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Abstract

The pathogenesis of osteoarthritis (OA) includes complex events in the whole
joint. Cartilage loss and bone remodelling are central in OA progression. In
this project, we investigated the feasibility of quantifying OA by analysis
of the tibial trabecular bone structure in low-field knee magnetic resonance
imaging (MRI). The development of automatic and more sensitive indica-
tors of OA in conjunction with low cost equipment have the potential to
decrease the length and cost of clinical trials. We present a texture analysis
methodology that combined machine-learning techniques in a fully auto-
matic framework. Different linear feature selection approaches where in-
vestigated. The methodology was evaluated in a longitudinal study, where
MRI scans of knees were used to quantify the tibial trabecular bone in a bone
marker for OA diagnosis and another marker for prediction of tibial cartilage
loss. The healthy and diseased subjects were defined by the Kellgren and
Lawrence index assigned by radiologists and the levels of cartilage loss were
assessed by a segmentation process. A preliminary radiological reading of
the knees with high and low risks of cartilage loss suggested the prognosis
bone marker captured aspects of the vertical trabecularization of the tibial
bone to define the prognosis of cartilage loss. We also investigated which
region of the tibia provided the best prognosis for medial tibial cartilage loss.
The structure of the tibial trabecular bone was divided in localized subre-
gions in an attempt to capture the different pathological features occurring at
each location. We applied multiple-instance learning, where each subregion
was defined to be one instance and a bag held all instances over a full region-
of-interest. The inferior part of the tibial bone was classified as the most
relevant region for prognosis of cartilage loss and a preliminary radiological
reading of a subset of the samples suggested the bone marker also captured
the vertical trabecularization of the tibial bone to define the most relevant
region. In a clinical point of view, besides presenting a bone marker able
to predict disease progression and diagnostic bone marker superior to other
OA biomarkers, our findings underlined the importance of the trabecular
bone to the understanding of the OA pathology.
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Chapter 1
Introduction, Background and
Motivation

1.1 Osteoarthritis

Osteoarthritis (OA) is a widespread and degenerative, chronic disease that
affects up to 80% of the population over 65 years of age [13]. A recent report
indicates that knee OA is likely to become the fourth most common cause of
disability in women and the eighth most common cause in men [107]. Recent
estimates suggest that total costs for arthritis, including OA, may exceed 2%
of the United States gross domestic product [17]. Due to the longevity of
working careers and the prevalence of OA in middle-aged persons, OA may
cause a significant burden in lost time at work and early retirement [17].

The non-modifiable risk factors include gender and age whereas the mod-
ifiable risk factors include body mass index (BMI), injury/trauma, among
others.

Recent prospective studies have demonstrated that obesity is a primary
risk factor for knee OA [27]. Overloading the knee joints can lead to cartilage
breakdown and failure of components of structural support [51].

Before 50 years of age, the prevalence of OA in most joints is higher in men
than in women. After about age 50 years, women are more often affected
than men [51]. Some studies have shown women have increased rates of
cartilage loss and progression of knee cartilage defects than men [52, 127].

The disturbance of the mechanical axis of the leg also influences progres-
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sion of knee OA. Sharma and colleagues [90] confirmed that varus alignment
was associated with an increased risk of medial tibiofemoral narrowing and
valgus alignment with an increased risk of lateral tibiofemoral narrowing;
the greater the varus or valgus, the greater the risk of narrowing.

The pathology of OA involves multiple components of the joint in a
disease process that includes progressive degradation of articular cartilage
with concomitant changes in the bone underneath the cartilage, including
changes in trabecular bone structure, bone marrow lesions, development of
marginal outgrowths, osteophytes and an abnormal increase in density and
thickness of bone (bony sclerosis). Soft-tissue structures in and around the
joint are also affected. These structures include synovium, which may reveal
modest inflammatory infiltrates; ligaments, which often become lax; menis-
cus, which may present traumatic and degenerative lesions; and bridging
muscle, which becomes weak [48, 51].

Typical symptoms are swelling, pain, stiffness and decreased mobility
leading to an impaired quality of life. Nevertheless, many people with
pathologic and radiographic evidence of OA have no symptoms [91]. Even
so, only treatments of symptoms of OA are well documented so far [116]. One
reason for this, may be a insufficient understanding of the disease process
and whether the joint damage is reversible or not.

The investigation presented in [8] considers a point-of-no-return in the
OA disease process and discuss whether different intervention strategies
may only be efficacious at distinct stages of OA. The authors suggest the use
of structure-modifying OA drugs, because there is a good chance for restor-
ing the tissue turnover, specially in early OA stages, when drug interventions
seems more effective.

1.2 Is OA a bone or cartilage disease?

There has been speculation for many years that bone may be the primary
organ triggering OA, microtrabecular fractures and their subsequent healing
could increase the stiffness of the subchondral bone. This process could
transmit increased load to overlying cartilage, leading to secondary cartilage
damage [53].

Radin et al. [118] was the first to demonstrate subchondral bone changes



Introduction, Background and Motivation 10

in OA patients and to propose that they might be involved in both the
initiation and progression of cartilage lesions.

In contrast with this idea, some results involving animal experiments
showed that the subchondral plate and trabeculae underneath cartilage were
thin when cartilage loss started; only in later OA development, the bony
sclerosis occurred, along with thickening of both areas of bone [40, 92].

These discordant findings may be explained, first by the fact that Radin
et al. immobilized the joint during the experiments. This mechanism may
not represent the usual process of OA development. Furthermore, without
the proper means of monitoring the disease evolution, it may be impossible
to tell whether cartilage or bone lesion comes first. Also, cartilage loss and
bone sclerosis could be two independent processes, both consequences of
increased mechanical stress [53].

Although controversial, these findings underlined the importance of
understanding the pathophysiologic sequences and consequences of OA
pathology and contributed to the gradual shift on the characterization of OA
from a cartilage centred view towards a whole joint disease.

1.3 Biomarkers in Osteoarthritis

Biomarkers are key elements in the evaluation of pathogenic processes, used
as indicators of abnormal biologic processes and pharmacologic interven-
tions efficacy.

Biomarkers of bone and cartilage quality may allow diagnosis in the early
stages of OA. One example of a cartilage biochemical marker is the urinary
levels of collagen type II C-telopeptide fragments (CTX-II) [123] that can be
used as an indicator of cartilage degradation. Bone quality and bone strength
have typically been measured by bone mineral density (BMD) or by bone
histomorphometry measures such as trabecular thickness and trabecular
number [109]. BMD obtained from dual energy X-ray absorptiometry scans
is often used in osteoporosis research to measure bone quantity and it is not
necessarily related to other aspects of trabecular bone, such as structure and
quality.

For several decades, clinical research has relied on radiographic biomark-
ers for the diagnosis of OA. The traditional marker (US Food and Drug Ad-
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ministration (FDA) approved) is the joint space narrowing (JSN) measured
from radiographs. Besides JSN, the Kellgren & Lawrence (KL) [81] grading
method is commonly used to define OA. The KL score measures the joint
space width — and thus indirectly cartilage degradation — together with
other OA features such as osteophyte formation and sclerosis [105]. Table
1.1 describes the KL grading system.

However, scores like JSN and KL are based on radiographs, where mainly
bone and hard tissues are visible. The development of unbiased and more
sensitive indicators of OA could lead to smaller clinical studies and make
the development of drugs more efficient. Alternatively, more recent imaging
techniques appear promising in measuring the morphologic and molecular
state of cartilage [61] and bone structure [87, 100]. Some of these measures
are commented in Section 1.5.

Table 1.1: The table describes the KL grading system that grades from radio-
graphs the severity of OA [81].

KL 0 healthy Normal
KL 1 early OA Doubtful narrowing of joint space and possible osteo-

phyte lipping
KL 2 OA Definite osteophyte and possible narrowing of joint

space
KL 3 OA Moderate multiple osteophytes, definite narrowing of

joint space, some sclerosis and possible deformity of
bone contour

KL 4 advanced OA Large osteophytes, marked narrowing of joint space,
severe sclerosis and definite deformity of bone contour

1.4 Machine learning and texture analysis in imag-
ing biomarkers

Improvement in imaging biomarkers requires the application of prior knowl-
edge and a discriminative representation of the data. Because of large varia-
tions and complexity, it is hard to formulate analytic solutions for these tasks.
Alternatively, solutions based on machine learning has brought significant
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advances to numerous fields in medical imaging [133].
The goal of machine learning is to solve a given problem by applying

knowledge acquired from an automatic learning process using a set of ex-
ample data or past experience [2]. Some applications of machine learning
include computer-aided diagnosis, image-guided therapy, image database
retrieval, image segmentation, registration and annotation [133].

Texture analysis is an image analysis technique that quantifies the varia-
tions in intensity patterns, including variations that are imperceptible to the
human visual system [80]. Texture can be analyzed in terms of model-based
signal processing, variations of intensity, or structural elements. One exam-
ple of a structural analysis is the study from Sørensen et al. [132], where a
general texture-based machine-learning framework was used for measuring
emphysema in CT images of the lungs. Another example is the work by
Raundahl et al., where a feature set based on eigenvalues of Hessian matrix
was used to quantify specific biological effects in the breast tissue [122].

Support for a texture analysis approach also comes from the investigation
in [143] that combined a set of texture features to evaluate different tissues
and their changes in multiple sclerosis studies. Their outcome endorses that
a general set texture analysis can discriminate between different tissues and
contribute to early diagnosis.

Until now, most of the texture features used in the analysis of trabecu-
lar bone have been based on spatial image statistics [6]. For example, the
investigation presented in [139] employed four automated methods of tex-
ture analysis (grey level histogram, co-occurrence, runlength and gradient
matrices) for structural characterization of trabecular bone.

Fractal analysis is another approach of spatial statistical analysis that has
been computed to characterize variations in the structural network of the
trabeculae bone. By applying fractal signature analysis (FSA) in digitised
macroradiographs to quantify changes in the subchondral tibial trabecular
bone in knee OA [19], Buckland-Wright et al. suggested that increased hori-
zontal trabecular thickness occurred early and preceded the later changes in
the vertical structures in the diseased compartment. The concept of fractal
lacunarity analysis was introduced to provide parameters sensitive to bone
micro architecture changes in aging. The authors proposed a lacunarity
function to represent the variation of mass density of pixels in the image,
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which was used to represent a standard for the evaluation of trabecular bone
architecture.

1.5 Magnetic resonance imaging markers

Quantitative and semiquantitative measurements in magnetic resonance
imaging (MRI) scans might allow improvement of a subjective evaluation.
Quantitative measurements consider one or several parameters to objec-
tively characterize the pathology, typically using a continuous scale. On the
other hand, semiquantitative measurements typically include a combination
of subjective and objective evaluations involving quantitative measures and
visual assessment, often using an ordinal scale. A thorough review of quan-
titative and semiquantitative measurement methods in OA was presented
by Eckstein et al. [45].

Current semiquantitative measures of the whole knee joint cover vari-
ous structures within the joint. An example of a semiquantitative method
is the whole-organ MR imaging score (WORMS), which has been used in
several clinical trials and epidemiologic studies [111,125]. Other whole-joint
semiquantitative methods are the Knee OA Scoring System (KOSS) [86] and
the Boston-Leeds OA Knee Score (BLOKS) [69]. All methods analyze OA
features such as cartilage defects, bone marrow lesions, subchondral cysts,
meniscal abnormalities and osteophytes. The features are scored by a trained
radiologist, resulting in an overall score of the knee. Neither of the covered
structures analyze the trabecular network of plates and rods directly.

Standard techniques of stereology combined with texture analysis of high
resolution MRI have been used to quantify trabecular structure and to de-
rive measures such as the mean intercept length, apparent trabecular bone
area fraction, apparent trabecular spacing, apparent trabecular number and
apparent trabecular spacing [87, 100]. These parameters are called "appar-
ent" due to the limited spatial in vivo resolution of MRI. The study of Lin
et al. [96] applied a thresholding technique based on regional intensity his-
tograms to calculate these measures from images obtained from a 1.5 Tesla
MRI scan. Their results demonstrate that MRI may be a very useful tool for
bone structure and microarchitecture assessment.

Examples of MRI cartilage markers include: volume, thickness, smooth-
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ness, curvature and homogeneity. The volume marker describes the quantity
of cartilage, which might be normalized to the joint size [57,99]. Thickness is
measured as the mean thickness of the cartilage sheet [32,129]. The smooth-
ness relates to the fine-scale surface curvature and the curvature marker
measures the global bending of the cartilage sheet [56,67]. The homogeneity
measures the uniformity of the cartilage and can be computed as 1 minus
the entropy, where the entropy quantifies the intensity histogram of the
cartilage [114].



Chapter 2
PhD dissertation: Purpose and
overview

2.1 Purpose

The main purpose of this PhD research was to investigate potential bone
markers based on quantification of the tibial trabecular bone structure, in
order to support early diagnosis and prognosis of knee OA. More sensitive
and automatic markers can allow clinical studies with a smaller population
or a shorter duration, both potentially reducing the cost of the study and
supporting the drug development process. The studied methodology was
based on universal machine learning and texture analysis of MRI scans.

Universal approaches are general methods designed for generic tasks, as
opposed to tailor-made methods designed to solve specific tasks. Typically,
these methods include a training phase where task-specific parameters are
learned. Examples of medical imaging applications, using this approach can
be seen in [132, 143].

2.2 Choice of region of interest

This project focused on the analysis of tibial trabecular bone structure (see
Figure 2.1). Chapter 4 presents the quantification of the subchondral medial
trabecular tibial bone. The region of interest (ROI) was defined as a region
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Figure 2.1: Sagittal slice of a 3D scan of a knee highlighting the trabecular
bone, the subchondral trabecular bone, the cortical bone and manual outlines
of the tibial cartilage. The subchondral bone is the region below the tibial
cartilage, providing support for the cartilage of the articular surface. The
cortical bone is the hard outer layer of the bone, while the trabecular bone is
the porous, sponge-like inner structure.

right below the medial tibial cartilage with a small margin to the cortical
bone, in an area expected to have relatively homogeneous biomechanical
stress. Other chapters consider the whole tibial trabecular bone as the ROI.

The mechanism by which bone contributes to OA is until now poorly
understood. Although it remains unclear how bone is involved in OA, as
bone adapts to loads by remodelling to meet its mechanical demands, bone
alterations likely play a role in OA development. Previous measurements
have shown that reduced tissue hardness and alterations in microstructure of
the trabecular bone tissue are associated with OA [30]. Furthermore, some
speculation has stated for many years that bone may be a primary organ
triggering OA [53].

By focusing on trabecular bone quantification, we intended to support
the development of markers targeting the early structural changes in OA,
which could boost dedicated research into treatments focusing early-stage
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OA, where it may be reversible [8].

2.3 Choice of modality

Joint bone structure has previously been investigated mainly from radio-
graphs, computed tomography (CT), micro-computed tomography (µCT),
or high-resolution MRI’s. However, µCT is only applicable ex vivo and ra-
diographs are two-dimensional, generating projection artifacts. So, CT and
mainly MRI are used increasingly in OA research.

Furthermore, radiographs are not very perceptive to change and early
pathologic features of OA [70]. For example, the study of Jones et al. [77]
indicated that a considerable amount of cartilage (1-13%) can be lost before
radiographic OA (ROA) may be detected by JSN.

Alternatively, MRI enables 3D visualization and allows imaging of most
tissues in the joint, including the trabecular bone structure and its changes
[105]. When compared to radiographs, a recent MRI study [62] reported
signs of early OA in the majority of knees in subjects without signs of ROA,
suggesting that, compared to radiographs, MRI may be superior at detecting
and hence understanding early OA of the knee in humans.

In this project we used low-field MRI scans of knees from an existing
longitudinal study. Analyzing trabecular bone in a MRI with low resolution
is a non-trivial task. Low-field MRI suffers from partial volume effects,
hence tiny structures like the trabeculae are smaller than the voxel size and,
therefore, jointly contribute to the voxel gray-scale value.

To deal with partial volume effects, statistical methods can calculate a
local intensity threshold value that could distinguish voxels containing pure
marrow from those partially occupied by bone [136]. Contrarily, we extract a
generic set of features to capture the differential geometry structure of these
intensities, potentially supporting the analysis of the intricate network of the
trabecular bone as a whole. Previous work based on texture analysis has
shown that characteristics of the trabecular architecture may be extracted
without requiring rigorous segmentation between the individual trabeculae
[75].
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2.3.1 Quality of Images in low field MRI

Clinical MRI scanners have magnetic field strengths ranging from 0.1 to 3.0
Tesla. When the field strength increases, the signal-to-noise ratio improves
and the potential resolution increases. In some high-field MRI scanner, the
trabecular structure of the bone can be more visible. Therefore, it may be
possible to directly monitor the trabeculae and determine its importance in
the development and progression of OA [105]. However, these MRI scanners
are costly and the scanning time increases with the resolution.

The lower resolution in a Low-field MRI implies that tiny structures like
the individual trabeculae are not directly visible. The trabecular thickness
range from 100 to 150 µm [83]; therefore, they are smaller than the voxel size,
contributing jointly to the voxel gray-scale value. On the other hand, they
are less expensive to purchase and operate, which make them attractive for
both clinical studies and the general practitioner.

In terms of image quality, high-field MRI have shown better spatial and
contrast resolution, but lower field strength adds fewer artifacts and smaller
chemical shift artifacts [134]. Furthermore, low-field scanners are found
in smaller versions than the whole-body high field scanner, designed to
scan specific body parts such as the knee. This kind of scanner places the
magnetic coil closer to the structure to be imaged, which increases the field
homogeneity, as compared to the whole-body scanner [106].

Despite the differences, prospective studies [47, 84, 85] have shown that
low-field MRI can achieve diagnostic accuracy comparable to high field MRI
for detection of bone erosions, synovitis, medial meniscus, along with ante-
rior and posterior cruciate ligament tears. The only exception was presented
by Kinnune et al. [84], where the sensitivity for lateral meniscus lesions was
considerably lower than in hight-field MRI.

2.4 Main contributions

The main contributions of this dissertation are:

• Investigation of aggregate markers based on measurements targeting
different anatomical structures, the medial tibial cartilage and the sub-
chondral tibial bone (Chapter 4).
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• Comparison between different classifiers and different linear feature
selection methods in texture analysis (Chapter 4 and Chapter 5).

• The improvement of a previous developed texture analysis frame-
work [103] by the implementation of a new feature selection strategy
(Chapter 5).

• A bone quantification method that potentially can foster the develop-
ment of a new marker able to predict disease progression and identify
patients most likely to progress (Chapter 6).

• Identification of the inferior part of the tibial bone as the most relevant
region for prognosis of cartilage loss (Chapter 7).

• Preliminary findings suggesting a slight relation of the developed bone
quantification marker to vertical trabecularization (Chapter 6 and 7).

2.5 Overview of the Thesis

After the two first introductory chapters, the main content of this thesis
is presented in six chapters. Chapter 3 describes the data sets used in all
experiments presented in this thesis. It includes the MR image acquisition,
a short description of the study population and a description of the features
extracted from the images. Chapter 4 presents the first experiments for
diagnosis of OA, evaluating the subchondral medial trabecular tibial bone
and using a previous version of the framework [103]. The new framework
is presented in Chapter 5. This chapter also details our investigation in
linear feature selection methods. Chapter 6 presents the clinical outcome
of the new texture analysis framework. We analysed the whole trabecular
tibial bone to quantify a prognosis bone marker potentially able to predict
disease progression and identify patients most likely to progress. In Chapter
7, we describe a methodology to identify the most informative region of a
ROI and show which region of the tibial bone is potentially more related
to cartilage loss. Chapter 8 describes a preliminary investigation on sparse
approaches for linear discriminant analysis and partial least squares applied
for texture analysis. The last chapter, Chapter 9, concludes the dissertation by
summarizing the research and providing a general discussion of its content.



Chapter 3
Image Data Aquisition

3.1 Study population

For the experiments described in this thesis, we used data sets consisting of
MRI scans of both left and right knees from 159 test subjects in a longitudinal,
community-based, non-treatment study [33]. After exclusion of scans due
to acquisition artefacts, 313 knee scans remained in the diagnosis data set.
The prognosis data set consisted of 268 scans, on account of the subjects that
dropped out prior to follow-up.

All scans have been scored using the Kellgren & Lawrence score [81] de-
termined from radiographs by an experienced radiologist. The score ranges
from 0 to 4, where KL 0 indicates a healthy knee, KL 1 borderline ROA
and KL 2–4 defines a knee with moderate to severe ROA. Figure 3.1 shows
examples of textures from scans with different KL indexes and Table 3.1
shows the distribution of KL scores in the population. The table shows the
healthy/ROA groups separated by a horizontal line, the percentage of knees
in each one is 81% and 19%, respectively.

The population characteristics were: age 56± 16 (mean and standard de-
viation), BMI 26 ± 4 and 47% female. The subjects signed informed consent
forms. The study was conducted in accordance with the Helsinki Declara-
tion II and European Guidelines for Good Clinical Practice [60]. The study
protocol was approved by the local ethical committee.
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Figure 3.1: a) The figure shows examples of textures from scans with different
KL indexes

Table 3.1: The distribution of the population: number of knees for each KL
score. The horizontal line separates the healthy/borderline group (KL 0 and
1) from the ROA group (KL 2 to 4).

KL score Num knees

0 158
1 94
2 31
3 29
4 1

Total 313

KL, Kellgren and Lawrence.

3.2 Magnetic resonance image acquisition and car-
tilage volume assessment

The scans were obtained in 2004 and 2006 at the Center for Clinical and Basic
Research in Ballerup, Denmark. The MRI scanner was an Esaote C-Span
low-field 0.18T extremity scanner. The key scanner parameters were Turbo
3D T1 sequence, 40◦ flip angle, 50 ms repetition time and 16 ms echo time.
During scanning, test subjects were in a supine position with no load-bearing.
Acquisition time was approximately 10 minutes.

The size of the scans was 110 × 256 × 256 voxels and after automatically
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removing boundaries that contained no information, the scan size was 110×
170 × 170 voxels. The spatial in-plane resolutions of the sagittal scans were
0.70 × 0.70 mm, with slice thickness ranging between 0.70 and 0.94 mm
depending on joint size, where the most common distance was 0.78 mm
making the voxels nearly isotropic. An example of a knee scan sagittal slice
is visualized in Figure 2.1.

In order to assess the cartilage volume change over time, MRI was per-
formed at baseline and 21 months later. The medial tibial cartilage volume
was estimated by a fully automatic, computer-based process of segmenta-
tion [57] using the features described in Section 3.3.

3.3 Feature set

Texture Features: A total of 178 generic texture features were extracted
from the images. The process intended to capture the differential geome-
try structure of the local intensities, which could allow the analysis of the
network of the trabecular bone anatomy.

A generic feature set that has been demonstrated to provide good results
for many patterns is the N-jet [55, 57, 121, 132]. The N-jet applies Gaussian
derivative filters bank equivalent to the partial derivatives of a local Taylor
series approximation up to order N. The partial derivatives calculated at a
given image point and a given scale were used as a basis for representing
different visual textures of the image. We included the 3-jet, based on the
Gaussian derivative kernels including derivatives up to the third order.

Furthermore, to allow modelling of complex texture, gradient vector and
magnitude and non-linear combinations of the Gaussian derivative features
were included. Specifically, these combinations were the structure tensor
[138] and Hessian eigenvalues and eigenvectors.

To provide basis for capturing anatomy and pathology of varying sizes,
the texture analysis framework considered three different scales: 1, 2 and 4
mm. We also did experiments with scales 0.5, 2 and 8 mm and the results
were qualitatively identical. A small scale was included to encompass, for
example, the trabecular structure of the bone and larger-scale features were
needed to handle larger structures such as BML that can be 5-20 mm in
size [29], roughly corresponding to the support of a Gaussian filter at scale 4
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mm. A detailed list of the extracted features is shown in Table 3.2.

Table 3.2: Feature set with: number of dimensions for each feature (2nd

column), number of features extracted considering the dimensions and order
of the derivatives (3rd column), the scales calculated (4th column) and the total
of each feature considering also the scales computed (5th column).

Feature Dim. Num Scales Total
Features

Intensity 1 1 - 1
Derivative (0th, 1st, 2nd and 3rd order) 3 20 1 2 4 60
Position 3 3 - 3
Position normalized 3 3 - 3
Structure tensor eigenvalues 3 9 1 2 4 27
Structure tensor eigenvectors 3 9 1 2 4 27
Hessian negative ridge 1 1 1 2 4 3
Hessian positive ridge 1 1 1 2 4 3
Hessian eigenvalues 3 3 1 2 4 9
Hessian eigenvectors 3 9 1 2 4 27
Gradient magnitude 1 1 1 2 4 3
Gradient vector 3 3 1 2 4 9
Third order derivatives 1 1 1 2 4 3
Total of features 178

Feature Scores: The features were calculated in each voxel. However, to
capture both the feature level and variation across a ROI, we summarized
each extracted feature in three possible scores: the mean, the standard de-
viation and the Shannon entropy. By including entropy, also aspects of
non-Gaussian distributions could possibly be captured.

When extracting the features at three scales and calculating the three
feature scores for each ROI, the total number of features was 534. This large,
generic multi-scale feature bank contained linear and non-linear features
including features invariant to rotation and scaling. Thereby, we hoped to
allow quantification of significant bone structures visible in the images.

Each feature was normalized to zero mean and unit variance on the basis
of the distribution of the training set.



Chapter 4
Quantification of the subcondral
medial tibial trabecular bone for
diagnosis of OA

This chapter is based on the following manuscript. The introduction was rewritten
to avoid redundancy when comparing to Chapter 1. The image data acquisition and
feature computation were omitted since they were detailed in Chapter 3. Apart from
these changes, the contents are similar.

J. Marques, R. B. Granlund, M. Lillholm, P. C. Pettersen, E. B. Dam, "Automatic
Analysis of Trabecular Bone Structure from Knee MRI," Computers in Biology and
Medicine, Vol. 42, Issue 7, Pages 735-742, DOI: 10.1016/j.compbiomed.2012.04.005,
July 2012.

Even though the pathogenesis of OA is a complex mix of events in the
whole joint, until recently the main focus has been on the articular cartilage.
It is known that cartilage works closely together with the subchondral bone,
also including the trabecular bone (see Figure 2.1). Therefore, analyzing
them in combination looks promising [13, 79]. In this chapter, we present
a framework for automatically analysing the structure of the subcondral
medial tibial trabecular bone in low-field MRI for diagnosis of OA. We also
present an investigation of an aggregate marker based on measurements
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targeting different anatomical structures, the medial tibial cartilage and the
subchondral tibial bone.

In summary, the framework initially determines a ROI within the tibial
bone based on a cartilage shape model that has good agreement with manual
segmentations [32]. At later stages, we use machine learning techniques, at
first for selecting the most disease-related features; and second, to automat-
ically learn from examples how to analyze a ROI recognizing the trabecular
bone of a knee with OA. The outcome of the framework is a single value for
each ROI, which is defined as the bone structure marker. This value indi-
cates the probability of having OA. The evaluation of the developed method
is presented in Section 4.2, where we compare and aggregate the developed
marker with existing OA biomarkers from different modalities.

4.1 Bone structure analysis

4.1.1 Cartilage Shape Model

The goal is to automatically define the ROI (the subchondral trabecular
bone), which includes the same anatomical region for all scans, maintaining
anatomical correspondence. Since the structure to be covered is the sub-
chondral trabecular bone, the ROI can be automatically extracted based on
a cartilage shape model.

The segmentation of tibial and femoral cartilage was based on the method
developed by Folkesson et al. [57]. The first step yields binary segmentations
of the medial cartilages by a fully automatic voxel classification method.
The voxel classifier performs an approximate nearest neighbor approach,
not classifying all voxels, but focusing on the anatomical structure being
analyzed. The algorithm starts from a set of randomly sampled voxels;
it classifies them as either the object (medial cartilage) or background. If a
voxel is classified as cartilage, it continues with classification of the neighbor-
ing voxels and this expansion process continues until no more neighboring
cartilage voxels are found.

Second, the statistical shape model developed by Dam et al. [32] was
fitted to the tibial segmentation in order to regularize the voxel classification
results and to provide an anatomical coordinate system. The method used
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Figure 4.1: a) The m-rep shape model fitted to the segmented cartilage
with the grid of medial atoms in yellow. b) Slices of a knee scan with the
corresponding shape model.

an m-rep model to provide a smooth shape representation [112]. The trained
mean model was initialized to match the binary tibial cartilage classification
by translation to center of mass and scaling to the same volume. Then, the m-
rep model was deformed to model the binary classification accurately while
preserving the anatomical correspondence given by the shape model. The
deformations were a combination of global similarity transformations, global
modes of shape variation, along with local changes to the medial atoms and
their attributes; all optimized by conjugated gradient descent. The global
modes of variation were based on principal geodesic analysis [78]. The
resulting cartilage shape model (see Figure 4.1) formed the support of the
automatic bone ROI identification.

4.1.2 Extraction of the region of interest

The ROI was contained within the medial tibial condyle, in an area expected
to have relatively homogeneous biomechanical stress. Thus, based on the
cartilage shape model (presented in Section 4.1.1), the ROI was defined as a
region right below the cartilage with a small margin to the cortical bone. The
parameters were chosen by visual inspection of scans of knees with varying
degrees of OA, ensuring that the ROI contained only trabecular structure.

We defined the ROI to cover the area from 5 mm to 15 mm below the
cartilage sheet. This range was used for all scans. In the anterio-posterior
direction, the region was defined from 15% to 95% of the cartilage sheet, and
from 10% to 95% in the medio-lateral direction.

The shape model allows zero thickness within the cartilage sheet giving
proper modelling of denuded area. Thus, the corresponding area of gaps in
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Figure 4.2: a) Sagittal view of a knee scan showing the tibio-femoral joint. The
cortical bone appears as an almost black surface around the light trabecular
bone within. The highlighted 3D area is the extracted ROI. b) Tibio-femoral
segmentation showing each of the anatomical structures: the ROI extracted
from the subchondral region of trabecular bone, the tibial cartilage and the
femural cartilage.

the cartilage sheet is included in the ROI. An example of an automatically
extracted ROI is shown in Figure 4.2.

4.1.3 Classification and selection of features

Feature selection

Feature selection was performed to provide an appropriate feature set to
the classifiers. The feature sets were selected by sequential floating forward
selection (SFFS) [63,130]. SFFS is a classifier-dependent, suboptimal method,
previously shown to have a performance comparable to the optimal methods
[76, 113]. The algorithm initiates with the empty feature set and iteratively
includes the best additional feature in a greedy fashion. After each inclusion,
SFFS excludes one or more features if the resulting feature set performs better
than the previous feature set of the same size. We allow repeated inclusion
of each feature, resulting in an increasing weight of the feature.

Potentially, the floating nature of the method can correct "mistakenly"
added or removed features. Therefore, the nesting problems of other sub-
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optimal feature selection methods, such as sequential forward selection, can
be reduced [63].

To ensure a manageable computation time, a maximum number of fea-
tures was set in the SFFS. When the maximum number of features was
reached, the algorithm stopped. The overall best feature set was chosen
as the set with the highest performance regardless of its size. Preliminary
experiments showed that already at a feature set size of 10, the training area
under the ROC curve (AUC) did not improve significantly. Therefore, the
maximum number of features was set to 20, which makes room for the algo-
rithm to float backward and forward before reaching the maximum number
of features.

Classifier

Since the feature score distributions were unknown, six different supervised
classifiers were evaluated: linear discriminant analysis (LDA), quadratic dis-
criminant analysis (QDA), nearest-neighbor (NN), k-nearest-neighbor (kNN),
weighted nearest-neighbor (wNN) and weighted k-nearest-neighbor (wkNN).
The performance was evaluated with respect to ability to classify the knee
scans as healthy (KL 0–1) or osteoarthritic (KL 2–4).

Except for the weighted nearest-neighbor schemes, the classifiers are
standard choices. The weighting of the k-Nearest-Neighbor scheme [23] can
improve the generalization, especially for high-dimensional data sets with
few samples as is the case here. The scheme simulates bootstrapping by
weighting the sorted neighbors, such that the closer the neighbor, the higher
the weight.

Since the data is unbalanced with respect to the number of knees for each
class (healthy/OA), cost functions such as the classification accuracy would
be inappropriate, whereas the AUC is suitable [131]. Therefore, the AUC
was chosen as the performance measure.

Biomarker definition

For a given classifier, the SFFS algorithm results in a feature set. This classifier
delivers a single output for each ROI — we define this as the bone structure
marker.
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4.2 Evaluation methodology

To handle the classical curse of dimensionality due to the limited number
of scans and the high-dimensional feature bank, we perform the evaluation
using cross-validation.

4.2.1 Cross-validation strategies

When evaluating the performance of a given feature set for a given classifier,
two performance measures are considered: the training AUC and the gen-
eralization AUC. The training AUC describes how well the chosen features
explain the training data, and the generalization AUC describes how well
the found features separate new data [131].

The goal is to maximize both performance measures by choosing the fea-
tures that entail a high training AUC when doing feature selection. A typical
assumption is that a high training AUC will result in a high generalization
AUC. However, the training AUC will normally be larger because of some
degree of overfitting — particularly in a high-dimensionality feature space,
low-sample size setting.

To avoid excessive overfitting, designing the feature selection so the cho-
sen feature set generalizes well is important. Typically, the data is divided
into three sets: training, validation and test [63]. The training set forms the
training data for the classifier, and the validation set is used for testing the
performance of a given feature subset, resulting in the training AUC. Finally,
when the optimal feature subset is found, the generalization of the feature
set is tested by classification of the test set.

This strategy is a typical example of cross-validation. To encompass
the diversity of the data, particularly with limited data, the data are often
randomly divided into the three above-mentioned sets N times, hence N
evaluations are performed. Typically, the three sets are chosen of equal size
- this specific case we will denote by CV3.

Another special case of cross-validation is leave-one-out (LOO), where a
single sample from the data set is used as validation data and the remaining
samples as training data. This is repeated such that each sample from the
entire data set is used once as the validation data. In order to evaluate this
approach, instead of considering the entire data for evaluation, we consid-
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ered each sample from the test set in turn and the remaining data was defined
as training set. The LOO scheme is expected to generalize better because
the number of training samples is increased, but it is computationally more
expensive than CV3.

4.2.2 Framework implementation

The overall framework for diagnosis of OA based on the trabecular bone
structure of the tibia is summarized in the following algorithm:

1: for all knee scans do
2: Calculate ROI
3: Extract features
4: end for
5: for each evaluation do
6: Divide data in training, validation and test sets
7: Normalize features for each set
8: Do SFFS until maximum features reached. The classifier is trained on

the training data and evaluated on the validation data.
9: return Training AUC for feature sets of size 1 to 20

10: Choose the feature set with highest training AUC to compose the bone
structure marker specification

11: Calculate generalization AUC on test data
12: end for
13: Calculate median results for all evaluations

The feature selection experiments compared the performance of the six
classifiers when doing feature selection: LDA, QDA, NN, kNN, wNN and
wkNN.

For each classifier, both CV3 and LOO were done in order to validate the
idea that LOO performs better than CV3 when limited data are available and
the feature space is high-dimensional. For each, a total of 500 evaluations
were done, where the data set was randomly divided into subsets.

For CV3, the data were divided into the three sets with 1/3 in each.
Specifically, this resulted in 105 training scans, 104 validation scans and
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104 test scans. In LOO, the data were divided into two sets, where 2/3
were used for training/validation and 1/3 for testing. LOO feature selection
included 209 scans, of which 1 was iteratively chosen for validation and 208
for training. For both schemes, the overall training and test performance
were calculated as the median of the 500 AUCs.

Parameters

Feature selection was performed with a maximum of 20 features. Determin-
ing k for the kNN classifier was done using the rule of thumb: k =

√
n, where

n is the total number of training samples [131]. For CV3: k = 10, LOO: k = 14.
Additionally, the ROI description was given in Section 4.1.2 and the feature
scale parameters were given in Section 3.3.

4.2.3 Combination with other biomarkers

Previous research show that combining biochemical and imaging markers
can result in good aggregate markers that improve diagnosis and progno-
sis of knee OA [34]. Therefore, in order to better encompass the complex
pathogenesis of OA, the developed bone structure marker was evaluated
in combination with other types of biomarkers related to OA diagnosis: a
biochemical marker and cartilage MRI markers.

The biochemical marker was the urinary levels of collagen type II C-
telopeptide fragments (CTX-II) [123]. Five different tibial MRI cartilage
markers were included: volume, thickness, smoothness, curvature and ho-
mogeneity. All markers were automatically computed based on the cartilage
segmentation presented in Section 4.1.1.

The combination of the mentioned OA biomarkers, except the bone struc-
ture marker introduced in this paper, was previously evaluated by Dam et
al. [34].

The performance of the individual biomarkers was analyzed and com-
pared to the developed bone structure marker. Furthermore, it was evalu-
ated an aggregate marker that combines the developed bone marker with
the mentioned OA biomarkers. The biomarkers were evaluated by the LDA
LOO classification scheme described in the previous section.
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Table 4.1: The median AUC of the CV3 and LOO feature selection evaluation
for each classifier. In parenthesis is the standard deviation.

Classifier Training AUC Generalization

LDA CV3 1.00 (0.011) 0.79 (0.065)

LDA LOO 0.98 (0.011) 0.82 (0.051)

QDA CV3 1.00 (0.006) 0.76 (0.072)

QDA LOO 0.99 (0.006) 0.81 (0.058)

NN CV3 0.93 (0.033) 0.63 (0.054)

NN LOO 0.90 (0.028) 0.65 (0.059)

wNN CV3 1.00 (0.008) 0.75 (0.064)

wNN LOO 0.98 (0.013) 0.77 (0.065)

kNN k10 CV3 0.99 (0.014) 0.76 (0.061)

kNN k14 LOO 0.96 (0.016) 0.79 (0.060)

wkNN k10 CV3 1.00 (0.009) 0.77 (0.063)

wkNN k14 LOO 0.97 (0.014) 0.81 (0.060)

AUC, area under the ROC curve; CV3, cross-validation; LDA, linear discrim-
inant analysis; LOO, leave-one-out; NN, nearest neighbor; QDA, quadratic
discriminant analysis; wNN, weigthed nearest neighbor; kNN, k-nearest
neighbor; wkNN, weigthed k-nearest neighbor.

4.3 Results

4.3.1 Classifiers evaluation

The training and generalization AUC for each classifier is shown in Table
4.1. Across all classifiers, the median training AUC varies from 0.90 to 1.00
and the generalization AUC from 0.63 to 0.82.

Comparing CV3 and LOO, the results indicate that LOO had worse train-
ing AUC but improves the generalization AUC. This means that the span
between training and generalization AUC decreased as expected when in-
creasing the training data.

When doing weighting of the nearest neighbors in the NN and kNN
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classifiers, in general both training and generalization AUC increased —
most pronounced for wkNN.

The classifiers wkNN, QDA and LDA has highest generalization AUCs.
Despite the simplicity and linearity, LDA performs best among all classifiers
with AUC 0.82. It is worth noting that LDA LOO had lowest standard devia-
tion for generalization, although the differences are perhaps not statistically
significant.

The training AUC in the CV3 evaluation for these three classifiers are all
1.0 and somewhat lower in the LOO evaluations whereas the generalization
AUCs are higher in the LOO versions. This means that for the given size of
the training set, robustness against overfitting is a central issue.

4.3.2 Aggregate biomarker

The alternative biomarkers targeting cartilage from both MRI and biochem-
istry were compared against the bone structure marker that was achieved
using the LDA classifier (that performed best in the above evaluation). Addi-
tionally, LDA combinations of these markers were evaluated. The evaluation
was performed using the LOO scheme.

The median generalization AUC for each biomarker and for the aggregate
biomarkers are shown in Table 4.2. The statistical significance of AUC scores
(columns 3 to 5) and differences in-between were tested using DeLong’s
test [41]. This nonparametric test approach takes into account the implicit
correlation between the ROC curves by estimating a covariance matrix based
on the generalized U-statistics.

The individual biomarkers spanned from AUC 0.58 for cartilage volume
(p = 0.416) to AUC 0.79 for cartilage smoothness (p = 0.001). The biochem-
ical marker CTX-II, the cartilage markers smoothness and curvature along
with the developed bone structure marker, all had AUC scores above 0.70.
However, the bone structure marker had the highest AUC among all the
individual markers.

Combining all biomarkers except the developed bone structure marker
resulted in AUC 0.82, which had the same result as the bone structure marker
performed individually. It is worth noting that the aggregate biomarker also
including the bone structure marker resulted in AUC 0.85.
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Table 4.2: The median generalization AUC and the p-values for each
biomarker. The p-value for the biomarker vs. the developed bone struc-
ture biomarker and last, the p-value for the biomarker vs. the aggregate
marker. The horizontal line separates CTX-II and cartilage markers from our
developed markers.

Biomarker AUC p-value p-value
vs. bone
structure

p-value
vs. ag-
gregate
all

CTX-II 0.71 0.006 < 0.001 < 0.001

Cartilage volume 0.58 0.416 0.008 < 0.001

Cartilage thickness 0.60 0.346 0.007 0.001

Cartilage smoothness 0.79 0.001 0.525 0.286

Cartilage curvature 0.75 0.009 0.365 0.118

Cartilage homogeneity 0.66 0.093 0.083 0.021

Aggregate cart+CTX-II 0.82 < 0.001 0.544 0.453

Bone structure 0.82 < 0.001 - 0.176

Aggregate all 0.85 < 0.001 0.176 -

AUC, area under the curve; CTX-II, C-telopeptide of type II collagen.

The table also shows the statistical significance of the AUC scores both
individually (compared to chance) and in comparison to the bone structure
marker and the all-including aggregate marker.

4.4 Discussion

The results demonstrated the feasibility of separating healthy and OA knees
based on the trabecular bone structure. Trying several classifiers revealed
that for this problem, a linear classifier performed slightly better than the
quadratic classifier and the non-linear classifier wkNN. We operate with high-
dimensional feature spaces, so when doing classification with a limited data
set, the feature space will be sparsely populated. When doing classification,
the simple, parametric LDA makes a general rule to separate data based on
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all training samples. kNN, however, based the classification on only the k
nearest neighbors, that may be distant from the test sample and possibly not
sufficiently well describe the distribution locally. For this task, the simple,
parameterized classifier apparently is more robust and generalizes better.

The results showed that each of the individual markers provided some
OA diagnostic ability. The best individual cartilage marker, cartilage smooth-
ness, had AUC of 0.79 and the biochemical marker (CTX-II) had AUC 0.71.
In comparison, the bone structure marker reached AUC of 0.82, showing the
potential of the developed marker for OA diagnosis. Furthermore, due to
the fully automatic framework, the provided marker is well suited for large,
longitudinal clinical studies.

However, the complexity and heterogeneity of OA make it unlikely that a
single marker will allow a comprehensive quantification, suggesting the in-
vestigation of aggregate markers based on measurements targeting different
anatomical structures. The results demonstrated that measurements from
MRI and measurements from biochemical markers are complementary and
allow superior aggregate markers for OA.

The aggregate marker including the bone structure marker was superior,
albeit not statistically significantly, than the aggregate marker including only
CTX-II and the cartilage markers for OA, developed by Dam et al. [34]. The
increase in diagnostic ability is presumably due to the combination of the
complementary aspects of bone and cartilage measurements.

Our study had some limitations. The parameters used to define the ROI
were established visually from the data. To allow investigation of other re-
gions within the bone, a possibility is to base the ROI on a full joint shape
model as opposed to a cartilage model. This would better facilitate in-
vestigations into differences between medial and lateral condyles, between
regions with more or less load-bearing, and between cartilage and subchon-
dral bone regions. A further possibility is to evaluate the marker framework
for discrimination at different levels of OA.

Much more research is needed to determine the clinical features that the
bone structure marker describe. Potential candidates are textural patterns
related to bone marrow lesions, growth zone characteristics and the archi-
tecture of the trabeculae even if the individual trabeculae are not visible.

In conclusion, we have demonstrated the possibility of automatically
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quantifying a trabecular structure marker related strongly to the presence
of OA. The final bone structure marker resulted in AUC 0.82 for diagno-
sis of radiographic knee OA, which was superior to existing OA cartilage
biomarkers.



Chapter 5
Linear feature selection and
framework improvement

This chapter is based on the following manuscript. The introduction was rewritten
to avoid redundancy when comparing to Chapter 1. The image data acquisition and
feature computation were omitted since they were detailed in Chapter 3. Apart from
these changes, the contents are similar.

J. Marques, C. Igel, M. Lillholm, E. B. Dam, "Linear feature selection in texture
analysis - A PLS based method," Machine Vision and Applications, Special Issue on
Machine Learning in Medical Imaging, 2012, DOI: 10.1007/s00138-012-0461-1.

The experiments described in this thesis uses a generic bank of 534 fea-
tures (see Chapter 3 for more details). The drawback of a bank of features is
a potentially high-dimensional representation of data. Beyer et al. showed
that increasing the number of features, and thus the dimensionality of the
data, leads to a loss of meaning for each feature and possibly decreases the
model accuracy [10].

In many situations, a large number of features are strongly correlated
and do not introduce new information to improve the ability to analyze the
images. Feature selection and feature extraction (as feature space transfor-
mation) are effective approaches for dimensionality reduction (DR). Feature
selection is the process of reducing the dimensionality by selecting a subset
of the original variables. Feature extraction is a transformation of the input
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data which possibly reduces the dimensionality by some functional mapping
of D-dimensional data into a d-dimensional data, where (d ≤ D) [97], e.g.,
by principal component analysis (PCA). These techniques can decrease the
model complexity and eliminate noisy subspaces.

Partial least squares (PLS) regression is another example of multivari-
ate data analysis technique that has been used for dimensionality reduc-
tion [68, 82, 119]. In this chapter, we introduce a robust PLS-based dimen-
sionality reduction method in a texture analysis framework applied to diag-
nosis of knee OA. The framework was applied to classify between healthy
subjects and OA patients by quantification of the tibial knee bone structure.
The framework implemented the following steps: Initially, a generic bank
of texture features was extracted from the images. As a pre-processing step
to the dimensionality reduction, the outliers were identified and eliminated.
Next, a feature relevance index (FRI) was applied to the original features to
order them according to their importance to the model. Then, the method it-
eratively selected the features and transformed them to an orthogonal space.
In the final step, the transformed features were used as input to a linear
classifier that returned for each knee the probability of having OA.

5.1 Background

5.1.1 Linear Discriminant Analysis for Classification

Fisher linear discriminant analysis (LDA, [89]) is a classical classification tool
that considers both classification and dimensionality reduction. The method
decomposes the total covariance into between-class covariance and within-
class covariance and maximizes the ratio of between-class to within-class
scatter. The low dimensional discriminative space is estimated based on the
resulted linear transformation.

This method is known to perform quite well in low-dimensional settings.
However, in high dimensions, LDA cannot be applied directly because the
covariance matrix estimate is singular and cannot be inverted. Although an
approximated inversion can be calculated, in this case, the LDA method can
suffer from high variance, resulting in poor performance [137].

To deal with this, the framework presented in this paper used PLS to apply
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two dimensionality reduction approaches to the data set: feature selection
and feature extraction. The resulted reduced space was sent as input to the
LDA classifier. The following sections briefly explain the PLS method and
describe some PLS based feature selection approaches.

5.1.2 Partial Least Squares

Multivariate data analysis techniques like PCA and PLS have a common
principle; they are constrained to find a linear transformation that produces
mutually uncorrelated components.

PCA is a classic technique used for dimensionality reduction by feature
extraction. Concerning classification problems, we defined the data matrix
as X (referred to as predictive or explanatory variables in factor analysis) and
the classification classes as vector Y (the dependent or response variables).
PCA linearly transforms the original features into uncorrelated features.
These new features are ranked, loosely speaking, according to the amount
of variability of ~X they explain. In this approach, no importance is given to
how each feature may be related to the classes.

PLS does not require matrix inversion to obtain the coefficient matrix.
Rather, the factors are computed by successive 1-D linear regression, assum-
ing that the relationship between features and the classes is influenced by a
few underlying variables, called latent variables or factors. The features and
classes are assumed to be realizations of these underlying variables [142].
Therefore, PLS regression suggests the use of supervised dimensionality re-
duction by considering both X and Y information. This regression returns
a linear combination of the features, the latent factors (X-scores), which are
used to predict the classes based on Y-scores.

Figure 5.2 exemplifies how observations from a synthetic data set (see
the data scatter plot in Figure 5.1) are represented in terms of the principal
component coefficients created by PCA and the latent factors estimated by
PLS. The PLS plot shows that PLS considered the correlation of the variables
to the classes in order to compute the latent factors. The first variable had
a weak relation to the class separability, so when computing the first latent
factor, PLS almost ignored this variable while PCA considered the three
variables nearly equally.
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Figure 5.1: Synthetic data scatter plot: var1 is a variable with no correlation
to the classes, var 2 is a random variable and var 3 is a variable with strong
correlation to the classes.
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Figure 5.2: The first plot shows the axes representing the first two principal
components extracted by PCA and how each observation is represented in
terms of those components. The magnitude of the blue vectors represent
each observed variable’s contribution to the first component. The second
plot shows how each observation is represented in terms of the latent factors
extracted by PLS.

Barker et al. [7] presents a formal statistical explanation clarifying that the
dimensionality reduction provided by PLS is determined by between-groups
variability, while by PCA is determined by total variability. Therefore, PLS
potentially performs better than PCA for dimensionality reduction when
classification is the ultimate goal.

The PLS model also supports selection of the latent factors; considering
h the total number of factors generated by the regression, by selecting only
the first k (k < h) to compose the new feature set, one can reject the noisy
information.

There are various algorithms for calculating PLS regression. The NIPALS
algorithm [1] is the standard, but the SIMPLS [39] is very popular because
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it is faster. Our framework used the SIMPLS algorithm for the PLS regres-
sion. In the following paragraphs, we briefly introduce the PLS regression
for calculating the coefficients B and the factors T. Although PLS supports
multiple response variables, we considered a single response Y.

For n samples and p predictors or features, a PLS regression model de-
composes X and Y to produce the following bilinear representation of the
data:

X = TP′ + E (5.1)

Y = UQ′ + F (5.2)

where the input data and classes are in X ∈ Rn×p and Y ∈ Rn×1 matrix, re-
spectively. The X-scores, T ∈ Rn×h, contain the transformed features in the
orthogonal space while the matrix U ∈ Rn×h has the transformed classes (Y-
scores). The scores matrices contain the information on how the samples
relate to each other. P ∈ Rp×h and Q ∈ R1×h are the loading matrices, which
represent the regression coefficient of X on each column of U and the regres-
sion coefficient of Y on each column of T, respectively. Loadings contain the
information on how the features relate to each latent factor. The matrices E
∈ Rn×p and F ∈ Rn×1 contain the residuals. The latent factors (equation 5.3)
and regression coefficients (equation 5.4) are computed based on a weight
matrix W ∈ Rp×h that expresses the correlation of each X-column with the
Y variable. Thereby, entries in W with values close to zero express less
important features.

T = XW (5.3)

B = WQ′ (5.4)

PLS is typically not robust towards outliers due to use of least squares
regressions. The regression can focus on the atypical observations instead of
describing the model represented by the majority of the data [38]. Further-
more, the SIMPLS algorithm is based on the empirical covariance matrix,
where outliers can have a damaging effect on the estimates.

To reduce the effect of outliers, some approaches, such as the method
presented in [15], propose to replace the empirical covariance matrix by a
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robust covariance estimator. In [37], Daszykowski et al. presented a robust
version of PLS by applying a weighting scheme to down-weight the negative
influence of outliers upon the model. The outliers were detected based on
standardized leverage and residual distances exceeding a cut-off value. For
a more complete review on the leading robust PLS algorithms, see the work
by Kruger et al. [88].

An alternative approach to robust PLS algorithms is to detect the outliers
and eliminate them before defining the final model. According to Wold et
al. [141], the initial outcome of a PLS regression can be used itself to detect
outliers. Moderate outliers can be identified by the residuals of Y and X (E
and F in Equations 5.1 and 5.2). The guidelines from the authors claimed that
samples that deviate outside of 4 times the standard deviation (SD) of the
Y-residuals can be considered an outlier. For the X-residuals, one needs to
summarize all k-values for each sample. This is proportional to the distance
between the data point and the model plane in X-space, the so called DModX
(distance to the model in X-space). A sample with DModX larger than 2.5
times the SD of the X-residuals indicates an outlier.

The strong outliers are found by analyzing the Hotelling T2 of the latent
factors, the scores T in Equation 5.3. The Hotelling T2 is proportional to
the leverage, which is a measure of the influence of a sample on the PLS
model [49]. Samples with confidence level less than a certain percentage can
be considered outliers. Usually the limit level is between 95% and 99%.

5.1.3 Feature Selection Based on PLS

When a model includes a high-dimensional set of features, usually sev-
eral of them are correlated. Besides providing nearly the same information
to predict the classes, highly correlated features can imply model conver-
gence problems, overfitting and the "curse of dimensionality" in general [95].
Therefore, an important part of learning-based processes is to identify a sub-
set of features weakly correlated to the classes. Several PLS-based feature
selection approaches have been proposed [3, 104], mainly to estimate the
features more related to the underlying latent data structure.

In a recent work, Li et al. [94] proposed the use of the absolute values of
the regression coefficients of the PLS model as an index for evaluating the
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importance of wavelengths of multi-component spectral data. The proposed
algorithm, called competitive adaptive reweighed sampling (CARS) first
ranks the variables according to their absolute PLS coefficients. Based on
this ranking, the algorithm sequentially selects N subsets of variables from
N Monte Carlo sampling runs. In each sampling run, a fixed ratio (e.g., 90
%) of samples is randomly selected as training data. Next, based on the
regression coefficients, a two-step procedure is adopted to select the key
variables. The first step uses an exponentially decreasing function and the
second step uses an adaptive reweighed sampling method to remove the
unimportant variables. Finally, a cross-validation (CV) approach is applied
to choose the subset with the lowest root mean square error.

Another example is the interactive variable selection (IVS) [50] that mod-
ifies the PLS algorithm by doing a dimension-wise selective reweighting of
single values in each column of the weight matrix W. The investigation pre-
sented two techniques that use a threshold, defined by CV, to replace some
values in W to zero. Their experiments showed that the elimination of either
small or large values in W improved the model, but no clear explanation
was given justifying the elimination of large W-values. Moreover, the au-
thor used a small simulated data set and the method was in part interactively
evaluated.

Wold at al. [141] introduced the variable importance in the projection
(VIP), which is a score that summarizes the importance of each variable for
the latent factors projections. The score is a weighted sum of squares of the
weights in W, with the weights calculated from the amount of Y-variance of
each PLS latent factor (see equation 5.5):

VIP j =

√√
p

h∑
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(5.5)

where SS(qktk) = q2
kt′ktk.

Building on Wold’s work, Bryan et al. [18] presented the MetaFIND ap-
plication that implements a post-feature selection method based on VIP and
correlation analysis of metabolomics data. The features were ranked, but the
threshold that defines the selected features was a user-defined parameter.

The “greater than one rule” is generally used as a criterion for variable
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selection, since the average of squared VIP scores is equal to 1, but Chong
et al. [25] showed that the proper cut-off value may be higher than 1 under
uneven class distributions, high correlation, or an equal coefficients structure.
Their investigation also explored the nature of the VIP method compared
with other methods.

Although PLS combined with VIP scores is often used when multi-
collinearity is present among variables [50, 141], there are few guidelines
about how to use it [25]. To address this issue, our developed framework
introduces a robust PLS-based strategy for dimensionality reduction (DR)
that includes outlier detection, feature selection and feature extraction.

5.2 Framework

The overall texture analysis framework is summarized in the following steps:

1. Segmentation of the region-of-interest
2. Features computation
3. Dimensionality reduction

3.1 Pre-processing steps:
a) Auto-scaling and initial PLS regression
b) Initial feature ranking
c) Identification of the outliers
d) Re-computation of FRI

3.2 Iterative forward feature selection
a) Incremental feature selection
b) Intermediate evaluation

4. Classification
5. Evaluation

The features computation (step 2) is described in Section 3.3. The steps 1,
4 and 5 are described in Section 5.3, where the application of the texture anal-
ysis framework to OA diagnosis is detailed. The following section (Section
5.2.1) explains the step 3, the proposed dimensionality reduction method.
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5.2.1 The dimensionality reduction method

The DR method implemented four pre-processing steps and an iterative
forward feature selection (FFS). The outcome of the pre-processing steps
was a robust ordered set of features. Next, the iterative forward selection
defined the number of transformed features (latent factors) to use in the final
model and which features from the original set to use in the calculation of
these latent factors.

Pre-processing steps

Auto-scaling and initial PLS regression: As the first step, the feature set
was normalized to zero mean and a standard deviation of one. Then, an
initial PLS regression was calculated considering the given samples and
features. The three next pre-processing steps were based on the output of
this regression.

Initial feature ranking: The feature relevance index, FRI, illustrated in
Figure 5.3 and defined in Equation 5.6, was computed:

FRI j =

h∑
k=1

(|w jk|)vk (5.6)

In Equation 5.6, w are the elements of the weight matrix W ∈ Rp×h and
|w jk| returns the absolute value of this weights; v are the values in V ∈ Rh×1 ,
which are the percentage of variance explained by each latent factor on both
X and Y spaces, considering h as the number of PLS latent factors with the
best evaluation.

The percentage of variance was computed based on the Pearson’s correla-
tion coefficient [124] between the sum of the features and the scores (X-space)
and between the classes and scores (Y-space). After calculation, the index
was normalized to length one.

The Equation 5.6 differs slightly from related work. Lindgren et al. [50]
suggest weighting the W-elements with their correlation to Y only.

Identification of the outliers: The guidelines from [141] were implemented
to identify and remove outliers during the training phase: samples that
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Figure 5.3: Bar graph of a FRI generated during a training phase. In this
example, the original feature set has 534 features. The graph shows that
the number of features identified as relevant was considerably less than the
initial ones

deviate more than 4 times the SD of the Y-residuals and more than 2.5 times
the SD of the X-residuals and with confidence level less than 0.99 on the
Hotelling T2 distribution of the T scores.

Re-computation of the FRI: To get a more reliable rank, this step re-
computed the FRI. Basically, a new PLS regression was computed using
the data without the outliers and considering only the most important fea-
tures selected in the initial PLS regression step (only the first half of relevant
features from the ordered index) and the outcome was used to re-compute
the index.

Iterative FFS and optimization of the number of latent components

Finally, using a forward selection approach, this step generated a new feature
set and defined the number of latent factors to be used in the final model.
Starting from an empty set, the algorithm sequentially added the original
features to the set, one at a time, considering the order established by the FRI.
In each iteration, the algorithm used the current feature set to re-compute
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the latent factors and an intermediate evaluation defined the number of
latent factors. To avoid overfitting, the intermediate evaluation used cross-
validation. The combination of selected features and number of latent factors
with best evaluation were used in the final model.

5.3 Experiments

In this section, we specify the application of the developed framework to
OA diagnosis, introducing the ROI definition and the applied classification
and evaluation methods.

5.3.1 ROI Definition

A voxel classification algorithm, designed for cartilage segmentation [57],
was generalized to also segment the tibial knee bone. From the segmented
binary (mask-like) image, we applied a morphological erosion of approx-
imately 2 mm to remove the outer layer of the bone corresponding to the
cortical bone. The remaining was the trabecular bone, which was defined as
the ROI (Figure 5.4).

5.3.2 Classification and Evaluation

To empirically evaluate the feature selection strategy, the data set was par-
titioned according to Monte Carlo CV [20] and to account for uneven class
sample sizes, the samples were selected under the restriction that the number
of OA and healthy subjects was proportionally distributed across the two
sets. Apart from this, the distribution was random.

The DR method used leave-one-out CV on the training set to define the
number of PLS latent factors and the number of features to be used on the
final model.

For classification, the framework used Fisher LDA (described in Section
5.1.1) and for evaluation, we measured the area under the ROC curve (AUC).
Since the data was unbalanced with respect to the number of knees for each
class (healthy/OA), cost functions such as the classification accuracy were
inappropriate.
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Figure 5.4: Automatically segmented tibia bone in light gray and the region-
of-interest (the trabecular bone) in gold.

5.4 Evaluated Methods

For comparison purposes, we evaluated 7 different methods. All the meth-
ods had as input the 534 original features generated in accordance with
Section 3.3. With exception of experiments using support vector machines
(SVMs, [28]), the output of all the other methods was considered as input to
the Fisher LDA classifier.

To investigate dimensionality reduction by feature extraction methods,
we first evaluated the performance of PCA and PLS without an additional
feature selection step. A training phase using cross-validation defined the
number of principal components and the number of latent factors for PCA
and PLS, respectively.

Next, we evaluated the performance of the proposed PLS-FFS method
(Section 5.2.1). The training phase defined the selected feature set and the
number of latent factors to be used in the final model.

As an alternative approach, we added a stopping criterion to the FFS step
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considering only the features with FRI greater than 10−4, which corresponds
to exclude all features with index value roughly equal to zero.

We also experimented replacing our feature selection step by the CARS
algorithm [94] to compare the performances.

As a baseline for comparison, we considered two linear SVMs methods.
First, we applied soft margin SVMs [28] to the full feature set. The regu-
larization parameter, typically denoted by C, was determined for each of
the 100 Monte Carlo CV folds independently by a grid-search procedure on
logarithmic scale. Stratified 10-fold CV, partitioning the training subsample
from the 100-fold CV, was employed to evaluate the different regularization
parameters.

Second, we considered linear SVMs combined with recursive feature
elimination (RFE, [64]). Recursive feature elimination is a common iterative
feature selection technique for SVMs. In each iteration, a SVM is trained. In
the resulting linear classifier there is one coefficient (or weight) per feature.
The features are ranked according to the corresponding weights squared.
Then the features with the lowest ranks are discarded. We employed a
popular variant called SQRT-RFE, in which the number of features that
are removed equals the square root of the number of features used in the
previous SVM training [58]. Because there is no reason to assume that the
regularization parameter is independent of the (number of) features, we
adjusted C using a grid-search relying on 10-fold CV as described above in
every iteration of the RFE procedure. The feature set yielding the lowest
average test error in the 10-fold CV is regarded as the solution of the RFE
process. For all SVM experiments, we used the Shark library [74].

5.5 Results

The results reported in Table 5.1 show the potential of feature space reduction
of the evaluated methods. All the evaluated methods had p-values less than
0.0001, which indicates the AUC’s (second column) were significant larger
than an AUC of 0.5.

By efficiently reducing the number of original features, one can reduce the
general model complexity. The third column shows the median of original
features actually requested by the final model. The forth column shows
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Table 5.1: Evaluations of the different methods. The last line shows the
evaluation of the method with the additional stopping criterion: feature
relevance index (FRI) greater than 10−4. The third and fourth columns show,
per each CV evaluation, the median of original features used and the classifier
input dimensionality. The fifth and the last columns show the number of
features used across all evaluations and the correspondent percentage of the
original feature set.

Method AUC features DR features %
per CV per CV all CVs

PCA 0.89 534 60 534 (100%)
PLS 0.90 534 8 534 (100%)
SVMs 0.90 534 - 534 (100%)
SVM-RFE 0.90 54 - 450 (84%)
PLS-CARS 0.87 48 22 534 (100%)
PLS-FFS 0.92 102 26 194 (36%)
PLS-FFS FRI>10−4 0.92 91 26 182 (34%)

the input dimensionality of the LDA classifier. One can argue that since
LDA performs better in low-dimensional settings, by reducing its input
dimensionality the overall classification performance can be improved.

To cope with the limited number of samples, the data was evaluated using
CV. The drawback of the CV approach is that for N iterations, N estimations
of the parameters will be generated, being unlikely to produce a single
set of selected features that best discriminate the samples. We evaluated
the stability of the feature selection algorithms by analysing how different
training sets generated from the same distribution affect the relevance of the
features. The fifth and the last columns show the total number of features
selected across all CV iterations and the correspondent percentage of the
original feature set.

Considering the total number of features selected across all CV iterations,
the proposed DR method used 36% of the original feature set; the alter-
native approach, with stopping criterion, selected 34%; whereas the other
approaches used considerably more. These results demonstrated that our
feature selection method decreased the model complexity, which can poten-
tially contribute to a better understanding of the anatomical characteristics
of data being analysed.
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The experiments applying only feature extraction (PCA and PLS) had
similar generalization AUC, around 0.90. By including the feature selection
step in the PLS method, we could identify the subset of features actually
used by the texture analysis framework without decreasing the model accu-
racy. The proposed method, PLS-FFS, reached an AUC of 0.92. Although the
performance was only slightly better, the results suggested that our method
detected some features that hinder the classification model instead of pro-
viding useful information.

In a comparison, the feature selection step with the CARS algorithm
selected in median a relativity small number of features (9% of the features
on each CV iteration), but it decreased the accuracy of the model to AUC
0.87. The outcome of a small feature subset seems to be a characteristic of
the method, called the key variables. However, the detection of OA based
on texture analysis apparently needs a larger set of informative features.
Furthermore, considering the number of the features across all CV iterations,
the algorithm used all of the original features. In fact, the selected features
in each CV iteration had a high variability, which indicates instability of the
method.

The linear SVM applied to all features showed a good performance with
an AUC of 0.90. This did not change when using in median only 10% of the
features after applying RFE. While the RFE-SVM training and feature selec-
tion was much faster compared to the PLS-based approaches, the accuracies
of PLS-FFS were not reached and the feature selection was less stable in the
sense that only 16% of the features were discarded in all of the 100 CV folds.

5.6 Discussion

Applied to diagnosis of OA, our texture analysis framework reached a di-
agnostic ability of AUC 0.92 by analyzing the tibial bone structure. For
comparison, a recent study analyzing a linear combination of several mor-
phometric and structural cartilage markers in the same population scored
AUC of 0.84 [34]. Although the studies analyzed different anatomical struc-
tures, the results showed that the presented method captured the texture
changes and had diagnostic ability superior to other biomarkers of OA.

A drawback of our method, due to the iterative strategy, was the rela-
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tively high time consumption for evaluating the selected feature set when
it reached more than 100 features. In order to overcome it, we defined an
additional stopping criterion evaluating only features with FRI greater than
10−4. The diagnostic ability was similar to the original proposal and, as a
direct consequence of the anticipated stopping, the total number of selected
features across the CV iterations were only 34% of the original feature set,
compared to 36% without this stopping criterion. Although the addition of
a stopping criterion was effective in reducing the computational time, the
minimum relevance index value may need to be reviewed for different data
sets.

5.7 Conclusion

We presented a robust dimensionality reduction method based on PLS re-
gression that combined outlier detection, feature selection and feature extrac-
tion. The results illustrated that our method performed effectively analysing
texture separating healthy subjects and OA patients: the diagnostic ability
of our method reached AUC of 0.92 compared to 0.84 in a previous study.
Furthermore, we obtained a considerable reduction in the number number
of features used by the final model (in median 19% of the original set).

Future improvements to the developed method include evaluating the
framework with some robust PLS algorithm instead of excluding the outliers
in a pre-processing step and investigating learning algorithms with a sparsity
constraint, in particular linear classifiers with L1 or L0 norm regularization.
Furthermore, validation on another independent study population is key to
verify the results.

Besides this, the clinical challenge that remains for future research is
an examination on the relationship between the selected feature sets and
the pathological features they can represent, e.g., BMLs, osteophytes, bone
erosions, subchondral cysts, bone attrition, among others.



Chapter 6
Quantification of tibial trabecular
bone for prediction of tibial cartilage
loss

This chapter is based on the following manuscript. The introduction was rewritten
to avoid redundancy when comparing to Chapter 1. The image data acquisition and
feature computation were omitted since they were detailed in Chapter 3. Apart from
these changes, the contents are similar.

J. Marques, Harry K. Genant, M. Lillholm, E. B. Dam, "Diagnosis of osteoarthritis
and prognosis of tibial cartilage loss by quantification of trabecular Tibia bone from
MRI," Magnetic Resonance in Medicine, 2012, DOI: 10.1002/mrm.24477.

Research on MRI analysis has provided methods for quantification of the
multiple components of the knee joint, besides revealing significant struc-
tural associations of sub-regions of the subchondral bone area with cartilage
loss [16, 117, 118]. For example, the work presented in [72, 140] analysed
MRI scans to assess BML and to measure the change between baseline and
follow-up in knee cartilage volume. Their results suggested that enlarging
BMLs are strongly associated with more cartilage loss.

Additional investigations in these associations could lead to MRI markers
of ROA progression, which may have advantages over existing methods.
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Coordinated interdisciplinary work to design sensitive biomarkers able to
identify patients most likely to progress would enable more rapid assessment
of new treatments and structure-modifying therapies in clinical trials [71].

In this chapter we used the longitudinal study described in Chapter 3 to
investigate the quantification of OA and prediction of medial tibial cartilage
loss by analysis of the tibia trabecular bone from baseline MRI scans of
knees. The framework described in Chapter 5 was used to quantify two bone
markers, one for diagnosis of ROA (KL>1) and another one for prognosis of
rapid cartilage loss.

This chapter also presents a preliminary radiological reading of the high
and low risk knees. This analysis put forward a hypothesis of which patholo-
gies the bone marker could be capturing to define the prognosis of cartilage
loss.

6.1 Brief review of the framework

To quantify the trabecular bone structure, initially a voxel classification
method segmented the tibia bone. From the segmentation, we applied mor-
phological erosion of approximately 2 mm to exclude most of the cortical
bone. The remaining was basically the trabecular bone, which was defined
as the ROI. The data set contained a generic set of 534 features, including
Gaussian derivatives at multiple scales, extracted from the ROI. At next step,
a machine learning approach was applied to deal with two different tasks
involving two classes each. Firstly, to discriminate between healthy and
OA patients and afterwards to segregate the slow and rapid progressors of
cartilage loss. To individually deal with the tasks, the framework applied
PLS feature extraction followed by forward feature selection to identify the
linear combination of the features that best discriminate the two classes.
The selected features were employed to train a LDA classifier. Basing on a
cross-validation strategy, the outcome of the classification was a single value
for each knee, representing at first, the classified probability of having OA,
and afterwards the classified probability of rapid cartilage volume loss. For
the first task, the outcome of the classification was defined as the diagnosis
bone marker and for the second one, the prognosis bone marker. The overall
texture analysis framework is described in Section 5.2.
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6.2 Analysis of the relation between the bone marker
and pathological features

According to the developed prognosis bone marker, 30 baseline knees were
selected for further analysis: 15 belonging to the high risk group of cartilage
loss and 15 belonging to the lowest risk group. An experienced radiologist
(Harry Genant) reviewed and scored the radiographs of these knees. The
radiograph analysis was blinded, so the specialist did not know how much
a specific knee lost in cartilage or whether it was considered high or low risk
by the bone marker. The specialist focused particularly on the medial joint
region: medial joint space narrowing (MJSN), medial osteophyte (MPHYT),
osteopenia (OP) and vertical trabecularization (VTRAB).

The measurements considered a 8-scale (0=normal, 0.5=normal worse,
1=mild, 1.5=mild worse, 2=moderate, 2.5=moderate worse, 3=severe and
3.5=severe worse) based on the Altman and Genant scoring method [4].
During the analysis, the scores were grouped in only two categories due the
small number of samples: one category with values less than 1 and another
with values equal or more than 1.

6.3 Statistical Analysis

As an initial validation of the proposed methodology, we apply the texture
analysis methodology to OA diagnosis of the baseline images. The first
experiment evaluated the diagnostic ability by classifying the population in
healthy (KL=0 or KL=1) and ROA (KL>1). The outcome was the probability
of having ROA.

The second experiment investigated the feasibility of predicting the rapid/s-
low progressors of cartilage loss based on the texture analysis of the trabec-
ular bone structure of a baseline knee image. In this case, the outcome of the
classification was the probability of rapid cartilage volume loss. The progres-
sors were designated by the median of cartilage loss calculated across the
population. The ones below the median were defined as slow progressors
and the rest as rapid progressors. The texture analysis framework used the
area-under-the-ROC (AUC) to evaluate the classification. Since the data was
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unbalanced with respect to the number of knees for each class (healthy/ROA),
cost functions such as the classification accuracy was inappropriate to this
dataset.

In order to determine the accuracy of the method encompassing the diver-
sity of the data, we used cross-validation by randomly dividing the data into
independent training and generalization sets 300 times. The model was gen-
erated using a training sample and the generalization set was used to evalu-
ate the model for unseen samples. Hence 300 evaluations were performed,
one for each generalization sample set. The final AUC was computed by the
median of the generalization AUC’s. This strategy estimated how well the
model can perform on future independent data set. The potential presence
of confounding factors was evaluated by multivariate regression. Based on
the results, the bone structure marker was normalized using the residuals of
this regression.

6.4 Results

The results of the confounding factors analysis are shown in Table 6.1, where
the odds ratio (OR) and the 95% confidence interval (CI) represent the eval-
uation of the diagnostic and cartilage loss prediction ability of gender, BMI
and age. The following subsections present the results for the main tasks
of this paper: diagnosis of ROA, prognosis of cartilage loss and the relation
between the bone marker and some pathological features.

Table 6.1: Confounding factors analysis for diagnosis and prognosis of car-
tilage loss.

Diagnosis Prognosis
Factor OR CI OR CI

Age 1.88 1.2−2.9 0.64 0.4−1.0
Gender 1.15 0.7−1.8 1.72 1.1−2.8
BMI 4.04 2.5−6.5 1.67 1.0−2.7



Quantification of tibial trabecular bone for prediction of tibial
cartilage loss 57

0−1 >1 0 1 2 3/4

20 %

40 %

60 %

80 %

100 % **** *
****

*

Kellgren & Lawrence Index

B
on

e 
st

ru
ct

ur
e 

m
ar

ke
r

M
ea

n 
an

d 
S

E
M

Figure 6.1: The probability of being healthy defined by the bone structure
marker. The mean of measurements are shown (with bars illustrating the
standard error of the mean, SEM) for the healthy and diseased groups, and,
to the right of the dotted line, for each KL score. The levels of statistically
significant separation were marked by stars: four stars correspond to p <
0.0001 and one star to p < 0.05.

Diagnosis

The ability to separate ROA (KL>1) and healthy knees of the bone structure
marker reached a generalization AUC of 0.92 (p<0.0001) prior to normaliza-
tion for the confounding factors and AUC 0.86 (p<0.0001) after correction.
Figure 6.1 shows the cross-sectional separation.

Prognosis

By quantifying the bone structure, the framework predicted the rapid/slow
progressors with OR of 3.9, with 95% CI 2.4 - 6.5. Age, gender and BMI did
not affect the prognosis performance after correction. Figure 6.2 shows the
actual cartilage volume loss separated out by median and tertiles of the bone
marker. The medians of the subjects classified as slow and rapid progressors
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Figure 6.2: Cartilage volume losses separated out by above/below the median
of the bone marker on the left of the dotted line (4.9% and 1.1%) and tertiles
on the right side (6.6 %, 1.5% and 0.8%).

were 1.1% and 4.9% per year respectively.
We also evaluate the classification of progressors by tertiles. The bone

structure marker could segregate patients experiencing the greatest risk of
cartilage loss, 6.6% in the first tertile. The OR for the prediction of the first
tertile against the third one was OR 6.5 (CI 3.4 − 12.6) prior to correction
and OR 5.6 (CI 3.1 − 11.2) after normalization in relation to the confounding
factors.
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Relation between the bone marker and pathological features

Table 6.2 shows odds ratios for the relations between the radiograph features
evaluated and the cartilage loss and the relations between the features and
the bone structure marker. Although not significant, the vertical trabecular-
ization presented the highest relation to cartilage loss and the bone marker.
As a remark, the segregation of the same samples using the bone structure
marker had OR of 16.0 (CI 2.7 − 95.7).

Table 6.2: Odds ratios and confidence intervals of the relations between the
radiograph features and both the cartilage loss and the bone marker of 30
samples, 15 belonging to the top high risk group of cartilage loss and 15
belonging to the lowest risk group.

Cartilage loss Bone marker
Measure OR CI OR CI

MJSN 1.00 0.2− 4.6 1.00 0.2− 4.6
OP 1.83 0.7− 9.3 1.83 0.4− 9.3
VTRAB 7.00 1.1−46.0 2.36 0.6−12.4
MPHYT 1.75 0.4− 8.0 1.75 0.4− 8.0
MJSN: medial joint space narrowing, OP: osteopenia,
VTRAB: vertical trabecularization, MPHYT: medial osteophyte

6.5 Discussion

6.5.1 Related studies on prognosis of cartilage loss

So far, there is no clinically determined "gold standard" measure that quan-
tifies trabecular bone for prognosis of cartilage loss. However, there is a
substantial body of work on cartilage markers and their association with car-
tilage loss. For example, Hunter et al. [71] used longitudinal data from Boston
Osteoarthritis of the Knee Study (BOKS) to determine whether biomarkers
of cartilage turnover could serve as predictors of cartilage loss on MRI. They
assessed the baseline levels of cartilage degradation and synthesis products
by means of assays for type I and II cleavage by collagenases (Col2:3/4Cshort
or C1,2C), type II cleavage only with Col2:3/4Clongmono (C2C), type II syn-
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thesis (C-propeptide), the C-telopeptide of type II (Col2CTx), aggrecan 846
epitope, and cartilage oligomeric matrix protein (COMP). They concluded
that with the exception of COMP, no other tested biochemical markers of
cartilage synthesis and degradation facilitated prediction of cartilage loss.
If changes in cartilage turnover in patients with symptomatic knee ROA
were associated with cartilage loss, they did not appear to affect systemic
biomarker levels.

In another study, Dam et al. [31] investigated whether the level of baseline
urinary excretion of C-telopeptides of type II collagen (CTX-II) could predict
progression of knee ROA as defined by radiographic signs and whether
it could predict cartilage loss. Their results suggested that uCTX-II was a
suitable prognostic marker, confirming previous reports claiming that CTX-II
is associated with both the prevalence and the progression of ROA [123].

Studies that analyzed compartment-specific relation with cartilage loss,
showed that subregions of the bone area is also a revelant structure for this
investivagation. Eckstein et al. [46] investigated individual radiographic
features (JSN, osteophytes, sclerosis, among others) and MRI cartilage mor-
phometry features (specifically denuded subchondral bone area and carti-
lage thickness). The results showed that beside low cartilage thickness, knees
with medial femoral subchondral bone sclerosis and medial denuded sub-
chondral bone areas at baseline displayed significantly higher cartilage loss
than those without. The canine study of Boileau et al. [14] also demonstrated
that there was a highly significant correlation between total knee cartilage
volume loss and subchondral bone hypersignal.

In another study, Roemer et al. [59] analysed if presence of baseline syn-
ovitis and effusion in knees without ROA predicted future tibio-femoral car-
tilage loss. The investigation used the longitudinal Multicenter Osteoarthri-
tis Study (MOST). They concluded that baseline synovitis in knees without
ROA does not predict cartilage loss, but predicts joint effusion instead. How-
ever, baseline effusion, which reflects synovial activation, predicts structural
progression in subjects without ROA.

Pelletier et al. [110] investigated the correlation between knee cartilage
volume loss and specific compartments such the menisci (tear and extrusion)
and subregions of bone including subchondral bone, the tibial plateaus and
femoral condyles. Their study showed that meniscal damage and bone
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marrow changes are the features most closely associated with subregional
cartilage loss. The greatest cartilage volume loss was found in the medial
compartment, and risk factors included female gender, JSW, meniscal lesions
and bone changes at baseline.

6.5.2 Our results

MRI markers of ROA progression represent an alternative for structural
change which may have advantages over existing methods of measuring
structure. Our investigation revealed that disease-related bone structure
characteristics were reflected in the low-field MRI appearance. Even though
the individual trabeculae were not visible, the outcome of our investigation
demonstrated the possibility of analyzing the network of the trabecular bone
as a whole and from this automatically to quantify a bone structure marker
strongly associated with the presence of ROA.

Our first experiment validated the texture analysis framework in terms
of ability to diagnose healthy and ROA subject. For this analysis, we con-
sider the KL score as the "gold standard", where KL greater than 1 indicated
ROA and healthy otherwise. The outcome showed that the applied analysis
reached a diagnostic ability of AUC of 0.92. In a study using the same pop-
ulation [36], the joint space width had AUC of 0.73 while the best individual
marker, cartilage roughness, had AUC of 0.80. A linear combination of
several morphometric and structural cartilage markers, cartilage longevity,
scored AUC 0.84. The results indicated that our framework had diagnostic
ability superior to other biomarkers of ROA.

The second experiment evaluated the proposed bone marker applied for
prediction of cartilage loss. Our results of the prognosis analysis showed
that the tibial trabecular bone MRI texture can segregate ROA patients ex-
periencing the greatest risk of cartilage loss (first tertile) from the ones with
least loss (see Figure 6.2). As suggested by Pelletier et al. [110], patients from
the first tertile are of particular interest from a clinical perspective as they
are likely to have the worst prognosis and are, therefore, at greater risk of
surgical intervention for joint replacement.

The development and validation of prognosis markers may accelerate
the pace of therapeutic development. The advantages of this approach are
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the use of low-field MRI equipments, which is cheaper to install, maintain
and operate when compared to high-field; and a fully automatic computer-
based framework, making the developed marker well suitable for large,
longitudinal clinical studies.

6.5.3 Relation between the bone marker and pathological
features

We presented an initial analysis of the relation between the bone structure
marker and some pathologic radiograph features. With a small number
of samples, it was not possible to achieve a high confidence level, which
restricted the analysis of pathological findings. Nevertheless, the slight
prominence of the vertical trabecularization in the results suggests further
investigation on this relation. Despite the non-conclusive results, the experi-
ment put forward a hypothesis of which pathologies the bone marker could
be capturing to define the risk of cartilage loss.

6.5.4 Limitations

In this study, the relatively small number of subjects and mainly the high
percentage of the population (80%) in early stages of ROA suggest that the
findings need to be validated on other populations with more subjects in
later stages of ROA. Specifically, the conclusions are more accurate for pro-
gression during the early stages of ROA. Furthermore, we suggest validation
of our findings on high-field MRI scans, which may allow a more accurate
and precise cartilage volume measurement and tibial trabecular bone quan-
tification. Also, further research is required to integrate cartilage and bone
into a comprehensive approach that can increase our understanding of the
disease processes.

6.6 Conclusion

The applied texture analysis demonstrated the possibility to capture tissue
changes and demonstrated the potential for automatically predicting the car-
tilage volume loss by analyzing the tibial trabecular bone structure. From a
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theoretical point of view, the outcome underlined the importance of the bone
to the understanding the disease processes. In practical terms, the developed
quantification can contribute to the development of a new marker able to
predict disease progression and identify patients most likely to progress.
Our findings underlined the importance of the bone for diagnosis and prog-
nosis of OA. It is aligned with the gradual shift on the characterization of OA
from a cartilage centered view towards the whole joint system approach.



Chapter 7
The most informative texture region
of the tibia for predicting cartilage
loss

This chapter is based on the following manuscript. The introduction was rewritten
to avoid redundancy when comparing to Chapter 1. The image data acquisition and
feature computation were omitted since they were detailed in Chapter 3. Apart from
these changes, the contents are similar.

J. Marques, D. M. J. Tax, M. Loog, E. Dam, "The most informative texture region
of the tibia for predicting cartilage loss - A multiple-instance learning approach",
Journal of IEEE Transaction on Medical Imaging (submitted).

Some of the interesting contributions of MRI to OA investigations are
methods for quantification of the multiple components of the knee joint,
which has enriched the analysis of the joint structure changes over time.
Some approaches [117,118] have revealed significant structural associations
of subregions of the subchondral bone area with cartilage loss.

Additional support for this analysis comes from Chiba et al. [24]. The
authors analysed structural features of subchondral trabecular bone in MRI
scans of knees with OA in order to study OA progression. As cartilage
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area decreased in the medial joint, some structural features increased in the
medial tibia (bone volume fraction and trabecular thickness), while others
decreased in the lateral tibia and femur (bone volume fraction, trabecular
thickness and connectivity).

In view of these results, there are indications that anatomical features re-
lated to cartilage loss affect different subregions of the bone. One could argue
that relevant insights can arise by analysing these regions separately. The
work of Roemer et al. [126], for instance, analysed separately 14 subregions
of the knee joint in order to score BML size and cartilage status in the same
subregions. The subregions and scores were assessed manually. They found
that the absence of BMLs was associated with a decreased risk of adjacent
cartilage loss while subregions with new and progressive BMLs exhibited a
high risk of cartilage loss at follow-up.

Motived by this interpretation, the work presented in this chapter anal-
ysed baseline images of knee MRI to explore subregions of the trabecular
tibial bone, identifying the ones more related to cartilage loss and to classify
subjects in rapid or slow progressors.

We analysed the texture of the ROI, the trabecular tibial bone, to quan-
tify the structural elements related to cartilage loss. Traditionally, image
quantification is based on the whole ROI at once [102, 133]. Contrarily, we
quantified subregions of ROI separately, hopefully capturing the different
pathological features occurring in each region of the bone and for this task
we used multiple-instance learning (MIL).

Generally, MIL extends classical supervised classification in which every
object is described by a single feature vector or instance to a description
based on an arbitrary set of vectors, also called a bag. One of the first MIL
algorithms was published by Dietterich et al. [42]. The idea was to find
an axis-parallel hyper-rectangle that contain at least one instance from each
positive bag and simultaneously exclude all the instances from negative bags.
The authors applied the proposed algorithms to a drug discovery problem,
where molecules were classified by looking at their shape statistics.

In our case, each subregion was defined to be one instance and a bag
held all instances over a full ROI. We employed strict MIL in which the
final decision is governed by the state of the worst subregion. That is, if the
learning algorithm identified some tissue change related to cartilage loss in
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at least one region (instance) of the whole ROI, the subject was classified as
rapid progressor of cartilage loss. Afterwards, we evaluated the frequency
with which the regions were selected as most relevant. In order to apply the
proposed strategy, the MIL method had to provide accurately the positive
instances and allow one to find the concept related to the positive bags.
Section 7.1 gives more details about MIL and describes the employed MIL
approaches.

Multiple-instance learning in medical imaging

In general, medical imaging applications require use of prior knowledge and
a good representation of the data. Supervised machine learning techniques
learn models using labelled data [2]. Traditionally, a training data set, con-
sisting of data and label pairs for each sample, is used to build a classifier
that can predict output labels for unseen samples.

As an alternative, MIL techniques extend this setting to include problems
where the samples (bags) contain a group of unlabelled patterns (instances).
In this case, the training set contains unlabelled instances belonging to la-
belled samples.

Applications of MIL include computer-aided detection [98,120] and med-
ical imaging solutions [12,43,44], among others. Though no explicit mention
of the term MIL is made, [98] and [120] present basic solutions to computer-
aided detection tasks from chest radiography and mammography, respec-
tively, that can be formulated as MIL problems. The work presented in [43]
defined roughly segmented ROIs of Breast ultrasound image as a bag and
subregions of the ROI were considered as the instances of the bag. They
applied MIL for classification of tumours into benign or malignant. An-
other method for abstracting the task to multi-instance representation is
presented in [12]. The authors proposed a novel classification approach for
automatically detecting pulmonary embolism from computed-tomography-
angiography images and also provided an approach for the problem of
learning with multiple positive instances.
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Relationship between bone quantification and pathological
features

Our previous study in the same population [102] (see Chapter 6) have sug-
gested a slight prominence of the vertical trabecularization in subjects clas-
sified as rapid progressors of cartilage loss. Although not significant, the
vertical trabecularization presented a relation to cartilage loss and to the
previous defined bone marker. The OR for the relation to cartilage loss was
7.0 with the 95% CI between 1.1 and 46.0. The relation to the previous bone
marker had OR 2.4 (CI 0.6 − 12.4).

In this chapter, we present an analysis of the same baseline radiological
readings in order to investigate whether the bone marker would also show
some relation to vertical trabecularization when defining the most relevant
region for prognosis of cartilage loss.

7.1 MIL for image classification

Formally in multiple-instance learning, a training set consists of a set of bag
labels y1, ..., ym, associated to bags X1, ...,Xm, where each bag contains a set
of n instances, Xi = {xi1, ..., xini}. Note that not all bags have the same n.
Typically, the instance space χ ∈ Rd is the d–dimensional Euclidean space,
and Y ∈ {−1, 1} corresponds to the labels negative and positive. The goal of
classical MIL algorithms is to train a instance function h(X) : χ −→ Y that
will accurately predict labels yi j ∈ {−1, 1} for novel instances xi j.

Based on this instance classification, the elementary assumption is that a
bag is positive if at least one of the instances in that bag is positive, formally:
yi = max j{yi j}. The fundamental challenge in MIL is that one does not know
which of the instances in a positive bag are actually positive and which ones
are not.

The following subsections introduce the employed MIL methods. The
major reason why we chose the mi-SVM [5] was because it allows one to find
the concept that will label individual instances correctly. This property is
required for our strategy of identifying the most relevant region of the tibia.
Originally, one of the main points of MIL was to identify a concept that relates
the positive bags to their instance attributes, however, not all of the recent
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MIL methods provide this feature. For example, MILES (Multiple-Instance
Learning via Embedded instance Selection) [22] considers more than one
target concept and each one can be related to either positive bags or negative
bags. Therefore, we opted to apply mi-SVM for identifying the most relevant
region and to compare both approaches, mi-SVM and MILES, for the task of
prediction of cartilage loss.

SVM for MIL

Support Vector Machine (SVM) [28] is a learning method that constructs a
hyperplane supported by training data points, called support vectors, which
can separate the data into distinct classes. The optimal hyperplane is the one
with maximum margin separating the classes. Andrews et al. [5] generalized
this concept and proposed the mi-SVM for MIL problems.

The mi-SVM explicitly treats the instance labels yi belonging to positive
bags as unknown variables. The goal then is to maximize the instance margin
jointly over possible label assignments. The optimal discriminant function
should ideally classify the bags according to the following rule: if a bag
is negative (YI = −1), then all its instances are negative (y j = −1 for all
instances xi j ∈ Xi). On the other hand, if a bag is positive (YI = 1), then at
least one instance in the bag is positive. Hence, the positive half-space of the
hyperplane should have at least one instance from every positive bag, while
all instances belonging to negative bags should be in the negative half-space.

MILES

The above approach assumes that a bag is positive if and only if at least one
of its instances is positive. The MILES [22] considers the situation that a
negative bag may contain positive instances as well. Furthermore, it extends
the idea from the Diverse Density proposed by Maron et al. [101] by assuming
that there may exist more than one target concept and each one can be related
to either positive bags or negative bags.

In order to determine the target concepts, MILES specifies a probability
based on the similarity between a bag Bi and a potential concept x (see
equation 7.1). The measure is defined by the instance x and the closest
instance in the bag.
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Pr(x|Bi) ∝ s(x,Bi) = max
j

exp

−
∥∥∥xi j − x

∥∥∥2

σ2

 , (7.1)

where σ is a predefined scaling factor.
The set of selected target concepts C is defined simultaneously with the

bag classification process. Considering all concepts xi
∈ C, each bag in the

training set can be mapped into an instance-based feature space Fc via the
mapping m(Bi) = [s(x1,Bi), s(x2,Bi), ..., s(xn,Bi)]T, where each feature of a bag
is its similarity with the concepts xi

∈ C. Therefore, the coordinates of a given
bag represent the bag’s similarities to various instances in the feature space.

The dimensionality of the feature space can be high, since it is propor-
tional to the number of training instances. To deal with it, the algorithm
applies a feature selection step based on the 1-norm SVM [11]. After the
feature selection step, all the instances are classified according to their con-
tributions to the bag classification.

7.1.1 Radiograph analysis

In order to investigate the potential relationships between the outcome of
the texture analysis framework and known pathological features related to
OA, 30 baseline knees were selected for further analysis. Considering the
median of cartilage loss of the population, 21 knees belonged to the high risk
group of cartilage loss and 9 belonged to the lowest risk group.

An experienced radiologist (Harry Genant) reviewed and scored the ra-
diographs of these knees. The radiograph analysis was blinded, so the spe-
cialist did not know how much a specific knee lost in cartilage or whether it
was considered high or low risk by the bone marker. The specialist focused
particularly on the tibia bone and medial joint region: medial joint space nar-
rowing (MJSN), medial osteophyte (MPHYT), osteopenia (OP) and vertical
trabecularization (VTRAB).

The measurements considered an 8-scale (0=normal, 0.5=normal worse,
1=mild, 1.5=mild worse, 2=moderate, 2.5=moderate worse, 3=severe and
3.5=severe worse) based on the Altman and Genant scoring method [4].
During the analysis, the scores were grouped in only two categories due the
small number of samples: one category with values less than 1 and another
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Figure 7.1: The initial framework steps: (1) feature extraction, (2) segmenta-
tion of the medial tibial cartilage and the tibia bone, (3) medial tibial cartilage
volume quantification and in (4) automatically segmentation of tibia in light
gray and the region-of-interest (the trabecular bone) in gold. The figure
also shows examples of tibia in different stages of Osteoarthritis, from KL 0
(healthy) to KL 3 (severe diseased).

with values equal or more than 1.

7.2 MIL Framework for texture analysis

The initial framework steps included (Figure 7.1): features computation,
segmentation of the cartilage and trabecular tibial bone, and cartilage quan-
tification. Chapter 3 has more details about these steps. The ROI definition
followed the same approach described in Section 5.3.1. The only difference
refers to the morphological erosion. The experiments described in this chap-
ter applied a erosion of approximately 5 mm to remove the cortical bone.

The remaining framework steps are described in the following sections.
Subsection 7.2.1 defines the shape model and the associated coordinate sys-
tem. Subsection 7.2.2 introduces the simultaneous evaluation and classi-
fication of the subregions. Finally, the strategy used to identify the most
informative region of the ROI is explained in Section 7.2.3.
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Figure 7.2: The figure shows an example of the shape model fitted to a
segmentation of tibia. The coordinate system was defined based on a box of
15 : 10 : 8 in axial, sagittal and coronal direction respectively. The illustration
shows a ROI divided in 400 regions.

7.2.1 Sub-regions feature set

Sub-regions partition In order to divide the ROI into sub-regions, a shape
model was optimized to provide a coordinate system with approximate
anatomical correspondence for the Tibia bone. The shape model was based
on a point distribution model consisting of interior, exterior and boundary
points. The correspondence was optimized in a framework inspired by
previous work [35]. The shape model point grid defined a coordinate for
each voxel of the ROI, allowing the ROI to be sub-divided (see figure 7.2).

Feature scoring In order to generate the final feature set for each region
of the ROI, we summarized the extracted features by calculating the mean
across each region. With this generic multi-scale feature bank, we aim to
quantify significant differences in bone structures in the images.

7.2.2 Prognosis classification

The bags described the whole ROIs, the trabecular tibia bone, while each
region of the ROI was defined as an instance of the MIL bag.

The label of the bags were defined according to the population median of
the tibial cartilage volume change. The knees with cartilage loss above the
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median were considered as the positive class (rapid progressors), otherwise
they were assigned as negative class (slow progressors).

7.2.3 Identification of the most informative regions

Since mi-SVM allows to identify the positive instances of a bag and associates
positive instances only with positive bags, we considered this approach for
identifying the most informative regions. Therefore, after the classification,
we counted how many times the mi-SVM selected each region as the witness
to calculate the percentage of relevance of each ROI region.

7.3 Experiments

During the experiments, the MIL concepts were identified based on a ran-
domly selected subsample of the data. The training set consisted of 168
samples. The remaining 100 samples was used as test set, for the model
evaluation.

Due to the high variability of the data and the limited population size, the
data set was randomly partitioned into training and test sets 100 times, hence
100 iterations of evaluation were performed. This sub-sampling technique
is also known as Monte Carlo cross-validation [20].

The chosen performance measure for the prognosis analysis was the AUC.
For the statistical analysis we included the OR with the respective 95% CI.

7.3.1 Definition of the most informative regions for progno-
sis of cartilage loss

A. Evaluation of prognosis of cartilage loss The first experiment evalu-
ated the MILES and mi-SVM techniques in the binary classification problem
of predicting the rapid/slow progressors of cartilage loss. The ROI was di-
vided in 1, 3, 6, 8, 12, 24 and 45 regions. We considered that more than
45 regions could produce too small regions, which could break apart larger
bone structures like BML. Besides, it could increase considerably the number
of unlabelled instances, potentially leading to model convergence problems.
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B. Evaluation of the most informative regions The second experiment
analysed which regions were most related to cartilage loss. For this experi-
ment, we considered the strategy described in the Section 7.2.3.

7.3.2 Bone marker statistics and pathological features

Based on the region most related to cartilage loss, we defined a bone texture
marker for each knee. The classification was re-executed, now considering
each bag with only two instances: one instance corresponded to the region
more related to cartilage loss defined by the previous experiment and the
other instance corresponded to the rest of the ROI. Based on the mi-SVM
results, the bone marker for each knee was calculated as the median of
posteriors, considering all the cross-validation evaluations.

Ideally, these experiments would be done in a different data set of images.
But due to the small number of samples, we decided to evaluate it on the
same population as a proof of concept that needs further validation.

C. Confounding factors analysis Using the bone marker, the potential
presence of confounding factors (age, gender and BMI) was evaluated by
multivariate regression.

D. Tertiles segregation We also evaluate the ability of classifying progres-
sors by tertiles, hoping to identify the patients with greatest risk of cartilage
loss.

E. Relation between the texture analysis outcome and pathological features
After the definition of the bone marker, we investigated the relation between
the bone marker and some pathological features related to OA.

7.4 Results

A. Evaluation of prognosis of cartilage loss Table 7.1 shows the median
AUC’s and the standard deviation across the evaluations. The mi-SVM had
predictive ability around AUC 0.70 when dividing the ROI in 3, 6, 8 or
12 regions. For 24 and 45 regions the AUC dropped to 0.63. The MILES
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approach had a comparable performance evaluation only when analysing
the whole ROI as the unique instance of the bag (first line). For the regions
evaluation, its AUC was around 0.64.

Table 7.1: The median of AUC’s and in parenthesis the standard deviation
for 100 cross-validation evaluations.

Regions MILES mi-SVM

1 0.70 (0.01) 0.61 (0.17)
3 0.65 (0.05) 0.68 (0.02)
6 0.64 (0.07) 0.70 (0.01)
8 0.65 (0.06) 0.67 (0.03)

12 0.63 (0.11) 0.69 (0.01)
24 0.62 (0.15) 0.63 (0.09)
45 0.64 (0.07) 0.63 (0.10)

B. Evaluation of the most informative regions Figure 7.3 shows the most
relevant region in darker shades. It seems that inferior part of the tibia bone
is the region more relevant for prognosis of cartilage loss in this population.
For 3, 6 and 12 regions (a, b and d in the figure) the inferior part has clearly the
high percentages of relevance. For 8 regions (c in the figure), this relevance
is less clear since the inferior part of the tibia mixed with the region under
the subchondral bone. For 24 regions (e in the figure) the inferior and the
medial region close to the cortical bone were selected as more relevant. For
45 regions the medial region close to the cortical bone is also selected as
more relevant. However, considering the prognosis evaluation for 24 and 45
regions, the relevance of the medial region close to the cortical bone may be
inconclusive.

Once identified the most informative texture region, for the next results
(subsections 7.4, 7.4, 7.4), the bone marker was defined based on the outcome
of mi-SVM considering that each bag had only two instances: one instance
corresponded to the inferior part of the tibia bone and the other instance
corresponded to the rest of the ROI.
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Figure 7.3: The figure shows a ROI divided in 3, 6, 8, 12, 24 and 45 regions,
respectively in a, b, c, d, e and f. The images corresponds to left knees and
the percentages correspond to how many times each region was selected as
witness in the mi-SVM.

C. Confounding factors analysis The results of the confounding factors
analysis are shown in Table 7.2, where the OR’s represent the ability of age,
gender and BMI of predicting cartilage loss (second and third columns),
along with their relation to the bone marker (fourth and fifth columns).

The bone marker based on the MIL framework predicted the rapid/slow
progressors with OR of 3.7, with CI 2.2 – 6.0 and AUC of 0.72 (p-value <
0.0001). After linear correction for age, gender and BMI, the OR was 3.2 (CI
1.9 – 5.3) and the AUC was 0.68 (p-value 0.0001).

D. Tertiles segregation We also evaluated the classification of progressors
by tertiles. The bone structure marker could segregate patients experiencing
the greatest risk of cartilage loss. The OR for the prediction of the first tertile
against the third one was OR 8.3 (CI 4.3 – 15.9) with AUC of 0.82 prior
to correction and OR 5.3 (CI 2.8 – 9.9), AUC of 0.77 after normalization in
relation to the confounding factors. Figure 7.4 illustrates the cartilage loss
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Table 7.2: Confounding factors analysis for prognosis of cartilage loss.

Cartilage loss Bone marker
Factor OR CI OR CI

Age 0.64 0.4−1.0 0.76 0.5−1.2
Gender 1.72 1.1−2.8 2.07 1.3−3.4
BMI 1.67 1.0−2.7 1.88 1.6−3.1

separated out by above/below the median of the bone marker and by tertiles.

E. Relation between the texture analysis outcome and pathological fea-
tures Table 7.3 shows the OR for the relations between the radiograph
features evaluated and the cartilage loss, along with the relations between
the features and the bone structure marker. Although not significant, the
vertical trabecularization presented the highest relation to cartilage loss and
to the bone marker. As a remark, the segregation between slow/rapid pro-
gressors in the 30 same samples using the bone structure marker had OR of
42.2 (CI 5.1 – 346.9).

Table 7.3: Relations between pathological features and cartilage loss and the
bone structure marker

Cartilage loss Bone marker
Measure OR CI OR CI

MJSN 1.00 0.2− 4.6 1.00 0.2− 4.6
OP 1.83 0.7− 9.3 1.83 0.4− 9.3
VTRAB 7.00 1.1−46.0 2.36 0.5−12.4
MPHYT 1.75 0.4− 8.0 1.00 0.2− 4.5
MJSN: medial joint space narrowing, OP: osteopenia,
VTRAB: vertical trabecularization, MPHYT: medial osteophyte
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Figure 7.4: Cartilage volume losses separated out by above/below the median
of the bone marker (5.2% and 0.75% of cartilage loss) on the left of the dotted
line. The tertiles are on the right side of the dotted line with losses of 6.5,
2.6 and -0.3% for first, second and third tertiles respectively. The mean of
the measurements are shown (with bars illustrating the standard error of the
mean, SEM). The level of statistically significant separation was marked by
stars: four stars correspond to p < 0.0001.

7.5 Discussion

For prediction of rapid/slow progressors of cartilage loss, the outcome showed
that the presented MIL texture analysis framework reached a prognosis abil-
ity comparable to previous results [102], with the advantage of allowing the
investigation of which region of the ROI are more related to cartilage loss.
The MIL approach had a performance of OR 3.7, while previously we had
OR of 3.9, on the same population.

The confounding factors values were aligned with recent prospective
studies demonstrating obesity as a primary risk factor for incident knee
OA [93], along with studies showing that women have increased rates of
cartilage loss and progression of cartilage defects at the knee than men [127].
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Moreover, the mean of cartilage loss for first, second and third tertiles was
6.5, 2.6 and -0.3% respectively. Patients from the first tertile are of particular
interest as they are most relevant to include in clinical trials. Additionally,
they are likely to have the worst prognosis with greater risk of surgical
intervention by joint replacement [110].

Comparing mi-SVM and MILES, the mi-SVM approach presented a better
performance for 5 out of 7 evaluations. For 3, 6, 8 and 12 regions it reached
AUC around 0.70. Contrary to the expectation, MILES approach had a
comparable performance evaluation only when analysing the whole ROI as
the unique instance of a bag, which cannot support the investigation of the
most relevant region.

When analysing which region of the tibial trabecular bone was more
related to cartilage loss, the results showed the inferior part of the tibial bone
was classified as the most relevant. The region beneath the subchondral
area was surprisingly evaluated as less important. Furthermore, the medial
part of the tibia bone was clearly more relevant than the lateral area. This
outcome was not remarkable, since the experiment evaluated the relation to
the medial compartment of the cartilage.

There is some indication that anatomical features related to cartilage loss
affect differently subregions of the bone [24,126]. Despite the non-conclusive
results, the investigation of the most relevant region brought us the ques-
tion of which pathological features the bone marker could be capturing to
define the risk of cartilage loss in the selected region. The outcome of our
experiments (see Table 7.3) reinforced a previous hypothesis [102] of a slight
relation of cartilage loss to vertical trabecularization. Unfavourably, it was
not possible to achieve a high confidence level in these findings due to the
small number of samples. Therefore, the results suggests further investiga-
tion on this hypothesis.

We performed a preliminary analysis of the correlation between the bone
marker and some biochemical markers including tibial MRI cartilage mark-
ers of thickness, smoothness, curvature, homogeneity, among others. For
simplicity this evaluation was not included in the Results section; neverthe-
less, it is interesting to note the correlation between the bone marker and
medial tibial cartilage homogeneity had a significant result (p-value < 0.001)
of OR 2.49 (CI 1.5 – 4.1). Recently, it was shown that cartilage homogeneity
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quantified by MRI may capture the biochemical changes undergoing in the
cartilage and could be a potential marker for early detection of knee OA [115].
We suggest a further investigation combining cartilage homogeneity and our
bone marker, the combined marker could potentially increase the prediction
ability of cartilage loss or early OA.

In this study, the relatively small number of subjects suggest that the
findings need to be validated on other populations. Specifically, the statistical
analysis on the relevant region would be more conclusive if validated in
another data set. Furthermore, we suggest validation of our findings on
high-field MRI scans, which may allow a more accurate and precise cartilage
volume measurement and tibial trabecular bone quantification.

7.6 Conclusion

The applied MIL texture analysis demonstrated the feasibility to capture tis-
sue changes and demonstrated the potential for automatically predicting the
cartilage volume loss by analysing regions of tibial trabecular bone structure
separately. The identification of the inferior part of the tibial bone as the most
relevant region has enabled a preliminary finding that needs further inves-
tigation. The presented statistical analysis of the bone marker reinforced a
previous hypothesis of a slight relation of cartilage loss to vertical trabecu-
larization. Our results underlined the importance of the bone for prognosis
of cartilage loss in OA. In practical terms, this investigation can contribute
to the development of a new marker able to predict disease progression and
identify patients most likely to progress.



Chapter 8
Sparse linear models on texture
analysis

This chapter is based on the following manuscript. The introduction was rewritten
to avoid redundancy when comparing to Chapter 1. The introductory description
about PLS was omitted since it is detailed in Chapter 5. The same with the image
data acquisition and feature computation, since they were detailed in Chapter 3.
Apart from these changes, the contents are similar.

J. Marques, L. Clemmensen, E. B. Dam, "Diagnosis and prognosis of osteoarthritis
by texture analysis using sparse linear models", Proceedings of the Workshop on
Sparsity Techniques in Medical Imaging (STMI) in conjunction with 15th Interna-
tional Conference on Medical Image Computing and Computer Assisted Interven-
tion (MICCAI).

The increment of dimensionality in data sets leads to a loss of meaning for
each feature and possibly decreases the accuracy of the model [21]. In such
situations, sparse methods can reduce the non relevant features by adding
an appropriate penalty term to the objective function. The induced sparsity
has the potential of yielding a simplified and more interpretable model of
the scientific problem been investigated.

Different forms of the penalty terms have been proposed in the literature
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[54]. The Ridge regression [66] minimizes a penalized objective function by
adding an L2 penalty term and the LASSO [135] adds an L1 penalty to the
objective function. The Elastic Net combines L1 and L2 penalty, selecting
some variables using LASSO and shrinking some variables according to
Ridge. The resulting method can be seen as a variable selection strategy,
since some of the estimated variables are forced to zero, depending on the
size of this penalty.

In this chapter, we used the texture analysis framework presented in
Section 5.2 to compare the performance of the DR strategies using a PLS and
LDA methods with and without a sparse approach.

8.1 Background

Dimensionality reduction using LDA

LDA can be derived using different approaches. The Fisher LDA estimates
a low-dimensional discriminative space defined by a linear transformation
that maximizes the ratio of between-class scatter to within-class scatter.

In an alternative approach, the optimal scoring implementation recasts
the classification problem as a regression problem. The categorical variables
are turned into quantitative variables by defining Y as an n×j matrix of
dummy variables for the j classes and n observations. By linear regression,
the algorithm assigns scores to the classes, where the coefficient matrix reflect
the optimal scores. See more details in [65].

Though LDA often performs quite well in low-dimensional data, it is
known to fail when the number of features is larger than the number of
observations [26]. In this case, LDA cannot be applied directly, without
some regularization.

To deal with the high dimensions, the sparse LDA presented in [26]
applies an Elastic Net penalty to the coefficient vectors in the optimal scoring
interpretation of LDA. Besides performing classification and feature selection
simultaneously, the imposed sparseness criterion of this approach allows to
set the exact number of non-zero loadings desired in each discriminative
direction.
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Dimensionality reduction using PLS

The PLS regression suggests the use of supervised dimension reduction by
considering both the feature matrix X and the response variable Y. This
regression returns linear combinations of the features, called latent factors
or X-scores, which are used to predict the transformed response variable (Y-
scores). The X-scores are chosen so that the relationship between successive
pairs of scores is as strong as possible (See Section 5.1.2 for more details).

A large number of noise features can force the PLS loadings to divert
from the direction that relates X and Y, which can cause inconsistency [73].
Considering that it can attenuate estimates of the regression parameters,
Hyonho et al. [73] proposed a PLS formulation with imposed sparsity on the
direction vectors. The proposed sparse method is equivalent to the Elastic
Net approach, which selects some variables and shrinks some values towards
zero.

Since the PLS sparse approach tends to avoid inconsistency on the direc-
tion vectors, in the present work, we investigated whether it can efficiently
identify the relevant texture features for diagnosis of OA and prognosis of
cartilage loss. Building on Hyonho et al.’s proposed formulation we imple-
mented a sparse PLS algorithm and included it as a feature selection step to
the texture analysis framework.

8.2 Application of the framework for OA diagno-
sis and prognosis

In this section, we briefly describe the texture analysis framework and its ap-
plication to diagnosis and prognosis of OA. The overall framework included
the following ordered steps: segmentation of the ROI, features computation,
dimensionality reduction, classification and evaluation. Section 3.1 intro-
duces a brief description of the data collection, Section 3.3 explains how
the feature were computed and Section 8.2.2 explains the dimensionality
reduction method including the detailed implementation of sparse PLS.
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Figure 8.1: a) Automatically segmented tibia bone in light gray and the
region-of-interest (the trabecular bone) in gold.

8.2.1 ROI definition

The ROI definition followed the same approach described in Section 5.3.1.
The only difference refers to the morphological erosion. The experiments
described in this chapter applied a erosion of approximately 5 mm to remove
the cortical bone. Figure 8.1 shows an example of an ROI.

8.2.2 The dimensionality reduction method

As a pre-processing step, the feature set was normalized to zero mean and
a standard deviation of one. Next, the sparse PLS algorithm defined the
selected features and the number of PLS latent factors used in the final
model.

The sparse PLS algorithm: The original implementation of the SIMPLS al-
gorithm [39] uses conjugate gradient (CG) [128] to compute the coefficients.
At each iteration, one column of the matrix W is computed based on the
correlation of each X-column with the Y variable. The sparse PLS algorithm
applied hard threshold by imposing zero values to all elements of the W-
column with absolute value less than the specified threshold. The candidate
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thresholds were defined to be logarithmically spaced between the minimum
and the maximum value of the first latent factor. Using cross-validation,
each candidate threshold was sent to the sparse PLS algorithm and evalu-
ated. This intermediate evaluation considered different numbers of PLS
latent factors. For the best evaluation, the algorithm identified the selected
features by the non-zero value in the W-matrix. Note that the threshold
and number of PLS latent factors were optimized by cross-validation, while
the selected features were determined by the sparsity algorithm. The final
model included the selected feature set and number of PLS latent factors.

The sparse LDA evaluation: To compare both approaches of sparsity, we
replaced the sparse PLS by the sparse LDA. During the training phase, a
cross-validation strategy optimized the number of selected features and the
weight of the L2-norm for elastic net regression. The best combination of
theses two parameters was used by the the sparse LDA algorithm in the
simultaneous feature selection and classification step of the final model.

8.2.3 Classification and Evaluation

The performance of the methods was evaluated using a 10-fold, cross-
validation approach. For classification, the framework used the Fisher LDA.
For evaluation, we measured the AUC.

8.3 Experiments and Results

To investigate the performance of the sparsity methods on the model ac-
curacy, we performed five experiments in each dataset. The experiments
applied different DR methods to the 534 original features generated in ac-
cordance with Section 3.3.

The first experiment applied the Fisher LDA considering the Moore-
Penrose pseudo-inverse [9] of the covariance matrix, since the number of
samples was less than the number of the original features. The second
experiment applied the SIMPLS algorithm of PLS regression. The DR step of
the training phase defined the number of PLS latent factors to use in the final
model. The next experiment evaluated the performance of the PLS forward
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Table 8.1: Diagnosis evaluations of the different methods: Fisher LDA, PLS
regression, PLS with forward feature selection (PLS-FFS), sparse PLS and
sparse LDA. The third column shows the number of features used in each
CV fold evaluation. The fourth column shows the number of features used
across all CV folds evaluations.

Diagnosis
Method AUC features features

per fold

LDA 0.86 534 534
PLS 0.88 534 534
PLS-FFS 0.89 116 212
SPLS 0.93 349 500
SLDA 0.89 113 268

Table 8.2: Prognosis evaluations of the different sparse and non-sparse meth-
ods.

Prognosis
Method AUC features features

per fold all folds

LDA 0.63 534 534
PLS 0.67 534 534
PLS-FFS 0.69 43 108
SPLS 0.70 44 56
SLDA 0.59 136 306

feature selection method presented in Section 5.2.1. Likewise, the two last
experiments evaluated the performance of the sparse PLS and the sparse
LDA. Their outcomes were propagated to the final classification process.
Tables 8.1 and 8.2 compare all the evaluations.

8.4 Discussion and Conclusion

Comparing LDA and sparse LDA, the results indicated that sparse LDA im-
proved the diagnosis evaluation and reduced considerably the final feature



Sparse linear models on texture analysis 86

space. But contrary to expectations, there was no detectable improvement
to the prognosis evaluations. One possible explanation can be overfitting,
since during the training phase, the method had median AUC of 0.99 for
both datasets.

However, by including sparsity in the PLS algorithm we could increase
the model accuracy and identify the subset of features actually used by the
texture analysis framework. In general, the sparse PLS performed better
than all other evaluated methods. The accuracy improvement was more ex-
pressive in the diagnosis evaluation, where the AUC reached 0.93. Compar-
atively, a recent study analysing a linear combination of morphometric and
structural cartilage markers in the same population scored AUC of 0.84 [34].
Although the studies analysed different anatomical structures, the results
showed the sparse PLS captured the texture changes and had diagnostic
ability superior to other biomarkers of OA.

In the prognosis, the sparse PLS reached an AUC of 0.70. Although the
performance was only slightly better than the other methods, the number of
features selected were only 9% of the available ones. Considering all cross
validation folds, we can notice some overlap between the selected feature
sets, indicating the stability of the model. The sparse PLS decreased the
model complexity, which can potentially contribute to a better understanding
of the anatomical characteristics of the data being analysed. However, the
comparison of these methods using another dataset is key for verifying the
results.

In conclusion, we presented a investigation of sparsity methods for di-
mensionality reduction in texture analysis. The results illustrated that by in-
cluding a sparsity approach, our framework limited the number of features
used by the final model and increased the performance ability of separating
healthy and OA subjects.



Chapter 9
Summary and general discussion

9.1 Summary

The work presented in this thesis investigated the feasibility of quantifying
OA by analysis of the trabecular bone structure in knee MRI. Chapter 4 pre-
sented the first experiments for diagnosis of OA, where a previous version
of our framework [103] evaluated the subchondral medial trabecular tibial
bone. The ROI was contained within the medial tibial condyle, below the
central, load-bearing cartilage, in an area expected to have relatively ho-
mogeneous biomechanical stress. The results showed that the presence of
OA could be quantified by a bone structure marker. We also presented an
investigation of aggregate markers based on measurements targeting differ-
ent anatomical structures including medial tibial cartilage and subchondral
tibial bone.

A new texture analysis framework was presented in Chapter 5. Different
linear feature selection approaches were evaluated and the new methodol-
ogy included a robust PLS-based dimensionality reduction method, since it
demonstrated better consistency and stability in selecting the features.

In Chapter 6, the new framework was evaluated in a longitudinal study
where MRI scans of knees was used to quantify the tibial trabecular bone in
a bone marker for OA diagnosis and another marker for prediction of tibial
cartilage loss. For this population, the bone markers demonstrated to be
superior to other biomarkers of OA. Besides it, a preliminary radiological
reading of the high and low risk knees slightly suggested that the prognosis
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bone marker could be capturing aspects of the vertical trabecularization of
the tibial bone to define the risk of cartilage loss.

Chapter 7 described a methodology to identify the most informative
region of a ROI and showed which region of the tibial bone was more related
to cartilage loss. The structure of the trabecular tibial bone was divided
in localized subregions in an attempt to capture the different pathological
features occurring at each location. We applied multiple-instance learning,
where each subregion was defined to be one instance and a bag held all
instances over a full region-of-interest. Aiming to potentially assimilate
the structure of the trabecular bone anatomy in each region, we quantified
subregions of bone separately. As a rule, if the learning algorithm identified
some tissue change related to cartilage loss in at least one region (instance) of
the whole ROI, the subject was classified as rapid progressor of cartilage loss.
The results showed that the inferior part of the tibial bone was classified as
the most relevant region for prognosis of cartilage loss and the preliminary
radiological reading of a subset of the samples suggested the bone marker
also captured aspects of the vertical trabecularization to define the most
relevant region.

An investigation into sparsity methods for dimensionality reduction in
texture analysis was presented in Chapter 8. By including a sparsity ap-
proach, our framework limited the number of features used by the final
model and increased the performance ability of separating healthy and OA
subjects.

Finally, this last chapter concludes the dissertation by summarizing the
thesis and providing a general discussion of its content.

9.2 Discussion

Framework

This dissertation presented a texture analysis framework that quantifies a
specific region of interest and produces a marker according to a pre trained
relation. All the process, from segmentation to marker assessment, is fully
automatic, which allows scalability to large, multi-center studies and could
be used, for example, in pharmaceutical studies or in clinical research with
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large sets of data.
Another advantage of the presented methodology was the use of low

cost MRI equipments. The results revealed that tissue changes and disease-
related bone structure characteristics were reflected in the low-field MRI
appearance, even though smaller individual structures, like the trabecular
bone, were not visible.

The proposed methodology might be applicable to quantify other ROI’s
related to different abnormalities. A contributing factor for this potential
adaptability is the generic set of texture descriptors extracted from the im-
ages. A broad representation of the image can lead to a better discriminative
ability. The applied Gaussian derivative filters allowed to capture the local
structure of the voxels and by combining it with a multi-scale strategy, the
extracted information was extended to scales larger than the voxel resolu-
tion. On the basis of this, the proposed framework can potentially be applied
to analyse pathological features of different sizes.

OA quantification

In this project, the framework was validated for diagnosis and prognosis
of cartilage loss by quantifying the tibial trabecular bone. The initial ex-
periments (Chapter 4) evaluated the tibial subchondral bone area and the
subsequent experiments evaluated the whole tibial trabecular bone (see Fig-
ure 9.1). The ROI expansion was implemented after the generalization of
a voxel classification algorithm that allowed the segmentation of the tibial
bone. A comparison between Table 4.1 and Table 8.1 can indicate the in-
fluence of the ROI expansion in the results of the leave-one-out LDA, the
tibial subchondral bone analysis reached generalization AUC of 0.82 while
the whole tibial bone had AUC of 0.86.

In addition to this enhancement, the proposed improvements to the
framework increased the diagnostic ability to AUC 0.92 when using the
PLS-FFS method (described in Chapter 5) and to 0.93 when using the SPLS
(described in Chapter 8). These results outperformed structural cartilage
markers and biochemical markers present in the literature (see Chapter 4).

In practical terms, the developed quantification can contribute to the
development of a new OA marker able to predict disease progression and
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Figure 9.1: a) The figure shows in dark gray the tibial subchondral trabecular
bone, which corresponds to the ROI used in Chapter 4; and in light gray the
tibial trabecular bone, used in the experiments of the remaining chapters.

identify patients most likely to progress. From a theoretical point of view,
our findings underlined the importance of the bone to the OA diagnosis,
prognosis of cartilage loss and understanding the disease processes. It is
aligned with the gradual shift on the characterization of OA from a cartilage
centred view towards the whole joint system approach.

Dimensionality reduction

To achieve a satisfactory discrimination ability, the framework should be able
to identify which of the extracted features are best representing the relation
between the ROI structure to the problem being investigated. A less complex
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model can potentially contribute to a better understanding of the anatomical
characteristics of the data.

We presented different dimensionality reduction methods for identifying
the most relevant features. Chapter 4 compared different linear feature
selection methods and Chapter 8 compared some alternative approaches
implementing sparsity. The method with best classification ability was the
sparse PLS, both for prognosis and diagnosis. For the prognosis evaluation,
the sparse PLS reduced considerably the number of features and indicated
good stability. However, in the diagnosis, the method was more unstable
and less effective. This might be due to overfitting during the training
phase. Considering feature selection efficacy and accuracy performance
together, the method that applies PLS followed by forward feature selection
performed satisfactorily in both problems.

Machine learning approaches

Another contribution of this investigation was the application of multiple
instances learning techniques to identify which bone regions was potentially
more suitable for prognosis of cartilage loss. The classification identified
the inferior part of the tibial bone as the most relevant region (see Chapter
7). This result was surprising, intuitively we would expect some region
closer to the tibial cartilage. The relation of the bone marker to the vertical
trabecularization might bring some clarification to this outcome; however,
this finding merits further investigation.

Is interesting to note that two conceptually different learning approaches
were evaluated. The first approach, applied in the investigations described
from Chapter 4 to Chapter 6, classifies the images by analysing the whole
ROIs at once, while the second approach, the MIL described in Chapter 7,
classifies the images by analysing regions of the ROIs separately. In the MIL
approach, the classification of the image can be based on the analysis of only
a small part of the ROI. Intuitively, if the abnormality being investigated
can affect only part of the ROI, this approach can bring improvement to the
classification performance. The results in Chapter 7 do not present better
performance than the previous ones. Based on this, one could argue that the
whole tibial trabecular bone presents some abnormality leading to cartilage



Summary and general discussion 92

loss, having some regions more affected than others. The outcome of this
analysis warrants further investigation, by applying the method in a different
population and also by including more radiographic information about the
images.

Relation to pathological features

Chapters 6 and 7 presented a preliminary finding suggesting a slight relation
of the developed prognosis bone quantification marker to vertical trabecu-
larization. This analysis relied on 25 samples and had information of four
pathological features, vertical trabecularization, medial osteophyte and os-
teopenia medial along with joint space narrowing. Due to the small number
of samples, it was not possible to achieve a high confidence level for this
analysis, suggesting further investigation on this relation. Another clinical
challenge that remains for future research is an examination on the relation-
ship between the selected feature sets and the pathological features they can
represent, e.g., BMLs, osteophytes, bone erosions, subchondral cysts, bone
attrition, among others. For this analysis, we would need not only the labels
but also the information of which pathological features are present in the
images and where they are localized.

Aggregate markers

Chapter 4 presented an investigation of aggregate markers based on mea-
surements targeting different anatomical structures. The results demon-
strated that measurements from MRI and measurements from biochemical
markers are complementary and aggregate markers can be superior than the
individuals ones.

9.3 Limitations and future work

The high percentage of the population (80%) in early stages of OA suggest
that the conclusions are more accurate for progression during the early stages
of OA. It would be interesting to evaluate our findings for later stages of OA
as well, considering other population with different stages distribution.
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Due to the relatively small number of subjects, the statistical analysis
on both the most relevant region and on the pathological features been
captured by our bone marker would be more conclusive if the results can be
reproducible in other, and maybe larger, data sets.

Much more research is needed to determine the clinical features that the
bone structure marker describe. Besides the pathological features evaluated,
potential candidates could include BMLs, osteophytes, bone erosions, sub-
chondral cysts, bone attrition, among others. It would be also interesting to
examine the the relationship between one or a group of selected features and
the pathological features they can represent.

Furthermore, more research is required to integrate cartilage and bone
into a comprehensive approach that can increase our understanding of the
disease processes. For example, we suggest an investigation combining car-
tilage homogeneity and our prognosis bone marker, the combined marker
could potentially increase the prediction ability of cartilage loss. Addi-
tionally, could be interesting re-evaluate the aggregate marker presented in
Chapter 4 considering the bone diagnostic marker based on the improved
framework (Chapter 5), analysing the whole tibial bone.

Additionally, we suggest validation of our findings on high-field MRI
scans, which may allow a more accurate and precise cartilage volume mea-
surement and tibial trabecular bone quantification.

Use of the framework for clinical trials or in clinical practice

Before considering the use of the framework for clinical trials or in clinical
practice, we suggest some extra validation. For example, we suggest valida-
tion of our findings on a different study population. This could express the
variability of the framework quantification under different equipment, OA
stages distribution, calibration criteria, imaging protocol, among others.

The MRI images evaluated in this project was obtained in an one-center
study. It would interesting to evaluate the reproducibility of the framework
in a multi-center study, where most of the methodology remains the same,
but some variety is included in the image acquisition procedure.

The requirements for using the framework for clinical practice is more
elaborate than for clinical trials. The supervised learning approaches im-
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plemented in the framework requires the specification of certain parameters
prior the quantification. Besides it, slight differences in the device settings
might introduce not expected measurements and generate an image im-
proper for quantification.

Despite the fact that ideally, the quantification should be made using
settings and equipment which have been tested in advance, ensuring relia-
bility, the challenge is to specify parameters that reflects all the complexity
and variability in a clinic image acquisition procedure. To deal with this
limitation, further investigation on transfer learning techniques [108] might
bring some clarification.

As initial steps for the implementation in clinical practice, the framework
should be trained in a large population that includes all the OA stages and at
least some of the variability in the image acquisition procedure. Afterwards,
all the limitations and requirements should be specified in a documentation
that includes precise procedures for subject preparation, image acquisition
and general guidelines. Additionally, the evaluation of the framework re-
producibility becomes crucial, since the image quantification made in one
clinic should be consistent with those elsewhere.

9.4 Conclusion

This thesis presented a quantification method with demonstrated potential
for capturing bone tissue changes and a strategy to evaluate the more af-
fected region of the ROI. In clinical terms, besides presenting an OA marker
with diagnostic ability superior to other biomarkers of OA, our findings con-
tributed to the development of a new bone marker able to identify patients
most likely to progress, underlining the importance of the trabecular bone
to the understanding of the disease process.
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