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Abstract

This thesis presents contributions in three topics in non-linear modeling of
deformation and shape with applications to medical imaging:

To obtain compact description of deformation while keeping the capacity of
the deformation model, we present two results on registration and deformation
modeling. We introduce the kernel bundle framework which extends the LDDMM
framework to represent deformation at multiple scales while preserving much of
the mathematical structure underlying the original framework. We explore the
mathematical properties of the multi-scale construction and derive evolution equa-
tions with the bundle. The kernel bundle in particular allows application of sparse
priors across scales, and we use this property to obtain compact representations
while keeping the capacity of the deformation model and its ability to generalize
to test data. The method is evaluated on annotated lung CT images and a fast
GPU optimized registration algorithm is developed and tested.

In addition, sparse deformation representation with LDDMM is restricted by
representing only translational motion. We introduce higher order kernels in the
framework to allow modeling of locally affine deformation. The higher order kernels
fit naturally into the mathematical construction of the LDDMM, and this enables
us to derive evolution equations and a matching algorithm using first order infor-
mation. We show how the increased description capacity allows registration with
very few parameters, and we apply the kernels to register MR scans of patients
suffering from Alzheimer’s disease.

Performing statistics in non-linear spaces, in particular on Riemannian man-
ifolds, requires computational tools to compute directions, distances, and projec-
tions. We present algorithms for computing the differential of the Exponential map
and second order derivatives on Riemannian manifolds leading to an algorithm for
computing exact Principal Geodesic Analysis, a generalization of PCA to mani-
folds which is exact as it does not use the common tangent space linearization. We
evaluate the results obtained with the exact algorithm against the standard PGA
method and provide new insight into when modelling non-linearity is beneficial.

To reduce annotation variation in point based models, we introduce the bicycle
chain shape model for 2D-shape representation. The model imposes constraints on
the pairwise point distances which leads to a non-linear shape space when keeping
the constraints consistently enforced. We develop tools for performing statistics
on the embedded Riemannian manifold comprising the model, and we apply the
method to represent and perform statistics on a dataset of human vertebrae X-rays.
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Resumé

Denne PhD-afhandling omhandler ikke-lineær modellering af deformation og
former med anvendelser i medicinsk billedbehandling. Nye resultater præsenteres
indenfor tre hovedomr̊ader:

For at kunne beskrive deformation kompakt samtidig med at deformations-
modellens beskrivelsesevne bibeholdes, præsenterer vi to resultater til deforma-
tionsbeskrivelse og registrering. Vi introducerer kerne-bundt (kernel bundle) ud-
videlsen af LDDMM, der giver muligheden for at repræsentere deformation p̊a flere
skalaer samtidig med at store dele af den matematiske struktur, der ligger til grund
for den oprindelige model, bibeholdes. Vi undersøger de matematiske egenskaber
med multi-skala konstruktionen og udleder flow-ligninger. Kerne-bundtet tillader
specielt brug af sparse priors p̊a de enkelte skalaer, og vi benytter denne egenskab
til at opn̊a kompakte repræsentationer, samtidig med kapaciteten af deformation-
smodellen og dens evne til at generalisere til testdata bibeholdes. Metoden eval-
ueres p̊a annoterede lunge-CT scanninger, og en hurtig registreringsalgoritme til
grafikprocessorer bliver udviklet og testet.

Kompakt deformationsbeskrivelse med LDDMM er yderligere begrænset ved
kun at repræsentere translatering. Vi introducerer højereordenskerner (higher or-
der kernels) i modellen for at kunne modellere lokalt affine deformationer. Hø-
jereordenskerner passer p̊a en naturlig m̊ade i den matematiske konstruktion bag
LDDMM, og ved at udnytte dette udleder vi flow-ligninger og en registreringsal-
goritme, der inkluderer førsteordens information. Vi viser hvordan den øgede ka-
pacitet af modellen tillader registrering med meget f̊a parametre, og vi benytter
kernerne til at registrere MR scanninger af patienter med Alzheimers sygdom.

Statistik i ikke-lineære rum, specielt p̊a Riemannske mangfoldigheder, kræver
algoritmer til at udregne retninger, afstande og projektioner. Vi udvikler algo-
ritmer til beregning af differentialet af eksponentialafbildningen og andenorden-
safledte p̊a Riemannske mangfoldigheder. Dette fører til en algoritme til at beregne
eksakt PGA, som er en udvidelse af PCA til mangfoldigheder og som er eksakt,
idet den ikke bruger tangentrumslinearisering. Vi sammenligner resultater bereg-
net med den eksakte algoritme med resultater fra den gængse PGA metode. Dette
giver ny indsigt i hvorn̊ar det kan betale sig at modellere ikke-linearitet.

For at reducere variation ved manuel annotering til punkt-baserede 2D-kurve-
modeller, introducerer vi cykelkæde form-modellen (bicycle chain shape model).
Modellen indfører krav til de parvise afstande mellem punkter, hvilket fører til
et ikke-lineært formrum, n̊ar kravene indføres konsistent. Vi udvikler algoritmer
til at udføre statistik p̊a den indlejrede mangfoldighed, som udgør modellen, og
vi benytter metoden til at repræsentere og udføre statistik p̊a et datasæt med
røntgenbilleder af vertebrae fra mennesker.
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Introduction

Vertebrae may fracture as a result of osteoporosis; Alzheimer’s disease can lead to brain
atrophy; a reduction in hippocampal size has been observed with patients suffering from
depression or schizophrenia. These examples and a number of additional diseases cause
anatomical changes in the human body that can be observed using medical imaging
techniques and that can be explored using computer algorithms.

The ability to perform statistics is fundamental for empirical research, and the
overall goal of the work presented in this thesis is to allow statistical exploration of
imaging data showing changes in human anatomy. For example, a precise characteri-
zation of the shape change of the hippocampus may lead to improved understanding of
schizophrenia; if wear in certain areas of vertebrae indicates osteoporosis, early diagno-
sis and assessment of the effect of treatments may be possible; knowledge of Alzheimer’s
disease may be gained by a more detailed view of the brain atrophy.

Based on examples as the above, we wish to allow statistics to be performed on the
shape of organs, and, to pursue this goal, this thesis concerns modeling and statistical
methods on deformation and shape. Statistics on geometric objects is far from as well
established as performing statistics on numbers, and quantification of change requires
models, metrics, non-linear statistical methods, computational representations, and nu-
merical algorithms. In addition, domain specific knowledge is often needed, and differ-
ent objects to be studied require different models and algorithms. The work presented
here constitutes steps for specific methods seeking to allow statistics on anatomical
changes, and the papers contribute to components in the entire pipeline from model to
algorithm.

Summary of Contributions

The results presented add to the state-of-the-art by the following contributions:

Multi-Scale Deformation Modeling
The LDDMM registration framework has many important mathematical and
modeling properties but sparse deformation description with LDDMM is limited
in representing deformation at only one scale. We introduce the kernel bundle
framework for multi-scale deformation representation and explore the underlying
mathematical structure. The kernel bundle in particular allows application of
sparse priors across scales, and we use this property to obtain compact repre-
sentations while keeping the capacity of the deformation model and its ability to
generalize to test data. The method is evaluated on annotated lung CT scans,
and we present a GPU optimized registration algorithm.

Higher Order Kernels for LDDMM
Finite dimensional representations of LDDMM do not directly support all affine
motions; only a combination of translations can approximate non-translational de-
formations. This limitation restricts the ability to represent deformation sparsely.
We show how higher order kernels through the partial derivative reproducing
property fit naturally into the LDDMM framework and how the new kernels al-
low compact representation of locally affine deformation such as local rotation
and dilation. Through experiments, we demonstrate how the increased descrip-
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tion capacity allows registration with very few parameters, and we apply the
kernels to register MR scans of patients suffering from Alzheimer’s disease.

Numerical Algorithms and Non-linear Statistics
Performing statistics in non-linear spaces, in particular on Riemannian manifolds,
requires computational tools to compute directions, distances, and projections.
We present algorithms for computing the differential of the Exponential map
and second order derivatives on Riemannian manifolds. These results lead to an
algorithm for computing exact Principal Geodesic Analysis, a generalization of
PCA to manifolds which is exact as it does not use the common tangent space
linearization. We evaluate the results obtained with the exact algorithm against
the standard PGA method and provide new insight into when modelling non-
linearity is beneficial.

2D-Shape Modeling
To reduce annotation variation in point based models, we introduce the bicycle
chain shape model for 2D-shape representation. The model imposes constraints
on the pairwise point distances which leads to a non-linear shape space when
keeping the constraints consistently enforced. We develop tools for performing
statistics on the embedded Riemannian manifold comprising the model, and we
apply the method to represent and perform statistics on a dataset of human
vertebrae X-rays.

Structure of the Thesis

The main body of this thesis consists of papers presenting the research in which I have
been involved during my PhD studies. The present introduction will be followed by a
brief discussion of the relation between the presented papers and the current state of the
research fields that the papers concern. Following this, each of the papers are included
as published or submitted for review. Only page numbers have been converted in order
to fit the numbering of the thesis. The papers are ordered according to the topic they
concern: registration and deformation modeling; non-linear statistics and algorithms;
and 2D shape modeling. The thesis will end with a short summary, concluding remarks,
and outlook.

Papers

The thesis comprises the six papers listed below all of which I am the first author.
Three of the papers have been peer-reviewed, presented at conferences and published
in conference proceedings. The remaining three papers are submitted for journals and
currently under review. Paper #1, ”Sparse Multi-Scale Diffeomorphic Registration: the
Kernel Bundle Framework”, is the result of an invitation to submit to the Scale-Space
and Variational Methods special issue in the Journal on Mathematical Imaging and
Vision, and it combines and extends the three conference papers [1, 2, 3]. These three
conference papers are not included in the thesis since the material presented in the
papers is largely covered in Paper #1.

Further, I have contributed to three additional papers where I am not the first
author. The six papers that are not part of the thesis are listed below as not included
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1.

Overview

The purpose of this chapter is to lay out the context of the papers comprising the thesis
and discuss the problems they address. We will start with high level comments on non-
linear modeling and the difficulties arising when diverting from linearity. Next, we
will discuss the three main topics of the thesis: registration and deformation modeling;
non-linear statistics and algorithms; and 2D shape modeling. These parts will concern
the purposes and results of the papers and give overall comments on the current state
of the fields. The “related work” sections in the papers provide short reviews of the
fields, and the intention is not to repeat those reviews here.

1 Non-linear Modeling

We wish to model, measure, and do statistics on organs with concrete examples being
bones, lungs, and the human brain. It is often hard to find accurate linear models for
the geometry of organs, and it turns out that, in many cases, representations of the
geometry as points in Euclidean space fail to be adequate for statistical purposes. For
example, in Section 4 we consider outlines of human vertebrae, and a vertebra may
be represented by N points in R2 lying on the outline of a lateral X-Ray of the spine,
confer Figure 1.5(a). The arithmetic mean in R2N between a collection of such points
may however not look like a vertebra at all.

Non-linear modeling appears in the search for meaningful and theoretically well-
founded models that are accurate and compact. Prior knowledge can be used to restrict
the modeling space to objects which are actually meaningful to represent. For example,
we may define a subset of R2N that we find represents realistic vertebrae and restrict the
model to this subspace. Such a subspace will most likely be non-linear. Furthermore,
it is often hard to define e.g. distances and distributions directly in the global modeling
space. Instead, modeling can be performed infinitesimally, and the infinitesimal con-
structions can be integrated to provide global structures. The LDDMM deformation
model that we discuss in Section 2 provides an example of how this approach can lead
to theoretically well-founded models. Both restriction of the modeling space and in-
finitesimal approaches can reduce the dimensionality of the model leading to increased
compactness without reducing the accuracy of the representation. Correspondingly,
the increased compactness for a given accuracy can lead to increased accuracy when
comparing against a linear representation with equivalent dimensionality.

Non-linearity does, however, come at a price. Figure 1.1 shows common steps

1



1. Overview

Figure 1.1: Sketch of a modeling pipeline with elements needed for each step of non-linear
modeling (left) and linear modeling (right). To summarize: for linear models, most of the
required elements can be taken straight off the shelf and used; for non-linear models, every step
is complicated.

needed to go from problem definition to working tools that allow analysis in non-linear
spaces. For each element of this pipeline, research in mathematics, statistics, and
computer science has already developed solid linear tools. In contrast, for non-linear
modeling, many of the elements comprise active research areas. Non-linear modeling is
hard because the mathematics of non-linearity is involved; because the added freedom
requires careful selection of metrics; because statistics in non-linear spaces is largely
undefined; because non-linear constraints are hard to represent in computational repre-
sentations; and because actual algorithms may drown in numerical errors, local minima,
and prohibitive need for computing resources. The left column of Figure 1.1 also shows
the need for interdisciplinarity when working with non-linear modeling. Geometry,
statistics, numerical analysis, and domain specific knowledge all constitute important
parts.

The work constituting this thesis spans from model to implemented algorithm touch-
ing several parts of the pipeline show in Figure 1.1. The papers concern data of varying
nature and address different non-linear problems; they are therefore best considered
distinct but related contributions to non-linear modeling.

One important general observation has reappeared when performing the research
presented in the papers: curvature is relative to spread, or, with an equation which
should be interpreted informally,

non-linearity = curvature× spread .

2



Registration and Deformation Modeling

If either the curvature of the modeling space is low or the data is very localized, there is
a good chance that a linear model in practice will perform just as well as a more precise
but complicated non-linear equivalent. On the other hand, if both curvature and spread
is high, even the presently known non-linear statistical models become problematic. As
we will see, modeling vertebrae using the bicycle chain model described in Paper #6
and Section 4 constitutes an example of the former case; applying the PGA procedure
described in Section 3 on human motion data is arguably an example of the latter case.

2 Registration and Deformation Modeling

Finding correspondences between geometric objects, organs in particular, is often of
interest: if we acquire CT scans of lungs, there will be a natural variation caused
by the respiratory process. We can remove this variation by finding correspondences
between points in the scans. Similarly, if we acquire baseline and follow-up MR scans
of the brain of a patient suffering from Alzheimer’s disease, we can use correspondences
between the scans to see possible progressing atrophy.

Registering geometric objects, images in particular, has been the subject of a huge
amount of work over the last decades. In this thesis, we focus on the deformable tem-
plate view and the LDDMM framework. The LDDMM framework provides a complete
deformation model with a Lie group structure on spaces of deformations and Rieman-
nian metrics. The metrics measure the cost of infinitesimal deformations, and large
deformations are generated by integrating infinitesimal motions. The benefits are the
ability to measure distances between points, lines, surfaces, distributions, and images;
explicit control of the smoothness enforced in the registration; and possibility of per-
forming well-founded statistics on the registration results. For the latter property,
the explicit mathematical foundation of LDDMM promises statistics measuring real
patterns in the data instead of possible artifacts of the registration algorithm.

Paper #1 and Paper #2 provide short introductions to the key concepts in LD-
DMM: the Lie group formulation, the tangent space with reproducible kernel Hilbert
space (RKHS) structure, the metric, and the EPDiff evolution equations. We refer to
the papers for description of these concepts, and provide here the main outline for our
approach to LDDMM.

The deformation model in LDDMM is infinitely dimensional, and most implemen-
tations reflect this by seeking discretizations as fine as possible. The deformation we
wish to obtain when registering images may be of significantly lower dimensionality
than provided by dense discretizations, and the dimensionality may vary over different
spatial locations in the images. For example, large-scale deformation may be needed
when registering brains from different subjects while e.g. atrophy may occur at small
scales during the progression of Alzheimer’s disease.

We wish to depart from dense discretization by looking for sparser representations
of deformation that contain interpretable information. We denote the basis elements
of such representations deformation atoms. In LDDMM, the fundamental notion of
kernel parametrizes infinitesimal deformations, and kernels at different spatial locations
are used as deformation atoms. Since the kernel has a fixed scale and since it only
encodes translation information, sparse representations should ideally be accompanied
by increased capacity of the deformation description provided by each atom. Our work
on deformation modeling revolves around this program of allowing sparsity through

3



1. Overview

(a) Registering lungs in inhale and exhale phases; 3D CT. In Paper #1, Paper #3,
and [1, 3], we use annotated scans for registration with our kernel bundle multi-scale
registration framework.
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(b) Registering baseline and follow up scans; 2D MRI of an Alzheimer’s patient. The baseline
image (left) contains deformation atoms in the form of first order kernels, confer Paper #2.
The ventricle area to be registered is marked in the follow up image (right).

Figure 1.2: Registration, finding correspondences between geometric objects, is important for
a multitude of applications. CT and MR data from [4, 5].

increased capacity with the introduction of the multi-scale kernel bundle framework and
by developing higher order kernels. The former has the effect of varying the spatial
range of each deformation atom; the latter has the effect of locally increasing the
description capacity of the atoms.

In the conference paper [1], we present simple examples illustrating why sparse
description of deformation occurring at different scales at different spatial locations
will require multiple scales in the deformation model. Based on these observations,
we introduce the kernel bundle or LDDKBM extension of LDDMM. The aim is to
allow multi-scale representation while keeping much of the mathematical structure of
LDDMM intact. In [2], we continue exploring the mathematical properties of the
multi-scale model by deriving the KB-EPDiff evolution equations.

Including multiple scales in LDDMM has also been treated by Risser et al. [6, 7]
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and Bruveris et al. [8]. While the approach of Bruveris et al. corresponds to the
kernel bundle method with two scales, the approach of Risser et al. is different in not
representing the momentum field at different scales. In contrast, the kernel bundle is
designed specifically to represent deformation individually at different scales. This in
particular allows the momentum field to vanish at some scales while being non-zero at
others at the same spatial locations, a property we denote sparsity across scales. It has
been shown [9] that optimal deformations with the original kernel bundle formulation
will coincide with optimal deformations with the approach of Risser et al. Thus, though
the kernel bundle is able to represent sparsity across scales, the cross-scale sparsity will
not occur without adding more information to the system. In [3], we pursue this by
applying sparse priors to the individual scales in kernel bundle framework, and we
demonstrate in the experiments section that sparsity across scales is indeed achieved.
Scale information may also arise from the data term, and we are currently continuing
the multi-scale program by searching for the right way to combine both multi-scale
representation, multi-scale regularization and prior information, and multiple scales
present in the data.

We were invited to extend the work presented in [2] for the Scale-Space and Varia-
tional Methods special issue in the Journal on Mathematical Imaging and Vision. This
resulted in Paper #1 which combines and extends the three conference papers [1, 2, 3]
to one account of the kernel bundle framework.

Continuing with the goal of obtaining sparser representations through increased de-
scription capacity, we develop higher order kernels for LDDMM in Paper #2. With the
common LDDMM representations and even with multiple scales, sparse representations
are limited to represent translational movements at each deformation atom. Contrac-
tions, expansions, rotations and other affine transformations must be approximated
using several atoms. This limits the range of deformation that sparse representations
can describe. With higher order kernels, we extend each deformation atom to locally
represent first order information and thus describe locally affine transformations. We
illustrate the application of the higher order kernels by registering images using low
numbers of deformation atoms, and we use the method to register MR scans of pa-
tients with progressing atrophy caused by Alzheimer’s disease.

Finally, in Paper #3, we take a more implementation specific focus and develop
a GPU implementation of the kernel bundle algorithm. The resulting two-orders of
magnitude speedup from a single-threaded CPU implementation shows that including
multiple-scales does not rule out fast computation of the registration results with large
amounts of landmarks. In the paper, the kernel bundle framework is referred to as
LDDKBM.

3 Non-linear Statistics and Algorithms

When using non-linear models for geometric objects, we are confronted with the prob-
lem of performing non-linear statistical analysis. In non-linear statistics, we cannot
directly use the inner product that is present in Euclidean spaces; with infinitesimal
models, this is reflected in the contrast between the global nature of the inner prod-
uct and the local nature of infinitesimal variations. In addition, we must often take
care of infinite dimensionality and artifacts such as non-uniqueness or non-existence
of means. In this thesis, we apply non-linear statistical methods to shape analysis
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and human motion models but the need for statistical methods outside the Euclidean
settings is not limited to these examples, and much work has gone into generalizing
well-known Euclidean concepts to different non-linear spaces. The field is however far
from completely explored.

Almost no concept from Euclidean statistics has a straightforward generalization to
non-linear spaces. Here, we discuss issues in generalizing three of the most important
concepts before relating them to the two papers in this thesis concerning non-linear
statistics. Confer [10] for a recent review of the field.

Means
The common arithmetic mean m = 1

N

�N
i=1 xi has for Euclidean data the prop-

erty of minimizing the variance between the data points xi ∈ Rd and m, i.e.

m = argminx∈Rd

N�

i=1

�xi − x�2 . (1.1)

By definition, the arithmetic mean is unique and it always exists. In non-linear
spaces, addition is most often not well-defined; even if addition is defined, it will
not be compatible with the metric structure and the arithmetic mean will not
provide a distance minimizing property (1.1).

The most frequently used non-linear equivalent of the arithmetic mean is the
Fréchet [11] mean that on a metric space M with distance dM (·, ·) generalizes
(1.1) to

m = argminx∈M

N�

i=1

dM (xi, x)
2 . (1.2)

Note that m here is a set of global minimizers of the variance. Looking only at
local minimizers of (1.2), Karcher [12] shows that existence and uniqueness is
ensured for sufficiently local data when M is a Riemannian manifold. For slightly
less local data, uniqueness may fail even in simple cases. Local minimizers of
(1.2) will be used when discussing the PGA generalization of PCA below. In the
experiments presented in the papers on non-linear statistics, we observed that,
in rough terms, either the data is sufficiently localized for the situation to be
essentially linear or the data is non-localized making analysis centered around
the mean problematic, confer also Figure 1.3.

Gaussian Distributions
Gaussian distributions can be generalized to manifolds in several ways: by us-
ing the Laplace-Beltrami operator to obtain solutions to the heat equation or
Brownian motion; by projecting Euclidean Gaussian distributions in the tangent
space of the mean to the manifold using the Exponential map; by projecting
embedding space Gaussians to the manifold; and by maximizing global entropy
[10]. An important point is that we do not have the Euclidean convenience of one
distribution that satisfies all of these properties at once.

Principal Component Analysis
The Euclidean Principal Component Analysis (PCA) procedure aims to find low
dimensional subspaces capturing the variance of a dataset. This can equivalently
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Figure 1.3: Even when the mean (1.2) is unique, centering analysis can be problematic
for non-local data. Here, data points on a sphere lie on a great circle passing through the
mean. Nevertheless and non-intuitively, exact PGA computes the first principal direction to
be orthogonal to the great circle. Observing such phenomena is possible using the algorithms
developed in Paper #4.

be formulated either as minimizing residual errors or maximizing captured vari-
ance.

Principal Geodesic Analysis (PGA, [13, 14]) and Geodesic PCA [15, 16] both
provide abstractions of PCA to manifolds. PGA centers the analysis to the tan-
gent space of local minimizers of (1.2) and aims for maximizing variance in linear
subspaces of the tangent space. Projections are defined using the manifold dis-
tance but in order to make the computations feasible, orthogonal projections in
the tangent space are used as approximations. Geodesic PCA minimizes residual
errors and uses the fact that the minimizing geodesics need not pass the means
in non-linear spaces. Therefore, the analysis is not centered like PGA. PGA was
first applied to medial representations, confer Section 4.

In two papers, we consider algorithms and statistics on Riemannian manifolds: in Paper
#4, an algorithm for computing the derivative of the Exponential map on manifolds is
developed with the application of computing PGA without approximating projections
with orthogonal projections in the tangent space. This procedure is denoted exact
PGA. Approximating projections with orthogonal projections in the tangent space
corresponds to a linearization of the manifold, and, from an algorithmic point of view,
the exact PGA procedure shows how essential notions in non-linear statistics can be
computed without such linearization. From a modeling point of view, it is however an
interesting observation that for fairly localized data, the difference between PGA and
exact PGA can be negligible. In order to test this further, we compare in Paper #5 the
exact and non-exact algorithms on a dataset of vertebrae outlines represented using the
bicycle chain shape model of Paper #6 and on a non-linear model of human pose. The
results emphasize that, informally, non-linearity equals curvature times spread: for the
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(a) Camera output and superim-
posed tracking result.

−1.5−1−0.500.511.522.5
−0.5

0
0.5

0

0.5

1

1.5

2

2.5

(b) Tracked pose with end-effectors (dots). (c) Eigenmode of
PGA; full-body
poses.

Figure 1.4: In Paper #5, we compare approximated and exact PGA on a non-linear spatial
model of human poses. In addition, in [17, 18], we use different Gaussian-like distributions on
the pose manifold to drive a particle-filter based tracking algorithm.

vertebra dataset, a linear model would be sufficient; for the human poses that show
great variation, a linear model would result in a poor approximation.

In our papers [17, 18], two of the papers that are not included in the thesis, we
continue exploring the non-linearity of the human pose representation by using several
of the different non-linear generalizations of Gaussian distributions to estimate human
poses from video sequences using particle filtering system. In [17], tangent space and
embedding space Gaussians projected to the manifold are used, and, in [18], we develop
a numerical scheme for simulating manifold valued Brownian motion and use that in
the particle filter.

4 2D Shape Modeling

A large class of images of organs are two dimensional and this makes 2D modeling of
curves and shapes in the plane important. Outlines of human vertebrae will here serve
as the main example of 2D shapes, confer Figure 1.5(a).

2D shapes can be modeled using only the curve surrounding the shape or using the
entire interior of the shape. Approaches to the latter include modeling deformation of
the domain containing the shape or using set distances such as the Hausdorff distance.
In this section, we will focus on curve models; in contrast, the LDDMM framework
discussed in Section 2 models domain deformation. Curve models can further be cat-
egorized in approaches modeling correspondence and approaches seeking invariance of
point correspondences. Point distribution models (PDM) are examples from the for-
mer category, and parametrization invariant models are members of the latter category.
Besides the fundamental question of how the distance between two shapes should be
defined, confer Figure 1.5(b), the debate between proponents of each approach touches
aspects such as the problem of actually determining correspondences, the implication
of noise in the measurements on invariant models, and analytical issues when removing
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(a) Vertebra outline represented using the bicycle
chain shape model (Paper #6). Notice the constant
pairwise distances between the points resembling the
constant distances between the pins in a bicycle chain.

(b) Shape modeling concerns in particular the definition of distances in the
shape space. For example, with the 2D shapes in the picture, the distance
between the left and right shapes can be interpreted as the work required to
(top) move the bulb from left to right or to (bottom) remove and recreate the
bulb.

Figure 1.5: 2D shape modeling: the bicycle chain shape model and the definition of distances.

the reparametrization group.1

Before discussing properties of the bicycle chain shape model which we propose in
Paper #6, we discuss four different approaches to 2D shape modeling. The bicycle chain
model refers directly to the first two models, the PDM and L2-models. Approaches
to performing statistics in the non-linear shape spaces of the elastic and medial mod-
els inspired the algorithms used in the bicycle chain model and the PGA algorithms
discussed in Section 3. A thorough review of 2D shape models can be found in the
monographs [19, 20, 21].

1 These issues were primary discussion topics at the “Geometry for Anatomy” workshop in Banff,
Alberta, Canada, August 2011.
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Point Distribution Models (PDM)
Perhaps the most classical approach to shape modeling is to represent the curve
with a number of sample points or landmarks. In the Kendall shape space [22,
23], distances between curves represented by landmarks are measured using the
Euclidean distance between the landmarks but modulo the effect of rotations,
translations, and scaling of the points. The Kendall shape spaces are non-linear
but linear models such as the active shape models [24] have been used with great
success. Importantly, the linearity allows the use of statistical tools such as PCA
for dimensionality reduction. The use of landmarks makes correspondences an
integral part of these methods. Correspondences can be found with e.g. MDL
approaches [25].

L2-norm on Immersed Curves
In set Imm(S1,R2) of closed curves immersed in R2 [26, 27], a variation v of a
curve c ∈ Imm(S1,R2) gives a vector at each point of the curve. Elements of
the set C∞(S1,R2) of such variations can be considered tangent vectors on the
manifold of immersed curves, and a natural choice of metric on this space is

�v1, v2�c =
�

S1

�v1(t), v2(t)�R2 �ċ(t)�R2dt

for variations v1, v2 of the curve c.

The parametrization of curves in Imm(S1,R2) is often not considered a part of
the geometry of the curve. Since the above inner product is invariant of the choice
of parametrization, it induces an inner product on the quotient Imm(S1,R2) \
Diff(S1).

This metric is less natural than it seems [28]: the distance between any two curves
vanishes as a result of the parametrization invariance and infinite dimensionality
of the spaces. Various other choices of metrics than the L2-norm have been
proposed to prevent this degeneracy of the metric. These include penalizing the
length of the curves [29], penalizing the curvature of the curves [26], and Sobolev-
type metrics [30, 27]. For the latter approach, derivatives of the tangent vectors
is included in metrics on the form

�v1, v2�c =
�

S1

�

α

�Dα
t v1(t), D

α
t v2(t)�R2 �ċ(t)�R2dt .

Elastic Models
Variations of curves can also be formulated in terms of variations in their an-
gle function and parametrization speed. The elastic curve metric [31] is defined
through an inner product on such variations. Various representations of curves
suitable for the elastic metric have been proposed [32, 33] each resulting in differ-
ent expressions for the metric. They all center around representing the velocity
vector c�(t) of the differentiable curve c by a pair of functions (ϕ, θ) such that

c�(t) = ϕ(t)eiθ(t)

in complex coordinates, and ϕ can for example be given in logarithmic form or as
the squared length of the curve derivative. Penalizing variations in ϕ corresponds
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to increasing the tension of the curve, and penalizing variations of θ increases the
rigidity. The review paper [27] provides an overview of the relation between the
elastic metric, the L2- and Sobolev metrics.

Medial Representations
A different approach to shape modeling is based on the medial axis of Blum
[34]. The medial axis of a 2D or 3D shape is the subset of the points enclosed
by the shape boundary that have more than one closest point on the boundary.
By describing the position of each such point together with the distance to the
boundary and vectors pointing to each of the closest points, one obtain the medial
representation of the shape. The m-rep representation has been very successful
in modeling shape variation in many medical applications [35, 36, 13, 14], and
the PGA procedure discussed in Section 3 was first applied to m-reps.

In Paper #6, we propose the bicycle chain shape model. The analogy with bicycle
chains stems from the fact that curves are represented by points having fixed pairwise
distances similar to the constant distances between the pins enforced by the links in a
bicycle chain. The model can be seen as a PDM with constraints on the point place-
ments or as an L2-like model with fixed parametrization and finite discretization. The
rationale for the first viewpoint arises from problems in establishing correspondences for
PDMs. In the paper, the outline of human vertebrae are manually annotated by medi-
cal experts but the annotations exhibit variation in the actual placement of the points.
Redistributing the points to have constant pairwise distances reduces this variation and
may lead to more robust statistics on the shapes. In addition, the pairwise-distance
constraint results in the dimension of the shape space being roughly halved, and the
model thus provides an example of how compactness can be increased by a non-linear
restriction of the modeling space. From the second viewpoint, the fixed distances im-
ply a constant speed parametrization, and distances are measured as length of paths
in the non-linear shape space with the induced Euclidean metric on the tangent space
measuring the cost of infinitesimal deformations.

In the paper, we use a shooting algorithm to compute geodesics and distances in the
shape space. This approach is also used in some LDDMM algorithms [37] though path
straightening algorithms are commonly used for the elastic models [32] and LDDMM
[21]. The algorithms for computing optimal deformations with the kernel bundle and
the higher order kernels in Paper #1 and Paper #2 are also shooting methods, and
they are inspired by both [37] and the bicycle chain shooting algorithm. We use the
same shooting approach for computing distances on the human pose manifold in Paper
#5.
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2.

Paper #1:
Sparse Multi-Scale
Diffeomorphic Registration: the
Kernel Bundle Framework

Paper invited for submission to the Scale-Space and Variational Methods special issue
in the Journal on Mathematical Imaging and Vision (JMIV). Submitted to JMIV,
December 2011.

The paper is based on and extends the three conference papers [1, 2, 3].

Authors:
Stefan Sommer, François Lauze, Mads Nielsen, and Xavier Pennec

Notes:
We introduce the kernel bundle framework, a multi-scale extension of the LD-
DMM registration framework. The goal is to represent deformation at multiple
scales and thus increase the capacity of sparse deformation representations while
allowing compact representations. The latter is possible by the ability of the
kernel bundle to represent sparsity across scales. We derive the KB-EPDiff evo-
lution equations and prove the momentum conservation property. By applying
sparse priors to the scale-momentum, we seek to represent deformation at the
relevant scales only. This combines the modeling capacity of the kernel bundle
with increased the compactness of the representation. The method is evaluated
on synthethic and real examples, and, on a dataset of manually annotated lung
CT images, we show that the increased capacity of the method does not impact
the ablity of the method to generalize to test data; that the method removes the
need for classical scale selection; and that the property of sparsity across scales
is achieved.
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Abstract In order to detect small-scale deformations during
disease propagation while allowing large-scale deformation
needed for inter-subject registration, we wish to model de-
formation at multiple scales and represent the deformation
compactly at the relevant scales only. This paper presents the
kernel bundle extension of the LDDMM framework allow-
ing multiple kernels at multiple scales to be incorporated in
the registration while preserving much of the mathematical
structure underlying the single-scale method. We combine
sparsity priors with the kernel bundle resulting in compact
representations across scales, and we present the mathemat-
ical foundation of the framework with derivation of the KB-
EPDiff evolution equations. Through examples, we illustrate
the influence of the kernel scale and show that the method
achieves the important property of sparsity across scales.
In addition, we demonstrate on a dataset of annotated lung
CT images how the kernel bundle framework with a com-
pact representation reach the same accuracy as the standard
method optimally tuned with respect to scale.
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1 Introduction

Deformation captured in image registration occur at multi-
ple scales: lungs deform at large scale during the respira-
tory phases while disease progression may only be detected
at small scales. Similarly, large-scale deformation is needed
when registering brains from different subjects while e.g.
atrophy in the hippocampus occur at small scales during
the progression of Alzheimer’s disease. Representing defor-
mation at multiple scales is therefore useful when perform-
ing statistics on small-scale features over a population re-
quiring large-scale inter-subject registration. In this paper,
we develop a method that represents deformation at multi-
ple scales while seeking to represent the deformation at the
relevant scales only. The resulting sparse, multi-scale ker-
nel bundle registration framework supports sparsity across
scales while extending the range of deformation expressed
by single-scale models. We derive and test the construction
to show that the across scale sparsity is indeed achieved; that
the extra capacity of the method does not hamper general-
ization to test data; and that the method removes the need
for classical scale selection.

1.1 Background

The LDDMM framework is widely used in the field of com-
putational anatomy to model deformation and perform regis-
tration of geometric objects. It provides convenient parametriza-
tion of flows of diffeomorphisms and a complete mathemati-
cal setting ensuring existence of optimal warps and allowing
meaningful statistics to be performed on the registration re-
sults. Recent work has shown that the infinite dimensional
space of parameters for the registration can be successfully
approximated using sparse, finite dimensional representa-
tions [8,16]. However, the notion of kernels, which lies at
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(a) Sparse, kernel bundle (b) Non-sparse, kernel bundle (c) Sparse LDDMM (d) LDDMM

Fig. 1 Matching eleven landmarks (red) to eleven landmarks (black) and results (green) with four registration methods: (a) the proposed kernel
bundle multi-scale method with sparse prior; (b) the kernel bundle method without sparse prior; (c) LDDMM (single-scale) with sparse prior; and
(d) LDDMM (single-scale) without enforced sparsity. The arrows show the initial momentum with different colors for each of the three scales in
(a) and (b). Initially square grids are shown deformed by each diffeomorphism; the grids are colored with the log-trace of Cauchy-Green strain
tensor. (d) The inherent single-scale behaviour of LDDMM causes large deviation between the landmarks and results (black and green). (c) This
effect is increased when adding a sparse prior; the low number of non-zero momentum vectors indicate the sparsity. (b) With the kernel bundle and
multiple scales, the algorithm matches the points well through the increased capacity in the deformation description. (a) Adding a sparse prior to
the kernel bundle results in a compact representation (few non-zero momentum vectors) with sparsity across scales, and the sparser representation
continues to provide a good match between the landmarks and results (black and green). This happens without sacrificing warp regularity: the
deformed grid with sparse prior (a) is similar to the deformed grid without the prior (b).

the heart of the framework, and the kernel shape and scale
impose restrictions on the sparse representations, and it lim-
its the range of deformations the model is able to express.

The key to obtain sparse representations without limit-
ing the range of the deformation model is to increase the
capacity of the deformation description. Locally, the capac-
ity can be increased with higher order kernels [16] but vary-
ing the spatial extend of the deformation requires multiple
scales. Enabling LDDMM to model deformation occurring
at multiple scales has been the subject of several works [2,
12,13] resulting in improved registration results. Deforma-
tion at different scales may however occur at different spatial
locations, and we wish to represent deformation at differ-
ent locations at the appropriate scales only. This requires a
multi-scale framework designed specifically to allow sparse
representations. Consider registering two images of fairly
uniform objects. The large-scale deformations can then be
expected to be located at the center of the object while lower
scale deformations occur close to the boundaries. The sum
of kernels approach [13] will represent deformation at all
scales at all spatial locations. In contrast, we aim for con-
structing a framework able to represent deformation at the
appropriate scales only.

In order to achieve this, we introduce the kernel bun-
dle framework (LDDKBM) which is designed to represent
deformation individually at different scales. This in partic-
ular allows the momentum field to vanish at some scales
while being non-zero at others at the same spatial locations,
a property we denote sparsity across scales. By applying
sparse priors on the momentum field at the different scales
individually, we explicitly force the cross-scale sparsity, and
the method therefore allows sparse deformation description
across space and scales. The resulting framework greatly
extends the range of deformations expressed by the sparse

models while allowing compact representations of deforma-
tion occurring at multiple scales.

1.2 Deformation at Multiple Scales; An Example

Figure 1 shows a simple example of landmark matching. In
order to register the points, movement is needed at both large
and small scales, and the single-scale nature of the LDDMM
algorithm limits its ability to match the points well. This
fact becomes even more expressed when adding a sparsity
prior. With multiple-scales, the match improves as seen by
the reduced deviation between the landmarks and results.
When adding a sparse prior to the kernel bundle, equivalent
precision can be obtained with a compact description which
exhibits sparsity across scales.

1.3 Related Work

The deformable template model pioneered by Grenander [10]
and the flow approach by Christensen et al. [6] together with
the theoretical contributions of Dupuis et al. and Trouvé [7,
19] started the development of the LDDMM deformation
model. Beg et al. [1] developed algorithms for computing
optimal diffeomorphisms in the framework, and the momen-
tum representation has been used for statistics and for mo-
mentum based algorithms for the landmark matching prob-
lem [20]. The review paper [22] and the book [21] provide
excellent overviews of the theory and applications of LD-
DMM in medical imaging.

Multi-scale extensions of LDDMM have been treated in
several recent works. Bruveris et al. developed an extension
of LDDMM allowing two scales through the use of semi-
direct product groups [2] and Risser et al. [13] included scale
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in LDDMM by adding kernels of different scales. The ap-
proach of Risser et al. does not divide the deformation de-
scription across scales and enforced sparsity will occur at all
scales simultaneously. This is in direct contrast to the result
we seek to obtain: we search for a representation that can
handle both small and large scale features independently to
allow different deformation at different scales, and we wish
to allow the effect of enforced sparsity to occur at different
scales individually. A representation supporting this spar-
sity across scales property is the main contribution of this
paper, and the fact that the kernel bundle representation sup-
ports this property fundamentally differentiates it from the
approach of Risser et al. Outside the registration setting,
the effect on the underlying Hilbert spaces when scaling the
kernel have been treated in [9]. Increasing the capacity of
the deformation description locally can been obtained with
higher order kernels [16].

The literature on sparse representations and sparse penalty
functions is wide, and we will in this paper limit the dis-
cussion to a small set of such priors [4]. A control point
formulation of LDDMM template-based image registration
has been developed by Durrleman et al. [8]. Sparsity is en-
forced by a log−L1 penalty on the initial momenta, and the
prior guides a search towards low-dimensional representa-
tions of deformation for populations of images. The method
was developed for image registration but the sparse prior in-
troduced apply to any finite dimensional LDDMM imple-
mentation. The fixed size of the kernels does however limit
the expressiveness of the model. The fundamental idea be-
hind the present paper is to remove this limitation by using
kernels of multiple scales.

1.4 Content and Outline

This paper combines the conference papers [17,15,18] and
adds additional new material. We aim at presenting a full
account of the kernel bundle framework that in the previ-
ous papers is also denoted the LDDKBM method (KB for
kernel bundle). The new material comprises full derivation
of the forwards and backwards gradient transport equations
which are fundamental for computing optimal warps with
the framework; additional algorithm information; discussion
on the relation to other multi-scale approaches; and extended
experiments section showing the obtained effect of sparsity
across scales and using cross validation to tune the regular-
ization weights for the method comparisons.

We start by discussing the variational formulation of LD-
DMM and the kernel bundle method before presenting the
theoretical construction allowing the multi-scale representa-
tion. We relate the method to other multi-scale approaches
before deriving the KB-EPDiff evolution equations. Next
follows the forwards and backwards transport equations with

implementation details and last the extended experiments
section. The paper thus contributes by

(1) combining the previous work on the LDDKBM method
[17], the evolution equations [15], and sparse and com-
pact representations [18] to one account of the kernel
bundle framework,

(2) giving a complete derivation of the forwards and back-
wards gradient transport equations together with algo-
rithm details,

(3) discussing the relation between the kernel bundle and
other LDDMM multi-scale approaches,

(4) providing extended experiments section showing in par-
ticular the ability to represent sparsity across scales.

2 Registration: the LDDMM and Kernel Bundle
Variational Formulation

The kernel bundle framework extends the single-scale LD-
DMM (Large Deformation Diffeomorphic Metric Mapping)
framework by allowing regularization at multiple-scales in
the registration. We here provide an overview of the regis-
tration problem and the variational formulation used in both
frameworks.

In the kernel bundle and LDDMM frameworks, registra-
tion is performed through the action of diffeomorphisms on
geometric objects. The approach is very general and allows
the frameworks to be applied to both landmarks, curves, sur-
faces, images, and tensors. In the case of landmarks, the
action of a diffeomorphism ϕ takes the form ϕ.x = ϕ(x),
and given landmarks x1, . . . ,xN and y1, . . . ,yN , the registra-
tion amounts to a search for ϕ such that ϕ.xi ∼ yi for all
i = 1, . . . ,N. In exact matching, we wish ϕ.xi be exactly
equal to yi but, more frequently, we allow some amount of
inexactness to account for noise and give smoother diffeo-
morphisms. This is done by defining a quality of match mea-
sure U and a regularization measure E1 to give a combined
energy

E(ϕ) = E1(ϕ)+λU(ϕ) . (1)

Here λ is a positive real representing the trade-off between
regularity and goodness of fit and U is often the L2-error
which in the landmark case takes the formU(ϕ)=∑N

i=1 �ϕ(xi)−
yi�2.

2.1 The Regularization Energy

The formulation of the regularization energy E1 in the ker-
nel bundle framework is an extension of the LDDMM for-
mulation. We here introduce notation which will lead to the
LDDMM formulation before describing the extension in the
next section. Let the domain Ω be a subset of of Rd with
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d = 2,3 in applications, and let V denote a Hilbert space of
vector fields v : Ω → Rd such that V with associated norm
� · �V is included in L2(Ω ,Rd) and admissible as defined in
[21, Chap. 9]. Given a time-dependent vector field t �→ vt
with

E1(vt) =
� 1

0
�vt�2

V dt < ∞ (2)

the associated differential equation ∂tϕt = vt ◦ϕt has with
initial condition ϕs = ϕ a diffeomorphism ϕv

st as unique so-
lution. The set GV of diffeomorphisms built from V by such
differential equations is a Lie group, and V is its tangent
space at each point. The inner product on V associated to
the norm �·�V makesGV a Riemannian manifold with right-
invariant metric. Setting ϕv

00 = IdΩ , the map t �→ϕv
0t is a path

from IdΩ to ϕ with energy given by (2). We will use this no-
tation throughout the paper. A critical path for the energy is
a geodesic on GV , and the LDDMM regularization energy is
defined by

E1(ϕ) = min
vt∈V,ϕv01=ϕ

E1(vt) = min
vt∈V,ϕv01=ϕ

� 1

0
�vs�2

V ds , (3)

i.e., it measures the minimal energy necessary to pass from
IdΩ to ϕ . The energy penalizes highly varying paths and,
therefore, a low value of E1(ϕ) implies that ϕ is regular.

The regularity is ultimately controlled by the norm on
V and this norm is associated to a reproducing kernel K :
Ω ×Ω → Rd×d . The kernel is often chosen to ensure ro-
tational and translational invariance [21] and the Gaussian
kernel K(x,y) = exp( �x−y�

2

σ2 )Idd is a convenient and often
used choice. The scaling factor σ is not limited to Gaussian
kernels and allows for many kernels to vary the amount of
regularization. Larger scales lead in general to higher regu-
larization and smoother diffeomorphisms, whereas smaller
kernels penalize higher frequencies less and often gives bet-
ter matches. This phenomenon is in particular apparent for
objects with sparse information and images with e.g. areas
of constant intensity.

3 Kernels, Momentum and the Kernel Bundle

The kernel bundle framework extends LDDMM by equip-
ping the diffeomorphism manifoldGV in LDDMM with vec-
tor bundles allowing deformation to be described at different
scales. We start this section by discussing the relation be-
tween kernels and momentum in LDDMM before defining
the kernel bundle and discussing the mathematical founda-
tion behind the framework.

3.1 Kernel and Momentum

As a consequence of the assumed admissibility of V , the
evaluation functionals δx : v �→ v(x) ∈ Rd is well-defined

and continuous for any x ∈ Ω . Thus, for any a ∈ Rd the
map a⊗ δx : v �→ aT v(x) belongs to the topological dual
V ∗ consisting of the continuous linear maps of V . This in
turn implies the existence of spatially dependent matrices
K : Ω ×Ω → Rd×d , the kernel, such that, for any constant
vector a ∈Rd , the vector field K(·,x)a ∈V represents a⊗δx
and �K(·,x)a,v�V = a⊗ δx(v) for any v ∈ V , point x ∈ Ω
and vector a ∈ Rd . This latter property is denoted the repro-
ducing property and gives V the structure of a reproducing
kernel Hilbert space (RKHS). Tightly connected to the norm
and kernels is the notion of momentum given by the linear
momentum operator L : V → V ∗ ⊂ L2(Ω ,Rd) which satis-
fies

�Lv,w�L2(Ω ,Rd) =
�

Ω

�
Lv(x)

�Tw(x)dx= �v,w�V (4)

for all v,w ∈ V . The momentum operator connects the in-
ner product on V with the inner product in L2(Ω ,Rd), and
the image Lv of an element v ∈ V is denoted the momen-
tum of v. The momentum Lv might be singular and in fact
L
�
K(·,y)a

�
(x) is the Dirac measure δy(x)a. Considering K

as the map a �→ �
Ω K(·,x)a(x)dx, L can be viewed as the in-

verse of K. Confer [21] for a thorough introduction to repro-
ducing kernels, especially with a view towards the LDDMM
framework.

3.2 The Kernel Bundle

In order to describe deformation at different scales, we ex-
tend in the following the tangent vector space V to a family
of vector spacesW which will eventually lead to the bundle
construction. We consider a parameter set IW and subspaces
Vr, r ∈ IW of the tangent space V where each Vr is equipped
with a norm � · �r, corresponding kernel Kr, and momentum
operator Lr. Typically, IW will be a discrete set or a closed
and bounded interval of R+ representing different scales.
We then letW be the space of functions w : IW →V , wr ∈Vr
such that

�

IW
�wr�2

r dr < ∞ and
�

IW
�wr�r dr < ∞ .

The vector space structures onVr induce a vector space struc-
ture on W , and it can be shown that under reasonable as-
sumptions, the inner product

�v,w�W =
�

IW
�vr,wr�r dr, v,w ∈W

turnsW into a Hilbert space. With this construction, we ob-
tain a vector bundle GV ×W , the kernel bundle, allowing
kernels of different sizes and shapes. A map Ψ : GV ×W →
TGV = GV ×V allows parts wr of a bundle vector w ∈W at
each scale r to be combined to one derivative vector in V . Ψ
is defined by integration, i.e. Ψ(w) =

�
IW wr dr.
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(a) In LDDMM, a path on the manifold GV ⊂
Diff(Ω) is generated by integrating the time varying
vector field vt in the tangent space V .

(b) Wit the kernel bundle, a path wt in the vector space W , here
constructed from Vr1 , Vr2 , and Vr3 , sum through the map Ψ to a
vector field Ψ(wt), which in turn generates a path on Diff(Ω).

Fig. 2 The manifold view of LDDMM and the kernel bundle.

We note that the parameter space IW can be a compact
interval or finite set of scalars in which case the integral re-
duces to just a sum. Often, it will be an interval specifying
a scale range, and a practical implementation will discretize
the interval into a finite set of scalars.

3.3 Flows in the Bundle Setting

Similarly to the connection between paths inV and paths on
the manifoldGV , we get using the map Ψ a relation between
paths wt = {wr,t}r inW and paths in GV by

wt �→ ϕΨ(w)
0t , (5)

i.e. ϕΨ(w)
0t is the path starting at IdΩ with derivative ∂tϕ

Ψ(w)
0t =

Ψ(wt)◦ϕΨ(w)
0t . We can measure the energy of a bundle path

wt by

E1(wt) =
� 1

0
�ws�2

W ds , (6)

and, using this energy, we get a new definition of the regu-
larization energy E1:

E1(ϕ) = min
wt∈W,ϕΨ(w)=ϕ

01

E1(wt) = min
wt∈W,ϕΨ(w)=ϕ

01

� 1

0
�ws�2

W ds

(7)

Together with a quality of match measureU(ϕ), this defines
the registration problem in the kernel bundle framework as
the search for diffeomorphisms minimizing

E(ϕ) = E1(ϕ)+λU(ϕ) (8)

with E1 given by (7). By design, paths in the kernel bundle
generating the diffeomorphisms have components at each
scale, and this is precisely the property that will later allow
us to enforce sparsity at different scales individually. This
will be done by adding priors that affect the individual scale
components of bundle vectors to (8).

The above registration energy should be compared with
the LDDMM formulation (1) using the regularization (3). It
is immediately clear that the kernel bundle formulation is an
extension of the LDDMM regularization, since the original
regularization is the special case with only one scale and
henceW =V .

3.4 Structure ofW

It is interesting to note that W possesses a structure very
similar to a RKHS. On V we have for each x ∈ Ω and a ∈
Rd the evaluation functionals a⊗δx(v) = aT v(x). Using the
integral map Ψ defined above, we define the linear maps on
W

a⊗δΨ
x (w) :=

�

IW
a⊗δx(wr)dr=

�

IW
aTwr(x)dr= a⊗δx(Ψ(w)) .
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As seen from the equation, the maps evaluate wr at each
scale and integrate the results using Ψ . These maps are con-
tinuous and hence in the dualW ∗. For the elementsK(·,x)a=
{K(·,x)ra}r ∈W , we have

�K(·,x)a,K(·,y)b�W =
�

IW
�K(·,x)ra,K(·,y)rb�r dr

=
�

IW
aTKr(x,y)bdr = aT

�

IW
Kr(x,y)bdr

= a⊗δΨ
x (K(·,y)b) = aTΨ (K(x,y)b)

which is similar to the reproducing property in V except for
the integration performed by Ψ on the right-hand side of the
equation. Also, close to the RKHS situation, we see that

�K(·,x)a,w�W =
�

IW
�K(·,x)ra,wr�r dr

=
�

IW
aTwr(x)dr = a⊗δΨ

x (w) , w ∈V

again with the integration of w occuring in a⊗δΨ
x (w).

3.5 Multi-Scale Representation and Relation to other
Approaches

With the kernel bundle, the momentum components can vary
over scale, and any combination of small and large scale
features at each spatial location can be represented. In par-
ticular, the bundle allows sparse priors to force vanishing
momentum at one scale while allowing it to be non-zero at
other scales at the same position. The effect is to allow rep-
resenting deformation compactly with non-zero components
only at the right scales.

In contrast to this, the simultaneous coarse and fine method
developed by Risser et al. in [12,13] builds a kernel by sum-
ming Gaussians of different scale. This effectively changes
only the shape of the kernel and does not allow different
momentum at different scales. If momenta vanish, they will
vanish at all scales simultaneously, and, therefore, the abil-
ity to represent sparsity across scales that we search for here
is not possible.

When not using sparse priors and when the L2-norm is
combined linearly across scales, Bruveris et al. [3] showed
that optimal deformations with the kernel bundle coincide
with results obtained with the sum of kernels approach. Thus,
though the kernel bundle is able to represent sparsity across
scales, the cross-scale sparsity will not occur without adding
more scale information to the system. This seems challeng-
ing with the approach of Risser et al. but adding such in-
formation becomes straightforward with the scale decoupled
bundle representation which illustrates the descriptive power
offered by the kernel bundle. Imposing sparse priors as we
pursue later in this paper constitutes an example of this, and,
as we will see in the experiments, optimal deformations with

a prior do indeed increase the compactness of the representa-
tion and exhibit sparsity across scales. Correspondingly, in-
corporating scale information from the data term can guide
the deformation model further towards the right mixture of
scales and allow momentum-based statistics [20] to be per-
formed across scale. This is again possible with the decou-
pled bundle representation, and we are currently pursuing
this path.

4 Evolution Equations: Kernel Bundle EPDiff

In the single scale LDDMM case, the EPDiff equations de-
scribes the evolution of optimal paths for the registration
problem. They are most often formulated in the following
continuous form: let at = Lvt denote the momentum at time
t and assume that ϕt is a path minimizing E1(ϕ) with ϕ1 =ϕ
minimizing E(ϕ) and vt is the derivative of ϕt . Then vt sat-
isfies the system

vt =
�

Ω
K(·,x)at(x)dx ,

d
dt
at =−Datvt −at∇ · vt − (Dvt)T at .

The first equation connects the momentum at with the veloc-
ity vt , and the second describes the evolution of the momen-
tum. The EPDiff equations can be interpreted as geodesic
equations on the manifold GV , and they are important for
implementations since they limit the search for optimal paths
to paths satisfying the system.

As we will show in this section, there exists similar equa-
tions with the kernel bundle: if Ψ(wt) is the derivative of
the path of diffeomorphisms ϕt minimizing (8) with ϕ = ϕ1
minimizing (8) then

wr,t =
�

Ω
Kr(·,x)ar,t(x)dx ,

d
dt
ar,t =

�

IW
−Dar,tws,t −ar,t∇ ·ws,t − (Dws,t)T ar,t ds .

(9)

with ar,t being the momentum for the part wr,t of wt . In
essence, the standard EPDiff equations are integrated over
the parameter space IW to obtain the evolution of the mo-
mentum at each scale, and, in particular, the result will imply
that the momentum conservation property of LDDMM also
holds in kernel bundle case. We will derive the KB-EPDiff
equations in a more general form which implies the above
formulation, and, for doing this, we will follow the strategy
in [21] for the LDDMM case.

4.1 Euler-Lagrange equations

For any time varying path wt inW , we denote by ϕΨ(w)
t1t2 the

diffeomorphism obtained by integrating Ψ(wt) from time t1
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to time t2. The end of the integrated path ϕΨ(w)
01 is the diffeo-

morphism used for the registration. For the energy E(wt) =
E1(wt) + λU(ϕΨ(w)

01 ), we consider a variation ht ∈W and
calculate

d
dε
E(wt+εht) = 2

� 1

0
�wt ,ht�W dt+λ

d
dε
U(ϕΨ(w)+εΨ(h)

01 ) .

(10)

Following [21], we define Adϕv(x) = (Dϕ v) ◦ ϕ−1(x) for
v ∈ V and get a functional Ad∗ϕ on the dual V ∗ of V by
(Ad∗ϕ ρ|v) = (ρ|Adϕ(v)). It is shown in [21] that a variation
h̃t in V of the match functional satisfies

d
dε
U(ϕv+ε h̃

01 ) =
� 1

0

�
Ad∗ϕvt1 ∂̄U(ϕv

01)
��h̃t

�
dt

with ∂̄U denoting the Eulerian differential of U (see [21,
Chap. 10]). Inserting into (10) gives

d
dε
E(wt + εht) =

2
� 1

0
�wt ,ht�W dt+λ

� 1

0

�
Ad∗

ϕΨ(w)
t1

∂̄U(ϕΨ(w)
01 )

��Ψ(ht)
�
dt .

(11)

For each r, we define the operator AdT,rϕ v = Kr(Ad∗ϕ(Lrv))

which then satisfies
�

AdT,rϕ v,w
�
r
= (Ad∗ϕ(Lrv)|w), and we

can now derive the fundamental results [21, Prop. 11.6/Cor.
11.7] in the bundle case:

Proposition 1 If wt is an optimal path for E then for almost
every r ∈ IW ,
wt,r = AdT,r

ϕΨ(w)
t1

w1,r

with w1,r =− 1
2 ∇VrU(ϕΨ(w)

01 ).

Proof Assume instead that there exists a time varying ht in
W and t ∈ [0,1] such that

0 <
�

IW

�
wt,r−AdT,r

ϕΨ(w)
t1

w1,r,ht,r

�

r
dr

=
�

IW
�wt,r,ht,r�r dr−

�

IW

�
AdT,r

ϕΨ(w)
t1

w1,r,ht,r

�

r
dr

= �wt ,ht�+
1
2

�

IW
(Ad∗

ϕΨ(w)
t1

∂̄U(ϕΨ(w)
01 )

��ht,r)dr

= �wt ,ht�+
1
2
(Ad∗

ϕΨ(w)
t1

∂̄U(ϕΨ(w)
01 )

��Ψ(ht)) .

But the right hand side vanishes for all t and all ht by (11)
and the fact that wt is optimal for E, a contradiction.

Corollary 1 Under the same conditions, for almost every
r ∈ IW ,
wt,r = AdT,r

ϕΨ(w)
t0

w0,r . (12)

The proof of the corollary is identical to the proof of [21,
Cor. 11.7].

4.2 Scale Conservation and KB-EPDiff

In the kernel bundle, the momentum of a path may differ
across scales. For a path wt in W , we let at be the bundle
momentum defined by at,r = Lr(wt,r) recalling that Lr is the
momentum operator at scale r. For each t, we can consider
at to be in the dual W ∗ by (at |w̃) =

�
IW (at,r|w̃r)dr which is

continuous since

���at |w̃
���≤

����
�

IW

�
at,r|w̃r

�
dr
����=

����
�

IW
�wt,r, w̃r�r dr

����≤�wt��w̃� .

Suppose now wt satisfies the transport equation (12) for al-
most every r ∈ IW . Then for all w̃ ∈W ,

�
at |w̃

�
=

�

IW
�wt,r, w̃r�r dr =

�

IW

�
AdT,r

ϕΨ(w)
t0

w0, w̃r

�

r
dr

=
�

IW

�
w0,r,Ad

ϕΨ(w)
t0

w̃r

�

r
dr =

�
a0|Ad

ϕΨ(w)
t0

w̃
�

(13)

where Ad
ϕΨ(w)
t0

w̃ is the element of W obtained by applying

Ad
ϕΨ(w)
t0

to each w̃r. The above equation shows that the mo-

mentum at time t is completely specified by the momentum
at time 0 and thus reproduces the momentum conservation
property for LDDMM. Note that since w̃ can be chosen arbi-
traly in (13), the momentum is conserved for each scale sep-
arately. By differentiating Ad

ϕΨ(w)
t0

w̃, the momentum conser-

vation property directly implies the equation

∂t
�
at |w̃

�
=−

�
at |DΨ(wt) w̃−Dw̃Ψ(wt)

�
(14)

or, equivalently,

∂tat + ad∗Ψ(wt )at = 0

with
�
ad∗Ψ(wt )at |w̃

�
=
�
at |DΨ(wt) w̃−Dw̃Ψ(wt)

�
. Both equa-

tions imply the system (9) and extend the EPDiff equations
for LDDMM. We denote them KB-EPDiff.

An important difference from the single-scale framework
relates to the energy along optimal paths. The relation to
geodesics in LDDMM suggests that the norm �vt�V is con-
stant in t when vt is optimal for E1(ϕ). This is in fact the
case for LDDMM. With the kernel bundle, momentum is
conserved along optimal paths of E1(ϕ) though �wt�W is
not constant. This occurs because the new energy is not di-
rectly related to a metric in the Riemannian sense.
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4.3 KB-EPDiff for Landmarks: An Example

To give a concrete application of the KB-EPDiff equations,
we redo the calculation for LDDMM landmark matching
with scalars kernels to arrive at the corresponding system
with the bundle. The initial momentum a0,r will in this case
be supported at the N landmarks xi, i = 1 . . . ,N, i.e. a0,r =

∑N
i=1 a0,r,i⊗δxi with vectors a0,r,i ∈Rd . We let xt,i denote the

trajectory of the ith landmark so that xt,i = ϕΨ(w)
0t (x0,i).

Letting at,r,i = (DϕΨ(w)
t0 )T a0,r,i, we get from (13)

�
at,r|w̃

�
=

�
Ad∗

ϕΨ(w)
t0

�
N

∑
i=1
a0,r,i⊗δx0,i

����w̃
�

=

�
N

∑
i=1
a0,r,i⊗δx0,i

���Ad
ϕΨ(w)
t0

(w̃)

�

=
N

∑
i=1
aT0,r,i(DϕΨ(w)

t0 w̃)◦ϕΨ(w)
0t (x0,i)

=

�
N

∑
i=1
at,r,i⊗δxt,i

���w̃
�

.

Since d
dt (Dxt,iϕ

Ψ(w)
t0 )T =−Dxt,iΨ(wt)T (Dx0,iϕ

Ψ(w)
t0 )T , the deriva-

tive of the momentum satisfies

d
dt
at,r,i =

d
dt

�
(DϕΨ(w)

t0 )T a0,r,i
�
=−Dxt,iΨ(wt)T at,r,i .

The trajectories of the landmarks and momentum evolution
is therefore completely described by the system

Ψ(wt) =
�

IW
∑N
l=1Kr(·,xt,l)at,r,ldr

d
dt at,r,i =−

��

IW
∑N
l=1D1

�
Ks(xt,i,xt,l)at,s,l

�T ds
�
at,r,i

xt,i = ϕΨ(w)
0t (x0,i) .

(15)

Note that the system is finite if IW is finite.

5 Sparse Kernel Bundle Representation

In a variety of applications, it is useful to obtain compact
representations in the form of sparse solutions [4]. The stan-
dard method of obtaining sparsity is to add a penalty func-
tion to a variational formulation of the problem. The penalty
function is also denoted a sparse prior.

Combining sparsity and multi-scale representations promises
enhancements for both pairwise and group-wise registration:
For statistics following pairwise registration with the aim of
retrieving scale information, it is paramount to represent the
deformation at the right scale only. Low-scale deformation
may be represented by high-scale momenta but will require
a higher number of non-zero parameters than if represented

at the correct low-scale. Enforcing sparsity makes the low-
scale representation more likely. This property is possible
with sparsity across scales as discussed below.

For group-wise registration, each pair of images may be
registered with a sparsely parameterized deformation. How-
ever, the non-zero momenta may have different spatial lo-
calization for the different pairs of images. Sparsity should
therefore in this case be applied on a group level. Inter-
subject registration may however emphasize the need for
multi-scale representation: if modeling inter-subject differ-
ences using only a single large-scale, small scale features
may be lost. If using only small-scale deformation, the rep-
resentation will not be sparse.

Durrleman et al. [8] showed that the number of points
in a finite control point formulation of LDDMM can be con-
trolled by a log−L1 like penalty term: a weight λsp and trun-
cated log function

flogc(x) = max(log(x), log(c))− log(c)

is applied to the norms of the set of N single-scale momenta
resulting in the extension of (8) to the energy

E(ϕ) = E1(ϕ)+λU(ϕ)+λsp
N

∑
l=1

flogc(�a0,l�) . (16)

The prior is added to all elements of a population of images,
and it is shown that a fairly large reduction in the number
of non-zero momenta does not affect the registration results
much.

In the multi-scale case, the connection (4) between the
momentum space and the kernel bundle can also be exploited
in order to define penalty functions. Sparsity is generally for-
mulated via the L0-norm which on the bundle momentum
take the form

�w�L0 =
�

IW
Area{Lrwr �= 0}dr .

This reduces to the number of non-zero momentum vectors
�w�L0 =

�
IW |{Lwr �= 0}|dr in the finite-dimensional case.

For sparse problems in general, optimization based on L0
penalty functions is a combinatorial problem and thus com-
putationally prohibitive. Instead, the L0-norm is approximated
by the L1-norm or similar functions.

In the multi-scale, finite dimensional setting, we parametrize
the bundle momentum in the same way as the momentum is
represented in the single-scale case: for N landmarks and R
scales or, equivalently, for N control points and R scales in
image registration, N ·R vectors a0,l,r will specify the initial
momentum. We then formulate a multi-scale sparse registra-
tion functional extending (16) by

E(ϕ) = E1(ϕ)+λU(ϕ)+
R

∑
r=1

λsp,r
N

∑
l=1

f (a0,l,r) (17)
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and we require the evolution of at,l,r to follow the KB-EPDiff
equations. Here λsp,r denote scale-dependent weights on the
sparse prior f : Rd →R. As in the single-scale case, the idea
is to push small momentum vectors towards zero without
affecting large momenta much. We denote registration gov-
erned by (17) sparse kernel bundle registration.

5.1 Choice of Prior

Approximations of the L0-norm aiming to ease the com-
plexity of the combinatorial optimization has been consid-
ered in many applications [4]. Though a full discussion of
this subject out of scope of this paper, we will provide a
brief rationale for our choice of penalty function. We note
that ensuring convexity is not a major concern in this setting
because the non-linearity of the connection between initial
momenta and the match functional U makes the energy (8)
non-convex even before adding the prior.

The most widely used approximation is probably the L1-
norm which provide sparse solutions but has the downside
of penalizing large momenta relatively hard, and it therefore
provides poor approximation of the L0-norm in such cases.
The L1-norm has been applied to LDDMM in addition to
flogc [11]. Candès et al. [4] proposes several penalty func-
tions including the function

flog,ε(x) = log(1+ x/ε) .

Figure 3 illustrates the approximation of the L0-norm pro-
vided by the L1-norm, flogc , and flog,ε . Both flogc and flog,ε
suffer less from the poor approximation for large momenta.
Both necessitates a choice of parameter, c or ε . Though flog,ε
may seem more natural than flogc which is zero for small val-
ues, the gradient of flog,ε may cause numerical issues close
to zero. In the experiments section, we use flogc to get results
comparable with the single-scale algorithm in [8].

5.2 Sparsity Across Scales

An important quality of the sparse, multi-scale construction
is that a momentum vector a0,l,r at scale r may be zero while
a momentum vector a0,l,r� at scale r� for the same point may
be non-zero. Hence, a purely low-scale deformation may be
represented with momenta being non-zero at that particular
scale only. The kernel bundle construction is made explicitly
to allow independent velocity at the different scales, and the
behaviour of sparsity across scales is allowed by this fact. As
we will see in the experiments, optimal deformations com-
puted with a sparse prior do indeed exhibit sparsity across
scales.

The weights λsp,r should ideally be chosen by cross-
validation in same way the weight λ in (8) and the weight-
ing between scales in the bundle are determined. At this
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Fig. 3 The L0-norm for real valued data, and the approximations L1,
flogc , and flog,ε with ε = 0.5 and c= 0.25. The L1-norm provides poor
approximation for large values. The truncated log flogc is not non-zero
for small values.

point, we heuristically choose λsp,r either constant in r or
λsp,r = λsp/rα for a fixed scalar λsp and exponent α ≥ 0 in
order to compensate for the often larger momenta at small
scales.

6 Implementation

We here describe how optimal registrations with the kernel
bundle can be computed in the case of landmark matching.
Extending the method to images using a control point for-
mulation similar to [8] and [16] poses no conceptual prob-
lem.

The running time will primarily be dominated by the
backwards gradient transport described below. The system
parallelizes well and can be implemented on GPU hardware
[14]. The cost of adding a sparsity prior and computing its
gradient is insignificant compared to the cost of integrating
the flow equations described below. We do not experience
any substantial differences in the number of iterations of the
optimization procedure with and without sparse priors. The
computation time is primarily a function of the number of
landmarks and the number of included scales.

6.1 Algorithm

Since the evolution of the bundle momentum and veloc-
ity are required to follow the KB-EPDiff equations, we can
optimize (17) using gradient based optimization strategies.
A simple gradient descent scheme will given an guess for
the initial momentum a0 calculate the gradient ∇E(w0) =

∇E1(w0)+λ∇U(w0) usingw0 =Ka0, add the gradient from
the sparsity term if using sparse prior, and update a0 by
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adding a vector proportional to the gradient. In practice, we
use limited-memory BFGS updates1.

The gradient ∇E(w0) can be computed using a two step
algorithm: the initial bundle velocity w0 is transported for-
ward in time to obtain the diffeomorphism ϕ before flowing
the gradient at time t = 1 backwards to obtain the gradi-
ent ∇E(w0) at t = 0. The gradient ∇U(w1) at t = 1 is pro-
vided by the similarity measure; if U measure the L2-error,
the gradient is just the vector with the ith component being
2(x1,i− yi) where yi are the target points.

The KB-EPDiff equations governing the forward inte-
gration and the backwards gradient transport constitute non-
linear ODEs which are finite if the set of scales IW is fi-
nite. In practice, IW is a discretization {s1, . . . ,sR} of an in-
terval [s1,sR] using R scalars. The ODEs can be integrated
using standard Runge-Kutta integrators such as MATLAB’s
ode45 solver. The systems are described in detail below.

The sparse penalty functions considered here have gra-
dients

∇ flogc(a0,l,r) = λsp,ra0,l,r/�a0,l,r�2 ,

∇ flog,ε(a0,l,r) = λsp,ra0,l,r/((e+�a0,l,r�)�a0,l,r�) .

If applying ∇ flogc , �a0,l,r� is considered zero if it is less than
c in which case we do not add the gradient to ∇E(w0). Prun-
ing of small values a0,l,r may be done during the optimiza-
tion process but does not seem to effect stability of the algo-
rithm much.

6.2 Forwards and Backwards Transport

The diffeomorphism ϕ is determined byw0 by the KB-EPDiff
equations, and the forward transports integrates the KB-EPDiff
system (15) to generate ϕ . The system is a non-linear ODE
with w0 and the point positions x1, . . . ,xN as initial values.

Becausew0 through the evolution ofwt is uniquely linked
to w1, U(ϕ) can in addition be considered a function of
w1. The gradient ∇U(w0) can be obtained by differentiat-
ing (15) and solving the transpose system backwards with
∇U(w1) as initial condition. This approach is described in
the single-scale case in [21]. With multiple scales, the gradi-
ent ∇E1(w0) can be computed simultaneously with ∇U(w1)

by adding it to the backwards ODE. Combined, the gradient
∇E(w0) can be found as the solution at t = 0 of an affine,
non-autonomous ODE

ẏt = vt +Mtyt (18)

integrated from t = 1 to t = 0. The linear component trans-
ports ∇U(wt)while the affine component transport ∇E1(wt).
We provide explicit form of this system below.

1 See e.g. http://www.di.ens.fr/~mschmidt/Software/

minFunc.html.

As in Section 4.3, we let xt,i denote the point positions at
time t and the set of time-dependent vectors at,r,i is the mo-
mentum of the flow. These components are computed from
the forward integration of the KB-EPDiff equations (15).
Note that the momenta have components at each scale r. By
differentiating the KB-EPDiff equations we obtain the linear
ODE

ẏt = Btyt . (19)

The matrix Mt in the backwards equations (18) arises as
the transpose of the matrix Bt . Both systems (19) and (18)
have components coding the variation in point positions and
momentum, respectively. We denote these components bxt,k
and bat,k,r for (19) and mxt,k and mat,k,r for (18). Here k =
1, . . . ,N and we consider the case of a finite set of scales
R so that r = 1, . . . ,R. We assume the kernel K is scalar
K(x,y) = γ(�x− y�2)Idd with a real function γ and write
γt,kl for γ(�xt,k− xt,l�2). Differentiating (15) then provides
the components of (19):

bxk =
R

∑
r=1

N

∑
l=1

γrklb
a
l,r+2

R

∑
r=1

N

∑
l=1

γ̇rkl(xk− xl)T (mxk−mxl )al,r

bak,s =−2
R

∑
r=1

N

∑
l=1

γ̇rkl(a
T
k,rm

a
l,r+a

T
l,rm

a
k,s)(xk− xl)

−2
R

∑
r=1

N

∑
l=1

γ̇rkla
T
k,sal,r(m

x
k−mxl )

−4
R

∑
r=1

N

∑
l=1

γ̈rkla
T
k,sal,r(xk− xl)T (mxk−mxl )(xk− xl)

where we omitted the time dependence of all terms to keep
the notation compact. By transposing Bt , we get Mt and
hence the linear parts of (18). This is in components

mxk =−2
R

∑
r=1

N

∑
l=1

γ̇rkl(a
T
k,rm

x
l +a

T
l,rm

x
k)(xk− xl)

+2
R

∑
r,r�=1

N

∑
l=1

γ̇r
�
kl(a

T
k,ral,r�m

a
k,r−aTk,r�al,rmal,r)

+4
R

∑
r,r�=1

N

∑
l=1

γ̈r
�
kl(xk− xl)T (aTk,ral,r�mak,r−aTk,r�al,rmal,r)(xk− xl)

mak,s =−
N

∑
l=1

γsklm
x
l +2

R

∑
r=1

N

∑
l=1

(xk− xl)T (γ̇rklmak,r− γ̇sklm
a
l,r)l,r .

The simpler affine term has components

mxk =−4
R

∑
r=1

N

∑
l=1

γ̇rkla
T
k,ral,r(xk− xl)

mak,s =−
N

∑
l=1

2γsklm
a
l,s .

Letting mx1,k equal the kth component of U(w1) and setting
ma1,k,r to zero provides the initial conditions for the system.
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After backwards integration, the components ma0,k,r contain
∇E(a0) providing ∇E(w0) using w0 = Ka0.

7 Experiments

We perform four sets of experiments to illustrate and test
the behaviour of the kernel bundle method and its ability to
support sparsity across scales. We start with a simple syn-
thetic example to visually illustrate the differences between
the single and multi-scale, sparse and non-sparse methods.
In particular, will see that sparsity is achieved at the different
scales individually. We then present landmark based exam-
ples of matching hand outlines to test the methods ability to
represent both small and large scale features, and we illus-
trate the differences in the evolution in the diffeomorphism
manifold when matching with LDDMM and the kernel bun-
dle with sparse prior. Finally, we apply the method to regis-
ter annotated lung CT scans, and we show that the extra ca-
pacity of the method does not affect its ability to generalize
to test data; that manual scale selection is not necessary with
the multi-scale method; and that we can control the sparsity
across scales by varying the weight of the sparse prior.

7.1 Synthetic Example

Figure 1 presents a simple example which illustrates the ef-
fect of fusing sparsity and multiple scales. In the figure, we
show the results of matching two sets of 11 points using
the sparse kernel bundle method and the kernel bundle with-
out sparse prior together with results when using sparse and
non-sparse LDDMM algorithms. In all cases, we search for
a diffeomorphism transporting the moving points (red) to the
fixed points (black). The green points show the results of the
matchings, and the red dotted lines indicate the trajectory of
the moving points along the diffeomorphism path. The ini-
tial momenta a0,l,r, l = 1, . . . ,11 are shown with arrows. The
Gaussian kernels have scale σ = 6 for the single-scale LD-
DMM case and σ = 12,6,0.8 for the multi-scale methods in
grid units as indicated by the deformed grids,

The sparse prior on LDDMM forces vanishing momen-
tum for 4 of the 11 points. However, the fixed kernel scale
has serious effect on the registration quality: the points are
not quite well matched as seen by the large deviation be-
tween the landmarks and result points. The match is closer
with the kernel bundle algorithm without sparse prior but all
momenta at all scales are non-zero as shown by the non-zero
momentum vectors and the representation is far from com-
pact. The kernel bundle method with sparse prior obtains
the best of both worlds: even with vanishing momenta for 6
of the 11 points, the match quality is comparable with non-
sparse LDDMM. Of the 3 · 11 momenta, 23 vanishes. The
result shows that sparsity does indeed occur across scales:

point 3 and 9 from above has non-vanishing momenta at
only the smallest scale, and the central point (point 6 from
above) has vanishing momentum only at the midmost scale.

7.2 Hand Outlines

We consider the hand outlines shown in Figure 4. Using the
landmarks (red dots) on the moving hand image, we wish to
compute the kernel bundle match against the landmarks on
the fixed image (black dots). The match is computed with
three scales of 8, 4, and 2 units of the grid overlayed the fig-
ures. Figure 4 shows the results of computing the match with
the kernel bundle together with results obtained with single-
scale LDDMM with each of the three scales separately. For
LDDMM with the largest scale, the match is poor and the
sharp bend of the thumb is especially badly modelled. The
situation improves for the middle scale though the bend of
the thumb is still not sufficiently sharp and the match is bad
for the middle fingers. For the smallest scales, the thumb is
correctly matched but now the smaller scale is not able to
model the even movement of the index finger. The kernel
bundle method is by including all scales able to correctly
register all the critical areas, and, at the same time, it gives
the best match of the landmarks.

7.3 KB-EPDiff Across Scales

To illustrate the difference in the evolution of critical paths
with the kernel bundle and LDDMM, we match in Figure 5
again eleven points (red) against eleven points (black) with
results (green) using both LDDMM and kernel bundle method
with two scales and enforced sparsity. In the figure, the re-
sults of the two registrations are visible in row 1 and 2 right-
most, and the evolution of the critical paths generated by the
EPDiff and KB-EPDiff equations are shown with time in-
creasing across columns. The lower rows display the defor-
mation obtained with the kernel bundle separated for each
scale. We see how most of the transport occurs at the largest
scale while the lowest scale perform almost no horizontal
movement but takes care of the fine adjustment allowing the
kernel bundle method to obtain a good match. The sparse
prior forces compactness in the representation and spatial
locality of the fine scale movement.

7.4 Annotated Lung CT Registration

We now test the sparse kernel bundle on the publicly avail-
able DIR [5] dataset of lung CT images and manually an-
notated landmarks. We aim to show that the extra capac-
ity of the method does not affect its ability to generalize to

2 distance after match/distance before match.
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(a) LDDMM σ = 8 (b) LDDMM σ = 4 (c) LDDMM σ = 2

(d) Moving hand (top), fixed
hand (bottom)

(e) LDDKBM

Very Rigid

Very Non−Rigid

sharp bend lost poor match skewed index finger

good
matches

m
ea
n
st
re
tc
h

Fig. 4 Matching hands with single- and multiple scales. (d) The moving and fixed hands; (e) result of matching the hands with the kernel bundle
method; (a)-(c) results of matching the hands with the single-scale LDDMM method with three different scales separately. The red landmarks of
the moving hand are matched against the black landmarks of the fixed hand. The outline of the moving hand (red line) is transported to the black
outline and should be compared with the outline of the fixed image (black dashed). The kernel bundle method is by incorporating movement at the
multiple scales able to correctly match the critical areas on which LDDMM fails.

test data; that manual scale selection is not necessary with
the multi-scale method; and that we can control the spar-
sity across scales by varying the weight of the sparse prior.
We note important differences between the experiments per-
formed in the conference papers [17,18]: we test with sparse
priors, and we use the fast algorithm with the backwards
gradient transport developed in this paper to allow cross-
validation tuning of the regularization term λ in the ener-
gies (1) and (8). Thus, we are able to remove the influence
of λ on the experiments. In addition, we use isotropic ker-
nels and include more points in the experiments resulting in
markedly lower test errors and more robust evaluation.

The dataset consists of five cases of CT images for dif-
ferent stages of the inhale and exhale phases and annotated
landmarks for the maximum inhale and exhale phases, re-
spectively. The images and landmarks are available on grids
with voxel size varying slightly between the cases but close
to 0.6×0.6×2.5 mm. Further details can be found in the ref-
erence. For each case, the 300 publicly available landmarks,
xI1, . . . ,x

I
300 for the maximum inhale phases and xE1 , . . . ,x

E
300

for the maximum exhale phase, correspond pairwise. We
will drive the registration using random subsets of these land-

marks, and evaluate the computed match using the target
registration error (TRE) measured on the landmarks not used
to drive the registration.

To compare LDDMM and the sparse kernel bundle method,
we choose random subsets of 200 landmarks to drive the reg-
istration, and for each such choice of subset S and each of
the five patient cases, we compute the TRE (∑ j �∈S �ϕ(xIj)−
xEj �2)1/2. We find the relative size of the TRE against the
value before the match, and average over the patients and
different choices of subsets. This setup is performed for LD-
DMM with Gaussian kernels with scale ranging between
10mm and 170mm and with the kernel bundle method with
five scales in the same range.

For each choice of random subset S, we tune the reg-
ularization term λ used in the energies (1) and (8) using
cross-validation on further subsets of S. This ensures that
possible variation in the effect of λ on the single- and multi-
scale methods does not influence the presented results. For
the kernel bundle, we let each scale contribute with equal
weight. For this experiment, we let the sparsity weight be
λsp = 0.02, and we let the prior vary over scale by λsp,r =
λsp/r. The result of the experiment is not affected when λsp

26



The Kernel Bundle Frame Framework

ld
d
m
m

(s
in
g
le
-s
ca
le
)

sp
a
rs
e

k
er
n
el
b
u
n
d
le

σ
=

1
2

σ
=

3
.2

t = 0.25 t = 0.50 t = 0.75 t = 1.00

Very Rigid

Very Non−Rigid

fine scale adjustment

bulk of transport
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Fig. 5 LDDMM and sparse kernel bundle match of landmarks (red) to landmarks (black) with results (green). The kernels are Gaussian with the
kernel bundle applying two scales. Time points of the critical paths are shown along the horizontal axis with the rightmost subfigures displaying
the final deformation. (top row) Critical path determined by EPDiff equations with LDDMM (single scale); (row 2) critical path determined by
KB-EPDiff equations with the sparse kernel bundle method; (row 3-4) individual contribution of each of the bundle scales (scale σ in grid units).
Initially square grids are shown deformed by the diffeomorphism, and the grids are colored with the trace of Cauchy-Green strain tensor indicative
of the mean stretch (log-scale for each row individually). With the sparse kernel bundle method, the largest scale contribute to most of the transport
movement with smooth deformation while the smallest scale performs fine adjustment of the trajectories to obtain a good match. The sparse prior
forces compactness in the representation and spatial locality of the fine scale movement.

varies within a reasonable range of the chosen value, and we
further explore the choices of λsp and λsp,r below.

In Figure 6(a), we see that with single-scale LDDMM
the TRE decreases with increasing scale up to a scale of
70mm after which it starts increasing. This indicates that a
kernel scale of 70mm will be appropriate for LDDMM. As
displayed in Figure 6(b), the sparse kernel bundle method
attains an error lower than but within one standard devia-
tion of the best LDDMM result. Without tuning for scale,
the sparse kernel bundle method is thus as good as LD-
DMM, and classical scale selection by cross validation is not
needed with the multi-scale method. Furthermore, the re-
sults indicate that the same quality of match can be reached
with less data since we potentially could use the entire dataset
to drive the registration with the kernel bundle. Manual scale
selection will allow only a part of the data as input for the
registration as the rest is needed to select the kernel scale.
The experiment shows in addition that the extra capacity
and additional degrees of freedom of the kernel bundle do
not reduce the ability of the method to generalize to the test
data.

To evaluate the effect of applying sparse priors with both
single and multiple scales, we compare LDDMM and the
kernel bundle both with sparse priors. We fix the regulariza-
tion term to λ = 8 and average over all 5 patients and several
randomly selected subsets of points to drive the match. We
provide LDDMM with the advantage by selecting an already
tuned best possible scale of σ = 50mm with these param-
eters, and we test against the kernel bundle method using
three scales, σ = 10,50,90. Again, we let the scale parame-
ters for the sparse prior vary by λsp,r = λsp/r. The value of
λsp,50 = λsp/50 is used for LDDMM in accordance with the
choice scale.

With this setup, Figure 7 shows the connection between
relative TRE2, the sparsity weight λsp, and the fraction of
momenta being non-zero after the match. As seen from the
top figure, a reduction in the number of non-zero momenta
of a factor 5 to 10 can be obtained for kernel bundle with
only slightly increasing TRE. The sparse kernel bundle method
obtains the largest reduction of non-zero parameters for a
given increase in relative TRE. Sparse LDDMM still pro-
vides the smallest number of total parameters but the gap
narrows as TRE increases. This fact should be viewed in the
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Fig. 6 LDDMM and the sparse kernel bundle method: (a) average rel-
ative TRE2 for different kernel scales (LDDMM) and the sparse kernel
bundle method (horizontal line and rightmost). Zero relative error indi-
cates perfect match and a relative error of one indicates no error reduc-
tion. Labels on the horizontal axis are kernel scale in mm (9 different
scales for LDDMM and the interval [10 170] discretized in five scales
for the sparse kernel bundle). (b) relative TRE for LDDMM (scale in
mm on horizontal axis) subtracted the respective relative errors with the
sparse kernel bundle again matching with the scale interval [10 170]
discretized in five scales. Positive values show superior performance
of the kernel bundle method. Error bars show standard deviation of the
results.

light that the sparse LDDMM method is already tuned to
the best scale, and that the kernel bundle has more degrees
of freedom than LDDMM. The bottom figure shows the re-
duction in non-zero momenta leveling out while the relative
TRE increases, though at a relatively slow pace. The absence
of a sharp increase in relative TRE makes the method fairly
robust the actual choice of λsp.

The weighting of the sparsity parameter across scales
can be controlled by letting λsp,r = λsp/rα and varying α .
To explore this and the resulting cross-scale effects, we se-
lect λsp = 0.05, and plot the relative TRE against α in Fig-
ure 8. In addition, the figure shows how the distribution of
non-zero parameters at the different scales varies with α .
The increased penalty at small scales for α > 1 and cor-
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Fig. 7 Sparse LDDMM and the sparse kernel bundle method: (a)
relative TRE2 (horizontal axis) versus relative compactness (vertical
axis) when the varying sparsity weight λsp; (b) relative TRE increase
(left axis, blue) and relative decrease in non-zero momenta (right axis,
green) as function of λsp. Results averaged over 5 patients. With a fac-
tor 5 reduction in non-zero parameters (horizontal line, top), relative
TRE for sparse kernel bundle registration is 0.205 in contrast to 0.213
for sparse LDDMM.

responding increased penalty for large scales for α < 1 is
clearly visible. Indeed, the difference in the number of non-
zero parameters at the different scales shows that sparsity
across scales is achieved.

To illustrate the result of one lung registration with the
sparse kernel bundle method, Figure 9 shows the energy of
the initial velocity field for the three bundle scales sepa-
rately. The uniform spread of the velocity provided by the
large scale kernels results in a smooth deformation even with
only 20% percent non-zero momenta at that scale. The lo-
calized deformation field provided by the sparsity of the
smaller momenta is in addition clearly visible.
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(a) Slices of 3D lung image (b) energy, σ = 10 (c) energy, σ = 50 (d) energy, σ = 90

Fig. 9 Slices of 3D lung image and the multi-scale initial vector field at three scales that when combined generate the sparse kernel bundle
registration. Left to right: (a) slices of CT image, (b)-(d) squared L2-norm of the components at each of the three scales σ = 10,50,90 which in
combination make up the multi-scale bundle vector w0 generating ϕ at t = 0. The uniform spread of the velocity provided by the large scale kernels
results in a smooth flow even with only 20% percent non-zero momenta for that scale. The localized deformation field provided by the sparsity of
the smaller momenta is in addition clearly visible.

0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.05

0.1

0.15

0.2

0.25

α

re
la

ti
v
e
 T

R
E

0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
o
m

p
a
c
tn

e
s
s
 (

th
re

e
 s

c
a
le

s
)

scale compactness

TRE

Fig. 8 Sparsity across scales: relative TRE2 (left axis, blue) and rel-
ative decrease in non-zero momenta for each scale (right axis, red
(x)/green (o)/black (*)) as function of the scale weighting α averaged
over the 5 patients. The red (x) marked curve shows compactness for
the smallest scale (σ = 10), the green (o) marked curves for the mid-
most scale (σ = 50) and the black (*) marked curves for the largest
scale (σ = 90). The TRE and total number of non-zero parameters stay
relatively constant though the distribution of non-zero parameters over
scale varies. In particular, the figure shows that sparsity across scales
is achieved.

8 Conclusion and Outlook

The multi-scale kernel bundle framework extends the LD-
DMM framework by incorporating multiple kernels at mul-
tiple scales in the registration. The method allows represent-
ing deformation at multiple scales at different spatial loca-
tions and thereby increases the capacity of the deformation
description while supporting application of sparse priors that
ensures compact representation. Since the priors are applied
independently across the parts of the bundle, the algorithm
allows sparsity across scales, and the multiple scales extend
the range of deformation the algorithm is able to model sig-
nificantly. The method may as well be applied to images
in the finite dimensional setting promising similar results
and to group-wise registration extending the pairwise exper-
iments presented here.

We visually illustrate the method on synthetic data and
show the obtained sparsity across scales. We show the multi-
scale effects and cross-scale evolution on additional exam-
ples. In addition, when applying the method to a dataset of
annotated lung CT images, we demonstrate that the method
removes the need for classical scale selection; that sparsity
across scales is achieved; that the sparsity may be achieved
with only minor increase in registration error; and that the
extra capacity of the algorithm does not affect generaliza-
tion ability.

In addition to the applications demonstrated in this pa-
per, we expect the sparse kernel bundle method to be partic-
ularly powerful when applied to population analysis of e.g.
atrophy during Alzheimer’s disease. From both a theoreti-
cal and a practical point of view, the sparse kernel bundle
framework provides a compact representation of deforma-
tion across scales.
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Notes:
The kernel bundle framework (Paper #1) paves some of the way towards sparse
representations of deformation by introducing scale in the framework. However,
sparse representations with LDDMM and the kernel bundle framework will only
represent translational movement at each deformation atom, and the modeling
capacity is therefore still limited. In this paper, we introduce higher order kernels
in the LDDMM framework. The new kernels allow modeling of non-translational
movement and compact description of locally affine deformations. We show how
the singular momenta of the higher order kernels make them fit nicely into the
LDDMM framework, and we derive the EPDiff equations with higher order ker-
nels. The kernels and their representation power is evaluated on several examples
including MR scans of patients suffering from Alzheimer’s disease.
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HIGHER ORDER KERNELS AND LOCALLY AFFINE LDDMM
REGISTRATION

STEFAN SOMMER∗, MADS NIELSEN ∗,† , SUNE DARKNER ∗ , AND XAVIER PENNEC‡

Abstract. To achieve sparse description that allows intuitive analysis, we aim to represent
deformation with a basis containing interpretable elements, and we wish to use elements that have
the description capacity to represent the deformation compactly. We accomplish this by introducing
higher order kernels in the LDDMM registration framework. The kernels allow local description
of affine transformations and subsequent compact description of non-translational movement and
of the entire non-rigid deformation. This is obtained with a representation that contains directly
interpretable information from both mathematical and modeling perspectives. We develop the math-
ematical construction behind the higher order kernels, we show the implications for sparse image
registration and deformation description, and we provide examples of how the capacity of the kernels
enables registration with a very low number of parameters. The capacity and interpretability of the
kernels lead to natural modeling of articulated movement, and the kernels promise to be useful for
quantifying ventricle expansion and progressing atrophy during Alzheimer’s disease.

Key words. LDDMM, diffeomorphic registration, RHKS, kernels, momentum, computational
anatomy

AMS subject classifications. 65D18, 65K10, 41A15

1. Introduction. Atrophy occurs in the human brain among patients suffering
from Alzheimer’s disease, and the progressing atrophy can be detected by the expan-
sion of the ventricles [16, 13]. We wish to describe the deformation of the brain caused
by the progressing disease using as few parameters as possible and with a representa-
tion which allows intuitive analysis: we search for sparse representations with basis
elements that have the capacity to describe deformation with few parameters while
being directly interpretable.

Image registration algorithms often represent translational movement in a dense
sampling of the image domain. Such approaches fail to satisfy the above goals: low
dimensional deformations such as expansion of the ventricles will not be represented
sparsely; the registration algorithm must optimize a large number of parameters; and
the expansion cannot easily be interpreted from the registration result.

In this paper, we introduce higher order kernels in the LDDMM registration
framework to obtain a deformation representation promising sparsity, increased capac-
ity, end interpretability. We show how higher order kernels allow local representation
of affine transformations and that they increase the capacity of the representation at
each point. We use the compact deformation description to register points and im-
ages using very few parameters, and we illustrate how the deformation coded by the
kernels can be directly interpreted and that it represents information directly useful
in applications: with low numbers of control points, we can detect the expanding
ventricles of the patient shown in in Figure 1.1.

1.1. Background. Among the many methods for non-rigid registration in med-
ical imaging, the majority model the displacement of each spatial position by either a
combination of suitable basis functions for the displacement itself or for the velocity of
the voxels. The number of control points vary between one for each voxel [2, 15, 7] and
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Fig. 1.1. Progressing Alzheimer’s disease cause atrophy and expansion of the ventricles. By
placing five deformation atoms in the 2D MRI slices [17] and by using higher order kernels, we can
register the expansion. (a) The position of the deformation atoms shown in the baseline scan; (b)
the follow up scan; (c) the log-Jacobian determinant of the generated deformation in the ventricle
area (red box in (b)); (d) the vector field at t = 0 of the generated deformation. The logarithm of
the Jacobian determinant and the divergence at the deformation atoms are positive which is in line
with the expected ventricle expansion, confer also Figure 5.5.

fewer with larger basis functions [22, 5, 11]. For all methods, the infinite-dimensional
space of deformations is approximated by the finite- but high-dimensional subspace
spanned by the parametrization of the individual method. The approximation will be
good if the underlying deformation is close to this subspace, and the representation
will be compact, if few basis functions describe the deformation well. The choice of
basis functions play a crucial role, and we will in the rest of the paper denote them
deformation atoms. Two main observations constitute the motivation for the work
presented in this paper:

Observation 1: Order of the Deformation Model. In the majority of registration
methods, the deformation atoms model the local translation of each point. We wish
a richer representation which is in particular able to model locally linear components
in addition to local translations. The Polyaffine and Log-Euclidean Polyaffine [3,
1] frameworks pursue this by representing the velocity of a path of deformations
locally by matrix logarithms. Ideas from the Polyaffine methods have recently been
incorporated in e.g. the Demons algorithm [29] but, to the best of our knowledge, not

34



in the LDDMM registration framework. We wish to extend the set of deformation
atoms used in LDDMM to allow representation of first and higher order structure and
hence incorporate the benefits of the Polyaffine methods in the LDDMM framework.

Observation 2: Order of the Similarity Measure. When registering DT images,
the reorientation is a function of the derivative of the warp; curve normals also con-
tain directional information which is dependent on the warp derivative and airway
trees contain directional information in the three structure which can be used for
measuring similarity. These are examples of similarity measures containing higher
order information. For the case of image registration, the warp derivative may also
enter the equation either directly in the similarity measure [21, 19] or to allow use of
more image information than provided by a sampling of the warp. Consider an image
similarity measure on the form U(ϕ) =

�
Ω
F (Im(ϕ−1(x)), If (x))dx. A finite sampling

of the domain Ω can approximate this with

Ũ0(ϕ) =
1

N

N�

i=1

F (Im(ϕ−1(xi)), If (xi)) .

Letting {p1, . . . , pP } be uniformly distributed points around 0, we can increase the
amount of image information used in Ũ0(ϕ) without additional sampling of the warp
by using a first order approximation of ϕ−1:

Ũ1(ϕ) =
1

NP

N�

i=1

N�

j=1

F (Im(Dϕ−1pj + ϕ−1(xi)), If (pj + xi)) .

This can be considered an increase from zero to first order in the approximation of
U . Besides including more image information than provided by the initial sampling
of the warp, the increase in order allows capture of non-translational information -
e.g. rotation and dilation - in the similarity measure. The approach can be seen as
a specific case of similarity smoothing and more examples of smoothing in intensity
based image registration can be found in [9]1.

We focus on deformation modeling with the Large Deformation Diffeomorphic
Metric Mapping (LDDMM) registration framework which has the benefit of both
providing good registrations and drawing strong theoretical links with Lie group the-
ory and evolution equations in physical modeling [8, 32]. Most often, high-dimensional
voxel-wise representations are used for LDDMM although recent interest in compact
representations [11, 25] show that the number of parameters can be much reduced.
These methods use interpolation of the velocity field by deformation atoms to repre-
sent translational movement but deformation by other parts of the affine group cannot
be compactly represented.

The deformation atoms are in LDDMM called kernels. The kernels are centered
at different spatial positions and parameters determine the contribution of each ker-
nel. In this paper, we use the partial derivative reproducing property [33] to show
that partial derivatives of kernels - higher order kernels - fit naturally in the LD-
DMM framework and constitute deformation atoms along with the original kernels.
In particular, the higher order kernels have a singular momentum and the momentum
stay singular when transported by the EPDiff evolution equations. We show how the

1An updated version of [9] is available at http://diku.dk/english/staff/?id=383640&f=3&vis=
medarbejder.
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higher order kernels allow modeling of locally affine deformations and hence extend
the capacity of sparsely discretized LDDMM methods. In addition, they comprise the
natural vehicle for incorporating first order similarity measures in the framework.

1.2. Related Work. A number of methods for non-rigid registration have been
developed during the last decades including non-linear elastic methods [18], parametriza-
tions using static velocity fields [2, 15], the demons algorithm [26, 29], and spline-based
methods [22, 5]. For the particular case of LDDMM, the groundbreaking work ap-
peared with the deformable template model by Grenander [14] and the flow approach
by Christensen et al. [7] together with the theoretical contributions of Dupuis et
al. and Trouvé [10, 27]. Algorithms for computing optimal diffeomorphisms have
been developed in [4], and [28] uses the momentum representation for statistics and
develops a momentum based algorithm for the landmark matching problem.

Locally affine deformations can be modeled using the Polyaffine and Log-Euclidean
Polyaffine [3, 1] frameworks. The velocity of a path of deformations is here computed
using matrix logarithms, and the resulting diffeomorphism flowed forward by integrat-
ing the velocity. Ideas from the Polyaffine methods have recently been incorporated in
e.g. the Demons algorithm [29, 23]. In LDDMM, the deformation atoms, the kernels,
represent translational movement and the non-translational part of affine transforma-
tions cannot directly be represented. We will show how higher order kernels constitute
deformation atoms which allow representing the linear parts of affine transformations.
From a mathematical points of view, this is possible due to the partial derivative re-
producing property (Zhou [33]). The partial derivative reproducing property has been
used in [6] to derive variations of flow equations for LDDMM DTI registration but
higher order kernels are not used in the parametrization. Confer the monograph [32]
for information on RKHSs and their role in LDDMM.

In order to reduce the dimensionality of the parametrization used in LDDMM,
Durrleman et al. [11] introduced a control point formulation of the registration prob-
lem by choosing a finite set of control points and constraining the momentum to be
concentrated as Dirac measures at the point trajectories. As we will see, higher order
kernels make a finite control point formulation possible which is different in important
aspects. Younes [31] in addition considers evolution in constrained subspaces.

Higher order kernels increase the capacity of the deformation parametrization, a
goal which is also treated in sparse multi-scale methods such as the kernel bundle
framework [25]. This method concerns the size of the kernel in contrast to the order
which we deal with here. As we will discuss in the experiments section, the size of the
kernel is important for higher order kernels as well, and higher order kernels and the
kernel bundle method will likely complement each other nicely if applied together.

1.3. Content and Outline. We start the paper with an overview of LDDMM
registration and the mathematical constructs behind the method. In the following sec-
tion, we motivate the introduction of higher order kernels using zero- and first-order
similarity measure approximations. We describe the derivative reproducing property,
and show how it implies singular momentum for the kernels. The evolution of the
momentum and velocity fields governed by the EPDiff evolution equations are then
determined. To make actual registration possible, the next section describes the effect
of varying the initial conditions and the backwards gradient transport before devel-
oping the actual matching algorithm. We give examples in the second last section,
and we show how the higher order kernels are particularly useful when registering
human brains with progressing atrophy. The paper ends with concluding remarks
and outlook. The paper thus contributes by
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(1) introducing higher order kernels in the LDDMM framework as the deforma-
tion atoms enabling locally affine transformations,

(2) showing how the order of the similarity measure approximation relates to
higher order kernels,

(3) relating the derivative reproducing property to LDDMM and showing how it
implies a singular momentum for the higher order kernels,

(4) deriving the EPDiff transport equations for higher order kernels,
(5) computing the forward variational equations and describing the backwards

gradient transport,
(6) developing an algorithm allowing matching with the higher order kernels,
(7) and demonstrating the application of the kernels with registration examples.

2. LDDMM Registration, Kernels, and Evolution Equations. We here
give a brief introduction to LDDMM registration. For further information, confer the
monograph [32] with extensive information on the method.

In the LDDMM framework, registration is performed through the action of dif-
feomorphisms on geometric objects. This approach is very general and allows the
framework to be applied to both landmarks, curves, surfaces, images, and tensors. In
the case of images, the action of a diffeomorphism ϕ on the image I : Ω → R takes the
form ϕ.I = I ◦ϕ−1, and given a fixed image If and moving image Im, the registration
amounts to a search for ϕ such that ϕ.Im ∼ If . In exact matching, we wish ϕ.Im
be exactly equal to If but, more frequently, we allow some amount of inexactness to
account for noise in the images and allow for smoother diffeomorphisms. This is done
by defining a similarity measure U(ϕ) = U(ϕ.Im, If ) on images and a regularization
measure E1 to give a combined energy

E(ϕ) = E1(ϕ) + λU(ϕ.Im, If ) . (2.1)

Here λ is a positive real representing the trade-off between regularity and goodness
of fit. The similarity measure U is in the simplest form the L2-error

�
Ω
|ϕ.Im(x) −

If (x)|dx but more advanced measures can be used (e.g. [20, 30, 9]).
In order to define the regularization term E1, we introduce some notations in the

following: Let the domain Ω be a subset of Rd with d = 2, 3, and let V denote a
Hilbert space of vector fields v : Ω → Rd such that V with associated norm � · �V is
included in L2(Ω,Rd) and admissible [32, Chap. 9], i.e. sufficiently smooth. Given a
time-dependent vector field t �→ vt with

� 1

0

�vt�2V dt < ∞ (2.2)

the associated differential equation ∂tϕt = vt ◦ ϕt has with initial condition ϕs a
diffeomorphism ϕv

st as unique solution at time t. The set GV of diffeomorphisms built
from V by such differential equations is a Lie group, and V is its tangent space at each
point. The inner product on V associated to a norm � · �V makes GV a Riemannian
manifold with right-invariant metric. Setting ϕv

00 = IdΩ, the map t �→ ϕv
0t is a path

from IdΩ to ϕ with energy given by (2.2) and generated by vt. We will use this
notation extensively in the following. A critical path for the energy (2.2) is a geodesic
on GV , and the regularization term E1 is defined using the energy by

E1(ϕ) = min
vt∈V,ϕv

01=ϕ

� 1

0

�vs�2V ds , (2.3)
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i.e. it measures the minimal energy of diffeomorphism paths from IdΩ to ϕ. Since
the energy is high for paths with great variation, the term penalizes highly varying
paths, and a low value of E1(ϕ) thus implies that ϕ is regular.

2.1. Kernel and Momentum. As a consequence of the assumed admissibility
of V , the evaluation functionals δx : v �→ v(x) ∈ Rd is well-defined and continuous
for any x ∈ Ω. Thus, for any a ∈ Rd the map a ⊗ δx : v �→ aT v(x) belongs to
the topological dual V ∗ consisting of the continuous linear maps of V . This in turn
implies the existence of spatially dependent matrices K : Ω × Ω → Rd×d, the kernel,
such that, for any constant vector a ∈ Rd, the vector field K(·, x)a ∈ V represents
a⊗ δx and �K(·, x)a, v�V = a⊗ δx(v) for any v ∈ V , point x ∈ Ω and vector a ∈ Rd.
This latter property is denoted the reproducing property and gives V the structure
of a reproducing kernel Hilbert space (RKHS). Tightly connected to the norm and
kernels is the notion of momentum given by the linear momentum operator L : V →
V ∗ ⊂ L2(Ω,Rd) which satisfies

�Lv,w�L2(Ω,Rd) =

�

Ω

�
Lv(x)

�T
w(x)dx = �v, w�V

for all v, w ∈ V . The momentum operator connects the inner product on V with the
inner product in L2(Ω,Rd), and the image Lv of an element v ∈ V is denoted the
momentum of v. The momentum Lv might be singular and in fact L

�
K(·, y)a

�
(x) is

the Dirac measure δy(x)a. Considering K as the map a �→
�
Ω
K(·, x)a(x)dx, L can

be viewed as the inverse of K. Confer [32] for a thorough introduction to reproducing
kernels, especially with a view towards the LDDMM framework.

Instead of deriving the kernel from V , the opposite approach can be used: build V
from a kernel, and hence impose the regularization in the framework from the kernel.
With this approach, the kernel is often chosen to ensure rotational and translational

invariance [32] and the scalar Gaussian kernel K(x, y) = exp(�x−y�2

σ2 )Idd is an often
used choice. Confer [12] for details on the construction of V from Gaussian kernels.

2.2. Optimal Paths: The EPDiff Evolution Equations. The relation be-
tween norm and momentum lead to convenient equations for minimizers of the energy
(2.1). In particular, the EPDiff equations for the evolution of the momentum at for
optimal paths assert that if ϕt is a path minimizing E1(ϕ) with ϕ1 = ϕ minimizing
E(ϕ) and vt is the derivative of ϕt then vt satisfies the system

vt =

�

Ω

K(·, x)at(x)dx ,

d

dt
at = −Datvt − at∇ · vt − (Dvt)

Tat

with Dat and Dvt denoting spatial differentiation of the momentum and velocity fields,
respectively. The first equation connects the momentum at with the velocity vt, and
the second equation describes the time evolution of the momentum. In the most
general form, the EPDiff equations describe the evolution of the momentum using the
adjoint map. Following [32], we define Adϕv(x) = (Dϕv) ◦ ϕ−1(x) for v ∈ V and get
a functional Ad∗

ϕ on the dual V ∗ of V by (Ad∗
ϕρ|v) = (ρ|Adϕ(v)).2 Define in addition

AdT
ϕv = K(Ad∗

ϕ(Lv)) which then satisfies
�

AdT
ϕv, w

�
= (Ad∗

ϕ(Lv)|w), and let ∇ϕU

2Here and in the following, we will use the notation (p|v) := p(v) for evaluation of the functional
p ∈ V ∗ on the vector field v ∈ V .
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denote the gradient of the similarity measure U with respect to the inner product
on V so that �∇ϕU, v�V = ∂�U(ψv

0� ◦ ϕ) for any variation v ∈ V and diffeomorphism
path ψv

0� with derivative v. For optimal paths vt, the EPDiff equations assert that
vt = AdT

ϕv
t1
v1 with v1 = − 1

2∇ϕv
01
U which leads to the conservation of momentum

property for optimal paths. Conversely, the EPDiff equations reduce to simpler forms
for certain objects. For landmarks x1, . . . , xN , the momentum will be concentrated
at point trajectories xt,i := ϕt(xi) as Dirac measures at,iδxt,i

leading to the finite
dimensional system of ODE’s

vt =
N�

l=1

K(·, xt,l))at,l ,
d

dt
ϕt(xi) = vt(xt,i) ,

d

dt
at,i = −

N�

l=1

D1K(xt,i, xt,l)a
T
t,iat,l .

(2.4)

3. Higher Order Kernels. We here introduce higher order kernels in the LD-
DMM registration framework. We start by motivating the construction by considering
the approximation used when computing the similarity measure. We then link the
kernels to the momentum using the derivative reproducing property, and derive the
path energy. We consider locally affine transformations before deriving the EPDiff
evolution equations for paths incorporating higher order kernels.

We will motivate the introduction of higher order kernels by considering a specific
case of image registration: we take on the goal of using a control point formulation
[11] when solving the registration problem (2.1) and hence aim for using a relatively
sparse sampling of the velocity or momentum field. To achieve this, we will consider
the coupling between the transported control points {ϕ−1(x1), . . . , ϕ−1(xN )} and the
similarity measure in order to ensure the momentum stays singular and localized at
the point trajectories while removing the need for warping the entire image at every
iteration of the optimization process.

Considering a similarity measure U(ϕ) =
�
Ω
F (Im(ϕ−1(x)), If (x))dx as discussed

in the introduction, and a finite discretization Ũ0(ϕ) = 1/N
�N

i=1 F (ϕ.Im(xi), If (xi))

with a sparse set of control points {xi}. While using Ũ0(ϕ) to drive registration of
the images will be very efficient in evaluating the warp in few points, it will suffer
correspondingly from only using image information present in those points. Apart
from not being robust under the presence of noise in the images, the discretization
implies that local dilation or rotation around the points ϕ−1(xi) cannot be detected:
any variation v ∈ V of ϕ keeping ϕ−1(xi) constant for all i = 1, . . . , N will not change
Ũ0(ϕ). Formally, if ψ0� is a diffeomorphism path that is equal to ϕ at t = 0 and has
derivative v at t = 0, i.e. ∂�ψ0� = v and ψ00 = ϕ, then

∂�F (ψ0�.Im(xi), If (xi)) = ∂1F (ϕ.Im(xi), If (xi)) ·
�
∇ϕ−1(xi)Im

�T
v(ϕ−1(xi))

which vanishes if v(ϕ−1(xi)) = 0. Here ∂1F denotes the derivative of F : R2 → R
with respect to the first variable.

A simple way to include more image in formation in the similarity measure is to
convolve with a kernel Ks, and thus extend Ũ0 to

U1(ϕ) =
1

N

N�

i=1

cKs

�

Ω

Ks(p + xi, xi)U(ϕ.Im(p + xi), If (p + xi))dp
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with cKs
a normalization constant. If Ks is a box kernel, this amounts to a finer

sampling of both the image and warp, and hence a finer discretization of the Riemann
integral. The kernel Ks should not be confused with the RKHS kernel connected to
the norm on V that is used when generating the V -gradient. A Gaussian kernel may
be used for Ks [9], and more information on using smoothing kernels for intensity
based image registration can be found in [9, 34].

The measure U1(ϕ) is problematic since a variation of ϕ would affect not only
the point ϕ−1(xi) but also ϕ.Im(p + xi), and U1(ϕ) will therefore be dependent on
ϕ.Im(p+xi) for any p where Ks(p, xi) is non-zero. In this situation, the momentum is
no longer concentrated in Dirac measures located at ϕ−1

t (xi), and it will be necessary
to increase the sampling of the warp. However, a first order expansion of ϕ−1 yields
the approximation

Ũ1(ϕ) =
1

N

N�

i=1

cKs

�

Ω

Ks(p+xi, xi)U(Im(Dxiϕ
−1p+ϕ−1(xi)), If (p+xi))dp . (3.1)

The measure Ũ1(ϕ) is now again local depending only on ϕ−1(xi) and the first order
derivatives Dxi

ϕ−1. It offers the stability provided by the convolution with Ks, and,
importantly, variations v of ϕ keeping ϕ−1(xi) constant but changing Dxiϕ

−1 do in-
deed affect the similarity measure. This implies that Ũ1(ϕ) is able to catch rotations
and dilations and drive the search for optimal ϕ accordingly. Please note the differ-
ences with the approach of Durrleman et al. [11]: when using Ũ1(ϕ) as outlined here,
the need for flowing the entire moving image forward is removed and the momentum
field will stay singular directly thus removing the need for constraining the form of
the velocity field.

This raises the question of how to represent variations of Dϕ in the LDDMM
framework. As we will see, higher order kernels appear as the natural choice of defor-
mation atoms allowing singular momentum for variations of Dϕ and hence keeping
the benefits of the finite control point formulation.

3.1. Derivative Reproducing Property. Recall the reproducing property of
the RKHS structure, i.e. �K(·, x)a, v�V = a ⊗ δx(v) for v ∈ V , x ∈ Ω and a ∈ Rd.
Zhou [33] shows that this property holds not only for the kernel but also for its partial
derivatives. Letting Dα

xv denote the derivative of v ∈ V at x ∈ Ω with respect to the
multi-index α,

Dα
xv =

∂|α|

∂α1

x1 . . . ∂
αq

xq

v(x)

and defining (Dα
xKa)(y) = Dα

x (K(·, y)a) for a ∈ Rd, Zhou proves that Dα
xKa ∈ V

and that the partial derivative reproducing property

�Dα
xKa, v�V = aTDα

x (v) (3.2)

holds when the maps in V are sufficiently smooth for the derivatives to exist. In the
following, we denote the matrices Dα

xK higher order kernels. Similarly, we denote the
maps a⊗Dα

x : V → R defined by a⊗Dα
x (v) := aTDα

xv higher order Diracs. It follows
that

a⊗Dα
x =

�
v �→ �Dα

xKa, v�V
�
∈ V ∗ .
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As a consequence of Zhous result, we can derive the momentum for the higher order
kernels. Recall that the momentum map L : V → V ∗ satisfies �Lv,w�L2 = �v, w�V .
With the higher order kernels,

�LDα
xKa, v�L2

= �Dα
xKa, v�V = a⊗Dα

x (v) = �a⊗Dα
x , v�L2 .

Thus LDα
xKa = a⊗Dα

x or, shorter, LDα
xK = Dα

x . That is, the higher order kernels
and higher order Diracs corresponds just as the kernels and Diracs in the usual RKHS
sense.

Consider a map on diffeomorphisms U : GV → R e.g. an image similarity measure
dependent on ϕ. In a finite dimensional setting with N evaluation points xi, U would
decompose as U(ϕ) = P ◦ Q(ϕ) with Q(ϕ) = (ϕ(x1), . . . , ϕ(xN )) and P : RdN → R.
Introducing higher order kernels, we let Q(ϕ) = (Dα1

x1
(ϕ), . . . , DαJ

xN
(ϕ)) with J multi-

indices αj , and decompose U as U(ϕ) = P ◦Q(ϕ) with P : RdNJ → R. We allow αj to
be empty and hence incorporate the standard zero-order case. The partial derivative
reproducing property now allows to compute the V -gradient of U as a sum of higher
order kernels.

Proposition 3.1. Let ∇ijP denote the gradient with respect to the variable
indexed by D

αj
xi (ϕ) in the expression for Q. Then the gradient ∇ϕU ∈ V of U with

respect to the inner product in V is given by ∇ϕU =
�N

i=1

�J
j=1 D

αj
xi K∇ij

Q(ϕ)P .

Proof. The gradient ∇ϕU at ϕ is defined by �∇ϕU, v� = ∂�U(�v + ϕ) for all
variations v ∈ V . For such v, we get using (3.2) that

∂�U(�v + ϕ) = ∂�P ◦Q(�v + ϕ) = ∂�P (Dαj

xi
(�v + ϕ)) = ∂�P (�Dαj

xi
v + Dαj

xi
ϕ)

=

N�

i=1

J�

j=1

(∇ij
Q(ϕ)P )TDαj

xi
v =

�
N�

i=1

J�

j=1

Dαj

xi
∇ij

Q(ϕ)P, v

�

V

.

3.2. Momentum and Energy. As a result of Proposition 3.1, the momentum
of the gradient of U is L∇ϕU =

�N
i=1

�J
j=1 ∇

ij
Q(ϕ)P ⊗ D

αj
xi . In general, if v ∈ V

is a sum of higher order kernels, the energy �v�2V can be computed using (3.2) as a
sum of the different order kernels evaluated at the points xi. To keep the notation
brief, we restrict to sums of zero- and first order kernels in the following. If v(·) =�N

i=1

�
K(xi, ·)ai +

�d
j=1 D

jK(xi, ·)aji
�
, we get the energy

�v�2V =

�
N�

i=1

�
K(xi, ·)ai +

d�

j=1

DjK(xi, ·)aji
�
,

N�

i=1

�
K(xi, ·)ai +

d�

j=1

DjK(xi, ·)aji
�
�

V

=

N�

i,l=1

�K(xl, ·)al,K(xi, ·)ai�V +

N�

i,l=1

d�

j,j�

�
DjK(xl, ·)ajl , Dj�K(xi, ·)aj

�

i

�
V

+ 2

N�

i,l=1

d�

j=1

�
DjK(xl, ·)ajl ,K(xi, ·)ai

�
V

=

N�

i,l=1

aTl K(xl, xi)ai +

N�

i,l=1

d�

j,j�

aj
�,T

i Dj�

2 Dj
1K(xl, xi)a

j
l + 2

N�

i,l=1

d�

j=1

aTi Dj
1K(xl, xi)a

j
l

(3.3)
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with Dj
iK(·, ·) denoting differentiation with the respect to the ith variable, i = 1, 2,

and jth coordinate, j = 1, . . . , d. For scalar symmetric kernels such as Gaussians, this
expression reduces to

�v�2V =
N�

i,l=1

aTl K(xl, xi)ai +
N�

i,l=1

d�

j,j�

�
D2∇1K(xl, xi)

�j�
j
aj

�,T
i ajl

+ 2
N�

i,l=1

d�

j=1

(∇1K(xl, xi))
jaTi ajl .

3.3. Locally Affine Transformations. The Polyaffine and Log-Euclidean Polyaffine
[3, 1] frameworks model locally affine transformations using matrix logarithms which
has limited range. Though the higher order kernels can be seen as the LDDMM
sibling of the Polyaffine methods, the methods differ in that diffeomorphism paths
generated by higher order kernels, in particular, kernels of zero- and first order, can
locally approximate all affine transformation with linear component having positive
determinant. The approximation will depend only on how fast the kernel approaches
zero towards infinity. The manifold structure of GV provides this result immediately.
Indeed, let ϕ(x) = Ax + b be an affine transformation with det(A) > 0. We define
a path ϕt of finite energy such that ϕ1 ≈ ϕ which shows that ϕ1 ∈ GV and can be
reached in the framework. The matrices of positive determinant is path connected
so we can let ψt be a path from Idd to A and define ψ̃t(x) = ψtx + bt. Then with
ṽt(x) = (∂tψt)ψ̃

−1
t (x) + b, we have ∂tψ̃t(x) = (∂tψt)x + b = ṽt ◦ ψ̃t(x) and

x +

� 1

0

ṽt ◦ ψ̃t(x)dt = x +

� 1

0

(∂tψt)x + bdt = ϕ(x) .

Now use that (∂tψt)ψ̃
−1
t (x) = (∂tψt)(ψt)

−1(x−bt) and let the Mt = (m1,t . . .md,t) be
the t-dependent matrix (∂tψt)(ψt)

−1 so that the first term of ṽt(x) equals Mt(x− bt).
Then choose a radial kernel, e.g. a Gaussian Kσ, and define the approximation vt of
ṽt by

vt(x) =

d�

j=1

Dj

ψ̃t(0)
Kσ(x)mj,t + Kσ(ψ̃t(0), x)b . (3.4)

The path ϕv
01 generated by vt then has finite energy, and

ϕv
01(x) = x +

� 1

0

vt ◦ ϕv
0t(x)dt ≈ ϕ(x)

with the approximation depending only on the kernel scale σ. Note that the affine
transformations with linear components having negative determinant can in a similar
way be reached by starting the integrating at a diffeomorphism with negative Jacobian
determinant.

In the experiments section, we will illustrate the locally affine transformations
encoded by zero and first order kernels, and, therefore, it will be useful to introduce a
notation for these kernels. We encode the translational part of either the momentum
or velocity using the notation

Tslx(b) = Kσ(x, ·)b
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and the linear part by

Linx(M) =
d�

j=1

Dj
xKσ(·)mj

with m1,mj being the columns of the matrix M . Equation (3.4) can then be written

vt(x) = Linψ̃t(0)
(Mt) + Tslψ̃t(0)

(b) . (3.5)

We emphasize that though we mainly focus on zero and first order kernels, the math-
ematical construction allows any order kernel permitted by the smoothness of the
kernel at order zero.

3.4. EPDiff Equations. It is important to note that the higher order kernels
offer a convenient representation for the gradients of maps U incorporating derivative
information but since the kernels are members of V and their momentum in the
dual V ∗, the analytical of structure of LDDMM is not changed. In particular, the
adjoint form of the EPDiff equations, i.e. that optimal paths vt satisfy vt = AdT

ϕv
t1
v1

with v1 = − 1
2∇ϕv

01
U , is still valid. The momentum ρ1 = Lv1 is transported to the

momentum ρt by Ad∗
ϕv

t1
p1. Because

(ρt|w) = (ρ1|Adϕv
t1

(w)) = (ρ1|(Dϕv
t1 w) ◦ (ϕv

t1)−1) ,

if ρ1 is a sum of higher order kernels, ρt will be sum of higher order kernels for
all t. However, since the time evolution of (ρt|w) with the above relation involves
derivatives of Dϕv

t1, this form is inconvenient for computing ρt. Instead, we make use
of the Hamiltonian form of the EPDiff equations [32, P. 265]. Here, the momentum
ρt is pulled back to ρ0 but with a coordinate change of the evaluation vector field:
the Hamiltonian form µt is defined by

�
µt

��w
�

:=
�
ρ0
��(Dϕv

0t)
−1(y)w(y)

�
y

where the

subscript stresses that (Dϕv
0t)

−1(y)w(y) is evaluated as a y-dependent vector field.
Using this notation, the evolution equations become

∂tϕ
v
0t(y) =

d�

k=1

�
µt

��Kk(ϕv
0t(x), ϕv

0t(y))
�
x
ek

�
∂tµt

��w
�

= −
d�

k=1

�
µt

���µt

��D2K
k(ϕv

0t(x), ϕv
0t(y))w(y)

�
x
ek
�
y
.

(3.6)

For the case when (ρ0|w) does not involve derivatives of w, these equations form an
ordinary differential equation describing the evolution of the path and momentum
[32]. For the higher order case, we will need to incorporate additional information in
the system.

Again we restrict to the zero- and first order case, and we hence work with initial
momenta on the form

ρ0 =
N�

i=1

a0,i ⊗ δx0,i
+

N�

i=1

d�

j=1

aj0,i ⊗Djδx0,i
(3.7)
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with xt,i as usual denoting the point positions ϕv
0t(xi) at time t. Then

�
µt

��w
�

=
�
ρ0
��Dϕv

0t(y)−1w(y)
�
y

=

�

Ω

� N�

i=1

a0,i ⊗ δx0,i +

N�

i=1

d�

j=1

aj0,i ⊗Djδx0,i

�
Dϕv

0t(y)−1w(y)dy

=
N�

i=1

�
a0,i ⊗ δx0,i

��Dϕv
0t(y)−1w(y)

�
y

+
d�

j=1

�
aj0,i ⊗ δx0,i

���DjDϕv
0t(y)−1)w(y)

�
y

+
N�

i=1

d�

j=1

�
Dϕv

0t(x0,i)
−1,Taj0,i ⊗Djδx0,i

��w
�

=
N�

i=1

��
Dϕv

0t(x0,i)
−1,Ta0,i +

d�

j=1

�
DjDϕv

0t(x0,i)
−1

�T
aj0,i

�
⊗ δx0,i

��w
�

+
N�

i=1

d�

j=1

�
Dϕv

0t(x0,i)
−1,Taj0,i ⊗Djδx0,i

��w
�

showing that µt =
�N

i=1 µt,i ⊗ δx0,i
+

�N
i=1

�d
j=1 µ

j
t,i ⊗Djδx0,i

with

µt,i = Dϕv
0t(x0,i)

−1,Ta0,i +
d�

j=1

�
DjDϕv

0t(x0,i)
−1

�T
aj0,i

µj
t,i = Dϕv

0t(x0,i)
−1,Taj0,i .

(3.8)

The momentum ρt can the be recovered as

�
ρt
��w

�
=

�
µt

��w ◦ ϕv
0t

�
=

� N�

i=1

µt,i ⊗ δx0,i +

N�

i=1

d�

j=1

µj
t,i ⊗Djδx0,i

�
w ◦ ϕv

0t

=
N�

i=1

µt,i ⊗ δxt,i
w +

N�

i=1

d�

j=1

µj,T
t,i Dw(Djϕv

0t)(x0,i)

=
N�

i=1

µt,i ⊗ δxt,i
w +

N�

i=1

d�

j=1

� d�

k=1

(Dkϕv
0t)(x0,i)

jµk
t,i

�
⊗Djδxt,i

w

and hence the coefficients of the momentum at,i and ajt,i (confer (3.7)) are given by

at,i = µt,i and ajt,i =
�d

k=1(Dkϕv
0t)(x0,i)

jµk
t,i.

3.5. Time Evolution of the EPDiff Equations. Even though µt,i in (3.8)
depend on the second order derivative of ϕ, we will show that the complete evolution
in the zero- and first order case can be determined by solving for ϕv

0t(xi,0), Dϕv
0t(xi,0),

and µt,i. This will provide the computational representation we will use when im-
plementing the systems. In order to simplify the notation, we will work mainly with
scalar kernels so that Kk

l (x, y) = K(x, y) if and only if k = l and 0 otherwise.
Using (3.6), ϕv

0t evolves according to

∂tϕ
v
0t(y) =

d�

k=1

�

Ω

N�

i=1

�
µT
t,i ⊗ δx0,i +

d�

j=1

µj
t,i ⊗Djδx0,i

�
Kk(ϕv

0t(x), ϕv
0t(y))dxek

=
d�

k=1

N�

i=1

�
µT
t,iK

k(ϕv
0t(x0,i), ϕ

v
0t(y)) +

d�

j=1

µj,T
t,i D1K

k(ϕv
0t(x0,i), ϕ

v
0t(y))Djϕv

0t(x0,i)
�
ek .
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With scalar kernels, the trajectories xt,i are given by

∂tϕ
v
0t(x0,n) =

N�

i=1

�
K(ϕv

0t(x0,i), ϕ
v
0t(x0,n))µt,i +

d�

j=1

∇1K(ϕv
0t(x0,i), ϕ

v
0t(x0,n))TDjϕv

0t(x0,i)µ
j
t,i

�
.

It is shown in [32] that the evolution of Dϕv
0t(xi,0) is given by

∂tDϕv
0t(y)a =

d�

k=1

�
µt

��D2K
k(ϕv

0t(x), ϕv
0t(y))Dϕv

0t(y)a
�
x
ek .

Inserting the Hamiltonian form of the higher order momentum, each component (l, k)
of the matrix Dϕv

0t(y) thus evolves according to

∂tDϕv
0t(y)lk =

�
µt

��D2K
k(ϕv

0t(x), ϕv
0t(y))Dϕv

0t(y)el
�
x

=

�

Ω

N�

i=1

�
µt,i ⊗ δx0,i

+
d�

j=1

µj
t,i ⊗Djδx0,i

�
D2K

k(ϕv
0t(x), ϕv

0t(y))Dϕv
0t(y)eldx

=
N�

i=1

µT
t,iD2K

k(ϕv
0t(x0,i), ϕ

v
0t(x0,n))Dϕv

0t(x0,n)el

+
N�

i=1

d�

j=1

µj,T
t,i

� d�

m=1

�
Dm

1 D2K
k(ϕv

0t(x0,i), ϕ
v
0t(x0,n))

��
Djϕv

0t(x0,i)
�m�

Dϕv
0t(x0,n)el .

With scalar kernels, the evolution at the trajectories is then

∂tDϕv
0t(x0,n)l =

N�

i=1

�
∇2K(ϕv

0t(x0,i), ϕ
v
0t(x0,n))TDlϕv

0t(x0,n)µt,i

+

d�

j=1

�
D1∇2K(ϕv

0t(x0,i), ϕ
v
0t(x0,n))Djϕv

0t(x0,i)
�T

Dlϕv
0t(x0,n)µj

t,i

�
.

The complete derivation of the evolution of µt is notationally heavy and can be
found in Appendix A. Combining this derivation with the expressions above, we
arrive at the following result:

Proposition 3.2. The EPDiff equations in the scalar case with zero- and first
order kernels are given in Hamiltonian form by the system

∂tϕ
v
0t(x0,n) =

N�

i=1

�
K(xt,i, xt,n)µt,i +

d�

j=1

∇1K(xt,i, xt,n)TDjϕv
0t(x0,i)µ

j
t,i

�

∂tDϕv
0t(x0,n)l =

N�

i=1

�
∇2K(xt,i, xt,n)TDlϕv

0t(x0,n)µt,i

+
d�

j=1

�
D1∇2K(xt,i, xt,n)Djϕv

0t(x0,i)
�T

Dlϕv
0t(x0,n)µj

t,i

�

(3.9)
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∂tµt,n = −
N�

i=1

��
µT
t,nµt,i

�
∇2K(xt,i, xt,n)

+
d�

j=1

�
µj,T
t,nµt,i − µT

t,nµ
j
t,i

�
D2∇2K(xt,i, xt,n)Djϕv

0t(x0,n)

+
d�

j,j�=1

�
µj�,T
t,n µj

t,i

�
D2

�
D1∇2K(xt,i, xt,n)Djϕv

0t(x0,i)
�
Dj�ϕv

0t(x0,n)
�

µj
t,i = Dϕv

0t(x0,i)
−1,Taj0,i .

Note that both x1,i = ϕv
01(x0,i) and Dϕv

01(x0,i) are provided by the equation, and

hence can be used to evaluate a similarity measure such as Ũ1 which depend on these
entities. As in the zero-order case, the entire evolution can be recovered by the initial
conditions for the momentum.

4. Variations of the Initial Conditions. There exists various choices of opti-
mization algorithms for LDDMM registration. Roughly, they can be divided into two
groups based on whether they represent the initial momentum/velocity or the entire
path ϕt. Here, we take the approach of incorporating higher order kernels with the
shooting method of e.g. Vaillant et al. [28]. The algorithm will take a guess for initial
momentum, integrate the EPDiff equations forward, compute the similarity measure
gradient ∇U , and flow the gradient backwards to provide an improved guess. For this
to work, we will need the variation of the EPDiff equations when varying the initial
conditions. Following this, we discuss the backwards gradient transport and arrive at
a full matching algorithm.

A variation δρ0 of the initial momentum will induce a variation of the system
(3.9). By differentiating the system, we get the time evolution of the variation. To
ease notation, we assume the scalar kernel has the form K(x, y) = γ(|x − y|2) and
write γt,in = K(xt,i, xt,n). Variations of the kernel and kernel derivatives such as the
entity δ∇1K(xt,i, xt,n) below depend only on the variation of point trajectories δxt,i.
The full expressions for these parts are provided in Appendix B. The evolution of the
derived system then takes the following form:

∂tδϕ
v
0t(x0,n) =

N�

i=1

�
δK(xt,i, xt,n)µt,i + γt,inδµt,i

�

+
N�

i=1

d�

j=1

�
δ∇1K(xt,i, xt,n)TDjϕv

0t(x0,i)µ
j
t,i + ∇1K(xt,i, xt,n)T δDjϕv

0t(x0,i)µ
j
t,i

+ ∇1K(xt,i, xt,n)TDjϕv
0t(x0,i)δµ

j
t,i

�

(4.1)
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∂tδDϕv
0t(x0,n)l =

N�

i=1

�
δ∇2K(xt,i, xt,n)TDlϕv

0t(x0,n)µt,i + ∇2K(xt,i, xt,n)T δDlϕv
0t(x0,n)µt,i

+ ∇2K(xt,i, xt,n)TDlϕv
0t(x0,n)δµt,i

�

+
N�

i=1

d�

j=1

��
δD1∇2K(xt,i, xt,n)Djϕv

0t(x0,i)
�T

Dlϕv
0t(x0,n)µj

t,i

+
�
D1∇2K(xt,i, xt,n)δDjϕv

0t(x0,i)
�T

Dlϕv
0t(x0,n)µj

t,i

+
�
D1∇2K(xt,i, xt,n)Djϕv

0t(x0,i)
�T

δDlϕv
0t(x0,n)µj

t,i

+
�
D1∇2K(xt,i, xt,n)Djϕv

0t(x0,i)
�T

Dlϕv
0t(x0,n)δµj

t,i

�

∂tδµt,n = −
N�

i=1

��
δµT

t,nµt,i + µT
t,nδµt,i

�
∇2K(xt,i, xt,n) +

�
µT
t,nµt,i

�
δ∇2K(xt,i, xt,n)

�

−
N�

i=1

d�

j=1

��
δµj,T

t,nµt,i + µj,T
t,n δµt,i − δµT

t,nµ
j
t,i − µT

t,nδµ
j
t,i

�
D2∇2K(xt,i, xt,n)Djϕv

0t(x0,n)

+
�
µj,T
t,nµt,i − µT

t,nµ
j
t,i

�
δD2∇2K(xt,i, xt,n)Djϕv

0t(x0,n)

+
�
µj,T
t,nµt,i − µT

t,nµ
j
t,i

�
D2∇2K(xt,i, xt,n)δDjϕv

0t(x0,n)
�

−
N�

i=1

d�

j,j�=1

��
δµj�,T

t,n µj
t,i + µj�,T

t,n δµj
t,i

�
D2

�
D1∇2K(xt,i, xt,n)Djϕv

0t(x0,i)
�
Dj�ϕv

0t(x0,n)

+
�
µj�,T
t,n µj

t,i

�
δD2

�
D1∇2K(xt,i, xt,n)Djϕv

0t(x0,i)
�
Dj�ϕv

0t(x0,n)

+
�
µj�,T
t,n µj

t,i

�
D2

�
D1∇2K(xt,i, xt,n)Djϕv

0t(x0,i)
�
δDj�ϕv

0t(x0,n)
�
.

The variation of µj
t,i is available as

δµj
t,i = −

�
Dϕv

0t(x0,i)
−1δDϕv

0t(x0,i)Dϕv
0t(x0,i)

−1
�T

aj0,i + Dϕv
0t(x0,i)

−1,T δaj0,i .

However, when computing the backwards transport, we will need to remove the de-
pendency on δaj0,i which is only available for forward integration. Instead, by writing

the evolution of µj
t,i in the form

∂tµ
j
t,i = ∂tDϕv

0t(x0,i)
−1,Taj0,i = −

�
Dϕv

0t(x0,i)
−1∂tDϕv

0t(x0,i)Dϕv
0t(x0,i)

−1
�T

aj0,i

= −Dϕv
0t(x0,i)

−1,T∂tDϕv
0t(x0,i)

Tµj
t,i ,

we get the variation

∂tδµ
j
t,n = −δDϕv

0t(x0,n)−1,T∂tDϕv
0t(x0,n)Tµj

t,n −Dϕv
0t(x0,n)−1,T∂tδDϕv

0t(x0,n)Tµj
t,n

−Dϕv
0t(x0,n)−1,T∂tDϕv

0t(x0,n)T δµj
t,n .

4.1. Backwards Transport. The correspondence between initial momentum
ρ0 and end diffeomorphism ϕv

01 asserted by the EPDiff equations allows us to view the
similarity measure U(ϕv

01) as a function of ρ0. Let A denote the result of integrating
the system for the variation of the initial conditions from t = 0 to t = 1 such that
w = Aδρ0 ∈ V for a variation δρ0. We then get a corresponding variation δU in the

47



similarity measure. To compute the gradient of U as a function of ρ0, we have

δU(ϕv
01) =

�
∇ϕv

01
U,w

�
V

=
�
∇ϕv

01
U,Aδρ0

�
V

=
�
AT∇ϕv

01
U, δρ0

�
V ∗ .

Thus, the V ∗-gradient of ∇ρ0
U is given by AT∇ϕv

01
U . The gradient can equivalently

be computed in momentum space at both endpoints of the diffeomorphism path using
the map P defined in Proposition 3.1.

The complete system for the variation of the initial conditions is a linear ODE,
and, therefore, there exists a time-dependent matrix Mt such that the ODE

∂tyt = Mtyt

has the variation as a solution yt. It is shown in [32] that, in such cases, solving the
backwards transpose system

∂twt = −MT
t wt (4.2)

from t = 1 to t = 0 provides the value of ATw. Therefore, we can obtain ∇ρ0
U by

solving the transpose system backwards. The components of Mt can be identified
by writing the evolution equations for the variation in matrix form. This provides
MT

t and allows the backwards integration of the system 4.2. The components of the
transpose matrix Mt are provided in Appendix C.

4.2. Algorithm. The registration problem (2.1) consists of both the similarity
measure U and the minimal path energy E1. For e.g. landmark based registration,
U(ϕ) is most often expressed in terms of ϕ directly whether as U is usually dependent
on the inverse ϕ−1 for image registration. In the first case, the gradient ∇ϕU is known,
and, given the initial momentum ρ0, we can obtain the gradient ∇ρ0

U for a gradient
descent based optimisation procedure from the backwards transport equations (4.2)
discussed above. For the energy part, it is a fundamental result property of critical
paths in the LDDMM framework that the energy stays constant along the path.

Thus,
� 1

0
�vt�2V dt = �v0�2V =

�
ρ0
��K(ρ0)

�2
and we can easily compute the gradient

from (3.3). Given this, the zero-order matching algorithm in the initial momentum is
generalized to zero- and first order kernels in Algorithm 1.

Algorithm 1 Matching with Higher Order Kernels.

ρ0 ← initial guess
repeat

Solve EPDiff equations forward
Compute U and ∇P
Solve backwards the transpose equations
Compute the energy gradient ∇�v0�2
Update ρ0 from ∇�v0�2 + ∇ρ0U

until convergence

Traditionally, the similarity measure U(ϕ) is in image matching formulated using
the inverse of ϕ, and this approach was taken when formulating the approximation
(3.1). For this reason, at finite control point formulation is naturally expressed using
a sampling {x1, . . . , xN} in the target image with the algorithm optimizing for the
momentum ρ1 at time t = 1. The evaluation points ϕ−1(xi) are then generated by
flowing backwards from t = 1 to t = 0, the gradient of U(ϕ) can then be computed
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in ϕ−1(xi) and flowed forwards to update ρ1. This corresponds to switching the
role of the moving and target image combined with backwards integration of the
flow equations. Algorithm 1 will accommodate this situation by just reversing the
integration directions. The control points can be chosen either at e.g. anatomically
important locations, at random, or on a regular grid. In the experiments, we will
register expanding ventricles using control points placed in the ventricles.

The integration of the ODEs can be performed with standard Runge-Kutta inte-
grators such as Matlabs ode45 procedure. With zero order kernels only and N points,
the forward and backwards system consist of 2dN equations. With zero- and first or-
der kernels, the forward system is extended to N(2d + d2) and the backwards system
to 2N(d+d2). For d = 3, this implies an 2.5 time increase in the size of the system. In
addition to this should be considered the extra floating point operations necessary for
computing the somewhat more complicated evolution equations. This increase should,
however, be viewed against the fact that the finite dimensional system contain orders
of magnitude fewer control points, and the added capacity of deformation description
included in the derivative information. In addition and in contrast to previous ap-
proaches, we transport the similarity gradient only at the control point trajectories,
again an order of magnitude reduction of transported information. As we will see in
the following section, the inclusion of higher order kernels provides information with
very few control points.

5. Experiments. In order to demonstrate the efficiency and sparsity of repre-
sentations using higher order kernels, we perform four sets of experiments. First, we
provide four examples illustrating the type of deformations produced by zero- and
first order kernels and the relation to the Polyaffine framework. We then use point
based matching using first order information to show how complicated warps that
would require many parameters with zero order deformation atoms can be generated
with very compact representations using higher order kernels. When then underline
the point that higher order kernels allow low-dimensional transformations to be regis-
tered using correspondingly low-dimensional representations: we show how synthetic
test images generated by a low-dimensional transformation can be registered using
only one deformation atom when representing using first order kernels and using the
first order similarity measure approximation (3.1). We further emphasize this point
by registering articulated movement using only one deformation atom per rigid part,
and thus exemplify a natural representation that reduces the number of deformation
atoms and the ambiguity in the placement of the atoms while also reducing the de-
grees of freedom in the representation. Finally, we illustrate how higher order kernels
in a natural way allow registration of human brains with progressing atrophy. We de-
scribe the deformation field throughout the ventricles using few deformation atoms,
and we thereby suggest a method for detecting anatomical change using few degrees
of freedom. We start by briefly describing the similarity measures used throughout
the experiments.

For the point examples below, we register moving points x1, . . . , xN against fixed
points y1, . . . , yN . In addition, we match first order information by specifying values
of Dj

xi
ϕ. This is done compactly by providing matrices Yi so that we seek Dxi

ϕ = Yi

for all i = 1, . . . , N . The similarity measure is simple sum of squares, i.e.

U(ϕ) =
N�

i=1

�ϕ(xi) − yi�2 + �Dxi
ϕ− Yi�2

using the matrix 2-norm. This amounts to fitting ϕ against a locally affine map with
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(a) Expansion (b) Contraction

(c) Rotation (−π/2) (d) Two rotations (π/2)

Fig. 5.1. The effect of the generated deformation on an initially square grid for several initial
first order momenta: Using the notation of Section 3.3, (a) expansion ρ0 = Lin0(Id2); (b) contrac-
tion ρ0 = Lin0(−Id2); (c) rotation ρ0 = Lin0(Rot(v)), v = −π/2; (d) two rotations v = π/2. The
kernel is Gaussian with σ = 8 in grid units, and the grids are colored with the trace of Cauchy-
Green strain tensor (log-scale). Notice the locality of the deformation caused by the finite scale of
the kernel, and that the deformation stays diffeomorphic even when two rotations force conflicting
movements.

translational components yi and linear components Yi. For the image cases, we use
L1-similarity to build the first order approximation (3.1) with the smoothing kernel
Ks being Gaussian of the same scale as the LDDMM kernel.

5.1. First Order Illustrations. To visually illustrate the deformation gener-
ated by higher order kernels, we show in Figure 5.1 the generated deformations on
an initially square grid with four different first-order initial momenta. The defor-
mation locally model the linear part of affine transformations and the the locality
is determined by the Gaussian kernel that in the examples has scale σ = 8 in grid
units. Notice for the rotations that the deformation stays diffeomorphic in the pres-
ence of conflicting forces. The similarity between the examples and the deformations
generated in the Polyaffine framework [1] underlines the viewpoint that the regis-
tration using higher order kernels constitutes the LDDMM sibling of the Polyaffine
framework.

5.2. First Order Point Registration. Figure 5.2 presents simple point based
matching results with first order information. The lower points (red) are matched
against the upper points (black) with match against expansion Dϕ(xi) = 2Id2 and
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(a) Match with dilations (expansion) (b) Match with rotations (−π/2 and π/2)

Fig. 5.2. Two moving points (red) are matched against two fixed points (black) with results
(green) and with match against (a) expansion Dϕ(xi) = 2Id2, i = 1, 2; and (b) rotation Dϕ(xi) =
Rot(v), v = ∓π/2, i = 1, 2. The kernel is Gaussian with σ = 8 in grid units, and the grids are
colored with the trace of Cauchy-Green strain tensor (log-scale).

rotation Dϕ(xi) = Rot(v) =

�
cos(v), sin(v)
− sin(v), cos(v)

�
for v = ∓π/2. The optimal diffeo-

morphisms exhibit the expected expanding and turning effect, respectively. We stress
that the deformations are generated using only two deformations atoms with com-
bined 12 parameters. Representing equivalent deformation using zero order kernels
would require a significantly increased number of atoms and a correspond increase in
the number of parameters.

5.3. Low Dimensional Image Registration. We now exemplify how higher
order kernels allow low-dimensional transformations to be registered using correspond-
ingly low-dimensional representations. We generate two test images by applying two
linear transformations, an dilation and a rotation, to a binary image of a square, confer
the moving images (a) and (e) in Figure 5.3. By placing one deformation atom in the
center of each fixed image and by using the similarity measure approximation (3.1),
we can successfully register the moving and fixed images. The result and difference
plots are shown in Figure 5.3. The dimensionality of the linear transformations gen-
erating the moving images is equal to the number of parameters for the deformation
atom. A registration using zero order kernels would need more than one deformation
atom which would result in a number of parameters larger than the dimensionality.
The scale of the Gaussian kernel used for the registration is 50 pixels.

5.4. Articulated Motion. The articulated motion of the finger3 in Figure 5.4
(a) and (b) can be described by three locally linear transformations. With higher order
kernels, we can place deformation atoms at the center of the bones in the moving and
fixed images, and use the point positions together with the direction of the bones to
drive a registration. This natural and low dimensional representation allows a fairly
good match of the images resembling the use of the Polyaffine affine framework for
articulated registration [23]. A similar registration using zero order kernels would

3X-ray frames from http://www.archive.org/details/X-raystudiesofthejointmovements-wellcome
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(c) Registration result
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(d) Difference
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(e) Moving image
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(f) Fixed image
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(h) Difference

Fig. 5.3. With linear transformations, the dimensionality of the higher order representation
matches the dimensionality of the transformation. A dilation (e) and rotation (d) is applied to the
fixed binary images (b) and (f), respectively. The registration results (c) and (g) subtracted from
the fixed images are shown in the difference pictures (d) and (h). The registration is performed
with a single first order kernel in the center of the pictures, and the number of parameters for the
registration thus matches the dimensionality of the linear representations. The slight differences
between results and fixed images are caused by the first order approximation in (3.1). Increasing the
kernel size, adding more control points, or using second order kernels would imply less difference.
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(c) Result, first order

Fig. 5.4. Registering articulated movement using directional information of the bones: the
landmarks and bone orientations (red points and arrows) in the moving image (a) are matched
against the landmarks and bone orientations (green points and arrows) in the fixed image (b). The
result using first order kernels (c) can be obtained with a low number of deformation atoms that can
be consistently placed at the center of the bones. A corresponding zero order representation would
use a higher number of atoms with a corresponding increase in the number of parameters.

need two deformation atoms per bone and lacking a natural way to place such atoms,
the positions would need to be optimized. With higher order kernels, the deformation
atoms can be placed in a natural and consistent way, and the total number of free
parameters is lower than a zero order representation using two atoms per bone.

5.5. Registering Atrophy. Atrophy occurs in the human brain among patients
suffering from Alzheimer’s disease, and the progressing atrophy can be detected by the
expansion of the ventricles [16, 13]. Since first order kernels offer compact description
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of expansion, this makes a parametrization of the registration based on higher order
kernels suited for describing the expansion of the ventricles, and, in addition, the
deformation represented by the kernels will be easily interpretable. In this experiment,
we therefore suggest a registration method that using few degrees of freedom describes
the expansion of the ventricles, and does so in a way that can be interpreted when
doing further analysis of e.g. the volume change.

We will provide examples of 2D registration with the purpose of illustrating the
use of the higher order kernels and suggest a method which can be applied in 3D. We
do not aim at a quantitative evaluation but we plan to follow up on the experiment in
future work with 3D registration of more subjects and explore the connection between
first order initial momentum and actual ventricle expansion in greater detail.

We use the publicly available Oasis dataset4 [17], and we select a small number
of patients from which two baseline scans are acquired at the same day together with
a later follow up scan. The patients are in various stages of dementia. We perform
rigid registration [9] before selecting vertical 2D slices where the ventricles are clearly
visible. The slice plane is the same for all three scans of each patient.

The expanding ventricles can be registered by placing deformation atoms in the
form of higher order kernels in the center of the ventricles of the fixed image as
shown in Figure 1.1. We manually place five deformation atoms in the ventricle area
of each patient. It is important to note that though we localize the description of
the deformation to the deformation atoms, the atoms control the deformation field
throughout the ventricle area. Based on the size of the ventricles, we use Gaussian
kernels with a scale of 15 voxels for the kernels, and we let the regularization weight
in (2.1) be λ = 16. The effect of these choices is discussed below. Each deformation
atom consists of a zero- and first order kernel, and, for each patient, we perform
two registrations: we register the two baseline scans acquired at the same day, and
we register one baseline scan against the follow up scan. Thus, the baseline-baseline
registration should indicate no ventricle expansion, and we expect the baseline-follow
up registration to indicate ventricle expansion. Figure 1.1 shows for one patient the
placement of the control points in the baseline image, the follow up image, the log-
Jacobian determinant in the ventricle area of the generated deformation, and the
initial vector field driving the registration.

The use of first order kernels allows us to interpret the result of the registrations
and to relate the results to possible expansion of the ventricles. The volume change is
indicated by the Jacobian determinant of the generated deformation at the deforma-
tion atoms as well as by the divergence of the first order kernels. The latter is available
directly from the registration parameters. We plot in Figure 5.5 the logarithm of the
Jacobian determinant and the divergence for both the same day baseline-baseline reg-
istrations and for the baseline-follow up registrations. Patient 1 − 4 are classified as
demented, patient 5 and 6 as non-demented, and all patient have constant clinical
dementia rating through the experiment. The time-span between baseline and follow
up scan is 1.5-2 years with the exception of 3 years for patient four. As expected, the
log-Jacobian is close to zero for the same day baseline-baseline scans but it increases
with the baseline-follow up registrations of the demented patients. In addition, the
correlation between the log-Jacobian and the divergence shows how the indicated
volume change is available directly from the registration parameters. This result sug-
gests the usefulness of the approach and points to future experiments to validate the
method.

4http://www.oasis-brains.org
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Fig. 5.5. Indicated volume change: (a) The average log-Jacobian determinant of the gener-
ated deformation at the 5 deformation atoms for six patients (1-4 demented, 5-6 non-demented);
(b) divergence of the 5 higher order kernels representing the deformation. The divergence can be
extracted directly from the parameters of the higher order kernels, and the correlation between the
log-Jacobian and the divergence as seen by the similarity between (a) and (b) therefore shows the
interpretability of the deformation atoms.

We chose two important parameters above: the kernel scale and the regularization
term. The choice of one scale for all patients works well if the ventricles to be registered
are of approximately the same size at the baseline scans. If the ventricles vary in size,
the scale can be chosen individually for each patient. Alternatively, a multi-scale
approach could do this automatically which suggests combining the method with e.g.
the kernel bundle framework [24]. Depending on the image forces, the regularization
term in (2.1) will affect the amount of expansion captured in the registration. Because
of the low number of control points, we can in practice set the contribution of the
regularization term to zero without experiencing non-diffeomorphic results. It will be
interesting in the future to estimate the actual volume expansion directly using the
parameters of the deformation atoms with this less biased model.

6. Conclusion and Outlook. We have introduced higher order kernels in the
LDDMM registration framework. The kernels allow compact representation of locally
affine transformations by increasing the capacity of the deformation description. Cou-
pled with similarity measures incorporating first order information, the higher order
kernels improve the range of deformations reached by sparsely discretized LDDMM
methods, and they allow direct capture of first order information such as expansion
and contraction. In addition, the constitute deformation atoms for which the gener-
ated deformation is directly interpretable.

In the paper, we have shown how the partial derivative reproducing property
implies singular momentum for the higher order kernels, and we used this to derive
the EPDiff evolution equations. By computing the forward and backward variational
equations, we are able to transport gradient information and derive a matching algo-
rithm. We provide examples showing typical deformation coded by first order kernels
and how images can be registered using a very few parameters, and we have applied
the method to register human brains with progressing atrophy.

The experiments included here show only a first step in the application of higher
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order kernels: the kernels may be applied to register entire images; merging the
method with multi-scale approaches will increase the description capacity and may
lead to further reduction in the dimensionality of the representation. Combined with
efficient implementations, higher order kernels promise to provide a step forward in
compact deformation description for image registration.
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Appendix A. Time Evolution of µt. Inserting the Hamiltonian form of the
momentum, we have
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t,i)

lD1∇2K
k
l (ϕv

0t(x0,i), ϕ
v
0t(x0,n))Djϕv

0t(x0,i)

+
d�

j,j�=1

(µj�

t,n)k(µj
t,i)

lD2

�
D1∇2K

k
l (ϕv

0t(x0,i), ϕ
v
0t(x0,n))Djϕv

0t(x0,i)
�
Dj�ϕv

0t(x0,n)
�

.

For scalar kernels Kk
l (x, y) = K(x, y) iff k = l, and hence

∂tµt,n = −
N�

i=1

��
µT
t,nµt,i

�
∇2K(ϕv

0t(x0,i)), ϕ
v
0t(x0,n))

+

d�

j=1

�
µj,T
t,nµt,i

�
D2∇2K(ϕv

0t(x0,i), ϕ
v
0t(x0,n))Djϕv

0t(x0,n)

+
d�

j=1

�
µT
t,nµ

j
t,i

�
D1∇2K(ϕv

0t(x0,i), ϕ
v
0t(x0,n))Djϕv

0t(x0,i)

+

d�

j,j�=1

�
µj�,T
t,n µj

t,i

�
D2

�
D1∇2K(ϕv

0t(x0,i), ϕ
v
0t(x0,n))Djϕv

0t(x0,i)
�
Dj�ϕv

0t(x0,n)
�

.
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Using symmetry and rewriting,

∂tµt,n = −
N�

i=1

��
µT
t,nµt,i

�
∇2K(xt,i, xt,n)

+

d�

j=1

�
µj,T
t,nµt,i − µT

t,nµ
j
t,i

�
D2∇2K(xt,i, xt,n)Djϕv

0t(x0,n)

+
d�

j,j�=1

�
µj�,T
t,n µj

t,i

�
D2

�
D1∇2K(xt,i, xt,n)Djϕv

0t(x0,i)
�
Dj�ϕv

0t(x0,n)
�

.

Appendix B. Variation of the Kernel and Derivatives. With K(x, y) =
γ(|x− y|2), we have the following expressions for the derivatives of the kernel:

∇1K = 2γ̇(|x− y|2)(x− y)

∇2K = −2γ̇(|x− y|2)(x− y)

D1∇1K = 2γ̇(|x− y|2)Idd + 4γ̈(|x− y|2)(x− y)(x− y)T

D2∇1K = −2γ̇(|x− y|2)Idd − 4γ̈(|x− y|2)(x− y)(x− y)T

D1∇2K = −2γ̇(|x− y|2)Idd − 4γ̈(|x− y|2)(x− y)(x− y)T

D2∇2K = 2γ̇(|x− y|2)Idd + 4γ̈(|x− y|2)(x− y)(x− y)T

D2(D1∇2Ka) = −D2(2γ̇(|x− y|2)a + 4γ̈(|x− y|2)(x− y)Ta(x− y))

= +4γ̈(|x− y|2)a(x− y)T + 8 ˙̈γ(|x− y|2)(x− y)Ta(x− y)(x− y)T

+ 4γ̈(|x− y|2)(x− y)aT + 4γ̈(|x− y|2)(x− y)TaIdd

= 4
�
γ̈(|x− y|2)a(x− y)T + γ̈(|x− y|2)(x− y)aT

+ γ̈(|x− y|2)(x− y)TaIdd + 2 ˙̈γ(|x− y|2)(x− y)Ta(x− y)(x− y)T
�

.

Variations of these expressions the take the form

δK(xt,i, xt,n) = 2γ̇t,in(xt,i − xt,n)T (δxt,i − δxt,n)

δ∇1K(xt,i, xt,n) = 4γ̈t,in(xt,i − xt,n)T (δxt,i − δxt,n)(xt,i − xt,n) + 2γ̇t,in(δxt,i − δxt,n)

δ∇2K(xt,i, xt,n) = −δ∇1K(xt,i, xt,n)

δD1∇2K(xt,i, xt,n) = −4γ̈t,in(xt,i − xt,n)T (δxt,i − δxt,n)Idd

− 8 ˙̈γt,in(xt,i − xt,n)T (δxt,i − δxt,n)(xt,i − xt,n)(xt,i − xt,n)T

− 4γ̈t,in(δxt,i − δxt,n)(xt,i − xt,n)T

− 4γ̈t,in(xt,i − xt,n)(δxt,i − δxt,n)T

δD2∇2K(xt,i, xt,n) = −δD1∇2K(xt,i, xt,n)
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δD2

�
D1∇2K(xt,i, xt,n)a

�
= D2

�
D1∇2K(xt,i, xt,n)δa

�

+ 8 ˙̈γt,in(xt,i − xt,n)T (δxt,i − δxt,n)a(xt,i − xt,n)T + 4γ̈t,ina(δxt,i − δxt,n)T

+ 8 ˙̈γt,in(xt,i − xt,n)T (δxt,i − δxt,n)(xt,i − xt,n)aT + 4γ̈t,in(δxt,i − δxt,n)aT

+ 8 ˙̈γt,in(xt,i − xt,n)T (δxt,i − δxt,n)(xt,i − xt,n)TaIdd + 4γ̈t,in(δxt,i − δxt,n)TaIdd

+ 16¨̈γt,in(xt,i − xt,n)T (δxt,i − δxt,n)(xt,i − xt,n)Ta(xt,i − xt,n)(xt,i − xt,n)T

+ 8 ˙̈γt,in(δxt,i − δxt,n)Ta(xt,i − xt,n)(xt,i − xt,n)T

+ 8 ˙̈γt,in(xt,i − xt,n)Ta(δxt,i − δxt,n)(xt,i − xt,n)T

+ 8 ˙̈γt,in(xt,i − xt,n)Ta(xt,i − xt,n)(δxt,i − δxt,n)T .

Appendix C. The Transpose Derivative System. We let M denote the time-
dependent matrix governing the linear ODE (4.1) for the evolution of the variation of
the initial conditions of the EPDiff equations, and we write M as a block matrix

M =




Mϕϕ MϕDϕ Mϕµ Mϕµj�

MDϕϕ MDϕDϕ MDϕµ Mϕµj�

Mµϕ MµDϕ Mµµ Mϕµj�

Mµjϕ MµjDϕ Mµjµ Mϕjµj�




=




�
aϕϕ
ni

� �
aϕDlϕ
ni

� �
aϕµ
ni

� �
aϕµj�

ni

�
�
aDϕlϕ
ni

� �
aDϕlDϕk

ni

� �
aDϕlµ
ni

� �
aDϕlµj�

ni

�

�
aµϕni

� �
aµDϕk

ni

� �
aµµni

� �
aµµ

j�

ni

�
�
aµ

jϕ
ni

� �
aµ

jDϕk

ni

� �
aµ

jµ
ni

� �
aµ

jµj�

ni

�




.

In order to determine the transpose MT , we isolate the components of the submatrices
M ··

ni from the right-hand side of system (4.1). All components not listed below will
be zero.

mϕϕ
ni = 2γ̇t,inµt,i(xt,i − xt,n)

T Idd

+
d�

j�=1

µj�
t,iD

j�ϕv
0t(x0,i)

T �4γ̈t,in(xt,i − xt,n)(xt,i − xt,n)
T + 2γ̇t,inIdd

�

iff i = n :
n�

i�=1

−2γ̇t,i�nµt,i�(xt,i� − xt,n)
T Idd

−
n�

i�=1

d�

j�=1

µj�
t,i�D

j�ϕv
0t(x0,i�)

T �4γ̈t,i�n(xt,i� − xt,n)(xt,i� − xt,n)
T + 2γ̇t,i�nIdd

�

mϕDϕl

ni = µl
t,i∇1K(xt,i, xt,n)

T

mϕµ
ni = γt,inIdd

mϕµj

ni = ∇1K(xt,i, xt,n)
TDjϕv

0t(x0,i)Idd
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mDϕlϕ
ni = −µt,iD

lϕv
0t(x0,n)

T �4γ̈t,in(xt,i − xt,n)(xt,i − xt,n)
T + 2γ̇t,inIdd

�

−
N�

j�=1

µj�
t,iD

lϕv
0t(x0,n)

T �4γ̈t,inDj�ϕv
0t(x0,i)(xt,i − xt,n)

T

+ 8 ˙̈γt,in(xt,i − xt,n)(xt,i − xt,n)
TDj�ϕv

0t(x0,i)(xt,i − xt,n)
T

+ 4γ̈t,in(xt,i − xt,n)
TDj�ϕv

0t(x0,i)Idd + 4γ̈t,in(xt,i − xt,n)(D
j�ϕv

0t(x0,i))
T �

iff i = n :
n�

i�=1

µt,i�D
lϕv

0t(x0,n)
T �4γ̈t,i�n(xt,i� − xt,n)(xt,i� − xt,n)

T + 2γ̇t,i�nIdd

�

+
n�

i�=1

N�

j�=1

µj�
t,i�D

lϕv
0t(x0,n)

T �4γ̈t,i�nDj�ϕv
0t(x0,i�)(xt,i� − xt,n)

T

+ 8 ˙̈γt,i�n(xt,i� − xt,n)(xt,i� − xt,n)
TDj�ϕv

0t(x0,i�)(xt,i� − xt,n)
T

+ 4γ̈t,i�n(xt,i� − xt,n)
TDj�ϕv

0t(x0,i�)Idd + 4γ̈t,i�n(xt,i� − xt,n)(D
j�ϕv

0t(x0,i�))
T �

mDϕlDϕk

ni = µk
t,iD

lϕv
0t(x0,n)

TD1∇2K(xt,i, xt,n)

iff i = n, iff l = k :

n�

i�=1

µt,i�∇2K(xt,i� , xt,n)
T +

n�

i�=1

d�

j�=1

µj�
t,i�

�
D1∇2K(xt,i� , xt,n)D

j�ϕv
0t(x0,i�)

�T
Idd

mDϕlµ
ni = ∇2K(xt,i, xt,n)

TDlϕv
0t(x0,n)Idd

mDϕlµj

ni =
�
D1∇2K(xt,i, xt,n)D

jϕv
0t(x0,i)

�T
Dlϕv

0t(x0,n)Idd

mµϕ
ni = (µT

t,nµt,i)
�
4γ̈t,in(xt,i − xt,n)(xt,i − xt,n)

T + 2γ̇t,inIdd

�

−
d�

j�=1

�
µj�,T
t,n µt,i − µT

t,nµ
j�
t,i

��
4γ̈t,inD

j�ϕv
0t(x0,n)(xt,i − xt,n)

T

+ 8 ˙̈γt,in(xt,i − xt,n)(xt,i − xt,n)
TDj�ϕv

0t(x0,n)(xt,i − xt,n)
T

+ 4γ̈t,in(xt,i − xt,n)
TDj�ϕv

0t(x0,n)Idd + 4γ̈t,in(xt,i − xt,n)(D
j�ϕv

0t(x0,n))
T �

−
d�

j,j�=1

�
µj�,T
t,n µj

t,i

��
8 ˙̈γt,inD

jϕv
0t(x0,i)(xt,i − xt,n)

TDj�ϕv
0t(x0,n)(xt,i − xt,n)

T

+ 8 ˙̈γt,in(xt,i − xt,n)D
jϕv

0t(x0,i)
TDj�ϕv

0t(x0,n)(xt,i − xt,n)
T

+ 4γ̈t,inD
jϕv

0t(x0,i)D
j�ϕv

0t(x0,n)
T + 4γ̈t,inD

jϕv
0t(x0,i)

TDj�ϕv
0t(x0,n)

+ 8 ˙̈γt,in(xt,i − xt,n)
TDjϕv

0t(x0,i)D
j�ϕv

0t(x0,n)(xt,i − xt,n)
T

+ 4γ̈t,inD
j�ϕv

0t(x0,n)D
jϕv

0t(x0,i)
T

+ 16¨̈γt,in(xt,i − xt,n)
TDjϕv

0t(x0,i)(xt,i − xt,n)(xt,i − xt,n)
T

Dj�ϕv
0t(x0,n)(xt,i − xt,n)

T

+ 8 ˙̈γt,in(xt,i − xt,n)(xt,i − xt,n)
TDj�ϕv

0t(x0,n)D
jϕv

0t(x0,i)
T

+ 8 ˙̈γt,in(xt,i − xt,n)
TDjϕv

0t(x0,i)(xt,i − xt,n)
TDj�ϕv

0t(x0,n)

+ 8 ˙̈γt,in(xt,i − xt,n)
TDjϕv

0t(x0,i)(xt,i − xt,n)D
j�ϕv

0t(x0,n)
T

�
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iff i = n :

−
N�

i�=1

(µT
t,nµt,i�)

�
4γ̈t,i�n(xt,i� − xt,n)(xt,i� − xt,n)

T + 2γ̇t,i�nIdd

�

+
N�

i�=1

d�

j�=1

�
µj�,T
t,n µt,i� − µT

t,nµ
j�
t,i�

��
4γ̈t,i�nD

j�ϕv
0t(x0,n)(xt,i� − xt,n)

T

+ 8 ˙̈γt,i�n(xt,i� − xt,n)(xt,i� − xt,n)
TDj�ϕv

0t(x0,n)(xt,i� − xt,n)
T

+ 4γ̈t,i�n(xt,i� − xt,n)
TDj�ϕv

0t(x0,n)Idd

+ 4γ̈t,i�n(xt,i� − xt,n)(D
j�ϕv

0t(x0,n))
T �

+
N�

i�=1

d�

j,j�=1

�
µj�,T
t,n µj

t,i�
��

8 ˙̈γt,i�nD
jϕv

0t(x0,i�)(xt,i� − xt,n)
TDj�ϕv

0t(x0,n)(xt,i� − xt,n)
T

+ 4γ̈t,i�nD
jϕv

0t(x0,i�)D
j�ϕv

0t(x0,n)
T

+ 8 ˙̈γt,i�n(xt,i� − xt,n)D
jϕv

0t(x0,i�)
TDj�ϕv

0t(x0,n)(xt,i� − xt,n)
T

+ 4γ̈t,i�nD
jϕv

0t(x0,i�)
TDj�ϕv

0t(x0,n)

+ 8 ˙̈γt,i�n(xt,i� − xt,n)
TDjϕv

0t(x0,i�)D
j�ϕv

0t(x0,n)(xt,i� − xt,n)
T

+ 4γ̈t,i�nD
j�ϕv

0t(x0,n)D
jϕv

0t(x0,i�)
T

+ 16¨̈γt,i�n(xt,i� − xt,n)
TDjϕv

0t(x0,i�)(xt,i� − xt,n)(xt,i� − xt,n)
T

Dj�ϕv
0t(x0,n)(xt,i� − xt,n)

T

+ 8 ˙̈γt,i�n(xt,i� − xt,n)(xt,i� − xt,n)
TDj�ϕv

0t(x0,n)D
jϕv

0t(x0,i�)
T

+ 8 ˙̈γt,i�n(xt,i� − xt,n)
TDjϕv

0t(x0,i�)(xt,i� − xt,n)
TDj�ϕv

0t(x0,n)

+ 8 ˙̈γt,i�n(xt,i� − xt,n)
TDjϕv

0t(x0,i�)(xt,i� − xt,n)D
j�ϕv

0t(x0,n)
T

�

mµDϕl

ni = −
d�

j�=1

4
�
µj�,T
t,n µl

t,i

��
γ̈t,in(xi,t − xn,t)

TDj�ϕv
0t(x0,n)Idd

+ γ̈t,in(xi,t − xn,t)D
j�ϕv

0t(x0,n)
T

+ γ̈t,inD
j�ϕv

0t(x0,n)(xi,t − xn,t)
T

+ 2 ˙̈γt,in(xi,t − xn,t)(xi,t − xn,t)
TDj�ϕv

0t(x0,n)(xi,t − xn,t)
T �

iff i = n :

−
N�

i�=1

�
µl,T
t,nµt,i� − µT

t,nµ
l
t,i�

�
D2∇2K(xt,i� , xt,n)

−
N�

i�=1

d�

j�=1

�
µl,T
t,nµ

j�
t,i�

�
D2

�
D1∇2K(xt,i� , xt,n)D

j�ϕv
0t(x0,i�)

�
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mµµ
ni = −∇2K(xt,i, xt,n)µ

T
t,n −

d�

j�=1

D2∇2K(xt,i, xt,n)D
j�ϕv

0t(x0,n)µ
j�,T
t,n

iff i = n :

−
N�

i�=1

∇2K(xt,i� , xt,n)µ
T
t,i� +

N�

i�=1

d�

j�=1

D2∇2K(xt,i� , xt,n)D
j�ϕv

0t(x0,n)µ
j�,T
t,i�

mµµj

ni = +D2∇2K(xt,i, xt,n)D
jϕv

0t(x0,n)µ
T
t,n

−
d�

j�=1

D2

�
D1∇2K(xt,i, xt,n)D

jϕv
0t(x0,i)

�
Dj�ϕv

0t(x0,n)µ
j�,T
t,n

iff i = n :

−
N�

i�=1

D2∇2K(xt,i� , xt,n)D
jϕv

0t(x0,n)µ
T
t,i�

−
N�

i�=1

d�

j�=1

D2

�
D1∇2K(xt,i� , xt,n)D

j�ϕv
0t(x0,i�)

�
Djϕv

0t(x0,n)µ
j�,T
t,i�

mµjϕ
ni = −

d�

j�=1

Dϕv
0t(x0,i)

−1,T ej�µ
j,T
t,nm

Dϕj�ϕ
ni

mµjDϕl

ni = −
d�

j�=1

Dϕv
0t(x0,i)

−1,T ej�µ
j,T
t,nm

Dϕj�Dϕl

ni

iff i = n :

Dϕv
0t(x0,n)

−1,T el
�
Dϕv

0t(x0,n)
−1,T ∂tDϕv

0t(x0,n)
Tµj

t,n

�T

mµjµ
ni = −

d�

j�=1

Dϕv
0t(x0,i)

−1,T ej�µ
j,T
t,nm

Dϕj�µ
ni

mµjµj�

ni = −
d�

j��=1

Dϕv
0t(x0,i)

−1,T ej��µ
j,T
t,nm

Dϕj��µj�

ni

iff i = n, j = j� :

−Dϕv
0t(x0,n)

−1,T ∂tDϕv
0t(x0,n)

T .

As described in Section 4, the gradient at t = 0 can then be obtained by solving the
system

yt = MT
t yt

backwards in time, confer also [32, p. 281].
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[27] Alain Trouvé, An infinite dimensional group approach for physics based models in patterns
recognition, 1995.

[28] M. Vaillant, M.I. Miller, L. Younes, and A. Trouvé, Statistics on diffeomorphisms via
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Notes:
With the goal of reducing computation time with multiple scales, we present a
GPU implementation of the kernel bundle landmark registration algorithm. The
structure of the algorithm and the massively parallel processors enable a two
orders of magnitude speedup over a single threaded CPU implementation. In
essence, this shows that mathematically well-founded and computationally heavy
algorithms can be used in practice. In the paper, we refer to the kernel bundle
framework by the abbreviation LDDKBM.

65





Accelerating Multi-Scale Flows for LDDKBM Diffeomorphic Registration

Stefan Sommer
Department of Computer Science, University of Copenhagen
Universitetsparken 1, DK-2100 Copenhagen E, Denmark

sommer@diku.dk

Abstract

Registrations in medical imaging and computational
anatomy can be obtained using the Large Deformation
Diffeomorphic Kernel Bundle Mapping (LDDKBM) frame-
work. This provides a registration algorithm with a solid
mathematical foundation while incorporating regulariza-
tion of deformation at multiple scales. Because the vari-
ational formulation of LDDKBM implies a heavy compu-
tational burden in the search for optimal registrations, ex-
ploiting every possibility for faster computation will im-
prove the usability of the algorithm. We present a paral-
lelization strategy using the multi-scale structure and show
that the parallelized method constitutes an example of how
the processing power of GPUs can massively reduce the
running time: after moving the computation to the GPU, we
achieve a two order of magnitude speedup over a single-
threaded CPU implementation. Not only does this signifi-
cantly reduce the cost of using multiple scales, it also allows
the algorithm to be used on much larger datasets.

1. Introduction

Registration, finding smooth, one-to-one mappings be-
tween landmarks, images, surfaces, or tensors, constitute
an important task in medical imaging and computational
anatomy. Examples include using image intensity to regis-
ter scanned brains to an already segmented reference brain,
or using sets of landmarks, manually or automatically an-
notated, to drive the registration of lungs in different phases
of the respiratory process.

Much research in registration thrives to create algorithms
which produce good matches in reasonable time while hav-
ing a strong mathematical foundation and plausible model
of deformation. The latter properties are important to ensure
convergence and existence of optimal solutions as well as
allowing meaningful statistics to be performed on the reg-
istration results. This is in particular important when using

statistical techniques to search for patterns in the data and
developing biomarkers in order to ensure actual properties
of the data are measured instead of artifacts of the registra-
tion algorithm.

The LDDMM framework [16] and the multi-scale LD-
DKBM extension [12] provide the benefit of having strong
mathematical foundations while performing well in appli-
cations. However, the well-founded and physically inspired
models comes with the cost of heavy computational require-
ments which necessitates exploiting every possibility for
faster computation. This paper presents a strategy for GPU
implementation of the multi-scale LDDKBM algorithm for
landmark registration. We show how the cost of multiple
scales can be eased by utilizing the decoupled structure of
the problem, and we present benchmarks evaluating the ac-
tual implementations. As we will show, the GPU imple-
mentation achieves two orders of magnitude speedup for
the computationally most intensive part of the algorithm al-
lowing the LDDKBM method to be used on much larger
datasets with increased number of scales.

1.1. Related Work

Besides LDDMM and LDDKBM, many methods for
non-rigid registration are currently used for regularization.
Examples include elastic methods [10], parametrizations
using static velocity fields [1] and the demons algorithm
[13, 15]. The deformable template model pioneered by
Grenander in [7] and the flow approach by Christensen et
al. [5] was paramount in the development of LDDMM to-
gether with the theoretical contributions of Dupuis et al.
and Trouvé [6, 14]. Algorithms for computing optimal dif-
feomorphisms have been developed in [2]. The LDDKBM
multi-scale extension of LDDMM was introduced in [12]
with the evolution equations for optimal registrations pre-
sented in [11]. The two-scale case was in addition devel-
oped in [3].

GPU implementation of algorithms for image registra-
tion in the LDDMM framework has been described in [9, 8]
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with freely available source code.1 The algorithm devel-
oped here differs in targeting the multi-scale LDDKBM
framework as well as being applicable to landmarks instead
of images. Dealing explicitly with the scale-structure is im-
portant in order to lessen the speed penalty of including
multiple scales. Moreover, the different structure of the
landmark algorithm results in a problem with greater fo-
cus on computational power than the memory bound image
case.

1.2. Content and Outline

We start by a brief introduction to the registration prob-
lem and the LDDKBM framework before describing the
flow equations for the landmark case. The backwards flow
constitute the computationally most intensive part of the op-
timization, and we describe the structure of the computation
of the time-step update before parallelizing the problem and
detailing a GPU implementation. We end the paper with
benchmarks and conclusion. The paper thus contributes by

(1) describing how registration of landmarks in the LDD-
KBM framework can be solved using the forwards and
backwards flow equations,

(2) presenting a strategy for parallelizing the backwards
time-step update,

(3) providing a fast GPU implementation of the algorithm,

(4) and giving benchmarks showing how the problem
scales with input size and number of scales and how
well the GPU algorithm performs compared to a CPU
implementation.

2. LDDKBM Diffeomorphic Registration
The Large Deformation Diffeomorphic Kernel Bun-

dle Mapping framework (LDDKBM) extends the single-
scale LDDMM framework by allowing regularization at
multiple-scales to be used in the registration. We give a
brief overview of the registration problem and how it is
treated in LDDKBM. For further details, we refer to the
paper [12] introducing LDDKBM and the monograph [16]
with extensive details on LDDMM.

Registration of geometric objects is often performed by
defining an action of diffeomorphisms on the objects be-
fore searching for diffeomorphisms matching the objects
through the action. For example, in order to register land-
marks x1, . . . , xN and y1, . . . , yN in Rd, d = 2, 3, we
search for a diffeomorphism ϕ : Rd → Rd such that
ϕ(xi) = yi. Equivalently, if we wish register images I0
and I1, we search for ϕ such that I0 ◦ϕ = I1. Frequently, a
perfect match is not possible or even not desirable because

1See http://www.sci.utah.edu/software/
13/370-atlaswerks.html

noisy data may force the diffeomorphism to be highly irreg-
ular. Instead, the problem is stated in a variational form as
a search for ϕ minimizing

E(ϕ) = E1(ϕ) + λU(ϕ) (1)

where E1(ϕ) is a regularization measure, U(ϕ) a measure
of the quality of the match, and λ > 0 a weight. A simple
and often used choice for U is the L2-error which takes the
form U(ϕ) =

�N
i=1 �ϕ(xi) − yi�2 for landmarks. In the

LDDKBM framework, the regularization measure E1(ϕ) is
defined as the minimum energy of paths of diffeomorphisms
transporting the identity IdΩ to ϕ, i.e.

E1(ϕ) = min
wt∈W,ϕ

Ψ(w)
01 =ϕ

� 1

0

�ws�2W ds (2)

with ϕ
Ψ(w)
0t denoting the path starting at IdΩ with time-

derivative ∂tϕ
Ψ(w)
0t = Ψ(wt)◦ϕv

0t. The spaceW is denoted
the kernel bundle and consist of a family of vector spaces Vr

parameterized by r, the scale. Each vector space Vr can be
considered a subset of a tangent space V of a suitable Lie
group of diffeomorphisms, and a map Ψ collects parts wr

of a bundle vector w ∈ W at each scale r to one derivative
vector in V by integration Ψ(w) =

�
IW

wr dr. The norm
� · �Vr

on each Vr is allowed to vary with r, and the bundle
norm � · �W is defined by

�w�2W =

�

IW

�wr�2Vr
dr ,

i.e., the integral of the energy over all scales.
This bundle norm is chosen to penalize highly varying

paths while allowing variation at different scales to be pe-
nalized differently. In short, a low value of E1(ϕ) implies
that the path to reach ϕ, and hence ϕ itself, is regular.

2.1. Optimization

Optimal paths for (2) are governed by the KB-EPDiff
equations which extends the EPDiff equations for LDDMM
[11]. These evolution equations assert that the bundle ve-
locity w0 of the path at time t = 0 changes in a specific
way throughout the evolution of the path from t = 0 to its
end at t = 1. This property is denoted momentum conser-
vation, and it allows a search for a ϕ minimizing (1) to be
phrased in terms of the initial bundle velocity: if we assume
ϕ = ϕ

Ψ(w)
01 then the values of both E1(ϕ) and U(ϕ) are

determined by w0 and we optimize

E(w0) = E1(w0) + λU(w0) (3)

instead of (1). In practice, this can be done by giving an
initial guess for w0, calculating the gradient ∇E(w0) =
∇E1(w0) + λ∇U(w0), and updating w0 in a gradient de-
scent or similar fashion.
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2.2. The Gradient: Integrating the Flows

The gradient necessary for optimizing (3) can be com-
puted using a two step algorithm: the initial bundle velocity
w0 is transported forward in time to obtain the diffeomor-
phism ϕ before flowing the gradient at time t = 1 back-
wards to obtain the gradient ∇E(w0) at t = 0.

For N landmarks x1, . . . , xN , the KB-EPDiff equations
governing the forward integration take the form

Ψ(wt) =

�

IW

�N
l=1 Kr(·, xt,l)at,r,ldr

d
dtat,r,i = −

��

IW

�N
l=1 D1

�
Ks(xt,i, xt,l)at,s,l

�T
ds

�
at,r,i

xt,i = ϕ
Ψ(w)
0t (x0,i) .

(4)
The points xt,i denote the particle positions at time t and
the set of time-dependent vectors at,r,i is the momentum
of the flow. The vectors have components at each scale
and are connected to the bundle velocity wt,i,r trough the
kernels Kr(·, ·) as expressed by the first evolution equa-
tion. The choice of kernels affects the regularization of
the deformation; often used choices are Gaussian kernels
Kr(x, y) = exp(�x−y�2

r2 )Idd, which we will use in the rest
of the paper. The system (4) is a non-linear ODE and fi-
nite if the set of scales IW is finite. In practice, IW is
a discretization {s1, . . . , sR} of an interval [s1, sR] using
R scalars. The system can be integrated using standard
Runge-Kutta integrators such as matlabs ode45 solver.

Since ϕ is determined by w0, which through the evo-
lution of wt is uniquely linked to w1, U(ϕ) is determined
by w1. The gradient ∇U(w1) is usually known; if U mea-
sures the L2-error, the gradient is just the vector with the ith
component being 2(x1,i−yi) where yi are the target points.
To perform gradient descent using w0, we need the gradi-
ent ∇U(w0) which can be obtained by differentiating (4)
and solving the transpose system backwards.2 The gradient
∇E1(w0) can be solved simultaneously by adding it to the
backwards ODE. Combined, the gradient ∇E(w0) can be
found as the solution at t = 0 of an affine, non-autonomous
ODE

ẏt = vt +Mtyt (5)

integrated from t = 1 to t = 0. The linear component
transports ∇U(wt) while the affine component transport
∇E1(wt). A complete derivation of this system is out of
scope of this paper; it can be found in the upcoming journal
version of [12].

While computing the right-hand side of the system (4)
has complexityO(N2 ·R) withN the number of landmarks
and R the number of scales, computing the right hand side

2Confer [16] for a description of this method in the LDDMM case.

of the system (5) has complexityO(N2·R2). This computa-
tion, we denote it the time-step update, makes the backward
integration the computationally most intensive parts of the
optimization process, and, therefore, we wish to parallelize
the time-step update and accelerate it using GPU hardware.

3. Parallelization and GPU Implementation
In order to accelerate the integration of the system (5),

we aim for producing fast procedures for the time-step up-
date vt + Mtyt. We first describe the CPU procedures in
order to identify options for parallelization before giving
details on the GPU implementation and thread grid layout.
Note that we avoid using the otherwise standard term kernel
for the GPU code units in order to avoid confusion with the
Gaussian kernelsKr(·, ·) in the LDDKBM framework.

The matrix Mt and the affine component vt depend on
the momenta at,r,i and particle positions xt,i resulting in
the system being non-autonomous. The matrix Mt is not,
however, explicitly generated. Instead, the product Mtyt
is evaluated as a sequence of nested loops over particles
and scales saving the time to first store and later retrieve
the large matrix. The main part of the computation in each
loop iteration consists of evaluating the Gaussian kernels
Kr(·, ·) and computing a sequence of simple floating point
operation (flops).

The computation of the update is split into two proce-
dures: the first updates the differential of the particle po-
sitions requiring computation of N · d scalars in the out-
put vector with d usually being 3 for 3D registration. The
second procedure updates the differential of the momenta.
Since the momentum is split over both particles and scales,
this procedure updatesN ·R ·d scalars. The structure of the
procedures is shown in Algorithm 1 and 2. It is clear that
both procedures has complexity O(N2 ·R) in the computa-
tion of the kernels, and O(N2 · R2) in the computation of
the additional flops.

3.1. Bottlenecks and Parallelization Strategy

Matrix-vector products are usually memory-bound oper-
ations since every item of the matrix needs to be retrieved
frommemory while a relatively small amount of calculation
is needed for each item. A stored matrix approach to the
current problem would imply a memory-access complexity
of O(N2 · R2) which would dominate the execution time.
However, since the matrix is computed as needed as a func-
tion of the particle positions and momentum at the given
time, the computation need only refer toO(N ·R) locations
in memory. Combined with the fact that the exponentials
needed to compute the Gaussian kernels are relatively ex-
pensive to compute and the quadratic scaling in R for the
additional flops, the operation is instead primarily compu-
tationally bound. This property makes a parallelized imple-
mentation ideal for using the processing power provided by
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Algorithm 1 Update particles, CPU
for i = 1 → N do � updating particle i

for l = 1 → N do � loop, all particles
for s = 1 → R do � loop, all scales

compute and store kernels
end for
for s1 = 1 → R do � loop, all scales twice

for s2 = 1 → R do
retrieve kernels
compute additional flops
sum results

end for
end for

end for
update particle i in output array

end for

Algorithm 2 Update momenta, CPU
for i = 1 → N do � updating momentum (i, si)

for si = 1 → R do
for l = 1 → N do � loop, all particles

if si = 1 then � loop, all scales once per l
for s = 1 → R do

compute and store kernels
end for

end if
for s = 1 → R do � loop, all scales

retrieve kernels
compute additional flops
sum results

end for
end for
update momentum (i, si) in output array

end for
end for

the large number of cores in GPUs.
The simplest GPU implementation would consist in cre-

ating a thread for each particle indexed by i in the first outer
loop of the first procedure resulting in N threads total. For
the second procedure, creating a thread for each pair (i, si)
would result in N · R threads total. However, with a num-
ber of particles of up to 300 for the lung dataset we later use
for benchmarks, such a strategy would result in poor utiliza-
tion of the computational units in a fast GPU and would not
properly offset time spent on memory access.

For each particle, the procedures compute sums during
the loop iteration over particles and scales. Splitting these
sums over multiple threads and reducing afterwards con-
stitutes an obvious optimization. We employ this standard
strategy to optimize both procedures reducing over both
particles and scales. In addition, we cache data in thread
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Figure 1. Thread grid layout for the GPU procedures.

group shared memory and split the task of loading data from
global memory to group shared memory among the threads.
This reduces the number of memory access stalls for the
slower global memory while allowing the threads to retrieve
data quickly from the faster shared memory.

The computation of the kernels over scale is the same
for all pairs of particles i and l. This allows for split-
ting the computation of the kernels over threads in a thread
group. After a within-group sync, the threads can retrieve
the computed values from memory. This decoupling of
scales offsets the lower number of compute cores for special
mathematical operations and allow a significant speedup.
It should also be noted that thread group synchronization
within loops can lead to poor performance in some circum-
stances. This can be avoided by switching the order of the
loops though doing so would require reordering of the input
arrays in order to ensure coalesced memory access. How-
ever, for the problem at hand, the synchronization does not
significantly affect performance.

3.2. GPU Implementation

In the optimized versions, a thread for each pair of in-
tegers (i, si, k), i = 1, . . . , N , si = 1, . . . , R, k =
1, . . . ,NrRed, is created for both part of the updates, where
NrRed control the number of threads working in parallel on
the innermost loops. The resulting procedures are shown
in Algorithm 3 and 4. Storing in group local memory the
computed kernels and the results of each split of the inner
loops before reducing is paramount for the fast execution
of the GPU procedures. We take care in ordering the ac-
cesses to the local memory to ensure coalesced access and
use padding of the arrays in order to avoid bank conflicts.

We create a two-dimensional thread grid layout for both
kernels with scale and splits of the inner loops along the first
dimension and particles along the second. Since the number
of scales is usually relatively small, we can cover the first di-
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Algorithm 3 Update particle i, GPU
for l = k → k + chunk size do � loop, particles

compute kernel si
retrieve data from global memory
save kernel and data to thread group local memory
sync threads in thread group
for s = 1 → R do � loop, all scales

retrieve kernel s and data from local memory
compute additional flops
sum results

end for
end for
save to thread group local memory
sync threads in thread group
if selected threads then

reduce over saved results
update particle i in output array

end if

Algorithm 4 Update momentum (i, si), GPU
for l = k → k + chunk size do � loop, particles

compute kernel si
retrieve data from global memory
save kernel and data to thread group local memory
sync threads in thread group
for s = 1 → R do � loop, all scales

retrieve kernel s and data from local memory
compute additional flops
sum results

end for
end for
save to thread group local memory
sync threads in thread group
if selected threads then

reduce over saved results
update momentum (i, si) in output array

end if

mension with one thread group. A number of thread groups
is then needed to cover the entire grid along the second di-
mension. Here we have some freedom in choosing the ac-
tual number of particles covered by each group with the up-
per limit determined by the maximum number of threads
per group and registers per multiprocessor supported by the
GPU. For a given number of scales, we experimentally de-
termine the optimal value which is usually the maximum
allowed. The thread grid layout is illustrated in Figure 1.

4. Benchmarks: Towards Faster Registration

We perform benchmarks on the computation of the
backwards integration time-step update, the computation-

System 1
4 x Intel Xeon E5520 (quad core) @ 2.27GHz, 32Gb
2 x GeForce GTX 590, 3072Mb
4 x 512 cores @ 607Mhz

System 2
Intel Core 2 Quad Q9450 @ 2.66GHz, 8Gb
3 x Nvidia GeForce GTX 295, 2 x 895Mb
6 x 240 cores @ 576Mhz

Table 1. The two systems used for benchmarking.

ally most intensive part of the registration algorithm. The
dataset [4] consists of annotated landmarks on CT images
of different stages of the lung respiratory phases for five pa-
tient. Details on the setup can be found in [12]. For each
patient, 300 landmarks are available, which is close to the
maximum data size allowing registrations to finish within a
reasonable time on conventional hardware. In addition, in
order to simulate computations on larger datasets which the
faster algorithms now allow, we use artificially generated
particles.

The benchmarks will be performed on two systems, con-
fer Table 1. System 1 contains two GeForce GTX590
cards each having two GPU units, while system 2 has three
GeForce GTX295 with a total of 6 GPU units. To keep the
timings comparable, we evaluate the algorithm running on a
single GPU unit against a single-threaded CPU implemen-
tation. It is straightforward to split the problem over mul-
tiple GPU units and multiple CPU cores with good scaling
for low number of units and cores. Thus, the reported tim-
ings can to some extend be translated to real performance
by dividing by the number of CPU cores and GPU units,
respectively. As an example with a higher number of cores,
when using all 16 CPU cores of System 1, an OpenMP par-
allelization resulted in a 10 times speedup for the CPU im-
plementation. Using all available 4 GPU units of system 1
will similarly improve the GPU implementation.

The timings are reported for CUDA3 implementations
of Algorithm 3 and 4 though OpenCL4 versions have been
implemented as well with similar performance. In contrast
to the linear scaling of the size of the data needed to be
transfered to the GPU memory, the time-step update scales
quadratically in both number of particles and scales. There-
fore, the time spent on host memory to GPU memory trans-
fers plays an insignificant role compared to the time spent
on the actual computation. Optimizing the memory access
structure of the CPU implementation in order to improve
cache performance is not perceived here; in rough terms,
the CPU implementation follows Algorithm 1 and 2.

3http://www.nvidia.com/object/
cuda_home_new.html

4http://www.khronos.org/opencl/
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Figure 2. Running time (seconds) and speedup for both systems
with between 50 and 300 particles of the lung dataset. CPU run-
ning time is reported for system 1. Note the different axes for the
GPU and CPU timings. The running time increases quadratically
and the speedup of the GPU cores increases with data size.

In Figure 2, the time spent for each computation of the
time-step update with 5 scales is plotted against the number
of particles included from the lung dataset. The quadratic
scaling is clear for the CPU implementation. There is some
variance in the effectiveness of the GPU implementations as
expected from the different utilization of the computational
cores for different data sizes. The GPU vs. CPU speedup
plot shows increasing benefit of using the GPUs with in-
creasing data size.

Since the speedup curves with the lung data do not level
out, it is not clear that the computational power of the GPUs
are fully utilized for this dataset. We increase the data size
with randomly generated particles and plot the results, again
with 5 scales, in Figure 3. The speedup curves for both sys-
tems reach plateaus showing reduction in running time of
close to 200 for system 1 and slightly more than 100 for
system 2. Compared to the fact that the theoretical peak per-
formance of one GTX590 unit is roughly 1.4 times the peak
performance of one GTX295 unit (1244 GFLOPS vs. 894
GFLOPS), this gives some indication that the running time
correlates with the hardware capability. With large num-
ber of particles, we achieve approximately 145 GFLOPS
for the simple floating point operations and approximately
0.7e9 evaluations of the Gaussian kernels per second.

Figure 4 shows how the number of scales correspond
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Figure 3. Running time (seconds) and speedup with artificial data.
CPU running time is reported for system 1. The increase in run-
ning time is quadratic with the speedup curves leveling out (close
to 200 times speedup for system 1 and more than 100 times for
system 2).

to the running time with fixed data size (1000 particles).
The graphs increase quadratically in the number of scales,
though with slower growth for the GPU for a low number
of scales. This is most likely a combination of increased
utilization of the hardware for the increasing computational
load and the fact that the computation of the Gaussian ker-
nels scales linearly in the number of scales. It should be
noted that for practical purposes, including more than 16
scales in the registration is hardly useful.

5. Conclusion and Outlook
We have implemented and tested a LDDKBM landmark

registration algorithm on GPU hardware and shown that a
two orders of magnitude speedup is achievable on the most
time intensive part of the algorithm. The result allows the
LDDKBM framework to be applied to much larger datasets
in practice, and it allows the benefits of including scales
in the registration to coincide with fast computation of the
optimal registration. The benchmarks show the expected
quadratic increase in running time as a function of both
number of particles and number of scales. However, the lin-
ear complexity of the computation of the Gaussian kernels
will likely make the algorithm scale close to linearly in the
number of scales with the GPU implementation in practical
applications.
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Figure 4. Running time (seconds) and speedup as a function
of scale for 1000 particles (artificially generated data, computa-
tion on system 1). The increase is quadratic, though with the
GPU (GTX590) running time increasing less for lower number
of scales.
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Notes:
Performing statistics in non-linear spaces, in particular on manifolds, requires
computational tools to compute directions, distances, and projections. Inspired
from the embedded manifold constructed in Paper #6, we develop methods for
computing Jacobi fields and the differential of the Exponential map on Rieman-
nian manifolds. Various applications of this is dicussed including estimating sec-
tional curvature. We show how the the algorithms can be used for computing
Prinpcal Geodesic Analysis (PGA) without the commonly used tangent space lin-
earization. In the experimental section, we test how curvature affects the results
of the exact PGA algorithm.
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1 Introduction

Manifolds, sets locally modeled by Euclidean spaces, have a long and intriguing
history in mathematics, and topological, differential geometric, and Riemannian
geometric properties of manifolds have been studied extensively with results ex-
tending far beyond the fields of manifolds themselves. The introduction of high-
performance computing in applied fields has widened the use of manifolds, and
Riemannian manifolds, in particular, are now used for modeling a range of prob-
lems possessing non-linear structure. Applications include shape modeling (com-
plex projective shape spaces [23] and medial representations of surfaces [1,20]),
imaging (tensor manifolds in diffusion tensor imaging [9,10,31] and image seg-
mentation and registration [4,32]), and several other fields (forestry [18], human
motion modeling [37,27,40]).

To fully utilize the power of manifolds in modeling, it is essential to develop fast
and robust algorithms for computing various manifold constructions. Computing
intrinsic distances, Jacobi fields, curvatures, and injectivity radii poses important
problems [18] as well as solving optimization problems posed on manifolds or in
manifold tangent spaces and defining and computing manifold generalizations of
common Euclidean space statistics. The papers [6,22,29,24,36,39] address first-
order manifold problems, and certain second-order problems have been considered
but mainly on limited classes of manifolds [8]. Generalizing linear statistics has
been the focus of the papers [21,30,11,13,18].

In this article, we study the second-order problems arising from variations of
the initial velocity of geodesics. This will allow us to compute structures funda-
mental to geometry and to numerically solve certain optimization problems posed
in tangent spaces of manifolds. The developed methods apply to manifolds repre-
sented both parametrically and implicitly without preconditions such as knowledge
of explicit formulas for geodesics. Hence, in addition to being interesting from a
geometrical and computational point of view, the algorithms will be useful for
applications in several of the mentioned areas.

To exemplify this, we consider the problem of capturing the variation of a set
of manifold valued data. The well-known Principal Component Analysis proce-
dure (PCA) has been generalized to manifold valued data with the introduction of
Principal Geodesic Analysis (PGA, [13]). The construction is the source of continu-
ing interest from both application oriented authors and the statistical community,
most recently with the development of Geodesic PCA (GPCA, [18]). Both PGA
and GPCA have been used successfully for a number of applications [13,9,18,41,
35,39].

Until now, there were no algorithm for numerically computing PGA for general
manifolds. Linear approximations have been used instead except for special classes
of manifolds where geodesics have explicit analytical formulas [35,18]. Because
PGA is posed as an optimization problem in the tangent space of the manifold,
the tools developed here apply to computing it without linearizing the manifold.
We will show how those tools allow us to compute exact PGA for a wide range of
manifolds under some assumptions on the optimization problems.
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1.1 Related Work

A vast body of mathematical literature describes manifolds and Riemannian struc-
tures, and [7,26] provide excellent introductions to the field. Different aspects of
numerical computation on implicitly defined manifolds are covered in [44,34,33].
Generalized inverses are important in the study of implicitly defined manifolds,
and we will use a result of Decell [5].

An important starting point for our work is the paper of Dedieu and Nowicki
[6] where the authors develop an initial value problem (IVP) for the computation
of geodesics on implicitly defined manifolds. This result, together with the IVP
defining geodesics in the parametrized case [7], constitutes the basis for the IVPs
developed in the following sections. A similar approach is taken in [43] for comput-
ing Jacobi fields on the infinite dimensional manifold of diffeomorphisms. Several
authors have studied the solution of the exponential map inverse problem, often
called the logarithm map: in [29,24,36], different schemes are used to evolve an
initial path towards a geodesic, and [22,25,39] use shooting methods. We build
upon these works by assuming the logarithm problem is solved for the manifolds
in question.

An optimization problem can be posed on a manifold in the sense that the do-
main of the cost function is restricted to the manifold and the sought for optima
must reside on the manifold. Such problems are extensively covered in the litera-
ture (e.g. [28,42]). The optimization problems we will solve involves the manifold
geometry in the cost functions, but the domains will be the linear tangent spaces
or subsets thereof with simple geometry. Therefore, the complexity will lie in the
cost functions and not the optimization domains, and we will not need to use the
optimization algorithms dealing with manifold domains.

The manifold generalization of linear PCA, PGA, was first introduced in [12],
but it was formulated in the form most widely used in [13]. It has subsequently
been used for several applications. To mention a few, the authors in [13,9] study
variations of medial atoms, [41] uses a variation of PGA for facial classification,
[35] presents examples on motion capture data, and [39] applies PGA to vertebrae
outlines. In addition, finding principal modes in tangent spaces, the procedure la-
beled linearized PGA in this paper, has been used for analyzing spine deformation
modes and deformities in [2,3]. The algorithm presented in [13] for computing
PGA with tangent space linearization is most widely used. In contrast to this, [35]
computes PGA as defined in [12] without approximations, but only for a specific
manifold, the Lie group SO(3). Our recent paper [38] uses the methods presented
here to experimentally assess the effect of tangent space linearization, and we show
that the algorithms work on high dimensional manifolds modelling real-life data.

A recent wave of interest in manifold valued statistics from the statistical com-
munity has lead to the development of Geodesic PCA (GPCA, [18,19,17]). GPCA
is in many respects close to PGA but optimizes for the placement of the center
point and minimizes projection residuals along geodesics instead of maximizing
variance in geodesic subspaces. GPCA uses no linear approximation, but it is cur-
rently only computed on spaces where explicit formulas for geodesics exist and on
quotients of such spaces.
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1.2 Content and Outline

The paper will present the following main contributions:

(1) We construct initial value problems allowing the computation of the differ-
ential of the exponential map and Jacobi fields, and second derivative of the
exponential map on both parametric and implicitly represented manifolds of
finite dimension.

(2) We show how the tools developed allow for numerical computation of the sec-
tional curvature and injectivity radius bounds for the manifolds.

(3) We present an algorithm allowing the computation of PGA without linearizing
the problem to the tangent space.

(4) We present examples showing the differences between exact PGA and the lin-
earized PGA previously used, and how the differences depend on the curvature
of the manifold.

Due to the generality of the setup, the algorithm in (3) will work for many of the
applications using PGA as defined in [13]. In particular, it will apply to those of
the above mentioned examples using finite dimensional manifolds with available
parametrization or implicit representation. We comment more on the classes of
manifolds covered in section 2.1. In addition, we will need some assumptions on
the manifold and dataset ensuring the optimization problems are well-behaved so
that true global optima are found.

The importance of curvature computations is noted in [18], which lists the
ability to compute sectional curvature as a high importance open problem. The
result of (2) can be seen as a partial solution to this problem; we are indeed able to
numerically compute the sectional curvature, although for the anomalous shape-
spaces [23] used in [18] no parametrization or implicit representation is directly
available, and hence the methods presented here do not apply.

In the experiments (4), we evaluate how the difference between the methods
vary as we increase the curvature of the manifold. This experiment, which to
the best of our knowledge has not been made before, is made possible by the
generality of the algorithms of (1), which frees us from previous restrictions to
specific manifolds such as SO(3) [35] or anomalous shape-spaces [18].

The paper will start by a brief discussion of the required notation and geometry
in section 2. We will touch upon the definition of PGA and how curvature and
injectivity radius bounds relate to Jacobi fields. The reader already familiar with
Riemannian geometry may wish to skip parts of this section. In section 3, we
present IVPs for the differential of the exponential map and Jacobi fields and for
the second derivative of the exponential map. The actual derivations are lengthy
and are, therefore, covered in the appendices. Following this, in section 4, we
develop the exact PGA algorithm. We end the paper with experiments in section 5
and concluding remarks.

2 Geometry and Notation

We give a brief discussion of some aspects of differential and Riemannian geometry
and, at the same time, introduce the notation used in the rest of the paper. The
reader is referred to [7] for an introduction to differential geometry and Riemannian
manifolds.

80



DExp, Jacobi Field, and Excat PGA

2.1 Manifolds and Their Representations

We will in the paper work with differentiable manifolds of finite dimension, and,
in the sequel, M will denote such a manifold of dimension η. We will need M to
be sufficiently smooth, i.e. of class Ck for k = 3 or 4 depending on the application.
A chart of M is then a map ϕ ∈ Ck(U,M) from an open subset U of Rη to the
manifold, and, since a chart provides a coordinate representation of a part of the
manifold, it is often called a local parametrization.

Manifolds can be represented without local parameterizations. Let M be a level
set of a differentiable map F : Rm → Rn. If the Jacobian matrix DxF has full rank
n for all x ∈ M , the level set is said to be regular. In that case, M will be an (m−n)-
dimensional manifold, and we say that M is implicitly defined. The space Rm is
called the embedding space. Throughout this paper, when dealing with implicitly
defined manifolds, m and n will denote the dimension of the domain and codomain
of F , respectively. We then have η = m− n for the dimension η of the manifold,

In addition to local parametrizations and implicit representations, other ways
of representing manifolds include discrete triangulations used for surfaces and quo-
tients M̃/G of a larger manifold M̃ by a group G. The latter is for example the
case for Kendall’s shape-spaces Σk

d [23]. Kendall’s shape-spaces for planar points
are actually complex projective spaces CP k−2 for which parameterizations are
available, and, for points in 3-dimensional space and higher, the shape-spaces are
anomalous and not manifolds. The spaces studied in [18] belong to this class.

Our methods do not apply directly to cases where local parametrizations or
implicit representations are not available. We note, however, that for the quotients
used in [18], M̃ is a high-dimensional sphere and much of the optimization is
performed on M̃ instead of M/G. We are currently investigating how our methods
can complement this in extending the approach to quotients M̃/G with M̃ not
restricted to being a sphere.

2.2 Curves and Differentiation

We will deal with parametrized entities, most notably curves on manifolds, and
we use subscripts for the parameter. For example, a curve on M dependent on t

will be denoted xt. As our curves will normally start at t = 0, the starting point
of curve xt will be the point x0. The subscript notation should not be confused
with differentiation with respect to the parameter t. When a local parametrization
is available, we will often use it to represent the curve, and we will normally not
distinguish between the curve and its expression xt = (x1t , . . . , x

η
t ) in parameter

space.
The tangent space of M at a point p is, a vector space of dimension η, will be

denoted TpM , and the derivative d
dtxt of a curve xt evaluated at t̃ then belongs

to Txt̃
M . We will often write just d

dtxt̃ for such vectors, i.e. d
dtxt|t=t̃. In addition,

when differentiating curves with respect to t, we often use the shorthand ẋt. With
these conventions, d

dtxt|t=0, the initial velocity of the curve xt, will be written ẋ0.
The differential of a map f : M → N will be denoted df and its evaluation at

p ∈ M will be denoted dpf . When bases for TpM and Tf(p)M are specified, or when
M and N are Euclidean spaces, we will write Df instead of df . We will encounter
maps defined on a product of manifolds, e.g. (v, w) �→ g(v, w) : M × M̃ → N , for
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which we will need to distinguish differentiation with respect to one of the variables
only. Letting one of the parameters have a fixed value w0, the differential of the
restricted function v �→ g(v, w0) from M to N evaluated at v0 is denoted dv

(v0,w0)
g.

Along the same lines, if V is a submanifold of M , the differential of f |V : V → N

will be denoted dv∈V f and its evaluation at v0 ∈ V will be written dv∈V
v0

f .

2.3 Riemannian Manifolds and Geodesics

We will work solely with Riemannian manifolds, i.e. differentiable manifolds en-
dowed with a smooth family of inner products on their tangent spaces. More
precisely, a Riemannian metric on a manifold M is a smooth map g which asso-
ciates to p ∈ M an inner product �·, ·�p on TpM , and, in a local parametrization,
g will be a smooth map to the space of symmetric, positive definite matrices of
order η. The pair (M, g) is then a Riemannian manifold. When M is a submanifold
of Rm, the tangent space TpM of M at a point p can be identified with a linear
subspace of Rm of dimension η, and the inner product �·, ·�p will be chosen to be
the restriction of the standard inner product of Rm.

The Riemannian metric determines notions such as length of curves, differenta-
tion of vector fields, Christoffel symbols, and geodesics. If xt is a curve, the length
l(xt) is given by the integral

�
�ẋt�dt using the norm � · � on TxtM induced by the

metric. Computing directional derivatives of a vector field is done by a connection
that associates to a pair (X,Y ) of vector fields on M a new vector field denoted
∇Y X so that (∇Y X) (p) will be a directional derivative of X at p in the direction
Y (p). A special connection, called the Levi-Cività connection, is associated to the
Riemannian metric, and the connection defines the covariant derivative D

dtVt of

a vector field Vt along a curve. On implicitly defined manifolds, D
dtVt is simply

the projection of the usual derivative of vector fields onto TxtM , and, in a local
parametrization, the covariant derivative of the vector fields (∂x1 , . . . , ∂xη ) defines

the Christoffel symbols Γ k
ij of the metric by the relations ∇∂xi

∂xj =
�η

k=1 Γ
k
ij∂xk .

The η3 functions Γ k
ij(x) satisfy the symmetry relation Γ k

ij = Γ k
ji.

Geodesic curves, manifold generalizations of straight lines, are characterized
by having vanishing intrinsic acceleration expressed by the covariant derivative of
the velocity field, D

dt ẋt being zero. Geodesics are locally length minimizing and
unique in the sense that given a point q and a velocity v ∈ TpM , the geodesic
passing q with velocity v is unique. The map which constructs geodesics given q

and v is called the exponential map and denoted Exp. Thus, the unique geodesic
is the curve xt = Expptv.

For points q̃ in a sufficiently small neighborhood of q, the length minimizing
curve joining q and q̃ is unique as well. Given q and q̃, the initial direction in
which to travel geodesically from q in order to reach q̃ is given by the result
of the logarithm map Logq(q̃). We get the corresponding geodesic as the curve
t �→ Expq(tLogq q̃), and hence Logq is the inverse of Expq. Subsets ExpqBr(0) of
M with Br(0) being a ball in TqM and with the radius r > 0 sufficiently small are
examples of neighborhoods of q in which Logq(q̃) is defined. Whenever we use the
Log-map, we will restrict to such neighborhoods without explicitly mentioning it.

The gradient gradh of a real valued function h : M → R is also defined using
the metric: at p ∈ M , gradph is the unique vector in TpM which represents dph in
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the sense that dph(v) =
�
gradph, v

�
for all v ∈ TpM . Whenever a basis of TpM is

specified, or when M is Euclidean, we switch to the usual notation ∇h. Similarly,
the Hessian of h is defined by the relation Hessian(h)X = ∇Xgradh for all vector
fields X. Again, when a basis of TpM is specified, or when M is Euclidean, we use
the usual notation H(h).

2.4 Geodesic Systems

When a manifold is represented by a parametrization, the value of exponential
map can be found as the solution of the IVP

ẍk
t = −

η�

i,j

Γ k
ij(xt)ẋt

iẋt
j , k = 1, . . . , η

x0 = q, ẋ0 = v

(1)

in parameter space at time t = 1. Recall that η denotes the dimension of the
manifold and that a chart ϕ : Rη → M is used to connect the parameter space
and the manifold. This classical characterization of geodesics is not directly usable
when the manifold is represented implicitly and, therefore, neither parametrization
nor Christoffel symbols are directly available. To handle this situation, a first
order IVP for the computation of the exponential map on implicitly represented
manifolds as developed in [6]. Here Expqv can be found as the x-part of the solution
of the following IVP at time t = 1:

ṗt = −
�

n�

k=1

µk(xt, pt)Hxt(F
k)

�
ẋt ,

ẋt =
�
I −DxtF

†DxtF
�
pt ,

x0 = q, p0 = v .

(2)

The map µ : Rm × Rm → Rn is defined by (x, p) �→ −(DxF
T )†p, and the symbol

A† denotes the generalized inverse of the possibly non-square or singular matrix
A [5].

2.5 Jacobi Fields and Global Geometry

Studying variations of geodesics leads to the notion of Jacobi fields, which encode
important geometric information such as curvature and injectivity radius. In order
to define Jacobi fields, let xt,s be a family of geodesics parametrized by s, i.e. for
each s̃, the curve t �→ xt,s̃ is a geodesic. When fixing the position t on the curves
but varying the parameter s, we obtain the vector field d

dsxt,0, and such a vector
field is called a Jacobi field along the geodesic xt,0.

1 The Jacobi fields along a
given geodesic are uniquely determined by the initial conditions J0 and D

dtJ0, the
variation of the initial points x0,s and the covariant derivative of the field at t = 0,
respectively. Define qs = x0,s, vs = ẋ0,s, and w = d

dsv0. If d
dsq0 = J0 and w = D

dtJ0

then d
dsExpq0

(tv0) is equal to Jt [7, Chap. 5]. Therefore, in cases when qs is constant
and J0 therefore 0, we have the following connection between Jt and dExp:

1 Recall that with the notation introduced in section 2.2, d
ds

xt,0 equals
d
ds

xt,s|s=0.
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Fig. 1 The sphere S2 with a Jacobi field along a geodesic connecting the poles. Each pole is
a conjugate point to the other since the non-zero Jacobi field vanishes. The injectivity radius
is equal to the length of the geodesic, π.

dv0Expq0
tw = Jt . (3)

Jacobi fields can equivalently be defined as solutions to the ODE

D2

dt2
Jt = −R(ẋt, Jt)ẋt (4)

with R denoting the curvature endomorphism [7, Chap. 5]. For parametrized man-
ifolds, the ODE can be written in parameter space and can, in principle, be used
for numerical computations of Jacobi fields. The expressions are somewhat com-
plicated, though, and we will obtain a different IVP by differentiating the system
(1). The curvature endomorphism is not easily computed when the manifold is
represented implicitly, and, therefore, the above ODE is not directly useful in this
case. By differentiating the system (2), we remedy this in the next section.

Besides allowing us to calculate dv0Expq0
, Jacobi fields enable us to retrieve

various geometric information about the manifold. We can for example estimate
the sectional curvature of the manifold at q0 using a Jacobi field Jt as defined
above with J0 = 0 and v0, w orthonormal. Performing a Taylor expansion of the
length �Jt�, we get

�Jt� = t− 1

6
Kq0(σ)t

3 +O(t4)

where Kq0(σ) is the sectional curvature of the plane span {v0, w} in Tq0M [7, Chap.
5]. For small t, the sectional curvature can then be estimated by

Kq0(σ) ≈
6

t3
(t− �J(t)�) . (5)

Furthermore, if Jt is a non-zero Jacobi field with J0 = 0 along a geodesic xt and,
for some t̃ > 0, also Jt̃ = 0 then xt̃ is called a conjugate point to x0. This implies
that for any r > t̃, the geodesic xt is not the shortest joining x0 and xr [7, Chap.
13]. In this way, we get an upper bound on the injectivity radius of M , which, in
general terms, specifies the minimum length of non-minimizing geodesics. Figure 1
illustrates the situation on the sphere S2.
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2.6 Geodesic Subspaces

Linear subspaces are of great importance when studying data in Euclidean spaces;
PCA, for example, can be formulated as an optimization problem on the set of lin-
ear subspaces. There is no obvious generalization of linear subspaces to manifolds,
but, if one accepts the choice of a center point, the notion of geodesic subspaces
becomes useful. A subset ExpqV of M is called a geodesic subspace centered at q if
V is a linear subspace of TqM . Geodesics between q and any point in the subspace
are contained in the subspace, a fact which, in general, is not true for geodesics
between arbitrary pairs of points in the subspace. The projection of a point x ∈ M

onto a geodesic subspace S = ExpqV is defined as

πS(x) = argminy∈Sd(x, y)
2 = argminy∈S�Logyx�2

= Expq(argminw∈V �LogExpqwx�2) .
(6)

Neither existence or uniqueness of the projection is in general ensured, although,
for each geodesic subspace S, the set of points for which uniqueness fail has zero
measure in M [18]. Existence of the projection is ensured if S is compact, which,
for example, is the case if M is compact and S an embedded submanifold.

2.7 Principal Geodesic Analysis

Principal Component Analysis (PCA) is widely used to model the variability of
data in Euclidean spaces. The procedure provides linear dimensionality reduction
by defining a sequence of linear subspaces maximizing the variance of the projec-
tion of the data to the subspaces or, equivalently, minimizing the reconstruction
errors. The kth subspace is spanned by an orthogonal basis {v1, . . . , vk} of princi-
pal components v1, . . . , vk, and the ith principal component is defined recursively
by

vi = argmax�v�=1
1

N

N�

j=1

�
�
xj , v

�2
+

i−1�

l=1

�
xj , v

l
�2

�
(7)

when formulated as to maximize the variance of the projection of the dataset
{x1, . . . , xN} to the subspaces span {v1, . . . , vi−1}.

PCA is dependent on the vector space structure of the Euclidean space and
hence cannot be performed on manifold valued datasets. Principal Geodesic Anal-
ysis was developed to overcome this limitation. PGA finds geodesic subspaces
centered a point µ ∈ M with µ usually being an intrinsic mean2 of the dataset
{x1, . . . , xN}, xj ∈ M . The kth geodesic subspace Sk of TµM is defined as Expµ(Vk)

with Vk = span {v1, . . . , vk} being the span of the principal directions v1, . . . , vk

defined recursively by

vi = argmax�v�=1,v∈V ⊥
i−1

1

N

N�

j=1

d(µ, πSv
(xj))

2 ,

Sv = Expµ(span {Vi−1, v}) .

(8∗)

2 The notion of intrinsic mean goes back to Fréchet [14] and Karcher [21]. As in [13], we

define it as argminµ∈M
�N

j=1 d(µ, xj)
2. Uniqueness issues are treated in [21].
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The notation V ⊥
i−1 denotes the orthogonal complement of Vi−1 in TµM . The term

being maximized is the sample variance of the projected data, the expected value
of the squared distance to µ, and PGA therefore extends PCA by finding geodesic

subspaces in which variance is maximized.
Since a method for computing the projection πSk

(x) has not been available
for general manifolds, PGA has traditionally been computed using the orthogonal
projection in the tangent space of µ to approximate the true projection. With this
approximation, equation (8∗) simplifies to

vi ≈ argmax�v�=1
1

N

N�

j=1

�
�
Logµxj , v

�2
+

i−1�

l=1

�
Logµxj , v

l
�2

�

which is equivalent to (7), and, therefore, the procedure amounts to performing
regular PCA on the vectors Logµxj . We will refer to PGA with the approximation
as linearized PGA, and PGA as defined by (8∗) will be referred to as exact PGA.

The above and prevalent definition of PGA is developed in [13], but a slightly
different definition was introduced in [12]. The latter definition involves only one-
dimensional subspaces and uses Lie group structure. In [35], the fact that πS has
a closed form solution on the sphere S3 when S is a one-dimensional geodesic
subspace is used to compute exact PGA with the [12] definition by performing
a steepest descent using the gradient of the cost function equivalent to the cost
function of (8∗).

Replacing maximization of sample variance by minimization of reconstruction
error, we obtain another manifold extension of PCA and thus an alternate defini-
tion of PGA:

vi = argmin�v�=1,v∈V ⊥
i−1

1

N

N�

j=1

d(xj , πSv
(xj))

2 . (8∗∗)

In contrast to vector space PCA, the two PGA definitions are not equivalent, a
fact showing that the Euclidean and curved situations differ fundamentally. The
latter formulation is chosen for Geodesic PCA to avoid instabilities of variance
maximization [18], but the optimization algorithms developed in this paper work
for both formulations. We will use the variance formulation for the experiments,
but we will collectively refer to definitions by (8).

In general, PGA might not be well-defined as the mean might not be unique and
both existence and uniqueness may fail for the projections (6) and the optimization
problems (8). The convexity bounds of Karcher [21] ensures uniquesness of the
mean for sufficiently local data, but setting up sufficient conditions to ensure well-
posedness of (6) and (8) is a difficult issue, and here we will just assume well-
posedness for the given manifold and dataset.

3 The Differentials

In this section, we aim at developing an initial value problem (IVPs) describing
the differential of the exponential map and Jacobi fields, and, in addition, we will
differentiate the IVPs a second time and thereby create the tools needed for the
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PGA algorithms presented in the next section. The basic strategy is simple: we
differentiate the systems of section 2.4 and use the resulting IVPs.

It is a well-known fact that IVPs satisfying natural properties are differentiable
with respect to their initial values [16, Chap. I.14]. The important contribution
of this section is the explicit expressions for the differentiated systems that al-
low numerical integration and, in particular for the case of implicitly represented
manifolds, are not straightforward to derive. To the best of our knowledge, no IVP
describing the differential of the exponential map and Jacobi fields has previously
been available in the implicit case; the IVP (11) remedies this situation. As pre-
viously noted, the ODE (4) describes Jacobi fields in the parameterized case but
the expressions in parameter space are complicated. Therefore, we derive the IVP
(10) below, which we find simpler to work with for the applications of this paper.

The presence of the generalized inverse in system (2) proves to be the main
source of complexity for the implicit case. We handle the differentiation of this
system using the following result of Decell:

Theorem 1 ([5]) Let As and its generalized inverse A†
s be differentiable s-dependent

matrices. Then d
ds (A

†
s) = Λ(As,

d
dsAs) where

Λ(A,B) = −A†BA† +
�
BT (A†)TA† +A†(A†)TBT

�

−A†A
�
BT (A†)TA† +A†(A†)TBT

�
AA† .

(9)

We will apply the result with As = Dxt,sF with xt,s an s dependent family of

geodesics and t fixed. To see that Dxt,sF
† is differentiable with respect to s when

xt,s depends smoothly on s, take a frame of the normal space to M in a neighbor-
hood of xt,s, and note that Dxt,sF

† is a composition of a invertible map onto the
frame depending smoothly on s and the frame itself.

The remaining computations for deriving the systems are lengthy and nota-
tionally heavy. At this point, we only state the results and postpone the derivations
and the proof of the following theorem to Appendix A.

Theorem 2 Let xt be a geodesic in the C3 manifold M with x0 = q and ẋ0 = v, and

let u,w be vectors in Tx0M . Assume xt is contained in a parametrized subset of M .

Then the Jacobi field Jt along xt with J0 = u and D
dtJ0 = w can be found as the z-part

of the solution of the IVP
�
ẏt

żt

�
= FP

q,v

�
t,

�
yt

zt

��
,

�
y0
z0

�
=

�
w

u

�
,

(10)

with FP
q,v the map given in explicit form in Appendix A.

Now, let instead M ⊂ Rm be defined as a regular zero level set of a C3 map

F : Rm → Rn. Then the Jacobi field Jt along xt with J0 = u and D
dtJ0 = w can be

found as the z-part of the solution of the IVP
�
ẏt

żt

�
= F I

q,v

�
t,

�
yt

zt

��
,

�
y0
z0

�
=

�
w

u

�
,

(11)
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with F I
q,v the map given in explicit form in Appendix A.

The maps FP
q,v and F I

q,v and consequently the systems (10) and (11) are linear in

the initial values (w u)T as expected of systems describing differentials. They are
non-autonomous due to the dependence on the position on the curve xt.

The following corollary allows the computation of the derivative of the expo-
nential map:

Corollary 1 With the assumptions of Theorem 2, let (yt, zt) satisfy (10) or (11) with
IVs (w, 0)T . Then dvExpqw is equal to z1.

Proof Let Jt be the Jacobi field along xt with J0 = 0 and D
dtJ0 = w. By Theorem 2,

z1 = J1, which, by (3), is equal to dvExpqw.

The result enables us to compute the entire differential dvExpq by applying the

corollary to each element of a basis {w1, . . . , wη} for TqM . The matrix having
the results in its columns then equals DvExpq. Note that ExpqLogqy = y implies

that dyLogq = (dLogqyExpq)
−1, a fact that allows the corollary to be used for

computing dyLogq as well.
We can differentiate the systems (10) and (11) once more if the manifold is

sufficiently smooth. The main difficulty here is performing the algebra of the al-
ready complicated expressions for FP

q,v and F I
q,v. For the implicit case, we will

need to find the second derivative of Dxt,sF
† and hence extend Decell’s result. For

simplicity, we consider a family of geodesics xt,s with the start point x0,s constant
in s. The derivations and the proof are again postponed to Appendix A.

Theorem 3 Let w ∈ TqM with M of class C4, and let xt,s be a family of geodesics

with x0,s = q and vs = ẋ0,s. Define u = d
dsv0, and let Vq,v0,w,u = d

ds

�
dvsExpqw

�
=

d
ds

�
d
dr

�
Expqvs + rw

� �
. Assume xt,s is contained in a parametrized subset ofM . Then

Vq,v0,w,u can be found as the r-part of the solution of the IVP

�
q̇t
ṙt

�
= GP

q,v0,w,u

�
t,

�
qt
rt

��
,

�
q0
r0

�
=

�
0
0

�
,

(12)

with GP
q,v0,w,u the map given in explicit form in Appendix A.

Now, let instead M ⊂ Rm be defined as a regular zero level set of a C4 map

F : Rm → Rn. Then Vq,v0,w,u can be found as the r-part of the solution of the IVP

�
q̇t
ṙt

�
= GI

q,v0,w,u

�
t,

�
qt
rt

��
,

�
q0
r0

�
=

�
0
0

�
,

(13)

with GI
q,v0,w,u the map given in explicit form in Appendix A.

We note that solutions to (12) and (13) depend linearly on u even though the
systems are not linear.
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3.1 Numerical Considerations

The geodesic systems (1) and (2) can in both the parametrized and implicit case
be expressed in Hamiltonian forms. In [6], the authors use this property along
with symplectic numerical integrators to ensure the computed curves will be close
to actual geodesics. This is possible since the Hamiltonian encodes the Rieman-
nian metric. Derivatives of Hamiltonian systems can be expressed in Hamiltonian
form, and, therefore, the systems of Theorem 2 and Theorem 3 have Hamiltonian
formulations. Using symplectic integrators, we can preserve the Hamiltonians, but
the usefulness of this is limited since the Hamiltonians do not have directly inter-
pretable forms in contrast to the case of geodesic systems.

Along the same lines, we would like to use the preservation of quadratic forms
for symplectic integrators [15] to preserve quadratic properties of the differential of
the exponential map, e.g. the Gauss Lemma [7]. At this point, we have, however,
not been able to establish this for the implicit case.

4 Exact PGA

We will provide algorithms for iteratively solving the optimization problems (8)
and hence compute exact PGA as defined in [13] without the traditional linear
approximation. The algorithms will work for parametrized and implicitly repre-
sented manifolds under the following assumptions. First, we require that the PGA
problem is well-defined as discussed in section 2.7. Second, the logarithm map
must be computable. As noted in the introduction, good implementations exist
for both parametric and implicitly represented manifolds. Third, we will need to
assume non-existence of local optima for the cost functions of (6) and (8) to ensure
the optimization algorithms find the true global solutions. Forth, a local convex-
ity assumption of the residual function, which is satisfied for local data, will be
needed. We note that, if the third assumption is left out, it is indeed possible to
find examples of manifolds and datasets where the algorithms will get stuck in
local optima.

Solving the optimization problems (8) requires the ability to compute the pro-
jection operator πS . We start by finding expressions for the gradients of the cost
functions of the optimization problems using the IVPs derived in section 3, and,
thereafter, we present the actual algorithms for solving the problems. The over-
all approach of solving (8) is similar to the approach of [35]. Our solution differs
in that we are able to compute πS and its differential without restricting to the
manifold SO(3) and in that we optimize (8) instead of the simpler3 cost function
of [12].

The optimization problems (6) and (8) are posed in the tangent space of the
manifold at the sample mean and the unit sphere of that tangent space, respec-
tively. These domains have relatively simple geometry, and, therefore, the complex-
ity of the problems is contained in the cost functions. Because of this, we will not
need algorithms for optimizing problems with domains of complicated geometry.

As we are able to compute the gradient of the cost function of the prob-
lems, we can use approaches such as steepest descent. Yet, because both prob-

3 Simpler in the sense that projections in [12] involve only one-dimensional subspaces. The
cost function of (8) uses i-dimensional subspaces for i = 1, . . . , η.
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lems are quadratic, optimization algorithms such as Gauss-Newton or Levenberg-
Marquardt are also applicable if the Jacobians are present. For simplicity, we com-
pute gradients and present steepest descent algorithms, but it is straightforward
to compute Jacobians instead and use more advanced optimization algorithms.

4.1 The Projection

We consider the projection πS(x) of a point x ∈ M on a geodesic subspace S.
Assume S is centered at µ ∈ M , let V be a k-dimensional subspace of TµM such that
S = ExpµV , and define a residual function Rx,µ : V → R by w �→ �LogExpµwx�2
measuring distances between x and points in S. Computing πS(x) by solving (6)
is then equivalent to finding w ∈ V minimizing Rx,µ. To find the gradient of Rx,µ,
choose an orthonormal basis for V and extend it to a basis for TµM . Furthermore,
let w0 ∈ V and choose an orthonormal basis for the tangent space TExpµw0

M .

Karcher showed in [21] that the gradient grady�Logyx�2 equals −2Logyx, and,
using this, we get the gradient of the residual function as

∇w∈V
w0

Rx,µ = −2(Dw0Expµ)T1,...,k(LogExpµw0
x) (14)

with (Dw0Expµ)1,...,k denoting the first k columns of Dw0Expµ when expressed
using the chosen bases.

4.2 The Gradient of the Projection

In order to optimize (8), we will need to compute gradients of the form

grad
v∈V ⊥

v0
v0

d(y, πSv
(x))2 (15)

with Vv0 = span {v1, . . . , vk, v0}, Sv = Exp(Vv0), and y ∈ M being either the
intrinsic mean µ for (8∗) or x for (8∗∗).4 This will involve the gradient of πSv

(x)
with respect to v. To derive this, we extend the domain of residual function Rx,µ

defined in the previous subsection from V to TµM . We will choose bases for TµM

and Vv0 , and we let H(Rx,µ) denote the Hessian of Rx,µ and H(Rx,µ|Vv0
) denote

the Hessian of Rx,µ restricted to Vv0 with respect to the bases. Using this notation,
we get the following result:

Theorem 4 Let {v1, . . . , vk} be a basis for a subspace V ⊂ TµM . For each v ∈ V ⊥,
let Vv be the subspace span {V, v}, and let Sv = ExpµVv be the corresponding geodesic

subspace. Fix v0 ∈ V ⊥ and define w0 = LogµπSv0
(x) for an x ∈ M . Suppose the matrix

Hv0(Rx,µ|Vv0
) has full rank k+1. Extend the orthonormal basis {v1, . . . , vk, v0/�v0�}

for Vv0 to an orthonormal basis for TµM . Then

D
v∈V ⊥

v0
v0

πSv
(x) = −(Dw0Expµ)v̄x,µ,v0,Sv0

�
∇w∈V ⊥

v0
w0

Rx,µ

�T

+ wk+1
0 (Dw0Expµ)Ex,µ,v0,Sv0

.

(16)

4 Since v in (8) is restricted to the unit sphere, we will not need the gradient in the direction
of v0, and, therefore, we find the gradient in the subspace V ⊥

v0
instead of in the larger space

span {v1, . . . , vk}⊥.
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The coordinates of the vector v̄x,µ,v0,Sv0
in the basis for Vv0 are contained in the (k+

1)st column of the matrix Hv0(Rx,µ|Vv0
)−1, the scalar wk+1

0 is the (k+1)st coordinate
of w0 in the basis, and Ex,µ,v0,Sv0

is the matrix

�
−Hw0

�
Rx,µ|Vv0

�−1
Bw0,v0

Iη−(k+1)

�

with Bw0,v0 the last η − (k + 1) columns of the matrix (Hw0 (Rx,µ) (V v0))
T and

Iη−(k+1) the identity matrix.

The proof of the theorem is presented in Appendix B. The assumption that
the Hessian of the restricted residual Rx,µ|Vv0

must have full rank is equivalent
to the residual Rx,µ having only non-degenerate critical points when restricted to
Vv0 . It is shown in [21] that Rx,µ is convex at points sufficiently close to x and the
assumption is therefore satisfied in such cases. In order to compute the right hand
side of (16), it is necessary to compute parts of the Hessian of the non-restricted
residual Rx,µ. The expression for computing Hv0(Rx,µ) is given in Appendix B.

Because d(y, πSv
(x))2 = �LogyπSv

(x)�2, we have

∇v∈V ⊥
v0

v0
d(y, πSv

(x))2 = 2

�
(DπSv0

(x)Logy)(D
v∈V ⊥

v0
v0

πSv
(x))

�T

(LogyπSv0
(x)) ,

(17)

which, combined with (16), gives (15).

4.3 Exact PGA Algorithm

The expressions for the gradients of the cost functions enable us to iteratively
solve the optimization problems (6) and (8) under the mentioned assumptions.
We let µ be the intrinsic mean of a dataset {x1, . . . , xN} of points in M . The
actual algorithms listed below are essentially steepest descent methods.

Algorithm 1 for computing πS(x) updates w ∈ V instead of the actual point
y ∈ S that we are interested in. The vector w is related to y by y = Expµw.

Algorithm 1 Calculate πS(x)

Require: x ∈ M , S = ExpµV geodesic subspace.
w ⇐ orthogonal projection of Logµx onto V {initial guess}
repeat

y ⇐ Expµw {vector to point}
g ⇐ −2(Dw0Expµ)

T
1,...,kLogyx {gradient}

w̃ ⇐ w {previous w}
w ⇐ w − g {update w}

until �w̃ − w� is sufficiently small.

For solving (8), we use that

∇v∈V ⊥
v0

v0


 1

N

N�

j=1

d(y, πSv
(xj))

2


 =

1

N

N�

j=1

∇v∈V ⊥
v0

v0
d(y, πSv

(xj))
2 . (18)
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Since v in (8) is required to be on the unit sphere, the optimization will take
place on a manifold, and a natural approach to compute iteration updates will use
the exponential map. Yet, because of the symmetric geometry of the sphere, we
approximate this using the simpler method of adding the gradient to the previous
guess and normalizing. When computing the (k+1)st principal direction, we choose
the initial guess as the first regular PCA vector of the data projected to V ⊥

k in
TµM . The algorithm for solving (8∗) is listed in Algorithm 2, but by exchanging
µ with xj in the gradient computations and updating by subtracting the gradient,
the algorithm will solve (8∗∗) instead. See Figure 2 for an illustration of an iteration
of the algorithm.

Fig. 2 An iteration of Algorithm 2. The figure shows data points x1 and x2 (red points) with
projections (blue points) to the geodesic subspace S (green line). The vector v defining S is
updated to the new guess by adding the gradient g.

Algorithm 2 Calculate the (k + 1)st principal direction of (8∗).
Require: µ, x1, . . . , xN ∈ M , {v1, . . . , vk} orthogonal basis for Vk ⊂ TµM .

v ⇐ first PCA vector of {xj} projected first to TµM

using Logµ and then to V ⊥
k {initial guess}

repeat

gj ⇐ ∇v∈V⊥
v

v d(µ, πSv (xj))
2 {for each j using (17)}

g ⇐ 1
N

�N
j=1 gj {gradient using (18)}

ṽ ⇐ v {previous v}
v ⇐ v + g {update v}
v ⇐ v/�v� {normalize}

until �ṽ − v� is sufficiently small.
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5 Experiments

We will perform experiments exemplifying the differences between exact PGA
and linearized PGA with synthetic data projected onto low dimensional manifolds
on which it is possible to visually identify the differences between the methods.
We vary the curvature of the manifolds in order to show how curvature affects
the differences, and we compare the curvature approximation (5) and injectivity
radius bound with the true values. For a comparison between the methods on high
dimensional manifolds modelling real-life data, we refer the reader to [38]. In that
paper, we compute and compare exact and linearized PGA on a 50 dimensional
manifold containing outlines of human vertebrae captured with lateral X-rays and
on a 23 dimensional manifold containing human pose data acquired with tracking
software.

The PGA algorithm is implemented in Matlab using Runge-Kutta ODE solvers.
For the logarithm map, we use the shooting algorithm developed in [39]. All toler-
ances used for the integration and logarithm calculations are set at or lower than
an order of magnitude of the precision used for the displayed results.

5.1 Synthetic Low-dimensional Data

We consider first surfaces embedded in R3 and defined by the equation

Sc = {(x1, x2, x3)|cx21 + x22 + x23 = 1}

for different values of the scalar c. For c > 0, Sc is an ellipsoid and it is equal to
S2 in the case c = 1. The surface S0 is a cylinder and, for c < 0, Sc is hyperboloid.
Consider the point p = (0, 0, 1) and note that p ∈ Sc for all c. The curvature of Sc

at p is equal to c. Note in particular that for the cylinder case the curvature is zero;
the cylinder locally has the geometry of the plane R2 even though it informally
seems to curve.

We evenly distribute 20 points along two straight lines through the origin of the
tangent space TpSc, project the points from TpSc to the surface Sc, and perform
linearized and exact PGA using the variance formulation (8∗). Figure 3 illustrates
the situation in TpS−1 and on S−1 embedded in R3, respectively.

Since linearized PCA amounts to Euclidean PCA in TpSc, the first principal
direction found using linearized PGA divides the angle between the lines for all c.
In contrast to this, the variance and the first principal direction found using exact
PGA are dependent on c. Table 1 shows the angle between the principal directions
found using the two methods, the variances and variance differences for different
values of c.

c: 1 0.5 0 -0.5 -1 -1.5 -2 -3 -4 -5
angle (◦): 0.0 0.1 0.0 22.3 29.2 31.5 32.6 33.8 34.2 34.5
linearized var.: 0.899 0.785 0.601 0.504 0.459 0.435 0.423 0.413 0.413 0.417
exact var.: 0.899 0.785 0.601 0.525 0.517 0.512 0.510 0.508 0.507 0.506
difference: 0.000 0.000 0.000 0.212 0.058 0.077 0.087 0.095 0.094 0.089
difference (%): 0.0 0.0 0.0 4.2 12.5 17.6 20.6 23.0 22.7 21.4

Table 1 Differences between methods for different values of c.
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(a) TpS−1 with sampled points and first
principal components (blue exact PGA,
green linearized PGA).

(b) S−1 with projected points and first prin-
cipal components (blue exact PGA (8), green
linearized PGA).

Fig. 3

Let us give a brief explanation of the result. The symmetry of the sphere and
the dataset cause the effect of curvature to even out in the spherical case S1. The
cylinder S0 has local geometry equal to R2 which causes the equality between the
methods in the c = 0 case. The hyperboloids with c < 0, which can be constructed
by revolving a hyperbola around its semi-minor axis, are non-symmetric causing
an increase in variance as the first principal direction approaches the hyperbolic
axis. The effect increases with the curvature causing the first principal direction
to align with the hyperbolic axis for large negative values of c. We see that, for all
negative values of c, exact PGA is able to capture more variance in the subspace
spanned by the first principal direction than linearized PGA.

Using (5), we can approximate the sectional curvature Kp of Sc at p. The
approximation is dependent on the value of the positive scalar t with increasing
precision as t decreases to zero. Table 2 shows the result of the sectional curvature
approximation for two values of t compared to the real curvature.

c: 1 0 -1 -2 -3
Kp: 1 0 -1 -2 -3
Kp est., t = 0.01: 1.000 0.000 -1.000 -2.000 -3.000
Kp est., t = 0.1: 1.000 0.000 -1.001 -2.002 -3.005

Table 2 Sectional curvature at p for different values of c.

Now let Jt be the Jacobi field with J0 = 0 and D
dtJ0 = (1, 0, 0)T along the

geodesic xt = Exppt(0, 1, 0)
T . Figure 4 shows �Jt� for different values of c. We

see that �Jπ� = 0 for the spherical case S1 showing that x1 is a conjugate point
and hence giving the upper bound π on the injectivity radius. The situation is
illustrated in Figure 1. The local geometric equivalence between the cylinder S0

and R2 causes the straight line for c = 0. For all c ≤ 1, the injectivity radius of Sc

is π, but for c < 1, the point xπ not a conjugate point5. By looking at �Jt�, we
are only able to detect conjugate points and hence, with this experiment, we only

5 For c < 1, xπ is a cut point [7, Chap. 13].
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Fig. 4 �Jt� for c = 2, 1, 0,−1 when J0 = 0,
D
dt

J0 = (1, 0, 0)T , and xt = Exppt(0, 1, 0)
T .

get the bound on the injectivity radius for c ≥ 1. For c > 1 the injectivity radius
decreases below 1 as seen in the case S2 with �Jt̃� = 0 for t̃ ≈ π/

√
2.

To investigate the difference with more than one principal direction, we con-
sider a four dimensional manifold embedded in R5 and defined by

M4 = {(x1, x2, x3, x4, x5)|x21 − 2x22 + x23 − 2x4 + x5 = 1} .

We make the situation more realistic than in the previous experiment by sampling
32 random points in the tangent space TpM4, p = (0, 0, 0, 0, 1). Since TpM4 is
an affine subspace of R5 orthogonal to the x5 axis, we can identify it with R4

by the map (x1, x2, x3, x4) �→ (x1, x2, x3, x4, 1). We use this identification when
sampling by defining a normal distribution in R4, sampling the 32 points from
the distribution, and mapping the results to TpM4. The covariance is set to Σ =
diag(2, 1, 2/3, 1/3) to get non-spherical distribution and to increase the probability
of data spreading over high-curvature parts of the manifold. Table 3 lists the
variances and variance differences for the four principal directions for both methods
along with angular differences. The lower variance for exact PGA compared to the
linearized method for the 2nd principal direction is due to the greedy definition of
PGA; when maximizing variance for the 2nd principal direction, we keep the first
principal direction fixed. Hence we may get lower variance than what is obtainable
if we were to maximize for both principal directions together.

Princ. comp.: 1 2 3 4
angle (◦): 10.1 10.6 12.0 12.2
linearized var.: 1.58 3.86 4.13 4.35
exact var.: 1.93 3.85 4.24 4.35
difference: 0.35 -0.01 0.11 0.00
difference (%): 21.9 -0.3 2.6 0.0

Table 3 Differences between the methods on M4. The variances of the data projected to the
subspaces spanned by the first k principal directions and the percentage and angular differences
are shown for k = 1, . . . , 4.
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We clearly see angular differences between the principal directions. In addition,
there is significant difference in accumulated variance in the first and third princi-
pal direction. We note that the percentage difference is calculated from what cor-
responds to the accumulated spectrum. The percentage difference of the increase
between the second and third principal direction, corresponding to the squared
length of the third eigenvalue in regular PCA, is greater.

6 Conclusion

We have developed initial value problems allowing the computation of several
important geometric structures on both parametrized and implicitly represented
manifolds. We show how the constructed IVPs allow for numerical computation of
injectivity radius bounds and sectional curvatures, which partially solves an open
problem stated in [18]. Furthermore, the IVPs make possible computation of exact
Principal Geodesic Analysis eliminating the need for the traditionally used linear
approximations.

The experimental section presents examples of manifold valued datasets where
exact PGA improves linearized PGA, and we show how the differences between
the methods are dependent on the curvature of the manifolds. The differences are
significant and clearly visually identifiable.

We are currently in the process of extending the methods to work for quotient
manifolds M/G and thereby allowing the computations to be performed on prac-
tically all commonly occurring non-triangulated manifolds. We expect this would
allow Geodesic PCA to be computed on general quotient manifolds as well. In
addition, we are working on giving a theoretical treatment of the differences be-
tween the two formulations (8) of PGA. Finally, we expect to use the automatic
computation of sectional curvatures to investigate further the effect of curvature
on exact PGA and other statistical methods for manifold valued data.
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A Expressions for the Derivative ODEs

We will use tensors on Rη and Rm for the proofs of Theorem 2 and Theorem 3, and we will use
the common identification between tensors and multilinear maps, i.e. the tensor T : (Rk)r → R
defines a map multilinear map T̃ : (Rk)r−1 → Rk by

�
T̃ (y1, . . . , yr−1), yr

�
= T (y1, . . . , yr).

We will not distinguish between a tensor and its corresponding multilinear map, and hence, in
the above case, write T for both maps.

For s-dependent vector fields vs,1, . . . , vs,r and tensor field Ts, we will use the equality

d
ds

T0(v0,1, . . . , v0,r)

=
�
d
ds

T0

�
(v0,1, . . . , v0,r) + T0(

d
ds

v0,1, . . . , v0,r) + · · ·+ T0(y0,1, . . . ,
d
ds

v0,r)
(19)

for the derivative with respect to s. If Txs is a composition of an z-dependent tensor field Tz and

an s-dependent curve xs, the derivative
d
ds

Txs equals the covariant tensor derivative∇ d
ds

xs
Txs

[7, Chap. 4]. Since we will only use tensors on Euclidean spaces, such tensor derivatives will
consist of component-wise derivatives.

In the following, we let TPz be the z-dependent 3-tensor on Rη defined by

TPz (v1, v2, v3) = −
η�

i,j,k

Γkij(z)v
i
1v
j
2v
k
3

such that the kth component of TPxt (ẋt, ẋt) equals the right hand side of (1). Note that T
p
z is

symmetric in the first two components since the Christoffel symbols are symmetric in i and j.

Similarly, we let the z-dependent 3-tensor T I,pz and 2-tensor T I,xz equal the right hand side of
the p and x parts of (2), respectively:

T I,pz (v1, v2) = −
�

n�

k=1

µk(z, v1)Hz(F
k)

�
v2 ,

T I,xz (v) =
�
I −DzF

†DzF
�
v

We carry out the proof of Theorem 2 in two parts starting with the parametrized case.

Proof (Theorem 2) Let xt,s be a family of geodesics with xt,0 = xt, and define qs = x0,s and

vs = ẋ0,s. Assuming
d
ds

q0 = u and d
ds

v0 = w, the Jacobi field Jt equals
d
ds
Expq0 (tv0), and,

therefore, we can obtain Jt by differentiating the systems (1) and (2).
In the parametrized case, we get, using (19) and symmetry of TPz ,

d
dt2

d
ds

xt,0 =
d
ds

ẍt,0 =
d
ds

TPxt,0 (ẋt,0, ẋt,0)

= ∇ d
ds

xt,0
TPxt (ẋt, ẋt) + 2T

P
xt,0

( d
dt

d
ds

xt,0, ẋt) ,

d
ds

x0,0 = u, d
dt

d
ds

x0,0 = w

(20)

because xt,s are solutions to (1) with initial conditions qs and vs. Therefore, setting yt =
d
dt

d
ds

xt,0 and zt =
d
ds

xt,0, we get (10) with

FP
q,v(t,

�
yt
zt

�
) =

�
∇ztT

P
xt
(ẋt, ẋt) + 2TPxt (yt, ẋt)

yt

�
.

As noted above, the derivative ∇ d
ds

xt,0
TPxs consists of just the component-wise derivatives of

TPz , i.e. the derivatives of the Christoffel symbols.
For the implicit case, we use the map µ of section 2.4 to define the tensors

Tµz (v) = µ(z, v) , THz (v1, v2) = −
�

n�

k=1

vk1Hz(F
k)

�
v2 ,

TDz (v) = (DzF ) v , and TD
†

z (v) = (DzF )
† v.
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Note, in particular, that T I,pz (v1, v2) = THz (T
µ
z (v1), v2). We claim that d

ds
Expq0 (tv0) equals

the z-part of the solution of (11) with

F I
q,v

�
t,

�
yt
zt

��

=


T I,pxt (pt, żt) +∇ztT

H
xt
(Tµxt (pt), ẋt) + THxt (T

µ
xt (yt)− Λ(TDxt ,∇ztT

D
xt
)T pt, ẋt)

T I,xxt (yt)− Λ(TDxt ,∇ztT
D
xt
)TDxt (pt)− TD

†
xt

∇ztT
D
xt
(pt)


 .

(21)

Here pt = pt,0 where pt,s are the p-parts of the solutions to (2) with initial conditions qs and
vs. To justify the claim, we differentiate the system (2). Using (19), we get

d
dt

d
ds

pt,0 =
d
ds

ṗt,0 =
d
ds

T I,pxt,0
(pt,0, ẋt,0)

= ∇ d
ds

xt,0
THxt (T

µ
xt
(pt), ẋt) + THxt (∇ d

ds
xt,0

Tµxt (pt) + Tµxt (
d
ds

pt,0), ẋt)

+ T I,pxt
(pt,

d
ds

ẋt,0)

and

d
dt

d
ds

xt,0 =
d
ds

ẋt,0 =
d
ds

T I,xt,0 (pt,0) = ∇ d
ds

xt,0
T I,xxt

(pt) + T I,xxt
( d
ds

pt,0) .

Note that the tensor derivative ∇ d
ds

xt,0
THxt consists of derivatives of Hxt (F

k). Both the deriva-

tives ∇ d
ds

xt,0
Tµxt and ∇ d

ds
xt,0

T I,xxt involve derivatives of generalized inverses. Therefore, we

apply Theorem 1 to differentiate Tµxt and get that

∇ d
ds

xt,0
Tµxt = −Λ(TDxt ,∇ d

ds
xt,0

TDxt )
T .

The tensor derivative ∇ d
ds

xt,0
TDxt consists of derivatives of Dxt,sF . Similarly,

∇ d
ds

xt,0
T I,xxt

= −Λ(TDxt ,∇ d
ds

xt,0
TDxt )T

D
xt

− TD
†

xt
∇ d

ds
xt,0

TDxt .

By differentiating the initial conditions, we get (11) with y = d
ds

pt,0, z =
d
ds

xt,0, and F I
q,v as

defined in (21).

For computing the second derivatives and proving Theorem 3, we will need to differentiate
generalized inverses of matrices twice. For this task, we will use the lemma below, which follows
directly from repeated application of the product rule for differentiation and Theorem 1.

Lemma 1 Let At,s be s- and t-dependent matrices. If At,s and A†
t,s are differentiable with

respect to both variables and the mixed partial derivative ∂2

∂s∂t
At,s exists, then

∂2

∂s∂t
(A†

t,s) = Λ̃(At,s,
∂
∂t

At,s,
∂
∂s

At,s,
∂2

∂s∂t
At,s)

where

Λ̃(A,B,C,D) = −Λ(A,C)BA† −A†DA† −A†BΛ(A,C) + Y (A,B,C,D)

−
�
Λ(A,C)A+A†C

�
X(A,B)AA† −A†AY (A,B,C,D)AA†

−A†AX(A,B)
�
CA† +AΛ(A,C)

�

and

X(A,B) = BT (A†)TA† +A†(A†)TBT ,

Y (A,B,C,D) = DT (A†)TA† +BT
�
Λ(A,C)TA† + (A†)TΛ(A,C)

�

+
�
Λ(A,C)(A†)T +A†(Λ(A,C))T

�
BT +A†(A†)TDT .
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We are then ready to prove Theorem 3. We will again start with the parameterized case,
and we will use the tensors introduced in the beginning of this section and the proof of
Theorem 2.

Proof (Theorem 3) We compute the q and r parts of GP
q,v0,w,u

separately; denote them

GP,q
q,v0,w,u and GP,r

q,v0,w,u, respectively. Let (y
w
t,s, z

w
t,s) be solutions to (10) with IV’s (w, 0)T

and along the geodesics xt,s, and let ywt and zwt denote ywt,0 and zwt,0, respectively. Let also

(yut , z
u
t ) be solutions to (10) with IV’s (u, 0)

T along xt = xt,0. Differentiating system (10), we
get

d
dt

d
ds
(zwt,0) =

d
ds
(żwt,0) =

d
ds
(ywt,0)

and, using symmetry of the tensors,

d
dt

d
ds
(ywt,0) =

d
ds
(ẏwt,0) =

d
ds

∇zwt,0
TPxt,0 (ẋt,0, ẋt,0) + 2

d
ds

TPxt,0 (y
w
t,0, ẋt,0)

= ∇zut
∇zwt

TPxt (ẋt, ẋt) +∇ d
ds

zwt,0
TPxt (ẋt, ẋt) + 2∇zwt

TPxt (y
u
t , ẋt)

+ 2∇zut
TPxt (y

w
t , ẋt) + 2T

P
xt
( d
ds

ywt,0, ẋt) + 2T
P
xt
(ywt , yut ) .

(22)

Therefore, letting qt =
d
ds

ywt,0 and rt =
d
ds

zwt,0, we get G
P,q
q,v0,w,u(t, (rt qt)T ) as the right hand

side of (22) and GP,r
q,v0,w,u(t, (rt qt)T ) equal to qt. The initial values are both 0 since yw0,s and

zw0,s equal 0 and w, respectively, and, therefore, are not s-dependent.

For the implicit case, we will again compute the r and q parts of GI
q,v0,w,u

separately.

Let now (ywt,s, z
w
t,s) be solutions to (11) along the geodesics xt,s and with IV’s (w, 0)T , and let

(yut , z
u
t ) be solutions to (11) along xt and with IV’s (u, 0)T . Let also pt,s denote the p-parts

of the solutions to (2) with initial conditions q and vs, and write pt = pt,0, ywt = ywt,0, and
zwt = zwt,0.

Differentiating system (11), we get

d
dt

d
ds

ywt,0 =
d
ds

ẏwt,0 =
d
ds

T I,pxt,0
(pt,0, ż

w
t,0) +

d
ds

∇zwt,0
THxt,0 (T

µ
xt,0

(pt,0), ẋt,0)

+ d
ds

THxt,0 (T
µ
xt,0

(ywt,0)− Λ(TDxt,0 ,∇zwt,0
TDxt,0 )

T pt,0, ẋt,0) .

Using the map Λ̃ defined in Lemma 1, we have

d
ds

Λ(TDxt,0 ,∇zwt,0
TDxt,0 )

T = Λ̃(TDxt ,∇zwt
TDxt ,∇zut

TDxt ,∇zut
∇zwt

TDxt )
T .

Combining the equations, we get

d
dt

d
ds

ywt,0 = ∇zut
T I,pxt

(pt, ż
w
t ) + T I,pxt

(yut , ż
w
t ) + T I,pxt

(pt,
d
dt

d
ds

zwt,0)

+∇zut
∇zwt

THxt (T
µ
xt
(pt), ẋt) +∇ d

ds
zwt,0

THxt (T
µ
xt
(pt), ẋt)

+∇zwt
THxt (T

µ
xt
(yut )− Λ(TDxt ,∇zut

TDxt )
T pt, ẋt) +∇zwt

THxt (T
µ
xt
(pt), ż

u
t )

+∇zut
THxt (T

µ
xt
(ywt )− Λ(TDxt ,∇zwt

TDxt )
T pt, ẋt)

+ THxt (T
µ
xt
( d
ds

ywt,0)− Λ(TDxt ,∇zut
TDxt )

T ywt , ẋt)

− THxt (Λ̃(T
D
xt

,∇zwt
TDxt ,∇zut

TDxt ,∇zut
∇zwt

TDxt )
T pt + Λ(TDxt ,∇zut

TDxt )
T yut , ẋt)

+ THxt (T
µ
xt
(ywt )− Λ(TDxt ,∇zwt

TDxt )
T pt, ż

u
t ) .

Substituting d
ds

zwt,0 with rt and
d
ds

ywt,0 with qt, we get G
I,q
q,v0,w,u as the right hand side of the

equation. Likewise,

d
dt

d
ds

zwt,0 =
d
ds

T I,xxt,0
(ywt,0)− d

ds
Λ(TDxt,0 ,∇zwt,0

TDxt,0 )T
D
xt,0

(pt,0)− d
ds

TD
†

xt,0
∇zwt,0

TDxt,0 (pt,0)

= ∇zut
T I,xxt

(ywt ) + T I,xxt
( d
ds

ywt,0)

− Λ̃(TDxt ,∇zwt
TDxt ,∇zut

TDxt ,∇zut
∇zwt

TDxt )T
D
xt
(pt)

− Λ(TDxt ,∇zwt
TDxt )∇zut

TDxt (pt)− Λ(TDxt ,∇zwt
TDxt )T

D
xt
(yut )

− Λ(TDxt ,∇zut
TDxt )∇zwt

TDxt (pt)− TD
†

xt
∇zut

∇zwt
TDxt (pt)− TD

†
xt

∇zwt
TDxt (y

u
t ) .
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Again, after substituting d
ds

ywt,0 with qt as above, we get GI,r
q,v0,w,u as the right hand side of

the equation. As for the parametric case, both initial values are zero.

B The Projection Gradient

We prove Theorem 4, and, following this, we show how to compute the Hessian of the residual
function Rx,µ. We will need the following result for the proof of Theorem 4 to show that
equation (16) is independent of the chosen basis.

Lemma 2 Let S be an open subset of Rk and U : S → Mk×(k−1) a C1 map with the
property that for any v ∈ S, the columns of the matrix ( v

�v� U(v)) constitute an orthonormal

basis for Rk. Let ujv denote the jth column of U(v). Then for any v0 ∈ S and w ∈ Rk,�
d
dt

ujv0+tw|t=0, v0
�
= −

�
ujv0 , w

�
. As consequence of this, if Ũ : S → Rk−1 denotes the map

v �→ U(v)T v0
�v0� then

D
v∈span (u1

v0
,...,uk−1

v0
)

v0 Ũ(v) = −Ik−1

in the basis u1
v0

, . . . , uk−1
v0 for span (u1

v0
, . . . , uk−1

v0 ).

In the proof below, we adopt the notation of section 4.2, but we will use the alternative
formulation Rx,µ(w) = �LogxExpµw�2 for the residual function.

Proof (Theorem 4) Extend the basis {v1, . . . , vk, v0/�v0�} for Vv0 to an orthonormal basis for
TµM . The argument is not dependent on this choice of basis, but it will make the reasoning
and notation easier. Let S ⊂ TµM × V ⊥ be an open neighborhood of (w0, v0) and define the
map FV : S → Rη by

FV (w, v) =




∇wRx,µ · v1
...

∇wRx,µ · vk
∇wRx,µ · v
w · u1(v)

...
w · uη−k−1(v)




=

��
V v

�T
∇wRx,µ

UT
v w

�

with the vectors u1(v), . . . , uη−(k+1)(v) constituting an orthonormal basis for V ⊥
v for each v

and with (V v) and Uv denoting the matrices having vi, v and ui(v) in the columns, respec-
tively. Since �∇w0Rx,µ, v� = dw0Rx,µ(v) = 0 for all v ∈ Vv0 because w0 is a minimizer for
Rx,µ among vectors in in Vv0 , we see that FV (w0, v0) vanishes. Therefore, if Dw

(w0,v0)
FV is

non-singular, the implicit function theorem asserts the existence of a map Ψ from a neighbor-
hood of v0 to TµM with the property that FV (Ψ(v), v) = 0 for all v in the neighborhood. We
then compute

0 = Dv0FV (Ψ(v), v) =
�
Dw

(w0,v0)
FV

�
(Dv0Ψ(v)) +

�
Dv

(w0,v0)
FV

�

and hence

D
v∈V⊥

v0
v0 Ψ(v) = −

�
Dw

(w0,v0)
FV

�−1
�
D
v∈V⊥

v0
(w0,v0)

FV

�
. (23)

For the differentials on the right hand side of (23), we have

D
v∈V⊥

v0
(w0,v0)

FV =
�
0 · · · 0 ∇

w∈V⊥
v0

w0 Rx,µ D
v∈V⊥

v0
(w0,v0)

�
wT0 Uv

��T

and

Dw
(w0,v0)

FV =

��
V v0

�T
dww0

(∇wRx,µ)

UT
v0

�
=

��
Hw0 (Rx,µ)

�
V v0

��T

UT
v0

�
. (24)
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With the choice of basis, the above matrix is block triangular,

Dw
(w0,v0)

FV =

�
Aw0,v0 Bw0,v0
0 Cw0,v0

�
, (25)

with Aw0,v0 equal to Hw0 (Rx,µ|Vv0
). The requirement that Dw

(w0,v0)
FV is non-singular is

fulfilled, because Hw0 (Rx,µ|Vv0
) has rank k + 1 by assumption and Uv0 has rank η − (k + 1).

Since the first k rows of D
v∈V⊥

v0
(w0,v0)

FV are zero, we need only the last η − k columns of

(Dw
(w0,v0)

FV )
−1 in order to compute (23). The vector v̄x,µ,v0,Sv0

as defined in the statement

of the theorem is equal to the (k + 1)st column. Let Ex,µ,v0,Sv0
be the matrix consisting of

the remaining η − (k + 1) columns. Using the form (25), we have

Ex,µ,v0,Sv0
=

�
−Hw0

�
Rx,µ|Vv0

�−1
Bw0,v0C

−1
w0,v0

C−1
w0,v0

�
.

Assume {u1, . . . , uj} is chosen such that {u1(v0), . . . , uj(v0)} equals the previously chosen
basis for V ⊥

v0
. With this assumption, Cw0,v0 is the identity matrix Iη−(k+1). In addition, let

wk+1
0 denote the (k+ 1)st component of w0, that is, the projection of w0 onto v0/�v0�. Since

w0 ∈ Vv0 and by choice of Uv , Lemma 2 gives

D
v∈V⊥

v0
(w0,v0)

�
UT
v w

�
= wk+1

0 D
v∈V⊥

v0
(w0,v0)

�
UT
v

v0
�v0�

�
= −wk+1

0 Iη−(k+1) .

Therefore,

D
v∈V⊥

v0
(w0,v0)

FV =
�
0 · · · 0 ∇

w∈V⊥
v0

w0 Rx,µ − wk+1
0 Iη−(k+1)

�T
.

Note, in particular, that D
v∈V⊥

v0
(w0,v0)

FV is independent on the actual choice of bases Uv . Com-

bining the equations, we get

D
v∈V⊥

v0
v0 Ψ(v) = −v̄x,µ,v0,Sv0

(∇
w∈V⊥

v0
w0 Rx,µ)

T + wk+1
0 Ex,µ,v0,Sv0

.

Because ExpµΨ(v) = πSv (x), we get (16).

Lets now compute second derivatives, and thereby the Hessian, of the residual function
Rx,µ. Choose w0, v ∈ TµM and let y = Expµw0. Working in the orthonormal basis, we have

∇w0Rx,µ = 2
�
(DyLogx)Dw0Expµ

�T
Logxy .

and hence
d
ds
(∇w0+vsRx,µ) |s=0

= 2
�
d
ds

�
DExpµ(w0+sv)Logx

�
|s=0

�
Dw0Expµ

��T
Logxy

+ 2
�
(DyLogx)

d
ds

�
Dw0+vsExpµ

�
|s=0

�T
Logxy

+ 2
�
(DyLogx)

�
Dw0Expµ

��T d
ds

�
LogxExpµ(w0 + sv)

�
|s=0 .

(26)

Note that

d
ds

�
LogxExpµ(w0 + sv)

�
|s=0 = (DyLogx)

�
Dw0Expµ

�
v .

Using that d
ds
(A−1

s ) = A−1
s ( d

ds
As)A

−1
s for a time depedent, invertible matrix As6 and the

fact that ExpxLogxz = z for all z, we get

d
ds

�
DExpµ(w0+sv)Logx

�
|s=0 =

d
ds

�
DLogx(Expµw0+sv)Expx

�−1
|s=0

= − (DyLogx)
d
ds

�
DLogx(Expµw0+sv)Expx

�
|s=0 (DyLogx) .

The middle term of this product and the term d
ds

�
Dw0+svExpµ

�
|s=0 in (26) are both com-

putable using Theorem 3.

6 See [5, Eq. (2)].
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ference on Computer Vision (ECCV) 2010, Heraklion, Greece, 2010.

Authors:
Stefan Sommer, François Lauze, Søren Hauberg, and Mads Nielsen

Notes:
With the algorithms developed in Paper #4, we are able to compute exact PGA.
Based on experimentation, it became clear that in absence of both significant
curvature and spread of the data, the original PGA algorithm is a fairly good
approximation of the exact counterpart. In this paper, we present a comparison
between the algorithms and evaluate them on two datasets. We investigate if
easily computable indicators can predict when the approximate algorithm will
perform well compared to its exact equivalent.
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Abstract. Manifolds are widely used to model non-linearity arising in
a range of computer vision applications. This paper treats statistics on
manifolds and the loss of accuracy occurring when linearizing the mani-
fold prior to performing statistical operations. Using recent advances in
manifold computations, we present a comparison between the non-linear
analog of Principal Component Analysis, Principal Geodesic Analysis,
in its linearized form and its exact counterpart that uses true intrinsic
distances. We give examples of datasets for which the linearized version
provides good approximations and for which it does not. Indicators for
the differences between the two versions are then developed and applied
to two examples of manifold valued data: outlines of vertebrae from a
study of vertebral fractures and spacial coordinates of human skeleton
end-effectors acquired using a stereo camera and tracking software.

Key words: manifolds, Riemannian metrics, linearization, manifold val-
ued statistics, Principal Geodesic Analysis (PGA), Geodesic PCA

1 Introduction

This paper treats the effect of linearization when using the non-linear analog
of Principal Component Analysis, Principal Geodesic Analysis (PGA, [1]), to
estimate the variability in sets of manifold valued data. Until recently, PGA has
been performed by linearizing the manifold, which distorts intrinsic distances,
but with the introduction of more powerful computational tools [2], PGA can
now be computed with true intrinsic distances. We show how simple and fast
indicators allow us to approximate the differences between linearized PGA and
exact PGA with true intrinsic distances and evaluate the effect of the lineariza-
tion.

As a test case for the indicators, we perform a comparison between two man-
ifold valued datasets: outlines of vertebrae from a study of vertebral fractures,
and human skeleton end-effectors in spatial coordinates recorded using a stereo
camera and tracking software. We will show that linearized PGA provides a rea-
sonable approximation in only one of the experiments and that the indicators
allow us to predict this before doing the time-intensive computation of exact
PGA with intrinsic distances.
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1.1 Motivation

A wide variety of problems in computer vision possess non-linear structure and
are therefore naturally modeled using Riemannian geometry. In diffusion tensor
imaging [3–5], for image segmentation [6] and registration [7], shape spaces [8],
and human motion modeling [9, 10], Riemannian manifolds have been used to
enforce consistency in data, provide dimensionality reduction, and define more
accurate metrics. The wide applicability of manifolds in modeling problems has
created the need for statistical tools for manifold data.

Generalizing linear statistical operations to manifolds [1, 11–13] provides ex-
amples of the theoretical and computational problems arising when departing
from familiar Euclidean spaces. The tools developed when pursuing this have
been used successfully for a range of computer vision applications, and the area
is the subject of active research [2, 13]. Depending on the level of approximation
used in the computations, manifold statistics can be hard to carry out in prac-
tice because operations such as finding distances and performing optimization
do not admit the closed-form solutions often found in Euclidean spaces [1].

One way of doing manifold statistics is projecting the set of manifold valued
data points to the tangent space of a mean point of the manifold. The vector
space structure of the tangent space brings back convenient Euclidean statis-
tics, but the distortion of the distances between the data points inherent in the
linearization may however lead to sub-optimal solutions to the statistical prob-
lems. In contrast to this, some statistical operations can be carried out with true
intrinsic manifold distances giving a true picture of the data [2, 13]. This, how-
ever, often comes at the cost of increased computational complexity and requires
conditions on the locality of data.

Because of the trade-offs between convenient linearization and exact mod-
eling, we seek for ways to evaluate the extent of the distortion between the
linearized data and true manifold data; we are interested in determining if per-
forming statistics with intrinsic distances offers significant advantages over the
linearized approach. Such knowledge has the potential of saving substantial com-
putation time and to improve results of statistical operations.

1.2 Related Work

The mathematical aspects of manifolds are covered extensively in the literature
with [14, 15] providing good references. Numerical and computational aspects
of interest in a general setting are considered in the theoretical papers [16, 17]
while more specific shape related applications are proposed in [18–20].

Both the mathematical community, e.g. [11], and more applied fields, com-
puter vision in particular [1, 12], have worked with different aspect of statistics
on manifolds. A recent wave of interest by statisticians [21, 13] has created new
methods with strong links to tools developed in computer vision [13].

The manifold generalization of linear PCA, PGA, was first introduced in
[22], but it was formulated in the form most widely used in [1]. It has subse-
quently been used for several applications. To mention a few, the authors in
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[1, 4] study variations of medial atoms, [23] uses a variation of PGA for facial
classification, [24] presents examples on motion capture data, and [20] applies
PGA to vertebrae outlines. The algorithm presented in [1] for computing PGA
with linearization has been most widely used. In contrast to this, [24] computes
PGA as defined in [22] without approximations, but only for a specific mani-
fold, the Lie group SO(3). By using ODE formulations of geodesics and taking
derivatives, [2] provides algorithms for computing PGA without approximations
on wide classes of manifolds.

Geodesic PCA (GPCA, [13, 21]) is in many respects close to PGA but opti-
mizes for the placement of the center point and minimizes projection residuals
along geodesics instead of maximizing variance in geodesic subspaces. GPCA
uses no linear approximation, but it is currently only computed on spaces where
explicit formulas for geodesics exist and on quotients of such spaces.

1.3 Content and Outline

In the next section, we discuss the benefits of using manifolds in modeling,
manifold valued statistics, and linearization. Then, in section 3, we consider in
detail the specific case of Principal Geodesic Analysis and use synthetic examples
to explain the differences between linearized PGA and exact PGA with true
intrinsic distances. We progress to developing indicators of these differences,
and, in section 4, we compare linearized and intrinsic PGA on real-life examples
of manifold valued datasets and analyze the power of the indicators. The paper
thus contributes by

(1) developing simple and fast indicators of the difference between linearized
PGA and exact PGA that show the effect of linearization,

(2) giving examples of the differences between linearized PGA and exact PGA
on real-life datasets from computer vision,

(3) and showing the power of the indicators when applied to the datasets.

2 Manifolds and Manifold Valued Statistics

The interest in manifolds as modeling tools arises from the non-linearity apparent
in a variety of problems. We will in the following exemplify this by considering
the pose of a human skeleton captured by e.g. a tracking system or motion
capture equipment. Consider the position of a moving hand while the elbow and
the rest of the body stay fixed. The hand cannot move freely as the length of the
lower arm restricts it movement. Linear vector space structure is not present; if
we multiply the position of the hand by a scalar, the length of the arm would in
general change in order to accommodate the new hand position. Even switching
to an angular representation of the pose of the elbow joint will not help; angles
have inherent periodicity, which is not compatible with vector space structure.

Though the space of possible hand positions is not linear, it has the structure
of a manifold since it possesses the property that it locally can be approximated
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by a vector space. Furthermore, we can, in a natural way, equip it with a Rieman-
nian metric [14], which allows us to make precise notions of length of curves on
the space and intrinsic acceleration. This in turns defines the Riemannian man-
ifold equivalent of straight lines: geodesics. The length of geodesics connecting
points defines a distance metric on the manifold.

2.1 Benefits from Modeling using Manifolds

The main advantages of introducing manifolds in modeling are as follows: con-
sistency in representation, dimensionality reduction, and accuracy in measure-
ments. Consistency ensures the modeled object satisfies the requirements making
up the manifold; when moving the position of the hand on the manifold, we are
certain the length of the lower arm is kept constant. Such requirements reduce
the number of degrees of freedom and hence provide dimensionality reduction.
Consistency and dimensionality reduction are therefore closely linked.

Accuracy is connected to the distance measure defined by the Riemannian
metric. A reasonable measure of the distance between two positions of the hand
will be the length of the shortest curve arising when moving the hand between
the positions. Such a curve will, in this example, be a circular arc, and, in the
manifold model, the distance will be the length of the arc. In the vector space
model, however, the distance will be the length of the straight line connecting the
hand positions and, hence, will not reflect the length of an allowed movement of
the hand. The manifold model therefore gives a more accurate distance measure.

2.2 Linearizing the Manifold

By linearizing the manifold to the tangent space of a mean point, we can in many
applications ensure consistency, but not accuracy, in statistical operations. Let
M be a manifold and {x1, . . . , xN} a dataset consisting of points on the manifold.
An intrinsic mean [11] is defined as a solution to the optimization problem

µ = argminq

N�

i=1

d(xi, q)
2 (1)

with d(xi, q) denoting the manifold distance between the ith data point and the
mean candidate q.

Each point p of a manifold has a connected linear space called the tangent
space and denoted TpM . The dimension of TpM is equal to the dimension of the
manifold, which, as in the vector space case, specifies the number of degrees of
freedom. Vectors in the tangent space are often mapped back to the manifold
using the exponential map, Expp, which maps straight lines trough the origin of
TpM to geodesics on M passing p.

If we consider the tangent space of an intrinsic mean, TµM , we can represent
xi by vectors wi in TµM such that Expµwi = xi.

3 The map that sends xi ∈ M

3 See Figure 1 for an example of a 2-dimensional manifold with sampled elements of
the tangent space of the mean and corresponding points on the manifold.
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to wi ∈ TµM is called the logarithm map and denoted Logµ. The vector space
structure of TµM allows us to use standard statistical tools on {w1, . . . , wN}.
We could for example infer some distribution in TµM , sample a vector v from
it, and project the result back to a point p on the manifold so that p = Expµv.
It is important to note that consistency is ensured in doing this; p will be on the
manifold and hence satisfy the encoded requirements. Turning to the example
of hand positions, we have found a consistent way of sampling hand positions
without violating the fixed length of the lower arm.

The above procedure can be seen as a way of linearizing the manifold around
the intrinsic mean µ because the tangent space TµM provides a first order ap-
proximation of the manifold around µ. Yet, distances between vectors in TµM
do not always reflect the manifold distances between the corresponding points
on the manifold: distances between wi and the origin of TµM equal the distances
d(xi, µ), but the inter-point distances d(xi, xj) are not in general equal to the
tangent space distances�wi −wj�. Accuracy may therefore be lost as a result of
the approximation. In short, linearization preserves consistency but may destroy
accuracy.

3 Principal Geodesic Analysis

Principal Component Analysis (PCA) is widely used to model the variability of
datasets of vector space valued data and provide linear dimensionality reduction.
PCA gives a sequence of linear subspaces maximizing the variance of the projec-
tion of the data or, equivalently, minimizing the reconstruction errors. The kth
subspace is spanned by an orthogonal basis {v1, . . . , vk} of principal components
vi.

PCA is dependent on the vector space structure and hence cannot be per-
formed on manifold valued datasets. Principal Geodesic Analysis was developed
to overcome this limitation. PGA centers its operations at a point µ ∈ M with µ
usually being an intrinsic mean of the dataset {x1, . . . , xN}, and finds geodesic
subspaces, which are images S = ExpµV of linear subspaces V of the tangent
space TµM . A projection operator πS is defined by letting πS(x) be a point
in S closest to x. The kth geodesic subspace Sk is then given as Expµ(Vk),

Vk = span {v1, . . . , vk}, where the principal directions vi are given recursively
by

vi = argmax�v�=1,v∈V ⊥
i−1

1

N

N�

j=1

d(µ, πSv
(xj))

2 ,

Sv = Expµ(span (Vi−1, v)) .

(2)

The term being maximized is the sample variance, the expected value of the
squared distance to µ. PGA therefore extends PCA by finding geodesic subspaces
in which variance is maximized.

Since the projection πSk
(x) is hard to compute, PGA is traditionally approx-

imated by linearizing the manifold. The data x1, . . . , xN are projected to TµM
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using Logµ, and regular PCA is performed on wi = Logµxi. Equation (2) then
becomes

vi ≈ argmax�v�=1,v∈V ⊥
i−1

1

N

N�

j=1

�
�wj , v�2 +

k−1�

l=1

�
wj , v

l
�2
�

. (3)

We can define a normal distribution N in TµM using the result of the PCA
procedure, and, in doing so, we have performed the procedure described in sec-
tion 2.2. We will refer to PGA with the approximation as linearized PGA. PGA
as defined by (2) without the approximation will be referred to as exact PGA.
Advances in manifold computations allow exact PGA to be computed on the Lie
group SO(3) [24] and, more recently, on wide classes of manifolds [2].

Replacing maximization of the sample variances d(µ, πSv
(xj))

2 by minimiza-
tion of the squared reconstruction errors d(xj , πSv

(xj))
2, we obtain another man-

ifold extension of PCA and thus an alternate definition of PGA:

vi = argmin�v�=1,v∈V ⊥
i−1

1

N

N�

j=1

d(xj , πSv (xj))
2 . (4)

In contrast to vector space PCA, the two definitions are not equivalent. It can be
shown that, in some cases, solutions to (2) will approach parts of the manifold
where the cost function is non differentiable, a problem we have not encountered
when solving for (4). We are currently working on a paper giving a theoretical
treatment of this phenomenon and other differences between the definitions. The
latter formulation is chosen for Geodesic PCA to avoid similar instabilities of
variance maximization [13]. In correspondence with this, we will use (4) in the
rest of the paper, but we stress that this choice is made only to avoid instabilities
in (2) and that all computations presented can be performed using the former
definition with only minor changes to the optimization algorithms [2].

3.1 Linearized PGA vs. Exact PGA

Computing the projection map πS is particularly time-intensive causing the com-
putation of exact PGA to last substantially longer than linearized PGA. To give
an example, computing linearized PGA for one of the datasets later in this pa-
per takes 5 seconds with a parallelized Matlab implementation, and computing
exact PGA for the same example requires approximately 10 minutes. This time
penalty makes it is worth considering the actual gain of computing exact PGA.
We will in this section give examples of low dimensional manifolds on which it
is possible visually to identify the differences between the methods.

We consider surfaces embedded in R3 and defined by the equation

Sc = {(x, y, z)|cx2 + y2 + z2 = 1} (5)

for different values of the scalar c. For c > 0, Sc is an ellipsoid and equal to the
sphere S2 in the case c = 1. The surface S0 is a cylinder and, for c < 0, Sc is an
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hyperboloid. Consider the point p = (0, 0, 1) and note that p ∈ Sc for all c. The
curvature of Sc at p is equal to c. Note that in particular for the cylinder case
the curvature is zero; the cylinder locally has the geometry of the plane R2 even
though it informally seems to curve.

We evenly distribute 20 points along two straight lines through the origin
of the tangent space TpSc, project the points from TpSc to the surface Sc, and
perform linearized and exact PGA. Since linearized PCA amounts to Euclidean

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 1. TpS−2 with sampled points and first principal components (blue exact PGA,
green linearized PGA) (left) and S−2 with projected points and first principal compo-
nents (blue exact PGA (2), green linearized PGA) (right).

PCA in TpSc, the first principal component divides the angle between the lines
for all c. In contrast to this, the corresponding residuals and the first principal
component found using exact PGA are dependent on c. Table 1 shows the angle
between the principal components found using the different methods, the av-
erage squared residuals and differences between squared residuals for different
values of c. Let us give a brief explanation of the result. The symmetry of the

Table 1. Differences between methods for selected values of c.

c: 1 0.5 0 -0.5 -1 -1.5 -2 -3 -4 -5
angle (◦): 0.0 0.1 0.0 3.4 14.9 22.2 24.8 27.2 28.3 28.8
lin. sq. res.: 0.251 0.315 0.405 0.458 0.489 0.508 0.520 0.534 0.539 0.541
exact sq. res.: 0.251 0.315 0.405 0.458 0.478 0.482 0.485 0.489 0.491 0.492
diff (%): 0.0 0.0 0.0 0.1 2.3 5.1 6.7 8.4 8.9 9.0

sphere and the dataset causes the effect of curvature to even out in the spherical
case S1. The cylinder S0 has local geometry equal to R2 which causes the equal-
ity between the methods in the c = 0 case. The hyperboloids with c < 0 are
non-symmetric causing a decrease in residuals as the first principal component
approaches the hyperbolic axis. This effect increases with curvature causing the
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the first principal component to align with this axis for large negative values of
c.

It is tempting to think that increasing absolute curvature causes increasing
differences between the methods. Yet, redoing the experiment with the lines ro-
tated by π/4 making them symmetric around the x and y axes will produce
vanishing differences. Curvature in itself, therefore, does not necessarily imply
large differences, and the actual differences are hence dependent on both curva-
ture and the dataset.

3.2 The Difference Indicators

The projection πS is in (3) approximated using the orthogonal projection in the
tangent space TµM . We let τS denote the difference in residuals arising when
using the two projections and aim at approximating τS to give an estimate of the
gain in precision obtained by using true projections. The subspaces optimizing
(4) and (3) will in general differ due to the different projection methods and the
fact that residuals are approximated by tangent space distances in (3). We let ρ
denote the difference in residuals between the projection of the data to the two
subspaces, and we aim at approximating ρ to indicate the gain in accuracy when
computing exact PGA.

We start by giving precise definitions for τS and ρ before deriving the indica-
tors τ̃S and σ of their values. The term indicators is used to emphasize expected
correlation between the values of e.g. τS and the indicator τ̃S but with no direct
expression for the correlation.

Assume v1, . . . , vk−1 are principal components and let v ∈ TµM be such that
v1, . . . , vk−1, v constitues an orthonormal basis. Let the geodesic subspace Sv

be given by Expµspan {v1, . . . , vk−1, v}, and let wj = Logµxj for each element
of the dataset {x1, . . . , xN}. We denote by π̂Sv (xj) the point on the manifold
corresponding to the orthogonal tangent space projection of wj , i.e.

π̂S(xj) = Expµ

�
�wj , v� v +

k−1�

l=1

�
wj , v

l
�
vl

�
, (6)

and define the average projection difference

τS =
1

N

N�

j=1

�
d(xj , π̂Sv

(xj))
2 − d(xj , πSv

(xj))
2
�

. (7)

Let now v be an exact PGA principal geodesic component computed using (4)
and let v̂ be a linearized PGA principal component computed using (3). We let
Sv and Sv̂ denote the geodesic subspaces corresponding to v and v̂. The average
residual difference is then given by

ρ =
1

N

N�

j=1

�
d(xj , πSv̂

(xj))
2 − d(xj , πSv (xj))

2
�

. (8)

Note that both τS and ρ are positive since πSv minimizes residuals and v mini-
mizes (4).
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3.3 The Projection Difference

Since πSv
(xj) is the point in Sv closest to xj , the differences expressed in each

term of (7) measure the difference between f(π̂Sv
(xj)) and f(yj) with yj ∈ Sv

minimizing the map f(y) = d(xj , y)2. The gradient ∇yf vanishes in such a
minimum leading us to approximate the difference by the norm of the gradient
at π̂Sv

(xj). The gradient is readily evaluated since it is given by the component
of −2Logπ̂Sv (xj)(xj) in the tangent space of Sv [11]. We use this to approximate
τS by

τSv ≈ τ̃Sv =
2

N

N�

j=1

�∇π̂Sv (xj)f� (9)

and note that each term of the sum, and therefore the entire indicator τ̃Sv
, is

inexpensive to compute.

3.4 The Residual Difference

We now heuristically derive an indicator σ that is correlated with ρ. The cor-
relation will be confirmed later by the experiments. Assume for a moment that
distances in the tangent space TµM approximate the true manifold distances

well. The residual sums 1
N

�N
j=1 d(xj , πSv̂

(xj))
2 and 1

N

�N
j=1 d(xj , πSv

(xj))
2 will

then be close to identical since v is chosen to minimize the latter sum, and v̂
is chosen to minimize the sum of tangent space residuals. The difference ρ will
therefore be close to zero. Conversely, assume that distances in the tangent space
differ greatly from the true manifold distances. On constant curvature spaces like
the sphere S1, these distance differences will generally be uniformly distributed
causing the linearized principal component v̂ to be close to v and ρ therefore
close to zero. On the contrary, the distance differences will vary on spaces with
non-constant curvature like S−1 where v̂ in general is far from v causing ρ to
be large. We therefore expect ρ to be correlated with the standard deviation σ
of the differences between the tangent space residual approximations and the
actual orthogonal projection residuals,

σ =

���� 1

N

N�

j=1

�
�wj − Logµ(π̂Sv̂

)� − d(xj , π̂Sv̂
(xj)) − µ

�2
, (10)

with µ the mean value of the scalars �wj −Logµ(π̂Sv̂
)�− d(xj , π̂Sv̂

(xj)). We use
σ, which again is fast to compute, to indicate the size of ρ.

4 Experiments

We present experiments on the synthetic data of section 3.1 and on two real-life
datasets for two purposes: the experiments will show examples where computing
exact PGA results in increased accuracy as well as examples where linearized
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PGA performs well, and the power of the indicators developed in section 3 will
be explored.

When investigating the correlation between the indicator τ̃Sv̂
and the pro-

jection difference τSv̂
, we let v̂ be the first principal component computed using

linearized PGA. In addition, we compare the residual difference ρ with the in-
dicator σ.

4.1 Synthetic Data

We test the indicators on the manifolds Sc with the synthetic data described in
section 3.1. Figure 2 shows τS as a function of the indicator τ̃Sv̂

and ρ as a func-
tion of the indicator σ for each value of c. For both graphs, we see correlation
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Fig. 2. Synthethic data: Projection difference τSv̂ as a function of the indicator τ̃Sv̂

with the broken line fitted to the points (left) and residual difference ρ as a function
of the indicator σ with the broken line fitted to the points (right).

between the indicators and actual differences. For c = 1 and c = 0.5, σ is rela-
tively high compared to ρ stressing that the indicators only give approximations
and that, if full precision is required, exact PGA should be computed.

4.2 Vertebrae Outlines

In this experiment, we consider outlines of vertebrae obtained in a study of verte-
bral fractures. The dataset of 36 lateral X-rays have been manually annotated by
medical experts to identify the outline of the vertebra of each image. To remove
variability in the number and placement of points, a resampling is performed
to ensured constant inter-point distances. With this equidistance property in
mind, the authors in [20] define a submanifold of R2n on which the outlines
naturally reside. We give a brief review of the setup but refer to the paper for
details. The equidistance constraint is encoded using a map F : R2n → Rn−2

with components

F i(P1, ..., Pn) = di+2,i+1 − di+1,i, i = 1, .., n− 2 (11)
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Fig. 3. Manually annotated vertebrae outline (left) and resampled outline (right).

with n the number of points and di,j = (xi − xj)
2 + (yi − yj)

2 the squared
distances between points Pi and Pj . The constraint is satisfied for a vertebra
outline c = {P1, . . . , Pn} if F (c) = 0. An additional constraint is added to
remove scaling effects by ensuring the outline reside on the unit sphere. The
preimage An = F−1(0) is then a submanifold of R2n, the space of equidistant
vertebra outlines. We choose 8 random outlines from the dataset and perform
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Fig. 4. Vertebrae outlines: Projection difference τSv̂ as a function of the indicator τ̃Sv̂

(left) and residual difference ρ as a function of the indicator σ (right).

linearized PGA and exact PGA. The experiment consists of 20 such selections,
and, for each selection, the entities τSv̂

, τ̃Sv̂
, ρ and σ are computed and plotted

in Figure 4. Though we visually see correlation between the indicators and their
respective associated values in the figures, not only are the correlations low, as
the indicators and their values have significantly different orders of magnitude,
but in reality, both the indicators and the associated values are in the order of
the computation tolerance, i.e close to zero from a numerical point of view. As
small indicators should imply small values, we can conclude that the indicators

117



Sommer, Lauze, Hauberg, Nielsen

works as required and that, for the example of vertebra outlines, doing statistics
on the manifold An is helpful in keeping the data consistent, i.e. the equidistance
constraint satisfied, but provides little added accuracy.

4.3 Human Poses

In this experiment, we consider human poses obtained using tracking software.
A consumer stereo camera4 is placed in front of a test person, and the tracking
software described in [10] is invoked in order to track the pose of the persons up-
per body. The recorded poses are represented by the human body end-effectors;
the end-points of each bone of the skeleton. The placement of each end-effector
is given spatial coordinates so that an entire pose with k end-effectors can be
considered a point in R3k. To simplify the representation, only the end-effectors
of a subset of the skeleton are included, and, when two bones meet at a joint,
their end-points are considered one end-effector. Figure 5 shows a human pose
with 11 end-effectors marked by thick dots.

−1.5−1−0.500.511.522.5
−0.5

0
0.5

0

0.5

1

1.5

2

2.5

Fig. 5. Camera output superimposed with tracking result (left) and a tracked pose
with 11 end-effectors marked by thick dots (right).

The fact that bones do not change length in short time spans gives rise to a
constraint for each bone; the distance between the pair of end-effectors must be
constant. We incorporate this into a pose model with b bones by restricting the
allowed poses to the preimage F−1(0) of the map F : R3k → Rb given by

F i(x) = �ei1 − ei2�2 − l2i , (12)

where ei1 and ei2 denote the spatial coordinates of the end-effectors and li the
constant length of the ith bone. In this way, the set of allowed poses constitute
a 3k − b-dimensional implicitly represented manifold.

We record 26 poses using the tracking setup, and, amongst those, we make
20 random choices of 8 poses and perform linearized PGA and exact PGA. For
each experiment, τSv̂

, τ̃Sv̂
, ρ, and σ are computed and plotted in Figure 6. The

4 http://www.ptgrey.com/products/bumblebee2/
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Fig. 6. Human poses: Projection difference τSv̂ as a function of the indicator τ̃Sv̂ (left)
and residual difference ρ as a function of the indicator σ (right).

indicators provide a good picture of the projection and residual differences, which
are significantly greater than for the vertebra experiment. The indicators and
the corresponding true values are now at the same order of magnitude, and the
correlation between the indicators and the values they correspond to is therefore
significant. The maximal increase in average squared residuals is 1.53 percent
with individual squared point residuals changing up to 30.7 percent.

5 Conclusion

In this paper, we have explored the differences between exact PGA and its widely
used simplification, linearized PGA. We have developed simple indicators of the
loss of accuracy when using the linearized PGA instead of exact PGA. As shown
on real-life examples of manifold valued datasets, these indicators provide mean-
ingful insight into the accuracy of the linearized method. The experiments, in
addition, show that linearization is in some cases a good and fast approximation,
but exact PGA offers better accuracy for other applications.

We are currently working on deriving formal arguments for the correlation
between σ and ρ. In the future, we plan to apply the developed indicators to the
many uses of PGA, which have previously been computed using the linearized
approach, to test whether exact PGA can provide significant increases in ac-
curacy and hence more precise modeling. In order to make better decisions on
whether to use linearized or exact PGA, it will be useful to find thresholds for
the values of τ̃Sv̂

and σ dependent on the sought for precision. Future research
will hopefully lead to such thresholds.
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Notes:
To reduce annotation variation in point based models, we introduce the bicycle
chain shape model for landmark based representation of 2D shapes. By constrain-
ing the pairwise distances between consecutive landmarks, we obtain non-linear
shape manifold. We show how the Exponential and logarithm maps can be com-
puted and use this to perform Principal Geodesic Analysis. The dimension re-
duction is evaluated with the PGA algorithm on a dataset of manually annotated
outlines of human vertebrae X-rays.
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Abstract

In this paper we introduce landmark-based pre-
shapes which allow mixing of anatomical land-
marks and pseudo-landmarks, constraining consecutive
pseudo-landmarks to satisfy planar equidistance rela-
tions. This defines naturally a structure of Rieman-
nian manifold on these preshapes, with a natural ac-
tion of the group of planar rotations. Orbits define the
shapes. We develop a Geodesic Generalized Procrustes
Analysis procedure for a sample set on such a preshape
spaces and use it to compute Principal Geodesic Anal-
ysis. We demonstrate it on an elementary synthetic
example as well on a dataset of manually annotated
vertebra shapes from X-ray. We re-landmark them con-
sistently and show that PGA captures the variability of
the dataset better than its linear counterpart, PCA.

1. Introduction

There is a wide literature on shape representation
and shape analysis in Computer Vision and Medical
Imaging as shape understanding is one of the most
fundamental task in Image Analysis. A 2-dimensional
shape is generally defined as an equivalence class of
smooth 1-dimensional submanifolds of R2 modulo sim-
ilarity [13]. Computational representations, ranging
from the simplest to the most sophisticated, have been
suggested in the past, e.g. point set distributions [9, 1],
linear point distribution models (PDM) [4], paramet-
ric representations via B-splines, levelset representa-
tions [16], and their adaptation, as for example, spe-
cific shape constraints, soft priors, etc..., for an ever
growing amount of tasks.

Manual annotations of anatomical structures in
medical images, such as X-rays, Ultra Sound, are rou-

1Corresponding author email: sommer@diku.dk
2Department of Computer Science, University of Copen-

hagen, Denmark
3Nordic Bioscience A/S, Herlev, Denmark
4Erasmus MC, Rotterdam, The Netherlands
5ICT Group, Delft University of Technology, The Netherlands

tinely performed by radiologists and other experts in
many clinical studies, resulting in the encoding of
shapes as point set distributions. Point set distri-
butions for shape representation and analysis are of
tremendous importance in Medical Imaging. Deriv-
ing such distributions presupposes consistent annota-
tions, which is not always the case: the following fig-
ure shows two annotated vertebra shapes from X-ray
images, during a clinical study on vertebra fractures,
the first vertebra is annotated with 31 points, the sec-
ond with 32. Moreover the number of points between
corner landmarks (the circular ones) do not match for
corresponding pairs. This is caused by the absence
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Figure 1. Two annotated vertebrae from a clinical study.
The number of annotation points differ.

of clear ground truth landmarks along the endplates of
the vertebrae. In order to tackle this somehow common
situation, a resampling is necessary; pseudo-landmarks
should be placed such that the resulting model is more
compact, no additional variation caused by points slid-
ing along the outline should be modelled. Some recent
approaches for curves and surfaces were proposed for
instance by Davies et al . [5] using minimum descrip-
tion length to solve this problem, while, for surfaces,
Cates et al . used an entropy based particle system ap-
proach in [3].

For curves, which are the objects of interest in
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this paper, a way to do it is to first impose a fixed
number of pseudo-landmarks between landmarks, reg-
ularly distributed along the outline between the land-
marks. This regularity often takes the form of an
equidistance constraint for pseudo-landmarks situated
between consecutive landmarks. This can be formu-
lated as setting the variance of the distribution of of
planar distances (or square-distances) between consec-
utive pseudo-landmarks to 0. In a figurative way, a seg-
ment between two consecutive landmarks is similar to
a segment of a bicycle chain, for the links that consti-
tute a bicycle chain have the same length! This has the
nice property of minimizing the variability due to the
annotation process. But once this resampling has been
performed, forgetting this variance constraint induces
apparent extra variability which may be difficult to
handle due to the non linearity of the constraint. This
is illustrated in Figure 2 where the Euclidean mean
of the upper and lower curves does not have equidis-
tant pseudo-landmarks introducing extra variability on
the horizontal placement of the pseudo-landmarks. We

Figure 2. Two 3-point curves and the Euclidean mean.

propose to handle this situation by introducing the con-
straint explicitly in the descriptions of our preshape
spaces. This null-variance can be reformulated as a
series of simple quadratic constraints on the pseudo-
landmarks and will, for shapes determined by n points
in Rd, define implicitly a submanifold of the point set
spaces (Rd)n. Endowed with the metric that comes
from the standard Euclidean structure of (Rd)n, it be-
comes a Riemannian manifold. In order to obtain point
distributions models, Generalized Procrustes Analysis
(GPA) [8] should be performed with the induced met-
ric, leading to what we will call Geodesic Generalized
Procrustes Analysis (GGPA), while Principal Compo-
nent Analysis should be replaced by Principal Geodesic
Analysis (PGA) [7] in order to take into account the
curved structure of the manifold. In the rest of this
paper, we will focus to point set configurations in R2.

This will simplify the presentation. Extension to 3D
curves can be carried out easily.

So as to be able to compute GGPA and PGA, we
need tools for computing Riemannian exponential map,
geodesics, and log map on implicitly defined submani-
folds. By extending computations of exponential map
to provide not only geodesic, but corresponding mov-
ing frames, we propose a shooting method for com-
puting Log maps. When it fails, we replace it by a
path straightening algorithm based on local properties
of geodesics.

This paper is organized as follows. In the next sec-
tion we introduce the preshape manifolds that we use
as well as the geometric tools needed for our statisti-
cal analysis: Geodesic Generalized Procrustes analy-
sis and Principal Geodesic Analysis. Exponential and
Log maps are discussed in Section 3. In Section 4 we
present experiments; the first one on the 3-points toy
example and the second on a data set of vertebra com-
ing from a clinical study on vertebra fractures. Finally
we conclude in Section 5.

2. Preshape manifolds

In point based models, a typical object consists of q
landmark points and nk, k = 1, ..., q − 1 (k = 1, ..., q,
for closed configurations) pseudo landmarks between
consecutive landmark points. A segment of this ob-
ject consists of nk + 2 points, nk pseudo-landmarks
Pi, i = 2, ..., nk + 1 between 2 landmark endpoints
P1, Pnk+2. The objects we consider consist of such con-
figurations with equal (squared) Euclidean distance be-
tween the neighboring points in each of the segments.
This characteristic distance will generally vary from
segment to segment and objects to objects, even when
the sequence of numbers (q, n1, . . . , nq−1) is fixed. We
start by describing constraints on segments.

2.1. n-Links Bicycle Chain Manifolds

Here onwards we work on one segment with nk =
n−2 pseudo-landmarks between 2 landmark endpoints.
Then the equidistant constraint can be written as a
simple quadratic constraint F : R2n → Rn−2 given as

Fi(P1, ..., Pn) = di+2,i+1 − di+1,i, i = 1, .., n− 2 (1)

where di,j = (xi − xj)
2 + (yi − yj)

2 is the squared
euclidean distance between points Pi and Pj , The
configuration space is the subspace of R2n given by
An = F−1(0)\Δ, where Δ is the “diagonal” Δ =
(P, . . . , P ) ∈ (R2)n consisting of segments reduced to
a single point, for, while Δ ⊂ F−1(0), the rank of F
breaks down exactly along Δ. This ensures that An is
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a submanifold of (R2)n = R2n [2] The tangent space of
An at a segment x is given by

TxAn = ker(JF (x))

the kernel (or null space) of the Jacobian of F at point
x ∈ An ⊂ R2n. By restricting the scalar product of R2n

to TxAn, An is endowed with a Riemannian Metric [2].
We may call An a n-links bicycle chain segment
manifold.

More general point configurations are then built by
concatenating these n-links bicycle chain segments, im-
posing endpoint matching which are linear constraints.
When the number q of landmarks points and the num-
bers nk, k = 1, . . . , q− of pseudo-landmarks points are
fixed, corresponding configurations form a Riemannian
submanifold of the product manifold

�q
i=1Ank+2, and

this manifold has also the metric inherited from the
embedding space (R2)N with N = q +

�q−1
k=1 nk.

Having a Riemannian metric, we can compute
length of paths in these manifolds, define geodesic and
geodesic distances [2].

2.2. Removing Translation and Scaling

In the following, we denote by M such a configu-
ration manifold. To work with preshapes in the sense
of [9], we need to quotient out translations and scal-
ing from points in M (although in some applications,
scale could be an important feature of the shape). Re-
moving translations is as usual easy. If M� denotes
the submanifold of M of configurations with centroid
at the origin of R2 then M � M� × R2, by sending
a configuration S = (S1, . . . , Sn) to (S − S̄, S̄ where
S̄ = 1

n

�n
i=1 Si is the centroid of S. This decomposes

M into two orthogonal factors, which imply that a
geodesic path in M between centered objects in M�

will be in fact a geodesic path in M�. From now on
we therefore assume that all our configurations have
centroid at 0 ∈ R2. Following [9], we remove scale by
imposing �S�2 =

�n
i=1 �Si�2 = 1, i.e by intersecting

M� with the unit sphere of the embedding space. This
defines a new submanifold S of M�, and S is our pre-
shape manifold.

2.3. Geodesic Generalized Procrustes Analysis

Given a sample set (Si)i=1...n ∈ S, our GPA follows
[9], but is performed on S. It attempts to compute a
set of planar rotations Rθ̄i , i = 1, . . . , n and a preshape
µ̄ ∈ S minimizing the misalignment criterion

E(θ1, . . . , θn, µ) =

n�

i=1

d(RθiSi, µ)
2. (2)

where d is the geodesic distance in S. This will result
in an aligned preshape sample (S̄i := Rθ̄iSi)i=1...n, µ̄
being the Fréchet mean ([10]) of this sample and the
distances d(S̄i, µ̄) should represent the true shape dis-
tances to this mean.

The minimization procedure for (2) is sketched in
Algorithm 1. We describe briefly the loop steps. A
first guess for the rotations is computed by standard
Euclidean rigid registration [8] providing candidate ro-
tation angles for each shape. Then we search for the
rotations angles that minimize the true geodesic dis-
tances in a neighborhood of the previously obtained
angles. The Fréchet mean is then computed by adapt-
ing the procedure described in [7] to our case. In Fig-
ure 3 the need for the minimization search after the
initial Euclidean registration is illustrated by showing
a base preshape, and rotation of a second preshape
with respect to Euclidean and submanifold distances.
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0.2

0.4 base preshape

Euc. rotation

Subman. rotation

Figure 3. A base preshape and Euclidean and manifold reg-
istration.

Algorithm 1 Calculate the mean shape µ� and the
aligned shapes S��

i

Require: Si ∈ S, i = 1, ...,m
µ� = S1 {initial guess}
repeat
Set µ = µ�. S�

i = Si shapes aligned to µ using
Euclidean distances.
S��
i = S�

i shapes aligned to µ using geodesic dis-
tances.
µ� = Fréchet mean of (S��

i )
until d(µ, µ�) < Threshold.
Output: Mean µ�, aligned shapes S��

i .
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2.4. Principle Geodesic Analysis (PGA)

PGA is a generalization of Principal Component
Analysis (PCA) to nonlinear manifolds [7]. We seek
to compute a minimum number of tangent vectors at
the mean, which generate geodesics that represent as
much variability in the data on the manifold as pos-
sible. Thus PGA is PCA done on the tangent space
of the mean. Unfolding the manifold to this tangent
space is performed by the Riemannian Log map. The
algorithm can be summarized as:

• Given m preshapes in S and the mean preshape µ,
compute vi = Logµ(Si), i = 1, ...,m, the tangent
vectors for each preshape in the tangent space at
the mean.

• Compute the covariance matrix C = 1
m

�m
i=1 viv

T
i

• Compute the eigenvectors and eigenvalues (ei, λi)
of C.

The geodesic paths corresponding to the tangent vec-
tors ei ∈ TµS are the principle geodesic components.

Computing the Fréchet mean and PGA use Expo-
nential map, Log map and geodesics on implicitly de-
fined Riemannian manifolds. They are described in the
next section

3. Geodesics on the manifold; the Exp-
and Log-map

Geodesics are fundamental to the theory of Rieman-
nian manifolds ([2]). They are closely related to the
Exponential map Exp : TM → M in the sense that
a geodesic γ trough the point p with initial velocity
vector v is given by the curve

γ(t) = Expptv .

The map Expp is invertible in a sufficiently small neigh-
borhood of 0 in TpM . When U is such a neighborhood
we denote by Logp : Expp(U) → U the inverse of Expp.

The distance between two elements of the manifold
is given by

dM (p, q) = inf
�
l(c)

��c is a curve joining p and q
�
.

Here l(c) denotes the length of the curve c. Since
geodesics are critical points of the length functional,
it is in the case of a complete manifold M sufficient
to consider geodesics when computing the distance.
Therefore, if p and q are sufficiently close so that only
one geodesic joins them,

dM (p, q) = �Logpq� . (3)

In general we cannot be sure that a given geodesic join-
ing p and q is length minimizing. In such cases, we de-
fine Logpq to be the initial direction of some geodesic
joining p and q and use (3) as a guess on the distance.

Computing Expp amounts to solving an initial value
ODE problem. This can be done neatly numerically,
confer [6]. Computing Logpq is substantially harder.
We make use of a shooting method ([12], [14]) for com-
putation of Logp for input values close to p, and a path-
straightening method for non-local input.

3.1. Shooting method

A shooting method iteratively improves an initial
guess by repeatedly computing a residue or error cor-
rection, and updates the initial guess using that. Based
on the fact that Logp is the inverse of Expp, our basic
algorithm is presented in Algorithm 2. The ability to

Algorithm 2 Calculate v = Logpq on S by shooting

Require: p, q ∈ S
v ⇐ projection of q − p to TpS {initial guess}
repeat
q̃ ⇐ Exppv {shot based on guess}
r̃ ⇐ projection of q − q̃ to Tq̃S {residue at q̃}
r ⇐ par. transport of r̃ to TpS {residue at p}
v ⇐ v + r {update v}

until �q̃ − q�R2n is sufficiently small.

compute length and direction in Euclidean space and
the implicit representation of S as a submanifold of
Euclidean space enables us to compute both the initial
guess, update v, and compute the Euclidean error of
our guess. When q is close to p these estimates work
well and improve the situation in [14] where the embed-
ding space approximations are not at hand and e.g. the
update of v therefore is based on numerical estimates
of the gradient of a cost functional.

We use the projection of the vector q − p in em-
bedding Euclidean space to the tangent space TpS
as our initial guess. In each iteration we compute
Exppv and express the error by the Euclidean distance
�q−Exppv�. We update v by projecting the Euclidean
residue q−Exppv onto the tangent space TExppvS, par-
allel transport the resulting vector to TpS and add it to
v; this procedure is the natural manifold generalization
of error correction in Euclidean space.

The parallel transport is computed using a paral-
lel frame along the curve t �→ Expptv. We compute
the parallel frame by using the fact that parallel vec-
tor fields have zero intrinsic acceleration, introduce a
Lagrange multiplier, and solve the resulting ODE. The
computation of the frame can be nicely coupled with
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the computation of Exppv when using the method of
[6].

The shooting method relies completely on the qual-
ity of the initial guess and updating residues. Both are
determined by how well the projections on the tangent
spaces approximate the paths on the manifold, or, in
other words, how close to linear the manifold is; in an
Euclidean manifold the shooting method converges in
one iteration whether as it on a torus might not con-
verge at all. It will though always converge locally due
to the smoothness of our manifold.

An additional drawback of the shooting method is
its sensitivity to numerical errors in the computation of
Expp. This can especially be a problem if the curvature
around the target element q is large, confer [11].

3.2. Path straightening

When the shooting method fails to converge due
to large curvature of the manifold, we apply the path
straightening method of [15]; we update an initial curve
by repeatedly shooting between pairs of points on the
initial curve close to each other. The closeness assures
the convergence of the shooting method. In each it-
eration the curve is a piecewise geodesic and by re-
peatedly changing the points between which we shoot,
the non-smooth bends of the curve are removed. Since
geodesics are critical points of the length functional, we
stop the process when we get no signification reduction
of length on each iteration.

Path straightening requires an initial path. In prac-
tice we get this path by shooting until we detect non-
convergence of the shooting method. We then restart
the shooting method with the best guess from the pre-
vious run as our new starting point. In practice we
always obtain convergence of the shooting method in
the second run. Now concatenating the geodesics ob-
tained from the two runs gives a piecewise geodesic
connecting the points which can serve as input to the
path straightening algorithm. In case this method fails,
we explicitly make an initial path.

As noted in [15] we may need to extract a subse-
quence in order for the path straightening algorithm to
convergence to a geodesic. In practice we do not ex-
perience such situations, and we accept the possibility
of this happening in the same way as we accept that
geodesics might not be length minimizing.

4. Experiments

We present two examples illustrating the effect of
our manifold setting. We start by discussing the di-
mensionality reduction gained in a small 3-point exam-
ple and then progress to study a dataset of vertebrae

shapes.

4.1. Illustrative example

In Figure 4 we see three 3-point preshapes with
equidistant points. They are all normalized and hence
reside on the manifold S. The middle preshape is the
Fréchet mean of the upper and lower preshapes, and
hence the mean of all three preshapes.

Figure 4. Three 3-point preshapes on the manifold.

The manifold S has two dimensions. Doing a Princi-
pal Geodesic Analysis on the set of the three preshapes,
we get one mode of variation. The geodesic corre-
sponding to this mode connects the three preshapes
as illustrated in Figure 5. Note that in the figure the
preshapes have been placed in the plot as to have zero
mean.

Figure 5. The geodesic corresponding to the only mode of
variation obtained from PGA.

Now suppose we disregard our manifold notion and
attempt to do Euclidean Principal Component Analy-
sis in the embedding Euclidean space. The Euclidean
mean of the three preshapes will again be a straight
line, but in this situation the points on the mean will
not be equally spaced and hence the mean will not be
in S. When computing the PCA we get two modes
of variation; one mode representing vertical motion as
illustrated in Figure 6, and one mode representing hor-
izontal motion. The latter mode arises from the place-
ment of the points on the straight line mean and is
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thus irrelevant. Therefore, in this example the PCA
captures only 97.5 percent of the variation in a mode
giving relevant information. This contrasts that PGA
captures all variation.

Figure 6. One of two modes of variation for PCA.

4.2. Vertebra shapes

Our dataset of vertebrae consists of 304 manually
annotated vertebra shapes on lateral X-rays. For each
vertebra, outlines have been manually drawn by choos-
ing points along the contours, assuming a simple linear
interpolation between them. Corner points of the ver-
tebra endplates are indicated but do not always match
the outlines perfectly. New corner points have been de-
fined as the points of the contour that are closest to the
manually annotated corners. This divides the outline
into 3 segments, the upper, left and lower ones. For
resampling, we fixed the number of pseudo-landmarks
per segment to 16, leading to 52 points per shape. The
pseudo-landmarks positions were computed segment-
wise so as to minimize a squared-distance between the
original outline and the new one. Given an n-tuple
P = (P1, . . . , Pn) of equidistant-spaced points, with P1

and Pn being the fixed corner points of this segment,
let CP(t) be the piecewise linear curve joining them,
and C0(t) the piecewise linear curve formed by join-
ing the original annotated points for the corresponding
segment. We minimize the squared-distance

E(P) =
�
(CP − Co)

2 dt.

We start with a configuration P on the straigth line seg-
ment joining P1 to Pn and perform gradient descent on
the corresponding preshape manifold S using the ex-
ponential map. The result of applying the redistancing
procedure to the manually annotated vertebra in Fig-
ure 7 is shown in Figure 8.

In our illustrative example it is clear that we in-
troduce non-linearity when restricting to the manifold.
In order to illustrate that we have significant curva-
ture also in the relatively high dimensional manifold

Figure 7. Manually annotated vertebra.

Figure 8. Result of applying redistancing procedure.

used for the vertebrae, we compute the Fréchet mean
vertebra and measure an approximate distance from
each vertebra to the tangent space of the mean; we
let vm denote the mean and for each vertebra v we
compute w = Logvmv. We then let x be the distance
�v − (vm + w)� between the vertebra and an approxi-
mated projection to TvmS, and record the relative dis-
tance x/�w�. A non-curved manifold would result in
zero relative distance. We see a mean relative distance
of 12 percent clearly indicating that the manifold is
curved. Performing the same computation on the non-
normalized manifold M� gives a mean relative distance
of 9 percent indicating that not all curvature arises
from the normalization to the unit sphere.

Figure 9 illustrates how PGA provides a more com-
pact description than PCA. The figure shows the nor-
malized sum of the first n eigenvalues as a function of
n. It can be seen that in order to capture say 99.5
percent of the variation, we will need 25 eigenvectors
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when doing PCA as opposed to only 20 eigenvectors
when doing PGA.
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Figure 9. Accumulated spectrum of PGA and PCA.

5. Conclusion

In this paper we have introduced manifolds of pre-
shapes built by constraining distributions of pseudo-
landmarks between pairs of consecutive landmarks.
This endows these preshape manifolds with a structure
of Riemannian manifolds. We have developed tools for
computing Exponential maps, Log maps, geodesic dis-
tances, allowing us to define a Geodesic GPA and adapt
PGA to that situation. We have shown on examples
that PGA captures variability better that PCA.

Although we have built our models for planar point
configurations, they are clearly not restricted to this
case. Other types of length and position constraints
can also be used. We are also not restricted to shape
manifolds. The techniques presented in this work can
be used to perform statistics on other submanifolds of
a linear configuration space implicitly defined by a set
of smooth constraints. This is the subject of ongoing
work.
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8.

Conclusion

To end the thesis, a short summary of the presented work is given together with outlook
and possibilities for future work. Confer in addition the contribution summary in the
introduction.

1 Summary

The thesis presents work in three main areas: registration and deformation modeling;
non-linear statistics and algorithms; and 2D shape modeling. The included papers
together with the six papers [1, 2, 3, 18, 17, 38] that are not included in this thesis,
constitute, along with the contributions of my colleagues, the results of my PhD studies
at the Department of Computer Science, University of Copenhagen.

The developed kernel bundle framework and the higher order kernels both serve to
allow sparse deformation description through increased description capacity. The kernel
bundle framework introduces multi-scale representations in LDDMM while keeping
much of the mathematical structure of LDDMM. We derive the KB-EPDiff equations,
introduce sparse priors, develop a fast GPU-based algorithm, and evaluate the method
on clinical data.

Each control point used in LDDMM codes only translational movement which limits
the ability to compactly represent non-translational deformation such as rotations and
dilations. With higher order kernels, we address this problem by showing how partial
derivatives of kernels fit naturally into the LDDMM framework. We derive evolution
equations, show connections between the order of the similarity measure and the ker-
nels, and present a matching algorithm using the kernels. The increased description
capacity allows registration with very few parameters, and we apply the kernels to
register MR scans of patients suffering from Alzheimer’s disease.

While Paper #1 and Paper #2 have been been submitted while writing this thesis,
the four conference papers on the kernel bundle, Paper #3 and [1, 2, 3], have been pub-
lished and have received interest in the registration community. The relation between
the kernel bundle and different approaches to multi-scale LDDMM registration [7, 8]
has been the subject of the recent paper [9]. Introducing sparsity in LDDMM has also
been treated by Durrleman et al. [39, 40].

The algorithms for computing the first and second order differential of the Expo-
nential presented in Paper #4 serve as tools for performing non-linear statistics, and, in
particular, they allow Principal Geodesic Analysis to be computed without the common
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8. Conclusion

tangent space linearization. We perform comparisons between the exact and linearized
algorithm and thereby provide insight into the relation between curvature and spread
on non-linear statistics.

Finally, to reduce variation introduced by manual annotations while keeping a con-
sistent model, we have introduced the non-linear bicycle chain shape model. The
representation results in a non-linear shape space, and we develop the necessary com-
putational tools to perform statistics on the space. A notable benefit of the model is
the reduction in dimensionality obtained by keeping the distance constraints enforced
in the model. Experiments with the shape model is performed on outlines of human
vertebrae obtained with lateral X-rays.

2 Outlook and Future Work

The kernel bundle framework and the higher order kernels will likely complement each
other very well, and work on bringing them together will start right when the last word
of this conclusion has been put down. This will include exploring sparse priors for the
higher order kernels and different regularization for different orders kernels. Performing
group wise statistics to learn the spatial locations of high frequency deformation across
populations with the kernel bundle and higher order kernels is an interesting path for
efficiently increasing sparsity while keeping the necessary flexibility of the deformation
model. In addition, we wish to explore the coupling between scale information in
images, the similarity measure, and the multi-scale deformation model.

Choosing the appropriate non-linear statistical tools for performing statistics on
the deformation models is an interesting problem. While small deformation introduced
by e.g. progressing atrophy may be measured using linearized tools, some applications
may require more intrinsically non-linear methods. Performing statistics on scans of
patients suffering from severe head trauma constitutes an example of this, and we are
currently working on registration and statistical methods for such cases. For many
applications, the smoothing terms used in the registration models will introduce bias in
statistical exploration of registered data. We are looking into the possibility of using the
explicit control of the deformation model in LDDMM and the kernel bundle framework
to derive a registration formulation with less bias.

The above ideas constitute theoretical and modeling perspectives; using the de-
formation models for actually performing statistics on patients is the end goal. This
requires robust software packages, testing, clinical evaluations, and further collabora-
tion with clinicians. In the end, the work presented should hopefully be theoretically
interesting in addition to actually being useful.
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