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AbstratAording to the World Health Organization ardiovasular diseases (CVDs)are the number one ause of death globally. Two thirds of women and halfof men who die suddenly resulting from CVDs have no previously reognizedsymptoms. This indiates that muh more people are atually at risk than theurrent methods identify, and therefore it is relevant to look into new methods.Lumbar aorti ali�ed deposits have been shown to relate to CVD risk, butare not yet widely used. Hene, we investigate methods that an help to detetlumbar aorti ali�ed deposits and examine their in�uene on CVD risk tooptimally target timely intervention and to better identify people at risk.The goal is to reate an automati system for the detetion of lumbar aor-ti ali�ations, whih an �nd the aorta and subsequently ali�ations inthe aorta on X-ray images, and onvert the �ndings to a CVD risk. To im-prove segmentation of ali�ations in the aorta two ali�ation shape priorsare developed: The �rst is inspired from geostatistis and based on a methodalled Kriging, while the seond is a texton-based generative shape model us-ing a minimal desription length model seletion, whih is applied to bothlumbar aorti ali�ation data as well as other natural image data. Further-more a new methodology based on the onept of renormalization group theory(RGT) is introdued and used in the ontext of multi-sale image segmentation.Another important aspet is the linial relevane of lumbar aorti ali�a-tions. Several biomarkers are developed and their linial relevane tested.The biomarkers are also ombined to form the morphologial atheroslerotiali�ation distribution (MACD) index, and the newly formed MACD index,and its relation to mortality in post menopausal women, is analyzed.The proposed ali�ation shape priors produe promising results. The methodbased on Kriging improves the sensitivity and the Jaard index of ali�ationtest data, but the largest improvement omes with the texton-based generativeshape model. It improves the Jaard index of ali�ation segmentations by
50%, whih indiates that it an be suessfully used as a prior distributionin statistial segmentation of ali�ations on X-ray image data. Additionally,RGT provides a new approah for multi-sale image segmentation that ouldbe an alternative to parts of the fully automati system. The examination ofdi�erent biomarkers shows that simple statistial modeling an help to identifyix



Abstratpotential imaging markers. Espeially, the MACD index seems to be a moresensitive preditor of CVD mortality based on lumbar X-rays than the urrentgold standard, the AC24 radiographi soring of atherosleroti plaques.We an onlude that there is still some way to a fully automati system ofdeteting aorti ali�ed deposits, but that the assessment of the shape, size,number, distribution, and extent of lumbar aorti ali�ations may aid inidentifying people at risk of dying from CVDs and thus in the future helpthose in most need of treatment.
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ResumeIfølge Verdenssundhedsorganisationen er hjertekarsygdomme (HKS) globaltset den største årsag til dødsfald. To tredjedele af kvinder og halvdelen afmænd som dør pludseligt pga. hjertekarsygdomme har ikke tidligere haftnogen symptomer. Det betyder at mange �ere mennesker har risiko for fåhertekarsygdomme end nuværende metoder identi�erer, og derfor er det rele-vant at forske i nye metoder. Forkalkninger i lumbal aorta har vist sig at værerelateret til risikoen for at få hjertekarsygdomme, men brugen heraf er endnuikke særlig udbredt. Derfor arbejder vi på metoder som kan �nde forkalkningeri lumbal aorta automatisk og undersøge deres betydning for risikoen for at fåhjertekarsygdomme, så man kan rette tidlige indgreb imod de rigtige menneskerog identi�ere dem som har den største risiko at udvikle hjertekarsygdomme.Vores formål er at lave et fuldt automatisk system til at �nde forkalkningeri røntgenbilleder. Det skal dels kunne �nde lumbal aorta og efterfølgendeforkalkninger deri og konvertere det til en risiko for at udvikle hjertekarsyg-domme. For at forbedre segmenteringen af forkalkninger i aorta, udviklesto modeller for forkalkningernes form: den første er inspireret af geostatis-tik og baseret på en metode som man kalder Kriging, mens den anden erbaseret på textons og bruger en minimal desription lenght model seletionog er anvendt på røntgenbilleder af forkalkninger i aorta of andre naturligebilleder. Desuden introduerer vi en ny metode baseret på et konept somkaldes renormaliseringsgruppeteorie (RGT) og bruger metoden til multi-salebillede segmentering. Et andet aspekt er den kliniske relevans af forkalkningeri aorta. Flere biomarkører bliver udviklet osg deres kliniske betydning under-søgt. Biomarkørerne er også kombineret til det morphologial atheroslerotiali�ation distribution (MACD) indeks og dets relation til dødeligheden afkvinder som har passeret overgangsalderen er analyseret.Modellerne for forkalkningernes form, som vi forslår, giver lovende resultater.Den metode som er baseret på Kriging forbedrer sensitiviteten og Jaard in-dekset på vores trænings data, men den største forbedring opnår modellenbaseret på textons. Den forbedrer Jaard indekset med 50%, som indikererat vores model kan blive brugt til statistisk segmentering af forkalkninger irøntgenbilleder. Yderligere forsyner RGT os med en ny måde at lave multi-sale billede segmentering på og kunne være et alternativ til dele af vores



Resumeautomatiske system. Undersøgelsen af forskellige biomarkører viser at simplestatistiske modeller kan hjælpe med at identi�ere potentielle billede markører.Især MACD ser ud til at være en mere sensitiv måling til at forudsige døde-ligheden fra hjertekarsygdomme baseret på røntgenbilleder end den nuværendestandard, AC24.Slutteligt kan vi konkludere, at der stadig er et stykke vej til et helt automa-tisk system til at �nde forkalkninger, men at måling af form, størrelse, antal,fordeling og omfang af forkalkninger i aorta kan bidrage til at identi�ere men-nesker, som har den største risiko for at dø af hjertekarsygdomme, og somderfor har mest brug for behandling.
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Chapter 1IntrodutionAording to the World Health Organization (WHO) [1℄ the number one auseof death globally that laims more deaths than any other single ause areardiovasular diseases (CVDs). CVDs are de�ned as the lass of diseasesthat involve the heart and/or blood vessels [2℄. Alone in 2004 an estimated17.1 million people died from CVDs whih equals 29% of all global deaths.Projetions by the WHO show that CVDs will remain the single leading auseof death and by 2030 almost 23.6 million people worldwide will die from them.Espeially, in the United States (U.S.) CVDs are a major problem and arethe leading ause of death (table 1.1) laiming 35.3% of all deaths in 2005equaling a CVD related death every 37 seonds. In fat, CVDs are suh a bigproblem that the U.S. National Center for Health Statistis [3℄ states that thelife expetany in the U.S. would inrease by almost seven years if all formsof major CVDs were eliminated. In ontrast, if all forms of aner would beeliminated the gain in life expetany would only amount to 3 years.
Table 1.1: U.S. auses of death in 2005 (based on mortality �gures) [4℄. Cardiovasulardiseases (CVDs) are the leading ause of death.Cause of Death Number of vitimsCVD 864,480Caner 559,312Aidents 117,809Alzheimer's Disease 71,599HIV (Aids) 12,543

1



Chapter 1. Introdution1.1 PurposeOne of the reasons for CVDs being the number one ause of death is thattwo thirds of women and half of men who die suddenly from CVDs have nopreviously reognized symptoms [5�7℄. This is the ase beause traditionalprevention strategies fail to reognize that ardiovasular events also ourin subjets in low and intermediate risk groups. Akosah et. al [8℄ showedthat 70% of a group of 222 young adults (men ≤ 55 years and women ≤ 65years) were hospitalized for myoardial infartion despite being ategorizedas low risk andidates by traditional prophylaxis methods. Hene, the urrentategorization in CVD risk groups seems to assign andidates that are atuallyat high risk of dying from CVD to a low risk group. Therefore, mortality annot be redued in low risk groups by traditional methods and there exists aneed for new methods espeially aimed at prevention.An early indiator of the risk of death by CVDs are ali�ed depositsin the vasular system. This is the reason why in this dissertation Iwant to investigate methods that an help detet ali�ed depositsand examine their in�uene on CVD risk to optimally target timelyintervention and to better identify people at risk.1.2 OutlineThe dissertation is divided into two major parts: Part I (hapter 3-5) dealswith medial imaging of ali�ations and part II (hapter 6-7) fouses on therelevane of espeially lumbar aorti ali�ations in relation to CVD risk.In hapter 2 some bakground knowledge needed to understand the dissertationis provided. The underlying auses of ardiovasular diseases, atheroslerosis,is introdued (setion 2.1) as well as an overview of medial imaging of ar-diovasular diseases given (setion 2.2). Finally, the linial tools to assessardiovasular disease risk are desribed (setion 2.3).Part I of the dissertation onsists of researh papers that fous on the devel-opment of automated methods for the detetion of ali�ations. Here theontribution to the automated methods, espeially in the ali�ation dete-tion proess, is desribed. The work is divided into two hapters. In hap-ter 3 an exursion into a method from geostatistis alled Kriging leads to amethod alled "Dense Iterative Contextual Pixel Classi�ation using Kriging".In hapter 4 a texton-based generative shape model using a minimal desrip-tion length model seletion is developed and applied on ali�ation data aswell as other natural image data. Finally, a new methodology based on theonept of renormalization group theory (RGT) is introdued, whih is an es-sential tool in statistial physis. In hapter 5 RGT is used in the ontext ofmulti-sale image segmentation. 2



1.2. OutlinePart II of the dissertation deals with the linial relevane of partiularly lum-bar aorti ali�ed deposits. In hapter 6 several biomarkers based on lumbaraorti ali�ed deposits are developed and their linial relevane tested. Thenthe biomarkers are via a seletion proess based on Cox regression ombinedto form the morphologial atherosleroti ali�ation distribution (MACD)index. Finally, the newly formed MACD index and its relation to mortality inpost menopausal women is examined in hapter 7.The dissertation onludes in hapter 8 with a short summary, a disussionand perspetives for future researh within the �eld.
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Chapter 2Risk Assessment of CardiovasularDiseasesIn order to be able to assess CVD risk as early as possible the underlyingauses of CVDs need to be understood. Hene, this hapter provides somebakground knowledge. First, the pathology of one of the underlying ausesof ardiovasular diseases, atheroslerosis, is introdued (setion 2.1). Thenan introdution to part I of the dissertation is given in setion 2.2 where anoverview of medial imaging of ardiovasular diseases is given, and the overallprojet, whih this dissertation was part of, is detailed. In the introdution topart II (setion 2.3) urrent linial tools to assess ardiovasular disease riskare desribed.2.1 Causes of Cardiovasular DiseasesWhile CVDs refer to any disease that a�ets the ardiovasular system theunderlying ause of CVDs is usually atheroslerosis [10℄. Atheroslerosis isa disease that a�ets the arteries (�gure 2.1), whih are the blood vesselsthat arry oxygen-rih blood to one's heart and the rest of one's body. Asits name (athero = soft, pasty material; slerosis = hardening) suggests it isa proess where fatty substanes, suh as holesterol, ellular waste materialand alium form a ali�ed deposit in the media of an artery. The reasonfor substanes entering the media is usually a damage of the endothelium,the innermost lining, of an artery. The endothelium gets damaged if it isfor example exposed to elevated lipid levels, high blood pressure or tobaosmoking [11℄. The resulting ali�ed deposit in the media of an artery is thenalled a plaque (�gure 2.1).Plaques an grow large enough to redue or even blok the blood �ow throughan artery. On the one hand, plaques an beome stable (�gure 2.2()) witha large neroti ore and a strong ali�ed ap and subsequently narrow the5



Chapter 2. Risk Assessment of Cardiovasular Diseases
Artery

Figure 2.1: The anatomy of an artery showing the intima, made up of endothelial ells aswell as the elastia interna, the media and adventitia. (Piture taken from [9℄, modi�a-tion and reprint aording to Creative Commons Attribution-NonCommerial-ShareAlike2.5 Liense).artery. On the other, they an beome instable (�gure 2.2(b)) and rupture.Ruptured plaques (�gure 2.2(d)) an ause the formation of blood lots thatan travel through the arteries and ause a blokage in any other part of thebody. If a blood lot bloks a oronary artery it an lead to a heart attak orif it travels to the brain it an ause a stroke. In the ase that the lot ends upin the lung it an lead to a pulmonary embolism and even in the extremities ablood lot an ause signi�ant damage and eventually lead to gangrene [12℄.The goal is to identify ali�ed deposits, beause they are an expression ofatheroslerosis and detetable by medial imaging modalities.2.2 Introdution to Part I:Medial Imaging of AtheroslerosisSine the aforementioned atheroslerosis develops over deades [14℄ earlier de-tetion of sublinial atheroslerosis may allow timely intervention and lead tobetter identi�ation of people at risk. Hereby atheroslerosis imaging plays alarge role. There exist a multitude of modalities to evaluate atheroslerosis,both invasive and non-invasive [15, 16℄.Invasive methods like quantitative oronary angiography (QCA), intravasu-lar ultrasound (IVUS) and optial oherene tomography (OCT) have all beenshown to be able to assess atheroslerosis [15℄. But all three modalities are alsoreserved for small sale studies due to the inherent risks of invasive proedures.Furthermore, use of QCA is only advisable to aid interventional treatment of6



2.2. Introdution to Part I:Medial Imaging of Atheroslerosis

(a) A fatty streak develops insidethe intima. (b) A fatty streak an also de-velop into an unstable plaque witha thin �brous ap and a fatty ore.
() Often, an unstable plaqueevolves into a stable plaque witha large neroti ore and a thik�brous ap. (d) An unstable plaque an even-tually rupture and lead to a bloodlot.Figure 2.2: A ross setion of an artery illustrates the di�erent stages of plaque development:(a) shows a fatty streak, (b) a stable, () an unstable and (d) a ruptured plaque.patients at intermediate risk [17℄ due to the relatively large exposure to ioniz-ing radiation (16 mSv [18℄).1But there exist many alternatives to invasive imaging proedures. Ultrasound(US), omputed tomography (CT), magneti resonane imaging (MRI) and X-ray are all non-invasive imaging tehniques that have developed markers thatrelate to CVD risk.Ultrasound an be used to visualize the arotid intima-media thikness (IMT)that has been shown to be assoiated with atheroslerosis [19℄ and is thus amarker for CVD. Additionally, US is ost-e�ient and does not expose pa-tients to harmful radiation. A downside of US is though that IMT is measuredin a di�erent vasular bed than the oronary arteries and that it is operatordependent [20℄.Imaging of atheroslerosis in the oronary arteries an be done with CT [21℄.1The natural bakground radiation per year amounts to a. 3 mSv and a oast to oast �ight over theU.S. exposes a person to a radiation dose of 0.03 mSv [18℄7
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Figure 2.3: The AC24 is onstruted by projeting the abdominal aorti ali�ations(AACs) to the orresponding aorta wall. The degree of lesion oupation is graded: 0for no AAC, 1 for AACs oupying less than 1/3 of the wall they are projeted onto, 2 forAACs oupying more than 1/3, but less than 2/3 in the projetion, and 3 for a 2/3 or moreoupation of the wall. Summed up the degrees of lesion oupation lead to an AC24 soreranging between 0 and 24. The shemati view is adopted from [13℄.CT of the oronary arteries is able to quantify the degree of oronary artery al-i�ation (CAC) in the Agatson sore with good reproduibility [22,23℄, whihprovides a strong measure of ardiovasular risk [24℄ independently from, andpotentially more powerful than, traditional risk fators suh as smoking [25℄.Atheroslerosis imaging in CT is usually performed with two types of sanners,eletron-beam omputed tomography and multi-row detetor CT. CoronaryCT is widely available and its downsides are only its ost [26℄ and the expo-sure to moderate levels of radiation (3 mSv [18℄).MRI is a non-invasive modality to assess atheroslerosis in di�erent vasularbeds. MRI has been able to quantify atheroslerosis and responses to treat-ment, but only in the aorta and the arotid arteries [27�29℄. The reason forthis is that MRI measurements are hallenged by the size of the smaller arteriesand assessment of the oronary arteries is espeially di�ult due to ardia andrespiratory motion artifats. So although its advantage is the lak of exposureto harmful radiation, its disadvantages are the inaessibility of the oronariesand its ost.Finally, it has been demonstrated that abdominal aorti ali�ations (AACs)detetable by lateral lumbar radiographs are strong preditors of ardiovasu-8



2.2. Introdution to Part I:Medial Imaging of AtheroslerosisTable 2.1: Summary of imaging tehniques used in atheroslerosis inluding some of theiradvantages and disadvantages.Advantages DisadvantagesQCA widely available invasiveradiation (16mSv)IVUS widely available invasiveOCT high resolution invasiveomplexUS ost-e�ient di�erent vasular bed (arotid arteries)no radiation operator dependentCT widely available ostradiation (3 mSv)MRI no radiation oronaries inaessibleostX-ray ost-e�ient di�erent vasular bed (lumbar aorta)widely available radiation (1.5 mSv)lar morbidity and mortality [10℄. They orrelate strongly with oronary arteryali�ations and an hene predit the risk of oronary artery problems [30℄.Therefore in X-rays the state of the art methodology to estimate CVD risk isthe abdominal aorti ali�ation sore (AC24) proposed by the Framinghamstudy group [13℄. The AC24 is onstruted by projeting the abdominal aortiali�ations (AACs) to the orresponding aorta wall (see �gure 2.3). So whilean advantage of X-rays is the wide availability of the modality, a disadvantageis the exposure to a low level of harmful radiation (0.3 - 1.5 mSv [18, 31℄) aswell as the fat that the assessment of AC24 is again made in a di�erent vas-ular bed than the oronaries.A summary of the mentioned advantages and disadvantages of the di�erentimaging tehniques an be seen in table 2.1.2.2.1 Choie of Modality and Region of Interest in the BodyIn this dissertation the approah will be to examine abdominal aorti ali�a-tions as observed in standard lumbar radiographs (see �gure 2.4). As alreadydisussed AACs are strong preditors of ardiovasular morbidity and mortal-ity [10℄. The reasons for hoosing X-ray images of the AACs in ontrast to forexample using MRI are threefold:
• X-ray is still one of the most widely available imaging modality besidesultrasound and ompared to imaging of arotid plaques via ultrasoundtaking a lumbar aorti X-ray is not as operator dependent [20℄.
• The gold standard for vertebral frature diagnosis are standard radio-9
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Figure 2.4: Illustrations of abdominal aorti ali�ations (AACs) in a lumbar aorti X-rayfor ease highlighted by a blak square around some of them.graphs [32℄. This means every time it needs to be linially assessed if avertebral frature is present, an X-ray of the spine is taken, whih thenalso an be used for CVD risk assessment.
• In linial studies for drug development against osteoporosis [33,34℄ inlu-sion riteria are, besides other metaboli fators, low BMD as measuredby DXA sans or radiographially on�rmed vertebral fratures. Further-more, spinal lateral radiographs are used to measure e�ay, so everysubjet in osteoporosis trials has at least one standard radiograph taken.And in some adverse e�et studies AC24 sorings of lumbar radiographshave been requested to examine the e�et of osteoporosis treatment onthe ardiovasular system leading to even more subjets in linial trialswhere an X-ray of the lumbar spine is taken.That spinal frature is assessed by standard radiographs and the availabilityof large, long duration studies from linial osteoporosis trials are big advan-tages when examining abdominal aorti ali�ations. For all subjets thathave partiipated in a linial osteoporosis trial, the AAC soring an thenbe performed without additional ionizing radiation exposure or ost as theseimages are already available. Furthermore, historial data from linial trialsan be used to develop new AAC markers and verify them.As already stated there exists a need to intervene in the early stages of CVDsand to develop methods to enable CVD risk soring of large populations eitherin linial trials or in a sreening setup. But the CVD risk examination ofa larger population is only possible if it an be done fast, heap and is eas-ily aessible. By hoosing X-rays we provide a heap, widely available andinexpensive modality. 10
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Lumbar Aortic 
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Figure 2.5: This shows how we apply the CVD Pipeline on lumbar aorti X-ray images.
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Figure 2.6: A shemati desription of the CVD Pipeline that allows for automati annota-tion of ali�ations in aorti X-ray images.2.2.2 Automating the Measurement of Imaging Biomarkers on Lum-bar Aorti RadiographsWhen trying to make CVD risk soring available for larger populations, thereal ost arises from the human involvement, e.g. the radiologists that have tospent time on AC24 sorings of lumbar aorti X-rays. Therefore, it is essen-tial to provide automated soring frameworks to admit the possibility of largepopulation studies in order to identify further risk fators of CVDs.To meet this hallenge we have developed a mahine-learning based approah[35℄ for automati annotation of ali�ed deposits in lumbar aorti X-rayimages that we all "CVD pipeline" (see �gure 2.5). The CVD pipeline isomprised of several steps: a pre-proessing, a vertebra-proessing, an aorta-proessing and a ali�ation-proessing stage. A diagram desribing the CVDpipeline an be seen in �gure 2.6.
11



Chapter 2. Risk Assessment of Cardiovasular DiseasesPre-ProessingThe pre-proessing in the CVD pipeline onsists of an image normalizationwhih is a prerequisite for ahieving robust pixel lassi�ation results on imagesfrom di�erent X-ray mahines. This an be ahieved with standard intensitynormalization tehniques, suh as subtration of the mean and division withthe standard deviation. Another possibility is to normalize the intensitiesaording to models from physis that desribe the sattering of γ-rays.Vertebra- and Aorta-ProessingThe seond step of the CVD pipeline deals with of �nding the vertebrae in theimage. This is done by generating a vertebrae template that onsists of sixregions of interest, the �ve vertebral lasses de�ned in [36℄ and a bakgroundlass, and then applying a random forest lassi�er [37℄. The lassi�er is trainedon 100,000 sampled points from the �ve foreground lasses using Gaussianderivative features up to third order on sales 0.18, 0.56 and 1.78 mm [38℄.On the basis of the lassi�ation results a shape model is used to identify thelumbar vertebrae, L1-L4.Next the aorta is de�ned on the basis of the identi�ed vertebra via an aortaposition posterior, where we marginalize over all possible vertebra shapes [38℄.One we have found the aorta we use it as our region of interest in the searhfor ali�ations.Cali�ation-ProessingThe ali�ation proessing ombines two things, the lassi�ation output ofa pixel lassi�er and prior knowledge about the loation and shape of ali�eddeposits.For the lassi�ation we employ a random forest lassi�er [37℄ with seven fea-tures: Gradient Magnitude at the sales 0.56 and 1.78 mm, Hessian Cohereneat 1.78 mm, the seond Gaussian derivative in y-diretion at the sales 0.18and 0.56 mm as well as the third Gaussian derivative in x- as well as y-diretionat a sale of 0.56 mm. 2 After identifying the features the lassi�er is trainedon 100,000 points and a �ve fold ross validation is used; in this ase �ve foldmeans 4
5
of our data is used for training and 1

5
is tested on.A weakness of a pixel-based lassi�ation is that it does not use ontextualknowledge. The feature spae is not well separated and hene the output fromthe pixel lassi�ation is noisy. Cali�ation priors an distill ontextual in-formation from the image. They enhane the result by using image intensity,shape and statistial information sine these properties of the X-rays an help2The seven features are found by training the lassi�er on 100,000 points from manual annotations ofthe aorta template of a separate data set and then employing a sequential �oating forward feature seletion(SFFS) [39℄. 12



2.2. Introdution to Part I:Medial Imaging of Atheroslerosisto predit shape and distribution of the ali�ations.Hene, in the CVD pipeline several ali�ation priors are used: First, weombine the output of the pixel lassi�er with a ali�ation likelihood map.The map is onstruted by registering all manual annotations of the trainingset into a ommon normalized oordinate system [40℄ and then turning thisali�ation histogram through normalization into a probability map. The al-i�ation likelihood map ensures that ali�ations that are plaed in unlikelyplaes are subdued, while ali�ations in very likely plaes in the aorta areemphasized. Seond, we learn a shape model of the ali�ations from themanual annotations and then impose the same shape statistis of the trainingdata onto our segmentation result.Challenges for the CVD PipelineThe CVD pipeline onsists of several steps that eah fae their own obstales.Furthermore, sine we deal with historial linial trial data, our X-ray imagesare a�ited by lutter, olusions and a low signal-to-noise ratio and objetboundaries are hardly visible. This naturally hallenges the proessing as awhole. An example X-ray image an be seen in �gure 2.7.In the vertebra stage the biggest problem is to identify the lumbar vertebrae,L1-L4, orretly. A shape model of the 4 lumbar vertebrae an also falselydetet the thorai vertebra T12-L3 or L2-L5 and hene predit a wrongaorta. Furthermore, vertebrae are sometimes only partially visible and anthen not be identi�ed by the vertebra shape model. Additionally, the ver-tebrae boundaries an appear smeared or even dupliate, beause the X-rayproedure projets the three-dimensional vertebrae into two dimensions.The onditional shape model of the aorta given the vertebrae depends on thevertebrae, but also on potential ali�ations. Therefore it needs to be ableto take the vertebrae as well as potential ali�ations into aount to de�nea region of interest for further proessing. Espeially, if the vertebrae predi-tion step fails, e.g. an not math the vertebrae shape model to the atualvertebrae, it an be seen that the onditional shape model is very sensitiveto false positives (vertebrae boundary pixels that look like potential ali�a-tions). Finally, sine the biologial shape variation of the aortas ours on aurved manifold, a more ompliated shape model might be needed.Setting aside the problems that arise from trying to detet the vertebra andthe aorta, the detetion of ali�ed deposits in X-ray images itself has varioushallenges. First, the ali�ed plaques are small objets of low ontrast andlarge variability in shape, size and appearane and therefore a�eted by bak-ground noise, e.g., noise from Compton sattering. Seond, beause the X-rayis a 2-dimensional projetion the ali�ations are often totally or partiallyoluded by other physiologial strutures, suh as the lowest ribs, part of the13
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Figure 2.7: Here an example X-ray image is shown, where one learly sees the four lumbarvertebrae. To the left of the vertebrae the aorta is loated, but it is hard to see sine itis less prominent than the vertebrae. It is inside the aorta that we try to detet ali�eddeposits. 14
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(a) (b) ()Figure 2.8: Here we an see a typial pipeline result based on the image in �gure 2.7. (a)We an see the manual annotation of the vertebrae and the aorta outline (white) as well asthe ali�ations (red). (b) In the middle the automatially retrieved vertebrae and aortaoutline (green) as well as a probability map of the ali�ations (yellow to red) are shown.() The overlap of the ali�ation segmentation with the manual annotation is displayed;yellow indiates true positives, blue indiates false positives and red indiates false negatives.hip or folds of fat in obese persons. Third, other strutures, e.g. ali�ationsin the bowels or parts of vertebral ortial bone, have a similar appearane inthe image.An example of an automati ali�ation segmentation of the CVD pipelineis shown in �gure 2.8. The piture displays a manual annotation besides theautomated segmentation result and also a omparison of the two. The perfor-mane and limitations of the CVD pipeline, espeially onerning the ali�-ation shape modeling, will be examined in hapters 3 and 4.2.2.3 Appliation of Renormalization Group Theory in MedialImagingIn setion 2.2.2 the CVD pipeline and its fous on deteting lumbar aorti al-i�ations has been desribed. A key feature of the CVD pipeline is the pixellassi�er that is used to segment the ali�ations inside a given region of in-terest. But it has its limitations. When dealing with high resolution imagesthe omputational time is extensive. And sine it lassi�es eah pixel for itself,it an not take spatial interations between pixels into aount and thereforerequires us to use ali�ation shape priors to re-introdue spatial ohereny.15



Chapter 2. Risk Assessment of Cardiovasular DiseasesHene, we have investigated methods to replae the pixel lassi�er by otherimage segmentation algorithms. To do this we developed a new method forimage segmentation based on renormalization group theory (RGT) whih isespeially interesting for images with a high resolution and where very longspatial interations play a role (see �gure 2.9). A strength of RGT is thatit an as desribed in [41℄ and [42℄ evolve energy funtions orretly betweendi�erent sales when employing a hierarhial approah. At every sale theresulting energy funtion an then be optimized by the optimizer of hoie.Hene, for large problems RGT an be applied to general segmentation teh-niques to onstrut an appropriate hierarhial version of the problem.Segmentation problems in general an be solved by 3 di�erent approahes -loal optimizing tehniques, global optimizing tehniques and stohasti meth-ods. Loal optimizing tehniques are e.g. ative ontour [43℄, ative appear-ane [44℄ or level set models [45℄. A problem of ative ontour or ative ap-pearane models is their inability to handle topology hanges. Level sets anhandle those, but sine level sets essentially employ gradient desent methodsone runs into problems again. Most of the funtionals one deals with in medi-al imaging are far from onvex, so level sets only yield loal optima. Globaloptimizers like graphut [46℄, on the other hand, guarantee to �nd the globaloptimum. The problem lies here in the omputational tratability in termsof time and memory onsummation, as soon as the onnetivity of the graphbeomes dense. But this exatly is the ase in medial images, where high
1

2

3 (a) 3

1

2

(b)Figure 2.9: First an X-ray of our study population (resolution 570 dpi). Then a small part ofthe former X-ray, showing a row of three ali�ations (800 by 400 pixels). To separate the3 ali�ations orretly from eah other, the high resolution as well as the several hundredpixels long interations inside the ali�ations are important.16



2.3. Introdution to Part II:Diagnosti Tools for Cardiovasular Disease Risk
Table 2.2: Spei�ations of the EU SCORE ard [49℄ and the Framingham Coronary HeartDisease Risk Sore (Framingham sore) [50℄.EU SCORE Framingham soreAge AgeSmoking status Smoking statusTotal holesterol Total holesterolSystoli blood pressure Systoli blood pressureHigh-density lipoproteinHypertension treatment statusresolution as well as long interations ranges play a role. Stohasti methods,markov hain monte arlo (MCMC) methods [47℄ or simulated annealing [48℄,also �nd the global optimum. But similarly they present a omputational hal-lenge. Espeially if long range interations are of importane, the onvergenetime is a problem.In hapter 5 RGT will be applied to one of the above methods to improvetratability showing how hierarhial proessing of large images with long spa-tial interations is possible.2.3 Introdution to Part II:Diagnosti Tools for Cardiovasular Disease RiskFrom the image proessing approah to CVD risk assessment we now move intothe linial evaluation of CVD risk. Besides the imaging modalities introduedin hapter 2.2 to assess CVD risk, there exist also other markers of CVD risk,suh as metaboli biomarkers, whih are used in linial pratie. If one is ableto proess large population studies by automating the measurement of imag-ing biomarkers (see hapter 2.2.2) the performane of the imaging biomarkersneeds to be ompared to already established linial measures of CVD risk.2.3.1 Current Metaboli Biomarkers for CVDsAlready in 1981 a list of 246 oronary risk fators had been ompiled [51℄. Lateron, risk soring systems for use in the linial management of ardiovasularrisk in Europe, the EU SCORE ard [49℄, as well as in the US, the Framing-ham Coronary Heart Disease Risk Sore (Framingham sore) [50℄, have beendeveloped. The EU SCORE is a ombination of the age, smoking status, levels17



Chapter 2. Risk Assessment of Cardiovasular Diseasesof total holesterol and systoli blood pressure, while the Framingham sore isomprised of the same variables plus the high-density lipoprotein (HDL) andthe hypertension treatment status (see table 2.2).The seond part of this dissertation (hapter 6-7) will give an example of aomparison between newly developed markers relating to the geometrial out-line of ali�ed deposits in lumbar aorti X-ray images and the established EUSCORE and Framingham sore.Overall this dissertation is omprised of a theoretial approah tothe automated segmentation of ali�ed deposits and its pratialappliation on data from existing linial osteoporosis trials. Whilepart I reates the tehnial basis for the automated segmentation andthe development of new imaging biomarkers, part II evaluates theperformane of imaging biomarkers ompared to established lin-ial measures. Together the two parts an hopefully improve theunderstanding of CVD risk and thereby optimally target timely in-tervention and better identify people at risk.
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Part I of the dissertation onsists of researh papers that fous on the develop-ment of automated methods for the detetion of lumbar aorti ali�ations.The ontributions to the automated methods were done in the ali�ationproessing stage of the CVD pipeline.The �rst hapter gives an overview over a method from geostatistis alledKriging and leads to a "Dense Iterative Contextual Pixel Classi�ation usingKriging". Chapter 4 introdues a texton-based generative shape model usinga minimal desription length model seletion that is applied on the lumbaraorti ali�ation data as well as natural image texture data. In hapter 5we make an exursion into the world of statistial physis. A method basedon renormalization group theory (RGT) is used to derive a new approah formulti-sale image segmentation that ould be an alternative approah to partsof the CVD pipeline.
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Chapter 3Dense Iterative Contextual PixelClassi�ation Using KrigingThis hapter is based on the manusript "Dense Iterative Contextual Pixel Classi�ationUsing Kriging" by Melanie Ganz, Maro Loog, Sami Brandt and Mads Nielsen publishedin the proeedings of the IEEE Computer Soiety Workshop on Mathematial Methods inBiomedial Image Analysis, 2009.Abstrat In medial appliations, segmentation has beome an ever more importanttask. One of the ompetitive shemes to perform suh segmentation is by means of pixellassi�ation. Simple pixel-based lassi�ation shemes an be improved by inorporat-ing ontextual label information. Various methods have been proposed to this end, e.g.,iterative ontextual pixel lassi�ation, iterated onditional modes, and other approahesrelated to Markov random �elds. A problem of these methods, however, is their omputa-tional omplexity, espeially when dealing with high-resolution images in whih relativelylong range interations may play a role. In the following, a new method based on Krigingis proposed that makes it possible to inlude suh long range interations, while keepingthe omputations manageable when dealing with large medial images.
3.1 IntrodutionIn medial appliations, image segmentation tasks beome ever more impor-tant to aid quantitative analysis. In this paper, we fous on the appliation ofmedial imaging to aid the diagnosis and prognosis of ardiovasular diseases(CVDs) [52,53℄. Images are traditionally segmented by e.g. ative ontour [54℄,ative appearane [55℄ or level set models [56℄. Competitors to these models,espeially in the domain of medial imaging, are pixel-wise lassi�ers [57℄. Toahieve even better segmentations, in ooperation with pixel-wise lassi�ation,23



Chapter 3. Dense Iterative Contextual Pixel Classi�ation Using Krigingvarious methods have been developed that take ontextual information in theimages into aount. Examples are iterated onditional modes (ICM) [58℄,iterative ontextual pixel lassi�ation (IPCP) [59℄ or Markov Random Fields(MRF) [48℄.A pure pixel-wise lassi�ation takes only the ontributions of a neighborhoodin the image into aount when assigning the lass label to a pixel. It doesnot onsider any other lass labels in its deision. The tehnique of ICM onthe ontrary employs ontextual knowledge. It is divided in two steps: First,the pixels are lassi�ed by a pixel-wise lassi�er. Seond, the neighboring lasslabels are inluded into a label deision. An advaned version of ICM waspresented by Loog and van Ginneken [59℄. Their ICPC method went a stepfurther than ICM by reating a simultaneous dependeny of a lass label onsurrounding image values and lass labels.A problem of these methods, however, lies in their omputational burden whendealing with high resolution images like medial data. Additionally, if also longrange interations are present in the image, the onvergene of the methodsoften beomes an issue.We propose a new model that an be applied after a pixel-wise lassi�ation,Dense Iterative Contextual Pixel Classi�ation (DICPC). It employs the on-text of all lass labels and an take long range interations into aount. Weimplement this by approximating the ontextual interations in label spaewith a linear model based on Kriging [60℄. With this approximation it be-omes feasible to onverge to an optimal segmentation in manageable time,even for high-resolution images with a long interation ranges.This hapter is organized as follows: Setion 3.2 restates the problem andgives an introdution to a statistial interpretation of segmentation and Krig-ing. Setion 3.3 introdues the DICPC algorithm. Setion 3.4 introdues theproblem on whih we exemplify our method. It onerns the di�ult task ofquantifying aorti ali�ations. Information on the study population and theexat lassi�ation settings are presented there as well as evaluation meth-ods. The results an be found in setion 3.5, while setion 3.6 omprises thedisussion and onlusion.3.2 Problem DesriptionLet an image I = (I1, . . . , In) of the size n be desribed by its pixel values
Ii. In a pixel lassi�ation sheme, there exists a feature vetor ~fi for eahpixel that onsists of one or multiple features, e.g. intensity values or �lterresponses, at the pixel loation i. The matrix F = (~f1, . . . , ~fn) is omprisedof all the feature vetors. The labels for every pixel i also shape a vetor,
~c = (c1, . . . , cn), that onsists of the lass label at eah pixel loation. Class24



3.2. Problem Desriptionlabels are part of the set Γ = (1, 2, . . . , γ), where γ is �nite.The problem lies now in �nding the optimal segmentation C⋆ for the image I.3.2.1 Statistial InterpretationTo �nd the optimal segmentation C⋆ we pursue a maximum-a-posteriori (MAP)approah3. In a MAP estimation the optimal segmentation is given as
C⋆ = argmax

C∈Γn

P (C|I), (3.1)where Γn is the set of all possible segmentations.There exist di�erent approahes to solve (3.1). Assuming onditional indepen-dene of C we an rewrite it to
C⋆ = argmax

C∈C

∏

i

P (Ci|C¬i, I), (3.2)where Ci denotes the label for a pixel i. Additionally assuming a Markovproperty [62℄ holds in the label spae this an be transformed into
C⋆ = argmax

C∈C

∏

i

P (Ci|CNi
, I). (3.3)Here CNi

are the neighborhood labels of a pixel i . This equation an nowbe taken as the starting point to desribe the di�erent tehniques mentionedbefore.In order to approximate (3.1) and to move toward the optimal segmentation
C⋆ one an iteratively update the labeling of single pixels. This is somewhatreminisent of Besag's iterated onditional models [58℄ and means that if twoalternate segmentations C1 and C2 are provided, one an deide pixel by pixelif the segmentation should be updated or not.A way of optimizing suh an iterative proedure has been presented as ICPCin [59℄. The ICPC algorithm is based on a simple lassi�ation result, so itavoids alulating onditional properties expliitly. Neither is a lique formal-ism needed as in an MRF approah. A problem of ICPC is though that onean end the optimization in a loal optimum, instead of the global optimum.There is no guarantee that one deals with a onvex energy funtion and it antherefore not be guaranteed to reah the global optimum.Our method, DICPC, is based on the outome of a lassi�ation. It possessesall the bene�ts of ICPC, but on the ontrary to ICPC it provides a onvexfuntional for the ommon distributions (Gaussian, Poisson) and an thereforebe guaranteed to be solved by a seond order optimization method.3The MAP approah equals a Bayesian minimal risk approah [61℄ for the risk funtion of all wronglassi�ations being equally risky. 25



Chapter 3. Dense Iterative Contextual Pixel Classi�ation Using Kriging3.2.2 KrigingKriging [63, 64℄ is a geostatistial method that is used to spatially interpolatethe value z0 at any loation ~r0 from irregularly sampled data ~z at N points
~rN . This is done by the loal a�ne model z0 = z(~r0) suh that

z0 = w0 +

N∑

i=1

wizi = w0 + ~wt~z, (3.4)where w0 is an o�set and wi is the weight applied to zi. If we regard the zi asrealizations of random variables Zi and request our measure to be unbiased,
E(Z0 − Ẑ0) = 0, we an de�ne the estimation variane

σ2
E = Var(Z0 − Ẑ0). (3.5)Using the linear model we an simplify this to

σ2
E = Var(Z0) + Var(w0 + ~wt ~Z)− 2Cov(Z0, w0 + ~wt ~Z)

= σ2 + ~wt
C~w − 2~wtCov(Z0, ~Z),

(3.6)where C is the ovariane matrix of ~Z. Cov(Z0, ~Z) is a olumn vetor ofovarianes between data points a loations ~ri and ~rj that an be alulatedbased on the assumption of spatial stationarity from the entries in C. Weminimize the estimation variane after the weights wi by solving
∂σ2

E

∂ ~w
= 2Cov(~Z, ~Z)~w − 2Cov(Z0, ~Z) = 0. (3.7)This results in the simple Kriging system
Cov(~Z, ~Z)~w = 2Cov(Z0, ~Z), (3.8)whih an be solved for the interpolation weights ~w and is in our ase expandedto inlude the neessary ondition 0 ≤ wi ≤ 1 in order to avoid negativeweights.3.2.3 Appliation of KrigingThe same priniple of Kriging an with regularly distributed samples be appliedto an image and has been used for image restoration [65℄. Kriging is as statedin (3.4) based on a linear estimation model. In the ase of a segmentationtask where manual segmentations are available, one an learn the weights thatminimize the estimation variane, σ2

E , from the manual segmentations Smanvia the linear model
z0,man = w0,man + ~wt

man~zman. (3.9)26



3.3. DICPC - Dense Iterative Contextual Pixel Classi�ationThen we use these weights to ompose a linear model for the automated seg-mentations
z0,aut = w0,man + ~wt

man~zaut. (3.10)This is possible beause we may assume that the ovariane struture of themanual segmentations an be transferred to the automated segmentation. Theweights of the linear model an then be applied to the automated segmentation
Saut in a �ltering manner to give a kriged estimate of the segmentation

K(Saut) = k ∗ Saut, (3.11)where k is a 2D-�lter built from the weights ~wman. Beause our method isbased on this type of �ltering the omputational ost stays low ompared toICM and ICPC. Using this formulation of simple Kriging, we now turn to ourappliation in pixel-based segmentation.3.3 DICPC - Dense Iterative Contextual Pixel Classi�-ationThe solution for an optimal ontextual segmentation has the form of (3.3),
C⋆ = argmax

C∈C

∏

i

P (Ci|CNi
, I). (3.12)Using Bayes formula this an be transformed into

C⋆ = argmax
C∈C

∏

i

P (I|Ci, CNi
)P (Ci|CNi

)

= argmin
C∈C

∑

i

(

− log(P (I|Ci, CNi
))− log(P (Ci|CNi

))
)

.
(3.13)If we assume independene of CNi

and I, we an write this as
C⋆ = argmin

C∈C

∑

i

(

− log(P (I|Ci))− log(P (Ci|CNi
))
)

. (3.14)3.3.1 Gaussian DistributionsTo solve (3.14) we need to de�ne P (I|Ci) and P (Ci|CNi
). For now we assumethat both are Gaussian distributed, but we will relax this assumption later.A probability prior P (Ci|CNi

) for the segmentation C an be formulated asfollows
P (Ci|CNi

) = Gσ(Ci −K(Ci))

=
1√
2πσi

exp
(

− (Ci −K(Ci))
2

2σ2
i

) (3.15)27



Chapter 3. Dense Iterative Contextual Pixel Classi�ation Using KrigingFurthermore, we assume also separability of the image pixels and thereforede�ne P (I|Ci) =
∏

i P (Ii|Ci) to be of the form
P (Ii|Ci) = Gσ(Ii − Ci)

=
1√
2πσ

exp
(

− (Ii − Ci)
2

2σ2

)

.
(3.16)In the ase of a Gaussian prior P (Ci|CNi

) and a Gaussian likelihood P (Ii|Ci),the posterior distribution is Gaussian again and in that ase a losed formsolution exists for (3.14). Plugging in P (Ii|Ci) and P (Ci|CNi
) into (3.16) leadsto

EG =
∑

i

(

a+
(Ii − Ci)

2

2σ2
+

(Ci −K(Ci))
2

2σ2
i

)

, (3.17)where a = log(2πσσi). We replae K(Ci) with k∗Ci aording to the de�nitionof (3.11) and get
EG =

∑

i

(

a+
(Ii − Ci)

2

2σ2
+

(Ci − (k ∗ Ci))
2

2σ2
i

)

. (3.18)Due to the Parseval theorem the energy is preserved in the Fourier trans-form, so the ost an be equivalently omputed in the Fourier domain. Theminimization in the Fourier domain is performed by di�erentiating the en-ergy funtional with respet to the real and imaginary parts of the Fourieroe�ients and setting the result to zero. This way we arrive at
C⋆ = F−1

(

Ĩi

1 +̟(k̃′)⋆(k̃′)

)

, (3.19)where ̟ is the ratio between the neighborhood and the global variane, Fdesribes the Fourier transform and Ĩ = F(I) as well as k̃′ = F(k′) = F(k−1).3.3.2 Other DistributionsIf P (Ii|Ci) and P (Ci|CNi
) are not Gaussian, but e.g. Laplae distributed, theenergy funtion of (3.17) hanges to

EL =
∑

i

(

a +
|Ii − Ci|
2σ2

+
|Ci −K(Ci)|

2σ2
i

)

, (3.20)A solution to (3.20) an be found via variational methods by any approahfor total variation minimization. In the ase of distributions where the modeof the distribution is the same as its mean this solution is equal to the MAPsolution. Thus, for the Laplaian distribution the MAP solution is idential to28



3.3. DICPC - Dense Iterative Contextual Pixel Classi�ationthe minimum variane solution. In the ase of other distributions, it dependson the distribution if the total variation minimization equals the MAP solution.To exemplify this we derive the solution again with the help of a gradientdesent method; the same solution an be found with the iterative updateequation
I t+1 =

∑

i

α∂INi

(
− log(P (CNi

|I tNi
))− log(P (I tNi

))
)
, (3.21)where t gives the number of the iteration, α the step size and ∂INi

a partialderivative after Ii. The solution of the update equation (3.21) is given by
I t+1 =

∑

i

γ(log(2πσσi)

− 1

σ2
(Ci − Ii)

2 +
1

σ2
i

(Ii −K(Ii))
2)

(3.22)We an solve this by �rst negleting the onstant fator advaning to
I t+1 ≈

∑

i

− 1

σ2
(Ci − Ii)

2 +
1

σ2
i

(Ii −K(Ii))
2, (3.23)We get to the optimal segmentation when the image I t+1 is the same as I tbefore the iteration. Therefore the hanges between I t and I t+1 should vanish:

∑

i

(Ci − I ti )
2 +̟(I ti −K(I ti ))

2 = 0. (3.24)We arrive at the same optimal solution as given in (3.19)
C⋆ = F−1

(

C̃

1 +̟(k̃′)⋆(k̃′)

)

. (3.25)3.3.3 DICPC algorithmAll in all, the ontextual lassi�ation approah that is proposed looks asfollows:1. Learn the weights ~wman from manual segmentations and onstrut a 2D-�lter k.2. De�ne a distribution to be used in the prior P (Ci|CNi
).3. De�ne a distribution to be used in the onditional probability P (Ii|CNi

).4. Use a diret or a variational approah to solve (3.14).29



Chapter 3. Dense Iterative Contextual Pixel Classi�ation Using Kriging

Figure 3.1: The graph displays one of the original images and a manual as well as anautomati segmentation of a ali�ation. Note how muh bakground noise there is presentin the automati segmentation.3.4 Methods3.4.1 Study populationThe study population used in this paper is the EPI follow-up population,whih was part of the multi-entered PERF Study [66℄. The EPI part of thePERF study was an epidemiologial study addressing the role of a numberof metaboli risk fators in the pathogenesis of CVD and osteoporosis [67℄arried out in Ballerup, Denmark, in 1992 and 2001. Three trained radiologists,unaware of the patients onditions, annotated the vertebrae, the aorta and theali�ations in the digitized X-ray images. They used Setra radiologialreading units and annotation software implemented in MatLab (Mathworks,MA, USA).Five images where randomly seleted and 18 pathes with one or multipleali�ations as illustrated in �gure 3.1 were aquired. The testing of thedi�erent methods was performed on these 18 ali�ation pathes.
30



3.4. Methods3.4.2 Evaluation MethodsTo measure the ompliane of an annotation A1 and the outome of a lassi�-ation A2, �rst the Jaard index [68℄ is used. This is a quanti�ation measurefor segmented areas. The ratio of the number of pixels present in both seg-mentations to the total number of pixels in the segmentations is taken. TheJaard index varies from 0 whih equals no overlap to 1 orresponding toomplete overlap,
rJacc =

|A1 ∩A2|
|A1 ∪A2|

(3.26)Furthermore we use sensitivity rSens and spei�ity rSpec to evaluate the per-formane of our ontextual lassi�ation methods.Note that these measurements require the images to have the same resolution.Furthermore, the errors of rJacc, rSens and rSpec inrease with smaller objets.3.4.3 Classi�ation and Kriging SettingsWe use a k-Nearest-Neighbor lassi�er [69℄ with k = 25. Training pixels areseleted with a bias toward ali�ed pixels, meaning that 30% of the trainingpixels hosen are ali�ed pixels whih are de�ned aording to the manualannotations. The features used were the intensity, the gradient magnitude,the Hessian trae, the Hessian determinant and the Hessian eigenvalues, anadaption of Koenderink's shape lassi�ation measure [70℄ and the ratio of thedi�erene and sum of the Hessian eigenvalues. All features were alulated atthree di�erent sales, orresponding to 2, 5 and 17 mm.In our method, we learn the Kriging �lter for ali�ations from manual seg-mentations by alulating the weights for a seven by seven neighborhood inwhih we krig to the entral pixel. This way we arrive at a seven by seven �lterthat is used as k in (3.11). In priniple one an use any size neighborhood,sine the �ltering proess is omputationally very fast even for large �lters.3.4.4 Comparison to other methodsTo investigate the performane of our method we ompare it to post-proessingmethods used for the segmentation of lumbar aorti ali�ations.Disk MorphologyThe morphologial operations used are an opening and a losing with a diskof the size of 1 mm. We hose 1 mm in order to remove pixel noise, but notparts of ali�ations.
31



Chapter 3. Dense Iterative Contextual Pixel Classi�ation Using KrigingBiologial MorphologyThe morphologial operations used are an opening and a losing with stru-turing elements derived from biologial �ndings. Larsen et al. showed in [71℄that the size of lumbar aorti ali�ations is approx. 5± 3 mm in height and
2 ± 1 mm in width. Aording to these �ndings the �rst struturing elementwas designed to remove everything smaller than a standard deviation of a al-i�ation in size. Therefore we used a disk of the size of 1 mm for the opening.For the losing, we made use of a retangular struturing element of the sizeof one standard deviation of a ali�ation in width (1 mm) and one standarddeviation of a ali�ation in height (3 mm).3.5 ResultsThe pure pixels lassi�ation as well as the pixel lassi�ation in orrespon-dene with the three di�erent methods, disk morphology (�gure 3.2(a)), bio-logial morphology (�gure 3.2(b)) and DICPC (�gure 3.2()), were evaluatedfor the 18 ali�ation pathes at the kNN threshold (70% to 30% samplingleads to a threshold of 17

25
). In general we an observe that the Kriging produesresults that are muh loser to the original pixel lassi�ation than the mor-phologial operations. The morphology imprints the shapes of its struturingelements onto the pixel lassi�ation result and produes harsh boundaries.The Kriging, on the ontrary, makes the pixel lassi�ation boundaries �nerand even presinds strutures out of the bakground around the ali�ations.The average values for the Jaard index, sensitivity and spei�ity for the 18pathes are given in table 3.1. We an observe that the Kriging Prior inreasesthe Jaard index and the sensitivity ompared to all other methods whileleaving the spei�ity unhanged ompared to the pure pixel lassi�ation.Furthermore the statistial signi�ane of di�erene between the means of thedi�erent methods was tested via a paired one-sided Student's t-test. The t-testson�rmed that the in �gure 3.2 observed di�erenes of the Kriging omparedto the other methods are signi�ant for the Jaard index, the sensitivity andthe spei�ity. The results of the tests are shown in �gures 3.3(a),3.3(b),3.3().3.6 Disussion and ConlusionWhen dealing with high resolution medial images that present long rangeinterations one runs into omputational problems when trying to use standardontextual lassi�ation tehniques like ICM or ICPC. This is why we ompareour new method to other tehniques, disk and biologial morphology, whihare ommon post-proessing methods for this appliation.32



3.6. Disussion and Conlusion

(a) The result of the disk mor-phology. (b) The result of the biologialmorphology. () The result of DICPC.Figure 3.2: Results for di�erent morphologial operations and DICPC. The morphology im-prints the shapes of its struturing elements onto the pixel lassi�ation result and produesharsh boundaries. The Kriging, on the ontrary, makes the pixel lassi�ation boundaries�ner and even presinds strutures out of the bakground around the ali�ations.Table 3.1: The area overlap results for the population at the kNN threshold (70% to 30%sampling leads to a threshold of 17
25 ). We an observe that the Kriging Prior inreases theJaard index and the sensitivity ompared to all other methods while leaving the spei�ityvirtually unhanged ompared to the pure pixel lassi�ation.Pure Pixel Disk Biologial KrigingClassi�ation Morphology Morphology PriorJaard index 40% 35% 34% 41%Sensitivity 0.60 0.41 0.43 0.62Spei�ity 0.96 0.99 0.98 0.95We observe that our new method, DICPC, improves the sensitivity and theJaard index, while it leaves the spei�ity almost unhanged. The othermethods, disk morphology and biologial morphology, even lower the Jaardindex and the sensitivity while improving the spei�ity inonsiderably. Thelowering of the Jaard index and the sensitivity is aused by the relativelyharsh boundaries that the morphologial operations produe in ontrast to theKriging.Kriging and therefore DICPC is only the �rst step in the right diretion. Aweakness of DICPC is the linear model that underlies Kriging. It implies onlypairwise interations. The goal is to develop a ontextual method that is as33



Chapter 3. Dense Iterative Contextual Pixel Classi�ation Using Krigingfast and omputationally feasible as DICPC, but based on joint probabilitiesof the lass labels. The next hapter introdues suh a method based on textonditionaries.
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3.6. Disussion and Conlusion
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() Comparison of the Spei�ity of the di�erent methodsFigure 3.3: The graph displays the results for the paired Student's t-tests between thedi�erent methods for the Jaard index, sensitivity and spei�ity. The stars indiate theoutome of a paired one-tailed Students' t-test: ⋆ < 0.05, ⋆⋆ < 0.01 and ⋆⋆⋆ < 0.001. The in�gure 3.2 observed di�erenes of the Kriging ompared to the other methods are signi�antfor the Jaard index, the sensitivity and the spei�ity.
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Chapter 4A Texton-based Generative Shape Modeland MDL Model Seletion for StatistialAnalysis of Arhipelago-Like TexturesThis hapter is based on the manusript "Path-based Generative Shape Model and MDLModel Seletion for Statistial Analysis of Arhipelagos" by Melanie Ganz, Mads Nielsenand Sami Brandt published in the proeedings of the International Workshop on Ma-hine Learning in Medial Imaging (MLMI) in onjuntion with MICCAI 2010 and themanusript "A Texton-based Generative Shape Model and MDL Model Seletion for Sta-tistial Analysis of Arhipelago-Like Textures" by Melanie Ganz, Mads Nielsen and SamiBrandt urrently submitted for publiation.Abstrat In the following we propose a statistial generative shape model forarhipelago-like strutures. These kind of strutures our, for instane, in medial images,where our intention is to model the appearane and shapes of ali�ations in X-ray images.The generative model is onstruted by (1) learning a path-based ditionary for possibleshapes, (2) building up a time-homogeneous Markov model to model the neighborhoodorrelations between the pathes, and (3) automati seletion of the model omplexityby the minimum desription length priniple. The generative shape model is proposedas a probability distribution of a binary image where the model is intended to failitatesequential simulation. Our results show that a relatively simple model is able to generatestrutures visually similar to the training images. Furthermore, we use the shape model asa shape prior in the statistial segmentation of ali�ations, where the area overlap withthe ground truth shapes improved signi�antly ompared to the ase where the prior wasnot used.
4.1 IntrodutionIn the �eld of omputer vision as well as medial imaging one essential prob-lem is the handling of texture. Textures have a wide-spread nature: they37



Chapter 4. A Texton-based Generative Shape Model and MDL Model Seletion forStatistial Analysis of Arhipelago-Like Textures

Figure 4.1: The textures from regular to stohasti (Image ourtesy of Wen-Chieh Lin [72℄).

(a) (b) ()Figure 4.2: Illustrations of arhipelago-like strutures (a) in nature, (b) in a lumbar aortiX-ray and () in geostatistis.an be lassi�ed as either regular or stohasti and there exists a broad spe-trum of textures between those two extremes [72℄ (�gure 4.1). Arhipelago-likestrutures (see �gure 4.2) would fall in the ategory of near-stohasti texture.In this ase, traditional methods for texture as well as shape modeling failand other methods, likely based on statistis, are needed. An example of areent statistial method in signal, image, and video proessing is "sparse rep-resentations" [73℄. Under the assumption that natural images admit a sparsedeomposition, a ditionary is learned from training data and an be used forany anonial texture problem: synthesis, lassi�ation, segmentation, om-pression or shape from texture.We have adopted the sparsity method on two problem areas:38



4.2. Statistial Objetive1. Texture synthesis whih an be used to solve several pratial problemsin omputer vision, graphis, and image proessing from geostatistialmodeling of water beds [74,75℄ over handling olusions in 3D reonstru-tion [76℄ to inpainting problems [77℄.2. Texture segmentation whih an be used in many biologial segmentationproblems that deal with arhipelago-like strutures, e.g., brain lesions asobserved in MRI [78℄ or ali�ed deposits in the arteries observed by X-ray [52℄ or CT imaging methods [79℄.In this hapter, we will develop a method for texture synthesis and texturebased segmentation and fous on two appliation areas, medial image seg-mentation problems and natural image texture synthesis. First, we will de�neour statistial objetive (setion 4.2) before desribing our generative shapemodel (setion 4.3) and how we intend to use it in the ase of segmentation(setion 4.4). Then we will present our experiments (setion 4.5). On the onehand, the texture synthesis will be examined on natural image data, e.g. waterand �re. On the other, in the medial domain an example of lumbar aorti X-ray projetions will be used, where our goal is to automatially segment lumbaraorti ali�ations that are related to ardiovasular disease (CVD) [10,30,80℄.We will �nish with a short disussion of the ahieved results (setion 4.6) andonlude with an evaluation of our proposed algorithm (setion 4.7).4.2 Statistial ObjetiveIn our medial imaging appliation we are interested in a general segmenta-tion problem, namely segmenting ali�ations from the bakground in thelower abdominal aorta in X-ray images. We model the aorta through a latentvariable model with the values one and zero for ali�ations and bakground,respetively, and estimate the posterior distribution by ombining the likeli-hood of the pixel data with a shape prior given by our generative shape model.The posterior distribution is then given by
p(u|c) ∝ p(c|u)p(u), (4.1)where u = (u1, u2, . . . , uL) is our latent variable vetor, a vetor of unknownbinary pixel labels of the image matrix I, and c = (c1, c2, . . . , cL) is the binary,hard lassi�ation vetor, whih is a funtion of the image I, orresponding tothe pixel l = 1, 2, . . . , L.The likelihood funtion is onstruted as follows. In addition to the hard lassi-�ation c, the lassi�er returns pixel lassi�ation probabilities γl = P (cl = 0)of the pixel l being zero. Conversely, 1 − γl = P (cl = 1) is the probability ofthe pixel l being one. Let rl = |cl − ul| be the pixel wise residual. Then onean divide the disrete outomes for the residual in four possible ases:39



Chapter 4. A Texton-based Generative Shape Model and MDL Model Seletion forStatistial Analysis of Arhipelago-Like Textures1. If ul = 0 and γl ≥ 0.5, it follows that cl = 0 and cl = ul. Thus, rl = 0.2. If ul = 0 and γl < 0.5, it follows that cl = 1 and cl 6= ul. Thus, rl = 1.3. If ul = 1 and 1−γl ≥ 0.5, it follows that cl = 1 and cl = ul. Thus, rl = 0.4. If ul = 0 and 1−γl < 0.5, it follows that cl = 0 and cl 6= ul. Thus, rl = 1.Now we assume for the residual the disrete distribution {P (rl = 0), P (rl = 1)} =
{max {γl, 1− γl} , min {γl, 1− γl}}, where we use γl,l = 1, 2, . . . , L, as the pa-rameters of the residual distribution, that models the noise distribution or theprobabilities for orret and mislassi�ation, respetively. This hoie yieldsthe likelihood funtion

p(c|u) =
∏

l

(
γ1−cl
l γcl

l

)1−ul
(
(1− γl)

cl(1− γl)
1−cl
)ul

=
∏

l

γ1−ul

l (1− γl)
ul. (4.2)Our goal is to onstrut the shape prior p(u) that statistially models thestrutures of arhipelagos shown in �gure 4.2.4.3 Generative Shape ModelTo onstrut a prior model for arhipelago-like strutures, we �rst build atexton ditionary (setion 4.3.1) that ontains the path prototypes in whihthe strutures are represented as building bloks. This ditionary will subse-quently be used to de�ne texture models based on texton frequenies learntfrom training images. The grammar that models the neighborhood relationsbetween the textons will be onstruted via two di�erent Markov mesh ran-dom �elds (Setion 4.3.2). The texton size m × m and number of pathes kin the ditionary will be seleted by the minimum desription length (MDL)priniple (setion 4.3.4), whih ompletes our prior model for arhipelago-liketextures.4.3.1 Texton DitionaryTo onstrut the texton odebook, we extrat n training textons by sliding awindow of the size m ×m over eah training image. Some example trainingimages are shown in �gure 4.3. Let the matrixX ontain the n training textonseah staked into a olumn vetor. The textons are to be summarized by the

m2 × k texton ditionary D that ontains the binary path prototypes andthat minimizes
E = ‖X−DA‖2fro , (4.3)40



4.3. Generative Shape Model

(a) (b)Figure 4.3: (a) Some training images of lumbar aorti ali�ations. (b) An example of aditionary retrieved from training on all training images for a model with the path size m= 2 and the luster number k = 4.1: Initialize the k luster enters randomly2: while Cluster enters hange do3: Find the nearest enter for eah data point via the Hamming distaneUpdate the luster enters by alulating the mean of all data points belonging toa luster and projeting it bak to the binary manifold44: end while Algorithm 1: Binary K-Meanswhere, for a �xed j, aij = 1 for only one i = i′, while aij = 0 when i 6= i′ [81℄and ‖‖fro indiates the Frobenius norm. A has the size k×n and thus representsthe sparse representation of X in terms of D. In general, we should minimize(4.3) over bothD and A, but beause it is a ombinatory disrete optimizationproblem, we are satis�ed by approximating the solution. We thus divide theproblem into two parts:1. We �nd the texton ditionary D via lustering the training textons byutilizing a binary version of the K-means [82℄ algorithm (Algorithm 1),where the Eulidean distane used in our earlier work [83℄ has been re-plaed by the Hamming distane.2. We �nd the optimal A, given the ditionary D, by piking up the proto-type for eah j that minimizes 4.3.Clearly, the ditionary is not globally optimal, but it gives us a fair modellass with varying path sizes m × m and number of lusters k. The modelseletion, i.e., determining m and k will be desribed in setion 4.3.4.
41
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for the path vi whih is a subset of the imagerepresented by the latent variable vetor u (a) in the 2-neighborhood and (b) 4-neighborhoodMarkov mesh random �eld model.4.3.2 Texton Grammar ModelsOur texton ditionary does not yet desribe the arhipelago-like strutureswell, even though we ould easily generate a random image that has a similartexton histogram by trivially ounting the ourrene of eah path in thetraining images and generating a random image by drawing random pathesfrom the empirial path distribution. The problem is that the neighboringpathes are not independent, i.e., the neighbor pathes signi�antly onstrainthe outome of a path.To take these neighbor orrelations into aount we develop two di�erent ausalontextual texton grammar models. The models are alled ontextual beausethey are based on spatial interation and take the neighborhood of a pixelinto aount. Furthermore, a ontextual model an be lassi�ed as eitherausal or non ausal depending on the nature of the neighborhood. In ausalmodels, the onept of the past of a pixel is introdued. In this ase the pastneighborhood of a pixel refers to a neighborhood that has already been �xedand only that neighborhood in�uenes the label of the urrent pixel. CausalMarkov random �elds (MRF) are generally alled Markov mesh random �elds(MMRF) or simply Markov meshes. MMRF models are advantageous, beausewhen designing a prior it needs to be taken in onsideration that sampling fromit should be feasible. Furthermore, di�erent visiting orders of the pathes inthe image an be onsidered. In the following, we will for larity use a spei�simple visiting order instead of a general one, but we will generalize it in setion4.3.3.In the two MMRF models we will introdue below, the probability distribution4This is equivalent to �nding the luster enters in the squared Hamming distane.42



4.3. Generative Shape Modelof our latent variable vetor u is dependent on the pathes v1,v2, . . . ,vN wedivide the image into
p(u) = p(v1,v2, . . . ,vN). (4.4)The probability distribution of the pathes beomes

p(v1,v2, . . . ,vN) = p(v1)p(v2|v1) . . . p(vN |v1,v2, . . . ,vN−1)

Markov∼=
N∏

i=1

p(vi|Nvi
(v)), (4.5)where Nvi

denotes the ausal neighborhood of vi, i = 1, 2, . . . , N and N is thetotal number of distint pathes of size m×m in the image. This onstrutionallows sequential simulation of the path distribution by �rst drawing the path
v1 from p(v1) at time point 1, then v2 from p(v2|v1) at time point 2, and so on.The �rst model we onsider is a 2-neighborhoodMMRF. By using a 2-neighborhoodMMRF we assume that the urrent path probability depends only on the twoneighbors that have previously been proessed (see �gure 4.4(a)). Thereforethe ausal neighborhood used in (4.5) has the form

Nvi
(v) = N 2

vi
(v) ∩ {v1,v2, . . . ,vN−1} . (4.6)The seond model is a 4-neighborhood MMRF model where the urrent pathprobability depends on those elements of a 4-neighborhood that have beenproessed. The neighborhood an be seen in �gure 4.4(b). This model ishosen for better spatial symmetry when ompared to the 2-neighborhoodmodel. Aordingly Nvi

(v) hanges to
Nvi

(v) = N 4
vi
(v) ∩ {v1,v2, . . . ,vN−1} . (4.7)The probability distributions introdued above an be estimated from the 3-or 5-dimensional histogram H of path labels and their neighborhoods N 2

vi
or

N 4
vi
.4.3.3 Visiting OrderTo omplete the desription of our shape prior, we will in the following intro-due the indexing i1, i2, . . . , iN that de�nes a path visiting order. Let us de�nethe indexing for the original pathes as shown in �gure 4.5(a). The pathesan be visited in various orders, suh as i1 = 1, i2 = 2, i3 = 3, . . . , iN = N , asabove, to whih we will refer as simple visiting order, or at random, suh as

i1 = 25, i2 = 5, i3 = 9, . . . , iN = 73, see �gure 4.5(b).Sine we have hosen to sample sequentially from our prior, instead of usingglobal optimization tehniques like e.g. graphut [46℄, it is instrutive to show43
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(b)Figure 4.5: Di�erent path visiting orders of the latent variable vetor u: (a) The originalsimple path order. (b) An example of a di�erent ausal visiting order - a random visitingorder.how the visiting order a�ets the prior distribution. Sequential sampling isbased on the fatorization
p(u) = p(v1,v2, . . . ,vN) ≡ p(vi1 ,vi2, . . . ,viN )

= p(vi1) · p(vi2 |vi1) . . . p(viN |vi1 ,vi2, . . . ,viN−1
)

∼= p(vi1) · p(vi2 |Nvi2
(v)) . . . p(viN |NviN

(v)), (4.8)where the visiting order i1, i2, . . . , iN a�ets for whih pathes the approxima-tion, following from the Markov assumption, is made.We experimented with two visiting orders. In the ase of the 2-neighborhoodMMRF we hoose to use the simple visiting order, whereas in the ase of the4-neighborhood MMRF we apply a random visiting order. In summary, theresulting priors render as
p(u) ∼= p(v1) · p(v2|Nv2

(v)) . . . p(vN |NvN
(v)), (4.9)where in the 2-neighborhood ase

Nvi
(v) = N 2

vi
(v) ∩ {v1,v2, . . .vN−1} (4.10)and in the 4-neighborhood ase

Nvi
(v) = N 4

vi
(v) ∩ {v1,v2, . . .vN−1} . (4.11)4.3.4 Model SeletionTo use our proposed model we need to �nd the optimal luster number k andoptimal path size m and estimate the transition probabilities for our Markov44



4.3. Generative Shape Modelmodel. We deided to use MDL [84℄ for the model seletion due to its tangiblede�nition of the model seletion problem as the best model is de�ned to havethe minimal lossless transmission ode length. MDL exatly �ts to our purpose,sine we are dealing with a binary problem for whih it is easy to onstrut aompression model. Moreover, MDL provides a natural de�nition for noise, asnoise is onsidered everything that an not be ompressed by the model [85℄.Let us �rst derive the ode length for our model using a two-part oding model.The total ode length of our model in bits is
L = Lpar + Lres, (4.12)where Lpar = LD+LA is the ode length of the model parameters and Lres theode length of the residual. We hoose to ode D simply as a binary matrix,so one needs m2 × k bits to enode it, hene

LD = m2 × k + ⌈log2(max k)⌉
︸ ︷︷ ︸

k

+ ⌈log2(maxm)⌉
︸ ︷︷ ︸

m

, (4.13)where the latter two terms, ode lengths for k andm, are onstant and an thusbe dropped. The ontent of A an be enoded by using the time-homogeneousMarkov model as soon as the 3- or 5-dimensional histogram H of path labelsand their ausal neighborhoods is available. The histogram an be enodedeither, if sparse, by storing its Nnnz non-zero bin indies, and the ounts in suhbins; or otherwise by storing the ounts in all the bins. In this way, assumingan ideal oding method,
LA = min(Nnnz · ⌈log2(n)⌉2 +

Nnnz

⌈log2(Nnnz)⌉, k3 · ⌈log2(n)⌉)
︸ ︷︷ ︸

H

−
∑

log2(p̂k)
︸ ︷︷ ︸

data

,(4.14)where the onditional probability p̂k = p(vik |Nvi
k
(v)) of the path k is om-puted from the histogram H .Finally, let us onsider the residual enoding, where the residual of our modelis ǫ = X − DA and eah pixel an obtain only values {−1, 0, 1}. We anthus ode ǫ by only transmitting the indies of �rst the negative and thenthe positive entries of the residual. In this way the ode length for ǫ in bitsbeomes

Lres = q ⌈log2(Npix)⌉+ log2 ⌈q⌉
︸ ︷︷ ︸

q

, (4.15)where q is the number of non-zero residuals and Npix is the number of pixels inthe image. The latter term is bounded by log2 ⌈Npix⌉ and an thus be dropped.45



Chapter 4. A Texton-based Generative Shape Model and MDL Model Seletion forStatistial Analysis of Arhipelago-Like Textures4.4 Sampling from the Posterior with the Shape PriorLet us onsider the simulation of the posterior (4.1) to obtain realizations forthe latent variable u as
p(u|c) ≡ p(vi1 ,vi2, . . . ,viN |c). (4.16)If the likelihood funtion is separable, we may use the same ausal onstru-tion with whih the prior was designed. Hene, the posterior at time point 1beomes

p(vi1 ,vi2 , . . . ,vin |c) = p(vi1|c)p(vi2 |vi1, c) . . . p(vin |vi1 ,vi2, . . . ,vin−1
, c),(4.17)where

p(viN |vi1 ,vi2, . . . ,viN−1
, c) ∝ p(c|vi1,vi2, . . . ,viN−1

)p(vi1 ,vi2 , . . . ,viN−1
)

∝
∏

l

γ1−ul

l (1− γl)
ulp(vi1 ,vi2, . . . ,viN−1

) (4.18)Here l denotes the element of the latent variable vetor u and γl and 1 − γlare again the probabilities of the pixel l having the label 0 or 1.We thus assume that the posterior is similarly sequentially simulated by �rstdrawing the path vi1 from p(vi1 |c) at time point 1, then vi2 from p(vi2 |v1, c)at time point 2, et.The same sampling strategy will be used for drawing samples from the shapeprior in setion 4.5.4.5 Experiments4.5.1 Modeling di�erent Shape DistributionsModel SeletionIn our experiments for the lumbar aorti x-ray data, we used a training set of 18manually annotated ali�ations (�gure 4.3(a)). The manual annotations arebinary, where the value 1 equals a ali�ed pixel, while the value 0 orrespondsto a bakground pixel. We parametrized the model lass with the set of allpairs of path sizes and luster numbers {m, k}, m ∈ {2, 4, 6, 8, 10} and k ∈
{2, 4, 8, 16, 32}, over whih we optimized the ompression ode length for the2- as well as the 4-neighborhood. The results as per-pixel-normalized odelengths are shown in table 4.1(a) and 4.1(b). MDL seleted the models m = 2,
k = 4 and m = 4, k = 2 for the 2- and the 4-neighborhood ases, respetively.The learnt ditionary of pathes for the model m = 2 and k = 4 is displayedin �gure 4.3(b). 46



4.5. ExperimentsTable 4.1: The ode length per pixel in bits. The olor spetrum red to blue indiates the size of the odelength. One an see that MDL most of the time selets small path sizes and a small number of lusters.(a) Cali�ation, 2-neighborhood.m\k 2 4 8 16 322 0.12 0.09 0.09 19.23 n.a.4 0.26 0.17 0.15 0.24 0.786 0.36 0.26 0.21 0.27 1.028 0.50 0.33 0.28 0.31 0.9810 0.61 0.48 0.32 0.35 1.10
(b) Cali�ation, 4-neighborhood.m\k 2 4 8 16 322 0.51 0.93 3.45 44.29 n.a.4 0.44 1.17 0.48 1.25 2.166 0.67 0.62 0.58 0.75 1.598 0.67 0.52 0.51 0.57 1.3310 0.72 0.67 0.48 0.54 1.29() Water, 2-neighborhood.m\k 2 4 6 8 12 162 1.82 0.28 0.25 0.24 18.29 18.494 3.15 1.83 1.37 0.82 0.72 0.946 3.85 2.21 1.98 1.92 1.59 1.608 4.36 3.38 2.83 2.30 2.16 1.9910 4.70 3.54 2.98 2.87 2.52 2.49

(d) Water, 4-neighborhood.m\k 2 4 6 8 12 162 11.38 7.85 8.05 12.99 31.16 31.354 4.10 3.82 4.18 3.62 3.72 3.156 4.75 3.83 3.45 3.15 2.99 2.898 4.70 3.92 3.66 3.22 2.85 2.7410 4.94 4.00 3.67 3.41 3.02 3.00(e) Geostatistial Channels, 2-neighborhood.m\k 2 4 6 8 12 162 1.13 0.77 0.83 1.07 16.87 19.574 2.35 1.85 1.89 1.67 2.72 5.806 2.75 2.45 2.22 2.31 3.19 5.068 3.44 2.69 2.64 2.83 3.35 4.9910 3.87 3.43 3.14 3.21 3.85 5.34
(f) Geostatistial Channels, 4-neighborhood.m\k 2 4 6 8 12 162 12.32 12.68 8.30 8.58 29.64 32.904 4.49 3.73 4.45 4.92 5.21 8.116 3.60 3.37 3.58 3.74 4.61 6.398 3.74 3.28 3.20 3.31 4.48 5.7710 4.16 3.61 3.58 3.77 4.29 5.79(g) Fire, 2-neighborhood.m\k 2 4 6 8 12 162 1.20 0.98 0.97 0.82 0.71 17.964 2.09 1.85 1.65 1.69 1.68 1.836 2.58 2.24 2.08 2.01 2.05 2.278 2.82 2.52 2.36 2.26 2.27 2.4310 3.07 2.78 2.58 2.52 2.52 2.66

(h) Fire, 4-neighborhood.m\k 2 4 6 8 12 162 3.13 5.66 8.20 4.67 30.28 30.614 2.61 3.92 4.58 3.42 4.04 4.296 3.21 3.17 3.19 3.03 3.35 3.278 3.19 3.07 2.93 2.83 2.87 3.0310 3.18 3.17 3.02 2.92 2.89 3.14The orresponding experiments were onduted for binary images of naturaltextures, suh as water, geostatistial hannel systems and �re (�gure 4.7(a)-()) with k ∈ {2, 4, 6, 8, 12, 16}; the results are displayed in table 4.1()-(h). Inthe ase of water, MDL seleted the model m = 2, k = 8 and m = 8, k = 16for the 2- and the 4-neighborhood, respetively. For the image of geostatistialhannel systems the MDL optimum was ahieved atm = 2, k = 4 andm = 8, k= 6 for the 2- and the 4-neighborhood. Finally, MDL yields the minimal odelength for m = 2, k = 12 and m = 4, k = 2 for the 2- and the 4-neighborhood,respetively, for the natural image of �re. In general, we an observe that MDLmost of the time selets small path sizes and a small number of lusters.47
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(a) Cali�ation, 2-neighborhood (b) Cali�ation, 4-neighborhoodFigure 4.6: Texture synthesis results for ali�ation data for the 2- and 4-neighborhoodMMRF model. In the ase of the ali�ations, the 2-neighborhood MMRF seems to produea more adequate simulation than the 4-neighborhood MMRF model.Texture SynthesisOne way of testing a generative shape model is to synthesize textures fromthe learnt model. If the prior model is good, simulated textures should resem-ble real ali�ation textures. We simulated the prior with the MDL seletedparameters as explained in Setion 4.3.2, using textures from real images (.f.�gure 4.2(b) and 4.7(a)-()). Figure 4.6 illustrates the results for the ali�a-tion shape distribution, whereas the synthesis results for water, geostatistialhannel systems and �re are shown in �gure 4.7(d)-(i). It an be seen that theshapes are qualitatively similar to original shapes. It an also be seen that the2-neighbor model with the simple visiting order produed superior results tothe 4-neighborhood model with the random visiting order.4.5.2 Statistial Shape SegmentationTo omplete the experiments, we apply the generative shape model as a shapeprior on a test set of 38 images displaying lumbar aorti X-ray data. In 30of the 38 images radiologists have identi�ed at least one ali�ation in thelumbar aorta while 8 images were judged to have no ali�ations. We usethe shape prior as desribed in Setion 4.4 with a 2-neighborhood model andthe simple visiting order together with the likelihood funtion. The pixel-wise likelihood was onstruted from the pixel lassi�ation probabilities, asexplained in setion 4.2, where the initial segmentation is performed by aRandom Forests lassi�er [37℄ with a set of 7 Gaussian derivative features,trained by manual annotations of ali�ed lesions.To measure the performane of our segmentation, we draw S = 20 samples
u
(n), n = 1, 2 . . . , S from the posterior distribution p(u|c) and estimate the48



4.5. Experiments

(a) Water, original (b) Geostatistial hannels, orig-inal () Fire, original
(d) Water, 2-neighborhood (e) Geostatistial hannels, 2-neighborhood (f) Fire, 2-neighborhood
(g) Water, 4-neighborhood (h) Geostatistial hannels, 4-neighborhood (i) Fire, 4-neighborhoodFigure 4.7: Texture synthesis results. In (a)-() the original natural image data is shown,whereas the synthesis results for the 2-neighborhood MMRRF model an be seen in (d) - (f)and for the 4-neighborhood MMRF model in (g)-(i). In general the 2-neighborhood MMRFprodues better results than the 4-neighborhood MMRF model.expeted value of a hosen soring funtion feval(u;uann), where uann denotes

49



Chapter 4. A Texton-based Generative Shape Model and MDL Model Seletion forStatistial Analysis of Arhipelago-Like Texturesthe ground truth annotation,
E{feval(u;uann|c)} =

∫

feval(u;uann)p(u|c)du

≈ 1

S

∑

n

feval(u
(n);uann)

= feval(u;uann). (4.19)We ompare the resulting mean sore with the value of feval(uref ;uann), where
uref is the lassi�ation probability map thresholded at 0.5. As evaluationfuntion feval(u;uann) we use the Jaard Index [68℄

feval(u;uann) =
|Iu ∩ Iann|
|Iu ∪ Iann|

, (4.20)where Iu and Iann are u and uann in image matrix form, respetively. Thusthe Jaard index measures the area overlap between the binary segmenta-tion results and the manual annotation, whih we assume to be our groundtruth. In the ase were no ali�ations were present in the manual aorta thearea overlap is de�ned to be 0. The numerial results for feval(u;uann) and
feval(uref ;uann) are given in table 4.2. It an be seen that our method improvesthe lassi�ation results on average by 50% for all 38 as well as for only the 30images with ali�ations present. The improvement vs. simple thresholding isstatistially signi�ant aording to a pairwise two-sided t-test with the valueof p = 0.000001 as well as p = 0.0000001 in the two ases. Visual omparisonof the manual annotation ompared to our result is displayed in �gure 4.8 forone of the subjets with the most improvement (from 0.143 to 0.337) and in�gure 4.9 for one of the subjets with the least improvement (from 0.407 to0.411). In �gure 4.10 a detailed look at a segmentation with and without ourprior is given.4.6 DisussionIn our experiments, using MDL proved itself to be suessful for hoosingthe optimal path size and number of lusters. MDL hose small path sizessupporting the limited amount of training data. Furthermore, it not only pro-dued visually good results, but even though a simple loal model was hosenthe texture synthesis was able to produe global strutures. In the ase ofmore training data and a more ompliated MMRF model with many pathprototypes, it is possible for MDL to selet a model with a larger path size
m and luster number k. In this ase it might also be useful to use a moresophistiated oding method, e.g., universal oding [86℄.50



4.6. DisussionTable 4.2: Evaluation of the segmentation results using the Jaard index against the manualannotation. The Jaard index improves by 50% after applying the proposed shape prioron a test set of 38 and 30 images displaying lumbar aorti X-ray data, respetively.For all 38 test images Mean ± Standard Deviation
feval(uref ;uann) 0.10 ± 0.11
feval(u;uann) 0.15 ± 0.14For 30 test images with ali�ations Mean ± Standard Deviation

feval(uref ;uann) 0.13 ± 0.11
feval(u;uann) 0.19 ± 0.13An alternative to MDL would have been to use ross validation. But beausewe deal with a very limited amount of training data, ross validation is not anoptimal hoie for us sine in order to derive parameters ross validation di-vides the data further in a training, validation and testing subset. Conversely,MDL an take all training data into aount at the same time when trying tooptimize parameters.Another observation was the remarkable di�erene between the 2- and the4-neighborhood synthesis results. The 2-neighborhood produed muh morerealisti strutures. Reasons for this ould be that the simple visiting orderused with the 2-neighborhood model supports the Markov onstraint, while the4-neighborhood with the random visiting order lays down global onstraintsthat are not in aordane with the Markov assumption. In pratie, �xing twodistant pathes onstrains all seletions of allowed pathes in between the twopathes, while the Markov assumption onstrains only neighboring pathes.Additionally, the 2-neighborhood model is also in better aordane with thelimited amount of training data and therefore outperforms the 4-neighborhoodmodel.In general, our model performs well in the ase of texture synthesis in om-parison to earlier models based on path MMRF models for near stohastitexture as for example desribed in [87℄. But a thorough evaluation of ouralgorithm in omparison to other near stohasti texture synthesis algorithmsas done in [72℄ for near regular texture has still to be made.The segmentation experiments show that our prior improves the Jaard index51
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(a) feval(u;uann) = 0.143

(b) feval(u;uann) = 0.337Figure 4.8: One of the subjets where the spatial prior improves the segmentation the most(from 0.143 to 0.337). In eah image on the left the manual annotation of the vertebrae andthe aorta outline (white) as well as the ali�ations (red), in the middle the automatiallyretrieved vertebrae and aorta outline (green) as well as a probability map of the ali�ations(yellow to red) and on the right the overlap of the two where yellow indiates true positives,blue indiates false positives and red indiates false negatives are shown.by 50% (see table 4.2) and that the improvement is statistially signi�ant.This is the ase for all 38 images, of whih 8 images have no ali�ationspresent and therefore the Jaard index is zero, as well as for the 30 imagesthat all have ali�ations present.But Table 4.2 also indiates that the mean of the Jaard index is low and itsstandard deviation high.The main reason that the mean of the Jaard index on our data set is low isthat the fully automati lassi�ation of ali�ations, where �rst the verte-brae need to be deteted and then the aorta region of interest de�ned beforesegmenting ali�ations, is a very hard task. Figures 4.8 and 4.9 display tworesults from our dataset that exemplify how di�ult the problem is. Further-52



4.6. Disussion

(a) feval(u;uann) = 0.407

(b) feval(u;uann) = 0.411Figure 4.9: One of the subjets where the spatial prior improves the segmentation the least(from 0.407 to 0.411). In eah image on the left the manual annotation of the vertebrae andthe aorta outline (white) as well as the ali�ations (red), in the middle the automatiallyretrieved vertebrae and aorta outline (green) as well as a probability map of the ali�ations(yellow to red) and on the right the overlap of the two where yellow indiates true positives,blue indiates false positives and red indiates false negatives are shown.more, two experts only have an Jaard index of approx. 0.50 when soringthe same image underlining the fat that the segmentation of ali�ations isa hard task. Finally, the Jaard index is also low, beause it is a very harshmeasure to use in our problem. Our Jaard index values an not be omparedto values ahieved in, e.g., brain imaging where two large areas are omparedto eah other. Alternatively, the number of orretly lassi�ed pixels or Co-hen's κ [88℄ ould be used to measure the inter-rater agreement for ategorialitems suh as pixels. However, these measures will be dominated by the verylarge lass of non-ali�ed pixels, and in the ase of Cohen's κ individual pixelsorings annot be onsidered statistially independent.Similar reasons apply to the question why the variane of our segmentation53



Chapter 4. A Texton-based Generative Shape Model and MDL Model Seletion forStatistial Analysis of Arhipelago-Like Textures
(a) (b) ()Figure 4.10: Cali�ation segmentation result: (a) manual annotation (ground truth), (b)the orresponding pixel-wise lassi�ation probabilities, () onditional mean ū = 1

N

∑
u
(n)of the posterior. Compare espeially (b) and () to see how muh bakground noise theproposed path-based prior removes.results is so high. Not only is the Jaard index as desribed above a harshmeasure for our problem, but on images with only a few or very small ali�-ations even a small number of false positives or false negatives leads to a largedi�erene in the Jaard index. Hene, the Jaard index is in our appliationvery sensitive to small hanges and leads to a large standard deviation of ourresults. Another reason for the large standard deviation is the large variationin our images. A large biologial variation over di�erent subjets as well aslarge di�erenes in image quality, make the preonditioning steps - �ndingthe vertebrae and de�ning the aorta region of interest - more hallenging andonversely lead to variable segmentation results and hene variable Jaardindexes.It is di�ult to ompare our work to earlier approahes for segmentation ofali�ations in X-rays as was done in [89℄ and [90℄.On the one hand, the results of [89℄ an not be diretly ompared with ourresults, sine the preonditions are di�erent. While in [89℄ the aorta is derivedbased on manually given landmark points at the orners and midpoints of the�rst four lumbar vertebrae, in our setup the vertebrae are found automatiallywithout employing manual annotations. Sine our experiments have shownthat small errors in the vertebrae segmentation in�uene the ali�ation seg-mentation results greatly, we an not ompare our results to the results givenin [89℄. On the other hand, the Jaard index for the lassi�ation of ali�-ations is not given in [89℄ and the number of orretly lassi�ed pixels andCohen's κ that are given are dominated by a large bakground lass, whih asmentioned skews the values of the given measures.Comparison of the ali�ation segmentation results to [90℄ is also not straightforward, sine it is also not a fully automati approah, but assumes that theorner points of the vertebrae have been indiated and hene also di�ers in thepreonditions from our setup. Furthermore, the Jaard index is given, but54



4.7. Conlusionnot for omplete images but for 48 areas that were seleted from 10 X-rays.This an not be diretly ompared to the performane on full images where allareas are taken into aount.4.7 ConlusionIn this paper, we have proposed a generative model and MDL model seletionfor strutures resembling arhipelagos. The model is based on a path-baseddesription of the shapes ombined with a Markov Mesh Random Field modelthat takes path orrelations into aount. Our seletion for the ditionary, thebinary K-means-lustered texton prototypes, seems reasonable even though itis not stritly optimal in the Frobenius norm. However, searhing for theoptimal odebook is itself a ombinatory optimization problem and less im-portant in pratie. As far as the MMRF model is onerned, our synthesisresults showed that a simple loal model based on only a few training exam-ples an apture omplex global strutures and generate visually sound results.The visiting order was shown to in�uene the results greatly, whereas we on-luded that a visiting order whih is in aordane with the Markov assumptionshould be used. Our segmentation results, based on the proposed prior shapedistribution, were promising and improved the area overlap by 50%. This in-diates that our shape model an be suessfully used as a prior distribution instatistial segmentation of ali�ations on X-ray image data. An interestingdiretion in the future ould be to introdue an appropriate multi-resolutionextension of the generative model, whih ould take even longer interationsbetween pathes into aount.
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Chapter 5Appliation of Renormalization GroupTheory to Multi-Sale ImageSegmentation ProblemsThis hapter is based on work done under supervision of Pushmeet Kohli during the staysabroad at Mirosoft Researh Cambridge, UK and is urrently in preparation.Abstrat We propose an approah for image segmentation that is based on dedut-ing energy potentials from images in a multi-sale fashion with Renormalization GroupTransformations (RGT) in order to make exat segmentations of large images possible. Byombining RGT with state of the art segmentation tehniques we present a novel approahto multi-sale image segmentation algorithms. Our experiments show that RGT leads toimproved segmentations ompared to other ommon multi-sale image segmentation teh-niques.
5.1 IntrodutionIn the last years image proessing appliations suh as segmentation or restora-tion have beome inreasingly important. While segmentation problems usedto be solved by approximate tehniques suh as simulated annealing [48℄ oriterated onditional modes [91℄, today they are mostly solved via graphialapproahes [46℄ or inferene algorithms, e.g. belief propagation [92℄. As theresolution of the images being proessed inreases [93℄, the need for fast ande�ient multi-sale energy minimization tehniques arises. We propose an ap-proah for deduting energy potentials from images in a multi-sale fashionbased on Renormalization Group Transformations (RGT) in order to makeexat segmentations of large images possible.57



Chapter 5. Appliation of Renormalization Group Theory to Multi-Sale ImageSegmentation ProblemsRelated Work There are many multi-sale segmentations methods availableand the related work is niely reviewed in [94℄. Note that most multi-saleapproahes assume that the energy funtions of the image that is being seg-mented is of the same form at di�erent sales, while in fat one should try toevolve the energy funtion orretly over di�erent sales. We will try to dothat by employing RGT.RGT is a method from statistial physis and most of the work related to ithas been done in statistial or solid state physis. RGT has been used to ex-plain phase transitions in physial systems [95℄, e.g. magnets or �uids whihare alike in having �utuations in struture over a vast range of sizes, but hasalso been applied in quantum eletrodynamis [96℄. Two of the most promi-nent protagonists of RGT in solid state physis were Leo P. Kadano� [95℄ andKenneth G. Wilson [41℄, who applied RGT to the Kondo e�et [97℄.The basis of espeially Kadano�'s and Wilson's RGT alulations of phasetransitions were 2D Ising models [98℄, whih are a simpler form of a MarkovRandom �eld (MRF) [99℄. RGT an approximate the analytial solution of atwo dimensional (2D) Ising model and desribe phase transitions of the mate-rial that is modeled. This suggests itself to be applied on images, whih anbe interpreted as 2D Ising models.In omputer vision there have been few papers that have tried to apply RGTon images. The �rst to transfer RGT from solid state physis to images wasBasilis Gidas [42,100℄. Further work was done later by Petrou et al. [101�103℄.When Gidas and Petrou presented the renormalization group approah theiralulations were omputationally hardly tratable, beause of the loss of lo-ality of the model at the oarser stages. By ombining RGT with state ofthe art segmentation tehniques we present in the following a omputationallye�ient and novel approah to multi-sale image segmentation problems.In setion 5.2 we introdue our notation and the energy funtion that we hooseto transform, while in setion 5.3 we introdue the reader to the general on-ept of multi-sale image segmentation. Then we show how to transform theenergy funtion with the help of RGT and give details of RGT for a spei�hoie of mapping and grid in setion 5.4. Finally, setion 5.5 overs the exper-iments and setion 5.6 o�ers a disussion and onlusions and desribes futurework.5.2 NotationIn this setion, we will use a random �eld model to formulate the image segmen-tation problem. The random �eldX has a set of n nodes V = {1, 2, 3, . . . , n} aswell as a neighborhood system N that onnets pairs of nodes. Eah randomvariable xi ∈ X is assoiated with one lattie point i ∈ V and takes one valuefrom the label set L = {l1, l2, . . . , lk}. All possible label sets, x, form the set58



5.3. Multi-sale Image Segmentation
Figure 5.1: A desription of our problem: We want to segment e.g. a gigapixel image at highresolution. We ould do this following the high resolution path left to right, but often thisis not feasible. Therefore in this setion we exploit several options to employ low resolutionversions of the image or the energy to segment the high resolution image.of labelings L = Ln.Transferred to image segmentation, xi represents the assigned label of the ithimage pixel, while V orresponds to the set of all image pixels and N to theset of all edges in a given neighborhood. An optimal image segmentation,
x
⋆, based on the data, D, is then given by the maximum-a-posteriori (MAP)estimate

x
⋆ = argmax

x∈L
P (x|D) = argmin

x∈L
E(x), (5.1)where the energy funtion E : Ln → R an in priniple be de�ned freely. Butfor most omputer vision problems and in our ase, the energy funtion is ofthe form of an Ising model [98℄,

E(x) =
∑

i∈V

φi +
∑

i,j∈N

φij, (5.2)where the label set onsists of only two labels, foreground (fg) and bakground(bg). In our appliation the unary potentials φi are derived from the olor ofthe pixels and appearane models that are onstruted from user marked brushstrokes as shown in [104,105℄, while the pairwise interation terms φij are on-struted from edge features g(i, j) based on the olor di�erene of neighboringpixels and de�ned as φij = g(i, j) for i 6= j and 0 otherwise.Further we de�ne two mappings: A mappingM : V → V l that maps the pixelsof the original image I to the set of pixels V l in the low resolution version I lof the image and a mapping K : L → L
l that onnets the spae of labelings

L of V to the spae of labelings Ll of V l.5.3 Multi-sale Image SegmentationThe priniple behind multi-sale image segmentation an be seen in �gure 5.1.One starts out with a high resolution image I and wants to end up with a high59



Chapter 5. Appliation of Renormalization Group Theory to Multi-Sale ImageSegmentation Problemsresolution segmentation x
⋆. For images of reasonable size one an do thatsimply via a high resolution energy E that is minimized aording to eq. 5.1,but for large images this gives rise to a large sale optimization problem whihis omputationally extremely expensive or even unfeasible to solve. Thereforeit is better to �rst solve the problem at low resolution and to obtain a oarselabeling of the high resolution problem. The low resolution problem an beonstruted in a multitude of ways. Two of the most ommon are:Low Resolution Energy Funtion from a Low Resolution Image Tra-ditional multi-sale methods as [106,107℄ de�ne the low resolution energy fun-tion El by using a low resolution version I l of the image I. The oarse energyfuntion El is hereby simply of the same form as (5.2), but based on V l insteadof V.Low Resolution Energy Funtion from the Original Energy FuntionAnother approah is to de�ne the oarse grid energy El diretly from the po-tentials of the original energy funtion E. This is done by summing over theunary variables that omprise the oarse node V l and likewise over the pairwisepotentials de�ned between the nodes V that V l ontains.The oarse energy funtion an then be minimized to extrat a partial label-ing of the original image I, whih an in turn be re�ned to a solution for thewhole image I by another optimization on a small subset of pixels only. Thepartial labeling based on the oarse energy El an be omputed via di�erentapproahes, either via a Boundary Band Approah [106℄ or via a min-marginalapproah [108℄. We will in the following use a hybrid approah made up of aombination of the two that was also introdued and detailed in [108℄.Finally, the oarse labeling is projeted bak to the high resolution problemand a solution for the original image obtained.5.4 Using RGT for Multi-sale Image SegmentationIn general, RGT deals with energy funtions of physial systems. It an beused as desribed in [41℄ and [42℄ to evolve energy funtions between di�erentrepresentational sales, e.g. a oarse and a �ne sale of a physial system. Inthe following we introdue a new way of de�ning the low resolution energyfuntion El on the basis of the original energy funtion.55.4.1 Energy Funtion ModelThe energy funtion E of a two spin state Ising Model is in general given as in(5.2). For simpliity we base the following derivation on a simple spin model5The approah presented is due to [109℄. Other approahes are explained in [110℄, e.g. the method ofneglet and the method of potential moving [111℄. 60



5.4. Using RGT for Multi-sale Image Segmentation(φi = hsi and φij = ksisj ) leading to
E = h

∑

i

si + k
∑

〈ij〉

sisj, (5.3)where si is the spin state (+1 or −1) of the spin loated at the site i and hand k are the unary and pairwise interation fators. Furthermore we de�nethe blok spin Si to be made up of several spins si, sj,et. Then the mapping
M : s 7→ S maps the spins s at high resolution to the blok spins S at lowresolution, where the mapping K : L → L

l onnets the two labeling spaes,
L and L

l, at high and low resolution.Statistially, the probability of the labelings Ll of the oarse energy funtion
El an be desribed by the sum of the probabilities of the original labelings L,

e−El

=
∑

a∈L

e−E(a), (5.4)where a is a labeling ∈ L.We an derive the funtional form of El via linear operator perturbation theory[112℄, whih divides our oarse energy in a linear term, E0, and a higher orderterm, V ,
El = E0 + V. (5.5)The linear term of the oarse energy funtion should look as similar as pos-sible to the interation term of our original energy funtion and desribe theinteration between spins inside one blok, SI , so we set it to

E0 = k
∑

I

∑

i,j∈I

sisj . (5.6)The higher order term, V, is then outlining the interation between spins indi�erent bloks,
V = k

∑

I 6=J

∑

i∈I,j∈J

sisj. (5.7)Now we an hange equation 5.4 to
e−El

=
∑

a∈L

e−E0(a) · e−V (a) (5.8)
=
〈
e−V

〉

0
Z0(k)

m, (5.9)where
〈
e−V

〉

0
=

∑

a∈L e
−E0(a) · e−V (a)

∑

a∈L e
−E0(a)

(5.10)61



Chapter 5. Appliation of Renormalization Group Theory to Multi-Sale ImageSegmentation Problems

Figure 5.2: The graph shows the triangulation used by Kadano�.is the expetation value of e−V . In the expression above
Z0(k)

m =
∑

a∈L

e−E0(a) (5.11)desribes the partition funtion for m bloks of spins si that are mapped to
SI . Z0 is a normalizing onstant.Now all we need is an expression for 〈e−V

〉

0
. Via an expansion in orders of Vand with the formula log(x) = (x− 1)− 1

2
(x− 1)2 +O(x3) [113℄ we get

〈
e−V

〉

0
= e

−〈V 〉
0
+ 1

2
(〈V 2〉

0
−〈V 〉2

0)+O(V 3)
. (5.12)Our �nal expression for the oarse energy funtion is then

El = −m log(Z0(k)) + 〈V 〉0 −
1

2

(〈
V 2
〉

0
− 〈V 〉20

)
+O(V 3). (5.13)5.4.2 Kadano�'s Blok Spin MethodThe mapping M used to downsample the image an be hosen in a multitudeof ways. It an be an interpolation based down sampling algorithm like [114℄,a majority vote mapping or even a mapping where one spei� spin in eahblok determines the value of the larger blok SI . An optimal representationis one of the key points and hoies in the appliation of RGT.Furthermore, one an hoose many di�erent type of grids, that then determinehow the sums over the spins i and j in the energy funtion are alulated.Obvious hoies here are a standard pixel grid or a triangular lattie. In the62



5.4. Using RGT for Multi-sale Image Segmentationfollowing let us present a more detailed alulation based on a majority votemapping and a triangular lattie.We assume a blok spin on�guration on a triangular lattie by Kadano� [115℄as shown in �gure 5.2, where blok spins are de�ned by a mapping M thatgroups three spins together and omputes the blok spin SI via a majorityrule:
SI = sign

(
S1
I + S2

I + S3
I

)
, (5.14)where S

j
I is the jth spin in the Ith blok. Then we de�ne a set of spins thatmake up SI

σI ≡
{
S1
I , S

2
I , S

3
I

}
. (5.15)For a set of 3 spins with 2 states eah, the labeling spae L is made up of 23 = 8possible on�gurations. The blok spin SI has only two possible labelings, but4 di�erent labelings of the original spins are mapped to eah oarse labeling

L
l

Ll
1 = +1 L = {{+1,+1,+1} , {−1,+1,+1} , {+1,−1,+1} , {+1,+1,−1}}(5.16)

Ll
2 = −1 L = {{−1,−1,−1} , {+1,−1,−1} , {−1,+1,−1} , {−1,−1,+1}}re�eting the original 8 on�gurations.We an apply this hoie of mapping and grid to our oarse energy funtiongiven in (5.13). To do this we need to �nd the expression for 〈V 〉0. Sineaording to (5.7) V ouples nearest neighbor bloks, we an determine itfrom �gure 5.2 to be

VIJ = k(S3
J)(S

1
I + S2

I ) (5.17)and therefore
〈VIJ〉0 = 2k

〈
S1
IS

3
J

〉

0

= 2k
〈
S1
I

〉

0

〈
S3
J

〉

0
, (5.18)sine the bloks omprising SI and SJ are independent of eah other. One anevaluate the average for all on�gurations given in (5.16) and one gets

〈VIJ〉0 = 2kφ(k)2
∑

I 6=J

SISJ , (5.19)where φ(k) ≡ e−3k+ek

e−3k+3ek
and the oarse energy pairwise oupling k′ = 2kφ(k)2.So the oarse energy funtion is to �rst order given by

El(SI) = −m log(Z0) + k′
∑

I 6=J

SISJ +O(V 2) (5.20)63



Chapter 5. Appliation of Renormalization Group Theory to Multi-Sale ImageSegmentation ProblemsThe same expansion an be onduted for one order higher, giving
El(SI) = −m log(Z0) + k′

∑

I 6=J

SISJ − 1

2
k′′
∑

I 6=J

S2
IS

2
J , (5.21)where

k′′ = k2

(

2φ(k)2 + 2φ(k)
e−3k − ek

e−3k + 3ek
− 4φ(k)4

) (5.22)is the modi�ed oupling parameter for the higher order interations at theoarser sale.The unary term in E an be derived in the same way by expansion and is atoarse resolution hanged to
El = h′

∑

I

sI , (5.23)where h′ = 3φ(k).5.5 Experiments and Results5.5.1 Segmentation QualityIn setion 5.4 we have derived the form of an RGT low resolution energy.In this setion we examine the ahieved segmentation quality of the di�erentmethods for onstruting the smaller energy minimization problem. Therefore,we ompare segmentation results of the low resolution energy funtion derivedvia RGT (SRGT ) with a) a low resolution energy funtion derived from a lowresolution image (SLRI) and b) a low resolution energy funtion alulatedfrom the high resolution energy funtion (SLRE). The downsampling funtionused in the three methods is thereby the same, the di�erene is only thatwe add appropriate ouplings in front of the downsampled energy (SRGT ) orthat the image (SLRI) or the energy (SLRE) is being downsampled. We alsopresent the segmentation result of the original high resolution image (SHRI).The segmentations were made via the graphut algorithm [116℄, whih anoptimize a submodular energy funtions as in our ase (k = −1) exatly inpolynomial time.First, we present the four segmentations for three di�erent images, in �gures5.3, 5.4 and 5.5. One an see slight di�erenes between the three low resolutionsegmentations, espeially in the �ne strutures as for example around the bagthat the man holds in �gure 5.3. If one measures the area overlap between themanual annotation and the three segmentations via the Jaard index J [68℄,where the area overlap between two binary segmentations S1 and S2 is given64



5.5. Experiments and Results
(a) (b) ()
(d) (e) (f)Figure 5.3: We display (a) the original image, (b) the user marked brush strokes used toinitialize the segmentation and the four segmentations, () SHRI , (d) SLRI , (e) SLRE and(f) SRGT . One an see slight di�erenes between the three low resolution segmentations,espeially in the �ne strutures as for example around the bag that the man holds.by

J(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

, (5.24)the segmentations have basially the same area overlap as shown in table 5.1.But if we ompare the quality of partial labelings generated from di�erentoarse energy funtions, we an see di�erenes between the three low resolu-tion segmentation approahes as an be observed in �gure 5.6. The traditionalapproah of onstruting the energy from the low resolution outperforms theapproah of onstruting the energy from the original energy funtion. Fur-ther, using RGT to onstrut the oarse energy outperforms both of the othermethods.5.5.2 Segmentation TimeBesides the segmentation quality we also analyze the omputational timeneeded for the di�erent segmentations. The results an be seen �gure 5.7and they show that the smaller energy minimization problem onstruted bydownsampling a high resolution energy is the slowest approah, while our pro-posed RGT based method to minimize the energy minimization problem is the65



Chapter 5. Appliation of Renormalization Group Theory to Multi-Sale ImageSegmentation Problems
(a) (b) ()
(d) (e) (f)Figure 5.4: Again we display (a) the original image, (b) the user marked brush strokes usedto initialize the segmentation and the four segmentations, () SHRI , (d) SLRI , (e) SLRE and(f) SRGT . In this piture one an not see large di�erenes between the di�erent segmentationalgorithms, but it is still interesting to look at the bottom boundary of the bear, where thealgorithms di�er.Table 5.1: Evaluation of the segmentation results using the Jaard index against the manualannotation. Notie that the improvements an not be aptured by the Jaard index.(a) To �gure 5.3Mean Median

SLRI 0.97 0.97
SLRE 0.97 0.97
SRGT 0.97 0.97 (b) To �gure 5.4Mean Median

SLRI 0.97 0.96
SLRE 0.96 0.96
SRGT 0.96 0.96 () To �gure 5.5Mean Median

SLRI 0.92 0.92
SLRE 0.92 0.92
SRGT 0.92 0.92fastest.5.6 Disussion and ConlusionOur experiments show that RGT an be applied to multi-sale image seg-mentation problems. Using multi-sale image segmentation tehniques we anredue the size of an image segmentation problem and make it tratable andsolvable. RGT o�ers to ondut the multi-sale approah by orretly evolv-ing energy funtions over di�erent sales instead of assuming that the energy66



5.6. Disussion and Conlusion
(a) (b) ()
(d) (e) (f)Figure 5.5: Yet again we display (a) the original image, (b) the user marked brush strokesused to initialize the segmentation and the four segmentations, () SHRI , (d) SLRI , (e)

SLRE and (f) SRGT . In the plant image it is espeially interesting to look at the left side ofthe plant. RGT seems to be able to separate the leaves on the lower left of the plant muhbetter than any other method.funtions are of the same form at every sale, an assumption that underliesthe other two methods. The mappings M and K an be hosen dependent onthe problem and the need for exat or approximate inferene.The goal for the further development of the RGT transformation on imagesis to proeed in a more strutured manner. Instead of hoosing an arbitrarymapping and to see what e�et this has, one ould attempt to hoose theoptimal mapping and method of oarsening. A priniple omponent type ofanalysis of di�erent luster variables ould help to hoose the optimal mappingand method of oarsening.In onlusion, we need to experiment with further appliations of RGT to beable to demonstrate learly that it an be the solution to a wide range of prob-lems, but our preliminary results support the notion that RGT provides aninteresting solution to multi-sale energy minimization problems.
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IIClinial Appliation of the Imaging ofLumbar Aorti Cali�ations
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Part II of the dissertation onsists of researh papers that fous on the linialrelevane of lumbar aorti ali�ations.In hapter 6 several biomarkers are developed and their linial relevanetested. Then the biomarkers are ombined to form the morphologial atherosle-roti ali�ation distribution (MACD) index and the MACD index and itsrelation to mortality in post menopausal women is examined in hapter 7.
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Chapter 6Abdominal Aorti Cali�ed Deposits andtheir Relationship to Mortality in PostMenopausal WomenThis hapter is based on the manusript "Abdominal Aorti Cali�ed Deposits and their Re-lationship to Mortality in Post Menopausal Women" by Melanie Ganz, Marleen de Bruijne,Erik B. Dam, Paola Pettersen, Morten A. Karsdal, Claus Christiansen and Mads Nielsenurrently in preparation and on the manusript "MACD - an Imaging Marker for Cardio-vasular Disease" by Melanie Ganz, Marleen de Bruijne and Mads Nielsen published in theproeedings of the SPIE Medial Imaging onferene, San Diego, CA, USA, 2010.Abstrat Abdominal aorti ali�ations (AACs) orrelate strongly with oronaryartery ali�ations and an be preditors of ardiovasular mortality. We investigatedwhether size, shape, and distribution of AACs relate to mortality and how suh prognostimarkers perform ompared to the state-of-the-art AC24 marker introdued by Kauppila etal. For 308 post-menopausal women we quanti�ed the number of AACs and the perentageof the abdominal aorta that the lesions oupied in terms of their area, simulated plaquearea, thikness, wall overage and length. We analyzed inter-/intra-observer reproduibilityand preditive ability of mortality after 8-9 years. This was done via Cox regression withand without adjustment for biologial risk fators leading to hazard ratios (HR). Theoe�ient of variation was below 25% for all markers. The strongest individual preditorswere the number of ali�ations (HR=2.4, p<0.001) and the simulated area perentage(HR=2.96, p<0.001) of a ali�ed plaque and, unlike AC24 (HR=1.66, p<0.001), theywere preditive of mortality after adjusting for traditional risk fators. In a ombined Coxregression model the strongest omplementary preditors were the number of ali�ationsand the perentage of the aorta area they oupied. Hene, morphometri markers of AACquanti�ed from radiographs may be a useful tool for sreening and monitoring risk of CVDmortality.
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Chapter 6. Abdominal Aorti Cali�ed Deposits and their Relationship to Mortality inPost Menopausal Women6.1 IntrodutionCardiovasular diseases (CVDs) are the most prevalent ause of death in Eu-rope [117℄ and the United States [118℄. This is the ase despite general a-eptane that a healthy lifestyle and risk fator management an prevent thedevelopment of CVDs [6℄. Furthermore, two-thirds of women who die sud-denly from CVDs have no previously reognized symptoms. Thus, e�etiveand broadly appliable indiators of ardiovasular risk may prompt timelyintervention.Current non-invasive modalities for imaging atheroslerosis are radiographs, ul-trasound, omputed tomography (CT) and magneti resonane imaging (MRI)[119℄. Ultrasound is used to visualize the arotid intima-media thikness(IMT), beause arotid IMT has been shown to be assoiated with atherosle-rosis [19℄, and is thus a marker for CVD. Multi-slie CT is able to quantify thedegree of oronary artery ali�ation (CAC) with good reproduibility [22,23℄,whih provides a strong measure of ardiovasular risk [24℄ independently from,and potentially more powerful than, traditional risk fators suh as smok-ing [25℄. MRI is a non-invasive modality to assess atheroslerosis in di�erentvasular beds. However, MRI measurements are hallenged by the size of thesmaller arteries and assessment of the oronary arteries is espeially di�ultdue to ardia and respiratory motion artifats [120℄.An alternative to examining oronary arteries for ali�ation is to assess theabdominal aorta. Although ali�ations of the oronary arteries an also beassessed by radiographs, we fous on radiographi examination of the abdomi-nal aorta, beause abdominal aorti ali�ations (AACs) are strong preditorsof ardiovasular morbidity and mortality [10℄, orrelate strongly with oro-nary artery ali�ations, and may hene predit the risk of oronary arterydiseases [30,80℄. The state of the art methodology to estimate CVD risk fromlumbar aorti radiographs is the abdominal aorti ali�ation sore (AC24)proposed by the Framingham study group [13℄. A big advantage is that suhAAC soring an, for example in the ase of post-menopausal women, be per-formed without additional ionizing radiation exposure or ost as these imagesare already performed in osteoporosis trials [33, 34℄.We investigated if the morphometri aspets of ali�ations quanti�ed fromplain radiographs ould beome useful novel markers of AACs. Due to thesemi-quantitative grading of the AC24 sore, suh markers from abdominalaorti examinations ould potentially be more sensitive, in partiular to assessthe potential signi�ane of smaller ali�ations. We outlined the boundariesof the ali�ed deposits in the lumbar aorti region on radiographs of postmenpausal women and quanti�ed the number of ali�ed deposits as well asthe perentage of the abdominal aorta overed by ali�ations in terms ofarea, simulated-plaque area, thikness, wall overage, and length. These po-74



6.2. Materials and Methodstential AAC markers were evaluated for preision and their ability to preditCVD-related mortality.6.2 Materials and Methods6.2.1 Study PopulationIn 1992-93, 686 post menopausal women living in the Copenhagen area inDenmark were reruited via a household postal survey to partiipate in theEPI study [67℄ addressing the role of a number of metaboli risk fators in thepathogenesis of CVD and osteoporosis and were examined radiologially. Thefollow-up of the EPI study was the Prospetive Epidemiologial Risk Fators(PERF) study [66℄, whih was performed after 8.5 years. PERF was initiatedto obtain further insight into the epidemiology and pathogenesis of menopause-related diseases, partiularly osteoporosis.Of the original 686 partiipants, we hose those whose interval between their�rst and seond lini visit was 8-9 years, with known alive/mortality status,who were post menopausal and whose lumbar aorta was visible on a singleradiograph at baseline and at follow-up. This left us with 308 subjets. In-formation about auses of death was obtained from the Central Registry ofthe Danish Ministry of Health and the death auses were grouped into threegroups: CVD, aner and other death auses.6.2.2 Metaboli and Physial MeasurementsAt baseline, demographi information and CVD risk parameters suh as age,weight, height, body mass index (BMI), waist and hip irumferenes, sys-toli and diastoli blood pressure (BP), treated hypertension, treated diabetes,smoking, regular alohol and daily o�ee onsumption, and weekly �tness a-tivity were olleted. Using a blood analyzer (Cobas Mira Plus, Rohe Di-agnostis Systems, Ho�man-La Rohe, Basel, Switzerland), measurements offasting gluose and a lipid pro�le (total holesterol, triglyerides, low-densitylipoprotein holesterol (LDL-C), high-density lipoprotein holesterol (HDL-C), apolipoprotein A and B (ApoA and ApoB respetively) and lipoprotein(a)(Lp(a))) were obtained. On the basis of these measurements, the ompositerisk markers, systemi oronary risk evaluation (SCORE) [49℄ and Framing-ham sore [50℄, were alulated. The SCORE is a ombination of the age,smoking status, levels of total holesterol and systoli blood pressure, whilethe Framingham sore is omprised of the same variables plus the HDL-C andthe hypertension treatment status.
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Chapter 6. Abdominal Aorti Cali�ed Deposits and their Relationship to Mortality inPost Menopausal Women

Figure 6.1: A manual annotation of an X-ray: In blue we see distint vertebra points, ingreen the aorta wall and in red the ali�ations.6.2.3 Radiographi AnalysisThe lateral X-ray images of the lumbar aorta (L1-L4) were aquired on �lm in1992 and again in 2001, and digitized in 2007/2008 using a DosimetryProAd-vantage sanner (Vidar, Herndon, USA), providing an image resolution of 570dpi on a 12-bit gray sale. Three trained radiologists without prior knowledgeof the patients' onditions manually annotated the orners and mid points ofthe vertebrae (L1-L4), the orresponding abdominal aorta walls, and ali�-ations in the digitized images. The three radiologists had ten, eight and �veyears of experiene. They used radiologial reading units (Setra, Linköping,Sweden) and annotation software spei�ally implemented for that task in Mat-Lab (The MathWorks, Natik, USA), whih allowed them to hange brightnessand ontrast, zoom in and out, and to edit outlines, as seen in �gure 6.1.The AC24 [15℄ was onstruted by projeting the AACs to the orrespondingaorta wall. Then the aorti setions adjaent to eah vertebra L1-L4 weregraded by the degree of lesion oupation: 0 for no AACs, 1 for AACs oupy-ing less than 1/3 of the wall they were projeted onto, 2 for AACs oupying76



6.2. Materials and Methods

Figure 6.2: A shemati overview of the AC24 soring adopted from [13℄.more than 1/3, but less than 2/3 in the projetion, and 3 for a 2/3 or more o-upation of the wall. The degree of lesion oupation of the projetions to theanterior and posterior aorta wall for all four lumbar vertebrae was summed,leading to an AC24 sore ranging between 0 and 24. In addition to the AC24sores provided by the radiologists, the outlines of the ali�ations were usedin an alternative omputer-based omputation of the AC24. The AC24 soringis illustrated in �gure 6.2.For all images with ali�ations, annotations were performed by one of thethree radiologists. For a subset of 8 images, annotations by two radiologistswere made twie in order to evaluate inter- and intra-observer preision. Re-outlining was performed blinded to earlier outlines and separated by approxi-mately six to eight weeks.6.2.4 AAC MarkersBesides measuring the AC24 there is more information to gain from the AACs.Therefore several potential severity sores relating to the geometrial outline ofthe ali�ed deposits in the lumbar aorti region were examined. The proposedAAC markers were automatially omputed from the radiologist's omputer-assisted outlines of ali�ed deposits in the radiographs:77



Chapter 6. Abdominal Aorti Cali�ed Deposits and their Relationship to Mortality inPost Menopausal Women

Figure 6.3: Left: A shemati visualization of a plaque similar to what an be seen in histol-ogy. The ali�ed plaque is surrounded by an area of neroti tissue. Right: The simulatedarea tries to imitate the area of neroti tissue as seen in histology by a morphologialdilation of the ali�ed plaque.
• Area perentage (Area %): The perentage of the area of the lumbaraorta adjaent to L1-L4 oupied by AACs.
• Simulated area perentage (Sim. area %): We estimated the size of theunderlying atherosleroti in�ammation from the area and shape of theobserved AACs sine X-ray analysis an only visualize the ali�ed ore ofthe AACs. The extent of the atherosleroti in�ammation was simulatedby a morphologial dilation [121℄ with a irular struturing element ofradius 200 pixels (approx. 8.9 mm). The size of the struturing elementwas derived by a parameter study on a subset of the data and it wason�rmed to be biologially sensible by omparing with histology andimage analysis observations whih estimated the size of the atheroslerotiin�ammation surrounding the ali�ed plaque to be between 3 mm [122℄and 5-10 mm [123℄. An illustration of this omputer-based simulation ofthe full plaque area is given in �gure 6.3. The simulated area perentageis the perentage of the lumbar aorta overed by the simulated plaques,inluding both ali�ed ore and simulated in�amed area.
• Thikness perentage (Thikness %): The average thikness of the AACs78



6.2. Materials and Methods

Figure 6.4: A shemati view of the di�erent AAC markersalong the aorta wall relative to the aorta width.
• Wall perentage (Wall %): The perentage of the anterior and posteriorlumbar aorta wall overed by projetions of AACs.
• Length perentage (Length %): The fration of the length of the aortawhere AACs were present at any position (anterior, posterior or internal).
• Number of ali�ed deposits (NCD): The number of distint AACs visiblein eah radiograph.A shemati view of the six proposed markers an be seen in �gure 6.4. We ex-amined the degree to whih these markers ould be reliably established on thebasis of manual annotations of X-ray images, and evaluated their assoiationto mortality, also when adjusted for metaboli or physial markers.6.2.5 Statistial AnalysisKendall's oe�ient of onordane τ [124℄ was used to assess the level ofagreement between AC24 sorings of ali�ed images made by radiologists di-retly on the original X-rays and AC24 sorings by the omputer, based onthe radiologist's annotated outlines. To measure the inter- and intra-observer79



Chapter 6. Abdominal Aorti Cali�ed Deposits and their Relationship to Mortality inPost Menopausal Womenvariability of the manual annotations of radiologists on the eight images al-loated spei�ally for this purpose, we used the Jaard Index A [68℄ . Weomputed the ratio of the area identi�ed as ali�ed in two outlines, dividedby the area identi�ed as ali�ed in at least one outline:
A =

|A1

⋂
A2|

|A1

⋃
A2|where A1 and A2 are binary annotations. The Jaard Index varies from 0 forno agreement to 1 for omplete agreement. Typially, Cohen's κ [88℄ wouldbe used to measure the inter-rater agreement for ategorial items suh aspixels. However, the statistis will be dominated by the very large lass ofnon-ali�ed pixels, and individual pixel sorings annot be onsidered statis-tially independent.The inter- and intra-observer variability of the AAC markers omputed fromthe radiologists' outlines was analyzed on the eight images by the mean oef-�ients of variation (CV).The preditive power of mortality in terms of hazard ratio (HR) per standarddeviation hange of the individual AAC sorings was alulated with the helpof a Cox regression analysis, also known as survival analysis. A basi overviewover survival analysis is given in [125℄, while a thorough overage of the subjetan be found in [126℄.The basis of the Cox regression model is the examination of the behavior ofthe hazard funtion with respet to q di�erent environmental parameters. Thehazard funtion is given by

h(t; zi) = h0(t) exp(z
t
iβ), (6.1)where t is the time and zi with i = 1, . . . , n are the q-dimensional environmentalparameter vetors for eah individual patient i in the study, h0 is an unknownbaseline hazard funtion used to model the hazard without environmental in-�uenes and β is a q-dimensional vetor giving the oe�ient estimates of aCox regression of the result status (e.g. dead or alive) to the preditors in zi.The Cox regression tries to estimate the regression parameters β and measuretheir signi�ane.In all Cox regression analyses, we use the marker values for the omplete pop-ulation and vary the binary outome variable (e.g. CVD dead = 1, alive orother dead = 0) aording to the group of interest we fous on.First we used Cox regression analysis on the image markers to test their in-dividual prognosti power. In the Cox regression the outome variable wasthe time of death and survivors were right ensored. This analysis was per-formed on unadjusted markers as well as markers adjusted with three di�erentsets of biologial variables: a) a model onsisting of age, smoking status andtriglyeride levels, b) the SCORE [49℄ and ) Framingham sore [50℄ (Model80



6.3. Results

Figure 6.5: A shemati overview of the study population.a) onsists of age, smoking status and triglyeride levels, beause in a om-bined model inluding all physial/metaboli parameters only age, smoking,and triglyeride level persisted after elimination of insigni�ant ontributions.).We adjusted by ombining the biologial variables of eah set into one new vari-able by a linear weighting with their β-weights derived by a Cox regression.This new variable was then inluded in another Cox regression model for theimaging marker we adjusted. The resulting β-weight for the imaging markerdetermined the biologially adjusted prognosti power.Furthermore, to analyze the omplementarity of the AAC markers we build aCox regression model with all variables and then suessively deleted the leastsigni�ant marker until only signi�ant markers were left. Hereby signi�aneof the marker q was given as the model weight βq being signi�antly di�erentfrom zero (p<0.05). This way, single markers that omplemented eah otherand gave supplementary information were identi�ed.6.3 ResultsThe data onsisted of baseline images taken in 1992 of 308 subjets. Of these,121 subjets had no ali�ations at baseline or follow-up. Of the remaining187 subjets, 52 had died before follow-up due to aner (n=27), CVD (n=20)or other auses (n=5), and 135 surviving subjets had varying degrees of ab-dominal aorti ali�ation at baseline or follow-up. A shemati overview ofthe study population is given in �gure 6.5, while an overview of the physialand metaboli measurements is given in table 6.1.The radiologist and omputer-based AC24 sores for the images of ali�ationin the 135 subjets ali�ed images were in exellent agreement (Kendall's τ= 0.97, p<0.0001). 81



Chapter 6. Abdominal Aorti Cali�ed Deposits and their Relationship to Mortality inPost Menopausal WomenTable 6.1: The mean and standard deviation of the measured metaboli and physial mark-ers. Physial/Metaboli markers Population Survivors Deeased(n=308) (n=256) (n=52)Age (years) 60.3 ± 7.5 59.3 ± 7.1 65.6 ± 7.0Waist (m) 80.7 ± 10.9 80.2 ± 9.9 83.1 ± 12.4Waist-to-hip ratio 0.80 ± 0.08 0.80 ± 0.08 0.83 ± 0.10Body Mass Index (frackgm2) 24.7 ± 3.9 24.7 ± 3.8 25.1 ± 4.6Smoking (%) 37 33 58Systoli BP (mm Hg) 127 ± 21 125 ± 20 136 ± 26Diastoli BP (mm Hg) 77 ± 10 76 ± 10 77 ± 11Hypertension (%) 16 15 17Gluose (mmol/L) 5.44 ± 1.27 5.37 ± 0.99 5.79 ± 2.17Total holesterol (mmol/L) 6.44 ± 1.19 6.36 ± 1.14 6.85 ± 1.33Triglyerides (mmol/L) 1.24 ± 0.75 1.15 ± 0.56 1.69 ± 1.25LDL-C (mmol/L) 2.89 ± 0.82 2.85 ± 0.80 3.07 ± 0.93HDL-C (mmol/L) 1.77 ± 0.48 1.77 ± 0.44 1.74 ± 0.62ApoB/ApoA 0.57 ± 0.18 0.56 ± 0.17 0.64 ± 0.23Lp(a) (mg/dL) 21.4 ± 21.7 21.9 ± 22.0 18.4 ± 19.8EU SCORE 2.60 ± 2.58 2.16 ± 2.12 4.73 ± 3.45Framingham 14.75 ± 3.54 14.21 ± 3.46 17.31 ± 2.74From the eight images with four annotations eah, the mean Jaard Indexbetween the two radiologists' AAC outlines was 51% area overlap for the inter-observer variation and 56% area overlap for the intra-observer variation (see�gure 6.6 for an example). Separately, the two radiologists had an intra-observer variability of 53% and 59% area overlap, respetively. The CV valuesfor the AAC marker preision on the same set of eight images were between
12.5% and 24.9% (table 6.2).The mean values and respetive standard deviations of eah of the AAC mark-ers is reported in table 6.3. One an easily see that they all have a relationto identifying the people that are dying of CVD or CVD/aner, beause allmarkers show elevated values in the CVD-death and aner-death group om-pared to the survivors.Table 6.4 shows that the simulated area perentage and number of ali�a-tions (NCDs) have the largest individual preditive power (HR=2.96, p<0.001and HR=2.44, p<0.001) for CVD-mortality. The hazard ratios (HRs) for thesimulated area perentage and NCD were between 2.0 - 2.96 and 1.76 - 2.4482



6.3. Results

(a) (b) ()Figure 6.6: An X-ray of a partiipant in the EPI follow-up population: (a) an annotation bya radiologist, (b) a seond annotation by the same radiologist and () an annotation doneby another radiologist. Notie how although the outlines of the annotated ali�ations donot vary muh, the �rst radiologists misses several ali�ations ompletely. This is oftenwhat leads to a low area overlap when omparing annotations from di�erent radiologists.Table 6.2: The inter- and intra-observer mean oe�ients of variation ± their standard errorfor the AAC markers based on the inter-intra-observer test population. The oe�ients ofvariation are all below 25% and therefore we an measure the AAC markers with reasonableauray.Inter-Intra-Observer Inter-Observer CV % Intra-Observer CV %Population ± standard error ± standard errorArea 23.9 ± 4.7 24.7 ± 4.9Sim. area % 24.9 ± 5.4 20.4 ± 5.3Thikness % 17.1 ± 3.3 16.1 ± 3.6Wall % 12.1 ± 2.1 12.9 ± 2.7Length % 12.1 ± 2.0 12.9 ± 2.7NCD 19.4 ± 3.1 16.6 ± 3.5respetively for the CVD-death group and between 1.68 - 2.37 and 1.69 - 2.28respetively for the ombined CVD/aner-death group. All HRs were sig-ni�antly di�erent from unity (p<0.01) both before and after adjusting forthree di�erent biologial models, so the ratio of the probability of dying in theCVD or CVD/aner death group versus the rest is signi�antly larger than 1.83



Chapter 6. Abdominal Aorti Cali�ed Deposits and their Relationship to Mortality inPost Menopausal WomenTable 6.3: The mean ± one standard deviation of all the imaging markers strati�ed for the di�erentsubsets of patients. One an see large di�erenes in the AAC markers measurements in the survivorgroup and the CVD, aner and CVD/aner groups of deeased. Note espeially that the 5 subjetsthat died of other auses are an not be diserned from the survivors with the help of the AAC markers.All Survivors CVD Caner CVD/Can. Other(n=308) (n=256) (n=20) (n=27) (n=47) (n=5)AC24 1.67 ± 2.55 1.35 ± 2.34 3.50 ± 2.35 3.41 ± 3.23 3.45 ± 2.86 1.35 ± 2.36Area % 0.6 ± 1.2 0.5 ± 1.1 1.0 ± 0.9 1.6 ± 1.8 1.3 ± 1.5 0.5 ± 1.1Sim. area % 11 ± 17 8.9 ± 15.7 24 ± 16 25 ± 24 25 ± 21 8.7 ± 15.5Thikness % 11 ± 20 9.0 ± 19 17 ± 16 25 ± 28 21 ± 24 8.7 ± 19Wall % 1.03 ± 1.83 0.79 ± 1.64 2.08 ± 1.70 2.51 ± 2.68 2.33 ± 2.30 0.80 ± 1.63Length % 7.5 ± 12.8 6.0 ± 11.7 15.4 ± 11.2 17.3 ± 17.6 16.5 ± 15.1 5.9 ± 11.6NCD 3.8 ± 7.7 2.6 ± 6.4 8.5 ± 6.5 11.6 ± 13.4 10.3 ± 11.0 2.6 ± 6.3AC24s unadjusted individual preditive power was lower (HR=1.66, p<0.001).After adjustment for the three di�erent biologial models the signi�ane ofthe HRs for AC24 was redued and in some ases removed, leading to a HRbetween 0 and 1.66 for the CVD-death group and between 1.29 and 1.64 forthe CVD/aner-death group.The results of the ombined preditive power of the seven imaging markersan be seen for the CVD and the CVD/aner group in table 6.5. First thenon-adjusted hazard ratios from table 6.4 are stated again and then two elim-ination models are shown. When ombining the markers in a Cox regressionmodel, only area perentage and NCD remained signi�ant (parea < 0.001,
pNCD < 0.001) with negative and positive regression oe�ients respetively.6.4 DisussionWe evaluated whether a radiologist's manual soring of the AC24 orrelatedwith a omputer-based soring of the AC24 derived from a radiologist's manualoutline of the ali�ations on a digitized radiograph. The Kendall's oe�ientof onordane showed the two sorings were in exellent agreement. We alsoevaluated inter- and intra-observer variability of manual annotations using theJaard Index and oe�ients of variation of the AAC markers, inluding theAC24. Although the Jaard Index showed that the variation in the outlinedali�ed deposits was high, the oe�ients of variation for the AC24 and theother AAC markers based on the outlines were relatively low. These results6In parentheses the 95% on�dene intervals of the relative risk is shown and the symbols *, ⋆ and †denote the signi�ane orresponding to p < 0.05, p < 0.01 and p < 0.001, respetively.84



6.4. DisussionTable 6.4: The hazard ratio per standard deviation inrease in marker values strati�ed into death auseand adjusted for physial/metaboli markers, EU SCORE and Framingham sore respetively.6 Note onlythe simulated area and NCD are signi�ant for the CVD group after any adjustments.Hazard Ratio Hazard Ratio Hazard Ratio Hazard RatioNot adjusted Bio adj. SCORE adj. Fram. adj.AC24CVD 1.66 (1.25-2.19)† NS 1.38 (1.02-1.86)* NSCVD/Can. 1.64 (1.35-2.00) † 1.31 (1.06-1.63)* 1.40 (1.13-1.72)⋆ 1.29 (1.02-1.63)*Area %CVD 1.60 (1.16-2.20) ⋆ NS NS NSCVD/Can. 1.68 (1.36-2.09) † 1.32 (1.04-1.66)* 1.47 (1.16-1.86)⋆ 1.34 (1.04-1.72)*Sim. area %CVD 2.96 (1.76-4.99) † 2.00 (1.15-3.49)* 2.46 (1.41-4.27)⋆ 2.27 (1.26-4.09)⋆CVD/Can. 2.37 (1.73-3.25) † 1.68 (1.20-2.34)⋆ 1.96 (1.40-2.73)† 1.79 (1.26-2.54)⋆Thikness %CVD NS NS NS NSCVD/Can. 1.45(1.20-1.75) † NS 1.27 (1.04-1.55)* NSWall %CVD 1.50 (1.16-1.95) ⋆ NS NS NSCVD/Can. 1.60 (1.34-1.91) † 1.26 (1.04-1.53)* 1.42 (1.17-1.73)† 1.30 (1.05-1.62)*Length %CVD 1.55 (1.18-2.04) ⋆ NS NS NSCVD/Can. 1.61 (1.34-1.95) † 1.26 (1.03-1.55)* 1.42 (1.16-1.73)† 1.29 (1.03-1.62)*NCDCVD 2.44 (1.72-3.48) † 1.76 (1.20-2.60)⋆ 2.20 (1.48-3.26)† 2.04 (1.34-3.12)†CVD/Can. 2.28(1.79-2.90) † 1.69 (1.30-2.21)† 2.00 (1.53-2.62)† 1.86 (1.40-2.47)†demonstrated that even though the outlining of the individual plaques is ahallenging task, the resulting markers based on the annotations provided rea-sonably preise measurements.In the ourse of the 8-9 years of the study 52 people died, of whom 20 died fromCVD-related auses and 27 from aner. The Cox regression models showedsimilar orrelations to CVD and CVD/aner mortality for the di�erent mark-ers. The simulated area perentage and the number of ali�ed deposits ouldindividually predit CVD and CVD/aner death and ontained additional in-formation for CVD mortality even after adjustments for age, triglyerides andholesterol and the SCORE model and Framingham sore. Hene, in this postho study, the simulated area perentage and the number of ali�ed depositspredited CVD mortality independently from traditional risk fators, in on-trast to AC24. A reason for this ould be that the AC24 does not disriminatebetween severity and spread of individual ali�ations.Our experiments with Cox regression elimination models showed that the haz-85



Chapter 6. Abdominal Aorti Cali�ed Deposits and their Relationship to Mortality inPost Menopausal WomenTable 6.5: The individual hazard ratios per standard deviation for the markers in the CVDand the CVD/aner group as well as two Cox regression elimination models. First thenon-adjusted hazard ratios from table 6.4 are stated again and then two elimination modelsare shown, where β denotes the logisti regression oe�ient of the given marker in theombined elimination models.6 Only area perentage and NCD are left after a bakwardmarker seletion. CVD: CVD elim.: CVD/aner: CVD/aner elim.:
β · std β · std β · std β · stdAC24 1.66† - 1.64† -Area % 1.60⋆ b = -3.84† 1.68† b = -2.39†Sim. area % 2.96† - 2.37† -Thikness % 1.32 - 1.45† -Wall % 1.50⋆ - 1.60† -Length % 1.55⋆ - 1.61† -NCD 2.44† b = 2.76† 2.28† b = 1.88†ard of dying of CVD or CVD/aner was proportional to the number of al-i�ations and inversely proportional to their area. Therefore, our hypothesisis that many small plaques play a relevant role for the hazard of dying ofCVD or CVD/aner. Biologially this an be explained by the fat that therisk of death due to myoardial infart (MI) may be related to the numberof ative plaques [127℄. During plaque development, smaller plaques developinto larger ompliated lesions that either rupture or beome stable plaques.Smaller lipid-laden plaques with high turnover have been identi�ed as thosemost likely to rupture and result in MI [128, 129℄. Thus, a large number ofsmaller ali�ations may indiate a higher risk of rupture than few large,stable, ali�ations in the same area. This higher emphasis on the numberof ali�ations, rather than the total alium burden, may re�et aspets ofvulnerability that help improve the CVD-mortality predition, as observed inthis work.The sample size is a limitation of the present study. The relatively small pop-ulation with only 20 CVD deaths, a limited representation of ethniity andgender and a mixture of death auses may limit the utility of generalizingour results. Therefore, the presented �ndings need to be validated in larger,independent studies. Although the urrent analysis is based on manual an-notations by trained radiologists, the annotation proedure an in priniplebe automated. A �rst step toward automated detetion and segmentation ofaorti ali�ations from radiographs has been provided by de Bruijne [89℄,Lauze, F. et al. [90℄ and Petersen, K. et al. [35℄ .86



6.5. ConlusionCompared to markers of CVD obtained with other imaging modalities, suhas arotid IMT or CAC, a lear advantage of using standard radiographs is theavailability of large, long duration linial studies about osteoporosis [33, 34℄.The radiographi images derived from osteoporosis trials of post menopausalwomen ould then be used at the same time for ardiovasular risk strati�-ation in these women. This way the linial appliability of AAC markersould be inreased. Furthermore, historial trial data an be used to verify thedeveloped AAC markers and an improve understanding of CVD death riskfators.6.5 ConlusionAs shown above, simple statistial modeling an help to identify potentialimaging markers. While AC24 aptures essential information about AACs,our results demonstrate that some of these novel morphometri markers ofAACs identi�ed in this study, i.e., the number and the simulated area perent-age of a ali�ed plaque in the abdominal aorta, may apture omplementaryinformation. Further steps an be taken by building ombined biologial andimaging markers or by developing even more AAC markers and repeating thesame proedure as above. Although it is left to show the linial appliabilityand reproduibility of the newly identi�ed markers, this statistial approahfor marker development seems to be a step in the right diretion and the pro-posed radiographi AAC markers may enable improved monitoring of CVDmortality risk.
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Chapter 6. Abdominal Aorti Cali�ed Deposits and their Relationship to Mortality inPost Menopausal Women
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Chapter 7Distribution, Size, Shape, GrowthPotential and Extent of AbdominalAorti Cali�ed Deposits PreditMortality in Post Menopausal WomenThis hapter is based on the highly aessed manusript "Distribution, Size, Shape, GrowthPotential and Extent of Abdominal Aorti Cali�ed Deposits Predit Mortality in PostMenopausal Women" by Mads Nielsen, Melanie Ganz, Franois Lauze, Paola C. Pettersen,Marleen de Bruijne, Thomas B. Clarkson, Erik B. Dam, Claus Christiansen and MortenA. Karsdal published in the journal BMC Cardiovasular Disorders 2010, 10:56.Abstrat Aorti ali�ation is a major risk fator for death from ardiovasulardisease. We investigated the relationship between mortality and the omposite markers ofnumber, size, morphology and distribution of ali�ed plaques in the lumbar aorta. 308post menopausal women aged 48-76 were followed for 8.3 ± 0.3 years, with deaths relatedto ardiovasular disease, aner, or other auses being reorded. From lumbar X-rays atbaseline the number (NCD), size, morphology and distribution of aorti ali�ation lesionswere sored and ombined into the Morphologial Atherosleroti Cali�ation Distribution(MACD) index. The hazard ratio for mortality was alulated for the MACD and for threeother ommonly used preditors: the EU SCORE ard, the Framingham Coronary HeartDisease Risk Sore (Framingham sore), and the gold standard Aorti Cali�ation Severitysore (AC24) developed from the Framingham Heart Study ohorts. For the 10% subjetsat highest risk of CVD death the SCORE ard and the Framingham sore resulted in amortality hazard ratio of 4.9 (p < 0.01) and 0, respetively. The MACD index revealed thebest preditive power for identi�ation of patients at 10% highest risk of mortality, with ahazard ratio of 15.6 (p < 0.001). This study indiates that the MACD index may providea more sensitive preditor of mortality from aorti ali�ation than the ommonly usedAC24 and SCORE/Framingham sore systems.
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Chapter 7. Distribution, Size, Shape, Growth Potential and Extent of Abdominal AortiCali�ed Deposits Predit Mortality in Post Menopausal Women7.1 BakgroundCardiovasular diseases (CVDs) remain the most ommon ause of death in thedeveloped world, even though vast epidemiologial and interventional studieshave demonstrated signi�ant delines in CVD prevalene with adherene toa healthy lifestyle, and the identi�ation and management of risk fators [6℄.Sine two thirds of women who die suddenly from CVD have no previouslyreognized symptoms [6℄, it is essential to �nd e�etive indiators of ardio-vasular risk that may prompt timely intervention.Biomarkers and biohemial markers are reeiving inreased attention for theirpotential prognosti value, and for identi�ation of those patients in most needof intervention [130℄. An extensive list of more than 200 potential CVD riskfators has been ompiled [51℄ and multivariate analysis models, suh as theEU SCORE ard [49℄ and the Framingham Coronary Heart Disease Risk Sore(Framingham sore) [50℄, have been developed to estimate the risk of CVDdeath. However, more information may be provided by in-depth analysis ofalready-established risk fators.Reently, several interesting �ndings have been reported on abdominal aortiali�ations as a CVD risk fator: i) Premature parental CVD has been asso-iated with abdominal aorti ali�ation [131℄. ii) Abdominal aorti aliumlevels were signi�antly related to oronary alium levels independent of theusual risk fators [132,133℄. iii) In type II diabetes patients, abdominal aortiali�ation was shown to onstitute an independent risk fator of linial vas-ular disease [134℄. iv) An inreased total-to-high density lipoprotein (HDL)holesterol ratio inreased the risk of presene of aorti ali�ation [135℄. v)Lumbar aorti ali�ations in bone densitometer images have been shown toonstitute an independent risk fator of CVD [136℄. Hene, abdominal aortiali�ation is an important risk fator for CVD.Further investigations have indiated that it is rather the number of ativelipid-laden remodeling, growing, plaques, rather than the total burden ofali�ed plaques, inluding stable plaques, that is related to ardiovasulardeath [137℄. Also the number, distribution and size of ali�ed plaques havebeen shown to relate to mortality [138℄. As the aorti ali�ation severitysore (AC24) assesses, in terms of lesions, only the extent of ali�ation in theaorta, we developed a broader morphologial atherosleroti ali�ation dis-tribution (MACD) index spei�ally to sore the number, length, width, shape,and distribution of abdominal aorti ali�ations (AAC) found in lumbar X-rays of post menopausal women. This index was reated to further understandthe omposition of the plaque burden in relation to ardiovasular death. Lowdose omputed tomography might have been used to evaluate oronary ali-�ations for sreening purposes [139℄, however its ost is a limiting fator.We evaluated whether eah risk inluded in the omposite MACD marker per-90



7.2. Methods

(a) (b)Figure 7.1: Lateral lumbar X-ray with ali�ations in the lower region without (a) andwith (b) omputer-mediated annotations performed by a radiologist.sisted after orretion for generalized risk assessments used in the SCOREard [49℄, the Framingham sore [50℄ or individual risk fators, suh as smok-ing, holesterol or triglyerides levels.7.2 Methods7.2.1 SubjetsIn 1992-93, 686 post menopausal women living in the Copenhagen area in Den-mark were reruited via a household postal survey to partiipate in a studyaddressing the role of a number of metaboli risk fators in the pathogenesisof CVD and osteoporosis [67℄.Follow-up was performed after 8.5 years and information about all 95 individu-als who died in the observation period was obtained from the Central Registryof the Danish Ministry of Health.7.2.2 MarkersAt baseline, information was olleted on demographis and known risk param-eters suh as age, weight, height, body mass index (BMI), waist and hip ir-91



Chapter 7. Distribution, Size, Shape, Growth Potential and Extent of Abdominal AortiCali�ed Deposits Predit Mortality in Post Menopausal Womenumferenes, systoli and diastoli blood pressure (BP), treated hypertension,treated diabetes, smoking, regular alohol and daily o�ee onsumption, andweekly �tness ativity. Using a blood analyzer (Cobas Mira Plus, Rohe Diag-nostis Systems, Ho�man-La Rohe, Basel, Switzerland), fasting gluose levelsand lipid pro�les, onsisting of total holesterol, triglyerides, LDL-holesterol(LDL-C), HDL-holesterol (HDL-C), apolipoproteins (ApoA and ApoB) andlipoprotein a (Lp(a)), were obtained.On basis of these measurements, the omposite risk SCORE ard [49℄ andFramingham sore [50℄ were both alulated based on the gender, age, systoliblood pressure, total holesterol, and smoking status; and the Framinghamsore also based on HDL-C.Lateral X-rays of the lumbar aorta (L1-L4 vertebrae) were taken at baselineand at follow-up. The images were digitized using a Vidar DosimetryPro Ad-vantage sanner providing an image resolution of 570 dpi on a 12-bit graysale. Trained, blinded radiologists annotated the digitized images on a Se-tra radiologial reading unit using annotation software developed in Matlab(Mathworks, MA, USA) (�gure 7.1). The radiologists were instruted to an-notate the 6 points used for vertebral height measurements on L1-L4 [140℄,to delineate the aorta, and �nally to outline every individual ali�ed depositvisible in the lumbar aorta and note their possible assoiation to the anteriorand/or posterior wall. The software enabled digital zooming and editing [53℄.The inter- and intra- observer variability was tested by three radiologists an-notating the same 16 randomly seleted images.Geometri data relating to the ali�ed deposits in the L1-L4 region was quan-ti�ed as follows:
• Area perentage (Area %): The perentage of the aorta lumen area ou-pied by ali�ed deposits.
• Simulated area perentage (Sim. area %): As X-rays only apture the al-i�ed ore and not the biologial extent of atherosleroti lesions, we im-plemented a statistially validated method [138℄, in whih the atherosle-roti plaque size was estimated from the area and form of the observedali�ed lesion, and the resulting area perentage was reorded. The es-timation was done using a grass-�re equation based on a morphologialdilation [121℄ with a irular struturing element of radius 200 pixels or-responding to 8.9 mm. The biologial extent of atherosleroti lesionsaround an elongated ali�ed lesion was estimated to be larger than thebiologial extent of atherosleroti lesions around a irular ali�ationof similar size. Thus, equal areas of ali�ation but of di�erent shapeswere given di�erent sores (see �gure 7.2).
• Thikness perentage (Thikness %): The average thikness of the ali-�ed deposits along the aorta wall, expressed as a perentage of the aorta92



7.2. Methods
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MACD 1 2 4Figure 7.2: For a given amount of ali�ed tissue, one an see shematially how the AC24,the NCD and the MACD an be in�uened di�erently by variations in ali�ation mor-phology and distribution.width.
• Wall perentage (Wall %): The perentage of the aorta wall overed byali�ed deposits.
• Length perentage (Length %): The perentage of the length of the aortain whih a ali�ed deposit was present, in any position (anterior, poste-rior or internal).
• Number of Cali�ed Deposits (NCD): The number of distint ali�eddeposits.The relationship between these individual markers and CVD mortality in thisohort has already been demonstrated [138℄. Furthermore, two novel ompositemarkers were reated:1. Morphologial Atherosleroti Distribution (MAD) fator:The simulated plaque area divided by the area estimates the portion ofthe biologial atherosleroti proess whih is not deteted by X-rays.2. Morphologial Atherosleroti Cali�ation Distribution (MACD) index:The NCD multiplied by the MAD fator. Biologially that an be un-93



Chapter 7. Distribution, Size, Shape, Growth Potential and Extent of Abdominal AortiCali�ed Deposits Predit Mortality in Post Menopausal Womenderstood as the number of plaques multiplied by the disease potentialdesribed by the MAD fator.7.2.3 Statistial AnalysisPatients were strati�ed into survivors and deeased. The latter were sub-strati�ed into CVD-related, aner-related and other-ause deaths. Sine an-er and CVD have many risk fators in ommon, an additional group ontain-ing all aner or CVD deaths was reated to inrease numbers and improvestatistial signi�ane.To test the prognosti power, metaboli and physial parameters and AACmarkers were used in separate Cox-regression models with the time of death asthe outome variable while right-ensoring survivors. Signi�ane was tested asthe model weight being signi�antly di�erent from zero. To test if one markerarried additional prognosti power ompared to the remaining markers, amodel inluding all elementary metaboli/physial parameters was sequen-tially stripped for the insigni�ant markers until signi�ane persisted for allmarkers. To test if an AAC marker arried prognosti power in addition to theother AAC markers and/or metaboli/physial markers, eah marker was om-pared in ombined stripped models. Separate models for CVD, CVD/anerand all-ause death were reated.As CVD and CVD/aner death rates were 6.5% and 15.2% respetively, a10% perentile ut-o� was used to separate subjets at high risk from those(90%) at normal risk. Hazard ratios were omputed, adjusted for the in�ueneof other risk parameters by ombining all other risk fators into Cox-regressionmodels.7.3 ResultsOf the 686 post menopausal women enrolled in the original study in 1992-93, 95 died prior to follow-up with 52 (55%) of them having baseline X-rayexaminations in whih the full lumbar (L1-L4) aorta was visible on a singleradiograph. Of these 52 deaths, 20 (38%) were due to CVD, 27 (52%) to an-er and 5 (10%) to other auses. Another 129 women had reloated from theCopenhagen area or did not want to partiipate in the follow-up study andprovided no linial data for it. Of the 462 women ompleting the follow-upvisit, lumbar aorta from 256 (55%) were visible on a single radiograph (�gure7.3). This ompares with the aorta visibility perentage reported in earlierstudies [136℄. Therefore in total, 308 (52 plus 256) women were inluded inthe urrent analysis. Baseline demographis and risk parameters showed no7The symbols *, ⋆ and † denote the signi�ane orresponding to p < 0.05, p < 0.01 and p < 0.001,respetively. 94



7.3. Results
686 recruted via questionaire

129 drop out

557 completers

95 deceased462 survivors

256 survivors w. X-ray

52 deceased w. X-ray

20 CVD † 27 cancer † 5 other †

206 no X-ray 43 no X-ray

Figure 7.3: Of 557 post menopausal women who ompleted an 8.5 year follow-up study, 55%of those alive at follow-up and 55% of those who were deeased had useful X-rays with thefull abdominal aorta visible in a single X-ray. Thus, the study population inluded in thisanalysis onsisted of a total of 308 women: 256 survivors and 52 deeased.di�erene between the disontinued women and those ompleting the study.Observer reproduibility, assessed by three radiologists soring the same 16 X-rays, three times eah, resulted in an inter- and intra- observer area overlap [68℄of 56% and 60% respetively, showing good reproduibility [40℄. These anno-tations were used to ompute the AC24 that ranges from 0 to 24 based on thelength of the vertebral setions a�eted by ali�ed deposits [13℄. Most of thephysial and metaboli markers provided prognosti separation of the groups ofsurvivors and deeased as depited in tables 7.1 and 7.2. In a ombined modelinluding all physial/metaboli parameters only age, smoking, and trigly-eride level persisted after elimination of insigni�ant ontributions. All threeparameters were positively assoiated with death. These were ombined intoone parameter denoted "ombined metaboli/physial parameter" (HR perSD= 2.94 (2.18-3.95), p<0.001) for further analysis. All imaging-based AACmarkers showed higher values in the CVD, aner, and ombined CVD/anergroups than in the survivor group (table 7.3) and independently and signi�-antly predited death in the CVD and ombined CVD/aner groups (table95



Chapter 7. Distribution, Size, Shape, Growth Potential and Extent of Abdominal AortiCali�ed Deposits Predit Mortality in Post Menopausal WomenTable 7.1: Population harateristis of the study population strati�ed into survivors anddeeased (all-ause) expressed as mean±standard deviation. Most of the physial andmetaboli markers provide a subtle separation of the groups of survivors and deeased.Physial/Metaboli markers Population Survivors Deeased(n=308) (n=256) (n=52)Age (years) 60.3 ± 7.5 59.3 ± 7.1 65.6 ± 7.0Waist (m) 80.7 ± 10.9 80.2 ± 9.9 83.1 ± 12.4Waist-to-hip ratio 0.80 ± 0.08 0.80 ± 0.08 0.83 ± 0.10Body Mass Index (frackgm2) 24.7 ± 3.9 24.7 ± 3.8 25.1 ± 4.6Smoking (%) 37 33 58Systoli BP (mm Hg) 127 ± 21 125 ± 20 136 ± 26Diastoli BP (mm Hg) 77 ± 10 76 ± 10 77 ± 11Hypertension (%) 16 15 17Gluose (mmol/L) 5.44 ± 1.27 5.37 ± 0.99 5.79 ± 2.17Total holesterol (mmol/L) 6.44 ± 1.19 6.36 ± 1.14 6.85 ± 1.33Triglyerides (mmol/L) 1.24 ± 0.75 1.15 ± 0.56 1.69 ± 1.25LDL-C (mmol/L) 2.89 ± 0.82 2.85 ± 0.80 3.07 ± 0.93HDL-C (mmol/L) 1.77 ± 0.48 1.77 ± 0.44 1.74 ± 0.62ApoB/ApoA 0.57 ± 0.18 0.56 ± 0.17 0.64 ± 0.23Lp(a) (mg/dL) 21.4 ± 21.7 21.9 ± 22.0 18.4 ± 19.8EU SCORE 2.60 ± 2.58 2.16 ± 2.12 4.73 ± 3.45Framingham 14.75 ± 3.54 14.21 ± 3.46 17.31 ± 2.747.4, olumn 2). This signi�ane persisted for simulated Area, NCD, MADfator, and MACD also when adjusted for the ombined metaboli/physialparameter, EU SCORE, or Framingham sore. AC24, wall% and length%all maintained a signi�ant predition under adjustment in the CVD/anergroup, but did not have su�ient statistial power in the smaller CVD group(table 7.4).In a ombined elimination model using all elementary ali�ation markers,only the number of ali�ed deposits (NCD) (positive assoiation to death)and area % (negative assoiation to death) persisted in the CVD group andthe CVD/aner group. The omposite marker MACD showed highest pre-ditability in all tests and also higher preditability (but not signi�antly so)than the ombined elimination models of the elementary ali�ation markers.In the CVD deaths group, the highest 10% of NCD or MACD sores were sig-ni�antly assoiated with death. This did not hold for AC24 or area% values inthe same group (table 7.5). This relation persisted but with dereasing hazard96



7.4. DisussionTable 7.2: Hazard ratios of all-ause death (HR) per standard deviation ofmetaboli/physial markers and their 95% on�dene interval (CI) based on a Cox regressionmodel as well as for a sequentially stripped model inluding all metaboli/physial markers.7Not all of the metaboli/pgysial markers have a signi�ant hazard ratio and in a strippingmodel only age, smoking and triglyerides prevail in this population.Physial/ HR per SD HR per SDMetaboli markers [95% CI℄ Alone [95% CI℄ Comb.Age 2.25† (1.67-3.03) 2.41† (1.75-3.31)Waist 1.29* (1.01-1.65) NSWaist-to-hip ratio 1.37⋆ (1.12-1.67) NSBody Mass Index NS NSSmoking 1.37⋆ (1.08-1.73) 1.50⋆ (1.17-1.94)Systoli BP 1.53† (1.20-1.94) NSDiastoli BP NS NSHypertension NS NSGluose 1.23* (1.03-1.46) NSTotal holesterol 1.44⋆ (1.12-1.86) NSTriglyerides 1.51† (1.29-1.76) 1.46† (1.22-1.75)LDL-C NS NSHDL-C NS NSApoB/ApoA 1.45⋆ (1.14-1.83) NSLp(a) NS NSEU SCORE 1.79† (1.51-2.13) Not Inl.Framingham 2.63† (1.87-3.71) Not Inl.ratios when adjusted by standard omposite metaboli/physial markers (EUSCORE or Framingham sore) or the ombined metaboli/physial parameterin the elimination model from table 7.2. Similar results were obtained in theCVD/aner group with slightly lower hazard ratios and higher signi�anelevels due to the larger population.7.4 DisussionWe investigated whether more information ould be obtained from ali�ed de-posits in the abdominal aorta to better predit CVD death than the gold stan-dard AC24 sore, whih was developed from the Framingham Heart Study o-horts. We hypothesized that the presene of many small, spatially distributed,97



Chapter 7. Distribution, Size, Shape, Growth Potential and Extent of Abdominal AortiCali�ed Deposits Predit Mortality in Post Menopausal WomenTable 7.3: Strati�ation of abdominal aorti ali�ation marker values aording to ause of death shownas mean ± standard deviation. One an observe quite a di�erene between the values of the AAC markersof the survivors and the CVD, aner and CVD/aner group. Conversely, there is virtually no di�erenebetween the survivors and the 5 subjets that died of other auses.All Survivors CVD Caner CVD/Can. Other(n=308) (n=256) (n=20) (n=27) (n=47) (n=5)AC24 1.67 ± 2.55 1.35 ± 2.34 3.50 ± 2.35 3.41 ± 3.23 3.45 ± 2.86 1.35 ± 2.36Area % 0.6 ± 1.2 0.5 ± 1.1 1.0 ± 0.9 1.6 ± 1.8 1.3 ± 1.5 0.5 ± 1.1Sim. area % 11 ± 17 8.9 ± 15.7 24 ± 16 25 ± 24 25 ± 21 8.7 ± 15.5Thikness % 11 ± 20 9.0 ± 19 17 ± 16 25 ± 28 21 ± 24 8.7 ± 19Wall % 1.03 ± 1.83 0.79 ± 1.64 2.08 ± 1.70 2.51 ± 2.68 2.33 ± 2.30 0.80 ± 1.63Length % 7.5 ± 12.8 6.0 ± 11.7 15.4 ± 11.2 17.3 ± 17.6 16.5 ± 15.1 5.9 ± 11.6NCD 3.8 ± 7.7 2.6 ± 6.4 8.5 ± 6.5 11.6 ± 13.4 10.3 ± 11.0 2.6 ± 6.3radiographially visible ali�ed deposits of varying shape in the lumbar aortahad a stronger relation to CVD death than the AC24 segment-wise soring ofthe extent of ali�ed deposits on the aorti wall.The AC24 sore [13℄ quanti�es the burden of ali�ed plaques in the aorta bysegment-wise soring of the ali�ed deposit overage of the aorti wall. We in-vestigated whether additional aspets of the outline of the individual plaquesmay be assoiated with the progression and/or prognosis of atheroslerosis.We analyzed the area %, thikness %, wall % and length % of the abdominalaorta overed by ali�ation and the number of distint ali�ed deposits.Furthermore, we alulated the simulated plaque area in whih the atherosle-roti plaque size was estimated from the area and form of the observed ali-�ed lesion. Lastly, two omposite markers were reated: i) The morphologi-al atherosleroti distribution (MAD) fator was onstruted by dividing thesimulated plaque area with the absolute plaque area. ii) The morphologialatherosleroti ali�ation distribution (MACD) index is given by the NCDmultiplied by the MAD fator.In the present ohort, eight di�erent markers (AC24, area %, simulated area%, wall%, length%, NCD, MAD and MACD) exhibited a signi�ant hazardratio per standard deviation inrease for death in the ombined CVD/anergroup when adjusted for physial/metaboli markers, the EU SCORE, and theFramingham sore respetively. However, only four markers (simulated area%, NCD, MAD and MACD) had su�ient power in risk segregation of CVDmortality when adjusted by physial/metaboli markers, the EU SCORE andthe Framingham sore. The omposite MAD fator showed inreased sensitiv-ity to CVD ompared to aner mortality. The reason for this may be thatthe MAD fator essentially sores how small and widely distributed the indi-98



7.4. DisussionTable 7.4: Hazard ratio per standard deviation inrease in marker value strati�ed into death ause andadjusted for physial/metaboli markers, the EU SCORE, and the Framingham sore respetively.7 Onlythe simulated area, NCD, MAD and MACD persist after adjusting for physial/metaboli markers, theEU SCORE, and the Framingham sore.Hazard Ratio Hazard Ratio Hazard Ratio Hazard RatioNot adjusted Bio adj. SCORE adj. Fram. adj.AC24CVD 1.66 (1.25-2.19)† NS 1.38 (1.02-1.86)* NSCVD/Can. 1.64 (1.35-2.00) † 1.31 (1.06-1.63)* 1.40 (1.13-1.72)⋆ 1.29 (1.02-1.63)*Area %CVD 1.60 (1.16-2.20) ⋆ NS NS NSCVD/Can. 1.68 (1.36-2.09) † 1.32 (1.04-1.66)* 1.47 (1.16-1.86)⋆ 1.34 (1.04-1.72)*Sim. Area %CVD 2.96 (1.76-4.99) † 2.00 (1.15-3.49)* 2.46 (1.41-4.27)⋆ 2.27 (1.26-4.09)⋆CVD/Can. 2.37 (1.73-3.25) † 1.68 (1.20-2.34)⋆ 1.96 (1.40-2.73)† 1.79 (1.26-2.54)⋆Thikness %CVD NS NS NS NSCVD/Can. 1.45(1.20-1.75) † NS 1.27 (1.04-1.55)* NSWall %CVD 1.50 (1.16-1.95) ⋆ NS NS NSCVD/Can. 1.60 (1.34-1.91) † 1.26 (1.04-1.53)* 1.42 (1.17-1.73)† 1.30 (1.05-1.62)*Length %CVD 1.55 (1.18-2.04) ⋆ NS NS NSCVD/Can. 1.61 (1.34-1.95) † 1.26 (1.03-1.55)* 1.42 (1.16-1.73)† 1.29 (1.03-1.62)*NCDCVD 2.44 (1.72-3.48) † 1.76 (1.20-2.60)⋆ 2.20 (1.48-3.26)† 2.04 (1.34-3.12)†CVD/Can. 2.28(1.79-2.90) † 1.69 (1.30-2.21)† 2.00 (1.53-2.62)† 1.86 (1.40-2.47)†MADCVD 3.37 (1.83-6.21) † 2.44 (1.22-4.89)* 3.02 (1.55-5.86)⋆ 2.85 (1.44-5.64)⋆CVD/Can. 2.19 (1.58-3.04) † 1.58 (1.11-2.26)* 1.83 (1.29-2.59)† 1.74 (1.22-2.48)⋆MACD indexCVD 5.22 (2.40-11.36) † 3.17 (1.48-6.78)⋆ 4.36 (1.97-9.66)† 4.22 (1.79-9.97)†CVD/Can. 2.99 (2.05-4.35) † 2.01 (1.37-2.95)† 2.43 (1.64-3.59)† 2.27 (1.51-3.41)†vidual ali�ed plaques appear. When the MAD fator was ombined withthe number of ali�ed plaques, whih as an individual parameter alone wasshown to be a strong preditor of mortality, the resulting MACD index dis-played superior preditive power over any other marker. The MACD indexprodued hazard ratios >4 per standard deviation inrease in the CVD deathgroup, even after adjustment for metaboli/physial fators.In trying to identify whih tool would be most useful in linial pratie toidentify CVD patients at highest risk of death, we found, from applying the99



Chapter 7. Distribution, Size, Shape, Growth Potential and Extent of Abdominal AortiCali�ed Deposits Predit Mortality in Post Menopausal WomenTable 7.5: Hazard ratio for high risk subjets based on 90% threshold in the CVD deathsgroup.7 Here one an diretly ompare the performane of the di�erent markers. NCD andMACD are best at identifying high risk subjets in this population.AC Marker Hazard Ratio AC24 Area% NCD MACD indexAdjusted by AloneNone NS NS 10.9 (4.4-27)† 15.6 (6.3-38)†EU SCORE 4.9 (1.9-13)⋆ NS NS 8.5 (3.2-23)† 13.2 (4.9-35)†Framingham NS NS NS 10.8 (4.1-28)† 15.7 (6.1-40)†All metaboli/ 10.1 (4.1-25)† NS NS 7.2 (2.8-18)† 9.8 (3.7-26)†physialvarious soring systems to post menopausal subjets who had died from CVD,that the MACD index is potentially a better preditor of mortality. For the10 % highest risk subjets the MACD index produed a hazard ratio for deathof 10 and more even after adjustment for metaboli and physial markers,while the hazards ratios for the AC24 and the Framingham sore were bothinsigni�ant, and the EU SCORE, had a value of the hazard ratio of 5.7.5 ConlusionIn onlusion, assessment of the shape, size, number, distribution, and extentof lumbar aorti ali�ations may aid in identifying patients at risk of CVDdeath and thus most in need of treatment. Sine atheroslerosis is a systemidisease in whih lumbar aorti ali�ations our, inreasing attention hasbeen devoted to the orrelation between the number of lumbar aorti ali�-ations in radiographs and oronary ali�ations [141℄. [10, 141, 142℄ suggestthat radiographs provide equally valuable information on CVD and o�er theadvantage of simpliity for in-o�e quanti�ation. Some studies even suggestthe number of lumbar aorti ali�ations is an independent preditor of CVDevents [141℄. Importantly, only the ali�ed ore of an atherosleroti lesion isdeteted in X-rays whereas the surrounding neroti tissue and region of highremodeling and �brosis are not detetable. Hene, the atual pathologiallyinvolved area is underestimated in radiographs. Consequently, the morpholog-ial enlargement of plaques (used in the MAD fator and thereby the MACDindex) may arry information related to the projeted area of the in�ammatoryproesses and indiretly indiate an inreased risk. This additional informationmay result in a better predition of mortality risk than the urrent state-of-the-art, the AC24 radiographi soring of atherosleroti plaques.The present study has its limitations. Its �ndings are only valid for a follow-100



7.5. Conlusionup period of 8.5 years and may not neessarily apply to shorter follow-ups.For short follow-up times, the preditive power ould possibly be based onlyon the total plaque burden as desribed by the AC24 sore. Furthermore, thepresent population is restrited in size, geographial and ethni ontent to postmenopausal Danish women. Therefore, the present study needs validation inother populations and longer term linial settings.
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Chapter 8Disussion and Conlusions8.1 SummaryThe main goal of the presented work was to make CVD preventive diagnostisavailable for linial studies or even sreening programs through low ost imag-ing. Our proposed framework for automated segmentation of ali�ed depositsinluding the ontributions to the ali�ation shape priors and the evaluationof the developed biomarkers on linial trial data was the �rst step in thatdiretion.In the �rst part of the dissertation we foused on the development of di�erentali�ation shape priors that ould be used within a fully-automati frame-work for detetion of lumbar aorti ali�ations, alled the CVD pipeline.Two di�erent approahes were proposed: In hapter 3 we used a method fromgeostatistis, alled Kriging, to try to inlude knowledge learned from trainingdata about the spatial orrelations between di�erent pixels in the output ofa pixel lassi�er. We observed that our new method, DICPC, improved thesensitivity and the Jaard index on our test set of ali�ation data. ButDICPC was only the �rst step in the right diretion and its weakness was thelinear model that underlies Kriging whih implies only pairwise interations.Hene, going one step further, in hapter 4 we proposed a new way of not onlylearning some spatial harateristis from training data, but a whole pathrepresentation of the training data. Suh a representation an apture thestatistial nature of a given texture and enfore it on testing data. Applied byitself it an be used in texture synthesis, in ombination with a pixel lassi�erit an improve the spatial oherene of lassi�er output. Our segmentationresults, based on the proposed shape prior, were promising and improved theJaard index by 50%. This indiates that the shape model an be suess-fully used as a prior in statistial segmentation of ali�ations on X-ray imagedata.In hapter 5 we made an exursion into the world of statistial physis. A103



Chapter 8. Disussion and Conlusionsmethod based on renormalization group theory (RGT) was used to derive anew approah for multi-sale image segmentation that ould be an alternativeto parts of the CVD pipeline. Our experiments showed that RGT an be ap-plied to multi-sale image segmentation problems. Furthermore, by using RGTwe redued the size of the image segmentation problem and made it tratableand solvable by a global image segmentation algorithm suh as graphut. Butthis still needs to be applied on our ali�ation data to show its appliabilityon medial data.Part two of the dissertation dealt with the development of imaging biomarkersbased on manual annotations or the lassi�ation output of the CVD pipeline.In hapter 6 a number of markers were measured and then a speial type ofbakward seletion via Cox regression was used to identify the most promi-nent ombination of measurements that relate to death by CVDs. Our resultspointed out the fat that simple statistial modeling an help to identify poten-tial imaging markers and demonstrated that some of these novel morphometrimarkers of abdominal aorti ali�ations may apture omplementary infor-mation when assessing CVD risk.Finally, in hapter 7 the statistial modeling lead to the formation of the mor-phologial atherosleroti ali�ation distribution (MACD) index. MACDould be shown to signi�antly relate to the risk of death and to outperformstandard metaboli CVD biomarkers suh as the EU SCORE [49℄ and theFramingham sore [50℄ as well as to outperform the urrent gold standard onradiographs, the AC24 sore, when identifying patients espeially at risk.8.2 Disussion and Conlusions"The sienti� method is based on the priniple that observationis the judge of whether something is so or not. All other aspetsand harateristis of siene an be understood diretly when weunderstand that observation is the ultimate and �nal judge of thetruth of an idea."8In this dissertation di�erent image proessing methods have been applied totest if automati segmentation of ali�ations in lumbar aorti X-rays is pos-sible. Furthermore, the hypothesis that image analysis of ali�ed deposits inthe lumbar aorta an quantify CVD risk of death has been tested. The resultshave provided new insights into the relation between imaging biomarkers ofthe lumbar aorta and CVD risk of death, but have also highlighted some re-maining hallenges.For example, the CVD pipeline is still su�ering from overall low Jaard in-dex values ompared to radiologists' readings. There are several reasons for8From "The Meaning of It All: Thoughts of a Citizen Sientist" by Rihard P. Feynman104



8.2. Disussion and Conlusionsthis. First, the fully automati detetion of ali�ations is very hallengingas already desribed in setion 2.2.2. The fat that there are no ground truthsavailable and that two radiologists have only a. 50% area overlap with eahother does not make the task easier. Seond, the area overlap measure we use,the Jaard index, is a very strit measure. For example, if an x-ray has noali�ations present in the manual annotation and the CVD pipeline �nds oneali�ation, the Jaard index drops to zero. Hene, one an not ompare theJaard index we ahieved to index values ahieved in e.g. brain segmentationwhere two large areas are ompared to eah other. Third, the sores that relateto biologial �ndings e.g. AC24 do not su�er as muh as the area overlap andare atually quite robust [35℄ whih indiates that the CVD pipeline is on theway to make fully automati segmentation possible.Despite the obstales we have met in the CVD pipeline projet, the new si-enti� results produed within it until now, e.g. a new way of modeling tex-tures [83℄ and the stati SMC sampler [38℄, show that one an not be ambitiousenough. Even if at present appliability in linial trials is out of question, theresults ahieved until now show that it is not impossible to get there. Espe-ially, one digital X-rays of more reent studies (and hene of higher quality)and from di�erent populations, that help to inrease e.g. the generalizationability of the shape models, are in plae, the CVD pipeline an be tested againand re-evaluated versus the performane of radiologists. If these steps aretaken, then linial trial availability is maybe only some years away.Furthermore, while the appliation of RGT on image segmentation and energyminimization is learly still in its �edgling stages, the results enourage to ex-plore the subjet more deeply. And the mere existene of the RGT approahshows how fertile inter-disiplinary work an be. Just as biologists have beeninvolved in the development of the new biomarkers and have helped to inter-pret the statistial �ndings, transferring RGT onto images was only possiblebeause of the very di�erent bakground an eduation in theoretial physiso�ers. In the end working in the �eld of medial imaging is exiting and in-teresting, beause many disiplines � biology, hemistry, omputer siene andphysis � meet and something new is reated by ombining knowledge from all�elds.Finally, the work regarding the development of new biomarkers, e.g. MACD,has on�rmed the fruitfulness of a statistial approah. When trying to gainnew insights about e.g. a disease, it an be bene�ial to not make a hypothesis�rst and then perform statistial tests until the same hypothesis is on�rmed,but to let the data guide the searh for a new hypothesis. Of ourse statistisalone an not explain biology, but it an maybe lead to us to new insightsabout our problem.
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Chapter 8. Disussion and Conlusions8.3 Future WorkWhile the appliation of Kriging and our proposed dense iterative ontextualpixel lassi�ation (DICPC) was a �rst try at modeling spatial relations be-tween lassi�ation output, the modeling of textures via a generative shapemodel based on a sparse texton ditionary was more suessful. An interestingfuture diretion for the texton approah ould be to apply the textons alsofor non-binary images. In this ase a di�erent basis of the ditionary, e.g.ridgelets [143℄ or wedgelets [144℄, might be neessary. Furthermore, an appro-priate multi-resolution extension of the generative model ould be introduedthat would be able to take even longer interations between pathes into a-ount and as a onsequene improve the segmentation further.With respet to the CVD pipeline as a whole, it is lear that the performane ofthe ali�ations shape priors depends greatly on the performane of the pixellassi�er. This ould be improved by either trying to selet better features orby hoosing a di�erent lassi�er. But regardless of the performane that anbe ahieved on the EPI [67℄ and PERF [66℄ data sets available to us, it is leftto show the appliability of the CVD pipeline for linial trials by applyingit to di�erent data sets to be sure not to over�t to the data the pipeline wasdeveloped on. This an be done by onduting transfer experiments where wetrain the pipeline on one data set and then show its e�ieny on another dataset of a di�erent population.The RGT approah ould be extended in several ways. On the one hand, dif-ferent grid strutures and mappings should be tested. On the other hand, toreally get a broad spetrum of people interested in the method it should beextended to multi-labels, so rather a Potts than an Ising model.The possibilities for future work in the realm of biomarkers are extensive. Ontop of the list is the development of new imaging biomarkers, possibly even onCT images aquired in the Danish Lung Caner Sreening Trial [145℄ instead ofon X-ray images. Seond, all newly developed markers inluding MACD needto be validated again, sine the urrent �ndings are only based on a populationthat is restrited in size, geographial and ethni ontent to post menopausalDanish women. A validation of our �ndings in other populations and longerterm linial settings would substantiate them further for use in linial trials.Third, an option ould be to ombine the imaging and metaboli biomarkersfor CVD risk assessment or to even try to relate to sth. else than CVD deathwhen building risk assessment models.Through the presented researh I have made progress in identifyingthe relations of CVD risk to abdominal aorti ali�ations as im-aged by X-rays, but also identi�ed new questions that need to beanswered. So the work presented in this dissertation is meant to bepart of a bigger e�ort by the medial imaging ommunity to pre-106



8.3. Future Workvent ardiovasular diseases by developing even better biomarkersfor CVD risk and by making CVD preventive diagnostis throughlow ost imaging available.
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