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Abstract

This PhD-dissertation within theoretical computer science concerns algo-
rithms and data structures for graphs. The contribution consists of the
following parts:

Reachability for Planar Directed Graphs We show how to represent
a planar digraph in linear space so that reachability queries can be answered
in constant time. This representation of reachability is thus optimal in both
time and space, and has optimal construction time. The previous best solu-
tion used Opn log nq space for constant query time [Thorup FOCS'01].

A Hamilton Cycle in the Square of a 2-connected Graph in Lin-
ear Time Fleischner's theorem says that the square of every 2-connected
graph contains a Hamiltonian cycle. We present a proof resulting in an
Op|E|q algorithm for producing a Hamiltonian cycle in the square G2 of a
2-connected graph G � pV,Eq. More generally, we get an Op|E|q algorithm
for producing a Hamiltonian path between any two prescribed vertices, and
we get an Op|V |2q algorithm for producing cycles C3, C4, . . . , C|V | in G2 of
lengths 3, 4, . . . , |V |, respectively.

Dynamic Bridge-Finding in Õplog2 nq Amortized Time We present
a deterministic fully-dynamic data structure for maintaining information
about the bridges in a graph. We support updates in rOpplog nq2q amor-
tized time, and can �nd a bridge in the component of any given vertex,
or a bridge separating any two given vertices, in Oplog n{ log log nq worst
case time. Our bounds match the current best for bounds for deterministic
fully-dynamic connectivity up to log logn factors.

The previous best dynamic bridge �nding was an rOpplog nq3q amortized
time algorithm by Thorup [STOC2000], which was a bittrick-based improve-
ment on the Opplog nq4q amortized time algorithm by Holm et al. [STOC98,
JACM2001].
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Our approach is based on a di�erent and purely combinatorial improve-
ment of the algorithm of Holm et al., which by itself gives a new combina-
torial rOpplog nq3q amortized time algorithm. Combining it with Thorup's
bittrick, we get down to the claimed rOpplog nq2q amortized time.

Essentially the same new trick can be applied to the biconnectivity data
structure from [STOC98, JACM2001], improving the amortized update time
to rOpplog nq3q.

We also o�er improvements in space. We describe a general trick which
applies to both of our new algorithms, and to the old ones, to get down to
linear space, where the previous best use Opm � n log n log log nq. Finally,
we show how to obtain Oplog n{ log lognq query time, matching the optimal
trade-o� between update and query time.

Our result yields an improved running time for deciding whether a unique
perfect matching exists in a static graph.

Decremental SPQR-trees for planar graphs We present a decremen-
tal data structure for maintaining the SPQR-tree of a planar graph subject
to contractions and deletions of edges. The update time, amortized over
Ωpnq operations, is Oplog2 nq.

Via SPQR-trees, we show a decremental algorithm for maintaining 2- and
3-vertex connectivity in planar graphs. It answers queries in Op1q time and
processes edge deletions and contractions in Oplog2 nq amortized time. For
3-vertex connectivity in a planar graph subject to deletions, this is an expo-
nential improvement over the previous best bound of Op?n q that has stood
for over 20 years. In addition, the previous data structures only supported
edge deletions.

Online bipartite matching with amortized Oplog2 nq replacements
In the online bipartite matching problem with replacements, all the vertices
on one side of the bipartition are given, and the vertices on the other side
arrive one by one with all their incident edges. The goal is to maintain a
maximum matching while minimizing the number of changes (replacements)
to the matching. We show that the greedy algorithm that always takes the
shortest augmenting path from the newly inserted vertex (denoted the SAP
protocol) uses at most amortizedOplog2 nq replacements per insertion, where
n is the total number of vertices inserted. This is the �rst analysis to achieve
a polylogarithmic number of replacements for any replacement strategy, al-
most matching the Ωplog nq lower bound. The previous best known strat-
egy achieved amortized Op?nq replacements [Bosek, Leniowski, Sankowski,
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Zych, FOCS 2014]. For the SAP protocol in particular, nothing better than
then trivial Opnq bound was known except in special cases. Our analysis
immediately implies the same upper bound of Oplog2 nq reassignments for
the capacitated assignment problem, where each vertex on the static side of
the bipartition is initialized with the capacity to serve a number of vertices.

We also analyze the problem of minimizing the maximum server load. We
show that if the �nal graph has maximum server load L, then the SAP pro-
tocol makes amortized OpmintL log2 n,

?
n log nuq reassignments. We also

show that this is close to tight because ΩpmintL,?nuq reassignments can be
necessary.
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Danish Abstract

Denne PhD-afhandling i teoretisk datalogi omhandler algoritmer og datas-
trukturer for grafer. Bidraget består af følgende dele:

Tilgængelighed i plane orienterede grafer Vi viser, hvordan en plan
orienteret graf kan repræsenteres på lineær plads, således at tilgængeligheds-
forespørgsler kan svares i konstant tid. Denne repræsentation af tilgænge-
lighed er derfor optimal i både tid og plads. Den tidligere bedste løsning
havde et pladsforbrug på Opn log nq ord og havde konstant forespørgselstid
[Thorup FOCS'01].

En Hamiltonkreds i kvadratet på en tosammenhængende graf i
lineær tid Fleischners sætning siger, at kvadratet på enhver tosammen-
hængende graf indeholder en Hamiltonkreds. Vi giver et bevis som resulterer
i en lineærtidsalgoritme til at beskrive en Hamiltonkreds i kvadratet G2 af en
tosammenhængende graf G. Mere generelt opnår vi en lineærtidsalgoritme
til at beskrive en Hamiltonsti, der forbinder vilkårlige to på forhånd angivne
knuder, og vi opnår en Opn2q algoritme til at beskrive kredse C3, C4, . . . Cn
i G2 af længde 3, 4, . . . n, hvor n er antallet af knuder i G.

Dynamisk Brodetektion in Õplog2 nq amortiseret tid Vi giver en
fuldt-dynamisk datastruktur, som vedligeholder information om broer i en
graf. Datastrukturen understøtter indsættelser og sletninger af kanter irOpplog nq2q amortiseret opdateringstid, og kan �nde en bro i samme kom-
ponent som en speci�ceret knude i Oplog n{ log lognq tid i værste tilfælde.
Disse køretider afviger kun med log log n-faktorer fra de bedste køretider for
deterministisk fuldt-dynamisk grafsammenhæng.

Den hidtil bedste datastruktur for dynamisk brodetektion af Thorup
[STOC2000] havde en amortiseret opdaterings tid på rOpplog nq3q, og var
en bittrickbaseret forbedring af datastrukturen af Holm et al. [STOC98,
JACM2001], som havde Opplog nq4q amortiseret opdateringstid.
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Vores resultat baserer sig på en anden og rent kombinatorisk forbedring
af datastrukturen af Holm et al., som i sig selv giver en ny kombinatorisk
datastruktur med en amortiseret opdateringstid på rOpplog nq3q. Kombineret
med Thorups bittrick opnås rOpplog nq2q amortiseret tid.

Vi forbedrer også datastrukturens pladsforbrug. Vi beskriver et generelt
redskab, som kan anvendes på begge vore nye algoritmer såvel som på de
gamle, som reduceder pladsforbuget til Opm�nq. Dette er en forbedring over
de tidligere datastrukturers pladsforbrug på Opm�n log n log lognq. Endelig
viser vi hvordan man opnår en forespørgselstid på Oplog n{ log log nq, hvilket
er bedst muligt for den angivne opdateringstid.

Vore resultater forbedrer køretiden for at afgøre hvorvidt en graf inde-
holder en unik perfekt parring.

Vedligeholdelse af SPQR-træer for plane grafer under sletning og
sammentrækning af kanter Vi giver en datastruktur, som vedligeholder
et SPQR-træ for en plan graf under sletning og sammentrækning af kanter.
Opdateringstiden, amortiseret over Ωpnq operationer, er Oplog2 nq.

Via SPQR-træer viser vi, hvordan man kan vedligeholde information om
to- og tresammenhæng af knuder i en plan graf under sletning og sammen-
trækning af kanter. Forespørgsler kan besvares i konstant tid, og opda-
teringer tager Oplog2 nq amortiseret tid.

Dette er en eksponentiel forbedring af den tidligere bedste datastruk-
tur til at håndtere forespøgsler om tresammenhæng af knuder i en plan graf
under sletning af kanter, da den tidligere bedste datastruktur havde en opda-
teringstid på Op?n q, hvilket stod uforbedret i over 20 år. Ydermere under-
støtter vi som noget nyt ikke kun kantsletninger men også sammentrækning
af kanter.

Online bipartit parring med Oplog2 nq udskiftninger I problemet ved
navn online bipartit parring med udskiftninger er den ene side af en bipar-
tit graf givet på forhånd, og knuderne på den anden side ankommer en ad
gangen sammen med alle deres kanter. Målet er at vedligeholde en par-
ring, som til alle tider har højest mulig kardinalitet, men at foretage fær-
rest muligt ændringer (udskiftninger) i parringen per knudeankomst. Vi
viser at den grådige algoritme, som altid augmenterer en korteste vej fra
den nyest ankomne knude (SAPprotokollen) foretager højest amortiseret
Oplog2 nq udskiftninger per ankommen knude, hvor n er det samlede an-
tal ankomne knuder. Dette er den første analyse til at opnå polylogaritmisk
udskiftningstal for nogen udskiftningsstrategi, og opnår næsten den nedre



ix

grænse på Ωplog nq. Den hidtil bedste strategi opnåede amortiseret Op?nq
udskiftninger [Bosek, Leniowski, Sankowski, Zych, FOCS 2014]. Speci�kt
for SAPprotokollen var der ikke kendt nogen bedre analyse end den trivielle
øvre grænse på Opnq. Det følger umiddelbart af vores analyse at den samme
øvre grænse på Oplog2 nq genplaceringer gælder for versionen hvor hver af
de statiske knuder har en på forhånd angivet kapacitet.

Vi analyserer også problemet om til alle tider at minimere maksimum be-
lastning af den statiske side med færrest muligt genplaceringer. Vi viser, at
hvis den endelige graf har belastning L, så udfører SAPprotokollen amortis-
eretOpmintL log2 n,

?
n log nuq genplaceringer. Vi viser en næsten tilsvarende

nedre grænse, idet ΩpmintL,?nuq genplaceringer kan være nødvendige.
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manuscripts of papers or already published papers attached�, as speci�ed in
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Chapter 1

Introduction

This work is within theoretical computer science, and concerns algorithms
and data structures for graphs. A graph consists of a set of vertices and
a set of edges between vertices. Graphs are a popular mathematical model
for road maps, communication networks, electrical circuits, social networks,
transmission of diseases, job assignments, resource allocation, and more.
Although the problems studied in this paper are motivated and inspired
by a large collection of real-world problems, and though they may form
a basis for improving existing methods for calculating solutions to these
problems, we have not taken the �nal step in the form of implementation
and comparison with existing methods. Instead, we focus on the purely
theoretical task of designing and analysing algorithms and data structures
in popular computational models.

Common threads This dissertation includes work on several very dif-
ferent but interesting graph problems. There are however a few common
themes, that each occur in more than one chapter. Planar graphs, data
structures, and higher connectivity. I will now give a short introduction and
motivation of these.

Planar graphs are graphs which can be embedded in the plane, that is,
drawn without edge-crossings. Planar graphs can be used as models for road
maps, but e.g. also for a layer of a microchip. Planar graphs have more
structure than general graphs, which can be used to make algorithms and
data structures for them that are more elegant and even more e�cient than
what is possible for a general graph. Planar graphs have been studied by
mathematicians for centuries.

Data structures for static graphs are representations of the graph that

1
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quickly reply to queries about properties of the graph, or about properties of
vertices of the graph. The ideal data structure takes up little space, responds
quickly to queries, and has a fast construction time.

Data structures for dynamic graphs. Furthermore, we study the situation
in which there are changes to the graph. E.g. edges are deleted, inserted,
or contracted, and the data structure needs to be updated such that it still
replies quickly to queries. This is indeed motivated by the real world which is
not a static thing: Links in the communication network fail, a road becomes
inaccessible or slow, or � social networks change all the time. There are also
theoretical motivations for studying dynamic graphs: various algorithms for
static graphs use a dynamic data structure as a subroutine. In the case
of data structures for dynamic graphs, the ideal data structure has quick
construction time, query time, and update time, and takes up little space.

Data structures for online problems with replacements. We also study the
setting in which vertices of a graph arrive one by one with all their edges.
In particular, we study the setting in which we have a set of �server� ver-
tices that are given in advance, and a set of �client� vertices that arrive one
by one with all their edges, and where all edges go between a client and a
server. Motivations for this problem include resource allocation, hashing,
data streaming, job scheduling, and data storage [28]. We maintain an as-
signment of clients to servers in this setting. In this case, we do not only
wish to calculate the new assignment as fast as possible, but we also want
to minimise the number of changes to the assignment (replacements) done
through the course of the algorithm, while adhering to constraints such as
not exceeding the capacity of the servers, or minimising maximum server
load.

Higher connectivity. An undirected graph is connected if for any two
vertices of the graph, there is a path connecting them. However, for many
practical purposes, e.g. in communication networks, it is important for the
graph to be highly connected: If the removal of few vertices or edges would
disconnect the graph, this points to a vulnerability in the network; an indi-
cation that the network connectivity may be about to break down. Higher
connectivity also has theoretical implications, indeed, we give a linear time
algorithm for outputting a Hamilton Cycle in the square of a highly con-
nected graph (to be precise, a 2-vertex connected graph), but in general,
the problem of outputting a Hamilton cycle in the square of a graph is NP-
complete. This dissertation also contains results on maintaining information
about higher connectivity in a dynamic graph subject to insertions and dele-
tions, or deletions and contractions of edges.
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1.1 Outline

In addition to this general introduction, the dissertation consists of the fol-
lowing papers and manuscripts, which were written during my PhD studies.

Chapter 2 Planar Reachability in Linear Space and Constant Time. Jacob
Holm, Eva Rotenberg, and Mikkel Thorup. This paper is published in
the proceedings of the IEEE 56th Annual Symposium on Foundations
of Computer Science 2015.

Chapter 3 A Hamiltonian Cycle in the Square of a 2-connected Graph in
Linear Time Stephen Alstrup, Agelos Georgakopoulos, Eva Rotenberg,
Carsten Thomassen. In submission.

Chapter 4 Dynamic Bridge-Finding in Õplog2 nq Amortized Time Jacob
Holm, Eva Rotenberg, Mikkel Thorup. In submission.

Chapter 5 Decremental SPQR-trees for planar graphs Jacob Holm,
Giuseppe F. Italiano, Adam Karczmarz, Jakub �¡cki and Eva Roten-
berg. In submission.

Chapter 6 Online bipartite matching with amortized Oplog2 nq replace-
ments Aaron Bernstein, Jacob Holm, Eva Rotenberg. In submission.

With minor exceptions, these papers and manuscripts appear in their original
published or submitted form. For this reason, notation and terminology are
not always consistent throughout the dissertation.

In the the remaining part of this introductory chapter, these results,
as well as selected other results obtained during my PhD studies, are set in
context, some of the technical contributions are sketched, and some potential
future directions of research are mentioned. The chapter contains, �rst, some
preliminary notation and terminology, and brief surveys of dynamic higher
connectivity and dynamic data structures for planar graphs, and of online
algorithms with replacements, setting my contributions to these areas in
context. Then, a section concerning each chapter of the dissertation, and
short sections on other related results obtained during my PhD studies.

1.2 Preliminaries

In this section, some de�nitions and terminology that is used across the in-
troduction to the dissertation are introduced. The intention is that these
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preliminaries equip the reader to read the introduction, have some under-
standing of the results presented in the thesis, their relations to previous
work, and a high-level understanding of the techniques. This section is based
on papers and manuscripts [8, 18,85,88�91], and text books [21,38,114].

Computational model Unless otherwise speci�ed, the computational
model for all upper bounds is the word-RAM model with standard oper-
ations. We assume that a machine word is at least the logarithm of the
input size, and that standard operations (in AC0) on words take constant
time. We measure space in number of words stored, and time in number
of operations performed. This model, also called practical RAM, is a much
used model for programmes in languages such as C running on problem in-
stances that �t into the computer's working memory. We will explicitly state
whenever an analysis relies on constant time multiplication of two variables.

1.2.1 Higher connectivity

The connected components (also called components) of an undirected graph
are the equivalence classes of vertices that can reach each other. That is,
the equivalence classes induced by the relation u � v for for every edge uv
of the graph.

In this section, we generalise this notion to higher connectivity for for
undirected graphs.

k-vertex connectivity For a positive integer k, a graph is k-vertex con-
nected if and only if it is connected, has at least k vertices, and stays con-
nected after removing any set of at most k�1 vertices. A pair of vertices are
said to be locally k-vertex connected if there are k internally vertex-disjoint
paths connecting them.

In Chapter 3, we refer to 2-vertex connectivity as simply 2-connectivity.
In Chapter 5, we refer to 2-vertex connectivity and to local 2-vertex connec-
tivity as biconnectivity, and to 3-vertex connectivity as well as local 3-vertex
connectivity as triconnectivity.

Proper ear decompositions Given a graph, an ear is a trail that may
start and end in the same point, but which otherwise has no repetition of
edges or vertices, that is, each internal vertex has degree 2, and the endpoints
have degree ¤ 2. An ear decomposition of a non-trivial graph (i.e. a graph
with at least one edge) is a partitioning of its edges into a sequence of ears,
such that the �rst is a cycle, the endpoints of each ear belong to previous
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ears, and each vertex of the graph is internal in exactly one ear. An ear
decomposition is proper (also referred to as an open ear decomposition in
the literature), if for all but the �rst ear, the end-vertices are distinct. It is
a result by Robbins [143] that a graph admits a proper ear decomposition if
and only if it is 2-vertex connected.

Cutpoints and block-cutpoint trees If a connected graph is not 2-
vertex connected, there is one graph whose removal causes the graph to fall
apart. This vertex is called a cut-vertex, cutpoint or an articulation point.
The maximal (with respect to inclusion) 2-vertex connected components of
a graph are called blocks. For a connected graph G, the block-cutpoint tree
is a tree whose vertices represent blocks of G or articulation points of G,
and where there is an edge between an articulation a point and a block B
when a P B. The block-cutpoint tree is also denoted the block-cut tree or
the BC-tree in the literature.

Separation pairs and SPQR-trees Similarly, if a graph is not 3-vertex
connected, there is a pair of vertices whose removal cause the graph to �fall
apart� (see De�nition 1.1). Such a pair is called a separation pair throughout
this dissertation. A generalisation of block-cutpoint trees representing how
locally 3-vertex connected components relate to each other in a 2-vertex
connected graph is the SPQR-tree (see De�nition 1.2 and Figure 1.1).

De�nition 1.1 (Hopcroft and Tarjan [93, p. 6]). Let ta, bu be a pair of
vertices in a biconnected multigraph G. Suppose the edges of G are divided
into equivalence classes E1, E2, . . . , Ek, such that two edges which lie on a
common path not containing any vertex of ta, bu except as an end-point are
in the same class. The classes Ei are called the separation classes of G with
respect to ta, bu. If there are at least two separation classes, then ta, bu is a
separation pair of G unless (i) there are exactly two separation classes, and
one class consists of a single edge, or (ii) there are exactly three classes, each
consisting of a single edge.

De�nition 1.2 (Chapter 5 De�nition 5.3). The SPQR-tree for a biconnected
multigraph G � pV,Eq with at least 3 edges is a tree with nodes labelled S,
P, or R, where each node x has an associated skeleton graph Γpxq with the
following properties:

• For every node x in the SPQR tree, V pΓpxqq � V .
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Figure 1.1: A biconnected graph and its SPQR tree. See De�nition 1.2. This
�gure is a citation of Chapter 5 Figure 5.2.

• For every node x in the SPQR tree, every edge in Γpxq is either in E
or a virtual edge corresponding to an edge px, yq in the SPQR-tree.

• For every edge e P E there is a unique node x in the SPQR-tree such
that e P EpΓpxqq.
• For every edge px, yq in the SPQR tree, V pΓpxqq X V pΓpyqq is a sepa-
ration pair ta, bu in G, and there is a virtual edge ab in each of Γpxq
and Γpyq.
• If x is an S-node, Γpxq is a simple cycle with at least 3 edges.

• If x is a P-node, Γpxq consists of a pair of vertices with at least 3
parallel edges.

• If x is an R-node, Γpxq is a simple triconnected graph.

• No two S-nodes are neighbors, and no two P-nodes are neighbors.

The SPQR-tree for a biconnected graph is unique (see e.g. [36] for a proof
of this theorem). The nodes of the SPQR-tree, as well as the skeleton graphs
associated with these, are referred to as the triconnected components of G,
the 3-vertex connected components of G, or the locally 3-vertex connected
components of G.

k-edge connectivity For a positive integer k, a graph is k-edge connected
if and only if it stays connected after removing any set of at most k�1 edges.
A pair of vertices are said to be k-edge connected if they are still connected
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after the removal of any set of k� 1 edges. By Menger's Theorem [131], this
is equivalent to saying that a pair of vertices are k-edge connected if there
exist k edge-disjoint paths between them. By edge-disjoint is meant that no
edge appears in both paths.

A connected graph is not 2-edge connected if there exists an edge whose
removal would disconnect the graph. Throughout this dissertation we call
such an edge a bridge, but it is also referred to as a cut-edge or an ithmus in
the literature.

1.2.2 Hamilton cycles, Euler tours, matchings, and bipar-
titeness

Euler tours and paths In a graph, an Euler tour is a trail that uses
each edge exactly once. Similarly, an Euler path from the vertex u to the
vertex v is a trail using each edge exactly once whose endpoints are u and
v. An Euler tour exists if and only if it is connected and all vertices have
even degree (such a graph is for this reason called Eulerian), and can be
calculated in linear time [81].

Hamilton cycles and paths A Hamilton cycle, on the other hand, is
a cycle which visits each vertex exactly once. Similarly, given a pair of
vertices, a simple path between them is a Hamilton path if it visits each
vertex of the graph exactly once. In general, determining whether a graph
contains a Hamilton cycle (or path) is NP-hard [105], and no polynomial
time algorithm is known. In general, determining whether the square of a
graph contains a Hamilton cycle (or path) is also NP-hard. Here, the square
of a graph G is a graph on the same vertex set which has an edge for every
path of length 1 or 2 in G. Fleischner's theorem says that the square of a
2-vertex connected graph has a Hamilton cycle.

Bipartite graphs A graph is said to be bipartite if the vertex set can be
partitioned into sets A and B, and all edges are of the form ab with a P A
and b P B.

Matchings A matching of a graph is a subset of edges such that no edges
share an end-point. Such a matching is called maximum if it has maximal
cardinality, and perfect if every vertex of the graph is the endpoint of exactly
one edge.
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A theorem by Kotzig [118] states that if a graph has a unique perfect
matching, then it contains a bridge that belongs to this unique perfect match-
ing. This is used in an algorithm by Gabow, Kaplan, and Tarjan [58] for
determining whether a given graph has a unique matching, using decremental
2-edge connectivity as a subroutine (see Section 1.2.1).

1.2.3 Planar graphs

For a connected planar graph G embedded in the plane1, its dual G� is a
graph with a vertex for each face of the embedding, and an edge e� � f�g�

for each edge e of G incident to faces f and g. For a general graph G
embedded in the plane, we de�ne its dual G� to be the (disjoint) union of
the duals of its components. The face-degree ofs a face f in the embedded
graph G is the degree of f� in G�. Equivalently, the dual can be de�ned
combinatorially, see Klein and Mozes [114].

The vertex-face graph For a connected planar embedded non-trivial
multigraph G, a corner2 of G an ordered pair of (not necessarily distinct)
edges pe1, e2q such that e1 immediately precedes e2 in the clockwise order
around some vertex. De�ne the vertex-face graph G� as the graph whose
vertex-set is union of the the vertex-sets of G and G�, and whose edges are
the corners of the embedded graph G. Note that G� is isomorphic to pG�q�.
Clearly, G� is bipartite and planar, with a natural embedding given by the
embedding of G. Furthermore, each face of G� has degree 4 and corresponds
exactly to an edge of G. Less trivially, G� is simple if and only if G is loopless
and biconnected [26, Theorem 5(i)]).

We will later make use of the obserservation (see Brinkmann et al. [26])
that G is simple and 3-vertex connected if and only if G� is simple, tricon-
nected and has no non-facebounding 4-cycles.

The dynamic operations on G correspond to dynamic operations on G�

and G�. Deleting a non-bridge edge e of G corresponds to contracting e�

in G�, and vice versa; contracting an edge e corresponds to deleting the
corresponding edge from the dual. Finally, deleting a non-bridge edge or
contracting an edge corresponds to adding and then immediately contracting
an edge across a face of G� (and removing two duplicate edges).

1A planar embedding or an embedding in the plane is an isomorphism class of topological
embeddings of the graph into R2, or, equivalently, an ordering of the edges around each
vertex such that the Euler Characteristic (as de�ned in [114]) equals 2.

2See [88] and [145] for alternative de�nitions.
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Figure 1.2: Left: a plane embedded graph. Right: the corresponding vertex-
face graph (red) and the underlying graph (gray). This �gure is Figure 5.1
from Chapter 5.

Separators A property of planar graphs is that they admit small balanced
separators: Given a planar graph on n vertices, there exists a set of size
Op?nq whose removal would cause the graph to fall apart into components
of size ¤ 2

3n. Such a separator can be found in linear time [127].

1.2.4 Top trees

Top trees are a data structure for maintaining information about a dynamic
forest subject to deletion and insertion of edges. For each tree in the forest,
its top tree has the entire tree as root, and each edge of the tree as leaves. The
internal nodes are clusters; a generalisation of edges in the sense that they are
connected subgraphs with at most 2 boundary vertices. Here, the boundary
vertices are those incident to something outside the subgraph. Each internal
node of the top-tree contains the union of its children.

The top trees support insertions and deletions, but also the expose op-
eration which is particularly useful in order to obtain information about a
single vertex or about a tree-path between a pair of vertices. All operations
are implemented via splits and merges of clusters, and, as base case, destroys
and creates of leaves containing a single edge. A split consists of destroying
a cluster and replacing it by its children, and merge creates a parent that
contains the union of its children. Thus, when using top-trees as a subrou-
tine in any algorithm or data structure, it is especially necessary to specify
two things: what information is propagated to the children when a cluster
is split, and how is the information of children combined when clusters are
merged.

When each internal node of the top tree has at most 2 children, we say
the top tree is binary. Alstrup, Holm, de Lichtenberg, and Thorup [10] show
that for a dynamic forest on n vertices, it is possible to maintain binary
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top trees of height Oplog nq, and support dynamic updates to the forest, as
well as expose operations, with a sequence of Oplog nq calls to merge, split,
create, and destroy.

Top trees can be generalised to have larger clusters as leaves.

1.3 Dynamic higher connectivity and related re-

sults

We call the problem of maintaining connected components in a dynamic
graph subject to insertion and deletion of edges dynamic connectivity, or,
to emphasise that both insertions and deletions are allowed, fully dynamic
connectivity. When only insertions are allowed, it is called incremental con-
nectivity, and when only deletions are allowed, decremental connectivity. A
dynamic connectivity data structure facilitates queries to whether a pair of
vertices are connected. Similarly, the problem of building a data structure
that facilitates k-edge connected queries between vertices is called dynamic
(or incremental, or decremental) k-edge connectivity. The problem of build-
ing a data structure that facilitates locally k-vertex connected queries about
pairs of vertices is called dynamic (or incremental, or decremental) k-vertex
connectivity. In general for fully dynamic connectivity problems, we let n
denote the (�xed) number of vertices, and let m denote the current number
of edges in the graph.

There has been a chain of work on dynamic graphs dating back to
Fredrickson [56], who invented a data structure for maintaining dynamic min-
imum spanning forests with deterministic Op?mq worst-case update time,
and thus, also solving dynamic connectivity in Op?mq time. Later, Fred-
erickson gave a data structure for 2-edge connectivity with the same time
bounds [57]. Both structures have constant query-time. These were im-
proved to Op?nq by Eppstein et al. [48] using their sparsi�cation technique.
This was further improved by Henzinger and King [78], who gave a data
structure for dynamic minimum spanning forest with amortized Opn1{3 log nq
time per operation, and constant worst-case query time.

Since the 1990s, a lot of work has gone into obtaining data structures
with polylogarithmic update- and query times, that is, times of the form
Oplogc nq, for a constant value of c (which we would like to be as small as
possible). The �rst result in this direction was an expected amortized update
time of Oplog3 nq and a query time of Oplog n{ log log nq for dynamic connec-
tivity by Henzinger and King [79]. Soon after, Henzinger and King gave a
data structure with expected amortized Oplog5 nq update time and Oplog nq



1.3. DYNAMIC HIGHER CONNECTIVITY 11

query time for fully dynamic two-edge connectivity [78]. The �rst determin-
istic data structure with polylogarithmic update- and query time was given
by Holm, de Lichtenberg, and Thorup [83, 84], who support fully dynamic
connectivity in Oplog2 nq amortized time, decremental minimum spanning
forest in Oplog2 nq amortized time, fully dynamic minimum spanning forest
in Oplog4 nq amortized time, fully dynamic 2-edge connectivity in Oplog4 nq
amortized time, and fully dynamic 2-vertex connectivity in Oplog5 nq amor-
tized time per update, and Oplog nq time per query.

These deterministic results have been further improved: Wul�-Nilsen pre-
sented a data structure with deterministic Oplog2 n{ log lognq amortized up-
date time and Oplog n{ log log nq query time [164], and Thorup gave improve-
ments to the update times of 2-edge and 2-vertex connectivity [157], achiev-
ing update times of Oplog3 n log log nq for 2-edge and Oplog4 n log lognq for
2-vertex connectivity. In [90] we improve this further to Oplog2 n log log2 nq
amortized update time and Oplog n{ log log nq worst-case query time for 2-
edge connectivity, and improve the bounds to Oplog3 n log log2 nq amortized
update time and Oplog nq worst-case query time for 2-vertex connectivity.
In [91], we improve the data structure for fully-dynamic minimum spanning
forest to obtain an amortized update time of Oplog4 n{ log log nq.

Allowing randomization yields even better bounds, achieving rOplog nq
expected amortized update- and querytimes for connectivity, where the rO-
notation hides log log-factors. Indeed, Thorup [157] shows a randomized
data structure with amortized Oplog n log log3 nq expected update time and
Oplog n{ log log log nq worst-case query time. This expected amortized up-
date time has since been improved to Oplog n log log2 nq by Huang et al. [97].

A Monte Carlo-randomized connectivity data structure with polyloga-
rithmic update time was made by Kapron, King and Mountjoy, who gave a
data structure with Oplog5 nq worst-case update time and Oplog n{ log lognq
worst-case query time. This was since improved to an update time of
Oplog4 nq by Gibb, Kapron, King, and Thorn [64].

Recently, a Las Vegas-randomized data structure for fully-dynamic min-
imum spanning forest with expected subpolynomial worst-case update time
was announced by Nanongkai, Saranurak, and Wul�-Nilsen [135].

Dynamic planar graphs For planar embedded graphs, it is less clear
what is expected of a fully dynamic data structure. While deletions and
contractions of edges preserve planarity, the insertion of an edge may cause
the graph to cease to be embeddable in the plane. On the other hand, the
insertion of an edge may just be incompatible with this particular embedding,
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while another embedding exists that can accommodate the new edge.
Italiano, La Poutré, and Rauch gave a data structure that supports dele-

tions of edges and insertion of an edge across a face in Oplog2 nq time per
operation, and their data structure also answers queries to whether a given
pair of vertices lie on the same face [100]. In [88] (see also Section 1.10.1), we
give a di�erent data structure which supports these operations, but which
also supports changes in the embedding in the form of reversing the embed-
ding in a subgraph that is not 3-vertex connected to the rest of the graph.
Such a change to the embedding is called a �ip in [88]. If the insertion of an
edge is possible by changing the embedding by at most one �ip, we are able
to point to such a �ip and perform it, all in Oplog2 nq time.

The current algorithm known for maintaining whether or not a fully
dynamic graph is planar runs in Op?nq worst-case update time, and is an
improvement by Eppstein [49] upon a data structure with Opn2{3q update
time by Galil, Sarnak, and Italiano [59]. The �rst linear time algorithm
for determining whether a graph is planar is by Hopcroft and Tarjan [95].
Incremental planarity testing of a graph subject to insertion of edges can be
done in Opαpq, nqq total time, where q is the number of insertions and n is
the number of edges, as shown by La Poutré [120].

Deleting or contracting an edge of an embedded planar graph does not
violate the embedding. An interesting question is thus to use information
about the embedding to maintain decremental connectivity. A data structure
with amortized constant edge-deletion and query time for decremental con-
nectivity in a planar graph is described by ��acki and Sankowski [125]. In [86]
(see also Section 1.10.4), we extend the ideas by ��acki and Sankowski [125] to
show how to support 2-edge connectivity, 2-vertex connectivity, and maximal
3-vertex connected subgraphs of a planar graph subject to deletions of edges
in constant time per operation. The result on 2-edge connectivity immedi-
ately implies a linear time algorithm for determining whether a planar graph
has a unique perfect matching. Furthermore, in [86], we improve the update
time for decremental 2-vertex connectivity and 3-edge connectivity to amor-
tized Oplog nq per edge-deletion. In [85] (see also Chapter 5), we show how
to maintain the SPQR-tree and facilitate locally 3-vertex connected queries
in a planar graph subject to deletions and contractions of edges: our update
time is amortized Oplog2 nq, and the query time is Op1q.

Lower bounds For fully dynamic connectivity, and for fully dynamic
higher connectivity, there is a cell-probe lower bound by P�atra³cu et al. [141],
showing a trade-o� between the update time u and query time q, namely,
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that q log
�
u
q

	
P Ωplog nq, and, vice versa, u log

�
q
u

� P Ωplog nq. P�atra³cu

also shows a lower bound of Ωplog nq for fully dynamic planarity testing.
For other dynamic graph problems, including fully dynamic shortest

paths, fully dynamic single-source reachability and fully dynamic strong con-
nectivity, Abboud and Vassilevska-Williams [3] have given conditional poly-
nomial time lower bounds, based on popular conjectures. Even for planar
graphs, Abboud and Dahlgaard [2] gave conditional polynomial time lower
bounds for dynamic shortest paths, again, based on popular conjectures.

1.4 Online graph algorithms with replacements

In the model of online algorithms, the input to an algorithm is given little at
the time, e.g. vertices of a graph are revealed one at the time, along with all
edges to previously revealed vertices. The task for the algorithm is to make
decisions based on what has been revealed so far. Future information may
prove these decisions to be sub-optimal, and thus, one often analyses the
competitive ratio between the optimal choices and those made by an online
algorithm.

In the model of online algorithms with replacements � alternatively
referred to as online algorithms with recourse, or online algorithms with re-
arrangements � the goal is to maintain an optimal solution while making
as few changes to the solution as possible. This model is relevant in settings
where changes to the solution are possible, but expensive. The model origi-
nally goes back to online Steiner trees, where Imase and Waxman [98] study
the setting in which a graph is given, but the set of terminals changes by
the promotion and demotion of ordinary vertices of the graph, and the task
is to maintain a minimal tree connecting the terminals, that is, a Steiner
tree. They show how to maintain an constant factor approximate mini-
mum Steiner tree with amortized Op?Kq replacements over a sequence of
length K. Recently, there have been several improvements for this prob-
lem [67,69,123,130].

In the problem of exact online bipartite matchings with replacements,
the vertices on one side of a bipartite graph are given in advance (we call
these the servers S), while the vertices on the other side (the clients C) arrive
one at a time with all their incident edges. Throughout the section, we let
n denote the number of clients. The goal is to at all times maintain a max-
imum matching, but to minimise the number of changes. The problem was
introduced in 1995 by Grove, Kao, Krishnan, and Vitter [66], who showed
matching upper and lower bounds of Θpn log nq replacements for the case
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where each client has degree two.

When a client arrives, the cardinality of the matching can either increase
or stay constant. The cardinality increases if and only if there exists an
augmenting path from the new client to an available server, that is, a path
alternating between edges in the matching and edges not in the matching.
We use the SAP-protocol as a term for online algorithms that augment along
a shortest path, and say that an algorithm is not SAP otherwise.

Chadhuri, Daskalakis, Kleinberg, and Lin [28] showed that SAP aug-
ments an expected number of Θpn log nq replacements for a bipartite graph
with vertices arriving in random order. They also show that if the bipartite
graph remains a forest, there exists an algorithm (not SAP) with Opn log nq
replacements, and a matching lower bound. Bosek, Leniowski, Sankowski
and Zyck later analyzed the SAP protocol for forests, giving an upper bound
of Opn log2 nq replacements [23], later improved to the optimal Opn log nq
total replacements [24].

For general bipartite graphs, previous to our work, no analysis of SAP
showed a better upper bound than the trivial Opn2q total replacements.
Bosek, Leniowski, Sankowski and Zyck [22] gave a di�erent algorithm (not
SAP) that achieves a total of Opn?nq replacements. We improve upon this
by showing that the SAP-protocol makes a total of Opn log2 nq replacements.

Bosek et al. [22] also give an implementation of their non-SAP algorithm
in total time Opm?nq, which matches the best performing combinatorial
algorithm for computing a maximum matching in a static bipartite graph by
Hopcroft and Karp [92]. We give an implementation of the SAP-protocol
which takes total time Opm?n?log nq. Our implementation is thus an
Op?log nq factor slower, but has the interesting theoretical property that
it uses shortest augmenting paths.

We also study the problem of minimizing maximum load: each client is
assigned to an adjacent server, and the load of a server is the number of clients
assigned to it. The ideal would be to make few reassignments (reassigning
a client to a di�erent adjacent server) while at all times minimising the
maximum load. We show that this ideal is not possible: For any L ¤

a
n{2

divisible by 4, there exists an instance where the �nal graph requires a load
of L and where amortized ΩpLq reassignments are necessary. This is in stark
contrast to the world of approximation algorithms. Here, Gupta, Kumar, and
Stein [70] and Bernstein, Kopelowitz, Pettie, Porat, and Stein [19] showed
that using only Op1q amortized changes per client insertion, on can maintain
an assignment where the maximum load is at all times within a factor of 8
of optimum.
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1.5 On Chapter 2: Planar reachability in Linear

Space and Constant Time.

In Chapter 2, we3 give a linear space reachability oracle for planar graphs.
Given as input a planar graph with n vertices, we build a data structure
that uses Opnq words and which answers reachableuv in Op1q time for any
vertices u, v in the graph. We use the word oracle to denote a data structure
with constant query time, and we call a data structure for reachable-queries
a reachability structure. We will refer to vertices of in-degree 0 as sources,
and vertices of out-degree 0 as targets.

1.5.1 Reductions of the problem

A result by Tamassia says that if the graph is an s-t-graph, that is, there
exists a source s that can reach all vertices, and a target t reachable from all
vertices, then there exists an Oplog nq bit labelling scheme for reachability.
That is, one may assign each vertex a label of Oplog nq bits, and then any pair
of vertices can deduce from comparing their labels whether one is reachable
from the other. As a trivial corollary, one may construct a reachability oracle
for s-t-graphs by simply making a table of the vertices in the graph and their
labels. Their result extends to truncated planar s-t-graphs, that is, graphs
of the form Gzts, tu for some planar s-t-graph G with source s and target t.
We thus want to make a reduction from general planar graphs to s-t-graphs.

First, we may note vertices that belong to the same strongly connected
component may reach the exact same vertices, and are reachable from the
exact same vertices. Thus, we may reduce to the problem of constructing a
reachability oracle for an acyclic planar graph. This can be done in linear
time using the depth-�rst search algorithm by Tarjan [154].

Then, we use the reduction from Thorup [158], which is a reduction from
planar acyclic graphs to planar in-out graphs: graphs which contain a source
s that can reach all targets of the graph (see Figure 1.3). The reduction goes
via partitioning the graph into alternating in- and out-layers, such that any
path is contained in at most two consecutive layers. The construction time
is linear.

We show how to reduce further to the case where the acyclic planar graph
has a single source that can reach all vertices, and, �nally, how to use the
solution for truncated s-t-graphs to solve the case in which the graph has a
single source.

3The chapter is co-authored by Jacob Holm and Mikkel Thorup.
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sÑ Ð Ñ Ð . . .

Figure 1.3: Thorup's reduction to in-out graphs via layers [158].

1.5.2 Contributions

The solution for single source graphs using truncated s-t-graphs is most
involved. Denote the unique source by s. The idea is to carefully choose a
face f of the graph, and consider the backwards closure bcpfq of f , which
is the union of all paths from s to vertices of f . This partitions the plane
into regions corresponding to the faces of bcpfq. We now observe that these
regions are completely independent. Any path from a vertex v residing in one
region to a vertex residing in another would cross bcpfq, and thus, since v is
reachable from s, v would itself belong to bcpfq. This can be used to build
an s-t-decomposition; a tree where each node (denoted s-t-node) contains a
subgraph of the backwards closure of some face, and which has one child for
each face of that subgraph.

f

s
A

B

C

D

Figure 1.4: All vertices that can reach a carefully chosen face belong to this
s-t-node. This partitions the graph into subgraphs: A, B, C and D. This
s-t-node thus has 4 children.

We now observe that each region is separated from the rest of the graph
by a frame consisting of two directed paths, or in other words, that it has
alteration number 2. Recursively, we can ensure that all frames consist of
2 or 4 paths, and that the s-t-decomposition has logarithmic height. Each
vertex of the graph will belong to exactly one s-t-node, and each s-t-node
will constitute a truncated planar s-t-graph. For each s-t-node, we build the
data structure by Tamassia and Tollis [152] in order to answer reachability
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queries within the s-t-node in constant time.
Now, given the s-t-decomposition, u can reach v if and only if the are

either in the same s-t-node, or if u's s-t-node Cpuq is an ancestor of v's s-t-
node. If they are in the same s-t-node, the data structure by Tamassia and
Tollis [152] answers the query. Otherwise, we consider the frame in Cpuq
separating v from the rest of the graph (see Figure 1.6). This frame has a
alteration number 2 or 4, and thus, there are at most 4 �latest vertices� on
the frame that can reach v�I like to think of them as projections of v onto
the s-t-graph in Cpuq. Thus, u can reach v if and only if it can reach any of
v's projections, each of which can be computed in constant time.

f

s

v

u

Figure 1.5: u can reach v if and only if it can reach one of its projections
(blue vertices).

Computing v's projections in Cpuq is easy to do in Oplog nq space, by
simply storing all projections of each vertex. To save the �nal log-factor, we
need to observe how frames nest inside each other, and how v's projections
to its ancestral frames relate to each other. I will sketch the idea for frames
of alteration number 2, called 2-frames, but it extends to frames of alteration
number 4. For a 2-frame, v has exactly two projections, lpvq (for left) and
rpvq (for right). Now consider the frame of v in an s-t-node xi and its parent
xi�1, and denote the projections lipvq, ripvq in xi and li�1pvq, ri�1pvq in xi�1.
Either, the the projections of li and ri in xi�1 are li�1 and ri�1, respectively
(see Figure 1.6 left). Or, there is a crossing (see Figure 1.6 right), where both
li�1 and ri�1 are the projections of the same vertex in tlipvq, ripvqu. Because
of planarity, they cannot both �cross�. Thus, to calculate v's projection in
Cpuq, we just have to �nd the latest �crossing� on the path to Cpuq. To get
from the crossing to the frame in Cpuq is easy; we note that the left and
right projections each form a tree, and we use level ancestors as described
by Alstrup and Holm in [9] to instantly look up the ancestors in Cpuq.

Finally, we show how to derive a solution for planar in-out graphs from
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v

li-1(v)
li(v)

ri-1(v)

ri(v)

v

li-1(v)
ri(v)

ri-1(v)

li(v)

li-1(li(v))

Figure 1.6: The relation between frames: either there is no crossing (left),
and the projections behave like trees, or there is a crossing (right).

our structure for planar single source graphs. Given an in-out graph with a
source s that can reach all targets, the basic idea is to change the direction
of all edges whose tail is not reachable from s to obtain a single-source graph
G1, and build the reachability data structure for G1. We use the notion that
vertices not reachable from s are red vertices, and that edges between them
are red edges. We call vertices reachable from s green vertices, and edges
between them green edges. Now, reachability between a pair of green vertices
or a pair of red vertices can be answered directly by the data structure. By
de�nition, a green vertex cannot reach a red vertex. And �nally, if a red
vertex can reach a green vertex, the path has to consist of �rst a segment
of red edges, a blue edge, that is, one going from a red to a green vertex,
and then, a segment of green edges. The red segment and the blue edge can
only go towards the root in the s-t-tree (or stay in an s-t-node), the green
segment can only go away from the root. We use this to extend our structure
to answer all reachability queries.

1.5.3 Future directions

An obvious open problem concerns labelling schemes. For planar s-t-graphs,
Oplog nq bit labelling scheme exists. There is a matching lower bound of
Ωplog nq, even when we restrict ourselves to graphs consisting on one long
path. Thorup's planar reachability oracle also gives an Oplog2 nq bit labelling
scheme. The question is whether a better labelling scheme exists, or there
is an Ωplog2 nq lower bound?
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1.6 On Chapter 3

In Chapter 3, we4 give e�cient algorithms Hamiltonicity-related results in
the square G2 of a 2-vertex connected graph G, or a graph whose block-
cutpoint decomposition is a path.

Recall the de�nitions of 2-vertex connected, squared graph, Hamilton
cycle, and block-cutpoint decomposition from Section 1.2. We give the fol-
lowing results for a 2-vertex connected graph G:

• A linear time algorithm for outputting a Hamilton cycle in G2,

• Given vertices u, v, a linear time algorithm for outputting a Hamilton
path in G2 from u to v,

Furthermore, for any graph G whose block-cutpoint tree is a path,

• A linear time algorithm for outputting a Hamilton cycle in G2,

• Given any vertex x, a quadratic time algorithm for outputting cycles
in G2 of lengths 3 to n containing x. (This property of a graph, that
it contains cycles of all lengths, is also called pancyclicity.)

• Given a vertex x as above, a near-linear time algorithm for outputting
a description of the nested vertex sets. That is, there is an Opm �
n log3 n log log2 nq algorithm which outputs an ordering of the vertices,
such that each su�x forms the vertex set of a cycle in G2.

In general, deciding whether a the square of a graph contains a Hamilton
cycle is NP-complete. However, for a 2-vertex connected graph, it was shown
by Fleischner [54] that the square always contains a Hamilton cycle.

Our algorithm for outputting a Hamilton cycle in G2 improves the pre-
vious best, which is an Opn2q algorithm by Lau [121], and expands on ideas
in Georgakopoulos' short proof of Fleischner's theorem [62].

1.6.1 Techniques

The main result is the linear time algorithm for outputting a Hamilton cycle
in G2 for a biconnected graph G. From this, the second, third and fourth
result follow from known reductions.

The proof that a Hamilton cycle can be found in linear time goes via
an ear-decomposition of a minimally 2-vertex connected spanning subgraph

4The chapter is co-authored with Stephen Alstrup, Agelos Georgakopoulos, and
Carsten Thomassen
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(which can be found in linear time [74, 148]). We then prove that since the
graph was minimally 2-vertex connected, that is, the removal of any edge
would violate 2-vertex connectivity, each ear contains a vertex of degree
2. We then go on to double or delete carefully chosen edges to construct
a connected graph where all vertices have even degree (called an Eulerian
graph). Such a graph has an Euler tour T which can be found in linear
time [81]. Finally, we replace carefully chosen subpaths of T of length two
by edges of G2 (we call this lifting), in a manner that achieves a Hamilton
cycle inG2. In order to perform these careful choices, we in�ict an orientation
upon the edges, whose sole purpose is to guide our search for a useful Euler
tour and for useful 2-paths to lift.

The proof that we can in near-linear time order the vertices such that
every su�x of size ¥ 3 is the vertex set of a cycle in G2 goes via cut-
vertex detection in a decremental graph. We expand on the fully dynamic
2-vertex connectivity structure by Holm, de Lichtenberg, and Thorup [84],
Thorup [157], and Holm, Rotenberg, and Thorup [90], which has an update
time of Oplog3 n log log2 nq per edge deletion, and an even faster query time.
This structure is used as a subroutine in an algorithm that deletes all edges
of the graph and makes a constant number of queries per deleted edge. Since
we can start by �nding a sparse 2-vertex connected subgraph in linear time,
the total running time is Opm� n log3 n log log2 nq.

1.6.2 Future directions

Our algorithm for outputting cycles of all lengths appears to be optimal,
since the sum of the lengths of the cycles is Opn2q. However, the vertex sets
can be chosen such that they are nested, and thus, it is not unthinkable that
the di�erence between two consecutive cycles has a short description, or at
least that the cycles can be chosen in a clever way such that they have a
linear description which possibly could be found in linear or near-linear time.

1.7 On Chapter 4: Dynamic Bridge-Finding in

Õplog2 nq Amortized Time

In Chapter 4, we5 give a deterministic data structure that supports bridge
detection in a fully dynamic graph. The data structure supports insertions
and deletions of edges in Oplog2 n log log2 nq amortized time, and uses Opm�
nq space. Given vertices u, v, it detects whether a bridge separating u from

5The chapter is co-authored with Jacob Holm and Mikkel Thorup
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v exists, and in the a�rmative case, outputs it, in Oplog n{ log lognq worst-
case time. Similarly, given a vertex v, it outputs a bridge in the connected
component of v in Oplog n{ log log nq worst-case time if one exists.

This time bound is particularly interesting because it only di�ers by
log log n factors from the current best deterministic data structure for fully
dynamic connectivity by Wul�-Nilsen [164], which has the same query time,
and an update time of Oplog2 n{ log lognq.

The techniques can be applied to give the same improvement to the 2-
vertex connectivity structure from [84, 157] to achieve an update time of
Oplog3 log log2 nq, and a query time of Oplog n{ log log nq.

1.7.1 Techniques

The original data structure by Holm, de Lichtenberg, and Thorup [83] had
an update time of Oplog4 nq. This was since improved by Thorup [157] using
approximate counting to obtain an update time of Oplog3 n log log nq. We de-
scribe a di�erent combinatorial improvement to get down to Oplog3 log lognq
update time, which again can be combined with approximate counting to get
down to Oplog2 n log log2 nq update time.

Our combinatorial improvement basically consists of a tweak in what
and how information is maintained in the clusters of the top trees in the
original data structure by Holm et al. Originally, each cluster keeps track
of Oplog2 nq sized table, where each entry is the size of some subgraph. We
show that maintaining the di�erences between sizes and calculating the size
on demand saves an Oplog n{ log lognq factor in both time and space.

To obtain a query time of Oplog n{ log log nq, the data structure uses an
auxiliary top tree of degree Oplog n{ log lognq. That is, a top tree where each
non-leaf cluster is the union of the up to Oplog n{ log lognq clusters that are
its children.

We further show that space consumption can be brought down to linear:
Each cluster maintains enough information to allow us to calculate the sizes
of certain subgraphs e�ciently, but when a cluster is small enough, within
the given time bounds, we can a�ord to compute that information from
scratch.

1.7.2 Future directions

We have shown that the current best deterministic fully dynamic data struc-
tures for connectivity and two-edge connectivity di�er only by Oplog log3 nq
in the amortized update time. This can be seen as an indication that the data
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structure for deterministic fully dynamic connectivity might be improvable.
Another indication is that using randomization one can in fact get down
to rOplog nq amortized update time for dynamic connectivity. On the other
hand, it could also be taken as an indication that deterministic fully dynamic
2-vertex connectivity should also have an update time of rOplog2 nq.

Another interesting open question is whether the techniques from
Kapron, Mountjoy and King [104] can be used to build a data structure for
two-edge connectivity and bridge detection with polylogarithmic worst-case
update and query time using randomisation.

Finally, a very interesting question is that of fully dynamic minimum
spanning forest. The bridges of the graph, which all belong to any spanning
forest, are exactly those edges we can delete without having to look for a
replacement edge. Can any of the ideas and techniques presented in our pa-
per be used to improve signi�cantly on the fully dynamic minimum spanning
forest problem?

1.8 On Chapter 5: Decremental SPQR-trees for

planar graphs

In this chapter, we6 give a data structure that can maintain an SPQR-tree
of each 2-vertex connected component of a planar graph subject to deletions
and contractions of edges. Utilizing the SPQR-trees, we maintain local 2-
and 3-vertex connectivity (see section 1.2 for a formal de�nition). It has an
update time of amortized Oplog2 nq and constant query time.

The previous best data structure for 3-vertex connectivity has an up-
date time of Op?nq. None of the previous decremental data structures for
maintaining 2-vertex connectivity or 3-vertex connectivity simultaneously
support both the deletion and the contraction of edges.

1.8.1 Techniques

Crucial to maintaining SPQR-trees is the task of detecting separation pairs.
We show that for a planar embedded graph G, there exists a graph G�

(the face-vertex graph of G) with bounded face-degree, such that detecting
separation pairs in G subject to deletions and contractions of edges corre-
sponds to detecting non-facebounding 4-cycles in G� subject to insertions
and contractions of edges. The size of G� is linear in the size of G, and G�

6The chapter is co-authored with Jacob Holm, Guiseppe F. Italiano, Adam Karczmarz,
and Jakub �¡cki
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can be embedded in the plane. In fact, we only need to �nd the edges that
participate in any non-facebounding 4-cycle, not the 4-cycles themselves.

Based on recursive use of separators of planar graphs, we build a tree
of Oplog nq height, and in each non-leaf node, we detect non-facebounding
4-cycles that cross the separator, whereas the leaves have a constant size
and we detect 4-cycles by brute-force. In an internal node, the detection of
4-cycles that cross the separator boils down to detecting length-two paths
with endpoints on the separator. Here, we use planarity to see that there
cannot be many vertices that each have many neighbours on the separator,
an insight which facilitates an amortised analysis in which we classify vertices
according to how well connected they are to the separator.

If the deletion or contraction of an edge in an R-node (see De�nition 1.2)
of G gives rise to at least one non-facebounding 4-cycle in G�, we use the
edges that participate in any non-facebounding 4-cycle to guide a search
that singles out each new R-nodes of G, and �nds the separation pairs that
separate them. We use that the deletion of one edge can only split the
R-node into a graph whose SPQR-tree is a path (see Figure 1.7).

Figure 1.7: The deletion of an edge (dashed) causes an R-node to fall apart
into a subgraph whose SPQR-tree is a path.

It is a well-known fact that contractions in G correspond to deletions in
the dual G�. We use this to show that we can support contractions in the
almost exact same manner as deletions.

Finally, whether a pair of vertices are locally 3-vertex connected can be
determined from the SPQR-tree. One can associate a constant number of
words with each vertex, and with each SPQR-node, and check a constant
number of cases in order to answer whether a pair of vertices are locally 3-
vertex connected. Through the course of deletions and contractions, for each
vertex or SPQR-node, the associated information changes at most Oplog nq
times.

1.8.2 Future directions

While fully dynamic planarity testing and fully dynamic connectivity and
higher connectivity have Ωplog nq cell-probe lower bounds by P�atra³cu, no
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super-constant lower bound is known for decremental 3-vertex connectivity
in planar graphs. On the contrary, for connectivity [125], and for 2-edge
connectivity [86], amortized Op1q upper bounds are known. Thus, we possi-
bly have not only one but two unnecessary log-factors. Indeed, we sloppily
build several data structures from scratch upon the detection of a separation
pair. If we could in any way reuse most of the data structure already built,
this could potentially save us a log-factor. However, this would be highly
non-trivial and would require new theoretical insights.

Another future direction relates to higher edge-connectivity. We present
a data structure that detects 4-cycles, and we use it to detect 4-cycles in the
face-vertex graphs corresponding to separation pairs in the original graph.
If instead we detect 4-cycles in the dual graph, those correspond to 4-edge
cuts in the original graph, and can be used to maintain the cactus graph of
the 5-edge connected components of a 4-edge connected graph. Similar to
the SPQR-tree for 3-vertex connectivity, this cactus graph could possibly be
used to implement a data structure for 5-edge connectivity in a decremental
4-edge connected planar graph.

While SPQR-trees and 3-vertex connectivity are particularly motivated
for planar graphs, they are de�ned for general graphs as well. Curiously,
there exist fully dynamic data structures for connectivity and 2-vertex con-
nectivity with poly-logarithmic time per operation, but no non-trivial data
structure for 3-vertex connectivity exists. The only known lower bound for
3-vertex connectivity is Ωplog nq by P�atra³cu. This represents a huge gap,
and any step towards closing it would be interesting.

Finally, SPQR-trees can be seen as a compact representation of all planar
embeddings of a 2-connected planar graph [128]. Namely, whenever we have
a separation pair, we may ��ip� or �re�ect� a subgraph which is isolated from
the rest of the graph by that separation pair. We have shown a data structure
that maintains an embedding of a planar graph subject to such �ips. Is it
possible to use those two results as building blocks in a data structure for
maintaining a planar embedding of a fully dynamic graph if and only if such
an embedding exists? If such a data structure with poly-logarithmic update
time exists, it would be a major result, and it would require non-trivial new
theoretical insights.
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1.9 On Chapter 6: Online bipartite matching with

amortized Oplog2 nq replacements

In Chapter 6, we7 study the problems relating to minimising replacements
and reassignments in on-line bipartite graphs, while at all times maintaining
a maximum matching or an optimal assignment. All results are analyses of
the greedy approach of simply augmenting a shortest path from the newly
arrived vertex, denoted the SAP-protocol.

We give the following results, in the case where n clients arrive with all
their incident edges:

• For bipartite matching, the SAP-protocol makes a total of Opn log2 nq
replacements.

• The SAP-protocol can be implemented in total time Opm?n?log nq.

• For the capacitated assignment problem, in which each server is initi-
ated with a �xed capacity, SAP makes a total of Opn log2 nq reassign-
ments.

For the problem minimising maximum load, let optpGq denote the minimum
possible maximum load of the �nal graph G. We show:

• SAP makes a total of Opn � optpGq log2 nq X Opn?n log nq reassign-
ments, while maintaining an optimal assignment,

• For L ¤
a
n{2, and L divisible by 4, there exists an instance with

maximum load L which requires ΩpnLq reassignments. This lower
bound holds even when the algorithm knows the instance in advance.

Our main result, that SAP makes a total of Opn log2 nq replacements,
is a huge improvement over previous work. The previous best guaranteed
total number of replacements was Opn?nq, and, speci�cally for SAP, nothing
better than Opn2q was known for general bipartite graphs.

Note also that our lower bound for the exact capacitated assignment
problem stands in stark contrast to the approximate version, in which only
Op1q amortized reassignments per clients is needed to obtain a constant
factor approximation to the optimally balanced load [19,70].

7The chapter is co-authored with Aaron Bernstein and Jacob Holm
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1.9.1 Techniques

Our main idea for showing our main result is to keep track of the necessity
αpsq of each server s. The necessity is independent of the matching, and, in
fact, all of our results hold even if we allow an adversary to make arbitrary
changes to the matching between each update. We start out with αpsq � 0,
and if at some point a subset of clients |C| have a neighbourhood NpCq of
size |C|, then αpsq � 1 for all servers s P NpCq, re�ecting that all these
servers are necessary in a maximum matching (see �gure 1.8). We give a
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client server necessity

Figure 1.8: Servers s1 and s2 are completely necessary, because they are
crucial for matching c1 and c2. Servers s3 and s4 each have a necessity of a
half because of c3, and server s5 is not necessary at all.

de�nition of necessities α such that:

• Server necessity is only increasing, and once a server has necessity 1,
we never can disregard it for the rest of the algorithm,

• If a client arrives and the shortest augmenting path is long, then aug-
menting along a shortest path will increase the necessity of many
servers which already had high necessities. It follows that this can
only happen a limited number of times before the involved servers
have necessity 1 and can be disregarded.

Following the above indicated line of reasoning, our main lemma is, that
for any h, the SAP protocol augments down a total of at most 4n lnn{h
paths of length ¡ h. It is easy to see how the main theorem follows from the
lemma: Consider the statement when h has a value of the form 2i. For each
i � 0, 1, . . . lg2pnq, an augmenting of length between 2i and 2i�1 is accounted
for by h � 2i, but contains at most 2i�1 edges. But then, summing up, we
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get 8n lnnplg2 n � 1q which is Opn log2 nq, as an upper bound for the total
length of all augmenting paths through the course of the algorithm.

The capacitated assignment problem where each server has a �xed in-
tegral capacity for how many clients it can serve is easily reduced to bipartite
matchings, by simply adding multiple copies of each server�as many copies
as is the capacity of the server. We thus still get Opn log2 nq reassignments
for inserting n vertices in the capacitated assignment problem.

Minimizing maximum load The upper bound of OpL log2 nq is very
intuitive and easy to prove: Let the i'th epoch be the time where the max-
imum load is i. Then it follows from our result on capacitated assignments
for capacity i that during the i'th epoch, at most Opn log2 nq reassignments
are made. Thus, we get a total of OpnL log2 nq reassignments. To show
the upper bound of Opn?n log nq, notice that we make Opn?n log nq reas-
signments during the �rst

?
n{ log n epochs (we call these epochs early). If

L ¤ ?n{ log n, we are done. Otherwise, all future epochs, maximally loaded
servers have

?
n{ log n clients assigned. But then, there are at most

?
n log n

such servers, and shortest augmenting paths involving them will have length
Op?n log nq. Thus, each vertex in the late epochs causes Op?n log nq reas-
signments, and since the early epoch vertices cause amortized Op?n log nq
reassignments, we have shown the upper bound.

The lower bound is more involved, and is proven by explicitly construct-
ing an instance with n � L2 vertices and �nal load L, that requires ΩpL3q
changes. The instance consists of OpLq epochs, each inserting OpLq clients,
and each requiring ΩpL2q reassignments in order to ensure that the maximum
load is minimised by the end of the epoch.

1.9.2 Future directions

We show that the strategy of augmenting along a shortest path (the SAP-
protocol) causes at most amortized Oplog2 nq replacements, while the lower
bound is amortized Ωplog nq replacements, even for graphs consisting of dis-
joint paths, by Grove, Kao, Krishnan, and Vitter [66]. Recently, Bosek,
Leniowski, Zych, and Sankowski [24] have shown an upper bound of amor-
tized Oplog nq replacements for trees. Is it possible to show that SAP causes
amortized Θplog nq replacements for general graphs? Or is there a lower
bound separating general bipartite graphs from trees?

We give an implementation of SAP that has Opm?n?log nq total run-
ning time. This almost matches the Opm?nq algorithm by Hopcroft and
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Karp [92], except for a super�uous Op?log nq factor. It would be interesting
to improve our implementation by an Op?log nq factor.

Finally, we show that amortized Ωp?nq replacements can be necessary to
maintain an exact minimal maximum load. In almost any practical setting,
this would be a decisive argument for only maintaining an approximation of
the minimal maximum load, such as the 8-approximation that is obtainable
with Op1q reassignments as described in [70] and [19]. Thus, a fundamental
question is: How well can we approximate the minimal maximum load, while
allowing only a constant or polylogarithmic number of reassignments per
insertion?

1.10 On other related results obtained during my

PhD-studies

This section contains a high level overview of selected results that have not
been included in the dissertation. The results all relate to algorithms and
data structures for graphs, and have been published in journals or conference
proceedings.

1.10.1 On Dynamic Planar Embeddings of Dynamic
Graphs [88]

We8 give a data structure that maintains a planar embedding of a graph. The
data structure supports edge-deletions, and the insertion of an edge across
a face. The data structure supports changes to the embedding by �ipping
a subcomponent that is connected to the rest of the graph by at most 2
vertices (see Figure 1.9). Given a pair of vertices, it facilitates queries to their
linkability, that is, whether they lie on the same face of the embedding. For
non-linkable vertices, it facilitates the one-�ip-linkable query, which points
to a �ip that makes them linkable if such a �ip exists. All updates and
queries are supported in Oplog2 nq time, where n is the number of vertices
in the graph.

Techniques We maintain a tree/cotree decomposition for the planar em-
bedded graph, which is a well known technique of partitioning the edges into
a spanning tree for the graph and a spanning tree for its dual. We maintain
top trees over both the tree (the primal top-tree) and the cotree (the dual

8The article is co-authored with Jacob Holm
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Figure 1.9: We support the �ip of a subgraph which is connected to the rest
of the graph in an articulation point, or by a separation pair.

top-tree), and they interact via their extended Euler tour, which corresponds
to a carefully chosen Euler tour in the medial graph pG�q�.

To facilitate linkability queries, we use an expose operation in the primal
top-tree to mark all corners incident to either vertex, and then, use the dual
top-tree to search for a common face. In order to have the information in
the dual top-tree re�ect that some vertex is �marked�, we perform a constant
number of top-tree operations in the dual tree for each merge or split in the
primal top tree, leading to an Oplog2 nq running time.

To facilitate one-�ip-linkable for a pair of not-linkable vertices u and v,
we use that a �ip exists exactly when there are two faces fu, fv in G� such
that u is incident to fu and v is incident to fv and such that u� and v�

are internal faces in di�erent separation classes in G� (see De�nition 1.1).
Once we have found such faces fu and fv, we can use linkable query in G�

to obtain the vertices fu and fv have in common in which we can �ip.

Future directions We show how to facilitate one-�ip-linkable, but as soon
as two �ips are needed to accommodate an edge, we are at a loss. If the
embedding is not carefully chosen, up to Θpnq �ips can be needed to accom-
modate an edge. Is it possible to e�ciently �nd such a sequence of �ips,
if it exists? Is it possible to carefully choose the embedding such that only
Oplogc nq �ips are needed, if the edge can be added without violating pla-
narity? These questions all relate to the major open problem of whether it is
possible to maintain whether a dynamic graph is planar in polylogarithmic
time per operation.

1.10.2 On Faster Minimum Spanning Forests [91]

We9 give a data structure for fully-dynamic minimum spanning forests
(MSF). For a dynamic graph on n vertices, we support updates in ex-
pected amortized Oplog4 n{ log log nq in the word-RAM model with constant

9The article is co-authored with Jacob Holm and Christian Wul�-Nilsen
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time multiplication. This is an Oplog log nq improvement over the previous
Oplog4 nq algorithm by Holm, de Lichtenberg, and Thorup [84].

Our time bound relies on linear time sorting [12] of a poly-logarithmic
(in n) sized set of numbers in a quadraticly (in n) bounded range, and this
is the only place in the analysis where randomisation and constant time
multiplication are used. In fact, even deterministically and without con-
stant time multiplication, we give a data structure with a running time of
Oplog4?log log log n{?log lognq, by simply using a di�erent sorting algo-
rithm as a subroutine [142].

Techniques.

We give a new analysis of the reduction by Henzinger and King [78] which
was also used by Holm et al. [84], which we combine with a new decremental
MSF data structure with slightly faster construction time but slightly slower
update time, to obtain the result.

Namely, given a data structure for decremental MSF with construction
time Optcmq and amortized deletion time Optdq per edge deletion, the reduc-
tion gives a data structure for fully-dynamic MSF with Oplog3 n� tc log2 n�
tr log nq update time amortized over Ωpnq updates.

Our decremental MSF with these properties is based on the dynamic
connectivity structure by Wul�-Nilsen [164], which can easily be modi�ed
to give a decremental MSF with Oplog2 nq update time. After an edge dele-
tion, when searching for a replacement edge, the algorithm makes several
downwards searches but only Op1q upwards searches in a tree of height
Oplog nq. The main idea is to improve the downwards-searching time to
Oplog n{ log lognq at the cost of increasing the upwards-searching time by
an Oplogεq-factor. We implement this idea by making a short-cutting sys-
tem for downwards searches that involves fast priority queues, which explains
why the running time for sorting algorithms appear in the time bounds.

Future directions

We improve the update time for MSF from Oplog4 nq to Oplog4 n{ log log nq,
but no lower bound beyond Ωplog nq by P�atra³cu [141] is known. It is likely
that some entirely new ideas and insights would lead to a data structure
with Oplog3 nq update time, or even faster.

On the other hand, giving bounds of the form Ωplog2 nq for any
connectivity-related dynamic graph problem would be very interesting and
require new techniques and insights.
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1.10.3 On One-way Trail Orientations [1]

We10 prove the following extension of Robbin's theorem on strong orienta-
tions of graphs: Given a 2-edge connected planar graph, and given a par-
titioning of its edges into trails, we show that each trail can be oriented
consistently such that the resulting graph is strongly connected. We show
that such an orientation can be found in linear time.

Here, a trail is any walk that does not use the same edge twice. A
consistent orientation of a trail is one where each vertex that is not an end-
vertex has the same number of in- and out-edges on the trail.

We extend our result to mixed graphs in which some trails are already
oriented. We show that as long as no cut has exactly one undirected edge,
there exists a strong orientation that orients the remaining trails consistently.

Techniques

We give a constructive induction proof which runs in polynomial time: Take
an arbitrary end-edge of an arbitrary trail. If its removal does not violate
2-edge connectivity, this edge can be disregarded, since any orientation on
the rest of its trail can be extended to involve it. Otherwise, it were part of
some two-edge cut, and we modify either side of the cut by inserting an edge
which we concatenate with at most 2 trails, obtaining two smaller instances
of the problem, which by induction can be assumed to have a solution. We
show how to piece solutions to those instances together, to obtain a solution
to the original problem.

This algorithm has an Opm log2 n log log2 nq implementation using the
bridge detection structure in Chapter 4, [90].

To get down to linear time, we need to handle many end-edges in one
swoop. The idea is to carefully choose a subgraph that contains as few
end-edges as necessary (using [74]), show that this graph has many 3-edge
connected components, meaning most of them have at most constant size,
and show that the cactus graph over the 3-edge connected components can
be used to give a strong, trail-consistent orientation of the entire graph. We
thus show how to spend linear time on reducing away a constant fraction of
the edges, which by a geometric argument leads to a linear algorithm.

10The paper is co-authored with Anders Aamand, Niklas Hjuler, and Jacob Holm
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Future directions

In the mixed case, where a some edges are already oriented, and the remain-
ing are partitioned into paths, we have not yet found a linear time algorithm.
Is it possible to give a linear time algorithm, or is there a lower bound?

1.10.4 On Contracting Planar Graphs E�ciently [86]

We11 present a data structure for maintaining a planar graph subject to
edge contractions. It supports adjacency queries and facilitates access to
neighbour lists in Op1q time, has linear construction time, and has amortized
update time Op1q per edge contraction.

Using this data structure for the dual graph, we obtain a several decre-
mental data structures for a planar graph on n vertices. In the following,
update times are amortized, and query times are worst-case.

• For local 2-edge connectivity and bridge detection, we present a data
structure with Op1q time per operation. As a consequence, determining
whether a planar graph has a maximal matching can be done in Opnq
time.

• For local 2-vertex connectivity and 3-edge connectivity, we show that
they can be supported in Oplog nq time per deletion and Op1q query
time.

Techniques

To obtain an e�cient structure for edge contractions, we use a known re-
sult for planar graphs called r-divisions: The graph can in linear time be
decomposed into the union of regions, which are subgraphs of size ¤ r, such
that only Opn{rq vertices, called boundary vertices, participate in more than
one region [65] (see Figure 1.10). The idea is to divide the responsibility of
the edges. Edges between boundary vertices (red edges in Figure 1.10) are
handled in the top level, and edges with at least one non-boundary endpoint
(blue edges in Figure 1.10) are handled within a region. Thus, we can a�ord
to spend polylogarithmic time per update on the top-level. To handle edges
within a region, we perform the trick of subdivision again, obtaining regions
of size Opplog log nq4q. These regions are so small that any possible sequence
of contractions can in linear time be precomputed and stored. Finally, we

11The paper is co-authored with Jacob Holm, Guiseppe F. Italiano, Adam Karczmarz,
Jakub �¡cki, and Piotr Sankowski
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Figure 1.10: An r-division of a planar graph. The red edge goes between
boundary vertices, while the blue edges are internal in their region.

note that because the graph is planar, the total number of times a con-
traction within a region leads to the insertion of an edge between boundary
vertices in the layer above, is only linear in the number of boundary vertices.

Future directions

We have shown how to support deletions in amortized Op1q time for 2-edge
connectivity, and amortized Oplog nq time for 2-vertex connectivity and 3-
edge connectivity. One obvious direction is to get the update time for the
latter down from Oplog nq to Op1q. Another regards contractions: Is it
possible to support both deletions and contractions in the planar graph in
constant time? We have seen that for 2- and 3-vertex connectivity, an update
time of Oplog2 nq is possible, but no lower bound beyond Ωp1q is known.
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Chapter 2

Planar Reachability in Linear

Space and Constant Time

Jacob Holm, Eva Rotenberg, Mikkel Thorup1

Abstract

We show how to represent a planar digraph in linear space
so that reachability queries can be answered in constant time.
This representation of reachability is thus optimal in both time
and space, and has optimal construction time. The previous best
solution used Opn log nq space for constant query time [Thorup
FOCS'01].

2.1 Introduction

Representing reachability of a directed graph is a fundamental challenge.
We want to represent a digraph G � pV,Eq, n � |V |, m � |E|, so that
we for any vertices u and v can tell if u reaches v, that is, if there is a
dipath from u to v. There are two extreme solutions: one is to just store the
graph, as is, using Opmq words of space and answering reachability queries
from scratch, e.g., using breadth-�rst-search, in Opmq time. The other is
to store a reachability matrix using n2 bits and then answer reachability
queries in constant time. Thorup and Zwick [160] proved that there are
graphs classes such that any representation of reachability needs Ωpmq bits.
Also, P�atra³cu [138] has proved that there are directed graphs with Opnq

1The content of this chapter is published at FoCS'15 [89]
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edges where constant time reachability queries require n1�Ωp1q space. Thus,
for constant time reachability queries to a general digraph, all we know is
that the worst-case space is somewhere between Ωpm�n1�Ωp1qq and n2 bits.

The situation is in stark contrast to the situation for undi-
rected/symmetric graphs where we can trivially represent reachability
queries on Opnq space and constant time, simply by enumerating the con-
nected components, and storing with each vertex the number of the com-
ponent it belongs to. Then u reaches v if and only if the have the same
component number.

In this paper we focus on the planar case, which feels particularly relevant
when you live on a sphere. For planar digraphs it is already known that we
can do much better than for general digraphs. Back in 2001, Thorup [158]
presented a reachability oracle for planar digraphs using Opn lg nq space for
constant query time, or linear space for Oplog nq query time. In this paper,
we present the �rst improvement; namely an Opnq space reachability oracle
that can answer reachability queries in constant time. Note that this bound is
asymptotically optimal; even to distinguish between the subclass of directed
paths of length n, we need Ωpn log nq bits. Our oracle is constructed in linear
time.

Computational model The computational model for all upper bounds is
the word RAM, modelling what we can program in a standard programming
language such as C [110]. A word is a unit of space big enough to �t any
vertex identi�er, so a word has w ¥ lg n bits, and word operations take
constant time. Here lg � log2. In our upper bounds, we limit ourselves to
the practical RAM model [132], which is a restriction of the word RAM to
the standard operations on words available in C that are AC0. This includes
indexing arrays as needed just to store a reachability matrix with constant
time access, but excludes e.g. multiplication and division. Thus, unless
otherwise speci�ed, we measure space as the number of words used and time
as the number of word operations performed.

The Ωpm�n1�Ωp1qq space lower bound from [138] for general graphs is in
the cell-probe model subsuming the word RAM with an arbitrary instruction
set.

Other related work Before [158], the best reachability oracles for general
planar digraphs were distance oracles, telling not just if u reaches w, but if
so, also the length of the shortest dipath from u to w [16, 30, 43]. For such
planar distance oracles, the best current time-space trade-o� is Õpn{?sq
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time for any s P rn, n2s [133].
The construction of [158] also yields approximate distance oracles for

planar digraphs. With edge weights from rN s, N ¤ 2w, distance queries
where answered within a factor p1 � εq in Oplog logpNnq � 1{εq time using
Opnplog nqplogpNnqq{εq space. These bounds have not been improved.

For the simpler case of undirected graphs, where reachability is
trivial, [112, 158] provides a more e�cient p1 � εq-approximate dis-
tance queries for planar graphs in Op1{εq time and Opnplog nq{εq
space. In [107] it was shown that the space can be improved to
linear if the query time is increased to Opplog nq2{ε2q. In [108] it
was shown how to represent planar graphs with bounded weights using
Opn log2pplog nq{εq log�pnq log logp1{εqq space and answering p1�εq approxi-
mate distance queries in Opp1{εq logp1{εq log logp1{εq log�pnq� log log log nqq
time. Using Ō to suppress factors of Oplog lognq and Oplogp1{εqq, these
bounds reduce to Ōpnq space and Ōp1{εq time. This improvement is similar
in spirit to our improvement for reachability in planar digraphs. However,
the techniques are entirely di�erent.

There has also been work on special classes of planar digraphs. In partic-
ular, for a planar s-t-graph, where all vertices are on dipaths between s and
t, Tamassia and Tollis [153] have shown that we can represent reachability in
linear space, answering reachability queries in constant time. Also, [30,44,45]
present improved bounds for planar exact distance oracles when all the ver-
tices are on the boundary of a small set of faces.

Techniques We will develop our linear space constant query time reach-
ability oracles by considering more and more complex classes of planar di-
graphs. We make reductions from i� 1 to i in the following:

1. Acyclic planar s-t-graph; Dps, tq, such that all vertices are reachable
from s and can reach t. [153]

2. Acyclic planar single-source graph; Ds, such that all vertices are reach-
able from s. See Section 2.3.

3. Acyclic planar In-Out graph; Ds such that all vertices with out-degree
0 are reachable from s. See Section 2.4

4. Any acyclic planar graph. The reduction to acyclic planar In-Out
graphs from general acyclic planar graphs is known. [158]

5. Any planar graph. The reduction to acyclic planar graphs is well-
known. Using the depth �rst search algorithm by Tarjan [154], we
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can contract each strongly connected component to get an acyclic pla-
nar graph. Vertices in the same strongly connected component can
always reach each other, and vertices in distinct strongly connected
components can reach each other if the corresponding vertices in the
contracted graph can.

The most technically involved step is the reduction from single-source
graph to s-t-graph. As in [158], we use separators to form a tree over a
partitioning of the vertices of the graph. However, in [158], the alternation
number ; the number of directed segments in the frame that separates a
child from its parent (see Section 2.2), needs only be a constant number. In
contrast, it is a crucial part of our construction that the alternation number,
which must be even, is at most 4. Also, in our data structure, paths cannot
go upward in the rooted tree, whereas there is no such restriction in [158].
These two features let us use a level ancestor -like algorithm to quickly
calculate the best ¤ 4 vertices in a given tree-node that can reach a given
vertex v. Each component is an s-t-graph, and v can be reached by some u
in the ancestral component if and only if u can reach at least one of these
best ¤ 4 vertices.

2.2 Preliminaries

For a vertex v at depth d in a rooted forest T and an integer 0 ¤ i ¤ d, the
i'th level ancestor of v in T is the ancestor to v in T at depth i. For two
nodes x, y in a rooted tree, let x ¨ y denote that x is an ancestor to y, and
x   y that x is a proper ancestor to y.

We say a graph is plane, if it is embedded in the plane, and denote by
πv the permutation of edges around v. Given a plane graph, pG, πq, we
may introduce corners to describe the incidence of a vertex to a face. A
vertex of degree n has n corners, where if πvppv, uqq � pv, wq, and the face
f is incident to pv, uq and pv, wq, then there is a corner of f incident to v
between pv, uq and pv, wq. We denote by V rXs and ErXs the vertices and
edges, of some (not necessarily induced) subgraph X. Given a subgraph H
of a planar embedded graph G, the faces of H de�ne superfaces of those of
G, and the faces of G are subfaces of those of H. Similarly for corners. Note
that the faces of H correspond to the connected components of G�zH, where
G� is the dual graph of G. The super-corners incident to v correspond to a
set of consecutive corners in the ordering around v.

In a directed graph, we may consider the boundary of a face in some
subgraph, H. A corner of a face f of H is a target for f if it lies between
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ingoing edges pu, vq and pw, vq, and source if it lies between outgoing edges
pv, uq and pv, wq. We say the face boundary has alternation number 2a if it
has a source and a target corners. When a face boundary has alternation
number 2a, we say it consists of 2a disegments (directed segments), associ-
ated with the directed paths from source to target. We associate with each
disegment S the total ordering stemming from reachability of vertices on
the path via the path, and by convention we set succpt, Sq � K for a target
vertex t on the disegment. Given a set of edges S � E, we denote by initpSq
the set of inital vertices, initpSq � tu|pu, vq P Su. Given a connected planar
graph with a spanning tree T , the edges T � :� EzT form a spanning tree
for the dual graph. We call the pair pT, T �q a tree-cotree decomposition of
the graph, referring to T and T � as tree and cotree.

When u can reach v we write u ù v. An s-t-graph is a graph with
special vertices s, t such that sù v and vù t for all vertices v. We say a
graph is a truncated s-t-graph if it is possible to add vertices s, t to obtain an
s-t-graph, without violating the embedding. In an acyclic planar s-t-graph,
all faces has alternation number 2 (see [152, Lemma 1]).

2.3 Acyclic planar single-source digraph

Given a global source vertex s for the planar digraph, we wish to make a data
structure for reachability queries. We do this by reduction to the s-t-case.
A rooted tree with truncated s-t-graphs as nodes is obtained by recursively
choosing a face f wisely, letting vertices that can reach vertices on f belong
to this node, and partitioning all other vertices among the descendants of
this node. As we shall see in Section 2.3.1, this can be done in such a way
that we obtain logarithmic height and such that the border between a node
and its ancestors is a cycle of alternation number at most 4. We call this the
frame of the node.

We always choose the truncated s-t-graph maximally, such that once a
path crosses a frame, it does not exit the frame again. Thus, for u to reach
v, u has to lie in a component which is ancestral to that of v, and since the
alternation number of any frame between those two component is at most 4,
the path could always be chosen to use one of the at most 4 di�erent �best�
vertices for reaching v on that frame. Thus, the idea is to do something
inspired by level ancestry to �nd those �best� vertices in u's component. We
handle the case of frames with alternation number 2 in Section 2.3.3. Frames
with alternation number 4 are similar but more involved, and the details are
found in Section 2.3.4.
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f

s

Figure 2.1: In a single source graph, the backwards closure of the face f is
the union of all paths from the source, s, to V rF s.

De�nition 2.1. Given a graph G � pV,Eq, a subgraph G1 � pV 1, E1q is
backward closed if @pu, vq P E : v P V 1 ùñ pu, vq P E1.

De�nition 2.2. The backward closure of a face f , denoted bcpfq is the
unique smallest backward closed graph that contains all the vertices incident
to f . (See Figure 2.1.)

s

fr

f2f1

Figure 2.2: A tree of truncated s-t-graphs, each child contained in a face-
cycle of its parent.

De�nition 2.3. Let G � pV,Eq be an acyclic single-source plane digraph,
and let G� � pV �, E�q be its dual. An s-t-decomposition of G is a rooted
tree where each node x is associated with a face fx P V � and subgraphs
G�
x � G� and Cx � Sx � G such that:
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• fx is unique (fx � fy for x � y).

• Sx is bcpfxq if x is the root, and bcpfxq Y Sy if x is a child of y.

• Cx is bcpfxq if x is the root, and bcpfxqzSy if x is a child of y.

• G�
x is the subgraph of G� induced by tfz| z is a descendant of xu. Fur-

thermore, if x is a child of y we require that G�
x is the connected

component of G�zE�rSys containing fx.
If x is a child of y, x has a parent frame Fx � Sy and a set of down-edges
Ex � E such that:

• Fx is the face cycle in Sy that corresponds to G�
x.

• Ex is the set of edges pw,w1q such that w P V rFxs and w1 P V rCzs for
some descendant z of x.

An s-t-decomposition is good if the tree has height Oplog nq and each frame
has alternation number 2 or 4.

That is, G�
x is the set of faces contained in the parent frame Fx.

The name s-t-decomposition is chosen based on the following

Lemma 2.1. Each vertex of G is in exactly one Cx, and each Cx is a
truncated s-t-graph.

Proof. If x is the root, Cx � bcpfxq and this is clearly a truncted s-t-graph.
Otherwise let y be the parent of x. Then Sx � bcpfxqYSy, is backward-closed
and therefore contains s. Contracting Sy in that graph to a single vertex s1

gives a single-source graph Sx{Sy with s1 as the source. Adding a target t1

in fx and edges pv, t1q for v P V rfxs results in an s-t-graph pSx{Syq Y tt1u.
Thus, Sx{Sy is a truncated s-t-graph, and since Cx � bcpfxqzSy � SxzSy �
pSx{Syqz ts1u so is Cx.

Let v be a vertex, let I be the set of all nodes in the s-t-decomposition
whose associated faces tfxuxPI are reachable from v, and let N � lcapIq.
We now show that v lies in CN and only in CN . To see that v P CN , note
that v P Sx for all x P I, but then v P �

xPI Sx � SN . But v R Sa for any
ancestor a of N by de�nition of lca, and thus, v R Sy for the parent y of N ,
entailing v P SNzSy � CN . We have now seen that v P CN and that v R Cx
when x   N or N   x. To see that v R Cx for any unrelated x � N , note
the following: if x has no descendants in I, then v R V rSxs since all vertices
reachable from v lie on some face. Thus, v R Cx � Sx.
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Theorem 2.1. Any acyclic single-source plane digraph has a good s-t-
decomposition.

We defer the proof to section 2.3.1. The reason for studying s-t-
decompositions in the context of reachability is the following

Lemma 2.2. If uù v where u P Cx and v P Cy then either x � y or x has
a child z that is ancestor of y such that any uù v path contains a vertex
in Fz.

Proof. Note that in general, whenever wù w1 with w1 P Ca, w must belong
to an ancestor of a, since w P bcpfaq. Thus, in our case, x is an ancestor of
y, which means that either x � y or x has a child z that is an ancestor of
y. But then either w lies on Fx, or Fx is a cycle separating w from w1. In
either case, a path from w to w1 must contain a vertex on Fx.

Since (by Theorem 2.1) we can assume the alternation number is at most
4, this reduces the reachability question to the problem of �nding the at most
4 �last� vertices on FzXCx that can reach v and then checking in Cx if u can
reach either of them. In section 2.3.3 we will show how to do this e�ciently
when Fz is a 2-frame, that is, has alternation number 2, and in section 2.3.4
we will extend this to the case when Fz is a 4-frame, that is, has alternation
number 4.

Theorem 2.2. There exists a practical RAM data structure that for any
planar digraph with n vertices uses Opnq words of Oplog nq bits and can
answer reachability queries in constant time. The data structure can be built
in linear time.

Proof. First, build a good s-t-decomposition of G. Such a decomposition
exists (Lemma 2.1) and can be built in linear time (Lemma 2.9). Adding
DFS pre- and postorder numbers to each node in the tree lets us discover the
ancestry relationship between any two vertices in the same node, in constant
time.

To answer reachablepu, vq, there are the following cases. Let u P Cx and
v P Cy be the st-nodes of the st-decomposition where u and v belong, and
let ¨ denote ancestry of st-nodes in the st-decomposition.

1. If x ª y, then u cannot reach v.

2. If x � y, then the answer is given by the s-t-graph labelling of Cx
from [153].
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3. If x   y and there are no 2-frames separating u and v, but, since
x   y, there are 4-frames. Then, by Theorem 2.5 we can in constant
time compute the at most 4 best vertices in Cx that can reach v. If u
can reach any of them, them u can reach v, otherwise no.

4. Otherwise, x   y and there is a 2-frame Fz separating u and v such
that there are no 2-frames between x and z. Then, by Theorem 2.4 we
can in constant time compute the at most 2 best vertices in Cz that
can reach v. If u can reach any of them, then u can reach v, otherwise
no.

Note that the recursive calls in step 3 only leads to questions of type 2, and
similarly, the recursive calls in step 4 only leads to questions of type 3 or 2.
Thus, we use only constant time per query.

A consequence of our construction which might be of independent interest
is the following:

Theorem 2.3. If a planar digraph G admits an s-t-decompostion of height h
where all frames have alternation number 2 and 4, there exists an Oph log nq
bit labelling scheme for reachability with evaluation time Ophq.

Especially, if a class of planar digraphs have such an s-t-decompositions of
constant height, they have an Oplog nq bit labelling scheme for reachability.

2.3.1 Constructing an s-t-decomposition

The s-t-decomposition recursively chooses a face f and consequently a sub-
graph H � bcpfq of the graph G induced by all vertices that can reach a
vertex on f . Since G was embedded in the plane, the subgraph H is embed-
ded in the plane, and each vertex of GzH lies in a unique face of H. We may
choose a tree-cotree decomposition wisely, such that for each face of H, the
restriction of T � to the subfaces of that face is again a dual spanning tree
(Lemma 2.4).

We also have to choose H carefully to ensure logarithmic height, and a
limited alternation number on the frames. To ensure at most logarithmic
height, we show two cases: 2-frame-nodes have only small children, while for
4-frame-nodes, we only need to ensure that their 4-frame children themselves
are small.

Lemma 2.3. Let G � pV,Eq be a plane graph, let G� � pV �, E�q be its dual,
let pT, T �q be a tree/cotree decomposition of G, and let S be a subgraph of G
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such that S X T is connected. Then the faces of S correspond to connected
components of T �zE�rSs.
Proof. Let S� be the dual of S, then S� � G�{pG�zE�rSsq and the claim
is equivalent to saying that the components of G�zE�rSs correspond to the
components of T �zE�rSs. Consider a pair of faces f1, f2 P V �. Clearly,
if they are in separate components of G�zE�rSs, they are also in separate
components in T �zE�rSs. On the other hand, suppose f1 and f2 are in
di�erent components in T �zE�rSs. Then there exists an edge e� P E�rSsXT �

separating them. The corresponding edge e P ErSs induces a cycle in T ,
which is also part of S since S X T is connected. The dual to that cycle is
an edge cut in G� that separates f1 from f2.

Lemma 2.4. Let T be a spanning tree where all edges point away from the
source s of G, then for any node x in an st-decomposition of G, the subgraph
T �
x of T � induced by V �rG�

xs is a connected subtree of T �.

Proof. If x is the root, this trivially holds. If x has a parent y, G�
x corresponds

to a face in Sy. Now Sy X T is connected since Sy is the union of backward-
closed graphs, and the result follows from Lemma 2.3.

Lemma 2.5. Let x be a node in an st-decomposition whose parent frame Fx
has alternation number 2, and let A� be the set of faces in T �

x incident to
the target corner of Fx. Then for any child y of x:

A� � V �rT �
y s ùñ Fy has alternation number 4.

A� � V �rT �
y s ùñ Fy has alternation number 2.

Proof. Let tx be the target corner of Fx and let A� be the set of faces in
Tx

� incident to tx. For any child y of x, Fy consists of a (possibly empty)
segment of Fx and two directed paths that meet at a new target corner
ty. Each target corner of Fy must therefore be at either tx or ty. Now if
A� � V �rT �

y s, then both tx and ty are target corners of Fy, otherwise only
ty is. Either way the result follows.

The following lemma will help us ensure that we can choose all frames
to be 2- or 4-frames.

Lemma 2.6. Let x be a node in an st-decomposition whose parent frame Fx
has alternation number 4, and let A0� and A1� be the sets of faces in T �

x

incident to the target corners of Fx. Then for any child y of x:

A0� � V �rT �
y s ^A1� � V �rT �

y s ùñ Fy has alternation number 2.

A0� � V �rT �
y s _A1� � V �rT �

y s ùñ Fy has alternation number ¤ 4.
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Figure 2.3: Choosing a splitting-face on the co-path between faces near either
target of a 4-frames yields only 4-frames and 2-frames on the next level.

Proof. Let t0x and t
1
x be the two target corners of Fx and for i P t0, 1u let Ai�

be the set of faces in Tx� incident to tix. For any child y of x, Fy consists
of a (possibly empty) segment of Fx and two directed paths that meet at a
new target corner ty. Each target corner of Fy must therefore be at either
ty, t0x, or t

1
x. Now if Ai� � V �rT �

y s for some i P t0, 1u, then tix is not a target
corner of Fy. So the number of target corners in Fy is at least 1, and at most
3 minus the number of such i, and the result follows.

We can now prove that a good s-t-decomposition exists.

proof of theorem 2.1. Let s be the source of G and let pT, T �q be a
tree/cotree decomposition of G such that all edges in T point away from
s. The st-decomposition can be constructed recursively as follows. Start
with the root. In each step we have a node x and by Lemma 2.4 the sub-
graph T �

x induced in T � by V �rG�
xs is a tree. The goal is to select a face fx

such that for each child y:

• The alternation number of Fy is at most 4, and

• For each child z of y (and thus grandchild of x), |T �
z | ¤ 1

2 |T �
x |.

If we can do this for all x, we are done. There are 3 cases:

x is the root Let fx be the median of T �
x � T �. Then for each child y,

|T �
y | ¤ 1

2 |T �
x |, and, since Sx � bcpfxq is a truncated s-t-graph with a single

source, Fy has alternation number 2.
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Fx has alternation number 2 Let fx be the median of T �
x . Then for

each child y, |T �
y | ¤ 1

2 |T �
x |, and, by Lemma 2.5, Fy has alternation number

at most 4.

Fx has alternation number 4 Let t0 and t1 be the local targets of Fx
and let f0, f1 P V �rT �

x s be (not necessarily distinct) faces incident to t0 and
t1 respectively. Now choose fx as the projection of the median m of T �

x on
the path f0, . . . , f1 in T �

x (see Figure 2.3). By Lemma 2.6 this means that for
any child y of x, the alternation number of the parent frame Fy is at most 4.
- If fx � m then |T �

y | ¤ 1
2 |T �

x |.
- If fx � m and T �

y is not the component of m in T �
x zE�rbcpfxqs, then

|T �
y | ¤ 1

2 |T �
x |.

- If fx � m, and T �
y is the component of m in T �

x zE�rbcpfxqs, then T �
y con-

tains neither f0 nor f1, so by Lemma 2.6 the parent frame Fy has alternation
number at most 2 and we have just shown this means any child z of y has
|T �
z | ¤ 1

2 |T �
y | ¤ 1

2 |T �
x |.

2.3.2 Constructing a good s-t-decomposition in linear time

In the construction of an s-t-decomposition, a face is chosen, some edges are
deleted, and new connected components of the dual graph arise. We then
recurse on the new connected components of the dual graph. By Lemma 2.4
we can choose a tree/cotree-decomposition such that each component that
arises is spanned by a subtree of the cotree.

To obtain linear construction time, we use a variation of the decremental
tree connectivity algorithm from [11] to keep track of the subtrees of the
cotree, and associate some information with each subtree. In particular,
when T �

x is a component at some point, we can in constant time �nd the
node x.

For each node x we keep the set of target vertices on Fx (or H if x is the
root), and a face in T �

x incident to each target in the set.
Build a top tree (see [10]) of height Oplog nq over T �, and let v�n�i be

the i'th face that stops being boundary during the construction. Using this
enumeration, the boundary faces of a cluster will be visited before boundary
faces of their descendants. We use this ordering to �nd the splitting faces of
the s-t-decomposition.

For each v�i , we can use the connectivity structure to �nd the relevant
node x to split. We then need to choose the target face fx de�ning the
split. If x is the root or Fx is a 2-frame, we just set fx � v�i . If Fx is
a 4-frame, the information in x contains a pair of faces f1, f2 and we use a
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static nearest common ancestor data structure from Harel and Tarjan [76] to
�nd the projection fx � πpv�i q of v�i on f1, � � � , f2. Note that the projection
of v�i is always contained in the same connected component as f1, f2, and
thus, the data structure for the whole tree su�ces to answer this query for
the particular subtree.

Once fx has been selected, we traverse the graph backwards from the
vertices of fx until we have found all the edges with destination in Cx. This
search takes |Cx| time. We delete these edges from the forest as we go along.
Once we are done, we take all targets in Cx and select an incident face for
each component it is incident to. This again takes |Cx| time. If fx � v�i we
try with v�i again, otherwise we move on to v�i�1.

Lemma 2.7. The s-t-decomposition constructed via the approach sketched
above has no frame of alternation number ¡ 4.

Proof. Components with 2-frames always have children with 2- and 4-frames.
For components with 4-frames, this follows directly from Lemma 2.5, since
we chose a splitting face on the cotree path between faces near the two
targets.

Lemma 2.8. The s-t-decomposition constructed via the approach sketched
above has height Oplog nq.

Proof. Since the top-tree has height Oplog nq, choosing the boundary face
v�i as a splitting face every time would result in a tree of the same height;
Oplog nq. However, for each 4-frame, we might choose a face fx � v�i which is
the projection of v�i on f1 . . . f2. As noted in Lemma 2.5, when this happens,
v�i will lie in a child which has a 2-frame. But then, v�i will be the splitting
face for that child. We thus increase the height by no more than a factor 2,
and the s-t-decomposition has height 2Oplog nq � Oplog nq.

Lemma 2.9. Let G � pV,Eq be a plane single-source graph with source s,
then we can construct a good s-t-decomposition of G in linear time.

Proof. Since the top-tree can be constructed in linear time, and since the
decremental connectivity for trees takes linear time, and since the static
nearest common ancestor data stucture is constructed in linear time and
answers queries in constant time, the construction takes linear time. By
Lemma 2.7 and 2.8, the resulting s-t-decomposition is good.
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2.3.3 2-frames

Given a graph G with vertices V and edges E, we have shown how to con-
struct an st-decomposition T in linear time. An st-decomposition is a tree
with st-nodes and st-edges. Each non-root st-node, x, has a frame Fx, which
will either be a 2-frame or a 4-frame. We say that the st-node has a 2- or a
4-frame.

Since we want to reason about the relationship between 2-frames, dis-
regarding 4-frames, we construct a 2-frame-decomposition from the st-
decomposition. The 2-frame-decomposition is a tree whose nodes are con-
tracted subtrees of the st-decomposition. Speci�cally, each st-node with a
4-frame is contracted with its nearest ancestor with a 2-frame.

De�nition 2.4. Let T be an st-decomposition of G � pV,Eq. Then we
can de�ne a 2-frame-decomposition T2 by contracting each st-edge pz, yq in
T where the child z of y has a 4-frame. For each node x in T2 that is
contracted from a set of nodes Y � T , de�ne Cx :� �

yPY Cy, and if x is not
the root, de�ne Fx :� FlcapY q and Ex :� ElcapY q.

Recall, Ex are the edges with their tail on the frame Fx. If the frame is
a 2-frame, it consists of a clockwise and a counterclockwise disegment. The
embedding of G gives a natural cyclic order to Ex, and we can partition the
edges of Ex into two contiguous subsets in that cyclic order, such that all
tails in one subset are on the clockwise disegment of Fx and all tails in the
other subset are on the counterclockwise disegment of Fx. We notice that
there exists a partitioning of all edges whose tail is on a 2-frame, into sets
R and L such that for any Ex, the sets Ex X L and Ex X R form such a
partition.

De�nition 2.5. Let pL,Rq be the partition of YxPT2Ex de�ned as follows:
For each pu, vq P YxPT2Ex let y be the node (if it exists) closest to the root
of T2 such that pu, vq P Ey but u is not the target vertex of Fy. If y exists
and pu, vq is incident to a corner on the clockwise disegment of Fy between
sy and ty assign pu, vq to R, otherwise assign pu, vq to L.
Lemma 2.10. Let pL,Rq be the partition from De�nition 2.5. Then for any
x P T2, pEx X L, Ex XRq is a partition of Ex, such that all tails in Ex X L
are on the clockwise disegment of Fx, and all tails in Ex X R are on the
counterclockwise disegment of Fx.

Proof. Let x P T2, let pu, vq P Ex. If u is the source or the target of Fx,
it is on both the disegments, and we are done. Suppose therefore that u is
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neither, and thus, lies on exactly one disegment of Fx. Let y P T2 be the
st-node closest to the root such that pu, vq P Ey, and such that u is not the
target vertex of Ey, as in the de�nition. Since u is not the source vertex of
Fx, u cannot be the source vertex of Fy. That means, u lies on exactly one
disegment of Fy.

Assume for contradiction that u lies on the clockwise disegment of Fx
but the counterclockwise disegment of Fy. Then, there must be some st-
node x1 on the path between y and x in T2 such that u lies on the clockwise
disegment of x1 and on the counterclockwise disegment of x1's parent, z.

First note that u cannot be the target vertex of Fz, since then x � x1 � y.
Also, u cannot be the source of neither Fz or Fx1 , as then u would be the
source of Fx. So u lies only on the counterclockwise disegment of Fz. Then,
the source vertex sx1 of Fx1 belongs to bcpfzq, and any non-trivial path from
sx1 to u would belong to Cz, and thus to u's frame at that level, causing
pu, vq to belong to the clockwise disegment. That means if u belongs to the
counterclockwise disegment of Fz, we must have sx1 � u, a contradiction.

Each vertex belongs to some node of T2, and thus, we can de�ne the
depth of the vertex in the T2-tree:

De�nition 2.6. Let T2 be a 2-frame-decomposition of G � pV,Eq. For any
vertex v P V de�ne:

c2rvs :� The node x in T2 such that v P V rCxs
d2rvs :� The depth of c2rvs in T2

Given a vertex, v, and given a frame F that is ancestral to v in the st-
decomposition, each disegment on F contains a last vertex that can reach v
via an ingoing edge. Thus, all other vertices on the frame can reach v via
an ingoing edge if and only if they can reach v via one of those last vertices
(see Figure 2.4). For 2-frames, such vertices will be called lipvq and ripvq
and are de�ned as follows:

De�nition 2.7. For any 0 ¤ i   d2rvs, let x be the ancestor of c2rvs at
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v

ri(v)
li(v)

ti(v)

si(v)

Figure 2.4: The best two vertices that can reach v on level i.

depth i� 1 and de�ne:

Eipvq :� Ex

Lipvq :� Ex X L
Ripvq :� Ex XRpLipvq :�  pw,w1q P Lipvq

�� w1 ù v
(

pRipvq :�  pw,w1q P Ripvq
�� w1 ù v

(
pFipvq :� pLipvq Y pRipvq
lipvq :�

$'&'%
K if pLipvq � H
the last vertex in initppLipvqq on the

counterclockwise dipath of Fx
otherwise

ripvq :�

$'&'%
K if pRipvq � H
the last vertex in initp pRipvqq on the

clockwise dipath of Fx
otherwise

Additionally, let Lipvq and pLipvq be totally ordered by the position of the
starting vertices on the counterclockwise disegment of Fx and the clockwise
order around each starting vertex. Similarly let Ripvq and pRipvq be totally
ordered by the position of the starting vertices on the clockwise disegment
of Fx and the counterclockwise order around each starting vertex.

The goal in this section is a data structure for e�ciently computing lipvq
and ripvq for 0 ¤ i   d2rvs. The main idea that almost works is to represent
each function with a suitable rooted forest and use a level ancestor structure
on that forest to answer queries.
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De�nition 2.8. For any vertex v P V , de�ne the left parent plrvs and right
parent prrvs as

plrvs :�
#
K if d2rvs � 0

ld2rvs�1pvq otherwise

prrvs :�
#
K if d2rvs � 0

rd2rvs�1pvq otherwise

and let Tl and Tr denote the rooted forests over V whose parent pointers are
pl and pr respectively.

Using these trees we can de�ne functions l1ipvq and r1ipvq (related but not
always equal to lipvq and ripvq), as the nearest ancestor to v in Tl or Tr
with depth ¤ i. We will later show how to use a level ancestor structure to
compute these e�ciently, but for our proofs it is more convenient to de�ne
them recursively as follows.

De�nition 2.9. For any v P V Y tKu, and i ¥ 0 let

l1ipvq :�
#
v if v � K_ d2rvs ¤ i

l1ipplrvsq otherwise

r1ipvq :�
#
v if v � K_ d2rvs ¤ i

r1ipprrvsq otherwise

v

m=ri(v)

l'i(li+1(v))

li(v)

Figure 2.5: The best path from Lipvq to v goes via ri�1pvq.
As mentioned, we do not always have lipvq � l1ipvq and ripvq � r1ipvq.

When Fy is the parent frame of Fx in T2, there are two cases for the best
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vertices on Fy in relation to the best vertices of Fx, call them l, r. Either
the left parent of l and the right parent of r are the best vertices on Fy, or
there is a crossing, to one or the other side, e.g. when the left parent of r is
later than the left parent of l on their disegment of Fy (see Figure 2.5).

Lemma 2.11 (Crossing lemma). Let v P V , and 0 ¤ i   d2rvs � 1.

lipvq � l1ipli�1pvqq ùñ lipvq � l1ipmq ^ ripvq � r1ipmq ^ d2rms � i� 1

where m � ri�1pvq � K
ripvq � r1ipri�1pvqq ùñ lipvq � l1ipmq ^ ripvq � r1ipmq ^ d2rms � i� 1

where m � li�1pvq � K

The proof needs som additional technical lemmas, and is deferred to the
end of this section. What the lemma says is that when there is a crossing
at level i, then there exists some crossing vertex m P tri�1pvq, li�1pvqu such
that the left- and right-parents of m are the best vertices that can reach v
on level i. We de�ne mipvq as either the crossing vertex at level i, if there is
a crossing, or the nearest crossing vertex on a descendent level, otherwise.

De�nition 2.10. Let v P V and 0 ¤ i   d2rvs.

mipvq :�

$''''&''''%
v if i� 1 � d2rvs
li�1pvq if i� 1   d2rvs ^ ripvq � r1ipri�1pvqq
ri�1pvq if i� 1   d2rvs ^ lipvq � l1ipli�1pvqq
mi�1pvq otherwise

Corollary 2.1. Let v P V and 0 ¤ i   d2rvs � 1. If lipvq � l1ipli�1pvqq or
ripvq � r1ipri�1pvqq then

lipvq � l1ipmipvqq ^ ripvq � r1ipmipvqq ^ d2rmipvqs � i� 1

Proof. This is just a reformulation of Lemma 2.11 in terms of mipvq.

Given this de�nition of mipvq, one may always �nd the best vertices that
can reach v, lipvq and ripvq as the left- and right-ancestors of mipvq.

Lemma 2.12. For any vertex v P V and 0 ¤ i   d2rvs

lipvq � l1ipmipvqq ^ ripvq � r1ipmipvqq
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Proof at the end of this section.
To calculate lipvq and ripvq quickly for some given i, the idea is to store

for each vertex a bit array of whether there is a crossing at a given level,
then to calculate the crossing vertex for that level, and then �nd the left- and
right-ancestors for that crossing vertex. To represent the function mipvq, we
again use a suitable rooted forest, and use a level ancestor structure on that
forest to answer queries.

De�nition 2.11. For any vertex v P V , let

M rvs :� ti| 0   i   d2rvs ^mi�1pvq � mipvqu

pmrvs :�
#
K if M rvs � H
mmaxMrvs�1pvq otherwise

And de�ne Tm as the rooted forest over V whose parent pointers are pm.

Theorem 2.4. There exists a practical RAM data structure that for any
good st-decomposition of a graph with n vertices uses Opnq words of Oplog nq
bits and can answer lipvq and ripvq queries in constant time.

Proof. For any vertex v P V , let

Dlrvs :� ti| v has a proper ancestor w in Tl with d2rws � iu
Drrvs :� ti| v has a proper ancestor w in Tr with d2rws � iu

Now, store level ancestor structures for each of Tl, Tr, and Tm, together with
d2rvs, Dlrvs, Drrvs, and M rvs for each vertex. Since the height of the st-
decomposition is Oplog nq each of Dlrvs, Drrvs, andM rvs can be represented
in a single Oplog nq-bit word.

This representation allows us to �nd d2rmipvqs � succpM rvsYtd2rvsu , iq
in constant time, as well as computing the depth in Tm of mipvq. Then,
using the level ancestor structure for Tm, we can compute mipvq in constant
time.

Similarly, this representation of the Dlrvs set lets us compute the depth
in Tl of l1ipvq in constant time, and with the level ancestor structure, this lets
us compute l1ipvq in constant time. A symmetric argument shows that we
can compute r1ipvq in constant time.

Finally, lemma 2.12 says we can compute lipvq and ripvq in constant time
given constant-time functions for l1, r1, and m.
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Technical lemmas and proofs

To prove Lemmas 2.11 and 2.12, we use some technical lemmas.

Lemma 2.13. For any u, v P V and 0 ¤ i   d2rus: If u ù v thenpLipuq � pLipvq and pRipuq � pRipvq.
Proof. Since u ù v, c2rus is ancestor to c2rvs and so Lipuq � Lipvq and
hence pLipuq � pLipvq. Similarly, Ripuq � Ripvq and pRipuq � pRipvq.

When an edge pw,w1q that lies on a path from s to v skips several levels,
that is, w1 lies on a level possibly much higher than that of w, then pw,w1q
belongs to either L̂ or R̂ of v for all those levels:

Lemma 2.14. Given any vertex v P V , 0 ¤ i   d2rvs, and pw,w1q P Eipvq.
Then:

pw,w1q P pLipvq ùñ
pw,w1q P pLi1pvq for all i1, d2rws ¤ i1   min

 
d2rw1s, d2rvs

(
pw,w1q P pRipvq ùñ

pw,w1q P pRi1pvq for all i1, d2rws ¤ i1   min
 
d2rw1s, d2rvs

(
Proof. Let j � d2rws and k � min td2rw1s, d2rvsu. Clearly pw,w1q P Ei1pvq
for all j ¤ i1   k. Suppose pw,w1q P pLipvq � Lipvq, then since j ¤ i   k the
de�nition give us pw,w1q P Li1pvq for all j ¤ i1   k. And since w1 ù v this
implies pw,w1q P pLi1pvq for all j ¤ i1   k and the result follows. The case for
R is symmetric.

The vertices that are left and right level ancestors l1ipvq and r1ipvq from
De�nition 2.9 are tails of edges of L̂ipvq and R̂ipvq:
Lemma 2.15. Let v P V , and i ¥ 0 be given, then

i � d2rvs � 1 ùñ l1ipvq � lipvq ^ r1ipvq � ripvq
i ¤ d2rvs � 1 ùñ l1ipvq P initppLipvqq Y tKu ^ r1ipvq P initp pRipvqq Y tKu
i ¡ d2rvs � 1 ùñ l1ipvq � v ^ r1ipvq � v

Proof. We will show this for l1 only, as r1 is completely symmetrical. If
i ¡ d2rvs � 1 then d2rvs ¤ i and we get l1ipvq � v directly from the de�nition
of l1. Similarly if i � d2rvs � 1 then l1ipvq � l1ipplrvsq � l1ipld2rvs�1pvqq �
l1iplipvqq � lipvq P initppLipvqq Y tKu. Finally suppose i   d2rvs � 1. If
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l1ipvq � K we are done, so suppose that is not the case. Let u be the child
of l1ipvq in Tl that is ancestor to v. Then l1ipvq � l1ipuq � plrus � ld2rus�1puq.
By de�nition of ld2rus�1puq there exists an edge pw,w1q P pLd2rus�1 where w �
ld2rus�1puq and d2rws ¤ i   d2rw1s ¤ d2rus and by setting pv, i, pw,w1qq �
pu, d2rus � 1, pw,w1qq in Lemma 2.14 we get pw,w1q P pLipuq, and therefore
l1ipvq P initppLipuqq. But since uù v we have pLipuq � pLipvq by Lemma 2.13
and we are done.

We prove the following two intuitive lemmas: The level ancestor of a
level ancestor of v is again the level ancestor of v, and if lipvq � K, then the
i'th level ancestor of li�1pvq is also K (similar for ripvq).

u
u'

w'
w

v

Figure 2.6: If l1ipli�1q � li, then any path from li to v must go through
Ri�1pvq.

Lemma 2.16. Let v P V and 0 ¤ i ¤ j then

l1ipl1jpvqq � l1ipvq ^ r1ipr1jpvqq � r1ipvq
Proof. l1jpvq is on the path from v to l1ipvq in Tl, so this follows trivially from
recursion. The case for r1 is symmetric.

Lemma 2.17. Let v P V , and 0 ¤ i   d2rvs � 1, then

lipvq � K ùñ l1ipli�1pvqq � K
ripvq � K ùñ r1ipri�1pvqq � K

Proof. If lipvq � K then pLipvq � H, so either li�1pvq � K imply-
ing l1ipli�1pvqq � K by the de�nition of l1, or li�1pvq R initppLipvqq so
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d2rli�1pvqs � i � 1 and by Lemma 2.15 and Lemma 2.13 l1ipli�1pvqq P
initppLipli�1pvqqq Y tKu � initppLipvqq Y tKu � tKu so again l1ipli�1pvqq � K.
The case for r is symmetric.

We may now prove Lemma 2.11 (Crossing Lemma).

Proof of Lemma 2.11 (Crossing Lemma). Suppose lipvq � l1ipli�1pvqq (the
case ripvq � r1ipri�1pvqq is symmetrical). Let m � ri�1pvq. We then aim
to show, �rst, d2rms � i� 1, and secondly, lipvq � l1ipmq and ripvq � r1ipmq.
If lipvq � l1ipli�1pvqq, then lipvq � K by lemma 2.17. Thus, there is a last
edge pw,w1q P pLipvq with w � lipvq and d2rws ¤ i   d2rw1s and a path
P � w1 ù v.

Now, pw,w1q R Ei�1pvq, since otherwise by De�nition 2.7 pw,w1q P
Li�1pvq and since w1 ù v even pw,w1q P pLi�1pvq implying lipvq � li�1pvq
and thus lipvq � l1ipli�1pvqq by Lemma 2.15, contradicting our assumption.

Since pw,w1q R Ei�1pvq, the path P must cross pFi�1pvq. (See Figure 2.6.)
Let pu, u1q be the unique edge in P X pFi�1pvq. Then, w1 ù u so d2rus ¥
d2rw1s ¥ i � 1 and pu, u1q R Li�1pvq since otherwise d2rli�1pvqs � i � 1 and
hence by Lemma 2.15 lipvq � l1ipli�1pvqq, again contradicting our assumption.
Since pFi�1pvq � H, we therefore have pu, u1q P pRi�1pvq. But then we can
choose P so it goes through pm,m1q where m � ri�1pvq � K. Now i� 1 ¤
d2rw1s ¤ d2rri�1pvqs ¤ i� 1 so d2rms � i� 1.

Finally, let e be the last edge in pRipvq. Then, any path ripvqù v that
starts with e crosses P Y pRi�1pvq, implying that there exists such a path
that contains pm,m1q and thus ripvq � ripmq. Since d2rms � i� 1, then
lipvq � l1ipmq and ripvq � r1ipmq follows from Lemma 2.15.

We may now prove the essential Lemma stating that lipvq � l1ipmipvqq
(and similar for ri):

Proof of Lemma 2.12. The proof is by induction on j, the number of times
the �otherwise� case is used before reaching one of the other cases when
expanding the recursive de�nition of mipvq.

For j � 0, either i� 1 � d2rvs and the result follows from Lemma 2.15,
or i� 1   d2rvs and lipvq � l1ipli�1pvqq or ripvq � r1ipri�1pvqq. In either case
we have by Corollary 2.1 that lipvq � l1ipmipvqq and ripvq � r1ipmipvqq.

For j ¡ 0 we have i � 1   d2rvs and lipvq � l1ipli�1pvqq and ripvq �
r1ipri�1pvqq and mipvq � mi�1pvq. By induction we can assume that
li�1pvq � l1i�1pmi�1pvqq and ri�1pvq � r1i�1pmi�1pvqq. Then by Lemma 2.16,
l1ipli�1pvqq � l1ipl1i�1pmi�1pvqqq � l1ipmi�1pvqq � l1ipmipvqq, showing that
lipvq � l1ipmipvqq as desired. The case for r is symmetric.
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2.3.4 4-frames

Given a vertex and an ancestral frame, F , we have now seen how to �nd the
at most two best vertices on F that can reach v when F a 2-frame. A similar
statement is true for 4-frames, only now we have four disegments, and thus,
up to four best vertices. To �nd the best vertices, we may use Theorem 2.4
as a subroutine, and thus we only need to get from the nearest descendent
2-frame, if it exists, to a given level. That is, we may disregard edges that
cross a 2-frame.

In our construction, we exploit that whenever a 4-frame occurs, it shares
at least one target with its parent frame. In particular, if its parent is again
a 4-frame, they share a target vertex.

De�nition 2.12. Let x be a node in an s-t-decomposition such that Fx is
a 4-frame, and let y be its parent. Let s0

x and s1
x be the source corners on

Fx and let t0x and t1x be the target corners on Fx, numbered such that their
clockwise cyclic order on Fx is s0

x, t
0
x, s

1
x, t

1
x, and such that if Fy is a 4-frame

there is an α P t0, 1u so tαx � tαy .

Recall from 2-frames that we found a global partition of all the down-
edges whose tail is on a 2-frame into two sets L and R. It turns out we
can partition the remaining down-edges (those that are only in 4-frames)
into four sets L0, R0, L1, and R1, such that for edges that do not cross a
2-frame, the partitioning corresponds to the four disegments.

De�nition 2.13. Let E4 be the set of down-edges pu, vq such that for all
st-nodes x where pu, vq P Ex, Fx is a 4-frame. Let pL0,R0,L1,R1q be the
partition of E4 de�ned as follows: For each pu, vq P E4 let x be the node
such that v P Cx, and let y be the node (if it exists) closest to the root of
T such that pu, vq P Ey and u is not a target vertex of Fy. If y exists, then
pu, vq is incident to a corner c on Fy. If there is an α P t0, 1u such that c is
on the clockwise disegment of Fy between sαy and tαy we assign pu, vq to Rα.
Otherwise there must be an α P t0, 1u such that c is on the counterclockwise
disegment of Fy between s1�α

y and tαy , and we assign pu, vq to Lα. If no such
y exists, pu, vq must be incident to tαx for some α P t0, 1u and we (arbitrarily)
assign pu, vq to Lα.
Lemma 2.18. Let pL0,R0,L1,R1q be the partition from De�nition 2.13.
Then, for any x P T , pEx X L0, Ex XR0, Ex X L1, Ex XR1q is a partition
of Ex X E4, such that for α P t0, 1u all tails in Ex XRα are on the clockwise
disegment of Fx between sα and tα, and all tails in Ex X Lα are on the
counterclockwise disegment of Fx between s1�α and tα.
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Proof. Consider an edge pu, vq P E4. If u is a target vertex in all frames Fx
where pu, vq P Ex, then by De�nitions 2.12 and 2.13 there is an α P t0, 1u
such that pu, vq in Lα and tαx � u for all such st-nodes x. Thus, for each
such x, the tail of pu, vq is on the counterclockwise disegment of Fx between
s1�α
x and tαx as required.
Otherwise, there is an st-node y and an α P t0, 1u, such that u is not

a target of Fy, and for any ancestor z to y with pu, vq P Ez, u � tαz . By
De�nition 2.13, we then have pu, vq in either Lα or Rα, and tαz is on both the
required segments. Thus, the statement holds for edges incident to a target
of Fx.

Finally, let z and x be st-nodes such that z is the parent of x and pu, vq P
Ez X Ex, and u is not a target of Fz. Then, u is not a target of Fx, either,
and:

• If u is on the clockwise disegment between sαz and tαz , then u is on the
clockwise disegment between sαx and tαx .

• If u is on the counterclockwise disegment between s1�α
z and tαz , then u

is on the counterclockwise disegment between s1�α
x and tαx .

Thus, since u is on the correct disegment of Fy, it will also be on the correct
disegment of all descendants of y, and we are done.

Similar to the de�nition of d2rvs; v's depth in T2, we may de�ne the depth
of v in the entire st-decomposition, T . Given a vertex v belonging to some
st-node crvs, we let j2rvs denote the nearest ancestor to crvs whose frame is
a 2-frame.

De�nition 2.14. Let T be an st-decomposition of G � pV,Eq. For any
vertex v P V de�ne:

crvs :� The node x in T such that v P V rCxs
drvs :� The depth of crvs in T
J2rvs :� tdepthpxq| x is a non-root ancestor to crvs in T and Fx is a 2-frameu
j2rvs :� maxpJ2rvsqq

The number j2rvs is especially useful for 4-frame nodes. On the path
from the root to the component of v in the s-t-decomposition tree, there will
be a last component whose frame is a 2-frame. We call the depth of the next
component on the path j2rvs. If crvs has a 4-frame, then for the rest of the
path, that is, depth i with j2rvs ¤ i   drvs, we will have 4-frames nested in
4-frames, which gives a lot of useful structure.
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Given a vertex v and a 4-frame F ancestral to v, we may now de�ne the
at most four best vertices that can reach v; one for each disegment of F .
They will be called l0i pvq, r0

i pvq, l1i pvq, and r1
i pvq.

De�nition 2.15. For any j2rvs ¤ i   drvs and α P t0, 1u, let x be the
ancestor of crvs at depth i� 1 and de�ne:

Fipvq :� Fx Eipvq :� Ex X E4

Lαi pvq :� Ex X Lα Rαi pvq :� Ex XRαpLαi pvq :�  pw,w1q P Lαi pvq
�� w1 ù v

(
pRαi pvq :�  pw,w1q P Rαi pvq

�� w1 ù v
(

pFipvq :� pL0
i pvq Y pR0

i pvq Y pL1
i pvq Y pR1

i pvq

lαi pvq :�

$'&'%
K if pLαi pvq � H
the last vertex in initppLαi pvqq on the

counterclockwise dipath of Fx
otherwise

rαi pvq :�

$'&'%
K if pRαi pvq � H
the last vertex in initp pRαi pvqq on the

clockwise dipath of Fx
otherwise

sαi pvq :� The vertex associated with sαx
tαi pvq :� The vertex associated with tαx

Additionally, let Lαi pvq and pLαi pvq be totally ordered by the position of the
starting vertices on the counterclockwise disegment of Fx and the clockwise
order around each starting vertex. Similarly, let Rαi pvq and pRαi pvq be totally
ordered by the position of the starting vertices on the clockwise disegment
of Fx and the counterclockwise order around each starting vertex.

We know from Section 2.3.3 that we can �nd the relevant vertices on
each 2-frame surrounding v. The goal in this section is a data structure for
e�ciently computing lαi pvq and rαi pvq for j2rvs ¤ i   drvs.

As for 2-frames, the idea is to de�ne some suitable trees that allow us to
compute some related functions, and a crossing lemma that lets us use these
to compute the functions we actually want.
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De�nition 2.16. For any vertex v P V and α P t0, 1u let

pαl rvs :�
#
K if drvs � 0_ Fdrvs�1pvq is a 2-frame

lαdrvs�1pvq otherwise

pαr rvs :�
#
K if drvs � 0_ Fdrvs�1pvq is a 2-frame

rαdrvs�1pvq otherwise

and let Tαl and Tαr denote the rooted forests over V whose parent pointers
are pαl and pαr respectively.

De�nition 2.17. For any v P V Y tKu, α P t0, 1u, and i ¥ j2rvs let

l1αi pvq :�
#
v if v � K_ drvs ¤ i

l1αi ppαl rvsq otherwise

r1αi pvq :�
#
v if v � K_ drvs ¤ i

r1αi ppαr rvsq otherwise

Lemma 2.19 (Crossing lemma). Let v P V , α P t0, 1u, and j2rvs ¤ i  
drvs � 1.

lαi pvq � l1αi plαi�1pvqq ùñ lαi pvq � l1αi pmq ^ rαi pvq � r1αi pmq ^ drms � i� 1

where m � rαi�1pvq � K
rαi pvq � r1αi prαi�1pvqq ùñ lαi pvq � l1αi pmq ^ rαi pvq � r1αi pmq ^ drms � i� 1

where m � lαi�1pvq � K
This Crossing Lemma (see Figure 2.7) is the 4-frame version of

Lemma 2.11. Again, the proof needs som additional technical lemmas, and
is deferred to the end of this section.

De�nition 2.18. Let v P V , α P t0, 1u, and j2rvs ¤ i   drvs.

mα
i pvq :�

$''''&''''%
v if i� 1 � drvs
lαi�1pvq if i� 1   drvs ^ rαi pvq � r1αi prαi�1pvqq
rαi�1pvq if i� 1   drvs ^ lαi pvq � l1αi plαi�1pvqq
mα
i�1pvq otherwise

Corollary 2.2. Let v P V , α P t0, 1u, and j2rvs ¤ i   drvs � 1. If lαi pvq �
l1αi plαi�1pvqq or rαi pvq � r1αi prαi�1pvqq then
lαi pvq � l1αi pmα

i pvqq ^ rαi pvq � r1αi pmα
i pvqq ^ drmα

i pvqs � i� 1
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s0i

s1i

t1i

t0i

m0i

v

Figure 2.7: Sometimes, the best path from L0
i pvq to v must go through

R0
i�1pvq.

Proof. This is just a reformulation of Lemma 2.19 in terms of mα
i pvq.

Lemma 2.20. For any vertex v P V , α P t0, 1u, and j2rvs ¤ i   drvs

lαi pvq � l1αi pmα
i pvqq ^ rαi pvq � r1αi pmα

i pvqq

De�nition 2.19. For any vertex v P V , and α P t0, 1u let

Mαrvs :�  
i
�� j2rvs   i   drvs ^mα

i�1pvq � mα
i pvq

(
pαmrvs :�

#
K if Mαrvs � H
mα

maxMαrvs�1pvq otherwise

And de�ne Tαm as the rooted forest over V whose parent pointers are pαm.

Theorem 2.5. There exists a practical RAM data structure that for any
good st-decomposition of a graph with n vertices uses Opnq words of Oplog nq
bits and can answer lαi pvq and rαi pvq queries in constant time.

Proof. For any vertex v P V , and α P t0, 1u let

Dα
l rvs :� ti| v has a proper ancestor w in Tαl with drws � iu

Dα
r rvs :� ti| v has a proper ancestor w in Tαr with drws � iu

Now, store level ancestor structures for each of Tαl , T
α
r , and Tαm, together

with drvs, j2rvs, J2rvs, Dα
l rvs, Dα

r rvs, and Mαrvs for each vertex. Since the
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height of the st-decomposition is Oplog nq each of J2rvs, Dα
l rvs, Dα

r rvs, and
Mαrvs can be represented in a single Oplog nq-bit word.

This representation allows us to �nd drmα
i pvqs � succpMαrvsYtdrvsu , iq

in constant time, as well as computing the depth in Tαm of mα
i pvq. Then

using the level ancestor structure for Tαm we can compute mα
i pvq in constant

time.
Similarly, this representation of the Dα

l rvs set lets us compute the depth
in Tαl of l1αi pvq in constant time, and, with the level ancestor structure, this
lets us compute l1αi pvq in constant time. A symmetric argument shows that
we can compute r1αi pvq in constant time.

Finally, lemma 2.20 says we can compute lαi pvq and rαi pvq in constant
time given constant-time functions for l1, r1, and m.

Technical lemmas and proofs (4-frames)

To prove the Lemmas 2.19 and 2.20, we prove some technical lemmas.

Lemma 2.21. For any vertex v P V and j2rvs ¤ i   drvs: pFipvq � H
Proof. Let x be the ancestor of crvs at depth i�1. Since G is a single-source
graph, there is a path from s to v. This path must contain a vertex in
V rFxs. But then the edge following the last such vertex on the path must
be in pL0

i pvq Y pR0
i pvq Y pL1

i pvq Y pR1
i pvq which is therefore nonempty.

Lemma 2.22. For any u, v P V , j2rvs ¤ i   drus, and α P t0, 1u: If uù v
then pLαi puq � pLαi pvq and pRαi puq � pRαi pvq.
Proof. Since u ù v, crus is ancestor to crvs, and so, Lαi puq � Lαi pvq, and
hence, pLαi puq � pLαi pvq. Similarly, Rαi puq � Rαi pvq, and pRαi puq � pRαi pvq.
Lemma 2.23. Given any vertex v P V , j2rvs ¤ i   drvs, α P t0, 1u, and
pw,w1q P Eipvq. Then:

pw,w1q PpLαi pvq ùñ
pw,w1q P pLαi1pvq for all i1,max tdrws, j2rvsu ¤ i1   min

 
drw1s, drvs(

pw,w1q P pRαi pvq ùñ
pw,w1q P pRαi1pvq for all i1,max tdrws, j2rvsu ¤ i1   min

 
drw1s, drvs(

Proof. Let j � max tdrws, j2rvsu and k � min tdrw1s, drvsu. Clearly,
pw,w1q P Ei1pvq for all j ¤ i1   k. Suppose pw,w1q P pLαi pvq � Lαi pvq, then,
since j ¤ i   k, the de�nition gives us pw,w1q P Lαi1pvq for all j ¤ i1   k.
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And since w1 ù v, this implies pw,w1q P pLαi1pvq for all j ¤ i1   k and the
result follows. The case for R is symmetric.

Lemma 2.24. Let v P V , α P t0, 1u, and i ¥ j2rvs be given, then

i � drvs � 1 ùñ l1αi pvq � lαi pvq ^ r1αi pvq � rαi pvq
i ¤ drvs � 1 ùñ l1αi pvq P initppLαi pvqq Y tKu ^ r1αi pvq P initp pRαi pvqq Y tKu
i ¡ drvs � 1 ùñ l1αi pvq � v ^ r1αi pvq � v

Proof. We will show this for l1 only, as r1 is completely symmetrical. If
i ¡ drvs � 1 then drvs ¤ i and we get l1αi pvq � v directly from the
de�nition of l1. Similarly, if i � drvs � 1, then l1αi pvq � l1αi ppαl rvsq �
l1αi plαdrvs�1pvqq � l1αi plαi pvqq � lαi pvq P initppLαi pvqq Y tKu. Finally, sup-
pose i   drvs � 1. If l1αi pvq � K we are done, so suppose that is not
the case. Let u be the child of l1αi pvq in Tl that is ancestor to v. Then
l1αi pvq � l1αi puq � pαl rus � lαdrus�1puq. By de�nition of lαdrus�1puq, there exists
an edge pw,w1q P pLαdrus�1 where w � lαdrus�1puq and drws ¤ i   drw1s ¤ drus,
and by setting pv, i, pw,w1qq � pu, drus � 1, pw,w1qq in Lemma 2.23, we get
pw,w1q P pLαi puq, and therefore l1αi pvq P initppLαi puqq. But since u ù v we
have pLαi puq � pLαi pvq by Lemma 2.22 and we are done.

Lemma 2.25. Let v P V , α P t0, 1u, and j2rvs ¤ i ¤ j then

l1αi pl1αj pvqq � l1αi pvq ^ r1αi pr1αj pvqq � r1αi pvq

Proof. l1αj pvq is on the path from v to l1αi pvq in Tl, so this follows trivially
from the recursion. The case for r1 is symmetric.

Lemma 2.26. Let v P V , α P t0, 1u, and j2rvs ¤ i   drvs � 1, then

lαi pvq � K ùñ l1αi plαi�1pvqq � K
rαi pvq � K ùñ r1αi prαi�1pvqq � K

Proof. If lαi pvq � K then pLαi pvq � H, so either lαi�1pvq � K imply-
ing l1αi plαi�1pvqq � K by the de�nition of l1, or lαi�1pvq R initppLαi pvqq so
drlαi�1pvqs � i�1 and by Lemma 2.24 l1αi plαi�1pvqq P initppLαi plαi�1pvqqqYtKu �
initppLαi pvqq Y tKu � tKu so again l1αi plαi�1pvqq � K. The case for r is sym-
metric.

We may now prove Lemma 2.19 (Crossing Lemma).
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Proof of Lemma 2.19 (Crossing Lemma). Suppose lαi pvq � l1αi plαi�1pvqq (the
case rαi pvq � r1αi prαi�1pvqq is symmetrical). Then, lαi pvq � K by lemma 2.26.
Thus, there is a last edge pw,w1q P pLαi pvq with w � lαi pvq and drws ¤ i  
drw1s and a path P � w1 ù v.

Now, pw,w1q R Ei�1pvq, since otherwise by De�nition 2.15 pw,w1q P
Lαi�1pvq, and since w1 ù v, even pw,w1q P pLαi�1pvq, implying lαi pvq � lαi�1pvq,
and thus, lαi pvq � l1αi plαi�1pvqq by Lemma 2.24, contradicting our assumption.

Since pw,w1q R Ei�1pvq, the path P must cross pFi�1pvq. Let pu, u1q
be the unique edge in P X pFi�1pvq. Then, w1 ù u so drus ¥ i � 1 and
pu, u1q R Lαi�1pvq since otherwise drlαi�1pvqs � i�1 and hence by Lemma 2.24
lαi pvq � l1αi plαi�1pvqq, again contradicting our assumption.

Also, tαi pvq � tαi�1pvq because tαi pvq � tαi�1pvq would imply pw,w1q P
Lαi�1pvq Y tKu which we have just shown is not the case.

Since tαi pvq � tαi�1pvq, then, by de�nition, t1�αi pvq � t1�αi�1 pvq and hence
L1�α
i�1 pvq � L1�α

i pvq and R1�α
i�1 pvq � R1�α

i pvq, implying drw2s ¤ i for all
w2 P L1�α

i�1 pvq Y R1�α
i�1 pvq. Thus, pu, u1q R L1�α

i�1 pvq Y R1�α
i�1 pvq since drus ¡ i,

and we can conclude that pu, u1q P pRαi�1pvq.
But then we can choose P so it goes through pm,m1q where m �

rαi�1pvq � K. Now i� 1 ¤ drw1s ¤ drrαi�1pvqs ¤ i� 1 so drms � i� 1.

Let e be the last edge in pRαi pvq then any path rαi pvqù v that starts with
e crosses P Y pRαi�1pvq, implying that there exists such a path that contains
pm,m1q and thus rαi pvq � rαi pmq. Since drms � i� 1, then lαi pvq � l1αi pmq
and rαi pvq � r1αi pmq follows from lemma 2.24.

We may now prove the essential Lemma stating that lαi pvq � l1αi pmα
i pvqq

(and similar for rαi ):

Proof of Lemma 2.20. The proof is by induction on j, the number of times
the �otherwise� case is used before reaching one of the other cases when
expanding the recursive de�nition of mipvq.

For j � 0, either i � 1 � drvs and the result follows from Lemma 2.24,
or i � 1   drvs and lipvq � l1ipli�1pvqq or ripvq � r1ipri�1pvqq. In either case
we have by Corollary 2.2, that lαi pvq � l1αi pmα

i pvqq and rαi pvq � r1αi pmα
i pvqq.

For j ¡ 0, we have i � 1   drvs and lipvq � l1ipli�1pvqq and ripvq �
r1ipri�1pvqq and mipvq � mi�1pvq. By induction we can assume that
lαi�1pvq � l1αi�1pmα

i�1pvqq and rαi�1pvq � r1αi�1pmα
i�1pvqq. Then, by Lemma 2.25,

l1αi plαi�1pvqq � l1αi pl1αi�1pmα
i�1pvqqq � l1αi pmα

i�1pvqq � l1αi pmα
i pvqq, showing that

lαi pvq � l1αi pmα
i pvqq as desired. The case for r is symmetric.
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2.4 Acyclic planar In- out- graphs

For an in-out-graph, G, we have a source, s, that can reach all vertices of
outdegree 0. Given such a source, s, we may assign all vertices a colour: A
vertex is green if it can be reached from s, and red otherwise. We may also
colour the directed edges: pu, vq has the same colour as its endpoints, or is
a blue edge in the special case where u is red and v is green. Our idea is
to keep the colouring and �ip all non-green edges, thus obtaining a single
source graph H with source s. (Any vertex was either green and thus already
reachable from s, or could reach some target t, and is reachable from s in H
via the �rst green vertex on its path to t.)

Consider the single source reachability data structure for the red-green
graph, H. This alone does not su�ce to determine reachability in G, but it
does when endowed with a few extra words per vertex:

M1 A red vertex u must remember the additional information of the best
green vertices BestGreenpuq on its own parent frame it can reach.
There are at most 4 such vertices, one for each disegment.

M2 Information about paths from a red to a green vertex in the same com-
ponent. See Section 2.4.1.

M3 Information about paths from a red vertex in some component C to a
green vertex in an ancestor component of C. See Section 2.4.2.

Given a green vertex v, we know for each ancestral frame segment the
best vertex that can reach v. For a red vertex u, given a segment p on an
ancestral frame to u, we have information about the best vertex on p that
may reach u inH via �ingoing� edges, that is, an edge from the correspondingpFipuq. If that best vertex is red, then it is the best vertex on p that u can
reach, again, from the �inside�.

Now, reachGpu, vq has four cases, based on the colours of u and v:

• For green u and red v, reachG(u, v) = No.

• For green vertices u, v, reachGpu, vq = reachHpu, vq

• For red vertices u, v, reachGpu, vq = reachHpv, uq

• When u is red and v is green, to determine reachGpu, vq we need more
work. It will depend on where in the hierarchy of components, u and
v reside.
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..
. ..

.

...

v1,v3

v2,v4 u3,u4

u1,u2

Figure 2.8: Cases 1 through 4.

When u is red and v is green, a path from u to v must consist of a
(possibly trivial) red path, a blue edge, and a (possibly trivial) green path.
In the st-decomposition of H, red and blue edges can only either stay in an
st-node, or go towards the root. Green edges, on the contrary, stay in an
st-node, or go to a descendant. There are the following cases (see Figure
2.8) for reachGpu, vq, based on where in the heirarchy of components u and
v are.

1. crus � crvs. There may be a path from u to v:

• Staying within the st-node, that is, reachcruspu, vq. To handle this
case we need to store more information, see Section 2.4.1.

• Via a green vertex w in the parent frame of u. For each candidate
w P BestGreenpuq, try reachHpw, vq. (See M1).

2. crus   crvs. There may be a path from u to v:

• Via a green vertex w in the parent frame of u, reachHpw, vq. (See
M1).

• Via a green vertex w, where crws � crus, then reachGpu,wq is
in case 1 above. v can calculate the at most 4 such ws from the
single source structure, namely lpvq and rpvq, or lαpvq and rαpvq.

3. crus ¡ crvs. There may be a path from u to v:
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• Via a red edge pw1, wq in G with crws ¨ crvs   crw1s ¨ crus. That
is, in the single-source structure for H, u can �nd its best vertex
w for each disegment of the parent frame of crvs. For a path via
that disegment to exist, w must be red, and reachGpw, vq, which
is in case 1 or 2 above, must return true.

• Via a blue edge pw1, wq with crws ¨ crvs   crw1s ¨ crus. We
handle this case in Section 2.4.2.

4. crus, crvs ¡ N , where N � lcapcrus, crvsq. A path from u to v must go:

• Via w, crws ¨ N , then reachGpu,wq is in case 3 above. v computes
at most 4 such ws from the single source structure, and note that
all the vertices that v computes must be green.

2.4.1 Intracomponental blue edges

Consider the set of �blue� edges pa, bq from G where both the red vertex a
and green b reside in some given component in the s-t-decomposition of H.

Lemma 2.27. We may assign to each vertex ¤ 2 numbers, such that if red
u remembers i, j P N and green v remembers l, r P N, then u can reach v if
and only if i ¤ l ¤ j or i ¤ r ¤ j or mintl, ru ¤ j   i or j   i ¤ maxtl, ru.

Proof. The key observation is that we may enumerate all blue edges b0 �
pu0, v0q, . . . bi � pum, vmq such that any red vertex can reach a segment
of their endpoints, vi, . . . , vj . Namely, the blue edges form a minimal cut
in the planar graph which separates the red from the green vertices, and
this cut induces a cyclic order. In this order, each red vertex may reach a
segment of blue edges, and each green vertex may reach a segment of blue
edge endpoints. Thus, the blue edge endpoints reachable from a given red
vertex (through any path) is a union of overlapping segments, which is again
a segment.

Now each red vertex remembers the indices of the �rst vi and last vj blue
edge endpoint it may reach. For a green vertex v, the s-t-subgraph with v as
target has a delimiting face consisting of two paths, P and Q. v remembers
the indices l, r of the latest blue edge endpoints vl P P and vr P Q, if they
exist. Clearly, if l or r is within range, u may reach v. Contrarily, if u may
reach v, it must do so via some vertex v1 on P Y Q. But then v1 must be
able to reach vl or vr, and thus, l or r is within range.
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2.4.2 Intercomponental blue edges

For any red vertex u, for a blue edge pu1, vq, where u1 is reachable from u
and separated from u by the frame Fipuq, then one of u's �best" vertices,
lipuq, ripuq or lαi puq, rαi puq, is a red vertex, and can reach u1. For any red
vertex w, let Ecrws denote the edges of w's parent frame, Fcrws. Consider the
set Bpwq of those blue edges in Ecrws that are reachable from w in G (or,
equvalently, can reach w in H). For each disegment of Fcrws, there is at most
one �best" edge of Bpwq, that is, whose green head is closest to the source.
Let each red vertex remember the best ¤ 4 blue edges it can reach on its
own frame. Then we can de�ne 4 bitmasks tBβpuqu0¤β¤3 such that for any
i �nding the highest 1-bit ¤ i in each, gives at most 4 levels such that u's
best vertices on those levels together know the best blue edges for u.



Chapter 3

A Hamiltonian Cycle in the

Square of a 2-connected Graph

in Linear Time

Stephen Alstrup, Agelos Georgakopoulos, Eva Roten-

berg, Carsten Thomassen

Abstract

Fleischner's theorem says that the square of every 2-connected
graph contains a Hamiltonian cycle. We present a proof resulting
in an Op|E|q algorithm for producing a Hamiltonian cycle in the
square G2 of a 2-connected graph G � pV,Eq. The previous
best was Op|V |2q by Lau in 1980. More generally, we get an
Op|E|q algorithm for producing a Hamiltonian path between any
two prescribed vertices, and we get an Op|V |2q algorithm for
producing cycles C3, C4, . . . , C|V | in G2 of lengths 3, 4, . . . , |V |,
respectively.

3.1 Introduction

Fleischner [54] proved in 1974 that the square of every 2-connected graph
is Hamiltonian, solving a conjecture from 1966 by Nash-Williams. This
remarkable result has stimulated much work on paths and cycles in the square
of a �nite graph, e.g [27], [55], [82] and [155]. Fleischner's theorem has also
been extended to in�nite locally �nite graphs with at most two ends by

69
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Thomassen [156], and to (compacti�cations of) all locally �nite graphs by
Georgakopoulos [61].

A short proof of Fleischner's theorem was obtained by �íha (1991) [161].
The technique in that proof has some resemblance with the technique in
[156]. More recently, a simpler proof was presented by Georgakopoulos
(2009) [62], see also [38].

Lau (1980) [121] was the �rst to give an e�cient constructive algorithm,
more precisely an Op|V |2q algorithm, for �nding a Hamiltonian cycle in the
square of a 2-connected graph.

In this paper, we present a simple proof of Fleischner's theorem based
on the ideas of [62], which results in a linear time algorithm for �nding a
Hamiltonian cycle in the square G2 of a 2-connected graph G.

Finding a Hamiltonian cycle in a graph is fundamental and used in
many graph algorithms, but is also known to be NP-complete (as shown
by Karp [105], see also Garey and Johnson [60]). Finding Hamiltonian cycle
in the square of 2-connected is used explicit in the Bottleneck Travelling
Salesman Problem, see Parker and Rardin [137], but can also be used to
compact implicit representations of distances in general graphs (labelling
schemes), see Alstrup et al. [7].

Combining this algorithm with the proof in [27] (which we reproduce)
that G2 is Hamiltonian connected, that is, it has a Hamiltonian path between
any two prescribed vertices, we get an Op|E|q algorithm for producing such
a path. We also apply the algorithm to the result in [82, 155] that G2 is
pancyclic, that is, it has a collection of cycles C3, C4, . . . , C|V | of lengths
3, 4, . . . , |V |, respectively. More precisely, we combine the algorithm with
the proof in [155] (which we reproduce in the present paper as well) and
obtain thereby an Op|V |2q algorithm for producing cycles of all lengths in
the square of a 2-connected graph. In fact, we may, in Op|V |2q time, produce
such cycles Ci with nested vertex sets, that is, V pCiq � V pCi�1q, such that
x P V pC3q for any prescribed vertex x of a graph whose block-cutvertex tree
is a path.

These results follow from our main theorem:

Theorem 3.1. There is a linear time algorithm �nding a Hamiltonian cycle
in the square of any 2-connected graph.

Proof. The algorithm comprises the following steps:

1. Find a minimally 2-connected spanning subgraph G of the 2-connected
graph under consideration.

2. Find a proper ear decomposition of G.
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3. Pick a vertex of degree 2 in each ear, which exists by Lemma 3.2.

4. Modify the proof of [62] such that it results in a linear time algorithm.

A linear time algorithm for step 1 above was found by Han et. al. [74,
Theorem 12]. A linear time algorithm for step 2 was found by Schmidt [148].
Given an ear in our decomposition, one can check the degrees of all vertices
and choose one of degree 2 for each ear, ensuring linear running time of step
3 above. Finally, we will show in Section 3.4 why step 4 runs in linear time.

3.2 Preliminaries

A graph has no loops or multiple edges. In the proofs we shall double some
edges resulting in a multigraph, and we shall also introduce orientations of
edges. An edge between the vertices x, y in an undirected graph is denoted
xy.

A proper ear decomposition of an undirected graph G is a partition of its
set of edges into a sequence C0, . . . , Ck where C0 is a cycle and Ci is a path
for every i ¥ 1, such that for every i ¥ 1, Ci X�

j iC
j consists of the two

endvertices of Ci.
A graph is k-connected if no deletion of k � 1 vertices disconnects the

graph. An edge e of a graph G is k-essential , if G� e is not k-connected. A
minimally k-connected graph is one where every edge is k-essential.

An Euler tour (respectively Euler walk) of a multigraph is a walk which
uses every edge exactly once, and has a last vertex which is the same (respec-
tively not the same) as the �rst vertex. A multigraph has an Euler tour if
and only if all components except one are isolated vertices, and every vertex
of the exceptional component has even degree. An Euler tour may be found
in linear time using Hierholzer's algorithm [81]. A multigraph is Eulerian if
and only if it has an Euler tour.

The square of a graph G � pV,Eq is the graph G2 � pV,E1q where
uv P E1 if and only if u and v are connected by a path of length at most 2 in
G. The G-degree, or just degree of a vertex v in a graph G is the number of
edges in G incident with v. A chord of a path or cycle is an edge which not
in the path or cycle and which joins two vertices of the path or cycle. Note
that Dirac [42, De�nition 5] uses the term chord with a di�erent meaning.

A Hamiltonian cycle is a cycle that contains all vertices of the graph.
A graph G is pancyclic if it contains a cycle of length i for every i P
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t3, 4, . . . , |V pGq|u. A graph is vertex-pancyclic if, for every vertex x, these
cycles can be chosen to pass through x.

3.3 Every ear has a vertex of degree 2

Dirac [42] gave a detailed investigation of the minimally 2-connected graphs.
His work inspired deep results on minimally k-connected graphs, see e.g.
[119, 129]. We use the de�nition introduced by Dirac [42, De�nition 6]:
Given two vertices of a minimally 2-connected graph, they are compatible if
no path between them has a chord. We also use Dirac's observation that
every 2-connected subgraph of a minimally 2-connected graph is minimally
2-connected.

Lemma 3.1. Let G be a minimally 2-connected graph, and let u and v be
vertices of G. Suppose there are three internally disjoint paths P1, P2, P3

between u and v in G. Then each of the three paths contains at least one
vertex of G-degree 2.

Proof. We claim that u and v must be compatible. To prove this claim, let P4

be any path between u and v, and consider the union G1 � P1YP2YP3YP4

which is a 2-connected subgraph of G, and hence minimally 2-connected
by the above observation. Assume for contradiction that e is a chord of P4.
Then e lies on at most one of P1, P2, P3. But then, G1�e is still 2-connected,
contradicting the minimality. Now [42, Corollary 2 to Theorem 6] says that
every path from u to v has a vertex of degree 2 in G.

Lemma 3.2. Let C0, . . . , Ck be a proper ear decomposition of a minimally
2-connected graph G. Then every Ci contains a vertex of G-degree 2, and
C0 contains at least two vertices of G-degree 2.

Proof. Consider a proper ear decomposition of a minimally 2-connected
graph as stated. Then the union of the �rst i ears C0Y . . .YCi�1 forms a 2-
connected graph. If u, v are the endvertices of Ci, there exist two internally
disjoint paths between them in C0Y . . .YCi�1. Together with Ci they form
three internally disjoint paths, each of which contains a vertex of G-degree
2 by Lemma 3.1. Thus, Ci contains a vertex of G-degree 2.

For C0 we have a stronger statement. If k � 0, then all vertices of
C0 � G are of G-degree 2. Otherwise, let u, v be the endvertices of C1.
Then there are two internally disjoint paths in C0 between u, v. Together
with C1 we have three internally disjoint paths, as before, and each must
contain a vertex of G-degree 2. Two of these are in C0.
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3.4 A Hamiltonian cycle in linear time

Let G be a minimally 2-connected graph. In this section, we use the ear
decomposition found above in order to construct a Hamiltonian cycle in the
square of G. This part of our algorithm draws heavily from the proof of [62].

Let C0, C1, . . . , Ck be a proper ear decomposition of G, where C0 is a
cycle and each other Ci has both its endvertices in ears with smaller indices.
By Lemma 3.2, every Ci contains an interior vertex yi of G-degree 2, and
it is easy to pick such a vertex for each i in linear time. Furthermore, by
Lemma 3.2, C0 contains two vertices of G-degree 2, say x and y0.

We enumerate the vertices of each Ci as xi0, x
i
1, . . . , x

i
`i
in the order they

appear on Ci, starting with the endvertex lying in the ear with the smallest
index. For C0 we just start the enumeration at x0

0 � x � x0
`0
.

We start our procedure by turning G into an Eulerian multigraph G by
adding parallel edges to some existing edges of G and deleting some edges
of G as follows.

ax0
i

xli
i

b

yi

x0
i

xli
i

c

yi

xli
i

x0
i

Figure 3.1: We go through the ears in decreasing order, double some edges
and delete at most one (dotted line), thus, turning the graph into an Eulerian
graph.

For each i � k, k�1, . . . , 0, we de�ne the graph Gi � CkYCk�1Y . . . Ci.
For i � k, k � 1, . . . , 0, we de�ne the multigraph G�

i as follows. First we
put G�

k � Gk � Ck. Suppose we have de�ned G�
i�1. We now traverse

the vertices and edges of Ci � xi0, starting with xi1. When we traverse the
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edge e � xijx
i
j�1 we either delete e or add an edge e� parallel with e, or

we leave e unchanged. Suppose we have traversed xi1x
i
2 . . . x

i
j . If the degree

dpxijq is odd in the current graph, we introduce a new edge e� parallel to
e � xijx

i
j�1 so that dpxijq becomes even. If the last edge e � xi`i�1

xi`i of C
i

is doubled by this procedure, we delete both of e, e� (see Figure 3.1a). If
the last edge is not doubled, but one (and hence both) of the edges incident
with yi is doubled, then we delete the pair of parallel edges incident with yi

which succeedes yi as we move along Ci from xi0 (see Figure 3.1b). Figure
3.1c shows the situation where possibly some edges of Ci � xi0 are doubled
but none are deleted. The procedure terminates when we have de�ned G�

0 .
Clearly, this procedure for de�ning G�

0 has a linear running time.
We claim that every vertex v distinct from x has even G�

0 -degree. To see
this we �rst observe that there is a smallest i such that v is in Ci. Then v is
interior in Ci (as v is distinct from x). The degree of v is made even when
we form G�

i , and the degree of v remains even after that because v is not
contained in any Cj with j   i. More precisely, the G�

0 -degree of v equals
the G�

i -degree of v. The only vertex we never consider in this procedure is x.
But x, too, has even G�

0 -degree by the handshaking lemma. Moreover, G�
0 is

connected because every vertex of Ci is still connected to C0YC1Y. . .YCi�1

after any edge deletion, because at most one edge of Ci is deleted. Thus G�
0

is Eulerian. We denote G�
0 by G .

Next, we orient the edges of G as follows. We orient any pair e, e�

of parallel edges in G in opposite directions. We go through the ears Ci

of G again (in fact, this step of our algorithm can be combined with the
previous step). If the last edge of Ci has been deleted, we orient all edges
of Ci XG (that is, the edges that have not been doubled) from xi0 towards
xi`i�1 (see Figure 3.1a). Otherwise, we orient all edges of C

iXG (that have
not been doubled) towards yi (see Figure 3.1b and c).

Note that after we are done, though vertices may have arbitrarily high
out-degree, every vertex v has at most 2 incoming edges, since only edges of
the ear Ci containing v as an interior vertex can be directed towards v by
construction; here we used the fact that the �rst edge of each Ci is never
doubled, and if the last one is doubled it is immediately deleted. Moreover,
if v � x, then v has at least 1 incoming edge.

We now describe an Euler tour J of the underlying undirected graph
G such that for every vertex v having two incoming edges vw, vz, these
edges are consecutive in J . This can easily be achieved by �rst replacing
these two edges vw, vz by a single wz edge for every vertex v having two
incoming edges, then �nding an Euler tour in the resulting auxiliary graph



3.5. A HAMILTONIAN PATH IN LINEAR TIME 75

G�, and �nally replacing the new edge wz by the pair wv, vz for every v
as above. Note that v becomes an isolated vertex if v has G -degree 2.
The fact that G� has only vertices of even degree follows immediately from
the construction of G . It only remains to be proved that G� consists of
a connected graph and possibly a set of isolated vertices. When the ear is
as Figure 3.1c, its special vertex yi may become an isolated vertex. But,
all other vertices in the ear are still part of the same connected component.
More precisely, for each vertex v P Ci (v � yi), if it has indegree 2, it has
at least one outneighbour on Ci, and thus, the deletion of its two incoming
edges does not disconnect v from Ci.

Finally, we transform the Euler tour J into a Hamiltonian cycle , which
we call H, by replacing some pairs of edges of G by single edges of G2.
More precisely, when we traverse the Euler tour J , we replace every 2-edge
subwalk uÐ w Ñ v in J by the single edge uv. We make a single exception
in that we keep the unique subwalk having x as its middle vertex as it is.

Note that this operation is well-de�ned, as whenever we have the subwalk
uÐ w Ñ v, the edges in question are incoming to both u and v. So an edge
cannot be part of two such subwalks.

We claim that H is indeed a Hamiltonian cycle of G2. Clearly, H tra-
verses x precisely once, because J traverses x once, and we keep the two
edges incident with x when we form H. For every vertex w � x, the number
of times that H traverses w equals the number of subwalks uwv in J contain-
ing an incoming edge of w. We claim that there is exactly one such subwalk.
This is clear if w has indegree 1. As each vertex w � x has indegree either 1
or 2 in G , we consider the case where w has indegree 2. By the construction
of J , the two edges entering w form a subwalk of J , and those two edges are
part of H. All other pairs of edges incident with w are replaced by single
edges when we transform J into H.

3.5 A Hamiltonian path in linear time

Given vertices u, v of a 2-connected graph G, it was shown by Chartrand,
Hobbs, Jung, Kapoor, and Nash-Williams [27] that G2 contains a Hamilto-
nian path from u to v. We shall now describe an e�cient algorithm to �nd
it.

Theorem 3.2. There exists a linear time algorithm for �nding a Hamil-
tonian path between any two prescribed vertices u, v in the square of a 2-
connected graph G.
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Proof. We use the following trick from [27]. Take the union of �ve disjoint
copies of G. Add two new vertices x, y. Let x be joined to the �ve copies
of u, and let y be joined to the �ve copies of v. The resulting graph H
is 2-connected, and therefore our algorithm can produce, in linear time, a
Hamiltonian cycle C in H2. One of the �ve copies of G does not contain a
neighbor of x, y in C. The intersection of that copy with C is a Hamiltonian
path from u to v in G2.

3.6 Cycles of all lengths in quadratic time

Hobbs [82] proved that the square of a 2-connected graph is pancyclic.
Thomassen [155] proved the same under the weaker assumption that the
block-cutvertex tree is a path. If G is a graph, then its block-cutvertex tree is
the tree whose vertices are the blocks and cutvertices of G. There is an edge
between a block and a cutvertex if and only if the cutvertex is contained in
the block. The block-cutvertex tree can be found in linear time [154].

The �rst part of the following result was �rst proven in [155].

Lemma 3.3. If G is a graph whose block-cutvertex tree is a path, then G2

has a Hamiltonian cycle. Moreover, there exists a linear time algorithm for
�nding a Hamiltonian cycle in G2.

Proof. If G is 2-connected we use Theorem 3.1. So assume that G is not
2-connected. We let u, v be two non-cutvertices in distinct end-blocks of G.
We now use the following trick from [155]. Take the union of four disjoint
copies G1, G2, G3, G4 of G. Add two new vertices x, y. Let x be joined to the
two copies of u in G1, G2, and let y be joined to the two copies of v in G3, G4.
Let the copy of v in G1 (respectively G2) be joined to the copy of u in G3

(respectively G4). The resulting graph H is 2-connected, and therefore our
algorithm can produce, in linear time, a Hamiltonian path P between x, y
in H2. As proved in [14], the intersection of P with one of the four copies of
G gives rise to a Hamiltonian cycle in G2.

Theorem 3.3. There exists an Opn2q algorithm for producing cycles
C3, C4, . . . , Cn of lengths 3, 4, . . . n, respectively in the square of a graph G on
n vertices whose block-cutvertex tree is a path. Moreover, if x0 is any vertex
in G, then the cycles can be chosen such that x0 P V pC3q � V pC4q � ... �
V pCnq.
Proof. Again, we use the idea in [155]. First, we may �nd the block-cutvertex
graph in linear time using [154], and use the linear time algorithm of [74] on
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each block to obtain a spanning subgraph such that every block is minimally
2-connected. Dirac [42] proved that such a graph has at most 2n� 4 edges.
Then, it follows from Lemma 3.3 that we may �nd a Hamiltonian cycle Cn
in in G2 in linear time. If G has only one block, we delete any edge of G
and use the linear algorithm in [154] to �nd the block-cutvertex tree which
is a path. As pointed out by Dirac [42], each block is minimally 2-connected.
If G is not 2-connected, we let x be a cutvertex contained in an end-block
B of G. If x has degree at least 2 in B we delete any edge in B incident
with x, and use the linear algorithm in [154] to �nd the block-cutvertex tree
which is a path. Finally, if B has only two vertices x, y, then we delete y. (If
y � x0, we consider the other end-block of the current graph instead of B.)
Then we use the algorithm in Lemma 3.3 to �nd a Hamiltonian cycle Cn�1

in pG� yq2. We repeat the argument.

We now discuss the complexity. We �rst spend Opmq, m � |E|, time
obtaining a subgraph in which each block is minimally 2-connected. Then we
successively delete an edge in an end-block which is incident with a cutvertex.
When an isolated vertex appears, we delete that, too. Immediately after we
delete an isolated vertex we �nd a Hamiltonian cycle in the square of the
current graph. Thus there are less than 2n � 4 edge-deletions, by an afore-
mentioned result of Dirac [42], and between two of these edge-deletions, it
takes only Opnq time to �nd a Hamiltonian cycle in the square of the current
graph, by Theorem 3.1. Thus, the total time consumption is Opm � n2q �
Opn2q.

3.6.1 Outputting the nested vertex-sets in near-linear time.

We now proceed to show that an encoding of the nested vertex-sets of the
cycles can be computed in near-linear time.

Theorem 3.4. Given an graph with n vertices and m edges, whose block-
cutpoint tree is a path, and given any prescribed vertex x, there exists an
Opm � n log3 n log log2 nq time algorithm which outputs the vertices of G
in an order such that any su�x of size ¥ 3 is connected by a cycle in G2

containing x.

Our main tool is a data structure for dynamic 2-connectivity in graphs
by Holm et al. [84], improved from Oplog5 nq to Oplog4 n log lognq by Tho-
rup [157], and later improved by Holm, Rotenberg, and Thorup [90]:
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Theorem 3.5 ( [84,90,157]). There exists a deterministic fully dynamic al-
gorithm for maintaining biconnectivity in a graph, using Oplog3 n log log2 nq
amortized time per operation.

The data structure supports insertion and deletion of edges, as well as
queries of the form Biconnectedpu, vq, which reports whether the two vertices
lie in the same biconnected component.

The data structure keeps track of an underlying spanning tree of each
connected component of the dynamic graph. It associates with each edge
a level between 0 and tlg nu, where spanning tree edges always have level
tlg nu. It maintains that the maximal number in vertices in a biconnected
component of the subgraph Gi containing edges of level ¥ i is at mostP
n{2iT. It uses a top-tree over the spanning tree, and maintains, for each path
cluster, the cover-level of the path: c�pP q. The cover-level is the maximal
i such that the entire cluster-path P is bi-connected in Gi. In order to
answer Biconnectedpu, vq, it simply calls exposepu, vq, and returns whether
the cover-level of the root cluster is ¤ 0.

In order to use their data structure, however, we need it to support one
more operation:

FindFirstArticulationpu, vq,
which outputs the �rst articulation point on the spanning-tree path from u
to v.

Lemma 3.4. The data structure in Theorem 3.5 can be extended to sup-
port the operation FindFirstArticulationpu, vq for any pair of not biconnected
vertices u, v P G, in amortized Oplog3 n log log2 nq time. The output is the
articulation point closest to u which separates u from v.

P P 1v x v1

Figure 3.2: The path clusters P and P 1 merge.

Proof. To implement this, we maintain for each path-cluster P and for each
boundary vertex v P BP , the point aP pvq on the cluster-path closest to v
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whose cover-level along the cluster-path does not exceed the cover-level of
the cluster. That is, the �rst vertex to �blame� for the cover-level not being
any higher.

This is easily done, by only a slight modi�cation to the algorithm for
merging path-clusters. Upon a merge of path-clusters P and P 1 whose com-
mon vertex is x and whose other boundary vertices are v and v1, and whose
cover levels are j and j1, respectively, there are the following cases. We as-
sume without loss of generality that j ¤ j1, and denote the resulting cluster
C.

• If x is not covered on level j, then aCpvq � aCpv1q � x.

• Otherwise, if j � j1, then aCpvq � aP pvq and aCpv1q � aP pv1q.
• Otherwise, j   j1, then aCpvq � aP pvq. For v1 there are two cases:

� If x is not covered on level j � 1, then aCpv1q � x,

� Otherwise, aCpv1q � aP pxq.
We may thus for any not 2-connected vertices u, v answer

FindFirstArticulationpu, vq by calling expose u, v and outputting arootpuq.

We now proceed to the proof of Theorem 3.4 via the following lemma:

Lemma 3.5. Assume there is a data structure which for a graph of n ver-
tices and Opnq edges supports Opnq edge-deletions, Opnq connectivity queries,
Opnq Biconnectedpu, vq queries, and Opnq FindFirstArticulationpu, vq
queries in total time fpnq, then:

Given an graph on n vertices whose block-cutpoint tree is a path, and
given any prescribed vertex x, there exists an Opm � fpnqq time algorithm
which outputs the vertices of G in an order such that any su�x of size ¥ 3
is connected by a cycle in G2 containing x.

Proof. We implement the proof of Theorem 3.3. First, we may �nd the block-
cutvertex graph in linear time using [154], and use the linear time algorithm
of [74] on each block to obtain a spanning subgraph such that every block
is minimally 2-connected. Dirac [42] proved that such a graph has at most
2n� 4 edges.

We now have a graph G with n vertices and Opnq edges. If the graph
is not 2-connected, let u and v be non-cutpoint vertices of either endblock.
Otherwise, choose u and v arbitrarily.
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Algorithm 1 VertexSets: Near-linear time description of nested vertex
sets
1: Input: A graph G, and vertices u, v, x of G.
2: Initialise a decremental biconnectivity structure for G.
3: � Note, at this point, u and v are connected.
4: If only three vertices remain in the connected component of x, output

them and Return.
5: if x � u then pu, vq :� pv, uq � Swap u and v.

6: if Biconnectedpu, vq then
7: set α :� v
8: else
9: set α :� FindFirstArticulationpu, vq.
10: Delete the tree-edge wα incident to α and on the tree-path towards u.
11: if  Connectedpα,wq then � the block containing u consisted of only

one edge αw � αu.
12: Output u,
13: set u :� α
14: goto Line 3.
15: � We may now assume u and v are connected.
16: if Biconnectedpα, uq then
17: goto Line 10.
18: else
19: goto Line 3.
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Running time For the �rst part, a sparse 2-connected spanning subgraph
can be found in Opn�mq time, see [74,154].

Throughout the course of the algorithm, we delete all edges of the graph,
and performOp1q queries and gotos per deleted edge. Thus, the total running
time for the second part will be fpnq.

Correctness follows from this being an implementation of the proof of
Theorem 3.3.

3.7 A modi�cation of the algorithm

In the two previous theorems we used our initial algorithm on some modi�ed
graphs using the tricks in [27,155]. For the sake of completeness we remark
that we can instead modify the algorithm so that we can work on the graph
without modifying it.

Both algorithms rely on the following lemma about the Euleri�cation of
the graph G with ear-decomposition C0, . . . , Ck in Section 3.4.

Lemma 3.6. Given an edge e of C0, we may choose freely whether we want
to double e by introducing a parallel edge, or not, while still maintaining
the property that all vertices but one have a given degree parity, all vertices
di�erent from the starting vertex have indegree 1 or 2, and the starting vertex
x0

0 has indegree 0 or 1.

Proof. When we choose not to double the �rst edge of C0, we partition all
edges of C0 in two sets; those which have been doubled, and those which
have not. By interchanging these sets and doubling exactly those edges that
were not doubled before, the parity of the degree of vertices is unchanged.
The edge e is doubled in exactly one of them. After choosing an appropriate
doubling scheme, proceed as before, either deleting both copies of the last
edge px0

l0�1, x
0
0q, or both copies near y0, or none, and orient as before.

Consider �rst the case where we wish to �nd a Hamiltonian path between
two prescribed vertices u, v in the square of a 2-connected graph G. It was
shown in [27] that G2 contains a Hamiltonian path from u to v.

Second proof of Theorem 3.2. As in the proof in Section 3.4, we wish to �nd
an Euler walk J between u and v. As before, we shall choose J such that
any vertex of indegree 2 has both incoming edges consecutive in J . Finally,
when we traverse J , lifting the subwalk z Ð w Ñ z1 to the edge pz, z1q P G2,
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we aim to obtain a Hamiltonian path P between u and v in G2. To avoid
having u, v occur twice in P , we shall ensure that each of u, v has at most
one incoming edge, and any such incoming edge to u or v shall be an end of
J . All other occurrences of u, v in J will be lifted.

To ensure that u and v are the only odd-degree vertices of the graph, and
have indegree at most 1, we do the following. We can ensure that u, v both
lie on the cycle C0 of the proper ear decomposition by starting the depth
�rst search of [148] with a cycle containing u and v. Then, we may choose u
or v as x0

0. We may assume without loss of generality that x0
0 � u and either

y0 � v, or y0 is later than v along C0. If y0 � v, by Lemma 3.6, one may
choose not to double the last edge on C0, and then delete both copies of the
edge near y0 � v that has been doubled (one of them must be doubled). If
y0 � v, by Lemma 3.6, we may choose not to double the edge after v, thus
ensuring that v has indegree 1 while still maintaining that u has indegree
¤ 1.

To make sure that any incoming edges to u, v are at the ends of J , we
shall �rst delete any incoming edge pu1, uq or pv1, vq from the graph without
disconnecting the graph. Then we �nd an Euler walk J 1 from u1 to v1, and
�nally, extend J 1 with the two in-edges: J � pu, u1qJ 1pv1, vq. We shall ensure
that deleting any in-edge near u or v will not disconnect the graph, except
that one of u, v may become an isolated vertex. For, if u has an in-edge, it is
part of a double edge. Deleting an edge which is part of a double edge does
not a�ect connectedness. If v � y0 has even degree just before we double
edges of C0 (we call that graph G1), then its in-edge (after we have doubled
edges in C0) will be part of a double edge. Again, the deletion of such an edge
does not a�ect connectedness. If v � y0, then v has only one incident edge
after doubling edges on C0, so deleting that edge will preserve connectedness
except that v becomes an isolated vertex. So, there only remains the case
that v has odd degree in G1. As we can interchange between u and v we
may assume that also u has odd degree in G1. As u has odd degree in G1,
it has also odd degree in G1�EpC0q. Therefore u is connected by a path P
in G1�EpC0q to another vertex x of odd degree in G1. That vertex x must
be in C0, as all vertices in G1 but not on C0 have even degree in G1. Now
we apply Lemma 3.1 to the three paths in C0 Y P between x and u. Hence
we may choose y0 and an ordering of C0 such that y0 is later than x which
is again later than (or equal to) v. We have earlier seen that deleting the
directed edge pu1, uq (if it exists) does not a�ect connectedness. It remain to
prove that deleting the directed edge pv1, vq (if it exists) also does not a�ect
connectedness. So assume that pv1, vq exists. Then v1 is the predecessor of
v on C0. Note that if we delete a double edge on C0, then that edge is on
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the segment from x to u by the choice of y0. This shows that, after deleting
pv1, vq, we still have a path from v to v1 using P and two appropriate paths
on C0.

Finally we point out how to prove Lemma 3.3 directly.

Lemma 3.7. Let G be a 2-connected graph, and let e be an edge of G. We
may in linear time �nd a Hamiltonian cycle in pG� eq2.
Proof. First, �nd a minimally 2-connected spanning subgraph, G1. If e R G1,
we are done. Otherwise, we may in linear time �nd a proper ear decomposi-
tion C0, . . . , Ck with e P C0, and an enumeration x0

0, . . . x
0
l0�1 of the vertices

of C0, such that e � px0
l0�1, x

0
l0
q is the last edge before x0

0. Again, this follows
from [148] by taking e as the �rst edge of the depth �rst search. Then, use
Lemma 3.6 to ensure e is doubled, and thus, since it was the last edge before
x, both copies are deleted. The Hamiltonian cycle found by the algorithm
will now avoid the edge e.

To prove Lemma 3.3 directly, assume G is a graph whose block-cutvertex
tree is a path, and assume G is not 2-connected. Let x, y be non-cutvertices
belonging to distinct endblocks. Then, G1 � G Y px, yq is 2-connected, and
so by Lemma 3.7 we may �nd a Hamiltonian cycle in pG1 � px, yqq2 � G2 in
linear time.
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Chapter 4

Dynamic Bridge-Finding in

Õplog2 nq Amortized Time

Jacob Holm, Eva Rotenberg, Mikkel Thorup

Abstract

We present a deterministic fully-dynamic data structure for maintaining
information about the bridges in a graph. We support updates in rOpplog nq2q
amortized time, and can �nd a bridge in the component of any given vertex,
or a bridge separating any two given vertices, in Oplog n{ log log nq worst
case time. Our bounds match the current best for bounds for deterministic
fully-dynamic connectivity up to log logn factors.

The previous best dynamic bridge �nding was an rOpplog nq3q amortized
time algorithm by Thorup [STOC2000], which was a bittrick-based improve-
ment on the Opplog nq4q amortized time algorithm by Holm et al. [STOC98,
JACM2001].

Our approach is based on a di�erent and purely combinatorial improve-
ment of the algorithm of Holm et al., which by itself gives a new combina-
torial rOpplog nq3q amortized time algorithm. Combining it with Thorup's
bittrick, we get down to the claimed rOpplog nq2q amortized time.

Essentially the same new trick can be applied to the biconnectivity data
structure from [STOC98, JACM2001], improving the amortized update time
to rOpplog nq3q.

We also o�er improvements in space. We describe a general trick which
applies to both of our new algorithms, and to the old ones, to get down to
linear space, where the previous best use Opm � n log n log lognq. Finally,

85



86 CHAPTER 4. DYNAMIC BRIDGE-FINDING

we show how to obtain Oplog n{ log lognq query time, matching the optimal
trade-o� between update and query time.

Our result yields an improved running time for deciding whether a unique
perfect matching exists in a static graph.

4.1 Introduction

In graphs and networks, connectivity between vertices is a fundamental prop-
erty. In real life, we often encounter networks that change over time, subject
to insertion and deletion of edges. We call such a graph fully dynamic. Dy-
namic graphs call for dynamic data structures that maintain just enough
information about the graph in its current state to be able to promptly
answer queries.

Vertices of a graph are said to be connected if there exists a path between
them, and k-edge connected if no sequence of k�1 edge deletions can discon-
nect them. A bridge is an edge whose deletion would disconnect the graph.
In other words, a pair of connected vertices are 2-edge connected if they are
not separated by a bridge. By Menger's Theorem [131], this is equivalent
to saying that a pair of connected vertices are two-edge connected if there
exist two edge-disjoint paths between them. By edge-disjoint is meant that
no edge appears in both paths.

For dynamic graphs, the �rst and most fundamental property to be
studied was that of dynamic connectivity. In general, we can assume the
graph has a �xed set of n vertices, and we let m denote the current num-
ber of edges in the graph. The �rst data structure with sublinear Op?nq
update time is due to Frederickson [56] and Eppstein et al. [47]. Later,
Frederickson [57] and Eppstein et al. [47] gave a data structure with Op?nq
update time for two-edge connectivity. Henzinger and King achieved poly-
logarithmic expected amortized time [78], that is, an expected amortized up-
date time of Opplog nq3q, and Oplog n{ log log nq query time for connectivity.
And in [77], Opplog nq5q expected amortized update time and Oplog nq worst
case query time for 2-edge connectivity. The �rst polylogarithmic determin-
istic result was by Holm et al in [83]; an amortized deterministic update
time of Opplog nq2q for connectivity, and Opplog nq4q for 2-edge connectiv-
ity. The update time for deterministic dynamic connectivity has later been
improved to Opplog nq2{ log lognq by Wul�-Nilsen [164]. Sacri�cing deter-
minism, an Oplog nplog lognq3q structure for connectivity was presented by
Thorup [157], and later improved to Oplog nplog lognq2q by Huang et al. [97].
In the same paper, Thorup obtains an update time of Opplog nq3 log lognq for
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deterministic two-edge connectivity. Interestingly, Kapron et al. [104] gave
a Monte Carlo-style randomized data structure with polylogarithmic worst
case update time for dynamic connectivity, namely, Opplog nq4q per edge in-
sertion, Opplog nq5q per edge deletion, and Oplog n{ log log nq per query. We
know of no similar result for bridge �nding. The best lower bound known
is by P�atra³cu et al. [141], which shows a trade-o� between update time tu
and query time tq of tq lg tu

tq
� Ωplg nq and tu lg

tq
tu
� Ωplg nq.

4.1.1 Our results

We obtain an update time of Opplog nq2plog log nq2q and a query time of
Oplog n{ log log nq for the bridge �nding problem:

Theorem 4.1. There exists a deterministic data structure for dynamic
multigraphs in the word RAM model with Ωplog nq word size, that uses
Opm� nq space, and can handle the following updates, and queries for arbi-
trary vertices v or arbitrary connected vertices v, u:

• insert and delete edges in Opplog nq2plog lognq2q amortized time,

• �nd a bridge in v's connected component or determine that none ex-
ists, or �nd a bridge that separates u from v or determine that none
exists. Both in Oplog n{ log log nq worst-case time for the �rst bridge,
or Oplog n{ log logn� kq worst case time for the �rst k bridges.

• �nd the size of v's connected component in Oplog n{ log log nq
worst-case time, or the size of its 2-edge connected component in
Oplog nplog log nq2q worst-case time.

Since a pair of connected vertices are two-edge connected exactly when
there is no bridge separating them, we have the following corollary:

Corollary 4.1. There exists a data structure for dynamic multigraphs in
the word RAM model with Ωplog nq word size, that can answer two-edge con-
nectivity queries in Oplog n{ log log nq worst case time and handle insertion
and deletion of edges in Opplog nq2plog log nq2q amortized time, with space
consumption Opm� nq.

Note that the query time is optimal with respect to the trade-o� by
P�atra³cu et al. [141]

As a stepping stone on the way to our main theorem, we show the fol-
lowing:
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Theorem 4.2. There exists a combinatorial deterministic data structure for
dynamic multigraphs on the pointer-machine without the use of bit-tricks,
that uses Opm� nq space, and can handle insertions and deletions of edges
in Opplog nq3 log lognq amortized time, �nd bridges and determine connected
component sizes in Oplog nq worst-case time, and �nd 2-edge connected com-
ponent sizes in Opplog nq2 log log nq worst-case time.

4.1.2 Applications

While dynamic graphs are interesting in their own right, many algorithms
and theorem proofs for static graphs rely on decremental or incremental
graphs. Take for example the problem of whether or not a graph has a
unique perfect matching? The following theorem by Kotzig immediately
yields a near-linear algorithm if implemented together with a decremental
two-edge connectivity data structure with poly-logarithmic update time:

Theorem 4.3 (A. Kotzig '59 [118]). Let G be a connected graph with a
unique perfect matching M . Then G has a bridge that belongs to M .

The near-linear algorithm for �nding a unique perfect matching by
Gabow, Kaplan, and Tarjan [58] is straight-forward: Find a bridge and delete
it. If deleting it yields connected components of odd size, it must belong to
the matching, and all edges incident to its endpoints may be deleted�if the
components have even size, the bridge cannot belong to the matching. Re-
curse on the components. Thus, to implement Kotzig's Theorem, one has to
implement three operations: One that �nds a bridge, a second that deletes
an edge, and a third returning the size of a connected component.

Another example is Petersen's theorem [139] which states that any cu-
bic, two-edge connected graph contains a perfect matching. An algorithm by
Biedl et al. [20] �nds a perfect matching in such graphs in Opn log4 nq time,
by using the Holm et al two-edge connectivity data structure as a subrou-
tine. In fact, one may implement their algorithm and obtain running time
Opnfpnqq, by using as subroutine a data structure for amortized decremen-
tal two-edge connectivity with update-time fpnq. Here, we thus improve the
running time from Opnplog nq3 log lognq to Opnplog nq2plog lognq2q.

In 2010, Diks and Stanczyk [40] improved Biedl et al.'s algorithm for
perfect matchings in two-edge connected cubic graphs, by having it rely
only on dynamic connectivity, not two-edge connectivity, and thus obtain-
ing a running time of Opnplog nq2{ log log nq for the deterministic version,
or Opn log nplog log nq2q expected running time for the randomized version.
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However, our data structure still yields a direct improvement to the original
algorithm by Biedl et al.

Note that all applications to static graphs have in common that it is no
disadvantage that our running time is amortized.

4.1.3 Techniques

As with the previous algorithms, our result is based on top trees [10] which is
a hierarchical tree structure used to represent information about a dynamic
tree � in this case, a certain spanning tree of the dynamic graph. The
original Opplog nq4q algorithm of Holm et al. [84] stores Opplog nq2q counters
with each top tree node, where each counter represent the size of a certain
subgraph. Our new Opplog nq3q algorithm applies top trees the same way,
representing the same Opplog nq2q sizes with each top tree node, but with a
much more e�cient implicit representation of the sizes.

Reanalyzing the algorithm of Holm et al. [84], we show that many of
the sizes represented in the top nodes are identical, which implies that that
they can be represented more e�ciently as a list of actual di�erences. We
then need additional data structures to provide the desired sizes, and we
have to be very careful when we move information around as the the top
tree changes, but overall, we gain almost a log-factor in the amortized time
bound, and the algorithm remains purely combinatorial.

Our combinatorial improvement can be composed with the bittrick im-
provement of Thorup [157]. Thorup represents the same sizes as the orig-
inal algorithm of Holm et al., but observes that we don't need the exact
sizes, but just a constant factor approximation. Each approximate size
can be represented with only Oplog lognq bits, and we can therefore pack
Ωplog n{ log lognq of them together in a single Ωplog nq-bit word. This can
be used to reduce the cost of adding two Oplog nq-dimensional vectors of
approximate sizes from Oplog nq time to Oplog log nq time. It may not
be obvious from the current presentation, but it was a signi�cant techni-
cal di�culty when developing our Opplog nq3 log lognq algorithm to make
sure we could apply this technique and get the associated speedup to
Opplog nq2plog log nq2q.

The �natural� query time of our algorithm is the same as its update time.
In order to reduce the query time, we observe that we can augment the
main algorithm to maintain a secondary structure that can answer queries
much faster. This can be used to reduce the query time for the combi-
natorial algorithm to Oplog nq, and for the full algorithm to the optimal
Oplog n{ log log nq.
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The secondary structure needed for the optimal Oplog n{ log lognq query
time uses top trees of degree Oplog n{ log log nq. While the use of non-binary
trees is nothing new, we believe we are the �rst to show that such top trees
can be maintained in the �natural� time.

Finally, we show a general technique for getting down to linear space,
using top trees whose base clusters have size Θplogc nq.

4.1.4 Article outline

In Section 4.2, we recall how [84] fundamentally solves two-edge connectiv-
ity via a reduction to a certain set of operations on a dynamic forest. In
Section 4.3, we recall how top trees can be used to maintain information
in a dynamic forest, as shown in [10]. In Sections 4.4, 4.5, and 4.6, we de-
scribe how to support the operations on a dynamic tree needed to make
a combinatorial Opplog nq3 log log nq algorithm for bridge �nding, as stated
in Theorem 4.2. Then, in Section 4.7, we show how to use Approximate
Counting to get down to Opplog nq2plog log nq2q update time, thus, reaching
the update time of Theorem 4.1. We then revisit top trees in Section 4.8,
and introduce the notion of B-ary top trees, as well as a general trick to
save space in complex top tree applications. We proceed to show how to
obtain the optimal Θplog n{ log lognq query time in Section 4.9. Finally, in
Section 4.10, we show how to achieve optimal space, by only storing cluster
information with large clusters, and otherwise calculating it from scratch
when needed.

4.2 Reduction to operations on dynamic trees

In [84], two-edge connectivity was maintained via operations on dynamic
trees, as follows. For each edge e of the graph, the algorithm explicitly
maintains a level, `peq, between 0 and `max � tlog2 nu such that the edges
at level `max form a spanning forest T , and such that the 2-edge-connected
components in the subgraph induced by edges at level at least i have at mostX
n{2i\ vertices. For each edge e in the spanning forest, de�ne the cover level,
cpeq, as the maximum level of an edge crossing the cut de�ned by removing
e from T , or �1 if no such edge exists. The cover levels are only maintained
implicitly, because each edge insertion and deletion can change the cover
levels of Ωpnq edges. Note that the bridges are exactly the edges in the
spanning forest with cover level �1. The algorithm explicitly maintains the
spanning forest T using a dynamic tree structure supporting the following
operations:
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1. Linkpv, wq. Add the edge pv, wq to the dynamic tree, implicitly setting
its cover level to �1.

2. Cutpv, wq. Remove the edge pv, wq from the dynamic tree.

3. Connectedpv, wq. Returns true if v and w are in the same tree, false
otherwise.

4. Coverpv, w, iq. For each edge e on the tree path from v to w whose
cover level is less than i, implicitly set the cover level to i.

5. Uncoverpv, w, iq. For each edge e on the tree path from v to w whose
cover level is at most i, implicitly set the cover level to �1.

6. CoverLevelpvq. Return the minimal cover level of any edge in the tree
containing v.

7. CoverLevelpv, wq. Return the minimal cover level of an edge on the
path from v to w. If v � w, we de�ne CoverLevelpv, wq � `max.

8. MinCoveredEdgepvq. Return any edge in the tree containing v with
minimal cover level.

9. MinCoveredEdgepv, wq. Returns a tree-edge on the path from v to w
whose cover level is CoverLevelpv, wq.

10. AddLabelpv, l, iq. Associate the user label l to the vertex v at level i.

11. RemoveLabelplq. Remove the user label l from its vertex vertexplq.
12. FindFirstLabelpv, w, iq. Find a user label at level i such that the as-

sociated vertex u has CoverLevelpu,meetpu, v, wqq ¥ i and minimizes
the distance from v to meetpu, v, wq.

13. FindSizepv, w, iq. Find the number of vertices u such that

CoverLevelpu,meetpu, v, wqq ¥ i.

Note that FindSizepv, v,�1q is just the number of vertices in the tree
containing v.

Lemma 4.1 (Essentially the high level algorithm from [84]). There exists a
deterministic reduction for dynamic graphs with n nodes, that, when starting
with an empty graph, supports any sequence of m Insert or Delete operations
using:
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• Opmq calls to Link, Cut, Uncover, and CoverLevel.

• Opm log nq calls to Connected, Cover, AddLabel, RemoveLabel, Find-
FirstLabel, and FindSize.

And that can answer FindBridge queries using a constant number of calls to
Connected, CoverLevel, and MinCoveredEdge.

Proof. See Section 4.11 for a proof and pseudocode.

# Operation
Asymptotic worst case time per call, using structure in section

4.4 4.5 4.6 4.7 4.9

1 Linkpv, w, eq

log n plog nq2 log log n log n log log n log nplog log nq2

fpnq logn
log fpnq2 Cutpeq

3 Connectedpv, wq

logn
log fpnq

4 Coverpv, w, iq
5 Uncoverpv, w, iq
6 CoverLevelpvq
7 CoverLevelpv, wq
8 MinCoveredEdgepvq
9 MinCoveredEdgepv, wq
10 AddLabelpv, l, iq

- - log n log log n - -11 RemoveLabelplq
12 FindFirstLabelpv, w, iq

13
FindSizepv, w, iq - plog nq2 log log n - log nplog log nq2 -

FindSizepv, v,�1q log n log n log n log n logn
log fpnq

Table 4.1: Overview of the worst case times achieved for each tree operation
by the data structures presented in this paper. In the last column, fpnq P
Op logn

log lognq can be chosen arbitrarily.

The algorithm in [84] used a dynamic tree structure supporting all the
operations in Opplog nq3q time, leading to an Opplog nq4q algorithm for bridge
�nding. Thorup [157] showed how to improve the time for the dynamic tree
structure to Opplog nq2 log log nq leading to an Opplog nq3 log log nq algorithm
for bridge �nding.

Throughout this paper, we will show a number of data structures for dy-
namic trees, implementing various subsets of these operations while ignoring
the rest (See Table 4.1). De�ne a CoverLevel structure to be one that imple-
ments operations 1�9, and a FindSize structure to be a CoverLevel structure
that additionally implements the FindSize operation. Finally, we de�ne a
FindFirstLabel structure to be one that implements operations 1�12 (all ex-
cept for FindSize).



4.3. TOP TREES 93

The point is that we can get di�erent trade-o�s between the operation
costs in the di�erent structures, and that we can combine them into a single
structure supporting all the operations using the following

Lemma 4.2 (Folklore). Given two data structures S and S1 for the same
problem consisting of a set U of update operations and a set Q of query
operations. If the respective update times are fupnq and f 1upnq for u P U ,
and the query times are gqpnq and g1qpnq for q P Q, we can create a combined
data structure running in Opfupnq�f 1upnqq time for update operation u P U ,
and Opmin

 
gqpnq, g1qpnq

(q time for query operation q P Q.

Proof. Simply maintain both structures in parallel. Call all update op-
erations on both structures, and call only the fastest structure for each
query.

Proof of Theorem 4.2. Use the CoverLevel structure from Section 4.4, the
FindSize structure from Section 4.5, and the FindFirstLabel structure from
Section 4.6, and combine them into a single structure using Lemma 4.2.
Then the reduction from Lemma 4.1 gives the correct running times but
uses Opm � n log nq space. To get linear space, modify the FindSize and
FindFirstLabel structures as described in Section 4.10.

Proof of Theorem 4.1. Use the CoverLevel structure from Section 4.9, the
FindSize structure from Section 4.5, as modi�ed in Section 4.7 and 4.10,
and the FindFirstLabel structure from Section 4.6, and combine them into
a single structure using Lemma 4.2. Then the reduction from Lemma 4.1
gives the required bounds.

4.3 Top trees

A top tree is a data structure for maintaining information about a dynamic
forest. Given a tree T , a top tree T is a rooted tree over subtrees of T , such
that each non-leaf node is the union of its children. The root of T is T , its
leaves are the edges of T , and its nodes are clusters, which we will de�ne in
two steps. For any subgraph H of a graph G, the boundary BH consists of
the vertices of H that have a neighbour in GzH. A cluster is a connected
subgraph with a boundary of size no larger than 2. We denote them by
point clusters if the boundary has size ¤ 1, and path clusters otherwise. For
a path cluster C with boundary BC � tu, vu, denote by πpCq the tree path
between u and v, also denoted the cluster path of C. Similarly, for a point
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cluster C with boundary vertex v, πpCq is the trivial path consisting solely
of v.

The top forest supports dynamic changes to the forest: insertion (link)
or deletion (cut) of edges. Furthermore, it supports the expose operation:
expose(v), or expose(v1, v2), returns a top tree where v, or v1, v2, are con-
sidered boundary vertices of every cluster containing them, including the
root cluster. All operations are supported by performing a series of destroy,
create, split, and merge operations: split destroys a node of the top tree and
replaces it with its two children, while merge creates a parent as a union
of its children. Destroy and create are the base cases for split and merge,
respectively. Note that clusters can only be merged if their union has a
boundary of size at most 2.

A top tree is binary if each node has at most two children. We call a
non-leaf node heterogeneous if it has both a point cluster and a path cluster
among its children, and homogeneous otherwise.

Theorem 4.4 (Alstrup, Holm, de Lichtenberg, Thorup [10]). For a dynamic
forest on n vertices we can maintain binary top trees of height Oplog nq
supporting each link, cut or expose with a sequence of Op1q calls to create or
destroy, and Oplog nq calls to merge or split. These top tree modi�cations
are identi�ed in Oplog nq time. The space usage of the top trees is linear in
the size of the dynamic forest.

4.4 A CoverLevel structure

In this section we show how to maintain a top tree supporting the CoverLevel
operations. This part is is essentially the same as in [83, 84] (with minor
corrections), but is included here for completeness because the rest of the
paper builds on it. Pseudocode for maintaining this structure is given in
Appendix 4.12.

For each cluster C we want to maintain the following two integers and
up to two edges:

coverC :� min tcpeq | e P πpCqu Y t`maxu
globalcoverC :� min tcpeq | e P CzπpCqu Y t`maxu

minpathedgeC :� arg min
ePπpCq

cpeq if |BC| � 2, and nil otherwise

minglobaledgeC :� arg min
ePCzπpCq

cpeq if C � πpCq, and nil otherwise
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Then

CoverLevelpvq � globalcoverC

MinCoveredEdgepvq � minglobaledgeC

+
where C is the point cluster returned by Exposepvq

CoverLevelpv, wq � coverC

MinCoveredEdgepv, wq � minpathedgeC

+
where C is the path cluster returned by Exposepv, wq

The problem is that when handling Cover or Uncover we cannot a�ord to
propagate the information all the way down to the edges. When these oper-
ations are called on a path cluster C, we instead implement them directly in
C, and then store �lazy information� in C about what should be propagated
down in case we want to look at the descendants of C. The exact additional
information we store for a path cluster C is

cover�C :� max level of a pending Uncover, or �1

cover�C :� max level of a pending Cover, or �1

We maintain the invariant that coverC ¥ cover�C , and if coverC ¤ cover�C
then coverC � cover�C .

This allows us to implement Coverpv, w, iq by �rst calling Exposepv, wq,
and then updating the returned path cluster C as follows:

coverC � max tcoverC , iu cover�C � max
 
cover�C , i

(
Similarly, we can implement Uncoverpv, w, iq by �rst calling Exposepv, wq,
and then updating the returned path cluster C as follows if coverC ¤ i:

coverC � �1 cover�C � �1 cover�C � max
 
cover�C , i

(
Together, cover�C and cover�C represent the fact that for each path de-

scendant D of C, if coverD ¤ max
 
cover�C , cover�C

(
1, we need to set

coverD � cover�C . In particular whenever a path cluster C is split, for each
path child D of C, if max

 
coverD, cover�D

( ¤ cover�C we need to set

cover�D � cover�C

1In [83,84] this condition is erroneously stated as coverD ¤ cover�C .
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Furthermore, if coverD ¤ max
 
cover�C , cover�C

(
we need to set

coverD � cover�C cover�D � cover�C

Note that only coverD is a�ected. None of globalcoverD, minpathedgeD, or
minglobaledgeD depend directly on the lazy information.

Now suppose we have k clusters2 A1, . . . , Ak that we want to merge into
a single new cluster C. For 1 ¤ i ¤ k de�ne

globalcover1C,Ai :�

$'&'%
globalcoverAi if BAi � πpCq

or globalcoverAi ¤ coverAi
coverAi otherwise

minglobaledge1C,Ai :�

$'&'%
minglobaledgeAi if BAi � πpCq

or globalcoverAi ¤ coverAi
minpathedgeAi otherwise

Note that for a point-cluster Ai, globalcoverAi is always ¤ coverAi � lmax.
We then have the following relations between the data of the parent and

the data of its children:

coverC � `max if |BC|   2, otherwise min
1¤i k,BAi�πpCq

coverAi

minpathedgeC � nil if |BC|   2, otherwise minpathedgeAj

where j � arg min
1¤i k,BAi�πpCq

coverAi

globalcoverC � min
1¤i k

globalcover1C,Ai

minglobaledgeC � minglobaledge1C,Aj

where j � arg min
1¤i k

globalcover1C,Ai

cover�C � �1

cover�C � �1

Analysis For any constant-degree top tree, Merge and Split with this in-
formation takes constant time, and thus, all operations in the CoverLevel
structure in this section take Oplog nq time. Each cluster uses Op1q space,
so the total space used is Opnq.

2k � 2 for now, but we will reuse this in section 4.9 with a higher-degree top tree.
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Note that we can extend this so for each cluster C, if all the least-covered
edges (on or o� the cluster path) lie in the same child of C, we have a pointer
to the closest descendant D of C that is either a base cluster or has more
than one child containing least-covered edges. We can use this structure to
�nd the �rst k bridges in Oplog n� kq time.

4.5 A FindSize Structure

We now proceed to show how to extend the CoverLevel structure from Sec-
tion 4.4 to support FindSize in Oplog n log log nq time per Merge and Split.
Later, in Section 4.7 we will show how to reduce this to Opplog log nq2q time
per Merge and Split. See Appendix 4.13 for pseudocode.

We will use the idea of having a single vertex label for each vertex, which
is a point cluster with no edges, having that vertex as boundary vertex and
containing all relevant information about the vertex. The advantage of this
is that it simpli�es handling of the common boundary vertex during a merge
by making sure it is uniquely assigned to (and accounted for by) one of the
children.

Let C be a cluster in T , let v be a vertex in C, and let 0 ¤ i   `max.
De�ne

pointsizeC,v,i :� ∣∣tu P C | CoverLevelpu, vq ¥ iu∣∣
For convenience, we will combine all the Oplog nq levels together into a single
vector3

pointsizeC,v :� �
pointsizeC,v,i

�
t0¤i `maxu

Let pCvqtvPπpCqu be the point clusters that would result from deleting the
edges of πpCq from C. Then we can de�ne the vector

sizeC :�
¸

mPπpCq

pointsizeCm,m

Note that with this de�nition, if BC � tvu then pointsizeC,v � sizeC so even
when v � w we have

FindSizepv, w, iq � sizeC,i where C � Exposepv, wq

So for any cluster C, the sizeC vector is what we want to maintain.
3All vectors and matrices in this section have indices ranging from 0 to `max � 1.
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The main di�culty turns out be computing the sizeC vector for the het-
erogeneous point clusters. To help with that we will for each cluster C and
boundary vertex v P BC additionally maintain the following two size vectors
for each �1 ¤ i ¤ `max:

partsizeC,v,i :�
¸

mPπpCq
CoverLevelpv,mq�i

pointsizeCm,m diagsizeC,v,i :�Mpiq � partsizeC,v,i

Where Mpiq is a diagonal matrix whose entries are de�ned (using Iverson
brackets, see [116]) by

Mpiqjj � ri ¥ js

Note that these vectors are independent of cover�C and cover�C as de�ned in
Section 4.4. The corresponding �clean� vectors are not explicitly stored, but
computed when needed as follows

partsize1C,v,i �

$'&'%
partsizeC,v,i if i ¡ `°`
j��1 partsizeC,v,j if i � cover�C

0 otherwise

diagsize1C,v,i �

$'&'%
diagsizeC,v,i if i ¡ `

Mpiq �°`
j��1 partsizeC,v,j if i � cover�C

0 otherwise

,/////////./////////-
where ` � max

 
cover�C , cover�C

(
The point of these de�nitions is that each path cluster inherits most of

its partsize and diagsize vectors from its children, and we can use this fact
to get an Op`max{ log `maxq � Oplog n{ log lognq speedup compared to [84].

Merging along a path (the general case) Let A,B be clusters that
we want to merge into a new cluster C, and suppose BA Y BB � πpCq.
This covers all types of merge in a normal binary top tree, except for the
heterogeneous point clusters. Let BAXBB � tcu. If |BC| � 1, let a � b � c,
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otherwise let BC � ta, bu with a P BA, b P BB. Then
sizeC � sizeA� sizeB

partsizeC,a,i �

$'&'%
partsize1A,a,i if i ¡ coverA

partsize1A,a,i�
°`max
j�i partsize1B,c,j if i � coverA

partsize1B,c,i if i   coverA

diagsizeC,a,i �

$'&'%
diagsize1A,a,i if i ¡ coverA

diagsize1A,a,i�Mpiq �
°`max
j�i partsize1B,c,j if i � coverA

diagsize1B,c,i if i   coverA

Merging o� the path (heterogeneous point clusters) Now let A be
a path cluster with BA � ta, bu, let B be a point cluster with BB � tbu, and
suppose we want to merge A,B into a new point cluster C with BC � tau.
Then

sizeC �
�
`max̧

i��1

diagsize1A,a,i

�
�MpcoverAq � sizeB

partsizeC,a,i �
#

sizeC if i � `max

0 otherwise

diagsizeC,a,i � partsizeC,a,i

Analysis The advantage of our new approach is that each merge or split
is a constant number of splits, concatenations, searches, and sums over
Op`maxq-length lists of `max-dimensional vectors. By representing each list as
an augmented balanced binary search tree (see e.g. [117, pp. 471�475]), we
can implement each of these operations in Op`max log `maxq time, and using
Op`maxq space per cluster, as follows. Let C be a cluster and let v P BC.
The tree has one node for each key i,�1 ¤ i ¤ `max such that partsizeC,v,i
is nonzero, augmented with the following additional information:

key :� i

partsize :� partsizeC,v,i

diagsize :� diagsizeC,v,i

partsizesum :�
¸

j descendant of i

partsizeC,v,j

diagsizesum :�
¸

j descendant of i

partsizeC,v,j
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Each split, concatenate, search, or sum operation can be implemented such
that it touches Oplog `maxq nodes, and the time for each node update is
dominated by the time it takes to add two `max-dimensional vectors, which
is Op`maxq. The total time for each Cover, Uncover, Link, Cut, or FindSize
is therefore Oplog n � `max � log `maxq � Opplog nq2 log log nq, and the total
space used for the structure is Opn � `maxq � Opn log nq.

Comparison to previous algorithms For any path cluster C and vertex
v P BC, let SC,v be the matrix whose jth column 0 ¤ j   `max is de�ned by

pSTC,vqj :�
`max̧

k�j

partsize1C,v,k

Then SC,v is essentially the size matrix maintained for path clusters in [83,
84,157]. Notice that

diagpSC,vq �
`max̧

k��1

diagsize1C,v,k

which explains our choice of the �diag� pre�x.

4.6 A FindFirstLabel Structure

We will show how to maintain information that allows us to implement
FindFirstLabel; the function that allows us to inspect the replacement edge
candidates at a given level. The implementation uses a �destructive binary
search, with undo� strategy, similar to the non-local search introduced in [10].

The idea is to maintain enough information in each cluster to determine
if there is a result. Then we can start by using Exposepv, wq, and repeatedly
split the root containing the answer until we arrive at the correct label. After
that, we simply undo the splits (using the appropriate merges), and �nally
undo the Expose.

Just as in the FindSize structure, we will use vertex labels to store all
the information pertinent to a vertex. We store all the added user labels for
each vertex in the label object for that vertex in the base level of the top
tree. For each level where the vertex has an associated user label, we keep
a doubly linked list of those labels, and we keep a singly-linked list of these
nonempty lists. Thus, FindFirstLabelpv, w, iq boils down to �nding the �rst
vertex label that has an associated user label at the right level. Once we
have that vertex label, the desired user label can be found in Op`maxq time.
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Let C be a cluster in T , and let v P BC. De�ne bit vectors4

pointincidentC,v :�
��
Dlabel l P C :

CoverLevelpv, vertexplqq � i

^ `plq � i

��
t0¤i `maxu

incidentC :�
ª

mPπpCq

pointincidentCm,m

Maintaining the incidentC bit vectors, and the corresponding
partincidentC,v and diagincidentC,v bit vectors, can be done completely anal-
ogous to the way we maintain the size vectors used for FindSize, with the
minor change that we use bitwise OR on bit vectors instead of vector addi-
tion.

Updating the vertex label cluster C in the top tree during
AddLabelpv, l, iq, or a RemoveLabelplq where v � vertexplq and `plq � i can
be done by �rst calling detachpCq, then updating the linked lists containing
the user labels and setting

incidentC � prv has associated labels at level jsqt0¤j `maxu

partincidentC,vertexplq,i �
#

incidentC if i � `max

0 otherwise

diagincidentC,vertexplq � partincidentC

and then reattaching C. Finally FindFirstLabel(v,w,i) can be implemented
in the way already described, by examining pointincidentC,v,i for each cluster.
Note that even though we don't explicitly maintain it, for any cluster C and
any v P BC we can easily compute

pointincidentC,v �
`maxª
i��1

diagincident1C,v,i

�
�

`maxª
i�`�1

diagincidentC,v,i

�
�Mpcover�Cq �

� ª̀
i��1

partincidentC,v,i

�
Where ` :� max

 
cover�C , cover�C

(
In general, let A1, . . . Ak be the clusters resulting from an expose or split,

4Here, rP s �

#
1 if P is true

0 otherwise
is the Iverson Bracket (see [116]), and _ denotes bitwise

OR.
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let v, w P �k
i�1 BAi (not necessarily distinct). Then we can de�ne

FindFirstLabelppA1, � � � , Akq; v, w, iq �#
Ax if Ax is a label

FindFirstLabelpSplitpAxq; vx, wx, iq otherwise

where for 1 ¤ j ¤ k

vj � arg min
uPBAj

distpv, uq

wj � arg max
uPBAj

distpu,wq

and

I �
#

1 ¤ j ¤ k

����� CoverLevelpv, vjq ¥ i

^ pointincidentAj ,vj ,i � 1

+
x � arg min

jPI
p3 � distpv,meetpvj , v, wqq � |BAj X v � � �w|q

FindFirstLabelpv, w, iq � FindFirstLabelpExposepv, wq; v, w, iq

Analysis By the method described in this section, AddLabel, Remove-
Label, and FindFirstLabel are maintained in Oplog n � `max � log `maxq �
Opplog nq2 log log nq worst-case time.

This can be reduced to Oplog n�log `maxq � Oplog n log log nq by realizing
that each `max-dimensional bit vector �ts into Op1q words, and that each
bitwise OR therefore only takes constant time.

The total space used for a FindFirstLabel structure with n vertices and
m labels is Opm � nq plus the space for Opnq bit vectors. If we assume a
word size of Ωplog nq, this is just Opm�nq in total. If we disallow bit packing
tricks, we may have to use Opm� n � `maxq � Opm� n log nq space.

4.7 Approximate counting

As noted in [157], we don't need to use the exact component sizes at each
level. If s is the actual correct size, it is su�cient to store an approximate
value s1 such that s1 ¤ s ¤ eεs1, for some constant 0   ε   ln 2. Then
we are no longer guaranteed that component sizes drop by a factor of 1

2 at
each level, but rather get a factor of e

ε

2 . This increases the number of levels
to `max � tlnn{pln 2� εqu (which is still Oplog nq), but leaves the algorithm
otherwise unchanged. Suppose we represent each size as a �oating point value
with a b-bit mantissa, for some b to be determined later. For each addition
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of such numbers the relative error increases. The relative error at the root of
a tree of additions of height h is p1� 2�bqh ¤ e2�bh, thus to get the required
precision it is su�cient to set b � log2

h
ε . In our algorithm(s) the depth

of calculation is clearly upper bounded by h ¤ hpnq � `max, where hpnq �
Oplog nq is the height of the top tree. It follows that some b P Oplog lognq
is su�cient. Since the maximum size of a component is n, the exponent has
size at most rlog2 ns, and can be represented in rlog2 rlog2 nss bits. Thus
storing the sizes as Oplog log nq bit �oating point values is su�cient to get
the required precision. Assuming a word size of Ωplog nq this lets us store
O
�

logn
log logn

�
sizes in a single word, and to add them in parallel in constant

time.

Analysis We will show how this applies to our FindSize structure from
Section 4.5. The bottlenecks in the algorithm all have to do with operations
on `max-dimensional size vectors. In particular, the amortized update time is
dominated by the time to do Oplog n�log `maxq vector additions, and Oplog nq
multiplications of a vector by the Mpiq matrix. With approximate counting,
the vector additions each take Oplog lognq time. Multiplying a size vector x
by Mpiq we get:

pMpiq � xqj �
#
xj if i ¥ j

0 otherwise

And clearly this operation can also be done on O
�

logn
log logn

�
sizes in parallel

when they are packed into a single word. With approximate counting, each
multiplication by Mpiq therefore also takes Oplog log nq time. Thus the time
per operation is reduced to Oplog nplog log nq2q.

The space consumption of the data structure is Opnq plus the space
needed to store Opnq of the `max-dimensional size vectors. With approximate
counting that drops to Oplog lognq per vector, or Opn log lognq in total.

Comparison to previous algorithms Combining the modi�ed FindSize
structure with the CoverLevel structure from Section 4.4 and the FindFirst-
Label structure from Section 4.6 gives us the �rst bridge-�nding structure
with Opplog nq2plog lognq2q amortized update time. This structure uses
Opm � n log log nq space, and uses Oplog nq time for FindBridge and Size
queries, and Oplog nplog lognq2q for 2-size queries.

For comparison, applying this trick in the obvious way to the basic
Opplog nq4q time and Opm � nplog nq2q algorithm from [83, 84] gives the
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Opplog nq3 log nq time and Opm � n log n log lognq algorithm brie�y men-
tioned in [157].

4.8 Top trees revisited

We can combine the tree data structures presented so far to build a data
structure for bridge-�nding that has update time Opplog nq2plog lognq2q,
query time Oplog nq, and uses Opm� n log log nq space.

In order to get faster queries and linear space, we need to use top-trees
in an even smarter way. For this, we need the full generality of the top trees
described in [10].

4.8.1 Level-based top trees, labels, and fat-bottomed trees

As described in [10], we may associate a level with each cluster, such that
the leaves of the top tree have level 0, and such that the parent of a level i
cluster is on level i� 1. As observed in Alstrup et al. [10, Theorem 5.1], one
may also associate one or more labels with each vertex. For any vertex, v,
we may handle the label(s) of v as point clusters with v as their boundary
vertex and no edges. Furthermore, as described in [10], we need not have
single edges on the bottom most level. We may generalize this to instead
have clusters of size Q as the leaves of the top tree.

Theorem 4.5 (Alstrup, Holm, de Lichtenberg, Thorup [10]). Consider a
fully dynamic forest and let Q be a positive integer parameter. For the trees
in the forest, we can maintain levelled top trees whose base clusters are of size
at most Q and such that if a tree has size s, it has height h � Oplog sq andP
Ops{pQp1� εqiqqT clusters on level i ¤ h. Here, ε is a positive constant.
Each link, cut, attach, detach, or expose operation is supported with Op1q
creates and destroys, and Op1q joins and splits on each positive level. If the
involved trees have total size s, this involves Oplog sq top tree modi�cations,
all of which are identi�ed in OpQ � log sq time. For a composite sequence
of k updates, each of the above bounds are multiplied by k. As a variant, if
we have parameter S bounding the size of each underlying tree, then we can
choose to let all top roots be on the same level H � OplogSq.

4.8.2 High degree top trees

Top trees of degree two are well described and often used. However, it turns
out to be useful to also consider top trees of higher degree B, especially for
B P ωp1q.
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Lemma 4.3. Given any B ¥ 2, one can maintain top trees of degree B and
height Oplog n{ logBq. Each expose, link, or cut is handled by Op1q calls to
create or destroy and Oplog n{ logBq calls to split or merge. The operations
are identi�ed in OpBplog n{ logBqq time.

Proof. Given a binary levelled top tree T2 of height h, we can create a B-ary
levelled top tree TB, where the leaves of TB are the leaves of T2, and where
the clusters on level i of TB are the clusters on level i � tlog2Bu of T2. Edges
in TB correspond to paths of length tlog2Bu in T2. Thus, given a binary top
tree, we may create a B-ary top tree bottom-up in linear time.

We may implement link, cut and expose by running the corresponding
operation in T2. Each cut, link or expose operation will a�ect clusters on
a constant number of root-paths in T2. There are thus only Oplog n{ logBq
calls to split or merge of a cluster on a level divisible by tlog2Bu. Thus,
since each split or merge in TB corresponds to a split or merge of a cluster
in T2 whose level is divisible by tlog2Bu, we have only Oplog n{ logBq calls
to split and merge in TB.

However, since there are OpBq clusters whose parent pointers need to be
updated after a merge, the total running time becomes OpBplog n{ logBqq.

4.8.3 Saving space with fat-bottomed top trees

In this section we present a general technique for reducing the space usage
of a top tree based data structure to linear. The properties of the technique
are captured in the following:

Lemma 4.4. Given a top tree data structure of height hpnq P Oplog nq that
uses spnq space per cluster, and tpnq worst case time per merge or split.

Suppose that the complete information for a cluster of size q, including
information that is shared with its children, has total size s0pq, nq and can
be computed directly in time t0pq, nq. Suppose further that there exists a
function q of n such that spnq   s0pqpnq, nq P Opqpnqq.

Then there exists a top tree data structure, maintaining the same infor-
mation, that uses linear space in total and has Optpnq � hpnq � t0pqpnq, nqq
update time for link, cut, and expose.

Proof. This follows directly from Theorem 4.5 by setting Q � qpnq. Then the
top tree will have Opn{qpnqq clusters of size at most s0pqpnq, nq � Opqpnqq
so the total size is linear. The time per update follows because the top tree
uses Ophpnqq merges of split and Op1q create and destroy per link cut and
expose. These take tpnq and t0pqpnq, nq time respectively.
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4.9 A Faster CoverLevel Structure

If we allow ourselves to use bit tricks, we can improve the CoverLevel data
structure from Section 4.4. The main idea is, for some 0   ε   1, to use top
trees of degree bpnq � plog nqε P Opw{ log `maxq. Such top trees have height
hpnq P Op logn

ε log lognq, and �nding the sequence of merges and splits for a given

link, cut or expose takes Opbpnq � hpnqq P Op plognq1�ε

ε log logn q � opplog nq1�εq time.
The high-level algorithm makes at most a constant number of calls to

link and cut for each insert or delete, so we are �ne with the time for these
operations. However, we can no longer use Expose to implement Cover,
Uncover, CoverLevel and MinCoveredEdge, as that would take too long.

In this section, we will show how to overcome this limitation by working
directly with the underlying tree.

The data The basic idea is to maintain a bu�er with all the cover, cover�,
cover� and globalcover values one level up in the tree, in the parent cluster.
Since the degree is Opw{ log `maxq, and each value uses at most Oplog `maxq
bits, these �t into a constant number of words, and so we can use bit tricks
to operate on the values for all children of a node in parallel.

Let C be a cluster with children A1, . . . , Ak. Since k ¤ w{ log `max, we
can de�ne the following vectors that each �t into a constant number of words.

packedcoverC :� pcoverAiqt1¤i¤ku
packedcover�C :� pcover�Aiqt1¤i¤ku
packedcover�C :� pcover�Aiqt1¤i¤ku

packedglobalcoverC :� pglobalcoverAiqt1¤i¤ku

The description of Split and Merge from Section 4.4 still apply, if we
think of the �packed� values as a separate layer of degree 1 clusters between
each pair of �real� clusters.

For concreteness, let C be a cluster with children A1, . . . , Ak, and de�ne
operations

• CleanToBufferpCq. For each 1 ¤ i ¤ k: If Ai is a path child of C and
max

 
packedcoverC,i, packedcover�C,i

( ¤ cover�C , set:

packedcover�C,i � cover�C
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Then if packedcoverC,i ¤ max
 
cover�C , cover�C

(
set

packedcoverC,i � cover�C

packedcover�C,i � cover�C

After updating all k children, set cover�C � cover�C � �1. Note that
this can be done in parallel for all 1 ¤ i ¤ k in constant time using bit
tricks.

• CleanToChildpC, iq. If Ai is a path child of C and
max

 
coverAi , cover�Ai

( ¤ packedcover�C,i, set

cover�Ai � packedcover�C,i

Then if coverAi ¤ max
 
packedcover�C,i,packedcover�C,i

(
set

coverAi � packedcover�C,i

cover�Ai � packedcover�C,i

Finally set packedcover�C,i � packedcover�C,i � �1. Again, note that
this takes constant time.

• ComputeFromChildpC, iq. Set
packedcoverC,i � coverAi

packedcover�C,i � �1

packedcover�C,i � �1

packedglobalcoverC,i � globalcoverAi

• ComputeFromBufferpCq. For 1 ¤ i ¤ k de�ne

packedglobalcover1C,i �$'&'%
packedglobalcoverC,i if BAi � πpCq

or packedglobalcoverC,i ¤ packedcoverC,i

packedcoverC,i otherwise

minglobaledge1C,i �$'&'%
minglobaledgeAi if BAi � πpCq

or globalcoverAi ¤ coverAi
minpathedgeAi otherwise
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We can then compute the data for C from the bu�er as follows:

coverC �

$'&'%
min

1¤i k
BAi�πpCq

packedcoverC,i if |BC| � 2

`max otherwise

minpathedgeC �

$''''&''''%
minpathedgeAj if |BC| � 2

where j � arg min
1¤i k

BAi�πpCq

packedcoverC,i

nil otherwise

globalcoverC � min
1¤i k

packedglobalcover1C,i

minglobaledgeC � minglobaledge1C,j

where j � arg min
1¤i k

packedglobalcover1C,i

cover�C � �1

cover�C � �1

This can be computed in constant time, because
ppackedglobalcover1C,iqt1¤i¤ku �ts into a constant number of words
that can be computed in constant time using bit tricks, and thus each
�min� or �arg min� is taken over values packed into a constant number
of words.

Then SplitpCq can be implemented by �rst calling CleanToBufferpCq,
and then for each 1 ¤ i ¤ k calling CleanToChildpC, iq. This
ensures that all the lazy cover information is propagated down cor-
rectly. Similarly, MergepC;A1, . . . , Akq can be implemented by �rst call-
ing ComputeFromChildpC, iq for each 1 ¤ i ¤ k, and then calling
ComputeFromBufferpCq. Thus Split and Merge each take Opbpnqq time.

Computing CoverLevelpvq and MinCoveredEdgepvq With the data de-
scribed in the previous section, we can now answer the �global� queries as
follows

CoverLevelpvq � globalcoverC

MinCoveredEdgepvq � minglobaledgeC

where C is the point cluster returned by rootpvq
Note that, for simplicity, we assume the top tree always has a single vertex
exposed. This can easily be arranged by a constant number of calls to
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Expose after each link or cut, without a�ecting the asymptotic running time.
Computing CoverLevelpvq or MinCoveredEdgepvq therefore takes Ophpnqq
worst case time.

Computing CoverLevelpv, wq and MinCoveredEdgepv, wq Since we can
no longer use Expose to implement Cover and Uncover, we need a little
more machinery.

What saves us is that all the information we need to �nd CoverLevelpv, wq
is stored in the Ophpnqq clusters that have v or v as internal vertices, and
that once we have that, we can �nd a single child X of one of these clusters
such that MinCoveredEdgepv, wq � minpathedgeX .

Before we get there, we have to deal with the complication of cover�

and cover�. Fortunately, all we need to do is make Ophpnqq calls to
CleanToBuffer and CleanToChild, starting from the root and going down
towards v and w. Since each of these calls take constant time, we use only
Ophpnqq time on cleaning.

Now, the path v � � �w consists of Ophpnqq edge-disjoint fragments, such
that:

• Each fragment f is associated with, and contained in, a single cluster
Cf .

• For each fragment f , the endpoints are either in tv, wu (and then Cf
is a base cluster) or are boundary vertices of children of Cf .

We can �nd the fragments in Ophpnqq time, and for each fragment f , we
can in constant time �nd its cover level by examining packedcoverCf .

Let f1, . . . , fk be the fragments of the path, and for 1 ¤ i ¤ k let vi, wi
be the endpoints of the fragment closest to v, w respectively. Then

CoverLevelpv, wq � min
1¤i¤k

CoverLevelpvi, wiq
MinCoveredEdgepv, wq � MinCoveredEdgepvj , wjq

where j � arg min
1¤i¤k

CoverLevelpvi, wiq

MinCoveredEdgepvj , wjq � minpathedgeX

where X � arg min
Y path child of Cfj

coverY

So computing CoverLevelpv, wq or MinCoveredEdgepv, wq takes Ophpnqq
worst case time.
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Cover and Uncover We are now ready to handle Coverpv, w, iq and
Uncoverpv, w, iq. First we make Ophpnqq calls to CleanToBuffer and
CleanToChild. Then let f1, . . . , fk be the fragments of the v � � �w path,
and for 1 ¤ i ¤ k let vi, wi be the endpoints of the fragment closest to v, w
respectively. Then for each f P f1, . . . , fk, and each path child Aj of Cf ,
Coverpv, w, iq needs to set

packedcoverCf ,j � max
!

packedcoverCf ,j , i
)

packedcover�Cf ,j � max
!

packedcoverCf ,j , i
)

Similarly, for each f P f1, . . . , fk, and for each path child Aj of Cf , if
packedcoverCf ,j ¤ i, Uncoverpv, w, iq needs to set

packedcoverCf ,j � �1

packedcover�Cf ,j � �1

packedcover�Cf ,j � max
!

packedcover�Cf ,j , i
)

In each case, we can use bit tricks to make this take constant time per
fragment. Finally, we need to update all the Ophpnqq ancestors to the clus-
ters we just changed. We can do this bottom-up using Ophpnqq calls to
ComputeFromChild and ComputeFromBuffer.

We conclude that Coverpv, w, iq and Uncoverpv, w, iq each take worst case
Ophpnqq time.

Analysis Choosing any bpnq P Opw{ log `maxq we get height hpnq P
Op logn

log bpnqq, so Link and Cut take worst case Op bpnq logn
log bpnq q time with this Cov-

erLevel structure. The remaining operations, Connected, Cover, Uncover,
CoverLevel and MinCoveredEdge all take Op logn

log bpnqq worst case time. For
the purpose of our main result, choosing bpnq P Θp?log nq is su�cient. Each
cluster uses Op1q space, so the total space used is Opnq.

Note that the pointers that allow us to �nd the �rst k least-covered edges
can still be maintained in Ophq time per update, and allows us to �nd the
�rst k least-covered edges in Oph� kq time.

4.10 Saving Space

We now apply the space-saving trick from Lemma 4.4 to the FindSize struc-
tures from Section 4.5 and 4.7. Let D be the number of words used for
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each size vector in our FindSize structure. This is Oplog nq for the purely
combinatorial version, and Oplog lognq in the version using approximate
counting. As shown previously these use spnq � OpDq space per cluster and
tpnq � Oplog n �Dq worst case time per merge and split.

Lemma 4.5. The complete information for a cluster of size q in the FindSize
structure, including information that would be shared with its children, has
total size s0pq, nq � Opq � `max �Dq.
Proof. The complete information for a cluster C with |C| � q consists of

• cpeq for all e P C.
• coverC , cover�C , cover�C , globalcoverC , sizeC .

• partsizeC,v,i and diagsizeC,v,i for v P BC and �1 ¤ i ¤ `max.

The total size for all of these is s0pq, nq � Opq � `max �Dq
Note that when keeping n �xed, this is clearly Opqq. In particular, we

can choose qpnq P Θp`max �Dq such that spnq   s0pqpnq, nq P Opqpnqq.
Lemma 4.6. The complete information for a cluster of size q in the FindSize
structure, including information that would be shared with its children, can
be computed directly in time t0pq, nq � Opq log q � `max �Dq.
Proof. Let C be the cluster of size |C| � q. For each v P BC, we can in Opqq
time �nd and partition the cluster path into the at most `max parts such
that in part i, each vertex m on the cluster path have CoverLevelpv,mq � i.
For each part i, run the following algorithm:
1: Vector xÐ 0
2: Initialize empty max-queue Q
3: j Ð `max

4: for w Ð each vertex in the fragment that is on πpCq do
5: Mark w as visited
6: xj Ð xj � 1
7: for eÐ each edge incident to w that is not on πpCq do
8: if cpeq ¥ 0 then
9: Add e to Q with key cpeq
10: while Q is not empty do
11: eÐ extract-maxpQq
12: while cpeq   j do
13: xj�1 � xj
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14: j Ð j � 1

15: w Ð the unvisited vertex at the end of e
16: Mark w as visited
17: xj Ð xj � 1
18: for eÐ each edge incident to w that has an unvisited end do
19: if cpeq ¥ 0 then
20: Add e to Q with key cpeq
21: partsizeC,v,i Ð x
22: diagsizeC,v,i ÐMpiq � x
If the ith part has size qi than it can be processed this way in Opqi log qi�Dq
time. Summing over all Op`maxq parts gives the desired result.

Analysis Applying Lemma 4.4 with the spnq, tpnq, s0pq, nq, t0pq, nq and
qpnq derived in this section immediately gives a FindSize structure with
Oplog n �D � log `maxq worst case time per operation and using Opnq space. A
completely analogous argument shows that we can convert the bitpacking-
free version of the FindFirstLabel structure from Oplog n � `max � log `maxq
time and Opm � n � `maxq space to one using linear space. (If bitpacking is
allowed the structure already used linear space). In either case is the same
time per operation as the original versions, so using the modi�ed version
here does not a�ect the overall running time, but reduces the total space of
each bridge-�nding structure to Opm� nq.

Note that we can explicitly store lists with all the least-covered edges for
these large base clusters, so this does not change the time to report the �rst
k least-covered edges.

4.11 Details of the high level algorithm

Lemma 4.1 (Essentially the high level algorithm from [84]). There exists a
deterministic reduction for dynamic graphs with n nodes, that, when starting
with an empty graph, supports any sequence of m Insert or Delete operations
using:

• Opmq calls to Link, Cut, Uncover, and CoverLevel.

• Opm log nq calls to Connected, Cover, AddLabel, RemoveLabel, Find-
FirstLabel, and FindSize.

And that can answer FindBridge queries using a constant number of calls to
Connected, CoverLevel, and MinCoveredEdge.
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Proof. The only part of the high level algorithm from [84] that does not
directly and trivially translate into a call of the required dynamic tree
operations (see pseudocode below) is in the Swap method where given a
tree edge e � pv, wq we need to �nd a nontree edge e1 covering e with
`pe1q � i � CoverLevelpeq. We can �nd this e1 by using FindFirstLabel and
increasing the level of each non-tree edge we examine that does not cover
e. For at least one side of pv, wq, all non-tree edges at level i incident to
that side will either cover e or can safely have their level increased without
violating the size invariant. So we can simply search the side where the level
i component is smallest until we �nd the required edge (which must exist
since e was covered on level i). The amortized cost of all operations remain
unchanged with this implementation. Counting the number of operations
(see Table 4.2) gives the desired bound.

# Operation
#Calls during

Insert+Delete FindBridgepvq FindBridgepv, wq Size(v) 2-Size(v)
1 Linkpv, w, eq 1 0 0 0 0
2 Cutpeq 1 0 0 0 0
3 Connectedpv, wq log n 0 1 0 0
4 Coverpv, w, iq log n 0 0 0 0
5 Uncoverpv, w, iq 1 0 0 0 0
6 CoverLevelpvq 0 1 0 0 0
7 CoverLevelpv, wq 1 0 1 0 0
8 MinCoveredEdgepvq 0 1 0 0 0
9 MinCoveredEdgepv, wq 0 0 1 0 0
10 AddLabelpv, l, iq log n 0 0 0 0
11 RemoveLabelplq log n 0 0 0 0
12 FindFirstLabelpv, w, iq log n 0 0 0 0

13
FindSizepv, w, iq log n 0 0 0 1
FindSizepv, v,�1q 0 0 0 1 0

Table 4.2: Overview of how many times each tree operation is called for each
graph operation, ignoring constant factors. The �Insert+Delete� column
is amortized over any sequence starting with an empty set of edges. The
remaining columns are worst case.

1: function 2-edge-connected(v, w)
2: return T.Connected(v, w) ^ T.CoverLevel(v, w)¥ 0

3: function FindBridge(v)
4: if T.CoverLevel(v)� �1 then
5: return T.MinCoveredEdge(v)
6: else
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7: return nil
8: function FindBridge(v, w)
9: if T.CoverLevel(v, w)� �1 then
10: return T.MinCoveredEdge(v, w)
11: else
12: return nil
13: function Size(v)
14: return T.FindSize(v,v,�1)

15: function 2-Size(v)
16: return T.FindSize(v,v,0)

17: function Insert(v, w, e)
18: if  T.Connected(v, w) then
19: T.Link(v, w, e)
20: `peq Ð `max

21: else
22: T.AddLabel(v, e.label1, 0)
23: T.AddLabel(w, e.label2, 0)
24: `peq Ð 0
25: T.Cover(v, w, 0)

26: function Delete(e)
27: pv, wq Ð e
28: αÐ `peq
29: if α � `max then
30: αÐ T.CoverLevelpv, wq
31: if α � �1 then
32: T.Cutpeq
33: return
34: Swap(e)

35: T.RemoveLabel(e.label1)
36: T.RemoveLabel(e.label2)
37: T.Uncoverpv, w, αq
38: for iÐ α, . . . , 0 do
39: Recover(w,v,i)

40: function Swap(e)
41: pv, wq Ð e
42: αÐ T.CoverLevelpv, wq
43: T.Cutpeq
44: e1 ÐFindReplacement(v,w,α)
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45: px, yq Ð e1

46: T.RemoveLabel(e1.label1)
47: T.RemoveLabel(e1.label2)
48: T.Link(x, y, e1)
49: `pe1q Ð `max

50: T.AddLabel(v,e.label1, α)
51: T.AddLabel(w,e.label2, α)
52: `peq Ð α
53: T.Cover(v,w,α)

54: function FindReplacement(v,w,i)
55: sv Ð T.FindSizepv, v, iq
56: sw Ð T.FindSizepw,w, iq
57: if sv ¤ sw then
58: return RecoverPhasepv, v, i, svq
59: else
60: return RecoverPhasepw,w, i, swq
61: function Recover(v,w,i)
62: sÐ tT.FindSizepv, w, iq{2u
63: RecoverPhase(v,w,i,s)
64: RecoverPhase(w,v,i,s)

65: function RecoverPhase(v, w, i, s)
66: lÐ T.FindFirstLabelpv, w, iq
67: while l � nil do
68: eÐ l.edge
69: pq, rq Ð e
70: if  T.Connected(q, r) then
71: return e
72: if T.FindSizepq, r, i� 1q ¤ s then
73: T.RemoveLabel(e.label1)
74: T.RemoveLabel(e.label2)
75: T.AddLabel(q, e.label1, i� 1)
76: T.AddLabel(r, e.label2, i� 1)
77: `peq � i� 1
78: T.Cover(q,r,i� 1)
79: else
80: T.Cover(q,r,i)
81: return nil
82: lÐ T.FindFirstLabelpv, w, iq
83: return nil
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4.12 Pseudocode for the CoverLevel structure

1: function CL.Cover(v,w,i)
2: C Ð TopTree.Expose(v, w)
3: coverC Ð max tcoverC , iu
4: cover�C Ð max

 
cover�C , i

(
5: function CL.Uncover(v,w,i)
6: C Ð TopTree.Expose(v, w)
7: coverC Ð �1
8: cover�C Ð �1
9: cover�C Ð max

 
cover�C , i

(
10: function CL.CoverLevel(v)
11: C Ð TopTree.Expose(v)
12: return globalcoverC
13: function CL.CoverLevel(v, w)
14: C Ð TopTree.Expose(v, w)
15: return coverC
16: function CL.MinCoveredEdge(v)
17: C Ð TopTree.Expose(v)
18: return minglobaledgeC
19: function CL.MinCoveredEdge(v, w)
20: C Ð TopTree.Expose(v, w)
21: return minpathedgeC
22: function CL.Split(C)
23: for each path child D of C do
24: if max

 
coverD, cover�D

( ¤ cover�C then
25: cover�D Ð cover�C
26: if coverD ¤ max

 
cover�D, cover�D

(
then

27: coverD Ð cover�C
28: cover�D Ð cover�C
29: function CL.Merge(C; A1, . . . , Ak)
30: coverC Ð `max

31: minpathedgeC Ð nil
32: globalcoverC Ð `max

33: minglobaledgeC Ð nil
34: for iÐ 1, . . . , k do
35: if BAi � πpCq then
36: if coverAi   coverC then
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37: coverC Ð coverAi
38: minpathedgeC Ð minpathedgeAi
39: else
40: if coverAi   globalcoverC then
41: globalcoverC Ð coverAi
42: minglobaledgeC Ð minpathedgeAi
43: if globalcoverAi   globalcoverC then
44: globalcoverC Ð globalcoverAi
45: minglobaledgeC Ð minglobaledgeAi
46: cover�C Ð �1
47: cover�C Ð �1

48: function CL.Create(C; edge e)
49: coverC Ð �1
50: globalcoverC Ð �1
51: if C is a point cluster then
52: minpathedgeC Ð nil
53: minglobaledgeC Ð e
54: else
55: minpathedgeC Ð e
56: minglobaledgeC Ð nil

57: cover�C Ð �1
58: cover�C Ð �1

4.13 Pseudocode for the FindSize structure

In the following, we use the notation

rkey : partsize,diagsizes
to denote the root of a new tree consisting of a single node with the given
values. And for a given tree root and given x, y

ptreetx¤i¤yuq
is the root of the subtree consisting of all nodes whose keys are in the given
range. Similarly, for any given i, let

ptreeiq
denote the node in the tree having the given key.
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1: function FS.FindSize(v, w, i)
2: C Ð TopTree.Expose(v, w)
3: return sizeC,i

4: function FS.Merge(C; A, B)
5: tcu Ð BAX BB
6: if c P πpCq then � Merge along path
7: if |BC|  � 1 then
8: aÐ c, bÐ c
9: else
10: ta, bu Ð BC with a P BA and b P BB.
11: sizeC Ð sizeA� sizeB
12: for px,Xq Ð pa,Aq, pb, Bq do
13: if x � c then
14: tree1X,x Ð treeX,x, undo1X,x Ð nil
15: else
16: for v Ð x, c do
17: `Ð max

 
cover�X , cover�X

(
18: sÐ ptreeX,vq. partsizesum
19: dÐMpcover�Xq � s
20: tree1X,v Ð treeX,v,ti¡`u, undo1X,v Ð treeX,v,ti¤`u
21: tree1X,v Ð tree1X,v �rcover�X : s, ds
22: for px,X, y, Y q Ð pa,A, b, Bq, pb, B, a,Aq do
23: sÐ ptree1Y,c,tcoverX¤i¤`maxu

q.partsizesum

24: pÐ ptree1X,x,coverX
q.partsize�s

25: dÐ ptree1X,x,coverX
q. diagsize�MpcoverXq � s

26: if x � c then
27: tree2X,x Ð r`max : sizeX , sizeXs, undo2X,x Ð nil
28: else
29: tree2X,x Ð tree1X,x,ti¡coverXu

, undo2X,x Ð tree1X,x,ti¤coverXu

30: if y � c then
31: tree3Y,c Ð nil, undo3Y,c Ð r`max : sizeY , sizeY s
32: else
33: tree3Y,c Ð tree1Y,c,ti coverXu

, undo3Y,c Ð tree1Y,c,ti¥coverXu

34: treeC,x Ð tree2X,x�rcoverX : p, ds � tree3Y,c

35: else � Merge o� path
36: tau Ð BCz tcu
37: if a R BA then
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38: Swap A and B
39: `Ð max

 
cover�A, cover�A

(
40: dÐ ptreeA,a,t` i¤`maxuq. diagsizesum
41: pÐ ptreeA,a,t�1¤i¤`uq. partsizesum

42: sizeC Ð d�Mpcover�Aq � p�MpcoverAq � sizeB
43: treeC,a Ð r`max : sizeC , sizeCs
44: function FS.Split(C)
45: A,B Ð the children of C
46: tcu Ð BAX BB
47: if c P πpCq then � Split along path
48: if |BC|  � 1 then
49: aÐ c, bÐ c
50: else
51: ta, bu Ð BC with a P BA and b P BB.
52: for px,X, y, Y q Ð pa,A, b, Bq, pb, B, a,Aq do
53: tree2X,x Ð treeC,x,ti¡coverXu, tree3Y,c Ð treeC,x,ti coverXu

54: if y � c then
55: tree1Y,c Ð tree3Y,c�undo3Y,c

56: if x � c then
57: tree1X,x Ð tree2X,x�undo2X,x

58: for px,Xq Ð pa,Aq, pb, Bq do
59: if x � c then
60: for v Ð x, c do
61: treeX,v Ð tree1

X,v,ti¡cover�Xu �undo1X,v

62: function FS.Create(C; edge e)
63: sizeC Ð 0
64: for v P BC do
65: treeC,v Ð r`max : 0, 0s
66: function FS.Create(C; vertex label l)
67: sizeC Ð p1qt0¤i `maxu

68: for v P BC do
69: treeC,v � r`max : sizeC , sizeCs
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Chapter 5

Decremental SPQR-trees for

planar graphs

Jacob Holm, Giuseppe F. Italiano, Adam Karczmarz, Jakub

�¡cki and Eva Rotenberg

Abstract

We present a decremental data structure for maintaining the
SPQR-tree of a planar graph subject to contractions and dele-
tions of edges. The update time, amortized over Ωpnq operations,
is Oplog2 nq.

Via SPQR-trees, we show a decremental algorithm for main-
taining 2- and 3-vertex connectivity in planar graphs. It answers
queries in Op1q time and processes edge deletions and contrac-
tions in Oplog2 nq amortized time. For 3-vertex connectivity in a
planar graph subject to deletions, this is an exponential improve-
ment over the previous best bound of Op?n q that has stood for
over 20 years. In addition, the previous data structures only
supported edge deletions.

5.1 Introduction

A graph algorithm is called dynamic if it is able to answer queries about a
given property while the graph is undergoing a sequence of updates, such
as edge insertions and deletions. It is incremental if it handles only inser-
tions, decremental if it handles only deletions, and fully dynamic if it handles

121



122 CHAPTER 5. DECREMENTAL SPQR-TREES

both insertions and deletions. In designing dynamic graph algorithms, one
is typically interested in achieving fast query times (either constant or poly-
logarithmic), while minimizing the update times. The ultimate goal is to
perform fast both queries and updates, i.e., to have both query and update
times either constant or polylogarithmic. So far, the quest for obtaining
polylogarithmic time algorithms has been successful only in few cases. In-
deed, e�cient dynamic algorithms with polylogarithmic time per update are
known only for few problems, such as dynamic connectivity, 2-connectivity,
minimum spanning tree and maximal matchings in undirected graphs (see,
e.g., [17, 80, 84, 91, 104, 150, 157, 163]). On the other hand, some dynamic
problems appear to be inherently harder. For example, the fastest known
algorithms for basic dynamic problems, such as reachability, transitive clo-
sure, and dynamic shortest paths have only polynomial times per update
(see, e.g., [29, 34,35,111,144,147,159]).

A similar situation holds for planar graphs where dynamic problems have
been studied extensively, see e.g. [4,39,49,51,63,71,86,101,122�124,126,151].
Despite this long-time e�ort, the best algorithms known for some basic prob-
lems on planar graphs, such as dynamic shortest paths and dynamic planarity
testing, still have polynomial update time bounds. For instance, for fully dy-
namic shortest paths on planar graphs the best known bound per operation
is1 rOpn2{3q amortized [53, 101, 103, 113], while for fully dynamic planarity
testing the best known bound per operation is Op?n q amortized [49].

In the last years, this exponential gap between polynomial and polyloga-
rithmic bounds has sparkled some new exciting research. On one hand, it was
shown that there are dynamic graph problems, including fully dynamic short-
est paths, fully dynamic single-source reachability and fully dynamic strong
connectivity, for which it may be di�cult to achieve subpolynomial update
bounds. This started with the pioneering work by Abboud and Vassilevska-
Williams [3], who proved conditional lower bounds based on popular conjec-
tures. Very recently, Abboud and Dahlgaard [2] proved polynomial update
time lower bounds for dynamic shortest paths also on planar graphs, again
based on popular conjectures.

On the other hand, the question of whether the best polynomial update
bounds known for several other dynamic graph problems can be substantially
improved (say to polylogarithmic bounds) has received much attention in the
last years. For instance, there was a very recent improvement from polyno-
mial to polylogarithmic bounds for decremental single-source reachability
(and strongly connected components) in planar graphs: more precisely, the

1Throughout the paper,we use the notation rOpfpnqq to hide polylogarithmic factors.
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improvement was from Op?n q amortized [122] to Oplog2 n log lognq amor-
tized [99] (both amortizations are over sequences of Ωpnq updates). Other
problems that received a lot of attention are fully dynamic connectivity and
minimum spanning tree in general graphs. Up to last year, the best deter-
ministic worst-case bound for both problems was Op?n q per update [48]:
very recently, much e�ort has been devoted towards improving this bound
(see e.g., [109,134,136,164]).

In this paper, we follow the ambitious goal of achieving polylogarith-
mic update bounds for dynamic graph problems. In particular, we show
how to improve the update times from polynomial to polylogarithmic for
another important problem on planar graphs: decremental 3-vertex connec-
tivity. Given a graph G � pV,Eq and two vertices x, y P V we say that x
and y are 2-vertex connected (or, as we say in the following, biconnected) if
there are at least two vertex-disjoint paths between x and y in G. We say
that x and y are 3-vertex connected (or, as we say in the following, tricon-
nected) if there are at least three vertex-disjoint paths between x and y in
G. The decremental planar triconnectivity problem consists of maintaining
a planar graph G subject to an arbitrary sequence of edge deletions, edge
contractions, and query operations which test whether two arbitrary input
vertices are triconnected. We remark that decremental triconnectivity on
planar graphs is of particular importance. Apart from being a fundamental
graph property, a triconnected planar graph has only one planar embedding,
a property which is heavily used in graph drawing, planarity testing and
testing for isomorphism [94,96,102].

Furthermore, our extended repertoire of operations, which includes edge
contractions, contains all operations needed to obtain a graph minor, which
is another important notion for planar graphs.

While polylogarithmic update bounds for decremental 2-edge and 3-edge
connectivity, and for decremental biconnectivity in planar graphs have been
known for more than two decades [63], decremental triconnectivity on planar
graphs presents some special challenges. Indeed, while connectivity cuts for
2-edge and 3-edge connectivity, and for biconnectivity have simple counter-
parts in the dual graph or in the vertex-face graph (see Section 5.2 for a for-
mal de�nition of vertex-face graph), triconnectivity cuts (separation pairs,
i.e., pairs of vertices whose removal disconnects the graph) have a much
more complicated structure in planar graphs. Roughly speaking, maintain-
ing 2-edge and 3-edge connectivity cuts in a planar graph under edge dele-
tions corresponds to maintaining respectively self-loops and cycles of length
2 (pairs of parallel edges) in the dual graph under edge contractions. On the
other side, maintaining biconnectivity and triconnectivity cuts in a planar
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graph under edge deletions corresponds to maintaining, respectively, cycles
of length 2 and cycles of length 4 in the vertex-face graph. While detect-
ing cycles of length 2 boils down to �nding duplicates in the multiset of all
edges, detecting cycles of length 4 under edge contractions is far more com-
plex. We believe that this is the reason why designing a fast solution for
decremental triconnectivity on planar graphs has been an elusive goal, and
the best bound known of Op?n q per update [50] has been standing for over
two decades.

Our results and techniques. In this paper, we show how to solve the
decremental triconnectivity problem on planar graphs in constant time per
query and Oplog2 nq amortized time per edge deletion or contraction, over
any sequence of Ωpnq deletions and contractions. This is an exponential
speed-up over the previous Op?n q long-standing bound [50]. To obtain our
bounds, we also need to solve decremental biconnectivity on planar graphs
in constant time per query and Oplog2 nq amortized time per edge deletion
or contraction. (A better Oplog nq amortized bound can be obtained if no
contractions are allowed [86]). Our results are achieved with the help of two
new tools, which may be of independent interest.

The �rst tool is an algorithm capable of detecting and reporting e�ciently
cycles of length 4 as they arise in a dynamic plane graph subject to edge
contractions and edge insertions. The algorithm works for a graph with
bounded face-degree, that is, where each face is delimited by at most some
constant number of edges. Speci�cally, given a plane embedded graph with
bounded face-degree subject to edge-contractions and insertions of edges
across a face, after each dynamic operation we can report all edges that lie
on a length-4 cycle because of this dynamic operation. The total running
time is Opn log nq. One of the challenges that we face is that a planar graph
may have as many as Ωpn2q distinct cycles of length 4. Still, we are able to
show a surprisingly simple algorithm for solving this problem. The di�culty
of the algorithm lies in the analysis � in fact, this analysis is the most
technically involved part of this paper.

The second tool is a new data structure that maintains the SPQR-
tree [36] of a planar graph, while the graph is updated with edge deletions
and edge contractions, in Oplog2 nq amortized time per operation. While
incremental algorithms for maintaining the SPQR tree were known for more
than two decades [36,37], to the best of our knowledge no decremental algo-
rithm was previously known.
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Organization of the paper. The remainder of the paper is organized as
follows. In Section 5.2, we introduce notation and de�nitions that we later
use. Then, in Section 5.3 we present a high-level overview of our results. The
details of the decremental algorithm for triconnectivity follow: Section 5.4
outlines an algorithm for detecting cycles of length 4 under contractions,
with some details deferred to Appendix 5.7, while Section 5.5 presents our
new algorithm for maintaining an SPQR-tree during edge deletions and con-
tractions. Finally, Section 5.6 shows how to use the SPQR-trees in order to
maintain information about triconnectivity.

5.2 Preliminaries

Throughout the paper we use the term graph to denote an undirected multi-
graph, that is we allow the graphs to have parallel edges and self-loops.
Formally, each edge e of such a graph is a pair ptu,wu, idpeqq consisting of a
pair of vertices and a unique integer identi�er used to distinguish between
the parallel edges. For simplicity, in the following we skip the identi�er and
use just uw to denote one of the edges connecting vertices u and w. If the
graph contains no parallel edges and no self-loops, we call it simple.

Given a graph G, we use V pGq to denote the vertices, and EpGq to
denote the edges of G. For any X � V pGq let GrXs denote the subgraph
pX, tptu, vu , lq P EpGq | u, v P Xuq of G induced by X.

The components of a graph G are the minimal subgraphs H � G such
that for every edge uv P EpGq, u P V pHq if and only if v P V pHq. The
components of a graph partition the vertices and edges of the graph. A
graph G is connected if it consists of a single component. For a positive
integer k, a graph is k-vertex connected if and only if it is connected, has
at least k vertices, and stays connected after removing any set of at most
k�1 vertices. The local vertex connectivity of a pair of vertices u, v, denoted
κpu, vq, is the maximal number of internally vertex-disjoint u, v-paths. By
Menger's Theorem [131], G is k-vertex connected if and only if κpu, vq ¥ k
for every pair of non-adjacent vertices u, v. We say that u, v are (locally)
k-vertex connected if κpu, vq ¥ k. We follow the common practice of using
biconnected as a synonym for 2-vertex connected and triconnected as a syn-
onym for 3-vertex connected. An articulation point v of G is a vertex whose
removal disconnects G. Thus a graph is biconnected if and only if it has no
articulation points.

Let G be a graph and e P EpGq. We use G � e to denote the graph
obtained from G by removing e. If e is not a self-loop, we use G{e to denote
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the graph obtained by contracting e. A cycle C of length |C| � k in a
graph G is a cyclic sequence of edges C � e1, e2 . . . , ek where ei � uiui�1 for
1 ¤ i   k and ek � uku1. A cycle is simple if idpeiq � idpejq and ui � uj for
i � j. We sometimes abuse notation and treat cycle as a set of edges or a
cyclic sequence of vertices. Note that this de�nition allows cycles of length
1 (a self-loop) or 2 (a pair of parallel edges).

Let G be a planar embedded graph. For each component H of G, let
H� denote the dual graph of H, de�ned as the graph obtained by creating a
vertex for each face in the embedding of H, and an edge e� for each edge e,
connecting the two (not necessarily distinct) faces that e is incident to. Let
G� denote the graph obtained from G by taking the dual of each component.
Each edge of e P EpGq naturally corresponds to an edge of G�, which we
denote e�.

Each face f in a planar graph is bounded by a (not necessarily simple)
cycle called the face cycle for f . We call the length of this cycle the face-
degree of f . We call any other cycle a separating cycle.

Let G be a connected plane embedded multigraph with at least one
edge. De�ne the set E�pGq of corners2 of G to be the the set of ordered
pairs of (not necessarily distinct) edges pe1, e2q such that e1 immediately
precedes e2 in the clockwise order around some vertex, denoted vpe1, e2q.
Note that if pe1, e2q P E�pGq, then pe2

�, e1
�q P E�pG�q. We denote by

G� � pV pGq Y V pG�q, E�pGqq the vertex-face graph3 of G (see Figure 5.1).
This is a plane embedded multigraph with vertex set V pGqYV pG�q, and an
edge between vpe1, e2q and vpe2

�, e1
�q for each corner pe1, e2q P E�pGq. We

use the following well-known facts about the vertex-face graph:

1. G� is bipartite and planar, with a natural embedding given by the
embedding of G.

2. The vertex-face graphs of G and G� are the same: G� � pG�q�.

3. There is a one-to-one correspondence between the edges of G and the
faces of G� (in the natural embedding, the interior of each face of G�

contains exactly one edge of G, see Fig 5.1).

4. pG�q� (also known as the medial graph) is 4-regular.

2For alternative de�nitions, see e.g. [88] and [145]. The latter uses the name angles for
what we call corners.

3A.k.a. the vertex-face incidence graph [25], the angle graph [145], and the radial

graph [15].
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Figure 5.1: Left: a plane embedded graph. Right: the corresponding vertex-
face graph (red) and the underlying graph (gray).

5. G� is simple if and only if G is loopless and biconnected (See e.g. [26,
Theorem 5(i)]).

6. G� is simple, triconnected and has no separating 4-cycles if and only
if G is simple and triconnected (See e.g. [26, Theorem 5(iv)]).

If v is an articulation point in G or has a self-loop, then in any planar
embedding of G there is at least one face f whose face cycle contains v at
least twice. Any such f is either an articulation point or has a self-loop in
G�, and v and f are connected by (at least) two edges in G�.

The dynamic operations on G correspond to dynamic operations on G�

and G�. Deleting a non-bridge edge e of G corresponds to contracting e� in
G�, that is pG� eq� � G�{e�. Similarly, contracting an edge e corresponds
to deleting the corresponding edge from the dual, so pG{eq� � G� � e�.
Finally, deleting a non-bridge edge or contracting an edge corresponds to
adding and then immediately contracting an edge across a face of G� (and
removing two duplicate edges).

The useful concept of a separation is well-de�ned, even for general graphs:

De�nition 5.1. Given a graph G � pV,Eq, a separation of G is a pair
of vertex sets pV 1, V 2q such that the induced subgraphs G1 � GrV 1s, G2 �
GrV 2s cover G, and V 1zV 2 and V 2zV 1 are both nonempty. A separation is
balanced if max

 
|V 1| , |V 2|

( ¤ α |V | for some �xed constant 1
2 ¤ α   1. If

pV 1, V 2q is a separation of G, the set S � V 1XV 2 is called a separator of G.
A separator S is small if |S| � Op

a
|V |q, and it is a cycle separator if the

subgraph of G induced by S is Hamiltonian.
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Figure 5.2: A biconnected graph and its SPQR tree. See De�nition 5.3.

5.3 Overview of Our Approach

Our data structure for decremental triconnectivity in planar graphs consists
of two main ingredients. Before describing them, we need few de�nitions. We
recall that a graph G that is biconnected but not triconnected has at least
one separation pair, i.e., a pair of vertices that can be removed to disconnect
G:

De�nition 5.2 (Hopcroft and Tarjan [93, p. 6]). Let ta, bu be a pair of
vertices in a biconnected multigraph G. Suppose the edges of G are divided
into equivalence classes E1, E2, . . . , Ek, such that two edges which lie on a
common path not containing any vertex of ta, bu except as an end-point are
in the same class. The classes Ei are called the separation classes of G with
respect to ta, bu. If there are at least two separation classes, then ta, bu is a
separation pair of G unless (i) there are exactly two separation classes, and
one class consists of a single edge, or (ii) there are exactly three classes, each
consisting of a single edge.

Note that separation pair, which is a pair of vertices, should not be
confused with separation (see De�nition 5.1), which is a pair of vertex sets.

Our �rst ingredient for decremental triconnectivity is an algorithm for
detecting e�ciently separation pairs in planar graphs. The second ingredient
is the maintenance of the SPQR-tree [36] for each biconnected component of
a graph G under edge deletions and contractions. The SPQR-tree captures
the structure of all separating pairs, and can be de�ned as follows:

De�nition 5.3. The SPQR-tree for a biconnected multigraph G � pV,Eq
with at least 3 edges is a tree with nodes labeled S, P, or R, where each node
x has an associated skeleton graph Γpxq with the following properties:
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• For every node x in the SPQR tree, V pΓpxqq � V .

• For every node x in the SPQR tree, every edge in Γpxq is either in E
or a virtual edge corresponding to an edge px, yq in the SPQR-tree.

• For every edge e P E there is a unique node x in the SPQR-tree such
that e P EpΓpxqq.
• For every edge px, yq in the SPQR tree, V pΓpxqq X V pΓpyqq is a sepa-
ration pair ta, bu in G, and there is a virtual edge ab in each of Γpxq
and Γpyq.
• If x is an S-node, Γpxq is a simple cycle with at least 3 edges.

• If x is a P-node, Γpxq consists of a pair of vertices with at least 3
parallel edges.

• If x is an R-node, Γpxq is a simple triconnected graph.

• No two S-nodes are neighbors, and no two P-nodes are neighbors.

It turns out (see e.g. [36]) that the SPQR-tree for a biconnected graph is
unique. The (skeleton graphs associated with) nodes of the SPQR-tree are
sometimes referred to as the triconnected components of G.

Detecting separating 4-cycles. We observe that there is a one-to-one
correspondence between separation pairs in G and simple separating cycles
of length 4 in the vertex-face graph G�. We call such cycles separating 4-
cycles for short. We build a structure for 4-cycle detection by recursively
using balanced separators, and by detecting, for each separator, the cycles
that cross the separator. Detecting 4-cycles that cross a separator is not
trivial, and our analysis introduces a potential function which re�ects how
well connected the non-separator vertices are with the separator, that is, how
many neighbors on the separator they have. We exploit the fact that for a
planar graph with separator S, there cannot be more than Op|S|q vertices
that have more than 4 neighbors in S.

The recursive use of separators can be sketched as follows: Let S be a
small balanced separator in G � pV,Eq that induces a separation pV1, V2q,
that is, V1 X V2 � S and V1 Y V2 � V . Moreover, let n � |V |. We observe
that each 4-cycle is fully contained in V1 or V2, or consists of two paths of
length 2 that connect vertices of S. This motivates the following recursive
approach. We compute a separator S of Op?nq vertices and then �nd all
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paths of length 2 that connect vertices of S. Since the size of S is Op?nq,
there are only Opnq pairs of vertices of S, and for each pair of vertices, we
can easily check if the two-edge paths connecting them form any separating
4-cycles. It then remains to �nd the 4-cycles that are fully contained in either
V1 or V2, which can be done recursively. Because S is a balanced separator,
the recursion has Oplog nq levels.

This algorithm can be made dynamic under contractions and edge inser-
tions that respect the embedding of G. Contractions are easy to be handled,
as they preserve planarity. Moreover, a separator S of a planar graph can
be easily updated under contractions. Namely, whenever an edge uw is con-
tracted, the resulting vertex belongs to the separator i� any of u and w did.
Insertions that preserve planarity, however, are in general harder to accom-
modate. To handle this we introduce a new type of separators that we call
face-preserving separators, which (like cycle-separators) always exist when
the face-degree is bounded. These are still preserved by contractions, but
also ensure that any edge across a face can be inserted.

All in all, there are Oplog nq levels of size Opnq each, where each level
handles insertions and contractions in constant time, leading to a total of
Opn log nq time.

Maintaining SPQR trees. The main challenge for maintaining an
SPQR-tree is when an edge within a triconnected component is deleted.
First of all, the data structure should be able to detect whether or not the
component is still triconnected.

For any triconnected component Γ of G, we maintain a 4-cycle detection
structure for the corresponding vertex-face graph Γ�. A separating 4-cycle
in Γ� corresponds to a separation pair in Γ, which would witness that Γ
is no longer triconnected. The deletion or contraction of the edge e in the
triconnected component Γ of G corresponds to an (embedding-respecting)
insertion and immediate deletion of an edge in Γ�. This way by detecting 4-
cycles in Γ�, we can detect when the corresponding triconnected component
falls apart.

However, this is not the only challenge. If Γ does indeed cease to be
triconnected, the SPQR-tree of pΓ� eq (or pΓ{eq when doing a contraction)
is a path P. This is where we need the 4-cycle structure to output the edges
contained in separating 4-cycles. Those edges correspond to a set of corners
N of G. We use those corners to guide a search, which helps identify the
non-largest components of the SPQR-path. More speci�cally, if a vertex v
now belongs to two distinct triconnected components, there are two corners
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in N that separate the edges incident to v into two groups of edges, each
belonging to a distinct triconnected component. We can a�ord to build a 4-
cycle detection structure for Γ1� for any non-largest triconnected component
Γ1 on the path from scratch. To obtain the data structure representing the
largest component, we delete or contract the corresponding edges from Γ
while updating Γ�. Since an edge only becomes part of a structure built
from scratch when its triconnected component size has been halved, this
happens only Oplog nq times per edge, so the total time used for rebuilding is
Opn log2 nq. The second logarithm comes from rebuilding the data structure
for 4-cycle detection, that takes Opn log nq time to initialize and process any
number of operations.

Finally, since no two S-nodes can be neighbors and no two P -nodes can
be neighbors, some S- or P -nodes in P may have to be merged with their (at
most 2) neighbors of the same type outside P. To handle this step e�ciently,
we keep the SPQR tree rooted in an arbitrary node. While merging the
skeleton graphs of two S- or P - nodes can be done in constant time, what
can be more costly is updating the parent pointers in the children of the
merged nodes. Hence, we move the children of the node with fewer children
to the other node. This way, each node changes parent at most Oplog nq
times before it is deleted or split. The total number of distinct SPQR-nodes
that exist throughout the lifetime of the data structure is only Opnq, so the
total time used for maintaining the parent pointers is Opn log nq.

Since SPQR-trees are only de�ned for biconnected graphs, another chal-
lenge is to maintain SPQR-trees for each biconnected component, even as
the decremental update operations cause the biconnected components to fall
apart. We recall here that the structure of the biconnected components
of a connected graph can be described by a tree called the block-cutpoint
tree [75, p. 36], or BC-tree for short. This tree has a vertex for each bi-
connected component (block) and for each articulation point of the graph.
There is an edge in the BC-tree for each pair of a block and an articulation
point that belongs to that block. If the tree is rooted arbitrarily at any
block, each non-root block has a unique articulation point separating it from
its parent.

To handle updates, we notice that the SPQR-tree points to the fragile
places where the graph is about to cease to be biconnected: An edge deletion
in an S-node will break up a block in the BC-tree into path, and an edge
contraction in a P -node breaks a block in the BC-tree into a star. Upon such
an update, we remove the aforementioned S- or P -node from the SPQR-tree,
breaking it up into an SPQR-forest. Each tree corresponds to a new block in
the BC-tree. They form a path (or a star), and the ordering along the path,
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as well as the articulation points, can be read directly from the SPQR-tree.
On the other hand, in order to even know which SPQR tree to modify

during an update, we can use the BC-tree to search for the right SPQR-
structure in which to perform the operation.

Bi- and triconnectivity. Finally, we use SPQR-trees to facilitate tricon-
nectivity queries. First of all, vertices need to be biconnected in order to
be triconnected. To facilitate biconnectivity queries, it is enough that each
vertex v knows the name of the block Bpvq closest to the root in the BC-tree
that contains it, and each block b knows the name of the vertex separating
it from the parent ppbq. Then, any two vertices u and w are biconnected if
and only if one of the following occur: Bpuq � Bpvq, or u � ppBpvqq, or
v � ppBpuqq.

The information we maintain for triconnectivity is similar, using the
SPQR-tree. Namely: Each non-root node x in the SPQR-tree knows the
virtual edge (see De�nition 5.3) that separates it from its parent. Each ver-
tex v knows the name of the node Cpvq closest to the root that contains it,
and, in a special case, at most two other nodes that are the children of Cpvq.
Queries are handled similarly to above.

The main challenge is to handle updates. Note that the change to the
SPQR-tree may involve both the split and merge of nodes. In particular, we
have one split and up to several merges when a triconnected component falls
apart into an SPQR-path. However, upon a merge, we can a�ord to update
the information regarding vertices in the non-largest components, costing
only an additive log n to the amortized running time. Similarly, upon a
split, we update any information that relates to vertices in the non-largest
components only.

The total running time is thus Opn log n� fpnqq, where fpnq is the run-
ning time for maintaining the SPQR-tree.

5.4 Detecting 4-Cycles Under Edge Contractions

and Insertions

In this section we give an algorithm for detecting 4-cycles (simple cycles of
length 4) in a planar embedded graph that undergoes contractions and edge
insertions that respect the embedding. We say that a 4-cycle in a planar
embedded graph G is a face 4-cycle if it is a cycle bounding a face of G,
and a separating 4-cycle otherwise. For our purposes, only the separating
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4-cycles are interesting, but we note in passing that new face 4-cycles are
easy to detect under edge insertions and contractions:

Observation 5.1. An embedding-respecting edge insertion creates two new
faces, and we may check in constant time whether each of them has degree 4
or not. An edge contraction a�ects degrees of only two faces (the two incident
to the contracted edge), and we may check in constant time whether their new
degree is 4 or not.

Since no two parallel edges can lie on the same 4-cycle, and no self-loop
can be contained in a 4-cycle, we can assume the input graph is simple.
However, when we contract edges, new parallel edges and self-loops may
arise. To handle this, we could detect and remove parallel edges, but it
turns out that both the algorithm and the analysis become simpler if we
keep (most of) the additional edges, as long as no two parallel edges are
consecutive in the circular ordering around both their endpoints.

If G has a face bounded by two edges, we can simplify the graph by
deleting one of them. For our purposes we do not really care which one is
deleted, but we need a rule that is consistent. For presentational purposes,
we assume that we always keep the edge e with larger idpeq.

This motivates the following de�nition of a quasi-simple graph4:

De�nition 5.4. A plane embedded graph is quasi-simple if the dual of each
non-simple component has minimum degree 3. Given a plane embedded
graph G and a set of vertices X, we de�ne the subgraph of G quasi-induced
by X to be the unique quasi-simple subgraph of G with vertex set X and
the maximum total sum of idpeq values. Let dXpvq denote the degree of v in
the subgraph quasi-induced by X Y tvu.

Roughly speaking, a quasi-simple graph is obtained from a plane embed-
ded multigraph by merging parallel edges that lie next to each other in the
circular orderings around both their endpoints. Note that in a quasi-simple
connected graph of at least 3 vertices, every face has degree 3 or more. We
can thus use Euler's formula on each component to obtain the following:

Observation 5.2. In a quasi-simple planar graph with n ¥ 3 vertices, the
number of edges is at most 3n� 6.

The main goal of this section is to prove the following theorem.

4In [114] these graphs are called semi-strict.
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Theorem 5.1. Let G be an n-vertex quasi-simple plane embedded graph with
bounded face degree. There exists a data structure that maintains G under
contractions and embedding-respecting insertions, and after each update op-
eration reports edges that become members of some separating 4-cycle. It
runs in Opn log nq total time.

In order to detect 4-cycles, we use planar separators. In fact, in order
to maintain our data structure dynamically, we need something a little bit
stronger.

De�nition 5.5. Given a planar graph G, a separation pA,Bq of G is said
to be face-preserving if for any face f of G, all vertices of f belong to A or
all vertices of f belong to B.

For instance, given a cycle separator K, we can form a face-preserving
separation pA,Bq such that AXB � K. Namely, K corresponds to a Jordan
curve dividing the plane into two parts, SA, SB, where every face lies entirely
in one part. De�ne A by all vertices incident to faces on SA, and B similarly.
Then, AYB � G, and AXB � K.

Lemma 5.1. Let pA,Bq be a face-preserving separation in G. Let G1 be the
result of an embedding-respecting edge insertion or an edge contraction, and
let A1, B1 be the vertices corresponding to A and B in G1. Then pA1, B1q is a
face-preserving separation in G1, and |A1 XB1| ¤ |AXB|.

Proof. If an edge uv is inserted that respects the embedding, it is inserted
into some face f . By de�nition at least one of A,B contain all vertices on f ,
and in particular it also contains all the vertices of the two new faces that
appear in G1. Since A � A1 and B � B1 in this case, the result follows.

If an edge uv is contracted, the resulting graph G1 has the same faces
as G, and the separation pA1, B1q is clearly face-preserving. If u, v P AX B,
then |A1 XB1| � |AXB|� 1. Otherwise uv has an endpoint outside AYB.
Without loss of generality, we can assume that u P AzB. In that case, v P A
and B � B1 and it follows that |A1| � |B1|.

In our algorithm we need to maintain separations under edge insertions
and contractions. Let pA,Bq be a separation in G. When an edge is inserted,
we do not modify the separation. When an edge uw is contracted into a
vertex x, we obtain a new separation pA1, B1q as follows. If u P A or w P A,
we set A1 � pAztu,wuq Y txu. Otherwise, A1 � A. The set B1 is de�ned
analogously. Thanks to this convention, we obtain the following.
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Lemma 5.2. Let pA,Bq be a face-preserving separation in G. Let G1 be the
result of an embedding-respecting edge insertion or edge contraction, and let
A1, B1 be the vertices corresponding to A and B in G1. Then pA1, B1q is a
face-preserving separation in G1, and |AXB|� 1 ¤ |A1 XB1| ¤ |AXB|.
Proof. If an edge is inserted that respects the embedding, it is inserted into
some face f . By de�nition at least one of A,B contain all vertices on f , and
in particular it also contains all the vertices of the two new faces that appear
in G1. Since A � A1 and B � B1 in this case, the result follows.

If an edge uv is contracted, the resulting graph G1 has the same faces
as G, and the separation pA1, B1q is clearly face-preserving. If u, v P AX B,
then |A1 XB1| � |AXB|� 1. Otherwise uv has an endpoint outside AYB.
Without loss of generality, we can assume that u P AzB. In that case, v P A
and B � B1 and it follows that |A1 XB1| � |AXB|.
De�nition 5.6. Given a graph G, a separator tree is a binary tree where
each node x is associated with an induced subgraph Hx of G, such that for
some constant n0 ¡ 0:

• If x is the root, Hx � G.

• If |V pHxq| ¡ n0 then x has children y, z such that pV pHyq, V pHzqq is a
balanced separation ofHx with a small separator Sx � V pHyqXV pHzq.
• If |V pHxq| ¤ n0 then x is a leaf.

A separator tree is a cycle separator tree if Sx is a cycle separator, and it
is face preserving if pV pHyq, V pHzqq is face-preserving, for all nodes x with
children y and z.

Lemma 5.3. Given a planar graph with bounded face degree, we can in
Opn log nq time build a face-preserving separator tree where each node x ex-
plicitly stores Sx and Hx. This tree has height Oplog nq, and uses Opn log nq
space.

We construct the tree in three steps. First, we take our graph G and
make a triangulation G4. Then, referring to a result by Klein, Mozes, and
Sommer [115], we make a cycle separator tree for G4. Finally, we transform
the cycle separator tree for G4 to a face preserving separator tree for G.

Proof. Let G be a graph with maximum face-degree k and let G4 be a
triangulation of G. Then using the algorithm from [115, Theorem 3], we
can in linear time compute a cycle separator tree for G4. Since the cycle
separator tree is balanced, it has height h P Oplog nq. Since the children of
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each node partition the faces, the total number of faces (and hence vertices)
in graphs associated with depth i nodes is Opnq for each 0 ¤ i   h. Thus
the total size of all these graphs in the cycle separator tree is Opn � hq �
Opn log nq.

The cycle separator tree from [115, Theorem 3] has the additional prop-
erty that for each node x with nx vertices in Hx, both the separator Sx and
the boundary of x, Bx bounding the region corresponding to x in the plane,
have size Op?nxq.

Now, for each edge uv P EpG4qzEpGq, and for each cycle separator Sx
that contains uv, we can add all the at most k� 2 remaining vertices on the
face in G crossed by uv to Sx. Similarly, for each boundary Bx containing
uv, we can add all the at most k � 2 remaining vertices on the face in G
to Hx. This increases the size of each separator Sx (and of each associated
graph Hx) by at most a factor k� 2, and makes the tree face-preserving for
G. The total time to explicitly construct the face-preserving separator tree
and all the associated graphs is Opkn log nq.

Lemma 5.4. Let G be a graph and pA,Bq be a separation of G. Then, any
4-cycle either has exactly one vertex in AzB, one vertex in BzA, and the
remaining two vertices in AXB, or the 4-cycle is completely contained in at
least one of A or B.

Proof. From De�nition 5.1, for each edge e of G, both endpoints of e are in
A or B. Thus, an edge that has one endpoint in AzB has its other endpoint
in A. Using these facts, the lemma follows by simple case analysis.

It follows that we can use the separator tree to detect 4-cycles as follows.
For each leaf x of the separator tree, the graph Hx has constant size, so 4-
cycles inside Hx can be detected in constant total time. In any other node,
we have a graph with a separator K, and we need to dynamically detect 4-
cycles that cross K under edge contractions and embedding-respecting edge
insertions. Referring to Lemma 5.4 above, we only need to detect the two
halves of a 4-cycle, that is, length-2 paths between vertices of K.

Lemma 5.5. Let G be a plane embedded graph on n vertices and K be a
set of vertices of G of size |K| � Op?nq. Assume that G undergoes edge
contractions and insertions respecting the embedding. There exists a data
structure that after each update operation can report the edges of G that
become members of separating 4-cycles whose two opposing vertices lie on
K. Its total running time is Opn � kq, where k is the total number of edge
contractions and insertions.
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Figure 5.3: 4 paths all partici-
pate in separating 4-cycles.

Figure 5.4: The sets M (magenta),
Y (yellow), and K (black) from
Lemma 5.6.

We now proceed with the description of the data structure of the above
lemma. First note that if a pair of vertices is connected by at least 4 paths of
length two, all edges on those paths lie on separating 4-cycles (see Figure 5.3).
Thus, if we can keep, for every pair of vertices of K, the list of all length 2
paths between them, we need to check at most 2 existing paths when a new
path arrives, and then report at most 8 edges (4 new length-2 paths) that
now belong to separating 4-cycles.

To report every edge only once, we also keep a Boolean �ag for each
edge that indicates whether it has been reported before, and check that �ag
before reporting.

We thus only need to argue that we can detect all the length-2 paths
between K-vertices that arise in the graph under contractions and edge in-
sertions, in Opn � kq total time. We do that by constructing a potential
function Φ that is initially Opnq, remains nonnegative, and drops at each
operation proportionally to the amount of work done. We start by parti-
tioning the vertices into 3 sets, that we need to treat di�erently.

Lemma 5.6. Given a planar graph G � pV,Eq and a vertex set K � V , let
M denote the vertices m P V zK that have dKpmq ¥ 4 (see De�nition 5.4),
and let Y denote V zpM Y Kq. Then Y , M and K form a partition of V ,
and |M | ¤ |K|� 2.

Proof. The partition property follows trivially from the de�nition. Con-
sider the maximal quasi-simple bipartite subgraph H of G with bipartition
pM,Kq. By de�nition, each m P M has at least 4 neighbors in the sub-
graph of G quasi-induced by K Y tmu. Thus for each m P M , dHpmq ¥ 4,
and so 4 |M | ¤ EpHq. Since H is bipartite and quasi-simple, by Euler's
formula we have EpHq ¤ 2p|M | � |K|q � 4. Combining the two we get
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4 |M | ¤ EpHq ¤ 2p|M |� |K|q � 4, which implies |M | ¤ |K|� 2.

The aim of the data structure is to notice when new common neighbors
of pairs of vertices in K appear. The idea is that since K has size Op

a
|V |q,

there are only Op|V |q pairs of vertices of K. For each such pair, we maintain
a doubly-linked list of all length-2 paths between them, and for each edge
we maintain a doubly-linked list of all such paths it participates in.

When an edge uw is inserted, new length-2 paths can only appear if
u P K and/or w P K. In this case the number of candidate paths to check is
bounded by dKpuq�dKpwq, and this can be done in constant time per path.

When an edge uw is contracted, new length-2 paths between vertices of
K may appear in other ways. For example, we have new paths between
neighbors of u contained in K and neighbors of w in K. Other cases are
possible if u or w belongs to K.

We now de�ne a potential function that decreases by at least the number
of candidate paths after each contraction. We can decide if each candidate
path is an actual length-2 path between vertices in K in constant time.

It is de�ned in stages:

ΦqpXq �
¸
vPX

dV pvq

ΦvpXq � 4 |X|� 1

2

¸
vPX

dXpvq � 4 |V pGXq|� |EpGXq|

ΦspXq � 63pΦvpXqq2 �
¸
vPX

pdXpvqq2

Φ � 6ΦvpV q � 3ΦqpY YMq � ΦspM YKq

Lemma 5.7. The potential Φ is initially Opnq and remains nonnegative.
The embedding-respecting insertion or contraction of an edge uv decreases Φ
by at least the number of candidate paths.

The proof is straight-forward but tedious. See Appendix 5.7 for details.
As a result, Lemma 5.5 follows, and we are �nally ready to prove Theo-
rem 5.1.

Proof of Theorem 5.1. Given a planar graphG with bounded face-degree, we
build a face-preserving separator tree as in Lemma 5.3 in Opn log nq time.
For each internal vertex of the tree, we may detect new 4-cycles crossing the
separator due to Lemma 5.5. The leaves have size at most n0 � Op1q, and
we can detect 4-cycles in the leaves in Op1q time.
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We can distinguish between face 4-cycles and separating 4-cycles.
Namely, we can choose to report only when an edge �rst lies on any 4-cycle,
or when it �rst lies on a separating one, as described in Lemma 5.5.

An edge insertion in the graph Hx needs to be duplicated in each child
of x that contains both vertices. However, the drop in the Φ potentials for
each node is large enough to pay for each cascading insertion. Whenever a
contraction in the graph Hx for a node x of the separator tree introduces a
new edge between two separator vertices, that edge may need to be added
to the subtree containing the other side of the separation, but again that is
paid for. In general, if we update graphs closer to the root �rst, the changes
only propagate down and every change is paid for by a corresponding drop
in the potential.

5.5 Decremental SPQR-trees

In this section we will show how to use this to maintain an SPQR-tree (see
De�nition 5.3) for each biconnected component of G with at least 3 edges
under arbitrary edge deletions and contractions. We start by giving some
useful facts.

For a planar graph, there is a nice duality, as proven by Angelini et
al. [14, Lemma 1]. De�ne the dual SPQR-tree as the tree obtained from
the SPQR-tree by interchanging S- and P -nodes, taking the dual of the
skeletons, and substituting virtual edges by their duals.

Lemma 5.8 (Angelini et al [14]). The SPQR-tree of G� is the dual SPQR-
tree of G.

Let G be a connected graph. Since pG�q� is 4-regular, G� is quasi-simple
and has bounded face-degree. Furthermore, any edge deletion or contrac-
tion in G that leaves G connected, corresponds to an edge insertion and
immediate contraction in G�. Thus by Theorem 5.1 we can maintain a data
structure for G under connectivity-preserving edge deletions and contrac-
tions, that after each update operation reports the corners that become part
of a separating 4-cycle in G�.

We also note for any cycle in G�, the faces of G� (the edges of G) lying
on the opposite sides of the cycle belong to distinct separation classes (see
De�nition 5.2).

Lemma 5.9. For any pair of edges in a biconnected graph G, their corre-
sponding faces of G� are separated by a 4-cycle pv1, f1, v2, f2q if and only if
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they belong to di�erent separation classes with respect to v1, v2 in G and with
respect to f1, f2 in G�.

Proof. Let C be the 4-cycle. Consider a path L in G containing edges e1

and e2. Consider the set of faces F in G� that are incident to a vertex on L.
L does not cross v1, v2 if and only if F is completely contained on one side
of C, which happens if and only if e1 and e2 are not separated by C. An
identical argument can be made about f1, f2 in G�

Lemma 5.10. Let G be a biconnected graph. If a 4-cycle C � pv1, f1, v2, f2q
in G� is a separating cycle, then v1, v2 is a separation pair of G and f1, f2 is
a separation pair of G�.

Proof. If C is a separating cycle, there is at least two faces on either side. By
Lemma 5.9 there are thus at least two di�erent separation classes with respect
to v1, v2 (or f1, f2). If there exactly 2 separation classes, each consists of at
least two edges. If there are exactly 3 classes, at least one of them consists
of at least two edges.

Lemma 5.11. Let G be a loopless biconnected plane graph and u, w be a sep-
aration pair in G. Consider the set of edges Ex incident to x P tu,wu. Then,
the edges of Ex belonging to each separation class of u,w are consecutive in
the circular ordering both around x.

Proof. The proof is by contradiction. Assume that the circular order of some
4 edges incident to u is e1, e2, e3, e4. Moreover, assume that only e1 and e3

belong to the same separation class. From De�nition 5.2 there is a path that
begins with e1 and ends with e3 that does not contain u or w as its internal
point. Thus, this path is a cycle C that does not go through w. Hence,
every path from either e2 or e4, that ends in w and does not contain u as
an internal point, has to go through C. This contradicts the fact that e2

and e4 are in di�erent separation classes than e1 and e3. Clearly, the same
argument applies to w.

Lemma 5.12. Let G be a loopless biconnected plane graph. Let F be a
subset of edges of G, such that F is a separation class for some pair u,w
of vertices of G. Then there exists a 4-cycle (possibly non-separating) in G�

that separates the set of faces that correspond to F from all other faces.

Proof. Throughout the proof by separation class we mean one of separation
classes de�ned by u and w. Clearly, each separation class has to have an
edge incident to u or w (otherwise, since the graph is connected, it would
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not be maximal). In fact, since G is biconnected, each separation class has
edges incident both to u and w. If a separation class had edges incident only
to one of the two vertices, this vertex would be an articulation point.

Denote the edges incident to u in circular order by e1, . . . , ek. For con-
venience, let ek�1 :� e1 and e0 :� ek. Moreover, assume that ei P F i�
a ¤ i ¤ b, where 1 ¤ a ¤ b ¤ k. Note that by Lemma 5.11, a and b are
well-de�ned (for some way of breaking the circular ordering into a sequence
e1, . . . , ek).

Let f1 be the face that comes in the circular order between ea�1 and ea
and f2 be the face that comes between eb and eb�1. Note that f1 � f2.

We now show that there is a 4-cycle in G� that contains u, w, f1 and
f2. To that end, we prove that both u and w lie on f1. Indeed, the cycle
bounding f1 is simple and contains edges from two separation classes. Thus,
it has to contain both u and w. Similarly, both u and w lie on f2.

This implies, that G� contains a 4-cycle CF going through u, w, f1 and
f2, and by construction, CF separates the faces corresponding to F from all
other edges.

Lemma 5.13. Let G be loopless biconnected graph. If v1, v2 is a separa-
tion pair in G, then there exists a separation pair f1, f2 in G� such that
pv1, f1, v2, f2q is a separating cycle in G�.

Proof. If every separation class with respect to v1, v2 consists of a single
edge, then G consists of two vertices connected by multiple edges and the
lemma is trivial. It su�ces to use the fact that since v1, v2 is a separation
pair, there are at least 4 edges in G. Otherwise there is a separation class
F with at least two edges, such there are at least two edges in EpGqzF .
Now apply Lemma 5.12, to get a delimiting cycle C in G� that separates
faces corresponding to F from all other faces. Denote the vertices of C
by v1, f1, v2, f2. Since both F and EpGqzF are nontrivial (both contain
more than one edge), C is a separating cycle in G�. It then follows from
Lemma 5.10 that f1, f2 form a separation pair in G�.

Lemma 5.14. If G is triconnected, e P ErGs, and x is an R-node in the
SPQR-tree for G�e, then there exists a sequence of

∣∣ErGs∣∣� ∣∣ErΓpxqs∣∣ edge
deletions and contractions that transform G� e into Γpxq while keeping the
graph connected at all times.

Proof. For each neighbor y of x in the SPQR-tree T we proceed as follows.
Let a, b the separation pair corresponding to the edge in T between x and y.
Consider all nodes reachable from y in T with a path that does not contain



142 CHAPTER 5. DECREMENTAL SPQR-TREES

x. Let D be the set of non-virtual edges in all these nodes. While there
is an edge e in D that is not a self-loop and not an edge between a and b,
contract it. Then if there are any self-loops delete them. When all edges in
D go between a and b, delete edges until there is only one left.

Lemma 5.15. Let G be a triconnected plane graph and uw P EpGq. Assume
that G � e is not triconnected. Then, the SPQR-tree of G � e is a path H
(we call it an SPQR-path). Moreover, given all edges that lie on 4-cycles in
pG � eq�, we can compute all nodes of H except for the largest one in time
that is linear in their size.

Proof. Let us �rst prove that H is indeed a path. Since G�e is biconnected,
there exist two internally vertex-disjoint paths between u and w. No sepa-
ration pair in G� e can have both vertices on the same of these paths, since
otherwise there would be a separation pair in G. Moreover, observe that
each separation pair de�nes at most two separation classes that consist of
more than one edge (otherwise, it is also a separation pair in G). Thus, we
can split G� e into two subgraphs by using an arbitrary separation pair in
G� e. By repeating the same reasoning on both subgraphs, we get that H
is a path. Observe that u and w belong to the nodes at the opposite ends of
H.

Note that since we know the edges belonging to 4-cycles in pG� eq�, by
using Lemma 5.9 we also know all separation pairs in G�e. We now describe
how to compute all components of H (i.e. the skeleton graphs stored in the
nodes) except the largest one. Consider an algorithm that starts from one
end of H and discovers the components one by one, each in linear time.
Observe that if each component of H has size at most |EpGq|{2, we can
a�ord to detect all components of H, without a�ecting the total running
time. However, to prepare for the opposite case, we need to do the search
in parallel, starting from both ends of H. Let y be the largest component
of H. Observe that only one search can start exploring edges of y. As soon
as the other search reaches y, we have discovered all separation pairs (that
is why we need to know all separation pairs upfront), and both searches can
stop. Thus, one of the searches only uses time that is at most the total size
of all non-largest components of H. Since the other search runs in parallel,
it runs in the same asymptotic time.

To complete the proof it remains to describe how the search procedure
works. Recall that by Lemma 5.11, for each separation pair u,w of G�e, the
edges belonging to each separation class come in consecutive order around
u and w. Observe that the edges of the 4-cycles of pG � eq� correspond to
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the corners of G� e that lie between edges belonging to distinct separation
classes. Thus, once we mark these corners in G�e, we can run a DFS-search
that, once started from an edge belonging to a skeleton graph of an S- or
R-node, explores all edges of this graph (and only those).

Observe moreover, that from our earlier analysis it follows that the end-
points u and w of e do not belong to any separation pair. This implies that
both u and w are contained in S- or R- nodes. Let us �x on the search
starting from u. Note that it discovers the entire component containing u
and the separation pairs that separates it from the rest of the SPQR-tree.
If the skeleton graph of this component is a path connecting the vertices of
the separation pair, we have found an S-node. Otherwise, we have found an
R-node.

Now assume we have found some pre�x of the SPQR-path that ends at
a separation pair a, b. If there is an edge ab (this edge comes next in the
circular ordering after the edges we have visited, so it is easy to �nd), the
next node on the SPQR-path is a P -node. After we have processed all edges
between a and b, we insert a virtual edge between a and b and continue
the search starting from this edge in a similar way to the search that has
discovered the �rst node on the SPQR-path. Clearly, the algorithm runs in
linear time.

In the algorithm we maintain one SPQR-tree for each biconnected com-
ponent with at least 3 edges. We now describe how these trees are updated
upon edge deletions. The procedures, depending on the type of the SPQR-
tree node are given as Algorithms 2, 3 and 4. Note that the lines 4 and 5 in
Algorithm 3 only introduce notation, that is the values of the variables are
not computed. We now show that the algorithms are correct. In each proof,
the goal is to show that after the procedure the tree T satis�es De�nition 5.3.

Lemma 5.16. Algorithm 2 is correct.

Proof. If after the edge deletion, Γpxq sill has at least 3 edges, then clearly T
is a valid SPQR-tree. Otherwise, Γpxq has exactly two edges and we consider
three cases. Recall that the number of virtual edges in a node is equal to
the number of the node's neighbors in the SPQR-tree. If Γpxq has no virtual
edges, then x is the only node of T , and thus this biconnected component
now only has 2 edges, so we should delete the entire SPQR-tree. If Γpxq has
exactly one virtual edge, x has exactly one neighbor. In this case, simply
x represents one edge of the graph, so it has to be merged with its only
neighbor and the virtual edge in the neighbor becomes non-virtual. If Γpxq
has two virtual edges we remove x and the neighbors of x become neighbors.
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Algorithm 2 Removing an edge e from a P -node x of T
1: function removeP(e, x, T )
2: remove e from Γpxq
3: if Γpxq has two edges then
4: if Γpxq has no virtual edges then
5: delete T
6: else if Γpxq has one virtual edge then
7: y :� the only neighbor of x
8: ex :� the virtual edge in Γpyq corresponding to x
9: replace ex by the non-virtual edge of Γpxq
10: remove x from T
11: else if Γpxq has two virtual edges then
12: ty, zu := neighbors of x in T
13: remove x from T , making y and z neighbors in T
14: if y and z are S-nodes then
15: merge y and z into one node

Note that the neighbors of x cannot be P -nodes. Thus, unless x has two
neighboring S-nodes, we obtain a valid SPQR-tree. In the remaining case,
it is easy to see that the two S-nodes can be merged into one S-node.

Lemma 5.17. Algorithm 3 is correct.

Proof. If after removing the edge, Γpxq is triconnected, clearly the tree is
a valid SPQR-tree. Otherwise, by Lemma 5.15, Γpxq is represented by a
SPQR-path. It is easy to see that after replacing x by the SPQR-path X 1,
we obtain a valid SPQR-tree, unless there are two neighboring S-nodes or
P -nodes. Since the SPQR-path is a SPQR-tree, each such pair contains
exactly one node z from the SPQR-path. If it is a P node, it can not be the
end of the path, and so has at least 2 virtual edges to its neighbors on the
path, and at most one more virtual edge to a neighbor z1 outside the path.
If it is an S-node it may have up to 2 virtual edges to a neighbor z1 outside
the path. Clearly, if z and z1 have the same type, they can be merged into
one node, and this yields a valid SPQR-tree.

Lemma 5.18. Algorithm 4 is correct.

Proof. Observe that after removing an edge e � uw, each vertex of Γpxq
distinct from u and w is an articulation point. Thus, each neighbor of x
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Algorithm 3 Removing an edge e from an R-node x of T
1: function removeR(e, x, T )
2: remove e from Γpxq
3: if Γpxq has a separation pair then
4: X 1 :� SPQR-path representing Γpxq
5: xbig :� the node of X 1, such that Γpxbigq has the most edges
6: compute all nodes of X 1, except xbig
7: remove and contract edges of Γpxq to obtain Γpxbigq
8: replace x in T by X 1 (connecting each child of x to the correct

node of X 1)
9: for each S- or P -node z P X 1 do
10: for each of the at most 2 neighbors z1 of z outside X 1 do
11: if z1 has the same type as z then
12: merge z with z1

now belongs to a di�erent biconnected component. Thus, we update T by
deleting x, which breaks T into a piece for each neighbor y. For each piece
we create a new BC-node z.

Each non-virtual edge of Γpxq becomes a biconnected component by itself,
so we could simply ignore these edges from now on. For each virtual edge
of Γpxq, we delete the corresponding edge in the neighbor of x using an
appropriate function. From Lemmas 5.16 and 5.17 it follows that the SPQR-
trees are updated correctly.

We can now prove the main theorem of this section. Note that, as in the
block-cutpoint tree, we root each SPQR-tree in an arbitrary vertex.

Theorem 5.2. There is a data structure that can be initialized on a simple
planar graph G on n vertices in Opn log nq time, and supports any sequence of
edge deletions or contractions in total time Opn log2 nq, while maintaining an
explicit representation of a rooted SPQR-tree for each biconnected component
with at least 3 edges, including all the skeleton graphs for the triconnected
components. Moreover, in the process of handling updates, the total number
of times a node of an SPQR-tree changes its parent is Opn log nq.
Proof. We �rst partition the graph into biconnected components, and, as
sketched in Section 6.1.3, maintain the block-cutpoint tree explicitly. Thus,
given two vertices u, v, we can in Op1q time access the biconnected compo-
nent containing both of them, along with its auxiliary data. Now, for each
biconnected component Ci, we compute the SPQR-tree T . This can be done
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Algorithm 4 Removing an edge e from an S-node x of T
1: function removeS(e, x, T )
2: remove e from Γpxq
3: remove x from T
4: for each edge e1 in Γpxq do
5: Make a new BC-node z
6: if e1 is a virtual edge then
7: y :�neighbor of x in T corresponding to e1

8: Make the tree containing y the SPQR-tree for the new BC-
node

9: if y is a P -node then
10: removePpy, e1, T q
11: else
12: removeRpy, e1, T q
13: else

in linear time due to [72]. We also root each SPQR-tree in an arbitrary node,
and keep the trees rooted, as they are updated.

For each node x of T we maintain the graph Γpxq. Each virtual edge
of Γpxq has pointer to the neighbor of x it represents. Moreover, for each
R-node r, we keep a data structure for detecting separating 4-cycles in the
vertex-face graph pΓprqq�, as described in Section 5.4. Any separating 4-
cycle in that graph pΓprqq� corresponds to a separation pair in Γprq. Since
the component is an R component, there are no separating 4-cycles to begin
with, but some may appear after an update.

Since the total size of the R-components is n, it follows from Theorem 5.1
that the entire construction time is Opn log nq.

Deletion. When an edge e is removed we �nd node x of the SPQR-tree,
such that e is a non-virtual edge in x. Then, we proceed according to Algo-
rithms 2, 3 and 4.

Whenever an edge fg is deleted from an R-node r, we update the cor-
responding 4-cycle detection structure for pΓprqq�. We �rst insert the dual
edge fg� to the vertex-face graph, and then contract along that edge. This
allows us to detect whether Γprq has any separation pairs after each edge
deletion.

Let us now analyze the running time. When processing an edge deletion,
the following changes can take place in a SPQR-tree (all other changes can
be handled in Op1q time):
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• an R-node is split into multiple nodes,

• two P -nodes or S-nodes are merged,

• an S- or P - node is deleted.

What is important, a P -node or an S-node can never get split. Hence, each
edge of G can �rst belong to nodes that are split, but once it becomes a part
of a P - or an S-node, its node can only be merged with other nodes.

Note that when two S- or P -nodes are merged, we can merge their skele-
ton graphs in constant time. These skeleton graphs have only two common
nodes, and their lists of adjacent edges can be merged in constant time
thanks to Lemma 5.11. When nodes are merged, we also have to update the
parent pointers of their children. To bound the number of these updates, we
merge the node with fewer children into the node with more. It follows that
the number of parent updates caused by these merges is Opn log nq, and so
is the impact on the running time.

Similar analysis applies to the case when an R-node r is split into a
SPQR-path. By Lemma 5.15 we can compute all but the largest node of
the SPQR-path in linear time. Since the size of the skeleton graph in each
of these nodes is at most half the size of Γprq, each edge takes part in this
computation at most Oplog nq times. For every new R-nodes, we also ini-
tialize their associated data structures for detecting 4-cycles. We charge the
running time of each data structure to this initialization. From Theorem 5.1
we get that recomputing all the nodes and data structures takes Opn log2 nq
total time.

Taking care of the largest component of the SPQR-path is even easier,
as we can simply reuse the skeleton graph of r and its associated data struc-
ture for detecting 4-cycles. To update the skeleton graph, we simply use
Lemma 5.14.

After an R-node r is split into a SPQR-path H we also need to update
the parent pointers in the children of r. However, the number of children to
update is at most the number of edges in the non-largest components of the
SPQR-path. As we have argued, the total number of such edges across all
deletions is Opn log nq.

Contraction. The contraction of an edge of the embedded planar graph G
corresponds to the deletion of an edge of its dual graph, G�. As observed by
Angelini et al. [14, Lemma 1], the SPQR-tree of G� is the dual SPQR-tree
of G. That means, that if the edge belonged to a P -node of the SPQR-tree,
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its contraction is handled like the deletion of an edge in a S-node, and vice
versa.

If the contracted edge e belongs to an R-node, that R node may expand to
a path in the SPQR-tree (because deletion in G� may expand an R-node into
a path). In the vertex-face graph, we may �nd all edges participating in new
separating 4-cycles, corresponding to separating corners of the graph. Let
pf, gq denote e�. To �nd the new components, we simply apply Lemma 5.15
to the dual graph and proceed analogously to a deletion.

5.6 Decremental Triconnectivity

To answer triconnectivity queries, we maintain a rooted SPQR-
decomposition (see e.g. [36,72]) of each biconnected component of the planar
graph.

Now it follows from the de�nition that pair of vertices in a biconnected
graph are triconnected if and only if there exists a P or R component in
the SPQR-tree containing them both. By associating a constant amount of
information with every vertex in G and every node in the SPQR-tree, we
can answer triconnectivity queries in constant time:

De�nition 5.7. A triconnectivity query structure for a biconnected graph
consists of a rooted SPQR-tree, and the following additional information:

• For each node x in the SPQR-tree except the root, a pointer epxq to
the virtual edge that separates it from its parent.

• For each vertex v, a pointer Cpvq to the node containing v that is
closest to the root.

• For each vertex v that points to an S-node x, a set Dpvq of pointers
to the at most 2 children of x that contain v.

Lemma 5.19. Given the triconnectivity query structure described in De�ni-
tion 5.7, we can answer triconnectivity for any pair of vertices in constant
time.

Proof. Given vertices u and v. If Cpuq � Cpvq and Cpuq is not an S-node,
then u and v are triconnected. If Cpuq � Cpvq is an S-node, Dpuq XDpvq is
non-empty if and only if u and v are triconnected. If Cpuq � Cpvq, then u
and v are triconnected if and only if either u is an endpoint of epCpvqq, or,
v is an endpoint of epCpuqq.
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Given Theorem 5.1, we have the tools ready for maintaining triconnec-
tivity:

Theorem 5.3. There is a data structure that can be initialized on a planar
graph G on n vertices in Opn log nq time, and supports any sequence of k
edge deletions or contractions in total time Oppn�kq log2 nq, while supporting
queries to pairwise triconnectivity in worst-case constant time per query.

Proof. For each vertex v and for each SPQR-node x, we associate the infor-
mation epxq, Cpvq, Dpvq described in De�nition 5.7.

Query. To answer a triconnected query pu, vq, we �rst ask if pu, vq are
biconnected. If not, they re not triconnected either. If they are, we get the
SPQR-tree associated with their common biconnected component, and use
Lemma 5.19. This answers the query in worst case constant time.

Updates. Our data structure for SPQR trees already maintain epxq, so
the main di�culty is in maintaining Cpvq and Dpvq for each vertex. Let x
be the value of Cpvq before the change, let x1 the new value, and suppose
x � x1.

If x and x1 are both R-nodes, |EpΓpx1qq|   1
2 |EpΓpxqq| so we are already

using Ωp|EpΓpx1qq|q � Ωp|V pΓpx1qq|q time to rebuild Γpx1q�. We can thus
a�ord to update Cpvq for all v P V pΓpx1qq.

If x is an R-node and x1 is not, then Cpcq was split into k ¡ 1 new nodes.
In this case we are already using Ωpkq time maintaining the SPQR tree, so
we can a�ord to use an additional Opkq time on updating Cpvq for the at
most Opkq vertices from V pΓpxqq whose new Cpvq is not an R-node.

If x is a P -node, then it has to be the root (since Cpvq � x), so this can
happen for at most 2 vertices per update and we can easily a�ord that.

If x is an S-node, then either the biconnected component was split into
k ¡ 1 new components and we can a�ord to spend Opkq time on updating
Cpvq for the k � 2 vertices in S that were pointing to x. Or x was merged
into another S-node. The total cost is linear in the total number of times
some node changes parent due to such a merge, which is Opn log nq.

Finally for each node x1 that has a new parent p in the SPQR-tree, if p
is an S-node, epx1q has the two vertices whose Dpvq need to be changed, and
this can be done in constant time. The total number of times this happens
is Opn log nq.
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5.7 Omitted Proofs from Section 5.4

Lemma 5.7. The potential Φ is initially Opnq and remains nonnegative.
The embedding-respecting insertion or contraction of an edge uv decreases Φ
by at least the number of candidate paths.

Proof. To see the �rst statement, note that

1 ¤ |K| ¤ |M YK| ¤ ΦvpM YKq ¤ 4 |M YK| ¤ 4p2 |K|� 2q � 8p|K|� 1q
where the inequality |M YK| ¤ ΦvpM Y Kq, stems from ΦvpM Y Kq �
|M YK| � 3 |V pGMYKq| � |EpGMYKq| ¥ 0, which is true by Observa-
tion 5.2. The last inequality is because there cannot be more than |K| � 2
vertices inM by Lemma 5.6. By a similar argument, we see that ΦvpV q ¥ 0,
and, being a sum of nonnegative terms, so is ΦqpY YMq ¥ 0.

We may thus realize that Φ is always positive:

Φ ¥ ΦspM YKq ¥ 63pΦvpM YKqq2 �
¸

vPMYK

pdMYKpvqq2

¥ 63 |M YK|2 �
� ¸
vPMYK

dMYKpvq
�2

¥ 63 |M YK|2 � p6 |M YK|� 12q2
� 27 |M YK|2 � 144p|M YK|� 1q
¥ 0

Furthermore, note that Φ is initiated at Opnq. ΦqpY YMq ¤ E which
is Opnq as the graph is planar. ΦvpM Y Kq ¤ 8|K| � Op?nq, and thus
pΦvpM YKqq2 � Opnq.

Before continuing with the second statement in the theorem, we consider
how the di�erent terms of Φ behave during changes.

First we observe, that ΦqpY Y Mq has the following properties when
contractions occur:

1. ∆ΦqpY YMq ¤ �2 when a pair of vertices in Y YM are contracted.

2. ∆ΦqpY YMq ¤ �dV pvq when a vertex v P Y YM is contracted with
a vertex in K.

3. ∆ΦqpY YMq ¤ 0 when a pair of vertices in K are contracted.

Furthermore, we observe that for any X � V , ΦvpXq has the following
properties when changes occur:
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1. ∆ΦvpXq ¤ 0 when a vertex of degree ¥ 4 is added to X.

2. �4 ¤ ∆ΦvpXq ¤ �1 when a vertex degree ¤ 3 is deleted from X.

3. ∆ΦvpXq � �1 when an edge is added to GX .

4. �3 ¤ ∆ΦvpXq ¤ �1 when contracting any edge and reducing to a
quasi-simple graph. (∆ΦvpXq � �p3 � ηq, where 0 ¤ η ¤ 2 is the
number of additional edges deleted).

All the statements have similar proofs, so take for instance statement 4.
Here, we decrease the �rst term by 4 but increase the second by η � 1, and
thus, the resulting change is between �3 and �1.

When an edge uv is inserted, it can only create new length-2 paths be-
tween vertices of K if at least one of its ends is in K. Suppose without loss
of generality that u P K. Then we have the following cases for where v is
before the insertion:

v P Y : Then v had at most 3 neighbors in K before uv was added, and thus
at most 3 candidate paths need to be checked. In this case ΦvpV q drops
by one, ΦqpY YMq increases by one, and ΦspM Y Kq is unchanged.
Thus Φ drops by 3.

v PM : In this case there are dKpvq new candidate paths, ΦvpV q drops by
one and ΦqpY YMq increases by one just like before. However, now
ΦvpM YKq drops by one, so ΦvpM YKq2 drops by 2ΦvpM YKq � 1
and so ΦspM Y Kq drops by 63p2ΦvpM Y Kq � 1q � p2dMYKpuq �
1q� p2dMYKpvq� 1q ¥ 63p2 |M YK|� 1q� p2p6 |M YK|� 12q� 1q�
p2p6 |M YK| � 12q � 1q ¥ 102 |M YK| � 225, which is much larger
than dKpvq.

v P K In this case there are dKpuq�dKpvq new candidate paths, ΦvpV q drops
by one and ΦqpY YMq is unchanged. However, as in the previous case
ΦvpMYKq drops by one so ΦspMYKq drops by at least 102 |M YK|�
225, which is much larger than dKpuq � dKpvq.

Finally we consider the case where an edge uv is contracted. To check the
lemma, one simply has to check the di�erent combinations of which partition
the two elements and the result belong to:

pY, Y q merge to Y : ΦqpY YMq drops by at least 2, and the other terms in
the potential are unchanged, so Φ drops by at least 6. Since the result
v is in Y , there are at most 3 paths of length 2 in GKYtvu with v as a
middle vertex, and at most 2 of them are new.
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pY, Y q merge to M : The product of the degrees, and therefore the number
of candidate paths is at most 9. ∆ΦvpMYKq ¤ 0 and ∆ΦqpY YMq ¤
�2, and the term

°
vPMYKpdMYKpvqq2 drops by the sum of degrees

squared. Thus, ∆Φ ¤ �2� 0� 8   �9, and we are done.

pM,Y q-merge Suppose u P M and v P Y . Let w be the node that u, v are
contracted to, it will be an M -node.

We call an edge pv, kq important if it participates in a new length 2
path between di�erent vertices of K. Each important edge incident to
v P Y will become part of the graph quasi-induced by M Y K, and
therefore cause a drop in ΦvpM YKq. This drop is enough to pay for
all new paths containing that edge.

pK,Y q-merge Suppose u P K and v P Y . Let w be the node that u, v are
contracted to, it will be an K-node.

There are two types of new length-two pK,Kq paths that arise: Paths
having w as the middle vertex, and paths having w as an end vertex.

The paths with w as a middle vertex are accounted for just like the
previous case.

Each new path having w as an end vertex must have a neighbor of v as
middle vertex. There are (less than) dV pvq of these neighbors. Since
∆ΦqpY YMq ¤ �dV pvq we can a�ord to look at each of them, and
pay for at most 2 new paths for each.

Now consider a neighborm of v that is middle vertex of some new path.
If m P Y (after the contraction), then there is at most 2 new paths
involving m, and the drop in ΦqpY YMq pays for them. If m PMYK,
then dMYKpmq has increased, and ΦspM YKq drops appropriately.

pM,Mq-merge Suppose u, v P M are merged to the new vertex w. Note
that w P M . Let X � tx1, . . . , xku be the set of common neighbors
of u, v in GMYK that lose an edge when quasi-simplifying after the
contraction, and note that 0 ¤ η ¤ 2. Let Φv � ΦvpM YKq, then

∆pΦ2
vq � pΦv �∆Φvq2 � Φ2

v

� pΦv � p3� ηqq2 � Φ2
v

� p3� ηq2 � 2p3� ηqΦv

Let a � dMYKpuq, b � dMYKpvq, and for i P t1, . . . , ηu let ci �
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dMYKpxiq. Then

a, b, ci ¤ a� b�
η̧

i�1

ci ¤
¸

yPMYK

dMYKpyq ¤ 6 |M YK|� 12 ¤ 6Φv � 12

And �nally

∆ΦspM YKq ¤ 63∆pΦ2
vq

�
��

pa� b� pη � 2qq2 �
η̧

i�1

pci � 1q2
�

�
�
a2 � b2 �

η̧

i�1

c2
i

��
� 63pp3� ηq2 � 2p3� ηqΦvq

�
�

2ab� pη � 2q2 � 2pη � 2qa� 2pη � 2qb

�
η̧

i�1

p2ci � 1q
�

� 63pp3� ηq2 � 2p3� ηqΦvq
� 2ab� ppη � 2q2 � ηq

�
�

2pη � 2qa� 2pη � 2qb�
η̧

i�1

2ci

�
¤ 63pp3� ηq2 � 2p3� ηqΦvq

� 2ab� ppη � 2q2 � ηq

�
�

2pη � 2q � 2pη � 2q �
η̧

i�1

2

�
p6Φv � 12q

� 63pp3� ηq2 � 2p3� ηqΦvq
� 2ab� ppη � 2q2 � ηq � p6η � 8qp6Φv � 12q

� �2ab�

$'&'%
467� 330Φv if η � 0

74� 168Φv if η � 1

�195� 6Φv if η � 2

¤ �2ab� 6Φv for Φv ¥ 2 (5.1)

In particular, ∆Φ ¤ �ab � �dMYKpuq �dMYKpvq ¤ �dSpuq �dSpvq, as
desired.
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pK,Mq-merge: Suppose u P K and v PM . Let w be the node that u, v are
contracted to, it will be an K-node.

There are two types of new length-two pK,Kq paths that arise: Paths
having w as the middle vertex, and paths having w as an end vertex.

The paths with w as a middle vertex are accounted for just like the
previous case.

Each new path having w as an end vertex must have a neighbor of v as
middle vertex. There are (less than) dV pvq of these neighbors. Since
∆ΦqpY YMq ¤ �dV pvq we can a�ord to look at each of them, and
pay for at most 2 new paths for each.

Now consider a neighbor m of v that is middle vertex of some new
path. If m P Y (after the contraction), then there is at most 2 new
paths involving m, and the drop in Φq pays for them.

LetM be the set of neighbors of v inMYK that is middle of some new
path. The number of such paths is at most |EpGMYKq| ¤ 3 |M YK|�
6 ¤ 3ΦvpM Y Kq � 6, since each must contain a unique edge from
GMYK . And the �6ΦvpM YKq pays for them.

pK,Kq-merge: Suppose u, v P K. Let w be the node that u, v are con-
tracted to, it will be an K-node.

There are two types of new length-two pK,Kq paths that arise: Paths
having w as the middle vertex, and paths having w as an end vertex.

The paths with w as a middle vertex are accounted for just like the
previous two cases.

Each new path having w as an end vertex was already an pK,Kq path
with either u or v before the merge. For each of u, v there is at most
|K|� 1 such pairs that (may) need to be updated, so the total cost of
updating these is less than 2p|K| � 1q ¤ 2Φv. The �6Φv can pay for
these updates.



Chapter 6

Online bipartite matching with

amortized Oplog2 nq
replacements

Aaron Bernstein, Jacob Holm, Eva Rotenberg

Abstract

In the online bipartite matching problem with replacements,
all the vertices on one side of the bipartition are given, and the
vertices on the other side arrive one by one with all their inci-
dent edges. The goal is to maintain a maximum matching while
minimizing the number of changes (replacements) to the match-
ing. We show that the greedy algorithm that always takes the
shortest augmenting path from the newly inserted vertex (de-
noted the SAP protocol) uses at most amortized Oplog2 nq re-
placements per insertion, where n is the total number of ver-
tices inserted. This is the �rst analysis to achieve a polyloga-
rithmic number of replacements for any replacement strategy,
almost matching the Ωplog nq lower bound. The previous best
known strategy achieved amortized Op?nq replacements [Bosek,
Leniowski, Sankowski, Zych, FOCS 2014]. For the SAP protocol
in particular, nothing better than then trivial Opnq bound was
known except in special cases. Our analysis immediately implies
the same upper bound of Oplog2 nq reassignments for the capaci-
tated assignment problem, where each vertex on the static side of
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the bipartition is initialized with the capacity to serve a number
of vertices.

We also analyze the problem of minimizing the maximum
server load. We show that if the �nal graph has maxi-
mum server load L, then the SAP protocol makes amortized
OpmintL log2 n,

?
n log nuq reassignments. We also show that

this is close to tight because ΩpmintL,?nuq reassignments can
be necessary.

6.1 Introduction

In the online bipartite matching problem, the vertices on one side are given
in advance (we call these the servers S), while the vertices on the other side
(the clients C) arrive one at a time with all their incident edges. In the
standard online model the arriving client can only be matched immediately
upon arrival, and the matching cannot be changed later. Because of this
irreversibility, the �nal matching might not be maximum; no algorithm can
guarantee better than a p1�1{eq-approximation [106]. But in many settings
the irreversibility assumption is too strict: rematching a client is expensive
but not impossible. This motivates the online bipartite matching problem
with replacements, where the goal is to at all times match as many clients
as possible, while minimizing the number of changes to the matching. Ap-
plications include hashing, job scheduling, web hosting, streaming content
delivery, and data storage; see [28] for more details.

In several of the applications above, a server can serve multiple clients,
which raises the question of online bipartite assignment with reassignments.
There are two ways of modeling this:

Capacitated assignments. Each server s comes with the capacity to serve
some number of clients upsq, where each upsq is given in advance.
Clients should be assigned to a server, and at no times should the
capacity of a server be exceeded. There exists an easy reduction show-
ing that this problem is equivalent to online matching with replace-
ments [19]. A more formal description is given in Section 6.6.1.

Minimize max load. There is no limit on the number of clients a server
can serve, but we want to (at all times) distribute the clients as �fairly�
as possible, while still serving all the clients. De�ning the load on a
server as the number of clients assigned to it, the task is to, at all times,
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minimize the maximum server load � with as few reassignments as
possible. A more formal description is given in Section 6.6.2

While the primary goal is to minimize the number of replacements, spe-
cial emphasis has been placed on analyzing the SAP protocol in particular,
which always augments down a shortest augmenting path from the newly
arrived client to a free server (breaking ties arbitrarily). This is the most
natural replacement strategy, and shortest augmenting paths are already of
great interest in graph algorithms: they occur in for example in Dinitz' and
Edmonds and Karp's algorithm for maximum �ow [41, 46], and in Hopcroft
and Karp's algorithm for maximum matching in bipartite graphs [92].

Throughout the rest of the paper, we let n be the number of clients in
the �nal graph, and we consider the total number of replacements during the
entire sequence of insertions; this is exactly n times the amortized number
of replacements. The reason for studying the vertex-arrival model (where
each client arrives with all its incident edges) instead of the (perhaps more
natural) edge-arrival model is the existence of a trivial lower bound of Ωpn2q
total replacements in this model: Start with a single edge, and maintaining
at all times that the current graph is a path, add edges to alternating sides
of the path. Every pair of insertions cause the entire path to be augmented,
leading to a total of

°n{2
i�1 i P Ωpn2q replacements.

6.1.1 Previous work

The problem of online bipartite matchings with replacements was introduced
in 1995 by Grove, Kao, Krishnan, and Vitter [66], who showed matching
upper and lower bounds of Θpn log nq replacements for the case where each
client has degree two. In 2009, Chadhuri, Daskalakis, Kleinberg, and Lin [28]
showed that for any arbitrary underlying bipartite graph, if the client vertices
arrive in a random order, the expected number of replacements (in their ter-
minology, the switching cost) is Θpn log nq using SAP, which they also show
is tight. They also show that if the bipartite graph remains a forest, there
exists an algorithm (not SAP) with Opn log nq replacements, and a matching
lower bound. Bosek, Leniowski, Sankowski and Zyck later analyzed the SAP
protocol for forests, giving an upper bound of Opn log2 nq replacements [23],
later improved to the optimal Opn log nq total replacements [24]. For general
bipartite graphs, no analysis of SAP is known that shows better than the
trivial Opn2q total replacements. Bosek et al. [22] showed a di�erent algo-
rithm that achieves a total of Opn?nq replacements. They also show how
to implement this algorithm in total time Opm?nq, which matches the best
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performing combinatorial algorithm for computing a maximum matching in
a static bipartite graph (Hopcroft and Karp [92]).

The lower bound of Ωplog nq by Grove et al. [66] has not been improved
since, and is conjectured by Chadhuri et al. [28] to be tight, even for SAP,
in the general case. We take a giant leap towards closing that conjecture.

For the problem of minimizing maximum load, [70] and [19] showed an
approximation solution: with only Op1q amortized changes per client inser-
tion they maintain an assignment A such that at all times the maximum
load is within a factor of 8 of optimum.

The model of online algorithms with replacements � alternatively referred
to as online algorithms with recourse � has also been studied for a variety
of problems other than matching. The model is similar to that of online
algorithms, except that instead of trying to maintain the best possible ap-
proximation without making any changes, the goal is to maintain an optimal
solution while making as few changes to the solution as possible. This model
encapsulates settings in which changes to the solution are possible but ex-
pensive. The model originally goes back to online Steiner trees [98], and
there have been several recent improvements for online Steiner tree with re-
course [67,69,123,130]. There are many papers on online scheduling that try
to minimize the number of job reassignments [13,52,140,146,149,162]. The
model has also been studied in the context of �ows [70, 162], and there is a
very recent result on online set cover with recourse [68].

6.1.2 Our results

Theorem 6.1. SAP makes at most Opn log2 nq total replacements when n
clients are added.

This is a huge improvement of the Opn?nq bound by [22], and is only
a log factor from the lower bound of Ωpn log nq by [66]. It is also a huge
improvement of the analysis of SAP; previously no better upper bound than
Opn2q replacements for SAP was known. To attain the result we develop a
new tool for analyzing matching-related properties of graphs (the balanced
�ow in Sections 6.3 and 6.4) that is quite general, and that we believe may
be of independent interest.

Although SAP is an obvious way of serving the clients as they come,
it does not immediately allow for an e�cient implementation. Finding an
augmenting path may take up to Opmq time, where m denotes the total
number of edges in the �nal graph. Thus, the naive implementation takes
Opmnq total time. However, short augmenting paths can be found substan-
tially faster, and using the new analytical tools developed in this paper, we
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are able to exploit this in a data structure that �nds the augmenting paths
e�ciently:

Theorem 6.2. There is an implementation of the SAP protocol that runs
in total time Opm?n?log nq.

Note that this is only anOp?log nq factor from the algorithm by Hopcroft
and Karp [92], which is matched by Bosek et al. [22] in the online setting.

Extending our result to the case where each server can have multiple
clients, we use that the capacitated assignment problem is equivalent to that
of matching (see Section 6.6.1 to obtain:

Theorem 6.3. SAP uses at most Opn log2 nq reassignments for the capaci-
tated assignment problem, where n is the number of clients.

In the case where we wish to minimize the maximum load, such a small
number of total reassignments is not possible. Let optpGq denote the mini-
mum possible maximum load in graph G. We present a lower bound showing
that when optpGq � L we may need as many as ΩpnLq reassignments, as
well as a nearly matching upper bound.

Theorem 6.4. For any positive integers n and L ¤
a
n{2 divisible by 4 there

exists a graph G � pC Y S,Eq with |C| � n and optpGq � L, along with an
ordering in which the clients in C are inserted, such that any algorithm for
the exact online assignment problem requires a total of ΩpnLq changes. This
lower bound holds even if the algorithm knows the entire graph G in advance,
as well as the order in which the clients are inserted.

Theorem 6.5. Let C be the set of all clients inserted, let n � |C|, and
let L � optpGq be the minimum possible maximum load in the �nal graph
G � pC Y S,Eq. SAP at all times maintains an optimal assignment while
making a total of Opnmin tL log2 n,

?
n log nuq reassignments.

6.1.3 High Level Overview of Techniques

Consider the standard setting in which we are given the entire graph from the
beginning and want to compute a maximum matching. The classic shortest-
augmenting paths algorithm constructs a matching by at every step picking a
shortest augmenting path in the graph. We now show a very simple argument
that the total length of all these augmenting paths is Opn log nq. Recall the
well-known fact that if all augmenting paths in the matching have length¥ h,
then the current matching is at most 2n{h edges from optimal [92]. Thus
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the algorithm augments down at most 2n{h augmenting paths of length ¥ h.
Let P1, P2, ..., Pk denote all the paths augmented down by the algorithm in
decreasing order of |Pi|; then k ¤ n, and |Pi| � h implies i ¤ 2n{h. But then
|Pi| ¤ 2n{i, so°1¤i¤k |Pi| ¤ 2n

°
1¤i¤k

1
i � 2nplnpkq�Op1qq � Opn log kq �

Opn log nq.
In the online setting, the algorithm does not have access to the entire

graph. It can only choose the shortest augmenting path from the arriving
client c. We are nonetheless able to show a similar bound for this setting:

Lemma 6.1. Consider the following protocol for constructing a matching:
For each client c in arbitrary order, augment along the shortest augmenting
path from c (if one exists). Given any h, this protocol augments down a total
of at most 4n lnpnq{h augmenting paths of length ¡ h.

The proof of our main theorem then follows directly from the lemma.

Proof of Theorem 6.1. Note that the SAP protocol exactly follows the
condition of Lemma 6.1. Now, Given any 0 ¤ i ¤ log2pnq � 1, we say that
an augmenting path is at level i if its length is in the interval r2i, 2i�1q. By
Lemma 6.1, the SAP protocol augments down at most 4n lnpnq{2i paths of
level i. Since each of those paths contains at most 2i�1 edges, the total
length of augmenting paths of level i is at most 8n lnpnq. Summing over all
levels yields the desired Opn log2 nq bound.

The entirety of Sections 6.3 and 6.4 is devoted to proving Lemma 6.1.
Previous algorithms attempted to bound the total number of reassignments
by tracking how some property of the matchingM changes over time. For ex-
ample, the analysis of Gupta et al. [70] keeps track of changes to the "height"
of vertices in M , while the algorithm with Opn?nq reassignments [22] takes
a more direct approach, and uses a non-SAP protocol whose changes to M
depend on how often each particular client has already been reassigned.

Unfortunately such arguments have had limited success because the
matching M can change quite erratically. This is especially true under the
SAP protocol, which is why it has only been analyzed in very restrictive set-
tings [23,28,66]. We overcome this di�culty by showing that it is enough to
analyze how new clients change the structure of the graph G � pC Y S,Eq,
without reference to any particular matching.

Intuitively, our analysis keeps track of how "necessary" each server s is
(denoted αpsq below). So for example, if there is a complete bipartite graph
with 10 servers and 10 clients, then all servers are completely necessary. But
if the complete graph has 20 servers and 10 clients, then while any matching
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has 10 matched servers and 10 unmatched ones, it is clear that if we abstract
away from the particular matching every server is 1/2-necessary. Of course
in more complicated graphs di�erent servers might have di�erent necessities,
and some necessities might be very close to 1 (say 1 � 1{n2{3). Note that
server necessities depend only on the graph, not on any particular matching.
Note also that our algorithm never computes the server necessities, as they
are merely an analytical tool.

We relate necessities to the number of reassignments with 2 crucial ar-
guments. 1. Server necessities only increase as clients are inserted, and once
a server has αpsq � 1, then regardless of the current matching, no future
augmenting path will go through s. 2. If, in any matching, the shortest
augmenting path from a new client c is long, then the insertion of c will
increase the necessity of servers that already had high necessity. We then
argue that this cannot happen too many times before the servers involved
have necessity 1, and thus do not partake in any future augmenting paths.

6.1.4 Paper outline

In Section 6.2, we introduce the terminology necessary to understand the
paper. In Section 6.3, we introduce and reason about the abstraction of
a balanced server �ow, a number that re�ects the necessity of each server.
In Section 6.4, we use the balanced server �ow to prove Lemma 6.1, which
proves our main theorem that SAP makes a total of Opn log2 nq replace-
ments. In Section 6.5, we give an e�cient implementation of SAP. Finally,
in Section 6.6, we present our results on capacitated online assignment, and
for minimizing maximum server load in the online assignment problem.

6.2 Preliminaries and notation

Let pC, Sq be the vertices, and E be the edges of a bipartite graph. We
call C the clients, and S the servers. Clients arrive, one at a time, and we
must maintain an explicit maximum matching of the clients. For simplicity
of notation, we assume for the rest of the paper that C � H. For any
vertex v, let Npvq denote the neighborhood of v, and for any V � C Y S let
NpV q � �

vPV Npvq.
Theorem 6.6 (Halls Marriage Theorem [73]). There is a matching of size
|C| if and only if |K| ¤ |NpKq| for all K � C.

De�nition 6.1. Given any matching in a graph G � pC Y S,Eq, an alter-
nating path is one which alternates between unmatched and matched edges.
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An augmenting path is an alternating path that starts and ends with an
unmatched vertex. Given any augmenting path P , ��ipping� the matched
status of every edge on P gives a new larger matching. We call this process
augmenting down P .

Denote by SAP the algorithm that upon the arrival of a new client c
augments down the shortest augmenting path from c; ties can be broken
arbitrarily, and if no augmenting path from c exists the algorithm does noth-
ing. Chaudhuri et al. [28] showed that if the �nal graph contains a perfect
matching, then the SAP protocol also returns a perfect matching. We now
generalize this as follows

Observation 6.1. Because of the nature of augmenting paths, once a client c
or a server s is matched by the SAP protocol, it will remain matched during
all future client insertions. On the other hand, if a client c arrives and
there is no augmenting path from c to a free server, then during the entire
sequence of client insertions c will never be matched by the SAP protocol; no
alternating path can go through c because it is not incident to any matched
edges.

Lemma 6.2. The SAP protocol always maintains a maximum matching in
the current graph G � pC Y S,Eq.
Proof. Consider for contradiction the �rst client c such that after the inser-
tion of c, the matchingM maintained by the SAP protocol is not a maximum
matching. Let C be the set of clients before c was inserted. SinceM is max-
imum in the graph G � pC Y S,Eq but not in G1 � pC Y S Y tcu , Eq, it is
clear that c is matched in the maximum matching M 1 of G1 but not in M .
But this contradicts the well known property of augmenting paths that the
symmetric di�erence M `M 1 contains an augmenting path in M from c to
a free server.

6.3 The Server Flow Abstraction

We now formalize the notion of server necessities from Section 6.1.3 by using
a �ow-based notation.

De�nition 6.2. Given any graph G � pC YS,Eq, de�ne a server �ow α as
any map from S to the nonnegative reals such that there exist nonnegative
pxeqePE with:

@c P C :
¸

sPNpcq

xcs � 1 @s P S :
¸

cPNpsq

xcs � αpsq
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We say that such a set of x-values realize the server �ow.

Note that the same server �ow may be realized in more than one way.
Furthermore, if |Npcq| � 0 for some c P C then

°
sPNpcq xcs � 0 � 1, so no

server �ow is possible. So suppose (unless otherwise noted) that |Npcq| ¥ 1
for all c P C.

The following theorem can be seen as a generalization of Hall's Marriage
Theorem:

Lemma 6.3. If maxH�K�C
|K|

|NpKq| � p
q , then there exists a server �ow where

every server s P S has αpsq ¤ p
q .

Proof. Let C� be the original set C but with q copies of each client. Similarly
let S� contain p copies of each server, and let E� consist of all pq edges
between copies of the endpoints of each edge in E.

Now let K� � C�, and let K � C be the originals that the vertices in
K� are copies of. Then |K�| ¤ q |K| ¤ p |NpKq| � |NpK�q|, so the graph
pC� Y S�, E�q satis�es Hall's theorem and thus it has some matching M in
which every client in C� is matched. Now, for cs P E let

xcs � 1
q

∣∣ c�s� PM �� c� is a copy of c and s� is a copy of s
(∣∣

Since for each c P C all q copies of c are matched,
°
sPNpcq xcs � q

q � 1 for
all c P C. Similarly, since for each s P S at most p copies of s are matched,°
cPNpsq xcs ¤ p

q . Thus, pxeqePE realizes the desired server �ow.

De�nition 6.3. We call the server �ow α balanced, if additionally:

@c P C, s P NpcqzApcq : xcs � 0 where Apcq � arg min
sPNpcq

αpsq

That is, if each client only sends �ow to its least loaded neighbours.
We call the set Apcq the active neighbors of c, and we call an edge cs

active when s P Apcq. We extend the de�nition to sets of clients in the
natural way, so for K � C, ApKq � �

cPK Apcq.
Note that while there may be more than one server �ow, we will show that

the balanced server �ow α is unique, although there may be many possible
x-values xcs that realize α.

Lemma 6.4. If α is a balanced server �ow, then

@T � S :
∣∣tc P C | Apcq � T u∣∣ ¤ ¸

sPT

αpsq ¤ ∣∣tc P C | Apcq X T � Hu∣∣
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Proof. The �rst inequality is true because each client in the �rst set con-
tributes exactly one to the sum (but there may be other contributions).
The second inequality is true because every client contributes exactly one to°
sPS αpsq, and the inequality counts every client that contributes anything

to
°
sPT αpsq as contributing one.

We now show that the generalization of Hall's Marriage Theorem from
Lemma 6.3 is �tight� for a balanced server �ow in the sense that there does
indeed exist a set of p clients with neighbourhood of size q realizing the
maximum α-value p

q . In fact, the maximally necessary servers and their
active neighbours (de�ned below) form such a pair of sets:

Lemma 6.5. Let α be a balanced server �ow, let α̂ � maxsPS αpsq be the
maximal necessity, let Ŝ � ts P S | αpsq � α̂u be the maximally necessary
servers, and let K̂ � tc P C | Apcq X Ŝ � Hu be their active neighbours.
Then NpK̂q � Ŝ and |K̂| � α̂ |Ŝ|.

Proof. Let K � tc P C | Apcq � Ŝu, and note that K � K̂. However, we
also have K̂ � K: By de�nition of Ŝ, and since we assume the server �ow
is balanced, K̂ � H, and for every c P K̂, Npcq � Apcq � Ŝ. Thus, K � K̂
and NpK̂q � Ŝ. Now, note that by Lemma 6.4

|K̂| � |K| ¤ α̂ |Ŝ| ¤ |K̂| .

We can thus show that α̂ exactly equals the maximal quotient |K|
|NpKq|

over subsets K of clients.

Lemma 6.6. Let α be a balanced server �ow, and let α̂ � maxsPS αpsq.
Then

α̂ � max
H�K�C

|K|
|NpKq|

Furthermore, for any K � C, if |K| � α̂ |NpKq|, then αpsq � α̂ for all
s P NpKq.
Proof. By de�nition of server �ow, for K � C, |K| ¤ °

sPNpKq αpsq ¤
α̂ |NpKq|, so |K| ¤ α̂ |NpKq|. Let K̂ be de�ned as in Lemma 6.5. Then

α̂ � |K̂|
|NpK̂q|

¤ maxH�K�C
|K|

|NpKq| ¤ α̂. Finally, if |K| � °
sPNpKq αpsq �

α̂ |NpKq| then αpsq ¤ α̂ for all s P S implies αpsq � α̂ for s P NpKq.

Corollary 6.1. If maxH�K�C
|K|

|NpKq| � |C|
|S| there is a unique balanced server

�ow.
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Proof. By Lemma 6.3 there exists a server �ow with αpsq ¤ |C|
|S| for all s P S.

Since
°
sPS αpsq � |C|, any such �ow must actually have αpsq � |C|

|S| for all
s P S, and be balanced. Uniqueness follows from Lemma 6.6.

Lemma 6.7. A unique balanced server �ow exists if and only if |Npcq| ¥ 1
for all c P C.
Proof. As already noted, |Npcq| ¥ 1 for all c P C is a necessary condition.
We will prove that it is su�cient by induction on i � |S|. If |S| � 1, the �ow
αpsq � |C| for s P S is trivially the unique balanced server �ow. Suppose now
that i ¡ 1 and that it holds for all |S|   i. Now let α̂ � maxH�K�C

|K|
|NpKq|

and let

Ĉ �
¤
KPK

K where K �  
K � C

�� |K| � α̂ |NpKq| (
Note that for any two nonempty K1,K2 � C we have α̂ ¥ |K1YK2|

|NpK1qYNpK2q| ¥
min

!
|K1|

|NpK1q| ,
|K2|

|NpK2q|

)
, so |Ĉ| � α̂ |NpĈq|. If NpĈq � S then Ĉ � C (oth-

erwise |Ĉ|
|NpĈq|

  |C|
|S| ¤ α̂) and by Corollary 6.1 we are done, so suppose

H � NpĈq � S. Consider the subgraph G1 induced by Ĉ YNpĈq and the
subgraph G2 induced by pCzĈq Y pSzNpĈqq.

By Corollary 6.1, G1 has a unique balanced server �ow α1 with α1psq � α̂
for all s P NpĈq.

By our induction hypothesis, G2 also has a unique balanced server �ow
α2.

We proceed to show that the combination of α1 with α2 constitutes a
unique balanced �ow α of the entire graph G, de�ned as follows:

αpsq �
#
α1psq if s P NpĈq
α2psq otherwise

Note �rst that α is a balanced server �ow forG, because bothG1 andG2 have
a set of x-values that realize them, and by construction these values (together
with zeroes for each edge between CzĈ and NpĈq) realize a balanced server
�ow for G.

For uniqueness, note that by Lemma 6.6 any balanced server �ow α1 for
G must have α1psq � α̂ � α1psq for s P NpĈq. We now show that for any
s P SzNpĈq, any balanced server �ow α1 must also have α1psq � α2psq; then,
the uniqueness of α will follow from the uniqueness of α1 and α2.
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Let Ŝ � ts P S | α1psq � α̂u be the set of maximally necessary servers,
and let K̂ � tc P C | Apcq X Ŝ � Hu be the set of clients with a maximally
necessary server in their active neighborhood. We will show that K̂ � Ĉ.

��� By Lemma 6.5, |K̂| � α̂ |NpK̂q| so by de�nition of Ĉ, K̂ � Ĉ.

��� On the other hand, |Ĉ| � α̂ |NpĈq| so by Lemma 6.6 we have NpĈq � Ŝ
and in particular Apcq � Ŝ for c in Ĉ and thus Ĉ � K̂.

Thus, by de�nition of K̂, Apcq X Ŝ � H for all c P CzĈ. And there are
clearly no edges between Ĉ and SzNpĈq. But then, for any pxeqePE realizing
α1, the subset pxcsqcPCzĈ,sPSzNpĈq realizes a balanced server �ow in G2, so
since α2 is the unique balanced server �ow in G2 we have α1psq � α2psq for
s P SzNpĈq.

From now on, let α denote the unique balanced server �ow. We want to
understand how the balanced server �ow changes as vertices are added. For
any server s, let αoldpsq be the �ow in s before the insertion of c, and let
αnewpsq be the �ow after. Also, let ∆αpsq � αnewpsq � αoldpsq.
Lemma 6.8. When a new client c is added, ∆αpsq ¥ 0 for all s P S.
Proof. Let S� � ts P S | αnewpsq   αoldpsqu. We want to show that S� �
H. Say for contradiction that S� � H, and let α� � minsPS� α

newpsq. We
will now partition S into three sets.

S� � ts P S | αoldpsq ¤ α�u
S∆ � ts P S | αoldpsq ¡ α� ^ αnewpsq � α�u
S� � ts P S | αoldpsq ¡ α� ^ αnewpsq ¡ α�u

It is easy to see that these sets form a partition of S, and thatH � S∆ � S�.
Now, let C∆ contain all clients with an active neighbor in S∆ before the

insertion of c. Since each client sends one unit of �ow,
°
sPS∆ αoldpsq ¤∣∣C∆

∣∣. Now, because we had a balanced �ow before the insertion of c there
cannot be any edges in G from C∆ to S� (any such edge would be from
a client u P C∆ to a server v P S� with αoldpvq ¤ α�   αoldpsq for
s P S∆ contradicting that u had an active neighbor in S∆). Moreover, in
the balanced �ow after the insertion of c, there are no active edges from C∆

to S� (any such edge would be from a client u P C∆ to a server v P S� with
αnewpvq ¡ α� � αnewpsq for all s P S∆ so is not active). Thus, all active
edges incident to C∆ go to S∆, so

°
sPS∆ αnewpsq ¥

∣∣C∆
∣∣. This contradicts

the earlier fact that
°
sPS∆ αoldpsq ¤

∣∣C∆
∣∣, since by de�nition of S∆ we

have
°
sPS∆ αnewpsq   °

sPS∆ αoldpsq.
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Lemma 6.9. When a new client c is added , ∆αpsq � 0 for all s where
αoldpsq   minvPNpcq α

oldpvq.
Proof. Let us �rst consider the balanced �ow before the insertion of c.

Let S� �  
s P S �� αoldpsq ¥ minvPNpcq α

oldpvq( and de�ne S� � SzS�.
We want to show that ∆αpsq � 0 for all servers s in S�.

De�ne C� to contain all client vertices incident to S�; that is C� �
tc P C | Npcq X S� � Hu. Let C� � CzC�. Note that because the �ow is
balanced there are no edges in G from C� to S� and there are no active
edges from C� to S� before the insertion of c. Thus,

°
sPS� α

oldpsq � |C�|.
Now consider the insertion of c. By de�nition of S� the new client

c has no neighbors in S�, so it is still the case that only clients in C�

have neighbors in S�. Thus, in the new balanced �ow we still have have
that

°
sPS� α

newpsq ¤ |C�|. But this means that
°
sPS� ∆αpsq ¤ 0, so if

∆αps1q ¡ 0 for some s1 P S� then ∆αps2q   0 for some s2 P S�, which
contradicts Lemma 6.8.

6.4 Analyzing replacements in maximum matching

We now consider how server �ows relate to the length of augmenting paths.

Lemma 6.10. The graph pC YS,Eq contains a matching of size |C|, if and
only if αpsq ¤ 1 for all s P S.
Proof. Let α̂ � maxsPS αpsq. It follows directly from Lemma 6.6 that |K| ¤
|NpKq| for all K � C if and only if α̂ ¤ 1. The corollary then follows from
Hall's Theorem (Theorem 6.6)

It is possible that in the original graph G � pC Y S,Eq, there are many
clients that cannot be matched. But recall that by Observation 6.1, if a client
cannot be matched when it is inserted, then it can be e�ectively ignored for
the rest of the algorithm. This motivates the following de�nition:

De�nition 6.4. We de�ne the set CM � C as follows. When a client c is
inserted, consider the set of clients C 1 before c is inserted: then c P CM if
the maximum matching in pC 1 Y tcu Y S,Eq is greater than the maximum
matching in pC 1 Y S,Eq. De�ne GM � pCM Y S,Eq.
Observation 6.2. When a client c P CM is inserted the SAP algorithm �nds
an augmenting path from c to a free server; this follows from the fact that
SAP always maintains a maximum matching (Lemma 6.2). By Observa-
tion 6.1, if c R CM then no augmenting path goes through c during the entire
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sequence of insertions. By the same observation, once a vertex c P CM is
inserted it remains matched through the entire sequence of insertions.

De�nition 6.5. Given any s P S, let αM psq be the �ow into s in some
balanced server �ow in GM ; by Lemma 6.7 αM psq is uniquely de�ned.

Observation 6.3. By construction GM contains a matching of size |CM |,
so by Lemma 6.10 αM psq ¤ 1 for all s P S. Finally, note that since CM � C,
we clearly have αM psq ¤ αpsq
De�nition 6.6. De�ne an augmenting tail from a vertex v to be an alter-
nating path that starts in v and ends in an unmatched server. We call an
augmenting tail active if all the edges that are not in the matching are active.

Note that augmenting tails as de�ned above are an obvious extension
of the concept of augmenting paths: Every augmenting path for a newly
arrived client c consists of an edge pc, sq, plus an augmenting tail from some
server s P Npcq.
Lemma 6.11 (Expansion Lemma). Suppose every client is matched, let
s P S, and suppose αM psq � 1 � ε for some ε ¡ 0. Then there is an active
augmenting tail for s of length at most 2

ε lnp|CM |q.
Proof. By our de�nition of active edges, it is not hard to see that any server
s1 reachable from s by an active augmenting tail has αM ps1q ¤ 1� ε.

For i ¥ 1, let Ki be the set of clients c such that there is an active
augmenting tail s0, c0, . . . , ck�1, sk from s with c � cj for some j   i. Let
ki � |Ki|. Note that k1 � 1, K1 � K2 � . . . � Ki, and

ki � |Ki| ¤
¸

s1PApKiq

αM ps1q ¤
¸

s1PApKiq

p1� εq � |ApKiq| p1� εq

Thus

|ApKiq| ¥ ki
1� ε

Suppose there is no active augmenting tail from s of length ¤ 2pi � 1q,
then every server in ApKiq is matched, and the clients they are matched
to are exactly Ki�1. So ki�1 � |ApKiq| and thus |CM | ¥ ki�1 ¥ 1

1�εki ¥
p 1

1�εqik1 � p 1
1�εqi. It follows that i ¤ ln|CM |

ln 1
1�ε

¤ 1
ε ln |CM |, where the last

inequality follows from 1� ε ¤ e�ε. Thus for any i ¡ 1
ε ln |CM | there exists

an active augmenting tail of length at most 2pi�1q, and the result follows.
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We are now able to prove the key lemma of our paper, which we showed
in Section 6.1.3 implies Theorem 6.1.

Lemma 6.1. Consider the following protocol for constructing a matching:
For each client c in arbitrary order, augment along the shortest augmenting
path from c (if one exists). Given any h, this protocol augments down a total
of at most 4n lnpnq{h augmenting paths of length ¡ h.

Proof. Recall that n � |C| ¥ |CM |. The lemma clearly holds for h ¤ 4 lnpnq
because there at most n augmenting paths in total. We can thus assume
for the rest of the proof that h ¡ 4 lnpnq. Recall by Observation 6.2 that
any augmenting path is contained entirely in GM . Now, let C� � CM be
the set of clients whose shortest augmenting path have length at least h� 1
when they are added. Our goal is to show that |C�| ¤ 4n lnpnq{h. For each
c P C� the shortest augmenting tail from each server s P Npcq has length
at least h and so by the Expansion Lemma 6.11, each server s P Npcq has
αM psq ¥ 1 � 2 lnpnq{h. Let S� be the set of all servers that at some point
have αM psq ¥ 1� 2 lnpnq{h; by Lemma 6.8, this is exactly the set of servers
s such that αM psq ¥ 1 � 2 lnpnq{h after all clients have been inserted. By
Lemma 6.9, if c P C� the insertion of c only increases the �ow on servers in
S� that already had �ow at least 1� 2 lnpnq{h; since each client contributes
one unit of �ow, and by Observation 6.3 αM psq ¤ 1 for all s P S, the total
number of such clients is |C�| ¤ p2 logpnq{hq |S�|. We complete the proof by
showing that |S�|   2n. This follows from the fact that each client c P CM
sends one unit of �ow, so n ¥ |CM | ¥ p1 � 2 lnpnq{hq |S�| ¡ |S�| {2, where
the last inequality follows from the assumption that h ¡ 4 lnpnq.

6.5 Implementation

In the previous section we proved that augmenting along a shortest path
yields a total of Opn log2 nq replacements. But the naive implementation
would spend Opmq time per inserted vertex, leading to total time Opmnq
for actually producing the matchings. In this section, we show an e�cient
implementation for �nding the augmenting paths quickly, and thus maintain-
ing the optimal matching at all times in Opm?n?log nq total time, di�ering
only by an Op?log nq factor from the classic o�ine algorithm of Hopcroft
and Karp algorithm for static graphs [92].

De�nition 6.7. De�ne the height of a vertex v (server or client) to be
the length of the shortest augmenting tail (De�nition 6.6) from v. If no
augmenting tail exists, we set the height to 2n.
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Observation 6.4. Heights are monotonically increasing. This follows di-
rectly from standard arguments about shortest augmenting paths. For a for-
mal proof see Lemma 5.3 in [70].

At a high level, our algorithm is very similar to the standard Opm?nq
blocking �ow algorithm. We will keep track of heights to �nd shortest paths
of length at most

?
n
a

lnpnq. We will �nd longer augmenting paths using
the trivial Opmq algorithm, and use Lemma 6.1 to bound the number of such
paths. Our analysis will also require the following lemma:

Lemma 6.12. For any server s P S, there is an augmenting tail from s to
an unmatched server if and only if αM psq   1.

Proof. If αM psq   1, then the existence of some tail follows directly
from the Expansion Lemma 6.11. Now let us consider αM psq � 1. Let
S1 � ts P S | αM psq � 1u. Since 1 is the maximum possible value of αM psq
(Observation 6.3), Lemma 6.5 implies that there is a set of clients C1 P CM
such that NpC1q � S1 and |C1| � |S1|. Now since every client in C1 is
matched, every server S1 is matched to some client in C1. Every augment-
ing tail from some s P S1 must start with a matched edge, so it must go
through C1, so it never reaches a server outside of NpC1q � S1, so it can
never reach a free server.

We now turn to our implementation of the SAP protocol.

Theorem 6.2. There is an implementation of the SAP protocol that runs
in total time Opm?n?log nq.
Proof. Every vertex will keep track of its height up to h � ?

n
?

log n. If
its height is larger than h, it will simply mark itself as a high vertex. Each
vertex v will also track the height of each of its neighbors with Ophq buckets:
N1pvq, N2pvq, N3pvq, . . . , Nhpvq, andN�pvq for the high neighbors. Whenever
a neighbor u of v changes height, we will have to change the corresponding
bucket of v. Every vertex v will also keep track of its lowest non-empty
bucket.

When a new client c arrives, it will use the height information to �nd
a shortest augmenting path. First o�, put all of the neighbors of c in their
corresponding buckets: this takes Opdegpcqq time. Now to �nd the shortest
augmenting path from c we consider two cases. The �rst is that c has a
neighbor who is not high. In this case, take the edge from c to its neighbor
with minimum height by picking an arbitrary neighbor from the lowest non-
empty bucket. Now follow the backwards (matched) edge to a new vertex
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c1, and again, take the edge to the vertex of minimum height, breaking ties
arbitrarily. This will obviously compute a shortest augmenting path.

The second case is when all the neighbors of c are high. In this case
we can just brute-force compute a shortest augmenting path in time Opmq.
If we �nd an augmenting path, we augment down it; if we do not �nd an
augmenting path, then we remove all servers and clients encountered during
the search for this augmenting path, and continue the algorithm in the graph
with these vertices removed.

correctness We want to show that our implementation chooses a shortest
augmenting path at every step. Although our implementation clearly always
chooses the shortest augmenting path in the remaining graph, there is the
potential problem that this remaining graph might not be the original graph,
since the algorithm sometimes deletes vertices from the graph due to a failed
brute-force search. We show that this is not a problem because whenever our
implementation deletes a vertex v at time t, then in the original graph there
is never an augmenting path through v after time t. To see this, note that
when our implementation deletes a server s P S, there must have been no
augmenting path through s at the time that s was deleted. By Lemma 6.12,
this implies that αM psq � 1. But then by Lemma 6.8 we have αM psq � 1
for all future client insertions as well. (Recall that by Observation 6.3 we
never have αM psq ¡ 1.) Thus by Lemma 6.12 there is never an augmenting
path through s after this point, so s can safely be deleted from the graph.
Similarly, if a client c is deleted from the graph, then all of its neighboring
servers had no augmenting paths at that time, so they all have αM psq � 1,
so there will never be an augmenting path through c.

Running time: There are three factors to consider

1. the time to maintain the height buckets

2. the time to brute-force compute augmenting paths when all the neigh-
bors of an incoming client are high vertices.

3. the time to follow the augmenting paths given the height buckets.

Item 3 takes Opn log2 nq time because we need Op1q time to follow each
edge in the path, and by Theorem 6.1 the total length of augmenting paths
is Opn log2 nq. For Item 2 we consider two cases. The �rst is brute-force
searches which result in �nding an augmenting path. These take a total of
Opmn logpnq{hq � Opm?n?log nq time because by Lemma 6.1 during the



172 CHAPTER 6. ONLINE BIPARTITE MATCHING

course of the entire algorithm there are at most Opn logpnq{hq augmenting
paths of length ¥ h, and each such path requires Opmq time to �nd. The
second case to consider is brute-force searches that do not result in an aug-
menting path. These take total timeOpmq because once a vertex participates
in such a search, it is deleted from the graph.

Finally, For Item 1, we observe that if augmenting along a path causes
a vertex v to change height, then either v belongs to that augmenting path,
or v has a neighbor whose height changes. Thus, to maintain the height
buckets it is enough for each vertex v to inform all neighbors w whenever
the height of v changes. In particular each neighbor w changes the location
of v in bucket structure in Op1q time and then checks in Op1q time whether
its height changed by looking in its lowest non-empty bucket; the lowest non-
empty bucket of w is easy to keep track of because heights never decrease
(Observation 6.4), so vertices only move up the bucket structure of w. If the
height of w did not change then w does no further work. Otherwise repeat
from w, i.e. update the buckets of all of the neighbors of w. All in all we
do Opdegpvqq work whenever the height of a vertex v changes. Since heights
never decrease, this can happen at most h times per vertex v, leading to a
total time of Opmhq � m

?
n
?

log n.

6.6 Extensions

In many applications of online bipartite assignments, it is natural to consider
the extension in which each server can serve multiple clients. Recall from the
introduction that we examine two variants: capacitated assignment, where
each server comes with a �xed capacity which we are not allowed to exceed,
and minimizing maximum server load, in which there is no upper limit to
the server capacity, but we wish to minimize the maximum number of clients
served by any server. We show that there is a substantial di�erence between
the number of reassignments: Capacitated assignment is equivalent to unca-
pacitated online matching with replacements, but for minimizing maximum
load, we show a signi�cantly higher lower bound.

6.6.1 Capacitated Assignment

We �rst consider the version of the problem where each server can be matched
to multiple clients. Each server comes with a positive integer capacity upsq,
which denotes how many clients can be matched to that server. The greedy
algorithm is the same as before: when a new client is inserted, �nd the
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shortest augmenting path to a server s that currently has less than upsq
clients assigned.

Theorem 6.3. SAP uses at most Opn log2 nq reassignments for the capaci-
tated assignment problem, where n is the number of clients.

Proof. There is a trivial reduction from any instance of capacitated as-
signment to one of uncapacitated matching where each server can only be
matched to one client: simple create upsq copies of each server s. This re-
duction was previously used in [19]. When a client c is inserted, if there is an
edge pc, sq in the original graph, then add edges from c to every copy of s. It
is easy to see that the number of �ips made by the greedy algorithm in the
capacitated graph is exactly equal to the number made in the uncapacitated
graph, which by Theorem 6.1 is Opn log2 nq. (Note that although the con-
structed uncapacitated graph has more servers than the original capacitated
graph, the number of clients n is exactly the same in both graphs.)

6.6.2 Minimizing Maximum Server Load

In this section, we analyze the online assignment problem. Here, servers may
have an unlimited load, but we wish to minimize maximum server load.

De�nition 6.8. Given a bipartite graph G � pC Y S,Eq, an assignment
A : C Ñ S assigns each client c to a server Apcq P S. Given some assignment
A, for any s P S let the load of s, denoted `Apsq, be the number of clients
assigned to s; when the assignment A is clear from context we just write
`psq. Let `pAq � maxsPS `Apsq. Let optpGq be the minimum load among
all possible assignments from C to S.

In the online assignment problem, clients are again inserted one by one
with all their incident edges, and the goal is to maintain an assignment with
minimum possible load. More formally, de�ne Gt � pCt Y S,Etq to be the
graph after exactly t clients have arrived, and let At be the assignment at
time t. Then we must have that for all t, `pAtq � optpGtq. The goal is to
make as few changes to the assignment as possible.

[70] and [19] showed how to solve this problem with approximation:
namely, with onlyOp1q amortized changes per client insertion they can main-
tain an assignment A such that for all t, `pAtq ¤ 8optpGtq. Maintaining
an approximate assignment is thus not much harder than maintaining an
approximate maximum matching, so one might have hoped that the same
analogy holds for the exact case, and that it is possible to maintain an op-
timal assignment with amortized Oplog2 nq changes per client insertion. We
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now present a lower bound disproving the existence of such an upper bound.
The lower bound is not speci�c to the greedy algorithm, and applies to any
algorithm for maintaining an assignment A of minimal load. In fact, the
lower bound applies even if the algorithm knows the entire graph G in ad-
vance; by contrast, if the goal is only to maintain a maximum matching,
then knowing G in advance trivially leads to an online matching algorithm
that never has to rematch any vertex.

Theorem 6.4. For any positive integers n and L ¤
a
n{2 divisible by 4 there

exists a graph G � pC Y S,Eq with |C| � n and optpGq � L, along with an
ordering in which the clients in C are inserted, such that any algorithm for
the exact online assignment problem requires a total of ΩpnLq changes. This
lower bound holds even if the algorithm knows the entire graph G in advance,
as well as the order in which the clients are inserted.

The main ingredient of the proof is the following lemma:

Lemma 6.13. For any positive integer L divisible by 4, there exists a graph
G � pCYS,Eq along with an ordering in which clients in C are inserted, such
that |C| � L2, |S| � L, optpGq � L, and any algorithm for maintaining an
optimal assignment A requires ΩpL3q changes to A.
Proof. Let S � ts1, s2, ..., sLu. We partition the clients in C into L blocks
C1, C2, ..., CL, where all the clients in a block have the same neighborhood.
In particular, clients in CL only have a single edge to server sL, and clients
in Ci for i   L have an edge to si and si�1.

The online sequence of client insertions begins by adding L{2 clients
to each block Ci. The online sequence then proceeds to alternate between
down-heavy epochs and up-heavy epochs, where a down-heavy epoch inserts
2 clients into blocks C1, C2, ..., CL{2 (in any order), while an up-heavy epoch
inserts 2 clients into blocks CL{2�1, ..., CL. The sequence then terminates
after L{2 such epochs: L{4 up-heavy ones and L{4 down-heavy ones in
alternation. Note that a down-heavy epoch followed by an up-heavy one
simply adds two clients to each block. Thus the �nal graph has |Ci| � L
for each i, so the graph G � pC Y S,Eq satis�es the desired conditions that
|C| � L2 and optpGq � L.

We complete the proof by showing that all the client insertions during a
single down-heavy epoch cause the algorithm to make at least ΩpL2q changes
to the assignment; the same analysis applies to the up-heavy epochs as well.
Consider the kth down-heavy epoch of client insertions. Let β � L{2 �
2pk � 1q and consider the graph Gold � pCold Y S,Eoldq before the down-
heavy epoch: it is easy to see that every block Ci has exactly β clients, that
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C1 C2 C3 CL{2 CL{2�1 CL�3 CL�2 CL�1 CL
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Figure 6.1: Number of assignments of each type after �rst L{2 clients added
to each block, and after each up-heavy phase. Each Ci has β clients. Each
server has β clients assigned.

optpGoldq � β, and that there is exactly one assignment Aold that adheres
to this maximum load: Aold assigns all clients in block Ci to server si (see
Figure 6.1).

Now, consider the graph Gnew � pCnew Y S,Enewq after the down-
heavy epoch. Blocks C1, C2, ..., CL{2 now have β � 2 clients, while blocks
CL{2�1, ..., CL still only have β. We now show that optpGnewq � β � 1. In
particular, recall that β ¥ L{2 and consider the following assignment Anew:
for i ¤ L{2, Anew assigns β � 2 � i ¥ 2 clients from Ci to si and i clients
in Ci to si�1; for L{2   i ¤ L, Anew assigns β � i � L ¥ 0 clients in Ci to
si, and L � i clients from Ci to si�1. (In particular, all β clients in CL are
assigned to sL, which is necessary as there is no server sL�1). It is easy to
check that for every s P S, `Anewpsq � β � 1 (see Figure 6.2).

C1 C2 C3 CL{2 CL{2�1 CL�3 CL�2 CL�1 CL

s1 s2 s3 s4 sL{2 sL{2�1 sL{2�2 sL�2 sL�1 sL
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Figure 6.2: Number of assignments of each type after each down-heavy phase.
Each Ci has β � 2 clients for 1 ¤ i ¤ L{2 and β clients for L{2� 1 ¤ i ¤ L.
Each server has β � 1 clients assigned.

We now argue that Anew is in fact the only assignment in Gnew with
`pAnewq � β � 1. Consider any assignment A for Cnew with `pAq � β � 1.
Observe that since the total number of clients in Cnew is exactly pβ � 1qL,
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we must have that every server s P S has `psq � β � 1 in A. We now argue
by induction that for i ¤ β{2, A assigns assigns β � 2� i clients from Ci to
si and i clients in Ci to si�1 (exactly as Anew does). The claim holds for
i � 1 because the only way s1 can end up with load β � 1 is if β � 1 clients
from C1 are assigned to it. Now say the claim is true for some i   β{2. By
the induction hypothesis, si�1 has i clients from Ci assigned to it. Since si�1

must have total load β � 1, and all clients assigned to it come from Ci or
Ci�1, si�1 must have β � 1� i � β � 2� pi� 1q clients assigned to it from
Ci�1.

We now prove by induction that for all L{2   i ¤ L, A assigns β� i�L
clients in Ci to si, and L � i clients from Ci to si�1, which proves that
A � Anew. The claim holds for i � L{2� 1 because we have already shown
that in the above paragraph that L{2 clients assigned to si � sL{2�1 come
from CL{2, so since `psiq � β�1, it must have β�1�L{2 � β� i�L clients
from Ci assigned to it. Now, say that the claim is true for some i ¡ L{2.
Then by the induction step si�1 has L� i clients assigned to it from Ci, so
since `psi�1q � β � 1, it has β � pi� 1q �L clients assigned to it from Ci�1,
as desired. The remaining L� pi� 1q clients in Ci�1 must then be assigned
to si�2.

We have thus shown that the online assignment algorithm is forced to
have assignment Aold before the down-heavy epoch, and assignment Anew
afterwards. We now consider how many changes the algorithm must make
to go from one to another. Consider block Ci for some L{2   i ¤ L. Note
that because the epoch of client insertions was down-heavy, |Ci| � β before
and after the epoch. Now, in Aold all of the clients in Ci are matched to si.
But in Anew, L� i of them are matched to si�i. Thus, the total number of
reassignments to get from Aold to Anew is at least

°
L{2 i¤LpL�iq � ΩpL2q.

Since there are L{4 down-heavy epochs, the total number of reassignments
over the entire sequence of client insertions is ΩpL3q.

Proof of Theorem 6.4. Recall the assumption of the Theorem that n{2 ¥ L2

. Simply let the graph G consist of
X
n{L2

\
separate instances of the graph in

Lemma 6.13, together with su�cient copies of K1,1 to make the total number
of clients n. The algorithm will have to make ΩpL3q changes in each such
instance, leading to ΩpL3

X
n{L2

\q � ΩpnLq changes in total.

We now show a nearly matching upper bound which is o� by a log2 n
factor. As with the case of matching, this upper bound is achieved by the
most natural SAP algorithm, which we now de�ne in this setting. Since
optpGq may change as clients are inserted into C, whenever a new client



6.6. EXTENSIONS 177

is inserted, the greedy algorithm must �rst compute optpGq for the next
client set. Note that the algorithm does not do any reassignments at this
stage, it simply �gures out what the max load should be. optpGq can
easily be computed in polynomial time: for example we could just compute
the maximum matching when every server has capacity b for every b �
1, 2, ..., |C|, and then optpGq is the minimum b for which every client in C is
matched; for a more e�cient approach see [19]. Now, when a new client c is
inserted, the algorithm �rst checks if optpGq increases. If yes, the maximum
allowable load on each server increases by 1 so c can just be matched to an
arbitrary neighbor. Otherwise, SAP �nds the shortest alternating path from
c to a server s with `psq   optpGq: an augmenting path is de�ned exactly the
same way as in De�nition 6.1, though there may now be multiple matching
edges incident to every server. The proof of the upper bound will rely on
the following very simple observation:

Observation 6.5. For the uncapacitated problem of online maximum match-
ing with replacements, let us say that instead of starting with C � H, the
algorithm starts with some initial set of clients C0 � C already inserted, and
an initial matching between C0 and S. Then the total number of replacement
made during all future client insertions is still upper bounded by the same
Opn log2 nq as in Theorem 6.1, where n is the number of clients in the �nal
graph (so n is |C0| plus the number of clients inserted).

Proof. Intuitively, we could simply let our protocol start by unmatching all
the clients in C0, and then rematching them according the SAP protocol,
which would lead to Opn log2 nq replacements. In fact this initial unmatch-
ing is not actually necessary. Recall that the proof of Theorem 6.1 follows
directly from the key Lemma 6.1, which in term follows from the expansion
argument in Lemma 6.11. The expansion argument only refers to server ne-
cessities, not to the particular matching maintained by the algorithm, so it
will hold no matter what initial matching we start with.

Theorem 6.5. Let C be the set of all clients inserted, let n � |C|, and
let L � optpGq be the minimum possible maximum load in the �nal graph
G � pC Y S,Eq. SAP at all times maintains an optimal assignment while
making a total of Opnmin tL log2 n,

?
n log nuq reassignments.

Proof. Let us de�ne epoch i to contain all clients c such that after the in-
sertion of c we have optpGq � i. We now de�ne ni as the total number
of clients added by the end of epoch i (so ni counts clients from previous
epochs as well). Extend the reduction in the proof of Theorem 6.3 from [19]
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as follows: between any two epochs, add a new copy of each server, along
with all of its edges. For the following epoch, say, the ith epoch, Observa-
tion 6.5 tells us that regardless of what matching we had at the beginning
of the epoch, the total number of reassignments performed by SAP dur-
ing the epoch will not exceed Opni log2 niq � Opn log2 nq. We thus make
at most OpnL log2 nq reassignments in total, which completes the proof if
L   ?n{ log n. If L ¥ ?n{ log n, we make Opn?n log nq reassignments dur-
ing the �rst

?
n{ log n epochs. In all future epochs, note that a server at

its maximum allowable load has at least
?
n{ log n clients assigned to it, so

there are at most
?
n log n such servers, and whenever a client is inserted the

shortest augmenting path to a server below maximum load will have length
Op?n log nq. This completes the proof because there are only n augmenting
paths in total.

6.7 Conclusion

We showed that in the online matching problem with replacements, where
vertices on one side of the bipartition are �xed (the servers), while those the
other side arrive one at a time with all their incoming edges (the n clients),
the shortest augmenting path protocol maintains a maximum matching while
only making amortized Oplog2 nq changes to the matching per client inser-
tion. This almost matches the Ωplog nq lower bound of Grove et al. [66]. Ours
is the �rst paper to achieve polylogarithmic changes per client; the previous
best of Bosek et al. required Op?nq changes, and used a non-SAP strat-
egy [22]. The SAP protocol is especially interesting to analyze because it is
the most natural greedy approach to maintaining the matching. However,
despite the conjecture of Chaudhuri et al. [28] that the SAP protocol only
requires Oplog nq amortized changes per client, our analysis is the �rst to go
beyond the trivial Opnq bound for general bipartite graphs; previous results
were only able to analyze SAP in restricted settings. Using our new analysis
technique, we were also able to show an implementation of the SAP protocol
that requires total update time Opm?n?log nq, which almost matches the
classic o�ine Opm?nq running time of Hopcroft and Karp [92].

The main open problem that remains is to close the gap between our
Oplog2 nq upper bound and the Ωplog nq lower bound. This would be inter-
esting for any replacement strategy, but it would also be interesting to know
what the right bound is for the SAP protocol in particular. Another open
question is to remove the

?
log n factor in our implementation of the SAP

protocol. Note that both of these open questions would be resolved if we
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managed to improve the bound in Lemma 6.1 from Opn lnpnq{hq to Opn{hq.
(In the implementation of Section 6.5 we would then set h � ?n instead of
h � ?n?log n.)
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