

F ACULTY O F S C I EN CE

U N I V E R S I T Y O F C O P E N H A G E N

PhD Thesis

Deep Feature Learning and

Cascaded Classifier for Large Scale

Data

Segmenting Cartilage in Knee MRIs

Adhish Prasoon

adhish@diku.dk

Supervisor: Mads Nielsen

Co-supervisors: Francois Lauze, Marco Loog

Abstract

This thesis focuses on voxel/pixel classification based approaches for im-

age segmentation. The main application is segmentation of articular carti-

lage in knee MRIs. The first major contribution of the thesis deals with large

scale machine learning problems. Many medical imaging problems need huge

amount of training data to cover sufficient biological variability. Learning

methods scaling badly with number of training data points cannot be used in

such scenarios. This may restrict the usage of many powerful classifiers hav-

ing excellent generalization ability. We propose a cascaded classifier which

allows usage of such classifiers in large scale problems. We demonstrate its

application for segmenting tibial articular cartilage in knee MRI scans, with

number of training voxels being more than 2 million. In the next phase

of the study we apply the cascaded classifier to a similar but even more

challenging problem of segmenting femoral cartilage. We discuss similari-

ties and provide our solutions to the challenges. Our cascaded classifier for

cartilage segmentation comprised of two stages of classification combining

nearest neighbour classifier and support vector machine. We compared our

method to a state-of-the-art method for cartilage segmentation using one

stage nearest neighbour classifier. Our method achieved better results than

the state-of-the-art method for tibial as well as femoral cartilage segmenta-

tion.

The next main contribution of the thesis deals with learning features

autonomously from data rather than having a predefined feature set. We

explore deep learning approach of convolutional neural network (CNN) for

segmenting three dimensional medical images. We propose a novel system

integrating three 2D CNNs, which have a one-to-one association with the

xy, yz and zx planes of 3D image, respectively and this system is referred

as triplanar convolutional neural network in the thesis. We applied the

triplanar CNN for segmenting articular cartilage in knee MRI and compared

its performance with the same state-of-the-art method which was used as

a benchmark for cascaded classifier. Although our method used only 2D

features at a single scale, it performs better than the state-of-the-art method

using 3D multi-scale features. In the latter approach, the features and the

i

classifier have been carefully adapted to the problem at hand. That we were

able to get better results by a deep learning architecture that autonomously

learns the features from the images is the main insight of this study.

While training the convolutional neural networks for segmentation pur-

poses, the commonly used cost function does not consider the labels of the

neighbourhood pixels/voxels. We propose spatially contextualized convolu-

tional neural network (SCCNN) which incorporates the labels of the neigh-

bouring pixels/voxels while training the network. We demonstrate its appli-

cation for the 2D problem of segmenting horses from the Weizmann horses

database using 2D CNN and our 3D problem of segmenting tibial cartilage

in knee MRIs using triplanar CNN. The proposed SCCNN improved the

segmentation performance in both the cases. The good results obtained by

SCCNN encourage to gain more insight into such frameworks.

ii

Acknowledgements

I wish to express my sincere gratitude to my supervisor, Mads Nielsen, for

his continuous support and guidance. My co-supervisor, François Lauze, has

been extremely helpful through-out my PhD. I thank him for being always

available for guiding me on my research and various related issues. I would

also like to thank Marco Loog, with whom I had some valuable discussions.

Christian Igel has been very supportive during my PhD. I am deeply grateful

to him for all his crucial and valuable inputs, specially on machine learning.

I express my gratitude to Kersten Petersen who introduced me to the field

of deep learning and has ever been available for help. I am thankful to Erik

Dam of Biomediq, for answering my queries on knee cartilage segmentation

and also providing valuable feedback on my work. I am also thankful to Søren

Olsen and Jon Sporring for being supportive and cooperative during my stint

as a teaching assistant for their course. I would like to thank Dina Egholm,

Susan Nasirumbi Ipsen and Camilla Jørgensen for helping me with matters

related to administration, whenever needed. I am thankful to all the group

members of the Image Group, who were very helpful and accommodating. I

am specially thankful to Mattias Hansson, Chen Chen, Konstantin Chernoff,

Sami Brandt, Akshay Pai, Jens Petersen, Kristoffer Smidt and Aasa Feragen

for being such wonderful people to know and interact with. Finally, I would

like to thank my parents, my uncle and aunt, my sisters and my wife for

their love and support.

iii

Contents

Contents v

List of Figures viii

List of Tables xi

Chapter 1 Introduction 1

1.1 Medical Image Segmentation 1

1.2 Osteoarthristis and Cartilage Segmentation in Knee MRI . 3

1.3 Machine Learning for Medical Image Segmentation 3

1.4 Organization of the Thesis 4

Chapter 2 Support Vector Machines 9

2.1 Introduction . 9

2.2 Linear Optimal Margin Classifier 10

2.2.1 Margins . 11

2.2.2 Lagranges Duality 12

2.2.3 Linear Hard Margin SVM 14

2.2.4 Linear Soft Margin SVM 17

2.3 Non-linear SVMs and Kernels 20

2.3.1 Mercer’s Theorem 21

2.3.2 Gaussian Kernels 21

2.3.3 Deriving Kernels from Kernels. 22

2.3.4 Kernel Trick . 22

v

Contents

2.3.5 Non-linear Hard Margin SVM 23

2.3.6 Non-linear Soft Margin SVM 23

2.4 Training Support Vector Machines 24

2.4.1 Decomposition Algorithms 24

2.4.2 Recomputing Gradient and Stopping Criterion . . . 28

2.4.3 Sequential Minimal Optimization 28

2.5 Training Time Scaling with Number of Patterns 29

2.6 SVM in our work . 30

Chapter 3 Cascaded Classifier for Large-scale Data Applied to

Automatic Segmentation of Articular Cartilage 35

3.1 Introduction . 36

3.1.1 Dataset . 37

3.1.2 Related Work . 38

3.2 Two Stage Classifier . 41

3.3 Automatic Segmentation of Tibial Cartilage 42

3.3.1 Features . 43

3.3.2 Training Data . 43

3.3.3 Stage One . 44

3.3.4 Stage Two . 44

3.3.5 Support Vector Machines 44

3.4 Evaluation and Results . 46

3.5 Conclusion . 50

Chapter 4 Femoral Cartilage Segmentation in Knee MRI Scans

Using Two Stage Voxel Classification 53

4.1 Introduction . 54

4.2 Related Work . 55

4.3 Approach . 56

4.3.1 Two-stage Classifier 56

4.3.2 Automatic Segmentation of Femoral Cartilage . . 57

vi

Contents

4.3.3 Speeding-up SVM Training: Online Learning vs. Batch

Learning with Low Accuracy 60

4.4 Evaluation and Results . 61

4.5 Discussion . 63

Chapter 5 Convolutional Neural Network 65

5.1 Feed Forward Neural Networks 65

5.2 Convolutional Neural Network 67

5.3 Layers and Cost Function 70

5.3.1 Convolutional Layer 71

5.3.2 Subsampling Layer 72

5.3.3 Fully-connected Layer 72

5.3.4 Softmax Classifier 72

5.4 Gradient w.r.t. Softmax Parameters 74

5.5 Backpropogation for Convolutional Neural Networks 74

5.5.1 Sensitivity Calculation 74

5.5.2 Gradient Calculation 78

Chapter 6 Deep Feature Learning for Knee Cartilage Segmenta-

tion Using a Triplanar Convolutional Neural Network 81

6.1 Introduction . 82

6.2 Method . 83

6.2.1 Convolutional Neural Networks. 83

6.2.2 Triplanar Convolutional Neural Network. 83

6.3 Application to Cartilage Segmentation in MRI Scans 86

6.4 Evaluation and Results . 88

6.5 Discussion and Future Work 90

Chapter 7 Spatially Contextualized Convolutional Neural Network 93

7.1 Introduction . 93

7.2 Learning Spatial Configuration 95

7.3 Optimizing the New Extended Cost Function 98

vii

7.4 Experiments . 100

7.4.1 Weizmann’s Horses 100

7.4.2 Knee MRI Data 101

7.5 Conclusion . 104

Chapter 8 Discussion and Future Work 109

Bibliography 113

List of Figures

2.1 Linear classification according to a decision function f(x) = 〈x,w〉+ b

(reproduced from Christian Igel’s lecture notes on the course “Statistical

Machine Learning” [1], with permission from the author). 11

2.2 Linear classifiers, the hyperplane in the left figure classifies with maxi-

mum margin. The geometric margin with respect to the data set S is

denoted by ρS, and R stands for the radius of the smallest ball con-

taining S (reproduced from Christian Igel’s lecture notes on the course

“Statistical Machine Learning” [1], with permission from the author). . 12

2.3 Example of an embedding into a feature space turning linearly non-

separable to separable data. The colors indicate different class labels.

The feature map Φ : R
2 → R

3 changes the representation of input

patterns (x1, x2) to (x2
1, x

2
2,
√
2x1x2) (reproduced from Christian Igel’s

lecture notes on the course “Statistical Machine Learning” [1], with

permission from the author). 20

viii

List of Figures

2.4 Two-dimensional subproblem for a 1-norm soft margin SVM. The re-

striction of the feasible region to the line segment in the box is due

to the equality constraint and the box constraints. The points α̂ and

α̂∗ are feasible solutions of the subproblem, α̂∗ is optimal. The corre-

sponding gradients are denoted by ĝ and ĝ∗ (reproduced from Chris-

tian Igel’s lecture notes on the course “Statistical Machine Learning”

[1], with permission from the author). 26

3.1 Knee MRI slice and its segmentation into articular cartilage and back-

ground by a radiologist. 37

3.2 An example knee MRI slice where two-stage kNN+SVM performs clearly

better than the one-stage kNN method 47

3.3 One of the few examples of knee MRI slice where one-stage kNN per-

forms slightly better than the two-stage kNN+SVM method 49

4.1 General concept of our two-stage classifier, where β1 denotes parameters

used to tune the first stage classifier for maximum sensitivity, while the

parameters β2 are used to tune the second stage for best segmentation

performance. The labels L = 1 and L = −1 refer to cartilage and

background voxels, respectively. 58

4.2 Slice taken from a 3D MRI scan segmented by (a) a radiologist and (b)

our two-stage method. The slice was chosen to demonstrate that the

segmentation can still be improved by (simple) post-processing 63

5.1 A neuron. Each input is multiplied by a weight and then summed up

to be passed through an activation function 66

5.2 A feedforward neural network with one hidden layer and one output

neuron. Each pair of two subsequent layer’s neurons are connected

through a weight . 67

ix

5.3 A 2D Convolutional neural network. LC denotes convolutional layer, LS

denotes subsampling layer and LF denotes fully-connected layer. Each

pair of output and input maps of a convolutional layer has a 2D kernel

linking them. Each output map of convolutional and subsampling layer

has a bias parameter associated. The classifier involved is a softmax

classifier which classifies the input patch into one of the two classes. . 69

6.1 The three image planes giving rise to our triplanar convolutional neu-

ral network (CNN) architecture. One patch centered in the voxel is

extracted from each of the planes. The three CNNs are fused in the

final layer. 84

6.2 MRI slice with segmentations by a radiologist and the proposed tri-

planar CNN. Our method is based on voxel classification, a 2D slice is

taken from our 3D segmentation just for visualization. 89

7.1 An example neighborhood configuration, black pixels are background

pixels(class 2) and white pixels (class 1) are foreground pixels. PN(1)

for center pixel in this case is 6/9 while PN(2) is 3/9 96

7.2 Average DSC values using our new extended cost function. Average of

the DSC values over 30 horses’ images are obtained for different values

of β. The blue horizontal line depicts the Average DSC value obtained

by unmodified cost function i.e. β = 0 102

7.3 Test example comparing the segmentations obtained using unmodified

and modified cost functions . 103

7.4 Average DSC values using our new extended cost function. Average of

the DSC values over 10 MRI scans images are obtained for different

values of β. The blue horizontal line depicts the Average DSC value

obtained by unmodified cost function i.e. β = 0 104

7.5 Knee MRI slice from a test scan comparing the segmentations obtained

using unmodified and modified cost functions 105

x

List of Tables

3.1 Comparison of classifiers applied for cartilage segmentation in MRI.

The abbreviation DSC. stands for the dice similarity coefficient, Acc.

for accuracy, Sens. for sensitivity, Spec. for specificity. The proposed

cascaded kNN+SVM classifier is referred as Two-stage. 47

3.2 Comparing interscan tibial cartilage segmentation reproducibility on 31

pairs of scans . 49

4.1 Comparison of classifiers applied for femoral cartilage segmentation.

DSC stands for the dice similarity coefficient. The proposed cascaded

classifier is referred to as two-stage 2-stage. All values are mean over

114 scans. 61

4.2 Comparing interscan femoral cartilage segmentation reproducibility on

31 pairs of scans . 62

6.1 Comparison of methods applied for tibial cartilage segmentation. Acc.

stands for accuracy, Sens. stands for sensitivity and Spec. stands for

specificity . 88

xi

Chapter 1

Introduction

Image segmentation is the process of partitionning an image into meaningful re-

gions. These meaningful regions are useful for different types of analysis of the im-

age. Practical applications of image segmentation include object detection, object

recognition, face recognition, iris recognition, fingerprint recognition, automatic

inspection, robotic guidance, video surveillance, content based image retrieval,

satellite image classification etc.

1.1 Medical Image Segmentation

Image segmentation is a very important task for medical image analysis. Seg-

mentation applications for medical images include finding important anatomical

structures, locating tumors, measuring tissue volume etc. As mentioned in [2],

it helps radiologists in visualization and study of the anatomical structures [3] ,

simulation of the biological processes [4], localization of pathologies [5], tracking

the diseases [6], and evaluation of the necessity of radiotherapy or surgeries [7, 8].

Thus, a good segmentation is imperative for accurate quantitative analysis of the

medical images and leads to better diagnosis and prognosis.

Segmentation is naturally performed in human brain. However, with the huge

amount of images to process we can’t rely on humans to perform the segmentations

manually. Also, some fields need experts to perform the job, e.g. radiologists in

medical imaging. Apart from being time taking and tedious for huge datasets,

1

manual segmentation is also prone to high inter and intra observer variability.

After invention of image modalities which produce 3D/4D images (e.g. MRI,

CT, ultrasound etc), the segmentation task has become even more difficult as

the amount of data produced by these modalities are huge. Although the above

mentioned facts are enough for justifying the need to perform automatic/semi-

automatic segmentation, these segmentations should be good enough to be relied

on. Specially for medical field where there is human life involved, we certainly

don’t want these methods to give false results and thus lead to improper/false

diagnosis.

Pham et al [9] provided a nice survey of the most common segmentation meth-

ods in medical imaging. They divide medical image segmentation in several cate-

gories, and though relatively old (2000), their categorization is still accurate.

(1) Thresholding [10, 11, 12, 13].

(2) Region growing [14, 15, 16, 17]

(3) Classifiers [18, 19, 20]

(4) Clustering [21, 22]

(5) Markov random fields [23, 24]

(6) Artificial Neural Networks (ANN) [25, 26, 27, 28, 29]

(7) Deformable models [30, 31, 32, 33, 34, 35]

(8) Atlas-guided approach [36, 37, 38, 39]

(9) Other approaches (includes model fitting and watershed segmentation)[40,

41, 42, 43]

2

1.2 Osteoarthristis and Cartilage Segmentation in Knee

MRI

Cartilage detoriaration causes Osteoarthristis, which is one of the most common

diseases causing work disability. According to [44], approximately 250 million

people suffer from osteoarthristis of knee(3.6 % of the world population). The

number of hospitalizations due to osteoarthritis have increased from 322,000 in

1993 to 735,000 in 2006 in USA, as mentioned in [45]. Segmentation of articular

cartilage in MRI scans is the method of choice for quantitative analysis of cartilage

detoriaration. The quantitative anaylsis of cartilage can be used to develop efficient

biomarkers for the osterarthristis diagnosis.

Our study involves low field MRI scans. Although the low field scanners have

poorer resolution and image quality, yet they are more cost effective than high field

scanners as they have lesser installation and maintainance cost. Also, patients find

them more comfortable with almost no claustrophobic feeling present.

1.3 Machine Learning for Medical Image Segmentation

From the categorization given by [9], the methods based on classifiers and artificial

neural networks can be classified as machine learning methods. Machine learning

methods are very popular in medical imaging segmentation and are at the focus

of this study.

In this study, we have applied our machine learning based methods for segment-

ing articular cartilage in knee MRIs. There are mainly three machine learning con-

cepts used in this work, k nearest neighbours, support vector machines (SVMs) [46]

and convolutional neural networks (CNNs) [47]. Support Vector Machines(SVMs)

are one of the best classifiers and are one of the main machine learning concepts

used in our work. We devote chapter 2 for the detailed discussion of SVMs. CNN

is a deep learning method, which has recently been very successfully used for ob-

ject recognition and segmentation. Chapter 5 discusses CNN in detail. The basic

concept of kNN classifier is explained below.

k-Nearest Neighbours kNN is an instance based classifier in which we find k

3

nearest training data points of a query point. The neighbours are determined by

the distances calculated in a feature space. Let v be a feature vector for the query

data point. Out of the k training data points nearest to the query point, let nc

be the number of points belonging to a class c. The posterior probability of the

query point belonging to class c is given by

p(c|v) = nc

k
. (1.1)

The posterior probability distribution is thresholded to assign the label. As

kNN makes no assumption on data distribution, it is works well in most of the

real life situations. While deciding upon the nearest neighbors the distances are

calculated in the feature space which is also a metric space. In recent past it

has been shown that a proper metric selection can be very important for the

performance of the kNN [48, 49, 50, 51].

As kNN is an instance based classifier, we need the whole training data while

making a prediction. The computational cost of naive kNN classifier is O(nd), d

being the number of features and n being the number of examples in the training

data. [52, 53] proposed to speed-up kNN classification using KD-tree.

1.4 Organization of the Thesis

Rest of thesis is organized as follows.

Chapter 2 As mentioned earlier chapter 2 discusses Support Vector Machines

in detail. This chapter follows closely the structure and content of the lectures

notes of Christian Igel [1] on the topic and reproduces some of its content, with

the explicit permission of Christian Igel.

Chapter 3 Many of the medical imaging tasks need huge amount of training

data to cover sufficient biological variability. This restricts usage of some power-

ful classifiers which scale badly with number of training data points. Chapter 3

proposes a cascaded classifier which allows such classifiers to be used in scenarios

4

involving huge amount of training data and shows its application for segment-

ing tibial cartilage in knee MRIs. Chapter 3 is based on our article “Cascaded

Classifier for Large-scale Data Applied to Automatic Segmentation of Articular

Cartilage“, published in the proceedings of SPIE Medical Imaging 2012: Image

Processing Conference [54]. Apart from obvious formatting changes we have made

some very minor changes in [54] to include it as a chapter in this thesis.

Chapter 4 In chapter 4 of this thesis, we apply our cascaded classifier to similar

but even more challenging problem of segmenting femoral cartilage in knee MRIs.

We discuss the similarities and explain our solutions to the challenges. Chapter 4

is a formatted and very minorly changed version of our article, “Femoral Cartilage

Segmentation in Knee MRI Scans Using Two Stage Voxel Classification” by Ad-

hish Prasoon, Christian Igel, Marco Loog, Francois Lauze, Erik Dam, and Mads

Nielsen, published in the proceedings of 35th Annual International Conference of

the IEEE Engineering in Medicine and Biology Society (EMBC 2013) [55].

Chapter 5 Having appropriate features is vital for a classification task. Instead

of using a predefined set of hand crafted features, in recent times, deep learning

methods have been successfully used to autonomously learn features from the

data. Convolutional Neural Network (CNN) is one such method and has been

extensively used in this work. Chapter 5 introduces and discusses CNN in detail.

The introductory part of CNN in this chapter is a formatted and enhanced version

of “Deep Feature Learning for Knee Cartilage Segmentation Using a Triplanar

Convolutional Neural Network” by Adhish Prasoon, Kersten Petersen, Christian

Igel, Francois Lauze, Erik Dam, and Mads Nielsen, published in the proceedings

of 16th International Conference on Medical Image Computing and Computer-

Assisted Intervention (MICCAI 2013) [56]. Backpropagation algorithm is used

for calculating gradients while applying gradient based optimizations methods to

train artificial neural networks . However, as per our knowledge it has not been

well explained specifically for CNNs in the available literature. After introducing

CNNs in the first part of the chapter, we discuss the backpropagation algorithm

for CNNs in the second part.

5

Chapter 6 In chapter 6, we propose a novel method to segment 3D images

using a system based on 2D CNNs which is computationally much less expensive

to train and test than a 3D CNN and still performs better than a state-of-the-

art method which uses a predefined set of multiscale features calculated using 3D

kernels. We refer our system as Triplanar Convolutional Neural Network. While

the introduction of CNN from [56] was already included in forming our chapter 5

, rest of [56] was formatted and very minorly changed to form chapter 6 of the

thesis.

Chapter 7 In chapter 7, we propose and discuss novel Spatially Contextualized

Convolutional Neural Network (SCCNN) which incorporates labels of neighbor-

hood voxels/pixels while training the network. We demonstrate SCCNN’s appli-

cation to segment horses from Weizmann’s horses’ database [57] and its triplanar

version’s application to the problem of segmenting tibial cartilage in knee MRIs.

We plan to submit an article based on this chapter in future.

Chapter 8 Finally chapter 8 concludes the thesis and discusses the potential

future work.

6

Chapter 2

Support Vector Machines

2.1 Introduction

Support Vector Machines (SVMs) [46] are one of the best pattern recognition meth-

ods for binary classification. Idea building of SVM can be started with assuming

an ideal scenario of two classes being linearly separable and the SVM trained to

learn a hyperplane which maximizes the margin between the data points and the

decision boundary. This means that the training of SVM is performed to find a

hyperplane which has maximum distance from the data points nearest to it.

SVMs, which maximize the margin without allowing any margin violations are

known as hard margin SVM. However, the overlap of classes is mostly unavoidable.

Also, the hard-margin approach is very much sensitive to the noisy outliers. Even

a single outlier has the capability to dramatically change the decision boundary.

Practically, its better to allow few misclassifications on the training data in order to

achieve better generalization. Thus, the concept of soft margin SVMs comes into

picture. Soft margin SVMs allow the margins to be violated, however penalizing

(not completely disallowing) such violations.

In many cases the input data is non-linear in nature and thus the input space

is mapped into a higher dimensional space using a non-linear mapping. The al-

gorithm now learns a hyperplane in this higher dimensional space to classify the

patterns. We will see in further discussion, the SVM learning algorithm can be

expressed using the input dot products. Calculating the features and their dot

9

products in the non linear space can be computationally very expensive. Using

the kernel trick, the dot product in the non-linear space can be efficiently computed

without even calculating the actual features in the non linear space. Kernel trick

uses kernel functions which are real valued functions of two elements of the original

input space. The case in which data is classified in the input space itself (without

transforming the input space) corresponds to linear SVM, while the case in which

input space is transformed into a non-linear space corresponds to non-linear SVM.

In the following discussion we start with discussing basic concept of linear

optimal margin classifier and linear SVMs. Then we will discuss the kernel trick

and the non-linear SVMs after which we move on to discuss the decomposition

algorithms which are the most prominent algorithms for solving SVM optimization.

The discussion on SVM in this chapter follows closely the structure and content

of the lectures notes of Christian Igel [1] on the topic and reproduces some of its

content, with the explicit permission of Christian Igel.

2.2 Linear Optimal Margin Classifier

Binary classification is often based on a scalar discrimination function whose sign

determines the class of the input pattern. Let f : X → R be a discrimination

function and let x ∈ X , Y = {−1, 1} be the input and the output of the hypothesis

given by hf (x) = sgn(f(x)), where sgn : R→ {−1, 1} is 1 if its argument is larger

than zero and −1 otherwise.

Let X ⊆ R
n and assume that the decision function f is affine. We can write the

decision function as f(x) = 〈x,w〉+ b; determined (not uniquely) by parameters

(w, b) ∈ R
n×R. The decision function partitions X into two half-spaces separated

by a hyperplane ker(f) = {x ∈ X | f(x) = 〈x,w〉 + b = 0}, defined in an n − 1

dimensional input subspace using (w, b) ∈ R
n × R. As all sets of parameters

given by (cw, cb), c ∈ R
+ lead to the same hyperplane and the same decision

boundary, there is an inherent degree of freedom in the choice of parameters. The

Euclidean distance of a point x0 from the hyperplane is given by the absolute value

of f(x0)/‖w‖ . The side of hyperplane (half-space) to which the point belongs is

determined by the sign of f(x0)/‖w‖, see Fig. 2.1.

10

w
b/‖w‖

{x ∈ X | f(x) = 〈x,w〉+ b = 0}

〈x,w〉+ b > 0

〈x⊥,w〉+ b = 0

〈x′,w〉+ b < 0

x⊥

x′

x0
〈x0,w〉+b

‖w‖

Figure 2.1: Linear classification according to a decision function f(x) = 〈x,w〉+ b (re-
produced from Christian Igel’s lecture notes on the course “Statistical Machine Learning”
[1], with permission from the author).

2.2.1 Margins

The margin of an input pattern xi with respect to a hyperplane gives information

about its distance from the hyperplane. It also tells whether the pattern lies to

correct side of the hyperplane.

For an input pattern (xi, yi), the functional margin of the example with a

hyperplane (w, b) is given as

γi = yi(〈w,xi〉+ b) . (2.1)

Moreover, the geometric margin of input pattern (xi, yi) with respect to the hy-

perplane (w, b) is defined as

ρi = yi(〈w,xi〉+ b)/‖w‖ = γi/‖w‖ . (2.2)

For the classification to be correct the margins should be positive. The absolute

value of the geometric margin is the distance of the example from the hyperplane.

A data set S = {(x1, y1), . . . , (xℓ, yℓ)} is said to be linearly separable by (w, b) if

for all 1 ≤ i ≤ ℓ, we have

yi(〈w,xi〉+ b) > 0 (2.3)

11

R ρS R
ρS

Figure 2.2: Linear classifiers, the hyperplane in the left figure classifies with maximum
margin. The geometric margin with respect to the data set S is denoted by ρS, and R
stands for the radius of the smallest ball containing S (reproduced from Christian Igel’s
lecture notes on the course “Statistical Machine Learning” [1], with permission from the
author).

which means

yi(〈w,xi〉+ b) ≥ γ (2.4)

for some γ > 0. Two hyperplanes that classify the patterns from a linearly separa-

ble set S correctly are shown in Figure 2.2 . The geometric and functional margin

of a data set S with respect to a hyperplane (w, b) are given by ρS = min1≤i≤ℓ ρi

and γS = min1≤i≤ℓγi. The hyperplane which has maximum margin for a given

dataset is called maximum margin hyperplane.

Before moving on to SVM optimization problem, we will discuss Lagranges

duality in the next section, which will be helpful for further discussion on SVM.

2.2.2 Lagranges Duality

Let us define a constraint based optimization problem.

min
w

f(w) w ∈M

subject to gi(w) ≤ 0 i = 1, . . . , k

hj(w) = 0 j = 1, . . . , m ,



















(2.5)

12

where functions f, gi, hj (i = 1, . . . , k and j = 1, . . . , m) are defined on an open

set M ⊂ R
n.

This optimization problem is called a primal optimization problem. In order to

solve this problem we need to construct the generalized lagrangian for the problem.

L(w,λ,µ) = f(w) +
m
∑

i=1

λihi(w) +
k

∑

i=1

µigi(w) . (2.6)

Here, L(w,λ,µ) is the lagrangian and λ, µ are the lagrangian multipliers.

Now, let us consider the quantity

βP = max
λ,µ:µi≥0

L(w,λ,µ) (2.7)

If any of the constraints hi(w) = 0 is not respected, βP → ∞ by making the

corresponding λi arbitrarily large i.e. λi →∞. Similarly if any of the constraints

gi(w) ≤ 0 is not respected, βP → ∞ by making the corresponding µi → ∞.

If all the constraints are respected then we can verify that the maximum value

attainable by L(w,λ,µ) is f(w). As we need to minimize f(w) under above

mentioned constraints, we can achieve that by minimizing the quantity βP . Thus

we can write our primal problem as

min
w

βP (w) (2.8)

which can be rewritten as

min
w

max
λ,µ:µi≥0

L(w,λ,µ) (2.9)

Now, let us define a quantity

βD(λ,µ) = min
w

L(w,λ,µ) (2.10)

We can write the dual of the primal problem as

max
λ,µ:µi≥0

βD(λ,µ) (2.11)

We can rewrite the dual as

max
λ,µ:µi≥0

min
w

L(w,λ,µ) (2.12)

13

It can be shown that

max
λ,µ:µi≥0

min
w

L(w,λ,µ) ≤ min
w

max
λ,µ:µi≥0

L(w,λ,µ) (2.13)

Equality in the above equation can be found under some conditions, which are

stated below.

Let f and the gi, for i = 1, . . . k are convex and the hj, for j = 1, . . .m are

affine. Let us suppose that there exists some w so that gi(w) < 0 for all i.

Assuming the above conditions hold true, there must exist w∗ which provides

solution of the primal problem and λ∗, µ∗ provide the solution to the dual problem.

Also

max
λ,µ:µi≥0

min
w

L(w,λ,µ) = min
w

max
λ,µ:µi≥0

L(w,λ,µ) = L(w∗,λ∗,µ∗) (2.14)

In addition to that, w∗,λ∗and µ∗ should satisfy the Karush-Kuhn-Tucker

(KKT) conditions, given below:

∂L(w∗,λ∗,µ∗)

∂w
= 0 , (2.15)

∂L(w∗,λ∗,µ∗)

∂λ
= 0 , (2.16)

µi
∗gi(w

∗) = 0 for i = 1, . . . , k , (2.17)

gi(w
∗) ≤ 0 for i = 1, . . . , k , (2.18)

µi
∗ ≥ 0 for i = 1, . . . , k . (2.19)

where µi
∗ is the ith element of µ∗. Equation µi

∗gi(w
∗) = 0 for i = 1, . . . , k is the

the KKT complimentarity condition and has special importance in SVM theory.

2.2.3 Linear Hard Margin SVM

Assuming that there exists a hyperplane which can separate our data

S ∈ (Rn × {−1, 1})ℓ, a good choice for such a hyperplane should be the one which

corresponds to maximum margin with respect to S. Training of linear hard margin

14

SVM involves solving an optimization problem of maximizing the margin under

some constraints. The optimization problem can be written as following

max
w,b

ρ = γ/‖w‖

subject to yi(〈w,xi〉+ b) ≥ γ , i = 1, . . . , ℓ







(2.20)

γ being greater than zero, the constraint makes sure that the margins are

positive for each pattern in S , making each of then classified correctly. The above

formulation has an inherent degree of freedom as explained earlier. We can get

rid of that by fixing γ = 1. Now we have a constraint optimization problem

of maximizing ρ = 1/‖w‖ which is same as minimizing 1
2
〈w,w〉 under same

constraint. The optimization problem can now be written as

min
w,b

1

2
〈w,w〉

subject to yi(〈w,xi〉+ b) ≥ 1 , i = 1, . . . , ℓ .











(2.21)

The above optimization problem is in the primal form. The lagrangian in this

case is given as

L(w, b,α) =
1

2
‖w‖2 −

ℓ
∑

i=1

αi[yi(〈w, xi〉+ b)− 1] (2.22)

The primal problem in terms of its lagrangian can be written as

min
w,b

max
α:αi≥0

L(w, b,α)

The dual form of the above primal can be written as

max
α:αi≥0

min
w,b

L(w, b,α)

For the dual problem’s solution to be same as the primal’s, the following partial

derivatives ∂
∂w

L(w, b,α)and ∂
∂b
L(w, b,α) are set to zero (KKT condition)

∂

∂w
L(w, b,α) = 0

∂

∂b
L(w, b,α) = 0 (2.23)

15

As

∂

∂w
L(w, b,α) = w −

ℓ
∑

i=1

αiyixi and
∂

∂b
L(w, b,α) =

ℓ
∑

i=1

αiyi , (2.24)

we have

w =

ℓ
∑

i=1

αiyixi (2.25)

and
ℓ

∑

i=1

αiyi = 0 . (2.26)

Thus the dual optimization problem maxα:αi≥0 minw,bL(w, b,α) can be writ-

ten as

max
α

ℓ
∑

i=1

αi −
1

2

ℓ
∑

i,j=1

αiαjyiyj〈xi,xj〉

subject to
ℓ

∑

i=1

αiyi = 0

αi ≥ 0 , i = 1, . . . , ℓ







































(2.27)

Let α∗ be the solution of the dual problem defined above and α∗
i be its ith

element. The solution of dual optimization problem is used to find the optimum

w (w∗) by the following equation (see equation (2.25)).

w∗ =

ℓ
∑

i=1

α∗
iyixi (2.28)

Once we find the w∗, we can use that to find the optimum b (b∗)

b∗ = −maxyi=−1(〈w∗,xi〉) + minyi=1(〈w∗,xi〉)
2

, (2.29)

As we know the optimum hyperplane parameters, decision function can now

be defined using f(x) = 〈w∗,x〉+ b∗. The KKT complimentarity is this case is

α∗
i[yi(〈w∗,xi〉+ b∗)− 1] = 0 (2.30)

16

As we know that yi(〈w∗,xi〉 + b∗) − 1 ≥ 0 for i = 1 . . . , ℓ, we can say that

α∗
i = 0 if yi(〈w∗,xi〉 + b∗) − 1 > 0. The points for which α∗

i > 0 are the only

points we need to define our decision boundary. These points are known as support

vectors. Usually these points are much less in number than the total training data

points.

While making the prediction for a new input xi, we calculate (〈w∗xi〉 + b)

and predict yi = 1 if this quantity is greater than 0 and yi = −1 otherwise. The

quantity (〈w∗xi〉+ b) can also be written as (〈
∑ℓ

j=1 α
∗
jyjxjxi〉+ b) (see equation

(2.30)). As we can see that to make a prediction we only need to perform its dot

product with the support vectors, i.e having α∗
j > 0. As the number of support

vectors are much fewer than the number of training data points, the number of

dot products to be performed for prediction is also small, making the prediction

faster.

2.2.4 Linear Soft Margin SVM

In most of the real life problems its impossible to separate the data completely.

Moreover, practically we don’t want to force the separation of the data. By forcing

the separability, we are giving the noisy outlier the capability to change the decision

boundary drastically, leading to the overfitting of our decision function according

to the training data.

For real world problems, we would like to have a classifier which is allowed to

make few mistakes on the training data, in order to achieve better generalization.

This leads us to the idea of soft margin SVMs. To “soften“ our SVM, we need

to re-formulate our problem for hard margin classifier in a way that it becomes

less sensitive to the outliers. We do that by allowing functional margin to be less

than one for training data points, but at the same time penalizing such margin

violations.

We reformulate primal form of the linear hard-margin SVM problem to define

the primal form of the soft-margin SVM as

17

min
ξ,w,b

1

2
〈w,w〉+ C

ℓ
∑

i=1

ξi

subject to yi(〈w,xi〉+ b) ≥ 1− ξi , i = 1, . . . , ℓ

ξi ≥ 0 , i = 1, . . . , ℓ



























(2.31)

The above problem is a linear soft-margin 1-norm SVM problem. C is the

regularization parameter. For training example (xi, yi) and hyperplane (w, b),

variables ξ are the margin variables which are defined as below

ξ((xi, yi), (w, b), γ) = ξi = max(0, 1− yi(〈w,xi〉+ b)) . (2.32)

Thus for the data point xi having functional margin greater than one, ξ is

zero. If ξ is less than one, but greater than zero, then the data point violates the

functional margin, but it is still on the correct side of the boundary. Finally the

point is on the wrong side of the hyperplane if ξ is greater than one.

Similarly, a linear soft-margin 2-norm SVM problem can also be formulated

as

min
ξ,w,b

1

2
〈w,w〉+ C

2

ℓ
∑

i=1

ξ2i

subject to yi(〈w,xi〉+ b) ≥ 1− ξi , i = 1, . . . , ℓ















(2.33)

Linear 1-norm Soft Margin SVM. The Lagrangian in this case can be written

as

L(w, b, ξ,α,β) =
1

2
‖w‖2+C

ℓ
∑

i=1

ξi−
ℓ

∑

i=1

αi[yi(〈w,xi〉+b)−1+ξi]−
ℓ

∑

i=1

βiξi (2.34)

18

with constraints αi, βi ≥ 0, i = 1, . . . , ℓ. The KKT conditions are

∂L

∂w
(w, b, ξ,α,β) = w −

ℓ
∑

i=1

αiyixi = 0 , (2.35)

∂L

∂ξi
(w, b, ξ,α,β) = C − αi − βi = 0 i = 1, . . . , ℓ , (2.36)

∂L

∂b
(w, b, ξ,α,β) =

ℓ
∑

i=1

αiyi = 0 , (2.37)

KKT complementarity conditions are given as below

αi[yi(〈w,xi〉+ b)− 1 + ξi] = 0 , (2.38)

βiξi = 0 , (2.39)

ξi(αi − C) = 0 (using βi = C − αi and βiξi = 0) (2.40)

for all i = 1, . . . , ℓ.

It can be observed from the complementarity conditions that the regularization

parameter C imposes box constraints on the dual variables αi.

Specifically, we get 0 ≤ αi≤ C for all i from βi = C − αi . ξi(αi − C) = 0

implies that if xi violates the margin then the box constraint is active, αi = C.

In summary, the dual optimization problem can be written as

max
α

ℓ
∑

i=1

αi −
1

2

ℓ
∑

i,j=1

αiαjyiyj〈xi,xj〉

subject to
ℓ

∑

i=1

αiyi = 0

C ≥ αi ≥ 0 , i = 1, . . . , ℓ







































(2.41)

We can also formulate the problem as linear soft-margin 2-norm SVM problem

given as given in equation (2.33). We will not discuss its dual form and other details

in this thesis. It can be formulated by constructing the lagrangian in a similar way

as 1-norm soft margin SVM.

19

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

(x1, x2)

 0
 0.5

 1 0

 0.5

 1
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

(x2
1, x

2
2,
√
2x1x2)

Figure 2.3: Example of an embedding into a feature space turning linearly non-separable
to separable data. The colors indicate different class labels. The feature map Φ : R2 → R

3

changes the representation of input patterns (x1, x2) to (x21, x
2
2,
√
2x1x2) (reproduced

from Christian Igel’s lecture notes on the course “Statistical Machine Learning” [1], with
permission from the author).

2.3 Non-linear SVMs and Kernels

As mentioned earlier, forcing the data separation is not a good idea and by using

soft margin SVMs we get better generalization ability. However, its always desir-

able to have higher likelihood of data separability. As in many cases the input

data is non-linear in nature, by non-linearly mapping the input space into a higher

dimensional space, we can increase the likelihood of the data to be separable. Let

X , F be the original input space and the new space, and Φ: X → F be the

non-linear mapping.

For example, we consider a polynomial classifier. Let the mapping Φ : R2 → R
3

with Φ((x1, x2)) = (x2
1, x

2
2,
√
2x1x2) be used to transform the input space. Fig-

ure 2.3 illustrates an example where the data that is not linearly separable in the

original input space R
2 , but it is made linearly separable by Φ((x1, x2) in the new

space R
3 .

Increasing the dimensionality can make the input data linearly separable, but

on the other hand increases the computational costs. Fortunately many machine

20

learning algorithm require to compute only the dot product 〈Φ(x),Φ(x′)〉 for x, x′ ∈
X in the feature space. Therefore, the aim is to efficiently compute the dot product

by a function k : X × X → R with

k(x, x′) = 〈Φ(x),Φ(x′)〉 (2.42)

for all x, x′ ∈ X , without actually perform mapping on the input patterns.

For a mapping to exist such that k(x, x′) = 〈Φ(x),Φ(x′)〉 for all x, x′ ∈ X , a

function has to be a valid kernel. Validity of a kernel is given by the Mercer’s

theorem, which is mentioned below.

K is defined as a kernel (Gram) matrix of k with respect to x1, . . . , xl if K has

elements Kij = k(xi, xj). The rows and column of K are equal to the number of

data examples.

2.3.1 Mercer’s Theorem

The necessary and sufficient conditions for a given k : R
n × R

n → R to be a

valid Mercer kernel is a) k is continuous b) k is symmetric c) For a given set

x1, ..., xl, (l <∞), the corresponding Gram matrix K is symmetric positive semi-

definite.

2.3.2 Gaussian Kernels

Gaussian kernels are the most commonly used kernels, specially when we don’t

know much about the problem at hand. For X = R
n, general Gaussian kernels are

given as

k(x, z) = e−(x−z)TM(x−z) , (2.43)

where M is a positive definite matrix. The common choice for M is M = 1
2σ2 I,

where I is a unit matrix and σ ∈ R
+ is scalar parameter. For a radial Gaussian

kernel, given as

k(x, z) = exp
(

−‖x− z‖2/(2σ2)
)

, (2.44)

the image of each element of X has unit length, thus, k(x,x) = 1 for x ∈
X , Moreover, the images of the elements of X lie in the same orthant, thus,

21

cos(∠(Φ(x),Φ(z))) = 〈Φ(x),Φ(z)〉 = k(x, z) > 0. Also, the radial Gaussian

kernel has full ranked Gram matrix.

2.3.3 Deriving Kernels from Kernels.

We can derive new valid kernels from other valid kernels, which is useful in de-

signing a kernel and therefore a representation for a particular problem. Assuming

k1, k2 : X × X → R, k3 : R
m × R

m → R be valid kernels, a ∈ R
+, f : X → R, and

φ : X → R
m. The functions given below are positive definite kernels:

(1) k(x, z) = ak1(x, z) ,

(2) k(x, z) = k1(x, z) + k2(x, z) ,

(3) k(x, z) = k1(x, z)k2(x, z) ,

(4) k(x, z) = ek1(x,z) ,

(5) k(x, z) = f(x)f(z) ,

(6) k(x, z) = k3(φ(x),φ(z)) ,

(7) k(x, z) = k1(x, z)/
√

k1(x, x)k1(z, z) .

k(x, x) 6= 0 is assumed for all x ∈ X in the last case.

2.3.4 Kernel Trick

By using kernels we can have efficient formulations to various non linear variants

of an algorithm expressed with the help of dot products. Quoting Schölkopf and

Smola [58], this is known as the kernel trick : “Given an algorithm formulated in

terms of a positive definite kernel k, one can construct an alternative algorithm

by replacing k by an alternative kernel” [58].

We will not go into further details on this topic in this thesis. More details can

be found in [58].

22

2.3.5 Non-linear Hard Margin SVM

The SVM optimization problem can be written using the dot products only. Thus,

we can use the kernel trick and (see section 2.3.4) the dot products can be efficiently

calculated using a valid kernel function k. By replacing the dot products with the

kernel function k, we can simply convert the linear hard margin SVM into a non-

linear pattern recognition algorithm. For training data S = {(x1, y1), . . . , (xℓ, yℓ)}
and kernel function k to be linearly separable in the new feature space induced by

k, the optimization problem

max
α

ℓ
∑

i=1

αi −
1

2

ℓ
∑

i,j=1

αiαjyiyjk(xi, xj)

subject to
ℓ

∑

i=1

αiyi = 0 , αi ≥ 0 , i = 1, . . . , ℓ



























(2.45)

having solutions solution α∗, b∗, will give a decision rule sgn(f(x)), where f(x) =
ℓ

∑

i=1

yiα
∗
ik(xi, x) + b∗.

2.3.6 Non-linear Soft Margin SVM

Similar to the hard margin formulation, we can convert the linear algorithm into

non-linear methods by applying kernel trick.

Non-linear 1-norm soft margin SVM. The optimization problem for non-

linear 1-norm soft margin SVM can be written as

max
α

ℓ
∑

i=1

αi −
1

2

ℓ
∑

i,j=1

αiαjyiyjk(xi, xj)

subject to

ℓ
∑

i=1

αiyi = 0 , C ≥ αi ≥ 0 , i = 1, . . . , ℓ



























(2.46)

The above formulation leads to the decision rule of sgn(f(x)) where

f(x) =
∑ℓ

i=1 yiα
∗
ik(xi, x) + b∗.

23

We can see that for C →∞, the soft margin algorithm will be actually a hard

margin SVM algorithm. Similar to the Non-linear 1-norm soft margin SVM case

we can have a Non-linear 2-norm soft margin SVM case. However, we will not

discuss it in this thesis. The 1-norm regularization is usually given preference over

the 2-norm regularization as it leads to sparser solutions [59].

We have seen that finding an optimal decision function for SVM requires the

constraint convex optimization problem to be solved. In the next section we will

discuss an algorithm which solves our problem in an efficient way.

2.4 Training Support Vector Machines

Different methods have been proposed to solve constraint convex optimization

problems for training SVMs (see [60]). These optimization problems are solv-

able using standard methods from quadratic programming. However, the SVM

quadratic programs have a special form, which enables the usage of specialized

heuristics with better time and space complexity.

We focus on training 1-norm soft margin SVMs, because of their popularity.

Also, we have used them in our work. Although there are variety of different

approaches to SVM training, we will discuss only decomposition algorithms [61, 62]

which are very popular and highly efficient.

2.4.1 Decomposition Algorithms

Decomposition algorithms are the most prominent algorithms for solving SVM

optimization [61, 63, 62, 64, 65, 66, 67, 68, 69, 70]. They are called decomposi-

tion algorithms because they break the learning problem into smaller subproblems.

They restrict the dual optimization to a subset B (working set) and solve it iter-

atively. Algorithm 2.1 makes the procedure clear.

Dual optimization problem for 1-norm soft margin SVM (restricted to a work-

24

Algorithm 2.1: Decomposition Algorithm (reproduced from Christian Igel’s
lecture notes on the course “Statistical Machine Learning” [1], with permission
from the author).

α← feasible starting point;
repeat

select working set B;
solve quadratic program restricted to B resulting in α̂;
α← α̂;

until stopping criterion is met ;

ing set B ⊂ {1, . . . , ℓ})is as following

max
α̂

D(α̂) =
ℓ

∑

i=1

α̂i −
1

2

ℓ
∑

i,j=1

α̂iα̂jyiyjk(xi, xj)

subject to
ℓ

∑

i=1

α̂iyi = 0

∀i ∈ {1, . . . , ℓ} : 0 ≤ α̂i ≤ C

∀i 6∈ B : α̂i = αi .



















































(2.47)

Figure 2.4 visualizes this optimization problem with working set B = {i, j}
comprising of two variables.

We will use shortcut notation Kij = k(xi, xj) for Gram matrix entries and

gi =
∂D(α∗)

∂αi
= 1− yi

ℓ
∑

j=1

yjαj
∗Kij (2.48)

for the gradients. Also, let the index sets be defined as

Iup = {i | yiαi < bi} (yiαi may increase) (2.49)

Idown = {i | yiαi > ai} (yiαi may decrease) (2.50)

where

[ai, bi] =







[0, C] if yi = +1

[−C, 0] if yi = −1
. (2.51)

A support vector xi is bounded if αi = C, and free otherwise (and i ∈ Iup ∧ i ∈
Idown).

25

ĝ

ĝ∗

α̂

α̂∗

0 C

C

α̂i

α̂j

Figure 2.4: Two-dimensional subproblem for a 1-norm soft margin SVM. The restric-
tion of the feasible region to the line segment in the box is due to the equality constraint
and the box constraints. The points α̂ and α̂∗ are feasible solutions of the subprob-
lem, α̂∗ is optimal. The corresponding gradients are denoted by ĝ and ĝ∗ (reproduced
from Christian Igel’s lecture notes on the course “Statistical Machine Learning” [1], with
permission from the author).

Optimality and Stopping Criterion A stopping criterion is required for al-

gorithms which iteratively solve the optimization problem. In order to a find

meaningful termination condition, a “quantitative” optimality criterion is found.

αǫ ∈ R
ℓ for ǫ > 0, i ∈ Iup and j ∈ Idown is defined as

αǫ
k = αk + ǫ[uij]k = αk +



















+ǫyk if k = i

−ǫyk if k = j

0 otherwise

, (2.52)

with [uij]k being the kth component of the ℓ-dimensional vector uij . [uij]k is

26

0 except in its ith and jth components. The ith and jth components are equal to

yk and −yk, respectively. Using the first order approximation we can write

D(αǫ)−D(α∗) = ǫ(yig
∗
i − yjg

∗
j) + o(ǫ) . (2.53)

For α∗ to be optimal, the term D(αǫ)−D(α∗) = ǫ(yig
∗
i − yjg

∗
j) + o(ǫ) has to

be negative, which gives us the the necessary optimality criterion

∃r ∈ R : max
i∈Iup

yig
∗
i ≤ r ≤ min

j∈Idown

yjg
∗
j (2.54)

or

∃r ∈ R : ∀k :







α∗
k = C if g∗k > ykr

α∗
k = 0 if g∗k < ykr

. (2.55)

It can be shown that the optimality criterion is also sufficient. Let α∗ be a feasible

solution of D and select

w∗ =

ℓ
∑

i=1

yiα
∗
i k(xi, ·) , b∗ = r , ξ∗i = max{0, g∗i − yir} . (2.56)

Now the duality gap can be given as

P(ξ∗,w∗, b∗)−D(α∗) = C
ℓ

∑

i=1

ξ∗i −
ℓ

∑

i=1

α∗
i g

∗
i =

ℓ
∑

i=1

(Cξ∗i − α∗
i g

∗
i) , (2.57)

where P(ξ∗,w∗, b∗) denotes the corresponding primal problem. As Cξ∗i − α∗
i g

∗
i =

−yiα∗
i r we have

P(ξ∗,w∗, b∗)−D(α∗) = −r
ℓ

∑

i=1

yiα
∗
i = 0 . (2.58)

So, the duality gap is zero and α∗ is optimal. Moreover, setting b∗ = r is a nice

way to determine b∗.

The optimality criterion can be computed by

max
i∈Iup

yig
∗
i − min

j∈Idown

yjg
∗
j ≤ 0 . (2.59)

However, practically, this condition is loosened as given below

max
i∈Iup

yigi − min
j∈Idown

yjgj ≤ ǫ (2.60)

27

for ǫ > 0. [69, 70] have shown that it is indeed a meaningful criterion with respect

to accuracy of the solution to the primal problem. A good selection of ǫ can

significantly speed-up SVM training without any significant loss of accuracy.

2.4.2 Recomputing Gradient and Stopping Criterion

As it is clear form the previous section gradient calculation plays an important role

in decomposition algorithms. As α = 0 is always a feasible point with gradient

at α = 0 evaluating to 1, it is a convenient starting point. The gradient vector of

the full problem has to be adjusted after the solving the problem to the restricted

set B, which can be done incrementally as following

∀k ∈ {1, . . . , ℓ} : gk ← gk − yk
∑

i∈B

yi(α̂i − αi)Kik . (2.61)

2.4.3 Sequential Minimal Optimization

As we need to follow the equality constraint
∑ℓ

i=0 αiyi = 0, it is impossible to

change just one variable and keep the rest fixed. Thus the minimum feasible

working set size is two. In order to change some variable αi by an amount of

∆αi, we have to change another variable αj too, by −yjyi∆αi. The decomposi-

tion algorithm which use working set size of two (minimal working set size) are

known as SMO-type decomposition algorithm. SMO stands for sequential minimal

optimization [62]. SMO is shown in Fig. 2.4.

Considering two variables has an advantage that the restricted two-dimensional

subproblem is an analytically solvable problem. The working set B = {i, j} com-

prises of i ∈ Iup and j ∈ Idown. Let in an SMO step, yiαi increases, while yjαj

decreases accordingly. Thus we can assume that yigi > yjgj , which is taken care

by the working set selection algorithms [67, 68]. The stopping condition defined

in the previous section is satisfied if there is no pair with i ∈ Iup, j ∈ Idown, and

yigi > yjgj

Without loss of generality, if i < j, search direction of SMO in the subproblem

is given by

(0, . . . , yi, 0, . . . , 0,−yj, 0, . . . , 0) = uij . (2.62)

28

If we solve the subproblem in the search direction uij ignoring box constraints, it

is same as maximizing

D(α+ λuij)−D(α) = λ(yigi − yjgj)−
λ2

2
(Kii +Kjj − 2Kij) (2.63)

with respect to λ. Newton step gives the optimal λ∗

λ∗ =
yigi − yjgj

Kii +Kjj − 2Kij

(2.64)

λ∗. λ∗ is then clipped to meet the box constraints

λ = min

{

bi − yiαi, yjαj − aj,
yigi − yjgj

Kii +Kjj − 2Kij

}

(2.65)

The new coefficients are α+λuij. The SMO algorithm is shown in Algorithm 2.2.

Algorithm 2.2: Sequential minimal optimization (reproduced from Christian

Igel’s lecture notes on the course “Statistical Machine Learning” [1], with permission

from the author).

α← 0, g ← 1;

repeat
select indices i ∈ Iup and j ∈ Idown with yigi > yjgj;

λ = min

{

bi − yiαi, yjαj − aj ,
yigi − yjgj

Kii +Kjj − 2Kij

}

;

∀k ∈ {1, . . . , ℓ} : gk ← gk − λykKik + λykKjk;

αi ← αi + yiλ;

αj ← αj − yjλ;
until maxi∈Iup

yigi −minj∈Idown
yjgj ≤ ǫ ;

2.5 Training Time Scaling with Number of Patterns

[70] found the bounds for the time required to solve optimization problems of SVMs

up to a certain accuracy while using decomposition algorithms. We mention two

intuitive bounds given by [60]

• Assuming that an oracle tells us unbounded F = {xi | 0 < αi < C} and

bounded support vectors, computing α∗ need just to solve an |F |-dimensional

unconstrained optimization problem, which requires O(|F |3) computations.

29

• Computing the gradient from scratch is needed to check the optimality con-

dition. It takes O(ℓ·|SV|), where |SV| denotes the number of support vectors,

providing a strict lower bound.

The above mentioned are lower bounds. Actually, SVM training scale between

quadratically and cubically with the training data population. Joachims et al.

empirically showed this in [63]. Practically, the training time depends on the

actual Gram matrix, the number of bounded support vectors (depends on the

choice of C), and the stopping criterion. [70] showed that O(1/ǫ) iterations are

sufficient to achieve an accuracy of ǫ. The dependence on the stopping criterion

has special importance in this work, which will be evident in one of the following

chapters.

2.6 SVM in our work

Intention behind using Support Vector Machines in this work was to exploit their

excellent generalization ability in case of large-scale training data, which is a very

common scenario in Medical Image Analysis. The need of large scale data comes

because of the need to cover sufficient biological variability. Standard non-linear

SVMs can’t be used under such scenarios as they scale badly with the number of

training data points. As an application, we took the voxel classification problem

in knee MRIs and we aimed at improving the performance achieved by a state-of-

the-art method proposed by [71]. As the training data used by [71] had more than

2 million voxels extracted from 25 scans and we wanted to exploit the whole of

training data, the usage of standard non-linear SVM was practically not possible in

this case as SVMs scale badly with number of training data points. [71] used kNN

with feature selection. They started with a pool of 178 dimensional feature vector

and reduced its dimensionality using feature selection. The training data had a

huge class imbalance with background voxels outnumbering foreground voxels. We

used their classifier by [71] as a screening stage and set the posterior threshold such

that the false negatives are minimized. Now, just a fraction of voxels which are not

classified as background are given to SVM for training. Although the kNN was fed

30

with selected features, as the dimensionality of feature space is not a problem with

SVM, we decided to use the whole 178 dimensional feature set to given as input to

the SVM. Hard margin SVMs are practically of no use because of the unavoidable

overlap between the two classes. In our preliminary experiments, we used linear

SVM but the results were clearly worse than [71]. For using non-linear SVM as

our second stage, we had some options with respect to the kernel function. The

popular choices for SVM kernels are a) Polynomial kernel, b) Sigmoid kernel and

c) Gaussian kernel.

Polynomial Kernel is defined as

k(x, z) = (xT z + r)d (2.66)

where d is the degree and r is the bias. Polynomial kernels are generally a good

choice when we have some prior information about the data. It has two parameters

d and r to be tuned and thus including the regularization parameter C, grid search

would be a 3 dimensional grid search.

Sigmoid Kernel is defined as

k(x, z) = tanh(pxT z + q) (2.67)

Sigmoid Kernel has two parameters to tune and thus the grid search for SVM

should be performed on a 3 dimensional grid. Also [72] has given a theoretical

explanation that sigmoid kernel in general is not a better choice than the Gaussian

Kernel.

Gaussian Kernel Gaussian Kernel is the most popular kernel for SVMs, spe-

cially in the cases when we don’t have much prior information about the data. It

is defined as

k(x, z) = exp(−γ(||x− z||2)) (2.68)

The tunable parameter γ is the inverse width parameter. Gaussian kernel has just

one parameter γ to tune and thus the grid search is just a 2D grid search. Due to

the above mentioned reasons we decided to use the Gaussian kernel in our work.

The grid search for Gaussian kernel SVMs is performed for selecting the opti-

mum combination of regularization parameter C and inverse kernel width param-

eter γ.

31

In the next two chapters we describe further, the usage of SVM in our work.

32

Chapter 3

Cascaded Classifier for Large-scale

Data Applied to Automatic

Segmentation of Articular Cartilage

.

Abstract

Many classification/segmentation tasks in medical imaging are particu-

larly challenging for machine learning algorithms because of the huge amount

of training data required to cover biological variability. Learning methods

scaling badly in the number of training data points may not be applicable.

This may exclude powerful classifiers with good generalization performance

such as standard non-linear support vector machines (SVMs). Further, many

medical imaging problems have highly imbalanced class populations, because

the object to be segmented has only few pixels/voxels compared to the back-

ground. This article presents a two-stage classifier for large-scale medical

imaging problems. In the first stage, a classifier that is easily trainable on

large data sets is employed. The class imbalance is exploited and the clas-

sifier is adjusted to correctly detect background with a very high accuracy.

This chapter is based on “Cascaded Classifier for Large-scale Data Applied to Automatic
Segmentation of Articular Cartilage“, published in the proceedings of SPIE Medical Imaging
2012: Image Processing Conference [54]

35

Only the comparatively few data points not identified as background are

passed to the second stage. Here a powerful classifier with high training

time complexity can be employed for making the final decision whether a

data point belongs to the object or not. We applied our method to the prob-

lem of automatically segmenting tibial articular cartilage from knee MRI

scans. We show that by using nearest neighbour (kNN) in the first stage we

can reduce the amount of data for training a non-linear SVM in the second

stage. The cascaded system achieves better results than the state-of-the-art

method relying on a single kNN classifier.

Keywords: large-scale data classification, image segmentation, cascaded

classifier, two-stage classifier, support vector machines, osteoarthritis, mag-

netic resonance imaging (MRI), articular cartilage segmentation

3.1 Introduction

Segmentation of anatomical structures is one of the most important tasks in med-

ical image analysis. It is often addressed by applying machine learning methods

to pixel/voxel based classification. In general, the success of this approach de-

pends on three ingredients. First, a good set of image features discriminating

well between the anatomical structure and the background is required. Second, a

sufficiently large amount of training data needs to be available to cover as much

biological variability as possible. Third, the learning algorithm must be strong

enough to give good segmentation results using the training data. This study

focuses here on the latter two aspects. The huge amount of required training

data limits the choice of the machine learning technique. Some powerful methods

with good generalization performance and desired theoretical properties, such as

standard non-linear support vector machines (SVMs[46, 63]), scale badly with the

number of training data points and hence are not directly applicable. Therefore,

we present a simple two-stage system that allows us to make use of such complex

learning techniques for typical medical imaging tasks in order to achieve better

classification and segmentation.

Osteoarthritis is one of the most common reasons for causing work disability,

36

(a) Slice of a knee MRI (b) Corresponding segmentation

Figure 3.1: Knee MRI slice and its segmentation into articular cartilage and background
by a radiologist.

especially in the elderly population and has a large social and economic impact

[73, 74]. MRI scans are most commonly used for noninvasive assessment of the ar-

ticular cartilage [75]. The deterioration of the articular cartilage can be diagnosed

using quantitative MRI analysis. We applied our approach to the segmentation of

articular cartilage in low-field knee MRI scans (see Figure 3.1), which is required

for the analysis of osteoarthritis. Our method is not limited to the tibial articular

cartilage, and we will apply it for segmenting the femoral articular cartilage in

future work.

3.1.1 Dataset

In this study we use low-field MRI scans. Low field MRI scanners have poorer

image resolution and worse image quality than the high-field scanners. They are

however much more cost effective than high-field MRI scanners, with lower instal-

lation and maintenance cost. The comfort level of patients is also higher with no

claustrophobic feeling. Low-field MRI scans for quantitative analysis of articular

37

cartilage can be helpful for reducing the cost of clinical studies.

MRI was performed with an Esaote C-Span lowfield 0.18T scanner dedicated

to imaging of extremities yielding a sagittal Turbo 3-D T1 sequence. Approximate

acquisition time is 10 min with each scan having 104-116 slices of size 256× 256.

The spatial in-plane resolution of the scans are 0.70 × 0.70mm2, with a distance

between slices ranging between 0.70 - 0.94 mm, where the most common distance

is 0.78 mm. 25 scans were used for training and a hold-out set of 114 scans were

used for evaluation.

3.1.2 Related Work

Cartilage segmentation by radiologists is often done slice by slice (Figure 3.1), and

this is a tedious and very time consuming task. Moreover these segmentations are

found to have high inter- as well as intra-observer variability. Thus automated or

semi-automated methods are desirable and computer-aided segmentation of the

articular cartilage from the knee MRI scans is active research field. Methods can

be divided into 2D and 3D approaches, depending on whether they rely on 2D

methods to segment one slice at a time or directly use 3D segmentation. For in-

stance, B-spline snakes were used by Stammberger et al. [76] to segment each slice.

Lynch et al. [77] also developed a 2D approach using active contours. Active shape

models for slice-by-slice cartilage segmentation, were used by Solloway et al. [78].

Assuming the bones are already segmented, Pakin et al. [79] used a region growing

technique with clustering to segment the cartilage. Grau et al. [80] used watershed

based approach but the method required 5-10 minutes of human intervention, to

select the markers before segmenting a scan. User performed interactive regis-

tration of a knee template to a test scan has also been used [81, 82]. Folkesson

et al. [71] used a very efficient, robust and fully automatic method to segment

the cartilage in 3D and their method can be considered as the state-of-the-art

method for fully automatic segmentation of articular cartilage. Bae et al. devel-

oped a semi-automated method based on a graph-cuts algorithm for segmentation

and volumetric measurements of the cartilage from high-resolution knee magnetic

resonance (MR) images from the Osteoarthritis Initiative (OAI) database and as-

38

sessed the intra and inter-observer reproducibility of measurements obtained via

their method [83]. Chang et al proposed a semi-automatic segmentation method

of knee cartilage based on radial transformation [84]. A method to simultaneously

segmenting the bone and cartilage surfaces of a knee joint in 3D was presented

by Yin et al [85]. Seim et al. presented a fully automatic method for segmenting

bones and cartilages from MRI scans [86]. They used statistical shape model and

graph-based optimization to firstly reconstruct femoral and tibial bone surfaces

and then strating from bone surfaces they simultaneosly segment the cartilage

using prior knowledge on the variation of cartilage thickness. Vincent et al. pre-

sented a fully automatic model based system for segmenting bone and cartilage in

magnetic resonance (MR) images of the knee [87]. Their segmentation method is

based on Active Appearance Models built from manually segmented examples from

the Osteoarthritis Initiative database. Hinrichs et al. proposed a segmentation al-

gorithm based on level sets for the 3D segmentation of knee articular cartilage

[88]. The method incorporates non-linear diffusion for efficient image denoising.

Fripp et al proposed a scheme consisting of three stages; automatic segmentation

of the bones, extraction of the bone cartilage interfaces and segmentation of the

cartilages [89]. Dodin et al. also developed an automatic segmentation algorithm

for MRI scans obtained using 3T scanner and a knee coil. The imaging uses a dou-

ble echo steady state (DESS) sequence, which contrasts cartilage and soft tissues

including the synovial fluid [90]. Their algorithm was developed on 3-D images in

which the bone cartilage interface for the femur and tibia was segmented by an

independent segmentation process, giving a parametric surface of the interface.

In this thesis, we compare our methods with Folkesson et al. [71]. However,

below, we discuss some other recent and state-of-the-art works on knee cartilage

segmentation.

Lee et. al. [91] propose a fully automatic method in which they segment bone,

bone-cartilage interface and cartilage, with the main contribution being cartilage

segmentation. They first segment the bone using a modified version of branch and

min-cut algorithm. After segmenting the bone they classify bone voxels to segment

the bone cartilage interface (BCI) using two classifiers which are based on position

39

and local appearance. Finally, they use the BCI segmentation to designate the

ROI for cartilage segmentation and segment the cartilage using localized Markov

random fields. They evalute their method on 10 subjects.

Shan et. al. [92] propose multi-atlas approach to segment femoral and tibial

cartilage from knee MRIs. They first use a simple model for estimating likelihood

for femur and tibia bones. Then they apply multiatlas registration followed by

label fusion to segment the bone. For cartilage segmentation, they incorporate

shape prior based on multi-atlas approach and cartilage likelihood obtained from

probablistic kNN. They validate their method on 18 subjects.

Wang et. al. [93] propose a method which requires pre-segmentation of bones.

However they don’t rely on explicit classification of BCI. Instead they compute

distance features from each voxel to anatomical landmarks on the bone surface.

Then they use iterative discriminative classifiers where probability maps generated

by first pass are used to generate semantic contextual features for the second pass.

They evaluate their method on 176 volumes of Osteoarthristis Initiative dataset

(OAI).

Fripp et. al. [94] segment a hierarchical segmentation scheme where bones,

which are easier to segment are segmented first segment bone using 3D active

shape model initialized using affine atlas registration. Then they extract the BCI

using prior knowledge about points belonging to the bone cartilage interface and

image information. They further refine the bone segmentation, BCI extraction and

thickness profile through their cartilage segmentation algorithm. They incorporate

localized estimate of tissue properties and classification while the bone cartilage

interface and thickness maps from the training data are utilized to generate the

thickness-variation’s principal component model for the points on BCI. Number

of modes constrained is for capturing 90% of the training data. These are then

incorporated in a 3D active surface model approach for segmenting the cartilage.

Yin et al. [95] propose a simultaneous segmentation method for multiple in-

teracting surfaces of multiple interacting objects based on layered optimal graph

segmentation. They call their method "LOGISMOS". They apply their method

for the bone and cartilage segmentation in MRI scans of human knee.They train

40

their method on 9 scans and evaluated their method using leave one out test.

The main difference between our method and the methods mentioned above

are that we segment the cartilage directly without using any prior segmentation of

bones or extraction of BCI. Moreover, our approaches are purely a voxel classifica-

tion approaches, whereas the above mentioned approaches are hybrid approaches

which involve other techniques as well.

The rest of this chapter is organized as follows. In the next section we discuss

shortly a general methodology for two stage classifier. Then in Section 3.3 we apply

it to the automatic segmentation of tibial cartilage. The first stage is performed by

a k-NN classifier while the second stage uses a SVM classifier. In particular, data

as well as model selection are discussed. Then in Section 3.4 we present our results

and evaluation of the proposed method. Finally we summarize and conclude in

Section 3.5

3.2 Two Stage Classifier

In this section, we describe the general idea of our two-stage classifier. The ap-

proach is inspired by the cascaded object recognition architecture by Viola and

Jones [96, 97].

Let us assume a binary classification problem. Further, we assume that the two

classes have highly imbalanced populations with the background (negative class)

data points outnumbering the class to be segmented (positive class) by at least

an order of magnitude. Let X and Y = {−1, 1} denote input and label space,

respectively. First, we learn a hypothesis h1 : X 7→ Y using all the ℓ samples in

our training data set Dtrain1
⊂ (X × Y)ℓ. The learning algorithm at this stage

is chosen to be able to handle a large ℓ and to produce a hypothesis with high

sensitivity (recall rate). Ideally, it should identify all positive examples correctly

while identifying as much members of the negative class as possible. This stage

filters out points belonging to the background class in order to reduce the input

for the subsequent classifier. All data points classified as non-background by h1

are passed to the second stage. In this stage, we generate a hypothesis h2 using

the training data Dtrain2 = {(x, y) | (x, y) ∈ Dtrain1 ∧ h1(x) = 1}. If |Dtrain2 | ≪ ℓ ,

41

we then can afford to employ a classifier with less favorable scaling behavior with

respect to the number of training data points than in the first stage and we are

now less limited in the choice of the learning algorithm and pick the one we expect

to result in maximum accuracy. The final two-stage classifier is given by

h(x) =















−1 if h1(x) = −1
−1 if h1(x) = 1 and h2(x) = −1
1 otherwise

. (3.1)

As we assume the fraction of data points belonging to the negative class to be

much higher than the fraction of points belonging to the positive class, we expect

that only a small fraction of data points must be handled by the second stage

despite the high sensitivity of h1. Therefore, the cascaded classifier inherits the

applicability to large-scale data from the algorithm applied in the first stage and

the high accuracy of the more complex classifier in the second stage.

3.3 Automatic Segmentation of Tibial Cartilage

We now describe how the cascaded strategy discussed above has been applied

to tibial cartilage segmentation. A good cartilage segmentation system requires

large-scale machine learning, not only because of the number of voxels in a single

MRI scan but also because many of these scans are needed to cover sufficiently the

biological variability. Our new approach allows to apply more complex classifiers

and accordingly leads to a better segmentation. Our first stage uses a k-NN based

rule, while the second stage uses a SVM rule. Two-stage architectures with nearest

neighbor classification followed by an SVM have been proposed before (e.g., by

Batra et al. [98]), but to our knowledge with different motivations and not in the

domain of medical imaging.

The following subsections discuss all the important aspects of our two stage

classifier.

42

3.3.1 Features

The classification is feature based, and we have used the same set of input features

as Folkesson et al. did in [71]. We describe them now.

Two of the candidate features are position and intensity. Intensities are com-

puted at different scale by convolution with Gaussians in a scale-space framework

[99], three different scales are used to produce intensity based candidate features.

Gaussian derivative features have also been used, they have been obtained by con-

volving the image with with derivatives of Gaussian, up to order three with respect

to the spatial variables, so that intensity plus derivative features gives a complete

description of the geometry up to order three, at three different scales. A next

set of features are the eigen-values and the eigen-vectors of both the 3D Hessian

matrix and and the structure tensor at three different scales. The features men-

tioned till now are the features that examine the first and second-order structures.

Third-order tensors in the gradient direction on three scales are also included as

candidate feature to examine the local third order structure.

Folkesson et al.’s candidate features [71] are thus: intensity, position, the three-

jet, eigenvalues, and eigenvectors of both the Hessian and the structure tensor and

the third-order tensor in the gradient direction. Every feature is calculated at three

different scales (except position). Features (except intensity) were coupled 3 by 3

to allow them the same chance of getting picked during feature selection. Finally

36 features were selected using feature selection out of the above mentioned 178

features.

3.3.2 Training Data

We used the scans of 25 patients manually segmented by a radiologist. As men-

tioned earlier, each full scan consisted of approximately 104-116 slices, each slice

being 256 × 256 in size. They are the same scans that were used to generate the

training data for the state-of-the-art method of Folkesson et al. From each scan,

a region of interest (ROI), covering about 30% of the volume of the scan was ex-

tracted. The ROI fully contain the cartilage volume. Same as [71], we include

all the cartilage voxels in the training data-set, while the background voxels were

43

sampled very densely near the cartilage and rarely far from it. This sampling

scheme is chosen because the voxels near the cartilage are much more difficult to

classify when compared to the voxels far from the cartilage. Thus the idea was to

increase their representation in the training data. Overall, we had approximately

2 million training voxels in the training data set.

3.3.3 Stage One

In our method, we used a classifier similar to the one by Folkesson et al. in the first

stage but with a different purpose. The k-NN based classifier of Folkesson et al.

produces for each voxel a posterior probability of belonging to a class as the fraction

of k-nearest neighbors that belong to that class. The training of the classifier

consisted in reducing the number of features (to 36) and posterior threshold θ that

optimizes the segmentation result. The value of k used by Folkesson et al was

k=100. We used the same value of k in the our first stage. As our first stage

differs in its objective, which is to reach 100% sensitivity (i.e. zero false negative)

and as much as possible true positives, it leads to a different threshold.

3.3.4 Stage Two

In the second stage, we employed a non-linear soft-margin Support Vector Machine

[46]. We provide a brief description of SVM and how to select the model parameters

in our problem.

3.3.5 Support Vector Machines

Support vector machines are state-of-the-art in binary classification. Non-linear

SVMs transfer the input data into a large-dimensional feature space and perform

linear classification in that space. Given a positive semi-definite kernel function

k : X × X → R, one considers the feature space generated by this kernel, Hk =

span{k(x, ·) | x ∈ X} and the class of affine functions on it, Hb
k = {f = g + b | g ∈

Hk, b ∈ R}. The decision boundary induced by the sign of a function f ∈ Hb
k is

a hyperplane in Hk. Given training data (xi, yi) ∈ X × {−1, 1}, i = 1, . . . , ℓ, a

44

1-norm soft margin SVM [46] finds a solution to the regularized risk minimization

problem

minimize
f∈Hb

k

C

ℓ
∑

i=1

Lhinge(yi, f(xi)) +
1

2
‖f‖2

with loss function Lhinge(y, f(x)) = max{0, 1 − yf(x)}. The parameter C > 0

controls the trade-off between reducing the empirical loss Lhinge and the complexity

of the hypothesis ‖.‖ measure by the norm of its Hk component.

The SVMs in this study use standard Gaussian kernels on the full 178 dimen-

sional (without feature selection) image-feature.

kγ(x, z) = e−γ(‖x−z‖)2 , x, z ∈ X = R
178.

Model Selection To adjust the hyper-parameters of the SVM classifier, the

kernel bandwidth parameter γ and the regularization parameter C, we performed

grid searches. We determined an initial estimate γJ for the bandwidth parameter

using the heuristic proposed by Jaakkola et al. [100], which provides a reasonable

initial guess for the bandwidth parameter of a radial Gaussian kernel. The heuristic

considers all pairs consisting of an training input vector from the positive class and

a training input vector from the negative class; computes the difference in input

space between all pairs; and assumes that the median of these distances can be

used as a measure of scale. More formally, we compute

γJ =
1

2median({‖xi − xj‖ | (xi, yi), (xj, yj) ∈ Dtrain ∧ yi 6= yj})2
. (3.2)

We employed the LIBSVM software by Chang and Lin for non-linear SVM training

[101].

For the cross validation we divided the 25 scans set into 5 subsets, each having

5 scans. We perform 5 iterations for cross validation with each time a different

subset chosen as validation set and the rest four are jointly the training set. The

above approach of cross-validation was employed to reduce the number of hyper-

parameter combinations and thus making the cross-validation faster. Then we

picked the hyper-parameter pair (C ′, γ′) minimizing the cross-validation error with

45

the input hyper-parameters to LIBSVM being

C ′ ∈ {2−11, 2−10, . . . , 217} and γ′ ∈ {γJ · 2−7, γJ · 2−2, . . . , γJ · 25} .

After selecting the best hyper-parameter pair once, we placed a narrow-grid (3-

by-3) centered at (C ′, γ′). At this stage we introduced weight ratio parameter

W ∈ {1.0, 1.1, 1.2, . . . , 1.8}, which makes it possible to select different regular-

ization parameter for the two classes. So, the regularization parameter for the

cartilage and the background class eventually become C ·W and C respectively.

Then we performed cross-validation for each combination of C, γ and W to get

the final parameters. The final training time was approximately 6 days on 2.93

GHz processor and 4 GB RAM system.

3.4 Evaluation and Results

We tested our method on a set of 114 unseen scans. For fast evaluation, for

each scan we chose the background test points by randomly sampling very densly

near the cartilage and rarely far for from it, with the sampling probabilty varying

linearly. However, for each scan, all the cartilage points were taken as foreground

test points. We also evaluated the state-of-the-art [71] method on the same test

scans to compare the two methods. Sampling on the background of each test

scan was performed just once and then the same sampled points were used for

comparison.

In our experiments the first stage filtered out more than 86% of the training and

test data. We evaluated the segmentation based on the dice similarity coefficient

(DSC) given by

DSC(A,B) =
2(|A ∩ B|)
|A|+ |B|

where A and B are manual and automatic segmentations, respectively [102]. Ta-

ble 3.1 shows the mean and standard deviation of the dice similarity coefficient,

accuracy, sensitivity and specificity obtained over testing 114 scans using the pro-

posed method and the state-of-the-art method. As it can be seen our method

46

Table 3.1: Comparison of classifiers applied for cartilage segmentation in MRI. The
abbreviation DSC. stands for the dice similarity coefficient, Acc. for accuracy, Sens. for
sensitivity, Spec. for specificity. The proposed cascaded kNN+SVM classifier is referred
as Two-stage.

Classifier Over 114 Scans DSC Acc. Sens. Spec.

Two-stage
Mean 0.8432 98.3074 85.2480 99.0741

Std. Dev. 0.0428 0.4153 8.6414 0.4180

Folkesson et. al. [71]
Mean 0.8329 98.2000 83.6139 99.0594

Std. Dev. 0.0425 0.4614 8.3703 0.4692

(a) Tibial Cartilage seg-
mented from a slice by the
Radiologist

(b) Segmentation obtained
by two stage kNN+SVM

(c) Segmentation obtained
by one-stage kNN

Figure 3.2: An example knee MRI slice where two-stage kNN+SVM performs clearly
better than the one-stage kNN method

gets higher mean for DSC, accuracy, sensitivity and specificity. The differences

in accuracy and DSC between the one-stage and the two-stage approach are both

statistically significant (Wilcoxon rank sum test, p < 0.05). For our test data set of

background sampled scans (having average of 80000 voxels per scan) this comes at

the reasonable cost of a 10%-13% increase in time for classification over 1-stage of

kNN, because around 14% of the data have to be processed by both classification

stages. The total time taken on 2.8 GHz processor and 4GB RAM was 42 minutes.

However, for a full scan (no background sampling, 2 million voxels in the ROI),

47

as the classification time was too long for stage one kNN screeening, as done by

Folkesson et al., [71], approximate nearest neighbor framework developed by [103]

with ǫ = 2 was used. ǫ is a parameter such that the ratio of distance between a

nth (n ≤ k) reported neighbor and the true nth neighbor can’t be more than 1+ ǫ.

The time taken by stage-one was 85 minutes and the total time taken for full scan

by 2-stage classifier was 195 minutes.

We compared to with other classification rules, Linear SVM, logistic regression

and another kNN at second stage (two-stages kNN). Overall, while the proposed

method (two-stage kNN + SVM) significantly outperformed the state-of-the-art

one-stage kNN [71], both methods performed clearly better than the linear SVM

and logistic regression.

In that respect the large-scale machine learning software LIBLINEAR [104] was

used for the linear SVM and logistic regression. The regularization parameters of

the linear SVM and logistic regression were adjusted using grid-search.

When using the two-stages classifier with kNN in the second stage, the results

become worse than the original method. However it gave better results than

the linear classifiers (results not shown). Figure 3.2 shows a slice segmented by

the radiologist, our method and the one-stage kNN. Although, the average DSC

obtained for Folkesson et al. [71] was 83.29%, the slice shown in the figure is taken

from a scan for which our method clearly outperforms one-stage kNN. Figure 3.3

shows one of the very few cases where one-stage kNN performed slightly better

than our method. The segmentation suggests that the use of shape modeling as a

post processing step can increase the overall segmentation performance. For better

illustration, we have shown a slice taken from a 3D segmentations and its worth

mentioning again that none of the two methods are 2D segmentation method.

However, manual segmentations are performed in a 2D way(slice by slice).

We also evaluated interscan segmentation reproducibility on 31 pairs of scans,

each pair obtained within a week. There was no registration performed between the

pairs of scans. The SVM model obtained from model selection for segmentation

task was used to evaluate the inter-scan reproducibility. There was no overlap

between the training and the test patients. The same radiologist segmented both

48

(a) Tibial Cartilage seg-
mented from a slice by the
Radiologist

(b) Segmentation obtained
by two stage kNN+SVM

(c) Segmentation obtained
by one-stage kNN

Figure 3.3: One of the few examples of knee MRI slice where one-stage kNN performs
slightly better than the two-stage kNN+SVM method

Table 3.2: Comparing interscan tibial cartilage segmentation reproducibility on 31 pairs
of scans

Method RMS-CV
Two-stage 0.0597

Folkesson et. al. [71] 0.0700
Manual 0.1030

the scans of each pair. The evaluation was based on the RMS-CV score calculated

as follows. Let V i
s and V i

r be cartilage volumes obtained from scan and re-scan of

the ith pair. We calculate the coefficient of variation for ith pair

C i
v =

√
2(|V i

s − V i
r |)

V i
s + V i

r

which is the same as the ratio of the standard deviation to the mean of two volumes.

The RMS-CV score is given as
√

∑31
i=1C

i
v
2/31. The lower the RMS-CV score, the

better the reproducibility. Table 3.2 summarizes the results obtained, showing that

our method performed better than the radiologist as well as the state-of-the-art

method.

49

3.5 Conclusion

We present a general approach that allows to use complex non-linear classifiers

with good generalization ability for large-scale medical imaging problems under

the assumption of highly unbalanced class frequencies. We show that by applying

our method to MRI scans of the knee, we can improve on the current state-of-the-

art in articular cartilage segmentation. This is a relevant medical imaging task

supporting the analysis of osteoarthritis.

The two-stage cascaded system is a simple and flexible approach to improve

the performance of classifiers for large-scale problems. It is inspired by the object

recognition architecture by Viola and Jones [96, 97]. The basic assumption of

highly unbalanced class frequency is often met in medical applications, especially

in image segmentation with large background parts and in general when trying

to identify a few diseased persons in a large population. Thus, the approach is

particularly well-suited for medical imaging problems. The architecture is very

flexible, the type of classifiers and even the number of stages can be adapted to

the problem at hand.

We were able to improve the segmentation of knee cartilage from in MRI scans.

This required processing large amounts of data and our experiments showed that

linear classifiers, typically employed for large-scale machine learning, did not pro-

vide sufficiently good segmentation accuracy. Our two-stage procedure signifi-

cantly reduced the number of data points passed to the second classifier. Therefore

we could employ a non-linear SVM at the final stage. The reduced training set size

did not only allow for proper training and model selection of the SVM in reason-

able time, it also led to an SVM classifier with faster execution time, because the

number of support vectors and therefore the evaluation time of h2 scales linearly

in the number of training pattern in our scenario [59].

Of course, in a two-stage process some of the inputs have to be classified twice.

Further, both the storage requirements as well as the execution time of the nearest

neighbor classifier scales linearly with the number of training data points (if no

approximation scheme [103] is used). In the current system, the training of the

non-linear SVMs in the model selection procedure was the most time consuming

50

part. The scaling of standard SVM training the main motivation for the two-step

architecture. However, computing a close to optimal solution to the SVM optimiza-

tion problem (see Section 2) may not be necessary for good classification results.

Instead, we could try to find a good approximation to the SVM solution quickly.

This can be achieved by online SVMs.[105, 106] In future work, we will evaluate

online SVMs for the articular cartilage segmentation problem. Fast approximate

training may render the first nearest neighbor classification stage unnecessary.

51

Chapter 4

Femoral Cartilage Segmentation in

Knee MRI Scans Using Two Stage

Voxel Classification

Abstract

Using more than one classification stage and exploiting class population

imbalance allows for incorporating powerful classifiers in tasks requiring large

scale training data, even if these classifiers scale badly with the number of

training samples. This led us to propose a two-stage classifier for segmenting

tibial cartilage in knee MRI scans combining nearest neighbor classification

and support vector machines (SVMs). Here we apply it to femoral cartilage

segmentation. We describe the similarities and differences between segment-

ing these two knee cartilages. For further speeding up batch SVM training,

we propose loosening the stopping condition in the quadratic program solver

before considering moving on to other approximation techniques such as on-

line SVMs. The two-stage approach reached a higher accuracy in comparison

to the one-stage state-of-the-art method. It also achieved better inter-scan

This chapter is based on “Femoral Cartilage Segmentation in Knee MRI Scans Using Two
Stage Voxel Classification” by Adhish Prasoon, Christian Igel, Marco Loog, Francois Lauze, Erik
Dam, and Mads Nielsen, published in the proceedings of 35th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC 2013) [55]

53

segmentation reproducibility when compared to a radiologist as well as the

current state-of-the-art method.

Keywords: femoral cartilage, support vector machine, nearest neighbor clas-

sifier, online support vector machine, osteoarthritis, magnetic resonance imaging

4.1 Introduction

The need to cope with large scale data in medical imaging often limits the use of

complex classifiers having excellent generalization ability. An example of such a

classifier is a non-linear support vector machine (SVM, [46]), where the training

time scales worse than quadratically with the number of training data points. In

our previous work [54], we presented a two-stage cascaded classifier approach to

overcome this restriction. The proposed classifier was applied to segment tibial car-

tilage in low-field knee MRI scans and outperformed the state-of-the-art method.

As a step towards completing the study we apply the similar approach for seg-

menting femoral cartilage, also from low-field knee MRI scans. The segmentation

of articular cartilage is useful for the quantitative analysis of the deterioration

of articular cartilage, which causes osteoarthritis. Osteoarthritis is one of main

causes of work disability through out the world specially for the elderly popula-

tion. Non-invasive assessment of articular cartilage are most commonly done using

MRI scans [75].

In a general two-stage classifier for segmentation, we have a classifier trainable

on huge data-sets in the first stage. However, the goal of this first stage is not nec-

essarily to achieve best segmentation results, but to maximize sensitivity, that is,

to minimize false negatives. The points classified as background by the first stage

are labeled accordingly, while all the points classified as foreground go through

a second stage of classification. The classifier used at this stage can be a more

powerful classifier, which may scale badly with number of training data points.

However, if the background population is large compared to the foreground popu-

lation and a large portion of background population is screened in the first stage,

a significantly smaller portion of data points is fed into the second-stage classifier.

54

This makes it possible to use classifiers scaling badly with number of training data

points.

In this study, we extend our earlier work and apply the two-stage approach to

segmenting femoral cartilage. The approach is compared to the state-of-the-art

method that is based on one stage of nearest neighbor classification. We discuss

the similarities and differences in segmenting femoral and tibial cartilages as well

as the challenges faced due to the even higher amount of training data compared

to [54]. Furthermore, we consider images of subjects scanned twice within one

week and investigate the inter-scan reproducibility of the proposed classifier in

comparison to a radiologist and the current state-of-the-art method.

4.2 Related Work

Computer-aided segmentation of the articular cartilage from the knee MRI scans

is an active research field. Methods either rely on 2D approaches to segment slice

by slice or directly use 3D segmentation. Stammberger et. al. [76] used b-splines

to segment each slice of MRI scan. Another slice-by-slice cartilage segmentation

method based on active shape models was proposed by Solloway et. al. [78].

Folkesson et. al. [71] developed a 3D voxel classification approach which can be

considered as state-of-the-art method for fully automatic segmentation. A semi-

automated method was developed by Bae et. al. [83]. Their segmentation method

is based on graph-cut algorithm. They performed volumetric measurements of

the cartilage from high-resolution knee magnetic resonance (MR) images from the

Osteoarthritis Initiative (OAI) database and assessed the intra and inter-observer

reproducibility of measurements obtained via their method. A semi-automatic

method based on radial transformation was proposed by Chang et. al. [84]. Yin

et. al. proposed a method for simultaneous segmentation of bone and cartilage

surfaces [85]. A fully automatic method was proposed by Seim et. al. who seg-

mented bones and cartilage from MRI scans using statistical shape model and

graph based optimization [86]. Vincent et. al. presented a fully automatic sys-

tem [87] based on active appearance models. A three stage scheme was proposed

by Fripp et. al. [89]. In the first stage automatic segmentation of the bones is

55

performed. In the second stage, the bone cartilage interfaces is extracted. In the

final stage segmentation of the cartilages is performed. Dodin et. al. proposed

automatic segmentation method for knee MRI scans acquired using 3T scanner

and a knee coil [90]. They segmented bone cartilage interface for tibia and femur

independently. A level sets based algorithm was proposed in [88] for 3D segmen-

tation, and [95] incorporated multiple spatial inter-relationship on n-dimensional

graphs followed by graph optimization that yields a globally optimal solution to

segment cartilage.

In this thesis, we compare our methods with Folkesson et al. [71]. However,

we have also discussed some other recent and state-of-the-art [91, 92, 93, 94, 95]

works on knee cartilage segmentation (please see section 3.1.2).

4.3 Approach

This section presents the two-stage classifier and describes its application to the

segmentation of femoral cartilage. We also consider the challenges associated with

extending the study from tibial cartilage segmentation to femoral cartilage seg-

mentation and comment on speeding up SVM training by approximating the SVM

solution.

4.3.1 Two-stage Classifier

Let us assume w.l.o.g. a binary segmentation problem where the population of

the positive class is less than the negative class population by at least an order of

magnitude. Let X be the input space and Y = {−1, 1} the output. A hypothesis

h1 : X 7→ Y is learned in the first stage using all the training data. Let ℓ be the

number of samples and Dtrain1 ⊂ (X × Y)ℓ be the training data. The hypothesis

h1 is tuned to achieve maximum sensitivity and, thus, having minimum false-

negatives. This stage should use a learning algorithm which can handle a very

large number of training data points. The data points classified as background

by first stage classifier are labeled as background and rest of the points Dtrain2 =

{(x, y) | (x, y) ∈ Dtrain1
∧ h1(x) = 1} are used to train our second stage hypothesis

h2 . The aim of the learning algorithm at this stage is to achieve good segmentation

56

performance. As the number of data points at this stage is just a small fraction

of ℓ, we can employ a powerful classifier at this stage, even if it scales badly

with training data population. This way, the final two-stage classifier has good

generalization ability and can also handle huge training data sets. The two-stage

classifier can be summarized as

h(x) =















−1 if h1(x) = −1
−1 if h1(x) = 1 and h2(x) = −1
1 otherwise

.

Figure 4.1 depicts the general two stage classifier.

4.3.2 Automatic Segmentation of Femoral Cartilage

This section presents the application of a two-stage classifier to segmenting femoral

cartilage. Whenever needed, we will also refer to tibial cartilage segmentation for

comparison.

Training Data and Features Training data was extracted using 25 scans,

which are exactly the same scans as used by state-of-the-art method [71]. Firstly,

a region of interest from each MRI scan was extracted. The volume of region

of interest is 30% of the volume of the MRI scan. Each MRI scan has around

6.85 million voxels with a region of interest of approximately 2 million voxels. As

the background points are too high in number, we sample the background from

the ROI and take all the cartilage voxels in our training data. The sampling is

performed very densely in the region close to the cartilage, rarely in the region

far from the cartilage and the sampling probability varies linearly between two

values. For femoral cartilage, the number of all the cartilage points (from 25

scans) is 295,403 while the number of background points is 2,408,864. In our

earlier study on tibial cartilage, the number of tibial cartilage and background

points were 119,684 and 1,892,696 respectively. As we can see, femoral cartilage is

considerably bigger than the tibial, resulting in higher number of cartilage as well

as background data points. We use the same set of 178 features which were used

57

Figure 4.1: General concept of our two-stage classifier, where β1 denotes parameters
used to tune the first stage classifier for maximum sensitivity, while the parameters β2
are used to tune the second stage for best segmentation performance. The labels L = 1
and L = −1 refer to cartilage and background voxels, respectively.

by Folkesson et. al. [71] as candidate features. Folkesson et. al. used features

selection to find a smaller set of features in order to improve the performance.

The Two Stages for Femoral Cartilage Segmentation Stage one of our

classifier is similar to the state-of-the-art one-stage kNN of Folkesson et. al. [71].

However, they have different aims. The one-stage kNN is trained to select the

value of k, a smaller set of features using a feature selection method, and a poste-

rior threshold t that deals with the large class imbalance to achieve best possible

segmentation results. Let pb be the posterior probability of a voxel being in back-

58

ground class, then the voxel is classified as background if pb > t and as cartilage

otherwise. The features selected in case of tibial and femoral cartilage are slightly

different. The number of selected features for tibial cartilage was 36 while that

for femoral cartilage it was 42. The main difference between kNN used by [71]

and our stage-one is the purpose of the classifier. We adjust t in order to achieve

maximum sensitivity or minimum false positives. The value of k used by Folkesson

et. al. was 100 for both the cartilage and we also use the same value of k.

Stage two of our classifier is an SVM with Gaussian kernel. We employed

LIBSVM [101] for training the SVM. The training data comprised the points la-

beled as cartilage in stage-one. Although stage one used only a selected subset of

features, in the second stage the SVM used all the 178 features. In case of the tib-

ial cartilage, we performed nested grid search using cross-validation (splitting the

available training data) as performance criterion. We searched for a good combi-

nation of kernel width parameter and regularization (commonly denoted by γ and

C) on a 13× 29 grid. After finding the best of these 377 combinations, we placed

a second narrow 3 × 3 grid around the optimum value of C and γ. At this point

we introduced a weight ratio parameter W ∈ {1.0, 1.1, 1.2, . . . , 1.8}, which made

it possible to select different regularization parameters. The final regularization

parameters of cartilage and background class were C ·W and C respectively.

Performing grid search in a big space of 377 combinations was time consuming

even with a lot of computing resource. However, when performing the grid search

for the second-stage of femoral cartilage segmentation, we placed just a 3 × 3

grid around the same pair (C, γ) which was found to be optimum during grid-

search for the second-stage of tibial cartilage segmentation. The training dataset

of same 25 patients was used as used in the case of tibial cartilage in the previous

chapter. Also, the cross-validation was performed using same 5 folds as in the

case of tibial cartilage. The good results that we achieved in case of femoral

cartilage segmentation, using the hyper-parameters similar to what we learnt for

tibial cartilage segmentation, show the robustness of our two-stage classifier.

59

4.3.3 Speeding-up SVM Training: Online Learning vs. Batch

Learning with Low Accuracy

There were more than 700,000 training data points more in case of femoral car-

tilage than in case of tibial. On top of that, the first-stage of kNN performed

slightly worse in the case of femoral cartilage segmentation when compared to tib-

ial cartilage segmentation, thus the specificity achieved for maximum sensitivity

was lower. Thus, the percentage of points screened in the first stage of femoral

segmentation was lower than in the tibial case. In fact, the number of training

data points for second stage SVM in case of femoral was 688,128, while in case of

tibial the second stage SVM had to handle only 262,142 data points. Thus, model

selection and final training gets very time consuming.

We consider non-linear SVMs. Training the machines amounts to solving a

quadratic program (QP) having time complexity Ω(ℓ2) [60]. We use iterative se-

quential minimal optimization, and to speed up SVM training for the femoral car-

tilage classification, we loosened the stopping criterion from ε = 0.001 to ε = 0.5.

We use the common stopping criterion as discussed, e.g., in [107]. Let α1, . . . , αℓ

denote the coefficients of the SVM dual objective function f and let gi denote the

partial derivative of f with respect to αi. Then we stop when

max

(

max
αi<C,yi=1

gi, max
αi>0,yi=−1

−gi
)

−min

(

min
αi<C,yi=−1

−gi, min
αi>0,yi=1

gi

)

(4.1)

falls below the threshold ε. After loosening the stopping criterion the training time

on 2.93 GHz processor and 12GB RAM system was approximately 25 days.

An alternative to this approach is using an online SVM such as LASVM [108].

However, tuning ε is simpler, and we found it to produce more accurate solutions

than LASVM within the same time budget in our application.

We also conducted experiments with LASVM to solve the problem in just one

stage using all the 178 features and all the training data points. However, we

observed no improvement in performance and too long training times. Indeed, the

training did not complete even within a month.

60

Table 4.1: Comparison of classifiers applied for femoral cartilage segmentation. DSC
stands for the dice similarity coefficient. The proposed cascaded classifier is referred to
as two-stage 2-stage. All values are mean over 114 scans.

Classifier DSC Accuracy Sensitivity Specificity

2-stage 0.8115 96.3234% 80.8236% 98.0760%

Folkesson et. al. [71] 0.7984 96.0821% 79.7736% 97.8938%

4.4 Evaluation and Results

We tested our method on a set of 114 unseen scans. For fast evaluation, for each

scan we chose the background test points by randomly sampling very densly near

the cartilage and rarely far for from it, with the sampling probability varying

linearly. However, for each scan, all the cartilage points were taken as foreground

test points. We also evaluated the state-of-the-art [71] method on the same test

scans to compare the two methods. Sampling on the background of each test

scan was performed just once and then the same sampled points were used for

comparison. We used Dice Similarity Coefficient to evaluate the segmentation

performance,

DSC(A,B) =
2(|A ∩B|)
|A|+ |B|

where A and B are manual and automatic segmentations. In table 4.1 we compare

results obtained by our two-stage method with the state-of-the-art one stage kNN.

Our method performed statistically significantly better than the one-stage kNN in

terms of DSC and accuracy (Wilcoxon rank-sum test, p < 0.05), with both better

sensitivity and specificity. For our test data set of background sampled scans

(having average of 108000 voxels per scan), the testing time of our method was

30-35% more compared to the one-stage kNN for femoral cartilage. The average

time taken by a 2 stage classifier was on 2.8 GHz processor and 4GB RAM was 78

mins. However, for a full scan (no background sampling, 2 million voxels in the

ROI), as the classification time was too long for stage one kNN screening, as done

by [71], approximate nearest neighbor framework developed by [103] with ǫ = 2

was used. The average time taken by stage-one was 4 hours and the average time

61

taken for full scan by 2-stage classifier was 14 hours.

We also evaluated interscan segmentation reproducibility on 31 pairs of scans,

each pair obtained within a week. There was no registration performed between the

pairs of scans. The SVM model obtained from model selection for segmentation

task was used to evaluate the inter-scan reproducibility. There was no overlap

between the training and the test patients. The same radiologist segmented both

the scans of each pair. The evaluation was based on the RMS-CV score calculated

as follows. Let V i
s and V i

r be cartilage volumes obtained from scan and re-scan of

the ith pair. We calculate the coefficient of variation for ith pair

C i
v =

√
2(|V i

s − V i
r |)

V i
s + V i

r

which is the same as the ratio of the standard deviation to the mean of two volumes.

The RMS-CV score is given as
√

∑31
i=1C

i
v
2/31. The lower the RMS-CV score, the

better the reproducibility. Table 4.2 summarizes the results obtained, showing that

our method performed better than the radiologist as well as the state-of-the-art

method.

Table 4.2: Comparing interscan femoral cartilage segmentation reproducibility on 31
pairs of scans

Method RMS-CV
2-stage 0.0785

Folkesson et. al. [71] 0.0810
Manual 0.1140

Figure 4.2 shows a slice segmented by the radiologist and our method. A slice

is taken from the 3D segmentation for visualization purpose (actually, radiologists

segment the scans in a slice by slice manner). The resulting segmentations suggest

that some post-processing can further increase the segmentation results.

62

(a) manual (b) two-stage

Figure 4.2: Slice taken from a 3D MRI scan segmented by (a) a radiologist and (b) our
two-stage method. The slice was chosen to demonstrate that the segmentation can still
be improved by (simple) post-processing.

4.5 Discussion

The proposed two-stage classification method is a general tool for scenarios in

which the number of training data points is huge and the classes are unbalanced.

These scenarios are often found in medical imaging applications and thus such a

classifier is particular useful in this field. Its application for segmenting articular

cartilage from low field knee MRI scans was very successful. The two-stage method

outperformed the state-of-the-art one-stage kNN and also achieved better interscan

segmentation reproducibility when compared to one-stage kNN and the manual

segmentations done by a radiologist. For increasing the speed of the SVM training,

we found no advantage in using online SVMs over simply reducing the accuracy of

batch SVM training (by loosening the stopping condition in the quadratic program

solver). Replacing the two-stage classifier by a single online SVM did not lead to

better performance given our time budget.

63

Chapter 5

Convolutional Neural Network

Having a discriminative and powerful set of features is vital for any classification

task. More commonly, we pre-define a set of features which seem to be appropriate

for problem at hand. Also, very often, we perform feature-selection to find a smaller

and optimum subset of features from a pre-defined larger set of features. However,

instead of pre-defining a features set, the features can also be learnt autonomously

in a data driven manner.

Before moving on to discuss convolutional neural networks, we would like to

briefly discuss feedforward neural network and the problems associated with them.

5.1 Feed Forward Neural Networks

Before starting discussing feed forward neural network, we would like to describe

the term "neuron" which is the basic entity of any neural network. A neuron

as shown in figure takes several inputs and produces an output/activation. The

weighted sum of these inputs are sent through an activation function to find the

output of the neuron. Figure 5.1 depicts the process.

Part of this chapter is based on Convolutional Neural Network’s introduction from “Deep
Feature Learning for Knee Cartilage Segmentation Using a Triplanar Convolutional Neural Net-
work” by Adhish Prasoon, Kersten Petersen, Christian Igel, Francois Lauze, Erik Dam, and
Mads Nielsen, published in the proceedings of 16th International Conference on Medical Im-
age Computing and Computer-Assisted Intervention (MICCAI 2013). [56]. The part 5.5 on
backpropagation is added to form this chapter.

65

Figure 5.1: A neuron. Each input is multiplied by a weight and then summed up to be
passed through an activation function

Research work in feedforward networks was started by Rosenblatt in 1962 [109].

A feed forward network has several neurons arranged in a layered structure (see

figure 5.2). The first layer is called the input layer while the last is the output

layer. The layer in between is called hidden layer. Although the example in figure

(see figure 5.2) has single hidden layer, there can be multiple hidden layer too in

a feed forward network. For calculating the output of the hidden layer neuron,

the weighted sum of activation of all the input neurons is sent through a function,

which is often a non-linear activation function such as sigmoid. Their is a unique

weight for each pair of input layer’s neuron and the hidden layer’s neuron. Thus

each pair of hidden layer neuron and input layer neuron are connected to each

other. Now a weighted sum of each neuron of the hidden layer is given as input to

the output neuron. The sum is then passed through activation function to get the

final output. Although the figure shows single neuron in the output layer, there

can be multiple neurons in the output layer as well.

In the feed forward neural network each neuron in a layer is connected to each

neuron in the next layer, thus, as the number of hidden layers grow, the number

of weights eventually become too large to handle. The other main disadvantage,

specifically related to the field of computer vision is due the fact that each neuron

pair of two subsequent layers has different weight. Thus, the weights learnt to

66

recognize an object in one part of the image can’t be used to recognize the same

object at a different location in the image.

Figure 5.2: A feedforward neural network with one hidden layer and one output neuron.
Each pair of two subsequent layer’s neurons are connected through a weight

5.2 Convolutional Neural Network

Visual cortex which is responsible for processing visual information in the brain,

has sequence of areas which process the information in a low to high abstraction

level. The study of visual cortex shows that the neurons present in it get activated

by stimuli generated by localized fields. Linear filtering in image processing is

performed through convolution in spatial domain (or element-wise multiplication

in frequency domain). However the idea behind CNN is to learn these filters in

a data-driven manner. In machine learning, deep learning networks have multiple

non-linear hidden layers and can represent the data in hierarchical way with lower

to higher abstraction. Convolutional neural networks (CNNs) are variants of mul-

tilayer perceptron, which are inspired by visual cortex and have a deep learning

architecture. The two main layers of CNN are convolutional layer and subsam-

pling layer. Images which can be considered to be stationary have almost the

67

same statistics in the different smaller parts of the image. It also means that if we

learn feature extractors for one part of the image, the same feature extractors can

be used to extract features from other parts of the image. This idea is the main

motivation behind the convolutional layer. However to reduce the computational

complexity and to avoid over-fitting we need to summarize the features, which

leads to the idea of having sub-sampling layer.

[47] applied CNN to the task of recognition of handwritten digits. Since then,

it has been used successfully used for various recognition and segmentation tasks.

For instance, [110] uses them for automatic segmentation and detection of cells

and nuclei in microscopic images. [111] applied the CNNs to recognize the traffic

signs. [112] propose a CNN architecture for object class segmentation and apply it

on the INRIA-Graz02 dataset. [113] have presented a fully parameterizable GPU

implementation of CNN. [114] also presented a CNN based method which segments

neuronal structures in electron microscope images. [115] applied convolutional

neural networks for human action recognition in videos.

In the following discussion the bold symbols are used for matrices and vectors,

and non-bold symbols are used for scalars. A single element of a matrix or vector

will be denoted by a non-bold symbol, e.g. the (x, y) element of a matrix A will

be written as A(x, y).

Before going on to discuss CNN in detail, we give a brief overview of the general

processing chain for a 2D CNN here with the help of an example CNN depicted in

5.3. The CNN shown is figure 5.3 has a particular architecture and has relevance

in our work. However, here we use this as an example to give a general overview

of CNNs.

CNN being a deep learning network, the features learnt have to be hierarchical

in nature. This means that, as we move ahead in the network, the convolutional

layer should learn features which are more abstract than the features learnt in

the previous layers. Therefore, the output of each convolutional layer is sent

through an non-linear activation function. In the discussion further LC will denote

convolutional layer, LS will denote subsampling layer and LF will denote fully-

connected layer. 5.3 depicts an example of convolutional neural network with

68

Figure 5.3: A 2D Convolutional neural network. LC denotes convolutional layer, LS

denotes subsampling layer and LF denotes fully-connected layer. Each pair of output
and input maps of a convolutional layer has a 2D kernel linking them. Each output map
of convolutional and subsampling layer has a bias parameter associated. The classifier
involved is a softmax classifier which classifies the input patch into one of the two classes.

layer sequence LC → LS → LC → LC → LF . Let an input patch of size 28×28 be

the input to the CNN. The input patch is then convolved with N different kernels

of size 5 × 5 to give N different output maps. These convolutions are performed

without adding any zero padding to the input maps. Thus the sidelength of the

N output maps of the first convolutional layer is 24(28 − 5 + 1). The output

maps of each convolutional layer are sent through a non-linear activation function

(usually a sigmoid) which is applied to each element of the maps. Apart from

the convolutional kernels, the other learnable parameters for this layer are bias

parameters which are unique for each output map. Thus the total number of

learnable parameters for this layer are 1∗N ∗5∗5+N = 26N . Now the next layer

is a subsampling layer (LS). The role of subsampling layer is to reduce the number

of parameters to save computations and avoid over-fitting. Our subsampling layer

is a mean pooling layer. In the example shown in figure 5.3, the sub-sampling factor

is 2, which means the input-maps of size 24×24 are reduced to 12×12. The number

69

of output maps and input maps are the same for a subsampling layer. Each input

map is divided into 2×2 and average of these 2×2 blocks is saved as an element of

12×12 sized output map. The only parameters to be learnt for subsampling layer

are the bias parameters. Thus the number of parameters for subsampling layer is

N . As the next layer is a convolutional layer with 2N output maps, and N input

maps, the number of kernels for this layer is 2N2, making the total number of kernel

parameters equal to (2N2)∗5∗5 = 50N2. Including the bias parameters, this layer

has total number of parameters equal to 50N2+2N . The sidelength of the output

map for this layer is 12−5+1 = 8. In the example shown in figure 5.3 the next layer

is also a convolutional layer, with 4N output maps. This layer has 5∗5∗8N2+4N =

200N2 + 4N parameters (including kernel and bias parameters) and outmap size

4 × 4. The output maps of this layer are vectorized and concatenated to form

the output of the fully-connected layer. The number of output features for fully-

connected layer is (200N2 +4N) ∗ 4 ∗ 4 = (200N2 +4N) ∗ 16. The fully-connected

layer has no parameters to learn. The output of fully-connected layer is given

as input to the softmax classifiers. If the number of classes is 2, the number of

softmax parameters is 2∗(8N2+4N)∗16 = 32∗(8N2+4N). All the parameters are

learnt using gradient based optimization methods and the partial derivatives are

calculated using backpropagation algorithm. As it is very difficult to cross-validate

for all the possible design choices, the design choices for the overall architecture of

a CNN are a combination of heuristics (e.g. [116]) and cross-validation. For the

CNN in the figure we doubled the number of maps in each convolutional layer and

thus we followed the trend N → N → 2N → 4N → 64N for number of feature

maps in each layer. The value of N was found through cross-validation.

5.3 Layers and Cost Function

Let d(l−1)(m)
and d(l)(m)

be the input and output for the lth layer respectively, cor-

responding to the mth training example. Here d(l−1)(m)
is a combined notation for

all the input maps of layer l corresponding to mth training input patch. Similarly

d(l)(m)
is a combined notation for all the output maps of layer l corresponding to

the mth training input patch. The notation with the superscript (m) will refer to

70

the mth training example through-out this discussion. Let d(0)(m)
be the 2D input

image patch and d(L)(m)
be the output of the last layer L for the same example. Let

S
(l)
I ×S

(l)
I and S

(l)
O ×S

(l)
O be the size of the input and the output map, respectively,

for layer l. Furthermore, let N
(l)
I and N

(l)
O be the number of input and output

maps respectively for that layer. The input to lth layer is the output of (l − 1)th

layer, N
(l)
I = N

(l−1)
O and S

(l)
I = S

(l−1)
O . We denote the jth output-feature-map

of layer l as d
(l)
j

(m)
. As the input-feature-maps of the lth layer are actually the

output-feature-maps of the (l − 1)th layer, d
(l−1)
i

(m)
is the ith input-feature-map

of layer l.

5.3.1 Convolutional Layer

The output of a convolutional layer is computed as

dj
(l)(m)

= f
(

∑

i

di
(l−1)(m) ∗w(l)

ij + b
(l)
j 1

S
(l)
O

)

, (5.1)

where 0 ≤ i < N
(l−1)
I , 0 ≤ j < N

(l−1)
O and ∗ denotes the convolution without

adding the zero padding, through-out our discussion. Thus if A has size Sa × Sa

and B has size Sb × Sb, then assuming Sa ≥ Sb, the size of A ∗B will always be

(Sa− Sb +1)× (Sa−Sb +1). Let C be the output matrix obtained by convolving

A with B. Thus

C = A ∗B (5.2)

then

C(m,n) =

⌊Sb/2⌋
∑

i=−⌊Sb/2⌋

⌊Sb/2⌋
∑

j=−⌊Sb/2⌋

A(m− i, n− j)B(i, j)

where − ⌈Sa − Sb + 1

2
⌉ ≤ m,n ≤ ⌊Sa − Sb + 1

2
⌋ (5.3)

The mapping f is a nonlinear activation function, often a sigmoid, which is

applied to each component of its argument individually. The 4D tensor w(l) is of

size SW × SW × N
(l)
I × N

(l)
O , and w

(l)
ij is the kernel linking ith input map to jth

output map. The size of w
(l)
ij is SW × SW , and we refer to SW as the sidelength of

the kernel. Finally, the scalar b
(l)
j is the bias element for jth output-feature-map of

71

lth layer. b
(l)
j is multiplied to every element of all-ones matrix 1

S
(l)
O

of size S
(l)
O ×S

(l)
O

before being added to
∑

i d
(l−1)
i

(m)
∗ w(l)

ij . The parameters for the convolutional

layer are the kernel parameters and the bias parameters.

5.3.2 Subsampling Layer

We use mean pooling in the subsampling layer: the output of the element (x, y) of

jth feature map of layer l is given as

d
(l)
j

(m)
(x, y) =

∑s−1
q=0

∑s−1
r=0 d

(l−1)
j

(m)
(s× x+ q, s× y + r)

s2
+ b

(l)
j , (5.4)

where s is the subsampling factor and 0 ≤ x, y ≤ S
(l)
I −1. A subsampling layer has

the same number of output and input maps. The parameters for a subsampling

layer are only bias parameters.

5.3.3 Fully-connected Layer

The final layer of a CNN is fully connected to the preceding layer. If L is the

number of layers, we vectorize the output maps of layer L−1 and then concatenate

them all together to obtain the output of the last layer. The number of output

maps N
(L)
O for this layer is N

(L−1)
O ×(S(L−1)

O)
2
, each corresponding to a single scalar.

The output of the last layer is

d
(L)
j

(m)
(0, 0) = d

(L−1)
i

(m)
(x, y) with j = i× (S

(L−1)
O)2 + y × S

(L−1)
O + x . (5.5)

5.3.4 Softmax Classifier

The output of the fully-connected layer L acts as input for the softmax classifier

(i.e., logistic regression for a two class problem). Let θ be the parameter matrix

for softmax classifier. It has size K × N
(L)
O , where K in the number of classes,

each row being associated to one particular class. Let vectors θ1
T , θ2

T . . .θT
K be K

rows of θ. Given the softmax matrix θ, the probability of mth training example

belonging to class n is

p(n|d(L)(m)
; θ) =

eθn
Td(L)(m)

∑K
c=1 e

θc
Td(L)(m)

, (5.6)

72

where n ∈ {1, 2,K} and d(L)(m)
is the output of the last layer of the CNN

when presented the mth training example.

Cost Function As d(L)(m)
is dependent on d(0)(m)

, and the kernel and bias

parameters of the CNN, p(n|d(L)(m)
; θ) can be seen as the probability of mth

training example belonging to class n given the CNN parameters, input patch,

and the softmax parameters. Let Ω be a set of all the parameters comprising

the kernel and the bias parameters from all the layers of the CNN as well as the

softmax parameters, p(n|d(L)(m)
; θ) can also be written as p(n|d(0)(m)

;Ω). Let t

be a vector which stores the true labels of all the training data points and t(m) be

the true label of the mth training example. The parameters are identified using a

maximum likelihood approach. The cost function associated with the mth training

example is

Q(m) = − ln(p(t(m)|d(0)(m)
;Ω)) (5.7)

For all M training examples we have accordingly

Q =
1

M

M
∑

m=1

Q(m) (5.8)

We use weight decay, which penalizes too large values of the softmax-parameters,

to regularize the classification. The final cost function is given as

Qλ = Q +
λ

2

K
∑

p=1

S
(L)
O
∑

q=1

θ2pq. (5.9)

The optimum λ is chosen usually by cross-validation. Role of λ can be com-

pared to the regularization parameter C in SVMs. However, increasing the value

of C leads us to overfitting in SVMs, while decreasing the value of λ leads us to

overfitting.

The cost function is minimized by gradient-based optimization and the gradi-

ents are computed using backpropagation. LBFGS 1 has proven to be well suited

1LBFGS: Limited-memory Broyden–Fletcher–Goldfarb–Shanno

73

for the optimization [117].

5.4 Gradient w.r.t. Softmax Parameters

The gradient with respect to softmax parameters can be calculated as following.

Let Qλ be the cost function given in equation (5.9), the gradient with respect to

θc is given as

∂Qλ

∂θc

= − 1

M

M
∑

m=1

1

p(t(m)|θc;d(L)(m)
)

∂p(t(m)|θc;d
(L)(m)

)

∂θc

+ λθc (5.10)

The above equation needs gradient ∂p(t(m)|θc;d(L)(m)
)

∂θc
to be calculated which can

be easily done using the following equation

∂p(t(m)|θc;d
(L)(m)

)

∂θc
= p(t(m)|θc;d

(L)(m)
)(1(t(m), c)−p(c|θc;d

(L)(m)
))d(L)(m)

(5.11)

where 1(p, q) be a function returning one if p = q and zero otherwise.

5.5 Backpropogation for Convolutional Neural Networks

The partial derivatives for the gradient based optimization of the CNN cost func-

tion are calculated using backpropagation [118]. The basic idea behind the back-

propagation algorithm is to calculate the activations of the each node (each element

of the feature maps), compute the error in the output and then find out how much

a particular node contributes in the error. These error contributions are called

sensitivities which are then used to calculate the partial derivatives.

In the following, first we will discuss the computation of the sensitivities and

then the calculation of the partial derivatives.

5.5.1 Sensitivity Calculation

The sensitivity map of each layer is dependent on the layer next to it in the CNN

configuration. We discuss each case one by one. The following discussion on

74

sensitivity calculation is done assuming that the example in consideration is mth

example.

Layer Followed by the Softmax Classifier, i.e. Current Layer Being

the Last Layer The last layer which is fully-connected layer, is followed by

the softmax classifier. The sensitivity map of the last layer is dependent on the

softmax parameters, posterior probability and the input label of the example. Let

D(m) be a vector given as

D(m) =

























1(t(m), 1)− p(t(m)|θ1;d
(L)(m)

)1(t(m), 2)− p(t(m)|θ2;d
(L)(m)

)
...1(t(m), c)− p(t(m)|θc;d

(L)(m)
)

...1(t(m), K)− p(t(m)|θK ;d
(L)(m)

)

























(5.12)

Now, the sensitivity map of the last layer is given as

δ(L)(m)
= −θTD(m) (5.13)

Next Layer being the Last Layer, i.e. a Fully-connected Layer Last

layer is just the vectorized and concatenated version of the previous layer. Thus,

if (L − 1)th layer is convolutional layer, the (x, y) element of the sensitivity map

is given as

δ
(L−1)
i

(m)
(x, y) = f ′(d(L−1)(m)

(x, y))δ
(L)
j

(m)
(0, 0) with i =

j − x− y × S
(L−1)
O

(S
(L−1)
O)2

(5.14)

If (L−1)th layer is subsampling layer, the (x, y) element of the sensitivity map

is given as

δ
(L−1)
i

(m)
(x, y) = δ

(L)
j

(m)
(0, 0) with i =

j − x− y × S
(L−1)
O

(S
(L−1)
O)2

(5.15)

75

The term f ′(d(l)
(m)

(x, y)) appears in first case ((5.14)) because the final acti-

vations for the convolutional layer are obtained by applying a non-linear function

as given in equation (5.1).

Next Layer being a Convolutional Layer Each element of a feature map of

lth layer contributes to a patch (same as the size of kernel) of elements in each

feature map of the subsequent ((l + 1)th) convolutional layer. The contribution

weights corresponding to a patch are the weights of the kernel The sensitivity

maps of the convolutional layer ((l + 1)th) are zero padded before computing the

sensitivities of the the lth layer.

Let δj
(l+1)
z be the zero padded sensitivity map of size 2SW − 2 + S

(l+1)
O for the

jth feature map of the (l + 1)th layer.

δj
(l+1)
z

(m)
(u, v) = 0 if SW − 1 ≥ u, v or u, v ≥ S

(l+1)
O + SW − 1

δj
(l+1)
z

(m)
(u, v) = δj

(l+1)(m)
(u, v) otherwise







(5.16)

where 0 ≤ u, v ≤ 2SW − 2 + S
(l+1)
O

Let χjp,q
(l+1)(m)

be the patch of size S
(l)
O ×S

(l)
O extracted from δj

(l+1)
z

(m)
centered

at (p, q).

Now, if layer l is a convolutional layer, δi
(l)(m)

can be written as

δi
(l)(m)

= f ′(di
(l)(m)

) ◦
N

(l+1)
O

−1
∑

j=0

SW−1
∑

u=0

SW−1
∑

v=0

((wij
(l+1)(u, v))χj

(l+1)
p,q

(m)
) (5.17)

with p = u+⌊S(l)
O /2⌋ and q = v+⌊S(l)

O /2⌋ and ◦ denotes element wise multiplication

of the matrices. In the above equation the (u, v) element of wij
(l+1) is multiplied to

each element of χj
(l+1)
p,q

(m)
. Term

∑SW−1
u=0

∑SW−1
v=0 ((wij

(l+1)(u, v))χj
(l+1)
p,q

(m)
) in the

above equation is nothing but the correlation between the zero padded sensitivity

map δj
(l+1)
z

(m)
and the kernel, which is same as convolution between δj

(l+1)
z

(m)
and

180◦ rotated kernel. The (x, y) element of the rotated kernel wij
(l+1)
r can be written

as

wij
(l+1)
r (x, y) = wij

(l+1)(SW − x− 1, SW − y − 1) (5.18)

76

where 0 ≤ x, y ≤ SW − 1

Thus (5.17) can be re-written as

δi
(l)(m)

= f ′(di
(l)(m)

) ◦
N

(l+1)
O

−1
∑

j=0

(wijr
(l+1) ∗ δj(l+1)

z

(m)
) (5.19)

As mentioned earlier f is non linear function, usually a sigmoid. For a sigmoid

function, the derivative can be easily calculated as

f ′(z) = f(z)(1 − f(z)) (5.20)

If l is a subsampling layer δi
(l)(m)

can be written as

δi
(l)(m)

=

N
(l+1)
O
∑

j=1

(wijr
(l+1) ∗ δj (l+1)

z

(m)
) (5.21)

Next Layer being a Subsampling Layer Let δ
(l)
i

(m)
be the sensitivity map of

the lth layer which we need to calculate assuming that we know the sensitivity map

δ
(l+1)
i

(m)
of the (l + 1)th layer, which is a subsampling layer. We know that being

a mean pooling layer, each element of the subsampling layer’s feature maps is an

average of a block of s× s elements of a feature map of the previous layer. Thus

each element of an s × s block from ith feature map of the lth layer contributes

equally to the sensitivity of the corresponding element from the ith feature map

in the subsampling layer ((l+1)th layer). The following equations ((5.22), (5.23))

give the (x, y) element of the sensitivity map of the lth layer, given (l+1)th layer

is a subsampling layer and s is the subsampling factor.

If the lth layer is a convolutional layer then the final sensitivity map is given

as

δ
(l)
i

(m)
(x, y) = f ′(d(l)

(m)
(x, y)) ◦ δ(l+1)

i

(m)
(⌊x/s⌋, ⌊y/s⌋)/s2 (5.22)

where ◦ denotes element-wise multiplication.

Else, if the lth layer is a subsampling layer then the final sensitivity map is

given as

δ
(l)
i

(m)
(x, y) = δ

(l+1)
i

(m)
(⌊x/s⌋, ⌊y/s⌋)/s2 (5.23)

77

5.5.2 Gradient Calculation

We will discuss the two cases here. First the case when the current layer is a

convolutional layer.

Current Layer being Convolutional Layer The bias gradient can be simply

obtained by summing over all the entries of the sensitivity map of that feature

map. Thus

∂Q

∂b
(l)
j

=
1

M

M
∑

m=1

S
(l)
O

−1
∑

x=0

S
(l)
O

−1
∑

y=0

δj
(l)(m)

(x, y) (5.24)

In a neural network where we have a unique weight for each connection between

an input and output node, the gradient with respect to that weight is given by

the product between the sensitivity of corresponding output node and activation

of the corresponding input node. However, in case of convolutional layer, each

weight is shared by many output-input node combination. Therefore, here we

need to sum the gradients over all the connections which connect through this

weight as done in following equation which gives the gradient with respect to

the rotated kernel. Rotated because while performing convolution, the kernel is

rotated before performing elementwise multiplication.

∂Q

∂wr
(l)
ij

=
1

M

M
∑

m=1

S
(l)
O

−1
∑

u=0

S
(l)
O

−1
∑

v=0

((δj
(l)(m)

(u, v))ζi
(l−1)
p,q

(m)
) (5.25)

Here ζi
(l−1)
p,q

(m)
is the patch of size SW × SW extracted from di

(l−1)(m)
centered

at (p, q) with p = u + ⌊SW/2⌋ and q = v + ⌊SW/2⌋. Element (u, v), of δj
(l)(m)

is

multiplied with each element of ζi
(l−1)
p,q

(m)
. The above equation can be written as

correlation between the input di
(l−1)(m)

and sensitivity map δj
(l)(m)

, which is same

as convolution between the input di
(l−1)(m)

and the 180◦ rotated sensitivity map

δj
(l)(m)

. Let δj
(l)
r

(m)
be the 180◦ rotated sensitivity map, the gradient with respect

to 180◦ rotated kernel ∂Q

∂wr
(l)
ij

can be given as

78

∂Q

∂wr
(l)
ij

=
1

M

M
∑

m=1

δj
(l)
r

(m) ∗ di
(l−1)(m)

(5.26)

Finally, the gradient ∂Q

∂wr
(l)
ij

can be rotated 180◦ to get the gradient ∂Q

∂w
(l)
ij

Current Layer being Subsampling Layer The subsampling layer has only

bias parameters to learn. The bias gradient can be obtained in the same way as

convolutional layer (see equation (5.24)).

The next chapter introduces our triplanar convolutional neural network for

classifying voxels in 3D images and shows its application on segmenting tibial

cartilage in knee MRIs.

79

Chapter 6

Deep Feature Learning for Knee

Cartilage Segmentation Using a

Triplanar Convolutional Neural

Network

Abstract

Segmentation of anatomical structures in medical images is often based

on a voxel/pixel classification approach. Deep learning systems, such as con-

volutional neural networks (CNNs), can infer a hierarchical representation

of images that fosters categorization. We propose a novel system for voxel

classification integrating three 2D CNNs, which have a one-to-one associa-

tion with the xy, yz and zx planes of 3D image, respectively. We applied

our method to the segmentation of tibial cartilage in low field knee MRI

scans and tested it on 114 unseen scans. Although our method uses only 2D

features at a single scale, it performs better than a state-of-the-art method

This chapter is based on “Deep Feature Learning for Knee Cartilage Segmentation Using a
Triplanar Convolutional Neural Network” by Adhish Prasoon, Kersten Petersen, Christian Igel,
Francois Lauze, Erik Dam, and Mads Nielsen, published in the proceedings of 16th International
Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2013).
[56]

81

using 3D multi-scale features. In the latter approach, the features and the

classifier have been carefully adapted to the problem at hand. That we were

able to get better results by a deep learning architecture that autonomously

learns the features from the images is the main insight of this study.

6.1 Introduction

Convolutional neural networks (CNNs, [47]) are deep learning architectures and

have recently been employed successfully for 2D image segmentation tasks [119].

Here we use them for voxel classification in 3D images. There is a generic ex-

tension of CNNs from 2D to 3D images [120]. However, these truly 3D CNNs

have large memory and training time requirements, retarding their application for

time-constrained large-scale medical imaging tasks. In this paper we propose a

classifier based on a system of triplanar 2D CNNs which classifies voxels from 3D

images with high accuracy and is easy to train.

Deterioration of cartilage implies Osteoarthristis, which is one of the major

reasons for work disability [73]. Cartilage segmentation in knee MRI scans is the

method of choice for quantitative analysis of cartilage deterioration. We applied

our method for segmenting tibial articular cartilage from knee MRI and compared

the performance with a state-of-the-art method [71]. Cartilage segmentation in

knee MRI scans is often performed by the radiologists in a slice-by-slice manner

and is a time consuming and tedious job. Furthermore, the inter and intra observer

variability is found to be rather high. Thus, for large studies, automated segmen-

tation is desirable. Therefore, the automatic and semi-automatic segmentation of

knee cartilage in MRI scans is an active field of research. These methods address

the task either slice-by-slice or directly perform 3D segmentation [78, 79, 89, 95].

In this thesis, we compare our methods with Folkesson et al. [71]. However, we

have also discussed some other recent and state-of-the-art [91, 92, 93, 94, 95] works

on knee cartilage segmentation (please see section 3.1.2).

82

A State-of-the-art method by Folkesson et al. Folkesson et al. [71] devel-

oped a highly efficient voxel classification based segmentation method which can

be considered as one the state-of-the-art in fully automatic cartilage segmentation

from MRI scans. It served as the reference in our study. The approach is based

on k nearest neighbor classification (kNN) with k = 100 and a predefined 178-

dimensional feature vector. The training of their classifier involves reducing the

number of features using a sequential floating forward feature selection algorithm

and also selecting a posterior threshold that optimizes the segmentation results.

The features calculated using 3D filters are: the intensity, the three-jet, the po-

sition, the eigenvectors and eigenvalues of the 3D Hessian matrix, as well as the

eigenvector and eigenvalues of the 3D structure tensor and the third order tensor

in the gradient direction. All features except position are calculated at 3 different

scales.

6.2 Method

Convolutional neural networks were introduced by LeCun et al. [47], who applied

it for handwritten digit recognition. Since then, CNNs have been used successfully

for many recognition and segmentation tasks [119, 110, 111, 113, 121, 115].

6.2.1 Convolutional Neural Networks.

Please see chapter 5 for a detailed discussion on Convolutional Neural Networks

6.2.2 Triplanar Convolutional Neural Network.

For mth example voxel, we take the three planes P
(m)
xy ,P

(m)
yz ,P

(m)
zx that pass

through the voxel and are parallel to the xy, yz and zx plane, respectively, of

the 3D image (see Fig. 6.1a). A 2D patch centered around that voxel is ex-

tracted from each of the three planes. Let dxy
(0)(m)

,dyz
(0)(m)

,dzx
(0)(m)

be those

three patches. We have one CNN for each of the three patches. The 3 CNNs

are not connected with each other except for the output of the last layer. Let

dxy
(L)(m)

,dyz
(L)(m)

and dzx
(L)(m)

be the outputs of the last layers of the three

83

(a) (b)

Figure 6.1: The three image planes giving rise to our triplanar convolutional neural
network (CNN) architecture. One patch centered in the voxel is extracted from each of
the planes. The three CNNs are fused in the final layer.

CNNs and NO
(L)
xy , NO

(L)
yz and NO

(L)
zx be the number of output-maps of the last layers

of the three CNNs. The last layers’ output-maps for all 3 CNNs are scalars. Thus

dxy
(L)(m)

,dyz
(L)(m)

and dzx
(L)(m)

are vectors of length NO
(L)
xy , NO

(L)
yz , and NO

(L)
zx ,

respectively. dxy
(L)(m)

,dyz
(L)(m)

and dzx
(L)(m)

are concatenated to obtain a joint

output d
(L)
T

(m)
, which is fed into the softmax classifier. The softmax parameter

matrix θT in this case is of size K × NOT , where NOT = NO
(L)
xy + NO

(L)
yz +NO

(L)
zx .

Let ΩT be the set of all the parameters collecting the kernel and bias parameters

from all the layers of the three CNNs as well as the softmax parameters. The cost

associated with the mth training example in the triplanar CNN is

QT
(m) = − ln(p(t(m)|dxy

(0)(m)
;dyz

(0)(m)
;dzx

(0)(m)
;ΩT)) (6.1)

and the overall cost function reads

QT λ = − 1

M

M
∑

m=1

ln(p(t(m)|dxy
(0)(m)

;dyz
(0)(m)

;dzx
(0)(m)

;ΩT)) +
λ

2

K
∑

p=1

NOT
∑

q=1

θ2Tpq
,

(6.2)

84

where θTpq
is the (p, q) element of the matrix θT and λ controls the strength of the

weight decay. As

p(t(m)|dxy
(L)(m)

;dyz
(L)(m)

;dzx
(L)(m)

; θT) = p(t(m)|dxy
(0)(m)

;dyz
(0)(m)

;dzx
(0)(m)

;ΩT),

(6.3)

the equation (6.2) can also be written as

QT λ = − 1

M

M
∑

m=1

ln(p(t(m)|dxy
(L)(m)

;dyz
(L)(m)

;dzx
(L)(m)

; θT)) +
λ

2

K
∑

p=1

NOT
∑

q=1

θ2Tpq
,

(6.4)

Assuming dT
(L)(m)

be the vector obtained by concatenating dxy
(L)(m)

, dyz
(L)(m)

and dzx
(L)(m)

, we can write the above equation as

QT λ = − 1

M

M
∑

m=1

ln(p(t(m)|dT
(L)(m)

; θT)) +
λ

2

K
∑

p=1

NOT
∑

q=1

θ2Tpq
(6.5)

The gradient of the cost function with respect to the softmax parameters cor-

responding to class c can be given as

∂QT λ

∂θT c

= − 1

M

M
∑

m=1

[

1

p(t(m)|θT c;dT
(L)(m)

)

∂p(t(m)|θT c;dT
(L)(m)

)

∂θT c

]

+ λθT c (6.6)

where θT c is the cth row of the softmax parameter matrix θT of triplanar CNN.

Gradient ∂p(t(m)|θT c,d
(L)(m)

)
∂θT c

can be easily calculated using

∂p(t(m)|θT c;dT
(L)(m)

)

∂θT c

= p(t(m)|θT c;dT
(L)(m)

)dT
(L)(m)

[1(t(m), c)

− p(t(m)|θT c;dT
(L)(m)

)

]

(6.7)

As mentioned earlier, softmax parameter matrix for triplanar CNN is a K ×
NOT , where NOT = NO

(L)
xy + NO

(L)
yz + NO

(L)
zx . Let θxy be a matrix constructed by

extracting first NO
(L)
xy columns of θT and θyz be a matrix constructed by extracting

(NO
(L)
xy + 1)th to (NO

(L)
xy + NO

(L)
yz)th columns. Similarly, let θzx be the matrix

constructed by extracting (NO
(L)
xy +NO

(L)
yz + 1)th to NO

(L)
T th columns of θT .

85

Following equations can be used to calculate the sensitivity map of the fully

connected layers of the three CNNs corresponding to mth example

δxy
(L)(m)

= −θxy
TD(m) (6.8)

δyz
(L)(m)

= −θyz
TD(m) (6.9)

δzx
(L)(m)

= −θzx
TD(m) (6.10)

Vector D(m) in this case is given as

D(m) =



























1(t(m), 1)− p(t(m)|θT 1;dT
(L)(m)

)1(t(m), 2)− p(t(m)|θT 2;dT
(L)(m)

)
...1(t(m), c)− p(t(m)|θT c;dT

(L)(m)
)

...1(t(m), K)− p(t(m)|θTK ;dT
(L)(m)

)



























(6.11)

As the three CNNs are only connected with each other in the last layer, we

can calculate the sensitivites maps and partial derivatives for three CNNs inde-

pendently following the discussion in 5.5 using δxy
(L)(m)

, δyz
(L)(m)

, δzx
(L)(m)

.

6.3 Application to Cartilage Segmentation in MRI Scans

In our cartilage segmentation experiments, we minimize QλT using LBFGS using

mini-batches. For each mini-batch, we selected 2000 examples randomly from

120000 training examples and run 20 iterations of LBFGS. For each of the 3 CNNs

we used exactly the same configuration: the sequence of layers as well as the

number and size of feature maps in corresponding layers were the same. Let LC

denote a convolutional layer, LS a subsampling layer, and LF the final output

layer. We used the sequence LC → LS → LC → LC → LF for each CNN. The

single subsampling layer performed mean pooling with subsampling factor 2 (see

equation (5.4)). Instead of a second subsampling layer after the fourth-layer (a

convolution layer), we have another convolution layer as the fifth layer. Having

more than one subsampling layers can lead to over-summarizing of the features,

86

which did not seem to be a good approach for our application because of the thin

structure of the cartilage. For each CNN, we fixed the size of input patches to

28 × 28 and kernel size to 5 × 5. Let N be the number output feature maps of

the first convolutional layer. The numbers of output-feature-maps are N → N →
2N → 4N → 64N for the whole sequence of layers. Fig. 5.3 depicts such a CNN.

Combining three of these CNNs leads to the triplanar CNN for 3D images shown

in Fig. 6.1b, where the output of the final CNN layers are concatenated before

being fed into the classifier. We selected N using cross-validation (splitting the

training dataset) from {12, 16, 20, 24, 28, 32}. We also selected the weight decay

parameter λ using cross-validation from {10−1, 10−2, 10−3, 10−4, 10−5}. As a result,

N = 28 and λ = 10−2 were selected. The heuristic design choices were inspired by

Simard et al.’s article about best practices for CNNs for document analysis [116]

and our previous experience in CNN design. A posterior threshold also chosen to

maximize the segmentation performance.

The patient’s knee is being scanned in standardized position in a specialized

extremity MRI scanner. Still, there will be small variations from scan to scan

between the image planes and corresponding body planes due to anatomical and

placement differences. This variability is reflected by the training data. Thus, the

triplanar CNN is trained to become invariant under these variations.

Training Data We use the same 25 training scans as in [71], where features from

on average 84000 voxels from each of the scans are extracted. These 84000 voxels

include all the cartilage voxels in a scan and sampled background voxels. As it is

more difficult to classify the background voxels near the cartilage, they are sampled

very densely close to the cartilage and rarely far from it, with sampling probability

varying linearly. For generating our training data we extracted triplanar patches

from 4800 randomly selected voxels from the pool of 84000 voxels used by [71] for

each of the 25 scans. That is, while in [71], 2100000 voxels were used to generate the

training data, we just considered 120000 voxels for limiting the computational cost

and found this number to be sufficient. We applied ZCA whitening to preprocess

our patches, which is very similar to PCA whitening, however, it also involves a

87

rotation back to the input data basis.

6.4 Evaluation and Results

We evaluated our method on 114 unseen knee MRIs, each having approximately

2 million voxels to classify. After classifying the voxels, the largest connected

component was chosen as the final segmentation. We compared our method to

the state-of-the-art method [71] which was also evaluated on the same test set of

114 scans. The evaluation was based on dice similarity coefficient(DSC) where

DSC(A,B) = 2(|A∩B|)
|A|+|B|

and A, B are manual and automatic segmentation. Table

6.1 shows results obtained by the triplanar-CNN and the kNN based method.

Our method achieves better DSC, sensitivity, specificity and accuracy than [71].

The difference in DSC is statistically significant (Wilcoxon rank-sum test, p <

0.05). Fig. 6.2 shows a knee MRI slice, its segmentation by a radiologist, and the

segmentation by our method.

Our method used just 120000 training voxels whereas in [71] 2.1 million train-

ing voxels are used. We also evaluated the performance of the method proposed

in [71] using 120000 training voxels and observed a loss in performance. The av-

erage DSC, accuracy, sensitivity and specificity fell to 0.7952 (±9.10%), 99.91%

(±3.18%) ,78.58% (±11.61%) and 99.95% (±2.80%)(standard deviations in brack-

ets), respectively, although we adjusted k of kNN for the new training set size using

cross-validation. The difference between the triplanar-CNN and the method from

[71] with 120000 training voxels is statistically significant (Wilcoxon rank-sum test,

p = 8.6× 10−5).

Table 6.1: Comparison of methods applied for tibial cartilage segmentation. Acc.
stands for accuracy, Sens. stands for sensitivity and Spec. stands for specificity

Method Over 114 Scans DSC Acc. Sens. Spec.

Triplanar CNN
Mean 0.8249 99.93% 81.92% 99.97%

Std. Dev. 4.26% 0.019% 7.62% 0.017%

State-of-the-art [71]
Mean 0.8135 99.92% 80.52% 99.96%

Std. Dev. 4.87% .02% 8.95% 0.02%

88

(a) Knee MRI slice (b) radiologist (c) triplanar CNN

Figure 6.2: MRI slice with segmentations by a radiologist and the proposed triplanar
CNN. Our method is based on voxel classification, a 2D slice is taken from our 3D
segmentation just for visualization.

The training took approximately 1.5 days on a 2.8 GHz processor and 16 GB

RAM system, while classifying 2 million voxels took approximately 6 hours on the

same system.

We also performed baseline experiments with 3D CNNs. With a 14× 14× 14

3D patch size and 3× 3× 3 kernel size, the performance of a 3D CNN was worse

(approximately 2% dip in DSC) than the triplanar CNN with patch size 28×28 and

kernel size 5× 5. Using these configurations, the training and testing times of the

two approaches were comparable. Using a 3D CNN with 3D patch size 28×28×28
(leading to 21952 elements and thus a 21952× 21952 matrix to be inverted in the

ZCA) and kernel size 5×5×5 turned out to be computationally not feasible in our

experimental setup as each iteration of back- and forward-propagation needed 10

to 15 times more time compared to our triplanar 2D CNN. We also experimented

with a single 2D CNN, with patches extracted from just a single plane (the same

which radiologists use for segmenting). However, the performance achieved by a

single 2D CNN was inferior to that of the triplanar 2D CNN. Based on the above

experiments we found that the triplanar CNN provides the best balance between

computational costs and performance.

89

6.5 Discussion and Future Work

The method by Folkesson et al. [71] – in particular the features used, but also the

classifier – has been carefully tailored towards the task. That we can perform better

using a method that learns the image features using a deep learning architecture

is the main result of our study. This is all the more remarkable because of the

following differences in comparison to [71] and other CNN architectures:

• The features used by our method were extracted using only 2D kernels

learned from three 2D CNNs. However, the method from [71] uses 3D kernels

to extract features.

• In [71], each feature is calculated at 3 different scales. Our method relies on

the features extracted using single scale CNNs.

• The number of training data points used by our method is just 120000, while

in [71] more than 2100000 training data points are used.

• We used a logistic regression classifier (a linear classifier) compared to kNN

(a non-linear classifier).

• We did not employ at any stage layer-wise pre-training of the CNN, although

pre-training is often claimed to improve the results. We train our system of

three CNNs in a single training process.

We plan to extend our study on the segmentation of tibial cartilage to the

multiclass problem of segmenting bones and all cartilage compartments.

90

Chapter 7

Spatially Contextualized

Convolutional Neural Network

7.1 Introduction

The use of contextual information is very important in image understanding [122].

One of the earliest works which used contextual information in image analysis

is [123]. We have shown the application of a CNN based system for segmenting

knee MRIs through voxel classification in Chapter 6. While training the CNN we

take a few randomly selected patches, for which we take the label of the center

pixel/voxel and patch data while constructing our training data-set. However,

while doing that we throw away the contextual label information, i.e. the labels

of the neighboring pixels/voxels.

Recalling the cost function of the 2D CNN (7.1), we can see that we are trying to

learn the CNN parameters through maximizing the posterior probability associated

with the true label in a log likelihood manner. However, this formulation does not

take any contextual information into account and assumes that the labels of the

neighboring pixels/voxels are independent of each other. It can lead us to a label

field having rough and irregular object boundaries and spatial inconsistent label

field.

This chapter will be a part of an under preparation article which will be an extension to
our already published article in MICCAI 2013 [56].

93

Qλ =
1

M

M
∑

m=1

− ln(p(t(m)|d(0)(m)
;Ω)) +

λ

2

K
∑

p=1

S
(L)
O
∑

q=1

θ2pq (7.1)

Most of the approaches which use contextual information for image segmenta-

tion or use it for post processing to improve segmentation are MRF like approaches

[124, 125, 110, 126, 127, 128]. When solving the labeling problem or applying post-

processing using MRFs, we essentially solve an energy minimization problem for

which the image energy is written as the sum of a data energy term and a smooth-

ness energy term. To make it clearer, let ω be the image labeling and ωp be the

label corresponding to an pixel/voxel p such that ωp ∈ ω. Also, P be the set of

all the pixels/voxels of the image and N p be the neighborhood of p. The image

energy corresponding to labeling (ω) can be given as

U(ω) =
∑

p∈P



UD(ωp) +
∑

q∈N p

US(ωq, ωp)



 , (7.2)

where UD(ωp) is the data energy term for pixel p labeled as ωp, while US(ωq, ωp) is

the smoothness energy term with pixel p labeled as ωp while its neighboring pixel q

labeled as ωq. When used for post-processing to smooth the segmentation obtained

from a pixel/voxel classifier , the data energy term ensures that the final labeling

is coherent with the labeling assigned by the classifier while the smoothness energy

term ensures that the final labeling is smooth, i.e. it penalize the cases where the

two neighboring pixels/voxels have different labels.

If used as pixel classifiers themselves, the MRF models are used in a Maximum a

posteriori-Markov random field framework where the features are already known

[129]. MAP energy consists of a likelihood term and a smoothness prior term

modeled with an MRF model.

However, in our case we neither have the features nor we apply MRF models for

post-processing. Here we want to use contextual labels information for improving

the learning of our CNN parameters (and thus the features) in order to obtain

a smoother and spatially more consistent labeling (improved segmentation) in

one step while performing segmentation. Taking inspiration from other MRF

94

based approaches, a possibility could have been to learn the network/features

by modeling the posterior interactions using an MRF model. One such model

is an Ising model. For the Ising model, the smoothness energy term US(ωq, ωp)

can be written as bpqωpωq where bpq < 0 and neighborhood N p is a set of four

nearest pixels in case of a 2D image. As bpq < 0, the model penalizes the cases

when ωp 6= ωq. Although it seems interesting to use such model for incorporating

contextual information in CNN training, we couldn’t do that as these models need

the full lattice to be known, while for constructing the training data of the CNN,

we randomly sample only few pixels/voxels from the training images.

The above reasons lead us to a novel solution which exploits the labels of the

unused neighborhood voxels/pixels, which were not used while constructing our

training dataset for CNN. For doing that, we add an extra term which measures

the dissimilarity between the label posterior value at a voxel location and label

configuration known around this voxel. Rest of the chapter is organized as follows.

In the next section we introduce and discuss the cost function for training our spa-

tially contextualized CNN(SCCNN). Then in section 7.3, we talk about optimizing

our new cost function, following which we give experimental details and results.

In the end we conclude the chapter in section 7.5

7.2 Learning Spatial Configuration

In this section we introduce and discuss our new cost function which takes the con-

textual neighborhood labels into consideration. To do that, we add to the CNN

cost function a new term which will enforce the similarity between the posterior

probability distribution for a pixel/voxel over all the classes and the class distri-

bution around that pixel/voxel, where the class distributions around a sample are

simply computed as relative frequencies of a class label in a simple neighborhood

(7.3). In order to make it clearer, let N be the total number of voxels/pixels in the

neighborhood in consideration (including the center voxel/pixel itself) and Nc
(m)

be the number of voxel/pixel belonging to class c in the neighborhood of mth

training example. The fraction of neighborhood voxels/pixels belonging to class c

is

95

Figure 7.1: An example neighborhood configuration, black pixels are background pix-
els(class 2) and white pixels (class 1) are foreground pixels. PN (1) for center pixel in this
case is 6/9 while PN (2) is 3/9

P
(m)
N (c) = Nc

(m)/N (7.3)

Figure 7.1 shows an example neighborhood configuration for a 2D image and cor-

responding calculation of PN(c) for the center pixel.

Let PN
(m) be the probability distribution formed by probabilities P

(m)
N (c) over

all the classes. Similarly, p(m) be the probability distribution formed by prob-

abilities p(c|d(0)(m)
;Ω) over all the classes. Now, an appropriate choice for our

contextualization term will be a term which measures the dissimilarity between

the two probability distribution functions. Thus our new cost function will be in

the form shown below

Qλ
(N) = − 1

M

M
∑

m=1

ln(p(t(m)|d(0)(m)
;Ω))− βD(p(m),PN

(m))

1 + β
+

λ

2

K
∑

p=1

S
(L)
O
∑

q=1

θ2pq, (7.4)

where D(p(m),PN
(m)) is a term which is minimized if p(m) is same as PN

(m) and

increases if p(m) diverges away from PN
(m).

Several such measures are found in the literature [130]e.g. Hellinger distance,

Bhattacharya distance, Kullback–Leibler divergence etc. Let us have a brief look

at them.

96

Hellinger distance for the our two probability distributions p(m) and PN
(m)

is given as

D(p(m),PN
(m)) =

1√
2

√

√

√

√

K
∑

c=1

(
√

p(c|d(0)(m)
;Ω)−

√

P
(m)
N (c)

)2

(7.5)

Another popular measure is Bhattacharya distance which is given as

D(p(m),PN
(m)) = − ln

(K
∑

c=1

√

p(c|d(0)(m)
;Ω), P

(m)
N (c)

)

(7.6)

However, our contextualization term is inspired by the Kullback–Leibler

(KL) divergence measure which is given as

D(p(m),PN
(m)) =

K
∑

c=1

P
(m)
N (c) ln(

P
(m)
N (c)

p(c|d(0)(m)
;Ω)

) (7.7)

We chose KL divergence measure because it makes the new cost function easy

to implement. Before going more into details, we write our new modified cost

function for a 2D CNN by using equation (7.4) and equation (7.7)

Qλ
(N) = − 1

M

M
∑

m=1

ln(p(t(m)|d(0)(m)
;Ω))− β

∑K
c=1 P

(m)
N (c) ln(

P
(m)
N

(c)

p(c|d(0)(m)
;Ω)

)

1 + β
+

λ

2

K
∑

p=1

S
(L)
O
∑

q=1

θ2pq (7.8)

The term
∑K

c=1 P
(m)
N (c) ln(

P
(m)
N

(c)

p(c|d(0)(m)
;Ω)

), which is the KL divergence measure

between p(m) and PN
(m) minimizes if p(m) is same as PN

(m) and increases mono-

tonically if p(m) diverges away from PN
(m). β controls the strength of this term and

β = 0 gives us the unmodified cost function. A close observation shows a strong

connection between the log-likelihood term ln(p(t(m)|d(0)(m)
;Ω)) and our contex-

tualization term β
∑K

c=1 P
(m)
N (c) ln(

P
(m)
N

(c)

p(c|d(0);Ω)
). For making it clearer, let G(m) be

the ground truth vector such that its c th element G(m)(c) is equal to one if

the ground truth label t(m) = c and zero otherwise. Now, the log-likelihood term

97

ln(p(t(m)|d(0)(m)
;Ω)) can be written in terms of G(m)(c) as -

∑K
c=1G

(m)(c) ln(G(m)(c)

p(c|d(0)(m)
;Ω)

).

This similarity between the log-likelihood term and our contextualization term

makes the new cost function easy to implement.

Similar to the 2D CNN case, the contextualized cost function for a triplanar

CNN can be given as

QT λ
(N) = − 1

M

M
∑

m=1

[

ln(p(t(m)|dxy
(0)(m)

;dyz
(0)(m)

;dzx
(0)(m)

;ΩT))

−β
K
∑

c=1

P
(m)
N (c) ln(

P
(m)
N (c)

p(c|d(0)
xy

(m)
;d

(0)
yz

(m)
;d

(0)
zx

m
;ΩT)

)

]/

(1+β)+

λ

2

K
∑

p=1

NOT
∑

q=1

θ2Tpq
(7.9)

7.3 Optimizing the New Extended Cost Function

Similar to the unmodified cost function, our new extended cost function is also

optimized using LBFGS. The gradients used for that purpose are calculated as

discussed in the following paragraph.

Ω in equation (7.8), is the set of the parameters including all the CNN param-

eters as well as softmax parameters. Also the the output of the last layer d(L)(m)

can be written in terms of CNN parameters and the input patch. Thus we can

rewrite p(t(m)|d(0)(m)
;Ω) as p(t(m)|d(L)(m)

; θ), where θ is the softmax parameter

matrix. Thus, the modified cost function in equation (7.8) can also be written as

Qλ
(N) = − 1

M

M
∑

m=1

ln(p(t(m)|d(L)(m)
; θ))− β

∑K
c=1 P

(m)
N (c) ln(

P
(m)
N

(c)

p(c|d(L)(m)
;θ)
)

1 + β
+

λ

2

K
∑

p=1

S
(L)
O
∑

q=1

θ2pq (7.10)

The gradient of the modified cost function with respect to softmax parameters

can be easily calculated with the help of equation (5.11). The sensitivity map of

98

the final layer for CNN with modified cost function is calculated in a similar way

as discussed in equation (5.13) and is given as

δ(L)(N)(m)

= −θTD(N)(m)
(7.11)

However, D(N)(m)
in this case is calculated using

D(N)(m)
=





























1(t(m),1)−p(t(m)|θ1;d(L)(m)
)+β(P

(m)
N

(1)−p(t(m) |θ1;d(L)(m)
))

1+β1(t(m),2)−p(t(m)|θ2;d(L)(m)
)+β(P

(m)
N

(2)−p(t(m) |θ2;d(L)(m)
))

1+β
...1(t(m),c)−p(t(m)|θc;d(L)(m)

)+β(P
(m)
N

(c)−p(t(m)|θc;d(L)(m)
))

1+β
...1(t(m),K)−p(t(m)|θK ;d(L)(m)

)+β(P
(m)
N

(K)−p(t(m)|θK ;d(L)(m)
))

1+β





























(7.12)

where 1(p, q) be a function returning one if p = q and zero otherwise. The sensi-

tivity maps and the gradients of rest of the CNN layers can be calculated in the

same way as discussed in 5.5.

For triplanar CNN case, the modified cost function given in equation (7.9) can

be re-written as

QT λ
(N) = − 1

M

M
∑

m=1

ln(p(t(m)|d(L)
T

(m)
; θT))− β

∑K
c=1 P

(m)
N (c) ln(

P
(m)
N

(c)

p(c|d
(L)
T

(m)
;θT)

)

1 + β
+

λ

2

K
∑

p=1

S
(L)
O
∑

q=1

θT
2
pq (7.13)

where d
(L)
T

(m)
is a vector obtained by concatenating the outputs of three triplanar

CNNs.

The gradient of the modified cost function with respect to softmax parameter

can be calculated using (6.6).

The sensitivity maps of the final layer for CNN with modified cost function can

be calculated using the following three equations

δxy
(N)(L)

(m)

= −θxy
TD(N)(m)

(7.14)

99

δyz
(N)(L)

(m)

= −θyz
TD(N)(m)

(7.15)

δzx
(N)(L)

(m)

= −θzx
TD(N)(m)

(7.16)

Vector D(N)(m)
in this case is given as

D(N)(m)
=





























1(t(m),1)−p(t(m) |θT 1;dT
(L)(m)

)+β(P
(m)
N

(1)−p(t(m) |θT 1;dT
(L)(m)

))

1+β1(t(m),1)−p(t(m) |θT 2;dT
(L)(m)

)+β(P
(m)
N

(2)−p(t(m) |θT 2;dT
(L)(m)

))

1+β
...1(t(m),1)−p(t(m) |θT c;dT

(L)(m)
)+β(P

(m)
N

(c)−p(t(m)|θT c;dT
(L)(m)

))

1+β
...1(t(m) ,1)−p(t(m)|θT K ;dT

(L)(m)
)+β(P

(m)
N

(K)−p(t(m)|θT K ;dT
(L)(m)

))

1+β





























(7.17)

As the three CNNs are only connected with each other in the last layer, we

can calculate the the sensitivities maps and partial derivatives for three CNNs

independently following the discussion in 5.5

7.4 Experiments

In order to evaluate the performances of the 2D SCCNN and the triplanar SCCNN,

we used two different datasets. For the 2D SCCNN, we used the Weizmann Horses

database [57], a database often use in Computer Vision research, especially for

segmentation, and for the triplanar SCCNN, we used the knee MR data that has

been extensively used too in the rest of this thesis.

7.4.1 Weizmann’s Horses

The first data-set was Weizmann’s horses [57] of 328 gray scale horses out of

which 164 images were randomly selected to extract the training data. From the

remaining 164 images, 30 images were randomly selected as test images.

Experimental Set-up We extracted patches from 366 randomly selected pixels

from each of the training images. Thus, from 164 training images, we constructed

100

a training data-set of approximately 60000 patches. Patch-size and the kernel-

size chosen were 28 × 28 and 5 × 5. We consider the 3 × 3 neighborhood for

constructing the modified cost function. The sequence of layers of the CNN was

LC → LS → LC → LC → LF. The sequence for number of output-maps was

28→ 28→ 56→ 112→ 1792. We minimize Qλ
(N) (equation (7.8)) using LBFGS

using mini-batches. For each mini-batch, we selected 2000 examples randomly

from 60000 training examples and run 20 iterations of LBFGS. The motive behind

experiments with Weizmann horses is to run some preliminary experiments on a

2D dataset and to check whether we can achieve better DSC using SCCNN or not.

The layer sequence, layer size are taken directly from the configuration of a single

CNN of our triplanar CNN. The experimental set-up used may not be the best for

this data-set.

Results We evaluated the SCCNN in (7.8) on 30 test images and compared

the results with cost function for standard CNN in (5.9). After classifying the

voxels, we took the largest connected component to get the final segmentation.

Figure 7.2 below shows the variation of the mean DSC as we change the value

of β. The blue horizontal line shows the value of average DSC achieved by the

triplanar CNN with unmodified cost function (i.e. β = 0). The values of β used

to plot the average DSC in figure 7.2 are 2−14, 2−12, 2−10, 2−8, 2−6, 2−4, 2−2 The

best performance was given by β = 2−4, with average DSC being 0.7773, while

the average DSC achieved by unmodified-cost function β = 0 was 0.7618. For

(β ≤ 2−16), DSC values obtained were same as DSC values for unmodified cost

function. Figure 7.3 shows an example test image and its segmentation obtained

by the unmodified and modified cost functions.

7.4.2 Knee MRI Data

We also experimented with modified cost function for triplanar CNN (Equation:

(7.9))on knee MRI scans to segment the tibial cartilage and compared the results

with the unmodified cost for triplanar CNN (Equation: 6.2).

101

−14−12−10 −8 −6 −4 −2

0.765

0.770

0.775

Unmodified Cost Function

log2 β

A
ve

ra
ge

D
S
C

Figure 7.2: Average DSC values using our new extended cost function. Average of
the DSC values over 30 horses’ images are obtained for different values of β. The blue
horizontal line depicts the Average DSC value obtained by unmodified cost function i.e.
β = 0

Experimental Set-up Patch-size and the kernel-size which we used were 28×28
and 5× 5, which are the same as mentioned in section 6.3. The sequence of layers

of three CNNs was also the same, i.e. LC → LS → LC → LC → LF. Although

for the triplanar CNN, we have three 2D patches as input, for constructing the

contextualization term of the modified cost function, we took a neighborhood of

3× 3× 3. The training data was constructed using the same voxels as mentioned

in 6.3. The sequence of number of output-maps was also the same as mentioned

in 6.3. We minimize QT λ
(N) (equation (7.8)) using LBFGS using mini-batches.

For each mini-batch, we selected 2000 examples randomly from 120000 training

examples and run 20 iterations of LBFGS.

Results We performed test on 10 unseen scans. After classifying each voxel, the

largest connected component was taken as final segmentation. Figure 7.4 shows

the variation of the mean DSC as we change the value of β. The blue line show

the value of average DSC achieved by the triplanar CNN with unmodified cost

function (i.e. β = 0). The best performance was given by β = 2−2, with average

102

(a) gray scale horse image (b) manual segmentation

(c) segmentation obtained using unmodi-
fied cost function, β = 0

(d) segmentation obtained using modified
cost function, β = 2−4

Figure 7.3: Test example comparing the segmentations obtained using unmodified and
modified cost functions

DSC being 0.8100, while the average DSC achieved by unmodified-cost function

β = 0 was 0.8030. Figure 7.5 shows a slice from a test scan and its segmentation

obtained by the unmodified and modified cost functions. The results in Figure 7.4

are shown for β = 2−8, 2−6, 2−4, 2−2. The blue horizontal line depicts the Average

DSC value obtained by unmodified cost function i.e. β = 0. For very small values

of β (β ≤ 2−14), DSC values obtained were same as DSC values for unmodified

cost function.

103

−8 −6 −4 −2

0.810

0.805

0.800

Unmodified Cost Function

log2 β

A
ve

ra
ge

D
S
C

Figure 7.4: Average DSC values using our new extended cost function. Average of the
DSC values over 10 MRI scans images are obtained for different values of β. The blue
horizontal line depicts the Average DSC value obtained by unmodified cost function i.e.
β = 0

7.5 Conclusion

The proposed Spatially Contextualized Convolutional Neural Network (SCCNN)

incorporates the neighborhood label information to learn a network which improves

the segmentation performance by making the output label field smoother and spa-

tially more consistent. This is achieved by learning a better network while training

and thus does not involve any post processing step while segmenting a new image.

The cost function for our SCCNN has an extra term added to the cost function

of standard CNN, which uses the KL divergence measure between the posterior

probability distribution for a pixel/voxel over all the classes and the class distri-

bution around that pixel/voxel, where the class distributions around a sample are

simply computed as relative frequencies of a class label in a simple neighborhood.

We evaluated our method on two data-sets of Weizmann horses and knee MRI

scans. Our method improved the segmentation results in both the cases. In future

we will perform more extensive experiments with more image datasets. We intend

to compare various probability distribution measures including currently used KL

104

(a) knee MRI slice (b) segmentation by radiologist

(c) segmentation obtained using un-
modified cost function, β = 0

(d) segmentation obtained using mod-
ified cost function, β = 2−2

Figure 7.5: Knee MRI slice from a test scan comparing the segmentations obtained
using unmodified and modified cost functions

105

divergence measure. Though SCCNN was developed in order to incorporate spa-

tial behavior in the learning phase, this should not prevent us to add an extra step

of MRF-like post processing of the label fields. We plan to add this step in the

future and compare the segmentation performances obtained with or without it

for both the "standard" CNN and our proposed SCCNN.

106

Chapter 8

Discussion and Future Work

In this thesis we have presented voxel/pixel classification based methods for seg-

mentation and showed there application mainly on segmenting articular carti-

lage from knee MRIs. We have addressed two of the main issues associated with

voxel/pixel classification based segmentation problems. The first issue is related

to the huge amount of training data needed, which restricts the usage of some very

strong classifiers. The other issue we addressed is related to the features which

should be used for the classification task.

In the first main part of the thesis, we proposed a cascaded classifier method.

This method is a general tool for cases having huge amount of training data with

large class imbalance. These situations are very commonly found in medical imag-

ing and our method is particularly useful for such scenarios. Our cascaded classifier

exploits the class imbalance and allows the usage of classifiers scaling badly with

training data population, in large scale problems. We have shown its application

on segmenting cartilage from knee MRIs, which was very successful. The training

data had features from more than 2 million voxels with class populations having

ratio of approximately 1:17. Such large-scale problem is difficult to handle by a

classifier like non-linear SVM which scales at-least quadratically with the number

of training data points.

Our two-stage method for cartilage segmentation, comprising first stage of kNN

and second stage of SVM outperformed the state-of-the-art method based on one-

109

stage of kNN. The evaluation was done on 114 scans and the Wilcoxon rank-sum

test for the DSC gave p-value less than 0.05. We tried to increase the speed of the

SVM training by online SVM and also by loosening the stopping criterion in the

quadratic programming solver. We found no advantage in using online SVMs over

loosening the stopping condition in the quadratic program solver. We also tried

to solve the problem in a single stage using online SVM, but found that it did not

lead to better performance given our time budget.

Selecting good features is crucial in any classification problem including those

in medical imaging. The next major part of this thesis deals with learning features

from the data instead of having a predefined set of features. We proposed a deep

learning method based on convolutional neural networks to classify voxels of a 3

dimensional image. Our method had 3 integrated CNNs, each corresponding to

one of the three image planes, i.e. xy, yz and zx planes. We used it for segment-

ing tibial cartilage in knee MRI and the evaluation was performed on 114 scans.

Although our method learnt 2D kernels from the three CNNs, it performed bet-

ter than a state-of-the-art method which used predefined set of features extracted

using 3D kernels. Moreover, the state-of-the-art method uses multi-scale features,

whereas we relied on single scale features. The improvement over state-of-the-art

were found to be statistically significant with p-value from Wilcoxon rank-sum test

for DSC being less than 0.05.

While training the CNN, the cost function is simply based on the class-label

of the voxel/pixel and does not take class-labels of the neighborhood voxels/pixels

into consideration. We propose a spatially contextualized convolutional neural net-

work (SCCNN) which incorporates the labels of the neighborhood voxels/pixels

while learning the network. We evaluated 2D SCCNN on 30 scans from the Weiz-

mann’s horses dataset and also its triplanar variant (triplanar-SCCNN) on 10 knee

MRI scans for segmenting tibial cartilage. The results were better than the stan-

dard 2D CNN and standard triplanar-CNN respectively. Though SCCNN was

developed in order to incorporate spatial behaviour in the learning phase, this

should not prevent us to add an extra step of MRF-like post processing of the

label fields. We plan to add this step in the future and compare the segmentation

110

performances obtained with or without it for both the "standard" CNN and our

proposed SCCNN.

111

Bibliography

[1] Igel, C.: Lecture Notes on Statistical Machine Learning. Department of

Computer Science, University of Copenhagen (2013)

[2] Elnakib, A., Gimel’farb, G., Suri, J.S., El-Baz, A.: Medical image segmen-

tation: a brief survey. In: Multi Modality State-of-the-Art Medical Image

Segmentation and Registration Methodologies. Springer (2011) 1–39

[3] Suru, J.S., Wilson, D.L., Laximinarayan, S.: Handbook of biomedical image

analysis. Volume 2. Springer (2005)

[4] Prastawa, M., Bullitt, E., Gerig, G.: Simulation of brain tumors in mr

images for evaluation of segmentation efficacy. Medical image analysis 13(2)

(2009) 297–311

[5] El-Baz, A., Farag, A., Gimel’farb, G., Falk, R., El-Ghar, M.A., Eldiasty, T.:

A framework for automatic segmentation of lung nodules from low dose chest

CT scans. In: Pattern Recognition, 2006. ICPR 2006. 18th International

Conference on. Volume 3., IEEE (2006) 611–614

[6] Greenspan, H., Ruf, A., Goldberger, J.: Constrained gaussian mixture model

framework for automatic segmentation of MR brain images. Medical Imag-

ing, IEEE Transactions on 25(9) (2006) 1233–1245

[7] Ecabert, O., Peters, J., Schramm, H., Lorenz, C., von Berg, J., Walker, M.J.,

Vembar, M., Olszewski, M.E., Subramanyan, K., Lavi, G., et al.: Automatic

model-based segmentation of the heart in CT images. Medical Imaging,

IEEE Transactions on 27(9) (2008) 1189–1201

113

[8] El-Baz, A., Farag, A.A., Yuksel, S.E., El-Ghar, M.E., Eldiasty, T.A.,

Ghoneim, M.A.: Application of deformable models for the detection of

acute renal rejection. In: Deformable Models. Springer (2007) 293–333

[9] Pham, D.L., Xu, C., Prince, J.L.: Current methods in medical image seg-

mentation 1. Annual review of biomedical engineering 2(1) (2000) 315–337

[10] Polakowski, W.E., Cournoyer, D.A., Rogers, S.K., DeSimio, M.P., Ruck,

D.W., Hoffmeister, J.W., Raines, R.A.: Computer-aided breast cancer de-

tection and diagnosis of masses using difference of gaussians and derivative-

based feature saliency. Medical Imaging, IEEE Transactions on 16(6) (1997)

811–819

[11] Cheng, H.D., Lui, Y.M., Freimanis, R.I.: A novel approach to microcal-

cification detection using fuzzy logic technique. Medical Imaging, IEEE

Transactions on 17(3) (1998) 442–450

[12] Li, S.Z.: Markov random field modeling in computer vision. Springer-Verlag

New York, Inc. (1995)

[13] Lee, C., Huh, S., Ketter, T.A., Unser, M.: Unsupervised connectivity-based

thresholding segmentation of midsagittal brain mr images. Computers in

biology and medicine 28(3) (1998) 309–338

[14] Gibbs, P., Buckley, D., Blackband, S., Horsman, A.: Tumour volume de-

termination from mr images by morphological segmentation. Physics in

medicine and biology 41(11) (1996) 2437

[15] Pohlman, S., Powell, K.A., Obuchowski, N.A., Chilcote, W.A., Grundfest-

Broniatowski, S.: Quantitative classification of breast tumors in digitized

mammograms. Medical Physics 23 (1996) 1337

[16] Mangin, J.F., Frouin, V., Bloch, I., Régis, J., López-Krahe, J.: From 3d

magnetic resonance images to structural representations of the cortex to-

pography using topology preserving deformations. Journal of Mathematical

Imaging and Vision 5(4) (1995) 297–318

114

[17] Udupa, J.K., Samarasekera, S.: Fuzzy connectedness and object definition:

theory, algorithms, and applications in image segmentation. Graphical mod-

els and image processing 58(3) (1996) 246–261

[18] Wells III, W.M., Grimson, W.E.L., Kikinis, R., Jolesz, F.A.: Adaptive

segmentation of mri data. Medical Imaging, IEEE Transactions on 15(4)

(1996) 429–442

[19] Vannier, M.W., Butterfield, R.L., Jordan, D., Murphy, W.A., Levitt, R.G.,

Gado, M.: Multispectral analysis of magnetic resonance images. Radiology

154(1) (1985) 221–224

[20] Kapur, T., Eric, W., Grimson, L., Kikinis, R., Wells, W.M.: Enhanced

spatial priors for segmentation of magnetic resonance imagery. In: Medi-

cal Image Computing and Computer-Assisted Interventation—MICCAI’98.

Springer (1998) 457–468

[21] Rajapakse, J.C., Giedd, J.N., Rapoport, J.L.: Statistical approach to seg-

mentation of single-channel cerebral mr images. Medical Imaging, IEEE

Transactions on 16(2) (1997) 176–186

[22] Pham, D.L., Prince, J.L.: An adaptive fuzzy< i> c</i>-means algorithm

for image segmentation in the presence of intensity inhomogeneities. Pattern

Recognition Letters 20(1) (1999) 57–68

[23] Held, K., Kops, E.R., Krause, B.J., Wells III, W.M., Kikinis, R., Muller-

Gartner, H.W.: Markov random field segmentation of brain mr images.

Medical Imaging, IEEE Transactions on 16(6) (1997) 878–886

[24] Chen, C., Lee, G.: On digital mammogram segmentation and microcalci-

fication detection using multiresolution wavelet analysis. Graphical Models

and Image Processing 59(5) (1997) 349–364

[25] Bezdek, J.C., Hall, L., Clarke, L.: Review of mr image segmentation tech-

niques using pattern recognition. Medical physics 20 (1993) 1033

115

[26] Hall, L.O., Bensaid, A.M., Clarke, L.P., Velthuizen, R.P., Silbiger, M.S.,

Bezdek, J.C.: A comparison of neural network and fuzzy clustering tech-

niques in segmenting magnetic resonance images of the brain. Neural Net-

works, IEEE Transactions on 3(5) (1992) 672–682

[27] Gelenbe, E., Feng, Y., Krishnan, K.R.R.: Neural network methods for volu-

metric magnetic resonance imaging of the human brain. Proceedings of the

IEEE 84(10) (1996) 1488–1496

[28] Reddick, W.E., Glass, J.O., Cook, E.N., Elkin, T.D., Deaton, R.J.: Auto-

mated segmentation and classification of multispectral magnetic resonance

images of brain using artificial neural networks. Medical Imaging, IEEE

Transactions on 16(6) (1997) 911–918

[29] Vilariño, D.L., Brea, V.M., Cabello, D., Pardo, J.: Discrete-time cnn for

image segmentation by active contours. Pattern Recognition Letters 19(8)

(1998) 721–734

[30] Davatzikos, C., Bryan, N.: Using a deformable surface model to obtain a

shape representation of the cortex. Medical Imaging, IEEE Transactions on

15(6) (1996) 785–795

[31] McInerney, T., Terzopoulos, D.: Medical image segmentation using topolog-

ically adaptable surfaces. In: CVRMed-MRCAS’97, Springer (1997) 23–32

[32] Xu, C., Pham, D.L., Rettmann, M.E., Yu, D.N., Prince, J.L.: Reconstruc-

tion of the human cerebral cortex from magnetic resonance images. Medical

Imaging, IEEE Transactions on 18(6) (1999) 467–480

[33] Bardinet, E., Cohen, L.D., Ayache, N.: A parametric deformable model to

fit unstructured 3d data. Computer vision and image understanding 71(1)

(1998) 39–54

[34] Neumann, A., Lorenz, C.: Statistical shape model based segmentation of

medical images. Computerized Medical Imaging and Graphics 22(2) (1998)

133–143

116

[35] Mikic, I., Krucinski, S., Thomas, J.D.: Segmentation and tracking in

echocardiographic sequences: Active contours guided by optical flow esti-

mates. Medical Imaging, IEEE Transactions on 17(2) (1998) 274–284

[36] Collins, D.L., Holmes, C.J., Peters, T.M., Evans, A.C.: Automatic 3-d

model-based neuroanatomical segmentation. Human Brain Mapping 3(3)

(1995) 190–208

[37] Davatzikos, C.: Spatial normalization of 3d brain images using deformable

models. Journal of computer assisted tomography 20(4) (1996) 656–665

[38] Christensen, G.E., Joshi, S.C., Miller, M.I.: Volumetric transformation of

brain anatomy. Medical Imaging, IEEE Transactions on 16(6) (1997) 864–

877

[39] Aboutanos, G.B., Dawant, B.M.: Automatic brain segmentation and val-

idation: image-based versus atlas-based deformable models. In: Medical

Imaging, SPIE Proc. Volume 3034. (1997) 299–310

[40] Pathak, S.D., Grimm, P.D., Chalana, V., Kim, Y.: Pubic arch detection

in transrectal ultrasound guided prostate cancer therapy. Medical Imaging,

IEEE Transactions on 17(5) (1998) 762–771

[41] Bae, K.T., Giger, M.L., Chen, C.T., Kahn Jr, C.E.: Automatic segmentation

of liver structure in ct images. Medical physics 20 (1993) 71

[42] Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm

based on immersion simulations. IEEE transactions on pattern analysis and

machine intelligence 13(6) (1991) 583–598

[43] Sijbers, J., Scheunders, P., Verhoye, M., Van der Linden, A., van Dyck,

D., Raman, E.: Watershed-based segmentation of 3d mr data for volume

quantization. Magnetic Resonance Imaging 15(6) (1997) 679–688

[44] Vos, T., Flaxman, A.D., Naghavi, M., Lozano, R., Michaud, C., Ezzati, M.,

Shibuya, K., Salomon, J.A., Abdalla, S., Aboyans, V., et al.: Years lived

117

with disability (ylds) for 1160 sequelae of 289 diseases and injuries 1990–

2010: a systematic analysis for the global burden of disease study 2010. The

Lancet 380(9859) (2013) 2163–2196

[45] Levit, K., Wier, L., Stranges, E., Ryan, K., Elixhauser, A.: Hcup facts and

figures: statistics on hospital-based care in the united states, 2007. Rockville,

MD: Agency for Healthcare Research and Quality (2009)

[46] Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3)

(1995) 273–297

[47] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning

applied to document recognition. Proceedings of the IEEE 86(11) (1998)

2278–2324

[48] Xiang, S., Nie, F., Zhang, C.: Learning a mahalanobis distance metric for

data clustering and classification. Pattern Recognition 41(12) (2008) 3600–

3612

[49] J., G., S., R., G., H., R., S.: Neighborhood components analysis. In: Ad-

vances in Neural Information Processing Systems. (2004) 513–520

[50] Blitzer, J., Weinberger, K.Q., Saul, L.K.: Distance metric learning for large

margin nearest neighbor classification. In: Advances in neural information

processing systems. (2005) 1473–1480

[51] Globerson, A., Roweis, S.T.: Metric learning by collapsing classes. In:

Advances in neural information processing systems. (2005) 451–458

[52] Bentley, J.L.: Multidimensional divide-and-conquer. Communications of the

ACM 23(4) (1980) 214–229

[53] Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best

matches in logarithmic expected time. ACM Transactions on Mathematical

Software (TOMS) 3(3) (1977) 209–226

118

[54] Prasoon, A., Igel, C., Loog, M., Lauze, F., Dam, E., Nielsen, M.: Cascaded

classifier for large-scale data applied to automatic segmentation of articu-

lar cartilage. In: Proceeding of SPIE Medical Imaging: Image Processing.

Volume 8314. (2012)

[55] Prasoon, A., Igel, C., Loog, M., Lauze, F., Dam, E., Nielsen, M.: Femoral

cartilage segmentation in knee MRI scans using two stage voxel classification.

In: Engineering in Medicine and Biology Society (EMBC), 35th Annual

International Conference of the IEEE. (2013) 5469–5472

[56] Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M.: Deep

feature learning for knee cartilage segmentation using a triplanar convo-

lutional Neural Network. In: Medical Image Computing and Computer-

Assisted Intervention. Volume 8150., Lecture Notes in Computer Science,

Springer Science+Business Media 2013 (2013) 246–253

[57] Borenstein, E., Ullman, S.: Class-specific, top-down segmentation. In: Com-

puter Vision—European Conference on Computer Vision 2002. Springer

(2002) 109–122

[58] Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Ma-

chines, Regularization, Optimization, and Beyond. MIT Press (2002)

[59] Steinwart, I.: Sparseness of support vector machines. Journal of Machine

Learning Research 4 (2003) 1071–1105

[60] Bottou, L., Lin, C.J.: Support vector machine solvers. In Bottou, L.,

Chapelle, O., DeCoste, D., Weston, J., eds.: Large Scale Kernel Machines.

MIT Press, Cambridge, MA. (2007) 301–320

[61] Osuna, E., Freund, R., Girosi, F.: Improved training algorithm for support

vector machines. In Principe, J., Giles, L., Morgan, N., Wilson, E., eds.:

Neural Networks for Signal Processing VII, IEEE Press (1997) 276–285

119

[62] Platt, J.: Fast training of support vector machines using sequential minimal

optimization. In Schölkopf, B., Burges, C.J.C., Smola, A.J., eds.: Advances

in Kernel Methods - Support Vector Learning. MIT Press (1999) 185–208

[63] Joachims, T.: Making large-scale SVM learning practical. In Sch B., ed.:

Advances in Kernel Methods – Support Vector Learning. MIT Press (1999)

169–184

[64] Lin, C.J.: On the convergence of the decomposition method for support

vector machines. IEEE Transactions on Neural Networks 12 (2001) 1288–

1298

[65] Keerthi, S.S., Gilbert, E.G.: Convergence of a generalized SMO algorithm

for SVM classifier design. Machine Learning 46 (2002) 351–360

[66] Hush, D., Scovel, C.: Polynomial-time decomposition algorithms for support

vector machines. Machine Learning 51 (2003) 51–71

[67] Fan, R.E., Chen, P.H., Lin, C.J.: Working set selection using the second

order information for training support vector machines. Journal of Machine

Learning Research 6 (2005) 1889–1918

[68] Glasmachers, T., Igel, C.: Maximum-gain working set selection for support

vector machines. Journal of Machine Learning Research 7 (2006) 1437–1466

[69] List, N.: Convergence Rates for SVM-Decomposition-Algorithms. Doctoral

thesis, Department of Mathematics, Ruhr-Universität Bochum (2008)

[70] List, N., Simon, H.U.: SVM-optimization and steepest-descent line search.

In: Proceedings of the 21st Annual Conference on Learning Theory (COLT

2009). (2009) Submitted.

[71] Folkesson, J., Dam, E., Olsen, O., Pettersen, P., Christiansen, C.: Segment-

ing articular cartilage automatically using a voxel classification approach.

IEEE Transactions on Medical Imaging 26(1) (2007) 106–115

120

[72] Lin, H.T., Lin, C.J.: A study on sigmoid kernels for svm and the training

of non-psd kernels by smo-type methods. submitted to Neural Computation

(2003) 1–32

[73] Jackson, D., Simon, T., Aberman, H.: Symptomatic articular cartilage

degeneration: The impact in the new millenium. Clinical Orthopaedics and

Related Research 133 (2001) 14–25

[74] Helmick, C.G., Felson, D.T., Lawrence, R.C., Gabriel, S., Hirsch, R., Kwoh,

C.K., Liang, M.H., Kremers, H.M., Mayes, M., Merkel, P.A., Pillemer, S.R.,

Reveille, J.D., Stone, J.H.: Estimates of the prevalence of arthritis and

other rheumatic conditions in the united states. Arthritis and Rheumatism

58 (2008) 26–35

[75] Graichen, H., Eisenhart-Rothe, R., Vogl, T., Englmeier, K.H., Eckstein, F.:

Quantitative assessment of cartilage status in osteoarthritis by quantitative

magnetic resonance imaging. Arthritis Rheumatism 50(3) (Mar. 2001) 811–

816

[76] Stammberger, T., Eckstein, F., Michaelis, M., Englmeier, K.H., Reiser, M.:

Interobserver reproducibility of quantitative cartilage measurements: Com-

parison of b-spline snakes and manual segmentation. Magnetic Resonance

Imaging 17(7) (1999) 1033–1042

[77] Lynch, J.A., Zaim, S., Zhao, J., Stork, A., Peterfy, C.G., Genant, H.K.:

Cartilage segmentation of 3-D MRI scans of the osteoarthritic knee combin-

ing user knowledge and active contours. In: Proceeding of SPIE Medical

Imaging 2000: Image Processing. Volume 3979. (2000) 925–935

[78] Solloway, S., Hutchinson, C., Vaterton, J., Taylor, C.: The use of active

shape models for making thickness measurements of articular cartilage from

MR images. Magnetic Resonance in Medicine 37 (1997) 943–952

[79] Pakin, S.K., Tamez-Pena, J.G., Totterman, S., Parker, K.J.: Segmenta-

tion, surface extraction and thickness computation of articular cartilage. In:

121

Proceeding of SPIE Medical Imaging 2002: Image Processing. Volume 4684.

(2002) 155–166

[80] Grau, V., Mewes, A., Alcaiz, M., Kikinis, R., Warfield, S.: Improved wa-

tershed transform for medical image segmentation using prior information.

IEEE Transactions on Medical Imaging 23(4) (2004) 447–458

[81] Warfield, S.K., Winalski, C., Jolesz, F.A., Kikinis, R.: Automatic segmenta-

tion of MRI of the knee, Sydney, Australia, ISMRM Sixth Scientific Meeting

and Exhibition (1998) 563

[82] Warfield, S.K., Kaus, M., Jolesz, F.A., Kikinis, R.: Adaptive, template

moderated, spatially varying statistical classification. Medical Image Anal-

ysis 23(4) (2000) 43–55

[83] Bae, K., Shim, H., Tao, C., Chang, S., Wang, J., Boudreau, R., Kwoh, C.:

Intra and inter-observer reproducibility of volume measurement of knee car-

tilage segmented from the OAI MR image set using a novel semi-automated

segmentation method. Osteoarthritis and Cartilage 17(12) (2009) 1589 –

1597

[84] Chang, K.Y., Chen, S.J., Chen, L.S., Wu, C.J.: Articular cartilage seg-

mentation based on radial transformation. In: 9th International Conference

on Hybrid Intelligent Systems (HIS 2009), August 12-14, 2009, Shenyang,

China, IEEE Computer Society (2009) 239–242

[85] Yin, Y., Zhang, X., Anderson, D.D., Brown, T.D., Hofwegen, C.V., Sonka,

M.: Simultaneous segmentation of the bone and cartilage surfaces of a knee

joint in 3D. In: Proceeding of SPIE Medical Imaging 2009: Physics of

Medical Imaging. Volume 7258. (2009) 72591O–72591O–9

[86] Seim, H., Kainmueller, D., Lamecker, H., Bindernagel, M., Malinowski, J.,

Zachow, S.: Model-based auto-segmentation of knee bones and cartilage

in MRI data. In: Proceeding of Medical Image Analysis for the Clinic: A

Grand Challenge. Bejing, China. (2010) 215 – 223

122

[87] Vincent, G., Wolstenholme, C., Scott, I., Bowes, M.: Fully automatic seg-

mentation of the knee joint using active appearance models. In: Proceeding

of Medical Image Analysis for the Clinic: A Grand Challenge. (2010) 224

–230

[88] Hinrichs, E., Appleton, B., Lovell, B., Galloway, G.: Autonomous direct 3D

segmentation of articular knee cartilage. In: Australian and New Zealand

Intelligent Information Systems. Volume 1., Queensland University of Tech-

nology (2011) 417 – 420

[89] Fripp, J., Crozier, S., Warfield, S., Ourselin, S.: Automatic segmentation

and quantitative analysis of the articular cartilages from magnetic resonance

images of the knee. IEEE Transactions on Medical Imaging 29(1) (January

2010) 55–64

[90] Dodin, P., Pelletier, J., Martel-Pelletier, J., Abram, F.: Automatic human

knee cartilage segmentation from 3-D magnetic resonance images. IEEE

Transactions on Biomedical Engineering 57(11) (2010) 2699 – 2711

[91] Lee, S., Park, S.H., Shim, H., Yun, I.D., Lee, S.U.: Optimization of local

shape and appearance probabilities for segmentation of knee cartilage in 3-

d mr images. Computer Vision and Image Understanding 115(12) (2011)

1710–1720

[92] Shan, L., Charles, C., Niethammer, M.: Automatic multi-atlas-based car-

tilage segmentation from knee mr images. In: Biomedical Imaging (ISBI),

2012 9th IEEE International Symposium on, IEEE (2012) 1028–1031

[93] Wang, Q., Wu, D., Lu, L., Liu, M., Boyer, K., Zhou, S.: Semantic context

forests for learning-based knee cartilage segmentation in 3d mr images. In:

Medical Computer Vision. Large Data in Medical Imaging. Lecture Notes in

Computer Science. Springer International Publishing (2014) 105–115

[94] Fripp, J., Crozier, S., Warfield, S.K., Ourselin, S.: Automatic segmentation

and quantitative analysis of the articular cartilages from magnetic resonance

123

images of the knee. Medical Imaging, IEEE Transactions on 29(1) (2010)

55–64

[95] Yin Yin; Xiangmin Zhang; Williams, R.; Xiaodong Wu; Anderson, D.S.M.:

LOGISMOS - layered optimal graph image segmentation of multiple objects

and surfaces: Cartilage segmentation in the knee joint. IEEE Transactions

on Medical Imaging 29(12) (2010) 2023 – 2037

[96] Viola, P., Jones, M.: Rapid object detection using a boosted cascade of

simple features. In: IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR 2001), IEEE Computer Society (2001) 511–

518

[97] Viola, P., Jones, M.: Robust real-time object detection. International Jour-

nal of Computer Vision 57(2) (2002) 137–154

[98] Batra, D., Singhal, G., Chaudhury, S.: Gabor filter based fingerprint clas-

sification using support vector machines. In: Proceedings of the First IEEE

India Annual Conference (INDICON 2004), IEEE (2004) 256–261

[99] Koenderink, J.J.: The structure of images. Biological Cybernetics 50 (1984)

363–370

[100] Jaakkola, T., Diekhaus, M., Haussler, D.: Using the Fisher kernel method

to detect remote protein homologies. In: Proceedings of the Seventh In-

ternational Conference on Intelligent Systems for Molecular Biology. (1999)

149–158

[101] Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines.

ACM Transactions on Intelligent Systems and Technology 2(3) (2011) 27:1–

27:27

[102] Zou, K.H., Warfield, S.K., Bharatha, A., Tempany, C.M., Kaus, M.R.,

Haker, S.J., Wells III., W.M., Jolesz, F.A., Kikinis, R.: Statistical validation

of image segmentation quality based on a spatial overlap index. Academic

Radiology 11 (2004) 178–189

124

[103] Arya, S., Mount, D., Netanyahu, N., Silverman, R., Wu, A.: An opti-

mal algorithm for approximate nearest neighbor searching fixed dimensions.

Journal of the ACM 45(6) (1998) 891– 923

[104] Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR:

A library for large linear classification. Journal of Machine Learning Research

9 (2008) 1871–1874

[105] Bordes, A., Ertekin, S., Weston, J., Bottou, L.: Fast kernel classifiers with

online and active learning. The Journal of Machine Learning Research 6

(2005) 1579–1619

[106] Glasmachers, T., Igel, C.: Second order SMO improves SVM online and

active learning. Neural Computation 20(2) (2008) 374–382

[107] Lin, C.J.: A formal analysis of stopping criteria of decomposition methods

for support vector machines. IEEE Transactions on Neural Networks 13(5)

(2002) 1045–1052

[108] Bordes, A., Ertekin, S., Weston, J., Bottou, L.: Fast kernel classifiers with

online and active learning. Journal of Machine Learning Research 6 (2005)

1579–1619

[109] Rosenblatt, F.: Principles of neurodynamics: Perceptrons and the theory of

brain mechanisms. 1962. Washington DC: Spartan

[110] Ning, F., Delhomme, D., LeCun, Y., Piano, F., Bottou, L., Barbano, P.E.:

Toward automatic phenotyping of developing embryos from videos. IEEE

Transactions on Image Processing 14(9) (2005) 1360–1371

[111] Sermanet, P., LeCun, Y.: Traffic sign recognition with multi-scale convolu-

tional networks. In: Proceedings of International Joint Conference on Neural

Networks (IJCNN’11). (2011) 2809–2813

[112] Schulz, H., Behnke, S.: Object-class segmentation using deep convolutional

neural networks. In: DAGM Workshop on New Challenges in Neural Com-

putation. (2011)

125

[113] Ciresan, D.C., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J.:

Flexible, high performance convolutional neural networks for image classifi-

cation. In: IJCAI. (2011) 1237–1242

[114] Ciresan, D., Giusti, A., Schmidhuber, J., et al.: Deep neural networks

segment neuronal membranes in electron microscopy images. In: Advances

in Neural Information Processing Systems 25. (2012) 2852–2860

[115] Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for

Human action recognition. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence 35(1) (2013) 221–231

[116] Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional

neural networks applied to visual document analysis. In: International Con-

ference on Document Analysis and Recognition. (2003) 958–962

[117] Le, Q.V., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., Ng, A.Y.: On

optimization methods for deep learning. In: International Conference on

Machine Learning. (2011) 265–272

[118] Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by

back-propagating errors. MIT Press, Cambridge, MA, USA (1988)

[119] Schulz, H., Behnke, S.: Learning object-class segmentation with convo-

lutional neural networks. In: European Symposium on Artificial Neural

Networks, Brussels, Belgium (2012)

[120] Turaga, S.C., Murray, J.F., Jain, V., Roth, F., Helmstaedter, M., Briggman,

K.L., Denk, W., Seung, H.S.: Convolutional networks can learn to generate

affinity graphs for image segmentation. Neural Computation 22(2) (2010)

511–538

[121] Wang, T., Wu, D.J., Coates, A., Ng, A.Y.: End-to-end text recognition

with convolutional neural networks. In: International Conference on Pattern

Recognition. (2012) 3304–3308

126

[122] Pavlidis, T.: A critical survey of image analysis methods. In: International

Conference on Pattern Recognition. (1986) 502–511

[123] Chow, C.K.: A recognition method using neighbor dependence. (1962)

683–690

[124] Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces

via graph cuts. In: Computer Vision, 2003. Proceedings. Ninth IEEE Inter-

national Conference on, IEEE (2003) 26–33

[125] Rother, C., Kolmogorov, V., Blake, A.: Grabcut: Interactive foreground

extraction using iterated graph cuts. In: ACM Transactions on Graphics

(TOG). Volume 23., ACM (2004) 309–314

[126] Boykov, Y., Funka-Lea, G.: Graph cuts and efficient nd image segmentation.

International Journal of Computer Vision 70(2) (2006) 109–131

[127] Singaraju, D., Grady, L., Vidal, R.: P-brush: Continuous valued mrfs with

normed pairwise distributions for image segmentation. In: Computer Vision

and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, IEEE

(2009) 1303–1310

[128] Malan, D.F., Botha, C.P., Valstar, E.R.: Voxel classification and graph cuts

for automated segmentation of pathological periprosthetic hip anatomy. In-

ternational Journal of Computer Assisted Radiology and Surgery 8(1) (2013)

63–74

[129] Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the

bayesian restoration of images. Pattern Analysis and Machine Intelligence,

IEEE Transactions on (6) (1984) 721–741

[130] Dodge, Y.: The Oxford dictionary of statistical terms. Oxford University

Press (2006)

127

	Contents
	List of Figures
	List of Tables
	Introduction
	Medical Image Segmentation
	Osteoarthristis and Cartilage Segmentation in Knee MRI
	Machine Learning for Medical Image Segmentation
	Organization of the Thesis

	Support Vector Machines
	Introduction
	Linear Optimal Margin Classifier
	Margins
	Lagranges Duality
	Linear Hard Margin SVM
	Linear Soft Margin SVM

	Non-linear SVMs and Kernels
	Mercer's Theorem
	Gaussian Kernels
	Deriving Kernels from Kernels.
	Kernel Trick
	Non-linear Hard Margin SVM
	Non-linear Soft Margin SVM

	Training Support Vector Machines
	Decomposition Algorithms
	Recomputing Gradient and Stopping Criterion
	Sequential Minimal Optimization

	Training Time Scaling with Number of Patterns
	SVM in our work

	Cascaded Classifier for Large-scale Data Applied to Automatic Segmentation of Articular Cartilage
	Introduction
	Dataset
	Related Work

	Two Stage Classifier
	Automatic Segmentation of Tibial Cartilage
	Features
	Training Data
	Stage One
	Stage Two
	Support Vector Machines

	Evaluation and Results
	Conclusion

	Femoral Cartilage Segmentation in Knee MRI Scans Using Two Stage Voxel Classification
	Introduction
	Related Work
	Approach
	Two-stage Classifier
	Automatic Segmentation of Femoral Cartilage
	Speeding-up SVM Training: Online Learning vs. Batch Learning with Low Accuracy

	Evaluation and Results
	Discussion

	Convolutional Neural Network
	 Feed Forward Neural Networks
	Convolutional Neural Network
	Layers and Cost Function
	Convolutional Layer
	Subsampling Layer
	Fully-connected Layer
	Softmax Classifier

	Gradient w.r.t. Softmax Parameters
	Backpropogation for Convolutional Neural Networks
	Sensitivity Calculation
	Gradient Calculation

	Deep Feature Learning for Knee Cartilage Segmentation Using a Triplanar Convolutional Neural Network
	Introduction
	Method
	Convolutional Neural Networks.
	Triplanar Convolutional Neural Network.

	Application to Cartilage Segmentation in MRI Scans
	Evaluation and Results
	Discussion and Future Work

	Spatially Contextualized Convolutional Neural Network
	Introduction
	Learning Spatial Configuration
	Optimizing the New Extended Cost Function
	Experiments
	Weizmann's Horses
	Knee MRI Data

	Conclusion

	Discussion and Future Work
	Bibliography

