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Summary

This thesis addresses the problem of machine learning from biased
datasets in the context of astronomical applications. In astronomy there are
many cases in which the training sample does not follow the true distribution.
The thesis examines different types of biases and proposes algorithms to
handle them.

During learning and when applying the predictive model, active learning
enables algorithms to select training examples from a pool of unlabeled
data and to request the labels. This allows for selecting examples that
maximize the algorithm’s accuracy despite an initial bias in the training set.
Against this background, the thesis begins with a survey of active learning
algorithms for the support vector machine.

If the cost of additional labeling is prohibitive, unlabeled data can
often be utilized instead and the sample selection bias can be overcome
through domain adaptation, that is, minimizing the discrepancy between
training sample and the true distribution. A simple method consists of
weighting the elements of the training sample such that the empirical risk
becomes an unbiased estimator of the true distribution’s risk. The respective
weights can be computed as the probability density ratio of training and test
distribution. A model selection criterion—which is known in the context
of kernel-based weight estimators—is proposed to be combined with a
nearest neighbor density ratio estimator. It is shown to compare favorably
to alternative approaches when applied to large-scale problems with low-
dimensional feature spaces: a common setting in astronomical applications
such as photometric redshift estimation.

Another form of bias stems from label noise. This thesis considers the
scenario in which unreliable labels can be replaced by highly accurate labels
at a certain cost. This is, for example, the case in crowd-sourcing, where
unreliable labelers can be corrected by experts, or in astronomy, where
a labeling based on photometric data can be improved by spectroscopic
observations. An algorithm to actively select objects for correction under a
limited re-labeling budget is presented. It is shown empirically to converge
faster to the maximally attainable accuracy than the state-of-the-art.
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Chapter 1

Introduction

In many application areas the available datasets violate a basic assumption
underlying most supervised machine learning algorithms: Training and test data
are not drawn from the same distribution, that is, we have a sample Strain of
labeled examples (x, y) drawn from a distribution ptrain, which is different from
the test distribution ptest. We aim at learning a hypothesis h from Strain which
minimizes the generalization error over ptest. In general, if ptrain and ptest are
unrelated, this is not possible. In this thesis, we will consider scenarios in which
this difference is caused by a biased sample selection or by noisy labeling. We
show that if we make certain assumptions on the type of bias or label noise, or
have the possibility to obtain additional labels, we can still learn from biased
training data.

In astronomy, biased datasets are common. High-quality measurements that
provide ground-truth labels are costly and only available for certain regions of
the input space. This creates a sample selection bias. Furthermore, certain
annotations have to be performed by human labelers who are often unreliable or
make systematic errors. Learning algorithms which fail to address these biases
will in many cases perform sub-optimally.

Suitable bias correction strategies depend on the type of bias and on the
acquisition costs. If we can afford to take additional measurements, we can select
candidates for observation by active learning—a learning method which chooses
the examples it finds most useful to learn from. This has two advantages. First,
we may need to only examine a fraction of examples in comparison to sampling
uniformly at random from Strain. Second, we can compensate for a selection bias
by selecting examples that are under-represented in the current training set Strain
with respect to ptest.

Often, however, it is not possible to label additional examples, for instance,
because annotation costs are prohibitive. Each example might have to be exam-
ined by an expert or additional expensive measurements are needed to derive
the correct label. An example from astronomy is redshift estimation. The red-
shift of a galaxy measures how much its observed wavelength is shifted towards
longer wavelengths. We can use spectroscopy, which measures the photon count
over a wide range of wavelengths, to determine the redshift with high precision.
Spectroscopy, however, is very time-consuming, it can only measure few objects
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8 Chapter 1. Introduction

at the same time, and its depth is limited. It is therefore very costly and the
measurements are biased towards observations closer to the observer.

Photometric measurements, which measure an object’s intensity in a few
bands, provide an inexpensive alternative to spectroscopy. As they only require
an image of the sky, many objects can be observed at the same time. Photometric
data is also available for objects at great distance to the observer, but has the
drawback of providing less information in comparison to spectroscopic data.
Building a photometric redshift model based on known photometry-spectroscopy
correspondences remains a challenge in astronomy. It is complicated by the
selection bias caused by spectroscopic observations.

If an unlabeled sample drawn from ptest is available at training time, we can
minimize the discrepancy between training and test set by importance-weighting.
This is a simple strategy that re-weights training examples so that the empirical
risk of h on Strain becomes an unbiased estimator of the risk over the test
distribution ptest. The respective weights can be computed as the probability
density ratio between ptrain and ptest.

In some cases, expert annotations can be replaced by crowd-sourcing the
labeling process. A successful example in the astronomical domain is the Galaxy
Zoo project.1 It collected millions of labels from volunteers who classified images
observed by the Sloan Digital Sky Survey (SDSS) telescope and the Hubble Space
Telescope. The task was to determine the galaxy’s morphology which describes
its visual appearance, for instance, whether it looks elliptical or spiral.

While crowd-sourcing provides an inexpensive mechanism to collect a large
number of labels, the accuracy may suffer due to missing knowledge or low
motivation of the annotators. But even when experts obtain the labels, the
quality of the annotation is ultimately limited by the quality of the observation.
Figure 1.1 shows an example of a galaxy observed by the ground-based SDSS
telescope and by the space-based Hubble telescope. While an annotator might
label this galaxy as elliptical based on the left image, it is clear from the right
image, that it is in fact a spiral. When a new telescope becomes available, simply
using a label which is based on an old measurement would not provide the
most accurate annotation given the new observation. Both crowd-sourcing and
low-quality measurements thus can lead to label noise.

The effect of label noise can be mitigated by minimizing a surrogate loss
which takes into account a noise model. A simple and well-studied noise model
is class-conditional label noise. It assumes that the probability of observing the
wrong label is independent of the observed example given the true label. While
this assumption is most likely violated in many real-world classification tasks, it
has the advantage that the number of model parameters only depends on the
number of classes. This makes it easier to learn than sample-dependent noise
models.

In addition to using a label-noise robust model, one way to mitigate label noise
is simply to correct false labels manually. In practice the number of corrections is
usually limited by annotation costs. Active label correction aims at correcting the

1Visit http://www.galaxyzoo.org to classify a few galaxies yourself.

http://www.galaxyzoo.org


1.1. Active Learning 9

(a) Ground-based SDSS telescope (b) Hubble Space Telescope

Figure 1.1: A spiral galaxy as imaged by the Sloan Digital Sky Survey (SDSS)
ground-based telescope on the left and by the Hubble Space Telescope on the
right. Due to the lack of atmospheric distortion, the Hubble image is much better
resolved and reveals the spiral character of the galaxy. An annotator would label
this galaxy most likely as an elliptical if they based their annotation on the left
image [Galaxy Zoo, 2012].

label which increases the accuracy of the classifier the most to lessen annotation
costs. In the following we will present the background of the aforementioned
concepts in more detail.

1.1 Active Learning

Active learning aims at optimally utilizing a limited budget for acquiring labeled
data for supervised learning [Hanneke, 2009, Settles, 2012]. In many practical
applications data are not scarce, but labels are. Acquiring them is costly, and,
thus, the limited budget should be spent on labels that provide the maximum
insight to the learning algorithm. It has been shown empirically and theoretically
that in many cases one can do better than passive learning, that is, sampling
uniformly at random from the training set [Beygelzimer et al., 2010].

Another case in which active learning can be beneficial is large-scale learning.
Even if large amounts of labeled data are available, running time constraints
may not allow for training on the entire set. By exploiting informative regions
of the input space, performance gains over passive learning can be achieved. In
addition, active learning can mitigate the effects of a sample selection bias by
choosing examples that balance misrepresentation in the training set [Richards
et al., 2012].

Any active learning strategy necessarily has the drawback that the acquired
sample is not independent and identically distributed (i.i.d), an assumption which
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underlies most supervised learning algorithms. Luckily, this bias is introduced by
the learner itself and can thus be controlled, for instance, by importance-weighting
[Sugiyama, 2005, Bach, 2006, Beygelzimer et al., 2009]: If an example is selected
with too high probability it receives a small weight and vice versa, if it is sampled
with too small probability it receives a large weight.

Support vector machines exhibit excellent empirical performance while being
well-understood theoretically [Cortes and Vapnik, 1995, Steinwart and Christ-
mann, 2008]. Due to their limited scalability to large datasets they can benefit
greatly from active learning. Moreover, they can inform active learning strategies
by providing a distance to the separating hyperplane as a measure of how infor-
mative an example is [Lewis and Gale, 1994b, Tong and Chang, 2001]. To correct
a selection bias, sample weights can be introduced easily [Zadrozny et al., 2003].

1.2 Domain Adaptation

If there is no budget available to acquire additional labels, we can instead utilize
unlabeled data. If we have access to a large sample of unlabeled data that follows
the distribution of the test sample ptest, we can apply unsupervised domain
adaptation techniques [Daume III and Marcu, 2006, Jiang, 2008]. These aim
at minimizing the discrepancy between the marginal distributions ptrain(x) and
ptest(x) of training and test data [Ben-David et al., 2006].

As in active learning, importance weights can be used to alleviate the selection
bias [Huang et al., 2007, Cortes et al., 2008]. By weighting examples in the training
set by the probability density ratio of ptest to ptrain, an unbiased estimate of the
true risk can be computed. As in this case the weights are solely determined by
the data and not controlled by the algorithm as in active learning, the variance
of the estimator has to be controlled with care [Cortes et al., 2010].

The naive solution is estimating the probability densities separately before
computing their ratio. Sugiyama et al. [2010b] show empirically that this leads
to sub-optimal results. This might be because a small error in the estimation of
the denominator density can lead to a large error in the estimated ratio. Several
authors have proposed to use a one-step procedure to estimate the importance
weights directly [Sugiyama et al., 2008, Bickel et al., 2009]. Most estimators in
the literature rely on kernel-based methods [Huang et al., 2007, Kanamori et al.,
2012, Izbicki et al., 2014]. When applied to large-scale datasets these require
sub-sampling or approximations.

Nearest neighbor-based algorithms constitute a conceptually simple alternative
to kernel-based estimators [Lima et al., 2008, Loog, 2012]. They perform well
when the dimensionality of the input space is low and sample sizes are large,
a scenario which is common in astronomical applications such as photometric
redshift estimation [Lima et al., 2008]. They rely on counting test examples
within a radius that is defined by the Kth neighbor in the training sample,
thereby flexibly handling sparse regions in the input space.
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1.3 Learning with Noisy Labels

Apart from sample selection bias, datasets may be affected by label noise [Frenay
and Verleysen, 2014]. For instance, labels which are annotated by non-experts
through crowd-sourcing are often unreliable [Raykar et al., 2010]. Even though
these effects can be mitigated by a weighted averaging or by modeling the labelers,
a certain amount of data will remain labeled incorrectly. Furthermore, even
expert labelers may have difficulties annotating examples which are not well
resolved, or belong to a class that is easily confused with another. For example,
in astronomy the quality of observations is influenced by weather conditions,
resolution and other factors. In the case of galaxy morphology classification,
an object that has been identified in an astronomical survey as an elliptical
galaxy might in fact be a spiral. The particular details that would have helped
identifying the object could have been lost due to a limited resolution of the
imaging telescope.

Label noise can be addressed by robust surrogate losses that assume a certain
label noise model. This model can, for instance, depend on the true class
[Bootkrajang and Kabán, 2012, Natarajan et al., 2013], the examples [Xiao et al.,
2015], or the distance to an assumed true hyperplane separating the data [Du
and Cai, 2015]. Class-conditional noise models work well when the label noise is
asymmetric, that is, one class is mistaken more easily for another than vice versa.
These models may make strong assumptions about the label noise, but require
fewer parameters in comparison to sample-dependent models. Azadi et al. [2015]
show that the impact of label noise can also be mitigated by regularization. Their
regularizer, however, depends on the accuracy of a prior model pre-trained on
well-labeled data. Filtering noisy examples is another approach [Boser et al., 1992].
It has the drawback that it might reduce the training sample size significantly.

1.4 Active Label Correction

Even when label-noise robust loss functions are minimized, these can only lessen
the influence of label noise. It can be advantageous to correct as many labels as
possible with the help of an expert [Zeng and Martinez, 2001]. In practice, any
re-labeling budget will be limited and this raises the question of how it can be
spent effectively.

Active label correction is similar in spirit to active learning [Rebbapragada
et al., 2012]. The difference is that the queried examples are not unlabeled;
their labels are given, but are not trustworthy. This scenario is also known as
learning from weak teachers [Urner et al., 2012]. In contrast to the crowd-sourcing
literature, the label noise is assumed to be inherent, not the result of a distribution
of labels from different labelers [Sheng et al., 2008, Zhao et al., 2011].

Previous works have considered active learning strategies like uncertainty
sampling to pick examples for correction without employing a label noise model
[Rebbapragada et al., 2012]. In their purely theoretical work, Urner et al. [2012]
considered label noise, where the noise depends on the labels of examples in the
neighborhood.
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1.5 Outline of the Thesis

First, the thesis discusses the problem of sample selection bias with an emphasis
on astronomical applications. Chapter 2 gives an overview of machine learning
and image analysis algorithms in astronomy. Then active learning is discussed,
which can be used to mitigate the problem of sample selection bias by actively
picking examples minimizing it. As the support vector machine has several
advantageous theoretical properties and works well in practice, in chapter 3
existing methods that make use of this classifier in active learning scenarios are
surveyed.

In chapter 4 a nearest neighbor-based algorithm to estimate probability density
ratios is discussed. These estimates can be used as importance weights in domain
adaptation. The algorithm can be combined with a model selection criterion,
which originated from the kernel literature [Sugiyama et al., 2007], to select the
optimal number of neighbors. It is shown that it empirically outperforms kernel-
based methods in photometric redshift estimation, an astronomical application
where sample sizes are large, but the input dimensionality is often small.

Then in chapter 5 the thesis examines the problem of label noise. Active
label correction utilizes the current model to select examples for re-labeling by an
expert. We develop an algorithmic framework in which examples that maximize
the expected model change are chosen for correction. Within this framework we
derive three active label correction algorithms and show that an algorithm which
employs a label-robust maximum likelihood estimator performs best among these.
Furthermore, we demonstrate empirically that in the case of class-conditional
noise it outperforms algorithms that do not take into account the underlying
label noise distribution. Chapter 6 concludes the thesis and gives an outlook on
possible future work.

1.6 Included Manuscripts and Published Articles

The main contributions of this thesis are the following manuscripts and published
articles:

• J. Kremer, K. Steenstrup Pedersen, and C. Igel. Active learning with
support vector machines. Wiley Interdisciplinary Reviews. Data Mining
and Knowledge Discovery, 4(4):313–326, 2014

• J. Kremer, F. Gieseke, K. Steenstrup Pedersen, and C. Igel. Nearest
neighbor density ratio estimation for large-scale applications in astronomy.
Astronomy and Computing, 12:67–72, 2015

• J. Kremer, F. Sha, and C. Igel. Active label correction for class-conditional
noise. Submitted, 2016a

• J. Kremer, K. Stensbo-Smidt, F. Gieseke, K. Steenstrup Pedersen, and
C. Igel. Big universe, big data: Machine learning and image analysis for
astronomy. Submitted, 2016b



Chapter 2

Big Universe, Big Data:
Machine Learning and Image
Analysis for Astronomy

This chapter is based on the manuscript J. Kremer, K. Stensbo-Smidt, F. Gieseke,
K. Steenstrup Pedersen, and C. Igel. Big universe, big data: Machine learning
and image analysis for astronomy. Submitted, 2016b

Abstract

Astrophysics and cosmology are rich with data. The advent of wide-area
digital cameras on large aperture telescopes has led to ever more ambitious
surveys of the sky. The data volume of an entire survey from a decade
ago can now be acquired in a single night and real-time analysis is often
desired. Thus, modern astronomy requires big data know-how, in particular
it demands highly efficient machine learning and image analysis algorithms.
But scalability is not the only challenge: Astronomy applications touch
several current machine learning research questions, such as learning from
biased data and dealing with label and measurement noise. We argue that
this makes astronomy a great domain for computer science research, as it
pushes the boundaries of data analysis. We present this exciting application
area for data scientists. The article focuses on exemplary results, discusses
main challenges, and highlights some recent methodological advancements in
machine learning and image analysis triggered by astronomical applications.

2.1 Introduction

Astrophysics and cosmology are rich with data. The advent of wide-area digital
cameras on large aperture telescopes has led to ever more ambitious surveys of the
sky. The data volume of an entire survey from a decade ago can now be acquired
in a single night and real-time analysis is often desired. Thus, modern astronomy
requires big data know-how, in particular it demands highly efficient machine
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14 Chapter 2. Machine Learning and Image Analysis for Astronomy

Figure 2.1: An example of two morphology categories: on the left, the spiral
galaxy M101; on the right, the elliptical galaxy NGC 1132 (credit: NASA, ESA,
and the Hubble Heritage Team (STScI/AURA)-ESA/Hubble Collaboration).

learning and image analysis algorithms. But scalability is not the only challenge:
Astronomy applications touch several current machine learning research questions,
such as learning from biased data and dealing with label and measurement noise.
We argue that this makes astronomy a great domain for computer science research,
as it pushes the boundaries of data analysis. In the following, we will present this
exciting application area for data scientists. We will focus on exemplary results,
discuss main challenges, and highlight some recent methodological advancements
in machine learning and image analysis triggered by astronomical applications.

2.2 Ever-Larger Sky Surveys

One of the largest astronomical surveys to date is the Sloan Digital Sky Survey
(SDSS). Each night, the SDSS telescope produces 200 GB of data and now provides
close to a million field images, in which more than 200 million galaxies, and even
more stars, have been detected. A subset of the most visible galaxies formed
the foundation for the crowd-sourced Galaxy Zoo project, in which volunteers
classified more than 900,000 galaxies into one of six morphology categories (see
Figure 2.1). The project was followed by Galaxy Zoo 2, which focused on the
300,000 brightest and largest of the original Galaxy Zoo galaxies [Willett et al.,
2013]. Here, volunteers measured more detailed morphological features of the
galaxies, resulting in 16 million classifications. The images and classifications are
all publicly available, making this a highly valuable dataset for the development
of image analysis and machine learning algorithms.

Upcoming surveys will provide even larger data volumes. Euclid is a space-
based telescope selected by the European Space Agency (ESA) for launch in
2019, which will survey the sky for galaxies and map the large-scale structure
of the Universe. It will generate about 300 GB of image data per night, each
image with a resolution comparable to that of the Hubble Space Telescope. This
will enable precision measurements of the large-scale structure and the expansion
of the Universe, which can help solving some of the hardest and most exciting
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Figure 2.2: Increasing data volumes of existing and upcoming telescopes: Very
Large Telescope (VLT), Sloan Digital Sky Survey (SDSS), Visible and Infrared
Telescope for Astronomy (VISTA), Large Synoptic Survey Telescope (LSST) and
Thirty Meter Telescope (TMT).

challenges faced by physicists today, for example explaining dark matter and
dark energy.

Another promising future survey is the Large Synoptic Survey Telescope
(LSST). It will deliver wide-field images of the sky, exposing galaxies that are too
faint to be seen today. One of the main objectives of LSST is to discover transients,
objects that change brightness over time-scales of seconds to months. These
changes are due to a plethora of reasons; some may be regarded as uninteresting
while others will be extremely rare events, which cannot be missed. LSST is
expected to see millions of transients per night, which need to be detected in real-
time to allow for follow-up observations. With staggering 30 TB of images being
produced per night, efficient and accurate detection will be a major challenge.
Figure 2.2 shows how the data rates have increased and will continue to increase as
new surveys are initiated. Future missions will collect hundreds of measurements
for each of more than a billion objects.

What do these measurements look like? Surveys usually take either spectro-
scopic or photometric observations, see Figure 2.3. Spectroscopy measures the
photon count at thousands of wavelengths. The resulting spectrum allows for
identifying the chemical components of the observed object and thus enables
determining many interesting properties. Photometry takes images using a CCD,
and these are typically acquired through only a handful of broad-band filters,
making photometry much less informative than spectroscopy.

While spectroscopy provides measurements of high precision, it has two
drawbacks: First, it is not as sensitive as photometry, meaning that distant or
otherwise faint objects cannot be measured. Second, only few objects can be
captured at the same time, making it more expensive than photometry, which
allows for acquiring images of thousands of objects in a single image. Photometry
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Figure 2.3: The spectrum of galaxy NGC 5750 (black line), as seen by SDSS,
with the survey’s five photometric broad-band filters u, g, r, i, and z, ranging
from ultraviolet (u) to near-infrared (z ). For each band the galaxy’s brightness
is captured in an image.

can capture objects that may be ten times fainter than what can be measured
with spectroscopy. A faint galaxy is often more distant than a bright one—not
just in space, but also in time. Discovering faint objects therefore offers the
potential of looking further back into the history of the universe, over time-scales
of billions of years. Thus, photometric observations are invaluable to cosmologists,
as they help understanding the early universe.

Once these raw observations have been acquired, a pipeline of algorithms
needs to extract information from them. Much image-based astronomy currently
relies to some extent on visual inspection. A wide range of measurements is still
carried out by humans, but needs to be addressed by automatic image analysis
in light of growing data volumes. Examples are 3D orientation and chirality
of galaxies, and the detection of large-scale features, such as jets and streams.
Challenges in these tasks include image artifacts, spurious effects, and discerning
between merging galaxy pairs and galaxies that happen to overlap along the line
of sight. Current survey pipelines often have trouble correctly identifying these
types of problems, which then propagate into the databases.

A particular challenge is that cosmology relies on scientific analyses of long-
exposure images. As such, the interest in image analysis techniques for prepro-
cessing and de-noising is naturally great. This is particularly important for the
detection of faint objects with very low signal-to-noise ratios. Automatic object
detection is vital to any survey pipeline, with reliability and completeness being
essential metrics. Completeness refers to the amount of detected objects, whereas
reliability measures how many of the detections are actual objects. Maximizing
these metrics requires advanced image analysis and machine learning techniques.
Therefore, data science for astronomy is a quickly evolving field gaining more
and more interest. In the following, we will highlight some of its success stories.
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2.3 Big Data Analysis in Astronomy

Machine learning methods are able to uncover the relation between input data
(e.g., galaxy images) and outputs (e.g., physical properties of galaxies) based on
input-output samples, and they have already proved successful in astrophysical
contexts. For example, Mortlock et al. [2011] use Bayesian analysis to find the
most distant quasar to date. These are extremely bright objects forming at the
center of large galaxies and thus, are still visible from great distances. They
are, however, also extremely rare. In this case, Bayesian model comparison has
helped the scientists to select a few most likely objects for re-observation from
thousands of plausible candidates.

Another astrophysical application is photometric redshift estimation. Redshift
is caused by the Doppler effect, which shifts the spectrum of an object towards
longer wavelengths when it moves away from the observer. As the universe
is expanding uniformly, we can infer the velocity of a galaxy by its redshift
and, thus, its distance to Earth. Hence, redshift estimation is a useful tool for
determining the geometry of the universe. Redshift can be determined with
high precision by taking a spectroscopic measurement. An important question
in astronomy is, whether it can also be inferred from photometric observations,
since these are easier to acquire. We can build a training set from photometric
measurements whose redshifts are spectroscopically confirmed and subsequently
use, for instance, a neural network to learn a model for predicting the redshifts
[Collister and Lahav, 2004].

With easy access to the publicly available large databases containing data
from astronomical surveys, like SDSS, most big data-oriented work in astronomy
naturally use these as the starting point. Most quantities in these databases are
derived from images taken by the survey telescope(s). The derivation is usually
carried out by the survey consortia, and offered freely to the entire scientific
community with a delay of a year or less. The survey images themselves are,
however, often also freely available online, and offer an enormous potential for
image analysis to enable novel discoveries.

The measurement of galaxy morphologies from images is of major interest
to cosmologists. Morphology can tell astronomers about a galaxy’s formation
and history, which are valuable pieces of information when trying to understand
the Universe as a whole. While the majority of science on galaxy morphology
traditionally involves visual inspection, image analysis algorithms are gaining
momentum. In particular, convolutional neural networks (CNNs) have seen a
growing use in astronomy in the past years. As an example, Galaxy Zoo 2 has
been used to train a CNN to predict galaxy morphologies [Dieleman et al., 2015].

Image analysis is also widely applied in solar physics. The Sun is continuously
being monitored in high resolution by multiple satellites. Image analysis plays a
vital part in detection and classification of both sunspots and the solar eruptions,
such as flares and coronal mass ejections, which they may produce. Eruptions can
have serious consequences for the Earth, as millions of tons of charged particles
are accelerated out from the Sun. An eruption can short-circuit satellites around
the Earth, including the International Space Station, and, if large enough, electric
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systems on the ground. This can knock out power grids for long periods of time,
and especially navigation systems on planes crossing the polar regions are at risk
during high solar activity. Solar eruptions are therefore monitored constantly by
automated software; but not all events are detected [Robbrecht and Berghmans,
2004]. Continuous alert systems using advanced image analysis techniques hold
the potential to increase safety world-wide.

This glimpse of success stories of big data analysis in astronomy is by no
means exhaustive. An overview of machine learning methods that find application
in astronomy can be found in the survey by Ball and Brunner [2010].

2.4 Astronomy Driving Data Science

In the following, we present three examples from our own work showing how
astronomical data analysis can trigger methodological advancements in machine
learning and image analysis.

Describing the Shape of a Galaxy

A galaxy’s morphology is difficult to quantize in a concise manner. It is a
reasonable choice to assign a galaxy a class based on its appearance. Indeed, such
a classification approach has been used since galaxies were first discovered: in a
subjective way by manual inspection. More objective measures of morphology
have been studied, but none have conveyed the same amount of information as
the century-old classification scheme.

Image analysis does not only allow for automatic classification, but can also
inspire new ways to look at morphology [Pedersen et al., 2013, Polsterer et al.,
2015]. For instance, we examined how well one of the most fundamental measures
of galaxy evolution, the star-formation rate, could be predicted from the shape
index. The shape index measures the local structure around a pixel going from
dark blobs over valley-, saddle point- and ridge-like structures to white blobs. It
can thus be used as a measure of the local morphology on a per-pixel scale, see
Figure 2.4. The study showed that the shape index does indeed capture some
fundamental information about galaxies, which is missed by traditional methods.

Dealing with Sample Selection Bias

A challenging theoretical and practical problem in machine learning is caused
by sample selection bias. In supervised machine learning, the models are con-
structed based on labeled examples, that is, observations (e.g., images, spectra,
photometric features) together with their outputs (also referred to as labels, e.g.,
the corresponding redshift or galaxy type). Most machine learning algorithms
are built on the assumption that the training set has been sampled uniformly
at random from the population of interest (i.e., training and future test data
follow the same distribution). This allows for generalization, enabling the model
built from labeled examples in the training set to accurately predict the target
variables in an unlabeled test set. In real-life applications this assumption is
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Figure 2.4: From left to right: The original image of a galaxy merger, the
scale-space image of the galaxies, the curvedness (a measure of how pronounced
the local structure is), the shape index, and finally the shape index weighted
by the curvedness. The image shows the Antennae galaxies as seen by the
Hubble Space Telescope (credit: NASA, ESA, and the Hubble Heritage Team
(STScI/AURA)-ESA/Hubble Collaboration).

often violated—we refer to this as sample selection bias. Certain examples are
more likely to be labeled than others due to factors like availability or acquisition
cost regardless of their representation in the population. Sample selection bias
can be very pronounced in astronomical data sets, and machine learning methods
have to address this bias to achieve good generalization.

In astronomy, the mismatch between training and testing data can arise
for several reasons. Often only training data sets from old surveys are initially
available, while upcoming missions will probe never-before-seen regions in the
astrophysical parameter space. Crowd-sourcing efforts like the Galaxy Zoo project
are susceptible to a selection bias, too. As objects have to be recognizable to the
citizen scientists, candidates to be labeled are restricted to a limited depth in
space. Thus, again, certain regions of the input space will be underrepresented
in the training sample.

Fortunately, acquiring large datasets without labels is typically not a problem
anymore. Often we can obtain some labels, for example, by letting an expert
annotate some data or by taking spectroscopic measurements, which are both
costly procedures. This offers a remedy to the sample selection bias problem. We
can either utilize unlabeled examples to improve our model, or we can obtain the
labels of some unlabeled data points. As the latter is costly, we must try to find
the observations that would improve our model the most after labeling.

When the learning algorithm is allowed to choose the examples that maximally
improve the model, we speak of active learning. In the context of sample selection
bias, we can then choose examples that minimize the difference between training
and test distribution. Richards et al. [2012] have demonstrated how active
learning helps to compensate sample selection bias when classifying variable stars
(i.e., different types of stars that change their brightness over time).
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When we do not have the budget or even the possibility to label additional
examples, we can resort to domain adaptation algorithms. These methods assume
that we not only have access to a labeled training set that may be subject to a
selection bias, but also to an unlabeled test set that follows the distribution of the
population, and the latter is used to correct for the bias. Importance-weighting
is a simple, yet effective domain adaptation algorithm. The idea is to give more
weight to examples in the training sample which lie in regions of the feature space
that are underrepresented in the test sample and, likewise, give less weights to
examples whose location in the feature space is overrepresented in the test set. If
these weights are estimated correctly, the model we learn from the training data
is an unbiased estimate of the model we would learn from a sample that follows
the population’s distribution. The challenge lies in estimating these weights
reliably and efficiently. Given a sufficiently large sample, a simple strategy can
be followed: Using a nearest neighbor-based approach, we can count the number
of test examples that fall within a hypersphere whose radius is defined by the
distance to the Kth neighbor of a training example. The weight is then the ratio
of the number of these test examples over K. This flexibly handles regions which
are sparse in the training sample. In the case of redshift estimation, we could
alleviate a selection bias by utilizing a large sample of photometric observations
to determine the weights for the spectroscopically confirmed training set [Kremer
et al., 2015].

Scaling-up Nearest Neighbor Search

Nearest neighbor methods are not only useful to address the sample selection
bias, they have proven to provide excellent prediction results in astrophysics and
cosmology. For example, they are used to generate candidates for quasars at
high redshift [Polsterer et al., 2013]. Nearest neighbor methods work particularly
well when the number of training examples is high and the input space is low-
dimensional. This makes them a good choice for analyzing large sky surveys
where the objects are described by photometric features (e.g., the five intensities
in the frequency bands shown in Figure 2.3). However, searching the nearest
neighbors becomes a computational bottleneck in this big data setting.

In general, powerful compute servers can be employed to reduce the running
time of machine learning algorithms, where the individual nodes conduct parts
of the overall task. However, making use of supercomputers might become
very expensive and parallelizing the work may not be straight-forward. There
are several ways to address this issue, namely the application of special data
structures, the approximation of the underlying problem, or the development of
algorithms that allow for a massively-parallel implementation.

To compute the nearest neighbors for a given query object, spatial search
structures such as k-d trees are an established way to reduce the computational
requirements. If the input space dimensionality is moderate (say, up to 30), the
running time can often be reduced by several orders of magnitude. One could
also apply approximate nearest neighbor search [Arya et al., 1994]. However, we
are interested in the exact solutions for our astronomical data analysis. Thus, we
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Figure 2.5: The buffer k-d tree data structure depicts an extension of classical
k-d trees and can be used to efficiently process huge amounts of nearest neighbor
queries using GPUs. The gray components (top tree and leaf structure) are
stored on the device (GPU); the remaining ones (input/reinsert queue and
buffers) are stored on the host CPU system. Nearest neighbor queries are
repeatedly distributed to appropriate leaves and large chunks of queries are
processed together in a massively-parallel manner on the GPU [Gieseke et al.,
2014].

resort to inexpensive massively-parallel devices, graphics processing units (GPUs),
to accelerate the involved computations. Unfortunately, nearest neighbor search
based on spatial data structures cannot be parallelized in an obvious way. To
this end, we developed a new algorithm that allows for efficient massively-parallel
traversal of spatial search structures as sketched in Figure 2.5, which can achieve
a significant running time reduction at a much lower cost compared to traditional
parallel computing architectures. The corresponding framework can be used to
efficiently search for nearest neighbors given large training and test sets with
hundreds of millions of data points [Gieseke et al., 2014]. Such variants of classical
approaches that can handle massive amounts of data efficiently and at low cost
will be crucial for the upcoming data-intensive analyses in astronomy.
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2.5 Physical Models vs. Machine Learning Models

The biggest concern data scientists meet when bringing forward data-driven
machine learning models in astrophysics and cosmology is arguably lack of in-
terpretability. There are two different approaches to predictive modeling in
astronomy: physical modeling and data-driven modeling. The traditional one
is to build physical models, which can incorporate all necessary astrophysical
background knowledge. These models can be used for prediction, for example,
by running Monte Carlo simulations. Ideally, this approach ensures that the
predictions are physically plausible. In contrast, there may be the risk that
extrapolations by a purely data-driven machine learning model violate physical
laws. The decisive feature of physical models is that they also provide an under-
standing of why certain observations could have been made. This interpretability
of predictions is typically not provided when using a machine learning approach.

Physical models have the drawbacks that they are difficult to construct and
that inference may take a long time (e.g., in the case of Monte Carlo simulations).
Most importantly, the quality of the predictions depends on the quality of
the physical model, which is typically limited by necessary simplifications and
incomplete scientific knowledge. In our experience, data-driven models typically
outperform physical models in terms of prediction accuracy [Stensbo-Smidt
et al., 2013, 2015]. Thus, we strongly advocate data-driven models when we
are mainly interested in accurate predictions. And this is indeed often the case,
for example, if we want to estimate properties of objects in the sky for quickly
identifying observations worth a follow-up investigation or for conducting large-
scale statistical analyses. Generic machine learning methods are not meant to
replace physical modeling, because they typically do not provide scientific insights
beyond the predicted values. Still, we argue that if prediction accuracy is what
matters, one should favor the more accurate model, whether it is interpretable or
not. Having said this, while the black-and-white portrayal of the two approaches
may help to illustrate common misunderstandings between data scientists and
physicists, it is of course shortsighted. Physical and machine learning modeling are
not mutually exclusive: Physical models can inform machine learning algorithms,
and machine learning can support physical modeling. A simple example for the
latter is using machine learning to estimate the error residuals of a physical model
[Pedersen et al., 2013].

Dealing with uncertainties is a major issue in astronomical data analysis.
Data scientists are asked to provide error bars for their predictions and have to
think about how to deal with input noise. In astronomy, both input and output
data have (non-Gaussian) errors attached to them. Often these measurement
errors have been quantified (e.g., by incorporating the weather conditions at the
day the data was obtained), and it is desirable to consider these errors in the
prediction. Bayesian modeling and Monte Carlo methods simulating physical
models offer solutions, however, often they do not scale for big data. Alternatively,
one can modify machine learning methods to process error bars, as attempted for
nearest neighbor regression by modifying the distance function [Polsterer et al.,
2013].
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2.6 A Peek into the Future

The future looks bright for data science in astronomy. Within the next few years,
image analysis and machine learning systems that can process terabytes of data
in near real-time with high accuracy will be essential.

There are great opportunities for making novel discoveries, even in databases
that have been available for decades. The volunteers of Galaxy Zoo have demon-
strated this multiple times by discovering structures in the SDSS images that
have later been confirmed to be new types of objects. These volunteers are not
trained scientists, yet they make new scientific discoveries.

Even today, only a fraction of the images of SDSS have been inspected by
humans. Without doubt, the data still hold many surprises, and upcoming
surveys, such as LSST, are bound to image previously unknown objects. It will
not be possible to manually inspect all images produced by these surveys, making
advanced image analysis and machine learning algorithms of vital importance.

One may use such systems to answer questions like how many types of
galaxies there are, what distinguishes the different classes, whether the current
classification scheme is good enough, and whether there are important sub-classes
or undiscovered classes. These questions require data science knowledge rather
than astrophysical knowledge, yet the discoveries will still help astrophysics
tremendously.

In this new data-rich era, astronomy and computer science can benefit greatly
from each other. There are new problems to be tackled, novel discoveries to be
made, and above all, new knowledge to be gained in both fields.





Chapter 3

Active Learning with Support
Vector Machines

This chapter is based on the article J. Kremer, K. Steenstrup Pedersen, and
C. Igel. Active learning with support vector machines. Wiley Interdisciplinary
Reviews. Data Mining and Knowledge Discovery, 4(4):313–326, 2014

Abstract

In machine learning, active learning refers to algorithms that autonomously
select the data points from which they will learn. There are many data
mining applications in which large amounts of unlabeled data are readily
available, but labels (e.g., human annotations or results from complex exper-
iments) are costly to obtain. In such scenarios, an active learning algorithm
aims at identifying data points that, if labeled and used for training, would
most improve the learned model. Labels are then obtained only for the
most promising data points. This speeds up learning and reduces labeling
costs. Support vector machine (SVM) classifiers are particularly well-suited
for active learning due to their convenient mathematical properties. They
perform linear classification, typically in a kernel-induced feature space,
which makes measuring the distance of a data point from the decision
boundary straightforward. Furthermore, heuristics can efficiently estimate
how strongly learning from a data point influences the current model. This
information can be used to actively select training samples. After a brief
introduction to the active learning problem, we discuss different query strate-
gies for selecting informative data points and review how these strategies
give rise to different variants of active learning with SVMs.

3.1 Introduction

In many applications of supervised learning in data mining, huge amounts of
unlabeled data samples are cheaply available while obtaining their labels for
training a classifier is costly. To minimize labeling costs, we want to request labels
only for potentially informative samples. These are usually the ones that we
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expect to improve the accuracy of the classifier to the greatest extent when used
for training. Another consideration is the reduction of training time. Even when
all samples are labeled, we may want to consider only a subset of the available data
because training the classifier of choice using all the data might be computationally
too demanding. Instead of sampling a subset uniformly at random, which is
referred to as passive learning, we would like to select informative samples to
maximize accuracy with less training data. Active learning denotes the process of
autonomously selecting promising data points to learn from. By choosing samples
actively, we introduce a selection bias. This violates the assumption underlying
most learning algorithms that training and test data are identically distributed:
an issue we have to address to avoid detrimental effects on the generalization
performance.

In theory, active learning is possible with any classifier that is capable of passive
learning. This review focuses on the support vector machine (SVM) classifier.
It is a state-of-the-art method, which has proven to give highly accurate results
in the passive learning scenario and which has some favorable properties that
make it especially suitable for active learning: (i) SVMs learn a linear decision
boundary, typically in a kernel-induced feature space. Measuring the distance
of a sample to this boundary is straightforward and provides an estimate of
its informativeness. (ii) Efficient online learning algorithms make it possible to
obtain a sufficiently accurate approximation of the optimal SVM solution without
retraining on the whole dataset. (iii) The SVM can weight the influence of single
samples in a simple manner. This allows for compensating the selection bias that
active learning introduces.

3.2 Active Learning

In the following we focus on supervised learning for classification. There also
exists a body of work on active learning with SVMs in other settings such as
regression [Demir and Bruzzone, 2012] and ranking [Brinker, 2004, Yu, 2005]. A
discussion of these settings is, however, beyond the scope of this article.

The training set is given by L = {(x1, y1), ..., (x`, y`)} ⊂ X ×Y . It consists of
` labeled samples that are drawn independently from an unknown distribution
D. This distribution is defined over X × Y, the cross product of a feature space
X and a label space Y, with Y = {−1, 1} in the binary case. We try to infer a
hypothesis f : X → Z mapping inputs to a prediction space Z for predicting the
labels of samples drawn from D. To measure the quality of our prediction, we
define a loss function L : Z×X ×Y → R+. Thus, our learning goal is minimizing
the expected loss

R(f) = E(x,y)∼D

[
L(f(x), x, y)

]
, (3.1)

which is called the risk of f . We call the average loss over a finite sample L the
training error or empirical risk. If a loss function does not depend on the second
argument, we simply omit it.

In sampling-based active learning, there are two scenarios: stream-based
and pool-based. In stream-based active learning, we analyze incoming unlabeled
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samples sequentially, one sample at a time. Contrary, in pool-based active learning
we have access to a pool of unlabeled samples at once. In this case, we can
rank samples based on a selection criterion and query the most informative ones.
Although, some of the methods in this review are also applicable to stream-based
learning, most of them consider the pool-based scenario. In the case of pool-based
active learning, we have, in addition to the labeled set L, access to a set of m
unlabeled samples U = {x`+1, ..., x`+m}. We assume that there exists a way to
provide us with a label for any sample from this set (the probability of the label
is given by D conditioned on the sample). This may involve labeling costs, and
the number of queries we are allowed to make may be restricted by a budget.
After labeling a sample, we simply add it to our training set.

In general, we aim at achieving a minimum risk by requesting as few labels
as possible. We can estimate this risk by computing the average error over an
independent test set not used in the training process. Ultimately, we hope to
require less labeled samples for inferring a hypothesis performing as well as a
hypothesis generated by passive learning on L and completely labeled U .

In practice, one can profit from an active learner if only few labeled samples
are available and labeling is costly, or when learning has to be restricted to
a subset of the available data to render the computation feasible. A list of
real-world applications is given in the general active learning survey [Settles,
2012] and in a review paper which considers active learning for natural language
processing [Olsson, 2009].

Active learning can also be employed in the context of transfer learning [Shi
et al., 2008]. In this setting, samples from the unlabeled target domain are
selected for labeling and included in the source domain. A classifier trained on
the augmented source dataset can then exploit the additional samples to increase
its accuracy in the target domain. This technique has been used successfully,
for example, in an astronomy application [Richards et al., 2012] to address a
sample selection bias, which causes source and target probability distributions to
mismatch [Quionero-Candela et al., 2009].

3.3 Support Vector Machine

Support vector machines (SVMs) are state-of-the-art classifiers [Boser et al.,
1992, Cortes and Vapnik, 1995, Mammone et al., 2009, Salcedo-Sanz et al., 2014,
Schölkopf and Smola, 2002, Shawe-Taylor and Cristianini, 2004]. They have
proven to provide well-generalizing solutions in practice and are well understood
theoretically [Steinwart and Christmann, 2008]. The kernel trick [Schölkopf and
Smola, 2002] allows for an easy handling of diverse data representations (e.g.,
biological sequences or multimodal data). Support vector machines perform
linear discrimination in a kernel-induced feature space and are based on the
idea of large margin separation: they try to maximize the distance between the
decision boundary and the correctly classified points closest to this boundary. In
the following, we formalize SVMs to fix our notation, for a detailed introduction
we refer to the recent WIREs articles [Mammone et al., 2009, Salcedo-Sanz et al.,
2014].
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An SVM for binary classification labels an input x according to the sign of a
decision function of the form

f(x) = 〈w, φ(x)〉+ b =
∑̀
i=1

αiyiκ(xi, x) + b , (3.2)

where κ is a positive semi-definite kernel function [Aronszajn, 1950] and φ(x) is
a mapping X → F to a kernel-induced Hilbert space F such that κ(xi, xj) =
〈φ(xi), φ(xj)〉. We call F the feature space, which includes the weight vector

w =
∑`

i=1 αiyiφ(xi) ∈ F . The training patterns xi with αi > 0 are called support
vectors. The decision boundary is linear in F and the offset from the origin is
controlled by b ∈ R.

The distance of a pattern (x, y) from the decision boundary is given by
|f(x)/‖w‖|. We call yf(x) the functional margin and yf(x)/‖w‖ the geometric
margin: a positive margin implies correct classification. Let us assume that
the training data L is linearly separable in F . Then m(L, f) = min(x,y)∈L yf(x)
defines the margin of the whole data set L with respect to f (in the following
we do not indicate the dependency on L and f if it is clear from the context).
We call the feature space region {x ∈ X | |f(x)| ≤ 1} the margin band [Campbell
et al., 2000].

A hard margin SVM computes the linear hypothesis that separates the data
and yields a maximum margin by solving

max
w,b,γ

γ (3.3)

subject to yi(〈w, φ(xi)〉+ b) ≥ γ , i = 1, . . . , `

‖w‖ = 1

with w ∈ F , b ∈ R and γ ∈ R [Shawe-Taylor and Cristianini, 2004]. Instead
of maximizing γ and keeping the norm of w fixed to one, one can equivalently
minimize ‖w‖ and fix a target margin, typically γ = 1.

In general, we cannot or do not want to separate the full training data
correctly. Soft margin SVMs mitigate the concept of large margin separation.
They are best understood as the solutions of the regularized risk minimization
problem

min
w,b

1

2
‖w‖2 +

∑̀
i=1

CiLhinge(〈w, φ(xi)〉+ b, yi) . (3.4)

Here, Lhinge(f(xi), yi) = max(0, 1− yif(xi)) denotes the hinge loss. An optimal

solution w∗ =
∑`

i=1 α
∗
i yiφ(xi) has the property that 0 ≤ α∗i ≤ Ci for i = 1, . . . , `.

For soft margin SVMs, the patterns in L need not be linearly separable in F . If
they are, increasing the Ci until an optimal solution satisfies α∗i < Ci for all i
leads to the same hypothesis as training a hard margin SVM. Usually, all samples
are given the same weight Ci = C.
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3.4 Uncertainty Sampling

It seems to be intuitive to query labels for samples that cannot be easily classified
using our current classifier. Consider the contrary: if we are very certain about
the class of a sample, then we might regard any label that does not reflect our
expectation as noise. On the other hand, uncovering an expected label would
not make us modify our current hypothesis.

Uncertainty sampling was introduced by Lewis and Gale [Lewis and Gale,
1994a]. The idea is that the samples the learner is most uncertain about provide
the greatest insight into the underlying data distribution. Figure 3.1 shows an
example in the case of an SVM. Among the three different unlabeled candidates,
our intuition may suggest to ask for the label of the sample closest to the decision
boundary: the labels of the other candidates seem to clearly match the class of
the samples on the respective side or are otherwise simply mislabeled. In the
following, we want to show how this intuitive choice can be justified and how
it leads to a number of active learning algorithms that make use of the special
properties of an SVM.

Figure 3.1: The three rectangles depict unlabeled samples while the blue circles
and orange triangles represent positively and negatively labeled samples, respec-
tively. Intuitively, the label of the sample xa might tell us the most about the
underlying distribution of labeled samples, since in the feature space, φ(xa) is
closer to the decision boundary than φ(xb) or φ(xc).

Version Space

The version space is a construct that helps to keep track of all hypotheses that
are able to perfectly classify our current observations [Mitchell, 1982]. Thus, for
the moment, we assume that our data are linearly separable in the feature space.
The idea is to speed up learning by selecting samples in a way that minimizes
the version space rapidly with each labeling.

We can express the hard margin SVM classifier (3.3) in terms of a geometric
representation of the version space. For this purpose, we restrict our consideration
to hypotheses f(x) = 〈w, φ(x)〉 without bias (i.e., b = 0). The following results,
however, can be extended to SVMs with b 6= 0.
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The version space V(L) refers to the subset of F that includes all hypotheses
consistent with the training set L [Mitchell, 1982]:

V(L) :=
{
w ∈ F | ‖w‖ = 1, yf(x) > 0,∀(x, y) ∈ L

}
(3.5)

In this representation, we can interpret the hypothesis space as the unit hyper-
sphere given by ‖w‖ = 1. The surface of the hypersphere includes all possible
hypotheses classifying samples that are mapped into the feature space F . We
define Λ(V) as the area the version space occupies on the surface of this hyper-
sphere. This is depicted in Figure 3.2. The hypothesis space is represented by
the big sphere. The white front, which is cut out by the two hyperplanes, depicts
the version space.

Each sample x can be interpreted as defining a hyperplane through the origin
of F with the normal vector φ(x). Each hyperplane divides the feature space into
two half-spaces. Depending on the label y of the sample x, the version space is
restricted to the surface of the hypersphere that lies on the respective side of the
hyperplane. For example, a sample x that is labeled with y = +1, restricts the
version space to all w on the unit hypersphere for which 〈w, φ(x)〉 > 0, i.e., the
ones that lie on the positive side of the hyperplane defined by the normal vector
φ(x). Thus, the version space is defined by the intersection of all half-spaces and
the surface of the hypothesis hypersphere. Figure 3.2a illustrates this geometric
relationship.

(a) The sphere depicts the hypothesis
space. The two hyperplanes are induced
by two labeled samples. The version
space is the part of the sphere surface
(in white) that is on one side of each hy-
perplane. The respective side is defined
by its label.

(b) The center (in black) of the orange
sphere depicts the SVM solution within
the version space. It has the maximum
distance to the hyperplanes delimiting
the version space. The normals of these
hyperplanes, which are touched by the
orange sphere, correspond to the sup-
port vectors.

Figure 3.2: Geometric representation of the version space in 3D following
Tong [Tong, 2001].

If we consider a feature mapping with the property ∀x, z ∈ X : ‖φ(x)‖ =
‖φ(z)‖, such as normalized kernels, including the frequently used Gaussian kernel,
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then the SVM solution (3.3) has a particularly nice geometric interpretation in
the version space. Under this condition, the decision function f(x) = 〈w, φ(x)〉
maximizing the margin m(L, f) (i.e., the minimum y〈w, φ(x)〉 over L) also
maximizes the minimum distance between w and any hyperplane defined by a
normal φ(xi), i = 1, . . . , `. The solution is a point within the version space, which
is the center of a hypersphere, depicted in orange in Figure 3.2b. This hypersphere
yields the maximum radius possible without intersecting the hyperplanes that
delimit the version space. The radius is given by r = y〈w,φ(x)〉

‖φ(x)‖ , where φ(x) is any

support vector. Changing our perspective, we can interpret the normals φ(xi) of
the hyperplanes touching the hypersphere as points in the feature space F . Then,
these are exactly the support vectors since they have the minimum distance to
our decision boundary defined by w. This distance is m(L, f), which turns out
to be proportional to the radius r.

Implicit Version Space

An explicit version space, as defined above, only exists if the data are separable,
which is often not the case in practice. The Bayes optimal solution need not have
vanishing training error (as soon as under D we have p(y1|x) ≥ p(y2|x) > 0 for
some x ∈ X and y1, y2 ∈ Y with y1 6= y2). Thus, minimizing the version space
might exclude hypotheses with non-zero training error that are in fact optimal. In
agnostic active learning [Balcan et al., 2006], we do not make the assumption of an
existing optimal zero-error decision boundary. An algorithm that is theoretically
capable of active learning in an agnostic setting is the A2-algorithm [Balcan
et al., 2006]. Here, a hypothesis cannot be deleted due to its disagreement with
a single sample. If, however, all hypotheses that are part of the current version
space agree on a region within the feature space, this region can be discarded.
For each hypothesis the algorithm keeps an upper and a lower bound on its
training error (see the work by Balcan et al. [Balcan et al., 2006] for details). It
subsequently excludes all hypotheses which have a lower bound that is higher
than the global minimal upper bound. Despite being intractable in practice,
this algorithm forms the basis of some important algorithms compensating the
selection bias as discussed below.

Uncertainty-Based Active Learning

Although the version space is restricted to separable problems, it motivates many
general active selection strategies. Which samples should we query to reduce the
version space? As we have seen previously, each labeled sample that becomes a
support vector restricts the version space to one side of the hyperplane it induces
in F . If we do not know the correct label of a sample in advance, we should
always query the sample that ideally halves the version space. This is a safe
choice as we will reduce it regardless of the label. Computing the version space in
a high-dimensional feature space is usually intractable, but we can approximate it
efficiently using the SVM. In the version space, the SVM solution w is the center
of the hypersphere touching the hyperplanes induced by the support vectors.
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Each hyperplane delimits the version space. Assuming that the center of this
hypersphere is close to the center of the version space, we can use it as an
approximation. If we now choose a hyperplane that is close to this center, we
approximately bisect the version space. Therefore, we want to query the sample
x̂ that induces a hyperplane as close to w as possible:

x̂ = argmin
x∈U

|〈w, φ(x)〉| = argmin
x∈U

|f(x)| (3.6)

This strategy queries the sample closest to the current decision boundary and is
called Simple Margin [Tong, 2001]. Figure 3.3 shows this principle geometrically,
projected to two dimensions.

(a) Simple Margin will query the sample
that induces a hyperplane lying closest
to the SVM solution. In this case, it
would query sample xa.

(b) Here the SVM does not provide a
good approximation of the version space
area. Simple Margin would query sam-
ple xa while xc might have been a more
suitable choice.

Figure 3.3: The version space area is shown in white, the solid lines depict the
hyperplanes induced by the support vectors, the center of the orange circle is the
weight vector w of the current SVM. The dotted lines show the hyperplanes that
are induced by unlabeled samples. This visualization is inspired by Tong [Tong,
2001].

By querying the samples closest to the separating hyperplane, we try to
minimize the version space by requesting as few labels as possible. However,
depending on the actual shape of the version space, the SVM solution may not
provide a good approximation and another query strategy would have achieved
a greater reduction of the version space area. This is illustrated in Figure 3.3b.
The strategy of myopically querying the samples with the smallest margin may
even perform worse than a passive learner.

Therefore, we can choose a different heuristic to approximate the version
space more accurately [Schohn and Cohn, 2000, Tong and Koller, 2002]. For
instance, we could compute two SVMs for each sample: one for the case we
labeled it positively and one assuming a negative label. We can then, for each
case, compute the margins m+ = +〈w, φ(x)〉 and m− = −〈w, φ(x)〉. Finally,
we query the sample which gains the maximum value for min(m+,m−). This
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quantity will be very small if the corresponding version spaces are very different.
Thus, we take the maximum to gain an equal split. This strategy is called
MaxMin Margin [Tong, 2001] and allows us to make a better choice in case of an
irregular version space area, as we can see in Figure 3.4. This, however, comes
with the additional costs of computing the margin for each potential labeling.

Figure 3.4: In this case, the MaxMin Margin strategy would query sample xc.
Each of the two orange circles correspond to an SVM trained with a positive and
a negative labeling of xc [Tong, 2001].

Uncertainty sampling can also be motivated by trying to minimize the training
error directly [Campbell et al., 2000]. Depending on the assumptions made, we
can arrive at different strategies. Considering the classifier has just been trained
on few labeled data, we assume the prospective labels of the yet unlabeled data
to be uncorrelated with the predicted labels. Therefore, we want to select the
sample for which we can expect the largest error, namely

x̂ = argmax
x∈U

1

2

[
max(0, 1− f(x)) + max(0, 1 + f(x))

]
, (3.7)

where we assume the hinge loss and f(x) as defined in (3.2). Assuming a separable
dataset, we are only interested in uncertain samples, i.e., those within the margin
band. Under these constraints, any choice of x leads to the same value of the
objective (3.7): we select the sample at random in this case. However, as soon
as some labeled samples are available for SVM training, the prediction of the
SVM for an unlabeled point x is expected to be positively correlated with the
label of x. Thus, we assume correct labeling and look for each sample at the
minimum error we gain regardless of the labeling. We want to find the sample
that maximizes this quantity, i.e.,

x̂ = argmax
x∈U

min
{

max(0, 1− f(x)),max(0, 1 + f(x))
}

(3.8)

= argmin
x∈U

|f(x)| , (3.9)

which gives us the same selection criterion as in (3.6), the Simple Margin strategy.
If all unlabeled samples meet the target margin (i.e., the hinge loss of the samples
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is zero) and if we assume the SVM labels them correctly (i.e., |f(x)| ≥ 1), it
seems that we have arrived at a hypothesis that already generalizes well. Both,
picking samples near or far away from the boundary appears to be non-optimal.
Therefore, we simply proceed by choosing a random sample from the unlabeled
data.

In practice, we may start by training on a random subset and perform
uncertainty sampling until the user stops the process or until all unlabeled
samples meet the target margin. In this case, we query another random subset
as a validation set and estimate the error. We may repeat the last step until we
reach a satisfactory solution.

Expected Model Change

Instead of trying to minimize an explicit or implicit version space, we can find
the most informative sample by selecting it based on its expected effect on the
current model, the expected model change. In gradient-based learning, this means
selecting the sample x ∈ U that, if labeled, would maximize the expected gradient
length, where we take the expectation Ey over all possible labels y.

Non-linear SVMs are usually trained by solving the underlying quadratic
optimization problem in its Wolfe dual representation [Cortes and Vapnik, 1995,
Schölkopf and Smola, 2002]. Let us assume SVMs without bias. If we add a new
sample (x`+1, y`+1) to the current SVM solution and initialize its coefficient with
α`+1 = 0, the partial derivative with respect to α`+1 of the dual problem W (α)
to be maximized is

g`+1 =
∂W (α)

∂α`+1
= 1− y`+1

∑̀
i=1

αiyiκ(xi, x`+1) = 1− y`+1f(x`+1) . (3.10)

As αi is constrained to be non-negative, we only change the model if the partial
derivative is positive, that is, if y`+1f(x`+1) < 1. Note that y`+1f(x`+1) > 1
implies that (x`+1, y`+1) is already correctly classified by the current model and
meets the target margin.

Let us assume that our current model classifies any sample perfectly and that
the dataset is linearly separable in the feature space:

p(y|x) =

{
1 if y f(x) > 0
0 otherwise

. (3.11)

If we just consider the partial derivative g`+1 in the expected model change
selection criterion, we arrive at selecting

x̂ = argmax
x∈U

(
p(y = 1|x)|1− f(x)|+ p(y = −1|x)|1 + f(x)|

)
= argmax

x∈U

(
p(y = 1|x)(1− f(x)) + p(y = −1|x)(1 + f(x))

)
= argmax

x∈U

{
1− f(x) if f(x) > 0
1 + f(x) if f(x) < 0

= argmin
x∈U

|f(x)| . (3.12)



3.5. Combining Informativeness and Representativeness 35

Thus, uncertainty sampling can also be motivated by maximizing the expected
model change. Next, we want to have a look at approaches that try to exploit
the uncertainty of samples and simultaneously explore undiscovered regions of
the feature space.

3.5 Combining Informativeness and
Representativeness

By performing mere uncertainty sampling, we may pay too much attention
to certain regions of the feature space and neglect other regions that are more
representative of the underlying distribution. This leads to a sub-optimal classifier.
To counteract this effect, we could sample close to the decision boundary, but
also systematically include samples that are farer away [Guyon et al., 2011, Ho
et al., 2011].

In Figure 3.5, we see an example where uncertainty sampling can mislead
the classifier. Although φ(xa) is closest to the separating hyperplane, it is
also far away from all other samples in feature space and thus may not be
representative of the underlying distribution. To avoid querying outliers, one
would like to select samples not only based on their informativeness, but also
based on representativeness [Dasgupta, 2011]. In our example, selecting sample
xb would be a better choice, because it is located in a more densely populated
region where a correct classification is of more importance to gain an accurate
model.

Figure 3.5: The white rectangles depict unlabeled samples. The blue circle and
the orange triangle are labeled as positive and negative, respectively. In feature
space, φ(xa) lies closer to the separating hyperplane than φ(xb), but is located in
a region, which is not densely populated. Using pure uncertainty sampling, e.g.,
Simple Margin, we would query the label of sample xa.

Informativeness is a measure of how much querying a sample would reduce
the uncertainty of our model. As we have seen, uncertainty sampling is a viable
method to exploit informativeness. Representativeness measures how well a
sample represents the underlying distribution of unlabeled data [Settles, 2012].
By using a selection criterion that maximizes both measures, we try to improve our
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models with less samples than a passive learner while carefully avoiding a model
that is too biased. In Figure 3.6 we can see a comparison of the different strategies
using a toy example where we sequentially query six samples. Figure 3.6a shows
a biased classifier as the result of uncertainty sampling. While the solution in
Figure 3.6b is closer to the optimal hyperplane, it also converges slower, as it
additionally explores regions where we are relatively certain about the labels.
Combining both strategies, as shown in Figure 3.6c, yields a decision boundary
that is close to the optimal (Figure 3.6d) with fewer labels.

(a) Uncertainty sampling. (b) Selecting representative samples.

(c) Combining informativeness and rep-
resentativeness.

(d) Optimal hyperplane, obtained by
training on the whole dataset.

Figure 3.6: Binary classification with active learning on six samples and passive
learning on the full dataset.

Semi-Supervised Active Learning

To avoid oversampling unrepresentative outliers, we can combine uncertainty
sampling and clustering [Xu et al., 2003]. First, we train an SVM on the labeled
samples and then apply k-means clustering to all unlabeled samples within the
margin band to identify k groups. Finally, we query the k medoids. As only
samples within the margin band are considered, they are all subject to high
uncertainty. The clustering ensures that the informativeness of our selection is
increased by avoiding redundant samples.
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However, when using clustering, one has to decide what constitutes a clus-
ter [Dasgupta and Hsu, 2008]. Depending on the scale and the selected number
of clusters, different choices could be equally plausible. To avoid this dilemma,
we can choose another strategy to incorporate density information [Huang et al.,
2010]. We build on the min-max formulation [Hoi et al., 2008] of active learning
and request the sample

x̂ = argmin
xs∈U

max
ys∈{−1,+1}

min
w,b

1

2
‖w‖2 + C

∑
(x,y)∈Ls

L(f(x), x, y) (3.13)

where Ls = L ∪ (xs, ys). We take the minimum regularized expected risk when
including the sample xs ∈ U with the label ys that yields the maximum error. Se-
lecting the sample x̂ minimizing this quantity can be approximated by uncertainty
sampling (e.g., using Simple Margin).

In this formulation, however, we base our decision only on the labeled samples
and do not take into account the distribution of unlabeled samples. Assuming
we knew the labels for each sample in U , we define the set Lsu containing the
labeled samples (x, y) for x ∈ U and the training set L. We select the sample

x̂ = argmin
xs∈U

min
yu∈{±1}nu−1

max
ys∈{−1,+1}

min
w,b

1

2
‖w‖2 + C

∑
(x,y)∈Lsu

L(f(x), x, y) , (3.14)

where nu = |U| and yu is the label vector assigned to the samples x ∈ U without
the label for xs. Thus, we also maximize the representativeness of the selected
sample by incorporating the possible labelings of all unlabeled samples. By
using a quadratic loss-function and relaxing yu to continuous values, we can
approximate the solution through the minimization of a convex problem [Huang
et al., 2010].

Both clustering and label estimation are of high computational complexity.
A simpler algorithm, which the authors call Hinted SVM, considers unlabeled
samples without resorting to these techniques [Li et al., 2012]. Instead, the
unlabeled samples are taken as so-called hints that inform the algorithm of
feature space regions which it should be less confident in. To achieve this, we try
to simultaneously find a decision boundary that produces a low training error on
the labeled samples while being close to the unlabeled samples, the hints. This
can be viewed as semi-supervised learning [Chapelle et al., 2006]. It is, however,
in contrast to typical semi-supervised SVM approaches that push the decision
boundary away from the pool of unlabeled samples.

The performance of this algorithm depends on the hint selection strategy.
Using all unlabeled samples might be too costly for large datasets while uniform
sampling of the unlabeled pool does not consider the information provided by
labeled samples. Therefore, we can start with the pool of all unlabeled samples
and iteratively drop instances that are close to already labeled ones. When
the ratio of hints to all samples is below a certain threshold, we can switch to
uncertainty sampling.
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Another problem with uncertainty sampling is that it assumes our current
hypothesis to be very certain about regions far from the decision boundary. If this
assumption is violated, we will end up with a classifier worse than obtained using
passive learning. One way to address this issue is to measure the uncertainty of
our current hypothesis and to adjust our query strategy accordingly [Mitra et al.,
2004]. To achieve this, we compute a heuristic measure expressing the confidence
that the current set of support vectors will not change if we train on more data.
It is calculated as

c =
2

|LSV| · k
∑

(x,y)∈LSV

min(k+x , k
−
x ) , (3.15)

where LSV are the support vectors and k+x and k−x are the number of positively
and negatively labeled samples within the k nearest neighbors of (x, y) ∈ LSV.
In the extremes, we get c = 1 if k+x = k−x and c = 0 if k+x = 0 ∨ k−x = 0 for all
(x, y) ∈ LSV. We can use this measure to decide whether a labeled data point
(x, y) should be kept for training by adding it with probability

p(x) =

{
c if yf(x) ≤ 1

1− c otherwise.
(3.16)

to the training data set. This means that more samples are queried within the
margin if we are very confident that the current hyperplane represents the optimal
one. In the following, we discuss a related idea, which not only queries samples
with a certain probability, but also subsequently incorporates this probability to
weight the impact of the training set samples.

Importance-Weighted Active Learning

When we query samples actively instead of selecting them uniformly at random,
the training and test samples are not independent and identically distributed
(i.i.d.). Thus, the training set will have a sample selection bias. As most classifiers
rely on the i.i.d. assumption, this can severely impair the prediction performance.

Assume that we sample the training data points from the biased sample
distribution D̃ over X × Y, while our goal is minimizing the risk (3.1) with
respect to the true distribution D. If we know the relationship between D̃ and D,
we can still arrive at an unbiased hypothesis by re-weighting the loss for each
sample [Cortes et al., 2008, Zadrozny et al., 2003]. We introduce the weighted
loss Lw(z, x, y) = w(x, y)L(z, x, y) and define the weighting function

w(x, y) =
pD(x, y)

pD̃(x, y)
(3.17)

reflecting how likely it is to observe (x, y) under D compared to D̃ under the
assumption that the support of D is included in D̃. This leads us to the basic
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result

E
(x,y)∼D̃

[
Lw(f(x), x, y)

]
=

∫
(x,y)∈X×Y

pD̃(x, y)
pD(x, y)

pD̃(x, y)
L(f(x), y)d(x, y) (3.18)

=

∫
(x,y)∈X×Y

pD(x, y)L(f(x), y)d(x, y) (3.19)

= E
(x,y)∼D

[
L(f(x), x, y)

]
. (3.20)

Thus, by choosing appropriate weights we can modify our loss-function such
that we can compute an unbiased estimator of the generalization error R(f).
This technique for addressing the sample selection bias is called importance
weighting [Beygelzimer et al., 2009, 2010].

We define a weighted sample set Lw as the training set L augmented with
non-negative weights w1, . . . , w` for each point in L. These weights are used
to set w(xi, yi) = wi when computing the weighted loss. For the soft margin
SVM minimizing the weighted loss can easily be achieved by multiplying each
regularization parameter Ci in (3.4) with the corresponding weight, i.e., Ci =
wi ·C [Zadrozny et al., 2003]. While the weighting gives an unbiased estimator, it
may be difficult to estimate the weights reliably and the variance of the estimator
may be very high. Controlling the variance is a crucial problem when using
importance weighting.

The original importance-weighted active learning formulation works in a
stream-based scenario and inspects one sample xt at each step t > 1 [Beygelzimer
et al., 2009]. Iteration t of the algorithm works as follows:

1. Receive the unlabeled sample xt.

2. Choose pt ∈ [0, 1] based on all information available in this round.

3. With probability pt, query the label yt for xt, add (xt, yt) to the weighted
training set with weight wt = 1/pt, and retrain the classifier.

In step 2 the query probability pt has to be chosen based on earlier observations:
this could be, for instance, the probability that two hypotheses disagree on the
received sample xt.

This algorithm can also be adapted to the pool-based scenario [Ganti and
Gray, 2012]. In this case, we can simply define a probability distribution over
all unlabeled samples in the pool. We set the probability for each point in
proportion to its uncertainty, i.e., its distance to the decision boundary. This
works well if we assume a noise-free setting. Otherwise, this method suffers from
the same problems as other approaches that are based on a version space. Given
a mislabeled sample (i.e., the label has a very low probability given the features),
the active learner can be distracted and focus on regions within the hypothesis
space which do not include the optimal decision boundary.

One way to circumvent these problems is to combine importance weighting
with ideas from agnostic active learning [Zhao et al., 2012]. We keep an ensemble
of SVMs H = {f1, ..., fK} and train each on a bootstrap sample subset from
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L, which may be initialized with a random subset of the unlabeled pool U for
which labels are requested. After the initialization, we choose points x ∈ U with
selection probability

pt(x) = pthreshold + (1− pthreshold)(pmax(x)− pmin(x)) , (3.21)

where pthreshold > 0 is a small minimum probability to ensure that pt(x) > 0.
Using Platt’s method [Platt, 1999a], we define pi(x) ∈ [0, 1] to be the proba-
bilistic interpretation of an SVM fi with pmin = min1≤i≤K pi(x) and pmax =
max1≤i≤K pi(x). Thus, pt is high if there is a strong disagreement within the
ensemble and low if all classifiers agree. This allows to deal with noise, because
no hypothesis gets excluded forever.

3.6 Multi-Class Active Learning

The majority of research on active learning with SVMs focuses on the binary
case, because dealing with more categories makes estimating the uncertainty
of a sample more difficult. Furthermore, multi-class SVMs are in general more
time consuming to train. There are different approaches to extend SVMs to
multi-class classification. A popular way is to reduce the learning task to multiple
binary problems. This is done by using either a one-vs-one [Hastie and Tibshirani,
1998, Platt et al., 2000] or a one-vs-all [Rifkin and Klautau, 2004, Vapnik, 1998]
approach. However, performing uncertainty sampling with respect to each single
SVM may cause the problem that one sample is informative for one binary
task, but bears little information for the other tasks and, thus, for the overall
multi-class classification.

It is possible to extend the version space minimization strategy to the multi-
class case [Tong, 2001]. The area of the version space is proportional to the
probability of classifying the training set correctly, given a hypothesis sampled
at random from the version space. In the one-vs-all approach for N classes, we
maintain N binary SVM models f1, . . . , fN where the ith SVM model is trained
to separate class i from the other classes. We consider minimizing the maximum
product of all N version space areas to select

x̂ = argmin
x∈U

max
y∈{−1,1}

N∏
i=1

Λ(V(i)x,y) (3.22)

where Λ(V(i)x,y) is the area of the version space of the i-th SVM if the sample
(x, y) : x ∈ U was included in the training set. To approximate the area of the
version space, we can use MaxMin Margin for each binary SVM. The margin
of a sample in a single SVM only reflects the uncertainty with respect to the
specific binary problem and not in relation to the other classification problems.
Therefore, we have to modify our approximation if we want to extend the Simple
Margin strategy to the multi-class case.

We can interpret each fi(x) as a quantity that measures to what extent x
splits the version space. As we have N different classifiers that influence the
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Figure 3.7: Single version space for the multi-class problem with N one-vs-all

SVMs [Tong, 2001]. The area Λ(V(i)x,y=i) corresponds to the version space area if

the label y = i for the sample we picked. The area Λ(V(i)x,y 6=i) corresponds to the
case where y 6= i. In the multi-class case, we want to measure both quantities to
approximate the version space area.

area of the version space, we have to quantify this influence for each one. In
Figure 3.7, we can see the version space for one single binary problem where we
want to discriminate between class i and the rest. Thus, we want to approximate

the area Λ(V(i)x,y=i). If we choose a sample x where fi(x) = 0, we approximately
halve the version space, for fi(x) = 1, the area approximately stays the same and

for fi(x) = −1, we gain a zero area; similarly for the area Λ(V(i)x,y 6=i). Therefore,
we can use the approximation

Λ(V(i)x,y) =

{
0.5 · (1 + fi(x)) · Λ(V(i)) if y = i

0.5 · (1− fi(x)) · Λ(V(i)) if y 6= i
. (3.23)

We can also employ one-versus-one multi-class SVMs [Luo et al., 2004]. Again,
we use Platt’s algorithm [Platt, 1999a] to approximate posterior probabilities
for our predictions. We simultaneously fit the probabilistic model and the
SVM hyperparameters via grid-search to derive a classification probability pk(x),
k = 1, . . . ,K, for each of the K SVMs given the sample x. We can use these
probabilities for active sample selection in different ways. A simple approach is to
just select the sample with the least classification confidence. This corresponds
to the selection criterion

x̂LC = argmin
x∈U

min
k∈{1,...,K}

pk(x) . (3.24)

This approach suffers from the same problem we mentioned earlier: the probability
is connected only to each single binary problem instead of providing a measure
that relates it to the other classifiers. To alleviate this, we can choose another
approach, called breaking ties [Luo et al., 2004]. Here, we select the sample with
the minimum difference between the highest class confidences, namely

x̂BT = argmin
x∈U

min
k,l∈{1,...,K},k 6=l

pk(x)− pl(x) . (3.25)
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This way, we prefer samples which two classifiers claim to be certain about, and
thus, avoid considering the uncertainty of one classifier in an isolated manner.

3.7 Efficient Active Learning

In passive learning, selecting a training set comes almost for free, we just select
a random subset of the labeled data. In active learning, we have to evaluate
whether a sample should be added to the training set based on its ability to
improve our prediction. A simple strategy to reduce computational complexity is
to not only select single samples, but to collect them in batches instead. However,
to profit from this strategy, we have to make sure to create batches that minimize
redundancy.

Another consideration that makes efficient computation necessary is that
for many algorithms we have to retrain our model on different training subsets.
Usually, these subsets differ only by one or the few samples we consider for
selection. Thus, we can employ online learning to train our model incrementally.
In particular, this makes sense if we analyze the effect that adding a sample has
on our model.

Online Learning

After we have selected a sample to be included in the training set, we have
to retrain our model to reflect the additional data. Using the whole dataset
for retraining is computationally expensive. A better option would be to incre-
mentally improve our model with each selected sample through online learning.
LASVM [Bordes et al., 2005, Glasmachers and Igel, 2008] is an SVM solver for
fast online training. It is based on a decomposition method [Platt, 1999b] solving
the learning problem iteratively by considering only a subset of the α-variables
in each iteration. In LASVM, this subset considers one unlabeled sample (corre-
sponding to a new variable) in every second iteration, which can, for instance, be
picked by uncertainty sampling [Bordes et al., 2005].

Batch-Mode Active Learning

When confronted with large amounts of unlabeled data, estimating the effect of
single samples with respect to the learning objective is costly. Besides online
learning, we can also gain a speed-up by labeling samples in batches. A naive
strategy is to just select the n samples that are closest to the decision bound-
ary [Tong and Chang, 2001]. This approach, however, does not take into account
that the samples within the batch might bear a high level of redundancy.

To counteract this redundancy, we can select samples not only due to their
individual informativeness, but also if they maximize the diversity within each
batch [Brinker, 2003]. One heuristic is to maximize the angle between the
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hyperplanes that the samples induce in version space:

| cos(∠(φ(xi), φ(xj))| =
|〈φ(xi), φ(xj)〉|
‖φ(xi)‖‖φ(xj)‖

(3.26)

=
|κ(xi, xj)|√

κ(xi, xi)κ(xj , xj)
(3.27)

Let S be the batch of samples, which we initialize with one sample xS . We
subsequently add the sample x̂ whose corresponding hyperplane minimizes the
maximum angle between any other hyperplane induced by a sample in the batch.
It is computed as

x̂ = argmin
x∈U\S

max
z∈S
| cos(∠(φ(x), φ(z))| . (3.28)

We can form a convex combination of this diversity measure with the well-
known uncertainty measure (distance to the hyperplane) with trade-off parameter
λ ∈ [0, 1]. Then, samples that should be added to the batch are iteratively chosen
as

x̂ = argmin
x∈U\S

(
λ|f(x)|+ (1− λ) max

z∈S
| cos(∠(φ(x), φ(z))|

)
. (3.29)

We can choose λ = 0.5 to give equal weight to the uncertainty and diversity
measure. An optimal value, however, might depend on how certain we are about
the accuracy of the current classifier.

3.8 Conclusion

Access to unlabeled data allows us to improve predictive models in data mining
applications. If it is only possible to label a limited amount of the available data
due to labeling costs, we should choose this subset carefully and focus on patterns
carrying the information most helpful to enhance the model. Support vector
machines (SVMs) have convenient properties that make it easy to evaluate how
unlabeled samples would influence the model if they were labeled and included
in the training set. Therefore, SVMs are particularly well-suited for active
learning. However, there are several challenges we have to address, such as
efficient learning, dealing with multiple classes, and that actively choosing the
training data introduces a selection bias. Importance weighting seems to be most
promising to counteract this bias, and it can be easily incorporated into an active
SVM learner. Devising parallel algorithms for sample selection can speed up
learning in many cases. Most of the research in active SVM learning so far has
focused on binary decision problems. A challenge for future research is to develop
efficient active learning algorithms for multi-class SVMs that address the nature
of the multi-class decision in a more principled way.





Chapter 4

Nearest Neighbor Density
Ratio Estimation for
Large-Scale Applications in
Astronomy

This chapter is based on the article J. Kremer, F. Gieseke, K. Steenstrup Pedersen,
and C. Igel. Nearest neighbor density ratio estimation for large-scale applications
in astronomy. Astronomy and Computing, 12:67–72, 2015

Abstract

In astronomical applications of machine learning, the distribution of
objects used for building a model is often different from the distribution
of the objects the model is later applied to. This is known as sample
selection bias, which is a major challenge for statistical inference as one
can no longer assume that the labeled training data are representative. To
address this issue, one can re-weight the labeled training patterns to match
the distribution of unlabeled data that are available already in the training
phase. There are many examples in practice where this strategy yielded good
results, but estimating the weights reliably from a finite sample is challenging.
We consider an efficient nearest neighbor density ratio estimator that can
exploit large samples to increase the accuracy of the weight estimates. To
solve the problem of choosing the right neighborhood size, we propose to
use cross-validation on a model selection criterion that is unbiased under
covariate shift. The resulting algorithm is our method of choice for density
ratio estimation when the feature space dimensionality is small and sample
sizes are large. The approach is simple and, because of the model selection,
robust. We empirically find that it is on a par with established kernel-
based methods on relatively small regression benchmark datasets. However,
when applied to large-scale photometric redshift estimation, our approach
outperforms the state-of-the-art.
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4.1 Introduction

In many machine learning applications labeled (training) and unlabeled (test) data
do not follow the same distribution. One reason can be that the labeled patterns
have not been sampled randomly. In astronomy such a sample selection bias arises
because objects that are expected to show more interesting properties are preferred
when it comes to costly high-quality spectroscopic follow-up observations; other
objects whose scientific value may not be that obvious (e.g., seemingly star-like
objects) may be overlooked [Mortlock et al., 2011]. One way to address this bias
is to weight the labeled training sample according to the ratio between the two
probability distributions [Huang et al., 2007]. As this true ratio is usually not
available, one has to estimate it from a finite sample. The crucial point is to
control the variance of the estimator. Empirically, it seems promising to reduce
the variance of the estimator by accepting a slightly higher bias [Sugiyama et al.,
2008]. This gives rise to ratio estimators that, in practice, perform better than
the näıve approach of estimating the two densities separately.

In this work, we improve a simple nearest neighbor density ratio estima-
tor [Lima et al., 2008] by combining it with a principled way of performing model
selection [Sugiyama and Müller, 2005]. The approach compares well to established
kernel-based estimators on a variety of standard, small-sized regression datasets.
Furthermore, by selecting proper hyperparameters and by taking huge amounts
of patterns into account, we experimentally show that the estimator yields better
results compared to the state-of-the-art on a large-scale astronomical dataset.

Let each data point be represented by a feature vector x from a domain X
with a corresponding label y from a domain Y. We consider scenarios in which
the learner has access to some labeled (source) data S sampled from ps(x,y) and
a large sample of unlabeled (target) data T sampled from pt(x,y). While ps(x,y)
and pt(x,y) may not coincide, we assume that ps(y|x) = pt(y|x) for all x and
that the support of pt is a subset of the support of ps. This is usually referred
to as covariate shift, a particular type of sample selection bias. In this case the
probability density ratio between target and source distribution at a given point
reduces to β(x) = pt(x)

ps(x)
.

Different strategies have been proposed to address covariate shift, such as
finding a common feature space or re-weighting the source patterns. The latter
is conceptually simple, and there are several approaches to estimate appropri-
ate weights via density ratio estimation [Huang et al., 2007, Lima et al., 2008,
Sugiyama and Müller, 2005, Bickel et al., 2007, Cortes et al., 2008, Loog, 2012,
Quionero-Candela et al., 2009, Izbicki et al., 2014, Kanamori et al., 2009]. These
methods are, for example, based on reducing the problem to probabilistic clas-
sification between the target and source dataset [Bickel et al., 2007], on using
kernel-based methods to match means in an induced Hilbert space [Huang et al.,
2007], or on using nearest neighbor queries to estimate the mismatch between
the densities by counting patterns in local regions [Lima et al., 2008, Loog,
2012]. It is crucial to control the variance of such an estimator via regularization.
Depending on the algorithm at hand, the regularization can take the form of, for
example, a kernel bandwidth [Huang et al., 2007], the rank of a low-rank kernel
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matrix approximation [Izbicki et al., 2014], or a weight norm [Kanamori et al.,
2009]. The involved parameters are often set by heuristics such as the median
of pairwise distances for the kernel bandwidth [Schölkopf and Smola, 2002]. As
an alternative, Sugiyama et al. [Sugiyama and Müller, 2005] suggest a model
selection criterion that is unbiased under covariate shift. In the following, we
employ this criterion for selecting the neighborhood size of the nearest neighbor
estimator via cross-validation. Then, we empirically show that the resulting
algorithm can outperform the computationally more expensive state-of-the-art
kernel-based estimator due to its ability to consider larger samples in less time.

This article is structured as follows: in Section 4.2 we briefly discuss two state-
of-the-art kernel-based estimators that serve as a baseline in our experimental
evaluation. In Section 4.3 we present a nearest neighbor-based density ratio
estimator and show how it can be extended to perform automatic model selection.
In Section 4.4 we evaluate the proposed nearest neighbor density ratio estimator
with integrated model selection in comparison to other methods on a medium-sized
regression benchmark and on a large-scale astronomical dataset for photometric
redshift estimation. In Section 4.5 we conclude and give possible directions for
future work.

4.2 Kernel-based Density Ratio Estimation

In density ratio estimation, kernel-based estimators are considered the state-of-
the-art [Sugiyama et al., 2010a]. Among these, kernel mean matching (KMM)
[Huang et al., 2007] and the spectral series estimator [Izbicki et al., 2014] have
shown to perform particularly well.

Given some input space X , a kernel is a positive semi-definite function
k : X × X → R for which ∀x, z ∈ X : k(x, z) = 〈Φ(x),Φ(z)〉H, where Φ : X → H
maps elements of the input space to a kernel-induced Hilbert space H [Aronszajn,
1950]. Kernel mean matching aims at matching the means of two distributions
in H by solving the problem

minimize
β

∥∥∥ 1

Ns

Ns∑
i=1

βiΦ(x
(s)
i )− 1

Nt

Nt∑
i=1

Φ(x
(t)
i )
∥∥∥2
H

(4.1)

subject to βi ∈ [0, B] and |
Ns∑
i=1

βi −Ns| ≤ Nsε , (4.2)

where Ns is the number of source domain patterns and Nt is the number of
target domain patterns. The parameter B restricts the maximum possible weight
and ε bounds the deviation of the mean weight from 1. Cortes et al. [Cortes
et al., 2008] show that the solution to Eq. (4.1) converges with high probability
to the true density ratio if the kernel induced by Φ(x) is universal [Steinwart
and Christmann, 2008]. The kernel function, which implicitly defines Φ and
H, is typically chosen from a parameterized family of functions, and the kernel
parameters are parameters of KMM-based approaches.

The spectral series estimator [Izbicki et al., 2014], although motivated differ-
ently, minimizes an unconstrained version of Eq. (4.1) for computing training
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weights. Instead of bounding the weights via B and their mean via ε, the solution
is regularized by the rank J of a low-rank approximation of the kernel Gram
matrix between training points – which results when expanding Eq. (4.1). Unlike
KMM, the spectral series estimator can compute weights not only for the source
sample, but also for arbitrary patterns. This allows for selecting the kernel
parameters and J via cross-validation, as we shall see later.

Negative theoretical results in the analysis of weighting methods [Ben-David
et al., 2010, Ben-David and Urner, 2012] suggest that sample sizes have to be
prohibitively large to guarantee reliable weights. However, empirically it has been
found that re-weighting often does improve results. Our method is motivated
by typical tasks in astronomy, where we deal with large labeled samples and
huge unlabeled samples in feature spaces of relatively low dimensionality (e.g.,
up to R10). For such rather benign scenarios, we aim at estimating weights
with high accuracy by taking into account hundreds of thousands of labeled
and unlabeled patterns. However, both KMM as well as the spectral series
estimator involve |S| × |T | kernel matrices in their general form. Thus, they
are not directly applicable to scenarios with hundreds of thousands of patterns.
Special cases might be addressed in a more efficient way. Still, the general cases
with non-linear kernel functions involve the computation of such kernel matrices
and, depending on the method, quadratic programming, matrix inversion, or
eigenvalue decomposition, which exhibit at least a quadratic running time [Bern
and Eppstein, 2001, Golub and Van Loan, 1989, Kojima et al., 1989]. Therefore,
we are considering nearest neighbor-based density ratio estimation, which can be
implemented more efficiently.

For the matrix decompositions in the spectral series estimator we used an
efficient O(n2)-algorithm [Dhillon, 1998]. Both, decomposition as well as the
nearest neighbor search, could be sped up by using approximation schemes (e.g.,
see [Arya et al., 1994, Halko et al., 2011]), but we decided not to introduce such
approximations with corresponding hyperparameters in our study.

4.3 Nearest Neighbor Density Ratio Estimation
Revisited

We consider the algorithm proposed by Lima et al. [Lima et al., 2008] to estimate
appropriate ratios via nearest neighbor queries, see Algorithm 1. The efficiency of
the approach is ensured via the use of k-d trees. For the sake of completeness, we
briefly sketch how these spatial data structures can be used to speed up nearest
neighbor search before outlining the details of the density ratio estimator.

Nearest Neighbor Search in Low Dimensions

A classical k-d tree [Bentley, 1975] is a binary tree constructed from a d-
dimensional point set S ⊂ Rd. The inner nodes correspond to hyperplanes
splitting the data in Rd and the leaf nodes define a partitioning of S. The
tree can be built recursively in O(|S| log |S|) time. Starting from the root node
numbered by 0 and S0 = S, each inner node v with children u and w partitions
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the data Sv into two almost equal-sized subsets Su and Sw. If Sv contains only a
single point (or a predefined number of points), v becomes a leaf node. At tree
level j, the datasets are split according to the median in dimension j mod d+ 1.

To efficiently search for the nearest neighbor of a given query point q ∈ Rd,
one can make use of the hierarchical subdivision induced by a k-d tree: The tree
is traversed in two phases. During the first phase, the tree is processed from top
to bottom to find the d-dimensional leaf (box) that contains the query point (the
search is guided by the median values). The query point is then compared with
all points that are stored in the corresponding leaf, which yields the first nearest
neighbor candidate. Afterwards, in the second phase, the tree is processed from
bottom to top and on the way back to the root, neighboring boxes are checked
for points that are potentially closer to q than the current candidate. In case
the distance of q to the splitting hyperplane is larger than the distance between
q and its current nearest neighbor candidate, one can safely ignore the whole
subtree that has not yet been visited. These distance checks can be performed
efficiently by resorting to the associated median values. The generalization to
k > 1 neighbors is straightforward (see, e.g., [Bentley, 1975], or [Gieseke et al.,
2014], for details).

In the best case, all nearest neighbors are contained in the leaf that stems
from the first phase and no further subtrees need to be processed on the way back
to the root. For such queries, the runtime is logarithmic in the number |S| of
points. This also holds for the expected case as shown by [Friedman et al., 1977]
(given constant d). In the worst case, however, the complete k-d tree needs to
be processed, which leads to a linear instead of a logarithmic runtime per query.
From a practical perspective, the running time depends on the dimensionality of
the feature space: for moderate dimensions (e.g., up to d = 30), a logarithmic
running time behavior can be expected, while for larger d the performance often
decreases significantly due to the curse of dimensionality [Hastie et al., 2009].

Nearest Neighbor Density Ratio Estimator

We are now ready to outline the details of Algorithm 1: In Step 1, k-d trees
for the source and target patterns are built. In Steps 2 to 8, all query patterns

x
(q)
j are processed. For each query pattern, the K nearest neighbors w.r.t. the

source patterns in S are computed. This is followed by the computation of

the number lj of nearest neighbors in T whose distance to x
(q)
j is less than or

equal to the previously computed K-th nearest neighbor. Finally, this result is
re-weighted according to the number Ns of source patterns, the number Nt of
target patterns and the number K of nearest neighbors. Hence, the true density

ratio β(x
(q)
j ) of target and source distribution at a point x

(q)
j in the feature space

Rd is approximated via

β̂(x
(q)
j ) = lj ·

Ns

K ·Nt
. (4.3)

As k-d trees speed up nearest neighbor computation for low-dimensional
feature spaces, we get good running time results in this scenario: the construction
of the trees for the source and target patterns takes O(Ns logNs) and O(Nt logNt)
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Algorithm 1 NeareastNeighborRatioEstimator

Require: A set S = {x(s)
1 , . . . ,x

(s)
Ns
} ⊂ Rd and a set T = {x(t)

1 , . . . ,x
(t)
Nt
} ⊂ Rd

of patterns from the source and target domain, respectively, a query set

Q = {x(q)
1 , . . . ,x

(q)
Nq
} ⊂ Rd, and a number K > 1.

Ensure: Weights β̂(x
(q)
1 ), . . . , β̂(x

(q)
Nq

) ∈ R for the patterns in Q.
1: Construct k-d trees Ts and Tt for S and T , respectively.
2: W = {}
3: for j = 1, . . . , Nq do

4: Compute the K nearest neighbors for x
(q)
j in S (via k-d tree Ts).

5: Let rj be the Euclidean distance between x
(q)
j and its K-th nearest neighbor.

6: Compute number lj of nearest neighbors in T with distance less than rj to x
(q)
j

(via k-d tree Tt).
7: W = W ∪

{
lj · Ns

K·Nt

}
8: end for
9: return W

time, respectively. For each query pattern, nearest neighbors are computed via
these trees. The number K of neighbors is crucial for the accuracy of the
algorithm, and the question of how to choose it is not discussed in [Lima et al.,
2008]. We propose to select K via cross-validation by minimizing the model
selection criterion proposed in [Sugiyama and Müller, 2005]. It seeks to minimize
the least-squares error between true and estimated density ratio, as in regression.
However, we usually do not have access to the true density ratio. Therefore, we
use a substitution to estimate the minimizer of the least-squares error up to a
constant. The expected least-squares loss between true and estimated density
ratio over the source probability density ps(x) is given by

L(β, β̂) =

∫
(β(x)− β̂(x))2 ps(x)dx

=

∫
β̂(x)2ps(x)dx− 2

∫
β̂(x)β(x)ps(x)dx +

∫
β(x)2ps(x)dx

=

∫
β̂(x)2ps(x)dx− 2

∫
β̂(x)pt(x)dx +

∫
β(x)2ps(x)dx , (4.4)

where we substituted the true density ratio β(x) = pt(x)
ps(x)

. As the third term does

not depend on the estimated ratio β̂(x), we can estimate L(β, β̂) up to a constant
by

L̂(β, β̂) =
1

|S|
∑
x∈S

β̂(x)2 − 2

|T |
∑
x∈T

β̂(x) . (4.5)

Here, we have replaced the expectations in the first two terms by their empirical
estimates. As long as ps(x) and pt(x) do not change, the constant term in
Eq. (4.5) will not change and thus, we can safely ignore it when comparing
different weight estimates β̂.

It is important to note that we evaluate Eq. (4.5) post hoc on trained density
ratio estimators. Direct unconstrained minimization of Eq. (4.5) with respect
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to β̂(x) for x ∈ S (i.e., the values needed for re-weighted training) would lead
to the trivial solution β̂(x) = 0 for x ∈ S. An open-source Python package of
the nearest neighbor estimator with integrated model selection is available on
Github.1

4.4 Experiments

We consider two experiments: re-weighted regression on standard domain adap-
tation benchmarks and weight computation for photometric redshift estimation.

Regression Benchmarks

We compared our approach to kernel mean matching (KMM) [Huang et al., 2007]
and the spectral series estimator [Izbicki et al., 2014] following the protocol of
the experiments in [Cortes et al., 2008]. For each of the eight regression datasets,
which are rather small (the largest having 16 512 labeled and 9511 unlabeled
patterns), we created a biased subset S of the original dataset T . As defined in
[Cortes et al., 2008], each point is moved from T to S with probability

p(s = 1|x) =
ev

1 + ev
, (4.6)

where v is defined as

v =
4w · (x− x)√

Var(w · (x− x))
, (4.7)

for a pattern x ∈ Rd, and w ∈ Rd chosen uniformly at random from [−1, 1]d.
Thus, the bias is only determined by the covariate x. The ideal method, which
we consider as a baseline, weights the points in S with 1

p(s=1|x) . For each dataset,
we selected the w that maximized the difference in regression loss between ideal
and unweighted method among 10 trials.

After having estimated the weights, we use them to re-weight the loss function
of a linear regularized least-squares estimator. Here, we select the regularization
parameter λ ∈ {2n : n ∈ {−3, . . . , 4}} via leave-one-out cross-validation. Since
KMM has no mechanism for automatically choosing its hyperparameter, we chose
the bandwidth σ =

√
d/2 for x ∈ Rd [Cortes et al., 2008]. For the spectral

series estimator and the nearest neighbor method, we chose their parameters by
performing 5-fold cross-validation using Eq. (4.5). We selected the bandwidth
parameter ε of the spectral series estimator from {ε−10 , ε00, ε

1
0, ε

2
0}, with ε0 =

median({‖x − y‖22 : x,y ∈ S})/8 [Schölkopf and Smola, 2002], and the rank
J from {1, . . . , bNs × 4/5c}. For the nearest neighbor estimator we selected
a K ∈ {2, 3, 4, 5, 8, 16, 32} and also considered a variant with fixed K = 2 to
demonstrate the influence of model selection (the value K = 2 corresponds to
the most frequent choice for K in the model selection algorithm).

Figure 4.1 shows the relative normalized mean squared error (NMSE) and
the standard deviation over 10 different trials for each method on a test set not

1https://github.com/kremerj/nnratio.

https://github.com/kremerj/nnratio
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Figure 4.1: The relative normalized mean squared errors (NMSE) for kernel- and
nearest neighbor-based ratio estimators on different regression datasets. The
error bars indicate the standard deviations over 10 different samplings using the
selection probability p(s = 1|x) for a fixed w.

used for training or estimation of weights. For each dataset we scaled the results
linearly so that the unweighted NMSE yielded 1.0. The weighted methods almost
always perform better than unweighted regression. Although the sample sizes are
small, the nearest neighbor estimator performs on a par with the kernel methods
among which the spectral series estimator performs best. Because of the sample
sizes, our method cannot tap its full potential and using a fixed K = 2 seems
to be a viable approach. However, the picture changes when moving to our
real-world large-scale application.

Redshift Estimation

We evaluated our method on a large-scale astronomical dataset [Izbicki et al.,
2014]. The problem we consider is photometric redshift estimation of galaxies.
The redshift phenomenon is caused by the Doppler effect which shifts the spectrum
of an object towards longer wavelengths if it is moving away from the observer.
Because the universe is expanding uniformly, we can infer a galaxy’s velocity by its
redshift and, thus, its distance to Earth. Hence, redshift estimation is a useful tool
for determining the geometry of the universe. A photometric observation contains
the intensities of an object (in our case, galaxies) in 5 different bands (u,g,r,i,z ),
ranging from ultraviolet to infrared. Spectroscopy, in contrast, measures the
photon count at certain wavelengths. The resulting spectrum allows for identifying
the chemical components of the observed object and thus, enables determining
many interesting properties, including the redshift. Spectroscopy, however, is
much more time-consuming than photometric observation and therefore, costs
could be greatly reduced if we could predict suitable candidates for follow-up
spectroscopy from low-quality low-cost photometry. Figure 4.2 shows examples
of corresponding photometric and spectroscopic observations.

For each of the 5 bands a point spread function (model) and a composite
model (cmodel) are fit to the photometric observation. We take the 4 magnitude
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differences between adjacent bands and the magnitude in the red band for model
and cmodel. Thus, we arrive at 2× (4 + 1) = 10 covariates for each galaxy.
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Figure 4.2: An example from the Sloan Digital Sky Survey (SDSS) [Aihara et al.,
2011]. (a) An image of the spiral galaxy NGC 5750. (b) Its associated spectrum
overlapping the five photometric intensity band filters u,g,r,i,z.

The dataset contains a sample of 467 710 galaxies whose redshift has been
confirmed by spectroscopy and an unconfirmed sample of 540 237 galaxies. The
task is to estimate the redshift of the unconfirmed (target) sample by training on
the spectroscopically confirmed (source) sample. As we do not have ground-truth
labels for the target sample, we simply recorded the estimated loss given by
Eq. (4.5) as in [Izbicki et al., 2014], see Figure 4.3. Interestingly, the absolute
estimates are more accurate when we consider the dataset as-is. In Figure 4.3(b)
we consider a preprocessed dataset where we standardized the covariates to have
zero mean and unit variance, as is common for methods that rely on pattern
distances. Here, we see that the nearest neighbor estimator with model selection
outperforms the other methods even clearer, although the absolute estimated
loss is higher than the one for the original data, see Figure 4.3(a). If the task can
benefit from re-weighting, then the performance is likely to improve with more
accurate weights.

In our experiment, we trained the ratio estimators with increasing sample
sizes from 5000 to 400 000 patterns (each from source and target sample) and
estimated the weights on hold-out test samples of size 50 000 (source and target)
not used for training. As KMM cannot produce out-of-sample weights, we only
compared the nearest neighbor estimator (with K either being fixed or chosen
by model selection) and the spectral series estimator using the same parameters
as in the first experiment. As running times become prohibitively large for the
spectral series estimator, we only recorded it up to sample sizes of 20 000 patterns.
Figure 4.4 shows the running time per sample size on an AMD Opteron 6380.
The time measured includes the time used for cross-validation on a single-core
machine. It should be noted that the cross-validation procedure is parallelizable
to the point that its additional costs for the gained accuracy are minimal. For
comparable running times the nearest neighbor estimator is able to use more
samples than the spectral series estimator and thus, estimate weights more
accurately. Furthermore, selecting the parameter K via cross-validation performs
better than our default choice K = 2 (which was the most frequently selected
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Figure 4.3: The estimated loss for the nearest neighbor and spectral series
estimator on an astronomical dataset typically used in the context of photomet-
ric redshift estimation. (a) The original dataset. (b) Results with covariates
transformed to have zero mean and unit variance.
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Figure 4.4: The running times per sample size for the different estimators,
including the time used for cross-validation. The nearest neighbor estimators can
utilize considerably larger samples than the spectral series estimator given the
same time constraints.

value in the model selection experiments on the benchmark datasets).

4.5 Conclusion

Sample selection bias is a common problem in astronomy [Richards et al., 2012],
where datasets are typically large and the feature space dimensionality is often
low. For this scenario, we suggest to use a nearest neighbor density ratio
estimator combined with a model selection criterion, which is unbiased under
covariate shift, for choosing the neighborhood size. The resulting algorithm
is simple, robust due to the systematic hyperparameter choice, and—as we
experimentally demonstrate—highly efficient and accurate. Future work will
consider the theoretical properties of the estimator and an implementation
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on GPUs [Gieseke et al., 2014] for handling datasets with billions of patterns
efficiently and at low cost.
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Chapter 5

Active Label Correction for
Class-Conditional Noise

This chapter is based on the article J. Kremer, F. Sha, and C. Igel. Active label
correction for class-conditional noise. Submitted, 2016a

Abstract

Active label correction addresses the problem of learning from input
data for which noisy labels are available (e.g., from imprecise measurement
devices or crowd-sourcing) and each true label can be obtained at a signifi-
cant cost (e.g., by taking additional measurements or asking human experts).
To minimize the labeling costs, we are interested in identifying training
patterns for which knowing the true labels maximally improves the learning
performance. This paper devises active label correction algorithms for classi-
fication under the assumption of class-conditional noise, where the true label
is conditionally independent of the input given the observed label. To select
labels for correction, we adopt the active learning strategy of maximizing the
expected model change. We consider the change in regularized empirical risk
functionals that use different pointwise loss functions for patterns with noisy
and true labels, respectively. Three different choices of loss functions for the
noisy data points then lead to different active label correction algorithms.
Two of the loss functions consider the label noise rates, which are estimated
during learning, where importance weighting compensates for the sampling
bias due to active learning. Experiments show that viewing the true label
as a latent variable and computing the maximum likelihood estimate of the
model parameters improves over the state-of-the-art.

5.1 Introduction

Acquiring data with noisy labels for supervised learning is often cheap and simple,
while obtaining reliable labels remains difficult and/or costly. For instance, in as-
tronomy huge amounts of photometric data from sky surveys are available. Noisy
labels can be obtained using crowd-sourcing or automated labeling, but getting
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a reliable label may require an expert or even additional costly spectroscopic
measurements. Another example are medical images, which can be labeled either
unreliably by medical students or by expensive experts [Urner et al., 2012]. If
we are willing to invest in getting high quality labels for some of our training
data in order to increase the generalization performance of a machine learning
model, two fundamental questions arise. First, how should we learn from both
noisy and true labels? Second, which training examples should be re-labeled?
This study addresses these questions by devising tailored loss functions and
corresponding active label correction strategies, which try to identify examples
for which obtaining the true labels would be most helpful. Active label correction
has been considered before by Rebbapragada et al. [2012] and as learning from
weak teachers by Urner et al. [2012]. We incorporate a label noise model, based
on which we can derive algorithms for learning and re-labeling in a principled
way. This noise model must be simple so that its parameters can be estimated
efficiently during training. We assume that the label noise is class-conditional
[Angluin and Laird, 1988], that is, the label noise rates depend only on the
true class, but are independent of the covariate. For selecting the examples for
correction, we adopt the strategy from active learning to select those points that
promise to change the model the most [Settles and Craven, 2008, Settles et al.,
2008].

In the following, we summarize additional related work and our main contri-
butions. Section 2 introduces the general active label correction framework, three
different pointwise loss functions for noisy examples, and the resulting general
label correction algorithms. Section 3 makes these algorithms concrete for logistic
regression. Section 4 presents an importance-weighting method for estimating
the noise model during learning. We present experimental results on a range of
datasets using logistic regression and on a convolutional neural network example
in section 5.

Related Work

Label noise can degrade the accuracy of a learning algorithm to a great extent,
and there are different ways of dealing with this problem, see the survey by
Frenay and Verleysen [2014]. One way is to incorporate a label noise model into
the loss function [Bootkrajang and Kabán, 2012, Natarajan et al., 2013, Reed
et al., 2015, Sukhbaatar and Fergus, 2015, Xiao et al., 2015]. We follow this
approach to guide label corrections and to mitigate the effects of label noise
on not yet corrected training examples. The work most similar to ours is by
Rebbapragada et al. [2012], although they do not model the label noise. They
use uncertainty sampling to select the next example to correct and show that
this improves over random selection. The purely theoretical paper by Urner et al.
[2012] makes assumptions on the noisy labeling which are very different from our
noise model and which are based on a notion of neighborhood in the input space.
Roughly speaking, if the labels are homogeneous in a neighborhood, then the
noise rate in that neighborhood has to be low, if the labels are heterogeneous,
the noise rate has to be high. Label correction has also been considered in the
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crowd-sourcing community [Sheng et al., 2008, Zhao et al., 2011]. In these works
the authors examine the problem of noisy labelers and consider the trade-off
between sampling new examples and asking for additional labels for an already
sampled example. In our case we assume that labels are corrected in a reliable
way, that the dataset is fixed, and that the noise is inherent (i.e., there is not
necessarily a distribution of labels from different labelers).

Main Contributions

(i) We introduce noise-aware loss functions for active label correction. These
loss functions attenuate the influence of noisy examples and inform the selection
for re-labeling. (ii) We adopt the maximum expected model change strategy for
the proposed regularized risk functionals and devise three novel algorithms for
active label correction. (iii) It is shown how to simultaneously learn noise and
classification model parameters using importance-weighting. (vi) We provide an
empirical comparison demonstrating that robust maximum likelihood weighted
uncertainty re-labeling (ML-WURL), which is based on maximum likelihood
estimates of the model parameters, outperforms the state-of-the-art.

5.2 Active Label Correction by Maximizing
Expected Model Change

We consider classification problems with input space X , label space Y , and point-
wise loss function l. The goal is to minimize the risk R(h) = E(x,y)∼p[l(h(x), y)]
over hypotheses h ∈ H for an unknown distribution p. For a training pattern
(x, y) ∼ p, we may initially only know (x, ỹ), the input x and a corresponding
noisy label ỹ ∈ Y . However, we can obtain the true label y at a considerable cost.
Although we refer to y as the true label, we do not presume zero Bayes risk.1

We assume class-conditional label noise [Angluin and Laird, 1988]. That is,
the noisy label is conditionally independent of the input given the true label,
p(ỹ |x, y) = p(ỹ | y). This noise model is well-studied in the label noise literature
[Bootkrajang and Kabán, 2012, Natarajan et al., 2013, Menon et al., 2015, Liu
and Tao, 2016]. The model has the advantage that learning its parameters
typically requires only a few observations of noisy labels with corresponding true
labels. In the following, we focus on binary classification and define the noise
rates as

ρ+1 := p(Ỹ = −1|Y = +1), ρ−1 := p(Ỹ = +1|Y = −1), ρ+1 + ρ−1 < 1 ,

where Y, Ỹ ∈ Y = {−1,+1} are random variables for the true and the noisy label,
respectively.

Our learning strategy is minimizing the regularized empirical risk

L(h) :=
∑

(x,y)∈S

l(h(x), y) +
∑

(x,ỹ)∈S̃

l̃(h(x), ỹ) + λΩ(h) , (5.1)

1For all subsequent considerations it is actually not necessary to be able to obtain the true
label, a significantly more accurate label is sufficient.
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given a noisy training set S̃ containing inputs with noisy labels (x, ỹ) and a clean
training set S containing (x, y) ∼ p. This study will investigate different choices
for the noise-aware pointwise loss function l̃, which may depend on (estimates of)
the noise rates.

We assume that we have the possibility to correct labels. That is, we can
query the true label y for (x, ỹ) ∈ S̃. We query single (or small batches of) labels
in an iterative process. For any (x, ỹ) for which we obtain the true label y, we
remove (x, ỹ) from S̃ and add (x, y) to the clean training set S. As re-labeling
is assumed to be costly, we need a method for selecting the potentially most
informative examples for correction.

We propose to greedily select the example(s) having the strongest expected
influence on the error measure in (5.1). This criterion was suggested by Settles
et al. [2008] in the context of multiple-instance active learning. It has the
computational advantage that retraining of the model is not required for the
selection process, as it is, for instance, in expected error reduction [Roy and
McCallum, 2001]. We approximate the expected model change by the difference
between the gradient of the error measure before and after correcting the respective
label. After we have selected an example (xj , ỹj) and corrected its label to yj
the regularized empirical risk changes to

Lj(h) :=
∑

(x,y)∈S∪{(xj ,yj)}

l(h(x), y) +
∑

(x,ỹ)∈S̃\{(xj ,ỹj)}

l̃(h(x), ỹ) + λΩ(h) . (5.2)

We assume a differentiable error measure L and define

g(h) :=
∂L(h)

∂w
and gj(h) :=

∂Lj(h)

∂w

as the gradients of L and Lj with respect to the model parameter w of the
hypothesis h. Our approach is to pick

(x∗, ỹ∗) = arg max
(xj ,ỹj)∈S̃

Eyj |xj ,ỹj
[
‖gj(h)− g(h)‖

]
= arg max

(xj ,ỹj)∈S̃
Eyj |xj ,ỹj

[∥∥∥∥ ∂

∂w

(
l(h(x), y)− l̃(h(x), ỹ)

)∥∥∥∥] (5.3)

for re-labeling. Different noise-aware loss functions l̃ lead to different algorithms.
We consider the following natural choices for l̃.

Noise-agnostic estimator. The simplest way to deal with label noise is to
neglect it and just choose the noise-aware loss l̃ to coincide with the standard
loss l.

Unbiased estimator. If we know the noise rates ρ−1 and ρ+1, we can define
a loss lu on the noisy data as an unbiased estimator of the standard loss l on the
clean data,

Eỹ
[
lu(h(x), ỹ)

]
= l(h(x), y)



5.3. Active Label Correction with Logistic Regression 61

for all x, y, and h. For binary classification, Natarajan et al. [2013] have shown
that this holds for

lu(h(x), y) = αyl(h(x), y)− βyl(h(x),−y) ,

with

αy :=
1− ρ−y

1− ρ−1 − ρ+1
and βy :=

ρy
1− ρ−1 − ρ+1

.

Maximum likelihood estimator. Following Bootkrajang and Kabán [2012],
we can consider the true label y as a latent variable and write the posterior
probability of a noisy label with class-conditional noise as

p(ỹ|x) =
∑
y

p(ỹ, y|x)

=
∑
y

p(ỹ|y)p(y|x)

=
(
1− ρỹ

)
p(y = ỹ|x) + ρ−ỹ p(y = −ỹ|x) .

If we assume that we can model p(y|x) with the current hypothesis h ∈ H, we can
write the likelihood of the model parameters w given a single training example as

L(w|x, ỹ) ∝ p(ỹ|x,w) =
(
1− ρỹ

)
h(x) + ρ−ỹ

(
1− h(x)

)
.

Taking the negative log-likelihood, the noise-aware maximum likelihood loss can
be defined as

lML(h(x), ỹ) := − log
((

1− ρỹ
)
h(x) + ρ−ỹ

(
1− h(x)

))
. (5.4)

This maximum likelihood approach coincides with the unbiased estimator only
in the noiseless case.

5.3 Active Label Correction with Logistic
Regression

In the following, the active label correction strategies are applied to logistic
regression. Logistic regression has the advantages that its output can be inter-
preted as a probability (allowing its use for the noise-aware maximum likelihood
estimator), that the unbiased estimator is convex [Natarajan et al., 2013], and
that it can be easily extended to multi-class classification and to deep neural
network architectures (e.g., convolutional neural networks, see experiments in
section 5.6). For logistic regression we have

h(x) := σ(x) =
1

1 + exp(−w>x)
.

A natural choice for the loss is the cross-entropy

l(h(x), y) := [y = +1] log
1

h(x)
+ [y = −1] log

1

1− h(x)
,
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where [·] is the Iverson bracket. Combining both components gives

l(h(x), y) = − log σ(yx) .

To compute the expectation in the criterion (5.3), we re-write the probabilities
using Bayes’ rule and the noise model Ỹ ⊥⊥ X|Y . Assuming that our current
output σ(yx) models the posterior probability p(Y |X), we get

p(Y = −ỹ|Ỹ = ỹ, X = x) ∝ p(Ỹ = ỹ|Y = −ỹ)p(Y = −ỹ|X = x)

= ρ−ỹσ(−ỹx)

p(Y = +ỹ|Ỹ = ỹ, X = x) ∝ p(Ỹ = ỹ|Y = +ỹ)p(Y = +ỹ|X = x)

= (1− ρỹ)σ(ỹx) .

Now, we derive three novel active label correction algorithms. These pick the
next example (x∗, ỹ∗) to be corrected based on the aforementioned loss functions.

Weighted Uncertainty Re-Labeling (WURL)

Using standard regularized logistic regression, the gradient g becomes

g(σ) = −
∑

(x,y)∈S

yxσ(−yx)−
∑

(x,ỹ)∈S̃

ỹxσ(−ỹx) +
∂

∂w
Ω(w) . (5.5)

The gradient gj , which measures the change rate after replacing ỹj with yj is
then

gj(σ) = −
∑

(x,y)∈S∪{(xj ,yj)}

yxσ(−yx)

−
∑

(x,ỹ)∈S̃\{(xj ,ỹj)}

ỹxσ(−ỹx) +
∂

∂w
Ω(w) . (5.6)

Inserting (5.5) and (5.6) into (5.3) gives

(x∗, ỹ∗) =arg max
(xj ,ỹj)∈S̃

Eyj |xj ,ỹj
[
‖gj(σ)− g(σ)‖

]
=arg max

(xj ,ỹj)∈S̃
‖ỹjxjσ(ỹjxj) + ỹjxjσ(−ỹjxj)‖ p(Y = −ỹj |Ỹ = ỹj , X = xj)

=arg max
(xj ,ỹj)∈S̃

‖xj‖ p(Y = −ỹj |Ỹ = ỹj , X = xj)

=arg max
(xj ,ỹj)∈S̃

ρ−ỹj‖xj‖σ(−ỹjxj)

:=arg max
(xj ,ỹj)∈S̃

sW(xj , ỹj) ,

where we assume that p(y |x) can be replaced by σ(yx). The criterion sW suggests
to pick the example which has the least confidence predicting its given label,
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weighted by the length of the sample vector ‖x‖ and the label flip probability
ρ−ỹ of the opposite class. Empirical results suggest that the bias towards input
patterns with larger norm does not affect performance in practice [Settles et al.,
2008, Settles and Craven, 2008]. Note that we do not assume that the given model
classifies the clean points perfectly. We only assume that our current model is a
good predictor for p(Y |X). If we assume ρ+1 = ρ−1 and that all inputs have the
same norm ‖x‖, the criterion reduces to the one used in uncertainty re-labeling
as proposed by Rebbapragada et al. [2012].

Robust Unbiased Weighted Uncertainty Re-Labeling
(U-WURL)

Choosing the unbiased estimator lu for the noise-aware loss l̃ gives

L(σ) =
∑

(x,y)∈S

l(σ(x), y) +
∑

(x,ỹ)∈S̃

(
αỹl(σ(x), ỹ)− βỹl(σ(x),−ỹ)

)
+ Ω(w) (5.7)

with gradient

g(σ) = −
∑

(x,y)∈S

yxσ(−yx)−
∑

(x,ỹ)∈S̃

(
αỹỹxσ(−ỹx) + βỹỹxσ(ỹx)

)
+

∂

∂w
Ω(w) .

Following our selection criterion (5.3), we then correct the example (x∗, ỹ∗) that
maximizes

sU(x, ỹ) := Ey|x,ỹ
[
‖gj(σ)− g(σ)‖

]
= Ey|x,ỹ

[
‖x‖
∣∣− yσ(−yx) + ỹαỹσ(−ỹx) + ỹβỹσ(ỹx)

∣∣]
= ‖x‖

(∣∣ỹσ(ỹx) + ỹαỹσ(−ỹx) + ỹβỹσ(ỹx)
∣∣ρ−ỹσ(−ỹx)

+
∣∣− ỹσ(−ỹx) + ỹαỹσ(−ỹx) + ỹβỹσ(ỹx)

∣∣(1− ρỹ)σ(ỹx)
)

= ‖x‖
(
αỹρ−ỹσ(−ỹx) + βỹ(1− ρỹ)σ(ỹx)

)
(5.8)

∝ ‖x‖
(

(1− ρ−ỹ)ρ−ỹσ(−ỹx) + ρỹ(1− ρỹ)σ(ỹx)
)

(5.9)

= ‖x‖
(

(1− ρ−1)ρ−1σ(−x) + ρ+1(1− ρ+1)σ(x)
)
.

To arrive at (5.8) we use αy−βy = 1 and σ(−yx) = 1−σ(yx). The proportionality
in (5.9) is due to multiplying out the positive constant factor (1− ρ+1 − ρ−1)
and because one can substitute ỹ with 1 as the term is a symmetric function of
ỹ. We define

a := ρ+1(1− ρ+1)− ρ−1(1− ρ−1) and

b := ρ−1(1− ρ−1)
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to get the selection criterion

(x∗, ỹ∗) = arg max
(xj ,ỹj)∈S̃

Eyj |xj ,ỹj
[
‖gj − g‖

]
= arg max

(xj ,ỹj)∈S̃
‖xj‖

(
a σ(xj) + b

)
= arg max

(xj ,ỹj)∈S̃
sU(xj , ỹj) .

Thus, we see that selecting the next example for correction consists of an affine
transformation of the logistic function, weighted by the example magnitude. This
method has the advantage that the optimization of (5.7) is a convex problem
in the case of the logistic loss [Natarajan et al., 2013]. However, it leads to a
selection criterion which is independent of the noisy label.

Robust Maximum Likelihood Weighted Uncertainty
Re-Labeling (ML-WURL)

For logistic regression, the maximum likelihood loss in (5.4) takes the form as
derived by Bootkrajang and Kabán [2012]:

lML(σ(x), ỹ) = − log
(

(1− ρỹ)σ(ỹx) + ρ−ỹ
(
1− σ(ỹx)

))
(5.10)

= l(σ(x), ỹ)− log
(

1 + ρ−ỹ exp(−ỹw>x)− ρỹ
)

(5.11)

Unfortunately, minimizing lML is not a convex problem. The form of (5.11),
however, suggests that we might be able to employ DC programming by inter-
preting it as a difference of two convex functions [Tao, 1997]. If we use lML as
the noise-aware loss, we get

L(σ) =
∑

(x,y)∈S

l(σ(x), y)

+
∑

(x,ỹ)∈S̃

(
l(σ(x), ỹ)− log

(
1 + ρ−ỹ exp(−ỹw>x)− ρỹ

))
+ Ω(w)

with gradient

g(σ) = −
∑

(x,y)∈S

yxσ(−yx)

+
∑

(x,ỹ)∈S̃

ỹx
( ρ−ỹ
ρ−ỹ + (1− ρỹ) exp(ỹw>x)

− σ(−ỹx)
)

+
∂

∂w
Ω(w)

leading to

‖gj(σ)− g(σ)‖ = ‖x‖
∣∣∣− yσ(−yx)− ỹ

( ρ−ỹ
ρ−ỹ + (1− ρỹ) exp(ỹw>x))

− σ(−ỹx)
)∣∣∣ .
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Thus, we select the example (x∗, ỹ∗) for correction that maximizes

sML(x, ỹ) := Ey|x,ỹ
[
‖gj(σ)− g(σ)‖

]
= ‖x‖

((
1− ρ−ỹ

ρ−ỹ + (1− ρỹ) exp(ỹw>x)

)
ρ−ỹσ(−ỹx)

+
ρ−ỹ

ρ−ỹ + (1− ρỹ) exp(ỹw>x)
(1− ρỹ)σ(ỹx)

)
= ‖x‖ (1− ρỹ)ρ−ỹ

ρ−ỹ + (1− ρỹ) exp(ỹw>x)

(
exp(ỹw>x)σ(−ỹx) + σ(ỹx)

)
= ‖x‖ 2(1− ρỹ)ρ−ỹσ(ỹx)

ρ−ỹ + (1− ρỹ) exp(ỹw>x)

∝ ‖x‖ (1− ρỹ)ρ−ỹ
ρ−ỹ + (1− ρỹ) exp(ỹw>x)

σ(ỹx)

= ‖x‖ (1− ρỹ)ρ−ỹ
1− ρỹ + ρ−ỹ + ρ−ỹ exp(−ỹw>x) + (1− ρỹ) exp(ỹw>x)

= ‖x‖ρ−ỹσ(ỹx)× (1− ρỹ)σ(−ỹx)

ρ−ỹσ(ỹx) + (1− ρỹ)σ(−ỹx)
.

The selection criterion sML suggests picking examples uniformly at random in
the noiseless case. If the noise rates are equal, it proposes to pick examples with
the highest uncertainty, weighted by the noise level. In Figure 5.1a we see how
the selection criterion changes as a function of the symmetric label noise rate
ρ = ρ−1 = ρ+1 and the output of the classifier σ(ỹx) indicating its uncertainty.
We see that with increasing noise more weight is put on the uncertainty of the
classifier, whereas with decreasing noise the selection criterion approaches a
uniform distribution, see Figure 5.1b. The higher the noise, the more important
the classifier’s confidence becomes. It is also interesting to note that the selection
criterion is not symmetric w.r.t. to σ(ỹx), giving more weight to higher certainty
than to lower. This also holds for ρ−1 = ρ+1.

5.4 Active Label Correction with Softmax
Regression

The aforementioned algorithms can all be extended to multi-class versions. To
do so, we generalize our results from binary to multinomial logistic regression,
also known as softmax regression. Different from the binary case, the output of
the classifier is a categorical distribution over the label space. We have the true
and noisy labels Y, Ỹ ∈ Y = {1, . . . ,K}, a D-dimensional feature vector z ∈ RD
and the output is h(z) ∈ RK+ with

∑K
j=1 hj(z) = 1. The output h is computed

by the softmax function

hy(z) := σy(z) =
exp(zy)∑

y′∈Y exp(zy′)
,
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(a) Behavior of the selection cri-
terion sML in the symmetric case
ρ−1 = ρ+1.
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(b) Behavior of the selection crite-
rion sML in the asymmetric case,
where ρ+1 = 0.1.

Figure 5.1: The selection criterion sML as a function of the negative noise rate
ρ−1 and the output of the classifier σ(x) for the case ỹ = +1. On the left the
symmetric case ρ−1 = ρ+1 is shown, on the right we see the behavior of the
selection criterion when ρ+1 = 0.1. The dashed lines show the two cases we
considered in our experiments.

which models the posterior probability p(y|z). Using the cross-entropy loss as in
the logistic regression case leads to the pointwise loss

l(h(z), ỹ) = − log σỹ(z) .

This loss can be readily inserted into the standard and the unbiased loss, leading
to multi-class equivalents of WURL and U-WURL. Note that the feature vector z
of the pointwise loss functions does not have to be a linear function of the inputs,
but can also be a non-linear feature representation within a deep neural network
(see below). To compute the loss and the selection criterion of ML-WURL, we
re-write (5.10) as

lML(h(z), ỹ) = − log

K∑
j=1

p(Ỹ = ỹ|Y = j)σj(z) = − log

K∑
j=1

γjỹ σj(z) ,

where we have defined the probability that a label has been flipped from the true
label j to the observed label k as

γjk := p(Ỹ = k|Y = j) .

Following Bootkrajang and Kabán [2012], the corresponding gradient with respect
to the elements zc of the feature vector z is computed as

∂lML(h(z), ỹ)

∂zc
= σc(z)−

γcỹ σc(z)∑K
j=1 γjỹ σj(z)

,

which reduces in the noiseless case (γcỹ = [c = ỹ]) to the gradient

∂lML(h(z), ỹ)

∂zc
= σc(z)− [c = ỹ] .
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To compute the complete gradient in the case of a deep neural network, we
can apply the chain rule efficiently using back-propagation. As in the previous
section we can then compute the selection criterion as the expected model
change Ey|x,ỹ[‖gj(σ)− g(σ)‖]. This strategy works with any (deep) multi-class
architecture. In our empirical evaluation (see section 5.6), we used a convolutional
neural network (CNN) to demonstrate its performance.

5.5 Estimating the Noise Rates

The noise-aware selection criteria assume that the noise rates are known. In
practice, it is unlikely that they are. In this case we can draw an initial sample
uniformly at random and estimate the noise rates by counting the number of
corrected labels:

ρ̂k =

∑
(x,y,ỹ)∈SC [ỹ = −k, y = k]∑

(x,y,ỹ)∈SC [y = k]
, (5.12)

where [·] is the Iverson bracket, and SC is the set of all corrected examples with
their noisy and true labels (x, y, ỹ). In case SC is drawn uniformly at random, ρ̂k
is an unbiased estimator of the corresponding true noise rate. This approach has
the drawback that in this initial phase the active learning does not yet exploit
the gathered information about the noise rates.

Thus, we want to simultaneously estimate the noise model parameters while
using the current noise model for active learning. Drawing examples actively (i.e.,
non-uniformly) has the drawback that (5.12) becomes biased. One way of dealing
with this bias is importance-weighting. Instead of deterministically picking
examples that maximize our criterion, in each iteration t, we define a sampling
probability distribution ps(x, ỹ, t) over the noisy sample S̃. This distribution
assigns examples with a higher score in the selection criterion a higher probability
of being picked. When an example is chosen, it is given an importance weight,
defined as the inverse of its sampling probability ps. To avoid infinite importance
weights, we also have to make sure that the sampling probability is bounded
away from zero by adding a minimum probability pmin ≤ 1

n . Thus, similar to
Ganti and Gray [2012], we can define our sampling probability distribution as

ps(x, ỹ, t) := pmin(t) + (1− n · pmin(t))
s(x, ỹ)∑

(x,ỹ)∈S∪S̃ s(x, ỹ)
, (5.13)

where n = |S ∪ S̃| and s(x, ỹ) is a non-negative selection criterion, for example
one of the three criteria sW, sU , sML we introduced above. If s(x, ỹ) = 0 for all
(x, ỹ), we just sample uniformly at random by setting ps(x, ỹ, t) = 1

n . Following
Ganti and Gray [2012], we define the minimum probability pmin(t) = 1

ntκ , where
κ is a hyperparameter that tunes the trade-off between exploiting the criterion
and exploring new examples for noise rate estimation. Note that in order to draw
each example independently, we draw with replacement. Thus, it is possible that
an example is selected multiple times. In this case, we just re-use its previously
corrected example at no cost.
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To account for the non-uniform selection, we can estimate the noise rates in
iteration t by

ρ̂k(t) =

∑t
τ=1

∑
(x,y,ỹ)∈SC w(x, ỹ, τ)[ỹ = −k, y = k]∑t

τ=1

∑
(x,y,ỹ)∈SC w(x, ỹ, τ)[y = k]

, (5.14)

where we define w(x, ỹ, τ) := 1
ps(x,ỹ,τ)

and k ∈ {−1, 1} is the label of interest.

Although ρ̂k(t) is not an unbiased estimator of the true unknown noise rate either,
one can show that its bias vanishes for t→∞.

By employing importance weights we are able to simultaneously estimate the
noise rates while maximizing the accuracy through active learning. In order to
avoid an unstable start-up phase, it is possible to integrate a prior probability.
This prior can be informed by methods that estimate noise rates from noisy
samples only, e.g., [Liu and Tao, 2016, Menon et al., 2015].

5.6 Experiments

We randomly sampled training sets of 2000 patterns from different benchmark
datasets and flipped their labels with probabilities ρ−1 ∈ {0.2, 0.3} and ρ+1 = 0.1.
We evaluated the accuracies of the classifiers on separate test sets of 5000 samples
(in the case of the dataset ’ad’ on 359 as more data are not available). We
averaged each experimental outcome over 30 trials.

The result achieved by training the predictive model on the full training set
without label noise is called the clean baseline. It indicates the performance limit
achieved by correcting the whole dataset. For the active label correction, we
started with 0 corrected examples (S = ∅) and stop when half of the training
set is corrected (|S| = 1000). For all experiments we set the trade-off parameter
κ = 0.5, as suggested by Theorem 3 for the squared loss in Ganti and Gray
[2012]. To start with a stable estimated noise rate, we employ a burn-in phase of
sampling nburn-in = 50 examples uniformly at random, as in passive sampling.

The algorithms we devised in this paper are referred to as weighted uncertainty
re-labeling (WURL) and robust ML weighted uncertainty re-labeling (ML-WURL),
see section 5.3 and 5.3, respectively. For comparison, we consider passive re-
labeling for the standard loss, that is, choosing an example to correct uniformly
at random. The algorithm presented by Rebbapragada et al. [2012] is referred
to as uncertainty re-labeling, which amounts to selecting the example with
the closest absolute distance to the decision hyperplane. As robust unbiased
weighted uncertainty re-labeling (U-WURL) always performed worse than the
others proposed methods, it is omitted from the main plots (for U-WURL results
see section 5.8).

Logistic Regression

The algorithms are evaluated on the binary classification benchmark datasets
‘a1a’, ‘ad’, ‘covtype’, ‘w1a’, ‘mushrooms’, ‘cod-rna’ and ‘ijcnn1’ from the LIBSVM
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Figure 5.2: Architecture of the CNN.3 Each layer is processed in mini-batches of
64 examples. The loss is computed as the cross entropy between the softmax-
output and the labels in the noise-agnostic case. For ML-WURL we used the
loss detailed in section 5.4.

data repository.2 We evaluated each classifier after selecting one additional
example and assigning it its true label. We tested `2-regularization Ω(h) = 1

2‖x‖
2

with λ ∈ {1, 10}. Each loss is optimized using L-BFGS and each iteration is
warm-started.

Figure 5.3 shows selected empirical results. We can see that on all shown
datasets ML-WURL reaches the results of the clean baseline fastest. Uncertainty
sampling dominates in the beginning only in the case of the single dataset ‘w1a’,
however, the robust maximum likelihood estimator still converges faster to the
clean baseline. Additional experiments on the remaining datasets and with
different parameter settings can be found in section 5.8.

Convolutional Neural Network

To show that our approach also works well with non-linear, deep architectures
[LeCun et al., 2015], we have included one experiment with a convolutional neural
network (CNN). We trained a CNN using the ‘LeNet‘-architecture on the numbers
‘8‘ and ‘9‘ from the MNIST dataset [LeCun et al., 1998] with Rectified Linear
Unit (ReLU) activations instead of sigmoids. It consists of two convolution layers,
each followed by a max-pooling layer applied with a stride length of 2, and two
fully connected layers. The outputs are computed using the softmax function.
The architecture of the CNN is shown in Figure 5.2.

Different from the previous experiments, in each round we selected a batch
of the 64 examples that had the highest values of the selection criterion. In
each round we trained the CNN for 10, 000 iterations using stochastic gradient
descent with weight decay of 0.0005, momentum of 0.9 and a learning rate of
0.01 using a modified version of the Caffe-library to use the label-robust losses
[Jia et al., 2014]. The CNN experiment confirmed that ML-WURL outperforms
the alternative algorithms.

2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
3The illustration was created using the code at https://github.com/gwding/draw_convnet

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://github.com/gwding/draw_convnet
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(a) Logistic regression on dataset ‘a1a’.
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(b) Logistic regression on dataset ‘covtype’.
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(c) Logistic regression on dataset ‘w1a’.
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(d) CNN classifying 8-vs-9 on MNIST.

Figure 5.3: Empirical results on different benchmark datasets. Shown are the
mean test set errors and standard deviations over 30 trials for logistic regression
(λ = 1.0) and CNN. The active learning parameters were ρ−1 = 0.3, ρ+1 = 0.1,
nburn-in = 50, κ = 0.5. Experiments on further datasets and for different
parameter settings can be found in section 5.8.

5.7 Conclusion

We presented a principled approach to active label correction (or learning from
weak teachers). We propose to employ loss functions that depend on a noise model
and to apply the maximum expected model change criterion to the corresponding
regularized risk functionals. Class-conditional noise was assumed as a model for
the true noise. We demonstrated how to learn the parameters of the noise model
during the active learning process. Different choices of the loss function were
considered and corresponding algorithms were derived. On a range of datasets, the
algorithm ML-WURL (viewing the true label as a latent variable and computing
the maximum likelihood estimate of the model parameters) consistently gave the
best results, outperforming the state-of-the-art approach uncertainty re-labeling.
ML-WURL is an anytime algorithm that simultaneously estimates the label noise
rates while minimizing the risk. The approach can be extended to multi-class
problems and other loss functions as well as other hypotheses classes.
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5.8 Additional Experiments

We present results for the same datasets as in the main section plus several
additional ones with various parameter settings to demonstrate that the overall
performance of the proposed algorithm relative to its competitors is unaffected
by specific choices. Furthermore, we show the performance of robust unbiased
weighted uncertainty re-labeling (U-WURL).

In general, the behaviors of the algorithms match the ones shown on the
datasets in the main section. There are only minor differences: In the ‘mushrooms’
experiments the noise rate is initially estimated incorrectly and the performance
degrades, but the algorithm is able to quickly recover from the bad start. On the
dataset ‘ijcnn1’ the performance of uncertainty re-labeling degrades quickly after
the start, while the others perform as expected.

Additional Datasets

Figure 5.4 depicts some more results on additional datasets using the same
parameter settings as in the main section. The algorithms showed the same
behavior as with the parameter settings considered earlier.
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(a) Dataset ‘cod-rna’.
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(b) Dataset ‘ijcnn1’.
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(c) Dataset ‘mushrooms’.
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(d) Dataset ‘ad’.

Figure 5.4: Empirical results on the additional datasets with the parameters as
in the main section: ρ−1 = 0.3, ρ+1 = 0.1, λ = 1.0, nburn-in = 50, κ = 0.5.
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Different Choice of Noise Rates ρ−1 and ρ+1

We set the noise rates to values with smaller difference, that is, ρ−1 = 0.2 and
ρ+1 = 0.1. The results are shown in Figure 5.5. It can be seen that the maximum
likelihood estimator still dominated. It showed comparable performance as in
the case of the larger difference in the noise rates.

Different Choice of Regularization Parameter λ

We set the regularization parameter to λ = 10.0, shown in Figure 5.6. The curves
show the same behavior as in the main section with the maximum likelihood
estimator typically dominating.

Different Choice of Burn-In Sample Size nburn-in

We set the burn-in sample size to nburn-in = 0, shown in Figure 5.7. We see that
during the first few iterations the algorithm fluctuated more than without initial
uniform sampling for stabilization. After the initial fluctuations, it recovered
quickly and converged to the clean baseline as fast as in the other settings.

Different Choice of Exploration Parameter κ

We set the exploration parameter κ = 0.1, shown in Figure 5.8. This lets the
probability of picking an example uniformly at random decay more slowly with
the number of re-labeled examples. We see that the algorithm behaves more
stable during the first few iterations.

Performance of the Unbiased Estimator

Due to its inferior performance we excluded U-WURL from the main section.
Here we include it for completeness, see Figure 5.9. Although in some datasets it
performed better than passive re-labeling, it performed always worse than the
other active methods.
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(a) Dataset ‘a1a’.
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(b) Dataset ‘ad’.
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(c) Dataset ‘covtype’.
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(d) Dataset ‘w1a’.

0 200 400 600 800 1000
examples corrected

0.926

0.928

0.930

0.932

0.934

0.936

0.938

ac
cu

ra
cy

 o
n 

te
st

 s
et

(e) Dataset ‘cod-rna’.
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(f) Dataset ‘ijcnn1’.
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(g) Dataset ‘mushrooms’.
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(h) Dataset ‘ad’.

Figure 5.5: Setting noise rates ρ−1 = 0.2 and ρ+1 = 0.1. Empirical results on
different benchmark datasets with parameters: ρ−1 = 0.2, ρ+1 = 0.1, λ = 1.0,
nburn-in = 50, κ = 0.5.
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(a) Dataset ‘a1a’.
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(b) Dataset ‘ad’.
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(c) Dataset ‘covtype’.
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(d) Dataset ‘w1a’.
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(e) Dataset ‘cod-rna’.
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(f) Dataset ‘ijcnn1’.
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(g) Dataset ‘mushrooms’.
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(h) Dataset ‘ad’.

Figure 5.6: Setting regularization parameter λ = 10.0. Empirical results on
different benchmark datasets with parameters: ρ−1 = 0.3, ρ+1 = 0.1, λ = 10.0,
nburn-in = 50, κ = 0.5.
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(a) Dataset ‘a1a’.

0 200 400 600 800 1000
examples corrected

0.75

0.80

0.85

0.90

0.95

1.00

ac
cu

ra
cy

 o
n 

te
st

 s
et

(b) Dataset ‘ad’.
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(c) Dataset ‘covtype’.

0 200 400 600 800 1000
examples corrected

0.86

0.88

0.90

0.92

0.94

0.96

0.98

ac
cu

ra
cy

 o
n 

te
st

 s
et

(d) Dataset ‘w1a’.

0 200 400 600 800 1000
examples corrected

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

ac
cu

ra
cy

 o
n 

te
st

 s
et

(e) Dataset ‘cod-rna’.
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(f) Dataset ‘ijcnn1’.
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(g) Dataset ‘mushrooms’.
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(h) Dataset ‘ad’.

Figure 5.7: Setting burn-in sample size nburn-in = 0. Empirical results on different
benchmark datasets with parameters: ρ−1 = 0.3, ρ+1 = 0.1, λ = 1.0, nburn-in = 0,
κ = 0.5.
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(a) Dataset ‘a1a’.
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(b) Dataset ‘ad’.
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(c) Dataset ‘covtype’.
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(d) Dataset ‘w1a’.
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(e) Dataset ‘cod-rna’.
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(f) Dataset ‘ijcnn1’.
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(g) Dataset ‘mushrooms’.
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(h) Dataset ‘ad’.

Figure 5.8: Setting the exploration parameter κ = 0.1. Empirical results on
different benchmark datasets with parameters: ρ−1 = 0.3, ρ+1 = 0.1, λ = 1.0,
nburn-in = 50, κ = 0.1.
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(a) Dataset ‘a1a’.
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(b) Dataset ‘ad’.
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(c) Dataset ‘covtype’.
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(d) Dataset ‘w1a’.
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(e) Dataset ‘cod-rna’.
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(f) Dataset ‘ijcnn1’.
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(g) Dataset ‘mushrooms’.
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(h) Dataset ‘ad’.

Figure 5.9: Empirical results including the unbiased estimator with parameters:
ρ−1 = 0.3, ρ+1 = 0.1, λ = 1.0, nburn-in = 50, κ = 0.5.





Chapter 6

Conclusion and Future Work

In this thesis we considered problems that arise when learning from biased
datasets in the context of astronomical applications.

In chapter 2, we reviewed current machine learning and image analysis
algorithms for solving large-scale astronomical problems. We illustrated the
need to develop new algorithms that are able to handle ever-larger sky surveys.
Furthermore, label and measurement noise have to be controlled. We argued that
in astronomical problems in which only the accuracy of the predictor matters, data-
driven machine learning models can outperform interpretable physical models.
We focused on exemplary results, discussed main challenges, and highlighted
some recent methodological advancements in machine learning and image analysis
triggered by astronomical applications.

In chapter 3, we surveyed algorithms for active learning with support vector
machines. After a brief introduction to the active learning problem, we discussed
different query strategies for selecting informative data points and reviewed how
these strategies give rise to different variants of active learning with support
vector machines (SVMs). These have convenient properties that make it easy to
evaluate how unlabeled samples would influence the model if they were labeled
and included in the training set. Therefore, SVMs are particularly well-suited for
active learning. However, we showed that there are several challenges that still
need to be addressed, such as efficient learning, dealing with multiple classes, and
that actively choosing the training data introduces a selection bias. Importance
weighting seems to be most promising to counteract this bias, and it can be easily
incorporated into an active SVM learner. Most of the research in active SVM
learning so far has focused on binary decision problems. A challenge for future
research is to develop efficient active learning algorithms for multi-class SVMs
that address the nature of the multi-class decision in a more principled way.

In chapter 4, we considered the scenario in which we do not spend a labeling
budget. Instead, we used large amounts of unlabeled data to importance-weight
the training sample to minimize a possible domain shift. We considered an
efficient nearest neighbor density ratio estimator that can exploit large samples to
increase the accuracy of the weight estimates. To solve the problem of choosing
the right neighborhood size, we proposed to use cross-validation on a model
selection criterion that is unbiased under covariate shift. The resulting algorithm
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is our method of choice for density ratio estimation when the feature space
dimensionality is small and sample sizes are large. The approach is simple and,
because of the model selection, robust.

We showed empirically that it is on a par with established kernel-based
methods on relatively small regression benchmark datasets. However, when
applied to large-scale photometric redshift estimation, our approach outperformed
the state-of-the-art. Subsequent works have validated our findings and shown that
this estimator holds state-of-the-art results in redshift estimation [Izbicki et al.,
2016]. Future work could consider the theoretical properties of the estimator
and an implementation on GPUs for handling datasets with billions of patterns
efficiently and at low cost.

In chapter 5 we examined the setting in which the training data is labeled,
but the annotations are noisy, for example, due to imprecise measurement or
crowd-sourcing. We assumed that each true label can be obtained at a significant
cost (e.g., by taking additional measurements or asking human experts). To
minimize the labeling costs, we aimed at identifying training patterns for which
knowing the true labels maximally improves the learning performance. We
devised active a framework for label correction algorithms under the assumption
of class-conditional noise, where the true label is conditionally independent of the
input given the observed label. To select labels for correction, we adopted the
active learning strategy of maximizing the expected model change. We considered
the change in regularized empirical risk functionals that use different pointwise
loss functions for patterns with noisy and true labels, respectively.

Three different choices of loss functions for the noisy data points then led to
different active label correction algorithms. Two of the loss functions considered
the label noise rates, which are estimated during learning, where importance
weighting compensates for the sampling bias due to active learning. Our experi-
ments showed that on a range of datasets, the algorithm we termed maximum
likelihood weighted uncertainty relabeling (ML-WURL) consistently gave the best
results, outperforming the state-of-the-art approach uncertainty re-labeling. This
approach views the true label as a latent variable and computes the maximum
likelihood estimate of the model parameters. ML-WURL is an anytime algorithm
that simultaneously estimates the label noise rates while minimizing the risk. We
also extended ML-WURL to softmax regression and showed empirically that it
also works well with deep models like convolutional neural networks (CNNs). In
future work, ML-WURL could be extended to multi-class problems and other
loss functions as well as other hypotheses classes.

In the future, there will be a growing interest in the research directions
followed in this thesis. With the new astronomical surveys producing terabytes
of data per night, the importance of computer science for astronomy will steadily
increase. The algorithms for dealing with biased data presented in this thesis
were developed with astronomical applications in mind, however, they address
general problems. In many practical applications of data analysis, the assumption
of i.i.d. data is violated and dealing with the resulting biases is one of the biggest
challenges in machine learning.
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