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Abstract

This thesis proposes and evaluates some algorithms for shape based analysis, and
their application in clinical studies related to osteoporosis and vertebral osteoporotic
fracture. The main objective of these algorithms is to improve the investigation of
such and other diseases. The reported studies were performed using radiographs of
the lumbar region. In particular, manual annotations on these radiographs performed
by experts are used. There are two main contributions. Firstly, a study for assessing
vertebral fracture risk using shape analysis is described. Secondly a methodology
for estimating covariance matrices when few samples are available is proposed. This
last issue is a common challenge in statistical tasks, and it is also present in the
aforementioned shape based framework.

Fracture risk assessment is currently based on a series of factors such as BMD,
age, use of corticosteroids, and previous fractures. A clinical study employed a shape
based method for predicting the risk of vertebral fractures. The described approach
can be used combined with the traditional risk factors allowing a more reliable pre-
diction of vertebral fractures. The reported longitudinal case-control study involved
postmenopausal women, the patients of the case group sustained at least one incident
lumbar fracture, while the patients of the control group maintained skeletal integrity
over a 7.3-year period. The patients of both groups were fracture-free at baseline.
The investigation focused on the ability of the shape based analysis in discriminat-
ing these two groups at baseline where no fractures were present. Lateral lumbar
radiographs of the patients were taken twice, and an expert radiologist graded the
fracture status of their spines. On the acquired radiographs, a radiologist and two
additional x-ray technicians performed independently the annotations of the spines.
A statistical shape model from the spine shape annotations was built and performed
a classification on the baseline data, identifying possible small changes in the spine
shape that can result in future fractures. This technique led to an AUC of 0.70±0.013

for the radiologist annotations. The reported study presented a typical drawbacks of
clinical studies: the small sample size. The rest of the thesis is focused on this aspect,
proposing possible solutions.

In several statistical tasks, such as shape based fracture prediction, the estimation
of covariance matrices is a crucial step. When using few samples of a high dimen-
sional representation, e.g. of shapes, the standard Maximum Likelihood estimation
(ML) of the covariance matrix is often rank deficient, and may lead to imprecise
results. Regularization by prior knowledge using Maximum A Posteriori (MAP) esti-
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mates is proposed, and a comparison between ML, Tikhonov regularization and MAP
estimates using a number of priors is reported. The covariance estimates are evalu-
ated on both synthetic and real data, and the estimates’ influence is considered on a
missing-data reconstruction task. Here, high resolution vertebra and cartilage models
are reconstructed from incomplete and lower dimensional representations. In the re-
ported experiments, the Bayesian methods outperformed the traditional ML method
and Tikhonov regularization, reducing to 1 mm the mean reconstruction error for
the vertebral shapes, and to 20% mean error for the cartilage sheets, using only 10
samples for both experiments. The use of these MAP methods can also improve the
results of other statistical tasks such as the shape based fracture prediction study.



Chapter 1

Introduction

This thesis focus on statistical methodologies based on shape model, and their appli-
cation to osteoporotic vertebral fracture. This chapter comprises the motivation of
this work, an outline of the thesis and an overview of the involved contributions.

1.1 Motivation
Osteoporosis is a bones disease leading to an increased risk of fracture. It represents
a major public health threat which afflicts individuals, especially postmenopausal
women. It has been estimated that approximately one in three women and one in
twelve men over the age of 50 have osteoporosis [72]. Millions of fractures are di-
agnosed worldwide annually, mostly involving the lumbar vertebrae, hip, wrist, and
ribs. Consequently, the burden sustained by the medical system related to osteo-
porotic fractures is heavy and increasing rapidly. In fact, the total cost for the year
2000 in Europe has been estimated at 31 billion Euros [68].

Vertebral fractures are the most common fractures, and as the proportion of
the elderly population grows, they are becoming increasingly common. Osteoporotic
fractures can occur in absence of trauma or after a minimal trauma, and in this case
they are also called fragility fractures. Early diagnosis of osteoporosis allows preventive
therapeutic treatments [89]. The most common measure of bone quality is the Bone
Mineral Density (BMD) which measures the amount of matter per cubic centimeter
of bones. This measure is relevant since there is a statistical association between poor
bone density and higher probability of fracture [90]. Other methodologies used in
vertebral clinical analysis are morphometric indices obtained by analyzing radiographs
[30,45,83].

Although half of all osteoporotic fractures are vertebral, they are just the tip of the
iceberg, since their presence usually increases the risk of any further vertebral fractures
[86] and the risk of any subsequent hip fracture [7]. Hip fractures are serious harms
in old age and they are correlated to patient death within a year [87] and disabling
conditions [32]. Therefore, early assessment of vertebral fracture risk is crucial for
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reducing the general number of fractures through appropriate treatments for patients,
as it will improve the quality of life for patients; and subsequently decrease the related
expenses to health system.

Shape based prediction of osteoporotic fractures, like other statistical studies,
requires a large amount of data. More specifically, a sufficient number of high quality
samples compared to the dimensionality of the shapes is needed. This can be a
challenging situation since often not so many data are available.

Some algorithms have been proposed [31, 40, 53, 57, 64, 103, 108, 113] with the
aim of tackling this issue, mainly through the regularization of covariance matrices,
since precise covariance matrices influence the quality of the prediction and other
tasks. However, some aspects of regularization can still be investigated. In the next
chapters, a study regarding prediction of vertebral fractures among populations is
reported, and a methodology for estimating covariance matrices when few samples
are available is also discussed.

1.2 Outline
The main contents of this work are presented in five chapters: Chapter 2 gives a
general clinical background of osteoporosis and osteoporotic fractures, Chapter 3 de-
scribes some of the most common shape models used in medical imaging, and Chap-
ter 4 is related to prediction of osteoporosis using some of these models. Chapter
5 presents a possible solution for the common problem of few available samples in
statistical tasks, while Chapter 6 contains the conclusions. The following gives a brief
description of each chapter.

• Chapter 2 discusses the clinical background. This includes a general descrip-
tion of osteoporosis and its epidemiology. Diagnosis, prevention and established
treatments are also discussed. Moreover, well-known osteoporotic fracture mea-
surements are described, such as quantitative morphometric indices [30,83], and
semi-quantitative morphometric indices [45].

• Chapter 3 contains a survey of the most common deformable shape models used
in computer vision and then focuses on methods related to fracture assessment.
With the improvement of image processing technologies, in parallel to the es-
tablished morphometric indices [30, 44, 83], the interest of diagnostic computer
based methods is growing. The initial part of the chapter gives an historical
introduction of active contour shapes, explaining how statistical shape models
became successful methodologies in medical imaging. The second half describes
some of the computer based methods used for vertebral fracture assessment,
which can be considered as the ancestors of the prediction algorithm described
in Chapter 4. The chapter also introduces the common problematic use of these
methods when few samples are available.

• Chapter 4 presents a study of vertebral fracture prediction using a statistical
shape model. It contains a description of the population used in our experi-
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ments, the statistical analysis, and the used methodology. Two different ap-
proaches for aligning spine shapes are discussed. Here, a shape based analysis
is used for fracture prediction purposes rather than diagnostic as described in
the previous chapter.

• Chapter 5 deals with the crucial problem of having a small sample size in sta-
tistical analysis. Epidemiological studies, such as the case described in Chapter
4, often encounter the limitation of few available samples. A novel method for
Bayesian regularization of covariance matrices of shape based data is described.

• Chapter 6 contains the discussions about vertebral fracture risk assessment and
the Bayesian covariance estimation.

1.3 Contributions
The thesis has two major contributions:

• Prediction of vertebral fractures: A study which uses a shape based method
for predicting vertebral fractures is reported. A case-control longitudinal study
was performed, analyzing a shape based morphometric index, which combined
with the traditional risk factors allows a more reliable prediction of vertebrae
fracture. The investigated methodology can facilitate a population selection in
clinical trials, helping identifying patients with high fracture risk.

• Novel method for covariance estimation: Shape based analysis and other
statistical tasks often require the estimation of covariance matrices as a pivotal
step. When the dimensionality of the shape space is high, and the available
number of samples is small, then the estimation of a covariance matrix with
standard methods can be poor. A novel method for overcoming this common
scenario in clinical trials is proposed. The method is based on the involvement
of prior knowledge during the covariance estimation.





Chapter 2

Osteoporotic Vertebral Fractures

This chapter gives an overview of the clinical aspects of osteoporosis and osteoporotic
vertebral fractures. The first part of the chapter comprises an introduction to the
disease describing its risk factors, treatments and prevention. The remainder of the
chapter briefly describes the most common diagnostic methods for osteoporotic verte-
bral fractures. In particular, quantitative and semi-quantitative morphometric indices
are reviewed.

2.1 Osteoporosis
Osteoporosis is a disease characterized by a decrease in density and quality of bone
which can lead to fractures. The main biological reason lies in the deficiency of
estrogens which occurs with age. Bone usually has a hard external cortical coat-
ing enclosing a complex net of trabecular structures. Those structures are not static.
They are the result of the interaction between two kinds of cells, called osteoclasts and
osteoblasts. The former resorb bones from the skeleton, while the latter are responsi-
ble for bone formation. With age, especially in post-menopausal women, the level of
estrogens drops, compromising the equilibrium between the actions of osteoclasts and
osteoblasts, and weakening the bone structures. Figure 2.1 shows the difference in
micro-structure between normal and osteoporotic bone. Osteoporosis can weak bone
structures causing fractures, called osteoporotic fractures, which occur mainly in hip,
wrist and spine, with the incidence relative to ages depicted in Figure 2.2. The most
harmful fractures are the hip fractures, since correlation between hip fractures and
patient death within one year [87], and long-term disability [32] have been reported.
Vertebral fractures are the most common and represent a risk factor for future hip
fractures [7]. However, the presence of vertebral fractures can be overlooked, since
vertebral fractures can be asymptomatic [26]. Therefore, estimates of vertebral frac-
tures must be obtained in other ways. It can be argued that osteoporotic fractures are
the result of the process previously described rather than an abrupt change, though
the initial stage of deterioration is hard to detect.



6 Chapter 2

Figure 2.1: Comparison of healthy trabecular structures on the left and osteo-
porotic trabecular structures on the right. Image from Consensus development
conference (1993), Am J Med 94:64d, courtesy of IOF.

Figure 2.2: Incidence of osteoporotic fractures (Image courtesy of Denis-Cooper
2005).

With the advances in the health-care system and the current demographic trends,
it is expected an increase of people suffering from this disease, with consequent impact
on the people quality of life and the health-care system cost [110]. In this context,
diagnosis and prevention are important, since early detection of osteoporosis can allow
more effective treatments to patients.
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2.1.1 Bone Mineral Density

Aerial bone mineral density (BMD) is the measure of the amount of matter per
square centimeter of bones, mainly obtained using Dual-energy X-ray absorptiometry
(DXA) [78]. Since 1994, the World Health Organisation (WHO) considers BMD
as the standard diagnostic criteria of osteoporosis [69]. BMD is also relevant for
fracture prediction, because bones with low BMD have high probability of fracture
[59, 90]. According to the WHO criteria [69], the BMD measurement can be used to
classify bones into three major categories depending on the t-score, e.i. depending
on how many standard deviations a measurement is below an estimated mean from
a population of healthy pre-menopausal Caucasian women.

• Normal: t-score defined as -1 or higher.

• Osteopenia: t-score between -1 and -2.5.

• Osteoporosis: t-score defined as -2.5 or lower.

Moreover, it is important to bear in mind that there are different common sites to
measure BMD, such as lumbar spine, total hip, and femoral neck; and all can give
different readings.

2.1.2 Risk factors

One of the most common causes of deterioration in bone structure is the deficiency
in estrogen production, which occurs mainly after the menopause in women.

Along with the natural process of aging, there are other causes which can increase
the risk of osteoporosis, and are included in a WHO tool for fracture prediction
[76]. Physical inactivity and some drug therapies based on corticosteroids have the
possible side effects of accelerating bone loss. Moreover, there are other lifestyle
factors increasing the risk of osteoporosis such as smoking, excessive intake of alcohol,
malnutrition, and lack of calcium or vitamin D [68]. Maintenance of bone mass
requires attention to these factors and regular physical exercise, which promotes bone
development and remodeling. As mentioned in the previous section, the presence of
an osteoporotic fracture implies an increased risk of further osteoporotic fractures.
This is one of the main motivation of the works described in this thesis, since a single
vertebral fracture usually anticipates further vertebral fractures or hip fractures which
can be fatal [7]. Therefore, vertebral fractures can be considered as a risk-factor for
more disabling osteoporotic condition.

2.1.3 Treatments

Like other diseases, there are two ways for coping with osteoporotic fractures and
osteoporosis: prevention and treatment. Obviously these two issues are related to
each other. A primary non-invasive way of preventing osteoporosis, and therefore
osteoporotic fractures, is to reduce the risk factors mentioned in the previous section.
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Regarding treatments, several drugs have been produced and investigated. In-
creasing the quality of fracture risk assessment in early diagnosis holds a pivotal role,
since it can allow a prompt use of these treatments.

Hormone Replacement Therapy (HRT) was the standard treatment for osteoporo-
sis in the past. In several experiments it proved to have a positive impact reducing the
number of osteoporotic fractures [116]. However, several side effects such as breast
cancer, thromboembolism, and cardiovascular diseases were experienced [100].

Bisphosphonates are oestoclasts inhibitors which limit the bone resorption. De-
spite their efficacy, they also have several side effects such as gastrointestinal distur-
bances [8] and osteonecrosis of the jaw and hip [88]. Osteonecrosis is the bone death
caused by poor blood supply and can lead to very painful and potentially disabling
conditions.

More recent drugs, such as Teriparatide rhPTH(1-34) and SERM, were pro-
posed. In clinical studies with patients already undergoing an osteoporotic fracture,
rhPTH(1-34) reduced the incidence of further fractures by 30% to 65% [117], and the
use of SERM showed a decrease of bone turnover below concerning levels, an increase
of BMD in the lumbar spine by 2%, and a reduction of vertebral fracture risk by
40% [104]. So far, no severe side effects were found for these approaches.

Another possible treatment is Calcitonin, a hormone which inhibits bone resorp-
tion by osteoclasts and promotes bone formation by osteoblasts. Some studies sug-
gested that, compared to calcium alone, Calcitonin given intranasally reduced the
rates of fracture by two thirds in elderly women with moderate osteoporosis [92].
Also for Calcitonin no severe side effects were encountered so far.

2.2 Vertebral fractures
The human vertebral column, also called the spine, comprises 24 articulating verte-
brae and 9 fused vertebrae constituting the sacrum and coccyx, as shown in Figure
2.3. The articulating vertebrae have bodies, which are cylinder-like structures posi-
tioned one over the other, forming a chain which supports the body allowing some
flexibility. The human spine has several main curvatures corresponding to sections
termed cervical, thoracic, lumbar, sacrum and coccyx. The uppermost section is the
cervical region composed of 7 vertebrae (termed C1-C7 from the uppermost to the
lowest), 12 vertebrae are present in the thoracic region (T1-T12), and 5 vertebrae in
the lumbar region (L1-L5). The sacrum contains 5 fused vertebrae while the coccyx
contains 4 fused vertebrae. One of the goals of this thesis is the prediction of verte-
bral fractures, analyzing slight differences in the shape of the spine or in the vertebrae
themselves. In particular, lumbar vertebrae and the lowest thoracic vertebra T12 are
analyzed. A choice primarily made for facilitating the comparison between the study
described in Chapter 4 and previous studies using the same cohort [79].

Many possible features are obtainable from radiographs of vertebral bodies such
as bone density, textural information [62], and anthropometric parameters [60]. In
particular, useful information can be extrapolated from the geometric analysis of the
three vertical heights and the two horizontal endplates identified by landmarks [60] as
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Figure 2.3: An illustration of a spine with its regions (Image courtesy of SpineU-
niverse Marketing Vertical Health LLC.)

depicted in Figure 2.4. As it will be described in the next sections, this information
is used in several morphometric analyses for quantifying the presence or absence of
osteoporotic fractures.

When trabecular structures are compromised and vertebral fractures occur, either
the central endplates deform making the vertebra biconcave, or one of the corners
collapses making the vertebral structure wedge-like. Furthermore, if all the heights
collapse, crush fractures occur. Figure 2.5 (a) and (b) show a radiograph of a spine
with healthy vertebrae and a radiograph of a spine with a fractured L4. The depicted
spine presents a biconcave fracture, an overview of this and other vertebral fractures
is reported in Figure 2.6.
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Figure 2.4: A drawn vertebra with anterior (A), central (C) and posterior (P)
heights obtained linking vertically the six representative points.

2.3 Current and future vertebral fracture assessment
Diagnosis and prediction of osteoporosis is not a trivial process. Regarding fracture
assessment several indices, such as the morphometric measurements from radiographs,
are used. Computed radiography is now the ”gold” standard, but it can have problems
associated with projective geometry. Some studies [47, 115] have shown that MRI-
based morphometry can be a competitive modality, especially for identifying spinal
pathologies, such as infections or disc degeneration. However, the cost of a MRI-
based investigation is still high compared to a simpler radiograph investigation, which
remains the most common modality in this context.

For prediction, the WHO recommends a fracture risk assessment based on a series
of factors [76]. The following two subsections explain the most common methods
for present fracture assessment (diagnosis), while the last subsection describes some
clinical procedures for risk assessment (prediction). Shape based analysis and its
usefulness in vertebral fracture risk assessment are described in the next chapter, and
the proposed methods for increasing the quality of risk assessment are described in
Chapter 5 to 7.

2.3.1 Quantitative Morphometry

Morphometric methods are classified in Quantitative Morphometric methods (QM)
and Semi-Quantitative methods (SQ). The first are objective measurements of verte-
brae in radiograph, while the latter are based on the subjective judgment of a radi-
ologist. One of the most known QM methods is the Eastell-Melton criteria [30, 85],
which quantifies vertebral fracture based on the ratios of anterior, middle or neigh-
bouring posterior heights and posterior heights of vertebral bodies, compared with
the expected standard value for the particular vertebrae in exam. This assessment
is strictly related to a specific threshold and takes into account also the top and
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(a) (b)

Figure 2.5: (a) An healthy spine. (b) A spine with a biconcave fracture at L4.
Figure 2.6 illustrates other kind of fractures which can occur.
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lower neighboring vertebrae of each vertebra in a spine. In the original version of
the criteria [85], only percentage of reductions were considered, while in the adjusted
version [30] the reductions are evaluated while taking into account the standard devi-
ation of the heights. The method is prone to false positive fractures, especially when
the neighboring vertebrae to the vertebra in exam are also fractured. With the aim of
reducing this drawback, McCloskey [83] proposed some improvements to the Eastell-
Melton criteria which reduced the number of false positives. The method requires the
fulfillment of two criteria to detect a vertebral fracture: a reduction of the ratios as
in the Eastell’s approach and a reduction in the ratios between the heights and their
predicted posteriors. For each vertebra of each patient, a mean predicted posterior
height is obtained from the predicted posterior heights of four adjacent vertebrae,
avoiding possible issues related to fractured neighboring vertebrae.

2.3.2 Semi-Quantitative Morphometry

A different approach is given by the SQ methods, which are based on the subjec-
tive interpretation of expert radiologists. For example, the Genant semi-quantitative
method [44] quantifies the presence or absence of vertebral fractures according to the
apparent reduction of height in the vertebral bodies, and to specific deformation of
the vertebral endplates.

In particular, fractures are classified according to their grade of severity as mild,
moderate, and severe; and to the kind of deformation form which is generated: wedge,
endplate, and crush. A summary of this classification is depicted in Figure 2.6. This
figure shows, respectively for different grades, on the left column wedge fractures,
on the central column endplate fractures and on the right column crush fractures.
Although the height reduction is the main criterion, the Genant method also suggests
taking in consideration changes at the endplate and cortical margin, and misalignment
along the spine.

This subjective analysis can lead to a smaller false positive rate compared to QM
approaches since it takes into account geometric artifacts in radiographs and does
not consider non-osteoporotic fractures. Non-osteoporotic fractures, such as trauma
fractures, are clearly recognized by the visual inspection of a radiologist, while a QM
analysis can consider them indiscriminately since only the height reductions are taken
into account. However, the subjectivety of SQ methods can introduce discrepancy
among radiologists in case of mild fractures. With the aim of reducing the discrepancy
among radiologist assessments, a series of steps to follow while using this method was
proposed [65].

2.3.3 Fracture risk assessment

This section reports the standard clinical evaluation for fracture risk and other osteo-
porosis risk measurements which can implicitly be related to fracture risk.

Frax [76] is the most well-known approach for fracture prediction, it is a prognostic
tool based on information such as BMD, age, use of corticosteroids, previous fractures
and dietary habits. Its webinterface is depicted in Figure 2.7.
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Figure 2.6: The grades of the standard Genant semi-quantitative method. Am J
Med 94:64d, courtesy of IOF.

Although BMD is considered the most important indicator also for future frac-
ture risk, since there is a relationship between loss of BMD and fracture risk [59,90],
a single score is only a reliable indication of the current bone density status, and
several acquisitions would be required to identify bone loss rate. Volumetric BMD
was recently proposed in several studies related to osteoporotic fractures [52]. The
methodology is capable of quantifying the mineral density using quantitative Com-
puted Tomography (qCT) in a much more precise way than standard BMD. This
measurement quantifies the fracture risk according to skeletal site, type of fracture
predicted, and population assessed [15,52].

To predict osteoporosis (and therefore implicitly fractures) in a single reading,
other solutions were proposed. Experiments using urinary or serum collagen type 1
cross-linked C-telopeptide (CTX) [16, 99], and urinary collagen type 1 cross-linked
N-telopeptide (NTX) [63] gave interesting results. These collagens are markers of
bone resorption, since high levels of CTX and NTX indicate excessive bone turnover
and can be related to fracture risk [111]. It has been noted that women with high
serum CTX have a 25% probability of hip fractures within 4-5 years, and women
with low BMD and high CTX have a 54% probability of hip fractures within 4-5
years [42]. In parallel to these bio-markers, Ruegsegger introduced [56] a measure
also based on qCT, where 3D structural parameters are derived from measurements
of spatial structures such as the “caves” given by the trabecular bone structures [93].
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Figure 2.7: The webinterface of the Frax tool, http://www.shef.ac.uk/FRAX/.

The method estimates a volume-based local thickness by fitting a maximal sphere to
every point in the structure. The spheres give a measure of the width of the trabecular
structures which is then quantified as a mean plate thickness. The presence of small
radius spheres is a good indicator of healthy trabecular structure and therefore of
healthy bones.

Despite the promising results, clinical prediction of osteoporosis is not based on
the evaluation of these bio-markers or on CT measurements, and the Frax tool is still
the standard criterion for the evaluation of fracture risk.

2.4 Longitudinal case-control studies
In trials investigating osteoporosis and other clinical studies, a set of procedures is
conducted to collect reliable information. This section introduces some terminology
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related to these clinical procedures which will be used in the next chapters.
A case-control study is an epidemiological study where the patients are observed

in order to determine their status to the exposure or non exposure to a specific event
[101]. The case group is a non-randomized group of subjects either presenting a disease
or being exposed to an event, while the control group is the matched reference group
of individuals without symptoms or exposition to an event. The possible relationship
of a suspected characteristic or risk factor, related to the disease or event in exam,
is investigated through the comparison of these two groups [101]. An example of
case group is a group of women smoking tobacco, and an example of control group
is another matched group of non smoking woman, and the consequent correlation to
either cardiovascular diseases or lung cancer is the target of the study.

A longitudinal study is the investigation of several observations of the same vari-
ables at different time points [101]. For instance, a breast cancer screening or a BMD
measurement performed every 2 years in postmenopausal women. Generally, the ini-
tial observation is called “baseline” and the subsequent observations are “follow-up”
observations.

In the study reported in Chapter 4, those two concepts are used jointly. In fact,
the reported study analyzes two groups of women where the patients in the case
group experienced at least a vertebral fracture, and the patients in the control group
maintained their spine integrity. The longitudinal aspect of the study is referred to
the fact that both patient groups had the spine status and lumbar vertebrae acquired
twice. In particular, the patients of both groups were fracture free at baseline.





Chapter 3

Statistics on shapes in Computer
Vision and Medical Imaging

If you need statistics to understand the results of your experiment,
then you should have designed a better experiment.

Ernst Rutherford

The previous chapter contained the clinical background for osteoporosis and os-
teoporotic fractures. Although BMD and the other risk factors included in Frax
represent the standard procedure for prediction of osteoporotic fractures, there is still
room for further investigation on morphometric index for this purpose, and this work
is concerned about the use of shape based methodologies for this purpose. This chap-
ter describes briefly computer based shape representation in general, shape model
for fracture risk assessment, and related statistical challenges such as few available
samples. These subjects are included to provide some understanding of the field,
for giving some terminology and since the methodology presented in the following
chapters can be seen as an evolution of these methods.

3.1 Shapes in Computer Vision and Medical imaging
Paraphrasing D.G.Kendall, a shape of an object is all the geometrical information that
remains when location, scale, and rotational effects are filtered out from an object [73].
However, people generally identify a shape of an object in an image simply with its
contour oriented in a common center of frame. Several computational representations
exist, some of them are based on Fourier descriptors [48], parametric descriptors [74],
or landmark representations [19]. A survey describing these and other shape repre-
sentations is given in [121]. Data regarding vertebral shapes is mainly available as
manual annotations on x-ray images [60], and similar point based representations ob-
tained by segmentation [22]. Therefore, the focus of this thesis is mainly on landmark
representations.
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In landmark based models, a geometrical representation can be constructed by the
concatenation of a defined set of points/landmarks p1, p2, ..., pn lying on the boundary,
assuming that these points correspond to relevant features. It can be argued that an
object boundary is given ideally by infinitely many points (or better by a very high
dimensional representation considering the limited resolution of an image), and re-
ducing to few landmarks can cause some loss of information. However, small number
of landmarks can be a sufficient representation for comparisons of shapes [105]. For
example in medical imaging, this information can be used for registering MRI and
other acquisition modalities [36], and for giving a qualitative description of human
organs [12, 28] as well. Some work on shape modeling have been focused on learn-
ing shape models from training samples which can adapt to similar unseen shapes
allowing some flexibility. These methods are called deformable template methods
or deformable model methods, and their flexibility allows the necessary freedom to
match the biological variation of structures and organisms in images. A survey of
deformable methods and their extensions is reported in [84]. Since some of these
methods are generally based on statistical analysis, the need of a sufficient amount of
data for the statistics is necessary. If the available samples are few relatively to the
dimensionality of the shape, then this will effect the performance. The second part of
this chapter introduces this issue and some possible solutions, which will be discussed
more in detail in Chapter 5.

3.1.1 Deformable template models and active contours

There are several approaches of deformable templates [84]. The oldest work is prob-
ably the spring-loaded template described in the 1973 pictorial structure of Fischler
and Elshlager [35], also called “constellation model”. In a pictorial structure, an ob-
ject is represented by several parts arranged in a deformable configuration. The single
parts are modeled independently, and the deformable configuration is given by the
connections between pairs of parts. This qualitative description is useful for generic
recognition problems [33], but it does not analyzes the object boundaries.

More recent deformable template algorithms, more focused on object boundary,
are the active contour methods [71, 91]. Generally, an active contour model uses
splines guided by an external and an internal energy minimization. The external
energy modifies the active contour by taking into account features such as edges in an
image, while the internal energy defines the manner in which the contour is allowed
to move in the process of transformation (e.g. the level of smoothness). The prior
knowledge which can be associated to this model is limited to the constraints related to
the internal energy. The most well-known example of these guided splines approach
is the ”snakes” algorithm [71]. Snakes are planar deformable contours capable of
slithering around an image, and they have been successfully applied in several tasks,
and also to medical images [96,118].
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3.1.2 Active Shape Model and Point Distribution Model

A different approach from the snakes algorithm is given by the so called Active Shape
Model (ASM) [19], which can be seen as a deformable template model where the
prior knowledge is based on statistical information from a training data-set without
information of contour smoothness. In practice, constraints, such as relevant anatom-
ical landmarks, are associated to a shape (and texture) model, where two aspects
regarding the landmarks are noteworthy. Firstly, the landmarks must be consistent
in all the images, i.e., the landmarks need to correspond in different images. Secondly,
those landmark based representations need to be centered to a common frame of ref-
erence, reducing the extrinsic variation of the shape in images due to positioning [73].
This alignment process is typically performed using the Generalized Procrustus Anal-
ysis (GPA) [11], which removes translation, scaling and rotation from a set of shapes.
Landmarks can be defined manually as manual annotations or obtained automatically
using segmentation algorithms.

ASMs are based on another statistical model called Point Distribution Model
(PDM) [19], where every shape can be approximated to a mean plus some residual
variation. This residual variation is given in the covariance matrix of shapes coor-
dinates, since it represents the possible correlation between landmark coordinates in
shapes.

3.1.3 Deformable shape loci and m-rep

Fritsch et al. [41] have devised a methodology called deformable shape loci, where
medial loci, or cores, define the underlying structure of shape edges, allowing a robust
to noise redefinition of the edges. The model also employs a probabilistic prior model
relating relevant shape features and their spatial relationships. This idea allowed the
formulation of a geometric framework for object modeling in medical image analysis
based on a sampled medial representation called an m-rep [37]. An approach which
provides a coordinate system for a more accurate representation of 3D image data.

This model is used in several medical imaging tasks but is not currently used on
osteoporotic vertebral shape. It is, however, described since the experiments reported
in Chapter 5 are also performed on knee cartilage sheets using this representation.

3.2 Computer based fracture assessment
In parallel with the established clinical methods for fracture assessment described in
the previous chapter, some semi-automatic and automatic computer-based approaches
using shape (and appearance) models [3,22–24,97,98,106] were proposed. These shape
based methods rely either on manual annotations of each vertebra on a radiograph or
on the result of segmentation algorithms:

The approach presented by Roberts et al. [3, 97, 98, 106] constructs a statistical
shape model from vertebral shapes from DXA images and employs a linear discrimi-
nant classifier for identifying the fracture status. The verebral representation is given
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by dense landmarks on the vertebral boundary obtained either by manual annota-
tions [97] or semi-automatic segmentation [98] and an appearance model given by the
textures comprised by the landmarks. A more detailed explanation is given in [20].

Another method also based on statistical shape models was proposed by De Bru-
jine et al. [22–24]. Here, the landmarks are obtained as a discretization of a dense
set of points non equally distributed. The method uses conditional shape models
trained on a set of healthy spines, for designing an hypothetical vertebral shape for
each vertebra in the image. The difference between the true shape and the artifi-
cially constructed shape is an indicator of shape abnormality. The conditional shape
model for designing the vertebra uses pairwise statistics with the neighboring ver-
tebrae, considering the probabilities of each vertebra jointly. Moreover, the method
uses a discriminant classifier for grading the fracture, giving a continuous measure of
deformity, and introduces the problem of needing a large sample size for classification
tasks.

These two approaches have been investigated for diagnostic purposes, while little
work was done so far for fracture risk assessment. Previous computer-based studies
involved normalized vertebral heights [27, 79] and curvature analysis [95] for ana-
lyzing slight deformities which can cause future fractures. The normalized heights
approaches [27, 79] try to identify possible pre-fracture deformities searching irreg-
ularity among the vertebral heights. In [79] vertebral heights were assumed to be
normally distributed, following a bi-variate normal distribution and classified accord-
ing to it. In [27], the correlation between aging and height reductions is argued. More
specifically, the sum of anterior heights is proposed as a biomarker for ostoporotic
vertebral fractures. Instead, the curvature approach [95] argues that local irregulari-
ties in the alignment of the lumbar vertebrae contribute to increase the fracture risk.
The motivation lies in the hypothesis that there is a correlation between curvature
of the lumbar spine and irregularity of the vertebrae alignment, which will lead to
challenges to maintain structural integrity. The study presented in Chapter 4 is a
methodology which comprises some of these aspects for future fracture prediction.

3.3 Regularization for statistical shape models
Active shape model and other deformable templates methods require the estimation of
covariance matrices as one of the initial steps. When the dimensionality of the shape
space is high, and the available number of samples is small, then the estimation of a
covariance matrix with standard methods can be poor. In osteoporosis studies and
in other clinical contexts, this circumstance can occur, since the number of patients
available can be very small compared to the required dimensionality of the vertebral
and spine shape.

In particular, if we consider the standard MLE method, the obtained covari-
ance matrix may be rank deficient, implying that some eigenvalues have magni-
tude close to zero, and that the corresponding eigenvectors are arbitrary. This
limitation encouraged the introduction of more robust covariance matrix estima-
tors [31, 40, 53, 57, 64, 103, 108, 113]. Regularization, and specifically shrinkage, have
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been proposed to improve estimates of covariance matrices. Shrinkage methods aim
at improving estimates by shrinking the estimation towards zero or in the gen-
eral setting towards some specific value. The oldest shrinkage methods were pro-
posed in the early 60’s [108, 113], and afterwards a series of similar methods ap-
peared [31, 40, 53, 57, 64, 103]. These methods generally depend on the proper choice
of a mixing parameter, which is often selected to maximize the expected accuracy of
the shrunken estimator by cross-validation [40,57] or by using an analytical estimate
of the shrinkage intensity [31,53,64,103]. Regularized estimators have been shown to
outperform the standard ML estimator for small sample sizes [103]. Most commonly
a simple form of Tikhonov regularization is used [57], where non-zero values are added
to the diagonal elements of the covariance matrix as ⌃̂reg = ⌃̂+↵

2I. Here, ↵2 is the
mentioned mixing parameter. This regularization parameter is not likely to be known
in advance, and finding its optimal value can be cumbersome and computationally
demanding [40]. The analytical methods for covariance estimation [31, 53, 64, 103]
propose several ways to estimate analytically the mixing parameter. These methods
estimate the optimal value analyzing the sample to sample variance of entries in ⌃̂ as
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where zij(k) is the difference between the centered i�th data element and the centered
j� th data element, n the number of samples, sij is the ij� th element of the sample
covariance matrix, and ⌫ is the mean eigenvalues. However, either using a cross-
validation for finding the optimal value or the automatic estimation, the method does
not correct the case of non-optimally estimated eigenvectors.

Probabilistic PCA considers PCA as the Maximum Likelihood solution of a prob-
abilistic latent variable model [114]. This method finds the non-corrupted eigenval-
ues/eigenvectors, but it is not always able to regularize the covariance matrix opti-
mally for the point of view of eigenvectors as well. A similar method was proposed
by Allassonniere et al. [1], where kernels in Hilbert space are used for estimating the
covariance matrix of a generative model.

In Chapter 5, some alternatives to the aforementioned regularization methods are
proposed.





Chapter 4

Shape-based Assessment of Vertebral
Fracture Risk in Postmenopausal
Women using Discriminative Shape
Alignment

This chapter is based on

• ”Shape Based Assessment of Vertebral Fracture Risk using Discriminative Shape
Alignment in Postmenopausal Women” Alessandro Crimi, Marco Loog, Marleen
de Brujine, Mads Nielsen and Martin Lillholm. Academic Radiology, in press.

• ”Morphometric Assessment of Vertebral Fracture Risk in Postmenopausal Women
using Vertebral Shape Models and Discriminative Shape Alignment.” Alessan-
dro Crimi, Marco Loog, Marleen de Bruijne, Mads Nielsen, Martin Lillholm.
Abstract Annual meeting American Society for Bone and Mineral Research
2011 San Diego, California, USA 2011.

Rationale and Objectives. Risk assessment of future osteoporotic ver-
tebral fractures is currently mainly based on risk factors, such as Bone
Mineral Density, age, prior fragility fractures, and smoking. It can be ar-
gued that an osteoporotic vertebral fracture is not exclusively an abrupt
event but the result of a decaying process. For evaluating the fracture
risk, a shape based classifier, identifying possible small pre-fracture defor-
mities, may be constructed.
Materials and Methods. During a longitudinal case-control study, a
large population of postmenopausal women, fracture-free at baseline, were
followed. The 22 women who sustained at least one lumbar fracture by
follow-up represented the case group. The control group comprised 91
women who maintained skeletal integrity, and matched the case group
according to the standard osteoporosis risk factors. On radiographs, a
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radiologist and two technicians independently performed manual anno-
tations of the vertebrae, and a fracture prediction using shape features
extracted from the baseline annotations was performed. This was imple-
mented using posterior probabilities from a standard linear classifier.
Results. The classifier tested on our population quantified the vertebral
fracture risk, giving statistical significant results: AUC = 0.71±0.013 and
Odds Ratio = 4.9 with [ 2.94 ; 8.05] 95% C.I. for the radiologist annota-
tions.
Conclusion. The shape based classifier provided meaningful informa-
tion for the prediction of vertebral fractures. The approach was tested on
an osteoporosis risk factors matched case-control group. Therefore, the
method can be considered as an additional bio-marker, which combined
with the traditional risk factors can improve population selection, e.g., in
clinical trials, identifying patients with high fracture risk.

4.1 Introduction
Osteoporosis is a disease, characterized by a decrease in density and quality of bone,
potentially leading to fractures. Vertebral fractures are the most common type of os-
teoporotic fractures [110], and they may occur in absence of trauma or after minimal
trauma. In this case they are also called fragility fractures. Moreover, the presence
of vertebral fractures increases the risk of hip fractures [7] and additional vertebral
fractures [86]. A growing percentage of elderly people develop osteoporosis and expe-
rience osteoporotic fractures, and consequently the related burden sustained by the
medical system is heavy and increasing rapidly [110]. The total cost for the year 2000
in Europe has been estimated to 31.7 billion Euros and it is foreseen to grow up to
76 billion Euros by the year 2050 [68], while the estimated expenses for USA the year
2005 were 19 billion Dollars [14]. Therefore, early assessment of fracture risk is crucial
for reducing the number of fractures through appropriate treatments, for improving
the life quality of patients, and reducing costs to the health system.

Several clinical factors can provide information on fracture risk. These can be
Bone Mineral Density (BMD), age, prior fragility fractures, smoking, use of corticos-
teroids, excessive consumption of alcohol and rheumatoid arthritis [68]. The World
Health Organization (WHO) has formalized the analysis of such risk factors in the
FRAX tool [76], which gives a probability of hip fractures over a 10-year period and
a probability of a major osteoporotic fracture (located either in spine, forearm, hip or
shoulder) over a 10-year period as well. The FRAX tool is available as a web-service
and as a paper version with guided charts [39].

Diagnostic morphometric approaches include Semi-Quantitative methods (SQ)
performed using subjective judgment of an expert radiologist [46], and fully Quanti-
tative Morphometry methods (QM) based on the measure of relative height reductions
in vertebrae [30, 83]. In particular, each vertebra on a radiograph had the four cor-
ners and the mid-points of the endplates annotated according to Hurxthal criteria [60].
Figure 4.1(a) shows the overlay of a typical lumbar spine radiograph, and its rela-
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tive annotation. Both methods have advantages and disadvantages. Using only the
height measurements of a QM method, subtle shape information could be lost or non-
osteoporotic fractures, such as trauma fractures, could be indiscriminately considered.
Some of this information is used in SQ approaches. Hence, the Genant SQ method has
become one of the common standards for fracture assessment even if it can introduce
discrepancy among radiologists, particularly for mild fractures [45]. With the aim of
reducing the discrepancy among radiologist assessments, a series of steps to follow
while using this method was proposed [65]. In parallel with these established clinical
methods, some semi-automatic and automatic computer-based approaches were pro-
posed for quantifying vertebral fractures using a shape model [3, 23, 24, 97, 98]. The
approach presented by Roberts et al. [97, 98] constructed a statistical shape model
from a vertebral representation (and an appearance model), and employed a linear
discriminant classifier for identifying the fracture status. Another method also based
on statistical shape models was proposed by De Brujine et al. [23, 24]. The method
used conditional shape models trained on a set of healthy spines, for designing an
hypothetical vertebral shape for each vertebra in the image. The difference between
the true shape and the artificially constructed shape was an indicator of shape ab-
normality, and therefore of possible fracture.

Regarding prediction of osteoporotic vertebral fractures based on morphomet-
ric indices, less investigation has been carried out so far. Previous studies involved
normalized height measurements [27, 79], curvature analysis [95] and single vertebral
shape analysis [80] for analyzing slight deformities which can cause future fractures.
Some studies about the relation between vertebral dimensions and fracture risk were
also conducted [102].

The aim of the method described in this manuscript was to summarize both the
aspect of spine curvature and vertebral heights in an overall shape representation,
giving a more complete model for predicting vertebral fractures. A similar approach
has been carried out for the prediction of incident hip fractures [5, 51]. In prac-
tice, the method employed shape models, similarly as previously described for [97],
but performing prediction of osteoporotic fracture. The prediction is carried out by
examining baseline data where no fractures were present, identifying possible small
pre-fracture deformities of the spine shape that can result in future fracture. This
set-up has been already proposed [79, 80, 95] and it is here re-evaluated deeply con-
sidering spine shapes of the lumbar region, evaluating inter-annotator reproducibility,
and using a sophisticated cross-validation methodology. It can be argued that an
osteoporotic fracture should not be considered exclusively as an abrupt change in a
vertebra, but as a part of a slow deforming process involving a decrease in density
and quality in the bones, and the consequent bio-mechanics of the whole spine [13].
Since the related changes in spine shapes and vertebral heights could be slow and not
very pronounced, they could not be always visible to the naked eye. Figure 4.2(a)
and Figure 4.2(b) depict respectively a baseline example of a vertebra that fractured
by follow-up and a vertebra that did not. Figure 4.2(c) and Figure 4.2(d) show the
follow-up radiographs, acquired about 7 years later, of the same vertebrae respectively
in Figure 4.2(a) and 4.2(b).
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(a)

L1

L2

L3

L4

T12

(b)

Figure 4.1: On the left (a), overlay of the lumbar region in an x-ray image (case
baseline) and its 6 point annotation given by the stars. On the right (b), the
spine shape that can be obtained from the concatenation of the 2D-landmarks.
The annotations were performed considering coherently the lowest endplate of the
vertebrae. The contrast in the reproduction above is most likely too low to clearly
visualize all the lower boundaries. For the experiments reported in this study, a spine
shape was used as the collection of these landmarks without any interpolation.
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(a) (b)

(c) (d)

Figure 4.2: (a) Example of baseline vertebra which fractured by follow-up, (b)
example of baseline vertebra which did not fracture by follow-up, (c) and (d) are
follow-up radiographs of the same vertebrae depicted respectively in (a) and (b).

4.2 Materials and Methods

4.2.1 Data

In this study, we used a case-control cohort of post-menopausal women obtained as
follows. A large population of 4062 Caucasian postmenopausal women were followed
for a mean period of 7.3 years during a previous study [4], and a reanalysis of a rela-
tively small subset of this cohort was used for this study. For each patient, BMD at the
spine were assessed, and lateral radiographs of the spine were acquired. The lumbar
radiographs and BMD measurements were taken twice, once in 1992-95 (baseline) and
again in 2000-01 (follow-up), and the vertebrae were graded for their fracture status by
an experienced radiologist, according to the semi-quantitative method of Genant [46].
The Genant semi-quantitative method quantifies the presence or absence of vertebral
fractures according to the apparent reduction of height in the vertebral bodies, and to
specific deformations of the vertebral endplates. Any patients whose images contained
non-osteoporotic deformities and/or fractures were excluded; whether these were real
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or caused by projection errors. Patients, whose radiographs had the area surrounding
the T12 vertebra too dark, were also removed. The reason for these dark/low con-
trast regions is related to the acquisition protocol. The distance between the focal
plane and the film was kept constant at 1.2m and the central beam was directed to
L2. Due to biological variation among the patients some of the radiographs were not
clear near the edges where T12 is typically depicted. The fracture status of the spines
was re-evaluated by a computer algorithm using a modification of Genant’s method-
ology with a strict measured threshold, where a vertebra was considered fractured if
either of the ratios between any of the anterior, middle, and posterior heights was
0.8 or smaller. In particular, the ratios were obtained dividing the biggest height by
the smallest height of the vertebra in exam and the threshold was previously defined
in [79]. This additional step was deliberately used for filtering out subjects where
there was borderline disagreement between the SQ and QM based fracture assess-
ments, preventing the algorithm from being influenced by such a disagreement. All
subjects were fracture-free at the time of the first acquisition according to both the
SQ and QM method. The patients removed due to the disagreement between the QM
and SQ method were 11 cases and 7 controls. The 22 patients of this population,
who sustained at least one incident osteoporotic lumbar fracture by follow-up, were
selected as the case group. While the control group contained 91 patients who main-
tained skeletal integrity from baseline to follow-up. The patients in the control group
were matched to the patients in the case group according to traditional osteoporosis
risk factors such as age, height, weight, and spine BMD. The match was performed in
the study of Pettersen et al. [95] over the sub-set of patients that were fracture-free
at follow-up, selecting approximately 5 random control patients for each case patient
to ensure an acceptable total number of subjects.
Written consent was obtained from each participant according to the Helsinki Decla-
ration II. The study was approved by the local ethics committee. The methodology
described in this manuscript was considered in a case-control population matched for
the standard osteoporotic risk factor, to evaluate the predictive value of the method-
ology independently from the other risk factor [4].

The used images were digitized lateral radiographs, obtained using a Vidar Dosime-
tryPro Advantage scanner at 570 DPI resulting in images of 9651 ⇥ 4008 pixels in
12-bit gray scale with a pixel size of 44.6µm⇥44.6µm. Each image was used to define
annotations with 6 points [60] for each vertebra as in Figure 4.1(a). A first set of
annotations was performed by radiologist PP. To facilitate inter-annotator validation
the same radiographs were also annotated independently by two trained technicians
(JP and AO). The annotated vertebrae were four of the five lumbar vertebrae L1-L4
and the lowest thoracic T12. The L5 vertebra was not taken in consideration due to
the fact that it is often covered by the hip and therefore difficult to see and annotate.

4.2.2 Methods

Our aim was to evaluate whether an unseen spine has a high fracture risk or not. For
this purpose, we designed a machine learning algorithm, which, given a set of spines
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as described in the previous section, was capable of assessing the fracture risk of an
unseen spine representation. Only baseline spine data were used, since the prediction
was supposed to be performed when all the spines were still considered fracture free.
The algorithm comprised a training phase reported in the following first four steps,
and a classification phase regarding the unseen spine described in the fifth step:

1. Compute the spine mean landmark shapes µ or a landmark reference shapes
µref from the spine shapes of the used cohort (see Subsection 4.2.2 and 4.2.2).

2. Align all the spine shapes to the common reference of frame given by µ or µref

(see Subsection 4.2.2 and 4.2.2).

3. Build a statistical shape model from the landmark coordinates of the spine
shapes, and represent the shapes using this model (see Subsection 4.2.2).

4. Train a classifier using the shape information obtained from step 3 (see Subsec-
tion 4.2.2).

5. Quantify the fracture risk of the unseen shape in an unbiased way, using the
alignment, the statistical model and classifier trained in step 2, 3 and 4.

In particular, the shape alignment was performed using two different approaches,
the well-known Generalized Procrustes Analysis (GPA) [11, 49] described in Subsec-
tion 4.2.2, and the supervised approach of Discriminative Shape Alignment (DSA) [80]
described in Subsection 4.2.2, where the alignment took into consideration to which
group each training shape belongs.

Shape Alignment

Vertebral bodies were not usually depicted in the same orientation or scale in radio-
graphs mainly due to biological variation and positioning. Therefore, the shapes were
aligned to a coherent representation before further analysis.

In our experiments, we used the GPA technique, which removed translational,
rotational, and scaling differences from the shapes preserving the intrinsic geometry.
GPA estimates a mean shape µ from a data-set and aligns all the shapes to this mean.
These two steps are repeated several times until convergence criteria are satisfied. The
process is based on the minimization of the Procrustes distance between two shapes
as

dGPA(xi,xj) = ||Wixi � xj ||2, (4.1)

where Wi is a similarity transformation matrix, which can be found either by using
a closed form solution [28] or in an iterative fashion [10], and xi and xj are specific
shapes.
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Point Distribution Model

After the shapes were aligned to a common frame of reference, the remaining variance
with respect to the estimated mean shape can be modeled using a statistical method-
ology called Principal Components Analysis (PCA) [66], allowing the construction of
a Point Distribution Model (PDM) [19]. PCA is an orthogonal linear transformation
which projects the values of given variables into a new coordinate system. The basis
components of this new space are called principal components, and they define the
allowable shapes. Such components are ordered in a descending order according to
the variance of the observed variables. Selecting a subset s of the total q basis with
s  q, the projection can reduce the dimensionality of the data, and therefore the
noise, allowing possible better performance in some tasks [6].

In detail, the projected shape features were obtained from the 2D-landmark an-
notations in the following way: each shape was described as a vector x. Those n

shapes were afterwards aligned, mean-subtracted and collected in a sample matrix
X 2 Rq⇥n. In our experiments, q was equal to 60 since we used 30 2D-landmarks.
The covariance matrix ⌃ =

1
nXXT can be decomposed as

⌃ = V ⇤V T
, (4.2)

where V = [v1| . . . |vq] is the column matrix of eigenvectors, and⇤ = diag ([�1, . . . ,�q])

is the diagonal matrix of corresponding eigenvalues [66]. These eigenvectors and eigen-
values could be used for representing the shapes into the new coordinate system as

Y =

p
⇤�1V TX. (4.3)

This equation represents the linear transformation PCA is performing on the data X
to yield the transformed Y .

Through equation (4.3), PDM [19] represents each spine shape as the sum of the
mean shape and an approximation of the s largest principal components as

x̃ = V diag
⇣hp

�1, . . . ,
p

�s, 0, . . . , 0

i⌘
y + µ, (4.4)

where x̃ is the approximation of x using this model, y is the column vector in Y
corresponding to the column vector in X, and diag

�⇥p
�1, . . . ,

p
�s, 0, . . . , 0

⇤�
is the

diagonal matrix containing a subset of eigenvalues. The optimal number of used com-
ponents s represents a pivotal parameter which needs to be estimated. We describe
in the next Section 4.2.3 how this selection was performed in our experiments.

Linear Discriminant Classifier

The main goal of our framework was to evaluate whether there was a correlation
between a spine shape and a high risk of future vertebral fractures. For this pur-
pose, representing the spine shapes as described in the previous section allowed their
representations in a space of s dimensions, where a Linear Discriminant Analysis
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(LDA) [29] can be used. The LDA classifier was trained according to the correspond-
ing categorical class labels of each shape. In practice, label values of �1 to control
(or non future fractured vertebrae), and +1 to case (or future fractured vertebrae)
were assigned.

LDA is a statistical methodology searching for a linear combination of features
or measurements which characterize or separate two or more classes of objects. LDA
separated the two classes by assuming that the conditional probability density func-
tions are given by the normal distributions N(µcase,⌃) and N(µcontrol,⌃), where
those distributions were defined by the empirical mean of the case and control groups
respectively, and by the pooled covariance estimated from the samples of both groups.
Our aim was to evaluate how high the probability was of a new spine shape x to belong
to the case group, and therefore to sustain a fracture. Hence, after the approximation
of x to x̃, the risk score was assessed as

Pcase(x̃|µcase,⌃). (4.5)

By normalizing the score as Pcase = Pcase/(Pcase + Pcontrol), the probability of
fracture risk in the interval between 0 and 1, where values close to 1 represented
high risk of vertebra fracture and 0 low risk. Figure 4.3 depicts, from left to right,
some spine shapes ordered from low to high fracture risk as defined by the described
probability. The picture illustrates how difficult is to see the slight differences in the
vertebrae shapes and spine curvature without accurate measurements.

Figure 4.3: Examples of baseline spine shape, ordered from left to right accord-
ingly to their probability of belonging to the case group based on our fracture risk
score. For the experiments reported in this study, the spine shapes were used as the
collection of the landmarks without any interpolation.

Discriminative Shape Alignment

The algorithm described in Subsection 4.2.2 aligned all the shapes in a fully unsu-
pervised way, without taking into account whether the shapes belonged to the future
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fractured group or not. Using the class label information during the alignment can
benefit the performance of a subsequent classification [80], which was our final goal.
The idea was to use a linear regression for the iterative alignment, involving the class
labels {ki}, obtaining the so called DSA [80]. Given n shapes {xi} and their labels
{ki} indicating a future fractured spine or not, it is possible to find a reference shape
muref to which all the {xi} shapes should be aligned, such that the two shape classes
are as far as possible from each other. To perform this supervised alignment two pro-
cesses need to be merged: a discriminative linear regression [55] which discriminates
the shapes and an analytic solution of the Procrustes alignment.
The discriminative regression solution can be obtained by finding the vector aT 2 Rn

that minimizes
⌃

N
i=1(a

Txi � ki)
2
, (4.6)

where aT is the discriminative linear regression vector.
Representing a shape xi as a complex normalized vector zi 2 C, it is possible to align
it to the mean shape m 2 C [28] by the following operation:

z
0

i = ziz
H
i m. (4.7)

Here, z

H
i represents the Hermitian of the shape vector. To use this alignment in

conjunction with the minimization of equation (4.6), the complex vectors must be
converted to real values yielding the expression:

⌃

N
i=1(a

TZiµref � ki)
2
, (4.8)

where Zi =

✓
Re(ziz

H
i ) �Im(ziz

H
i )

Im(ziz
H
i ) Re(ziz

H
i )

◆
. The algorithm is initiated with the mean

shape as the µref , and iteratively updates the reference shape in conjunction with
the projection vector aT . Expression (4.8) cannot be solved in closed-form since it
represents an intertwined linear regression problem [80].

Therefore, an iterative schema should minimize equation (4.8) alternating two
regressions by every time keeping fixed either aTZi or µref .

Since our spine shape representation was up to q = 60 dimensions and only 113
spine shapes were available, the two regressions can define an ill-posed problem [113].
Hence, in each alignment iteration regularization [54, 57] had to be introduced [80].
Therefore, the iterative schema was defined by the following steps:

1. Compute aT
= K(FHF + rI)�1FH .

2. Re-project the shapes using the updated aT and update the matrix F .

3. Update the mean as µref = (FHF + rI)�1FHK.

4. Re-compute the F matrix.

Here, F is the multidimensional matrix containing all the Zi matrices of all the
shapes multiplied by µref , K the vector containing all the labels ki, and r is a
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regularization-parameter which controlled the degree of regularization. The estima-
tion of the regularization parameter was similar to the search of the optimal number
of eigenmodes and it is described in the following section.

Previous investigations [80] demonstrated that this discriminative alignment can
reduce the number of false positive compared to the traditional GPA.

4.2.3 Experiments

The experiments were performed in a cross-validation manner over the entire data-
set, considering independently the three sets of annotations. Each spine annotation
was randomly selected in turn to be the test shape, the remaining shapes from the
data-set were used once again in a cross validation manner to obtain the optimal
parameters subsequently tested on the test shape, where optimal is referred to the
parameters yielding the highest Area Under the ROC-curve (AUC), as explained in
Subsection 4.2.4. In this way, the alignment, the projection and the classifier were
trained excluding the current test shape. For each classified spine test shape, we
then recorded the classifier measures of fracture risk. The final performance was also
measured using the AUC. This partitioning was called Balanced-Nested- Leave-Out
(BNLO), since it maintains a balance between the classes removing at each iteration
one shape from the case group and the proportional from the control group ( 5 for
the current cohort). The algorithm can be performed for several random samples
where one single shape could be scored several times while different shapes from the
other class were removed randomly. For the GPA version of our algorithm the only
needed parameter was the number of used eigenmodes s as in equation (5.5), while
for the DSA version, the parameter space is also given by a regularization parameter
during the optimization. The steps involved in the BNLO algorithm for the DSA case
are summarized in the following Pseudocode 1. The BNLO algorithm comprised a
two nested layers of cross-validation. For n random shapes, the outer layer selected
a test shape and scored it using a tuned shape model and classiffier after a tuning
phase which occurred in the inner nested layer. The inner layer computed the AUC
of further n random shapes for all the parameter values in an unbiased way, removing
once again iteratively a test shape from a class and the proportional of the other before
the training, and testing the inner-layer test shapes on the trained shape model and
classiffier. The parameters yielding the highest AUC obtained here were selected for
tuning the shape model and classifier in the outer layer. At this point, the outer-layer
test shape removed in the begin can be tested. The probability scores obtained in the
outer layer were used to define the AUC and Odds Ratio (OR).

The algorithm was meant to be run for a specific number of randomly selected
shapes, where the selection is performed with replacement. However, to speed up
the process, the algorithm can be applied in parallel and the number of random
samples distributed over the parallel repetitions. In our experiments, for example,
instead of using 3200 random samples in both cross-validation layers in a single run,
10 parallel repetitions of 1000 samples each were used, obtaining the proportional of
(3.200⇥3.200) ⇡ 10⇥(1.000⇥1.000) iterations. The algorithm comprises three major
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parts: alignment, training of the classifier, and risk scoring. Only the alignment is
different in the two versions of the algorithm. For a single alignment, the GPA
algorithm employs 10 ms while the DSA algorithm requires 170 ms. The training and
testing employ respectively 30 ms and 2 ms. These timings are obtained times on a
2.2 GHz dual core Intel processor. These operations are repeated thousands of times
during the cross-validation described above.

4.2.4 Statistical analysis

The patients of the control group were selected matching them to the patients in the
case group according to the standard risk factors for osteoporosis. To validate this
match, the p-values representing the two populations comparison were computed us-
ing the Wilcoxon rank sum test as reported in the next section, along with the mean
values and standard deviations for the major biological information. Non-significant
p-values guaranteed the similarity of the two classes. The performance of the pre-
diction algorithm was validated computing the AUC for each set of annotations, the
p-values of such curves compared to chance using the Delong test [25], and the Odds
Ratio (OR) of the classification with 95% confidence interval. P-values smaller than
0.05 were considered significant. The use of the cross-validation approach described
in the previous subsection assured unbiased results. However, the BNLO algorithm
employed more samples than ”really” present in the data-set, since we used the same
samples several times, causing very small misleading p-values due to the normalization
during the Delong test. To avoid this unwanted side effect, we averaged the scores
with respect to the same test shape in exam. Furthermore, the BNLO algorithm was
run for 10 iterations (see Subsection 4.2.3) and the scores averaged with respect to
the same test shape also over the different repetitions. The inter-annotator repro-
ducibility was assessed using the coefficient of variation (CV) calculated as follows:
CV% = (�height/µheight) ⇤ 100. This measure was used to assess the three heights
variability of the five vertebrae. The root mean square (RMS)-CV was used to aggre-
gate over vertebrae and subjects yielding one RMS-CV for the anterior, middle, and
posterior heights respectively.

4.3 Results
The patients of the two classes were successfully matched for BMI, BMD, age, height,
weight, physical activities and smoking habits as reported in Table 4.1. The table also
comprises the median values for the two groups and the mean and standard deviation
between parentheses. Figure 4.4 depicts the ROC-curves for the three distinct sets
of annotations using the two different alignment methods. Figure 4 (a) and Table 2,
reporting the results for the GPA version of the algorithm, show significant values
using the PP set of annotation and not statistically significant values using the other
sets of annotations. The curves depicted in Figure 4(b) and the values of Table 3 show
better or relatively similar results using the discriminative alignment approach, com-
pared to the results obtained using GPA; with this setting the AUCs were significant
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Pseudocode 1 BNLO algorithm using the DSA version:
n_class = 2 {case,control}.
n_random_shapes = 1000 (selected with replacement)
n_eigenvalues = maximum dimension(in our case 60)
regularization_parameters = linspace(0,1,100).
n_parallel_repetition = 10

Repeat for n_parallel_repetition
For all the n_random_shapes samples do

1. Select a random test shape x, and remove
the proportional random shapes U from the other class.

For all the n_random_shapes samples do
2. Select another test shape w and proportional J shapes

of the other class from the data-set {case, control}\{x,U}.

For all the regularization_parameters
For all n_eigenvalues

3. Train a shapemodel using {case, control}\{x,w,U,J}.
4. Train a classifier using the features obtained in step 3.
5. Score the test shape w.

end
end

end of the parameter evaluation phase

6. Select the optimal number of eigenvalues
and regularization_parameters giving the max AUC.

7. Train a shapemodel using {case,control}\{x,U} and the optimal
value given in the previous step 6.

8 Train the classifier using the resulting features of step 7.
9. Score the test shape of the shape x using the shapemodel and

classifier obtained trained in steps 7 and 8.

end of test phase
end of parallel repetition

10. Average the scores of the previous loop with respect to the test shapes.
11. Use all the scores for computing a ROC-curve, AUC and p-values.

for all sets of annotations.
The inter-annotator reproducibility of the annotations has been quantified using

the CV of the three heights: 1.17% for the anterior, 2% for the posterior, and 0.64%
for the central height. These measurements express the different heights of the 5
vertebrae using the RMS of the CV.
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Feature cases(n=22) controls(n=91) p-value

Age 64.7 65.4 p= 0.98
(year) (66.9 ± 5.4) (66.6 ± 5.9)
Height 162 161 p= 0.21
(cm) (163 ± 4.6) (161 ± 6.0)

Weight 64.5 65.4 p=0.53
(kg) (68.3 ± 11.7) (65.4 ± 8.4)
BMI 24.8 24.6 p=0.72

(kg/m2) (25.5 ± 4.0) (25.0 ± 3.2)
SpineBMD 0.79 0.84 p=0.20
(g/cm2) (0.81 ± 0.14) (0.86 ±0.14)

Table 4.1: Biological data used for matching the case and control group. The
values of the first two columns are median values for the two groups with the mean
and standard deviation between parentheses. The last column reports the Wilcoxon
rank sum test p-values for the comparison between the two groups

Dataset AUC p-value OR - C.I. 95%
PP 0.72 p=0.017 5.85

± 0.009 [ 3.52 ; 9.71 ]
JP 0.54 p=0.352 1.04

± 0.089 [ 0.62 ; 1.66 ]
AO 0.53 p=0.384 1.03

± 0.061 [ 0.60 ; 1.45 ]

Table 4.2: AUCs, p-values and Odds-ratios obtained using the GPA alignment
methodology and different sets of annotations. The reported results are mean values
with respect to the same test-shape for 10 iterations using 1000 samples of the BNLO
cross-validation protocol. The reported p-values were obtained comparing the scores
to chance using the Delong test.

4.4 Discussion
This manuscript described a morphometric index based on a statistical shape model,
for predicting vertebral fractures in the lumbar region. It can be hypothesized [27,98]
that with age the spine curvature and vertebrae shapes undergo minimal changes.
These changes in the spine structure can produce musculoskeletal forces influencing
the spine itself, and leading in the long run to one or more fractures in the spine [120].
The described shape based framework was able to capture slight shape and curvature
variations related to possible future fractures. The reported longitudinal case-control
study involved 113 post-menopausal women from a larger population. The control and
case group data-set were matched with respect to traditional osteoporosis risk factors
and obtained from a larger population. The subjects of both groups were fracture-
free at baseline. During the study, radiographs of the lumbar region were acquired
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Dataset AUC p-value OR - C.I. 95%
PP 0.71 p=0.019 4.87

± 0.013 [ 2.94 ; 8.05]
JP 0.62 p=0.043 2.04

± 0.025 [ 1.21 ; 3.36 ]
AO 0.60 p=0.047 1.92

± 0.046 [ 1.06 ; 2.87]

Table 4.3: AUCs, p-values and Odds-ratios obtained using the DSA alignment
methodology and different sets of annotations. The reported results are mean values
with respect to the same test-shape for 10 iterations using 1000 samples of the BNLO
cross-validation protocol. The reported p-values were obtained comparing the scores
to chance using the Delong test.

and spine fracture status assessed using one semi-quantitative and one quantitative
morphometric method. The surprising small number of patients is the consequence
of strict selection criteria such as the aforementioned absence of fracture at baseline,
the consensus assessment between the QM and SQ methods, the absence of non-
osteoporotic fractures and corticosteroids use. The spine shapes obtained from those
annotations were used, in an unbiased way, as features for an LDA classifier identifying
the spines with high risk of fracture.

The DSA version of the described algorithm was capable of quantifying the frac-
ture risk of spines for all three used sets of annotations. However, the algorithm
performed better on the radiologist annotations than on the annotations performed
by the trained technicians. In particular, even the GPA based algorithm performed
well on the PP data-set, but the experiments on the JP and AO set of annotations
needed the DSA version of the algorithm to reach statistically significant results. The
discrepancy can reflect the fact that radiologist annotations are qualitatively more
precise than technician annotations. This sensitivity to annotation quality has also
been seen in another study using a different morphometric index tested on almost the
same data-set [79]. In this previous study, a methodology based on normalized ver-
tebral heights slightly outperformed our method for the radiologist annotations but
gave similar results regarding the technician annotations. These observations lead to
the suggestion to perform further shape based predictions using radiologist annota-
tions. Despite the difference in results compared to the method described in [79],
possibly based on the fact that such a method is specifically designed to most de-
formed vertebral heights, the approach reported in this manuscript can be used in
other prediction and classification contexts, where label information of the training
data-set is available, since it is based on the general concept of shape. Since the DSA
algorithm included the class label information, it gave more robust results compared
to the GPA in our experiments. However, the DSA algorithm is computationally
more demanding. The results reported in this paper, although promising, should be
validated in future studies to establish applicability on other populations. Moreover,
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Figure 4.4: ROC curves obtained using the BNLO algorithm and (a) the GPA
alignment, (b) the DSA alignment. The curves are constructed using all the scores
without averaging the scores with respect to the same test shape. The same random
samples were used for both versions of the algorithm.

the described algorithm was tested on the lumbar vertebrae L1-L4 and the thoracic
vertebra T12 which represents the junction of two different regions, and therefore
interesting from the point of view of fragility of the spine structure [82]. This choice
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was primarily made for facilitating the comparison with studies on al most the same
cohort [79]. The L5 vertebra, which was not included in the presented model due to
the fact that it is often covered by the hip, could also improve the shape analysis.
This can represent a potential limitation of the study. The extension from the lumbar
region to the rest of the spine was attractive, but as reported in [79], the biological
variation between lumbar and thoracic vertebral shapes is quite large, and possibly
the transition from the use on lumbar vertebrae to the use on thoracic vertebrae
would not be trivial. The presence and absence of vertebral fractures was established
by both a radiologist using Genant’s SQ method [45] and subsequently by a computer
algorithm using measures of the vertebral heights with a strict fracture threshold. As
a future work, it would be relevant to validate the described fracture-risk algorithm
with respect to changing the ”ground truth” fracture assessment methodology to other
established methods, such as the Melton or McCloskey methods [30,65,83].

Our method was tested on a population matched according to the common os-
teoporosis risk factors, giving relative discrimination between the case and control
spine shapes. Therefore, the algorithm can be considered as a further morphometric
bio-marker, which combined with the traditional risk factors allows a more reliable
prediction of vertebral fractures. The matched population was used to evaluate the
predictive value of the methodology independently from the other risk factor [4]. A
comparison between the described methodology and the standard osteoporotic risk
factors in populations with less restriction is relevant and considered as a future
work. However, this approach could facilitate a population selection in clinical trials,
reducing the number of required patients, and helping identifying patients with high
fracture risk, who could benefit from treatments.





Chapter 5

Maximum A Posteriori Estimation of
Linear Shape Variation with
Application to Vertebra and Cartilage
Modeling

This chapter is based on the manuscripts

• ”Maximum A Posteriori Bayes Estimation of Linear Shape Variation with Appli-
cation to Vertebra and Cartilage Modeling.” Alessandro Crimi, Martin Lillholm,
Anarta Ghosh, Marleen de Bruijne, Erik Dam, Mads Nielsen, Jon Sporring.
IEEE Transaction in Medical Imaging, vol.30(8) pages 1514-1526, August 2011.

• ”Bayes estimation of shape model with application to vertebrae boundaries.”
Alessandro Crimi, Anarta Ghosh, Jon Sporring, and Mads Nielsen. In Proceed-
ings of the SPIE: Medical Imaging 2009, Orlando, Florida, USA, 2009.

• ”Prior knowledge regularization in statistical medical image tasks.” Alessandro
Crimi, Jon Sporring, Marleen de Bruijne, Martin Lillholm, Mads Nielsen. PM-
MIA workshop in conjunction with MICCAI 2009,Imperial college London, UK,
2009.

The estimation of covariance matrices is a crucial step in several statistical
tasks. Especially when using few samples of a high dimensional represen-
tation of shapes, the standard Maximum Likelihood estimation (ML) of
the covariance matrix can be far from the truth, is often rank deficient,
and may lead to unreliable results. In this paper, we discuss regulariza-
tion by prior knowledge using Maximum A Posteriori (MAP) estimates.
We compare ML to MAP using a number of priors and to Tikhonov reg-
ularization. We evaluate the covariance estimates on both synthetic and
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real data, and we analyze the estimates’ influence on a missing-data re-
construction task, where high resolution vertebra and cartilage models
are reconstructed from incomplete and lower dimensional representations.
Our results demonstrate that our methods outperform the traditional ML
method and Tikhonov regularization.

5.1 Introduction
Estimation of the covariance matrix is an initial and pivotal step of Principal Com-
ponent Analysis (PCA) [94], Factor Analysis (FA) [112], some versions of regression,
and many other statistical tasks. If the sample size is small, and the number of con-
sidered variables is large, then the estimation of the covariance matrix can be poor.
Regularization and specifically shrinkage have been proposed to improve estimates of
covariance matrices.

Shrinkage methods aim at improving estimates by shrinking the estimation to-
wards zero or in the general setting towards some specific value. The oldest shrinkage
methods were proposed in the early 60’s [108,113], and afterwards a series of important
methods appeared [31,40,53,57,64,103]. These methods depend on the proper choice
of a mixing parameter, and the mixing parameter is often selected to maximize the
expected accuracy of the shrunken estimator by cross-validation [40,57] or by using an
analytical estimate of the shrinkage intensity [31, 53, 64, 103]. Regularized estimators
have been shown to outperform the standard Maximum Likelihood (ML) estimator
for small sample sizes [103]. It is most common to use a simple form of ridge regres-
sion [57], where nonzero values are added to the diagonal elements of the covariance
matrix. Ridge regression was originally introduced by Tikhonov for solving an under-
determined system of linear equations [113]. Friedman presented a restricted version
of this regularization, linking the mixing parameter to the minimization of misclassifi-
cation risk during discriminant analysis. Generally in regularization, non-zero values
are added to the diagonal elements of a covariance matrix as ⌃̂reg = ⌃̂+↵

2I, where
↵

2 is the discussed mixing parameter. It was shown that this mixing parameter is not
likely to be known in advance, and finding its optimal value can be computationally
demanding [40].

Probabilistic PCA considers the Maximum Likelihood solution of a probabilistic
latent variable model. This method finds the non-corrupted eigenvalues/eigenvectors,
but it is not always able to regularize the covariance matrix optimally [114]. A similar
method was proposed by Allassonniere et al. [1], where kernels in Hilbert space are
used for estimating the covariance matrix of a generative model.

Stein estimators [31, 53, 64, 103] estimate the mixing parameter using just the
sample covariance matrix. However, these methods rely on the estimation of a specific
cost function.

An overview of methods optimized for data in non-linear subspaces is given in [77],
particularly we wish to highlight Minimum Noise Fraction [50], Minimum Autocorre-
lation Factor [109], and Principal Geodesic Analysis (PGA) [38]. In these cases, PCA
can be used as local, linear approximations.
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In this paper, we investigate regularization by Maximum A Posteriori (MAP) es-
timates of covariance matrices in a PCA setting. A number of priors are discussed
for this MAP method, and the usefulness of the priors is evaluated against known
ground truth covariance matrices. Our underlying motivation is to improve the ac-
curacy of medical diagnosis and prognosis of diseases, such as Osteoporosis (OP) and
Osteoarthritis (OA). As an example application, we demonstrate how low resolution
vertebral shape outlines can be interpolated into high-resolution full contours using
a shape model based on a MAP estimate of the point distribution model’s intrinsic
covariance matrix.

5.1.1 Principle Component Analysis and Maximum Likelihood

Covariance estimation (ML)

In statistical shape analysis, a shape model is typically built using a set of training
examples often represented as a sample matrix [17, 18]: A shape x 2 Rq is a vector
of ⇣ labeled landmarks, p 2 Rl,

x = [pT
1 |pT

2 | . . . |pT
⇣ ]

T
, (5.1)

and the collection of n shapes is collected in a sample matrix, X 2 Rq⇥n,

X = [x1|x2| . . . |xn]. (5.2)

As an example, consider 30 shapes each consisting of 6 landmarks in 2 dimensional
X-ray images, then pi 2 R2, x 2 R12, and X 2 R12⇥30.

PCA [94] also known as Karhunen-Loeve transformation [70] and Hotelling trans-
formation [58] is a widely used technique for applications such as dimensionality
reduction, data compression, and data visualization [66]. PCA is an orthogonal pro-
jection of the data onto a lower dimensional linear subspace, such that the variance
of the projected data is maximized sequentially along each new coordinate axis. The
linear subspace is not always a precise model of the variability in the data: In the
case of shapes, the shapes themselves may intrinsically lie on a non-linear subman-
ifold. Furthermore, shape normalization using, e.g., Procrustes’ method [11, 49] for
neutral position, size, and orientation will also typically project the shapes onto a
non-linear submanifold. As an example, size normalization, such as x = x/ kxk2 will
project the samples onto a q� 1 dimensional hypersphere, as illustrated in Figure 5.1
for 2-dimensional data. In this case, PCA may be considered an approximation of
the projected variability in the tangent plane under suitable choice of mean. In part,
this limitation can be addressed by exploiting the metric of the embedding manifold
using techniques, such as, PGA [38]. Nevertheless, we only consider regularized linear
models, since our focus is on cases, where the number of samples is small compared
to the dimensionality of the embedding space, n ⌧ q, and since we do not assume
prior knowledge about any underlying shape manifolds.

PCA models the cloud of (normalized) shapes {xi}i=1...n as a Gaussian distribu-
tion with mean µ = E[x] and covariance ⌃ = E[(x�µ)(x�µ)T ]. In this paper, we
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Figure 5.1: Size normalization of samples (filled circles) projects onto a non-
Euclidean hypersphere (striped circles). A linear model hereof further projects onto
a line (empty circles).

assume that ⌃ has full rank except for shape normalization, e.g., when normalizing
for translation, scaling and rotation, then ⌃ has rank q� l�1. The covariance matrix
⌃ is symmetric and positive semi definite, which is why we may write its eigenvalue
decomposition as,

⌃ = V ⇤V T
, (5.3)

where V = [v1| . . . |vq] is the column matrix of eigenvectors, and⇤ = diag ([�1, . . . ,�q])

is the diagonal matrix of corresponding eigenvalues. Eigenvectors and values are as-
sumed sorted according to |�i| � |�j | for i < j. Transforming the shapes onto a new
coordinate system ⌅ = [⇠1|⇠2| . . . |⇠n] as,

⌅ =

p
⇤�1V T

(X � µ1T
n ), (5.4)

where 1n = [1, . . . , 1] is a column vector of n ones, such that the outer product
µ1n = [µ| . . . |µ] is a matrix of n µs, and where the inverse of zero eigenvalues are
set to zero. We may consider the shape variations as ordered by variance in an
uncorrelated coordinate system, and we may write an approximation of a shape x by
the t absolutely largest eigenvalues as,

x̃ = µ+ V diag
⇣hp

�1, . . . ,
p

�t, 0, . . . , 0

i⌘
⇠, (5.5)

where ⇠ is column vector in⌅ corresponding to the column vector in X. The quadratic
error of the approximation will be kx� x̃k22 =

Pq
i=t+1 �i.

An often used estimate of the covariance matrix is the ML estimator [2]: The
shapes x are assumed to be independent and to have identical Gaussian density
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function, yielding the following joint distribution

p(x1,x2, . . . ,xn|⌃,µ) =

1

(2⇡)

(nq)
2 |⌃|

n
2

exp

 
�1

2

nX

i=1

(xi � µ)T⌃�1
(xi � µ)

!
, (5.6)

where |⌃| is the determinant of ⌃. This distribution is often called the likelihood of
{xi}i=1...n, and the point of maximum likelihood for varying µ and ⌃ is derived for
completeness in Appendix 5.5 and is found to be,

µ̂ =

1

n

nX

i=1

xi, (5.7a)

⌃̂ =

1

n

nX

i=1

(xi � µ̂)(xi � µ̂)T . (5.7b)

The covariance estimate is slightly biased, but for large n the bias is negligible. The
speed of the convergence of the estimator is inversely proportional to the number
of shapes in a data set. However, faster convergence may be achieved, when prior
knowledge is available.

5.1.2 Tikhonov Regularization of Covariance Estimates (ML-

T)

Regularization is one method for introducing prior knowledge and is often used as a
tool for improving the estimate, when the number of samples is small compared to
the dimensionality of the embedding space, n ⌧ q. It is most common to use a simple
form of ridge regression or Tikhonov regularization [57,113], where nonzero values are
added to the diagonal elements of the covariance matrix,

⌃̂reg = ⌃̂+ ↵

2I, (5.8)

where ↵ 2 R. We refer to this method as ML-T. By diagonalizing ⌃̂, it is seen that
ML-T only affects the eigenvalues of ⌃̂reg adding ↵

2 to the eigenvalues of ⌃̂ regardless
of their value. Adding a constant to zero eigenvalues is useful for regularizing an
inversion but may not be for analyzing the subspace spanned by the data. It is
our experience, that for n ⌧ q, the low absolute eigenvalues require relatively more
regularization than the high absolute eigenvalues. Varying ↵ as function of absolute
eigenvalue is not easily done using ML-T. In this paper, we discuss Bayes estimation
of the covariance matrix using the Maximum A Posteriori (MAP) method. We discuss
two priors closely tied to the Wishart distribution, which allows for varying degree of
regularization depending on absolute eigenvalue. Finally, we discuss a more general
Gaussian prior, which allow for prior knowledge on off diagonal interactions.
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5.2 Maximum A Posteriori Covariance Estimation
If we consider ⌃ a random variable in the space of symmetric, positive semi definite
matrices, then Bayes theorem states that

p(⌃|S) = p(S|⌃)p(⌃)
p(S)

, (5.9)

where p(⌃|S) is the posterior, p(S|⌃) the likelihood, p(⌃) the prior, and p(S) is
the evidence. We may postulate prior knowledge as prior densities and calculate the
Maximum A Posteriori (MAP) estimate. As a limiting case, MAP converges to ML
as the prior converges to the improper uniform distribution.

For all Bayes estimators of covariance matrices presented in this paper, we consider
the same likelihood distribution p(S|⌃, n) of the sample covariance matrix, S 2 Rq⇥q,

S = (X � µ1T
n )(X � µ1T

n )
T
. (5.10)

A Gaussian distribution with mean µ and covariance ⌃ on x induces a Wishart
distribution on the likelihood of S [2, Chapter 7],

p(S|⌃, n) =
|S|(n�q�1)/2 exp

�
� 1

2 tr
�
⌃�1S

��

2

nq/2 |⌃|n/2 �q

�
n
2

� , (5.11)

where �q is the multivariate Gamma function,

�q

⇣
n

2

⌘
= ⇡

q(q�1)/4
qY

i=1

�

✓
n

2

� i� 1

2

◆
. (5.12)

The zero mean distribution that best fits the samples S is found as the point of
maximum log likelihood for varying ⌃ as,

⌃̂ =

1

n

S, (5.13)

identical to (5.7b). A common prior for covariance matrices is the Inverted Wishart
to be discussed in the following.

5.2.1 Inverted Wishart Prior (MAP-IW)

A prior giving a simple MAP estimate is the inverted Wishart distribution [2, Chap-
ter 7],

p(⌃| ,m) =

| |m/2 exp
�
� 1

2 tr
�
 ⌃�1��

2

mq/2 |⌃|(m+q+1)/2
�q

�
m
2

� , (5.14)

where  and m � q are parameters of the distribution. The inverted Wishart density
originates as the distribution of S�1, when x is Gaussian. Since the evidence is
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independent on ⌃, we find that the point of MAP is

⌃̂ = argmax

⌃
p(S|⌃, n)p(⌃| ,m) (5.15a)

= argmax

⌃

c | |m/2 exp
�
� 1

2 tr ((S + 
�
⌃�1��

|⌃|(n+m+q+1)/2
(5.15b)

using

c =

|S|(n�q�1)/2

2

(n+m)q/2
�q

�
n
2

�
�q

�
m
2

�
. (5.16)

⌃̂ =

1

n+m+ q + 1

(S + ) . (5.17)

Regarding the structure of (5.17), we find that it can be similar to Tikhonov regu-
larization (5.8), when  = ↵

2I, ↵

2 ' 1/n, and n � m + q + 1. In any case, the
parameter  should be set by prior knowledge, e.g., as a measure of the uncertainty
in landmark detection by a human operator, or using a geometric distance measure
such as (5.32) also investigated in [107].

We wish to use the Inverted Wishart to model independent landmark noise, there-
fore the structure of the true covariance matrix is assumed to be block diagonal (one
block per landmark), and hence  must also be block diagonal. Further, we observe
that for typical ML estimates of ⌃̂ for n ⌧ q, the close to zero eigenvalues are par-
ticularly poorly estimated. We speculate that this could be caused by over-fitting of
the first eigenvectors to the data leaving the directions of lesser variance to be under-
estimated: The first eigenvalue and corresponding eigenvector is typically estimated
through the direction of largest variance in a least squares sense. With only few avail-
able samples, this direction of largest variance and the corresponding eigenvalue will,
on average, be overestimated. This is straightforward to validate empirically through
repeated ML estimation on small samples from a known covariance structure; if the
samples afford a direction with variance larger than the known covariance this will
always be chosen by the ML estimate. This will, on average, bias the average size of
the estimate of the initial eigenvalue. Thus and in contrast to ML-T, we propose to
boost small eigenvalues more than large eigenvalues of ⌃, by setting  to be block-
wise proportional to the per landmark inverse maximum likelihood estimate of its
covariance matrix. As an example, for 2-dimensional landmarks distributed as ⌃i,
then  = diag

⇣
⌃�1

1 , . . . ,⌃�1
⇣

⌘
,

⌃̂ =

1

n+m+ q + 1

⇣
S + ↵

2diag
⇣
S�1

1 , . . . ,S�1
⇣

⌘⌘
, (5.18)

where ↵ 2 R is a free mixing parameter. We call this the MAP-IW. This is not a
proper prior, since it depends on the measurements. Furthermore, it is noted that
when ↵ 6= 0, both ML-T and MAP-IW enforces full rank. We defer discussion of its
usefulness to the experimental section.
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5.2.2 Uncommitted Inverted Wishart Prior (MAP-UIW)

The MAP-IW (5.18) uses an improper prior that depends on an estimate of the
covariance of each landmark, which in total may be considered an approximation of
⌃. We propose to include  = ↵

2⌃�1 directly in the estimation, in which case the
maximization results in a system of quadratic equations,

⌃̂
2
=

1

n+ 2m+ q + 1

⇣
S⌃̂+ 2↵

2I
⌘
, (5.19)

as derived in Appendix 5.5. This is denoted the MAP-UIW method. As explained
above, the MAP-UIW enforces full rank of the estimate. We solve this iteratively
using the fix point iteration,

⌃̂t+1 = ⌃̂t � �

✓
⌃̂

2

t �
1

n+ 2m+ q + 1

⇣
S⌃̂t + 2↵

2I
⌘◆

, (5.20)

where � is a sufficiently small constant to avoid divergence. Symmetry of the numerical
solution may be guaranteed by taking the average with the transpose, or by only
performing calculations for the lower left triangular matrix including the diagonal.
We have experimented with both solutions and found no significant differences. For
simplicity, we prefer the average. Further, we have experimented with a number of
different initial points and the method appears to be robust, however, in this work
we use ML-T as the initial point ⌃̂0.

An alternative solution to (5.19) is obtained by a different factorization of the
equation (5.48):

⌃̂
2
=

1

n+ 2m+ q + 1

⇣p
⌃̂S
p
⌃̂+ 2↵

2I
⌘
, (5.21)

this solution theoretically solves the symmetrization issue and employed as a fix point
iteration converges with fewer steps than (5.20). However, there are some numerical
drawbacks: First, the need of a SVD decomposition during the square root compu-
tation of the matrices slows down the algorithm. Second, since we perform iterations
using a fixed step size, and the space of positive definite matrices (pd) is not a lin-
ear vector space, even this elegant solution can in practice step outsize pd-space.
Therefore, in our experiments we prefer to use (5.20).

5.2.3 Gaussian Prior (MAP-G)

An alternative prior is the Gaussian distribution in covariance space,

p(⌃̂|B, s) =

1

(2⇡s

2
)

� q(q+1)
2

exp

0

B@�

���⌃̂�B
���
2

2

2s

2

1

CA , (5.22)

where B 2 Rq⇥q and s 2 R represent the mean and variance of the covariance matrix
distribution. The variance s controls the trade-off between the prior and the ML
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estimate. A large value of s would make the prior uniform and would yield the ML
estimate. On the other hand, a very small s would yield a delta spike around the mean
value and thus bias the estimate heavily towards the mean of the Gaussian. Ideally,
the Gaussian prior should be imposed on the space of symmetric, positive definite
matrices, e.g., as approximated by the exponential of the norm of the differences of
logarithms of matrices [34], but this makes the equation prohibitively complicated,
hence we consider (5.22) a Euclidean approximation. The MAP of (5.22) is derived
in Appendix 5.5 and is found to be a system of third degree polynomials,

⌃̂ =

1

n

✓
S � 2

s

2
⌃̂(⌃̂�B)

T ⌃̂

◆
. (5.23)

We seek its solution by the following iterative scheme,

⌃̂t+1 = ⌃̂t + �

✓
⌃̂t �

1

n

✓
S � 2

s

2
⌃̂t(⌃̂t � B)

T ⌃̂t

◆◆
, (5.24)

which we have found to converge for t ! 1, when using iterative line search in �,
enforcing symmetry by averaging, and using the ML-T as initial point ⌃̂0. Matrix
B is a free positive semi-definite matrix, which is the embodiment of prior knowl-
edge. Unfortunately, covariance matrices depend on the coordinate system, however,
the matrix B̃ may be specified in a coordinate system of choice and rotated into
the specific coordinate system by a suitable rotation matrix R as B = RB̃RT . In
this section we have considered 3 different priors to be imposed on our covariance
matrix estimates. It is important to bear in mind that the ML-T assumes indepen-
dence between all elements in the shape, and MAP-IW assume independence between
landmarks. Hence both are priors of spatial noise. The MAP-UIW does not have as-
sumption of independence, and MAP-G may be used to directly steer the estimate
towards preferred shape variations. Hence both are general priors of shape variations.
The classical view of the Inverse Wishart prior has a similar number of parameters
as our Gaussian prior. There is, however, a clear difference in how these parameters
are used: For the Inverse Wishart prior given  , the covariance matrix of maximum
probability is the solution to tr

�
 ⌃�1

�
= 0, i.e., the j’th column in ⌃�1 must be

perpendicular to the j’th row in  . Hence, if we wish to align the Inverse Wishart
prior to favor a particular covariance matrix ⌃, then we should select a  from the
(q� 1)(q� 2) . . . 1 = (q� 1)! dimensional manifold fulfilling the above equation, none
of which intuitively relate to ⌃. Conversely for the Gaussian prior, maximum proba-
bility is where ||⌃�B||22 = 0, and in order to favor a particular covariance matrix ⌃,
we simply and intuitively should choose B = ⌃. Furthermore, the additive structure
of the Inverse Wishart prior estimators is directly comparable to Tikhonov regular-
ization. In light of the difficulties of large dimensional manifolds described above,
we argue that the constrained as well as the uncommitted Wishart priors are the
practical extensions of Tikhonov regularization.
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5.3 Experimental setup
We evaluate the performance of the previously described methods for estimating co-
variance matrices: Maximum Likelihood (ML), ML regularized by Tikhonov regu-
larization (ML-T), MAP with an inverted Wishart prior (MAP-IW), MAP with an
uncommitted inverted Wishart prior (MAP-UIW), and finally MAP with a Gaussian
prior (MAP-G). The evaluation is focused on two main tasks: Firstly, we compare the
distance from a known ground-truth covariance matrix to the estimated covariance
matrices for synthetic data. Secondly, we evaluate a reconstruction task from low to
high-resolution shapes. The details of our validation protocol are described in the
following subsections. Section 5.3.1 describes the metric used for comparing matrices,
Section 5.3.2 discusses the reconstruction of high dimensional shape representations,
while Section 5.3.3 presents the parameter optimization scheme used in the two vali-
dation tasks. Section 5.3.4 describes the mean value B of the Gaussian prior, which
we use for our experiments. The results of this validation protocol and the experi-
mental setups are described in sections 5.4.1 and 5.4.2 respectively for synthetic data
and for vertebra and cartilage shape reconstruction.

5.3.1 Matrix comparison

The first part of the validation protocol is a comparison between the ground-truth co-
variance matrix and different covariance matrix estimates. A matrix norm is required
for this purpose. A suitable norm is the Frobenius or 2-norm,

d(S1, S2) = kS1 � S2k2 , (5.25)

where S1 can be the ground truth matrix and S2 a matrix estimated with one of the
methods described in this paper. Another useful norm is the log-Euclidean distance
between two matrices [34], which approximates the distance between the matrices
along the geodesics in the space of symmetric, positive definite matrices, d(S1, S2) =

klog(S1)� log(S2)k2, where log(S) = V log(⇤)V T , when S = V ⇤V T . With our
data, we found no qualitative differences between these norms, and in Section 5.4.1
we present our results using the Frobenius norm.

5.3.2 Increasing shape resolution

The direct matrix comparison experiments are not well suited for real data, where
ground truth covariance matrices are not available. Therefore, we focus our attention
on the example application of increasing shape resolution.

Accurate manual annotation of, e.g., full vertebrae boundaries is tedious and
time consuming. Likewise for studies of cartilage shape, more detailed models may
lead to more accurate results. These methodologies are described more in detail
in Section 5.4.2. Increasing the shape resolution from a low dimensional manual
annotation can be a viable alternative.
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Letting y be an incomplete or lower dimensional shape vector of dimensionality
k < q, we would like to find the corresponding higher resolution shape x 2 Rq such
that:

y = Lx, (5.26)
where L : Rq ! Rk is a linear mapping. For our experiments the matrix L is a
projection matrix. The lower dimensional shape y is aligned to Lµ by the standard
Procrustes method. Since the system is under-determined, the solution is not uniquely
defined. Following Blanz and Vetter [9], we estimate x by minimizing the functional

E(x) = kLx� yk22 . (5.27)

Since x belongs to the shape model (5.5), the aforementioned functional transforms
to:

E(⇠) = kLµ+Q⇠ � yk22 , (5.28)
where ⇠ is the parameter vector of the shape model (5.5), and Q = LV t⇤t,

where V t is the eigenvectors and ⇤t = diag (�i) the eigenvalues corresponding to the
t principal eigenmodes of the covariance matrix. This covariance matrix is estimated
using one of the methods described in the previous sections. Q is a k ⇥ q matrix of
rank at most k. The corresponding reconstruction is [9]:

x = µ+ V t⇤tHW+UTy, (5.29)

where U , H and W are defined by the singular value decomposition of Q, Q =

UWHT , and the diagonal matrix is inverted as,

W+
ii =

(
1
wi

if wi > 0

0 else.
(5.30)

and wi being the i

th singular value of W . By construction, (5.29) is invariant to
scaling of the underlying regularized covariance matrix with non-zero real constants.

5.3.3 Parameter optimization

Some of the covariance matrix estimators described in Section 5.2 require optimiza-
tion of parameters such as ↵, m, and s, and we use cross-validation [43,75] as follows:
For given data, we 20 times randomly select a non-overlapping train and test set
of a specified size. For each pair, we examine a range of parameter values, and for
each parameter value, we estimate the generalization error using leave-one-out on the
training set. The optimal parameter value is chosen to minimize the generalization
error on the training set. The error on the corresponding test set is then calculated
using the optimal parameter value. Finally, we report the average performance over
all test sets. Figure 5.2 shows the 20 different training error curves as a function of
the mixing parameter ↵ for MAP-UIW as well as their detected minima. The same
approach is used for optimizing the parameters of the other methods. For the recon-
struction evaluation, we note that the parameters of some priors are multiplicative
constants and do not require optimization as described previously.
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Figure 5.2: Example of error curves as a function of the MAP-UIW mixing para-
meter for the range [0,5]. Each curve is based on a leave-one-out error on a separate
set, as described in the main text. On the x-axis the minimum error parameter
values are also depicted as stars. For this experiments 10 vertebrae samples were
used as a training set.

5.3.4 Mean value of the Gaussian prior

For the Gaussian prior described in Section 5.2, a crucial aspect is the design of the
mean matrix B of the prior distribution of ⌃̂ in (5.22) and (5.2.3). The design of
this matrix must reflect some prior knowledge of the data it represents. For example
neighboring points often covary for typical shapes. Therefore, we find it useful to
define B as a function of the distances between points similarly to [107]:

Aij = dist
�
pi � pj

�
, (5.31)

where pi is the i’th point of the mean of the aligned training examples. Subsequently,
we reweigh the distances with an exponential decrease to obtain:

B = exp
✓
� 1

�

A⌦ I l

◆
, (5.32)

where exp () is taken element-wise, ⌦ is the Kronecker product, and I l is the l ⇥ l

identity matrix, and � is a scale parameter. In this way, the resulting matrix B is
of size q ⇥ q, and A is of size q

/l ⇥ q
/l. This definition of B focuses the regularized

estimates to a region of covariance space, where shape point covariances are related
by proximity.

In [107] geodesic distance were used, but in this work we prefer Euclidean. In
general, whether one chooses the Euclidean or the geodesic distance is a modeling
choice. If, for example, the shape change is due to friction, then it is fair to assume
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that shape changes correlate on the surface with nearby points. On the other hand,
shape changes for soft tissue may show correlations between surface points that are
better modeled by their direct Euclidean distance than their geodesic surface distance.
Regardless, considering only points on the surface of an object and for small values
of � in comparison to the distance between sample points, the Euclidean and the
geodesic distances yield similar values of B in (5.32). Further, when objects are flat
sheet as is the case for the tibial knee cartilage sheets described in Section 5.4.2, the
Euclidean distance approximates the geodesic distance well. Finally, the Euclidean
distance is the easiest to calculate. We choose to model only correlation between
nearby points and therefore small values of � and Euclidean distance.

In this section, we have given an example of the mean value matrix B based on
the idea that proximity implies covariance. Many other, and perhaps better, choices
are possible, but exhaustive investigation is beyond the scope of this paper.

5.4 Experiments
We now describe the results obtained using the validation protocol and setup de-
scribed in Section 5.3. First, we report the matrix comparisons between ground truth
and covariance estimates for the synthetic data. Secondly, we discuss the shape re-
construction for vertebrae and cartilage shapes.

5.4.1 Synthetic shapes, setup and data

In this subsection, we describe the data setup of the experiments with synthetic data
and the results of performing a matrix comparison ad described in 5.3.1. The synthetic
data set is designed to explore two types of variability: linear shape change and
independent landmark random variations. First, we design a basis shape resembling
a vertebra. Second, the linear shape variation is created by covarying two points
along the vertical direction by a normally distributed displacement, which is a typical
shape variation seen in real data. Third, normally distributed noise is added to each
landmark to simulate annotation noise. We impose 3 different covariance matrices:

C1 = �


1 �2

�2 2

�
, (5.33a)

C2 = �


1 2

2 2

�
, (5.33b)

C3 = �


1 0

0 2

�
. (5.33c)

Figure 5.3(a) illustrates the linear shape variation and Figure 5.3(b) examples of noise.
For the noise, we have used � = 2, 1 = 0.3, and 2 = 0.1, and C1 for the top right
and bottom left corners, C2 for the remaining corners, and C3 for the mid sections.
Examples of resulting shapes are shown in Section 5.4. We estimate the ground truth
covariance matrix by using ML on a very large and independent data set of 10.000
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Figure 5.3: (a) Mean shape of the synthetic data and an example of linear shape
variations obtained from a Gaussian distribution, where the two central points co-
vary vertically. (b) Example of noise variation, where the ellipses denote the stan-
dard deviation. Samples of the resulting shapes are shown in Figures 5.4 and 5.5.
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samples. Furthermore, we generate 5000 samples, from which the 25 crossfolds are
generated as described in Section 5.3.3.

The experiments on the synthetic data previously described lead to the results
depicted in Figures 5.4 and 5.5. Here, (5.25) is used to compare the ground truth
and the estimated matrices on a small sample size using the different methods (ML,
ML-T, MAP-G, MAP-IW, and MAP-UIW) for two noise levels. For each method, the
variation for cross-validation is illustrated using standard error of the mean (SEM)
error bars. Furthermore, significance of differences between the best method and
Tikhonov regularization is illustrated by stars, where ’*’ denotes a t-test p-value
below 0.05, ’**’ below 0.01, and ’***’ below 0.001. We observe that all the suggested
methods outperform ML, and further that the MAP-IW and MAP-UIW priors are
suitable choices when the shape variation is dominated by noise (large � from (5.33),
illustrated in Figure 5.5), while the MAP-G prior is a better choice when there is a
dominant shape variation (illustrated in Figure 5.4). In addition, Figures 5.4 and 5.5
show that with more available data less regularization is required; and the differences
between the methods are less pronounced. It is also important to bear in mind that
except for MAP-G, all the methods share the same eigenvectors and differ only in the
eigenvalues. This is likely reflected by the clustering of graphs not including MAP-G.

5.4.2 Increasing shape resolution, setup and real data

In this section, we explain the experimental setup and results for increasing shape
resolution. These experiments are performed on two different data sets: vertebrae
and cartilage shapes. For the aim of detecting osteoporotic fragility fractures, the use
of high-resolution (full boundary) vertebral shapes may lead to more reliable results
than an analysis with low-resolution shapes [23, 61]. For studies on osteoarthritis,
more detailed 3D shape models of cartilage may also lead to more accurate results.

Using the shape reconstruction model (5.29), a high-resolution shape was recon-
structed from a low-dimensional shape. The reconstruction error for a single shape is
computed for the ⇣ points of the boundary as the root mean square error (RMSE),

Efull =

vuut1

⇣

⇣X

i=1

��pi,reconst. � pi,orig.

��2
2
. (5.34)

The performances of ML, ML-T, MAP-IW, and MAP-UIW methods are compared
using mean Efull over all the test shapes for different number of principal eigenmodes.

Vertebra shapes

For general shape analysis, a detailed outline of the shapes are typically used (as
illustrated in Figure 5.6(a)). However, for clinical studies on osteoporosis, height
ratios are often used for fracture quantification [30, 83] and only the six vertebra
contour points needed to compute these height ratios are routinely marked by expert
radiologists. These six landmark points are shown as large stars in Figure 5.6(b).
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Figure 5.4: Frobenius norm of the difference between the ground truth covariance
matrix and the estimation with ML, ML-T, MAP-IW, MAP-UIW, and MAP-G
priors. All the methods are compared for different number of samples, all the pa-
rameters are determined by cross-validation as described in Section 5.3.3. Subfigure
(a) shows the data obtained using (5.33) with � = 0.1, (b) shows the difference
as described in Section 5.4.1, while (c) shows a zoom of the graph in (b). The
stars indicate statistical significance of the differences between MAP-G and ML-T
(Tikhonov) where ’*’ denotes a t-test p-value below 0.05, ’**’ below 0.01, and ’***’
below 0.001.
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Figure 5.5: Frobenius norm of the difference between the ground truth covariance
matrix and the estimation with ML, ML-T, MAP-IW, MAP-UIW, and MAP-G
priors. All the methods are compared for different number of samples, all the pa-
rameters are determined by cross-validation as described in Section 5.3.3. Subfigure
(a) shows the data obtained using (5.33) with � = 2, (b) shows the difference as
described in Section 5.4.1, while (c) shows a zoom of the graph in (b). The stars
indicate statistical significance of the differences between MAP-UIW and ML-T (see
Figure 5.4 for details).
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(a)

(b)

Figure 5.6: (a) An image of a vertebra with the shape annotation. (b) An original
(continuous line) and reconstructed (dashed line) shape annotation. The shape’s 52
points are reconstructed using only the 6 points depicted as the big stars.

The aim is thus to interpolate the full contour (shown as full outline in Figure 5.6(b))
from these six points. During the experiments, the shape model is built from the full
outline using 52 landmarks per shape. Hence, in our experiments q = 104 and k = 12.

We study the vertebra shape variation using images of 75 healthy elderly women,
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who maintain skeletal integrity over a 7 years observation period. The subjects had
lateral X-ray of the lumbar spine taken twice, once in 1992-93 (baseline) and again in
2000-01 (follow-up). The used images were digitized using a Vidar DosimetryPro Ad-
vantage scanner at 45 microns (570 dpi) providing an image resolution of 9651⇥4008
pixels with 12-bit gray scale. The four lumbar vertebrae L1-L4 were annotated using
an annotation tool developed in Matlab. Using both the baseline and follow-up im-
ages, we obtain 600 (75 patients ⇥ 2 visits ⇥ 4 vertebrae) vertebra shape annotations.
To avoid biased results, we only use shapes from the follow-up set. Furthermore, we
only use 1 of 4 possible vertebrae per patient selected at random from L1 to L4.
Therefore, the total data set of 600 shapes is reduced to 75 shapes. From this we
either train on 10 or 20 shapes, and always test on 35 shapes. Figure 5.7 shows the
mean reconstruction errors for vertebrae shapes obtained using (5.34) for two different
training sample sizes as a function of the number of eigenvalues t. The experiments
demonstrate that all the MAP-based methods improve the reconstruction especially
for small sample sizes. Where even these minor improvements in terms of vertebral
shape reconstruction can actually affect positively the clinical interpretation in terms
of, e.g., establishing first incident vertebral fracture risk [79]. Here, risk evaluation
was based on pre-fracture vertebral deformities below established fracture thresholds.
Again, the Gaussian prior appears the most suitable for dealing with shapes domi-
nated by global shape variation rather than annotation noise. Figure 5.7(a) shows
that the ML method has a pronounced error for 9 eigenmodes and more caused by the
small training set (leave-one-out with only 10 samples). Similarly, the steep rise at 12
eigenvalues in Figure 5.7(b) reflects inherent co-linearity of the training set caused by
the data set not spanning a subspace larger than 11 eigenvalues. Results not included
for 40 training shapes show a similar but less pronounced behavior.

Cartilage shapes

The cartilage data set was composed of 320 knee MRI scans from 80 subjects includ-
ing both left and right knees and baseline and follow-up scans from a longitudinal
21-month study. In particular, we focus on the tibial cartilage sheets, which are ap-
proximately flat. Similarly to the vertebrae, the data set was reduced to 80 samples
to ensure only one shape per patient. The MRI acquisition was done on an Esaote
C-Scan low field 0.18T clinical scanner using 3D, T1-weighted sequences (flip angle
40

�, TR 50ms, TE 16ms). The scans were sagittal with slice resolution of 0.7mm ⇥
0.7mm and slice thickness of 0.8mm. The dimensions of the scans were 256 ⇥ 256
pixels with around 110 slices. The population includes healthy and diseased knees
with varying degree of osteoarthritis from both men and women at ages from 21 to
78.

We represent the knee cartilage sheets using the m-rep model [67]. Here, a shape
is defined by a spatially regular lattice of medial atoms as depicted in Figure 5.8(a).
For each knee, we have a three-dimensional m-rep model of the medial tibial cartilage
compartment resulting from a fully automatic segmentation [21]. In Figure 5.8(a) a
cartilage shape model is illustrated for a cropped knee MRI.

For m-reps, each atom is representation by a tuple of position, orientation, and
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Figure 5.7: The vertebra reconstruction error for different number of training
shapes: (a) 10 and (b) 20. The error measure is described in section 5.3.2 and it is
defined in mm. The stars indicate statistical significance of the differences between
MAP-G and ML-T (see Figure 5.4 for details).
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radius parameters. A more detailed explanation of this model is given in [37]. For
this paper, we only consider the position parameters to allow an analysis similar to
the point distribution model used for the vertebra shapes.

We evaluate the performance of our method for interpolating medial atoms in
order to produce a higher resolution medial model of the cartilage sheets. We perform
this evaluation by removing atoms from the models and by measuring how well the
interpolation allows for reconstruction of the original model. We train on 10 or 20
shapes, and always test on 35 shapes from the remaining shapes. We produce a
low-resolution lattice by removing atoms from the cartilage model, and calculate
the mean reconstruction error between the original and the reconstructed 3D shapes
using (5.34). To represent a medial model for a cartilage sheet, ⇣ = 32 points are
used, hence the dimensionality q = 96. During the experiments 24 points are removed
leaving 4 points, such that the reduced dimensions is k = 12. A typical result of the
reconstruction is shown in Figure 5.8. The mean reconstruction error using cartilage
shapes is obtained using (5.34) and depicted in Figure 5.9. The cartilage shapes show
an improvement using the Gaussian prior. Like for the vertebra, the MAP-G method
is more appealing because the shapes are dominated more by global shape variations
rather than noise. The observation that MAP-G achieves a given reconstruction
error using fewer eigenmodes compared to the other methods indicate that MAP-G
estimates a more compact representation of the data.

5.5 Conclusion
Efficient estimation of the covariance matrix is of high importance in statistical shape
analysis. Often, the number of available training examples is limited and the estima-
tion of a covariance matrix is a challenging task. We have studied a Bayesian approach
to the problem as an alternative to the well-known methods of Maximum Likelihood
(ML) and Tikhonov regularization (ML-T), and we have investigated three different
priors: the Inverted Wishart (MAP-IW), the Uncommitted Inverted Wishart (MAP-
UIW), and the Gaussian prior (MAP-G). Comparing with respect to the parameters,
the ML method has no parameters, the ML-T has one parameter, the MAP-UIW
prior has two, while the remaining two priors have (q+1)·q

2 + 1 parameters in their
unconstrained form. Both the MAP-IW prior and the MAP-G prior require a full
matrix of parameters, but we have suggested constrained forms, that can be deduced
automatically. The MAP-IW method can reflect the noise variation of independent
landmark building the  matrix as a block diagonal matrix as described in Section
5.2.1. Contrarily, the MAP-G mean matrix B allows for inter-landmark interactions,
like the suggested geometrical relationships in Section 5.3.4. The Wishart priors also
depend on a nuisance parameter m, but we remind that for the reconstruction task
the results do not seem to be very sensitive to its value. The presented methods
perform as well as or better than the ML method especially in the case of small
number of training examples. The choice of prior is naturally of great importance
for the result. The MAP-IW and MAP-UIW priors assume statistically independent
points, and therefore perform better for variations caused by uncorrelated noise. The
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(a)

(b)

(c)

(d)

Figure 5.8: (a) Sagittal and axial MRI slice with the shape model for the medial
tibial cartilage compartment. (b) Overlay of the original and the reconstructed
cartilage shape viewed axially, (c) coronally, and (d) sagittally. The continuous line
is the original shape and the dashed one is the reconstruction. Here the 32 points
are reconstructed using only the 4 points depicted as big stars.
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Figure 5.9: The cartilage reconstruction error for different number of training
shapes: (a) 10 and (b) 20. The error measure is described in section 5.3.2 and it is
defined in size normalized shapes. The stars indicate statistical significance of the
differences between MAP-G and ML-T (see Figure 5.4 for details).
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MAP-G prior is not limited to zero off-block-diagonal elements and may be used to
steer the estimate towards preferred shape variations. Therefore, the choice of prior
is related to various factors: the number of samples available, the complexity of the
data, the noise variance in the data and the intended application context in which
estimated covariance matrices will be used. In general, the prior and specifically for
the MAP-G the B matrix has to be chosen using prior knowledge optimizing this
interplay between prior, data, and application. The focus of this paper has been to
introduce novel prior frameworks for covariance matrix estimation and to give sim-
ple examples of how they can be used to introduce actual prior knowledge in both
artificial and real data sets. But even with the slightly naïve B matrix suggested for
the MAP-G prior, the improvements over standard approaches are significant for all
but one of the examples given. Finally, the paper presented one case with a strong or
near-optimal link between prior and data is present. This was the case for the very
noisy version of the artificial data, where as the expected the Uncommitted Inverted
Wishart prior excelled. In summary, with a sufficient number of samples the standard
ML estimation may be the right choice, while for low sample sizes regularization is re-
quired. In this case, we argue that our methods can be valid substitutes to Tikhonov
regularization.

Appendix A: Derivation of Maximum Likelihood Es-
timator (ML)
For completeness the following gives the derivation of the log-likelihood estimates of
the mean vector and covariance matrix using matrix differential calculus [81]. This
formulation will be used as a reference point for deriving expressions for the MAP
estimates.

Using (5.6), for estimating ⌃ and x from a set of samples, it is possible to seek
the maximum point of p(x1,x2, . . . ,xn|⌃,µ) as,

@ log p(x1,x2, . . . ,xn|⌃,µ)
@⌃

= 0, (5.35a)

@ log p(x1,x2, . . . ,xn|⌃,µ)
@µ

= 0. (5.35b)

For practical reasons it is possible to rewrite the sum under the exponential function
of (5.6) as,

nX

i=1

(xi � µ)T⌃�1
(xi � µ) = tr

�
⌃�1XXT

�
, (5.36)

and to rewrite the logarithm of (5.6) as

L(x1, ...xn|µ,⌃) =

� nq

2

log(2⇡)� n

2

log(⌃)� 1

2

tr
�
⌃�1XXT

�
. (5.37)



Maximum A Posteriori Estimation of Linear Shape Variation with Application to
Vertebra and Cartilage Modeling 65

The differential of L, considering only ⌃ and µ as variables, is found to be

dL =

� tr
✓
n

2

⌃�1
d⌃+

1

2

(d⌃�1
)XXT

+

1

2

⌃�1
d(XXT

)

◆
. (5.38)

For minimizing the partial derivatives of dL for ⌃, it is possible to isolate the first
two terms of (5.38) considering d⌃�1

= �⌃�1
(d⌃)⌃�1:

0 = �tr
✓
n

2

⌃�1
d⌃� 1

2

⌃�1
(d⌃)⌃�1XXT

◆
(5.39a)

= �tr
�
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)

�
, (5.39b)

where a non trivial solution is 0 = nI �⌃�1⌃�1XXT that is

⌃ =

1

n

XXT
, (5.40)

equivalent to (5.7b). Alternatively, starting from the Wishart likelihood,

p(S|⌃, n) =
|S|(n�q�1)/2 exp

�
� 1

2 tr
�
⌃�1S

��

2

nq/2 |⌃|n/2 �q
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n
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� , (5.41)

the point of Maximum Likelihood (ML) for varying ⌃ is found to be,

0 = d log p(S|⌃, n) (5.42a)

= �1

2
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d log |⌃| (5.42b)
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(d⌃)⌃�1S � n⌃�1
d⌃
�
, (5.42c)

which implies that
0 = ⌃�1S � nI, (5.43)

or therefore ⌃ = S/n, also equivalent to (5.7b).

Appendix B: Derivation of Maximum A Posteriori In-
verted Wishart Estimator (MAP-IW)
In the following, we will derive (5.17). Starting from (5.15) and only considering
varying ⌃, we calculate the differential log as,

d log p(⌃| ,m) = � (m+ q + 1)

2

d log |⌃|� 1

2
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�
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, (5.44c)
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The maximum a posteriori using i.i.d. Gaussian likelihood is found to be,

0 = d log p(x1, ...,xn|µ,⌃) + d log p(⌃| ,m) (5.45a)

=
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which implies that

0 = ⌃�1XXT⌃�1 � n⌃�1

+⌃�1 ⌃�1 � (m+ q + 1)⌃�1 (5.46a)

= XXT � n⌃+ � (m+ q + 1)⌃, (5.46b)

and
⌃ =

1

m+ n+ q + 1
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XXT

+ 
⌘
, (5.47)

which is seen to be identical to (5.17).

Appendix C: Derivation of Maximum A Posteriori Un-
committed Inverted Wishart Estimate (MAP-UIW)
In the following, we will derive (5.19). For the moment assume that ⌃ is invertible,
consider (5.14) and let  = ↵

2⌃�1. We use the improper inverted Wishart prior
p(⌃|↵2⌃�1

,m). Considering only varying ⌃, the differential log of p is,
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The maximum a posteriori using independent and identically distributed (i.i.d.) Gaus-
sian likelihood is found to be,

0 = d log p(x1, ...,xn|µ,⌃) + d log p(⌃|↵2⌃�1
,m) (5.49a)
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which implies that
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Notice, that the above equation is also valid for positive semi-definite matrices ⌃.
Hence, we conclude,

⌃2
=
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, (5.51)

which is seen to be (5.19).

Appendix D: Derivation of Maximum A Posteriori
Gaussian Estimate (MAP-G)
In the following, we will derive (5.2.3). Starting from (5.22) and only considering
varying ⌃, we find the differential log as,
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The maximum a posteriori using i.i.d. Gaussian likelihood is found to be,

0 = d log p(x1, ...,xn|µ,⌃) + d log p(⌃|B, s) (5.54a)
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which implies that
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and
⌃ =
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The equation above can be seen as the third degree matrix polynomial given in (5.2.3).
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Discussion

This thesis presented several techniques and algorithms regarding statistical shape
models, covariance estimation, and their applications to osteoporotic vertebral frac-
ture analysis. This chapter contains a summary of the thesis, conclusions, and a
prospect of future works.

6.1 Summary
The different techniques employed in this thesis mainly comprised a combination of
machine learning methods and shape representations. The study regarding vertebral
fracture prediction, reported in Chapter 4, argued that vertebral fractures could not
be exclusively considered as an abrupt change in the vertebrae. They can rather be
considered as the result of a slowly deforming process involving bone quality decay and
the bio-mechanics in the whole spine, which can be detected in advance. Therefore,
a study involving a shape based approach was conducted for this purpose. Spine
shapes were obtained from manual annotations on radiographs at baseline, when
no fractures were present. Those shapes were than used as features for predicting
the fracture risk. In particular, the conducted study was a longitudinal case-control
investigation, where the women who sustained at least one incident lumbar fracture
by follow-up represented the case group, and the osteoporosis risk factors matched
women who maintained skeletal integrity by follow-up represented the control group.
An expert radiologist graded the fracture risk of the patients’ spines. The same
radiologist and subsequently two technicians annotated the vertebrae independently.
An LDA classifier was capable of assessing the fracture risk of the shapes giving an
average AUC of 0.7 for the radiologist annotations and an average AUC of 0.6 for the
technician annotations. Nevertheless, for all the sets of annotations the p-values of
the comparisons between the scores and chance were smaller than 0.05. This method
could be used in conjunction with the standard fracture risk factors, allowing a more
reliable prediction. The remaining part of the thesis was devoted to improving shape
based analysis, using a novel technique of covariance matrix estimation, called MAP-
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PCA.
An accurate estimation of the covariance matrix is a crucial step in shape analysis

and other statistical tasks. The number of available training examples is often small
compared to the dimensionality of the data, and the consequent estimation of a covari-
ance matrix often unreliable. In Chapter 5, a Bayesian approach to this problem, as an
alternative to the well-known methods of Tikhonov regularization, was proposed. In
particular, three different priors were investigated: the Inverted Wishart (MAP-IW),
the Uncommitted Inverted Wishart (MAP-UIW), and the Gaussian prior (MAP-G).
The MAP-IW and MAP-UIW methods can reflect the noise variation of independent
landmark building a prior matrix as a block diagonal matrix. Differently, the MAP-G
prior expresses inter-landmark interactions based on the geometrical relationships of
landmarks. In the reported experiments, the Bayesian methods outperformed the
traditional ML method and Tikhonov regularization, reducing to 1 mm the mean
reconstruction error for the vertebral shapes, and to 20% mean error for the cartilage
sheets, using only 10 samples for both experiments.

6.2 General discussion
Prediction of osteoporosis and vertebral osteoporotic fractures using shape model
based analysis is not a trivial task. So far, the prediction of osteoporosis and related
fractures has mainly been based on risk factors, such as, BMD, age, prior fragility
fractures, and smoking [76]. In Chapter 4, a study based on a statistical shape based
framework for predicting future fractures was reported. The shape based approach
used in this study was based on manual annotations. Furthermore, the experiments
were performed using two different approaches of shape alignment inside the frame-
work: the well-known GPA method and the supervised DSA. The GPA method per-
formed well only on the radiologist annotations, while the DSA method allowed also
better performance for the technician annotations, since the DSA algorithm included
class label information. However, the DSA algorithm was computationally more de-
manding.

Even using the DSA algorithm, the discriminative performances of the proposed
algorithm on the two repeated annotations performed by the trained technicians,
were not as high as for the original annotation but still statistically significant (p-
values < 0.05). The discrepancy can reflect the fact that radiologist annotations
are qualitatively more precise than technician annotations, probably due to more
experience and acquired knowledge of the radiologist. This sensitivity to annotation
quality has also been seen in another study using a different morphometric index [79],
tested on almost the same data-set. With this in mind, the major conclusion is to
advice the use of high quality, expert annotations for obtaining reliable features for
fracture prediction. Nevertheless, the approach reported in Chapter 4 can be used in
other prediction and classification contexts, where label information of the training
data-set is available, since it is based on the general concept of shape, while the heights
method is limited to vertebral applications.

Moreover, the few case patients available introduced the challenge of conducting
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clinical trials, using small sample size compared to the data dimension. In Chapter 5,
a novel methodology for estimating covariance matrices, when few samples are avail-
able using prior knowledge was proposed. The described methods perform as well as
or better than the ML method especially in case of small number of training exam-
ples. The choice of prior is crucial for the result. The MAP-IW and MAP-UIW priors
were designed assuming that the shapes are made of statistically independent points,
and therefore they perform better on data with variations caused by uncorrelated
noise of the landmarks. The MAP-G prior is not limited to zero off-block-diagonal
elements and may be used in case of redefinition of eigenvectors. In experiments with
real data reported in Chapter 5, the MAP-G prior outperformed the other meth-
ods. These results suggested that, in the used data, the overall shape information
is stronger than the independent noise landmark information. Nevertheless, with a
sufficient number of samples the standard ML estimation may be the right choice,
while for low sample sizes regularization is required. Therefore, the choice of prior
is related to various factors: the number of available samples, the complexity of the
data, the noise variance in the data and the intended application context in which
estimated covariance matrices will be used. Even so, the proposed methods can be
valid substitutes to Tikhonov regularization. Figure 6.1 depicts how the space of the
covariance estimation can be summarized. The figure remarks the prior choice issue.
Depending on aspects, such as the statistical task in which the matrix will be used
and the available data, a thoughtful choice of the prior must be carried out. A prior
should include some knowledge available from the data. For instance, a proximity
relationship between points for landmark based shapes or a particular curvature for
some specific surfaces.

6.3 Future prospects
Regarding the shape based fracture prediction, the fracture status of each vertebra
was assessed by follow-up by an expert radiologist using the Genant’s SQ method, and
re-evaluated by a computer algorithm using a modification of Genant’s methodology
with a strict measured threshold, where a vertebra was considered fractured if the
ratios between any of the anterior, middle, and posterior heights was 0.8 or smaller.
This additional step was deliberately used for filtering out subjects where there was
borderline disagreement between the SQ and QM based fracture assessments, pre-
venting the algorithm from being influenced by such a disagreement. It would be
relevant to validate the described fracture-risk algorithm with respect to changing
the "ground truth" fracture assessment methodology to other established methods,
such as the QM methods of Melton and McCloskey [30,83]. Moreover, the described
method relies on shapes manually annotated from radiographs. Even if the framework
can be extended with existing spine segmentation approaches [61, 106, 119]. By ex-
tending it with automatic segmentation of the spine [61], it will become independent
from manual annotations. However, this can be a challenging task considering the dis-
crepancy between the results obtained using radiologists or technicians annotations,
and an automatic annotations would possibly be imprecise [98] as the technician an-
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Figure 6.1: Representation of the covariance estimation problem space.

notations. Furthermore, an interesting extension of the prediction algorithm would
be to merge biological data (such as CTX, NTX, etc. ) with shape features during the
prediction. Hopefully increasing the quality of the assessment, and disclosing further
relationships between changes in shape and bio-markers. When other populations will
be available, a comparison between non matched case-control group will also allow to
include the entire set of risk factors of the Frax tool.

Chapter 5 discussed a novel approach for covariance matrix estimation and gave
simple examples of how they can be used to introduce prior knowledge. In particular,
we considered some cases of artificial and real data, where either the global shape
information or the independent noise information were predominant. In each case,
one prior method outperformed the others, and this pointed out the issue of the choice
of prior. As a future work, a further investigation of other priors related to shape
based analysis, can be carried out. For example, different measurement of covariations
between the landmarks, or the distance between two vertebral endplates given by the
vertical heights.

Beyond the described improvements related to the single algorithms, all the works
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Figure 6.2: Prospect of present and possible future aspects of research on shape
based fracture prediction. The already investigated aspects are marked by a
”checked“ sign.

presented in this thesis can be summarized in term of present and future investigations
in Figure 6.2, where a combination of the aforementioned algorithms can be taken into
account. Here, the already investigated aspects are marked by a ”checked“ sign. Other
combinations can be also considered. The integration of a semi-supervised method
for clustering can improve the results of data aligned with the DSA alignment or
using a covariance matrix estimated with the MAPPCA algorithm. In particular, it
is important to bear in mind that almost all the methods could benefit from a better
regularization through MAP priors. Although the performance enhancement due to
the combination of these elements is at the moment only theoretical.
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