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Abstract

This dissertation encompasses the topics contract formalisation, domain-
specific languages implementation, and enterprise resource planning systems.
The dissertation is a collection of six independent chapters, two of which are
published papers, two of which are extended versions of published papers, and
two of which are unpublished manuscripts.

Our contributions to the field of contract formalisation covers three chap-
ters. The first chapter is a comprehensive, comparative survey of previous work
on formal languages and models for legally binding contracts. We provide a list
of key requirements for formalising contracts, which serves both as our com-
parison measure, and as a guideline for future formalisms. We conclude that,
although much work has been carried out in the field, much remains to be done.
In particular, only very few previous approaches present a clear, formal seman-
tics. To this end, we propose a novel, formal model of legally binding contracts
in the second chapter. Besides striving for an unambiguous, formal semantics,
we focus on a model that properly accounts for blame assignment. That is,
our contract model takes into account that a breach of contract must be at-
tributable to one or more of the contract participants. In the third chapter we
shift the focus from legally binding contracts to contracts for distributed pro-
gramming. We propose a fundamentally new generalisation of the traditional
programming-by-contract paradigm, which gives rise to a game-theoretic view
on distributed-programming contracts. Perhaps surprisingly, many aspects of
contracts for distributed programming and traditional legally binding contracts
turn out to coincide.

Our contributions to the field of domain-specific languages implementation
covers two chapters. We introduce a Haskell library for constructing data types,
and functions on them, in a modular and extendable fashion. Our library tar-
gets implementations of domain-specific languages, in which the abstract syn-
tax trees (ASTs) are represented as elements of a recursive algebraic data type.
The shortcoming of the traditional approach is that it is missing modularity,
and typically we find ourselves implementing AST transformations for which
the type system does not properly account for the underlying invariants (also
known as the Expression Problem). In the first of the two chapters we introduce
our library, which enables full modularity and extensibility, as well as seamless
support for AST annotations and run-time optimisation in the vein of defor-
estation. In the second chapter we extend our library with support for variable
binders. We use a restricted form of higher-order abstract syntax that permits
effective recursion schemes, as well as transformations on higher-order ASTs.

In the final chapter we present a novel software architecture for enterprise
resource planning (ERP) systems, based on domain-specific languages. This
chapter ties together the previous chapters, by drawing on our domain-specific
language for contracts and our Haskell library of compositional data types. We
present a detailed overview of our architecture, as well as the domain-specific
languages for specifying the data model, reports, and contracts respectively.
The data model defines objects that we want to model, such as customers; the
reports define the information we want to derive from the transactions in the
system, such as current balance; and the contracts define the expected future
transactions, such as payments. We demonstrate the validity of our approach by
means of a use case, in which we implement a small ERP system from scratch.
The implementation that we obtain is but a fraction of the code in normal ERP
systems, and the domain-specific style yields specifications that are much closer
to the informal, textual requirements than the corresponding implementations
in standard ERP systems.
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Resumé (Danish abstract)

Denne afhandling favner over emnerne kontraktformalisering, implementa-
tion af domænespecifikke sprog, samt virksomhedssystemer. Afhandlingen best̊ar
af seks uafhængige kapitler, hvoraf to kapitler er publicerede forskningsartikler,
to kapitler er udvidede udgaver af publicerede forskningsartikler, og to kapitler
er ikke-publiceret materiale.

Vores bidrag til feltet kontraktformalisering best̊ar af tre kapitler. I det
første kapitel foretager vi en dybdeg̊aende gennemgang af eksisterende littera-
tur omhandlende formelle modeller og sprog for juridisk bindende kontrakter.
Vi præsenterer en liste af nøglekrav, der muliggør en kvalitativ sammenligning
af den eksisterende litteratur. Listen kan endvidere fungere som en m̊alestok
for fremtidige kontraktformalismer. Konklusionen p̊a vores gennemgang er, at
forskningsfeltet stadig er åbent – specielt bærer feltet præg af en manglende
matematisk modenhed. P̊a baggrund af denne konklusion introducerer vi en
ny, formel model for juridisk bindende kontrakter i det andet kapitel. Udover
at hige efter en formel semantik, er vores m̊al at konstruere en model, der
tager højde for skyldtildeling. Med skyldtildeling menes, at alle kontraktbrud
kan henføres til én eller flere kontraktdeltagere. I det tredje kapitel flytter vi
fokus fra traditionelle juridisk bindende kontrakter til programmeringskontrak-
ter i et distribueret miljø. Vi præsenterer en fundamentalt ny generalisering af
programming-by-contract paradigmet, hvilket fører til en spilteoretisk formule-
ring af kontrakter for distribueret programmering. Måske overraskende, viser
det sig, at mange aspekter af programmeringskontrakter og juridisk bindende
kontrakter er identiske.

Vores bidrag til feltet implementation af domænespecifikke sprog best̊ar
af to kapitler. Vi præsenterer et Haskell bibliotek, der muliggør konstruktion
af datatyper – og funktioner p̊a datatyperne – p̊a en modulær og udvidelig
m̊ade. Det primære anvendelsesomr̊ade er implementation af domænespecifikke
sprog, hvor abstrakte syntakstræer (AST’er) traditionelt repræsenteres som ele-
menter af en rekursiv, algebraisk datatype. Ulempen ved denne repræsentation
er, at den ikke er modulær og udvidelig, og s̊aledes vil vi ofte implementere
transformationer af AST’er, hvor typesystemet ikke indfanger de underliggen-
de invarianter (ogs̊a kendt som The Expression Problem). I det første af de
to kapitler introducerer vi vores bibliotek, der udover at muliggøre modulære,
udvidelige datatyper og funktioner, ogs̊a tilbyder ubesværet h̊andtering af AST
annoteringer og køretidsoptimeringer i stil med deforestation. I det andet kapi-
tel udvider vi vores bibliotek til ogs̊a at h̊andtere variabelbindere. Vi indfører
en begrænset form for højereordens abstrakt syntaks, der tillader s̊avel effektive
rekursionsskemaer som transformationer af højereordens AST’er.

I det sidste kapitel præsenterer vi en nyskabende softwarearkitektur for virk-
somhedssystemer, baseret p̊a domænespecifikke sprog. Dette kapitel binder de
tidligere kapitler sammen, ved at trække p̊a vores domænespecifikke sprog for
kontrakter og vores Haskell bibliotek til modulære datatyper. Vi giver et detalje-
ret overblik over arkitekturen, s̊avel som en præsentation af de domænespecifik-
ke sprog, der benyttes til at specificere henholdsvis datamodellen, rapporter og
kontrakter. Datamodellen definerer objekterne vi ønsker at modellere, s̊asom
kunder; rapporterne specificerer information vi ønsker at aflede fra transak-
tionerne i systemet, s̊asom den aktuelle balance; og kontrakterne specificerer
forventede fremtidige transaktioner, s̊asom betalinger. Vi demonstrerer gyldig-
heden af vores tilgang ved at implementere et minimalt virksomhedssystem fra
grunden. Omfanget af vores implementation udgør en brøkdel af koden fundet
i normale virksomhedssystemer, og vores domænespecifikke tilgang betyder en
langt mindre afstand mellem kravsspecifikation og implementation.
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Overview

This dissertation is submitted in partial fulfilment of the requirements for the Ph.D.
degree at the Department of Computer Science, University of Copenhagen (DIKU).
The work has been supervised by Professor Fritz Henglein and Associate professor
Andrzej Filinski, both at DIKU. The Ph.D. studies have been carried out under
the 4+4 scheme [25, Appendix 2]. Therefore, some of the work presented in this
dissertation is based on the Ph.D. progress report [50], which also qualifies as an
extended master’s thesis.

The research has been conducted in the context of the research project 3rd
generation Enterprise Resource Planning (3gERP). The objective of the 3gERP
project was:

[...] to develop a fundamentally new high-level software architecture with
implementation tools and business models for a standardized, yet highly
flexible and configurable global ERP-system for small- and medium-sized
enterprises (SMEs), which can be implemented and maintained at a frac-
tion of the cost of current ERP systems. [1]

The results presented in this dissertation are therefore ultimately targeting the ob-
jective above, and the work can be qualified as applied theoretical computer science.

The dissertation is structured in two parts, which in turn are divided into three
chapters, making for a total of six chapters. Each chapter can be read independently,
and there is consequently a slight overlap between some chapters. Chapters 2 and 4
are published papers [11, 53], with only minor changes and reformatting compared
to the published versions. Chapters 1 and 3 are extended versions of published
(short) papers [43, 51]. Chapters 5 and 6 are unpublished manuscripts intended
for later publication [10, 52]. Appendix F contains declarations of co-authorship.
Below follows a short overview of the two parts of the dissertation, and how the
two parts are tied together. Each chapter contains a more detailed and motivating
introduction, as well as a clear summary of the scientific contributions and how they
relate to previous work.

Contract Formalisation

The topic of the first part is contract formalisation, and the results we present in
this part are mostly of a theoretical nature. By contract formalisation we mean
mathematical models and domain-specific languages for specifying and reasoning
about contracts. In the first two chapters, a contract refers to a traditional, legally
binding agreement between two or more parties, and the specific domain of interest
is business contracts—for instance a sales contract.

ix
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Chapter 1 serves as an introduction to the field of (business) contract formalisa-
tion. The research area is characterised by great diversity, ranging from logic based
approaches over functional programming based approaches to process calculus based
approaches. Rather disappointingly, most research within the area of contract for-
malisation lacks mathematical rigour, that is a formal semantics, and in some cases
complete and consistent presentations. The motivation for our work in Chapter 2
is consequently to give a formal, semantic model for (business) contracts, as well as
a domain-specific language for specifying contracts. Moreover, our focus in Chap-
ter 2 is to construct a semantic model that properly accounts for blame assignment.
With blame assignment we mean that blame can be inferred from the semantics of
a contract, in case of a breach of contract. That is, if the execution of a contract
fails, then one or more of the involved parties will be blamed.

The topic of Chapter 3 is contracts as well, but rather programming contracts
than business contracts. In this chapter we investigate an extension of the program-
ming-by-contract [71] paradigm to a distributed environment. Our hypothesis is
that in order to properly account for potential conflicts of interest in a distributed
environment with different administrative entities, the basic assumptions of tradi-
tional programming-by-contract must be reconsidered. These considerations give
rise to a game-theoretic formulation of contracts, in which a programming contract
between two entities assigns a quantitative measure of contract conformance, mod-
elled as payoffs. The results in Chapter 3 are of a very fundamental character, and
they do not give rise to an immediate implementation of distributed programming-
by-contract. Rather, they lay the foundation for such an implementation, and they
point out issues in generalising traditional programming-by-contract to a distributed
setting that, to the best of our knowledge, have not been raised before.

At first sight, the connection between business contracts and contracts for dis-
tributed programming may seem absent. However, many aspects are in fact remark-
ably similar. For instance, in both scenarios a contract has to deal with real-time
aspects, and in both scenarios we can assume no common goal of interest between
the involved parties, nor access to the internal organisation of each party. Therefore,
contracts are—in both scenarios—characterised by the idea that failures always hap-
pen in finite time. In other words, contracts are safety properties [4]. This, in turn,
means that commitments cannot be eventually guarantees—commitments must be
guarded by absolute deadlines.

The analogy between business contracts and distributed-programming contracts
does not stop there. Whereas a programming contract is expected to be fulfilled
by a program, a business contract can be fulfilled by a workflow. Hence in both
cases programs and workflows represent strategies for fulfilling a contract, and the
notions of program correctness and contract compliance coincide. In Chapter 3 we
pursue the definition of correctness of a program with respect to a set of contracts,
whereas in Chapter 2 we only consider contracts and not workflows. However, we
believe that a proper treatment of workflow compliance will follow in the same
lines. Namely, rather than defining workflow compliance with respect to a single
contract, workflow compliance must be defined with respect to a set of contracts—a
contract portfolio—where some contracts may be used to fulfil others. That is, a
strategy consists both of a workflow (program) and a means of delegating contractual
obligations to subcontractors.
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Modular Implementation of Domain-Specific Languages

The topic of the second part of the dissertation is modular implementation of
domain-specific languages and domain-specific languages for enterprise systems. The
latter topic is an effort at reaching the goal of the 3gERP project, whereas the for-
mer arose as a “by-product” of that attempt. (The results we present in this part
of the dissertation are applied computer science compared to the first part of the
dissertation.)

Modular implementation of domain-specific languages is covered in Chapters 4
and 5, and the results are readily usable in the form of the Haskell library com-
positional data types. Compositional data types target issues of code duplication
and loss of invariants maintained by the type system, which may arise when imple-
menting domain-specific languages. Consider for instance a scenario where we want
to implement a transformation on abstract syntax trees that desugars an extended
language to a core language. In order to reflect this invariant in the type system,
we are forced—with traditional algebraic data types—to duplicate the parts of the
extended language that corresponds to the core language as a separate type. Then,
in turn, we have to duplicate functions that operate on the extended language to the
core language. Alternatively, we may reuse the algebraic data type for the extended
language also to represent the core language, but then the type no longer reflects
the structure of the core language.

Compositional data types target the issues above—dubbed the Expression Prob-
lem by Wadler [116]—by letting us construct the data types of the extended language
and the core language, as well as functions on them, in a modular and reusable fash-
ion. Our approach takes the view of data types as fixed points of functors [69], and it
extends Swierstra’s work on data types à la carte [106]. We introduce compositional
data types in Chapter 4, and in Chapter 5 we introduce the extended parametric
compositional data types. Parametric compositional data types target languages
with variable binders, and we combine previous work by Fegaras and Sheard [26]
and Chlipala [19] in order to define appropriate recursion schemes for structures
with embedded binders.

The ability to define modular data types and modular functions, while retaining
static type safety, is not only a useful tool when we want to implement a sin-
gle domain-specific language. Compositional data types also provide an ideal tool
when we want to implement multiple domain-specific languages that have pairwise,
common components. In fact, this is the original motivation for introducing compo-
sitional data types, namely in order to implement an enterprise resource planning
(ERP) system based on domain-specific languages, which is the topic of Chapter 6.

In Chapter 6 we tie together the two parts of the dissertation. In this chapter we
introduce a novel software architecture for ERP systems based on domain-specific
languages. The architecture extends the process-oriented event-driven transaction
systems (POETS) architecture of Henglein et al. [42], and the system has been
fully implemented using Haskell and the compositional data types library. What
makes POETS novel—and radical—compared to traditional ERP systems, is a shift
away from relational databases and imperative languages on the one hand, and
from double-entry bookkeeping on the other hand. Instead, POETS relies on an
ontological description of data and domain-specific languages (DSLs) for describing
contracts (what should happen) and reports (what has happened) on the one hand,
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and the resources, events, and agents (REA) accounting model [65] on the other
hand. We use the contract specification language of Chapter 2 in order to specify
contracts in our extended POETS architecture.

Besides extending the original POETS architecture and constructing a prototype
implementation, our main objective is to conduct a use case that demonstrates how
to implement—from scratch—a small, but realistic, ERP system. This amounts to
defining an ontology for the ERP domain, as well as standard financial reports and
simple purchase contracts and sales contracts. The use case shows, we believe, that
the objective of the 3gERP project can be met, and that the extended POETS ar-
chitecture is a potential candidate for such a new architecture. The amount of code
needed to implement the small system is but a fraction of what would have to be
implemented in state-of-the-art ERP systems—in fact, we have included the com-
plete code in the dissertation. However, in order to confidently verify the hypothesis
of the 3gERP project, with POETS as the constructive proof, a much larger and
more realistic use case must be conducted, preferably in a live, industrial setting.
At the time of writing, we are pursuing such a use case.

Contributions

In summary, we see our main contributions as follows:

• We present a novel, trace-based model for multiparty (business) contracts that
has blame assignment as its distinguishing feature. We show that our model
faithfully captures real-world contracts by means of several examples. We
construct a domain-specific language in order to concisely specify contracts,
and we provide a formal semantics in terms of a mapping into the trace-
based model. The semantics gives rise to incremental run-time monitoring of
contracts.

• We investigate a fundamentally new extension of the programming-by-contract
paradigm to a distributed setting. In order to convey our ideas, we present a
formal model of processes, distributed-programming contracts, and a notion
of contract conformance. Our definition of contract conformance takes the
possibility of delegation into account, by considering a contract portfolio rather
than a single contract. This has—to the best of our knowledge—not been
investigated previously.

• We introduce a rich Haskell library for constructing modular and extendable
data types, as well as modular and extendable functions on them. The pri-
mary application of our library is in the context of language implementation,
in which the type of abstract syntax trees can advantageously be represented
as a modular data type. Besides eliminating boilerplate code, our library
introduces a novel implementation of annotated data types, automatic defor-
estation, and higher-order variable binders.

• We present a novel software architecture for enterprise resource planning (ERP)
systems, based on domain-specific languages. We show how to implement the
core features of a small ERP system from scratch. This amounts to defining an
ontology (data model) for the ERP domain, report specifications for deriving
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information, and contract specifications for describing daily activities—all in
domain-specific languages. The amount of code needed for the implementa-
tion is but a fraction of the code in normal ERP systems, and the domain-
orientation makes it—we believe—much easier for non-programmers to under-
stand, and verify correctness of, the implementation.
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Chapter 1

A Survey of Formal Languages
and Models for Contracts?

Abstract

We present the current status of languages and models for formalising con-
tracts. A contract is a legally binding agreement between two or more parties,
and a formalisation is an unambiguous, machine-interpretable representation.
Formal representation of contracts is a prerequisite for supporting automatic
contract lifecycle management (CLM), which includes business-critical activ-
ities such as validation, execution, and analysis of contracts. Starting from
example contracts, we derive a set of features that contract formalisms should
ideally support, based on which we carry out a comparative analysis of existing
contract formalisms. Not surprisingly, none of the existing formalisms support
all requirements. More surprisingly, the majority of existing approaches lack
formal mathematical underpinnings, rendering these approaches immature for
expressing legally binding agreements, as well as for performing contract analy-
sis. We conclude our survey with a brief account of commercial CLM products.

1.1 Introduction

Contracts are legally binding agreements between parties. In e-business, contracts
play an important role by stipulating commitments between the involved parties,
for instance as term of sales agreements between web shops and customers. More
generally, contracts serve as descriptions of what a business is expected to “deliver”
to its customers, as well as what the customers are expected to “deliver” in return.
Consequently, it is crucial for businesses to manage their portfolios of contracts in
order to monitor for compliance—both by the businesses themselves, but also their
customers. Contract lifecycle management (CLM) is the business terminology used
to cover the activity of managing a contract portfolio, namely contract creation,
contract negotiation, contract approval, contract execution, and contract analysis.
Empirical studies conducted by the Aberdeen Group [86, 87] conclude that CLM
will be a critical key to success for businesses in the near future. In the studies it is
reported that around 80 percent of the surveyed enterprises (220 participants) are
exercising only manual, or partially automated contract management activities, the

?Extended version of a previous short paper [51].
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implication of which is a lower rate of transactions that are compliant with contracts.
This in turn implies potential financial penalties:

“[...] the average savings of transactions that are compliant with con-
tracts is 22%” [86, page 1].

The conclusion of the Aberdeen Group studies is a list of required actions [87],
which serve as recommendations for implementing the CLM methodology. The key
recommendations are:

(A1) Establish standardised and formal contract management processes, including
a standard language for contracts accessible via libraries and templates.

(A2) Clearly define protocols for the complete contracting process and contract
administration (such as contract signing and contract execution).

(A3) Use reporting and analytic capabilities on contract data to gain competitive
advantage.

Recommendations A1 and A2 capture the technical requirements of a CLM
system, and recommendation A3 summarises the business potential of automated
CLM. Recommendation A1—which covers the main topic of our survey—is, in fact,
a prerequisite for achieving A2 and A3, since representations of the actual contracts
are needed in order to execute them and perform analyses on them. As a complement
to our survey, Tan et al. [108] provide an overview of CLM features, which focuses
on the aspects of recommendations A2 and A3, rather than on formal languages
for contracts. We will briefly return to CLM features in Section 1.4, where we
supplement the survey of Tan et al. with an overview of current CLM products and
their features.

1.2 Contract Formalisation Requirements

Formal specification of contracts and automatic reasoning about contracts has drawn
interest from a wide variety of research areas within computer science, going back to
the late eighties with the pioneering work by Lee [59]. Rather than presenting the
existing work on contract formalisation ad hoc, we aim at a comparative analysis in
order to differentiate the existing approaches. In this section we therefore present
a list of features that “ideal” contract formalisms should support. This list not
only allows us to compare existing approaches, but it also provides guidelines for
constructing new formalisms.

Before we proceed with identifying requirements, we make an important remark
on terminology. A formal model refers to a semantic, mathematical model, and a
formal language refers to a syntactic representation. Ideally, a formal language co-
exists with a formal model in terms of the language’s semantics, which is a mapping
of syntactic contracts to objects of the model. Such semantics is a prerequisite if
the purpose of a contract language is to write legally binding agreements, since the
involved parties must agree on the meaning of the contract. Moreover, in order
to perform contract analysis, for instance to check whether two contracts have the
same meaning, then a semantics is needed. We include these considerations as our
first “meta” requirement (for easy reference, we label the nth identified requirement
Rn):
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Paragraph 1. Seller agrees to transfer and deliver to Buyer, on or before 2011-01-01, the goods:
1 laser printer.

Paragraph 2. Buyer agrees to accept the goods and to pay a total of e200 for them according to
the terms further set out below.

Paragraph 3. Buyer agrees to pay for the goods half upon receipt, with the remainder due within
30 days of delivery.

Paragraph 4. If Buyer fails to pay the second half within 30 days, an additional fine of 10% has
to be paid within 14 days.

Paragraph 5. Upon receipt, Buyer has 14 days to return the goods to Seller in original, unopened
packaging. Within 7 days thereafter, Seller has to repay the total amount to Buyer.

Figure 1.1: A sales contract between a buyer and a seller.

(R1) Contract model, contract language, and a formal semantics.

We will refer to models and languages collectively as formalisms, and most of the
requirements that we identify in the following pertain to both models and languages.

In order to identify requirements for contract formalisms, we must first make it
clear what we mean by a contract.

Definition 1.2.1. A contract is a legally binding agreement between two or more
parties. The agreement is a normative description of commitments between the par-
ties of the contract, that is a contract describes the expected actions to be performed
by the participants of the contract.

We follow Prisacariu and Schneider [95] and restrict contracts to ought-to-do
rather than ought-to-be, compare the definition above. That is, a contract is a
description of what may/must/must not be performed, rather than what may/-
must/must not be the state of affairs.

As an example of a contract according to Definition 1.2.1, consider the sales
contract in Figure 1.1. The contract is a bilateral agreement between a buyer and
a seller, and the normative content of the contract describes how—and when—the
sale of one laser printer, in return for e200, is to be carried out. We will use the
contract in Figure 1.1 to derive our first requirements:

(R2) Contract participants.

(R3) (Conditional) commitments.

(R4) Absolute temporal constraints.

(R5) Relative temporal constraints.

(R6) Reparation clauses.

Modelling of contract participants (R2) and commitments (R3) are self-nomi-
nated requirements, given our previous, informal definition of contracts. Yet, com-
mitments may be conditional on what happens during the execution of a contract, as
illustrated in Paragraph 5, where Seller’s commitment to repay Buyer is contingent
upon Buyer returning the printer. Seller’s obligation to deliver goods in Paragraph 1
is an example of a commitment, but it is also an example of an absolute deadline
(R4). Paragraph 3, on the other hand, exemplifies relative deadlines (R5), where
Buyer’s commitment to pay the first half depends on the time of delivery. Finally,
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Paragraph 1. The term of this lease is for 6 months, beginning on 2011-01-01. At the expiration
of said term, the lease will automatically be renewed for a period of one month unless either party
(Landlord or Tenant) notifies the other of its intention to terminate the lease at least one month
before its expiration date.

Paragraph 2. The lease is for 1 apartment, which is provided by Landlord throughout the term.

Paragraph 3. Tenant agrees to pay the amount of e1000 per month, each payment due on the
7th day of each month.

Paragraph 4. The rent is adjusted annually according to the Consumer Price Index (CPI).

Figure 1.2: A lease agreement between a tenant and a landlord.

Paragraph 1. Buyer agrees to pay to Seller the total sum e10000, in the manner following:

Paragraph 2. e500 is to be paid at closing, and the remaining balance of e9500 shall be paid as
follows:

Paragraph 3. e500 or more per month on the first day of each and every month, and continuing
until the entire balance, including both principal and interest, shall be paid in full; provided,
however, that the entire balance due plus accrued interest and any other amounts due here-under
shall be paid in full on or before 24 months.

Paragraph 4. Monthly payments shall include both principal and interest with interest at the
rate of 10%, computed monthly on the remaining balance from time to time unpaid.

Figure 1.3: An agreement to pay in instalments between a buyer and a seller.

Paragraph 4 is an example of a reparation clause (R6), which comes into effect when
another clause is not fulfilled—in this case the second part of Paragraph 3.

Consider next the lease agreement in Figure 1.2. Compared to the contract in
Figure 1.1, the lease agreement features three new aspects:

(R7) Instantaneous and continuous actions.

(R8) Potentially infinite and repetitive contracts.

(R9) Time-varying, external dependencies (observables).

The distinction between instantaneous and continuous actions (R7) is witnessed
by Paragraphs 2 and 3, respectively. The payment in Paragraph 3 is an instanta-
neous action, whereas the commitment to provide the apartment in Paragraph 2
is an ongoing action. More interestingly, the lease agreement is an example of a
potentially infinite contract (R8), since the contract is renewed by default every
month, unless the tenant or the landlord decide to terminate the agreement. By
potentially infinite we hence mean that a latest time of termination is not known
in advance when the contract is signed—the contract can, in principle, run forever.
Last, but not least, Paragraph 4 illustrates how contracts may depend on external,
time-varying observables (R9). We make a distinction between observables (R9) and
conditional commitments (R3): the latter refers to conditions that can be controlled
by the participants of the contract, whereas the former cannot.

The last example we consider is an instalment sale in Figure 1.3. For simplicity,
the example only includes the payment part of the sale, and not Seller’s obligations,
which would be similar to the contract in Figure 1.1. The instalment sale is a slightly
more complex contract than the previous example contracts, and it is a good example
of a real-world contract, whose exact terms will be easier to understand once it is
formalised. Unlike the contract in Figure 1.2, this contract is not potentially infinite,
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but instead it has a bounded repetitive pattern: the instalments must be paid within
24 months. Also, unlike the lease contract that has a fixed repetition pattern, the
instalment contract dictates monthly commitments that depend on what has been
paid in the previous months (referred to as the balance).

(R10) History-sensitive commitments.

(R11) In-place expressions.

History-sensitivity (R10) refers to the above-mentioned fact that commitments
may depend on what has previously happened during contract execution. History-
sensitivity (R10) differs from conditional commitments (R3) in that the latter refers
to commitments that may or may not become active, whereas the former refers to
commitments where the exact terms depend on previous events. With in-place ex-
pressions (R11) we mean the possibility to write (in this case arithmetic) expressions
in contracts. In-place expressions are needed in order to disambiguate contracts like
the one in Figure 1.3, where for instance the calculation of interest rate should be
defined explicitly.

Requirements R2–R11 are devised more or less by a syntactic inspection of the
example contracts. The following, last requirements focus instead on properties of
a contract formalism than on what it should be able to model:

(R12) Parametrised contracts.

(R13) Isomorphic encoding.

(R14) Run-time monitoring.

(R15) Blame assignment.

(R16) Amenability to (compositional) analysis.

Parametrised contracts (R12) and isomorphic encodings (R13) are—in some
sense—convenience features. Parametrised contracts are useful for defining con-
tract templates, from which concrete instances can be derived, and it is certainly
a feature that is required in practice. The isomorphism principle (R13) is origi-
nally introduced in the context of legal text formalisation [12]. The principle refers
to formal encodings that are in one-to-one correspondence with the informal paper
contracts. That is, one component (paragraph) in the paper contract corresponds to
one component in the formalisation, and dependencies between components in the
paper contract are present between the corresponding components in the formalisa-
tion. Like contract templates, the isomorphism principle is convenient in practice:
(local) changes in the paper contract correspond to (local) changes in the formalised
contract and vice versa. Furthermore, a formal encoding that is reminiscent of the
paper contract is likely easier for domain experts to maintain, and errors in the
formalisation process are less likely to be introduced.

Run-time monitoring (R14) of contracts is the single most important require-
ment, compare the Aberdeen group studies [86]. Run-time monitoring [60] is the
ability to monitor the execution of a contract in real-time, that is to check whether
the contract has been breached and to report upcoming commitments in order to
avoid future breaches of contract. Blame assignment (R15) is closely related to run-
time monitoring. In the case where a contract is breached, the monitor should not
only report a breach of contract, but also who among the contract participants is
responsible. If a contract does not uniquely determine who is to be blamed when
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contract execution fails, then contract parties may have to go to court to solve the
dispute—this is exactly the situation we want to avoid with formalised contracts.

The final requirement that we have included is amenability to analysis (R16).
Although this requirement is already listed as a general CLM requirement (A3), the
language that defines the representation of contracts will determine which analyses
are possible. Examples of analyses that are relevant for contracts include (1) satisfi-
ability, that is whether a contract can be fulfilled, (2) satisfiability with respect to a
particular party, that is whether a party can avoid breaching a contract in which it
is involved, (3) contract valuation, that is what is the expected value of a contract
for a given party, and (4) contract entailment, that is whether fulfilling a contract
entails the fulfilment of another contract. Lastly, remark that by compositionality
we refer to analyses that are defined universally for all possible contracts that can
be expressed in the formalism. That is, analyses that are not defined ad hoc, such
as valuation of one particular type of instalment sale.

We now have a total of 16 formalism requirements. These requirements are
likely not representative for all possible contracts, yet each requirement represents
an important aspect, and—we believe—covers most aspects found in contracts. We
again remind the reader that these requirements are for contract formalisms, and not
for CLM systems in general. The latter requires features such as contract drafting,
electronic contract signing, contract versioning, etc., which we will return to briefly
in Section 1.4.

1.3 Contract Formalisms

The majority of existing work on contract formalisation falls into three categories:
(deontic) logic based formalisms [36, 59, 95], event-condition-action based formalisms
[34, 61], and trace based formalisms [6, 58]. The logic based approaches mainly focus
on declarative specification of contracts, and on (meta) reasoning, such as decidabil-
ity of the logic. On the other hand, the event-condition-action and trace based
formalisms focus mainly on contract execution. Other approaches to contract mod-
elling include functional programming [88], defeasible reasoning [35, 37], finite state
machines [76], and more informal frameworks [17, 21, 82, 119, 123, 124]. Common
to all approaches is the goal of modelling electronic contracts in general, except for
Peyton Jones and Eber [88] and Andersen et al. [6] who specifically consider financial
contracts and commercial contracts, respectively.

In the following we will go through the contract formalisms above in more detail.
We will assess the formalisms in terms of the requirements we identified in the pre-
vious section, and—where it is possible—provide sample encodings of the contract
in Figure 1.1. Since deontic logic [113]—the logic of obligations, permissions, and
prohibitions—is a reoccurring theme, we enclose a brief introduction to deontic logic
in Appendix A.1.

1.3.1 Logic Programming

The seminal work by Lee on electronic contracting [59] is the first attempt to for-
malise business contracts. Contracts are viewed as Petri net transition systems,
where a set of states can be active at any point in time, and events—that is, actions
performed by contract parties—can trigger new states to become active.
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At the core of Lee’s approach is to model the transition system in logic program-
ming, and to model contract concepts such as obligations in terms of transitions.
More specifically, the transition relation is modelled as a predicate trans(A,B,E),
which should be read “if precondition A—a predicate on the current active states—
holds, and event E occurs, then postcondition B—defining the new active states—
holds”. As an example,

trans([s(0)], [s(1), s(2)], X : D : A)

models that states 1 and 2 become active, if state 0 is active and action A is taken by
party X fulfilling some deadline D. (We use a slightly simplified syntax compared
to the original article [59].) Note that, as in Petri nets, the active states that are
used as preconditions in a transition become inactive after the transition, that is
when states 1 and 2 above are activated then state 0 is deactivated.

As an example of how contract aspects are modelled, consider the obligation for
party X to perform action A within a deadline specified by some quantifier D:

trans([s(0)], [s(1)], X : D : A)

trans([s(0)], [s(default(X))],∼ X : D : A).

Here the state default(X) means that party X has defaulted on the contract, and
∼ X : D : A means that party X has not performed action A. Hence if party X
is obliged to perform action A in state 0, then by doing so the contract progresses
to the successor state 1, and by not doing so the contract enters a default state,
which means a breach of contract. Note how the absence of the action is encoded
explicitly, rather than via negation as failure. The motivation is that only when we
know explicitly that action A was not performed by X is the contract breached.

An important point about Lee’s modelling of obligations is the relation to stan-
dard deontic logic (SDL). Although inspired by SDL, Lee makes a clear point that
the semantics is not the usual possible worlds semantics of SDL (Appendix A.1),
but rather that it only makes sense to consider one world, namely the actual circum-
stances of the contract. By abandoning the possible worlds semantics, Lee derives
the model of obligations that we saw above, which conforms intuitively with con-
tractual obligations, unlike the more philosophical semantics of SDL.

Similar to obligations, Lee shows how to model a rich set of features in terms
of electronic contracts, namely modelling of contract participants (R2), commit-
ments (R3), absolute temporal constraints (R4), relative temporal constraints (R5),
instantaneous and continuous actions (R7), potentially infinite and repetitive con-
tracts (R8) and parametrised contracts (R12). There is no account for reparation
clauses (R6), time-varying, external dependencies (R9), history-sensitive commit-
ments (R10), and in-place expressions (R11) in electronic contracts. However, with
the exception of R11 these aspects are likely definable within the model as well,
given the freedom of logic programming.

The logic programming encoding of contracts provides the back end for for-
malising contracts, and for the purpose of writing contracts and monitoring their
execution (R14), Lee sketches how to map an English-like text (R13) to the logic
programming model. By utilising the logic programming query engine, the state of
a contract can be analysed (R16), for instance to see who (if any) have outstanding
commitments, which provides some means of blame assignment as well (R15).
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trans([s(1)], [s(2), s(3), s(4)],Seller : rb(1-jan-2011) : deliver(Buyer,printer)) (1.1)

trans([s(1)], [s(default(Seller))],∼ Seller : rb(1-jan-2011) : deliver(Buyer,printer)) (1.2)

trans([s(2)], [s(5)],Buyer : rw(0) : pay(Seller,e100)) (1.3)

trans([s(2)], [s(default(Buyer))],∼ Buyer : rw(0) : pay(Seller,e100)) (1.4)

trans([s(3)], [s(6)],Buyer : rw(30) : pay(Seller,e100)) (1.5)

trans([s(3)], [s(7)],∼ Buyer : rw(30) : pay(Seller,e100)) (1.6)

trans([s(7)], [s(8)],Buyer : rw(14) : pay(Seller,e110)) (1.7)

trans([s(7)], [s(default(Buyer))],∼ Buyer : rw(14) : pay(Seller,e110)) (1.8)

trans([s(4)], [s(9)],Buyer : rw(14) : return(Seller,printer)) (1.9)

trans([s(9)], [s(10)],Seller : rw(7) : pay(Buyer,e100)) (1.10)

trans([s(9)], [s(default(Seller))],∼ Seller : rw(7) : pay(Buyer,e100)) (1.11)

Figure 1.4: A sales contract between a buyer and a seller (logic programming).

Lee’s approach succeeds in capturing most of the aspects we identified in Sec-
tion 1.2, and—as we shall see—later approaches often fall short on many of the
aspects that Lee’s model covers. In particular, Lee argues that the possible worlds
semantics of standard deontic logic is inappropriate for modelling contracts, which
is overlooked in later work. Indeed, none of the later work that claims to be based
on deontic logic demonstrates that the possible worlds semantics is appropriate for
modelling contracts. The reason—we believe—why the features of Lee’s electronic
contracts and modelling of deontic modalities are rather overlooked in later work,
is the absence of a clear language definition, as well as a direct semantic model of
electronic contracts (R1).

We conclude with an example encoding of the sales contract from Figure 1.1 in
Figure 1.4 (we refer to the original article [59] for more information on the concrete
syntax). In the initial state Seller has to deliver within 2011-01-01, which activates
states 2, 3, and 4 (1.1). The quantifier “rb” abbreviates “realised before”, and
similarly “rw” abbreviates “realised within”. As we saw above, failure to comply
with an obligation is modelled with a default state (1.2). In state 2 Buyer has to
pay the first half immediately (1.3) and in state 3 Buyer has to pay the second half
within 30 days (1.5). However, failure to comply with the latter payment does not
result in a default state, but rather a new state in which Buyer has to pay e110
(1.6). Lastly, the permission of Buyer to return the goods to Seller is modelled as a
transition that enables an obligation on Seller (1.9).

1.3.2 Event-condition-action

The event-condition-action (ECA) paradigm from active databases [13] is first used
by Goodchild et al. [34] for modelling contracts. The ECA interpretation of contracts
is that events trigger actions when certain conditions are met. To be more concrete,
the ECA interpretation of for instance Paragraph 1 in Figure 1.1 is (1) when the
event “contract start” takes place, then (2) the action “Buyer delivers printer to
Seller” should happen, provided that (3) the deadline of 2011-01-01 is not passed.

Goodchild et al. model contracts as sets of policies. A policy specifies that
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S = Contract.Seller;
B = Contract.Buyer;

when Contract.State == ’initial’
action(deliver, S, B, t)
must occur where t ≤ 2011−01−01
otherwise trigger(send notice of breach, ∗, “Seller failed to deliver goods”)

when { delivery has occurred }
action(pay first half, B, S, t)
must occur where { t same day as delivery date }
otherwise trigger(send notice of breach, ∗, “Buyer failed to pay first half”)

when { first half paid }
action(pay second half, B, S, t)
must occur where { t is no later than 30 days after delivery }
otherwise trigger(send notice of breach, ∗, “Buyer failed to pay second half”)

Figure 1.5: A sales contract between a buyer and a seller (event-condition-action).

a legal entity is either forbidden or obliged to perform an action under certain
conditions. The grammar for policies is as follows (keywords are in bold face, [·]
denotes optionality, and ·∗ denotes zero or more occurrences):

Policy ::= VariableDeclaration∗

when Condition
Action
must [not] occur where Condition
otherwise Trigger

Action ::= action(ActionName,Actor ,Audience,Time)
Trigger ::= trigger(ActionName,Audience)

Unfortunately, there is no semantic account for the policy language, nor a de-
tailed description of the syntax besides the incomplete grammar above (R1). In
particular, we would expect that it is possible for actions to update the state of
the contract, but how this is done is not described. Despite the lack of detail, the
policy language provides some hints of how ECA can be used to model contracts.
Figure 1.5 sketches how to encode Paragraphs 1–3 from Figure 1.1 as policies. Para-
graphs 4–5 cannot be encoded, as the policy language does not include reparation
clauses and permissions, respectively. We use pseudo-notation, enclosed in curly
braces, to make up for the lacking language constructs.

Given the lack of detail in the presentation of Goodchild et al., it is difficult
to asses the policy language with respect to our requirements from Section 1.2.
However, the supplied examples [34] indicate that the policy language includes the
aspects of commitments (R3), absolute temporal constraints (R4), in-place expres-
sions (R11), and run-time monitoring (R14) in terms of an SQL implementation.
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l1 : init → OSeller,Buyer(deliver(printer , t1) < 2011-01-01)
l3.1 : fulfilled(l1) → OBuyer,Seller(pay(100) < t1)
l3.2 : fulfilled(l1) → OBuyer,Seller(pay(100) < t1 + 30)
l4 : not fulfilled(l3.2) → OSeller,Buyer(pay(110) < t1 + 44)
l5.1 : fulfilled(l1) → PBuyer,Seller(return(printer , t2) < t1 + 14)
l5.2 : fulfilled(l5.1) → OSeller,Buyer(pay(200) < t2 + 7)

Figure 1.6: A sales contract between a buyer and a seller (normative statements).

1.3.3 Normative Statements

In the e-contracts framework of Boulmakoul and Sallé [17], contracts are modelled as
sets of normative statements, similar to Goodchild et al.’s policies (Section 1.3.2).
Rather than using event-condition-action principles, Boulmakoul and Sallé start
from deontic logic principles, that is from the deontic operators of SDL, but not the
semantics.

As for the event-condition-action approach of Goodchild et al., there is no for-
mal semantics of normative statements (R1), and the details are very sparse. Yet,
the intuition behind normative statements is interesting, and the language is very
compact. Normative statements have the form:

l : f → Di1,i2(a < T ),

where l is a label, f is a predicate that may refer to other statements via their labels,
D is a deontic operator (either obligation O, permission P , or prohibition F ), i1
and i2 are roles, a is the action to (not) perform, and T is a deadline. The intuitive
reading of the statement above is “when f holds, i1 is obliged/permitted/prohibited
by i2 to achieve/perform a before T”.

Figure 1.6 sketches how to model the sales contract from Figure 1.1 as normative
statements. Unlike standard deontic logic, actions may carry values rather than
being restricted to propositional atoms. init represents the start of the contract,
deliver(g, t) represents delivery of goods g at time t, pay(x) is payment of amount
x, and return(g, t) is the returning of goods g at time t.

Although lacking semantics and a precise language definition (R1), the encoding
sketched above shows that the labelling approach yields a formalisation that is close
in structure to the original paper contract (R13). Moreover, by annotating deontic
modalities with parties (R2), we should expect to be able to perform some form of
blame assignment (R15) when contracts are breached. Besides the requirements R2,
R13, and R15, the policy language of Boulmakoul and Sallé supports commitments
(R3), absolute temporal constraints (R4), reparation clauses (R6), and run-time
monitoring (R14), although none of these features are given a detailed or formal
treatment.

1.3.4 Functional Programming

Peyton Jones and Eber [88] consider a restricted form of contracts, namely bilateral
financial contracts. In order to illustrate the domain of financial contracts, consider
the example in Figure 1.7. Each Di represents—in principle—a contract. That is,
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D : The holder of this contract has the right to choose on 30 June 2000 between:

D1 : Both of: D11 : Receive £100 on 29 Jan 2001.

D12 : Pay £105 on 1 Feb 2002.

D2 : An option exercisable on 15 Dec 2000 to choose one of:

D21 : Both of: D211 : Receive £100 on 29 Jan 2001.

D212 : Pay £106 on 1 Feb 2002.

D22 : Both of: D221 : Receive £100 on 29 Jan 2001.

D222 : Pay £112 on 1 Feb 2003.

Figure 1.7: Financial contract [88, page 1].

D is a contract composed of (sub)contracts D1 and D2, which are in turn composed
of (sub)contracts.

The compositional structure of financial contracts lend them appropriate for a
formalisation in functional programming, which is compositional in nature. Pey-
ton Jones and Eber construct a compact combinator library in Haskell [63], which
consists of the following contract constructors (using non-Haskell syntax):

c ::= zero (no rights/obligations)
| one(k) (right to one unit of currency k)
| give(c) (reverse the rights and obligations of c)
| and(c1, c2) (immediately acquire both c1 and c2)
| or(c1, c2) (immediately acquire either c1 or c2, but not both)
| cond(o, c1, c2) (immediately acquire c1 if o holds, otherwise c2)
| scale(o, c) (immediately acquire c where all amounts are scaled by o)
| when(o, c) (immediately acquire c as soon as o holds)
| anytime(o, c) (acquire c once, anytime o holds)
| until(o, c) (immediately acquire c, but abandon c once o holds)

k ranges over currencies, for instance USD, and o ranges over observables, which are
time-varying values (R9), for instance the LIBOR interest rate on a particular date.

Peyton Jones and Eber demonstrate how the compact library suffices for defining
standard financial contracts such as swaps and zero-coupon discount bonds. Rather
than having such contracts as atomic constructs, the combinator approach facilitates
a uniform treatment of contract analysis. Since the combinator library is tailored
specifically to financial contracts, we show how the example from Figure 1.7 is
encoded in Figure 1.8, rather than the example contract in Figure 1.1. The function
isdate is the observable that holds exactly on the supplied date, that is isdate(d)
holds only on the date d. The function const is the constant observable, that is
const(a) has the value a at all times.

The strength of Peyton Jones and Eber’s approach is the ability to perform
compositional analysis of contracts expressed in the library (R16). For instance,
Peyton Jones and Eber show how to perform a valuation analysis of any contract
that can be expressed in the language, which essentially means interpreting contracts
as two-player games, and estimating the expected outcome of the game (we refer to
the two parties as Holder and Opponent, respectively):
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c = when(isdate(2000−06−30),
or(and(receive on(2001−01−29, 100), pay on(2002−02−01, 105)),

when(2000−12−15,
or(and(receive on(2001−01−29, 100), pay on(2002−02−01, 106)),

and(receive on(2001−01−29, 100), pay on(2003−02−01, 112))))))

receive on(d,a) = when(isdate(d), scale(const(a), one(GBP)))
pay on(d,a) = give(receive on(d,a))

Figure 1.8: Financial contract (functional programming).

zero : The game has ended.
one(k) : Holder wins one unit of currency k from Opponent.
give(c) : Initiate game c where Holder and Opponent switch roles.
and(c1, c2) : Games c1 and c2 are initiated (in parallel).
or(c1, c2) : Holder chooses one of c1 and c2, which is then initiated.
cond(o, c1, c2) : If o holds, game c1 is initiated, otherwise game c2 is initiated.
scale(o, c) : Initiate game c where all amounts are scaled by o.
when(o, c) : The game c is initiated as soon as o holds.
anytime(o, c) : Holder can initiate game c (once) anytime o holds.
until(o, c) : Game c is initiated, but immediately ended once o holds.

With the game-theoretic interpretation, the expected value of for instance give(c)
is the negation of the expected value of c, while the expected value of or(c1, c2) is
the maximum of the expected values of c1 and c2. And in the case of observables,
statistical forecasts are applied, that is there is a stochastic model for observables.

In terms of our desiderata from Section 1.2, the combinator library of Pey-
ton Jones and Eber supports conditional commitments (R3), absolute temporal
constraints (R4), relative temporal constraints (R5), potentially infinite and repeti-
tive contracts (R8), time-varying, external dependencies (R9), in-place expressions
(R11), parametrised contracts (R12), isomorphic encoding (R13), and amenability
to (compositional) analysis (R16). The fact that financial contracts are expressed in
Haskell means that R8, R11, and R12 come for free, for instance a potentially infi-
nite contract is nothing but a recursively defined term, and a parametrised contract
is a function.

1.3.5 Finite State Machines

Molina-Jimenez et al. [76] consider a finite state machine (FSM) encoding of con-
tracts, referred to as executable contracts (x-contracts). X-contracts have some
similarities with Lee’s transition system approach (Section 1.3.1), yet x-contracts
use FSMs more explicitly, and the modelling involves one FSM per contract party
rather than one global contract description. In that respect, x-contracts are pro-
jections of global contract descriptions to each of the contract parties, although
the projection is not given explicitly as in, for instance, the end-point projection of
multiparty session types [47].

A finite state machine is defined as a tuple (S, I, Z, δ, λ), where S is a finite set of
states, I and Z are finite sets of input and output symbols respectively, δ : S×I → S
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s1
Contract started

Set delivery timer to 2011-01-01

s2

s3s4

Goods received
Switch of delivery timer

Timeout: delivery timer
Terminate contract

First payment made
Set payment timer to 30 days

First payment not made
Terminate contract

Figure 1.9: A sales contract between a buyer and a seller from the buyer’s viewpoint
(finite state machines).

is the transition function, and λ : S× I → Z is the output function (hence the FSM
is actually a Mealy machine, but Molina-Jimenez et al. use the FSM terminology).
The state models the state of the contract, and the input symbols model events that
happen relevant to the contract, for instance delivery of goods. The output symbols
model the operation that the contract stipulates on the holder of the executable
contract, for instance to pay in return for the delivered goods.

Figure 1.9 presents an encoding of a small fragment of the sales contract from
Figure 1.1 as an x-contract, from Buyer’s viewpoint. We use the same graphical
notation as Molina-Jimenez et al., that is states are depicted as circles, and transi-
tions are labelled arrows between states, where the event (input) is written above
the operation (output).

In the initial state s1 Seller is obliged to deliver goods, which from Buyer’s
viewpoint amounts to starting a timer to verify delivery within the agreed deadline.
If the timer runs out, Buyer must terminate the contract, which results in the
terminal state s4, similar to Lee’s default state (Section 1.3.1). If Seller delivers the
goods, Buyer must pay immediately in state s2, and doing so advances the contract
to state s3. (We do not present the encoding past state s3.)

The encoding above is rather informal, however a similar encoding is used in
the original paper [76]. For instance, we use timers to encompass deadlines even
though timing aspects are not part of finite state machines. Moreover, the finite
state machine encoding above does not take into account that Buyer can return
the goods in state s2. The reason why we have not encoded this option is because
it raises a general problem with the FSM approach, namely how to model the case
when two subcontracts are active simultaneously. In such cases we need to construct
a product automaton, which yields n×m states when the sub automata have n and
m states, respectively, which makes it incomprehensible to depict.

In terms of our requirements from Section 1.2, the FSM encoding used in x-
contracts focuses entirely on a contract execution model, and not a language for
writing contracts (R1). X-contracts support (conditional) commitments (R3) and
relative temporal constraints (R5), and to some extent absolute temporal constraints
(R4), even though absolute time is not part of the mathematical FSM model. Fur-
thermore, x-contracts support reparation clauses (R6), potentially infinite and repet-



16 A Survey of Formal Languages and Models for Contracts

itive contracts (R8), run-time monitoring (R14), and amenability to (compositional)
analysis (R16). Of these features run-time monitoring is the most prominent, since
the execution model is built entirely with the purpose of monitoring contracts. More-
over, being based on finite state machines means that existing tools can be used for
contract analysis, for instance to resolve ambiguities [76].

1.3.6 Business Contract Language

The business contract language (BCL) of Milosevic et al. [61, 74] is designed with the
purpose of enabling event-based monitoring of business activities. A BCL contract
consists of a set of roles along with a set of policies, and it is hence similar in
structure to the event-condition-action (ECA) approach in Section 1.3.2. The roles
define the parties involved in a contract, and the policies define the obligations and
rights agreed upon by the parties. The first presentations of BCL [61, 74] contain
no formal semantics, and the language is only presented fragment-wise by means of
examples. Governatori and Milosevic [36] later seek to formalise BCL by mapping
it to a fragment of deontic logic extended with contrary-to-duty obligations. The
presentation we give here is based primarily on the later presentation.

The motivation for BCL is event-based monitoring. An event e ∈ E is either
(1) an action performed by one of the signatories of the contract, (2) a temporal
occurrence such as the passing of a deadline, (3) a change in the contract state,
or (4) a contract violation. (1) covers “real-world” events, that is actions that are
actually performed, and (2–4) are “control” events, that is events that are used for
executing the contract, and which are defined by the contract in an ECA manner.

An event pattern ep ∈ EP is either (1) a logical relation between events, such
as ¬e and e1 ∧ e2; (2) a temporal relation between events, such as e1 before e2; or
(3) a temporal constraint on event patterns, such as ep before t, where t is a point
in time. Whereas events are atomic, event patterns are used to describe complex
events. For instance, a policy may require that a certain role is obliged to perform
either of two actions e1 and e2, which is achieved via the event pattern e1 ∨ e2.

The main ingredient of BCL is policies. A policy consists of (1) a policy name;
(2) a role, that is to whom does the policy apply; (3) the modality of the policy,
either an obligation, a permission, or a prohibition; (4) a trigger that defines when
the policy is active in terms of a set of event patterns; (5) an optional guard that—
like the trigger—specifies when the policy is active, but—unlike the trigger—refers
to the contract state and to other policies; and (6) the obliged/permitted/prohibited
behaviour dictated by the policy in terms of an event pattern.

The grammar for BCL, which we described informally above, is as follows:

Contract ::= Policy∗

Policy ::= Policy : Name
Role : Role
Modality : Modality
Trigger : EP+

[Guard ]
Behavior : EP

Modality ::= Obligation | Permission | Prohibition
EP ::= not E | E and E | E or E | E before E | EP before T
Guard ::= Guard : StateExp | violated(Name)
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Policy: P1
Role: Seller
Modality: Obligation
Trigger: init
Behavior: deliver before 2011−01−01

Policy: P3.1
Role: Buyer
Modality: Obligation
Trigger: deliver
Behavior: pay first half

Policy: P3.2
Role: Buyer
Modality: Obligation
Trigger: deliver
Behavior: pay second half before 30

Policy: P4
Role: Buyer
Modality: Obligation
Guard: violated(P3.2)
Behavior: pay penalty before 14

Policy: P5.1
Role: Buyer
Modality: Permission
Trigger: deliver
Behavior: return goods before 14

Policy: P5.2
Role: Seller
Modality: Obligation
Trigger: return goods
Behavior: repay before 7

Figure 1.10: A sales contract between a buyer and a seller (business contract lan-
guage).

As an example of a BCL contract according to the grammar, consider the en-
coding of the sales contracts from Figure 1.1 in Figure 1.10. The encoding, which is
reminiscent of the structure of the paper contract (R13), uses the events init , deliver ,
pay first half , pay second half , pay penalty , return goods, and repay , which are
propositional atoms à la standard deontic logic (SDL), that is they carry no values.
Unlike SDL, however, BCL uses temporal aspects which means that the semantics
of SDL (Appendix A.1) does not apply immediately to BCL.

Besides the isomorphism principle (R13), BCL features contract participants
(R2), conditional commitments (R3), absolute temporal constraints (R4), relative
temporal constraints (R5), reparation clauses (R6), and run-time monitoring (R14).
Run-time monitoring of BCL contracts is referred to as business activity monitoring
(BAM) [74]. The BAM engine executes BCL contracts by processing external events,
as well as generating internal events, for instance when deadlines pass.

In terms of a semantic model of contracts (R1), Governatori and Milosevic [36]
introduce the formal contract logic (FCL). FCL extends SDL by annotating deontic
modalities with responsibility and by introducing a restricted form of contrary-
to-duty obligations [94]. The former extension entails that obligations have the
form Osφ, which means that s is responsible for the obligation φ, and the latter
extension is the ability to model secondary obligations that become active when
primary obligations are violated. Unlike Prakken and Sergot’s original extension
of SDL with contrary-to-duty obligations [94], FCL has the following restricted
grammar:

l ::= p | ¬p (literals)
ml ::= Os l | ¬Os l | Ps l | ¬Ps l (modal literals)
⊗-exp ::= ml | Os1 l1 ⊗ · · · ⊗Osn ln (⊗-expressions)

| Os1 l1 ⊗ · · · ⊗Osn ln ⊗ Psn+1 ln+1

φ ::= l → φ | ml → φ | ⊗-exp (policies)
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Literals l are propositional atoms and events, and the binary connective ⊗ is
used to represent contrary-to-duty structures. Unlike SDL, deontic operators only
pertain to literals, which means that FCL is restricted to ought-to-do statements [95]
(as opposed to ought-to-be statements). A (binary) contrary-to-duty obligation
Os1 l1⊗Os2 l2 should be read “s1 is obliged to perform l1, and failure to comply obliges
s2 to perform l2”. Similarly, a (binary) contrary-to-duty permission Os1 l1 ⊗ Ps2 l2
means that s2 is permitted to perform l2 if s1 fails to perform l1.

Following the original intent of standard deontic logic with contrary-to-duty obli-
gations [94], a contrary-to-duty obligation Os1 l1⊗Os2 l2 is not the same as a simple
disjunction Os1 l1 ∨ Os2 l2, that is ⊗ is non-commutative. Rather, Governatori and
Rotolo suggest the intuitive reading that a contrary-to-duty obligation corresponds
to “[...] a disjunction where the order of disjuncts matters” [38, page 198]. That
is, there is an implicit agreement first and foremost to fulfil the primary obligation,
and only if there are no other possibilities must the secondary obligation be fulfilled.
Hence, none of our example contracts in Figures 1.1–1.3 contain actual contrary-to-
duty obligations—for instance the penalty of Paragraph 4 in Figure 1.1 is merely
an alternative payment method for the buyer, not a contrary-to-duty obligation.
Therefore, the encoding in BCL above of the sales contract in Figure 1.1 is actually
not faithful to realities, since we model Paragraph 4 is a contrary-to-duty obligation
of Paragraph 3. However, Governatori and Milosevic make similar encodings for
what are arguably not contrary-to-duty obligations [36].

Returning to the grammar of FCL, policies have the form:

t1 → t2 → · · · → tn → ⊗-exp,

where t is used as an abbreviation for the union of the two syntactic categories l and
ml . Each ti is the antecedent for the rule (“trigger” in the BCL terminology), which
dictates when the ⊗-expression (“behaviour” in the BCL terminology) becomes
active.

Governatori and Milosevic sketch how to map a subset of BCL to FCL. However,
such a mapping does not provide a semantics to BCL, since FCL itself does not have
a semantics! Being supposedly based on standard deontic logic, we would expect a
semantics for FCL in the style of Appendix A.1, yet such a semantics is not provided.
Moreover, FCL neglects temporal aspects, which is a crucial part of BCL contracts.

In relation to contract analysis (R16), Governatori et al. [39] consider an interest-
ing question, namely the analysis of whether a given business process is compliant
with a business contract. A business process is characterised by the set of event
patterns that it generates, and compliance is then a matter of testing whether all
event patterns satisfy the given FCL contract. However, since there is no formal se-
mantics for FCL, there is no result that contract compliance implies formal contract
satisfaction in all possible executions.

1.3.7 Process Algebra

Andersen et al. [6] consider a restricted form of contracts that govern the exchange
of resources—that is, money, goods, and services—between multiple parties. The
approach complements McCarthy’s resources, events, and agents (REA) accounting
model [65], in which the transaction patterns of companies (agents) are modelled
as transfers of resources, referred to as events. The approach of Andersen et al.
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letrec{
return[buyer,seller,goods,payment,deadline] =
(transmit(b, s, g, t1 | b = buyer ∧ s = seller ∧ g = goods ∧ t1 ≤ deadline).
transmit(s, b, p, t2 | s = seller ∧ b = buyer ∧ p = payment ∧ t2 ≤ t1 + 7).
Success) + Success

sale[buyer,seller,goods,payment,deadline] =
transmit(s, b, g, t1 | s = seller ∧ b = buyer ∧ g = goods ∧ t1 ≤ deadline).
transmit(b, s, p, t2 | b = buyer ∧ s = seller ∧ p = payment/2 ∧ t1 = t2).
((transmit(b, s, p, t3 | b = buyer ∧ s = seller ∧ p = payment/2 ∧ t3 ≤ t1 + 30).

Success
+
transmit(b, s, p, t3 | b = buyer ∧ s = seller ∧ p = 1.1∗(payment/2) ∧ t3 ≤ t1 + 44).
Success)
||
return(buyer, seller, goods, payment, t1 + 14))

}
in
sale(Buyer, Seller, Printer, 200e, 2011−01−01)

Figure 1.11: A sales contract between a buyer and a seller (process algebra).

is inspired partly by the compositional approach of Peyton Jones and Eber (Sec-
tion 1.3.4), partly by the algebraic, behavioural approach of CSP [45].

The grammar of Andersen et al.’s contract calculus is as follows:

k ::= letrec{fi[~xi] = ci}mi=1 in c (contract)
c ::= Success (no obligations)
| Failure (failed contract)
| c1 + c2 (choice)
| c1 ‖ c2 (parallel)
| c1; c2 (sequence)
| f(~a) (instantiation)
| transmit(a1, a2, r, t | p).c (transfer obligation)

x, a, r, and t are variables, and p is a predicate (we omit the grammar for predicates).

At top-level, a contract k consists of a set of mutually recursive template defini-
tions along with a contract body. The body of a contract c is either (1) a completed
contract Success, (2) a failed contract Failure, (3) a choice between two sub-
contracts c1 + c2, (4) a simultaneous obligation to fulfil two subcontracts c1 ‖ c2,
(5) a sequential obligation to fulfil two subcontracts c1; c2, (6) an instantiation of a
contract template f(~a), or (7) an obligation to transmit a resource that fulfils the
predicate p, followed by a residual contract transmit(a1, a2, r, t | p).c.

In order to illustrate the contract calculus, consider the encoding of the sales
contract from Figure 1.1 in Figure 1.11. Note how the permission to return goods
is modelled as a choice between either returning the goods, or not. Moreover, note
that transmits are binders, that is for instance t1 is bound to the time of returning
goods, and can be referred to in the continuation contract in order to encode the
deadline for return payment.
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Unlike previous work, Andersen et al. provide both a language for defining
contracts (the above), as well as a semantic model for contracts (R1). The semantic
model of contracts is trace-based, that is a contract is denoted by the set of traces
that fulfil the contract. A trace is a finite sequence of events, and events have the
form:

transmit(a1, a2, r, t),

denoting the transmission of resource r from agent a1 to agent a2 at time t. The
link between syntactic contracts and the semantic model is given as a CSP-inspired
denotational semantics, that is a compositional mapping of contract syntax to sets
of (accepting) traces.

Besides a formal semantics, the contract language has support for contract
participants (R2), conditional commitments (R3), absolute temporal constraints
(R4), relative temporal constraints (R5), reparation clauses (R6), potentially infinite
and repetitive contracts (R8), time-varying, external dependencies (R9), history-
sensitive commitments (R10), in-place expressions (R11), parametrised contracts
(R12), run-time monitoring (R14), and amenability to (compositional) analysis
(R16). Of these requirements, we want to single out run-time monitoring: An-
dersen et al. construct a sound and complete (with respect to the denotational
trace semantics) small-step semantics. The small-step semantics is a labelled tran-
sition system c

e→ c′, which means that contract c evolves to contract c′ under event
e, or in other words that c′ is the residual contract of c after event e has happened.
The small-step semantics gives rise to a run-time monitor, since the state of a con-
tract is—at any time—determined by the events that have occurred, and upcoming
deadlines can be determined by a syntactic inspection of the current contract state.
The reduction semantics furthermore entails that any analysis applicable to initial
contracts are also applicable at run-time.

One downside to Andersen et al.’s calculus is the inherent non-determinism of
the choice operator +. For instance, it is possible to write a contract that obliges
either agent a1 to transfer a resource, or agent a2 to transfer a resource, but what if
neither of them transfer the resource? In such a contract it is impossible to assign
blame (R15), which is also the case for the degenerate contract Failure.

1.3.8 Dynamic Logic

The contract language CL introduced by Prisacariu and Schneider [95] is a logic
for expressing electronic contracts based on a combination of deontic, dynamic, and
temporal logics. As in the logic of Governatori and Milosevic (Section 1.3.6), CL
restricts deontic modalities to ought-to-do statements, that is deontic modalities
can only be applied to actions that are performed. Unlike the logic of Governatori
and Milosevic, Prisacariu and Schneider present a formal semantics in terms of an
extended fragment of the propositional µ-calculus. Similar to the logic approach of
Lee (Section 1.3.1), Prisacariu and Schneider abandon the possible worlds semantics
of standard deontic logic (Appendix A.1), in favour of a dynamic, action based
semantics.

In later work, Fenech et al. [27] consider a revised version of CL, along with a
revised, trace semantics, which we base our presentation on. The grammar of CL is
as follows:
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1. O(deliver)
2. [deliver ]

(
O(pay first half ) ∧OO(pay fine)(pay second half )

)
3. [deliver ]P (return)
4. [return]O(repay)

Figure 1.12: A sales contract between a buyer and a seller (dynamic logic).

C ::= CO | CP | CF | C ∧ C | [β]C | > | ⊥ (clause)
CO ::= OC (α) | CO ⊕ CO (obligation)
CP ::= P(α) | CP ⊕ CP (permission)
CF ::= FC (α) (prohibition)
α ::= 0 | 1 | a | a | α& α | α;α | α+ α (deontic action)
β ::= ε | 0 | 1 | a | a | β & β | β;β | β + β | β∗ (dynamic action)

A CL clause is either an obligation CO, a permission CP , a prohibition CF , a con-
junction of two clauses C ∧ C, a clause preceded by a dynamic condition [β]C, a
trivially fulfilled clause >, or a trivially violated clause ⊥.

An obligation OC(α) means that actions α are obligatory, and C is a reparation
clause that is active if α is not performed. Similar to Milosevic et al. (Section 1.3.6),
the terminology “contrary-to-duty” is used for the reparation clause C, which sug-
gests that there is an implicit agreement about primary and secondary obligations,
compare the discussion in Section 1.3.6. However, like Milosevic et al., the examples
that illustrate contrary-to-duty obligations in CL [27, 58] are arguably not contrary-
to-duties, but merely choices.

A deontic action α is either no action 0, any action 1, any action—except a—a,
simultaneous actions α & α, sequential actions α;α, or any of two actions α + α.
C ⊕ C is the exclusive disjunction of two clauses, that is exactly one of the two
clauses must be fulfilled. Permissions P (α) and prohibitions FC(α) are similar to
obligations, only permissions do not have a contrary-to-duty clause as they cannot be
violated, and prohibitions cannot be combined disjunctively. The dynamic condition
[β]C means that if β happens, then C must be fulfilled. Dynamic actions β extend
deontic actions α with Kleene star, which enables clauses of the form [β∗]C, that is
whenever β happens then C should be fulfilled.

Actions are propositional atoms as in standard deontic logic (Appendix A.1).
Figure 1.12 presents an encoding of the sales contract from Figure 1.1 in CL, using
the propositional atoms deliver , pay first half , pay second half , pay fine, return,
and repay . We omit the implicit conjunction between the clauses, we omit contrary-
to-duty subscripts when they are ⊥, and following previous CL examples, we model
the late payment as a contrary-to-duty obligation, even though it is a choice.

Fenech et al. [27] present a trace semantics for CL. Unlike traditional trace
semantics, the fulfilment relation has the form σ, σd |= C, which means that the trace
σ fulfils C, provided that the remaining obligations described by σd are met. Hence,
standard trace fulfilment is a special case, that is σ fulfils C whenever σ, ε |= C
holds, where ε is the empty trace. The trace semantics gives rise to incremental
run-time monitoring by residuation in the style of Andersen et al. (Section 1.3.7).
That is, Fenech et al. construct a residuation function f : CL×A→ CL that reduces
a clause C to a residual clause C ′ when action a takes place.

Besides a formal semantics (R1), CL supports conditional commitments (R3),
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relative temporal constraints (R5), reparation clauses (R6), potentially infinite and
repetitive contracts (R8), run-time monitoring (R14), and (compositional) analysis
(R16). Examples of contract analysis include meta results about the logic [95] in
particular absence of certain deontic paradoxes, and model checking of contracts [85].

1.3.9 Defeasible Reasoning

Starting from defeasible logic [80] and formal contract logic (FCL, Section 1.3.6),
Governatori introduces defeasible deontic logic of violation (DDLV) [35] (with a later
refinement by Governatori and Pham [37]). The purpose of DDLV is to support
overlapping contract clauses, where conflicts are resolved by allowing rules to defeat
each other.

Following defeasible logic, DDLV contains four different kinds of knowledge:
facts, strict rules, defeasible rules, and a superiority relation. Facts represent indis-
putable knowledge, that is knowledge which cannot be overruled at a later stage.
For instance, in the sales contract in Figure 1.1 it is a fact that the printer costs
e200, which in DDLV is modelled as a predicate:

Price(Printer , 200).

Strict rules enable conclusion of new facts. When the antecedents of a strict rule
are known to be facts, then so is the conclusion. As an example, the sales contract
could have included the following definition of premium customers:

TotalExpensesAtLeast(X, 2000)→ PremiumCustomer(X),

which states that customers who have spent at least e2000 are premium customers.
Defeasible rules enable conclusion of new knowledge, which may be overruled

by some other (defeasible or strict) rule. For instance the sales contract could have
entitled premium customers to a 10% discount, which in DDLV would be modelled
as follows:

r1 : > ⇒ Price(Printer , 200)

r2 : PremiumCustomer(X)⇒ Price(Printer , 180).

The last component—the superiority relation—defines how rules defeat each
other. For instance the two rules above would be related as r1 < r2, that is r2

defeats r1. In order to derive indisputable and defeasible knowledge, DDLV includes
a set of inference rules, which besides deriving knowledge can detect conflicts. For
instance, a prima facie conflict such as forgetting to supply the relation r1 < r2 will
be detected, which is useful in the process of writing a conflict-free contract.

Besides defeasible rules, DDLV includes deontic modalities similar to its prede-
cessor FCL (Section 1.3.6), which we will not replicate here. Unlike FCL however,
DDLV supports contract normalisation, that is a transformation of any DDLV con-
tract into a unique canonical form. The essence of the transformation is to rewrite
implicit reparation clauses into explicit contrary-to-duty formulae (using the ⊗ con-
nective of FCL), as well as to remove redundant clauses. As an example, the two
rules:

r1 : OSeller(deliver)⊗OSeller(pay penalty)

r2 : ¬deliver ,¬pay penalty ⇒ OSeller(pay large penalty),
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are combined into a single rule:

r1+2 : OSeller(deliver)⊗OSeller(pay penalty) ⊗OSeller(pay large penalty).

A normal form is achieved by applying the two procedures of merging and re-
moving redundancies until a fixed point is reached. (Such a fixed point always exists
and it is unique [37].) Normal forms are beneficial for several reasons. First, con-
tract equivalence is decidable, that is two contracts are equivalent if and only if their
normal forms are identical. Second, contract analysis and run-time monitoring only
need be defined on normal forms, which may ease construction of such algorithms.

In terms of our desiderata from Section 1.2, the extension of FCL to DDLV adds
the analyses of conflict resolution and computation of normal forms (R16).

1.4 Contract Lifecycle Management

In this section we briefly list a set of commercial CLM systems, as well as the features
that these systems (claim to) support. The list that we present here is an extension
of the aspects identified by Tan et al. [108], but unlike Tan et al. we will not go into
detail with the various aspects.

Our survey includes 14 software products, which we label for easy reference:

Blueridge Software: Contract Assistant, http://www.blueridgesoftware.bz (CA)

CobbleStone Systems: ContractInsight, http://www.cobblestonesystems.com (CI)

Moai: CompleteSource Contract Management, http://www.moai.com (CS)

Eceteon: Contraxx, http://www.ecteon.com (CX)

Emptoris: Contract Management Solutions, http://www.emptoris.com (EM)

Great Minds Software: Contract Advantage, http://www.greatminds-software.com
(GM)

IntelliSoft Group: IntelliContract, http://www.intellisoftgroup.com (IC)

Ketera: Contract Management, http://www.ketera.com (KE)

Open Text: Contract Management, http://www.opentext.com (OT)

8over8: ProCon Contract Management, http://www.8over8.com (PC)

SAP: SAP CLM, http://www.sap.com (SA)

StatsLog Software Corporation: StatsLog, http://www.statslog.com (SL)

Procuri: TotalContracts, http://www.procuri.com (TC)

Upside Software: UpsideContract, http://www.upsidesoft.com (UC)

Based on the descriptions found at the websites of the commercial products, we
have gathered a list of CLM features below. We have not included technology related
features, such as the database on which a system runs, or the particular technology
used for the user interface—the list intentionally only includes CLM features. The
CLM features are (in no particular order):

1. Centralised contract repository for storing pending, running, and finished con-
tracts.

http://www.blueridgesoftware.bz
http://www.cobblestonesystems.com
http://www.moai.com
http://www.ecteon.com
http://www.emptoris.com
http://www.greatminds-software.com
http://www.intellisoftgroup.com
http://www.ketera.com
http://www.opentext.com
http://www.8over8.com
http://www.sap.com
http://www.statslog.com
http://www.procuri.com
http://www.upsidesoft.com
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Figure 1.13: Features comparison matrix (CLM products horizontally, features ver-
tically).

2. Possibility of restricting access to contracts/data in the CLM system (access
control).

3. E-mail notifications/alarms/alerts and run-time monitoring of contracts.

4. Reporting and analytics.

5. Search-capabilities.

6. Template-based contract creation.

7. Compositional construction of contracts from other subcontracts.

8. Workflows for contract approval/review.

9. Contract compliance and adherence to business standards.

10. Contract negotiation.

11. Task-list with outstanding obligations/rights.

12. Versioning system.

13. Full auditing trail.

14. Integration with enterprise resource planning (ERP) system(s).

15. Secure messaging in contract execution/collaboration.

Compared to the survey of Tan et al. [108], the features above represent a more
fine-grained list of requirements—in addition, the list also contains features that are
not covered by Tan et al. (2, 8, 13, and 14). The matrix in Figure 1.13 summarises
which features are (supposedly) supported by the surveyed CLM products. Most
interestingly, we have found no evidence that any of the CLM products use domain-
specific languages for contracts—we conjecture that they instead implement contract
templates ad hoc in a general purpose programming language.
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1.5 Conclusion

Formal languages and models for contracts is a research topic that has drawn interest
from different areas of computer science. Formalisation and automatic run-time
monitoring of contracts is an interesting challenge, both from a business viewpoint
as well as from a theoretical viewpoint. From a theoretical viewpoint, the challenge
manifests itself in the wide variety of aspects found in contracts, some of which we
have identified in this survey in the form of requirements:

(R1) Contract model, contract language, and a formal semantics.

(R2) Contract participants.

(R3) (Conditional) commitments.

(R4) Absolute temporal constraints.

(R5) Relative temporal constraints.

(R6) Reparation clauses.

(R7) Instantaneous and continuous actions.

(R8) Potentially infinite and repetitive contracts.

(R9) Time-varying, external dependencies (observables).

(R10) History-sensitive commitments.

(R11) In-place expressions.

(R12) Parametrised contracts.

(R13) Isomorphic encoding.

(R14) Run-time monitoring.

(R15) Blame assignment.

(R16) Amenability to (compositional) analysis.

In light of these requirements, existing well-established formalisms such as de-
ontic logics, temporal logics, timed automata, and process calculi are inadequate
for modelling all details of contracts. Consequently, several new models and lan-
guages for specifying contracts have been proposed. However, common to almost
all existing approaches is the lack of detail and lack of formal semantics. With the
exception of Andersen et al. (Section 1.3.7) and Prisacariu et al. (Section 1.3.8), ex-
isting approaches neglect formal mathematical underpinnings, or—at best—provide
incomplete mathematical models and semantics. The languages of Andersen et al.
and Prisacariu et al., on the other hand, lack important features in order to qualify
as a silver bullet—most notably empirical evidence that the languages adequately
capture contracts of the intended domains. We summarise our comparative analysis
of Section 1.3 in Figure 1.14.

Besides the models and languages we have covered in this survey, more infor-
mal approaches exist [21, 82, 119, 124]. The contract expression language [21] is an
XML based representation of contracts; Oren et al. [82] consider a contract model
in which contracts are sets of norms, similar to the model of Goodchild et al. (Sec-
tion 1.3.2); Weigand and Xu [119] consider a contract language based on dynamic
logic à la Prisacariu et al. (Section 1.3.8); and Xu [124] investigates a graph theoretic
representation of contracts. Common to all approaches is a too informal, or even
inconsistent, presentation in order to include them in our comparative analysis.
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Figure 1.14: Requirements comparison matrix (contract formalisms horizontally, re-
quirements vertically). Lee is the formalism of Section 1.3.1, Goo is the formalism
of Section 1.3.2, Bou is the formalism of Section 1.3.3, Pey is the formalism of Sec-
tion 1.3.4, Mol is the formalism of Section 1.3.5, Mil is the formalism of Section 1.3.6,
And is the formalism of Section 1.3.7, and Pri is the formalism of Section 1.3.8.

As final remark, note that we have not given a formal comparison of the ex-
pressivity of each contract formalism. That is, we have not compared whether one
formalism can be expressed in another, or whether two formalisms are mutually
exclusive. We omit such an analysis both for simplicity, but also because it would
require a formal semantics of each contract formalism.



Chapter 2

A Trace-Based Model for
Multiparty Contracts?

Abstract

In this article we present a model for multiparty contracts in which con-
tract conformance is defined abstractly as a property on traces. A key feature
of our model is blame assignment, which means that for a given contract, ev-
ery breach is attributed to a set of parties. We show that blame assignment is
compositional by defining contract conjunction and contract disjunction. More-
over, to specify real-world contracts, we introduce the contract specification
language CSL with an operational semantics. We show that each CSL contract
has a counterpart in our trace-based model and from the operational seman-
tics we derive a run-time monitor. CSL overcomes limitations of previously
proposed formalisms for specifying contracts by supporting: (history sensitive
and conditional) commitments, parametrised contract templates, relative and
absolute temporal constraints, potentially infinite contracts, and in-place arith-
metic expressions. Finally, we illustrate the general applicability of CSL by
formalising in CSL various contracts from different domains.

2.1 Introduction

Contracts are legally binding agreements between parties and in e-business it is
particularly crucial to automatically check conformance to them, for example for
minimising financial penalties. The Aberdeen Group [86, 87] has recently identified
contract lifecycle management (CLM) as a key methodology in e-business: CLM is
a broad term used to cover the activities of systematically and efficiently managing
contract creation, contract negotiation, contract approval, contract analysis, and
contract execution. Monitoring the execution of contracts constitutes the primary
incentive for enterprises to use CLM, since it enables qualified decision making and
makes it possible to issue reminders for upcoming deadlines, which may lead to a
significant decrease of financial loss due to noncompliance:

“[...] the average savings of transactions that are compliant with con-
tracts is 22%” [86, page 1].

?Joint work with Felix Klaedtke and Eugen Zălinescu [53].

27
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Consequently, several systems that implement the CLM methodology have been
deployed.1 More traditional enterprise resource planning (ERP) systems such as
Microsoft Dynamics NAV2 and Microsoft Dynamics AX3 are also used for managing
business agreements. However, a shortcoming of existing CLM and ERP systems is
that contracts are dealt with in an ad hoc manner rather than as first-class objects.
In fact, the before mentioned studies by the Aberdeen Group [86, 87] suggest the
use of a domain-specific language as the basis for automated CLM.

Although various authors have proposed domain-specific languages for represent-
ing contracts [6, 17, 34, 36, 59, 88, 95], constructing a widely applicable contract
specification language remains a challenge [84]. One reason is that contracts in-
volve many different aspects like absolute temporal constraints (as in deadlines),
relative temporal constraints (for imposing an ordering on the occurrence of cer-
tain actions), reparation clauses, conditional commitments, different deontic modal-
ities [113] (such as obligations and permissions), and repetitive patterns. In order
to make some of these aspects concrete, consider the contract in Figure 2.1, which
we will use as a running example in the remainder of this article. This sample con-
tract involves both obligations (Paragraph 1), permissions (Paragraph 5), absolute
deadlines (Paragraph 1), relative deadlines (Paragraph 3), and reparation activities
(Paragraph 4). Additionally, it involves data dependencies between paragraphs, for
example the payment amount in Paragraph 4 depends on the amount defined in
Paragraph 3.

Besides being able to capture the various aspects found in contracts mentioned
above, a contract specification language should also be amenable to automatic analy-
sis. In particular, the language should support run-time monitoring [60] of contracts,
that is reporting of (potential) contract breaches during execution—for instance as
the result of passing a deadline or performing a forbidden action. Furthermore,
in case of noncompliance the run-time monitor should be able to assign blame to
one or more of the parties involved in the contract, rather than simply reporting
noncompliance without specifying who is responsible for the breach of contract.
Surprisingly, even though run-time monitoring of contracts has been studied exten-
sively [6, 34, 36, 76, 95, 123], blame assignment has not been given much attention
yet. To the best of our knowledge only Xu [123] investigates blame assignment
though not from the viewpoint of run-time monitoring, but rather from an off-line

1Examples of such systems include (all URLs retrieved on May 18th 2011):
• Blueridge Software Contract Assistant, http://www.blueridgesoftware.bz.
• CobbleStone Systems ContractInsight, http://www.cobblestonesystems.com.
• Moai CompleteSource Contract Management, http://www.moai.com.
• Ecteon Contraxx, http://www.ecteon.com.
• Emptoris Contract Management Solutions, http://www.emptoris.com.
• Great Minds Software Contract Advantage, http://www.greatminds-software.com.
• IntelliSoft Group IntelliContract, http://www.intellisoftgroup.com.
• Ketera Contract Management, http://www.ketera.com.
• Open Text Contract Management, http://www.opentext.com.
• 8over8 ProCon Contract Management, http://www.8over8.com.
• SAP SAP CLM, http://www.sap.com.
• Procuri TotalContracts, http://www.procuri.com.
• Upside Software UpsideContract, http://www.upsidesoft.com.

2http://www.microsoft.com/en-us/dynamics/products/nav-overview.aspx.
3http://www.microsoft.com/en-us/dynamics/products/ax-overview.aspx.

http://www.blueridgesoftware.bz
http://www.cobblestonesystems.com
http://www.moai.com
http://www.ecteon.com
http://www.emptoris.com
http://www.greatminds-software.com
http://www.intellisoftgroup.com
http://www.ketera.com
http://www.opentext.com
http://www.8over8.com
http://www.sap.com
http://www.procuri.com
http://www.upsidesoft.com
http://www.microsoft.com/en-us/dynamics/products/nav-overview.aspx
http://www.microsoft.com/en-us/dynamics/products/ax-overview.aspx
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Paragraph 1. Seller agrees to transfer and deliver to Buyer, on or before 2011-01-01, the goods:
1 laser printer.

Paragraph 2. Buyer agrees to accept the goods and to pay a total of e200 for them according to
the terms further set out below.

Paragraph 3. Buyer agrees to pay for the goods half upon receipt, with the remainder due within
30 days of delivery.

Paragraph 4. If Buyer fails to pay the second half within 30 days, an additional fine of 10% has
to be paid within 14 days.

Paragraph 5. Upon receipt, Buyer has 14 days to return the goods to Seller in original, unopened
packaging. Within 7 days thereafter, Seller has to repay the total amount to Buyer.

Figure 2.1: A sales contract between a buyer and a seller.

viewpoint where blame has to be determined from a set of unfulfilled, dependent
commitments.

In this article, we present a contract specification language that targets at nat-
urally formalising and monitoring contracts. In particular, contracts formalised in
our language can directly be monitored, and in case of noncompliance the monitor
assigns blame to the responsible contract parties. Although our focus is on business
contracts, our language is not essentially restricted to this particular application
area.

2.1.1 Breach of Contract and Blame Assignment

A first question that arises when designing such a contract specification language
is what constitutes a breach of contract? Returning to the example contract in
Figure 2.1, one can think of several scenarios that arguably constitute breaches of
contract:

(1) Seller fails to deliver to Buyer on time.

(2) Seller delivers on time, Buyer pays first half on delivery, but Buyer does not pay
second half on time.

(3) Seller delivers on time, Buyer pays first half on delivery, Buyer does not pay
second half on time, and Buyer does not pay the additional fine on time.

Clearly, the first scenario represents a breach of contract, and Seller is to be
blamed for not delivering the goods to Buyer. In the second scenario, it is less
clear, since Buyer has violated Paragraph 3, but depending on whether the extended
deadline has passed, Buyer may or may not have breached the contract. Finally, in
the last scenario it is clear that Buyer has breached the contract, but it is perhaps
less clear whether violating Paragraph 3 or Paragraph 4 (or both) constitutes the
breach of contract.

The approach we take is that of fundamental breaches: a breach of contract takes
place only when a violation happens, from which the contract cannot recover, and
from which it therefore does not make sense to continue executing the contract. In
terms of run-time monitoring, a breach of contract hence takes place only when it is
impossible to complete a conforming execution. With this rather informal definition
of contract breach, we see that the first scenario constitutes indeed a breach of
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contract. Regarding the second scenario, it depends whether Buyer will pay the fine
or not, as only neglecting to pay the fine constitutes a breach of contract. Thus
scenario (2) does not yet represent a breach, in contrast to the last scenario (3).

We deliberately use the term breach rather than violation in order to distinguish
our concept of (fundamental) breach from the more traditional notion of violation
known from standard deontic logic (SDL) with contrary-to-duty obligations [94].
In the context of SDL, it is tempting to encode reparation clauses like the one in
Paragraph 4 in the form of a contrary-to-duty obligation. Yet, with such an encoding
there is an implicit agreement that the primary obligation (Paragraph 3) should be
complied with first and foremost, and only complying with the reparation obligation
constitutes a violation, even though—from a contractual point of view—the contract
is fulfilled.

A classical example that illustrates the subtle, but important, difference is the
“gentle murderer”: do not kill, but if you kill, kill gently [29]. The gentle murderer
is an actual contrary-to-duty obligation, because there is an implicit agreement that
you should not kill—only if you have no other options than killing, then at least you
should do so gently.

We argue, however, that contracts should not contain implicit agreements, in
particular because parties may have conflicting interests. Hence if one party wishes
to impose that an obligation be primary, then the only way to do so is by making
sure that there is an incentive for the responsible (counter) party to perform the
primary obligation, for example by imposing a penalty for complying only with the
reparation obligation. Hence the gentle murderer, as a contract, would be: do not
kill, but if you kill, kill gently and go to jail. Attaching penalties to violations yields
new obligations. Violating such an obligation might result in new obligations until
either all obligations are fulfilled or eventually a breach of contract is reached. For
the example, killing non-gently represents a breach of contract. Killing gently and
not going to jail also represents a breach of contract. However, killing gently and
going to jail is not a breach of contract. Note that the consequences of breaching
the contract are not specified.

Ideally, blame assignment should be deterministic, that is it should uniquely
determine the parties responsible for a breach. However, not all contracts allow
for deterministic blame assignment, as illustrated by the following scenario: If one
paragraph specifies that Alice has to fulfil an obligation by time τ , and another para-
graph that Bob has to fulfil another obligation by the same time τ , and the contract
only asks for conformance with one of the paragraphs, then we are in a delicate
situation—who is to blame if neither Alice nor Bob has fulfilled her/his obligation?4

Contracts involving disjunction, such as this one, lead to nondeterministic blame as-
signment. In other words, such contracts are ambiguous. For simplicity, we choose
not to model them, except in the special cases when the same parties are blamed
in both subcontracts. Our choice is also motivated by the fact that such scenarios
rarely correspond to real-world contracts.

4We leave it to the reader to ponder whether blaming neither of the two, or blaming both of
them is acceptable. Our view is that neither option is acceptable.
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2.1.2 Contributions and Organisation

We see our main contributions as follows. First, we present an abstract, trace-based
model for contracts that has blame assignment at its core. Furthermore, our model
supports modular composition of contracts by contract conjunction and disjunction.
Second, we introduce the contract specification language (CSL) that fits naturally—
by means of a mapping—to our abstract model, and that overcomes many of the
limitations of previous specification languages for contracts. Third, we describe a
run-time monitoring algorithm for CSL specifications obtained as a by-product of
the reduction semantics of CSL.

The remainder of this article is structured as follows. In Section 2.2 we present
our abstract, trace-based model for contracts, relying on the informal notion of
contract breach and blame assignment described above. We show how our model
encodes various high-level aspects, such as obligations, permissions, and reparation
clauses without relying on such notions. We also provide operators for composing
contracts and show that they fulfil desirable algebraic properties. In Section 2.3 we
introduce the contract specification language CSL, together with a formal semantics
that maps CSL into our abstract, trace-based contract model. Furthermore, from
the small-step, reduction-based semantics of CSL, we derive a run-time monitoring
algorithm. We also demonstrate the applicability of CSL by means of several ex-
ample contracts. We discuss related work in Section 2.4 and we draw conclusions in
Section 2.5. Appendix B.1 contains additional proof details.

2.2 Trace-Based Contract Model

Trace-based contract models have been proposed before [6, 58], but unlike our model,
those models partition traces into conforming and nonconforming traces, without
taking blame assignment into account. A trace is a sequence of actions that represent
the complete history of actions that have occurred during the execution of a contract.
In order to capture real-time aspects, and not only relative temporality, actions of
a trace are timestamped. In this article we ignore how actions are generated, and
neither do we model how parties agree that actions have taken place—the latter
would usually involve a hand-shaking protocol, which is outside the scope of our
work. For the purpose of defining contracts, we hence assume a trace of timestamped
actions is given.

2.2.1 Notation and Terminology

Before presenting our contract model, we fix the notation and terminology that we
use in the remainder of the text. Throughout this article, P denotes the set of
parties, A the set of actions, and Ts the set of timestamps. The sets P and A can
be finite or infinite but we require that they are both non-empty. We require that
Ts is totally ordered by the relation ≤, and that Ts has a least element and that no
element in the set is an upper bound, that is for all τ ∈ Ts there is some τ ′ ∈ Ts
such that τ 6= τ ′ and τ ≤ τ ′. In the following, for representation issues, we assume
that Ts = N.

We write a finite sequence σ over an alphabet Σ as 〈σ[0], σ[1], . . . , σ[n − 1]〉,
where σ[i] ∈ Σ denotes the (i + 1)st letter of σ. Its length is n and denoted by
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|σ|. In particular, 〈〉 denotes the empty sequence which has length 0. Analogously,
an infinite sequence σ over Σ is written as 〈σ[0], σ[1], σ[2], . . . 〉 with σ[i] ∈ Σ, for
every i ∈ N. The length of an infinite sequence σ is |σ| = ∞. We write σ < σ′ if
the sequence σ is a finite prefix of the sequence σ′, that is if σ is finite and there
is a sequence σ′′ such that σ′ = σσ′′, where σσ′′ denotes the concatenation of the
sequences σ and σ′′.

An event is a tuple (τ, α), where τ ∈ Ts is a timestamp and α ∈ A is an action.
We write ts(ε) for the timestamp of an event ε = (τ, α), that is ts(ε) = τ . A trace σ
is a finite or infinite sequence of events where the sequence of timestamps are:

(1) increasing, that is ts(σ[i]) ≤ ts(σ[j]) for all i, j ∈ N with i ≤ j < |σ|, and

(2) progressing for infinite traces, that is for all τ ∈ Ts there is some i ∈ N such
that ts(σ[i]) ≥ τ whenever |σ| =∞.

We denote the set of all traces by Tr, and the subset of finite traces by Trfin, that is
Trfin = {σ ∈ Tr | |σ| 6= ∞}. Trτ denotes the subset of traces where all timestamps
are at least τ , and similarly for Trτfin. For a finite non-empty trace σ, the timestamp
of the last event in σ is denoted by end(σ), and for the empty trace, we define
end(〈〉) = 0.

For a trace σ ∈ Tr and a timestamp τ ∈ Ts, στ denotes the longest prefix of σ
with end(στ ) ≤ τ . This prefix exists, since the properties (1) and (2) ensure that
there are only finitely many prefixes σ′ < σ with end(σ′) ≤ τ .

Finally, we denote the domain of a (partial) function f by dom(f), that is dom(f)
is the set of elements a for which f(a) is defined. For a function f and a set
X ⊆ dom(f), f |X denotes the restriction of f to X.

2.2.2 Contracts

We capture blame assignment by generalising the outcome of a contract execution
from a binary result (conformance or nonconformance) to verdicts, defined as ele-
ments of the set:

V = {�} ∪ {(τ,B) | τ ∈ Ts and B is a non-empty finite subset of P},

where � represents contract conformance, that is no one is to be blamed, and (τ,B)
represents a breach of contract at time τ by the parties in B. Whenever |B| > 1
then multiple parties have breached the contract simultaneously. For instance, both
parties of a barter deal may breach the contract if neither hands over the agreed
goods.

A contract is defined as a function that maps traces to verdicts:

Definition 2.2.1. Let P be a non-empty and finite subset of P. A contract between
parties P , starting at time τ0 ∈ Ts, is a function c : Trτ0 → V that satisfies the
following conditions for all σ ∈ Trτ0 and (τ,B) ∈ V:

if c(σ) = (τ,B) then B ⊆ P and τ ≥ τ0, (2.1)

and

if c(σ) = (τ,B) then c(σ′) = (τ,B), for all σ′ ∈ Trτ0 with στ = σ′τ . (2.2)
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The contract for which all traces are conforming is denoted c�, that is c� is the
function with c�(σ) = �, for all σ ∈ Trτ0 .

The definition entails that contracts are deterministic, as c is a function. Since
traces are considered complete, condition (2.2) guarantees that a breach at time τ
only depends on what has (and has not) happened up until time τ . Moreover, the
verdict of a contract can only depend on what has happened after the contract
started.

Example 2.2.2. We illustrate our contract model by representing Paragraph 1
in Figure 2.1 as a contract c1 : Trτ0 → V, for a suitable τ0. As the paragraph
only defines an obligation on the party Seller, we define c1 as a contract “between”
{Seller} with:

c1(σ) =


� if σ[i] = (τ,delivery), for some i ∈ N and τ ∈ Ts

with i < |σ| and τ ≤ τd,(
τd, {Seller}

)
otherwise.

The action delivery represents the delivery of goods to the party Buyer and τd
represents the deadline 2011-01-01. Note that dates like 2011-01-01 can be easily
interpreted as non-negative integers by taking for instance the corresponding UNIX
time. It is easy to check that c1 satisfies the properties of Definition 2.2.1.

2.2.3 Contract Conformance on Infinite Traces

The definition of contracts implicitly includes the crucial requirement that all breach-
es of contract are associated with a point in time. From this restriction it follows
that contract conformance is not a liveness property [4], such as: Buyer must deliver
the printer to Seller eventually. We see this as a natural restriction, since one of
the purposes of formalising contracts is to run-time monitor their execution, and
hence breaches of contract should be detected in finite time. In other words, every
obligation must have a deadline.

The following lemma follows directly from the definition of contracts, because
στ is the longest prefix up to time τ of the trace σ.

Lemma 2.2.3. Let c : Trτ0 → V be a contract and let σ be a (finite or infinite)
trace. Then c(σ) = (τ,B) if and only if c(στ ) = (τ,B).

The previous lemma entails that any nonconforming trace (in particular, any
nonconforming infinite trace) has a nonconforming prefix. However, not all exten-
sions of this prefix need be nonconforming too. Indeed, a nonconforming finite trace
may be extended to a conforming trace (for instance, simply by performing an un-
fulfilled obligation), even if the time of the breach coincides with the timestamp
of the last event: a contract c may satisfy, for example, c

(
〈(τ, α)〉

)
= (τ,B) and

c
(
〈(τ, α), (τ, α′)〉

)
= �, for some α, α′ ∈ A, τ ∈ Ts, and parties B ⊆ P. Still,

any extension of a nonconforming finite trace after the time of the breach is also
nonconforming.

Proposition 2.2.4. The set of infinite traces conforming with a contract is a safety
property.
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Proof. Let c : Trτ0 → V be a contract and let

C = {σ ∈ Trτ0 | σ is infinite and c(σ) = �}.

We need to show that for any infinite trace σ 6∈ C, there is a prefix σ′ of σ such that
for any infinite trace σ′′ with σ′ < σ′′, it holds that σ′′ 6∈ C.

Let σ 6∈ C be an infinite trace. Then c(σ) = (τ,B) for some τ and B. Let σ′

be an arbitrary prefix of σ with end(σ′) > τ , and consider an infinite trace σ′′

with σ′ < σ′′. Then, since end(σ′) > τ , it follows that σ′′τ = στ , and consequently
condition (2.2) yields that c(σ′′) = (τ,B), hence σ′′ 6∈ C, as required.

The following lemma shows that “contracts” defined only on finite traces extend
uniquely to contracts. In other words, contracts are uniquely determined by their
verdicts on finite traces.

Lemma 2.2.5. Let P be a set of parties and c : Trτ0fin → V be a function such that
if c(σ) = (τ,B) then B ⊆ P , τ ≥ τ0, and c(σ′) = (τ,B), for all σ′ ∈ Trτ0fin with
στ = σ′τ . Then there exists a unique extension c′ : Trτ0 → V of c, that is c = c′|Trτ0fin

,

such that c′ is a contract.

Proof. Let c′ : Trτ0 → V be the function that extends c to infinite traces by:

c′(σ) =


� if whenever c(σ′) = (τ,B) and σ′ < σ then end(σ′) ≤ τ ,
c(σ′) otherwise, where σ′ is a prefix of σ such that

c(σ′) = (τ ′, B′) and end(σ′) > τ ′,

for any infinite trace σ. We first show that c′ is a contract between parties P starting
at time τ0.

First note that c′ is well-defined, since if c(σ′) = (τ ′, B′) and c(σ′′) = (τ ′′, B′′)
where σ′ < σ and σ′′ < σ, then either σ′ < σ′′ or σ′′ < σ′, and hence in both cases
(t′, B′) = (t′′, B′′) due to property (2.2). Next we note that c′(σ) = (τ,B) if and
only if there is σ′ < σ with c(σ′) = (τ,B) and end(σ′) > τ , hence property (2.1)
follows immediately.

We show property (2.2), namely that if c′(σ) = (τ,B) for some (finite or infinite)
trace and some breach (τ,B), then c′(σ′) = (τ,B), for any (finite or infinite) trace
σ′ with σ′τ = στ . We can have one of the following cases:

• σ is finite and σ′ is finite. This case follows directly from the hypotheses of
the lemma.

• σ is finite and σ′ is infinite. Then c′(σ) = c(σ) = c(στ ). Let ε be such that
σ′τ ε < σ′. We have ts(ε) > τ , hence end(σ′τ ε) > τ . Moreover, c(σ′τ ε) = (τ,B)
as (σ′τ ε)τ = στ . Hence, by definition, c′(σ′) = (τ,B).

• σ is infinite and σ′ is finite. By definition of c′, there is σ′′ < σ such that
c(σ′′) = (τ,B) and end(σ′′) > τ . Then c(σ′′τ ) = (τ,B). As σ′τ = σ′′τ , it follows
that c(σ′) = (τ,B) = c′(σ′).

• σ is infinite and σ′ is infinite. As in the previous case, there is σ′′ < σ such
that c(σ′′τ ) = (τ,B) and end(σ′′) > τ . Then σ′′τ = στ = σ′τ . Let ε be such that
σ′τ ε < σ′. As in the second case, we obtain that c′(σ′) = c(σ′′τ ) = (τ,B).
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This shows that c′ is a contract between parties P starting at time τ0. We now
prove that this extension is unique. Let c′′ be a contract such that c′′|Trτ0fin

= c. We

show that c′ = c′′. The contracts c′ and c′′ agree on all finite traces by construction,
so assume for the sake of contradiction that c′(σ) 6= c′′(σ) for some infinite trace
σ. Then either c′(σ) = (τ,B) or c′′(σ) = (τ,B), for some τ and B, so assume
that c′(σ) = (τ,B). Then by Lemma 2.2.3 we have that c′(στ ) = (τ,B), and
since στ is finite, also c′′(στ ) = (τ,B), and hence again by Lemma 2.2.3 we have
that c′′(σ) = (τ,B), which is a contradiction. The case where c′′(σ) = (τ,B) is
symmetric.

2.2.4 Contract Composition

By composing contracts, through conjunction and disjunction, new contracts are ob-
tained. Given that a contract assigns verdicts to traces, defining such compositions
amounts to stating how verdicts are composed.

Contract conjunction This type of composition models the simultaneous com-
mitment to several (sub)contracts. Conjunction is implicit in paper contracts: typ-
ically the involved parties have to conform with all the clauses therein. When some
parties do not conform with some clauses, the resolution of blame assignment is
given by the fundamental breach assumption: the earliest breach represents the
overall verdict. When breaches of several clauses happen at the same time, then all
breaching parties are to be blamed.

Definition 2.2.6. Let ν1, ν2 ∈ V be two verdicts. The verdict conjunction ν1 ∧ ν2

of ν1 and ν2 is given by:

ν1 ∧ ν2 =



ν1 if either ν2 = �,

or ν1 = (τ1, B1), ν2 = (τ2, B2), and τ1 < τ2,

ν2 if either ν1 = �,

or ν1 = (τ1, B1), ν2 = (τ2, B2), and τ1 > τ2,

(τ,B) if ν1 = (τ,B1), ν2 = (τ,B2), and B = B1 ∪B2.

Definition 2.2.7. Let c1 : Trτ0 → V and c2 : Trτ0 → V be two contracts. The
conjunction of contracts is defined by:

(c1 ∧ c2)(σ) = c1(σ) ∧ c2(σ).

Note that (c1 ∧ c2)(σ) = � if and only if c1(σ) = c2(σ) = �, for any trace σ.
The following lemma confirms the intuition that the conjunction of two contracts

is a contract.

Lemma 2.2.8. Let c1 : Trτ0 → V and c2 : Trτ0 → V be two contracts between parties
P1 and P2, respectively. Then the composition c1 ∧ c2 : Trτ0 → V is a contract
between parties P1 ∪ P2.

Proof. Property (2.1) follows immediately from the definition of verdict conjunction,
so we need to prove property (2.2). Suppose that (c1 ∧ c2)(σ) = (τ,B) and σ′ is
such that σ′τ = στ . We can have one of the following cases:
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• c1(σ) = �. Then c2(σ) = (τ,B) and it follows that c2(σ′) = (τ,B).

If c1(σ′) = � then clearly (c1∧ c2)(σ′) = (τ,B). Suppose that c1(σ′) = (τ ′, B′)
for some (τ ′, B′) 6= (τ,B). If τ ′ ≤ τ then σ′τ ′ < σ′τ < σ and hence c1(σ) =
(τ ′, B′)—contradiction. Hence τ ′ > τ . Since (τ,B)∧(τ ′, B′) = (τ,B) it follows
that (c1 ∧ c2)(σ) = (τ,B).

• c2(σ) = �. This case is symmetric to the previous one.

• c1(σ) = (τ1, B1) and c2(σ) = (τ2, B2) such that (τ1, B1)∧(τ2, B2) = (τ,B). We
then have c1(σ′) = (τ1, B1) and c1(σ′) = (τ2, B2). Hence (c1∧ c2)(σ′) = (τ,B).

Example 2.2.9. Continuing Example 2.2.2, the first part of Paragraph 3 in Fig-
ure 2.1 (that is, “Buyer agrees to pay for the goods half upon receipt”) can be
represented by the contract c3 between {Buyer}, where:

c3(σ) =


� if D = ∅, or if D 6= ∅ and σ[j] = (τ1,payment1)

for some j with i1 < j < |σ|,
(τ1, {Buyer}) otherwise,

with D = {i | σ[i] = (τ,delivery), 0 ≤ i < |σ|, τ ≤ τd}, i1 = min(D), and τ1 =
ts(σ[i1]). Furthermore, the action payment1 represents the first half payment to the
Seller, and i1 (τ1) is the index (timestamp) that represents the receipt time of the
first delivery, assuming that delivery time and receipt time coincide.

The second part of Paragraph 3 (that is, “Buyer agrees to pay [. . . ] the remainder
within 30 days of delivery”) can be encoded by the contract c′3 between {Buyer},
where:

c′3(σ) =


� if D = ∅, or if D 6= ∅ and σ[j] = (τ,payment2)

for some i1 < j < |σ| and τ ≤ τ ′1,
(τ ′1, {Buyer}) otherwise,

with τ ′1 = τ1 + 30 (we assume that the time unit is 1 day), and the action payment2

represents the second half payment to the Seller.

Using the previous lemma, Paragraph 3 of Figure 2.1 is represented by the con-
tract c3 ∧ c′3 between {Buyer}.

Contract disjunction This type of composition models the situation where ful-
filling only one of the clauses of a contract is sufficient to fulfil the entire contract.
Unlike conjunction, the case when all clauses are breached is problematic, as each of
the clauses is individually an option. To be able to give an answer in this case, we
take a global view: all involved parties are at any time aware of the contract exe-
cution status. Thus, those parties responsible for the latest breach are to blame for
the overall failure, because they should have fulfilled their obligations after knowing
that other options are not available anymore. Still, when breaches happen at the
same time, there is no other way than to choose nondeterministically between the
breaches. Note that blaming the parties altogether is not a better alternative, as
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then the nondeterminism would be hidden somewhere else: the cause of the overall
failure could be any of the causes of the individual breaches.

It is not a surprise that the treatment of disjunction is more complicated, since
disjunction is inherently nondeterministic. Nevertheless, in the special case where
all clauses stipulate commitments on the same contract participant, disjunction
corresponds to a choice that said participant has. In this case it is clear who is to
blame when all clauses are breached.

Definition 2.2.10. Let ν1, ν2 ∈ V be two verdicts such that if ν1 = (τ,B1) and
ν2 = (τ,B2) then B1 = B2. The verdict disjunction ν1 ∨ ν2 of ν1 and ν2 is given by:

ν1 ∨ ν2 =


� if ν1 = � or ν2 = �,

(τ1, B1) if ν1 = (τ1, B1), ν2 = (τ2, B2), and τ1 > τ2,

(τ2, B2) if ν1 = (τ1, B1), ν2 = (τ2, B2), and τ1 < τ2,

(τ,B) if ν1 = ν2 = (τ,B).

Two contracts c1 and c2 have unique blame assignment if for all traces σ, when-
ever c1(σ) = (τ,B1) and c2(σ) = (τ,B2), then B1 = B2.

Definition 2.2.11. Let c1 : Trτ0 → V and c2 : Trτ0 → V be two contracts with
unique blame assignment. The disjunction of contracts c1 and c2 is defined by:

(c1 ∨ c2)(σ) = c1(σ) ∨ c2(σ).

Note that (c1 ∨ c2)(σ) = � if and only if c1(σ) = � or c2(σ) = �, for any σ ∈ Trτ0 .

The following lemma confirms the intuition that the disjunction of two contracts
is a contract.

Lemma 2.2.12. Let c1 : Trτ0 → V and c2 : Trτ0 → V be two contracts with unique
blame assignment, between parties P1 and P2, respectively. Then the composition
c1 ∨ c2 : Trτ0 → V is a contract between parties P1 ∪ P2.

Proof. Property (2.1) follows immediately from the definition of verdict disjunction,
so we need to prove property (2.2). Suppose that (c1 ∨ c2)(σ) = (τ,B) and σ′ is
such that σ′τ = στ . We can have one of the following cases:

• c1(σ) = (τ,B) and c2(σ) = (τ2, B2) with τ2 < τ . It follows that c1(σ′) = (τ,B)
and c2(στ2) = (τ2, B2). As στ2 < στ < σ′, we have c2(σ′) = (τ2, B2). Hence
(c1 ∨ c2)(σ) = (τ,B).

• c2(σ) = (τ,B) and c1(σ) = (τ1, B1) with τ1 < τ . This case is symmetric to
the previous one.

• c1(σ) = (τ,B) and c2(σ) = (τ,B). We then have c1(σ′) = (τ,B) and c2(σ′) =
(τ,B). Hence (c1 ∨ c2)(σ′) = (τ,B).
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Example 2.2.13. Continuing Example 2.2.9, the second part of Paragraph 4 in
Figure 2.1 (that is, “an additional fine of 10% has to be paid within 14 days”) can
be encoded by the contract c4 between {Buyer}:

c4(σ) =


� if D = ∅, or if D 6= ∅ and σ[j] = (τ,payment′2)

for some i1 < j < |σ| and τ ≤ τ ′′1 ,
(τ ′′1 , {Buyer}) otherwise,

where τ ′′1 = τ1 + 44 and the action payment′2 represents the payment of the second
half together with the 10% fine by Buyer. (Note that the confusion with regard to the
reference for the 10% computation will have to be solved at a different level—when
defining payment′2 concretely.)

As, for all traces, the contracts c′3 and c4 only blame Buyer, the previous lemma
ensures that c′3 ∨ c4 is a well-defined contract. The first four paragraphs are thus
represented by the contract c1 ∧ (c3 ∧ (c′3 ∨ c4)) between {Buyer, Seller}. (We note
that Paragraph 2 of Figure 2.1 is encoded implicitly in the encoding of the other
paragraphs.)

Algebraic properties of contract composition The following lemma shows
that the conjunction and disjunction operators on verdicts enjoy the expected alge-
braic properties, like commutativity, associativity, and distributivity.

Lemma 2.2.14. Let ν, ν1, ν2, ν3, ν
′
1, ν
′
2, ν
′
3 be verdicts such that if ν ′i = (τ,Bi) and

ν ′j = (τ,Bj) then Bi = Bj, for any i, j ∈ {1, 2, 3}. Then the following equalities
hold:

ν1 ∧ ν2 = ν2 ∧ ν1 (commutativity)

ν ′1 ∨ ν ′2 = ν ′2 ∨ ν ′1 (commutativity)

ν1 ∧ (ν2 ∧ ν3) = (ν1 ∧ ν2) ∧ ν3 (associativity)

ν ′1 ∨ (ν ′2 ∨ ν ′3) = (ν ′1 ∨ ν ′2) ∨ ν ′3 (associativity)

ν ′1 ∨ (ν ′1 ∧ ν ′2) = ν ′1 (absorption)

ν ′1 ∧ (ν ′1 ∨ ν ′2) = ν ′1 (absorption)

ν ′1 ∨ (ν ′2 ∧ ν ′3) = (ν ′1 ∨ ν ′2) ∧ (ν ′1 ∨ ν ′3) (distributivity)

ν1 ∧ (ν ′2 ∨ ν ′3) = (ν1 ∧ ν ′2) ∨ (ν1 ∧ ν ′3) (distributivity)

� ∧ ν = ν ∧ � = ν (unit)

� ∨ ν = ν ∨ � = � (unit)

Proof. These equalities follow directly from Definitions 2.2.6 and 2.2.10.

These algebraic properties are easily lifted from verdicts to contracts, which
allows us to perform algebraic, meaning-preserving rewritings of contracts.

Corollary 2.2.15. Let C be a set of contracts that is closed under contract conjunc-
tion and disjunction, c� ∈ C, and for all c1, c2 ∈ C, the contracts c1 and c2 have
unique blame assignment. Then (C,∨,∧) is a distributive lattice with unit element
c�.
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We recall that the idempotency equalities c ∧ c = c and c ∨ c = c, that hold
for any contract c, follow from the absorption equalities. We also note that the
equalities that only concern conjunction hold for arbitrary contracts.

2.2.5 Run-time Monitoring

The contract model presented above considers complete traces, which are either finite
or infinite, and there is no restriction as to whether the verdict of a contract can be
computed or not. For run-time monitoring, however, traces are always partial and
finite, and it should be possible to compute verdicts at run-time. We consequently
define, abstractly, what constitutes run-time monitoring for the contract model,
using a conventional many-valued semantics [60].

The output of a run-time monitor is an element of the union of the sets V? = {ν? |
ν ∈ V} for ? ∈ {!, ?}, where ν! is a final verdict, and ν? is a potential verdict. Final
verdicts are output when all extensions of the current partial trace have the same
verdict. In other words, the verdict on the complete trace, whatever this would be,
is uniquely determined by (the verdict on) the partial trace; there is hence no need
to perform further monitoring. In contrast, potential verdicts are output when the
verdicts on extensions of the current partial trace differ. Of course, if the current
trace is a complete trace (in this case no more events occur), then the potential
verdict is the actual verdict on this trace.

Definition 2.2.16. Let c : Trτ0 → V be a contract between parties P . A run-time
monitor for c is a computable function mon : Trτ0fin → V! ∪ V? that satisfies:

mon(σ) =

{
ν! if c(σ′) = ν for all σ′ with σ < σ′,

ν? if c(σ) = ν and c(σ′) 6= ν for some σ < σ′.

Note that, in case of a potential breach, that is if mon(σ) = (τ,B)? then condi-
tion (2.2) of Definition 2.2.1 guarantees that end(σ) ≤ τ , hence (τ,B)? is always an
indication of a future—but avoidable—breach.

The definition expresses both impartiality and anticipation [60]. Impartiality
means that a final verdict is only output if the partial trace cannot be extended into
a complete trace with a different verdict. Formally:

if mon(σ) = ν! then c(σ′) = ν for all σ′ with σ < σ′.

Anticipation is the reverse of impartiality. It means that inevitable—possibly
future—verdicts are output as early as possible, that is a potential verdict is only
output if it is possible to reach a different verdict. Formally:

if c(σ′) = ν for all σ′ with σ < σ′ then mon(σ) = ν!.

Anticipation can be relaxed, for instance by allowing final breaches to be output only
when the time of breach has been reached, but impartiality is a crucial requirement
for run-time monitoring that cannot be relaxed.
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Example 2.2.17. Consider the contract c1∧ (c3∧ (c′3∨c4)) between {Buyer, Seller}
from Example 2.2.13, and the following events:

ε1 = (2011-01-01,delivery), ε4 = (2011-01-10,payment2),

ε2 = (2011-01-02,delivery), ε5 = (2011-02-10,payment′2).

ε3 = (2011-01-01,payment1),

The outputs of an associated run-time monitor on the following sample traces are
as follows:

mon
(
〈〉
)

= (2011-01-01, {Seller})?,

mon
(
〈ε2〉

)
= (2011-01-01, {Seller})!,

mon
(
〈ε1〉

)
= (2011-01-01, {Buyer})?,

mon
(
〈ε1, ε3〉

)
= (2011-02-14, {Buyer})?,

mon
(
〈ε1, ε3, ε4〉

)
= mon

(
〈ε1, ε3, ε5〉

)
= �!.

2.3 A Contract Specification Language

The previous section provided a semantic account for compositional contracts. How-
ever, it is cumbersome to specify contracts directly in the abstract model, as we have
seen in Examples 2.2.2–2.2.13. Thus we propose a contract specification language,
CSL, which enables succinct, syntactic representation of real-world contracts in a
human-readable form, and which has a formal semantics in terms of the abstract
contract model. The primary target of CSL is business contracts, but rather than
fixing the set of actions to for instance payments and deliveries, we parametrise the
language with respect to a signature, which can be thought of as the vocabulary
used in a contract.

Formally, a signature is a triple S = (K, ar, T ), where K is a finite set of action
kinds with associated arities and types, ar : K → T ∗, where T is a finite set of
types. The domain of a type t is denoted by JtK, and we assume that T contains the
basic types Bool, Int, Time, and Party, with the corresponding domains JBoolK =
{false, true}, JIntK = Z, JTimeK = Ts, and JPartyK = P, respectively. Signatures
provide structure to actions, and we consequently redefine the set of actions, with
respect to a given signature, as follows:

A = {k(~v) | k ∈ K, ar(k) = 〈t1, . . . , tn〉, and ~v ∈ Jt1K× · · · × JtnK}.

Furthermore, we assume an infinite set of variables V, ranged over by x, y, z, and an
infinite set of template names F , ranged over by f .

2.3.1 CSL Syntax

The grammar of CSL is presented in Figure 2.2. In what follows, we describe
informally each construct of the language.

The atomic expressions of CSL are values v ∈ JtK of some type t and variables.
From integer values and variables, arithmetic and Boolean expressions are formed by
using arithmetic operators, equalities, and inequalities. We note in particular that
“/” denotes integer division and the specification needs to take into account the



A Contract Specification Language 41

s ::= letrec {fi(~xi)〈~yi〉 = ci}ni=1 in c starting τ (CSL specification)

c ::= fulfilment (no obligations)
| 〈e1〉 k(~x) where e2 due d remaining z then c (obligation)
| if k(~x) where e due d remaining z then c1 else c2 (external choice)
| if e then c1 else c2 (internal choice)
| c1 and c2 (conjunction)
| c1 or c2 (disjunction)
| f(~e1)〈~e2〉 (instantiation)

e ::= x | v | ¬e | e1 ? e2 | e1 ≺ e2 (expression)

d ::= after e1 within e2 (deadline expression)

Figure 2.2: The grammar of CSL. f ∈ F ranges over template names, x, y, z ∈ V
range over variables, k ∈ K ranges over action kinds, and v ∈ ⋃t∈T JtK ranges over
values. Furthermore, ? ∈ {+,−,×, /,∧} and ≺∈ {<,=}.

possible loss in precision with regard to real division. Abusing language, a deadline
expression actually represents an interval of integers, as explained shortly.

A CSL specification s is a set of template definitions together with a body c
and an absolute point in time τ , which defines the starting time of the contract.
Templates can be instantiated in the body of the specification. Mutual recursion is
allowed and it enables potentially infinite contract executions. The parameters of
a template are values ~x and parties ~y. Value parameters are dynamic, that is they
can be instantiated with values from earlier events, whereas party parameters are
static, that is all parties are fixed before the contract is started, and they do not
change over time.

Clauses describe the normative content of contracts. The bodies of CSL speci-
fications and of template definitions are clauses. All deadlines that occur in clauses
are relative to unspecified reference points that are given by the starting time of the
specification and by the time of event occurrences. Thus, these relative deadlines
are only lifted to absolute deadlines when the CSL specification is executed. The
only atomic clause is fulfilment, which represents the clause that is always fulfilled.

Fully instantiated obligation clauses have the form:

〈p〉 k(~x) where e due after n1 within n2 remaining z then c,

which should be read:

Party p is responsible that (but need not be in charge of) an action of
kind k satisfying condition e takes place. This action should happen
after n1 time units, but within n2 time units thereafter. If these re-
quirements are satisfied, then the continuation clause c determines any
further obligations.

The variables of the vector ~x are bound to the parameters of the action, and their
scope is e and c. The variable z is bound to the remainder of the deadline: if the
deadline is for instance after 2 within 5 and the action takes place 4 time units
after the reference point, then z is bound to (2 + 5) − 4 = 3. The scope of z is c
only. All deadlines in the continuation c are relative to the time of the action.
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letrec sale(deliveryDeadline, goods, payment)〈buyer, seller〉 =
〈seller〉 Delivery(s,r,g)
where s = seller ∧ r = buyer ∧ g = goods due within deliveryDeadline

then
〈buyer〉 Payment(s,r,a)
where s = buyer ∧ r = seller ∧ a = payment / 2 due immediately

then
((〈buyer〉 Payment(s,r,a)

where s = buyer ∧ r = seller ∧ a = payment / 2 due within 30D
or
〈buyer〉 Payment(s,r,a)
where s = buyer ∧ r = seller ∧ a = (payment × 110) / 200 due within 14D after 30D)

and
if Return(s,r,g)

where s = buyer ∧ r = seller ∧ g = goods due within 14D
then
〈seller〉 Payment(s,r,a) where s = seller ∧ r = buyer ∧ a = payment due within 7D)

in
sale(0, “Laser printer”, 200)〈Buyer, Seller〉 starting 2011-01-01

Figure 2.3: A CSL specification of a sales contract between a buyer and a seller.

External choices are similar to obligation clauses, but they contain an alternative
continuation branch which becomes active if the deadline passes. For this reason,
external choices have no responsible party parameter, since no one has to be blamed
in case the deadline expires.

The clause if e then c1 else c2 represents an internal choice, where the branching
condition e can be computed directly without having to wait for external input (that
is, for events). The clauses c1 and c2 and c1 or c2 represent clause conjunction and
disjunction, respectively. Finally, f(~e1)〈~e2〉 is instantiation of template f , where ~e1

are value parameters and ~e2 are party parameters.
We use standard syntactic sugar such as e1 ∨ e2 for ¬(¬e1 ∧ ¬e2), e1 ≤ e2 for

(e1 < e2) ∨ (e1 = e2), and e1 6= e2 for ¬(e1 = e2). Also, we omit continuations and
else branches if they are fulfilment, we omit the after part of a deadline if it is
0, we write immediately for within 0, and we omit the remaining part if it is
not used. Finally, we use abbreviations like 30D to denote the value representing an
amount of time of 30 days, that is the integer 30 ∗ 24 ∗ 60 ∗ 60, assuming that the
time unit is of one second.

In terms of deontic modalities [113], it may seem that CSL only supports obliga-
tions, and not permissions and prohibitions. However, permissions in a contractual
context are only of interest if they entail new obligations (on counter parties). Hence
we model permissions as external choices that trigger new obligations, as illustrated
in the following example. Prohibitions can also be modelled as external choices,
where the consequence is an unfulfillable obligation on the party who performed
the prohibited action, as we shall see in Section 2.3.7, where we provide further
examples.

Example 2.3.1. Figure 2.3 shows the specification in CSL of the sales contract in
Figure 2.1. The formalisation assumes a signature that includes the action kinds
{Delivery,Payment,Return} ⊆ K, with types ar(Delivery) = ar(Return) = 〈Party,
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Party, String〉 and ar(Payment) = 〈Party, Party, Int〉. The domain of String is the
set of all strings, and the two parties of each action kind represent the sender and
receiver, respectively. The example disambiguates the informal contract: the 10%
fine is calculated with respect to half of the total price, and Buyer is only entitled to
return the goods if the first half is paid upon delivery. A different disambiguation
could be given by another CSL specification. Note also how we encode the permission
to return the goods as an external choice that has the consequence that Seller has
to pay the original amount back to Buyer.

2.3.2 CSL Type System

We equip CSL with a type system. For this purpose, we define different typing
judgements over an implicit signature S = (K, ar, T ). Before presenting the typing
judgements, we introduce some notation. We write f : A ⇀fin B for a partial
function f from A to B with a finite domain. Furthermore, f [a 7→ b] denotes the
function that maps a to b and behaves like f on all other input. We write f [~a 7→ ~b]
for f [a1 7→ b1] · · · [an 7→ bn], for vectors ~a = (a1, . . . , an) and~b = (b1, . . . , bn). Finally,
we write A ⊆fin B to say that A ⊆ B and A is finite.

Our typing judgements use the following typing environments:

Λ ⊆fin V (party typing environment)

Γ : V ⇀fin T (variable typing environment)

∆ : F ⇀fin T ∗ × N (template typing environment)

The typing environment for parties Λ keeps track of parametrised parties (such as
the parameter buyer of the template sale in Figure 2.3), and the typing environment
for values Γ keeps track of parametrised values and their type (such as the param-
eter goods of the template sale in Figure 2.3). The typing environment for clause
templates ∆ associates with each template name the types of its parameters and
the number of party parameters. Also, we use the meta-types Deadline, Clause〈P 〉,
and Contract〈P 〉, parametrised by a finite set of parties P ⊆fin P, to represent the
type of deadlines, clauses involving parties P , and contracts involving parties P ,
respectively.

The typing judgements for expressions Γ ` e : t, for party expressions (that
is, the expressions determining responsibility in obligations) Λ ` e′ : P , and for
deadline expressions Γ ` d : Deadline are presented in Figure 2.4. The typing rules
for expressions are standard, but we require that the denominator of a division
expression be known statically in order to avoid division by zero. The typing rules
for party expressions Λ ` e′ : P are used to determine the parties that are involved
in a given clause.

The typing rules for clauses ∆,Λ,Γ ` c : Clause〈P 〉, for template definitions ∆ `
D, and for full CSL specifications ` s : Contract〈P 〉 are presented in Figure 2.5. A
derivation ∆,Λ,Γ ` c : Clause〈P 〉 intuitively means that in template environment ∆
and variable environment Γ, c is a clause in which only parties P and parametrised
parties Λ can be blamed for a breach of contract. The typing rule for clause dis-
junction, c1 or c2, uses this invariant to check that at most one party can breach
either c1 or c2, which guarantees that verdict disjunction is well-defined. The typing
rules for obligations and external choices illustrate the scope of the bound variables
~x and z.
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Γ ` e : t x ∈ dom(Γ)

Γ ` x : Γ(x)

v ∈ JtK
Γ ` v : t

Γ ` e1 : Int Γ ` e2 : Int
(? ∈ {+,−, ∗})

Γ ` e1 ? e2 : Int

Γ ` e1 : Int n2 ∈ JIntK
(n2 6= 0)

Γ ` e1/n2 : Int

Γ ` e : Bool
Γ ` ¬e : Bool

Γ ` e1 : Bool Γ ` e2 : Bool

Γ ` e1 ∧ e2 : Bool

Γ ` e1 : Int Γ ` e2 : Int

Γ ` e1 < e2 : Bool

Γ ` e1 : t Γ ` e2 : t

Γ ` e1 = e2 : Bool

Λ ` e′ : P x ∈ V
{x} ` x : ∅

p ∈ P

∅ ` p : {p}

Γ ` d : Deadline Γ ` e1 : Int Γ ` e2 : Int

Γ ` after e1 within e2 : Deadline

Figure 2.4: Typing judgements for expressions e, party expressions e′, and deadline
expressions d.

The typing rule for template definitions ∆ ` D requires that the body of each
definition contains no “hard coded” parties, that is it must only contain variables,
but not values of type Party. The restriction is strictly speaking not necessary,
however we consider it best practice not to have hard coded parties inside template
definitions, and we therefore rule out this possibility. We furthermore allow party
parameters to be used in the scope of ordinary expressions; see the definition of Γi,
and the body of the template sale in Figure 2.3 for an example.

An expression e is well-typed in the variable typing environment Γ, if there is a
type t such that Γ ` e : t. Similarly, a deadline expression d is well-typed in the
variable typing environment Γ, if Γ ` d : Deadline. A clause c involving parties
P is well-typed in the variable environment Γ, party environment Λ, and template
environment ∆, if ∆,Λ,Γ ` c : Clause〈P 〉. A specification s involving parties P
is well-typed, if ` s : Contract〈P 〉. We say simply that a CSL construct is well-
typed, if there are appropriate environments and involved parties within which the
construct is well-typed.

Lastly, we remark that the type system presented here is declarative, that is
checking whether CSL specifications are well-typed cannot be directly implemented
based on the given typing rules. This is because of the rule for template definitions,
for which we have to guess the types of value parameters. An actual implementation
will either rely on explicit type annotations of template parameters or perform type
inference. While we treat neither approaches formally here, we note that explicit
type annotations will immediately give rise to an algorithmic type system.

2.3.3 Well-formed Specifications

Unfolding of template definitions need not always terminate—even for well-typed
specifications—as illustrated in the following example:
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∆,Λ,Γ ` c : Clause〈P 〉 ∆, ∅,Γ ` fulfilment : Clause〈∅〉

Γ′ = Γ[~x 7→ ar(k)]

Γ2 = Γ′[z 7→ Int]

Λ1 ` e1 : P1

Γ′ ` e2 : Bool

Γ ` d : Deadline ∆,Λ2,Γ2 ` c : Clause〈P2〉
∆,Λ1 ∪ Λ2,Γ ` 〈e1〉 k(~x) where e2 due d remaining z then c : Clause〈P1 ∪ P2〉

Γ′ = Γ[~x 7→ ar(k)]

Γ1 = Γ′[z 7→ Int]

Γ′ ` e : Bool

Γ ` d : Deadline

∆,Λ1,Γ1 ` c1 : Clause〈P1〉
∆,Λ2,Γ ` c2 : Clause〈P2〉

∆,Λ1 ∪ Λ2,Γ ` if k(~x) where e due d remaining z then c1 else c2 : Clause〈P1 ∪ P2〉

Γ ` e : Bool ∆,Λ1,Γ ` c1 : Clause〈P1〉 ∆,Λ2,Γ ` c2 : Clause〈P2〉
∆,Λ1 ∪ Λ2,Γ ` if e then c1 else c2 : Clause〈P1 ∪ P2〉

∆,Λ1,Γ ` c1 : Clause〈P1〉 ∆,Λ2,Γ ` c2 : Clause〈P2〉
∆,Λ1 ∪ Λ2,Γ ` c1 and c2 : Clause〈P1 ∪ P2〉

|Λ1 ∪ Λ2|+ |P1 ∪ P2| ≤ 1 ∆,Λ1,Γ ` c1 : Clause〈P1〉 ∆,Λ2,Γ ` c2 : Clause〈P2〉
∆,Λ1 ∪ Λ2,Γ ` c1 or c2 : Clause〈P1 ∪ P2〉

∆(f) = (〈t1, . . . , tm〉, n) ∀i ∈ {1, . . . ,m}.Γ ` ei : ti ∀i ∈ {1, . . . , n}.Λi ` e′i : Pi

∆,
⋃n
i=1 Λi,Γ ` f(e1, . . . , em)〈e′1, . . . , e′n〉 : Clause〈⋃ni=1 Pi〉

∆ ` D Γi =
[
~xi 7→ ~ti, ~yi 7→

−−−→
Party

]
∀i, j ∈ {1, . . . , n}.i 6= j ⇒ fi 6= fj

∆ =
[
f1 7→ (~t1, |~y1|), . . . , fn 7→ (~tn, |~yn|)

]
∀i ∈ {1, . . . , n}.∆, ~yi,Γi ` ci : Clause〈∅〉

∆ ` {fi(~xi)〈~yi〉 = ci}ni=1

` s : Contract〈P 〉 ∆ ` D ∆, ∅, ∅ ` c : Clause〈P 〉
` letrec D in c starting τ : Contract〈P 〉

Figure 2.5: Typing judgements for CSL clauses c, template definitions D, and spec-
ifications s.

sΩ = letrec f()〈〉 = f()〈〉 in f()〈〉 starting 2011-01-01

We avoid such ill-formed specifications by considering only specifications that satisfy
a certain syntactic criterion that we introduce next.

Given a clause c, we recursively define the immediate subclauses of c as follows:

Sub(c) = {c} ∪



Sub(c2) if c = if k(~x) where e due d
remaining z then c1 else c2,

Sub(c1) ∪ Sub(c2) if c = c1 and c2,

Sub(c1) ∪ Sub(c2) if c = c1 or c2,

Sub(c1) ∪ Sub(c2) if c = if e then c1 else c2,

∅ otherwise.
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e ⇓ v
v ⇓ v

e1 ⇓ n1 e2 ⇓ n2
(? ∈ {+,−, ∗, /})

e1 ? e2 ⇓ n1 ? n2

e ⇓ true

¬e ⇓ false

e ⇓ false

¬e ⇓ true

e1 ⇓ true e2 ⇓ true

e1 ∧ e2 ⇓ true

e1 ⇓ false

e1 ∧ e2 ⇓ false

e2 ⇓ false

e1 ∧ e2 ⇓ false

e1 ⇓ v1 e2 ⇓ v2
(
≺∈ {<,=}, b =

{
true, if v1 ≺ v2
false, if v1 6≺ v2

)
e1 ≺ e2 ⇓ b

d ⇓τ (τ1, τ2) e1 ⇓ n1 e2 ⇓ n2
after e1 within e2 ⇓τ (τ + n1, τ + n1 + n2)

Figure 2.6: Evaluation of expressions and deadline expressions.

Given a set of template definitions D, we let FD denote the names of the tem-
plates defined in D. The immediate unfolding relation ⇒D on FD is defined as
follows: f ⇒D g if and only if there is a subclause g(~e1)〈~e2〉 ∈ Sub(cf ) where cf
is such that (f(~x)〈~y〉 = cf ) ∈ D. Intuitively, ⇒D represents a dependency relation
between templates, where f ⇒D g means that the unfolding of f requires an imme-
diate unfolding of g. The definition of immediate subclauses reflects this intuition.
For instance, in the continuation clause c of an obligation, the templates in c are not
immediately instantiated—they are instantiated only after the obligation is fulfilled.

We say that a specification s is well-formed with parties P , if s involving parties
P is well-typed and the immediate unfolding relation on the template names of s is
acyclic. By requiring that the unfolding relation be acyclic, we avoid exactly those
cases where the unfolding of a template f requires a series of immediate unfoldings
leading to an unfolding of f itself. Note that the specification given in Figure 2.3 is
well-formed, while the specification sΩ above is not.

2.3.4 CSL Semantics

We now present the operational semantics for CSL, which is used to define the
mapping of CSL specifications to abstract contracts, and which gives rise to a run-
time monitoring algorithm as well. Inspired by Andersen et al. [6], we define a
reduction semantics, which has the advantage that residual obligations, after an
event has taken place, can be seen directly by inspecting the reduced term. More
generally it follows that any analysis applicable to initial CSL specifications will
also be applicable at any given point in time, since running CSL specifications are
conceptually no different from initial specifications.

We first define the evaluation of well-typed expressions e ⇓ v and well-typed
deadline expressions d ⇓τ (τ1, τ2) in Figure 2.6, using standard derivation rules. The
timestamp τ in the rule for deadlines is the time with respect to which relative
deadlines are calculated. It represents the starting time of the specification or the
time of its last update, which equals the time of the last event occurrence. The
following lemma shows the expected correspondence between the typing rules and
the evaluation rules for (deadline) expressions.
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Lemma 2.3.2. Let e be an expression, d be a deadline expression, and t be a type.
If ∅ ` e : t, then there is a unique v ∈ JtK such that e ⇓ v. If ∅ ` d : Deadline, then
for any τ ∈ Ts, there are unique τ1, τ2 ∈ Z with d ⇓τ (τ1, τ2).

Proof. For the first claim, existence follows by induction on the derivation of ∅ `
e : t, while uniqueness follows by structural induction on e. The last claim follows
immediately from the first one.

During reductions, variables are instantiated with values in expressions and
clauses. Since party parameters do not depend on event data, we use two kinds
of (applications of) substitutions, namely substitutions of value parameters and
substitutions of party parameters. Formally, a (value) substitution is an element
of the set V ⇀fin

⋃
t∈T JtK. A party substitution is a substitution having P as the

codomain. Hence, party substitutions are special cases of value substitutions.
In Figure 2.7, we define two types of applications of substitutions to CSL con-

structs: substitutions of value parameters in (deadline) expressions and clauses,
denoted e[θ], d[θ], and c[θ], respectively, where θ is a substitution; and substitution
of party parameters in clauses, denoted c〈θ〉, where θ is a party substitution. We
write c[v/x] for the application on clause c of the substitution that maps x to v.
Also, c[~v/~x] = c[v1/x1] . . . [vn/xn] for vectors ~v = (v1, . . . , vn) and ~x = (x1, . . . , xn).
Finally, we abuse notation by interpreting vectors of variables as sets in Figure 2.7.

The following lemma shows that the substitutions defined in Figure 2.7 fulfil the
expected properties with respect to the type system. Moreover, party parameters
are typed using relevance typing [92], that is parametrised parties are used at least
once in the body of a template definition.

Lemma 2.3.3. Consider a well-typed expression Γ ` e : t, a well-typed deadline
expression Γ ` d : Deadline, and a well-typed clause ∆,Λ,Γ ` c : Clause〈P 〉. For
any substitution θ such that θ(x) ∈ JΓ(x)K for all x ∈ dom(θ) ∩ dom(Γ), it holds
that:

Γ′ ` e[θ] : t,

Γ′ ` d[θ] : Deadline,

∆,Λ,Γ′ ` c[θ] : Clause〈P 〉,

where Γ′ = Γ|dom(Γ)\dom(θ). Moreover, for any party substitution θ, it holds that:

∆,Λ \ dom(θ),Γ ` c〈θ〉 : Clause〈P ∪ {p | θ(x) = p, x ∈ dom(Λ) ∩ dom(θ)}〉.

Proof. The first typing judgement (that is, Γ′ ` e[θ] : t) follows easily by induction on
the typing derivation Γ ` e : t, and the second judgement then follows immediately.
The third judgement follows by induction on the typing derivation ∆,Λ,Γ ` c :
Clause〈P 〉, and the same goes for the fourth judgement.

The reduction semantics for well-formed specifications is presented in Figure 2.8.
The reduction relation for clauses has the form D, τ ` c ε−→ c, where D is a set of
template definitions, τ is the time of the last update to the contract (initially the
starting time), c is the clause to reduce, ε is the event that takes place, and c is the
residue. A residue c is either a clause, representing the remaining obligations, or a
breach of contract.
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e[θ]

x[θ] =

{
θ(x) if x ∈ dom(θ)

x otherwise

v[θ] = v

(¬e)[θ] = ¬e[θ]
(e1 ? e2)[θ] = e1[θ] ? e2[θ]

(e1 ≺ e2)[θ] = e1[θ] ≺ e2[θ]

d[θ] (after e1 within e2)[θ] = after e1[θ] within e2[θ]

c[θ] fulfilment[θ] = fulfilment(
〈e1〉 k(~x) where e2 due d
remaining z then c

)
[θ] =

〈e1〉 k(~x) where e2[θ|V\~x] due d[θ]
remaining z then c[θ|V\(~x∪{z})](

if k(~x) where e due d
remaining z then c1 else c2

)
[θ] =

if k(~x) where e[θ|V\~x] due d[θ]
remaining z then c1[θ|V\(~x∪{z})] else c2[θ]

(c1 and c2)[θ] = c1[θ] and c2[θ]

(c1 or c2)[θ] = c1[θ] or c2[θ]

(if e then c1 else c2)[θ] = if e[θ] then c1[θ] else c2[θ]

f(e1, . . . , en)〈~e′〉[θ] = f(e1[θ], . . . , en[θ])〈~e′〉

c〈θ〉 fulfilment〈θ〉 = fulfilment(
〈e1〉 k(~x) where e2 due d
remaining z then c

)
〈θ〉 =

〈e1[θ]〉 k(~x) where e2 due d
remaining z then c〈θ〉(

if k(~x) where e due d
remaining z then c1 else c2

)
〈θ〉 =

if k(~x) where e due d
remaining z then c1〈θ〉 else c2〈θ〉

(c1 and c2)〈θ〉 = c1〈θ〉 and c2〈θ〉
(c1 or c2)〈θ〉 = c1〈θ〉 or c2〈θ〉

(if e then c1 else c2)〈θ〉 = if e then c1〈θ〉 else c2〈θ〉
f(~e)〈e′1, . . . , e′n〉〈θ〉 = f(~e)〈e′1[θ], . . . , e′n[θ]〉

Figure 2.7: Substitution of value parameters into expressions e[θ], deadline expres-
sions d[θ], and clauses c[θ]; and substitution of party parameters into clauses c〈θ〉.

The second, third, and fourth rules describe the three different situations for
obligations: (1) either the event fulfils the obligation, and the residue is determined
by the continuation clause; or (2) the event does not fulfil the obligation by missing
the deadline, in which case a breach of contract takes place; or (3) the event does
not fulfil the obligation, but nor does it violate the deadline, so the obligation—with
updated deadlines—remains the residue. The three rules for external choice are
similar, except that in the second case the residue is determined by the alternative
branch of the choice, rather than a breach of contract.

It follows from the operational semantics that a clause can only be breached
by missing a deadline, and the time of breach is determined by the deadline itself.
However, we need to take into account that deadlines may be negative, in which case
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D, τ ` c ε−→ c
D, τ ` fulfilment

ε−→ fulfilment

e[~v/~x] ⇓ true d ⇓τ (τ1, τ2) τ1 ≤ τ ′ ≤ τ2
D, τ ` 〈p〉 k(~x) where e due d remaining z then c

(τ ′,k(~v))−−−−−→ c[~v/~x, τ2 − τ ′/z]

d ⇓τ (τ1, τ2) τ ′ > τ2

D, τ ` 〈p〉 k(~x) where e due d remaining z then c
(τ ′,k′(~v))−−−−−−→ (max(τ, τ2), {p})

d ⇓τ (τ1, τ2)

τ ′ ≤ τ2 τ ′ < τ1 or k′ 6= k or e[~v/~x] ⇓ false d′ = after τ1 − τ ′ within τ2 − τ1

D, τ ` 〈p〉 k(~x) where e due d remaining z then c
(τ ′,k′(~v))−−−−−−→

〈p〉 k(~x) where e due d′ remaining z then c

e[~v/~x] ⇓ true d ⇓τ (τ1, τ2) τ1 ≤ τ ′ ≤ τ2
D, τ ` if k(~x) where e due d remaining z then c1 else c2

(τ ′,k(~v))−−−−−→ c1[~v/~x, τ2 − τ ′/z]

d ⇓τ (τ1, τ2) τ ′ > τ2 D,max(τ, τ2) ` c2
(τ ′,k′(~v))−−−−−−→ c

D, τ ` if k(~x) where e due d remaining z then c1 else c2
(τ ′,k′(~v))−−−−−−→ c

d ⇓τ (τ1, τ2)

τ ′ ≤ τ2 τ ′ < τ1 or k′ 6= k or e[~v/~x] ⇓ false d′ = after τ1 − τ ′ within τ2 − τ1

D, τ ` if k(~x) where e due d remaining z then c1 else c2
(τ ′,k′(~v))−−−−−−→

if k(~x) where e due d′ remaining z then c1 else c2

D, τ ` c1 ε−→ c1 D, τ ` c2 ε−→ c2

D, τ ` c1 and c2
ε−→ c1 ? c2

D, τ ` c1 ε−→ c1 D, τ ` c2 ε−→ c2

D, τ ` c1 or c2
ε−→ c1 > c2

e ⇓ true D, τ ` c1 ε−→ c1

D, τ ` if e then c1 else c2
ε−→ c1

e ⇓ false D, τ ` c2 ε−→ c2

D, τ ` if e then c1 else c2
ε−→ c2

~e ⇓ ~v (f(~x)〈~y〉 = c) ∈ D D, τ ` c[~v/~x, ~p/~y]〈~p/~y〉 ε−→ c

D, τ ` f(~e)〈~p〉 ε−→ c

s
ε−→ s D, τ ` c ε−→ (τ ′, B)

letrec D in c starting τ
ε−→ (τ ′, B)

D, τ ` c ε−→ c′ ts(ε) = τ ′

letrec D in c starting τ
ε−→ letrec D in c′ starting τ ′

Figure 2.8: Reduction semantics for CSL clauses c and specifications s.
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we define the time of breach as the time of the last update. Similarly, we need to take
negative deadlines into account for external choices. Note that in the rules, clauses
are fully instantiated, that is they have no free variables (for the straightforward
definition of free variables): the type system guarantees that well-typed clauses are
fully instantiated, as we shall see shortly.

The semantics of clause conjunction and clause disjunction use lifted versions of
the corresponding verdict compositions, which are defined by:

c1 ? c2 =


c1 and c2 if c1 = c1 and c2 = c2,

(τ1, B1) if c1 = (τ1, B1) and c2 = c2,

(τ2, B2) if c2 = (τ2, B2) and c1 = c1,

(τ1, B1) ∧ (τ2, B2) if c1 = (τ1, B1) and c2 = (τ2, B2),

and

c1 > c2 =


c1 or c2 if c1 = c1 and c2 = c2,

c1 if c1 = c1 and c2 = (τ2, B2),

c2 if c2 = c2 and c1 = (τ1, B1),

(τ1, B1) ∨ (τ2, B2) if c1 = (τ1, B1) and c2 = (τ2, B2).

The reduction semantics is lifted to specifications s
ε−→ s, where the residue s is

either a residual specification or a breach of contract. Note that the time of the last
update (that is, event) is recorded in the residual specification.

The following theorem shows that the semantics satisfies type preservation [91].
Moreover, the set of parties in the typing of the residual specification may decrease,
matching the intuition that parties may become free of obligations during the exe-
cution of a contract.

Theorem 2.3.4. Let s be a well-formed specification involving parties P and s′ be
a specification. If s

ε−→ s′ then s′ is a well-formed specification involving parties P ′,
for some P ′ ⊆ P .

Proof. The proof is presented in Appendix B.1, page 189. The proof is by induction
on the typing derivation.

The following theorem shows that the semantics also satisfies the progress prop-
erty [91], that is well-formed specifications never get stuck.

Theorem 2.3.5. Let s be a well-formed specification with parties P and starting
time τ0. Then for any event ε with ts(ε) ≥ τ0 there is a unique residue s such that
s

ε−→ s. Furthermore, whenever s = (τ,B) then τ0 ≤ τ ≤ ts(ε) and B ⊆ P .

Proof. The proof is presented in Appendix B.1, page 192. The proof is by nested
induction on the structure of the immediate unfolding relation and the step deriva-
tion.

2.3.5 Mapping CSL Specifications to Contracts

The reduction semantics presented in Section 2.3.4 is event-driven: at the occurrence
of an event, a specification reduces to either a breach of contract or a residual
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D, τ ` c ↓ ν D, τ ` fulfilment ↓ �

d ⇓τ (τ1, τ2)

D, τ ` 〈p〉 k(~x) where e due d remaining z then c ↓ (max(τ, τ2), {p})

d ⇓τ (τ1, τ2) D,max(τ, τ2) ` c2 ↓ ν2
D, τ ` if k(~x) where e due d remaining z then c1 else c2 ↓ ν2

e ⇓ true D, τ ` c1 ↓ ν1
D, τ ` if e then c1 else c2 ↓ ν1

e ⇓ false D, τ ` c2 ↓ ν2
D, τ ` if e then c1 else c2 ↓ ν2

D, τ ` c1 ↓ ν1 D, τ ` c2 ↓ ν2
D, τ ` c1 and c2 ↓ ν1 ∧ ν2

D, τ ` c1 ↓ ν1 D, τ ` c2 ↓ ν2
D, τ ` c1 or c2 ↓ ν1 ∨ ν2

~e ⇓ ~v f(~x)〈~y〉 = c ∈ D D, τ ` c[~v/~x, ~p/~y]〈~p/~y〉 ↓ ν
D, τ ` f(~e)〈~p〉 ↓ ν

` s ↓ ν D, τ ` c ↓ ν
` letrec D in c starting τ ↓ ν

Figure 2.9: Verdict ν associated with specification s.

specification. However, the absence of events is also significant, because it may imply
that the contract execution is considered finished and no more events are produced.
In this case a verdict needs to be associated with the residual specification. Formally,
we associate the verdict ν with a specification s if ` s ↓ ν can be derived using the
derivation rules of Figure 2.9. For any well-formed specification s, there exists a
unique verdict ν associated with s.

We can now associate a verdict with a specification and an event trace by running
the specification on the trace: at each step the specification is reduced on the current
event, until either a breach occurs or there are no more events, in which case we
check if the residual specification is fulfilled according to the relation in Figure 2.9.
Formally, the function JsK : Trτ0 → V where τ0 is the start time of s, is defined on
finite traces inductively by:

JsK(σ) =


ν if σ = 〈〉 and ` s ↓ ν,
(τ,B) if σ = εσ′ and s

ε−→ (τ,B),

Js′K(σ′) if σ = εσ′ and s
ε−→ s′,

and on infinite traces by the (unique) extension in Lemma 2.2.5.

The following theorem shows that CSL specifications indeed represent contracts
in the sense of Definition 2.2.1.

Theorem 2.3.6. Let s be a well-formed specification with parties P and start
time τ0. Then JsK is a contract between parties P starting at time τ0.

Proof. The proof is presented in Appendix B.1, page 194. The proof follows by
induction on the length of the trace using Theorems 2.3.4 and 2.3.5.
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Corollary 2.3.7. Let s = letrec D in c starting τ be a well-formed specification.
Then:

JsK =


c� if c = fulfilment,

Js1K ∧ Js2K if c = c1 and c2,

Js1K ∨ Js2K if c = c1 or c2,

where si = letrec D in ci starting τ .

Proof. For finite traces the proofs follow by induction on the trace length, similar
to the proof of Theorem 2.3.6. For infinite traces the results then follow from the
uniqueness result of Lemma 2.2.5.

The theorem and its corollary show that CSL enjoys the principles underpinning
the contract model defined in Section 2.2, that is deterministic blame assignment
and compositionality. Moreover, the algebraic properties stated in Corollary 2.2.15
carry over to CSL.

2.3.6 Monitoring CSL Specifications

The reduction semantics presented above gives rise to an incremental run-time mon-
itoring algorithm for CSL specifications. The main ingredient of the monitor is the
function mon : S× Trτ0fin → (V! ∪ V?)× S defined by:

mon(s, σ) =



(ν?, s) if σ = 〈〉 and ` s ↓ ν,
(ν!, s

′) if σ = σ′ε and mon(s, σ′) = (ν!, s
′),

((τ,B)!, s
′) if σ = σ′ε and mon(s, σ′) = (ν?, s

′)

and s′
ε−→ (τ,B),

(ν?, s
′′) if σ = σ′ε and mon(s, σ′) = (ν ′?, s

′)

and s′
ε−→ s′′ and ` s′′ ↓ ν,

where S is the set of all well-formed CSL specifications.
The monitor is invoked whenever an event occurs, provided that the monitor has

not already output a final verdict. Between invocations, it only needs to remember
the previous result, that is in order to process the event ε, after the events σ have
happened, we only need the previous result mon(s, σ) in order to compute the new
result mon(s, σε).

The function mon is not a run-time monitor in the sense of Definition 2.2.16.
However, it is very close to one, as shown by the following theorem, which follows
directly from Theorem 2.3.6.

Theorem 2.3.8. Let s be a specification with starting time τ0. The function mon
is computable and for any trace σ ∈ Trτ0fin, verdict ν?, and residual specification s′,
with mon(s, σ) = (ν?, s

′), it holds that

(1) if ν? = (τ,B)! then JsK(σ′) = (τ,B) for all σ′ with σ < σ′,

(2) if ν? = �? then JsK(σ) = �, and

(3) if ν? = (τ,B)? then JsK(σ) = (τ,B) and τ ≥ end(σ).
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The result above shows that our run-time monitor satisfies impartiality (1),
however it does not always satisfy anticipation. For instance, if the body of a
specification is fulfilment, then our monitor always outputs �?, even if anticipation
requires that it outputs �!. Building a run-time monitor that guarantees anticipation
is hard, because the expression language can “hide” anticipated verdicts. Consider
for instance the clauses:

c1 = 〈p〉 k(x) where e due d remaining z then c,

c2 = if k(x) where e due d remaining z then c else fulfilment,

where e is some expression for which e[v/x] ⇓ false for all values v, for instance
e = x > 0∧x < 0. The contract represented by c1 is always breached, while the one
represented by c2 is never breached. Hence, in order to guarantee anticipation, we
first need to decide satisfiability for the expression language.

Example 2.3.9. We demonstrate the reduction semantics and run-time monitor
using the CSL specification in Figure 2.3. As in Example 2.2.17, we consider the
trace 〈ε1, ε3, ε4〉, where the events are as in the example, except that they use concrete
actions instead of abstract actions:

ε1 = (2011-01-01,Delivery(Seller, Buyer, “Laser printer”)),

ε3 = (2011-01-01,Payment(Buyer, Seller, 100)),

ε4 = (2011-01-10,Payment(Buyer, Seller, 100)).

We first define the specifications si, with i ∈ {0, 1, 2, 3}:

si = letrec sale(deliveryDeadline, goods, payment)〈buyer, seller〉 = c
in ci[θ] starting 2011-01-01

where θ(deliveryDeadline) = 0, θ(goods) = “Laser printer”, θ(payment) = 200,
θ(buyer) = Buyer, θ(seller) = Seller, and

c0 = sale(0, “Laser printer”, 200)〈Buyer, Seller〉
c = 〈seller〉 Delivery(s,r,g)

where s = seller ∧ r = buyer ∧ g = goods due within deliveryDeadline
then c1

c1 = 〈buyer〉 Payment(s,r,a)
where s = buyer ∧ r = seller ∧ a = payment / 2 due immediately

then c2

c2 = (〈buyer〉 Payment(s,r,a)
where s = buyer ∧ r = seller ∧ a = payment / 2 due within 30D

or
〈buyer〉 Payment(s,r,a)
where s = buyer ∧ r = seller ∧ a = (payment × 110) / 200
due within 14D after 30D)

and
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if Return(s,r,g)
where s = buyer ∧ r = seller ∧ g = goods due within 14D

then
〈seller〉 Payment(s,r,a)
where s = seller ∧ r = buyer ∧ a = payment due within 7D

c3 = if Return(s,r,g)
where s = buyer ∧ r = seller ∧ g = goods due after −9D within 14D

then
〈seller〉 Payment(s,r,a)
where s = seller ∧ r = buyer ∧ a = payment due within 7D

The specification in Figure 2.3 equals s0. We have s0
ε1−→ s1

ε3−→ s2
ε4−→ s3. Note

that the relative deadline in c3 for returning the goods is shifted with regard to the
corresponding relative deadline in c2, due to the passing of time. The incremental
output of the monitor on the trace 〈ε1, ε3, ε4〉 is as follows:

mon(s0, 〈〉) = ((2011-01-01, {Seller})?, s0),

mon(s0, 〈ε1〉) = ((2011-01-01, {Buyer})?, s1),

mon(s0, 〈ε1, ε3〉) = ((2011-02-14, {Buyer})?, s2),

mon(s0, 〈ε1, ε3, ε4〉) = (�?, s3).

Finally, remark that on all traces, except the last one, the value of mon coincides
with the value of the run-time monitor of Example 2.2.17.

2.3.7 Contract Examples

We have seen one example of a realistic contract specified in CSL, namely the sales
contract in Figure 2.1. The example illustrates how dependencies between para-
graphs are realised as continuation clauses, how obligations and permissions are
represented, and how contract disjunction enables choices. In this section we pro-
vide further specification examples, which illustrate prohibitions, potentially infinite
contracts, linear treatment of events (as in linear logic [33]), and a more involved
application of arithmetic expressions.

Example 2.3.10. Prohibitions are not built-in to CSL, yet it is possible to express
prohibitions using external choices and obligations. Consider the non-disclosure
agreement in Figure 2.10 (top). The agreement is formalised in Figure 2.10 (bottom),
using a signature that includes the action kinds {Disclosure,Unfulfillable} ⊆ K, with
types ar(Disclosure) = 〈Party〉 and ar(Unfulfillable) = 〈〉. We use the action kind
Unfulfillable to point out that the corresponding obligation cannot be fulfilled.

Besides the technique for encoding prohibitions, the example illustrates an im-
portant point, namely that we do not model how parties agree that events have
taken place. In the agreement above, a dispute is more likely to involve proving (or
disproving) disclosure of information, rather than interpreting whether disclosing
information is allowed or not.

Example 2.3.11. The next example is a lease agreement presented in Figure 2.11
(top). The contract is formalised in Figure 2.11 (bottom), using a signature that
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Paragraph 1. The following agreement is enacted on 2011-01-01, and is valid for 5 years.

Paragraph 2. The Employee agrees not to disclose any information regarding the work carried
out under the Employer, as stipulated in Paragraph 3.

Paragraph 3. (Omitted.)

− � −

letrec nda()〈employee〉 =
if Disclosure(e)

where e = employee due within 5Y
then
〈employee〉 Unfulfillable where false due immediately

in
nda()〈Employee〉 starting 2011-01-01

Figure 2.10: A non-disclosure agreement (paper version top, CSL version bottom).

Paragraph 1. The term of this lease is for 6 months, beginning on 2011-01-01. At the expiration
of said term, the lease will automatically be renewed for a period of one month unless either party
(Landlord or Tenant) notifies the other of its intention to terminate the lease at least one month
before its expiration date.

Paragraph 2. The lease is for 1 apartment, which is provided by Landlord throughout the term.

Paragraph 3. Tenant agrees to pay the amount of e1000 per month, each payment due on the
7th day of each month.

− � −

letrec lease(property, leaseStart, leasePeriod, leasePeriods, payment, payDeadline,
terminationRequested)〈lessor, lessee〉 =

if leasePeriods ≤ 0 ∧ terminationRequested then
fulfilment

else
〈lessee〉 Payment(s,r,a)
where s = lessee ∧ r = lessor ∧ a = payment
due immediately after leaseStart + payDeadline

and
〈lessor〉 Provision(s,r,p,l)
where s = lessor ∧ r = lessee ∧ p = property ∧ l = leasePeriod
due immediately after leaseStart

then
if terminationRequested then

lease(property, leasePeriod, leasePeriod, leasePeriods − 1, payment,
payDeadline, true)〈lessor, lessee〉

else
if ReqTermination(s)

where s = lessor ∨ s = lessee due within leasePeriod remaining z
then

lease(property, z, leasePeriod, min(1,leasePeriods − 1), payment,
payDeadline, true)〈lessor, lessee〉

else
lease(property, 0, leasePeriod, leasePeriods − 1, payment, payDeadline, false)〈lessor, lessee〉

in
lease(“Apartment”, 0, 1M, 6, 1000, 7D, false)〈Landlord, Tenant〉 starting 2011-01-01

Figure 2.11: A lease agreement (paper version top, CSL version bottom).
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Paragraph 1. The master agreement between Vendor and Customer is for 1000 printers, with a
unit price of e100. The agreement is valid for one year, starting 2011-01-01.

Paragraph 2. The customer may at any time order an amount of printers (with the total not
exceeding the threshold of 1000), after which the Vendor must deliver the goods before the maximum
of (i) 14 days, or (ii) the number of ordered goods divided by ten days.

Paragraph 3. After delivering the goods, Vendor may invoice the Customer within 1 month, after
which the goods must be paid for by Customer within 14 days.

− � −

letrec master(goods, amount, terminationDeadline, payment, invoiceDeadline,
paymentDeadline, id)〈vendor, customer〉 =

if amount = 0 then
fulfilment

else
if Request(s,r,n,g)

where s = customer ∧ r = vendor ∧ n ≤ amount ∧ n > 0 ∧ g = goods
due within terminationDeadline remaining z

then
sale(n, g, n × payment, max(14D, n × 24 × 60 × 6),

invoiceDeadline, paymentDeadline, id)〈vendor, customer〉
and
master(goods, amount − n, z, payment,

invoiceDeadline, paymentDeadline, id + 1)〈vendor, customer〉

sale(number, goods, payment, deliveryDeadline, invoiceDeadline, paymentDeadline, id)
〈seller, buyer〉 =

〈seller〉 Delivery(s,r,n,g,i)
where s = seller ∧ r = buyer ∧ n = number ∧ g = goods ∧ i = id due within deliveryDeadline

then
if IssueInvoice(s,r,i)

where s = seller ∧ r = buyer ∧ i = id due within invoiceDeadline
then
〈buyer〉 Payment(s,r,a,i)
where s = buyer ∧ r = seller ∧ a = payment ∧ i = id due within paymentDeadline

in
master(“Printer”, 1000, 1Y, 100, 1M, 14D, 0)〈Vendor, Customer〉 starting 2011-01-01

Figure 2.12: Master sales agreement (paper version top, CSL version bottom).

includes the action kinds {Payment,ReqTermination,Provision} ⊆ K, with associ-
ated types ar(Payment) = 〈Party,Party, Int〉, ar(ReqTermination) = 〈Party〉, and
ar(Provision) = 〈Party,Party,String, Int〉. We assume that the expression language
has been extended with a function for calculating the minimum of two integers.

The example demonstrates how recursive template definitions enable potentially
infinite contracts: each lease period is guaranteed to be executed at least 6 times,
but there is no a priori upper bound on the number of iterations. The example
also illustrates the usage of the remaining construct, which is needed in order to
determine the start of the next lease period, when a party requests termination.

Example 2.3.12. Next we consider a master sales agreement in Figure 2.12 (top).
The contract is formalised in Figure 2.12 (bottom), using a signature that in-
cludes the action kinds {Request, IssueInvoice,Delivery,Payment} ⊆ K, with types
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Paragraph 1. Buyer agrees to pay to Seller the total sum e10000, in the manner following:

Paragraph 2. e500 is to be paid at closing, and the remaining balance of e9500 shall be paid as
follows:

Paragraph 3. e500 or more per month on the first day of each and every month, and continuing
until the entire balance, including both principal and interest, shall be paid in full; provided,
however, that the entire balance due plus accrued interest and any other amounts due here-under
shall be paid in full on or before 24 months.

Paragraph 4. Monthly payments shall include both principal and interest with interest at the
rate of 10%, computed monthly on the remaining balance from time to time unpaid.

− � −

letrec instalments(balance, instalment, payDeadline, start, end, frequency,
rate, closingPayment, seller)〈buyer〉 =

if balance ≤ 0 then
〈buyer〉 Payment(s,r,a)
where s = buyer ∧ r = seller ∧ a = closingPayment due within end

else
if end ≤ start then
〈buyer〉 Payment(s,r,a)
where s = buyer ∧ r = seller ∧ a = balance + closingPayment due within end

else
〈buyer〉 Payment(s,r,a)
where s = buyer ∧ r = seller ∧ a ≥ min(balance,instalment) ∧ a ≤ balance
due within payDeadline after start remaining z

then
instalments(((100 + rate) × (balance − a)) / 100, instalment, payDeadline,

frequency − payDeadline + z, end − start − payDeadline + z,
frequency, rate, closingPayment, seller)〈buyer〉

in
instalments(10000, 500, 1D, 0, 24M, 1M, 10, 500, Seller)〈Buyer〉 starting 2011-01-01

Figure 2.13: Instalment sale (paper version top, CSL version bottom).

ar(Request) = 〈Party, Party, Int, String〉, ar(IssueInvoice) = 〈Party, Party, Int〉,
ar(Delivery) = 〈Party, Party, Int, String, Int〉, and ar(Payment) = 〈Party, Party,
Int, Int〉. We assume that the expression language has been extended with a function
for calculating the maximum of two integers.

The encoding illustrates the usage of multiple template definitions and that
deadlines can be calculated dynamically based on previous events. Moreover, the
action kinds pertaining to each individual sale contain identifiers that are needed
in order to distinguish potentially identical payments, deliveries, or invoices when
there are simultaneous orders.

Example 2.3.13. The last contract we consider is an instalment sale in Fig-
ure 2.13 (top). For simplicity, we have only included the payment part of the
contract, and not Seller’s obligation to deliver goods. The CSL formalisation is pre-
sented in Figure 2.13 (bottom), and it shows a more involved application of in-place
arithmetic expressions, namely calculation of the remaining balance after each in-
stalment has been payed. Note that contract termination not only depends on the
initial 24 months period, but that the contract may end earlier, in case the remaining
balance is fully payed.
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2.4 Related Work

Formal specification of contracts and automatic reasoning about contracts has drawn
interest from a wide variety of research areas within computer science, going back
to the late eighties with the pioneering work by Lee [59]. Contract formalisms
typically fall into three categories: (deontic) logic based formalisms [36, 59, 95],
event-condition-action based formalisms [34, 61], and trace based formalisms [6, 58].
The logic based approaches mainly focus on declarative specification of contracts,
and on (meta) reasoning, such as decidability of the logic. On the other hand,
the event-condition-action and trace based models focus mainly on contract exe-
cution. The latter approach takes a more extensional view of contracts, that is
contracts are denoted by the set of traces they accept. Other approaches to con-
tract modelling include combinator libraries [88], defeasible reasoning [35, 37, 107],
commitment graphs, that is graph theoretic representations of responsibility between
parties [123, 124], finite state machines [76], and more informal frameworks [17, 21,
82, 119]. Common to all approaches is the goal of modelling (electronic) contracts
in general, except for Peyton-Jones and Eber [88], Andersen et al. [6], and Tan and
Thoen [107] who specifically consider financial contracts, commercial contracts, and
trade contracts, respectively.

Existing contract frameworks tend to focus either on contract execution mod-
els [76, 82, 123, 124], or on concrete specification languages [6, 17, 21, 34, 36, 37,
59, 88, 95, 107], rather than considering both an abstract semantic model and a
specification language. Consequently, these frameworks either lack a language for
specifying contracts, or they lack an operational interpretation—with the excep-
tion of [6, 95], who however do not characterise contracts abstractly in terms of
their semantic models. In contrast, we consider both an abstract execution model
and a specification language. Besides giving a formal operational interpretation to
specifications, this makes it possible to consider different specification languages for
different contract domains, and still compare their semantics in terms of the abstract
model. Moreover, by mapping a specification language into our model, deterministic
blame assignment is guaranteed, algebraic properties of conjunction and disjunction
follow automatically, and run-time monitoring has a well-defined meaning.

Compared with the previous contract execution models [76, 82, 123, 124], our
abstract contract model relies on fewer high-level concepts. For instance, the existing
models rely on concepts such as deadlines [123, 124], deontic modalities [76] and
logical formulae [82], which are all definable within our model.

Compared with the previous contract specification languages [6, 17, 21, 34, 36,
37, 59, 88, 95, 107], ours mainly distinguishes itself by incorporating deterministic
blame assignment. Besides, existing languages all fall short of other important fea-
tures. History sensitive commitments, that is commitments which depend on what
has happened in the past, are only supported in few languages [6, 36]. History
sensitivity is typically not supported because actions are modelled as propositional
variables, hence actions cannot carry values. Only the language of Andersen et
al. [6] has support for (recursive) contract templates; we have adapted their con-
struction to CSL. Furthermore, potentially infinite contracts are only supported
in few languages [6, 59, 95]. Finally, some languages lack absolute temporal con-
straints [35, 37, 95], and instead consider only relative temporal constraints.

The importance of monitoring contracts is widely recognised [6, 34, 36, 76, 95,
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123, 124], yet few authors provide a formal, operational semantics for contract exe-
cution [6, 95]. Such a semantics is a prerequisite for showing that a monitor achieves
its goals. Furthermore, deterministic blame assignment is crucial for run-time mon-
itoring, a feature which—to the best of our knowledge—has only previously been
recognised by Xu and Jeusfeld [124]. However, Xu and Jeusfeld only consider mon-
itoring and blame assignment for their particular specification language, while we
also define these notions in a general and abstract setting.

Compositional specification of contracts is traditionally obtained by means of
conjunction and disjunction [6, 36, 88, 95]. Besides, Andersen et al. [6] present
a language that supports linear conjunction [33]. Despite the fact that composi-
tionality of contracts has previously been considered, there has been no previous
treatment of the effect of compositionality on blame assignment, and in particular
on how disjunctions involving different parties may give rise to nondeterminism.

Standard deontic logic (SDL) [113]—the logic of obligations, permissions, and
prohibitions—has inspired existing contract formalisms [36, 59, 95] due to the ap-
pealing similarities with concepts from contracts. Yet the possible worlds seman-
tics [122] of deontic logic lacks an operational interpretation, which in our view makes
SDL inappropriate as a basis for formalising contracts. To alleviate this weakness,
Prisacariu and Schneider [95] consider a restricted form of deontic modalities with
ought-to-do rather than ought-to-be, meaning that deontic modalities are only to
specify what should happen (“Seller ought to deliver”), and not what should be the
general state of affairs (“it ought to be the case that Seller delivers”). The restriction
to ought-to-do statements gives rise to an alternative µ-calculus semantics based on
actions. We also restrict contracts to ought-to-do statements.

It has been argued that contrary-to-duty obligations [94]—also a SDL related
concept—are crucial for contracts as well [17, 36, 82, 95]. Although we recognise
the importance of reparation activities in contracts, we instead consider them ordi-
nary choices, rather than choices with an implicit agreement to conform first and
foremost with primary objectives. In consideration hereof, we avoid the philosoph-
ical considerations of contrary-to-duty [36, 94], and the treatment of intermediate
violations generated by failing to comply with primary objectives.

2.5 Conclusion

In this article we have presented a novel, trace-based model for multiparty contracts
with blame assignment. We have illustrated that high-level contract concepts such
as obligations, deadlines, and reparation clauses are representable within our model.
This shows that our model is well-suited for representing real-world contracts. For
the purpose of writing contracts, we have given a contract specification language,
which enjoys the principle of blame assignment by inheritance from the abstract
model, and which is amenable to incremental run-time monitoring.

We plan to use CSL in case studies to further evaluate its applicability for formal-
ising contracts and monitoring their executions. Here, we expect that the expression
language of CSL needs to be extended, while hopefully the clause language does not
require additions. The extensions to the expression language should be straightfor-
ward.
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A restriction in our model is that blame is deterministically assigned to contract
parties in case of breach of contract. Although deterministic blame assignment is
a desired feature, not all real-world contracts have this feature. In future work, we
plan to extend our model such that verdicts can be nondeterministically associated
with traces. Such an extension is also motivated by the objective for obtaining less
restrictive operators for composing contracts.

Future work also includes contract analysis. Such an analysis can be based on
our abstract contract model or on the reduction semantics of CSL. For instance,
an immediately implementable online analysis based on the reduction semantics is
to simulate the outcome of possible future events. Together with the information
on who is responsible for an event, this is useful to avoid a breach of contract and
to issue reminders of deadlines. The monitoring algorithm partly does this already
by outputting potential breaches that represent upcoming deadlines. A further goal
of such an online analysis is to monitor contract execution with full anticipation.
However, in order to effectively perform such monitoring of CSL specifications, it
may be necessary to restrict oneself to fragments of CSL. Other contract analyses
are (1) satisfiability, that is whether a contract can be fulfilled at all, (2) satisfiability
with respect to a particular party, that is whether a party can avoid breaching a
contract in which it is involved, (3) contract valuation, that is what is the expected
value of a contract for a given party, and (4) contract entailment, that is whether
fulfilling a contract entails the fulfilment of another contract. The last analysis has
applications for instance in checking contract conformance with regulations, when
regulations are themselves formalised as contracts.
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author would also like to thank David Basin for the invitation to visit his research
group at ETH Zürich in the first half of 2010, during which foundations of the work
presented in this article were laid.



Chapter 3

Foundations for Distributed
Programming-by-Contract?

Abstract

Programming-by-contract (PBC) is a well-established paradigm for spec-
ifying and verifying sequential, one-machine programs in a modular fashion.
Traditional PBC is characterised by absolute conformance of code to its spec-
ification, propagating blame in case of failures, and a hierarchical, cooperative
decomposition model—none of which extend naturally to a distributed envi-
ronment with multiple administrative peers. We consequently propose a fun-
damentally new theory of PBC for concurrent and distributed environments.
Our theory is based on quantifiable performance of implementations; assum-
ing responsibility for success; and an adversarial model of system integration,
where each component provider is optimising its behaviour locally, with respect
to potentially conflicting demands. Our model gives rise to a game-theoretic
formulation of contract-governed process interaction, and contract conformance
is defined with respect to a set of contracts—a contract portfolio—in order to
properly account for the possibility of delegation to subcontractors. We show
that our definition of contract conformance permits compositional reasoning in
the vein of traditional programming-by-contract.

3.1 Introduction

Programming-by-contract (PBC)—or, design-by-contract [71]—is a paradigm for
specifying and verifying computer programs, typically by means of formal precon-
ditions and postconditions for code fragments [44]. Given a program component c,
a precondition A is a predicate over c’s inputs specifying the requirements or as-
sumptions made by c. If, for instance, c computes a function on numbers, A may
be the requirement that input x satisfies x ≥ 0. Likewise, a postcondition B is
a predicate over both inputs and outputs of c, specifying c’s guarantees about its
outputs, for the given inputs. In the example, B may for instance specify that the
output number r must satisfy r2 = x. A piece of code that satisfies its contract,

?Revised version of the chapter “Foundations for Programming By Contract in a Concurrent and
Distributed Environment” [50], which in turn is based on joint work with Anders Starcke Henriksen
and Andrzej Filinski [43].

61



62 Foundations for Distributed Programming-by-Contract

even in an inefficient or unexpected way such as returning r = −√x, is then said to
be correct.

The purpose of PBC is to enable modular design and implementation of pro-
grams, by establishing detailed contracts for all module interfaces, in such a way
that correctness of the whole program (that is, top-level module) follows from the
correctness of all the component modules. In particular, any failure of the whole
program to satisfy its contract can ultimately be attributed to a violation of a spe-
cific precondition or postcondition. The former occurs when a caller fails to satisfy
the input requirements for invoking a submodule, while the latter indicates the fail-
ure of the callee to satisfy its output guarantee. In both cases, the implementor of
the faulty module is the one who is blamed, and the module has to be corrected.
For this reason, PBC has also been dubbed “The Blame Game” [117], due to the
(somewhat degenerate) game-theoretic nature of each implementor’s incentive being
to avoid getting blamed.

The compositional nature of PBC means that the implementor of a module need
not be aware of the entire context in which the module is used. Preconditions
and postconditions define exactly what the module and its context can expect from
each other, hence when implementing the module nothing else can—or should—
be assumed about the environment, and vice versa. For instance, in the numeric
example above, it would be wrong of the environment to use the output of c directly
as the input for a second invocation of c, even though this latent bug would go
undetected if c simply returned the positive square root r =

√
x.

The goal of our work is to extend PBC from a classical one-machine setup to a
setting where programs run concurrently on potentially different machines, owned
by different administrative peers. Compositionality is a crucial feature in PBC, and
it becomes ever more important in a distributed computation model, in which knowl-
edge of the entire context is not realistic. Existing work on extending precondition-
and postcondition-style contracts to a concurrent setting have been proposed [48, 83],
but to our knowledge there exist no extensions of the PBC paradigm to a distributed
environment.

3.1.1 Distributed Programming-by-Contract

Extending PBC to a concurrent, message-passing setting is, in principle, relatively
straightforward. The evident difference from a sequential setting is that precondi-
tions and postconditions must be generalised from one-shot input–output contracts
to communication-protocol contracts. That is, input requirements now specify what
may legitimately be sent to a concurrent module or process, while output guarantees
capture what must in turn be sent by that process. Moreover, both input contracts
and output contracts may now in general refer to the entire communication history.
Still, no fundamental, conceptual changes to the PBC paradigm seem necessary.
The notion of session types [16, 46] is an example of such communication-protocol
contracts.

On the other hand, a proper account of realistic distributed systems does seem to
require a complete reassessment of some basic assumptions of PBC. The problematic
characteristics here are the notions of absolute conformance, blame propagation, and
the ultimately cooperative model of system development.
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Absolute conformance By absolute conformance we mean that once a module
violates its contract, the “world stops” and no formal guarantees can be given about
possible continued execution. The erroneous module must be repaired before the
program can be reliably resumed or restarted. In a large-scale distributed environ-
ment, however, failures are a fact of life, and though we do need to assign blame
for them, the model must also include a robust specification of the relevant recovery
procedures, and how any further failures by both parties are to be accounted for.

Moreover, not all failures are equally serious, and some might even be expected
to occur in the course of a typical interaction sequence. We thus prefer a contract
conformance model based not on a binary outcome, but on a quantitative measure,
making it possible to also uniformly express performance characteristics, such as
responsiveness, and relative importance of potentially conflicting contracts. Using
an economic metaphor, a module (or rather, the module’s implementor) is rewarded
by its environment for “good” behaviour, and penalised for “bad” behaviour. We
can recover the usual absolute notion of contract satisfaction as a requirement that
a correct module’s accumulated balance is always non-negative. Thus, in particular,
such a module will never be the first to break a communication contract. But the
key motivation for quantifiable performance contracts is that they support compo-
sitional reasoning about module correctness in systems with more than two module
producers, as sketched next.

Blame propagation The second problem with traditional PBC is that simple
blame propagation is not by itself a proper foundation for composing distributed
modules. As an example, consider a service provider P that implements a web
service W1 using a gateway service W2 provided by a subcontractor S. If P provides
W1 as a service to some client C, then P cannot rely on propagating blame to S if
W1 fails as a result of W2 failing first. In other words, P is still responsible to C for
the correct behaviour of W1 and cannot be excused by W2 failing. However, S is in
turn responsible to P for W2, which may imply that S has to pay a fine to P each
time W2 fails. If P is properly organised, this fine will be sufficient to cover the fine
that P has to pay to C.

Again, traditional PBC blame propagation can be seen as a degenerate instance
of the responsibility model. The difference is that assuming responsibility for satis-
fying a contract in general involves more than merely being able to deflect all blame
for failure. It is an inherently more robust notion, because it requires a module
offering a service to explicitly plan for any or all of its subcontractors not fulfilling
their nominal (“happy-path”) contracts, and ensuring that any penalties imposed
by the service’s client can ultimately be recovered from the subservices. In particu-
lar, a correct module will never make a high-assurance service (that is, with a high
penalty for failure) rely on a low-assurance one.

The final problem with blame propagation is that it is not compositional: in
blame propagation all modules of the program must be known, since blame can be
propagated to any of the modules. In the example above this implies that C has
to know S, since P may propagate blame onto S in case of failure. And S may
in turn propagate blame onto its (sub)subcontractors, which means that the entire
network must be known. This problem is avoided by requiring that P must assume
responsibility for S when servicing C.
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Cooperation By a cooperative decomposition model in traditional PBC we mean
that all the module implementors are—to some degree—ultimately working towards
a single goal of building a correct system. Thus, if a module contract is ambiguous
or incomplete, the implementor will typically still opt to implement the module in
the “intended” way, even if he does not explicitly stand to gain anything from it.
In particular, he would normally not choose a deliberately suboptimal algorithm
for solving a problem, nor intentionally cause minor failures—even if such failures
are nominally allowed by the performance contract. For instance, a contract may
stipulate that providing a wrong answer to a question is unacceptable, but explicitly
declining to answer is a legitimate response—yet simply uniformly refusing to answer
would be considered a “bad-faith” implementation.

In a distributed setting, the implicit assumption of cooperation is not necessar-
ily justified. In the web-service example above it may be locally optimal for the
subcontractor S to sometimes have W2 failing (and taking the penalty), if that for
instance enables S to respond to a request from some other (higher-payoff) company
O that neither the main contractor P nor the ultimate client C know or care about.
Thus, all parties in a distributed system need to recognise that their PBC commu-
nication peers may occasionally—or even consistently—violate contracts, not due
to coding errors or legitimate misinterpretation of the contract, but as a deliberate
design choice. The adversarial nature also prompts the need for absolute guarantees
in contracts rather than unenforceable promises. That is, commitments must be
specified with absolute deadlines such as “answer within 10 seconds”, rather than
“answer eventually”.

Game-theoretic model In summary of the observations above, we propose an
explicitly game-theoretic [70] extension of the PBC paradigm. Companies P, S and
C above are modelled as players (or, principals). Principals are the responsible
actors in the distributed environment, and responsibility is codified in contracts,
which generalise the precondition- and postcondition-style contracts of PBC. Each
contract is a game between two principals, which specifies what should be commu-
nicated between them and when. This notion respects compositionality, as bilateral
contracts only mention the exact part of the context to whom the principal has
commitments. It is, of course, possible to generalise to multiparty contracts, but
we restrict ourselves to bilateral contracts both for simplicity, and because it forces
compositionality and eliminates unintended blame propagation.

The moves of principals in a game are what they communicate to each other in
each round. Guarantees are quantified by assigning to each transition of the game
state a payoff, which can be thought of as the incremental payment to the first
player from the second, resulting from the transition. Since communication games
may go on indefinitely, we assign payoffs also to non-terminal states of the games.
A payoff may represent either a payment for services properly rendered, or a fine
for unsatisfactory performance. The game-theoretic formulation of a distributed
PBC contract is therefore an infinite, simultaneous, zero-sum, two-person game.
In general, each player participates in multiple, concurrent games, and aims to
maximise his total payoff, rather than to do well in any particular game.

Even though each contract specifies a zero-sum game, and all principals may be
assumed to be rational and enter contracts in expectation of a positive payoff, it
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does not necessarily mean that at least one principal has to lose. The reason is that
the system is considered open, hence the “losing” principal may actually have an
overall positive payoff, as a result of some unknown contracts with an unspecified
environment, or ultimately with “nature”.

A contract describes a logical commitment between two principals, but not how
communication is enacted physically. In order to fulfil its contractual obligations,
each principal implements an overall strategy for playing all of its communication
games. An implementation consists of a set of processes for performing actual com-
putation and communication, and a means of delegation to other principals. The
latter makes it possible to satisfy a logical commitment without doing the actual
communication oneself—in some cases it may not even be possible to be in charge
of the communication oneself.

Communication model Having described how contracts are extended from one-
shot input–output contracts, we need to generalise sequential programs to concurrent
processes. We aim for a simple model of communication that assumes no common
computational model at the peers in the network. Our model of communication
is inspired by the Input Output Timed Automaton (IOTA) model [14], in which
messages are sent asynchronously between automata. Unlike process calculi such as
CSP [45], CCS [72], and the π-calculus [73], we assume no advanced synchronisation
primitives, and the definition of processes is extensional (black box), rather than
intensional, in order to reflect that the internal structure of a process may not be
known. Furthermore, there is no possibility of refusing input as in for instance CSP,
which means that contracts can be defined on traces of actual communication rather
than traces of input–output requests.

The link between implementations and contracts is established via a notion of
contract portfolio conformance, which generalises the definition of Hoare triple va-
lidity [121]. Contract conformance is defined as a safety property [4], meaning that
all violations happen in finite time. This is due to the fact that implementations are
black boxes, hence their internal organisation cannot be inspected, and monitoring
of contracts should be possible only by inspecting the observational behaviour of
implementations. However, the restriction to safety properties does not imply that
contract conformance corresponds to partial correctness of Hoare logic, in which a
program stuck in an infinite loop satisfies any contract. Rather, it can be seen as
a cross between partial correctness and total correctness, which we may call timed
total correctness.

3.1.2 Outline

The remainder of the chapter is structured as follows. In Section 3.2 we introduce
an abstract model of communication, in which processes are described only by their
observational behaviour, and we define what it means to combine processes. In
Section 3.3 we introduce a model of I/O automata that is equivalent to the pro-
cess model, but in some cases easier to reason with. We introduce principals and
contracts in Section 3.4, and Section 3.5 provides the link between processes and
contracts by means of contract conformance. We show that contract conformance
permits compositional reasoning.
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3.2 Process Model

In order to extend programming-by-contract to a distributed setting, we must first
define what kind of peers we are interested in specifying. This section and the
following section target that question. In Section 3.4 we return to the question of
what a contract is, and who the responsible actors are. The reader may skip to
Section 3.3, in which we define a model of communication that is equivalent to the
process model of this section. However, the notions of channels and moves are also
used in that model. The process model is included to illustrate the choices that
underlie our communication model.

As in IOTA [14], CSP [45], CCS [72], and the π-calculus [73], we use channels
as an abstraction for an ideal communication medium. We denote the set of all
channels by C, and we write α, β, γ, . . . for channels. Unlike CCS and the π-calculus,
channels are directed, and they have exactly one sender and one receiver. The reason
for this low-level approach is to have as few assumptions about the communication
medium as possible. The restriction means, for instance, that it is not possible for a
process to broadcast to multiple processes on a single channel—instead the fan out
to the receiving processes has to implemented explicitly via individual channels.

Definition 3.2.1. Given a finite set of channels C ⊆fin C and an alphabet Ac
for each c ∈ C, a move m is an element of the set MC = Πc∈CAc. We write
m1,m2,m3, . . . for moves. A log l over C ⊆fin C with end time t ∈ N is an element
of the set LtC = [0; t) → MC . The set of all logs over C ⊆ C is defined by LC =⊎
t∈N LtC , where ] denotes disjoint union. We write l1, l2, l3, . . . for logs.

Moves and logs are introduced in order to represent processes by their observa-
tional behaviour. A move over a finite set of channels is a snapshot of what gets
communicated on the channels at a particular point in time. Each Ac must contain
the special silent action ε. A log over C with end time t is a description of all that
has happened on the channels of C before time t. We note that all timestamps are
in N, which means that we consider a discrete model of time. The restriction to a
discrete time model is for simplicity—we discuss briefly in Section 3.2.1 why a dense
time model is not straightforward.

In order to represent logs, we use a list-like notation, in which silent actions are
omitted. For instance:

[t1 : (α 7→ 10), t2 : (β 7→ 3), t3 : (α 7→ 2, β 7→ 5); t4], (3.1)

with t1 < t2 < t3 < t4 represents the log l ∈ Lt4{α,β} defined by:

l(t)(c) =



10 if t = t1 and c = α,

3 if t = t2 and c = β,

2 if t = t3 and c = α,

5 if t = t3 and c = β,

ε otherwise.

Given a log l ∈ LC we denote by eol(l) the end of the log, that is eol(l) = t
whenever l ∈ LtC . Given two logs l1 ∈ LtC1

and l2 ∈ LtC2
with C1 ∩C2 = ∅ we define
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the combined log l1 ∪ l2 ∈ LtC1∪C2
by:

(l1 ∪ l2)(t′)(c) =

{
l1(t′)(c) if c ∈ C1,

l2(t′)(c) if c ∈ C2.

Given a log l ∈ LC it can be restricted to channels C ′ ⊆ C, written l|C′ ∈ LC′ , and
restricted to time t ≤ eol(l), written l|t ∈ LtC , where:

l|C′(t) = l(t)|C′ l|t = l|[0;t).

(We use ordinary function restriction on the right-hand side of the equations above.)
For a given log set LC we define the partial order (· v ·) ⊆ LC × LC by:

l1 v l2 iff eol(l1) ≤ eol(l2) and l1 = l2|eol(l1).

Given the definition of logs we can now concisely capture processes as transfor-
mations on logs. However, in order to faithfully capture the intuition of “communi-
cating black boxes”, we require two conditions:

Definition 3.2.2. A process p ∈ P is a triple p = (CI , CO, f), where the input
channels CI and output channels CO are disjoint and finite, and f : LCI → LCO is
a log transformer. The log transformer f must satisfy the following conditions for
all logs l, l1, l2 ∈ LCI and timestamps t ∈ N with t < min(eol(l1), eol(l2)):

(1) eol(l) = eol(f(l)), and

(2) if l1|t = l2|t then f(l1)|t+1 = f(l2)|t+1.

The definition of a process requires a fixed set of finite, disjoint input channels
and output channels. Input channels are the source of stimuli to a process, and out-
put channels are the reactions. Channels are fixed for simplicity—unlike for instance
the π-calculus, channels cannot be created dynamically, hence the network topology
is static. The definition requires that the relation between stimuli and reaction be
deterministic, that is we do not model internal nondeterminism. It is possible to
generalise the definition to powersets in order to model internal nondeterminism as
well, but we omit it here for simplicity. The two additional requirements on log
transformers are motivated below:

(1) states that a log transformer must preserve the end time for logs. Intuitively
this means that the observation of input and output ends at the same time.

(2) is called strict monotonicity1, and it guarantees two properties. First, pro-
cesses cannot “change the past”. That is, if output is known for a log l and l′ is an
extension of l, then the output for l′ is an extension of the output for l. Second,
processes cannot respond instantly. That is, if two input logs are equal before time
t—and possibly differing at time t—then output is equal before and at time t. This
restriction is imposed to reflect the intuition that reaction takes time. That is, we
will not allow processes to respond infinitely fast.

The following lemma shows that strict monotonicity implies monotonicity:

1We remark that the later notation of guardedness due to Krishnaswami and Benton [57] is
very similar to our notion of strict monotonicity.
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Lemma 3.2.3. Let p = (CI , CO, f) be a process. Then f : LCI → LCO is monotone
with respect to v.

Proof. Assume l1 v l2. Then eol(f(l1)) = eol(l1) ≤ eol(l2) = eol(f(l2)) so if f(l1) 6v
f(l2) then there exists some t < eol(f(l1)) such that f(l1)(t) 6= f(l2)(t). But since
l1|t = l2|t it follows by strict monotonicity that f(l1)(t) = f(l2)(t), which is a
contradiction. Hence we must have that f(l1) v f(l2) as required.

It follows from the lemma that an extension of the process model to infinite
logs will not add extra expressivity. That is, the infinite output associated with an
infinite input will be uniquely determined by all finite prefixes of input and output,
similar to the notion of continuity in denotational semantics [121].

In order to reason about the behaviour of multiple processes we next introduce
process composition:

Definition 3.2.4. Let p1 = (C1
I , C

1
O, f

1) and p2 = (C2
I .C

2
O, f

2) be processes with
C1
I ∩ C2

I = C1
O ∩ C2

O = ∅. The parallel composition p1 ‖ p2 = (CI , CO, f) of p1 and
p2 is defined by:

CI = (C1
I ∪ C2

I ) \ Cint (input channels)

CO = (C1
O ∪ C2

O) \ Cint, (output channels)

where Cint = (C1
I ∩ C2

O) ∪ (C2
I ∩ C1

O) are internal channels. For l ∈ LtCI we first

define I1
n ∈ LtC1

O
and I2

n ∈ LtC2
O

inductively as follows:

∀t′ ∈ [0; t). I1
0 (t′)(c) = ε I1

n+1 = f1((I2
n ∪ l)|C1

I
)

∀t′ ∈ [0; t). I2
0 (t′)(c) = ε I2

n+1 = f2((I1
n ∪ l)|C2

I
).

Then f(l) = (I1
N ∪ I2

N )|CO , where N is such that I1
N = I1

N+1 and I2
N = I2

N+1.

At first sight, the definition of parallel composition may seem rather involved.
The reason for the iterative definition is that internal communication between the
two processes needs to be “fed back” as input. In the first iteration we calculate the
output for both processes with respect to the external input. Some of the output
then needs to be routed internally, which is what happens in the second iteration.
But this may in turn result in new internal messages that are included in the next
iteration. This iteration is continued until a fixed point is reached. The example
below illustrates parallel composition with two concrete processes.

Example 3.2.5. Let p1 = ({α}, {β}, f1) and p2 = ({β}, {α, γ}, f2) be two processes
defined by:

f1(l)(t)(β) =


1 if t = 0,

2x if l(t− 1)(α) = x,

ε otherwise,

f2(l)(t)(c) =

{
x+ 1 if l(t− 1)(β) = x,

ε otherwise.

The two processes are depicted in Figure 3.1. p1 initially outputs 1 on β and
continuously doubles input from α on β. p2 continuously increments its input from
β on both α and γ. The parallel composition p1 ‖ p2 has no input channels and
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p1 p2
β

γ

α

Figure 3.1: Parallel composition of two processes.

γ as output channel. In order to calculate the output after, say, 6 time units, we
must apply the composed log transformer to the log [·; 6]. The iterative procedure
of Definition 3.2.4 produces the following approximations:

I1
0 = [·; 6] I2

0 = [·; 6]

I1
1 = [0 : (β 7→ 1); 6] I2

1 = [·; 6]

I1
2 = [0 : (β 7→ 1); 6] I2

2 = [1 : (α, γ 7→ 2); 6]

I1
3 = [0 : (β 7→ 1), 2 : (β 7→ 4); 6] I2

3 = [1 : (α, γ 7→ 2); 6]

I1
4 = [0 : (β 7→ 1), 2 : (β 7→ 4); 6] I2

4 = [1 : (α, γ 7→ 2), 3 : (α, γ 7→ 5); 6]

I1
5 = [0 : (β 7→ 1), 2 : (β 7→ 4),

4 : (β 7→ 10); 6] I2
5 = [1 : (α, γ 7→ 2), 3 : (α, γ 7→ 5); 6]

I1
6 = I1

5 I2
6 = [1 : (α, γ 7→ 2), 3 : (α, γ 7→ 5),

5 : (α, γ 7→ 11); 6]

I1
7 = I1

6 I2
7 = I2

6

Hence the output is (I1
6 ∪ I2

6 )|{γ} = [1 : (γ 7→ 2), 3 : (γ 7→ 5), 5 : (γ 7→ 11); 6].

It does not follow immediately that the fixed point of Definition 3.2.4 always
exists, nor that the composition of two processes is itself a process. However, the
requirement of strict monotonicity ensures the desired result:

Lemma 3.2.6. Let p1 = (C1
I , C

1
O, f

1) and p2 = (C2
I .C

2
O, f

2) be two processes with
C1
I ∩ C2

I = C1
O ∩ C2

O = ∅. Then the parallel composition p1 ‖ p2 exists and it is a
process.

Proof. The proof is presented in Appendix C.1, page 195.

The model of processes and their composition is—we believe—an intuitive model
of communicating black boxes that may be put together to form new boxes. The
weakness of the model, however, is that it is cumbersome to reason about process
composition due to the iterative definition. For instance, we want to prove that
process composition is commutative and associative. Even though this is indeed the
case, the latter is easier to show in an equivalent automaton model, which we define
in Section 3.3. We therefore postpone the associativity result.

Lemma 3.2.7. Let p1 = (C1
I , C

1
O, f

1) and p2 = (C2
I .C

2
O, f

2) be two processes with
C1
I ∩ C2

I = C1
O ∩ C2

O = ∅. Then p1 ‖ p2 = p2 ‖ p1.

Proof. The result follows directly from the corresponding commutativity of the op-
erators ∪ and ∩.
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3.2.1 A Digression on Time

In this subsection we briefly discuss why it is not straightforward to extend our
existing model with a dense time model. The reader may skip this section as it is
not a prerequisite for the remaining chapter.

Consider Q+ as a model of time rather than N, similar to Alur and Dill [5].
Then a log with end time q ∈ Q+ is a function of the type [0; q)→MC . Since this
definition allows for infinitely many messages in finite time, we follow Alur and Dill
and require logs to have progress:

Definition 3.2.8. A log l ∈ LC is said to have progress whenever the set {q ∈ Q+ |
l(q)(α) 6= ε for some α ∈ C} is finite.

The crucial point in extending our model to a dense time domain is to redefine
strict monotonicity of Definition 3.2.2 (2). The definition should still imply ordinary
monotonicity and reflect the intuition that “reaction takes time”. One possible
generalisation is to have a fixed δ ∈ Q+ and redefine strict monotonicity:

if l1|t = l2|t then f(l1)|t+δ = f(l2)|t+δ. (3.2)

However, this definition is equivalent to a discrete time model where Q+ is parti-
tioned into δ-intervals. Another definition that utilises the density of Q+ is:

if l1|t = l2|t then f(l1)(t′) = f(l2)(t′) for all t′ ≤ t. (3.3)

That is, a process can be arbitrarily fast—but still not infinitely fast. Unfortunately,
this definition is problematic as we shall see in the following example.

Example 3.2.9. Let p1 = ({α}, {β}, f1) and p2 = ({β}, {α, γ}, f2) be two processes
defined by:

f1(l)(t)(β) =


42 if t = 0,

x if l(1− 1
n)(α) = x and t = 1− 1

n+1 ,

ε otherwise,

f2(l)(t)(c) =

{
x if l(1− 1

n)(β) = x and t = 1− 1
n+1 ,

ε otherwise.

Both p1 and p2 are valid processes, that is if the input log has progress then so has
the output log, since both processes duplicate some of their input with decreasing
delay. For example, p1 transforms the log[

2

3
: (α 7→ 1),

9

10
: (α 7→ 2), 33 : (α 7→ 3); 40

]
to [

0 : (β 7→ 42),
3

4
: (β 7→ 1),

10

11
: (β 7→ 2); 40

]
.

However, when composed in parallel we get a process that outputs the following
infinite sequence of 42’s:[

1

2
: (γ 7→ 42),

3

4
: (γ 7→ 42),

5

6
: (γ 7→ 42), . . . ,

2i− 1

2i
: (γ 7→ 42), . . .

]
.
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Hence when applied to the empty log with end time 1, p1 and p2 will produce an
output log without progress, as the sequence {1− 1

2i}i∈N converges towards 1.

The example above illustrates why condition (3.3) is too general: two processes
that in isolation preserve progress and satisfy condition (3.3) may speed each other
up to infinity. Therefore, in order to utilise a dense time model we will need a
definition of strict monotonicity that is more general than (3.2) but more restrictive
than (3.3). One possibility is to have a fixed delay δc per channel c, rather than a
uniform δ as in (3.2). We leave this investigation as future work.

3.3 Automaton Model

In this section we introduce a communication model that is equivalent to the process
model of the previous section. We focus on the model of this section in the remainder
of the chapter.

Definition 3.3.1. An I/O automaton a ∈ A is a 6-tuple (CI , CO, S, s0, δo, δt). Input
channels CI and output channels CO are disjoint and finite, S is the (potentially
infinite) set of automaton states, and s0 ∈ S is the start state. δo : S →MCO is the
output function and δt : S ×MCI → S is the transition function.

The I/O automaton’s output in the current time unit is determined by its internal
state, while its next state depends on the current one, and the input received. Hence
the output mo as a reaction to input mi is only observed in the next time unit,
compare the intuition of the process model in which reaction takes time. We do not
impose any structure on the set of states S, and the automaton does not specify
how the transition functions are computed, only what they compute. The definition
of parallel composition is simple:

Definition 3.3.2. Let a1 = (C1
I , C

1
O, S

1, s1
0, δ

1
o , δ

1
t ) and a2 = (C2

I .C
2
O, S

2, s2
0, δ

2
o , δ

2
t )

be two automata with C1
I ∩ C2

I = C1
O ∩ C2

O = ∅. The parallel composition a1 ‖ a2 =
(CI , CO, S

1 × S2, 〈s1
0, s

2
0〉, δo, δt) is defined by:

δo(〈s1, s2〉) = (δ1
o(s1) ∪ δ2

o(s2))|CO

δt(〈s1, s2〉,m) = 〈δ1
t (s1, (m ∪ δ2

o(s2))|C1
I
), δ2

t (s2, (m ∪ δ1
o(s1))|C2

I
)〉,

where CI and CO are as in Definition 3.2.4. For a move m ∈MC , m|C′ denotes the
domain restriction of m to C ′, and moves m1 ∈ MC1 and m2 ∈ MC2 over disjoint
channel sets C1 and C2 are combined as m1 ∪m2 ∈MC1∪C2 .

Unlike processes, automata have a notion of internal state. This means that two
automata that “behave the same way” need not be the same. However, we do not
wish to distinguish such automata, which motivates the following definition:

Definition 3.3.3. Let a1 = (CI , CO, S
1, s1

0, δ
1
o , δ

1
t ) and a2 = (CI , CO, S

2, s2
0, δ

2
o , δ

2
t )

be two automata. A relation R ⊆ S1 × S2 is said to be a bisimulation for a1 and a2

iff the following holds for all states s1 ∈ S1 and s2 ∈ S2 and moves m ∈MCI :

if (s1, s2) ∈ R then δ1
o(s1) = δ2

o(s2) and (δ1
t (s1,m), δ2

t (s2,m)) ∈ R.
The two automata are said to be bisimilar, written a1 ≡ a2, whenever (s1

0, s
2
0) ∈ R

for some bisimulation R.
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Bisimilarity satisfies the expected property of being an equivalence relation on
automata. Moreover, bisimilarity is a congruence relation with respect to parallel
composition:

Lemma 3.3.4. Bisimilarity is a congruence relation on automata. That is, it is an
equivalence relation (reflexive, transitive and symmetric) and the following holds for
all automata a1, a2, a3, a4 ∈ A:

if a1 ≡ a2 and a3 ≡ a4 then a1 ‖ a3 ≡ a2 ‖ a4.

Proof. The proof is presented in Appendix C.1, page 197.

We can now show that parallel composition of automata is associative modulo
bisimilarity. Note that we need to require pairwise disjointedness of input channels
and output channels for all three automata—otherwise parallel composition is in
fact not associative, even though it may be well-defined!

Lemma 3.3.5. Let ai = (CiI , C
i
O, S

i, si0, δ
i
o, δ

i
t) be automata for i = 1, 2, 3 with:

C1
I ∩ C2

I = C1
I ∩ C3

I = C2
I ∩ C3

I = ∅,
C1
O ∩ C2

O = C1
O ∩ C3

O = C2
O ∩ C3

O = ∅.

Then a1 ‖ (a2 ‖ a3) ≡ (a1 ‖ a2) ‖ a3.

Proof. The proof is presented in Appendix C.1, page 198. The proof consists of
two parts: first we show that the two automata have the same input channels and
output channels, and second we construct a bisimulation.

3.3.1 Equivalence of Models

In this subsection we give a brief account of the proof that the models of communi-
cation are in fact equivalent. The result is not surprising, and we therefore refer to
Appendix C.3 for the full details.

In order to establish the equivalence result, we must first make it clear what it
means for the two models to be equivalent. Clearly, we need two maps p·q : A→ P
and x·y : P → A, and the two maps must somehow be mutually inverse and both
be bijections. However, as we have seen, the automaton model allows for automata
that are bisimilar but not structurally equal. We therefore instead consider two
maps:

p·q : (A/≡)→ P and x·y : P→ (A/≡).

That is, we only consider automata modulo bisimilarity. The map p·q is induced by a
mapping of automata to process that runs the automaton incrementally on the input
log—this mapping, of course, must respect bisimilarity in order to induce a mapping
on the quotient space. The map x·y is constructed by building an automaton that
maintains in its state the log of previous messages, and appends new messages to
the state when they are received. Note that this construction relies on the fact that
I/O automata may have infinite state space—if restricted to finite automata, the
two models are in fact not equivalent!

We show in Appendix C.3 that the two maps constitute an isomorphism between
the two models (Corollary C.3.13). That is, they are both bijections, they are
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mutually inverse, and they are homomorphic with respect to parallel composition.
Moreover, we obtain that bisimilarity is equivalent to equality of the processes that
automata denote, that is:

a1 ≡ a2 iff pa1q = pa1q.

Hence bisimilarity and trace equivalence coincide.
The isomorphism result allows us to transfer results from one model to the other

and vice versa. For instance, it follows from Lemma 3.2.7 that parallel composition of
automata is commutative modulo bisimilarity (Corollary C.3.15) and it follows from
Lemma 3.3.5 that parallel composition of processes is associative (Corollary C.3.14).

3.4 Principals and Contracts

We now pursue the extension of programming-by-contract (PBC) to a distributed
environment. Principals refer to the administrative parties in the distributed en-
vironment, for instance a person or an organisation. We write P1,P2,P3, . . . for
principals. Two principals can negotiate a contract, which is an abstraction for
communication obligations.

In order to capture different kinds of communication, we define logical commu-
nication links. A logical communication link specifies the type of messages to be
communicated, and it is similar to channels. A logical communication link is written
λ, sets of links are denoted Λ, and a move m ∈ MΛ over a finite set of links Λ is
defined as for channels. A logical communication link is directed and always between
two principals. For each logical communication link λ, there is a corresponding set of
actions communicated on that link, denoted Aλ. Each action set has a distinguished
silent action ε. In the context of distributed computing, a logical link will typically
have as action set the set of all IP packets between two predefined IP addresses.
But logical links can also be used for modelling real-world events.

The reason why links are logical is that the principals at each end of a link
need not be the actual physical sender or receiver for that link. The sender (and
receiver respectively) of a logical link has the opportunity of being the physical
sender (receiver), but it may pass on this opportunity to another principal. The
term logical hence means that the principals have committed to some actions on
the links in the contract, but they may not be in control of the underlying physical
communication. This is what differentiates logical links from channels, compare
Section 3.2. Logical links are always associated with exactly one contract, which we
define next:

Definition 3.4.1. A contract between principals P (player) and A (adversary) is
a 5-tuple c = (ΛPA,ΛAP, G, g0, ρ). ΛPA and ΛAP are finite sets of logical links from
principal P to principal A and vice versa. G is the (potentially infinite) set of contract
states, and g0 ∈ G is the start state. ρ : G ×MΛPA

×MΛAP
→ G × Q is the rule

function for the game.

A contract evolves in each time unit, based on the chosen moves mP and mA

of the two players. Consider (g′, k) = ρ(g,mP,mA): when the contract is in a
state g, and the moves on ΛPA and ΛAP are mP and mA respectively then g′ is the
new contract state, and k is the—possibly negative—incremental payoff to P from
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P C

S

λ1

λ2

λ3

λ4

λ5

c2

c1

Figure 3.2: Graphical representation of three principals with bilateral contracts.

A. Time units are assumed to be small and fixed. General timing constraints are
expressed by means of explicit counters in the game state, which we will see an
example of soon. Note that there are no “illegal” moves per se: moves in violation
of the nominal game rules will typically be assigned a large negative payoff, but the
contract remains in a well-defined state, to guide an orderly recovery.

Observation 3.4.2. A contract (ΛPA,ΛAP, G, g0, ρ) describes an infinite, simultane-
ous, zero-sum, two-person game between principals P and A. Finite contracts can be
modelled by introducing a terminal state gt and extend ρ such that ρ(gt,mP,mA) =
(gt, 0) for all (mP,mA) ∈MΛPA

×MΛAP
.

In order to model situations with more than two principals, principals can in
general negotiate a (finite) set of contracts:

Definition 3.4.3. A contract portfolio for a principal P is a finite set of contracts
C = {c1, . . . , cn} where ci = (ΛPAi ,ΛAiP, Gi, gi, ρi) for i = 1, . . . , n.

Contract portfolios make it possible to model multiparty scenarios, by means of
bilateral contracts only. This approach is different from the commonly used global
approach to multiparty scenarios, represented typically as sequence diagrams [104].
For instance, in the context of web services the global approach is manifested in
the web services choreography description language (WSCDL)2. The difference is
illustrated in the following example.

Example 3.4.4. Consider the three principals in Figure 3.2: a service provider P,
from the viewpoint of whom we are considering, a subcontractor S, and a client
C. P offers a cellphone greeting service, which enables client C to send a greeting
card MMS to a specified cellphone number. To send the actual MMS, the service
provider has subcontracted with an MMS gateway provider S, who provides the
service of sending MMSs with arbitrary content. The traditional way to describe
such a scenario is by means of a global choreography as in Figure 3.3.

The global choreography may provide good intuition. However, as mentioned
previously, there are shortcomings to this approach. A more faithful model is to
consider bilateral agreements between P and C, and P and S, respectively, in which
C and S have no awareness of each other. Informally, P’s contract with C says:

2http://www.w3.org/TR/wsdl20/.

http://www.w3.org/TR/wsdl20/
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C P S

Request (number, card)

Offer (price)

(branch)
Accept

Reject
Request (number, text)

Send MMS (number, text)

Figure 3.3: A global choreography for principals P, C, and S (time flows downwards).

C can request the price of sending greeting card g to cellphone number
n and P can reply with a price p. Subsequently C can accept or reject.
If C accepts, P has to send the MMS before at most t time units. If P
fails to do so, P is assigned a penalty of 1.

P is the one responsible for sending the MMS, and the contract has no mention
of S. Payoffs model what should be paid from C to P, not what has been paid.
Actions are used to model real-world events, for instance sending of the MMS,
communication between P and C, etc. The contract with C contains three logical
links:

c1 = ({λ2, λ3}, {λ1}, G1, g1, ρ1).

λ1 and λ2 are used for communication between P and C, and λ3 is used for the
special communication of sending an MMS. The fact that λ3 is directed from P to C
should not be interpreted that an MMS has to be sent from P to C—it means that
P is responsible to C for sending an MMS.

Formally we therefore have (omitting the silent actions, letting G denote the set
of all greeting cards, and letting N denote the set of phone numbers):

Aλ1 = {accept, reject} ∪ {req(n, g) | n ∈ N and g ∈ G},
Aλ2 = {offer(p) | p ∈ Q},
Aλ3 = {mms(n, g) | n ∈ N and g ∈ G}.

The formalised contract is presented graphically in Figure 3.4 (left). Contract
states are depicted as circles, and the double-circled state is a terminal state, com-
pare Observation 3.4.2. An arrow from g1 to g2 with label λ : a and a boxed k
means that ρ(g1,m1,m2) = (g2, k), whenever m1(λ) = a or m2(λ) = a (depending
on who of the principals is responsible for λ). When no box is present on a transi-
tion, it means an implicit 0 (that is, no payoff). An arrow from g1 to g2 with no

label and (implicit) k means that ρ(g1,m1,m2) = (g2, k), whenever no other label
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⋆ 〈n, g〉

〈n, g, p〉

〈
n, g,
p, t

〉

〈
n, g,
p, t-1

〉

〈
n, g,
p, 1

〉

†

p

−p − 1

λ1 : req(n, g)

λ2 : offer(p)

λ1 : accept
λ1 : reject

λ3 : mms(n, g)

⋆

〈
n, c,
t′

〉

〈
n, c,
t′-1

〉

〈n, c, 1〉

†

−f(n, c)

f(n, c) + 1

λ5 : req(n, c)

λ4 : mms(n, c)

Figure 3.4: The contracts negotiated by P with C (left) and S (right).

matches m1 and m2. If there is no explicit unlabelled arrow from a state g, there is
an implicit unlabelled arrow from g to itself.

Some of the states in the diagram have internal state, for example 〈n, g〉. This
means that the node actually represents a class of states—potentially one for each
combination of n and g. We therefore have:

G1 = {?, †} ∪ {〈n, g〉 | n ∈ N and g ∈ G}
∪ {〈n, g, p〉 | n ∈ N and g ∈ G and p ∈ Q}
∪ {〈n, g, p, τ〉 | n ∈ N and g ∈ G and p ∈ Q and 1 ≤ τ ≤ t},

g1 = ?.

The rule function can be read from the diagram (according to the description
above) and be presented as the tabular in Figure 3.5 (top). The tabular should
be read from top to bottom, that is given a state g and moves mP and mC, then
ρ1(g,mP,mC) is determined by the first line matching g, mP, and mC (that is,
pattern matching where “−” matches any move).

The service provider P’s contract with the MMS gateway S says:

P can request an MMS to cellphone number n with content c at a price
f(n, c), for some predefined rate function f . Subsequently S must send
the MMS before t′ time units. If S fails to do so, S is assigned a penalty
of 1.
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g mP mC ρ1(g,mP,mC)

? − λ1 7→ req(n, g) (〈n, g〉, 0)
? − − (?, 0)
〈n, g〉 λ2 7→ offer(p) − (〈n, g, p〉, 0)
〈n, g〉 − − (〈n, g〉, 0)
〈n, g, p〉 − λ1 7→ reject (†, 0)
〈n, g, p〉 − λ1 7→ accept (〈n, g, p, t〉, p)
〈n, g, p, τ〉 λ3 7→ mms(n, g) − (†, 0)
〈n, g, p, 1〉 − − (†,−p− 1)
〈n, g, p, τ + 1〉 − − (〈n, g, p, τ〉, 0)

† − − (†, 0)

g mP mS ρ2(g,mP,mS)

? λ5 7→ req(n, c) − (〈n, c, t′〉,−f(n, c))
? − − (?, 0)

〈n, c, τ〉 − λ4 7→ mms(n, c) (†, 0)
〈n, c, 1〉 − − (†, f(n, c) + 1)
〈n, c, τ + 1〉 − − (〈n, c, τ〉, 0)

† − − (†, 0)

Figure 3.5: The contracts negotiated by P with C (top) and S (bottom).

The formalised contract c2 is presented in Figure 3.4 (right), where:

c2 = ({λ5}, {λ4}, G2, g2, ρ2),

G2 = {?, †} ∪ {〈n, c, τ〉 | n ∈ N and c ∈ C and 1 ≤ τ ≤ t′},
g2 = ?,

Aλ4 = {mms(n, c) | n ∈ N and c ∈ C},
Aλ5 = {req(n, c) | n ∈ N and c ∈ C}.

C represents the set of all possible MMS content (which in particular contains the
predefined greeting cards provided by P, that is G ⊆ C). The rule function can again
be read from the diagram, and it is presented in Figure 3.5 (bottom).

Now P has negotiated contracts with principals C and S. But the contracts are
not “active” yet, since a physical realisation of the logical links has to be established.
Hence, P has to construct a physical implementation for fulfilling its contract port-
folio {c1, c2}. The contract with S bears no obligations, hence this contract is easy
to fulfil, but in the contract c1 with C, P has the obligation to send the greeting
card MMS (at least if P intends to make money—otherwise denying to offer a price
will do). Implementations is the subject of the next section, where we return to this
example.

3.5 Implementations and Conformance

In this section we describe how contracts between principals are realised physically
by means of implementations. An implementation defines a strategy for playing the
games specified by a contract portfolio. A strategy consists of a set of automata
together with a mapping of logical links in the contract portfolio to channels in
the automata. However, a strategy will also consist of an ability to delegate a
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logical obligation to another principal of the contract portfolio. In Example 3.4.4
for instance, such a delegation will be used for fulfilling the commitment to send an
MMS, as the service provider P is not able implement an automaton with alphabet
Aλ3 . That is, P does not have the hardware for sending the MMS.

We first define the mapping of logical links to channels, which also comprises
delegation:

Definition 3.5.1. Let {c1, . . . , cn} be a contract portfolio for a principal P with
ci = (ΛPAi ,ΛAiP, Gi, gi, ρi) for i = 1, . . . , n. A routing r = (ri, ro, rd) for {c1, . . . , cn}
and input–output channels CI/CO consists of three functions:

ri : CI → ΛI ,

ro : CO → ΛO,

rd : ΛI \ ri(CI)→ ΛO \ ro(CO),

where ΛI =
⋃n
i=1 ΛAiP and ΛO =

⋃n
i=1 ΛPAi . ri and ro realise physical communi-

cation by using the input–output channels CI/CO, while rd realises communication
by means of delegation to other principals. The routing must satisfy the following
conditions:

(1) ri and ro are injective,

(2) rd is bijective, and

(3) Ax = Ari(x) and Ay = Aro(y) for all channels x ∈ CI and y ∈ CO, and Az =
Ard(z) for all links z ∈ ΛI \ ri(CI).

(1) and (2) state that input channels and output channels must be mapped to exactly
one logical link in the portfolio. (3) guarantees that only compatible channels and
links are connected, that is the link alphabet must match the channel alphabet.

Rather than defining an implementation as a set of automata and a suitable
routing, we only consider the case in which an implementation consists of a single
automaton and a routing. This simplification is justified by the fact that multiple
automata, which may interact with each other internally, can be described by a
single automaton, compare Definition 3.3.2.

Definition 3.5.2. Let C = {c1, . . . , cn} be a contract portfolio for a principal P.
An implementation i = (a, r) consists of an automaton a = (CI , CO, S, so, δo, δt) and
a routing r for C and CI/CO.

Example 3.5.3 (Continuing Example 3.4.4). An example of a legal implementation
for the service provider P in Example 3.4.4 is i = (a, r), where:

a = ({α}, {β, γ}, S, s0, δo, δt),

and r = (ri, ro, rd) is defined by:

ri(α) = λ1 ro(γ) = λ2 ro(β) = λ5 rd(λ4) = λ3.

The implementation is depicted in Figure 3.6.
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Figure 3.6: An implementation at principal P.

3.5.1 Contract Conformance

We are now in a position to define correctness, that is what it means for an im-
plementation to satisfy a contract portfolio. Since contracts are generalised from
a binary outcome, we define contract conformance as a guarantee related to the
payoffs in the contract portfolio. Namely, we defined contract conformance as a
guarantee of an all-time, non-negative, accumulated payoff.

This definition of contract conformance does not prevent us from verifying that
an implementation will provide a certain positive profit p: in order to verify a profit
of p after t time units, we simply add a “pseudo contract” to the portfolio that
yields a payoff of −p after t time units. However, we cannot provide guarantees
such as “the implementation will provide a profit of p eventually”, since contract
conformance is a safety property.

Before we define contract conformance, we need the following auxiliary definition:

Definition 3.5.4. Let r = (ri, ro, rd) be a routing for input–output channels CI/CO
and contract portfolio C = {c1, . . . , cn}, with ci = (ΛPAi ,ΛAiP, Gi, gi, ρi) for i =
1, . . . , n. Furthermore, let ΛI =

⋃n
i=1 ΛAiP be the set of all incoming links from the

contracts. We then define for each i = 1, . . . , n the function ri : MCO ×MΛI →
MΛPAi

by:

ri(mCO ,mΛI )(λ) =

{
mCO(α) if ro(α) = λ for some α ∈ CO,
mΛI (λ

′) if rd(λ′) = λ for some λ′ ∈ ΛI \ ro(CO).

The definition captures the intuition that some contractual output obligations
may be handled by the automaton (the first case), while others may be delegated
(the second case). Hence if opponent Ai has moved mi and the automaton has
produced output m, then P’s move in contract ci is ri(

⋃n
j=1mj ,m). We can now

define contract conformance:

Definition 3.5.5. Let i = (a, r) be an implementation for the contract portfo-
lio C = {c1, . . . , cn} with a = (CI , CO, S, s0, δo, δt), r = (ri, ro, rd), and ci =
(ΛPAi ,ΛAiP, Gi, gi, ρi) for i = 1, . . . , n. Furthermore, let ΛI =

⋃n
i=1 ΛAiP be the

set of all incoming contract links.
A relation R ⊆ Q × S × G1 × . . . × Gn is said to be a conformance relation

for i and C iff the following holds for all payoffs k ∈ Q, states s ∈ S, game states
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(g1, . . . , gn) ∈ G1 × · · · ×Gn, and moves m ∈MΛI :

if (k, s, g1, . . . , gn) ∈ R then k′ ≥ k and (k − k′, δt(s,m ◦ ri), g
′
1, . . . , g

′
n) ∈ R,

where (g′i, ki) = ρi(gi, ri(δo(s),m),m|ΛAiP
) for i = 1, . . . , n,

and k′ =
n∑
i=1

ki.

The implementation i is said to conform with contract portfolio C, written |= i : C,
if (0, s0, g1, . . . , gn) ∈ R for some conformance relation R.

The definition of |= i : C formalises the guarantee of a consistently, non-negative,
accumulated payoff. More generally, whenever a is in state s, contract ci is in
state gi, and (k, s, g1, . . . , gn) ∈ R, where R is a conformance relation for i and C,
then the accumulated payoff will remain at least k throughout the remainder of
the games. Note also how delegation is handled by the auxiliary functions ri from
Definition 3.5.4.

3.5.2 Automaton Contracts

The definition of contract conformance enables us to reason about implementations,
when we know all the logical contracts that have been negotiated with other prin-
cipals. However, we want to be able to reason about automata without having to
worry about delegation and principals directly.

Definition 3.5.6. An automaton contract c is a 4-tuple c = (C,G, g0, ρ), where C
is a finite set of channels, G is a (potentially infinite) set of contract states, and
g0 ∈ G is the start state. ρ : G ×MC → G × Q is the rule function for the game:
when the contract is in a state g, and the move on C is m, let (g′, k) = ρ(g,m); then
g′ is the new contract state, and k is the—possibly negative—incremental payoff.

The definition of automaton contracts is similar to the original definition of
logical contracts, compare Definition 3.4.1. Automaton contracts can be seen as
instances of logical contracts, in which logical links are renamed to physical channels.
This means that the physical channels of the game need not be contained in the
channels of the automaton, which is the reason why automaton contracts are not
defined with respect to a particular automaton. Automaton contract conformance
can now be defined in a similar manner as for contracts:

Definition 3.5.7. Let a = (CI , CO, S, s0, δo, δt) be an automaton and let C =
{c1, . . . , cn} be a set of automaton contracts with ci = (Ci, Gi, gi, ρi) for i = 1, . . . , n.
Furthermore, let C = (CI ∪

⋃n
i=1Ci) \ CO be the set of all incoming channels and

external channels.
A relation R ⊆ Q × S × G1 × . . . × Gn is said to be a conformance relation

for a and C iff the following holds for all payoffs k ∈ Q, states s ∈ S, game states
(g1, . . . , gn) ∈ G1 × · · · ×Gn, and moves m ∈MC :

if (k, s, g1, . . . , gn) ∈ R then k′ ≥ k and (k − k′, δt(s,m|CI ), g
′
1, . . . , g

′
n) ∈ R,

where (g′i, ki) = ρi(gi, (m ∪ δo(s))|Ci) for i = 1, . . . , n,

and k′ =

n∑
i=1

ki.
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s m δt(s,m) δo(s)

start α 7→ req(n, g) req received(n, g)
start − start

req received(n, g) − price offered(n, g) γ 7→ offer(1.5 ∗ f(n, g))
price offered(n, g) α 7→ reject end
price offered(n, g) α 7→ accept accepted(n, g)
price offered(n, g) − price offered(n, g)

accepted(n, g) − end β 7→ req(n, g)
end − end

Figure 3.7: Automaton transition functions.

The automaton a is said to conform with contract portfolio C, written |= a : C, if
(0, s0, g1, . . . , gn) ∈ R for some conformance relation R.

Before we show the link between logical contracts and automaton contracts, we
provide an example that illustrates automaton contracts and automaton contract
conformance:

Example 3.5.8 (Continuing Example 3.5.3). Consider the two automaton contracts
c1 = ({α, γ, δ}, G1, g1, ρ

′
1) and c2 = ({β, δ}, G2, g2, ρ

′
2) obtained by replacing the

logical links of the contracts in Example 3.5.3 with the following channels:

λ1 7→ α λ3, λ4 7→ δ

λ2 7→ γ λ5 7→ β.

The definitions of G1, g1, G2, and g2 are identical to those of Example 3.4.4, and ρ′1
is obtained by replacing the links of ρ1 with the channels above, that is ρ′1(g,m) =
ρ1(g,m ◦ θ|{λ1},m ◦ θ|{λ2,λ3}), where θ is the substitution above (and similar for ρ′2).

The automaton a = ({α}, {β, γ}, S, so, δo, δt) is defined by:

S = {start, end}
∪ {req received(n, g) | n ∈ N and g ∈ G}
∪ {price offered(n, g) | n ∈ N and g ∈ G}
∪ {accepted(n, g) | n ∈ N and g ∈ G},

s0 = start.

The transition functions of a are represented in the tabular in Figure 3.7. For
instance, if the automaton is in the state start and the input on α is req(n, g) for
some n and g, then the next state is req received(n, g) with no output.

Note that a has nothing to do with the actual sending of MMSs—the automaton
instead contacts S on channel β to request the MMS, and directly thereafter stops
by entering the end state. This delegation to S is represented by the channel δ,
which is not connected to a.

We now wish to show that the automaton conforms with the portfolio {c1, c2}.
In order to do so, we need to construct a conformance relation R ⊆ Q×S×G1×G2

that contains the initial states (0, start, ?, ?). But, in fact, such a conformance
relation does not always exist—only if we assume that t′ < t − 1. That is, we
need that S guarantees to send the MMS before t − 1 time units, where t is the
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guarantee negotiated with the client C. Having this assumption we can now build a
conformance relation (we write pn,g for 1.5 ∗ f(n, g), we write rn,g for 0.5 ∗ f(n, g),
and in each set we have and implicit condition that n ∈ N and g ∈ G):

R = {(0, start, ?, ?)} (3.4)

∪ {(0, req received(n, g), 〈n, g〉, ?)} (3.5)

∪ {(0,price offered(n, g), 〈n, g, pn,g〉, ?)} (3.6)

∪ {(0, end, †, ?)} (3.7)

∪ {(−pn,g,accepted(n, g), 〈n, g, pn,g, t〉, ?)} (3.8)

∪ {(−rn,g, end, 〈n, g, pn,g, t− k − 1〉, 〈n, g, t′ − k〉) | 0 ≤ k < t′} (3.9)

∪ {(−pn,g − 1, end, 〈n, g, pn,g, t− t′ − k − 1〉, †) | 0 ≤ k < t− t′ − 1} (3.10)

∪ {(−rn,g, end, †, 〈n, g, t′ − k〉) | 0 ≤ k < t′} (3.11)

∪ {(−rn,g, end, †, †)} (3.12)

∪ {(0, end, †, †)}. (3.13)

We will not show in detail that R does indeed define a conformance relation,
rather we show the dependencies that make R a conformance relation below. An
arrow A B means that A ∈ R is a prerequisite for B ∈ R.

3.4 3.5 3.6

3.7

3.8 3.9 3.10

3.11 3.12 3.13

When constructing a conformance relation such as the one above, situations
that may normally be overseen are identified. For instance, the—very unlikely—
event that S sends the MMS requested by C right after C has accepted the offer, but
before P has requested S to do so, is handled by the conformance relation in (3.11).
Notice also how the set (3.7) represents the case where C rejects P’s offer, (3.12)
represents the case of successful sending, and (3.13) represents the case of failure to
send the MMS.

3.5.3 From Contracts to Automaton Contracts

In this section we show how to transform a portfolio of contracts to a portfolio of
automaton contracts, in such a way that automaton conformance (Definition 3.5.7)
with respect to the transformed portfolio implies conformance (Definition 3.5.5)
with respect to the original portfolio. In particular, we get that the automaton
conformance relation of Example 3.5.8 yields a conformance relation for the imple-
mentation in Example 3.5.3 with respect to the portfolio in Example 3.4.4.

The transformation from logical contracts to automaton contracts is straight-
forward: for each logical contract we define one automaton contract, the links that
are routed to automaton channels are transformed directly to the corresponding
channels, and logical delegations are transformed into new channels, similar to δ in
Example 3.5.8.
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Definition 3.5.9. Let C = {c1, . . . , cn} be a contract portfolio for a principal P,
where ci = (ΛPAi ,ΛAiP, Gi, gi, ρi) for i = 1, . . . , n, and let Λ =

⋃n
i=1 ΛPAi ∪

⋃
ΛAiP.

Given a routing r = (ri, ro, rd) for C and input–output channels CI/CO, we define a
renaming map θ : Λ→ C to be a function that satisfies the following for all channels
α ∈ CI , β ∈ CO and links λ1, λ2 ∈ Λ:

(1) θ(ri(α)) = α,

(2) θ(ro(β)) = β,

(3) if rd(λ1) = λ2 then θ(λ1) = θ(λ2), and

(4) if θ(λ1) = θ(λ2) then either λ1 = λ2, rd(λ1) = λ2, or rd(λ2) = λ1.

Conditions (1–3) state that renaming must agree with the routing map, and condi-
tion (4) states that the renaming map must be injective modulo delegation.

Definition 3.5.10. Let C = {c1, . . . , cn} be a contract portfolio for a principal P
with ci = (ΛPAi ,ΛAiP, Gi, gi, ρi) for i = 1, . . . , n. Given a routing r = (ri, ro, rd) for
C and input–output channels CI/CO, and a renaming map θ respecting C and r,
we define the contract projection to be {c1, . . . , cn}, where:

ci = (θ(ΛPAi ∪ ΛAiP), Gi, gi, ρ
′
i) for i = 1, . . . , n,

with:

ρ′i(g,m) = ρi(g,m ◦ θ|ΛPAi
,m ◦ θ|ΛAiP

) for i = 1, . . . , n.

We write {c1, . . . , cn};θ {c1, . . . , cn} for this projection.

Observation 3.5.11. Whenever C ;θ C and θ is a renaming map for r, which is
a routing for channels CI/CO, then each channel α ∈ CI ∪ CO is mentioned in at
least one contract in C.

Example 3.5.12 (Continuing Example 3.5.8). We have, in fact, already seen an
example of a logical contract portfolio being mapped to a set of automaton contracts.
In Example 3.5.8 the rename map θ is defined by:

θ(l) =


α if l = λ1,

γ if l = λ2,

δ if l = λ3 or l = λ4,

β if l = λ5.

The reader may check that θ does indeed define a legal renaming map with respect
to the routing of Example 3.5.3. The channel δ is an example of a logical route
that is mapped to a “fresh” channel that does not occur in the automaton of the
implementation. This corresponds to labelling the “wire” of Figure 3.6 that is not
connected to the automaton with δ. With the notion of Definition 3.5.10 we therefore
have {c1, c2};θ {c1, c2}.

With the definition of contract projection we are able to state and prove sound-
ness of the projection:
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Theorem 3.5.13. Let C = {c1, . . . , cn} be a contract portfolio for principal P and
let r = (ri, ro, rd) be a routing for C and input–output channels CI/CO. Assume
furthermore that C ;θ C, where θ is a renaming map for r. If |= a : C, for an
automaton a = (CI , CO, S, s0, δo, δt), then |= (a, r) : C .

Proof. The proof is presented in Appendix C.1, page 200.

The soundness result above together with the conformance relation built in Ex-
ample 3.5.8, and the observation in Example 3.5.12, gives us that the implementation
of the MMS greeting card service is indeed “good”. That is, P is guaranteed never
to lose money on the service.

3.5.4 Compositionality

We conclude this section with the main result about contract conformance, namely
that it is compositional. The theorem enables us to prove conformance for a com-
posed automaton by reasoning about the subautomata in isolation. Note that this
form of compositionality is different from compositionality at the principal level,
which is forced by the restriction to bilateral contracts.

Definition 3.5.14. For an automaton contract c = (C,G, go, ρ) the dual automaton
contract c = (C,G, g0, ρ) is defined by ρ(g,m) = (g′,−k), where ρ(g,m) = (g′, k).

Theorem 3.5.15. Let a1 = (C1
I , C

1
O, S1, s

1
0, δ

1
o , δ

1
t ) and a2 = (C2

I , C
2
O, S2, s

2
0, δ

2
o , δ

2
t )

be two automata with parallel composition a1 ‖ a2 = (CI , CO, S1 × S2, 〈s1
0, s

2
0〉, δo, δt)

and internal channels Cint (compare Definition 3.3.2). If:

|= a1 : c1, . . . , cn, c
′
1, . . . , c

′
n1

|= a2 : c1, . . . , cn, c
′′
1, . . . , c

′′
n2
,

and the internal channels in Cint are not mentioned in the automaton contracts
c′1, . . . , c

′
n1

and c′′1, . . . , cn2, then:

|= a1 ‖ a2 : c′1, . . . , c
′
n1
, c′′1, . . . , c

′′
n2
.

Proof. The proof is presented in Appendix C.1, page 201.

The theorem shows how to fulfil a set of contracts by splitting the obligations
between two contractually compatible automata. If the set of internal contracts—in
the theorem they are written c1, . . . , cn—is empty, then the theorem simply says that
two disjoint automata can fulfil a set of contracts by partitioning the set between
them. If the set of internal contracts is non-empty, then the contracts express how
the automata can communicate internally to fulfil the external obligations. The
duality expresses that they must play opposite roles in the internal contracts.

A special and important case is the one where we seek to fulfil one contract c, but
we subdivide it into smaller contracts c1, . . . , cn. We can then write automata for
each of the smaller contracts, and combine them via an “orchestrator” automaton
that communicates with the subautomata (the orchestrator must then conform with
c, c1, . . . , cn). Parallel composition of the subautomata and the orchestrator is then
guaranteed to conform with the original contract.
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The theorem can be seen as a generalisation of two rules of composition for
sequential Hoare triples (we use the same notation as Winskel [121]):

if |= {A} c1 {C} and |= {C} c2 {B} then |= {A} c1; c2 {B}, (3.14)

if |= {A1} c1 {B1} and |= {A2} c2 {B2} and
|= {A2} c1 {A2} and |= {B1} c2 {B1}

then |= {A1 ∧A2} c1; c2 {B1 ∧B2}.
(3.15)

The first rule (3.14) corresponds to the second case explained above, where internal
contracts are utilised to fulfil a contract—the assertion C can be interpreted as the
internal contract. The second rule (3.15) corresponds to the first case explained
above, where the two automata have no internal contracts, which means that the
two commands above do not interfere.

Example 3.5.16. We conclude this subsection with an example that illustrates
the compositionality theorem. Consider two automata a1 (a “doubler”) and a2 (an
“incrementer”), which are constructed via the translation x·y in Definition C.3.10
from the processes in Example 3.2.5. We want to show that the two automata in
parallel produce an ever growing list of integers on the form f0(1), f1(1), f2(1), . . .,
where f(x) = 2x+ 1. We require that the integers must be sent with a delay of at
most 10 time units after the previous result. This requirement can be captured by
the following contract:

c = ({γ}, G, g0, ρ),

Aγ = N ∪ {ε},
G = {〈n, t〉 | n ∈ N and t ∈ N} ∪ {stop},
g0 = 〈1, 10〉,

ρ(〈n, 1〉,m) =

{
(〈2n+ 1, 10〉, 0) if m(γ) = n,

(stop,−1) otherwise,

ρ(〈n, t+ 1〉,m) =


(〈n, t〉, 0) if m(γ) = ε,

(〈2n+ 1, 10〉, 0) if m(γ) = n,

(stop,−1) if m(γ) 6= n,

ρ(stop,m) = (stop, 0).

In order to show that a1 ‖ a2 fulfils this contract, we write an “incrementer”
contract for a2, where a2 is given 5 time units to produce its output after receiving
an input. This means that a1 will have time to calculate the “doubling” function as
well:

cinc = ({α, β, γ}, G, g0, ρ),

Ac = N ∪ {ε},
G = {wait} ∪ {〈n, t〉 | n ∈ N and t ∈ N} ∪ {stop},
g0 = wait,

ρ(wait,m) =


(stop,−1) if m(α) 6= ε or m(γ) 6= ε,

(wait, 0) if m(β) = ε,

(〈n+ 1, 5〉, 0) if m(β) = n,
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ρ(〈n, 1〉,m) =


(stop, 1) if m(β) 6= ε,

(wait, 0) if m(α) = m(γ) = n,

(stop,−1) otherwise,

ρ(〈n, t+ 1〉,m) =


(stop, 1) m(β) 6= ε,

(〈n, t〉, 0) if m(α) = m(γ) = ε,

(wait, 0) if m(α) = m(γ) = n,

(stop,−1) otherwise,

ρ(stop) = (stop, 0).

It is fairly straightforward, but tedious, to show that |= a2 : cinc. The remaining
obligation is to show that |= a1 : cinc, c which we also omit here. By Theorem 3.5.15
with Cint = {α, β} it then follows that |= a1 ‖ a2 : c.

3.6 Conclusion

We have developed and described a theory for extending programming-by-contract
(PBC) to a distributed and concurrent environment. The main contribution of our
work is a shift from cooperative, intracompany decomposition of a contract to an
adversarial model of composition with different parties. This shift has sparked a
game-theoretic view of contracts, and by means of a generalised payoff measure
we are able to model for instance quality of service, degrees of fulfilment, local
optimisation, etc. (see the progress report [50] for concrete examples).

Our work is, admittedly, very foundational: we use abstract automata to model
both communication and contracts. In order to be applied in practice, our ideas need
to be transferred into a setting in which communication is described at a higher level
(programming language), and a suitable abstraction for contracts must be developed
as well (a contract language). The progress report [50] contains additional material
that targets this question: we show, for instance, how to construct an ad hoc,
preliminary contract language to more concisely describe PBC contracts, and we
show how a restricted form of session types [46] extended with time can be captured
in our model. We omit the details here, because we believe our model is not realistic
as a practical communication model and contract model—we see instead our model
as a means of presenting our ideas concretely.

3.6.1 Related Work

Much work has been done previously in the context of design-by-contract, concur-
rency, and distributed systems. In this section we briefly describe some of this work,
and how it relates to our approach.

The original inspiration for our work is traditional programming-by-contract
for sequential programs, or more specifically precondition- and postcondition-style
contracts:

{A} c {B}.
In fact, Hoare triple validity is not too far from our interpretation of a contract as
a two-person game with payoffs. In order to “win” the game {A} c {B}, the player
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(implementor) must construct a program fragment c (strategy) such that the store
produced by c satisfies B whenever the initial store (the move of the opponent)
satisfies A. If c is a winning strategy, then the triple is valid. A similar observation
is made by Wadler and Findler [117], who introduce the terminology “The Blame
Game” (although Wadler and Findler do not consider general programming-by-
contract, but rather types as contracts).

This game-theoretic interpretation of contracts is also closely related to the the-
ory of game semantics [22] introduced by Abramsky and Jagadeesan [2]. In game
semantics, a program c again denotes a strategy for playing a game against an oppo-
nent. The game then specifies a type, such as Int or Int→ Int, and c is a winning
strategy exactly when it is well-typed. Hence the type is the contract, and type
checking corresponds to our notion of conformance.

In object-oriented programming, specification of distributed programs has been
investigated. Exton and Chen [24] consider methods for specifying interfaces for
remote method invocations. As in our model, the internal state must be hidden in
the interface. However, this is from a code-encapsulation viewpoint rather from the
viewpoint of different administrative principals. Helm et al. introduce the contract
language Contracts [41] in order to specify the behaviour of compositions of objects.
This includes interface contracts (variables, methods) as well as causal obligations.
The latter makes it possible to specify that a series of actions must be taken in
response to some event. Hence, a concrete class implementation can only conform
with the contract if it implements the interface and respects the causal obligations.

Another inspiration for our work is session types [46]. Like our model, session
types are concerned with distributed communication. There are, however, several
important differences. Being based on the π-calculus, session-types rely on a higher
level of communication than our model. Moreover, with session types it is not
possible to specify absolute timing guarantees, which we argued is necessary due to
the adversarial nature of distributed computing. On the other hand, session types
support dynamically created channels, which we have postponed to future work.

In the more general area of concurrent programming and compositional reason-
ing, Jones [55] provides an overview of what has been done, and—perhaps more
interestingly—what remains to be done in order to be applicable in practice. The
focus in this area is more on capturing the behaviour of concurrently running pro-
cesses than on distribution. An example in this area is the work by Hooman [48],
in which Hoare logic is extended to real-time systems.

3.6.2 Future Work

The model of distributed programming-by-contract that we have presented in this
work is far from complete. However, we hope that with our model we have shed
light on some problematic aspects that, to our knowledge, have not been presented
previously. In order for our approach to be useful in practice, several directions
for future work are needed. These include: extending the model to a dynamic
network topology, considering a refined model of time in which all peers need not
be in sync, and investigate better abstractions (languages) for writing contracts and
implementations.

Other possible directions for future work include: pursue a definition of certified
code for distributed systems in the style of proof-carrying-code [78]; a further inves-
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tigation of the relation between I/O automata and contract automata; and contract
refinement in the style of Back and von Wright [9], that is a refinement relation
on contracts. Finally, as mentioned in the introduction, it should be possible to
generalise our model of contracts from bilateral contract to multiparty contracts.
However, one reason for restricting ourselves to bilateral contracts is the forced pre-
vention of unintended blame propagation: it would be wrong, for instance, to encode
Example 3.4.4 as a three-party contract!
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Chapter 4

Compositional Data Types?

Abstract

Building on Wouter Swierstra’s data types à la carte, we present a com-
prehensive Haskell library of compositional data types suitable for practical
applications. In this framework, data types and functions on them can be de-
fined in a modular fashion. We extend the existing work by implementing a
wide array of recursion schemes including monadic computations. Above all,
we generalise recursive data types to contexts, which allow us to characterise a
special yet frequent kind of catamorphisms. The thus established notion of term
homomorphisms allows for flexible reuse and enables fusion-style deforestation
which yields considerable speedups. We demonstrate our framework in the set-
ting of compiler construction, and moreover, we compare compositional data
types with generic programming techniques and show that both are comparable
in run-time performance and expressivity, while our approach allows for stricter
types. We substantiate this conclusion by lifting compositional data types to
mutually recursive data types and generalised algebraic data types. Lastly, we
compare the run-time performance of our techniques with traditional imple-
mentations over algebraic data types. The results are surprisingly good.

4.1 Introduction

Static typing provides a valuable tool for expressing invariants of a program. Yet,
all too often, this tool is not leveraged to its full extent because it is simply not
practical. Vice versa, if we want to use the full power of a type system, we often
find ourselves writing large chunks of boilerplate code or—even worse—duplicating
code. For example, consider the type of non-empty lists. Even though having such
a type at your disposal is quite useful, you would rarely find it in use since—in a
practical type system such as Haskell’s—it would require the duplication of functions
that work both on general and non-empty lists.

The situation illustrated above is an ubiquitous issue in compiler construction. In
a compiler, an abstract syntax tree (AST) is produced from a source file, which then
goes through different transformation and analysis phases, and is finally transformed
into the target code. As functional programmers, we want to reflect the changes
of each transformation step in the type of the AST. For example, consider the
desugaring phase of a compiler that reduces syntactic sugar to the core syntax of

?Joint work with Patrick Bahr [11].
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the object language. To properly reflect this structural change also in the types, we
have to create and maintain a variant of the data type defining the AST for the core
syntax. Then, however, functions have to be defined for both types independently,
that is code cannot be readily reused for both types! If we add annotations in an
analysis step of the compiler, the type of the AST has to be changed again. But
some functions should ignore certain annotations while being aware of others. And
it gets even worse if we allow extensions to the object language that can be turned on
and off independently, or if we want to implement several domain-specific languages
that share a common core. This quickly becomes a nightmare with the choice of
either duplicating lots of code or giving up static type safety by using a huge AST
data type that covers all cases.

The essence of this problem can be summarised as the Expression Problem: “the
goal [. . . ] to define a datatype by cases, where one can add new cases to the datatype
and new functions over the datatype, without recompiling existing code, and while
retaining static type safety” [116]. Wouter Swierstra [106] elegantly addressed this
problem using Haskell and its type classes machinery. While Swierstra’s approach
exhibits invaluable simplicity and clarity, it lacks abilities necessary to apply it in a
practical setting beyond the confined simplicity of the expression problem.

The goal of this paper is to extend Swierstra’s work in order to enhance its flex-
ibility, improve its performance, and broaden its scope of applications. In concrete
terms, our contributions are:

• We implement recursion schemes other than catamorphisms (Section 4.4.5)
and also recursion schemes over monadic computations (Section 4.3.2).

• We show how generic programming techniques can be efficiently implemented
on top of the compositional data types framework (Section 4.3.1), providing a
performance competitive with top-performing dedicated generic programming
libraries.

• By generalising terms—that is, recursive data types—to contexts—that is,
recursive data types with holes—we are able to capture the notion of term
homomorphisms (Section 4.4.4), a special but common case of term algebras.
In contrast to general algebras, term homomorphisms can easily be lifted to
different data types, readily reused, and composed (also with algebras). The
latter allows us to perform optimisation via fusion rules that provide consid-
erable speedups (Section 4.6.2).

• We further extend the scope of applications by capturing compositional mu-
tually recursive data types and GADTs via the construction of Johann and
Ghani [54] (Section 4.5).

• Finally, we show the practical competitiveness of compositional data types by
reducing their syntactic overhead using Template Haskell [101] (Section 4.6.1),
and by comparing the run-time of typical functions with corresponding imple-
mentations over ordinary recursive data types (Section 4.6.2).

The framework of compositional data types that we present here is available
from Hackage1. It contains the complete source code, numerous examples, and the

1See http://hackage.haskell.org/package/compdata.

http://hackage.haskell.org/package/compdata
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benchmarks whose results we present in this paper. All code fragments presented
throughout the paper are written in Haskell [63].

4.2 Data Types à la Carte

This section serves as an introduction to Swierstra’s data types à la carte [106] (from
here on, compositional data types), using our slightly revised notation and termi-
nology. We demonstrate the application of compositional data types to a setting
consisting of a family of expression languages that pairwise share some sublanguage,
and operations that provide transformations between some of them. We illustrate
the merits of this method on two examples: expression evaluation and desugaring.

4.2.1 Evaluating Expressions

Consider a simple language of expressions over integers and pairs, together with an
evaluation function:

data Exp = Const Int | Mult Exp Exp | Pair Exp Exp | Fst Exp | Snd Exp

data Value = VConst Int | VPair Value Value

eval :: Exp → Value
eval (Const n) = VConst n
eval (Mult x y) = let (VConst m,VConst n) = (eval x , eval y)

in VConst (m ∗ n)
eval (Pair x y) = VPair (eval x ) (eval y)
eval (Fst x ) = let VPair v = eval x in v
eval (Snd x ) = let VPair v = eval x in v

In order to statically guarantee that the evaluation function produces values—a
sublanguage of the expression language—we are forced to replicate parts of the ex-
pression structure in order to represent values. Consequently, we are also forced to
duplicate common functionality such as pretty printing. Compositional data types
provide a solution to this problem by relying on the well-known technique [69] of
separating the recursive structure of terms from their signatures (functors). Recur-
sive functions, in the form of catamorphisms, can then be specified by algebras on
these signatures.

For our example, it suffices to define the following two signatures in order to
separate values from general expressions:

data Val a = Const Int | Pair a a

data Op a = Mult a a | Fst a | Snd a

The novelty of compositional data types then is to combine signatures—and al-
gebras defined on them—in a modular fashion, by means of a formal sum of functors:

data (f :+: g) a = Inl (f a) | Inr (g a)

It is easy to show that f :+: g is a functor whenever f and g are functors. We thus
obtain the combined signature for expressions:
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type Sig = Op :+: Val

Finally, the type of terms over a (potentially compound) signature f can be
constructed as the fixed point of the signature f :

data Term f = In {out :: (f (Term f ))}

We then have that Term Sig ∼= Exp and Term Val ∼= Value.2

However, using compound signatures constructed by formal sums means that we
have to explicitly tag constructors with the right injections. For instance, the term
1 ∗ 2 must be written:

e :: Term Sig
e = In $ Inl $ Mult (In $ Inr $ Const 1) (In $ Inr $ Const 2)

Even worse, if we want to embed the term e into a type over an extended signature,
say with syntactic sugar, then we have to add another level of injections throughout
its definition. To overcome this problem, injections are derived using a type class:

class sub :≺: sup where
inj :: sub a → sup a
proj :: sup a → Maybe (sub a)

Using overlapping instance declarations, the sub-signature relation :≺: can be
constructively defined. However, due to restrictions of the type class system, we
have to restrict ourselves to instances of the form f :≺: g where f is atomic, that is
not a sum, and g is a right-associated sum, for instance g1 :+: (g2 :+: g3) but not
(g1 :+: g2) :+: g3.3 Using the carefully defined instances for :≺:, we can then define
injection and projection functions:

inject :: (g :≺: f )⇒ g (Term f )→ Term f
inject = In . inj

project :: (g :≺: f )⇒ Term f → Maybe (g (Term f ))
project = proj . out

Additionally, in order to reduce the syntactic overhead, we use smart constructors—
which can be derived automatically, see Section 4.6.1—that already comprise the
injections:

iMult :: (Op :≺: f )⇒ Term f → Term f → Term f
iMult x y = inject (Mult x y)

The term 1 ∗ 2 can now be written without syntactic overhead:

e :: Term Sig
e = iConst 1 ‘iMult ‘ iConst 2

2For clarity, we have omitted the strictness annotation to the constructor In which is necessary
in order to obtain the indicated isomorphisms.

3We encourage the reader to consult Swierstra’s original paper [106] for the proper definition
of the :≺: relation.
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We can even give e the open type (Val :≺: f ,Op :≺: f )⇒ Term f . That is, e can be
used as a term over any signature containing at least values and operators.

Next, we want to define the evaluation function, that is a function of the type
Term Sig → Term Val . To this end, we define the following algebra class Eval :

type Alg f a = f a → a

class Eval f v where
evalAlg :: Alg f (Term v)

instance (Eval f v ,Eval g v)⇒ Eval (f :+: g) v where
evalAlg (Inl x ) = evalAlg x
evalAlg (Inr x ) = evalAlg x

The instance declaration for sums is crucial, as it defines how to combine instances
for the different signatures—yet the structure of its declaration is independent from
the particular algebra class, and it can be automatically derived for any algebra.
Thus, we will omit the instance declarations lifting algebras to sums from now on.
The actual evaluation function can then be obtained from instances of this algebra
class as a catamorphism. In order to perform the necessary recursion, we require the
signature f to be an instance of Functor , providing the method fmap :: (a → b) →
f a → f b:

cata :: Functor f ⇒ Alg f a → Term f → a
cata φ = φ . fmap (cata φ) . out

eval :: (Functor f ,Eval f v)⇒ Term f → Term v
eval = cata evalAlg

What remains is to define the algebra instances for Val and Op. One approach
is to define instances Eval Val Val and Eval Op Val . However, such definitions are
problematic if we later want to add a signature to the language that also extends
the signature for values, say with Boolean values. We could hope to achieve such
extensibility by defining an instance:

instance (Eval f v , v :≺: v ′)⇒ Eval f v ′

But this is problematic for two reasons. First, the relation :≺: only works for atomic
left-hand sides, and second, we can in fact not define this instance because the
function evalAlg :: f (Term v)→ Term v cannot be lifted to the type f (Term v ′)→
Term v ′, as the type of the domain also changes. Instead, the correct approach is
to leave the instance declarations open in the target signature:

instance (Val :≺: v)⇒ Eval Val v where
evalAlg = inject

instance (Val :≺: v)⇒ Eval Op v where
evalAlg (Mult x y) = iConst (projC x ∗ projC y)
evalAlg (Fst x ) = fst (projP x )
evalAlg (Snd x ) = snd (projP x )

projC :: (Val :≺: v)⇒ Term v → Int
projC v = case project v of Just (Const n)→ n
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projP :: (Val :≺: v)⇒ Term v → (Term v ,Term v)
projP v = case project v of Just (Pair x y)→ (x , y)

Notice how the constructors Const and Pair are treated with a single inject , as
these are already part of the value signature.

4.2.2 Adding Sugar on Top

We now consider an extension of the expression language with syntactic sugar, ex-
emplified via negation and swapping of pairs:

data Sug a = Neg a | Swap a

type Sig ′ = Sug :+: Sig

Defining a desugaring function Term Sig ′ → Term Sig then amounts to instan-
tiating the following algebra class:

class Desug f g where
desugAlg :: Alg f (Term g)

desug :: (Functor f ,Desug f g)⇒ Term f → Term g
desug = cata desugAlg

Using overlapping instances, we can define a default translation for Val and Op,
so we only have to write the “interesting” cases:

instance (f :≺: g)⇒ Desug f g where
desugAlg = inject

instance (Val :≺: f ,Op :≺: f )⇒ Desug Sug f where
desugAlg (Neg x ) = iConst (−1) ‘iMult ‘ x
desugAlg (Swap x ) = iSnd x ‘iPair ‘ iFst x

Note how the context of the last instance reveals that desugaring of the extended
syntax requires a target signature with at least base values, Val :≺: f , and operators,
Op:≺:f . By composing desug and eval , we get an evaluation function for the extended
language:

eval ′ :: Term Sig ′ → Term Val
eval ′ = eval . (desug :: Term Sig ′ → Term Sig)

The definition above shows that there is a small price to pay for leaving the algebra
instances open: we have to annotate the desugaring function in order to pin down
the intermediate signature Sig .

4.3 Extensions

In this section, we introduce some rather straightforward extensions to the compo-
sitional data types framework: generic programming combinators, monadic compu-
tations, and annotations.



Extensions 97

4.3.1 Generic Programming

Most of the functions that are definable in the common generic programming frame-
works [96] can be categorised as either query functions d → r , which analyse a data
structure of type d by extracting some relevant information of type r from parts of
the input and compose them, or as transformation functions d → d , which recur-
sively apply some type preserving functions to parts of the input. The benefit that
generic programming frameworks offer is that programmers only need to specify the
“interesting” parts of the computation. We will show how we can easily reproduce
this experience on top of compositional data types.

Applying a type-preserving function recursively throughout a term can be imple-
mented easily. The function below applies a given function in a bottom-up manner:

trans :: Functor f ⇒ (Term f → Term f )→ Term f → Term f
trans f = cata (f . In)

Other recursion schemes can be implemented just as easily.
In order to implement generic querying functions, we need a means to combine

the result of querying a functorial value. The standard type class Foldable generalises
folds over lists and thus provides us with exactly the interface we need:4

class Foldable f where
foldl :: (a → b → a)→ a → f b → a

For example, an appropriate instance for the functor Val can be defined like this:

instance Foldable Val where
foldl a (Const ) = a
foldl f a (Pair x y) = (a ‘f ‘ x ) ‘f ‘ y

With Foldable, a generic querying function can be implemented easily. It takes
a function q :: Term f → r to query a single node of the term and a function
c :: r → r → r to combine two results:

query :: Foldable f ⇒ (Term f → r)→ (r → r → r)→ Term f → r
query q c t = foldl (λr x → r ‘c‘ query q c x ) (q t) (out t)

We can instantiate this scheme, for example, to implement a generic size function:

gsize :: Foldable f ⇒ Term f → Int
gsize = query (const 1) (+)

A very convenient scheme of query functions introduced by Mitchell and Runci-
man [75], in the form of the universe combinator, simply returns a list of all sub-
terms. Specific queries can then be written rather succinctly using list comprehen-
sions. Such a combinator can be implemented easily via query :

subs :: Foldable f ⇒ Term f → [Term f ]
subs = query (λx → [x ]) (++)

4Foldable also has other fold functions, but they are derivable from foldl and are not relevant
for our purposes.



98 Compositional Data Types

However, in order to make the pattern matching in list comprehensions work,
we need to project the terms to the functor that contains the constructor we want
to match against:

subs ′ :: (Foldable f , g :≺: f )⇒ Term f → [g (Term f )]
subs ′ = mapMaybe project . subs

With this in place we can for example easily sum up all integer literals in an expres-
sion:

sumInts :: (Val :≺: f )⇒ Term f → Int
sumInts t = sum [i | Const i ← subs ′ t ]

This shows that we can obtain functionality similar to what dedicated generic
programming frameworks offer. In contrast to generic programming, however, the
compositional data type approach provides additional tools that allow us to de-
fine functions with a stricter type that reflects the underlying transformation. For
example, we could have defined the desugaring function in terms of trans, but
that would have resulted in the “weaker” type Term Sig ′ → Term Sig ′ instead
of Term Sig ′ → Term Sig . The latter type witnesses that indeed all syntactic sugar
is removed!

Nevertheless, the examples show that at least the querying combinators query
and subs ′ provide an added value to our framework. Moreover, by applying standard
optimisation techniques we can obtain run-time performance comparable with top-
performing generic programming libraries (compare Section 4.6.2). In contrast to
common generic programming libraries [96], we only considered combinators that
work on a single recursive data type. This restriction is lifted in Section 4.5 when
we move to mutually recursive data types.

4.3.2 Monadic Computations

We saw in Section 4.2 how to realise a modular evaluation function for a small
expression language in terms of catamorphisms defined by algebras. In order to
deal with type mismatches, we employed non-exhaustive case expressions. Clearly,
it would be better to use a monad instead. However, a monadic carrier type m a
would yield an algebra f (m a) → m a, which means that we have to explicitly
sequence the nested monadic values of the argument. What we would rather like to
do is to write a monadic algebra [28]:

type AlgM m f a = f a → m a

Here the nested sequencing is done automatically and thus the monadic type only
occurs in the codomain. Again we are looking for a function that we already know
from lists:

sequence :: Monad m ⇒ [m a ]→ m [a ]

The standard type class Traversable [64] provides the appropriate generalisation to
functors:
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class (Functor f ,Foldable f )⇒ Traversable f where
sequence :: Monad m ⇒ f (m a)→ m (f a)
mapM :: Monad m ⇒ (a → m b)→ f a → m (f b)

Here, mapM is simply the composition of sequence and fmap.
The definition of a monadic variant of catamorphisms can then be derived by

replacing fmap with mapM and function composition with monadic function com-
position <=<:

cataM :: (Traversable f ,Monad m)⇒ AlgM m f a → Term f → m a
cataM φ = φ <=<mapM (cataM φ) . out

The following definitions illustrate how monadic catamorphisms can be used to
define a safe version of the evaluation function from Section 4.2, which properly
handles errors when applied to a bad term (using the Maybe monad for simplicity):

class EvalM f v where
evalAlgM :: AlgM Maybe f (Term v)

evalM :: (Traversable f ,EvalM f v)⇒ Term f → Maybe (Term v)
evalM = cataM evalAlgM

instance (Val :≺: v)⇒ EvalM Val v where
evalAlgM = return . inject

instance (Val :≺: v)⇒ EvalM Op v where
evalAlgM (Mult x y) = liftM iConst (liftM2 (∗) (projCM x ) (projCM y))
evalAlgM (Fst x ) = liftM fst (projPM x )
evalAlgM (Snd x ) = liftM snd (projPM x )

projCM :: (Val :≺: v)⇒ Term v → Maybe Int
projCM v = case project v of Just (Const n)→ return n

→ Nothing

projPM :: (Val :≺: v)⇒ Term v → Maybe (Term v ,Term v)
projPM v = case project v of Just (Pair x y)→ return (x , y)

→ Nothing

4.3.3 Products and Annotations

We have seen in Section 4.2 how the sum :+: can be used to combine signatures.
This inevitably leads to the dual construction:

data (f :∗: g) a = f a :∗: g a

In its general form, the product :∗: seems of little use: each constructor of f can be
paired with each constructor of g . The special case, however, where g is a constant
functor, is easy to comprehend yet immensely useful:

data (f :&: c) a = f a :&: c

Now, every value of type (f :&: c) a is value from f a annotated with a value in c.
On the term level, this means that a term over f :&: c is a term over f in which each
subterm is annotated with a value in c.
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This addresses a common problem in compiler implementations: how to deal
with annotations of AST nodes such as source positions or type information, which
have only a limited lifespan or are only of interest for some parts of the compiler?

Given the signature Sig for our simple expression language and a type Pos that
represents source position information such as a file name and a line number, we can
represent ASTs with source position annotations as Term (Sig :&: Pos) and write a
parser that provides such annotations [110].

The resulting representation yields a clean separation between the actual data—
the AST—and the annotation data—the source positions—which is purely supple-
mental for supplying better error messages. The separation allows us to write a
generic function that strips off annotations when they are not needed:

remA :: (f :&: c) a → f a
remA (v :&: ) = v

stripA :: Functor f ⇒ Term (f :&: c)→ Term f
stripA = cata (In . remA)

With this in place, we can provide a generic combinator that lifts a function on
terms to a function on terms with annotations:

liftA :: Functor f ⇒ (Term f → t)→ Term (f :&: c)→ t
liftA f = f . stripA

This works for instance for the evaluation function:

liftA eval :: Term (Sig :&: Pos)→ Term Val

But how do we actually define an algebra that uses the position annotations?
We are faced with the problem that the product :&: is applied to a sum, viz. Sig =
Op :+: Val . When defining the algebra for one of the summands, say Val , we do not
have immediate access to the factor Pos, which is outside of the sum.

We can solve this issue in two ways: (a) propagating the annotation using a
Reader monad or (b) providing operations that allow us to make use of the right-
distributivity of :&: over :+:. For the first approach, we only need to move from
algebras Alg f a to monadic algebras AlgM (Reader c) f a, for c the type of the
annotations. Given an algebra class, for instance for type inference:

class Infer f where
inferAlg :: AlgM (Reader Pos) f Type

we can lift it to annotated signatures:5

instance Infer f ⇒ Infer (f :&: Pos) where
inferAlg (v :&: p) = local (const p) (inferAlg v)

When defining the other instances of the class, we can use the monadic function
ask ::Reader Pos Pos to query the annotation of the current subterm. This provides

5The standard function local :: (r → r) → Reader r a → Reader r a updates the environment
by the function given as first argument.
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a clean interface to the annotations. It requires, however, that we define a monadic
algebra.

The alternative approach is to distribute the annotations over the sum, that is
instead of Sig :&: Pos we use the type:

type SigP = Op :&: Pos :+: Val :&: Pos

Now we are able to define an instance where we have direct access to the annotation:

instance Infer (Val :&: Pos) where
inferAlg (v :&: p) = ...

However, now we have the dual problem: we do not have immediate access to the
annotation at the outermost level of the sum. Hence, we cannot use the function liftA
to lift functions to annotated terms. Yet, this direction—propagating annotations
outwards—is easier to deal with. We have to generalise the function remA to also
deal with annotations distributed over sums. This is an easy exercise:

class RemA f g | f → g where
remA :: f a → g a

instance RemA (f :&: c) f where
remA (v :&: ) = v

instance RemA f f ′ ⇒ RemA (g :&: c :+: f ) (g :+: f ′) where
remA (Inl (v :&: )) = Inl v
remA (Inr v) = Inr (remA v)

Now the function remA works as before, but it can also deal with signatures such
as SigP , and the type of liftA becomes:

(Functor f ,RemA f g)⇒ (Term g → t)→ Term f → t

Both approaches have their share of benefits and drawbacks. The monadic ap-
proach provides a cleaner interface but necessitates a monadic style. The explicit
distribution is more flexible as it both allows us to access the annotations directly
by pattern matching or to thread them through a monad if that is more convenient.
On the other hand, it means that adding annotations is not straightforwardly com-
positional anymore. The annotation :&:c has to be added to each summand—just
like compound signatures are not straightforwardly compositional, for instance we
have to write the sum f :+: g , for a signature f = f1 :+: f2, explicitly as f1 :+: f2 :+: g .

4.4 Context Matters

In this section, we will discuss two problems that arise when defining term algebras,
that is algebras with a carrier of the form Term f . These problems occur when
we want to lift term algebras to algebras on annotated terms, and when trying to
compose term algebras. We will show how these problems can be addressed by term
homomorphisms, a quite common special case of term algebras. In order to make
this work, we shall generalise terms to contexts by using generalised algebraic data
types (GADTs) [99].



102 Compositional Data Types

4.4.1 Propagating Annotations

As we have seen in Section 4.3.3, it is easy to lift functions on terms to functions on
annotated terms. It only amounts to removing all annotations before passing the
term to the original function.

But what if we do not want to completely ignore the annotation but propagate
it in a meaningful way to the output? Take for example the desugaring function
desug we have defined in Section 4.2, which transforms terms over Sig ′ to terms over
Sig . How do we lift this function easily to a function of the type:

Term (Sig ′ :&: Pos)→ Term (Sig :&: Pos)

that propagates the annotations such that each annotation of a subterm in the result
is taken from the subterm it originated? For example, in the desugaring of a term
iSwap x to the term iSnd x ‘iPair ‘ iFst x , the top-most Pair -term, as well as the
two terms Snd x and Fst x should get the same annotation as the original subterm
iSwap x .

This propagation is independent of the transformation function. The same
scheme can also be used for the type inference function in order to annotate the
inferred type terms with the positions of the code that is responsible for each part
of the type terms.

It is clear that we will not be able provide a combinator of the type:

(Term f → Term g)→ Term (f :&: c)→ Term (g :&: c)

that lifts any function to one that propagates annotations meaningfully. We cannot
tell from a plain function of the type Term f → Term g where the subterms of the
result term are originated in the input term. However, restricting ourselves to term
algebras will not be sufficient either. That is, also a combinator of the type:

Alg f (Term g)→ Alg (f :&: c) (Term (g :&: c))

is out of reach. While we can tell from a term algebra—that is, a function of the
type f (Term g) → Term g—that some initial parts of the result term originate
from the f -constructor at the root of the input, we do not know which parts. The
term algebra only returns a uniform term of the type Term g that provides no
information as to which parts were constructed from the f -part of the f (Term g)
argument and which were copied from the (Term g)-part.

Term algebras are still too general! We need to move to a function type that
clearly states which parts are constructed from the “current” top-level symbol in f
and which are copied from its arguments in Term g . In order to express that certain
parts are just copied, we can make use of parametric polymorphism.

Instead of an algebra, we can define a function on terms also by a natural trans-
formation, a function of the type ∀ a . f a → g a. Such a function can only
transform an f -constructor into a g-constructor and copy its arguments around.
Since the copying is made explicit in the type, defining a function that propagates
annotations through natural transformations is straightforward:

prop :: (f a → g a)→ (f :&: c) a → (g :&: c) a
prop η (v :&: c) = η v :&: c
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Unfortunately, natural transformations are also quite limited. They only allow
us to transform each constructor of the original term to exactly one constructor
in the target term. This is for example not sufficient for the desugaring function,
which translates a constructor application iSwap x into three constructor applica-
tions iSnd x ‘iPair ‘iFst x . In order to lift this restriction, we need to be able to define
a function of the type ∀ a .f a → Context g a that transforms an f -constructor appli-
cation to a g-context application, that is several nested applications of g-constructors
potentially with some “holes” filled by values of type a.

We shall return to this idea in Section 4.4.4.

4.4.2 Composing Term Algebras

The benefit of having a desugaring function desug ::Term Sig ′ → Term Sig , which is
able to reduce terms over the richer signature Sig ′ to terms over the core signature
Sig , is that it allows us to easily lift functions that are defined on terms over Sig—
such as evaluation and type inference—to terms over Sig ′:

eval ′ :: Term Sig ′ → Term Val
eval ′ = eval . (desug :: Term Sig ′ → Term Sig)

However, looking at how eval and desug are defined, viz. as catamorphisms, we
notice a familiar pattern:

eval ′ = cata evalAlg . cata desugAlg

This looks quite similar to the classic example of deforestation [32]:

map f .map g  map (f . g)

An expression that traverses a data structure twice is transformed into one that only
does this once.

To replicate this on terms, we need an appropriately defined composition oper-
ator } on term algebras that allows us to perform a similar semantics-preserving
transformation:

cata φ1 . cata φ2  cata (φ1 } φ2)

As a result, the input term only needs to be traversed once instead of twice and the
composition and decomposition of an intermediate term is avoided. The type of }
should be:

Alg g (Term h)→ Alg f (Term g)→ Alg f (Term h)

Since term algebras are functions, the only way to compose them is by first
making them compatible and then performing function composition. Given two
term algebras φ1 :: Alg g (Term h) and φ2 :: Alg f (Term g), we can turn them
into compatible functions by lifting φ1 to terms via cata. The problem now is that
the composition cata φ1 . φ2 has the type f (Term g) → Term h, which is only
an algebra if g = h. This issue arises due to the simple fact that the carrier of an
algebra occurs in both the domain and the codomain of the function! Instead of
a term algebra of type f (Term g) → Term g , we need a function type in which
the domain is more independent from the codomain in order to allow composition.
Again, a type of the form ∀ a . f a → Context g a provides a solution.
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4.4.3 From Terms to Contexts and back

We have seen in the two preceding sections that we need an appropriate notion of
contexts, that is a term that can also contain “holes” filled with values of a certain
type. Starting from the definition of terms, we can easily generalise it to contexts
by simply adding an additional case:

data Context f a = In (f (Context f a)) | Hole a

Note that we can obtain a type isomorphic to the one above using summation;
Context f a ∼= Term (f :+: K a) for a type:

data K a b = K a

Since we will use contexts quite often, we will use the direct representation. More-
over, this allows us to tightly integrate contexts into our framework. Since contexts
are terms with holes, we also want to go the other way around by defining terms
as contexts without holes! This will allow us to lift functions defined on terms—
catamorphisms, injections etc.—to functions on contexts that provide the original
term-valued function as a special case.

The idea of defining terms as contexts without holes can be encoded in Haskell
quite easily as a generalised algebraic data type (GADT) [99] with a phantom type
Hole:

data Cxt :: ∗ → (∗ → ∗)→ ∗ → ∗ where
In :: f (Cxt h f a)→ Cxt h f a
Hole :: a → Cxt Hole f a

data Hole

In this representation we add an additional type argument that indicates whether
the context might contain holes or not. A context that does have a hole must have
a type of the form Cxt Hole f a. Our initial definition of contexts can thus be
recovered by defining:

type Context = Cxt Hole

That is, contexts may contain holes. On the other hand, terms must not contain
holes. This can be defined by:

type Term f = ∀ h a . Cxt h f a

While this is a natural representation of terms as a special case of the more
general concept of contexts, this usually causes some difficulties because of the im-
predicative polymorphism. We therefore prefer an approximation of this type that
will do fine in almost any relevant case. Instead of universal quantification, we use
empty data types NoHole and Nothing :

type Term f = Cxt NoHole f Nothing

In practice, this does not pose any restriction whatsoever. Both NoHole and
Nothing are phantom types and do not contribute to the internal representation of
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values. For the former this is obvious, for the latter this follows from the fact that
the phantom type NoHole witnesses that the context has indeed no holes which
would otherwise enforce the type Nothing . Hence, we can transform a term to any
context type over any type of holes:

toCxt :: Functor f ⇒ Term f → ∀ h a . Cxt h f a
toCxt (In t) = In (fmap toCxt t)

In fact, toCxt does not change the representation of the input term. Looking at its
definition, toCxt is operationally equivalent to the identity. Thus, we can safely use
the function unsafeCoerce :: a → b in order to avoid run-time overhead:

toCxt :: Functor f ⇒ Term f → ∀ h a . Cxt h f a
toCxt = unsafeCoerce

This representation of contexts and terms allows us to uniformly define functions
that work on both types. The function inject can be defined as before, but now has
the type:

inject :: (g :≺: f )⇒ g (Cxt h f a)→ Cxt h f a

It thus works for both terms and proper contexts. The projection function has to
be extended slightly to accommodate for holes:

project :: (g :≺: f )⇒ Cxt h f a → Maybe (g (Cxt h f a))
project (In t) = proj t
project (Hole ) = Nothing

The relation between terms and contexts can also be illustrated algebraically.
If we ignore for a moment the ability to define infinite terms due to Haskell’s non-
strict semantics, the type Term F represents the initial F-algebra that has the
carrier T (F), the terms over signature F . The type of contexts Context F X on
the other hand represents the free F-algebra generated by X that has the carrier
T (F ,X ), the terms over signature F and variables X .

Thus, for recursion schemes, we can move naturally from catamorphisms, that
is initial algebra semantics, to free algebra semantics:

free :: Functor f ⇒ Alg f b → (a → b)→ Cxt h f a → b
free φ f (In t) = φ (fmap (free φ f ) t)
free f (Hole h) = f h

freeM :: (Traversable f ,Monad m)
⇒ AlgM m f b → (a → m b)→ Cxt h f a → m b

freeM φ f (In t) = φ=<<mapM (freeM φ f ) t
freeM f (Hole h) = f h

This yields the central function for working with contexts:

appCxt :: Functor f ⇒ Context f (Cxt h f a)→ Cxt h f a
appCxt = free In id

This function takes a context whose holes are terms (or contexts) and returns the
term (respectively context) that is obtained by merging the two—essentially by re-
moving each constructor Hole. Notice how the type variables h and a are propagated
from the input context’s holes to the return type. In this way, we can uniformly
treat both terms and contexts.
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4.4.4 Term Homomorphisms

The examples from Sections 4.4.1 and 4.4.2 have illustrated the need for defining
functions on terms by functions of the form ∀ a . f a → Context g a. Such functions
can then be transformed to term algebras via appCxt and, thus, be lifted to terms:

appHom :: (Functor f ,Functor g)
⇒ (∀ a . f a → Context g a)→ Term f → Term g

appHom ρ = cata (appCxt . ρ)

In fact, the polymorphism in the type ∀ a . f a → Context g a guarantees that
arguments of the functor f can only be copied—not inspected or modified. This
restriction captures a well-known concept from tree automata theory:

Definition 4.4.1 (term homomorphisms6 [20, 109]). Let F and G be two sets of
function symbols, possibly not disjoint. For each n > 0, let Xn = {x1, . . . , xn} be a
set of variables disjoint from F and G. Let ρF be a mapping that, with f ∈ F of arity
n, associates a context tf ∈ T (G,Xn). The term homomorphism ρ : T (F) → T (G)
determined by ρF is defined as follows:

ρ(f(t1, . . . , tn)) = tf {x1 7→ ρ(t1), . . . , xn 7→ ρ(tn)}

The term homomorphism ρ is called symbol-to-symbol if, for each f ∈ F , tf =
g(y1, . . . , ym) with g ∈ G, y1, . . . , ym ∈ Xn, that is each tf is a context of height 1. It
is called ε-free if, for each f ∈ F , tf 6∈ Xn, that is each tf is a context of height at
least 1.

Applying the placeholders-via-naturality principle of Hasuo et al. [40], term ho-
momorphisms are captured by the following type:

type Hom f g = ∀ a . f a → Context g a

As we did for other functions on terms, we can generalise the application of term
homomorphism uniformly to contexts:

appHom :: (Functor f ,Functor g)⇒ Hom f g → Cxt h f a → Cxt h g a
appHom ρ (In t) = appCxt (ρ (fmap (appHom ρ) t))
appHom (Hole h) = Hole h

The use of explicit pattern matching in lieu of defining the function as a free algebra
homomorphism free (appCxt . ρ) Hole is essential in order to obtain this general
type. In particular, the use of the proper GADT constructor Hole, which has result
type Context g a, makes this necessary.

Of course, the polymorphic type of term homomorphisms restricts the class
of functions that can be defined in this way. It can be considered as a special
form of term algebra: appCxt . ρ is the term algebra corresponding to the term
homomorphism ρ. But not every catamorphism is also a term homomorphism. For
certain term algebras we actually need to inspect the arguments of the functor

6Actually, Thatcher [109] calls them “tree homomorphisms”. But we prefer the notion “term”
over “tree” in our context.
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instead of only shuffling them around. For example, we cannot hope to define the
evaluation function eval as a term homomorphism.

Some catamorphisms, however, can be represented as term homomorphisms, for
instance the desugaring function desug :

class (Functor f ,Functor g)⇒ Desug f g where
desugHom :: Hom f g

Lifting term homomorphisms to sums is standard. The instances for the functors
that do not need to be desugared can be implemented by turning a single functor
application to a context of height 1, and using overlapping instances:

simpCxt :: Functor f ⇒ f a → Context f a
simpCxt = In . fmap Hole

instance (f :≺: g ,Functor g)⇒ Desug f g where
desugHom = simpCxt . inj

Turning to the instance for Sug , we can see why a term homomorphism suffices for
implementing desug . In the original catamorphic definition, we had for example:

desugAlg (Neg x ) = iConst (−1) ‘iMult ‘ x

Here we only need to copy the argument x of the constructor Neg and define the
appropriate context around it. This definition can be copied almost verbatim for
the term homomorphism:

desugHom (Neg x ) = iConst (−1) ‘iMult ‘ Hole x

We only need to embed the x as a hole. The same also applies to the other defining
equations. In order to make the definitions more readable, we add a convenience
function to the class Desug , which makes it possible to copy the catamorphic defi-
nition one-to-one:

class (Functor f ,Functor g)⇒ Desug f g where
desugHom :: Hom f g
desugHom = desugHom ′ . fmap Hole
desugHom ′ :: Alg f (Context g a)
desugHom ′ = appCxt . desugHom

instance (Op :≺: f ,Val :≺: f ,Functor f )⇒ Desug Sug f where
desugHom ′ (Neg x ) = iConst (−1) ‘iMult ‘ x
desugHom ′ (Swap x ) = iSnd x ‘iPair ‘ iFst x

In the next two sections, we will show what we actually gain by adopting the
term homomorphism approach. We will reconsider and address the issues that we
identified in Sections 4.4.1 and 4.4.2.

4.4.4.1 Propagating Annotations through Term Homomorphisms

The goal is now to take advantage of the structure of term homomorphisms in order
to automatically propagate annotations. This boils down to transforming a function



108 Compositional Data Types

of type Hom f g to a function of type Hom (f :&: c) (g :&: c). In order to do this,
we need a function that is able to annotate a context with a fixed annotation. Such
a function is in fact itself a term homomorphism:

ann :: Functor f ⇒ c → Cxt h f a → Cxt h (f :&: c) a
ann c = appHom (simpCxt . (:&:c))

To be more precise, this function is a symbol-to-symbol term homomorphism—(:&:c)
is of type ∀ a . f a → (f :&: c) a—that maps each constructor to exactly one
constructor. The composition with simpCxt lifts it to the type of general term
homomorphisms. The propagation of annotations is now simple:

propAnn :: Functor g ⇒ Hom f g → Hom (f :&: c) (g :&: c)
propAnn ρ (t :&: c) = ann c (ρ t)

The annotation of the current subterm is propagated to the context created by the
original term homomorphism.

This definition can now be generalised—as we did in Section 4.3.3—such that it
can also deal with annotations that have been distributed over a sum of signatures.
Unfortunately, the type class RemA that we introduced for dealing with such dis-
tributed annotations is not enough for this setting as we need to extract and inject
annotations now:

class DistAnn f c f ′ | f ′ → f , f ′ → c where
injectA :: c → f a → f ′ a
projectA :: f ′ a → (f a, c)

An instance of DistAnn f c f ′ indicates that signature f ′ is a variant of f annotated
with values of type c. The relevant instances are straightforward:

instance DistAnn f c (f :&: c) where
injectA c v = v :&: c
projectA (v :&: c) = (v , c)

instance DistAnn f c f ′ ⇒ DistAnn (g :+: f ) c ((g :&: c) :+: f ′) where
injectA c (Inl v) = Inl (v :&: c)
injectA c (Inr v) = Inr (injectA c v)

projectA (Inl (v :&: c)) = (Inl v , c)
projectA (Inr v) = let (v ′, c) = projectA v in (Inr v ′, c)

We can then make use of this infrastructure in the definition of ann and propAnn:

ann :: (DistAnn f c g ,Functor f ,Functor g)⇒ c → Cxt h f a → Cxt h g a
ann c = appHom (simpCxt . injectA c)

propAnn :: (DistAnn f c f ′,DistAnn g c g ′,Functor g ,Functor g ′)
⇒ Hom f g → Hom f ′ g ′

propAnn f t ′ = let (t , c) = projectA t ′ in ann c (f t)

We can now use propAnn to propagate source position information from a full
AST to its desugared version:

type SigP ′ = Sug :&: Pos :+: SigP

desugHom ′ :: Hom SigP ′ SigP
desugHom ′ = propAnn desugHom
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4.4.4.2 Composing Term Homomorphisms

Another benefit of the function type of term homomorphisms over term algebras is
the simple fact that its domain f a is independent of the target signature g :

type Hom f g = ∀ a . f a → Context g a

This enables us to compose term homomorphisms:

(}) :: (Functor g ,Functor h)⇒ Hom g h → Hom f g → Hom f h
ρ1 } ρ2 = appHom ρ1 . ρ2

Here we make use of the fact that appHom also allows us to apply a term homomor-
phism to a proper context—appHom ρ1 has type ∀ a . Context g a → Context h a.

Although the occurrence of the target signature in the domain of term algebras
prevents them from being composed with each other, the composition with a term
homomorphism is still possible:

(�) :: Functor g ⇒ Alg g a → Hom f g → Alg f a
φ� ρ = free φ id . ρ

The ability to compose term homomorphisms with term algebras or other term
homomorphisms allows us to perform program transformations in the vein of defor-
estation [32]. For an example, recall that we have extended the evaluation to terms
over Sig ′ by precomposing the evaluation function with the desugaring function:

eval ′ :: Term Sig ′ → Term Val
eval ′ = eval . desug

The same can be achieved by composing on the level of algebras respectively term
homomorphisms instead of the level of functions:

eval ′ :: Term Sig ′ → Term Val
eval ′ = cata (evalAlg � desugHom)

Using the rewrite mechanism of GHC [89], we can make this optimisation auto-
matic, by including the following rewrite rule:

"cata/appHom" ∀ (φ :: Alg g a) (ρ :: Hom f g) x .
cata φ (appHom ρ x ) = cata (φ� ρ) x

One can easily show that this transformation is sound. Moreover, a similar rule can
be devised for composing two term homomorphisms. The run-time benefits of these
optimisation rules are considerable as we will see in Section 4.6.2.

4.4.4.3 Monadic Term Homomorphisms

Like catamorphisms, we can also easily lift term homomorphisms to monadic com-
putations. We only need to lift the computations to a monadic type and use mapM
instead of fmap for the recursion respectively use monadic function composition <=<
instead of pure function composition:
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type HomM m f g = ∀ a . f a → m (Context g a)

appHomM :: (Traversable f ,Functor g ,Monad m)
⇒ HomM m f g → Cxt h f a → m (Cxt h g a)

appHomM ρ (In t) = liftM appCxt . ρ <=<mapM (appHomM ρ) t
appHomM (Hole h) = return (Hole h)

The same strategy yields monadic variants of } and �:

(}̂) :: (Traversable g ,Functor h,Monad m)
⇒ HomM m g h → HomM m f g → HomM m f h

ρ1 }̂ ρ2 = appHomM ρ1 <=< ρ2

(�̂) :: (Traversable g ,Monad m)
⇒ AlgM m g a → HomM m f g → AlgM m f a

φ �̂ ρ = freeM φ return <=< ρ

In contrast to pure term homomorphisms, one has to be careful when applying these
composition operators. The fusion equation:

appHomM (ρ1 }̂ ρ2) = appHomM ρ1 <=< appHomM ρ2

does not hold in general! However, Fokkinga [28] showed that for monads satisfying
a certain distributivity law, the above equation indeed holds. An example of such
a monad is the Maybe monad. Furthermore, the equation is also true whenever one
of the term homomorphisms is in fact pure, that is of the form return . ρ for a non-
monadic term homomorphism ρ. The same also applies to the fusion equation for
�̂. Nevertheless, it is still possible to devise rewrite rules that perform deforestation
under these restrictions.

An example of a monadic term homomorphism is the following function that
recursively coerces a term to a sub-signature:

deepProject :: (Functor g ,Traversable f , g :≺: f )⇒ Term f → Maybe (Term g)
deepProject = appHomM (liftM simpCxt . proj )

As proj is, in fact, a monadic symbol-to-symbol term homomorphism we have to
compose it with simpCxt to obtain a general monadic term homomorphism.

4.4.5 Beyond Catamorphisms

So far we have only considered (monadic) algebras and their (monadic) catamor-
phisms. It is straightforward to implement the machinery for programming in coal-
gebras and their anamorphisms:

type Coalg f a = a → f a

ana :: Functor f ⇒ Coalg f a → a → Term f
ana ψ x = In (fmap (ana ψ) (ψ x ))

In fact, also more advanced recursion schemes can be accounted for in our frame-
work. This includes paramorphisms and histomorphisms as well as their dual notions
of apomorphisms and futumorphisms [111]. Similarly, monadic variants of these re-
cursion schemes can be derived using the type class Traversable.
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As an example of the above-mentioned recursion schemes, we want to single out
futumorphisms, as they can be represented conveniently using contexts and in fact
are more natural to program than run-of-the-mill anamorphisms. The algebraic
counterpart of futumorphisms are cv-coalgebras [111]. In their original algebraic
definition they look rather cumbersome [111, Ch. 4.3]. If we implement cv-coalgebras
in Haskell using contexts, the computation they denote becomes clear immediately:

type CVCoalg f a = a → f (Context f a)

Anamorphisms only allow us to construct the target term one layer at a time.
This can be plainly seen from the type a → f a of coalgebras. Futumorphisms on the
other hand allow us to construct an arbitrary large part of the target term. Instead
of only producing a single application of a constructor, cv-coalgebras produce a
non-empty context, that is a context of height at least 1. The non-emptiness of the
produced contexts guarantees that the resulting futumorphism is productive.

For the sake of brevity, we lift this restriction to non-empty contexts and consider
generalised cv-coalgebras:

type CVCoalg f a = a → Context f a

Constructing the corresponding futumorphism is simple and almost the same as for
anamorphisms:

futu :: Functor f ⇒ CVCoalg f a → a → Term f
futu ψ x = appCxt (fmap (futu ψ) (ψ x ))

Generalised cv-coalgebras also occur when composing a coalgebra and a term
homomorphism, which can be implemented by plain function composition:

compCoa :: Hom f g → Coalg f a → CVCoalg g a
compCoa ρ ψ = ρ . ψ

This can then be lifted to the composition of a generalised cv-coalgebra and a term
homomorphism, by running the term homomorphism:

compCVCoalg :: (Functor f ,Functor g)
⇒ Hom f g → CVCoalg f a → CVCoalg g a

compCVCoalg ρ ψ = appHom ρ . ψ

With generalised cv-coalgebras one has to be careful, though, as they might not be
productive. However, the above constructions can be replicated with ordinary cv-
coalgebras. Instead of general term homomorphisms, we have to restrict ourselves
to ε-free term homomorphisms [20], which are captured by the type:

type Hom ′ f g = ∀ a . f a → g (Context g a)

This illustrates that with the help of contexts, (generalised) futumorphisms pro-
vide a much more natural coalgebraic programming model than anamorphisms.
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4.5 Mutually Recursive Data Types and GADTs

Up to this point we have only considered the setting of a single recursively defined
data type. We argue that this is the most common setting in the area we are
targeting, viz. processing and analysing abstract syntax trees. Sometimes it is,
however, convenient to encode certain invariants of the data structure, for instance
well-typing of ASTs, as mutually recursive data types or GADTs. In this section,
we will show how this can be encoded as a family of compositional data types by
transferring the construction of Johann and Ghani [54] to compositional data types.

Recall that the idea of representing recursive data types as fixed points of functors
is to abstract from the recursive reference to the data type that should be defined.
Instead of a recursive data type:

data Exp = · · · | Mult Exp Exp | Fst Exp

we define a functor:

data Sig a = · · · | Mult a a | Fst a

The trick for defining mutually recursive data types is to use phantom types as
labels that indicate which data type we are currently in. As an example, reconsider
our simple expression language over integers and pairs. But now we define them
in a family of two mutually recursive data types in order to encode the expected
invariants of the expression language, for instance the sum of two integers yields an
integer:

data IExp = Const Int | Mult IExp IExp | Fst PExp | Snd PExp
data PExp = Pair IExp IExp

We can encode this on signatures by adding an additional type argument that
indicates the data types we are expecting as arguments to the constructors:

data Pair
data ISig a i = Const Int | Mult (a Int) (a Int) | Fst (a Pair) | Snd (a Pair)
data PSig a i = Pair (a Int) (a Int)

Notice that the type variable a that is inserted in lieu of recursion is now of kind
∗ → ∗ as we consider a family of types. The “label type”—Int respectively Pair—
then selects the desired type from this family. The definitions above, however, only
indicate which data type we are expecting, for instance Mult expects two integer
expressions and Swap a pair expression. In order to also label the result type
accordingly, we rather want to define ISig and PSig as:

data ISig a Int = ...
data PSig a Pair = ...

Using GADTs we can do this, although in a syntactically more verbose way:

data ISig a i where
Const :: Int → ISig a Int
Mult :: a Int → a Int → ISig a Int
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Fst ,Snd :: a Pair → ISig a Int
data PSig a i where

Pair :: a Int → a Int → PSig a Pair

Notice that signatures are not functors of kind ∗ → ∗ anymore. Instead, they have
the kind (∗ → ∗)→ ∗ → ∗, thus adding one level of indirection.

Following previous work [54, 125], we can formulate the actual recursive defini-
tion of terms as follows:

data Term f i = In {out :: f (Term f ) i }

The first argument f is a signature, that is it has the kind (∗ → ∗) → ∗ → ∗.
The type constructor In recursively applies the signature f while propagating the
index i according to the signature. Note that Term f is of kind ∗ → ∗. A value
of type Term f i is a mutually recursive data structure with topmost label i . In
the recursive definition, Term f is applied to a signature f , that is in the case of f
being ISig or PSig it instantiates the type variable a in their respective definitions.
The type signatures of ISig and PSig can thus be read as propagation rules for the
labels. For example, Fst takes a term with top-level labeling Pair and returns a
term with top-level labeling Int .

4.5.1 Higher-Order Functors

It is important to realise that the transition to a family of mutually recursive data
types amounts to nothing more than adding a layer of indirection. A signature, which
has previously been a functor, is now a (generalised) higher-order functor [54]:

type a .→ b = ∀ i . a i → b i

class HFunctor f where
hfmap :: a .→ b → f a .→ f b

instance HFunctor ISig where
hfmap (Const i) = Const i
hfmap f (Mult x y) = Mult (f x ) (f y)
hfmap f (Fst x ) = Fst (f x )

The function hfmap witnesses that a natural transformation a .→ b from functor a
to functor b is mapped to a natural transformation f a .→ f b.

Observe the simplicity of the pattern that we used to lift our representation of
compositional data types to mutually recursive types: replace functors with higher-
order functors, and instead of the function space → consider the natural transfor-
mation space .→. This simple pattern will turn out to be sufficient in order to lift
most of the concepts of compositional data types to mutually recursive data types.
Sums and injections can thus be represented as follows:

data (f :+: g) (a :: ∗ → ∗) i = Inl (f a i) | Inr (g a i)

type NatM m f g = ∀ i . f i → m (g i)

class (sub :: (∗ → ∗)→ ∗ → ∗) :≺: sup where
inj :: sub a .→ sup a
proj :: NatM Maybe (sup a) (sub a)
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Lifting HFunctor instances to sums works in the same way as we have seen for
Functor . The same goes for instances of :≺:.

With the summation :+: in place we can define the family of data types that
defines integer and pair expressions:

type Expr = Term (ISig :+: PSig)

This is indeed a family of types. We obtain the type of integer expressions with
Expr Int and the type of pair expressions as Expr Pair .

4.5.2 Representing GADTs

Before we continue with lifting recursion schemes such as catamorphisms to the
higher-order setting, we reconsider our example of mutually recursive data types.
In contrast to the representation using a single recursive data type, the definition of
IExp and PExp does not allow nested pairs—pairs are always built from integer ex-
pressions. The same goes for Expr Int and Expr Pair , respectively. This restriction
is easily lifted by using a GADT instead:

data SExp i where
Const :: Int → SExp Int
Mult :: SExp Int → SExp Int → SExp Int
Fst :: SExp (i , j )→ SExp i
Snd :: SExp (i , j )→ SExp j
Pair :: SExp i → SExp j → SExp (i , j )

This standard GADT representation can be mapped directly to our signature def-
initions. However, instead of defining a single GADT, we proceed as we did with
non-mutually recursive compositional data types. We split the signature into values
and operations:

data Val a i where
Const :: Int → Val a Int
Pair :: a i → a j → Val a (i , j )

data Op a i where
Mult :: a Int → a Int → Op a Int
Fst :: a (i , j )→ Op a i
Snd :: a (i , j )→ Op a j

type Sig = Op :+: Val

Combining the two signatures above then yields the desired family of mutually
recursive data types Term Sig ∼= SExp.

This shows that the transition to higher-order functors also allows us to naturally
represent GADTs in a modular fashion.

4.5.3 Recursion Schemes

We shall continue to apply the pattern for shifting to mutually recursive data types:
replace Functor with HFunctor and function space → with the space of natural
transformations .→. Take, for example, algebras and catamorphisms:
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type Alg f a = f a .→ a

cata :: HFunctor f ⇒ Alg f a → Term f .→ a
cata φ = φ . hfmap (cata φ) . out

Now, an algebra has a family of types a :: ∗ → ∗ as carrier. That is, we have
to move from algebras to many-sorted algebras. Representing many-sorted algebras
comes quite natural in most cases. For example, the evaluation algebra class can be
recast as a many-sorted algebra class as follows:

class Eval e v where
evalAlg :: Alg e (Term v)

eval :: (HFunctor e,Eval e v)⇒ Term e .→ Term v
eval = cata evalAlg

Here, we can make use of the fact that Term v is in fact a family of types and can
thus be used as a carrier of a many-sorted algebra.

Except for the slightly more precise type of projC and projP , the definition of
Eval is syntactically equal to its non-mutually recursive original from Section 4.2.1:

instance (Val :≺: v)⇒ Eval Val v where
evalAlg = inject

instance (Val :≺: v)⇒ Eval Op v where
evalAlg (Mult x y) = iConst (projC x ∗ projC y)
evalAlg (Fst x ) = fst (projP x )
evalAlg (Snd x ) = snd (projP x )

projC :: (Val :≺: v)⇒ Term v Int → Int
projC v = case project v of Just (Const n)→ n

projP :: (Val :≺: v)⇒ Term v (i , j )→ (Term v i ,Term v j )
projP v = case project v of Just (Pair x y)→ (x , y)

In some cases, it might be a bit more cumbersome to define and use the carrier
of a many-sorted algebra. However, most cases are well-behaved and we can use
the family of terms Term f as above or alternatively the identity respectively the
constant functor:

data I a = I {unI :: a }
data K a b = K {unK :: a }

For example, a many-sorted algebra class to evaluate expressions directly into
Haskell values of the corresponding types can be defined as follows:

class EvalI f where
evalAlgI :: Alg f I

evalI :: (EvalI f ,HFunctor f )⇒ Term f i → i
evalI = unI . cata evalAlgI

The lifting of other recursion schemes whether algebraic or coalgebraic can be
achieved in the same way as illustrated for catamorphisms above. The necessary
changes are again quite simple. Similarly to the type class HFunctor , we can obtain
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lifted versions of Foldable and Traversable that can then be used to implement
generic programming techniques and to perform monadic computations, respec-
tively. The generalisation of terms to contexts and the corresponding notion of
term homomorphisms is also straightforward. The same fusion rules that we have
considered for simple compositional data types can be implemented without any
surprises as well.

The only real issue worth mentioning is that the generic querying combinator
query needs to produce result values of a fixed type as opposed to a family of types.
The propagation of types defined by GADTs cannot be captured by the simple
pattern of the querying combinator. Thus, the querying combinator is typed as
follows:

query :: HFoldable f ⇒ (∀ i . Term f i → r)→ (r → r → r)→ Term f i → r

For the subs combinator, which produces a list of all subterms, the issue is similar:
Term f is a type family, thus [Term f ] is not a valid type. However, we can obtain
the desired type of list of terms by existentially quantifying over the index type
using the GADT:

data A f = ∀ i .A (f i)

The type of subs can now be stated as follows:

subs :: HFoldable f ⇒ Term f i → [A (Term f )]

4.6 Practical Considerations

Besides showing the expressiveness and usefulness of the framework of compositional
data types, we also want to showcase its practical applicability as a software devel-
opment tool. To this end, we consider aspects of usability and performance impacts
as well.

4.6.1 Generating Boilerplate Code

The implementation of recursion schemes depends on the signatures being instances
of the type class Functor . For generic programming techniques and monadic compu-
tations, we rely on the type classes Foldable and Traversable, respectively. Addition-
ally, higher-order functors necessitate a set of lifted variants of the above-mentioned
type classes. That is a lot of boilerplate code! Writing and maintaining this code
would almost entirely defeat the advantage of using compositional data types in the
first place.

Luckily, by leveraging Template Haskell [101], instance declarations of all generic
type classes that we have mentioned in this paper can be generated automatically at
compile time similar to Haskell’s deriving mechanism. Even though some Haskell
packages such as derive already provide automatically derived instances for some of
the standard classes like Functor , Foldable, and Traversable, we chose to implement
the instance generators for these as well. The heavy use of the methods of these
classes for implementing recursion schemes means that they contribute considerably
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to the computational overhead! Automatically deriving instance declarations with
carefully optimised implementations of each of the class methods has proven to yield
substantial run-time improvements, especially for monadic computations.

We already mentioned that we assume with each constructor:

Constr :: t1 → · · · → tn → f a

of a signature f , a smart constructor defined by:

iConstr :: f :≺: g ⇒ s1 → · · · → sn → Term g
iConstr x1 . . . xn = inject (Constr x1 . . . xn)

where the types si are the same as ti except with occurrences of the type variable a
replaced by Term g . These smart constructors can be easily generated automatically
using Template Haskell.

Another issue is the declaration of instances of type classes Eq , Ord , and Show
for types of the form Term f . This can be achieved by lifting these type classes to
functors, for instance for Eq :

class EqF f where
eqF :: Eq a ⇒ f a → f a → Bool

From instances of this class, corresponding instances of Eq for terms and contexts
can be derived:

instance (EqF f ,Eq a)⇒ Eq (Cxt h f a) where
(≡) (In t1) (In t2) = t1 ‘eqF ‘ t2
(≡) (Hole h1) (Hole h2) = h1 ≡ h2

(≡) = False

Instances of EqF , OrdF , and ShowF can be derived straightforwardly using
Template Haskell, which then yield corresponding instances of Eq , Ord , and Show
for terms and contexts. The thus obtained instances are equivalent to the ones
obtained from Haskell’s deriving mechanism on corresponding recursive data types.

Figure 4.1 demonstrates the complete source code needed in order to implement
some of the earlier examples in our library.

4.6.2 Performance Impact

In order to minimise the overhead of the recursion schemes, we applied some sim-
ple optimisations to the implementation of the recursion schemes themselves. For
example, cata is defined as:

cata :: ∀ f a . Functor f ⇒ Alg f a → Term f → a
cata φ = run

where run :: Term f → a
run (In t) = φ (fmap run t)

The biggest speedup, however, can be obtained by providing automatically gen-
erated, carefully optimised implementations for each method of the type classes
Foldable and Traversable.
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import Data.Comp

import Data.Comp.Derive

import Data.Comp.Show ()

data Val a = Const Int | Pair a a

data Op a = Mult a a | Fst a | Snd a

data Sug a = Neg a | Swap a

type Sig = Op :+: Val

type Sig’ = Sug :+: Sig

$(derive [makeFunctor, makeFoldable, makeTraversable, makeShowF, smartConstructors]

[’’Val, ’’Op, ’’Sug])

-- ∗ Term Evaluation

class Eval f v where evalAlg :: Alg f (Term v)

$(derive [liftSum] [’’Eval]) -- lift Eval to coproducts

eval :: (Functor f, Eval f v) ⇒ Term f → Term v

eval = cata evalAlg

instance (Val :<: v) ⇒ Eval Val v where

evalAlg = inject

instance (Val :<: v) ⇒ Eval Op v where

evalAlg (Mult x y) = let (Just (Const n), Just (Const m)) = (project x, project y)

in iConst (n ∗ m)

evalAlg (Fst x) = let Just (Pair v _) = project x in v

evalAlg (Snd x) = let Just (Pair _ v) = project x in v

-- ∗ Desugaring

class (Functor f, Functor g) ⇒ Desug f g where

desugHom :: Hom f g

desugHom = desugHom’ . fmap Hole

desugHom’ :: Alg f (Context g a)

desugHom’ x = appCxt (desugHom x)

$(derive [liftSum] [’’Desug]) -- lift Desug to coproducts

desug :: Desug f g ⇒ Term f → Term g

desug = appHom desugHom

instance (Functor f, Functor g, f :<: g) ⇒ Desug f g where

desugHom = simpCxt . inj

instance (Op :<: f, Val :<: f, Functor f) ⇒ Desug Sug f where

desugHom’ (Neg x) = iConst (-1) ‘iMult‘ x

desugHom’ (Swap x) = iSnd x ‘iPair‘ iFst x

eval’ :: Term Sig’ → Term Val

eval’ = eval . (desug :: Term Sig’ → Term Sig)

Figure 4.1: Example usage of the compositional data types library.

In order to gain speedup in the implementation of generic programming combi-
nators, we applied the same techniques as Mitchell and Runciman [75] by leveraging
deforestation [32] via build . The subs combinator is thus defined as:

subs :: ∀ f . Foldable f ⇒ Term f → [Term f ]
subs t = build (f t) where

f :: Term f → (Term f → b → b)→ b → b
f t cons nil = t ‘cons‘ foldl (λu s → f s cons u) nil (out t)
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Function hand-written random (10) random (20)

desugHom 3.6 · 10−1 5.0 · 10−3 6.1 · 10−6

desugCata 1.8 · 10−1 4.41 · 10−3 5.3 · 10−6

inferDesug (3.38) 1.11 (3.45) 1.52 (3.14) 0.82
inferDesugM (2.68) 1.38 (2.87) 1.61 (2.79) 0.84
infer 2.39 2.29 2.65
inferM 1.06 1.30 1.68
evalDesug (6.40) 2.64 (3.13) 1.79 (4.74) 0.89
evalDesugM (7.32) 4.34 (6.22) 3.47 (9.69) 2.98
eval 2.58 1.84 1.64
evalDirect 6.10 3.96 3.62
evalM 3.41 4.78 7.52
evalDirectM 5.72 4.90 4.56
contVar 1.92 1.97 3.22
freeVars 1.23 1.26 1.41

contVarC 10.05 7.01 11.68
contVarU 8.24 5.64 11.21
freeVarsC 2.34 2.04 1.68
freeVarsU 2.03 1.75 1.58

Table 4.1: Run-time of functions on compositional data types (as multiples of the
run-time of an implementation using ordinary algebraic data types).

Instead of building the result list directly, we use the build combinator, which then
can be eliminated if combined with a consumer such as a fold or a list comprehension.

Table 4.1 shows the run-time performance of our framework for various functions
dealing with ASTs: desugaring (desug), type inference (infer), expression evalua-
tion (eval), and listing respectively searching for free variables (freeVars, contVar).
The Hom and Cata version of desug differ in that the former is defined as a term
homomorphism, the latter as a catamorphism. For eval and infer , the suffix Desug
indicates that the computation is prefixed by a desugaring phase (using desugHom),
the suffix M indicates monadic variants (for error handling), and Direct indicates
that the function was implemented not as a catamorphism but using explicit recur-
sion. The numbers in the table are multiples of the run-time of an implementation
using ordinary algebraic data types and recursion. The numbers in parentheses
indicate the run-time factor if the automatic fusion described in Section 4.4.4.2 is
disabled. Each function is tested on three different inputs of increasing size. The
first is a hand-written “natural” expression consisting of 16 nodes. The other two
expressions are randomly generated expressions of depth 10 and 20, respectively,
which corresponds to approximately 800 respectively 200,000 nodes. This should
reveal how the overhead of our framework scales. The benchmarks were performed
with the criterion framework using GHC 7.0.2 with optimisation flag -O2.

As a pleasant surprise, we observe that the penalty of using compositional data
types is comparatively low. It is in the same ballpark as for generic programming
libraries [75, 97]. For some functions we even obtain a speedup! The biggest surprise
is, however, the massive speedup gained by the desugaring function. In both its
catamorphic and term-homomorphic version, it seems to perform asymptotically
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better than the classic implementation, yielding a speedup of over five orders of
magnitude. We were also surprised to see that (except for one case) functions
programmed as catamorphisms outperformed functions using explicit recursion! In
fact, with GHC 6.12, the situation was reversed.

Moreover, we observe that the fusion rules implemented in our framework uni-
formly yield a considerable speedup of up to factor five. As a setback, however, we
have to recognise that implementing desugaring as a term homomorphism yields a
slowdown of factor up to two compared to its catamorphic version.

Finally, we compared our implementation of generic programming techniques
with Uniplate [75], one of the top-performing generic programming libraries. In
particular, we looked at its universe combinator that computes the list of all subex-
pressions. We have implemented this combinator in our framework as subs. In
Table 4.1, our implementation is indicated by the suffix C , the Uniplate implemen-
tation, working on ordinary algebraic data types, is indicated by U . We can see
that we are able to obtain comparable performance in all cases.

4.7 Discussion

Starting from Swierstra’s data types à la carte [106], we have constructed a frame-
work for representing data types in a compositional fashion that is readily usable
for practical applications. Our biggest contribution is the generalisation of terms
to contexts which allow us to capture the notion of term homomorphisms. Term
homomorphisms provide a rich structure that allows flexible reuse and enables sim-
ple but effective optimisation techniques. Moreover, term homomorphisms can be
easily extended with a state. Depending on how the state is propagated, this yields
bottom-up respectively top-down tree transducers [20]. The techniques for fusion
and propagation of annotations can be easily adapted.

4.7.1 Related Work

The definition of monadic catamorphisms that we use goes back to Fokkinga [28]. He
only considers monads satisfying a certain distributivity law. However, this distribu-
tivity is only needed for the fusion rules of Section 4.4.4.3 to be valid. Steenbergen
et al. [110] use the same approach to implement catamorphisms with errors. In con-
trast, Visser and Löh [112] consider monadic catamorphism for which the monadic
effect is part of the term structure.

The construction to add annotations to functors is also employed by Steenbergen
et al. [110] to add detailed source position annotations to ASTs. However, since they
are considering general catamorphisms, they are not able to provide a means to
propagate annotations. Moreover, since Steenbergen et al. do not account for sums
of functors, the distribution of annotations over sums is not an issue for them. Visser
and Löh [112] consider a more general form of annotations via arbitrary functor
transformations. Unfortunately, this generality prohibits the automatic propagation
of annotations as well as their distribution over sums.

Methods to represent mutually recursive data types as fixed points of (regular)
functors have been explored to some extent [15, 62, 105, 125]. All of these techniques
are limited to mutually recursive data types in which the number of nested data types
is limited up front and are thus not compositional. However, in the representation of
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Yakushev et al. [125], the restriction to mutually recursive data types with a closed
set of constituent data types was implemented intentionally. Our representation
simply removes these restrictions which would in fact add no benefit in our setting.
The resulting notion of higher-order functors that we considered was also used by
Johann and Ghani [54] in order to represent GADTs.

4.7.2 Future Work

There are a number of aspects that are still missing which should be the subject of
future work. As we have indicated, the restriction of the subtyping class :≺: hinders
full compositionality of signature summation :+:. A remedy could be provided with
a richer type system as proposed by Yorgey [126]. This would also allow us to
define the right-distributivity of annotations :&: over sums :+: more directly by a
type family. Alternatively, this issue can be addressed with type instance-chains as
proposed by Morris and Jones [77]. Another issue of Swierstra’s original work is
the project function that allows us to inspect terms ad-hoc. Unfortunately, it does
not allow us to give a complete case analysis. In order to provide this, we need a
function of the type:

(f :≺: g)⇒ Term g → Either (f (Term g)) ((g :−: f ) (Term g))

which allows us to match against the “remainder signature” g :−: f .





Chapter 5

Parametric Compositional Data
Types?

Abstract

In previous work we have illustrated the benefits that compositional data
types (CDTs) offer for implementing languages and in general for dealing with
abstract syntax trees (ASTs). Based on Swierstra’s data types à la carte, CDTs
are implemented as a Haskell library that enables the definition of recursive data
types and functions on them in a modular and extendable fashion. Although
CDTs provide a powerful tool for analysing and manipulating ASTs, they lack
a convenient representation of variable binders. In this paper we remedy this
deficiency by combining the framework of CDTs with Chlipala’s parametric
higher-order abstract syntax (PHOAS). We show how a generalisation from
functors to difunctors enables us to capture PHOAS while still maintaining the
features of the original implementation of CDTs, in particular its modularity.
Unlike previous approaches, we avoid so-called exotic terms without resorting
to abstract types: this is crucial when we want to perform transformations on
CDTs that inspect the recursively computed CDTs, such as constant folding.

5.1 Introduction

When implementing domain-specific languages (DSLs)—either as embedded lan-
guages or stand-alone languages—the abstract syntax trees (ASTs) of programs are
usually represented as elements of a recursive algebraic data type. These ASTs typ-
ically undergo various transformation steps, such as desugaring from a full language
to a core language. But reflecting the invariants of these transformations in the type
system of the host language can be problematic. For instance, in order to reflect a
desugaring transformation in the type system, we must define a separate data type
for ASTs of the core language. Unfortunately, this has the side effect that common
functionality, such as pretty printing, has to be duplicated.

Wadler identified the essence of this issue as the Expression Problem: “the goal
[. . . ] to define a datatype by cases, where one can add new cases to the datatype
and new functions over the datatype, without recompiling existing code, and while
retaining static type safety” [116]. Swierstra [106] elegantly addressed this problem
using Haskell and its type classes machinery. While Swierstra’s approach exhibits

?Joint work with Patrick Bahr [10].
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invaluable simplicity and clarity, it lacks features necessary to apply it in a practical
setting beyond the confined simplicity of the expression problem. To this end,
the framework of compositional data types (CDTs) [11] provides a rich library for
implementing practical functionality on highly modular data types. This includes
support of a wide array of recursion schemes in both pure and monadic forms, as well
as mutually recursive data types and generalised algebraic data types (GADTs) [99].

What CDTs fail to address, however, is a transparent representation of variable
binders that frees the programmer’s mind from common issues like computations
modulo α-equivalence and capture-avoiding substitutions. The work we present in
this paper fills that gap by adopting (a restricted form of) higher-order abstract
syntax (HOAS) [90], which uses the host language’s variable binding mechanism
to represent binders in the object language. Since implementing efficient recursion
schemes in the presence of HOAS is challenging [26, 67, 100, 118], integrating this
technique with CDTs is a non-trivial task.

Following a brief introduction to CDTs in Section 5.2, we describe how to achieve
this integration as follows:

• We adopt parametric higher-order abstract syntax (PHOAS) [19], and we show
how to capture this restricted form of HOAS via difunctors. The thus obtained
parametric compositional data types (PCDTs) allow for the definition of mod-
ular catamorphisms à la Fegaras and Sheard [26] in the presence of binders.
Unlike previous approaches, our technique does not rely on abstract types,
which is crucial for modular computations that are also modular in their re-
sult type (Section 5.3).

• We illustrate why monadic computations constitute a challenge in the para-
metric setting and we show how monadic catamorphisms can still be defined
for a restricted class of PCDTs (Section 5.4).

• We show how to transfer the restricted recursion scheme of term homomor-
phisms [11] to PCDTs. Term homomorphisms enable the same flexibility for
reuse and opportunity for deforestation [114] that we know from CDTs.

• We show how to represent mutually recursive data types and GADTs by gen-
eralising PCDTs in the style of Johann and Ghani [54] (Section 5.6).

• We illustrate the practical applicability of our framework by means of a com-
plete library example, and we show how to automatically derive functionality
for deciding equality (Section 5.7).

Parametric compositional data types are available as a Haskell library1, including
numerous examples. We have included two of these examples in Appendix D.1. All
code fragments presented throughout the paper are written in (literate) Haskell [63],
and the library relies on several language extensions that are currently only known
to be supported by the Glasgow Haskell Compiler (GHC).

5.2 Compositional Data Types

Based on Swierstra’s data types à la carte [106], compositional data types (CDTs)
[11] provide a framework for manipulating recursive data structures in a type-safe,

1See http://hackage.haskell.org/package/compdata.

http://hackage.haskell.org/package/compdata
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modular manner. The prime application of CDTs is within language implementation
and AST manipulation, and we present the basic concepts of CDTs in this section.
More advanced concepts are introduced in Sections 5.4, 5.5, and 5.6.

5.2.1 Motivating Example

Consider an extension of the lambda calculus with integers, addition, let expressions,
and error signalling:

e ::= λx.e | x | e1 e2 | n | e1 + e2 | let x = e1 in e2 | error

Our goal is to implement a pretty printer, a desugaring transformation, constant
folding, and a call-by-value interpreter for the simple language above. The desugar-
ing transformation will turn let expressions let x = e1 in e2 into (λx.e2) e1. Con-
stant folding and evaluation will take place after desugaring, that is both computa-
tions are only defined for the core language without let expressions.

The standard approach to representing the language above is in terms of an
algebraic data type:

type Var = String

data Exp = Lam Var Exp | Var Var | App Exp Exp
| Lit Int | Plus Exp Exp | Let Var Exp Exp | Err

We may then straightforwardly define the pretty printer pretty :: Exp → String .
However, when we want to implement the desugaring transformation, we need a
new algebraic data type:

data Exp′ = Lam ′ Var Exp′ | Var ′ Var | App ′ Exp′ Exp′

| Lit ′ Int | Plus ′ Exp′ Exp′ | Err ′

That is, we need to replicate all constructors of Exp—except Let—into a new type
Exp′ of core expressions, in order to obtain a properly typed desugaring function
desug :: Exp → Exp′. Not only does this mean that we have to replicate the con-
structors, we also need to replicate common functionality, for instance in order to
obtain a pretty printer for Exp′ we must either write a new function, or write an
injection function Exp′ → Exp.

CDTs provide a solution that allows us to define the ASTs for (core) expressions
without having to duplicate common constructors, and without having to give up
on statically guaranteed invariants about the structure of the ASTs. CDTs take
the viewpoint of data types as fixed points of functors [69], that is the definition of
the AST data type is separated into non-recursive signatures (functors) on the one
hand and the recursive structure on the other hand. For our example, we define the
following signatures (omitting the straightforward Functor instance declarations):

data Lam a = Lam Var a data Plus a = Plus a a

data Var a = Var Var data Let a = Let Var a a

data App a = App a a data Err a = Err

data Lit a = Lit Int
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Signatures can then be combined in a modular fashion by means of a formal sum of
functors:

data (f :+: g) a = Inl (f a) | Inr (g a)

instance (Functor f ,Functor g)⇒ Functor (f :+: g) where
fmap f (Inl x ) = Inl (fmap f x )
fmap f (Inr x ) = Inr (fmap f x )

type Sig = Lam :+: Var :+: App :+: Lit :+: Plus :+: Err :+: Let

type Sig ′ = Lam :+: Var :+: App :+: Lit :+: Plus :+: Err

Finally, the type of terms over a (potentially compound) signature f can be
constructed as the (least) fixed point of the signature f :

data Term f = In {out :: f (Term f )}

Modulo strictness, Term Sig is isomorphic to Exp, and Term Sig ′ is isomorphic to
Exp′.

The use of formal sums entails that each (sub)term has to be explicitly tagged
with zero or more Inl or Inr tags. In order to add the right tags automatically,
injections are derived using a type class:

class sub :≺: sup where
inj :: sub a → sup a
proj :: sup a → Maybe (sub a)

Using overlapping instance declarations, the subsignature relation :≺: can be con-
structively defined [106]. However, due to the limitations of Haskell’s type class sys-
tem, instances are restricted to the form f :≺: g where f is atomic, that is not a sum,
and g is a right-associated sum, for instance g1 :+: (g2 :+: g3) but not (g1 :+: g2) :+: g3.
With the carefully defined instances for :≺:, injection and projection functions for
terms can then be defined as follows:

inject :: (g :≺: f )⇒ g (Term f )→ Term f
inject = In . inj

project :: (g :≺: f )⇒ Term f → Maybe (g (Term f ))
project = proj . out

Additionally, in order to reduce the syntactic overhead, the CDTs library can
automatically derive smart constructors that comprise the injections [11], for in-
stance:

iPlus :: (Plus :≺: f )⇒ Term f → Term f → Term f
iPlus x y = inject (Plus x y)

Using the derived smart constructors, we can then write expressions such as let x =
2 in (λy.y + x) 3 without syntactic overhead:

e :: Term Sig
e = iLet "x" (iLit 2) ((iLam "y" (Var "y" ‘iPlus‘ Var "x")) ‘iApp‘ iLit 3)
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In fact, the principal type of e is the open type:

(Lam :≺: f ,Var :≺: f ,App :≺: f ,Lit :≺: f ,Plus :≺: f ,Let :≺: f )⇒ Term f

which means that e can be used as a term over any signature containing at least
these six signatures!

Next, we want to define the pretty printer, that is a function of the type
Term Sig → String . In order to make a recursive function definition modular
too, it is defined as the catamorphism of an algebra [69]:

type Alg f a = f a → a

cata :: Functor f ⇒ Alg f a → Term f → a
cata φ = φ . fmap (cata φ) . out

The advantage of this approach is that algebras can be easily combined over formal
sums. A modular algebra definition is obtained by an open family of algebras indexed
by the signature and closed under forming formal sums. This is achieved as a type
class:

class Pretty f where
prettyAlg :: Alg f String

instance (Pretty f ,Pretty g)⇒ Pretty (f :+: g) where
prettyAlg (Inl x ) = prettyAlg x
prettyAlg (Inr x ) = prettyAlg x

pretty :: (Functor f ,Pretty f )⇒ Term f → String
pretty = cata prettyAlg

The instance declaration that lifts Pretty instances to sums is crucial. Yet, the
structure of its declaration is independent from the particular algebra class, and the
CDTs library provides a mechanism for automatically deriving such instances [11].
What remains in order to implement the pretty printer is to define instances of the
Pretty algebra class for the six signatures:

instance Pretty Lam where
prettyAlg (Lam x e) = "(\\" ++ x ++ ". " ++ e ++ ")"

instance Pretty Var where
prettyAlg (Var x ) = x

instance Pretty App where
prettyAlg (App e1 e2) = "(" ++ e1 ++ " " ++ e2 ++ ")"

instance Pretty Lit where
prettyAlg (Lit n) = show n

instance Pretty Plus where
prettyAlg (Plus e1 e2) = "(" ++ e1 ++ " + " ++ e2 ++ ")"

instance Pretty Let where
prettyAlg (Let x e1 e2) = "let " ++ x ++ " = " ++ e1 ++ " in " ++ e2

instance Pretty Err where
prettyAlg Err = "error"
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With these definitions we then have that pretty e evaluates to the string let x =

2 in ((\y. (y + x)) 3). Moreover, we automatically obtain a pretty printer for
the core language as well, compare the type of pretty .

5.3 Parametric Compositional Data Types

In the previous section we considered a first-order encoding of the language, which
means that we have to be careful to ensure that computations are invariant un-
der α-equivalence, for instance when implementing capture-avoiding substitutions.
Higher-order abstract syntax (HOAS) [90] remedies this issue, by representing vari-
ables and binders of the object language in terms of those of the meta language.

5.3.1 Higher-Order Abstract Syntax

In a standard Haskell HOAS encoding we replace the signatures Var and Lam by a
revised Lam signature:

data Lam a = Lam (a → a)

Now, however, Lam is no longer an instance of Functor , because a occurs both as
a contravariant argument and a covariant argument. We therefore need to gener-
alise functors in order to allow for negative occurrences of the recursive parameter.
Difunctors [67] provide such a generalisation:

class Difunctor f where
dimap :: (a → b)→ (c → d)→ f b c → f a d

instance Difunctor (→) where
dimap f g h = g . h . f

instance Difunctor f ⇒ Functor (f a) where
fmap = dimap id

A difunctor must preserve the identity function and distribute over function com-
position:

dimap id id = id and dimap (f . g) (h . i) = dimap g h . dimap f i

The derived Functor instance obtained by fixing the contravariant argument will
hence satisfy the functor laws, provided that the difunctor laws are satisfied.

Meijer and Hutton [67] showed that it is possible to perform recursion over
difunctor terms:

data TermMH f = InMH {outMH :: f (TermMH f ) (TermMH f )}
cataMH :: Difunctor f ⇒ (f b a → a)→ (b → f a b)→ TermMH f → a
cataMH φ ψ = φ . dimap (anaMH φ ψ) (cataMH φ ψ) . outMH

anaMH :: Difunctor f ⇒ (f b a → a)→ (b → f a b)→ b → TermMH f
anaMH φ ψ = InMH . dimap (cataMH φ ψ) (anaMH φ ψ) . ψ

With Meijer and Hutton’s approach, however, in order to lift an algebra φ::f b a → a
to a catamorphism, we also need to supply the inverse coalgebra ψ :: b → f b a.
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That is, in order to write a pretty printer we must supply a parser, which is not
feasible—or perhaps even possible—in practice.

Fortunately, Fegaras and Sheard [26] realised that if the embedded functions
within terms are parametric, then the inverse coalgebra is only used in order to
undo computations performed by the algebra, since parametric functions can only
“push around their arguments” without examining them. The solution proposed by
Fegaras and Sheard is to add a placeholder to the structure of terms, which acts as
a right-inverse of the catamorphism:2

data TermFS f a = InFS (f (TermFS f a) (TermFS f a)) | Place a

cataFS :: Difunctor f ⇒ (f a a → a)→ TermFS f a → a
cataFS φ (InFS t) = φ (dimap Place (cataFS φ) t)
cataFS φ (Place x ) = x

We can then for instance define a signature for lambda terms, and a function that
calculates the number of bound variables occurring in a term, as follows (the example
is adopted from Washburn and Weirich [118]):

data T a b = Lam (a → b) | App b b
-- T is a difunctor, we omit the instance declaration

φ :: T Int Int → Int
φ (Lam f ) = f 1
φ (App x y) = x + y

countVar :: TermFS T Int → Int
countVar = cataFS φ

In the TermFS encoding above, however, parametricity of the embedded func-
tions is not guaranteed. More specifically, the type allows for three kinds of exotic
terms [118], that is values in the meta language that do not correspond to terms in
the object language:

badPlace :: TermFS T Bool
badPlace = InFS (Place True)

badCata :: TermFS T Int
badCata = InFS (Lam (λx → if countVar x ≡ 0 then x else Place 0))

badCase :: TermFS T a
badCase = InFS (Lam (λx → case x of

TermFS (App )→ TermFS (App x x )
→ x ))

Fegaras and Sheard showed how to avoid exotic terms by means of a custom type
system. Washburn and Weirich [118] later showed that exotic terms can be avoided
in a Haskell encoding via type parametricity and an abstract type of terms: terms
are restricted to the type ∀ a . T ermFS f a, and the constructors of TermFS are
hidden. Parametricity rules out badPlace and badCata, while the use of an abstract
type rules out badCase.

2Actually, Fegaras and Sheard do not use difunctors, but the given definition corresponds to
their encoding.
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5.3.2 Parametric Higher-Order Abstract Syntax

While the approach of Washburn and Weirich effectively rules out exotic terms in
Haskell, we prefer a different encoding that relies on type parametricity only, and not
an abstract type of terms. Our solution is inspired by Chlipala’s parametric higher-
order abstract syntax (PHOAS) [19]. PHOAS is similar to the restricted form of
HOAS that we saw above; however, Chlipala makes the parametricity explicit in the
definition of terms by distinguishing between the type of bound variables and the
type of recursive terms. In Chlipala’s approach, an algebraic data type encoding of
lambda terms LTerm can effectively be defined via an auxiliary data type LTrm of
“preterms” as follows:

type LTerm = ∀ a . LTrm a

data LTrm a = Lam (a → LTrm a) | Var a | App (LTrm a) (LTrm a)

The definition of LTerm guarantees that all functions embedded via Lam are para-
metric, and likewise that Var—Fegaras and Sheard’s Place—can only be applied
to variables bound by an embedded function. Atkey [7] showed that the encoding
above adequately captures closed lambda terms modulo α-equivalence, assuming
that there is no infinite data and that all embedded functions are total.

5.3.2.1 Parametric Terms

In order to transfer Chlipala’s idea to non-recursive signatures and catamorphisms,
we need to distinguish between covariant and contravariant uses of the recursive
parameter. But this is exactly what difunctors do! We therefore arrive at the
following definition of terms over difunctors:

newtype Term f = Term {unTerm :: ∀ a . Trm f a }
data Trm f a = In (f a (Trm f a)) | Var a -- “preterm”

Note the difference in Trm compared to TermFS (besides using the name Var
rather than Place): the contravariant argument to the difunctor f is not the type
of terms Trm f a, but rather a parametrised type a, which we quantify over at
top-level to ensure parametricity. Hence, the only way to use a bound variable is
to wrap it in a Var constructor—it is not possible to inspect the parameter. This
representation more faithfully captures—we believe—the restricted form of HOAS
than the representation of Washburn and Weirich: in our encoding it is explicit that
bound variables are merely placeholders, and not the same as terms. Moreover, in
some cases we actually need to inspect the structure of terms in order to define term
transformations—we will see such an example in Section 5.3.2.3. With an abstract
type of terms, this is not possible as Washburn and Weirich note [118].

Before we define algebras and catamorphisms, we lift the ideas underlying CDTs
to parametric compositional data types (PCDTs), namely coproducts and implicit
injections. Fortunately, the constructions of Section 5.2 are straightforwardly gen-
eralised (the instances for :≺: are exactly as in data types à la carte [106], so we omit
them here):

data (f :+: g) a b = Inl (f a b) | Inr (g a b)
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instance (Difunctor f ,Difunctor g)⇒ Difunctor (f :+: g) where
dimap φ ψ (Inl x ) = Inl (dimap φ ψ x )
dimap φ ψ (Inr x ) = Inr (dimap φ ψ x )

class sub :≺: sup where
inj :: sub a b → sup a b
proj :: sup a b → Maybe (sub a b)

inject :: (g :≺: f )⇒ g a (Trm f a)→ Trm f a
inject = In . inj

project :: (g :≺: f )⇒ Trm f a → Maybe (g a (Trm f a))
project (Term t) = proj t
project (Var ) = Nothing

We can then recast our previous signatures as difunctors, but using PHOAS rather
than explicit representations of variable names:

data Lam a b = Lam (a → b) data Plus a b = Plus b b

data App a b = App b b data Let a b = Let b (a → b)

data Lit a b = Lit Int data Err a b = Err

type Sig = Lam :+: App :+: Lit :+: Plus :+: Err :+: Let

type Sig ′ = Lam :+: App :+: Lit :+: Plus :+: Err

Finally, we can automatically derive instance declarations for Difunctor as well as
smart constructor definitions that comprise the injections as for CDTs [11]. However,
in order to avoid the explicit Var constructor, we insert dimap Var id into the
declarations, for instance:

iLam :: (Lam :≺: f )⇒ (Trm f a → Trm f a)→ Trm f a
iLam f = inject (dimap Var id (Lam f )) -- (= inject (Lam (f .Var)))

Using iLam we then need to be aware, though, that even if it takes a function
Trm f a → Trm f a as argument, the input to that function will always be of the
form Var x by construction. We can now again represent terms such as let x =
2 in (λy.y + x) 3 compactly as follows:

e :: Term Sig
e = Term (iLet (iLit 2) (λx → (iLam (λy → y ‘iPlus‘ x ) ‘iApp‘ iLit 3)))

5.3.2.2 Algebras and Catamorphisms

Given the representation of terms as fixed points of difunctors, we can now define
algebras and catamorphisms:

type Alg f a = f a a → a

cata :: Difunctor f ⇒ Alg f a → Term f → a
cata φ (Term t) = cat t

where cat (In t) = φ (fmap cat t) -- recall: fmap = dimap id
cat (Var x ) = x
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The definition of cata above is essentially the same as cataFS. The only difference
is that bound variables within terms are already wrapped in a Var constructor.
Therefore, the contravariant argument to dimap is the identity function, and we
consequently use the derived function fmap instead.

With these definitions we can now recast the modular pretty printer from Sec-
tion 5.2.1 to the new difunctor signatures. However, since we now use a higher-order
encoding, we need to generate variable names for printing. We therefore arrive at
the following definition (the example is adopted from Washburn and Weirich [118],
but we use streams rather than lists to represent the sequence of available variable
names):

data Stream a = Cons a (Stream a)

class Pretty f where
prettyAlg :: Alg f (Stream String → String)

-- instance that lifts Pretty to coproducts omitted

pretty :: (Difunctor f ,Pretty f )⇒ Term f → String
pretty t = cata prettyAlg t (names 1)

where names n = Cons (’x’ : show n) (names (n + 1))

instance Pretty Lam where
prettyAlg (Lam f ) (Cons x xs) = "(\\" ++ x ++ ". " ++

f (const x ) xs ++ ")"

instance Pretty App where
prettyAlg (App e1 e2) xs = "(" ++ e1 xs ++ " " ++ e2 xs ++ ")"

instance Pretty Lit where
prettyAlg (Lit n) = show n

instance Pretty Plus where
prettyAlg (Plus e1 e2) xs = "(" ++ e1 xs ++ " + " ++ e2 xs ++ ")"

instance Pretty Let where
prettyAlg (Let e1 e2) (Cons x xs) = "let " ++ x ++ " = " ++ e1 xs ++

" in " ++ e2 (const x ) xs

instance Pretty Err where
prettyAlg Err = "error"

With these definitions we then have that pretty e evaluates to the string let x1 =

2 in ((\x2. (x2 + x1)) 3).

5.3.2.3 Term Transformations

The pretty printer is an example of a modular computation over a PCDT. However,
we also want to define computations over PCDTs that construct PCDTs, such as
the desugaring transformation. That is, we want to construct functions of the form
Term f → Term g , which means that we must construct functions of the form
(∀ a . Trm f a) → (∀ a . Trm g a). But such a function can be obtained from a
function of the type ∀ a . (Trm f a → Trm g a), which motivates the following
definition of the desugaring algebra type class:

class Desug f g where
desugAlg :: ∀ a .Alg f (Trm g a) -- not Alg f (Term g) !
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-- instance that lifts Desug to coproducts omitted

desug :: (Difunctor f ,Desug f g)⇒ Term f → Term g
desug t = Term (cata desugAlg t)

The algebra type class above is a multi-parameter type class. That is, it is parame-
trised both by the domain signature f and the codomain signature g . We do this in
order to obtain a desugaring function that is also modular in the codomain, similar
to the evaluation function for vanilla CDTs [11].

We can now define the instances of Desug for the six signatures in order to obtain
the desugaring function. However, by utilising overlapping instances we can make
do with just two instances:

instance (Difunctor f , f :≺: g)⇒ Desug f g where
desugAlg = inject . dimap Var id -- default instance for core signatures

instance (App :≺: f ,Lam :≺: f )⇒ Desug Let f where
desugAlg (Let e1 e2) = iLam e2 ‘iApp‘ e1

Given a term e :: Term Sig , we then have that desug e :: Term Sig ′, that is the type
shows that indeed all syntactic sugar has been removed.

Whereas the desugaring transformation shows that we can construct PCDTs
from PCDTs in a modular fashion, we did not make use of the fact that PCDTs can
be inspected. That is, the desugaring transformation does not inspect the recursively
computed values, compare the instance for Let . However, in order to implement the
constant folding transformation, we actually need to inspect recursively computed
PCDTs. We again utilise overlapping instances:

class Constf f g where
constfAlg :: ∀ a .Alg f (Trm g a)

-- instance that lifts Constf to coproducts omitted

constf :: (Difunctor f ,Constf f g)⇒ Term f → Term g
constf t = Term (cata constfAlg t)

instance (Difunctor f , f :≺: g)⇒ Constf f g where
constfAlg = inject . dimap Var id -- default instance

instance (Plus :≺: f ,Lit :≺: f )⇒ Constf Plus f where
constfAlg (Plus e1 e2) = case (project e1, project e2) of

(Just (Lit n), Just (Lit m))→ iLit (n + m); → e1 ‘iPlus‘ e2

Note that with the default instance we not only have constant folding for the
core language, but also for the full language, that is constf has both the types
Term Sig ′ → Term Sig ′ and Term Sig → Term Sig .

5.4 Monadic Computations

In the last section, we demonstrated how to extend CDTs with parametric higher-
order abstract syntax, and how to perform modular, recursive computations over
terms containing binders. In this section we investigate monadic computations over
PCDTs, and why they are problematic compared to CDTs.
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5.4.1 Monadic Computations over CDTs

We have previously shown how to perform monadic computations over CDTs [11]
by utilising the standard type class Traversable3:

type AlgM m f a = f a → m a

class Functor f ⇒ Traversable f where
sequence :: Monad m ⇒ f (m a)→ m (f a)

cataM :: (Traversable f ,Monad m)⇒ AlgM m f a → Term f → m a
cataM φ = φ <=< sequence . fmap (cataM φ) . out

AlgM m f a represents the type of monadic algebras [28] over f and m, with
carrier a, which is different from Alg f (m a) since the monad only occurs in the
codomain of the monadic algebra. cataM is obtained from cata in Section 5.2 by
performing sequence after applying fmap and replacing function composition with
monadic function composition <=<. Monadic algebras are useful for instance if we
want to recursively project a term over a compound signature to a smaller signature:

deepProject :: (Traversable g , f :≺: g)⇒ Term f → Maybe (Term g)
deepProject = cataM (liftM In . proj )

5.4.2 Monadic Computations over PCDTs

Turning back to parametric terms, we can apply the same idea to difunctors yielding
the following definition of monadic algebras:

type AlgM m f a = f a a → m a

Similarly, we can easily generalise Traversable and cataM to difunctors:

class Difunctor f ⇒ Ditraversable f where
disequence :: Monad m ⇒ f a (m b)→ m (f a b)

cataM :: (Ditraversable f ,Monad m)⇒ AlgM m f a → Term f → m a
cataM φ (Term t) = cat t

where cat (In t) = disequence (fmap cat t)>>= φ
cat (Var x ) = return x

Unfortunately, cataM only works for difunctors that do not use the contravariant
argument. To see why this is the case, reconsider the Lam constructor; in order to
define an instance of Ditraversable for Lam we must write a function of the type:

disequence :: Monad m ⇒ Lam a (m b)→ m (Lam a b)

Since Lam is isomorphic to the function type constructor →, this is equivalent to a
function of the type:

∀ a b m .Monad m ⇒ (a → m b)→ m (a → b)

3We have omitted methods from the definition of Traversable that are not necessary for our
purposes.
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We cannot hope to be able to construct a meaningful combinator of that type.
Intuitively, in a function of type a → m b, the monadic effect of the result can
depend on the input of type a. The monadic effect of a monadic value of type
m (a → b) is not dependent on such input. For example, think of a state transformer
monad ST with state S and its put function put :: S → ST (). What would be the
corresponding transformation to a monadic value of type ST (S → ())? Hence,
cataM does not extend to terms with binders, but it still works for terms without
binders as in vanilla CDTs [11].

5.4.2.1 Monadic Interpretation

While integrating the sequencing of monadic effects into the catamorphic recursion
scheme is difficult, we can nevertheless perform monadic computations over PCDTs
when we sequence the monad explicitly in the algebra definition. That is, if we
instead consider an ordinary algebra with a monadic carrier Alg f (m a).

The semantic domain of our interpreter can be described by the following alge-
braic data type (we could also use a PCDT, but we use an ordinary algebraic data
type for simplicity):

data Sem m = Fun (Sem m → m (Sem m)) | Int Int

We parametrise the domain by a monad m in order to separate computations from
pure values. Note that the monad only occurs in the codomain of Fun—if we want
call-by-name semantics rather than call-by-value semantics we simply add m also
to the domain. Additionally, the monad is also used to signal errors as well as
indicating that the interpreter gets stuck. We can now define our modular call-by-
value interpreter:

class Monad m ⇒ Eval m f where
evalAlg :: Alg f (m (Sem m))

-- instance that lifts Eval to coproducts omitted

eval :: (Difunctor f ,Eval m f )⇒ Term f → m (Sem m)
eval = cata evalAlg

instance Monad m ⇒ Eval m Lam where
evalAlg (Lam f ) = return (Fun (f . return))

instance MonadError String m ⇒ Eval m App where
evalAlg (App mx my) = do x ← mx

case x of Fun f → my >>= f
→ throwError "stuck"

instance Monad m ⇒ Eval m Lit where
evalAlg (Lit n) = return (Int n)

instance MonadError String m ⇒ Eval m Plus where
evalAlg (Plus mx my) = do x ← mx ; y ← my ;

case (x , y) of
(Int n, Int m)→ return (Int (n + m))

→ throwError "stuck"

instance MonadError String m ⇒ Eval m Err where
evalAlg Err = throwError "error"
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In order to indicate errors in the course of the evaluation, we require the monad to
provide a method to throw an error. To this end, we use the type class MonadError .
Note how the modular design allows us to require the stricter constraint MonadError
String m only for the cases where it is needed. This modularity of effects will become
quite useful when we will rule out "stuck" errors in Section 5.6.

With the definition of the interpreter above, we have that eval (desug e) evalu-
ates to the value Right (Int 5) as expected, where e is as of page 131 and m is the
Either String monad. Moreover, we also have that 0 + error and 0 + λx.x evaluate
to Left "error" and Left "stuck" respectively.

Note that if we want to implement a call-by-name interpreter instead, it is in
fact crucial that we do not use a recursion scheme that performs the sequencing of
monadic effects like cataM does. In order to implement call-by-name semantics, we
must be able to avoid monadic effects that are not needed.

5.5 Contexts and Term Homomorphisms

While the generality of catamorphisms makes them a powerful tool for modular func-
tion definitions, their generality at the same time inhibits flexibility and reusability.
However, the full generality of catamorphisms is not always needed in the case of
term algebras, that is algebras with carrier types of the form Term g . To this end,
we have previously studied term homomorphisms [11] as a restricted form of term
algebras. In this section, we redevelop term homomorphisms for PCDTs.

5.5.1 From Terms to Contexts and back

The crucial idea behind term homomorphisms is to generalise terms to contexts,
that is terms with holes. Following previous work [11], we define the generalisation
of terms with holes as a generalised algebraic data type (GADT) [99] with phantom
types Hole and NoHole:

data Hole

data NoHole

data Cxt :: ∗ → (∗ → ∗ → ∗)→ ∗ → ∗ → ∗ where
In :: f a (Cxt h f a b)→ Cxt h f a b
Var :: a → Cxt h f a b
Hole :: b → Cxt Hole f a b

The first argument to Cxt is a phantom type indicating whether the term con-
tains holes or not. A context can thus be defined as:

type Context = Cxt Hole

That is, contexts may contain holes. On the other hand, terms must not contain
holes, so we can recover our previous definition of preterms Trm as follows:

type Trm f a = Cxt NoHole f a ()

The definition of Term remains unchanged. This representation of contexts and
preterms allows us to uniformly define functions that work on both types. For
example, the function inject now has the type:
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inject :: (g :≺: f )⇒ g a (Cxt h f a b)→ Cxt h f a b

5.5.2 Term Homomorphisms

The type Context allows us to realise term homomorphisms as functions of the type:

type Hom f g = ∀ a b . f a b → Context g a b

A function ρ::Hom f g is a transformation of constructors from f applied to arbitrary
arguments into a context over g , that is a term over g that may embed values taken
from the arguments of the f -constructor. The parametric polymorphism of the type
guarantees that the arguments to the f -constructor cannot be inspected but only
embedded into the result context. In order to apply term homomorphisms to terms,
we need an auxiliary function that merges nested contexts:

appCxt :: Difunctor f ⇒ Context f a (Cxt h f a b)→ Cxt h f a b
appCxt (In t) = In (fmap appCxt t)
appCxt (Var x ) = Var x
appCxt (Hole h) = h

Given a context that has terms embedded in its holes, we obtain a term as a result;
given a context with embedded contexts, the result is again a context.

Using the combinator above, we can now apply a term homomorphism to a
preterm—or more generally, to a context:

appHom :: (Difunctor f ,Difunctor g)
⇒ Hom f g → Cxt h f a b → Cxt h g a b

appHom ρ (In t) = appCxt (ρ (fmap (appHom ρ) t))
appHom ρ (Var x ) = Var x
appHom ρ (Hole h) = Hole h

From appHom we can then obtain the actual transformation on terms as follows:

appTHom :: (Difunctor f ,Difunctor g)⇒ Hom f g → Term f → Term g
appTHom ρ (Term t) = Term (appHom ρ t)

Before we describe the benefits of term homomorphisms over term algebras,
we reconsider the desugaring transformation from Section 5.3.2.3, but as a term
homomorphism rather than a term algebra:

class Desug f g where
desugHom :: Hom f g

-- instance that lifts Desug to coproducts omitted

desug :: (Difunctor f ,Difunctor g ,Desug f g)⇒ Term f → Term g
desug = appTHom desugHom

instance (Difunctor f ,Difunctor g , f :≺: g)⇒ Desug f g where
desugHom = In . fmap Hole . inj -- default instance for core signatures

instance (App :≺: f ,Lam :≺: f )⇒ Desug Let f where
desugHom (Let e1 e2) = inject (Lam (Hole . e2)) ‘iApp‘ Hole e1
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Note how, in the instance for Let , the constructor Hole is used to embed arguments
of the constructor Let , viz. e1 and e2, into the context that is constructed as the
result.

As for the desugaring function in Section 5.3.2.3, we utilise overlapping instances
to provide a default translation for the signatures that need not be translated.
The definitions above yield the desired desugaring function desug :: Term Sig →
Term Sig ′.

5.5.3 Transforming and Combining Term Homomorphisms

In the following we shall shortly describe what we actually gain by adopting the term
homomorphism approach. First, term homomorphisms enable automatic propaga-
tion of annotations, where annotations are added via a restricted difunctor product,
namely a product of a difunctor f and a constant c:

data (f :&: c) a b = f a b :&: c

For instance, the type of ASTs of our language where each node is annotated with
source positions is captured by the type Term (Sig :&: SrcPos). With a term homo-
morphism Hom f g we automatically get a lifted version Hom (f :&:c) (g :&:c), which
propagates annotations from the input to the output. Hence, from our desugaring
function in the previous section we automatically get a lifted function on parse trees
Term (Sig :&: SrcPos)→ Term (Sig ′ :&: SrcPos), which propagates source positions
from the syntactic sugar to the core constructs. We omit the details here, but note
that the constructions for CDTs [11] carry over straightforwardly to PCDTs.

The second motivation for introducing term homomorphisms is deforestation
[114]. As we have shown previously [11], it is not possible to fuse two term algebras
in order to only traverse the term once. That is, we cannot perform a transformation:

cata φ1 . cata φ2 ; cata (φ1 } φ2)

when φ1 and φ2 are term algebras and } is the desired term algebra composition.
However, with term homomorphism we can:

(}) :: (Difunctor g ,Difunctor h)⇒ Hom g h → Hom f g → Hom f h
ρ1 } ρ2 = appHom ρ1 . ρ2

In fact, we can compose an arbitrary algebra with a term homomorphism:

(�) :: Difunctor g ⇒ Alg g a → Hom f g → Alg f a
φ� ρ = free φ . ρ

where free φ (In t) = φ (fmap (free φ) t)
free (Var x ) = x
free (Hole h) = h

Hence in order to evaluate a term with syntactic sugar, rather than composing eval
and desug , we can use cata (evalAlg�desugHom) that only traverses the term once.
This transformation can be automated and our experimental results for CDTs show
that the thus obtained speedup is significant [11].
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5.6 Generalised Parametric Compositional Data Types

In this section we briefly describe how to lift the construction of mutually recursive
data types and—more generally—GADTs from CDTs to PCDTs. The construction
is based on the work of Johann and Ghani [54]. For CDTs the generalisation, roughly
speaking, amounts to lifting functors to (generalised) higher-order functors [54], and
functions on terms to natural transformations, as shown earlier [11]:

type a .→ b = ∀ i . a i → b i

class HFunctor f where
hfmap :: a .→ b → f a .→ f b

Now, signatures are of the kind (∗ → ∗)→ ∗ → ∗, rather than ∗ → ∗, which reflects
the fact that signatures are now type families, and so are terms (or contexts in
general). At the algebra level, carriers are of the kind ∗ → ∗. Since the signatures
will be defined as GADTs, we effectively deal with many-sorted algebras:

type Alg f a = f a .→ a

If a subterm has the type index i , then the value computed recursively by the
catamorphism will have the type a i . The coproduct :+: and the automatic injections
:≺: carry over straightforwardly from functors to higher-order functors [11].

In order to lift the ideas from CDTs to PCDTs, we need to consider indexed
difunctors. This prompts the notion of higher-order difunctors:

class HDifunctor f where
hdimap :: (a .→ b)→ (c .→ d)→ f b c .→ f a d

instance HDifunctor f ⇒ HFunctor (f a) where
hfmap = hdimap id

Note the familiar pattern from ordinary PCDTs: a higher-order difunctor gives rise
to a higher-order functor when the contravariant argument is fixed.

To illustrate higher-order difunctors, consider a modular GADT encoding of our
core language:

data TArrow i j

data TInt

data Lam :: (∗ → ∗)→ (∗ → ∗)→ ∗ → ∗ where
Lam :: (a i → b j )→ Lam a b (i ‘TArrow ‘ j )

data App :: (∗ → ∗)→ (∗ → ∗)→ ∗ → ∗ where
App :: b (i ‘TArrow ‘ j )→ b i → App a b j

data Lit :: (∗ → ∗)→ (∗ → ∗)→ ∗ → ∗ where
Lit :: Int → Lit a b TInt

data Plus :: (∗ → ∗)→ (∗ → ∗)→ ∗ → ∗ where
Plus :: b TInt → b TInt → Plus a b TInt

data Err :: (∗ → ∗)→ (∗ → ∗)→ ∗ → ∗ where
Err :: Err a b i

type Sig ′ = Lam :+: App :+: Lit :+: Plus :+: Err
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Note, in particular, the type of Lam: now the bound variable is typed!

We use TArrow and TInt as label types of the GADT definitions above. The
preference of these fresh types over Haskell’s → and Int is meant to emphasise that
these phantom types are only labels that represent the type constructors of our
object language.

We use the coproduct :+: of higher-order difunctors above to combine signatures,
which is easily defined, and as for CDTs it is straightforward to lift instances of
HDifunctor for f and g to an instance for f :+: g . Similarly, we can generalise the
relation :≺: from difunctors to higher-order difunctors, so we omit its definition here.

The type of generalised parametric (pre)terms can now be constructed as an
indexed type:

newtype Term f i = Term {unTerm :: ∀ a . Trm f a i }
data Trm f a i = In (f a (Trm f a) i) | Var (a i)

Moreover, we use smart constructors as for PCDTs to compactly represent terms,
for instance:

e :: Term Sig ′ TInt
e = Term (iLam (λx → x ‘iPlus‘ x ) ‘iApp‘ iLit 2)

Finally, we can lift algebras and their induced catamorphisms, by lifting the
definitions in Section 5.3.2.2 via natural transformations and higher-order difunctors:

type Alg f a = f a a .→ a

cata :: HDifunctor f ⇒ Alg f a → Term f .→ a
cata φ (Term t) = cat t

where cat (In t) = φ (hfmap cat t) -- recall: hfmap = hdimap id
cat (Var x ) = x

With the definitions above we can now define a call-by-value interpreter for our
typed example language. To this end, we have to provide a type-level function that,
for a given object language type constructed from TArrow and TInt , selects the
corresponding subset of the semantic domain Sem m from Section 5.4.2.1. This can
be achieved via type families [98]:

type family Sem (m :: ∗ → ∗) i
type instance Sem m (i ‘TArrow ‘ j ) = Sem m i → m (Sem m j )
type instance Sem m TInt = Int

The type Sem m t is obtained from an object language type t by replacing each
function type t1 ‘TArrow ‘ t2 occurring in t with Sem m t1 → m (Sem m t2) and
each TInt with Int .

In order to make this into a proper type function and simultaneously add the
monad m at the top level, we define a newtype M :

newtype M m i = M {unM :: m (Sem m i)}
class Monad m ⇒ Eval m f where

evalAlg :: f (M m) (M m) i → m (Sem m i)



Practical Considerations 141

-- M . evalAlg :: Alg f (M m) is the actual algebra

eval :: (Monad m,HDifunctor f ,Eval m f )⇒ Term f i → m (Sem m i)
eval = unM . cata (M . evalAlg)

We can then provide the instance declarations for the signatures of the core
language, and effectively obtain a tagless, modular, and extendable monadic inter-
preter:

instance Monad m ⇒ Eval m Lam where
evalAlg (Lam f ) = return (unM . f .M . return)

instance Monad m ⇒ Eval m App where
evalAlg (App (M mf ) (M mx )) = do f ← mf ; x ← mx ; f x

instance Monad m ⇒ Eval m Lit where
evalAlg (Lit n) = return n

instance Monad m ⇒ Eval m Plus where
evalAlg (Plus (M mx ) (M my)) = do x ← mx ; y ← my ; return (x + y)

instance MonadError String m ⇒ Eval m Err where
evalAlg Err = throwError "error"

With these definitions we then have, for instance, that eval e :: Either String Int
evaluates to the value Right 4. Due to the fact that we now have a typed language,
the Err constructor is the only source of an erroneous computation—the interpreter
cannot get stuck. Moreover, since the modular specification of the interpreter only
enforces the constraint MonadError String m for the signature Err , then the term
e can in fact be interpreted in the identity monad, rather than the Either String
monad. Consequently, we know statically that the evaluation of e cannot fail!

Note that computations over generalised PCDTs are not limited to the tagless
approach that we have illustrated above. We could have easily reformulated the
semantic domain Sem m from Section 5.4.2.1 as a GADT to use it as the carrier
of a many-sorted algebra. Other natural carriers for many-sorted algebras are the
type families of terms Term f , of course.

Other concepts that we have introduced for vanilla PCDTs before can be trans-
ferred straightforwardly to generalised PCDTs in the same fashion. This includes
contexts and term homomorphisms.

5.7 Practical Considerations

The motivation for introducing CDTs was to make Swierstra’s data types à la
carte [106] readily useful in practice. Besides extending data types à la carte with
various aspects, such as monadic computations and term homomorphisms, the CDTs
library provides all the generic functionality as well as automatic derivation of boil-
erplate code. With (generalised) PCDTs we have followed that path. Our library
provides Template Haskell [101] code to automatically derive instances of the re-
quired type classes, such as Difunctor and Ditraversable, as well as smart construc-
tors and lifting of algebra type classes to coproducts. Moreover, our library supports
automatic derivation of standard type classes Show , Eq , and Ord for terms, similar
to Haskell’s deriving mechanism. We show how to derive instances of Eq in the
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following subsection. Ord follows the same approach, and Show follows an approach
similar to the pretty printer in Section 5.3.2.2, but using the monad FreshM that is
also used to determine equality, as we shall see below.

Figure 5.1 provides the complete source code needed to implement our example
language from Section 5.2.1. Note that we have derived Eq and Show instances for
terms of the language—in particular the term e is printed as Let (Lit 2) (\a ->

App (Lam (\b -> Plus b a)) (Lit 3)).

5.7.1 Equality

A common pattern when developing in Haskell is to derive instances of the type class
Eq , for instance in order to test the desugaring transformation in Section 5.3.2.3.
While the use of PHOAS ensures that all functions are invariant under α-renaming,
we still have to devise an algorithm that decides α-equivalence. To this end, we
will turn the rather elusive representation of bound variables via functions into a
concrete form.

In order to obtain concrete representations of bound variables, we provide a
method for generating fresh variable names. This is achieved via a monad FreshM
offering the following operations:

withName :: (Name → FreshM a)→ FreshM a

evalFreshM :: FreshM a → a

FreshM is an abstraction of an infinite sequence of fresh names. The function
withName provides a fresh name. Names are represented by the abstract type
Name, which implements instances of Show , Eq , and Ord .

We first introduce a variant of the type class Eq that uses the FreshM monad:

class PEq a where
peq :: a → a → FreshM Bool

This type class is used to define the type class EqD of equatable difunctors, which
lifts to coproducts:

class EqD f where
eqD :: PEq a ⇒ f Name a → f Name a → FreshM Bool

instance (EqD f ,EqD g)⇒ EqD (f :+: g) where
eqD (Inl x ) (Inl y) = x ‘eqD ‘ y
eqD (Inr x ) (Inr y) = x ‘eqD ‘ y
eqD = return False

We then obtain equality of terms as follows (we do not consider contexts here for
simplicity):

instance EqD f ⇒ PEq (Trm f Name) where
peq (In t1) (In t2) = t1 ‘eqD ‘ t2
peq (Var x1) (Var x2) = return (x1 ≡ x2)
peq = return False

instance (Difunctor f ,EqD f )⇒ Eq (Term f ) where
(≡) (Term x ) (Term y) = evalFreshM ((x :: Trm f Name) ‘peq ‘ y)
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Note that we need to explicitly instantiate the parametric type in x to Name in the
last instance, in order to trigger the instance for Trm f Name defined above.

Equality of terms, that is α-equivalence, has thus been reduced to providing
instances of EqD for the difunctors comprising the signature of the term, which for
Lam can be defined as follows:

instance EqD Lam where
eqD (Lam f ) (Lam g) = withName (λx → f x ‘peq ‘ g x )

That is, f and g are considered equal if they are equal when applied to the same
fresh name x .

5.8 Discussion and Related Work

Implementing languages with binders can be a difficult task. Using explicit variable
names, we have to be careful in order to make sure that functions on ASTs are
invariant under α-renaming. HOAS [90] is one way of tackling this problem, by
reusing the binding mechanisms of the implementation language to define those of
the object language. The challenge with HOAS, however, is that it is difficult to
perform recursive computations over ASTs with binders [26, 67, 118].

Nominal sets [93] is another approach for dealing with binders, in which vari-
ables are explicit, but recursively defined functions are guaranteed to be invariant
with respect to α-equivalence of terms. Implementations of this approach, however,
require extensions of the metalanguage [102].

Our approach of using PHOAS [19] amounts to the same restriction on embedded
functions as Fegeras and Sheard [26], and Washburn and Weirich [118]. However,
unlike Washburn and Weirich’s Haskell implementation, our approach does not rely
on making the type of terms abstract. Not only is it interesting to see that we can
do without type abstraction, in fact we sometimes need to inspect terms in order to
write functions that produce terms, such as our constant folding algorithm. With
Washburn and Weirich’s encoding this is not possible.

Ahn and Sheard [3] recently showed how to generalise the recursion schemes of
Washburn and Weirich to Mendler-style recursion schemes, using the same repre-
sentation for terms as Washburn and Weirich. Hence their approach also suffers
from the inability to inspect terms. Although we could easily adopt Mendler-style
recursion schemes in our setting, their generality does not make a difference in a
non-strict language such as Haskell.

The finally tagless approach of Carette et al. [18] has been proposed as an alter-
native solution to the expression problem [116]. While the approach is very simple
and elegant, and also supports higher-order encodings, the approach falls short when
we want to define recursive, modular computations that construct modular terms
too. Atkey et al. [8], for instance, use the finally tagless approach to build a mod-
ular interpreter. However, the interpreter cannot be made modular in the return
type, that is the language defining values. Hence, when Atkey et al. extend their
expression language they need to also change the data type that represents values,
which means that the approach is not fully modular.

Besides what is documented in this paper, we have also lifted (generalised) para-
metric compositional data types to other (co)recursion schemes, such as anamor-
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phisms. Moreover, term homomorphisms can be straightforwardly extended with
a state space: depending on how the state is propagated, this yields bottom-up
respectively top-down tree transducers [20].
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import Data.Comp.Param
import Data.Comp.Param.Show ()
import Data.Comp.Param.Equality ()
import Data.Comp.Param.Derive
import Control.Monad.Error (MonadError, throwError)

data Lam a b = Lam (a → b)
data App a b = App b b
data Lit a b = Lit Int
data Plus a b = Plus b b
data Let a b = Let b (a → b)
data Err a b = Err

$(derive [smartConstructors, makeDifunctor, makeShowD, makeEqD]
[’’Lam, ’’App, ’’Lit, ’’Plus, ’’Let, ’’Err])

e :: Term (Lam :+: App :+: Lit :+: Plus :+: Let :+: Err)
e = Term (iLet (iLit 2) (λx → (iLam (λy → y ‘iPlus‘ x) ‘iApp‘ iLit 3)))

-- ∗ Desugaring
class Desug f g where desugHom :: Hom f g

$(derive [liftSum] [’’Desug]) -- lift Desug to coproducts

desug :: (Difunctor f, Difunctor g, Desug f g) ⇒ Term f → Term g
desug (Term t) = Term (appHom desugHom t)

instance (Difunctor f, Difunctor g, f :<: g) ⇒ Desug f g where
desugHom = In . fmap Hole . inj -- default instance for core signatures

instance (App :<: f, Lam :<: f) ⇒ Desug Let f where
desugHom (Let e1 e2) = inject (Lam (Hole . e2)) ‘iApp‘ Hole e1

-- ∗ Constant folding
class Constf f g where constfAlg :: forall a. Alg f (Trm g a)

$(derive [liftSum] [’’Constf]) -- lift Constf to coproducts

constf :: (Difunctor f, Constf f g) ⇒ Term f → Term g
constf t = Term (cata constfAlg t)

instance (Difunctor f, f :<: g) ⇒ Constf f g where
constfAlg = inject . dimap Var id -- default instance

instance (Plus :<: f, Lit :<: f) ⇒ Constf Plus f where
constfAlg (Plus e1 e2) = case (project e1, project e2) of

(Just (Lit n),Just (Lit m)) → iLit (n + m)
_ → e1 ‘iPlus‘ e2

-- ∗ Call-by-value evaluation
data Sem m = Fun (Sem m → m (Sem m)) | Int Int

class Monad m ⇒ Eval m f where evalAlg :: Alg f (m (Sem m))

$(derive [liftSum] [’’Eval]) -- lift Eval to coproducts

eval :: (Difunctor f, Eval m f) ⇒ Term f → m (Sem m)
eval = cata evalAlg

instance Monad m ⇒ Eval m Lam where
evalAlg (Lam f) = return (Fun (f . return))

instance MonadError String m ⇒ Eval m App where
evalAlg (App mx my) = do x ← mx

case x of Fun f → my >>= f
_ → throwError "stuck"

instance Monad m ⇒ Eval m Lit where
evalAlg (Lit n) = return (Int n)

instance MonadError String m ⇒ Eval m Plus where
evalAlg (Plus mx my) = do x ← mx; y ← my

case (x,y) of (Int n,Int m) → return (Int (n + m))
_ → throwError "stuck"

instance MonadError String m ⇒ Eval m Err where
evalAlg Err = throwError "error"

Figure 5.1: Complete example using the parametric compositional data types library.





Chapter 6

Domain-Specific Languages for
Enterprise Systems?

Abstract

The process-oriented event-driven transaction systems (POETS) architec-
ture introduced by Henglein et al. is a novel software architecture for enterprise
resource planning (ERP) systems. POETS employs a pragmatic separation
between (i) transactional data, that is what has happened; (ii) reports, that
is what can be derived from the transactional data; and (iii) contracts, that
is which transactions are expected in the future. Moreover, POETS applies
domain-specific languages (DSLs) for specifying reports and contracts, in order
to enable succinct declarative specifications as well as rapid adaptability and
customisation. In this report we document an implementation of a generalised
and extended variant of the POETS architecture. The generalisation is mani-
fested in a detachment from the ERP domain, which is rather an instantiation
of the system than a built-in assumption. The extensions amount to a customis-
able data model based on nominal subtyping; support for run-time changes to
the data model, reports and contracts, while retaining full auditability; and
support for referable data that may evolve over time, also while retaining full
auditability as well as referential integrity. Besides the revised architecture,
we present the DSLs used to specify data definitions, reports, and contracts
respectively, and we provide the complete specification for a use case scenario,
which demonstrates the conciseness and validity of our approach. Lastly, we
describe technical aspects of our implementation, with focus on the techniques
used to implement the tightly coupled DSLs.

6.1 Introduction

Enterprise resource planning (ERP) systems are comprehensive software systems
used to manage daily activities in enterprises. Such activities include—but are not
limited to—financial management (accounting), production planning, supply chain
management and customer relationship management. ERP systems emerged as a
remedy to heterogeneous systems, in which data and functionality are spread out—
and duplicated—amongst dedicated subsystems. Instead, an ERP system it built
around a central database, which stores all information in one place.

?Joint work with Jesper Andersen and Patrick Bahr [52].
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Figure 6.1: Bird’s-eye view of the POETS architecture (diagram copied from [42]).

Traditional ERP systems such as Microsoft Dynamics NAV1, Microsoft Dynam-
ics AX2, and SAP3 are three-tier architectures with a client, an application server,
and a centralised relational database system. The central database stores infor-
mation in tables, and the application server provides the business logic, typically
coded in a general purpose, imperative programming language. A shortcoming to
this approach is that the state of the system is decoupled from the business logic,
which means that business processes—that is, the daily activities—are not repre-
sented explicitly in the system. Rather, business processes are encoded implicitly
as transition systems, where the state is maintained by tables in the database, and
transitions are encoded in the application server, possibly spread out across several
different logical modules.

The process-oriented event-driven transaction systems (POETS) architecture in-
troduced by Henglein et al. [42] is a qualitatively different approach to ERP systems.
Rather than storing both transactional data and implicit process state in a database,
POETS employs a pragmatic separation between transactional data, which is per-
sisted in an event log, and contracts, which are explicit representations of business
processes, stored in a separate module. Moreover, rather than using general purpose
programming languages to specify business processes, POETS utilises a declarative
domain-specific language (DSL) [6]. The use of a DSL not only enables explicit
formalisation of business processes, it also minimises the gap between requirements
and a running system. In fact, Henglein et al. take it as a goal of POETS that “[...]
the formalized requirements are the system” [42, page 382].

The bird’s-eye view of the POETS architecture is presented in Figure 6.1. At
the heart of the system is the event log, which is an append-only list of transactions.
Transactions represent “things that take place” such as a payment by a customer, a
delivery of goods by a shipping agency, or a movement of items in an inventory. The
append-only restriction serves two purposes. First, it is a legal requirement in ERP
systems that transactions, which are relevant for auditing, are retained. Second, the
report engine utilises monotonicity of the event log for optimisation, as shown by
Nissen and Larsen [79].

Whereas the event log stores historical data, contracts play the role of describing
which events are expected in the future. For instance, a yearly payment of value-

1http://www.microsoft.com/en-us/dynamics/products/nav-overview.aspx.
2http://www.microsoft.com/en-us/dynamics/products/ax-overview.aspx.
3http://www.sap.com.

http://www.microsoft.com/en-us/dynamics/products/nav-overview.aspx
http://www.microsoft.com/en-us/dynamics/products/ax-overview.aspx
http://www.sap.com
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added tax (VAT) to the tax authorities is an example of a (recurring) business
process. The amount to be paid to the tax authorities depends, of course, on
the financial transactions that have taken place. Therefore, information has to
be derived from previous transactions in the event log, which is realised as a report.
A report provides structured data derived from the transactions in the event log.
Like contracts, reports are written in a declarative domain-specific language—not
only in order to minimise the semantic gap between requirements and the running
system, but also in order to perform automatic optimisation.

Besides the radically different software architecture, POETS distinguishes itself
from existing ERP systems by abandoning the double-entry bookkeeping (DEB)
accounting principle [120] in favour of the resources, events, and agents (REA)
accounting model of McCarthy [65].

In double-entry bookkeeping, each transaction is recorded as two postings in a
ledger—a debit and a credit. When, for instance, a customer pays an amount x to a
company, then a debit of x is posted in a cash account, and a credit of x is posted in
a sales account, which reflects the flow of cash from the customer to the company.
The central invariant of DEB is that the total credit equals the total debit—if not,
resources have either vanished or spontaneously appeared. DEB fits naturally in the
relational database oriented architectures, since each ledger is similar in structure to
a table. Moreover, DEB is the de facto standard accounting method, and therefore
used by current ERP systems.

In REA, transactions are not registered in accounts, but rather as the events that
take place. An event in REA is of the form (a1, a2, r) meaning that agent a1 transfers
resource r to agent a2. Hence, when a customer pays an amount x to a company,
then it is represented by a single event (customer, company, x). Since events are
atomic, REA does not have the same redundancy4 as DEB, and inconsistency is
not a possibility: resources always have an origin and a destination. The POETS
architecture not only fits with the REA ontology, it is based on it. Events are
stored as first-class objects in the event log, and contracts describe the expected
future flow of resources.5 Reports enable computation of derived information that
is inherent in DEB, and which may be a legal requirement for auditing. For instance,
a sales account—which summarises (pending) sales payments—can be reconstructed
from information about initiated sales and payments made by customers. Such a
computation will yield the same derived information as in DEB, and the principles
of DEB consistency will be fulfilled simply by construction.

6.1.1 Outline and Contributions

The motivation for our work is to assess the POETS architecture in terms of a
prototype implementation. During the implementation process we have added fea-
tures to the architecture that were painfully missing. Moreover, in the process we
found that the architecture need not be tailored to the REA ontology—indeed to
ERP systems—but the applicability of our generalised architecture to other domains
remains future research. Our contributions are as follows:

4In traditional DEB, redundancy is a feature to check for consistency. However, in a computer
system such redundancy is superfluous.

5Structured contracts are not part of the original REA ontology but instead due to Andersen
et al. [6].
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Figure 6.2: Bird’s-eye view of the generalised and extended POETS architecture.

• We present a generalised and extended POETS architecture (Section 6.2) that
has been fully implemented.

• We present DSLs for data modelling (Section 6.2.1), report specification (Sec-
tion 6.2.4), and contract specification (Section 6.2.5).

• We demonstrate how to implement a small use case, from scratch, in our
implemented system (Section 6.3). We provide the complete specification of
the system, which demonstrates both the conciseness and domain-orientation6

of our approach. We conclude that the extended architecture is indeed well-
suited for implementing ERP systems—although the DSLs and the data model
may require additions for larger systems. Most notably, the amount of code
needed to implement the system is but a fraction of what would be have to be
implemented in a standard ERP system.

• We describe how we have utilised state-of-the art software development tools in
our implementation, especially how the tightly coupled DSLs are implemented
(Section 6.4).

6.2 Revised POETS Architecture

Our generalised and extended architecture is presented in Figure 6.2. Compared to
the original architecture in Figure 6.1, the revised architecture sees the addition of
three new components: a data model, an entity store, and a rule engine. The rule
engine is currently not implemented, and we will therefore not return to this module
until Section 6.5.1.

As in the original POETS architecture, the event log is at the heart of the system.
However, in the revised architecture the event log plays an even greater role, as it

6Compare the motto: “[...] the formalized requirements are the system” [42, page 382].
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Data Model

Function Input Output

addDataDefs ontology specification
getRecordDef record name type definition
getSubTypes record name list of record names

Figure 6.3: Data model interface.

is the only persistent state of the system. This means that the states of all other
modules are also persisted in the event log, hence the flow of information from all
other modules to the event log in Figure 6.2. For example, whenever a contract
is started or a new report is added to the system, then an event reflecting this
operation is persisted in the event log. This, in turn, means that the state of each
module can—in principle—be derived from the event log. However, for performance
reasons each module—including the event log—maintains its own state in memory.

The addition of a data model constitutes the generalisation of the new architec-
ture over the old architecture. In the data model, data definitions can be added to
the system—at run-time—such as data defining customers, resources, or payments.
Therefore, the system is not a priori tailored to ERP systems or the REA ontology,
but it can be instantiated to that, as we shall see in Section 6.3.

The entity store is added to the architecture in order to support entities—unique
“objects” with associated data that may evolve over time. For instance, a concrete
customer can suitably be modelled as an entity: although information attributed to
that customer—such as address, or even name—are likely to change over time, it
is still the same customer. Moreover, we do not want a copy of the customer data
in for instance a sale, but rather a reference to that customer. Hence by modelling
customers as entities, we are able to derive, for instance, all transactions in which
that customer has participated—even if the customer attributes have changed over
time.

We describe each module of the revised architecture in the following subsections.
Since we will focus on the revised architecture in the remainder of the text, we will
refer to said architecture simply as POETS.

6.2.1 Data Model

The data model is a core component of the extended architecture, and the interface it
provides is summarised in Figure 6.3. The data model defines the types of data that
are used throughout the system, and it includes predefined types such as events.
Custom types such as invoices can be added to the data model at run-time via
addDataDefs—for simplicity, we currently only allow addition of types, not updates
and deletions. Types define the structure of the data in a running POETS instance
manifested as values. A value—such as a concrete invoice—is an instance of the
data specified by a type. Values are not only communicated between the system
and its environment but they are also stored in the event log, which is simply a list
of values of a certain type.
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6.2.1.1 Types

Structural data such as payments and invoices are represented as records, that is
typed finite mappings from field labels to values. Record types define the structure
of such records by listing the constituent field labels and their associated types. In
order to form a hierarchical ontology of record types, we use a nominal subtyping
system [91]. That is, each record type has a unique name, and one type is a subtype
of another if and only if stated so explicitly or by transitivity. For instance, a cus-
tomer can be defined as a subtype of a person, which means that a customer contains
all the data of a person, similar to inheritance in object oriented programming.

The choice of nominal types over structural types [91] is justified by the domain:
the nominal type associated with a record may have a semantic impact. For instance,
the type of customers and premium customers may be structurally equal, but a
value of one type is considered different from the other, and clients of the system
may for example choose to render them differently. Moreover, the purpose of the
rule engine, which we return to in Section 6.5.1, is to define rules for values of
a particular semantic domain, such as invoices. Hence it is wrong to apply these
rules to data that happens to have the same structure as invoices. Although we use
nominal types to classify data, the DSLs support full record polymorphism [81] in
order to minimise code duplication. That is, it is possible for instance to use the
same piece of code with customers and premium customers, even if they are not
related in the subtyping hierarchy.

The grammar for types is as follows:

T ::= Bool | Int | Real | String | Timestamp | Duration (type constants)
| RecordName (record type)
| [T ] (list type)
| 〈RecordName〉 (entity type)

Type constants are standard types Booleans, integers, reals, and strings, and less
standard types timestamps (absolute time) and durations (relative time). Record
types are named types, and the record typing environment—which we will de-
scribe shortly—defines the structure of records. For record types we assume a set
RecordName = {Customer,Address, Invoice, . . . } of record names ranged over by r.
Concrete record types are typeset in sans-serif, and they always begin with a capital
letter. Likewise, we assume a set FieldName of all field names ranged over by f .
Concrete field names are typeset in sans-serif beginning with a lower-case letter.

List types [τ ] represent lists of values, where each element has type τ , and it
is the only collection type currently supported. Entity types 〈r〉 represent entity
values that have associated data of type r. For instance, if the record type Customer
describes the data of a customer, then a value of type 〈Customer〉 is a (unique)
customer entity, whose associated Customer data may evolve over time. The type
system ensures that a value of an entity type in the system will have associated data
of the given type, similar to referential integrity in database systems [13]. We will
return to how entities are created and modified in Section 6.2.3.

A record typing environment provides the record types that are available, their
subtype relation, and the fields they define.

Definition 6.2.1. A record typing environment is a tuple (R,A, F, ρ,≤) consisting
of finite sets R ⊆ RecordName and F ⊆ FieldName, a set A ⊆ R, a mapping
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ρ : R → Pfin(F × T ), and a relation ≤ ⊆ R × R, where Pfin(X) denotes the set of
all finite subsets of a set X.

Intuitively, R is the set of defined record types, ρ gives for each defined record
type its fields and their types, ≤ gives the subtyping relation between record types,
and record types in A are considered to be abstract. Abstract record types are
not supposed to be instantiated, they are only used to structure the record type
hierarchy. The functions getRecordDef and getSubTypes from Figure 6.3 provide
the means to retrieve the record typing environment from a running system.

Record types can depend on other record types by having them as part of the
type of a constituent field:

Definition 6.2.2. The immediate dependency relation of a record typing envi-
ronment R = (R,A, F, ρ,≤), denoted →R, is the binary relation on R such that
r1 →R r2 iff there is some (f, τ) ∈ ρ(r1) such that a record name r occurs in τ with
r2 ≤ r. The dependency relation →+

R of R is the transitive closure of →R.

We do not permit all record typing environments. Firstly, we do not allow the
subtyping to be cyclic, that is a record type r cannot have a proper subtype which
has r as a subtype. Secondly, the definition of field types must be unique and
must follow the subtyping, that is a subtype must define at least the fields of its
supertypes. Lastly, we do not allow recursive record type definitions, that is a cycle
in the dependency relation. The two first restrictions are sanity checks, but the last
restriction makes a qualitative difference: the restriction is imposed for simplicity,
and moreover we have not encountered practical situations where recursive types
were needed.

Definition 6.2.3. A record typing environment R = (R,A, F, ρ,≤) is well-formed,
whenever the following is satisfied:

• ≤ is a partial order, (acyclic inheritance)

• each ρ(r) is the graph of a partial function F ⇀ T , (unique typing)

• r1 ≤ r2 implies ρ(r1) ⊇ ρ(r2), and (consistent typing)

• →+
R is irreflexive, that is r1 →+

R r2 implies r1 6= r2. (non-recursive)

Well-formedness of a record typing environment combines both conditions for
making it easy to reason about them—for instance, transitivity of ≤ and inclusion
of fields of supertypes—and hard restrictions such as non-recursiveness and unique
typing. If a record typing environment fails to be well-formed due to the former
only, it can be uniquely closed to a well-formed one:

Definition 6.2.4. The closure of a record typing environment R = (R,A, F, ρ,≤)
is the record typing environment Cl (R) = (R,A, F, ρ′,≤′) such that ≤′ is the tran-
sitive, reflexive closure of ≤ and ρ′ is the consistent closure of ρ with respect to ≤′,
that is ρ′(r) =

⋃
r≤′r′ ρ(r′).

The definition of closure allows us to easily build a well-formed record typing
environment from an incomplete specification.
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Example 6.2.5. As an example, we may define a record typing environment R =
(R,A, F, ρ,≤) for persons and customers as follows:

R = {Person,Customer,Address} ρ(Person) = {(name,String)}
A = {Person} ρ(Customer) = {(address,Address)}
F = {name, address, road, no} ρ(Address) = {(road,String), (no, Int)} ,

with Customer ≤ Person. The only properties that preventR from being well-formed
are the missing field typing (name,String) that Customer should inherit from Person
and the missing reflexivity of ≤. Hence, the closure Cl (R) of R is indeed a well-
formed record typing environment.

In order to combine record typing environments we define the union R1 ∪R2 of
two record typing environments Ri = (Ri, Ai, Fi, ρi,≤i) as the pointwise union:

R1 ∪R2 = (R1 ∪R2, A1 ∪A2, F1 ∪ F2, ρ1 ∪ ρ2,≤1 ∪ ≤2),

where (ρ1 ∪ ρ2)(r) = ρ1(r) ∪ ρ2(r) for all r ∈ R1 ∪ R2. Note that the union of
two well-formed record typing environments need not be well-formed—either due to
incompleteness, which can be resolved by forming the closure of the union, or due
to inconsistencies respectively cyclic dependencies, which cannot be resolved.

6.2.1.2 Values

The set of values Value supplementing the types from the previous section is defined
inductively as the following disjoint union:

Value = Bool ] Int ]Real ] String ] Timestamp ]Duration ]Record ] List ] Ent ,

with:

Bool = {true, false} String = Char∗ Record = RecordName × Fields

Int = Z Timestamp = N Fields = FieldName ⇀fin Value

Real = R Duration = Z List = Value∗,

where X∗ denotes the set of all finite sequences over a set X; Char is a set of
characters; Ent is an abstract, potentially infinite set of entity values; and A ⇀fin B
denotes the set of finite partial mappings from a set A to a set B.

Timestamps are modelled using UNIX time7 and durations are measured in
seconds. A record (r,m) ∈ Record consists of a record name r ∈ RecordName
together with a finite set of named values m ∈ Fields. Entity values e ∈ Ent are
abstract values that only permit equality testing and dereferencing—the latter takes
place only in the report engine (Section 6.2.4), and the type system ensures that
dereferencing cannot get stuck, as we shall see in the following subsection.

Example 6.2.6. As an example, a customer record value c ∈ Record may be as
follows:

c = (Customer,m) m′(road) = Universitetsparken

m(name) = John Doe m′(no) = 1,

m(address) = (Address,m′)

where m,m′ ∈ Fields.
7http://en.wikipedia.org/wiki/Unix time.

http://en.wikipedia.org/wiki/Unix_time
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R, E ` v : τ b ∈ Bool
R, E ` b : Bool

n ∈ Int
R, E ` n : Int

r ∈ Real
R, E ` r : Real

s ∈ String

R, E ` s : String

t ∈ Timestamp

R, E ` t : Timestamp
d ∈ Duration

R, E ` d : Duration

(r,m) ∈ Record

R = (R,A, F, ρ,≤)

r ∈ R \A
dom(ρ(r)) = dom(m)

∀f ∈ dom(m) : R, E ` m(f) : ρ(r)(f)

R, E ` (r,m) : r

(v1, . . . , vn) ∈ List ∀i ∈ {1, . . . , n}.R, E ` vi : τ

R, E ` (v1, . . . , vn) : [τ ]

e ∈ Ent E(e) = r

R, E ` e : 〈r〉

R, E ` v : τ ′ R ` τ ′ <: τ

R, E ` v : τ

R ` τ1 <: τ2
R ` τ <: τ

R ` τ1 <: τ2 R ` τ2 <: τ3
R ` τ1 <: τ3

R ` Int <: Real
r1 ≤ r2

(R,A, F, ρ,≤) ` r1 <: r2

R ` τ1 <: τ2
R ` [τ1] <: [τ2]

r1 ≤ r2
(R,A, F, ρ,≤) ` 〈r1〉 <: 〈r2〉

Figure 6.4: Type checking of values R, E ` v : τ and subtyping R ` τ1 <: τ2.

6.2.1.3 Type Checking

All values are type checked before they enter the system, both in order to check that
record values conform with the record typing environment, but also to check that
entity values have valid associated data. In particular, events—which are values—
are type checked before they are persisted in the event log. In order to type check
entities, we assume an entity typing environment E : Ent ⇀fin RecordName, that is
a finite partial mapping from entities to record names. Intuitively, an entity typing
environment maps an entity to the record type that it has been declared to have
upon creation.

The typing judgement has the form R, E ` v : τ , where R is a well-formed record
typing environment, E is an entity typing environment, v ∈ Value is a value, and
τ ∈ T is a type. The typing judgement uses the auxiliary subtyping judgement
R ` τ1 <: τ2, which is a generalisation of the subtyping relation from Section 6.2.1.1
to arbitrary types.

The typing rules are given in Figure 6.4. The typing rules for base types and
lists are standard. In order to type check a record, we need to verify that the record
contains all and only those fields that the record typing environment prescribes, and
that the values have the right type. The typing rule for entities uses the entity typing
environment to check that each entity has associated data, and that the data has
the required type. The last typing rule enables values to be coerced to a supertype
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in accordance with the subtyping judgement, which is also given in Figure 6.4. The
rules for the subtyping relation extend the relation from Section 6.2.1.1 to include
subtyping of base types, and contextual rules for lists and entities. We remark that
the type system in Figure 6.4 is declarative: in our implementation, an equivalent
algorithmic type system is used.

Example 6.2.7. Reconsider the record typing environmentR and its closure Cl (R)
from Example 6.2.5, and the record value c from Example 6.2.6. Using the typing
rules in Figure 6.4, we can derive the typing judgement Cl (R) , E ` c : Customer for
any entity typing environment E . Moreover, since Customer is a subtype of Person
we also have that Cl (R) , E ` c : Person.

In the following, we want to detail how the typing rules guarantee the integrity
of entities, which involves reasoning about the evolution of the system over time.
To this end, we use Rt = (Rt, At, Ft, ρt,≤t) and Et to indicate the record typing
environment and the entity typing environment respectively, at a point in time t ∈
Timestamp. In order to reason about the data associated with an entity, we assume
for each point in time t ∈ Timestamp an entity environment εt : Ent ⇀fin Record
that maps an entity to its associated data. Entity (typing) environments form the
basis of the entity store, which we will describe in detail in Section 6.2.3.

Given T ⊆ Timestamp and sequences (Rt)t∈T , (Et)t∈T , and (εt)t∈T of record typ-
ing environments, entity typing environments, and entity environments respectively,
which represent the evolution of the system over time, we require the following
invariants to hold for all t, t′ ∈ Timestamp, r, r′ ∈ RecordName, e ∈ Ent , and
v ∈ Record :

if Et(e) = r and Et′(e) = r′ then r = r′, (stable type)

if Et(e) is defined then so is εt(e), and (well-definedness)

if εt(e) = v then Et(e) = r and Rt′ , Et′ ` v : r for some t′ ≤ t. (well-typing)

We refer to the three invariants above collectively as the entity integrity invariants.
The stable type invariant states that each entity can have at most one declared type
throughout its lifetime. The well-definedness invariant guarantees that every entity
that is given a type also has an associated record value. Finally, the well-typing
invariant guarantees that the record value associated with an entity was well-typed
at some earlier point in time t′.

The well-typing invariant is, of course, not strong enough. What we need is that
the value v associated with an entity e remains well-typed throughout the lifetime of
the system. This is, however, dependant on the record typing environment and the
entity typing environment, which both may change over time. Therefore, we need to
impose restrictions on the possible evolution of the record typing environment, and
we need to take into account that entities used in the value v may have been deleted.
We return to these issues in Section 6.2.2 and Section 6.2.3, and in the latter we will
see that the entity integrity invariants are indeed satisfied by the system.

6.2.1.4 Ontology Language

Section 6.2.1.1 provides the semantic account of record types, and in order to specify
record types, we use a variant of Attempto Controlled English [30] due to Jønsson
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Thomsen [56], referred to as the ontology language. The approach is to define data
types in near-English text, in order to minimise the gap between requirements and
specification. As an example, the record typing environment from Example 6.2.5 is
specified in the ontology language as follows:

Person is abstract.
Person has a String called name.

Customer is a Person.
Customer has an Address.

Address has a String called road.
Address has an Int called no.

An ontology definition consists of a sequence of sentences as defined by the
grammar below (where [·] denotes optionality):

Ontology ::= Sentence∗ (ontology)
Sentence ::= RecordName is [a | an] RecordName. (supertype declaration)

| RecordName is abstract. (abstract declaration)
| RecordName has [a | an] Type (field declaration)

[called FieldName].
Type ::= Bool | Int | Real (type constants)

| String | Timestamp | Duration
| RecordName (record type)
| list of Type (list type)
| RecordName entity (entity type)

The language of types Type reflects the definition of types in T and there is
an obvious bijection J·K : Type → T with Jlist of tK = [JtK], Jr entityK = 〈r〉, and
otherwise JtK = t.

The semantics of the ontology language is given by a straightforward mapping
into the domain of record typing environments. Each sentence is translated into a
record typing environment. The semantics of a sequence of sentences is simply the
closure of the union of each sentence’s record typing environment:

Js1 · · · snK = Cl (Js1K ∪ Js2K ∪ · · · ∪ JsnK) ,
Jr1 is [a | an] r2.K = ({r1, r2} , ∅, ∅, {r1 7→ ∅, r2 7→ ∅} , {(r1, r2)}),
Jr is abstract.K = ({r} , {r} , ∅, {r 7→ ∅} , ∅),

Jr has [a | an] t called f.K = ({r} , ∅, {f} , {r 7→ {(f, JtK)}} , ∅).

We omit the case where the optional FieldName is not supplied in a field decla-
ration. We treat this form as syntactic sugar for r has (a | an) t called f. where f
is derived from the type t. In this case a default name is used based on the type,
simply by changing the first letter to a lower-case. Hence, in the example above
the field name of a customer’s address is address. Note that the record typing en-
vironment need not be well-formed (Definition 6.2.3), and a subsequent check for
well-formedness has to be performed.

Data definitions added to the system via addDataDefs are specified in the ontol-
ogy language. We require, of course, that the result of adding data definitions must
yield a well-defined record typing environment. Moreover, we impose further mono-
tonicity constraints which ensure that existing data in the system remain well-typed.
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We return to these constraints when we discuss the event log in Section 6.2.2. Type
definitions retrieved via getRecordDef provide the semantic structure of a record
type, that is its immediate supertypes, its fields, and an indication whether the
record type is abstract. getSubTypes returns a list of immediate subtypes of a given
record type, hence getRecordDef and getSubTypes provide the means for clients of
the system to traverse the type hierarchy—both upwards and downwards.

6.2.1.5 Predefined Ontology

Unlike the original POETS architecture [42], our generalised architecture is not
fixed to an enterprise resource planning (ERP) domain. However, we require a set
of predefined record types, which are included in Appendix E.1. That is, the record
typing environment R0 denoted by the ontology in Appendix E.1 is the initial record
typing environment in all POETS instances.

The predefined ontology defines five root concepts in the data model, that is
record types maximal with respect to the subtype relation ≤. Each of these five root
concepts Data, Event, Transaction, Report, and Contract are abstract and only Event
and Contract define record fields. Custom data definitions added via addDataDefs
are only permitted as subtypes of Data, Transaction, Report, and Contract. In con-
trast to that, Event has a predefined and fixed hierarchy.

Data types represent elements in the domain of the system such as customers, items,
and resources.

Transaction types represent events that are associated with a contract, such as pay-
ments, deliveries, and issuing of invoices.

Report types are result types of report functions, that is the data of reports, such
as inventory status, income statement, and list of customers. The Report
structure does not define how reports are computed, only what kind of result
is computed. We will return to this discussion in Section 6.2.4.

Contract types represent the different kinds of contracts, such as sales, purchases,
and manufacturing procedures. Similar to Report, the structure does not define
what the contract dictates, only what is required to instantiate the contract.
The purpose of Contract is hence dual to the purpose of Report: the former
determines an input type, and the latter determines an output type. We will
return to contracts in Section 6.2.5.

Event types form a fixed hierarchy and represent events that are logged in the
system. Events are conceptually separated into internal events and external
events, which we describe further in the following section.

6.2.2 Event Log

The event log is the only persistent state of the system, and it describes the complete
state of a running POETS instance. The event log is an append-only list of records of
the type Event defined in Appendix E.1. Each event reflects an atomic interaction
with the running system. This approach is also applied at the “meta level” of
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POETS: in order to allow agile evolution of a running POETS instance, changes to
the data model, reports, and contracts are reflected in the event log as well.

The monotonic nature of the event log—data is never overwritten or deleted
from the system—means that the state of the system can be reconstructed at any
previous point in time. In particular, transactions are never deleted, which is a legal
requirement for ERP systems. The only component of the architecture that reads
directly from the event log is the report engine (compare Figure 6.2), hence the only
way to access data in the log is via a report.

All events are equipped with an internal timestamp (internalTimeStamp), the
time at which the event is registered in the system. Therefore, the event log is
always monotonically decreasing with respect to internal timestamps, as the newest
event is at the head of the list. Conceptually, events are divided into external and
internal events.

External events are events that are associated with a contract, and only the con-
tract engine writes external events to the event log. The event type TransactionEvent
models external events, and it consists of three parts: (i) a contract identifier
(contractId), (ii) a timestamp (timeStamp), and (iii) a transaction (transaction). The
identifier associates the external event with a contract, and the timestamp repre-
sents the time at which the external event takes place. Note that the timestamp
need not coincide with the internal timestamp. For instance, a payment in a sales
contract may be registered in the system the day after it takes place. There is
hence no a priori guarantee that external events have decreasing timestamps in the
event log—only external events that pertain to the same contract are required to
have decreasing timestamps. The last component, transaction, represents the ac-
tual action that takes place, such as a payment from one person or company to
another. The transaction is a record of type Transaction, for which the system has
no presumptions.

Internal events reflect changes in the state of the system at a meta level. This is
the case for example when a contract is instantiated or when a new record definition
is added. Internal events are represented by the remaining subtypes of the Event
record type. Figure 6.5 provides an overview of all non-abstract record types that
represent internal events.

A common pattern for internal events is to have three event types to represent
creation, update, and deletion of respective components. For instance, when a report
is added to the report engine, a CreateReport event is persisted to the log, and
when it is updated or deleted, UpdateReport and DeleteReport events are persisted
accordingly. This means that previous versions of the report specification can be
retrieved, and more generally that the system can be restarted simply by replaying
the events that are persisted in the log on an initially empty system. Another
benefit to the approach is that the report engine, for instance, does not need to
provide built-in functionality to retrieve, say, the list of all reports added within the
last month—such a list can instead be computed as a report itself! We will see how
to write such a “meta” report in Section 6.2.4. Similarly, lists of entities, contract
templates, and running contracts can be defined as reports.

Since we allow the data model of the system to evolve over time, we must be
careful to ensure that the event log, and thus all data in it, remains well-typed at
any point in time. Let (Rt)t∈T , (Et)t∈T , and (lt)t∈T be sequences of record typing en-
vironments, entity typing environments, and event logs respectively. Since an entity
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Event Description

AddDataDefs A set of data definitions is added to the system. The field defs
contains the ontology language specification.

CreateEntity An entity is created. The field data contains the data associated
with the entity, the field recordType contains the string represen-
tation of the declared type, and the field ent contains the newly
created entity value.

UpdateEntity The data associated with an entity is updated.
DeleteEntity An entity is deleted.

CreateReport A report is created. The field code contains the specification of the
report, and the fields description and tags are meta data.

UpdateReport A report is updated.
DeleteReport A report is deleted.

CreateContractDef A contract template is created. The field code contains the spec-
ification of the contract template, and the fields recordType and
description are meta data.

UpdateContractDef A contract template is updated.
DeleteContractDef A contract template is deleted.

CreateContract A contract is instantiated. The field contractId contains the newly
created identifier of the contract and the field contract contains the
name of the contract template to instantiate, as well as data needed
to instantiate the contract template.

UpdateContract A contract is updated.
ConcludeContract A contract is concluded.

Figure 6.5: Internal events.

might be deleted over time, and thus is removed from the entity typing environ-
ment, the event log may not be well-typed with respect to the current entity typing
environment. To this end, we type the event log with respect to the accumulated
entity typing environment Êt =

⋃
t′≤t Et′ . That is, Êt(e) = r iff there is some t′ ≤ t

with Et′(e) = r. The stable type invariant guarantees that Êt is indeed well-defined.
For changes to the record typing environment, we require the following invariants

for any points in time t, t′ and the event log lt at time t:

if t′ ≥ t then Rt′ = Rt ∪R∆ for some R∆, and (monotonicity)

Rt, Êt ` lt : [Event] . (log typing)

Note that the log typing invariant follows from the monotonicity invariant and the
type checking Rt, Et ` e : Event for each new incoming event, provided that for each
record name r occurring in the event log, no additional record fields are added to r,
and r is not made an abstract record type. We will refer to the two invariants above
collectively as record typing invariants. They will become crucial in the following
section.

6.2.3 Entity Store

The entity store provides very simple functionality, namely creation, deletion and
updating of entities, respectively. To this end, the entity store maintains the current
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Entity Store

Function Input Output

createEntity record name, record entity
updateEntity entity, record
deleteEntity entity

Figure 6.6: Entity store interface.

entity typing environment Et as well as the history of entity environments ε0, . . . , εt.
The interface of the entity store is summarised in Figure 6.6.

The creation of a new entity via createEntity at time t + 1 requires a declared
type r and an initial record value v, and it is checked that Rt, Et ` v : r. If the
value type checks, a fresh entity value e 6∈ ⋃t′≤t dom(εt′) is created, and the entity
environment and the entity typing environment are updated accordingly:

εt+1(x) =

{
v if x = e,

εt(x) otherwise,
Et+1(x) =

{
r if x = e,

Et(x) otherwise.

Moreover, a CreateEntity event is persisted to the event log containing e, r, and v
for the relevant fields.

Similarly, if the data associated with an entity e is updated to the value v at
time t+ 1, then it is checked that Rt, Et ` v : Et(e), and the entity store is updated
like above. Note that the entity typing environment is unchanged, that is Et+1 = Et.
A corresponding UpdateEntity event is persisted to the event log containing e and v
for the relevant fields.

Finally, if an entity e is deleted at time t+ 1, then it is removed from both the
entity store and the entity typing environment:

εt+1(x) = εt(x) iff x ∈ dom(εt) \ {e} ,
Et+1(x) = Et(x) iff x ∈ dom(Et) \ {e} .

A corresponding DeleteEntity event is persisted to the event log containing e for the
relevant field.

Note that, by default, εt+1 = εt and Et+1 = Et, unless one of the situations
above apply. It is straightforward to show that the entity integrity invariants are
maintained by the operations described above (the proof follows by induction on
the timestamp t). Internally, that is, for the report engine compare Figure 6.2, the
entity store provides a lookup function lookupt : Ent × [0, t] ⇀fin Record , where
lookupt(e, t

′) provides the latest value associated with the entity e at time t′, where
t is the current time. Note that this includes the case in which e has been deleted at
or before time t′. In that case, the value associated with e just before the deletion is
returned. Formally, lookupt is defined in terms of the entity environments as follows:

lookupt(e, t1) = v iff ∃t2 ≤ t1 : εt2(e) = v and ∀t2 < t3 ≤ t1 : e 6∈ dom(εt3).

In particular, we have that if e ∈ dom(εt1) then lookupt(e, t1) = εt1(e).
From this definition and the invariants of the system, we obtain the following

property:
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Corollary 6.2.8. Let (Rt)t∈T , (Et)t∈T , and (εt)t∈T be sequences of record typing en-
vironments, entity typing environments, and entity environments respectively, sat-
isfying the entity integrity invariants and the record typing invariants. Then the
following holds for all timestamps t ≤ t1 ≤ t2 and entities e ∈ Ent:

If Rt, Êt ` e : 〈r〉 then lookupt2(e, t1) = v for some v and Rt2 , Êt2 ` v : r.

Proof. Assume that Rt, Êt ` e : 〈r〉. Then it follows from the typing rule for entity
values and the subtyping rules that Êt(e) = r′ for some r′ with r′ ≤t r. That is,
there is some t′ ≤ t with Et′(e) = r′. Hence, from the well-definedness invariant
it follows that εt′(e) is defined. Since t′ ≤ t ≤ t1, we can thus conclude that
lookupt2(e, t1) = (r′′,m), for some record value (r′′,m).

According to the definition of lookupt2 , we then have some t3 ≤ t1 with εt3(e) =
(r′′,m). Applying the well-typing invariant, we obtain some t4 ≤ t3 with Rt4 , Et4 `
(r′′,m) : Et3(e). Since, by the stable type invariant, Et3(e) = Et′(e) = r′, we then
have that Rt4 , Et4 ` (r′′,m) : r′. Moreover, according to the typing rules, this can
only be the case if r′′ ≤t4 r′.

Due to the monotonicity invariant, we know that Rt2 = Rt4 ∪R∆ for some R∆.
In particular, this means that r′′ ≤t4 r′ implies that r′′ ≤t2 r′. Similarly, r′ ≤t r
implies that r′ ≤t2 r. Hence, by transitivity of ≤t2 , we have that r′′ ≤t2 r.

According to the implementation of the entity store, we know that εt3(e) =
(r′′,m) implies that (r′′,m) occurs in the event log (as part of an event of type
CreateEntity or UpdateEntity) at least from t3 onwards, in particular in the event
log lt2 at t2. Since, by the log typing invariant, the event log lt2 is well-typed as

Rt2 , Êt2 ` lt2 : [Event], we know that Rt2 , Êt2 ` (r′′,m) : r′′. From the subtype

relation r′′ ≤t2 r we can thus conclude Rt2 , Êt2 ` (r′′,m) : r.

The corollary above describes the fundamental safety property with respect to
entity values: if an entity value previously entered the system, and hence type
checked, then all future dereferencing will not get stuck, and the obtained value will
be well-typed with respect to the accumulated entity typing environment.

6.2.4 Report Engine

The purpose of the report engine is to provide a structured view of the database
that is constituted by the system’s event log. This structured view of the data in
the event log comes in the form of a report, which provides a collection of condensed
structured information compiled from the event log. Conceptually, the data provided
by a report is compiled from the event log by a function of type [Event] → Report,
a report function. The report language provides a means to specify such a report
function in a declarative manner. The interface of the report engine is summarised
in Figure 6.7.

6.2.4.1 The Report Language

In this section, we provide an overview over the report language. The report lan-
guage is—much like the query fragment of SQL—a functional language without side
effects. It only provides operations to non-destructively manipulate and combine val-
ues. Since the system’s storage is based on a shallow event log, the report language
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Report Engine

Function Input Output

addReport name, type, description, tags, report definition
updateReport name, type, description, tags, report definition
deleteReport name
queryReport name, list of values value

Figure 6.7: Report engine interface.

must provide operations to relate, filter, join, and aggregate pieces of information.
Moreover, as the data stored in the event log is inherently heterogeneous—containing
data of different kinds—the report language offers a comprehensive type system that
allows us to safely operate in this setting.

Example 6.2.9. Consider the following simple report function that lists all reports
available in the system:

reports : [PutReport]
reports = nubProj (λx → x.name) [pr |

cr : CreateReport ← events,
pr : PutReport = first cr [ur | ur : ReportEvent ← events,

ur.name ≡ cr.name]]

The report function above uses the two functions nubProj and first, which are
defined in the standard library of the report language. The function nubProj of
type (Eq b) ⇒ (a → b) → [a] → [a] removes duplicates in the given list according
to the equality on the result of the provided projection function. In the exam-
ple above, reports with the same name are considered duplicates. The function
first : a → [a] → a returns the first element of the given list or the default value
provided as first argument if the list is empty.

Every report function implicitly has as its first argument the event log of type
[Event]—a list of events—bound to the name events. The syntax—and to large
parts also the semantics—is based on Haskell [63]. The central data structure is
that of lists. In order to formulate operations on lists concisely, we use list compre-
hensions [115] as seen in Example 6.2.9. A list comprehension of the form [ e | c ]
denotes a list containing elements of the form e generated by c, where c is a sequence
of generators and filters.

As we have mentioned, access to type information and its propagation to sub-
sequent computations is essential due to the fact that the event log is a list of
heterogeneously typed elements. The generator cr : CreateReport ← events iter-
ates through elements of the list events, binding each element to the variable cr.
The typing cr : CreateReport restricts this iteration to elements of type CreateReport,
a subtype of Event. This type information is propagated through the subsequent
generators and filters of the list comprehension. In the filter ur.name ≡ cr.name,
we use the fact that elements of type ReportEvent have a field name of type String.
When binding the first element of the result of the nested list comprehension to the
variable pr it is also checked whether this element is in fact of type PutReport. Thus
we ignore reports that are marked as deleted via a DeleteReport event.
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The report language is based on the simply typed lambda calculus extended with
polymorphic (non-recursive) let expressions as well as type case expressions. The
core language is given by the following grammar:

e ::= x | c | λx .e | e1 e2 | let x = e1 in e2 | type x = e of {r → e1; → e2} ,

where x ranges over variables, and c over constants which include integers, Booleans,
tuples and list constructors as well as operations on them like +, if-then-else etc. In
particular, we assume a fold operation fold of type (α → β → β) → β → [α] → β.
This is the only operation of the report language that permits recursive computations
on lists. List comprehensions are mere syntactic sugar and can be reduced to fold
and let expressions as for example in Haskell [63].

The extended list comprehensions of the report language that allow filtering
according to run-time type information depend on type case expressions of the form
type x = e of {r → e1; → e2}. In such a type case expression, an expression e
of some record type re gets evaluated to a record value v which is then bound to a
variable x. The record type r that the record value v is matched against can be any
subtype of re. Further evaluation of the type case expression depends on the type
rv of the record value v. This type can be any subtype of re. If rv ≤ r then the
evaluation proceeds with e1, otherwise with e2. Binding e to a variable x allows us
to use the stricter type r in the expression e1.

Another important component of the report language consists of the derefer-
encing operators ! and @, which give access to the lookup operator provided by
the entity store. Given an expression e of an entity type 〈r〉, both dereferencing
operators provide a value v of type r. That is, both ! and @ are unary operators
of type 〈r〉 → r for any record type r. In the case of the operator !, the resulting
record value v is the latest value associated with the entity to which e evaluates.
More concretely, given an entity value v, the expression v! evaluates to the record
value lookupt(v, t), where t is the current timestamp.

On the other hand, the contextual dereference operator @ provides as the result
the value associated with the entity at the moment the entity was used in the event
log (based on the internalTimeStamp field). This is the case when the entity is
extracted from some event from the event log. Otherwise, the entity value stems
from an actual argument to the report function. In the latter case @ behaves like the
ordinary dereference operator !. In concrete terms, every entity value v that enters
the event log is annotated with the timestamp of the event it occurs in. That is, each
entity value embedded in an event e in the event log, occurs in an annotated form
(v, s), where s is the value of e’s internalTimeStamp field. Given such an annotated
entity value (v, s), the expression (v,s)@ evaluates to lookupt(v, s) and given a bare
entity value v the expression v@ evaluates to lookupt(v, t).

Note that in each case for either of the two dereference operators, Corollary 6.2.8
guarantees that the lookup operation yields a record value of the right type. That
is, both ! : 〈r〉 → r and @ : 〈r〉 → r are total functions that never get stuck.

Example 6.2.10. The entity store and the contextual dereferencing operator pro-
vide a solution to a recurring problem in ERP systems, namely how to maintain
historical data for auditing. For example, when an invoice is issued in a sale, then
a copy of the customer information at the time of the invoice is needed for audit-
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ing. Traditional ERP systems solve the problem by explicit copying of data, since
referenced data might otherwise get destructively updated.

Since data is never deleted in a POETS system, we can solve the problem without
copying. Consider the following definition of transactions that represent issuing of
invoices, and invoices respectively (we assume that the record types Customer and
OrderLine are already defined):

IssueInvoice is a Transaction.
IssueInvoice has a Customer entity.
IssueInvoice has a list of OrderLine.

Invoice is Data.
Invoice has a Customer.
Invoice has a list of OrderLine.

Rather than containing a Customer record, an IssueInvoice transaction contains a
Customer entity, which eliminates copying of data. From an IssueInvoice transaction
we can instead derive the invoice data by the following report function:

invoices : [Invoice]
invoices = [Invoice{customer = ii.customer@, orderLines = ii.orderLines} |

tr : TransactionEvent ← events,
ii : IssueInvoice = tr.transaction]

Note how the @ operator is used to dereference the customer data: since the
ii.customer value originates from an event in the event log, the contextual derefer-
encing will produce data associated with the customer at the time when the invoice
was issued, as required.

6.2.4.2 Incrementalisation

While the type system is important in order to avoid obvious specification errors, it
is also important to ensure a fast execution of the thus obtained functional specifi-
cations. This is, of course, a general issue for querying systems. In our system it is,
however, of even greater importance since shifting the structure of the data—from
the data store to the domain of queries—means that queries operate on the complete
data set of the database. In principle, the data of each report has to be recomputed
after each transaction by applying the corresponding report function to the updated
event log. In other words, if treated näıvely, the conceptual simplification provided
by the flat event log has to be paid via more expensive computations.

This issue can be addressed by transforming a given report function f into an
incremental function f ′ that updates the report data computed previously according
to the changes that have occurred since the report data was computed before. That
is, given an event log l and an update to it l⊕e, we require that f(l⊕e) = f ′(f(l), e).
The new report data f(l⊕ e) is obtained by updating the previous report data f(l)
according to the changes e. In the case of the event log, we have a list structure.
Changes only occur monotonically, by adding new elements to it: given an event log
l and a new event e, the new event log is e# l, where # is the list constructor of
type α→ [α]→ [α].

Here it is crucial that we have restricted the report language such that operations
on lists are limited to the higher-order function fold. The fundamental idea of
incrementalising report functions is based on the following equation satisfied by
fold:

fold f e (x# xs) = f x (fold f e (xs))
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Based on this idea, we are able to make the computation of most report functions
independent of the size of the event log but only dependent of the changes to the
event log and the previous result of the report function [79]. Unfortunately, if we
consider for example list comprehensions containing more than one generator, we
have functions with nested folds. In order to properly incrementalise such functions,
we need to move from list structures to multisets. This is, however, only rarely
a practical restriction since most aggregation functions are based on commutative
binary operations and are thus oblivious to ordering.

6.2.4.3 Lifecycle of Reports

Like entities, the set of reports registered in a running POETS instance—and thus
available for querying—can be changed via the external interface to the report en-
gine. To this end, the report engine interface provides the operations addReport,
updateReport, and deleteReport. The former two take a report specification that
contains the name of the report, the definition of the report function that generates
the report data and the type of the report function. Optionally, it may also contain
further meta information in the form of a description text and a list of tags.

Example 6.2.11. Reconsider the function defined in Example 6.2.9 that lists all
active reports with all their meta data. The following report specification uses the
report function from Example 6.2.9 in order to define a report function that lists
the names of all active report:

name: ReportNames
description: A list of names of all registered reports.
tags: internal, report

reports : [PutReport]
reports = nubProj (λx → x.name) [pr |

cr : CreateReport ← events,
pr : PutReport = first cr [ur | ur : ReportEvent ← events,

ur.name ≡ cr.name]]

report : [String]
report = [r.name | r ← reports]

In the header of the report specification, the name and optionally also a de-
scription text as well as a list of tags is provided as meta data to the actual report
function specification. Every report specification must define a top-level function
called report, which provides the report function that derives the report data from
the event log. In the example above, this function takes no (additional) arguments
and returns a list of strings—the names of active reports.

Calls to addReport and updateReport are both reflected by a corresponding event
of type CreateReport and UpdateReport respectively. Both events are subtypes of
PutReport and contain the meta information as well as the original specification
text of the concerning report. When a report is no longer needed, it can be removed
from the report engine by a corresponding deleteReport operation. Note that the
change and removal of reports only affect the state of the POETS system from the
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Contract Engine

Function Input Output

createTemplate name, type, description, specification
updateTemplate name, type, description, specification
deleteTemplate name

createContract meta data contract ID
updateContract contract ID, meta data
concludeContract contract ID
getContract contract ID contract state
registerTransaction contract ID, timestamp, transaction

Figure 6.8: Contract engine interface.

given point in time. Transactions that occurred prior to a change or deletion of a
report are not affected. This is important for the system’s ability to fully recover
after a crash by replaying the events from the event log.

The remaining operation provided by the report engine—queryReport—is the
core functionality of the reporting system. Given a name of a registered report and
a list of arguments, this operation supplies the given arguments to the corresponding
report function and returns the result. For example, the ReportNames report spec-
ified in Example 6.2.11 does not require any arguments—its type is [String]—and
returns the names of registered reports.

6.2.5 Contract Engine

The role of the contract engine is to determine which transactions—that is external
events, compare Section 6.2.2—are expected by the system. Transactions model
events that take place according to an agreement, for instance a delivery of goods in
a sale, a payment in a lease agreement, or a movement of items from one inventory
to another in a production plan. Such agreements are referred to as contracts,
although they need not be legally binding contracts. The purpose of a contract is
to provide a detailed description of what is expected, by whom, and when. A sales
contract, for example, may stipulate that first the company sends an invoice, then
the customer pays within a certain deadline, and finally the company delivers goods
within another deadline.

The interface of the contract engine is summarised in Figure 6.8.

6.2.5.1 Contract Templates

In order to specify contracts such as the aforementioned sales contract, we use an
extended variant of the contract specification language (CSL) of Hvitved et al. [53],
which we will refer to as the POETS contract specification language (PCSL) in
the following. For reusability, contracts are always specified as contract templates
rather than as concrete contracts. A contract template consists of four parts: (i) a
template name, (ii) a template type, which is a subtype of the Contract record type,
(iii) a textual description, and (iv) a PCSL specification. We describe PCSL in
Section 6.2.5.3.



168 Domain-Specific Languages for Enterprise Systems

The template name is a unique identifier, and the template type determines the
parameters that are available in the contract template.

Example 6.2.12. We may define the following type for sales contracts in the ontol-
ogy language (assuming that the record types Customer, Company, and Goods have
been defined):

Sale is a Contract.
Sale has a Customer entity.
Sale has a Company entity.
Sale has a list of Goods.
Sale has an Int called amount.

With this definition, contract templates of type Sale are parametrised over the fields
customer, company, goods, and amount of types 〈Customer〉, 〈Company〉, [Goods],
and Int, respectively.

The contract engine provides an interface to add contract templates (createTem-
plate), update contract templates (updateTemplate), and remove contract templates
(deleteTemplate) from the system at run-time. The structure of contract templates
is reflected in the external event types CreateContractDef, UpdateContractDef, and
DeleteContractDef, compare Section 6.2.2. A list of (non-deleted) contract templates
can hence be computed by a report, similar to the list of (non-deleted) reports from
Example 6.2.11.

6.2.5.2 Contract Instances

A contract template is instantiated via createContract by supplying a record value v
of a subtype of Contract. Besides custom fields, which depend on the type at hand,
such a record always contains the fields templateName and startDate inherited from
the Contract record type, compare Appendix E.1. The field templateName contains
the name of the template to instantiate, and the field startDate determines the start
date of the contract. The fields of v are substituted into the contract template in
order to obtain a contract instance, and the type of v must therefore match the
template type. For instance, if v has type Sale then the field templateName must
contain the name of a contract template that has type Sale. We refer to the record
v as contract meta data.

When a contract c is instantiated by supplying contract meta data v, a fresh
contract identifier i is created, and a CreateContract event is persisted in the event
log with with contract = v and contractId = i. Hereafter, transactions t can be
registered with the contract via registerTransaction, which will update the contract

to a residual contract c′, written c
t→ c′, and a TransactionEvent with transaction = t

and contractId = i is written to the event log. The state of the contract can be
acquired from the contract engine at any given point in time via getContract, which
enables run-time analyses of contracts, for instance in order to generate a list of
expected transactions.

Registration of a transaction c
t→ c′ is only permitted if the transaction is ex-

pected in the current state c. That is, there need not be a residual state for all

transactions. After zero or more successful transactions, c
t1→ c1

t2→ · · · tn→ cn, the
contract may be concluded via concludeContract, provided that the residual contract
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cn does not contain any outstanding obligations. This results in a ConcludeContract
event to be persisted in the event log.

The lifecycle described above does not take into account that contracts may have
to be updated at run-time, for example if it is agreed to extend the payment deadline
in a sales contract. To this end, running contracts are allowed to be updated, simply
by supplying new contract meta data (updateContract). The difference in the new
meta data compared to the old meta data may not only be a change of, say, items
to be sold, but it may also be a change in the field templateName. The latter makes
it is possible to replace the old contract by a qualitatively different contract, since
the new contract template may describe a different workflow. There is, however, an
important restriction: a contract can only be updated if any previous transactions
registered with the contract also conform with the new contract. That is, if the

contract has evolved like c
t1→ c1

t2→ · · · tn→ cn, and an update to a new contract c′

is requested, then only if c′
t1→ c′1

t2→ · · · tn→ c′n, for some c′1, . . . , c
′
n, is the update

permitted. A successful update results in an UpdateContract event to be written to
the event log with the new meta data.

Note that, for simplicity, we only allow the updates described above. Another
possibility is to allow updates where the current state of the contract c is replaced
directly by a new state c′. Although we can achieve this effect via a suitably de-
fined contract template and the updateContract function above, a direct update is
preferable.

As for contract templates, a list of (non-concluded) contract instances can be
computed by a report that inspects CreateContract, UpdateContract, and Conclude-
Contract events respectively.

6.2.5.3 The Contract Language

The fourth component of contract templates—the PCSL specification—is the actual
normative content of contract templates. The core grammar for PCSL is presented
in Figure 6.9. PCSL extends CSL mainly at the level of expressions E, by adding
support for the value types in POETS, as well as lambda abstractions and function
applications. At the level of clauses C, PCSL is similar to CSL, albeit with a slightly
altered syntax.

The semantics of PCSL is a straightforward extension of that of CSL [53], al-
though we use a partial small-step semantics rather than CSL’s total small-step
semantics. That is, there need not be a residue for all clauses and transactions, as
described in Section 6.2.5.2. This is simply in order to prevent “unexpected” events
from entering the system, for instance we only allow a payment to be entered into
the system if a running contract expects that payment.

The type system for clauses is identical with CSL. Typing of expressions is,
however, more challenging since we have introduced (record) polymorphism as well
as subtyping. We will not present the extended semantics nor the extended typing
rules, but only remark that the typing serves the same purpose as in CSL: evaluation
of expressions does not get stuck and always terminates, and contracts have unique
blame assignment.

Example 6.2.13. We demonstrate PCSL by means of an example, presented in
Figure 6.10. The contract template is of the type Sale from Example 6.2.12, which
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Tmp ::= name : ContractName (contract template)
type : RecordName
description : String
Def . . .Def contract = C

Def ::= val Var = E (value definition)
| clause ClauseName(Var : T , . . . ,Var : T ) (clause template)

〈Var : T , . . . ,Var : T 〉 = C

C ::= fulfilment (no obligations)
| 〈E 〉 RecordName(F , . . . ,F ) (obligation)

where E due D remaining Var then C
| when RecordName(F , . . . ,F ) (external choice)

where E due D remaining Var then C else C
| if E then C else C (internal choice)
| C and C (conjunction)
| C or C (disjunction)
| ClauseName(E , . . . ,E )〈E , . . . ,E 〉 (instantiation)

F ::= FieldName Var (field binder)

R ::= RecordName Var (record binder)

T ::= TypeVar (type variable)
| () (unit type)
| Bool | Int | Real | String (type constants)
| Timestamp | Duration
| RecordName (record type)
| [T ] (list type)
| 〈T 〉 (entity type)
| T → T (function type)

E ::= Var (variable)
| BaseValue (base value)
| RecordName{FieldName = E , . . . ,FieldName = E} (record expression)
| [E , . . . ,E ] (list expression)
| λVar → E (function abstraction)
| E E (function application)
| E ⊕ E (binary expression)
| E .FieldName (field projection)
| E{FieldName = E} (field update)
| if E then E else E (conditional)
| case E of R → E | · · · | R → E (record type casing)

D ::= after E within E (deadline expression)

⊕ ::= × | / | + | 〈×〉 | 〈+〉 | # | ≡ | ≤ | ∧ (binary operators)

Figure 6.9: Grammar for the core contract language PCSL. ContractName is the
set of all contract template names, ClauseName is the set of all clause template
names ranged over by k, Var is the set of all variable names ranged over by x,
TypeVar is the set of all type variable names ranged over by α, and BaseValue =
Bool ] Int ] Real ] String ] Timestamp ]Duration ] Ent .
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name: salesContract
type: Sale
description: "A simple sales contract between a company and a customer"

fun elem x = foldr (λy b → x ≡ y ∨ b) false
fun filter f = foldr (λx b → if f x then x # b else b) []
fun subset l1 l2 = all (λx → elem x l2) l1
fun diff l1 l2 = filter (λx → ¬ (elem x l2)) l1

clause sale(goods : [Goods], amount : Int)〈comp : 〈Company〉, cust : 〈Customer〉〉 =
〈comp〉 IssueInvoice(goods g, amount a)

where g ≡ goods ∧ a ≡ amount due immediately
then
〈cust〉 Payment(amount a)

where a ≡ amount due within 14D
and
delivery(goods, 1W)〈comp〉

clause delivery(goods : [Goods], deadline : Duration)〈comp : 〈company〉〉 =
if goods ≡ [] then

fulfilment
else
〈comp〉 Delivery(goods g)

where g 6≡ [] ∧ subset g goods due within deadline remaining r
then
delivery(diff goods g, r)〈comp〉

contract = sale(goods, amount)〈company, customer〉

Figure 6.10: PCSL sales contract template of type Sale.

means that the fields goods, amount, company, and customer are available in the body
of the contract template, that is the right-hand side of the contract keyword. Hence,
concrete values are substituted from the contract meta data when the template is
instantiated, as described in Section 6.2.5.2.

The example uses standard syntactic sugar at the level of expressions, for in-
stance ¬e means if e then false else true and e1∨e2 means ¬(¬e1∧¬e2). Moreover,
we omit the after part of a deadline if it is 0, we write immediately for within 0,
we omit the remaining part if it is not used, and we write fun f x1 · · ·xn = e for
val f = λx1 → · · · λxn → e.

The template implements a simple workflow: first the company issues an invoice,
then the customer pays within 14 days, and simultaneously the company delivers
goods within a week. Delivery of goods is allowed to take place in multiple deliveries,
which is coded as the recursive clause template delivery . Note how the variable r is
bound to the remainder of the deadline: all deadlines in a then branch are relative
to the time of the guarding transaction, hence the relative deadline for delivering
the remaining goods is whatever remains of the original one week deadline. Note
also that the initial reference time of a contract instance is determined by the field
startDate in the contract meta data, compare Appendix E.1. Hence if the contract
above is instantiated with start date t ∈ Timestamp, then the invoice is supposed
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to be issued at time t.

Finally, we remark that obligation clauses are binders. That is, for instance the
variable g is bound to value of the field goods of the IssueInvoice transaction when
it takes place, and the scope of g is the where clause and the continuation clause
following the then keyword.

Built-in symbols PCSL has a small set of built-in symbols, from which other
standard functions can be derived:

foldl : (a → b → a) → a → [b] → a
foldr : (a → b → b) → b → [a] → b
ceil : Real → Int
reports : Reports

The list includes fold operations in order to iterate over lists, since explicit recursion
is not permitted, and a special constant reports of type Reports. The record type
Reports is internally derived from the active reports in the report engine, and it is
used only in the contract engine in order to enable querying of reports from within
contracts. The record type contains one field per report. For instance, if the report
engine contains a single report Inventory of type Inventory, then the typing of Report
is (using the same notation as in Section 6.2.1.1):

ρ(Reports) = {(inventory, ()→ Inventory)} ,

and the expression reports.inventory () invokes the report.

6.3 Use Case: µERP

In this section we describe a use case instantiation of POETS, which we refer to
as µERP. With µERP we model a simple ERP system for a small bicycle shop.
Naturally, we do not intend to model all features of a full-blown ERP system, but
rather we demonstrate a limited set of core ERP features. In our use case, the shop
purchases bicycles from a bicycle vendor, and sells those bicycles to customers. We
want to make sure that the bicycle shop only sells bicycles in stock, and we want to
model a repair guarantee, which entitles customers to have their bikes repaired free
of charge up until three months after purchase.

Following Henglein et al. [42], we also provide core financial reports, namely the
income statement, the balance sheet, the cash flow statement, the list of open (not
yet paid) invoices, and the value-added tax (VAT) report. These reports are typical,
minimal legal requirements for running a business. We provide some example code
in this section, and the complete specification is included in Appendix E.2. As we
have seen in Section 6.2, instantiating POETS amounts to defining a data model, a
set of reports, and a set of contract templates. We describe each of these components
in the following subsections.

6.3.1 Data Model

The data model of µERP is tailored to the ERP domain in accordance with the REA
ontology [65]. Therefore, the main components of the data model are resources,
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transactions (that is, events associated with contracts), and agents. The complete
data model is provided in Appendix E.2.1.

Agents are modelled as an abstract type Agent. An agent is either a Customer, a
Vendor, or a special Me agent. Customers and Vendors are equipped with a name and
an address. The Me type is used to represent the bicycle company itself. In a more
elaborate example, the Me type will have subtypes such as Inventory or SalesPerson
to represent subdivisions of, or individuals in, the company. The agent model is
summarised below:

Agent is Data.

Customer is an Agent.
Customer has a String called name.
Customer has an Address.

Me is an Agent.

Vendor is an Agent.
Vendor has a String called name.
Vendor has an Address.

Resources are—like agents—Data. In our modelling of resources, we make a dis-
tinction between resource types and resources. A resource type represents a kind of
resource, and resource types are divided into currencies (Currency) and item types
(ItemType). Since we are modelling a bicycle shop, the only item type (for now)
is bicycles (Bicycle). A resource is an instance of a resource type, and—similar to
resource types—resources are divided into money (Money) and items (Item). Our
modelling of items assumes an implicit unit of measure, that is we do not explicitly
model units of measure such as pieces, boxes, pallets, etc. Our resource model is
summarised below:

ResourceType is Data.
ResourceType is abstract.

Currency is a ResourceType.
Currency is abstract.

DKK is a Currency.
EUR is a Currency.

ItemType is a ResourceType.
ItemType is abstract.

Bicycle is an ItemType.

Bicycle has a String called model.

Resource is Data.
Resource is abstract.

Money is a Resource.
Money has a Currency.
Money has a Real called amount.

Item is a Resource.
Item has an ItemType.
Item has a Real called quantity.

Transactions (events in the REA terminology) are, not surprisingly, subtypes of
the built-in Transaction type. The only transactions we consider in our use case are
bilateral transactions (BiTransaction), that is transactions that have a sender and
a receiver. Both the sender and the receiver are agent entities, that is a bilateral
transaction contains references to two agents rather than copies of agent data. For
our use case we model payments (Payment), deliveries (Delivery), issuing of invoices
(IssueInvoice), requests for repair of a set of items (RequestRepair), and repair of a set
of items (Repair). Issuing of invoices contain the relevant information for modelling
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of VAT, encapsulated in the OrderLine type. We include some of these definitions
below:

BiTransaction is a Transaction.
BiTransaction is abstract.
BiTransaction has an Agent entity

called sender.
BiTransaction has an Agent entity

called receiver.

Transfer is a BiTransaction.
Transfer is abstract.

Payment is a Transfer.

Payment is abstract.
Payment has Money.

CashPayment is a Payment.
CreditCardPayment is a Payment.
BankTransfer is a Payment.

IssueInvoice is a BiTransaction.
IssueInvoice has a list of OrderLine

called orderLines.

Besides agents, resources, and transactions, the data model defines the output
types of reports (Appendix E.2.1.3) the input types of contracts (Appendix E.2.1.4),
and generic data definitions such as Address and OrderLine. The report types de-
fine the five mandatory reports mentioned earlier, and additional Inventory and
TopNCustomers report types. The contract types define the two types of contracts
for the bicycle company, namely Purchase and Sale.

6.3.2 Reports

Report specifications are divided into prelude functions (Appendix E.2.2.1), domain-
specific prelude functions (Appendix E.2.2.2), internal reports (Appendix E.2.2.3),
and external reports (Appendix E.2.2.4).

Prelude functions are utility functions that are independent of the custom data
model. These functions are automatically added to all POETS instances, but they
are included in the appendix for completeness. The prelude includes standard func-
tions such as filter, but it also includes generators for accessing event log data such
as reports. The event log generators provide access to data that has a lifecycle such
as contracts or reports, compare Section 6.2.2.

Domain-specific prelude functions are utility functions that depend on the cus-
tom data model. The itemsReceived function, for example, computes a list of all
items that have been delivered to the company, and it hence relies on the Delivery
transaction type (normaliseItems and isMe are also defined in Appendix E.2.2.2):

itemsReceived : [Item]
itemsReceived = normaliseItems [is |

tr ← transactionEvents,
del : Delivery = tr.transaction,
¬(isMe del.sender) ∧ isMe del.receiver,
is ← del.items]

Internal reports are reports that are needed either by clients of the system or
by contracts. For instance, the ContractTemplates report is needed by clients of
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Report Result

Me The special Me entity.
Entities A list of all non-deleted entities.
EntitiesByType A list of all non-deleted entities of a given type.
ReportNames A list of names of all non-deleted reports.
ReportNamesByTags A list of names of all non-deleted reports whose tags contain

a given set and do not contain another given set.
ReportTags A list of all tags used by non-deleted reports.
ContractTemplates A list of names of all non-deleted contract templates.
ContractTemplatesByType A list of names of all non-deleted contract templates of a

given type.
Contracts A list of all non-deleted contract instances.
ContractHistory A list of previous transactions for a given contract instance.
ContractSummary A list of meta data for a given contract instance.

Figure 6.11: Internal reports.

the system in order to instantiate contracts, and the Me report is needed by the
two contracts, as we shall see in the following subsection. A list of internal reports,
including a short description of what they compute, is summarised in Figure 6.11.
Except for the Me report, all internal reports are independent from the custom data
model.

External reports are reports that are expected to be rendered directly in clients
of the system, but they may also be invoked by contracts. The external reports
in our use case are the reports mentioned earlier, namely the income statement,
the balance sheet, the cash flow statement, the list of unpaid invoices, and the VAT
report. Moreover, we include reports for calculating the list of items in the inventory,
and the list of top-n customers, respectively. We include the inventory report below
as an example:

report : Inventory
report =
let itemsSold’ = map (λi → i{quantity = 0 − i.quantity}) itemsSold
in
−− The available items is the list of received items minus the
−− list of reserved or sold items
Inventory{availableItems = normaliseItems (itemsReceived ++ itemsSold’)}

The value itemsSold is defined in the domain-specific prelude, similar to the value
itemsReceived. But unlike itemsReceived, the computation takes into account that
items can be reserved but not yet delivered. Hence when we check that items are in
stock using the inventory report, we also take into account that some items in the
inventory may have been sold, and therefore cannot be sold again.

The five standard reports are defined according to the specifications given by
Henglein et al. [42, Section 2.1], but for simplicity we do not model fixed costs, de-
preciation, and fixed assets. We do, however, model multiple currencies, exemplified
via Danish Kroner (DKK) and Euro (EUR). This means that financial reports, such
as IncomeStatement, provide lists of values of type Money—one for each currency
used.
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6.3.3 Contracts

The specification of contracts is divided into prelude functions (Appendix E.2.3.1),
domain-specific prelude functions (Appendix E.2.3.2), and contract templates (Ap-
pendix E.2.3.3).

Prelude functions are utility functions similar to the report engine’s prelude func-
tions. They are independent from the custom data model, and are automatically
added to all POETS instances. The prelude includes standard functions such as
filter.

Domain-specific prelude functions are utility functions that depend on the cus-
tom data model. The inStock function, for example, checks whether the items
described in a list of order lines are in stock, by querying the Inventory report (we
assume that the item types are different for each line):

fun inStock lines =
let inv = (reports.inventory ()).availableItems
in
all (λl → any (λi → (l.item).itemType ≡ i.itemType ∧

(l.item).quantity ≤ i.quantity) inv) lines

Contract templates describe the daily activities in the company, and in our µERP
use case we only consider a purchase contract and a sales contract. The purchase
contract is presented below:

name: purchase
type: Purchase
description: "Set up a purchase"

clause purchase(lines : [OrderLine])〈me : 〈Me〉, vendor : 〈Vendor〉〉 =
〈vendor〉 Delivery(sender s, receiver r, items i)

where s ≡ vendor ∧ r ≡ me ∧ i ≡ map (λx → x.item) lines
due within 1W

then
when IssueInvoice(sender s, receiver r, orderLines sl)

where s ≡ vendor ∧ r ≡ me ∧ sl ≡ lines
due within 1Y

then
payment(lines, vendor, 14D)〈me〉

clause payment(lines : [OrderLine], vendor : 〈Vendor〉, deadline : Duration)
〈me : 〈Me〉〉 =

if null lines then
fulfilment

else
〈me〉 BankTransfer(sender s, receiver r, money m)

where s ≡ me ∧ r ≡ vendor ∧ checkAmount m lines
due within deadline
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remaining newDeadline
then
payment(remainingOrderLines m lines, vendor, newDeadline)〈me〉

contract = purchase(orderLines)〈me, vendor〉
The contract describes a simple workflow, in which the vendor delivers items,

possibly followed by an invoice, which in turn is followed by a bank transfer of the
company. Note how the me parameter in the contract template body refers to the
value from the domain-specific prelude, which in turn invokes the Me report. Note
also how the payment clause template is recursively defined in order to accommodate
for potentially different currencies. That is, the total payment is split up in as many
bank transfers as there are currencies in the purchase.

The sales contract is presented below:

name: sale
type: Sale
description: "Set up a sale"

clause sale(lines : [OrderLine])〈me : 〈Me〉, customer : 〈Customer〉〉 =
〈me〉 IssueInvoice(sender s, receiver r, orderLines sl)

where s ≡ me ∧ r ≡ customer ∧ sl ≡ lines ∧ inStock lines
due within 1H

then
payment(lines, me, 10m)〈customer〉
and
〈me〉 Delivery(sender s, receiver r, items i)

where s ≡ me ∧ r ≡ customer ∧ i ≡ map (λx → x.item) lines
due within 1W

then
repair(map (λx → x.item) lines, customer, 3M)〈me〉

clause payment(lines : [OrderLine], me : 〈Me〉, deadline : Duration)
〈customer : 〈Customer〉〉 =

if null lines then
fulfilment

else
〈customer〉 Payment(sender s, receiver r, money m)

where s ≡ customer ∧ r ≡ me ∧ checkAmount m lines
due within deadline
remaining newDeadline

then
payment(remainingOrderLines m lines, me, newDeadline)〈customer〉

clause repair(items : [Item], customer : 〈Customer〉, deadline : Duration)
〈me : 〈Me〉〉 =

when RequestRepair(sender s, receiver r, items i)
where s ≡ customer ∧ r ≡ me ∧ subset i items
due within deadline



178 Domain-Specific Languages for Enterprise Systems

remaining newDeadline
then
〈me〉 Repair(sender s, receiver r, items i’)

where s ≡ me ∧ r ≡ customer ∧ i ≡ i’
due within 5D

and
repair(items, customer, newDeadline)〈me〉

contract = sale(orderLines)〈me, customer〉
The contract describes a workflow, in which the company issues an invoice to

the customer—but only if the items on the invoice are in stock. The issuing of
invoice is followed by an immediate (within an hour) payment by the customer to
the company, and a delivery of goods by the company within a week. Moreover, we
also model the repair guarantee mentioned in the introduction.

6.3.4 Bootstrapping the System

The previous subsections described the specification code for µERP. Since data
definitions, report specifications, and contract specifications are added to the system
at run-time, µERP is instantiated by invoking the following sequence of services on
an initially empty POETS instance:

1. Add data definitions in Appendix E.2.1 via addDataDefs.

2. Create a designated Me entity via createEntity.

3. Add report specifications via addReport.

4. Add contract specifications via createTemplate.

Hence, the event log will, conceptually, have the form (we write the value of the
field internalTimeStamp before each event):

t1: AddDataDefs{defs = "ResourceType is ..."}

t2: CreateEntity{ent = e1, recordType = "Me", data = Me}

t3: CreateReport{name = "Me", description = "Returns the ...",
code = "name: Me\n ...", tags = ["internal","entity"]}

...

ti: CreateReport{name = "TopNCustomers", description = "A list ...",
code = "name: TopNCustomers\n ...",
tags = ["external","financial","crm"]}

ti+1: CreateContractDef{name = "Purchase", recordType = "Purchase",
code = "name: purchase\n ...", description = "Set up ..."}

ti+2: CreateContractDef{name = "Sale", recordType = "Sale",
code = "name: sale\n ...", description = "Set up a sale"},
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for some increasing timestamps t1 < t2 < . . . < ti+2. Note that the entity value e1

of the CreateEntity event is automatically generated by the entity store, as described
in Section 6.2.3.

Following these operations, the system is operational. That is, (i) customers and
vendors can be managed via createEntity, updateEntity, and deleteEntity, (ii) con-
tracts can be instantiated, updated, concluded, and inspected via createContract, up-
dateContract, concludeContract, and getContract respectively, (iii) transactions can
be registered via registerTransaction, and (iv) reports can be queried via queryRe-
port.

For example, if a sale is initiated with a new customer John Doe, starting at
time t, then the following events will be added to the event log:

ti+3: CreateEntity{ent = e2, recordType = "Customer", data = Customer{
name = "John Doe", address = Address{
string = "Universitetsparken 1", country = Denmark}}}

ti+4: CreateContract{contractId = 0, contract = Sale{
startDate = t, templateName = "sale", customer = e2,
orderLines = [OrderLine{
item = Item{itemType = Bicycle{model = "Avenue"}, quantity = 1.0},
unitPrice = Money{currency = DKK, amount = 4000.0},
vatPercentage = 25.0}]}}.

That is, first the customer entity is created, and then we can instantiate a new
sales contract. In this particular sale, one bicycle of the model “Avenue” is sold at
a unit price of 4000 DKK, with an additional VAT of 25 percent. Note that the
contract id 0 of the CreateContract is automatically generated and that the start
time t is explicitly given in the CreateContract’s startDate field independent from the
internalTimeStamp field.

Following the events above, if the contract is executed successfully, events of type
IssueInvoice, Delivery, and Payment will persisted in the event log with appropriate
values—in particular, the payment will be 5000 DKK.

6.4 Implementation Aspects

In this section we briefly discuss some of the implementation techniques used in
our implementation of POETS. POETS is implemented in Haskell [63], and the
logical structure of the implementation reflects the diagram in Figure 6.2, that is
each component is implemented as a separate Haskell module.

6.4.1 External Interface

The external interface to the POETS system is implemented in a separate Haskell
module. We currently use Thrift [103] for implementing the communication layer
between the server and its clients, but other communication layers can in principle be
used. Changing the communication layer will only require a change in one module.

Besides offering an abstract, light-weight interface to communication, Thrift en-
ables type-safe communication. The types and services of the server are specified in
a language-independent description language, from which Haskell code is generated
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(or code in other languages for the clients). For example, the external interface to
querying a report can be specified as follows:

Value queryReport(

1 : string name // name of the report to execute

2 : list<Value> args // input arguments

) throws (

1 : ReportNotFoundException notFound

2 : RunTimeException runtime

3 : TypeException type

)

From this specification, Thrift generates the Haskell code for the server interface, and
implementing the interface amounts to supplying a function of the type String →
[Value ]→ IO Value—namely the query function.

6.4.2 Domain-Specific Languages

The main ingredient of the POETS implementation is the implementation of the
domain-specific languages. What is interesting in that respect—compared to imple-
mentations of domain-specific languages in isolation of each other—is the common
core shared by the languages, in particular types and values.

In order to reuse and extend the structure of types and values in the report
language and the contract language, we make use of the compositional data types [11]
library. Compositional data types take the data types as fixed points [69] view on
abstract syntax trees (ASTs), namely a separation of the recursive structure of
ASTs from their signatures. As an example, we define the signatures of types from
Section 6.2.1.1 as follows:

type RecordName = String
data TypeConstant a = TBool | TInt | · · ·
data TypeRecord a = TRecord RecordName
data TypeList a = TList a
data TypeEnt a = TEnt RecordName

The signature for the types of the data model is then obtained by combining the
individual signatures above TSig = TypeConstant :+: TypeRecord :+: TypeList :+:
TypeEnt , where (:+:) :: (∗ → ∗) → (∗ → ∗) → ∗ → ∗ is the sum of two functors.
Finally, the data type for ASTs of types can be defined by tying the recursive knot
T = Term TSig , where Term :: (∗ → ∗)→ ∗ is the functor fixed point.

Recursive functions over ASTs are defined as type classes, with one instance per
atomic signature. For instance, a pretty printer for types can be defined as follows:

class Functor f ⇒ Render f where
render :: f String → String

instance Render TypeConstant where
render TInt = "Int"

render TBool = "Bool"

· · ·
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instance Render TypeRecord where
render (TRecord r) = r

instance Render TypeList where
render (TList τ) = "[" ++ τ ++ "]"

instance Render TypeEnt where
render (TEnt r) = "<" ++ r ++ ">"

and pretty printing of terms is subsequently obtained by lifting the render algebra
to a catamorphism, that is a function of type Render f ⇒ Term f → String .

Extensibility The first benefit of the approach above is that we can extend the
signature for types to fit, for example, the contract language as in Figure 6.9:

type TypeVar = String
data TypeUnit a = TUnit
data TypeVar a = TVar TypeVar
data TypeFunction a = TFunction a a

Extending the pretty printer amounts to only providing the new cases:

instance render TypeUnit where
render TUnit = "()"

instance render TypeVar where
render (TVar α) = α

instance render TypeFunction where
render (TFunction τ1 τ2) = τ1 ++ " -> " ++ τ2

A similar modular encoding is used for the language of values:

data Value a = VInt Int | VBool Bool | VString String | · · ·

and the signature of expressions in the contract language of Figure 6.9 can be ob-
tained by providing the extensions compared to the language of values:

type Var = String
data Exp a = EVar Var | ELambda Var a | EApply a a | · · ·

That is, Term (Exp :+: Value) represents the type of ASTs for expressions of the
contract language. Reusing the signature for (core) values means that the values
of Section 6.2.1.2, which are provided as input to the system for instance in the
registerTransaction function, can be automatically coerced to the richer language
of expressions. That is, values of type Term Value can be readily used as values of
type Term (Exp :+: Value), without explicit copying or translation.

Notice the difference in the granularity of (core) value signatures and (core) type
signatures: types are divided into three signatures, whereas values are in one signa-
ture. The rule of thumb we apply is to divide signatures only when a function needs
the granularity. For instance, the type inference algorithm used in the report lan-
guage and the contract language implements a simplification procedure [31], which
reduces type constraints to atomic type constraints. In order to guarantee this trans-
formation invariant statically, we hence need a signature of atomic types, namely
TypeConstant :+: TypeVar , which prompts the finer granularity on types.
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Syntactic sugar Besides enabling a common core of ASTs and functions on them,
compositional data type enable AST transformations where the invariant of the
transformation is witnessed by the type. Most notably, desugaring can be imple-
mented by providing a signature for syntactic sugar:

data ExpSug a = ELet Var a a | · · ·

as well as a transformation to the core signature:

instance Desugar ExpSug where
desugar (ELet x e1 e2) = ELam x e2 ‘EApp‘ e1

· · ·

This approach yields a desugaring function of the type Term (ExpSug :+: Exp :+:
Value)→ Term (Exp :+:Value), which witnesses that the syntactic sugar has indeed
been removed.

Moreover, since we define the desugaring translation in the style of a term ho-
momorphism [11], we automatically get a lifted desugaring function that propagates
AST annotations, such as source code positions, to the desugared term. This means,
for instance, that type error messages can provide detailed source position informa-
tion also for terms that originate from syntactic sugar.

6.5 Conclusion

We have presented an extended and generalised version of the POETS architec-
ture [42], which we have fully implemented. We have presented domain-specific
languages for specifying the data model, reports, and contracts of a POETS in-
stance, and we have demonstrated an application of POETS in a small use case.
The use case demonstrates the conciseness of our approach—Appendix E.2 contains
the complete source needed for a running system—as well as the domain-orientation
of our specification languages. We believe that non-programmers should be able
to read and understand the data model of Appendix E.2.1, to some extent the
contract specifications of Appendix E.2.3.3, and to a lesser extent the reports of
Appendix E.2.2 (after all, reports describe computations).

6.5.1 Future Work

With our implementation and revision of POETS we have only taken the first steps
towards a software system that can be used in practice. In order to properly verify
our hypothesis that POETS is practically feasible, we want to conduct a larger
use case in a live, industrial setting. Such use case will both serve as a means
of testing the technical possibilities of POETS, that is whether we can model and
implement more complex scenarios, as well as a means of testing our hypothesis
that the use of domain-specific languages shortens the gap between requirements
and implementation.

Expressivity As mentioned above, a larger and more realistic use case is needed
in order to fully evaluate POETS. In particular, we are interested in investigat-
ing whether the data model, the report language, and the contract language have
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sufficient expressivity. For instance, a possible extension of the data model is to
introduce finite maps. Such extension will, for example, simplify the reports from
our µERP use case that deal with multiple currencies. Moreover, finite maps will
enable a modelling of resources that is closer in structure to that of Henglein et
al. [42].

Another possible extension is to allow types as values in the report language.
For instance, the EntitiesByType report in Appendix E.2.2.3 takes a string repre-
sentation of a record type, rather than the record type itself. Hence the function
cannot take subtypes into account, that is if we query the report with input A, then
we only get entities of declared type A and not entities of declared subtypes of A.

Rules A rule engine is a part of our extended architecture (Figure 6.2), however
it remains to be implemented. The purpose of the rule engine is to provide rules—
written in a separate domain-specific language—that can constrain the values that
are accepted by the system. For instance, a rule might specify that the items list of
a Delivery transaction always be non-empty.

More interestingly, the rule engine will enable values to be inferred from the
rules in the engine. For instance, a set of rules for calculating VAT will enable the
field vatPercentage of an OrderLine to be inferred automatically in the context of a
Sale record. That is, based on the information of a sale and the items that are being
sold, the VAT percentage can be calculated automatically for each item type.

The interface to the rule engine will be very simple: A record value, as defined
in Section 6.2.1.2, with zero or more holes is sent to the engine, and the engine will
return either (i) an indication that the record cannot possibly fulfil the rules in the
engine, or (ii) a (partial) substitution that assigns inferred values to (some of) the
holes of the value as dictated by the rules. Hence when we, for example, initiate
the sale of a bicycle in Section 6.3.4, then we first let the rule engine infer the VAT
percentage before passing the contract meta data to the contract engine.

Forecasts A feature of the contract engine, or more specifically of the reduction
semantics of contract instances, is the possibility to retrieve the state of a running
contract at any given point in time. The state is essentially the AST of a contract
clause, and it describes what is currently expected in the contract, as well as what
is expected in the future.

Analysing the AST of a contract enables the possibility to do forecasts, for in-
stance to calculate the expected outcome of a contract or the items needed for de-
livery within the next week. Forecasts are, in some sense, dual to reports. Reports
derive data from transactions, that is facts about what has previously happened.
Forecasts, on the other hand, look into the future, in terms of calculations over run-
ning contracts. We have currently implemented a single forecast, namely a forecast
that lists the set of immediately expected transactions for a given contract. A more
ambitious approach is to devise (yet another) language for writing forecasts, that is
functions that operate on contract ASTs.

Practicality In order to make POETS useful in practice, many features are still
missing. However, we see no inherent difficulties in adding them to POETS com-
pared to traditional ERP architectures. To mention a few: (i) security, that is
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authorisation, users, roles, etc.; (ii) module systems for the report language and
contract language, that is better support for code reuse; and (iii) check-pointing of
a running system, that is a dump of the memory of a running system, so the event
log does not have to be replayed from scratch when the system is restarted.
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Appendix A

Appendices for Chapter 1

A.1 A Brief Introduction to Standard Deontic Logic

The following is a brief introduction to standard deontic logic (SDL), based on the
presentations of Prakken and Sergot [94], McNamara [66], and Woleński [122]. SDL
is a modal logic for expressing obligatory and permissible statements, making it
appealing in the context of contract modelling. SDL is classical (as opposed to
intuitionistic) propositional logic [49] extended with two modalities: O (obligation)
and P (permission). The formulae Oφ and Pφ should be read “it is obligatory that
φ” and “it is permitted that φ”, respectively. Let order and deliver be propositional
atoms representing the ordering and delivery of goods, respectively. We can then
encode the contract-like statement “Buyer is permitted to order from Seller, and by
doing so, Seller is obliged to deliver the goods to Buyer” as:

(Porder) ∧ (order → Odeliver).

The grammar for SDL is as follows:

φ ::= ⊥ | p | φ→ φ | Oφ,

with the usual classical abbreviations:

¬φ ≡ φ→ ⊥ φ ∨ ψ ≡ ¬φ→ ψ φ ∧ ψ ≡ ¬(¬φ ∨ ¬ψ).

Moreover, the permission modality can be expressed as Pφ ≡ ¬O¬φ, and usually
a prohibition modality (F) is also considered Fφ ≡ O¬φ. Note that the last ab-
breviation relies on a closed-world assumption, that is by not doing φ one does
¬φ.

The semantics of SDL is given in terms of Kripke models. A Kripke model M
for SDL is a triple:

M = 〈W,d, V 〉,
where W is a non-empty set of worlds, d ⊆ W × W is the deontic accessibility
relation, and V ⊆ Prop ×W is the valuation function for propositional symbols,
that is (p, w) ∈ V means that p holds in world w.

The intuition of the deontic accessibility relation is that it relates the possible
worlds (or, state of affairs). Whenever (w,w′) ∈ d then w′ could have been the
actual state of affairs rather than w. It is important to realise that (w,w′) ∈ d does
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not mean that w′ comes after w temporarily—w and w′ exist at the same point in
time. There are, in other words, no temporal aspects in SDL. Perhaps surprisingly
then, d is not required to be symmetric nor reflexive, instead d is required to be
serial :

∀w1 ∈W.∃w2 ∈W.(w1, w2) ∈ d.
That is, all worlds have an alternative. Given the interpretation of the deontic
relation d, the obligation modality is the usual box modality of modal logics, that
is Oφ holds in a world w exactly when φ holds in all possible worlds related to w.

A formula φ is said to be satisfied in the modelM = 〈W,d, V 〉, writtenM |= φ,
whenever M |=w φ holds for all w ∈W . The latter relation is defined by structural
induction on φ:

M 6|=w ⊥,
M |=w p iff (p, w) ∈ V,
M |=w φ→ ψ iff M |=w ψ whenever M |=w φ,
M |=w Oφ iff M |=w′ φ whenever (w,w′) ∈ d.

A formula φ is said to be valid, written |= φ, whenever M |= φ for all models M.
With these definitions, it can be shown that SDL is a KD-style modal logic [49],
that is the following holds:

|= O(φ→ ψ)→ Oφ→ Oψ, (K)

|= Oφ→ ¬O¬φ. (D)

The K-property is present in all normal modal logics, and it says that if a material
conditional is obligatory, and its antecedent is obligatory, then so is its consequent.
The D-property (D for deontic) says that there can be no conflicts, that is it impos-
sible for both φ and ¬φ to be obligatory. Since Pφ ≡ ¬O¬φ, an alternative reading
of the D-property is that whenever φ is obligatory then φ is permitted, which we
would expect. The validity of D is easily seen to rely on d being serial.

Besides K and D, a series of valid statements and derived rules can be shown,
some important of which are:

|= O(φ ∧ ψ)→ Oφ ∧Oψ, (A.1)

|= Oφ ∧Oψ → O(φ ∧ ψ) (A.2)

if |= φ then |= Oφ. (A.3)

A.1 and A.2 state that O distributes over conjunction, and A.3 states that if a
formula φ is valid, then it is also valid that φ must hold. The Kripke-style semantics
has been constructed exactly so as to make the properties K, D, A.1, A.2 and A.3
hold, as they state expected properties of the corresponding deontic modalities. We
note also that the converse of A.3 does not hold:

if |= Oφ then |= φ. (UNSOUND)

That is even though φ should hold, we cannot be sure that φ actually holds.
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Appendices for Chapter 2

B.1 Additional Proof Details

Proof of Theorem 2.3.4 Assume that s is well-formed with parties P , that is
` s : Contract〈P 〉 and the unfolding relation on the template names of s is acyclic.
Assume furthermore that s

ε−→ s′, where s = letrec D in c starting τ . Then
s′ = letrec D in c′ starting ts(ε), for some clause c′, where D, τ ` c ε−→ c′. We
need to show that s′ is well-formed with parties P ′ ⊆ P , which amounts to showing
that ` s′ : Contract〈P ′〉 as the templates of s and s′ are identical. Since s is well-
typed, we have that ∆ ` D and ∆, ∅, ∅ ` c : Clause〈P 〉, so it suffices to show that
∆, ∅, ∅ ` c′ : Clause〈P ′〉 for some P ′ ⊆ P , again since the templates do not change.
We hence need to show:

If D, τ ` c ε−→ c′ and ∆, ∅, ∅ ` c : Clause〈P 〉 then ∆, ∅, ∅ ` c′ : Clause〈P ′〉
for some P ′ ⊆ P .

The proof is by induction on the derivation of D, τ ` c ε−→ c′. We do a case split on
the last derivation rule:

• The last rule is:

D, τ ` fulfilment
ε−→ fulfilment

This case is trivial. (Note that P = P ′ = ∅.)

• The last rule is:

e[~v/~x] ⇓ true d ⇓τ (τ1, τ2) τ1 ≤ τ ′ ≤ τ2

D, τ ` 〈p〉 k(~x) where e due d remaining z then c1
(τ ′,k(~v))−−−−−−→ c1[~v/~x, τ2 − τ ′/z]

The typing derivation for c has the form:

Γ′ = [~x 7→ ar(k)]

Γ2 = Γ′[z 7→ Int]

∅ ` p : {p}
Γ′ ` e : Bool

∅ ` d : Deadline

(a)︷ ︸︸ ︷
∆, ∅,Γ2 ` c1 : Clause〈P2〉

∆, ∅, ∅ ` 〈p〉 k(~x) where e due d remaining z then c1 : Clause〈{p} ∪ P2〉

It then follows from (a) and Lemma 2.3.3 that ∆, ∅, ∅ ` c1[~v/~x, τ2 − τ ′/z] :
Clause〈P2〉, as required. (Note also that P2 ⊆ {p} ∪ P2.)
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• The last rule is:

d ⇓τ (τ1, τ2)

τ ′ ≤ τ2 τ ′ < τ1 ∨ k′ 6= k ∨ e[~v/~x] ⇓ false d′ = after τ1 − τ ′ within τ2 − τ1

D, τ ` 〈p〉 k(~x) where e due d remaining z then c1
(τ ′,k′(~v))−−−−−−−→

〈p〉 k(~x) where e due d′ remaining z then c1

We only need to show that ∅ ` d′ : Deadline, which follows immediately.

• The last rule is:

e[~v/~x] ⇓ true d ⇓τ (τ1, τ2) τ1 ≤ τ ′ ≤ τ2

D, τ ` if k(~x) where e due d remaining z then c1 else c2
(τ ′,k(~v))−−−−−−→ c1[~v/~x, τ2 − τ ′/z]

This case is similar to the second case.

• The last rule is:

d ⇓τ (τ1, τ2) τ ′ > τ2

(a)︷ ︸︸ ︷
D,max(τ, τ2) ` c2

(τ ′,k′(~v))−−−−−−−→ c′

D, τ ` if k(~x) where e due d remaining z then c1 else c2
(τ ′,k′(~v))−−−−−−−→ c′

The typing derivation for c has the form:

Γ′ = [~x 7→ ar(k)]

Γ1 = Γ′[z 7→ Int]

Γ′ ` e : Bool

∅ ` d : Deadline

(b)︷ ︸︸ ︷
∆, ∅, ∅ ` c2 : Clause〈P2〉

∆, ∅,Γ1 ` c1 : Clause〈P1〉
∆, ∅, ∅ ` if k(~x) where e due d remaining z then c1 else c2 : Clause〈P1 ∪ P2〉

So the result follows from the induction hypothesis applied to (a) and (b), and
from the fact that P2 ⊆ P1 ∪ P2.

• The last rule is:

d ⇓τ (τ1, τ2)

τ ′ ≤ τ2 τ ′ < τ1 ∨ k′ 6= k ∨ e[~v/~x] ⇓ false d′ = after τ1 − τ ′ within τ2 − τ1

D, τ ` if k(~x) where e due d remaining z then c1 else c2
(τ ′,k′(~v))−−−−−−−→

if k(~x) where e due d′ remaining z then c1 else c2

This case is similar to the third case.

• The last rule is:
(a)︷ ︸︸ ︷

D, τ ` c1
ε−→ c′1

(b)︷ ︸︸ ︷
D, τ ` c2

ε−→ c′2

D, τ ` c1 and c2
ε−→ c′1 and c′2

The typing derivation for c has the form:

(c)︷ ︸︸ ︷
∆, ∅, ∅ ` c1 : Clause〈P1〉

(d)︷ ︸︸ ︷
∆, ∅, ∅ ` c2 : Clause〈P2〉

∆, ∅, ∅ ` c1 and c2 : Clause〈P1 ∪ P2〉

So it follows from the induction hypothesis applied to (a) and (c) on one
hand, and (b) and (d) on the other hand, that ∆, ∅, ∅ ` c′1 : Clause〈P ′1〉 and
∆, ∅, ∅ ` c′2 : Clause〈P ′2〉 with P ′1 ⊆ P1 and P ′2 ⊆ P2. Hence it follows that
∆, ∅, ∅ ` c′1 and c′2 : Clause〈P ′1 ∪ P ′2〉 as required.
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• The last rule is:
D, τ ` c1

ε−→ c′1 D, τ ` c2
ε−→ c′2

D, τ ` c1 or c2
ε−→ c′1 or c′2

This case is similar to the previous case.

• The last rule is:

e ⇓ true

(a)︷ ︸︸ ︷
D, τ ` c1

ε−→ c′1

D, τ ` if e then c1 else c2
ε−→ c′1

The typing derivation for c has the form:

∅ ` e : Bool

(b)︷ ︸︸ ︷
∆, ∅, ∅ ` c1 : Clause〈P1〉 ∆, ∅, ∅ ` c2 : Clause〈P2〉

∆, ∅, ∅ ` if e then c1 else c2 : Clause〈P1 ∪ P2〉

So it follows from the induction hypothesis applied to (a) and (b) that ∆, ∅, ∅ `
c′1 : Clause〈P ′1〉 with P ′1 ⊆ P1 ⊆ P1 ∪ P2 as required.

• The last rule is:
e ⇓ false D, τ ` c2

ε−→ c′2

D, τ ` if e then c1 else c2
ε−→ c′2

This case is similar to the previous case.

• The last rule is:

~e ⇓ ~v (f(~x)〈~y〉 = c′) ∈ D

(a)︷ ︸︸ ︷
D, τ ` c′[~v/~x, ~p/~y]〈~p/~y〉 ε−→ c′′

D, τ ` f(~e)〈~p〉 ε−→ c′′

The typing derivation for c has the form:

∆(f) = (〈t1, . . . , tm〉, n)

(b)︷ ︸︸ ︷
∀i ∈ {1, . . . ,m}. ∅ ` ei : ti ∀i ∈ {1, . . . , n}. ∅ ` pi : {pi}

∆, ∅, ∅ ` f(e1, . . . , em)〈p1, . . . , pn〉 : Clause〈{p1, . . . , pn}〉

and it follows from ∆ ` D that ∆, ~y, [~x 7→ ~t, ~y 7→ −−−→Party] ` c′ : Clause〈∅〉. It
then follows from Lemma 2.3.2 and (b) that vi ∈ JtiK for i = 1, . . . ,m, and
hence via Lemma 2.3.3 that ∆, ∅, ∅ ` c′[~v/~x, ~p/~y]〈~p/~y〉 : Clause〈{p1, . . . , pn}〉.
But then the result follows from the induction hypothesis applied to (a).

Lemma B.1.1. Assume that Sub(c) = {c1, . . . , cn}, for clauses c, c1, . . . , cn. Then
Sub(c[θ]) = {c1[θ], . . . , c2[θ]} for all substitutions θ.

Proof. The proof follows by straightforward structural induction on c.

Lemma B.1.2. Let c be a well-typed clause ∆, ∅, ∅ ` c : Clause〈P 〉. Then ∆, ∅, ∅ `
c′ : Clause〈P ′〉 for all c′ ∈ Sub(c) with P ′ ⊆ P .

Proof. The proof follows by straightforward structural induction on c (or, equiva-
lently by induction on the typing derivation of ∆, ∅, ∅ ` c : Clause〈P 〉).
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Proof of Theorem 2.3.5 We start with a needed definition. We say that a sub-
stitution θ is type-preserving with regard to a variable environment Γ, if dom(θ) =
dom(Γ) and θ(x) ∈ JΓ(x)K, for any x ∈ dom(θ).

Let s = letrec D in c0 starting τ0 and assume that s is well-formed with parties
P . That is, ⇒D is an acyclic relation, ∆ ` D, and ∆, ∅, ∅ ` c0 : Clause〈P 〉 for some
template environment ∆.

Assume D = {(f(~x)〈~y〉 = cf ) | f ∈ FD} and let CD = {cf | f ∈ FD}. We
associate with c0 a new template name f0 6∈ FD, and let F ′D = FD ∪ {f0} and
cf0 = c0. We extend the relation ⇒D from FD to F ′D as expected: f0 ⇒D g if and
only if there is a subclause g(~e1)〈~e2〉 ∈ Sub(c0). Note that by definition there is no
g ∈ F ′D such that g ⇒D f0. Hence the extended relation ⇒D is still acyclic. And,
as ⇒D is finite, ⇒D is well-founded.

We let Pf = ∅ for any f ∈ FD and Pf0 = P . As ∆ ` D, there are environments
Λf , Γf such that ∆,Λf ,Γf ` cf : Clause〈Pf 〉 for all f ∈ F ′D, with Λf0 = ∅ and
Γf0 = ∅. We will show the following claim:

Claim: For any f ∈ F ′D, for any clause c = c′[θ]〈θ′〉, where c′ ∈ Sub(cf ), θ′ is a
party substitution with dom(θ′) = Λf , and θ is a type-preserving substitution with
regard to Γf , the following statement holds:

For any event ε with ts(ε) ≥ τ0 there is a unique residue c such that
D, τ0 ` c

ε−→ c. Moreover, if c = (τ,B), then τ0 ≤ τ ≤ ts(ε) and
B ⊆ Pf ∪ rng(θ′).

Note that the result of the theorem then follows from the claim applied to f0, the
clause c0, and empty (party) substitutions θ and θ′.

We proceed by a nested inductive argument: an (outer) well-founded induction
on f and an (inner) structural induction on the clause c.

The following observation will be used in the proof: since ∆,Λf ,Γf ` cf :
Clause〈Pf 〉 it follows from Lemma 2.3.3 that ∆, ∅, ∅ ` cf [θ]〈θ′〉 : Clause〈Pf∪rng(θ′)〉.
Hence from Lemmas B.1.1 and B.1.2 it follows that ∆, ∅, ∅ ` c : Clause〈P ′〉 with
P ′ ⊆ Pf ∪ rng(θ′), so we may assume in each case that c is well-typed and closed.

• c = fulfilment. (This is a base case for the inner induction.) The claim
clearly holds in this case.

• c = 〈p〉 k(~x) where e due d remaining z then c1. Suppose ε = (τ ′, k′(~v))
for some τ ′ ≥ τ0 and some action k′(~v). As c is well-typed, it follows from
Lemma 2.3.2 that there is a unique Boolean value b and timestamps τ1, τ2 such
that e[~v/~x] ⇓ b and d ⇓τ0 (τ1, τ2). We distinguish three cases:

– k = k′, b = true, and τ1 ≤ τ ′ ≤ τ2. Then take c = c[~v/~x, τ2 − τ ′/z].
– τ ′ > τ2. Take c = (max(τ0, τ2), {p}). Clearly, τ0 ≤ max(τ0, τ2) ≤ τ ′.

And, by the observation above, we know that ∆, ∅, ∅ ` c : Clause〈P ′〉,
where P ′ ⊆ Pf ∪ rng(θ′), hence p ∈ Pf ∪ rng(θ′).

– τ ′ ≤ τ2 and also k 6= k′, b = false, or τ ′ < τ1. Then take c =
〈p〉 k(~x) where e due d′ remaining z then c with d′ = after τ1 −
τ ′ within τ2 − τ1.

In all three cases the residue c satisfies the claim.
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• c = if k(~x) where e due d remaining z then c1 else c2. Suppose that ε =
(τ ′, k′(~v)) for some τ ′ ≥ τ0 and some action k′(~v). As c is well-typed, it follows
from Lemma 2.3.2 that there is a unique Boolean value b and timestamps τ1, τ2

such that e[~v/~x] ⇓ b and d ⇓τ0 (τ1, τ2). As for obligations, we distinguish the
same three cases, only the following one having a different treatment:

– τ ′ > τ2. By the definition of immediate subclauses, we have that c2 ∈
Sub(cf ), hence by the inner induction hypothesis on c2 there is a unique

residue c such that D,max(τ0, τ2) ` c2
ε−→ c, and if c = (τ,B) then

max(τ0, τ2) ≤ τ ≤ ts(ε) and B ⊆ P . Clearly, the residue c satisfies the
claim.

• c = c1 and c2. By the definition of immediate subclauses, we have that
c1, c2 ∈ Sub(cf ), hence by the inner induction hypothesis on c1 and c2 we

obtain that there are unique residues c1 and c2 such that D, τ0 ` c1
ε−→ c1 and

D, τ0 ` c2
ε−→ c2. Moreover, if c1 = (τ1, B1) then τ0 ≤ τ1 ≤ ts(ε) and B1 ⊆ P ,

and if c2 = (τ2, B2) then τ0 ≤ τ2 ≤ ts(ε) and B2 ⊆ P .

Let c = c1 ? c2. If c1 = (τ1, B1) and c2 = (τ2, B2), then it follows from
the definition of verdict conjunction that τ0 ≤ τ ≤ ts(ε) and B ⊆ P , where
c = (τ,B) = (τ1, B1) ∧ (τ2, B2). In the other cases (that is c1 or c2 or both
being clauses) the residue c clearly satisfies the claim.

• c = c1 or c2. This case is similar to the previous one, but in the case where
D, τ0 ` c1

ε−→ (τ1, B1) and D, τ0 ` c2
ε−→ (τ2, B2), we utilise the fact that s is

well-formed to conclude that B1 = B2 = {p}, for some p (due to the typing
rule for clause disjunctions), which guarantees that the verdict disjunction
(τ1, B1) ∨ (τ2, B2) is well-defined.

• c = if e then c1 else c2. As c is well-typed, it follows from Lemma 2.3.2
that there is a unique Boolean value b such that e ⇓ b. By the definition
of immediate subclauses, we have that c1, c2 ∈ Sub(cf ), hence by the inner
induction hypothesis on c1 if b = true and on c2 otherwise, the claim follows
directly.

• c = g(~e)〈~p〉. As c is well-typed, it follows from Lemma 2.3.2 that there are
unique values ~v such that ~e ⇓ ~v. Moreover, by hypothesis the clause c is the in-
stantiation of an immediate subclause g(~e1)〈~e2〉 of cf . By the definition of⇒D,
we have that f ⇒D g. This, together with [~v/~x, ~p/~y] being a type-preserving
substitution with regard to Γg (Lemma 2.3.2) and 〈~p/~y〉 being a party substi-
tution, allows us to apply the outer induction hypothesis on cg[~v/~x, ~p/~y]〈~p/~y〉.
The claim then follows directly.

Lemma B.1.3. Let s be a well-formed specification. Then there exists a unique
verdict ν such that ` s ↓ ν. Moreover, for a breach (τ,B), we have ` s ↓ (τ,B) if
and only if s

ε−→ (τ,B), for all events ε with ts(ε) > τ .

Proof. Existence follows by a nested inductive argument similar to, but much simpler
than the proof of Theorem 2.3.5. Uniqueness follows by straightforward structural
induction on c, where s = letrec D in c starting τ . The left to right implication of
the second part of the lemma follows by induction on the derivation of ` s ↓ (τ,B),
while the other implication follows by induction on the derivation of s

ε−→ (τ,B).
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Proof of Theorem 2.3.6 Let s = letrec D in c starting τ0 be a well-formed
specification with parties P . We then need to show that JsK is a contract between
P starting at time τ0. That is, we need to show that JsK is a function from Trτ0 to
V, and that it satisfies conditions (2.1) and (2.2) of Definition 2.2.1.

We first prove by induction on the length of the finite trace σ that: JsK(σ) is
well-defined, that is it exists and it is unique, and if JsK(σ) = (τ,B) then B ⊆ P ,
JsK(στ ) = (τ,B), and τ ≥ τ0.

Base case: σ = 〈〉. In this case it follows from Lemma B.1.3 that there is a
unique verdict ν such that ` s ↓ ν, and hence JsK(σ) = ν. So assume now that
JsK(σ) = (τ,B). Then since στ = σ we also have that JsK(στ ) = (τ,B). Lastly, it
follows from Lemma B.1.3 that s

ε−→ (τ,B), for any event ε with ts(ε) > max(τ, τ0),
and hence from Theorem 2.3.5 we have that B ⊆ P and τ ≥ τ0 as required.

Inductive case: σ = εσ′. As s is well-formed and ts(ε) ≥ τ0, it follows from the
progress property (Theorem 2.3.5) that there is a unique residue s such that s

ε−→ s.

• If s = (τ,B) then, also from Theorem 2.3.5, we have that B ⊆ P and τ0 ≤
τ ≤ ts(ε). Now, if ts(ε) = τ then στ = εσ′τ so it follows immediately that
JsK(στ ) = (τ,B). So assume that ts(ε) > τ . It then follows from Lemma B.1.3
that ` s ↓ (τ,B) and hence JsK(στ ) = (τ,B) as required.

• If s = s′ then, by the type-preservation property (Theorem 2.3.4), s′ is also
well-formed with parties P ′ ⊆ P and s′ has starting time ts(ε). We have that
JsK(σ) = Js′K(σ′), so it then follows from the induction hypothesis that Js′K(σ′)
is well-defined and if Js′K(σ′) = (τ,B) then B ⊆ P ′ ⊆ P , Js′K(σ′τ ) = (τ,B),
and τ0 ≤ ts(ε) ≤ τ .

Now if JsK(σ) = (τ,B) then JsK(εσ′) = Js′K(σ′) = (τ,B) and hence by the
above Js′K(σ′τ ) = (τ,B) with τ ≥ ts(ε). But then στ = εσ′τ , and hence by
definition JsK(στ ) = Js′K(σ′τ ) = (τ,B) as required.

We now show that if JsK(σ) = (τ,B) for some finite trace σ and breach (τ,B),
then JsK(σ′) = (τ,B), for any finite trace σ′ with σ′τ = στ . Let σ′ be a trace with
σ′τ = στ . As shown above, we have JsK(στ ) = (τ,B). The proof is by induction on
the length of στ :

Base case: στ = 〈〉. Now σ′τ = 〈〉, so either σ′ = 〈〉 or σ′ = εσ′′, for some ε and
σ′′ with ts(ε) > τ . In the first case the result follows immediately, and in the second
case we have that ` s ↓ (τ,B), hence by Lemma B.1.3 we have that s

ε−→ (τ,B) from
which the result follows.

Inductive case: στ = εσ′′. Now σ′ = εσ′′′ with σ′′ = σ′′′τ , and JsK(στ ) = (τ,B)
can happen in two ways:

• s
ε−→ (τ,B): In this case we have by definition that JsK(σ′) = JsK(εσ′′′) = (τ,B).

• s
ε−→ s′ and Js′K(σ′′) = (τ,B): In this case we have by definition that JsK(σ′) =

Js′K(σ′′′), and hence the result follows from the induction hypothesis as σ′′ =
σ′′′τ .

We have now proved that the restriction of JsK to finite traces satisfies the hy-
potheses of Lemma 2.2.5. We can thus apply the lemma and obtain that JsK is a
contract as per Definition 2.2.1.
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Appendices for Chapter 3

C.1 Additional Proof Details

Proof of Lemma 3.2.6

Proof. The proof consists of two parts. First, we show that the composition exists
(i). Second, we show that the composition is well-defined (ii), that is that the
composition of two processes is itself a process.

(i) Let l ∈ LCI be given. We need to show that there exists some N ∈ N such that

I1
N = I1

N+1 and I2
N = I2

N+1, compare Definition 3.2.4. We show by induction
on n that Iin|n = Iin+1|n for i = 1, 2.

n = 0: Ii0|0 = Ii1|0 holds trivially for i = 1, 2.

n > 0: It follows from the induction hypothesis that I2
n−1|n−1

= I2
n|n−1 and

thus ((I2
n−1 ∪ l)|C1

I
)
|n−1

= ((I2
n ∪ l)|C1

I
)
|n−1

. But then strict monotonicity

of f1 yields

I1
n|n = f1((I2

n−1 ∪ l)|C1
I
)
|n

= f1((I2
n ∪ l)|C1

I
)
|n

= I1
n+1|n.

By a similar argument it follows that I2
n|n = I2

n+1|n as required.

The result now follows by choosing N = eol(l).

(ii) We first need to show that CI ∩ CO = ∅:

CI ∩ CO = ((C1
I ∪ C2

I ) \ Cint) ∩ ((C1
O ∪ C2

O) \ Cint)

= ((C1
I ∪ C2

I ) ∩ (C1
O ∪ C2

O)) \ Cint

= ((C1
I ∩ (C1

O ∪ C2
O)) ∪ (C2

I ∩ (C1
O ∪ C2

O))) \ Cint

= ((C1
I ∩ C2

O) ∪ (C2
I ∩ C1

O)) \ Cint (CjI ∩ C
j
O = ∅, j = 1, 2)

= Cint \ Cint

= ∅.

Next, we must show that f is strictly monotone. Let l1, l2 ∈ LCI be given and
assume that l1|t = l2|t, for some timestamp t ∈ N with t < min(eol(l1), eol(l2)).
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Then f(l1) = (I1
N ∪ I2

N )|CO and f(l2) = (J 1
M ∪ J 2

M )|CO for some N and M .
We show by induction on n that:

I1
n|t+1 = J 1

n |t+1 and I2
n|t+1 = J 2

n |t+1.

n = 0: This case is trivial since I1
0 (t′)(c) = I2

0 (t′)(c) = J 1
0 (t′)(c) = J 1

0 (t′)(c) =
ε for all timestamps t′ ∈ N and channels c ∈ CO with 0 ≤ t′ < t+ 1.

n > 0: By the induction hypothesis it follows that I2
n−1|t+1

= J 2
n−1|t+1

and

therefore ((I2
n−1 ∪ l1)|C1

I
)
|t

= ((J 2
n−1 ∪ l2)|C1

I
)
|t
. But then strict mono-

tonicity of f1 yields:

I1
n|t+1 = f1((I2

n−1 ∪ l1)|C1
I
)
|t+1

= f1((J 2
n−1 ∪ l2)|C1

I
)
|t+1

= J 2
n |t+1.

By a similar argument it follows that I2
n|t+1 = J 2

n |t+1 as required.

So for k = max(N,M) it follows that (I1
k ∪ I2

k)|t+1 = (J 1
k ∪ J 2

k )|t+1, which

implies that f(l1)|t+1 = f(l2)|t+1 as required.

Lemma C.1.1. Below follows a series of results about bisimulations.

(1) The identity relation Rid ⊆ S × S is a bisimulation for a and a:

Rid = {(s, s) | s ∈ S}.

(2) Let R ⊆ S1 × S2 be a bisimulation for a1 and a2. Then the inverse relation
R−1 ⊆ S2 × S1 is a bisimulation for a2 and a1:

R−1 = {(s2, s1) | (s1, s2) ∈ R}.

(3) Let R1 ⊆ S1 × S2 and R2 ⊆ S2 × S3 be bisimulations for a1,a2 and a2,a3. Then
the composed relation R1 ◦R2 ⊆ S1 × S3 is a bisimulation for a1 and a3:

R1 ◦R2 = {(s1, s3) | ∃s2 ∈ S2. (s1, s2) ∈ R1 ∧ (s2, s3) ∈ R2}.

Proof. We show that each of the relations are bisimulations.

(1) Assume that (s1, s2) ∈ Rid. Then s1 = s2 so the conditions are trivially fulfilled.

(2) Assume that (s2, s1) ∈ R−1. Then (s1, s2) ∈ R which means that:

δ1
o(s1) = δ2

o(s2) and ∀m ∈MCI .(δ
1
t (s1,m), δ2

t (s2,m)) ∈ R,
which gives:

δ2
o(s2) = δ1

o(s1) and ∀m ∈MCI .(δ
2
t (s2,m), δ1

t (s1,m)) ∈ R−1.

(3) Assume that (s1, s3) ∈ R1◦R2. Then there exists s2 ∈ S2 such that (s1, s2) ∈ R1

and (s2, s3) ∈ R2 and then we get:

δ1
o(s1) = δ2

o(s2) = δ3
o(s3),

and because (δ1
t (s1,m), δ2

t (s2,m)) ∈ R1 and (δ2
t (s2,m), δ3

t (s3,m)) ∈ R2 then by
definition (δ1

t (s1,m), δ3
t (s3,m)) ∈ R1 ◦R2.
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Proof of Lemma 3.3.4

Proof. The properties are proved one at a time below.

Reflexivity: We must show that for all a we have that a ≡ a. This corresponds to
constructing a bisimulation R ⊆ S × S such that (s0, s0) ∈ R. Lemma C.1.1
(1) gives such a relation.

Symmetry: We must show that if a1 ≡ a2 then a2 ≡ a1. Similar to the reflexivity
case we must take some arbitrary bisimulation R ⊆ S1×S2 and then construct
a bisimulation on S2 × S1. Lemma C.1.1 (2) gives this relation.

Transitivity: We must show that if a1 ≡ a2 and a2 ≡ a3 then a1 ≡ a3. In this case
we are given bisimulations R1 ⊆ S1 × S2 and R2 ⊆ S2 × S3 and we construct
a bisimulation using Lemma C.1.1 (3).

Congruence: Now let:

a1 = (CI , CO, S1, s
1
0, δ

1
o , δ

1
t ),

a2 = (CI , CO, S2, s
2
0, δ

2
o , δ

2
t ),

a3 = (C ′I , C
′
O, S3, s

3
0, δ

3
o , δ

3
t ),

a4 = (C ′I , C
′
O, S4, s

4
0, δ

4
o , δ

4
t ),

a1 ‖ a3 = (C ′′I , C
′′
O, S1 × S3, 〈s1

0, s
3
0〉, δ1‖3

o , δ
1‖3
t ),

a2 ‖ a4 = (C ′′I , C
′′
O, S2 × S4, 〈s2

0, s
4
0〉, δ2‖4

o , δ
2‖4
t ).

We show that given bisimulations R1 ⊆ S1 × S2 and R2 ⊆ S3 × S4, then the
relation:

R ⊆ (S1 × S3)× (S2 × S4),

R = {(〈s1, s3〉, 〈s2, s4〉) | (s1, s2) ∈ R1 ∧ (s3, s4) ∈ R2},

is a bisimulation (and clearly it relates the starting states of a1 ‖ a3 and
a2 ‖ a4).

So assume that (〈s1, s3〉, 〈s2, s4〉) ∈ R. This means that (s1, s2) ∈ R1 and
(s3, s4) ∈ R2. We now have that:

δ1‖3
o (〈s1, s3〉) = (δ1

o(s1) ∪ δ3
o(s3))|C′′O

(by definition)

= (δ2
o(s2) ∪ δ4

o(s4))|C′′O
(R1 and R2 are bisimulations)

= δ2‖4
o (〈s2, s4〉). (by definition)

And if m ∈MC′′I
then because R1 and R2 are bisimulations we have that:

(δ1
t (s1, (m ∪ δ3

o(s3))|CI ), δ
2
t (s2, (m ∪ δ3

o(s3))|CI )) ∈ R1,

(δ3
t (s3, (m ∪ δ1

o(s1))|C′I
), δ4

t (s4, (m ∪ δ1
o(s1))|C′I

)) ∈ R2.
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But then we have (using infix notation for the relation R):

δ
1‖3
t (〈s1, s3〉,m) = 〈δ1

t (s1, (m ∪ δ3
o(s3))|CI ), δ

3
t (s3, (m ∪ δ1

o(s1))|C′I
)〉

R 〈δ2
t (s2, (m ∪ δ3

o(s3))|CI ), δ
4
t (s4, (m ∪ δ1

o(s1))|C′I
)〉

= 〈δ2
t (s2, (m ∪ δ4

o(s4))|CI ), δ
4
t (s4, (m ∪ δ2

o(s2))|C′I
)〉

= δ
2‖4
t (〈s2, s4〉,m),

where the second to last equality follows from R1 and R2 being bisimulations.
Hence the result follows as required.

Lemma C.1.2. For sets with A ∩B = ∅ the following equality holds:

(A ∪ (B \ C)) \ (D ∪ (C \B)) = (A ∪B) \ (C ∪D).

Proof. Straightforward.

Proof of Lemma 3.3.5

Proof. The first part of the proof is to show that the input channels and output
channels of the composed automata are well-defined. We show that

C
1‖(2‖3)
I = (C1

I ∪ C2
I ∪ C3

I ) \ (C1
O ∪ C2

O ∪ C3
O) = C

(1‖2)‖3
I ,

C
1‖(2‖3)
O = (C1

O ∪ C2
O ∪ C3

O) \ (C1
I ∪ C2

I ∪ C3
I ) = C

(1‖2)‖3
O .

We only show the case for the input channels, the output case is symmetric. We
start with the left equality, and first note that:

C
1‖(2‖3)
I =

(
C1
I ∪

(
(C2

I ∪ C3
I ) \ (C2

O ∪ C3
O)
))
\
(
C1
O ∪

(
(C2

O ∪ C3
O) \ (C2

I ∪ C3
I )
))
.

From the assumptions we get that C1
I ∩ (C2

I ∪ C3
I ) = ∅, which means the we can

instantiate Lemma C.1.2 with A = C1
I , B = C2

I ∪ C3
I , C = C2

O ∪ C3
O, and D = C1

O.
We thus get:

C
1‖(2‖3)
I = (C1

I ∪ C2
I ∪ C3

I ) \ (C1
O ∪ C2

O ∪ C3
O).

For the right equality we note that:

C
(1‖2)‖3
I =

((
(C1

I ∪ C2
I ) \ (C1

O ∪ C2
O)
)
∪ C3

I

)
\
((

(C1
O ∪ C2

O) \ (C1
I ∪ C2

I )
)
∪ C3

O

)
.

But then we have from the assumptions that C3
I ∩ (C1

I ∪ C2
I ) = ∅ and we can

instantiate Lemma C.1.2 with A = C3
I , B = C1

I ∪ C2
I , C = C1

O ∪ C2
O, and D = C3

O.
We thus get:

C
(1‖2)‖3
I = (C1

I ∪ C2
I ∪ C3

I ) \ (C1
O ∪ C2

O ∪ C3
O).

We abbreviate:

CI = (C1
I ∪ C2

I ∪ C3
I ) \ (C1

O ∪ C2
O ∪ C3

O),

CO = (C1
O ∪ C2

O ∪ C3
O) \ (C1

I ∪ C2
I ∪ C3

I ).
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The second part of the proof is to construct a bisimulation that relates the start
states. We use the following (which clearly relates the start states):

R ⊆
(
S1 × (S2 × S3)

)
×
(
(S1 × S2)× S3

)
,

R = {(〈s1, 〈s2, s3〉〉, 〈〈s1, s2〉, s3〉) | s1 ∈ S1, s2 ∈ S2, s3 ∈ S3}.
We prove that this is a bisimulation, so assume that:

(〈s1, 〈s2, s3〉〉, 〈〈s1, s2〉, s3〉) ∈ R.
First we need to compare the outputs:

δ1‖(2‖3)
o (〈s1, 〈s2, s3〉〉) = (δ1

o(s1) ∪ (δ2
o(s2) ∪ δ3

o(s3))|C2‖3
O

)
|CO

(a)
= (δ1

o(s1) ∪ δ2
o(s2) ∪ δ3

o(s3))|CO
(b)
= ((δ1

o(s1) ∪ δ2
o(s2))|C1‖2

O

∪ δ3
o(s3))

|CO

= δ(1‖2)‖3
o (〈〈s1, s2〉, s3〉),

where (a) follows from C1
O∩(C2

O∪C3
O) = ∅ and (b) follows from (C1

O∪C2
O)∩C3

O = ∅.
Finally, we need to show that for any m ∈MCI the updated states are related. To
show this we introduce shorthand notation:

s′1 = δ1
t (s1, (m ∪ δ2

o(s2) ∪ δ3
o(s3))|C1

I
),

s′2 = δ2
t (s2, (m ∪ δ1

o(s1) ∪ δ3
o(s3))|C2

I
),

s′3 = δ3
t (s3, (m ∪ δ1

o(s1) ∪ δ2
o(s2))|C3

I
).

And we calculate:

δ
1‖(2‖3)
t (〈s1, 〈s2, s3〉〉,m)

= 〈δ1
t (s1, (m ∪ (δ2

o(s2) ∪ δ3
o(s3))|C2‖3

O

)
|C1
I

), δ
2‖3
t (〈s2, s3〉, (m ∪ δ1

o(s1))|C2‖3
I

)〉

(a)
= 〈δ1

t (s1, (m ∪ δ2
o(s2) ∪ δ3

o(s3))|C1
I
), δ

2‖3
t (〈s2, s3〉, (m ∪ δ1

o(s1))|C2‖3
I

)〉

= 〈s′1, 〈δ2
t (s2, ((m ∪ δ1

o(s1))|C2‖3
I

∪ δ3
o(s3))

|C2
I

), δ3
t (s3, ((m ∪ δ1

o(s1))|C2‖3
I

∪ δ2
o(s2))

|C3
I

)〉〉

(b)
= 〈s′1, 〈δ2

t (s2, (m ∪ δ1
o(s1) ∪ δ3

o(s3))|C2
I
), 〈δ3

t (s3, (m ∪ δ1
o(s1) ∪ δ2

o(s2))|C3
I
)〉〉

= 〈s′1, 〈s′2, s′3〉〉,
where (a) follows from C1

I ∩(C2
I ∪C3

I ) = ∅, and (b) follows from C1
O∩(C2

O∪C3
O) = ∅.

In a similar way we can calculate:

δ
(1‖2)‖3
t (〈〈s1, s2〉, s3〉,m)

= 〈δ1‖2
t (〈s1, s2〉, (m ∪ δ3

o(s3))|C1‖2
I

), δ3
t (s3, (m ∪ (δ1

o(s1) ∪ δ2
o(s2))|C1‖2

O

)
|C3
I

)〉

= 〈〈s′1, s′2〉, s′3〉.
And therefore by definition we have that:

(δ
1‖(2‖3)
t (〈s1, 〈s2, s3〉〉,m), δ

(1‖2)‖3
t (〈〈s1, s2〉, s3〉,m)) ∈ R,

which concludes the proof.
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Proof of Theorem 3.5.13

Proof. We will use the following definitions and abbreviations in the proof:

ci = (ΛPAi ,ΛAiP, Gi, gi, ρi) ci = (Ci, Gi, gi, ρ
′
i) ΛI =

n⋃
i=1

ΛAiP

ΛO =
n⋃
i=1

ΛPAi Λ = ΛI ∪ ΛO CE = (
n⋃
i=1

Ci) \ CO.

From the definition of automaton contract conformance we get that there exists a
conformance relation R ⊆ Q×S×G1×. . .×Gn for a and C = {c1, . . . , cn} that relates
the start states. We must construct a conformance relation R′ for i = (a, r) and
C = {c1, . . . , cn}, so we claim that R′ = R is such a conformance relation. Clearly,
it relates the start states, so if we can show that R′ is a conformance relation for i
and C , then the result follows.

So assume that (k, s, g1, . . . , gn) ∈ R′ and let m ∈MΛI be given. Now let:

(g′i, ki) = ρi(gi, ri(δo(s),m),m|ΛAiP
), (C.1)

for i = 1, . . . , n. We must then show that:

n∑
i=1

ki ≥ k, (C.2)

(k −
n∑
i=1

ki, δt(s,m ◦ ri), g
′
1, . . . , g

′
n) ∈ R′. (C.3)

In order to show this, we construct a move m̂ ∈ MCE that can be used in the
automaton conformance relation R:

m̂(α) = m(λ) iff λ ∈ ΛI and θ(λ) = α.

First, we must show that m̂ is well-defined, that is (1) there always exists such a λ,
and (2) the function value is unique.

(1) Let α ∈ CE be given. Then there exists a link λ ∈ Λ such that θ(λ) = α by
construction of the projection. If λ ∈ ΛI we are done, so assume that λ ∈ ΛO.
If ro(α′) = λ for some α′ ∈ CO then α = θ(λ) = θ(ro(α′)) = α′ in contradiction
with α /∈ CO. Therefore, rd(λ′) = λ and hence θ(λ′) = θ(λ) = α with λ′ ∈ ΛI .

(2) Let θ(λ) = θ(λ′) with λ, λ′ ∈ ΛI . Then by condition (4) of Definition 3.5.9 we
have that either λ = λ′, rd(λ) = λ′, or rd(λ′) = λ. But the last two cases cannot
happen, since that would imply that either λ ∈ ΛO or λ′ ∈ ΛO. Hence λ = λ′.

We can now use m̂ in the relation R because CI ⊆ CE , compare Observa-
tion 3.5.11. So let:

(g′′i , k
′′
i ) = ρ′i(gi, (m̂ ∪ δo(s))|Ci)

= ρi(gi, (m̂ ∪ δo(s))|Ci ◦ θ|ΛPAi
, (m̂ ∪ δo(s))|Ci ◦ θ|ΛAiP

). (C.4)
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We now show that:

ri(δo(s),m) = (m̂ ∪ δo(s))|Ci ◦ θ|ΛPAi
, (C.5)

m|ΛAiP
= (m̂ ∪ δo(s))|Ci ◦ θ|ΛAiP

. (C.6)

(C.5) Now,

ri(δo(s),m)(λ) =

{
δo(s)(α) if ro(α) = λ,

m(λ′) if rd(λ′) = λ.

So assume that ro(α) = λ. Then LHS = δo(s)(α). Now by the second re-
quirement for renaming maps it follows that θ|ΛPAi

(λ) = α, so also RHS =

δo(s)(α).

Now assume that rd(λ′) = λ. Then LHS = m(λ′). Now by condition (3)
of Definition 3.5.9 it follows that θ|ΛPAi

(λ) = θ|ΛPAi
(λ′) 6∈ CO, hence RHS =

m̂(θ|ΛPAi
(λ′)) = m(λ′) as required.

(C.6) Now let λ ∈ ΛAiP be given. Then θ|ΛAiP
(λ) 6∈ CO so RHS = m̂(θ|ΛAiP

(λ)) =

m(λ) = LHS as required.

We have now established (C.5) and (C.6), from which it follows that g′i = g′′i and
ki = k′′i for i = 1, . . . , n, compare (C.1) and (C.4). Hence (C.2) follows from the
fact that

∑n
i=1 k

′′
i ≥ k (the conformance relation R). Now, in order to show (C.3)

it suffices to show that:
δt(s,m ◦ ri) = δt(s, m̂|CI ),

which means that we must show that:

(m ◦ ri)(α) = m̂|CI (α),

for all α ∈ CI . But this follows from the first condition of renaming maps, and hence
the result follows.

Proof of Theorem 3.5.15

Proof. We are given two conformance relations:

R1 ⊆ Q× S1 ×G1 × . . .×Gn ×G′1 × . . .×G′n1
,

R2 ⊆ Q× S2 ×G1 × . . .×Gn ×G′′1 × . . .×G′′n2
,

that relate the start states. We must construct a new conformance relation:

R ⊆ Q× (S1 × S2)×G′1 × . . .×G′n1
×G′′1 × . . .×G′′n2

,

that relates the start states in the parallel composition. We define R in the following
way:

(k, 〈s1, s2〉, g′1, . . . , g′n1
, g′′1 , . . . , g

′′
n2

) ∈ R iff (k1, s1, g1, . . . , gn, g
′
1, . . . , g

′
n1

) ∈ R1 and

(k2, s2, g1, . . . , gn, g
′′
1 , . . . , g

′′
n2

) ∈ R2 and

k1 + k2 = k for some

(g1, . . . , gn) ∈ G1 × · · · ×Gn and

k1, k2 ∈ Q.
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It is clear that R relates the start states, so it suffices to show that R is a conformance
relation.

So assume that (k, 〈s1, s2〉, g′1, . . . , g′n1
, g′′1 , . . . , g

′′
n2

) ∈ R. This means that there
exists k1, k2, g1, . . . , gn such that:

k = k1 + k2, (C.7)

(k1, s1, g1, . . . , gn, g
′
1, . . . , g

′
n1

) ∈ R1, (C.8)

(k2, s2, g1, . . . , gn, g
′′
1 , . . . , g

′′
n2

) ∈ R2. (C.9)

Now put for easy reference:

C =
n⋃
i=1

Ci C ′ =

n1⋃
i=1

C ′i C ′′ =

n2⋃
i=1

C ′′i ,

let m ∈M(CI∪C′∪C′′)\CO be given, and let:

(g′i, k
′
i) = ρ′i(g

′
i, (m ∪ δo(〈s1, s2〉))|C′i), for i = 1 . . . n1, (C.10)

(g′′i , k
′′
i ) = ρ′′i (g

′′
i , (m ∪ δo(〈s1, s2〉))|C′′i ), for i = 1 . . . n2. (C.11)

We must then show that:

n1∑
i=1

k′i +

n2∑
i=1

k′′i ≥ k, (C.12)

(k −
n1∑
i=1

k′i +

n2∑
i=1

k′′i , δt(〈s1, s2〉,m|CI ), g′1, . . . , g′n1
, g′′1 , . . . , g

′′
n2

) ∈ R. (C.13)

In order to show the above, we construct m1 ∈ M(C1
I∪C∪C′)\C

1
O

and m2 ∈
M(C2

I∪C∪C′′)\C
2
O

to use in R1 and R2. The idea is to define m1 to behave like

(a) m where this is possible, (b) to the value of a2’s output on C2
O, and (c) to some

arbitrary value on the rest. m2 will be defined in a similar way.

To make this intuition precise, we see that because C ′∩Cint = ∅ and C ′′∩Cint = ∅
then (we call the domain of m for D):

D = (CI ∪ C ′ ∪ C ′′) \ CO
= ((C1

I ∪ C2
I ) \ Cint ∪ C ′ ∪ C ′′) \ (C1

O ∪ C2
O \ Cint)

= ((C1
I ∪ C2

I ∪ C ′ ∪ C ′′) \ Cint) \ (C1
O ∪ C2

O \ Cint)

= (C1
I ∪ C2

I ∪ C ′ ∪ C ′′) \ (C1
O ∪ C2

O ∪ Cint).

Hence, the elements α ∈ (C1
I ∪ C ∪ C ′) \ C1

O that are not in D, that is α on which
m1 cannot agree with m, can have two possible forms:

1. α ∈ C2
O, or

2. α /∈ C2
O and α /∈ Cint and α ∈ C.

(The case α ∈ Cint \ C2
O cannot occur because α 6∈ C1

O.)
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Now, for each channel α in the second case we choose some (fixed) value xα ∈ Aα
and set the value of m1 to that value. So in summary we get the following definition
of m1:

m1(α) =


m(α) if α ∈ D,
δ2

o(s2)(α) if α ∈ C2
O,

xα otherwise.

(The three cases correspond to (a), (b), and (c) mentioned above). By a similar
analysis m2 is defined by:

m2(α) =


m(α) if α ∈ D,
δ1

o(s1)(α) if α ∈ C1
O,

xα otherwise.

We now apply m1 in conformance relation R1 (C.8):

(gi, ki) = ρi(gi, (m1 ∪ δ1
o(s1))|Ci), for i = 1 . . . n, (C.14)

(g′i, k
′
i) = ρ′i(g

′
i, (m1 ∪ δ1

o(s1))|C′i
), for i = 1 . . . n1, (C.15)

and m2 in conformance relation R2 (C.9):

(gi, ki) = ρi(gi, (m2 ∪ δ2
o(s2))|Ci), for i = 1 . . . n, (C.16)

(g′′i , k
′′
i ) = ρ′′i (g

′′
i , (m2 ∪ δ2

o(s2))|C′′i
), for i = 1 . . . n2. (C.17)

In order to show (C.12) and (C.13), we first prove three equalities:

(I) (m1 ∪ δ1
o(s1))|C′i

= (m ∪ δo(〈s1, s2〉))|C′i , for i = 1, . . . , n1,

(II) (m2 ∪ δ2
o(s2))|C′′i

= (m ∪ δo(〈s1, s2〉))|C′′i , for i = 1, . . . , n2, and

(III) (m1 ∪ δ1
o(s1))|Ci = (m2 ∪ δ2

o(s2))|Ci , for i = 1, . . . , n.

(I) Let α ∈ C ′i and consider the possible cases:

– α ∈ C1
O: Here we must have that α ∈ CO because Cint ∩ C ′i = ∅, and

hence:

(m1 ∪ δ1
o(s1))|C′i

(α) = δ1
o(s1)(α)

= δo(〈s1, s2〉)(α)

= (m ∪ δo(〈s1, s2〉))|C′i(α).

– α ∈ C2
O: Here we must again have that α ∈ CO, and hence:

(m1 ∪ δ1
o(s1))|C′i

(α) = m1(α)

= δ2
o(s2)(α)

= δo(〈s1, s2〉)(α)

= (m ∪ δo(〈s1, s2〉))|C′i(α).



204 Appendices for Chapter 3

– α ∈ D: Here we have that

(m1 ∪ δ1
o(s1))|C′i

(α) = m1(α)

= m(α)

= (m ∪ δo(〈s1, s2〉))|C′i(α).

(II) Similar to the proof of (I).

(III) Follows directly by construction of m1 and m2.

Based on the equalities above, we can conclude the following:

(A) By (I) and definitions (C.10) and (C.15): g′i = g′i and k′i = k′i for i = 1, . . . , n1.

(B) By (II) and definitions (C.11) and (C.17): g′′i = g′′i and k′′i = k′′i for i = 1, . . . , n2.

(C) By (III) and definitions (C.14) and (C.16): gi = gi and ki = −ki for i = 1, . . . , n.

And now finally the proof of (C.12):

n1∑
i=1

k′i +

n2∑
i=1

k′′i =

n1∑
i=1

k′i +

n2∑
i=1

k′′i (by A and B)

=

n1∑
i=1

k′i +

(
n∑
i=1

ki +

n∑
i=1

ki

)
+

n2∑
i=1

k′′i (by C)

=

(
n1∑
i=1

k′i +
n∑
i=1

ki

)
+

(
n∑
i=1

ki +

n2∑
i=1

k′′i

)
≥ k1 + k2 (by C.8 and C.9)

= k. (by C.7)

And in order to prove (C.13) it follows from the equalities in (A), (B), and (C)
that it suffices to show that:

δt(〈s1, s2〉,m|CI ) = 〈δ1
t (s1,m1|C1

I
), δ2

t (s2,m2|C2
I
)〉,

which follows by definition of m1 and m2.
This concludes the proof of the theorem.

C.2 Partial Magmas

In this appendix we introduce the non-standard notion of partial magmas, which is
used to prove the equivalence result of Section 3.3.1.

Definition C.2.1. Let G be a set with a partial binary operator · : G × G ⇀ G
(we write g1g2 for g1 · g2). (G, ·) is called a partial magma whenever the following
holds for all g1, g2, g3 ∈ G:
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(1) if g1g2 is defined then so is g2g1, and

(2) if g1g2, g1g3, and g2g3 are defined then so is (g1g2)g3.

Lemma C.2.2. Let (G, ·) be a partial magma. If g1g2, g1g3, and g2g3 are defined
for g1, g2, g3 ∈ G then so is g1(g2g3).

Proof. We get from condition (1) that g2g1 and g3g1 are defined, and therefore
from condition (2) we get that (g2g3)g1 is defined. The result then follows from
condition (1).

Definition C.2.3. Let (G, ·) and (H, ·) be partial magmas. A function φ : G→ H
is called a homomorphism whenever the following holds for all g1, g2 ∈ G:

(1) g1g2 is defined iff φ(g1)φ(g2) is defined, and

(2) φ(g1g2) = φ(g1)φ(g2).

φ is called an isomorphism whenever φ is a bijective homomorphism.

Lemma C.2.4. Let φ : G→ H be an isomorphism between partial magmas G and
H. Then the following holds:

(a) φ−1 : H → G is an isomorphism.

(b) If ψ : H → G satisfies φ(ψ(h)) = h for all h ∈ H then ψ = φ−1, and hence ψ is
an isomorphism.

(c) If the composition in G is associative then so is the composition in H. By
associative we mean: if g1g2, g1g3, and g2g3 are defined then (g1g2)g3 = g1(g2g3).

(d) If the composition in G is commutative then so is the composition in H. By
commutative we mean: if g1g2 is defined then g1g2 = g2g1.

Proof.

(a) φ−1 is by definition bijective, so we need to show that it is an homomorphism.
First, h1h2 = φ(g1)φ(g2) is defined exactly when g1g2 = φ−1(φ(g1))φ−1(φ(g2))
is defined. Second,

φ−1(h1h2) = φ−1(φ(g1)φ(g2)) (φ is surjective)

= φ−1(φ(g1g2)) (φ is homomorphic)

= g1g2

= φ−1(h1)φ−1(h2). (φ is injective)

(b) ψ(h) = φ−1(φ(ψ(h))) = φ−1(h).
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(c) If h1h2, h1h3, and h2h3 are defined then with φ(gi) = hi we have that g1g2,
g1g3, and g2g3 are defined because φ is a homomorphism. Now:

h1(h2h3) = φ(g1)
(
φ(g2)φ(g3)

)
= φ(g1)φ(g2g3) (φ is homomorphic)

= φ(g1(g2g3)) (φ is homomorphic)

= φ((g1g2)g3) (associativity in G)

= φ(g1g2)φ(g3) (φ is homomorphic)

=
(
φ(g1)φ(g2)

)
φ(g3) (φ is homomorphic)

= (h1h2)h3.

(d) If h1h2 is defined then with φ(gi) = hi we have that g1g2 is defined because φ
is a homomorphism. Now:

h1h2 = φ(g1)φ(g2)

= φ(g1g2) (φ is homomorphic)

= φ(g2g1) (commutativity in G)

= φ(g2)φ(g1) (φ is homomorphic)

= h2h1.

Lemma C.2.5. Let (G, ·) be a partial magma and let R ⊆ G ×G be a congruence
relation on G. That is, the following holds for all g, g1, g2, g3, g4 ∈ G:

(g, g) ∈ R, (reflexive)

if (g1, g2) ∈ R then (g2, g1) ∈ R, (symmetric)

if (g1, g2) ∈ R and (g2, g3) ∈ R then (g1, g3) ∈ R, (transitive)

if (g1, g2) ∈ R and (g3, g4) ∈ R then (g1g3, g2g4) ∈ R,

where (g1g3, g2g4) ∈ R means that either both g1g3 and g2g4 are undefined, or both
are defined and related by R. Then (G/R, ·) is a partial magma with

[g1][g2] = [g1g2] iff g1g2 is defined,

where [g] = {g′ ∈ G | (g, g′) ∈ R}.

Proof. We must show that the composition is well-defined, that is if [g1] = [g2] and
[g3] = [g4] then [g1][g3] = [g2][g4]. But this follows by definition from R being a con-
gruence relation. Next we must show that conditions (1) and (2) of Definition C.2.1
are fulfilled, but this follows from them being fulfilled for G.

Lemma C.2.6. Let (G, ·) and (H, ·) be partial magmas and let R be a congruence
relation on G. If φ : G→ H is a surjective homomorphism satisfying φ(g1) = φ(g2)
iff (g1, g2) ∈ R, then the induced function φR : G/R→ H defined by:

φR([g]) = φ(g),

is an isomorphism.
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Proof. We first note that φR is well-defined, as φ(g1) = φ(g2) whenever (g1, g2) ∈ R.
Since φ is surjective, so is φR, and φR is injective since (g1, g2) ∈ R whenever
φ(g1) = φ(g2). Finally, φR is homomorphic since [g1][g2] is defined exactly when
g1g2 is defined, which is exactly when φ(g1)φ(g2) = φR([g1])φR([g2]) is defined. We
therefore have that:

φR([g1][g2]) = φR([g1g2]) = φ(g1g2) = φ(g1)φ(g2) = φR([g1])φR([g2]).

C.3 Equivalence of Models

In order to show equivalence of the process model and the automaton model we
show that the two models are isomorphic as partial magmas (Appendix C.2). The
elements of the partial magmas are processes and automata respectively, and com-
position is in both cases parallel composition. That is, composition is only partial
due to incompatible input channels or output channels.

Lemma C.3.1. (P, ‖) defines a partial magma.

Proof. The fact that (· ‖ ·) : P × P ⇀ P follows from Lemma 3.2.6, and the
partiality of ‖ is only due to incompatible channels, compare Lemma 3.2.6. We note
that if p1 ‖ p2 is defined then so is p2 ‖ p1, hence condition (1) of Definition C.2.1 is
satisfied. In order to show condition (2), assume that p1 ‖ p2, p1 ‖ p3, and p2 ‖ p3

are defined. This means that:

C1
I ∩ C2

I = C1
I ∩ C3

I = C2
I ∩ C3

I = ∅,
C1
O ∩ C2

O = C1
O ∩ C3

O = C2
O ∩ C3

O = ∅.

We therefore have that:

((C1
I ∪ C2

I ) \ C1‖2
int ) ∩ C3

I = ∅ ((C1
O ∪ C2

O) \ C1‖2
int ) ∩ C3

O = ∅,

where C
1‖2
int are the internal channels of p1 ‖ p2 and hence (p1 ‖ p2) ‖ p3 is defined.

Lemma C.3.2. (A, ‖) defines a partial magma.

Proof. The fact that (· ‖ ·) : A× A ⇀ A follows by construction, and the partiality
of ‖ is only due to incompatible input channels or output channels. Therefore, the
proofs that conditions (1) and (2) of Definition C.2.1 are fulfilled are similar to the
proofs in the previous lemma.

C.3.1 Automata as Processes

Definition C.3.3. Let a = (CI , CO, S, s0, δo, δt) be an automaton, and define the

big-step relation t ` s, li ⇓ lo ⊆ N× S × LCI × LCO by the two rules:

∀t′ < eol(li).lε(t
′) = ε lε ∈ Leol(li)

CO
e-end (t ≥ eol(li))t ` s, li ⇓ lε
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δo(s) = m δt(s, li(t)) = s′ t+ 1 ` s′, li ⇓ loe-step (t < eol(li))
t ` s, li ⇓ lo[t 7→ m]

In the above, for a log l ∈ LtC , t′ < t, and m ∈ MC ; l[t′ 7→ m] denotes the log that
is identical with l, except l[t′ 7→ m](t′) = m.

Lemma C.3.4. Big-step evaluation is total and deterministic, and whenever t `
s, li ⇓ lo then eol(li) = eol(lo).

Proof. Follows immediately from the definition (formally it is a proof by induction
on the derivation).

Definition C.3.5. We define the translation p·q : A→ P by:

p(CI , CO, S, s0, δo, δt)q = (CI , CO, f),

where f(li) = lo iff 0 ` s0, li,⇓ lo.

The definition above gives the expected process semantics to automata. We
must, however, show that the translation is well-defined, that is we must show that
paq defines a process for all automata a.

Theorem C.3.6. The translation of an automaton a = (CI , CO, S, s0, δo, δt) is a
process.

Proof. Let paq = (CI , CO, f). The conditions that CI and CO be finite and dis-
joint follow directly from a being an automaton. So we must show that f is a log
transformer from LCI to LCO .

Lemma C.3.4 yields that f represents a function from LCI to LCO , so we need
to show the following for all logs l, l1, l2 ∈ LCI and timestamps t ∈ N with t <
min(eol(l1), eol(l2)):

(i) eol(l) = eol(f(l)), and

(ii) if l1|t = l2|t then f(l1)|t+1 =f(l2)|t+1.

(i) Follows from Lemma C.3.4.

(ii) We show the following generalisation for all logs l1, l2 ∈ LCI and timestamps
t, t′, t′′ ∈ N with t′ ≤ t′′ ≤ t < min(eol(l1), eol(l2)):

if t′ ` s, l1 ⇓ l′1 and t′ ` s, l2 ⇓ l′2 and l1|t = l2|t then l′1(t′′) = l′2(t′′). (C.18)

The proof is by induction on the derivation of t′ ` s, l1 ⇓ l′1:

e-end: Now t′ < min(eol(l1), eol(l2)) and t′ ≥ eol(l1) so the case is trivial.

e-step: Now the derivation of t′ ` s, l1 ⇓ l′1 has the form:

δo(s) = m δt(s, l1(t′)) = s′

(∗)︷ ︸︸ ︷
t′ + 1 ` s′, l1 ⇓ l′′1 (t′ < eol(l1))

t′ ` s, l1 ⇓ l′′1 [t′ 7→ m]
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If t′ ≥ eol(l2) then since t′ < min(eol(l1), eol(l2)) the case is trivial. So
assume that t′ < eol(l2). Then the derivation of t′ ` s, l2 ⇓ l′2 must have
used the e-step rule as well:

δo(s) = m δt(s, l2(t′)) = s′′

(∗∗)︷ ︸︸ ︷
t′ + 1 ` s′′, l2 ⇓ l′′2 (t′ < eol(l2))

t′ ` s, l2 ⇓ l′′2 [t′ 7→ m]

Now l′1(t′) = l′2(t′) = m so in order to show (C.18) it suffices to show
that l′1(t′′) = l′2(t′′) for all t′′ with t′ + 1 ≤ t′′ ≤ t. If t′ = t then the
result follows trivially, so assume that t′ < t. Now l′1 = l′′1 [t′ 7→ m] and
l′2 = l′′2 [t′ 7→ m] so the result will follow from the generalised induction
hypothesis applied to (∗) and (∗∗) if we can show that s′ = s′′. But this
is the case since l1(t′) = l2(t′) as we assumed that t′ < t. This concludes
the proof of (C.18).

We can now apply the generalised induction hypothesis with t′ = 0 to get that
f(l1)(t′′) = f(l2)(t′′) whenever 0 ≤ t′′ ≤ t and l1|t = l2|t. But this is exactly
the definition of strict monotonicity as required.

The following two lemmas show that bisimilarity in the automaton model coin-
cides with equality in the process model under the translation p·q.

Lemma C.3.7. If a1 ≡ a2 then pa1q = pa2q.

Proof. Let a1 = (CI , CO, S
1, s1

0, δ
1
o , δ

1
t ) and a2 = (CI , CO, S

2, s2
0, δ

2
o , δ

2
t ) be given and

assume that a1 ≡ a2. We then need to show that:

if 0 ` s1
0, l ⇓ l1 and 0 ` s2

0, l ⇓ l2 then l1 = l2.

We show the following more general result for all logs l, l1, l2 ∈ LCI and timestamps
t, t′ ∈ N with t ≤ t′ < eol(l):

if t ` s1, l ⇓ l1 and t ` s2, l ⇓ l2 and s1 ≡ s2 then l1(t′) = l2(t′).

(s1 ≡ s2 means that (s1, s2) ∈ R for some bisimulation R.) The proof is by induction
on the derivation of t ` s1, l ⇓ l1.

e-end: Now t > eol(l) so the result follows trivially.

e-step: Now both derivations must have used the e-step rule:

δ1
o(s1) = m1 δt(s1, l(t)) = s′1

(∗)︷ ︸︸ ︷
t+ 1 ` s′1, l ⇓ l1 (t < eol(l))

t ` s1, l ⇓ l1[t 7→ m1]

δ2
o(s2) = m2 δt(s2, l(t)) = s′2

(∗∗)︷ ︸︸ ︷
t+ 1 ` s′2, l ⇓ l2 (t < eol(l))

t ` s2, l ⇓ l2[t 7→ m2]
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By assumption, s1 ≡ s2 so m1 = m2. Hence it suffices to show that l1(t′) =
l2(t′) for all timestamps t′ with t+1 ≤ t′ < eol(l). But this follows by induction
on (∗) and (∗∗) since s1 ≡ s2 implies that s′1 ≡ s′2.

Lemma C.3.8. If pa1q = pa2q then a1 ≡ a2.

Proof. Let a1 = (CI , CO, S
1, s1

0, δ
1
o , δ

1
t ) and a2 = (CI , CO, S

2, s2
0, δ

2
o , δ

2
t ) be given and

assume that pa1q = pa2q. We then need to construct a bisimulation R ⊆ S1 × S2

such that (s1
0, s

2
0) ∈ R. So consider the set:

R =
{

(s1, s2) | ∃t ∈ N.∀l, l′ ∈ LCI .
(
t ` s1, l ⇓ l′ ⇔ t ` s2, l ⇓ l′

)}
.

We first show that R is a bisimulation. So assume that (s1, s2) ∈ R with some
witness t ∈ N. We then need to show that:

δ1
o(s1) = δ2

o(s2) and (δ1
t (s1,m), δ2

t (s2,m)) ∈ R,

for all m ∈MCI .
Let l ∈ LCI be some log with eol(l) = t+ 1. Then t ` s1, l ⇓ l′ and t ` s2, l ⇓ l′

both using the e-step rule, and hence δ1
o(s1) = l′(t) = δ2

o(s2) as needed.
We now need to show that (δ1

t (s1,m), δ2
t (s2,m)) ∈ R for all m ∈MCI . That is,

it suffices to show the following for all moves m ∈MCI :

∀l, l′ ∈ LCI .
(
t+ 1 ` δ1

t (s1,m), l ⇓ l′ ⇔ t+ 1 ` δ2
t (s2,m), l ⇓ l′

)
. (C.19)

So let l ∈ LCI be given and assume that t + 1 ` δ1
t (s1,m), l ⇓ l′ and t + 1 `

δ2
t (s2,m), l ⇓ l′′. We then need to show that l′ = l′′.

If t+ 1 ≥ eol(l) then l′ = l′′ = lε so assume that t+ 1 < eol(l). Now (s1, s2) ∈ R
with witness t, so for lm = l[t 7→ m] we have that:

t ` s1, lm ⇓ l′′′ ⇔ t ` s2, lm ⇓ l′′′.

Since t+ 1 < eol(l) both derivations must have used the e-step rule:

δ1
o(s1) = m1 δ1

t (s1, lm(t)) = s′1

(∗)︷ ︸︸ ︷
t+ 1 ` s′1, lm ⇓ l̂ (t < eol(lm))

t ` s1, lm ⇓ l̂[t 7→ m1]

δ2
o(s2) = m2 δ2

t (s2, lm(t)) = s′2

(∗∗)︷ ︸︸ ︷
t+ 1 ` s′2, lm ⇓ l̂ (t < eol(lm))

t ` s2, lm ⇓ l̂[t 7→ m2]

But lm(t) = m so it follows that δ1
t (s1,m) = s′1 and δ2

t (s2,m) = s′2. We hence have
that:

t+ 1 ` δ1
t (s1,m), lm ⇓ l̂ and t+ 1 ` δ2

t (s2,m), lm ⇓ l̂.
But l(t′) = lm(t′) for all t′ ≥ t+1, hence we can replace lm by l in the relations above
(formally a proof by induction on the derivation). That is, we have the following:

t+ 1 ` δ1
t (s1,m), l ⇓ l̂ and t+ 1 ` δ2

t (s2,m), l ⇓ l̂.
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But then by the determinism of the big-step relation (Lemma C.3.4) it follows that
l′ = l̂ = l′′, which concludes the proof of (C.19).

Now in order to conclude the lemma it suffices to show that (s1
0, s

2
0) ∈ R. But

this is the case since pa1q = pa2q (that is witness 0).

The final lemma shows that the translation of automata to processes is com-
positional, meaning that whenever a1 ‖ a2 is defined, so is pa1q ‖ pa2q, and
pa1 ‖ a2q = pa1q ‖ pa2q.

Lemma C.3.9. p·q : (A, ‖)→ (P, ‖) is a (partial magma) homomorphism.

Proof. Let a1 = (C1
I , C

1
O, S

1, s1
0, δ

1
o , δ

1
t ) and a2 = (C2

I , C
2
O, S

2, s2
0, δ

2
o , δ

2
t ) be given.

Since p·q preserves input–output channels, a1 ‖ a2 is defined exactly when pa1q ‖
pa2q is defined. So assume both are defined, and let CI and CO denote input
channels and output channels respectively for the two compositions (which are the
same compare Definition 3.2.4 and Definition 3.3.2).

Now, pa1 ‖ a2q(l) = l′ iff 0 ` 〈s1
0, s

2
0〉, l ⇓ l′ using the two rules:

∀t′ < eol(l).lε(t
′) = ε lε ∈ Leol(l)

COe-end1‖2 (t ≥ eol(l))
t ` 〈s1, s2〉, l ⇓ lε

(δ1
o(s1) ∪ δ2

o(s2))|CO
= m

δ1
t (s1, (l(t) ∪ δ2

o(s2))|C1
I
) = s′1

δ2
t (s2, (l(t) ∪ δ1

o(s1))|C2
I
) = s′2 t+ 1 ` 〈s′1, s′2〉, l ⇓ l′

e-step1‖2 (t < eol(l))
t ` 〈s1, s2〉, l ⇓ l′[t 7→ m]

The translations of a1 and a2 use the rules e-end1, e-step1 and e-end2, e-step2
respectively:

∀t′ < eol(l).lε(t
′) = ε lε ∈ Leol(l)

CO
e-end1 (t ≥ eol(l))

t ` s1, l ⇓ lε

δ1
o(s1) = m1 δ1

t (s1, l(t)) = s′1 t+ 1 ` s′1, l ⇓ l′e-step1 (t < eol(l))
t ` s1, l ⇓ l′[t 7→ m1]

∀t′ < eol(l).lε(t
′) = ε lε ∈ Leol(l)

CO
e-end2 (t ≥ eol(l))

t ` s2, l ⇓ lε

δ2
o(s2) = m2 δ2

t (s2, l(t)) = s′2 t+ 1 ` s′2, l ⇓ l′e-step2 (t < eol(l))
t ` s2, l ⇓ l′[t 7→ m2]

So for l ∈ LCI we have that (pa1q ‖ pa2q)(l) = (I1
N ∪ I2

N )|CO where:

I1
0 (t)(c) = ε 0 ` s1

0, (I2
n ∪ l)|C1

I
⇓ I1

n+1 (using e-end1 and e-step1)

I2
0 (t)(c) = ε 0 ` s2

0, (I1
n ∪ l)|C2

I
⇓ I2

n+1 (using e-end2 and e-step2),

and N is such that I1
N = I1

N+1 and I2
N = I2

N+1.

We show the following generalisation:
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If t ` s1, (l ∪A)|C1
I
⇓ B (using e-end1 and e-step1)

and t ` s2, (l ∪ C)|C2
I
⇓ D (using e-end2 and e-step2)

and t ` 〈s1, s2〉, l ⇓ E (using e-end1‖2 and e-step1‖2)

and eol(A) = eol(C) = eol(l)
and ∀t′ ∈ N.t ≤ t′ < eol(l)⇒ B(t′) = C(t′) ∧D(t′) = A(t′)
then ∀t′ ∈ N.t ≤ t′ < eol(l)⇒ E(t′) = (B ∪D)|CO(t′).

The proof is by induction on n = eol(l)− t.

n = 0: In this case the result follows trivially.

n > 0: Now eol(l) = eol((l ∪A)|C1
I
) = eol((l ∪ C)|C2

I
) > t, so the three derivations

must have used the rules e-step1, e-step2, and e-step1‖2 respectively:

δ1
o(s1) = m1 δ1

t (s1, (l ∪A)|C1
I

(t)) = s′1

(∗)︷ ︸︸ ︷
t+ 1 ` s′1, (l ∪A)|C1

I
⇓ B′

(t < eol(l))
t ` s1, (l ∪A)|C1

I
⇓ B′[t 7→ m1]

δ2
o(s2) = m2 δ2

t (s2, (l ∪ C)|C2
I

(t)) = s′2

(∗∗)︷ ︸︸ ︷
t+ 1 ` s′2, (l ∪ C)|C2

I
⇓ D′

(t < eol(l))
t ` s2, (l ∪ C)|C2

I
⇓ D′[t 7→ m2]

(δ1
o(s1) ∪ δ2

o(s2))|CO
= m

δ1
t (s1, (l(t) ∪ δ2

o(s2))|C1
I

) = s′′1

δ2
t (s2, (l(t) ∪ δ1

o(s1))|C2
I

) = s′′2

(∗∗∗)︷ ︸︸ ︷
t+ 1 ` 〈s′′1 , s′′2 〉, l ⇓ E′

(t < eol(l))
t ` 〈s1, s2〉, l ⇓ E′[t 7→ m]

We first show that E(t) = (B ∪D)|CO(t):

(B ∪D)|CO(t) = (B(t) ∪D(t))|CO

= (m1 ∪m2)|CO

= (δ1
o(s1) ∪ δ2

o(s2))|CO

= E(t).

So in order to show the generalised induction hypothesis it suffices to show
that E(t′) = (B ∪D)|CO(t′) for all timestamps t′ ∈ N with t+ 1 ≤ t′ < eol(l).
But this follows if we can show that:

∀t′ ∈ N.t+ 1 ≤ t′ < eol(l)⇒ E′(t′) = (B′ ∪D′)|CO(t′),

which in turn follows from the induction hypothesis applied to (∗), (∗∗), and
(∗∗∗) if we can show that (i) ∀t′. t+1 ≤ t′ < eol(l)⇒ B′(t′) = C(t′)∧D′(t′) =
A(t′) and (ii) 〈s′1, s′2〉 = 〈s′′1, s′′2〉.

(i) Follows from the assumption because B′[t 7→ m1] = B and D′[t 7→ m2] =
A.
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(ii) We have that:

s′1 = δ1
t (s1, (l ∪A)|C1

I
(t)) (by definition)

= δ1
t (s1, (l(t) ∪A(t))|C1

I
) (by definition)

= δ1
t (s1, (l(t) ∪D(t))|C1

I
) (by assumption)

= δ1
t (s1, (l(t) ∪ δ2

o(s2))|C1
I
) (by definition)

= s′′1. (by definition)

By an analogous argument it can be shown that s′2 = s′′2 hence the gen-
eralised lemma follows.

The result of the lemma now follows from the generalised induction hypothesis with
A = I2

N , B = I1
N+1, C = I1

N , and D = I2
N+1.

C.3.2 Processes as Automata

Definition C.3.10. We define the translation x·y : P→ A by:

x(CI , CO, f)y = (CI , CO,LCI , lε ∈ L
0
CI
, δo, δt),

where

δo(l) = f(l @md)(eol(l)) δt(l,m) = l @m.

lε denotes the empty log in L0
CI

; md is any “dummy” move of MCI ; and for a log

l ∈ LtC and a move m ∈MC , l @m ∈ Lt+1
C behaves like l except (l @m)(t) = m.

The intuition behind the definition is that the automaton keeps a trace of all that
has happened so far in the state. The output is then determined by applying the log
transformer to the input log extended with some move. The reason why we need to
extend the input log is due to the condition (1) of Definition 3.2.2. Condition (2)
will then guarantee that any extension will produce the same output, which makes
the translation sound. Note also that we utilise the fact that the set of states for an
automaton may be infinite, as LCI is infinite.

It will now be natural to show compositionality of the translation x·y, similar
to Lemma C.3.9. However, we need not show this directly, as the result will follow
automatically from the theory of partial magmas and the results about the two
translations following in the next section.

C.3.3 Equivalence

Lemma C.3.11. pxpyq = p for all processes p ∈ P.

Proof. Let p = (CI , CO, f) ∈ P be given. Then xpy = (CI , CO,LCI , lε, δo, δt), where

δo(l) = f(l @md)(eol(l)) δt(l,m) = l @m.

Hence pxpyq(l) = l′ iff 0 ` lε, l ⇓ l′. So we need to show that f(l) = l′ iff
0 ` lε, l ⇓ l′. We show the following generalisation for all logs l1, l2, l3 ∈ LCI and
timestamps t, t′ ∈ N with t ≤ t′ < eol(l2):

if t ` l1, l2 ⇓ l3 and l1 = l2|t then l3(t′) = f(l2)(t′).

The proof is by induction on the derivation of t ` l1, l2 ⇓ l3.
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e-end: Now t ≥ eol(l2) so the result follows trivially.

e-step: Now the derivation of t ` l1, l2 ⇓ l3 has the form:

δo(l1) = m1 δt(l1, l2(t)) = l′1

(∗)︷ ︸︸ ︷
t+ 1 ` l′1, l2 ⇓ l′3 (t < eol(l2))

t ` l1, l2 ⇓ l′3[t 7→ m1]

By assumption l1 = l2|t, hence eol(l1) = t. Now it follows from the definition
of δo that m1 = f(l1 @ md)(t). Furthermore, (l1 @md)|t = l2|t so by strict
monotonicity it follows that f(l1 @ md)(t) = f(l2)(t). So m1 = f(l2)(t) and
hence;

l′3[t 7→ m1](t) = f(l2)(t).

So it suffices to show that l′3(t′) = f(l2)(t′) for all timestamps t′ with t+ 1 ≤
t′ < eol(l2). But this follows from the induction hypothesis applied to (∗) if
we can show that l′1 = l2|t+1. By definition of δt we have that l′1 = l1 @ l2(t),
so since l1 = l2|t the result follows.

The lemma now follows from the generalisation since from 0 ` lε, l ⇓ l′ we get that
lε = l|0. Hence l′(t′) = f(l)(t′) for all timestamps t′ with 0 ≤ t′ < eol(l), meaning
exactly l′ = f(l) as desired.

It does not hold that x·y is the left inverse of p·q, simply because p·q is not
injective. However, when we consider automata modulo bisimilarity then p·q is an
injection:

Theorem C.3.12. p·q : (A/≡, ‖)→ (P, ‖) defined by:

p[a]q = paq

is an isomorphism.

Proof. We know from Lemma C.3.9 that p·q : (A, ‖) → (P, ‖) is a homomorphism.
Furthermore, this homomorphism is surjective by Lemma C.3.11 since pxpyq = p
for all processes p ∈ P. It then follows from Lemma C.3.7 and Lemma C.3.8 that:

a1 ≡ a2 iff pa1q = pa2q,

hence by Lemma C.2.6 (≡ is a congruence relation on A) the result follows.

We now get “for free” that x·y is compositional, and the inverse of p·q:

Corollary C.3.13. x·y : (P, ‖)→ (A/≡, ‖) is an isomorphism with inverse isomor-
phism p·q, that is:

x·y : (P, ‖) ' (A/≡, ‖) : p·q

Proof. By Theorem C.3.12 we know that p·q : (A/≡, ‖)→ (P, ‖) is an isomorphism.
We also know from Lemma C.3.11 that pxpyq = p for all processes p ∈ P, and hence
by Lemma C.2.4 (b) that x·y is the inverse of p·q. Finally Lemma C.2.4 (a) implies
that x·y is itself an isomorphism as required.
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Having the equivalence result of Corollary C.3.13 means that we can automati-
cally transfer the results from the process model to the automaton model and vice
versa.

Corollary C.3.14. Let pi = (CiI , C
i
O, f

i) ∈ P be processes for i = 1, 2, 3, with:

C1
I ∩ C2

I = C1
I ∩ C3

I = C2
I ∩ C3

I = ∅,
C1
O ∩ C2

O = C1
O ∩ C3

O = C2
O ∩ C3

O = ∅.

Then p1 ‖ (p2 ‖ p3) = (p1 ‖ p2) ‖ p3.

Proof. Follows from Lemma C.2.4 (c) and Lemma 3.3.5.

Corollary C.3.15. Let a1 = (C1
I , C

1
O, S

1, s1
0, δ

1
o , δ

1
t ) and a2 = (C2

I , C
2
O, S

2, s2
0, δ

2
o , δ

2
t )

be two automata with C1
I ∩ C2

I = C1
O ∩ C2

O = ∅. Then a1 ‖ a2 ≡ a2 ‖ a1.

Proof. Follows from Lemma C.2.4 (d) and Lemma 3.2.7. We note that this propo-
sition would be fairly easy to prove directly—but the proof illustrates that the
equivalence works in both directions.
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Appendices for Chapter 5

D.1 Parametric Compositional Data Types Examples

D.1.1 From Names to PHOAS and back

--------------------------------------------------------------------------------

-- |
-- Module : Examples.Param.Names

-- Copyright : (c) 2011 Patrick Bahr, Tom Hvitved

-- License : BSD3

-- Maintainer : Tom Hvitved <hvitved@diku.dk>
-- Stability : experimental

-- Portability : non-portable (GHC Extensions)

--

-- From names to parametric higher-order abstract syntax and back

--

-- The example illustrates how to convert a parse tree with explicit names into

-- an AST that uses parametric higher-order abstract syntax, and back again. The

-- example shows how we can easily convert object language binders to Haskell

-- binders, without having to worry about capture avoidance.

--

--------------------------------------------------------------------------------

module Examples.Param.Names where

import Data.Comp.Param hiding (Var)

import qualified Data.Comp.Param as P

import Data.Comp.Param.Derive

import Data.Comp.Param.Ditraversable

import Data.Comp.Param.Show ()

import Data.Maybe

import qualified Data.Map as Map

import Control.Monad.Reader

data Lam a b = Lam (a → b)

data App a b = App b b

data Lit a b = Lit Int

data Plus a b = Plus b b

type Name = String -- The type of names

data NLam a b = NLam Name b

data NVar a b = NVar Name

type SigB = App :+: Lit :+: Plus

type SigN = NLam :+: NVar :+: SigB -- The name signature
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type SigP = Lam :+: SigB -- The PHOAS signature

$(derive [makeDifunctor, makeShowD, makeEqD, smartConstructors]

[’’Lam, ’’App, ’’Lit, ’’Plus, ’’NLam, ’’NVar])

$(derive [makeDitraversable]

[’’App, ’’Lit, ’’Plus, ’’NLam, ’’NVar])

--------------------------------------------------------------------------------

-- Names to PHOAS translation

--------------------------------------------------------------------------------

type M f a = Reader (Map.Map Name (Trm f a))

class N2PTrans f g where

n2pAlg :: Alg f (M g a (Trm g a))

$(derive [liftSum] [’’N2PTrans])

n2p :: (Difunctor f, N2PTrans f g) ⇒ Term f → Term g

n2p t = Term $ runReader (cata n2pAlg t) Map.empty

instance (Ditraversable f, f :<: g) ⇒ N2PTrans f g where

n2pAlg = liftM inject . disequence . dimap (return . P.Var) id -- default

instance (Lam :<: g) ⇒ N2PTrans NLam g where

n2pAlg (NLam x b) = do vars ← ask

return $ iLam $ λy → runReader b (Map.insert x y vars)

instance N2PTrans NVar g where

n2pAlg (NVar x) = liftM fromJust (asks (Map.lookup x))

en :: Term SigN

en = Term $ iNLam "x1" $ iNLam "x2" (iNLam "x3" $ iNVar "x2") ‘iApp‘ iNVar "x1"

ep :: Term SigP

ep = n2p en

--------------------------------------------------------------------------------

-- PHOAS to names translation

--------------------------------------------------------------------------------

type M’ = Reader [Name]

class P2NTrans f g where

p2nAlg :: Alg f (M’ (Trm g a))

$(derive [liftSum] [’’P2NTrans])

p2n :: (Difunctor f, P2NTrans f g) ⇒ Term f → Term g

p2n t = Term $ runReader (cata p2nAlg t) [’x’ : show n | n ← [1..]]

instance (Ditraversable f, f :<: g) ⇒ P2NTrans f g where

p2nAlg = liftM inject . disequence . dimap (return . P.Var) id -- default

instance (NLam :<: g, NVar :<: g) ⇒ P2NTrans Lam g where

p2nAlg (Lam f) = do n:names ← ask

return $ iNLam n (runReader (f (return $ iNVar n)) names)

ep’ :: Term SigP
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ep’ = Term $ iLam $ λa → iLam (λb → (iLam $ λa → b)) ‘iApp‘ a

en’ :: Term SigN

en’ = p2n ep’

D.1.2 First-Order Logic à la Carte

--------------------------------------------------------------------------------

-- |
-- Module : Examples.MultiParam.FOL

-- Copyright : (c) 2011 Patrick Bahr, Tom Hvitved

-- License : BSD3

-- Maintainer : Tom Hvitved <hvitved@diku.dk>
-- Stability : experimental

-- Portability : non-portable (GHC Extensions)

--

-- First-Order Logic a la Carte

--

-- This example illustrates how to implement First-Order Logic a la Carte

-- (Knowles, The Monad.Reader Issue 11, ’08) using Generalised Parametric

-- Compositional Data Types.

--

-- Rather than using a fixed domain ’Term’ for binders as Knowles, our encoding

-- uses a mutually recursive data structure for terms and formulae. This makes

-- terms modular too, and hence we only introduce variables when they are

-- actually needed in stage 5.

--

--------------------------------------------------------------------------------

module Examples.MultiParam.FOL where

import Data.Comp.MultiParam hiding (Var)

import qualified Data.Comp.MultiParam as MP

import Data.Comp.MultiParam.Show ()

import Data.Comp.MultiParam.Derive

import Data.Comp.MultiParam.FreshM (Name, withName, evalFreshM)

import Data.List (intercalate)

import Data.Maybe

import Control.Monad.State

import Control.Monad.Reader

-- Phantom types indicating whether a (recursive) term is a formula or a term

data TFormula

data TTerm

-- Terms

data Const :: (∗ → ∗) → (∗ → ∗) → ∗ → ∗ where

Const :: String → [e TTerm] → Const a e TTerm

data Var :: (∗ → ∗) → (∗ → ∗) → ∗ → ∗ where

Var :: String → Var a e TTerm

-- Formulae

data TT :: (∗ → ∗) → (∗ → ∗) → ∗ → ∗ where

TT :: TT a e TFormula

data FF :: (∗ → ∗) → (∗ → ∗) → ∗ → ∗ where

FF :: FF a e TFormula

data Atom :: (∗ → ∗) → (∗ → ∗) → ∗ → ∗ where

Atom :: String → [e TTerm] → Atom a e TFormula

data NAtom :: (∗ → ∗) → (∗ → ∗) → ∗ → ∗ where
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NAtom :: String → [e TTerm] → NAtom a e TFormula

data Not :: (∗ → ∗) → (∗ → ∗) → ∗ → ∗ where

Not :: e TFormula → Not a e TFormula

data Or :: (∗ → ∗) → (∗ → ∗) → ∗ → ∗ where

Or :: e TFormula → e TFormula → Or a e TFormula

data And :: (∗ → ∗) → (∗ → ∗) → ∗ → ∗ where

And :: e TFormula → e TFormula → And a e TFormula

data Impl :: (∗ → ∗) → (∗ → ∗) → ∗ → ∗ where

Impl :: e TFormula → e TFormula → Impl a e TFormula

data Exists :: (∗ → ∗) → (∗ → ∗) → ∗ → ∗ where

Exists :: (a TTerm → e TFormula) → Exists a e TFormula

data Forall :: (∗ → ∗) → (∗ → ∗) → ∗ → ∗ where

Forall :: (a TTerm → e TFormula) → Forall a e TFormula

$(derive [makeHDifunctor, smartConstructors]

[’’Const, ’’Var, ’’TT, ’’FF, ’’Atom, ’’NAtom,

’’Not, ’’Or, ’’And, ’’Impl, ’’Exists, ’’Forall])

--------------------------------------------------------------------------------

-- (Custom) pretty printing of terms and formulae

--------------------------------------------------------------------------------

instance ShowHD Const where

showHD (Const f t) = do ts ← mapM unK t

return $ f ++ "(" ++ intercalate ", " ts ++ ")"

instance ShowHD Var where

showHD (Var x) = return x

instance ShowHD TT where

showHD TT = return "true"

instance ShowHD FF where

showHD FF = return "false"

instance ShowHD Atom where

showHD (Atom p t) = do ts ← mapM unK t

return $ p ++ "(" ++ intercalate ", " ts ++ ")"

instance ShowHD NAtom where

showHD (NAtom p t) = do ts ← mapM unK t

return $ "not " ++ p ++ "(" ++ intercalate ", " ts ++ ")"

instance ShowHD Not where

showHD (Not (K f)) = liftM (λx → "not (" ++ x ++ ")") f

instance ShowHD Or where

showHD (Or (K f1) (K f2)) =
liftM2 (λx y → "(" ++ x ++ ") or (" ++ y ++ ")") f1 f2

instance ShowHD And where

showHD (And (K f1) (K f2)) =
liftM2 (λx y → "(" ++ x ++ ") and (" ++ y ++ ")") f1 f2

instance ShowHD Impl where

showHD (Impl (K f1) (K f2)) =
liftM2 (λx y → "(" ++ x ++ ") → (" ++ y ++ ")") f1 f2

instance ShowHD Exists where
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showHD (Exists f) =
withName (λx → do b ← unK (f x)

return $ "exists " ++ show x ++ ". " ++ b)

instance ShowHD Forall where

showHD (Forall f) =
withName (λx → do b ← unK (f x)

return $ "forall " ++ show x ++ ". " ++ b)

--------------------------------------------------------------------------------

-- Stage 0

--------------------------------------------------------------------------------

type Input = Const :+:
TT :+: FF :+: Atom :+: Not :+: Or :+: And :+: Impl :+:
Exists :+: Forall

foodFact :: Term Input TFormula

foodFact = Term $
iExists (λp → iAtom "Person" [p] ‘iAnd‘

iForall (λf → iAtom "Food" [f] ‘iImpl‘

iAtom "Eats" [p,f])) ‘iImpl‘

iNot (iExists $ λf → iAtom "Food" [f] ‘iAnd‘

iNot (iExists $ λp → iAtom "Person" [p] ‘iAnd‘

iAtom "Eats" [p,f]))

--------------------------------------------------------------------------------

-- Stage 1: Eliminate Implications

--------------------------------------------------------------------------------

type Stage1 = Const :+:
TT :+: FF :+: Atom :+: Not :+: Or :+: And :+: Exists :+: Forall

class HDifunctor f ⇒ ElimImp f where

elimImpHom :: Hom f Stage1

$(derive [liftSum] [’’ElimImp])

elimImp :: Term Input :→ Term Stage1

elimImp (Term t) = Term (appHom elimImpHom t)

instance (HDifunctor f, f :<: Stage1) ⇒ ElimImp f where

elimImpHom = simpCxt . inj

instance ElimImp Impl where

elimImpHom (Impl f1 f2) = iNot (Hole f1) ‘iOr‘ (Hole f2)

foodFact1 :: Term Stage1 TFormula

foodFact1 = elimImp foodFact

--------------------------------------------------------------------------------

-- Stage 2: Move Negation Inwards

--------------------------------------------------------------------------------

type Stage2 = Const :+:
TT :+: FF :+: Atom :+: NAtom :+: Or :+: And :+: Exists :+: Forall

class HDifunctor f ⇒ Dualize f where

dualizeHom :: f a (Cxt h Stage2 a b) :→ Cxt h Stage2 a b
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$(derive [liftSum] [’’Dualize])

dualize :: Trm Stage2 a :→ Trm Stage2 a

dualize = appHom (dualizeHom . hfmap Hole)

instance Dualize Const where

dualizeHom (Const f t) = iConst f t

instance Dualize TT where

dualizeHom TT = iFF

instance Dualize FF where

dualizeHom FF = iTT

instance Dualize Atom where

dualizeHom (Atom p t) = iNAtom p t

instance Dualize NAtom where

dualizeHom (NAtom p t) = iAtom p t

instance Dualize Or where

dualizeHom (Or f1 f2) = f1 ‘iAnd‘ f2

instance Dualize And where

dualizeHom (And f1 f2) = f1 ‘iOr‘ f2

instance Dualize Exists where

dualizeHom (Exists f) = inject $ Forall f

instance Dualize Forall where

dualizeHom (Forall f) = inject $ Exists f

class PushNot f where

pushNotAlg :: Alg f (Trm Stage2 a)

$(derive [liftSum] [’’PushNot])

pushNotInwards :: Term Stage1 :→ Term Stage2

pushNotInwards t = Term (cata pushNotAlg t)

instance (HDifunctor f, f :<: Stage2) ⇒ PushNot f where

pushNotAlg = inject . hdimap MP.Var id -- default

instance PushNot Not where

pushNotAlg (Not f) = dualize f

foodFact2 :: Term Stage2 TFormula

foodFact2 = pushNotInwards foodFact1

--------------------------------------------------------------------------------

-- Stage 4: Skolemization

--------------------------------------------------------------------------------

type Stage4 = Const :+:
TT :+: FF :+: Atom :+: NAtom :+: Or :+: And :+: Forall

type Unique = Int

data UniqueSupply = UniqueSupply Unique UniqueSupply UniqueSupply
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initialUniqueSupply :: UniqueSupply

initialUniqueSupply = genSupply 1

where genSupply n = UniqueSupply n (genSupply (2 ∗ n))

(genSupply (2 ∗ n + 1))

splitUniqueSupply :: UniqueSupply → (UniqueSupply, UniqueSupply)

splitUniqueSupply (UniqueSupply _ l r) = (l,r)

getUnique :: UniqueSupply → (Unique, UniqueSupply)

getUnique (UniqueSupply n l _) = (n,l)

type Supply = State UniqueSupply

type S a = ReaderT [Trm Stage4 a TTerm] Supply

evalS :: S a b → [Trm Stage4 a TTerm] → UniqueSupply → b

evalS m env = evalState (runReaderT m env)

fresh :: S a Int

fresh = do supply ← get

let (uniq,rest) = getUnique supply

put rest

return uniq

freshes :: S a UniqueSupply

freshes = do supply ← get

let (l,r) = splitUniqueSupply supply

put r

return l

class Skolem f where

skolemAlg :: AlgM’ (S a) f (Trm Stage4 a)

$(derive [liftSum] [’’Skolem])

skolemize :: Term Stage2 :→ Term Stage4

skolemize f = Term (evalState (runReaderT (cataM’ skolemAlg f) [])

initialUniqueSupply)

instance Skolem Const where

skolemAlg (Const f t) = liftM (iConst f) $ mapM getCompose t

instance Skolem TT where

skolemAlg TT = return iTT

instance Skolem FF where

skolemAlg FF = return iFF

instance Skolem Atom where

skolemAlg (Atom p t) = liftM (iAtom p) $ mapM getCompose t

instance Skolem NAtom where

skolemAlg (NAtom p t) = liftM (iNAtom p) $ mapM getCompose t

instance Skolem Or where

skolemAlg (Or (Compose f1) (Compose f2)) = liftM2 iOr f1 f2

instance Skolem And where

skolemAlg (And (Compose f1) (Compose f2)) = liftM2 iAnd f1 f2
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instance Skolem Forall where

skolemAlg (Forall f) = do

supply ← freshes

xs ← ask

return $ iForall $ λx → evalS (getCompose $ f x) (x : xs) supply

instance Skolem Exists where

skolemAlg (Exists f) = do

uniq ← fresh

xs ← ask

getCompose $ f (iConst ("Skol" ++ show uniq) xs)

foodFact4 :: Term Stage4 TFormula

foodFact4 = skolemize foodFact2

--------------------------------------------------------------------------------

-- Stage 5: Prenex Normal Form

--------------------------------------------------------------------------------

type Stage5 = Const :+: Var :+:
TT :+: FF :+: Atom :+: NAtom :+: Or :+: And

class Prenex f where

prenexAlg :: AlgM’ (S a) f (Trm Stage5 a)

$(derive [liftSum] [’’Prenex])

prenex :: Term Stage4 :→ Term Stage5

prenex f = Term (evalState (runReaderT (cataM’ prenexAlg f) [])

initialUniqueSupply)

instance Prenex Const where

prenexAlg (Const f t) = liftM (iConst f) $ mapM getCompose t

instance Prenex TT where

prenexAlg TT = return iTT

instance Prenex FF where

prenexAlg FF = return iFF

instance Prenex Atom where

prenexAlg (Atom p t) = liftM (iAtom p) $ mapM getCompose t

instance Prenex NAtom where

prenexAlg (NAtom p t) = liftM (iNAtom p) $ mapM getCompose t

instance Prenex Or where

prenexAlg (Or (Compose f1) (Compose f2)) = liftM2 iOr f1 f2

instance Prenex And where

prenexAlg (And (Compose f1) (Compose f2)) = liftM2 iAnd f1 f2

instance Prenex Forall where

prenexAlg (Forall f) = do uniq ← fresh

getCompose $ f (iVar (’x’ : show uniq))

foodFact5 :: Term Stage5 TFormula

foodFact5 = prenex foodFact4
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--------------------------------------------------------------------------------

-- Stage 6: Conjunctive Normal Form

--------------------------------------------------------------------------------

type Literal a = Trm (Const :+: Var :+: Atom :+: NAtom) a

newtype Clause a i = Clause {unClause :: [Literal a i]} -- implicit disjunction

newtype CNF a i = CNF {unCNF :: [Clause a i]} -- implicit conjunction

instance (HDifunctor f, ShowHD f) ⇒ Show (Trm f Name i) where

show = evalFreshM . showHD . toCxt

instance Show (Clause Name i) where

show c = intercalate " or " $ map show $ unClause c

instance Show (CNF Name i) where

show c = intercalate "λn" $ map show $ unCNF c

class ToCNF f where

cnfAlg :: f (CNF a) (CNF a) i → [Clause a i]

$(derive [liftSum] [’’ToCNF])

cnf :: Term Stage5 :→ CNF a

cnf = cata (CNF . cnfAlg)

instance ToCNF Const where

cnfAlg (Const f t) =
[Clause [iConst f (map (head . unClause . head . unCNF) t)]]

instance ToCNF Var where

cnfAlg (Var x) = [Clause [iVar x]]

instance ToCNF TT where

cnfAlg TT = []

instance ToCNF FF where

cnfAlg FF = [Clause []]

instance ToCNF Atom where

cnfAlg (Atom p t) =
[Clause [iAtom p (map (head . unClause . head . unCNF) t)]]

instance ToCNF NAtom where

cnfAlg (NAtom p t) =
[Clause [iNAtom p (map (head . unClause . head . unCNF) t)]]

instance ToCNF And where

cnfAlg (And f1 f2) = unCNF f1 ++ unCNF f2

instance ToCNF Or where

cnfAlg (Or f1 f2) =
[Clause (x ++ y) | Clause x ← unCNF f1, Clause y ← unCNF f2]

foodFact6 :: CNF a TFormula

foodFact6 = cnf foodFact5
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--------------------------------------------------------------------------------

-- Stage 7: Implicative Normal Form

--------------------------------------------------------------------------------

type T = Const :+: Var :+: Atom :+: NAtom

newtype IClause a i = IClause ([Trm T a i], -- implicit conjunction

[Trm T a i]) -- implicit disjunction

newtype INF a i = INF [IClause a i] -- implicit conjunction

instance Show (IClause Name i) where

show (IClause (cs,ds)) = let cs’ = intercalate " and " $ map show cs

ds’ = intercalate " or " $ map show ds

in "(" ++ cs’ ++ ") → (" ++ ds’ ++ ")"

instance Show (INF Name i) where

show (INF fs) = intercalate "λn" $ map show fs

inf :: CNF a TFormula → INF a TFormula

inf (CNF f) = INF $ map (toImpl . unClause) f

where toImpl :: [Literal a TFormula] → IClause a TFormula

toImpl disj = IClause ([iAtom p t | NAtom p t ← mapMaybe proj1 disj],

[inject t | t ← mapMaybe proj2 disj])

proj1 :: NatM Maybe (Trm T a) (NAtom a (Trm T a))

proj1 = project

proj2 :: NatM Maybe (Trm T a) (Atom a (Trm T a))

proj2 = project

foodFact7 :: INF a TFormula

foodFact7 = inf foodFact6
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Appendices for Chapter 6

E.1 Predefined Ontology

E.1.1 Data

Data is abstract.

E.1.2 Event

Event is abstract.
Event has a Timestamp

called internalTimeStamp.

# Add data definitions to the system
AddDataDefs is an Event.
AddDataDefs has a String called defs.

# Events associated with entities
EntityEvent is an Event.
EntityEvent is abstract.
EntityEvent has a Data entity called ent.

# Put entity event
PutEntity is an EntityEvent.
PutEntity has Data.
PutEntity is abstract.

# Create entity event
CreateEntity is a PutEntity.
CreateEntity has a String called recordType.

# Update entity event
UpdateEntity is a PutEntity.

# Delete entity event
DeleteEntity is an EntityEvent.

# Events associated with a report definition
ReportEvent is an Event.
ReportEvent has a String called name.

# Put report definition event
PutReport is a ReportEvent.
PutReport is abstract.
PutReport has a String called code.
PutReport has a String called description.
PutReport has a list of String called tags.

# Create report definition event
CreateReport is a PutReport.

# Update report definition event
UpdateReport is a PutReport.

# Delete report definition event
DeleteReport is a ReportEvent.

# Events associated with a contract template
ContractDefEvent is an Event.
ContractDefEvent has a String called name.

# Put contract template event
PutContractDef is a ContractDefEvent.
PutContractDef is abstract.
PutContractDef has a String called recordType.
PutContractDef has a String called code.
PutContractDef has a String called description.

# Create contract template event
CreateContractDef is a PutContractDef.

# Update contract template event
UpdateContractDef is a PutContractDef.

# Delete contract template event
DeleteContractDef is a ContractDefEvent.

# Events associated with a contract
ContractEvent is an Event.
ContractEvent is abstract.
ContractEvent has an Int called contractId.

# Put contract event
PutContract is a ContractEvent.
PutContract has a Contract.

227
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PutContract is abstract.

# Create contract event
CreateContract is a PutContract.

# Update contract event
UpdateContract is a PutContract.

# Conclude contract event
ConcludeContract is a ContractEvent.

# Transaction super class
TransactionEvent is a ContractEvent.
TransactionEvent has a Timestamp.
TransactionEvent has a Transaction.

E.1.3 Transaction

Transaction is abstract.

E.1.4 Report

Report is abstract.

E.1.5 Contract

Contract is abstract.
Contract has a Timestamp called startDate.
Contract has a String called templateName.

E.2 µERP Specification

E.2.1 Ontology

E.2.1.1 Data

ResourceType is Data.
ResourceType is abstract.

Currency is a ResourceType.
Currency is abstract.

DKK is a Currency.
EUR is a Currency.

ItemType is a ResourceType.
ItemType is abstract.

Bicycle is an ItemType.
Bicycle has a String called model.

Resource is Data.
Resource is abstract.

Money is a Resource.
Money has a Currency.
Money has a Real called amount.

Item is a Resource.
Item has an ItemType.
Item has a Real called quantity.

Agent is Data.

Me is an Agent.

Customer is an Agent.
Customer has a String called name.
Customer has an Address.

Vendor is an Agent.
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Vendor has a String called name.
Vendor has an Address.

Address is Data.
Address has a String.
Address has a Country.

Country is Data.
Country is abstract.

Denmark is a Country.

OrderLine is Data.
OrderLine has an Item.
OrderLine has Money called unitPrice.
OrderLine has a Real called vatPercentage.

CurrentAssets is Data.
CurrentAssets has a list of Money called currentAssets.
CurrentAssets has a list of Money called inventory.
CurrentAssets has a list of Money called accountsReceivable.
CurrentAssets has a list of Money called cashPlusEquiv.

Liabilities is Data.
Liabilities has a list of Money called liabilities.
Liabilities has a list of Money called accountsPayable.
Liabilities has a list of Money called vatPayable.

Invoice is Data.
Invoice has an Agent called sender.
Invoice has an Agent called receiver.
Invoice has a list of OrderLine called orderLines.

UnpaidInvoice is Data.
UnpaidInvoice has an Invoice.
UnpaidInvoice has a list of Money called remainder.

CustomerStatistics is Data.
CustomerStatistics has a Customer entity.
CustomerStatistics has Money called totalPaid.

E.2.1.2 Transaction

BiTransaction is a Transaction.
BiTransaction is abstract.
BiTransaction has an Agent entity called sender.
BiTransaction has an Agent entity called receiver.

Transfer is a BiTransaction.
Transfer is abstract.

Payment is a Transfer.
Payment is abstract.
Payment has Money.

CashPayment is a Payment.
CreditCardPayment is a Payment.
BankTransfer is a Payment.

Delivery is a Transfer.
Delivery has a list of Item called items.

IssueInvoice is a BiTransaction.
IssueInvoice has a list of OrderLine called orderLines.

RequestRepair is a BiTransaction.
RequestRepair has a list of Item called items.
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Repair is a BiTransaction.
Repair has a list of Item called items.

E.2.1.3 Report

IncomeStatement is a Report.
IncomeStatement has a list of Money called revenue.
IncomeStatement has a list of Money called costOfGoodsSold.
IncomeStatement has a list of Money called contribMargin.
IncomeStatement has a list of Money called fixedCosts.
IncomeStatement has a list of Money called depreciation.
IncomeStatement has a list of Money called netOpIncome.

BalanceSheet is a Report.
BalanceSheet has a list of Money called fixedAssets.
BalanceSheet has CurrentAssets.
BalanceSheet has a list of Money called totalAssets.
BalanceSheet has Liabilities.
BalanceSheet has a list of Money called ownersEquity.
BalanceSheet has a list of Money called totalLiabilitiesPlusEquity.

CashFlowStatement is a Report.
CashFlowStatement has a list of Payment called expenses.
CashFlowStatement has a list of Payment called revenues.
CashFlowStatement has a list of Money called revenueTotal.
CashFlowStatement has a list of Money called expenseTotal.

UnpaidInvoices is a Report.
UnpaidInvoices has a list of UnpaidInvoice called invoices.

VATReport is a Report.
VATReport has a list of Money called outgoingVAT.
VATReport has a list of Money called incomingVAT.
VATReport has a list of Money called vatDue.

Inventory is a Report.
Inventory has a list of Item called availableItems.

TopNCustomers is a Report.
TopNCustomers has a list of CustomerStatistics.

E.2.1.4 Contract

Purchase is a Contract.
Purchase has a Vendor entity.
Purchase has a list of OrderLine called orderLines.

Sale is a Contract.
Sale has a Customer entity.
Sale has a list of OrderLine called orderLines.

E.2.2 Reports

E.2.2.1 Prelude Functions

−− Arithmetic
min : (Ord a) ⇒ a → a → a
min x y = if x < y then x else y

max : (Ord a) ⇒ a → a → a
max x y = if x > y then x else y

−− List functions
null : [a] → Bool
null = fold (λe r → False) True

first : a → [a] → a
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first = fold (λx a → x)

head : [a] → a
head = first (error "’head’ applied to empty list")

elemBy : (a → a → Bool) → a → [a] → Bool
elemBy f e = fold (λx a → a ∨ f x e) False

elem : (Ord a) ⇒ a → [a] → Bool
elem = elemBy (≡)

sum : (a < Real, Int < a) ⇒ [a] → a
sum = fold (+) 0

length : [a] → Int
length = fold (λ x y → y+1) 0

map : (a → b) → [a] → [b]
map f = fold (λx a → (f x) # a) []

filter : (a → Bool) → [a] → [a]
filter f = fold (λx a → if f x then x # a else a) []

nubBy : (a → a → Bool) → [a] → [a]
nubBy f = fold (λx a → x # filter (λ y → ¬ (f x y)) a) []

nub : (Ord a) ⇒ [a] → [a]
nub = nubBy (≡)

all : (a → Bool) → [a] → Bool
all f = fold (λx a → f x ∧ a) True

any : (a → Bool) → [a] → Bool
any f = fold (λx a → f x ∨ a) False

concat : [[a]] → [a]
concat = fold (λx a → x ++ a) []

concatMap : (a → [b]) → [a] → [b]
concatMap f l = concat (map f l)

take : Int → [a] → [a]
take n l = (fold (λx a → if a.2 > 0 then (x # a.1,a.2 − 1) else a) ([],n) l).1

−− Grouping functions
addGroupBy : (a → a → Bool) → a → [[a]] → [[a]]
addGroupBy f a ll =

let felem l = fold (λ el r → f el a) False l
run el r =

if r.1 then (True,el # r.2)
else if felem el then (True, (a # el) # r.2)
else (False, el # r.2)

res = fold run (False,[]) ll
in if res.1 then res.2 else [a] # res.2

groupBy : (a → a → Bool) → [a] → [[a]]
groupBy f = fold (addGroupBy f) []

addGroupProj : (Ord b) ⇒ (a → b) → a → [(b,[a])] → [(b,[a])]
addGroupProj f a ll =

let run el r =
if r.1 then(True,el # r.2)
else if el.1 ≡ f a then (True, (el.1,a # el.2) # r.2)
else (False, el # r.2)

res = fold run (False,[]) ll
in if res.1 then res.2 else (f a,[a]) # res.2

groupProj : (Ord b) ⇒ (a → b) → [a] → [(b, [a])]
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groupProj f = fold (addGroupProj f) []

−− Sorting functions
insertBy : (a → a → Bool) → a → [a] → [a]
insertBy le a l =

let ins e r =
if r.1 then (True, e # r.2)
else if le e a then (True,e # a # r.2)
else (False, e # r.2)

res = fold ins (False,[]) l
in if res.1 then res.2 else a # res.2

insertProj : (Ord b) ⇒ (a → b) → a → [a] → [a]
insertProj proj = insertBy (λx y → proj x ≤ proj y)

insert : (Ord a) ⇒ a → [a] → [a]
insert = insertBy (≤)

sortBy : (a → a → Bool) → [a] → [a]
sortBy le = fold (λe r → insertBy le e r) []

sortProj : (Ord b) ⇒ (a → b) → [a] → [a]
sortProj proj = sortBy (λx y → proj x ≤ proj y)

sort : (Ord a) ⇒ [a] → [a]
sort = sortBy (≤)

−− Generators for ’lifecycled’ data
reports : [PutReport]
reports = nubBy (λpr1 pr2 → pr1.name ≡ pr2.name) [pr |

cr : CreateReport ← events,
pr : PutReport = first cr [ur | ur : ReportEvent ← events, ur.name ≡ cr.name]]

entities : [(〈Data〉,String)]
entities = [(ce.ent,ce.recordType) |

ce : CreateEntity ← events,
null [de | de : DeleteEntity ← events, de.ent ≡ ce.ent]]

contracts : [PutContract]
contracts = [pc |

cc : CreateContract ← events,
pc = first cc [uc | uc : UpdateContract ← events, uc.contractId ≡ cc.contractId],
null [cc | cc : ConcludeContract ← events, cc.contractId ≡ pc.contractId]]

contractDefs : [PutContractDef]
contractDefs = nubBy (λpcd1 pcd2 → pcd1.name ≡ pcd2.name) [pcd |

ccd : CreateContractDef ← events,
pcd : PutContractDef = first ccd [ucd | ucd : ContractDefEvent ← events, ucd.name ≡ ccd.name]]

transactionEvents : [TransactionEvent]
transactionEvents = [tr | tr : TransactionEvent ← events]

transactions : [Transaction]
transactions = [tr.transaction | tr ← transactionEvents]

E.2.2.2 Domain-Specific Prelude Functions

−− Check if an agent is the company itself
isMe : 〈Agent〉 → Bool
isMe a = a :? 〈Me〉

−− Normalise a list of money by grouping currencies together
normaliseMoney : [Money] → [Money]
normaliseMoney ms = [Money{currency = m.1, amount = sum (map (λm → m.amount) m.2)} |

m ← groupProj (λm → m.currency) ms]
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−− Add one list of money from another
addMoney : [Money] → [Money] → [Money]
addMoney m1 m2 = normaliseMoney (m1 ++ m2)

−− Subtract one list of money from another
subtractMoney : [Money] → [Money] → [Money]
subtractMoney m1 m2 = addMoney m1 (map (λm → m{amount = 0 − m.amount}) m2)

−− Produce normalised list of all items given in list
normaliseItems : [Item] → [Item]
normaliseItems its = [Item{itemType = i.1, quantity = sum (map (λis → is.quantity) i.2)} |

i ← groupProj (λis → is.itemType) its]

−− List of all invoices and their associated contract ID
invoices : [(Int,IssueInvoice)]
invoices = [(tr.contractId,inv) |

tr ← transactionEvents,
inv : IssueInvoice = tr.transaction]

−− List of all received invoices and their associated contract ID
invoicesReceived : [(Int,IssueInvoice)]
invoicesReceived =

filter (λinv → ¬ (isMe (inv.2).sender) ∧ isMe (inv.2).receiver) invoices

−− List of all sent invoices and their associated contract ID
invoicesSent : [(Int,IssueInvoice)]
invoicesSent = filter (λinv → isMe inv.2.sender ∧ ¬ (isMe inv.2.receiver)) invoices

−− Calculate the total price including VAT on an invoice
invoiceTotal : (a.orderLines : [OrderLine]) ⇒ a → [Money]
invoiceTotal inv = normaliseMoney [line.unitPrice{amount = price} |

line ← inv.orderLines,
quantity = line.item.quantity,
price = ((100 + line.vatPercentage) × line.unitPrice.amount × quantity) / 100]

−− List of all items delivered to the company
itemsReceived : [Item]
itemsReceived = normaliseItems [is |

tr ← transactionEvents,
del : Delivery = tr.transaction,
¬(isMe del.sender) ∧ isMe del.receiver,
is ← del.items]

−− List of all items that have been sold
itemsSold : [Item]
itemsSold = normaliseItems [line.item | inv ← invoicesSent, line ← inv.2.orderLines]

−− Inventory acquisitions, that is a list of all received items and the unit
−− price of each item, exluding VAT.
invAcq : [(Item,Money)]
invAcq = [(item,line.unitPrice) |

inv ← invoicesReceived,
tr ← transactionEvents,
tr.contractId ≡ inv.1,
deliv : Delivery = tr.transaction,
item ← deliv.items,
line ← inv.2.orderLines,
line.item.itemType ≡ item.itemType]

−− FIFO costing: Calculate the cost of all sold goods based on FIFO costing.
fifoCost : [Money]
fifoCost = let
−− Check whether a set of items equals the current set of items in the
−− inventory. If so, ’take’ as many of the inventory items as possible
−− and add the price of these items to the totals.
checkInventory y x = let

invItem = y.1 −− The current item in the inventory
invPrice = y.2 −− The price of the current item in the inventory
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oldInv = x.1 −− The part of the inventory that has been processed
item = x.2 −− The item to find in the inventory
total = x.3 −− The total costs so far

in
if item.itemType ≡ invItem.itemType then let

deltaInv =
if invItem.quantity ≤ item.quantity then

[]
else

[(invItem{quantity = invItem.quantity − item.quantity},invPrice)]
remainingItem = item{quantity = max 0 (item.quantity − invItem.quantity)}
price = invPrice{amount = invPrice.amount × (min item.quantity invItem.quantity)}

in
(oldInv ++ deltaInv, remainingItem, price # total)

else
(oldInv ++ [(invItem,invPrice)], item, total)

−− Process a sold item
processSoldItem soldItem x = let

total = x.1 −− the total costs so far
inv = x.2 −− the remaning inventory so far
y = fold checkInventory ([],soldItem,total) inv

in
(y.3,y.1)

in
normaliseMoney ((fold processSoldItem ([],invAcq) itemsSold).1)

−− Outoing VAT
vatOutgoing : [Money]
vatOutgoing = normaliseMoney [price |

inv ← invoicesReceived,
l ← inv.2.orderLines,
price = l.unitPrice{amount = (l.vatPercentage × l.unitPrice.amount × l.item.quantity) / 100}]

−− Incoming VAT
vatIncoming : [Money]
vatIncoming = normaliseMoney [price |

inv ← invoicesSent,
l ← inv.2.orderLines,
price = l.unitPrice{amount = (l.vatPercentage × l.unitPrice.amount × l.item.quantity) / 100}]

E.2.2.3 Internal Reports

Me

name: Me
description:

Returns the pseudo entity ’Me’ that represents the company.
tags: internal, entity

report : 〈Me〉
report = head [me | me : 〈Me〉 ← map (λe → e.1) entities]

Entities

name: Entities
description:

A list of all entities.
tags: internal, entity

report : [〈Data〉]
report = map (λe → e.1) entities

EntitiesByType
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name: EntitiesByType
description:

A list of all entities with the given type.
tags: internal, entity

report : String → [〈Data〉]
report t = map (λe → e.1) (filter (λe → e.2 ≡ t) entities)

ReportNames

name: ReportNames
description:

A list of names of all registered reports.
tags: internal, report

report : [String]
report = [r.name | r ← reports]

ReportNamesByTags

name: ReportNamesByTags
description:

A list of reports that have the all tags provided as first argument to the
function and none of the tags provided as second argument.

tags: internal, report

filt allOf noneOf rep =
all (λx → elem x rep.tags) allOf ∧
¬ (any (λx → elem x rep.tags) noneOf)

report : [String] → [String] → [String]
report allOf noneOf = [r.name | r ← filter (filt allOf noneOf) reports]

ReportTags

name: ReportTags
description:

A list of tags that are used in registered reports.
tags: internal, report

report : [String]
report = nub (concatMap (λx → x.tags) reports)

ContractTemplates

name: ContractTemplates
description:

A list of ’PutContractDef’ events for each non−deleted contract template.
tags: internal, contract

report : [PutContractDef]
report = contractDefs

ContractTemplatesByType

name: ContractTemplatesByType
description:

A list of ’PutContractDef’ events for each non−deleted contract template of the
given type.

tags: internal, contract

report : String → [PutContractDef]
report r = filter (λx → x.recordType ≡ r) contractDefs
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Contracts

name: Contracts
description:

A list of all running (i.e. non−concluded) contracts.
tags: internal, contract

report : [PutContract]
report = contracts

ContractHistory

name: ContractHistory
description:

A list of previous transactions for the given contract.
tags: internal, contract

report : Int → [TransactionEvent]
report cid = [transaction |

transaction : TransactionEvent ← events,
transaction.contractId ≡ cid]

ContractSummary

name: ContractSummary
description:

A list of meta data for the given contract.
tags: internal, contract

report : Int → [PutContract]
report cid = [createCon |

createCon : PutContract ← contracts,
createCon.contractId ≡ cid]

E.2.2.4 External Reports

IncomeStatement

name: IncomeStatement
description:

The Income Statement.
tags: external, financial

−− Revenue
revenue = normaliseMoney [line.unitPrice{amount = amount} |
inv ← invoicesSent,
line ← inv.2.orderLines,
amount = line.unitPrice.amount × line.items.numberOfItems]

costOfGoodsSold = fifoCost
contribMargin = subtractMoney revenue fifoCost
fixedCosts = [] −− For simplicity
depreciation = [] −− For simplicity
netOpIncome = subtractMoney (subtractMoney contribMargin fixedCosts) depreciation

report : IncomeStatement
report = IncomeStatement{

revenue = revenue,
costOfGoodsSold = costOfGoodsSold,
contribMargin = contribMargin,
fixedCosts = fixedCosts,
depreciation = depreciation,
netOpIncome = netOpIncome}
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BalanceSheet

name: BalanceSheet
description:

The Balance Sheet.
tags: external, financial

−− List of all payments and their associated contract ID
payments : [(Int,Payment)]
payments = [ (tr.contractId,payment) |

tr ← transactionEvents,
payment : Payment = tr.transaction]

−− List of all received payments and their associated contract ID
paymentsReceived : [(Int,Payment)]
paymentsReceived = filter (λp → ¬ (isMe p.2.sender) ∧ isMe p.2.receiver) payments

−− List of all payments made and their associated contract ID
paymentsMade : [(Int,Payment)]
paymentsMade = filter (λp → isMe p.2.sender ∧ ¬ (isMe p.2.receiver)) payments

cashReceived : [Money]
cashReceived = normaliseMoney (map (λp → p.2.money) paymentsReceived)

cashPaid : [Money]
cashPaid = normaliseMoney (map (λp → p.2.money) paymentsMade)

netCashFlow : [Money]
netCashFlow = subtractMoney cashReceived cashPaid

depreciation : [Money]
depreciation = [] −− For simplicity

fAssetAcq : [Money]
fAssetAcq = [] −− For simplicity

fixedAssets : [Money]
fixedAssets = subtractMoney fAssetAcq depreciation

inventory : [Money]
inventory =

let inventoryValue = [price |
item ← invAcq,
price = item.2{amount = item.2.amount × item.1.quantity}]

in
subtractMoney inventoryValue fifoCost

accReceivable : [Money]
accReceivable =

let paymentsDue = normaliseMoney [line.unitPrice{amount = amount} |
inv ← invoicesSent,
line ← inv.2.orderLines,
amount = line.unitPrice.amount × line.item.quantity]

in
subtractMoney paymentsDue cashReceived

currentAssets : [Money]
currentAssets = addMoney inventory (addMoney accReceivable netCashFlow)

totalAssets : [Money]
totalAssets = addMoney fixedAssets currentAssets

accPayable : [Money]
accPayable =

let paymentsDue = [line.unitPrice{amount = amount} |
inv ← invoicesReceived,
line ← inv.2.orderLines,
amount = line.unitPrice.amount × line.item.quantity]

in
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subtractMoney paymentsDue cashPaid

vatPayable : [Money]
vatPayable = subtractMoney vatIncoming vatOutgoing

liabilities : [Money]
liabilities = addMoney accPayable vatPayable

ownersEq : [Money]
ownersEq = subtractMoney totalAssets liabilities

totalLiabPlusEq : [Money]
totalLiabPlusEq = addMoney liabilities ownersEq

report : BalanceSheet
report = BalanceSheet{

fixedAssets = fixedAssets,
currentAssets = CurrentAssets{

currentAssets = currentAssets,
inventory = inventory,
accountsReceivable = accReceivable,
cashPlusEquiv = netCashFlow},

totalAssets = totalAssets,
liabilities = Liabilities{

liabilities = liabilities,
accountsPayable = accPayable,
vatPayable = vatPayable},

ownersEquity = ownersEq,
totalLiabilitiesPlusEquity = totalLiabPlusEq}

CashFlowStatement

name: CashFlowStatement
description:

The Cash Flow Statement.
tags: external, financial

sumPayments : [Payment] → [Money]
sumPayments ps = normaliseMoney (map (λp → p.money) ps)

report : CashFlowStatement
report = let

payments = [payment | payment : Payment ← transactions]
mRevenues = [payment | payment ← payments, isMe (payment.receiver)]
mExpenses = [payment | payment ← payments, isMe (payment.sender)]

in
CashFlowStatement{

revenues = mRevenues,
expenses = mExpenses,
revenueTotal = sumPayments mRevenues,
expenseTotal = sumPayments mExpenses}

UnpaidInvoices

name: UnpaidInvoices
description:

A list of unpaid invoices.
tags: external, financial

−− Generate a list of unpaid invoices
unpaidInvoices : [UnpaidInvoice]
unpaidInvoices = [UnpaidInvoice{invoice = inv, remainder = remainder} |

invS ← invoicesSent,
inv = Invoice{

sender = invS.2.sender @,
receiver = invS.2.receiver @,
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orderLines = invS.2.orderLines},
payments = [payment.money |

tr ← transactionEvents,
tr.contractId ≡ invS.1,
payment : Payment = tr.transaction],

remainder = subtractMoney (invoiceTotal inv) payments,
any (λm → m.amount > 0) remainder]

report : UnpaidInvoices
report = UnpaidInvoices{invoices = unpaidInvoices}

VATReport

name: VATReport
description:

The VAT report.
tags: external, financial

report : VATReport
report = VATReport{

outgoingVAT = vatOutgoing,
incomingVAT = vatIncoming,
vatDue = subtractMoney vatIncoming vatOutgoing}

Inventory

name: Inventory
description:

A list of items in the inventory available for sale (regardless of whether we
have paid for them).

tags: external, inventory

report : Inventory
report =

let itemsSold’ = map (λi → i{quantity = 0 − i.quantity}) itemsSold
in
−− The available items is the list of received items minus the list of reserved
−− or sold items
Inventory{availableItems = normaliseItems (itemsReceived ++ itemsSold’)}

TopNCustomers

name: TopNCustomers
description:

A list of customers who have spent must money in the given currency.
tags: external, financial, crm

customers : [〈Customer〉]
customers = [c | c : 〈Customer〉 ← map (λe → e.1) entities]

totalPayments : Currency → 〈Customer〉 → Real
totalPayments c cu = sum [d |

p : Payment ← transactions,
p.sender ≡ cu ∨ p.receiver ≡ cu,
p.money.currency ≡ c,
d = if p.sender ≡ cu then p.money.amount else 0 − p.money.amount]

customerStatistics : Currency → [CustomerStatistics]
customerStatistics c = [CustomerStatistics{customer = cu, totalPaid = p} |

cu ← customers,
p = Money{currency = c, amount = totalPayments c cu}]

topN : Int → [CustomerStatistics] → [CustomerStatistics]
topN n cs = take n (sortBy (λcs1 cs2 → cs1.totalPaid > cs2.totalPaid) cs)

report : Int → Currency → TopNCustomers
report n c = TopNCustomers{customerStatistics = topN n (customerStatistics c)}
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E.2.3 Contracts

E.2.3.1 Prelude

// Arithmetic
fun floor x = let n = ceil x in if n > x then n − 1 else n
fun round x = let n1 = ceil x in let n2 = floor x in if n1 + n2 > 2 × x then n2 else n1
fun max a b = if a > b then a else b
fun min a b = if a > b then b else a

// List functions
fun filter f = foldr (λx b → if f x then x # b else b) []
fun map f = foldr (λx b → (f x) # b) []
val length = foldr (λx b → b + 1) 0
fun null l = l ≡ []
fun elem x = foldr (λy b → x ≡ y ∨ b) false
fun all f = foldr (λx b → b ∧ f x) true
fun any f = foldr (λx b → b ∨ f x) false
val reverse = foldl (λa e → e # a) []
fun append l1 l2 = foldr (λe a → e # a) l2 l1

// Lists as sets
fun subset l1 l2 = all (λx → elem x l2) l1
fun diff l1 l2 = filter (λx → ¬ (elem x l2)) l1

E.2.3.2 Domain-Specific Prelude

// Check if ’lines’ are in stock by invoking the ’Inventory’ report
fun inStock lines =

let inv = (reports.inventory ()).availableItems
in
all (λl → any (λi → (l.item).itemType ≡ i.itemType ∧ (l.item).quantity ≤ i.quantity) inv) lines

// Check that amount ’m’ equals the total amount in m’s currency of a list of sales lines
fun checkAmount m orderLines =

let a = foldr (λx acc →
if (x.unitPrice).currency ≡ m.currency then

(x.item).quantity × (100 + x.vatPercentage) × (x.unitPrice).amount + acc
else

acc) 0 orderLines
in
m.amount × 100 ≡ a

// Remove sales lines that have the currency of ’m’
fun remainingOrderLines m = filter (λx → (x.unitPrice).currency 6≡ m.currency)

// A reference to the designated entity that represents the company
val me = reports.me ()

E.2.3.3 Contract Templates

Purchase

name: purchase
type: Purchase
description: "Set up a purchase"

clause purchase(lines : [OrderLine])〈me : 〈Me〉, vendor : 〈Vendor〉〉 =
〈vendor〉 Delivery(sender s, receiver r, items i)

where s ≡ vendor ∧ r ≡ me ∧ i ≡ map (λx → x.item) lines
due within 1W

then
when IssueInvoice(sender s, receiver r, orderLines sl)

where s ≡ vendor ∧ r ≡ me ∧ sl ≡ lines
due within 1Y

then
payment(lines, vendor, 14D)〈me〉
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clause payment(lines : [OrderLine], vendor : 〈Vendor〉, deadline : Duration)
〈me : 〈Me〉〉 =

if null lines then
fulfilment

else
〈me〉 BankTransfer(sender s, receiver r, money m)

where s ≡ me ∧ r ≡ vendor ∧ checkAmount m lines
due within deadline
remaining newDeadline

then
payment(remainingOrderLines m lines, vendor, newDeadline)〈me〉

contract = purchase(orderLines)〈me, vendor〉

Sale

name: sale
type: Sale
description: "Set up a sale"

clause sale(lines : [OrderLine])〈me : 〈Me〉, customer : 〈Customer〉〉 =
〈me〉 IssueInvoice(sender s, receiver r, orderLines sl)

where s ≡ me ∧ r ≡ customer ∧ sl ≡ lines ∧ inStock lines
due within 1H

then
payment(lines, me, 10m)〈customer〉
and
〈me〉 Delivery(sender s, receiver r, items i)

where s ≡ me ∧ r ≡ customer ∧ i ≡ map (λx → x.item) lines
due within 1W

then
repair(map (λx → x.item) lines, customer, 3M)〈me〉

clause payment(lines : [OrderLine], me : 〈Me〉, deadline : Duration)
〈customer : 〈Customer〉〉 =

if null lines then
fulfilment

else
〈customer〉 Payment(sender s, receiver r, money m)

where s ≡ customer ∧ r ≡ me ∧ checkAmount m lines
due within deadline
remaining newDeadline

then
payment(remainingOrderLines m lines, me, newDeadline)〈customer〉

clause repair(items : [Item], customer : 〈Customer〉, deadline : Duration)
〈me : 〈Me〉〉 =

when RequestRepair(sender s, receiver r, items i)
where s ≡ customer ∧ r ≡ me ∧ subset i items
due within deadline
remaining newDeadline

then
〈me〉 Repair(sender s, receiver r, items i’)

where s ≡ me ∧ r ≡ customer ∧ i ≡ i’
due within 5D

and
repair(items, customer, newDeadline)〈me〉

contract = sale(orderLines)〈me, customer〉
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Université Paris 7, 2006.

[23] Laurence Day and Graham Hutton. Towards Modular Compilers For Ef-
fects. In Proceedings of the Symposium on Trends in Functional Programming,
Madrid, Spain, 2011.

[24] Chris Exton and Jian Chen. Programming by Contract in a Distributed Object
Environment. In Proceedings of the International Symposium on Future Soft-
ware Technology (ISFST-96), pages 272–278. Software Engineers Association
(Japan), 1996.

[25] General rules and guidelines for the PhD programme. Faculty of Science Uni-
versity of Copenhagen, 2010. Adopted on 8th of January 2010.



Bibliography 251

[26] Leonidas Fegaras and Tim Sheard. Revisiting Catamorphisms over Datatypes
with Embedded Functions (or, Programs from Outer Space). In Proceedings of
the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 284–294, New York, NY, USA, 1996. ACM.

[27] Stephen Fenech, Gordon Pace, and Gerardo Schneider. Automatic Conflict
Detection on Contracts. In Theoretical Aspects of Computing - ICTAC 2009,
pages 200–214. Springer Berlin / Heidelberg, 2009.

[28] Maarten Fokkinga. Monadic Maps and Folds for Arbitrary Datatypes. Tech-
nical Report 94-28, Department of Computer Science, University of Twente,
Enschede, The Netherlands, 1994.

[29] James William Forrester. Gentle Murder, or the Adverbial Samaritan. The
Journal of Philosophy, 81(4):193–197, 1984.

[30] Norbert Fuchs, Kaarel Kaljurand, and Tobias Kuhn. Attempto Controlled
English for Knowledge Representation. In Reasoning Web, pages 104–124.
Springer Berlin / Heidelberg, 2008.

[31] You-Chin Fuh and Prateek Mishra. Type inference with subtypes. Theoretical
Computer Science, 73(2):155–175, 1990.

[32] Andrew Gill, John Launchbury, and Simon L. Peyton Jones. A Short Cut to
Deforestation. In Proceedings of the conference on Functional programming
languages and computer architecture, pages 223–232, New York, NY, USA,
1993. ACM.

[33] J.-Y. Girard. Linear Logic. Theoretical Computer Science, 50:1–102, 1987.

[34] Andrew Goodchild, Charles Herring, and Zoran Milosevic. Business Con-
tracts for B2B. In Proceedings of the CAiSE 2000 Workshop on Infrastructure
for Dynamic Business-to-Business Service Outsourcing (ISDO), pages 63–74,
2000.

[35] Guido Governatori. Representing Business Contracts in RuleML. Interna-
tional Journal of Cooperative Information Systems (IJCIS), 14(2-3):181–216,
2005.

[36] Guido Governatori and Zoran Milosevic. A Formal Analysis of a Business
Contract Language. International Journal of Cooperative Information Systems
(IJCIS), 15(4):659–685, 2006.

[37] Guido Governatori and Duy Hoang Pham. DR-CONTRACT: an architecture
for e-contracts in defeasible logic. International Journal of Business Process
Integration and Management, 4(3):187–199, 2009.

[38] Guido Governatori and Antonino Rotolo. Logic of Violations: A Gentzen Sys-
tem for Reasoning with Contrary-To-Duty Obligations. Australasian Journal
of Logic, 4:193–215, 2006.



252 Bibliography

[39] Guido Governatori, Zoran Milosevic, and Shazia Sadiq. Compliance checking
between business processes and business contracts. In Enterprise Distributed
Object Computing Conference, pages 221–232, Hong Kong, 2006. IEEE.

[40] Ichiro Hasuo, Bart Jacobs, and Tarmo Uustalu. Categorical Views on Com-
putations on Trees (Extended Abstract). In Automata, Languages and Pro-
gramming, pages 619–630. Springer Berlin / Heidelberg, 2007.

[41] Richard Helm, Ian M. Holland, and Dipayan Gangopadhyay. Contracts: Spec-
ifying Behavioral Compositions in Object-Oriented Systems. In Proceedings
of the European conference on object-oriented programming on Object-oriented
programming systems, languages, and applications, pages 169–180, New York,
NY, USA, 1990. ACM.

[42] Fritz Henglein, Ken Friis Larsen, Jakob Grue Simonsen, and Christian Ste-
fansen. POETS: Process-oriented event-driven transaction systems. Journal
of Logic and Algebraic Programming, 78(5):381–401, May 2009.

[43] Anders Starcke Henriksen, Tom Hvitved, and Andrzej Filinski. A Game-
Theoretic Model for Distributed Programming by Contract. In GI Jahresta-
gung, pages 3473–3484, 2009.

[44] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Commun.
ACM, 12:576–580, October 1969.

[45] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1984.

[46] Kohei Honda, Vasco Vasconcelos, and Makoto Kubo. Language Primitives
and Type Discipline for Structured Communication-Based Programming. In
Programming Languages and Systems, pages 122–138. Springer Berlin / Hei-
delberg, 1998.

[47] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asyn-
chronous Session Types. In Proceedings of the 35th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 273–284,
New York, NY, USA, 2008. ACM.

[48] Jozef Hooman. Extending Hoare Logic to Real-Time. Formal Aspects of
Computing, 6:801–825, 1994.

[49] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and
Reasoning about Systems. Cambridge University Press, Cambridge, United
Kingdom, 2004.

[50] Tom Hvitved. Contracts in Programming and in Enterprise Systems. Master’s
thesis, Department of Computer Science, University of Copenhagen, 2009.
Ph.D. Progress Report.

[51] Tom Hvitved. A Survey of Formal Languages for Contracts. In Formal Lan-
guages and Analysis of Contract-Oriented Software (FLACOS), pages 29–32,
2010.



Bibliography 253

[52] Tom Hvitved, Patrick Bahr, and Jesper Andersen. Domain-Specific Languages
for Enterprise Systems. Technical report, Department of Computer Science,
University of Copenhagen, 2011.

[53] Tom Hvitved, Felix Klaedtke, and Eugen Zălinescu. A trace-based model for
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[110] Martijn Van Steenbergen, José Pedro Magalhães, and Johan Jeuring. Generic
Selections of Subexpressions. In Proceedings of the 6th ACM SIGPLAN work-
shop on Generic programming, pages 37–48, New York, NY, USA, 2010. ACM.

[111] Varmo Vene. Categorical Programming with Inductive and Coinductive Types.
PhD thesis, Faculty of Mathematics, University of Tartu, Estonia, 2000.
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