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Abstract

The protein structure prediction problem is that of computationally predicting the three-dimensional
structure of an amino acid chain from the sequence of amino acids alone. This has been an open
problem for more than 30 years and developing a practical solution is widely considered the ’holy
grail’ of computational biology. While ’de novo’ protein structure prediction is possible for some
short chains, this thesis describes improved data structures and algorithms for representing and
analyzing proteins that can help predict the structure of large proteins faster and more reliably.

This thesis consists of eight research papers and a summary of their contents. Half the papers
address the problem of efficiently exploring the space of protein conformations such that promising
structures are more frequently sampled. For example we investigate how hard constraints, which are
rarely used in molecular modelling, can be formulated and used to improve optimization methods
used in structure prediction.

The other half of this work deals with efficient data structures for representing protein struc-
tures. When performing a conformational search atoms change positions and it is necessary to
check for atom collisions very frequently. We present a data structure, based on bounding volume
hierarchies, that decrease the computational time required to perform these operations by a factor
of 3 compared to similar state-of-the-art methods. Another challenge when generating high-quality
protein structures is to detect and remove packing flaws, i.e. small holes in the protein interior.
We present a new method based on Delaunay tessellations that reduces the computational time of
these detections four-fold compared to state-of-the-art methods.



Acknowledgements

Most of what I have achieved I owe to my supervisor, my wife and my dad. Pawel Winter has
patiently supported me academically for almost five years, Maj Fonseca has patiently listened to
my contemplations and heaps of ideas for almost a decade and Jan Riboe has patiently encouraged
me in everything I do since before I can remember.

Additionally I am grateful to my collaborators - Glennie Helles Sindholt, Martin Paluszewski,
Kevin Karplus and Desirée M. S. Jørgensen - for many interesting discussions.

Preface

I started my Ph.D. studies at Department of Computer Science (DIKU), University of Copenhagen
in September 2009 under the supervision of Professor Pawel Winter. I finished my masters from
DIKU a few months previously with experience in combinatorial optimization and applications of
computer science to the field of bioinformatics. At this time our group had a strong profile in
different network optimization and packing problems, but for a few years we had been looking at
problems in computational biology. From September 2010 to June 2011 I visited Kevin Karplus at
University of California, Santa Cruz, as part of my Ph.D. studies. Kevin had for many years been
the head of a large group doing research on protein structure prediction and sequence analysis and
several previous Ph.D. students from DIKU had visited his lab.

This thesis consists of eight research papers and a summary of each paper. The summary is
meant to be readable without necessarily going through the corresponding paper. In total there are
5 journal papers and 3 conference contributions, one of which is an extended abstract. All of the
papers have been peer-reviewed. The most important part of this Ph.D. thesis is the papers – the
summary is written simply to assist readers that are unfamiliar with the field, to provide interesting
background for our research and to extend the discussions in the papers.

In the original Ph.D. proposal the goal of this thesis was summarized in the following way: ”In
this thesis I wish to examine different representations and develop improvements to existing or new
representations that enable protein structure prediction methods to predict the native structure
of large proteins more reliably”. The problems that we have worked on all address this goal to
some extend. The first chapter is a general introduction to the field of protein structure prediction,
intended to make this thesis readable to people with limited knowledge of biology. The second
chapter summarizes our attempts to improve the search strategies for protein structure prediction
and the third chapter describes improvements to efficient protein representations and methods for
analyzing protein structures using data structures from computational geometry. Conclusions and
future directions are outlined in the fourth chapter and, finally, all papers are included in the fifth
chapter.
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Chapter 1

Introduction

Proteins are the building blocks of all living organisms. Approximately half of the dry weight
of the human body is made up of proteins. Different proteins perform very different tasks, from
maintaining the shape of cells to acting as neurotransmitters in the brain. A protein is synthesized
using the genetic information encoded in DNA which contain a ’recipe’ for generating a sequence
of interconnected amino acids. This chain of amino acids folds to a three-dimensional structure
called the native structure. The process of folding into the native structure is believed to be guided
only (or at least mainly) by the sequence of amino acids (see Figure 1.1). Biochemical NMR and
X-ray experiments can sometimes determine the native structure after the protein is folded, but
each experiment is expensive and takes from days to months to complete. Still, many sequences
are known and many new are generated every day for which we would like to determine the native
structure. This could for instance give insights into diseases caused by misfolding proteins such
as Alzheimer’s disease, cystic fibrosis or Huntington’s disease, but there are a plethora of different
ways structural information can help biology, pharmacology and even engineering. The protein
structure prediction problem is that of computationally predicting the native structure of a protein
from the sequence alone and thereby provide this structural information. This has been an open
problem for more than 30 years and developing a practical solution is widely considered the ’holy
grail’ of computational biology.

Figure 1.1: A protein folding from an extended structure to the native state. Only atoms that
are part of the backbone are shown as well as the so-called ribbon diagram which indicates helical
(red) and sheet-like (yellow) parts of the protein. Generated with PyMOL [1]. PDB-id: 1CTF.
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1.1 Protein structure

A protein is a long chain of amino acids. Each amino acid consists of a nitrogen atom, a central
carbon atom and a CO-group all bonded covalently together (see Figure 1.2). These atoms are
named simply N, Cα, C and O. The chemical properties specific to an amino acid is determined by
the side-chain (denoted R) which is covalently bonded to the Cα atom. In humans, the side-chain
can be one of 20 different combinations of carbon, nitrogen, oxygen and sulfur1 (see Figure 1.3).
The atoms in the side-chain are named using their element and a Greek letter indicating the number
of covalent bonds to the Cα atom. For instance, the first carbon atom is named Cβ.

Figure 1.2: The structure of an amino acid. The dihedral angles (torsion angles) around the
bonds adjacent to the Cα atom are called φ and ψ. Because of the partial double bond between
the N and C atoms, the third bond typically has a fixed 180◦ dihedral angle.

When two amino acids bind to each other, a partial double-bond is created between the C-atom
in the first amino acid and the N-atom in the second. When several amino acids are bonded like
this they form a sequence where the amino acid with the non-bonded N-atom is defined to be the
first (the N-terminal) and the one with the non-bonded C-atom is the last (C-terminal).

After being transcribed from the gene, the protein briefly exist as an extended sequence of
amino acids surrounded by the solvent (mostly water). Within a few milliseconds the protein folds
to minimize the Gibbs free energy. This process is mainly affected by two forces: Steric repulsion
of electron clouds (atoms do not like to clash) and attraction of atom groups with opposite charge.
The attraction between charged atoms creates the energetically favorable hydrogen bonds which
are positively charged NH-groups interacting with negatively charged oxygen atoms. It is very
common for the backbone CO-group to interact with the backbone NH-group which is located four
amino acids further along the chain. When this happens to all amino acids in a long stretch, a
helical shape, called an α-helix, occurs (left side of Figure 1.4). It is also possible for the NH-CO
interaction to occur between stretches of amino acids far removed in the sequence, forming slightly
twisted sheet-like structures called β-sheets (right side of Figure 1.4). α-helices and β-sheets occur
in almost all proteins and are referred to as secondary structures.

1For simplicity hydrogens are currently disregarded.
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Figure 1.3: The 20 standard amino acid side chains with the backbone on the top. Unlabeled
vertices are carbons. Modified version of http://en.wikipedia.org/wiki/File:Amino_Acids.
svg
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Figure 1.4: Left: An α-helix with backbone marked yellow and hydrogen bonds marked red. The
backbone CO-group in amino acid i forms a hydrogen bond with the backbone NH-group in amino
acid i + 4. Right: A β-sheet. The backbone CO-group form hydrogen bonds with the backbone
NH-group in a different part of the chain. Slightly modified illustration from [2, p. 15-18].

Another consequence of the attractions between charged atom-groups is the so-called hydropho-
bic effect or hydrophobic burial. Some side-chains contain only neutrally charged carbons, so if one
of these side-chains is in contact with the solvent it will prevent dipolar water molecules from in-
teracting with each other. It is therefore energetically favorable for such side-chains to avoid water
(hence they are called hydrophobic) by packing against each other in the center of the protein,
shielded from the solvent. Charged side-chains containing O and NH-groups, on the other hand,
have a high propensity for forming hydrogen bonds with each other or with the surrounding water
molecules (hence they are called hydrophilic).

1.2 Protein structure prediction

The protein folding and protein structure prediction (PSP) problems both seek to predict the native
structure computationally given only the sequence of amino acids. The prevailing belief is that the
space of all feasible structures of the protein and the Gibbs free energy forms a funnel-shaped
energy landscape that guides the protein structure to the native structure (see Figure 1.5). The
native structure will correspond to the global minimum in the energy landscape or possibly to
the minimum with the widest basin of attraction. Protein folding simulations seek to determine
path-ways from an unfolded structure to the native structure, whereas PSP simply searches the
energy landscape in any way possible to find the native structure.

A major problem for both these methods is to design an artificial energy function and a represen-
tation of the protein structure that results in an artificial energy landscape with similar properties
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Figure 1.5: Visualization of the free energy landscape associated with the SH3 domain (PDB-id:
1SHG) computed by SciMAP. Blue is the lowest energy and red is the highest. The red parts
correspond to unfolded structures while the leftmost blue region is the native structure. Image is
originally from [3], but permission to reuse was granted in [4].

as the real energy landscape. Good physics-based energy functions combined with all-atom repre-
sentations are computationally requiring so approximations are often needed. These are introduced
via reduced representations of the protein where some atoms are disregarded or groups of atoms
are considered one large atom. These approximations, however, change the energy landscape so
multiple minima and barriers occur. Many PSP methods overcome this obstacle by trying to gen-
erate large amounts of low energy structures (decoys) in all the widest minima. One single decoy
from each minimum is then refined using more accurate and requiring energy functions and protein
structure representations. Hopefully, the native structure can finally be identified as the refined
structure with lowest energy.

The current state-of-the-art PSP methods can predict the native structure of proteins containing
up to 100 amino acids [5] without assuming that a similar protein is known (referred to as de novo
PSP). These predictions require from days to years of CPU-time. A typical protein, however,
contains around 300 amino acids [6] and some proteins contain several thousands. Improvements
to protein representations and prediction methods are therefore important to make predictions of
all protein sizes feasible.

1.3 Why ’de novo’ protein structure prediction

Methods for solving the PSP problem are generally divided into two types, comparative methods
and ’de novo’ methods. When predicting the structure of a particular sequence, comparative
methods will assume that a similar protein structure has previously been determined and is located
in a protein database [7]. The challenge for these methods is to locate this structure and refine
it. De novo methods attempt to predict the native structure using either physical or statistical
knowledge of how proteins fold and thereby perform a conformational search starting, in principle,
from a completely stretched out chain structure.

The most successful methods, so far, are the comparative methods, as witnessed every second
year at the CASP experiments [8]. It is therefore necessary to briefly outline the reason why our
research focuses on de novo methods when they seem inferior to the comparative methods that
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solve the same problem.
The reason for focusing on de novo methods is three-fold. First, some protein structures have

not previously been solved experimentally, so a comparative method would not be able to locate
them in any database. Second, a de novo method that solves the PSP problem will explain much
more about how proteins actually work than any comparative method. It will provide information
on which effects should be included in the energy function, which effects are more important and
possibly tell something about the dynamic properties of macromolecular systems in general. Finally,
a successful de novo method would be adaptable to many other molecular modelling problems such
as RNA-folding, protein design, macromolecular docking or function prediction.

1.4 Definitions

The secondary structure elements of proteins are normally called α-helices, β-strands and β-sheets.
Some sections refer to these terms quite often, so α and β will be omitted and they will be referred
to simply as helices, strands and sheets.

The terms protein conformation and protein structure are somewhat synonymous. Protein
conformation will typically refer to a dynamically changing representation of protein structure,
while a protein structure is a static set of atom positions.
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Chapter 2

Improving the search strategy in
protein structure prediction

2.1 Backbone torsion angles in coil segments

In many metaheuristic optimization methods the protein conformation is represented by a torsion
angle for every rotatable covalent bond (see Figure 1.2). Given a sequence of amino acids, i = 1 . . . n,
each amino acid has 2 backbone torsion angles, φi and ψi, and from 0 to 4 side-chain torsion angles,
χ1
i , . . . , χ

4
i . Together, these torsion angles specify the conformation of the protein. Metaheuristics

can be improved significantly by including prior knowledge of probable torsion angles. The backbone
torsion angles (φi and ψi) are particularly important since they determine the overall shape of the
proteins.

The first step in predicting (φi, ψi)-angles is to determine the secondary structure. It is possible
to predict the secondary structure using the amino acid sequence as input to any of the popular
machine learning methods such as neural networks or hidden Markov models. The best approaches
predict roughly 80% of the amino acids correctly, which is considered reasonably accurate (see
e.g. [10] for a recent review). It is well-known that the hydrogen bonds between amino acids in he-
lices and sheets cause them to adopt very particular combinations of (φi, ψi)-angles (see Figure 2.1).
It is therefore not difficult to predict torsion angles for amino acids in strand or helix segments. But
the remaining amino acids, those located in so-called coil -regions, are typically not constrained by
hydrogen bonds and torsion angles and will not follow an easily recognized pattern. The goal of our
paper ”Predicting Dihedral Angle Probability Distributions for Protein Coil Residues” (included in
Section 5.1) was therefore to investigate how well the torsion angles for amino acids in coil regions
could be predicted.

Our approach was to use windows of 7 adjacent amino acids as input to a trained feed-forward
neural network in order to predict the (φ, ψ)-angles of the amino acid in the center of each window.
The window could span both helix- and strand-segments, but the central amino acid was always
a coil. The output of the neural network was discretized by mapping pairs of (φ, ψ) angles to 144
non-overlapping 30◦×30◦ bins in the Ramachandran plot (see Figure 2.2). The neural network was
trained using ordinary backpropagation on a large training set extracted from the PDBSelect25
data set [11].
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Figure 2.1: A typical Ramachandran plot
showing (φ, ψ)-combinations for 100.000 amino
acids. Amino acids in helices will occupy the
α-region, while those in sheets will occur in
the β-region. The completely empty regions
correspond to (φ, ψ)-angles that cause clashes
between atoms on the backbone. Image from
[9].

Figure 2.2: The 20 bins with highest output
value from our trained neural network given the
amino acid sequence ”ELDTEDA”. Each bin
corresponds to a 30◦× 30◦ area of (φ, ψ)-angles
for the central threonine amino acid (the ”T”
in the sequence).

Our first experiment was to evaluate how often the correct (φ, ψ)-pair fell within the bin with
highest output-value. A predictor that only considers a single amino acid, i.e. a neural network with
a window size of 1, was used as a null-model. Compared to this null-model our prediction method
was an improvement. Particularly the prediction of backbone torsions for hydrophilic amino acids
was improved significantly. This effect is probably observed because hydrophilic amino acids, which
are more often exposed to the solvent, have more flexibility and are therefore more easily affected
by adjacent amino acids. Hydrophobic amino acids, buried in the core, are to a higher degree,
affected by tight packing of atoms that are not necessarily adjacent in the chain.

Despite the improvement over the null-model, the accuracy of single-bin predictions was still
only about 15%. It was therefore investigated how often the correct (φ, ψ)-pair fell inside one of the
x bins with highest output-value from the neural network, where x was varied from 1 to the total
number of bins. It was observed that setting x ' 20 ensured that the correct bin was among the
x around 80% of the time. This accuracy is comparable to that of secondary structure predictions
and hence estimated to be sufficient for sampling realistic backbone torsion angles in coil-regions.

After submitting the paper, the neural network was incorporated into the search strategy of an
all-atom PSP method based on genetic algorithms in order to improve the sampling of torsion angles
in coil-regions [12]. First, output-values for the bins were normalized so they all summed to 1. A bin
was then chosen probabilistically based on the normalized value, and a random angle-pair within
this bin was picked. The effect of incorporating our neural network was, for example, a doubling
in the number of generated decoys with a high similarity to the native structure (RMSD [13] less
than 4Å) for the crambin protein (see Figure 2.3).
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Figure 2.3: A ribbon illustration of the 46 amino acid crambin protein (PDB id: 1CRN).

One of the challenges with this project was to find an adequate way of comparing our method
with similar reported results. Boomsma et al. [14], for instance, published a paper just before we
submitted ours which presents a framework that uses hidden Markov models to sample torsion
angles for any type of amino acid (not just coils). They generated 100 (φ, ψ)-samples for each
amino acid and reported the smallest distance from any of these samples to the (φ, ψ)-pair of the
native structure within the Ramachandran plot. However, their results are not comparable to ours
since they are generated for all types of secondary structure and not just coil, which is the hardest
and most interesting to predict. Kuang et al. [15] and Zimmermann and Hansmann [16] used
methods similar to ours but instead of having small bins, from which meaningful samples can be
drawn, they included very few large bins that cover all of the allowed parts of the Ramachandran
map. In the paper it was attempted to compare with these results, but the comparison is slightly
unfair since the binning of the Ramachandran plot is very different. One interesting direction for
future work would therefore be to acquire all relevant pieces of software that can be used to sample
torsion angles and do a proper comparison between their performance. Since torsion angle pairs
in secondary structures follow much simpler patterns, the comparison should of course distinguish
between amino acids in helices, strands and coils.

2.2 Finding protein decoys using branch and bound

The Efficient Branch and Bound Algorithm (EBBA) is a method developed by Paluszewski and
Winter for generating protein decoys [17, 18]. In EBBA the protein structure is modelled in such
a way that the entire search space can be exhaustively explored for proteins of a reasonable size.
This approach is in many ways unique, and it is important to some of the ideas in this Ph.D. thesis.
The following sections briefly introduce EBBA.

The input to EBBA is an amino acid sequence and a secondary structure prediction. The local
structure of each segment is fixed but the segment can assume a discrete number of directions and
rotations (see Figure 2.4). Only the central Cα atom of each amino acid needs to be defined in
this representation. The first Cα in the first segment is placed at origo, while the first Cα in the
remaining segments are placed appropriately near the last Cα in the previous segment. Given m
segments that each can assume r rotations and d directions, the search-space has a size of (d · r)m.
This can be reduced to (d · r)m−1 by fixing the direction and rotation of the first segment. For

11



Figure 2.4: Example of Cα-trace in EBBAs
representation. Each segment has a discrete
number of directions and rotations. The se-
quence and secondary structure are from the
Villin headpiece (PDB id 1VII). Image from
[18].

Figure 2.5: A simplified Cα trace, and an ex-
ample illustrating the half-sphere exposure of
the central amino acid. The up/down pair for
this amino acid is (3, 5), and the contact num-
ber is 8. All amino acids are assigned up/down
numbers in this manner.

the proteins that were tested, the number of segments was between 5 and 11, d was 12 and r was
8. A typical protein, therefore, had a search space with size at least 1013 – much too large to be
searched exhaustively.

When the direction and rotation of each segment were fixed, the Cα atoms had well-defined
positions. An energy-measure, based on half-sphere exposure (HSE) [19], was then used to estimate
the quality of the entire protein structure. In essence, HSE is a list of numbers, two for every amino
acid, indicating how many other amino acids are in the half-sphere ’above’ the Cα atom and how
many are ’below’ (see Figure 2.5). The HSE of a protein can be predicted from the primary
sequence [20], and the energy-measure in EBBA indicated how much the HSE from a certain
structure deviate from the predicted HSE.

Given a partial structure, i.e. a structure where only some of the first segments have been
placed, EBBA had a routine to efficiently determine how good the HSE-based energy-measure
could possibly hope to get if the search proceeded from that partial structure. This lower bound
makes an explicit search of all possible solutions unnecessary. If the search had already encountered
a complete protein structure with energy, E, and was considering a partial structure whose lower
bound was larger than E, then no completion of the partial structure could be optimal and it could
therefore be disregarded completely. This is the essence of branch and bound algorithms. Following
this approach EBBA generated a set of decoy structures whose HSE deviated only very little from
the predicted. A high-quality structure (RMSD less than 6Å) could always be found among these
decoys.
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EBBA is one of very few methods that attempt to attack PSP using exact methods1. Almost
every other method uses some form of metaheuristic where no guarantee about the optimality
of the results can be given (with limited computational time). Another interesting property of
the branch and bound method is that it benefits greatly from hard constraints. In metaheristic
methods, constraints are typically relaxed and incorporated into the objective function.

2.3 Bee colony optimization for generating protein decoys

EBBA often needed to run for several hours before the first complete structure was found and prun-
ing of partial structures could begin. It was therefore examined if a metaheuristic could be used to
quickly find a suitable complete structure and thereby help EBBA prune earlier in the search. The
Bee Colony Optimization (BCO) metaheuristic was invented a few years previously and it seemed
like a promising approach for this problem. Our paper ”Protein Structure Prediction Using Bee
Colony Optimization Metaheuristic” (included in Section 5.2) describes how this metaheuristic was
adapted to generate decoys using EBBA’s discretized representation.

The BCO metaheuristic explores the search space in a manner similar to how honey bee colonies
forage. In a bee hive, scout bees randomly search for promising flower patches. At regular intervals
they return to the hive and perform a so-called ’waggle dance’ which indicates the location and
potential of the flower patch they found. Worker-bees in the hive observe these waggle dances
and based on the indicated potential of each flower patch they make a probabilistic decision to go
explore one of them and bring back nectar. In the context of metaheuristics, the waggle dance can
be interpreted as a way of determining the intensity of local search near a particular solution (i.e.
exploitation). Similarly, the number of scout bees can be interpreted as a parameter indicating how
many computational resources should be spent on randomly searching for new promising solutions
(i.e. exploration).

Using the EBBA model a variant of BCO was implemented with the purpose of generating
decoys. One major problem with this approach was that the EBBA model had many constraints
limiting the search-space. This was good for branch and bound, but it was exceedingly hard for
BCO to find even a single feasible solution. We tried increasing the number of possible directions
and rotations and to split long coil-segments in the middle. This had the effect that the search-
space increased dramatically and finding a feasible solution became possible. However, a solution
in this relaxed model was not necessarily an upper bound on the optimal solution in the original
EBBA model making it unusable for pruning.

The metaheuristic was tested on the relaxed model by comparing it to a random-restart simu-
lated annealing (SA) method. SA is a commonly used metaheuristic inspired by the metallurgical
process of annealing a material to optimize certain properties. A temperature parameter controls
whether SA behaves like a random walk (high temperatures) or like hill-climbing (low temperature).
The temperature is then slowly lowered which guarantees a good trade-off between exploration at
high temperatures and exploitation at lower temperatures. By comparing the lowest observed

1Some exceptions include the exact methods solving the simplified HP-lattice problem [21]. This problem, however,
has only a limited connection to PSP and solutions are not easily interpreted as realistic protein structures. Another
notable example is the αBB method [22] based on the astro-fold system.
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energies during conformational search we concluded that BCO significantly outperformed the SA
metaheuristic using the relaxed model. We also compared the lowest observed energy in the relaxed
model with the optimal value in the original model found using EBBA. Here we also observed a
significant improvement.

The SA method was allowed to restart 10 times during the optimization while BCO was allowed
to send out scouts for every iteration. This probably gave BCO an advantage, and given more
time it would have been preferable to test the BCO method more fairly against other types of
metaheuristics. For instance, it might have been interesting to see how well it would have compared
to a very basic random restart hill-climbing that was restarted every time a solution converged.
Such a method would restart more frequently and possibly perform better than the SA method.

For most of the problem instances BCO generated decoys that were closer to the native struc-
ture than those found using either SA or EBBA. Two proteins from the CASP7 experiment were
evaluated and BCO generated structures that were comparable in quality to those from the best
prediction groups.

In November 2005 two metaheuristics, both based on the foraging behaviour of bees, were de-
scribed in technical reports [23, 24] by two different research groups. There are some technical
differences but essentially they describe the same approach. Several conference and journal pub-
lications describing both the algorithms and different applications of each variant have since been
published but neither research group ever cites the other. One of the achievements of this work
was a hybrid description of the BCO method that encapsulated both the methods.

The need for relaxing EBBA’s representation indicate that the metaheuristics do not work well
with constraints. Since metaheuristics depend on being able to step from one local minimum in
the energy landscape to another, constraints that are not carefully designed to aid the permutation
operators will hinder its local search significantly. Too extensive search spaces, however, are also
problematic for optimization methods. Hence, it can be concluded that for constraints to be of any
use to metaheuristic search methods they must be an implicit part of the representation.

2.4 Using β-sheets in conformational search

Reducing the search space by incorporating constraints into the representation of the PSP problem
has been done before. Molecular dynamics methods represent molecules using the position and
velocity of individual atoms. Covalent bonds between atoms are treated like springs [25], and
even small displacements of a single atom can increase the energy term describing this spring
significantly. An alternative is to incorporate the covalent bonds into the representation such that
two bonded atoms are always the same distance from each other (corresponding to an equality
constraint). Changes to the structure are then introduced by rotating parts of the protein chain
around covalent bonds.

Fragment assembly can also be seen as an inclusion of parts of the energy function in the
representation. For each amino acid there are two rotatable backbone bonds (φ, ψ), but many
combinations of these angles are unfavoured or impossible because of the geometry of the backbone.
This can be modelled either by adding a term to the energy function or, as in fragment assembly,
by using pre-calculated fragments of backbone (typically 5-7 amino acids) with realistic sets of
backbone torsion angles. The constraints preventing (φ, ψ)-angles from entering illegal parts of
the Ramachandran plot (see Figure 2.1) are therefore implicitly represented by the choice of valid
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fragments. Secondary structure predictions can further improve fragment assembly by affecting
which types of fragments to test.

The above improvements all decrease the number of degrees of freedom. The energy landscape
becomes smaller and less rugged making it possible to introduce large structural changes without
always increasing the energy dramatically.

Sheets are another important secondary structure formed during the folding of proteins. Two
stretches of backbone from different parts of the chain align and form hydrogen bonds between
their backbone CO- and NH-groups. If a protein contains sheets, and assuming that it is possible
to predict which amino acids form hydrogen bonds in the sheet, the conformational search space of
a protein can be significantly reduced. Unlike the reductions to the search space mentioned above,
predicted sheets are not frequently used to reduce the number of degrees of freedom.

One of the hypotheses of this dissertation is that the conformational search space of proteins
with sheets can be significantly reduced by incorporating predicted sheets in the representation of
protein structures. The following subsection outlines our suggestion to predict sheets and the last
subsection describes how such predictions can be used in conformational search.

2.4.1 Enumerating β-topologies

The first step in determining how strands form pairs is to predict the location of the strands
themselves. As mentioned previously there is a plethora of different machine learning methods that
attempt to predict the secondary structure (see e.g. [10]). Each of these output the locations of
both helices and strands.

With the strand locations fixed, the next problem is to predict which strands form pairs. A
complete specification of which strands form pairs, and whether each pair is parallel or anti-parallel
is here called a β-topology (see Figure 2.6 for examples). There are some methods that attempt
to predict β-topologies [26, 27, 28, 29, 30]. While they often manage to predict a couple of strand
pairs, correctly determining the entire β-topology is more challenging. Since we wish to use the
entire β-topology as a constraint it is very important that all pairs are correctly predicted, otherwise
the native structure might be excluded from the conformational search. We therefore propose a
slightly different approach based on the following three steps:

1. Given the secondary structure, enumerate all possible β-topologies
2. Assign a score to each β-topology indicating its probability of being correct
3. Extract enough of the highest-scoring β-topologies such that the correct one is guaranteed

to be among them.

One or several decoy structure can then be generated for each of the extracted β-topologies. Since
one is guaranteed to be correct, at least one of the decoys will be generated with a very accurate
set of constraints. Furthermore, generating each decoy will be extremely fast if a framework can be
created that adequately takes advantage of such constraints. The conference paper ”Ranking Beta
Sheet Topologies of Proteins” (included in Section 5.3) outlines this idea and seeks to evaluate how
best to carry out the three steps mentioned above. A second paper titled ”Ranking Beta Sheet
Topologies with Applications to Protein Structure Prediction” (see Section 5.4) further attempts
to improve the method by taking the problem of inaccuracies in the secondary structure prediction
into account.
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Figure 2.6: Five valid β-topologies (out of 156 possible) for a protein with four strands. A 1-entry
at the ith row and jth column of the pairing matrix indicates that strands i and j are paired. If i is
larger than j they are parallel and anti-parallel otherwise. Multiple sheets and barrels are possible
in this representation.

A β-topology is represented by a binary m×m pairing matrix, where m is the number of strands
in the secondary structure. If an entry aij = 1 then strands i and j are paired. If i > j (i.e. the
1 is below the matrix diagonal) it is a parallel pair, and if i < j (above the matrix diagonal) it is
an antiparallel pair. A valid pairing matrix is a pairing matrix where each strand has at least one
partner, at most two partners and is not paired with itself. All possible β-topologies could then be
generated by enumerating all valid pairing matrices.

To assign a score to a β-topology we implemented and compared two different methods from
the literature. The first method used a combination of neural networks and dynamic programming
to determine how likely it is for two strands to be paired [27]. The score of the entire β-topology is
the average of these probabilities. The second method combines features such as loop lengths, the
number of strand amino acids and the number of sheets in a purely statistical method that assigns
a probability to a β-topology [31].

To determine a sufficient number of top-ranking β-topologies to extract, a large set of proteins
was investigated. For each protein the rank of the β-topology corresponding to the native was
recorded using both scoring methods.

The main achievement of this paper was the outline of an approach to enumerate β-topologies
and to use them in the conformational search. The remaining results attempt to illustrate how
feasible such an approach can be. For instance, we investigated the average and median ranks of the
correct β-topology for proteins containing different numbers of strands. The conclusion was that
for most proteins with 2-4 strands it was enough to only consider the 3 highest ranked β-topologies.
For proteins with more strands it became necessary to look at a few hundred β-topologies before
it could be guaranteed that the correct one was in the set. However, since typical PSP methods
generate thousands of decoys it is still feasible to generate several decoys for each β-topology, even
assuming that the search is not sped up by the inclusion of constraints.

As mentioned we compared two methods for scoring β-topologies. For a majority of proteins,
particularly those with 5 or more strands, the scoring method by Cheng and Baldi [27] outperforms
that of Ruczinski et al. [31]. This conclusion was based on the median rank of the correct β-topology.

Guaranteeing that the correct β-topology was among the generated had two problems. First,
there was a combinatorial explosion in the number of possible β-topologies for proteins containing
more than 7 strands. Fortunately, most single domain proteins have fewer strands, but for the
remaining proteins this was a considerable problem. Our solution was to look for ’almost correct’
β-topologies, i.e. β-topologies containing a subset of the strand pairs that are in the correct β-
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topology (in our matrix-representation an almost correct β-topology is a minor of the correct one).
These almost correct β-topologies provide a set of constraints for PSP that are almost as good
as those obtained from the correct one, and they can still be enumerated when proteins have too
many strands.

The second problem with guaranteeing the existence of the correct β-topology was that sec-
ondary structure predictors tend to underpredict strands. This issue was addressed by finding
alternative locations for strands and enumerate all possible secondary structures. For each sec-
ondary structure all β-topologies were then generated. This approach helped guarantee that the
correct β-topology was among the generated, but it also significantly increased the number of β-
topologies.

There are a number of papers that attempt to predict which strands form pairs. Predictions
of attributes such as domain boundaries and burial depth might be used to improve such methods
further. Additionally, it has been established that pairings of strands that are far removed in the
chain only occur after a series of more local strand pairings have brought the two strands close to
each other [32]. This concept of a folding pathway has been used in β-topology prediction [28], but
methods that use all the available auxiliary information might improve the scoring of β-topologies
further.

We are currently working on a new representation of protein structures that takes advantage
of β-topologies. This work is in progress and the following section outline our approach as an
extended conclusion to the papers discussed in this section.

2.4.2 Using predicted β-sheets in conformational search

A few existing PSP methods have previously used β-topologies in conformational search. The
following section describes these methods briefly and finally our own, still unfinished, approach is
outlined.

The BuildBeta system [33] takes as input the primary structure, secondary structure and β-
topology. It starts with an elongated chain with fixed torsion angles in strands and helices. Each
strand-pair in the β-topology is then zipped, i.e. brought together so the strands align. The zipping
is performed using an inverse kinematics method based on transposed Jacobians to change the
torsion angles in the intermediate coil-regions. After zipping all strand-pairs, helices that clash
with the sheet are moved, also using inverse kinematics. SCWRL4 is used to optimize side-chain
rotamers, but other than that no refinement is done to remove clashes or undesired knots. Since
the process is not deterministic it can be repeated multiple times to obtain a set of different decoy
structures. The system was tested on 10 proteins with 85-187 amino acids containing 4-6 strands.
All possible single sheet β-topologies were used in turn and a set of decoys were generated for
each. Most decoys took between 6 and 20 seconds to generate, and the lowest RMSD among the
generated decoys was around 5.6Å. This RMSD is surprisingly good considering the size of the
proteins and the fact that no conformational search was performed. Figure 2.7 illustrates how close
to the native structure some of the best decoys were. The sheets in the chosen proteins have a very
regular twist and were therefore ideal for this type of experiment. The reason for the good results
might therefore be that the proteins were hand-picked or perhaps they simply reflected the best
results from a larger test-set.

Porwal et al. [34] describes a molecular dynamics approach to protein folding based on the
TINKER-framework using the CHARMM19 energy function [35]. Here the β-topology is enforced
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Figure 2.7: Two examples of structures generated with BuildBeta (colored) superposed onto their
native structures (gray, PDB-ids: 1F4P and 1DI0). Figures are from [33].

by adding a so-called restraint to the energy function which is a term that increases significantly
when the atoms of two paired strands are too far apart2. The protein structure goes through
several iterations where the torsion angles of a random coil amino acid are changed and then the
structure is reoptimized. The method was compared to a variant of the same method, only without
the restraints from the correct β-topology. Fifteen proteins with sizes 31-150 amino acids were
tested and the similarity to the native structure (measured using SSAP [36, 37]) and energy was
recorded. By including the β-topology restraint there was a small but consistent improvement in
the similarity to the native structure, and a significant improvement in the lowest observed energy
(typically around -50kcal/mole).

Bradley and Baker [38] also attempt to enforce pairing of strands in the conformational search
in Rosetta. Strands are placed together and the loop-regions connecting strands are cut open.
This results in a representation of the protein structure as a tree where internal nodes correspond
to non-local contacts and leaves correspond to loop-ends. The closure of the loops is then built
into the energy function. The new method was tested on 12 proteins with sizes 68-125. A large
number of decoys was generated for each protein and the five most promising decoys were se-
lected by picking the centroids of the five largest clusters. Except for three of the largest proteins
the best of these five centroids had a significantly higher similarity to the native structure than
the original fragment assembly method (evaluated using GDT [39, 40] with a distance cut-off of 4Å).

None of the methods mentioned above used β-topologies as real constraints in the conforma-
tional search, though some used them as relaxed constraints (restraints). The input to our own
method is an amino acid sequence, predicted contact numbers and a β-topology. A discretized
representation similar to that of EBBA is used, but the structure of the sheet is specified in the
representation.

For simplicity, assume initially that there is only one sheet. The sheet-structure is obtained
by aligning each strand-pair and then placing backbone atoms ideally along a minimal surface
(see Figure 2.8). Sheets in β-barrel and β-sandwich proteins have been shown often to behave
as a minimal surface [41, 42]. A limited number of sheet-structures can be obtained by choosing
different promising strand-pair alignments or different curvatures of the surface.

Next, the coil/helix-segments connecting the strands are placed one at a time starting from

2Though not written explicitly it is most likely a spring term.
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Figure 2.8: A minimal surface (catenoid) fitted to the sheet in 1AXI. Image is from [41].

each segments N-terminal. Each segment has a limited number of possible rotations and directions.
Every time a segment has been placed a lower bound on the contact number energy is calculated.
If this lower bound is higher than the energy of a previously found structure, or if the C-terminal
of the segment is so far from the end of the loop-region that it can never be closed, the search is
stopped for this partial structure.

The lower bound on the contact number is calculated by maintaining a map of possible (P ),
impossible (I) and certain (C) contacts in the structure. At first, all pairs of amino acids are in
P . Amino acid pairs that are adjacent in the chain are moved to C, and after placing the sheet all
pairs within strands can be moved to either C or I. After placing each segment further pairs can
be moved from P to C or I and a lower bound on the contact number can be computed as

LB =
∑

a

LB(a)

where the sum is over all amino acids, and

LB(a) =

{
max (CNpred(a)− C(a)− P (a), 0) if C(a) < CNpred(a)
C(a)− CNpred(a) otherwise

Here CNpred(a) indicates the predicted contact number of a, C(a) the number of contacts with a
that are certain and P (a) the number of potential contacts with a.

The final pieces for the lower bound method are currently being implemented and we are trying
to extend it to use predicted half-sphere exposure as a lower bound as well. There is a number of
interesting tree-theoretic and geometric challenges involved in this. For instance, the calculation
of the lower-bound for each node in the branch and bound tree needs to query the contact-maps
for information about possible, impossible and certain contacts. When placing a segment, only the
status of possible contacts can change, which means that a lot of computations can be spared by
using the information of a parent node in the branch and bound tree. Since the contact-map has
size Θ(n2) it is impossible to store it in every node (or even every leaf) of the tree. Therefore,
each node needs an efficient method to store only the status of contacts that changed. It should be
analyzed how fast such queries can be performed by traversing the branch and bound tree.

Another challenge is to determine if there is a certain or impossible contact between an amino
acid that has not yet been placed, au, and one that has, ap. For au one can determine the hinges, i.e.
the nearest placed amino acids along the chain in both directions. The set of possible placements
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for au will be in the intersection of two spheres centered at these hinges. The radius of each sphere
is the largest possible distance, along the chain, from au to the hinge (see Figure 2.9). We denote
the lens-shaped intersection of the spheres, L, and place a sphere, S, with ap as center and the
contact distance as radius. If L is contained in S then there is a certain contact between ap and
au. If the intersection of L and S is empty then it is impossible for ap and au to be in contact.
There are similar geometric predicates needed when determining the contact-status of two unplaced
amino acids.

Figure 2.9: The geometric objects involved in determining if the placed amino acid ap has a
certain or impossible contact with the unplaced amino acid au. The hinges (nearest placed amino
acid along the chain) of au are both the center a sphere having the largest possible distance from
the hinge to au as radius. The intersection of these spheres (dark green) is a lens containing all
possible placements of au. If the contact sphere (red) of ap contains L there is a certain contact. If
they are disjoint then contact is impossible.

20



Chapter 3

Applications of computational
geometry

Many problems in structural biology are related to geometric problems, i.e. problems that can
be stated in terms of two- or three-dimensional properties. Computational geometry is the field,
within computer science, that deals with data structures and algorithms to solve such problems.
One example is the computation of the volume of the union of a set of spherical atoms. Since
atoms in a protein overlap, the problem is much harder than simply summing the volume of all
spheres. This problem is relevant for finding the volume and even surface area of proteins and can
be efficiently solved using so-called α-complexes [43] (explained in Section 3.2).

This chapter describes the applications of geometric data structures to protein structure analysis
and representation that we have worked on. The first section discusses an improved representation
of protein structures that enables efficient clash-detection during conformational search. The second
section describes the work we did on protein packing quality and the final section outlines a data
structure that we developed for topological analysis of protein structures.

3.1 Adjustable Chain Trees

As mentioned previously many representations of protein structures are based on the torsion angles
of the backbone and side chain covalent bonds (see also Section 2.4). During conformational search
a small number, k, of angles are changed, and the energy of the resulting conformation must be
calculated. The direct approach is to update the positions of all n atoms accordingly (takes Θ(n)-
time) and then check all pairs of atoms to determine if the energy contribution from any pair has
changed (takes Θ(n2)-time). Grid methods can be used to improve the efficiency of the energy
calculation to Θ(n)-time [44, 45]. Such conformational perturbations are the basis of most search
methods and millions of moves are performed every second. Because detecting clashes and updating
the energy is the most computationally requiring part of conformational search, improvements to
the update time are extremely important.

Lotan et al. [44] describes a data structure called a chain tree which takes advantage of the
chain structure in a protein to build a binary hierarchy of bounding volumes that is used to main-
tain a pairwise energy function. Given k torsion angle changes, updating the chain tree takes only
O(k log(n/k))-time and calculating the energy change takes Θ(n1.5)-time. In practice the chain tree
is shown to be faster than both the direct method and the grid method. The paper ”Adjustable
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Figure 3.1: Left: Adjustable chain tree for the PDB-file 1CTF where three nodes and the N-
terminal have been highlighted. The red sub-trees are the result of rearranging the chain tree such
that secondary structure segments are exactly covered by a single node. Right: The bounding
volumes corresponding to the highlighted nodes in the chain tree.

Chain Trees for Proteins” (included in Section 5.5) describes our improved version of the chain tree
called an adjustable chain tree. The asymptotic running time stays unchanged but the adjustable
chain tree is shown to be significantly faster when updating a protein structure.

As mentioned previously the first step in PSP is often to predict secondary structures (helices
and strands) and ’lock’ their local structure such that the torsion angles rarely change. In helical
segments for example, the backbone torsion angles (φ, ψ) are set to values near (−60◦,−30◦),
which results in the characteristic helical shape. Helices and strands, therefore, become rigid and
nearly straight segments. The efficiency of the chain tree is heavily dependent on how tight the
bounding volumes fit the underlying chain. Since helices and strands are elongated rigid segments,
the adjustable chain tree rearranged the hierarchy of bounding volumes such that each secondary
structure segment had a node in the tree which exactly contains it (red sub-trees in Figure 3.1).
Because the torsion angles within secondary structure segments rarely change, these bounding
volumes hardly ever need to be updated and more computational time could be spent making them
tight-fitting. The rearrangements might make the tree unbalanced so the tree was rebalanced in
such a way that subtrees of helices and strands were unchanged.

One additional observation helped make the adjustable chain tree more efficient: Ω-torsion
angles are generally fixed at 180◦ or 0◦. The lowest levels of the adjustable chain tree was therefore
rearranged to collect adjacent Cα-C-N-Cα atoms under one node in the tree. This means that the
Ω-torsion angle was locked and bounding volumes were tightened as described above.

The original paper on chain trees used oriented bounding boxes (OBBs) and rectangular swept
spheres (RSSs) as bounding volumes (see Figure 3.2). Both types of bounding volumes have good
tightness of fit but finding the smallest volume and performing collision detection is computation-
ally demanding. It was therefore investigated if a simpler type of volume with faster overlap checks
could improve the update time of the adjustable chain tree. Since helices and extended backbones
are shaped like long cylinders, a cylindrical volume seemed appropriate. Line swept spheres (LSSs)
can be made at least as tight-fitting as a cylinder and has a much simpler overlap check. Both
standard chain trees and adjustable chain trees were used to determine which type of volume (OBB,
RSS, LSS or regular spheres) was best suited for bounding volume hierarchies in proteins. These
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Figure 3.2: The different types of tested bounding volumes. From left, an oriented bounding box,
a rectangular swept sphere (the Minkowski sum of flat 3D rectangle and a sphere), a line swept
sphere (Minkowski sum of a 3D line segment and a sphere – also called a capped cylinder) and an
ordinary sphere.

experiments are described in the paper ”Bounding Volumes for Proteins: A Comparative Study”
(included in Section 5.6).

The test set contained a set of 12 proteins with varying lengths and secondary structure compo-
sitions. We formulated a cost-function indicating the computational cost of performing a rotation
around a covalent bond by changing a torsion angle. The CPU-time of performing a rotation was
also recorded. Both measures indicated that the locking of secondary structures and the locking of
peptide bonds resulted in significant speed-ups. The two combined halved the average update-time
of performing a rotation.

In the comparison of bounding volumes, the adjustable chain tree was three times faster with
LSSs than with the RSSs used in the original paper by Lotan et al. Spheres had an extremely fast
overlap check, but because they fit an elongated protein chain very poorly they ended up being
slightly slower than the line swept spheres. By replacing a standard chain tree using RSSs with an
adjustable chain tree using LSSs the average speed of performing a rotation tripled.

3.2 Packing quality

Given a set of points, P , in 2D, the Delaunay triangulation is the largest set of non-overlapping
triangles with corners in P such that the circumcircle of any triangle contains no point from P in its
interior. The α-complex can be interpreted as the subset of triangles in the Delaunay triangulation
whose circumcircle has a radius less than some α ∈ R+ (see Figure 3.3 for an example). Both
Delaunay triangulations and α-complexes can be generalized to 3D using tetrahedra and spheres
instead of triangles and circles. The 3D generalization of the Delaunay triangulation is called a
Delaunay tessellation.

Delaunay tessellations and their dual, the Voronoi diagram, have been used for analyzing protein
structures in a number of ways. One example is the RosettaHoles method for analyzing packing
quality and finding packing defects using the cells of the Voronoi diagram [46, 47]. The problem is
that protein structures that are generated using computational models tend to have small empty
pockets in their interior that are not observed in experimentally determined native structures of
high quality (see Figure 3.4). These pockets are not easily detected using any of the typical terms
in scoring functions that only consider pairs of atoms. The distribution of distances from atom i
to its neighbors might look reasonable even though there is a pocket just next to i. The pockets,
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Figure 3.3: A set of points (500 random road intersections in Copenhagen) with the Delaunay
triangulation and two α-complexes having α = 10km and α = 1.8km respectively.

Figure 3.4: The difference between packing defects in a computationally generated structure
prediction (left) and a high resolution crystal structures (right). The RMSD difference between the
two structures is very small, but the packing defects are significant. The image is from [46].

however, are easily detected by analyzing the tetrahedra in a Delaunay tessellation because their
circumspheres by definition are empty. The colored pockets in Figure 3.4 are unions of such
circumspheres that have been shrunk slightly.

RosettaHoles assigns a packing score to each atom in the protein structure. This packing score
is calculated by using the area of a series of sphere-shells intersected with the Voronoi cell (see left
side of Figure 3.5) as inputs to a support vector machine (SVM). Determining the Voronoi cells
and the area of intersected sphere-shells is computationally demanding. Therefore, when Rosetta-
Holes is included in the Rosetta energy function, the conformational search slows down significantly.

Our own method, described in the paper ”Protein Packing Quality using Delaunay Complexes”
(included in Section 5.7) is conceptually similar to RosettaHoles but faster. Instead of a support
vector machine a neural network was used to assign a packing cost to each atom. The packing cost
of the entire protein was the average of the packing cost of atoms. The input for a particular atom
was a histogram of edge-lengths for all the edges in the Delaunay tessellation that are adjacent to
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Figure 3.5: Left: The geometric basis for assigning packing scores to each atom in RosettaHoles
is the area of concentric shells intersected with the Voronoi cell. Right: Our packing cost captures
roughly the same information but uses the edge-lengths of Delaunay edges.

the atom (see right side of Figure 3.5). The neural network was trained to distinguish atoms in
well-packed structures, represented by structures solved with X-ray resolution less than 1.61Å, from
atoms in poorly packed ones (represented by X-ray structures with resolution larger than 2.24Å).

The construction of the Delaunay tessellation is an incremental algorithm based on tetrahedron-
walks and flips, but with a few improvements that take advantage of the protein structure. First,
a big tetrahedron is placed around the entire point set. Each atom center is then inserted one at a
time with the following steps.

• The tetrahedron, τ , containing the point is located by walking through adjacent tetrahedra,
starting at a tetrahedron adjacent to the last inserted point.
• τ is split into four new tetrahedra
• Configurations of tetrahedra that violate the empty-sphere criterion are flipped until the

structure becomes a Delaunay tessellation again.

Such insertion algorithms often randomize the order of points to guarantee a certain expected
running-time1. The proposed method, however, adds points in the order they appear along the
protein backbone. Since the tetrahedron-walk is always started from a tetrahedron adjacent to the
last inserted point, it never walks very far and the time spent on this part is therefore minimized.

Figure 3.6: Distributions of packing costs for well-packed structures (green), poorly packed struc-
tures (red) and structures from the CASP9 experiment (black).

1See e.g. [48] for a good derivation of O(n logn) expected time in 2D.
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It was concluded that our method could successfully discriminate well-packed structures from
poorly packed ones as shown in Figure 3.6. The packing cost furthermore correlated well with
the packing quality score from the RosettaHoles2 method. The conclusion was that the neural
network indeed characterized packing flaws and not some other structural difference between high-
and low-resolution protein structures.

Figure 3.7: The computational time of our method (red) and RosettaHoles2 (green) as a function
of protein size.

The computational speed of our method increased only linearly as the number of atoms in-
creased (see Figure 3.7). The computational time of the RosettaHoles2 method, in contrast, had a
nearly quadratic increase. Furthermore, our method was 3 to 4 times faster with any given input.

Our proposed method is fast and well-suited for scoring protein structures, but additional work
is needed before it can be integrated into an energy function. The use of neural networks and
the discrete changes in the Delaunay triangulation as points move makes it difficult to express the
derivative wrt. atom positions.

3.3 Characterizing the topology of a point set

While working on the packing cost, we tested if the geometric properties of empty holes, extracted
from an α-complex, could be used to characterize packing quality. These experiments motivated a
different type of problem within computational geometry.

Given a set of three-dimensional points, P , and the α-complex for some value of α, a hole
can be detected by finding a topological void. A void is a set of tetrahedra not included in the
α-complex but isolated from the exterior of the convex hull by triangles in the α-complex (see
Figure 3.8). The size and number of voids depends on the chosen α-value. To avoid choosing one
specific value, the entire evolution of the α-complex is considered as α increases from 0 to ∞. As
α increases triangles are added, voids form, split up into smaller voids and finally disappear as
tetrahedra are added. A void formed at an early α-value and disappearing at a late α-value is
said to be a persistent void. There are very efficient computational methods for determining how
persistent a void is [49, 50] but the practical problem considered here was how to efficiently repre-
sent and determine the tetrahedra contained within any void during the evolution of the α-complex.
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Figure 3.8: A topological void (green) within an α-complex where α = 2.8Å. The point set
corresponds to the atom-coordinates of the human ARNT protein (PDB-id: 1X0O).

The evolution of an α-complex can be represented as a filtration, which is a list of simplices
(points, edges, triangles and tetrahedra) specifying the order in which each simplex is added to
the α-complex. Some of the triangles (positive triangles) will create voids and each tetrahedron
will fill a void. The void tree data structure, described in our paper ”Visualizing and Representing
the Evolution of Topological Features” (included in Section 5.8), is a new way of representing the
parts of the evolution that concerns voids. By considering the entire empty space a void, any
positive triangle will split an existing void in two, and every tetrahedron will fill a void. This
observation was used to represent the evolution of voids as a binary tree where internal nodes
corresponded to positive triangles and leaves corresponded to tetrahedra. Furthermore, children
of a node were ordered such that the most persistent child was the right child. It was shown that
a void tree could be constructed in O(nα(n)), where n is the number of simplices and α(n) refers
to the extremely slowly growing inverse Ackerman function. This is just as efficient as the original
calculation of persistence [50]. A void tree can also be constructed in 2D with positive edges and
triangles instead of positive triangles and tetrahedra. Figure 3.9 gives an example of a 2D filtration
and the corresponding void tree in 2D.

Void trees hold no more information than filtrations where the persistence of each feature has
been calculated. Therefore, possible applications stem from representing the topological evolution
as an ordered binary tree. For instance, the problem of collecting all tetrahedra contained in a void
can be solved by locating the corresponding node in the tree, and collecting all the leaves in its
sub-tree. Furthermore, the binary tree can prove useful in various applications as a visualization.
The edit-distance between ordered binary trees [51] can describe how topologically similar two ar-
bitrary point sets are by finding the edit-distance between their void trees. With this approach
there is no need for matching the points in the two sets or even for the sets to be of the same size.

We are currently working on extending the concept of void trees by building hierarchical rep-
resentations for all topological features of 3D simplicial complexes. The evolution of connected
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Figure 3.9: Top: An example of a 2D filtration. Bottom left: The original visualization of
persistence. For example, edge 15 is positive because it creates a void. This void is filled by the
triangle 015. The size of the triangle indicates the persistence of this void. Bottom right: The
void tree drawn side-ways. The edge 06 splits the entire plane into two voids, the inside (lower
branch) and outside (upper branch) of the shape.

components can be described using component trees, which are similar to dendrograms constructed
with agglomerative single-linkage hierarchical clustering [52, 53]. The final type of feature, the
so-called tunnels, can not be described using trees. It is possible that the evolution of tunnels can
be represented as a directed acyclic graph but we have not found a good method to construct such
a representation yet.

The observation that component trees are similar to hierarchical clustering implies that a void
tree can be regarded as ’clustering of holes’. Since hierarchical clustering is widely used, the void tree
might prove valuable as a supplementary method for data-mining as it conveniently characterizes
any absence of data points in a point sets interior. The practical down-side is that the α-complex is
required in the construction of the void tree which is complicated to compute in higher dimensions
or in non-Euclidean spaces. To counter these problems, it would be interesting to investigate
void trees extracted from so-called witness complexes [54], which provide an alternative to the
α-complexes.
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Chapter 4

Conclusion and future directions

PSP remains a difficult problem and each advance within the field comes slowly and requires large
engineering efforts. It is difficult to say with certainty how the problem will one day be solved, but
it is widely acknowledged that there are currently two bottlenecks in the field of molecular mod-
elling: Better methods are needed to efficiently sample the search space of proteins, and energy
functions that better approximate the Gibbs free energy must be developed [55, 56]. This thesis
has primarily addressed the former.

There are many possible future directions that spring from this study, but two seem particularly
promising to me. First, I hope to complete the work on using sheets in the conformational search
as outlined in Chapter 2. There is still much work in representing the structure of sheets, doing
efficient loop-closure and thinking of intelligent ways to search the energy landscape.

The second direction is to develop new energy functions based on Delaunay tessellations. In
recent papers the focus has been on packing of atoms, but the Delaunay tessellation holds more
information about spatial relations that could be relevant in describing biophysical properties of
macromolecules. The first challenge will be to efficiently maintain the changes in the tessellation
that occur as atoms move during the conformational search. There has been some work done
on kinetic Delaunay tessellations, but including knowledge of how atoms move in proteins could
make these data structures even faster and convince more researchers to employ them. The second
challenge will be to improve energy functions by designing and incorporating meaningful three- and
four-body interactions in addition to the existing pair-wise interactions.
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Chapter 5

Papers

5.1 Predicting Dihedral Angle Probability Distributions for Pro-
tein Coil Residues From Primary Sequence using Neural Net-
works

The following 8 pages contains the published version of our paper ”Predicting Dihedral Angles
of Coil-structure Residues from the Primary Sequence using Neural Networks. G. Helles and R.
Fonseca. BMC Bioinformatics 2009, 10:338” [57].
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Abstract
Background: Predicting the three-dimensional structure of a protein from its amino acid
sequence is currently one of the most challenging problems in bioinformatics. The internal
structure of helices and sheets is highly recurrent and help reduce the search space significantly.
However, random coil segments make up nearly 40% of proteins and they do not have any apparent
recurrent patterns, which complicates overall prediction accuracy of protein structure prediction
methods. Luckily, previous work has indicated that coil segments are in fact not completely random
in structure and flanking residues do seem to have a significant influence on the dihedral angles
adopted by the individual amino acids in coil segments. In this work we attempt to predict a
probability distribution of these dihedral angles based on the flanking residues. While attempts to
predict dihedral angles of coil segments have been done previously, none have, to our knowledge,
presented comparable results for the probability distribution of dihedral angles.

Results: In this paper we develop an artificial neural network that uses an input-window of amino
acids to predict a dihedral angle probability distribution for the middle residue in the input-window.
The trained neural network shows a significant improvement (4-68%) in predicting the most
probable bin (covering a 30° × 30° area of the dihedral angle space) for all amino acids in the data
set compared to baseline statistics. An accuracy comparable to that of secondary structure
prediction ( 80%) is achieved by observing the 20 bins with highest output values.

Conclusion: Many different protein structure prediction methods exist and each uses different
tools and auxiliary predictions to help determine the native structure. In this work the sequence is
used to predict local context dependent dihedral angle propensities in coil-regions. This predicted
distribution can potentially improve tertiary structure prediction methods that are based on
sampling the backbone dihedral angles of individual amino acids. The predicted distribution may
also help predict local structure fragments used in fragment assembly methods.

Background
The primary sequence of a protein is believed to define the
three-dimensional (tertiary) structure of the protein and
many attempts at predicting the tertiary structure from

primary sequence has been made (see for instance [1] for
an overview of the CASP VIII experiment).

The main reasons that predicting protein structure from
sequence alone is so difficult, is that the possible ways the
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amino acids can twist and turn with respect to each other
are enormous. However, large parts of most proteins are
arranged in secondary structures like helices and sheets, in
which the dihedral angles of the amino acids lie within
fairly limited areas as can be observed in Ramachandran
plots [2-4]. Fortunately, predicting secondary structures
can be done quite accurately [5-8], and since roughly 60%
of amino acids in most proteins are arranged in these sec-
ondary structures [9], the number of possible amino acid
conformations is dramatically decreased by this informa-
tion. When attempting to predict the tertiary structure of
proteins, the intermediate step of determining the second-
ary structure is thus typically performed.

It is important to note, though, that even if all helices and
sheets in a protein have been predicted correctly, finding
the complete tertiary structure is still a problem of daunt-
ing size. First of all, the dihedral angles of residues in sec-
ondary structures are still relatively flexible. Secondly, the
dihedral angles of residues in coil segments are very flexi-
ble and they do not show any simple recurrent pattern like
those in helices and sheets.

By inspecting the Ramachandran plot of large sets of pro-
teins it is evident that although coil residues generally
populate a much larger and more diverse area than helical
and strand residues, certain dihedral angles are nearly
never encountered. Steric overlap between atoms in the
side chains of adjacent resides are believed to be responsi-
ble for this, indicating that flanking residues have a signif-
icant effect on the dihedral angles of a given residue, but
exactly how big an effect remains unclear. Erman et al.
[10] showed that, although the exact structure cannot be
unequivocally determined by flanking residues, the struc-
ture is largely affected by these. On the other hand, Kabsch
et al. [11] have shown that identical sequences of five res-
idues in different proteins may still adopt different struc-
tures, which means that the exact dihedral angles of a
residue cannot be determined strictly from the local envi-
ronment.

Predicting the exact dihedral angle area of a coil residue
based only on flanking residues thus appears to be infea-
sible, but we may still be able to predict the most probable
dihedral angle areas. When residues are predicted as helix
or strand residues, we are also provided with a most prob-
able dihedral angle area. Using this information, de novo
protein structure prediction methods allow us to direct
the search to areas of the dihedral angle space where we
are most likely to find the correct conformation.

A predicted probability distribution can therefore be used
as either an alternative to fragment assembly, which,
although it has improved tertiary structure prediction sig-
nificantly, suffers from the fact that it relies heavily on

known structures, or as a tool that can help improve the
prediction success of the local fragment predictions used
by fragment assembly algorithms [12-14]. A significant
amount of work has already been done in predicting these
local fragments [15-20], but as noted in [15], dihedral
angle propensities are used in this prediction process and
a neural network prediction of dihedral angle preferences
could likely aide the prediction.

In this work we attempt to predict a dihedral angle prob-
ability distribution for coil regions that can be used by ter-
tiary structure prediction algorithms to sample the
conformational space more efficiently. Using a dihedral
angle probability distribution does not restrict the dihe-
dral angle space, but rather suggests a frequency to which
we should search different areas of the dihedral angle
space in order to increase the probability of finding the
right dihedral angles for an amino acid.

Neural networks are well known for their ability to learn
and extract patterns from massive amounts of data, so we
have chosen to use this method to generate probability
distributions. Neural networks have also previously
played an important role in predicting secondary struc-
tures [5,7,8].

To our knowledge, predicting dihedral angle probability
distributions of coil residues only have not previously
been done. However, both Kuang et al. and Zimmermann
and Hansmann have attempted to predict dihedral angle
areas of coil residues and we have used them for inspira-
tion. Both groups divide the Ramachandran plot into
three main areas representing approximately 90-100% of
the dihedral angle space and then they try to predict in
which of the three areas the dihedral angles a coil residues
would be in. Kuang et al. used both a neural network and
support vector machine but they reported only marginal
differences in performance for the two different predic-
tion methods and ended up with an overall prediction
accuracy of 77% for the 25% PDBSelect data set (February
2001 version) [21]. Zimmermann and Hansmann used
support vector machines to create three classifiers; one for
each part of the Ramachandran plot. They report a higher
accuracy of between 81.7% and 93.3% for the 50% PDB-
Select data set [22]. We wish to emphasize that unlike
Kuang et al. and Zimmermann and Hansmann we are not
concerned with predicting a single predefined area con-
taining the correct dihedral angles. Instead, we attempt to
predict a probability distribution that will yield the most
probable dihedral angle area for a given residue in a given
sequence. Hamelryck et al. developed a hidden markov
model to predict probability distributions of dihedral
angles [23], but their analysis was not limited to coil-
regions and comparable results were not presented.
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In the Methods section the method for constructing and
training the neural network is described. Section Discus-
sion presents and discusses the results, and section Conclu-
sions draws the final conclusion.

Results and Discussion
Two methods of evaluating the neural network are used.
The first method measures the accuracy using only a single
bin. The second include several bins and describe the
accuracy of the predicted dihedral angle distribution.

Lower bound on prediction accuracy
While a probability distribution can be constructed based
on the results, the neural network is trained to predict a
single bin. Table 1 shows the prediction accuracy for each
type of amino acid. The prediction accuracy is the percent-
age of coil-residues for which the neural network had
highest output in the bin corresponding to the correct
dihedral angle. In order to determine the significance of
the results presented, it is useful to compare them with the
probability of guessing the right bin based on the distribu-
tion of dihedral angles in the data set. Simply guessing at
the most populated bin for coil residues would yield a
successful guess at a rate of:

Where Rmost is the number of residues in the most popu-
lated bin and Rtotal is the total number of residues in the
data set. We may think of G as a lower bound on the pre-

diction accuracy. This lower bound can be tightened by
analyzing plots specific to each type of amino acid. For
instance Figure 1B shows the probability distribution for
threonines that has been calculated using this equation.
Lower bounds for the neural networks prediction accu-
racy, specific to each type of amino acid, GAA-type, can thus
be determined.

As can be seen from Table 1 the trained neural network
yield better accuracies than GAA-type and the number of cor-
rectly predicted bins are improved for all types of amino
acids. Improvements of more than 50% compared to
guessing are observed for 7 out of the 20 residues. The
largest improvement observed is for threonine where the
correct bin is predicted by the neural network 68% more
frequently than guessing at the most populated bin. Pre-
dicting dihedral angles for valine shows the smallest
improvement of only 4%.

Interestingly, the neural network appears to perform bet-
ter on hydrophilic residues, as 7 of the 9 hydrophilic resi-
dues are the ones that showed improvements of more
than 50%. Only the hydrophilic residues, arginine and
glutamic acid, showed improvements of less than 50%
(but still >40%). In contrast, prediction for most hydro-
phobic residues showed improvements of less than 35%.
This distinction between hydrophobic and hydrophilic
residues may of course be mere coincidence, but it does
seem to indicate that hydrophilic residues are much more
controlled by their local environment than the hydropho-
bic residues, which are not as easily influenced. This is

G
R
R

= most
total

(1)

Table 1: Improvements in prediction accuracy. 

AA-type Property GAA-type NN Prediction Improvement

arg I 9.7% 13.6% 40.2%
asn I 8.3% 13.3% 60.2%
asp I 8.2% 13.7% 67.1%
gln I 8.7% 13.3% 52.9%
glu I 10.6% 15.1% 42.5%
his I 7.7% 12.0% 55.8%
lys I 9.7% 14.9% 53.6%
ser I 10.9% 16.5% 51.4%
thr I 9.1% 15.3% 68.1%
gly - 15.0% 16.2% 8.0%
ala O 12.4% 17.3% 39.5%
cys O 10.5% 14.0% 33.3%
ile O 14.3% 15.3% 7.0%
leu O 12.5% 16.0% 28.0%
met O 9.8% 12.3% 25.5%
phe O 10.4% 12.6% 21.2%
pro O 21.4% 27.0% 26.2%
trp O 13.5% 15.2% 12.6%
tyr O 9.4% 12.0% 27.7%
val O 13.7% 14.2% 3.6%

Prediction accuracy of the neural network is compared to a lower bound derived from a purely statistical analysis of the data set. 'O' and 'I' in the 
"property" column denotes hydrophobic and hydrophilic residues respectively.
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completely in keeping with the assumption that hydro-
phobic packing is the driving force in protein folding.

Guessing based only on the distributions observed in
Ramachandran plots would yield a success rate of roughly
8-15% for all residues except proline that has an unusual
high accuracy of 21%. Even large improvements of 4-68%
will thus only bring the overall prediction accuracy up to

roughly 12-27%, which is of course insufficient for relia-
ble coil prediction. However, Figure 2 shows the predic-
tion accuracy of the neural network compared to simple
statistics based prediction when observing more than one
bin. On average, neural network based prediction per-
forms better as long as we look at an area that includes less
than 55 bins. The highest gain in prediction accuracy com-

Bin distributionFigure 1
Bin distribution. The plot to the left (A) shows the distribution of the 20 most populated 30° × 30° bins for all coil residues 
in the training set. The plot in the middle (B) shows the distribution for just threonines in the training set, and the plot to the 
right (C) shows the predicted bins for threonine in the sequence Glu-Leu-Asp-Thr-Glu-Asp-Ala taken from a randomly chosen 
protein in the data set. The neighboring residues are used by the neural network to suggest a different distribution to yield a 
higher success rate. The darker the color of the bin the more likely it is that the angle set is within this bin.

NN prediction vs. baseline statisticsFigure 2
NN prediction vs. baseline statistics. Prediction vs. baseline statistics.
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pared to baseline statistics is achieved when we look at the
8 bins with highest output values.

Accuracy of probability distribution
The above comparison with the lower bound indicates
that the neural network is learning more than just base-
line statistics, and that the flanking residues do in fact play
a role for the local structure. However, our goal is not to
predict a single bin, but rather to create a probability dis-
tribution for an area of the Ramachandran plot that will
give us as high a prediction accuracy for any given
sequence. With a prediction accuracy of  80% for second-
ary structures most tertiary structure prediction algorithms
incorporates secondary structure predictions as a way to
limit the search space. As already mentioned, residues in
secondary structures do in fact span a rather large dihedral
angle subspace, and so the question is whether we are able
to obtain a similar accuracy for an equally sized area.

The increase in success rate for each included bin is
depicted for each type of amino acid in Figure 3. As can be
seen the average prediction accuracy for all residues is just
under 80% (78%) within the 20 top scoring bins. For pro-
line, which appears to be the easiest to predict, an accu-
racy of 80% is achieved within the dihedral angle area
covered by the top eight scoring bins whereas glycine,

which is by far the most difficult to predict, need to span
an area covering 40 bins in order to achieve an  80%
accuracy.

Comparison
Both Kuang et al. [21] and Zimmermann & Hansmann
[22], who attempted to predict dihedral angle areas of coil
residues, divided the Ramachandran plot into three areas.
Their smallest area (area A in [21], area H in [22]) has
roughly the same size as 21 of our 30° × 30° bins. The sec-
ond smallest area (area B in [21], area E in [22]) has an
area corresponding to 25 of our bins and the largest area
(referred to as area E/G in [21] and area O in [22]) corre-
sponds to more than 80 of our bins - in fact in [22] area O
simply takes up the remaining part of the Ramachandran
plot.

Kuang et al. report an overall prediction accuracy of 77%
and we thus achieve a higher accuracy per area ratio. Zim-
mermann et al. report an accuracy of 82.1% for area H,
81.7% accuracy for area E and 93.3% accuracy for their
outlier area O. Again all areas are larger than ours and
their improved accuracy over Kuang et al. are likely due to
their use of the 50% PDBSelect data set, rather than the
25% PDBSelect data set used by both [21] and us. Gener-
ally, sequences with 50% or more sequence identity can

Success ratesFigure 3
Success rates. Area size dependent success rate. Each bin represents a 30° × 30° area of the Ramachandran plot.
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be assumed to adopt the same three-dimensional struc-
ture whereas structures with only 25% cannot [24]. The
classification algorithm used by Zimmermann and Hans-
mann thus have a natural advantage as their data set is not
as diverse. Comparing the accuracy per area ratio, how-
ever, is not completely fair, since we are essentially trying
to solve two different problems. Large areas like those in
[21,22] are well suited for some tasks, but for limiting the
search space in de novo protein structure prediction, we
deem smaller bins more useful.

Figure 1C shows an example of the area predicted for thre-
onine in a randomly chosen sequence from the data set.
Figure 1A and 1B show plots drawn directly for all resi-
dues and only threonine in the data set respectively. The
neural network clearly learns a different distribution
based on the surrounding amino acids that will yield a
better prediction accuracy for that specific sequence.

Future work
An extension of the neural network, that may improve the
results, would be to distribute the bins differently but still
keep them relatively small. Preferred areas of turns [25]
could be represented explicitly with bins or the optimal
size of bins could be examined in more detail. Another
possibility for future work is to assign higher target value
to bins near the target (, ) point during training of the
neural network. In this work the bin containing the target
point is assigned 0.9 and all others 0.1. Due to the flexi-
bility of the backbone the real point may easily be in one
of the neighboring bins, so these could be assigned a tar-
get value of e.g. 0.5 during training. This could possibly
help the neural network to generalize better.

Another extension is to train 20 individual neural net-
works, one for each amino acid. We have here chosen the
network that had the best overall prediction accuracy for
all of the amino acids, but from our experiments it is clear
that individual residues often peaked at different times
during the training procedure. We thus expect that the
results we have reported here can be improved by training
a network for each amino acid type.

Conclusion
Our work shows that artificial neural networks can predict
a probability distribution of dihedral angle areas for resi-
dues in a protein fast and better than simple statistics. For
a dihedral angle area corresponding in size to those asso-
ciated with helices and sheets that can be predicted with a
 80% accuracy we achieve comparable results with a 78%
accuracy. To our knowledge, results from attempts to pre-
dict probability distributions has not previously been
reported, but it could prove very useful in guiding search
algorithms for de novo protein structure prediction

toward the most probable areas of the search space, much
in the same way that predicted secondary structures do.

Methods
A fully connected feed-forward neural network was con-
structed and used to predict a 30° × 30° dihedral angle
bin corresponding to the (, )-coordinates of the target
residue.

We used the May 2008 25% PDBSelect data set http://bio
info.tg.fh-giessen.de/pdbselect/recent.pdb_select25,
which consists of 3881 chains (553016 residues) with less
than 25% sequence identity (20 chains were omitted in
our data set because we were unable to obtain informa-
tion about secondary structures with DSSP). In this exper-
iment we are only interested in predicting probability
distributions for coil residues, so we used information
about secondary structures from the DSSP-algorithm [26].
A reduction from the eight groups of DSSP (310-helix, -
helix, -helix, -bridges, -sheets, turns and bends) was
performed by classifying all residues that are either -
bridges, -sheets, 310-helices or -helices as 'secondary
structure' and the rest as 'coil'. This reduction corresponds
to method A described in [27]. The neural network was
trained on 'coil'-residues alone, though 'secondary struc-
ture' residues were often present in some part of the input
window. Residues at the end of chains where either  or
 values are undefined were omitted.

The data set was split randomly in two equally sized sets,
PDBSelect25A and PDBSelect25B. PDBSelect25A was used
to determine an appropriate network configuration and
PDBSelect25B was then used to obtain the prediction
results reported in this work.

The input to the neural network was a window that
spanned W residues of the amino-acid sequence with the
target residue in the center. A number of experiments were
run to determine the neural network configuration that
would yield the highest prediction accuracy. Prediction
accuracy was calculated as the percentage of coil residues
from a validation set for which the neural network could
predict the correct bin. Window sizes, W, of 5, 7 and 9
were used with various numbers of hidden neurons, H.
Generally speaking, more hidden neurons are needed for
larger input windows, but rather than experimenting with
a fixed number of hidden neurons we simply kept increas-
ing the number of hidden neurons with 50 until perform-
ance showed no improvements. Based on these
experiments we settled on a window size of W = 7 and a
neural network with H = 100 hidden neurons in a single
hidden layer. We emphasize that while we have made
experiments with many different architectures, we have
not systematically verified that the neural network is opti-
mal for this task, but as all architectures achieved almost
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the same prediction accuracy we feel confident that chang-
ing the architecture is unlikely to change the prediction
accuracy in any major way.

The neural network was designed so it had 23 input neu-
rons per residue in the input window. One neuron was
used to specify if the residue was part of a secondary struc-
ture (helix or strand), one was used to specify if the resi-
due was part of a coil, one neuron was used to indicate if
the input was a dummy (outside a chain or an unknown
amino acid) and the 20 remaining input neurons were
used to uniquely identify each of the 20 amino acid types.
Neither the dummy nor the secondary structure input
neurons are ever set to 1 for the middle residue. Using 20
input neurons to represent the residue is common and the
procedure roughly corresponded to the one used by [7] to
predict secondary structure. Figure 4 shows an overview of
the neural network design.

The 144 neurons in the output-layer each correspond to a
30° × 30° area of the Ramachandran-plot. It was esti-
mated that this size would be sufficiently small to be of
use and sufficiently big to ensure that uncertainties in
dihedral angles would not prevent the neural network
from being able to learn. The expected output value of a
certain area was 0.9 if the  and -angles of the middle
residue of the input window fell within the boundaries of
this bin, and 0.1 otherwise. We used 0.9 and 0.1 rather
than 1 and 0 to ensure faster convergence with the stand-
ard logistic sigmoid activation function that was used in
all layers. We used the standard sigmoid function because
it is fast and because we are essentially only interested in
finding the highest output signals and not the output
value per se. The neural network was trained using stand-
ard back-propagation with learning momentum. The
learning parameters of the back-propagation algorithm
was set to  = 0.05 (learning rate) and  = 0.1 (learning
momentum).

For the initial experiments with different neural network
configurations we split the PDBSelect25A data set ran-
domly into five subsets. Four of them was used for train-
ing one for validation. Training was then carried out for
10.000 epochs with the weights updated after each train-
ing example. The highest prediction accuracy was
achieved within the first 1000 epochs in all experiments.
After 1000 epochs the prediction accuracy showed the
slow decline for the unknown validation set and the slow
increase in the training set that is the typical sign of over-
fitting.

Once we settled on a neural network configuration we
trained and validated the network on the PDBSelect25B
data set. Like the PDBSelect25A data set, the PDBSelect25B
data set split randomly into five subsets where four were
used for training and one was used for validation. Since
we previously achieved the highest prediction accuracy
within the first 1000 epochs, we cut the training time
down to 5000 epochs, but otherwise the hyper-parame-
ters were identical to the ones already described. We ran a
traditional 5-fold cross validation to ensure that the
PDBSelect25B data set had not been split inappropriately.
As is evident from Table 2, the neural network was able to
predict the correct 30° × 30° bin approximately 16% of
the times regardless of the way the data set was split.

Network configurationFigure 4
Network configuration. Workflow of the prediction. The residues in the input-window is encoded and used as input to the 
neural network that passes values through a hidden layer. The predicted (, )-area can be read from the output-layer.

Table 2: 5-fold cross validation results. 

Prediction accuracysinglebin

Split A 16.2%
Split B 15.0%
Split C 15.9%
Split D 15.9%
Split E 15.8%

Avg 15.7%

The data set was randomized and split into five separate sets and we 
carried out a 5-fold cross validation. The results from each fold is 
listed here along with the average.
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5.2 Protein Structure Prediction Using Bee Colony Optimization
Metaheuristic

The following 14 pages contains the published version of our paper ”Protein Structure Prediction
using Bee Colony Optimization Metaheuristic. R. Fonseca, M. Paluszewski and P. Winter. Journal
of Molecular Modelling and Algorithms, 2010” [58].
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1 Introduction

Proteins are the primary building blocks in all living organisms. They are made of
amino acids bound together by peptide bonds. Depending on the sequence of amino
acids, the proteins fold in three dimensions so that the Gibbs energy is minimized.
The shape determines the function of the protein. Protein structure prediction (PSP)
is the problem of predicting this three-dimensional structure from the amino acid
sequence and is considered one of the most important open problems of theoretical
molecular biology. The PSP problem has applications in medicine within areas like
drug- and enzyme design [12].

PSP proves to be a very difficult optimization problem. Solving it exactly is only
possible when using very simplified models. Use of heuristics is therefore necessary
for more detailed models and energy functions. However, even in simplified scenar-
ios, many computational problems arise. One of these problems is the belief that free
energy landscapes tend to have many local minima [11].

Lately, several optimization heuristics inspired by bee colonies have been pro-
posed. The two main approaches are the evolutionary algorithms and the foraging
algorithms. The evolutionary approach was initially proposed in [1] and was based
on the mating of bee drones with a queen bee. The foraging approach was proposed
simultaneously in [17, 18] and [8, 9] and mimics the foraging behaviour of honey
bees searching for and collecting nectar in a flower field. This heuristic, like real
honey-bees, performs a wide search for good solutions and has a flexible method for
allocating resources to intensify the local searches. This seems like a good strategy in
the PSP to avoid getting stuck in the local minima of the energy landscape. Several
names have been given to the foraging algorithm but here Bee Colony Optimization
(BCO) is chosen.

Bahamish et al. [2] previously used the Bees Algorithm [17] to find the native state
of the 5-residue peptide ’met-enkalphin’ (PDB-ID: 1PLW) using a full resolution
torsion angle-based representation. We apply the BCO metaheuristic to the PSP
problem for real-sized proteins using a simplified representation. Good quality
solutions, often called decoys, in terms of the RMSD and GDT similarity measures,
are generated. These decoys can be used as starting solutions for more advanced
methods. Since a coarser representation is used, real-sized protein structures can be
attacked by the BCO metaheuristic. This is the first time a bee heuristic has been
used to predict the structure of real-sized proteins (more than 50 residues). We do
not claim to solve the PSP or even compete with state-of-the-art PSP algorithms
like Rosetta [19] or I-Tasser [27]. However, the BCO metaheuristic has appealing
properties. For instance, the scout bees make sure several local minima are searched,
and the waggle dances intensify the search in promising areas. We believe this makes
BCO suitable for the PSP.

In Section 2 the representation and the energy function of proteins are described.
In Section 3 our adaptation of BCO is specified. Finally, experiments are described
in Section 4 and discussed in Section 5.

2 Protein Model

The representation of proteins is important since it determines the size and confor-
mation of the search-space. The following section describes our representation of the
proteins structure.
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Fig. 1 Cα trace of backbone.
Each amino acid is assigned
two angles: θ and τ

2.1 Segment Representation

There are 20 different kinds of amino acids, each represented by a letter. The letter-
sequence of amino acids is called the primary structure of the protein. Frequently
occurring local structures of amino acids, such as helices and strands, are called
secondary structures and the full description of the protein (i.e., 3D coordinates of
all atoms) is called the tertiary structure.

When trying to determine the overall tertiary structure of a protein, sometimes
the side chains and the atoms of the backbone are disregarded, and only the
central carbon atom, Cα , of amino acids are represented. This leads to the Cα-trace
representation of proteins illustrated in Fig. 1. The entire protein structure can be
represented by assigning two angles to each amino acid, θ and τ .

Each amino acid of a protein can be classified as belonging to exactly one
secondary structure. Here three classes of secondary structures are considered: helix,
strand and coil. Helices and strands are distinguished by the unique geometrical
layout of the Cαatoms in the tertiary structure (left part of Fig. 2) which is caused by a
special pattern of hydrogen bonds. Coil is the class of amino acids that do not have a
regular pattern of hydrogen bonds, and therefore has only few geometric constraints
on the tertiary structure.

A sequence of Cα-atoms of the same secondary structure class is here called a
segment. The secondary structure class of all amino acids is predicted and used as part

Fig. 2 Left: typical structures for strand and helix (generated using RasMol [20]). Right: segment
representation of a protein
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of our model. Segments can be considered as rigid rods that define the overall path
of Cα-atoms belonging to the segment. Segments always have a start coordinate and
a direction, and for helices and strands their end-coordinate can also be determined
because of their constrained geometry. A segment is an abstract representation and
does not explicitly contain the coordinates of internal Cα-atoms. The specification of
how the Cα-atoms are arranged around the segment is called the segment structure.
Together, all segments and segment structures constitute the complete structure, or
simply the protein structure. The right part of Fig. 2 is an illustration of a complete
structure using the segment representation.

The tertiary structure of any protein can be described by a complete structure.
However, to discretize and reduce the conformational space of this model, the degree
of freedom for segments and segment structures is reduced. Segments are therefore
only allowed to have a discrete number d of predefined directions between the
first and last Cα-atoms. Also, the number of possible segment structures is limited
to s. The method used to determine the segment structures of helix, strand and coil-
classes is described in Section 2.2. Obviously, the chance of being able to represent a
complete structure similar to the native structure of the protein increases when more
directions and segment structures are allowed, but this also increases the size of the
conformational space.

The complete structure of a protein with m segments is represented by a pair of
integers for each segment indicating the segment direction and segment structure.

(di, si), i = 1 . . . m, di ∈ {1 . . . d}, si ∈ {1 . . . s}

2.2 Segment Structures

In this section it is described how the s allowed segment structures of a given segment
are computed. This computation depends on the secondary structure class of the
segment.

Helix and Strand Structures The most observed angle pair for an amino acid is
(θ, τ ) = (91◦, 49◦) in helices and (θ, τ ) = (120◦, 163◦) in strands. Given a helix or
strand segment, one segment structure having these angle properties is generated.
Then the other s − 1 segment structures are generated by rotating the first structure
uniformly around the axis going through the first and last Cα-atoms.

Coil Structures There are no simple geometric constraints that describe coil struc-
tures. However, experiments show that short sequences with similar amino acid
sequences, so-called homologous sequences, often have similar tertiary structures [4].
Given a coil segment, the PDBSelect-25 dataset [3] is queried to find the

√
s best

matching structures. Each of these structures is rotated uniformly
√

s times such that
a total of s segment structures is obtained.

2.3 Energy

Determining a simple energy function for protein structures that is computationally
fast and correlates well to native structures is still an open problem. Pseudo-energy
functions are based on statistical analysis of large sets of proteins. These types of
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energy functions are usually very fast but the quality of the minimal energy structures
varies greatly.

A promising pseudo-energy function described in [16] is based on Half-Sphere
Exposure (HSE) [5] and Contact Numbers (CN). This function requires very little
computation and represents many of the crucial aspects of native structures (for
instance side-chain surface exposure and residue burial). An important property of
the HSE and CN measures is that they can both be predicted fairly accurately, so the
energy of a structure can be calculated as the deviation from the predicted values.

For a given amino acid, the HSE is a pair of integers describing how many
amino acids are contained in a half-sphere above the amino acid and how many are
contained in the half-sphere below (See Fig. 3). The plane dividing the two half-
spheres is specified by the position of the Cα-atom, Ai, and an −→up-vector specific to
the amino acid. The −→up-vector can be defined in the following way.

−→up = −−−−→
Ai−1 Ai + −−−−→

Ai+1 Ai

This −→up vector is undefined for the first and last amino of the protein, so for these
only the contact number CN can be calculated. The CN for every amino acid is the
number of amino acids contained in the entire sphere. The HSE and CN vectors
specifying all the up/down numbers and contact number can be predicted from the
primary structure alone using support vector regression [23, 25].

Let P denote the conformational space of a protein with n amino acids. Let p ∈ P .
The total energy Q(p) is defined as the sum of the individual energy contributions
Qp(i) from each amino acid i, i.e.,

Q(p) =
n∑

i=1

Qp(i) (1)

where

Qp(i) =
{

�CN(i)2 if i is the first amino acid of a segment.1

�HD(i)2 + �HU(i)2 otherwise

Fig. 3 Half-sphere expo-
sure for an amino acid.
The up/down pair is (3, 5).
The contact number is 8
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and

– �CN(i) is the difference between the actual contact number of the i-th amino
acid and the desired (i.e., predicted).

– �HD(i) is the difference between the down half sphere exposure number of the
i-th amino acid and the desired down half sphere exposure number.

– �HU(i) is the similar difference for the up half sphere exposure.

A radius of the HSE-sphere around 13 Å is known to give a good prediction
quality [24] and it seems to capture both local and non-local contacts. The optimal
radius has yet to be determined, both in terms of predictability and information
content.

Since many amino acids are hydrophobic, globular proteins fold into tight spheric
conformations. An HSE based energy function is not enough to ensure this behav-
iour, so the mean squared distance of the amino acids from the protein center, the
radius of gyration (Rg), is introduced. The center is defined as the average position
of Cα atoms in the structure. Rg can be predicted from the number of amino acids n
of the protein [22]:

Rgpred = 2.2n0.38 (2)

This prediction is often accurate for globular proteins. Infinite energy is therefore
assigned to structures having Rg > 1.2 · Rgpred.

A structure is said to be clashing if the distance between two Cα-atoms is less
than 3.5 Å. A clashing structure is also assigned infinite energy.

3 Bee Colony Optimization

In nature, a foraging bee can be said to be in one of three states: A scout bee, a
worker bee or an onlooker. Scout bees fly around a flower field at random and when
a flowerbed is found, they return to the hive and perform a waggle dance. The dance
indicates the estimated amount of nectar, direction and distance to the flowerbed.
Onlooker-bees present in the hive watch different waggle dances, choose one and fly
to the selected flowerbeds to collect nectar. Worker bees act like scout bees except
that when they have performed the waggle dance they return to their old flowerbed
to retrieve more nectar instead of flying out at random. A bee usually chooses to
become a worker bee when the chosen flowerbed has a very high concentration of
nectar.

In our adaptation of the BCO metaheuristic, each bee corresponds to a specific
complete solution, and the nectar amount corresponds to an objective value in
the energy landscape. Sending out scout bees corresponds to finding a random
feasible solution and sending out onlookers corresponds to performing a local search
iteration on some existing solution. The onlookers choose a solution for local search
based on the objective value of scout and worker-solutions in previous iterations.

1The reason why CN instead of HSE is used for the first amino acid of each segment is that it was
necessary for the Branch and Bound algorithm described in [15, 16]. In order to compare solutions
found here with those in [16] the same energy function is preserved.
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This method is largely the Bees Algorithm proposed in [18]. In a non-changing
solution space, the fitness of a solution does not deplete in the same way a real
life flowerbed depletes of nectar. Exhaustion is therefore forced when a worker-
solution can not be improved. This idea is somewhat similar to the idea of pruning
parts of the search space as described in [14]. The process of exhausting a search
around a worker-solution is proposed as part of the Artificial Bee Colony algorithm
described in [9]. Our adaptation of the BCO metaheuristic is a synthesis of these two
approaches.

Algorithm 1 BCO pseudocode

0 saved ← ∅
1 pop ← ScoutStrategy(W + S)

3 while Stopping criterion is not met
4 for each p ∈ pop do

5 onlookers[p] ← OnlookerStrategy
(

Cost(p),
∑

p′ Cost(p′), O
)

6 p ← NeighborhoodSearch(p, onlookers[p])
8 if Cost(p) has not improved for Exhaust iterations then
9 saved ← saved ∪ {p}

10 p ← ScoutStrategy(1)

11 newScouts ← ScoutStrategy(S)

11 Replace the S solutions in pop that has the worst costs with newScouts
10 return The best solution—either from pop or from saved

Here S, W and O is the number of scout, worker and onlooker bees,
respectively. OnlookerStrategy is the strategy for assigning onlookers and
NeighborhoodSearch(p, o) is the neighborhood strategy for performing o iterations
of local search around a solution, p. ScoutStrategy(s) is a method for generating
a set of s random solutions. The S worst solutions in the population are always
scout-solutions which means that the W best ones are worker-solutions. It is not
specifically indicated how new solutions should be generated using ScoutStrategy,
how onlookers should be assigned or how local search in NeighborhoodSearch
should be performed. Depending on the nature of a problem each of these three
methods can be designed to fit the problem. New solutions can be generated with
genetic algorithms by using mutation and crossover in ScoutStrategy, and any of
the numerous existing local search heuristics can be used as NeighborhoodSearch.
The basic procedure however is to let ScoutStrategy generate a random solution
and set NeighborhoodSearch to perform hill-climbing. Using this basic procedure it
is observed that:

BCO(S, W, O, Exhaust = ∞) = BA(S, W, O)

BCO(S = 0, W, O, Exhaust) = ABC(W, O, Exhaust)

Where BA is the Bees Algorithm [18] and ABC the Artificial Bee Colony algorithm
[8]. The above representation of the foraging bees optimization paradigm is more
generally applicable than the ones presented in [18] and [8] since both are special
instances of BCO.
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3.1 Bee Colony Optimization Applied to PSP

Algorithm 1 can be used for any optimization problem where OnlookerStrategy,
NeighborhoodSearch and ScoutStrategy are defined, so to utilize BCO for PSP
these three methods have to be specified. The energy function Q(p) (Eq. 1) is used
as cost-function.

Scout Search Strategy (ScoutStrategy) To find a random feasible solution, a depth
first search is used to determine the direction di and structure si of each segment i.
At each level in the depth first search, a random ordering of direction and structure
is tried so the same solution is not generated every time.

Onlooker Choosing Strategy (OnlookerStrategy) A number of onlookers are
assigned to a solution j among the scouts and workers based on the costs of the
population and the amount of onlookers O. Onlookers are assigned probabilistically
based on a fitness given by:

f itness( j) = 1/Cost( j)∑
j′ 1/Cost( j′)

The OnlookerStrategy, however ensures that only a total of O onlookers are
assigned in each iteration.

Onlooker Neighborhood Strategy (NeighborhoodSearch) Any local search could
be utilized as neighborhood strategy but a simple hill-climbing strategy is chosen.
A neighbor solution is generated by changing directions di of two randomly chosen
segments and the segment structure si of four randomly chosen segments. If the cost
improves the new solution is accepted.

4 Experiments and Results

Two sets of experiments are performed, one on a simple model and one on a flexible
model.

The simple model allows d = 12 basic directions defined by the face-centered
lattice and s = 8 rotations for each segment: di ∈ {1..12}, si ∈ {1..8}. This choice of
d and s ensures a reasonable flexibility of the structure, but also makes the search-
space sufficiently small to allow the EBBA algorithm [16] to find an optimal solution
within 48 h.

The flexible model allows d = 73 basic directions defined by a combination of
the face-centered, body-centered and simple cubic lattices and s = 16 rotations for
each segment: di ∈ {1..73}, si ∈ {1..16}. This choice of d and s is made to ensure that
the model is much more flexible than the simple model. The purpose of creating a
flexible model is to see if a metaheuristic can find solutions with lower energy than
the optimal energy found in the simple model.

The energy function, Q(p), is the same for both models. The distance measure
RMSD(p) and the Global Distance Test (GDT) measure [26] can be compared for
structures belonging to both of these models as well as structures obtained using
completely different models and methods. GDTc(p) is calculated as the largest set
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of amino acids in some structure p that can be superposed on to the native structure
such that the distance of each amino acid in the set is less than c from the amino
acid position in the native structure. GDT(p) is defined as the average of GDT1(p),
GDT2(p), GDT4(p) and GDT8(p).

The first set of experiments uses BCO, EBBA and a simulated annealing al-
gorithm to find good decoys using the simple model for six proteins. These six
proteins have previously been used for benchmarks in the literature [6, 16, 21].
The input to the optimization algorithms is a secondary structure assignment, the
HSE-vectors and the radius of gyration. For each protein these values are obtained
using prediction tools. Based on the amino acid sequence, the secondary structure
is predicted using PSIPRED [13] and HSE-vectors using LAKI [24]. For better
comparison of energy levels, the HSE predictions from [16], which were done using
LAKI [24], were used. The radius of gyration is predicted using Eq. 2. The six
benchmark proteins used here also exist in PDB, so there is a slight chance that the
training sets for PSIPRED and LAKI contain some of these proteins. However, the
prediction quality of the six benchmark proteins is close to what should be expected.
We therefore do not consider it to be a problem that the benchmark proteins exist
in PDB.

In order to be able to compare the results from BCO with the results obtained us-
ing EBBA [16], BCO is run for 48 h. Due to this large run-time extensive parameter-
optimization has not been considered. Considering the runtimes for generating a
scout and finding a valid neighbor-solution, we estimate that using S = 10 scouts,
W = 10 workers, O = 100 onlookers and Exhaust = 5 is appropriate. We also wish
to compare BCO to a commonly used metaheuristic within bioinformatics, so a
Simulated Annealing (SA) algorithm is implemented. New solutions are gener-
ated using the ScoutStrategy method described in Section Scout Search Strategy
(ScoutStrategy) and the local search is based on the NeighborhoodSearch method
also described in Section Onlooker Neighborhood Strategy (NeighborhoodSearch).
The only difference in the NeighborhoodSearch method is that the SA algorithm
accepts solutions that have �Q worse energy with the probability p = e

−�Q
T . We

tested different starting temperatures from 0.5 to 16 and measured the ratio of
accepted changes out of all the valid changes. Johnson et al. [7] studied the simulated
annealing heuristic and found that this ratio should be between 20% and 90%. We
therefore set the starting temperature to T = 1 because the resulting acceptance ratio
was around 50%. A linear annealing schedule was chosen such that the temperature
falls to T = 0 when SA terminates. This eliminates the need to decide a final
temperature.

Ideally SA converges on optimal solutions if allowed to cool down sufficiently
slow. To improve the quality of solutions obtained by SA, restarts are often suggested
in the literature. We settled on a relatively low number of restarts (ten restarts, each
taking 4.8 h) as more restarts would make SA a special variant of BCO.

Figure 4 shows a single run of EBBA and five runs of BCO. The time-cost curves
show that BCO is very stable and finds the optimal value of Q(p) almost as fast as
EBBA. Similar experiments were performed for SA but it always converged on a
suboptimal value after roughly 5–6 h.

The second round of experiments are performed using BCO and SA, but this
time on the flexible model. Using the flexible model EBBA can no longer find
the optimal value in 48 h. In addition to the six previously benchmarked proteins
we also attempt to predict good structures for two somewhat bigger targets from
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Fig. 4 Best observed energy
vs. time for EBBA and BCO
using the simple model

CASP7 [10]. We have intentionally chosen a pair that proved to be hard to predict by
CASP7 participants. Most successful CASP7 methods were homology-based. Since
our algorithm is not using homology modelling, it should be compared with PSP
methods for proteins with no good templates in PDB. For the two CASP proteins,
the newer and more accurate HSE prediction server HSEpred [23] was used instead
of LAKI.

To make BCO and SA collect decoys, we stored the 1,000 best structures with
respect to Q(p) encountered during a search. For comparison and evaluation of
the model and prediction quality, the second round of experiments was also done
using the exact secondary structures, exact HSE-vectors and exact radius of gyration

Fig. 5 GDT analysis plot
for the proteins 2HG6 (top)
and 2J6A (bottom). The x-axis
shows the offset, c, and the
y-axis shows GDTc(p). The
orange curves are structures
from all the predictors at
CASP7. The blue curves are
the five structures with lowest
energy Q(p) generated by
BCO. The green curve is
the structure p† with highest
GDT(p). Both blue and green
curves are found using
predictions of secondary
structure, HSE vectors
and radius of gyration

5 lowest energy structures
Highest GDT(p)
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obtained from the native structures of the proteins. These structures cannot be
considered solved de novo. All computations were performed on a 3.4 GHz Intel
Xeon with 2 GB RAM.

Table 1 summarizes the results of the runs from BCO and SA using the flexible
model, EBBA using the simple model as well as the results from CASP7. p∗ is
the protein structure encountered during a search for which the energy Q(p) is
lowest. For BCO, SA and EBBA the energy function is identical. p† is the protein
structure—among the 1,000 saved decoys—for which the similarity (GDT(p)) is
highest.

Figure 5 show GDT analysis plots for the proteins 2HG6 and 2J6A. The GDT
analysis is a type of plot used at CASP to indicate how good the GDTc(p) is,
using different distance cutoff values c. A curve lying to the far right correspond
to a conformation near the native structure. All the orange curves in the figures
correspond to structures generated by the participants at CASP7. The blue curves all
correspond to structures generated by BCO using predicted secondary structure, pre-
dicted HSE-vectors and predicted radius of gyration. The green curves correspond
to p† structures with highest GDT(p).

5 Discussion and Conclusion

The results of BCO and SA compared to those achieved at CASP7 are shown for
the proteins 2HG6 and 2J6A in Table 1. It can be seen that the HSE-based energy
function does not completely identify the best structure since GDT(p∗) is relatively
low for BCO and SA. This can also be observed from the GDT analysis in Fig. 5.
The five structures with lowest energy result in curves that are slightly worse than
the average at CASP7. If, however, a more advanced energy function is applied to
the 1,000 generated structures then p† can possibly be identified. Using GDT(p) as
quality measure this would rank the structures obtained by BCO as 30-th out of 132
for 2HG6 and 17-th of 132 for 2J6A at CASP7. The curves illustrating p† in the
GDT analysis are even more promising as GDT10(p†) are among the highest for
both 2HG6 and 2J6A. This indicates that the model and the BCO heuristic are good
at finding structures where the ’overall’ conformation is close to the native. This is
a notable achievement for an energy function that is primarily based on predicted
HSE numbers and radius of gyration.

When comparing BCO to SA, the focus should be on the values of Q(p∗) since
both algorithms optimize the energy. For all the problems, except 2GB1 exact, BCO
achieves a lower value of Q(p∗) which indicates that BCO is superior to SA on
these types of problems. The average values of Q(p∗) for the six smaller proteins
are illustrated in Table 2. For these proteins BCO finds values of Q(p∗) that, on
average, are 5% better than those found by SA. It is worth noting that Monte-Carlo
based algorithms like SA usually are the metaheuristics of choice for PSP.

When looking at the results for 1FC2 (exact) and 1ENH (exact), it is clear that
they differ from the other rows. The lowest energy observed is less than 3 for
both runs which is considerably lower than for the other runs. It is remarkable
that the corresponding very low energy structures are native-like. This supports the
hypothesis that HSE, secondary structure and radius of gyration contain enough
information to identify the native structure of the protein. There are two possible
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Table 2 Comparison of best energy values for BCO, SA and EBBA when run on 1FC2, 1ENH,
2GB1, 2CRO, 1CTF and 4ICB

BCO SA EBBA

Average Q(p∗) 4.61 4.86 5.71
Improvement over EBBA 24% 17% –
Improvement over SA 5% – –

Note that some parameters diverge in EBBA’s representation of the protein and EBBA is the only
algorithm that guarantees a globally optimal p∗

reasons why we do not find these very low energy structures for the other proteins.
One reason could be that native-like structures cannot be represented accurately
enough in our model when trying to represent large proteins. The other possibility
is that our search algorithm requires more time to find the native-like structure.
This is a subject for further investigation. We did perform a fair amount of ad-hoc
experiments adjusting the parameters of the search-methods but no results indicated
that any parameters were better suited for large proteins than for small.
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5.3 Ranking Beta Sheet Topologies of Proteins

The following 5 pages contains the conference version of our paper ”Ranking Beta Sheet Topolo-
gies of Proteins. R. Fonseca, G. Helles and P. Winter. Proceedings of WCECS, 2:624-628.
2010” [59].
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Ranking Beta Sheet Topologies of Proteins

Rasmus Fonseca∗, Glennie Helles∗ and Pawel Winter∗

Abstract—One of the challenges of protein struc-
ture prediction is to identify long-range interactions
between amino acids. To reliably predict such in-
teractions, we enumerate, score and rank all β-
topologies (partitions of β-strands into sheets, or-
derings of strands within sheets and orientations of
paired strands) of a given protein. We show that the
β-topology corresponding to the native structure is,
with high probability, among the top-ranked. Since
full enumeration is very time-consuming, we also sug-
gest a method to deal with proteins with many β-
strands.

The results reported in this paper are highly rele-
vant for ab initio protein structure prediction meth-
ods based on decoy generation. The top-ranked β-
topologies can be used to find initial conformations
from which conformational searches can be started.
They can also be used to filter decoys by removing
those with poorly assembled β-sheets, and finally they
can be relevant in contact prediction methods.

Keywords: beta-sheets, protein structure prediction, β-

topology

1 Introduction

Predicting the tertiary structure of a protein from its
amino acid sequence alone is known as the protein struc-
ture prediction (PSP) problem. It is one of the most im-
portant open problems of theoretical molecular biology.
In particular, ab initio PSP (especially needed when a ho-
mologous sequence cannot be found in the protein data
bank) poses a significant problem. One of the reasons
why ab initio methods struggle is that the conforma-
tional space of most protein structure models increases
exponentially with the length of the sequence. The com-
plexity of the PSP problem can be reduced using auxiliary
predictions such as secondary structures [1, 2, 3, 4], con-
tact maps [5, 3, 6], structural alphabets [7, 8] and local
structure predictions [9, 10]. However, all these predic-
tions have a certain level of inaccuracy so they cannot be
used to constrain the conformational space, only to guide
the conformational search.

A β-topology is a partition of β-strands into ordered sub-
sets (each corresponding to a β-sheet) together with the
β-pair information (pairing of strands and their orienta-

∗{rfonseca, glennie, pawel}@diku.dk. Univ. of Copenhagen,
Dept. of Computer Science. Universitetsparken 1, 2100 Copen-
hagen O, Denmark

tion) for each β-sheet. The order of β-strands within a
β-sheet combined with the β-pair information is referred
to as the β-sheet topology. If the correct β-topology could
be predicted, it would, for instance, assist PSP methods
to find the native structure [11, 12, 13, 14, 15].

One approach to predict the β-topology of a protein,
in the following referred to as the pair scoring method
[16], is to assign a pseudo-energy to every β-pair. The
problem of determining the best β-topology is then
formulated as a maximization problem in a complete
graph where nodes correspond to β-strands and edge-
weights correspond to the pseudo-energy of pairing two
strands [12, 16, 17, 18, 15]. Another approach, referred
to as the topology scoring method, is to enumerate all β-
topologies, and to assign a score to each based on the en-
tire β-topology [19, 20]. In general, the β-topology with
highest score is assumed to correspond to the correct one
[13]. The topology scoring method has also been used to
filter decoy sets from Rosetta [19].

Our objective is not to predict the correct topology, but
to generate a small set of β-topologies that will, with high
probability, contain the correct one. We, therefore, enu-
merate all β-topologies and use the scoring methods from
[16] and [19] to score and rank them. Our experiments
show that for a large percentage of examined proteins,
the correct β-topology can be found among the 10% top-
ranked β-topologies using the pair scoring method (which
outperforms the topology scoring method).

Enumerating all β-topologies is a problem for proteins
with more than 7 β-strands due to combinatorial explo-
sion. For such proteins, a subset of the β-topologies is
enumerated. This subset is guaranteed to contain a β-
topology which is consistent with the correct one, mean-
ing that it has no β-pair which does not exist in the cor-
rect one. Such β-topologies can be found among the top
10% top-ranked and can also be found for larger proteins.

2 Methods

The following two subsections describe how a set of β-
topologies is generated for a given protein, the first for
proteins with 7 strands or less and the second for proteins
with more strands. The third subsection describes how
a score is calculated for each β-topology, and finally the
datasets used in the experiments are described.
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Generating small β-topologies

The secondary structure specifies which amino acids are
classified as helix, strand or coil. Continuous segments
of strand-classified amino acids are simply referred to as
strands.

If the secondary structure has 7 strands or less, all pos-
sible β-topologies can be generated by enumerating all
valid pairings of strands. A valid pairing of strands
is characterized by the following rules: Each strand is
paired with one or two other strands and each pair of
strands is either parallel or anti-parallel. Table 1 shows
how many valid pairings exist in a protein withm strands.

This definition of a valid pairing corresponds largely to
the definition of ’overall sheet configuration’ used in [21]
and ’β-sheet topology’ from [16]. It is a representation
of the β-topology that does not specify precisely which
amino acids form hydrogen bonds in two strands, but it
focuses on the overall configuration of the β-pairs in the
protein.

m 2 3 4 5 6 7
2 20 156 1744 23800 373008

Table 1: Number of valid β-topologies.

Generating larger β-topologies

If the secondary structure has 8 strands or more the set
of β-topologies is generated the following way. First, a
subset of six strands is chosen, and the 23800 correspond-
ing β-topologies are added to the set. This process is
repeated for all subsets of 6 strands. A total of

(
m

6

)
· 23800

β-topologies are therefore enumerated and scored for pro-
teins with m strands. Table 2 shows this value for
m = 8, . . . , 13.

8 9 10 11 12 13
666 400 1 999 200 4 998 000 10 995 600 21 991 200 40 840 800

Table 2: Number of valid β-topologies.

The β-topologies in the final set will contain fewer strands
than in the native β-topology. However, it can still be
guaranteed that at least one β-topology will be very sim-
ilar to the native β-topology.

To clarify how a β-topology is compared to the native,
we introduce the notions of native-respecting and native-
matching β-topologies. A β-topology is native-respecting
if each β-pair corresponds to a β-pair in the native. A β-
topology, B, is native-matching if it is native-respecting,
and if each β-pair in the native furthermore corresponds

to a β-pair in B (i.e., B respects the native and the na-
tive respects B). Figure 1 illustrates how β-topologies
are compared to the native β-topology. For proteins
with more than 7 strands the native-matching topology is
never among the generated, but several native-respecting
β-topologies will still be among them.

Figure 1: Five β-topologies for 1I8N.

Scoring β-topologies

Two methods of scoring β-topologies have been exam-
ined: The topology scoring method and the pair scoring
method.

The topology scoring method [19], works for proteins with
one β-sheet only. It assigns a probability to each β-
sheet topology based on the following features: Number
of strands, β-pairs, parallel β-pairs, parallel β-pairs with
short loops (less than 10 amino acids), jumps (sequen-
tial strands that do not form β-pairs), jumps with short
loops, the placement of the first strand (near the edge or
the center of the sheet) and the helical status of the chain
(either all-beta or alpha-beta).

In order to deal with proteins with more than one β-sheet,
a more elaborate topology scoring function is needed. In
[21], the probabilities of individual β-sheet topologies are
combined with two more features, the number of sheets
and the number of crossings (consecutive β-strands in
different β-sheets), to assign a probability to the entire
β-topology.

The pair scoring method [16] uses pseudo-energies be-
tween pairs of amino-acids in different strands. Neural
networks are used to determine these pseudo-energies.
The total pseudo-energy of a β-pair is calculated by find-
ing an optimal alignment (either parallel or antiparal-
lel) of the two strands using dynamic programming. The
pseudo-energy of the β-pair is then the sum of pseudo-
energies for the resulting amino acid pairs. Since a β-
topology can be regarded as a set of β-pairs, we calculate
the score of a β-topology as the average pseudo-energy
of all β-pairs. This ensures that scores of β-topologies
are comparable even when they differ in the number of
β-pairs.
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In [22] a third scoring method which is primarily based on
hydrophobic packing is discussed. This method, however,
is outperformed by both the topology scoring method and
the pair scoring method, so the results are not mentioned
here.

Datasets

To evaluate how good the scoring of β-topologies is, we
generate two datasets. The first is made up of all the
chains from PDBSelect25 2009 [23] that contain strands.
This is 3305 out of 4423 chains total (75%). Not all the
required parameters for the topology scoring method are
available in [21], so the dataset is split into a training-set
and a test-set (PDB test-set), of 161 randomly chosen
chains containing between 2 and 7 strands. The training-
set is used to learn the parameters in the topology scoring
method.

A second test-set, the CASP8 test-set, is compiled from
all the CASP8 [24, 25] targets that contain strands. This
test-set has no guarantee to be as diverse as the PDB
test-set, but it gives a good indication of the practical
applicability of our method. At CASP8 there were 119
targets of which 13 contained no strands, so the CASP8
test-set consists of 106 protein chains that all have sheets.
53 of the these have between 2 and 7 strands and the
majority of the rest contains between 8 and 12 strands.

3 Results and discussion

The primary tool for analyzing sets of β-topologies is a
rank-plot. The rank-plot for a set of β-topologies shows
the rank of each β-topology (x-axis) and its score (y-axis).
The set is sorted by non-increasing score. The rank-
plot is therefore a monotonically non-increasing curve
(see Figure 2). The position of the native-matching β-
topology is highlighted with a circle and native-respecting
topologies are highlighted with crosses. The average and
median rank of native-matching and native-respecting β-
topologies will be the primary tool for reporting results.
Since there can be more than one native-respecting topol-
ogy, we only consider the highest ranked.

Ranking small β-topologies

For every protein in the PDB test-set, the secondary
structure is extracted from the PDB file and then used
to generate a set of β-topologies and the corresponding
rank-plot. For 4 out of the 161 proteins in the PDB
test-set, a native-matching β-topology was not among
the generated β-topologies because one of their strands
paired with more than two other strands.

The main question when considering the applicability
of enumerating β-topologies is: How many of the top-
ranked β-topologies does one have to consider before the
native-matching is found? Figure 3 shows how many pro-

Figure 2: The rank-plot for the all β-topologies of the
six-stranded protein 1I8N using the pair scoring method.
The native-matching β-topology has rank 61, and the
first native-respecting β-topology has rank 5.

teins (percentage) have the native-matching β-topology
among the top-ranked. The figure illustrates this for both
the topology scoring method (top) and the pair scoring
method (bottom). Individual curves are generated for
proteins containing the same number of strands. For 80%
of all 6 stranded proteins it is sufficient to go through
roughly 2230 of the top-ranked β-topologies when using
the topology scoring method and 232 when using the pair
scoring method. This implies that for a large fraction
of proteins, enumerating just a relatively small number
(hundreds) of β-topologies, results in a set that has a
good chance to contain the native-matching β-topology.

The topology scoring method performs well, and at times
better, compared to the pair scoring method for proteins
with 4 strands or fewer. For proteins with more strands,
however, the pair scoring method significantly outper-
forms the topology scoring method. Therefore, all of the
remaining experiments are performed using the pair scor-
ing method.

Table 3 shows more statistics for the rank of the native-
matching β-topology using the pair scoring method.

Strands 2 3 4 5 6 7
Proteins 26 33 26 28 27 20
Avg. NM rank 1.08 2.55 4.77 104 213 8850
Median NM rank 1 2 3 49 69 905
Avg. BNR rank 1.08 2.55 1.69 54.3 104 7534
Median BNR rank 1 2 1 13 7 41

Table 3: Average and median ranks of native-matching
(NM) and best native-respecting (BNR) β-topologies in
PDB test-set.

Ranking larger β-topologies

The native β-topology is among the enumerated for 45%
(53 out of 119) of the proteins at CASP8, assuming the
secondary structure is predicted correctly. Table 4 (top)
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Figure 3: Percentage of native-matching β-topologies
among the top-ranked potential topologies using the pair
scoring method and the topology scoring method. The x-
axis shows the number of top-ranked topologies on a log-
arithmic scale. The pair scoring method outperforms the
topology scoring method for chains with 5 to 7 strands.

shows statistics for the rank of the native-matching and
native-respecting β-topologies. Comparing these num-
bers to those for the PDB test-set in Table 3, it is ob-
served that the ranks of the native-matching β-topologies
are higher for the proteins with 6 strands, but notably
lower for those with 5 and 7 strands. By comparing the
median ranks to the total number of valid β-topologies,
shown in Table 1, it is observed that, for a vast majority
of the proteins, the native-matching β-topology is among
the 10% highest ranked potential β-topologies.

Strands 2 3 4 5 6 7
Proteins 2 4 4 13 11 16
Avg. NM rank 1.5 2.0 5 73 872 4240
Median NM rank 1.5 2.0 2 28 149 768
Avg. BNR rank 1.5 2.0 1.25 31 525 1033
Median BNR rank 1.5 2.0 1.25 4 3 9

Strands 8 9 10 11 12
Proteins 11 2 7 5 19
Avg. BNR rank 7628 213 626 6982 11821
Median BNR rank 59 213 211 464 1582

Table 4: Average and median ranks of native-matching
(NM) and best native-respecting (BNR) β-topologies in
CASP8 test-set. For proteins with more than 7 strands,
a subset of β-topologies is generated, which is guaranteed
to contain a native-respecting β-topology

The ranks of the best native-respecting β-topologies are
typically significantly lower than the ranks of the native-
respecting. Furthermore, the median ranks are much
lower than the average ranks, which indicates that for
a majority of proteins the native-respecting β-topology
is among the top-ranked, but for a few, the rank is very
big.

If, for instance, only the 200 highest ranked β-topologies
were considered for each protein in the CASP8 test-set,
then the native-respecting β-topology would be among
these for 50% of the proteins and the native-matching
would be among them for 31%.

4 Conclusions and future work

We presented a method to enumerate β-topologies such
that it is guaranteed that a native-respecting β-topology
is always among the generated. Furthermore, for proteins
with 7 strands or less, a native-matching topology is also
guaranteed to be among those generated. The enumer-
ated β-topologies have been scored and ranked using two
different scoring methods: The pair scoring method and
the topology scoring method. The pair scoring method
is shown to outperform the topology scoring method. It
is shown that the native-matching β-topology is among
the top 10% highest ranked β-topologies, with native-
respecting topologies frequently found among the very
highest ranked.

There are a number of ways to improve and extend
this work. First of all, a better method for scoring β-
topologies could be developed by combining the topol-
ogy scoring method [19] and the pair scoring method
[16]. Features and concepts from other sources such as
[26, 20, 17, 15] could be used as well. Furthermore, disul-
phide bindings could be incorporated into the model.
This could significantly limit the number of β-topologies
for cysteine-containing proteins.

It is assumed that the secondary structure can be pre-
dicted correctly. This assumption does not always hold.
Particularly the placement of strands is important when
enumerating β-topologies. To ensure that at least one β-
topology is native-respecting, it should be investigated
how the accuracy of strand predictions could be im-
proved.

Finally, the natural extension of this work is to design
a PSP method that can use the top-ranked β-topologies
to constrain the conformational search and generate high
quality protein structure decoys. [14] presents an inter-
esting approach that, using the entire set of β-topologies
from [19] and inverse kinematics, can generate high qual-
ity decoys. Similar methods, using e.g., only the 200 top-
ranked β-topologies, can run longer experiments on each
β-topology and possibly give better results for proteins
with many strands.
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5.4 Ranking Beta Sheet Topologies with Applications to Protein
Structure Prediction

The following 13 pages contains the published version of our paper ”Ranking Beta Sheet Topologies
with Applications to Protein Structure Prediction. R. Fonseca, G. Helles and P. Winter. Journal
of Mathematical Modelling and Algorithms, 10(4): 357-369. 2011” [60].
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Abstract One reason why ab initio protein structure predictors do not perform
very well is their inability to reliably identify long-range interactions between amino
acids. To achieve reliable long-range interactions, all potential pairings of β-strands
(β-topologies) of a given protein are enumerated, including the native β-topology.
Two very different β-topology scoring methods from the literature are then used
to rank all potential β-topologies. This has not previously been attempted for any
scoring method. The main result of this paper is a justification that one of the scoring
methods, in particular, consistently top-ranks native β-topologies. Since the number
of potential β-topologies grows exponentially with the number of β-strands, it is
unrealistic to expect that all potential β-topologies can be enumerated for large
proteins. The second result of this paper is an enumeration scheme of a subset of
β-topologies. It is shown that native-consistent β-topologies often are among the top-
ranked β-topologies of this subset. The presence of the native or native-consistent
β-topologies in the subset of enumerated potential β-topologies relies heavily on the
correct identification of β-strands. The third contribution of this paper is a method
to deal with the inaccuracies of secondary structure predictors when enumerating
potential β-topologies. The results reported in this paper are highly relevant for ab
initio protein structure prediction methods based on decoy generation. They indicate
that decoy generation can be heavily constrained using top-ranked β-topologies as
they are very likely to contain native or native-consistent β-topologies.

Keywords Beta-sheets · Protein structure prediction · Topology

R. Fonseca · G. Helles · P. Winter (B)
Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
e-mail: pawel@diku.dk

R. Fonseca
e-mail: rfonseca@diku.dk

G. Helles
e-mail: glennie@diku.dk

61



358 J Math Model Algor (2011) 10:357–369

1 Introduction

Predicting the tertiary structure of a protein from its amino acid sequence alone
is known as the protein structure prediction (PSP) problem. It is one of the most
important open problems of theoretical molecular biology. In particular, ab initio
PSP (especially needed when a similar amino acid sequence with known structure
cannot be found in the protein database) poses a significant problem. One of the
reasons why ab initio methods struggle is that the conformational space of most
protein structure models increases exponentially with the length of the primary
sequence. The complexity of the PSP problem can be reduced using auxiliary
predictions such as secondary structures [2, 3, 9], contact maps [2, 12, 20] or local
structure predictions [7, 21]. However, all these predictions have a certain level of
inaccuracy so they cannot be used to constrain the conformational space, only to
guide the search.

The native β-topology of a protein is a partition of β-strands into ordered subsets
(each corresponding to a β-sheet) together with the β-pair information (indices of
paired strands and their orientation in β-sheets)1 The order of β-strands within a
single β-sheet combined with the β-pair information is referred to as the β-sheet
topology. If the native β-topology could be correctly predicted, it would reduce
the search space of PSP and greatly improve the quality of the generated solutions
[4, 10, 13, 15, 16]. Furthermore, some PSP methods, such as BuildBeta [13], cleverly
use the spatial constraints that a β-topology supplies and can generate a reasonable
structure in as little as 10 seconds.

The pair scoring method [1] identifies a good β-topology of a protein by assigning
a pseudo-energy to every β-pair. The problem of determining the best β-topology is
then formulated as a maximization problem in a complete graph where nodes cor-
respond to β-strands and edge-weights correspond to the pseudo-energy of pairing
two strands. The problem is to cover all vertices by disjoint paths (corresponding
to β-sheets) and cycles (corresponding to β-barrels). Several other variants of this
approach have been suggested [8, 10, 11, 16].

The topology scoring method [18] enumerates all β-topologies, and assigns a score
to each based on properties of the entire β-topology. This can be properties such as
the number of hairpin turns and parallel β-pairs. In general, the β-topology with
highest score is assumed to correspond to the native [15]. The topology scoring
method is also used to filter decoy sets from Rosetta [18].

Since the correct β-topology cannot be predicted accurately using either of these
methods, we suggest a different approach: All β-topologies are enumerated and the
pair scoring method and the topology scoring method are used to score and rank
them. Our experiments show that for a large percentage of examined proteins, the
native β-topology can be found among the 10% top-ranked β-topologies using the
pair scoring method (which outperforms the topology scoring method). An often
used step when solving the PSP problem is to generate a set of decoy structures.
Using each of the ranked β-topologies as a constraint (one at a time), a set of
decoy structures can be constructed. At least one of these decoy structures will be

1It is assumed here that a β-strand can have at most two partners. This is often true, but β-strands
with more than two partners also exist; such β-strands cannot be dealt with by our method.
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generated using the native β-topology, and will therefore have a very high quality.
In this study the focus is on the enumeration and ranking of β-topologies, not on
generating decoys.

There are three serious problems with the suggested approach. First of all, the
correct secondary structure has to be known. One solution to this is to use predicted
secondary structures. This leads to the second problem; secondary structure predic-
tors are not always fully reliable. They sometimes over- or under-predict β-strands.
In such cases, the native β-topology will not necessarily be among those enumerated.
Thirdly, even if the prediction of β-strands is correct, the number of β-strands may
be so large that the combinatorial explosion will make it impossible to enumerate all
β-topologies. In fact, such combinatorial explosion occurs already when eight
β-strands are present.

In order to deal with these problems, the notion of a strand assignment is intro-
duced. A strand assignment is a set of non-overlapping intervals that specify which
parts of the chain are classified as β-strands. One of the best secondary structure
predictors, PSIPRED [9], assigns to each amino acid the probability of it being in a
strand (pE-levels), helix and in a coil. Amino acids having pE-levels higher than both
helix- and coil probabilities are classified as belonging to β-strands. This results in
the predicted strand assignment. The main reasons why predicted strand assignments
differ from the correct ones are over- and under-predictions of strands. A typical
example of under-prediction of strands is shown in Fig. 1.

Since the correct strand assignment cannot always be predicted accurately, we
suggest a different approach. Using the pE-levels from PSIPRED, candidate strands
are suggested and potential strand assignments are enumerated and ranked as
described in the Methods section. The problem of combinatorial explosion is dealt
with by introducing two limitations when generating the set of potential strand
assignments. First, only up to 15 candidate strands are considered in the enumeration
procedure. Second, only potential strand assignments with up to seven strands are
generated.

Fig. 1 Comparison of native and predicted strand assignment for the second domain in 3DEV. This
example is from CASP8 and is a typical example of β-strand under-prediction. PSIPRED’s pE-levels,
however, still indicate the presence of a possible strand where the fourth strand should be (although
coil probabilities were higher in this region)
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Consequently, there will be proteins with eight or more strands whose native
β-topologies cannot be generated. However, enumerating potential strand assign-
ments and β-topologies is still relevant for such proteins. To illustrate this, the
concepts of native-respecting strand assignment and native-respecting β-topology are
defined. Every β-strand in a native-respecting strand assignment is present in the
native strand assignment as well (though the native strand assignment may have
more strands). Similarly, every β-pair in a native-respecting β-topology is present
in the native β-topology as well (though the native β-topology may contain more
β-pairs). For proteins with many strands, a native-respecting strand assignment with
up to seven strands can always be found among the potential strand assignments.
For most of these, a native-respecting β-topology will be generated. Even though
a native-respecting β-topology does not impose as strong a constraint on the PSP
problem as a native β-topology itself, it is still a valid constraint that can reduce the
search space significantly.

The results reported in this paper are highly relevant for the PSP methods where
decoy generation can be constrained or filtered by top-ranked β-topologies. It can
also be used in more elaborate contact prediction methods [2, 16, 20].

2 Methods

In the first two subsections the methods for generating potential β-topologies and
for calculating their scores are described. Next, it is described how potential strand
assignments are generated and how scores are assigned to each of them. The last two
subsections describe how to compare both strand assignments and β-topologies and
which data sets are used to assess the methods.

2.1 Generating Potential β-topologies

β-strands are numbered 1, 2 . . . m according to the order they appear in the chain.
A potential β-topology generated from a strand assignment with m strands is
represented using a binary β-topology-matrix, [aij]m×m. Strands i and j form a parallel
pair iff (aij = 1) ∧ (i > j). They form an antiparallel pair iff (aij = 1) ∧ (i < j). Entries
with 1 in the upper (respectively lower) triangle of the matrix therefore represent
antiparallel (respectively parallel) pairs. All other entries are 0. A valid β-topology-
matrix is characterized by the following three rules: No strand is paired to itself, no
pair of strands is paired both parallel and antiparallel and every strand has one or two
partners. Given m strands, the complete set of valid β-topology-matrices is generated
beginning with the 0-matrix and adding 1’s starting at the top row, from left to right
(backtracking when necessary).

Table 1 shows the number of valid potential β-topologies, V(m), for up to seven
strands. For a single β-sheet with m strands there are m!/2 possible orderings of
the strands and 2m/2 possible combinations of orientations (ignoring symmetric
orderings and orientations). This gives a total of m! × 2m−2 possible β-topologies
that contain only a single sheet (not counting barrels). Since this number is a lower
bound on V(m), it is clear that V(m) grows exponentially with m. For this reason, it
is infeasible to enumerate all potential β-topologies for m ≥ 8.
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Table 1 Number of valid β-topology-matrices, V(m), and number of β-topology-matrices that need
to be enumerated to include the native, B(m)

m 2 3 4 5 6 7

V(m) 2 20 156 1,744 23,800 373,008
B(m) 2 11 30 700 1,900 70,000

V(m) is determined computationally. B(m) is a result of the experiments shown later in Fig. 5

2.2 Assigning Scores to β-topologies

Two methods for assigning scores to β-topologies have been examined. The topology
scoring method assigns a probability to each β-sheet topology based on several more
or less complicated topological features [17, 18]. This probability is used as the
score in the topology scoring method. The topological features include among other
things the number of sheets, the number of times a chain crosses from one sheet to
another as well as the number of parallel and anti-parallel β-pairs. This method was
reimplemented and the parameters obtained from a training-set of proteins specified
in the next section.

The pair scoring method uses a feed-forward neural network to obtain probabili-
ties of pairing two amino acids. Dynamic programming is then used to optimally align
pairs of β-strands in the best possible way (both parallel and antiparallel alignments
are included). The score of each alignment is the sum of pairing probabilities between
amino acids. The pseudo-energy of pairing two strands is the maximum over all such
alignments [1]. A score is assigned to a β-topology by taking the average of pseudo-
energies of all its β-pairs. The neural networks were downloaded from the authors
homepage.

2.3 Generating Potential Strand Assignments

A strand assignment is defined as a set of m non-overlapping intervals,
{(s1, e1) . . . (sm, em)}, indicating which parts of the chain are β-strands. To ensure that
the β-topology of a protein’s native structure can be represented, it is important that
each β-strand is identified correctly. PSIPRED can be used to predict the placement
of strands. It produces three probability levels for each amino acid, a = 1, 2, . . . , n,
indicating the probability of a being either helix (pHa), strand (pEa) or coil (pLa). If
pEa > max{pHa, pLa} then a is classified as belonging to a strand. This method often
fails to predict a strand entirely or predicts a strand where there is none. However,
when PSIPRED fails to predict a strand there is often a hilltop (a segment with
local minima at both ends) in the pE-levels (see Fig. 1). A set of candidate strands,
representing possible placements of strands, are therefore generated around hilltops
in the pE-plot (see Fig. 2a).

Similar to a strand in a strand assignment, the candidate strands, i = 1, 2, . . . , mc,
are defined by the indices of their first and last amino acids: (si, ei). A potential
strand assignment is generated from a subset of candidate strands. All the potential
strand assignments are generated by using all possible subsets of candidate strands.
Potential strand assignments with 1 or 0 strands are omitted, as valid β-topologies
must have at least two strands. To avoid the combinatorial explosion, potential strand
assignments with eight strands or more are omitted as well. Figure 2b shows all
possible strand assignments that can be generated using the coil and helix probability
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Fig. 2 a Probability levels for β-strands (pE-levels of 1ZEC) predicted using PSIPRED. Three
candidate strands are identified from the hilltops. b All potential strand assignments for 1ZEC

levels and candidate strands from Fig. 2a. The total number of potential strand
assignments that are generated for a protein with mc candidate strands is

mc∑

i=2

(
mc

i

)
= 2mc − mc − 1 (1)

2.4 Assigning Scores to Potential Strand Assignments

The pE-levels are used to calculate a score for every potential strand assignment.
The average pE value for each strand is calculated as

〈pE〉i = 1

li

ei∑

a=si

pEa (2)

where li = (ei + 1) − si. The score of a strand assignment is then the average of 〈pE〉i
for all i, i.e.,

〈pE〉 = 1

m

m∑

i=1

〈pE〉i (3)

By using averages it is ensured that strand assignments with different number of
strands have comparable scores.

2.5 Comparing both Strand Assignments and β-topologies

Two strands, i and j, from different strand assignments are said to overlap iff any part
of the interval [si, ei] overlaps [s j, e j]. Two strand assignments match iff there exists a
pairing of every strand in the first with every strand in the second such that each pair
of strands overlap. A strand assignment is furthermore said to respect another strand
assignment iff there exists a pairing of every strand in the first with a subset of strands
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in the second such that each pair of strands overlaps. This definition will prove useful
because potential strand assignments that respect the native strand assignment can be
considered ‘almost native’. Figures 3 and 4a both give examples of strand assignments
that respect another strand assignment.

A β-topology is given by a strand assignment with m strands and a valid
β-topology-matrix, [aij]m×m specifying which strands are paired. Two β-topologies
match if their strand assignments match and they have identical β-topologies. Note
that if the strand assignments match then the β-topologies will always be of the same
dimension. One β-topology, with matrix [aij], is said to respect another, with matrix
[a′

kl], iff its strand assignment respects that of the second and (aij = 1) ⇒ (a′
kl = 1)

where i and k are indices of strands that overlap, and j and l are indices of strands that
overlap. Figure 3 illustrates how strand assignments and β-topologies are compared.
Figure 4b also shows four β-topologies that respect the native.

2.6 Data Sets

For evaluating the quality of the scoring of strand assignments and β-topologies, we
generate three data sets. The first two are made up of chains from PDBSelect25
2009 [6] that contain strands. There are 3,305 of these (out of 4,423 chains in total).
The topology scoring method is a probabilistic model that has a set of parameters
extracted from PDB-files. Not all these parameters are given in [17] so a training-set
is needed for the topology scoring method. The proteins from PDBSelect25 2009 are
therefore split into a training-set and a test-set (the PDB test-set. The PDB test-set
consists of 161 randomly chosen chains with between two and seven strands and the
training-set is the rest of the proteins.

The third data set, the CASP8 test-set, is compiled from all the CASP8 [14] targets
that contain β-strands. This test-set has no guarantee to be as diverse as PDBSelect25
but gives an indication of the practical applicability of our method. At CASP8 there
were 119 targets, but 13 contained no strands, so the CASP8 test-set consists of 106
protein chains that all have β-sheets. 53 of the these have between two and seven
strands and the majority of the rest contains between 8 and 12 strands.

Fig. 3 Examples of comparing strand assignments and β-topologies. Four strand assignments are
shown in the left column. Strand assignments A, B and C match each other and they all respect D.
The right column shows examples of β-topologies for each strand assignment. The β-topologies A
and B match each other. They neither respect nor match C but they both respect D
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Fig. 4 a The strand
assignment rank-plot for the
six-stranded protein 1I8N.
The native strand assignment
has rank 306. However,
potential strand assignments
with ranks as low as 2 and 4
respects the native, and will
likely be used to generate
β-topologies that respects
the native. b The β-topology
rank-plot for the six-stranded
protein 1I8N. The native
strand assignment has been
used, and the scores are
calculated using the pair
scoring method. The native
β-topology has rank 61, but
the β-topology with rank 5
respects the native, and thus
provides a constraint that is
nearly as good as the native.
All topologies that either
match or respect the native
are highlighted and shown
inside the plot

3 Results and Discussion

Given a protein, the rank-plot of potential strand assignments illustrates the rank of
each strand assignment plotted against its score, as defined in Section 2.4. The rank-
plot is therefore a monotonically non-increasing curve as shown in Fig. 4a. The first
potential strand assignment that matches the native strand assignment (the native-
matching strand assignment) is highlighted using a circle. Potential strand assign-
ments that respect the native (native-respecting strand assignments) are highlighted
using crosses.

Given a protein and a strand assignment, the rank-plot of potential β-topologies
illustrates the rank of each β-topology plotted against its score, as defined in
Section 2.2 (See Fig. 4b). Only a single β-topology can match the native and only
β-topologies with two sheets or more (more than three strands) can respect (and not
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match) the native β-topology. These β-topologies are referred to as native-matching
β-topologies and native-respecting β-topologies, respectively.

The average and median rank of native-matching and native-respecting strand
assignments and β-topologies will be the primary tool for reporting results.

3.1 Ranking β-topologies Using Native Strand Assignments

An important question when considering the practical applicability of enumerating
β-topologies is: How many of the top-ranked β-topologies does one have to enumer-
ate, on average, before the native-matching is found? Using the PDB test-set, Fig. 5
shows how many proteins (percentage) have the native-matching β-topology among
the top-ranked. The figure illustrates this for both scoring methods—the topology
scoring method and the pair scoring method. Individual curves are generated for
proteins containing the same number of strands. For example, for 80% of all 6
stranded proteins it is sufficient to go through roughly 2,230 of the top-ranked
β-topologies (out of 23,800 in total) when using the topology scoring method and
232 when using the pair scoring method. This implies that for a large fraction of
proteins going through just a relatively small number (hundreds) of β-topologies

Fig. 5 Percentage of
native-matching β-topologies
among the top-ranked
potential topologies using
the topology scoring method
and the pair scoring method.
The x-axis shows the number
of top-ranked topologies
on a logarithmic scale
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Table 2 Average and median ranks of native-matching β-topologies in PDB test-set (pair scoring
method)

Strands 2 3 4 5 6 7

Proteins 26 33 26 28 27 20
Avg. rank 1.08 2.55 4.77 104 213 8,850
Median rank 1 2 3 49 69 905

gives a constraint for the PSP problem that can significantly reduce the size of the
conformational search space.

The topology scoring method performs equally well as the pair scoring method for
proteins with up to four strands. For proteins with more β-strands, however, the pair
scoring method significantly outperforms the topology scoring method. Therefore,
all of the remaining experiments are performed using the pair scoring method.

Table 2 shows statistics for the rank of the native-matching β-topology. By
comparing the median ranks to the total number of valid β-topologies shown in
Table 1 it is observed that, for a vast majority of the proteins, the native β-topology
is among the 10% highest ranked potential β-topologies.

3.2 Ranking Potential Strand Assignments

PSIPRED [9] was used to generate pH, pE and pL-levels for all proteins in the
PDB test-set. From the pE-levels, candidate strands are identified and potential
strand assignments generated. For every potential strand assignment, a score is
calculated using the pE-levels, and a rank-plot is generated for every protein (161
in total). The number of potential strand assignments that one has to enumerate
before the native-matching strand assignment is encountered is shown in Fig. 6.
The red curve converges on ≈81% after 3,000 potential strand assignments (out of
approximately 15,000 on average for each protein), which indicates that for only 19%
of the proteins in the PDB test-set, no potential strand assignment that matches the
native is generated. The typical reason for this is that PSIPRED fails to identify one
or more strands. For a majority of the proteins, however, it is enough to enumerate

Fig. 6 Percentage of proteins
for which the native-matching
strand assignment (red curve)
and native-respecting (purple
curve) is included among the
top-ranked strand assignments
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less than 1,000 potential strand assignments. The proteins in the PDB test set have
15,369 potential strand assignments on average. It is therefore observed that for a
majority of the proteins, a native-matching strand assignment can be found among
the top 7% of the generated strand assignments.

Using only the top-200 ranked potential strand assignments, a native-respecting
strand assignment can be found for more than 95% of the proteins.

3.3 Combining Potential Strand Assignments and Potential β-topologies

This subsection seeks to determine the applicability of enumerating both potential
strand assignments and potential β-topologies. Since the CASP8 test-set contains
proteins that state-of-the-art PSP methods are benchmarked on, we will use this test-
set. The combinatorial explosion of β-topologies is dealt with by mainly looking for
the native-respecting β-topologies. This ensures that the experiment can be run on
proteins with more than seven strands. The experiment seeks to determine how many
β-topologies it is necessary to enumerate to find a native-respecting β-topology. It
does so without assuming that the native strand assignment is known in advance.
Given a potential strand assignment with m strands, B(m) is defined as the number
of top-ranked β-topologies which it is necessary to enumerate before the native-
matching β-topology is included. The values of B(m) are read off the curves in Fig. 5
and shown in the third row of Table 1. For each of the 106 proteins in the CASP8
test-set, the following experiment is performed: The potential strand assignments
are generated, scored and ranked. Starting from the top-ranked potential strand
assignment, with m1 strands, all its β-topologies are generated, scored and ranked.
The B(m1) top-ranked β-topologies are examined. This process is repeated for
the lower-ranked strand assignments until the first native-respecting β-topology is
encountered. The number of examined β-topologies is then reported. The average
and median of these numbers are shown in the second row of Table 3. There is a
huge difference between the average number of β-topologies that has to be examined
(≈80,000) and the median (44). This indicates that only a limited number of outliers
needs to have many β-topologies examined. For a majority of the proteins, less
than 50 β-topologies need to be examined before a native-respecting β-topology is
found. In many cases, however, this first native-respecting β-topology will only have
two strands. This does not provide a very strong constraint on the PSP problem.
The experiment above is therefore repeated, but for potential strand assignments

Table 3 Combining potential strand assignments and β-topologies for the CASP8 test-set

Min. m μ(SA) μ 1
2
(SA) μ(β-sum) μ 1

2
(β-sum)

2 102 7 80,634 44
3 271 41 255,956 9,725
4 337 48 361,101 23,586
5 503 198 691,917 242,925

μ(SA) and μ 1
2
(SA) denotes the average and median rank of the first native-respecting strand

assignment from which a native-respecting β-topology can be generated. μ(β-sum) and μ 1
2
(β-sum)

denote the average and median number of β-topologies that have to be examined before a native-
respecting β-topology is located. For each row, only topologies with at least ’Min m’ strands are
considered
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with at least three, four and five strands. As a result, approximately 10,000, 22,000
and 240,000 β-topologies, respectively, have to be enumerated for a majority of the
proteins before a native-respecting β-topology is found. Although these numbers
are high, it is still realistic to generate that many decoys in a reasonable PSP
method.

The focus of this subsection has, so far, been solely on native-respecting
β-topologies because these can be found for proteins containing any number of
strands. The above experiment is repeated for proteins with seven strands or fewer
and the number of examined topologies is reported only when the native-matching
β-topology is examined. The average and median number of topologies that have to
be examined are around 13,900,000 and 4,800,000 and this can only be done for 33 out
of the 53 proteins (62%). While these numbers are rather large, any PSP method that
efficiently takes advantage of β-topologies, such as [13], will be able to go through
that many topologies in a limited amount of time. Furthermore, for a few proteins
(3DFD, 3DED, 3DEX, 2KDM and 3DO8), the native β-topology is found after only
examining a few thousand β-topologies.

4 Conclusions and Future Work

We have presented a method to enumerate and rank potential β-topologies for
proteins with up to seven strands using two different scoring methods: The pair
scoring method and the topology scoring method. The pair scoring method is shown
to outperform the topology scoring method.

If the correct secondary structure assignment (strand assignment) is not known
in advance, the output from PSIPRED is used to generate and rank potential
strand assignments with up to seven strands. The results show that the native
strand assignment is among the top 7% highest ranked strand assignments for the
majority of proteins. Potential strand assignments are then used to generate potential
β-topologies. Given the correct strand assignment, it is shown that the native
β-topology is among the top 10% highest ranked β-topologies, with native-respecting
topologies frequently found among the very highest ranked. Using predicted strand
assignments, non-trivial (more than two β-strands) native-respecting β-topologies
can be found within the top 10,000 highest ranked β-topologies.

There is a number of ways to improve and extend this work. First of all, a better
method for scoring β-topologies could be developed by combining the topology
scoring method [18] and the pair scoring method [1]. Features and concepts from
other sources such as [5, 8, 16, 19] could be used as well. Furthermore, disulphide
bonds could be incorporated into the model. This could significantly limit the number
of β-topologies for cysteine-containing proteins.

The results indicate that a relatively large number of strand assignments has to
be examined before the native strand assignment is located. The method used for
scoring potential strand assignments is very simple. A huge improvement of the
results could be achieved by refining the scoring of potential strand assignments
using, for instance, machine learning methods like neural networks or support vector
machines. Furthermore, a secondary structure predictor that overpredicts strands
could also help to ensure that the native strand assignment is among the potential
strand assignments for more than 81% of the proteins.
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Finally, the very important and natural extension of this work is to design a PSP
method that can use the top-ranked β-topologies to constrain the conformational
search and generate high quality protein structure decoys.

Acknowledgement We thank Marcus Brazil for his valuable comments and suggestions.
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The following 17 pages contains the published version of our paper ”Adjustable Chain Trees for Pro-
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Adjustable Chain Trees for Proteins

PAWEL WINTER and RASMUS FONSECA

ABSTRACT

A chain tree is a data structure for changing protein conformations. It enables very fast
detection of clashes and free energy potential calculations. A modified version of chain trees
that adjust themselves to the changing conformations of folding proteins is introduced. This
results in much tighter bounding volume hierarchies and therefore fewer intersection
checks. Computational results indicate that the efficiency of the adjustable chain trees is
significantly improved compared to the traditional chain trees.

Key words: combinatorial optimization, computational molecular biology, protein folding.

1. INTRODUCTION

Achain tree is a data structure for fast clash detection and free energy maintenance of folding

protein chains. Suppose that during the simulation of the folding process, an attempt to rotate a

backbone or a side chain bond is made. Such a rotation should be undone if it results in a clash (either at some

intermediate stage during the rotation or at the end of the rotation). Clashing rotations have to be identified

and rejected as quickly as possible. If a rotation is not clashing, the free energy of the new conformation has to

be estimated. This energy estimate is crucial for the decision if the rotation should be accepted or rejected

(note that in many methods, the increase of the free energy is not always causing a rejection).

The chain tree is a binary tree where leaves are atom groups and each node is associated with a transform

matrix and a bounding volume. To maintain the conformation of a protein chain during folding, a brute-

force method can be employed. It requires Y(n) update time for each conformational change and Y(n2)

time for each clash detection. Often, grid methods are used to reduce the clash detection time to Y(n).

Lotan et al. (2004) showed that, using chain trees, the update time can be reduced to O( log n) with a

Y(n4/3) clash-detection time. It was also demonstrated that the average CPU-time required to perform a step

in a Monte-Carlo search was much lower when using a chain tree compared to using grids.

We suggest a modification of chain trees based on the assumption that portions of folding proteins (such

as a-helices and b-strands) are formed relatively early in the folding process. They remain stable

throughout many (if not all) iterations of the simulation. Bonds of such subchains can be locked, and the

bounding volumes of these subchains will therefore remain unchanged. As a consequence, the chain tree

can be rearranged (so that bounding volumes of locked subchains can be made tighter) and rebalanced (so

that updates due to rotations of unlocked bonds can be carried out more efficiently). In addition, we exploit

the property of peptide planes (backbone atoms between two consecutive Ca-atoms are always in the same

plane) to obtain tight bounding volumes at the lower levels of chain trees. We provide computational results

that clearly indicate increased efficiency of chain trees when rearrangements and rebalancing is applied.
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Relative improvements (cost speed-up over cost in regular chain trees) for tested protein chains on ad-

justable chain trees compared to regular chain trees were 16–63%. The average relative improvement was

36%. This substantial improvement was achieved without affecting the worst-case asymptotic time and

space complexity. Since chain trees are already shown to be superior to grid methods, we do not compare

adjustable chain trees to grid methods.

This article is organized as follows: A brief discussion of proteins with special emphasis on issues related

to the chain trees is given in Section 2. Chain trees are described in Section 3. Sections 4–6 discuss how the

structure of chain trees can be modified in order to exploit special properties of proteins. Bounding volumes

used in the experiments are described in Section 7. Computational results are given in Section 8. Finally,

concluding remarks and suggestions for further research are collected in Section 9.

2. PROTEINS

A protein is an organic compound made of n amino acids, A1, A2, . . . , An, arranged in a linear chain. It

folds into a three-dimensional (3D) structure referred to as the native conformation. Each amino acid is a

molecule containing an amine group NH2, a carboxylic acid group COOH, and a side chain R that varies for

each of the 20 different amino acids. The amine group, the carboxyl group, the side chain, and the hydrogen

atom are all covalently bonded to the carbon atom, denoted by Ca. The i-th amino acid Ai, 1� i< n, is

joined with its successor Aiþ1 by a peptide bond between the carboxyl group of Ai and the amine group of

Aiþ1 (Fig. 1). The carboxyl group is replaced by the C¼O group, and the amine group is replaced by the

NH group. Finally, a water molecule is formed during this polymerization of consecutive amino acids.

Once linked, individual amino acids are referred to as residues, and the chain of consecutive N-, Ca-, and

C-atoms (sometimes together with the O-atom attached the C-atom and the H-atom attached to the N-atom)

is the backbone of the protein.

Bond lengths and angles between two consecutive bonds do not change significantly in residues. They are

therefore often considered to be constant and are set to their average values, as shown below in Figure 3.

Backbone bonds between N- and Ca-atoms in the same residue are called N-Ca bonds. The angle of the

right-handed rotation around the N-Ca bond is called the phi (f) torsion angle.

Backbone bonds between Ca- and C-atoms are called Ca-C bonds. The angle of a right-handed rotation

around the Ca-C bond is called the psi (c) torsion angle.

FIG. 1. Peptide formation. Two

amino acids form a peptide bond

and a water molecule.
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Many combinations of f and c torsion angles cannot occur, as they would result in steric clashes. The

Ramachandran plot (Fig. 2) indicates which combinations of f and c occur most frequently.

Bonds between C-atoms of one residue and N-atoms of next residue are called C-N bonds or peptide

bonds. The angle of right-handed rotation around the C-N bond is called the omega (o) torsion angle. The

value of o is restricted to angles very close to 1808 (trans-form) but can be close to 08 (cis-form) in

rare cases (C¼O and the NH groups point to the same side). The trans-form is about 1000 times more

stable than the cis-form in all residues but in prolines. The trans-form in prolines is only four times more

stable than the cis-form (Branden and Tooze, 1999). The restrictions of the o torsion angle imply that

backbone atoms between two consecutive Ca-atoms are in the same peptide plane (Fig. 3).

3. CHAIN TREES

A protein can be represented by a collection of chain trees; one main chain tree representing the

backbone of the protein and n small chain trees, each representing a side chain of its residue. The focus of

this article is on the efficiency of adjustable chain trees. Consequently, chain trees of side chains have not

been implemented, and will only be discussed briefly in the conclusion.

3.1. Backbone chain tree

The backbone chain tree is a binary search tree1 where the leaves correspond to the bonds of the

backbone and interior nodes represent subsequences of bonds. Each atom is associated with two bonds. As

will be explained in Section 7, bounding volumes will be associated with the leaves and with the interior

nodes of the chain tree. As a consequence, bounding volumes of two consecutive nodes will overlap

(sharing one atom). This differs from the standard definition of chain trees (Lotan et al., 2004), where

leaves represent atoms. Our choice was caused by several factors. First of all, it is intuitively more natural

FIG. 2. Ramachandran plot (Wi-

kipedia, 2010). The typical distri-

bution of backbone angles (f, c).

1The term ‘‘search’’ is included to indicate the implicit ordering of subchains represented by the nodes: the subchain
of the left child of a node directly precedes the subchain of its right child.

ADJUSTABLE CHAIN TREES FOR PROTEINS 85

77



to explain the mechanics of bond rotations when nodes of a chain tree correspond to bonds. Second, we will

discuss a modification of chain trees where leaves correspond to entire peptide planes which is a

straightforward extension of having bonds as leaves (two consecutive peptide planes share a common Ca-

atom). Thirdly, in some applications, such as for example loop closure (Kolodny et al., 2005), where the

objective is to get end bonds of subchains to overlap, the representation with leaves representing bonds

seems to be more natural. A small overhead caused by the overlap of consecutive bounding volumes is

therefore of limited significance. Finally, speed-ups obtained by adjustable chain trees would be of a similar

magnitude if their leaves represented atoms rather than bonds.

Any node N of the backbone chain tree is the root of a subtree denoted by T(N). The leaves of T(N) are

denoted by L(N). The leaf corresponding to the i-th bond in the backbone is denoted by Li. The subchain of

bonds corresponding to L(N) is denoted by S(N). We say that T(N) covers any subset of S(N) and exactly

covers S(N). When the subtree is obvious from the context, we say that N covers S(N). Not every subchain

of bonds is exacly covered by a node of a given backbone chain tree.

Given an interior node N in the backbone chain tree, its left and right children are denoted by l(N) and

r(N). The parent of N is denoted by p(N).

3.2. Transformations

To bring a point p in the coordinate system of the (iþ 1)-th atom of the backbone into the coordinate

system of i-th atom of the backbone, the transform matrix Ri is applied to p. This transform matrix Ri is

completely defined by a translation vector~tt¼ (tx, ty, tz) between the two backbone atoms and by the rotation

g of the (iþ 1)-th coordinate system around~tt. Let (x, y, z)¼~tt=jj~ttjj, s¼ sin(g), c¼ cos(g), and d¼ 1� c. Then

Ri¼
dx2þ c dxy� zs dxzþ ys tx
dxyþ zs dy2þ c dyz� xs ty
dxz� ys dyzþ xs dz2þ c tz

0 0 0 1

2
664

3
775

is the 4 · 4 transform matrix.

Note that, when performing repeated rotations around the same bond, the number of arithmetic opera-

tions can be considerably reduced as the values of x2, y2, z2, xy, xz, and yz remain unchanged. Furthermore,

rotations around other bonds do not affect these values.

Consider a point p in the coordinate system of the j-th backbone atom. Its coordinates in the coordinate

system of the i-th backbone atom, i< j, can be obtained by applying the product Rij of the rotation matrices

Ri, Riþ 1, . . . , Rj� 1 to p.

The effort of computing the position of the j-th atom in the coordinate system of the i-th atom,

0� i< j� n, can be reduced from O(j� i) to O(dlog (j� i)e) if appropriate transform matrices are

FIG. 3. Backbone geometry and

definitions. (Left) Since the C-N

bond can be fixed at 1808, peptide

planes containing six backbone at-

oms each are formed. (Right) Ty-

pical backbone bond lengths and

angles.
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associated with the interior nodes of the chain tree. An interior node N of the backbone chain tree has a

4 · 4 transform matrix RN¼Rl(N) · Rr(N), where Rl(N) denotes the transform matrix associated with the left

child of N and Rr(N) denotes the transform matrix associated with the right child of N. These interior

transform matrices can be easily computed by a bottom-up traversal of the backbone chain tree.

Let Lij denote the leaves between Li and Lj�1 (both included), and let N be the lowest common ancestor

of Li and Lj�1. Note that Lij� L(N). If Lij¼ L(N), then Rij¼RN. Otherwise, Rij¼Rl · Rr where Rl is

determined as follows. If T(N) has Li as the leftmost leaf, than Rl¼Rl(N). Otherwise, let Rl initially be a

4 · 4 identity matrix. Right-multiply Rl by the transform matrices of right children of left-entered nodes

when going from Li to N. Rr is determined in an analogous way.

When a rotation around the bond represented by a leaf Li has been carried out, only transform matrices

between Li and the root of the backbone chain tree need to be updated. They are determined bottom-up by

multiplying transform matrices of their two children.

3.3. Clash detection

Suppose that the bond Li, 1< i< n, of the backbone is rotated by the torsion angle a. To identify a clash,

traverse the chain tree from Li to the root. Let T l and T r denote two sets of subtrees of the chain tree.

Initially, T l¼T r ¼;. When arriving at an interior node N from its left child l(N), a search for a clash

between S(r(N)) and any S(M), M 2 T l, is carried out. If no clash is detected, S(r(N)) is added to T r. When

arriving at N from its right child r(N), a search for a clash between S(l(N)) and any S(M), M 2 T r, is carried

out. If no clash is detected, S(l(N)) is added to T l. Note that Li is neither in T l nor in T r. But the two atoms

connected by Li will be covered by the first subtree added to T l and by the first subtree added to T r.

Rather than traversing the chain tree from Li to the root, a top-down traversal is a possibility. This would

result in T l and T r initially containing subchains far apart in the backbone. A hybrid method where the

path between Li and the root is traversed from both ends is also a possibility.

Consider two nodes M 2 T l and N 2 T r of the backbone chain tree. Note that L(M)\ L(N)¼;. Let

B(M) and B(N) denote bounding volumes completely containing M and N, respectively. Different types of

boundary volumes have been suggested in the literature. Oriented bounding boxes (Ericson, 2005) are

probably most well-known and will also be briefly discussed in Section 7. Their purpose is to simplify clash

detection; when two bonding volumes are disjoint, so are the structures bounded by them. Tight bounding

volumes with straightforward intersection checks can result in substantial speed ups of clash detection of

bounded structures (Fig. 4).

If B(M)\B(N)¼;, then there is no clash between S(M) and S(N). If B(M)\B(N)= ;, the clash may

exist and the search for it has to continue recursively down the backbone chain tree. One possibility is first

to search for a clash between S(l(M)) and S(N). If no clash is established between these two subchains, a

search for a clash continues between S(r(M)) and S(N). Instead of splitting S(M), one could of course split

FIG. 4. Clash detection after bond rotation

(shaded leaf node). Nodes A, B, . . . , F denote

subtrees, while r is the root of the chain tree. If no

clash is detected, then Bl¼ {C, D, E} and

Br¼ {A, B, F} at the end.
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S(N). The choice of which of the nodes to split first is governed by the volumes of B(M) and B(N) such that

the larger is split first.

4. GROUPING PEPTIDE PLANES

As already mentioned in Section 2, three consecutive bonds—Ci
a - Ci, Ci - Niþ 1, and Niþ 1 - Ciþ 1

a —are in

the same peptide plane because the o torsion angle on the Ci-Niþ1 bond is fixed at 1808 (or sometimes at

08) throughout the entire folding process (or when predicting the protein structure). It is therefore ad-

vantageous to modify the backbone chain tree so that it will contain nodes exactly covering the three bonds

of each peptide plane. Bounding volumes of peptide planes are identical and can be computed by slower but

exact methods in the preprocessing phase. Furthermore, some bounding volumes are indeed very tight

when applied to peptide planes. Grouping of peptide planes was not previously utilized in the chain trees

for protein folding or structure prediction.

When creating a backbone chain tree, three bonds of each peptide plane will be exactly covered by a

peptide subtree of height two. The root of such a peptide subtree is called a peptide node. The left child of

the peptide node has two leaves, while the right child is a leaf. Forcing peptide subtrees to be in the

backbone chain tree may cause it to become slightly more unbalanced than it would be the case if almost all

nodes of height 2 covered four instead of three leaves.

5. LOCKING AND GROUPING SECONDARY STRUCTURES

Suppose that at some stage of the folding process, a portion of the backbone is in its native conformation

and none of its bonds will subsequently be rotated. This can, for example, happen when an a-helix or a b-

strand is formed. Furthermore, in protein structure prediction, a-helices and b-strands are very often

predicted in a preprocessing phase. As a consequence, ideal three-dimensional conformations of such

secondary structures can be precomputed and will remain the same in all predicted structures. Their bonds

will not be rotated and are said to be locked. A consecutive sequence of locked bonds (corresponding to for

example an a-helix or a b-sheet) is called a locked subchain, and the subtree covering a locked subchain is

said to be locked.

There are several advantages to rearranging chain trees so that their locked subchains are covered exactly

by an internal node. Since all leaves of such a node are locked, tighter bounding volumes of all nodes in the

subtree can be determined by more elaborate methods. Furthermore the depth of non-locked nodes de-

creases makes clash detections androtations faster. This rearrangement process is referred to as grouping.

Consider for example the top-left chain tree in Figure 6a. Green (shaded) nodes are locked. Their lowest

covering node is A (the root of the chain tree), but T(A) does not cover the locked nodes exactly. In the

chain tree in Figure 6d, the node A covers locked nodes. A straightforward two-pass iterative grouping

algorithm requiring O(h) time (where h is the height of the regrouped tree) and O(1) space is described in

the remainder of this section.

Consider a chain tree T and assume that it is the smallest subtree containing a locked sequence of leaves

Lij¼fLi, Liþ 1, . . . , Lj� 1g, 1� i< j< n. T has to be grouped so that one node covers Lij exactly. Let Sl(N)

(respectively Sr(N)) denote the left (respectively, right) swap2 of the branch between node N and its parent.

FIG. 5. Left and right swaps.

2Swaps are in the binary search tree literature called ‘‘rotations’’, but we wish to avoid confusion with bond rotations.
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This is permissible only if N is a right (respectively, left) child (Fig. 5). The reader is referred to Cormen et

al. (2009) for more on binary search trees and swaps.

Consider the following iterative procedure beginning at the leaf Li:

N¼ p(Li)

while Lj� 1 62 T(r(N)) do

if Li 2 T(r(N))

if N¼ r( p(N)) then Sl(N) else Sr(N)

else N¼ p(N).

At each iteration, the depth of the node N either reduces by 1 or it remains unchanged. In the latter case,

the next iteration reduces the depth of N by 1. As a consequence, N will after a finite number of iterations

cover Lij. It is also obvious that Li remains the leftmost leaf of T(N).

If T(N) exactly covers Lij, the sought grouping is obtained. Assume therefore that Lj�1 is not the

rightmost leaf of T(N).

Let N now denote the parent of Lj�1. The iterative procedure needed to make Lij exactly covered is very

similar to the one that resulted in N to become the root of the subtree having Li as a leftmost leaf and being

the lowest common ancestor of both Li and Lj�1. The details are therefore omitted.

The discussion in this section can be summarized as follows:

Corollary 1. A chain tree with k locked leavescan beregrouped inO(1) space and O(h) time where h is the

height of the chain tree. If the chain tree is balanced, then h 2 O( log n) where n is the number of leaves.

6. REBALANCING

When locking and grouping chain trees, they will inevitably become unbalanced in the sense that the

heights of the siblings may differ by more than one. There are in fact two types of unbalance that can occur.

The less important unbalance may occur in exactly covering trees that emerge after regrouping. This is not

so important because bonds of leaves covered by such subtrees will normally not be rotated. But this

unbalance after regrouping can still have undesirable influence on clash detection.

FIG. 6. Example of grouping. (a)

Initially N¼D. 6 62 T(2), 2 2 T(2)

and D¼ l(B). Sr(D) is applied. (b)

N¼D, 6 62 T(B), 2 2 T(B) and

D¼ l(A). St(D) is applied. (c)

N¼D. 6 2 T(A), and 2 is the left-

most leaf of T(A). First phase com-

pleted. N¼F. 2 62 T(5) and

6 62 T(5). Hence N¼C. 2 62 T(F),

6 2 T(F) and C¼ r(A). Sl(C) is ap-

plied. (d) N¼C and T(A) has 2 as

the leftmost leaf and 6 as the right-

most leaf.
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The second type of unbalance occurs when regrouped, exactly covering subtrees are considered as leaf

nodes (represented by their roots) Since bounding volumes associated with nodes of such subtrees and, in

particular, with their roots can be expected to remain unchanged in subsequent iterations, they can be

computed by more precise, slower methods. Search for clashes through such subtrees will therefore occur

less often because of tighter bounding volumes. Such subtrees can therefore be pushed further away from

the root of the chain tree. Futhermore, this will bring some unlocked leaves closer to the root making the

rotations and clash detections less expensive. An example of rebalancing can be seen in Figure 7.

Suppose that a chain tree contains an internal node A of height k, k� 3. Let B¼ l(A), C¼ r(A), D¼ l(B),

and E¼ r(B). Suppose that h(B)¼ k� 1 and h(C)� k� 3. The case h(B)� k� 3 and h(C)¼ k� 1 is dealt

with in analogous manner (right swaps being replaced by left swaps). Assume furthermore that no other

pair of siblings in T(A) has heights differing by 2 or more.

Suppose first that h(D)¼ k� 2 and k� 3� h(E)� k� 2 (Fig. 8a). Perform the right swap on the branch

between B and A. As a consequence, B becomes the root of the subtree, A becomes the right child of B, D

becomes the left child of B, while E becomes the left child of A as shown in Figure 8a. If h(E)� h(C)> 1,

rebalance A again. Notice however that the height of A is at least one less than before the swap. Hence,

rebalancing of A may propagate down the chain tree but cannot be repeated more than O(k) times, and k is

bounded by the height of the chain tree.

Suppose next that h(D)¼ k� 3 and h(E)¼ k� 2 (Fig. 8b). Let F¼ l(E) and G¼ r(E). Perform the left

swap on the branch from E to B (making E the left child of A) followed by the right swap on the branch

from E to A. E becomes the root of the subtree. A becomes the right child of E with G being its left child

and C being its right child, as shown in Figure 8b. If h(G)� h(C)> 1, rebalance A again. Also in this case,

the rebalancing of A can propagate down the chain but cannot be repeated ore than O(k) times.

The above procedure explains how to perform a rebalancing step given the node A. The rebalancing of

the entire chain tree is performed by applying this step to every single node in the chain tree in a bottom-up

fashion as a preprocessing step. If, for example, a-helices and b-strands have been formed, their bonds are

FIG. 7. Rebalancing the chain

tree. (a) Left child of the root has

height 0 while right child has height

2 (subtree rooted at A is locked and

therefore regarded as a leaf). (b)

Left swap on the branch from C to D

results in a tree where both children

of the root have height 1.

FIG. 8. The two rebalancing cases

considered in the rebalancing meth-

od. The method ensures that unbal-

anced nodes are either balanced or

propagated downwards in the tree.
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locked and the chain tree is regrouped so that all secondary structures are covered exactly. Next, subtrees

exactly covering secondary structures are replaced by their roots. The chain tree is rebalanced (identifying

siblings with height difference of more than 1 in a bottom-up fashion). Finally, the subtrees exactly

covering secondary structures are added back to the chain tree. The chain tree of the protein 1CTFA (see

Fig. 12 below) before and after locking, grouping, and rebalancing is shown in Figure 9. The chain tree was

also rearranged so that peptide planes are exactly covered in the bottom chain tree (subtrees of height 2

have 3 instead of four leaves).

The discussion in this section can be summarized as follows:

Corollary 2. Rebalancing of a single node in the chain tree can be done in O(1) space and O(h) time

where h is the height of the node. If the chain tree is balanced, then h 2 O( log n) where n is the number of

leaves. Rebalancing of all nodes in the chain tree (bottom-up) can then be carried out in O(n log n) time.

7. BOUNDING VOLUMES

Use of bounding volumes in chain trees requires efficient methods to:

� transform a bounding volume to another coordinate system,
� decide if two bounding volumes intersect,
� find a tight volume bounding two smaller volumes,
� find a tight volume bounding a set of bonds or atoms.

In this study we decided to use line-segment swept spheres as bounding volumes. A line-segment swept

sphere (LSS) is the Minkowski sum of an arbitrarily oriented line-segment and a sphere. A LSS is therefore

fully specified by the two end-points of the line-segment and the radius of the sphere. A LSS is also

sometimes referred to as a capsule, a capped cylinder, a spherocylinder (Ericson, 2005), or even as a cigar

(Bereg, 2004).

Our choice was motivated by our intuition that LSSs are much better suited to bound proteins (especially

if protein chains are appropriately divided into subchains) than oriented bounding boxes (Gottschalk and

Manocha, 1996) and rectangular swept spheres (Larsen et al., 2000; Eberly, 2000) that are more commonly

used. Our intuition proved in fact to be correct. The comparative study (Fonseca and Winter, 2010) of

various bounding volumes clearly indicated that LSSs are superior (at least for protein chains). The relative

speed-up is in fact greater when using either adjustable chain trees with oriented bounding boxes or

rectangular swept spheres. In terms of dramatic speed-ups, LSSs are the least spectacular choice. But we

nevertheless opted for LSSs, as they are most suitable for protein chains.

A LSS is transformed to another coordinate system by applying an appropriate transform matrix to the

end-points of its defining line-segment.

FIG. 9. The chain tree of 1CTFA before and after locking and rebalancing. Red/shaded subtrees are locked subtrees

of secondary structures. Integers at nodes are their heights. Note that during the rebalancing the roots of red/shaded

subtrees and roots of peptide planes are regarded as leaves of height 0.
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The intersection test between two LSSs is performed as described in Ericson (2005). It basically reduces

to deciding if the distance between the two defining line-segments is less than the sum of the radii.

To find a good (but not necessarily optimal) LSS bounding a set of points, the principal component, ~dd, of

the points is used as the direction of the defining line-segment. The points are projected onto a plane normal

to ~dd and the smallest enclosing circle C with radius r is found. C together with ~dd, defines an infinitely

extended cylinder that contains all the points (now back in 3D). Finally, the infinite line-segment is capped

with two hemispheres of radius r such that the points are bounded. Centers of these hemispheres define end-

points of the defining line-segment.

To find a good (but not necessarily optimal) LSS, B bounding two smaller LSSs, Bl and Br, the four spheres

defined by the end-points of the line-segments of Bl and Br and their radii are considered. The direction~dd of B

is determined as the direction between the two most remote points on the surfaces of these four spheres. The

four spheres are projected onto a plane orthogonal to~dd as four circles (one will be nested in another and can be

disregarded). The smallest circle enclosing the remaining three circles together with ~dd, defines an infinitely

extended cylinder containing all four spheres. Finally, the cylinder is capped as explained above.

8. COMPUTATIONAL RESULTS

The main purpose of adjustable chain trees is to deal with a-helices and b-strands (such secondary

structures will normally be fixed beforehand or created early in the folding process). In order to justify the

need for adjustable chain trees, it is therefore necessary to establish if occurrences of secondary structures

are sufficiently common. We argue in Subsection 8.1 that this is indeed the case, and we choose a set of

chains for computational experiments. In Subsection 8.2, we set up an appropriate cost measure to evaluate

the speed-up independently of implementational and hardware details. In Subsection 8.3, we show to what

extent adjustable chain trees speed-up clash detections.

8.1. Data sets

Statistics presented in this section are based on proteins (or rather chains) taken from PDBSelect 25

(Berman et al., 2000). The version we consider contains 4018 chains. Forty-two of these were filtered out

because of various format problems.

Lengths of chains in PDBSelect 25 are shown in Figure 10. Frequencies of chains with n residues,

10 · l� n� 10 · lþ 9, l¼ 0, 1, . . . , 29, are averaged. Chains with more than 300 residues are rare, and

therefore not shown. It can be seen that chains with 110–119 residues are among the most common.

Figure 11 shows the distribution of chains in PDBSelect 25 with respect to the portion of residues in

secondary structures. Out of the 3976 considered chains, only 60 had no secondary structures. More than

75% of all chains had over 50% of their residues in either helices or b-strands.

FIG. 10. Distribution of lengths of chains in PDBSe-

lect 25.
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Based on the above statistics, chain tree experiments were performed on two data sets. The first data set

had five chains with 110–119 residues, the typical length in PDBSelect 25. These five chains were selected

so that the portions of residues in secondary structures were one in each of the five intervals

[i · 10%, (iþ 1) · 10%[, i¼ 4, 5, . . . , 8. The first five rows of Table 1 provide some basic characteristics of

the five chosen chains.

The second data set is the four chains used in the seminal article on chain trees (Lotan et al., 2004). The

lengths vary from 68 to 755 residues. The last four rows of Table 1 indicate which chains are in the second

data set. Figure 12 shows all nine examined chains.

8.2. Cost measure

To evaluate how much grouping of peptide planes, locking, regrouping, and balancing improves the

efficiency of chain trees, we determined the average cost of a single rotation in the chain tree. The cost of a

rotation was defined as

NVCV þNUCU þNPCP

where

� NV is the number of bounding volume pairs tested for overlap,
� CV is the cost of testing two bounding volumes for overlap,
� NU is the number of bounding volumes updated due to rotations,
� CU is the cost of updating a bounding volume,

FIG. 11. Percentage of secondary structures in chains

of PDBSelect 25.

Table 1. Second Column is the Number of Residues in the Examined Chains

PDB-id No. of res. % in ab #aþ #b

1X5RA 112 42% 2þ 6

1X0OA 119 58% 3þ 5

1XDXA 114 63% 2þ 4

1AKPA 114 79% 2þ 11

1Y6DA 114 82% 7þ 0

1CTFA 68 82% 3þ 3

1LE2A 144 83% 5þ 0

1HTBA 374 52% 10þ 19

1JB0A 755 62% 12þ 4

The third column indicates the portion of residues in secondary structures. The fourth column indicates the

number of a-helices and b-strands.
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� NP is the number of primitive pairs (bonds) tested for overlap,
� CP is the cost of testing a primitive pair for overlap.

The three costs—CV , CU, and CP—shown in Table 2 were determined experimentally. Using the chain

tree, a 18 rotation of every non-locked bond (all peptide bonds and all bonds in secondary structures were

locked) was carried out. The subsequent clash detection typically involved many volume intersection tests.

CV was determined by measuring the avarage CPU-time for all the resulting volume intersection tests (no

matter their outcome). The transformation of one bounding volume into the coordinate system of another

bounding volume was included in CV. Rotations that did not result in clashes were used to update the chain

tree. Such an update requires updating of all bounding volumes associated with nodes between the rotated

bond and the root of the chain tree. CU was determined by measuring the average CPU-time of all such

bounding volume updates. The transformation of the bounding volume of the right subtree to the coordinate

system of the bounding volume of the left subtree was included in CU. To increase the accuracy of CV and

CU, they were averaged over 100 repetitions.

Testing a pair of primitives corresponds to finding the distance between two atoms. To determine CP , we

therefore generated 106 random point-pairs and measured the average time it took to transform one point to

another point’s coordinate system, and then to find their distance.

8.3. To adjust or not to adjust

In the experiments reported in this subsection, all peptide bonds were locked. The f torsion angle on the

first N-Ca bond and the c torsion angle on the last Ca-C bond do not affect the structures of chains, so the

corresponding bonds were also locked.

FIG. 12. Chains in the two data

sets displayed using Jmol ( JMol,

2010). The first five chains have

almost the same length, but different

distributions of secondary struc-

tures. The last four chains are from

Lotan et al. (2004) and have varying

lengths.

Table 2. Average Costs (in ms) of Checking LSSs for Overlap (C
V

),

Updating an LSS (C
U

), and Checking Primitives for Overlap C
P

CV CU CP

0.00075 0.0020 0.00040
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Three sets of experiments were carried out. In the first set, chain trees were set up to represent native

structures of the selected chains. The coordinates of all atoms were obtained from the Protein Data Bank

(PDB) (Berman et al., 2000). Ten rotations by the angles – i · 48, i¼ 1, 2, . . . , 5, were applied to each

unlocked bond. For each selected chain, six types of chain trees were examined: unlocked or locked peptide

plane, unlocked or locked (and regrouped) secondary structures, and unbalances or balanced secondary

structures (only in case of regrouping).

The average costs of the first set of experiments (rotations applied to the native structures) are shown in

Table 3. It is clear that grouping peptide planes, locking, grouping and balancing secondary structures

provides a substantial speed-up. Also, not surprisingly, the cost improvements tend to increase for chains

with high fraction of secondary structures.

The second section in Table 3 shows the average costs of clashing rotations, while the third section

shows the average costs of non-clashing rotations. Ratios of clashing and non-clashing rotations are also

provided. Figure 13 summarizes graphically the results of Table 3.

In the second set of experiments, adjustable chain trees were used on structures not as tight packed as

was the case for native structures. This is a very typical situation during the folding process. These loosely

packed structures were obtained as follows. Their initial conformation were unfolded structures: all f and

c angles were set to 1808. o-angles of peptide bonds were extracted from the PDB. Non-clashing rotations

that minimized the RMSD between the current and the native conformation were applied as long as the

RMSD was above 10Å. Then, 10 rotations by the angles – i · 48, i¼ 1, 2, . . . , 5, were applied to each

unlocked bond. Table 4 shows the average rotation costs analogous to the results for native structures

Table 3. Average Costs (in ms) of Rotations of Native Structures

Native 1X5RA 1X0OA 1XDXA 1AKPA 1Y6DA

All rotations

— 0.291 0.283 0.234 0.234 0.251

P 0.226 0.197 0.164 0.213 0.164

S 0.245 0.233 0.170 0.204 0.113

PS 0.208 0.200 0.155 0.183 0.099

SB 0.243 0.256 0.184 0.217 0.095

PSB 0.200 0.194 0.141 0.188 0.091

Clashing rotations only

Ratio 33.3% 19.1% 29.4% 36.2% 15.6%

— 0.296 0.202 0.185 0.214 0.323

P 0.209 0.165 0.148 0.180 0.134

S 0.258 0.184 0.142 0.204 0.170

PS 0.204 0.163 0.127 0.160 0.122

SB 0.260 0.203 0.160 0.178 0.131

PSB 0.194 0.164 0.120 0.164 0.099

Non-clashing rotations only

Ratio 66.7% 80.9% 70.6% 63.8% 84.4%

— 0.288 0.309 0.257 0.244 0.242

P 0.235 0.203 0.178 0.234 0.170

S 0.239 0.248 0.182 0.204 0.109

PS 0.211 0.210 0.166 0.196 0.095

SB 0.235 0.272 0.195 0.235 0.092

PSB 0.203 0.201 0.149 0.201 0.089

The three-character code in the first column indicates which improvements were applied to the chain tree. A ‘‘P’’ indicates that peptide

planes were grouped. The ‘‘S’’ indicates that secondary structures were locked and the chain tree was regrouped. Finally, a ‘‘B’’ indicates

that the chain tree was rebalanced (only applicable with ‘‘S’’). The fastest configuration is highlighted in boldface for each protein.
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shown in Table 3. Once again, substantial speed-up can be observed when peptide planes are grouped and

when secondary structures are locked, regrouped, and rebalanced. This applies equally well for clashing

and non-clashing rotations. Figure 14 summarizes graphically the results of Table 4.

In the first and second sets of experiments, adjustable chain trees were intentionally tested on chains with

comparable number of residues but with various fractions of secondary structures. But the usability of

FIG. 13. Summary of Table 3.

The costs are averaged over all five

chains. ‘‘P’’ indicates that peptide

planes were grouped, ‘‘S’’ that sec-

ondary structures were locked and

grouped, and ‘‘B’’ that chain trees

were rebalanced.

Table 4. Average Costs (in ms) of Rotations of Folding Structures

Folding RMSD 1X5RA 10.0Å 1X0OA 10.0Å 1XDXA 10.0Å 1AKPA 10.0Å 1Y6DA 10.0Å

All rotations

— 0.223 0.241 0.158 0.231 0.147

P 0.173 0.175 0.137 0.193 0.102

S 0.190 0.206 0.122 0.184 0.110

PS 0.173 0.161 0.109 0.172 0.098

SB 0.202 0.212 0.137 0.200 0.110

PSB 0.162 0.152 0.105 0.179 0.086

Clashing rotations

Ratio 37.4% 31.1% 43.0% 68.2% 17.5%

— 0.219 0.185 0.147 0.241 0.138

P 0.173 0.138 0.135 0.176 0.102

S 0.196 0.152 0.118 0.192 0.110

PS 0.183 0.121 0.110 0.164 0.123

SB 0.213 0.153 0.136 0.192 0.103

PSB 0.171 0.130 0.107 0.171 0.106

Non-clashing rotations

Ratio 62.6% 68.9% 57.0% 31.8% 82.5%

— 0.225 0.295 0.170 0.212 0.149

P 0.173 0.199 0.140 0.236 0.101

S 0.186 0.266 0.127 0.164 0.110

PS 0.168 0.192 0.108 0.185 0.094

SB 0.195 0.277 0.137 0.211 0.112

PSB 0.157 0.162 0.104 0.194 0.082

‘‘P’’ indicates that peptide planes were grouped, ‘‘S’’ that secondary structures were locked and grouped, and ‘‘B’’ that chain trees

were rebalanced. The fastest configuration is highlighted in boldface for each protein.
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adjustable chain trees should increase as the number of residues in chains increases. In order to show this,

we tested adjustable chain trees on four chains used by Lotan et al. (2004). These were 1CTFA (68

residues), 1LE2A (144 residues), 1HTBA (374 residues), and 1JB0A (755 residues).

The performance of adjustable chain trees was tested in a slightly different way than in the previous two

sets of experiments, since non-clashing rotations become rare for longer chains already when the RMSD is

around 30Å. If a rotation did not result in a clash and the RMSD between current and native conformation

was reduced, then the next rotation was applied to the improved conformation. If the RMSD did not

decrease or if the rotation resulted in a clash, the new conformation was rejected and the next rotation was

applied to the old conformation. The rotations were applied until 100 consecutive rotations did not give any

RMSD improvement. Structures obtained in this manner were not as tightly packed as the native structures.

Hence, they can be considered as realistic structures somewhere in the middle of the folding process.

Average costs of rotations in native and folding structures are reported in Table 5. Once again, a dramatic

improvement can be observed. But it seems that it is not dependent on the number of residues but rather on

the size of the fractions of secondary structures. Figure 15 summarizes graphically the results of Table 5.

FIG. 14. Summary of Table 4.

The costs are averaged over all five

chains. ‘‘P’’ indicates that peptide

planes were grouped, ‘‘S’’ that sec-

ondary structures were locked and

grouped, and ‘‘B’’ that chain trees

were rebalanced.

Table 5. Average Costs (in ms) of Rotations of Structures from Lotan et al. (2004)

Native

PDB-id 1CTFA 1LE2A 1HTBA 1JB0A

— 0.177 0.311 0.961 0.975

P 0.142 0.257 0.712 0.810

S 0.124 0.101 0.785 0.634

PS 0.101 0.113 0.605 0.608

SB 0.119 0.118 0.754 0.634

PSB 0.087 0.113 0.601 0.593

Folding

RMSD 10.9Å 6.3Å 28.9Å 35.2Å

— 0.102 0.236 0.407 0.575

P 0.091 0.274 0.324 0.491

S 0.076 0.103 0.363 0.431

PS 0.082 0.123 0.301 0.394

SB 0.080 0.127 0.368 0.385

PSB 0.085 0.141 0.299 0.358

‘‘P’’ indicates that peptide planes were grouped, ‘‘S’’ that secondary structures were locked and grouped, and ‘‘B’’ that chain trees

were rebalanced. The fastest configuration is highlighted in boldface for each protein.
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It should be expected that the addition of side chains will reduce the speed-up obtained by using

adjustable chain trees rather than standard chain trees. Neither a-helices nor b-strands with side chains can

be bounded as tight. Although our implementation has not yet been extended to include side chains, we

investigated the speed-up of adjustable chain trees when all bounding volumes had an added radius of 2Å,

4Å, and 6Å. Bounding volumes will then contain larger and larger portions of side chains. While the speed-

up becomes less dramatic as the radius increases, it is still advantageous to use adjustable chain trees

(results are not included here).

Blowing up the radii of all atoms is of course a very primitive approach. Once side chains can be

bounded by their own tighter bounding volumes, the advantage of using adjustable chain trees will be

restored (although it will never be as good as when side chains are ignored). In some applications, non-

clashing conformations of the backbone are generated first and appropriate rotamers are added afterwards.

The use of adjustable chain trees rather than standard chain trees is then an obvious choice.

9. CONCLUSION

In this article, we suggested a modification of chain trees particularly suitable for the detection of clashes

in folding simulations or structure predictions of the backbone of protein chains. As a-helices and b-strands

are either predicted beforehand or are created relatively early in the folding or prediction process, locking,

rearranging, and rebalancing can be done in a preprocessing phase. Rearrangement of secondary structures

and peptide planes results in chain trees with much tighter bounding volumes. Our results clearly indicate

that adjustable chain trees provide a substantial speed-up in the detection of clashes and in the update of

conformations.

We investigated elsewhere (Fonseca and Winter, 2010) how adjustable chain trees perform when other

bounding volumes—such as spheres, capsules, and rectangular swept spheres—are used. Similar speed-ups were

observed for all these bounding volumes when switching from the ordinary chain tree to the adjustable version.

Adjustable chain trees can also be used for the efficient determination of free energy changes when

moving from one conformation to another. Bounding volumes will in this context typically have larger

volumes, and more clash checks will be required. This is not only due to the increased volumes, but also to

the fact that the entire chain tree has to be checked for overlaps. We believe that adjustable chain trees will

prove just as useful in energy calculations as they did in clash detection.
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Bounding Volumes for Proteins - A Comparative Study

Rasmus Fonseca and Pawel Winter∗

Abstract

A chain tree is a data structure for representing changing protein conformations.
It enables very fast detection of clashes and free potential energy calculations. The
efficiency of chain trees is closely related to the bounding volumes associated with chain
tree nodes. A protein subchain associated with a node of a chain tree will clash with
another subchain only if their bounding volumes intersect. It is therefore essential that
bounding volumes are as tight as possible while intersection tests can be carried out
efficiently. We compare the performance of four different types of bounding volumes in
connection with the rotation of protein bonds. It is observed that oriented bounding
boxes are not as good as could be expected judging by their extensive use in various
applications. Both rectangular- and line swept-spheres are shown to have very good
tightness of fit but the line-swept, or even simple spheres, are shown to be significantly
faster because of quick overlap checks. We also investigate how the performance of
the recently introduced adjustable chain trees is affected by different bounding volume
types.

1 Introduction

A chain tree is a data structure for fast clash detection and free energy maintenance of folding
protein chains. Suppose that during the simulation of the folding process, an attempt to
rotate around a backbone or a side chain bond is made. Such a rotation should be undone
if it results in a clash (either during the rotation or at the end of the rotation). Clashing
rotations have to be identified and rejected as quickly as possible. If a rotation is not clashing,
the free energy of the new configuration has to be calculated. This estimate is crucial for
the decision if the rotation should be accepted or rejected (note that in many methods the
increase of the free energy does not always cause a rejection).

The chain tree is a binary tree where each node is a subchain of atoms. Each node is
furthermore associated with a transformation matrix and a bounding volume. To maintain
the conformation of a protein chain during folding, a brute-force method can be employed
that requires Θ(n) update-time for each conformational change and Θ(n2)-time to detect

∗Department of Computer Science, University of Copenhagen, Universitetsparken 1, 2100 Copenhagen
O, Denmark, e-mail: pawel@diku.dk, rfonseca@diku.dk
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Figure 1: The four bounding volume types compared: Oriented bounding box (OBB), rect-
angular swept sphere (RSS), line-segment swept sphere (LSS) and sphere (PSS).

clashes. Lotan et al. (2004) showed that using a chain tree this is reduced to Θ(log n)
update time and Θ(n4/3) clash-detection time.

We previously suggested (Winter and Fonseca (2011)) a modification of chain trees based
on the assumption that portions of folding proteins (such as α-helices and β-strands) are
formed relatively early in the folding process and they remain stable throughout many (if not
all) iterations of the simulation. Bonds of such subchains can be locked and their bounding
volumes therefore remain unchanged. As a consequence, the chain tree can be rearranged
(so that locked subchains are tightly covered by a single interior node of the chain tree)
and rebalanced. The adjustable chain tree has an improved running-time compared to the
standard chain tree and the asymptotic running-time stays unchanged.

We study four common bounding volumes that are reasonable for clash detection in
protein chains. These are: oriented bounding boxes, rectangular swept spheres, line swept
spheres and spheres (Figure 1). The computational results indicate that spheres, with their
trivial intersection test and simple update methods, perform equally well as line swept spheres
that have a better tightness of fit. Oriented bounding boxes and rectangular swept spheres
are clearly inferior. This is particularly surprising as oriented bounding boxes have been a
standard choice for this type of application. As chain trees are adjusted to the protein to
fit peptide planes and secondary structures more tightly, line swept spheres become slightly
more efficient than spheres while oriented bounding boxes and rectangular swept spheres
remain inferior.

This paper is organized as follows. A brief description of proteins, chain trees and ad-
justable chain trees is given in Section 2. The different types of bounding volumes are
discussed in Section 3. Computational result are given in Section 4 and, finally, concluding
remarks and suggestions for further research are collected in Section 5.

2 Protein chain trees

A protein is an organic compound made of n amino acids arranged in a linear chain. A given
sequence of amino acids always folds into the same 3-dimensional structure referred to as the
native conformation of that sequence. The lengths and angles between adjacent atoms in the

2
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Figure 2: Backbone geometry and definitions. (left) Since the C-N bond can be fixed at
180◦, peptide planes containing 6 backbone atoms each are formed. The angles around the
N-Cα and Cα-C bonds, (Φ,Ψ) are the torsion angles of the chain. (right) Typical backbone
bond lengths and angles

chain are mostly fixed due to steric interactions as shown in Figure 2, so the conformation
of the entire protein can be completely defined by the torsions around the covalent bonds.

Protein structure prediction is the problem of predicting the native conformation. This is
typically done using Monte Carlo simulations or other metaheuristics where a conformation
is iteratively improved by changing one or more torsion angles slightly.

After each rotation around a bond a check is performed to ensure that no two atoms
clash. A brute-force method to do this is to first transform all atoms succeding the bond,
which takes O(n) time. The pairwise distance from all atoms preceding the bond to all
atoms succeding it are then measured, which takes O(n2) time. This is much too inefficient
for long protein chains.

The chain tree (Lotan et al. (2004)) is a data structure for maintaining the conforma-
tion of a chain which enables O(log n) update time and O(n1.5) time to check for clashes,
assuming the chain is well-behaved (i.e. not extremely self-colliding). The chain tree is a
balanced binary tree where leaves correspond to bonds in the protein chain and internal
nodes correspond to a sub-chain. Each internal node is associated with a transformation
matrix and a volume bounding all the leaves in its subtree. The transformation matrices
are used to maintain fast updates. Since two non-overlapping bounding volumes exclude a
clash of their respective sub-chains, the bounding volumes are used to maintain fast collision
checks. For a detailed description of chain trees see Lotan et al. (2004).

An adjustable chain tree (Winter and Fonseca (2011)) is a modification of the standard
chain tree. In adjustable chain trees, bonds in secondary structures, such as α-helices and
β-strands, are grouped so that they have the same lowest common ancestor. As a result of
this grouping, adjustable chain trees are rebalanced (regarding roots as nodes of height 0)
and the bounding volumes are recomputed to tightly fit their underlying atoms (not just
their two children). Bounding volumes associated with nodes of secondary structures will be
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much tighter as these structures fit very well into most bounding volumes.
Adjustable chain trees are also adjusted so that every three bonds of each peptide plane

have a common lowest ancestor. This results in very tight bounding volumes at the lowest
levels of the chain tree. A detailed description of adjustable chain trees, as well as compu-
tational results documenting the speed-up, can be found in Winter and Fonseca (2011).

3 Bounding Volumes

There are four operations that are required to use a particular type of bounding volume in
the chain tree:

• transform a bounding volume to another coordinate system,
• decide if two bounding volumes intersect,
• find a tight volume bounding two smaller volumes and
• find a tight volume bounding a set of bonds or atoms.

Assuming that all backbone atoms have the same radii, the fourth operation can be reduced
to finding the minimum volume bounding a set of points. The following subsections discuss
how these operations are performed for four different types of bounding volumes: oriented
bounding boxes, rectangular swept spheres, line-segment swept spheres, and point swept
spheres.

3.1 Oriented Bounding Boxes

An oriented bounding box (OBB) is a rectangular block with an arbitrary orientation (Gottschalk
et al. (1996)). There are many possible representations of OBBs. The center point, an or-
thonormal set of three orientation vectors and three numbers indicating the extents of the
box have been used in this study.

To transform a point from one coordinate system to another, both a translation and
a rotation of the point is necessary. For vectors, however, only the rotation should be
performed. The coordinate transformation of an OBB is obtained by transforming (rotating
and translating) the center point and rotating the orientation vectors.

To decide if two OBBs Bl and Br in 3D intersect, it is not enough to check if the vertices
of Bl are all on the outside of Br, and vice versa. Instead it is observed that Bl and Br are
disjoint if there exists a plane that separates Bl and Br. The projections of Bl and Br onto a
line (axis) orthogonal to the separating plane will correspond to two disjoint line-segments if
there is no overlap. It can be shown that it is enough to check 15 such axes: 6 corresponding
to all orientations of Bl and Br and 9 defined by pairs of orientation vectors, one from Bl

and one from Br respectively (Ericson (2005)).
OBBs bounding a point sets can be determined using principal components analysis

(PCA) as discussed in Ericson (2005). The three principal component vectors are used as
the orientation of the box. The center and extents can then easily be defined so the box is
as small as possible given the orientation.

4

96



The OBB bounding two smaller OBBs is determined using the above method applied to
the 16 corners of a given pair of OBBs. There are several methods to improve the tightness
of a bounding OBB, such as using PCA only on the convex hull of the points. We have not
implemented these improvements.

3.2 Rectangular Swept Spheres

A rectangular swept sphere (RSS) is defined as the Minkowski sum of an arbitrarily oriented
flat rectangle and a sphere (Larsen et al. (2000); Eberly (2000)). The rectangle is repre-
sented by a center point, two orthogonal vectors (defining the orientation) and two numbers
specifying the extents of the rectangle.

A RSS is transformed into another coordinate system in a similar way as OBBs are.
The intersection test between two RSSs is as described in Larsen et al. (2000) and

amounts to computing the distance between their defining rectangles Rl and Rr in 3D.
Assume first that the closest pair of points pl ∈ Rl and pr ∈ Rr lie on the edges of Rl and Rr.
For each pair of edges, eli ∈ Rl and erj ∈ Rr, determine the closest pair of points pli and prj.
For a given i and j, iff the following two conditions are met, then pl = pli and pr = prj.

• The open upper half-space bounded by the plane through pli with −−−→pliprj as normal
contains none of the corners in Rl.

• The open upper half-space bounded by the plane through prj with −−−→prjpli as normal
contains none of the corners in Rr.

If these conditions are not met for any pair of edges, then either pl or pr are in the interior
of one of the rectangles. In this case, the distance between Rl and Rr is the largest of the
following two values: The separation between Rl and Rr projected onto an axis normal to
Rl or projected onto an axis normal to Rr.

A method for determining an RSS bounding a point set is described in Larsen et al.
(2000). First, the principal components, −→v0 ,−→v1 and −→v2 , of the point set are determined. The
two components corresponding to the largest spread, −→v0 and −→v1 fix the orientation of the
rectangle. Next, the thinnest slab normal to −→v2 that encloses all the points is determined.
The width of this slab is the diameter of the RSS, and the mid-plane, i.e. the set of points
equally far from the slab boundaries, contains the mid-point of the rectangle. The mid-point
and the extents are adjusted such that the points projected onto a plane normal to −→v0 and
another plane normal to −→v1 are enclosed in 2D capped cylinders. Even though all points
now appear to be inside the RSS when looking along −→v0 and −→v1 they might still fall outside
near the capped corners of the RSS. If this is the case, the rectangle of the RSS is extended
outward at a 45◦ angle until all points are enclosed.

A RSS bounding two RSSs with radii rl and rr is obtained in the following way. First a
RSS bounding the eight corner points of the two rectangles is constructed. Its radius is then
extended by max(rl, rr).
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3.3 Line-Segment Swept Spheres

A line-segment swept sphere (LSS) is the Minkowski sum of an arbitrarily oriented line-
segment and a sphere. A LSS is therefore fully specified by the two end-points of the
line-segment and the radius of the sphere. A LSS is also sometimes referred to as a line
swept sphere, a capsule, a capped cylinder, a spherocylinder (Ericson (2005)) or even as a
cigar (Bereg (2004)).

A LSS is transformed to another coordinate system by applying the appropriate trans-
formation matrix to the end-points of its defining line-segment.

Two LSSs intersect if the shortest distance between their defining line-segments is shorter
than their combined radii. A very fast method to find the distance between two line-segments
is described in Ericson (2005).

To find a good LSS bounding a set of points, the first principal component, −→v0 , of the
points is used as the direction of the defining line-segment. The points are projected onto a
plane normal to −→v0 and the smallest enclosing circle C with radius r is found using Welzl’s
algorithm (Welzl (1991)). C together with −→v0 , defines an infinitely extended cylinder that
contains all points. Finally, two hemispheres, both with radius r, are ”slid” along the infinite
line-segment from each side until their surfaces touch the bounded points. The centers of
these hemispheres are end-points of the defining line-segment.

To find a good LSS, B, bounding two smaller LSSs Bl and Br, the four spheres defined
by the end-points of the line-segments of Bl and Br and their respective radii are considered.
The direction

−→
d of B is determined as the direction between the two most remote points on

the surfaces of these four spheres. The four spheres are projected onto a plane orthogonal
to

−→
d as four circles (one will be nested in another and can be disregarded). The smallest

circle enclosing the remaining three circles (the problem of Apollonius) together with
−→
d ,

defines an infinitely extended cylinder containing all four spheres. Finally, two hemispheres
are ”slid” in place, as explained above.

3.4 Point Swept Spheres

A point swept sphere (PSS) is simply a sphere. We use the term PSS to emphasize its relation
to the other two bounding volumes introduced above and to have a meaningful abbreviation.
A PSS is represented by its center and radius.

The coordinate transformation is done simply by transforming the center-point.
Two PSSs intersect if the distance between their centers is less than their combined radii.

Finding the PSS bounding two PSSs is trivial. See e.g. Ericson (2005) for further details.
Welzl’s algorithm (Welzl (1991)) gives an expected linear time algorithm for finding the
minimum radius sphere bounding a set of points. Note that, contrary to the other three
volume types, the PSS is the only one that guarantees a minimum bounding volume.
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4 Computational Results

The improvement in efficiency of the adjustable chain tree over the standard chain tree
was documented in (Winter and Fonseca (2011)). This paper focuses on analyzing which
bounding volume gives the best efficiency, both in the standard and the adjustable chain tree.
First, the data set used for the different experiments is described. Second, a cost measure is
defined which can be used to evaluate the speed-up independently of implementational and
hardware details. Finally we show to what extent different bounding volume types speed up
clash-detection.

4.1 Data Set

The same data set as in Winter and Fonseca (2011) is used. The first five chains have a
similar length of 110-119 residues, the typical length in PDBSelect 25 (Berman et al. (2000)).
They are selected so that they have different fractions of residues in secondary structures
(See Table 1). The last four chains are from the seminal paper on chain trees (Lotan et al.
(2004)). The lengths vary from 68 to 755 residues. Figure 3 shows all nine proteins.

4.2 Cost Measure

To evaluate the efficiency of a particular bounding volume independent of implementational
and hardware issues, we determine the average cost of a single rotation in the chain tree.
The cost of a rotation is defined as

NVCV +NUCU +NPCP

where

• NV is the number of bounding volume pairs tested for overlap,

• CV is the cost of testing two bounding volumes for overlap,

• NU is the number of bounding volumes updated due to rotations,

• CU is the cost of updating a bounding volume,

• NP is the number of primitive pairs (bonds) tested for overlap,

• CP is the cost of testing a primitive pair for overlap.

The three costs, CV , CU and CP shown in Table 2, were determined experimentally from the
chain trees of the native conformations in the data set. A 1◦ rotation of every non-locked
bond (all peptide bonds and all bonds in secondary structures were locked) was carried out.
The subsequent clash detection typically involved many volume intersection tests. CV was
determined by measuring the average CPU-time for all volume intersection tests (no matter
their outcome). The transformation of one bounding volume into the coordinate system of
another was included in CV . Rotations that did not result in clashes were used to update the
chain tree. Such an update requires updating all bounding volumes associated with nodes
between the rotated bond and the root of the chain tree. CU was determined by measuring
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Figure 3: Chains in the two data sets. The first five chains have almost the same length,
but different distributions of secondary structures. The last four chains are from Lotan et
al. (2004) and have varying lengths.

the average CPU-time for all such bounding volume updates. The transformation of the
bounding volume of the right subtree to the coordinate system of the bounding volume of the
left subtree was included in CU . To increase the accuracy of CV and CU , their computation
times were averages of 100 repetitions.

Testing a pair of primitives corresponds to finding the distance between two atoms. To
determine CP , we therefore generated 106 random point-pairs and measured the average time
it took to transform one point to another point’s coordinate system and find their distance.

The number of bounding volume pairs tested for overlap, NV , will be a good indicator of
a volumes ’tightness of fit’. However, to measure the tightness of fit explicitly we introduce
the relative volume difference between two volume types. Given an adjustable chain tree
representing a protein structure, the relative volume difference between two bounding volume
types, BV1 and BV2, is defined as

RVD(BV1, BV2) =
1

N

∑

n

VBV1(n) − VBV2(n)

VBV2(n)
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Figure 4: Average costs (in ms) of a rotation in a standard chain tree and an adjustable
chain tree. These measurements are performed on the native conformation which is typically
as compact as possible for a protein.

where the sum is over all nodes (interior and leaves) in the adjustable chain tree (N) and
VBV (n) is the volume of the bounding volume associated with node n.

4.3 Comparison of Bounding Volumes

In all experiments reported in this subsection, peptide bonds were locked in the adjustable
chain tree. The Φ torsion angle on the first N-Cα bond and the Ψ torsion angle on the last
Cα-C bond do not affect the conformation of the protein, so the corresponding bonds were
therefore also locked in the adjustable chain trees. Bonds in secondary structure segments
were also locked.

Two sets of experiments were carried out. In the first set, both standard chain trees and
adjustable chain trees were set up to represent native conformations of the selected chains.
The coordinates of all atoms were obtained from the Protein Data Bank (PDB) (Berman et
al. (2000)). For each of the 9 chains, ten rotations by the angles ±i× 4◦, i = 1, 2, ..., 5, were
applied to each unlocked bond. The average rotation costs (including the intersection tests)
for each of the four types of bounding volumes are shown in Figure 4 (both in standard chain
trees and in adjustable chain trees). Tables showing the measurements in numbers can be
found in the appendix.

It is clear that the adjustable chain trees with grouped peptide planes and secondary
structures provide a substantial speed-up when using both OBBs, RSSs and LSSs. Surpris-
ingly, this speed-up is not observed for PSSs. The reason for this is that spheres have no
elongation. Their tightness of fit therefore does not improve when the adjustable chain trees
group long segments of α-helix and β-strand. However, for the standard chain trees, spheres
are one of the fastest bounding volume types together with LSSs. This indicates that the
results in the seminal paper on chain trees (Lotan et al. (2004)) could have been improved
significantly by replacing the RSSs with LSSs or PSSs.
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Figure 5: OBBs and LSSs of the two lowest levels in a standard chain tree. The volume
of OBBs quickly increase when climbing the tree because they bound the corners of their
children.

Another significant feature of Figure 4 is that the average cost of OBBs decreases dra-
matically when using adjustable chain trees. The reason is that OBBs have sharp corners.
Therefore, in the standard chain trees, OBBs of nodes just above leaves are significantly
larger than the corresponding swept sphere volumes (see Figure 5). In the adjustable chain
trees the four atoms in peptide planes are collected under a single node and the bounding
volumes are calculated based on atom positions and not children volumes. This improvement
greatly reduces the size of OBBs in particular.

The cost measure is made up of three terms. For all volume types the main contribution
to the average cost is the term NVCV . For any given rotation, NU is rarely larger than 10
and NP is typically less than 50. As shown in Figure 6, however, NV , for the proteins in
our dataset, is typically in the range between 200 to 500 which makes the overlap checks of
bounding volumes the most time-consuming part of a rotation. From Figure 6 it is noted

Figure 6: The tightness of fit for different bounding volume types, (left) the average number
of overlap checks in a rotation, NV and (right) the relative volume difference between a
particular volume type and an LSS.

that both in terms of NV and relative volume difference (averaged over adjustable chain trees
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Figure 7: Average costs (in ms) of a rotation in a standard chain tree and an adjustable
chain tree. These measurements are performed on a partially unfolded conformation.

for proteins specified in Section 4.1), the RSSs are the most tight-fitting bounding volumes
closely followed by LSSs. Since CV of the RSSs is 3 times that of LSSs, however, the total
CVNV term of LSSs is smaller.

As mentioned, both LSSs and PSSs perform well in the standard chain trees but LSSs
are slightly faster. For adjustable chain trees the LSSs are 37% faster than PSSs, so it is safe
to conclude that the tightness of fit that the LSSs have outweigh the fast overlap check of
the PSSs. The main conclusion of this paper is therefore that LSSs are the optimal choice of
bounding volumes for protein chain trees. We assume that this result holds true for bounding
volume hierarchies of chains in general.

The native conformations, that are used as starting conformations for the experiments
above, are all very tightly packed. To verify that the results hold with a more loosely packed
conformation where there are less clashes after each rotation, the experiments above were
repeated with a partially unfolded conformations. As shown in Figure 7, the same trend as
in Figure 4 are observed. To check that the cost measure is not overly simplistic, the average
CPU-time of a rotation was also measured. As shown in Figure 8 the same trend is observed
again.

5 Conclusions

In this paper we compared different bounding volumes that can be associated with the
nodes of chain trees. LSSs seem to perform much better than OBBs and RSSs that have
been used as standard bounding volumes in other applications of chain trees to proteins.
The performance of bounding volumes was shown to be a tradeoff between fast collision
checks and tightness of fit. Our results clearly indicate that RSSs are the most tight-fitting
volumes, but a substantial speed-up is possible when using LSSs because of their fast overlap
checks. Another, perhaps somewhat surprising conclusion is that, at least for shorter chains,
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Figure 8: Average CPU-time (in ms) of a rotation in a standard chain tree and an adjustable
chain tree.

PSSs perform comparable with LSSs.
Bounding volumes also play an essential role when adjustable chain trees are used for

the efficient determination of free energy changes when moving from one conformation to
another. Bounding volumes will in this context typically have greater radius and more
intersection tests will be required. This is not only due to the increased volumes but also
to the fact that entire chain tree has to be checked for overlaps. We therefore believe that
adjustable chain trees and LSSs will prove even more useful in energy calculations than they
did in clash detection.
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A Tables

PDB-id # res % in αβ #α + #β

1X5RA 112 42% 2 + 6
1X0OA 119 58% 3 + 5
1XDXA 114 63% 2 + 4
1AKPA 114 79% 2 + 11
1Y6DA 114 82% 7 + 0

1CTFA 68 82% 3 + 3
1LE2A 144 83% 5 + 0
1HTBA 374 52% 10 + 19
1JB0A 755 62% 12 + 4

Table 1: Second column is the number of residues in the examined proteins. The third
column indicates the portion of residue in secondary structures. The fourth column indicates
the number of α-helices and β-strands.

OBB RSS LSS PSS

CV 0.0011 0.0024 0.00075 0.00041
CU 0.0083 0.0089 0.0020 0.00027
CP 0.00040

Table 2: Average costs (in ms) of checking bounding volumes for overlap (CV ), updating a
bounding volume (CU) and checking primitives for overlap (CP ). The cost of testing a pair
of primitives does not depend on the bounding volume type.

OBB RSS OBB OBB
SCT ACT SCT ACT SCT ACT SCT ACT
1.719 0.554 0.837 0.669 0.317 0.212 0.333 0.323
1.696 0.523 0.805 0.618 0.300 0.210 0.305 0.294
1.515 0.367 0.642 0.435 0.244 0.134 0.253 0.248
1.496 0.452 0.735 0.593 0.257 0.214 0.351 0.374
1.888 0.243 0.706 0.320 0.267 0.099 0.190 0.131

Table 3: Average costs (in ms) of a rotation in a standard chain tree (SCT) and an adjustable
chain tree (ACT) (see also Figure 4).
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OBB RSS OBB OBB
SCT ACT SCT ACT SCT ACT SCT ACT
1.046 0.661 0.246 0.204 0.394 0.561 0.178 0.206
1.340 0.723 0.266 0.240 0.450 0.541 0.179 0.225
0.920 0.508 0.179 0.150 0.284 0.357 0.115 0.145
1.259 0.711 0.251 0.270 0.403 0.553 0.200 0.275
1.106 0.469 0.167 0.126 0.256 0.322 0.112 0.115

Table 4: Average costs (in ms) of a rotation in a standard chain tree (SCT) and an adjustable
chain tree (ACT) (see also Figure 7). These measurements are performed on a partially
unfolded conformation.

OBB RSS OBB OBB
SCT ACT SCT ACT SCT ACT SCT ACT
0.556 0.414 0.124 0.112 0.235 0.351 0.102 0.119
0.555 0.403 0.117 0.098 0.226 0.323 0.102 0.099
0.495 0.354 0.097 0.081 0.175 0.260 0.079 0.091
0.501 0.381 0.108 0.120 0.199 0.324 0.100 0.125
0.604 0.355 0.107 0.064 0.140 0.211 0.060 0.051

Table 5: Average CPU-time (in ms) of a rotation in a standard chain tree (SCT) and an
adjustable chain tree (ACT) (see also Figure 8).
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5.7 Protein Packing Quality using Delaunay Complexes

The following 17 pages contains the published version of our paper ”Protein Packing Quality using
Delaunay Complexes. R. Fonseca. P. Winter and K. Karplus. Proceedings of ISVD 2011. Pages
117-122. 2011” [63].
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Abstract—A new method for estimating the pack-
ing quality of protein structures is presented. Atoms
in high quality protein crystal structures are very
uniformly distributed which is difficult to reproduce
using structure prediction methods. Packing quality
measures can therefore be used to assess structures
of low quality and even to refine them.

Previous methods mainly use the Voronoi cells
of atoms to assess packing quality. The presented
method uses only the lengths of edges in the De-
launay complex which is faster to compute since
volumes of Voronoi cells are not evaluated explicitly.
This is a novel application of the Delaunay complex
that can improve the speed of packing quality
computations. Doing so is an important step for,
e.g., integrating packing measures into structure
refinement methods. High- and low-resolution X-ray
crystal structures were chosen to represent well- and
poorly-packed structures respectively. Our results
show that the developed method is correlated to the
well-established RosettaHoles2 but three times faster.

Keywords-Delaunay complex; protein; packing
quality;

I. INTRODUCTION

The resolution of a protein structure indicates
how accurate the experimentally determined posi-
tions of atoms are in the protein. Protein structures
with resolutions less than 1.8Å are generally con-
sidered good and they are, paradoxically, referred
to as high-resolution structures. High-resolution
structures are characterized by a uniform dis-
tribution of atoms in the core. Low-resolution
structures and structures solved partially or wholly
by computational methods tend to form clusters of
atoms in some places and holes or voids in others.
This is referred to as bad packing of the atoms.
An estimate of the packing quality can be used
to improve structure assessment software such as
WHAT-CHECK [1], PROCHECK [2] or ProSA
[3]. Also, it can be added as an additional term
in free energy functions used in protein structure
prediction or refinement.

A number of methods have been developed
to characterize packing [4], [5], many of which
use the volumes of Voronoi cells for atoms [6],
[7], [8]. A very recent and popular method is
RosettaHoles2 [9], [10]. This method uses the
Voronoi diagram and a support vector machine to
output a packing energy. For each atom, twenty
spheres with increasing radii are centered on the
atom. The volumes of the intersections between
the spheres and the Voronoi cell of the atom
are used as input features to the support vector
machine. The number characterizing the packing,
the RosettaHoles2 cost, is found by averaging the
output of the support vector machine for all atoms.

We use the Delaunay complex of all heavy
(non-hydrogen) atoms to quantify the packing
quality of protein structures. The Delaunay com-
plex, DC(A), of a set of points, A, consists of
all 3-simplices (tetrahedra) whose circumsphere
does not contain a point of A in its interior, as
well as all faces of simplices in DC(A). The 1-
simplices in DC(A) are a set of edges between
points of A. In this study we assume that all atoms
have roughly the same radii and hence can be
represented by a set of points. The packing quality
is found using only the edges of DC(A) as input
features to a feed-forward neural network. Because
the faces of the Voronoi cell intersect the edges
of the Delaunay complex at their midpoints, the
lengths of edges roughly capture the geometry of
the Voronoi cell. However, much less computation
is required when the cell volume is not explicitly
calculated. For training purposes, high-resolution
and low-resolution structures are used to represent
well-packed and poorly-packed structures respec-
tively.

Our method distinguishes itself from other
methods in two ways. First, it uses the edges
of the Delaunay complex and therefore does not
require volume calculations of the Voronoi cells.
Second, only low-resolution X-ray structures are
chosen to represent poorly-packed molecules. This
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is in contrast to RosettaHoles2, where predicted
structures generated by Rosetta [11] are also in-
cluded. There exist many scoring methods that
separates predicted structures from native struc-
tures, but poor packing is one of the things that
often distinguishes low-resolution structures from
high-resolution ones. The main conclusion of this
paper is that the edges of the Delaunay complex
characterize packing as well as the volume inte-
gration of the Voronoi cell used in RosettaHoles2,
but can be computed faster.

II. METHODS

The output of the method described here is
a packing cost which is a quantification of the
packing quality of a protein structure. The packing
cost of a structure is the average atom packing
cost of the individual atoms in the structure. The
following section describes how the atom packing
cost is calculated and why averaging atom packing
costs to get the packing cost is reasonable. Finally,
the data sets used for training and testing are
described.

First, the Delaunay complex of the centers of
all heavy atoms, A, is found using the insertion
algorithm described by Ledoux [12]. Although this
algorithm has a O(n2) worst-case running time
(where n = |A|), in practice it runs fast for two
reasons. First, the atoms are inserted in the order
they appear in the protein chain. When searching
for the tetrahedron containing the inserted point,
the method walks from an adjacent tetrahedron
of the previously inserted point and, in practice,
only traverses a constant number of tetrahedra.
Second, the method uses flipping to reinstate the
Delaunay criterion after a point is inserted. Since
the flipping only affects tetrahedra whose circum-
sphere contains the newly inserted point, insertion
is, in practice, a constant-time operation for evenly
distributed points. Assuming that both the point-
location and reinstating the Delaunay criterion are
expected O(1) time operations, the algorithm runs
in expected O(n) time.

We define an atom to be buried if none of its
adjacent tetrahedra are exposed. A tetrahedron, τ ,
is exposed iff there exist a sequence of adjacent
tetrahedra, all with circumradii larger than 2.4Å,
starting at τ and ending at a tetrahedron which
has a face on the convex hull. The radius of 2.4Å
is often used as the combined radii of an average
heavy atom and a water molecule. Therefore, if
a tetrahedron is exposed it indicates that a water
molecule can gain access to its interior.

An atom packing cost is assigned to each heavy
atom using a feed-forward neural network with
10 input neurons, 20 hidden neurons and 1 output
neuron. The values assigned to the input neurons
are based on the lengths of edges incident to
the atom in the Delaunay complex. Ten bins are
defined as shown in Table I. The value of an
input neuron is the number of incident edges
whose length fall within that bin. When train-
ing, the desired atom packing cost for the neural
network is 0 if the atom is in a structure with
resolution less than 1.8Å and 1 otherwise. The
actual output of the neural network is the atom
packing cost. Because different types of atoms
(carbon, nitrogen, oxygen and sulfur) might appear
in different contexts within a protein, a separate
neural network is trained for each of the four types
of atoms. Sulfur, for instance, has a significantly
larger radius than either of the other three atom
types. Edges adjacent to a sulfur atom will there-
fore typically be longer, which is not necessarily
an indication of bad packing.

Bin Interval
0 [0, 1.15)
1 [1.15, 2.04)
2 [2.04, 2.13)
3 [2.13, 2.44)
4 [2.44, 2.72)
5 [2.72, 3.01)
6 [3.01, 3.34)
7 [3.34, 3.71)
8 [3.71, 4.13)
9 [4.13,∞)

Table I
THE INTERVALS OF BINS USED FOR THE 10 INPUTS IN THE

NEURAL NETWORK.

The intervals of the bins in Table I are calcu-
lated such that any edge incident to a buried atom
in the training set has an equal probability of being
in any of the bins. To determine these intervals, all
edges incident to buried atoms in the training set
(defined briefly) are collected in a list. This list is
sorted according to the lengths of the edges, and
split in ten lists of equal sizes. The last elements
of the 9 first lists are used as the boundaries of
the bin-intervals.

When training the neural networks to output
the atom packing cost, only buried atoms are
used as training examples. The reason is that the
network might be trained to recognize the size of
the protein instead of the packing quality. Non-
buried atoms have long adjacent edges, and can be
recognized by the number of edges in bin 9. If a
neural network is accidentally trained to recognize
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the number of non-buried atoms it will have an
estimate of the surface area and hence the size of
the protein. This is a problem because the average
size of low-resolution structures is larger than for
high-resolution.

When evaluating the packing cost of a structure,
the average atom packing costs of all atoms is re-
turned. Averaging over buried atoms only does not
significantly affect the packing cost, and since it
takes longer to determine which atoms are buried
than to calculate the atom packing cost of all
atoms, the latter is chosen. Averaging atom costs
is justified by inspecting the distribution of atom
packing costs. For most proteins this distribution
roughly follows a normal distribution which is
defined by an average and a standard deviation.

A training set, consisting of 3982 protein
structures, is retrieved from the PISCES
server [13] (pre-compiled data set id:
cullpdb pc40 res3.0 R1.0 d110218). No two
structures within this set have sequence similarity
higher than 40%. Half of the structures in the
training set, the high-resolution structures, have
a resolution less than 1.61Å. The other half,
the low-resolution structures, have a resolution
greater than 2.24Å. All chains that are not
specified by the PISCES server are disregarded
even though they appear in PDB-files necessary
for the test and training sets. Ligands and other
heterogeneous atoms (HETATM records) are
included and atoms with multiple occupancies
are filtered such that only the atom with highest
occupancy is included. Only chains with 50
amino acids or more are included. The training
set is the basis for all the choices made in the
packing cost method and it is used to train the
four neural networks.

A test set, consisting of 1838 protein structures,
is retrieved from the PISCES server such that no
two structures in the training set and the test set
have more than 40% sequence similarity. As in
the training set, half of the structures are high-
resolution and the other half are low-resolution.
The PDB-files are treated in the same way those
in the training set. The test set is used to determine
if the packing cost can successfully discriminate
between high- and low-resolution structures and
is also the basis for the timing experiments in the
Results section.

The CASP9 set, consisting of all 49899 protein
structures submitted to the CASP9 experiment, is
retrieved from predictioncenter.org. These struc-
tures are examples of computationally generated
structures similar to those used as examples of

bad packing in RosettaHoles2. This data set is
used to confirm the hypothesis that computational
structures are poorly-packed and to compare the
packing cost to the RosettaHoles2 cost.

III. RESULTS

The experiments seek to illustrate that the pack-
ing cost discriminates between well-packed and
poorly-packed structures as well as RosettaHoles2,
but does it faster.

The discriminatory power of the packing cost
is illustrated using distributions of packing costs.
Figure 1 shows distributions of packing costs for
high- and low-resolution structures in the test set
and for structures in the CASP9 set. Figure 2
shows similar distributions for the RosettaHoles2
cost.

The neural networks that determine the pack-
ing cost are trained to distinguish high-resolution
structures from low-resolution structures so it may
seem surprising that the corresponding distribu-
tions in Figure 1 are not completely separated.
The differences between high- and low-resolution
structures can be very subtle so sometimes the
packing cost will mis-categorize. As expected,
however, most high-resolution structures have a
lower packing cost than low-resolution structures
and the degree of misclassification is not worse
than that of the RosettaHoles2 cost, shown in
Figure 2.

Both the packing cost and RosettaHoles2
cost can separate high-resolution structures from
CASP9 structures with a high accuracy. This
is noteworthy because, unlike the RosettaHoles2
cost, the packing cost is not trained specifically to
classify computationally generated structures.

Figure 4. Typical example of a structure with very high
RosettaHoles2 cost.

The packing cost and RosettaHoles2 cost both
separate high-resolution structures from computer-
generated ones, but they may characterize different
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Figure 1. Distributions of packing costs for proteins in the test set and the CASP9 set.

Figure 2. Distributions of RosettaHoles2 costs for proteins in the test set and the CASP9 set.

properties. Figure 3 shows a scatter-plot of Roset-
taHoles2 costs plotted against packing costs. The
main cluster of structures has RosettaHoles2 costs
between 1 and 3. Within this cluster there is a clear
linear correspondence between the packing cost
and the RosettaHoles2 cost (Pearson’s squared r
of 0.65). There are roughly 100 structures with a
RosettaHoles2 cost of more than 3.0. The majority
of these are non-globular chains, often with an
extended and exposed piece as shown in Figure 4.
It is not clear if such structures should be con-
sidered well-packed since they are not complete,
so it is chosen to disregard these. There are also
15 structures with RosettaHoles2 costs less than
1. It seems that ligands or residues marked as
’unknown’ are responsible for most of these, since
removing them causes the RosettaHoles2 cost to
increase above 1. These are disregarded as well.
It is noted that the packing cost is very robust
and never returns very extreme values. It is also
observed that for the majority of proteins, there

is a correlation between the packing cost and the
RosettaHoles2 cost.

To demonstrate the improved speed of our
method, the system time of the packing cost calcu-
lation is measured and displayed as a function of
the number of atoms in each structure (Figure 5).
The same is done for RosettaHoles2. Both pro-
grams are run on a MacBook 2GHz computer and
the timing is performed in the source code with
getrusage. Only the system time of the scoring
itself, and not, for example, the time to read the
PDB-file, is measured.

For the smallest proteins with less than 500
atoms, the packing cost is calculated between 3
and 4 times faster than the RosettaHoles2 cost.
For the larger proteins with roughly 6000 atoms,
the packing cost is calculated more than 5 times
faster. The computation that dominates out method
is finding the Delaunay complex. As mentioned
in the Methods section the insertion algorithm
uses the chain-structure of the protein to generate
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Figure 3. Correlation between packing cost and RosettaHoles2 cost for proteins in the test set.

Figure 5. Timing of the packing cost and the RosettaHoles2 cost for proteins in the test set.

the Delaunay complex in expected linear time.
This fact is clearly reflected in the timing plot
on Figure 5. RosettaHoles2 uses the DAlphaBall
program [14], [15] to get the volumes of Voronoi
cells. As an intermediate step DAlphaBall finds
the Delaunay complex using an insertion and
flipping algorithm similar to ours, but it contains
a data structure for point-location which gives an
expected running time of O(n lg n) and does not
utilize the chain-structure of proteins.

The ultimate goal of having a fast characteriza-
tion of the packing cost is to include it as a term
in an energy function and improve the packing
quality of a protein structure computationally. For
a typical protein of ≈ 2000 atoms, the packing
cost is calculated in ≈ 200ms which, in theory,
is fast enough to do structure refinement on a
massively parallelized system. Furthermore there

are a number of ways to improve the speed of the
packing cost. Lui and Snoeyink [16], e.g., reports
a running time of the tess3 triangulation program
that is at least 3 times faster than our insertion
algorithm. Guibas and Russel [17] describes how
updating the Delaunay complex, after a subset of
the points have moved, can be performed faster
than recalculating the entire Delaunay complex.

A problem with the packing cost is that many
energy functions (Rosetta’s, for instance) require
their energy terms to be differentiable in order
to do fast updates of the energy. In its current
form the packing cost is not differentiable. One
of the main findings of this paper, however, is
that edge-lengths in the Delaunay complex char-
acterize packing just as well as the volume of
the Voronoi cells. Since the edge-lengths can
easily be differentiated with respect to vertex-
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coordinates one can create a differentiable packing
cost measure by using a differentiable machine
learning method such as support vector machines
on distributions of edge-lengths.

IV. CONCLUSION

An estimate of the packing quality is useful
for computational refinement of protein structures.
A packing cost was developed and shown to
characterize the packing quality of proteins. It
was concluded that using edges of the Delaunay
complex for characterizing packing is just as ef-
ficient as using the Voronoi cells. The observed
improvements in speed over previous methods
makes it well suited for integration into an energy
function.

ACKNOWLEDGEMENTS

We thank William Sheffler for his kind help in
making RosettaHoles2 run properly.

REFERENCES

[1] R. W. W. Hooft, G. Vriend, C. Sander, and E. E.
Abola, “Errors in protein structures,” Nature, vol.
381, no. 6580, p. 272, 1996.

[2] R. A. Laskowski, M. W. MacArthur, D. S. Moss,
and J. M. Thornton, “PROCHECK: a program
to check the stereochemical quality of protein
structures,” Journal of Applied Crystallography,
vol. 26, no. 2, pp. 283–291, 1993.

[3] M. J. Sippl, “Recognition of errors in three-
dimensional structures of proteins,” Proteins,
vol. 17, no. 4, pp. 355–362, 1993.

[4] N. Pattabiraman, K. B. Ward, and P. J. Fleming,
“Occluded molecular surface: analysis of pro-
tein packing.” Journal of Molecular Recognition,
vol. 8, no. 6, pp. 334–344, 1995.

[5] J. M. Word, S. C. Lovell, T. H. LaBean, H. C. Tay-
lor, M. E. Zalis, B. K. Presley, J. S. Richardson,
and D. C. Richardson, “Visualizing and quantify-
ing molecular goodness-of-fit: small-probe contact
dots with explicit hydrogen atoms.” Journal of
Molecular Biology, vol. 285, no. 4, pp. 1711–
1733, 1999.

[6] M. Gerstein, J. Tsai, and M. Levitt, “The volume
of atoms on the protein surface: calculated from
simulation, using Voronoi polyhedra.” Journal of
Molecular Biology, vol. 249, no. 5, pp. 955–966,
1995.

[7] A. Poupon, “Voronoi and Voronoi-related tessel-
lations in studies of protein structure and inter-
action.” Current Opinion in Structural Biology,
vol. 14, no. 2, pp. 233–241, 2004.

[8] K. Rother, P. W. Hildebrand, A. Goede, B. Gruen-
ing, and R. Preissner, “Voronoia: analyzing pack-
ing in protein structures,” Nucleic Acids Research,
vol. 37, no. suppl 1, pp. D393–D395, 2009.

[9] W. Sheffler and D. Baker, “RosettaHoles: Rapid
assessment of protein core packing for structure
prediction, refinement, design, and validation,”
Protein Science, vol. 18, no. 1, pp. 229–239, 2008.

[10] ——, “Rosettaholes2: A volumetric packing mea-
sure for protein structure refinement and valida-
tion,” Protein Science, vol. 19, no. 10, pp. 1991–
1995, 2010.

[11] C. A. Rohl, C. E. M. Strauss, K. Misura, and
D. Baker, “Protein structure prediction using
rosetta,” in Numerical Computer Methods, Part D,
ser. Methods in Enzymology, L. Brand and M. L.
Johnson, Eds. Academic Press, 2004, vol. 383,
pp. 66–93.

[12] H. Ledoux, “Computing the 3d Voronoi diagram
robustly: An easy explanation,” in Proceedings
of the 4th International Symposium on Voronoi
Diagrams in Science and Engineering. Wash-
ington, DC, USA: IEEE Computer Society, 2007,
pp. 117–129.

[13] G. Wang and R. L. Dunbrack, “PISCES: a protein
sequence culling server,” Bioinformatics, vol. 19,
no. 12, pp. 1589–1591, 2003.

[14] H. Edelsbrunner and P. Koehl, “The weighted-
volume derivative of a space-filling diagram,” Pro-
ceedings of the National Academy of Sciences of
the United States of America, vol. 100, no. 5, pp.
2203–2208, 2003.

[15] R. Bryant, H. Edelsbrunner, P. Koehl, and
M. Levitt, “The area derivative of a space-filling
diagram,” Discrete & Computational Geometry,
vol. 32, pp. 293–308, 2004.

[16] L. Yuanxin and J. Snoeyink, Combinatorial and
Computational Geometry. New York, NY, USA:
Cambridge University Press, 2005, ch. 23, pp.
439–458.

[17] L. Guibas and D. Russel, “An empirical compar-
ison of techniques for updating delaunay triangu-
lations,” in Proceedings of the Twentieth Annual
Symposium on Computational Geometry, ser. SCG
’04. New York, NY, USA: ACM, 2004, pp. 170–
179.

114



5.8 Visualizing and Representing the Evolution of Topological
Features

The following 2 pages contains the extended abstract ”Visualizing and representing the evolution
of topological features. R. Fonseca and D. M. S. Jørgensen. Extended abstract for CG:YRF at
SoCG. 2012” [64].
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Visualizing and representing the evolution of topological features

Rasmus Fonseca∗ Desirée Malene Schreyer Jørgensen†

Abstract

Simplicial complexes are discrete representations of
topological spaces that are practical for computational
studies. The first three Betti-numbers (indicating the
number of components, tunnels and voids), as well as
the topological persistence of each such feature, is well-
defined and can be efficiently computed for simplicial
complexes embedded in 2D and 3D [1, 2].

We introduce a novel representation of the evolution
of topological features in simplicial complexes using so-
called tunnel-trees in 2D and void-trees in 3D. This new
representation makes it possible to analyze topological
evolution by applying tools for analysis of binary trees.
Furthermore it supplies a new method for visualizing
topological evolution.

Introduction

A simplicial complex, K, is a set of simplices where any
face of a simplex in K is also in K and the intersec-
tion of two simplices in K is either empty or a face of
both simplices. Delfinado and Edelsbrunner [1] define
a filter to be a sequence of simplices, σ1, σ2, . . . , σn,
where Ki = {σ1, σ2, . . . , σi} is a simplicial complex for
any choice of i (see left part of Figure 1). The filter
represents the evolution of a simplicial complex and
will be the focus of the methods described here. The
topological features of a complex can be described us-
ing the Betti-numbers, βd, which indicate the rank of
the dth homology group. The first three Betti-numbers
(β0, β1, β2) can be interpreted more intuitively as the
number of components, holes, and voids respectively.
A O(nα(n))-time algorithm exists to calculate the evo-
lution of βd as a simplicial complex is grown using a
filter [1]. This method identifies each k-simplex, σi, as
either positive if it creates a new k-cycle and thereby
increases βk, or negative if it changes a k-cycle into a k-
boundary and thereby decreases βk−1. For each positive
k-simplex, σi, the negative (k + 1)-simplex, σj , that is
responsible for turning the k-cycle, created by σi, into a
k-boundary can be efficiently identified [2]. The differ-
ence between the indices of such two simplices is defined
to be the persistence of the k-cycle represented by σi.

∗Department of Computer Science, University of Copenhagen,
rfonseca@diku.dk
†Department of Computer Science, University of Copenhagen,

daisy@diku.dk

Tunnel- and void-trees

One interesting observation about tunnels in simplicial
complexes embedded in 2D is that, often, when a posi-
tive 1-simplex (edge) is added to the complex, it splits
one tunnel in two. If the empty space around the com-
plex is considered a bounding tunnel, then every positive
edge will split an existing tunnel in two. Similarly, if
the entire space around a simplicial complex embedded
in 3D is considered a bounding void, then a positive 2-
simplex (triangle) always splits an existing void in two.

Based on this observation we define a tunnel-tree (or
β1-tree) of a 2D filter to be a binary tree where each
node represents a distinct tunnel (see right part of Fig-
ure 1). The root is the bounding tunnel, and the leaves
are triangular tunnels that will not be split further.
With each node n we associate the positive edge that
represents the tunnel, ε(n), and with each leaf, we as-
sociate the negative triangle that fills this tunnel, τ(n).
The tunnel-tree is ordered such that for any node n,
the triangle of the rightmost leaf, τ(Tree-Max(n)), is
the triangle that ’destroys’ ε(n) and hence determines
its persistence. A void-tree (or β2-tree) of a 3D filter is
defined in a similar fashion, only with positive triangles
as nodes and negative tetrahedra as leaves.

A βk-tree is constructed by running through the filter
backwards as shown in Algorithm 1. Leaves are created
when a negative (k+ 1)-simplex is encountered and the
roots of leaves are connected when positive k-simplices
are encountered.

Algorithm 1 Build a βk-tree given a filter

1: Create a ’bounding node’, nb
2: for i = n to 1 do
3: if σi is a negative (k + 1)-simplex then
4: Create a new node, n, and set τ(n)← σi

5: else if σi is a positive k-simplex then
6: (n0, n1) ← Nodes of the two (k + 1)-simplices

adjacent to σi

7: (n0, n1)← (Root(n0),Root(n1))
8: Swap n0 and n1 if τ(Tree-Max(n0)) is

younger than τ(Tree-Max(n1))
9: Create a new node n with n.left ← n0,

n.right← n1, and ε(n.left)← σi

10: end if
11: end for
12: return Root(nb)

This is an abstract of a presentation given at CG:YRF 2012. It has been made public for the benefit of the community and should be considered a preprint rather
than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.
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Figure 1: Left: A 2D filter. For all positive k-simplices, σi, the (k + 1)-simplex, σj , responsible for turning the
k-cycle, represented by σi, into a k-boundary is indicated as well. Right: The tunnel-tree (β1-tree) of the filter.
Both ε(n) and τ(n) are shown for each node if they are defined.

In line 4, the (k + 1)-simplex can be associated with
its node using a hash-map. This ensures that locating
the nodes of adjacent (k + 1)-simplices in line 6 can
be performed in constant time. In line 6, if one of the
(k + 1)-simplices adjacent to σi is not defined then the
bounding node nb is used instead. If σi has no adjacent
(k+ 1)-simplices then a new node is created for n0, and
n1 is set to nb. Line 8 guarantees that the youngest
simplex in a subtree can always be found by going to
the far right in the tree using Tree-Max.

A βk-tree may be arbitrarily unbalanced, so a
straightforward implementation will run in O(n2) time
worst case. The Tree-Max-method can be improved
to O(1) time by maintaining the maximum of each sub-
tree as they are constructed. A data structure similar to
disjoint-sets can be used to make the Root method run
in O(α(n))-time, so the entire method runs in O(nα(n))
worst case time.

Applications

One attractive property of βk-trees is that they give an
alternative representation of the topological evolution
of a filter. This can be used in several ways.

First, the fact that simplices in the subtree of a par-
ticular node will tend to be spatially close to each other
gives rise to a new definition of local persistence. A par-
ticular edge, representing a tunnel, might be deemed
particularly persistent if its subtree contains more than
a certain number of nodes. Such a definition of persis-
tence will not be affected by the addition of simplices
outside the tunnel.

Using a Delaunay complex and the radius of the
smallest empty circumcircle to generate an α-filter [3],
the arrangement of a particular sub-tree also gives an

indication of the shape of the corresponding feature. For
instance, a node with an unbalanced sub-tree indicates
a tunnel that is narrowing, whereas a balanced node
indicates a constant width.

For some applications, a tree might be a better vi-
sualization of the topological evolution than e.g. k-
triangles [2]. The above mentioned properties of locality
can be computationally analyzed, but they can also be
derived simply by inspecting βk-trees. The length of
edges in the tree can furthermore be scaled to reflect
the difference in birth time of the ε(n) simplices.

Another interesting property of βk-trees is that all
(k+1)-simplices within a particular tunnel/void are eas-
ily identified by locating the node in the tree with the
desired ε(n) and then collecting all leaves in the subtree
using any tree-traversal method. In this manner the
area of tunnels/volume of voids, for instance, is easily
calculated.

Finally, any analysis method that works on trees is
now applicable to topological evolutions. For instance
the topology of two point-sets can be compared by find-
ing the tree-edit-distance between the tunnel-trees (or
void-trees) of their respective α-filters.
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