
U N I V E R S I T Y O F C O P E N H A G E N

PhD thesis

Michael Kirkedal Carøe

Design of Reversible Computing Systems
Logic, Languages, and Circuits

Academic advisor: Robert Glück

Submitted: July 7, 2012

Design of Reversible Computing
Systems

Logic, Languages, and Circuits

Michael Kirkedal Carøe
DIKU, Department of Computer Science,

University of Copenhagen, Denmark

July 7, 2012

PhD Thesis

This thesis has been submitted to the PhD School of Science,
Faculty of Science, University of Copenhagen, Denmark

Author: Michael Kirkedal Carøe

Born / pen name: Michael Kirkedal Thomsen

Affiliation: DIKU, Department of Computer Science,
University of Copenhagen, Denmark

Title: Design of Reversible Computing Systems / Logic,
Languages, and Circuits

Academic advisor: Robert Glück

Submitted: July 7, 2012

Short abstract

This thesis investigates garbage-free reversible computing systems
from abstract design to physical gate-level implementation. De-
signed in reversible logic, we propose a ripple-block carry adder
and work towards a reversible circuit for general multiplication.
At a higher-level, abstract designs are proposed for reversible sys-
tems, such as a small von Neumann architecture that can execute
programs written in a simple reversible two-address instruction
set, a novel reversible arithmetic logic unit, and a linear cosine
transform. To aid the design of reversible logic circuits we have de-
signed two reversible functional hardware description languages:
a linear-typed higher-level language and a gate-level point-free
combinator language. We suggest a garbage-free design flow,
where circuits are described in the higher-level language and then
translated to the combinator language, from which methods to
place-and-route of CMOS gates can be applied. We have also
made standard cell layouts of the reversible gates in complemen-
tary pass-gate CMOS logic and used these to fabricate the ALU
design.
In total, this thesis has shown that it is possible to design non-
trivial reversible computing systems without garbage and that
support from languages (computer aided design) can make this
process easier.

For Maja and Augusta

Abstract

Reversible computing spans computational models that are both for-
ward and backward deterministic. These models have applications in
program inversion and bidirectional computing, and are also interest-
ing as a study of theoretical properties. The motivation for reversible
computing comes, however, often from the fact that these models are
information preserving. Landauer’s principle links information theory
and thermodynamics; all information has some physical representation,
so a loss of information must cause a thermodynamical entropy decrease,
which then leads to heat dissipation to obey the law thermodynamics. A
reversible computation does, thus, not have to use energy, though this is
impossible to avoid in practice, due to the way computers are build.

It is, however, not always obvious how to implement reversible com-
puting systems. The restriction to avoid information loss, imposes new
design criteria that need to be incorporated into the design; criteria that
do not follow directly from conventional models. The result is that,
today, many implementations is simple reversible embeddings of conven-
tional solutions. This is not a desirable approach, because these simple
embeddings always generate garbage, which then leads to erasure of in-
formation.

In this thesis I investigate garbage-free reversible computing systems
from abstract design to physical gate-level implementation. Arithmetic
operations are a basis for many computing systems, so a proposed the
design of a ripple-block carry adder and work towards a reversible circuit
for general multiplication are important new circuits. Such arithmetic
circuits have then been used in the design of two larger reversible comput-
ing systems. The first is a small von Neumann architecture, called Bob,
that can execute programs written in a simple reversible two-address in-
struction set. A central part of the architecture is a novel design of a
reversible arithmetic logic unit. The second system is an implementation
of the linear cosine transform used in the H.264/ACV encoding standard.

Designing reversible logic circuits on paper can become very com-
plex, so I have designed two reversible functional hardware description
languages that can simplify the implementation process. One language
is a linear-typed higher-level language, while the other is a gate-level
point-free combinator language. These two languages can be used in
a garbage-free design flow, where circuits are described in the higher-
level language and then translated to the combinator language. From
the gate-level language, methods of place-and-route of CMOS gates can
be applied. To facilitate this last step, I have also made standard cell
layouts of the reversible gates in complementary pass-gate CMOS logic
and, as a test, these cells have been used to fabricate the ALU design.

In total, this thesis has shown that it is possible to design non-trivial
reversible computing systems without garbage and that support from lan-
guages (computer aided design) can make this process easier. However,
there is often still a need to rethink both the problem and the solution
to accommodate the no-garbage approach.

v

Dansk Resumé

Reversible beregninger dækker over beregningsmodeller der er både
forlæns og baglæns deterministiske. Disse modeller finder anvendelse
indenfor program inversion og bidirektionel beregning, men er også in-
teressante som et studie af deres teoretiske egenskaber. Motivationen
bag reversible beregning kommer dog ofte fra det faktum at disse mo-
deller er informationsbevarende. Landauers princip kæder information-
steori sammen med termodynamikken; al informations har en fysisk
repræsentation, så tab af information må medføre en reduktion af termo-
dynamisk entropi, som dermed fører til varmeafgivelse for at overholde
termodynamikkens love. En reversibel beregning vil dermed ikke have
et varmetab, dog er det i praksis umuligt at undgå pga. datamatens
opbygning.

Det er dog ikke altid oplagt hvordan man kan implementere reversible
beregningssystemer. Restriktionen om at undgå informationstab, op-
stiller nye designkriterier, som er nødvendigt at inddrage i designet –
kriterier som ikke følger direkte fra konventionelle beregningsmodeller.
Resultatet er at mange implementationer i dag er simple reversible ind-
lejringer af konventionelle løsninger. Dette er ikke en ønskelig frem-
gangsmåde, da disse simple indlejringer altid vil generere “affald”, som
efterfølgende medfører informationstab.

I denne afhandling undersøges affaldsfrie reversible beregningssyste-
mer fra abstrakt design ned til implementation på fysisk port-niveau.
Aritmetiske operationer er grundlaget for mange beregningssystemer,
så der foreslås et design til et “ripple-block carry” additionskredsløb og
foreløbigt arbejde mod et reversibelt kredsløb for general multiplikation
er vigtige nye kredsløb. Sådanne aritmetiske kredsløb er brugt i designet
af to større reversible beregningssystemer. Det første er en lille von Neu-
mann arkitektur, kaldet Bob (eng. for lod), som kan udføre programmer
skrevet i et simpelt reversibelt to-adresse instruktionssæt. En central
del af arkitekturen er et nyt design af en reversibel aritmetisk logisk en-
hed (ALU). Det andet system er en implementation af en lineær cosinus
transformation, som bruges i H.264/AVC videokodningsstandarden.

Design af reversibel logik på papir kan nemt blive meget komplekst,
så jeg har udviklet to reversible funktionelle hardwarebeskrivelsessprog,
som kan simplificere implementationsforløbet. Det ene er et lineært-
typet høj-niveau sprog, mens det andet et ‘logisk port’-niveau punkt-frit
kombinatorsprog. Fra port-niveau sproget kan så benyttes metoder til
placering-og-rutning af CMOS porte. For at facilitere det sidste skridt,
har vi også lavet standard celle layout af de reversible porte i komple-
mentær passér-port CMOS logik, og, som en test, har disse celler været
brugt til at fabrikere ALU designet.

Alt i alt har denne afhandling vist at det er muligt at designe ikke-
trivielle reversible beregningssystemer uden affald, og at hjælp fra pro-
grammeringssprog (datamat støttet design) kan gøre dette forløb nem-
mere. Der er dog stadig ofte et behov for at gentænke både problemet
og løsningen for at akkommodere intet-affald fremgangsmåden.

vi

Contents

Preface ix

1 Introduction 1
1.1 Information and the Limit of Computation 1
1.2 Foundations of Reversible Computing 2
1.3 Reversible Logic and Quantum Computing 3
1.4 Reversible Programming Languages and Transformation 4
1.5 Towards Reversible Computer Organization and Design 5

2 Design of Reversible Computing Systems 7
2.1 Arithmetic Logic Circuits . 7
2.2 Computing Architectures and Instruction Sets 9
2.3 Multimedia Transformation . 10

3 Computer Aided Design of Reversible Circuits 11
3.1 Reversible Logic Synthesis and Optimization 11
3.2 Hardware Description Languages 12

4 Realization of Reversible Circuits 14
4.1 Adiabatic Switching and Charge Recovery 14
4.2 Embedding in Static CMOS . 15

5 Conclusions and Perspectives 16
5.1 Future Work . 17

Bibliography 19

A Papers on Gate-Level Designs of Arithmetic Functions 33
A1 Optimized Reversible Binary-Coded Decimal Adders 35
A2 Parallelization of Reversible Ripple-Carry Adders 45
A3 Garbage-Free Integer Multiplication with Constants 63

B Papers on Reversible Architectures 71
B1 Reversible Arithmetic Logic Unit for Quantum Arithmetic . . . 73
B2 A Reversible Processor Architecture and its Reversible Logic

Design . 83

vii

C Papers on Implementation of Reversible Linear Transforms 97
C1 Reversible Implementation of a Discrete Integer Linear Trans-

form . 99
C2 Garbageless Reversible Implementation of Integer Linear Trans-

formations . 111

D Papers on Design Languages for Reversible Logic 123
D1 Describing and Optimising Reversible Logic using a Functional

Language . 125
D2 A Functional Language for Describing Reversible Logic 141

E Papers on Engineering of Reversible Circuits 149
E1 Design of Reversible Logic Circuits using Standard Cells / Stan-

dard Cells and Functional Programming 151
E2 Interfacing Reversible Pass-Transistor CMOS Chips with Con-

ventional Restoring CMOS Circuits 179

viii

Preface

This thesis has been submitted to the PhD School of Science, Faculty of Science,
University of Copenhagen in partial fulfillment of the requirements for a PhD
degree at DIKU, Department of Computer Science, University of Copenhagen,
Denmark.

The thesis is written as a synopsis with 11 annexed research papers. The
first chapter of the synopsis contains a short introduction to reversible compu-
tation and a description of the topic and objectives of the thesis. Following this,
are three chapters that detail the contributions of my research and its relation
to existing knowledge. The synopsis ends with conclusions and perspectives for
future research. References to related work are given throughout the synopsis.
Five appendices contains the 11 research papers; of these there are (at the time
of writing) 6 published journal and conference papers, 2 pre-print conference
papers (accepted for publication), 2 workshop papers, and 1 technical report.

This thesis is not the result of one person’s lone fight against the world and
it’s reckless handling of information. Therefore, I would like to thank my advi-
sor Robert Glück, who introduced me to the subject, and my co-author, office
mate, and friend Holger Bock Axelsen. I also thank my other co-authors (the
Flemish connection) Alexis De Vos, Stéphane Burignat, Kenneth Vermeirsh,
Michał Klimczak, and Mariusz Olczak. The collaboration with Oticon A/S
has been important to the direction of the research and, from there, I would
especially like to thank Kenneth Branth and Kim Poulsen. Many other people
have had an influence on this thesis, so in arbitrary (alphabetic) order I would
like thank Jesper Louis Andersen, Patrick Bahr, Poul Johannis Clementsen,
Fritz Henglein, Mathias Horn, Susan Nasirumbi Ipsen, Mathias Lehnfeld, Lars
Valdemar Mogensen, Torben Æ. Mogensen, Kenji Moriyama, Jette Giovanni
Møller, Thomas Pécseli, Claus Rørbech, Mary Sheeran, Jens Sparsø, Christen
Artagnan Sørensen, Robert Wille, Tetsuo Yokoyama, and rest of APL group
at DIKU. Also, I would like to thank the Danish Strategy Research Council
for funding the MicroPower research project and, thus, my PhD stipend.

Finally, I thank my family and friends for their support during this period.
Without this, I would not have been able to do all the work and travel.

Michael Kirkedal Carøe
(née Thomsen)

ix

1
Introduction

Reversible computing was introduced by Bennett [17] and concerns (universal)
computation models where a result can not only be computed, but also un-
computed. We also define these as models that are both forward and backward
deterministic. Though reversible computation models can compute all injec-
tive computable functions, injectivity is not enough to characterize a reversible
computing model; we must also require that each computation step is bijective.

This important requirement provides the connection to preservation of in-
formation, which is a key motivation for research in reversible computing. A
motivation that has its foundation in 1961 with a principle defined by Lan-
dauer [79]; a principle that was experimentally verified very recently [20].

1.1 Information and the Limit of Computation

The search to understand the computation process and its limitations is older
that computers themselves. Here, we do not think of the algorithmic bounds
(which is a very interesting topic by itself), but the limitations that are imposed
by the physical world. All computers are situated in the physical world, so the
laws of physics, thus, also apply for computers including their circuits and
memory. The question is what impact do the laws of physics have on the
computation process?

During the 1950’s (only shortly after the invention of the modern electronic
digital computer [28]) the assumption arose that a logic operation requires
an energy dissipation of kT ln 2, where k is Boltzmann’s constant and T is
the temperature at which the operation is performed1. Von Neumann has
later been credited for saying that this amount of energy is dissipated by two
different sources: namely “per elementary decision of a two-way alternative
and per elementary transmittal of one unit of information” [153]2. From the
first source, it is apparent that von Neumann meant something less than all
computations and it sounds a lot like a conditional, which we today know to
be a problem. Today, we also know that the second source does not necessitate
energy dissipation (cf. [80]).

The breakthrough came in 1961 when Landauer [79] argued that all logical
operations are associated with a physical operation and because physical irre-
versibility requires heat generation, then so does logical irreversibility. It is,

1This assumption followed from earlier work by Szilard [136] and Shannon [125] that
argued that communicating one bit required this dissipation (cf. [81]).

2John von Neumann died in 1957; four years before Landauer’s seminal paper. The paper
was finished by Burks and published in 1966, but the work still dates back to the 1950’s.

1

thus, not the computation process itself that necessitates energy dissipation,
but the process of deleting information. Today, we refer to this as Landauer’s
principle, and the dissipation of kT ln 2 Joules per deleted bit of information
is called Landauer’s limit3. Landauer founded his principle on a thought ex-
periment in which each bit of information is encoded in a single particle. This
is extremely hard to implement in the physical world, nonetheless, Landauer’s
principle was experimentally verified very recently [20].

At the time of Landauer’s paper (and in the following decade) it was, how-
ever, believed that erasing information was an unavoidable consequence of a
computation process. Landauer had realized that all irreversible operations can
be embedded in a reversible operation and, as an example, he embedded the
AND gate in the reversible gate that we today call a Toffoli gate. He, however,
only imagined that these Landauer embeddings could be used to temporally
store the inputs of each gate, which then had to be deleted later, thus, leading
to irreversibility.

1.2 Foundations of Reversible Computing

The second breakthrough came in 1973 with Bennett’s seminal paper [17],
where he defined the first universal reversible computation model; he con-
strained the conventional (irreversible) Turing machines (TMs) to define the
reversible Turing machines (RTMs)4. In this paper Bennett also demonstrates
how to embed an irreversible TM in an RTM using a history tape (simi-
lar to Landauer’s embedding) and then run this RTM with a compute-copy-
uncompute method (today we call this Bennett’s method) such that the overall
result is only the input and the calculated output. This is a significant im-
provement over the use of a general trace, but often we are only interested
in the result of a calculation and not both the input and output. Bennett
later showed [18] how, for injective functions, this input can be uncomputed by
using more time, viz. adding an extra compute-copy-uncompute phase. This
is a very important result. In our research, we seek here to completely avoid
garbage, because we need to know what is possible within the computational
models. If needed, for a practical implementation perspective, it is easier to
relax this criteria than it is strengthen it. Further research in the tradeoff
between time and space on one hand, and erasure of information (garbage)
on the other have been performed by Bennett, Levine, Sherman, Vitanyi, and
more [19,30,86,152,162].

After Bennett’s seminal paper, focus in reversible computation was directed
towards more practical models (see Sections 1.3 and 1.4). But at the beginning
of the 1990’s, interest in the theoretical aspects increased [18, 67, 86, 119] and
since then computability and complexity of the reversible model has developed
into a research area by itself; trying to find the place within the Complexity
Zoo [1] for the reversible complexity classes. This has lead to research both on
RTMs [7, 10, 11, 25, 35, 83] and different models of reversible automata [9, 77,
107–110]. An interesting result being that reversible space equals deterministic
space [83].

3In practice the dissipation per bit is proportional to the signal energy used to represent
the bit [58] and the actual dissipation is, thus, expected to be higher.

4The first mention of reversible Turing machines can be dated back to Lecerf in 1963 [84].

2

1.3 Reversible Logic and Quantum Computing

From the beginning, logic has had a central place in the ideas of reversible
computing; e.g. Landauer’s ideas for the reversible gates were designed as a
method to reduce the heat dissipation of logic circuits.

Inspired by Landauer’s and Bennett’s work, Fredkin and Toffoli had, in
1978, been working to design a reversible computer that should be based on
conservative logic [55]5. In conservative logic all logic gates must be both
reversible and parity preserving; i.e. the number of TRUE values must also be
preserved over the gate. For this they introduced the Fredkin gate, which can be
characterized as a controlled-swap gate6. The model was developed to reflect
fundamental physical principles and they developed a billiard ball model with
a physical representation of the Fredkin gate. Conservative logic is, however,
a stricter model than reversible logic, so in 1980 Toffoli presented the n-bit
controlled-not gates [144]. This is the most widely used class of reversible
gates today, because the gates have a simple mathematical definition, which
makes reversible logic synthesis easier (see Section 3). The class covers the not,
Feynman, and Toffoli gates. To follow the idea of the Fredkin gate, Toffoli also
presented ingenious physical designs of these gates [145] based on ‘differential
gears’ to implement the XOR and a ‘rotating cam’ to implement the AND in
the Toffoli gate.

At the same time as Fredkin and Toffoli’s work, other people were de-
veloping ideas for another radically new computer design. In 1980 Benioff
presented his paper on how to design a (classical) computer from quantum
components [16], which shortly after (in 1982) was followed by Feynman’s pa-
per on a computer that can simulate quantum physics [47]. In 1985 Deutsch
presented his universal quantum computer [44] and the new field was born.

In the quantum model, it was easy to include Fredkin and Toffoli’s gates
and in 1985 Feynman, with his flair for intuitive graphical descriptions, intro-
duced the diagram notation that is used today [48]. In this paper, Feynman
also introduced the very first reversible arithmetic circuits; these circuits in-
clude a full-adder implementation with four reversible gates. More (reversible)
quantum gates (e.g. [116]) and different notation were introduced, so in 1995
Barenco, Bennett, Shor, and others worked as a ‘standardization committee’
and decided on the notation and a set of universal quantum gates [15].

From a historical perspective, the idea of reversible logic circuits are even
older than Fredkin and Toffoli’s work. In 1959, two years before Landauer’s pa-
per, Huffman looked at information-lossless finite state machines (FSMs) [66].
He was interested in signal transformation (both for encoding and cryptog-
raphy) and for these applications information-lossless FSMs are perfect; by
constructing the encoding machine you also get the decoding machine. To
design these FSMs, he defined information-lossless gates similar to reversible
gates. Huffman also showed that adding a control signal calculated by an irre-
versible function to a reversible gate, does not break reversibility of the gate.
The circuits are, however, not reversible according to our definition, but this
was also not his purpose.

5Fredkin and Toffoli’s paper was published in 1982, but the paper was based on internal
papers and an MIT course from 1978; see [144, References]

6The gate that Fredkin and Toffoli presented swapped the two input-values if the control
is FALSE. The Fredkin gate that we use today swaps if the control is TRUE.

3

1.4 Reversible Programming Languages and
Transformation

Another track in the history of reversible computing begins in 1986. At this
time, Lutz, after a brief meeting with Landauer, sent him a letter about some
work he did with Derby, about four years earlier, on a reversible imperative
language called Janus [90]. Their work arose from an interest to investigate if
it was possible to implement such a language and before 1986 Lutz and Derby
did not know about Landauer’s principle. The language was ‘rediscovered’
after the turn of the century and has since then been formalized and further
developed at DIKU [32, 161, 164]; here, also student projects that implement
more advanced algorithms (e.g. matrix multiplication) have been made [70,91].
Other simple reversible imperative languages have been developed, e.g. Frank
developed R [52] generate instruction code for the Pendulum processor and
Matos [96] made a language for linear programs.

Though the first reversible programming language was imperative, reversible
functional languages have lately received the most interest. This development
started in 1996 when Huelsbergen presented SECD-H [65], an evaluator for the
lambda calculus that extended Landin’s SECD evaluator [82] with a history
tape. (Kluge [73] similarly extended a machine that can reduce a program term
to normal-form and back again.) This was followed by Mu et al. who, with
applications in bidirectional computing in mind, presented a reversible rela-
tional language [111]. More recently, work towards general purpose functional
programming languages was presented independently by Yokoyama, Axelsen,
Glück [163] and James, Sabry [68].

Also, a variety of languages for modeling quantum computations have been
designed in almost all different paradigms. We will not detail these here, but
refer to Gay’s survey of the area [57].

On a related topic, transformation of reversible languages have also received
some interest lately (mainly at DIKU). Though the first compiler between two
reversible language was made by Frank [52] (between his language R and a re-
versible instruction set called PISA), it was Axelsen who devised techniques for
a compiler that could perform clean translation [8]. His translation was between
Janus and PISA and was clean in the sense that the compiled program did not
have more than a constant memory overhead over the original Janus program.
It is likely that the PISA program will use more temporary memory/registers.
Mogensen’s also did work on partial evaluation of Janus [105,106].

We would also like to mention (automatic) program inversion. Inverting
a reversible program is often easy, but if the program is implemented in a
irreversible language it is harder. Program inversion has a direct impact on
program maintainability and reliability of the inverse programs, which are oth-
erwise hard to find if the program to be inverted either is formulated in a
conventional programming language [97, 133], or have to be deduced by static
program analysis techniques [59] or interpretation [2]. We should also men-
tion semi-inversion, where the inverted program not necessarily is a mapping
from output to input, but a combination of the original inputs and outputs, cf.
Mogensen [103,104].

Work on reversible instruction sets is covered in Section 2, while design
language for reversible logic is discussed in Section 3.2.

4

a += b

NEG $3

XORI $3 42

BRA −6

XORI $3 42

BRA 6

ADD $2 $3

SWBR $1

3

A

B

C

P

Q

R

procedure
if a < b
then

update_a

else
a −= b * 2 + c

call

fi
uncall

update_b

a > b
update_b

Fourier transform

g(x,y) = (x, x+y)

f(x) = x

languages

Computer

Physical

Gate level

architecture

Algorithms

High−level

Machine code

Implementation

PC

REGSPC

ALU
MEM

BR

UPD
BR

DIR

UPD

Figure 1.1: Tower of reversible computing system [12].

1.5 Towards Reversible Computer Organization and
Design

In his 1961 paper, Landauer wrote that “we shall label a machine as being logi-
cal reversible, if and only if all its individual steps are logically reversible” [79].
This is a very grand challenge and we know from Bennett (and later work) that,
theoretically, such machines do exist – even when we add the requirement that
the final result must not include garbage. But is it possible to realize such
machines in practice and can it be done with the fabrication technology that
exists today? And will we actually be able to achieve the expected reduced
heat dissipation?

The MicroPower research project [12], which started in 2009, has as ob-
jective to develop a proof-of-concept reversible computing system and the com-
puter science theory behind it. To do this all parts of the reversible compu-
tation tower (Figure 1.1) must be investigated. More specifically, the project
investigates whether reversible computing can be applied in a power-limited
application (specifically hearing aids) with the future hope to either reduce
power consumption or increase functionality.

This dissertation is part of the MicroPower research project. Within this
project, my thesis is that making a garbage-free reversible computing system
is not only feasible, but does not necessarily require much more effort than
making a conventional computing system. We will not address the questions of
the actual energy consumption of the circuits and the theoretical implications;
these two fundamental questions are investigated by other parts of the project.

To answer our thesis we must investigate the bottom part of the computing
tower (Figure 1.1) from the machine code level down to the physical imple-
mentation. We investigate and design basic reversible logic circuits with an
emphasis on arithmetic (Section 2.1). These are important basic operations
in all computing systems and will, therefore, give the foundation for the re-

5

versible systems. Improvements here will improve all other parts of the tower.
We also look at reversible circuits from a higher abstraction, namely in terms
of logic designs of reversible computer architectures (Section 2.2) and multime-
dia transforms (Section 2.3). These two applications have the potential to be
the first practical use of reversible circuits: architectures to create very small
stand-alone systems (e.g. sensors) and multimedia transforms, which can be
embedded in an irreversible system.

We investigate different computer aided design (CAD) approaches for re-
versible circuits (Section 3). Logic circuits designed by hand are often efficient,
but it is very time consuming and verification of the designs are not practical.
The purpose of a hardware description language is to raise this abstraction. Fi-
nally, we investigate how to implement reversible circuits in CMOS (Section 4).
Here we desire implementations that can be used with the CAD process, but
still have the prospect of reduced energy consumption. We will also look into
how reversible CMOS circuits can be embedded in ‘conventional’ static CMOS
circuits. Finally, we will look at future research topics (Section 5).

6

2
Design of Reversible
Computing Systems

To avoid the heat dissipation from Landauer’s principle the entire computing
system must be fully reversible. In this chapter we will look at designs of
reversible computing systems at and close to the logic gate level. We first
focus on design of arithmetic logic circuits. Then, based on these, we look at
reversible computing architectures and designs of multimedia transforms.

2.1 Arithmetic Logic Circuits

Arithmetic operations lie at the foundation of most computing systems and
good logical implementations of these are important. Improvements to arith-
metic circuits can result in improvements to the entire computing system. In
a garbage-free reversible computing system it is especially important that the
arithmetic circuits are also garbage-free, but how to do this is not always obvi-
ous, and history shows that rethinking our current knowledge can be necessary.

Addition

An immediate problem for reversible adder implementation is that addition is
not an injective function in itself: given just the value of the sum A + B, one
can not determine A and B uniquely. We can, however, redefine the problem
by using reversible updates [13] and to avoid overflow we use n-bit modular
addition, (A,B) 7→ (A,B +A mod 2n), to define reversible addition.

The adder that Feynman proposed [48] was a reversible embedding of the
ripple-carry adder. Though addition is an injective function if one of the inputs
is kept, the conventional ripple-carry structure is not reversible. The problem
lies in the use of the full-adder circuit, because it is not possible to calculate
both the sum and the carry without copying one of the inputs. You can say
that there is an overlap in the information contained in the two results and
this results in a garbage bit. Several reversible adder designs used this rip-
ple structure; e.g. reversible binary-coded decimal adders have received some
interest [142] (Paper A1).

The solution to this problem was presented in 1996 by Vedral et al. [148].
They observed that, to do an addition it is not necessary to calculate both
the carry and the sum at the same time. If we first calculate the carry in a
normal ripple, we can then make a backwards ripple where we both uncompute
the carry and calculate the sum. This was the first example that shows that

7

it really pays to rethink the problems that we want to solve. However, the
cost of not creating garbage was an increase in logic depth. Vedral’s V-shaped
adder was a huge improvement (produces no garbage), but it was not optimal
with respect to ancillae and logic depth. In 2005 two papers were published
that suggested different improvements to the adder design (in terms of ancilla,
gate count and logic depth) [36,146]. See [140] for a detailed description of the
adder circuits.

The V-shaped adder is a ripple-carry adder and therefore has large logic
depth. We know from conventional logic that it is possible to implement a
logarithmic-depth adder at the cost of more logic gates and a more compli-
cated circuit. The first reversible implementations of these adders were embed-
dings of the carry-lookahead adder [43, 72] and the parallel prefix adder [46],
but they all suffered from garbage generation. Based on the techniques from
the carry-lookahead adder, Draper et al. [45] in 2008 presented a garbage-free
logarithmic-depth adder (QCLA)7, which added an extra ‘look-behind’ phase.

We presented another approach to a faster-than-linear reversible adder,
the year after, named ripple-block carry-adder (RBCA) [140] (Paper A2).
Basically it is a ripple-carry adder but instead of calculating and rippling one
bit at a time, the addition is divided into several smaller block-additions that
is performed in parallel. During computation a carry-correction phase is added
and it is this phase that contains a ripple. When choosing the optimal block-size
in relation to the input-size, the adder has a logic depth that is the square-root
on the input-size.

When comparing the two, the QCLA in faster than the RBCA, but only
significantly when the input is larger than 32 bits. In terms of gate-count
the two adders are comparable, but the RBCA uses less ancilla bits. Also
the RBCA has a better ‘locality’ (the gate uses wires that, in the diagram
notation, are closer to each other), which can have an impact when the circuit
is implemented in the target technology (e.g. quantum computer or CMOS).

Multiplication

Addition has an intuitive reversible formulation using modular arithmetic and
reversible updates. Multiplication, on the other hand, is more difficult to define;
mainly because the inverse operation is division. A simple way to define it
is to take the embedding from Bennett and save both the multiplicand and
the multiplier while still producing the product. This is the trick used by
Kawada et al. in their (garbage-free) reversible logic implementation of the
Karatsuba algorithm [75].

This approach is, however, not satisfying because it expands the amount
of information; on the other hand, it is not in general possible to only update
the multiplicand and save the multiplier. A possibility (also suggested by
Ressler [122]) is to add a remainder, such thatmult(A,M,R) = (A∗M+R,M),
where 0 ≤ R < M . We have started the work towards a reversible logic
implementation [14] (Paper A3). So far, it works for a certain class of constant
multipliers that are equal to 2k ± 1 for k ∈ N. We expect that this can be
extended to general multiplication.

7The adder was designed with a focus on quantum computing and, thus, the ‘Q’ in the
name. However, it is only implemented with reversible gates.

8

2.2 Computing Architectures and Instruction Sets

As early as 1965, Reilly and Federighi presented a small instructions set, de-
signed for a one-address machine with accumulator and multiplier-quotient,
with the purpose of implementing reversible subroutines [121]. The set is,
however, not reversible with respect to our definition; e.g. it includes a clear-
accumulator instruction, which does not delete information from the overall
system but still dissipates energy due to the clear process. The motivation was
also not energy efficiency, but a desire to enable code sharing of the imple-
mented subroutines.

The work by Ressler [122] from MIT in 1981 was, however, motivated by
energy effficiency. Supervised by Fredkin, he made the design of a conserva-
tive logic computer based on a two-address von Neumann architecture. The
instruction set contains the basic reversible arithmetic/logic instructions (e.g.
add, subtract, roll-left and right), and the work contained the idea of using
paired-branch instructions and to have both condition and assertion in the
conditional. On the other hand, memory could be irreversibly updated and
(perhaps most importantly from a program inversion perspective) there was
no possibility for inverse execution (uncall).

In 1987 Briggs [23] described a system to control an electronic cricket score-
board. An important feature of the system was the ability to ‘undo’ the op-
erations that were performed; a nice feature if the operator made an error.
The reverse execution was based on a trace that contained only the minimal
information to do the backtracking. Based on this idea of a minimal trace,
Cezzar [29] in 1991 presented (and patented) a two-address ‘general purpose’
machine that can reverse its forward execution.

Having a trace (which would be as long as the number of executed instruc-
tions plus amount of deleted information) is, however, a very unsatisfactory
solution for a reversible computer. While Cezzar was mainly interested in a
computer that could backtrack, Hall [64] designed his improved architecture
with reversibility in mind. This ISA does not use a trace, but instead jumps
are handled by come-from instructions, which makes it possible to break re-
versibility.

At MIT, Knight and Younis [165] had been working on a energy effi-
cient logic family (see Section 4) and this implementation technology revived
the interest in reversible architectures. Over a few years (ending in 1999)
Vieri and Frank developed the reversible von Neumann architecture Pendu-
lum [52,150,151] (formalized in [13]). This architecture was a big step forward.
Instead of using only a single special-purpose register for program control (the
program counter), the address calculation of the reversible abstract machine
relies on three special-purpose registers: program counter, branch register, and
direction bit. The calculation of the next program counter is then only depen-
dent on the branch register and the direction bit, and the individual instructions
cannot directly alter the program counter, but instead only update the branch
register and direction bit. Though Pendulum has been fabricated, there is no
full detailed description of the actual logic implementation and there is some
indication that it is not fully reversible. Firstly, the implementation technol-
ogy [165] (see Section 4.1 for more details) does not implement the reversible
gates, but uses Bennett’s method, which results in both the input and output.
Secondly, there is no use of the garbage-free V-shaped adder or other arithmetic

9

circuits; Vedral et al. [148] is not mentioned by Frank and Vieri, and the rest
of the research is from after 1999. Thus, although the abstract architecture
of Pendulum (as described by Frank) is reversible, it is likely that the logic
implementation is not.

Inspired by the Pendulum architecture and it instruction set, we have de-
signed a fully reversible and garbage-free two-address von Neumann architec-
ture called Bob [141] (Paper B2). It features a locally-invertible instruction
set, and the design, including areversible control logic and address calculation,
is simple enough to be directly implemented in reversible logic. A central part
of the processor design is the arithmetic logic unit (ALU). The conventional
ALU has an inherently irreversible functionallity so we have suggested a novel
alternative design for a reversible ALU [143] (Paper B1). The design of the
ALU in based on the V-shaped adders and follows a strategy that puts all logi-
cal operations in sequence and then uses controls to ensure that only the desired
operation changes the input. To our knowledge, this is the first garbage-free
ALU.

2.3 Multimedia Transformation

Multimedia transforms are an interesting application area for reversible cir-
cuits. In small battery-powered devices (e.g. smartphones and mp3-players)
they are often included as part of an ASIC to reduce power consumption and
a key property of many such transforms is that they are information-lossless
(and thus invertible). There exist many application areas of such transforms
and even the earliest quantum algorithms (including Shor’s factorization algo-
rithm [129]) make use of a quantum implementation of the Fourier transform.
Also a implementation of the fast Fourier transform in reversible logic has been
investigated [130].

Our contributions in this area have focused on implementation of wavelet
transforms in reversible logic. Wavelet transforms have also been implemented
in quantum computing [50], but our work builds on a paper by Bruekers and
van den Enden [24]. Here, they showed a new network structure (the so-called
lifting scheme) that can be used for perfect inversion and reconstruction of the
inputs. This is desired in many transforms and the properties are also a perfect
match for reversible implementations. Daubechies and Sweldens show how to
factorize wavelet transforms into a lifting scheme [37] and we use this to find the
lifting scheme for the linear transform of the H.264 video encoding [40] (Paper
C1). This implementation, however, generates garbage that is caused by a
multiplication-by-5.8 In the latter work we examine other linear transforms
that only have multiplications-by-2 [27] (Paper C2) and find the associated
lifting scheme. (The papers also contain work on CMOS fabrication and testing
of the transform from [40]. We shall discuss this in Section 4.)

8The design was made before our own garbage-free constant multiplication circuit [14],
which solves the problem with multiplication-by-5.

10

3
Computer Aided Design of
Reversible Circuits

In Section 2 we discussed the design of reversible logic circuits. All presented
circuits (adders, multipliers, and transforms) have a very regular structure,
which makes it a lot easier for humans to reason about them. Also, much of
the development comes from novel design ideas based on a theoretical insight
to the problem. However, not all problems have these properties, so in order to
make good realizations of more complex circuits possible, efficient description
languages, logic synthesis, and optimization techniques are being developed.
Computer aided design of Boolean circuits has been (and is still being) devel-
oped (cf. [100]), so in this section we will focus on methods to aid the design
of reversible circuits.

3.1 Reversible Logic Synthesis and Optimization

The first approach to reversible logic synthesis is actually a very beautiful ex-
ample of how mathematics can be related to reversible circuits. Based on work
by Rayner and Newman [120], Storme and De Vos [135] used that reversible
gates and cascading of these by serial composition forms a group, with the result
that it is possible to use the known methods from group theory. Specifically,
one of these methods can be used to decompose an arbitrary reversible circuit
into a cascade of simpler circuits that only updates one input wire [39, 42].
Each of these simpler circuits can then be interpreted as an exclusive-or-sum-
of-products (ESOP), which basically is a cascade of controlled-not gates with
the number of controls of each gate equals to the number of variables in the
products.

Reversible logic synthesis have since been much researched and often with
an interest to also apply the methods to quantum circuits. Many of the ap-
proaches is based on techniques known from Boolean logic synthesis. Perkowski
et al. [3,117] made a method for hierarchical decomposition using three known
decomposition techniques and Shende et al. [128] implemented a brute-force
algorithm with memorization, that can find optimal circuits. Maslov, Dueck,
and Miller [92, 93] implemented heuristic methods based on truth tables that
also use the Fredkin gate. Other approaches are based on positive-polarity
Reed-Muller expansion [62], or Reed-Muller spectra [94], and finally optimal
synthesis based on satisfiability of Boolean formulas [61, 157]. There exists
many more, but common to these are that they are based on truth tables as
input and that they actually try to solve an NP-hard problem. They can,

11

therefore, find good or optimal decompositions of reversible circuits with small
width (4, perhaps 5 wires), but for more complex circuits with a large amount
of wires, they have to give up. Heuristic methods using more compact function
representations (e.g. decision diagrams) have been suggested to make synthesis
of larger functions possible [131,155]. These, however, add many extra lines to
the design, which are often left as garbage.

In parallel with the development in synthesis, methods for optimization of
reversible circuits have been developed. One such method is called template
matching [92,101]. Based on a large set of identity circuits, the method matches
a subpart of the identity circuits with subparts of the circuit to be optimized.
If a larger part of the identity circuit is found it can be replaced by the smaller
part without changing the functionality of the circuit. Other methods are
optimizations based on ESOP minimization [134,147] and reducing logic depth
by expanding the logic width (adding more lines) [95,102].

3.2 Hardware Description Languages

Domain specific languages (DSLs) to describe computing systems and circuits
have been extensively studied, e.g. resulting in DSLs such as VHDL, Verilog,
and SystemC. Taking inspiration from this, Wille et al. implemented the re-
versible design language SyReC [156,158]. The language builds on Janus and,
therefore, it has the same properties of being sequential and imperative. This
makes it less suitable for describing logic with an inherent concurrent struc-
ture. Therefore, SyReC is mainly used for creating the logic-level data struc-
tures used in synthesis. It has been used to implement different circuits from
multiplication to a simple architecture [112, 113, 160]. Also, a student project
at DIKU investigated a simple imperative language to describe reversible logic
circuits [85].

Our work focuses on using functional languages to describe reversible logic.
Using functional languages to describe logic dates back to the 1980s (see ‘non-
survey’ by Sheeran [127]), but although research has continued, these languages
are not widely used in industry. This, however, did not stop us. So we have
designed two languages with the hope that description of reversible logic com-
bined with functional languages can be a success.

The first language is a point-free combinator-style language and it is de-
signed to be close to the reversible logic gate-level [137] (Paper D1). The
language is inspired by Sheeran’s µFP [126] but it is also related to other lan-
guages and models. A first example is Ruby [71]9 that, even thought it is made
to describe conventional circuits, also has algebraic laws for inverse compo-
sition. From reversible computing, a computation model designed by Green
and Altenkirch [60] to study the relation between reversible and irreversible
computations, use some similar basic combinators and some of the algebraic
laws that is also used in our work. James and Sabry’s ΠO calculus [68,69] is a
point-free language with a similar type system with product and sum of wires.
Finally, Coecke and Duncan’s ZX -calculus [33,34] is a graphical calculus used
to simulate quantum computations and uses some of the compositions (plus
some special quantum compositions) and rewriting with using algebraic laws.

9Here, we refer to the hardware description language and not the later dynamic-typed
object-oriented language by Matsumoto.

12

The second language is a linear typed higher-level functional language [139]
(Paper D2) with constructs such as conditionals and a let-in statements for
local wire updates, which uses size-change termination to ensure termination of
recursions. The language has some similarities with the previously mentioned
reversible functional languages but also conventional languages like Lava [21]
and Park and Im’s linear lambda calculus (lλ) [115].

The Paper D2 also shows ideas for a design flow that can be used garbage-
free translation to reversible circuits, by using on the combinator language [137]
as an intermediate language.

13

4
Realization of Reversible
Circuits

In Landauer’s seminal paper [79], he sets out to identify the possible sources
of errors (or heat generation) in a physical computer. He identified three,
where one of these was the dissipation of heat due to irreversibility, which then
became the major topic of the paper. The other two sources he identified as
(1) incomplete switching due to fast switching time and (2) decay of stored
information. This is a bit simplified but gives the overall picture. Landauer
also knew that these two sources, in the implementation technology of his time
(as well as today’s CMOS), is much higher than Landauer’s limit. So using
reversible logic CMOS gates alone will, however, not be sufficient.

4.1 Adiabatic Switching and Charge Recovery

The dissipative source relating to incomplete switching is what adiabatic switch-
ing tries to overcome. The basic concept is to achieve asymptotically zero
energy loss when the switching time goes towards infinite (hence the name adi-
abatic).10 The concept has been studied throughout the 1980’s by Fredkin and
Toffoli [54], Mead [98], Feynman [49], and Seitz et al. [124], but it was Athas,
Koller, and Svensson [6,74] that first used the term adiabatic and applied adi-
abatic switching successfully to reversible logic by reusing the signal energy
(sometime also called charge-recovery). Reusing the input signals to generate
the outputs is the key concept in Fredkin and Toffoli’s conservative logic; you
have the same number of billiard balls at input and output. Reversible logic
can easily be converted to conservative logic by using complementary signals:
each bit is represented by both its value and its negated value. The combina-
tion of adiabatic switching and charge recovery is the key concept behind the
designed (and fabricated) logic families that followed. We will here sketch two
different families (perhaps the two most influential families to reversible logic,
so far), but there exist others, e.g. Kramer et al. [76], Vetuli et al. [149], and
Amirante et al. [4].

Split-level charge recovery (SLCR) logic was presented in 1994 by Younis
and Knight [165] with some later improvements by Frank [52]. Inspired by

10It is a common misunderstanding (and a often used reason for rejection of the entire
field) that reversible and adiabatic circuits will lead to CMOS circuits that consume no
energy at all. This is not true (it is not practical to use infinite time for a computation) and
there is no claim of this in the literature. It is, however, a well-established fact (which to
some extent also governs today’s chip design of multi-core processors) that there is a tradeoff
between energy consumption and switching time [166].

14

work by Hall [63], the gates resemble those of static CMOS logic, but with
the significant difference that the constant voltage-source and voltage-drain are
exchanged with trapezoid-shaped clock-signals. Full reversibility can, therefore,
not be achieved at gate level, but instead Bennett’s compute-copy-uncompute
method is applied to ensure charge recovery. The Pendulum processor was
implemented in this logic family [151].

Complementary pass-transistor (CPT) logic was developed by De Vos [38,
39] a few years after SLCR and has some similarities with work by Seitz
et al. [124] and Merkle [99]. Here, the reversible gates are implemented by
pass-gates, which work as switches that ‘guide’ the dual-line input signals to
the desired output lines. The adiabatic switching is achieved using signals that
gradually change from ‘undefined’ to either TRUE or FALSE and back (often
using a triangular, trapezoidal, or sine-wave signal), and the pass-gates, thus,
switch only when there is little voltage across the gate. As pass-gates are not
ideal switches, this logic family has also been called semi-adiabatic [53]. An
advantage of using CPT logic is, however, that the circuits can directly be used
in both directions, showing reversibility directly.

SPICE simulations of reversible CPT circuits have shown that such imple-
mentations have the potential to reduce energy consumption by about a factor
of ten [41] using 0.35 µm CMOS. Similar results (with measurements showing a
factor of about 5) have been presented by Amirante et al. [5] for their adiabatic
logic family in 0.13 µm CMOS. In both cases with a ‘clock frequency’ of about
10 MHz.

Our contribution has been to take the CPL logic family and implement
the reversible gates applying the standard cells methodology [138] (Paper E1)
with the goal of using them in a future design flow. In 2003, Frank had the
same goal with a generalized version of SLCR logic [53], but no results of this
work have ever been published. Blotti and Saletti [22] have also looked at semi-
custom designs for positive feedback adiabatic logic (PFA logic), the family first
presented by Vetuli et al. [149].

4.2 Embedding in Static CMOS

We do not expect to see fully reversible systems commercially available in the
near future. From this perspective it is interesting to consider hybrid systems,
where reversible CMOS circuits are embedded within static CMOS.

The first to look at this were Amirante et al. [5,51] for PFA logic. Though
the gate designs of this family are similar to SLCR logic, a trapezoidal signal
is used to switch the transistors. This result in the problem of converting
between a trapezoidal and a digital signal; a problem we also have with CPT
logic. Amirante et al. use a two-stage memory to synchronize the digital input
with desired clock and two 2-to-1 switches to generate the non-inverted and
inverted trapezoidal signals.

We have taken a similar approach [26] (Paper E2), but a major difference
is that we also want to be able to use the reversible circuits in both directions.
We solved this by an extra array of parallel switches that is controlled by a
direction bit. In the implemented design, all signals (inputs, direction bit,
trapezoidal signals) is generated by an FPGA.

15

5
Conclusions and
Perspectives

In this thesis, we have investigated the feasibility of designing and implementing
garbage-free reversible computing systems. We have found that this, to a
large extent, is possible with the knowledge we have today, but there are still
many non-trivial barriers that need to be overcome. Experience and ‘expert
knowledge’ about reversible computing is definitely an advantage when making
these designs, but this is, of course, also the case with many other areas of
computer science.

More specifically, we have developed new garbage-free circuits for addition
and are working towards a general multiplication circuit. We have also com-
bined multiple operations together to implement a reversible arithmetic logic
unit. With these and other garbage-free arithmetic circuits it is possible to de-
sign larger reversible computing systems. As an example, we have implemented
discrete lossless transforms by redesigning these with a lifting scheme. We have
also shown the design of a reversible computing architecture and implemented
this using only reversible logic gates. While, these are still small systems, with
further development it should be possible to use similar strategies to implement
even larger systems.

From our own design experience, we know that designing logic gate-level cir-
cuits quickly becomes complicated when the functionality and number of wires
involved are increased. To make the design process easier, we have developed
two hardware description languages. Using examples from known reversible
circuits, we have shown that circuits can be described reasonably concisely.
These are, however, still small examples and we need to implement a larger
system to show the usefulness of the languages.

There are basically two different gains that are advocated for the use of
reversible systems. The first is reduced energy consumption both due to Lan-
dauer’s principle and a change to a adiabatic CMOS logic family or another
future technology. The second gain is functionality due to the fact that the
circuits (and programs) can be used in both directions. The advantage is that
the same implementation can be used at multiple places (e.g. the same design
for both the fast fourier transform (FFT) and inverse FFT) or that the same
physical circuit can be used for multiple purposes (e.g. if the FFT is little used
the same circuits can also be used for the inverse FFT). While realizing the first
gain is left for future development, we believe that, with our design experience,
the second gain is possible to achieve today, with benefit to future reversible
computing systems.

16

5.1 Future Work

Though the foundations for reversible computing were laid fifty years ago, and
interest have increased considerably in recent years, in many ways the area is
still young. In this PhD thesis, some of the unknown land was covered, but
there is still plenty to explore for the future.

Arithmetic Logic Circuits

For conventional logic circuits there exist much research, even whole books,
dedicated to the design and implementation of computer arithmetic. This is
definitely not the case for reversible logic. The constraint that the circuits
must be garbage-free is what makes it an interesting research problem, but
most proposed designs (both hand-made and CAD generated) still implement
the conventional algorithms with garbage. They use the reversible gates, but
as their sole goal is to reduce logic size or number of garbage bits for a specific
fixed-size circuit, very little knowledge is actually gained from this approach.

However, arithmetic functions often have some inherent properties that
can be exploited to make a very regular circuit design. A good example is
the ripple-carry adder, where only a redesign gave the garbage-free V-shaped
adder; a redesign that none of the automatic approaches can find. In many
cases the arithmetic function itself must also be redefined, such that it can be
expressed reversibly. Here our current work on multiplication is the obvious
example. With this in mind, we need more design work on good garbage-free
implementations of reversible circuits.

Computer Aided Design

A lot of research has focused on reversible (or quantum) logic synthesis, re-
sulting in optimal circuits for small input sizes. There has, however, been very
little research on how to describe and design reversible systems; often a truth
table (a permutation of the input vectors) is used.

Recently, SyReC [158] and my two languages [137,139] have been presented,
but these are still only initial steps and far from ‘full’ description languages.
More work on these languages is needed to make them better to use for de-
scriptions of reversible circuits. A good way to acquire experience is by imple-
menting reversible systems in these languages.

Also, algorithms for optimization have only been designed for gate-level
descriptions. We must move this to a higher abstraction level and possible
methods for this could be term rewriting or partial evaluation. However, there
exist many other conventional optimization methods (e.g. from compiler tech-
nology) and some of these might also apply.

We know that there is a tradeoff between ancilla lines (logic width), logic
depth, and the number of gates; e.g. adding one ancilla line allows a linear-
depth adders with few gates, while adding n ancilla lines allows a logarithmic-
depth adder. If we can find a more exact relations between these resources
we can use this in synthesis. The descriptions in reversible HDLs have some
degree of modularity, so we could also use approaches for trading logic depth
with adding [95,102] or removing [159] ancilla lines, depending on the ancillae
lines already available.

17

Feynman’s widely used diagram notation has an inherent 1-dimensional
structure, in the sense that gates only operate vertically with computations
proceeding from left to right. This 1-dimensional structure is a good description
of many quantum architectures, but in recent years new architectures have
been suggested, which have a 2 or even 3-dimensional structure. This has led to
research in quantum circuit that use more dimensions [31,118,123]. In quantum
circuits design there is a ‘nearest-neighbor’-approach coming from quantum
architecture models, in which qubits can only interact with its neighboring
qubits. For CMOS circuit there is no nearest-neighbor problem, but the circuit
are 2-dimensional and methods for placing and routing these circuits have been
used for many years. There is, however, an important difference between these
quantum architectures and CMOS circuits: qubits are represented with a single
object (in some quantum architectures the qubits are even fixed in a placed) and
the operations interact between them, while in CMOS the gates (operations)
are places and the wires (bits) are routed in-between. It would, however, still
be interesting to see if part of the place-and-route methods can be applied to
quantum circuits also.

Implementation of Circuits

Only very recently was Landauer’s principle experimentally verified [20], but it
is still any open question how (or if) this can be used for energy reduction in a
‘real’ computer. Initial simulations of adiabatic switched CMOS circuits show
a possible energy reduction [5, 41], but there is still no experimental evidence
for a whole system. Very recently Orlov et al. [114] showed that reversibly
modifying (with copy and uncopy operations) a simple memory element (a ca-
pacitor and a resistor) with adiabatic switching can be done with lower heat
dissipation than Landauer’s limit at up to about 15 MHz. It is, however,
a possibility that CMOS technology will never switch efficiently enough for
implementations of reversible gates to be viable, if reduction of energy con-
sumption is the main goal. It could be that a completely new implementation
technology is needed [154]. Some potential technologies are nanoelectronic de-
vices [56], nanomagnets [78], and superconductor electronics [87]. This work I
will, however, leave to qualified engineers and physicists.

Asynchronous Circuits

Asynchronous circuits [88, 132] have a long history as a technology that show
promising results with respect to speed and energy consumption, but it is also
a technology that, so far, have had little influence outside the research environ-
ments.11 In this sense it has a comparable history to using functional hardware
description languages, and to some part also adiabatic (reversible) circuits. It
would be very interesting to investigate if a combination of asynchronous and
reversible (adiabatic) circuits would be a good match. Describing and synthe-
sizing asynchronous circuits is hard (there exist some CSP-based approaches),
so perhaps a combination with functional languages is even possible.

11Asynchronous circuits have been used for commercially produced network switches,
which have also lead to interest from Intel [89].

18

Bibliography

[1] Aaronson, S. Complexity zoo. http://www.complexityzoo.com/, 2012.

[2] Abramov, S., and Robert, G. The universal resolving algorithm and
its correctness: inverse computation in a functional language. Science of
Computer Programming 43, 23 (2002), 193–229. Mathematics of Program
Construction (MPC 2000).

[3] Al-Rabadi, A. N. Reversible Logic Synthesis: From Fundamentals to
Quantum Computing. Springer-Verlag, 2004.

[4] Amirante, E., Bargagli-Stoffi, A., Fischer, J., Iannaccone, G., and
Schmitt-Landsiedel, D. Variations of the power dissipation in adiabatic
logic gates. In 11th International Workshop on Power and Timing Mod-
eling (2002), p. D1.1.

[5] Amirante, E., Fischer, J., Lang, M., Bargagli-Stoffi, A., Berthold, J.,
Heer, C., and Schmitt-Landsiedel, D. An ultra low-power adiabatic adder
embedded in a standard 0.13µm CMOS environment. In Solid-State
Circuits Conference, 2003. ESSCIRC ’03. Proceedings (2003), IEEE,
pp. 599–602.

[6] Athas, W. C., and Svensson, L. J. Reversible logic issues in adiabatic
CMOS. In Workshop on Physics and Computation, 1994. PhysComp ’94,
Proceedings (1994), IEEE, pp. 111–118.

[7] Axelsen, H. Time complexity of tape reduction for reversible turing
machines. In Reversible Computation, RC2011. Revised Selected Papers,
A. De Vos and R. Wille, Eds., vol. 7165 of LNCS. Springer-Verlag, 2012,
pp. 1–13.

[8] Axelsen, H. B. Clean translation of an imperative reversible programming
language. In Compiler Construction. Proceedings (2011), J. Knoop, Ed.,
vol. 6601 of LNCS, Springer-Verlag, pp. 142–161.

[9] Axelsen, H. B. Reversible multi-head finite automata characterize re-
versible logarithmic space. In Language and Automata Theory and Ap-
plications. Proceedings (2012), A.-H. Dediu and C. Martín-Vide, Eds.,
vol. 7183 of LNCS, Springer-Verlag, pp. 95–105.

19

[10] Axelsen, H. B., and Glück, R. A simple and efficient universal reversible
Turing machine. In Language and Automata Theory and Applications.
Proceedings (2011), A.-H. Dediu, S. Inenaga, and C. Martín-Vide, Eds.,
vol. 6638 of LNCS, Springer-Verlag, pp. 117–128.

[11] Axelsen, H. B., and Glück, R. What do reversible programs compute? In
FOSSACS (2011), M. Hofmann, Ed., vol. 6604 of LNCS, Springer-Verlag,
pp. 42–56.

[12] Axelsen, H. B., Glück, R., De Vos, A., and Thomsen, M. K. MicroPower:
Towards low-power microprocessors with reversible computing. ERCIM
News 79, 1 (2009), 20–21.

[13] Axelsen, H. B., Glück, R., and Yokoyama, T. Reversible machine code
and its abstract processor architecture. In CSR (2007), V. Diekert, M. V.
Volkov, and A. Voronkov, Eds., vol. 4649 of LNCS, Springer-Verlag,
pp. 56–69.

[14] Axelsen, H. B., and Thomsen, M. K. Garbage-free integer multiplication
with constants. In 4th Workshop on Reversible Computing, Preliminary
Proceedings (2012), R. Glück and T. Yokoyama, Eds., pp. 198–204.

[15] Barenco, A., Bennett, C. H., Cleve, R., DiVincenzo, D. P., Margolus, N.,
Shor, P., Sleator, T., Smolin, J. A., and Weinfurter, H. Elementary gates
for quantum computation. Physical Review A 52, 5 (1995), 3457–3467.

[16] Benioff, P. The computer as a physical system: A microscopic quantum
mechanical Hamiltonian model of computers as represented by turing
machines. Journal of Statistical Physics 22, 5 (1980), 563–591.

[17] Bennett, C. H. Logical reversibility of computation. IBM Journal of
Research and Development 17, 6 (1973), 525–532.

[18] Bennett, C. H. Time/Space Trade-Offs for reversible computation. SIAM
Journal on Computing 18, 4 (1989), 766–776.

[19] Bennett, C. H., Gács, P., Li, M., Vitányi, P. M. B., and Zurek, W. H.
Thermodynamics of computation and information distance. In Proceed-
ings of the twenty-fifth annual ACM symposium on Theory of computing
(1993), STOC ’93, ACM, pp. 21–30.

[20] Bérut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider,
R., and Lutz, E. Experimental verification of Landauer’s principle linking
information and thermodynamics. Nature 483, 7388 (2012), 187–189.

[21] Bjesse, P., Claessen, K., Sheeran, M., and Singh, S. Lava: hardware
design in Haskell. In Proceedings of the third ACM SIGPLAN Interna-
tional Conference on Functional programming (1998), ICFP ’98, ACM,
pp. 174–184.

[22] Blotti, A., and Saletti, R. Ultralow-power adiabatic circuit semi-custom
design. Very Large Scale Integration (VLSI) Systems, IEEE Transactions
on 12, 11 (2004), 1248–1253.

20

[23] Briggs, J. S. Generating reversible programs. Software: Practice and
Experience 17, 7 (1987), 439–453.

[24] Bruekers, F., and van den Enden, A. New networks for perfect inversion
and perfect reconstruction. Selected Areas in Communications, IEEE
Journal on 10, 1 (1992), 129–137.

[25] Buhrman, H., Tromp, J., and Vitányi, P. Time and space bounds for
reversible simulation. Journal of Physics A: Mathematical and General
34, 35 (2001), 6821–6830.

[26] Burignat, S., Thomsen, M. K., Klimczak, M., Olczak, M., and De Vos,
A. Interfacing reversible pass-transistor CMOS chips with conventional
restoring CMOS circuits. In Reversible Computation, RC 2011. Revised
Papers (2012), A. De Vos and R. Wille, Eds., vol. 7165 of LNCS, Springer-
Verlag, pp. 112–122.

[27] Burignat, S., Vermeirsch, K., De Vos, A., and Thomsen, M. K. Garbage-
less reversible implementation of integer linear transformations. In 4th
Workshop on Reversible Computing, Preliminary Proceedings (2012),
R. Glück and T. Yokoyama, Eds., pp. 187–197.

[28] Burks, A. W., Goldstine, H. H., and von Neumann, J. Preliminary
discussion of the logical design of an electronic computing instrument.
Tech. rep., Institute of Advanced Study, U.S. Army, 1947.

[29] Cezzar, R. The design of a processor architecture capable of forward and
reverse execution. In IEEE Proceedings of the SOUTHEASTCON ’91
(1991), vol. 2, IEEE, pp. 885–890.

[30] Chau, H. F., and Lo, H. K. One-way functions in reversible computations.
Cryptologia 21, 2 (1997), 139.

[31] Choi, B.-S., and Van Meter, R. On the effect of quantum interaction
distance on quantum addition circuits. Journal of Emerging Technology
and Computing Systems 7, 3 (2011), 11:1–11:17.

[32] Clementsen, P. J., Axelsen, H. B., and Glück, R. Reversible coroutines.
In Nordic Workshop in Programming Theory ’10, Proceedings (2010).
Extended Abstract.

[33] Coecke, B., and Duncan, R. Interacting quantum observables. In Au-
tomata, Languages and Programming, L. Aceto, I. Damgård, L. Goldberg,
M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, Eds., vol. 5126 of
LNCS. Springer-Verlag, 2008, pp. 298–310.

[34] Coecke, B., and Duncan, R. Interacting quantum observables: categorical
algebra and diagrammatics. New Journal of Physics 13, 4 (2011), 043016.

[35] Crescenzi, P., and Papadimitriou, C. H. Reversible simulation of space-
bounded computations. Theoretical Computer Science 143, 1 (1995),
159–165.

21

[36] Cuccaro, S. A., Draper, T. G., Kutin, S. A., and Moulton, D. P. A
new quantum ripple-carry addition circuit. arXiv:quant-ph/0410184v1
(2005).

[37] Daubechies, I., and Sweldens, W. Factoring wavelet transforms into
lifting steps. Journal of Fourier Analysis and Applications 4, 3 (1998),
247–269.

[38] De Vos, A. Reversible computing. Progress in Quantum Electronics 23,
1 (1999), 1–49.

[39] De Vos, A. Reversible Computing: Fundamentals, Quantum Computing
and Applications. WILEY, 2010.

[40] De Vos, A., Burignat, S., and Thomsen, M. K. Reversible implementation
of a discrete integer linear transform. Journal of Multiple-Valued Logic
and Soft Computing, Special Issue: Reversible Computation 18, 1 (2012),
25–35.

[41] De Vos, A., and Van Rentergem, Y. Energy dissipation in reversible logic
addressed by a ramp voltage. In Proceedings of the 15th International
Workshop PATMOS (2005), pp. 207–216.

[42] De Vos, A., Van Rentergem, Y., and De Keyser, K. The decomposition of
an arbitrary reversible logic circuit. Journal of Physics A: Mathematical
and General 39 (2006), 5015–5035.

[43] Desoete, B., and De Vos, A. A reversible carry-look-ahead adder using
control gates. Integration, the VLSI Journal 33, 1-2 (2002), 89–104.

[44] Deutsch, D. Quantum theory, the Church-Turing principle and the uni-
versal quantum computer. Proceedings of the Royal Society of London.
Series A, Mathematical and Physical Sciences 400, 1818 (1985), 97–117.

[45] Draper, T. G., Kutin, S. A., Rains, E. M., and Svore, K. M. A
logarithmic-depth quantum carry-lookahead adder. arXiv (2008).

[46] Feinstein, D., Thornton, M., and Nair, V. Prefix parallel adder virtual
implementation in reversible logic. In Region 5 Technical Conference
(2007), IEEE, pp. 74–80.

[47] Feynman, R. Simulating physics with computers. International Journal
of Theoretical Physics 21, 6 (1982), 467–488.

[48] Feynman, R. P. Quantum mechanical computers. Optics News 11 (1985),
11–20.

[49] Feynman, R. P. Feynman Lectures on Computation. Addison-Wesley,
1996.

[50] Fijany, A., and Williams, C. Quantum wavelet transforms: Fast al-
gorithms and complete circuits. In Quantum Computing and Quantum
Communications (1999), C. Williams, Ed., vol. 1509 of LNCS, Springer-
Verlag, pp. 10–33.

22

[51] Fischer, J., Amirante, E., Bargagli-Stoffi, A., and Schmitt-Landsiedel, D.
Adiabatic circuits: converter for static cmos signals. Advances in Radio
Science 1 (2003), 247–251.

[52] Frank, M. P. Reversibility for Efficient Computing. PhD thesis, MIT,
EECS, 1999.

[53] Frank, M. P. Common mistakes in adiabatic logic design and how to
avoid them. In Proceedings of the International Conference on Embedded
Systems and Applications. ESA’03 (2003), H. Arabnia and L. Yang, Eds.,
CSREA Press, pp. 216–222.

[54] Fredkin, E., and Toffoli, T. Design principles for achieving high-
performance submicron digital technologies. Tech. rep., Proposal to
DARPA, 1978.

[55] Fredkin, E., and Toffoli, T. Conservative logic. International Journal of
Theoretical Physics 21, 3-4 (1982), 219–253.

[56] Galatsis, K., Khitun, A., Ostroumov, R., Wang, K. L., Dichtel, W. R.,
Plummer, E., Stoddart, J. F., Zink, J. I., Lee, J. Y., Xie, Y.-H., and Kim,
K. W. Alternate state variables for emerging nanoelectronic devices. IRE
Transactions on Nanotechnology 8 (2008), 66–75.

[57] Gay, S. J. Quantum programming languages: survey and bibliography.
Mathematical Structures in Computer Science 16, 04 (2006), 581–600.

[58] Gershenfeld, N. Signal entropy and the thermodynamics of computation.
IBM Systems Journal 35, 3.4 (1996), 577–586.

[59] Glück, R., and Kawabe, M. A method for automatic program inversion
based on LR(0) parsing. Fundamenta Informaticae 66, 4 (2005), 367–395.

[60] Green, A. S., and Altenkirch, T. From reversible to irreversible compu-
tations. Electronic Notes in Theoretical Computer Science 210 (2008),
65–74. Proceedings of the 4th International Workshop on Quantum Pro-
gramming Languages (QPL 2006).

[61] Große, D., Chen, X., Dueck, G. W., and Drechsler, R. Exact SAT-based
Toffoli network synthesis. In Proceedings of the 17th ACM Great Lakes
symposium on VLSI (2007), GLSVLSI ’07, ACM, pp. 96–101.

[62] Gupta, P., Agrawal, A., and Jha, N. K. An algorithm for synthesis of
reversible logic circuits. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on 25, 11 (2006), 2317–2330.

[63] Hall, J. S. An electroid switching model for reversible computer architec-
tures. In In Proc. of the Workshop on Physics and Computation (1993),
IEEE Press, pp. 237–247.

[64] Hall, J. S. A reversible instruction set architecture and algorithms.
In Proceedings Workshop on Physics and Computation. PhysComp ’94
(1994), pp. 128–134.

23

[65] Huelsbergen, L. A logically reversible evaluator for call-by-name lambda
calculus. In Workshop on Physics and Computation, 1996. PhysComp
’96, Proceedings (1996), T. Toffoli, M. Biafore, and L. J., Eds., IEEE.

[66] Huffman, D. A. Canonical forms for information-lossless finite-state log-
ical machines. IRE Transactions on Information Theory 5, 5 (1959),
41–59.

[67] Jacopini, G., Mentrasti, P., and Sontacchi, G. Reversible Turing ma-
chines and polynomial time reversible computable functions. SIAM Jour-
nal of Discrete Mathematics 3, 2 (1990), 241–254.

[68] James, R. P., and Sabry, A. Information effects. In Proceedings of the
39th annual ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages (2012), POPL ’12, ACM, pp. 73–84.

[69] James, R. P., and Sabry, A. Isomorphic interpreters from logically
reversible abstract machines. In 4th Workshop on Reversible Comput-
ing, Preliminary Proceedings (2012), R. Glück and T. Yokoyama, Eds.,
pp. 63–75.

[70] Jensen, K. B., and Jensen, S. B. Reversible sorting algorithms in janus.
DIKU student report, 2011.

[71] Jones, G., and Sheeran, M. Circuit design in Ruby. In Formal Methods
for VLSI Design (1990), Elsevier Science Publishers.

[72] Khan, M. H., and Perkowski, M. A. Quantum ternary parallel
adder/subtractor with partially-look-ahead carry. Journal of Systems
Architecture 53 (2007), 453–464.

[73] Kluge, W. A reversible SE(M)CD machine. In Implementation of Func-
tional Languages, P. Koopman and T. Clack, Chrisffoli, Eds., vol. 1868
of LNCS. Springer-Verlag, 2000, pp. 95–113.

[74] Koller, J., and Athas, W. Adiabatic switching, low energy computing,
and the physics of storing and erasing information. In Workshop on
Physics and Computation. PhysComp ’92. (1992), pp. 267–270.

[75] Kowada, L. A. B., Portugal, R., and Figueiredo, C. M. H. Reversible
Karatsuba’s algorithm. Journal of Universal Computer Science 12, 5
(2008), 499–511.

[76] Kramer, A., Denker, J. S., Flower, B., and Moroney, J. 2nd order adi-
abatic computation with 2n-2p and 2n-2n2p logic circuits. In Proceed-
ings of the 1995 international symposium on Low power design (1995),
ISLPED ’95, ACM, pp. 191–196.

[77] Kutrib, M., and Malcher, A. Reversible pushdown automata. In Lan-
guage and Automata Theory and Applications, A. Dediu, H. Fernau, and
C. Martín-Vide, Eds., vol. 6031 of LNCS. Springer-Verlag, 2010, pp. 368–
379.

24

[78] Lambson, B., Carlton, D., and Bokor, J. Exploring the thermodynamic
limits of computation in integrated systems: Magnetic memory, nano-
magnetic logic, and the Landauer limit. Phys. Rev. Lett. 107 (2011),
010604.

[79] Landauer, R. Irreversibility and heat generation in the computing pro-
cess. IBM Journal of Research and Development 5, 3 (1961), 183–191.

[80] Landauer, R. Information is physical. Physics Today 44, 5 (1991), 23–29.

[81] Landauer, R. Zig-zag path to understanding. In Workshop on Physics
and Computation, 1994. PhysComp ’94, Proceedings (1994), IEEE,
pp. 54–59.

[82] Landin, P. J. The mechanical evaluation of expressions. The Computer
Journal 6, 4 (1964), 308–320.

[83] Lange, K., McKenzie, P., and Tapp, A. Reversible space equals deter-
ministic space. Journal of Computer and System Sciences 60, 2 (2000),
354–367.

[84] Lecerf, Y. Machines de Turing réversible. Comptes Rendus Hebdo-
madaires des Séances de l’Académie des Sciences 257 (1963), 2597–2600.

[85] Lehnfeld, M. Design and translation of a description langauge for re-
versible hardware. DIKU student report, 2010.

[86] Levine, R. Y., and Sherman, A. T. A note on Bennett’s time space
tradeoff for reversible computation. SIAM Journal on Computing 19, 4
(1990), 673–677.

[87] Likharev, K. K. Superconductor digital electronics. Physica C: Super-
conductivity (2012). Accepted manuscript.

[88] Lines, A. Pipelined asynchronous circuits. Tech. Rep.
CaltechCSTR:1998.cs-tr-95-21, California Institute of Technology,
1998.

[89] Lines, A. Asynchronous interconnect for synchronous SoC design. Micro,
IEEE 24, 1 (2004), 32–41.

[90] Lutz, C., and Derby, H. Janus: A time-reversible language. A letter to
R. Landauer. http://tetsuo.jp/ref/janus.pdf, 1986.

[91] Madsen, F. M., and Poulsen, D. R. Reversible matrix multiplication in
janus. DIKU student report, 2011.

[92] Maslov, D., Dueck, G. W., and Miller, D. M. Fredkin/Toffoli templates
for reversible logic synthesis. In Proceedings of the 2003 IEEE/ACM
International Conference on Computer Aided Design (2003), ACM Press,
pp. 256–261.

[93] Maslov, D., Dueck, G. W., and Miller, D. M. Synthesis of Fredkin-Toffoli
reversible networks. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 13, 6 (2005), 765–769.

25

[94] Maslov, D., Dueck, G. W., and Miller, D. M. Techniques for the synthesis
of reversible Toffoli networks. ACM Trans. Des. Autom. Electron. Syst.
12, 4 (2007).

[95] Maslov, D., and Saeedi, M. Reversible circuit optimization via leaving
the boolean domain. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on 30, 6 (2011), 806–816.

[96] Matos, A. B. Linear programs in a simple reversible language. Theoretical
Computer Science 290, 3 (2003), 2063–2074.

[97] Matsuda, K., Mu, S.-C., Hu, Z., and Takeichi, M. A grammar-based ap-
proach to invertible programs. In Programming Languages and Systems,
A. Gordon, Ed., vol. 6012 of LNCS. Springer-Verlag, 2010, pp. 448–467.

[98] Mead, C., and Conway, L. Introduction to VLSI Systems, second ed.
Addison-Wesley, 1980.

[99] Merkle, R. C. Reversible electronic logic using switches. Nanotechnology
4, 1 (1993), 21–40.

[100] Micheli, G. D. Synthesis and Optimization of Digital Circuits. McGraw-
Hill Higher Education, 1994.

[101] Miller, D. M., Maslov, D., and Dueck, G. W. A transformation based al-
gorithm for reversible logic synthesis. In Design Automation Conference,
2003. Proceedings (2003), pp. 318–323.

[102] Miller, D. M., Wille, R., and Drechsler, R. Reducing reversible circuit
cost by adding lines. In Multiple-Valued Logic (ISMVL), 2010 40th IEEE
International Symposium on (2010), pp. 217–222.

[103] Mogensen, T. Æ. Semi-inversion of guarded equations. In Generative
Programming and Component Engineering, R. Glück and M. Lowry, Eds.,
vol. 3676 of LNCS. Springer-Verlag, 2005, pp. 189–204.

[104] Mogensen, T. Æ. Semi-inversion of functional parameters. In Proceed-
ings of the 2008 ACM SIGPLAN symposium on Partial evaluation and
semantics-based program manipulation (2008), PEPM ’08, ACM, pp. 21–
29.

[105] Mogensen, T. Æ. Partial evaluation of the reversible language janus. In
Proceedings of the 20th ACM SIGPLAN workshop on Partial evaluation
and program manipulation (2011), PEPM ’11, ACM, pp. 23–32.

[106] Mogensen, T. Æ. Partial evaluation of janus part 2: Assertions and
procedures. In Perspectives of Systems Informatics, E. Clarke, I. Virbit-
skaite, and A. Voronkov, Eds., vol. 7162 of LNCS. Springer-Verlag, 2012,
pp. 289–301.

[107] Morita, K. A simple universal logic element and cellular automata for
reversible computing. In Third International Conference on Machines,
Computations, and Universality. MCU 2001 (2001), M. Margenstern and
Y. Rogozhin, Eds., vol. 2055 of LNCS, Springer-Verlag, pp. 102–113.

26

[108] Morita, K. Reversible computing and cellular automata-a survey. Theo-
retical Computer Science 395, 1 (2008), 101–131.

[109] Morita, K., Ogiro, T., Tanaka, K., and Kato, H. Classification and
universality of reversible logic elements with one-bit memory. Lecture
Notes in Computer Science 3354 (2005), 245–256.

[110] Morita, K., and Yamaguchi, Y. A universal reversible Turing machine.
In 5th International Conference on Machines, Computations, and Uni-
versality, MCU 2007 (2007), vol. 4664 of LNCS, pp. 90–98.

[111] Mu, S.-C., Hu, Z., and Takeichi, M. An injective language for reversible
computation. In Mathematics of Program Construction (2004), LNCS,
Springer-Verlag, pp. 289–313.

[112] Offermann, S., Wille, R., and Drechsler, R. Efficient realization of control
logic in reversible circuits. In Specification & Design Languages, FDL
2011. Forum on (2011), pp. 1–7.

[113] Offermann, S., Wille, R., Dueck, G. W., and Drechsler, R. Synthesizing
multipliers in reversible logic. In 13th IEEE Symposium on Design and
Diagnostics of Electronic Circuits and Systems (2010), IEEE, pp. 335–
340.

[114] Orlov, A. O., Lent, C. S., Thorpe, C. C., Boechler, G. P., and Snider,
G. L. Experimental test of Landauer’s principle at the sub-kbt level.
Japanese Journal of Applied Physics 51 (2012), 06FE10.

[115] Park, S., and Im, H. A calculus for hardware description. Journal of
Functional Programming 21, 01 (2011), 21–58.

[116] Peres, A. Reversible logic and quantum computing. Physical Review A
32, 6 (1985), 3266–3276.

[117] Perkowski, M., Jozwiak, L., Kerntopf, P., Mishchenko, A., Al-Rabadi,
A., Coppola, A., Buller, A., Song, X., Khan, M. H., Yanushkevich, S.,
Shmerko, V. P., and Chrzanowska-Jeske, M. A general decomposition
for reversible logic. Proc. Int’l Workshop on Applications of Reed-Muller
Expansion in Circuit Design (2001), 119–138.

[118] Pham, P., and Svore, K. M. A 2D nearest-neighbor quantum arithmetic
for factoring. In 4th Workshop on Reversible Computing, Preliminary
Proceedings (2012), R. Glück and T. Yokoyama, Eds., pp. 158–170.

[119] Pin, J. On reversible automata. In LATIN ’92 (1992), I. Simon, Ed.,
vol. 583 of LNCS, Springer-Verlag, pp. 401–416.

[120] Rayner, M. R., and Newman, D. J. On the symmetry of logic. Journal
of Physics A: Mathematical and General 28, 19 (1995), 5623.

[121] Reilly, Jr., E. D., and Federighi, F. D. On reversible subroutines and
computers that run backwards. Communications of the ACM 8, 9 (1965),
557–558.

27

[122] Ressler, A. L. The design of a conservative logic computer and a graphical
editor simulator. Master’s thesis, MIT, EECS, 1981.

[123] Rosenbaum, D. J. Optimal quantum circuits for nearest-neighbor archi-
tectures. arXiv:1205.0036v2 (2012).

[124] Seitz, C. L., Frey, A. H., Mattisson, S., Rabin, S. D., Speck, D. A.,
and van de Snepscheut, J. L. A. Hot clock nmos. Tech. rep., California
Institute of Technology, 1985.

[125] Shannon, C. E. A mathematical theory of communication. The Bell
System Technical Journal 27 (1948), 379–423.

[126] Sheeran, M. muFP, a language for VLSI design. In Proceedings of the
1984 ACM Symposium on LISP and functional programming (1984), LFP
’84, ACM, pp. 104–112.

[127] Sheeran, M. Hardware design and functional programming: a perfect
match. Journal of Universal Computer Science 11, 7 (2005), 1135–1158.

[128] Shende, V. V., Prasad, A. K., Markov, I. L., and Hayes, J. P. Reversible
logic circuit synthesis. In Proceedings of the 2002 IEEE/ACM interna-
tional conference on Computer-aided design (2002), ICCAD ’02, ACM,
pp. 353–360.

[129] Shor, P. W. Algorithms for quantum computation: discrete logarithms
and factoring. In Foundations of Computer Science, 1994 Proceedings.,
35th Annual Symposium on (1994), IEEE, pp. 124–134.

[130] Skoneczny, M., Van Rentergem, Y., and De Vos, A. Reversible Fourier
transform chip. In Proceedings of the 15th International Conference on
Mixed Design of Integrated Circuits and Systems (2008), IEEE, pp. 281–
286.

[131] Soeken, M., Wille, R., and Drechsler, R. Hierarchical synthesis of re-
versible circuits using positive and negative Davio decomposition. In De-
sign and Test Workshop (IDT), 2010 5th International (2010), pp. 143–
148.

[132] Sparsø, J. Asynchronous circuit design – A tutorial. Technical University
of Denmark, 2006.

[133] Srivastava, S., Gulwani, S., Chaudhuri, S., and Foster, J. S. Path-based
inductive synthesis for program inversion. In Proceedings of the 32nd
ACM SIGPLAN conference on Programming language design and imple-
mentation (2011), PLDI ’11, ACM, pp. 492–503.

[134] Stergiou, S., Daskalakis, K., and Papakonstantinou, G. A fast and effi-
cient heuristic ESOP minimization algorithm. In Proceedings of the 14th
ACM Great Lakes symposium on VLSI (2004), pp. 78–81.

[135] Storme, L., De Vos, A., and Jacobs, G. Group theoretical aspects of
reversible logic gates. Journal of Universal Computer Science 5, 5 (1999),
307–321.

28

[136] Szilard, L. Über die Entropieverminderung in einem thermodynamis-
chen System bei Eingriffen intelligenter Wesen. Zeitschrift für Physik A
Hadrons and Nuclei 53 (1929), 840–856. 10.1007/BF01341281.

[137] Thomsen, M. K. Describing and optimizing reversible logic using a
functional language. In Implementation and Application of Functional
Languages, 23rd International Workshop, IFL 2012 (2012), A. Gill and
J. Hage, Eds., LNCS. To appear.

[138] Thomsen, M. K. Design of reversible logic circuits using standard cells /
standard cells and functional programming. Tech. Rep. 2012-03, DIKU,
Department of Computing Science, University of Copenhagen, 2012.

[139] Thomsen, M. K. A functional language for describing reversible logic.
In Specification & Design Languages, FDL 2012. Forum on (2012). To
appear.

[140] Thomsen, M. K., and Axelsen, H. B. Parallelization of reversible ripple-
carry adders. Parallel Processing Letters 19, 1 (2009), 205–222.

[141] Thomsen, M. K., Axelsen, H. B., and Glück, R. A reversible processor
architecture and its reversible logic design. In Reversible Computation,
RC 2011. Revised Selected Papers (2012), A. De Vos and R. Wille, Eds.,
vol. 7165 of LNCS, Springer-Verlag, pp. 30–42.

[142] Thomsen, M. K., and Glück, R. Optimized reversible binary-coded dec-
imal adders. Journal of Systems Architecture 54, 7 (2008), 697–706.

[143] Thomsen, M. K., Glück, R., and Axelsen, H. B. Reversible arithmetic
logic unit for quantum arithmetic. Journal of Physics A: Mathematical
and Theoretical 43, 38 (2010), 382002.

[144] Toffoli, T. Reversible computing. In ICALP (1980), J. W. de Bakker
and J. van Leeuwen, Eds., vol. 85 of LNCS, Springer-Verlag, pp. 632–644.

[145] Toffoli, T. Bicontinuous extensions of invertible combinatorial functions.
Theory of Computing Systems 14 (1981), 13–23. 10.1007/BF01752388.

[146] Van Rentergem, Y., and De Vos, A. Optimal design of a reversible full
adder. International Journal of Unconventional Computing 1, 4 (2005),
339–355.

[147] Van Rentergem, Y., and De Vos, A. Synthesis and optimization of
reversible circuits. In Proceedings of the Reed-Muller Workshop 2007
(2007), Reed-Muller, Ed., pp. 67–75.

[148] Vedral, V., Barenco, A., and Ekert, A. Quantum networks for elementary
arithmetic operations. Physical Review A 54, 1 (1996), 147–153.

[149] Vetuli, A., Pascoli, S., and Reyneri, L. Positive feedback in adiabatic
logic. Electronics Letters 32, 20 (1996), 1867–1869.

[150] Vieri, C. J. Pendulum: A reversible computer architecture. Master’s
thesis, MIT, EECS, 1995.

29

[151] Vieri, C. J. Reversible Computer Engineering and Architecture. PhD
thesis, MIT, EECS, 1999.

[152] Vitányi, P. Time, space, and energy in reversible computing. In CF ’05:
Proceedings of the 2nd conference on Computing Frontiers (2005), ACM,
pp. 435–444.

[153] von Neumann, J. Theory of Self-Reproducing Automata. University of
Illinois Press, 1966.

[154] Welser, J., Bourianoff, G., Zhirnov, V., and Cavin, R. The quest for the
next information processing technology. Journal of Nanoparticle Research
10 (2008), 1–10.

[155] Wille, R., and Drechsler, R. BDD-based synthesis of reversible logic for
large functions. In Design Automation Conference, 2009. DAC ’09. 46th
ACM/IEEE (2009), pp. 270–275.

[156] Wille, R., and Drechsler, R. Towards a Design Flow for Reversible Logic.
Springer Science, 2010.

[157] Wille, R., Le, H. M., Dueck, G. W., and Große, D. Quantified synthesis
of reversible logic. In DATE ’08: Proceedings of the conference on Design,
automation and test in Europe (2008), ACM, pp. 1015–1020.

[158] Wille, R., Offermann, S., and Drechsler, R. SyReC: A programming
language for synthesis of reversible circuits. In Specification & Design
Languages, FDL 2010. Forum on (2010), IET, pp. 1–6.

[159] Wille, R., Soeken, M., and Drechsler, R. Reducing the number of lines
in reversible circuits. In Proceedings of the 47th Design Automation Con-
ference (2010), DAC ’10, ACM, pp. 647–652.

[160] Wille, R., Soeken, M., Große, D., Schönborn, E., and Drechsler, R. De-
signing a RISC CPU in reversible logic. In 41st IEEE International Sym-
posium on Multiple-Valued Logic (ISMVL) (2011), IEEE, pp. 170–175.

[161] Yokoyama, T., Axelsen, H. B., and Glück, R. Principles of a reversible
programming language. In Conference on Computing Frontiers. Proceed-
ings (2008), ACM Press, pp. 43–54.

[162] Yokoyama, T., Axelsen, H. B., and Glück, R. Optimizing reversible sim-
ulation of injective functions. Multiple-Valued Logic and Soft Computing
(2011).

[163] Yokoyama, T., Axelsen, H. B., and Glück, R. Towards a reversible func-
tional language. In RC 2011. Revised Selected Papers (2012), A. De Vos
and R. Wille, Eds., LNCS, Springer-Verlag.

[164] Yokoyama, T., and Glück, R. A reversible programming language and
its invertible self-interpreter. In Partial Evaluation and Program Manip-
ulation. Proceedings (2007), ACM Press, pp. 144–153.

30

[165] Younis, S. G., and Knight, J. T. F. Asymptotically zero energy com-
puting split-level charge recovery logic. International Workshop on Low
Power Design (1994), 177–182.

[166] Zhirnov, V. V., Cavin, R. K. I., Hutchby, J. A., and Bourianoff, G. I.
Limits to binary logic switch scaling - a gedanken model. Proceedings of
the IEEE 91, 11 (2003), 1934–1939.

31

A
Papers on Gate-Level
Designs of Arithmetic
Functions

This appendix contains three papers relating to reversible logic design of arith-
metic circuits.

Paper A1: Thomsen, M.K., Glück, R.: Optimized Reversible Binary-Coded
Decimal Adders. In: Journal of Systems Architecture, vol. 54, issue 7,
pp. 697–706, 2008. c© Elsevier B.V. 2008

Paper A2: Thomsen, M.K., Axelsen, H.B.: Parallelization of Reversible Ripple-
Carry Adders. In: Parallel Processing Letters 19(2), pp. 205–222, 2009.
c© 2009 World Scientific Publishing Company.

Preprint version.

Paper A3: Axelsen, H.B., Thomsen, M.K.: Garbage-Free Integer Multiplica-
tion with Constants. In: Glück, R., Yokoyama, T. (eds.) 4th Workshop
on Reversible Computation (RC), Preliminary Proceedings, pp. 198–204,
2012.

33

B
Papers on Reversible
Architectures

This appendix contains two papers relating to design of reversible architec-
tures.

Paper B1: Thomsen, M.K., Glück, R., Axelsen, H.B.: Reversible arithmetic
logic unit for quantum arithmetic. Journal of Physics A: Mathemati-
cal and Theoretical 43(38), 382002(10pp), 16 Aug 2010. c© 2010 IOP
Publishing Ltd.

Paper B2: Thomsen, M.K., Axelsen, H.B., Glück, R.: A reversible processor
architecture and its reversible logic design. In: De Vos, A., Wille, R.
(eds.) Reversible Computation, RC2011, Revised Papers. LNCS, vol.
7165, pp. 30–42, 2012. c© Springer-Verlag Berlin Heidelberg 2012.

71

C
Papers on Implementation
of Reversible Linear
Transforms

This appendix contains two papers relating to design of linear transforms in
reversible logic.

Paper C1: De Vos, A., Burignat, S., Thomsen, M.K.: Reversible Implemen-
tation of a Discrete Integer Linear Transform. In: Journal of Multiple-
Valued Logic and Soft Computing, Special Issue: Reversible Computa-
tion, vol. 18, issue 1, pp. 25–35, 2012. c© Old City Publishing

Preprint version. This paper is the journal version of the paper from the
2nd Workshop on Reversible Computation, RC2010.

Paper C2: Burignat, S., Vermeirsch, K., De Vos, A., Thomsen, M.K.: Garbage-
less Reversible Implementation of Integer Linear Transformations. In:
Glück, R., Yokoyama, T. (eds.) 4th Workshop on Reversible Computa-
tion, Preliminary Proceedings, pp. 198–204, 2012.

97

D
Papers on Design
Languages for Reversible
Logic

This appendix contains two papers on description languages for reversible logic.

Paper D1: Thomsen, M.K.: Describing and Optimising Reversible Logic us-
ing a Functional Language. In: Gill, A., Hage, J. (eds.) Implementa-
tion and Application of Functional Language, IFL2011. LNCS, 2012.
c© Springer-Verlag Berlin Heidelberg 2012.

Preprint version.

Paper D2: Thomsen, M.K.: A Functional Language for Describing Reversible
Logic. In: Forum on Specification & Design Languages, 2012

Close-to-preprint version.

123

E
Papers on Engineering of
Reversible Circuits

This appendix contains two papers on engineering of reversible circuits.

Paper D1: Thomsen, M.K.: Design of Reversible Logic Circuits using Stan-
dard Cells / Standard Cells and Functional Programming. DIKU tech-
nical report. No. 2012-03, ISSN 0107-8283, 2012.

Paper D2: Burignat, S., Thomsen, M.K., Klimczak, M., Olczak, M., De Vos,
A.: Interfacing Reversible Pass-Transistor CMOS Chips with Conven-
tional Restoring CMOS Circuits. In: De Vos, A., Wille, R. (eds.) Re-
versible Computation, RC2011, Revised Papers. LNCS, vol. 7165, pp.
112–122, 2012. c© Springer-Verlag Berlin Heidelberg 2012.

149

