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Abstract

Astronomy and astrophysics are entering a data-rich era. Large surveys have, quite liter-
ally, seen the light in the past decade, with more and larger telescopes to follow in the
coming years. Data is now so abundant that making use of all the information is a difficult
tasks. This thesis sets out from the assumption that there is more to gain from available
data sets – new information from old data. Three contributions in this direction are con-
sidered.

Firstly, a novel texture descriptor for parametrising galaxy morphology is presented. It
uses the shape index and curvedness of local regions in images of galaxies and condenses
information about the local structure to a single value. It is argued that this value can be
interpreted as indicating regions of morphological interest, for example regions of newly
formed stars, of gas and dust, spiral arms etc. The descriptor is shown to extract inform-
ation about a galaxy’s specific star formation rate from its images that the usual spectra
energy distribution (SED) fitting misses.

Secondly, a method to evaluate the information content of various features for a given
task is introduced. Selecting the right features, for example colours or magnitudes, for a
specific task can be difficult and often relies on which have been used traditionally. With
current and future surveys giving researchers access to hundreds of features, it is time
to challenge old assumptions on which to use. A completely general method for feature
selection is introduced and shown to increase accuracy of both redshift and specific star
formation estimations.

Thirdly, the problem of quality assessment of quasar candidates is considered. Detec-
tion pipelines searching the sky for quasars produce thousands of candidates, many of
which can be discarded with simple checks. The rest, however, cannot, and images of these
candidates must be manually inspected and evaluated. Still, more than 90% of these can
be false positives, wasting precious time for researchers and forcing a limitation of the
scopes of the detection pipelines. A set of features based on image analysis is presented
and shown to be able to detect the most common situations of false positive quasar candid-
ates. Incorporation of the derived features into a machine learning frameworks is reviewed
and future directions are discussed.
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1

Preface

Astronomy is at this very moment undergoing a paradigm shift. Transitioning from a time
of scarce data to a time of data so plentiful that it takes dedicated efforts just to store
and access it. As a consequence of this, the field of astroinformatics or astrostatistics is
evolving – an interdisciplinary field of astronomers, statisticians, computer scientists and
data scientists. Extensive surveys, such as Sloan Digital Sky Survey (SDSS), have made it
possible to do science in a way never before seen in astronomy, giving researchers access to
information about a billion objects in the sky at the click of a mouse. And SDSS was only
the beginning.

Many new astronomical observatories are being planned or built as you read this. The
Large Synoptic Survey Telescope (LSST), scheduled to be fully operational in 2022, will
produce about 30 terabytes of images per night, which need to be analysed in near real-
time to detect fast changing sources, so-called transients. Another telescope, the Square
Kilometre Array (SKA), expected to be operational by the end of the 2020s, will produce a
massive 1 exabyte of raw data per night. Needless to say, manual processing is out of the
question.

Advanced methods from machine learning and computer vision have slowly entered
astronomical research in the past couple of decades, but there is still much to do. There
are many open questions in astronomy that could benefit from the advanced statistical
methods available in the computer science field, and there are many interesting problems
in astronomy that could spark new ideas and approaches in both computer science and
statistics communities.

This thesis has been submitted for the degree of PhD, and was conducted at the Faculty
of Science, University of Copenhagen. The PhD was funded by The Danish Council for
Independent Research | Natural Sciences through the project SkyML – Surveying the sky
using machine learning. A major objective has been to show the relevance of interdisciplin-
ary research in today’s academic environment. By combining astrophysics, statistics, and
computer science, we aim to show that interdisciplinary research can benefit all involved
parties.

A core hypothesis of this thesis is the idea that there is much more to be learnt from
already available data sets, and that advanced statistical methods, such as machine learn-
ing and computer vision, can help uncover this information. This is investigated in three
different projects covering texture analysis of galaxies, feature selection for redshift estim-
ation, and quality assessment of quasar candidates.

The structure of the thesis is as follows. Chapter 2 introduces basic astronomy and as-
trophysics required to understand the astronomical motivation for the projects. Chapter 3
covers background and additional information, which can help understand the work done
in the projects, as well as discusses some of the specific choices we have made. Chapter 4
provides a summary of the results and conclusions for each of the included papers, as well

1



2 CHAPTER 1. PREFACE

as the work in progress. Finally, chapter 5 summarises the projects, offers perspectives
on the experience gained from them, and discusses some future directions for continued
work.

The following papers have been produced as part of this PhD. This thesis builds on the
first three papers, which can be found in part II.

• J. Kremer, K. Stensbo-Smidt, F. Gieseke, K. Steenstrup Pedersen, and C. Igel. Big uni-
verse, big data: machine learning and image analysis for astronomy. IEEE Intelligent
Systems. Accepted for publication, September 2016.

• K. Steenstrup Pedersen, K. Stensbo-Smidt, A. Zirm, and C. Igel. Shape index descrip-
tors applied to texture-based galaxy analysis. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2440–2447, 2013.

• K. Stensbo-Smidt, F. Gieseke, C. Igel, A. Zirm, and K. Steenstrup Pedersen. Sacrifi-
cing information for the greater good: how to select photometric bands for optimal
accuracy. Monthly Notices of the Royal Astronomical Society, 464(3):2577–2596, 2017.

• K. Stensbo-Smidt, C. Igel, A. Zirm, and K. Steenstrup Pedersen. Nearest Neighbour
Regression Outperforms Model-based Prediction of Specific Star Formation Rate. In
Proc. IEEE Int. Conf. Big Data, pages 141–144, 2013.



Part I

Background

3





2

A brief introduction to astronomy

For centuries, astronomy has suffered from small sample sizes as acquiring data requires
access to large and expensive telescopes. Furthermore, the data acquired has often been of
low quality due to the vast amount of effects influencing data collection: faint objects, at-
mospheric disturbances, light pollution, mirror defects, noise and variabilities in electronic
devices, etc. This is changing now.

Astronomy has only in recent decades begun to acquire data in large enough amounts,
and of good enough qualities, that precision measurements of the fundamental parameters
governing galaxies and the Universe can be done. A wealth of new knowledge has emerged
from this, for instance the discovery of dark energy, which makes the expansion of the
Universe accelerate and accounts for 70% of the content in the Universe (Riess et al., 1998;
Perlmutter et al., 1999). We have also learnt much about the evolution of galaxies, for
instance that there appears to be (at least) two fundamental classes of galaxies, namely
inactive ellipticals and active spirals.

Every new insight, however, has led to many new questions. For instance, the transition
from active to inactive galaxy appears to be incredibly fast, and the mechanisms respons-
ible for this quenching are still not known.

Modern surveys, such as the Sloan Digital Sky Survey (SDSS, York et al., 2000) and
the UKIRT Infrared Deep Sky Survey (UKIDSS, Lawrence et al., 2007), have provided us
with incredible amounts of data. For the first time in the history of astronomy, doing
large-scale statistics is possible, and upcoming surveys will only add to this. In fact, even
today’s survey data prove challenging for researchers to handle; a challenge that will only
become larger. The data quantities today require automated methods for extracting useful
information. The available methods, however, still have many shortcomings, and data
appears increasingly difficult to handle.

This thesis investigates a few of the problems faced by astronomers today and ap-
proaches them from a machine learning and computer vision perspective. The main prob-
lems attacked are redshift estimation, star formation rate estimation and detection of qua-
sar candidates. Below is a short introduction to these problems. For an introduction to the
intersection of machine learning and astronomy, see the review by Kremer et al. (2016),
chapter 6.

2.1 Redshift estimation

One hundred years ago, it was believed that the Universe was static. All galaxies were
thought to be at rest in space, exactly where they had always been and where they would
always be. In 1929, however, the astronomer Edwin Hubble showed that the light from
galaxies was redshifted, a phenomenon caused by the Doppler effect. This effect causes a

5



6 CHAPTER 2. A BRIEF INTRODUCTION TO ASTRONOMY

reddening of the light, when the object moves away from us. Correspondingly, an object
moving towards us is blueshifted.

Redshift, z, is measured by comparing the wavelength of the observed light and that of
the emitted light,

z =
λobs − λemit

λemit
. (2.1)

In practice, one can do this by looking at how the spectral ‘fingerprints’ of atoms in the
galaxies have been shifted compared to the same atoms here on Earth.

The fact that the light from a galaxy is redshifted means that it is moving away from
us. Hubble (1929) demonstrated that the redshift is correlated with distance, and this
seemingly innocent observation has had major implications for astronomy. First of all, it
showed that the Universe is not static, but expands in all directions. Secondly, measuring
distances in the Universe is notoriously difficult, but suddenly there was a way of doing
this. In fact, since light has a finite speed, looking further into the Universe means looking
back in time. Thus, redshift can not only used to specify a galaxy’s distance to us, but also
the time at which the light was emitted. That is, the higher the redshift of a galaxy, the
older a snapshot of the Universe we see.

Redshift is due to the Universe expanding, ‘stretching’ the light as it propagates through
space. The scale factor a of the Universe and the redshift are inversely related,

a =
1

1 + z
. (2.2)

Today a = 1, and at the time of the Big Bang, a = 0. Thus, at redshift z = 1 the Universe
was half the size it is today. Using models of how the Universe has evolved allows us to
translate redshift, or, equivalently, size of the Universe, to the age of the Universe at the
given redshift.

The fact that redshift and distance are correlated made it possible to construct large-
scale maps of the Universe, showing the distribution of galaxies in large parts of the observ-
able Universe through time, in turn allowing for inference of some of the most fundamental
parameters of the Universe.

Getting accurate redshifts is still a major issue, as detailed by Calcino and Davis (2016)
– getting accurate redshifts for a large number of galaxies is an even bigger one. For ac-
curate redshifts, one needs a high-resolution spectrum of the light from a galaxy, which is
expensive and time-consuming to obtain. Getting images of galaxies in broad-band filters,
on the other hand, is comparatively cheap and fast. They are, however, also of much lower
quality, since a spectrum containing thousands of individual measurements is reduced to
only a handful. This is illustrated in Fig. 2.1, which shows a spectrum obtained from the
SDSS spectrograph together with the broadband filters used for the camera.

The cost of obtaining a spectrum means that they are vastly outnumbered by images of
galaxies. This is exemplified by the SDSS data base, which contains images of about 200
million galaxies, but only spectra of about one million of those. Images are also able to see
much fainter objects than spectra, meaning that we can look deeper into the Universe and,
equivalently, further back in time and study the evolution of galaxies.

Thus, obtaining accurate redshifts from imaging data alone can increase our knowledge
of the universe substantially, a task that machine learning is well-suited for and is one of
the focus areas of Stensbo-Smidt et al. (2017).

2.2 Star formation rate in galaxies

Quantifying a galaxy’s evolutionary state is not straightforward, and there are many dif-
ferent measures applied for this. One is the star formation rate (SFR), which measures the
number of stars being formed in the galaxy per year – how active the galaxy is.
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Figure 2.1 An example spectrum of a galaxy from the SDSS database (black curve) overlaid
by the five broadband filters of SDSS (Fukugita et al., 1996). In the spectrum, the intensity
of the light has been measured at thousands of wavelengths, which are reduced to five mag-
nitudes, quantities of integrated light, by the broadband filters, thus significantly reducing
the amount of spectral information. As the information from the broadband filters comes
in the form of images, however, additional information can be extracted from the spatial
structure.

There are many interesting aspects of the SFR. For example, it appears like galaxies in
the Universe overall became more and more active until z ≈ 2, at which point the overall
activity began to decrease and has been decreasing since. We still don’t know what has
caused this effect, which seems to be affecting the Universe as a whole.

From the data gathered by SDSS we have learnt that there exist two major classes of
galaxies: the red and dead galaxies and the blue and active galaxies (Kauffmann et al.,
2003). It is believed that the active galaxies will eventually die and join the red and dead
group of galaxies, but the transition seems to be happening incredibly fast (on cosmological
timescales). So fast, in fact, that astronomers have yet to find an explanation for what is
‘killing’ them.

Achieving good statistics on the SFR of galaxies in large regions of the Universe is para-
mount to understand what is going on. As with redshift, the SFR of a galaxy is usually
estimated from a spectrum of its light, which is expensive to acquire. If it could be reliably
estimated from images of the galaxy, we could vastly improve on the statistics.

Image analysis seems to be a particular promising path for SFR estimation, as star form-
ation should change the appearance (morphology) of a galaxy: newly formed stars are
bright and blue, and large regions of obscuring dust show where new stars are likely to be
forming. This information is not currently used for SFR estimation, so astronomy could
potentially gain a lot from an image analysis perspective. This is exactly what was done by
Steenstrup Pedersen et al. (2013).

2.3 Detecting distant quasars

There are many subgroups of galaxies within the two major ones described above. One
class of particularly active galaxies are called quasars. A quasar is in fact just a tiny region
around a supermassive black hole in the centre of the galaxy, emitting many times more
light than the entire galaxy they reside in.

Quasars are interesting to study exactly because of their incredibly brightness. In fact,
they can be seen across most of the observable Universe. Thus many quasars are incred-
ibly old – the oldest and most distant one known is seen when the Universe was a mere
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800 million years old, less than 6% of the current age (Mortlock et al., 2011). Studying
the light from a quasar can tell us what galaxies consisted of and thus what the early Uni-
verse looked like. Furthermore, if the light interacts with matter along the way to us, for
instance a diffuse gas cloud, this will leave a ‘fingerprint’ in the spectrum of the light. We
can therefore not only learn about the Universe at the time of the quasar, but how it has
changed through time.

Observing distant quasars can provide key pieces of the puzzle of understanding the
evolution of the Universe. First, however, one needs to locate the quasars, which is not an
easy task. They appear as tiny point sources on the sky, and the most distant ones are only
visible in the infrared part of the spectrum.

Astronomers employ detection pipelines scanning the sky for these distant quasars,
but the pipelines pick out many false positives. Often times they get confused by nearby
objects or spurious effects, needing manual assessment of thousands of images. Image
analysis and machine learning can automate a great deal of the work currently done by
astronomers, making it possible to increase the scope of the search tremendously, thus
increasing the chance of detecting these valuable objects.

Section 3.3 describes ongoing work aiming at detecting a quasar at z > 8. At such high
redshifts only very few quasars are expected to be visible, so searching for them requires
scanning large regions of the sky. This will lead to many thousands of false positive can-
didates, necessitating automated image analysis software that can detect and discard the
majority of these. Examples of false positive candidates are shown, and our progress on
detecting these is discussed.



3

Methodology

This chapter presents background and additional information aiding the understanding of
the papers included in this thesis. Section 3.1 introduces the background and derivations
of the texture descriptors proposed by Steenstrup Pedersen et al. (2013). Section 3.2 re-
views some standard methods for feature selections and discusses the reasons for choosing
the one used by Stensbo-Smidt et al. (2017). Section 3.3 discusses the background and pre-
liminary results of the task of quality checking images of quasar candidates. This work is
still unpublished.

3.1 Morphology of galaxies

It has been known since the days of Edwin Hubble that galaxies can be divided into classes
based on their visual appearance, the most widely used classification scheme being defined
by Hubble himself (Hubble, 1926). The Hubble sequence extends from featureless ellipt-
ical galaxies to structure-rich spiral galaxies. Some spirals feature a bar, leading to the
Hubble sequence often being referred to as the ‘Hubble tuning fork’, see Fig. 3.1. Countless
works have later shown how this classification correlates with many intrinsic parameters,
such as their environment and evolutionary state (e.g. Skibba et al., 2009). In particular,
morphology can be indicative of the processes driving a galaxy’s current star formation.
For instance, multiple nuclei and irregular features hint at a recent merger. Determining
the morphology of galaxies, in particular at high redshifts, can therefore help us under-
stand why star formation has varied through time and how the Universe ended up looking
like it does today.

While the Hubble sequence continues to be one of the most valuable morphological
classification schemes, it requires manual inspection to determine the Hubble class of a
galaxy. Not only is such an approach incredibly demanding in terms of labour, it is also
very subjective. Recently, the highly successful citizen science effort Galaxy Zoo (Lintott
et al., 2008) has provided the scientific world with a most valuable data set of manual
classifications of close to a million galaxies. Still, it is of great interest to be able to quantify
the morphology of a galaxy in an objective way, and multiple measures have been used
throughout time.

Some of the most commonly used morphological measures are

• the apparent ellipticity (Hubble, 1926),

• the Sérsic index, measuring the shape of the light profile (Sérsic, 1963),

• the Gini coefficient, a rank-ordered cumulative distribution function of a galaxy’s
pixel intensities (Abraham et al., 2003),

9



10 CHAPTER 3. METHODOLOGY

Figure 3.1 The Hubble classification scheme, often referred to as the ‘Hubble tuning fork’.
Edwin Hubble also defined a third class, ‘irregular’ galaxies, which are characterised by a
chaotic structure. Credit: NASA & ESA.

• the M20, the second-order moment of the brightest 20% galaxy pixels (Lotz et al.,
2004),

• the concentration (C), measuring the ratio of light in an inner aperture to that in an
outer (Abraham et al., 1994, 1996; Bershady et al., 2000),

• the rotational asymmetry (A) (Schade et al., 1995),

• and smoothness or clumpiness (S), measuring the amount of small-scale structure in
a galaxy (Conselice, 2003).

The latter three methods are often combined to form the CAS morphological system (Con-
selice, 2003).

Many of the standard morphological measures focus on the general shape of the galaxy,
ignoring the finer structure within it. An exception is the clumpiness, which is based on
subtracting the background and a smoothed version of the image from itself (Conselice,
2003),

S = 10 ×
N,N∑
x,y=1,1

(Ix,y − Iσx,y) − Bx,y
Ix,y

, (3.1)

where Ix,y is a pixel at (x, y) in the N × N pixel image, Iσx,y is a pixel in an image smoothed
by a Gaussian filter at scale σ , and Bx,y is a background pixel. Subtracting the smoothed
image from itself will reveal small-scale fluctuations. In fact, the clumpiness is a special
case of the difference of Gaussians method from image analysis, which is used as a blob
detector. For blob detection one would typically search different smoothing scales to reveal
differently sized structures. The smoothing scale for the clumpiness, however, is usually
predetermined as some fraction of the Petrosian radius, a redshift-independent measure of
the radius of a galaxy (Petrosian, 1976).
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Steenstrup Pedersen et al. (2013), chapter 7, approached the problem of describing
galaxy morphology from a texture description point of view. By introducing texture de-
scriptors for first and second order differential structure we were able to capture inform-
ation about the star formation rate of galaxies not available through the measured mag-
nitudes.

Texture descriptors

There are many different approaches to describing texture. Well-known approaches to tex-
ture classification include local binary patterns (Ojala et al., 2002) and textons computed
from responses from filter banks (Varma and Zisserman, 2005). Other texture descriptors,
such as Basic Image Features (BIF, Griffin and Lillholm, 2007), and patch-based descrip-
tors, such as Scale Invariant Feature Transform (SIFT, Lowe, 2004), Histograms of Oriented
Gradients (HoG, Dalal and Triggs, 2005) and DAISY (Tola et al., 2010), approach the prob-
lem using differential geometry, for instance by using first order differential information.
We take the same differential geometry route, adding also second order information to our
descriptor.

As we will be working with differential structure, we need to compute image derivat-
ives. We also want to capture texture at different scales, thus we need to use a multi-scale
representation of the images, a so-called scale space. Working in scale space means that
the computations are less prone to noise in the image, and we furthermore get the image
derivatives almost for free.

For an image I : Ω→ R, Ω ∈ R2, we define the scale-space representation in terms of a
convolution with a Gaussian filter G as L(x, y; σ ) = (I ∗ G)(x, y; σ ), where σ > 0 indicates
the scale of the filter:

G(x, y; σ ) =
1

√
2πσ2

exp
(
−
x2 + y2

2σ2

)
. (3.2)

Since the differential and convolution operators commute, any derivative of an image
can easily be computed by convolving the image with the corresponding derivative of a
Gaussian filter:

Lxnym(x, y; σ ) =
(
I ∗ ∂

(n+m)G

∂xn∂ym

)
(x, y; σ ) . (3.3)

To make images comparable across scales, we need to scale normalise the Gaussian filter.
which is done by multiplying the derivative with the scale for each order of differentiation
(Lindeberg, 1994). The scale normalised image derivative can thus be written as:

σ (n+m)Lxnym(x, y; σ ) =
(
σ (n+m)I ∗ ∂

(n+m)G

∂xn∂ym

)
(x, y; σ ) . (3.4)

Thus, first order structure (gradients) can be written as

g = σ∇I = σ

(
∂I

∂x
,
∂I

∂y

)T

≡ σ (Lx, Ly)T , (3.5)

whereas the second order structure (the Hessian) can be written as

H = σ2∇2I = σ2

 ∂2I
∂x2

∂2I
∂x∂y

∂2I
∂y∂x

∂2I
∂y2

 ≡ σ2
[
Lxx Lxy
Lyx Lyy

]
, (3.6)

where Lxy = Lyx.
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Figure 3.2 Types of surfaces corresponding to different values of the shape index. The scale
at the bottom shows the shape index values. s = −1 corresponds to dark blobs, s = −0.5 to
valleys, s = 0 to saddle points, s = 0.5 to ridges, and s = 1 to bright blobs.

Gradient orientation and magnitude

It is common to consider first order differential structure for image descriptors, that is,
the gradients. Often, the gradient information is summarised in gradient orientation and
gradient magnitude histograms.

The gradient orientation is simply the angle of the gradient vector,

θ(x, y; σ ) = arctan
(
gy
gx

)
= arctan

(
Ly
Lx

)
, (3.7)

and the magnitude is the length of the gradient vector,

M(x, y; σ ) = ‖g‖ =
√
g2
x + g2

y = σ
√
L2
x + L2

y , (3.8)

where we have accounted for scale normalisation.

Shape index and curvedness

Koenderink and van Doorn (1992) defined the shape index, s, and curvedness, c, as

s =
2
π

arctan
(
κ2 + κ1

κ2 − κ1

)
, (κ1 ≥ κ2) (3.9)

c =

√
κ2

1 + κ2
2

2
, (3.10)

where κ1 and κ2 are the principal curvatures at a given point on a surface. For a surface
I : R2 → R, for instance an image, these can be found as the eigenvalues of the Hessian
matrix, Eq. (3.6).

The curvedness is a positive number describing the amount of curvature, that is, how
pronounced the local shape is. The shape index, on the other hand, captures the local shape
as a number in the range [−1,+1] and is scale invariant in the sense that scaling a structure
leaves its shape index unchanged. The range encodes the local shape from spherical cups
(s = −1) over valley-, saddle point- (s = 0), and ridge-like structures to spherical caps
(s = +1), as seen in Fig. 3.2.

This encoding is particularly useful for capturing the morphology of a galaxy, as one
may expect bright stars to correspond to bright blobs, s = +1, spiral patterns to be ridge-
like structures, s ≈ +0.5, and regions with dust to have s < 0, since dust will obscure light
and thus appear as dark regions. Thus, the hypothesis is that a histogram of the shape
index values for galaxy will correlate with the amount of dust and structure in the galaxy,
in turn correlating with evolutionary parameters, such as the SFR.

We want to rewrite the shape index and curvedness in terms of image derivatives in-
stead of eigenvalues. The eigenvalues of the Hessian matrix of the image can be written
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as

κ1,2 =
1
2

Tr H ± 1
2

√
(Tr H)2 − 4 det H , (3.11)

meaning that

κ2 + κ1 = Tr H = σ2(Lxx + Lyy) , (3.12)

κ2 − κ1 = −
√

(Tr H)2 − 4 det H (3.13)

= −σ2
√

(Lxx + Lyy)2 − 4(LxxLyy − L2
xy) (3.14)

= −σ2
√

(Lxx − Lyy)2 + 4L2
xy . (3.15)

The shape index can thus be written as

S(x, y; σ ) =
2
π

arctan

 −Lxx − Lyy√
(Lxx − Lyy)2 + 4L2

xy

 . (3.16)

We can write the curvedness in terms of image derivatives in the same way. Since

κ2
1,2 =

1
2

(Tr H)2 − det H ± 1
2

Tr H
√

(Tr H)2 − 4 det H , (3.17)

the curvedness can be written as

C(x, y; σ ) =

√
κ2

1 + κ2
2

2
=

√
(Tr H)2 − 2 det H

2
=
σ2
√

2

√
L2
xx + 2L2

xy + L2
yy . (3.18)

From texture descriptors to features

As we are targeting the application of estimating a galaxy’s total star formation rate, the
per-pixel values of the texture descriptors are not necessarily informative. Instead, we
would like to summarise the entire image, in our case of a galaxy, in the form of a distribu-
tion of values. We therefore construct histograms of the computed texture values.

Using a smooth histogram, as introduced by Koenderink and Doorn (1999), provides
a more robust estimate than a standard histogram, since it avoids artefacts caused by the
hard binning, in particular for values close to the bin edges. They defined the smooth
histogram as

H(i; r0, σ , β, α) =
1

2πα2

∫
A(r; r0, α)B(I(r; σ ); i, β) dr , (3.19)

where A is an aperture, defined to be a Gaussian function centred on r0 ≡ (x0, y0)T having
standard deviation α, which focuses the function on different parts of the image. The bin
distribution function, B, distributes the (smoothed) image values, I(r; σ ), into the histo-
gram bins centred on bin i with a ‘smoothing’ of width β. Koenderink and Doorn (1999)
define this to be a Gaussian function,

B(I ; i, β) = exp
(
− (I(r; σ ) − i)2

2β2

)
. (3.20)

The integral runs over the entire image, leaving it to the aperture function to define the
local region to focus on. We therefore operate on three distinct scales: that of the aperture,
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A(r; r0, α), that of the scale-space representation of the image, I(r; σ ), and that of the bin
distribution function, B(I ; i, β).

In our application, we extended this formulation to also contain a weight factor F:

H(i; r0, σ , β, α) =
∫
F(r)A(r; r0, α)B(I(r; σ ); i, β) dr , (3.21)

where A is again the aperture, and B is the binning function centred on bin i. As aperture
A we used a segmentation of the galaxy, separating it from the background, computed by
SExtractor (Bertin and Arnouts, 1996). For binning the shape index values, we chose B to
be a Gaussian distribution

B(Si ; r, β) = exp
(
− (S(r; σ ) − Si)2

2β2

)
, (3.22)

where Si is the shape index bin, and used the curvedness, C, as the weight factor F. This
weight factor will amplify the significance of the shape index in regions of the image where
the local shape is particularly pronounced, thus having a large curvedness.

A Gaussian distribution is not a good choice for binning the gradient orientations, since
is does not account for the fact that the angle is periodic. Instead, we propose to use a von
Mises distribution, the circular analogue of the Gaussian distribution,

B(θi ; r, β) = exp
(

cos(θ(r; σ ) − θi − θ0)
β

)
, (3.23)

where θi is the gradient orientation bin and θ0 is a fiducial orientation. The weight factor,
F, was chosen to be the gradient magnitude, thus downweighing regions of the image that
are close to being flat.

3.2 Feature selection

All features are equal, but some features are more equal than others, could have been a quote
from a 1940s novella. It is not. But every now and then, one has to make a hard decision
of which features are worth more than the rest.

In the machine learning literature, a feature is simply the vector components of a
datum, such as a position or velocity vector. When estimating, say, redshift based on mag-
nitudes or colours of a galaxy, the magnitudes or colours are features, and together form a
magnitude or colour vector for that galaxy. One could also construct a colour-magnitude
vector by combining all colours and magnitudes in a single vector, or, for that matter, com-
bine all measured quantities of a galaxy into a single vector describing that galaxy. These
components would all be thought of as features, and for large surveys they may add up to
hundreds of features.

Data sets are getting larger and larger – not just in terms of samples, but also in terms
of features. While each of these features may be informative, high dimensional spaces
are problematic to work in for many methods, since data become sparse. Thus, it can be
of interest to reduce the set of features to the most informative ones. Other reasons for
removing less informative features may be to decrease storage requirements, or to speed
up evaluation of certain algorithms. From a physical point of view, knowing the most
informative features may provide insight into the problem at hand or about the process
that generated the data.

One way to reduce the number of features is to use feature extraction methods, which try
to form new, more informative features from combinations of the original ones. Principal
component analysis (PCA) is a well-known feature extraction and dimensionality reduc-
tion method. One may also attempt to simply find the most informative combination of
original features, a task known as feature selection. Guyon and Elisseeff (2003), and more
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Figure 3.3 Illustration of a two-class classification problem with two 3-dimensional Gaus-
sian distributions. Ranking the features individually by their ability to separate the two
classes will show that x1 is the most informative, while x3 is completely useless. Thus,
one could be tempted to remove x3, as x1, perhaps in combination with x2, intuitively
should work much better. However, combining x2 with the presumably useless feature x3
turns out to provide a representation where the two classes are completely separable. The
mistake was of course to only judge the features by themselves, ignoring correlations with
others. One should never discard a feature without a fair trial.

recently Li et al. (2016), have reviewed a number of feature selection strategies, a few of
which are summarised here.

Consider a data set S = {(x1, y1), . . . , (xN , yN )} ∈ RD × R consisting of D-dimensional
inputs xi = (x1, . . . , xD )T and associated output values yi . In the most simple feature se-
lection setting, one may try to rank each feature xj individually in terms of information
content. While features found from such methods may, by themselves, be most discrimin-
ative, a combination of these features may not be the most discriminative combination. As
illustrated in Fig. 3.3, a combination with a feature that by itself is completely useless may
add significant discriminative power in combination with others, even if these are not the
most expressive either.

A number of methods to alleviate the problems of single feature ranking have been
proposed. According to Guyon and Elisseeff (2003), these can broadly be categorised as
either filters, embedded methods, or wrappers.

Filters Usually applied as a preprocessing step, filters attempt to remove the least in-
formative features before other strategies are employed. This can be necessary in situations
where the number of features extends to many thousands or more. Typical filter methods
first rank features (either individually or in combinations) before removing the least in-
formative. Filters are based on various information measures, such as correlations or mu-
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tual information, and are thus independent of any particular machine learning algorithm
(Li et al., 2016).

Embedded methods Some machine learning algorithms have feature selection as part
of their training procedure. These are called embedded methods. Such methods may be
beneficial, as one gets feature rankings for free. Examples of such methods are decision
trees such as CART and random forests. Kernel methods using certain kernels containing
feature scaling factors, tuned as hyperparameters, may also provide feature rankings. The
radial basis function kernel is an example of such a kernel, where the length scale may be
interpreted as (inverse) feature importance, since long length scales mean less expressive
and thus less important features (Bishop, 2009).

Wrappers Why define your own information content, when you can piggyback on ma-
chine learning algorithms? This is exactly what wrappers do; they just assess the predictive
power of the algorithms when exposed to subsets of the features. This allows for partic-
ularly flexible feature selection strategies as the machine learning algorithms are defining
the information content. A major problem, however, is how one chooses the feature subsets
to test. Ideally, one would test all combinations, but the number of combinations increases
exponentially with the number of features, quickly making such a brute force approach
infeasible. Thus one needs to devise strategies for selecting subsets to test.

The two most common strategies are forward feature selection and backwards feature elim-
ination. In forward feature selection, one iteratively tries every single feature for the pre-
diction task. The feature yielding the best performance is kept, and one now combines
it with every remaining feature in turn, assessing the performance of each pair. The best
pair is kept, and the procedure is repeated. Backwards feature elimination starts from all
D features, removes each feature in turn and keeps the D − 1 features yielding the best
performance. The process is repeated, each time resulting in the removal of the least in-
formative feature.

Stensbo-Smidt et al. (2017), chapter 8, investigates the hypothesis that the standard set
of features for a number of estimation tasks in astrophysics, such as redshift and specific
SFR estimation, may not be optimal. These features are often selected based on a combin-
ation of experience and physical knowledge, but many more features are readily available.
We thus look for a combination of features from a much larger feature set yielding better
performance for these two estimation tasks.

We choose forward feature selection as our strategy and combine it with k nearest
neighbours (k-NN) regression to perform the estimations. k-NN is an algorithm that can
be efficiently implemented on graphical processing units (GPUs), making forward feature
selection a very feasible approach and also gives us a ranking of each individual feature.
With such rankings one may try to interpret the importance of the features in terms of the
task at hand, which would have been much more difficult with feature extraction methods,
such as PCA.

3.3 Detecting distant quasars

As mentioned in section 2.3, quasars are incredibly powerful and bright objects. They are
usually also very distant, meaning that despite emitting a lot of light, they appear small
and faint on the sky. Detecting them is a major issue.

We here consider the problem of detecting a quasar at z > 8. When quasar candidates
are detected in images by automatic software, they are evaluated by algorithms estimat-
ing the probability that these candidates are ‘interesting’, that is, whether they are indeed
quasars and at the same time very distant. These algorithms do, however, occasionally
get confused by nearby phenomena in the images. Examples of some of the most common
problematic cases are shown in Fig. 3.4. All images are 100×100 pixel cut-outs of the larger
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(a) CCD flaws. (b) Coinciding galaxy. (c) Nearby sources. (d) Visible source.

Figure 3.4 Examples of false positive quasar candidates in inverted colours obtained from
SDSS. In all images the proposed candidate is exactly in the middle of the image. a shows
two CCD flaws originating from a saturated nearby star, b shows a candidate which co-
incides with a galaxy, c shows nearby (faint) sources, and d shows a visible source even
though it should not be.

fields obtained by SDSS. The cut-outs are constructed such that the quasar candidates are
always centred in the cut-outs. Our task is to quality check each cut-out to make sure that
there are no phenomena, physical or artificial, in the images, which would render them
‘uninteresting’.

Figure 3.4a shows a candidate coinciding with a CCD flaw originating from a nearby
bright star, which has saturated the CCD. Such a flaw can confuse the algorithms, even
when it is just close to the candidate and not necessarily overlapping it. In such cases we
do not trust the candidate, and it should be discarded. Figure 3.4b shows a candidate coin-
ciding with a galaxy. It is highly likely that the algorithms have detected something within
the galaxy rather than behind it, so the candidate should be discarded. Figure 3.4c shows
sources close to the candidate source, with some of the nearby sources being very faint,
for instance the source in the top right corner. With such nearby sources, the detection
algorithms can get confused, or the candidate may in fact be an asteroid or comet that has
moved in the time between the optical and infrared images were obtained. Thus the can-
didate cannot be trusted and should be discarded. Finally, Fig. 3.4d shows a candidate that
is clearly visible. The images are from SDSS, an optical survey, but since we are targeting
quasars at z > 8, the candidates will be redshifted out of the optical spectrum. Instead,
detection algorithms are scanning infrared surveys for sources that are visible here, but
missing in optical surveys. Thus, even if this is a quasar, it is too close to be interesting for
our purpose, so the image should be discarded.

These examples, and hundreds more, were all manually inspected and discarded as part
of the work done by Mortlock et al. (2011). It is difficult to automatically detect and remove
these false positive candidates, since the selection criteria can be difficult to formalise and
often rely on expert gut feelings. Consider for instance Fig. 3.4c. Are the nearby sources
too close to the centre for us to trust the candidate? What if they were a bit brighter or a bit
fainter? There also appears to be a very faint source right at the centre – is this a source or
simply noise? If it is a source, is it likely to be at too low a redshift to be interesting? Such
questions are difficult to create strict rules for, but we may be able to teach a computer to
do this kind of assessment for us. Thus, it seems natural to turn to machine learning and
image analysis for assistance.

We have tested various image filtering techniques in an attempt to detect as many of
these false positives as possible. The filtered images need to be reduced to a set of features
and fed to a classifier, which should then learn to distinguish true positives from false
positives.
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(a) (b) (c)

Figure 3.5 Finite difference applied to three images affected by the CCD flaws. The first
band below the source images shows the column average of the finite difference of the
image. The smeared CCD flaw is easily detected, but the dark stripe in a is not. It can,
however, be detected using the Hessian eigenvalues. The second band shows the first band
downsampled. It is seen that the information is still there, but the feature vector size has
been significantly reduced.

Detecting CCD flaws

Finite difference seems to be a particularly efficient way of detecting CCD flaws, as seen in
Fig. 3.5. The CCD flaws always occur as vertical stripes of pixels that appear to have been
smeared horizontally, so using finite difference, we can subtract each pixel column from its
neighbour and find the average of the column:

〈|∆I |〉i =
1
Ni

Ni∑
i=1

|Ii,j+1 − Ii,j | for j = 1, . . . , Nj − 1 , (3.24)

where I is the image having Ni pixel rows and Nj pixel columns. Subtracting two neigh-
bouring columns corresponds to calculating the gradient Lx at pixel-scale. This reduces the
image to a vector of length Nj − 1, where each element j is the average of the differences in
all rows in pixel column j. The vector can be subsampled to reduce dimensionality further.

Detecting coinciding galaxies

Spiral galaxies exhibit structure, such as stars and dust, but ellipticals do not, so building
a feature relying on structure will not capture all of these false positives. All galaxies will,
however, cause a significant gradient in the image, so this is likely a better feature. We
therefore compute the gradient magnitude, defined in Eq. (3.8), for every pixel in the cut-
out, see Fig. 3.6. To create a feature from this, we can either just use the average magnitude
or create a histogram of all values.

Detecting (faint) sources

A bright source, like the one in Fig. 3.4d, is easy enough to detect; one can simply just look
for large pixel values. However, many sources are very close to the background noise level,
making them very difficult to detect. Nonetheless, they are important to discover before
one wastes expensive and time-consuming telescope time imaging the region again.

We have found that the sum of the Hessian eigenvalues, Eq. (3.12), can trace even faint
sources, see Fig. 3.7. The sum of the Hessian eigenvalues, also called the Laplacian, is one
of the most commonly used blob detectors in computer vision.
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(a) Original image. (b) Gradient magnitudes.

Figure 3.6 Example of gradient magnitudes computed for each pixel of an image. a shows
the original image; b shows the gradient magnitudes at each pixel. For the gradient mag-
nitudes, light colour means large gradient. It is seen that the galaxy creates large gradients
in the image. The gradient magnitudes would be essentially zero for an image of pure,
random noise.

(a) Original image. (b) Sum of Hessian eigen-
values.

(c) Circular bands for
binning.

Figure 3.7 Example of the sum of Hessian eigenvalues computed for each pixel of an image.
a shows the original image, b shows the sum of Hessian eigenvalues for each pixel, and c
shows the circular bands used to bin the sum of the Hessian eigenvalues for each image.
The values falling in each concentric band will be assigned the same bin in the resulting
histogram, and the each bin will be normalised to the amount of pixels falling in that bin.
By comparing a and b, it is seen that even faint sources are quite visible after the filtering.
In particular, the faint source at the top right corner and at the centre of the cut-out are
clearly visible in the filtered image.

Since the closer a source, bright or faint, comes to the centre of the image, the bigger a
problem it becomes, we use circular bins from the centre of the image, when constructing
a histogram, see Fig. 3.7c. This makes it possible to see how far from the centre a source is,
thus allowing the classifier to learn when a source comes close enough to be a problem.

As mentioned, this is still work in progress, but from the shown examples it is clear
that we can detect many of the false positives created by the detection pipelines. After the
filtering and extraction of features, classification of the cut-outs are done by a support vec-
tor machine (SVM). Preliminary results show an accuracy above 90% for an accept/reject
classification task using roughly 1000 images. However, some of the manually assigned la-
bels have been found to be wrong, and before we know the full extent of this mislabelling,
we cannot make a proper statistical assessment.

A clear issue of the current approach is the amount of parameters that we need to tune,
for instance, the scale, σ , the cut-out size, and the number of bins in the various histograms.
With further work, however, we will hopefully be able to reduce these, or at least be able
to provide tighter intervals on useful parameter values.
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Summary

4.1 Big Universe, Big Data: Machine Learning and Image Analysis for
Astronomy

In Kremer et al. (2016), we provide a dissemination and introduction to the field of as-
troinformatics aimed at computer scientists. We motivate the need for machine learning
and image analysis in astronomy, present examples of astroinformatical works, and discuss
current challenges.

The paper has been accepted for publication in a special issue of IEEE Intelligent Sys-
tems. Note that the paper was limited to 5400 words and 15 references.

4.2 Shape Index Descriptors Applied to Texture-Based Galaxy
Analysis

In Steenstrup Pedersen et al. (2013), we consider the problem of estimating the specific
star formation rate (sSFR) of galaxies from broad-band images only. In particular, we aim
to base the estimation solely on the morphology of the galaxy, thus bypassing the standard
method of spectral energy distribution (SED) fitting. For describing the galaxy morpho-
logies we propose a novel texture descriptor based on gradient orientations and the shape
index.

Results show that the gradient orientations do not carry any significant information,
achieving a root-mean-square error (RMSE) of (0.81 ± 0.02) × 10−2 log(yr−1) compared to
just predicting the average sSFR, which achieves an RMSE of (0.88 ± 0.02) × 10−2 log(yr−1).
The shape index does carry information, giving an RMSE of (0.53 ± 0.03) × 10−2 log(yr−1),
though not as much as SED-fitting, achieving an RMSE of (0.33 ± 0.01) × 10−2 log(yr−1).
Augmenting the output of the SED-fitting to the shape index features, however, shows
an improvement in the RMSE, which now decreases to (0.29 ± 0.02) × 10−2 log(yr−1). This
suggests that the shape index is able to extract information not captured by the SED-fitting,
though more work is needed to confirm this.

From this work, it is clear that the proposed texture descriptor using the shape index
does capture information about the morphology of galaxies, relevant to the estimation of
sSFRs. Further work may improve the estimations, or may show correlations with other
parameters of the galaxies. Furthermore, being a novel texture descriptor, we have made
an important contribution to the field of texture analysis in computer science.

21
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4.3 Sacrificing information for the greater good: how to select
photometric bands for optimal accuracy

In Stensbo-Smidt et al. (2017), we consider the problem of selecting the most informative
features among all the measured magnitudes for galaxies in the SDSS database in an at-
tempt to estimate redshift and specific star formation rate from photometry alone. We use
a massively parallel implementation of the k nearest neighbours algorithm together with
forward feature selection (both implemented on graphical processing units, GPUs) to do
the estimations and select the best features.

Using data for 603,680 galaxies from the SDSS database, we find that for estimating
the specific star formation rate, we are able to achieve a root-mean-square error (RMSE) of
(27.4 ± 0.3) × 10−2 log(yr−1) when using optimal features. This should be compared to an
RMSE of (29.6 ± 0.2) × 10−2 log(yr−1) when using the four modelMag colours as features, as
often seen in the astronomical literature and as advocated by SDSS.

For the task of photometric redshift estimation, we achieve a normalized median abso-
lute deviation, σNMAD of (1.38 ± 0.01) × 10−2 when using optimal features. SDSS achieve
a σNMAD of (1.65 ± 0.01) × 10−2 for the same galaxies. We thus significantly outperform
SDSS for the task of photometric redshift estimation.

The results show that there can be significant gains in accuracy for different tasks by
not relying solely on the magnitudes recommended in standard literature. Whereas our
method does select the modelMag colours as some of the most informative, adding addi-
tional colours and magnitudes clearly improved the results.

The suggested feature selection method is completely general and can thus help astro-
nomy and astrophysics in many aspects. Furthermore, the highly optimized GPU imple-
mentation of k nearest neighbours and forward feature selection can be directly used in
many areas of computer science.

4.4 Automating the quality assessment of images of distant quasar
candidates

Though still work in progress, the project on quality checking images of distant quasar
candidates show promising results. We consider the problem of assessing whether an im-
age of a candidate for a distant quasar meet certain quality criteria set by astrophysicists.
The problem is further complicated by the fact that these criteria can be difficult, if not
impossible, to define in a strict mathematical sense. We therefore seek to extract features
from the image using image analysis and use machine learning to train a program to imit-
ate human decision making.

We are able to detect the most common causes of images having to be discarded as a
result of either physical or artificial phenomena in the image. We currently lack a data set
of sufficient quality to make a proper statistical assessment of our method, but preliminary
results suggest that we are able to correctly accept or reject an image in more than 90% of
the cases.
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Perspectives and future work

Astroinformatics is a rapidly growing research domain, which this thesis has contributed
to. New methods that can improve measurements in astronomy and astrophysics have been
introduced, leading the ways for new discoveries. Contributions to computer science have
been made by the means of a novel texture descriptor and adaptation of known methods
to fit problems of astronomical interest. There are, of course, plenty of ways to extend and
build on the knowledge we have gained.

5.1 Morphology of galaxies

Steenstrup Pedersen et al. (2013) considered the problem of describing the morphology of
galaxies in terms of texture and correlate this with their specific star formation rate. We
found that the shape index and curvedness provided additional information about the star
formation rate not detected with standard SED fitting. This result suggests that the tex-
ture descriptors could maybe also be useful for describing other physical processes within
galaxies, or perhaps be used to study the physics and structure of nebulae.

We chose to use ‘handcrafted’ features for describing the texture rather than using the
ubiquitous convolutional neural network (CNN) approach for a number of reasons. Firstly,
manually constructed features are often easier to interpret, and in our application we can
directly interpret the shape index in terms of physical structure. Interpreting the rep-
resentations learnt by CNNs can be difficult, as they are often complex combinations of
simpler features. Secondly, training a CNN to estimate, say, specific star formation rates
from images will tune it to focus on texture relevant for this particular purpose. Manually
constructed features will be more general, and may therefore be used in more diverse set-
tings, including unsupervised ones. For instance, assuming the shape index traces some
fundamental structure in galaxies, one could now look for clusters in ‘shape index space’,
which could potentially correspond to fundamentally different types of galaxies. Thus, one
could construct a new, more data-driven classification scheme to replace the century old
Hubble classes.

This kind of texture analysis can therefore be highly promising with regards to gaining
new, physical insights. Also computer science will benefit from this approach as it, like in
this case, often involves inventing new, interesting methods.

That being said, using manual features are not without complications. The shape index
and curvedness needs to be calculated at different scales, in order to pick up information
from different sized structures. Also, the histograms used depended on a few parameters,
such as the number of bins and the width of the binning function. All these parameters,
and the number and location of the scales at which to compute the shape index and curved-
ness, need to be determined. Currently, they are just set by hand to reasonable values, but
it would of course be good to do a proper test to find optimal values.
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It may be possible to learn some of the parameter values directly from data. For in-
stance, it may be that galaxies typically show structures only on a fixed number of scales,
although these scales will vary from image to image, depending on the apparent size of the
galaxy. Thus, learning the amount of informative scales may be possible using the entire
data set, whereas their exact locations will be image-specific.

Selecting which scales to use is a particularly interesting problem to spend more time
on. Scale selection in general is an unsolved problem, as it requires us to locate the most
informative scales. Searching through scale space is computationally intensive, and even
the notion of ‘informative’ is not clear. There have been attempts to formalise the notion of
an informative scale (e.g. Lindeberg, 1998; Sporring and Weickert, 1999), and investigating
these would be a natural next step.

The current formulations of shape index and curvedness also only work on greyscale
images. We circumvented this limitation by concatenating histograms computed for each
SDSS band, but this leads to an increase in the number of features, which can decrease
estimation accuracy. Additionally, we would expect the light in different bands to be highly
correlated, so we may be adding somewhat redundant features. Extending the shape index
and curvedness to handle multicolour images properly could give us much more expressive
features.

Lastly, one could also work on the segmentation of the galaxies and how that is used in
the further computations. We used a segmentation based on the output from SExtractor
(Bertin and Arnouts, 1996) and computed a single histogram for the entire galaxy. One
could imagine other approaches, such as computing histograms for different parts of the
galaxies, or weighing different parts differently. In particular, it is difficult to define the
edge of a galaxy so downweighing pixels close to the assumed edge could make sense. We
already do something along these lines, using the segmentation found by SExtractor, but
investigating other approaches would be natural.

5.2 Selecting informative features

Stensbo-Smidt et al. (2017) introduced a general method for selecting the most informative
features for a given task. We exemplified its usefulness by estimating redshifts and specific
star formation rates using features selected for the tasks, demonstrating an increase in ac-
curacy compared to using more standard features. Since the method is completely general,
it can help in other areas of astronomy and astrophysics as well.

The method we used, forward feature selection, is one of the simplest feature selection
algorithms available, and choosing this particular method was a deliberate choice. We
wanted to show that even a simple method can lead to improvements and interpretable
results. One could, of course, try other methods that might perform even better. The
tricky part is to find methods that can deal with the massive amounts of data available
in astronomy. We solved this by creating a clever data structure that allowed the feature
selection task to be run on GPUs, ensuring massive gains in speed.

An interesting extension to our work would be to include support for uncertainties,
both on the features and on the targets. This is not easily done, but it may be possible using
a Bayesian framework. One could also investigate various heuristics for downweighing the
importance of uncertain inputs and for estimating the error on the predicted target.

5.3 Detecting distant quasars

Finally, we have considered the problem of automatically assessing the quality of images
of quasar candidates. While the work here is still ongoing, there are some interesting dir-
ections we could take. Currently, we are targeting a simple accept/reject scheme, assessing
whether a candidate should be kept or discarded. It would be interesting to instead con-
sider a probabilistic multiclass classification scheme, assessing the probability that a can-
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didate belongs to each of the many different classes of false positives. This would allow us
to set a threshold for when we would like to do manual inspection, a threshold that could
vary from class to class.

A significant challenge is to account for unknown classes of false positives as they are
discovered. We may need to construct new features to be able to detect these, and we also
need to retrain the classifier. With the amount of parameters we can tune, finding ways to
limit the amount of needed retraining when adding new classes is a crucial task.

Another interesting and promising path is to consider semi-supervised learning. Semi-
supervised learning is a type of supervised learning, which tries to also use unlabelled
data to help inform the supervised task during training. This is an interesting approach
because of the large amount of manual work required to create a large training set of images
of candidates. All images must be manually labelled by an expert, which is a tedious and
slow process. SDSS offers terabytes of images from large regions of the sky, so we can
easily get thousands of images to train the classifier on – we just don’t know whether these
images would be considered good or bad, thus they are unlabelled. A semi-supervised
algorithm could potentially learn the general structure of a patch of sky, and then use
this information to make better use of manually inspected candidates, as demonstrated by
Kingma et al. (2014), although for much simpler data sets.

Software that can automatically assess the quality of images will of course not only be of
use for quasar detection. Any search for rare astrophysical phenomena will need automatic
quality checks simply because of the rare nature of the phenomena; there will be so many
false positives that humans cannot assess them all. Computer science will benefit through
the experience gained by adapting existing methods and developing new ones to solve
problems faced in this new domain.

5.4 The relevance of interdisciplinary research

Astronomy and computer science can gain a lot from the mutual collaboration of astroin-
formatics. Interdisciplinary research is, in my experience, highly rewarding, but at the
same time difficult. Coming from different fields and backgrounds, we as scientists are
raised with a specific mindset and language. This is not something one often thinks about,
but it becomes very apparent when doing interdisciplinary research. There is a clash of
cultures and traditions, which can lead to frustrating discussions and heated arguments,
but this is a good thing; we are forced to reconsider ways of thinking that we have taken
for granted, which is very educational. We also appreciate domain expertise vastly more,
in particular after subtle details in, for instance, the used data that have been overlooked
makes your entire experiment void.

There are indeed headaches associated with doing interdisciplinary research, but there
is also a wealth of knowledge and mutual respect to be gained. I firmly believe that the
scientific breakthroughs of the future will happen through the joined forces of distinct
research fields.
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Astrophysics and cosmology are rich with data. The advent of wide-area
digital cameras on large aperture telescopes has led to ever more ambitious
surveys of the sky. Data volumes of entire surveys a decade ago can now be
acquired in a single night and real-time analysis is often desired. Thus, mod-
ern astronomy requires big data know-how, in particular it demands highly
efficient machine learning and image analysis algorithms. But scalability
is not the only challenge: Astronomy applications touch several current ma-
chine learning research questions, such as learning from biased data and deal-
ing with label and measurement noise. We argue that this makes astronomy
a great domain for computer science research, as it pushes the boundaries of
data analysis. In the following, we will present this exciting application area
for data scientists. We will focus on exemplary results, discuss main chal-
lenges, and highlight some recent methodological advancements in machine
learning and image analysis triggered by astronomical applications.
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Figure 1: Increasing data volumes of existing and upcoming telescopes: Very
Large Telescope (VLT), Sloan Digital Sky Survey (SDSS), Visible and In-
frared Telescope for Astronomy (VISTA), Large Synoptic Survey Telescope
(LSST) and Thirty Meter Telescope (TMT).

Ever-Larger Sky Surveys

One of the largest astronomical surveys to date is Sloan Digital Sky Survey
(SDSS, http://www.sdss.org). Each night, the SDSS telescope produces
200 GB of data and now provides close to a million field images, in which
more than 200 million galaxies, and even more stars, have been detected.
Upcoming surveys will provide far greater data volumes.

Another promising future survey is the Large Synoptic Survey Telescope
(LSST). It will deliver wide-field images of the sky, exposing galaxies that are
too faint to be seen today. A main objective of LSST is to discover transients,
objects that change brightness over time-scales of seconds to months. These
changes are due to a plethora of reasons; some may be regarded as uninter-
esting while others will be extremely rare events, which cannot be missed.
LSST is expected to see millions of transients per night, which need to be
detected in real-time to allow for follow-up observations. With staggering 30
TB of images being produced per night, efficient and accurate detection will
be a major challenge. Figure 1 shows how data rates have increased and will
continue to increase as new surveys are initiated.
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What do the data look like? Surveys usually make either spectroscopic
or photometric observations, see Figure 2. Spectroscopy measures the pho-
ton count at thousands of wavelengths. The resulting spectrum allows for
identifying chemical components of the observed object and thus enables
determining many interesting properties. Photometry takes images using a
CCD, typically acquired through only a handful of broad-band filters, making
photometry much less informative than spectroscopy.

While spectroscopy provides measurements of high precision, it has two
drawbacks: First, it is not as sensitive as photometry, meaning that distant
or otherwise faint objects cannot be measured. Second, only few objects can
be captured at the same time, making it more expensive than photometry,
which allows for acquiring images of thousands of objects in a single image.
Photometry can capture objects that may be ten times fainter than what
can be measured with spectroscopy. A faint galaxy is often more distant
than a bright one—not just in space, but also in time. Discovering faint
objects therefore offers the potential of looking further back into the history
of the Universe, over time-scales of billions of years. Thus, photometric
observations are invaluable to cosmologists, as they help understanding the
early Universe.

Once raw observations have been acquired, a pipeline of algorithms needs
to extract information from them. Much image-based astronomy currently
relies to some extent on visual inspection. A wide range of measurements are
still carried out by humans, but need to be addressed by automatic image
analysis in light of growing data volumes. Examples are 3D orientation and
chirality of galaxies, and detection of large-scale features, such as jets and
streams. Challenges in these tasks include image artifacts, spurious effects,
and discerning between merging galaxy pairs and galaxies that happen to
overlap along the line of sight. Current survey pipelines often have trouble
correctly identifying these types of problems, which then propagate into the
databases.

A particular challenge is that cosmology relies on scientific analyses of
long-exposure images. As such, the interest in image analysis techniques for
preprocessing and de-noising is naturally great. This is particularly impor-
tant for the detection of faint objects with very low signal-to-noise ratios.
Automatic object detection is vital to any survey pipeline, with reliability
and completeness being essential metrics. Completeness refers to the amount
of detected objects, whereas reliability measures how many of the detections
are actual objects. Maximizing these metrics requires advanced image anal-
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Figure 2: The spectrum of galaxy NGC 5750 (black line), as seen by SDSS,
with the survey’s five photometric broad-band filters u, g, r, i, and z, rang-
ing from ultraviolet (u) to near-infrared (z ). For each band the galaxy’s
brightness is captured in an image.

ysis and machine learning techniques. Therefore, data science for astronomy
is a quickly evolving field gaining more and more interest. In the following,
we will highlight some of its success stories and open problems.

Large-scale Data Analysis in Astronomy

Machine learning methods are able to uncover the relation between input
data (e.g., galaxy images) and outputs (e.g., physical properties of galaxies)
based on input-output samples, and they have already proved successful in
various astrophysical contexts. For example, Mortlock et al. 8 use Bayesian
analysis to find the most distant quasar to date. These are extremely bright
objects forming at the center of large galaxies and are very rare. Bayesian
comparison has helped scientists to select a few most likely objects for re-
observation from thousands of candidates.

In astronomy, distances from Earth to galaxies are measured by their
redshifts, but accurate estimations need expensive spectroscopy. Getting
accurate redshifts from photometry alone is an essential, but unsolved task,
for which machine learning methods are widely applied.2 However, they are
far from on a par with spectroscopy. Thus, better and faster algorithms are
much desired.
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Figure 3: An example of two morphology categories: on the left, the spiral
galaxy M101; on the right, the elliptical galaxy NGC 1132 (credit: NASA,
ESA, and the Hubble Heritage Team (STScI/AURA)-ESA/Hubble Collabo-
ration).

Another application is the measurement of galaxy morphologies. Usually,
one assigns a galaxy a class based on its appearance (see Figure 3), tradition-
ally using visual inspection. Lately, this has been accelerated by the citizen
science project Galaxy Zoo,7 which aims at involving the public in classifying
galaxies. Volunteers have contributed more than 100 million classifications,
which allow astrophysicists to look for links between the galaxies’ appearance
(morphology) and internal and external properties. A number of discoveries
have been made through the use of data from Galaxy Zoo, and the classi-
fications have provided numerous hints to the correlations between various
processes governing galaxy evolution. A galaxy’s morphology is difficult to
quantize in a concise manner, and automated methods are high on the wish
list of astrophysicists. There exists some work on reproducing the classifi-
cations using machine learning alone,3 but better systems will be necessary
when dealing with the data products of next-generation telescopes.

A growing field in astrophysics is the search for planets outside our so-
lar system (exoplanets). NASA’s Kepler spacecraft has been searching for
exoplanets since 2009. Kepler is observing light curves of stars, that is,
measuring a star’s brightness at regular intervals. The task is then to look
for changes in the brightness indicating that a planet may have moved in
front of it. If that happens with regular period, duration and decrease in
brightness, the source is likely to be an exoplanet. While there is automated
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software detecting such changes in brightness, the citizen science project
Planet Hunters has shown that the software does miss some exoplanets.
Also, detecting Earth-sized planets, arguably the most interesting, is notori-
ously difficult, as the decrease in brightness can be close to the noise level.
For next-generation space telescopes, such as Transiting Exoplanet Survey
Satellite (TESS), scheduled for launch in 2017, algorithms for detecting exo-
planets need to be significantly improved to more reliably detect Earth-sized
exoplanet candidates for follow-up observations.

There are also problems that may directly affect our lives here on Earth,
such as solar eruptions that, if headed towards Earth, can be dangerous to
astronauts, damage satellites, affect airplanes and, if strong enough, cause
severe damage to electrical grids. A number of spacecrafts monitor the
Sun in real-time. While the ultimate goal is a better understanding of the
Sun, the main reason for real-time monitoring is to be able to quickly de-
tect and respond to solar eruptions. The continuous monitoring is done
by automated software, but not all events are detected.13 Solar eruptions
are known to be associated with sunspots, but the connection is not un-
derstood well enough that scientists can predict the onset or magnitude
of an eruption. There may be a correlation with the complexity of the
sunspots, and understanding this, as well as how the complexity develops
over time, is crucial for future warning systems. While scientists are working
towards a solution, for example through the citizen science project Sunspot-
ter (https://www.sunspotter.org/), no automated method has yet been
able to reliably and quantitatively measure the complexity.

This glimpse of success stories and open problems of big data analysis in
astronomy is by no means exhaustive. An overview of machine learning in
astronomy can be found in the survey by Ball and Brunner.1

Astronomy Driving Data Science

In the following, we present three examples from our own work showing
how astronomical data analysis can trigger methodological advancements in
machine learning and image analysis.
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Figure 4: From left to right: The original image of a galaxy merger, the
scale-space representation of the galaxies, the curvedness (a measure of how
pronounced the local structure is), the shape index, and finally the shape
index weighted by the curvedness. The shape index is defined as S(x, y;σ) =
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The image shows the Antennae galaxies as seen by the Hubble Space Tele-
scope (credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)-
ESA/Hubble Collaboration).

Describing the Shape of a Galaxy

Image analysis does not only allow for automatic classification, but can also
inspire new ways to look at morphology.9;11 For instance, we examined how
well one of the most fundamental measures of galaxy evolution, the star-
formation rate, could be predicted from the shape index. The shape index
measures the local structure around a pixel going from dark blobs over valley-,
saddle point- and ridge-like structures to white blobs. It can thus be used
as a measure of the local morphology on a per-pixel scale, see Figure 4. The
study showed that the shape index does indeed capture some fundamental
information about galaxies, which is missed by traditional methods. Adding
shape index features resulted in a 12% decrease in root-mean-square error
(RMSE).
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Dealing with Sample Selection Bias

In supervised machine learning, models are constructed based on labeled ex-
amples, that is, observations (e.g., images, photometric features) together
with their outputs (also referred to as labels, e.g., the corresponding redshift
or galaxy type). Most machine learning algorithms are built on the assump-
tion that training and future test data follow the same distribution. This
allows for generalization, enabling the model built from labeled examples in
the training set to accurately predict target variables in an unlabeled test
set. In real-life applications this assumption is often violated—we refer to
this as sample selection bias. Certain examples are more likely to be labeled
than others due to factors like availability or acquisition cost regardless of
their representation in the population. Sample selection bias can be very
pronounced in astronomical data,12 and machine learning methods have to
address this bias to achieve good generalization. Often only training data
sets from old surveys are initially available, while upcoming missions will
probe never-before-seen regions in the astrophysical parameter space.

To correct the sample selection bias, we can resort to a technique called
importance-weighting. The idea is to give more weight to examples in the
training sample which lie in regions of the feature space that are under-
represented in the test sample and, likewise, give less weights to examples
whose location in the feature space is overrepresented in the test set. If these
weights are estimated correctly, the model we learn from the training data
is an unbiased estimate of the model we would learn from a sample that
follows the population’s distribution. The challenge lies in estimating these
weights reliably and efficiently. Given a sufficiently large sample, a simple
strategy can be followed: Using a nearest neighbor-based approach, we can
count the number of test examples that fall within a hypersphere whose ra-
dius is defined by the distance to the Kth neighbor of a training example.
The weight is then the ratio of the number of these test examples over K.
This flexibly handles regions which are sparse in the training sample. In the
case of redshift estimation, we could alleviate a selection bias by utilizing a
large sample of photometric observations to determine the weights for the
spectroscopically confirmed training set.6

To measure how well we approximated the true weight we used the
squared difference between true and estimated weight, that is,

L(β, β̂) =
∑

x∈Strain

(
β(x)− β̂(x)

)2
ptrain(x) dx ,
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where Strain is the training sample, β and β̂ are true and estimated weight,
respectively, and ptrain is the training density. The nearest neighbor estimator
achieved similar or lower error compared to other methods. At the same
time the estimator’s running time is three orders of magnitude lower than
the best competitor for lower sample sizes. Furthermore, it is able to scale up
to millions of examples (code is available at https://github.com/kremerj/
nnratio).

Scaling-up Nearest Neighbor Search

Nearest neighbor methods are not only useful for addressing sample selec-
tion bias, they also provide excellent prediction results in astrophysics and
cosmology. For example, they are used to generate candidates for quasars
at high redshift.10 Such methods work particularly well when the number
of training examples is high and the input space is low-dimensional. This
makes them a good choice for analyzing large sky surveys where objects are
described by photometric features (e.g., the five broad-band filters shown in
Figure 2). However, searching for nearest neighbors becomes a computational
bottleneck in such big data settings.

To compute nearest neighbors for a given query, search structures such
as k-d trees are an established way to accelerate the search. If input space
dimensionality is moderate (say, below 30), runtime can often be reduced
by several orders of magnitude. While approximate schemes are valuable
alternatives, one is usually interested in exact nearest neighbor search for as-
tronomical data. In this context, massively-parallel devices, such as graph-
ics processing units (GPUs), show great promise. Unfortunately, nearest
neighbor search based on spatial data structures cannot be parallelized in an
obvious way for these devices. To this end, we developed a new tree struc-
ture that is more amenable to massively-parallel traversals via GPUs, see
Figure 5.4 The framework can achieve a significant runtime reduction at a
much lower cost compared to traditional parallel architectures (code avail-
able on http://bufferkdtree.readthedocs.io). We expect such scalable
approaches to be crucial for upcoming data-intensive analyses in astronomy.
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Figure 5: Left: The buffer k-d tree structure depicts an extension of classical
k-d trees and can be used to efficiently process huge amounts of nearest neigh-
bor queries using GPUs.4 Right: Runtime comparison given a large-scale as-
tronomical data set with n training and m test examples. The speed-up of the
buffer k-d tree approach using four GPUs over two competitors (brute-force
on GPUs and a multi-core k-d tree based traversal using 4 cores/8 hardware
threads) is shown as solid black lines.5
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Physical Models vs. Machine Learning Models

A big concern data scientists meet when bringing forward data-driven ma-
chine learning models in astrophysics and cosmology is lack of interpretabil-
ity. There are two different approaches to predictive modeling in astron-
omy: physical modeling and data-driven modeling. Building physical mod-
els, which can incorporate all necessary astrophysical background knowledge,
is the traditional approach. These models can be used for prediction, for ex-
ample, by running Monte Carlo simulations. Ideally, this approach ensures
that the predictions are physically plausible. In contrast, extrapolations by
purely data-driven machine learning models may violate physical laws. An-
other decisive feature of physical models is that they allow for understanding
and explaining observations. This interpretability of predictions is typically
not provided when using a machine learning approach.

Physical models have the drawbacks that they are difficult to construct
and that inference may take a long time (e.g., in the case of Monte Carlo sim-
ulations). Most importantly, the quality of the predictions depends on the
quality of the physical model, which is typically limited by necessary simpli-
fications and incomplete scientific knowledge. In our experience, data-driven
models typically outperform physical models in terms of prediction accuracy.
For example, a simple k nearest neighbors model can reduce the RMSE by
22% when estimating star formation rates.14;15 Thus, we strongly advocate
data-driven models when accurate predictions are the main objective. And
this is indeed often the case, for example, if we want to estimate properties
of objects in the sky for quickly identifying observations worth a follow-up
investigation or for conducting large-scale statistical analyses.

Generic machine learning methods are not meant to replace physical mod-
eling, because they typically do not provide scientific insights beyond the
predicted values. Still, we argue that if prediction accuracy is what matters,
one should favor the more accurate model, whether it is interpretable or not.
While the black-and-white portrayal of the two approaches may help to il-
lustrate common misunderstandings between data scientists and physicists,
it is of course shortsighted. Physical and machine learning modeling are not
mutually exclusive: Physical models can inform machine learning algorithms,
and machine learning can support physical modeling. A simple example of
the latter is using machine learning to estimate error residuals of a physical
model.9

Dealing with uncertainties is a major issue in astronomical data anal-
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ysis. Data scientists are asked to provide error bars for their predictions
and have to think about how to deal with input noise. In astronomy, both
input and output data have (non-Gaussian) errors attached to them. Of-
ten these measurement errors have been quantified (e.g., by incorporating
weather conditions during observation), and it is desirable to consider these
errors in the prediction. Bayesian modeling and Monte Carlo methods sim-
ulating physical models offer solutions, however, often they do not scale for
big data. Alternatively, one can modify machine learning methods to pro-
cess error bars, as attempted for nearest neighbor regression by modifying
the distance function.10

Getting Started on Astronomy and Big Data

Most astronomical surveys make their entire data collection, including de-
rived parameters, available online in the form of large data bases. These
provide entry points for the computer scientist wanting to get engaged in as-
tronomical research. In the following, we highlight three resources for getting
started on tackling some of the open problems mentionend earlier.

The Galaxy Zoo website (https://www.galaxyzoo.org) provides data
with classifications of about one million galaxies. It is an excellent resource
for developing and testing image analysis and computer vision algorithms for
automatic classifications of galaxies.

Much of the Kepler data for exoplanet discovery is publicly available
through Mikulski Archive for Space Telescopes (http://archive.stsci.
edu/kepler). These include light curves for confirmed exoplanets and false
positives, making it a valuable dataset for testing detection algorithms.

Having being monitored continuously for years, there is an incredible
amount of imaging data for the Sun, from archival data to near real-time
images. One place to find such is Debrecen Sunspot Data archive (http:
//fenyi.solarobs.unideb.hu/ESA/HMIDD.html). These images allow for
the development and testing of new complexity measures for image data or
solar eruption warning systems.
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A Peek Into the Future

Within the next few years, image analysis and machine learning systems that
can process terabytes of data in near real-time with high accuracy will be
essential.

There are great opportunities for making novel discoveries, even in data-
bases that have been available for decades. The volunteers of Galaxy Zoo
have demonstrated this multiple times by discovering structures in SDSS
images that have later been confirmed to be new types of objects. These
volunteers are not trained scientists, yet they make new scientific discoveries.

Even today, only a fraction of the images of SDSS have been inspected by
humans. Without doubt, the data still hold many surprises, and upcoming
surveys, such as LSST, are bound to image previously unknown objects.
It will not be possible to manually inspect all images produced by these
surveys, making advanced image analysis and machine learning algorithms
of vital importance.

One may use such systems to answer questions like how many types of
galaxies there are, what distinguishes the different classes, whether the cur-
rent classification scheme is good enough, and whether there are important
sub-classes or undiscovered classes. These questions require data science
knowledge rather than astrophysical knowledge, yet the discoveries will still
help astrophysics tremendously.

In this new data-rich era, astronomy and computer science can benefit
greatly from each other. There are new problems to be tackled, novel dis-
coveries to be made, and above all, new knowledge to be gained in both
fields.
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Abstract

A texture descriptor based on the shape index and the
accompanying curvedness measure is proposed, and it is
evaluated for the automated analysis of astronomical im-
age data. A representative sample of images of low-redshift
galaxies from the Sloan Digital Sky Survey (SDSS) serves
as a testbed. The goal of applying texture descriptors to
these data is to extract novel information about galaxies;
information which is often lost in more traditional analy-
sis. In this study, we build a regression model for predict-
ing a spectroscopic quantity, the specific star-formation rate
(sSFR). As texture features we consider multi-scale gradi-
ent orientation histograms as well as multi-scale shape in-
dex histograms, which lead to a new descriptor. Our re-
sults show that we can successfully predict spectroscopic
quantities from the texture in optical multi-band images.
We successfully recover the observed bi-modal distribution
of galaxies into quiescent and star-forming. The state-of-
the-art for predicting the sSFR is a color-based physical
model. We significantly improve its accuracy by augment-
ing the model with texture information. This study is the first
step towards enabling the quantification of physical galaxy
properties from imaging data alone.

1. Introduction
This paper investigates a novel combination of tex-

ture descriptors and applies them for automated analysis
of galaxy images. We follow the line of filter-based ap-
proaches [25, 31, 32] to texture analysis. Specifically, we
focus on derivative filters. We construct differential in-
variants from these filters and agglomerate this informa-
tion in histogram representations [23]. Descriptors such
as SIFT, HoG, and DAISY [26, 12, 30] capture the local
structure in images using first order differential structure in
the form of gradient orientation histograms. We propose
to extend these descriptors by a representation of the sec-
ond order differential structure. To this end, we suggest us-
ing the shape index and the accompanying curvedness mea-

sure [21] as the basis for our descriptor, since they provide
a summary of the second order structure. The novelty of
our approach lies in using localized shape index histograms
combined with gradient orientation histrograms both mea-
sured at multiple scales. For texture analysis, adding this
higher order information will in some applications be nec-
essary in order to improve the discriminative performance
of texture representations—and quantifying physical prop-
erties of galaxies from imaging data is such an application.

Galactic structure (i.e. how the mass is generally dis-
tributed within galaxies) and morphology (i.e. how that
mass is arranged on smaller scales) are important diag-
nostics of the formation and evolutionary mechanisms and
timescales for galaxies. It is well known that this structure
is correlated with other physical properties of the galax-
ies such as star-formation rate and dust content (e.g. [7]).
However, the means to formalize these relationships are
yet to be realized. Extremely large galaxy surveys from
the ground, such as the SDSS, have compiled vast, ho-
mogeneous imaging of millions of galaxies. Furthermore,
ever since the launch of the Hubble Space Telescope (HST)
and the advent of adaptive-optics (AO) on large aperture
ground-based telescopes enabling high physical-resolution
images of galaxies, the study of galaxy structure and mor-
phology has entered a data-rich era.

Galaxies are made of stars, gas and dust. Each of these
components emits light over different wavelength ranges
and with different intensities. To use the observed light,
for example, to determine the mass of stars or the rate at
which new stars are being formed, we need to be able to
disentangle the various luminous contributions. To do so,
astronomers build models of the emission for each source.
Gas will primarily emit in emission lines, which appear at
a set of discrete wavelengths associated with the emitting
element. These emission lines can only be observed spec-
troscopically and give the most direct measurement of the
rate at which new stars are being formed (SFR). Stars, on
the other hand, emit continuum radiation over a large range
of wavelengths. We can use models of populations of stars
as a function of time to extract the mass and age of the stars



in a galaxy. These models can be used for spectroscopy as
well as (broad band) imaging in multiple filters (colors).

The mass and SFR of a galaxy can therefore be
(coarsely) measured by comparing a set of models with the
shape of the spectral energy distribution traced by multiple
filters. The specific star formation rate (sSFR) is simply the
current SFR divided by the mass of stars. Usually, even
if the SFR is determined from emission lines spectroscopi-
cally, the mass is determined from the colors of the galaxy
in multi-filter imaging. The dominant approach for estimat-
ing sSFR from imaging data alone is based on analysis of
the color of the galaxy.

Our current knowledge of galaxies is built on imaging
surveys and follow-up spectroscopy. Modern imaging sur-
veys will acquire data in several band-pass filters and can
be used to approximate galactic properties. However, bet-
ter determinations of these quantities require deep spec-
troscopy covering a significant wavelength baseline. Fur-
thermore, most surveys will only have a single band of high
angular-resolution imaging (e.g. from space). In such re-
solved galaxy images, it is possible to use the structure as a
proxy for internal dynamics that would require more time-
consuming spectroscopic data to observe. Indeed, many of
the future surveys will be imaging-only surveys that will not
allow for spectroscopic follow-up observations of the vast
majority of the observed galaxies. Therefore, being able to
fully exploit the most well-resolved images as proxies for
spectroscopic data is highly valuable.

Figure 1 illustrates examples of optical images of galaxy
from the subset of the SDSS dataset that is used in this pa-
per. The top row shows well-resolved galaxy images. No-
tice that the light profile of these galaxies contains intricate
texture. This texture is caused by the distribution of stars
and gas in the galaxy—an important cue for determining
the sSFR. We propose to investigate the predictive power
of texture when estimating sSFR from optical images. The
bottom row of Fig. 1 illustrates problematic cases for our
texture based analysis. These range from noise and nearby
stars to faint distant galaxies which are poorly resolved in
the images. At first glance, this may seem impossible. Af-
ter all, making the leap from single-band or a few bands
imaging data to spectroscopic quantities is a large jump.
However, the properties of galaxies are correlated. We have
known since the earliest galaxy surveys, that star-forming
galaxies have more internal morphological structure due to
dust obscuration and star-forming clumps than quiescent
(elliptical) galaxies, which tend to be smoother.

There has been some prior work on automated analysis
of optical images of galaxies [14, 9]. Much of this work,
however, focuses on classification of galaxies based on mor-
phology (e.g. [4]) and tends to ignore information found in
the texture. Furthermore, these approaches have used some-
what standard image features as input. Here we present new

Figure 1. Examples of low-redshift galaxies in our subset of the
SDSS dataset. We have mapped the gri-bands to the RGB color
space (gri →BGR). The top row shows well-resolved galaxies
and the bottom row shows problematic cases for our analysis.
These color images are best viewed electronically.

image features which we believe can capture heretofore ig-
nored information contained in resolved galaxy images.

The following section (§ 2) describes the galactic dataset
we use in our experiments. The new texture features are
introduced in § 3. Section § 4 explains how we perform re-
gression in order to predict sSFR values from our features.
The results are presented in § 5 before we discuss their im-
plications and future extensions of our work in § 6.

2. Galaxy data
The primary data used for the current work are a sam-

ple of low-redshift galaxies drawn from the SDSS DR7,
see Fig. 1. We use the g-, r-, and i-band images covering
the wavelengths from 4000–5500, 5500–7000 and 7000–
8500 Ångstroms, respectively. This sample is defined as all
spectroscopic galaxies within the GAMA DR1 region [13]
which also have entries in both the MPA-JHU and NYU-
VAGC catalogs [11, 8]. The overlap with GAMA for these
∼ 12000 galaxies is of particular interest because that sur-
vey will acquire spectroscopy of fainter targets and higher
quality imaging (including at different wavelengths) thus al-
lowing us, eventually, to extend our analysis to more galax-
ies and to longer wavelengths.

The images for our galaxy sample were obtained using
the skyview software provided by NASA/GSFC. For each
galaxy position, as defined in the SDSS DR 7, we down-
loaded a 100 × 100 pixel region (covering 39.6′′ × 39.6′′)
around that position. These images are not background sub-
tracted and do not include an object segmentation map. We
used SExtractor [6] on each image to generate and subtract
an estimate of the background and to produce a segmenta-
tion map including both the target and neighboring galaxies.
We have not applied any additional smoothing to the galaxy
pixels at this stage because that is a core part of our follow-
ing analysis. We however compress the intensity range by
applying a logarithmic function of the intensities.



The last step in the pre-processing of the images was
to construct a refined and well-defined pixel segmentation
mask indicating which pixels belonged to the galaxy of
interest in each frame. We used a generalized Petrosian
method to build these masks, similar to that presented in
[3]. We first rank-order the pixels in the SExtractor seg-
mentation map for the target from bright to faint. At each
intensity level we calculate the average intensity brighter
than that pixel. When the ratio of the pixel’s intensity to that
average reach a pre-determined value (the Petrosian η) we
set that intensity as the lower limit for a pixel to be included
in the following analysis. For some galaxies, even with low
η, the resulting number of included pixels may be too small
for proper analysis (see below for further details). We note
that smoothing the data first and then creating the mask will
push more pixels above η and create a more inclusive mask.
However, these lower significance pixels will not add to the
textural features at small scales because they will be highly
correlated in a way determined by the smoothing kernel.

Each band image leads to slightly different masks, not
only due to noise but also because some galaxy structure is
only visible at certain wavelengths. We construct a com-
bined mask by taking the union of the masks for each band.
We use this combined mask for processing all of the bands.

The mask extraction (segmentation) occasionally leads
to incorrect masks which includes non-galaxy pixels. In
order to remove some of these outliers from the analysis, we
apply a threshold on the ratio of galaxy pixels and pixels in
the convex hull of the galaxy mask. We discard all images
where this ratio is less than 0.7.

The galaxy images were extracted such that each galaxy
is in the image center. We discard images from the analy-
sis if the mask processing leads to a mask not overlapping
with the image center. This may be caused by a faulty mask
extraction that latches onto objects in the vicinity such as
nearby stars.

In order to remove noise at the boundary of the produced
masks and holes inside these, the masks where processed
by applying a morphological closing followed by an open-
ing operation with a disk structure element with radius 1
pixel. Following this the masks have been filtered with a lin-
ear Gaussian filter with σ = 0.5 and filter mask size equal
to 3σ. This produces a cleaned galaxy mask with smooth
boundaries.

Prior to applying the Gaussian filter, we estimate the Pet-
rosian radius of the galaxy by

Rp =

√
Ngal

π
, (1)

where Ngal denotes the number of galaxy pixels in the
mask. Furthermore, we estimate a fiducial orientation of
the galaxy from the binary mask, which we use to make the
gradient orientation feature invariant to rotation. This esti-

mation is based on the masks prior to Gaussian filtering. We
compute the spatial covariance of the galaxy pixels by

Cgal =
1

Ngal − 1

∑

xgal

(xgal − µ)T (xgal − µ) , (2)

where xgal ∈ R2 is the position of galaxy pixels in the
mask, the sum runs over all galaxy pixels in the mask, and

µ =
1

Ngal

∑

xgal

xgal (3)

is the mean position of all galaxy pixels. We define the fidu-
cial orientation of the galaxy as the eigenvector correspond-
ing to the largest eigenvalue of the covariance matrix. This
direction of most spatial variance in galaxy pixels usually
corresponds to the major axis of ellipsoidal shaped galax-
ies. Since the eigenvector is computed up to a change of
sign, we flip the sign of any eigenvector with a negative x-
component in order to make the orientation consistent. In
case of isotropic galaxies this way of picking a fiducial ori-
entation will lead to a random choice, but as there is no
natural orientation in this case, this is acceptable.

We note here that our image analysis does not strongly
depend on the precise background level (as long as it does
not vary greatly on galaxy scales), the choice of η, or on
the absolute flux level in the galaxy pixels themselves. Our
image features are dependent solely on the intensity texture
within the galaxies—not the specific intensity level. That
said, objects for which the number of pixels in the mask
is smaller than ∼ 100 will have insufficient data to reliably
measure histogram based image features. We do, however,
not remove such images from our study, which potentially
leads to outliers in the analysis.

3. Texture descriptors
Discriminative information in textures may appear on

several different scales—this is certainly the case for galaxy
images—hence using a multi-scale representation appears
to be a necessity when performing analysis of texture im-
ages. We use the linear scale-space representation [20, 29],
where the scale-space of an image I : Ω 7→ R, Ω ⊂ R2 is
defined as L(x, y;σ) = (I ∗ G)(x, y;σ) , where ∗ denotes
convolution with a Gaussian filter

G(x, y;σ) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
. (4)

The parameter σ > 0 is the scale of the representation. In
this representation we can compute image derivatives of or-
der n and m by

Lxnym(x, y;σ) =

(
I ∗ ∂

(n+m)G

∂xn∂ym

)
(x, y;σ) . (5)



Image derivatives form the basic components of our de-
scriptors, but we will introduce non-linearity in the features
by applying functions of these derivatives.

Common descriptors such as SIFT, HoG and DAISY
[26, 12, 30] use first order differential structure in the form
of gradient orientation histograms as the basis of the de-
scriptor. In smooth scale space derivatives the gradient ori-
entation may be defined as

θ(x, y;σ) = tan−1
(
Ly(x, y;σ)

Lx(x, y;σ)

)
, (6)

and the scale normalized gradient magnitude as

M(x, y;σ) = σ2
√
L2
x(x, y;σ) + L2

y(x, y;σ) . (7)

We need to perform this scale normalisation in order to be
able to compare M across different scales σ [29].

We also add a representation of the second order differ-
ential structure—namely the shape index and the accompa-
nying curvedness measure [21]. The shape index is based
on the eigenvalues κ1 and κ2 of the Hessian matrix of the
image function. It is defined as the angle between the vector
of the eigenvalues (κ1, κ2) and the first axis in this eigen-
value space. In terms of image derivatives we may express
the shape index as

S(x, y;σ) =
2

π
tan−1


 −Lxx − Lyy√

4L2
xy + (Lxx − Lyy)2


 . (8)

The shape index represents the basic second order shapes
with dark blobs (S = −1), over saddle points (S = 0), to
bright blobs (S = 1), with valley- and ridge-like structure in
between. For the detailed geometric interpretation see [21].

The curvedness is simply defined as the length of the
eigenvalue vector (κ1, κ2) and expresses how pronounced
the second order structure is, similar to the role of the gra-
dient magnitude for the first order structure. In terms of
image derivatives the scale normalized curvedness may be
defined as

C(x, y;σ) =
1

2
σ2
√
L2
xx + 2L2

xy + L2
yy . (9)

The shape index is rotational invariant by design, contrary
to gradient orientation which depends on the choice of co-
ordinate system.

The exact spatial ordering of the texture is not necessar-
ily important, hence it is common (e.g. [26, 12, 30]) to intro-
duce an agglomeration step such as statistical moments or
histograms. Here we choose to use smooth histograms in-
spired by the concept of locally orderless images [22]. This
formulation makes the intrinsic parameters of the histogram
representation explicit and provides a more robust estimate
compared to the traditional histogram formulation.

We define a smooth histogram as a function of the feature
f in question and its magnitude F ,

H(fi) =

∫
F (x, y)A(x, y)B(fi, x, y; f) dxdy , (10)

where fi denotes the histogram binning variable and will
act as the bin center for a specific choice of binning aper-
ture function B. The function A localizes the descriptor to
specific parts of the image. We propose to use the Gaussian
function of β bin width as smooth bin aperture function for
histograms of the shape index S(x, y;σ)

Bβ,σ(Si, x, y;S) = exp

(
− (S(x, y;σ)− Si)2

2β2

)
. (11)

The Gaussian bin aperture is not a good choice for gra-
dient orientation histograms, since it does not incorporate
the fact that θ is periodic. A better choice is to use the von
Mises density function as aperture function, since this is the
extension of the Gaussian distribution to the unit circle. We
therefore propose to use the following smooth bin aperture
function for the gradient orientation θ(x, y;σ)

Bβ,σ(θi, x, y; θ) = exp

(
1

β
cos (θ(x, y;σ)− θi − θ0)

)
,

(12)
where θ0 denotes a fiducial orientation.

As feature magnitude F for shape index we will use the
curvedness measure C from (9) and for the gradient orien-
tation we will use the gradient magnitude M from (7). The
rationale is that we would like local structure with a large
magnitude to count more in the histogram. This also has the
effect of reducing noise in the histograms caused by noise
in the derivative measurements.

We propose to construct texture features by combin-
ing histograms of gradient orientation with histograms of
shape index and to measure these histograms at different
scales σ. As a concrete discretization of this representation
we choose an equidistant binning in the histograms and fix
the number of bins to 8 for gradient orientation and to 9 for
shape index histogram features. The bin width β is chosen
such that with the specific choice of number of bins, we tile
and cover the complete range of the feature. Equation (10)
weights each data point that is added to the histogram by
its feature magnitude and each bin window, thus each point
casts a vote in every bin of the histogram.

For our specific application to galaxy images we set θ0 in
the gradient orientation feature to be the fiducial orientation
of the galaxy as defined in § 2. Furthermore, we choose
the window function A in (10) to be identical to the galaxy
mask as outlined in § 2. This localizes the feature to include
features from only galaxy pixels. In addition, a histogram
at a specific scale σ is always normalized so that the bin
counts H sum to one.



Notice that our gradient orientation histogram is similar
to SIFT-like descriptors, except that we do not include a
spatial pooling step (i.e. we only employ a single histogram
for the region of interest).

Choosing measurement scales. Using the scale space
representation we can compute features at a range of scales
capturing pixel correlations across these scales. Selected
scales should cover the range of characteristic scales for the
particular galaxy image. The inner scale is given by the
pixel scale, but since we want to compute derivatives up to
second order we need to be careful with the numerics. By
choosing the smallest inner scale to be σi = 0.88 pixels we
will have less than 1% numerical error in the estimation of
the second order derivatives [29]. This inner scale will mea-
sure geometry at near pixel level corresponding to 0.396′′.

We approximate the effective outer scale for a particular
galaxy image with the Petrosian radius (1). For isotropic
galaxies this will be a good estimate, however, for elon-
gated ellipsoidal galaxies this will be a poor over-estimate.
We have opted for the simple heuristics of picking the ef-
fective outer scale as a function of the Petrosian radius. Let
w be the smallest of the image width and height measured
in pixels. We then use the Petrosian radius as outer scale
σo = Rp if 4Rp/w ≤ 1, and otherwise choose σo such
that 4σo/w = 1. In order to avoid artifacts in the computed
scale space derivatives introduced by boundary effects, it
is common to discard pixels that are close to the boundary.
The heuristic ensures at least a one σo distance from the
galaxy to the image boundary. This definition of the outer
scale will measure the geometry at galaxy scale. If σi > σo,
we discard the image from the analysis.

We sample the range of effective scales [σi;ασo] in ex-
ponentially growing steps. We found experimentally that
α = 0.2 is a good value for the fraction of the outer scale,
which focuses the descriptor on the range of scales where
relevant structure occurs in galaxy images. We note that
this specific choice is application dependent. We choose to
use 8 scale levels in the interest of minimizing the compu-
tational effort and at the same time achieving good results.

4. SSFR Prediction Experiments
We use regression to predict specific star formation rate

(sSFR) from combinations of the texture descriptors out-
lined above.

Evaluation. We consider different models and feature
combinations to predict the sSFR value for each galaxy im-
age. We perform 10-fold cross validation (CV) on our sub-
set of the SDSS dataset. As measure of the prediction error
we report the root mean square error (RMSE) averaged over
the 10 CV folds. We also report the standard deviation of
the RMSE computed from the RMSE on each fold (when
interpreting these values it has to be kept in mind that the
CV folds are strictly speaking not fully independent).

Models. Because scatter plots indicated a near linear
relation between our features and the sSFR, we consider
a standard linear least squares regressor as predictor (Lin-
ear). To further improve the performance, we employ non-
linear regression techniques using the Shark machine learn-
ing library [18]. We initially considered Gaussian process
regression with radial Gaussian kernels, where the band-
width parameter of the kernel and the precision of the noise
were adapted by grid-search as well as gradient-based opti-
mization of the logarithmic marginal likelihood function (or
evidence) [27]. However, because the Gaussian processes
did not significantly improve over the linear regression, we
apply multi-layer perceptron neural networks (MLP). Each
MLP has a single hidden layer with 100 units with logistic
activation functions and a linear output unit. We add short-
cut connections linking the inputs directly to the output unit.
The training data of each CV fold was further split into an
MLP-training and an MLP-validation set using a 9:1 split
ratio. The network was trained starting from small weights
by minimizing the squared error on the MLP-training set
using the iRProp+ first-order optimization algorithm [19].
The weight configuration with the smallest squared error on
the MLP-validation set was considered to be the final hy-
pothesis. This “early stopping” of a training process that
increases the complexity starting from an (almost) linear
model typically fosters good generalizing hypothesis (note
that the actual number of hidden units is of lesser impor-
tance if chosen large enough, see [5]). In the following, we
only report the linear regressor and MLP results.

As a baseline, we use the constant model predicting the
sSFR value to be the average sSFR value of the training set
(later referred to as Average).

We also include a color-based model of the sSFR which
was provided together with the SDSS dataset (Color). The
method is based on the approach described in [16, 15, 28,
10], which employs a physical model of the relations be-
tween sSFR and spectrum of a galaxy.

Finally, we augment the color-based physical model by
our texture features. This is done by fitting the residuals
of Color. We refer to the resulting additive models [17] as
either Linear-AM or MLP-AM depending on whether linear
regression or our neural network approach was used.

Features. As input features, we consider gradient orien-
tation (GO) and shape index (SI) features as well as their
combination (referred to as All). Each feature consists of
histograms at 8 scale levels.

Furthermore, for reference we include the best results
achieved using a feature set consisting of histograms of fil-
ter responses for second order directional derivatives and
the Laplacian (2nd), i.e. the filters used in [31]. These fea-
tures were implemented using the smooth histograms de-
fined by (10)-(11), and computed at multiple scales using
the same choices as for our features.
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Figure 2. Plot of RMSE (error bars indicate 1 standard deviation
of the CV error) of Linear gri (SI) across the 8 scale levels for the
four masks. Notice for masks 1–2 the curve has a dip indicating
that for single scale features an optimal scale exists.

We use 4 different mask sizes in decreasing size with
mask 4 being the smallest. The amount of galaxy images
that passes all inclusion criteria outlined in § 3 for all masks
can be found in Table 1.

5. Results and Discussion

Table 1 summarizes our results for different combina-
tions of features extracted from either a single band (g, r,
and i) or all bands (gri) and different regressors. The addi-
tive models (AM) yield more accurate predictions (2 stan-
dard deviations better) than the standard color-based predic-
tor. Thus, the texture features provide information orthogo-
nal to the color model.

Even in single bands the texture information is correlated
with the sSFR value, see the Linear and MLP (All) results.
Notice that we obtain slightly better accuracies in the g-
band. However, the best texture-only results are obtained
on the combined gri-bands.

Using gradient orientation features alone does not pro-
vide enough information in this particular application. In-
stead we need to include the shape index feature or use the
shape index feature alone. We only include results for the
Linear gri predictor, but the tendency is the same for the
single bands and the MLP predictor. This is consistent with
similar observations made in [24], in which it is argued that
increasing differential order of the features can be beneficial
for discriminability. The results on the second order fea-
tures gri (2nd) are comparable to the (all) and (SI) results
for mask 1 but with an increased variance, and for masks 2–
3 these features are inferior to the shape index (SI) results.

Fig. 2 show the RMSE of the linear regressor based on
shape index (SI) features using single scale levels applied
to the combined gri features. Remember that, due to our
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Figure 3. Plot of the distributions of predicted sSFR values for
different predictors and the ground truth for mask 1, using the gri
and shape index (SI) features. It is seen that all models but the
linear recover the bimodal sSFR distribution.

scale range selection procedure (§ 3) for each image the ex-
act scale used at each scale level will vary as a function of
the galaxy size. Notice for masks 1–2 the curve has a dip,
indicating that for single scale features an optimal scale ex-
ists. However the results of Table 1 show that by combining
information at several scales simultaneously we are able to
obtain better predictions than with a single scale.

The reason for the generally poor results on mask 4 is
that these masks tend to only include the galaxy nuclei
which usually appears as a bright saturated blob of light.
Our texture features does therefore not provide much infor-
mation at this part of the galaxy.

Our results also indicate that a linear model actually does
a good job of fitting the data, but we do get a slight improve-
ment by introducing the non-linear MLP.

To provide some additional insight Fig. 3 show his-
tograms of the spectroscopic sSFR values together with the
results of the predictors Linear gri (SI), MLP gri (SI), and
MLP-AM gri (SI). All predictors but the linear are able to
recover the two known classes of star-forming and quies-
cent galaxies seen by the two modes in the histograms. No-
tice how the color-based predictor systematically underesti-
mates the sSFR value (seen by the shift of the histogram to
the left) and that the MLP has a tendency to push the modes
towards the mean of the dataset. It is evident that the MLP
does a better job at recovering the true sSFR distribution
than the linear predictor. It can be nicely seen how fitting
the residual (MLP-AM) corrects the Color model.

6. Conclusions

We propose to combine gradient orientation and shape
index histograms measured at several scales to describe im-
age texture. SIFT-like descriptors include a spatial pooling



Table 1. Summary of our results for different model-feature pairs applied to either single bands (g, r, and i) or all bands (gri) using four
different masks (in decreasing size). The results are based on 6880 images passing the inclusion criteria. The numbers in the table indicate
RMSE and cross validation standard deviation. Average refers to predicting the training data mean (i.e. an estimator of the data variance)
and Color is the current state-of-the-art physical model (see § 4). Linear and MLP denote linear and non-linear regression. Linear-AM and
MLP-AM are the additive models combining Color with Linear and MLP, respectively. Gradient orientation (GO) and shape index (SI)
features as well as their combination All and second order features (2nd) are considered. For more results see the supplementary material.

Method Band (features) Mask 1 Mask 2 Mask 3 Mask 4

Average 0.88± 0.02 0.88± 0.01 0.88± 0.01 0.88± 0.01
Color 0.33± 0.01 0.33± 0.02 0.33± 0.02 0.33± 0.02

Linear

g (all) 0.61± 0.01 0.62± 0.02 0.62± 0.01 0.65± 0.01
r (all) 0.65± 0.02 0.63± 0.02 0.63± 0.01 0.67± 0.02
i (all) 0.65± 0.02 0.64± 0.02 0.64± 0.02 0.67± 0.01
gri (all) 0.53± 0.02 0.54± 0.02 0.55± 0.02 0.59± 0.02

Linear gri (SI) 0.53± 0.02 0.54± 0.02 0.55± 0.02 0.59± 0.01

Linear gri (GO) 0.81± 0.02 0.83± 0.01 0.84± 0.01 0.85± 0.02

Linear gri (2nd) 0.53± 0.03 0.57± 0.05 0.68± 0.31 0.64± 0.05

MLP

g (all) 0.55± 0.01 0.57± 0.02 0.58± 0.02 0.61± 0.01
r (all) 0.61± 0.02 0.59± 0.02 0.61± 0.02 0.63± 0.01
i (all) 0.61± 0.02 0.60± 0.02 0.61± 0.01 0.64± 0.02
gri (all) 0.49± 0.02 0.50± 0.01 0.52± 0.01 0.55± 0.02

MLP gri (SI) 0.50± 0.02 0.50± 0.01 0.52± 0.01 0.56± 0.01

Linear-AM gri (SI) 0.29± 0.02 0.29± 0.01 0.29± 0.02 0.29± 0.01
MLP-AM gri (SI) 0.29± 0.02 0.29± 0.02 0.29± 0.02 0.29± 0.02

step collecting information from a grid of histograms tiling
the region of interest (ROI). This allows SIFT descriptors
to some extend code spatial structure in the ROI beyond
first order differential structure. Our gradient orientation
feature can be thought of as a single histogram SIFT de-
scriptor. Contrary to general SIFT-like descriptors, we have
the luxury of having a segmentation of the object of inter-
est. Instead of applying a spatial pooling step we choose to
increase the differential order.

The descriptor introduced in this paper is tuned to-
wards the specific application, predicting the specific star-
formation rate (sSFR) from galaxy images, by confining the
descriptor to only include information from the galaxy pix-
els mask. Based on the mask we fix the outer scale used in
the scale-space as well as the dominating orientation used in
the gradient orientation histogram. However, the descriptor
can easily be reconfigured to be constrained to a local image
patch and even be extended to a collection of histograms
extracted from a spatial pooling scheme such as used in
descriptors such as SIFT, HoG and DAISY [26, 12, 30].
The dominating orientation may be estimated following the
same approach as in SIFT. Fixing the scale range is appli-
cation dependent and requires an analysis of the concrete
problem under consideration.

The power of the new descriptor is demonstrated in the
application of predicting sSFR from imaging data. We ob-
tain good results when using the texture features alone. By
combining the color-based physical model with texture in-
formation, we outperform the state-of-the-art for sSFR pre-
diction.

The success of the shape index feature can be explained
by realizing that what distinguishes a quiescent galaxy from
a star-forming one is the distribution of stars, gas, and dust.
This leads to the presence or absence of blob-like structures,
as well as the occurrance of ridge-like structures caused by
spiral arms and stripe patterns formed by the distribution
of gas and dust—the shape index is tuned to this type of
second order structure.

A current limitation of the approach is that we extract
features independently from each band image ignoring the
natural correlation across bands. A future extension would
be to extract color descriptors by extending the shape index
descriptor to be based on the Hessian matrix of the 2D in-
tensity manifold embedded in the spatio-color space. This
strategy would also be readily applicable on other types of
color image data.

One of the challenges for computer vision and machine
learning in astrophysics is to take models and knowledge



gained from one training set (i.e. a particular survey) and
apply it to data taken using different telescopes, instruments
and techniques. For our current efforts, the primary differ-
ence will be the absence of the spectroscopic ground truth
for current and future galaxy surveys. Many of the largest
planned surveys are indeed imaging-only and while some
spectroscopic follow-up will be done, it will be impossible
to obtain complete spectroscopic coverage of the more nu-
merous (and often fainter) galaxies being imaged. Against
this background, this study is the first step towards enabling
the quantification of physical galaxy properties from imag-
ing data alone. We expect that this mapping of galaxy ap-
pearance and properties will prove extremely useful when
applied to future large scale imaging-only surveys such as
the Large Synoptic Survey Telescope (LSST).
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ABSTRACT
Large-scale surveys make huge amounts of photometric data available. Because of the sheer
amount of objects, spectral data cannot be obtained for all of them. Therefore, it is important to
devise techniques for reliably estimating physical properties of objects from photometric infor-
mation alone. These estimates are needed to automatically identify interesting objects worth a
follow-up investigation as well as to produce the required data for a statistical analysis of the
space covered by a survey. We argue that machine learning techniques are suitable to compute
these estimates accurately and efficiently. This study promotes a feature selection algorithm,
which selects the most informative magnitudes and colours for a given task of estimating
physical quantities from photometric data alone. Using k-nearest neighbours regression, a
well-known non-parametric machine learning method, we show that using the found features
significantly increases the accuracy of the estimations compared to using standard features
and standard methods. We illustrate the usefulness of the approach by estimating specific star
formation rates (sSFRs) and redshifts (photo-z’s) using only the broad-band photometry from
the Sloan Digital Sky Survey (SDSS). For estimating sSFRs, we demonstrate that our method
produces better estimates than traditional spectral energy distribution fitting. For estimating
photo-z’s, we show that our method produces more accurate photo-z’s than the method em-
ployed by SDSS. The study highlights the general importance of performing proper model
selection to improve the results of machine learning systems and how feature selection can
provide insights into the predictive relevance of particular input features.

Key words: methods: data analysis – methods: statistical – techniques: photometric –
galaxies: distances and redshifts – galaxies: star formation – galaxies: statistics.

1 IN T RO D U C T I O N

High-resolution spectroscopic data contain a wealth of information
about astrophysical objects. Analyses relying on spectroscopy suf-
fer, however, from small sample sizes. Photometric surveys have
the potential to overcome this limitation, but are limited in terms of
the amount of information that can be extracted for each astrophys-
ical object. Due to the abundance of data currently available, and
especially with the surveys commencing within the next decade,
methods are required that can automatically extract relevant infor-
mation from the broad-band images of these surveys. Our goal is
to reliably, efficiently, and accurately estimate properties of objects
from photometric data, for example, for quickly identifying inter-

� E-mail: k.stensbo@di.ku.dk (KS-S); igel@di.ku.dk (CI); kimstp@di.ku.dk
(KSP)

esting objects worth a follow-up investigation or for conducting
large-scale statistical analyses. In this study, we apply a method for
selecting the most informative colours and bands for photometric
estimations. We illustrate its potential by estimating specific star
formation rates (sSFRs) and photometric redshifts (photo-z’s) from
available Sloan Digital Sky Survey (SDSS) data, but the method
can readily be applied to other quantities and surveys.

1.1 Star formation rates

An ongoing quest in cosmology is the understanding of galaxy
formation and evolution. A crucial part here is to understand the
star formation history (SFH) of the individual galaxies as well
as the Universe as a whole. Major open questions include which
processes trigger star formation and, equally important, quench it.
Data from large surveys, such as the SDSS (York et al. 2000), have
shown a peculiar bimodality in the star formation rates (SFRs) of

C© 2016 The Authors
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galaxies (Kauffmann et al. 2003). The bimodality points to a sce-
nario where star formation is quenched, but the responsible mecha-
nism is far from understood. Current results indicate that the quench-
ing time-scale varies significantly with galaxy mass (Wetzel, Tinker
& Conroy 2012; Wetzel et al. 2013; Wheeler et al. 2014) and red-
shift (Balogh et al. 2016), suggesting that different processes are in
play at different times and masses (Fillingham et al. 2015; Wetzel,
Tollerud & Weisz 2015). To uncover these processes, it is natural
to turn to the statistical properties of a large number of galaxies
in order to look for correlations between SFRs and other physical
properties.

The most common way to estimate the recent SFR of a galaxy
is to use a number of observational tracers. These tracers often rely
on observations of single or multiple emission lines, with the Hα

emission line being among the most popular (Kennicutt & Evans
2012). A main limitation is that they usually require high-quality
spectra. Other types of observational tracers are derived from broad-
band observations. Based on these, one may estimate SFRs using
conversion factors to convert from flux over a given wavelength
interval (Kennicutt 1998; Kennicutt & Evans 2012).

Unfortunately, SFRs derived from different observational tracers
are not always consistent. There are many reasons for these incon-
sistencies. For instance, different observational tracers are sensitive
to different types of star formation, galaxy populations, redshifts,
etc. There are also the problems of correcting observations (e.g. for
dust) and how to define the boundary of a galaxy when integrat-
ing the light from it. Davies et al. (2016) found various degrees
of inconsistencies between different SFR indicators for a selection
of spiral galaxies. They attempted to correct these inconsistencies
by recalibrating the methods using a linear relationship between
luminosity and SFR.

One may also estimate SFRs using spectral energy distribution
(SED) fitting, which relies on a library of template spectra gen-
erated by stellar population synthesis models (for recent reviews,
see Walcher et al. 2011; Conroy 2013). In the most basic version
of this method, an observed galaxy spectrum is compared to every
template spectrum, the closest match is chosen, and the template’s
physical properties adopted (e.g. Charlot et al. 2002; Brinchmann
et al. 2004).

SED fitting is often considered a less precise way to estimate
SFRs than relying on observational tracers (Walcher et al. 2011),
but it can be done with libraries such as CIGALE (Noll et al. 2009)
and MAGPHYS (da Cunha, Charlot & Elbaz 2008). SED fitting also
allows us to estimate the SFR from broad-band photometry, where
observational tracers have more limited use (Maraston et al. 2010).

More direct estimations of SFRs and sSFRs from broad-band
photometry have also been investigated (e.g. Williams et al. 2009;
Arnouts et al. 2013), though there are still significant discrepancies
between these estimated quantities and those obtained from more
reliable methods.

1.2 Photometric redshifts

Spectroscopic surveys provide highly accurate redshifts of galaxies,
enabling a detailed 3D view of galaxy distribution in the Universe,
but they are both expensive and time consuming. Photometric sur-
veys, on the other hand, can cover a much larger area of the sky
in less time, and can usually go below the spectroscopic flux limit.
They therefore provide a significantly more complete, and thus
less biased, sample of galaxies, which is a notable advantage over
spectroscopic surveys. Photometric surveys, however, struggle with
reduced accuracy in the galaxy positions along the line of sight.

Despite this problem, the larger galaxy sample sizes are useful
for numerous cosmological applications, such as obtaining con-
straints on cosmological parameters (e.g. Padmanabhan et al. 2007;
Carnero et al. 2012; Ho et al. 2012). These applications rely on
photometric redshifts (photo-z’s) calculated from broad-band pho-
tometry. Naturally, increasing the accuracy of photo-z’s is of great
importance.

A vast amount of methods have been developed to estimate photo-
z’s (see e.g. Hildebrandt et al. 2010; Abdalla et al. 2011, for recent
comparisons). Broadly speaking, photo-z estimation methods can be
classified as either template-based or empirical methods. Template-
based methods use SED fitting in the same way as for SFR esti-
mation; they match the observed colours or magnitudes to those
of a large library of synthetic template spectra (e.g. Benı́tez 2000;
Bolzonella, Miralles & Pelló 2000; Ilbert et al. 2006; Brammer, van
Dokkum & Coppi 2008).

Empirical methods train algorithms to estimate photo-z’s from
colours or magnitudes. The algorithms are calibrated to fit the task
at hand using a training data set with spectroscopically derived
redshifts.

A wide range of empirical methods have been developed, and
most fall into the categories of either tuning the colour–z relation or
machine learning. The machine learning category is highly diverse,
with techniques such as artificial neural networks (Collister & Lahav
2004), self-organizing maps (Geach 2012), random forests (Car-
rasco Kind & Brunner 2013), and Gaussian processes (Almosallam
et al. 2016) having been used for photo-z estimation. These tech-
niques generally outperform template-based methods for photo-z
estimation, as machine learning methods are able to adapt to the
highly non-linear relation between colours and redshift. For recent
reviews of the performances of various photo-z estimation methods,
see Dahlen et al. (2013) and Sánchez et al. (2014).

1.3 Increasing the information from photometric
measurements

SED fitting is a common method for both photo-z and SFR esti-
mation. Advantages of this method include the ability to get the
full SFH (limited by the detail level of the template library) of a
galaxy as well as constraints on its redshift, environment, etc. The
restrictions lie in the generation of the template spectra, with com-
putational power and understanding of stellar evolution being the
main limiting factors.

The main computational limitation is the enormous amount of
free parameters that can be tweaked in the generation of a single
spectrum. Because of this, and limited physical knowledge about
stellar evolution, it is still a great challenge to generate appropri-
ate template spectra (e.g. Pacifici et al. 2015; Smith & Hayward
2015). A brute-force way of calculating templates for a chosen grid
of parameters quickly becomes infeasible. The amount of degen-
eracies between the evolutionary states of different single stellar
populations (SSPs) also limits this approach.

A number of ways to reduce the amount of necessary template
spectra with minimum information loss have been explored. In par-
ticular, machine learning methods have been used to interpolate
between template spectra to allow for a sparser grid to be sam-
pled (e.g. Tsalmantza et al. 2007). Active learning was explored by
Solorio et al. (2005), where the computer automatically generates
new template spectra if no close match is found in the data set.
This automatically refines the template grid in regions that have
actual observations. A different approach was taken by Richards
et al. (2009), who used diffusion K-means to tackle the problem of

MNRAS 464, 2577–2596 (2017)

 at R
oyal L

ibrary/C
openhagen U

niversity L
ibrary on N

ovem
ber 8, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 



Selecting bands for optimal accuracy 2579

choosing which SSPs make up a galaxy spectrum, by finding an
appropriate basis from a large set of SSP spectra. In the same spirit,
Chen et al. (2009) used a principal component analysis to estimate
sSFRs from obtained eigenspectra.

While spectroscopy is superior in terms of information content,
photometry excels in terms of coverage. Using a machine learn-
ing approach to estimate parameters can give us the best of both
worlds. The algorithm can be trained on galaxies with accurate pa-
rameters determined from high-resolution spectra and then be used
to estimate the same parameters of other galaxies from broad-band
photometry only. This avoids the problem of generating template
spectra from models that may suffer from various restrictions and
approximations. However, just as template-based methods require
the parameter space to be densely sampled in order to provide good
parameter estimations, machine learning methods require training
data that represent the entire population. If such are not available,
the methods may lead to biased estimates. Machine learning meth-
ods can also achieve significantly lower computational complexity
compared to SED fitting, depending on the level of detail wanted,
which will become increasingly important in the near future, when
new photometric surveys start producing data at an unprecedented
rate.

Using highly detailed data can, however, lead to a decrease in ac-
curacy. This counterintuitive phenomenon occurs for both template
methods as well as machine learning methods, and can be attributed
to the fact that if a dimension contributes only (or even just some)
noise, it will decrease the overall signal-to-noise ratio (S/N).

Selecting only the most informative dimensions of the data can
therefore lead to higher accuracy, even if it requires removing some-
what informative dimensions, as the lower dimensionality of the
data can result in a higher S/N.

In the machine learning literature, the dimensions of a data point
are referred to as features. Thus, the task of choosing the most
informative dimensions is called feature selection. Feature selection
has already been investigated in an astrophysical context. Among
the most used feature selection algorithms are random forests, which
produce feature ranking as part of the algorithm. They have been
used in a number of studies, for example, D’Isanto et al. (2016)
and Rimoldini et al. (2012). Random forests are not the only way
to select features, and Graham et al. (2013) tested five different
feature selection strategies for classifying stars. Hoyle et al. (2015)
showed how adding the most informative features to the standard
set of colours and magnitudes significantly increased the accuracy
for photo-z estimation.

It is important to realize that the concept of most informative
features is not a universal one; the most informative features for
one algorithm may be different from those of another. That depends
on how specifically the algorithm uses the features, for example,
some algorithms may be sensitive to scaling of the features, while
others may not. And just as the most informative features vary
from algorithm to algorithm, so will they vary from task to task.
For example, whereas observed UV radiation may contain a lot of
information regarding star formation in the nearby Universe, it may
not be that informative for detecting, say, brown dwarfs.

In this paper, we show that we can obtain a significantly greater
accuracy of estimated photo-z’s and sSFRs, using only SDSS ugriz
photometry, by applying a machine learning method rather than
relying on spectral modelling of the photometry. Our approach is
similar to that of Stensbo-Smidt et al. (2013), but here we show that
the accuracy can be further increased by performing a feature se-
lection, selecting the most informative features among all measured
SDSS magnitudes and colours.

Specifically, we use k-nearest neighbours (k-NN) regression,
which is an intuitive method well known in machine learning and to
some extent also in astronomical communities (see e.g. Li, Zhang
& Zhao 2008; Polsterer, Zinn & Gieseke 2013; Polsterer et al. 2014;
Kremer et al. 2015; Kügler, Polsterer & Hoecker 2015). Of the more
prominent uses of k-NN in astronomy is the estimation of photo-z’s
in SDSS (Abazajian et al. 2009).

By using k-NN, we can automatically learn a mapping from mag-
nitudes and colours of galaxies to their parameters derived from re-
liable indicators, thereby allowing accurate photometric estimates
without high-resolution spectra. The reliable parameters can be
estimated using any method deemed appropriate for each individ-
ual galaxy, effectively taking advantage of multiple indicators, as
explored by Wuyts et al. (2011, 2013) for SFRs. A significant ad-
vantage of k-NN over other methods is that it naturally adapts to the
local, potentially high-dimensional structure of the data, and can
thus model highly non-linear behaviour without problems. Another
virtue of k-NN is its simplicity, which makes it easy to see how data
are used and compared within the algorithm.

Selecting the most informative features can, in theory, be done
by trying all possible feature combinations. As the number of com-
binations grows exponentially with the number of features, this
quickly becomes unfeasible, and one has to resort to clever selec-
tion strategies. Here, we use forward feature selection to determine
the most informative features (see Section 2.3 for details). For-
ward feature selection was used by Xu et al. (2013) to examine
which halo properties contained most information about the num-
ber of galaxies. In this paper, we use it to improve the estimation of
photo-z’s and photometric sSFRs, which illustrate the method’s
general usefulness.

The remainder of this paper is organized as follows: in Section 2,
we describe the k-NN algorithm and the algorithm we use to select
the most informative colours. Section 3 describes the data we are
using and details our experimental set-up. In Section 4, we provide
results of our experiments and an analysis of these. We end with a
discussion and a summary of our conclusions in Section 5.

2 M E T H O D S

The goal of this study is to test the efficiency of machine learning
techniques, in particular feature selection, when estimating physical
quantities of galaxies. We suggest using the selected features di-
rectly in regression methods rather than in connection with physical
models, such as population synthesis models. There are two funda-
mental ways of doing regression: parametric and non-parametric.
In the parametric case, data are assumed to follow a function f(x)
with known form but unknown parameters. It is usually fairly easy
to estimate these parameters by fitting, but this advantage comes
at a cost: by choosing a particular functional form of f(x), we have
made assumptions about the underlying structure of the data. If
these assumptions are not absolutely correct, we will not be able to
achieve optimal estimation performance (James et al. 2013). This
is where non-parametric methods have an advantage, as they do not
make any assumptions about the structure of the data, but adapt
to it.

2.1 k-NN regression

We employ one of the simplest non-parametric methods, namely
k-NN regression (Altman 1992; Hastie, Tibshirani & Friedman
2009; James et al. 2013). Assume that we are given a data set S =
{(x1, y1), . . . , (xN, yN )} ⊂ RD × R consisting of D-dimensional
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data points xi with associated output values yi. For instance, each
data point could represent a galaxy with D = 2 colour values (e.g.
B − V and U − B) and the output value yi could be the sSFR that
one is interested in estimating. The components of xi (which, in this
example, would be the colours) are called features. Now, we employ
machine learning to infer from S a general rule of how to predict the
(unknown) output value y′ given some new data point x′. The k-NN
method does this by simply finding the k closest data points with
known output values, and then taking the average of these values,
i.e.

y ′ = 1

k

∑

i∈Nk

yi , (1)

where Nk is the set of the k nearest data points in {x1, . . . , xN }
w.r.t. the new sample x′. The ‘closeness’ between samples is defined
via a metric d. That is, Nk = Nk−1 ∪ argmin(x,y)∈S\Nk−1

d(x, x′) for
positive integers k andN0 = ∅, where argmin breaks ties at random.

We use the Euclidean metric d(x, z) =
√∑D

i=1 (xi − zi)
2 for x, z ∈

RD , though any metric can be chosen. The Euclidean distance is the
most common choice in the literature, but it is perfectly possible
that another metric would perform better. One can also attempt to
learn the metric from the data as done by, e.g. Weinberger & Saul
(2009). To keep things simple, however, we stick to the Euclidean
metric.

Although the k-NN regression method is simple, it often yields
highly accurate predictors. This is especially the case if the amount
of training data N is large and/or the feature space dimensionality D
is low. While it may seem counterintuitive, adding more features (i.e.
dimensions) to the input data may make k-NN perform worse. The
performance of nearest neighbours models can deteriorate if D gets
too large, in particular when each added dimension contains intrinsic
noise. The addition of extra noise with each added dimension may
eventually decrease the S/N. This is perhaps most easily recognized
if one considers the extreme case of adding a feature, which is pure
noise. This can only decrease the performance, and adding more of
these pure noise features will eventually drown any signal present
in the original features.

Thus, it is important to select the right features, see Section 2.3.

2.1.1 k-NN and non-linear recalibration

As mentioned in Section 1.1, there is often disagreement between
various observational tracers when estimating SFRs. Davies et al.
(2016) recalibrated a number of observational tracers to produce
more consistent SFR estimates, using a linear relationship between
observed luminosity and derived SFR.

Such a recalibration is not without its own problems, though.
First, a ‘true’ SFR has to be defined as the base that other esti-
mation methods will be calibrated to. Defining such a true SFR
is problematic in itself. Secondly, a linear relationship may not be
flexible enough to capture the variability in the data.

Our proposed k-NN method can be seen as being similar in spirit
to a recalibration. The method cannot infer SFRs without access
to a training set, meaning that the SFRs need to be estimated us-
ing another method beforehand. Thus, the k-NN method is in fact
modelling a potentially very accurate SFR estimator, while having
access only to some less informative features. In this paper, for
example, accurate sSFRs are derived from spectroscopy, and the
k-NN method is modelling these using only photometric informa-
tion. Since k-NN is a highly non-linear method, it should be able to
obtain better estimates than simpler linear methods. Furthermore,

because of the non-linearity, we do not need to restrict the estima-
tions to particular subsets of the data, such as spiral galaxies, but
can model the entire population simultaneously.

2.1.2 Dealing with uncertainties

In its most basic form, the k-NN algorithm does not support the
inclusion of uncertainties associated with inputs or outputs, nor
does it provide confidence intervals for the estimated quantities
beyond calculating the variance of the neighbours’ outputs (Altman
1992). There are, however, extensions dealing with these issues.

There are a number of ways uncertainties may influence the
results of an analysis. First, there may be uncertainties related to
the output values (e.g. sSFRs or photo-z’s) of the training data,
which need to be propagated to the predicted output. Secondly,
there may be uncertainties in the input values (e.g. colours) of both
the training data and the new data, which also need to be propagated
to the estimated output value.

Propagating uncertainties from known data to the estimate made
by k-NN is not a trivial task. Ideally, to estimate the output value
of a new datum, its input uncertainties need to be propagated, and
one needs to incorporate the uncertainties on both input and output
of the training data. A standard Monte Carlo sampling can deal
with all these uncertainty issues, but it will quickly get far too
computationally expensive.

Assuming Gaussian errors, uncertainty in the output alone can be
dealt with in a relatively straightforward manner by using a weighted
average, y ′ = ∑

i∈Nk
wiyi/

∑
i∈Nk

wi , using wi = σ−2
i , where σ 2

i

is the variance of yi. This does not account for the scatter of the in-
puts, which ideally should mean that more distant neighbours (and
their corresponding uncertainties) are weighted less when comput-
ing the average. This can be accounted for by including the similarity
metric in the weights, or, alternatively, including the uncertainties in
the similarity metric as done by, e.g. Polsterer et al. (2013). An addi-
tional complication arises due to the uncertainties in the inputs and
the choice of number of neighbours, k. With uncertain inputs, the
question of which of two neighbours is closer cannot be answered
with complete certainty.

Both the question regarding choosing k and that of choosing the
proper similarity metric can, however, be addressed with a prob-
abilistic formulation of k-NN (Holmes & Adams 2002; Everson
& Fieldsend 2004; Manocha & Girolami 2007), which allows for
posterior inference over k and the similarity metric.

Finally, one may simply try to find a heuristic, reasonable estimate
of the uncertainty of the new data. This is, for instance, how the
photo-z uncertainties in the SDSS data base have been computed
(Abazajian et al. 2009). Here, a hyperplane was fitted to the nearest
100 neighbours in colour space, and the mean deviations of the
redshifts from this hyperplane were found to be good estimates of
the errors.

To our knowledge, there is no accepted way of dealing with all
uncertainty issues short of Monte Carlo sampling. In this paper,
we have therefore chosen to ignore the question relating to uncer-
tainties, focusing solely on demonstrating the performance gain of
combining k-NN and feature selection.

2.2 Choosing the number of neighbours

In most versions of k-NN, including the vanilla version, one must
choose the number of neighbours, k, to average over. Increasing k
implies that a prediction will be based on the average of many sam-
ples, which reduces the variance of the classifier but may increase
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Selecting bands for optimal accuracy 2581

its bias (for a discussion of the bias-variance decomposition of the
error of k-NN regression, we refer to Hastie et al. 2009). A standard
technique for choosing k is cross-validation (CV). In M-fold CV,
the available data S is randomly partitioned into M subsets S1, . . . ,
SM of (almost) equal sizes. Let S\i = ⋃

j=1,...,M∧j 	=i Sj denote all
data points except those in Si. For each i = 1, . . . , M, an individual
model is built by applying the algorithm to the training data S\i. This
model is then evaluated using the test data in Si. The average error is
called CV error and is a predictor of the generalization performance
of the algorithm. To choose k for k-NN using M-fold CV, S is split
into M subsets. For each fold i = 1, . . . , M, k-NN models are built
and tested using different values for k (say, k = 1, 3, 5, . . . ). The k
with the lowest CV error is finally selected.

It must be stressed that the data used for model selection must
be independent from data for assessing the final performance of a
model.

2.3 Informative features

The use of appropriate features is crucial for machine learning.
Standard features in astronomy are, for instance, magnitudes or
the derived colours. The performance of a model can, however,
often be improved by considering additional features or special
combinations of features (thus, effectively changing the underlying
distance metric d).1 We employ automatic feature selection to pick
the most informative features for our regression task.

2.3.1 Feature selection

The goal of feature selection is to reduce the dimensionality of the
input space by selecting the most informative features. A direct way
to select such informative features is to systematically try various
combinations of them and select the subset with the most promising
accuracy for the final model (based on a certain evaluation criterion
such as CV). In theory, one would like to try every possible combi-
nation of features, but in practice this is often infeasible due to the
induced exponential runtime. In the literature, different techniques
have been proposed to address this issue, such as the idea to max-
imize the probability of finding the best combination of features.
We refer to Guyon & Elisseeff (2003) for an introduction to feature
selection.

Standard alternatives to such an exhaustive search are forward
and backward feature selection (Hastie et al. 2009), which aim
at selecting informative features in an incremental manner. For the
case of forward selection, one starts by selecting the most promising
feature by assessing the predictive power of each of the D features.
In the second iteration, the first feature is kept and a second one
is selected based on the predictive power of both the first and the
second feature. This process is repeated until the number d̄ of de-
sired features is selected. Backward elimination works similarly.
However, instead of incrementally adding features, one removes a
feature at a time, starting with all D features being selected.

Even forward and backward feature selection are still compu-
tationally demanding, but using clever implementations and data
structures one may parallelize the procedure. This paper uses a mas-
sively parallel matrix-based implementation combining incremental
feature selection and nearest neighbour models, recently proposed

1 For instance, the SDSS pipeline resorts to two different types of mag-
nitudes via the linear model psfMag− cModelMag > 0.145 to classify
photometric objects as ‘galaxy’ or ‘point-like’.

Figure 1. An example spectrum of a galaxy from the SDSS data base (black
curve) overlaid by the five bandpass filters of SDSS (Fukugita et al. 1996).

by Gieseke et al. (2014a). For more details on the implementation,
we refer to Appendix A.

3 EXPERI MENTA L SET-UP

3.1 Data selection

The experiments in this study use photometric data from SDSS
(York et al. 2000). The data are a subset of SDSS Data Release 7
(DR7; Abazajian et al. 2009), and consist of psfMag, fiberMag,
petroMag, deVMag, expMag, and modelMag magnitudes in
the u, g, r, i, and z bands (see Fig. 1) for each galaxy as well as the
galaxy’s sSFR and redshift, estimated from spectroscopy. We also
include the photometric redshifts estimated by SDSS (Abazajian
et al. 2009).

Data are obtained from SDSS CasJobs, using the SpecPhoto
view, which ensures that objects have clean spectra. sSFRs were
taken from Brinchmann et al. (2004).2 To clean the data, we apply
the following constraints.

(i) For sSFRs, we require that the estimation was successful
(flag = 0), and we remove all duplicate galaxies.

(ii) For redshifts, we require that both spectroscopic and
photometric estimations were successful (for spectroscopy,
zWarning = 0; for photometry, zErr >= 0).

A sample of 611 479 galaxies meet the above criteria. For a
smaller subset of 7799 low-redshift galaxies (0.0042 < z < 0.33)
within the selected sample, we additionally have photometric sSFR
estimations obtained by a template-based modelling approach de-
scribed in Section 3.2. No additional selection criteria have been
applied to this subset. In particular, no S/N cut has been used in
order to highlight the method’s robustness to varying noise levels.
In this work, we do not make use of any S/N information, though
special treatment of low S/N sources can be incorporated in various
ways (see discussion in Section 2.1.2). The experiments will be
based on two samples of galaxies: the smaller subset and the full
sample, excluding the smaller subset (totalling 603 680 galaxies).
The redshift distributions of these two samples can be seen in Fig. 2.
The smaller subset consists entirely of low-redshift galaxies, where
also the majority of the larger sample can be found. The larger sam-
ple consists primarily of galaxies below z ∼ 0.5, with only a few
galaxies at higher redshifts.

2 We used specsfr_avg from the data located at http://
wwwmpa.mpa-garching.mpg.de/SDSS/DR7/sfrs.html.
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2582 K. Stensbo-Smidt et al.

Figure 2. Redshift distribution of the two galaxy samples used in the experiments. The entire sample, excluding the smaller subset, additionally contains a
single galaxy with z = −1.93 × 10−4, which is not shown in the plot.

3.2 Comparison with other methods

We will compare our results to those of two other methods, one for
the sSFR estimations and one for the photo-z estimations.

For the photo-z experiments, we compare our results to the
photo-z’s available directly through the SDSS data base. These
photo-z’s have been estimated using a combination of k-NN (Csabai
et al. 2007) and a template-based method (Budavári et al. 2000), as
described in Abazajian et al. (2009). The k-NN part of the method
differs from our approach in that it bases the estimated photo-z on
a local hyperplane fitted to the 100 nearest neighbours, instead of
just taking the average (and optimizing the number of neighbours),
as we do. A potential benefit of using a hyperplane is the ability to
extrapolate beyond the redshifts of the training set. Since the vanilla
k-NN estimates redshifts by computing the average redshift of the
nearest neighbours (in, for instance, colour space), its estimates are
restricted to be within the minimum and maximum values of the
training set. A linear model (a hyperplane), on the other hand, can
extrapolate beyond these, but the quality of the estimates will de-
pend on how well the local neighbourhood is described by the linear
model.

For the sSFR experiments, we compare our estimated sSFRs to
those obtained by the standard approach of stellar population syn-
thesis modelling very similar to those used in Gallazzi et al. (2005,
2008) and Salim et al. (2007).3 Roughly speaking, a large library of
template spectra is generated from stellar population synthesis mod-
els. To estimate the SFR of a certain observed galaxy, one would
compare the galaxy’s spectrum to each of the template spectra. The
SFRs of the templates are then weighted based on the likelihood of
the template spectra given the real spectrum, resulting in a proba-
bility distribution for the SFR. From this distribution, the final SFR
of the galaxy is calculated as the expected SFR.

To estimate the sSFR when only photometric information is avail-
able, the template spectra are multiplied by the filter transmissions
of the particular survey, in our case SDSS (see Fig. 1), to produce
template magnitudes. These are then compared to observed ones,
and the pipeline described above continues.

3.3 Description of experiments

We considered four different experimental set-ups with the common
goal of estimating sSFRs and photo-z’s of galaxies as accurately as

3 J. Brinchmann, private communication.

possible. The first two experiments were based on the exact same
galaxy sample as used for the template-based model (and can thus
be compared directly), whereas the last two experiments were based
on the total selected galaxy sample mentioned in Section 3.1, but
with the smaller subset excluded (hereafter referred to as the larger
subset). The experiments for sSFR and photo-z estimations were
identical in set-up – only the quantity to be estimated changed.

Common to all experiments is that we used the four colours
u − g, g − r, r − i, and i − z of the galaxies, and in the experiments
with feature selection we additionally included the plain magni-
tudes u, g, r, i, and z. The magnitudes varied from experiment to
experiment, see the summary in Table 1 and detailed description
further down. The data and code used for the experiments, as well
as the results of these, can be found online, see Appendix B.

In each experiment, a nested CV – an inner and an outer – was
used to assess the performance of the k-NN method. Both the inner
and outer CV partitioned the data into 10 folds with 9 folds being
used for training and the remaining fold being used for testing. For
each outer CV, the 9 folds of training data were further partitioned
into 10 inner folds for the inner CV. Of these 10 inner folds, 9
were used as training data and the remaining as test data in order to
determine the optimal k ∈ {2, 3, 4, . . . , 50}, while simultaneously
doing feature selection by minimizing the root-mean-square error
(RMSE). The exact number of chosen features, as well as which
features were chosen, therefore varied across all folds. This simul-
taneous k determination and feature selection was made possible by
the massively parallel graphics processing unit (GPU) implemen-
tation of the k-NN algorithm described in Gieseke et al. (2014a).
Doing feature selection on the scale of this study is simply not
feasible without a highly optimized k-NN implementation.

After the optimal features and optimal k were determined by the
inner CV, the performance was assessed by the outer CV.

The performance of each method was therefore assessed 10 times,
allowing us to calculate both the means and (population) standard
deviations for each of the performance metrics discussed in Sec-
tion 4. As folds in a CV procedure are not fully independent of
each other, these standard deviations cannot be interpreted as strict
confidence intervals.

To make the estimations by the k-NN, the template-based model
(for the sSFR estimations), and the SDSS method (for the photo-z
estimations) comparable, the predictions by the latter two methods
were divided into the same 10 subsets as used in the outer CV of the
k-NN, and the same statistics were calculated. The four experiments
were devised as follows.
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Selecting bands for optimal accuracy 2583

Table 1. Summary of experiments. The experiments were based on the four colours u − g, g − r, r − i, and i − z, as well as the five magnitudes u, g, r, i, and
z, where indicated.

Experiment Sample size Feature selection Features

1 7799 No modelMag; colours only
2 7799 Yes psfMag, fiberMag, petroMag, deVMag, expMag, modelMag; colours and magnitudes
3 603 680 No modelMag; colours only
4 603 680 Yes As selected in experiment 2

Table 2. RMSEs, medians, and scatter of �sSFR, shown as their mean and standard deviations over the 10 CV folds for the k-NN regressions and the
template-based model.

Experiment D RMSE/10−2log(yr−1) Median/10−2log(yr−1) Scatter, σ /10−2log(yr−1) η/per cent

SDSS subset of 7799 galaxies
1 4 29.0 ± 1.8 1.63 ± 1.20 28.9 ± 1.7 1.78 ± 0.36
2 8a 27.1 ± 1.5 1.52 ± 0.99 27.0 ± 1.4 1.72 ± 0.32
Template-based model 34.9 ± 1.6 − 12.4 ± 0.8 30.4 ± 1.6 3.05 ± 0.35

SDSS subset of 603 680 galaxies
3 4 29.6 ± 0.2 1.65 ± 0.11 29.6 ± 0.2 1.78 ± 0.04
4 8 27.4 ± 0.3 1.33 ± 0.08 27.4 ± 0.3 1.85 ± 0.05

aNumber of features is the median of the 10 CV folds.

Experiment 1. The first experiment used the smaller subset (7799
galaxies) and used the four modelMag colours u − g, g − r, r − i,
and i − z as features. No feature selection was performed, but k was
still optimized in each of the inner CV folds. This experiment acts
as a baseline for the later feature selection.

Experiment 2. The second experiment again used the smaller sub-
set, but this time all six types of magnitudes (psfMag, fiberMag,
petroMag, deVMag, expMag, and modelMag) were used. Each
type of magnitude gives rise to four colours and five magnitudes,
totalling 54 features. A feature selection was performed indepen-
dently for each outer CV fold to find the best feature combination.

Experiment 3. The third experiment used the larger subset. The
features were again only the four modelMag colours, and the ex-
periment will serve as a baseline for the k-NN performance on this
larger subset.

Experiment 4. The fourth experiment also used the larger subset.
The features were chosen to be the overall most informative ones
found in experiment 2, based on a median ranking of the importance
of each feature across the CV folds. This last experiment will test
how well k-NN, with features found from a feature selection on a
small data set, can extended to a much larger data set, thus assessing
its performance in a ‘big data’ setting.

4 R E S U LT S A N D A NA LY S I S

4.1 sSFR experiments

We evaluate the sSFR experiments using the following perfor-
mance metrics. We define the logarithm of the ratio of the
estimated sSFR to the spectroscopically confirmed, �sSFR ≡
log10(sSFRest/sSFRspec). For each CV fold m, we compute the
RMSE as

RMSE =
√

1

|Sm|
∑

n∈Sm

�sSFR2
n,

where Sm is the test set. We also compute the median of �sSFR,
as well as the scatter, σ , defined to be the standard deviation of

Figure 3. RMSE and one standard deviation intervals for each of the 10 CV
folds of the estimated sSFRs during feature selection. A sharp decrease in
error is seen as the first features are added, but it levels off quickly after
the first three added features. As features continued to be added, the errors
started increasing again.

�sSFR over the test set. Lastly, we report the fraction of catastrophic
outliers, η, defined to be galaxies with |�sSFR| > 3σ .

Results of the sSFR experiments can be seen in Table 2. The
reported values are the means and standard deviations of each per-
formance metric over the 10 CV folds.

Comparing first the results of the experiments on the smaller sub-
set of SDSS (experiments 1 and 2) to the result of the template-based
model, we see a clear overall improvement for both experiments.
In particular, the median is much improved, showing that k-NN
achieves a lower bias.

In addition, doing feature selection (experiment 2) rather than
simply using the four modelMag colours (experiment 1) further
improved the estimations, though not as significantly as the im-
provements over the template-based model. Fig. 3 shows the RMSE
and standard deviation of the sSFR estimation for each of the 10
CV folds of the smaller subset during feature selection (experiment
2). The RMSE and standard deviation are computed each time a
feature is added. It is seen that by far the largest gain in accuracy
happened with the addition of the first three features (which for
all folds are three modelMag colours, see below). The error kept
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2584 K. Stensbo-Smidt et al.

Figure 4. Ranking of the top 25 most important features from the feature selection in experiment 2. To the left are the feature names, while the rightmost
column shows the median rank of each feature across all CV folds. Each of the other columns shows the feature ranking in a particular CV fold. The larger the
bar for a certain feature, the more important the feature was. Blue bars show features that were chosen during the feature selection as the most informative in
a particular CV fold. Because of the differences in the data used in each CV fold, the exact features selected as important, as well as the number of chosen
features per fold, will vary. The number of chosen features vary from 7 through 10, with a median of 8.

decreasing until it was at its lowest at seven to ten added features
after which the error started to increase. This is a very commonly
seen behaviour for k-NN, and the reason is likely the decreasing
quality of the features; as the dimensionality of the feature space
increases, we are adding less informative (i.e. noisier) features. The
combined effect is that the nearest neighbours to any given data
point might change and the estimation will be worse as a result. It is
therefore important to stop the feature selection process before the
error starts increasing. The results for experiment 2 in Table 2 were
achieved in exactly this way, i.e. by stopping when the RMSE was
lowest.

To see which features were chosen in experiment 2, and in which
order they were chosen, the results for each CV are illustrated in
Fig. 4. The full list of ranked features can be seen in Fig. C1. The
names of the features are shown to the left of the plot, and the middle
10 columns show the ranking of the features for each of the 10 CV
folds, with a larger bar indicating that the feature was chosen earlier
in the feature selection process, and thus has higher importance.
A bar is coloured blue if the corresponding feature was selected
in the feature selection process. Note that the amount of selected
features per fold varies, as do the chosen features themselves. This
is due to the differences in the data for each fold. This variation
should become less prominent with an increased amount of data,
as the folds will statistically become more and more similar. The
rightmost column shows the median rank of each feature over all
CV folds.

It is seen that the top six features were consistently chosen in each
CV fold, except for the u-band psfMag, which seems to have been
replaced by the i band in two folds, see Fig. C1. The expMag g − r
colour was also selected in all but two folds, though it is less clear
whether it was replaced with something else. The remaining chosen
features varied more, but were also consistent enough that, except
for the i-band psfMag and the expMag u − g colour, no feature
below the ninth in the figure was ever chosen. For the overall most
informative features (for use in experiments 2 and 4), we chose to
select the top eight features from the plot, since eight is the median

of the number of chosen features across the CV folds. This is just one
particular choice, and one may equally well explore the benefits of
using other selection criteria or ranking methods, e.g. ranking based
on how often a feature was chosen. Indeed, testing various ranking
and selection criteria is an obvious extension to our work, though
the exact choices are unlikely to cause significant changes to the
results. In summary, we chose to base both ranking and selection
on the median.

Returning to the figure, it is interesting that only a singlepetro-
Mag colour was ever selected, even though these are the magnitudes
recommended by the SDSS4 for use with low-redshift galaxies. In-
stead, the most prominent features were modelMag and fiber-
Mag colours, with modelMag colours as the top three most in-
formative features. This is not surprising, since the modelMag
magnitudes are defined as either expMag or deVMag magnitudes
depending on which fits the best.

Interestingly, none of the selected features use the z band, which
can likely be explained by the band’s low filter transmission, as
seen in Fig. 1. This will often result in a low S/N. Also interesting
is the fact that the u band appears in many of the most informative
features, even though it also has a low S/N. The reason is likely
that the band captures UV radiation from newly formed stars, thus
directly measuring (part of) the SFR. This result fits well with the
analysis of Davies et al. (2016), who found the NUV and u bands
to be optimal for measuring unbiased SFRs.

Looking further down the list of selected features, we see that
magnitudes and colours based on expMag were generally ranked
much higher than their deVMag counterparts. This is interesting,
as modelMag, which dominates the list of informative features,
is the better fit of expMag and deVMag. This could suggest that
the modelMag mostly resorted to a deVMag fit; adding deVMag
colours (again) would not provide any new information, so the
feature selection chooses to add expMag colours instead. Indeed,

4 http://classic.sdss.org/dr7/algorithms/photometry.html
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Figure 5. Correlations between the estimated and spectroscopically determined sSFRs for the template-based model and the four experiments. The colour
coding indicates the amount of galaxies in each bin.

comparing the likelihoods of the deVMag and expMag fits5 reveals
that the deVMag fit achieved the largest likelihood for ∼66 per cent
of the galaxies in the smaller subset.

Returning to Table 2 and now considering experiment 3, which
used the larger subset, but only the four modelMag colours, we
see a performance similar to that of experiment 1, though now
with significantly reduced uncertainties due to the larger sample
size.

Experiment 4 also used the larger subset, but with the eight fea-
tures chosen as the most informative in experiment 2 (the top eight
colours and magnitudes in Fig. 4). As stated previously, the idea be-
hind this experiment was to see how features selected on a smaller
subset generalize to a larger one. This is important to know if this
method is to be applied to a larger part of SDSS without any spec-
troscopically determined sSFRs to check for consistency with. The
results from experiment 4 show that the feature selection from ex-
periment 2 did indeed increase the performance of the method com-
pared to using the standard colours (experiment 3). The fact that the
results of experiment 4 were consistent with those of experiment 2
shows that the most informative features can indeed be determined
from a smaller subset and then used on a larger. Additionally, it
shows that k-NN regression can be an effective method for deter-
mining sSFRs from photometric data, even when the features are
determined from a much smaller subset.

Fig. 5 shows the correlations between the spectroscopically deter-
mined sSFRs and the corresponding estimations from the template-
based model as well as each of the four experiments. Looking

5 Available through the PhotoObjAll table in the SDSS data base.

at the estimations from the template-based model (Fig. 5a), it is
immediately clear where it falls short; it seems to consistently
underestimate the sSFRs of the low-sSFR galaxies. The distribu-
tion for high-sSFR galaxies also seems slightly skewed towards
underestimation.

The estimations made by the k-NN regression (Figs 5b and c)
were clearly better than those from the template-based model. The
distribution for high-sSFR galaxies seems quite symmetric, while
for the low-sSFR galaxies it appears slightly skewed towards over-
estimating the sSFRs.

The same trends can be seen in the estimations by the k-NN
regression on the larger subset (Figs 5d and e): a symmetric mode
for the high-sSFR galaxies and a slightly skewed mode for the
low-sSFR galaxies, though not as pronounced as for the smaller
subset.

For all k-NN experiments, the distribution at highest sSFRs seems
to skew towards underestimation. This is likely due to the inherent
inability of k-NN to extrapolate beyond the distribution of the train-
ing set; as there are only few data at these sSFRs, it is likely that the
average of the nearest neighbours (in colour space) will drive the es-
timated sSFR towards lower values. Apart from choosing a different
method than k-NN, an obvious remedy would be to include more
galaxies in the training set to cover more of the colour–magnitude
and sSFR space. Another possibility would be to include colours
from other surveys, thereby increasing the dimensionality of the
colour–magnitude space. This could potentially add the extra infor-
mation needed in order to move the galaxies closer to others with
similar sSFRs. Indeed, Salim et al. (2005) showed that a combina-
tion of SDSS and GALEX (Martin et al. 2005) photometry led to a
significant improvement in the estimation of SFRs over using just
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2586 K. Stensbo-Smidt et al.

Figure 6. sSFR residuals as function of redshift for the two galaxy samples used in the experiments. The colour coding of the distributions indicates the
amount of galaxies in each bin. The orange line shows the running median of the underlying distribution, the thick bars span the 15.87th through the 84.13th
percentile (±1σ ), and the thin bars span the 2.28th through the 97.72th percentile (±2σ ). Residual plots for experiments 1 and 3 can be found in Appendix D.

SDSS photometry. It is natural to assume that this would also be the
case with our method.

When looking at Fig. 5, all distributions seem to have a hump
around (−11, −12), where the sSFRs are somewhat underestimated.
It appears as if galaxies from the green valley get mixed up with
quenched galaxies. The problem also seems to be present for the
template-based model, indicating that there may not be enough
information in the SDSS magnitudes to distinguish these galaxies
from quenched ones. Giving the galaxies a closer look would be an
obvious next step to further increase the accuracy of the methods.
It is, however, clear that the k-NN method works equally well for
estimating sSFRs for both main-sequence and quenched galaxies,
which is a rare quality for sSFR estimation methods in general.

Fig. 6 shows the sSFR residuals as function of spectroscopic
redshift, with the orange line showing the running median of the
underlying distribution. The thick bars span the 15.87th through the
84.13th percentile (±1σ ), and the thin bars span the 2.28th through
the 97.72th percentile (±2σ ).

The template-based model (Fig. 6a) has a clear tendency to under-
estimate the sSFR throughout the entire redshift range. Our k-NN
model (Figs 6b and c) performs a lot better, with a running median
close to 0 at all redshifts. The scatter around the running median
seems similar for both models, which is also apparent from Table 2.

Although the data are limited to rather low redshifts, it is reassur-
ing to see that there appears to be no significant increase in either
bias or scatter, even at the highest redshifts with our model. Note
that the redshift was not part of the features used by our method.
Estimation of sSFRs at all redshifts is based solely on colours and
magnitudes of the galaxies.

4.1.1 Estimating uncorrected sSFRs from fiberMag colours

The colours and magnitudes are ranked based on their ability to
estimate aperture-corrected sSFRs. As aperture correction is an in-
herently difficult task, one might expect that we would be able
to obtain better accuracies by estimating uncorrected sSFRs using
fiberMag colours and magnitudes only, since these should cover
the same part of the galaxies. We briefly tried to conduct experi-
ments 1 through 4 using only fiberMag colours and magnitudes
for estimating uncorrected sSFRs, the results of which can be found
in Appendix E, but surprisingly the results were consistently worse
than for the experiments described above. All experiments per-
formed worse than the template-based model (though these experi-
ments are not strictly comparable, as we do not have estimations for
the uncorrected sSFRs from the template-based model), and the per-
formance also decreased significantly when going from the smaller

subset to the larger. Why this is the case is not immediately obvi-
ous, but there seems to be significantly more galaxies with severely
underestimated sSFRs (one to two orders of magnitude). Thus, the
reason may be that the fibre is only covering the centre of many
galaxies, making it more difficult to discern between ellipticals and
spiral galaxies.

4.2 Redshift experiments

The accuracy of the photo-z experiments is evaluated using the
following metrics. We define the normalized redshift estimation
error as �z′ = �z/(1 + z), where �z = zphot − zspec. Following Ilbert
et al. (2006), we define a catastrophic outlier as a galaxy with |�z′|
> 0.15 and η as being the fraction of catastrophic outliers in a given
experiment. We further use the definition of the normalized median
absolute deviation as σ NMAD = 1.48 × median(|�z′|). Following
Dahlen et al. (2013), we define σ RMS = 〈�z′2〉1/2 and σ O as being
the σ RMS after catastrophic outliers have been removed. We also
evaluate the bias, given as the mean normalized error, biasz = 〈�z′〉,
once again excluding catastrophic outliers.

Table 3 presents the results obtained in the various experiments.
The results are calculated by combining the results from the test
sets in each of the 10 CV folds.

Considering first the experiments on the smaller subset, the
SDSS method is quite consistently outperforming our experiment 1,
though the differences are within or around one standard deviation.
Our experiment 2, however, is consistently outperforming the SDSS
method, though again the differences are mostly within one standard
deviation. Comparing our experiments 1 and 2 shows a much more
significant difference; the chosen features clearly outperformed the
four standard colours.

Fig. 7 shows the 25 most important features obtained from the
feature selection in experiment 2, with the features chosen as most
informative coloured in blue. The full list of ranked features can
be seen in Fig. C2. The top six features were quite consistently
chosen as the most important, whereas the remaining chosen fea-
tures in each CV fold are more scattered than for sSFR estimation.
The number of chosen features also vary much more: from six to
eleven features are chosen in the folds. The median number of se-
lected features was seven, so the top seven features in Fig. 7 were
chosen as basis for experiment 4. The varying features as well as
the number of chosen features for each CV fold can be an indica-
tion that many magnitudes and colours have very similar informa-
tion content. Thus, even small differences in the data sets used in
each CV fold can be enough to change the features deemed most
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Selecting bands for optimal accuracy 2587

Table 3. Results from the photo-z estimation experiments. Evaluation metrics are the bias, biasz = 〈�z′〉; the normalized root-mean-square (RMS) error,
σRMS = 〈�z′2〉1/2; the RMS error with outliers removed, σO; the normalized median absolute deviation, σNMAD = 1.48 × median(|�z′|); and the fraction of
catastrophic outliers, η. The standard deviations shown are calculated over the 10 CV folds.

Experiment D biasz/10−4 σRMS/10−2 σO/10−2 σNMAD/10−2 η/10−2 per cent

SDSS subset of 7799 galaxies
1 4 −6.13 ± 9.80 2.19 ± 0.08 2.17 ± 0.07 1.72 ± 0.10 2.56 ± 5.13
2 7a −1.00 ± 8.32 1.82 ± 0.09 1.81 ± 0.08 1.46 ± 0.06 2.56 ± 5.13
SDSS 4b −5.84 ± 9.58 2.01 ± 0.06 1.99 ± 0.07 1.54 ± 0.06 3.85 ± 5.88

SDSS subset of 603 680 galaxies
3 4 3.52 ± 0.66 2.22 ± 0.03 2.20 ± 0.03 1.77 ± 0.02 2.82 ± 0.59
4 7 0.401 ± 0.524 1.72 ± 0.02 1.71 ± 0.02 1.38 ± 0.01 0.895 ± 0.372
SDSS 4b 5.29 ± 0.62 2.22 ± 0.02 2.12 ± 0.01 1.65 ± 0.01 8.58 ± 1.02

aNumber of features is the median of the 10 CV folds.
bSDSS additionally fitted a hyperplane in order to make estimations.

Figure 7. Ranking of the 25 most important features according the feature selection in experiment 2. To the left are the feature names, while the rightmost
column shows the median rank of each feature across all CV folds. Each of the other columns shows the feature ranking in a particular CV fold. The larger the
bar for a certain feature, the more important the feature was. Blue bars show features that were chosen during the feature selection as the most informative in
a particular CV fold. Because of the differences in the data used in each CV fold, the exact features selected as important, as well as the number of chosen
features per fold, will vary. The number of chosen features vary from 6 through 11 with a median of 7.

informative. Using a larger data set for the feature selection will
likely make the chosen features more stable.

It is interesting to see that, while three of the four modelMag
colours are among the selected features, they are not the most infor-
mative. ThefiberMag colours appear to contain more information
for photo-z estimation.

Another interesting observation is that the z-band expMag was
chosen consistently in all CV folds. Having a single measure of
the z-band magnitude therefore seems to be important for photo-z
estimation. This is rather surprising, given the z band’s low S/N, but
shows that the observed SED is very informative in this regime.

Returning again to Table 3, it is expected that the SDSS method
outperform our experiment 1. Even though we use the same features,
the SDSS estimate uses a hyperplane fit to the nearest 100 samples.
This will act as regularization, making estimations less susceptible
to outliers.

Considering now the experiments on the larger subset, the results
are qualitatively as before, but with significantly reduced error bars.
Overall, SDSS outperforms our experiment 3, which again uses the

same features. As before, this is to be expected. Interestingly, our ex-
periment 3 has a significantly lower outlier rate η than SDSS ((2.82
± 0.59) × 10−2 per cent versus (8.58 ± 1.02) × 10−2 per cent).

Experiment 4 significantly outperformed both our experiment 3
and, more interestingly, the photo-z estimations from SDSS. We
are thus able to achieve much better performance by using optimal
features (found from a smaller data set) instead of the standard ones,
even when using additional modelling as SDSS does.

Fig. 8 shows correlations between estimated photo-z and the
spectroscopically derived redshift. The spectroscopically deter-
mined redshifts have a sharp cut around z ∼ 0.33, after which
there are only few galaxies. This is a result of our data
selection.

Figs 8(a) and (d) show the photo-z estimations made by SDSS,
i.e. not by our model. Figs 8(b) and (e) show the photo-z esti-
mations done using our k-NN method, but using only the four
modelMag colours. Finally, Figs 8(c) and (f) show the photo-z
estimations done using our k-NN method, including the feature
selection.
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2588 K. Stensbo-Smidt et al.

Figure 8. Correlations between the estimated photo-z and spectroscopically determined z for the SDSS photo-z method and our k-NN method. The colour
coding of the distributions indicates the amount of galaxies in each bin.

Focusing first on the experiments using the smaller subset, we
see that distributions resulting from our k-NN method and SDSSs
are, qualitatively, quite similar. Experiment 2, which used fea-
ture selection, seems to have a slightly more symmetric distri-
bution around the diagonal and appears to work better at the
smallest redshifts, but is otherwise very similar to the other two
experiments.

Turning now to the experiments using the larger subset, the SDSS
method appears to result in more extreme outliers than ours. As
before, this observation may be misleading. Figs 8(e) and (f) show
a clear horizontal cut around zphot ∼ 0.33 with only few estimated
redshifts above this line. This cut is due to our data selection criteria,
causing only a handful of galaxies with redshifts higher than z ∼
0.33 to be present in the data. As our k-NN method uses the mean of
the nearest neighbours to estimate redshifts, it is restricted to always
estimate redshift values within the range of the training set. Thus,
a sharp cut in the redshifts of the training data means a sharp cut
in the estimations, and a somewhat artificial reduction of potential
outliers.

The cut is not present in the estimations from SDSS. In fact, the
distribution of estimated redshifts appears unaffected above zphot

∼ 0.33. One may be led to think that the method used by SDSS
performs worse than ours in this region. One cannot, however, draw
such a conclusion, as there are (at least) two plausible explanations
for these estimations. First, the galaxies with zphot,SDSS � 0.33 may
lie in the outskirts of the data distribution in colour space, thus
requiring extrapolation. If the local data distribution is not well
described by a linear model, such as the one used by SDSS, the
extrapolation may be of low quality. Secondly, the estimations may
have been made using a data set with more high-z galaxies than
ours. Indeed, it is unlikely that SDSS has employed the exact same

selection criteria as we have (and only those), and as we furthermore
sample randomly from our selected subset for the CVs, the two data
sets will differ to some degree. If the data set used by SDSS contains
more high-z galaxies, then what appears to us as extrapolations may
in fact be interpolations for SDSS. Had the same galaxies been
included in our data set, we might have experienced similar results.

Thus, one should not draw conclusions regarding which of the
methods work best based on estimations in this region.

Ignoring for a moment estimations above zphot ∼ 0.33, the
SDSS estimation seems to perform better than our experiment
3 (Fig. 8e), which only used the four modelMag colours. The
SDSS photo-z distribution seems tighter around the diagonal, which
is likely a result of the hyperplane fit acting as regularization.
Both methods do, however, significantly overestimate at the lowest
redshifts.

Fig. 8(f) shows the estimations made by our k-NN method, using
the features obtained from the feature selection process in experi-
ment 2. Compared to Fig. 8(e), there is less scatter and the distribu-
tion is significantly tighter around the diagonal. Comparing with the
SDSS estimations (Fig. 8d), we perform significantly better at the
lowest redshifts, with the added bonus of an overall more symmetric
distribution.

Finally, Fig. 9 shows the photo-z residuals as function of spec-
troscopic redshift. The rather sharp slopes at z ∼ 0.3 for our estima-
tions are a result of the cut in the spectroscopic redshift as discussed
previously. The SDSS estimations do not exhibit this slope, again
suggesting that they may have been made using a data set contain-
ing more high-z galaxies, thus making extrapolation beyond z ∼ 0.3
possible.

Considering the photo-z experiments on the small subset, there is
not much difference between the estimates from SDSS (Fig. 9a) and
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Selecting bands for optimal accuracy 2589

Figure 9. Redshift residuals as function of redshift for the two galaxy samples used in the experiments. The colour coding of the distributions indicates the
amount of galaxies in each bin. The orange line shows the running median of the underlying distribution, the thick bars span the 15.87th through the 84.13th
percentile (±1σ ), and the thin bars span the 2.28th through the 97.72th percentile (±2σ ). The sharp slopes seen in (c) and (d) are a consequence of the training
set containing only few galaxies with z � 0.33. As the k-NN method is not well suited for extrapolation, only few galaxies will have an estimated photo-z
�0.33. Residual plots for experiments 1 and 3 can be found in Appendix D.

those from our k-NN method (Fig. 9c). Note that the estimations
from our method have been obtained using feature selection. Both
estimation methods appear to overestimate the redshift at low red-
shifts, though it is more pronounced for the SDSS method. At higher
redshifts, the both methods slightly underestimate the redshifts. At
the highest redshifts, the SDSS method appears to overestimate
slightly, while our k-NN method seems to underestimate the red-
shift. This underestimation is a consequence of the slope, as the
training set used for our method contains only a few galaxies with
z � 0.33. Therefore, one should not conclude too much from this
underestimation.

The picture is very similar when considering the experiments on
the large subset (Figs 9b and d). There is a tendency to overestimate
the redshift at small z and underestimate it at higher z. For both
experiments, however, the median residual is always close to zero.
There are a few extra galaxies at z > 0.5 not shown in these plots,
in order to keep the main galaxy sample detailed. Both methods
significantly underestimate the redshifts of these high-z galaxies
with roughly the same amount.

From the plots in Fig. 9, it is clear that using just the most im-
portant features, we can achieve a similar performance to fitting
a hyperplane to the nearest neighbours, though at a lower com-
putational cost (since we do not need to locate as many nearest
neighbours, and we avoid the hyperplane fitting) once the features
have been determined.

5 D I S C U S S I O N A N D C O N C L U S I O N S

In the coming years, increasingly larger astronomical surveys will
produce unprecedented amounts of data. Many of these data will
require accurate estimations in near real-time, which is not feasible
with traditional methods. Machine learning is well suited to address
this challenge.

This work has exemplified this by showing how machine learning
can be used to not only estimate sSFRs and photometric redshifts
(photo-z’s) of galaxies, but also to identify the most informative fea-
tures for these tasks, thereby increasing accuracy further. We have
shown how the simple, yet powerful non-parametric k-NN method
significantly outperforms the traditional method of simulated tem-
plate spectra for estimating sSFRs, achieving an RMSE of (2.90 ±
0.18) × 10−1 log(yr−1) (the ± values refer to the standard deviation
over the non-independent CV folds) compared to a template-based
method’s (3.49 ± 0.16) × 10−1 log(yr−1), when using the exact
same input features. Adding a feature selection to the k-NN method
increased its performance, achieving an RMSE of (2.71 ± 0.15)
× 10−1 log(yr−1). Similarly, the fraction of catastrophic outliers
reduced from the template-based method’s (3.05 ± 0.35) to (1.72
± 0.32) per cent, when using k-NN and feature selection.

We see a similar pattern when considering photo-z estima-
tion. Here, the k-NN method achieves a normalized median ab-
solute deviation of (1.72 ± 0.10) × 10−2, which reduces to
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(1.46 ± 0.06) × 10−2 when doing feature selection, compared to
(1.54 ± 0.06) × 10−2 achieved by SDSS. The method used by SDSS
even included a hyperplane fit and while that improves estimations,
it also significantly increases the required amount of computations
per estimate.

Applying the k-NN method to a larger subset of SDSS of 603 680
galaxies, we achieve an RMSE of (2.96 |pm 0.02) × 10−1 log(yr−1)
for sSFR estimation, when using the same four features as the
template-based method. By using the features selected in the feature
selection on the smaller subset, we are able to decrease the error
further to (2.74 ± 0.03) × 10−1 log(yr−1). For photo-z estimation,
we achieve a normalized median absolute deviation of (1.77 ±
0.02) × 10−2, which reduces to (1.38 ± 0.01) × 10−2 when doing
feature selection, compared to (1.65 ± 0.01) × 10−2 achieved by
SDSS. This shows that not only can features selected for a smaller
subset be directly transferred to a much larger one yielding similar
performance, the estimations made by the selected features can even
significantly outperform more computationally intensive modelling.

An advantage of a template-based method is the gain in physi-
cal knowledge from the simulations. The feature selection for the
k-NN method can provide hints to which features contain the most
information, but a deeper understanding of why these particular fea-
tures contain more information requires further investigation and is
outside the scope of this work. The k-NN method does, however,
have advantages over a template-based method in that it is faster
and will not be prone to errors resulting from approximations or
wrong assumptions done in the model building process. This study
shows that machine learning methods, here exemplified by k-NN
regression, should be considered a viable alternative to the tradi-
tional template-based method in situations where high accuracy or
computational efficiency is required. In particular, adding a feature
selection step to the machine learning methods, instead of rely-
ing on traditionally used features, should be considered part of the
standard toolbox.
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J. C., 2009, A&A, 507, 1793
Pacifici C. et al., 2015, MNRAS, 447, 786
Padmanabhan N. et al., 2007, MNRAS, 378, 852
Pedregosa F. et al., 2011, J. Mach. Learn. Res., 12, 2825
Perez F., Granger B. E., 2007, Comput. Sci. Eng., 9, 21
Polsterer K. L., Zinn P.-C., Gieseke F., 2013, MNRAS, 428, 226
Polsterer K. L., Gieseke F., Igel C., Goto T., 2014, in Manset N., Forshay

P., eds, ASP Conf. Ser. Vol. 485, Astronomical Data Analysis Software
and Systems XXIII. Astron. Soc. Pac., San Francisco, p. 425

Richards J. W., Freeman P. E., Lee A. B., Schafer C. M., 2009, MNRAS,
399, 1044

Rimoldini L. et al., 2012, MNRAS, 427, 2917
Salim S. et al., 2005, ApJ, 619, L39
Salim S. et al., 2007, ApJS, 173, 267
Sánchez C. et al., 2014, MNRAS, 445, 1482
Smith D. J. B., Hayward C. C., 2015, MNRAS, 453, 1597
Solorio T., Fuentes O., Terlevich R., Terlevich E., 2005, MNRAS, 363, 543
Stensbo-Smidt K., Igel C., Zirm A., Pedersen K. S., 2013, in Hu X. et al., eds,

Proc. IEEE Int. Conf. Big Data, 2013 IEEE International Conference on
Big Data. IEEE, Piscataway, NJ, p. 141

Tsalmantza P. et al., 2007, A&A, 470, 761
van der Walt S., Colbert S. C., Varoquaux G., 2011, Comput. Sci. Eng., 13,

22
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APPENDI X A : MASSI VELY PARALLEL
G R E E DY FE AT U R E S E L E C T I O N

While greedy procedures such as forward or backward feature se-
lection are significantly faster than the exhaustive search for the
best-performing features, they can still be very time-consuming,
even on training sets of moderate sizes. One way to accelerate
such a feature selection step is to speedup the involved near-
est neighbour computations. In the literature, various techniques
can be found for this task. Typical methods are k-d trees (Bent-
ley 1975) or locality-sensitive hashing (Indyk & Motwani 1998).
However, such tools either perform poorly in higher dimensions
or only yield approximate answers. A recent trend in data ana-
lytics is to resort to (exact) parallel implementations for many-
core devices such as today’s GPUs. For instance, Garcia et al.
(2010) make use of highly tuned GPUmatrix multiplication libraries
for nearest neighbour search. Other schemes are based on, e.g.
adapted spatial search structures (Cayton 2012; Nakasato 2012;
Gieseke et al. 2014b).

For the work at hand, we make use of a massively parallel
matrix-based implementation that addresses incremental feature se-
lection and nearest neighbour models recently proposed by Gieseke
et al. (2014a). For the sake of completeness, we briefly outline
the general workflow of the implementation: The general work-
flow for the case of forward selection is sketched in Algorithm
1. For a given training set S of labelled samples, start with an
empty distance matrix M ∈ RN×N that contains the current dis-
tances between all pairs of training samples. Further, the array
selected_dimensions indicating the selected features and
the array val_errors are initialized. The forward feature selec-
tion process starts in Step 4: The procedure GETVALIDATIONERRORS

computes, for each dimension j that has not yet been selected (i.e.
selected_dimensions[j]=0), the CV error for the case of di-
mension j being ‘added’ to the current set of features. These values
are stored in the array val errors and the procedure GETMINDIM

returns the index of the smallest error contained in it (thus, imin cor-
responds to the dimension whose addition leads to the smallest CV
error). Afterwards, both selected_dimensions and M are up-
dated accordingly, where Mimin denotes the all-pairs distance matrix
based on dimension imin only.

The procedure GETVALIDATIONERRORS returns the validation er-
rors for all dimensions that have not yet been selected and con-
tributes most to the overall runtime. For each such dimension j, it
computes a matrix M̂ = M + Mj containing all pairwise distances
with the distances of dimension j being ‘added on the fly’ to the dis-
tances that correspond to the previously selected dimensions. This
intermediate training set is then used to compute the CV error for the
currently selected set of dimensions. It turns out that this procedure
and the overall workflow is particularly well suited for a massively
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2592 K. Stensbo-Smidt et al.

Algorithm 1 FORWARDSELECTION(S, d̄)

Require: Training set S = {(x1, y1), . . . , (xN , yN )} ⊂ RD × R and a num-
ber d̄ < D of desired features.

Ensure: Array selected dimensions with selected features.
1: Initialize empty distance matrix M ∈ RN×N ;
2: int selected dimensions[D] = {0, . . . , 0};
3: float val errors[D];
4: for i = 1, . . . , d̄ do
5: val errors = GETVALIDATIONERRORS(M);
6: imin = GETMINDIM(val errors);
7: selected dimensions[imin] = 1;
8: M = M + Mimin ;
9: end for

10: return selected dimensions

parallel implementation. Basically, one can parallelize the search
over all dimensions that have not yet been selected as well as over
the computations of the induced CV errors. By using a standard
GPU device, one can reduce the runtime by a factor of up to 150
compared to single-core CPU implementation, hence, reducing the
practical runtime needed from hours to minutes only. We refer to
Gieseke et al. (2014a) for the technical details and an experimental
analysis of the runtimes for typical astronomical data sets.

A P P E N D I X B : O B TA I N I N G C O D E A N D DATA

We want to make the results presented in this paper as reproducible
as possible, so we are releasing the code, the data obtained from
SDSS, and the results of the experiments. The code for the GPU
implementation of the nearest neighbours search is available at
GitHub: https://github.com/gieseke/speedynn. The scripts and data
for reproducing the main results of this paper can be found at
http://image.diku.dk/kstensbo/papers/1606.01/. The page contains
a step-by-step guide to setting up the software and recreating the
main results presented in this paper.

AP PE ND I X C : R E SU LT S FRO M F E AT UR E
S E L E C T I O N

Fig. C1 shows the full feature ranking for the sSFR estimation done
in experiment 2.

Fig. C2 shows the full feature ranking for the photo-z estimation
done in experiment 2.

AP PE ND I X D : R E SI D UA L PLOTS

Residual plots for sSFR experiments 1 and 3 can be seen in
Fig. D1 together with residuals of the template-based model, for
comparison.

Residual plots for photo-z’s experiments 1 and 3 can be seen in
Fig. D2 together with residuals of the SDSS method for the same
data sets, for comparison.

AP PE ND I X E : EST I MATI ON S FRO M fiberMag
E XP ER I M EN T S

Estimations from our experiments using fiberMag colours and
magnitudes to estimate uncorrected sSFRs can be seen in Fig. E1.
Experiments 1 and 3 used only the four fiberMag colours (u −
g, g − r, r − i, and i − z) as features. The smaller subset of 7799
galaxies was used in experiment 1, whereas the larger subset of
603 680 galaxies was used in experiment 3. Experiment 2 used
feature selection to choose the most informative features among
the five fiberMag magnitudes and the four fiberMag colours.
The experiment was done on the smaller subset. The only features
selected were the u − g, g − r, and r − i colours, and these
were consistently selected in all CV folds. Experiment 4 used the
features found in experiment 2, but now applying them to the larger
subset.

MNRAS 464, 2577–2596 (2017)

 at R
oyal L

ibrary/C
openhagen U

niversity L
ibrary on N

ovem
ber 8, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 



Selecting bands for optimal accuracy 2593

Figure C1. Ranking of features for sSFR estimation according the feature selection in experiment 2. To the left are the feature names, while the rightmost
column shows the median rank of each feature across all CV folds. Each of the other columns shows the feature ranking in a particular CV fold. The larger the
bar for a certain feature, the more important the feature was. Blue bars show features that were picked out during the feature selection as the most informative
in a particular CV fold. Because of the differences in the data used in each CV fold, the exact features picked out as important, as well as the number of chosen
features per fold, will vary. The number of chosen features vary between 7 and 10 with a median of 8.
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2594 K. Stensbo-Smidt et al.

Figure C2. Ranking of features for photo-z estimation according the feature selection in experiment 2. To the left are the feature names, while the rightmost
column shows the median rank of each feature across all CV folds. Each of the other columns shows the feature ranking in a particular CV fold. The larger the
bar for a certain feature, the more important the feature was. Blue bars show features that were picked out during the feature selection as the most informative
in a particular CV fold. Because of the differences in the data used in each CV fold, the exact features picked out as important, as well as the number of chosen
features per fold, will vary. The number of chosen features vary between 6 and 11 with a median of 7.
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Selecting bands for optimal accuracy 2595

Figure D1. sSFR residuals as function of redshift for the two galaxy samples used in the experiments. The colour coding of the distributions indicates the
amount of galaxies in each bin. The orange line shows the running median of the underlying distribution, the thick bars span the 15.87th through the 84.13th
percentile (±1σ ), and the thin bars span the 2.28th through the 97.72th percentile (±2σ ).

Figure D2. Redshift residuals as function of redshift for the two galaxy samples used in the experiments. The colour coding of the distributions indicates the
amount of galaxies in each bin. The orange line shows the running median of the underlying distribution, the thick bars span the 15.87th through the 84.13th
percentile (±1σ ), and the thin bars span the 2.28th through the 97.72th percentile (±2σ ). The sharp slopes seen in (c) and (d) are a consequence of the training
set containing only few galaxies with z � 0.33. As the k-NN method is not well suited for extrapolation, only few galaxies will have an estimated photo-z
�0.33.
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2596 K. Stensbo-Smidt et al.

Figure E1. Correlations between the estimated and spectroscopically determined sSFRs for the template-based model (using aperture-corrected sSFRs) and
the four experiments (using uncorrected sSFRs).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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