

L of V to the spa
e of labelings Ll of V l.5.3 Multi-s
ale Image SegmentationThe prin
iple behind multi-s
ale image segmentation 
an be seen in �gure 5.1.One starts out with a high resolution image I and wants to end up with a high59



Chapter 5. Appli
ation of Renormalization Group Theory to Multi-S
ale ImageSegmentation Problemsresolution segmentation x
⋆. For images of reasonable size one 
an do thatsimply via a high resolution energy E that is minimized a

ording to eq. 5.1,but for large images this gives rise to a large s
ale optimization problem whi
his 
omputationally extremely expensive or even unfeasible to solve. Thereforeit is better to �rst solve the problem at low resolution and to obtain a 
oarselabeling of the high resolution problem. The low resolution problem 
an be
onstru
ted in a multitude of ways. Two of the most 
ommon are:Low Resolution Energy Fun
tion from a Low Resolution Image Tra-ditional multi-s
ale methods as [106,107℄ de�ne the low resolution energy fun
-tion El by using a low resolution version I l of the image I. The 
oarse energyfun
tion El is hereby simply of the same form as (5.2), but based on V l insteadof V.Low Resolution Energy Fun
tion from the Original Energy Fun
tionAnother approa
h is to de�ne the 
oarse grid energy El dire
tly from the po-tentials of the original energy fun
tion E. This is done by summing over theunary variables that 
omprise the 
oarse node V l and likewise over the pairwisepotentials de�ned between the nodes V that V l 
ontains.The 
oarse energy fun
tion 
an then be minimized to extra
t a partial label-ing of the original image I, whi
h 
an in turn be re�ned to a solution for thewhole image I by another optimization on a small subset of pixels only. Thepartial labeling based on the 
oarse energy El 
an be 
omputed via di�erentapproa
hes, either via a Boundary Band Approa
h [106℄ or via a min-marginalapproa
h [108℄. We will in the following use a hybrid approa
h made up of a
ombination of the two that was also introdu
ed and detailed in [108℄.Finally, the 
oarse labeling is proje
ted ba
k to the high resolution problemand a solution for the original image obtained.5.4 Using RGT for Multi-s
ale Image SegmentationIn general, RGT deals with energy fun
tions of physi
al systems. It 
an beused as des
ribed in [41℄ and [42℄ to evolve energy fun
tions between di�erentrepresentational s
ales, e.g. a 
oarse and a �ne s
ale of a physi
al system. Inthe following we introdu
e a new way of de�ning the low resolution energyfun
tion El on the basis of the original energy fun
tion.55.4.1 Energy Fun
tion ModelThe energy fun
tion E of a two spin state Ising Model is in general given as in(5.2). For simpli
ity we base the following derivation on a simple spin model5The approa
h presented is due to [109℄. Other approa
hes are explained in [110℄, e.g. the method ofnegle
t and the method of potential moving [111℄. 60



5.4. Using RGT for Multi-s
ale Image Segmentation(φi = hsi and φij = ksisj ) leading to
E = h

∑

i

si + k
∑

〈ij〉

sisj, (5.3)where si is the spin state (+1 or −1) of the spin lo
ated at the site i and hand k are the unary and pairwise intera
tion fa
tors. Furthermore we de�nethe blo
k spin Si to be made up of several spins si, sj,et
. Then the mapping
M : s 7→ S maps the spins s at high resolution to the blo
k spins S at lowresolution, where the mapping K : L → L

l 
onne
ts the two labeling spa
es,
L and L

l, at high and low resolution.Statisti
ally, the probability of the labelings Ll of the 
oarse energy fun
tion
El 
an be des
ribed by the sum of the probabilities of the original labelings L,

e−El

=
∑

a∈L

e−E(a), (5.4)where a is a labeling ∈ L.We 
an derive the fun
tional form of El via linear operator perturbation theory[112℄, whi
h divides our 
oarse energy in a linear term, E0, and a higher orderterm, V ,
El = E0 + V. (5.5)The linear term of the 
oarse energy fun
tion should look as similar as pos-sible to the intera
tion term of our original energy fun
tion and des
ribe theintera
tion between spins inside one blo
k, SI , so we set it to

E0 = k
∑

I

∑

i,j∈I

sisj . (5.6)The higher order term, V, is then outlining the intera
tion between spins indi�erent blo
ks,
V = k

∑

I 6=J

∑

i∈I,j∈J

sisj. (5.7)Now we 
an 
hange equation 5.4 to
e−El

=
∑

a∈L

e−E0(a) · e−V (a) (5.8)
=
〈
e−V

〉

0
Z0(k)

m, (5.9)where
〈
e−V

〉

0
=

∑

a∈L e
−E0(a) · e−V (a)

∑

a∈L e
−E0(a)

(5.10)61
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Figure 5.2: The graph shows the triangulation used by Kadano�.is the expe
tation value of e−V . In the expression above
Z0(k)

m =
∑

a∈L

e−E0(a) (5.11)des
ribes the partition fun
tion for m blo
ks of spins si that are mapped to
SI . Z0 is a normalizing 
onstant.Now all we need is an expression for 〈e−V

〉

0
. Via an expansion in orders of Vand with the formula log(x) = (x− 1)− 1

2
(x− 1)2 +O(x3) [113℄ we get

〈
e−V

〉

0
= e

−〈V 〉
0
+ 1

2
(〈V 2〉

0
−〈V 〉2

0)+O(V 3)
. (5.12)Our �nal expression for the 
oarse energy fun
tion is then

El = −m log(Z0(k)) + 〈V 〉0 −
1

2

(〈
V 2
〉

0
− 〈V 〉20

)
+O(V 3). (5.13)5.4.2 Kadano�'s Blo
k Spin MethodThe mapping M used to downsample the image 
an be 
hosen in a multitudeof ways. It 
an be an interpolation based down sampling algorithm like [114℄,a majority vote mapping or even a mapping where one spe
i�
 spin in ea
hblo
k determines the value of the larger blo
k SI . An optimal representationis one of the key points and 
hoi
es in the appli
ation of RGT.Furthermore, one 
an 
hoose many di�erent type of grids, that then determinehow the sums over the spins i and j in the energy fun
tion are 
al
ulated.Obvious 
hoi
es here are a standard pixel grid or a triangular latti
e. In the62



5.4. Using RGT for Multi-s
ale Image Segmentationfollowing let us present a more detailed 
al
ulation based on a majority votemapping and a triangular latti
e.We assume a blo
k spin 
on�guration on a triangular latti
e by Kadano� [115℄as shown in �gure 5.2, where blo
k spins are de�ned by a mapping M thatgroups three spins together and 
omputes the blo
k spin SI via a majorityrule:
SI = sign

(
S1
I + S2

I + S3
I

)
, (5.14)where S

j
I is the jth spin in the Ith blo
k. Then we de�ne a set of spins thatmake up SI

σI ≡
{
S1
I , S

2
I , S

3
I

}
. (5.15)For a set of 3 spins with 2 states ea
h, the labeling spa
e L is made up of 23 = 8possible 
on�gurations. The blo
k spin SI has only two possible labelings, but4 di�erent labelings of the original spins are mapped to ea
h 
oarse labeling

L
l

Ll
1 = +1 L = {{+1,+1,+1} , {−1,+1,+1} , {+1,−1,+1} , {+1,+1,−1}}(5.16)

Ll
2 = −1 L = {{−1,−1,−1} , {+1,−1,−1} , {−1,+1,−1} , {−1,−1,+1}}re�e
ting the original 8 
on�gurations.We 
an apply this 
hoi
e of mapping and grid to our 
oarse energy fun
tiongiven in (5.13). To do this we need to �nd the expression for 〈V 〉0. Sin
ea

ording to (5.7) V 
ouples nearest neighbor blo
ks, we 
an determine itfrom �gure 5.2 to be

VIJ = k(S3
J)(S

1
I + S2

I ) (5.17)and therefore
〈VIJ〉0 = 2k

〈
S1
IS

3
J

〉

0

= 2k
〈
S1
I

〉

0

〈
S3
J

〉

0
, (5.18)sin
e the blo
ks 
omprising SI and SJ are independent of ea
h other. One 
anevaluate the average for all 
on�gurations given in (5.16) and one gets

〈VIJ〉0 = 2kφ(k)2
∑

I 6=J

SISJ , (5.19)where φ(k) ≡ e−3k+ek

e−3k+3ek
and the 
oarse energy pairwise 
oupling k′ = 2kφ(k)2.So the 
oarse energy fun
tion is to �rst order given by

El(SI) = −m log(Z0) + k′
∑

I 6=J

SISJ +O(V 2) (5.20)63



Chapter 5. Appli
ation of Renormalization Group Theory to Multi-S
ale ImageSegmentation ProblemsThe same expansion 
an be 
ondu
ted for one order higher, giving
El(SI) = −m log(Z0) + k′

∑

I 6=J

SISJ − 1

2
k′′
∑

I 6=J

S2
IS

2
J , (5.21)where

k′′ = k2

(

2φ(k)2 + 2φ(k)
e−3k − ek

e−3k + 3ek
− 4φ(k)4

) (5.22)is the modi�ed 
oupling parameter for the higher order intera
tions at the
oarser s
ale.The unary term in E 
an be derived in the same way by expansion and is at
oarse resolution 
hanged to
El = h′

∑

I

sI , (5.23)where h′ = 3φ(k).5.5 Experiments and Results5.5.1 Segmentation QualityIn se
tion 5.4 we have derived the form of an RGT low resolution energy.In this se
tion we examine the a
hieved segmentation quality of the di�erentmethods for 
onstru
ting the smaller energy minimization problem. Therefore,we 
ompare segmentation results of the low resolution energy fun
tion derivedvia RGT (SRGT ) with a) a low resolution energy fun
tion derived from a lowresolution image (SLRI) and b) a low resolution energy fun
tion 
al
ulatedfrom the high resolution energy fun
tion (SLRE). The downsampling fun
tionused in the three methods is thereby the same, the di�eren
e is only thatwe add appropriate 
ouplings in front of the downsampled energy (SRGT ) orthat the image (SLRI) or the energy (SLRE) is being downsampled. We alsopresent the segmentation result of the original high resolution image (SHRI).The segmentations were made via the graph
ut algorithm [116℄, whi
h 
anoptimize a submodular energy fun
tions as in our 
ase (k = −1) exa
tly inpolynomial time.First, we present the four segmentations for three di�erent images, in �gures5.3, 5.4 and 5.5. One 
an see slight di�eren
es between the three low resolutionsegmentations, espe
ially in the �ne stru
tures as for example around the bagthat the man holds in �gure 5.3. If one measures the area overlap between themanual annotation and the three segmentations via the Ja

ard index J [68℄,where the area overlap between two binary segmentations S1 and S2 is given64



5.5. Experiments and Results
(a) (b) (
)
(d) (e) (f)Figure 5.3: We display (a) the original image, (b) the user marked brush strokes used toinitialize the segmentation and the four segmentations, (
) SHRI , (d) SLRI , (e) SLRE and(f) SRGT . One 
an see slight di�eren
es between the three low resolution segmentations,espe
ially in the �ne stru
tures as for example around the bag that the man holds.by

J(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

, (5.24)the segmentations have basi
ally the same area overlap as shown in table 5.1.But if we 
ompare the quality of partial labelings generated from di�erent
oarse energy fun
tions, we 
an see di�eren
es between the three low resolu-tion segmentation approa
hes as 
an be observed in �gure 5.6. The traditionalapproa
h of 
onstru
ting the energy from the low resolution outperforms theapproa
h of 
onstru
ting the energy from the original energy fun
tion. Fur-ther, using RGT to 
onstru
t the 
oarse energy outperforms both of the othermethods.5.5.2 Segmentation TimeBesides the segmentation quality we also analyze the 
omputational timeneeded for the di�erent segmentations. The results 
an be seen �gure 5.7and they show that the smaller energy minimization problem 
onstru
ted bydownsampling a high resolution energy is the slowest approa
h, while our pro-posed RGT based method to minimize the energy minimization problem is the65
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(a) (b) (
)
(d) (e) (f)Figure 5.4: Again we display (a) the original image, (b) the user marked brush strokes usedto initialize the segmentation and the four segmentations, (
) SHRI , (d) SLRI , (e) SLRE and(f) SRGT . In this pi
ture one 
an not see large di�eren
es between the di�erent segmentationalgorithms, but it is still interesting to look at the bottom boundary of the bear, where thealgorithms di�er.Table 5.1: Evaluation of the segmentation results using the Ja

ard index against the manualannotation. Noti
e that the improvements 
an not be 
aptured by the Ja

ard index.(a) To �gure 5.3Mean Median

SLRI 0.97 0.97
SLRE 0.97 0.97
SRGT 0.97 0.97 (b) To �gure 5.4Mean Median

SLRI 0.97 0.96
SLRE 0.96 0.96
SRGT 0.96 0.96 (
) To �gure 5.5Mean Median

SLRI 0.92 0.92
SLRE 0.92 0.92
SRGT 0.92 0.92fastest.5.6 Dis
ussion and Con
lusionOur experiments show that RGT 
an be applied to multi-s
ale image seg-mentation problems. Using multi-s
ale image segmentation te
hniques we 
anredu
e the size of an image segmentation problem and make it tra
table andsolvable. RGT o�ers to 
ondu
t the multi-s
ale approa
h by 
orre
tly evolv-ing energy fun
tions over di�erent s
ales instead of assuming that the energy66



5.6. Dis
ussion and Con
lusion
(a) (b) (
)
(d) (e) (f)Figure 5.5: Yet again we display (a) the original image, (b) the user marked brush strokesused to initialize the segmentation and the four segmentations, (
) SHRI , (d) SLRI , (e)

SLRE and (f) SRGT . In the plant image it is espe
ially interesting to look at the left side ofthe plant. RGT seems to be able to separate the leaves on the lower left of the plant mu
hbetter than any other method.fun
tions are of the same form at every s
ale, an assumption that underliesthe other two methods. The mappings M and K 
an be 
hosen dependent onthe problem and the need for exa
t or approximate inferen
e.The goal for the further development of the RGT transformation on imagesis to pro
eed in a more stru
tured manner. Instead of 
hoosing an arbitrarymapping and to see what e�e
t this has, one 
ould attempt to 
hoose theoptimal mapping and method of 
oarsening. A prin
iple 
omponent type ofanalysis of di�erent 
luster variables 
ould help to 
hoose the optimal mappingand method of 
oarsening.In 
on
lusion, we need to experiment with further appli
ations of RGT to beable to demonstrate 
learly that it 
an be the solution to a wide range of prob-lems, but our preliminary results support the notion that RGT provides aninteresting solution to multi-s
ale energy minimization problems.
67
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Part II of the dissertation 
onsists of resear
h papers that fo
us on the 
lini
alrelevan
e of lumbar aorti
 
al
i�
ations.In 
hapter 6 several biomarkers are developed and their 
lini
al relevan
etested. Then the biomarkers are 
ombined to form the morphologi
al atheros
le-roti
 
al
i�
ation distribution (MACD) index and the MACD index and itsrelation to mortality in post menopausal women is examined in 
hapter 7.
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Chapter 6Abdominal Aorti
 Cal
i�ed Deposits andtheir Relationship to Mortality in PostMenopausal WomenThis 
hapter is based on the manus
ript "Abdominal Aorti
 Cal
i�ed Deposits and their Re-lationship to Mortality in Post Menopausal Women" by Melanie Ganz, Marleen de Bruijne,Erik B. Dam, Paola Pettersen, Morten A. Karsdal, Claus Christiansen and Mads Nielsen
urrently in preparation and on the manus
ript "MACD - an Imaging Marker for Cardio-vas
ular Disease" by Melanie Ganz, Marleen de Bruijne and Mads Nielsen published in thepro
eedings of the SPIE Medi
al Imaging 
onferen
e, San Diego, CA, USA, 2010.Abstra
t Abdominal aorti
 
al
i�
ations (AACs) 
orrelate strongly with 
oronaryartery 
al
i�
ations and 
an be predi
tors of 
ardiovas
ular mortality. We investigatedwhether size, shape, and distribution of AACs relate to mortality and how su
h prognosti
markers perform 
ompared to the state-of-the-art AC24 marker introdu
ed by Kauppila etal. For 308 post-menopausal women we quanti�ed the number of AACs and the per
entageof the abdominal aorta that the lesions o

upied in terms of their area, simulated plaquearea, thi
kness, wall 
overage and length. We analyzed inter-/intra-observer reprodu
ibilityand predi
tive ability of mortality after 8-9 years. This was done via Cox regression withand without adjustment for biologi
al risk fa
tors leading to hazard ratios (HR). The
oe�
ient of variation was below 25% for all markers. The strongest individual predi
torswere the number of 
al
i�
ations (HR=2.4, p<0.001) and the simulated area per
entage(HR=2.96, p<0.001) of a 
al
i�ed plaque and, unlike AC24 (HR=1.66, p<0.001), theywere predi
tive of mortality after adjusting for traditional risk fa
tors. In a 
ombined Coxregression model the strongest 
omplementary predi
tors were the number of 
al
i�
ationsand the per
entage of the aorta area they o

upied. Hen
e, morphometri
 markers of AACquanti�ed from radiographs may be a useful tool for s
reening and monitoring risk of CVDmortality.
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Chapter 6. Abdominal Aorti
 Cal
i�ed Deposits and their Relationship to Mortality inPost Menopausal Women6.1 Introdu
tionCardiovas
ular diseases (CVDs) are the most prevalent 
ause of death in Eu-rope [117℄ and the United States [118℄. This is the 
ase despite general a
-
eptan
e that a healthy lifestyle and risk fa
tor management 
an prevent thedevelopment of CVDs [6℄. Furthermore, two-thirds of women who die sud-denly from CVDs have no previously re
ognized symptoms. Thus, e�e
tiveand broadly appli
able indi
ators of 
ardiovas
ular risk may prompt timelyintervention.Current non-invasive modalities for imaging atheros
lerosis are radiographs, ul-trasound, 
omputed tomography (CT) and magneti
 resonan
e imaging (MRI)[119℄. Ultrasound is used to visualize the 
arotid intima-media thi
kness(IMT), be
ause 
arotid IMT has been shown to be asso
iated with atheros
le-rosis [19℄, and is thus a marker for CVD. Multi-sli
e CT is able to quantify thedegree of 
oronary artery 
al
i�
ation (CAC) with good reprodu
ibility [22,23℄,whi
h provides a strong measure of 
ardiovas
ular risk [24℄ independently from,and potentially more powerful than, traditional risk fa
tors su
h as smok-ing [25℄. MRI is a non-invasive modality to assess atheros
lerosis in di�erentvas
ular beds. However, MRI measurements are 
hallenged by the size of thesmaller arteries and assessment of the 
oronary arteries is espe
ially di�
ultdue to 
ardia
 and respiratory motion artifa
ts [120℄.An alternative to examining 
oronary arteries for 
al
i�
ation is to assess theabdominal aorta. Although 
al
i�
ations of the 
oronary arteries 
an also beassessed by radiographs, we fo
us on radiographi
 examination of the abdomi-nal aorta, be
ause abdominal aorti
 
al
i�
ations (AACs) are strong predi
torsof 
ardiovas
ular morbidity and mortality [10℄, 
orrelate strongly with 
oro-nary artery 
al
i�
ations, and may hen
e predi
t the risk of 
oronary arterydiseases [30,80℄. The state of the art methodology to estimate CVD risk fromlumbar aorti
 radiographs is the abdominal aorti
 
al
i�
ation s
ore (AC24)proposed by the Framingham study group [13℄. A big advantage is that su
hAAC s
oring 
an, for example in the 
ase of post-menopausal women, be per-formed without additional ionizing radiation exposure or 
ost as these imagesare already performed in osteoporosis trials [33, 34℄.We investigated if the morphometri
 aspe
ts of 
al
i�
ations quanti�ed fromplain radiographs 
ould be
ome useful novel markers of AACs. Due to thesemi-quantitative grading of the AC24 s
ore, su
h markers from abdominalaorti
 examinations 
ould potentially be more sensitive, in parti
ular to assessthe potential signi�
an
e of smaller 
al
i�
ations. We outlined the boundariesof the 
al
i�ed deposits in the lumbar aorti
 region on radiographs of postmenpausal women and quanti�ed the number of 
al
i�ed deposits as well asthe per
entage of the abdominal aorta 
overed by 
al
i�
ations in terms ofarea, simulated-plaque area, thi
kness, wall 
overage, and length. These po-74



6.2. Materials and Methodstential AAC markers were evaluated for pre
ision and their ability to predi
tCVD-related mortality.6.2 Materials and Methods6.2.1 Study PopulationIn 1992-93, 686 post menopausal women living in the Copenhagen area inDenmark were re
ruited via a household postal survey to parti
ipate in theEPI study [67℄ addressing the role of a number of metaboli
 risk fa
tors in thepathogenesis of CVD and osteoporosis and were examined radiologi
ally. Thefollow-up of the EPI study was the Prospe
tive Epidemiologi
al Risk Fa
tors(PERF) study [66℄, whi
h was performed after 8.5 years. PERF was initiatedto obtain further insight into the epidemiology and pathogenesis of menopause-related diseases, parti
ularly osteoporosis.Of the original 686 parti
ipants, we 
hose those whose interval between their�rst and se
ond 
lini
 visit was 8-9 years, with known alive/mortality status,who were post menopausal and whose lumbar aorta was visible on a singleradiograph at baseline and at follow-up. This left us with 308 subje
ts. In-formation about 
auses of death was obtained from the Central Registry ofthe Danish Ministry of Health and the death 
auses were grouped into threegroups: CVD, 
an
er and other death 
auses.6.2.2 Metaboli
 and Physi
al MeasurementsAt baseline, demographi
 information and CVD risk parameters su
h as age,weight, height, body mass index (BMI), waist and hip 
ir
umferen
es, sys-toli
 and diastoli
 blood pressure (BP), treated hypertension, treated diabetes,smoking, regular al
ohol and daily 
o�ee 
onsumption, and weekly �tness a
-tivity were 
olle
ted. Using a blood analyzer (Cobas Mira Plus, Ro
he Di-agnosti
s Systems, Ho�man-La Ro
he, Basel, Switzerland), measurements offasting glu
ose and a lipid pro�le (total 
holesterol, trigly
erides, low-densitylipoprotein 
holesterol (LDL-C), high-density lipoprotein 
holesterol (HDL-C), apolipoprotein A and B (ApoA and ApoB respe
tively) and lipoprotein(a)(Lp(a))) were obtained. On the basis of these measurements, the 
ompositerisk markers, systemi
 
oronary risk evaluation (SCORE) [49℄ and Framing-ham s
ore [50℄, were 
al
ulated. The SCORE is a 
ombination of the age,smoking status, levels of total 
holesterol and systoli
 blood pressure, whilethe Framingham s
ore is 
omprised of the same variables plus the HDL-C andthe hypertension treatment status.
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Figure 6.1: A manual annotation of an X-ray: In blue we see distin
t vertebra points, ingreen the aorta wall and in red the 
al
i�
ations.6.2.3 Radiographi
 AnalysisThe lateral X-ray images of the lumbar aorta (L1-L4) were a
quired on �lm in1992 and again in 2001, and digitized in 2007/2008 using a DosimetryProAd-vantage s
anner (Vidar, Herndon, USA), providing an image resolution of 570dpi on a 12-bit gray s
ale. Three trained radiologists without prior knowledgeof the patients' 
onditions manually annotated the 
orners and mid points ofthe vertebrae (L1-L4), the 
orresponding abdominal aorta walls, and 
al
i�-
ations in the digitized images. The three radiologists had ten, eight and �veyears of experien
e. They used radiologi
al reading units (Se
tra, Linköping,Sweden) and annotation software spe
i�
ally implemented for that task in Mat-Lab (The MathWorks, Nati
k, USA), whi
h allowed them to 
hange brightnessand 
ontrast, zoom in and out, and to edit outlines, as seen in �gure 6.1.The AC24 [15℄ was 
onstru
ted by proje
ting the AACs to the 
orrespondingaorta wall. Then the aorti
 se
tions adja
ent to ea
h vertebra L1-L4 weregraded by the degree of lesion o

upation: 0 for no AACs, 1 for AACs o

upy-ing less than 1/3 of the wall they were proje
ted onto, 2 for AACs o

upying76



6.2. Materials and Methods

Figure 6.2: A s
hemati
 overview of the AC24 s
oring adopted from [13℄.more than 1/3, but less than 2/3 in the proje
tion, and 3 for a 2/3 or more o
-
upation of the wall. The degree of lesion o

upation of the proje
tions to theanterior and posterior aorta wall for all four lumbar vertebrae was summed,leading to an AC24 s
ore ranging between 0 and 24. In addition to the AC24s
ores provided by the radiologists, the outlines of the 
al
i�
ations were usedin an alternative 
omputer-based 
omputation of the AC24. The AC24 s
oringis illustrated in �gure 6.2.For all images with 
al
i�
ations, annotations were performed by one of thethree radiologists. For a subset of 8 images, annotations by two radiologistswere made twi
e in order to evaluate inter- and intra-observer pre
ision. Re-outlining was performed blinded to earlier outlines and separated by approxi-mately six to eight weeks.6.2.4 AAC MarkersBesides measuring the AC24 there is more information to gain from the AACs.Therefore several potential severity s
ores relating to the geometri
al outline ofthe 
al
i�ed deposits in the lumbar aorti
 region were examined. The proposedAAC markers were automati
ally 
omputed from the radiologist's 
omputer-assisted outlines of 
al
i�ed deposits in the radiographs:77
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Figure 6.3: Left: A s
hemati
 visualization of a plaque similar to what 
an be seen in histol-ogy. The 
al
i�ed plaque is surrounded by an area of ne
roti
 tissue. Right: The simulatedarea tries to imitate the area of ne
roti
 tissue as seen in histology by a morphologi
aldilation of the 
al
i�ed plaque.
• Area per
entage (Area %): The per
entage of the area of the lumbaraorta adja
ent to L1-L4 o

upied by AACs.
• Simulated area per
entage (Sim. area %): We estimated the size of theunderlying atheros
leroti
 in�ammation from the area and shape of theobserved AACs sin
e X-ray analysis 
an only visualize the 
al
i�ed 
ore ofthe AACs. The extent of the atheros
leroti
 in�ammation was simulatedby a morphologi
al dilation [121℄ with a 
ir
ular stru
turing element ofradius 200 pixels (approx. 8.9 mm). The size of the stru
turing elementwas derived by a parameter study on a subset of the data and it was
on�rmed to be biologi
ally sensible by 
omparing with histology andimage analysis observations whi
h estimated the size of the atheros
leroti
in�ammation surrounding the 
al
i�ed plaque to be between 3 mm [122℄and 5-10 mm [123℄. An illustration of this 
omputer-based simulation ofthe full plaque area is given in �gure 6.3. The simulated area per
entageis the per
entage of the lumbar aorta 
overed by the simulated plaques,in
luding both 
al
i�ed 
ore and simulated in�amed area.
• Thi
kness per
entage (Thi
kness %): The average thi
kness of the AACs78
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Figure 6.4: A s
hemati
 view of the di�erent AAC markersalong the aorta wall relative to the aorta width.
• Wall per
entage (Wall %): The per
entage of the anterior and posteriorlumbar aorta wall 
overed by proje
tions of AACs.
• Length per
entage (Length %): The fra
tion of the length of the aortawhere AACs were present at any position (anterior, posterior or internal).
• Number of 
al
i�ed deposits (NCD): The number of distin
t AACs visiblein ea
h radiograph.A s
hemati
 view of the six proposed markers 
an be seen in �gure 6.4. We ex-amined the degree to whi
h these markers 
ould be reliably established on thebasis of manual annotations of X-ray images, and evaluated their asso
iationto mortality, also when adjusted for metaboli
 or physi
al markers.6.2.5 Statisti
al AnalysisKendall's 
oe�
ient of 
on
ordan
e τ [124℄ was used to assess the level ofagreement between AC24 s
orings of 
al
i�ed images made by radiologists di-re
tly on the original X-rays and AC24 s
orings by the 
omputer, based onthe radiologist's annotated outlines. To measure the inter- and intra-observer79



Chapter 6. Abdominal Aorti
 Cal
i�ed Deposits and their Relationship to Mortality inPost Menopausal Womenvariability of the manual annotations of radiologists on the eight images al-lo
ated spe
i�
ally for this purpose, we used the Ja

ard Index A [68℄ . We
omputed the ratio of the area identi�ed as 
al
i�ed in two outlines, dividedby the area identi�ed as 
al
i�ed in at least one outline:
A =

|A1

⋂
A2|

|A1

⋃
A2|where A1 and A2 are binary annotations. The Ja

ard Index varies from 0 forno agreement to 1 for 
omplete agreement. Typi
ally, Cohen's κ [88℄ wouldbe used to measure the inter-rater agreement for 
ategori
al items su
h aspixels. However, the statisti
s will be dominated by the very large 
lass ofnon-
al
i�ed pixels, and individual pixel s
orings 
annot be 
onsidered statis-ti
ally independent.The inter- and intra-observer variability of the AAC markers 
omputed fromthe radiologists' outlines was analyzed on the eight images by the mean 
oef-�
ients of variation (CV).The predi
tive power of mortality in terms of hazard ratio (HR) per standarddeviation 
hange of the individual AAC s
orings was 
al
ulated with the helpof a Cox regression analysis, also known as survival analysis. A basi
 overviewover survival analysis is given in [125℄, while a thorough 
overage of the subje
t
an be found in [126℄.The basis of the Cox regression model is the examination of the behavior ofthe hazard fun
tion with respe
t to q di�erent environmental parameters. Thehazard fun
tion is given by

h(t; zi) = h0(t) exp(z
t
iβ), (6.1)where t is the time and zi with i = 1, . . . , n are the q-dimensional environmentalparameter ve
tors for ea
h individual patient i in the study, h0 is an unknownbaseline hazard fun
tion used to model the hazard without environmental in-�uen
es and β is a q-dimensional ve
tor giving the 
oe�
ient estimates of aCox regression of the result status (e.g. dead or alive) to the predi
tors in zi.The Cox regression tries to estimate the regression parameters β and measuretheir signi�
an
e.In all Cox regression analyses, we use the marker values for the 
omplete pop-ulation and vary the binary out
ome variable (e.g. CVD dead = 1, alive orother dead = 0) a

ording to the group of interest we fo
us on.First we used Cox regression analysis on the image markers to test their in-dividual prognosti
 power. In the Cox regression the out
ome variable wasthe time of death and survivors were right 
ensored. This analysis was per-formed on unadjusted markers as well as markers adjusted with three di�erentsets of biologi
al variables: a) a model 
onsisting of age, smoking status andtrigly
eride levels, b) the SCORE [49℄ and 
) Framingham s
ore [50℄ (Model80
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Figure 6.5: A s
hemati
 overview of the study population.a) 
onsists of age, smoking status and trigly
eride levels, be
ause in a 
om-bined model in
luding all physi
al/metaboli
 parameters only age, smoking,and trigly
eride level persisted after elimination of insigni�
ant 
ontributions.).We adjusted by 
ombining the biologi
al variables of ea
h set into one new vari-able by a linear weighting with their β-weights derived by a Cox regression.This new variable was then in
luded in another Cox regression model for theimaging marker we adjusted. The resulting β-weight for the imaging markerdetermined the biologi
ally adjusted prognosti
 power.Furthermore, to analyze the 
omplementarity of the AAC markers we build aCox regression model with all variables and then su

essively deleted the leastsigni�
ant marker until only signi�
ant markers were left. Hereby signi�
an
eof the marker q was given as the model weight βq being signi�
antly di�erentfrom zero (p<0.05). This way, single markers that 
omplemented ea
h otherand gave supplementary information were identi�ed.6.3 ResultsThe data 
onsisted of baseline images taken in 1992 of 308 subje
ts. Of these,121 subje
ts had no 
al
i�
ations at baseline or follow-up. Of the remaining187 subje
ts, 52 had died before follow-up due to 
an
er (n=27), CVD (n=20)or other 
auses (n=5), and 135 surviving subje
ts had varying degrees of ab-dominal aorti
 
al
i�
ation at baseline or follow-up. A s
hemati
 overview ofthe study population is given in �gure 6.5, while an overview of the physi
aland metaboli
 measurements is given in table 6.1.The radiologist and 
omputer-based AC24 s
ores for the images of 
al
i�
ationin the 135 subje
ts 
al
i�ed images were in ex
ellent agreement (Kendall's τ= 0.97, p<0.0001). 81



Chapter 6. Abdominal Aorti
 Cal
i�ed Deposits and their Relationship to Mortality inPost Menopausal WomenTable 6.1: The mean and standard deviation of the measured metaboli
 and physi
al mark-ers. Physi
al/Metaboli
 markers Population Survivors De
eased(n=308) (n=256) (n=52)Age (years) 60.3 ± 7.5 59.3 ± 7.1 65.6 ± 7.0Waist (
m) 80.7 ± 10.9 80.2 ± 9.9 83.1 ± 12.4Waist-to-hip ratio 0.80 ± 0.08 0.80 ± 0.08 0.83 ± 0.10Body Mass Index (frackgm2) 24.7 ± 3.9 24.7 ± 3.8 25.1 ± 4.6Smoking (%) 37 33 58Systoli
 BP (mm Hg) 127 ± 21 125 ± 20 136 ± 26Diastoli
 BP (mm Hg) 77 ± 10 76 ± 10 77 ± 11Hypertension (%) 16 15 17Glu
ose (mmol/L) 5.44 ± 1.27 5.37 ± 0.99 5.79 ± 2.17Total 
holesterol (mmol/L) 6.44 ± 1.19 6.36 ± 1.14 6.85 ± 1.33Trigly
erides (mmol/L) 1.24 ± 0.75 1.15 ± 0.56 1.69 ± 1.25LDL-C (mmol/L) 2.89 ± 0.82 2.85 ± 0.80 3.07 ± 0.93HDL-C (mmol/L) 1.77 ± 0.48 1.77 ± 0.44 1.74 ± 0.62ApoB/ApoA 0.57 ± 0.18 0.56 ± 0.17 0.64 ± 0.23Lp(a) (mg/dL) 21.4 ± 21.7 21.9 ± 22.0 18.4 ± 19.8EU SCORE 2.60 ± 2.58 2.16 ± 2.12 4.73 ± 3.45Framingham 14.75 ± 3.54 14.21 ± 3.46 17.31 ± 2.74From the eight images with four annotations ea
h, the mean Ja

ard Indexbetween the two radiologists' AAC outlines was 51% area overlap for the inter-observer variation and 56% area overlap for the intra-observer variation (see�gure 6.6 for an example). Separately, the two radiologists had an intra-observer variability of 53% and 59% area overlap, respe
tively. The CV valuesfor the AAC marker pre
ision on the same set of eight images were between
12.5% and 24.9% (table 6.2).The mean values and respe
tive standard deviations of ea
h of the AAC mark-ers is reported in table 6.3. One 
an easily see that they all have a relationto identifying the people that are dying of CVD or CVD/
an
er, be
ause allmarkers show elevated values in the CVD-death and 
an
er-death group 
om-pared to the survivors.Table 6.4 shows that the simulated area per
entage and number of 
al
i�
a-tions (NCDs) have the largest individual predi
tive power (HR=2.96, p<0.001and HR=2.44, p<0.001) for CVD-mortality. The hazard ratios (HRs) for thesimulated area per
entage and NCD were between 2.0 - 2.96 and 1.76 - 2.4482
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(a) (b) (
)Figure 6.6: An X-ray of a parti
ipant in the EPI follow-up population: (a) an annotation bya radiologist, (b) a se
ond annotation by the same radiologist and (
) an annotation doneby another radiologist. Noti
e how although the outlines of the annotated 
al
i�
ations donot vary mu
h, the �rst radiologists misses several 
al
i�
ations 
ompletely. This is oftenwhat leads to a low area overlap when 
omparing annotations from di�erent radiologists.Table 6.2: The inter- and intra-observer mean 
oe�
ients of variation ± their standard errorfor the AAC markers based on the inter-intra-observer test population. The 
oe�
ients ofvariation are all below 25% and therefore we 
an measure the AAC markers with reasonablea

ura
y.Inter-Intra-Observer Inter-Observer CV % Intra-Observer CV %Population ± standard error ± standard errorArea 23.9 ± 4.7 24.7 ± 4.9Sim. area % 24.9 ± 5.4 20.4 ± 5.3Thi
kness % 17.1 ± 3.3 16.1 ± 3.6Wall % 12.1 ± 2.1 12.9 ± 2.7Length % 12.1 ± 2.0 12.9 ± 2.7NCD 19.4 ± 3.1 16.6 ± 3.5respe
tively for the CVD-death group and between 1.68 - 2.37 and 1.69 - 2.28respe
tively for the 
ombined CVD/
an
er-death group. All HRs were sig-ni�
antly di�erent from unity (p<0.01) both before and after adjusting forthree di�erent biologi
al models, so the ratio of the probability of dying in theCVD or CVD/
an
er death group versus the rest is signi�
antly larger than 1.83



Chapter 6. Abdominal Aorti
 Cal
i�ed Deposits and their Relationship to Mortality inPost Menopausal WomenTable 6.3: The mean ± one standard deviation of all the imaging markers strati�ed for the di�erentsubsets of patients. One 
an see large di�eren
es in the AAC markers measurements in the survivorgroup and the CVD, 
an
er and CVD/
an
er groups of de
eased. Note espe
ially that the 5 subje
tsthat died of other 
auses are 
an not be dis
erned from the survivors with the help of the AAC markers.All Survivors CVD Can
er CVD/Can. Other(n=308) (n=256) (n=20) (n=27) (n=47) (n=5)AC24 1.67 ± 2.55 1.35 ± 2.34 3.50 ± 2.35 3.41 ± 3.23 3.45 ± 2.86 1.35 ± 2.36Area % 0.6 ± 1.2 0.5 ± 1.1 1.0 ± 0.9 1.6 ± 1.8 1.3 ± 1.5 0.5 ± 1.1Sim. area % 11 ± 17 8.9 ± 15.7 24 ± 16 25 ± 24 25 ± 21 8.7 ± 15.5Thi
kness % 11 ± 20 9.0 ± 19 17 ± 16 25 ± 28 21 ± 24 8.7 ± 19Wall % 1.03 ± 1.83 0.79 ± 1.64 2.08 ± 1.70 2.51 ± 2.68 2.33 ± 2.30 0.80 ± 1.63Length % 7.5 ± 12.8 6.0 ± 11.7 15.4 ± 11.2 17.3 ± 17.6 16.5 ± 15.1 5.9 ± 11.6NCD 3.8 ± 7.7 2.6 ± 6.4 8.5 ± 6.5 11.6 ± 13.4 10.3 ± 11.0 2.6 ± 6.3AC24s unadjusted individual predi
tive power was lower (HR=1.66, p<0.001).After adjustment for the three di�erent biologi
al models the signi�
an
e ofthe HRs for AC24 was redu
ed and in some 
ases removed, leading to a HRbetween 0 and 1.66 for the CVD-death group and between 1.29 and 1.64 forthe CVD/
an
er-death group.The results of the 
ombined predi
tive power of the seven imaging markers
an be seen for the CVD and the CVD/
an
er group in table 6.5. First thenon-adjusted hazard ratios from table 6.4 are stated again and then two elim-ination models are shown. When 
ombining the markers in a Cox regressionmodel, only area per
entage and NCD remained signi�
ant (parea < 0.001,
pNCD < 0.001) with negative and positive regression 
oe�
ients respe
tively.6.4 Dis
ussionWe evaluated whether a radiologist's manual s
oring of the AC24 
orrelatedwith a 
omputer-based s
oring of the AC24 derived from a radiologist's manualoutline of the 
al
i�
ations on a digitized radiograph. The Kendall's 
oe�
ientof 
on
ordan
e showed the two s
orings were in ex
ellent agreement. We alsoevaluated inter- and intra-observer variability of manual annotations using theJa

ard Index and 
oe�
ients of variation of the AAC markers, in
luding theAC24. Although the Ja

ard Index showed that the variation in the outlined
al
i�ed deposits was high, the 
oe�
ients of variation for the AC24 and theother AAC markers based on the outlines were relatively low. These results6In parentheses the 95% 
on�den
e intervals of the relative risk is shown and the symbols *, ⋆ and †denote the signi�
an
e 
orresponding to p < 0.05, p < 0.01 and p < 0.001, respe
tively.84



6.4. Dis
ussionTable 6.4: The hazard ratio per standard deviation in
rease in marker values strati�ed into death 
auseand adjusted for physi
al/metaboli
 markers, EU SCORE and Framingham s
ore respe
tively.6 Note onlythe simulated area and NCD are signi�
ant for the CVD group after any adjustments.Hazard Ratio Hazard Ratio Hazard Ratio Hazard RatioNot adjusted Bio adj. SCORE adj. Fram. adj.AC24CVD 1.66 (1.25-2.19)† NS 1.38 (1.02-1.86)* NSCVD/Can. 1.64 (1.35-2.00) † 1.31 (1.06-1.63)* 1.40 (1.13-1.72)⋆ 1.29 (1.02-1.63)*Area %CVD 1.60 (1.16-2.20) ⋆ NS NS NSCVD/Can. 1.68 (1.36-2.09) † 1.32 (1.04-1.66)* 1.47 (1.16-1.86)⋆ 1.34 (1.04-1.72)*Sim. area %CVD 2.96 (1.76-4.99) † 2.00 (1.15-3.49)* 2.46 (1.41-4.27)⋆ 2.27 (1.26-4.09)⋆CVD/Can. 2.37 (1.73-3.25) † 1.68 (1.20-2.34)⋆ 1.96 (1.40-2.73)† 1.79 (1.26-2.54)⋆Thi
kness %CVD NS NS NS NSCVD/Can. 1.45(1.20-1.75) † NS 1.27 (1.04-1.55)* NSWall %CVD 1.50 (1.16-1.95) ⋆ NS NS NSCVD/Can. 1.60 (1.34-1.91) † 1.26 (1.04-1.53)* 1.42 (1.17-1.73)† 1.30 (1.05-1.62)*Length %CVD 1.55 (1.18-2.04) ⋆ NS NS NSCVD/Can. 1.61 (1.34-1.95) † 1.26 (1.03-1.55)* 1.42 (1.16-1.73)† 1.29 (1.03-1.62)*NCDCVD 2.44 (1.72-3.48) † 1.76 (1.20-2.60)⋆ 2.20 (1.48-3.26)† 2.04 (1.34-3.12)†CVD/Can. 2.28(1.79-2.90) † 1.69 (1.30-2.21)† 2.00 (1.53-2.62)† 1.86 (1.40-2.47)†demonstrated that even though the outlining of the individual plaques is a
hallenging task, the resulting markers based on the annotations provided rea-sonably pre
ise measurements.In the 
ourse of the 8-9 years of the study 52 people died, of whom 20 died fromCVD-related 
auses and 27 from 
an
er. The Cox regression models showedsimilar 
orrelations to CVD and CVD/
an
er mortality for the di�erent mark-ers. The simulated area per
entage and the number of 
al
i�ed deposits 
ouldindividually predi
t CVD and CVD/
an
er death and 
ontained additional in-formation for CVD mortality even after adjustments for age, trigly
erides and
holesterol and the SCORE model and Framingham s
ore. Hen
e, in this postho
 study, the simulated area per
entage and the number of 
al
i�ed depositspredi
ted CVD mortality independently from traditional risk fa
tors, in 
on-trast to AC24. A reason for this 
ould be that the AC24 does not dis
riminatebetween severity and spread of individual 
al
i�
ations.Our experiments with Cox regression elimination models showed that the haz-85



Chapter 6. Abdominal Aorti
 Cal
i�ed Deposits and their Relationship to Mortality inPost Menopausal WomenTable 6.5: The individual hazard ratios per standard deviation for the markers in the CVDand the CVD/
an
er group as well as two Cox regression elimination models. First thenon-adjusted hazard ratios from table 6.4 are stated again and then two elimination modelsare shown, where β denotes the logisti
 regression 
oe�
ient of the given marker in the
ombined elimination models.6 Only area per
entage and NCD are left after a ba
kwardmarker sele
tion. CVD: CVD elim.: CVD/
an
er: CVD/
an
er elim.:
β · std β · std β · std β · stdAC24 1.66† - 1.64† -Area % 1.60⋆ b = -3.84† 1.68† b = -2.39†Sim. area % 2.96† - 2.37† -Thi
kness % 1.32 - 1.45† -Wall % 1.50⋆ - 1.60† -Length % 1.55⋆ - 1.61† -NCD 2.44† b = 2.76† 2.28† b = 1.88†ard of dying of CVD or CVD/
an
er was proportional to the number of 
al-
i�
ations and inversely proportional to their area. Therefore, our hypothesisis that many small plaques play a relevant role for the hazard of dying ofCVD or CVD/
an
er. Biologi
ally this 
an be explained by the fa
t that therisk of death due to myo
ardial infar
t (MI) may be related to the numberof a
tive plaques [127℄. During plaque development, smaller plaques developinto larger 
ompli
ated lesions that either rupture or be
ome stable plaques.Smaller lipid-laden plaques with high turnover have been identi�ed as thosemost likely to rupture and result in MI [128, 129℄. Thus, a large number ofsmaller 
al
i�
ations may indi
ate a higher risk of rupture than few large,stable, 
al
i�
ations in the same area. This higher emphasis on the numberof 
al
i�
ations, rather than the total 
al
ium burden, may re�e
t aspe
ts ofvulnerability that help improve the CVD-mortality predi
tion, as observed inthis work.The sample size is a limitation of the present study. The relatively small pop-ulation with only 20 CVD deaths, a limited representation of ethni
ity andgender and a mixture of death 
auses may limit the utility of generalizingour results. Therefore, the presented �ndings need to be validated in larger,independent studies. Although the 
urrent analysis is based on manual an-notations by trained radiologists, the annotation pro
edure 
an in prin
iplebe automated. A �rst step toward automated dete
tion and segmentation ofaorti
 
al
i�
ations from radiographs has been provided by de Bruijne [89℄,Lauze, F. et al. [90℄ and Petersen, K. et al. [35℄ .86



6.5. Con
lusionCompared to markers of CVD obtained with other imaging modalities, su
has 
arotid IMT or CAC, a 
lear advantage of using standard radiographs is theavailability of large, long duration 
lini
al studies about osteoporosis [33, 34℄.The radiographi
 images derived from osteoporosis trials of post menopausalwomen 
ould then be used at the same time for 
ardiovas
ular risk strati�-
ation in these women. This way the 
lini
al appli
ability of AAC markers
ould be in
reased. Furthermore, histori
al trial data 
an be used to verify thedeveloped AAC markers and 
an improve understanding of CVD death riskfa
tors.6.5 Con
lusionAs shown above, simple statisti
al modeling 
an help to identify potentialimaging markers. While AC24 
aptures essential information about AACs,our results demonstrate that some of these novel morphometri
 markers ofAACs identi�ed in this study, i.e., the number and the simulated area per
ent-age of a 
al
i�ed plaque in the abdominal aorta, may 
apture 
omplementaryinformation. Further steps 
an be taken by building 
ombined biologi
al andimaging markers or by developing even more AAC markers and repeating thesame pro
edure as above. Although it is left to show the 
lini
al appli
abilityand reprodu
ibility of the newly identi�ed markers, this statisti
al approa
hfor marker development seems to be a step in the right dire
tion and the pro-posed radiographi
 AAC markers may enable improved monitoring of CVDmortality risk.
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Chapter 7Distribution, Size, Shape, GrowthPotential and Extent of AbdominalAorti
 Cal
i�ed Deposits Predi
tMortality in Post Menopausal WomenThis 
hapter is based on the highly a

essed manus
ript "Distribution, Size, Shape, GrowthPotential and Extent of Abdominal Aorti
 Cal
i�ed Deposits Predi
t Mortality in PostMenopausal Women" by Mads Nielsen, Melanie Ganz, Fran
ois Lauze, Paola C. Pettersen,Marleen de Bruijne, Thomas B. Clarkson, Erik B. Dam, Claus Christiansen and MortenA. Karsdal published in the journal BMC Cardiovas
ular Disorders 2010, 10:56.Abstra
t Aorti
 
al
i�
ation is a major risk fa
tor for death from 
ardiovas
ulardisease. We investigated the relationship between mortality and the 
omposite markers ofnumber, size, morphology and distribution of 
al
i�ed plaques in the lumbar aorta. 308post menopausal women aged 48-76 were followed for 8.3 ± 0.3 years, with deaths relatedto 
ardiovas
ular disease, 
an
er, or other 
auses being re
orded. From lumbar X-rays atbaseline the number (NCD), size, morphology and distribution of aorti
 
al
i�
ation lesionswere s
ored and 
ombined into the Morphologi
al Atheros
leroti
 Cal
i�
ation Distribution(MACD) index. The hazard ratio for mortality was 
al
ulated for the MACD and for threeother 
ommonly used predi
tors: the EU SCORE 
ard, the Framingham Coronary HeartDisease Risk S
ore (Framingham s
ore), and the gold standard Aorti
 Cal
i�
ation Severitys
ore (AC24) developed from the Framingham Heart Study 
ohorts. For the 10% subje
tsat highest risk of CVD death the SCORE 
ard and the Framingham s
ore resulted in amortality hazard ratio of 4.9 (p < 0.01) and 0, respe
tively. The MACD index revealed thebest predi
tive power for identi�
ation of patients at 10% highest risk of mortality, with ahazard ratio of 15.6 (p < 0.001). This study indi
ates that the MACD index may providea more sensitive predi
tor of mortality from aorti
 
al
i�
ation than the 
ommonly usedAC24 and SCORE/Framingham s
ore systems.
89



Chapter 7. Distribution, Size, Shape, Growth Potential and Extent of Abdominal Aorti
Cal
i�ed Deposits Predi
t Mortality in Post Menopausal Women7.1 Ba
kgroundCardiovas
ular diseases (CVDs) remain the most 
ommon 
ause of death in thedeveloped world, even though vast epidemiologi
al and interventional studieshave demonstrated signi�
ant de
lines in CVD prevalen
e with adheren
e toa healthy lifestyle, and the identi�
ation and management of risk fa
tors [6℄.Sin
e two thirds of women who die suddenly from CVD have no previouslyre
ognized symptoms [6℄, it is essential to �nd e�e
tive indi
ators of 
ardio-vas
ular risk that may prompt timely intervention.Biomarkers and bio
hemi
al markers are re
eiving in
reased attention for theirpotential prognosti
 value, and for identi�
ation of those patients in most needof intervention [130℄. An extensive list of more than 200 potential CVD riskfa
tors has been 
ompiled [51℄ and multivariate analysis models, su
h as theEU SCORE 
ard [49℄ and the Framingham Coronary Heart Disease Risk S
ore(Framingham s
ore) [50℄, have been developed to estimate the risk of CVDdeath. However, more information may be provided by in-depth analysis ofalready-established risk fa
tors.Re
ently, several interesting �ndings have been reported on abdominal aorti

al
i�
ations as a CVD risk fa
tor: i) Premature parental CVD has been asso-
iated with abdominal aorti
 
al
i�
ation [131℄. ii) Abdominal aorti
 
al
iumlevels were signi�
antly related to 
oronary 
al
ium levels independent of theusual risk fa
tors [132,133℄. iii) In type II diabetes patients, abdominal aorti

al
i�
ation was shown to 
onstitute an independent risk fa
tor of 
lini
al vas-
ular disease [134℄. iv) An in
reased total-to-high density lipoprotein (HDL)
holesterol ratio in
reased the risk of presen
e of aorti
 
al
i�
ation [135℄. v)Lumbar aorti
 
al
i�
ations in bone densitometer images have been shown to
onstitute an independent risk fa
tor of CVD [136℄. Hen
e, abdominal aorti

al
i�
ation is an important risk fa
tor for CVD.Further investigations have indi
ated that it is rather the number of a
tivelipid-laden remodeling, growing, plaques, rather than the total burden of
al
i�ed plaques, in
luding stable plaques, that is related to 
ardiovas
ulardeath [137℄. Also the number, distribution and size of 
al
i�ed plaques havebeen shown to relate to mortality [138℄. As the aorti
 
al
i�
ation severitys
ore (AC24) assesses, in terms of lesions, only the extent of 
al
i�
ation in theaorta, we developed a broader morphologi
al atheros
leroti
 
al
i�
ation dis-tribution (MACD) index spe
i�
ally to s
ore the number, length, width, shape,and distribution of abdominal aorti
 
al
i�
ations (AAC) found in lumbar X-rays of post menopausal women. This index was 
reated to further understandthe 
omposition of the plaque burden in relation to 
ardiovas
ular death. Lowdose 
omputed tomography might have been used to evaluate 
oronary 
al
i-�
ations for s
reening purposes [139℄, however its 
ost is a limiting fa
tor.We evaluated whether ea
h risk in
luded in the 
omposite MACD marker per-90



7.2. Methods

(a) (b)Figure 7.1: Lateral lumbar X-ray with 
al
i�
ations in the lower region without (a) andwith (b) 
omputer-mediated annotations performed by a radiologist.sisted after 
orre
tion for generalized risk assessments used in the SCORE
ard [49℄, the Framingham s
ore [50℄ or individual risk fa
tors, su
h as smok-ing, 
holesterol or trigly
erides levels.7.2 Methods7.2.1 Subje
tsIn 1992-93, 686 post menopausal women living in the Copenhagen area in Den-mark were re
ruited via a household postal survey to parti
ipate in a studyaddressing the role of a number of metaboli
 risk fa
tors in the pathogenesisof CVD and osteoporosis [67℄.Follow-up was performed after 8.5 years and information about all 95 individu-als who died in the observation period was obtained from the Central Registryof the Danish Ministry of Health.7.2.2 MarkersAt baseline, information was 
olle
ted on demographi
s and known risk param-eters su
h as age, weight, height, body mass index (BMI), waist and hip 
ir-91
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umferen
es, systoli
 and diastoli
 blood pressure (BP), treated hypertension,treated diabetes, smoking, regular al
ohol and daily 
o�ee 
onsumption, andweekly �tness a
tivity. Using a blood analyzer (Cobas Mira Plus, Ro
he Diag-nosti
s Systems, Ho�man-La Ro
he, Basel, Switzerland), fasting glu
ose levelsand lipid pro�les, 
onsisting of total 
holesterol, trigly
erides, LDL-
holesterol(LDL-C), HDL-
holesterol (HDL-C), apolipoproteins (ApoA and ApoB) andlipoprotein a (Lp(a)), were obtained.On basis of these measurements, the 
omposite risk SCORE 
ard [49℄ andFramingham s
ore [50℄ were both 
al
ulated based on the gender, age, systoli
blood pressure, total 
holesterol, and smoking status; and the Framinghams
ore also based on HDL-C.Lateral X-rays of the lumbar aorta (L1-L4 vertebrae) were taken at baselineand at follow-up. The images were digitized using a Vidar DosimetryPro Ad-vantage s
anner providing an image resolution of 570 dpi on a 12-bit grays
ale. Trained, blinded radiologists annotated the digitized images on a Se
-tra radiologi
al reading unit using annotation software developed in Matlab(Mathworks, MA, USA) (�gure 7.1). The radiologists were instru
ted to an-notate the 6 points used for vertebral height measurements on L1-L4 [140℄,to delineate the aorta, and �nally to outline every individual 
al
i�ed depositvisible in the lumbar aorta and note their possible asso
iation to the anteriorand/or posterior wall. The software enabled digital zooming and editing [53℄.The inter- and intra- observer variability was tested by three radiologists an-notating the same 16 randomly sele
ted images.Geometri
 data relating to the 
al
i�ed deposits in the L1-L4 region was quan-ti�ed as follows:
• Area per
entage (Area %): The per
entage of the aorta lumen area o

u-pied by 
al
i�ed deposits.
• Simulated area per
entage (Sim. area %): As X-rays only 
apture the 
al-
i�ed 
ore and not the biologi
al extent of atheros
leroti
 lesions, we im-plemented a statisti
ally validated method [138℄, in whi
h the atheros
le-roti
 plaque size was estimated from the area and form of the observed
al
i�ed lesion, and the resulting area per
entage was re
orded. The es-timation was done using a grass-�re equation based on a morphologi
aldilation [121℄ with a 
ir
ular stru
turing element of radius 200 pixels 
or-responding to 8.9 mm. The biologi
al extent of atheros
leroti
 lesionsaround an elongated 
al
i�ed lesion was estimated to be larger than thebiologi
al extent of atheros
leroti
 lesions around a 
ir
ular 
al
i�
ationof similar size. Thus, equal areas of 
al
i�
ation but of di�erent shapeswere given di�erent s
ores (see �gure 7.2).
• Thi
kness per
entage (Thi
kness %): The average thi
kness of the 
al
i-�ed deposits along the aorta wall, expressed as a per
entage of the aorta92
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L1

L3

L2

L4

L1
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L3

L2

L4

AC24 8 8 8

NCD 2 14 14

MACD 1 2 4Figure 7.2: For a given amount of 
al
i�ed tissue, one 
an see s
hemati
ally how the AC24,the NCD and the MACD 
an be in�uen
ed di�erently by variations in 
al
i�
ation mor-phology and distribution.width.
• Wall per
entage (Wall %): The per
entage of the aorta wall 
overed by
al
i�ed deposits.
• Length per
entage (Length %): The per
entage of the length of the aortain whi
h a 
al
i�ed deposit was present, in any position (anterior, poste-rior or internal).
• Number of Cal
i�ed Deposits (NCD): The number of distin
t 
al
i�eddeposits.The relationship between these individual markers and CVD mortality in this
ohort has already been demonstrated [138℄. Furthermore, two novel 
ompositemarkers were 
reated:1. Morphologi
al Atheros
leroti
 Distribution (MAD) fa
tor:The simulated plaque area divided by the area estimates the portion ofthe biologi
al atheros
leroti
 pro
ess whi
h is not dete
ted by X-rays.2. Morphologi
al Atheros
leroti
 Cal
i�
ation Distribution (MACD) index:The NCD multiplied by the MAD fa
tor. Biologi
ally that 
an be un-93
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Cal
i�ed Deposits Predi
t Mortality in Post Menopausal Womenderstood as the number of plaques multiplied by the disease potentialdes
ribed by the MAD fa
tor.7.2.3 Statisti
al AnalysisPatients were strati�ed into survivors and de
eased. The latter were sub-strati�ed into CVD-related, 
an
er-related and other-
ause deaths. Sin
e 
an-
er and CVD have many risk fa
tors in 
ommon, an additional group 
ontain-ing all 
an
er or CVD deaths was 
reated to in
rease numbers and improvestatisti
al signi�
an
e.To test the prognosti
 power, metaboli
 and physi
al parameters and AACmarkers were used in separate Cox-regression models with the time of death asthe out
ome variable while right-
ensoring survivors. Signi�
an
e was tested asthe model weight being signi�
antly di�erent from zero. To test if one marker
arried additional prognosti
 power 
ompared to the remaining markers, amodel in
luding all elementary metaboli
/physi
al parameters was sequen-tially stripped for the insigni�
ant markers until signi�
an
e persisted for allmarkers. To test if an AAC marker 
arried prognosti
 power in addition to theother AAC markers and/or metaboli
/physi
al markers, ea
h marker was 
om-pared in 
ombined stripped models. Separate models for CVD, CVD/
an
erand all-
ause death were 
reated.As CVD and CVD/
an
er death rates were 6.5% and 15.2% respe
tively, a10% per
entile 
ut-o� was used to separate subje
ts at high risk from those(90%) at normal risk. Hazard ratios were 
omputed, adjusted for the in�uen
eof other risk parameters by 
ombining all other risk fa
tors into Cox-regressionmodels.7.3 ResultsOf the 686 post menopausal women enrolled in the original study in 1992-93, 95 died prior to follow-up with 52 (55%) of them having baseline X-rayexaminations in whi
h the full lumbar (L1-L4) aorta was visible on a singleradiograph. Of these 52 deaths, 20 (38%) were due to CVD, 27 (52%) to 
an-
er and 5 (10%) to other 
auses. Another 129 women had relo
ated from theCopenhagen area or did not want to parti
ipate in the follow-up study andprovided no 
lini
al data for it. Of the 462 women 
ompleting the follow-upvisit, lumbar aorta from 256 (55%) were visible on a single radiograph (�gure7.3). This 
ompares with the aorta visibility per
entage reported in earlierstudies [136℄. Therefore in total, 308 (52 plus 256) women were in
luded inthe 
urrent analysis. Baseline demographi
s and risk parameters showed no7The symbols *, ⋆ and † denote the signi�
an
e 
orresponding to p < 0.05, p < 0.01 and p < 0.001,respe
tively. 94



7.3. Results
686 recruted via questionaire

129 drop out

557 completers

95 deceased462 survivors

256 survivors w. X-ray

52 deceased w. X-ray

20 CVD † 27 cancer † 5 other †

206 no X-ray 43 no X-ray

Figure 7.3: Of 557 post menopausal women who 
ompleted an 8.5 year follow-up study, 55%of those alive at follow-up and 55% of those who were de
eased had useful X-rays with thefull abdominal aorta visible in a single X-ray. Thus, the study population in
luded in thisanalysis 
onsisted of a total of 308 women: 256 survivors and 52 de
eased.di�eren
e between the dis
ontinued women and those 
ompleting the study.Observer reprodu
ibility, assessed by three radiologists s
oring the same 16 X-rays, three times ea
h, resulted in an inter- and intra- observer area overlap [68℄of 56% and 60% respe
tively, showing good reprodu
ibility [40℄. These anno-tations were used to 
ompute the AC24 that ranges from 0 to 24 based on thelength of the vertebral se
tions a�e
ted by 
al
i�ed deposits [13℄. Most of thephysi
al and metaboli
 markers provided prognosti
 separation of the groups ofsurvivors and de
eased as depi
ted in tables 7.1 and 7.2. In a 
ombined modelin
luding all physi
al/metaboli
 parameters only age, smoking, and trigly
-eride level persisted after elimination of insigni�
ant 
ontributions. All threeparameters were positively asso
iated with death. These were 
ombined intoone parameter denoted "
ombined metaboli
/physi
al parameter" (HR perSD= 2.94 (2.18-3.95), p<0.001) for further analysis. All imaging-based AACmarkers showed higher values in the CVD, 
an
er, and 
ombined CVD/
an
ergroups than in the survivor group (table 7.3) and independently and signi�-
antly predi
ted death in the CVD and 
ombined CVD/
an
er groups (table95



Chapter 7. Distribution, Size, Shape, Growth Potential and Extent of Abdominal Aorti
Cal
i�ed Deposits Predi
t Mortality in Post Menopausal WomenTable 7.1: Population 
hara
teristi
s of the study population strati�ed into survivors andde
eased (all-
ause) expressed as mean±standard deviation. Most of the physi
al andmetaboli
 markers provide a subtle separation of the groups of survivors and de
eased.Physi
al/Metaboli
 markers Population Survivors De
eased(n=308) (n=256) (n=52)Age (years) 60.3 ± 7.5 59.3 ± 7.1 65.6 ± 7.0Waist (
m) 80.7 ± 10.9 80.2 ± 9.9 83.1 ± 12.4Waist-to-hip ratio 0.80 ± 0.08 0.80 ± 0.08 0.83 ± 0.10Body Mass Index (frackgm2) 24.7 ± 3.9 24.7 ± 3.8 25.1 ± 4.6Smoking (%) 37 33 58Systoli
 BP (mm Hg) 127 ± 21 125 ± 20 136 ± 26Diastoli
 BP (mm Hg) 77 ± 10 76 ± 10 77 ± 11Hypertension (%) 16 15 17Glu
ose (mmol/L) 5.44 ± 1.27 5.37 ± 0.99 5.79 ± 2.17Total 
holesterol (mmol/L) 6.44 ± 1.19 6.36 ± 1.14 6.85 ± 1.33Trigly
erides (mmol/L) 1.24 ± 0.75 1.15 ± 0.56 1.69 ± 1.25LDL-C (mmol/L) 2.89 ± 0.82 2.85 ± 0.80 3.07 ± 0.93HDL-C (mmol/L) 1.77 ± 0.48 1.77 ± 0.44 1.74 ± 0.62ApoB/ApoA 0.57 ± 0.18 0.56 ± 0.17 0.64 ± 0.23Lp(a) (mg/dL) 21.4 ± 21.7 21.9 ± 22.0 18.4 ± 19.8EU SCORE 2.60 ± 2.58 2.16 ± 2.12 4.73 ± 3.45Framingham 14.75 ± 3.54 14.21 ± 3.46 17.31 ± 2.747.4, 
olumn 2). This signi�
an
e persisted for simulated Area, NCD, MADfa
tor, and MACD also when adjusted for the 
ombined metaboli
/physi
alparameter, EU SCORE, or Framingham s
ore. AC24, wall% and length%all maintained a signi�
ant predi
tion under adjustment in the CVD/
an
ergroup, but did not have su�
ient statisti
al power in the smaller CVD group(table 7.4).In a 
ombined elimination model using all elementary 
al
i�
ation markers,only the number of 
al
i�ed deposits (NCD) (positive asso
iation to death)and area % (negative asso
iation to death) persisted in the CVD group andthe CVD/
an
er group. The 
omposite marker MACD showed highest pre-di
tability in all tests and also higher predi
tability (but not signi�
antly so)than the 
ombined elimination models of the elementary 
al
i�
ation markers.In the CVD deaths group, the highest 10% of NCD or MACD s
ores were sig-ni�
antly asso
iated with death. This did not hold for AC24 or area% values inthe same group (table 7.5). This relation persisted but with de
reasing hazard96



7.4. Dis
ussionTable 7.2: Hazard ratios of all-
ause death (HR) per standard deviation ofmetaboli
/physi
al markers and their 95% 
on�den
e interval (CI) based on a Cox regressionmodel as well as for a sequentially stripped model in
luding all metaboli
/physi
al markers.7Not all of the metaboli
/pgysi
al markers have a signi�
ant hazard ratio and in a strippingmodel only age, smoking and trigly
erides prevail in this population.Physi
al/ HR per SD HR per SDMetaboli
 markers [95% CI℄ Alone [95% CI℄ Comb.Age 2.25† (1.67-3.03) 2.41† (1.75-3.31)Waist 1.29* (1.01-1.65) NSWaist-to-hip ratio 1.37⋆ (1.12-1.67) NSBody Mass Index NS NSSmoking 1.37⋆ (1.08-1.73) 1.50⋆ (1.17-1.94)Systoli
 BP 1.53† (1.20-1.94) NSDiastoli
 BP NS NSHypertension NS NSGlu
ose 1.23* (1.03-1.46) NSTotal 
holesterol 1.44⋆ (1.12-1.86) NSTrigly
erides 1.51† (1.29-1.76) 1.46† (1.22-1.75)LDL-C NS NSHDL-C NS NSApoB/ApoA 1.45⋆ (1.14-1.83) NSLp(a) NS NSEU SCORE 1.79† (1.51-2.13) Not In
l.Framingham 2.63† (1.87-3.71) Not In
l.ratios when adjusted by standard 
omposite metaboli
/physi
al markers (EUSCORE or Framingham s
ore) or the 
ombined metaboli
/physi
al parameterin the elimination model from table 7.2. Similar results were obtained in theCVD/
an
er group with slightly lower hazard ratios and higher signi�
an
elevels due to the larger population.7.4 Dis
ussionWe investigated whether more information 
ould be obtained from 
al
i�ed de-posits in the abdominal aorta to better predi
t CVD death than the gold stan-dard AC24 s
ore, whi
h was developed from the Framingham Heart Study 
o-horts. We hypothesized that the presen
e of many small, spatially distributed,97



Chapter 7. Distribution, Size, Shape, Growth Potential and Extent of Abdominal Aorti
Cal
i�ed Deposits Predi
t Mortality in Post Menopausal WomenTable 7.3: Strati�
ation of abdominal aorti
 
al
i�
ation marker values a

ording to 
ause of death shownas mean ± standard deviation. One 
an observe quite a di�eren
e between the values of the AAC markersof the survivors and the CVD, 
an
er and CVD/
an
er group. Conversely, there is virtually no di�eren
ebetween the survivors and the 5 subje
ts that died of other 
auses.All Survivors CVD Can
er CVD/Can. Other(n=308) (n=256) (n=20) (n=27) (n=47) (n=5)AC24 1.67 ± 2.55 1.35 ± 2.34 3.50 ± 2.35 3.41 ± 3.23 3.45 ± 2.86 1.35 ± 2.36Area % 0.6 ± 1.2 0.5 ± 1.1 1.0 ± 0.9 1.6 ± 1.8 1.3 ± 1.5 0.5 ± 1.1Sim. area % 11 ± 17 8.9 ± 15.7 24 ± 16 25 ± 24 25 ± 21 8.7 ± 15.5Thi
kness % 11 ± 20 9.0 ± 19 17 ± 16 25 ± 28 21 ± 24 8.7 ± 19Wall % 1.03 ± 1.83 0.79 ± 1.64 2.08 ± 1.70 2.51 ± 2.68 2.33 ± 2.30 0.80 ± 1.63Length % 7.5 ± 12.8 6.0 ± 11.7 15.4 ± 11.2 17.3 ± 17.6 16.5 ± 15.1 5.9 ± 11.6NCD 3.8 ± 7.7 2.6 ± 6.4 8.5 ± 6.5 11.6 ± 13.4 10.3 ± 11.0 2.6 ± 6.3radiographi
ally visible 
al
i�ed deposits of varying shape in the lumbar aortahad a stronger relation to CVD death than the AC24 segment-wise s
oring ofthe extent of 
al
i�ed deposits on the aorti
 wall.The AC24 s
ore [13℄ quanti�es the burden of 
al
i�ed plaques in the aorta bysegment-wise s
oring of the 
al
i�ed deposit 
overage of the aorti
 wall. We in-vestigated whether additional aspe
ts of the outline of the individual plaquesmay be asso
iated with the progression and/or prognosis of atheros
lerosis.We analyzed the area %, thi
kness %, wall % and length % of the abdominalaorta 
overed by 
al
i�
ation and the number of distin
t 
al
i�ed deposits.Furthermore, we 
al
ulated the simulated plaque area in whi
h the atheros
le-roti
 plaque size was estimated from the area and form of the observed 
al
i-�ed lesion. Lastly, two 
omposite markers were 
reated: i) The morphologi-
al atheros
leroti
 distribution (MAD) fa
tor was 
onstru
ted by dividing thesimulated plaque area with the absolute plaque area. ii) The morphologi
alatheros
leroti
 
al
i�
ation distribution (MACD) index is given by the NCDmultiplied by the MAD fa
tor.In the present 
ohort, eight di�erent markers (AC24, area %, simulated area%, wall%, length%, NCD, MAD and MACD) exhibited a signi�
ant hazardratio per standard deviation in
rease for death in the 
ombined CVD/
an
ergroup when adjusted for physi
al/metaboli
 markers, the EU SCORE, and theFramingham s
ore respe
tively. However, only four markers (simulated area%, NCD, MAD and MACD) had su�
ient power in risk segregation of CVDmortality when adjusted by physi
al/metaboli
 markers, the EU SCORE andthe Framingham s
ore. The 
omposite MAD fa
tor showed in
reased sensitiv-ity to CVD 
ompared to 
an
er mortality. The reason for this may be thatthe MAD fa
tor essentially s
ores how small and widely distributed the indi-98



7.4. Dis
ussionTable 7.4: Hazard ratio per standard deviation in
rease in marker value strati�ed into death 
ause andadjusted for physi
al/metaboli
 markers, the EU SCORE, and the Framingham s
ore respe
tively.7 Onlythe simulated area, NCD, MAD and MACD persist after adjusting for physi
al/metaboli
 markers, theEU SCORE, and the Framingham s
ore.Hazard Ratio Hazard Ratio Hazard Ratio Hazard RatioNot adjusted Bio adj. SCORE adj. Fram. adj.AC24CVD 1.66 (1.25-2.19)† NS 1.38 (1.02-1.86)* NSCVD/Can. 1.64 (1.35-2.00) † 1.31 (1.06-1.63)* 1.40 (1.13-1.72)⋆ 1.29 (1.02-1.63)*Area %CVD 1.60 (1.16-2.20) ⋆ NS NS NSCVD/Can. 1.68 (1.36-2.09) † 1.32 (1.04-1.66)* 1.47 (1.16-1.86)⋆ 1.34 (1.04-1.72)*Sim. Area %CVD 2.96 (1.76-4.99) † 2.00 (1.15-3.49)* 2.46 (1.41-4.27)⋆ 2.27 (1.26-4.09)⋆CVD/Can. 2.37 (1.73-3.25) † 1.68 (1.20-2.34)⋆ 1.96 (1.40-2.73)† 1.79 (1.26-2.54)⋆Thi
kness %CVD NS NS NS NSCVD/Can. 1.45(1.20-1.75) † NS 1.27 (1.04-1.55)* NSWall %CVD 1.50 (1.16-1.95) ⋆ NS NS NSCVD/Can. 1.60 (1.34-1.91) † 1.26 (1.04-1.53)* 1.42 (1.17-1.73)† 1.30 (1.05-1.62)*Length %CVD 1.55 (1.18-2.04) ⋆ NS NS NSCVD/Can. 1.61 (1.34-1.95) † 1.26 (1.03-1.55)* 1.42 (1.16-1.73)† 1.29 (1.03-1.62)*NCDCVD 2.44 (1.72-3.48) † 1.76 (1.20-2.60)⋆ 2.20 (1.48-3.26)† 2.04 (1.34-3.12)†CVD/Can. 2.28(1.79-2.90) † 1.69 (1.30-2.21)† 2.00 (1.53-2.62)† 1.86 (1.40-2.47)†MADCVD 3.37 (1.83-6.21) † 2.44 (1.22-4.89)* 3.02 (1.55-5.86)⋆ 2.85 (1.44-5.64)⋆CVD/Can. 2.19 (1.58-3.04) † 1.58 (1.11-2.26)* 1.83 (1.29-2.59)† 1.74 (1.22-2.48)⋆MACD indexCVD 5.22 (2.40-11.36) † 3.17 (1.48-6.78)⋆ 4.36 (1.97-9.66)† 4.22 (1.79-9.97)†CVD/Can. 2.99 (2.05-4.35) † 2.01 (1.37-2.95)† 2.43 (1.64-3.59)† 2.27 (1.51-3.41)†vidual 
al
i�ed plaques appear. When the MAD fa
tor was 
ombined withthe number of 
al
i�ed plaques, whi
h as an individual parameter alone wasshown to be a strong predi
tor of mortality, the resulting MACD index dis-played superior predi
tive power over any other marker. The MACD indexprodu
ed hazard ratios >4 per standard deviation in
rease in the CVD deathgroup, even after adjustment for metaboli
/physi
al fa
tors.In trying to identify whi
h tool would be most useful in 
lini
al pra
ti
e toidentify CVD patients at highest risk of death, we found, from applying the99



Chapter 7. Distribution, Size, Shape, Growth Potential and Extent of Abdominal Aorti
Cal
i�ed Deposits Predi
t Mortality in Post Menopausal WomenTable 7.5: Hazard ratio for high risk subje
ts based on 90% threshold in the CVD deathsgroup.7 Here one 
an dire
tly 
ompare the performan
e of the di�erent markers. NCD andMACD are best at identifying high risk subje
ts in this population.AC Marker Hazard Ratio AC24 Area% NCD MACD indexAdjusted by AloneNone NS NS 10.9 (4.4-27)† 15.6 (6.3-38)†EU SCORE 4.9 (1.9-13)⋆ NS NS 8.5 (3.2-23)† 13.2 (4.9-35)†Framingham NS NS NS 10.8 (4.1-28)† 15.7 (6.1-40)†All metaboli
/ 10.1 (4.1-25)† NS NS 7.2 (2.8-18)† 9.8 (3.7-26)†physi
alvarious s
oring systems to post menopausal subje
ts who had died from CVD,that the MACD index is potentially a better predi
tor of mortality. For the10 % highest risk subje
ts the MACD index produ
ed a hazard ratio for deathof 10 and more even after adjustment for metaboli
 and physi
al markers,while the hazards ratios for the AC24 and the Framingham s
ore were bothinsigni�
ant, and the EU SCORE, had a value of the hazard ratio of 5.7.5 Con
lusionIn 
on
lusion, assessment of the shape, size, number, distribution, and extentof lumbar aorti
 
al
i�
ations may aid in identifying patients at risk of CVDdeath and thus most in need of treatment. Sin
e atheros
lerosis is a systemi
disease in whi
h lumbar aorti
 
al
i�
ations o

ur, in
reasing attention hasbeen devoted to the 
orrelation between the number of lumbar aorti
 
al
i�-
ations in radiographs and 
oronary 
al
i�
ations [141℄. [10, 141, 142℄ suggestthat radiographs provide equally valuable information on CVD and o�er theadvantage of simpli
ity for in-o�
e quanti�
ation. Some studies even suggestthe number of lumbar aorti
 
al
i�
ations is an independent predi
tor of CVDevents [141℄. Importantly, only the 
al
i�ed 
ore of an atheros
leroti
 lesion isdete
ted in X-rays whereas the surrounding ne
roti
 tissue and region of highremodeling and �brosis are not dete
table. Hen
e, the a
tual pathologi
allyinvolved area is underestimated in radiographs. Consequently, the morpholog-i
al enlargement of plaques (used in the MAD fa
tor and thereby the MACDindex) may 
arry information related to the proje
ted area of the in�ammatorypro
esses and indire
tly indi
ate an in
reased risk. This additional informationmay result in a better predi
tion of mortality risk than the 
urrent state-of-the-art, the AC24 radiographi
 s
oring of atheros
leroti
 plaques.The present study has its limitations. Its �ndings are only valid for a follow-100



7.5. Con
lusionup period of 8.5 years and may not ne
essarily apply to shorter follow-ups.For short follow-up times, the predi
tive power 
ould possibly be based onlyon the total plaque burden as des
ribed by the AC24 s
ore. Furthermore, thepresent population is restri
ted in size, geographi
al and ethni
 
ontent to postmenopausal Danish women. Therefore, the present study needs validation inother populations and longer term 
lini
al settings.
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Chapter 8Dis
ussion and Con
lusions8.1 SummaryThe main goal of the presented work was to make CVD preventive diagnosti
savailable for 
lini
al studies or even s
reening programs through low 
ost imag-ing. Our proposed framework for automated segmentation of 
al
i�ed depositsin
luding the 
ontributions to the 
al
i�
ation shape priors and the evaluationof the developed biomarkers on 
lini
al trial data was the �rst step in thatdire
tion.In the �rst part of the dissertation we fo
used on the development of di�erent
al
i�
ation shape priors that 
ould be used within a fully-automati
 frame-work for dete
tion of lumbar aorti
 
al
i�
ations, 
alled the CVD pipeline.Two di�erent approa
hes were proposed: In 
hapter 3 we used a method fromgeostatisti
s, 
alled Kriging, to try to in
lude knowledge learned from trainingdata about the spatial 
orrelations between di�erent pixels in the output ofa pixel 
lassi�er. We observed that our new method, DICPC, improved thesensitivity and the Ja

ard index on our test set of 
al
i�
ation data. ButDICPC was only the �rst step in the right dire
tion and its weakness was thelinear model that underlies Kriging whi
h implies only pairwise intera
tions.Hen
e, going one step further, in 
hapter 4 we proposed a new way of not onlylearning some spatial 
hara
teristi
s from training data, but a whole pat
hrepresentation of the training data. Su
h a representation 
an 
apture thestatisti
al nature of a given texture and enfor
e it on testing data. Applied byitself it 
an be used in texture synthesis, in 
ombination with a pixel 
lassi�erit 
an improve the spatial 
oheren
e of 
lassi�er output. Our segmentationresults, based on the proposed shape prior, were promising and improved theJa

ard index by 50%. This indi
ates that the shape model 
an be su

ess-fully used as a prior in statisti
al segmentation of 
al
i�
ations on X-ray imagedata.In 
hapter 5 we made an ex
ursion into the world of statisti
al physi
s. A103



Chapter 8. Dis
ussion and Con
lusionsmethod based on renormalization group theory (RGT) was used to derive anew approa
h for multi-s
ale image segmentation that 
ould be an alternativeto parts of the CVD pipeline. Our experiments showed that RGT 
an be ap-plied to multi-s
ale image segmentation problems. Furthermore, by using RGTwe redu
ed the size of the image segmentation problem and made it tra
tableand solvable by a global image segmentation algorithm su
h as graph
ut. Butthis still needs to be applied on our 
al
i�
ation data to show its appli
abilityon medi
al data.Part two of the dissertation dealt with the development of imaging biomarkersbased on manual annotations or the 
lassi�
ation output of the CVD pipeline.In 
hapter 6 a number of markers were measured and then a spe
ial type ofba
kward sele
tion via Cox regression was used to identify the most promi-nent 
ombination of measurements that relate to death by CVDs. Our resultspointed out the fa
t that simple statisti
al modeling 
an help to identify poten-tial imaging markers and demonstrated that some of these novel morphometri
markers of abdominal aorti
 
al
i�
ations may 
apture 
omplementary infor-mation when assessing CVD risk.Finally, in 
hapter 7 the statisti
al modeling lead to the formation of the mor-phologi
al atheros
leroti
 
al
i�
ation distribution (MACD) index. MACD
ould be shown to signi�
antly relate to the risk of death and to outperformstandard metaboli
 CVD biomarkers su
h as the EU SCORE [49℄ and theFramingham s
ore [50℄ as well as to outperform the 
urrent gold standard onradiographs, the AC24 s
ore, when identifying patients espe
ially at risk.8.2 Dis
ussion and Con
lusions"The s
ienti�
 method is based on the prin
iple that observationis the judge of whether something is so or not. All other aspe
tsand 
hara
teristi
s of s
ien
e 
an be understood dire
tly when weunderstand that observation is the ultimate and �nal judge of thetruth of an idea."8In this dissertation di�erent image pro
essing methods have been applied totest if automati
 segmentation of 
al
i�
ations in lumbar aorti
 X-rays is pos-sible. Furthermore, the hypothesis that image analysis of 
al
i�ed deposits inthe lumbar aorta 
an quantify CVD risk of death has been tested. The resultshave provided new insights into the relation between imaging biomarkers ofthe lumbar aorta and CVD risk of death, but have also highlighted some re-maining 
hallenges.For example, the CVD pipeline is still su�ering from overall low Ja

ard in-dex values 
ompared to radiologists' readings. There are several reasons for8From "The Meaning of It All: Thoughts of a Citizen S
ientist" by Ri
hard P. Feynman104



8.2. Dis
ussion and Con
lusionsthis. First, the fully automati
 dete
tion of 
al
i�
ations is very 
hallengingas already des
ribed in se
tion 2.2.2. The fa
t that there are no ground truthsavailable and that two radiologists have only 
a. 50% area overlap with ea
hother does not make the task easier. Se
ond, the area overlap measure we use,the Ja

ard index, is a very stri
t measure. For example, if an x-ray has no
al
i�
ations present in the manual annotation and the CVD pipeline �nds one
al
i�
ation, the Ja

ard index drops to zero. Hen
e, one 
an not 
ompare theJa

ard index we a
hieved to index values a
hieved in e.g. brain segmentationwhere two large areas are 
ompared to ea
h other. Third, the s
ores that relateto biologi
al �ndings e.g. AC24 do not su�er as mu
h as the area overlap andare a
tually quite robust [35℄ whi
h indi
ates that the CVD pipeline is on theway to make fully automati
 segmentation possible.Despite the obsta
les we have met in the CVD pipeline proje
t, the new s
i-enti�
 results produ
ed within it until now, e.g. a new way of modeling tex-tures [83℄ and the stati
 SMC sampler [38℄, show that one 
an not be ambitiousenough. Even if at present appli
ability in 
lini
al trials is out of question, theresults a
hieved until now show that it is not impossible to get there. Espe-
ially, on
e digital X-rays of more re
ent studies (and hen
e of higher quality)and from di�erent populations, that help to in
rease e.g. the generalizationability of the shape models, are in pla
e, the CVD pipeline 
an be tested againand re-evaluated versus the performan
e of radiologists. If these steps aretaken, then 
lini
al trial availability is maybe only some years away.Furthermore, while the appli
ation of RGT on image segmentation and energyminimization is 
learly still in its �edgling stages, the results en
ourage to ex-plore the subje
t more deeply. And the mere existen
e of the RGT approa
hshows how fertile inter-dis
iplinary work 
an be. Just as biologists have beeninvolved in the development of the new biomarkers and have helped to inter-pret the statisti
al �ndings, transferring RGT onto images was only possiblebe
ause of the very di�erent ba
kground an edu
ation in theoreti
al physi
so�ers. In the end working in the �eld of medi
al imaging is ex
iting and in-teresting, be
ause many dis
iplines � biology, 
hemistry, 
omputer s
ien
e andphysi
s � meet and something new is 
reated by 
ombining knowledge from all�elds.Finally, the work regarding the development of new biomarkers, e.g. MACD,has 
on�rmed the fruitfulness of a statisti
al approa
h. When trying to gainnew insights about e.g. a disease, it 
an be bene�
ial to not make a hypothesis�rst and then perform statisti
al tests until the same hypothesis is 
on�rmed,but to let the data guide the sear
h for a new hypothesis. Of 
ourse statisti
salone 
an not explain biology, but it 
an maybe lead to us to new insightsabout our problem.
105



Chapter 8. Dis
ussion and Con
lusions8.3 Future WorkWhile the appli
ation of Kriging and our proposed dense iterative 
ontextualpixel 
lassi�
ation (DICPC) was a �rst try at modeling spatial relations be-tween 
lassi�
ation output, the modeling of textures via a generative shapemodel based on a sparse texton di
tionary was more su

essful. An interestingfuture dire
tion for the texton approa
h 
ould be to apply the textons alsofor non-binary images. In this 
ase a di�erent basis of the di
tionary, e.g.ridgelets [143℄ or wedgelets [144℄, might be ne
essary. Furthermore, an appro-priate multi-resolution extension of the generative model 
ould be introdu
edthat would be able to take even longer intera
tions between pat
hes into a
-
ount and as a 
onsequen
e improve the segmentation further.With respe
t to the CVD pipeline as a whole, it is 
lear that the performan
e ofthe 
al
i�
ations shape priors depends greatly on the performan
e of the pixel
lassi�er. This 
ould be improved by either trying to sele
t better features orby 
hoosing a di�erent 
lassi�er. But regardless of the performan
e that 
anbe a
hieved on the EPI [67℄ and PERF [66℄ data sets available to us, it is leftto show the appli
ability of the CVD pipeline for 
lini
al trials by applyingit to di�erent data sets to be sure not to over�t to the data the pipeline wasdeveloped on. This 
an be done by 
ondu
ting transfer experiments where wetrain the pipeline on one data set and then show its e�
ien
y on another dataset of a di�erent population.The RGT approa
h 
ould be extended in several ways. On the one hand, dif-ferent grid stru
tures and mappings should be tested. On the other hand, toreally get a broad spe
trum of people interested in the method it should beextended to multi-labels, so rather a Potts than an Ising model.The possibilities for future work in the realm of biomarkers are extensive. Ontop of the list is the development of new imaging biomarkers, possibly even onCT images a
quired in the Danish Lung Can
er S
reening Trial [145℄ instead ofon X-ray images. Se
ond, all newly developed markers in
luding MACD needto be validated again, sin
e the 
urrent �ndings are only based on a populationthat is restri
ted in size, geographi
al and ethni
 
ontent to post menopausalDanish women. A validation of our �ndings in other populations and longerterm 
lini
al settings would substantiate them further for use in 
lini
al trials.Third, an option 
ould be to 
ombine the imaging and metaboli
 biomarkersfor CVD risk assessment or to even try to relate to sth. else than CVD deathwhen building risk assessment models.Through the presented resear
h I have made progress in identifyingthe relations of CVD risk to abdominal aorti
 
al
i�
ations as im-aged by X-rays, but also identi�ed new questions that need to beanswered. So the work presented in this dissertation is meant to bepart of a bigger e�ort by the medi
al imaging 
ommunity to pre-106



8.3. Future Workvent 
ardiovas
ular diseases by developing even better biomarkersfor CVD risk and by making CVD preventive diagnosti
s throughlow 
ost imaging available.
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