

F A C U L T Y O F S C I E N C E
U N I V E R S I T Y O F C O P E N H A G E N

This thesis has been submitted to the PhD School

of The Faculty of Science, University of Copenhagen

Ph.D. Dissertation
Anders Starcke Henriksen

Adversarial Models for Cooperative Interactions

Abstract

Existing models for concurrent and distributed systems are cooperative by na-
ture. In a cooperative setting, all participants implicitly or tacitly work together
towards a common goal. We propose to employ a fundamentally adversarial view-
point instead. In an adversarial setting there is no a priori notion of common
goal; instead, each participant may pursue individual goals unknown to the other
participants. By extension, this means that every participant will behave as he
pleases, unless there are special incentives for choosing certain behaviour. To for-
mally capture these incentives, each participant enter into legally binding contracts
that specify how each participant is rewarded or penalised for certain behaviour.
Such an adversarial model is more robust in the presence of failures, because each
participant has to account for the other ones defecting from the intended interaction.

With the adversarial perspective in mind, we study verification and certification
of concurrent and distributed systems. Concretely, we propose two mathematical
formalisms (one using traces and one using automata) based on zero-sum, real-time
games. We define how a strategy (e.g., a program) conforms with a set of contracts.
We also show how to compose strategies, in order to build a conforming strategy
from substrategies. For certification, we introduce a framework called verification-
time monitoring that allows the certification of communicating real-time processes
using a standard method like Floyd-Hoare logic.

Lastly, we explore focused proof systems in two ways. Extending on work by
Nigam and Miller, we show how to use a focused proof system for intuitionistic
logic as a hosting framework for other proof systems. Their work exploited the
structural properties of linear logic for the encodings of the object systems; our
work shows that linearity is not needed – making focusing the main component for
these encodings. We also show how to remove contraction from a focused system
for classical propositional logic, which, to our knowledge, has not been done before.

i

ii

Resumé (Danish abstract)

Eksisterende modeller for samtidige og distribuerede systemer er kooperative af
natur. For et kooperativt scenarie gælder, at alle deltagere implicit eller stiltiende
arbejder mod et fælles m̊al. Vi anbefaler at man i stedet anlægger et grundlæggede
adversativt synspunkt. I et adversativt scenarie er der ikke noget p̊a forh̊and givet
fælles m̊al; hver deltager søger i stedet individuelle, for de øvrige deltagere ukendte,
m̊al. Følgeligt betyder dette, at hver deltager agerer autonomt, med mindre der er
særlige encitamenter til at agere efter et bestemt mønster. For at indfange encita-
menterne formelt, indg̊ar deltagerne i juridisk bindende kontrakter. Disse specificer-
er, hvorledes hver deltager bliver enten belønnet eller straffet for bestemte former
for ageren. En s̊adan adversativ model er mere robust i situationer, hvor der kan
opst̊a fejl, fordi hver deltager er nødt til at tage højde for, at de øvrige deltagere
ikke følger den tilsigtede interaktion.

Med det adversative perspektiv i tankerne, undersøger vi verifikation og certi-
fikation af samtidige og distribuerede systemer. Konkret fremlægger vi to matem-
atiske formalismer (en benyttende traces og en benyttende automater) baserede
p̊a nul-sums, realtids spil. Vi definerer, hvordan en strategi (f.eks. et program)
konformerer mod en mængde af kontrakter. Vi viser derudover, hvordan strate-
gier kan sættes sammen, og hvordan en konformerende strategi kan konstrueres
udfra konformerende delstrategier. Til certifikation introducerer vi et paradigme,
som vi kalder verification-time monitoring. Dette paradigme tillader en standard-
metode som Floyd-Hoare logik at blive brugt til certifikation af kommunikerende
realtidsprocesser.

Tilsidst undersøger vi focused bevissystemer p̊a to m̊ader. Vi bygger videre p̊a
arbejde af Nigam og Miller og viser hvordan et focused bevissystem for intuitionistisk
logik kan bruges som værtssystem for andre bevissystemer. Deres arbejde udnyttede
linær logiks strukturelle egenskaber til indkodningerne af objektsystemerne. Vores
arbejde viser, at linearitet ikke er nødvendigt, hvilket gør focusing til den primære
komponent. Vi viser ogs̊a hvordan man fjerner contraction fra et focused bevissystem
for klassisk propositions logik. Vi har ikke kendskab til, at dette er blevet gjort før.

iii

iv

Acknowledgements

First and foremost, I want to thank my main advisor Andrzej Filinski. He has been an
inspiration with his high quality standards, and greater dedication and perseverance is
hard to think of. Wading through scores of unfinished drafts, Andrzej’s comments were
always precise and insightful, and they helped improve this work immensely.

Thanks also goes to my co-advisor Carsten Schürmann, who helped with general
matters, especially with organising my stay abroad. On that matter, I also want to
thank Dale Miller who was a great host during my stay in Paris. Both in terms of
academic guidance and general hospitality.

For handling administrative matters swiftly and efficiently, in such a way that they
are barely noticed, I thank the group secretary of the APL-group at DIKU, Jette Gio-
vanni Møller. I also thank the rest of my colleagues in the APL-group for creating a
good working environment.

On a more personal matter I thank the ‘lunch club’ for creating a good social envi-
ronment for me, both at work and after work. Especially Tom Hvitved for putting up
with my endless stream of complaints in the final months.

The most heartfelt thanks goes to Irene, for providing comfort and love during my
times of wild frustration, and for joining me on my stay abroad in Paris. Without her
I would never have succeeded.

Anders Starcke Henriksen, Copenhagen 2011

v

vi

Contents

Contents vii

1 Introduction 1
1.1 Context . 1
1.2 Introduction . 1
1.3 Contributions . 3
1.4 Overview of the dissertation . 4

1.4.1 Part I: Adversarial models of distributed scenarios 4
1.4.2 Part II: Aspects of focusing . 4
1.4.3 Part III: Conclusion and future work 4

I Adversarial models of distributed scenarios 5

2 An adversarial approach to cooperation 7
2.1 The cooperative world . 8
2.2 The adversarial methodology . 13
2.3 Modelling adversarial scenarios . 16

3 Adversarial models of interaction 17
3.1 Communication setup . 17
3.2 Communication concepts . 18
3.3 Trace-based model . 22

3.3.1 Trace-based contracts . 24
3.3.2 Trace-based tactics . 25
3.3.3 Strategies and conformance . 29

3.4 Automaton model . 35
3.4.1 Basic definitions . 36
3.4.2 Contract automata . 37
3.4.3 Tactic automata . 41
3.4.4 Automaton conformance . 44

3.5 Related and future work . 49
3.5.1 Related work . 49
3.5.2 Future work . 52

4 Certification 55
4.1 The certification paradigm . 55

4.1.1 Background . 55
4.1.2 Verification-time monitoring as certification paradigm 57

4.2 Language . 58

vii

4.2.1 Syntax . 59
4.2.2 Dynamic semantics . 59
4.2.3 Type system . 60

4.3 Implementation of verification-time monitoring 64
4.3.1 Tactic component . 64
4.3.2 Contract components . 68
4.3.3 Supervisor component . 70
4.3.4 Implementation correctness . 73

4.4 Floyd-Hoare logic . 74
4.4.1 A comment on partial assertions 78

4.5 Case study . 79
4.5.1 Type checker and VC generator 79
4.5.2 Example program . 80
4.5.3 Program annotation and theorem proving 84

4.6 Related and future work . 87
4.6.1 Related work . 87
4.6.2 Future work . 87

5 Towards resource-aware interaction 89
5.1 Resource setup . 89
5.2 Contracts and tactics . 92

5.2.1 Contracts . 92
5.2.2 Tactics . 95

5.3 Related and future work . 97
5.3.1 Related work . 97
5.3.2 Future work . 97

II Aspects of focusing 99

Focusing and certification 101

6 Using LJF as a framework for proof systems 103
6.1 Introduction . 103
6.2 Focused intuitionistic logic . 104
6.3 Encoding in LJF . 108

6.3.1 Sequent calculus . 109
6.3.2 Natural deduction . 114
6.3.3 Generalized elimination rules . 117
6.3.4 LJ with empty right sides . 120
6.3.5 Free deduction . 122
6.3.6 Tableaux . 123
6.3.7 Analytic cut . 125

6.4 Relative completeness . 127
6.4.1 Intuitionistic systems . 127
6.4.2 Classical systems . 131
6.4.3 Intuitionistic and classical systems 137

6.5 Comparison of LJF and LLF . 138
6.6 Summary and related work . 139

viii

7 Focusing and contraction 141
7.1 Introduction . 141
7.2 Focused classical logic . 144

7.2.1 The focused system LKF . 144
7.2.2 The contraction-free system LKFCF 145

7.3 Compilation into linear logic . 149
7.3.1 Linear logic with subexponentials 150
7.3.2 Focused linear logic with subexponentials 150
7.3.3 Compiling LKFCF . 151

7.4 LKFCF and proof search . 153
7.5 Future work . 154

III Conclusion and future work 157

8 Conclusion and future work 159
8.1 Summary . 159
8.2 Future work . 161

Appendix 162

A Source code 163
A.1 Tactic, contracts and supervisor for the +2 case 163

Bibliography 173

ix

x

Chapter 1

Introduction

1.1 Context

This work was done as part of the project Trustcare: Trustworthy Pervasive Health-
care Services [40]. The working title of this part was: Foundations for certified code
for concurrent and distributed processes. Part of the project goals is that the systems
considered should not only be restricted to communicating programs, but broad enough
to encompass settings like formalised work processes, in order to better support chang-
ing demands. While investigating certification of such systems, we noticed that existing
frameworks for orchestrating multiparty interactions did not adequately account for par-
ticipants having different objectives. This deviation from the real world spurred us to
rethink the foundations for program certification, especially in the context of distributed
systems.

1.2 Introduction

This dissertation’s title might look self contradicting at first, as ‘adversarial’ and ‘co-
operative’ seem to be incompatible concepts. In this work, we seek to illustrate that
purely cooperative scenarios are very rare, and that most real-world scenarios contain el-
ements of adversariality, even though they might seem purely cooperative at first glance.
Perhaps a more precise title would have been: Adversarial models for (seemingly) coop-
erative interactions.

This work is concerned with specification, verification and certification of concur-
rent and distributed interaction-based systems. An interaction happens when several
parties perform certain actions affecting each other. Formal specifications have been
applied to describe and analyse such interactions, ultimately to make sure they execute
successfully. Examples of such specifications include communication protocols, service
orchestration/choreographies, organisational workflows and program/code contracts. A
common property amongst existing methods for modelling such interaction specifications
is that they tend to assume (implicitly) that all parties cooperate towards a common
goal, even though their reasons for wanting to obtain the goal might be different. This
assumption of cooperation means that each party is expected to resolve ambiguities or
underspecification, in a way that conforms with or supports the common goal.

In this work we argue that such a cooperative methodology, while easier to use
(because of a stronger assumption about the participants), is not sufficient for most
real-world examples, especially when wishing to support changes. We instead advocate

1

2 CHAPTER 1. INTRODUCTION

the use of a fundamentally adversarial model, in which each participant operates au-
tonomously in accordance with the participant’s own goals, and may at any time defect
from the intended path of a specification, or even break it altogether, if this is more
beneficial in terms of the participant’s own goals. A participant may still follow a spec-
ification, if the penalty for breaking it, or the reward for following it, is big enough.
Such a notion of cooperation is more robust, as it allows trusted and untrusted parties
to cooperate uniformly.

The main challenge, when trying to adopt an adversarial methodology, is to cope
with the fact that each participant can defect at any point, and therefore the speci-
fications need to account for this behaviour, which in most cases is non-trivial to do.
Furthermore, the extra information needed to find out what should happen in case of
failures/defects is usually not present in current models, because such failures are as-
sumed to be non-occurring. To get this extra information, one therefore needs to go
back to the source of the specification. For example, in the context of program specifi-
cation, partial correctness and “eventually” guarantees are not sufficient for adversarial
applications; one could always loop in the partial case, and answer after a million years
for the eventually guarantees. One needs to find out which original deadlines were in
place and include them in the model. This further implies that an adversarial model
needs to take time (at least in the form of deadlines) into account.

To be able to capture the competitive notion of adversarial specifications, we propose
to use the well known concept of a game as an abstract basis for such specifications.
Games are able to capture competition between different parties, called players, and
the possibility of penalties and rewards in a familiar manner. From this abstract basis,
we develop mathematical models for expressing adversarial specifications, in which each
interaction specification is considered a contract between the parties, specifying the rules
of their game. In general, each player enters into multiple contracts with potentially
different other players, which means that it might be rational to lose one game, if this
enables winning another game with higher stakes.

In addition to formalising interaction specifications, we also give a model for imple-
mentations, i.e., means of fulfilling specifications. Such an implementation could be a
program, a process or a workflow. In general, each player tries to implement the specifi-
cations in a sound way; this corresponds to finding a winning strategy for the totality of
all games this player is engaged in. Such a strategy must take the different rewards and
penalties into account, and a sound one will never obtain larger penalties than rewards.
In the modelled world this amounts to ensuring that high-assurance services are not
relying on low-assurance services.

A desirable property when trying to develop formally verified or certified implemen-
tations is compositionality, meaning that a sound implementation can be built from
sound subimplementations. We show how to compose implementations in the model,
and we prove a theorem expressing compositionality as defined above. This works as
long as the interaction between the subimplementations can be expressed as a contract,
in which the implementations play opposite roles.

Having defined a semantic notion of soundness for implementations, we develop a
syntactic method for proving soundness of implementations, which enables us to certify
concrete programs. We use a special certification paradigm, which we call verification-
time monitoring. The general idea is to formalise the semantic notion of soundness as
a test harness program, for which error-free execution corresponds to soundness of the
original implementation. This approach reduces the problem of specification soundness
for a communicating program to prevention of error states in the test harness program,

1.3. CONTRIBUTIONS 3

which can be tackled by standard means. As an example, we show how to use an
essentially standard Floyd-Hoare logic to certify real-time behaviour of a communicating
process.

As part of the investigation of certification, we look at ways of representing proof
systems. In this work we show how to use a focused intuitionistic proof system, called
LJF, to host several different proof systems. That the system is intuitionistic is of special
interest, as we think that an intuitionistic approach to Floyd-Hoare logic might give a
better account for partial operators – although we leave that investigation to future work.
As a side result of general interest, we show how to remove contraction from another
focused system; the classical system LKF. This is interesting because contraction can
lead to redundant proofs and because it is the only focused system without contraction
we know of.

1.3 Contributions

The main contributions of this dissertation are:

1. We give a thorough treatment of the adversarial methodology. This treatment
includes the basic terminology, together with the advantages and disadvantages
of the methodology. We compare it with existing cooperative frameworks, and
further elaborate on why we think that those approaches are insufficient. We
present concrete examples to support this claim.

2. We develop two concrete mathematical models for adversarial interactions. Each
model is conceptually a zero-sum real-time game between a number of players.
The first model is based on traces, and the second is based on automata. Both
models include a notion of conformance, which corresponds to a implementation
fulfilling a set of specifications. For the trace-based model, we show how to com-
pose implementations, and we prove a theorem that expresses how conformance is
preserved during composition. This allows a complete implementation to be built
incrementally. The automaton-based model is more executable, and we prove that
conformance of an automata implementation implies conformance of its trace-
based denotation. As work-in-progress, we sketch how to extend the model with
support for linear resources as a primitive concept, allowing clearer models of
physical goods and a dynamically changing communication topology.

3. We develop a simple concrete language to express implementations and specifi-
cations. Then we show how to certify conformance in concrete cases, using a
method which we call verification-time monitoring. Certification is performed by
translating the semantic conformance relation to a syntactic test harness program,
for which error-free execution corresponds to conformance. This allows standard
techniques, like Floyd-Hoare logic, to be used for certifying time-sensitive proper-
ties.

4. We show that an intuitionistic focused proof-system can be used to host several
different proof-systems, extending on a previous result for focused linear logic.
This demonstrates that linearity is not essential, and that focusing is the main
ingredient for making this approach work. As part of a further investigation into
focused proof-systems, we show how to remove contraction from a classical fo-

4 CHAPTER 1. INTRODUCTION

cused proof-system, which, to our knowledge, has not been done before due to the
focusing part.

1.4 Overview of the dissertation

The dissertation is organised into two main parts and a conclusion.

1.4.1 Part I: Adversarial models of distributed scenarios

Chapter 2: contains the treatment of the adversarial methodology, including com-
parison to a cooperative methodology and examples illustrating the concepts.

Chapter 3: develops concrete mathematical models for the adversarial methodology.
This includes definitions of both implementations and specifications. Furthermore, we
define a notion of conformance and show how compositionality of implementations can
be obtained.

Chapter 4: develops a certification paradigm called verification-time monitoring, and
shows how to use it for certification in our model.

Chapter 5: shows preliminary work on extending the basic model with linear re-
sources, allowing modelling of physical goods and dynamic communication setups.

1.4.2 Part II: Aspects of focusing

Chapter 6: contains a modified version of a tech-report [37], demonstrating how to
use the focused system LJF to encode several different proof-systems.

Chapter 7: contains a manuscript for a paper, describing how to remove contraction
from the propositional fragment of the focused system LKF for classical logic.

1.4.3 Part III: Conclusion and future work

Chapter 8: contains the conclusion, summary and directions for future work.

Part I

Adversarial models of distributed
scenarios

5

6

Chapter 2

An adversarial approach to
cooperation

The core goal of this thesis is a methodology for verifying and certifying concurrent
and distributed interaction patterns and programs. For sequential programs, verifica-
tion and certification are reasonably well understood and based on Floyd-Hoare logic
[30, 45]. When verifying or certifying concurrent programs, standard pre- and post-
conditions have to be generalised from input-output specifications to communication
specifications. Input then corresponds to what is sent to a process and output to what
is sent from a process. Furthermore, the specification in general needs access to the
entire communication history. While this extension is technically quite challenging, and
has sparked a great deal of research, it does not prompt a fundamental change in the
specification paradigm. For distributed systems, the field is much more fragmented, and
even the definition of distribution is not clearly agreed upon.

We classify distributed systems along two dimensions. The first dimension is the
physically distributed systems. For such systems each component is assumed to be
physically separated from the others. This separation is usually captured by an under-
lying imperfect communication model. In such a model, messages may take time to
deliver, they may be modified during transfer, or they may be lost altogether. This type
of distributed systems have already been studied in the past. The second category is the
logically distributed systems. For such systems, each component is controlled by poten-
tially different entities. Such entities might have different, possibly conflicting, agendas.
From a verification and certification viewpoint, this administrative segregation implies
that each component could fail independently of the others. Also, failures are much
more likely to be Byzantine; messages can not only be lost or delayed in transmission,
but may be incorrect (perhaps even deliberately so) to begin with. An example, of a
logically but not physically distributed system, is mobile code, where a user downloads
an application from an external source and runs it together with the user’s other appli-
cations. In such a situation, the new code will often enjoy fast, reliable communication
with its new environment, but because it was developed by another party, it is not
guaranteed to be well-behaved.

To our knowledge, logically distributed systems have not been extensively studied
from the viewpoint of verification, and, in particular, certification. In fact, we have
not found a single example, where this distinction played a critical role. In this work,
we argue that such distributed systems often exist in reality, and in order to handle
them in the context of program verification or program certification, one has to apply a

7

8 CHAPTER 2. AN ADVERSARIAL APPROACH TO COOPERATION

fundamentally different specification paradigm.

2.1 The cooperative world

We start this section by describing three application domains. We will focus on these
domains when analysing the foundation for formal specifications for logically distributed
systems.

Programming-by-contract

Programming-by-contract (PBC), also called design-by-contract [58], is a method for
facilitating modular construction of software by means of formal specifications. The
prototypical scenario is a code producer tasked with the development of a program sat-
isfying some specification. The development task is broken down into several modules,
each with a formally specified interface, typically with pre- and postconditions for en-
tering and leaving the module’s code. Several different programmers can now work on
different modules, and then if all developed modules satisfy their specifications, the full
program will also satisfy its specification. Part of the appeal of PBC stems from its
compositional nature, and is a good example of how formal specifications can be applied
to programs to help ensure desirable properties. We consider a simple example:

Example 2.1.1. A programmer is tasked with the implementation of a module for
calculating the fourth root of a non-negative number. As a help, a square root module
is provided. To apply the PBC method, the square root module has the following pre-
and postconditions (assuming input is taken from x and output given as in y):

pre: {x ≥ 0} post: {y · y = x}.

The fourth root module has similar conditions:

pre: {x ≥ 0} post: {y · y · y · y = x}.

It is now up to the implementer to find a correct implementation satisfying these con-
straints 1.

Communication protocols

In a communication protocol scenario, several parties seek to perform some set of actions
in a predefined way. The protocol captures the expected interactions of each party. As
a concrete scenario, we consider the order negotiation part of a buyer/seller example.
The example comes from work on formalising business protocols by Carbone et al. [13],
and stems from a use-case in the WS-CDL primer [87]:

Example 2.1.2 (Simple business protocol). The protocol specifies how a buyer obtains
delivery details for a purchase. The expected interaction is as follows:

1. Buyer asks Seller, through a specified communication channel, to offer a quote
(the item to buy is fixed).

1A careful reader will notice that nothing is forcing the output of the square root module to be
non-negative, and therefore the square root module cannot be used twice – we elaborate on this later.

2.1. THE COOPERATIVE WORLD 9

2. Seller replies with a quote.

3. Buyer answers seller with either acceptance of the quote or rejection of the quote.
If Buyer rejects the quote, the protocol terminates. If Buyer accepts, then Seller
sends a confirmation to Buyer and forwards the address of the Buyer to the Ship-
per.2

4. Shipper sends the delivery details to Buyer, and the protocol terminates.

Two extensions to this simple interaction are also proposed:

• If the quote is too high, Buyer may ask for another quote until it receives a
satisfactory quote.

• If Buyer does not reply within 30 seconds after Seller presents a quote, then Seller
will abort the transaction. Once Seller decides to do so, even if a message arrives
from Buyer later, it is deemed invalid.

Organisational workflows

Organisational workflows are a means of formally specifying how a specific work task
should be performed, especially in the presence of multiple actors. Such workflows
capture general requirements and actual implementation of those requirements. We
present two concrete examples, both taken from recent work elsewhere in the TrustCare
project. The first example is based on the work by Hildebrandt, Mukkamala and Slaats
[43]:

Example 2.1.3 (Trade union). The parties in the scenario are a Danish trade union,
Landsorganisationen i Danmark (LO), which is the main organisation for Danish trade
unions, and Dansk Arbejdsgiverforening (DA), the main organisation for Danish em-
ployer organisations. The interaction captured is that a trade union can create an
employee complaint case, on the request of a member. The creation of the case must
be followed by a meeting between the trade union, LO, and DA, arranged by LO. The
expected interaction is as follows:3

1. The union creates a case and notifies both LO and DA.

2. After the case is created, LO can and must arrange a meeting between a union case
worker, a LO case worker and a DA case worker. The meeting should be arranged
in agreement between LO and DA (the union is not involved in this negotiation):

(a) LO always proposes meeting dates to DA first.

(b) DA should accept, but can also propose new dates to LO. If DA proposes new
dates LO should accept, but can also again propose new dates. This could in
principle go on forever.

3. After the meeting has been arranged, it must be held (organised by LO).

2The original example specified that Seller sends a channel of Buyer to Shipper. We do not want to
force a potential model to include channel forwarding, and have replaced it with the neutral notion of
an address.

3We have omitted some of the parts, which we do not need for this presentation, specifically the steps
concerning registering data in a system.

10 CHAPTER 2. AN ADVERSARIAL APPROACH TO COOPERATION

(a) No meeting can be held while LO and DA are negotiating a meeting date.
Once a date has been agreed upon, a meeting should be held on the date
agreed.

The second example is based on work by Lyng, Hildebrandt and Mukkamala [42, 55]

Example 2.1.4 (Chemotherapy treatment). This example captures some parts of a
chemotherapy treatment at a hospital, specified as part of a clinical practice guideline.
The expected interaction is as follows: 4

1. The doctor calculates the therapeutic dose of chemotherapy. The dose is registered
on a ‘flowchart’ (medical term with no relation to the computer science term) and
transferred to the controlling pharmacist as a prescription.

2. The controlling pharmacist checks the doctor’s calculation, and registers the in-
formation on a working slip. The working slip is used by a pharmacist assistant
when preparing the drug.

3. The prepared drug is checked by the controlling pharmacist, to make sure the
mixture matches the patient information, and then the drug is transferred to the
treatment room.

4. The responsible nurse and another authorized person (nurse or doctor) checks the
prepared drug, taking both content and patient information into account.

5. The patient is administered the drug.

If any check fails, the previous actors are asked to verify a state and possibly redo a
calculation. Note that it is not specified what the different ‘checks’ actually verify – we
return to this later.

For each of these domains, standard modelling techniques, while technically correct,
are all to some extent based on the assumption that every party in the scenario behaves
in such a way that benefits a common goal. This common goal is usually some non-
formalised or implicit properties. In the PBC case, this goal could be that the final
program must work correctly, it must be efficient and it must be easy to maintain.
For the business protocol example, a common goal could be that the Buyer receives
the delivery details. For the trade union example, a common goal could be that a
meeting is held, and for the treatment example, a common goal could be that the patient
received correct treatment. We shall consider what could happen in these scenarios if
this assumption of cooperation was inaccurate.

In the PBC scenario, the specifications formalise certain aspects of the common goal.
The problem is that this common goal is not formalised. Directly, we can see that a
single programmer can do a “bad-faith” implementation, e.g. implementing the square
root module in such a way that the negative root is returned, or worse; by implementing
a partial correctness specification through a trivial infinite loop. More subtly, there is
no a priori mechanism for ensuring that the programmers use the ‘best’ implementation
of a specification, or even a good one. Depending on how each programmer is paid
(e.g. development time, lines of code), they might actually prefer a suboptimal solution.

4Again we leave out some parts of the original description.

2.1. THE COOPERATIVE WORLD 11

Suboptimal might be in terms of running time but also in terms of code quality. If several
programmers follow this trend, the problem might be further amplified, and in the end
the final program might be useless; unacceptably slow or non-maintainable. While these
problems could in principle be addressed by stronger specifications, yet another problem
is the inclusion of third-party libraries or modules. In the traditional PBC setting, a
module is absolved from blame, if a called submodule fails. However, if the programmer
is free to pick his own libraries, it is possible to implement a nominally correct module,
but by using flawed or buggy libraries the final program might not work as intended.

In the communication-protocol example, a deliberately malicious Seller could send
the delivery details very late, perhaps waiting for other buyers to order the same item,
so that the Seller might collect a discount on e.g. bulk shipping. Similarly, a malicious
Buyer could continuously ask the Seller for new quotes with no intention of ever buying
anything, e.g. if the Buyer was acting for a competing seller. There is also the possibility
that the Shipper does not send the delivery details, either because of a failure or because
of a more important (e.g. higher price) request for the same item. It is not clear, what
effect such a Shipper failure has on Buyer and Seller – is it the Seller’s fault for choosing
a poor Shipper, or is Seller free from blame, because Seller did not fail directly?

In the trade union example, it seems plausible to assume that the employer organi-
sation (DA) might not want to run a work related complaint case. Yet it is possible for
DA to delay a meeting; by proposing infeasible meeting dates, or by purposely delaying
a response. By delaying a meeting, it would be harder to investigate the matter or the
employee might drop the case altogether.

In the chemotherapy treatment example, there is not a direct reason, why any party
would on purpose try to invalidate the expected interaction. At the surface, however,
is seems like several seemingly redundant checks are being performed. Those checks are
in place, because people make mistakes, even though they are directly focused on the
common goal of treating the patient. Still, everyone might have a side goal of minimising
their own effort (not necessarily because they are lazy, but in order to get more work
done), so some checks might not be needed, leading to a “suboptimal” solution. Another
problem is that because it is not specified what the checks should ensure, there is no
guarantee that every thing, which should be checked, is actually checked.

In the end, we see that the assumption of cooperation is critical for the application
of the models to the real world, as only a single rogue or fallible part is enough to make
the models inaccurate or inadequate, and in the worst case ‘make the house of cards
topple over’.

The main problem is that in a logically distributed system, where each party is a
separate administrative entity, the assumption of cooperation is too strong. Firstly,
there are those cases where the different parties are in direct competition, and both may
be assumed to behave actively hostilely towards each other. The trade union mentioned
above is such a scenario. That it works at all in practice must be either because DA acts
irrationally, or (more plausibly) that there are additional constraints and incentives to
follow the intended interaction.

Secondly, in several other cases, the parties might not be in direct competition, but
they might have goals that are only partly compatible, as illustrated in Fig. 2.1. In such
a setting, each party often focuses on their side and therefore does things in their own
way, which can then lead to problems when compounded.

When the goals are only partly compatible, the original interaction specification is
almost always a compromise, and the compromise is usually not reflected anywhere
in the model. The intermediate specifications in a PBC context can be seen as such

12 CHAPTER 2. AN ADVERSARIAL APPROACH TO COOPERATION

Outcome

Goal1

Goal2 Goal3

Outcome

Goal1
Goal2

Goal3

G

Outcome

Goal1-3

G

Incompatible. Partly compatible. Fully compatible.

Figure 2.1: Different goal settings.

compromises; it is not clear from those specifications alone, how they where created:
some programmers might have preferred an easy to implement specification, while others
might have preferred harder to implement specifications (such specifications might pay
more). In a bidding scenario it is usually an advantage to make the last offer, so in
the business protocol example Seller would be at a disadvantage, which might have
come up as a compromise, because there were more sellers available for Buyer. Even
for the chemotherapy treatment there might have been a compromise, e.g. the original
doctor could have checked the pharmacist’s work himself, but instead a nurse can do it
– probably because the doctor’s time is more valuable.

In a system where these compromises are not reflected anywhere, potential changes
to the specifications are hard to do; as they require a new model where a new compromise
is obtained. This makes it difficult to do any non-local changes to the work processes
because we cannot guarantee they will behave in accordance with the different actor’s
expectations.

Thirdly, there are those cases where there are no obvious entities with significantly
different goals (in our opinion those cases are rare). We argue that even those cases
benefit from a competitive viewpoint. The main concern is that failures can always
happen, regardless of how committed to the common goal the different entities are. This
means that a robust model still has to take into account that the different parties do not
end up always following the rules, perhaps unintendedly. A way of viewing this is that
all the cooperative parties are ultimately working together against a common adversary,
say, Nature, illustrated as working against a current in Fig. 2.2. Such a viewpoint
facilitates worst case analyses, because if Nature can win, it will eventually, as coined by
the well known Murphy’s law: Anything that can go wrong will go wrong. Considering
the chemotherapy treatment example, we can view the doctor as acting rationally when
determining the prescription. But when the prescription is communicated, Nature takes
over and the nurse does not see, what is intended.

Instead of sweeping all these problems under the big catch all assumption of coopera-
tion, we propose to tackle them head on, with a fundamentally adversarial methodology.

2.2. THE ADVERSARIAL METHODOLOGY 13

Outcome

Goal1-3

Figure 2.2: Working against a common adversary.

2.2 The adversarial methodology

In an adversarial setting, each party is an autonomous entity with its own set of goals.
Those goals are not necessarily compatible with the goals of the other entities. The
entities enter into contracts with each other in order to further their own goals. Those
contracts act as specifications for the interactions of the entities, but each entity might
defect from the intended meaning or even break a contract, if it is more profitable in
terms of the goals. To allow any commitment, each contract may offer rewards or assign
penalties to different entities. As a result, an entity will honour a contract when the re-
ward for following it, or the penalty for breaking it, is high enough. In general, it is also
not enough to reflect blame for a failure on to another entity; instead, each contracting
entity must assume responsibility by quantifying the penalty it is willing to provide in
case of failure. We note that this notion of quantified performance also makes sense in
a non-physically distributed setting, because a quantified monetary guarantee is more
realistically applicable in many cases than ideal mathematical correctness. Furthermore,
it also allows certified components to be integrated directly with non-certified compo-
nents, while still providing a (maybe different) quantified guarantee. We now consider
several of the previous examples from an adversarial viewpoint.

In the PBC example, when each programmer is equipped with his own goals, we must
realise that they might produce suboptimal code, if they are not rewarded/penalised
accordingly; e.g. the post condition must explicitly forbid that the square root module
returns the negative root. Furthermore, the risk for breaking a specification must be
clear at all times, because it could be broken at any time, whether deliberately or
inadvertently (e.g. not bothering to account for corner cases). Therefore, we must
quantify the risk of breach for each module, and make sure that we do not let a module
with a high penalty for failure depend on a module with a low penalty for failure (e.g. a
third-party module). By quantifying the penalties and rewards, we move away from the
traditional distinction between a module and its environment. Instead of considering
the environment a single monolithic entity, we consider the environment a composite
entity consisting of multiple different parts, and failure from one of those parts does not
automatically void the module’s commitments with the other parts.

In the communication protocol example, both Buyer, Seller and Shipper are endowed
with their own goals. Buyer would now have to realise that Seller could delay the delivery
details, and should therefore insist on imposing some deadline. Similarly, Seller could

14 CHAPTER 2. AN ADVERSARIAL APPROACH TO COOPERATION

insist on some penalty for Buyer, if Buyer continuously asks for new quotes. Most
importantly is however that Shipper can fail independently from Seller. In many cases
it will be unacceptable for Buyer to contact Shipper in case of failures, because Buyer
does not know the agreements between Shipper and Seller. In those cases, Seller must
assume responsibility for the delivery details, and in case of failure pay the penalty to
Buyer directly. If Seller is properly organised, the agreement with Shipper ensures that
the penalty owed to Buyer is sufficiently covered by penalties obtained from Shipper.

The trade union example is similar to the communication protocol example. When
LO and DA have divergent goals, each party has to ensure that the other does not
exploit the specification, e.g. delaying the process on purpose, by writing appropriate
deadlines into the contract and assigning proper penalties.

In the chemotherapy treatment example, we consider the different actors (doctor,
nurse, pharmacist) to be separate entities with their own goals. The implications are
that we must analyse the actions of each actor in terms of their goals. Consider for
instance the checks: in a setting with personal goals we can not directly assume that
the nurse (or doctor or pharmacist) will perform the optimal check, when we do not
know what optimal means. We therefore need to analyse the reasons why the checks
are needed (they could be part of a legal requirement or to save resources), and make
sure that the reasons are reflected in such a way that their potential absence can be
analysed.

A key insight about organisational workflows (even if declaratively specified using
constraints) is that they should not be used as the ultimate top-level specification,
because such specifications are more accurately captured using legally binding contracts.
Instead, they should be viewed as means of satisfying these contracts as well as possible,
i.e., we view such workflows as implementations or intermediate-level specifications.

In addition to capturing the different scenarios more accurately, the adversarial ap-
proach also provides additional benefits. Firstly, the approach is more robust in terms of
failure, because every specification can be broken at any time. We say that the focus is
on the ‘unhappy’ and not the ‘happy’ path. In apparently cooperative settings, a com-
mon adversary (Nature, laws, the state, . . .) focuses the attention of the cooperative
participants on potential errors; e.g. if the law enforcement could come on a surprise
visit at any time, a company would probably be more concerned with following the
rules. Secondly, the adversarial notion of assuming responsibility for success allows a
greater degree of compositionality, as an entity only needs to know its own contracts and
contractors, and not any potential subcontractors. Furthermore, an entity can reason
compositionally about its commitments using quantified penalties and rewards. This
allows, for example, the creation of a more reliable (higher penalty for failure) service,
using several redundant, but less reliable, services. Thirdly, the quantified penalties and
rewards also allow optimisations and analyses of, for instance, work processes, allowing
an entity to compare two implementations and pick the one which ensures the largest
reward or the least penalty; yet another reason for considering workflows as implementa-
tions of specifications and not as the specifications themselves. This is especially useful
in the context of dynamic changes: a change in an implementation could be analysed in
terms of the existing penalties and rewards, but also a changed contract could be anal-
ysed together with the unchanged contracts. Lastly, the adversarial viewpoint includes
the cooperative viewpoint as a special case, namely when each entity has the common
goal as a private goal. The adversarial approach can therefore be seen as a generalisation
of the cooperative approach.

As we mentioned earlier, existing models and frameworks are apparently cooperative.

2.2. THE ADVERSARIAL METHODOLOGY 15

In the following we discuss reasons why the adversarial methodology has not yet been
considered in detail.

When trying to design, e.g., a new model for interaction, one can look at existing
models and try to represent the same examples and scenarios. Because the adversarial
viewpoint is not only a new model, but a new methodology, this approach does not
work directly. When a situation is already modelled cooperatively, information about,
e.g., different goals, is lost, as it is not captured by the model. This implies that in
order to obtain the benefits of an adversarial methodology, one has to go back to the
original domain experts and re-analyse the scenario; thus making such an approach more
work intensive than another cooperative model. This new analysis might also uncover
new problems not captured before, again providing extra work compared to another
cooperative model. As an example, consider the checks in the chemotherapy treatment
case. When considered cooperatively, there is no problem in including an informally
or vaguely specified action called ‘check’, because by definition the actors perform the
relevant checks. In an adversarial setting, we need to consider the reasons behind the
check and make sure that the actors do the ‘right thing’, if not by themselves, then
because of the penalties and rewards. We note that, in order to find out what these
checks actually consists of, we had to go back to a domain expert5, because was not
specified in the cooperative model.

Another problem with an adversarial approach is that certain aspects, which are
not formalised in a cooperative model, have to be formalised in an adversarial model.
These new aspects are often challenging to model formally. An example could be how
to model rewards for developing a good implementation in the PBC example, as it can
be hard to express exactly what a good implementation is. Another example is how
to model a medical assessment. Some penalties and rewards are also especially hard
to quantify, as they might have a controversial effect. The prototypical example is the
price of human life, but also actions that have an unclear future effect, e.g. actions
that damage the environment. In general, there is no golden rules or silver bullets here.
A good penalty and reward structure is not immediately clear; we will later present
a simple structure. However, future research might come up with better structures –
a good structure might also be dependent on the concrete scenario. The demand for
having more properties formalised is also a challenge, because ‘normal’ people already
have a hard time employing formal methods.

The wide span use of cooperative models also illustrates that in some sense they
‘work’: they prevent several types of errors and mistakes, so why is another approach
needed? The situation is similar to that of the end-to-end argument in system design
[88]. Briefly, the end-to-end argument states that while a reliable packet transfer medium
reduces the frequency of application level failures, it cannot replace an application level
error check, as errors might happen while data is read from disk or divided into packages.
This not to say that the reliable medium is useless, as it still prevents lots of full
file retransmissions by only resending failed packets. Transformed to the cooperation
setting, we think, that the cooperative models are very useful for catching common
errors, which can be dealt with quickly. But they cannot replace the robustness of an
adversarial model. Lastly, in addition to the conceptual challenges of the adversarial
methodology discussed above, there are additional technical challenges; e.g. real-time
deadlines. We discuss these challenges later.

5Karen Marie Lyng, personal communication, Aug. 2011.

16 CHAPTER 2. AN ADVERSARIAL APPROACH TO COOPERATION

2.3 Modelling adversarial scenarios

In this section, we informally present the different components in our adversarial model.
Hopefully, this should make the formal definitions in the next chapter easier to under-
stand. Additionally, we give a game-based way of understanding an adversarial contract,
which will form the basis for our concrete model in the next chapter.

The fundamental actors in the adversarial setting are the principals. Each principal
represents an autonomous legal entity. Such principals could be persons, companies or
organisations. Each of these principals has its own set of goals, and these goals are in
general not known by the other principals.

Principals do not interact directly. Instead, each principal can control a number
of agents. These are actors without any goals, e.g. machines. Agents can interact
with each other by performing actions. Those actions can be based on other actions
previously observed by the agent. Both data transmission and physical operations are
expressed in terms of actions. There might be different physical restrictions between
different pairs of agents; two agents might have a fast connection, while others might
not even be connected.

Principals enter into contracts with each other, concerning interaction specified in
terms of actions. Each contract is a legally binding agreement on the outcomes of se-
quences of interactions. Contracts are the main abstraction for e.g. formal specifications,
legal agreements or clinical practice guidelines. Each contract can assign both penalties
and rewards to the participating principals, e.g., monetary benefits. Contracts, being
mutual agreements, are inherently zero-sum, in that a party can not receive more than
the other parties pay. In general, each agent can help fulfil several contracts, but several
agents might also work together to fulfil a single contract. In delegation scenarios, it is
possible for principals to negotiate contracts concerning actions of agents that are not
controlled by any of the contracting principals.

To do well in its contracts, a principal must devise a strategy for its agents to
follow; each agent follows a part of the strategy called a tactic. The tactic specifies
which actions the agents should perform, when they observe certain other actions. A
strategy encompasses the entire contract portfolio of a principal, and can be viewed
as an implementation of the specification induced by the contracts. Examples of such
strategies and tactics include program code or instructions for performing work tasks.
When delegating, a principal must make sure that its strategy takes into account that the
agents performing the tasks follow the (unknown) strategy of their controller. Therefore,
the principal cannot depend on a specific behaviour of those agents.

Adversarial or competitive settings have been extensively studied in the context
of game theory [99, 57]. We believe that viewing specifications and contracts from
the viewpoint of game-theory leads to a more intuitive model, and that it should be
possible to draw from the experience of the game-theoretic field. Concretely, we view
the principals as players, a contracting connection between principals corresponds to a
game, and the particular contract to the rules of the game. The actions correspond to
the moves in the games, and the penalties and rewards correspond to assigning pay-offs
to different outcomes of the games. Strategies correspond directly to the game-theoretic
notion.

Chapter 3

Adversarial models of interaction

In this chapter we define two formal models for contracts and strategies. One is an
extensional model based on traces and one is an intensional model based on automata.
The intensional model is naturally less expressive as the extensional model, however, all
automaton-based contracts can be given a trace-based denotation. We prove that au-
tomaton conformance implies conformance of the trace-based denotations. The material
in this chapter is an extension of earlier work in form of a paper [38] and an internal
tech report [49].

This chapter is organised as follows: first we define the general communication con-
cepts including traces; then we define trace-based specifications called contracts and
trace-based implementations called tactics, including a notion of composition and con-
formance; then we define the automaton version of contracts and automatons, with a
notion of conformance; and lastly we prove that automaton-based conformance implies
trace-based conformance. We finish the chapter with related and future work.

3.1 Communication setup

The principals in the model are the autonomous legal entities.

Definition 3.1.1. Principals are taken from an unspecified set of principals, Principal.
We use p to range over principals.

In a specific scenario the relevant principals will not be this big set, but a smaller and
finite subset. The relevant principals will also be dependent on the viewpoint. When
presenting the examples, we do not wish to specify the exact principals involved; e.g.
we would like to refer to the Doctor without specifying a particular doctor. What we do
is to present the example in terms of roles (e.g. Buyer, Doctor, ...) and then we assume
that for a specific scenario those roles can be instantiated with proper principals.

Example 3.1.2 (Continuing 2.1.2). In the business protocol example, the roles consid-
ered are Buyer, Seller, and Shipper. Each role would be instantiated to a particular
principal; e.g. Buyer could be Copenhagen University, Seller could be Amazon, and
Shipper could be UPS. We assume that we have picked such concrete principals and
then continue the example using Buyer, Seller and Shipper as principals. Taking dif-
ferent viewpoints into account, Buyer should not need to know Shipper, and Shipper
only needs to know the delivery address of Buyer, not its identity. Therefore, from the
viewpoint of Buyer, the relevant principals are:

PBuyer = {Buyer,Seller}.

17

18 CHAPTER 3. ADVERSARIAL MODELS OF INTERACTION

Similarly, the relevant principals from the viewpoint of Seller and Shipper, respectively,
are:

PSeller = {Buyer,Seller,Shipper} and PShipper = {Seller, Shipper}.

Our use of roles and principals are similar to the use of roles for Distributed Dy-
namic Condition Response Structures (DDCR) [41], which have been used to model the
organisational workflows we considered in the last chapter.

Example 3.1.3 (Continuing 2.1.3 & 2.1.4). In the trade-union example, the principals,
(roles) are precisely the roles given in the formalisation by Hildebrandt, Mukkamala and
Slaats [43]:

P = {Union, LO,DA}.

In this case, Union is a role, because it can stand for any union, but LO and DA are
specific principals.

For the chemotherapy treatment example, as we mentioned earlier, it can be advan-
tageous to include Nature as a special principal, which can be seen as working against
the rest of the principals:

P = {Doctor,Nurse,Pharmacist,Assistant,Nature}.

As mentioned before, each principal controls a set of agents and each agent is con-
trolled by at most one principal.

Definition 3.1.4. An agent, a, is taken from a set of agents, Agent. Each principal,
p, has an associated set of agents, Ap, and two different principals, p, p′, have disjoint
set of agents Ap ∩Ap′ = ∅.

The communication protocol example can have a simple agent structure:

Example 3.1.5 (Continuing 2.1.2). Buyer, Seller, and Shipper each has a single agent,
performing all communication:

ABuyer = {aBuyer}, ASeller = {aSeller}, AShipper = {aShipper}.

The agent setup is static, that is, we do not specify in the model how agents are
created or removed. It should, however, be possible to create a generic agent contract,
in which a principal needing another agent sends the desired tactic to another principal,
representing either a ‘free’ agent or an ‘agency’. The principal then executes the tactic
on a corresponding agent. There is, of course, no guarantee that the tactic would
be executed faithfully by an agent for hire, but then the agent contract must specify
appropriate penalties.

3.2 Communication concepts

In this section we present the main communication concepts used in the model.

3.2. COMMUNICATION CONCEPTS 19

Time

To verify and certify real-time scenarios, our model needs a notion of time. In particular,
as previously mentioned, deadlines are crucial in almost all settings. Our concrete time
model will be one, where the time domain is continuous, point-based and quantifiable. A
continuous domain, instead of a discrete domain eliminates the need to fix a global time
precision. In a discrete setting, if each time step is 1 second, we can not directly move to
a setting, where each step is 1/10 second for some of the interactions. It is important to
note that nothing in the model needs a truly continuous time-domain; it is only for the
modelled examples we use it. We use a point-based domain instead of an interval-based
one, because it is more clear what it means to be within a deadline. Quantitative time,
as opposed to qualitative time, means that the actions are not only ordered by time,
but that there is also a quantifiable time difference between each action. We use such a
domain, because we want to be able to capture deadlines.

To make the time domain concrete, we use the real numbers (R), but we could just
as well have used the rationals. To make the presentation clear, we separate the use
of time into two domains: a domain of time points and a domain of time differences.
Both domains are modelled as real numbers, but we only use certain operations on each
domain, e.g. we cannot add two time points, but we can add a time difference to a time
point.

Definition 3.2.1. The set of time points Time (ranged over by t) and the set of time
differences TimeD (ranged over by d) are both defined to be the real numbers:

Time := R TimeD := R.

We will make use of the following operations:

• ≤ ⊆ Time×Time, is the comparison between two time points;

• ≤ ⊆ TimeD × TimeD, is the comparison between two time differences (the use
of the same symbol should not pose any problems);

• + : Time×TimeD→ Time, is the addition of a time difference to a time point;

• − : Time×Time→ TimeD, is the time difference between two time points.

We often need to stipulate strictly positive time differences and therefore define:

TimeD+ := {d ∈ TimeD | d > 0}.

Time points and time differences are both used when modelling the concrete sce-
narios. In the examples, time differences are usually expressed in seconds, so that e.g.
3s = 3, 4m = 4 · 60 = 240 and 1ms = 0.001. Similarly, we let time points be relative to
a specific time.

Example 3.2.2 (Cont. 2.1.2). The extra timing requirement in the business protocol
example could be captured by a time difference of 30 seconds:

dQuoteDeadline = 30s

So if the quote from seller arrived at 15:30:45, a reply at 15:31:00 would be on time and
a reply at 15:31:30 would be too late:

tQuoteTime = 15:30:45, tOnTime = 15:31:00, tLate = 15:31:30.

Note that we have omitted the date part of the time points to make them less verbose,
because all time points are assumed to be on the same date.

20 CHAPTER 3. ADVERSARIAL MODELS OF INTERACTION

Actions and links

All communication in the model takes place in form of actions. An action is initiated
by a sender, and then observed by a receiver. In our model, an action can never be
blocked, meaning that it is entirely up to the sender when actions happen. A receiver
can choose to ignore an action, but not prevent its occurrence.

Disallowing the blocking of actions is different from the standard version of several
process calculi (e.g. CSP [46]), but still a fairly common approach, taken for instance by
input/output automata [54] or any asynchronous calculi. We have two main reasons for
disallowing blocking. Firstly, we only want to reason about the actually communicated
actions and not about potential refusals of actions. Such refusals would for instance be
hard to document in practice. Secondly, blocking reception of unexpected input is not
robust in a setting where the communication partners are fallible. We want all errors or
unexpected behaviour to be able to occur, so that it can be assigned a penalty.

Each communication action takes place along links. A link is a directed, one-to-one
communication medium between two agents. A link represents an idealised medium:
when an action is performed, it is always observed (but not necessarily processed) after
a certain time. Each link has an associated latency, which is the time it takes from
an action being performed and until it is observed. In a data-transmission setting, the
time that the action is performed is the time when the first bit is being sent, and the
time that the action is observed is the time when the last bit is received. For simplicity,
we assume that each link has a capacity of one, meaning that only one action is being
transmitted at a time.

Even though we have chosen a fairly simple communication setup, it is possible
to encode more complicated setups using special agents and contracts. A blocking
medium could be implemented by a protocol with explicit acknowledgements. In the
same way, an unreliable medium could be specified with a contract that allows the agents
to drop some of the messages. In such a way, we can also quantify the assurance we
have on a particular medium. Similarly, one-to-many or many-to-one links could also
be specified with special agents. For now, we consider the link setup to be static; in
Chapter 5 we suggest a refinement of links to resources, which makes for a more dynamic
communication setup.

Actions are parametrised by values (e.g. the data in a packet, the amount paid in
a transfer, the medicine administered). An action can then be modelled as the link
used paired with a value, transmitted from sender to receiver. We allow the values of
each link to come from a different value domain, which we call the alphabet of that link.
We consider each value domain abstract at the moment, but a concrete instance of the
model would fix the domain to a specific domain (e.g. finite sequences of bits).

Definition 3.2.3. Links, l , are taken from some unspecified set of links, Link. For each
link l we assign a domain of values, Valuel , corresponding to the actions along that link.
Each link has a single unique sender and receiver: send(l) ∈ Agent, recv(l) ∈ Agent.
There may be multiple links, usually with different alphabets, between each pair of agents.
The links where an agent is the receiver/sender are called the input/ output of that agent:

inp(a) = {l | recv(l) = a}
outp(a) = {l | send(l) = a}

Similar to the situation for principals and roles, links are a concrete connection
between two agents. When considering the contract, it is be useful to employ contract

3.2. COMMUNICATION CONCEPTS 21

templates, which specify the interaction in terms of channels, also called logical links.
Channels are independent of, which agents are available at contracting time, but will
be instantiated to concrete links before run time. We will use α in the examples to
range over channels. The usage of channels gives a mildly dynamic system, in which the
principals can negotiate contracts (templates) without considering the executing agents
directly. We do not model the instantiation of channels with links, but, as mentioned,
Chapter 5 suggests a refinement of links, giving a more dynamic system.

Example 3.2.4 (Cont. 2.1.2 & 3.1.2). In the business protocol example we consider
the following channels (using B, S,H for Buyer, Seller, and Shipper respectively):

{αB→S, αS→B, αS→H, αH→S, αH→B},

The channel αB→S is a channel from Buyer to Seller. This channel is then instantiated
with the link lAB→AS with the following value domain:

ValuelAB→AS
= {RequestQuote,Accept,Reject},

having Buyer’s agent as sender and Seller’s agent as receiver:

send(lAB→AS) = aBuyer, recv(lAB→AS) = aSeller.

Similarly, αS→B can be instantiated with lAS→AB with the following value domain:

ValuelAS→AB
= {OrderConfirmation} ∪ {QuoteResponse(n) | n ∈ N},

and the opposite sender and receiver. The rest of the channels follow the same pattern.
The input/output for e.g. aBuyer ends up being:

inp(aBuyer) = {lAS→AB, lAH→AB}
outp(aBuyer) = {lAB→AS}

As described above, each link has an associated time between an action is requested
and it is actually performed. Formally, we associate a latency with each link expressing
how quickly actions can be performed.

Definition 3.2.5. The function lat : Link → TimeD+ assigns a positive latency to
each link.

Such a latency assignment represents physical constraints, and is given as part of the
scenario; in most cases it can be set sufficiently low, and then the contracts can specify
other restrictions (e.g. maximal response time or minimal time between requests) on
top of that.

Example 3.2.6 (Cont. 2.1.2). In the protocol example we assign a latency of 1 second
to the links lB→S and lS→B:

lat(lB→S) = lat(lS→B) = 1s,

expressing that at most 1 message per second can be sent.

Note that even though two links share the same latency, it does not mean that
they have to be in sync. It only expresses that between an action being performed and
received, there must be at least a time difference of the latency, not that actions are
only allowed on multiples of the latency.

22 CHAPTER 3. ADVERSARIAL MODELS OF INTERACTION

3.3 Trace-based model

In this section, we define the trace-based model for contracts and strategies. We start
by defining traces themselves. A trace is a way of representing a communication history.
It captures which actions have happened and at what time. All traces are finite and
contain actions from a fixed set of links.

Formally, a trace assigns values to the given links at different times, while respecting
the latencies of the individual links. We keep the time points sorted in strict ascending
order to easier access parts of the trace.

Definition 3.3.1 (Trace). A trace over a (finite) set of links, L, is a mapping1 from
the links into lists of time points and values:

σ ∈ TraceL :=
∏
l∈L

(Time×Valuel)
∗,

satisfying that for all l ∈ L where σ(l) = [(t1, v1), . . . , (tn, vn)]:

∀i < j. tj − ti≥ lat(l).

We write []tr for the trace that maps all links into empty lists.

We have chosen to divide the different links into separate lists, as we think this gives
the clearest definitions; an alternative formulation of a trace would be to use a single
list, with partial mappings for each time point, i.e. (Time×

∏
l∈L(Valuel + {ε}))∗.

Note the way we represent partial maps: instead of writing f : A ⇀ B, we write
f : A→ B + {ε}, because we believe this is a more clear notation. However, we do not
write explicit injections, so we often write f(a) = ε instead of f(a) = in2(ε).

In addition to the actual actions, the designated end time for a given trace is also
important (e.g. with respect to deadlines). We therefore define traces where all time
points are less than a given time point.

Definition 3.3.2. Given a set of links, L, and a time point, t, we define the set of all
traces up to and including t as:

Tracet
L := {σ ∈ TraceL | ∀l ∈ L. ∀(t ′, v) ∈ σ(l). t ′≤ t}.

The notation (t , v) ∈ ts refer to list membership.

We show an example trace:

Example 3.3.3 (Trace). Given links l1 and l2 with latency lat(l1) = 1.0 and lat(l2) =
0.3, and value domains Valuel1 = {a, b} and Valuel2 = {x, y, z}, the following:

σ =
{

l1 7→ [(3.1, a), (6.5, b), (8.0, a)], l2 7→ [(4.5, z), (4.8, z), (5.5, x)]
}

is a legal trace σ ∈ Trace{l1,l2}. If the time point for the last value for l2 had been 5.0,
the recovery time for l2 would have been violated, and therefore σ would not have been
a legal trace. Every time point greater than or equal to 8.0 can be used as end time,
e.g. σ ∈ Trace8.0

{l1,l2} and σ ∈ Trace20.0
{l1,l2}.

1We use
Q

to refer to the dependent function space. That is, when f ∈
Q

x∈A Bx, then f : A →
∪x∈ABx, satisfying f(a) ∈ Ba.

3.3. TRACE-BASED MODEL 23

Traces are used to define contracts and strategies; we introduce several operators to
simplify the presentation:

Definition 3.3.4. The following operations are associated with traces:

• For ts ∈ (Time×Valuel)
∗, we have ts≤ t = [(t ′, v) | (t ′, v) ∈ ts ∧ t ′≤ t], and

similarly for ts< t . 2

• The time restriction extends to traces: σ≤ t(l) = σ(l)≤ t , and σ< t(l) = σ(l)< t .

• If L ⊆ L′ and σ ∈ TraceL′ then σ|L ∈ TraceL is defined by restriction of the
domain.

• The first/last time point for a given trace σ ∈ TraceL is defined in the following
way:

first(σ) = min{t | ∃l ∈ L. (t , v) ∈ σ(l)}
last(σ) = max{t | ∃l ∈ L. (t , v) ∈ σ(l)}

• When L1 ∩ L2 = ∅ then ∪ : TraceL1 × TraceL2 → TraceL1∪L2, is the union,
defined in the following way:

(σ ∪ σ′)(l) =

{
σ(l) if l ∈ L1,

σ(l) if l ∈ L2.

Again we show examples of the definitions:

Example 3.3.5. Given the trace σ from Ex. 3.3.3, we have that:

σ≤ 5.0 =
{

l1 7→ [(3.1, a)], l2 7→ [(4.5, z), (4.8, z)]
}

σ|l1 =
{

l1 7→ [(3.1, a), (6.5, b), (8.0, a)]
}

first(σ) = 3.1
last(σ) = 8.0

Now given:

σ′ =
{

l3 7→ [(3.5, o), (12.5, o)]
}

for some l3 with Valuel3 = {o}, we have that:

σ ∪ σ′ =
{

l1 7→ [(3.1, a), (6.5, b), (8.0, a)],
l2 7→ [(4.5, z), (4.8, z), (5.5, x)],
l3 7→ [(3.5, o), (12.5, o)]

}
Each of the operations in Def. 3.3.4 preserves the designated end time of the traces.

Proposition 3.3.6. The following holds:

• If σ ∈ Tracet
L then σ≤ t ′ ∈ Tracet

L, and similarly for σ< t ′.

2The notation [f(x) | x ∈ xs ∧ P (x)] is a list comprehension known from functional programming
languages, it is defined the same way as for sets, but it respects the order of the list.

24 CHAPTER 3. ADVERSARIAL MODELS OF INTERACTION

• If σ ∈ Tracet
L then σ|L′ ∈ Tracet

L′.

• If σ ∈ Tracet
L1

and σ′ ∈ Tracet
L2

then σ ∪ σ′ ∈ Tracet
L1∪L2

.

Proof. Follows directly from the definitions.

Having defined traces and their operations, we move to the definition of contracts.

3.3.1 Trace-based contracts

A contract assigns rewards and penalties to certain interaction sequences. Interactions
are formalised as traces, and therefore each contract denotes a function on traces that for
a given trace specifies a verdict. In the context of runtime monitoring, such a function
is also called a monitor [51]. We require several properties:

1. Contracts must be deterministic: from a given interaction trace there should only
be a single verdict.

2. The penalty and reward assignment should be final: when an assignment has been
specified, no later actions should be able to change it.

3. The assignment of rewards must be zero-sum: a principal can not receive more
as a reward than the others paid as penalties. In this way we can consider the
penalties and rewards a linear resource, similar to actual money.

As domain for pay-offs, we have chosen the real numbers, because we do not wish to
fix a specific minimal currency (e.g. to account for micro-transactions). To capture the
last property we define verdicts:

Definition 3.3.7. A n-ary verdict is either not-finished or a pay-off vector:

v ∈ Verdictn := {⊥}+ Rn,

satisfying for v = (k1, . . . , kn):

n∑
i=1

ki = 0.

As mentioned, contracts should be deterministic, which is modelled by viewing con-
tracts as a function that assigns verdicts to traces. The traces we consider include an
end point, which is expected to lie after the actions in the trace. This end point is used
to model that even though no actions are happening, the contract can still evolve into
a final state (e.g. in the case a deadline passes).

Definition 3.3.8. A (trace-based) contract between n parties regarding a finite set of
links, L, is a function:

c ∈ ContractL :=
∏

t∈Time

(Tracet
L → Verdictn),

satisfying a monotonicity condition:

∀σ ∈ Tracet ′
L . t ≤ t ′ ⇒

(
c(t)(σ≤ t) = ⊥ ∨ c(t)(σ≤ t) = c(t ′)(σ)

)

3.3. TRACE-BASED MODEL 25

The monotonicity condition ensures exactly the second requirement; assignment of
pay-offs is final. While the contract function is a nice semantic notion, it is harder to
write concrete contracts. Nevertheless, we present a simple example, to illustrate the
definition:

Example 3.3.9. We consider the following contract between two parties:

Whenever a number, n, is sent on link l1, then n+ 2 must be sent on link l2
within 10s. If not, the first party receives a pay-off of 1. Note that neither
l1 or l2 need to involve agents directly controlled by the contracting parties.

The contract is defined below:

c(t , σ) =

(1,−1) if ∃(t ′, n) ∈ σ(l1). t ′ + 10s≤ t

∧ ¬(∃(t ′′,m) ∈ σ(l2). t ′< t ′′< t ′ + 10s ∧m = n+ 2);
⊥ otherwise.

This contract specifies the several requests can be submitted before answers are received,
however, in such a case the order of the requests are not respected by the responses.
Later we see a contract where multiple requests are explicitly forbidden.

Bilateral contracts (n = 2) are easier to compose, and should be sufficient for most
examples. In the rest of this work we therefore consider such contracts only. The set of
verdicts can therefore be simplified to either non-finished or a single real number:

Definition 3.3.10. The set of bilateral verdicts (from the viewpoint of the first party)
is:

Verdict := {⊥}+ R.

Ex. 3.3.9 can easily be modified to a bilateral setting, by changing the pay-off vector
(1,−1) into the number 1.

3.3.2 Trace-based tactics

A principal’s strategy, also called its implementation, is the collection of I/O behaviours
each agent is expected to exhibit. We refer to each specification of behaviour as the
tactic for that agent. In a programming setting, the tactics correspond to the program
code.

Each agent observes the actions on its input links, and then performs actions on its
output links. We require the input links to be disjoint from the output links. This model
for agents means that the only way agents can react to something, is if they observe
it on one of their input links. This implies that the only way principals can affect the
execution of the agents is either through the tactic or through an explicit link from
another of the principal’s agents. In general, it is not possible to change the running
code, unless it is explicitly modelled as input. As mentioned earlier, agents do not have
any goals themselves or any knowledge of the contracts of their principal.

As we described earlier, each link has an associated latency. The model has to take
the latencies into account, so that an action in a trace cannot be influenced by the
observations made during the latency time. In the model, this corresponds to requiring
that an action at time t on link l can only depend on observations made before t − lat(l).

26 CHAPTER 3. ADVERSARIAL MODELS OF INTERACTION

The formal semantic model for tactics is similar to the semantic model for contracts.
We formalise the tactic as a function mapping traces over input links to traces over
output links.

Definition 3.3.11. A (trace-based) tactic with input Lin and output Lout, where Lin ∩
Lout = ∅, is a function:

τ ∈ TacticLin→Lout :=
∏

t∈Time

(Tracet
Lin
→ Tracet

Lout
),

satisfying a monotonicity condition:

∀σ, σ′ ∈ Tracet
Lin
.
(
t ′≤ t ∧ σ≤ t ′ = σ′≤ t ′

)
⇒

∀l ∈ Lout. τ(t)(σ)(l)≤ t ′+ lat(l) = τ(t)(σ′)(l)≤ t ′+ lat(l).

The monotonicity condition is similar to the one for contracts. When the input
traces match up until a certain time point, we require the output traces for each link
to match up until that time point plus the latency of the link, because it would take at
least a time period equal to the latency to react. Similar to contracts, we do not plan
to write that many concrete tactics, but we show a simple one as an example:

Example 3.3.12. The tactic, τ , which repeatedly reads a number n on link l1 and then
outputs n+ 2 one time unit later on link l2 is defined in the following way:

τ(t)({l1 7→ [(t1, n1), . . . , (tk, nk)]}) = {l2 7→ [(t1 + 1.0, n1 + 2), . . . , (tk + 1.0, nk + 2)]},

where tk + 1.0< t . If the latency of l1 and l2 are equal and less than 1.0, then this tactic
satisfies the monotonicity condition; otherwise the function must be changed, such that
the generated trace respects the latencies.

In addition to the intuition that reaction takes time, the monotonicity condition
also allows a definition of what it means for two tactics to operate in parallel. This
corresponds to what happens, when the principal runs all his agents together, which in
turn gives meaning to the principal’s strategy. We call this type of parallel composition
an external parallel composition, because it can compose any tactics, regardless of what
language they are written in (not even the same) – in fact the languages themselves
might even include their own notion of internal parallel composition.

A parallel composition of two tactics is shown in Fig. 3.1. As illustrated in the figure,
when combining two tactics, output from one tactic may be used for input to the other
tactic (links in Lin1∩Lout2), and vice versa (links in Lin2∩Lout1). Formally this internal
communication can be captured by a fixed-point. We must prove that the desired fixed
point exists and is unique, the result depends on the monotonicity of the tactics in two
ways: for uniqueness, we need that output from a tactic at a time is determined, when
the input up to that time point is known. For existence we need the latencies, so that
each tactic cannot ‘speed up’ the other one. The properties of the fixed point is captured
by the following proposition:

Proposition 3.3.13. Given two tactics, τ1 and τ2 with input/output links Lin1/Lout1

and Lin2/Lout2, where Lin1 ∩ Lin2 = Lout1 ∩ Lout2 = ∅. Let

Lin12 = Lin1 ∪ Lin2,

Lout12 = Lout1 ∪ Lout2.

3.3. TRACE-BASED MODEL 27

τ1

τ2

Lin1

Lin2

Lout1

Lout2

Lin Lout

Figure 3.1: External parallel composition of two tactics.

Now for all t ∈ Time and σ ∈ Tracet
Lin12\Lout12

there exists a unique σ′ ∈ Tracet
Lout12

such that the following two equations hold:

τ1(t)((σ ∪ σ′)|Lin1
) = σ′|Lout1

,

τ2(t)((σ ∪ σ′)|Lin2
) = σ′|Lout2

.

The function

Φ :
∏

t∈Time

(Tracet
Lin12\Lout12

→ Tracet
Lout12

)

that for each time and trace assignes the uniquely defined σ′ is monotone when inter-
preted as a tactic.

Proof. In the following let m = min{lat(l) | l ∈ Lout12}. We start by proving uniqueness,
so assume that there exists σ′1 and σ′2, such that:

τ1(t)((σ ∪ σ′1)|Lin1
) = (σ′1)|Lout1

,

τ2(t)((σ ∪ σ′1)|Lin2
) = (σ′1)|Lout2

,

τ1(t)((σ ∪ σ′2)|Lin1
) = (σ′2)|Lout1

,

τ2(t)((σ ∪ σ′2)|Lin2
) = (σ′2)|Lout2

.

We wish to prove that σ′1 = σ′2, so assume for contradiction σ′1 6= σ′2. This means that
there must exist t ′ such that:

(σ′1)< t ′ = (σ′2)< t ′ ∧ (σ′1)≤ t ′ 6= (σ′2)≤ t ′ .

Now because m is positive we have that:

(σ′1)≤ t ′−m = (σ′2)≤ t ′−m,

and from monotonicity of τ1 and τ2 we get:

τ1(t)((σ ∪ σ′1)|Lin1
)≤ t ′ = τ1(t)((σ ∪ σ′2)|Lin1

)≤ t ′ ,

τ2(t)((σ ∪ σ′1)|Lin2
)≤ t ′ = τ2(t)((σ ∪ σ′2)|Lin2

)≤ t ′ .

28 CHAPTER 3. ADVERSARIAL MODELS OF INTERACTION

These gives that (σ′1)≤ t ′ = (σ′2)≤ t ′ , which is a contradiction.
We now consider existence. Now given t and σ we wish to construct σ′. We start

by defining the function F : Tracet
Lout12

→ Tracet
Lout12

as follows:

F (σ′) = τ1(t)((σ ∪ σ′)|Lin1
) ∪ τ2(t)((σ ∪ σ′)|Lin2

).

Now it is easy to see that for any t ′ and σ′:

σ′≤ t ′ = F (σ′)≤ t ′ ⇒ F (σ′)≤ t ′+ m = F 2(σ′)≤ t ′+ m.

Now we wish to construct a fixed-point for F : if F ([]tr) = []tr then we are done,
otherwise let t ′′ = first(F ([]tr)). Now we have that:

([]tr)< t ′′ = F ([]tr)< t ′′ .

Which again means that:

([]tr)≤ t ′′−m = F ([]tr)≤ t ′′−m.

A simple proof by induction now shows that:

Fn+1([]tr)≤ t ′′+ m·n = Fn+2([]tr)≤ t ′′+ m·n.

Now with:

N =
⌈

t − t ′′

m

⌉
,

we have that FN+1([]tr) is a fixed point of F , because t ′′+m · N ≥ t . Now with σ′ =
FN+1([]tr) the two equations follow.

That Φ is monotone follows directly from monotonicity of the two tactics.

We can use this proposition to define parallel composition:

Definition 3.3.14 (External parallel composition). Given two tactics, τ1 and τ2 with
input/output links Lin1/Lout1 and Lin2/Lout2, where Lin1 ∩ Lin2 = Lout1 ∩ Lout2 = ∅. Let

Lin12 = Lin1 ∪ Lin2,

Lout12 = Lout1 ∪ Lout2.

The parallel composition

τ1 ‖ τ2 :
∏

t∈Time

(Tracet
Lin12\Lout12

→ Tracet
Lout12\Lin12

)

is now defined by:

(τ1 ‖ τ2)(t)(σ) = Φ(t)(σ)|(Lout12\Lin12)

where Φ is defined as in Prop 3.3.13.

3.3. TRACE-BASED MODEL 29

3.3.3 Strategies and conformance

The strategy of a principal is an assignment of tactics to agents. Each agent is assigned
exactly one tactic, and the effect of the strategy is the parallel composition of the tactics,
which can be viewed as a single tactic denotation. We formalise a strategy as a map
from the principal’s agents to tactics.

Definition 3.3.15. A strategy for a principal, p, with agents Ap is a mapping:

Σ :
∏

a∈Ap

Tacticinp(a)→outp(a).

satisfying that when Σ = {a1 7→ τ1, . . . , an 7→ τn} then

τ = τ1 ‖ . . . ‖ τn,

is well-defined, i.e., that the links set of the agents satisfy the disjointness condition of
parallel composition. When τ ∈ TacticLin→Lout we write Σ ∈ StrategyLin→Lout

.

In general a strategy seeks to comply with several contracts at once, called a contract
portfolio. Using the real-valued pay-offs, we simply add the pay-offs to get the pay-off
for the contract portfolio. With the notion of pay-off for a portfolio, we can define what
it means to implement a portfolio in a sound way. The notion of soundness we consider
is that a well-behaved implementation should always receive enough rewards to cover
any incurred penalties. E.g. consider a task that is delegated to a subcontractor. A
proper implementation must ensure that if the subcontractor fails, the penalty received
from the subcontractor must be enough to cover any penalties incurred by the main
contractor. As a special case sound strategies should never ‘fail first’, i.e. if the strategy
violates a contract, one of its subcontractors must already have violated its contract. In
terms of pay-offs, this notion corresponds to ensuring that the total accumulated pay-off
is non-negative at all times. If a strategy ensures this property, we say that it conforms
with the portfolio:

Definition 3.3.16. A strategy, Σ = {a1 7→ τ1, . . . , an 7→ τn} ∈ StrategyLin→Lout
con-

forms to a portfolio c1, . . . , cm, written |= Σ : c1, . . . , cm iff

∀t ∈ Time, σ ∈ Tracet
(Lin∪L1∪...∪Ln)\Lout

.
n∑

i=1

∂(ci(t)((σ ∪ τ(t)(σ|Lin
))|Li

)) ≥ 0,

where ci is a contract with links Li, and

τ = τ1 ‖ . . . ‖ τn,
∂ : Verdict→ R,
∂(⊥) = 0, ∂(k) = k .

Our definition of conformance expresses that the accumulated pay-off must be non-
negative at all times, but it is possible to encode other pay-off scenarios using additional
pseudo-contracts. E.g. a contract could start out by giving us a pay-off of 100, meaning
the strategy could pay for some subcontractors in anticipation of eventual reward from
the main client. Another contract could continuously give a pay-off of –1 every month,
requiring that some minimal income is generated.

Contracts are always specified from the viewpoint of the first part. Sometimes we
want to consider the same contract but from the viewpoint of the second part. With
bilateral contracts this is easy: by inverting the pay-offs in a contract, the obligations and
permissions are effectively reversed. This is captured by the notion of a dual contract:

30 CHAPTER 3. ADVERSARIAL MODELS OF INTERACTION

+2 +1
lin1

lout1

lin2

lout2

c1c2

Figure 3.2: Agents in the +2 example.

Definition 3.3.17. Given a contract c we define the dual contract c to be:

c(t)(σ) =

{
⊥ if c(t)(σ) = ⊥,
−c(t)(σ) otherwise.

To exemplify strategies and conformance, we consider a programming example.

Example 3.3.18. We consider the implementation of a +2 service. Instead of writing a
+2 tactic directly, we invoke a +1 tactic twice to illustrate subcontracting. Note that in
this case the computation is trivial, but this example generalises to an arbitrary function
f , and the calculation of f ◦ f , or a more complex subcontracting setting. The relevant
links are:

• lin2, lout2 the input and output links from the +2 service.

• lin1, lout1 the input and output links from the +1 service.

The setup is illustrated in Fig. 3.2. Each contract has the corresponding service provider
as the first party; thus the +2 tactic is the first part in c2 and the second part in c1

(first part in c1). For simplicity, each link has a latency of 1s, and the value domain for
each link is the integers.

The +2 service contract, c2, expresses that when a number n is received on lin2, then
n + 2 should be sent on lout2 within 10s, otherwise the +2 service provider receives a
pay-off of –1. Similarly, the +1 service contract, c1, expresses that when a number n is
received on lin1, then n + 1 should be sent on lout1 within 3s, otherwise the +1 service
provider receives a pay-off of –1.

The +2 service must implement a tactic, τ2 to run on agent a2. The tactic must be
‘conditionally’ correct, which means that, if someone (a +1 service provider) is willing to
fulfil c1, then τ2 can fulfil c2. The conditional correctness can expressed by conformance
with respect to the original contract and the dualised contract:

|= {a2 7→ τ2} : c2, c1.

Note that this also covers cases where the +1 service provider fails. In Chapter 4 we
show how to prove this conformance.

For verification and certification purposes it is highly desirable that the model allows
some level of compositionality, i.e., we wish to be able to create a full conforming strategy
by composing substrategies. The general setup is as follows: We partition the agents into

3.3. TRACE-BASED MODEL 31

several sets, and we then prove that each partition conforms with some of the contracts.
We then get directly (a theorem proved in the following) that by combining all the
partitions, we get a conforming strategy for all the contracts. This approach works even
when the agents are allowed to interact across the partitions. But in order to treat each
partition in isolation, we abstract their interaction as a contract denotation. In these
contracts the principal plays both parts, and therefore it will not have any effect on
the outside contracts, as they are only used to capture the intended interaction. But
from the viewpoint of one trying to verify or certify a certain set of tactics, they are no
different from the rest of the contracts. We revisit the previous example:

Example 3.3.19 (Continuing Ex. 3.3.18). Instead of an external +1 service provider,
the +2 service provider can implement the +1 tactic itself. Concretely, the provider
must implement a tactic τ1 for agent a1, which conforms with c1:

|= {a1 7→ τ1} : c1.

Now the combined strategy Σ = {a1 7→ τ1, a2 7→ τ2} should conforms with the external
contract c2. This is however not trivial, but will be proved in following.

The main compositionality theorem expresses that: if we have a strategy that con-
forms with a set of contracts, and another strategy that conforms with some other
contracts, including the dual of the original contracts. Then when combining the tactics
from both strategies, they conform against those contracts that did not have a dual,
expressing a form of external compositionality.

Theorem 3.3.20 (External compositionality). Given strategies for non-overlapping
agents:

Σ1 ∈ StrategyLin1→Lout1
, Σ2 ∈ StrategyLin2→Lout2

and contracts c1, . . . , cn, c′1, . . . , c
′
n1

, c′′1 , . . . , c
′′
n2

where:

|= Σ1 : c1, . . . , cn, c′1, . . . , c
′
n1
,

|= Σ2 : c1, . . . , cn, c′′1 , . . . , c
′′
n2
.

The set of internal links are Lint = (Lin1 ∪ Lin2) ∩ (Lout1 ∪ Lout2). If the internal links
are disjoint from all links of the contracts c′1, . . . , c

′
n1
, c′′1 , . . . , c

′′
n2

(Lint ∩ L′i = ∅ and
Lint ∩ L′′i = ∅) then

|= Σ1 ∪ Σ2 : c′1, . . . , c
′
n1
, c′′1 , . . . , c

′′
n2

Proof. To avoid tedious notational clutter, we only show the proof of the special case,
where both strategies consist of a single tactic, (Σ1 = {a1 7→ τ1} and Σ2 = {a2 7→ τ2})
and n1 = n2 = n = 1. So assume that we have tactics:

τ1 ∈ TacticLin1→Lout1 , τ2 ∈ TacticLin2→Lout2 ,

and contracts:

c ∈ ContractL, c′ ∈ ContractL′ , c′ ∈ ContractL′′ .

32 CHAPTER 3. ADVERSARIAL MODELS OF INTERACTION

Furthermore assume that:

|= {a1 7→ τ1} : c, c′, (3.1)
|= {a2 7→ τ2} : c, c′′. (3.2)

We want to show that:

|= {a1 7→ τ1, a2 7→ τ2} : c′, c′′.

The disjointness assumption is: L′ ∩ Lint = ∅ and L′′ ∩ Lint = ∅. To prove conformance
we assume t ∈ Time and σ ∈ Tracet

(L′∪L′′∪Lin)\Lout
. We now need to show that (with

τ = τ1 ‖ τ2):

∂(c′(t)((σ ∪ τ(t)(σ|Lin
))|L′)) + ∂(c′′(t)((σ ∪ τ(t)(σ|Lin

))|L′′)) ≥ 0.

Now let σ′ = Φ(t)(σ|Lin
), where Φ is defined as in Prop 3.3.13. By definition we therefore

have σ′|Lout
= τ(t)(σ|Lin

).
The general idea of the proof is to use both assumptions, and therefore define traces

σ1, σ2 in such a way that the output of the tactic called on σ1 ∪ σ2 is the same as on σ.
We start by considering σ1; we want to define it to be equal to σ (resp. σ′) whenever
possible. There are three different cases to consider:

1. If a link is output from τ2 we define σ1 to be equal to σ′.

2. If a link is not an output link but instead in either L′,L′′ or Lin then we define σ1

to be equal to σ.

3. If neither of the above, we set the value of that link to an arbitrary value.

These considerations result in the following definition of σ1 ∈ Tracet
(L∪L′∪Lin1)\Lout1

:

σ1(l) =

σ′(l) if l ∈ Lout2,

σ(l) if l ∈ L′ ∪ L′′ ∪ Lin,

ts l otherwise,

where ts l is an arbitrary value (e.g. []). In a similar manner, we can define σ2 ∈
Tracet

(L∪L′′∪Lin2)\Lout2
in the following way:

σ2(l) =

σ′(l) if l ∈ Lout1,

σ(l) if l ∈ L′ ∪ L′′ ∪ Lin,

ts l otherwise.

Now we wish to prove that:

τ1(t)((σ1)|Lin1
) = τ1(t)((σ ∪ σ′)|Lin1

),

which comes down to showing:

(σ1)|Lin1
= (σ ∪ σ′)|Lin1

.

So let l ∈ Lin1, there are two cases:

3.3. TRACE-BASED MODEL 33

• l ∈ Lout2: Here we have

σ1(l) = σ′(l) = (σ ∪ σ′)(l).

• l /∈ Lout2: Here l /∈ Lint, so l ∈ Lin and therefore:

σ1(l) = σ(l) = (σ ∪ σ′)(l).

Similarly we can show that:

τ2(t)((σ2)|Lin1
) = τ2(t)((σ ∪ σ′)|Lin1

).

Now we have by the equations in Prop 3.3.13:

σ′ = τ1(t)((σ ∪ σ′)|Lin1
) ∪ τ2(t)((σ ∪ σ′)|Lin2

)

= τ1(t)((σ1)|Lin1
) ∪ τ2(t)((σ2)|Lin2

) = σ′1 ∪ σ′2,

using σ′1, σ
′
2 as shorthands.

Now we wish to prove that:

c′(t)((σ ∪ σ′|Lout
)|L′) = c′(t)((σ1 ∪ σ′1)|L′),

which comes down to showing that:

(σ ∪ σ′|Lout
)|L′ = (σ1 ∪ σ′1)|L′ .

So let l ∈ L′ be given. From the disjointness assumption we get that l /∈ Lint. We
consider different cases:

• l /∈ Lout: Here, l /∈ Lout1 and l /∈ Lout2 (because l /∈ Lint). We get:

(σ ∪ σ′|Lout
)(l) = σ(l) = σ1(l) = (σ1 ∪ σ′1)(l).

• l ∈ Lout: Here there are two subcases:

– l ∈ Lout1: Here:

(σ ∪ σ′|Lout
)(l) = σ′(l) = σ′1(l) = (σ1 ∪ σ′1)(l).

– l ∈ Lout2: Here:

(σ ∪ σ′|Lout
)(l) = σ′(l) = σ1(l) = (σ1 ∪ σ′1)(l).

We write v1 = c′(t)((σ1 ∪ σ′1)|L′). Similarly we can prove that:

c′′(t)((σ ∪ σ′|Lout
)|L′′) = c′′(t)((σ2 ∪ σ′2)|L′′) = v2.

As a last equality, we want to show that:

c(t)((σ1 ∪ σ′1)|L) = c(t)((σ2 ∪ σ′2)|L),

which amounts to showing that:

(σ1 ∪ σ′1)|L = (σ2 ∪ σ′2)|L.

So let l ∈ L. We consider cases:

34 CHAPTER 3. ADVERSARIAL MODELS OF INTERACTION

• l ∈ Lout1: Here we have:

(σ1 ∪ σ′1)(l) = σ′1(l) = σ′(l) = σ2(l) = (σ2 ∪ σ′2)(l).

• l ∈ Lout2: Here we have:

(σ1 ∪ σ′1)(l) = σ1(l) = σ′(l) = σ′2(l) = (σ2 ∪ σ′2)(l).

• l /∈ Lout1 and l /∈ Lout2: Here we have:

(σ1 ∪ σ′1)(l) = σ1(l) = σ(l) = σ2(l) = (σ2 ∪ σ′2)(l).

We refer to this verdict as v .
Now from 3.1 we get that:

∂(v) + ∂(v1) ≥ 0.

Similarly, we get that by 3.2 (taking the dual contract into account):

−∂(v) + ∂(v2) ≥ 0.

Adding these two inequalities together we get:

∂(v1) + ∂(v2) ≥ 0,

which is exactly what we needed to show.

This theorem allows us to finish the example from before:

Example 3.3.21 (Continuing Ex. 3.3.18). From the two conforming substrategies:

|= {a1 7→ τ1} : c1,

|= {a2 7→ τ2} : c2, c1,

we can use Theorem 3.3.20 to conclude:

|= {a1 7→ τ1, a2 7→ τ2} : c2,

which was the result we wanted. Note that we did not have to consider the imple-
mentation of τ1 for the conformance of τ2 and vice versa. Therefore, we can change the
implementation of e.g. τ1 without having to redo the conformance proof for τ2, provided
that the new implementation of τ1 still conforms with the original contract.

We summarise how to develop a conforming strategy in a modular fashion. The
starting point is a contract portfolio consisting of the external contracts, as example
we use c1, c2, c3. Some of the contracts can easily be implemented by a single agent,
whereas others might require several agents to work together. For this example we can
assume that agent a1 with τ1 can implement c1, and a2 with τ2 can implement c2. To
work together to fulfil a single contract, exactly one agent must be the main responsible
for the contract, but the other agents can ‘help’ the main agent. The help is formalised
with internal contracts, where the main agent is one party and the helping agent is the
other party. In the example, a1 and a2 could cooperate to implement c3, with a1 as the

3.4. AUTOMATON MODEL 35

main responsible. Their internal communication contract is specified as cint, and they
play dual roles in that contract. All in all, the needed conformances are as follows:

|= {a1 7→ τ1} : c1, c3, cint,

|= {a2 7→ τ2} : c2, cint.

From these conformances we get, by the compositionality theorem, that all three external
contracts can be implemented by the two agents:

|= {a1 7→ τ1, a2 7→ τ2} : c1, c2, c3.

Remark 3.3.22. Note that even though we have only looked at bilateral contracts,
the result should also generalise to n-party contracts. The main generalisation is that
instead of having a strategy conforming with the role of the first party in a contract, we
need conformance with respect to a specific party. Say we have a 3-party contract, c1

and a 4-party contract c2. We can then express that a strategy, Σ, conforms with those
contracts, when participating as second part in c1 and third part in c2:

|= Σ : [c1]2/3, [c2]3/4.

We write [c]i/n for participating as i’th party in an n-party contract. The composi-
tionality theorem must be changed to: if substrategies participate as every party in
some contracts, then those contracts can be eliminated. As example consider an exter-
nal 2-party contract c. To implement that contract, the principal devises an internal
3-part contract cint and then implements three tactics. The first tactic τ1, is the main
responsible for c, and participates as second part in cint. The second tactic τ2, partic-
ipates as first part in cint. The third tactic τ3, participates as third part in cint. The
compositionality theorem must now ensure that the conformances:

|= {a1 7→ τ1} : [c]1/2, [cint]2/3,

|= {a2 7→ τ2} : [cint]1/3,

|= {a3 7→ τ3} : [cint]3/3,

imply the desired conclusion:

|= {a1 7→ τ1, a2 7→ τ2, a3 7→ τ3} : [c]1/2.

3.4 Automaton model

In the last section, we defined an trace-based model for contracts and strategies. The
trace-based model allows the definition of parallel composition and conformance fairly
easily, but is it hard to implement concrete contracts. In this section we define an model
for contracts and strategies based on automata.

We can view the trace-based model as an extensional model for general agent be-
haviour, while the automaton model is an intensional model for concrete agents. Addi-
tionally, the automaton-based model is easier to relate to the concrete syntactical model
we introduce in Chapter 4.

As expected two models are not equivalent, contracts and strategies expressed in
the automaton-based model can, however, be given a trace-based denotation. We can
also define conformance for automaton-based strategies, and we prove that automaton-
based conformance implies trace-based conformance of the denotations. This allows
the trace-based compositionality theorem to be used for strategies defined using the
automaton-based model.

36 CHAPTER 3. ADVERSARIAL MODELS OF INTERACTION

3.4.1 Basic definitions

When contracts and tactics are considered as automata, they both have a notion of
state and a transition function. The main idea is that the contract and the tactic
automaton step as a function of the actions on the input links. But whereas the trace
formulation looked at the entire history, the automaton formulation only looks at the
current input, and all relevant history must be encoded in the state. This section includes
the definitions needed to present the automaton model; in particular we need to define
the notion of current input.

Definition 3.4.1. An action map over a (finite) set of links, L, is a partial map from
the links into values:

m ∈ AmapL :=
∏
l∈L

(Valuel + {ε}).

The set of all non-empty maps is:

Amap+
L := {m ∈ AmapL | ∃l . m(l) 6= ε}

We show two example maps:

Example 3.4.2. Given the links, l1, l2 from example 3.3.3. Two actions maps are given
below:

m1 = {l1 7→ a, l2 7→ ε}
m2 = {l1 7→ b, l2 7→ z}

Both are non-empty.

To present the theory more clearly, we add the following operations for action maps:

Definition 3.4.3. The following operations are associated with action maps:

• ∅m is the empty map, i.e., ∅m(l) = ε.

• For traces we have a partial cons-operation, . : (Time ×AmapL) × TraceL →
TraceL + {ε}, defined in the following way: 3

((t ,m) . σ)(l) =

{
[(t , v)] ++ σ(l) if ∃v . m(l) = v ,
σ(l) m(l) = ε.

The operator is defined whenever t <first(σ) and

∀l ∈ L. m(l) 6= ε ∧ (t ′, v ′) ∈ σ(l)⇒ t ′− t ≥ lat(l).

• When L1 ∩ L2 = ∅ then ∪ : AmapL1
× AmapL2

→ AmapL1∪L2
, is the union,

defined in the following way:

(m ∪m ′)(l) =

{
m(l) if l ∈ L1,

m(l ′) if l ∈ L2.

3We use ++ to concatenate two lists.

3.4. AUTOMATON MODEL 37

The cons-operation defined above can be used as basis for a pattern matching oper-
ation, as shown in the following proposition.

Proposition 3.4.4. If σ 6= []tr then there exist unique non-empty m ∈ Amap+
L , t , and

σ′ such that:

σ = (t ,m) . σ′.

The unique t is exactly first(σ).

Proof. Given σ, we define:

t = min{t | ∃l , v . (t , v) ∈ σ(l)};

m(l) =

{
v if (t , v) ∈ σ(l),
ε otherwise;

σ′(l) =

{
ts if ∃v . σ(l) = [(t , v)] ++ ts,
σ(l) otherwise.

These satisfy that σ = (t , v) . σ′. That they are unique is easy to see.

A couple of examples illustrate these definitions:

Example 3.4.5. Given the traces from Ex. 3.3.3 and the maps from Ex. 3.4.2, we have
that:

(1.7,m1) . σ =
{

l1 7→ [(1.7, a), (3.1, a), (6.5, b), (8.0, a)], l2 7→ [(4.5, z), (4.8, z), (5.5, x)]
}
.

Given m3 = {l3 7→ o} we have that:

m1 ∪m3 = {l1 7→ a, l2 7→ ε, l3 7→ o}.

Lastly, we see that σ can be split up in exactly one way with cons:

σ = (3.1, {l1 7→ a, l2 7→ ε}) .
{

l1 7→ [(6.5, b), (8.0, a)], l2 7→ [(4.5, z), (4.8, z), (5.5, x)]
}
.

Similar to the other trace operations, the cons operation preserves end time:

Proposition 3.4.6. If σ ∈ Tracet
L then (if it is defined) (t ′,m) . σ ∈ Tracet

L.

Proof. This is immediately clear from the definition.

With these basic definitions, we move on to the contracts.

3.4.2 Contract automata

A contract automaton has a set of states and a starting state. Furthermore, it has a
transition function specifying how the state changes in reaction to input. The basic idea
is that whenever something happens on one of the contract’s links, the state changes.
But as contracts should be able to specify deadlines and other time-based properties,
the formalisation has to take timing into account. We model timing by also advancing
the contract at certain fixed time points. This corresponds to adding a timer, which
fires at a certain frequency, to each contract.

38 CHAPTER 3. ADVERSARIAL MODELS OF INTERACTION

Definition 3.4.7. A contract automaton, C, for link set L, is a 5-tuple (G , g0, d0, ρt, ρi)
where

• G is a (not necessarily finite) set of contract states;

• g0 ∈ G is the starting state;

• d0 ∈ TimeD+ is the time between timer transitions;

• ρt : G → G + R, is the function for timer transitions;

• ρi : G ×Amap+
L → G + R, is the function for input transitions.

A contract has two transition functions; each considers the current state and returns
either a new state or a pay-off, signalling that the contract has finished. The input
transition function, ρi, takes a non-empty map of inputs and computes a new state (or
pay-off) based on those. The timer transition function, ρt, is invoked every d0 time units.
The first timer transition takes place d0 after the starting time. If the timer and the
input happen at the same time, they are both executed, with the timer executing first.
The timer transitions are used to encode deadlines in contracts. To encode a deadline,
the contract implements a counter in the state, and then decrements this counter at
every timer transition, until it reaches zero and a pay-off is assigned.

The input transition takes as input a collections of potentially several actions, con-
sidered to be happening at the same time point. When the time domain is the real
numbers, two actions will very rarely happen at the same time. In some applications,
the time domain may be discrete, so that all actions happening in an interval are con-
sidered simultaneous. An example is standard business contracts, which usually express
constraints in terms of whole days. Here it is very likely that multiple actions occur
at the same time point (same day). An alternative to the input transition taking a
set of inputs would be to define a priority of each link and then have a separate input
transition function for each link (e.g. (ρt)l : G × Valuel → G + R). The priorities
could, however, in general be different for each contract, and we think this would give
a more complicated model. An interesting thing to consider is whether most contracts
are additive: the order of actions between two consecutive timer steps do not matter.
We leave these considerations for future work.

Example 3.4.8. As an example, we show a formalisation of the +i contracts, ci, from
Ex. 3.3.18, given as (G , g0, d0, ρt, ρi) where:

G = {start}+ {run(n, t) | n ∈ Z, t ∈ Time};
g0 = start;
d0 = 1s;

ρt(start) = start

ρt(run(n, t)) =

{
−1 if t ≤ 0.0,
run(n, t − d0) otherwise;

ρi(start,m) =

{
−1 if m(lout1) 6= ε,

run(n, tdeadline) if m(lin1) = n;

ρi(run(n, t),m) =

1 if m(lin1) 6= ε,

start if m(lin1) = n+ i,

−1 if m(lin1) 6= n+ i,

3.4. AUTOMATON MODEL 39

where tdeadline is either 3.0 for c1 or 10.0 for c2. Note that compared to the, previously
mentioned, trace-based +2 contract (Ex. 3.3.9) there are two differences. The first
difference is that the invoker of service must not send extra requests, when there is
a request under way. Similarly the service must not send any results when there are
no requests. The second difference is that the deadline specified in this contract is
not directly 10 seconds, but instead 11 timer transitions, corresponding to a deadline
between 10 and 11 second.

Being an intensional model, contract automata are naturally more restricted than
the trace-based contracts; a contract, which expresses that an action must happen at a
specific time point, is only expressible in the trace-based model. The automaton model
cannot express that some action must happen exactly at time π, for two reasons: firstly,
contracts can only see which timer interval the actions occurred in, which seems more
realistic in practice, and secondly, all timer transitions are relative to a starting time.

For trace-based contracts such a starting time is not even needed. As another ex-
ample, the contract which lets the first player win if there is an even number of actions
up to a given time point, can easily be specified as a trace-based contract. A similar
automaton-based contract could, however, only count the actions in an interval, bounded
both by a start time and an end time. To define a trace-denotation for a automaton
contract, we therefore, need to specify the starting time for the automaton.

Before looking at the contract denotation, we present two auxiliary definitions. The
first definition captures that while a contract automaton is running, the semantics must
keep track of the contract state and the time point for next timer transition:

Definition 3.4.9 (Contract state). The running states of a contract automaton

(G , g0, d0, ρt, ρi)

are given by the set Gr := (Time×G) + R. When gr = (t , g) then the contract state is
g and the time for next timer transition is t. When gr = k, then the contract has ended
with pay-off k.

The next definition expresses how the running state evolves with input.

Definition 3.4.10 (Contract advancement). The stepwise advancement of a contract
automaton is expressed as a function:

cstep : Gr ×Time××AmapL → Gr,

defined in the following way:

cstep(k , t ,m) = k

cstep((ts, g), t ,m) =

(ts, g) if t < ts ∧m = ∅m,
k if t < ts ∧ ρi(g ,m) = k ,
(ts, g ′) if t < ts ∧ ρi(g ,m) = g ′,
k if ρt(g) = k ,
cstep((ts + d0, g ′), t ,m) if ρt(g) = g ′.

The function is well-defined, because in every recursive call ts grows with d0, and the
function terminates when ts> t.

40 CHAPTER 3. ADVERSARIAL MODELS OF INTERACTION

We explain the defined function: when the running state of a contract is gr, t is
a time point and m is the input to the contract at time t ; then cstep(gr, t ,m) is the
running state advanced up to and including the time point t . We see from the definition
that if gr = (tc, g) and tc = t then the timer transition is handled before the input
transition, as we specified previously.

A trace-based denotation of a contract automaton can now be formally defined:

Definition 3.4.11 (Contract automaton denotation). Given a contract automaton, C,
for links L. For a starting time t0 ∈ Time, the denotation JCKt0 : ContractL is given
as:

J(G , g0, d0, ρt, ρi)Kt0(tend)(σ) = fc(g0, t0 + d0)(tend)(σ≥ t0)

where fc is defined below:

fc : Gr →
∏

t∈Time

(Tracet
L → Verdict),

fc(gr)(t)([]tr) =

{
⊥ if cstep(gr, t , ∅m) = g ′r,
k if cstep(gr, t , ∅m) = k ,

fc(gr)(t)((t ′,m) . σ) = fc(cstep(gr, t ′,m))(t)(σ).

That this denotes a contract is proven in Prop. 3.4.13.

The intuition behind fc is that it considers all elements in the trace in ascending
time order. For every input map, the function cstep is used to advance the running state
of the contract up to and including that input. When there is no more input, cstep is
used to advance the contract up to and including the end time of the trace. A starting
time of t0 means that the automaton only considers actions after that time point. The
incoming trace is, therefore, restricted to actions after t0.

When a contract finishes with a pay-off because of a timer transition, any input that
comes at a later time do not matter. We prove this as a simple lemma, which we use
later:

Lemma 3.4.12. If cstep(gr, t , ∅m) = k and t ≤ t ′ then cstep(gr, t ′,m) = k for any m.

Proof. If gr = k , then the result follows directly, so assume gr = (ts, g). Inspecting the
definition, we see that only the fifth case in the definition of cstep can be hit. Therefore,
we have that t ≥ ts and ρt(g) = k . Because of the assumption, we therefore have that
t ′≥ ts and the result follows.

With this lemma we can prove that the automaton can be given a contract denota-
tion:

Proposition 3.4.13. JCKt0 (from Def. 3.4.11) denotes a contract.

Proof. This amounts to showing that the function defined by fc is monotone. So let
σ ∈ Tracet

L and t ≤ t ′ we need to show that:

∀σ ∈ Tracet ′
L . fc(g0, t0 + d0)(t)((σ≤ t)≥ t0) = ⊥∨
fc(g0, t0 + d0)(t)((σ≤ t)≥ t0) = fc(g0, t0 + d0)(t ′)(σ≥ t0).

3.4. AUTOMATON MODEL 41

It is easy to see that we can do induction on traces using the . operator. So we wish to
prove by induction on σ that for any gr we have that:

fc(gr)(t)(σ≤ t) = ⊥ ∨ fc(gr)(t)(σ≤ t) = fc(gr)(t ′)(σ).

• σ = []tr: Here either fc(gr)(t)([]tr) = ⊥, or fc(gr)(t)([]tr) = k . In the first case we
are done, in the latter case cstep is used, and using Lemma 3.4.12 we can get that
fc(gr)(t ′)([]tr) = k as needed.

• σ = (t ′′,m) . σ′: Here either t ′′≤ t or t ′′> t . In the first case we can use the
induction hypothesis directly. In the latter case we have that σ≤ t = []tr and
therefore either fc(gr)(t)(σ≤ t) = ⊥, or fc(gr)(t)(σ≤ t) = k . In the ⊥ case we are
done. In the other case by Lemma 3.4.12 we have that cstep(gr, t ′′,m) = k , from
which it follows that fc(gr)(t ′)(σ) = k as needed.

3.4.3 Tactic automata

Similar to contract automata, we now define tactic automata. The definition itself is
very similar to the one for contracts, but instead of terminating with a pay-off, the tactic
specifies which actions should be performed in each step.

Definition 3.4.14. A tactic automaton, T , with input/output links Lin/Lout, is a 5-
tuple (S , s0, d0, δt, δi) where

• S is a (not necessarily finite) set of tactic states;

• s0 ∈ S is the starting state;

• d0 ∈ TimeD+ is the time between timer transitions;

• δt : S → S ×AmapLout
is the function for timer transitions;

• δi : S ×Amap+
Lin
→ S ×AmapLout

is the function for the input transitions.

The definition is similar to the one for contract automata. The input transition, δi,
specifies what happens when input is received. The timer transition, δt, specifies what
happens at each timer tick. If input is received at the same time as a timer tick, the
timer tick is handled first.

Each tactic can act every time there is an input. To keep the input for later use, the
tactic has to save it in the state. The output of a tactic is a map that specifies what
should be sent on each link. When receiving inputs fast or when timer transitions are
performed quickly, the specified outputs might violate the latencies of the output links.
In those cases the requested output is ignored; corresponding to a capacity of one for
each link. If needed, an output buffer can be modelled in the state, or a special buffering
agent can be added.

We show an example tactic automaton:

42 CHAPTER 3. ADVERSARIAL MODELS OF INTERACTION

Example 3.4.15. A formalisation of the +2 tactic from Ex. 3.3.18, can be given as
(S , s, d0, δt, δi) where:

S = {start,wait1,wait2};
s = start;

d0 = 1s;
ρt(s) = (s, ∅m);

ρi(start) =

{
(wait1, {lin1 7→ n, lout2 7→ ε}) if ∅m(lin2) = n,

(start, ∅m) if ∅m(lin2) = ε;

ρi(wait1) =

{
(wait2, {lin1 7→ n, lout2 7→ ε}) if ∅m(lout1) = n,

(wait1, ∅m) if ∅m(lout1) = ε;

ρi(wait2) =

{
(start, {lin1 7→ ε, lout2 7→ n}) if ∅m(lout1) = n,

(wait1, ∅m) if ∅m(lout1) = ε;

Note that the tactic uses a trivial timer transition function in this case. But one could
easily imagine a setting, where the +2 provider receives a larger penalty, and therefore
has to contact a backup +1 tactic, in case the first one fails to give an answer. In such
a setting, the timer transition would be used to contact the backup service.

Similarly to contract automata, we can define a trace-based denotation for tactic
automata. But as mentioned, latency has to be taken into account, and actions that do
not respect the latency should be discarded. To express the denotation more clearly, we
introduce a snoc operation for traces which takes the latencies into account:

Definition 3.4.16. The operator, ~ : TraceL×(Time×AmapL)→ TraceL is defined
in the following way:

(σ ~ (t ,m))(l) =

{
σ(l) ++ [(t + lat(l), v)] m(l) = v ∧ ∀(t ′, v ′) ∈ σ(l). t ′≤ t ,
σ(l) otherwise.

When σ ~ (t ,m) the actions in m are attempted at time t . If the latencies are
respected then an action on link l should be performed at time t + lat(l). Therefore to
make sure that the latencies are respected, we check, whether all previous actions on the
same link are performed before t . If this condition is not satisfied the attempted action
is discarded. Similar to contract automata, we define the running state of a tactic, which
is a state and a time point for next timer transition:

Definition 3.4.17 (Tactic state). The running states of a tactic automaton

(S , s0, d0, δt, δi)

is given by the set Sr := Time×S. When sr = (t , s), then tactic state is s and the time
for next timer transition is t.

The stepwise advancement of a tactic is similar to the stepwise advancement of a
contract, however, output has to be taken into account:

3.4. AUTOMATON MODEL 43

Definition 3.4.18 (Tactic advancement). The function

tstep : Sr ×Time×AmapLin
×TraceLout → Sr ×TraceLout ,

expressing the stepwise advancement of the tactic automaton is defined in the following
way:

tstep((ts, s), t ,m, σ) =
((ts, s), σ) if t < ts ∧m = ∅m,
((ts, s ′), σ ~ (t ,m ′)) if t < ts ∧ δi(s,m) = (s ′,m ′),
tstep((ts + d0, s ′), t ,m, σ ~ (ts,m ′)) if δt(s) = (s ′,m ′).

The function is well-defined, because in every recursive call ts grows with d0, and the
function terminates when ts> t.

When the running state of the tactic is sr, t is a time point, m is input at time
t and σ is a trace of already generated output, then tstep(sr, t ,m, σ) = (s ′r, σ

′) means
that the tactic is advanced up to and including t resulting in a new running state s ′r.
Furthermore, the output generated up to t is added to the trace σ, resulting in the
new output trace σ′. The input trace is used to known the latencies of the previously
generated output, and by using the snoc operation defined above, we make sure that the
output latencies are respected. With these two definitions, we can define a trace-based
denotation of a tactic automaton:

Definition 3.4.19 (Tactic automata denotation). Given a tactic automaton

(S , s0, d0, δt, δi)

with input/output links Lin/Lout. For a starting time t0 ∈ Time, the denotation
J(S , s0, d0, δt, δi)Kt0 : TacticLin→Lout is given as:

J(S , s0, d0, δt, δi)Kt0(tend, σ) = ft((t0, s0), []tr)(tend, σ≥ t0)

where ft is defined below:

ft : Sr ×TraceLout →
∏

t∈Time

(Tracet
Lin
→ Tracet

Lout
),

ft(sr, σ)(t)([]tr) = σ′≤ t when tstep(sr, t , ∅m, σ) = (s ′r, σ
′),

ft(sr, σ)(t)((t ′,m) . σ′) = ft(tstep(sr, t ′,m, σ))(t)(σ′).

That this denotes a tactic is proven in Prop. 3.4.21.

The function ft is similar to fc. If reads inputs one by one and then uses tstep
to advance the tactic up to the input times. The already generated output is passed
as a parameter, and when there are no more input the output is returned as a result.
Because tstep do not take the end time into account, the resulting trace is truncated
to the end time. Similar to contracts the starting time is handled by restriction of the
input trace.

Even though a tactic is called with two different input at different times, the gener-
ated output will still match up to the smallest of the input times plus the latency. That
is, all timer transitions performed before the input, must return the same output. This
is captured by the following lemma:

44 CHAPTER 3. ADVERSARIAL MODELS OF INTERACTION

Lemma 3.4.20. If tstep(sr, t1,m1, σ) = (s1
r , σ1), tstep(sr, t2,m2, σ) = (s2

r , σ2) then for
every l ∈ Lout we have that:

(σ1)< min(t1,t2) + lat(l) = (σ2)< min(t1,t2) + lat(l).

Proof. From the definition of tstep we can see that the only elements that can be different
in each case are the ones added from the input transition. And because of the definition
of ~, these are added at a time point, t ′, satisfying that t ′≥min(t1, t2) + lat(l), and
therefore the traces match up to (not including) min(t1, t2) + lat(l).

With this lemma we can prove that tactic automata can be given a trace-based
denotation:

Proposition 3.4.21. J·K· (from Def. 3.4.19) denotes a tactic.

Proof. This amounts to showing that the function defined by ft is monotone. So let
σ1, σ2 ∈ Tracet

Lin
, t ′≤ t and (σ1)≤ t ′ = (σ2)≤ t ′ . We need to show that:

∀l ∈ Lout. ft((t0, s0), []tr)(t)((σ1)≥ t0)(l)≤ t ′+ lat(l)

= ft((t0, s0), []tr)(t)((σ2)≥ t0)(l)≤ t ′+ lat(l).

The proof is similar to Prop. 3.4.13, but we need to take both input traces into account.
The induction hypothesis becomes:

∀l ∈ Lout. ft(sr, σ)(t)(σ1)(l)≤ t ′+ lat(l) = ft(sr, σ)(t)(σ2)(l)≤ t ′+ lat(l).

• σ1 = σ2 = []tr: This case is trivial.

• σ1 = []tr ∧ σ2 = (t2,m2) . σ′2: Here t ′< t2 and from Lemma 3.4.21 (with t1 = t)
we get that for any l the traces returned by tstep match until (not including)
t2 + lat(l), which means they match up to and including t ′+ lat(l). And because
all output generated from σ′2 comes after t2 + lat(l), we get the result.

• The other case with σ2 = []tr is symmetric.

• σ1 = (t1,m1).σ′1∧σ2 = (t2,m2).σ′2: Here are two subcases, depending on whether
t1≤ t ′ and t2≤ t ′ or t1> t ′ and t2> t ′. Note that the case where t1≤ t ′, and t2> t ′

the symmetric case cannot occur.

– t1≤ t ′ ∧ t2≤ t ′: Here m1 = m2, t1 = t2 and the result follows from the
induction hypothesis.

– t1> t ′ ∧ t2> t : Here we use that all output on a link, l , generated from σ′1
must come after t1 + lat(l) and similarly from σ′2 output must come after
t2 + lat(l). And therefore the traces match until t ′+ lat(l) as needed.

3.4.4 Automaton conformance

In this section we give a definition of conformance based only on the automaton formu-
lation of contracts and tactics. We prove that this conformance for tactic and contract
automata implies trace-based conformance for their trace-based denotations. The idea
behind automaton conformance is a special conformance relation for tactic states and

3.4. AUTOMATON MODEL 45

contract states. A relation is a conformance relation if it continuously ensures that the
accumulated pay-off is non-negative, regardless of the incoming actions.

In the definition of conformance we wish to use a trace to capture all input and
output that have been specified by now performed yet. To pick out the next actions
that should be performed, we introduce an auxiliary notion of splitting a trace at a
certain time point.

Definition 3.4.22. Given a trace σ ∈ TraceL and a time point t, we define the trace
splitting function split(σ, t) ∈ AmapL ×TraceL in the following way:

split(σ, t) = (m, σ′) where

m(l) =

{
v if (v , t) ∈ σ(l),
ε otherwise;

σ′(l) = σ(l)> t

The operation split(σ, t) = (m, σ′) returns the actions at time t as m and then
removes them from the trace σ. The resulting trace is returned as σ′. Using this
operation, we remove from the trace all actions that have been performed, so that the
next actions that must be performed, are the first ones in the trace.

With this definition, we can define automaton conformance:

Definition 3.4.23. Given a tactic automaton (S , s0, d0, δt, δi) with input/output links
Lin/Lout, and contract automata: C1, . . . , Cn regarding link sets L1, . . . ,Ln. In the fol-
lowing i ∈ {1, . . . , n}, and Ci = (G i, g i

0, d
i
0, ρ

i
t, ρ

i
i).

We say that a relation R ⊆ Time× Sr×
∏

i G i
r ×
∏

t∈Time(Tracet
Lin∪Lout∪

S
i Li

) is a
conformance relation if it holds that whenever (tnow, sr, (gr)i, tend, σ) ∈ R then tnow≤ tend

implies

let (m, σ′) = split(σ, tnow),
((t ′, s ′), σ′′) = tstep(sr, tnow,m|Lin

, σ′|Lout
)

(g ′r)i = cstep((gr)i, tnow,m|Li
)

σ′′′ = σ′|(Lin∪
S

i Li)\Lout
∪ σ′′< tend

in
∑

[k | k ∈ (g ′r)i] ≥ 0 ∧

(min(first(σ′′′), t ′, {t | (t , g) ∈ (g ′r)i}), (t ′, s ′), (g ′r)i, tend, σ
′′′) ∈ R;

We say that the tactic conforms with the contracts, starting at time t0 ∈ Time, if for
any t ∈ Time and σ ∈ Tracet

(Lin∪
S

i Li)\Lout
there exists such a conformance relation,

R, satisfying that:

(t0, (t0, s0), (t0 + d i
0, g

i
0)i, t , σ≥ t0) ∈ R.

We explain the idea behind the definition. When (tnow, sr, (gr)i, tend, σ) ∈ R the
components corresponds to the following: tnow is the time for the next action in the
trace or the time for the next timer transition of either the tactic or a contract; sr

and (gr)i are the running states of the tactic and the contracts respectively; tend is the
designated end time for the trace; σ is a trace that contains all actions at or after tnow.
σ contains both, parts of the input trace, and output that the tactic has comittet to,
but not yet performed (due to latency).

46 CHAPTER 3. ADVERSARIAL MODELS OF INTERACTION

In each step of such a conformance relation, we extract the actions performed at the
current time point (tnow) from the trace σ. The action map m contains the actions at
tnow. Both the tactic and the contracts are advanced up to tnow using their corresponding
stepping function (tstep and cstep). The splitted trace (σ′) and the output from the
tactic (σ′′) are combined to form the trace σ′′′, which contains the actions that are going
to be performed in the future (later than tnow).

Now being a conformance relation amounts to having a uniform accumulated non-
negative pay-off, which is checked by summerising the pay-off of all finshed contracts
in every step. The system can change state either by processing input or by a timer
transition, therefore the next time something can happen after tnow, is the minimum
time amongst actions in the trace and timer transition times. The current time used in
the next step is defined exactly as this minimum. The stepping process continues until
the current time passes the designated end time of the trace (tend).

We show an example of how to implement this conformance relation, and how to
use it, in a concrete case in Chapter 4. To conclude this section, we show a theorem
that relates the automaton-based model to the trace-based model. That is, we show
that automaton conformance Def. 3.4.23 implies trace conformance (Def. 3.3.16) for the
trace denotations (Def. 3.4.11 and Def. 3.4.19).

Before being able to prove the main theorem, we need lemmas that relate tstep and
cstep to the splitting function. The first lemma shows that if we split the trace at the
earliest time that something can happen, then calling ft on the original trace and calling
it on a trace, where we have used tstep up to that time, yields the same result except
from the output at the splitting time point:

Lemma 3.4.24. Given σ ∈ Tracetend

(Lin∪L)\Lout
, sr = (tt, s) and given that the following

relations hold:

tnow≤first(σ), tnow≤ tt, tnow≤ tend.

If

split(σ, tnow) = (m, σ′),
tstep(sr, tnow,m|Lin

, σ′|Lout
) = (s ′r, σ

′′)

then

ft(sr, σ|Lout
)(tend)(σ|Lin

) = (tnow,m|Lout
) . ft(s ′r, σ

′′
≤ tend

)(tend)(σ′|Lin
).

Proof. We have that σ|Lout
= (tnow,m|Lout

) . σ′|Lout
. We look at cases depending on

whether σ|Lin
is empty or not:

• σ|Lin
= []tr: Here σ′|Lin

= []tr and m|Lin
= ∅m. Now we look at subcases depending

on whether tnow < tt or tnow = tt:

– tnow < tt: Here σ′′ = σ′|Lout
and s ′r = sr which gives that:

σ|Lout
= (tnow,m|Lout

) . σ′′.

The result now follows from the definition.

3.4. AUTOMATON MODEL 47

– tnow = tt: Here δt(s) = (s ′,m ′), s ′r = (tnow + d0, s ′) and σ′′ = σ′|Lout
~

(tnow,m ′). Furthermore, we have that:

tstep(sr, tend, ∅m, σ|Lout
)

= tstep(s ′r, tend, ∅m, σ|Lout
~ (tnow,m ′))

= tstep(s ′r, tend, ∅m, (tnow,m|Lout
) . σ′′),

from which the result follows.

• σ|Lin
= (t ′,m ′) . σ1: Here we look at subcases depending on whether tnow < t ′ or

tnow = t ′:

– tnow < t ′: Here σ′|Lin
= σ|Lin

and the result can be show with an argument
similar to the one for the empty trace (splitting into two cases depending on
tnow < tt or tnow = tt).

– tnow = t ′: Here σ′|Lin
= σ1 and m ′ = m|Lin

. We get that:

ft(sr, σ|Lout
)(tend)((t ′,m ′) . σ1)

= ft(sr, (tnow,m|Lout
) . σ′|Lout

)(tend)((tnow,m|Lin
) . σ′|Lin

)

= ft(s ′r, (tnow,m|Lout
) . σ′′)(tend)(σ′|Lin

),

from which the result follows.

A second lemma show a similar thing for cstep:

Lemma 3.4.25. Given σ ∈ Tracetend
L , gr = (tc, g) and given that the following relations

hold:

tnow≤first(σ), tnow≤ tc, tnow≤ tend.

If

split(σ, tnow) = (m, σ′),
cstep(gr, tnow,m) = g ′r

then

fc(gr)(tend)(σ) = fc(g ′r)(tend)(σ′).

Proof. The proof is similar to, but easier than, the proof of Lemma 3.4.24.

These lemmas allow us to prove the main theorem:

Theorem 3.4.26. Given an tactic automaton T , with input/output links Lin/Lout,
an agent, a, with the same links, and contract automata C1, . . . , Cn, regarding links
L1, . . . ,Ln. If the tactic automaton conforms with the contracts at time t0 (Def. 3.4.23)
then

|= {a 7→ JT Kt0} : JC1Kt0 , . . . , JCnKt0 .

48 CHAPTER 3. ADVERSARIAL MODELS OF INTERACTION

Proof. For simplicity we show the theorem for the special case where n = 1, meaning
that there is only a single contract. The proof should generalise straightforwardly to the
case for multiple contracts.

So assume that the tactic conforms with a single contract. There now exists a
conformance relation R, which relates the starting states. We now want to prove the
following: if

tnow = min(tt, tc,first(σ)), tnow≤ tend;

and

(tnow, (tt, s), (tc, g), tend, σ) ∈ R;

then with σin = σ|(L∪Lin)\Lout
and σout = σ|Lout

:

∂(fc(tc, g)(tend)((σin ∪ ft((tt, s), σout)(tend)(σ|Lin
))|Li

)) ≥ 0.

If we can prove this, the result follows because R, relates the starting states which is
used in the trace denotation of the automata.

We prove this result by induction, using a size measure for tt, tc, σ. We use the
induction hypothesis when either:

1. tend− tt gets smaller with the constant d t
0 (the timer transition time of the tactic);

or

2. tend − tt is constant, but tend − tc gets smaller with the constant dc
0 (the timer

transition time of the contract); or

3. both differences stay the same, but the number of elements in σ gets smaller.

Formally, we do induction using the lexicographic ordering on

(
tend − tt

d t
0

,
tend − tc

dc
0

, |σ|).

So let

(tnow, (tt, s), (tc, g), tend, σ) ∈ R;

with sr = (tt, s) and gr = (tc, g). Because tnow≤ tend we can unfold R. Now using
Lemma 3.4.24 on the equalities we get from R:

ft(sr, σ|Lout
)(tend)(σ|Lin

) = (tnow,m|Lout
) . ft(s ′r, σ

′′
≤ tend

)(tend)(σ′|Lin
).

Now put as shorthands:

σt = ft(sr, σ|Lout
)(tend)(σ|Lin

),

σ′t = ft(s ′r, σ
′′
≤ tend

)(tend)(σ′|Lin
).

By the definition of splitting, using the equality above, we see that:

split(σ|(Lin∪L)\Lout
∪ σt, tnow)

= split(σ|(Lin∪L)\Lout
∪ ((tnow,m|Lout

) . σ′t), tnow)

= (m, σ′|(Lin∪L)\Lout
∪ σ′t).

3.5. RELATED AND FUTURE WORK 49

So now we can use Lemma 3.4.25 and conclude that:

fc(gr)(tend)(σ|(Lin∪L)\Lout
∪ σt) = fc(g ′r)(tend)(σ′|(Lin∪L)\Lout

∪ σ′t).

Now we look at two cases depending on whether the minimum is smaller or larger than
tend (in the following let s ′r = (t ′t, s

′) and g ′r = (t ′c, g
′)):

• min(first(σ′′′), t ′t, t
′
c)> tend: here t ′t> tend, t ′c> tend and σ′′′ = []tr. Furthermore,

one can see that σ′t = []tr, from which it follows that:

fc(gr)(tend)(σ|(Lin∪L)\Lout
∪ σt) = fc(g ′r)(tend)([]tr).

Now we have that if fc(g ′r)(tend)([]tr) 6= ⊥ then fc(g ′r)(tend)([]tr) = g ′r and therefore
the result follows.

• min(first(σ′′′), t ′t, t
′
c)≤ tend: in this case we can use the induction hypothesis, be-

cause either t ′t = tt + d t
0 or t ′c = tc + dc

0 or the first elements in σ′′′ are removed.
By IH we get (using that σ′′′|(Lin∪L)\Lout

= σ′|(Lin∪L)\Lout
and σ′′′|Lout

= σ′′≤ tend
):

∂(fc(g ′r)(tend)((σ′|(Lin∪L)\Lout
∪ ft(s ′r, σ

′′
≤ tend

)(tend)(σ′|Lin
))|L)) ≥ 0.

And from the equations above we get:

∂(fc(gr)(tend)(σ|(Lin∪L)\Lout
∪ σt))

= ∂(fc(g ′r)(tend)(σ′|(Lin∪L)\Lout
∪ σ′t))

= ∂(fc(g ′r)(tend)((σ′|(Lin∪L)\Lout
∪ ft(s ′r, σ

′′
≤ tend

)(tend)(σ′|Lin
))|L)) ≥ 0.

As needed to conclude the induction proof.

This theorem binds the two models together, and it ensures that we can use the
automaton model for concrete tactics and contracts.

3.5 Related and future work

In this section we consider related and future work.

3.5.1 Related work

Verification for concurrent and distributed systems is an extensively studied area. Our
focus in this work, however, is on logically distributed systems and adversarial compo-
sition of multi-principal systems. Therefore, we do not do a complete survey of existing
models for concurrency and distribution, but only discuss a small portion of this work.

Models of concurrency. Models for concurrent systems can be grouped in two cat-
egories according to Cleaveland and Smolka [16]: the intensional models and the exten-
sional models. Intensional models describe what systems do, e.g. in terms of states and
transitions between those. Extensional models describe the behaviour of the systems
from the view of an external observer. That is, first a notion of observation is de-
fined, and then systems are represented in terms of the observations that can be made

50 CHAPTER 3. ADVERSARIAL MODELS OF INTERACTION

about them. The automaton-based model presented here is an example of an intensional
model, whereas the trace-based model is an extensional model.

Well known intensional models include the various forms of process calculi (e.g. CSP
[46], CCS [63], the π-calculus [64]). The processes in these calculi are built up from a
set of primitives and operators e.g. parallel composition. Communication is by message
passing on channels.

Compared to the process calculi, our communication model is based on different
assumptions. In the process calculi, processes do not communicate (at least in the
synchronous version), until both sender and receiver are ready. In our model a sender
can always send a message on a non-busy link, and it is up to the contracts to decide
whom to blame, in case the message is not acted upon. Another difference is that the
automaton model presented here does not have concrete primitives or operators. We
do, however, specify a concrete language in Chapter 4.

Another well-known intensional formalism is I/O automata [54], where the commu-
nicating processes are automata. Instead of a specific language, each automaton has an
abstract set of states and a transition relation expressing how the state change. This is
very similar to our automaton model, and the timed versions of I/O automata [10, 50]
served as inspiration for our concrete automaton model.

Extensional models specify the behaviour in terms of the observations one can make
of a system. A classical way of capturing these time-dependent observations is by means
of a trace, an example hereof is the trace-based semantics of CSP [46]. Our trace-based
model is more abstract, as we do not have any concrete process language. We also
distinguish between an input trace and an output trace. Another extensional model is
event structures [102], which is a more denotational approach. Each agent is specified
in terms of sets of events, using a consistency predicate and an enabling relation. Event
structures also forms the basis for Dynamic condition response graphs [41], which, as
part of the TrustCare project, has been applied to the two of the previously mentioned
examples (Ex. 2.1.3 and Ex. 2.1.4).

Distributed systems. Several models are able to capture physically distributed sys-
tems, but we have not found any focusing on logically distributed systems. Frameworks
for physically distributed systems include the Distributed Join-Calculus [31, 32]. In the
Distributed Join-Calculus, processes belong to a location, which again belong to a phys-
ical site. These locations can move between sites, and the model also includes a notion
crash of a site, which causes all associated locations to fail. The ambient calculus [14] is
another example of a physically distributed system. In the ambient calculus, processes
run inside ambients; that can be viewed as locations. Furthermore, processes can change
location at runtime. Our model can express physical separation though assignment of
latencies. As the latencies are fixed, there is, however, no notion of mobility at runtime.

Verification. There are several formalisms used for verifying these formal models. The
formalisms can be simulation based or specification based. Simulation-based formalisms
model the intended behaviour of a process with another (perhaps non-deterministic)
process. The objective of verification is to prove that the behaviour of the process in
question is included in the behaviour of the goal process. This inclusion can be formalised
in many ways: bisimulation (e.g. for CCS [62]) is a commonly used method; behavioural
containment (e.g. for the input output timed automata [10]) is another method.

3.5. RELATED AND FUTURE WORK 51

The specification-based formalisms use a separate language of specifications (in con-
trast to the simulation-based formalisms, where the specification is a “reference imple-
mentation”). Each specification expresses the intended behaviour of a system, and are
usually not executable in any way. Verification is the task of proving that a process
conforms with its specification. Our model is a specification-based formalism, in which
the specifications are called contracts and processes are agents. There are several classes
of specifications. Some specifications are based on different logics (e.g. temporal logics
[84]). Other approaches can be based on type-systems; session-types [47] is a commonly
used type-based framework. Type-based approaches are usually decidable, which makes
the verification much easier. However, because of decidability, some properties cannot
be captured. Lastly, there are also approaches based on program logics, that is a set
of syntactic rules for expressing properties of the programs. Examples of such systems
based on syntactic rules include early work by Owicki and Gries [75] and more recent
work by Hooman [48]. In this chapter we have only presented the formal mathemati-
cal model, and there is no special support for verifying conformance. In Chapter 4 we
present a method for proving conformance based on a syntactic system. This puts the
method in the same category as the work by Hooman, but instead of requiring a special
custom built program logic, we can apply standard Floyd-Hoare logic. We elaborate
more on this in Chapter 4.

Formal business processes. In the area of formalising business processes, there
have been great deal of work. Formal workflows have been considered by several re-
searchers. Two well-known formalisms are the industry standard WS-BPEL [4] and the
academically developed YAWL [95]. In comparison to our model, these workflow-based
methodologies take the workflow as the specification, and seek to find implementations
or programs that follow them. We view workflows as means for satisfying certain con-
straints (e.g. guidelines, rules or laws), which make them closer to an implementation
and not a specification. Lately, declarative workflows [96, 97] have emerged. Such work-
flows are closer to the actual constraints and can be seen as first steps towards getting
the actual requirements formalised, and not just a single implementation of them.

For dealing with interactions in these business processes, formal methods based on
web service choreographies have been investigated. A choreography is a global view
of an interacting system, and the international standard for such choreographies is the
Web services choreography description language (WS-CDL) [101], and a formal model
is given by Busi et al. [11]. An appeal of the choreography-based approach is that a
global view can be automatically transformed into a local view for each participant, as
shown by Cabone et al. [12]. Compared to our approach, this approach is fundamentally
cooperative, as the goal of each participant is to fulfil the goal specified as the global
view. Our method is fundamentally adversarial, which we believe is needed for a realistic
account for such interacting systems.

Game theory. Related to our game-theoretic interpretation of specifications, is the
theory of game semantics [2], and especially the application of game semantics for soft-
ware verification [1]. In game semantics a logical formula or programming-language type
determines a game-like protocol for interacting with values of that type. Our model uses
games in a traditional economic sense [99], to model incentive-driven behaviour.

52 CHAPTER 3. ADVERSARIAL MODELS OF INTERACTION

3.5.2 Future work

The work presented here have several natural directions for future work:

Model refinement. The presented models could be refined, without changing them
in any major way. One thing to look at could be inclusion of n-ary contracts in the
composition theorem (see Remark 3.3.22). It would also be interesting to study the
automaton model more: it should be possible to, e.g., define a parallel composition for
automaton tactics and actually prove a compositionality theorem for the automaton
model as well. In earlier work [38], we did just that, albeit for a simpler model.

Model extension. In addition to minor changes to the models there are several exten-
sions that would be interesting to consider. Perhaps the most interesting direction is an
extension to a more dynamic system, in which the different components can be created,
destroyed and modified at runtime. Several directions exist: the first, and probably eas-
iest, direction is to consider how to formalise the notion of roles and channels, we have
used in the examples. One way would be to operate with another level of contract called
a contract template. Such a template is specified in terms of roles and channels, which
can be instantiated with concrete principals and links just before runtime. Another
direction is to consider a dynamic communication topology where links can be created,
destroyed and moved during runtime. We consider this in Chapter 5. Lastly, also con-
tracts can also be dynamic. An interesting idea is to use a meta-contract, which specifies
the rules for creating new contracts. Such a meta-contract contains a sort of interpreter
for object-contracts. When a given contract is accepted by all parties, it becomes part
of this meta-contract. Along the same line one, could also consider simulating creation
of new agents though a special contract with an ‘agent factory’.

Another direction for extension of the model is to consider alternative pay-off sce-
narios. A problem in some cases is that it can be hard to come up with a fixed price for
bad events. In other cases it might not make sense to add penalties, and another pay-off
domain might be better. An alternative could be a domain where some penalties and
rewards can be added, and others cannot.

A last direction is how to handle physical resources. In our models, all actions
can always be performed, but if actions represent events using physical resources, the
resources may not always be available. Consider the example of transferring money. It
does not make sense to model a physical cash transfer as an action, because all actions
contain only data. Instead, we introduce a special bank principal. All actors wishing to
exchange money then have contracts with this bank. Each contract specifies what the
balance is, and how to interact with the account. When a specific principal then wishes
to pay for something, he contacts the bank and requests a transfer. If the balance is
big enough, then the bank performs the actual transfer, by updating both contracts.
In turn, this enables the receiver of the transfer to perform his own transfers. Bank
contracts do not have to be linear in their use of money, it is perfectly valid to include
e.g. interest in the contracts. This idea can be generalised to all resource types, not
only money, by using a resource manager principal similar to the bank principal. This
resource manager ensures that only those transfers that make sense in the real world,
actually happens. In Chapter 5 we present preliminary work on a model with first-class
resources instead of these resource manager principals.

3.5. RELATED AND FUTURE WORK 53

Model related directions. The models presented here are just mathematical func-
tions. They act as the foundation for specifying interaction scenarios. In is interesting
to consider how to map existing high-level languages into this model, both as tactics
and as contracts. This might make it easier to express concrete scenarios, and it might
be possible to get properties directly by translation, e.g. that the trace-denotation is
latency respecting.

Another direction to investigate is contract analysis. In some settings we might not
have a conforming strategy, because we can not prevent some errors. In those cases it
might be possible to consider probabilistic models, e.g. if we know the probabilities of
different strategies by our opponents, then we can analyse how our tactic fares in the
average case. However, care has to be taken when the probabilities depend on each
other, e.g. if the probability of a single bank defaulting is p, then one might think that
the probability of n banks defaulting is pn, but in reality the banks are connected, and
therefore the real probability is much higher.

It would furthermore be very interesting to investigate the connection to traditional
game theory for contract analysis. Game theory has its own notion of strategies and
concepts like dominant strategy, which might provide inspiration for how to compare
and evaluate several strategies for the same set of contracts.

Lastly, it is also interesting to look at general methods for showing conformance
of tactics. We show one approach in Chapter 4, but there might be several other
methods that can be used, especially if the tactics and contracts are written in high-
level languages.

Practical application. Perhaps the most important part of future work is the ap-
plication of the models to real-life problems or scenarios. We already considered some
examples in Chapter 2, but as mentioned before; to give a proper implementation of
the adversarial paradigm, one needs to go back to the domain experts to obtain the
information that was lost in the translation to a cooperative model.

Such practical applications might include real-time programs, interaction specifica-
tions, protocols, workflows, business processes etc. In particular it is very important
to investigate how business processes can be implemented as strategies, and how the
underlying rules, can be implemented as contracts. In such practical examples, it would
also be interesting to investigate how many errors or inconsistent behaviours that could
be discovered by an adversarial analysis, and whether they could be solved in practice.

54 CHAPTER 3. ADVERSARIAL MODELS OF INTERACTION

Chapter 4

Certification

In this chapter we investigate a model for certifying concrete programs with respect to
the model presented in Chapter 3. The layout of this chapter is as follows: we start by
giving a short background section on certification, then present the basic idea behind our
certification approach. The approach is based on expressing both tactics and contracts
in a small coroutine language, whose syntax and semantics we present. We then show
how to use programs in that language to codify conformance, and a Floyd-Hoare logic,
which we use as a basis for a concrete certification approach. Lastly, we show a small
proof-of-concept implementation of the certification framework and demonstrate it with
a simple tactic and two contracts. We finish with a discussion of related and future
work.

4.1 The certification paradigm

A certificate, in the context of certified code, is a mechanised proof, witnessing that the
piece of code satisfies some property, such as correctness (the code computes the right
function) or safety (the code does not perform any forbidden actions). Such certificates
are not to be confused with cryptographic certificates, in which an authority documents
that a piece of code has not been altered or corrupted since it was signed. Such a signing
process does not say anything about the code itself.

4.1.1 Background

Certified code is primarily used in the context of proof-carrying code (PCC) [67]; a
second possible usage is discussed below. PCC is a paradigm, in which an untrusted
piece of executable code can be equipped with a formal, machine-checkable proof of
safety. There are several appealing features of the PCC paradigm:

• When the code is formally certified, there is no need for runtime checks or sand-
boxing.

• The task of checking a safety proof is significantly smaller (and decidable) than
the task of constructing such a safety proof; therefore, the strain put on the code
consumer is smaller compared to other code verification approaches.

• A proof for a specific program can be generated once by the code producer, and
then independently checked by several consumers, meaning that the hard parts
are only done once.

55

56 CHAPTER 4. CERTIFICATION

• The code producer usually has access to more invariants about the code, e.g.
he might know that it is written in a statically typed language, and can then
exploit the type information to generate a safety proof. (The feasibility of the
type approach were demonstrated for a type-safe subset of C [68, 69], and for a
large fragment of Java [17].)

An variant of PCC is called foundational proof-carrying code(FPCC) [6]. In FPCC
the machine semantics and the safety theorem are also mechanised. This eliminates
the need to trust the soundness of the proof system used. In the original formulation
of FPCC, the machine semantics and the safety theorem were mechanised in the same
logic, needing a higher-order logic, and making the proofs quite complex. Later Crary
and Sarkar [18] showed a foundational approach using an object logic (LF [35]) to specify
the machine semantics, and a metalogic (Twelf [81]) to formalise the safety theorem.
Another advantage of the foundational approach is that the code producer can employ
his own method for checking safety, as long as he proves his method correct. An example
could be a safe type system: the code producer defines a type system and then gives
a machine checkable proof that all programs that are well-typed are safe. This proof
can then be checked once, and the code producer need only demonstrate typeability of
the programs, rather than thier explicit safety. Another idea would be to implement a
safe interpreter, and prove that the interpreter program is safe for any input program.
There is actually an entire spectrum of methods, depending on whether they have a
large program-dependent part (e.g., a full soundness proof for a single program) or a
large program-independent part (e.g., a safe interpreter or something in the middle like
a type-system). This spectrum was investigated further by the author in his master’s
thesis [36].

Outside the PCC world, certified code is rarely used. But we believe that certified
code in a wider sense could have other applications besides PCC. One application could
be for documentation; one can imagine that when work procedures or workflows become
more and more electronic, formal certificates can be seen as licensing requirements,
expressing that the processes conform with the rules and laws. Another application is
modification of a running system, e.g. because the underlying work processes change.
In such a case it might be easier to make sure that the modified system is error-free,
if the proof that the old system is error-free is still available, because parts of the old
proof could be reused. A barrier that prevents certified code from being more widely
used is that in order to support a certification-based method, all programs or processes
have to be formally proven correct for the paradigm to work, which in practice is often
not realistic (e.g. the code might not be available). We believe that the economic based
model allows certified and uncertified components to be mixed, thereby lowering the
barrier for application of a certification-based methodology.

Certified code for sequential programs is a relatively well-understood field. However
moving to a concurrent and in particular distributed setting, in which the programs
are generalised to real-time communicating processes, comes with additional technical
challenges. Examples include how to certify that these processes satisfy complex timing
constraints, and how to handle asynchrony between different processes (asynchrony is
often occurring in the distributed delegation settings). In the presence of concurrency, a
clear advantage of a certification based approach, as opposed to traditional verification
based approaches (e.g. timed automata), is that the methods applied do not have to
be decidable. The proof obligation is on the code producer, which has the power to
modify the program if it cannot be certified. The proof check, however, should always

4.1. THE CERTIFICATION PARADIGM 57

be decidable and easy. In the next section we introduce a general methodology to tackle
the challenges of certification, without the need for specialised logics (e.g. temporal
logics).

4.1.2 Verification-time monitoring as certification paradigm

Traditionally, when doing certification, one defines a language for programs (e.g. ma-
chine code), then develops a logic in which it is possible to express the properties one
wishes to certify (also called the safety policy), and lastly develops a sound proof system
to express proofs for concrete programs. In a foundational approach, there is an extra
step, in which the semantics of the program language is formalised so that the soundness
of the proof system can also be machine checked. The general goal is to take a semantic
property, e.g. that the program does not index an array out of bounds, and then define
a syntactic judgement that can be checked independently of the program semantics.

We wish to follow the same method, viewing contracts and conformance as the safety
policy. The main challenge is, therefore, how to devise a syntactic method for proving
conformance. The rest of this section gives a high-level description of our approach.

We want to reuse as much of the standard Floyd-Hoare paradigm as possible. Floyd-
Hoare logic is more than 40 years old [30, 45], and is well-understood and generally
accepted. Concretely, we propose a paradigm, which we call verification-time monitoring
due to the similarities with run-time monitoring.

In verification-time monitoring, we exploit a property of our safety policy (the confor-
mance relation), namely that failures are finite, which means that if our implementation
can fail (attain a negative accumulated pay-off), then there is a finite sequence of timed
inputs, which demonstrates this failure. On the other hand, this also means that if there
is no finite sequence of inputs that results in a failure, then the implementation is safe.
With this property we can write a test harness: a program which simulates a commu-
nication environment around the implementation, and tries to get the implementation
to fail. If a failure is found, the test harness returns an error. Therefore, the problem
of proving that the implementation is safe is reduced to proving that the test harness
never returns an error, and prevention of such error states in a program is a generally
better understood problem.

In our concrete setting we can take the verification-time monitoring idea, and further
refine it. First, we can view the test harness as consisting of two components: the
contracts and a supervisor. The contracts monitor the inputs and outputs of the tested
program and occasionally return verdicts. The supervisor is the glue which holds the
entire system together. The general setup is a follows: the supervisor reads the inputs
including timing information from a test script ; those inputs are given to the program
being tested, which in turn produces the additional outputs needed for the evaluation
of the contracts. The supervisor tallies the pay-offs for the different contracts and fails
if the accumulated pay-off becomes negative.

For certification, we abstract away from a concrete test script and prove that the
supervisor never signals an error for any test script. Exploiting the similarities between
tactics and contracts, we can view the entire system (tactic, contracts and supervisor)
as a single sequential process. With this view, we can use well-known techniques, in
particular Floyd-Hoare logic, for certification of this sequential process. In particular, we
can employ an off-the shelf external theorem prover to check the bulk of the verification
conditions. Based on this approach, it is therefore easy to get a sound proof-system.
In some sense this approach is a variant of the foundational approach, the variation

58 CHAPTER 4. CERTIFICATION

being that the safety policy is formalised directly as an executable program and not in
a special logic. To get a full foundational approach, we could mechanise the semantics
of the target language as well.

To apply Floyd-Hoare logic, we require that tactics and contracts are written in
the same (target) language. Note, however, that they could stem from different high-
level source languages. If the supervisor is also written in that language (basically
implementing the conformance relation of Def. 3.4.23), the entire program can then be
annotated as a single whole, similar to how a normal program is proven correct with
Floyd-Hoare logic. In essence, we program a simulation of that part of the system,
which is relevant for a given principal. We then use standard techniques to prove that
the simulation never reaches a certain state.

Lastly, we note that if provable safety is not required, the framework can also be used
for ordinary testing by simulation, as one could just feed the supervisor with different
test scripts and monitor the results. Similarly, one can also do verification by trying to
abstract the state space across the entire execution. The state space will of course not
be finite, both due to infinitary data, but also due to the interplay of time. The first
reason could possibly be handled by standard techniques, but the other reason seems
hard to do in practice. In the cases where it is hard to find a decidable verification
algorithm, a certification-based approach could be used instead.

4.2 Language

In this section we present the common language we use for tactics, contracts and the
supervisor. We start by giving a couple of criteria for the design of the language:

1. Simplicity: to make the development of the framework as easy as possible, we
seek a simple language. As written before, we do not envision real-life tactics
or contracts to be written directly in this language, but we still want to make it
possible to express some basic examples in a reasonably natural style.

2. Proof-support: we want a language, where there is a well-understood way of prov-
ing that programs are error-free.

3. Suitable features: in order to model the simulation of both tactics and contracts,
we need several features of the language:

(a) Support for real-valued expressions, to model time.
(b) A way of modelling the trace in the conformance relation.
(c) A way of defining the tactic and the contracts independently of each other,

while still allowing the supervisor part to execute both.

With these criteria taken into account, we have chosen a simple coroutine language,
based on mutually recursive functions, where each function call is restricted to a tail-call.
Each tail-call can be considered a jump with arguments, and the function abstraction
is mostly a help in handling the scope of the variables. Because of the closeness to an
imperative language, we can define a Floyd-Hoare logic, which can be used to prove
error-free execution. We enforce a type system to help simplify the Floyd-Hoare logic,
and we allow the definition of custom data types, which can be used to ensure that
the state of the tactic and the contracts are hidden from each other, and to model
the incoming trace in the conformance relation. The next sections formally define the
language.

4.2. LANGUAGE 59

Var 3 x , Fvar 3 f , Tag 3 k (Variables, names & tags)
Z 3 i , R 3 r (Integers & reals)

Lit 3 q ::= i | r | true | false (Literals)
Opr 3 o ::= + | - | = | < | . . . (Operators)
Exp 3 e ::= x (Variables)

| k(e1, . . . , en) (Data type construction)
| q (Constants)
| o(e1, . . . , en) (Operators)

Pattern 3 p ::= k(x1, . . . , xn) (Pattern)
Com 3 c ::= f (e1, . . . , en) (Tail-call)

| case e of p1 → c1| · · · |pn → cn (Case)
| if e then c1 else c2 (If-then-else)
| let x = e in c (Let)
| fail (Failure)
| done (Success)

Decl 3 d ::= f (x1, . . . , xn) = c (Function declaration)
Decls 3 ds ::= d1 · · · dn (Declarations)

Figure 4.1: The syntax of the language.

4.2.1 Syntax

Below we present the syntax of the language. A program consists of a set of functions.
We only allow static tail-calls for each function. The language has simple values (inte-
gers, reals and booleans) and recursive data types. The syntax of the language is given
in Fig. 4.1, we do not, however, specify all possible operations, as it should be easy to
see how to extend the language with those. We briefly comment on the constructions in
the language. The language has both integer, real and boolean constants. In addition,
a datatype expression can be created by applying a constructor to a list of arguments.
Commands terminate with either a tail-call, failure or success. Both failure and success
is used to terminate the program. In the case construction, we require all tags to be
distinct, and similarly we require all variables in the same pattern or declaration to be
distinct as well. A full program will generally be a set of declarations, with either a
special start function or a command to evaluate from the start.

4.2.2 Dynamic semantics

In this section we describe evaluation of the different constructs in the language. The
values in the language are either integers, reals, booleans or composite tagged values:

Definition 4.2.1 (Values and environments). The values are described by the following
grammar:

V 3 ν ::= q | k(ν1, . . . , νn)

60 CHAPTER 4. CERTIFICATION

ρ ` e ↓ ν

ρ(x) = ν

ρ ` x ↓ ν

ρ ` e1 ↓ ν1 · · · ρ ` en ↓ νn

ρ ` k(e1, . . . , en) ↓ k(ν1, . . . , νn)

ρ ` q ↓ q

∀i. ρ ` ei ↓ νi o ` ν1, . . . , νn ↓ ν
ρ ` o(e1, . . . , en) ↓ ν

Figure 4.2: Evaluation of expressions. i ∈ {1, . . . , n}.

Is is easy to see that the values are a subset of the expressions. Variables are bound
to values from this set, so a variable environment is a finite mapping from variables to
values:

ρ ∈ Env := Var ⇀fin V.

Expressions are evaluated into values. For the operators, we assume the presence
of an evaluation judgement o ` ν1, . . . , νn ↓ ν, which expresses how to evaluate the
different operators. The rules for addition could e.g. be:

+ ` i1, i2 ↓ i1 + i2 + ` r1, r2 ↓ r1 + r2

The evaluation of an expression is captured by a big-step judgement, · ` · ↓ · ⊆
Env×Exp×V, defined by the rules in Fig. 4.2. The rules are straightforward: variables
are evaluated to their value in the environment, a constructor is evaluated by evaluating
all the arguments. Constants evaluate to themselves, and operators are evaluated using
the judgement mentioned above.

The execution of a command is defined as an environment modifying small-step
semantics. The judgement, · ` 〈·〉 → 〈·〉 ⊆ Decls× State× State, where State = Com×
Env is defined by the rules in Fig. 4.3. A tail-call steps to the body of the corresponding
function; the environment is created from the arguments to the function. A pattern-
matching case finds the matching constructor, and then steps to the corresponding
branch with the environment updated with the matched values. If-then-else steps to
either the then branch or the else branch, depending on whether the boolean expression
evaluates to true or false. A let-expression evaluates the expression to a value and binds
the variable to that value. The fail and success constructions terminate the program
and therefore do not step to anything.

4.2.3 Type system

In this section we present a type system that ensures that programs only fail by stepping
to the fail tail-expression. The type system also ensures that every well-typed expres-
sion will have a well-defined value. This, in turn, greatly simplifies the Floyd-Hoare

4.2. LANGUAGE 61

ds ` 〈c, ρ〉 → 〈c′, ρ′〉

∀i. ρ ` ei ↓ νi f (x1, . . . , xn) = c ∈ ds
ds ` 〈f (e1, . . . , en), ρ〉 → 〈c, [x1 7→ ν1, . . . , xn 7→ νn]〉

ρ ` e ↓ k(ν1, . . . , νm)
pi = k(x1, . . . , xm)

ρ′ = ρ[x1 7→ ν1, . . . , xm 7→ νm]

ds ` 〈case e of p1 → c1| · · · |pn → cn, ρ〉 → 〈ci, ρ
′〉

ρ ` e ↓ true
ds ` 〈if e then c1 else c2, ρ〉 → 〈c1, ρ〉

ρ ` e ↓ false
ds ` 〈if e then c1 else c2, ρ〉 → 〈c2, ρ〉

ρ ` e ↓ ν
ds ` 〈let x = e in c, ρ〉 → 〈c, ρ[x 7→ ν]〉

(No rules for fail, done.)

Figure 4.3: Execution judgement for command. i ∈ {1, . . . , n}.

logic we consider later, as we do not have to account for partial expressions or partial
assertions.

The types in the program will come from two categories: the basic types (the integers,
reals and booleans) and the tagged types. To capture the name of a tagged type, we
need a countable set of type names. To define data types, we add type declarations, and
for simplicity, because we do not want to get into type inference, we modify function
declarations to include typing information. The syntax of the type system is given in
Fig. 4.4. A type is either one of the basic types or a data type. Each data type is defined
with a set of constructors, and their declaration specify the types of the arguments for
each tag. For simplicity, we again assume that all type names and tags in the type
declarations are distinct.

Tname 3 tn (Type names)
Basic 3 β ::= int | real | bool (Basic types)
Type 3 τ ::= β | tn (Types)
Tcon 3 c ::= k : τ1, . . . , τn (Type constructor)

Tdecl 3 td ::= type tn = c1| · · · |cn (Data type declaration)
Tdecls 3 tds ::= td1 · · · tdn (Data type declarations)

Decl 3 d ::= f (x1 : τ1, . . . , xn : τn) = c (Annotated function declaration)

Figure 4.4: The syntax of the type system.

62 CHAPTER 4. CERTIFICATION

Each variable is given a type, which is captured by a typing environment:

Definition 4.2.2. A typing environment is as follows:

Γ ∈ Tenv := Var ⇀fin Type.

From a list of data type declarations, one can extract a type definition environment
in a straightforward way:

Definition 4.2.3. A type definition environment is as follows:

Θ ∈ Tdef := Tname ⇀fin (Tag ⇀fin Type∗).

Lastly, we can also create a function type environment from the annotated function
declarations:

Definition 4.2.4. A function type environment is a follows:

Ψ ∈ Tfenv := Fvar ⇀fin Type∗.

Because only tail calls are allowed, there is no return type, and the list contains the type
of the parameters.

In essence, each function is just a label, and the function type environment specifies
the type of the live variables.

Similar to how we assumed the presence of an evaluation judgement for operators, we
assume that there is a typing judgement for operators ` o : τ1, . . . , τn → τ , expressing
the type rules for each operator. E.g. the rules for addition would match the evaluation
ones:

` + : int, int→ int ` + : real, real→ real

With the data type environment and the typing environment, expressions can be given
a type, captured by the judgement, ·, · ` · : · ⊆ Tdef × Tenv × Exp × Type, defined
by the rules in Fig. 4.5. The type of a variable is given by the environment. To
type a constructor, the type of the arguments must match the ones given in the type
declaration, the result type is then the name of the type. Constants have their basic
type. The operators use the operator typing judgement introduced above.

For the typing of commands, we need to include the function type environment
in order to type the tail-calls. The typing judgement for commands ·, ·, · ` · : com ⊆
Tfenv×Tdef×Tenv×Com, is defined by the rules in Fig. 4.6. A tail-call is well-typed, if
the types of the arguments match the types declared at the definition. A case expression
is more involved, first the expression must be typed with a data type, then each pattern
must match a constructor, and lastly each branch is checked with the new variables
bound to the types from the corresponding constructor. An if-then-else is well-typed, if
the test has boolean type and both branches are well-typed. A let-expression updates
the type environment with the type of the expression. A fail or done command is always
well-typed.

An environment is well-typed, if it assigns correct values according to a type envi-
ronment and a data type environment:

Definition 4.2.5. An environment, ρ, is well-typed with respect to Θ and Γ, written
Θ ` ρ : Γ iff

dom(Γ) = dom(ρ) ∧ ∀x ∈ dom(ρ). Θ,Γ ` ρ(x) : Γ(x).

4.2. LANGUAGE 63

Θ,Γ ` e : τ

Γ(x) = τ

Θ,Γ ` x : τ

Θ(tn)(k) = (τ1, . . . , τn) ∀i. (Θ,Γ ` ei : τi)
Θ,Γ ` k(e1, . . . , en) : tn

Θ,Γ ` i : int Θ,Γ ` r : real

Θ,Γ ` true : bool Θ,Γ ` false : bool

∀i. Θ,Γ ` ei : τi ` o : τ1, . . . , τn → τ

Θ,Γ ` o(e1, . . . , en) : τ

Figure 4.5: Typing judgement for expressions. i ∈ {1, . . . , n}.

Ψ,Θ,Γ ` c : com

Ψ(f) = (τ1, . . . , τn) ∀i. Θ,Γ ` ei : τi
Ψ,Θ,Γ ` f (e1, . . . , en) : com

Θ,Γ ` e : tn ∀i.

pi = ki(x 1

i , . . . , x
mi
i)

Θ(tn)(ki) = (τ1
i , . . . , τ

mi
i)

Ψ,Θ,Γ[x 1
i 7→ τ1

i , . . . , x
mi
i 7→ τmi

i] ` ci : com
Ψ,Θ,Γ ` case e of p1 → c1| · · · |pn → cn : com

Θ,Γ ` e : bool Ψ,Θ,Γ ` c1 : com Ψ,Θ,Γ ` c2 : com
Ψ,Θ,Γ ` if e then c1 else c2 : com

Θ,Γ ` e : τ Ψ,Θ,Γ[x 7→ τ] ` c : com
Ψ,Θ,Γ ` let x = e in c : com

Ψ,Θ,Γ ` fail : com Ψ,Θ,Γ ` done : com

Figure 4.6: Typing judgement for commands. i ∈ {1, . . . , n}.

64 CHAPTER 4. CERTIFICATION

Similarly, a list of declarations are well-typed if all functions are well-typed:

Definition 4.2.6. A list of declarations, ds, is well-typed with respect to a data type
environment, Θ, and a function type environment, Ψ, written Θ ` ds : Ψ iff

∀(f (x1 : τ1, . . . , xn : τn) = c) ∈ ds.
Ψ(f) = (τ1, . . . , τn) ∧
Ψ,Θ, [x1 7→ τ1, . . . , xn 7→ τn] ` c : com.

4.3 Implementation of verification-time monitoring

In this section we show how to implement the combined program in such a way that its
error-free execution corresponds to conformance of a tactic. The general structure of the
program is a single loop, for which an iteration corresponds to a step in the conformance
relation of Def. 3.4.23. The full program is split into several components:

• The tactic component: simulates the transition functions of the concrete tactic.
Basically Def. 3.4.14 implemented in the language. This component viewed in
isolation denotes a tactic automaton, as shown later.

• The contract components: simulates the transition functions for concrete con-
tracts. These components are implementations of the contract automata from
Def. 3.4.7. Similar to the tactic component, each contract component in isolation
denotes a contract automaton.

• The supervisor component: implements the test harness, i.e., this component per-
forms the bookkeeping needed to implement the conformance relation. This in-
cludes deconstruction of the input trace, passing the incoming values to the tactics
and contracts and collecting the accumulated pay-off. This component explicitly
fails with fail if the accumulated pay-off becomes negative.

In the following sections we describe each component in detail. To exemplify the
definitions we use Ex. 3.3.18 as a basis.

4.3.1 Tactic component

The tactic component comes with a special type definition of a type called tactic state.
This type captures the state, S , for the tactic automaton. Furthermore, the component
comes with two special functions, one for each transition map of a tactic automaton.
The first function takes as input three things: an element of the tactic state type, an
element representing the supervisor’s state(explained later) and elements representing
the actions in the input map. The second function takes as input an element of the
tactic state type and an element representing the supervisor’s state.

Simplified, the first function will have the following form:

tacI(ss : sState, ts : tState, l1 : act1, . . . , ln : actn) =
...

tRetI(ss, ts ′, l ′1 , . . . , l
′
m)

where tRetI is assumed to have the following type: (sState, tState, act′1, . . . , act′m). In the
function: ss is a variable containing the supervisor’s state, which is passed unmodified

4.3. IMPLEMENTATION OF VERIFICATION-TIME MONITORING 65

to the return function; ts, ts ′ is the tactic state in the last step and in the next step;
l1 , . . . , ln are the input actions and l ′1 , . . . , l

′
m are the output actions. The supervisor’s

state is considered abstract for the tactic component, but not for certification later. That
the state is abstract means that the tactic component cannot decompose or construct
a value of that type. This abstraction can be obtained by typing the tactic component
without the definition of the concrete supervisor state. The different types of the actions,
on the other hand, are not abstract: the tactic needs to be able to both decompose the
input actions and construct the output actions, so we need to add the definition of the
different action types, acti, to the type declarations of the tactic. We do not fix exactly
how actions look. but assume they include the empty action, giving a type declaration
on the form:

type acti = Emp |

We write tdsact for these type declarations.
Similarly, the second function will have the following simplified form:

tacT(ss : sState, ts : tState) =
...

tRetT(ss, ts ′, l ′1 , . . . , l
′
m)

where tRetT has the same type as tRetI. Similar to the first function, ss and ts are the
incoming states for the supervisor and the tactic; ts ′ is the new state for the tactic and
l ′1 , . . . , l

′
m are the output actions.

In addition to the two functions, the tactic component must also include a value of
type tState for the start state, and a real value for the time between timer transitions.
We consider a tactic component example:

Example 4.3.1. Assuming an action definition of:

type act = Emp | V : int

The +2 tactic from Ex. 3.3.18 and Ex. 3.4.15 can be implemented in the following way:

type tState = S1 | S2 | S3

tacI(ss : sState, ts : tState, lo1 : act, li2 : act =
case ts of

S1 → case li2 of
Emp → tRetI(ss,S1,Emp,Emp)

| V(n) → tRetI(ss,S2,Emp,V(n))
| S2 → case lo1 of

Emp → tRetI(ss,S2,Emp,Emp)
| V(n) → tRetI(ss,S3,Emp,V(n))

| S3 → case lo1 of
Emp → tRetI(ss,S3,Emp,Emp)

| V(n) → tRetI(ss,S1,V(n),Emp)

tacT(ss : sState, ts : tState) = tRetT(ss,ts,Emp, Emp)

with S1 as start state and 1.0 as timer transition time.

66 CHAPTER 4. CERTIFICATION

In order for the tactic component to denote a tactic automaton, we need to restrict
what can be written in the two functions. The requirements come in two different
categories: basic well-formedness requirements and semantic requirements. The basic
requirements are:

1. The program must be well-typed.

2. Two functions, tacI, tacT, and a special type, tState, must be defined.

3. There must be a start state and a timer transition time.

The semantic requirements are the following:

1. The functions always terminates with a call to tRetI or tRetT respectively.

2. The argument ss is passed through the functions unmodified.

The precise formalisation of the basic requirements is given below.

Definition 4.3.2. A list of declarations, ds, with typing environments, Θ, Ψ, and values
ν0 ∈ V, r0 ∈ R, is a well-formed tactic component for a tactic with input links l1, . . . , ln
and output links l ′1, . . . , l

′
m, written ` ds,Θ,Ψ, ν0, r0 : tac, iff it satisfies the following

conditions:

1. Θ′ ` ds : Ψ′.

2. ∃k , τ1, . . . , τn. Θ(tState)(k) = (τ1, . . . , τn).

3. Θ′, ∅ ` ν0 : tState.

4. ∃cti. tacI(ss : sState, ts : tState, l1 : act, . . . , ln : act) = cti ∈ ds.

5. ∃ctt. tacT(ss : sState, ts : tState) = ctt ∈ ds.

where

Ψ′ = Ψ[tRetI 7→ (sState, tState, act1, . . . , actn), tRetT 7→ (sState, tState, act1, . . . , actn)]

and Θ′ is Θ updated with mappings for the actions in tdsact.

The first requirement is that the entire program is well-typed, when the types for the
return functions are added. The second requirement specifies that the type for tactic
states, tState, is defined. The third requirement expresses that the initial state is of
type tState. The fourth and fifth requirements ensure that the two transition functions
are well-defined. The semantic requirements are defined below:

Definition 4.3.3. A well-formed tactic component, ` ds,Θ,Ψ, ν0, r0 : tac, for a tactic
with input links l1, . . . , ln and output links l ′1, . . . , l

′
m, is a well-behaved tactic component,

written � ds,Θ,Ψ, ν0, r0 : wbTac, iff it satisfies the following two conditions:

∀ρ, ∀M ∈ Tag ⇀fin Type∗.
Θ′[sState 7→M] ` ρ : [ss 7→ sState, ts 7→ tState, l1 7→ act1, . . . , ln 7→ actn]⇒(
ds ` 〈cti, ρ〉 →∗ 〈tRetI(ess , ets , el ′1

, . . . , el ′m), ρ′〉 ∧ ρ′ ` ess ↓ ρ(ss)
)
;

4.3. IMPLEMENTATION OF VERIFICATION-TIME MONITORING 67

and

∀ρ,∀M ∈ Tag ⇀fin Type∗.
Θ′[sState 7→M] ` ρ : [ss 7→ sState, ts 7→ tState]⇒(
ds ` 〈ctt, ρ〉 →∗ 〈tRetT(ess , ets , el ′1

, . . . , el ′m), ρ′〉 ∧ ρ′ ` ess ↓ ρ(ss)
)
,

and Θ′ is Θ updated with mappings for the actions in tdsact.

Well-behavedness ensures that when either of the two transition functions are called,
then control steps to the corresponding return function and the first argument of the
transition function is unchanged. Even though we only give a semantic definition, it
should be easy to give a sound syntactic judgement (` . . . : wbTac), ensuring that a
tactic component is well-behaved. One way would be to forbid any operations using the
first parameter, and to forbid function calls backwards in the program. When we have
a well-behaved tactic component, we can translate it into an tactic automaton in the
following way:

Definition 4.3.4. Given a well-behaved tactic component � ds,Θ,Ψ, ν0, r0 : wbTac, we
define a tactic automaton (S , s0, d0, δt, δi) in the following way:

S = {ν ∈ V | Θ′, ∅ ` ν : tState},
s0 = ν0,

d0 = r0,

δt(s) = (s ′,m ′) when
ds ` 〈tacT(νss, s), ∅〉 →∗ 〈tRetT(ess, eps , el ′1

, . . . , el ′m), ρ′〉,
ρ′ ` eps ↓ s ′,
ρ′ ` el ′1

↓ ν ′1 · · · ρ′ ` el ′m ↓ ν
′
m,

m ′ = [l ′1 7→ ν ′1, . . . , l
′
m 7→ ν ′m];

δi(s,m) = (s ′,m ′) when
m = [l1 7→ ν1, . . . , ln 7→ νn],

ds ` 〈tacI(νss, s, ν1, . . . , νn), ∅〉 →∗ 〈tRetI(ess, eps , el ′1
, . . . , el ′m), ρ′〉,

ρ′ ` eps ↓ s ′,
ρ′ ` el ′1

↓ ν ′1 · · · ρ′ ` el ′m ↓ ν
′
m,

m ′ = [l ′1 7→ ν ′1, . . . , l
′
m 7→ ν ′m];

where Θ′ is Θ updated with mappings for the actions in tdsact, and νss is an arbitrary
value. We write p(ds,Θ,Ψ, ν0, r0)q for (S , s0, d0, δt, δi).

The idea behind the definition is to use values of type tState as the states in the
automaton tactic. The transition functions of the automaton tactic are implemented
with the two special functions, and to get the outputs we use the values that are passed
to the return functions. We can show that this gives a tactic automaton:

Proposition 4.3.5. If � ds,Θ,Ψ, ν0, r0 : wbTac is a well-behaved tactic component, then
the translated tactic, p(ds,Θ,Ψ, ν0, r0)q, (Def. 4.3.4) is a tactic automaton.

68 CHAPTER 4. CERTIFICATION

Proof sketch. Because the component is well-formed, the types of the initial state and the
transition functions are correct. What remains is to show that the transition functions
are well-defined. From well-behavedness we know that the derivation exists, and because
the language is deterministic, the result is well-defined. The last part is to make sure
that execution cannot depend on the value vss. Because of the well-formedness typing,
the value cannot be used, and therefore cannot affect the execution as needed.

4.3.2 Contract components

The contract components are similar to the tactic components, the difference is the type
of the two functions, as they have to correspond to the transition functions for contract
automata.

Similar to the tactic component, each contract component defines a special type
called the contract state. The type captures the contract automaton state, G . The first
of the two functions will have the following simplified form:

conI(ss : sState, cs : cState, l1 : act1, . . . , ln : actn) =
...

cRetI(ss, res)

where cRetI has the following type: (sState, run). The result type, run, captures the
disjoint sum in the transition function and is defined to be:

type run = Run : cState | Done : real

We write td run for this type declaration. The variables used in the function are similar
to the ones for the tactic component, ss is a variable containing the supervisor’s state,
which is again passed unmodified to the next function; cs is the contract state in last
step and l1 , . . . , ln is the input actions. It is important to note that the supervisor’s
state passed to the contract component can be different from the one passed to the
tactic component, e.g. the contract one will contain the state of the tactic, and the
tactic one the state of the contracts.

The second function is very similar, it has the following simplified form:

conT(ss : sState, cs : cState) =
...

cRetT(ss, res)

where the only difference is the missing input actions.
We extend the example from before:

Example 4.3.6. The +2 contract, c2, from Ex. 3.3.18 can be formalised very similarly
to the c1 contract from Ex. 3.4.8, and it can be implemented in the following way:

type cState2 = C2start | C2run : int, real

con2I(ss : sCon2, cs2 : cState2, li2 : act, lo2 : act) =
case cs2 of
C2start →

4.3. IMPLEMENTATION OF VERIFICATION-TIME MONITORING 69

if lo2 6= Emp then con2RetI(ss,Done2(-1))
else case li2 of

Emp → con2RetI(ss,Run2(cs2))
| V(n) → con2RetI(ss,Run2(C2run(n,20)))

| C2run (n,t) →
if li2 6= Emp then con2RetI(ss,Done2(1))
else case lo2 of

Emp → con2RetI(ss,Run2(cs2))
| V(n2) → if n + 2 = n2 then con2RetI(ss,Run2(C2start))

else con2RetI(ss,Done2(1))

con2T(ss : sCon2,cs2 : cState2) =
case cs2 of
C2start → con2RetT(ss,Run2(cs2))

| C2run (n,t) →
if t ≤ 0.0
then con2RetT(ss,Done2(-1))
else con2RetT(ss,Run2(C2run(n,t - 1)))

with C1 as a start state and 1.0 as timer transition time.

Similar to the tactic component, in order for the contract components to denote
contract automata, certain properties need to be fulfilled. Again there are two categories:
basic requirements and semantic requirements.

Definition 4.3.7. A list of declarations, ds, with typing environments, Θ,Ψ, and values
ν0 ∈ V, r0 ∈ R, is a well-formed contract component for a contract with links l1, . . . , ln,
written ` ds,Θ,Ψ, ν0, r0 : contr, iff it satisfies the following conditions:

1. Θ′ ` ds : Ψ′.

2. ∃k , τ1, . . . , τn. (k , (τ1, . . . , τn)) ∈ Θ(cState).

3. Θ′, ∅ ` ν0 : cState.

4. ∃cci. conI(ss : sState, cs : cState, l1 : act, . . . , ln : act) = cci ∈ ds.

5. ∃cct. conT(ss : sState, cs : cState) = cct ∈ ds.

where

Ψ′ = Ψ[cRetI 7→ (sState, run), cRetT 7→ (sState, run)]

and Θ′ is Θ updated with mappings for tdsact and td run.

These syntactic requirements are very similar to the ones for tactics, the biggest
difference is the return type of the transition functions. The semantic requirements are
similar as well:

Definition 4.3.8. A well-formed contract component, ` ds,Θ,Ψ, ν0, r0 : contr, for
a contract with links l1, . . . , ln, is called a well-behaved contract component, written �

70 CHAPTER 4. CERTIFICATION

ds,Θ,Ψ, ν0, r0 : wbContr, iff it satisfies the following two conditions:

∀ρ, ∀M ∈ Tag ⇀fin Type∗.
Θ′[sState 7→M] ` ρ : [ss 7→ sState, cs 7→ cState, l1 7→ act1, . . . , ln 7→ actn]⇒(
ds ` 〈cci, ρ〉 →∗ 〈cRetI(ess , eres), ρ′〉 ∧ ρ′ ` ess ↓ ρ(ss)

)
;

and
∀ρ, ∀M ∈ Tag ⇀fin Type∗.
Θ′[sState 7→M] ` ρ : [ss 7→ sState, cs 7→ cState]⇒(
ds ` 〈cct, ρ〉 →∗ 〈cRetT(ess , eres), ρ′〉 ∧ ρ′ ` ess ↓ ρ(ss)

)
,

As for tactic components, it should be easy to give a sound syntactic judgement
(` . . . : wbContr), ensuring that a contract components is well-behaved. With a well-
behaved contract component, we can translate it into a contract automaton in the
following way:

Definition 4.3.9. Given a legal contract component � ds,Θ,Ψ, ν0, r0 : wbContr, we
define a contract automaton (G , g0, d0, ρt, ρi) in the following way:

G = {ν ∈ V | Θ′, ∅ ` ν : cState},
g0 = ν0,

d0 = r0,

ρt(g) =

{
g ′ if ρ′ ` eres ↓ Run(g ′),
k if ρ′ ` eres ↓ Done(k),

when
ds ` 〈conT(νss, s), ∅〉 →∗ 〈cRetT(ess, eres), ρ′〉;

ρi(g ,m) =

{
g ′ if ρ′ ` eres ↓ Run(g ′),
k if ρ′ ` eres ↓ Done(k),

when
m = [l1 7→ ν1, . . . , ln 7→ νn],

ds ` 〈conI(νss, g , ν1, . . . , νn), ∅〉 →∗ 〈cRetI(ess, eres), ρ′〉;

where Θ′ is Θ updated with mappings for tdsact, td run and νss is an arbitrary value. We
write p(ds,Θ,Ψ, ν0, r0)q for (G , g0, d0, ρt, ρi).

The definition is again similar to the one for tactics. But instead of constructing
an output map as output, either a new state or a pay-off must be passed to the return
functions. We can now show that this gives a contract automaton:

Proposition 4.3.10. If � ds,Θ,Ψ, ν0, r0 : wbContr is a legal contract fragment, then
the translated contract, p(ds,Θ,Ψ, ν0, r0)q, (Def. 4.3.9) is a legal contract automaton.

Proof sketch. Analogous to the proof of Prop. 4.3.5.

4.3.3 Supervisor component

The supervisor component is the last part of the composition. It maintains the input
trace, the accumulated pay-off and the state of both the tactic and the contracts. The

4.3. IMPLEMENTATION OF VERIFICATION-TIME MONITORING 71

overall structure of the supervisor component is a single big loop, where each iteration
of the loop corresponds to a step in the conformance relation from Def. 3.4.23. The
supervisor component will have the following (very) simplified form:

start(tstart : real, tend : real, tr in : tracein) =
[Call loop with initial values]

loop(tnow : real, ts : tState, ttac : real,
rs1 : run1, tc1 : real, . . . , rsn : runn, tcn : real,
tend : real, tr in : tracein, trout : traceout) =

...
[Split traces]

...
[Branch to tactic]

...
[Branch to contract 1]

...
[Branch to contract k]

...
[Fail if payoff is negative]

...
[Find time for next step]

...
loop(t ′now, ts

′, t ′tac, rs ′1, t
′
c1, . . . , rs ′n, t

′
cn, t

′
end, tr

′
in, tr

′
out)

In general, the variable in the loop function stems from the conformance relation. The
running state of tactics and contracts is captured with both a state variable (ts, rs i) and
a variable holding the time for next timer transition (ttac, tci). To make the concrete
certification easier, we have split the trace in two parts; one part for the input to the
supervisor (the test script) and another part for the generated output of the tactic. In
this section we do not directly specify how the traces should be formalised, one could
e.g. use a list for each link:

type trace = Nil | Cons : real, act, trace.

In the following, we describe each part of the supervisor. However, we do not for-
mally specify each single part of a supervisor component, because basically it is just an
implementation of the conformance relation in a coroutine language. There might also
be several ways of implementing it, or automatically generating it. We consider a full
implementation of a concrete supervisor in Sect. 4.5.

Split traces. In this part, the supervisor extracts all actions from the two traces
that happen at the time specified by tnow. The actions must then be removed from

72 CHAPTER 4. CERTIFICATION

the trace so that they are not considered again in the next iteration. If we use the
list representation described above with a single link, l , the split operation could be
implemented in the following fashion:

case tr of

Nil→ let l = Emp in let tr ′ = tr in . . .

| Cons(t , a, rest)→
if t = tnow

then let l = a in let tr ′ = rest in . . .

else let l = Emp in let tr ′ = tr in . . .

In each path the potential action is kept in the variable l and the remaining trace in tr ′.

Branch to tactic. In this part the supervisor implements the tstep operation from
Def. 3.4.18. This means that the supervisor must compare the time for the timer tran-
sition with the current time, and also consider whether there is any input for the tactic.
When the tactic returns, the output must be added to the output trace, so that it can
be considered in a later iteration. A structure like the following can be used:

if tnow < ttac

then if l1 = Emp ∧ . . . ∧ ln = Emp
then let ts ′ = ts in let t ′tac = ttac in let tr ′out = trout in . . .

else tacI(ss, ts, l1, . . . , ln)
else tacT(ss ′, ts)

Here the supervisor state variables (ss, ss ′) capture all the live variables so that they
can be used when the tactic returns to the supervisor. This includes all actions, traces
and the state of the contracts. When the timer transition returns, the output is added
to the trace, and, depending on whether there are any input, calls the input transition
function.

tRetT(ss, ts, l1, . . . , lm) =
let tr ′′out = [add l1, . . . , lm to trout′] in
let ts ′ = ts in

let t ′tac = ttac + [timeout for the tactic] in
[call tacI if there is input]

tRetI(ss, ts, l1, . . . , lm) =
let tr ′′out = [add l1, . . . , lm to trout′] in
let ts ′ = ts in

let t ′tac = ttac in . . .

The method used for adding the actions to the trace depends on the representation used
for the trace, and must take the latency of each link into account.

4.3. IMPLEMENTATION OF VERIFICATION-TIME MONITORING 73

Branch to contract. In this part, the supervisor implements the cstep operation
from Def. 3.4.10. This part is similar to the tactic, except the trace does not have to be
updated, which makes it simpler.

Fail if pay-off is negative. This part sums up the pay-off of all contracts that are
done. If the sum is less than zero, the supervisor fails with the fail command.

let kacc = 0 in

...
case rs of

Done(k)→ let kacc = kacc + k in

if kacc < 0 then fail else . . .

| Run(cs)→
if kacc < 0 then fail else . . .

Find time for next step. In the last part, the supervisor finds the minimum time
amongst the timer transitions times for the tactic, the contracts and the next actions in
the traces. The concrete implementation depends on the representation of the traces; if
the list representation is used an implementation similar to the following can be used:

case tr of

Nil→ loop(t ′tac, ts
′, t ′tac, gs ′1, . . . , gs ′n, t

′
end, tr

′
in, tr

′
out)

| Cons(t , a, rest)→
if t < t ′tac

then loop(t , ts ′, t ′tac, gs ′1, . . . , gs ′n, t
′
end, tr

′
in, tr

′
out)

else loop(t ′tac, ts
′, t ′tac, gs ′1, . . . , gs ′n, t

′
end, tr

′
in, tr

′
out)

where the difference between the different calls to loop is the value of the first parameter.

4.3.4 Implementation correctness

When a specific implementation of the supervisor has been created, one has to prove
that it implements the conformance relation faithfully, so that it can be used as a basis
for certifying the tactics. As we have not given a formal definition of the supervisor, we
can only state the needed theorem; it is up to the implementer to prove it.

Obligation 4.3.11. Given a well-behaved tactic component, � ds,Θ,Ψ, ν0, r0 : wbTac,
and well-behaved contract components:

� ds1,Θ1,Ψ1, ν
1
0 , r

1
0 : wbContr, . . . ,� dsn,Θn,Ψn, ν

n
0 , r

n
0 : wbContr.

A supervisor implementation, dssuper is considered a correct implementation of the tac-
tics and the contracts if it satisfies that

p(ds,Θ,Ψ, ν0, r0)q

conforms with (Def. 3.4.23) at time t0

p(ds1,Θ1,Ψ1, ν
1
0 , r

1
0)q, . . . , p(dsn,Θn,Ψn, ν

n
0 , r

n
0)q.

74 CHAPTER 4. CERTIFICATION

Assert 3 A ::= | e (Expressions)
| ¬A | A1 ∧A2 | A1 ∨A2 (Logical connectives)
| ∀x : τ. A | ∃x : τ. A (Quantifiers)

Figure 4.7: The syntax of assertions.

if and only if ∀t , σ

dssuper ` 〈start(t0, t , pσq), ∅〉 →∗ 〈c, ρ〉 ⇒ c 6= fail.

We use pσq as the representation of the given trace.

4.4 Floyd-Hoare logic

For conformance we wish to prove that the supervisor program does not fail with an
error. To certify concrete programs, we need a syntactic representation of such a proof of
error-free execution. We therefore introduce a Floyd-Hoare logic to express such proofs.
The logic will be given as a set of verification conditions extracted from an annotated
program. If all these verification conditions hold, then the program will never fail. We
could have used another approach to error-free execution, but have picked Floyd-Hoare
logic, because it is well-known and easy to adopt for our language.

The first step to make a Floyd-Hoare logic is to define assertions, which can express
properties about the environment of the program. Assertions are expressions of boolean
type, but in addition we need to add quantifiers. To prevent errors in the assertions, e.g.
an assertion containing the sum of a number and a data type, we use a typing system
for the assertions. We will briefly elaborate on this in Sect. 4.4.1.

The syntax of assertions is given in Fig. 4.7. The only thing to note is that the
quantifiers are equipped with a type to more easily relate them to the type environment.

The typing judgement for assertions, ·, · ` · : assert ⊆ Tdef × Tenv × Assert,
is straightforward, using the type judgement for expressions. The rules are shown in
Fig. 4.8.

For well-typed assertions and environments, we can define when an assertion holds
in an environment:

Definition 4.4.1. Given a well-typed assertion, Θ,Γ ` A : assert, and a well-typed
environment Θ ` ρ : Γ. The satisfies relation · � · ⊆ Env × Assert, is defined by
structural induction on A in the following way:

ρ � e iff ρ ` e ↓ true,
ρ � ¬A iff ρ 2 A,

ρ � A1 ∧A2 iff ρ � A1 ∧ ρ � A2,

ρ � A1 ∨A2 iff ρ � A1 ∨ ρ � A2,

ρ � ∀x : τ. A iff ∀ν ∈ V. Θ,Γ ` ν : τ ⇒ ρ[x 7→ ν] � A,
ρ � ∃x : τ. A iff ∃ν ∈ V. Θ,Γ ` ν : τ ∧ ρ[x 7→ ν] � A.

4.4. FLOYD-HOARE LOGIC 75

Θ,Γ ` A : assert

Θ,Γ ` e : bool
Θ,Γ ` e : assert

Θ,Γ ` A : assert
Θ,Γ ` ¬A : assert

Θ,Γ ` A1 : assert Θ,Γ ` A2 : assert
Θ,Γ ` A1 ∧A2 : assert

Θ,Γ ` A1 : assert Θ,Γ ` A2 : assert
Θ,Γ ` A1 ∨A2 : assert

Θ,Γ[x 7→ τ] ` A : assert
Θ,Γ ` ∀x : τ. A : assert

Θ,Γ[x 7→ τ] ` A : assert
Θ,Γ ` ∃x : τ. A : assert

Figure 4.8: The typing judgement for assertions.

We only need closed assertions for the verification conditions later, so given a closed
assertion Θ, ∅ ` A : assert, we can define validity of an assertion � A as ∅ � A.

To define verification conditions, we annotate each function with an assertion; every
call to that function must satisfy that assertion.

Definition 4.4.2. An annotation environment is a mapping:

ϕ ∈ Aenv := Fvar ⇀fin Assert.

An annotation environment is well-typed for a list of declarations, ds, and a type defi-
nition environment, Θ, written ds,Θ ` ϕ : aenv iff:

∀f ∈ dom(ϕ). (f (x1 : τ1, . . . , xn : τn) = c) ∈ ds ∧
Θ, [x1 7→ τ1, . . . , xn 7→ τn] ` ϕ(f) : assert

Given a well-typed annotation environment, the verification conditions for a com-
mand can be defined. To simplify the conditions we assume that all bound variables
(function parameters, let and case bound variables) in a command are distinct. This
can be accomplished by renaming. With this assumption we specify the verification
conditions:

Definition 4.4.3. Given a well-typed annotation environment ds,Θ ` ϕ : aenv. When
Θ,Γ ` A : assert and ds,Θ,Γ ` c : com we can define the verification conditions as
a function vc : Tenv × Assert × Com → Pfin(Assert). The function satisfies that each
assertion, A′, in the verification conditions is closed (Θ, ∅ ` A′ : assert), and it is

76 CHAPTER 4. CERTIFICATION

defined in the following way:

vc(Γ, A, f (e1, . . . , en)) = {∀x ′1 : τ ′1, . . . , x
′
m : τ ′m. A⇒ ϕ(f)[e1/x1, . . . , en/xn]}

where Γ = [x ′1 7→ τ ′1, . . . , x
′
m 7→ τ ′m]

and f (x1 : τ1, . . . , xn : τn) = c ∈ ds;
vc(Γ, A, case e of p1 → c1| . . . |pn → cn) = vc(Γ1, A1, c1) ∪ . . . ∪ vc(Γn, An, cn)

where pi = ki(x1, . . . , xm),
Θ(tn)(ki) = (τ1, . . . , τm),
Γi = Γ[x1 7→ τ1, . . . , xm 7→ τm],
Ai ≡ ki(x1, . . . , xm) = e ∧A;

vc(Γ, A, if e then c1 else c2) = vc(Γ, A ∧ e, c1) ∪ vc(Γ, A ∧ ¬e, c2);
vc(Γ, A, let x = e in c) = vc(Γ[x 7→ τ], x = e ∧A, c)

when Θ,Γ ` e : τ
vc(Γ, A, fail) = {∀x1 : τ1, . . . , xn : τn. A⇒ false};

where Γ = [x1 7→ τ1, . . . , xn 7→ τn]
vc(Γ, A, done) = ∅;

substitutions happen simultaneous. Furthermore, we assume that all nested variables are
distinct, as mentioned above.

As we see, most of the rules are standard. Note that because we assume the variables
to be distinct, we can use simple rules for let and case. If the bound variables could
occur in the store, we would need to use an existential quantifier to capture the old
value, e.g. the right hand side of the let clause would have the following form:

vc(Γ[x 7→ τ],∃x ′ : Γ(x). x = e[x ′/x] ∧A[x ′/x], c).

The verification conditions are sound, meaning that if all verification conditions are
valid, then the program does not step to an error. Before proving soundness, we need a
couple of standard lemmas. The first lemma relates substitution to environment update:

Lemma 4.4.4. If

ρ ` e1 ↓ ν1, . . . , ρ ` en ↓ νn

then

(ρ[x1 7→ ν1, . . . , xn 7→ νn] � A)⇔ (ρ � A[e1/x1, . . . , en/xn])

Proof. Straightforward induction, using a similar result for expression evaluation.

The second lemma shows how to remove the universally quantified variables:

Lemma 4.4.5. If Γ = [x1 7→ τ1, . . . , xn 7→ τn]

� ∀x1 : τ1, . . . , xn : τn. A

then for any ρ, satisfying Θ ` ρ : Γ, we have:

ρ � A.

4.4. FLOYD-HOARE LOGIC 77

Proof. Follows directly from the definitions.

The soundness of the verification conditions is proven by the following theorem:

Theorem 4.4.6. Given a well-typed list of declarations, Θ ` ds : Ψ, and given a well-
typed annotation environment ds,Θ ` ϕ : aenv. If all annotations are valid:

∀f ∈ dom(ϕ). (f (x1 : τ1, . . . , xn : τn) = c) ∈ ds ∧
(∀A ∈ vc([x1 7→ τ1, . . . , xn 7→ τn], ϕ(f), c). � A)

then for each f (x1 : τ1, . . . , xn : τn) = c ∈ ds and every well-typed environment Θ ` ρ :
[x1 7→ τ1, . . . , xn 7→ τn] we have that:(

ρ � ϕ(f) ∧ ds ` 〈c, ρ〉 →∗ 〈c′, ρ′〉
)
⇒ c′ 6= fail

Proof. We show the following which implies the result: For Θ ` ρ : Γ, if

ρ � A ∧ ds ` 〈c, ρ〉 →∗ 〈c′, ρ′〉 ∧ ∀A′ ∈ vc(Γ, A, c). � A′

then c′ 6= fail. We show the statement using induction of the stepping judgement.

• Case ds ` 〈c, ρ〉 →∗ 〈c, ρ〉 :

Assume that c = fail then � ∀x1, . . . , xn. A ⇒ false because of the verifica-
tion conditions, but then ρ � A ⇒ false, using Lemma 4.4.5 and together with
ρ � A we get ρ � false which is a contradiction.

• Case ds ` 〈c, ρ〉 → 〈c′′, ρ′′〉 ds ` 〈c′′, ρ′′〉 →∗ 〈c′, ρ′〉
ds ` 〈c, ρ〉 →∗ 〈c′, ρ′〉

:

Here we do a case split on the single step derivation; the most interesting cases
are the ones for tail-call and case, we show these below:

– Case ∀i. ρ ` ei ↓ νi f (x1, . . . , xn) = c ∈ ds
ds ` 〈f (e1, . . . , en), ρ〉 → 〈c, [x1 7→ ν1, . . . , xn 7→ νn]〉

:

Here, by the validity of the verification conditions, we get:

� ∀x ′1 : τ ′1, . . . , x
′
m : τ ′m. A⇒ ϕ(f)[e1/x1, . . . , en/xn].

Now from Lemma 4.4.5 we get:

ρ � A⇒ ϕ(f)[e1/x1, . . . , en/xn],

which together with ρ � A gives that:

ρ � ϕ(f)[e1/x1, . . . , en/xn].

Now from Lemma 4.4.4 we get:

ρ[x1 7→ ν1, . . . , xn 7→ νn] � ϕ(f).

And because ϕ(f) only contains variables from {x1, . . . , xn}, because of the
typing, we have that:

[x1 7→ ν1, . . . , xn 7→ νn] � ϕ(f).

And because all functions have valid annotations, we can use IH to give the
needed result.

78 CHAPTER 4. CERTIFICATION

– Case ρ ` e ↓ k(ν1, . . . , νm)
pi = k(x1, . . . , xm)

ρ′ = ρ[x1 7→ ν1, . . . , xm 7→ νm]

ds ` 〈case e of p1 → c1| · · · |pn → cn, ρ〉 → 〈ci, ρ
′〉

:

We have that ρ′ ` ki(x1, . . . , xm) ↓ ki(ν1, . . . , νn) and because ρ does not
contain the variables {x1, . . . , xm} by assumption, we also have that ρ′ ` e ↓
ki(ν1, . . . , νn) which means that ρ′ ` ki(x1, . . . , xm) = e ↓ true and therefore:

ρ′ � ki(x1, . . . , xm) = e.

Similarly, because the variables in A does not contain any variables from the
set {x1, . . . , xm}, we get from the assumption, ρ � A that ρ′ � A and therefore:

ρ′ � ki(x1, . . . , xm) = e ∧A.

We now have that the IH applies, and we get the needed result.

With this theorem we have that, if all verification conditions hold, then the program
will not fail, which in turn means (if the implementer has proven Obl. 4.3.11) that
the translated tactic and contract automata conform, and then (by Thm. 3.4.26) that
the trace-based denotation of the tactic and the contracts conform. We can therefore
construct a proof for a conforming substrategy, using the Floyd-Hoare logic defined in
this section.

4.4.1 A comment on partial assertions

As mentioned earlier, we impose a type system on programs to avoid partial operators.
The problem with partial operators is that assertions containing such operators do not
have a directly clear semantic. Consider the example:

A ≡ 3 + true = 4.

The evaluation of the left side is stuck, and if we use the semantics given above, we have
that ∅ 2 A, but we also have that the left side of

A′ ≡ 3 + true /= 4

is stuck. So we must also have that ∅ 2 A′. However, in classical logic we expect two
expressions to be either equal or not equal, which is not the case when including partial
assertions. There are several traditional ways of handling this problem:

• Introduce typing as we have done.

• Make all operators total, e.g. by adding explicit errors (∅ ` 3 + true ↓ err).

• Require that all assertions we consider are safe. Safe means that they evaluate to
true or false in any state, e.g the assertion 5

x = y is not safe, whereas the assertion
x 6= 0 ∧ 5

x = y is, assuming short-circuit semantics of ∧.

4.5. CASE STUDY 79

None of these approaches are completely satisfactory. The first solution introduces a
type system, which adds additional complexity, and is not enough for several usages of
partial functions (e.g. division by zero, or array indexing). The second solution sidesteps
the problem, but in practice oddities turn up. One has to consider e.g. whether there
should be a single error expression, err, so that:

3 + Tag(5) = 4 + true,

is true, or whether several different errors are needed. In the theorem prover Z3 [24],
the value of a partial expression can be assigned an arbitrary value, so that both 0

0 = 2
and 0

0 = 10 are true in different queries. It is, however, still considered a function, so in
a single query the assertion 0

0 = 2 ∧ 0
0 = 10 would be false. The third solution is also

fairly complex, and requires extra checks before assertions can be assigned a meaningful
truth value.

An alternative to these approaches would be to move to a constructive logic with
existence predicate (e.g. the logic IQCE by Scott [90]). Such a logic includes a special
predicate constant, E, (sometimes written t ↓), where E(t) means that the term t exists.
With this predicate, the rules for quantifiers and equality are changed to include this
predicate, e.g. the rules for the universal quantifier and reflexivity of equality are:

[E(x)]
...
A

∀x. A[x/y]
∀x. A E(t)

A[t/x]
E(t)
t = t

Equality between two terms, s = t, means that both exist and they are equal. We
believe this is a more satisfactory account for partial functions, because it relies on a
well-known logic and not some implementation specific ad hoc solution.

Even though constructive logic seems well suited for partial functions, most off-
the-shelf theorem provers or decision producers are classical, which made us stick with
classical logic in this work.

4.5 Case study

In this section we describe a proof-of-concept implementation of the certification frame-
work. The implementation consists of a type checker and verification condition genera-
tor, together with a supervisor and the +2 tactic, and the contracts from Ex. 3.3.18. To
prove conformance of the +2 tactic, we have annotated the entire program, and used an
external theorem prover to prove the generated predicates. Note that there is nothing
in this approach, which requires the use of an external theorem prover; we have only
chosen to do so, because the predicates mostly concern inequalities between reals (for
timing constraints), which are easy to verify with a reasonable theorem prover. Another
reason, which we also see later, is that the predicates became fairly large and therefore
tedious to reason about by hand. We, however, consider this an artefact of this proof-of-
concept implementation, and we leave practical realisations of the framework for future
work. In the rest of this section we describe the various parts of the implementation.

4.5.1 Type checker and VC generator

All helper programs (parser, type checker, vc generator and theorem prover interface),
are written in Haskell. The implementation of the different components is straightfor-

80 CHAPTER 4. CERTIFICATION

ward based on the language definition presented in Sect. 4.2. The only difference to the
presented language is that the implemented language includes an if-then-else construc-
tion on the expression level, with the obvious semantics. The parser was created with
the Parsec combinator library. As interface for external theorem provers we have chosen
the SMT-LIB Standard: Version 2.0 [8], which is recognised by several theorem provers.
Although it is designed for satisfiability checkers, we can use it to check validity also,
because a formula is valid if and only if its negation is not satisfiable. The source code
is available on the Author’s web page 1.

4.5.2 Example program

The source code for the entire example program is provided in Appendix A.1. The tactic
is implemented directly as written in Ex. 4.3.1. Similarly, the contracts are implemented
directly as the one given in Ex 4.3.6. The full supervisor, however, is fairly large, and
while not conceptually complicated, contains a fair bit of machinery for implementing
the conformance relation of Def. 3.4.23. The implementation of the supervisor follows
the general pattern of Sect. 4.3.3. In the following we describe the various parts in
detail.

The loop function is mostly implemented as stated, the traces are however divided
into traces over a single link, this seems to make the splitting of traces simpler. Further-
more, we distinguish between the input and output traces, because the output traces
can contain at most one element. This gives the following definition of the trace types:
-- Input trace: lo1 ,li2

type train = NoIn | Actin : r ea l , i n t , train

-- Output trace: li1 , lo2

type traout = NoOut | Actout : r ea l , i n t

Which gives the following header for the loop function:
loop(tnow : r ea l , tend : r ea l ,

ttac : r ea l , ts : tState ,

tcon1 : r ea l , rs1 : run1 ,

tcon2 : r ea l , rs2 : run2 ,

alo1 : train , ali2 : train ,

ali1 : traout , alo2 : traout)

When the loop function is called, it checks whether the current time (tnow) is less than
the end time (tend), and if so the program continues, otherwise it terminates with done,
because there is nothing more to check. After this comparison, the traces are split into
the action at the particular time. Because there is no case on expression level, this is
done by several function invocations:
splitLo1(tnow : r ea l , tend : r ea l ,

ttac : r ea l , ts : tState ,

tcon1 : r ea l , rs1 : run1 ,

tcon2 : r ea l , rs2 : run2 ,

alo1 : train , ali2 : train ,

ali1 : traout , alo2 : traout) =

case alo1 of
NoIn -> splitLi2(tnow ,tend ,ttac ,ts,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2 ,Emp)

| Actin (tlo1 ,lo1 ,alo1_) ->

i f tlo1 <= tnow then splitLi2(tnow ,tend ,ttac ,ts,tcon1 ,rs1 ,tcon2 ,rs2 ,

1http://www.diku.dk/hjemmesider/ansatte/starcke/

http://www.diku.dk/hjemmesider/ansatte/starcke/

4.5. CASE STUDY 81

alo1_ ,ali2 ,ali1 ,alo2 ,V(lo1))

e l s e splitLi2(tnow ,tend ,ttac ,ts,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2 ,Emp)

end

and so on for the remaining links.
After the splitting of traces, the tactic is invoked in two rounds: first the timer

time is checked, and then the input is checked. In each case the supervisor’s state is
tagged and used as an input parameter. The timer transition function is invoked in the
following way:

-- Supervisor state

type sTac1 = STac1 : r ea l , r ea l , r ea l , r ea l ,run1 , r ea l ,run2 ,
train ,train ,traout ,traout ,

act ,act ,act ,act

-- Invoke tactic

invTac(tnow : r ea l , tend : r ea l ,
ttac : r ea l , ts : tState ,

tcon1 : r ea l , rs1 : run1 ,

tcon2 : r ea l , rs2 : run2 ,

alo1 : train , ali2 : train ,

ali1 : traout , alo2 : traout ,

lo1now : act ,li2now : act ,li1now : act ,lo2now : act) =

i f ttac <= tnow

then tacT(STac1(tnow ,tend ,ttac + 1.0,tcon1 ,rs1 ,tcon2 ,rs2 , -- Timeout

alo1 ,ali2 ,ali1 ,alo2 ,lo1now ,li2now ,li1now ,lo2now),ts)

e l s e tacRetT(STac1(tnow ,tend ,ttac ,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2 ,lo1now ,li2now ,li1now ,lo2now),

ts ,Emp ,Emp)

The number 1.0 is the time between timer transitions of the tactic. The invocation of
the input transition is similar. After the two tactic transitions, the output traces are
updated with the actions returned from the transitions:

updLi1(tnow : r ea l , tend : r ea l ,
ttac : r ea l , ts : tState ,

tcon1 : r ea l , rs1 : run1 ,

tcon2 : r ea l , rs2 : run2 ,

alo1 : train , ali2 : train ,

ali1 : traout , alo2 : traout ,

lo1now : act ,li2now : act ,li1now : act ,lo2now : act ,

li1 : act ,lo2 : act) =

i f ali1 = NoOut

then case li1 of
Emp -> updLo2(tnow ,tend ,ttac ,ts ,tcon1 ,rs1 ,tcon2 ,rs2 ,alo1 ,ali2 ,

NoOut ,

alo2 ,lo1now ,li2now ,li1now ,lo2now ,lo2)

| V(n) -> updLo2(tnow ,tend ,ttac ,ts ,tcon1 ,rs1 ,tcon2 ,rs2 ,alo1 ,ali2 ,

Actout(tnow + 1.0,n), -- latency

alo2 ,lo1now ,li2now ,li1now ,lo2now ,lo2)

end
e l s e updLo2(tnow ,tend ,ttac ,ts,tcon1 ,rs1 ,tcon2 ,rs2 ,alo1 ,ali2 ,

ali1 ,

alo2 ,lo1now ,li2now ,li1now ,lo2now ,lo2)

The action is added to the output trace, and the number 1.0 is the latency of the link.
After the output actions are added to the output trace, the first contract (+1) is invoked,
which is done in a manner similar to the tactic; however, one has to account for the

82 CHAPTER 4. CERTIFICATION

case where the contract is already done. The state of the supervisor is again saved and
passed as the first parameter:

-- State of the supervisor

type sCon1 = SCon1 : r ea l , r ea l , r ea l ,tState , r ea l , r ea l , run2 ,

train ,train ,traout ,traout ,

act ,act ,act ,act

-- Invoke contract 1

invCon1(tnow : r ea l , tend : r ea l ,
ttac : r ea l , ts : tState ,

tcon1 : r ea l , rs1 : run1 ,

tcon2 : r ea l , rs2 : run2 ,

alo1 : train , ali2 : train ,

ali1 : traout , alo2 : traout ,

lo1now : act ,li2now : act ,li1now : act ,lo2now : act) =

case rs1 of
Done1(k) -> invCon2(tnow ,tend ,ttac ,ts ,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2 ,

lo1now ,li2now ,li1now ,lo2now)

| Run1(cs) ->

i f tcon1 <= tnow

then con1T(SCon1(tnow ,tend ,ttac ,ts ,tnow + 1.0, -- Timeout

tcon2 ,rs2 ,alo1 ,ali2 ,ali1 ,alo2 ,

lo1now ,li2now ,li1now ,lo2now),cs)

e l s e con1RetT(SCon1(tnow ,tend ,ttac ,ts,tcon1 ,

tcon2 ,rs2 ,alo1 ,ali2 ,ali1 ,alo2 ,

lo1now ,li2now ,li1now ,lo2now),rs1)

end

When the first contract is done, the second contract is invoked in the same manner, and
finally, after the second contract is finished, control moves to the pay-off calculation:

con2RetI(ss : sCon2 , rs2 : run2) =

case ss of
SCon2(tnow ,tend ,ttac ,ts ,tcon1 ,rs1 ,

tcon2 ,alo1 ,ali2 ,ali1 ,alo2 ,

lo1now ,li2now ,li1now ,lo2now) ->

payoff(tnow ,tend ,ttac ,ts,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2 ,

lo1now ,li2now ,li1now ,lo2now)

end

The pay-off calculation checks the pay-off of each contract, and if the sum is negative,
the program fails with the fail command:

payoff(tnow : r ea l , tend : r ea l ,
ttac : r ea l , ts : tState ,

tcon1 : r ea l , rs1 : run1 ,

tcon2 : r ea l , rs2 : run2 ,

alo1 : train , ali2 : train ,

ali1 : traout , alo2 : traout ,

lo1now : act ,li2now : act ,li1now : act ,lo2now : act) =

case rs1 of
Done1(k1) -> case rs2 of

Done2(k2) -> i f k1 + k2 < 0.0 then f a i l
e l s e done

| Run2(cs2) -> i f k1 < 0.0 then f a i l
e l s e finish(tnow ,tend ,ttac ,ts,

tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2 ,

4.5. CASE STUDY 83

lo1now ,li2now ,li1now ,lo2now)

end
| Run1(cs1) -> case rs2 of

Done2(k2) -> i f k2 < 0.0 then f a i l
e l s e finish(tnow ,tend ,ttac ,ts,

tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2 ,

lo1now ,li2now ,li1now ,lo2now)

| Run2(cs2) -> finish(tnow ,tend ,ttac ,ts ,

tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2 ,

lo1now ,li2now ,li1now ,lo2now)

end
end

After the payoff calculation, the next timepoint has to be found as the minimum amongst
the timeouts of the tactic and the contracts and the actions on the traces:

finish(tnow : r ea l , tend : r ea l ,
ttac : r ea l , ts : tState ,

tcon1 : r ea l , rs1 : run1 ,

tcon2 : r ea l , rs2 : run2 ,

alo1 : train , ali2 : train ,

ali1 : traout , alo2 : traout ,

lo1now : act ,li2now : act ,li1now : act ,lo2now : act) =

l e t tmin = i f ttac < tcon1

then i f ttac < tcon2 then ttac e l s e tcon2

e l s e i f tcon1 < tcon2 then tcon1 e l s e tcon2

i n firstLo1(tnow ,tmin ,tend ,ttac ,ts,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2)

end

Each link is considered in turn, and the last comparison finishes with a call back to the
loop function:

firstLo2(tnow : r ea l , tmin : r ea l , tend : r ea l ,
ttac : r ea l , ts : tState ,

tcon1 : r ea l , rs1 : run1 ,

tcon2 : r ea l , rs2 : run2 ,

alo1 : train , ali2 : train ,

ali1 : traout , alo2 : traout) =

case alo2 of
NoOut -> i f tnow < tmin

then loop(tmin ,tend ,ttac ,ts,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2)

e l s e done

| Actout (tlo2 ,lo2) ->

i f tnow < tmin

then loop(i f tlo2 < tmin then tlo2 e l s e tmin ,

tend ,ttac ,ts,tcon1 ,rs1 ,tcon2 ,rs2 ,alo1 ,ali2 ,ali1 ,alo2)

e l s e done

end

Because the data structure for the input does not enforce that the time points are strictly
increasing, this is checked before the program loops.

The full program might seem fairly big, but it is mostly due to the quite restrictive
language. And while we could have extended the language with additional constructions,
we have preferred as simple a language as possible, both to make the presentation more
clear, and to make the Floyd-Hoare logic simpler. A possible extension is the addition
of an expression level case; but then one would either need a case expression in the logic

84 CHAPTER 4. CERTIFICATION

as well, or to translate the expression in some way. Because we wanted to use an off-the-
shelf theorem prover in the end, we did not want to force it to include a case expression,
and for the sake of simplicity, we wanted to use the expressions directly in the assertions.
But extending and modifying the language, based on practical experience, is certainly
an important part of future work.

Another point is that most of the program is the supervisor, which is not dependent
on the actual tactics and contracts, therefore, when trying to certify other tactics and
contracts, most of the program can be used unchanged.

We do not prove Obligation 4.3.11 here, because it is a fairly tedious proof and only
expresses that this concrete implementation is correct. It would be interesting to inves-
tigate how to generate the supervisor automatically from a given scenario (consisting
of the number of contracts and the links), and in that case prove that all generated
supervisors are correct. We leave this for future work.

4.5.3 Program annotation and theorem proving

To prove that the function conforms with the contracts, one has to annotate all functions
with an assertion and then use the verification condition generator, to extract predicates,
which then has to be proven valid. As mentioned earlier, the predicates tend to be
simple but tedious to prove, so we have used an automatic theorem prover to check
that the predicates are valid. The requirements for a theorem prover are that it is able
to handle integer and real arithmetic, and that we can translate our data types in a
fairly straightforward manner. Concretely, we have used the Z3 prover by Microsoft
Research [86], and we have not experienced problems with the proofs. The only non-
standard configuration parameter we have used is ELIM QUANTIFIER=true, which is used
to eliminate quantifiers in cases with arithmetic variables. This is useful, because our
formulas include a lot of quantifiers to handle the data types. The prover includes
support for algebraic data types, so our data types can be translated almost directly.
For example the train type can be modelled with:

(declare-datatypes
((train NoIn

(Actin (Actin_1 Real)
(Actin_2 Int)
(Actin_3 actin)))))

With the proof being done automatically, the only thing that has to be implemented
is the annotations for each function. Unfortunately, there are quite a few functions
to consider, and each takes a lot of arguments. The contracts, while functionally very
simple, still have a fairly complex timing interaction, so there are several different stages
in the program. Additionally, the +1 service can fail at any time, and while the pay-off
received in this case is enough to cover any future losses, this is not reflected in the
program and has to be captured by the annotations as an invariant. So in general, while
the effect of the program is simple, the reason for its correctness is not.

All these different states are modelled as a big disjunction in the assertions, and
because there are a lot of functions, the resulting annotations are very large (∼ 4500
lines in total), a lot of those lines come from repetition in the annotations, because most
functions are rather simple, so the invariant changes only a little.

4.5. CASE STUDY 85

To give a feel for the annotations, we show the ones for the loop function, because
they illustrate the different states the program goes through. The remaining annotations
can be seen as just propagating these states through the program.

----- LOOP -----

loop :

-- Either contract is finished with positive payoff (State1)

(rs1 = Done1 (1.0) /\

(Ex cs2 : cState2. rs2 = Run2(cs2) \/

Ex k : r e a l . 0.0 <= k + 1.0 /\ rs2 = Done2(k)))

\/

(rs2 = Done2 (1.0) /\

(Ex cs1 : cState1. rs1 = Run1(cs1) \/

Ex k : r e a l . 0.0 <= k + 1.0 /\ rs1 = Done1(k)))

\/

-- First input not received (State2)

(ts = S1 /\

tnow <= tcon1 /\ tcon1 <= tnow + 1.0 /\ rs1 = Run1(C1start) /\

tnow <= tcon2 /\ rs2 = Run2(C2start) /\

ali1 = NoOut /\ alo2 = NoOut)

\/

-- Input on li2 received , 1. output on li1 not received (State3)

(Ex n : i n t . Ex tn : r e a l . Ex tc2 : r e a l .
tn + 20.0 <= tcon2 + tc2 /\

tnow <= tn + 1.0 /\

ts = S2 /\

tnow <= tcon1 /\ tcon1 <= tnow + 1.0 /\ rs1 = Run1(C1start) /\

tnow <= tcon2 /\ rs2 = Run2(C2run(n,tc2)) /\

ali1 = Actout(tn + 1.0,n) /\ alo2 = NoOut)

\/

-- 1. output on li1 sent (State4)

(Ex n : i n t . Ex tn : r e a l . Ex tc1 : r e a l . Ex tc2 : r e a l .
tcon1 + tc1 <= tn + 5.0 /\ 0.0 <= tc1 + 1.0 /\

tn + 20.0 <= tcon2 + tc2 /\

ts = S2 /\

tnow <= tcon1 /\ tcon1 <= tnow + 1.0 /\ rs1 = Run1(C1run(n,tc1)) /\

tnow <= tcon2 /\ rs2 = Run2(C2run(n,tc2)) /\

ali1 = NoOut /\ alo2 = NoOut)

\/

-- 1. input on lo1 received , 2. output on li1 not received (State5)

(Ex n : i n t . Ex tn : r e a l . Ex tn1 : r e a l . Ex tc2 : r e a l .
tn1 <= tn + 6.0 /\

tn + 20.0 <= tcon2 + tc2 /\

tnow <= tn1 + 1.0 /\

ts = S3 /\

tnow <= tcon1 /\ tcon1 <= tnow + 1.0 /\ rs1 = Run1(C1start) /\

tnow <= tcon2 /\ rs2 = Run2(C2run(n,tc2)) /\

ali1 = Actout(tn1 + 1.0,n + 1) /\ alo2 = NoOut)

\/

-- 2. output on li1 sent (State6)

(Ex n : i n t . Ex tn : r e a l . Ex tc1 : r e a l . Ex tc2 : r e a l .
tcon1 + tc1 <= tn + 11.0 /\ 0.0 <= tc1 + 1.0 /\

tn + 20.0 <= tcon2 + tc2 /\

ts = S3 /\

tnow <= tcon1 /\ tcon1 <= tnow + 1.0 /\ rs1 = Run1(C1run(n+1,tc1)) /\

tnow <= tcon2 /\ rs2 = Run2(C2run(n,tc2)) /\

ali1 = NoOut /\ alo2 = NoOut)

\/

-- 2. input on lo1 received , 1. output on lo2 not received (State7)

(Ex n : i n t . Ex tn : r e a l . Ex tn2 : r e a l . Ex tc2 : r e a l .

86 CHAPTER 4. CERTIFICATION

tn2 <= tn + 12.0 /\

tn + 20.0 <= tcon2 + tc2 /\

tnow <= tn2 + 1.0 /\

ts = S1 /\

tnow <= tcon1 /\ tcon1 <= tnow + 1.0 /\ rs1 = Run1(C1start) /\

tnow <= tcon2 /\ rs2 = Run2(C2run(n,tc2)) /\

ali1 = NoOut /\ alo2 = Actout(tn2 + 1.0,n+2))

We briefly explain each state:

State1. In this state at least one of the contracts is finished with a pay-off of 1, and
because we know that the maximum negative pay-off is –1, then we do not need
to know more.

State2. In this state the tactic and both contracts are at their starting point, and
nothing has been received so far.

State3. In this state the first input on lin2 has been received by the tactic and the
+2 contract. The variable tn keeps the time for that input, and the tactic has
produced output on lin1, which is received at tn + 1.0. The first inequality ensures
that there is time enough for the tactic to receive the values from the +1 service.

State4. In this state the output on lin1 has been received and the +1 contract is now
also running. The extra inequality ensures that the output from the +1 service is
obtained within reasonable time. Note that the value of the input n is the same
for both contracts.

State5. This state is similar to state3 in that the tactic has produced output on lin1,
which has not been received yet.

State6. This state is similar to state4, now the tactic is waiting for input from the +1
service again.

State7. In this state the tactic has received the value and sent it on lout2, but it has
not been received yet.

As we can see, the timing inequalities are not entirely simple and has to be accounted
for in the annotations.

These annotations have been propagated all the way through the program by hand.
The generated predicates have all been proven valid by Z3 version 2.19 in less than 10
seconds on a normal laptop. Even though the complete annotations are very big, this
example shows that the framework is possible to implement. As a small experiment
we modified the implementation to allow functions without annotation. When such
functions are being called the verification generation just continues with the body of the
function, as if the call was just a series of let expressions. With this implementation we
could remove all annotations for functions that are only called once, thus reducing the
size of the annotations to around 3000 lines with a slightly faster running time as well
(9 seconds). We also tried removing almost all annotations, leaving only the ones for
loop and the invocation of tactic and contracts (4 labels in total). This reduced the size
of the annotations to less that 500 lines, but extended the checking time to 9 minutes.
The larger running time is due to the fact that when a function is called several times,
the same piece of code is checked several times. But nevertheless this shows that there
is lots of room for improvements, but how to make it practically applicable is left for
future work.

4.6. RELATED AND FUTURE WORK 87

4.6 Related and future work

In this section we consider related and future work.

4.6.1 Related work

We already mentioned related work on proof-carrying code. A way of extending tradi-
tional PCC to concurrency is to take one of the existing proof systems for concurrency
(e.g. the system by Hooman [48]) and then mechanise derivations in that system. These
systems are, however, not as well understood as standard Floyd-Hoare logic, and it is
not entirely clear what the new safety theorem should say. In comparison, our model
uses a standard logic, which is well understood, and should therefore be able to benefit
from the development of sequential PCC.

Our certification paradigm, verification-time monitoring, is related to runtime mon-
itoring, and especially a paradigm called runtime verification. In runtime verification,
standard verification techniques, like model checking, are applied to execution runs to
check whether they conform with a given correctness property. Leucker and Schallhart
[51] give an overview of the runtime verification paradigm. Compared to runtime veri-
fication, our work have been focused on the static certification before runtime. But we
do not see any conceptual problems with using our framework for dynamic verification.

The idea of expressing contracts and processes in a single language, for which error-
free execution corresponds to conformance, bears similarities to other approaches. Vardi
and Wolper [98] show how to express both programs and specifications as automata
and thereby reduce the problem of whether the program satisfies a specification to an
automata-theoretic property of their composition as automata. Findler and Felleisen
[28] introduce contracts for higher-order functions. These contracts are compiled into
the code of the functions, and these modified functions can then fail and assign blame,
if a contract is broken. In our terminology, the test harness and the tactic are compiled
to a single program which is then monitored, they do, however, not specify any methods
for static fulfilment of the contracts. Xu, Jones and Claessen [103] show how to use a
similar approach for Haskell, and how to incorporate static checking. The general idea
being that the composition of a contract and a program returns an error if the contract
is broken. Standard techniques can then be applied to show that the composition never
returns an error. While the idea is similar to our approach, there are several differences.
In our approach, contracts are a separate part of the test harness, and it would therefore
be possible to e.g. use different languages for the tactic and the contracts, in the Haskell
framework they are tied more closely together (which also makes it more integrated,
and probably more straightforward to use). Our approach also allows contracts, which
can capture both communication behaviour and real-time guarantees.

4.6.2 Future work

We describe paths for future work:

Concrete scenarios. As part of future work, more concrete scenarios should be in-
vestigated to estimate the practicality of the paradigm. More real-time programs should
be certified, and more high-level scenarios could be attempted, in order to see which fea-
tures are lacking. Another aspect is also the usability for testing or runtime monitoring
in practice, which has not been investigated thoroughly.

88 CHAPTER 4. CERTIFICATION

Verification-time monitoring. Because the verification-time monitoring paradigm
is very general and not fixed to our concrete models, a direction for future work is too
look at other models, for which verification-time monitoring can be used as a syntactic
model for correctness. A simple start is to look at changes to the conformance relation
(e.g. for some of the earlier mentioned extensions). But in general, the paradigm should
be applicable to any method in which a suitable supervisor can be formalised.

Certification implementation. There are several extensions to the concrete frame-
work presented here that could be explored. Firstly, the language used could be modified;
we originally used a machine code language, but preferred the coroutine language intro-
duced in this chapter, because of better control with the free variables – at the cost of
a little more complex Floyd-Hoare logic.

In addition to the language itself, it is also interesting to experiment with differ-
ent implementations of the supervisor, as long as they still behave faithfully to the
conformance relation. Because the entire program is annotated, another supervisor im-
plementation might lead to easier certifiable programs. In the same direction are also
different methods for proving that the supervisor avoids the error state. E.g. a suitable
type system.

Another direction for future work, which is not only interesting for this work, is
the development of a constructive Floyd-Hoare logic, with a more satisfying account for
partial functions.

Proof engineering. To make the concrete framework developed here usable in prac-
tice, it would be interesting to consider various methods to improve the proof obligations.
One idea is to use higher-level languages as a basis, and then generate the concrete tac-
tic, contract and supervisor components automatically. In some cases it might then be
possible to generate the certification proof automatically, by exploiting special prop-
erties of the high-level code. This is similar to the design of a certifying compiler in
proof-carrying code.

Another idea is to exploit the fact that the supervisor program is the same given
an unchanged link topology. This might make it easier to generate part of a proof
or annotations automatically. Similarly, we might even let a theorem prover try to
annotate parts of the program, or maybe do an interactive process when proving, similar
to interactive theorem proving.

In the case study we used a theorem prover to verify the verification conditions; to do
proper certification, one also needs a representation of the proof. Here, one can hope to
use a certifying theorem prover, use parts of the certifying compiler as described above,
or of course do the proofs by hand.

Chapter 5

Towards resource-aware
interaction

Typical business contracts include a notion of a physical transfer of goods or resources.
As briefly mentioned in Sect. 3.5.2, we can we can encode linear (non-duplicatable, single
use) resources with the help of a resource manager principal. The interface of such a
resource manager can be specified through contracts, which makes sure that linearity
constraints are satisfied. While this approach works in principle, it is cumbersome to use
in practice, especially with many different kinds of resources. In this chapter we discuss
an extension to the model to allow for first-class resources. Note, however, that the
work presented here is preliminary. We sketch, how the resources extend the previous
model, but we postpone the precise mathematical definitions, of e.g. conformance, to
future work.

Resource transfers are handled by the agents. A crucial property of resources is that
they have a general meaning (but not necessarily a general utility), so that a resource
obtained from one contract can be used to fulfil an obligation in another contract.

Our model of resources will allow dynamic introduction of resources; that is, we
allow the creation of resources local to a principal, and these resources can then be
transferred to other principals, acting as a handle for the original principal. A benefit
of this dynamic structure is that we can use resources to model dynamically changing
communication setups; in particular, we no longer need the static notion of channels or
links.

5.1 Resource setup

Before presenting the formal model, we revisit the business protocol example (Ex. 2.1.2).
This example is a bit incomplete, because the goal for Buyer seems to be to obtain
‘delivery details’, which do not seem to have a clear value. Of course, the goal is
for Buyer to actually obtain the ordered item, and not only the delivery details. We
therefore show a scenario, in which there is an actual delivery of goods:

Example 5.1.1 (Delivery protocol). We consider the interactions from the viewpoint
of a book-selling webshop. A customer contacts the webshop, asking for a specific book,
and the price ($2) is paid during the order. The webshop must then deliver the book to
the address specified by the customer before the deadline of 21 days.

The webshop does not necessarily keep all books in store, and some must therefore
be ordered from a publisher unknown to the customer. For simplicity, the publisher and

89

90 CHAPTER 5. TOWARDS RESOURCE-AWARE INTERACTION

Agent

ControlTactic

Communication
Manager

Contract

Data

Comm.
traces

Figure 5.1: Communicating agent.

the webshop have the same type of sale contract, but with different parameters. We
assume a price of $1 and a delivery deadline of 5 days.

In the resource-aware model, every interaction is codified with resource exchanges.
A principal who currently holds a resource can either interact with it directly (which
in general results in the resource being altered), or transfer it untouched to another
principal. It is the agents of the principals that perform the actual resource exchanges,
just like they performed the actions in the previous model. To be able to capture data
transmissions (actions on links), we model agent addresses as resources as well. As all
resources are single-use, an address can only be used once. One can view such an address
as a service certificate that a principal can transfer to another principal. That principal
can then either use it or transfer it again. To model persistent data communication
links, the receiver of a transfer (whose resource was consumed) can create a new resource
immediately, and send it back to the original sender. This new resource can be seen as
an acknowledgement of the first message received, and the new resource ensures that
communication can proceed.

Before presenting the different extensions in order to to get a resource-aware model,
we wish to discuss the relation to the resource-less model. This will hopefully give a
clearer understanding of the concepts. To aid the discussion, we show two conceptual
pictures of an agent. Fig. 5.1 illustrates a purely communicating agent. One can think
of an agent as consisting of two parts: a control unit and a communication manager.
The control unit runs the program given by the tactic, and orders the communication
manager to perform the actual communication. Likewise the control unit should be
informed of incoming messages. Each contract watches the communication, and returns
a verdict based on its rules. In the conformance relation we encode the effect of the
communication manager (e.g. the latency), and therefore we can view the contracts
in terms of the inputs and outputs from the control unit. In the resource-less model
there are no essential benefits in viewing control and the communication manager as
separate objects, because ultimately they both are exchanging bits. In the resource-
aware model, illustrated in Fig. 5.2, the communication manager is replaced with a
resource manager (the shaded component). The other parts stay the same. The role

5.1. RESOURCE SETUP 91

Agent

ControlTactic

Resource Manager

Contract

Data

Resources

Figure 5.2: Resource-exchanging agent.

of the resource manager is similar to the one of the communication manager, but it
operates on physical resources instead of only messages. Physical resources cannot be
used freely, and therefore certain requests from control are nonsensical, such as a request
to transfer a resource that the manager does not possess.

Resources are defined by agents, but can be so in two different ways: either each
resource is a single unique agent, or each resource can represent a claim of some service.
We illustrate the difference with a book example:

• A specific physical book is modelled as a specific agent. One holding that book’s
resource can interact with it, e.g., by asking for a particular page, which is then
returned as data. Because resources are single-use, the book agent returns a new
version of the book together with the requested page. This can be used to model
that the book can become worn after several uses, e.g. suddenly some pages might
not be available any more. In general this means that interacting with a resource
might have a side effect on the resource itself.

• A publisher offers a subscription model for reading the book on-line. Here the agent
corresponds to the website, which allows queries for specific pages, which are then
returned to the user. These queries are data requests, which are different from
actual resource interactions. In this case it is also possible to specify constraints,
e.g. a maximum number of pages that can be read. This option is very similar to
the bank example considered in Sect. 3.5.2.

In the book example, we actually have a third option; to model the book as a down-
loadable document, representing it as purely data and not as a resource.

It is important to consider how resources affect the contractual obligations. Consider
the book selling example from before: when the publisher transfers the book resource
to the webshop, it is specified in their contract, how the resource can be used. If the
webshop afterwards transfers the book to a customer that it has another contract with,
the publisher’s obligations are not changed. This means that the publisher can only be
held accountable by the webshop. So if the book is faulty in some way, e.g., if the pages
are torn or wrong, then the customer can only complain to the webshop. The webshop
must then in turn complain to the publisher. This interpretation gives a robust model

92 CHAPTER 5. TOWARDS RESOURCE-AWARE INTERACTION

in terms of delegation, because a principal only needs to look at his own contracts to
see, which obligations needs to be fulfilled.

We do not specify the internal structure of resources, only that each resource is
defined by a single agent, as described above:

Definition 5.1.2. Resources, r, are taken from an abstract set Resource. Each re-
source is associated with a single agent, captured by a function:

agent : Resource→ Agent.

Each resource transfer is called an event. As mentioned above, each resource can
be viewed as a single-use address or pointer to the agent defining the resource. Each
event contains the destination (represented with the receiving agent’s resource), zero or
more resources transferred and a single data value. The data value is used to model
communication of pure information; this value can be freely copied or discarded, unlike
the resources. Often the value will be used to describe the resources to the recipient. For
simplicity, we assume that values are taken from some universal set of values, Value,
instead of assigning restricted value sets. But it could also be possible to restrict the
value set based on e.g. the destination resource.

Definition 5.1.3. An event is a resource transfer:

Event := Resource×Value×Resource∗,

When e = (r, v , [r1, . . . , rn]) then the resources r1, . . . , rn are transferred to the agent,
agent(r). The value carried is specified by v.

The last part of the resource-aware communication model is timing. Like with plain
communication each resource transfer, takes a certain amount of time. For simplicity,
we assume that this time is only dependant on the sender and receiver.

Definition 5.1.4. The function lat : Agent × Agent → TimeD+ assigns a positive
latency to each pair of sending and receiving agents.

It is possible to have a more complex latency definition, e.g. by letting it evolve over
time or depending on the entire destination resource and not only the agent. But this
simple definition should suffice. Compared to the link-based model, this corresponds to
a single link (in each direction) between each pair of agents. Some latencies might even
be effectively ∞, if those pairs of agents cannot communicate directly.

5.2 Contracts and tactics

We sketch the extension of contracts and tactics.

5.2.1 Contracts

Similar to how resource-less contracts monitor the communication, the resource-aware
contracts monitor the resource transfers. We do, however, have to take the dynamic
behaviour of resources into account. When we considered traces in the resource-less
model, the set of links was fixed, and the contracts could monitor these links without
having to know all links in the universe. Resources are, however, created and destroyed
(through usage) dynamically, and having another agent’s resource corresponds to having

5.2. CONTRACTS AND TACTICS 93

a relevant link to that agent. Therefore, it is not a priori clear, which events a given
contract depends upon.

The approach we take is to ensure that all contracts are finitely supported, that is,
for every state in the contract, there are only a finite set of destination resources which
can affect the contract. Consider a contract between two principals that starts with
support of a single resource, r1. After a while that resource is used as destination in
a transfer (r1, v , [r2, r3]) and thus consumed; it is therefore removed from support, but
r2 and r3 are added instead, and so on. This idea ensures that at every point in time,
only a finite amount of resources are included in the support. In the link terminology it
corresponds to having a finite but different, set of links at every time point. To formalise
finite support for contracts, we introduce a notion of support for traces of events.

Definition 5.2.1. An event trace is a list of time-stamped events:

ω ∈ TraceE := (Time×Event)∗.

The list is sorted according to the time-stamps in strict ascending order1. The support
predicate (· ` ·) ⊆ Pfin(Resource) × TraceE, is defined inductively in the following
way:

R ` [] always ,
R ` [(t , (r, v , [r1, . . . , rn]))] ++ ω iff
r ∈ R ∧ (R \ {r}) ∪ {r1, . . . , rn} ` ω.

To capture all traces supported by a given set of initial resources, we define the set:

TraceER := {ω ∈ TraceE | R ` ω}.

The support predicate ensures that at every point in time only transfers to the
supporting resources can occur in the trace. Similar to the resource-free traces we have
notation for time restricted traces:

Definition 5.2.2. Traces restricted to an end time are defined in a straightforward way:

TraceEt
R := {ω ∈ TraceR | ∀(t ′, e) ∈ ω. t ′≤ t}.

Similarly, for the restriction of a single trace to a time, ω≤ t .

A contract is defined with a finite set of starting resources, and then it gives a verdict
based on a trace supported by those starting resources, very similar to the definition of
resource-less contracts:

Definition 5.2.3. A (resource-based) contract regarding a finite set of starting resources,
R ⊆fin Resource is a function:

c ∈ ContractR :=
∏

t∈Time

(TraceEt
R → Verdict),

satisfying a monotonicity condition:

∀ω ∈ TraceEt ′
R. t ≤ t ′ ⇒

(
c(t)(ω≤ t) = ⊥ ∨ c(t)(ω≤ t) = c(t ′)(ω)

)
1For simplicity we assume that no two events happen at the same time; to overcome this restriction

we could consider sets of events at every time point.

94 CHAPTER 5. TOWARDS RESOURCE-AWARE INTERACTION

We consider the book selling example:

Example 5.2.4 (Continuing Ex. 5.1.1). We do not formalise the contract functions
required for the example, but describe the needed contracts, and how the supporting
resources evolve. From the viewpoint of the webshop, there are two contracts:

• cwc: between the webshop and the customer.

• cwp: between the webshop and the publisher.

For both contracts, the start resources consist of a single resource. In the first contract
this resource is an address that the customer can use to contact the webshop, and in the
second contract it is an address that the webshop can use to contact the publisher. To
illustrate the supporting resouces, we describe how both contracts evolve in a successful
case (in the following Rwc is the supporting resource set for cwc and similarly for Rwc):

1. Both contracts are in their initial state.

Rwc = {rw}, Rwp = {rp}.

2. The customer contacts the webshop with the name of the book, two $ resources, a
delivery address, and an address the webshop can use to send a new resource for
another order. Concretely, the following event (resource transfer) takes place:

(rw, “The Wind in the Willows”, [r$1, r$2, raddr, rc ret]),

resulting in the following updated event sets:

Rwc = {r$1, r$2, raddr, rc ret}, Rwp = {rp}.

3. The webshop contacts the publisher with one $ resource, the customer’s delivery
address and a new return address for the publisher. In addition, the webshop sends
a new contact resource back to the customer. This is captured by the following
two events:

(rp, “The Wind in the Willows”, [r$1, raddr, rw ret]),
(rc ret, “Renewed webshop address”, [r′w]).

After these events the resource sets are:

Rwc = {r$1, r$2, raddr, r
′
w}, Rwp = {r$1, raddr, rw ret}.

4. The publisher delivers the book to the customer’s address, and transfers a new
contact address to the webshop:

(raddr, “Delivery of The Wind in the Willows”, [rbook]),
(rw ret, “Renewed publisher address”, [r′p]).

The event sets are updated to be:

Rwc = {r$1, r$2, rbook, r
′
w}, Rwp = {r$1, rbook, r

′
p}.

5.2. CONTRACTS AND TACTICS 95

After the delivery of the book, the example could continue with the customer interacting
with the book resource (rbook). Note that because the book resource is present in the
resource set of both contracts, any interaction with the book will be relevant for both
contracts. This means that if the book is defective, this could be registered by both
contracts. Whether the webshop is covered by the contract with the publisher in terms
of failure depends, however, on the concrete contracts.

The example illustrates, how resources obtained in one game ($ obtained from the
customer) are used to obtain other resources (books from the publisher), and those can
again be used to obtain more resources.

Another aspect of this example is that the webshop is $1 ‘richer’ after the interaction,
but because the contracts are zero-sum, this profit has to come from somewhere. If the
book is assumed to have a fixed price, either the publisher or the customer loses money in
the interaction, and then one might wonder, whether one of them was acting irrationally.
We take another viewpoint, namely that there are no fixed prices for resources, meaning
that each principal might have a different utility for each resource. An interaction then
represents a growth in the accumulated utility across all principals. This utility is not
encoded formally, but instead captured only by the contracts a given principal has, e.g.
the customer might highly value being able to read in the book. With this viewpoint,
each principal can still have a rational reason for committing to the interactions.

Related to the utility discussion is the question of where the resources come from.
Interactions, as described above, only pushes resources around. The creation of specific
resources could still be modelled with resource exchanges. A book might be created by
combining paper with ink in a printing press. But ultimately these components could
be viewed as coming from Nature. In this way, Nature becomes the only participant
that is disinterested in utility, and is both able to generate value and absorb losses.

5.2.2 Tactics

The tactics in the resource-aware model are similar to the resource-less tactics. But
whereas the resource-free tactics could effectively specify the outputs of the commu-
nication manager directly (only constrained by the link latencies), the output of the
resource-aware tactic must give orders to the resource manager, which then performs
the resource transfers. Staying in the terminology, the output of a tactic is still actions,
but the resource manager converts these into events. Similarly, incoming events are
converted into observations. These concepts are illustrated on Fig. 5.3.

There are several ways of defining actions and observations. They must contain a
suitable way of referring to the physical resources, and have some way of specifying the
creation of new resources. We show one way of formalising them, but other approaches
are possible. Our formalism is based on the tactic having a set of handles for the actual
resources. When incoming transfers are observed, the transferred resources are assigned
new handles by the resource manager, and requested actions can then be specified in
terms of these handles. The creation of new resources is modelled by allowing the tactic
to refer to handles that are not already in use, which forces the creation of new resources
with those handles. These handles are remembered, so that when their corresponding
resource is used as an address resulting in an observation, the tactic is informed of which
handle was used at that point. The recipient cannot identify the exact sending agent,

96 CHAPTER 5. TOWARDS RESOURCE-AWARE INTERACTION

Agent

Actions
Obser

vations

Events

Figure 5.3: Actions, observations and events.

but knows which ones of the outstanding communication offers was used (which handle),
and can therefore identify the responsible principal.

This ensures that when several agents transfer resources, they can be distinguished
from each other.

Definition 5.2.5. We assume an unspecified set of handles, Handle, exists. An obser-
vation contains a value, a list of new handles (for referring to the new resources received)
and the handle for the resource that was used as an address (this handle is now free to
be reused by the tactic):

Observation := Value×Handle∗ ×Handle.

Similarly, an action contains a value to be transmitted, a list of handles (for the resources
sent) and a special handle that specifies the receiver: 2

Action := Value×Handle∗ ×Handle.

Similar to traces over events, traces over actions and observations are just lists of
actions/observations with time points:

Definition 5.2.6. A trace over actions (resp. observations) is defined as a list of times-
tamped actions (resp. observations) sorted by the timestamp in strict ascending order:

TraceA := (Time×Action)∗,
TraceO := (Time×Observation)∗.

We use α to range over action traces and θ to range over observation traces. We use
TraceAt ,TraceOt to refer to the end-time-restricted traces as usual.

A tactic can now be defined very similarly to its resource-less version:

2The handles in the list can be new handles, which are then created. In practice, a more robust
method, with explicit resource creation, would probably be preferred.

5.3. RELATED AND FUTURE WORK 97

Definition 5.2.7. A resource-aware tactic is a function:

τ ∈ Tactic :=
∏

t∈Time

(TraceOt → TraceAt),

satisfying a monotonicity condition:

∀θ, θ′ ∈ TraceOt .
(
t ′≤ t ∧ θ≤ t ′ = θ′≤ t ′

)
⇒ τ(t)(θ)≤ t ′ = τ(t)(θ′)≤ t ′ .

Compared to the resource-less tactic, the latency requirement of the resource-aware
tactic is built into the resource system, and is therefore not part of the definition. This
preliminary account ends with this definition of contracts and tactics; in the next section
we discuss how to extend the work.

5.3 Related and future work

In this section we mention related and future work.

5.3.1 Related work

Amongst the different process calculi, especially the π-calculus [65] is related to the
resource-aware extension proposed here. The π-calculus allows the sending of channel
endpoints across channels, much like we allow resources to work as addresses and be
passed around. The notion of channel is, however, different from our usage of resources
for communication, in that a resource transmission in our model is not contingent upon
whether the recipient is ready or willing to receive the message.

The Actor model [3, 39] is related to our resource-aware model, both in that it allows
addresses to be transferred between actors, but also because it employs message passing
between actors as its main communication action, similar to a continuation-passing
style. The main difference here is that new actors are routinely created throughout a
computation, whereas we consider the set of agents fixed, or at least only slowly evolving.

Using games to model resource interactions is also studied in traditional game-
theoretic work. In particular, coalition resource games [25] are similar, in the way
that agents spend resources to gain other resources, eventually obtaining some goal.
Related is also work on finding equilibria in resource games, where harvesters can use
up a limited resource [74]. Our work focuses on modelling interaction scenarios, where
the focus is on the interactions and not the result of the interactions, but we view this
game-theoretic work as a valuable tool for analysing tactics and contracts.

5.3.2 Future work

The material presented here is work-in-progress, so naturally there are several directions
for future work:

Finalise model. The model should be finalised, including account for conformance of
tactics with respect to contracts. This includes indirectly formalising the ‘contract’
of the resource manager. Specifically, how to go from the action trace to the
event trace. Similarly, how to employ several agents, should be considered. With
several agents it is then natural to consider a compositionality theorem similar to
Thm. 3.3.20. As long as conformance, is specified in such a way that all events
that are not directly generated from the tactic’s orders are taken into account, the
compositionality theorem could probably be proven in a similar way.

98 CHAPTER 5. TOWARDS RESOURCE-AWARE INTERACTION

Certification framework. The next natural step is to consider how to extend the cer-
tification framework. The first step is a resource-aware automaton model; we do
not expect too many problems with such a model. To extend the verification-time
monitoring paradigm to the resource setting, we can exploit that the behaviour of
the resource manager is fixed and independent of the tactic. Therefore it suffices
to consider only the actions and observations, which is just like the communica-
tion model (where formalised contracts also monitor actions and observations, not
actual communication traces).

Resource-based pay-offs. An interesting idea is to consider, whether it is possible
to eliminate final contract pay-offs in favour of normal resource transfers. One
promising idea here is to allow each ongoing contract to hold a collection of es-
crowed resources by itself (much like the pot in a poker game), that participants
have committed, but not yet transferred to the final recipients. When the contract
stops (either normally or due to a violation), the escrowed resources are distributed
amongst the participants as specified by the contract. However, with no way of
truly breaching such a contract, the notion of conformance and composition of
strategies would need to be suitably refined.

Part II

Aspects of focusing

99

100

Focusing and certification

An important question in a certification-based methodology is how to represent the for-
mal proof of program safety. In the context of proof-carrying code, the most commonly
used frameworks include the Edinburgh Logical Framework (LF) [35], and the Calcu-
lus of Inductive Constructions (CiC) [77]. Having already successfully created a model
proof-carrying code infrastructure using a metalogical approach based on LF and the
Twelf implementation [81] as part of a previous project [36], we wished to investigate a
recently proposed framework by Nigam and Miller [73]. In their work, they show how
to use a focused proof system for classical linear logic to ‘host’ a wide range of different
proof systems for both classical and intuitionistic logic. Focused proof systems allow
a great deal of control over the possible shapes of proofs, without affecting provability.
This control can be exploited to ensure that open derivations in the hosted system are
in bijective correspondence with the open derivations in the host system.

The results of Nigam and Miller are tightly coupled with classical linear logic: expo-
nentials are used heavily in their encodings, and several proofs use classical equivalences.
As discussed in Sect. 4.4.1, we expect that a constructive or intuitionistic logic could give
a more logically well-founded Floyd-Hoare logic. We therefore investigated, whether the
results of Nigam and Miller could be transferred to a focused proof system for intuition-
istic logic instead. The result of the investigation turned out positive, as we show in
Chapter 6; we can therefore conclude that focusing is the essential property that makes
this approach work.

While investigating focused proof systems, we noticed a redundancy in the proofs.
All the focused systems we saw allowed contraction exactly for the formula chosen for
focus. This introduces redundancy in proofs, as the same formula can be chosen again
and again without adding new information. Removing this use of contraction is not
trivial, however, because the completeness of the proof systems depends on being able
to refocus in order to pick a different path through a formula. As another piece of
proof-theoretical work, in Chapter 7 we show how to remove the use of contraction from
the propositional fragment of the focused proof system for classical logic, LKF, while
still retaining a complete system. The key insight being that only disjunction can break
completeness, and therefore special care has to be taken in the disjunctive case.

The material in this part is structured in two independent chapters. The first chapter
contains a reformatted and lightly edited version of the tech-report [37], which shows
how to use a focused proof system for intuitionistic logic as a host for other proof
systems. The second chapter contains a manuscript for a paper detailing the proof
system, LKFCF, which is a focused proof system without contraction.

101

102

Chapter 6

Using LJF as a framework for
proof systems

Abstract

In this work, we show how to use the focused proof system LJF for intuitionistic
logic as a framework for encoding several different proof systems for both intuition-
istic and classical logic. The proof systems are encoded at a strong level of adequacy,
namely the level of (open) derivations. Furthermore, we show how to prove relative
completeness between the different systems, i.e., that the systems prove the same
formulas. The proofs of relative completeness exploit the encodings to give, in most
cases, fairly simple proofs. This work is heavily based on the recent work by Nigam
and Miller, which uses the focused linear logic system LLF to encode the same proof
systems as we do. Our work shows that the features of linear logic are not needed
for the full adequacy result, and furthermore, we show that even though the encod-
ings in LLF are more generic and streamlined, the encodings in LJF sometimes give
simpler, more natural encodings and easier proofs.

6.1 Introduction

In recent work by Nigam and Miller [73], they propose to use a focused proof system for
classical linear logic as a logical framework for representing different object-level proof
systems.

In a focused proof system the connectives are divided into two groups. The negative
or asynchronous connectives are usually associated with invertible rules, whereas the
positive or synchronous connectives in general do not need to have invertible rules.
Formulas are assigned to the groups according to their top most connective. Atoms are
arbitrarily assigned to either the negative or positive group. We say that a formula or
connective assigned to the negative (resp. positive) group has negative (resp. positive)
polarity.

Derivations in a focused proof system are divided into two phases corresponding to
the groups above. The negative or asynchronous phase applies all invertible rules to the
sequent. The positive or synchronous phase focuses on a particular formula and then
keeps applying the remaining rules, until the formula becomes negative or an atom. As
all rules applied in the negative phase are invertible, we can exploit the ‘don’t-care’
nondeterminism of the invertible rules and see the entire negative phase as one single
macro-rule, which applies all negative rules in one go. The macro-rule concept is critical
for the strong encodings shown later. The positive phase may contain ‘don’t-know’

103

104 CHAPTER 6. USING LJF AS A FRAMEWORK FOR PROOF SYSTEMS

nondeterminism (e.g. which branch to prove in a disjunction), but because it is fixed
by the focused formula, we can also see the synchronous phase as consisting of one
macro-rule, although there may be several applicable macro-rules.

Focusing was first developed for classical linear logic by Andreoli [5], and later
adopted into various proof systems [26, 80]. An important result is that, regardless
of how polarity is assigned to atoms, the system is complete with respect to classical
linear logic.

In previously mentioned work by Nigam and Miller they show how to encode a
long range of different intuitionistic and classical proof systems using Andreoli’s focused
system LLF. The encoded systems are strongly related to the object systems, as there
is a provable bijection between the open derivations in LLF and open derivations in the
object system. To establish the bijection, the assignment of polarities to atoms plays a
big role, as the polarity can be used to enforce either forward or backward reasoning.

In this work we show that encoding object-level systems using a focused proof system
is not dependent on the linear aspects of LLF, and we show how to encode the same
systems, and get full completeness of open derivations, using the focused system LJF
[52] for intuitionistic logic. Furthermore, we compare the LJF encodings to the LLF
encodings and comment on the differences.

In addition to encoding different systems, Nigam and Miller use the meta-logic en-
codings to prove properties of the object-logic systems. In their paper they focus on
relative completeness, which is completeness with respect to provability. They show how
to relate the different proof systems back to a generic set of rules with the inclusion or
exclusion of specific structural rules.

In this work we also look at relative completeness, but instead of relating back to
a generic set of rules, we relate the different systems to each other. The reason is that
the encodings of intuitionistic and classical systems are rather different when encoded
with an intuitionistic meta-logic. But in the end we get the same results, and in several
places the proofs seems easier to do.

A disclaimer: the work in this report is based on the article by Nigam and Miller
[73], leading to a lot of similarities; for instance, all the systems we have encoded, are
found in their article. We have made some changes to the systems on the syntactic
level and a few other changes; these changes will be described in the later sections.
Furthermore, most of the references here are from the article as well; they are included
here as convenience for the reader.

6.2 Focused intuitionistic logic

As a framework for hosting different object-level systems we use the focused system
LJF [52]. The choice of LJF is somewhat arbitrary, and we think that a similar focused
system e.g. the system by Pfenning [80] could be used as well. An important criterion of
the system is the possibility of assigning arbitrary polarities to atoms and still retaining
completeness with regards to unfocused intuitionistic logic.

The rest of this section presents LJF. For a more complete description, the reader is
referred to the original paper on LJF.

LJF in a many-sorted logic, we use S to range over the sorts, the sorts consists of
primitive and functional sorts:

S ::= s | S1 → S2.

6.2. FOCUSED INTUITIONISTIC LOGIC 105

where s ranges over primitive sorts. The formulas in LJF are given by the following
grammar:

A ::= M | false | true |
A1 ⊃ A2 | A1 ∧− A2 | A1 ∧+ A2 | A1 ∨A2 |
∀x:S.A | ∃x:S.A

Atoms, M , are predicates applied to terms, both defined below:

M ::= p t1 . . . tn

t ::= c | x | λx:S. t | t1 t2 | a

where p is a sorted predicate; the sorts for a given predicate can be written as a tuple
(S1, . . . , Sn) or by using o to refer to meta-level predicates: p : S1 → . . . Sn → o. c is a
sorted constant (c : S), and a is a parameter. We note that there is no negation (¬A can
be defined as A ⊃ false), and that there are two conjunctions. The two conjunctions
are equivalent in terms of intuitionistic provability, but have different focused proofs,
as one is positive and the other is negative. We refer to the original paper for more
information. A signature for LJF consists of the primitive sorts, s; the predicates, p,
and their sorting; and the constants, c, and their sorts.

Predicate symbols are arbitrarily assigned either a positive or a negative polarity,
and the polarity of an atom is defined as the polarity of its predicate. Positive formulas
are given by the following grammar:

P ::= MP | false | true | A1 ∧+ A2 | A1 ∨A2 | ∃xA

where MP is a positive atom (an atom with positive predicate). Negative formulas are
given by the following grammar:

N ::= MN | A1 ⊃ A2 | A1 ∧− A2 | ∀xA

where MN is a negative atom (an atom with negative predicate).
The sequents in LJF have one of the following forms:

1. [Γ],Θ −→ R is an unfocused sequent. Γ and Θ are multisets and Γ only contains
negative formulas and atoms. R is either a formula R or a bracketed formula [R].
The formulas inside brackets are saved for the synchronous phase. Both Γ, Θ, and
R, can contain parameters, but not free variables.

2. [Γ] A−→ [R] is a left-focused sequent with focus on A.

3. [Γ] −A→ is a right-focused sequent with focus on A.1

The rules for LJF are given in Figure 6.1. The initial rules end the proof, if the
atom has the correct polarity. The decision rules pick a formula from either the left
side or the right side and continue with focus on that formula. If a formula is positive
in the left-focused phase or negative in the right-focused phase, focus is lost by one
of the reaction rules. Furthermore, in the asynchronous phase, synchronous formulas
are inserted into the bracketed context by one of the remaining reaction rules. The

1The focused formula should be written under the arrow, but for typographic reasons it is written
inside the arrow.

106 CHAPTER 6. USING LJF AS A FRAMEWORK FOR PROOF SYSTEMS

Initial Rules
IL

[Γ] MN−−→ [MN]
IR[MP,Γ] −MP

→

Decision Rules

[N,Γ] N−→ [R]
LF[N,Γ] −→ [R]

[Γ] −P→
RF[Γ] −→ [P]

Reaction Rules

[Γ], P −→ [R]
RL

[Γ] P−→ [R]
[Γ] −→ N

RR[Γ] −N→

[C,Γ],Θ −→ R
[]L[Γ],Θ, C −→ R

[Γ],Θ −→ [D]
[]R[Γ],Θ −→ D

Introduction Rules
falseL[Γ],Θ, false −→ R

[Γ],Θ −→ R
trueL[Γ],Θ, true −→ R

trueR[Γ] −true→

[Γ] Ai−→ [R]
∧−L

[Γ] A1∧−A2−−−−−→ [R]
[Γ],Θ −→ A1 [Γ],Θ −→ A2 ∧−R[Γ],Θ −→ A1 ∧− A2

[Γ],Θ, A1, A2 −→ R ∧+
L[Γ],Θ, A1 ∧+ A2 −→ R

[Γ] −A1→ [Γ] −A2→ ∧+
R[Γ] −A1∧+A2

→

[Γ],Θ, A1 −→ R [Γ],Θ, A2 −→ R ∨L[Γ],Θ, A1 ∨A2 −→ R
[Γ] −Ai→ ∨R[Γ] −A1∨A2→

[Γ] −A1→ [Γ] A2−−→ [R] ⊃L

[Γ] A1⊃A2−−−−→ [R]
[Γ],Θ, A1 −→ A2 ⊃R[Γ],Θ −→ A1 ⊃ A2

[Γ],Θ, A[a/x] −→ R
∃La

[Γ],Θ,∃xA −→ R
[Γ] −A[t/x]→ ∃R[Γ] −∃xA→

[Γ]
A[t/x]−−−−→ [R]

∀L
[Γ] ∀xA−−→ [R]

[Γ],Θ −→ A[a/x]
∀Ra

[Γ],Θ −→ ∀xA

Figure 6.1: The proof system LJF [52]. MP is a positive atom, MN is a negative atom.
P is positive, N is negative. C is negative or an atom, D is positive or an atom. a is
not free in Γ,Θ or R. i ∈ {1, 2}.

6.2. FOCUSED INTUITIONISTIC LOGIC 107

introduction rules decompose a specific formula. For the synchronous phase the focused
formula is decomposed, and for the asynchronous phase one of the asynchronous formulas
is decomposed.

As mentioned in the introduction, we can see the two phases as applying macro-rules,
which takes an entire phase in one go. Consider for example the possible derivations of
[Γ] −A1∨(A2∧+A3)→ where A1, A2, A3 are negative:

[Γ] −→ A1

[Γ] −A1→
[Γ] −A1∨(A2∧+A3)→

[Γ] −→ A2

[Γ] −A2→
[Γ] −→ A3

[Γ] −A3→
[Γ] −A2∧+A3

→
[Γ] −A1∨(A2∧+A3)→

These can be seen as applications of one of two different macro-rules:

[Γ] −→ A1

[Γ] −A1∨(A2∧+A3)→
[Γ] −→ A2 [Γ] −→ A3

[Γ] −A1∨(A2∧+A3)→
(*)

Note that we use double lines when we merge several rule applications into one.
As an example for the asynchronous phase, consider the possible derivations of

[Γ], (A1 ∨A2) ∧+ (A3 ∧+ A4) −→ [R] where the Ai’s are negative:

[Γ, A1, A3, A4] −→ [R]
...

[Γ], A1, A3, A4 −→ [R]
[Γ], A1, A3 ∧+ A4 −→ [R]

[Γ, A2, A3, A4] −→ [R]
...

[Γ], A2, A3, A4 −→ [R]
[Γ], A2, A3 ∧+ A4 −→ [R]

[Γ], A1 ∨A2, A3 ∧+ A4 −→ [R]
[Γ], (A1 ∨A2) ∧+ (A3 ∧+ A4) −→ [R]

[Γ, A1, A3, A4] −→ [R]
...

[Γ], A1, A3, A4 −→ [R]

[Γ, A2, A3, A4] −→ [R]
...

[Γ], A2, A3, A4 −→ [R]
[Γ], A1 ∨A2, A3, A4 −→ [R]

[Γ], A1 ∨A2, A3 ∧+ A4 −→ [R]
[Γ], (A1 ∨A2) ∧+ (A3 ∧+ A4) −→ [R]

These combine into a single macro-rule for the asynchronous phase:

[Γ, A1, A3, A4] −→ [R] [Γ, A2, A3, A4] −→ [R]

[Γ], (A1 ∨A2) ∧+ (A3 ∧+ A4) −→ [R]

In the rest of this report, we consider two LJF derivations with the same macro-rule
derivation as the same derivation. We view formulas like A1 ∨ (A2 ∧+A3) as a synthetic
connective with the introduction rules given by (*). This identification of derivations is
needed to get full completeness of open derivations for the different systems.

Like the original focused proof system for linear logic, LLF [5], assignment of polarity
to atoms does not affect provability. Therefore, LJF is sound and complete with respect
to intuitionistic logic. In the following and in the rest of this work `I will stand for
provability in an unspecified intuitionistic system with the domain of discourse (the
atom structure) as our system. We write A◦ (resp. Γ◦) for the unpolerised version of A
(resp. Γ), (∧+,∧− is replaced with ∧).

108 CHAPTER 6. USING LJF AS A FRAMEWORK FOR PROOF SYSTEMS

Theorem 6.2.1. For all LJF formulas A and for any assignment of polarities to atoms:

`I A
◦ if and only if [] −→ A

Proof. The proof is available in the original article [52].

In the encodings of the proof systems, we will use the bracketed context to hold the
encoded rules. The following corollary allows us to use the connection to intuitionistic
logic for sequents with non-empty contexts.

Corollary 6.2.2. If A is an atom or a positive formula, and Γ consists of atoms and
negative formulas, then:

Γ◦ `I A
◦ if and only if [Γ] −→ [A]

Proof. If Γ = {A1, . . . , An} then by invertability of implication in intuitionistic logic we
have that:

Γ◦ `I A
◦ if and only if `I A1

◦ ⊃ (A2
◦ ⊃ · · · (An

◦ ⊃ A◦) · · ·)

which by Theorem 6.2.1 means that:

Γ◦ `I A
◦ if and only if [] −→ A1 ⊃ (A2 ⊃ · · · (An ⊃ A) · · ·)

which means that we have:

Γ◦ `I A
◦ if and only if [],Γ −→ A

and because A is an atom or a positive formula, and Γ consists of atoms and negative
formulas then:

Γ◦ `I A
◦ if and only if [Γ] −→ [A]

6.3 Encoding in LJF

The encodings of object-level formulas inside LJF atoms are the same as in Nigam and
Miller’s paper, and we shortly give an overview here.

Our object-level system will be variations of a standard single sorted first-order
logic. There are two object-level syntactic categories: object-level terms, and object-
level formulas. The object-level formulas uses standard syntax (negation is only used in
some of the object systems):

A ::= ⊥ | > | A1 ⇒ A2 | A1 ∨A2 | A1 ∧A2 | ∃xA | ∀xA (| ¬A).

To encode a proof system for such a logic using LJF, we need to specify the primitive
sorts, s, the predicates, p, and the constants c.

The primitive sorts, s, consists of a sort for object-level terms, i, and one for object-
level formulas, form. The constants are the object level constructors, so c includes e.g.
∧obj and ∀obj with the types:

∧obj : form → form → form,

∀obj : (i→ form)→ form.

6.3. ENCODING IN LJF 109

The predicates, p, contain two unary predicates: b·c and d·e, both over terms of sort
form (i.e., b·c : form → o). The first one is used to encode hypotheses in the object-level
sequent, and the second one is used to encode conclusions.

As an example consider an object-logic with zero, addition and equality, that is

zero : i,
plus : i→ i→ i,

eq : i→ i→ form.

The object-level hypothesis formula:

∀x. x+ 0 = x,

can be represented as a meta-level formula as follows:

b∀obj(λx : i. eq (plus x zero) x)c

We omit the subscripted ‘obj’ in concrete cases. Both predicates can be applied to
sets of object-level formulas generating sets of meta-level formulas in a straightforward
manner. In general, an intuitionistic sequent Γ ` A will be encoded as the sequent
[bΓc,L] −→ dAe, and the classical sequent Γ ` ∆ as [bΓc, d∆e,L] −→ false. L is
a system dependent encoding of the proof rules. We will give more details on the
encodings for each system in the next sections.

6.3.1 Sequent calculus

In this section we consider a proof system for intuitionistic sequent calculus (LJ) and
classical sequent calculus (LK) [34]. These systems are given by the rules in Figure 6.2
and 6.3. The system LJ is a little different from the system LJ in the Nigam and Miller
paper. We use a version of LJ where there are no empty right sides of the sequents. We
use this version to give a simpler encoding, but we will return to the version with empty
right sides in Section 6.3.4.

For the intuitionistic sequent calculus LJ, we use a straightforward encoding. All
propositions on the left of the LJ sequent are encoded using the b·c predicate to the left
side of the LJF sequent. The conclusion is encoded on the right side of the LJF sequent
using the d·e predicate.

For the left rules we see that they can only be applied, if there exists a formula with
the given connective. This means that we must not release focus from atoms in the right
focused sequent, and therefore b·c atoms have to be positive. The opposite is true for
the right rules and therefore d·e atoms have to be negative.

The proof rules of the object logic (LJ or LK) are encoded as a collection of named
LJF formulas. For example we represent the implication left introduction rule as the
formula:

(⇒L) ∀A:form.∀B:form. bA⇒ Bc ⊃ (dAe ⊃ bBc)

For simplicity, we will use a shorthand when writing these formulas and omit the leading
universals. Therefore we will write the above formula as:

bA⇒ Bc ⊃ (dAe ⊃ bBc).

Similarly, x will range over object-level terms, so we write:

(∀R) d∀xAe ⊂ ∀xdAe

110 CHAPTER 6. USING LJF AS A FRAMEWORK FOR PROOF SYSTEMS

Γ, A1 ⇒ A2 `LJ A1 Γ, A1 ⇒ A2, A2 `LJ C ⇒L
Γ, A1 ⇒ A2 `LJ C

Γ, A1 `LJ A2 ⇒R
Γ `LJ A1 ⇒ A2

Γ, A1 ∧A2, Ai `LJ C ∧LΓ, A1 ∧A2 `LJ C

Γ `LJ A1 Γ `LJ A2 ∧RΓ `LJ A1 ∧A2

Γ, A1 ∨A2, A1 `LJ C Γ, A1 ∨A2, A2 `LJ C ∨LΓ, A1 ∨A2 `LJ C

Γ `LJ Ai ∨RΓ `LJ A1 ∨A2

Γ,∀xA,A[t/x] `LJ C ∀LΓ,∀xA `LJ C

Γ `LJ A[a/x]
∀Ra

Γ `LJ ∀xA
Γ,∃xA,A[a/x] `LJ C ∃La

Γ, ∃xA `LJ C

Γ `LJ A[t/x]
∃RΓ `LJ ∃xA

IΓ, A `LJ A

Γ `LJ A Γ, A `LJ C
CutΓ `LJ C

⊥LΓ,⊥ `LJ C
>RΓ `LJ >

Figure 6.2: The proof system LJ. a is not free in Γ or C. i ∈ {1, 2}.

Γ, A1 ⇒ A2 `LK A1,∆ Γ, A1 ⇒ A2, A2 `LK ∆ ⇒L
Γ, A1 ⇒ A2 `LK ∆

Γ, A1 `LK A1 ⇒ A2, A2,∆ ⇒R
Γ `LK A1 ⇒ A2,∆

Γ, A1 ∧A2, Ai `LK ∆ ∧LΓ, A1 ∧A2 `LK ∆
Γ `LK A1 ∧A2, A1,∆ Γ `LK A1 ∧A2, A2,∆ ∧RΓ `LK A1 ∧A2,∆

Γ, A1 ∨A2, A1 `LK ∆ Γ, A1 ∨A2, A2 `LK ∆ ∨LΓ, A1 ∨A2 `LK ∆
Γ `LK Ai, A1 ∨A2,∆ ∨RΓ `LK A1 ∨A2,∆

Γ,∀xA,A[t/x] `LK ∆
∀LΓ,∀xA `LK ∆

Γ `LK A[a/x],∀xA,∆
∀Ra

Γ `LK ∀xA,∆
Γ,∃xA,A[a/x] `LK ∆

∃La

Γ, ∃xA `LK ∆
Γ `LK A[t/x],∃xA,∆

∃RΓ `LK ∃xA,∆

IΓ, A `LK A,∆
Γ `LK A,∆ Γ, A `LK ∆

CutΓ `LK ∆
⊥LΓ,⊥ `LK ∆

>RΓ `LK >,∆

Figure 6.3: The proof system LK. a is not free in Γ or ∆. i ∈ {1, 2}.

6.3. ENCODING IN LJF 111

(⇒L) bA⇒ Bc ⊃ (dAe ⊃ bBc) (⇒R) dA⇒ Be ⊂ (bAc ⊃ dBe)
(∧L) bA ∧Bc ⊃ (bAc ∧− bBc) (∧R) dA ∧Be ⊂ (dAe ∧− dBe)
(∨L) bA ∨Bc ⊃ (bAc ∨ bBc) (∨R) dA ∨Be ⊂ (dAe ∨ dBe)
(∀L) b∀xAc ⊃ ∀xbAc (∀R) d∀xAe ⊂ ∀xdAe
(∃L) b∃xAc ⊃ ∃xbAc (∃R) d∃xAe ⊂ ∃xdAe
(I) bAc ⊃ dAe (Cut) bAc ⊂ dAe

(⊥L) b⊥c ⊃ false (>R) d>e ⊂ true

Figure 6.4: Intuitionistic sequent calculus, LLJ.

(⇒L) bA⇒ Bc ⊃ (dAe ∨ bBc) (⇒R) dA⇒ Be ⊃ (bAc ∧+ dBe)
(∧L) bA ∧Bc ⊃ (bAc ∧− bBc) (∧R) dA ∧Be ⊃ (dAe ∨ dBe)
(∨L) bA ∨Bc ⊃ (bAc ∨ bBc) (∨R) dA ∨Be ⊃ (dAe ∧− dBe)
(∀L) b∀xAc ⊃ ∀xbAc (∀R) d∀xAe ⊃ ∃xdAe
(∃L) b∃xAc ⊃ ∃xbAc (∃R) d∃xAe ⊃ ∀xdAe
(I) (bAc ∧+ dAe) ⊃ false (Cut) bAc ∨ dAe

(⊥L) b⊥c ⊃ false (>R) d>e ⊃ false

Figure 6.5: Classical sequent calculus, LLK.

instead of
∀A:i→ form. (∀x:i. dAe) ⊃ b∀xAc

The encoding of the rules for LJ is given in Figure 6.4.
We use LLJ to stand for the set of all encoded rules from Figure 6.4; similarly we

will later use LX to stand for the set of all encoded rules for some system, X. Putting
all this together, we get that the sequent Γ `LJ C is encoded as [LLJ, bΓc] −→ [dCe].

The encodings of the different rules are very straightforward, as the object-level
connectives are encoded by the same meta-level connectives. For the left rules, the
principal formula implies the rest of the formulas, and for the right rules, the principal
formula is implied by the rest of the formulas.

The encoding encodes LJ on the full level of completeness between (open) derivations,
as shown by the following proposition:

Proposition 6.3.1. Let Γ ∪ {C} be a set of LJ formulas, then there is a bijective
correspondence between the open derivations of the following sequents:

Γ `LJ C and [LLJ, bΓc] −→ [dCe]

Proof. This is the first proof in a series of rather similar proofs of full completeness.
Formally, the proof goes by induction on the derivation in both directions but we consider
both directions in one go. An observation is that the macro-rules in LJF corresponds
exactly to focusing on one of the different formulas from LLJ. What we then have
to show is that each rule in LJ corresponds exactly to focusing on the corresponding
formula in LLJ.

So to prove completeness, one goes through all the rules and check correspondence.
In each of these proofs, we will show a couple of cases and leave the rest for the reader.

(⇒L):

Γ, A1 ⇒ A2 `LJ A1 Γ, A1 ⇒ A2, A2 `LJ C ⇒L
Γ, A1 ⇒ A2 `LJ C

112 CHAPTER 6. USING LJF AS A FRAMEWORK FOR PROOF SYSTEMS

corresponds to (with K = LLJ ∪ bΓc ∪ {bA1 ⇒ A2c})

IR[K] −bA1⇒A2c→
[K] −→ [dA1e]

RR, []R
[K] −dA1e→

[K, bA2c] −→ [dCe]
RL, []L

[K]
bA2c−−−→ [dCe]

2×⊃L

[K]
bA1⇒A2c⊃(dA1e⊃bA2c)−−−−−−−−−−−−−−−−→ [dCe]

LF, 2× ∀L
[K] −→ [dCe]

(⇒R):

Γ, A1 `LJ A2 ⇒R
Γ `LJ A1 ⇒ A2

corresponds to (with K = LLJ ∪ bΓc)

IL
[K]

dA1⇒A2e−−−−−−→ [dA1 ⇒ A2e]

[K, bA1c] −→ [dA2e]
[]L, []R

[K], bA1c −→ dA2e
RR,⊃R

[K] −bA1c⊃dA2e→ ⊃L

[K]
dA1⇒A2e⊂(bA1c⊃dA2e)−−−−−−−−−−−−−−−−→ [dA1 ⇒ A2e]

LF, 2× ∀L
[K] −→ [dA1 ⇒ A2e]

(∀L):

Γ, ∀xA,A[t/x] `LJ C ∀LΓ, ∀xA `LJ C

corresponds to (with K = LLJ ∪ bΓc ∪ {b∀xAc})

IR[K] −b∀xAc→

[K, bA[t/x]c] −→ [dCe]
RL, []L

[K]
bA[t/x]c−−−−−→ [dCe]

∀L
[K]

∀xbAc−−−−→ [dCe]
⊃L

[K]
b∀xAc⊃∀xbAc−−−−−−−−−→ [dCe]

LF,∀L
[K] −→ [dCe]

(I):

IΓ, A `LJ A

corresponds to (with K = LLJ ∪ bΓc ∪ {bAc})

IR[K] −bAc→
IL

[K]
dAe−−→ [dAe]

⊃L

[K]
bAc⊃dAe−−−−−−→ [dAe]

LF,∀L
[K] −→ [dAe]

(⊥L):

⊥LΓ,⊥ `LJ C

6.3. ENCODING IN LJF 113

corresponds to (with K = LLJ ∪ bΓc ∪ {b⊥c})

IR[K] −b⊥c→
RL, falseL

[K] false−−−→ [dCe]
⊃L

[K]
b⊥c⊃false−−−−−−−→ [dCe]

LF[K] −→ [dCe]

To encode LK we use a well-known encoding [79], where both Γ and ∆ are on the
left side of the LJF sequent, and false is on the right side. The hypotheses from Γ will
be encoded using the b·c predicate, and the conclusions will be encoded using the d·e
predicate. As for LJ, the rules need to force a specific connective to be used, therefore
we must not release focus on either b·c or d·e atoms on the right. This means that both
sets of atoms must be positive.

The encoding of the rules for LK is given in Figure 6.5. The sequent Γ `LK ∆ is
encoded as [LLK, bΓc, d∆e] −→ [false].

The encoding of the rules for LK have several differences from the encoding of the
rules in LJ. First, the principal formula always implies the rest of the formulas, because
both the hypotheses and the conclusions are placed on the left of the LJF sequent. This
also means that the right rules are negated ,which is why ∨ is encoded using ∧, and
vice-versa. The classical implication is encoded using ∨, same as the Cut rule. The I
rule is encoded as an implication of false, because of the false in the encoding of the
sequent.

This encoding encode LK on the full level of completeness between (open) deriva-
tions, as shown by the following proposition:

Proposition 6.3.2. Let Γ and ∆ be sets of LK formulas. Then there is a bijective
correspondence between the open derivations of the following sequents:

Γ `LK ∆ and [LLK, bΓc, d∆e] −→ [false]

Proof. This proof follows in the same way as the proof for LJ, we show some cases here:
(⇒L):

Γ, A1 ⇒ A2 `LK A1,∆ Γ, A1 ⇒ A2, A2 `LK ∆ ⇒L
Γ, A1 ⇒ A2 `LK ∆

corresponds to (with K = LLK ∪ bΓc ∪ d∆e ∪ {bA1 ⇒ A2c})

IR[K] −bA1⇒A2c→

[K, dA1e] −→ [false]
[]L[K], dA1e −→ [false]

[K, bA2c] −→ [false]
[]L[K], bA2c −→ [false]
RL,∨L

[K]
dA1e∨bA2c−−−−−−−→ [false]

⊃L

[K]
bA1⇒A2c⊃(dA1e∨bA2c)−−−−−−−−−−−−−−−−→ [false]

LF, 2× ∀L
[K] −→ [false]

(⇒R):

Γ, A1 `LK A1 ⇒ A2, A2,∆ ⇒R
Γ `LK A1 ⇒ A2,∆

114 CHAPTER 6. USING LJF AS A FRAMEWORK FOR PROOF SYSTEMS

corresponds to (with K = LLK ∪ bΓc ∪ d∆e ∪ {dA1 ⇒ A2e})

IR[K] −dA1⇒A2e→

[K, bA1c, dA2e] −→ [false]
2× []L

[K], bA1c, dA2e −→ [false]
RL,∧+

L

[K]
bA1c∧+dA2e−−−−−−−−→ [false]

⊃L

[K]
dA1⇒A2e⊃(bA1c∧+dA2e)−−−−−−−−−−−−−−−−−→ [false]

LF, 2× ∀L
[K] −→ [false]

(I):

IΓ, A `LK A,∆

corresponds to (with K = LLK ∪ bΓc ∪ d∆e ∪ {bAc, dAe})

IR[K] −bAc→
IR[K] −dAe→ ∧+

R[K] −bAc∧+dAe→
RL, falseL

[K] false−−−→ [false]
⊃L

[K]
(bAc∧+dAe)⊃false−−−−−−−−−−−−→ [false]

LF,∀L
[K] −→ [false]

(Cut):

Γ `LK A,∆ Γ, A `LK ∆
CutΓ `LK ∆

corresponds to (with K = LLK ∪ bΓc ∪ d∆e)

[K, bAc] −→ [false]
[]L[K], bAc −→ [false]

[K, dAe] −→ [false]
[]L[K], dAe −→ [false]
RL,∨L

[K]
bAc∨dAe−−−−−−→ [false]

LF,∀L
[K] −→ [false]

6.3.2 Natural deduction

In this section we consider an intuitionistic fragment of the system of natural deduction
NJ, based on the system by Sieg and Byrnes [91]. We use a formulation of the rules
given by Pfenning [80]. The rules are presented in Figure 6.6. We use sequents on the
form Γ `NJ C ↑ when C is obtained in a bottom-up way (reasoning on the conclusion),
and sequents on the form Γ `NJ C ↓ when C is obtained in a top-down way (reasoning
from the hypotheses). When a rule has a ↑(↓), it means that the arrow can be either ↑
or ↓, but that all arrows in the same rule instance must be the same. Our formulation
of NJ is slightly different from NJ in the Nigam and Miller paper. In our version of the
(⊥E) rule, the bottom sequent can either be a down arrow or an up arrow sequent. The
arrows can be used to differentiate normal proofs, but we do not consider those here,
except for mentioning that the different (⊥E) in Nigam and Miller’s paper is due to the
fact that only their version is allowed in normal proofs.

6.3. ENCODING IN LJF 115

Γ `NJ A1 ⇒ A2 ↓ Γ `NJ A1 ↑ ⇒E
Γ `NJ A2 ↓

Γ, A1 `NJ A2 ↑ ⇒I
Γ `NJ A1 ⇒ A2 ↑

Γ `NJ A1 ∧A2 ↓ ∧EΓ `NJ Ai ↓
Γ `NJ A1 ↑ Γ `NJ A2 ↑ ∧IΓ `NJ A1 ∧A2 ↑

Γ `NJ A1 ∨A2 ↓ Γ, A1 `NJ C ↑(↓) Γ, A2 `NJ C ↑(↓) ∨EΓ `NJ C ↑(↓)
Γ `NJ Ai ↑ ∨IΓ `NJ A1 ∨A2 ↑

Γ `NJ ∀xA ↓ ∀EΓ `NJ A[t/x] ↓
Γ `NJ A[a/x] ↑

∀IaΓ `NJ ∀xA ↑
Γ `NJ ∃xA ↓ Γ, A[a/x] `NJ C ↑(↓) ∃Ea

Γ `NJ C ↑(↓)
Γ `NJ A[t/x] ↑

∃IΓ `NJ ∃xA ↑

IΓ, A `NJ A ↓
Γ `NJ A ↓

MΓ `NJ A ↑
Γ `NJ A ↑

SΓ `NJ A ↓
>IΓ `NJ > ↑

Γ `NJ ⊥ ↓ ⊥EΓ `NJ C ↑(↓)

Figure 6.6: The proof system NJ. a is not free in Γ or C. i ∈ {1, 2}.

(⇒E) bA⇒ Bc ⊃ (dAe ⊃ bBc) (⇒I) dA⇒ Be ⊂ (bAc ⊃ dBe)
(∧E) bA ∧Bc ⊃ (bAc ∧− bBc) (∧I) dA ∧Be ⊂ (dAe ∧− dBe)
(∨E) bA ∨Bc ⊃ (bAc ∨ bBc) (∨I) dA ∨Be ⊂ (dAe ∨ dBe)
(∀E) b∀xAc ⊃ ∀xbAc (∀I) d∀xAe ⊂ ∀xdAe
(∃E) b∃xAc ⊃ ∃xbAc (∃I) d∃xAe ⊂ ∃xbAc
(M) bAc ⊃ dAe (S) bAc ⊂ dAe
(⊥E) b⊥c ⊃ false (>I) d>e ⊂ true

Figure 6.7: Natural deduction, LNJ.

We wish to encode NJ, using b·c for the hypotheses and for the ↓ conclusions. We
use d·e for the ↑ conclusions. Furthermore, we encode the hypotheses on the left side
of the LJF sequent and the conclusions on the right side, because NJ admits weakening
on the left, but not on the right.

The introduction rules dictate, like for the sequent calculus, that d·e atoms have to
be negative. And because we want to lose focus for the elimination rules b·c atoms have
to be negative as well. We could possible use a delay construction like true ⊃ bAc to
lose focus but that would clutter the rules unnecessarily.

The encodings of the rules are given in Figure 6.7. Interestingly, the rules are the
same as for LJ; the only difference is the change of polarity. The sequent Γ `NJ A ↓ is
encoded as [LNJ, bΓc] −→ [bAc]. The sequent Γ `NJ A ↑ is encoded as [LNJ, bΓc] −→
[dAe].

This encoding encodes NJ on the full level of completeness:

Proposition 6.3.3. Let Γ ∪ {C} be a set of NJ formulas, then there is a bijective
correspondence between the open derivations of the following sequents:

Γ `NJ C ↓ and [LNJ, bΓc] −→ [bCc]

Γ `NJ C ↑ and [LNJ, bΓc] −→ [dCe]

Proof. The proof is similar to the proofs for LJ and LK, one remark is that the initial
rule for NJ does not have a formula in LNJ, but the proof goes through because focusing

116 CHAPTER 6. USING LJF AS A FRAMEWORK FOR PROOF SYSTEMS

on an atom succeeds exactly when the conclusion is the same atom, corresponding to
the initial rule in NJ. We show a couple of the remaining cases here:

(⇒E):

Γ `NJ A1 ⇒ A2 ↓ Γ `NJ A1 ↑ ⇒E
Γ `NJ A2 ↓

corresponds to (with K = LNJ ∪ bΓc)

[K] −→ [bA1 ⇒ A2c]
RR, []R

[K] −bA1⇒A2c→
[K] −→ [dA1e]

RR, []R
[K] −dA1e→

IL
[K]

bA2c−−−→ bA2c
2×⊃L

[K]
bA1⇒A2c⊃(dA1e⊃bA2c)−−−−−−−−−−−−−−−−→ [bA2c]

LF, 2× ∀L
[K] −→ [bA2c]

(∨E):

Γ `NJ A1 ∨A2 ↓ Γ, A1 `NJ C ↑(↓) Γ, A2 `NJ C ↑(↓) ∨EΓ `NJ C ↑(↓)

corresponds to (with K = LNJ ∪ bΓc and F either bCc or dCe)

[K] −→ [bA1 ∨A2c]
RR, []R

[K] −bA1∨A2c→

[K, bA1c] −→ [F]
[]L[K], bA1c −→ [F]

[K, bA2c] −→ [F]
[]L[K], bA2c −→ [F]
RL,∨L

[K]
bA1c∨bA2c−−−−−−−→ [F]

⊃L

[K]
bA1∨A2c⊃(bA1c∨bA2c)−−−−−−−−−−−−−−−→ [F]

LF, 2× ∀L
[K] −→ [F]

(∨I):

Γ `NJ Ai ↑ ∨IΓ `NJ A1 ∨A2 ↑

corresponds to (with K = LNJ ∪ bΓc)

IL
[K]

dA1∨A2e−−−−−−→ [dA1 ∨A2e]

[K] −→ [dAie]
RR, []R

[K] −dAie→ ∨R
[K] −dA1e∨dA2e→ ⊃L

[K]
dA1∨A2e⊂(dA1e∨dA2e)−−−−−−−−−−−−−−−→ [dA1 ∨A2e]

LF, 2× ∀L
[K] −→ [dA1 ∨A2e]

(⊥E):

Γ `NJ ⊥ ↓ ⊥EΓ `NJ C ↑(↓)

corresponds to (with K = LNJ ∪ bΓc and F either bCc or dCe)

6.3. ENCODING IN LJF 117

[K] −→ [b⊥c]
RR, []R

[K] −b⊥c→
RL, falseL

[K] false−−−→ [F]
⊃L

[K]
b⊥c⊃false−−−−−−−→ [F]

LF[K] −→ [F]

6.3.3 Generalized elimination rules

In this section we consider another system of natural deduction, where the form of
elimination rules used for ∨, ∃ are used for all connectives. The system is similar to
systems by Schroeder-Heister [89] and Von Plato [100]. We consider a form with sequents
annotated with ↑ and ↓ (called GEA), like for NJ, and a form without (called GE). The
rules are given in Figure 6.8 (not annotated) and Figure 6.9 (annotated). For GEA our
formulation is slightly different from the formulation in the Nigam and Miller paper.
The difference is the same difference the NJ system had. (The (⊥E) rule.)

For GE we have that b·c atoms are positive and d·e atoms are negative, the choice is
dictated by the I rule, which must be able to focus on bothA’s. The encodings of the rules
are given in Figure 6.10 and the sequent Γ `GE A is encoded as [LGE, bΓc] −→ [dAe].

Besides from the missing cut rule, the rules are different from the LJ rules in one
way: the elimination rules use d·e instead of b·c. d·e is used, because there are no arrows
in the sequent.

This encoding encodes GE on the full level of completeness:

Proposition 6.3.4. Let Γ ∪ {C} be a set of GE formulas, then there is a bijective
correspondence between the open derivations of the following sequents:

Γ `GE C and [LGE, bΓc] −→ [dCe]

Proof. The proof is similar to the earlier proofs, we show a single case:
(⇒GE):

Γ `GE A1 ⇒ A2 Γ `GE A1 Γ, A2 `GE C ⇒GE
Γ `GE C

corresponds to (with K = LGE ∪ bΓc)

[K] −→ [dA1 ⇒ A2e]
RR, []R

[K] −dA1⇒A2e→

[K] −→ [dA1e]
RR, []R

[K] −dA1e→

[K, bA2c] −→ [dCe]
RL, []L

[K]
bA2c−−−→ [dCe]

2×⊃L

[K]
dA1⇒A2e⊃(dA1e⊃bA2c)−−−−−−−−−−−−−−−−→ [dCe]

LF, 2× ∀L
[K] −→ [dCe]

For GEA we have that b·c atoms are negative and d·e atoms are also negative,
corresponding to the situation for the (annotated) NJ. The encodings of the rules are
given in Figure 6.11, and the sequent Γ `GEA A ↓ is encoded as [LGEA, bΓc] −→ [bAc],
and Γ `GEA A ↑ is encoded as [LGEA, bΓc] −→ [dAe],

The encoded rules are, besides from ⇒GE and ∀GE, the same as for NJ. These two
rules are encoded using a positive conjunction and true. We need that construction,

118 CHAPTER 6. USING LJF AS A FRAMEWORK FOR PROOF SYSTEMS

Γ `GE A1 ⇒ A2 Γ `GE A1 Γ, A2 `GE C ⇒GE
Γ `GE C

Γ, A1 `GE A2 ⇒I
Γ `GE A1 ⇒ A2

Γ `GE A1 ∧A2 Γ, A1, A2 `GE C ∧GEΓ `NJ C

Γ `GE A1 Γ `GE A2 ∧IΓ `GE A1 ∧A2

Γ `GE A1 ∨A2 Γ, A1 `GE C Γ, A2 `GE C ∨GEΓ `GE C

Γ `GE Ai ∨IΓ `GE A1 ∨A2

Γ `GE ∀xA Γ, A[t/x] `GE C ∀GEΓ `GE C

Γ `GE A[a/x]
∀IaΓ `GE ∀xA

Γ `GE ∃xA Γ, A[a/x] `GE C ∃GE
a

Γ `GE C

Γ `GE A[t/x]
∃IΓ `GE ∃xA

IΓ, A `GE A
>IΓ `GE >

Γ `GE ⊥ ⊥EΓ `GE C

Figure 6.8: The proof system GE. a is not free in Γ or C. i ∈ {1, 2}.

Γ `GEA A1 ⇒ A2 ↓ Γ `GEA A1 ↑ Γ, A2 `GEA C ↑(↓) ⇒GE
Γ `GEA C ↑(↓)
Γ, A1 `GEA A2 ↑ ⇒I

Γ `GEA A1 ⇒ A2 ↑
Γ `GEA A1 ∧A2 ↓ Γ, A1, A2 `GEA C ↑(↓) ∧GEΓ `GEA C ↑(↓)

Γ `GEA A1 ↑ Γ `GEA A2 ↑ ∧IΓ `GEA A1 ∧A2 ↑
Γ `GEA A1 ∨A2 ↓ Γ, A1 `GEA C ↑(↓) Γ, A2 `GEA C ↑(↓) ∨GEΓ `GEA C ↑(↓)

Γ `GEA Ai ↑ ∨IΓ `GEA A1 ∨A2 ↑
Γ `GEA ∀xA ↓ Γ, A[t/x] `GEA C ↑(↓)

∀GEΓ `GEA C ↑(↓)
Γ `GEA A[a/x] ↑

∀IaΓ `GEA ∀xA ↑
Γ `GEA ∃xA ↓ Γ, A[a/x] `GEA C ↑(↓)

∃GE
a

Γ `GEA C ↑(↓)
Γ `GEA A[t/x] ↑

∃IΓ `GEA ∃xA ↑

IΓ, A `GEA A ↓
Γ `GEA A ↓

MΓ `GEA A ↑
Γ `GEA A ↑

SΓ `GEA A ↓

>IΓ `GEA > ↑
Γ `GEA ⊥ ↓ ⊥EΓ `GEA C ↑(↓)

Figure 6.9: The proof system GEA (annotated GE). a is not free in Γ or C. i ∈ {1, 2}.

6.3. ENCODING IN LJF 119

(⇒GE) dA⇒ Be ⊃ (dAe ⊃ bBc) (⇒I) dA⇒ Be ⊂ (bAc ⊃ dBe)
(∧GE) dA ∧Be ⊃ (bAc ∧+ bBc) (∧I) dA ∧Be ⊂ (dAe ∧− dBe)
(∨GE) dA ∨Be ⊃ (bAc ∨ bBc) (∨I) dA ∨Be ⊂ (dAe ∨ dBe)
(∀GE) d∀xAe ⊃ ∀xbAc (∀I) d∀xAe ⊂ ∀xdAe
(∃GE) d∃xAe ⊃ ∃xbAc (∃I) d∃xAe ⊂ ∃xdAe

(I) bAc ⊃ dAe
(⊥E) b⊥c ⊃ false (>I) d>e ⊂ true

Figure 6.10: Generalized elimination rules, LGE.

(⇒GE) bA⇒ Bc ⊃ (dAe ⊃ (bBc ∧+ true)) (⇒I) dA⇒ Be ⊂ (bAc ⊃ dBe)
(∧GE) bA ∧Bc ⊃ (bAc ∧+ bBc) (∧I) dA ∧Be ⊂ (dAe ∧− dBe)
(∨GE) bA ∨Bc ⊃ (bAc ∨ bBc) (∨I) dA ∨Be ⊂ (dAe ∨ dBe)
(∀GE) b∀xAc ⊃ ∀x(bAc ∧+ true) (∀I) d∀xAe ⊂ ∀xdAe
(∃GE) d∃xAe ⊃ ∃xbAc (∃I) d∃xAe ⊂ ∃xdAe
(M) bAc ⊃ dAe (S) bAc ⊂ dAe
(⊥E) b⊥c ⊃ false (>I) d>e ⊂ true

Figure 6.11: Generalized elimination rules (annotated), LGEA.

because the right side of the implication needs to be positive to loose focus. That
is also why we use the positive conjunction for the ∧GE encoding. We note that the
generalized rules from NJ ∨GE and ∃GE already have positive connectives, and therefore
their encoding is the same.

This encoding encodes GEA on the full level of completeness:

Proposition 6.3.5. Let Γ ∪ {C} be a set of GEA formulas, then there is a bijective
correspondence between the open derivations of the following sequents:

Γ `GEA C ↓ and [LGEA, bΓc] −→ [bCc]

Γ `GEA C ↑ and [LGEA, bΓc] −→ [dCe]

Proof. The proof is similar to the earlier proofs, we show a single case:
(⇒GE):

Γ `GEA A1 ⇒ A2 ↓ Γ `GEA A1 ↑ Γ, A2 `GEA C ↑(↓) ⇒GE
Γ `GEA C ↑(↓)

corresponds to (with K = LGEA ∪ bΓc and F either bCc or dCe)

[K] −→ [bA1 ⇒ A2c]
RR, []R

[K] −bA1⇒A2c→

[K] −→ [dA1e]
RR, []R

[K] −dA1e→

[K, bA2c] −→ [F]
trueL, []L

[K], bA2c, true −→ [F]
RL,∧+

L

[K]
bA2c∧+true−−−−−−−−−→ [F]

2×⊃L

[K]
bA1⇒A2c⊃(dA1e⊃(bA2c∧+true))−−−−−−−−−−−−−−−−−−−−−−−−→ [F]

LF, 2× ∀L
[K] −→ [F]

120 CHAPTER 6. USING LJF AS A FRAMEWORK FOR PROOF SYSTEMS

Γ, A1 ⇒ A2 `LJ′ A1 Γ, A1 ⇒ A2, A2 `LJ′ F ⇒L
Γ, A1 ⇒ A2 `LJ′ F

Γ, A1 `LJ′ A2 ⇒R
Γ `LJ′ A1 ⇒ A2

Γ, A1 ∧A2, Ai `LJ′ F ∧LΓ, A1 ∧A2 `LJ′ F

Γ `LJ′ A1 Γ `LJ′ A2 ∧RΓ `LJ′ A1 ∧A2

Γ, A1 ∨A2, A1 `LJ′ F Γ, A1 ∨A2, A2 `LJ′ F ∨LΓ, A1 ∨A2 `LJ′ F

Γ `LJ′ Ai ∨RΓ `LJ′ A1 ∨A2

Γ,∀xA,A[t/x] `LJ′ F ∀LΓ,∀xA `LJ′ F

Γ `LJ′ A[a/x]
∀Ra

Γ `LJ′ ∀xA
Γ,∃xA,A[a/x] `LJ′ F ∃La

Γ, ∃xA `LJ′ F

Γ `LJ′ A[t/x]
∃RΓ `LJ′ ∃xA

IΓ, A `LJ′ A

Γ `LJ′ A Γ, A `LJ′ F
CutΓ `LJ′ F

⊥LΓ,⊥ `LJ′ ·
Γ `LJ′ · WRΓ `LJ′ C

>RΓ `LJ′ >

Figure 6.12: The proof system LJ’. F is either · or a proper formula C. a is not free in
Γ or F . i ∈ {1, 2}.

6.3.4 LJ with empty right sides

As we saw in Section 6.3.1, the version of LJ with non empty right sides could be encoded
in a nice way using the meta-level false. In this section, we turn to the version of LJ,
which uses the empty right sides, we call this version LJ’. The rules of LJ’ are given in
Figure 6.12. Except for making explicit the places where the right side can be empty
(the left rules), the rules are identical to the rules from the Nigam and Miller paper.
We use F to stand for either a formula or the empty right side.

To encode LJ’, we cannot use the same encoding of the ⊥L, rule because this version
is too strong to be used in the system. The reason is that this encoding would allow us
to derive Γ,⊥ `LJ′ C for any C, and the object-level rule only allows us to derive the
empty right side.

To overcome this problem, we introduce a new atomic proposition empty (with
type o) in the LJF meta-logic. This atom is assigned negative polarity. The rest of the
encoding (including the polarities) follows the encoding for LJ, except for the conclusion
where the empty conclusion is encoded as empty.

To summarize: the sequent Γ `LJ′ C is encoded as [LLJ, bΓc] −→ [dCe] and Γ `LJ′ ·
as [LLJ, bΓc] −→ [empty]. The encoding of the rules for LJ’ is given in Figure 6.13.

The encoding encodes LJ’ on the full level of completeness between (open) deriva-
tions, as shown by the following proposition:

Proposition 6.3.6. Let Γ ∪ {C} be a set of LJ’ formulas, then there is a bijective
correspondence between the open derivations of the following sequents:

Γ `LJ′ C and [LLJ′ , bΓc] −→ [dCe]

and
Γ `LJ′ · and [LLJ′ , bΓc] −→ [empty]

Proof. This proof is very similar to the proof for LJ and we show a couple of cases.
Below F in the LJF derivations stand for either empty or dCe.

6.3. ENCODING IN LJF 121

(⇒L) bA⇒ Bc ⊃ (dAe ⊃ bBc) (⇒R) dA⇒ Be ⊂ (bAc ⊃ dBe)
(∧L) bA ∧Bc ⊃ (bAc ∧− bBc) (∧R) dA ∧Be ⊂ (dAe ∧− dBe)
(∨L) bA ∨Bc ⊃ (bAc ∨ bBc) (∨R) dA ∨Be ⊂ (dAe ∨ dBe)
(∀L) b∀xAc ⊃ ∀xbAc (∀R) d∀xAe ⊂ ∀xdAe
(∃L) b∃xAc ⊃ ∃xbAc (∃R) d∃xAe ⊂ ∃xdAe
(I) bAc ⊃ dAe (Cut) bAc ⊂ dAe

(⊥L) b⊥c ⊃ empty (WR) empty ⊃ dAe
(>R) d>e ⊂ true

Figure 6.13: Intuitionistic sequent calculus with empty right sides, LLJ′ .

(⇒L):

Γ, A1 ⇒ A2 `LJ′ A1 Γ, A1 ⇒ A2, A2 `LJ′ F ⇒L
Γ, A1 ⇒ A2 `LJ′ F

corresponds to (with K = LLJ′ ∪ bΓc ∪ {bA1 ⇒ A2c})

IR[K] −bA1⇒A2c→
[K] −→ [dA1e]

RR, []R
[K] −dA1e→

[K, bA2c] −→ [F]
RL, []L

[K]
bA2c−−−→ [F]

2×⊃L

[K]
bA1⇒A2c⊃(dA1e⊃bA2c)−−−−−−−−−−−−−−−−→ [F]

LF, 2× ∀L
[K] −→ [F]

(⊥L):

⊥LΓ,⊥ `LJ′ ·

corresponds to (with K = LLJ′ ∪ bΓc ∪ {b⊥c})

IR[K] −b⊥c→
IL

[K]
empty−−−−→ [empty]

⊃L

[K]
b⊥c⊃empty−−−−−−−−→ [empty]

LF[K] −→ [empty]

(WR):

Γ `LJ′ · WRΓ `LJ′ C

corresponds to (with K = LLJ′ ∪ bΓc)

[K] −→ [empty]
RR, []R

[K] −empty→
IL

[K]
dCe−−→ [dCe]

⊃L

[K]
empty⊃dCe−−−−−−−−→ [dCe]

LF,∀L
[K] −→ [dCe]

122 CHAPTER 6. USING LJF AS A FRAMEWORK FOR PROOF SYSTEMS

Γ `FD A1 ⇒ A2,∆ Γ `FD A1,∆ Γ, A2 `FD ∆ ⇒GE
Γ `FD ∆

Γ, A1 ⇒ A2 `FD ∆ Γ, A1 `FD ∆ ⇒GI1Γ `FD ∆
Γ, A1 ⇒ A2 `FD ∆ Γ `FD A2,∆ ⇒GI2Γ `FD ∆

Γ `FD A1 ∧A2,∆ Γ, Ai `FD ∆ ∧GEΓ `FD ∆

Γ, A1 ∧A2 `FD ∆ Γ `FD A1,∆ Γ `FD A2,∆ ∧GIΓ `FD ∆

Γ `FD A1 ∨A2,∆ Γ, A1 `FD ∆ Γ, A2 `FD ∆ ∨GEΓ `FD ∆

Γ, A1 ∨A2 `FD ∆ Γ `FD Ai,∆ ∨GIΓ `FD ∆
IΓ, A `FD A,∆

Γ,¬A `FD ∆ Γ, A `FD ∆ ¬GI1Γ `FD ∆
Γ,`FD ¬A,∆ Γ `FD A,∆ ¬GI2Γ `FD ∆

Figure 6.14: The proof system FD. i ∈ {1, 2}.

(⇒GE) dA⇒ Be ∨ dAe ∨ bBc (⇒GI1) bA⇒ Bc ∨ bAc
(⇒GI2) bA⇒ Bc ∨ dBe

(∧GE1) dA ∧Be ∨ bAc (∧GI) bA ∧Bc ∨ dAe ∨ dBe
(∧GE2) dA ∧Be ∨ bBc
(∨GE) dA ∨Be ∨ bAc ∨ bBc (∨GI1) bA ∨Bc ∨ dAe

(∨GI2) bA ∨Bc ∨ dBe
(¬GI1) b¬Ac ∨ bAc (¬GI2) d¬Ae ∨ dAe

(I) (bAc ∧+ dAe) ⊃ false

Figure 6.15: Free deduction, LFD.

6.3.5 Free deduction

In this section we consider an additive version of the system of free deduction FD [76],
the rules are given in Figure 6.14. This system covers only the propositional fragment
of classical logic and uses an explicit negation ¬.

FD will be encoded in the same way as LK, so for FD we have that both b·c atoms
and d·e atoms are positive. The encodings of the rules are given in Figure 6.15, and the
sequent Γ `FD ∆ is encoded as [LFD, bΓc, d∆e] −→ [false].

The encodings of the rules are similar to the rules for LK, but where LK uses im-
plication, FD uses disjunction. The disjunction is used, because the principal formula
is above the inference line, and therefore we must not focus on it. It might be possible
to use a construction, like the one for GEA, to loose focus explicitly, but we prefer this
version.

This encoding encodes FD on the full level of completeness:

Proposition 6.3.7. Let Γ and ∆ be sets of FD formulas, then there is a bijective cor-
respondence between the open derivations of the following sequents:

Γ `FD ∆ and [LFD, bΓc, d∆e] −→ [false]

6.3. ENCODING IN LJF 123

Proof. The proof is similar to the earlier proofs, but the rules are quite different so we
show a couple of cases:

(⇒GE):

Γ `FD A1 ⇒ A2,∆ Γ `FD A1,∆ Γ, A2 `FD ∆ ⇒GE
Γ `FD ∆

corresponds to (with K = LFD ∪ bΓc ∪ d∆e)

[K, dA1 ⇒ A2e] −→ [false]
[]L

[K], dA1 ⇒ A2e −→ [false]

[K, dA1e] −→ [false]
[]L

[K], dA1e −→ [false]

[K, bA2c] −→ [false]
[]L

[K], bA2c −→ [false]
RL, 2× ∨L

[K]
dA1⇒A2e∨dA1e∨bA2c−−−−−−−−−−−−−−−−−−→ [false]

LF, 2× ∀L
[K] −→ [false]

(⇒GI1):

Γ, A1 ⇒ A2 `FD ∆ Γ, A1 `FD ∆ ⇒GI1Γ `FD ∆

corresponds to (with K = LFD ∪ bΓc ∪ d∆e)

[K, bA1 ⇒ A2c] −→ [false]
[]L[K], bA1 ⇒ A2c −→ [false]

[K, bA1c] −→ [false]
[]L[K], bA1c −→ [false]
RL,∨L

[K]
bA1⇒A2c∨bA1c−−−−−−−−−−→ [false]

LF, 2× ∀L
[K] −→ [false]

(¬GI1):

Γ,¬A `FD ∆ Γ, A `FD ∆ ¬GI1Γ `FD ∆

corresponds to (with K = LFD ∪ bΓc ∪ d∆e)

[K, b¬Ac] −→ [false]
[]L[K], b¬Ac −→ [false]

[K, bAc] −→ [false]
[]L[K], bAc −→ [false]
RL,∨L

[K]
b¬Ac∨bAc−−−−−−−→ [false]

LF,∀L
[K] −→ [false]

6.3.6 Tableaux

In this section we consider a system of tableaux KE [20], the rules are given in Figure
6.16. Like FD, this system covers only the propositional fragment, again including an
explicit negation.

KE will be encoded in the same way as LK, so for KE we have that both b·c atoms
and d·e atoms are positive. The encodings of the rules are given in Figure 6.17 and the
sequent Γ `KE ∆ is encoded as [LKE, bΓc, d∆e] −→ [false].

The rules that correspond to LK rules have the same encoding (⇒R,∧L,∨R), the
rules, which are split into two rules, have two encodings each, using an implication to
focus on either A1 or A2 in the rule, corresponding to the formula that needs to be
under the inference line.

This encoding encodes KE on the full level of completeness:

124 CHAPTER 6. USING LJF AS A FRAMEWORK FOR PROOF SYSTEMS

Γ, A1, A1 ⇒ A2, A2 `KE ∆ ⇒L1Γ, A1, A1 ⇒ A2 `KE ∆
Γ, A1 ⇒ A2 `KE A1, A2,∆ ⇒L2Γ, A1 ⇒ A2 `KE A2,∆

Γ, A1 `KE A1 ⇒ A2, A2,∆ ⇒R
Γ,`KE A1 ⇒ A2,∆

Γ, A1 ∧A2, A1, A2 `KE ∆ ∧LΓ, A1 ∧A2 `KE ∆
Γ, A1 `KE A1 ∧A2, A2,∆ ∧R1Γ, A1 `KE A1 ∧A2,∆

Γ, A2 `KE A1 ∧A2, A1,∆ ∧R2Γ, A2 `KE A1 ∧A2,∆

Γ, A1 ∨A2, A2 `KE A1,∆ ∨L1Γ, A1 ∨A2 `KE A1,∆
Γ, A1 ∨A2, A1 `KE A2,∆ ∨L2Γ, A1 ∨A2 `KE A2,∆

Γ `KE A1 ∨A2, A1, A2,∆ ∨RΓ `KE A1 ∨A2,∆

Γ,¬A `KE A,∆ ¬LΓ,¬A `KE ∆
Γ, A `KE ¬A,∆ ¬RΓ `KE ¬A,∆

IΓ, A `KE A,∆
Γ, A `KE ∆ Γ `KE A,∆

CutΓ `KE ∆

Figure 6.16: The proof system KE.

(⇒L1) bA⇒ Bc ⊃ (bAc ⊃ bBc) (⇒R) dA⇒ Be ⊃ (bAc ∧+ dBe)
(⇒L2) bA⇒ Bc ⊃ (dAe ⊂ dBe)
(∧L) bA ∧Bc ⊃ (bAc ∧+ bBc) (∧R1) dA ∧Be ⊃ (bAc ⊃ dBe)

(∧R2) dA ∧Be ⊃ (dAe ⊂ bBc)
(∨L1) bA ∨Bc ⊃ (dAe ⊃ bBc) (∨R) dA ∨Be ⊃ (dAe ∧+ dBe)
(∨L2) bA ∨Bc ⊃ (bAc ⊂ dBe)
(¬L) b¬Ac ⊃ dAe (¬R) d¬Ae ⊃ bAc
(I) (bAc ∧+ dAe) ⊃ false (Cut) bAc ∨ dAe

Figure 6.17: Classical tableaux, LKE.

6.3. ENCODING IN LJF 125

Proposition 6.3.8. Let Γ and ∆ be sets of KE formulas, then there is a bijective
correspondence between the open derivations of the following sequents:

Γ `KE ∆ and [LKE, bΓc, d∆e] −→ [false]

Proof. The proof is similar to the previous proofs, we show a couple of cases:
(∨L1):

Γ, A1 ∨A2, A2 `KE A1,∆ ∨L1Γ, A1 ∨A2 `KE A1,∆

corresponds to (with K = LKE ∪ bΓc ∪ d∆e ∪ {bA1 ∨A2c, dA1e})

IR[K] −bA1∨A2c→
IR[K] −dA1e→

[K, bA2c] −→ [false]
RL, []L

[K]
bA2c−−−→ [false]

2×⊃L

[K]
bA1∨A2c⊃(dA1e⊃bA2c)−−−−−−−−−−−−−−−→ [false]

LF, 2× ∀L
[K] −→ [false]

(¬R):

Γ, A `KE ¬A,∆ ¬RΓ `KE ¬A,∆

corresponds to (with K = LKE ∪ bΓc ∪ d∆e ∪ {d¬Ae})

IR[K] −d¬Ae→

[K, bAc] −→ [false]
RL, []L

[K]
bAc−−→ [false]

⊃L

[K]
d¬Ae⊃bAc−−−−−−−→ [false]

LF,∀L
[K] −→ [false]

6.3.7 Analytic cut

In this section we consider Smullyan’s proof system for analytic cuts AC [92], the rules
are given in Figure 6.18. As in Nigam and Miller’s paper, the side condition on cut is
dropped. Only propositional formulas are included, and we use an explicit negation.

AC will be encoded in the same way as LK, so for AC we have that both b·c atoms
and d·e atoms are positive. The encodings of the rules are given in Figure 6.19 and the
sequent Γ `AC ∆ is encoded as [LAC, bΓc, d∆e] −→ [false].

The encoded rules are pretty verbose, because every left and right rule must be able
to end the proof and therefore prove false. The right side of the implication in the
encodings of the rules is basically the double negation of the right side for LK. We note
that some of the rules can be joined into one formula in the encoding.

This encoding encodes AC on the full level of completeness:

Proposition 6.3.9. Let Γ and ∆ be sets of AC formulas, then there is a bijective
correspondence between the open derivations of the following sequents:

Γ `AC ∆ and [LAC, bΓc, d∆e] −→ [false]

126 CHAPTER 6. USING LJF AS A FRAMEWORK FOR PROOF SYSTEMS

⇒L
Γ, A1, A1 ⇒ A2 `AC A2,∆

⇒R1Γ `AC A1, A1 ⇒ A2,∆
⇒R2Γ, A2 `AC A1 ⇒ A2,∆

∧L1Γ, A1 ∧A2 `AC A1,∆
∧L2Γ, A1 ∧A2 `AC A2,∆

∧RΓ, A1, A2 `AC A1 ∧A2,∆
∨LΓ, A1 ∨A2 `AC A1, A2,∆

∨R1Γ, A1 `AC A1 ∨A2,∆
∨R2Γ, A2 `AC A1 ∨A2,∆

¬LΓ,¬A,A `AC ∆
¬RΓ `AC ¬A,A,∆

IΓ, A `AC A,∆
Γ, A `AC ∆ Γ `AC A,∆

CutΓ `AC ∆

Figure 6.18: The proof system AC.

(⇒L) bA⇒ Bc ⊃ ((bAc ∧+ dBe) ⊃ false) (⇒R) dA⇒ Be ⊃ ((dAe ∨ bBc) ⊃ false)
(∧L) bA ∧Bc ⊃ ((dAe ∨ dBe) ⊃ false) (∧R) dA ∧Be ⊃ ((bAc ∧+ bBc) ⊃ false)
(∨L) bA ∨Bc ⊃ ((dAe ∧+ dBe) ⊃ false) (∨R) dA ∨Be ⊃ ((bAc ∨ bBc) ⊃ false)
(¬L) b¬Ac ⊃ (bAc ⊃ false) (¬R) d¬Ae ⊃ (dAe ⊃ false)
(I) (bAc ∧+ dAe) ⊃ false (Cut) bAc ∨ dAe

Figure 6.19: Smullyan’s analytic cut, LAC.

Proof. The proof is similar to the previous proofs, and we show a couple of cases.
We note that in those cases where two rules are joined into one formula, each rule
corresponds exactly to one branch in the LJF derivation (one of the different available
macro-rules):

(⇒L):

⇒L
Γ, A1, A1 ⇒ A2 `AC A2,∆

corresponds to (with K = LAC ∪ bΓc ∪ d∆e ∪ {bA1 ⇒ A2c, bA1c, dA2e})

IR
[K] −bA1⇒A2c→

IR
[K] −bA1c→

IR
[K] −dA2e→ ∧+

R[K] −bA1c∧+dA2e
→

RL, falseL

[K]
false−−−−→ [false]

2×⊃L

[K]
bA1⇒A2c⊃((bA1c∧

+dA2e)⊃false)
−−−−−−−−−−−−−−−−−−−−−−−−−−−→ [false]

LF, 2× ∀L
[K] −→ [false]

(⇒R1):

⇒R1Γ `AC A1, A1 ⇒ A2,∆

corresponds to (with K = LAC ∪ bΓc ∪ d∆e ∪ {dA1 ⇒ A2e, dA1e})

IR[K] −dA1⇒A2e→

IR[K] −dA1e→ ∨R
[K] −dA1e∨bA2c→

RL, falseL

[K] false−−−→ [false]
2×⊃L

[K]
dA1⇒A2e⊃((dA1e∨bA2c)⊃false)−−−−−−−−−−−−−−−−−−−−−→ [false]

LF, 2× ∀L
[K] −→ [false]

6.4. RELATIVE COMPLETENESS 127

6.4 Relative completeness

This section is concerned with the different relative completeness theorems. We show
how to prove correspondence between the different systems, using the formalizations
from the previous section. The proofs illustrate, how easy it is to come with a new
system and show that it is complete with respect to intuitionistic or classical logic.

There are several ways to prove relative completeness. In this work we use three
different methods.

1. LJF method: we exploit the completeness theorems from the previous section and
do the proof by induction on the focused derivations of the encoded sequents in
LJF.

2. Intuitionistic method: We use the completeness theorems and Corollary 6.2.2 to
map the encoded sequents to intuitionistic logic and reason directly in intuitionistic
logic. If we can show that each set of rules follows from the other, this approach
gives the simplest proof.

If we can show that the rules in one system follows from the rules in the other
we call it proof by rule implication, and if we can show both directions, we call it
proof by rule equivalence.

3. Object-level method: we reason directly in the object-level systems, using induc-
tion on the derivations. This method does not use the encodings, so we use this
method as little as possible.

Most of the proofs in this section use option two. The cases wherein we need the other
methods are the cases where cut elimination is needed, where we use a transformation
on the formulas, or when we try to relate structurally different systems (e.g. LJ and LJ’
or intuitionistic and classical logic).

6.4.1 Intuitionistic systems

In this section we compare the different intuitionistic systems. A general comment about
the encoded systems is that their relative completeness with regard to each other is in
most of the cases trivial, as the systems mostly have the same rules, save for polarities,
which does not effect provability.

The first proposition shows correspondence between LJ and NJ:

Proposition 6.4.1. Let Γ ∪ {C} be a set of object formulas, then:

Γ `LJ C if and only if Γ `NJ C ↑

Proof. The idea behind the proof is to use the completeness results from Section 6.3
and then reason in intuitionistic logic.

Using Proposition 6.3.1 and Proposition 6.3.3, we need to show that (keep in mind
the different polarities on the left and the right side):

[LLJ, bΓc] −→ [dCe] if and only if [LNJ, bΓc] −→ [dCe]

which by Corollary 6.2.2 is the same as showing that:

LLJ
◦, bΓc `I dCe if and only if LNJ

◦, bΓc `I dCe

128 CHAPTER 6. USING LJF AS A FRAMEWORK FOR PROOF SYSTEMS

And if we can show that:

∀F ∈ LNJ
◦ LLJ

◦ `I F

∀F ∈ LLJ
◦ LNJ

◦ `I F

the result follows, because we can cut each formula in the logic encoding, as the following
derivation shows (for the “only if”-direction):

LNJ
◦ `I F

LJ
1

...
LNJ

◦, bΓc `I F
LJ
1

LNJ
◦ `I F

LJ
2

...
LNJ

◦, bΓc, FLJ
1 `I F

LJ
2

bΓc,LLJ
◦ `I dCe
...

LNJ
◦, bΓc,LLJ

◦ `I dCe
...

LNJ
◦, bΓc, FLJ

1 , FLJ
2 `I dCe

LNJ
◦, bΓc, FLJ

1 `I dCe
LNJ

◦, bΓc `I dCe

What remains is to show that all the formulas in the first logic follows from the rules in
the second logic, and vice-versa. In this case this is highly trivial, as LLJ

◦ = LNJ
◦.

For the systems with generalized elimination rules, the situation is the same as in
the Nigam and Miller paper: for GE we can only prove one direction of equivalence to
LJ, because of the missing cut rule. If we remove the cut rule from LJ, we can prove
full correspondence, which is witnessed by the following two propositions:

Proposition 6.4.2. Let Γ ∪ {C} be a set of object formulas, then:

If Γ `GE C then Γ `LJ C

Proof. Like in the proof for relative completeness of LJ and NJ, we take a detour to
intuitionistic logic using Propositions 6.3.1, 6.3.3 and Corollary 6.2.2. Therefore, it
comes down to showing that:

If LGE
◦, bΓc `I dCe then LLJ

◦, bΓc `I dCe

which follows, if we can show that:

∀F ∈ LGE
◦ LLJ

◦ `I F

We will show one of these consequences and leave the rest for the reader. In the proof of
these consequences, we will not give a full derivation in `I, but rather in a less verbose
way; it should be clear, how to convert our proof into a derivation.

(⇒GE): We need to show:

LLJ
◦ `I ∀A:form. ∀B:form. dA⇒ Be ⊃ (dAe ⊃ bBc)

Let A and B be given and assume dA⇒ Be. Using Cut (i.e., ∀C:form. dCe ⊃ bCc) with
C ≡ A⇒ B we get:

bA⇒ Bc

and the result follows from ⇒L (i.e., bA⇒ Bc ⊃ (dAe ⊃ bBc)).

6.4. RELATIVE COMPLETENESS 129

Proposition 6.4.3. Let Γ ∪ {C} be a set of object formulas, and let LJf be the proof
system LJ without the cut rule, then:

Γ `LJf C if and only if Γ `GE C

Proof. We use the same method as the in former proofs in this section, strictly speaking
we have not proved completeness for LJf , but completeness is proven in exactly the same
way as for LJ. When the cut rule is removed, the result follows, like for LJ and NJ. We
show a single case:

(⇒L): We need to show:

LGE
◦ `I ∀A∀BbA⇒ Bc ⊃ (dAe ⊃ bBc)

So assume bA⇒ Bc by (I) we have that:

dA⇒ Be

and the result follows from (⇒GE).

As a side remark note that because LJ satisfies cut elimination , we have that
provability in GE is equivalent to provability in LJ. But in this work we are more
interested in the method than the (well-known) result.

For GEA we can prove the full correspondence:

Proposition 6.4.4. Let Γ ∪ {C} be a set of object formulas then:

Γ `LJ C if and only if Γ `GEA C ↑

Proof. Again we use the same method, and the only rules that are different are ⇒GE,
and ∀GE, these are clearly equivalent to the corresponding LJ rules.

Last, we look at how to connect the two versions of sequent calculus LJ and LJ’.

Proposition 6.4.5. Let Γ ∪ {C} be a set of formulas then:

Γ `LJ C if and only if Γ `LJ′ C

Proof. This proof is different from the other proofs of relative completeness, because
instead of going all the way to intuitionistic logic, we stay in LJF and prove the corre-
spondence there. The reason why we cannot use equivalence between the rules is because
the encoded sequents are of a different format and therefore not directly related.

So using Propositions 6.3.1 and 6.3.6, what we wish to show in one direction is:

If [LLJ, bΓc] −→ [dCe] then [LLJ′ , bΓc] −→ [dCe]

and to go in the other direction we generalize slightly, and want to show:

If [LLJ′ , bΓc] −→ [dCe] then [LLJ, bΓc] −→ [dCe]
If [LLJ′ , bΓc] −→ [empty] then [LLJ, bΓc] −→ [d⊥e]

The first direction is proved by induction on the focused derivations, and the second
direction is proved by mutual induction on focused derivations. We note that the only

130 CHAPTER 6. USING LJF AS A FRAMEWORK FOR PROOF SYSTEMS

way the sequents can be provable is by focusing on one of the formulas in LLJ, so those
are the only cases we consider.

We only show the cases where ⊥ is involved, as the rest follows straightforwardly
and are very similar to what one would do, if one was working with the derivations in
the object-level systems directly. First, we consider the first direction.

(Focus on (⊥L)):
The derivation on the left must be (with K = LLJ ∪ bΓc ∪ {b⊥c}):

IR[K] −b⊥c→
RL, falseL

[K] false−−−→ [dCe]
⊃L

[K]
b⊥c⊃false−−−−−−−→ [dCe]

LF[K] −→ [dCe]

With K′ = LLJ′ ∪ bΓc ∪ {b⊥c} we construct the needed derivation:

IR[K′] −b⊥c→
IL

[K′] empty−−−−→ empty
⊃L

[K′] b⊥c⊃empty−−−−−−−−→ [empty]
LF[K′] −→ [empty]

RR, []R
[K′] −empty→

IL
[K′] dCe−−→ [dCe]

⊃L

[K′] empty⊃dCe−−−−−−−−→ [dCe]
LF,∀L

[K′] −→ [dCe]

Next we consider the second direction.
(Focus on (⊥L)):
The derivation on the left must be (with K = LLJ′ ∪ bΓc ∪ {b⊥c}):

IR[K] −b⊥c→
IL

[K]
empty−−−−→ [empty]

⊃L

[K]
b⊥c⊃empty−−−−−−−−→ [empty]

LF[K] −→ [empty]

With K′ = LLJ ∪ bΓc ∪ {b⊥c} we construct the needed derivation:

IR[K′] −b⊥c→
RL, falseL

[K′] false−−−→ [d⊥e]
⊃L

[K′] b⊥c⊃false−−−−−−−→ [d⊥e]
LF[K′] −→ [d⊥e]

(Focus on (WR)):
The derivation on the left must be (with K = LLJ′ ∪ bΓc):

[K] −→ [empty]
RR, []R

[K] −empty→
IL

[K]
dCe−−→ [dCe]

⊃L

[K]
empty⊃dCe−−−−−−−−→ [dCe]

LF,∀L
[K] −→ [dCe]

6.4. RELATIVE COMPLETENESS 131

With K′ = LLJ ∪ bΓc we get by IH:

[K′] −→ [d⊥e]

from which the result follows by the following derivation:

[K′] −→ [d⊥e]
RR, []R

[K′] −d⊥e→

IR[K′, b⊥c] −b⊥c→
IL

[K′, b⊥c] dCe−−→ [dCe]
LF,⊃L

[K′, b⊥c] −→ [dCe]
RL, []L

[K′] b⊥c−−→ [dCe]
⊃L

[K′] d⊥e⊃b⊥c−−−−−−→ [dCe]
LF,∀L

[K′] −→ [dCe]

6.4.2 Classical systems

In this section we consider the classical systems. Because only LK deals with quantifiers,
⊥ and >, we shall restrict our view to propositional formulas without ⊥ and >. So in
the following, Γ,∆ and C will represent propositional formulas without ⊥ and >.

Another remark is that the LK does not have an explicit negation, and therefore we
must use a transformation to relate the later systems to LK. Because of the absence of
negation, we cannot use a proof of equivalence between the rules like for the intuitionistic
cases. So instead we introduce LK with negation (called LK¬), prove that LK¬ is
equivalent to LK and then relate LK¬ to FD, KE and AC.

The rules for LK¬ are the same as for the propositional part of LK except ⊥L and
>R plus the following two rules:

Γ,¬A `LK¬ A,∆ ¬LΓ,¬A `LK¬ ∆
Γ, A `LK¬ ¬A,∆ ¬RΓ `LK¬ ¬A,∆

For the encoding, we get a complete encoding of LLK¬ by adding the following (and
removing the ⊥,>, ∀, ∃ part):

(¬L) b¬Ac ⊃ dAe (¬R) d¬Ae ⊃ bAc

For the correspondence, the function ϕ is defined as in the Nigam and Miller paper
as:

ϕ(A) = A A atomic
ϕ(¬C) = ϕ(C)⇒ ⊥

ϕ(C1 ? C2) = ϕ(C1) ? ϕ(C2) ? ∈ {⇒,∧,∨}

ϕ is extended to sets in the obvious way.
Using ϕ we can prove correspondence between LK and LK¬:

Lemma 6.4.6. Let Γ and ∆ be sets of object formulas with negation then:

ϕ(Γ) `LK ϕ(∆) if and only if Γ `LK¬ ∆

132 CHAPTER 6. USING LJF AS A FRAMEWORK FOR PROOF SYSTEMS

Proof. As the rules for LK and LK¬ are almost the same, the only things to prove are
the cases with the negation, which can be on either the left or the right side. The proof
goes by induction on the height of the derivations.

For the “only if”-direction the interesting cases are ⇒L and ⇒R where the principal
formulas are A⇒ ⊥.

(⇒L):

ϕ(Γ), ϕ(A)⇒ ⊥ `LK ϕ(A), ϕ(∆) ϕ(Γ), ϕ(A)⇒ ⊥,⊥ `LK ϕ(∆)
ϕ(Γ), ϕ(A)⇒ ⊥ `LK ϕ(∆)

By IH we have that:
Γ,¬A `LK¬ A,∆

which gives the result by the ¬L rule.
(⇒R):

ϕ(Γ), ϕ(A) `LK ⊥, ϕ(A)⇒ ⊥, ϕ(∆)
ϕ(Γ) `LK ϕ(A)⇒ ⊥, ϕ(∆)

We can then obtain a proof of the same height of the following (removing the ⊥ on the
right - seen by straightforward induction):

ϕ(Γ), ϕ(A) `LK ϕ(A)⇒ ⊥, ϕ(∆)

and then by IH we have that:
Γ, A `LK¬ ¬A,∆

which gives the result by the ¬R rule.
For the “if”-direction we consider the cases ¬L and ¬R:
(¬L):

Γ,¬A `LK¬ A,∆ ¬LΓ,¬A `LK¬ ∆

By IH we have that:
ϕ(Γ), ϕ(A)⇒ ⊥ `LK ϕ(A), ϕ(∆)

and the result follows from ⇒L and ⊥L.
(¬R):

Γ, A `LK¬ ¬A,∆ ¬RΓ `LK¬ ¬A,∆

By IH we have that:
ϕ(Γ), ϕ(A) `LK ϕ(A)⇒ ⊥, ϕ(∆)

and the result follows from the following derivation:

ϕ(Γ), ϕ(A) `LK ϕ(A),⊥, ϕ(A)⇒ ⊥, ϕ(∆)
ϕ(Γ) `LK ϕ(A), ϕ(A)⇒ ⊥, ϕ(∆) ϕ(Γ), ϕ(A) `LK ϕ(A)⇒ ⊥, ϕ(∆)

ϕ(Γ) `LK ϕ(A)⇒ ⊥, ϕ(∆)

6.4. RELATIVE COMPLETENESS 133

Using LK¬ in the proofs, we can prove the correspondence from LK to FD, KE and
AC. For FD we run into the same problem as for GE, namely that we can only prove
one direction of the equivalence because of the missing cut rule. If we remove the cut
rule from LK, we can prove the correspondence in the other way (note that we use the
cut rule in the first direction, so we do not get a full equivalence for the cut-free LK).

Proposition 6.4.7. Let Γ and ∆ be sets of object formulas with negation then:

If Γ `FD ∆ then ϕ(Γ) `LK ϕ(∆)

Proof. We use that provability in LK is equivalent to provability in LK¬ so we need to
prove that:

If Γ `FD ∆ then Γ `LK¬ ∆

which we prove by proving that (using the corresponding completeness propositions):

∀F ∈ LFD
◦ LLK¬

◦ `I F

(⇒E): We need to show:

LLK¬
◦ `I ∀A∀BdA⇒ Be ∨ dAe ∨ bBc

By using (Cut) for LK¬ we get that:

bA⇒ Bc ∨ dA⇒ Be

In the second disjunct, we are done so assuming the first disjunct, we can then use (⇒L)
to prove that:

dAe ⊃ bBc (6.1)

and then we can use (Cut) again to show that

bAc ∨ dAe

again we are done in the second disjunct, and in the first disjunct, the result follows
from the implication in (6.1).

(⇒I1): We need to show:

LLK¬
◦ `I ∀A∀BbA⇒ Bc ∨ bAc

By using (Cut) for LK¬ we get that:

bA⇒ Bc ∨ dA⇒ Be

In the first disjunct we are done, so assuming the second disjunct we can then use (⇒R)
to prove that:

bAc ∧ dBe

which proves the result.
(¬I1): We need to show:

LLK¬
◦ `I ∀Ab¬Ac ∨ bAc

134 CHAPTER 6. USING LJF AS A FRAMEWORK FOR PROOF SYSTEMS

By using (Cut) for LK¬ we get that:

b¬Ac ∨ d¬Ae

In the first disjunct we are done, so assuming the second disjunct we can then use (¬R)
to prove that:

bAc

which proves the original proposition.

Proposition 6.4.8. Let Γ and ∆ be sets of object formulas with negation, and let LKf

be LK without the cut rule, then:

If ϕ(Γ) `LKf ϕ(∆) then Γ `FD ∆

Proof. We take the detour through LKf¬ (LK¬ without cut) and into intuitionistic
logic, so we need to prove that:

∀F ∈ LLKf¬
◦ LFD

◦ `I F

Again we show a couple of cases:
(⇒L): We need to show:

LFD
◦ `I ∀A∀BbA⇒ Bc ⊃ (dAe ∨ bBc)

Assume bA⇒ Bc by (⇒E) we get that:

dA⇒ Be ∨ dAe ∨ bBc

In the first disjunct we can use the assumption and (I) to conclude false, and in the
second disjunction we are done.

(⇒R): We need to show:

LFD
◦ `I ∀A∀BdA⇒ Be ⊃ (bAc ∧ dBe)

Assume dA⇒ Be by (⇒I1) and (⇒I2) we get that:

bA⇒ Bc ∨ bAc
bA⇒ Bc ∨ dBe

If we in either formula have bA ⇒ Bc, then we can use (I) again to conclude false. So
we must have both bAc and dBe, and we are done.

(¬L): We need to show:

LFD
◦ `I ∀Ab¬Ac ⊃ dAe

Assume b¬Ac by (¬I2) we get that:

d¬Ae ∨ dAe

and we can either conclude false from (I) or the conclusion, so we are done.

6.4. RELATIVE COMPLETENESS 135

Again, because of cut elimination for LK, we have that provability in FD is equivalent
to provability in LK.

For KE and AC, we can prove the full equivalence.

Proposition 6.4.9. Let Γ and ∆ be sets of object formulas with negation then:

ϕ(Γ) `LK ϕ(∆) if and only if Γ `KE ∆

Proof. As for FD we use LK¬ and intuitionistic logic to prove equivalence, which means
we must show:

∀F ∈ LLK¬
◦ LKE

◦ `I F

∀F ∈ LKE
◦ LLK¬

◦ `I F

We first consider the first direction, and show a single case:
(⇒L): We need to show:

LKE
◦ `I ∀A∀BbA⇒ Bc ⊃ (dAe ∨ bBc)

Assume bA⇒ Bc by using (⇒L1) we get that:

bAc ⊃ bBc (6.2)

By (Cut) we get that:
bAc ∨ dAe

If the first disjunct is the case, the result follows from (6.2); if the second disjunct is the
case, the result follows immediately.

Next we consider the second direction, and show a single case:
(⇒L1): We need to show:

LLK¬
◦ `I ∀A∀BbA⇒ Bc ⊃ (bAc ⊃ bBc)

Assume bA⇒ Bc and bAc by using (⇒L) on the first, we get that:

dAe ∨ bBc

If the first disjunct is the case, then we can derive false from (I), for the second disjunct
the result follows immediately.

Proposition 6.4.10. Let Γ and ∆ be sets of object formulas with negation then:

ϕ(Γ) `LK ϕ(∆) if and only if Γ `AC ∆

Proof. This proofs is similar all the other proofs in this section, and again it comes down
to showing that:

∀F ∈ LLK¬
◦ LAC

◦ `I F

∀F ∈ LAC
◦ LLK¬

◦ `I F

We first consider the first direction, and show a couple of cases:
(⇒L): We need to show:

LAC
◦ `I ∀A∀BbA⇒ Bc ⊃ (dAe ∨ bBc)

136 CHAPTER 6. USING LJF AS A FRAMEWORK FOR PROOF SYSTEMS

Assume bA⇒ Bc by using (⇒L), we get that:

(bAc ∧ dBe) ⊃ false (6.3)

By (Cut) we get that:
bAc ∨ dAe

If the second disjunct is the case, the result follows immediately. So assume dAe, by
using (Cut) again, we get that:

bBc ∨ dBe

If the first disjunct is the case, the result follows immediately. So by assuming dBe we
can derive false from (6.3).

(⇒R): We need to show:

LAC
◦ `I ∀A∀BdA⇒ Be ⊃ (bAc ∧ dBe)

Assume dA⇒ Be by using (⇒R) we get that:

(dAe ∨ bBc) ⊃ false (6.4)

By (Cut) we get that:
bAc ∨ dAe

If the second disjunct is the case, then we can derive false from (6.4). So assume bAc,
by using (Cut) again, we get that:

bBc ∨ dBe

If the first disjunct is the case, we can again derive false from (6.4). So by assuming
dBe we get the conclusion.

Next we consider the second direction, and show a couple of cases:
(⇒L): We need to show:

LLK¬
◦ `I ∀A∀BbA⇒ Bc ⊃ ((bAc ∧ dBe) ⊃ false)

Assume bA⇒ Bc, bAc and dBe by using (⇒L) we get that:

dAe ∨ bBc

and for each disjunct we can prove false from an assumption and (I).
(⇒R): We need to show:

LLK¬
◦ `I ∀A∀BdA⇒ Be ⊃ ((dAe ∨ bBc) ⊃ false)

Assume dA⇒ Be and dAe ∨ bBc by using (⇒R) we get that:

bAc ∧ dBe (6.5)

and for each disjunct in the assumption we can prove false from a conjunct in (6.5) and
(I).

6.4. RELATIVE COMPLETENESS 137

6.4.3 Intuitionistic and classical systems

In this section we look at how to relate LJ to LK. The result is the well-known fact that
intuitionistic provability implies classical provability:

Proposition 6.4.11. Let Γ ∪ {C} be a set of object formulas then:

If Γ `LJ C then Γ `LK C

Proof. Like in the proof of relative completeness for LJ and LJ’, we use LJF directly
and prove correspondence for focused derivations.

Using Propositions 6.3.1 and 6.3.2, what we need to show is (notice that there are
different polarities on each side):

If [LLJ, bΓc] −→ [dCe] then [LLK, bΓc, dCe] −→ [false]

which we prove by induction on the focused derivation. As for LJ and LJ’, the only way
the sequent, can be provable is by focusing on one of the formulas in LLJ, so those are
the only cases we consider.

(Focus on (⇒L)):
The derivation on the left must be (with K = LLJ ∪ bΓc ∪ {bA1 ⇒ A2c}):

IR[K] −bA1⇒A2c→
[K] −→ [dA1e]

RR, []R
[K] −dA1e→

[K, bA2c] −→ [dCe]
RL, []L

[K]
bA2c−−−→ [dCe]

2×⊃L

[K]
bA1⇒A2c⊃(dA1e⊃bA2c)−−−−−−−−−−−−−−−−→ [dCe]

LF, 2× ∀L
[K] −→ [dCe]

Now let K′ be LLK ∪ bΓc ∪ {bA1 ⇒ A2c, dCe}.
By IH and weakening (in the second case) we get that:

[K′, dA1e] −→ [false]
[K′, bA2c] −→ [false]

We can now construct the needed derivation:

IR
[K′] −bA1⇒A2c→

[K′, dA1e] −→ [false]
[]L

[K′], dA1e −→ [false]

[K′, bA2c] −→ [false]
[]L

[K′], bA2c −→ [false]
RL,∨L

[K′] dA1e∨bA2c−−−−−−−→ [false]
⊃L

[K′] bA1⇒A2c⊃(dA1e∨bA2c)−−−−−−−−−−−−−−−−→ [false]
LF, 2× ∀L

[K′] −→ [false]

(Focus on (I)):
The derivation on the left must be (with K = LLJ ∪ bΓc ∪ {bAc}):

IR[K] −bAc→
IL

[K]
dAe−−→ [dAe]

⊃L

[K]
bAc⊃dAe−−−−−−→ [dAe]

LF,∀L
[K] −→ [dAe]

With K′ = LLK ∪ bΓc ∪ {bAc, dAe}) the needed derivation follows easily:

138 CHAPTER 6. USING LJF AS A FRAMEWORK FOR PROOF SYSTEMS

IR[K′] −bAc→
IR[K′] −dAe→ ∧+

R[K′] −bAc∧+dAe→
RL, falseL

[K′] false−−−→ [false]
⊃L

[K′] (bAc∧+dAe)⊃false−−−−−−−−−−−−→ [false]
LF,∀L

[K′] −→ [false]

6.5 Comparison of LJF and LLF

In this section we compare the use of LJF as a framework to the use of LLF as a
framework. To compare the frameworks, we look at how easy or ‘natural’ the encodings
are, how hard the completeness proofs are, and how well we can reason within the
framework, for instance how hard the relative completeness theorems are.

First we look at the different encodings. Here it is clear that all the different in-
tuitionistic systems have a natural encoding in LJF, which is also seen by the similar
encodings they share. It seems very elegant that just by changing polarities we go from
LJ to NJ. Except the GE encoding, only a few of the rule encodings (⇒GE and ∀GE

for GEA, WR and ⊥L for LJ’) have a different encoding from the rest. Furthermore,
the encodings are very simple, in the sense that the object-level connectives are mostly
encoded using the corresponding meta-level connective, one exception here being the
use of the atom empty in the encoding of LJ’, which gives a less elegant encoding.

On the other hand, it seems that the encodings of the intuitionistic systems in LLF
are more different to each other, than the encodings in LJF are, although the biggest
differences are mostly in which exponentials are used. Two observations are interesting:
the first is that the encodings of NJ, GE, GEA need an extra formula (b⊥c⊥ or d⊥e),
which we do not need in our encoding. This makes the LJF encoding a little closer to
the object-level systems, but for NJ and GEA, the extra formula can also be used to
describe normal-form proofs for the ⇒,∧,∀,⊥,> fragment. The second observation is
that for LJ with empty right sides, the LLF encoding can still use the meta-level false,
whereas the LJF encoding needs to create a new meta-level atom. The reason is that
the LLF encoding can exploit linear logic’s strict structural rules and prevent the ⊥L

rule from being used on proper formulas.
The encodings of the classical systems in LJF are not as natural as the encodings

of the intuitionistic systems. But for most of the systems, the encodings are still fairly
simple and easy to come up with, although the encoding of AC is a little more com-
plicated than the others. The specific encoding of sequents using false is also different
from the intuitionistic sequents, which make the encoding of the rules different. For
LLF the situation is almost the same as for intuitionistic logic, although the different
classical encodings have more differences than the intuitionistic encodings have.

A very nice feature of LLF is that the different systems stem from the same generic
system with the selective inclusion of structural rules. We have not found a way to
create a generic system for LJF, as there is no control of the structural properties. This
means that it would be impossible to encode nicely in LJF, linear systems or systems
with multiple conclusions that do not allow weakening. As LLF uses linear logic as a
base, these systems should be possible to encode in LLF.

6.6. SUMMARY AND RELATED WORK 139

The proofs of full completeness are very similar in the two systems. In both cases
we have to look at the derivations and see how they match the rules. In that aspect, we
have not met any difficulties in using LJF instead of LLF.

For the LJF encodings, the proofs of relative completeness between the intuitionistic
systems and between the classical systems are mostly very easy. We can use proof by rule
equivalence, except for the cases where one of the systems is missing a cut, rule, or when
there are syntactic differences. This is good property, as the proofs of rule equivalence
are shallow and suitable for automation. Compared to proving relative completeness
using the object-level systems, it seems easier to prove relative completeness using the
LJF approach, as the needed induction is hidden, whereas in the object-level proof we
would need to use a new induction every time.

In the cases where the cut rule is missing in one system, we are not able to prove
rule equivalence. It should still be possible to prove relative completeness in those
cases, maybe following the work by Miller and Pimentel [60], but we have not further
investigated that here.

Because the intuitionistic and classical systems are represented in a different way,
we cannot prove rule equivalence for LJ and LJ’ or rule implication for LJ and LK, and
therefore we need to resort to induction over focused derivations, which takes the same
or slightly more work, than an object-level proof would in this case.

In LLF the proofs of relative completeness usually use rule equivalence in one di-
rection and induction on focused derivations in the other direction. This means that
it is easier to prove relative completeness for some of the systems in the LJF setting.
But when mixing the different encodings in LJF, like we do for LJ and LK, then rule
implication cannot be used. In LLF the encodings of the sequents are the same, and we
think that the proof in LLF could go through using rule implication, therefore making
it simpler than the LJF proof.

In conclusion, it seems that while LLF is more general and allowing more systems
to be represented in a more streamlined way, LJF is more ‘specialized’ in some ways,
leading to, in some cases, easier proofs.

6.6 Summary and related work

In this work we have shown how to encode a wide range of different intuitionistic and
classical proof systems, using the focused intuitionistic logic LJF. For each encoding, we
prove that the open derivations of sequents in the object-level system are in bijective
correspondence with the open derivations of the encoded sequents in LJF. The features
of the focused proofs are crucial in reducing the variety of proofs in the meta-logic, and
the strong equivalences are based on that.

Using the encodings, we have proven equivalences of provability between the different
intuitionistic systems and between the different classical systems. Only in the cases were
cut elimination or a syntactic transformation were needed, have we used a different
approach.

The methods used in this work are not new and are based on recent work by Nigam
and Miller [73]. Our works show that focusing is the important part, and that linearity
is not needed, when the object-level systems have unrestricted structural rules. Fur-
thermore, there may be advantages in using LJF, as some of the encodings seem easier,
and some of the proofs seem shorter. Although, in other cases the more streamlined
encodings in LLF may be preferred.

140 CHAPTER 6. USING LJF AS A FRAMEWORK FOR PROOF SYSTEMS

Related to the work by Nigam and Miller, and therefore also to this work, is the
work by Miller and Pimentel [59, 60, 61, 82, 83], in which classical linear logic is used as
a meta-logic for different proof systems including both representation of and reasoning
about the object-level systems. Other people have been using other frameworks for
representing different proof systems The approach by Harper, Honsell and Plotkin is
more general allowing other derivation-based systems to be encoded (e.g, operational
semantics). But they need a more complicated meta-system (based on dependant types),
and do not have the easy equivalence proof, which we have shown here (the proofs by
rule equivalence or implication).

Chapter 7

Focusing and contraction

Abstract

Existing focused proof systems for classical and intuitionistic logic allow con-
traction for exactly those formulas chosen for focus. For proof-search applications,
contraction is undesirable, as we risk traversing the same path multiple times. We
present here a contraction-free focused sequent calculus for classical propositional
logic, called LKFCF, which is a modification of the recently developed proof system
LKF. We prove that our system is sound and complete with respect to LKF, and
therefore it is also sound and complete with respect to propositional classical logic.
LKF can be justified with a compilation into focused proofs for linear logic; in this
work, we show how to do a similar compilation for LKFCF, but into focused proofs
for linear logic with subexponentials instead. We use two subexponentials, neither
allowing contraction but one allowing weakening. We show how the focused proofs
for linear logic can then simulate proofs in LKFCF. Returning to proof-search, we
end this work with a small experimental study, showing that a proof-search imple-
mentation based on LKFCF performs well compared to implementations based on
leanTAP and several variants and optimizations on LK and LKF.

7.1 Introduction

The sequent calculus is a general framework, well suited for expressing proof systems
for different logics, but for a given sequent many different proofs might exist. In the
sequent calculus, structural rules can always be applied, and introduction rules can be
applied, when there is a matching formula. Furthermore, when rules are applied in a
backwards fashion, there is nothing which connects the different rules; one rule might
apply to one formula, while the next rule could apply to an entirely different formula
independent from the first one, leading to a large number of proofs.

Focusing. Focusing, introduced by Andreoli for linear logic [5], is a method for limiting
this freedom and, thereby, reducing the number of different proofs. A focused proof al-
ternates between two phases. In the negative or asynchronous phase, all applicable rules
are invertible and can therefore be applied in any order. In the positive or synchronous
phase, all rules are applied only to a specific formula and various of its subformulas.
Such a formula is called a focus. This limits the freedom in the proof to some specific
introduction rules in the positive phase (e.g. which branch to prove in a disjunction)
and to deciding upon which formula to focus. By reducing the number of proofs, focused
proofs serve as a useful normal form for cut-free proofs. As cut-free proofs are used in

141

142 CHAPTER 7. FOCUSING AND CONTRACTION

a variety of different applications in the foundations of computation, such normal forms
can prove useful for applications in logic programming or in functional programming.

Although originally introduced for linear logic, focused proof systems have been
developed for other logics as well. The flexible focused proof systems, LJF and LKF, for
intuitionistic and classical logics respectively, recently presented by Liang and Miller [52],
are examples of this. Each connective is classified as having positive or negative polarity,
depending on whether its introduction and elimination rules apply in the positive or
negative phase. An important aspect of focusing is that this classification extends to the
atoms. For provability, the assignment can be arbitrary, but a given polarity assignment
can have a great effect on the shape of the possible proofs. Consider trying to prove D
from the assumptions: A,A ⊃ B, (A ∧B) ⊃ C, (A ∧B ∧C) ⊃ D. If all atoms are given
negative polarity, the only possible proof is a backwards chaining proof on D. On the
other hand, if all atoms are given positive polarity, then a significantly smaller forward
chaining proof on A exists. This allows a focused proof system to uniformly capture
both bottom-up proofs (like traditionally done for Datalog) or top-down proofs (like
in Prolog). In functional programming, Curien and Herbelin [19] note the connection
between call-by-value and forward chaining, and between call-by-name and backward
chaining.

The usefulness of focusing is further attested by several other applications. For
proof-search, focusing can help by reducing the nondeterminism in the choice of which
formula to decompose. Recent theorem provers by Chaudhuri and Pfenning [15], by
McLaughlin and Pfenning [56], and by Baelde, Miller and Snow [7] are examples of this
kind of application. Focused proof systems have also been used directly as a framework
for hosting other proof systems. The reduced number of proofs in a focused proof system
allows the object-level proof systems to be encoded at the maximal level of adequacy;
the level of open derivations. Nigam and Miller [73] show how to use the focused proof
system for linear logic, LLF, to host several different classical and intuitionistic proof
systems, and the Author [37]1 shows how to use the focused intuitionistic proof system
LJF to host the same systems.

Contraction. We now turn our attention to focused proof systems for classical and
intuitionistic logic only. An interesting property of existing systems is that even though
contraction-free systems exist, like the system by Dyckhoff [27] for intuitionistic logic
and the system G3c [94] for classical logic, contraction is still used when focusing on a
formula. The presence of contraction introduces a form of redundancy in the focused
proofs, as the same formula can be considered for focus several times. Unfortunately,
even in classical logic, this use of contraction is crucial to completeness. For backwards
proof-search, contraction is also an undesirable property; when a formula is duplicated
with contraction, proof-search risks having to consider the same formula and possibly
apply the same rules again. Therefore, when contraction is present, expensive and non-
logical methods like loop detection are needed for a proof search implementation. It is
therefore valuable to ask, whether contraction can be removed.

In this work, we show how to remove contraction from the propositional part of the
focused proof system for classical logic LKF, while still including the positive connec-
tives. Even though the intuitionistic system LJF might have been a more interesting
system from the viewpoint of removing contraction, we believe that starting with a sys-
tem, where contraction is easier to remove in the unfocused case, gives insights on how

1Included in a reformatted and slightly edited form as Chapter 6.

7.1. INTRODUCTION 143

to remove contraction from a focused system, and therefore also insights in how to ap-
proach a focused and contraction-free system for intuitionistic logic. Essentially, LKF is
modified in two ways: when a formula is chosen for focus, it is removed from the context;
and when a disjunction is decomposed in the positive phase, instead of discarding the
non-chosen branch, it is added back into the context. The second modification is critical
in order to retain completeness. We show that the new proof system, called LKFCF for
contraction-free LKF, is sound and complete with respect to LKF or equivalently with
respect to classical logic.

An interesting property of the developed system is that it allows a proof-theoretic
notion of proof restart. Consider trying to prove a disjunction A ∨ B ∨ C: one needs
to make a choice that might be wrong, for example consider choosing A. There are
usually two ways of addressing such a wrong choice: 1. Backtrack, erase the proof built
above the wrong choice, and then resume with the other choices. This is not captured
by the proof theory, as the wrong choice is erased; 2. Do a restart: keep the proof that
has been built so far, and simply reselect the formula (A ∨ B ∨ C) and make a choice
again. This is a more proof theoretical method, since this restart can be understood as
a rule of inference [33]. The problem with the restart process is that there is no (proof
theoretic) support for making sure that a different formula is selected (B or C). The
system proposed here allows restart of only the remaining possible choices.

Linear logic compilation. LKF as well as LJF, the intuitionistic system used to
derive LKF, can be justified with a compositional compilation into a focused proof
system for linear logic. This allows an implementation of a focused proof system for
linear logic to simulate both LKF and LJF faithfully. By a faithful simulation we mean
that the proofs in the two systems are in bijective correspondence, so that nothing is lost
from a proof theoretical perspective. The proof system, LKFCF, that we develop here,
is a bit unusual for sequent calculus systems, so in order to understand how unusual
it is, we attempted a similar natural compilation into linear logic. This did not seem
possible to do; so to further investigate the subject, we looked at a known extension
to linear logic: adding subexponentials [71, 72]. With two additional operators, it is
possible to achieve the compilation, allowing a focused proof system for linear logic with
subexponentials to simulate LKFCF faithfully.

Proof-search implementation. To gain experience with using LKFCF for proof-
search, we have constructed several simple λProlog [66] proof-search implementations,
one based on Fitting’s implementation [29] of leanTAP [9], and the others based on
variants and optimizations of LK, LKF and LKFCF. We compare their relative perfor-
mance by running them on a set of propositional classical theorems, originating from
problems proposed by Pelletier [78].

Related work. Most related work have already been discussed above. Contraction
elimination has been studied for several other systems as well. Negri [70] presents
contraction-free systems for classical and intuitionistic logic extended to geometric the-
ories. Hirschowitz et al. [44] present a system for linear logic, where contraction can
be eliminated using a modified tensor rule. At the present time, the Author is not
aware of any system that tries to remove contraction from focused systems. In the
theorem-proving community, a great deal of work has gone into deciding satisfiability
(and therefore also validity) of propositional classical logic, and therefore highly opti-

144 CHAPTER 7. FOCUSING AND CONTRACTION

Id (P literal)
7→ [Θ,¬P], P

7→ [Θ, P], P
Focus` [Θ, P]

` [Θ, C],Γ
[]

` [Θ],Γ, C
` [Θ], N

Release7→ [Θ], N

Absurd` [Θ],Γ, T −
` [Θ],Γ

Trivial` [Θ],Γ,F−
T +

7→ [Θ], T +

` [Θ],Γ, A,B
∨−` [Θ],Γ, A ∨− B

` [Θ],Γ, A ` [Θ],Γ, B
∧−` [Θ],Γ, A ∧− B

7→ [Θ], A
∨+

17→ [Θ], A ∨+ B

7→ [Θ], B
∨+

27→ [Θ], A ∨+ B

7→ [Θ], A 7→ [Θ], B
∧+

7→ [Θ], A ∧+ B

Figure 7.1: The propositional fragment of LKF. P is a positive formula, C is a literal
or a positive formula. N is a negative formula.

mized provers based on (extensions to) DPLL [22, 23] exist, e.g. zChaff [85]. Our work
is not meant to compete with these efficient provers. We focus on the proof theoretical
aspects of proof-search; we try to act as a stepping stone into other non-classical logics,
e.g. intuitionistic logic, where theorem proving is not so well-developed.

7.2 Focused classical logic

We start by briefly introducing LKF and then move on to LKFCF.

7.2.1 The focused system LKF

A literal is either an atom or a negated atom. All formulas are assumed to be in
negation normal form (NNF); meaning that there are no implications, and negation is
only applied to atoms. The connectives in LKF come in two polarizations: the negative
connectives are F−, T −,∧−,∨− and the positive connectives are F+, T +,∧+,∨+. The
negative and the positive version of the same connective has the same provability, but
different (focused) proofs. The two versions of each connective stem from linear logic,
where the negative connectives correspond to >,⊥,N,O and the positive connectives
correspond to 0,1,⊗,⊕. Note that Liang and Miller [52] write ¬T and ¬F for F− and
T −, and no explicit polarity on the positive units. Atoms are arbitrarily assigned either
negative or positive polarity; a negated atom is assigned the opposite polarity of the
atom itself. We write A◦ for the transformation, which removes all polarizations from
the connectives of A. LKF uses two types of sequents: the unfocused sequent ` [Θ],Γ
corresponding to the negative phase, and the focused sequent 7→ [Θ], A corresponding
to the positive phase. For these sequents we have that Γ is a list of formulas, A is a
single formula and Θ is a multiset of literals and positive formulas. In the following
we will refer to Θ as the context, and to Γ as the working list. Figure 7.1 shows the
propositional fragment of LKF.

Before moving on to LKFCF, we note that a trivial way to remove contraction from
LKF is to recognize that classical propositional logic can be organized, so that all connec-
tives have invertible rules, corresponding to using negative polarity for all connectives.
This organization comes at a cost, though; consider e.g. conjunction: the conjunction
rule is invertible, because it copies everything. If conjunction is interpreted negatively,

7.2. FOCUSED CLASSICAL LOGIC 145

then the copying rule must be applied immediately, but if conjunction is interpreted
positively, one can choose in the proof, when to apply it (including not applying it at
all). Consider trying to prove (B ∨ A) ∨ ¬A, where B is very large. If only positive
connectives are used, we can ignore B and get a simple proof; on the other hand, if
only negative connectives are used, one must produce a disjunctive normal form of the
entire formula (which could be large depending on B). There are no short proofs for
this formula using only negative connectives.

The focus rule of LKF expresses that when a given formula is chosen for focus, it is
kept in the context for later refocus. An important insight is that the only reason for
keeping it in the context is the rules for positive disjunction, as they risk throwing a
needed subformula away. As an example, consider trying to prove A ∨+ ¬A where A is
a positive atom. The only possible proof involves focusing on A ∨+ ¬A twice; once to
put ¬A into the context and then once to end the proof with focus on A. Realising that
the troublesome rules for removing contraction are the rules for the positive disjunction
is the starting point of our contraction-free system.

7.2.2 The contraction-free system LKFCF

To simplify the presentation, we start out by considering only the positive fragment
(F+, T +,∨+,∧+) of LKF. The first change is to remove the focused formula from the
context, resulting in the following rule:

7→ [Θ], P
` [Θ, P]

But, as mentioned previously, this rule change alone breaks completeness, because of
the rule for the positive disjunction, so we realize that when following a path through
one of the disjuncts, we do not need to restart with the full formula, but only with the
non-chosen disjunct. So to regain completeness we add the non-taken branch to the
context, by replacing ∨+

1 with the following rule:

7→ [Θ, B], A
7→ [Θ], A ∨+ B

These modifications are sufficient to get a sound and complete contraction-free system
for the positive fragment of LKF. We only mention this result and then move on to the
full fragment.

For the full fragment, we want to do something similar, but there is a problem
with the positive disjunction rule as stated above. The non-taken branch could be a
non-atomic negative formula, which would then be added to the context. A design
goal of LKF was to make certain that non-atomic negative formulas are never allowed
in the context: we feel that it is important to maintain this choice here as well. To
avoid the problem, we change the system to take the negative formulas into account by
decomposing them before adding them to the context. There are basically three ways
of doing this, either decompose before continuing with the chosen branch, decompose in
parallel with the chosen branch, or decompose after the chosen branch is finished. We
have picked the first option, as we believe it gives the most natural system. Instead of
introducing a new relation expressing the decomposition directly, we allow the negative
phase to have a saved focus; this also handles branching, when negative conjunctions
are encountered.

146 CHAPTER 7. FOCUSING AND CONTRACTION

Id (P literal)
7→ [Θ,¬P], P

7→ [Θ], A
Focus1` A, [Θ]

7→ [Θ], P
Focus2` ·, [Θ, P]

` ξ, [Θ, C],Γ
[]

` ξ, [Θ],Γ, C
` ·, [Θ], N

Release7→ [Θ], N

Absurd` ξ, [Θ],Γ, T −
` ξ, [Θ],Γ

Trivial` ξ, [Θ],Γ,F−
T +

7→ [Θ], T +

` ξ, [Θ],Γ, A,B
∨−` ξ, [Θ],Γ, A ∨− B

` ξ, [Θ],Γ, A ` ξ, [Θ],Γ, B
∧−` ξ, [Θ],Γ, A ∧− B

` A, [Θ], B
∨+

17→ [Θ], A ∨+ B

` B, [Θ], A
∨+

27→ [Θ], A ∨+ B

7→ [Θ], A 7→ [Θ], B
∧+

7→ [Θ], A ∧+ B

Figure 7.2: The contraction-free focused system LKFCF. P is a positive formula, C is a
positive formula or a literal. N is a negative formula.

Formalizing these ideas, we arrive at the proof system LKFCF. The basic formalism
is the same for LKF and LKFCF, and that means we use the same definitions as given
above for LKF. As in LKF, we have two types of sequents. The focused sequent 7→ [Θ], A
is very similar to the focused sequent in LKF, but the unfocused sequent ` ξ, [Θ],Γ is
modified to include an extra zone ξ, which can be either empty · or a proper formula
A. The meaning of this new sequent is that the formulas in Γ are decomposed using
the rules for the negative fragment. When Γ becomes empty, if ξ is also empty, then a
positive formula from Θ is picked for focus, but if ξ contains a proper formula, A (from
a positive disjunction), then the only applicable rule continues with focus on A. This
restriction of focus to a potential saved focus is crucial in ensuring that we treat the
positive disjunction positively. The full system for LKFCF is given in Fig. 7.2.

The rules for the negative phase are similar to their LKF counterpart: a saved focus
is kept until all negative formulas are decomposed, at which point it is refocused on.
The focus rule of LKF is split into two rules, where one rule allows a saved focus to
be resumed, and the other rule applies in the case where there is no saved focus. The
rules for the positive phase are similar to the LKF rules. The only exception is the rules
for the positive disjunction. In LKFCF the chosen formula is moved to the saved focus
position, and the non-chosen disjunct is decomposed in the following negative phase.

The changed disjunction rule allows LKFCF to have less redundant proofs, when
several parts of the same formula are used. Consider tying to prove A ∧+ (F ∨+ ¬F),
where A is a big provable formula, and F is an atom. The only LKF proofs involve
proving A twice, whereas the LKFCF proofs can get away with only proving A once.

One might be worried that the way we handle the positive disjunction gives it a
negative flavour, as we keep both formulas after a choice is made. If the non-chosen
disjunct is positive, it is immediately added to the context and focus is resumed; in this
case the disjunction is strictly positive. On the other hand, if the non-chosen disjunct
is negative, we have to decompose it, before it is added to the context, similar to how
a negative disjunction is treated. This seems to be the price we pay, for handling the
disjunction in the chosen way. An alternative could be to add a delay to a negative
formula (e.g. transforming N to N ∧+ T +), and then put it directly into the context,
instead of decomposing it.

7.2. FOCUSED CLASSICAL LOGIC 147

Soundness of LKFCF

LKF is sound and complete with respect to classical logic, regardless of the polarization
for the connectives and the atoms. The proof of soundness and completeness can be
found in the work by Liang and Miller [52]. Therefore, to prove that LKFCF is sound,
with respect to LKF, we just need to prove that it is sound with respect to any classical
system, e.g. LK, which can be proven by straightforward mutual induction:

Lemma 7.2.1. For all A, Θ, ξ and Γ,

1. If 7→ [Θ], A then `LK Θ◦, A◦.

2. If ` ξ, [Θ],Γ then `LK ξ◦,Θ◦,Γ◦.

Soundness for LKFCF now follows from completeness of LKF with respect to LK.

Theorem 7.2.2 (Soundness of LKFCF). If A is provable in LKFCF, then A is provable
in LKF.

Completeness of LKFCF

Completeness of LKFCF is not as simple as soundness. The main difficulty is proving
that the focused formula is not needed in the context after a focus rule. But in order
to prove such a lemma, we need to generalize the statement. The reason for this is
that the subformulas of a focused formula might be negative, and therefore it is not
the full formulas, but subformulas, that are present in the context. Furthermore, there
might also be conjunctions in the subformulas, which may cause branching. To express
subformulas and to handle the branching, we define a relation, ↑, between formulas and
multisets of formulas as follows:

1. C ↑ C, if C is positive or a negative literal.

2. T − ↑ ·.

3. (A ∨− B) ↑ ϕ1, ϕ2, if A ↑ ϕ1 and B ↑ ϕ2.

4. (A ∧− B) ↑ ϕ, if A ↑ ϕ.

5. (A ∧− B) ↑ ϕ, if B ↑ ϕ.

This relation is derived from the similar relation in the work by Liang and Miller [53].
The idea behind the relation is that it captures exactly what happens in the negative
phase. A couple of simple lemmas, which can be proven by structural induction, show
how to use this relation:

Lemma 7.2.3. If ` ξ, [Θ],Γ, A and A ↑ ϕ then ` ξ, [Θ, ϕ],Γ. Furthermore, the deriva-
tion without A has strictly smaller height than the derivation with A.

This lemma expresses that if we have a derivation of some sequent in the negative
phase with A in the waiting list, then whenever A ↑ ϕ, then there is a subderivation of
the original derivation, where ϕ is in the context and A is not in the working list.

Lemma 7.2.4. Given A, if we for all ϕ such that A ↑ ϕ have that ` ξ, [Θ, ϕ],Γ then
` ξ, [Θ],Γ, A.

148 CHAPTER 7. FOCUSING AND CONTRACTION

This lemma expresses that ↑ captures all the subderivations needed to prove the
given negative sequent.

The hardest parts of the main lemma (removing the focused formula from the con-
text) are concerned with the positive conjunction and disjunction; below we prove two
lemmas, which allow us to decompose those positive connectives inside the context.
These lemmas follow from mutual induction on the derivations. The interesting cases
are those where focus selects the given connective from the context; we show one of
those cases:

Lemma 7.2.5. For all A, B, C, Θ, ξ and Γ:

1. Suppose 7→ [Θ, A ∨+ B], C. If A ↑ ϕ1 and B ↑ ϕ2 then 7→ [Θ, ϕ1, ϕ2], C.

2. Suppose ` ξ, [Θ, A ∨+ B],Γ. If A ↑ ϕ1 and B ↑ ϕ2 then ` ξ, [Θ, ϕ1, ϕ2],Γ.

Proof. Consider the case for 2., where the derivation has the following form:
...

` A, [Θ], B
7→ [Θ], A ∨+ B

` ·, [Θ, A ∨+ B]

Lemma 7.2.3 applied to the top derivation gives a derivation of ` A, [Θ, ϕ2], which must
end in Focus1, so we get a derivation of:

7→ [Θ, ϕ2], A . (7.1)

Now if A is a positive formula, then ϕ1 = A and the result follows from focus on A. If
A is a negative formula, then focus is lost following (7.1), and the result follows from
application of Lemma 7.2.3. The case where B is chosen is symmetric.

Lemma 7.2.6. For all A, B, C, Θ, ξ, and Γ:

1. If 7→ [Θ, A ∧+ B], C and A ↑ ϕ1, then 7→ [Θ, ϕ1], C.

2. If ` ξ, [Θ, A ∧+ B],Γ and A ↑ ϕ1, then ` ξ, [Θ, ϕ1],Γ.

3. If 7→ [Θ, A ∧+ B], C and B ↑ ϕ2, then 7→ [Θ, ϕ2], C.

4. If ` ξ, [Θ, A ∧+ B],Γ and B ↑ ϕ2, then ` ξ, [Θ, ϕ2],Γ.

With these two lemmas, we can prove the main lemma.

Lemma 7.2.7. Given A, if we for all ϕ such that A ↑ ϕ have that 7→ [Θ, ϕ], A then
7→ [Θ], A.

Proof. The proof is by structural induction on A. The interesting case is the positive
disjunction, which we show here. Consider A = B ∨+ C. By assumption we have that
(there are two cases, here we consider one):

` B, [Θ, B ∨+ C], C
7→ [Θ, B ∨+ C], B ∨+ C

7.3. COMPILATION INTO LINEAR LOGIC 149

First, assume that C ↑ ϕ2 (we wish to use Lemma 7.2.4, and therefore prove that
` B, [Θ, ϕ2]). Using Lemma 7.2.3 we get ` B, [Θ, B ∨+ C,ϕ2], which could only have
been derived by Focus1, so we get a derivation of:

7→ [Θ, B ∨+ C,ϕ2], B . (7.2)

Now assume that B ↑ ϕ1 (here we wish to use the induction hypothesis, so we want
to prove that 7→ [Θ′, ϕ1, ϕ2], B). Now by Lemma 7.2.5 applied to (7.2), we get 7→
[Θ, ϕ1, ϕ2, ϕ2], B on which the induction hypothesis applies, and we get:

7→ [Θ, ϕ2, ϕ2], B . (7.3)

We now want to prove by inner mutual induction that for any D ∈ ϕ2:

1. If ` ξ, [Θ′, D,D],Γ then ` ξ, [Θ′, D],Γ.

2. If 7→ [Θ′, D,D], E then 7→ [Θ′, D], E.

All cases, except the focus rule where D is selected for focus, apply the inner induction
hypothesis straightforwardly. If D is selected for focus, we have the following derivation:

7→ [Θ′, D], D
` ·, [Θ′, D,D]

Because D is positive, we have that D ↑ D, and as D is a subformula of C or equal
to C, the outer induction hypothesis applies, and we get 7→ [Θ′], D. The inner proof is
then completed with Focus2. We apply the result once for every formula in ϕ2 to (7.3)
and get:

7→ [Θ, ϕ2], B . (7.4)

By applying Focus1 and then Lemma 7.2.4 to (7.4) we get ` B, [Θ], C, from which the
result follows with ∨+

1 .

By using this lemma in the focus rule case, it is now straightforward to prove com-
pleteness of LKFCF with respect to LKF, by mutual induction on the derivations.

Theorem 7.2.8 (Completeness of LKFCF). For all Θ, Γ and A:

1. If `LKF [Θ],Γ then ` ·, [Θ],Γ.

2. If 7→LKF [Θ], A then 7→ [Θ], A.

Having completeness with respect to LKF also means that LKFCF is complete with
respect to propositional classical logic, regardless of the polarization of the atoms and
the connectives.

7.3 Compilation into linear logic

When attempting a compilation of LKFCF into linear logic similar to the compilation of
LJF by Liang and Miller [52], one is faced with two challenges: first, our context admits
weakening but not contraction, so we cannot immediately use the unrestricted context
of linear logic; secondly, we need some mechanism to ensure that if a formula is saved, it
is selected for focus before the formulas in the context are selected. Fortunately, linear
logic with subexponentials can be used to overcome both challenges.

150 CHAPTER 7. FOCUSING AND CONTRACTION

7.3.1 Linear logic with subexponentials

The exponentials in linear logic are not canonical, meaning that if we have two sets
of exponentials (?1, !1, ?2, !2) with the same set of introduction rules, they cannot be
proven equivalent. Danos et al. [21] proposed a linear logic system with the possibility
of having several non-canonical exponentials. These exponentials may or may not admit
weakening or contraction, so the exponential equivalences may not hold, and therefore
Nigam and Miller [71, 72] call them subexponentials. The basic notion is a subexpo-
nential signature Σ = 〈I,�,W, C〉, where I is a set of subexponential indexes, � is a
preorder relation over I. The subexponentials indexed by W ⊆ I admit weakening, the
subexponentials indexed by C ⊆ I admit contraction. All subexponentials admit the
rule of dereliction (here a ∈ I):

` A,∆
`?aA,∆

The subexponentials where w ∈ W admit weakning, and the subexponentials where
c ∈ C admit contraction:

` ∆
`?wA,∆

`?cA, ?cA,∆
`?cA,∆

The promotion rule is given for all subexponentials a ∈ I, xi ∈ I:

`?x1A1, . . . , ?xnAn, A (a � x1 ∧ . . . ∧ a � xn)`?x1A1, . . . , ?xnAn, !aA

For our compilation, we use the subexponential structure Σ = 〈{x, y},�, {y}, ∅〉 where
x � y. The ordering of x and y will be exploited to make sure that a potential saved
focus is resumed before a new formula is chosen for focus.

7.3.2 Focused linear logic with subexponentials

Nigam [71] proposes a focused linear logic proof system with subexponentials, SELLF Σ,
with the proviso that C ⊆ W. We will use that system with the sequents specialized to
our signature given above. Instead of using an indexed context for the question-mark
prefixed formulas, we will use two exponential contexts, one for x and one for y; this will
make the syntax closer to that of Andreoli’s LLF. The basic properties are the same as
for SELLF Σ: we consider formulas in negation normal form; the following connectives
are positive: 0,1,⊗,⊕, !; the following connectives are negative: >,⊥,N,O, ?; and atoms
are assigned an arbitrary polarity. For more details, we refer to the work by Nigam [71].

The system has two kinds of sequents, the focused sequents Ξ : Θ : ∆ ⇓ A, and the
unfocused sequents Ξ : Θ : ∆ ⇑ Γ. The first zone is the subexponential zone for x, the
second zone is the subexponential zone for y, and the third zone is the normal linear
context. The focused sequent corresponds to the following sequent in unfocused linear
logic: `?xΞ, ?yΘ,∆, A and the unfocused sequent to the following: `?xΞ, ?yΘ,∆,Γ. The
rules (specialized from the rules by Nigam [71]), are given in Fig. 7.3. The rules are as
expected, for instance the !y-rule requires the x-zone to be empty.

7.3. COMPILATION INTO LINEAR LOGIC 151

Ix
A⊥p : Θ : · ⇓ Ap

Iy
· : Θ, A⊥p : · ⇓ Ap

I1· : Θ : A⊥p ⇓ Ap

Ξ : Θ : ∆ ⇓ P
DxΞ, P : Θ : ∆ ⇑ ·

Ξ : Θ : ∆ ⇓ P
DxΞ : Θ, P : ∆ ⇑ ·

Ξ : Θ : ∆ ⇓ P
D1Ξ : Θ : ∆, P ⇑ ·

Ξ : Θ : ∆ ⇑ N
R⇓

Ξ : Θ : ∆ ⇓ N
Ξ : Θ : ∆, S ⇑ Γ

R⇑
Ξ : Θ : ∆ ⇑ Γ, S

>Ξ : Θ : ∆ ⇑ Γ,>
Ξ : Θ : ∆ ⇑ Γ

⊥Ξ : Θ : ∆ ⇑ Γ,⊥
1· : Θ : · ⇓ 1

Ξ : Θ : ∆ ⇑ Γ, A Ξ : Θ : ∆ ⇑ Γ, B
N

Ξ : Θ : ∆ ⇑ Γ, ANB
Ξ : Θ : ∆ ⇑ Γ, A,B

O
Ξ : Θ : ∆ ⇑ Γ, AOB

Ξ1 : Θ1 : ∆1 ⇓ A Ξ2 : Θ2 : ∆2 ⇓ B ⊗
Ξ1,Ξ2 : Θ1,Θ2 : ∆1,∆2 ⇓ A⊗B

Ξ : Θ : ∆ ⇓ Ai ⊕
Ξ : Θ : ∆ ⇓ A1 ⊕A2

Ξ, A : Θ : ∆ ⇑ Γ
?x

Ξ : Θ : ∆ ⇑ Γ, ?xA

Ξ : Θ, A : ∆ ⇑ Γ
?y

Ξ : Θ : ∆ ⇑ Γ, ?yA

Ξ : Θ : · ⇑ A
!xΞ : Θ : · ⇓ !xA

· : Θ : · ⇑ A
!y· : Θ : · ⇓ !yA

Figure 7.3: A focused proof system for linear logic with the subexponentials x and y.
i ∈ {1, 2}, Ap is a positive literal, P is not a negative literal, N is a negative formula
and S is a literal or a positive formula.

7.3.3 Compiling LKFCF

We now describe the compilation into a focused proof system for linear logic with subex-
ponentials. We will use the y-zone to hold the context, as it admits weakening and not
contraction, corresponding to the situation in LKFCF. We will use the x-zone to hold
the saved focus. The formulas in the context are translated with !y in front, thereby
forcing the promotion rule to be applicable only when the x-zone is empty, meaning
that there is no saved focus. The compilation is defined by three different translations
on LKFCF formulas:

1. N−1 = N , if N is a literal.

2. P−1 = !yP+1.

3. P 0 = ?y!yP+1.

4. N0 = ?yN , if N is a literal.

5. (T −)0 = >.

6. (F−)0 = ⊥.

7. (A ∧− B)0 = A0NB0.

8. (A ∨− B)0 = A0OB0.

9. N+1 = N0.

10. (F+)+1 = 0.

11. (T +)+1 = 1.

12. (A ∧+ B)+1 = A+1NB+1.

13. (A ∨+ B)+1 = (?x!xA+1OB0)⊕ (A0O?x!xB+1).

In the translation N is negative, and P is positive . We note that these functions are
well defined (if A is positive, then ·+1 is only used on subformulas of A, and if A is
negative, then ·0 is only used on subformulas of A). Furthermore, we note that if N is
negative, then N0 is also negative.

The translation is mostly straightforward, except for a few places. We use a negative
linear conjunction (N) for the positive classical conjunction (∧+), the reason being that

152 CHAPTER 7. FOCUSING AND CONTRACTION

we do not want to split the context in the y-zone, which would happen, if we used
the positive linear conjunction (⊗). The reason why the tensor can be used for LJF is
that the context of LJF is translated to the unrestricted context and therefore not split.
This choice means that we briefly lose focus when encountering a translated positive
conjunction. But this does not pose a problem, as the only way to continue a proof is
to refocus on the negative conjunction, ensured by !y in the y-zone. One can prove this
formally by looking on the polarity of the formula, as stated in the following lemma:

Lemma 7.3.1. The focused proofs of · : Θ−1 : · ⇓ A+1 and · : Θ−1 : · ⇑ A+1 are in
bijective correspondence.

It is also relevant to note the translation of ∨+. In order to get a correct encoding,
we mix both the positive and the negative linear disjunction. The way to understand
the translation is that we choose one of the disjuncts (with ⊕), but then we have to keep
both formulas around (with O), because they are not present in the context anymore.
Lastly, we use ?x to make sure that the saved focus is put into the x-zone, and therefore
will be picked for focus directly after the other part of the formula is decomposed. We
can finally prove that our compilation successfully simulates LKFCF.

Theorem 7.3.2 (LKFCF translation). There is a bijection between proofs of the follow-
ing sequents:

1. 7→ [Θ], A and · : Θ−1 : · ⇓ A+1.

2. ` ξ, [Θ],Γ and !xξ+1 : Θ−1 : · ⇑ Γ0.

Proof. By mutual induction on the derivations. We show two interesting cases:

1. Case:

7→ [Θ], A
` A, [Θ]

←→
· : Θ−1 : · ⇑ A+1

· : Θ−1 : · ⇓!xA+1

!xA+1 : Θ−1 : · ⇑

The right derivation must look like that, because the !y’s in Θ−1 prevent focus
from picking them, when the second context is non-empty. The result follows
from Lemma 7.3.1.

2. Case:

` A, [Θ], B
7→ [Θ], A ∨+ B

←→

!xA+1 : Θ−1 : · ⇑ B0

· : Θ−1 : · ⇑?x!xA+1, B0

· : Θ−1 : · ⇑?x!xA+1OB0

· : Θ−1 : · ⇓?x!xA+1OB0

· : Θ−1 : · ⇓ (?x!xA+1OB0)⊕ (?x!xB+1OA0)

Even though our theorem only relates (full) proofs, our compilation will, in principle,
ensure a bijection on open derivations as well. The only places where the direct bijection
fails, are when the linear logic proof system focuses on one of the formulas with a bang.
But such a focus would fail immediately afterwards, thus ensuring the correspondence.

7.4. LKFCF AND PROOF SEARCH 153

We conclude the section with a comment about the translation. We use a subexpo-
nential with weakening but not contraction, so one could consider, whether a dialect of
affine logic could be used instead of full linear logic with subexponentials. The problem
here is how to represent the saved focus of LKFCF, for which we use the extra subex-
ponential. But if one considered only the positive fragment, one would only need one
subexponential, and we speculate that a dialect of affine logic might be enough for this
fragment.

7.4 LKFCF and proof search

For a proof system like LKFCF, it is relatively easy to do a naive implementation in
a logical programming language like Prolog or λProlog [66]. We have therefore con-
structed several different provers and compared their relative performance on a set of
benchmark problems. The set of benchmark problems is very important, as a biased set
will generally benefit specific provers more. One method to get a non-biased set would
be to look at some third-part library for test problems, like the TPTP problem library
for automated theorem proving [93], and then choose a subset of the propositional prob-
lems. As the selection of problems could also be biased, and because we only build small
naive theorem provers, we settle on a smaller problem set derived from the propositional
part of the problems for theorem provers by Pelletier [78] instead.

The problems by Pelletier are given as general formulas using ⇒ and ⇔; we first
convert these into negation normal form, and then, because the problems are too small
to use as a proper benchmark, we generalize the problems by replacing the atoms in the
formulas with composite formulas. In this study we consider four different composite
formulas; two are based on a big disjunction of either different positive atoms or different
negative atoms, and the other two are based on a big conjunction of different positive
atoms or different negative atoms. We use a fixed size of the conjunction and the
disjunction to prevent any prover from having an edge; in the experiment below, the
size of those were 100 atoms. Some of the problems will be the same (e.g. Pelletier
problem 6 and 7 have the same negation normal form), so we will only consider the
different problems. In total we consider 52 different problems.

All the provers are implemented in λProlog version 2.0-b2; their code is available
on the author’s web page2. One is based on Fitting’s implementation [29] of leanTAP
[9]; four other provers are based on versions of the contraction-free system G3c [94],
depending on how early the initial rule is applied, or whether disjunctions or conjunctions
are decomposed first; eight are based on LKF, with the variants based on whether
disjunctions/conjunctions are polarized negatively or positively, and based on whether
they apply a small optimization described below; finally, eight variants are based on
LKFCF, the variations being the same as for LKF.

Four of the LKF provers and four of the LKFCF provers apply an optimization,
which allows the initial rule to be used in the negative phase, corresponding to adding
the following rules to LKF and LKFCF, respectively:

` [Θ,¬L],Γ, L ` ξ, [Θ,¬L],Γ, L

where L is a literal.
All the provers have been run on a 2.13 MHz Intel dual core machine with 3 GB

memory, and the results are summarized in Table 7.1. Solved is the number of problems
2http://www.diku.dk/hjemmesider/ansatte/starcke/

http://www.diku.dk/hjemmesider/ansatte/starcke/

154 CHAPTER 7. FOCUSING AND CONTRACTION

Table 7.1: Experimental study of different provers
Prover Solved (10s) Avg. (10s) Solved (60s) Avg. (60s)
LKFid∗

CF (+,–) 35 of 52 0.8s 41 of 52 3.2s
LKFid∗ (+,–) 33 of 52 1.3s 34 of 52 1.8s
LKFCF (+,–) 33 of 52 1.5s 34 of 52 2.2s
LKFCF (+,+) 27 of 52 1.6s 33 of 52 4.3s
LKFid∗

CF (+,+) 27 of 52 1.6s 33 of 52 4.4s
LK (∨ first) 32 of 52 0.7s 32 of 52 0.7s
LK (eager initial) 28 of 52 0.9s 28 of 52 0.9s
leanTAP 24 of 52 2.8s 28 of 52 4.5s
LKF (+,–) 26 of 52 1.8s 27 of 52 2.4s
LKFid∗ (–,–) 22 of 52 2.6s 25 of 52 5.9s

solved with the given time limit for each problem. Avg. is the average running time
for successfully proven problems. For the LKF and LKFCF provers, we assign polarity
to the connectives uniformly, the first sign is the polarity for all conjunctions and the
second sign is the polarity for all disjunctions; id* means that the optimization described
above was used. Because of space limits, we only show the ten best provers ranked by
the number of solved problems in 60 seconds.

When considering the results, we see that the implementations based on LKFCF

perform well on our chosen set of benchmark problems. We will briefly mention a couple
of details: we see that for both LKF and LKFCF, a positive conjunction and a negative
disjunction yield the best results; this might be because most of the benchmark problems
contain disjunctions, where both branches are needed to get a proof, and therefore it is
faster to just decompose the disjunction. For LKFCF it might be a bit surprising to learn
that the negative disjunction is better than the (optimized) positive disjunction, but we
think that this is due to the fact that the disjunctions in the benchmark problems are
very wide, but not very deeply nested; meaning that it is more efficient to decompose the
disjunction directly, although the LKFCF variant with positive disjunction still performs
well. The formulas, where LKF and LKFCF have an advantage over the LK variants,
seem to be the formulas, where big conjunctions can be put into the context and saved
for later. Non-surprisingly, the advantage is smallest over the version where conjunctions
are saved for last. When there are negative atoms, LKF and LKFCF have to refocus,
so big conjunctions with negative atoms can give lesser performance for those focused
systems, compared to the LK variants. Lastly, the leanTAP implementation is very
similar to our LK variant where the initial rule is applied eagerly, which can also be seen
from the results; one difference is that the leanTAP based approach can keep several
copies of the same literal, whereas our LK variant only keeps new literals; a second
difference is that leanTAP searches on the negated formula instead of the original
formula.

7.5 Future work

In this work we have only considered the propositional fragment. One might consider
whether the work applies to quantifiers as well. It is straightforward to get a simple
extension with quantifiers. One assigns ∀ to the negative connectives and ∃ to the
positive connectives, and add the following rules to LKFCF:

7.5. FUTURE WORK 155

` ξ, [Θ],Γ, A
` ξ, [Θ],Γ,∀xA

7→ [Θ, ∃yA], A[t/y]
7→ [Θ],∃yA

where x is not free in ξ, Θ or Γ. The proofs of soundness and completeness in Sect. 7.2
extend straightforwardly to this extension. One thing, which does not extend directly,
is the linear logic compilation given in Sect. 7.3. The rule for the existential cannot be
directly modelled in the translation; the problem is that the entire formula is added to
the context and must be available for later refocus, which means that the translation
of the existential must include itself as a subformula, which will not work. In LKF
and LJF the situation is different, because the existential stays in the context, and
contraction can be applied to it. A solution might be to add another subexponential,
which allows both weakening and contraction, and use that one to hold the existentials.
That subexponential would have to be larger than x and equal (with respect to �) to
y. Another idea could be to add fixpoints to the logic.

If the quantifiers range over a finite domain, S, then they are basically just big
disjunctions. In that case, the existential can be given a rule similar to the positive
disjunction:

7→ [Θ, ∃y ∈ S \ {t}. A], A[t/y]
7→ [Θ],∃y ∈ S. A

Another topic of interest is how well suited the proof system is for reasoning; is it
possible to prove, for instance, cut elimination directly in LKFCF? We have tried a
small example, proving that the generalized initial rule holds for the system. To prove
such a theorem, we used the same generalization (using the ↑ relation) as is used to
prove completeness. We speculate that it is therefore possible to prove cut elimination
directly, although it might take some work.

A last line of possible future work is to look at how to extend the results to other
systems, in particular an intuitionistic focused proof system like LJF. One could proba-
bly use the same idea for the focus rule, but one would have to take care with the rule
for implication on the left. Possibly something similar to the system by Dyckhoff [27]
could be used.

156 CHAPTER 7. FOCUSING AND CONTRACTION

Part III

Conclusion and future work

157

158

Chapter 8

Conclusion and future work

Starting from a problem (Foundations for certified code for concurrent and distributed
processes), which seemed mostly technical, we arrived at a conceptually different way of
thinking about formal specifications. The main insight is that system analysis, design
and modelling should not be done from an a priori cooperative viewpoint, where all
actors are supposedly working together towards a common goal. Instead, one should
rather take a fundamentally adversarial viewpoint, where the different actors behave in
accordance which their own (to the other actors unknown) goals.

Returning to the foundations, we defined two concrete mathematical models for mul-
tiparty interactions, based on the inherently adversarial notion of games. These models
allow certification, based on a paradigm which we call verification-time monitoring, al-
lowing standard Floyd-Hoare logic to be used for certifying real-time communicating
processes.

The work is mainly focused on the foundational part, and concrete real-world sce-
narios are not considered in detail in this work, nor are the substantial engineering
challenges in making framework practically usable. Below, we summarise the results
and future work.

8.1 Summary

In this work we have obtained the following results:

Adversarial composition. In Chapter 2 we argued that to model real-life situations
faithfully, one has to account for adversarial compositions. In such compositions, the
different actors may unknowingly or deliberately work against each other. We argued
that a single goal or choreography in such a setting is inherently a compromise between
different actors, and should therefore not be viewed as a specification, but rather as
an implementation of a logically distributed system. The specifications should instead
be expressed as legally binding contracts, stating exactly how the different actors are
penalised or rewarded for different behaviour.

Adversarial modelling. In Chapter 3 we presented a mathematical framework for
modelling real-time, adversarial compositions. Specifications were modelled as game-like
contracts, assigning the participants a real-valued pay-off for each run. Implementations
were modelled as strategies, where a strategy for a legal principal consists of a set of

159

160 CHAPTER 8. CONCLUSION AND FUTURE WORK

tactics for the principal’s agents, designed to collectively do well in all the principal’s
contracts.

The framework consisted of two concrete models. The first model formalised con-
tracts and tactics as respectively real-valued predicates on and transformers of traces.
We then showed how to compose the behaviour of two tactics, and proved that if each
tactic conforms with a series of contracts, their composition conforms with the union of
contracts, provided that their mutual interactions are described by a contract, in which
the two tactics play dual roles. This allows reasoning about each tactic in isolation. To
make contracts and tactics more intensional, the second model formalised them in terms
of automata. We defined conformance for these automata and showed how to relate the
automata-based model to the trace-based model. Concretely, we proved that if a tac-
tic automaton conforms (as an automaton) with a set of contract automata, then the
trace-based denotation of the tactic conforms (as a trace operator) with the trace-based
denotation of the contracts.

Certification by verification-time monitoring. In Chapter 4 we introduced a
new paradigm for certifying interacting real-time processes. We called this paradigm
verification-time monitoring, based on the idea of a test harness, which supervises the
tactic by feeding it input observations and monitoring its output actions, using both
to advance the state of the contracts, and accumulating the pay-offs. The test harness
returns an error, if at some point the tactic reaches a negative balance of pay-offs. This
approach turns the question of conformance into a question of whether the test harness
avoids an error state. We then defined a simple coroutine language, and showed how
to implement the test harness as a sequential program in that language. That allowed
us to define a Floyd-Hoare logic to certify safety of the harnessed tactic and therefore
in turn conformance. Lastly, we showed a small proof-of-concept implementation of the
verification-time monitoring paradigm, including a small example with one tactic and
two contracts.

Towards resource-based interaction. In Chapter 5 we presented preliminary work
on extending the framework to explicitly account for linear resources. Such resources
have interesting applications in contracts about the transfer of physical goods. Fur-
thermore, they can be used to model dynamically changing communication topologies.
Concretely, we showed an extension to the trace-based model with support for attaching
resources to communication events.

A proof hosting framework based on focusing. In Chapter 6 we showed how to
use the focused proof system for intuitionistic logic, LJF, as a basis for hosting several
different proof systems, with equivalence on the level of open derivations. The work
was sparked by recent similar work, the basis of which was a focused proof system for
classical linear logic. Our work shows that neither classical nor linear logic is needed to
get full equivalence of open derivations – therefore focusing seems to be the main com-
ponent in such an encoding, highlighting focusing as a strong proof-theoretic tool. Being
an intuitionistic system, LJF also seemed to have nicer encodings of the intuitionistic
systems, e.g. the only difference in the encoding of the intuitionistic sequent calculus,
LJ, and the system of natural deduction, NJ, is a change in polarity.

8.2. FUTURE WORK 161

Contraction in the presence of focusing. In Chapter 7 we showed how to remove
contraction from a focused proof system for propositional classical logic. To our knowl-
edge, all existing focused systems, for both classical and intuitionistic logic, use contrac-
tion exactly for the formula chosen for focus. With contraction, proofs risk redundancy,
because the same formula could be chosen again and again. Removing contraction is not
trivial, however, because contraction is needed to retain completeness. We showed that
the main problem can be isolated to the treatment of the positive disjunction, because
the proof of some formulas need to be able to choose the second disjunct. Our system
solves this problem by adding only the non-taken disjunct to the context. We proved
that this modification is both sound and complete with respect to the original system
with ordinary contraction.

8.2 Future work

Each technical chapter already pointed out directions for future work. Here, we briefly
summarise the most important directions:

Concrete scenarios. We have presented concrete models for performing verification
and certification of concurrent and distributed systems. The practical applicability,
however, needs to be thoroughly investigated by modelling and certifying concrete sce-
narios, preferably taken from the three application domains: programming-by-contract,
communication protocols and organisational workflows.

Adversarial models. In our current models the set of negotiated contracts are static,
i.e., contracts cannot be created or removed at runtime. The most interesting extension
to the concrete models is accounting for dynamic creation of contracts. A promising
idea for dynamic contracts is the idea of having meta-contracts that govern the creation
and execution of certain object-contracts.

Verification-time monitoring. Our certification paradigm (verification-time moni-
toring) allows certification, using standard techniques based on Floyd-Hoare logic, to be
used for communicating real-time processes. As future work it could be very interesting
to investigate how well this paradigm works in practice. A concern is, how easily the full
certification proofs can be constructed from minimal developer supplied annotations.

Focusing for hosting of proof systems. We showed how to use a focused proof
system for intuitionistic logic to host several different proof systems. Future work should
be concerned with how easy it is to work with the proofs in the framework, how easy
can we e.g. prove cut elimination for the hosted systems in this framework.

Contraction elimination for focused proof systems. We showed how to remove
contraction from the focused system for propositional classical logic, LKF. The most
important direction for future work is whether the results can be used to remove con-
traction from a focused system for intuitionistic logic, e.g. LJF, and how to extend the
result to the full fragment (with quantifiers).

162 CHAPTER 8. CONCLUSION AND FUTURE WORK

Appendix A

Source code

A.1 Tactic, contracts and supervisor for the +2 case

----- GENERAL -----

-- Actions

type act = Emp | V : i n t

-- Input trace: lo1 ,li2

type train = NoIn | Actin : r ea l , i n t , train

-- Output trace: li1 , lo2

type traout = NoOut | Actout : r ea l , i n t

-- Tactic state

type tState = S1 | S2 | S3

-- Contract states

type cState1 = C1start | C1run : i n t , r e a l
type cState2 = C2start | C2run : i n t , r e a l

-- Contract Running state

type run1 = Done1 : r e a l | Run1 : cState1

type run2 = Done2 : r e a l | Run2 : cState2

-- Supervisor states

type sTac1 = STac1 : r ea l , r ea l , r ea l , r ea l ,run1 , r ea l ,run2 ,
train ,train ,traout ,traout ,

act ,act ,act ,act

type sTac2 = STac2 : r ea l , r ea l , r ea l , r ea l ,run1 , r ea l ,run2 ,
train ,train ,traout ,traout ,

act ,act ,act ,act ,act ,act

type sCon1 = SCon1 : r ea l , r ea l , r ea l ,tState , r ea l , r ea l , run2 ,

train ,train ,traout ,traout ,

act ,act ,act ,act

type sCon2 = SCon2 : r ea l , r ea l , r ea l ,tState , r ea l , run1 , r ea l ,
train ,train ,traout ,traout ,

act ,act ,act ,act

----- TACTIC -----

-- Tactic io

163

164 APPENDIX A. SOURCE CODE

tacI(ss : sTac2 , ts : tState , lo1 : act , li2 : act) =

case ts of
S1 -> i f li2 = Emp then tacRetI(ss ,S1 ,Emp ,Emp)

e l s e tacRetI(ss ,S2 ,li2 ,Emp)

| S2 -> i f lo1 = Emp then tacRetI(ss ,S2 ,Emp ,Emp)

e l s e tacRetI(ss ,S3 ,lo1 ,Emp)

| S3 -> i f lo1 = Emp then tacRetI(ss ,S3 ,Emp ,Emp)

e l s e tacRetI(ss ,S1 ,Emp ,lo1)

end

-- Tactic time

tacT(ss : sTac1 , ts : tState) = tacRetT(ss,ts,Emp ,Emp)

----- +1 CONTRACT -----

-- Contract io

con1I(ss : sCon1 , cs1 : cState1 , li1 : act , lo1 : act) =

case cs1 of
C1start ->

i f lo1 /= Emp then con1RetI(ss,Done1 (1.0))

e l s e case li1 of
Emp -> con1RetI(ss ,Run1(cs1))

| V(n) -> con1RetI(ss ,Run1(C1run(n ,3.0)))

end
| C1run (n,t) ->

i f li1 /= Emp then con1RetI(ss,Done1 (0.0 - 1.0))

e l s e case lo1 of
Emp -> con1RetI(ss ,Run1(cs1))

| V(n2) -> i f n + 1 = n2 then con1RetI(ss,Run1(C1start))

e l s e con1RetI(ss,Done1 (1.0))

end
end

-- Contract time

con1T(ss : sCon1 ,cs1 : cState1) =

case cs1 of
C1start -> con1RetT(ss ,Run1(cs1))

| C1run (n,t) ->

i f t <= 0.0

then con1RetT(ss,Done1 (1.0))

e l s e con1RetT(ss,Run1(C1run(n,t - 1.0)))

end

----- +2 CONTRACT -----

-- Contract io

con2I(ss : sCon2 , cs2 : cState2 , li2 : act , lo2 : act) =

case cs2 of
C2start ->

i f lo2 /= Emp then con2RetI(ss,Done2 (0.0 - 1.0))

e l s e case li2 of
Emp -> con2RetI(ss ,Run2(cs2))

| V(n) -> con2RetI(ss ,Run2(C2run(n ,20.0)))

end
| C2run (n,t) ->

i f li2 /= Emp then con2RetI(ss,Done2 (1.0))

e l s e case lo2 of
Emp -> con2RetI(ss ,Run2(cs2))

| V(n2) -> i f n + 2 = n2 then con2RetI(ss,Run2(C2start))

e l s e con2RetI(ss,Done2 (0.0 - 1.0))

A.1. TACTIC, CONTRACTS AND SUPERVISOR FOR THE +2 CASE 165

end
end

-- Contract time

con2T(ss : sCon2 ,cs2 : cState2) =

case cs2 of
C2start -> con2RetT(ss ,Run2(cs2))

| C2run (n,t) ->

i f t <= 0.0

then con2RetT(ss,Done2 (0.0 - 1.0))

e l s e con2RetT(ss,Run2(C2run(n,t - 1.0)))

end

----- SUPERVISOR -----

start(tstart : r ea l , tend : r ea l , alo1 : train , ali2 : train) =

loop(tstart ,tend ,

tstart ,S1 ,

tstart ,Run1(C1start),

tstart ,Run2(C2start),alo1 ,ali2 ,NoOut ,NoOut)

loop(tnow : r ea l , tend : r ea l ,
ttac : r ea l , ts : tState ,

tcon1 : r ea l , rs1 : run1 ,

tcon2 : r ea l , rs2 : run2 ,

alo1 : train , ali2 : train ,

ali1 : traout , alo2 : traout) =

i f tnow <= tend

then splitLo1(tnow ,tend ,ttac ,ts,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2)

e l s e done

-- Splitting -- {{{

splitLo1(tnow : r ea l , tend : r ea l ,
ttac : r ea l , ts : tState ,

tcon1 : r ea l , rs1 : run1 ,

tcon2 : r ea l , rs2 : run2 ,

alo1 : train , ali2 : train ,

ali1 : traout , alo2 : traout) =

case alo1 of
NoIn -> splitLi2(tnow ,tend ,ttac ,ts,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2 ,Emp)

| Actin (tlo1 ,lo1 ,alo1_) ->

i f tlo1 <= tnow then splitLi2(tnow ,tend ,ttac ,ts,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1_ ,ali2 ,ali1 ,alo2 ,V(lo1))

e l s e splitLi2(tnow ,tend ,ttac ,ts,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2 ,Emp)

end

splitLi2(tnow : r ea l , tend : r ea l ,
ttac : r ea l , ts : tState ,

tcon1 : r ea l , rs1 : run1 ,

tcon2 : r ea l , rs2 : run2 ,

alo1 : train , ali2 : train ,

ali1 : traout , alo2 : traout ,

lo1now : act) =

case ali2 of
NoIn -> splitLi1(tnow ,tend ,ttac ,ts,tcon1 ,rs1 ,tcon2 ,rs2 ,

166 APPENDIX A. SOURCE CODE

alo1 ,ali2 ,ali1 ,alo2 ,lo1now ,Emp)

| Actin (tli2 ,li2 ,ali2_) ->

i f tli2 <= tnow then splitLi1(tnow ,tend ,ttac ,ts,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2_ ,ali1 ,alo2 ,lo1now ,V(li2))

e l s e splitLi1(tnow ,tend ,ttac ,ts,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2 ,lo1now ,Emp)

end

splitLi1(tnow : r ea l , tend : r ea l ,
ttac : r ea l , ts : tState ,

tcon1 : r ea l , rs1 : run1 ,

tcon2 : r ea l , rs2 : run2 ,

alo1 : train , ali2 : train ,

ali1 : traout , alo2 : traout ,

lo1now : act ,li2now : act) =

case ali1 of
NoOut -> splitLo2(tnow ,tend ,ttac ,ts ,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2 ,lo1now ,li2now ,Emp)

| Actout (tli1 ,li1) ->

i f tli1 <= tnow then splitLo2(tnow ,tend ,ttac ,ts,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,NoOut ,alo2 ,

lo1now ,li2now ,V(li1))

e l s e splitLo2(tnow ,tend ,ttac ,ts,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2 ,

lo1now ,li2now ,Emp)

end

splitLo2(tnow : r ea l , tend : r ea l ,
ttac : r ea l , ts : tState ,

tcon1 : r ea l , rs1 : run1 ,

tcon2 : r ea l , rs2 : run2 ,

alo1 : train , ali2 : train ,

ali1 : traout , alo2 : traout ,

lo1now : act ,li2now : act ,li1now : act) =

case alo2 of
NoOut -> invTac(tnow ,tend ,ttac ,ts ,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2 ,lo1now ,li2now ,li1now ,Emp)

| Actout (tlo2 ,lo2) ->

i f tlo2 <= tnow then invTac(tnow ,tend ,ttac ,ts,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,NoOut ,

lo1now ,li2now ,li1now ,V(lo2))

e l s e invTac(tnow ,tend ,ttac ,ts,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2 ,

lo1now ,li2now ,li1now ,Emp)

end

-- Splitting -- }}}

-- Invoke and return from tactic {{{

invTac(tnow : r ea l , tend : r ea l ,
ttac : r ea l , ts : tState ,

tcon1 : r ea l , rs1 : run1 ,

tcon2 : r ea l , rs2 : run2 ,

alo1 : train , ali2 : train ,

ali1 : traout , alo2 : traout ,

lo1now : act ,li2now : act ,li1now : act ,lo2now : act) =

i f ttac <= tnow

then tacT(STac1(tnow ,tend ,ttac + 1.0,tcon1 ,rs1 ,tcon2 ,rs2 , -- Timeout

alo1 ,ali2 ,ali1 ,alo2 ,lo1now ,li2now ,li1now ,lo2now),ts)

A.1. TACTIC, CONTRACTS AND SUPERVISOR FOR THE +2 CASE 167

e l s e tacRetT(STac1(tnow ,tend ,ttac ,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2 ,lo1now ,li2now ,li1now ,lo2now),

ts ,Emp ,Emp)

tacRetT(ss : sTac1 , ts : tState , li1 : act , lo2 : act) =

case ss of
STac1(tnow ,tend ,ttac ,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2 ,lo1now ,li2now ,li1now ,lo2now) ->

i f lo1now = Emp & li2now = Emp

then updLi1(tnow ,tend ,ttac ,ts,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2 ,

lo1now ,li2now ,li1now ,lo2now ,li1 ,lo2)

e l s e tacI(STac2(tnow ,tend ,ttac ,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2 ,

lo1now ,li2now ,li1now ,lo2now ,

li1 ,lo2),ts,lo1now ,li2now)

end

tacRetI(ss : sTac2 , ts : tState , li1_ : act , lo2_ : act) =

case ss of
STac2(tnow ,tend ,ttac ,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2 ,

lo1now ,li2now ,li1now ,lo2now ,li1 ,lo2) ->

l e t li1__ = i f li1 = Emp then li1_ e l s e li1

i n l e t lo2__ = i f lo2 = Emp then lo2_ e l s e lo2

i n updLi1(tnow ,tend ,ttac ,ts,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2 ,

lo1now ,li2now ,li1now ,lo2now ,li1__ ,lo2__)

end
end

end

-- Invoke and return from tactic }}}

-- Update output -- {{{

updLi1(tnow : r ea l , tend : r ea l ,
ttac : r ea l , ts : tState ,

tcon1 : r ea l , rs1 : run1 ,

tcon2 : r ea l , rs2 : run2 ,

alo1 : train , ali2 : train ,

ali1 : traout , alo2 : traout ,

lo1now : act ,li2now : act ,li1now : act ,lo2now : act ,

li1 : act ,lo2 : act) =

i f ali1 = NoOut

then case li1 of
Emp -> updLo2(tnow ,tend ,ttac ,ts ,tcon1 ,rs1 ,tcon2 ,rs2 ,alo1 ,ali2 ,

NoOut ,

alo2 ,lo1now ,li2now ,li1now ,lo2now ,lo2)

| V(n) -> updLo2(tnow ,tend ,ttac ,ts ,tcon1 ,rs1 ,tcon2 ,rs2 ,alo1 ,ali2 ,

Actout(tnow + 1.0,n), -- latency

alo2 ,lo1now ,li2now ,li1now ,lo2now ,lo2)

end
e l s e updLo2(tnow ,tend ,ttac ,ts,tcon1 ,rs1 ,tcon2 ,rs2 ,alo1 ,ali2 ,

ali1 ,

alo2 ,lo1now ,li2now ,li1now ,lo2now ,lo2)

updLo2(tnow : r ea l , tend : r ea l ,
ttac : r ea l , ts : tState ,

168 APPENDIX A. SOURCE CODE

tcon1 : r ea l , rs1 : run1 ,

tcon2 : r ea l , rs2 : run2 ,

alo1 : train , ali2 : train ,

ali1 : traout , alo2 : traout ,

lo1now : act ,li2now : act ,li1now : act ,lo2now : act ,

lo2 : act) =

i f alo2 = NoOut

then case lo2 of
Emp -> invCon1(tnow ,tend ,ttac ,ts ,tcon1 ,rs1 ,tcon2 ,rs2 ,alo1 ,ali2 ,

ali1 ,NoOut ,

lo1now ,li2now ,li1now ,lo2now)

| V(n) -> invCon1(tnow ,tend ,ttac ,ts ,tcon1 ,rs1 ,tcon2 ,rs2 ,alo1 ,ali2 ,

ali1 ,Actout(tnow + 1.0,n), -- latency

lo1now ,li2now ,li1now ,lo2now)

end
e l s e invCon1(tnow ,tend ,ttac ,ts ,tcon1 ,rs1 ,tcon2 ,rs2 ,alo1 ,ali2 ,

ali1 ,alo2 ,lo1now ,li2now ,li1now ,lo2now)

-- Update output -- }}}

-- Invoke and return from con1 {{{

invCon1(tnow : r ea l , tend : r ea l ,
ttac : r ea l , ts : tState ,

tcon1 : r ea l , rs1 : run1 ,

tcon2 : r ea l , rs2 : run2 ,

alo1 : train , ali2 : train ,

ali1 : traout , alo2 : traout ,

lo1now : act ,li2now : act ,li1now : act ,lo2now : act) =

case rs1 of
Done1(k) -> invCon2(tnow ,tend ,ttac ,ts ,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2 ,

lo1now ,li2now ,li1now ,lo2now)

| Run1(cs) ->

i f tcon1 <= tnow

then con1T(SCon1(tnow ,tend ,ttac ,ts ,tnow + 1.0, -- Timeout

tcon2 ,rs2 ,alo1 ,ali2 ,ali1 ,alo2 ,

lo1now ,li2now ,li1now ,lo2now),cs)

e l s e con1RetT(SCon1(tnow ,tend ,ttac ,ts,tcon1 ,

tcon2 ,rs2 ,alo1 ,ali2 ,ali1 ,alo2 ,

lo1now ,li2now ,li1now ,lo2now),rs1)

end

con1RetT(ss : sCon1 , rs1 : run1) =

case ss of
SCon1(tnow ,tend ,ttac ,ts ,tcon1 ,

tcon2 ,rs2 ,alo1 ,ali2 ,ali1 ,alo2 ,

lo1now ,li2now ,li1now ,lo2now) ->

case rs1 of
Done1(k) -> invCon2(tnow ,tend ,ttac ,ts ,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2 ,

lo1now ,li2now ,li1now ,lo2now)

| Run1(cs) ->

i f lo1now = Emp & li1now = Emp

then invCon2(tnow ,tend ,ttac ,ts ,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2 ,

lo1now ,li2now ,li1now ,lo2now)

e l s e con1I(ss , cs , li1now , lo1now)

end

A.1. TACTIC, CONTRACTS AND SUPERVISOR FOR THE +2 CASE 169

end

con1RetI(ss : sCon1 , rs1 : run1) =

case ss of
SCon1(tnow ,tend ,ttac ,ts ,tcon1 ,

tcon2 ,rs2 ,alo1 ,ali2 ,ali1 ,alo2 ,

lo1now ,li2now ,li1now ,lo2now) ->

invCon2(tnow ,tend ,ttac ,ts ,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2 ,

lo1now ,li2now ,li1now ,lo2now)

end

-- Invoke and return from con1 }}}

-- Invoke and return from con2 {{{

invCon2(tnow : r ea l , tend : r ea l ,
ttac : r ea l , ts : tState ,

tcon1 : r ea l , rs1 : run1 ,

tcon2 : r ea l , rs2 : run2 ,

alo1 : train , ali2 : train ,

ali1 : traout , alo2 : traout ,

lo1now : act ,li2now : act ,li1now : act ,lo2now : act) =

case rs2 of
Done2(k) -> payoff(tnow ,tend ,ttac ,ts ,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2 ,

lo1now ,li2now ,li1now ,lo2now)

| Run2(cs) ->

i f tcon2 <= tnow

then con2T(SCon2(tnow ,tend ,ttac ,ts ,tcon1 ,rs1 ,

tnow + 1.0,alo1 ,ali2 ,ali1 ,alo2 , -- Timeout

lo1now ,li2now ,li1now ,lo2now),cs)

e l s e con2RetT(SCon2(tnow ,tend ,ttac ,ts,tcon1 ,rs1 ,

tcon2 ,alo1 ,ali2 ,ali1 ,alo2 ,

lo1now ,li2now ,li1now ,lo2now),rs2)

end

con2RetT(ss : sCon2 , rs2 : run2) =

case ss of
SCon2(tnow ,tend ,ttac ,ts ,tcon1 ,rs1 ,

tcon2 ,alo1 ,ali2 ,ali1 ,alo2 ,

lo1now ,li2now ,li1now ,lo2now) ->

case rs2 of
Done2(k) -> payoff(tnow ,tend ,ttac ,ts ,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2 ,

lo1now ,li2now ,li1now ,lo2now)

| Run2(cs) ->

i f lo2now = Emp & li2now = Emp

then payoff(tnow ,tend ,ttac ,ts,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2 ,

lo1now ,li2now ,li1now ,lo2now)

e l s e con2I(ss , cs , li2now , lo2now)

end
end

con2RetI(ss : sCon2 , rs2 : run2) =

case ss of
SCon2(tnow ,tend ,ttac ,ts ,tcon1 ,rs1 ,

tcon2 ,alo1 ,ali2 ,ali1 ,alo2 ,

170 APPENDIX A. SOURCE CODE

lo1now ,li2now ,li1now ,lo2now) ->

payoff(tnow ,tend ,ttac ,ts,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2 ,

lo1now ,li2now ,li1now ,lo2now)

end

-- Invoke and return from con2 }}}

payoff(tnow : r ea l , tend : r ea l ,
ttac : r ea l , ts : tState ,

tcon1 : r ea l , rs1 : run1 ,

tcon2 : r ea l , rs2 : run2 ,

alo1 : train , ali2 : train ,

ali1 : traout , alo2 : traout ,

lo1now : act ,li2now : act ,li1now : act ,lo2now : act) =

case rs1 of
Done1(k1) -> case rs2 of

Done2(k2) -> i f k1 + k2 < 0.0 then f a i l
e l s e done

| Run2(cs2) -> i f k1 < 0.0 then f a i l
e l s e finish(tnow ,tend ,ttac ,ts,

tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2 ,

lo1now ,li2now ,li1now ,lo2now)

end
| Run1(cs1) -> case rs2 of

Done2(k2) -> i f k2 < 0.0 then f a i l
e l s e finish(tnow ,tend ,ttac ,ts,

tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2 ,

lo1now ,li2now ,li1now ,lo2now)

| Run2(cs2) -> finish(tnow ,tend ,ttac ,ts ,

tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2 ,

lo1now ,li2now ,li1now ,lo2now)

end
end

finish(tnow : r ea l , tend : r ea l ,
ttac : r ea l , ts : tState ,

tcon1 : r ea l , rs1 : run1 ,

tcon2 : r ea l , rs2 : run2 ,

alo1 : train , ali2 : train ,

ali1 : traout , alo2 : traout ,

lo1now : act ,li2now : act ,li1now : act ,lo2now : act) =

l e t tmin = i f ttac < tcon1

then i f ttac < tcon2 then ttac e l s e tcon2

e l s e i f tcon1 < tcon2 then tcon1 e l s e tcon2

i n firstLo1(tnow ,tmin ,tend ,ttac ,ts,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2)

end

-- Calculate next timepoint {{{

firstLo1(tnow : r ea l , tmin : r ea l , tend : r ea l ,
ttac : r ea l , ts : tState ,

tcon1 : r ea l , rs1 : run1 ,

tcon2 : r ea l , rs2 : run2 ,

alo1 : train , ali2 : train ,

A.1. TACTIC, CONTRACTS AND SUPERVISOR FOR THE +2 CASE 171

ali1 : traout , alo2 : traout) =

case alo1 of
NoIn -> firstLi2(tnow ,tmin ,tend ,ttac ,ts,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2)

| Actin (tlo1 ,lo1 ,alo1_) ->

firstLi2(tnow , i f tlo1 < tmin then tlo1 e l s e tmin ,

tend ,ttac ,ts,tcon1 ,rs1 ,tcon2 ,rs2 ,alo1 ,ali2 ,ali1 ,alo2)

end

firstLi2(tnow : r ea l , tmin : r ea l , tend : r ea l ,
ttac : r ea l , ts : tState ,

tcon1 : r ea l , rs1 : run1 ,

tcon2 : r ea l , rs2 : run2 ,

alo1 : train , ali2 : train ,

ali1 : traout , alo2 : traout) =

case ali2 of
NoIn -> firstLi1(tnow ,tmin ,tend ,ttac ,ts,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2)

| Actin (tli2 ,li2 ,ali2_) ->

firstLi1(tnow , i f tli2 < tmin then tli2 e l s e tmin ,

tend ,ttac ,ts,tcon1 ,rs1 ,tcon2 ,rs2 ,alo1 ,ali2 ,ali1 ,alo2)

end

firstLi1(tnow : r ea l , tmin : r ea l , tend : r ea l ,
ttac : r ea l , ts : tState ,

tcon1 : r ea l , rs1 : run1 ,

tcon2 : r ea l , rs2 : run2 ,

alo1 : train , ali2 : train ,

ali1 : traout , alo2 : traout) =

case ali1 of
NoOut -> firstLo2(tnow ,tmin ,tend ,ttac ,ts ,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2)

| Actout (tli1 ,li1) ->

firstLo2(tnow , i f tli1 < tmin then tli1 e l s e tmin ,

tend ,ttac ,ts,tcon1 ,rs1 ,tcon2 ,rs2 ,alo1 ,ali2 ,ali1 ,alo2)

end

firstLo2(tnow : r ea l , tmin : r ea l , tend : r ea l ,
ttac : r ea l , ts : tState ,

tcon1 : r ea l , rs1 : run1 ,

tcon2 : r ea l , rs2 : run2 ,

alo1 : train , ali2 : train ,

ali1 : traout , alo2 : traout) =

case alo2 of
NoOut -> i f tnow < tmin

then loop(tmin ,tend ,ttac ,ts,tcon1 ,rs1 ,tcon2 ,rs2 ,

alo1 ,ali2 ,ali1 ,alo2)

e l s e done

| Actout (tlo2 ,lo2) ->

i f tnow < tmin

then loop(i f tlo2 < tmin then tlo2 e l s e tmin ,

tend ,ttac ,ts,tcon1 ,rs1 ,tcon2 ,rs2 ,alo1 ,ali2 ,ali1 ,alo2)

e l s e done

end

-- Calculate next timepoint }}}

172 APPENDIX A. SOURCE CODE

Bibliography

[1] Samson Abramsky, Dan Ghica, Andrzej Murawski, and C. Ong. Applying game
semantics to compositional software modeling and verification. In 10th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS ’04), pages 421–435. Springer Berlin / Heidelberg, 2004.

[2] Samson Abramsky and Radha Jagadeesan. Games and full completeness for mul-
tiplicative linear logic. In Foundations of Software Technology and Theoretical
Computer Science, pages 291–301, 1992.

[3] Gul Agha, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. A foundation
for actor computation. Journal of Functional Programming, 7:1–72, 1998.

[4] Alexandre Alves, Assaf Arkin, Sid Askary abd Charlton Barreto, Ben Bloch, Fran-
cisco Curbera, Mark Ford, Yaron Goland, Alejandro Gúızar, Neelakantan Kartha,
Canyang Kevin Liu, Rania Khalaf, Dieter König, Mike Marin, Vinkesh Mehta,
Satish Thatte, Danny van der Rijn, Prasad Yendluri, and Alex Yiu. Oasis web
services business process execution language (WSBPEL) v2.0, 2007.

[5] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Jour-
nal of Logic and Computation, 2(3):297–347, 1992.

[6] Andrew W. Appel. Foundational proof-carrying code. In 16th Annual IEEE
Symposium on Logic in Computer Science (LICS ’01), 2001.

[7] David Baelde, Dale Miller, and Zachary Snow. Focused inductive theorem proving.
In International Joint Conference on Automated Reasoning (IJCAR), pages 278–
292, 2010.

[8] Clark Barrett, Aaron Stump, and Cesare Tinelli. The satisfiability modulo theories
library (SMT-LIB). www.SMT-LIB.org, 2010.

[9] Bernhard Beckert and Joachim Posegga. leanTAP: Lean tableau-based deduction.
Journal of Automated Reasoning, 15:339–358, 1995.

[10] Azer Bestavros. The input output timed automaton: A model for real-time parallel
computation. In International workshop on Timing Issues in the Specification and
Synthesis of Digital Systems (Tau ’90), 1990.

[11] Nadia Busi, Roberto Gorrieri, Claudio Guidi, Roberto Lucchi, and Gianluigi Za-
vattaro. Towards a formal framework for choreography. In 14th International
Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprise
(WETICE ’05), pages 107–112, 2005.

173

www.SMT-LIB.org

174 BIBLIOGRAPHY

[12] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured communication-
centred programming for web services. In 16th European conference on Program-
ming (ESOP 07), pages 2–17, 2007.

[13] Marco Carbone, Kohei Honda, Nobuko Yoshida, Robin Milner, Gary Brown, and
Steve Ross-Talbot. A theoretical basis of communication-centred concurrent pro-
gramming. WCD-Working Note, 2006. Available at http://www.dcs.qmul.ac.uk/
∼carbonem/cdlpaper/workingnote.pdf.

[14] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In First International
Conference on Foundations of Software Science and Computation Structure (FoS-
SaCS ’98), pages 140–155. Springer-Verlag, 1998.

[15] Kaustuv Chaudhuri and Frank Pfenning. A focusing inverse method theorem
prover for first-order linear logic. In 20th Conference on Automated Deduction
(CADE), pages 69–83, 2005.

[16] Rance Cleaveland and Scott A. Smolka. Strategic directions in concurrency re-
search. ACM Computing Surveys, 28:607–625, 1996.

[17] Christopher Colby, Peter Lee, George C. Necula, Fred Blau, Mark Plesko, and
Kenneth Cline. A certifying compiler for java. In ACM SIGPLAN 2000 conference
on Programming language design and implementation (PLDI’ 00), pages 95–107.
ACM, 2000.

[18] Karl Crary and Susmit Sarkar. Foundational certified code in the twelf metalogical
framework. ACM Transactions on Computational Logic (TOCL), 9:16:1–16:26,
2008.

[19] Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In Fifth
international conference on Functional programming (ICFP), pages 233–243, 2000.

[20] Marcello D’Agostino and Marco Mondadori. The taming of the cut. Classical
refutations with analytic cut. Journal of Logic and Computation, 4(3):285–319,
1994.

[21] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. The structure of
exponentials: Uncovering the dynamics of linear logic proofs. In Georg Gottlob,
Alexander Leitsch, and Daniele Mundici, editors, Kurt Gödel Colloquium, volume
713 of LNCS, pages 159–171. Springer, 1993.

[22] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Communications of the ACM, 5:394–397, 1962.

[23] Martin Davis and Hilary Putnam. A computing procedure for quantification the-
ory. Journal of the ACM, 7:201–215, 1960.

[24] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In 14th Inter-
national Conference for Tools and Algorithms for the Construction and Analysis
of Systems (TACAS ’08), pages 337–340, 2008.

[25] Paul E. Dunne, Sarit Kraus, Efrat Manisterski, and Michael Wooldridge. Solving
coalitional resource games. Artificial Intelligence, 174:20–50, 2010.

http://www.dcs.qmul.ac.uk/~carbonem/cdlpaper/workingnote.pdf
http://www.dcs.qmul.ac.uk/~carbonem/cdlpaper/workingnote.pdf

BIBLIOGRAPHY 175

[26] R. Dyckhoff and S. Lengrand. LJQ: a strongly focused calculus for intuitionistic
logic. In A. Beckmann et al, editor, Computability in Europe 2006, volume 3988
of LNCS, pages 173–185. Springer, 2006.

[27] Roy Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. Journal of
Symbolic Logic, 57(3):795–807, September 1992.

[28] Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions.
In The 7th ACM SIGPLAN international conference on Functional programming
(ICFP’ 02), pages 48–59. ACM, 2002.

[29] Melvin Fitting. leanTAP revisited. Journal of Logic and Computation, 8(1):33–47,
1998.

[30] R. W. Floyd. Assigning meaning to programs. In Symposium on Applied Maths,
volume 19, pages 19–32. AMS, 1967.

[31] Cédric Fournet and Georges Gonthier. The reflexive CHAM and the join-calculus.
In 23rd symposium on Principles of programming languages (POPL ’96), pages
372–385, 1996.

[32] Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and Didier
Rémy. A calculus of mobile agents. In 7th International Conference on Concur-
rency Theory (CONCUR ’96), pages 406–421. Springer-Verlag, 1996.

[33] Dov M. Gabbay and Uwe Reyle. N-prolog: An extension of prolog with hypothet-
ical implications I. Journal of Logical Programming, 1(4):319–355, 1984.

[34] Gerhard Gentzen. Investigations into logical deductions. In M. E. Szabo, editor,
The Collected Papers of Gerhard Gentzen, pages 68–131. North-Holland, Amster-
dam, 1969.

[35] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. In 2nd Symposium on Logic in Computer Science (LICS’87), pages 194–
204, June 1987.

[36] Anders Starcke Henriksen. Comparing metalogical code-certification approaches.
Master’s thesis, Department of Computer Science, University of Copenhagen,
2008.

[37] Anders Starcke Henriksen. Using LJF as a framework for proof systems. Tech-
nical Report, University of Copenhagen, 2009. Available at http://hal.inria.fr/
inria-00442159/en/.

[38] Anders Starcke Henriksen, Tom Hvitved, and Andrzej Filinski. A game-theoretic
model for distributed programming by contract. In Workshop on Games, Business
Processes, and Models of Interactions, September 2009.

[39] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor for-
malism for artificial intelligence. In 3rd international joint conference on Artificial
intelligence (IJCAI), pages 235–245, 1973.

[40] Thomas Hildebrandt. Trustworthy pervasive healthcare services (TrustCare).
Webpage http://www.trustcare.eu, 2008.

http://hal.inria.fr/inria-00442159/en/
http://hal.inria.fr/inria-00442159/en/
http://www.trustcare.eu

176 BIBLIOGRAPHY

[41] Thomas T. Hildebrandt and Raghava Rao Mukkamala. Distributed dynamic con-
dition response structures. In International Workshop on Programming Language
Approaches to Concurrency and Communication-cEntric Software (PLACES
2010), 2010.

[42] Thomas T. Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats. Declarative
modelling and safe distribution of healthcare workflows. Accepted for Interna-
tional Symposium on Foundations of Health Information Engineering and Systems
(FHIES’11), 2011.

[43] Thomas T. Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats. Designing a
cross-organizational case management system using dynamic condition response
graphs. Accepted for IEEE International EDOC Conference (EDOC’ 11), 2011.

[44] André Hirschowitz, Michel Hirschowitz, and Tom Hirschowitz. Contraction-free
proofs and finitary games for linear logic. In 25th Conference on Mathematical
Foundations of Programming Semantics (MFPS), volume 249 of LNCS, pages
287–305, 2009.

[45] C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–580, 1969.

[46] C. A. R. Hoare. Communicating sequential processes. Prentice-Hall, Inc., 1985.

[47] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and
type discipline for structured communication-based programming. In 7th European
Symposium on Programming (ESOP), pages 122–138, 1998.

[48] Jozef Hooman. Extending Hoare logic to real-time. Formal Aspects of Computing,
6:801–825, 1994.

[49] Tom Hvitved and Anders Starcke Henriksen. Foundations for programming by
contract in a concurrent and distributed environment. Internal document, 2009.

[50] Dilsun Kirli Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. Timed
I/O automata: A mathematical framework for modeling and analyzing real-time
systems. In 24th International Real-Time Systems Symposium, 2003.

[51] Martin Leucker and Christian Schallhart. A brief account of runtime verification.
Journal of Logic and Algebraic Programming, 78:293–303, 2009.

[52] Chuck Liang and Dale Miller. Focusing and polarization in linear, intuitionistic,
and classical logics. Theoretical Computer Science, 410(46):4747–4768, 2009.

[53] Chuck Liang and Dale Miller. A unified sequent calculus for focused proofs. In
24th Symposium on Logic in Computer Science (LICS), pages 355–364, 2009.

[54] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata.
CWI Quarterly, 2:219–246, 1989.

[55] Karen Marie Lyng, Thomas Hildebrandt, and Raghava Rao Mukkamala. From
paper based clinical practice guidelines to declarative workflow management. In
2nd International Workshop on Process-oriented information systems in health-
care (ProHealth 08), 2008.

BIBLIOGRAPHY 177

[56] Sean McLaughlin and Frank Pfenning. Imogen: Focusing the polarized focused
inverse method for intuitionistic propositional logic. In 15th International Con-
ference on Logic for Programming, Artificial Intelligence and Reasoning (LPAR),
pages 174–181, 2008.

[57] Elliot Mendelson. Introducing Game Theory and its Applications. Chapman &
Hall/CRC, 2004.

[58] Bertrand Meyer. Applying design by contract. Computer, 25(10):40–51, 1992.

[59] Dale Miller. A multiple-conclusion meta-logic. In S. Abramsky, editor, 9th Sym-
posium on Logic in Computer Science (LICS), pages 272–281, Paris, July 1994.
IEEE Computer Society Press.

[60] Dale Miller and Elaine Pimentel. Using linear logic to reason about sequent sys-
tems. In Uwe Egly and Christian G. Fermüller, editors, International Conference
on Automated Reasoning with Analytic Tableaux and Related Methods, volume
2381 of LNCS, pages 2–23. Springer, 2002.

[61] Dale Miller and Elaine Pimentel. Linear logic as a framework for specifying sequent
calculus. In Logic Colloquium ’99: Proceedings of the Annual European Summer
Meeting of the Association for Symbolic Logic, Lecture Notes in Logic, pages 111–
135. A K Peters Ltd, 2004.

[62] Robin Milner. A Calculus of Communicating Systems. Springer-Verlag New York,
Inc., 1980.

[63] Robin Milner. Communication and concurrency. Prentice-Hall, Inc., 1989.

[64] Robin Milner. Communicating and mobile systems: the π-Calculus. Cambridge
University Press, 1999.

[65] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes,
i. Information and Compututation, 100(1):1–40, 1992.

[66] Gopalan Nadathur and Dale Miller. An overview of λProlog. In 5th International
Conference on Logic Programming (ICLP), pages 810–827, August 1988.

[67] George C. Necula. Proof-carrying code. In 24th Symposium on Principles of
Programming Langauges (POPL ’97), pages 106–119, 1997.

[68] George C. Necula and Peter Lee. The design and implementation of a certifying
compiler. In ACM SIGPLAN 1998 conference on Programming language design
and implementation (PLDI’ 98), pages 333–344. ACM, 1998.

[69] George Ciprian Necula. Compiling with proofs. PhD thesis, Carnegie Mellon
University, 1998.

[70] Sara Negri. Contraction-free sequent calculi for geometric theories with an appli-
cation to barr’s theorem. Archive for Mathematical Logic, 42:389–401, 2003.

[71] Vivek Nigam. Exploiting non-canonicity in the sequent calculus. PhD thesis, Ecole
Polytechnique, September 2009.

178 BIBLIOGRAPHY

[72] Vivek Nigam and Dale Miller. Algorithmic specifications in linear logic with subex-
ponentials. In 11th International Symposium on Principles and Practice of Declar-
ative Programming (PPDP), pages 129–140, 2009.

[73] Vivek Nigam and Dale Miller. A framework for proof systems. Journal of Auto-
mated Reasoning, 45:157–188, 2010.

[74] Joëlle Noailly, Jeroen C.J.M. van den Bergh, and Cees A. Withagen. Local and
global interactions in an evolutionary resource game. Computational Economics,
33(2):155–173, 2009.

[75] Susan S. Owicki and David Gries. An axiomatic proof technique for parallel
programs I. Acta Informatica, 6:319–340, 1976.

[76] Michel Parigot. Free deduction: An analysis of “computations” in classical logic.
In Proceedings of the First Russian Conference on Logic Programming, pages 361–
380, London, UK, 1992. Springer-Verlag.

[77] Christine Paulin-Mohring. Inductive definitions in the system coq - rules and
properties. In International Conference on Typed Lambda Calculi and Applications
(TLCA’ 93), pages 328–345. Springer-Verlag, 1993.

[78] Francis Jeffry Pelletier. Seventy-five problems for testing automatic theorem
provers. Journal of Automated Reasoning, 2(2):191–216, 1986.

[79] Frank Pfenning. Structural cut elimination I. intuitionistic and classical logic.
Information and Computation, 157(1/2):84–141, March 2000.

[80] Frank Pfenning. Automated theorem proving. Lecture notes, March 2004.

[81] Frank Pfenning and Carsten Schürmann. System description: Twelf – a meta-
logical framework for deductive systems. In 16th International Conference on
Automated Deduction (CADE ’99), pages 679–679, 1999.

[82] Elaine Pimentel and Dale Miller. On the specification of sequent systems. In
12th International Conference on Logic for Programming, Artificial Intelligence
and Reasoning (LPAR), number 3835 in LNAI, pages 352–366, 2005.

[83] Elaine Gouvêa Pimentel. Lógica linear e a especificação de sistemas computa-
cionais. PhD thesis, Universidade Federal de Minas Gerais, Belo Horizonte, M.G.,
Brasil, December 2001. Written in English.

[84] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science (SFCS’ 77), pages 46–57, 1977.

[85] Princeton University. zChaff. Available at http://www.princeton.edu/∼chaff/zchaff.
html.

[86] Microsoft Research. Z3 theorem prover. http://research.microsoft.com/en-us/um/
redmond/projects/z3/.

[87] Steve Ross-Talbot and Tony Fletcher. Web services choreography description
language: Primer. W3C working draft, 2006. Available at http://www.w3.org/
TR/ws-cdl-10-primer/.

http://www.princeton.edu/~chaff/zchaff.html
http://www.princeton.edu/~chaff/zchaff.html
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://www.w3.org/TR/ws-cdl-10-primer/
http://www.w3.org/TR/ws-cdl-10-primer/

BIBLIOGRAPHY 179

[88] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system
design. ACM Transactions on Computer Systems, 2:277–288, 1984.

[89] Peter Schroeder-Heister. A natural extension of natural deduction. Journal of
Symbolic Logic, 49(4):1284–1300, 1984.

[90] Dana Scott. Identity and existence in intuitionistic logic. In Applications of
Sheaves, volume 753 of Lecture Notes in Mathematics, pages 660–696. Springer
Berlin / Heidelberg, 1979.

[91] Wilfried Sieg and John Byrnes. Normal natural deduction proofs (in classical
logic). Studia Logica, 60(1):67–106, 1998.

[92] Raymond M. Smullyan. Analytic cut. Journal of Symbolic Logic, 33(4):560–564,
1968.

[93] Geoff Sutcliffe. The TPTP problem library and associated infrastructure: The
FOF and CNF parts, v3.5.0. Journal of Automated Reasoning, 43(4):337–362,
2009.

[94] Anne S. Troelstra and Helmut Schwichtenberg. Basic Proof Theory. Cambridge
University Press, 1996.

[95] W.M.P. van der Aalst, L. Aldred, M. Dumas, and A.H.M. ter Hofstede. Design
and implementation of the YAWL system. In 16th International Conference on
Advanced Information Systems Engineering (CAiSE’04), pages 142–159. Springer-
Verlag, 2004.

[96] W.M.P. van der Aalst and M. Pesic. Decserflow: Towards a truly declarative
service flow language. In Web Services and Formal Methods, volume 4184 of
Lecture Notes in Computer Science, pages 1–23. Springer Berlin / Heidelberg,
2006.

[97] W.M.P. van der Aalst, M. Pesic, and H. Schonenberg. Declarative workflows:
Balancing between flexibility and support. Computer Science - Research and De-
velopment, 23:99–113, 2009.

[98] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to automatic
program verification. In Symposium on Logic in Computer Science (LICS ’86),
pages 332–344, 1986.

[99] John von Neumann and Oskar Morgenstern. Theory of Games and Economic
Behavior. Princeton University Press, 2004.

[100] Jan von Plato. Natural deduction with general elimination rules. Archive for
Mathematical Logic, 40(7):541–567, 2001.

[101] W3C. Web Services Choreography Description Language. http://www.w3.org/
TR/ws-cdl-10/, 2005.

[102] Glynn Winskel. Event structures. In Advances in Petri Nets, volume 255 of Lecture
Notes in Computer Science. Springer, 1987.

http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/ws-cdl-10/

180 BIBLIOGRAPHY

[103] Dana N. Xu, Simon Peyton Jones, and Koen Claessen. Static contract checking
for haskell. In 36th Symposium on Principles of programming languages, pages
41–52, 2009.

	Contents
	Introduction
	Context
	Introduction
	Contributions
	Overview of the dissertation
	Part I: Adversarial models of distributed scenarios
	Part II: Aspects of focusing
	Part III: Conclusion and future work

	I Adversarial models of distributed scenarios
	An adversarial approach to cooperation
	The cooperative world
	The adversarial methodology
	Modelling adversarial scenarios

	Adversarial models of interaction
	Communication setup
	Communication concepts
	Trace-based model
	Trace-based contracts
	Trace-based tactics
	Strategies and conformance

	Automaton model
	Basic definitions
	Contract automata
	Tactic automata
	Automaton conformance

	Related and future work
	Related work
	Future work

	Certification
	The certification paradigm
	Background
	Verification-time monitoring as certification paradigm

	Language
	Syntax
	Dynamic semantics
	Type system

	Implementation of verification-time monitoring
	Tactic component
	Contract components
	Supervisor component
	Implementation correctness

	Floyd-Hoare logic
	A comment on partial assertions

	Case study
	Type checker and VC generator
	Example program
	Program annotation and theorem proving

	Related and future work
	Related work
	Future work

	Towards resource-aware interaction
	Resource setup
	Contracts and tactics
	Contracts
	Tactics

	Related and future work
	Related work
	Future work

	II Aspects of focusing
	Focusing and certification
	Using LJF as a framework for proof systems
	Introduction
	Focused intuitionistic logic
	Encoding in LJF
	Sequent calculus
	Natural deduction
	Generalized elimination rules
	LJ with empty right sides
	Free deduction
	Tableaux
	Analytic cut

	Relative completeness
	Intuitionistic systems
	Classical systems
	Intuitionistic and classical systems

	Comparison of LJF and LLF
	Summary and related work

	Focusing and contraction
	Introduction
	Focused classical logic
	The focused system LKF
	The contraction-free system LKFcf

	Compilation into linear logic
	Linear logic with subexponentials
	Focused linear logic with subexponentials
	Compiling LKFcf

	LKFcf and proof search
	Future work

	III Conclusion and future work
	Conclusion and future work
	Summary
	Future work

	Appendix
	Source code
	Tactic, contracts and supervisor for the +2 case

	Bibliography

