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Summary

In this thesis I will cover three topics concerned with reconstruction and analysis of
structural brain connections, which will be brie�y introduced in Chapter 1:

• Tractography: Reconstructing structural connections

• Statistical signi�cance of connections and application to connectivity-based par-
cellation

• Supervised dimensionality reduction of networks of structural connections

In Chapter 2 I will give an overview of the current state-of-the-art research for
reconstructing and analysing structural connections with a focus on the aforementioned
topics. Chapter 3 brie�y summarises the motivation, approach and results of the four
papers included in this thesis. This chapter is organized according to the topics of the
papers:

• Shortest-path tractography with spatial priors

• Statistical signi�cance of connections applied to parcellation of the thalamus

• Supervised hub-detection for structural brain networks

In Chapter 4 I will conclude the thesis with an outlook towards further extension
and applications of the presented methods. Chapter 5 contains the discussed papers
in the following order:

1. Training shortest-path tractography: Automatic learning of spatial priors (Kasen-
burg et al., 2016c)

2. Finding signi�cantly connected voxels based on histograms of connection strengths (Kasen-
burg et al., 2016d)

3. Structural parcellation of the thalamus using shortest-path tractography (Kasen-
burg et al., 2016a)

4. Supervised hub-detection for brain connectivity (Kasenburg et al., 2016b)

I also participated in other projects that are not the focus of my thesis, but which
are related to the research presented herein. Two of these projects are concerned with
machine learning on networks. In the �rst we developed a new graph kernel based on
shortest paths to measure similarity between attributed graphs (Feragen et al., 2013).
In the second we proposed a new approach to �nd common sub-networks in a dataset
that signi�cantly distinguish graphs of two di�erent classes (Sugiyama et al., 2015).
The last project also involves tractography, but utilises simpler DTI models allowing
tractography output as probability distributions over tracts (Schober et al., 2014).
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Abstract

Analysis of structural connections between brain regions enables us to gain insight into
the structural architecture of the human brain and into how connections are a�ected
by age or pathology. Tractography is the standard tool for automatic delineation of
structural connections or tracts. Post-processing of tractography results using expert
prior knowledge is often performed to ensure a robust delineation. In this thesis, I
present a shortest-path tractography (SPT) framework that can automatically incor-
porate any prior knowledge about the location of a tract. Furthermore, I show how
such a prior can be learned from previous tractography results.

A confound common to all SPT methods is their sensitivity to �nding many false-
positive connections, since a path between two locations in the brain is always found.
To address this issue I present two approaches to measure the statistical signi�cance
of a connection and demonstrate their application in connectivity-based parcellation.

Network models are a common way to represent structural connections of the
whole brain. With supervised learning methods, features are extracted from these
networks and are associated with a parameter of interest. Dimensionality reduction is
often performed as pre-processing, since network analysis typically su�ers from high-
dimensionality low-sample-size problems. Preceding the supervised analysis with un-
supervised dimensionality reduction can, however, smooth the discriminative signals,
degrading predictive performance. In this thesis I present a novel supervised dimen-
sionality reduction algorithm that clusters network nodes into hubs, which re�ect com-
mon connectivity structures in the population, and that retains predictive performance
of the lower dimensional features.





Chapter 1

Introduction: What can we learn from

structural connections?

Structural connections are de�ned as physical connections between di�erent parts of
the human brain, also called tracts. Analysing these tracts enables us to understand
how structural connections of the brain are organized and how tracts are a�ected
by age or pathology. The motivation for the work in this thesis is to search for
di�erences in structural brain connectivity within a population. This requires �nding
the connections, evaluating whether connections are true or false positives, and �nally
analysing the network of brain connections as a whole.

1.1 Tractography: Reconstructing structural connec-

tions

Reconstruction of structural connections is a required pre-processing step for tract
analysis. While it is possible to delineate tracts ex vivo after injection of �uorescent
tracers (Haber, 1988; Mufson et al., 1990), this can only give insights into the general
structure of the brain and is only applicable for post mortem analysis.

Di�usion weighted imaging (DWI) measures the di�usion of water in the brain.
Since di�usion of water is greater along than across tracts (Henkelman et al., 1994;
Moseley et al., 1991), �bre orientation distribution functions (fODFs) can be computed
from the DWI. Tractography delineates tracts in vivo based on fODFs computed for
each voxel in the image.

Unlike tractography methods that follow the local maximum likelihood direction
of the fODF of the current voxel, shortest-path tractography (SPT) is able to �nd
the globally optimal path between two voxels over all possible paths. In SPT, the
DWI is modelled as a brain graph, where nodes represent each voxel in the image,
edges connect neighbouring nodes and edge weights re�ect the likelihood of a tract
connecting two voxels derived from the fODFs of the corresponding voxels.

Post-processing based on expert prior knowledge of a tract is often applied to
tractography outputs from both local tracking and SPT to ensure a reliable delineation.
However, until now it has not been possible to include any prior knowledge about the
location of a tract into a tractography framework.

The �rst objective of this thesis is to formulate a new approach to shortest-
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CHAPTER 1. INTRODUCTION 4

path tractography in which prior spatial location of a tract is incorporated into the
tractography framework, in order to �nd the globally optimal path based on both the
prior information and the voxel-wise fODFs.

1.2 Signi�cance analysis of structural connections

Shortest-path tractography will always �nd a path for every given pair of voxels,
whether there exists an actual physical connection or not. It is therefore necessary to
be able to evaluate the likelihood of a path and to determine the statistical signi�cance
of a path to be a true-positive connection.

The second aim of this thesis is to measure whether a voxel is signi�cantly
connected to a target region. Moreover, analysis of the signi�cance of the connections
of a seed region to multiple target regions (ROIs) is applied in structural parcellation
of the thalamus.

1.3 Supervised dimensionality reduction of networks

of structural connections

Structural connections can be either analysed directly by comparing the delineated
tracts or in the form of an ROI-to-ROI graph. In contrast to the voxel graph used
in graph-based SPT, an ROI-to-ROI graph is a brain graph on a higher level, where
the nodes are anatomical units of the brain consisting of hundreds or thousands of
voxels and edges re�ect the structural connectivity between these units. In these
graphs, connectivity between nodes is measured based on the tracts found between
the respective ROIs and metrics that can be derived from these tracts.

Analysis of these structural brain networks is commonly preceded by dimensionality
reduction to account for the apparent high-dimensionality low-sample-size problem.
When supervised learning is applied to brain networks to compare them with respect
to a factor of interest like age or pathology, preceding unsupervised dimensionality
reduction can, however, smooth the discriminative signal.

The last objective of this thesis is to incorporate the learning problem into
the dimensionality reduction, thereby �nding clusters of nodes, so called hubs, that
are related to the factor of interest and represent common structures in the dataset.



Chapter 2

State-of-the-art in reconstruction and

analysis of structural connections

Here, I will describe three di�erent topics related to the objectives from Chapter 1,
in the context of the international state-of-the-art. I will �rst discuss how to estimate
a �bre orientation model from DWI, which is necessary to perform tractography. I
will then give an overview of di�erent tractography methods with a focus on shortest-
path tractography. Next, I will describe current approaches to connectivity-based
parcellation (CBP). Finally, I will give an introduction into how ROI-to-ROI brain
graphs are constructed and describe state-of-the-art network analysis with a focus on
hub-detection and network dimensionality reduction. I will also brie�y outline the
new ideas and approaches developed during my project in these �elds but refer to
Chapter 3 for a more in-depth description.

2.1 Tractography

The human brain consists mainly of nerve cells. The bodies of these cells are mostly
located in the cortex of the brain, forming the grey matter. The axons of the nerve
cells that connect cells with each other form the white matter. Bundles of these axons,
also called �bre bundles or tracts, connect di�erent regions of the cortex. The goal of
tractography is to delineate those tracts based on voxel-wise �bre orientations derived
from DWIs.

2.1.1 From DWI to �bre orientation

Tractography methods rely on voxel-wise �bre orientation models derived from DWI.
In DWI the di�usion of water is measured along di�erent directions. Since di�usion
depends on the orientation of the measured tissue (Henkelman et al., 1994) and is faster
along nervous �bres (Moseley et al., 1991), it is possible to estimate the direction of
�bres from DWI. Di�erent models exist to model the �bre direction from the measured
di�usion.

The di�usion tensor (DT) is a 3×3 positive de�nite, symmetric matrix representing
displacements in 3D. Assuming that the di�usion of water is distributed as a Gaussian,
the DT models the covariance between di�usion along the three main axes (Basser
et al., 1994). The main �bre direction lies along the eigenvector with the largest
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CHAPTER 2. STATE-OF-THE-ART RESEARCH 6

eigenvalue, called the principal eigenvector. However, since the DT assumes that there
is only one �bre bundle within a voxel, DTI is not able to model crossing, branching
or fanning �bres (Pierpaoli and Basser, 1996).

One possible solution to allow for multiple �bre populations is to model the di�usion
as a mixture of Gaussian functions (Alexander, 2005). Another approach is to model
the di�usion outside the �bre as an isotropic Gaussian and the di�usion along a �bre
as a DT with only one non-zero eigenvalue (Behrens et al., 2003b). This �ball and
stick� model can be extended to multiple �bre populations by allowing for additional
�sticks�. Nevertheless, the number of �bre populations in a voxel needs to be de�ned
or estimated beforehand for all of the above models.

Other methods exist that try to estimate a �bre orientation distribution function
(fODF) for each voxel in the image. The fODF is a probability function on the unit
sphere. For each direction pointing out of the voxel centre it returns a probability that
there is a �bre along that direction.

Non-parametric methods compute the fODF by, for example, using a funk radon
transform of the measured signal (Aganj et al., 2010; Descoteaux et al., 2007; Tuch,
2004) or by deconvolution of the measurements (Tournier et al., 2007, 2004). For a
complete overview of existing fODF models and reconstruction, the interested reader
is referred to the reference books Di�usion MRI: Theory, methods, and application
by Jones (2010) and Introduction to Di�usion Tensor Imaging and Higher Order Mod-
els by Tournier and Mori (2014).

Due to the diversity of fODF models and their variable suitability for di�erent DWI
acquisition protocols, there is also a great variety of tractography algorithms. In the
next section, I will give an overview of current state-of-the-art tractography methods
that either focus on a certain model or allow a free choice of the fODF.

2.1.2 From �bre orientation distribution functions to tracts

Tractography algorithms can be divided into local and global methods. The former
class proceeds step-wise along the most likely direction or maximum likelihood of the
fODF from the current position until reaching a termination criterion. The latter seeks
the globally most optimal path between two voxels or points in the image.

Local tracking

Local tracking algorithms can be further divided into deterministic tracking (Basser
et al., 2000; Garyfallidis, 2012; Mori et al., 1999) and probabilistic tracking (Behrens
et al., 2007; Parker and Alexander, 2003; Parker et al., 2003). While deterministic
tracking follows the direction with the largest fODF value for every step, probabilistic
tracking chooses a direction sampled from the fODF (Behrens et al., 2007; Jeurissen
et al., 2011) or some other kind of (un)certainty of the �bre orientation (Parker and
Alexander, 2003; Parker et al., 2003).

The �rst deterministic methods simply follow the principal eigenvector of the DT
in every step (Mori et al., 1999). Similarly, one can interpolate the direction from the
underlying di�usion tensor in every step to obtain a tract curve (Basser et al., 2000).
Deterministic tractography has also been extended to work with any fODF, e.g. by
Garyfallidis (2012) implemented in DiPy (Garyfallidis et al., 2014).
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Most probabilistic tracking methods stochastically sample the direction for the next
step from the fODF. Methods based on (multi)-tensor models measure the uncertainty
for each principal eigenvector, for example, using the fractional anisotropy (FA) of the
tensor (Parker et al., 2003) or a noise model (Parker and Alexander, 2003). The same
sampling approach can be applied to the fODFs computed from the �ball and stick�
model (Behrens et al., 2007) or a bootstrap approach can be used together with the
constrained spherical deconvolution model (Jeurissen et al., 2011).

While probabilistic tractography accounts for uncertainty in the measurement and
direction for a single voxel (Behrens et al., 2003b; Lazar and Alexander, 2003), it
su�ers from path-length dependency (Liptrot et al., 2014), i.e. connection probability
decreases and uncertainty accumulates with the distance to the start region (Morris
et al., 2008). Path-length dependency can be avoided by considering all possible paths
to �nd the globally optimal one, instead of a locally optimal path obtained through
local tracking by following the most likely direction from the current position.

Global tractography

Global tractography methods try to �nd the optimal path between two points or
voxels, which makes them less susceptible to local noise and removes the problem of
path-length dependency. These methods can be distinguished by the function they
optimize and by how the optimization is performed.

Inspired by probabilistic tracking, global probabilistic tractography estimates the
maximum likelihood path between two points using a Markov Chain Monte Carlo
(MCMC) algorithm to sample from a posterior distribution over paths (Jbabdi et al.,
2007; Yendiki et al., 2011). The posterior distribution is based on the fODF of a �xed
number of points along the path, and can include prior information about the existence
of a path (Jbabdi et al., 2007) or limited types of anatomical information about the
path (Yendiki et al., 2011). Due to the MCMC sampling, these global probabilistic
methods are not guaranteed to �nd the globally optimal solution, but can instead
result in a local optimum (Teeuw et al., 2015).

Alternatively, the global optimum is de�ned as a shortest path under a Riemannian
metric (Lenglet et al., 2004; O'Donnell et al., 2002), which is de�ned as being inversely
proportional to the di�usion tensor in every voxel. Other metrics have also been used
in place of the inverse DT (Fuster et al., 2014; Hao et al., 2011; Hauberg et al., 2015;
Schober et al., 2014). These continuous shortest-path methods depend on sampling
and a good initialisation similar to the global probabilistic tractography methods and
therefore also risk to only �nd locally optimal solutions.

In contrast, discrete shortest-path methods model the DWI as a graph in which
nodes represent voxels and edges link neighbouring voxels in either a 3×3×3 (Iturria-
Medina et al., 2007; Zalesky, 2008) or 5× 5× 5 (Sotiropoulos et al., 2010; Vorburger
et al., 2013) neighbourhood. The weight of an edge re�ects the probability that a
�bre is connecting the two corresponding voxels. This probability is computed by
integrating the fODF over a cone around the corresponding direction. A path between
two voxels is then computed by �nding the most probable path in the graph (Iturria-
Medina et al., 2007; Sotiropoulos et al., 2010) or the shortest path in a graph where
edge weights were negatively log-transformed (Vorburger et al., 2013; Zalesky, 2008).
This guarantees a globally optimal solution, which does not require a good initial
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solution, unlike the continuous shortest-path methods.

Graph-based shortest-path tractography (SPT) is, moreover, well suited for includ-
ing grey and white matter probability to account for partial volume e�ects (Iturria-
Medina et al., 2007), using the cone of uncertainty to re�ect noise in the data (Vor-
burger et al., 2013) or de�ning a weight for each �bre population in a voxel to model
�bre crossings (Sotiropoulos et al., 2010).

However, current graph-based SPT approaches only work with speci�c fODF mod-
els (Sotiropoulos et al., 2010; Vorburger et al., 2013; Zalesky, 2008) or use specialised
algorithms to �nd the global optimum (Iturria-Medina et al., 2007; Sotiropoulos et al.,
2010).

In this thesis, I will describe an extremely �exible framework for graph-based SPT
which allows for any choice of fODF and makes it algorithmically and mathematically
easy to include prior information, such as the spatial location of the tract (see Sec-
tion 5.1). Furthermore, I will show how such a prior can be learned from previous
tractography results.

2.2 Connectivity-based parcellation

It is important to determine whether a tract found by SPT is a true-positive con-
nection, since SPT will always �nd a path between two voxels. In Section 3.2 I will
present an approach to test the signi�cance of connections derived from SPT and how
the signi�cance can be used in connectivity-based structural parcellation (CBP). CBP
is a form of data-driven segmentation, where the aim is to divide either the whole
cortex or a speci�c region of the brain into smaller �parcels�. While both functional
and structural connectivity are often used for parcellation (Eickho� et al., 2015), I will
focus on structural connectivity, which is derived from tractography.

The �rst paper describing structural parcellation (Behrens et al., 2003a) segmented
the thalamus, and was based on the connections of the thalamus to seven target cortical
regions known as thalamic connection sites. More speci�cally, every thalamus voxel
was assigned to the target region to which it had most connections. However, this
method did not take correlations between voxels into account, since every voxel was
labelled independently, and assumed that every voxel is truly connected to exactly one
target region.

Another approach to thalamus segmentation appeared in the same year and used
k-means clustering, with the distance between voxels de�ned as a linear combination
of the Mahalanobis voxel coordinate distance and the Frobenius di�usion tensor dis-
tance (Wiegell et al., 2003). While this approach segmented the thalamus purely based
on similarity in di�usivity between voxels, it was not related to their connections to
the cortex.

Later approaches computed a correlation between seed voxels based on their so-
called tractograms (Johansen-Berg et al., 2004), a binarized vector of connections to all
other voxels in the brain. The correlation between tractograms both used connectivity
information and accounted for correlations between voxels. Similar to Wiegell et al.
(2003) k-means clustering was performed for both whole-brain parcellation (Anwander
et al., 2007) or to segment speci�c brain regions like the frontal cortex (Johansen-Berg
et al., 2004), parietal cortex (Mars et al., 2011) or the insula (Nanetti et al., 2009).
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When the number of target parcels is known beforehand, k-means is an e�cient
and easy-to-use method to perform the parcellation. However, especially for whole-
brain parcellation, the number of clusters is unknown and it is hard to evaluate results
for di�erent choices of k (Eickho� et al., 2015).

Recent approaches for whole-brain parcellation use hierarchical clustering to re-
trieve groupings of voxels at di�erent levels (Moreno-Dominguez et al., 2014). Hierar-
chical clustering has the advantage that no prede�ned number of clusters is required.
Nevertheless, it is sensitive to noise (Eickho� et al., 2015) and depends on the choice
of the linkage criterion, i.e. how clusters are joined.

Clustering of voxels leads to a parcellation of a seed region where voxels within
a parcel have a similar connectivity. When the goal is to also gain insight about to
which target region(s) a seed voxel is most strongly connected to, another approach
similar to the one by Behrens et al. (2003a) needs to be applied instead. However,
assigning a �xed label to a seed voxel does not re�ect whether the voxel is connected
to multiple target regions. Moreover, such a hard parcellation neglects that a seed
voxel might not be connected to any target region.

In this thesis I present an approach for performing CBP in which parcellation is
based on how signi�cantly a seed voxel is connected to a target region, thereby yielding
a soft segmentation of the seed region that re�ects the degree of connection signi�cance
to every target region (see Sections 5.2 and 5.3).

2.3 Structural brain network analysis

Structural brain networks are often modelled as graphs consisting of nodes that repre-
sent brain regions and edges between pairs of nodes that have an assigned weight (Bull-
more and Sporns, 2009; Sporns, 2014). These weights typically re�ect either the struc-
tural or the functional connectivity between the corresponding regions.

The focus in this thesis is on structural connectivity networks that are created
using tractography algorithms. Existing studies analyse how connections are a�ected
by age (Perry et al., 2015; Robinson et al., 2010), pathology (Fornito et al., 2015;
Gri�a et al., 2013) or gender (Perry et al., 2015), or how functional connections can be
predicted from the underlying structural network (Deligianni et al., 2013). All of these
methods di�er in acquisition protocols, pre-processing of the data, the fODF model,
the way region of interests (ROIs) are de�ned and the tractography method.

In the following, I will not comment on the acquisition of the DWI, pre-processing
or choice of di�usion model and tractography method. Instead I will only brie�y
describe often encountered di�erences in construction of structural brain networks,
including choice of ROIs and the way tractography is performed. Next, I will brie�y
survey structural networks with a focus on hub-detection and network dimensionality
reduction.

2.3.1 From di�usion images to brain networks

The �rst step of constructing an ROI-to-ROI brain network is to de�ne the ROIs, or
nodes, of the graph. Regions of interest are most commonly de�ned by a structural
template atlas (Zalesky et al., 2010). Instead of using the regions provided by the
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template atlas directly, they can also be subdivided to obtain a �ner parcellation of
the brain (Hagmann et al., 2008; Perry et al., 2015).

After de�nition of the nodes, tractography is performed to obtain the edge weights
of the graph. Here, two main strategies are used: whole-brain tractography or ROI-
to-ROI tractography.

Whole-brain tractography is performed from a set of seed voxels equally distributed
in the white matter (Gong et al., 2009; Hagmann et al., 2008; Zalesky et al., 2010),
and tracts are assigned to a pair of regions if they connect both of them. Since
tracts start and end in grey matter, found tracts are, moreover, post-processed to
select those with endpoints at the grey-matter-white-matter (GM-WM) boundary. In
ROI-to-ROI tractography, tracts are computed between the GM-WM boundary of the
ROIs (Ghanbari et al., 2014b; Robinson et al., 2010). Whole-brain and ROI-to-ROI
tractography both result in a set of tracts connecting each pair of regions. Which of
the two approaches is chosen mainly depends on whether the tractography method
requires endpoint regions or whether tracts are computed from a set of seed voxels.

Once the tracts connecting each pair of regions are found, the next step is to derive
a measure representing each connection. One possible choice is to count the number of
tracts reconstructed between two ROIs. However, tract counts are biased by the size of
the regions and the physical distance between them. Tract counts are therefore either
binarized (Gong et al., 2009) or normalized by the length of the tracts (Hagmann et al.,
2008; Perry et al., 2015) or the size of the endpoint regions (Hagmann et al., 2008)
to construct weighted graphs. The mean anisotropy along a tract (Deligianni et al.,
2013; Robinson et al., 2010) presents an alternative way of de�ning edge weights.

While binarized graphs only represent the absence or existence of a connection,
weighted networks try to estimate the density of connections or white matter integrity
along the tract. Nevertheless, the anatomical interpretation of these measures remains
unclear (Jones et al., 2013) and they do not account for false-positive tracts due to
noise or tracts that do not re�ect a physical connection.

In contrast to estimates of the white matter integrity of a tract, edge weights can
be de�ned as the uncertainty of the connection computed from the likelihood assigned
to a tract by either probabilistic tractography (Ghanbari et al., 2014b) or graph-based
SPT (Iturria-Medina et al., 2007).

Since probabilistic tractography su�ers from path-length dependency and is not
guaranteed to �nd the globally optimal path between two region, as described in
Section 2.1, we perform SPT to reconstruct the tracts connecting the nodes of the
brain network. We further de�ne edge weights as the likelihood of a tract similar to
Iturria-Medina et al. (2007), but use the mean likelihood over all paths between two
ROIs instead of the maximum (see Section 5.4).

2.3.2 From brain networks to hubs

Structural brain network analysis su�ers from the high dimensionality of the networks
compared to the typically small sample size, since graphs consist of thousands of edges
while datasets generally contain fewer than 100 subjects. Dimensionality reduction is
therefore often performed as a pre-processing step. In the case of brain networks,
where the features are edges, dimensionality reduction aims to �nd sub-networks that
describe the common structures in the population while still retaining the subject-



11 CHAPTER 2. STATE-OF-THE-ART RESEARCH

speci�c variation (Clayden et al., 2013).
Commonly, supervised learning is performed on the dimensionality reduced net-

works to �nd those sub-structures that are a�ected by a factor of interest like age (Robin-
son et al., 2010) or pathology (Ghanbari et al., 2014a,b). However, most dimensionality
reduction techniques extract sub-networks without taking the learning problem into
account and tend to smooth out the discriminative signal, leading to lower-dimensional
brain networks with reduced predictive power (Cheplygina et al., 2014; Rubinov and
Bullmore, 2013). The learning goal should therefore instead be part of the dimension-
ality reduction to retain the predictive power.

In this thesis I present a novel dimensionality reduction algorithm for structural
brain networks where the supervised learning problem is incorporated into the algo-
rithm (see Section 5.4). The aim is to �nd clusters of nodes, so called hubs, that form a
lower dimensional representation of all networks in the dataset while also being related
to the factor of interest.
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Chapter 3

Summary of published papers:

Learning from tractography

In Chapter 2, I introduced the current state-of-the-art research in the �eld of tractog-
raphy, connectivity-based parcellation (CBP) and hub-detection in structural brain
networks. Both CBP and hub-detection are ways to learn from data obtained through
tractography.

This chapter �rst describes a novel framework for shortest-path tractography (SPT),
where the tractography algorithm can learn from previous tractography results. I will
further describe how to determine signi�cance of connections obtained from SPT and
how this contributes to CBP. Furthermore, I will summarise my contributions to hub-
detection in the context of existing state-of-the-art methods.

3.1 Shortest-path tractography with spatial priors

As introduced in Section 2.1, the goal of tractography is to delineate tracts between
regions of the brain. Delineated tracts are compared across di�erent subjects based
on properties derived from the corresponding tracts. These properties include, but
are not limited to, the shape of the tract or di�erent di�usivity metrics (Benedetti
et al., 2011; Davis et al., 2009; Galantucci et al., 2011; Wozniak et al., 2013), such as
the fractional anisotropy (FA) (McGrath et al., 2013; Whitford et al., 2015; Xia et al.,
2012) or generalized FA (Tang et al., 2010). Furthermore, there exist more complex
properties that estimate white matter integrity (Assaf et al., 2013; Golestani et al.,
2014).

To properly compare properties derived from tracts across subjects and between
populations, it is necessary that the tract delineation is robust and consistent. In this
section, I present how incorporating prior knowledge into the tractography algorithm
leads to robust delineation without the need for further, usually manual, processing of
the tractography results.

3.1.1 What can we gain from spatial priors?

In tractography algorithms, FA (Iwata et al., 2011; Whitford et al., 2015) or white
matter (WM) tissue probabilities (Iturria-Medina et al., 2007) are often used as a

13
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Figure 3.1: The learned prior (right) is created from a set of single-subject con�dence maps (left;
only a subset is shown). Both the learned prior and the con�dence maps are shown in MNI standard
space represented as 20 opaque isosurfaces equally distributed over the range of values. The �gure
was created from results for the left cortico spinal tract presented by Kasenburg et al. (2016c).

guide or stopping criterion for tractography. Furthermore, waypoint or exclusion re-
gions are commonly applied as post-processing of tractography outputs to ensure a
reliable delineation of tracts (Benedetti et al., 2011; Connally et al., 2014; Galantucci
et al., 2011; Rojkova et al., 2015). Incorporating such domain knowledge into the trac-
tography framework is a special case of integrating prior information regarding tract
location into the tract delineation.

Existing global probabilistic tractography approaches are able to incorporate more
restrictive prior knowledge such as the existence or absence of a tract (Jbabdi et al.,
2007) or prior anatomical information about a �xed number of segments along each
tract (Yendiki et al., 2011). These methods are, however, limited to manually pre-
de�ned priors.

In the �rst paper of this thesis, found in Section 5.1, we derived intuitive, exact
and e�cient algorithmic solutions to incorporate any spatial prior information about
a tract from multiple sources, into a graph-based SPT framework. First, we described
how common techniques to prune or post-process tractography results, such as WM
probabilities or waypoint masks, can be included as a prior. In a similar fashion, we
applied an independent tract atlas as a prior to guide the tractography.

Furthermore, we created learned spatial priors that improved the accuracy of the
delineated tracts compared to the application of other prior information and results
obtained without the use of a prior.

3.1.2 Creating learned spatial priors

We proposed that a learned prior can be used for aiding tractography. These learned
priors are computed from single-subject tractography results over a population.

First, tractography results are summarised in so called con�dence maps, where the
con�dence maps assign a likelihood or con�dence to each voxel to lie upon the sought
tract (Kasenburg et al., 2016c). The con�dence value is computed as the sum of path
scores from all found shortest-paths containing the voxel. The path score represents
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Figure 3.2: Tractography results for the left (top row) and right (bottom row) inferior fronto-occipital
fasciculus using a waypoint prior (left column), a waypoint together with a learned prior (middle
column) and only using the learned prior. The learned prior was created from the results using the
waypoint prior (left column). Con�dence maps are shown in MNI standard space represented as 20
opaque isosurfaces equally distributed over the range of values. The �gure is an excerpt from results
shown in the paper presented in Section 5.1 (Kasenburg et al., 2016c).

the likelihood of a path which is based on both the underlying fODFs of all voxels in
the path and any prior information.

Next, each con�dence map is normalised to sum up to one and warped into a
common space. Finally, the learned prior is computed as the average over all warped
con�dence maps, see Figure 3.1 for an illustration. Such a learned prior re�ects the
variation of tract location in a dataset, taking the subject-speci�c con�dence into
account.

3.1.3 Application of learned priors

Learned priors can be applied to the same population from which they are created, or
as independent priors on a di�erent population. We have shown that a learned prior
increases the robustness of tract delineation, focusing on the high con�dence region
of the prior. We further described that the accuracy of tractography can be improved
when a learned prior constructed from high quality data is used in tractography on
data acquired on a typical clinical scanner (Kasenburg et al., 2016c).

In particular, including a learned prior created from tractography results where a
waypoint or atlas prior was used, renders the use of these priors unnecessary in future
tractography (see Figure 3.2).

In summary, creation and application of a learned prior presents a new approach to
robustly delineate tracts without the need of manual, often extensive post-processing
of tractography results.
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3.2 Signi�cance analysis of connections and applica-

tion to parcellation

Shortest-path tractography always returns a path between two given voxels. Although
this path is the most likely of all possible paths between these voxels, it is not guaran-
teed that there exists a physical connection between the two voxels or the correspond-
ing regions. The path score, which re�ects the likelihood of the connection, is one way
to account for this fact, as shown in the tractography paper presented in Section 5.1.

Another way is to determine the signi�cance of a connection. In the two papers pre-
sented in Section 5.2 and 5.3, we described two approaches to measure the signi�cance
with which a voxel is connected to a target region. In this section, I will summarise
the methods of these papers and show how they can be applied to connectivity-based
parcellation of the thalamus.

3.2.1 How to determine signi�cance?

When performing SPT from a given seed voxel to a target region, we get a path and
its corresponding score for every voxel in the target region. We de�ne the connection
pro�le of a seed voxel to be the distribution of scores over the set of paths to a target
region, and represent this distribution as a histogram over observed scores. Our aim is
to determine whether a seed voxel is signi�cantly connected to a target region based
on its connection pro�le.

We assume that not every seed voxel is physically connected to a given target
region. Under this assumption, most paths found between the seed and the target
region do not re�ect a true connection but instead re�ect noise in the data. Since
these false-positive paths will have a low path score, a connection pro�le generated
from noise should be mainly distributed around low scores.

In statistics, signi�cance is commonly measured with a p-value that re�ects the
probability that a given observation stems from a noise- or null-distribution. The lower
the p-value is, the lower is the probability that the observation is purely generated from
noise. If the p-value is lower than a prede�ned threshold, the null-hypothesis can be
rejected and the observation is deemed signi�cant. In terms of structural connectivity,
we de�ne an observation to be the connection pro�le of a seed voxel, i.e a histogram
of observed scores, and the null-distribution to be a connection pro�le that is purely
generated by noise, i.e. a histogram of low scores.

The goal is now to compute the p-value for a seed voxel by comparing the histogram
of scores of the seed voxel to the null-distribution. This comparison should result in
a low p-value if the voxel is signi�cantly connected to the target region, and a high p-
value if it is not. The p-value will be lower the more di�erent a seed voxel's histogram
is from the null-distribution. Since we de�ne the null-distribution to mainly consist of
low scores, the more a histogram is skewed towards high scores the more signi�cant it
will be.

Computing the p-value requires the de�nition of a null-distribution to describe a
distribution of low scores and a method for comparing connection pro�les or histograms
of scores respectively. In the following Sections 3.2.2 and 3.2.3 I will explain two
approaches to tackle this task.
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Figure 3.3: Histograms of path scores for a non-signi�cantly connected seed voxel (left) and a signif-
icantly connected seed voxel (right) shown together with the average histogram over all seed voxels
(green line). Signi�cant bins (FDR < 0.05) are coloured in red. The �gure is partly an excerpt from
the paper presented in Section 5.2 (Kasenburg et al., 2016d).

3.2.2 False discovery rate

The �rst approach, presented in Section 5.2, directly performs a test of signi�cance
on the connection pro�le histograms and is inspired by Efron (2004). In his work,
Efron presents a method to test multiple hypotheses simultaneously. Given a set
of hypotheses with an assigned likelihood value for every hypothesis, the goal is to
�nd the signi�cant hypotheses based on their likelihood values. Efron shows that the
probability of a hypothesis being generated from the null-distribution is equal to the
false discovery rate (FDR) de�ned as (Efron, 2004):

FDR(z) =
f0(z)

f(z)
, z ∈ R , (3.1)

where f0 is the null-distribution and f is a function �tted to the histogram of observed
likelihood values and z is the likelihood of the tested hypothesis. Signi�cant hypotheses
are then determined by checking whether the FDR of the z-value assigned to a given
hypothesis is below a �xed threshold.

In our case, f is the normalized histogram associated to each seed voxel, and the
z-values are the scores of paths from the seed voxel to a target region (Kasenburg
et al., 2016d). Since the null-distribution f0 is unknown, we estimate it as the average
histogram over all seed voxels. To determine whether a voxel is signi�cantly connected,
we check whether, for any of the bins of the corresponding histogram, the FDR is below
a given threshold.

The FDR approach allows us to determine which bins or score ranges in a seed
voxel's histogram are signi�cantly di�erent from the null-distribution, and whether a
voxel is signi�cantly connected or not (see Figure 3.3). However, the signi�cance is
only computed bin-wise for every voxel. We have therefore proposed a second test of
signi�cance, which is able to measure signi�cance of a single voxel with a p-value, as
described in Section 3.2.3 and the paper in Section 5.3.

3.2.3 Rank-based test

The second approach found in Section 5.3 uses cumulative histograms similar to the
cumulative distribution functions commonly used in statistics. When de�ning the
noise-distribution to be centred around low scores, signi�cantly connected voxels will
have more high-scoring paths to the target region, and we expect their histograms to
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Figure 3.4: Normalised (top) and cumulative histograms (bottom) shown in red for a seed voxel with
an asigned p-value close to 1 (left) and a seed voxel with an assigned p-value below 0.0005 (right)
together with 100 samples from the null-distribution shown in grey. For a description of how the
histograms were created, how the p-values were computed and how the sample was constructed, see
Section 5.3 and the corresponding paper (Kasenburg et al., 2016a).

be skewed to the right. The corresponding cumulative histograms then lie below the
cumulative histogram of the noise-distribution, because the maximum is reached later,
i.e. at a higher score (see Figure 3.4).

Given the cumulative histogram C of a seed voxel, its p-value is computed using
a one-sided rank test inspired by Myllymäki et al. (2013). The p-value re�ects the
probability that a cumulative histogram comes from the null-distribution.

The null-distribution is represented by samples. Since the null-distribution is still
unknown, the samples are drawn directly from the data, assuming that most connec-
tions are false positive. Each sample histogram is created by drawing a value for each
bin from the values of all seed voxel histograms at the corresponding bin. The sample
histograms are then transformed into the corresponding cumulative histograms.

The p-value is computed as the fraction of samples that have a rank lower or
equal to the rank of the cumulative histogram associated with the seed voxel. The
rank is computed as the average rank over all bins over the set of samples including
C (Kasenburg et al., 2016a).

3.2.4 Hard and soft parcellation of the thalamus

We applied both signi�cance tests to Behrens style thalamus parcellation (Behrens
et al., 2003a) on subjects of the HCP dataset (Essen et al., 2013), where the cortex
was divided into four target regions. We obtained a hard parcellation using the FDR
method (Kasenburg et al., 2016d), while the p-values computed with the rank-based
test were used to generate a soft parcellation (Kasenburg et al., 2016a).

Hard parcellation

The hard parcellation �nds signi�cantly connected voxels that are mainly located on
the surface of the anterior part of the thalamus, when applying a threshold of 0.05 for
the FDR. As shown in Figure 3.5, this e�ect is increased when lower thresholds (0.01
and 0.005) are used to �lter out more voxels.
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Figure 3.5: Probability overlap maps of hard parcellations of the thalamus based on connections to
the parieto-occipital zone in standard MNI space (row: x = 90, y = 96, z = 77), zoomed in on the
thalamus for di�erent thresholds (from left to right: 0.05, 0.01 and 0.005). The probability overlap
maps were created from single-subject parcellations and show the fraction of subjects in which the
parcellations overlap. More details and the whole �gure can be found in the paper presented in
Section 5.2 (Kasenburg et al., 2016d).

Figure 3.6: Soft parcellations of the thalamus based on connections to the parieto-occipital zone for
�ve subjects shown in the respective subjects' space. Low p-values (blue) re�ect regions that are more
likely connected to the respective target region then high p-values (red). The �gure is an excerpt
from the paper presented in Section 5.3 (Kasenburg et al., 2016a).

Furthermore, there is a strong overlap of signi�cant regions between di�erent target
regions, and results are consistent over the whole dataset, although there is subject-
speci�c variation as expected.

Soft parcellation

The soft parcellation leads to similar observations: voxels with low p-values are mainly
located on the surface of the anterior part of the thalamus and low p-value regions
overlap between di�erent target regions. However, this parcellation shows a gradient
in the signi�cance whose direction di�ers for the target regions, but usually decreases
towards the centre of the thalamus (see Figure 3.6).

The soft parcellation can, moreover, determine signi�cantly connected voxels for
target regions that would not be detected by a hard segmentation due to an additional
yet stronger connection to another target region.

Problems addressed by signi�cance-based parcellation

Commonly used hard parcellation methods assign a discrete label to all voxels in the
seed region based on how many tracts are found between the corresponding voxel and
each target region. The following problems apparent in these parcellation methods are
addressed by the parcellation using signi�cance tests of SPT results:

1. The labels assigned to seed voxels that are not connected to any of the target
regions are purely based on noise and are unstable.



CHAPTER 3. LEARNING FROM TRACTOGRAPHY 20

2. It is not possible to re�ect whether and to what degree a seed voxel is connected
to multiple target regions, since a voxel is assigned to the region to which it has
most connections (Gorbach et al., 2011).

3. Even if a seed voxel is connected to a speci�c target region, there might not be
enough signal in the data to �nd this connection.

4. False-positive connections are known to increase with the noise in the data (Fil-
lard et al., 2011; Neher et al., 2014).

In summary, parcellation based on signi�cance analysis of connections found by
SPT presents an alternative approach to CBP that accounts for false-positive con-
nections and noise, and that also re�ects signi�cant connections to multiple target
regions.

3.3 Supervised hub-detection for structural brain net-

works

Structural connectivity networks, as described in Section 2.3, are typically analysed
using supervised learning methods like regression or classi�cation. The goal of this
analysis is to gain insight into which network features are related to a factor of in-
terest, such as age or pathology. Since the number of features is often much higher
than the number of subjects or samples, it is hard to robustly extract these features.
Dimensionality reduction is therefore commonly performed beforehand to reduce the
number of features.

3.3.1 Dimensionality reduction

One form of dimensionality reduction for brain networks, called hub-detection, aims
to �nd clusters of nodes common to the population in order to represent the original
network as a hub-network with a lower number of nodes (see Section 2.3.2). Since
hub-detection is unrelated to the learning problem, it has the tendency to smooth
out the discriminative signal. This results in lower-dimensional brain networks with
reduced predictive power (Cheplygina et al., 2014; Rubinov and Bullmore, 2013).

3.3.2 Supervised hub-detection

Integrating the learning problem into the hub-detection would therefore be bene�cial
to robustly extract lower dimensional features that are related to the learning problem.
To the best of my knowledge, this problem has not been addressed in brain network
analysis before. However, in the �eld of genetic research, a similar approach has
recently appeared, where the learning problem is integrated into a graph-based feature
selection (Allahyar and de Ridder, 2015).

We proposed to integrate the learning problem into dimensionality reduction by
incorporating a supervised learning term into the hub-detection from Ghanbari et al.
(2014a), originally developed for functional brain networks. The supervised hub-
detection (SHD) algorithm described in Section 5.4 was applied to structural networks
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Figure 3.7: The top row shows hubs strongly contributing to the prediction of age (high regression
weight), while the hubs in the lower row only have a weak contribution (low regression weight). Hubs
are visualised by the hub-membership scores for each node, represented by a colour scale (within hub)
and by size (across all hubs). The �gure was created from hubs found by the SHD as presented in
the hub-detection paper (Kasenburg et al., 2016b) that can be found in Section 5.4.

from an ageing population obtained with shortest-path tractography (Kasenburg et al.,
2016b).

We showed that predictive performance is retained on the data after applying SHD,
as opposed to after applying the original hub-detection algorithm, where predictive
performance decreased. In addition, the hubs found by the SHD still represent the
population well, and to a similar degree as the hubs found by the original unsupervised
hub-detection.

We found that although no spatial coherency is enforced, hubs are often spatially
coherent and are either symmetric or have symmetric counterparts. Furthermore,
hubs found by the SHD that contribute more strongly to the prediction of age are
more globally distributed throughout the brain than hubs with a weaker contribution
(see Figure 3.7). This is in line with results on the e�ect of ageing found by Lebel
et al. (2012).

The presented approach is not limited to structural brain networks or regression,
but could also be applied to classi�cation problems and to other types of biological
networks like gene networks or protein-protein interaction networks.
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Chapter 4

Outlook: What else can we learn?

In Chapter 3, I summarised how learned spatial priors can be constructed and used in
shortest-path tractography (see Section 3.1); how signi�cance of a structural connec-
tion can be evaluated and used for connectivity-based parcellation (see Section 3.2);
and how a supervised learning problem can be integrated into hub-detection for struc-
tural brain networks (see Section 3.3). In this chapter I will give an outlook towards
possible extensions and future applications of the presented methods.

4.1 Weighted and iteratively applied learned prior

In the presented shortest-path tractography method, a shortest path is chosen accord-
ing to its length, where the length is the negative log-transformed likelihood of the
path (Kasenburg et al., 2016c). The likelihood is a product of the node priors and the
edge weights encountered along the path. Since the edge weights are derived from the
di�usion data, the prior and the signal from the data are weighted equally. However,
it would be interesting to analyse how di�erent weighting schemes change the results.

A di�erent weighting of the prior can algorithmically be introduced by raising the
product of the node priors along a path by a factor k in the path likelihood compu-
tation. Particularly interesting is the question of how the subject-speci�c variance is
a�ected for di�erent values of k > 1, when the prior is weighted more than the data.

The same question could be asked when using an iteratively applied learned prior.
We used a learned prior created from tractography results that included other priors,
but no other learned prior (Kasenburg et al., 2016c). Creating a learned prior from
those tractography results and applying it again to the data could be considered the
next iteration step. Evaluating how multiple iterations a�ect the subject-speci�c vari-
ation, and to what extent the di�usion data still matters, is another problem for future
investigation.

4.2 Connection signi�cance beyond parcellation

The two approaches for testing signi�cance of connections found by graph-based shortest-
path tractography both aimed to quantify signi�cance. We have shown how the as-
sociated p-values or FDRs can be used to perform soft (Kasenburg et al., 2016a) or
hard (Kasenburg et al., 2016d) connectivity-based parcellation (CBP) of the thala-
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mus. While ex vivo techniques looking at histological slices are better suited to gain
insight into the structure of the thalamus in general (Morel et al., 1997), CBP makes
it possible to compare the obtained segmentations in vivo across subjects.

Given a hypothesis that the connectivity of a certain region of the brain is a�ected
by a disease or pathology, both the soft and hard segmentations could be compared be-
tween a control group and patients. While hard segmentations only provide an insight
into whether di�erent voxels are signi�cantly connected between the two groups, soft
segmentations are also able to capture the degree of di�erence in signi�cance. Such a
population study is therefore a clear next step.

Furthermore, it could be interesting to look at the high scoring paths of signi�cant
voxels or those paths that contribute to the signi�cant bins of a voxel. This would, in
addition to insights into the projection of the tracts, also give insights into how the
actual connections are a�ected.

4.3 Signi�cance analysis in tractography

While we have shown how to measure the signi�cance of a voxel's connection to a target
region, no signi�cance analysis has been performed on single paths. One problem in
this regard is the creation of a proper null-distribution. On one hand, we do not
expect many false-positive paths when performing tractography between two regions
that are known to be connected. On the other hand, creating a null-hypothesis from
paths between a di�erent pair of regions that are known not to be connected would
be biased towards this speci�c �connection�.

If we are, however, interested in whether a single path is signi�cantly di�erent
from the majority of computed paths, it would be possible to create a null-hypothesis
without the assumption that most paths are false-positive. Such a null-hypothesis
would consist of a distribution of scores over all found paths and a signi�cance test
would then test whether the score of a single path is a signi�cant outlier.

Assuming we are able to construct a proper null-distribution and thereby are able
to assign a p-value to every path, then another problem arises if the signi�cance of
a path should be determined with a given threshold. Since the number of paths can
be in the order of thousands or millions depending on the size of the seed and target
regions, a proper statistical analysis would require adjustment for multiple-hypothesis
testing. Such a correction would then mean that no path would be deemed signi�cant,
if the correction is too conservative.

Since paths of neighbouring seed voxels share large parts of the paths connecting
them to the target region, path scores and the corresponding hypotheses are not in-
dependent. Taking the correlation between hypotheses into account, when performing
multiple-hypothesis testing, would therefore be a way to adjust for the dependence
between paths and to perform a less conservative correction.

Despite the challenges of de�ning a proper null-hypothesis and dealing with the
multiple-hypothesis testing, I still think it is interesting and, more importantly, also
possible to determine the signi�cance of a single path which can then be used for
further analysis of tractography results.



25 CHAPTER 4. WHAT ELSE CAN WE LEARN?

4.4 Structural networks revisited

Structural networks are commonly generated using either deterministic or probabilistic
tractography (see Section 2.3). In this thesis, we showed several advantages of shortest-
path tractography (SPT):

1. SPT �nds the globally optimal path between two voxels.

2. Each path is endowed with a score that re�ects the likelihood of the path. This
score can be used in the analysis of the tract.

3. Prior information can be integrated into tractography with an e�cient and al-
gorithmically simple formulation as SPT on a modi�ed graph (Kasenburg et al.,
2016c).

This leads to the question as to why only a few studies exist where structural
networks are created by graph-based SPT (Iturria-Medina et al., 2007, 2008). One
reason could be the problem of how to de�ne the edge weight of an edge connecting
two regions of interest (ROIs). Another reason could be that SPT always returns
a path between every pair of voxels in the two endpoint regions, whether there is a
connection or not. In the following, I will address these two problems.

In the hub-detection paper (Kasenburg et al., 2016b), the edge weights between
two regions were de�ned as the average score over all paths found between all pairs
of voxels from the pair of ROIs. Iturria-Medina et al. (2007, 2008) used instead the
maximum over the scores of all paths and variations thereof.

While the maximal and average score are reasonable representations of the set of
paths connecting two ROIs, it is also possible to create a distribution of path scores as
used in the signi�cance analysis (see Section 3.2). Other parameters than the mean,
like the standard deviation or di�erent quantiles of the distribution, could give a more
complete description to de�ne the connection between ROIs.

Deriving the edge weight for a pair of ROIs from the distribution of scores of paths
connecting them, moreover, can be tailored to account for false-positive paths. When
the maximum, a speci�c quantile or more descriptive parameters of the score distri-
bution are chosen, low-scoring, false-positive paths will have a smaller contribution to
the edge weight.

In ROI-to-ROI graphs generated from tracts found by deterministic or probabilis-
tic tracking, edge weights are de�ned by ��bre� density or metrics of white matter
inregrity, like mean anisotropy, derived from the found tracts. Tracts computed with
tractography re�ect, however, not always an actual physical �bre and in the best case
are only parallel to a �bre bundle (Jones et al., 2013). The interpretation of ��bre�
density and metrics of white matter integrity as edge weights is therefore unclear.

In structural brain networks generated from SPT, edges re�ect instead the like-
lihood of the tracts, which is purely based on the voxel-wise fODF models derived
from the DWI and possible prior information. Thereby, no assumption about whether
a tract re�ects a true physical �bre a�ects the de�nition of the edge weight, and
interpretation of the likelihood is directly related to the data.

In summary, generating ROI-to-ROI graphs from SPT can be achieved, and it
presents an interesting possibility to perform structural brain network analysis.
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Chapter 5

Papers

This chapter includes all papers discussed in this thesis. They are included directly as
the state they were in at the time of submission of the thesis.

The order of papers is not chronological with respect to publication, but according
to the structure used throughout this thesis, starting with tractography, followed by
the two papers on statistical analysis of tractography results and its application to
connectivity-based parcellation, and �nally the paper on supervised hub-detection.
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Abstract

Tractography is the standard tool for automatic delineation of white matter tracts from diffu-
sion weighted images. However, the output of tractography often requires post-processing to
remove false positives and ensure a robust delineation of the studied tract, and this demands
expert prior knowledge. Here we demonstrate how such prior knowledge, or indeed any prior
spatial information, can be automatically incorporated into a shortest-path tractography ap-
proach to produce more robust results. We describe how such a prior can be automatically
generated (learned) from a population, and we demonstrate that our framework also retains
support for conventional interactive constraints such as waypoint regions. We apply our ap-
proach to the open access, high quality Human Connectome Project data, as well as a dataset
acquired on a typical clinical scanner. Our results show that the use of a learned prior substan-
tially increases the overlap of tractography output with a reference atlas on both populations,
and this is confirmed by visual inspection. Furthermore, we demonstrate how a prior learned
on the high quality dataset significantly increases the overlap with the reference for the more
typical yet lower quality data acquired on a clinical scanner. We hope that such automatic
incorporation of prior knowledge and the obviation of expert interactive tract delineation on
every subject, will improve the feasibility of large clinical tractography studies.

Keywords: Tractography, Diffusion MRI, Graph theory, Prior information

1. Introduction

Diffusion weighted imaging (DWI) of the human brain provides local estimates of water
diffusion summarised as voxel-wise diffusion orientation distribution functions (dODFs) (Hag-
mann et al., 2006). These can be transformed into fibre orientation distribution functions
(fODFs), representing estimates of the fibre directions within a voxel. Subsequently, trac-
tography attempts to delineate the underlying anatomical tracts connecting brain regions by
inferring inter-voxel connectivity from these fODFs.
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Over the last decade it has become increasingly clear how critical the integrity of these
white matter (WM) tracts is to the healthy functioning of the brain (Abhinav et al., 2014;
Connally et al., 2014; Iwata et al., 2011; Steinbach et al., 2015). Therefore, techniques are
needed which allow evaluation and monitoring of microstructural tissue properties to gain
insight into the mechanisms underlying brain development, ageing and pathology. Metrics of
such properties include those derived from DWI data, such as the simple fractional anisotropy
(FA) (McGrath et al., 2013; Whitford et al., 2015; Xia et al., 2012), generalized FA (Tang
et al., 2010), diffusivity measurements (Benedetti et al., 2011; Davis et al., 2009; Galantucci
et al., 2011; Wozniak et al., 2013) or other more complex estimates of microstructure (Assaf
et al., 2013; Golestani et al., 2014). Additionally, such tract-based integrity measures can also
be derived from other magnetic resonance sequences such as T1 relaxometry or magnetisation
transfer imaging (Alexander et al., 2011).

When comparing such tract-specific features across subjects, it is important that the tracts
from which they originate are robustly and reliably reconstructed. Voxel-wise FA values (Iwata
et al., 2011; Whitford et al., 2015) or white matter tissue probabilities (Iturria-Medina et al.,
2007) are often used to either prune results or guide the tractography. Post-processing of
tractography outputs using waypoint or exclusion regions (Benedetti et al., 2011; Connally
et al., 2014; Galantucci et al., 2011; Rojkova et al., 2015) is also often necessary to ensure
consistent and accurate tract delineation. It would therefore be beneficial, in terms of manual
effort and reliability, if domain knowledge about the connection or subject could be automati-
cally included in the tract delineation. This can be achieved by integrating prior information
regarding tract location into the tractography framework.

Jbabdi et al. (2007) present a Bayesian framework for global probabilistic tractography,
which aims to find the optimal tract between two regions, incorporating prior information.
However, the possible priors only include knowledge about the existence (or not) of a connection
and do not include any prior information about the tract location. Furthermore, due to
the large complexity of the problem, the optimal solution is intractable and the tracts are
estimated by heuristically sampling from the posterior distribution. Building upon this global
tractography framework, Yendiki et al. (2011) include prior anatomical information about the
spatial location of a fixed number of segments along each fibre for whole-brain tractography.
The prior is computed from training data comprised of manually labelled and verified tracts.
Although this reduces the search space and is able to guide the tractography reliably on
unseen data without manual intervention, it still requires that domain experts post-process
the tractography training data and it may need to be repeated for any future novel tasks or
derived features.

We present an extension to a shortest-path tractography framework that can include any
type of prior information about the spatial location of a tract. Such prior information could,
for example, consist of per-voxel white matter probabilities, which guide tractography through
white matter, or anatomical knowledge in the form of a tract atlas. Our algorithm also allows
priors that are generated from expert annotation, similar to Yendiki et al. (2011). In addition,
we present a method for automatically learning such spatial priors from previous tractography
results. We demonstrate, in particular, how a prior learned on independent, high quality data,
where tract delineation is easier and more accurate, is able to improve the performance of
tractography on lower quality data.

Our framework employs a shortest-path tractography (SPT) approach, which finds the glob-
ally optimal path connecting two voxels. Like the framework described by Jbabdi et al. (2007),

37 CHAPTER 5. PAPERS



SPT has the advantage of being less susceptible to local noise in the data because it evalu-
ates all possible connections. Moreover, because the discretisation into a graph allows the use
of optimal graph-based shortest-path algorithms, graph-based SPT methods (Iturria-Medina
et al., 2007; Sotiropoulos et al., 2010; Vorburger et al., 2013; Zalesky, 2008) are guaranteed
to find the best path connecting any pair of voxels. In contrast, their continuous counter-
parts (Fuster et al., 2014; Hauberg et al., 2015; Lenglet et al., 2004; O’Donnell et al., 2002;
Schober et al., 2014), as well as the probabilistic approach by Jbabdi et al. (2007), require a
good initialization to avoid local optima. While existing graph-based SPT algorithms often
impose strict assumptions upon the form that the f/dODF may take, our framework gives full
modelling flexibility by permitting any form of fODF. We obtain a Bayesian SPT algorithm by
interpreting spatial priors as soft or hard constraints on tract location. As existing graph-based
tractography methods do not provide algorithmic solutions to constrained tractography prob-
lems (Iturria-Medina et al., 2007; Sotiropoulos et al., 2010), we furthermore derive intuitive,
exact and efficient algorithmic solutions to incorporate prior information from multiple sources
into our tractography framework.

In addition to determining the most probable path for the tract connecting two voxels, our
SPT algorithm also returns a confidence score which provides a quantitative measure of how
well a shortest path is supported by both the underlying fODFs of all component voxels and
by the prior information. This “importance” evaluation of any path provides a numerical score
that permits our framework to automatically learn a tract prior from training data without
requiring expert interaction.

In the next section we briefly review graph-based shortest-path tractography and how it can
be applied for region to region global tractography. We then describe how we integrate prior
information in Section 3. In Section 4 we describe the two datasets used throughout this study,
how they were pre-processed and how the tractography experiments were performed. We also
describe the reference used for evaluation of tractography results. In Section 5, we show results
of the tractography, first using a simple subject-specific prior given by white matter probability,
second using study-specific or independent learned priors, and finally using both simple and
learned priors in combination with a binary waypoint prior. We show, in particular, results for
tractography on the dataset acquired on a typical clinical scanner with a prior learned from
the high quality dataset. We conclude with a discussion of the results and a brief conclusion.

2. Revisiting graph-based shortest-path tractography

In this section we review graph-based tractography and phrase its solution as a shortest-
path problem, which in Section 3 will allow us to efficiently integrate spatial priors into the
tractography algorithm.

From the DWI data of a brain we extract an undirected brain-graph G = (V,E,wE) whose
node set V contains all DWI voxels within the brain, excluding those classified as cerebrospinal
fluid (CSF) by prior tissue segmentation. Each node is connected by an edge e ∈ E to all white
matter voxels in its 3 × 3 × 3 neighbourhood on the 3D image grid. Each edge e is assigned
a weight wE(e) ∈ [0, 1] reflecting the probability of a fibre bundle connecting its two endpoint
nodes; this process is described in Section 2.1.

A path πv,v′ connecting nodes (or voxels) v ∈ V and v′ ∈ V in G is defined as a sequence of
nodes πv,v′ = [v1, v2, . . . , vn], where v1 = v, vn = v′ and (vi, vi+1) ∈ E for all i = 1, . . . , n− 1.
The cardinality |πv,v′ | = n of a path is given by the number of nodes in the path. The likelihood
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of the path πv,v′ is defined as the product of all edge weights wE(e) encountered along the
path:

L(πv,v′) =
n−1∏

i=1

wE (vi, vi+1) . (1)

2.1. From fODF to edge probability

For each voxel, assume that the diffusion information from the DWI is summarized in an
fODF f : S2 → R+ associating to any given direction θ on the unit sphere S2 a probability
that there exists a fibre along that direction. We are interested in the 26 directions θi with
i = 1, . . . , 26, pointing from the centre of a voxel towards its 26 neighbouring voxels.

We model the connectivity w(θi) along an edge from the voxel centre in the direction
θi ∈ S2 by integrating the fODF over the set Ci of all directions θ ∈ S2 pointing out of
the voxel that are closer to θi than to any other of the 26 directions θj ,j 6= i. The set Ci
is called a Voronoi cell (Voronoi, 1908). Since computing integrals over Voronoi cells on the
sphere is computationally hard, we numerically approximate the integral through sampling.
The weight w(θi) describes the probability of connection in the direction θi and is defined and
approximated as follows:

w(θi) =

∫

Ci

f(θ) dθ ≈
∑

θ̃k∈Si

(
f(θ̃k) · Vol(S2)

N

)
, (2)

where S = {θ̃k ∈ S2, k = 1 : N} is a uniform sample of N directions, Si = S ∩ Ci is the set
of direction samples belonging to Ci and Vol(S2)/N is the average volume corresponding to a
sample direction θ̃k. As w(θi) depends on its source node, the edge weight wE(v, v′) is defined
as the average

wE(v, v′) = 1/2 · (w(v → v′) + w(v′ → v)) , (3)

where v → v′ is the direction from v to v′. This yields an undirected graph with symmetric
edge weights: wE(v, v′) = wE(v′, v).

2.2. From most-likely path to shortest path

Given any two nodes v, v′ ∈ V , tractography is defined as finding the path between v and
v′ in the brain graph G that maximizes the path likelihood from Equation 1, i.e. finding the
maximum likelihood solution

argmaxπv,v′ L(πv,v′) . (4)

The most-likely path problem on G can be reformulated as a shortest-path problem on a
modified graph G̃. This gives access to classical efficient algorithms for computing shortest
paths on G̃ to obtain most-likely paths on G. The log-likelihood of the path πv,v′ is equal to
the sum of modified edge weights

w̃E(e) = − logwE(e) , (5)
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corresponding to edges encountered along the path, that is:

− log(L(πv,v′)) = − log

n−1∏

i=1

wE(vi, vi+1)

=
n−1∑

i=1

w̃E(vi, vi+1) .

(6)

Defining the modified graph G̃ = (V,E, w̃E), where w̃E is the log-transformed edge prob-
ability (5), we observe that finding the path that maximizes (1) in G is equivalent to finding
the path in G̃ that minimizes (6). That is, the maximum likelihood path problem on G can be
solved as a shortest-path problem on G̃. We solved this using Dijkstra’s single-source shortest-
path algorithm (Dijkstra, 1959), but any other shortest-path algorithm can be applied.

The formulation of tractography as a shortest-path problem first appeared in (Zalesky,
2008). The use of Dijkstra’s shortest-path algorithm for most-likely paths is algorithmically
similar to the algorithm employed in (Iturria-Medina et al., 2007; Sotiropoulos et al., 2010),
where instead of translating the most-likely path to a shortest path, Dijkstra’s algorithm was
converted to the domain of multiplicative probabilities. In the following sections we will use the
negative log-transform to turn more complex path optimization problems into shortest-path
problems as well.

2.3. Region to region tractography

In Section 2.2 we defined the most-likely path between two nodes in the brain graph. We
now describe how to perform shortest-path tractography (SPT) between two regions of interest
(ROIs) and how to obtain confidence maps illustrating the likelihood of tract location. The
SPT outlined in Algorithm 1 takes as input the brain-graph G and two sets of nodes (i.e.
voxels) R1, R2 ⊂ V representing the endpoint ROIs of the sought tract. Then tractography
is performed by finding the set Π of all shortest paths πr1,r2 from any voxel r1 in R1 to any

voxel r2 in R2 in G̃, along with their scores s(πr1,r2). We do this using Dijkstra’s single-source
shortest-path algorithm for every node r1 ∈ R1. See lines 3–8 in Algorithm 1, where Πr1

denotes the set of shortest paths in G̃ that start at r1.

Algorithm 1 Shortest-path tractography (SPT) between ROIs R1 and R2

Input: G = (V,E,wE), R1, R2 ⊂ V
1: G̃← (V,E, w̃E), where w̃E(v, v′) = − logwE(v, v′)

for all (v, v′) ∈ E
2: Π← ∅, s(Π)← ∅
3: for r1 ∈ R1 do
4: (Πr1 , s(Πr1))← single source shortest path(r1,G̃)
5: for r2 ∈ R2 do
6: (Π, s(Π))←

(Π, s(Π)) ∪ {(πr1,r2 , s(πr1,r2)) |πr1,r2 ∈ Πr1}
7: end for
8: end for

Output: Π, s(Π)
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In addition to the actual paths, Dijkstra’s algorithm also outputs the length of each shortest
path in Πr1 , that is, the log-transformed likelihood (see Equation 6) of each path in Πr1 , from
which we can compute the path likelihood (see Equation 1). As a path score we use the
normalized path likelihood, which accounts for path cardinality n = |πv,v′ |:

s(πv,v′) = n

√
L(πv,v′) . (7)

The SPT algorithm outputs the shortest paths π ∈ Π, as well as their scores s(π) for all π ∈ Π.
We summarize the SPT output in a scalar confidence map M , which for each voxel v ∈ V is
the sum of all scores of the paths containing v:

M(v) =
∑
{s(π)|v ∈ π, π ∈ Π} . (8)

We describe in Section 3.5 how a population heatmap can be created from such subject-specific
confidence maps.

3. Shortest-path tractography with spatial priors

The goal of this paper is to integrate spatial prior information into the shortest-path trac-
tography algorithm. This is achieved by assigning a prior probability pV (v) ∈ [0, 1] to every
node v ∈ V in the graph, such that pV (v) reflects the probability that the node v lies within the
sought tract(s). This prior information can for instance consist of anatomical knowledge about
the location of a tract, white matter probability to account for partial volume effects or way-
point masks to constrain the tractography to pass through predefined regions. In Section 3.5
we shall, moreover, see how we can automatically learn a prior from previous tractography
results.

The node prior pV : V → [0, 1] generates a soft or hard constraint on the shortest paths,
encouraging them (or, in the case of a binary prior pV : V → {0, 1}, forcing them) to pass
through certain regions. In Section 3.2 below we show how this constrained shortest-path
problem can be reinterpreted as a shortest-path problem on a new modified graph in order to
obtain an efficient algorithm.

3.1. A spatial Bayesian prior

We incorporate prior information about the spatial location of a tract in a Bayesian model
of connectivity along edges in the brain-graph G = (V,E,wE). A spatial prior is most naturally
formulated as a prior pV : V → R+ describing whether given nodes (or voxels) belong to the
tract. As our original connectivity probabilities are defined over edges, the Bayesian model for
connectivity along edges is obtained by translating the node prior to a prior over edges e ∈ E.
For a single edge e = (v, v′) ∈ E we define the prior probability P (e) that the sought tract
runs along the edge e as the square root of the product of its end node probabilities:

P (e) =
√
pV (v)pV (v′) . (9)

Given a single edge e = (v, v′) ∈ E, we define a probability density function fe : W → R+

which, given any edge weight wE(e) in the set of possible edge weights W ⊂ R+ extracted
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from the DWI image, will return the likelihood of structural brain connectivity along the edge
e. We take fe to be the edge probability wE described in Section 2.1, that is

fe(wE(e)) ∝ wE(e) = exp (−w̃E(e)) , (10)

which gives a likelihood P (wE(e)|e) = fe(wE(e)) = wE(e) of connectivity along e. As before,
large values of wE(e) correspond to small edge lengths w̃E(e), so that short edges in G̃ =
(V,E, w̃E) encode high likelihood of structural connectivity along e.

In order to incorporate the spatial prior probability P (e), we use Bayes’ theorem to obtain
the posterior probability of structural brain connectivity along the edge e:

P (e|wE(e)) ∝ P (wE(e)|e)P (e) = wE(e)P (e) . (11)

This returns an edge-wise posterior probability for connectivity along each edge e ∈ E.

3.2. An algorithm for SPT with a spatial prior

From the Bayesian model for structural brain connectivity along edges, we obtain trac-
tography with a spatial prior as a problem of finding shortest paths in a new modified graph
Ḡ = (V,E, w̄E) where

w̄E(e) = − logP (e|wE(e))

= − log (wE(e)P (e))

= − log
(√

pV (v) ·wE(v, v′) ·
√
pV (v′)

)
,

(12)

for any given edge e = (v, v′).
Note that since the length of a path πv,v′ = [v = v1, v2 . . . , vn = v′] in Ḡ can be rewritten

as

n−1∑

i=1

w̄E(ei) =
n−1∑

i=1

− logP (ei|wE(ei))

= − log

(
n−1∏

i=1

P (ei|wE(ei))

)
,

(13)

where ei = (vi, vi+1) for all i, a shortest path in Ḡ corresponds to a path in G which maximizes
the “posterior” probability of the path given the prior. That is, if we assume that our edges
are independent, we obtain a path probability

P (πv,v′ |G) =

n−1∏

i=1

P (ei|wE(ei))

=
√
pV (v1)pV (vn)

n−1∏

i=1

wE(ei)
n−1∏

i=2

pV (vi) ,

(14)

and the path πv,v′ that maximises the path probability P (πv,v′ |G) is the shortest path con-
necting v and v′ in Ḡ:

argminπv,v′

n−1∑

i=1

w̄E(vi, vi+1) = argmaxπv,v′P (πv,v′ |G) . (15)
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Note that as in (Yendiki et al., 2011) the path prior in (14) becomes a product of prior
information about voxels along the path. However, in contrast to Yendiki et al. (2011), where
only a specific and limited anatomical prior (a region label) is used, we formulate the problem
such that it can accept any type of spatial prior. Furthermore, and unlike Jbabdi et al. (2007),
we do not need to estimate the solution by sampling a path from a posterior distribution. In-
stead we find the optimum, maximum probability path (see Equation 15) directly, as described
in Algorithm 2. This is made possible due to the discrete graph representation, in which we
know all possible paths. Note also that the reinterpretation of the prior as an edge prior al-
lows us to phrase tractography with a prior as a shortest-path problem on a modified graph.
This formulation simplifies the computational problem as it gives access to a rich family of
shortest-path algorithms. In the following, we will describe explicit examples of spatial priors
pV .

Algorithm 2 Shortest-path tractography with a spatial prior

Input: G = (V,E,wE), R1, R2 ⊂ V , pV : V → [0, 1]
1: Ḡ← (V,E, w̄E), where

w̄E(v, v′) = − log
(√

pV (v) ·wE(v, v′) ·
√
pV (v′)

)

for all (v, v′) ∈ E
2: Π← ∅, s(Π)← ∅
3: for r1 ∈ R1 do
4: (Πr1 , s(Πr1))← single source shortest path(r1,Ḡ)
5: for r2 ∈ R2 do
6: (Π, s(Π))←

(Π, s(Π)) ∪ {(πr1,r2 , s(πr1,r2)) |πr1,r2 ∈ Πr1}
7: end for
8: end for

Output: Π, s(Π)

3.3. Subject-specific simple prior: white matter probability

In existing methods for streamline and SPT tractography, simple descriptors are often
extracted from each subject’s DWI volume to guide the tractography. For instance, due to
partial volume effects and the fact that CSF regions have high diffusivity, voxels that partially
contain CSF tend to attract shortest paths. This can be alleviated by using white matter
probabilities for each voxel v, e.g. (Iturria-Medina et al., 2007). These probabilities can be
integrated into our framework as a spatial prior as described in (11). In our experiments we
demonstrate the use of a white matter prior pWM

V : V → [0, 1] defined by a tissue segmentation.
Note that if all voxels on the path have prior value pV (v) = 1, the original path likelihood

is obtained (see Equation 1). Each voxel on the path with a lower prior probability, such
as a lower white matter probability in the case of partial volume effects, decreases the total
likelihood of the path.

3.4. Binary priors: waypoints and exclusion masks

Other commonly used tools in tractography are exclusion regions and waypoints (Catani
et al., 2002; Rojkova et al., 2015; Wakana et al., 2007) that either forbid or force the tracts
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to pass through pre-defined regions. These masks are usually applied after whole-brain trac-
tography to delineate those streamlines that correspond to the tract of interest. Binary masks
can be integrated as hard constraints into our tractography framework by using a binary prior
pbinV : V → {0, 1}. Exclusion priors are then set to 0 in the voxels belonging to the exclusion
region and 1 everywhere else.

We define waypoint masks in a single slice or a thin volume transversal to the tract. In
order to apply the waypoint to SPT, it must provide the only possible route for all potential
paths between the endpoint regions. To ensure this, all voxels in the waypoint slice (or thin
volume) are set to 0, except for those of the waypoint itself. The remainder of voxels in the
full volume (and excluding those within the waypoint slice mask) are set to 1. The latter is
important as it enforces that no additional prior is applied to voxels outside of the slice of
interest.

3.5. Learned spatial prior

We propose to learn a prior for the location of a tract based on tractography performed on
training data. First tractography is performed for a set of N training subjects. A confidence
map Mi, i = 1, . . . , N , where Mi(v) is the scalar confidence value for voxel v (as defined in
Equation 8), is created for each of the N subjects. In the next step the maps are first normalized
to sum up to 1 and then warped into a common standard space resulting in the normalized
warped maps M̃i, i = 1, . . . , N .

Then the population heatmap H̃ is computed for every voxel in the standard space by first
adding up the corresponding values of each subject and then dividing by the maximum to
normalize to values between 0 and 1

H̃(u) =

∑N
i=1 M̃i(u)

max
({∑N

i=1 M̃i(u′)|u′ ∈ H̃
}) , (16)

where u and u′ are voxels in standard space. Given a new subject i in which tractography is
to be performed, the learned prior probability plearnedV : V → [0, 1] is obtained by warping the
population heatmap H̃ to its individual subject space, obtaining a warped population heatmap
Hi:

plearnedV (v) = Hi(v) . (17)

The prior plearnedV thus quantifies how likely a voxel is to lie on a tract between two specific
ROIs, based on tractography results of the training population.

3.6. Combining multiple priors

Since all priors are represented by a probability whose values are between 0 and 1, different
priors can be combined by taking their product. Given for example a white matter prior pWM

V ,
a waypoint prior pbinV and a learned spatial prior plearnedV for all nodes, the combined prior for
a node v can be defined as

pV (v) = pWM
V (v) · pbinV (v) · plearnedV (v) . (18)
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4. Data

We applied the presented method to two different datasets. Firstly, to pre-processed diffu-
sion data of 38 subjects (21 females and 17 males, age 22–35) provided as a sub-sample from
the Q3 release of the Human Connectome Project (Essen et al., 2013; Glasser et al., 2013;
Sotiropoulos et al., 2013), henceforth referred to as HCP data. The pre-processed HCP diffu-
sion data contains 270 diffusion directions distributed equally over 3 shells defined with b-values
of 1000, 2000 and 3000 s/mm2, with the following parameters: repetition time (TR)= 5500 ms;
echo time (TE)= 89 ms; 1.25× 1.25× 1.25 mm3 voxels. Further sequence details are provided
by (Sotiropoulos et al., 2013).

Secondly, we used a dataset of 53 healthy subjects (23 females and 30 males) with an
age range from 18 to 81 acquired on a typical clinical scanner (Siemens Magnetom Trio
3T MR scanner (Erlangen, Germany) with an 8-channel head coil (Invivo, Gainesville, FL,
USA)), from here on referred to as standard data (Ramsøy et al., 2012). Whole brain dif-
fusion weighted (DW) images were acquired using a twice-refocused balanced spin echo se-
quence that minimised eddy current distortion. Ten non-DW images (b = 0 s/mm2) and 61
DW images (b = 1200 s/mm2), encoded along independent collinear diffusion gradient ori-
entations, were acquired (TR= 8200 ms; TE= 100 ms; field of view (FOV)= 220 × 220 mm,
matrix = 96×96; GRAPPA: factor 2, 48 lines; 61 transverse slices; no gap; 2.3×2.3×2.3 mm3

voxels). Additionally, a 3D whole brain T1-weighted magnetization prepared rapid acquisition
gradient echo (MPRAGE) scan (voxel dimension of 1× 1× 1 mm, FOV= 256× 256× 192 mm,
matrix = 256 × 256 × 192, TR= 1540 ms; TE= 3.93 ms ; inversion time (TI)= 800 ms, and a
flip-angle of 9 degrees) was also acquired.

The reference tract atlas was obtained from www.natbrainlab.com and its creation is
described in detail by de Schotten et al. (2011). In brief, it is derived from a population of 40
(20 females and 20 males) healthy right-handed subjects in an age range from 18 to 22 years.
For all subjects diffusion tensor images (60 directions, 2.5 × 2.5 × 2.5 mm) were obtained.
Deterministic tractography was performed from manually defined seed regions and delineated
using either a one-ROI approach (arcuate fasciculus and fornix) or two-ROI approach (cortico
spinal tract and inferior fronto-occipital fasciculus). The atlas was then created for each tract
individually by summing binarised visitation maps warped to MNI space over all subjects. The
final atlas represents a percentage overlap map (de Schotten et al., 2011) reflecting for each
voxel in MNI space the percentage of subjects where a streamline of the corresponding tract
passes through that voxel. Note that the percentages are discretised in four intervals (0.25,
0.5, 0.75 and 1). Figure 1 shows a 3D visualisation of the reference for all tracts used in this
study.

A second white matter tract atlas from the IIT Human Brain Atlas (Varentsova et al., 2014)
was used as a prior for the fornix. In contrast to the reference atlas, this atlas was created
by performing tractography directly on a high angular resolution diffusion image (HARDI)
template constructed from DWI data of 72 subjects. The confidence for this atlas in each
voxel is defined as the ratio of the number of streamlines that belong to a certain tract and go
through that voxel divided by the total number of streamlines that belong to that tract.

4.1. Pre-processing

The T1-weighted images of the standard data were registered to MNI standard space using
first a linear registration with 12 degrees of freedom (FLIRT) (Jenkinson et al., 2002) followed
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by a non-linear registration (FNIRT) (Andersson et al., 2010). For the HCP data we used
the provided non-linear transformations to MNI standard space. Tissue segmentations were
obtained for both datasets from the T1-weighted image using FAST (Zhang et al., 2001) after
brain extraction using BET (Jenkinson et al., 2005).

No further pre-processing was performed on the already extensively pre-processed HCP
diffusion data (Glasser et al., 2013). Pre-processing of the DWIs of the standard data to
reduce distortions due to eddy currents, motion and susceptibility differences, was performed
using ExploreDTI (Leemans et al., 2009) and the gradient directions were adjusted accordingly.
The structural T1-weighted image was registered to the mean b0-image using a two stage linear
registration: first a linear registration and then a boundary-based registration (BBR) (Greve
and Fischl, 2009). Both registrations were performed with FLIRT (Jenkinson et al., 2002)
using 6 degrees of freedom.

For every voxel, a fibre orientation distribution function (fODF) based on constrained
spherical deconvolution (CSD) (Tournier et al., 2007) with order 8 was computed with the
DiPy package (Garyfallidis et al., 2014); on the HCP DWIs using all three shells, and on the
pre-processed DWIs from the standard dataset.

4.2. Tractography

As a first step, the graphs required for the SPT were constructed based on the given fODFs
and tissue segmentation for each subject as described in Section 2. Then SPT was performed
between two given regions of interest using different priors.

We tested the SPT on four different tracts and compared the results to the tract at-
las (de Schotten et al., 2011) described above: the arcuate fasciculus (AF), the cortico spinal
tract (CST), the inferior fronto-occipital fasciculus (IFOF) and the fornix. Seed regions were
constructed in MNI152 “template space” by overlapping the tract atlas with regions defined
by the Harvard-Oxford atlas (Desikan et al., 2006), Juelich atlas (Eickhoff et al., 2007), MNI
structural atlas (Mazziotta et al., 2001) or Talairach atlas (Lancaster et al., 2007). The over-
lap regions for the AF were chosen according to Rojkova et al. (2015): 1) anterior middle
and inferior temporal gyrus and 2) Broca’s area 44. Both seed regions were dilated with a
3 × 3 × 3 morphological kernel after the overlap was computed. The overlap regions for the
CST included: 1) brain stem, hippocampus and amygdala 2) superior frontal gyrus, precentral
and postcentral gyrus. The following seed regions were used for the IFOF, where the atlas was
dilated with a 3× 3× 3 morphological kernel: 1) occipital pole and 2) frontal pole. Waypoint
masks for the IFOF were created by overlapping the tract with the occipital lobe and external
capsule, similar to the masks used by Rojkova et al. (2015). The seed regions for the fornix
were 1) the hypothalamus and 2) the temporal pole. Here, only the second region was over-
lapped with the reference, while the first was taken in full. Waypoint masks were constructed
by drawing regions on the FA-MNI152 template that overlap with the superior right and left
branch of the reference.

The waypoint priors for the IFOF and fornix were specified as binary masks covering the
entire volume. All voxels were set to 1, with the exception of the slice containing the waypoint
region. In this slice, which was aligned transversally to the tract, only those voxels within the
waypoint region were set to 1 and all other voxels were set to 0. Any path crossing this slice
was thereby forced to pass through the waypoint region.

We used the warp fields provided in the HCP data or computed as described above (see
Section 4.1) to warp the constructed seed regions from the “template space” to individual
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“subject space”. Tractography was then performed for every subject in its respective space.
For comparison, TRACULA (Yendiki et al., 2011) was performed only on the CST for the

HCP data, as the other three tracts are not available in TRACULA. We run TRACULA with
standard parameters on the already pre-processed HCP data, and fODFs computed with FSL’s
bedpostx (Behrens et al., 2007) using the zeppelin model and 3 fibres per voxel.

4.3. Implementation and runtime of shortest-path tractography with spatial priors

The SPT method including prior information as described in Section 3 and the correspond-
ing graph construction and transformation have been implemented in Python and C++ and
are available [download link will be available upon acceptance].

All experiments were performed on a desktop computer running Ubuntu 14.04.3 with twelve
3.2 GHz Intel Core i7 CPUs and 64 GB of memory. Creating the graph for one subject takes,
on average, 18.6± 2.3 min for the HCP data and 187± 23 s for the standard data. Integrating
prior and ROI information into the graph for one subject takes, on average, 3.5± 0.5 min for
the HCP data and 43± 5 s for the standard data.

The runtime of SPT for individual tracts depends on the size of the ROIs. Runtimes for all
four tracts and information about the corresponding region sizes can be found in Supplementary
Table 1 and 2.

4.4. Quantitative evaluation of tractography results

Confidence maps were generated from the tractography results as defined in Section 2.3
and then warped into standard space. To perform a quantitative comparison between those
maps obtained by SPT using different prior information, we use a “true positive” score (TP).
This score consists of the sum of confidence values over all voxels inside a subject’s normalized
map M̃ warped into the reference space (see Section 3.5), weighted by the respective value of
the reference R. That is:

TP(M̃,R) =
∑

v∈M̃
R(v)M̃(v) . (19)

The TP reflects how many voxels are contained in the high probability regions of the reference.
If we define the reference for being outside the tract as (1−R), the false positive score can be
defined as

FP(M̃,R) =
∑

v∈M̃
(1−R(v))M̃(v)

=
∑

v∈M̃
M̃(v)−

∑

v∈M̃
R(v)M̃(v)

= 1− TP (v ∈ M̃,R) ,

(20)

since each warped map is normalized to sum up to 1. It is therefore clear that the TP score is
punished by high confidence voxels outside the reference whilst it benefits from high confidence
voxels occurring within the reference. Note that in the case of a binarized reference the optimal
TP is 1, which is achieved when all voxels of the predicted tract lie within the reference.
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simple learned HCP standard
prior prior left AF right AF left AF right AF

no prior 0.548±0.051 0.449±0.052 0.149±0.044 0.152±0.058

Subject-specific white matter prior
WM 0.553±0.048 0.451±0.050 0.196±0.053 0.175±0.063

Learned prior including WM
WM standardWM 0.246±0.029 0.223±0.038 0.196±0.035 0.178±0.047
WM HCPWM 0.633±0.023 0.501±0.033 0.569±0.049 0.472±0.051

Reference atlas as prior
reference
atlas

0.692±0.022 0.640±0.031 0.547±0.074 0.511±0.048

Table 1: Mean and standard deviation of TP scores over all subjects of the HCP (left) and
standard data (right) for different priors (WM: white matter probability, HCPWM : learned
prior from the HCP data using WM as prior, standardWM : learned prior from the standard
data using WM as prior) for the arcuate fasciculus (AF).

5. Tractography results

We performed SPT for the arcuate fasciculus (AF), the cortico spinal tract (CST), the
inferior fronto-occipital fasciculus (IFOF) and the fornix on both the HCP dataset and the
standard dataset. On the AF and CST we used both the subject-specific priors described
in Section 3.3 and the learned priors described in Section 3.5. On the IFOF and fornix we
additionally included a waypoint prior, as described in Section 3.4. Furthermore, the IIT atlas
was included as a prior for the fornix. Visualizations of population heatmaps for all tracts are
shown in Figures 2, 3, 4 and 5, where each heatmap is represented by 20 opaque isosurfaces
equally distributed over the range of heatmap values.

5.1. Tractography with a subject-specific simple prior

On the AF and CST we performed SPT using the white matter probability (WM), as
defined in Section 3.3. This was compared to SPT without a prior. The results are found in
lines 1–2 in Tables 1 and 2. The use of subject-specific WM prior generally gives a moderate
increase in the TP score.

5.2. Learned priors

For the AF and CST, learned priors were created from both the standard and HCP datasets
using SPT with the WM prior as defined in Section 3.5. These priors are hereafter denoted
standardWM and HCPWM , respectively. Tractography was then performed upon both datasets
using HCPWM and standardWM combined with the corresponding WM prior. The use of the
HCPWM resulted in the highest TP score for both tracts (see Tables 1 and 2) on both datasets,
except on the left CST where the standardWM prior achieves a higher score on the HCP data.
For the right CST the standardWM achieved the second best TP score. On the AF, it resulted
in a similar TP score to that generated using only the white matter priors for the standard
data, but has the lowest score on the HCP data.
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simple learned HCP standard
prior prior left CST right CST left CST right CST

no prior 0.503±0.030 0.416±0.038 0.434±0.052 0.323±0.039

Subject-specific white matter prior
WM 0.503±0.030 0.416±0.038 0.437±0.055 0.334±0.036

Learned prior including WM
WM standardWM 0.563±0.024 0.419±0.019 0.505±0.048 0.381±0.030
WM HCPWM 0.549±0.019 0.480±0.016 0.508±0.044 0.420±0.033

Reference atlas as prior
reference
atlas

0.656±0.014 0.561±0.016 0.552±0.040 0.471±0.036

Table 2: Mean and standard deviation of TP scores over all subjects of the HCP (left) and
standard data (right) for different priors (WM: white matter probability, HCPWM : learned
prior from the HCP data using WM as prior, standardWM : learned prior from the standard
data using WM as prior) for the cortico spinal tract (CST).

5.3. Tractography with a waypoint prior

On the IFOF, SPT was initially performed with no prior, with the subject-specific WM
prior and with the learned HCP prior (HCPWM ), see lines 1–3 in Table 3. Use of the WM
prior resulted in a lower score than with no prior on the HCP data, and a similar score on
the standard data (see Table 3). The learned HCP prior decreased the TP score on the HCP
dataset. Note, however, that on the standard dataset, the learned HCP prior significantly
increased the TP score on the left IFOF.

To guide the tractography, we introduced a waypoint (WP) prior as described in Section 4.2.
Use of the WP prior alone (see fourth line of Table 3) achieved a higher TP score than the
previously used priors without a waypoint, with the exception of that for the left IFOF in the
standard dataset. Including the subject-specific WM prior together with the WP prior gave a
similar small improvement in TP scores as observed in the previous tracts, see line 5 in Table 3.

Next we derived new learned priors for each dataset, obtained using the combination of
WM and WP priors. These are termed standardWM,WP and HCPWM,WP . Once again we saw
an improvement in the TP score analogous to that observed on the previous tracts (see lines
6–7 in Table 3). Finally, we performed tractography using the HCPWM,WP prior, but this
time without the subject-specific waypoint prior, and note that the performance was retained
on both datasets, see line 8 in Table 3.

5.4. Tractography with an independent atlas prior

Similar to learned priors that reflect a population heatmap of the tract location, it is also
possible to use a white matter tract atlas that reflects a probability. Here, we used the IIT
atlas (see Section 4), together with a waypoint prior and the WM probability, as a prior for
the fornix. The combination of all three priors achieved a higher TP score on both datasets
than any of the following alternatives: no prior, a subject-specific WM prior, or the learned
HCP prior (HCPWM ). See lines 1–4 in Table 4.
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simple learned HCP standard
prior prior left IFOF right IFOF left IFOF right IFOF

no prior 0.118±0.088 0.096±0.053 0.081±0.053 0.047±0.021
WM 0.104±0.081 0.078±0.042 0.082±0.049 0.050±0.021
WM HCPWM 0.070±0.062 0.087±0.033 0.222±0.080 0.098±0.049

Waypoint (WP)
WP 0.278±0.051 0.255±0.051 0.188±0.048 0.191±0.052
WM, WP 0.285±0.043 0.268±0.049 0.188±0.046 0.200±0.056

Learned prior including WM and WP
WM, WP standardWM,WP 0.290±0.028 0.282±0.027 0.217±0.036 0.248±0.038
WM, WP HCPWM,WP 0.313±0.015 0.300±0.014 0.296±0.028 0.289±0.025

Learned prior without WP including WM
WM HCPWM,WP 0.313±0.015 0.300±0.014 0.296±0.028 0.290±0.027

Reference atlas as prior
reference atlas 0.463±0.021 0.511±0.026 0.552±0.040 0.434±0.039

Table 3: Mean and standard deviation of TP scores over all subjects of the HCP (left) and
standard data (right) for different priors (WM: white matter probability, WP: two-ROI way-
point mask, HCPWM : learned prior from the HCP data using WM as prior, HCPWM,WP :
learned prior from the HCP data using WM and WP as prior, standardWM,WP : learned prior
from the standard data using WM and WP as prior) for the inferior fronto-occipital fasciculus
(IFOF).

Similar to the experiments on the IFOF, new learned priors were derived for each dataset by
using the combination of WM, WP and the IIT atlas as priors. These learned priors are denoted
standardWM,WP,IIT and HCPWM,WP,IIT . While we saw an improvement in the TP score for
HCPWM,WP,IIT on both datasets, there was only a slight improvement on the standard data
using standardWM,WP,IIT (see lines 5–6 in Table 4). Finally, we performed tractography using
the HCPWM,WP,IIT prior, but this time without the subject-specific waypoint prior and the
IIT atlas, and note that the performance was retained on the HCP data, but not the standard
data see line 7 in Table 4.

5.5. Comparison to TRACULA

As a comparison, TRACULA (Yendiki et al., 2011) was performed on the HCP data and
compared to the results for the CST with our method using the WM prior and the learned
prior from the HCP data (HCPWM ). To construct a population heatmap and compute the
TP score for the TRACULA results, the posterior distribution of the tract was treated in the
same way as the confidence maps. The corresponding TP scores and visualization for the left
and right CST are shown in Figure 6.

6. Discussion

In this paper we presented a shortest-path tractography (SPT) framework which is able
to incorporate prior knowledge about tract location. Our framework supports frequently used
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simple learned HCP standard
prior prior left fornix right fornix left fornix right fornix

no prior 0.117±0.018 0.106±0.029 0.069±0.017 0.039±0.016
WM 0.127±0.016 0.127±0.039 0.090±0.015 0.048±0.021
WM HCPWM 0.133±0.013 0.120±0.037 0.123±0.016 0.093±0.019

Waypoint (WP) and IIT atlas
WM, WP, IIT atlas 0.335±0.032 0.526±0.031 0.175±0.088 0.336±0.105

Learned prior including WM, WP and IIT atlas
WM, WP, IIT atlas standardWM,WP,IIT 0.328±0.030 0.503±0.029 0.187±0.079 0.327±0.105
WM, WP, IIT atlas HCPWM,WP,IIT 0.339±0.025 0.545±0.026 0.270±0.069 0.417±0.128

Learned prior without WP including WM
WM HCPWM,WP,IIT 0.320±0.024 0.545±0.024 0.176±0.074 0.189±0.117

Reference atlas as prior
reference atlas 0.537±0.048 0.625±0.042 0.353±0.044 0.361±0.055

Table 4: Mean and standard deviation of TP scores over all subjects of the HCP (left) and stan-
dard data (right) for different priors (WM: white matter probability, WP: one-ROI waypoint
mask, HCPWM : learned prior from the HCP data using WM as prior, HCPWM,WP,IIT : learned
prior from the HCP data using WM, WP and the IIT atlas as prior, standardWM,WP,IIT :
learned prior from the standard data using WM, WP and the IIT atlas as prior) for the fornix.

prior information such as waypoints or white matter probabilities, and in particular is able to
generate and use a prior learned from previously performed tractography experiments.

6.1. Simple subject-specific prior: white matter probability

We demonstrated how simple subject-specific priors, such as white matter (WM) proba-
bility, typically lead to a moderate improvement of the overlap score. Such priors have the
inherent advantage of being easily determined automatically by conventional image processing
software. The WM prior is similar to the WM-weighting schemes adapted by Iturria-Medina
et al. (2007) in order to mollify the partial-volume effects that cause inappropriate attraction to
CSF regions (Fuster et al., 2014). The WM prior improves tractography in its own right when
measured by the TP score on some tracts (see Tables 1 and 2), although the improvement is
modest. It is also clear from a visual inspection of the population heatmaps in Figures 2 and 3
that the inclusion of simple priors helps to clean up the tractography output. For instance,
for the CST on the standard data, paths that incorrectly cross to the contralateral hemisphere
are removed (see red arrows in Figure 3). For the use of subject-specific priors on the IFOF
and fornix see Section 6.2 and Section 6.3 respectively.

The WM prior has most effect on the standard data as it achieves slightly better TP scores
on all tracts compared to no prior (see Tables 1 and 2). On the HCP data, on the other hand,
the WM prior is only slightly better for the AF. This could be explained by the lower image
resolution and stronger partial volume effects of the standard data, since these are precisely
the effects which are accounted for by the WM prior.
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6.2. Binary prior: waypoints

For long tracts that intersect with or are close to other tracts, waypoint regions are com-
monly used to guide the tractography (Wakana et al., 2007). We showed that waypoints can
also be included in our framework as a binary prior. We illustrated the use of a waypoint prior
by performing tractography on the inferior fronto-occipital fasciculus (IFOF).

It is evident both from the TP scores in Table 3 and a visual inspection of the results in
Figure 4 that the tractography fails without the use of a waypoint. The inclusion of a waypoint
stops the tractography from following incorrect paths, marked by red arrows in Figure 4, except
for a few, low confidence paths. Table 3 also shows that, as for the other tracts, the TP score
is moderately improved when using the waypoint in combination with subject-specific priors
like the WM prior.

Note that the TP score for the left IFOF on the standard data is high when the HCP prior
is applied without including a waypoint (see line 3 in Table 3). Visual inspection of Figure 4
shows that the used HCP prior contains three high confidence regions, where one of them
overlaps with the reference (see green arrows in Figure 4). As a result, tractography results
on the standard data lie within the same region. However when applying the HCP prior, it is
evident from visual inspection of the resulting population heatmap in Figure 4, that in several
subjects wrong paths are also detected with substantial confidence (see red arrow). These
paths are removed by including the waypoint prior.

6.3. Independent tract atlas as a prior

Since our framework allows the use of any spatial prior, a white matter tract atlas can also
be used as a prior. We showed the application of such an independent atlas prior combined
with a waypoint prior on the fornix (see Figure 5 and Table 4).

On the HCP dataset, the combination of these priors is enough to ensure correct delineation
of the tract in almost all subjects. The addition of the learned HCP prior removes the remaining
false positives, as seen in the fifth column of Figure 5. As shown in the sixth column, the HCP
prior learned with the atlas and waypoint is strong enough to produce correct delineation even
without using the atlas and waypoint, in a similar fashion as we observed on the IFOF.

On the standard data, however, when using the waypoint and atlas there are still incorrect
paths included with a considerable confidence (see red arrows in Figure 5). As a consequence,
the learned prior from the standard data does not perform as well as the learned prior from
the HCP data, and the incorrect paths are not removed. The learned HCP prior improves the
delineation, but it remains necessary to use the waypoint and IIT prior on the standard data,
also in combination with the learned HCP prior (see fifth and sixth column in Figure 5).

6.4. Path score and heatmaps

The SPT returns a score for each path, which reflects how well the path is supported by
both the underlying fODFs and the prior. Confidence maps created from these path scores
then represent a subject-wise confidence of the location of the tract (see Equation 8). These
maps are similar to heatmaps generated by conventional fibre-tracking methods. However,
while traditional heatmaps count the fibres passing through a voxel, our confidence maps are
weighted sums of paths passing through the voxel. Since the confidence map is not normalized,
it is not a real probability, but after normalization it can be interpreted as a probability density
function for the probability of the tract passing through any given voxel.
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In addition, population heatmaps can be created from subject normalized confidence maps,
thereby incorporating the variation within a dataset (see Section 3.5). Such population heatmaps
are similar to the tract probability overlap maps created for the major fibre bundles in studies
that aim to generate a white matter tract atlas (de Schotten et al., 2011; Varentsova et al.,
2014), but here they also take subject-wise confidences into account.

6.5. Learned prior

We applied the population heatmaps as population-based learned spatial priors for trac-
tography. In general, a learned prior can be constructed from tractography results created
by any tractography method. Such priors can be generated from all investigated subjects,
creating a study-specific prior, or from an independent representative population, creating an
independent prior.

Note that the use of a study-specific prior is not a case of training on a corresponding test
set, as the learned prior is not trained with the help of an annotated ground truth, but is
entirely unsupervised. The application of the reference atlas as prior, when the same reference
is used to compute the TP score, is a case of training on the test set. This is known, from
machine learning, to lead to an overestimated performance score. The corresponding results
should be therefore an upper benchmark (see also Section 6.10).

First, we observe that using a study-specific learned prior reduces the standard deviation
and thereby the variation of the tractography results, both on the standard data and the
HCP data, see Tables 1, 2 and 3. This effect is also evident from the visual inspection of the
tractography results, see Figures 2, 3 and 4, where low confidence tracts, most of which are
incorrect, are consistently removed by the learned prior. For example, on the HCP dataset, for
the AF, the use of the study-specific prior concentrates the paths in the high confidence regions
(see green arrows in Figure 2). For the CST the learned prior removes paths that follow the
CST on the contralateral hemisphere (see red circles in Figure 3). Even though restricting the
source and target ROIs to the ipsilateral hemisphere would probably have the same effect, the
learned prior is generated automatically and is robust for such errors in the ROI definition.

On the standard dataset, the performance of the study-specific learned prior is variable.
The TP score is increased on the CST (see Table 2) when compared to the WM prior. For
the AF, however, there is no significant improvement of the TP score, see Table 1, compared
to using subject-specific priors like WM. A visual inspection of Figure 2 reveals that the paths
obtained by tractography with only a WM prior on the standard dataset follow white matter
tracts inferior of the “true” location of the AF (see Figure 1). It is therefore to be expected
that a learned prior constructed from these results would not help tractography.

However, the high quality HCP prior consistently increased the TP score for the standard
dataset compared to all other results (see Tables 1, 2, 3 and 4). This is supported by visual
inspection of Figures 2, 3, 4 and 5. In particular, the TP score for the AF on the standard
dataset was lifted to the same level as on the HCP dataset, where inspection of Figure 2
shows that the HCP prior guides the tractography to the correct tract location even on the
standard dataset. While using a waypoint to guide the tractography might have the same
effect, the learned prior has the advantage that it is obtained automatically and without
manual intervention.

The results on the IFOF and fornix (see Table 3 and Figure 4) show that a learned prior
constructed with a waypoint or other independent prior can render the use of these priors in
subsequent tractography unnecessary. This clearly illustrates the importance and potential
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usefulness of a high quality learned prior. Note that it is also possible to manually define high
precision waypoints for a small subset of the dataset and apply a learned prior from that subset
to the whole data.

6.6. Comparison to TRACULA

We compared our best result on the CST based on a learned prior from the HCP data to
TRACULA (Yendiki et al., 2011), which also uses a trained prior. While the TP scores are
lower for the TRACULA results, the visual inspection looks equally plausible (see Figure 6).
The TP score might be lower because different ROIs are used in TRACULA. Note that we
could only compare results for the CST, as the other tracts in this study are not included in
TRACULA.

6.7. Learned prior for clinical data

Tractography is often a pre-processing tool for analysis of white matter changes in patients
with a disease or pathology. In this paper, we have demonstrated the creation and application
of a learned prior on two healthy populations, and care should be taken when applying an
independent prior created from a healthy population in order to study patients with pathology.
An independent prior created from healthy subjects should only be applied if the tracts of the
analysed population are not assumed to be drastically disrupted or remodelled, since tracts
will be encouraged to stay within the typical tract location of the “healthy” prior.

In cases where disease is expected to generate disruptions or remodelling of fibre pathways,
a study-specific learned prior would not enforce the same constraints. However, for a study-
specific prior to be effective, it would need the pathological effect on the tract to be spatially
similar across patients.

6.8. Application of anatomical or learned priors

An anatomical (or indeed any) prior comes with both benefits and downsides. Whilst
they aid in the delineation of known pathways, they inherently also provide bias away from
the evidence provided by the individual subject. As such, the application of priors is always
a balancing-act between the discovery of possibly-unique results in the individual versus the
robustness of finding group-wise commonalities. In practice, this balance could be changed by
giving different weights to the prior and the individual information from the diffusion data. In
this paper, we give equal weight to these terms, and as observed in Figure 7, subject-specific
variability is retained, although concentrated near the high-confidence region of the prior.

6.9. Dependence on the delineation of the endpoint regions

The SPT method requires a source and a target region and thus depends on the delineation
of those regions. Therefore it is important that the regions are chosen to reflect reasonable
endpoints of the tracts. However, the SPT is robust to small errors or changes in the delineation
of the ROIs, as can be seen in the low confidence for tracts in the contralateral hemisphere
for the CST results (see Figure 3). Here, these false tracts occur due to the overly large seed
region in the brain stem which incorporates fibres from both hemispheres. Furthermore, since
a path is always found between any pair of voxels, the SPT also returns good results when the
ROIs are small, as for the fornix (see Supplementary Table 2).
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6.10. Evaluation criterion

We chose to evaluate our results through a combination of visual inspection and quanti-
tative comparison with the reference tract atlas from de Schotten et al. (2011) described in
Section 4. We visually inspected the computed shortest paths in single subjects, where we
saw a concentrating effect of the use of different priors. However, visual inspection of shortest
paths does not give a summarized population evaluation. We therefore generated population
heatmaps (see Section 3.5) for population-level visualization of tractography results. Since the
population heatmap is constructed based on the scalar path-confidence scores, it automatically
down-weights low confidence paths and enhances high confidence paths. While it is evident
from the heatmaps in Figures 2 and 3 that some of the followed paths were incorrect, it is also
evident that these are appropriately rated as low confidence paths.

We find that when accompanied with qualitative visual inspection, a quantitative evaluation
of tract co-occurrence on a population of subjects can be very valuable. For the quantitative
comparison we introduced the true positive (TP) score for measuring the overlap of the popu-
lation heatmaps with the reference described in Section 4.4. The TP simultaneously measures
true and false positives and is able to take the probability of the reference into account. In this
way, a full TP score of 1 can only be obtained by a tract which lies within the region where the
reference is 1. The TP score is therefore rather conservative, as even a perfect tractography
result can not be expected to generate a score of 1 on tracts where the reference has a high
level of variation.

To obtain an upper benchmark TP score for every tract and dataset, we performed trac-
tography using the reference atlas as a prior. This should lead to a near optimal tractography
result, while still considering subject-specific variation. As expected, the resulting TP scores
are higher than or similar to the highest scores with any other prior. Furthermore, the TP
score differs for the different tracts and datasets (see last line in Tables 1, 2, 3 and 4), indicating
that the TP score should not be considered an absolute measure of quality, but a relative one.

Note further that there are differences in the TP score between the left and right hemi-
sphere, which is especially true for the AF and CST. These differences are most likely caused
by asymmetry of the reference, and are also observed when applying the reference atlas as
prior. This imbalance does not make a difference for comparison of different methods, as the
comparison should be done on the different sides separately.

Any overlap measure depends on accurate image registration, which is known to be imper-
fect. Furthermore, comparing the tractography results to a reference created from a signifi-
cantly different population, e.g. with respect to age or gender, can have a negative effect on
the score, as the registered reference is not necessarily anatomically correct. This is especially
true when the analysed population consists of patients where severe changes of the tracts are
expected. One can, however, use the comparison score to quantify the difference between com-
puted tracts and the reference and thereby detect patients where the tract differs from the
reference.

6.11. Future extensions of the method

In our experiments and definition, the prior contributes equally to the path likelihood as
the weight of a connection (see Equations 11 and 14). However, it would also be possible
to introduce a weighting of the prior in Equation 11 resulting in P (e|wE(e)) ∝ wE(e)P (e)k,
where k is the weight of the prior. Setting k to 1 would result in the same weighting used in
this paper, while a k > 1 would weight the prior more than the edge weight and 0 < k < 1
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would weight the prior less, respectively. While an adaptation of the formulas to include k is
straightforward, a detailed study of the effect of different values for k is out of the scope of
this study.

It is known that fibre bundles have a direction and therefore can be distinguished by being
afferent or efferent. Although the DWI method itself is undirected, it could, in theory, be possi-
ble to include anatomical (topological) based directionality information into the tractography.
This would require modelling the diffusion information as a directed graph with asymmetric
edges and hence reformulation of the SPT method. As such, even though it may be interesting
to explore directional-dependent differences in the transition between voxels, this would need
to be considered as future work.

7. Conclusion

In this paper we derived a shortest-path tractography framework which includes prior in-
formation about the spatial location of a tract. We demonstrated that the use of such prior
information improves the accuracy and robustness of the delineated tracts. We especially
showed how this prior information can be derived automatically, thereby permitting our trac-
tography to learn based on previous tractography results. This allows prior results, ROIs and
tract masks to be automatically applied to future studies, alleviating the need for tedious and
often error-prone manual intervention. Here, we applied learned priors obtained by running the
same tractography algorithm with a simple prior only. However, our framework is able to inte-
grate a prior learned from any tractography algorithm or from previously created tractography
results.

In summary, we hope that the work presented herein will enable tractography and tract-
based analysis of large populations to be made more feasible by permitting prior domain
knowledge to be automatically included in the tract delineation of individual subjects.
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Figure 1: Reference tract atlas. The atlas obtained from de Schotten et al. (2011) is visualized
as heatmap (white=high overlap, red=low overlap) together with the seed regions (blue) used
for tractography. Shown are all tracts used in this study: the arcuate fasciculus (AF), the
cortico spinal tract (CST), the inferior fronto-occipital fasciculus (IFOF) and the fornix. The
seed regions were spatially smoothed by an isotropic Gaussian filter and are shown opaque for
visualization purposes.
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Figure 2: Population heatmaps of the arcuate fasciculus (AF). Heatmaps (white=high confi-
dence, red=low confidence) were created as average from individual results in MNI space (see
Equation 16) and are shown for results using different priors both on the HCP data (left) and
the standard data (right). Learned priors (rows 3–4) were created from the results including
WM (second row). White circles mark regions in the heatmaps inferior to the “true” location
of the AF, while green arrows mark the high confidence areas that are enhanced by the learned
HCP prior.
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Figure 3: Population heatmaps of the cortico spinal tract (CST). Heatmaps (white=high
confidence, red=low confidence) were created as average from individual results in MNI space
(see Equation 16) and are shown for results using different priors both on the HCP data
(left) and the standard data (right). Learned priors (rows 3–4) were created from the results
including WM (second row). Red arrows mark paths that are removed with the application of
subject-specific priors and red circles mark paths removed by a learned prior.
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Figure 4: Population heatmaps of the inferior fronto-occipital fasciculus (IFOF). Heatmaps
(white=high confidence, red=low confidence) were created as average from individual results
in MNI space (see Equation 16) and are shown for results using different priors both on the
HCP data (top) and the standard data (bottom). Learned priors (see columns 2, 4, 5 and 6)
were created from the results including WM (first column) or from results using the waypoint
and WM prior (third column). Red arrows mark wrong paths that are removed by the use of
a waypoint prior, while green arrows mark “true” paths found without the WP prior.
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Figure 5: Population heatmaps of the fornix. Heatmaps (white=high confidence, red=low
confidence) were created as average from individual results in MNI space (see Equation 16)
and are shown for results using different priors both on the HCP data (top) and the standard
data (bottom). Learned priors (see columns 2, 4, 5 and 6) were created from the results
including WM (first column) or from results using the waypoint, WM and IIT atlas as prior
(third column). Red arrows mark wrong paths that are removed or reduced by the use of the
learned HCP prior (see column 5).
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Figure 6: Comparison with TRACULA on the cortico spinal tract (CST). Shown are popula-
tion heatmaps (white=high confidence, red=low confidence) created as average from individual
results in MNI space (see Equation 16) for the HCP data together with the TP scores. Trac-
tography results are compared between SPT using a learned prior from the HCP data (top)
and TRACULA (Yendiki et al., 2011) (bottom).
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Figure 7: Single-subject trajectories for the left cortico spinal tract (CST). Trajectories are
visualized three HCP subjects (left) and three subjects from the standard data (right) using
different priors: the white matter (WM) prior, the WM prior with a prior learned from the
HCP data and the WM prior learned from the standard data. Shown are all edges that lie
on at least one of the found shortest paths. All edges are coloured equally, and hence are
independent of the score of the paths that travel along that edge.
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ABSTRACT

We explore a new approach for structural connectivity based segmentations of subcortical brain regions. Con-
nectivity based segmentations are usually based on fibre connections from a seed region to predefined target
regions. We present a method for finding significantly connected voxels based on the distribution of connection
strengths. Paths from seed voxels to all voxels in a target region are obtained from a shortest-path tractography.
For each seed voxel we approximate the distribution with a histogram of path scores. We hypothesise that the
majority of estimated connections are false-positives and that their connection strength is distributed differently
from true-positive connections. Therefore, an empirical null-distribution is defined for each target region as the
average normalized histogram over all voxels in the seed region. Single histograms are then tested against the
corresponding null-distribution and significance is determined using the false discovery rate (FDR). Segmenta-
tions are based on significantly connected voxels and their FDR. In this work we focus on the thalamus and the
target regions were chosen by dividing the cortex into a prefrontal/temporal zone, motor zone, somatosensory
zone and a parieto-occipital zone. The obtained segmentations consistently show a sparse number of significantly
connected voxels that are located near the surface of the anterior thalamus over a population of 38 subjects.

1. INTRODUCTION

Subcortical brain regions, like the thalamus, are highly connected with the cortex of the human brain. It is
possible to segment these subcortical brain regions based on connection strengths to different cortical areas.1–3

Analysis of volume, fractional anisotropy (FA) or other changes in these subregions obtained by such segmenta-
tions can give insight into pathological effects of certain diseases, e.g. Huntington’s disease.3

Typically, such segmentations are computed based on the number of “fibres” connecting a seed region to
a specific target region of interest (ROI)1,2 or on the strength of a single connection. A voxel in the region
to be segmented is assigned to the target ROI to which it has the most connections or the highest connection
strength. However, it is known that noise in the data can increase the amount of false-positive connections.4,5

Existing segmentation methods do not account for these connections and do not consider whether seed voxels
are significantly connected. Here, we present a new approach for segmenting subcortical brain regions based
on significantly connected voxels, where significance is determined from a voxel’s distribution of connection
strengths.

2. METHODS

The framework for testing whether a seed voxel is significantly connected to a specific target ROI is based on the
distribution of connection strengths of tracts or paths from the seed voxel to that target ROI. Paths between a
seed voxel and the target ROI are computed using a shortest-path tractography method (see Section 2.2). Since
this method returns a path to every voxel in the target ROI, we assume that most of these connections do not
reflect an existing connection and are due to noise and poor resolution of the data, which is reflected by a low
connection strength. Furthermore, we assume that for significantly connected voxels we observe a higher amount
of strong connections than for non-significantly connected voxels.

Further author information: Niklas Kasenburg and Morten Vester Pedersen contributed equally to this work (contact
N.K. or M.V.P. for correspondence)
N.K.: E-mail: niklas.kasenburg@di.ku.dk
M.V.P.: E-mail: mvp288@nyu.edu
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Here, we therefore determine significance of a seed voxel by measuring whether the amount of high-scoring
paths in its distribution of connection strengths is significantly different from a distribution that only consists
of noise. In the following, we call the noise-distribution also the null-distribution. We further think of a
voxel’s distribution as a mixture of the null-distribution and a distribution of true, high-scoring connections,
and therefore call it a mixture distribution. The goal is now to determine how similar or different a voxel’s
distribution is from the null-distribution, that is how strong the contribution of the null-distribution is in a
voxel’s mixture distribution.

Before explaining how we achieve this, we briefly revisit the large-scale simultaneous hypothesis testing
proposed by Efron,6 which inspired our framework.

2.1 Large-scale simultaneous hypothesis testing

Efron presented a method to simultaneously test a large number of hypotheses.6 Given the a likelihood value,
denoted zi, for each of the N hypotheses i = 1, . . . , N , a histogram of these z-values is created. The goal is now
to calculate the probability that a hypothesis stems from a null-distribution based on the z-value. Efron shows
that this probability is equal to the FDR defined as follows6

FDR(z) = f0(z)/f(z), z ∈ R , (1)

where f0 denotes the null-distribution, either empirically estimated or theoretically chosen, and f denotes the
mixture distribution. In his paper, f is a curve fitted to the histogram and different ways of computing f0
are presented. To define whether a hypothesis i is significant, Efron computes FDR(zi) and checks whether
it is below a certain threshold.6 In this way he seeks those z for which f(z) is significantly different from the
null-distribution f0(z). This implies that the null hypothesis can be rejected.

In the following we explain how this method can be used to find significantly connected voxels based on
histograms of connection strengths. Note, however that we perform the simultaneous inference separately for
every voxel, since we are only interested in whether any of the bins for a specific voxel is significantly different
from the null-distribution. Furthermore, we do not estimate or fit f0 by a function, but instead use an empirical
null-distribution computed directly from the histograms as the average normalized histogram over all voxels.

2.2 Tractography

Histograms are constructed from the connections between each seed voxel and the target ROI and their corre-
sponding connection strengths. Here, we perform shortest-path tractography (SPT) described by Kasenburg et
al.7 to find these connections. First, the diffusion weighted image (DWI) is modelled as a weighted, undirected
graph G consisting of all grey and white matter voxels within the brain, where each voxel is connected via an
edge to adjacent white matter voxels in its 3×3×3 neighbourhood. Edge weights quantify the diffusion strength
along the corresponding direction and reflect the probability of a fibre bundle tangential to that direction. Trac-
tography between two voxels x and x′ in graph G is then performed by finding the most probable path π∗x,x′

between the pair of voxels. The connection strength s is given by the product of edge weights along the path
normalized by the number of edges n contained in the path:7

s(π∗x,x′) = n

√√√√
n∏

i=1

w(ei) , (2)

where ei is the i-th edge along the path and w(ei) its corresponding weight. Note that finding the most likely
path in G is equivalent to finding the shortest path in a graph with negative log-transformed edge-weights.

2.3 Histogram of connection strengths

For a pair consisting of a seed voxel and a target ROI, the shortest paths in G from the seed voxel to all voxels
in the target ROI are computed with SPT as described in Section 2.2. Since SPT is guaranteed to find a path
between any pair of voxels, it returns as many paths as there are voxels in the target ROI for each seed voxel.
This results in thousands of paths and corresponding connection strengths for each seed voxel. To estimate the
distribution of connection strengths for voxel x to a target ROI R, we bin the strengths of all found paths in a
histogram HR,x(i) with 1000 bins, where i is the the bin index (see Figure 1 for examples).
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Figure 1. Histograms for all target regions of interest for single seed region voxels for one subject (ID: 100307) together
with the average histogram (green line). The top row shows non-significantly connected voxels and the bottom row shows
significantly connected voxels using a threshold of 0.05. Significant bins (see Equation 4) are coloured in red.

2.4 Finding significantly connected voxels

We now describe how the concept of large-scale simultaneous hypothesis testing (see Section 2.1) can be used for
analysing histograms of connection strengths. In our framework the null-distribution f0 is independently defined
as the normalized average histogram over all voxels in the seed region for each target ROI (see Figure 1). Under
the assumption that most connections are false-positives, the average histogram is a good approximation of the
null-distribution of connection strengths of non-significantly connected voxels. In the following, the average
histogram is denoted as HR(i), where i denotes the bin of the histogram and R is a numerical label for the ROI.

The mixture distribution f is dependent on the location of the seed voxel x and is defined as the histogram
HR,x(i) for every target ROI R. If the histogram contains the scores of many true-positive connections, the
shape is expected to be different compared to the null-distribution HR(i), whereas it would be similar in shape if
most connections are false-positive. Similar to (1), we define an FDR for every bin i, or connection strength, by
dividing the null-distribution (average histogram HR(i)) by the mixture distribution (voxel-specific histogram
HR,x(i))

FDRR,x(i) =
HR(i)

HR,x(i)
. (3)

We can now determine whether a voxel x is significantly connected to R by testing whether the FDR for any
of the bins i is lower than a predefined significance threshold thr, that is whether the corresponding strength is
significant, with

∃i ≥ imax,R : FDRR,x(i) < thr ⇒ x is significantly connected . (4)

Since we assume that a low connection strength reflects noise or false-positive connection, we only include
those bins larger than or equal to the maximum bin in the null-distribution imax,R = argmaxi{HR(i)}. In our
experiments we used thresholds of 0.05, 0.01 and 0.005 equivalent to 95, 99 and 99.5% significance levels to study
the effect of a decreasing threshold.

2.5 Creating segmentation maps

To test the level of consistency in location and number of significantly connected voxels between different subjects,
probability overlap maps for each target ROI are constructed in standard MNI space. These maps show the
frequency of a single voxel x of the seed region being found to be significantly connected to the corresponding
ROI R (see Equation 4) over a set of subjects S. The probability overlap map for region R is defined as the
number of subjects in which x is significantly connected to R divided by the number of subjects |S|.

In addition, an FDR-value was assigned to each significantly connected voxel in order to compare it between
different target ROIs. It is defined as the averaged FDR over all bins satisfying (4):

BR,x = {i : FDRR,x(i) < thr ∧ i ≥ imax,R} FDRR(x) =
1

|BR,x|
∑

i∈BR,x

FDRR,x(i) . (5)
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Figure 2. Probability overlap maps for the prefrontal/temporal zone (top row, yellow), parieto-occipital zone (second row,
red), motor zone (third row, green) and the somatosensory zone (bottom row, blue) in standard MNI space (top and
second row: x = 90, y = 96, z = 77, third and bottom row: x = 90, y = 110, z = 75), zoomed in on the thalamus. Each
column shows results for different FDR thresholds (from left to right: 0.05, 0.01 and 0.005).

From these voxel-wise FDR-values a segmentation map SegS of the thalamus can be constructed for every
subject S ∈ S by assigning the region label with the lowest FDR to each voxel x in the image

SegS(x) =

{
0, if | {FDRR(x) 6= 0} | = 0 ,

argminR {FDRR(x) 6= 0} , otherwise.
(6)

2.6 Data

We used the preprocessed data8 of 38 subjects from the Q3 release of the Human Connectome Project9,10 (HCP).
Tissue segmentations were performed on the provided structural images with FAST11 after brain extraction with
BET.12 Voxel-wise fibre orientation distribution functions were computed with the DiPy library13 from the DWIs
using constrained spherical deconvolution14 with order 8.

The target ROIs were extracted from the MNI atlas15 and the Juelich atlas16 similar to those described
in Behrens et al.:1 prefrontal/temporal zone, motor zone, somatosensory zone, parieto-occipital zone (see Fig-
ure 3 A). Tractography was performed for all subjects as described in Section 2 and segmentation maps (see
Equation 6) of the thalamus were created and saved in subject space. Probability overlap maps (see Section 2.5)
were created from the segmentations of all subjects warped into standard MNI space using FNIRT17 provided
in FSL.18
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Figure 3. A Target regions of interest (yellow: prefrontal/temporal zone, green: motor zone, blue: somatosensory zone,
red: parieto-occipital zone) shown together with the thalamus (magenta) in standard MNI space (x = 89, y = 103, z = 84).
B Zoom on the thalamus segmentations for three selected subjects in subject space (x = 72, y = 87, z = 61) and three
different FDR thresholds (from left to right: 0.05, 0.01 and 0.005). The same colours as in Figure 3A are used for the
four target regions.

3. THALAMUS SEGMENTATIONS AND SIGNIFICANT VOXELS

Both the probability overlap maps (see Figure 2) and the subject-specific segmentation maps (see Figure 3 B)
show that significantly connected voxels are mostly found on the surface of the thalamus and in similar locations
as in Behrens et al.1 Moreover, it appears that the posterior part of the thalamus is rarely significantly connected
to any target ROI (see Figures 2 and 3 B).

On one hand, the subject-specific segmentations show a high variability between the labels chosen for similar
locations in different subjects (see Figures 3 B). On the other hand, the probability overlap maps show that
the number of significantly connected voxels is consistent across subjects and their location shows reasonably
little variance as can be seen by the high overlap probabilities (see Figure 2). This difference can be explained
by the fact that most voxels are significantly connected to more than one region. This is especially true for the
prefrontal/temporal zone and the parieto-occipital zone or for the motor zone and the somatosensory zone (see
Figure 2). So when choosing a label for a voxel for the subject-specific segmentations, it is very often a close
call between two target ROIs as the voxel is significantly connected to both. This can in part be explained by
the resolution of DWIs, at which it is currently impossible to make distinctions between neuronal fibres that are
located close to each other. Especially if the target ROIs are in close proximity to one another, it is likely that
the majority of connecting fibres follow, in part, a common path from and to the thalamus.

We also investigated the effect of different thresholds on location and number of significantly connected voxels.
Figures 2 and 3 B visualises that when decreasing the threshold of the FDR to 0.01 or 0.005, less voxels are found
to be significantly connected. Furthermore, fewer significant voxels are found that do not lie on the surface. Note
that the agreement across subjects decreases with the threshold, since subject-specific segmentations maps get
extremely sparse (see Figure 3 B).

4. CONCLUSION

We presented a method to find significantly connected voxels and applied it to segmenting the thalamus. Results
are consistent across all subjects in the sparse number of significant voxels and their location on the surface of
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the anterior part of the thalamus. The proposed framework provides a simple foundation from which probability
maps of the connectivity can be created in a standard space from a large sample population. Furthermore the
framework is in no way limited to the thalamus or the four target ROIs, but is applicable for any choice of regions
for which one wishes to investigate the connectivity.

ACKNOWLEDGMENTS

Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David
Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the
NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington
University.

REFERENCES

[1] Behrens, T. E. J., Johansen-Berg, H., Woolrich, M. W., Smith, S. M., Wheeler-Kingshott, C. A. M., Boulby,
P. A., Barker, G. J., Sillery, E. L., Sheehan, K., Ciccarelli, O., Thompson, A. J., Brady, J. M., and Matthews,
P. M., “Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging,”
Nat Neurosci 6, 750–757 (Jul 2003).

[2] Johansen-Berg, H., Behrens, T. E. J., Sillery, E., Ciccarelli, O., Thompson, A. J., Smith, S. M., and
Matthews, P. M., “Functional-anatomical validation and individual variation of diffusion tractography-based
segmentation of the human thalamus,” Cereb Cortex 15, 31–39 (Jan 2005).

[3] Bohanna, I., Georgiou-Karistianis, N., and Egan, G. F., “Connectivity-based segmentation of the striatum
in huntington’s disease: vulnerability of motor pathways,” Neurobiol Dis 42, 475–481 (Jun 2011).

[4] Fillard, P., Descoteaux, M., Goh, A., Gouttard, S., Jeurissen, B., Malcolm, J., Ramirez-Manzanares, A.,
Reisert, M., Sakaie, K., Tensaouti, F., Yo, T., Mangin, J.-F., and Poupon, C., “Quantitative evaluation of
10 tractography algorithms on a realistic diffusion MR phantom,” NeuroImage 56, 220–234 (May 2011).

[5] Neher, P. F., Laun, F. B., Stieltjes, B., and Maier-Hein, K. H., “Fiberfox: facilitating the creation of realistic
white matter software phantoms,” Magn Reson Med 72, 1460–1470 (Nov 2014).

[6] Efron, B., “Large-scale simultaneous hypothesis testing,” Journal of the American Statistical Associa-
tion 99(465), 96–104 (2004).

[7] Kasenburg, N., Liptrot, M., Reislev, N. L., Ørting, S. N., Nielsen, M., Garde, E., and Feragen, A., “Training
shortest-path tractography: Automatic learning of spatial priors,” NeuroImage (2016).

[8] Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., Xu, J.,
Jbabdi, S., Webster, M., Polimeni, J. R., Essen, D. C. V., Jenkinson, M., and WU-Minn HCP Consortium,
“The minimal preprocessing pipelines for the Human Connectome Project,” NeuroImage 80, 105–124 (Oct
2013).

[9] Essen, D. C. V., Smith, S. M., Barch, D. M., Behrens, T. E. J., Yacoub, E., Ugurbil, K., and WU-Minn
HCP Consortium, “The WU-Minn Human Connectome Project: An overview,” NeuroImage 80, 62–79 (Oct
2013).

[10] Sotiropoulos, S. N., Moeller, S., Jbabdi, S., Xu, J., Andersson, J. L., Auerbach, E. J., Yacoub, E., Fein-
berg, D., Setsompop, K., Wald, L. L., Behrens, T. E. J., Ugurbil, K., and Lenglet, C., “Effects of image
reconstruction on fiber orientation mapping from multichannel diffusion MRI: reducing the noise floor using
SENSE,” Magn Reson Med 70, 1682–1689 (Dec 2013).

[11] Zhang, Y., Brady, M., and Smith, S., “Segmentation of brain MR images through a hidden Markov random
field model and the expectation-maximization algorithm,” IEEE Trans Med Imaging 20, 45–57 (Jan 2001).

[12] Jenkinson, M., Pechaud, M., and Smith, S., “BET2: MR-based estimation of brain, skull and scalp surfaces,”
in [Eleventh annual meeting of the organization for human brain mapping ], 17 (2005).

[13] Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., van der Walt, S., Descoteaux, M., Nimmo-Smith,
I., and Dipy Contributors, “Dipy, a library for the analysis of diffusion MRI data,” Front Neuroinform 8, 8
(2014).

[14] Tournier, J.-D., Calamante, F., and Connelly, A., “Robust determination of the fibre orientation distribution
in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution,” NeuroImage 35, 1459–
1472 (May 2007).

CHAPTER 5. PAPERS 74



[15] Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., Woods, R., Paus, T., Simpson, G.,
Pike, B., Holmes, C., Collins, L., Thompson, P., MacDonald, D., Iacoboni, M., Schormann, T., Amunts,
K., Palomero-Gallagher, N., Geyer, S., Parsons, L., Narr, K., Kabani, N., Goualher, G. L., Boomsma, D.,
Cannon, T., Kawashima, R., and Mazoyer, B., “A probabilistic atlas and reference system for the human
brain: International Consortium for Brain Mapping (ICBM),” Philos Trans R Soc Lond B Biol Sci 356,
1293–1322 (Aug 2001).

[16] Eickhoff, S. B., Paus, T., Caspers, S., Grosbras, M.-H., Evans, A. C., Zilles, K., and Amunts, K., “Assign-
ment of functional activations to probabilistic cytoarchitectonic areas revisited,” NeuroImage 36, 511–521
(Jul 2007).

[17] Andersson, J. L. R., Jenkinson, M., and Smith, S., “Non-linear registration, aka spatial normalisation,”
tech. rep., FMRIB (2010).

[18] Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., and Smith, S. M., “FSL,” NeuroIm-
age 62, 782–790 (Aug 2012).

75 CHAPTER 5. PAPERS



STRUCTURAL PARCELLATION OF THE THALAMUS
USING SHORTEST-PATH TRACTOGRAPHY

Niklas Kasenburg1, Sune Darkner1, Ute Hahn2, Matthew Liptrot1,3, Aasa Feragen1

1DIKU, University of Copenhagen; 2Department of Mathematics, Aarhus University; 3DTU Compute

ABSTRACT
We demonstrate how structural parcellation can be imple-
mented using shortest-path tractography, thereby addressing
some of the shortcomings of the conventional approaches. In
particular, our algorithm quantifies, via p-values, the confi-
dence that a voxel in the parcellated region is connected to
each cortical target region. Calculation of these statistical
measures is derived from a rank-based test on the histogram
of tract-based scores from all the shortest paths found be-
tween the source voxel and each voxel within the target
region. Using data from the Human Connectome Project, we
show that parcellation of the thalamus results in p-value maps
that are spatially coherent across subjects. Comparing to the
state-of-the-art parcellation of Behrens et al. [1], we observe
some agreement, but the soft segmentation exhibits better
stability for voxels connected to multiple target regions.

1. INTRODUCTION

Structural parcellation [2, 3, 4, 5, 6, 7] is the data-driven seg-
mentation of a source region defined by structural connectiv-
ity to a set of pre-defined target regions of interest (ROIs). We
propose a parcellation algorithm which statistically quantifies
the connectivity to each target ROI for each voxel in the re-
gion to be parcellated. In contrast to classical majority voting
methods [1], our method outputs a soft segmentation based
on these confidence measures. We demonstrate the approach
on 5 subjects from the Human Connectome Project [8].

Our approach, based on shortest-path tractography (SPT),
overcomes all of the following problems, which remain un-
solved by traditional approaches to structural parcellation:

a) Traditional fibre tracking methods start at a source
point and randomly walk in the most likely direction as
defined by a fibre orientation function (fODF). These
methods may have a hard time retrieving connections
from a voxel v to a specific cortical region C if the

A.F. is funded in part by the Danish Council for Independent Research
(DFF), Technology and Production Sciences. Data were provided by the Hu-
man Connectome Project, WU-Minn Consortium (Principal Investigators:
David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16
NIH Institutes and Centers that support the NIH Blueprint for Neuroscience
Research; and by the McDonnell Center for Systems Neuroscience at Wash-
ington University.

voxel v is also connected to other regions, whose con-
nections are easier to track. In particular, fibre tracking
has a bias towards finding connections between nearby
regions and will typically find more connections to
large target regions than to small ones, even if this is
not supported by the data [9, 10].

b) Traditional structural parcellation assumes that every
voxel in the region to be segmented (in our case, the
thalamus) is connected to one of the target ROIs. How-
ever, this is not always the case. Moreover, there may
not be enough signal in the data to support such an as-
signment even if the connections exist. This is espe-
cially true for inside the thalamus, where fibre direc-
tions are usually hard to resolve.

c) Traditional structural parcellation obtains a hard seg-
mentation of the source region through voting over con-
nections to the cortical ROIs. However, this is subop-
timal for several reasons [3]: First, if a source voxel is
not physically connected to either of the target regions,
the found connections are based only on noise and may
therefore be very unstable. Second, both anatomically
and because of partial volume effects, many voxels are
with high probability connected to multiple cortical re-
gions. Since a hard segmentation is not able to model
this, it may again, lead to unstable results.

Shortest-path tractography finds the most likely trajectory
for a fibre connecting any two locations in the brain [11]. This
formulation lends itself well to structural parcellation, which
precisely seeks connections between two pre-specified ROIs:
The source region to be segmented (in this paper, the thala-
mus) and the cortical target region, one at a time. Since SPT
will always find a most likely tract connecting any two vox-
els, it avoids problem a): Connections will be found both to
small regions and between regions that are any distance apart.

However, this property of SPT also introduces a new prob-
lem: A connection will always be found, even if it is not there.
Many SPT methods assign a score to the found paths which
can be used to threshold unlikely paths, but such a threshold
will reintroduce the biases from problem a). In this paper,
we therefore propose an alternative approach which, assum-
ing some thalamic voxels are physically connected to each
target region, aims to define these as statistically more sig-
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nificant than those which are not. This is obtained through a
statistical test over source region voxels.

Inspired by Kasenburg et al. [12] we quantify the confi-
dence with which a voxel is significantly connected to each
of the target regions, by assigning a p-value to each source
voxel. This also solves problem b), as we allow voxels within
the source region to have a p-value close to 1 for every single
target region, i.e. not being strongly connected to any target
region. Using the p-values as confidence maps, we obtain a
soft structural parcellation of the thalamus, which allows for
overlap between the segments corresponding to different tar-
get ROIs. In this way, we also solve problem c).

2. METHODOLOGY

Shortest-path tractography (SPT). In SPT [11], the diffu-
sion weighted image (DWI) is turned into a graph where all
grey- and white matter voxels from the brain are nodes. Edges
are formed between pairs of voxels in a 3 × 3 × 3 neigh-
bourhood, whenever at least one of the voxels is white matter.
Each edge ~e pointing out of a voxel v is given a weight re-
flecting the probability of a fibre bundle tangential to ~e. This
probability is defined by integrating the fODF estimated for
the voxel v over the set of directions out of v which are closer
to ~e than to any other edge pointing out of v. The integral is
estimated by sampling. To obtain an undirected graph, edge
weights are averaged over their start and end nodes, obtaining
probabilistic edge weights p(e).

From this weighted graph, tractography between two
points v and w is phrased as finding the most probable
path from v to w in the graph, that is, the path maximis-
ing p(π) =

∏n
i=1 p([vi−1, vi]), where π = [v0, v1 . . . , vn]

is a path in the brain graph from v0 = v to vn = w, and
[vi−1, vi] is the edge connecting vi−1 and vi. Most proba-
ble paths are computed using Dijkstra’s shortest path algo-
rithm after log-transforming the weights into edge lengths
l(e) = − log(p(e)).

Significance of SPT tracts. The main disadvantage of
SPT is that for any two brain voxels v and w, SPT will find
a path connecting them, whether the data really supports this
or not. This can be alleviated by thresholding the path-length
corrected path probability score s(π) = [p(π)]

1
|π| , where |π|

is the number of nodes on π. However, this requires a choice
of a threshold. A test for the statistical significance of SPT
tracts would therefore be desirable. In this paper, we present
a statistical test for the significance of connectivity from a
source voxel v ∈ R1 to a target region R2.

Assumptions. We seek a segmentation of a given source
region R1 (the thalamus) defined by its connections to a set
of cortical target regions. Focusing on one target region R2,
consider all paths found by SPT from a voxel v to any voxelw
in the target regionR2. We assume that the majority of voxels
inR1 are not physically connected to the target regionR2 and
that the scores of SPT paths found from such vunc ∈ R1 to

voxels w ∈ R2 describe noise. This noise may be specific to
the regionsR1 andR2, but we assume that it is independent of
the source voxel vunc. We also assume that voxels vcon ∈ R1

that actually are physically connected to regionR2 show more
high scoring SPT paths than expected for vunc. Thus, their
score distribution should be skewed towards the right, as the
distribution is a mixture of noise from the target voxels w in
R2 that are not connected to vcon, and high scores from those
target voxels w which are connected to vcon.

Histograms and cumulative histograms. For each
source voxel v ∈ R1 we extract a histogram Hv of scores
corresponding to SPT paths from v to any w ∈ R2 as fol-
lows: Scores are divided into N bins and the number Hv(i)
of scores falling into bin i is counted for i = 1, . . . , N . Ex-
amples of these histograms are shown in the top row of Fig. 1
together with the average histogram over all source voxels.
Some histograms (top right in Fig. 1) indeed represent a dis-
tribution of scores that is more skewed to the right compared
to the average histogram, suggesting that the corresponding
voxel is physically connected to the target region.

Such raw histograms are, however, very jagged and noisy,
therefore they are rarely used for statistical testing. Instead,
one usually transforms them into cumulative normalized his-
tograms (also known as empirical cumulative distribution
functions) prior to testing without losing information. The
cumulative normalized histogram of voxel v is given by a
vector (Cv(1), . . . , Cv(N)), where

Cv(i) =

i∑

j=1

Hv(j)

norm(H)
, norm(H) =

N∑

i=1

Hv(i). (1)

Assigning a p-value to histograms. To quantify if and
how much the histogram of voxel v deviates from the null dis-
tribution, we compare it to a simulated sample of s histograms
representing noise. When a histogram is skewed to the right,
the corresponding cumulative histogram lies below a typical
cumulative histograms representing the null distribution (see
the right of Fig. 1).

Inspired by the envelope rank tests of Myllymäki et
al. [13], we present a one-sided rank-based test for the cu-
mulative histograms. Our test computes a p-value for each
source voxel v given by

p =
1

s+ 1

s+1∑

k=1

1(rankk ≤ rank1) , (2)

where 1(x) returns 1 if x is true and 0 otherwise, and the
rankk is the average rank from below over all bins of the kth

sample from the null distribution. That is,

rankk =
1

N

N∑

j=1

]{k′ = 1, . . . , s+1|Ck′(j) < Ck(j)} , (3)

where k = 1 is the index of the observed histogram. The
rank thus measures how skewed the corresponding original
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Fig. 1. Top: Normalized histograms of SPT tract scores for single source region voxels. The dotted green line is the average
histogram over all source voxels. Bottom: The corresponding cumulative histograms. The dotted green lines are the minimum
and maximum envelopes of the cumulative histograms resulting from the normalized, bootstrapped samples. The first five
voxels were found to have a p-value very close to 1, whereas the latter five have lower p-values.

histogram is to the right, compared to the other histograms in
the sample of s + 1 histograms. The original test by Myl-
lymäki et al. [13] was based on minimum ranks rather than
the average rank, which led to an envelope interpretation of
the test. For our application, the mean rank provides addi-
tional stability, but lacks the envelope interpretation.

Drawing from the null distribution of cumulative his-
tograms. In order to define a statistical test for significantly
connected source voxels, we need to be able to draw samples
from the null distribution. Under the assumption that the ma-
jority of source voxels are not physically connected to the tar-
get region, this could be solved by drawing entire histograms
from the population. However this could lead to an unnec-
essarily conservative test, since we risk to draw histograms
from voxels that actually are physically connected.

Instead, we propose bootstrapping the histograms as fol-
lows: To draw a cumulative histogram C from the null distri-
bution, we first draw a histogram H from the null distribution
of score histograms, giving a cumulative sample C fromH as
in (1). The sample H is drawn by randomly sampling a bin
value H(i) from the ith bin values in the entire population for
every bin i in H . This gives a histogram H whose bin values
H(i) are ith bin values drawn from different source voxels v.

3. EXPERIMENTS

We used the preprocessed DWIs [14, 15, 16] from 5 sub-
jects (Q3 release) of the Human Connectome Project (HCP)
data [8]. Fibre orientation distribution functions (fODFs)
were computed for every voxel using constrained spherical
deconvolution [17] with order 8 using the DiPy [18] package.
The graph required for SPT was constructed from the given
fODFs. The voxel-wise diffusion parameters necessary for
probabilistic tractography were generated using FSL’s Bed-
postX [19] with the zeppelin model and 3 fibres per voxel.

The thalamic source region was extracted from the MNI
atlas [20] provided in FSL [21]. Target regions were extracted
both from the MNI atlas and the Juelich atlas [22] similar
to Behrens et al. [1]: prefrontal/temporal zone (frontal and
temporal lobe from the MNI atlas), motor zone (primary mo-
tor cortex and premotor cortex from the Juelich atlas), so-
matosensory zone (primary somatosensory cortex from the

Juelich atlas) and parieto-occipital zone (occipital and pari-
etal lobe from the MNI atlas). The atlas in MNI space was
warped into the respective subject-specific spaces using the
warps provided in the HCP data.

For every source voxel, SPT was performed to obtain the
most likely paths to all voxels in the given target region. Path
scores were binned into a histogram with 1000 bins. His-
tograms for all source voxels were analysed for each target
region separately as described in Section 2. The correspond-
ing p-value for each voxel is shown on the left of Fig. 2.

We compared to the state-of-the-art hard segmentation by
Behrens et al. [1]. Here, each thalamus voxel was labelled
with the target region to which it had the highest number of
streamlines based on probabilistic tractography (FSL’s prob-
trackx [23], 5000 samples, 0.5 mm step length, maximum
inter-step curvature 80◦). The resulting segmentations are
shown in the right side of Fig. 2.

4. DISCUSSION AND CONCLUSION

We present a new method for structural parcellation based on
structural connectivity as an alternative to hard segmentation.
Our method addresses the problems mentioned in Sec. 1:

a) We choose shortest-path tractography (SPT) to avoid
problems like path-length dependency common in fibre track-
ing methods [10]. We overcome the problem that SPT always
finds a path by assigning a confidence p-value to every voxel
in the parcellated region.

b) Most voxels in the thalamus are assigned with a low
confidence (high p-value) for all target regions by our method
(see left side of Fig. 2). This occurs mostly inside the tha-
lamus and implies that the diffusion signal for those vox-
els is not strong or clear enough to assign them to a region
with high confidence. This is supported by the low fractional
anisotropy (FA) inside the thalamus, suggesting that the res-
olution is simply not high enough to resolve the direction of
fibres inside the thalamus.

c) Standard hard segmentation of the thalamus [1], as
shown in Fig. 2 (right) assumes that each voxel is connected
to only one target region. However, our results indicate
that high confidence regions overlap strongly between the
motor and somatosensory zone, as well as between the pre-
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Fig. 2. Soft (left) and hard [1] (right) segmentations of the thalamus for all target regions for all 5 subjects. Left: Low confidence
p-values (blue) reflect regions that are more likely connected to the respective target region then high p-values (red). Right:
We compare to the state-of-the-art parcellation by Behrens et al. [1], where the thalamus is segmented by which target region is
connected with the most streamlines. These voxels are highlighted in white, while the rest of the thalamus is coloured black.

frontal/temporal and parieto-occipital zone. This makes it
especially difficult for the hard segmentation to pick up any
voxels connected to the somatosensory zone (see Fig. 2).
In contrast, our soft segmentation allows for a voxel to be
connected to multiple target regions.

While the soft segmentations overlap strongly with the
hard segmentations (see Fig. 2) for the motor, somatosensory
and parieto-occipital zone, there is only a small overlap for the
prefrontal/temporal zone. One possible reason is that a large
part of the hard segmentation lies in the region of high un-
certainty, where the resolution of the data is not good enough
to resolve the fibre directions. Additionally, the distribution
of histograms can be a mixture of multiple underlying distri-
butions corresponding to several major tracts that connect the
thalamus to the cortex. Here, this may affect the p-values of
the projection of the prefrontal and temporal cortex onto the
thalamus, indicating that the target regions should be suffi-

ciently spatial coherent and reasonably small. A division of
the prefrontal/temporal zone into two separate regions as in
Behrens et al. [1] will potentially resolve this problem.

Here we are not testing which source voxels are signifi-
cantly connected to the target region based on the confidence
p-values, as this would require to address multiple hypothesis
testing. Although this could be done via Bonferroni correc-
tion, structural connectivity of neighbouring source voxels is
strongly correlated. Bonferroni correction would therefore be
far too conservative and would affect the segmentation in an
unknown way. Future work therefore includes multiple hy-
pothesis testing that respects correlation between source vox-
els to find those significantly connected to the target region.
Furthermore, it would be interesting to apply the soft segmen-
tation to other brain structures like the corpus callosum and
striatum or to extend the method to be able to parcellate the
whole cortex based on whole brain tractography.
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ABSTRACT

A structural brain network consists of physical connections between brain regions. Brain network analysis aims
to find features associated with a parameter of interest through supervised prediction models such as regression.
Unsupervised preprocessing steps like clustering are often applied, but can smooth discriminative signals in
the population, degrading predictive performance. We present a novel hub-detection optimized for supervised
learning that both clusters network nodes based on population level variation in connectivity and also takes the
learning problem into account. The found hubs are a low-dimensional representation of the network and are
chosen based on predictive performance as features for a linear regression. We apply our method to the problem
of finding age-related changes in structural connectivity. We compare our supervised hub-detection (SHD) to
an unsupervised hub-detection and a linear regression using the original network connections as features. The
results show that the SHD is able to retain regression performance, while still finding hubs that represent the
underlying variation in the population. Although here we applied the SHD to brain networks, it can be applied
to any network regression problem. Further development of the presented algorithm will be the extension to
other predictive models such as classification or non-linear regression.

1. INTRODUCTION

The nature of how structural brain connectivity is associated with parameters such as pathology, gender or age,
is a cornerstone of modern neuroscience.1–3 Structural connectivity networks are typically derived from diffusion
weighted imaging (DWI) using tractography, and analysed using supervised learning methods like regression
or classification. Supervised learning is commonly preceded by network dimensionality reduction methods that
cluster nodes into an atlas of hubs common to the population.1,2, 4 However, these algorithms are generally
unrelated to the learning problem and tend to smooth out the discriminative signal, leading to lower-dimensional
brain networks with reduced predictive power,4,5 and therefore reduced applicability to e.g. automated diagnosis
or prognosis. We provide a novel approach to hub-detection where the supervised learning problem is incorporated
in the hub-detection algorithm.

1.1 Previous work

Clayden et al.6 perform eigendecomposition of the adjacency matrix to generate so called ’principal networks’,
and Robinson et al.1 extract hubs from the main principal components, followed by a maximum uncertainty
linear discriminant analysis. In other related works, hierarchical clustering on spatial locations selects groups for
structured sparsity in regression and classification7 or matrix factorization generates hubs used for permutation
testing on hub-hub connections.2 In all these approaches, hubs are selected without taking the desired learning
problem into account. While hub-detection eases interpretability, hubs and their connections are optimized to
describe within-population variation. This often leads to a smoothing of latent discriminative features, thereby
reducing the power of predictive models.4,5

We address this problem by including the learning problem in the hub-detection process. This
forces a small number of hubs to describe population variation well and be associated with the parameter of
interest. We apply this method to detecting hub-network features that are associated with increasing age in
structural connectivity networks.

Corresponding author: Niklas Kasenburg (niklas.kasenburg@di.ku.dk)
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2. METHODS

Let S(m) ∈ Rn×n be a symmetric, non-negative matrix specifying the strength of connectivity between n brain
regions, for the m-th out of M subjects. This matrix specifies a graph with n nodes corresponding to the brain
regions, and n2 edges connecting pairs of nodes. The (i, j)-th entry of S(m) is the edge weight describing the
strength of connectivity between regions (or network nodes) i and j.

We extend the unsupervised hub-detection by Ghanbari et al.,2 where each subject matrix S(m) is approxi-
mated through matrix factorization as S(m) ≈ UΛ(m)UT , where U ∈ Rn×k is a non-negative matrix assigning
hub-membership scores to each of the n regions for each of the k hubs, and Λ(m) ∈ Rk×k is a non-negative, sym-
metric matrix capturing subject specific hub-hub connectivity. The reconstruction of S(m) is obtained through
the objective function2

Jrecon

(
U,Λ(m)

)
=

M∑

m=1

‖S(m) −UΛ(m)UT ‖2F + β

(
‖U‖2F +

M∑

m=1

‖Λ(m)‖2F

)
, (1)

where constraints are applied such that the properties of U and Λ(m) are ensured. The first term of (1) is the
reconstruction error, while the second is a regularizing term.

Given a real-valued label y(m) ∈ R for each subject (here age), we add a linear regression term

Jreg(U,Λ(m),W, w) = γ
M∑

m=1

(
Tr (XW) + w − y(m)

)2
+ α‖W‖2F + αw2 , (2)

where X+ ∈ Rk×k is a symmetric matrix representing the features for regression, W ∈ Rk×k are the regression
weights, w is the regression offset, α is a regularization factor for W and w, and γ is a weighting factor for the
regression term. Adding (1) and (2), we get (due to symmetry of S(m), Λ(m) and W)

J
(
U,Λ(m),W, w

)
:= Jrecon + Jreg =

M∑

m=1

Tr

((
S(m) −UΛ(m)UT

)2)
(3)

+ γ
M∑

m=1

(
Tr (XW) + w − y(m)

)2
+ β

[
Tr
(
UUT

)
+

M∑

m=1

Tr
(
Λ(m)2

)]
+ αTr

(
W2

)
+ αw2.

In the following we choose to use the original connections, weighted by the hub-membership scores of the nodes
as regression features

X = UTS(m)U . (4)

In this way inter-hub connections summarize the original connections between the nodes of any pair of hubs,
while intra-hub connections are reflected by connections between nodes within the same hub. Note that X is a
dimensionality reduction of the original connections (features) and regression is therefore performed on a lower
dimensional network.

2.1 Optimization of the objective function J

We minimize (3) through an iterative update scheme for U, Λ(m), W and w using a constrained version of the
quasi-Newton method of Broyden et al. (L-BFGS-B)8 implemented in SciPy∗. In contrast to gradient descent,
the BFGS converges superlinearly and uses an estimated Hessian during the optimization. The gradients2†

required for each update step are the following for U and Λ(m)

∂J

∂U
= −4

M∑

m=1

[(
S(m) −UΛ(m)UT

)
UΛ(m)

]
+ 2βU +

∂Jreg
∂U

, (5)

∗http://www.scipy.org/
†Note that [2] has a typographical error in (4), where it states 4βU.
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∂J

∂Λ(m)
= −2UT

(
S(m) −UΛ(m)UT

)
U + 2βΛ(m) . (6)

The gradients ∂J
∂W and ∂J

∂w are straightforward

∂J

∂W
= 2γ

M∑

m=1

[
X
(
Tr (XW) + w − y(m)

)]
+ 2αW , (7)

∂J

∂w
= 2γ

M∑

m=1

[(
Tr (XW) + w − y(m)

)]
+ 2αw . (8)

We now need to compute the gradient of Jreg with respect to U

∂Jreg
∂U

= 2γ

M∑

m=1

∂Tr (XW)

∂U

(
Tr (XW) + w − y(m)

)
. (9)

With X as defined in (4) we get

∂Tr (XW)

∂U
=
∂Tr

(
UTS(m)UW

)

∂U
= S(m)UW + S(m)TUWT = 2S(m)UW . (10)

Using (5), (9) and (10) the resulting gradient with respect to U is the following

∂J

∂U
= −4

M∑

m=1

[(
S(m) −UΛ(m)UT

)
UΛ(m)

]
+ 2βU + 4γ

M∑

m=1

S(m)UW
(
Tr (XW) + w − y(m)

)
. (11)

After their initialisation, U, Λ(m), W and w are iteratively updated using the L-BFGS-B. All parameters, except
for W, are initialized by drawing from a normal distribution with zero mean and standard deviation of one. The
regression weights W are initialized with unity. Non-negative entries are guaranteed for U and all Λ(m), as well
as symmetry of each Λ(m). The method stops when either the solution or the gradient does not change (up to
machine precision).

2.2 Construction of the structural connectivity matrix

The structural connectivity matrix S(m) of each subject contains a connection strength for each pair of ROIs,
as defined above. It can be seen as a structural connectivity graph where the nodes represent the ROIs and the
connection strengths represent the edge weights.

Connection strengths between pairs of brain regions are generated using shortest-path tractography (SPT),
modelling the DWI as a weighted brain-graph G = (V,E,wE). The nodes V consist of all DWI voxels within
the brain, edges E link adjacent voxels, and edge weights wE : E → R+ quantify the probability of connection
along edges. Note that in contrast to the graph represented by S(m), which models global connections between
brain regions, the graph G models local connections between voxels based on their underlying fibre orientation
distribution function (fODF) on a finer level.

In SPT, brain fibres are estimated as most probable paths connecting voxels in the brain. This becomes a
shortest-path problem by negative log-transforming the edge connectivity probabilities. SPT computes pathways
between all pairs of voxels for two given regions and provides a single score for each pathway. This measure
is averaged over all possible pathways found between two ROIs i and j to obtain the corresponding (i, j)-th
connection matrix entry for S(m). We use the SPT implementation previously presented by Kasenburg et al.9

which estimates connection probability as a sample-based integral of the fODF associated to any given diffusion
model.
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Table 1. Left: Mean absolute error over all LOOCV folds in years for the original network and the hub networks from the
SHD and UHD, where k is the number of hubs. The hubs are visualised in Figures 1, 2 and 3. Right: Mean reconstruction
error (Jrecon) without the regularizing terms over all LOOCV folds.

k Baseline SHD UHD
10 10.0±7.5 9.6±7.7 37.0±27.2
15 10.0±7.5 10.9±9.3 16.2±11.7
20 10.0±7.5 10.5±7.4 11.8± 8.7

k SHD UHD
10 0.29±0.36 0.19±0.00
15 0.22±0.10 0.21±0.34
20 0.18±0.06 0.15±0.24

3. EXPERIMENTS AND RESULTS

We evaluate supervised hub-detection (SHD) by searching for structural connectivity hubs associated with in-
creasing age in a healthy population, compared with unsupervised hub detection (UHD).2

3.1 Data and preprocessing

We analysed 54 healthy subjects (23 females and 31 males) of ages between 18 to 81. Diffusion weighted images10

(10 at b = 0 s/mm2, 61 directions at b = 1200 s/mm2) were acquired using a twice-refocused balanced spin echo
sequence to minimise eddy current distortion (TR = 8200 ms; TE = 100 ms; field of view (FOV)= 220×220 mm;
matrix = 96 × 96; GRAPPA: factor 2, 48 lines; 61 transverse slices; no gap; 2.3 mm isotropic voxels). Whole
brain T1-weighted magnetization prepared rapid acquisition gradient echo (MPRAGE) scans (voxel dimension
of 1×1×1 mm, FOV= 256×256×192 mm, matrix = 256×256×192, TR = 1540 ms; TE = 3.93 ms ; inversion
time (TI) = 800 ms, and a flip-angle of 9 degrees) were also acquired.10

Linear and non-linear registration between DWI and structural T1-weighted scans, and to MNI space, was
performed with FLIRT11 and FNIRT12 supplied in FSL.13 Grey- and white matter tissue classifications of the
T1-weighted images were obtained with FAST14 after brain extraction using BET.15 ExploreDTI16 was used
to reduce distortions due to eddy currents, motion and susceptibility differences. Fibre orientation distribution
functions based on constrained spherical deconvolution17 with order 8 were computed with the DiPy package.18

Brain regions were selected from the lateralized and sub-cortical Harvard Oxford atlas19 supplied in FSL.13 A
boundary was computed using only those voxels lying on the white matter boundary (cortical) or the boundary
voxels of a region (sub-cortical). The resulting 111 ROIs were used as target and seed regions for tractography
to construct the structural connectivity matrices for every subject (see Section 2.2).

3.2 Evaluation scheme

Regression performance for SHD and UHD was compared using leave-one-out cross-validation (LOOCV), where
for each subject the regression was trained on the remaining subjects. Hyper-parameter selection for all methods
was done with 5-fold cross-validation on the training data. The model was then retrained with the optimal
hyper-parameters on the whole training data.

Hyper-parameters were selected from the following ranges: γ ∈ [0.001, 0.005] with 0.0005 steps and α, β ∈
{0.001, 0.01, 0.1}, where α = β. For the UHD, the value for α = β was similarly trained. Here W and w
were obtained by performing a ridge regression with regularization parameter α on the features X = UTS(m)U
learned by the hub-detection. Different values for the number of hubs k were tested independently to show
different levels of dimensionality reduction. The regression performance of the UHD and SHD lower dimensional
networks (see Equation 4) were compared with that of the original networks S(m), training regression with the
same values for α.

Table 1 shows the regression results for three different choices of k and the corresponding SHD and UHD hubs
are visualized individually in Figures 1, 2 and 3 showing the hub membership score for every node emphasizing
both the anatomical location and the relative importance of each hub.
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Figure 1. Hubs detected by SHD (top) and UHD (bottom) together with the hub-connections’ regression weights W
(right) trained on the whole data for k = 10 with the best parameters (SHD: α = 0.1, β = 0.1, γ = 0.0025; UHD:
α = β = 0.001) over all folds. The hub-membership scores for each node are represented by a colour scale (within hub)
and by size (across all hubs). Note that the orientation of the coordinate system in which the brains are shown is from
right to left.

4. DISCUSSION

It is clear from Table 1 that the lower-dimensional networks found by SHD retain the same regression performance
as the original networks, while those found by UHD get a much higher RMSE with a higher standard deviation.
It is expected that the mean reconstruction errors, computed as the squared norm of the differences divided by
the number of subjects, is lower for the SHD than the UHD, since the SHD is optimizing for both reconstruction
and regression performance. Nevertheless, the mean reconstruction error for SHD is relatively similar to that of
the UHD, showing that the SHD hubs still represent the population well.

Figure 1 shows that both SHD and UHD extract symmetric hubs (hubs 4 and 5 in both) or hubs with a
symmetric counterpart (SHD: hubs 6 & 7, 8 & 9; UHD: hubs 1 & 2, 6 & 7 and 8 & 9) for k = 10. The SHD hubs
are more distributed throughout the brain (hubs 2 and 3) and less focal than UHD hubs (e.g. hubs 8 and 9).
The same observations can be made for other choices of k (see Figures 2 and 3), but due to the larger number
of hubs, the symmetric hubs consist of fewer more localized nodes. Nevertheless, additional hubs found by the
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Figure 2. Hubs detected by SHD (top) and UHD (bottom) together with the hub-connections’ regression weights W
(bottom right) trained on the whole data for k = 15 with the best parameters (SHD: α = 0.1, β = 0.1, γ = 0.0025; UHD:
α = β = 0.01) over all folds. The hub-membership scores for each node are represented by a colour scale (within hub)
and by size (across all hubs). Note that the orientation of the coordinate system in which the brains are shown is from
right to left.
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Figure 3. Hubs detected by SHD (top) and UHD (bottom) together with the hub-connections’ regression weights W
(bottom right) trained on the whole data for k = 20 with the best parameters (SHD: α = 0.1, β = 0.1, γ = 0.0025; UHD:
α = β = 0.01) over all folds. The hub-membership scores for each node are represented by a colour scale (within hub)
and by size (across all hubs). Note that the orientation of the coordinate system in which the brains are shown is from
right to left.
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SHD are still globally distributed over the whole brain for larger choices of k.

In addition, global SHD hubs have more impact on the regression than focal hubs, reflected by their high
absolute regression weights (k = 10: intra-hub connection of SHD hubs 1, 2 and 3, and inter-hub connection
between SHD hubs 1 & 2 in Figure 1; k = 15: intra-hub connection of SHD hubs 1 and 2 in Figure 2; k = 20:
intra-hub connection of SHD hubs 1, 2 and 3, and inter-hub connection between SHD hubs 2 & 3 in Figure 3).
This may indicate that age related changes are not focal, but affect tracts throughout the brain (in agreement
with Lebel et al.20). In fact, human brain development is a complex process, continuing into early adulthood
with a relative plateau during middle-age, followed by variable decline.21 This also explains the large standard
deviation in prediction performance (see Table 1).

Although found hubs are consistent between different choices of k, the regression performance is only stable for
the SHD while it improves for the UHD (see Table 1). It is expected that for large k the regression performance
for both hub-detection methods gets closer to the baseline as fewer nodes are within a hub up to a single node
per hub when the number of hubs is equal to the number of nodes (k = n). While the SHD achieves the best
regression performance for k = 10, a larger number of hubs (k = 15) allows the symmetric hubs to be smaller
and more localized (see Figure 2), which reflects meaningful anatomical units. In summary, an optimal choice
for k lies between 10 and 15.

5. CONCLUSION

We have presented a supervised hub-detection algorithm for dimension reduction of brain connectivity networks,
which clusters network nodes into hubs, while retaining predictive performance in a given regression task. The
presented algorithm was applied to structural connectivity networks, but it applies to any network regression
problem. Future work includes development of SHD algorithms for other predictive models such as classification
and non-linear regression to further extend the applicability.
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