
U N I V E R S I T Y O F C O P E N H A G E N
F A C U L T Y O F S C I E N C E

N E W R E S U LT S O N C L A S S I C A L P R O B L E M S I N
C O M P U TAT I O N A L G E O M E T RY I N T H E P L A N E

mikkel abrahamsen

PhD Thesis
August 2017

Advisors: Mikkel Thorup (principal) and Christian Wulff-Nilsen

This thesis has been submitted to the PhD School of The Faculty of Science, University of Copenhagen

[August 31, 2017 at 8:40 – classicthesis]

[August 31, 2017 at 8:40 – classicthesis]

A B S T R A C T

In this thesis, we revisit three classical problems in computational
geometry in the plane.

An obstacle that often occurs as a subproblem in more complicated
problems is to compute the common tangents of two disjoint, simple
polygons. For instance, the common tangents turn up in problems re-
lated to visibility, collision avoidance, shortest paths, etc. We provide
a remarkably simple algorithm to compute all (at most four) com-
mon tangents of two disjoint simple polygons. Given each polygon
as a read-only array of its corners in cyclic order, the algorithm runs
in linear time and constant workspace and is the first to achieve the
two complexity bounds simultaneously. The set of common tangents
provides basic information about the convex hulls of the polygons—
whether they are nested, overlapping, or disjoint—and our algorithm
thus also decides this relationship.

One of the best-known problems in computational geometry is the
art gallery problem, which was already studied in the early 70s. Many
variations of the problem have been considered, but here we study
the classical version where we are given a simple polygon with ver-
tices at rational coordinates and we have to decide whether a given
number of guards can be placed in the polygon so that they guard
the entire polygon. We give an explicit example of a polygon where
three guards are sufficient, but only if they are placed on specific
points with irrational coordinates. If the coordinates of the guards
are required to be rational, then four guards are needed. We further-
more prove the much more general result that the art gallery prob-
lem is complete for the complexity class ∃R, implying that (1) the
art gallery problem is equivalent up to polynomial time reductions
to the problem of deciding whether a given system of polynomial
equations and inequalities with integer coefficients and any number
of variables has a solution, and (2) the art gallery problem is not in
the complexity class NP unless NP = ∃R. As a corollary of our con-
struction, we prove that for any real algebraic number α there is an
instance of the art gallery problem where one of the coordinates of
the guards equals α in any guard set of minimum cardinality. That
rules out many geometric approaches to the problem.

A natural clustering problem for points in the plane, which has
been studied since the early 90s, is the minimum perimeter sum prob-
lem. Here, we are given n points and we want to find the way to
partition the points into some number k of clusters so that the sum
of perimeters of the convex hulls of the clusters is minimum. For
the special case of k = 2, the fastest previously known algorithm
had quadratic running time and we provide an O(n log4 n) time al-
gorithm.

iii

[31. august 2017 at 8:40 – classicthesis]

D A N S K R E S U M É (D A N I S H A B S T R A C T)

I denne afhandling undersøger vi tre klassiske problemer fra algorit-
misk geometri i planen.

Et ofte forekommende delproblem i mere komplicerede problemer
er at beregne fællestangenterne af to disjunkte, simple polygoner. Fæl-
lestangenterne dukker for eksempel op i problemer vedrørende syn-
lighed, sammenstødsafværgelse, beregning af kortest veje, etc. Vi be-
skriver en bemærkelsesværdigt simpel algoritme som beregner alle
(højst fire) fællestangenter af to disjunkte simple polygoner. Hvert in-
putpolygon er givet som en tabel af hjørnerne i cyklisk orden i et
skrivebeskyttet lager, og algoritmen bruger lineær tid og en konstant
mængde arbejdslager og er den første til at opnå disse to komplek-
sitetsgrænser samtidigt. Mængden af fællestangenter giver basal in-
formation om de konvekse hylstre af polygonerne—om det ene er
indeholdt i det andet, om de overlapper eller om de er disjunkte—og
vores algoritme bestemmer derfor også dette forhold.

Et af de mest velkendte problemer i algoritmisk geometri er kunst-
museumsproblemet, som er blevet studeret siden først i 70’erne. Man-
ge varianter af problemet er blevet betragtet, men her studerer vi den
klassiske version hvor vi er givet et simpelt polygon med hjørner i
rationale koordinater og vi skal afgøre hvorvidt et givet antal vagter
kan placeres i polygonet sådan at de bevogter hele polygonet. Vi giver
et eksplicit eksempel på et polygon hvor tre vagter er tilstrækkelige,
men kun hvis de placeres på specifikke punkter med irrationale koor-
dinater. Hvis koordinaterne skal være rationale må fire vagter benyt-
tes. Derudover beviser vi det meget mere generelle resultat at kunst-
museumsproblemet er komplet for kompleksitetsklassen ∃R, hvilket
medfører at (1) kunstmuseumsproblemet er ækvivalent under poly-
nomialtidsreduktioner med problemet at afgøre om et givet system
af polynomiale ligninger og uligheder med heltallige koefficienter og
et vilkårligt antal variable har en løsning, og (2) kunstmuseumspro-
blemet ikke er i kompleksitetsklassen NP medmindre NP = ∃R. Det
følger som et korollar af vores konstruktion at der for ethvert reelt
algebraisk tal α findes en instans af kunstmuseumsproblemet så der
blandt ethvert minimalt antal vagter, som tilsammen bevogter poly-
gonet, er en vagt med et koordinat lig α. Dette udelukker mange
geometriske tilgange til problemet.

Et naturligt grupperingsproblem for punkter i planen, som er ble-
vet studeret siden begyndelsen af 90’erne, er minimum omkreds-sum-
problemet. Givet n punkter vil vi finde en måde at inddele dem på
i k grupper sådan at summen af omkredsene af gruppernes konvek-
se hylstre er minimal. I det specielle tilfælde k = 2 havde den hidtil
hurtigste kendte algoritme kvadratisk køretid og vi beskriver en algo-
ritme med køretid O(n log4 n).

iv

[August 31, 2017 at 8:40 – classicthesis]

P R E FA C E

Some of the problems on which I have worked during my PhD stud-
ies have been rather distantly related. To get a more coherent thesis,
I have chosen to expose a selected subset of my work, namely the re-
sults from four papers on classical problems in computational geome-
try in the plane. The thesis is written “as a synopsis with manuscripts of
papers or already published papers attached” in accordance with the Gen-
eral rules and guidelines for the PhD programme at the Faculty of Science,
University of Copenhagen.

For completeness, I here list all the papers I have been working
on while being a PhD student. Ten papers have been published at
peer-reviewed venues and three are still in submission or preparation.
The manuscript [AW17] is a merged and much revised version of the
conference papers [Abr15a] and [AW16].

[Abr15a] M. Abrahamsen. “An Optimal Algorithm for the Separat-
ing Common Tangents of Two Polygons.” In: 31st Interna-
tional Symposium on Computational Geometry (SoCG 2015).
2015, pp. 198–208.

[Abr15b] M. Abrahamsen. “Spiral Toolpaths for High-Speed Ma-
chining of 2D Pockets With or Without Islands.” In:
ASME 2015 International Design Engineering Technical Con-
ferences and Computers and Information in Engineering Con-
ference. 2015.

[Abr+16] M. Abrahamsen, G. Bodwin, E. Rotenberg, and M.
Stöckel. “Graph Reconstruction with a Betweenness Ora-
cle.” In: 33rd Symposium on Theoretical Aspects of Computer
Science (STACS 2016). 2016, 5:1–5:14.

[AT16] M. Abrahamsen and M. Thorup. “Finding the Maximum
Subset with Bounded Convex Curvature.” In: 32nd In-
ternational Symposium on Computational Geometry (SoCG
2016). 2016, 4:1–4:17.

[AW16] M. Abrahamsen and B. Walczak. “Outer Common Tan-
gents and Nesting of Convex Hulls in Linear Time and
Constant Workspace.” In: 24th Annual European Sympo-
sium on Algorithms (ESA 2016). 2016, 4:1–4:15.

[Abr+17b] M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and
A.D. Mehrabi. “Minimum Perimeter-Sum Partitions in
the Plane.” In: 33rd International Symposium on Computa-
tional Geometry (SoCG 2017). 2017.

[Abr+17e] M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and
A.D. Mehrabi. “Range-Clustering Queries.” In: 33rd In-
ternational Symposium on Computational Geometry (SoCG
2017). 2017.

v

[August 31, 2017 at 8:40 – classicthesis]

[Abr+17a] M. Abrahamsen, J. Holm, E. Rotenberg, and C. Wulff-
Nilsen. “Best Laid Plans of Lions and Men.” In: 33rd In-
ternational Symposium on Computational Geometry (SoCG
2017). 2017.

[AAM17a] M. Abrahamsen, A. Adamaszek, and T. Miltzow. “Irra-
tional Guards are Sometimes Needed.” In: 33rd Interna-
tional Symposium on Computational Geometry (SoCG 2017).
2017.

[Abr+17c] M. Abrahamsen, S. Alstrup, J. Holm, M.B.T. Knud-
sen, and M. Stöckel. “Near-Optimal Induced Universal
Graphs for Bounded Degree Graphs.” In: The 44th Inter-
national Colloquium on Automata, Languages, and Program-
ming (ICALP 2017). 2017.

[AAM17b] M. Abrahamsen, A. Adamaszek, and T. Miltzow. The Art
Gallery Problem is ∃R-complete. Preprint, https://arxiv.
org/abs/1704.06969. 2017.

[Abr+17d] M. Abrahamsen, S. Alstrup, J. Holm, M.B.T. Knudsen,
and M. Stöckel. Near-Optimal Induced Universal Graphs for
Cycles and Paths. In submission. 2017.

[AW17] M. Abrahamsen and B. Walczak. Common Tangents of
Two Simple Polygons in Linear Time and Constant Workspace.
Manuscript. 2017.

The papers that I have not included in this thesis contain results
related to either geometry or graphs, and a brief discussion of the
results is included below.

additional papers on geometry In the paper [Abr15b], a
method is described for computing a spiral toolpath to be used in
computer-aided manufacturing. The concept of regions in the plane
with bounded convex curvature is introduced in [AT16]. It is de-
scribed how the problem of finding maximum subsets with bounded
convex curvature naturally arises in computer-aided manufacturing,
and an efficient algorithm to compute such subsets is described. In
the paper [Abr+17e], we present data structures for orthogonal range-
clustering queries on a set S of points in the plane, that is, given a
query box Q and an integer k, the data structure can quickly return
an optimal k-clustering of S ∩Q with respect to various clustering
problems. The paper [Abr+17a] is on the classical lion and man game
and has two main results. The first answers a question dating back
to J.E. Littlewood (1885–1977) by showing that two lions are not al-
ways enough to catch a man in a bounded region with obstacles. The
second is that a fast man can escape arbitrarily many slightly slower
lions in an unbounded region without obstacles. Unfortunately, it has
since then come to our attention that the first of these results had es-
sentially already been shown by Bhadauria et al. [Bha+12].

papers on graphs In the paper [Abr+16], we give an efficient
algorithm to reconstruct an unknown graph using only between-

vi

[August 31, 2017 at 8:40 – classicthesis]

https://arxiv.org/abs/1704.06969
https://arxiv.org/abs/1704.06969

ness queries, that is, for three vertices u, v,w, we may ask an oracle
whether there is a shortest path from u to w that contains v, and the
complexity of an algorithm is measured as the number of queries
that is used. Improved upper and lower bounds are presented in
[Abr+17c] on the size of the smallest induced universal graph for
the family of graphs with n vertices and bounded degree D. In the
related paper [Abr+17d], we study induced universal graphs for fam-
ilies of cycles and paths.

acknowledgement I would like to thank my supervisors
Mikkel Thorup and Christian Wulff-Nilsen for their guidance and
support during my studies. In particular, I am grateful that Mikkel
encouraged me to keep working on problems within my primary
field of interest, namely computational geometry, although it is nei-
ther his own area of expertise, nor within the primary focus of our
research group. It made me more motivated and industrious to work
on the problems I found the most exciting, and I think it also had
a positive effect on my academic maturity and independence that I
often had to find my own way.

My thanks also go to all of my collaborators: Anna Adamaszek,
Stephen Alstrup, Kevin Buchin, Greg Bodwin, Mark de Berg, Jacob
Holm, Mathias Bæk Tejs Knudsen, Mehran Mehr, Ali Mehrabi, Till-
mann Miltzow, Eva Rotenberg, Morten Stöckel, Mikkel Thorup, Bar-
tosz Walczak, and Christian Wulff-Nilsen. It has been a pleasure to
work with each of these people, and I am proud of the results we
have obtained together.

vii

[August 31, 2017 at 8:40 – classicthesis]

[August 31, 2017 at 8:40 – classicthesis]

C O N T E N T S

i synopsis 1

1 introduction 3

1.1 Notation and definitions 3

2 the common tangent problem 5

2.1 Introduction 5

2.2 Basic terminology and notation 8

2.3 Algorithms 9

2.4 Concluding remarks 13

3 the art gallery problem 15

3.1 Introduction 15

3.2 Irrational guards 16

3.3 ∃R-completeness 19

3.3.1 The complexity class ∃R 19

3.3.2 Our results 20

3.3.3 Other ∃R-complete problems 21

3.3.4 Overall structure of the reductions 21

3.4 Concluding remarks 23

4 the minimum perimeter sum problem 25

4.1 Introduction 25

4.2 Our contribution 26

bibliography 29

ii appendix 35

a common tangents of two disjoint polygons in

linear time and constant workspace 37

b irrational guards are sometimes needed 57

c the art gallery problem is ∃R-complete 77

d minimum perimeter-sum partitions in the

plane 141

ix

[August 31, 2017 at 8:40 – classicthesis]

[August 31, 2017 at 8:40 – classicthesis]

Part I

S Y N O P S I S

[August 31, 2017 at 8:40 – classicthesis]

[August 31, 2017 at 8:40 – classicthesis]

1
I N T R O D U C T I O N

Computational geometry plays an important role in computer graph-
ics, geographic information systems, and computer aided design and
manufacturing, to mention a few areas. This is one reason that it has
been an active research area at least since the term “computational ge-
ometry” was coined by M.I. Shamos in 1975 [PS85]. Another reason
is that the area contains a plethora of problems very appealing from
an aesthetical/theoretical perspective.

In this thesis, we present some new results on three classical prob-
lems in computational geometry in the plane. Indeed, the youngest of
the problems have been studied for more than a quarter of a century
at the time of writing. We give an introduction to each problem with
references to the relevant literature as well as a summary of our re-
sults on the problem. We do not give full proofs, but refer the reader
to the papers in the appendix for the details. With the exception of
a few details in the “Concluding Remarks” sections 2.4 and 3.4, the
chapters do not contain any information which is not also present in
the respective papers in the appendix, so the reader might as well just
read the papers.

1.1 notation and definitions

For any two points a and b in the plane, the closed line segment with
endpoints a and b is denoted by ab. When a 6= b, the two-way infi-
nite straight line passing through a and b is denoted by L(a,b). The
segment ab and the line L(a,b) are considered oriented in the direc-
tion from a towards b. A simple polygon or just a polygon with corners When the

orientations of line
segments, lines, and
polygons are not
used, the objects are
just considered as
sets of points in the
plane.

a0, . . . ,an−1, denoted by P(a0, . . . ,an−1), is a closed curve in the
plane composed of n edges a0a1, . . . ,an−2an−1,an−1a0 that have no
common points other than the common endpoints of pairs of edges
consecutive in that cyclic order. The polygon P(a0, . . . ,an−1) is con-
sidered oriented so that its forward traversal visits corners a0, . . . ,an−1
in this cyclic order. A polygonal region is a closed and bounded region
of the plane that is bounded by a polygon.

3

[August 31, 2017 at 8:40 – classicthesis]

[August 31, 2017 at 8:40 – classicthesis]

2
T H E C O M M O N TA N G E N T P R O B L E M

This chapter is based on the paper [AW17] (appendix A), which is a
merged and much revised version of the conference papers [Abr15a]
and [AW16].

abstract We provide a remarkably simple algorithm to compute
all (at most four) common tangents of two disjoint simple polygons.
Given each polygon as a read-only array of its corners in cyclic order,
the algorithm runs in linear time and constant workspace and is the
first to achieve the two complexity bounds simultaneously. The set of
common tangents provides basic information about the convex hulls
of the polygons—whether they are nested, overlapping, or disjoint—
and our algorithm thus also decides this relationship.

2.1 introduction

A tangent of a polygon is a line touching the polygon such that all of
the polygon lies on the same side of the line. We consider the prob-
lem of computing the common tangents of two disjoint polygons that
are simple, that is, they have no self-intersections. The set of com-
mon tangents provides basic information about the convex hulls of
the polygons, i.e., whether they are disjoint, overlapping, or nested.
We call a common tangent outer if the two polygons lie on the same
side of it and separating otherwise. Two disjoint polygons have two
outer common tangents unless their convex hulls are nested, and if
they are properly nested, then there is no outer common tangent. Two
polygons have two separating common tangents unless their convex
hulls overlap, and if they properly overlap, then there is no separat-
ing common tangent. See Figure 1. Common tangents arise in many
different contexts, for instance in problems related to convex hulls
[PH77], shortest paths [GH89], ray shooting [HS95], and clustering
[Abr+17b].

We provide a very simple algorithm to compute all at most four
common tangents of two disjoint simple polygons. In view of the
above, our algorithm also determines whether the two polygons have
(properly) nested, (properly) overlapping, or disjoint convex hulls.
Given each of the two polygons as a read-only array of its corners
in cyclic order, our algorithm runs in linear time and uses seven vari-
ables each storing a boolean value or an index of a corner in one
of the arrays. The algorithm is therefore asymptotically optimal with
respect to time as well as workspace, and operates in the constant
workspace model of computation.

The constant workspace model is a restricted version of the RAM
model in which the input is read-only, the output is write-only, and
only O(logn) additional bits of workspace (with both read and write

5

[August 31, 2017 at 8:40 – classicthesis]

6 the common tangent problem

Figure 1: Left: The convex hulls are disjoint—outer and separating common
tangents exist. Middle: The convex hulls overlap—only outer com-
mon tangents exist. Right: The convex hulls are nested—no com-
mon tangents exist.

access) are available, where n denotes the size of the input. Clearly,
Ω(logn) bits of workspace are necessary to solve any interesting com-
putational problem, because that many bits are required to store an
index of or a pointer to an entry in the input. Since blocks of Θ(logn)
bits are considered to form words in the memory, algorithms in the
constant workspace model use O(1) words of workspace, which ex-
plains the name of the model. The practical relevance of studying
problems in the constant workspace model is increasing, as there are
many current and emerging memory technologies where writing can
be much more expensive than reading in terms of time and energy
[Car+16].

The constant workspace model was first considered explicitly for
geometric problems by Asano et al. [Asa+11]. Recently, there has been
growing interest in algorithms for geometric problems using constant
or restricted workspace, see for instance [Asa+13; Bar+15; Bar+14;
HP15]. In complexity theory, the class of the decision problems solv-
able using constant workspace is usually known as L. The constant
workspace model has been shown to be surprisingly powerful—for
instance, the problem of deciding whether two vertices in an undi-
rected graph are in the same connected component is in L [Rei08].

The problem of computing common tangents of two polygons has
received much attention in the special case that the polygons are con-
vex. For instance, computing the outer common tangents of disjoint
convex polygons is used as a subroutine in the classical divide-and-
conquer algorithm for the convex hull of a set of n points in the plane
due to Preparata and Hong [PH77]. They gave a naive linear-time al-
gorithm for outer common tangents, which suffices for an O(n logn)-
time convex hull algorithm. The problem is also considered in vari-
ous dynamic convex hull algorithms [BJ02; HS92; OL81]. Overmars
and van Leeuwen [OL81] gave an O(logn)-time algorithm for com-
puting an outer common tangent of two disjoint convex polygons
when a separating line is known, where each polygon has at most
n corners. Kirkpatrick and Snoeyink [KS95] gave an O(logn)-time
algorithm for the same problem but without using a separating line.
Guibas et al. [GHS91] gave a lower bound ofΩ(log2 n) on the time re-
quired to compute an outer common tangent of two intersecting con-
vex polygons even when they are known to intersect in at most two
points. They also described an algorithm achieving that bound. Tou-

[August 31, 2017 at 8:40 – classicthesis]

2.1 introduction 7

ssaint [Tou83] considered the problem of computing separating com-
mon tangents of convex polygons. He gave a linear-time algorithm
using the technique of the “rotating calipers”. Guibas et al. [GHS91]
gave an O(logn)-time algorithm for the same problem. All the above-
mentioned algorithms with sublinear running times make essential
use of convexity of the polygons. If the polygons are not convex, a
linear-time algorithm due to Melkman [Mel87] can be used to com-
pute the convex hulls before computing the tangents. However, if the
polygons are given in read-only memory, then Ω(n) extra bits are re-
quired to store the convex hulls, so this approach does not work in
the constant workspace model.

In the following we describe our algorithm, which is presented in
full detail using pseudocode in Algorithm 2. (Algorithm 1 is a sim-
plified version of Algorithm 2, which finds the separating common
tangents in all cases, but is only guaranteed to find the outer com-
mon tangents when the convex hulls of the polygons are disjoint.) In
order to find a particular common tangent of two polygons P0 and P1,
we maintain a pair of corners of support q0 and q1, one in each poly-
gon, that together define a candidate L(q0,q1) for the tangent (i.e.,
L(q0,q1) is the line containing q0 and q1). We traverse the polygons
one edge at a time, alternating between the polygons. Each polygon
is traversed from its corner of support in a cyclic order determined
by the type of tangent that we wish to compute—the two separating
common tangents correspond to traversing both polygons the same
direction whereas the outer common tangents can be found by choos-
ing different directions. We check that each traversed edge is on the
correct side of L(q0,q1). When an edge e of, say, P0 is found that
ends at a corner q ′

0 on the wrong side (i.e., the edge e shows that
L(q0,q1) is not the desired tangent), there are two cases. We consider
the order of the following three points on L(q0,q1): q0, q1, and the
intersection point of e and L(q0,q1). If q1 is not the middle point of
these three, we update q0 to q ′

0, thus also update the candidate line,
and retract the traversal of P1 to q1. Otherwise, it can be seen that q1
must be in the convex hull of P0 and q1 can therefore not be a support
of the tangent we wish to find. In that case, we block q0 from being
updated and only care to traverse P1 until an update to q1 happens.
If q1 has not been updated after a full traversal of P1, then the convex
hulls are nested and no common tangents exist. Otherwise, we un-
block q0 when q1 is updated. The correctness of the algorithm relies
on the surprising fact that if the tangent exists, an update to a corner
of support can only happen during the first or second traversal of the
respective polygon. If an update happens in the third traversal of a
polygon, we conclude that a common tangent of the desired type does
not exist. Otherwise, we can after the third traversal of both polygons
conclude that the candidate line L(q0,q1) coincides with the tangent
that we wish to find. A more detailed description of the algorithm
will follow in section 2.3.

[August 31, 2017 at 8:40 – classicthesis]

8 the common tangent problem

2.2 basic terminology and notation

For any two points a = (ax,ay) and b = (bx,by) in R2, we let

det(a,b) =

∣∣∣∣∣
ax bx

ay by

∣∣∣∣∣ = axby − bxay.

For a0, . . . ,an−1 ∈ R2, we let

det?(a0, . . . ,an−1) = det(a0,a1)+ · · ·+det(an−2,an−1)+det(an−1,a0).

In particular, for any three points a = (ax,ay), b = (bx,by), and
c = (cx, cy) in R2, we have

det?(a,b, c) =

∣∣∣∣∣
ax bx

ay by

∣∣∣∣∣+
∣∣∣∣∣
bx cx

by cy

∣∣∣∣∣+
∣∣∣∣∣
cx ax

cy ay

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣

ax bx cx

ay by cy

1 1 1

∣∣∣∣∣∣∣∣
.

For two distinct points a and b in the plane, the left side and the
right side of an oriented line L(a,b) are the two closed half-planes
LHP(a,b) and RHP(a,b), respectively, defined as follows:

LHP(a,b) = {c ∈ R2 : det?(a,b, c) > 0},
RHP(a,b) = {c ∈ R2 : det?(a,b, c) 6 0}.

An oriented polygon P(a0, . . . ,an−1) is counterclockwise when

det?(a0, . . . ,an−1) > 0

and clockwise when

det?(a0, . . . ,an−1) < 0.

We assume for the rest of this chapter that P0 and P1 are two dis-
joint simple polygons with n0 and n1 corners, respectively, each de-
fined by a read-only array of its corners:

P0 = P(p0[0], . . . ,p0[n0 − 1]), P1 = P(p1[0], . . . ,p1[n1 − 1]).

We make no assumption (yet) on whether P0 and P1 are oriented
counterclockwise or clockwise. We further assume that the corners
of P0 and P1 are in general position, that is, P0 and P1 have no cor-
ners in common and the combined set of corners {p0[0], . . . ,p0[n0 −
1],p1[0], . . . ,p1[n1 − 1]} contains no triple of collinear points. This as-
sumption simplifies the description and the analysis of the algorithm
but can be avoided, as we explain in the last section. We do not as-
sume the polygonal regions bounded by P0 and P1 to be disjoint—
they may be nested. Indices of the corners of each Pk are considered
modulo nk, so that pk[i] and pk[j] denote the same corner when i ≡ j
(mod nk).

A tangent of Pk is a line L such that Pk has a common point with L
and is contained in one of the two closed half-planes determined by
L. A line L is a common tangent of P0 and P1 if it is a tangent of both P0

[August 31, 2017 at 8:40 – classicthesis]

2.3 algorithms 9

and P1; it is an outer common tangent if P0 and P1 lie on the same side
of L and a separating common tangent otherwise. The following lemma
asserts well-known properties of common tangents of polygons. See
Figure 1.

Lemma 1. A line is a tangent of a polygon P if and only if it is a tangent of
the convex hull of P. Moreover, under the general position assumption, the
following holds:

• P0 and P1 have no common tangents if the convex hulls of P0 and P1
are nested;

• P0 and P1 have two outer common tangents and no separating com-
mon tangents if the convex hulls of P0 and P1 properly overlap;

• P0 and P1 have two outer common tangents and two separating com-
mon tangents if the convex hulls of P0 and P1 are disjoint.

2.3 algorithms

We distinguish four particular cases of the common tangent problem:
find the pair of indices (s0, s1) such that

1. P0 ⊂ RHP(p0[s0],p1[s1]) and P1 ⊂ RHP(p0[s0],p1[s1]),

2. P0 ⊂ LHP(p0[s0],p1[s1]) and P1 ⊂ LHP(p0[s0],p1[s1]),

3. P0 ⊂ RHP(p0[s0],p1[s1]) and P1 ⊂ LHP(p0[s0],p1[s1]),

4. P0 ⊂ LHP(p0[s0],p1[s1]) and P1 ⊂ RHP(p0[s0],p1[s1]).

The line L(p0[s0],p1[s1]) is an outer common tangent in cases 1–2 and
a separating common tangent in cases 3–4. We say that (s0, s1) is the
solution to the particular case of the problem. An algorithm solving
each case 1–4 is expected to find and return the solution (s0, s1) if it
exists (i.e. the convex hulls of P0 and P1 are not nested in cases 1–2

and are disjoint in cases 3–4) and to report “no solution” otherwise.
We will describe two general algorithms. Algorithm 1, very sim-

ple, fully solves the separating common tangent problem (cases 3–4),
finding the separating common tangent if the convex hulls of P0 and
P1 are disjoint and otherwise reporting that the requested tangent
does not exist. Furthermore, Algorithm 1 solves the outer common
tangent problem (cases 1–2) provided that the convex hulls of P0 and
P1 are disjoint. Algorithm 1 also correctly reports that the outer com-
mon tangents do not exist if the convex hulls of P0 and P1 are nested.
However, Algorithm 1 can fail to find the outer common tangents if
the convex hulls of P0 and P1 properly overlap. Algorithm 2 is an
improved version of Algorithm 1 that solves the problem correctly in
all cases.

The general idea behind either algorithm is as follows. The algo-
rithm maintains a pair of indices (s0, s1) called the candidate solution,
which determines the line L(p0[s0],p1[s1]) called the candidate line.
If each of the two polygons lies on the “correct side” of the candi-
date line, which is either RHP(p0[s0],p1[s1]) or LHP(p0[s0],p1[s1])

[August 31, 2017 at 8:40 – classicthesis]

10 the common tangent problem

depending on the particular case of 1–4 to be solved, then the algo-
rithm returns (s0, s1) as the requested solution. Otherwise, for some
u ∈ {0, 1}, the algorithm finds an index vu such that pu[vu] lies on the
“wrong side” of the candidate line, updates su by setting su ← vu,
and repeats. This general scheme guarantees that if (s0, s1) is claimed
to be the solution, then it indeed is. However, the algorithm can fall
in an infinite loop—when there is no solution or when the existing
solution keeps being missed. Detailed implementation of the scheme
must guarantee that the solution is found in linearly many steps if it
exists. Then, if the solution is not found in the guaranteed number of
steps, the algorithm terminates and reports “no solution”.

The particular case of 1–4 to be solved is specified to the algorithms
by providing two binary parameters α0,α1 ∈ {+1,−1} specifying that
the final solution (s0, s1) should satisfy

P0 ⊂ RHP(p0[s0],p1[s1]) if α0 = +1,

P0 ⊂ LHP(p0[s0],p1[s1]) if α0 = −1,

P1 ⊂ RHP(p0[s0],p1[s1]) if α1 = +1,

P1 ⊂ LHP(p0[s0],p1[s1]) if α1 = −1.

For clarity, instead of using the parameters α0 and α1 explicitly, the
pseudocode uses half-planes H0(a,b) and H1(a,b) defined as fol-
lows, for any k ∈ {0, 1} and any distinct a,b ∈ R2:

Hk(a,b) =
{
c ∈ R2 : αk det?(a,b, c) 6 0

}
=

RHP(a,b) if αk = +1,

LHP(a,b) if αk = −1.

Therefore, a test of the form c /∈ Hk(a,b) in the pseudocode should
be understood as testing whether αk det?(a,b, c) > 0. Another as-
sumption that we make when presenting the pseudocode concerns
the direction in which each polygon Pk is traversed in order to find
an index vk such that pk[vk] /∈ Hk(p0[s0],p1[s1]). For a reason that
will become clear later when we analyze correctness of the algorithms,
we require that

• P0 is traversed counterclockwise when α1 = +1 and clockwise
when α1 = −1,

• P1 is traversed clockwise when α0 = +1 and counterclockwise
when α0 = −1.

In the pseudocode, the forward orientation of Pk is assumed to be
the one in which the corners of Pk should be traversed according
to the conditions above. When this has not been guaranteed in the
problem setup, a reference to a corner of Pk of the form pk[i] in the
pseudocode should be understood as pk[βki] for the constant βk ∈
{+1,−1} computed as follows at the very beginning:

β0 = α1 sgn det?(p0[0], . . . ,p0[n0 − 1]),

β1 = −α0 sgn det?(p1[0], . . . ,p1[n1 − 1]).

[August 31, 2017 at 8:40 – classicthesis]

2.3 algorithms 11

Algorithm 1:

1 s0 ← 0; v0 ← 0; s1 ← 0; v1 ← 0; u← 0

2 while s0 < 2n0 and s1 < 2n1 and (v0 < s0 +n0 or
v1 < s1 +n1)

3 vu ← vu + 1

4 if pu[vu] /∈ Hu(p0[s0],p1[s1])
5 su ← vu; v1−u ← s1−u

6 u← 1− u

7 if s0 > 2n0 or s1 > 2n1
8 return “no solution”

9 return (s0, s1)

To summarize, we make the following assumptions when presenting
the pseudocode of the two algorithms for each particular case of 1–4,
respectively:

1. P0 is counterclockwise, P1 is clockwise, and H0(a,b) =

H1(a,b) = RHP(a,b),

2. P0 is clockwise, P1 is counterclockwise, and H0(a,b) =

H1(a,b) = LHP(a,b),

3. P0 and P1 are clockwise, H0(a,b) = RHP(a,b), and H1(x,y) =
LHP(a,b),

4. P0 and P1 are counterclockwise, H0(a,b) = LHP(a,b), and
H1(a,b) = RHP(a,b).

Algorithm 1 maintains a candidate solution (s0, s1) starting from
(s0, s1) = (0, 0). At the beginning and after each update to (s0, s1),
the algorithm traverses P0 and P1 in parallel with indices (v0, v1),
starting from (v0, v1) = (s0, s1) and advancing v0 and v1 alternately.
The variable u ∈ {0, 1} determines the polygon Pu in which the traver-
sal is advanced in the current iteration. If the test in line 4 of Algo-
rithm 1 succeeds, that is, the corner pu[vu] lies on the “wrong side”
of the candidate line, then the algorithm updates the candidate so-
lution by setting su ← vu and reverts v1−u back to s1−u in line 5.
The algorithm returns (s0, s1) when both polygons have been entirely
traversed with indices v0 and v1 without detecting any corner on
the “wrong side” of the candidate line. This can happen only when
P0 ⊂ H0(p0[s0],p1[s1]) and P1 ⊂ H1(p0[s0],p1[s1]), as required.

See Figure 2 for an example run of Algorithm 1 for the separating
common tangent problem (case 4). The following theorem asserts that
Algorithm 1 is correct for the separating common tangent problem
and “partially correct” for the outer common tangent problem.

Theorem 2. If Algorithm 1 is to solve the outer common tangent problem
(case 1 or 2), then it returns the solution (s0, s1) if the convex hulls of P0
and P1 are disjoint and reports “no solution” if the convex hulls of P0 and
P1 are nested. If Algorithm 1 is to solve the separating common tangent

[August 31, 2017 at 8:40 – classicthesis]

12 the common tangent problem

P0

P1

a

b

c

d

Figure 2: An example of how Algorithm 1 finds the separating common
tangent L(b,d) of P0 and P1 starting from (p0[0],p1[0]) = (a, c).
The segments p0[s0]p1[s1] on intermediate candidate lines are also
shown.

Algorithm 2:

1 s0 ← 0; v0 ← 0; b0 ← false; s1 ← 0; v1 ← 0;
b1 ← false; u← 0

2 while s0 < 2n0 and s1 < 2n1 and (v0 < s0 +n0 or
v1 < s1 +n1)

3 vu ← vu + 1

4 if pu[vu] /∈ Hu(p0[s0],p1[s1]) and not bu
5 if p1−u[s1−u] ∈ ∆(pu[su],pu[vu − 1],pu[vu])
6 bu ← true

7 else
8 su ← vu; v1−u ← s1−u; b1−u ← false

9 u← 1− u

10 if s0 > 2n0 or s1 > 2n1 or b0 or b1
11 return “no solution”

12 return (s0, s1)

problem (case 3 or 4), then it returns the solution (s0, s1) if the convex hulls
of P0 and P1 are disjoint and reports “no solution” otherwise. Moreover,
Algorithm 1 runs in linear time and uses constant workspace.

If the convex hulls of P0 and P1 properly overlap, then Algorithm 1

can fail to find the solution even though it exists. An example of such
behavior is presented in Figure 3. Algorithm 2 is an improved version
of Algorithm 1 that solves the problem correctly in all cases includ-
ing the case of properly overlapping convex hulls. In line 5 of Algo-
rithm 2, ∆(a,b, c) denotes the triangular region spanned by a, b, and
c, and a test of the form z ∈ ∆(a,b, c) is equivalent to testing whether
det?(z,a,b), det?(z,b, c), and det?(z, c,a) are all positive or all nega-
tive (they are all non-zero, by the general position assumption). If the
test in line 5 succeeds, then p1−u[s1−u] belongs to the convex hull of
Pu, and a special boolean variable bu is set. In later iterations, when
bk = true, no update to sk can occur in line 8 (with u = k) until bk
is cleared at an update to s1−k in line 8 (with u = 1− k). As we will

[August 31, 2017 at 8:40 – classicthesis]

2.4 concluding remarks 13

P0

P1

a

b

c

d

Figure 3: Two polygons P0 and P1 for which Algorithm 1 fails to find the
outer common tangent L(b,d) starting from (p0[0],p1[0]) = (a, c).
If the conditions s0 < 2n0 and s1 < 2n1 of the “while” loop are
ignored, the algorithm keeps updating (s0, s1) indefinitely, always
getting back to the initial state where u = 0 and (p0[s0],p1[s1]) =
(p0[v0],p1[v1]) = (a, c).

show, such an update to s1−k must occur unless the convex hull of
P1−k is contained in the convex hull of Pk, and preventing updates to
sk when bk = true suffices to guarantee correctness of the algorithm
in all cases.

See Figure 4 for an example run of Algorithm 2 for the outer com-
mon tangent problem (case 1), where the convex hulls of P0 and P1
properly overlap. If the convex hulls of P0 and P1 are disjoint, then the
test in line 5 of Algorithm 2 never succeeds, the variables b0 and b1
remain unset, and thus Algorithm 2 essentially becomes Algorithm 1.

Theorem 3. If Algorithm 2 is to solve the outer common tangent problem
(case 1 or 2), then it returns the solution (s0, s1) unless the convex hulls of
P0 and P1 are nested, in which case it reports “no solution”. If Algorithm 2
is to solve the separating common tangent problem (case 3 or 4), then it
returns the solution (s0, s1) if the convex hulls of P0 and P1 are disjoint
and reports “no solution” otherwise. Moreover, Algorithm 2 runs in linear
time and uses constant workspace.

2.4 concluding remarks

It remains open whether an outer common tangent of two polygons
that are not disjoint can be found in linear time using constant work-
space. There can be a linear number of tangents in that case, but the
question is if finding an arbitrary one is possible.

Another natural question is whether the diameter of the convex
hull of a simple polygon can be computed in linear time using con-
stant workspace.1

1 The diameter of the convex hull is also the farthest pair of corners of the input
polygon. The dual question, whether the closest pair of corners of the input polygon
can be found in linear time, is already solved, since Aggarwal et al. [Agg+92] proved
that finding the closest pair among n points takes Ω(n logn) time in the algebraic
decision tree model (with no restriction on the workspace), even when the sequence
of points defines a simple polygon.

[August 31, 2017 at 8:40 – classicthesis]

14 the common tangent problem

P0

P1

e

f

b

g

h

d
a

c

Figure 4: An example of how Algorithm 2 finds the outer common tangent
L(c,h) of P0 and P1 starting from (p0[0],p1[0]) = (a, e). The seg-
ments p0[s0]p1[s1] on intermediate candidate lines are also shown.
In the 11th iteration, an update makes (p0[s0],p1[s1]) = (b, f) and
the dotted line L(b, f) becomes the candidate line. In the 19th it-
eration, u = 0 and p0[v0] = d, so b0 is set to true. In the 28th
iteration, u = 1 and p0[v1] = g, so b0 is set back to false. In the
31st iteration, an update makes (p0[s0],p1[s1]) = (c,h), and the
outer common tangent is found.

[August 31, 2017 at 8:40 – classicthesis]

3
T H E A RT G A L L E RY P R O B L E M

This section is based on the papers [AAM17a] and [AAM17b] (ap-
pendix B and C).

abstract One of the best-known problems in computational ge-
ometry is the art gallery problem, which was already studied in the
early 70s. Many variations of the problem have been considered, but
here we study the classical version where we are given a simple
polygon with vertices at rational coordinates and we have to decide
whether a given number of guards can be placed in the polygon so
that they guard the entire polygon. We give an explicit example of a
polygon where three guards are sufficient, but only if they are placed
on specific points with irrational coordinates. If the coordinates of the
guards are required to be rational, then four guards are needed. We
furthermore prove the much more general result that the art gallery
problem is complete for the complexity class ∃R, implying that (1) the
art gallery problem is equivalent up to polynomial time reductions
to the problem of deciding whether a given system of polynomial
equations and inequalities with integer coefficients and any number
of variables has a solution, and (2) the art gallery problem is not in
the complexity class NP unless NP = ∃R. As a corollary of our con-
struction, we prove that for any real algebraic number α there is an
instance of the art gallery problem where one of the coordinates of
the guards equals α in any guard set of minimum cardinality. That
rules out many geometric approaches to the problem.

3.1 introduction

For a polygonal region P and points x,y ∈ P, we say that x sees y if
the line segment xy is contained in P. A guard set S is a set of points
in P such that every point in P is seen by some point in S. The points
in S are called guards. The art gallery problem is to decide, given a
polygonal region P with n corners and a positive integer k, whether
there exists a guard set of size k. A guard set of minimum cardinality
is called optimal.

This classical version of the art gallery problem has been originally
formulated in 1973 by Victor Klee (see the book of O’Rourke [O’R87,
page 2]). It is often referred to as the interior-guard art gallery problem or
the point-guard art gallery problem, to distinguish it from other versions
that have been introduced over the years.

The art gallery problem has been extensively studied, with some
books, surveys, and book chapters dedicated to it [O’R87; She92;
Urr00; O’R04; Ber+08; Mat02; DO11; O’R98]. The research is stimu-
lated by a large number of possible variants of the problem and re-
lated questions that can be studied. Other versions of the art gallery

15

[August 31, 2017 at 8:40 – classicthesis]

16 the art gallery problem

problem include restrictions on the positions of the guards, different
definitions of visibility, restricted classes of polygonal regions, restrict-
ing the part of the polygonal region that has to be guarded, etc. In this
chapter we only consider the point-guard art gallery problem.

Despite extensive research, no combinatorial algorithm for the
problem problem is known. The only exact algorithm is attributed to
Micha Sharir (see [EH06]), who gave an nO(k) time algorithm. This
result is obtained using standard tools from real algebraic geome-
try [BPR06], and it is not known how to solve the problem without
using this powerful machinery (see [Bel91] for an analysis of the very
restricted case of k = 2).

Lee and Lin [LL86] proved, by constructing a reduction from 3SAT,
that the art gallery problem is NP-hard when the guards are restricted
to the corners of the polygonal region. It has subsequently been
shown by Aggarwal ([Agg84], see also [O’R87]) that this argument
can be extended to the case with no restrictions on the guards. It is
a big open question whether the art gallery problem is in the com-
plexity class NP. A simple way to show NP-membership would be to
prove that there always exists an optimal set of guards with rational
coordinates of polynomially bounded description. In the following
section, we show that this is not the case.

3.2 irrational guards

Sándor Fekete posed at MIT in 2010 and at Dagstuhl in 2011 an open
problem, asking whether there are polygonal regions requiring irra-
tional coordinates in an optimal guard set [Fek; AMTrc]. The question
has been raised again by Günter Rote at EuroCG 2011 [Rot11]. It has
also been mentioned by Rezende et al. [Rez+16]: “it remains an open
question whether there are polygons given by rational coordinates
that require optimal guard positions with irrational coordinates”. A
similar question has been raised by Friedrichs et al. [Fri+16]: “[. . .]
it is a long-standing open problem for the more general Art Gallery
Problem (AGP): For the AGP it is not known whether the coordinates
of an optimal guard cover can be represented with a polynomial num-
ber of bits”.

In the paper [AAM17a], we answered the open question of Sándor
Fekete by proving the following result. Recall that a polygonal region
P is called monotone if there exists a line l such that the intersection
between any line orthogonal to l and P is either empty or a single line
segment.

Theorem 4. There is a simple monotone polygonal region P with integer
corner coordinates such that

1. P can be guarded by 3 guards, and

2. an optimal guard set of P with guards at points with rational coordi-
nates has size 4.

The polygonal region from Theorem 4 is shown in Figure 5. An in-
teresting consequence of Theorem 4 is that there is no optimal guard

[August 31, 2017 at 8:40 – classicthesis]

3.2 irrational guards 17

Figure 5: A polygonal region that can be guarded by three guards, but
where four guards are needed if the coordinates of the guards
are required to be rational. The unique optimal guard set is shown
using the faces of the authors of [AAM17a].

set of P among a candidate set of guard positions consisting of in-
tersections between extensions of chords and edges of P. It does not
help to expand the candidate set by adding a line through each pair of
candidates, thus creating new intersections to be added to the set of
candidates, or to repeat this procedure any finite number of iterations,
since all candidate points created by such a process must inevitably
have rational coordinates. This shows that algorithms based on this
procedure, as well as other algorithms for the art gallery problem
which consider only rational points as possible guard positions, will
in general not find an optimal guard set.

We then extended Theorem 4 by providing a family of polygonal
regions for which the ratio between the size of an optimal rational
guard set and the size of an optimal set with irrational guards allowed
is 4/3, see Figure 6. One can make an arbitrarily large example by
connecting copies of the polygon P from Theorem 4 by thin corridors.

Theorem 5. There is a family of polygononal regions (Pn)n∈Z+ with inte-
ger corner coordinates such that

1. Pn can be guarded by 3n guards, and

2. an optimal guard set of Pn with guards at points with rational coordi-
nates has size 4n.

Moreover, the coordinates of the points defining the polygonal regions Pn
are polynomial in n.

We showed that the phenomenon with guards at irrational coordi-
nates occurs already in the much simpler class of rectilinear polygons,
i.e., polygononal regions where each edge is parallel to the x-axis or
to the y-axis, see Figure 7.

Theorem 6. There is a rectilinear polygonal region PR with corners at inte-
ger coordinates satisfying the following properties.

1. PR can be guarded by 9 guards.

2. An optimal guard set of PR with guards at points with rational coor-
dinates has size 10.

[August 31, 2017 at 8:40 – classicthesis]

18 the art gallery problem

Figure 6: A polygonal region that can be guarded by six guards, but where
eight guards are needed if the coordinates of the guards are re-
quired to be rational.

H1 H2

H3 H4

l` lm lr

T1

T2

Q2

Q3

Q4

Q1

I

Figure 7: A polygonal region that can be guarded by nine guards, but where
ten guards are needed if the coordinates of the guards are required
to be rational. With nine guards, a guard has to be placed in each
of the six grey regions, seeing exactly that region. The remaining
white area is the polygonal region P from Theorem 4.

[August 31, 2017 at 8:40 – classicthesis]

3.3 ∃R-completeness 19

The optimal guard sets of the polygonal regions from Theorems 4–6

contain guards with coordinates of the form (a1 + a2
√
2,a3 + a4

√
2).

Hence, each coordinate is a root of a second-degree polynomial with
integer coefficients. It is thus natural to ask if there are also poly-
gononal regions where coordinates with higher algebraic degree are
needed in an optimal guard set. In the paper [AAM17b], we show
that this is indeed the case, which is the topic of the next section.

3.3 ∃R-completeness

In the paper [AAM17b], we prove that the art gallery problem is
equivalent under polynomial time reductions to deciding whether a
system of polynomial equations over the real numbers has a solution.

3.3.1 The complexity class ∃R

The first order theory of the reals is a set of all true sentences involv-
ing real variables, universal and existential quantifiers, boolean and
arithmetic operators, constants 0 and 1, parenthesis, equalities and
inequalities (x1, x2, . . . ,∀, ∃,∧,∨,¬, 0, 1,+,−, ·, (,) ,=,<,6). A for-
mula is called a sentence if it has no free variables, i.e., each variable
present in the formula is bound by a quantifier. Note that within such
formulas one can easily express integer constants (using binary ex-
pansion) and powers. Each formula can be converted to a prenex form,
i.e., a form where it starts with all the quantifiers and is followed
by a quantifier-free formula, by a transformation which changes the
length of the formula by at most a constant factor.

The existential theory of the reals is a set of all true sentences of the
first-order theory of the reals in prenex form with existential quanti-
fiers only, i.e., sentences of the form

(∃X1∃X2 . . . ∃Xk) Φ(X1,X2, . . . ,Xk),

where Φ is a quantifier-free formula of the first-order theory of the
reals with variables X1, . . . ,Xk. The problem ETR is the problem of
deciding whether a given existential formula of the above form is
true. The complexity class ∃R consists of all problems that are re-
ducible to ETR in polynomial time. The most well-known problem in
the complexity class ∃R is deciding whether a system of polynomial
equations over the real numbers has a solution.

It is currently known that

NP ⊆ ∃R ⊆ PSPACE.

It is not hard see that the problem ETR is NP-hard, for instance by
the following reduction from 3SAT. For each boolean variable x in
an instance of 3SAT, we introduce a real variable x ′, and require that
x ′ · (1− x ′) = 0 in order to ensure that x ′ ∈ {0, 1}. For any clause of
the 3SAT formula we construct a function which evaluates to 1 if the
corresponding clause is satisfied, and to 0 otherwise. For a clause C of
the form x∨ y∨¬z, the corresponding function C ′ is 1− (1− x ′)(1−

[August 31, 2017 at 8:40 – classicthesis]

20 the art gallery problem

y ′)z ′. The conjunction of clauses C1 ∧ . . .∧Cm is then translated to
the equation C ′

1 · . . . ·C ′
m− 1 = 0. Clearly, a formula of 3SAT is true if

and only if the constructed set of equations has a solution in R. The
containment ∃R ⊆ PSPACE is highly non-trivial, and it has first been
established by Canny [Can88].

By the reduction from 3SAT to ETR sketched above we know that a
problem of deciding whether a given polynomial equation over {0, 1}
with integer coefficients has a solution is NP-hard. The problem is
also in NP, as a satisfying assignment clearly serves as a witness.
Therefore, NP-complete problems are the problems equivalent (under
polynomial time reductions) to deciding whether a given polynomial
equation over {0, 1} with integer coefficients has a solution. A well-
known ∃R-complete problem is the problem of deciding whether
a single polynomial equation Q(x1, . . . , xn) = 0 with integer coef-
ficients has a solution in R [Mat14, Proposition 3.2]. Therefore, the
∃R-complete problems are equivalent to deciding whether a given
polynomial equation over R with integer coefficients has a solution.

3.3.2 Our results

Theorem 7. The art gallery problem is ∃R-complete, even the restricted
variant where we are given a polygonal region with corners at integer coor-
dinates.

In our construction, an ETR formula (∃X1 . . . ∃Xk) Φ(X1, . . . ,Xk) is
transformed into an instance (P,g) of the art gallery problem where
g > k. Let SΦ denote the solution space of the formula Φ, i.e., SΦ : =

{x ∈ Rk : Φ(x)}. We will prove the following theorem.

Theorem 8. Let Φ be an ETR formula with k variables. Then there is an
instance (P,g) of the art gallery problem, and constants c1,d1, . . . , ck,dk ∈
Q, such that

• if Φ has a solution, then P has a guard set of size g, and

• for any guard set G of P of size g, there exists (x1, . . . , xk) ∈ SΦ
such that G contains guards at positions (c1x1 + d1, 0), . . . , (ckxk +
dk, 0).

We get the following corollary.

Corollary 9. Given any real algebraic number α, there exists a polygonal
region P with corners at rational coordinates such that in any optimal guard
set of P there is a guard with an x-coordinate equal to α.

It is a classical result in Galois theory, and has thus been known
since the 19th century, that there are polynomial equations of degree
five with integer coefficients which have real solutions, but with no
solutions expressible by radicals (i.e., solutions that can be expressed
using integers, addition, subtraction, multiplication, division, raising
to integer powers, and the extraction of n’th roots). One such exam-
ple is the equation x5 − x+ 1 = 0 [Qui17]. It is a peculiar fact that
using our reduction, we are able to transform such an equation into

[August 31, 2017 at 8:40 – classicthesis]

3.3 ∃R-completeness 21

an instance of the art gallery problem where no optimal guard set
can be expressed by radicals. Note that our result also rules out any
algorithm that only considers guards with coordinates of bounded
algebraic degree.

3.3.3 Other ∃R-complete problems

A growing class of problems turn out to be equivalent (under poly-
nomial time reductions) to deciding whether polynomial equations
and inequalities over the reals have a solution. These problems form
the family of ∃R-complete problems as it is currently known. This
class includes problems like the stretchability of pseudoline arrange-
ments [Mnë88; Sho91], recognition of intersection graphs of various
objects (e.g. segments [Mat14], unit disks [MM13], and general con-
vex sets [Sch09]), recognition of point visibility graphs [CH17], the
Steinitz problem for 4-polytopes [RGZ95], deciding whether a graph
with given edge lengths can be realized by a straight-line draw-
ing [Sch13; Abe+16], deciding whether a straight line drawing of a
graph exists with a given number of edge crossings [Bie91], decision
problems related to Nash-equilibria [Gar+15], and positive semidef-
inite matrix factorization [Shi16]. We refer the reader to the lecture
notes by Matoušek [Mat14] and surveys by Schaefer [Sch09] and Car-
dinal [Car15] for more information on the complexity class ∃R.

3.3.4 Overall structure of the reductions

We first show that the art gallery problem is in the complexity class
∃R. For that we present a construction of an ETR-formula Φ for any
instance (P,g) of the art gallery problem such that Φ has a solution if
and only if P has a guard set of size g. The idea is to encode guards by
pairs of variables and compute a set of witnesses (which depend on
the positions of the guards) of polynomial size such that the polyg-
onal region is guarded if and only if the witnesses are seen by the
guards.

The proof that the art gallery problem is ∃R-hard is the main result
of the paper [AAM17b], and it consists of two parts. The first part
is of algebraic nature, and in that we introduce a novel ∃R-complete
problem which we call ETR-INV.

Definition 10. In the problem ETR-INV, we are given a set of real variables
{x1, . . . , xn}, and a set of equations of the form

x = 1, x+ y = z, x · y = 1,

for x,y, z ∈ {x1, . . . , xn}. The goal is to decide whether the system of equa-
tions has a solution when each variable is restricted to the range [1/2, 2].

Theorem 11. The problem ETR-INV is ∃R-complete.

A common way of making a reduction from ETR to some other
problem is to build gadgets corresponding to each of the equations

[August 31, 2017 at 8:40 – classicthesis]

22 the art gallery problem

Figure 8: The overall design of an art gallery reduced from an instance of
ETR-INV.

x = 1, x + y = z, and x · y = z for any variables x,y, z. Usually,
the multiplication gadget is the most involved one. The reduction
from ETR-INV requires building a gadget for inversion (i.e., x · y = 1)
instead of a more general gadget for multiplication. We think that the
problem ETR-INV might be of independent interest, and that it will
simplify constructing ∃R-hardness proofs.

We then describe a polynomial time reduction from ETR-INV to the
art gallery problem, which shows that the art gallery problem is ∃R-
hard. This reduction constructs an art gallery instance (P(Φ),g(Φ))

from an ETR-INV instance Φ, such that P(Φ) has a guard set of size
g(Φ) if and only if the formula Φ has a solution. See Figure 8 for
an overall picture of how P(Φ) looks. We construct the polygonal
region so that it contains g(Φ) guard segments (which are horizontal
line segments within P) and stationary guard positions (points within P).
By introducing pockets we enforce that if P has a guard set of size g(Φ),
then there must be exactly one guard at each guard segment and
at each stationary guard position. Each guard segment represents a
variable ofΦ (with multiple segments representing the same variable)
in the sense that the position of the guard on the segment specifies
the value of the variable, the endpoints of a segment corresponding
to the values 1/2 and 2.

We develop a technique for copying guard segments, i.e., enforcing
that the guards at two segments correspond to the same variable. We
do that by introducing critical segments within the polygon, which
can be seen by guards from two guard segments (but not from other
guard segments). Then the requirement that a critical segment is seen
introduces dependency between the guards at the corresponding seg-
ments. Different critical segments will enforce different dependencies,
and by enforcing that two guards must see together two particular
critical segments, we can ensure that the guards represent the same
value. The stationary guards are placed to see the remaining areas of
the polygon.

With this technique, we are able to copy two or three segments from
an area containing guard segments corresponding to all variables into
a gadget, where we will enforce a dependency between the values of
the variables represented by the two or three segments. This is done

[August 31, 2017 at 8:40 – classicthesis]

3.4 concluding remarks 23

by constructing a corridor containing two critical segments for each
pair of copied segments. The construction is non-trivial, as it requires
the critical segments not to be seen from any other segments.

Within the gadgets, we build features that enforce the variables
x,y, z represented by the guards to satisfy one of the conditions x+
y > z, x + y 6 z, or x · y = 1. The conditions are enforced by a
requirement that two or three guards can see together some areas,
where for the case of a gadget with three variables the area to be seen
is a quadrilateral instead of a line segment.

3.4 concluding remarks

When reducing an instance of ETR-INV to an art gallery, we get many
triplets of collinear corners. That is needed for the guard segments
representing variables. In that sense the resulting art gallery is de-
generate. It is an interesting open question whether the art gallery
problem is also ∃R-complete when the art gallery is assumed to have
corners in general position. Other variants are interesting as well, for
instance the version where only the boundary of the gallery has to be
guarded, or when the guards have to be placed on the boundary, or
the combination of these.

[August 31, 2017 at 8:40 – classicthesis]

[August 31, 2017 at 8:40 – classicthesis]

4
T H E M I N I M U M P E R I M E T E R S U M P R O B L E M

This chapter is based on the paper [Abr+17b] (appendix D).

abstract A natural clustering problem for points in the plane,
which has been studied since the early 90s, is the minimum perime-
ter sum problem. Here, we are given n points and we want to find
the way to partition the points into some number k of clusters so that
the sum of perimeters of the convex hulls of the clusters is minimum.
For the special case of k = 2, the fastest previously known algorithm
had quadratic running time and we provide an O(n log4 n) time al-
gorithm.

4.1 introduction

The clustering problem is to partition a given data set into clusters
(that is, subsets) according to some measure of optimality. We are in-
terested in clustering problems where the data set is a set P of points
in Euclidean space. Most of these clustering problems fall into one
of two categories: problems where the maximum cost of a cluster is
given and the goal is to find a clustering consisting of a minimum
number of clusters, and problems where the number of clusters is
given and the goal is to find a clustering of minimum total cost. In
this chapter we consider a basic problem of the latter type, where we
wish to find a bipartition (P1,P2) of a planar point set P. Bipartition
problems are not only interesting in their own right, but also because
bipartition algorithms can form the basis of hierarchical clustering
methods.

There are many possible variants of the bipartition problem on
planar point sets, which differ in how the cost of a clustering is de-
fined. A variant that received a lot of attention is the 2-center prob-
lem [Cha99; Dre84; Epp97; JK94; Sha97], where the cost of a parti-
tion (P1,P2) of the given point set P is defined as the maximum of
the radii of the smallest enclosing disks of P1 and P2. Other cost
functions that have been studied include the maximum diameter of
the two point sets [Asa+88] and the sum of the diameters [Her92]; see
also the survey by Agarwal and Sharir [AS98] for some more variants.

A natural class of cost function considers the size of the con-
vex hulls ch(P1) and ch(P2) of the two subsets, where the size of
ch(Pi) can either be defined as the area of ch(Pi) or as the perime-
ter per(Pi) of ch(Pi). (The perimeter of ch(Pi) is the length of the
boundary ∂ch(Pi).) This class of cost functions was already studied
in 1991 by Mitchell and Wynters [MW91]. They studied four prob-
lem variants: minimize the sum of the perimeters, the maximum of

25

[August 31, 2017 at 8:40 – classicthesis]

26 the minimum perimeter sum problem

the perimeters, the sum of the areas, or the maximum of the areas.
In three of the four variants the convex hulls ch(P1) and ch(P2)
in an optimal solution may intersect [MW91, full version]—only in
the minimum perimeter-sum problem the optimal bipartition is guaran-
teed to be a so-called line partition, that is, a solution with disjoint
convex hulls. For each of the four variants they gave an O(n3) algo-
rithm that usesO(n) space and for all except the minimum-maximum
area problem, they also gave an O(n2) algorithm that uses O(n2)
space; their algorithms only consider line partitions (which in the
case of the minimum perimeter-sum problem implies an optimal bi-
partition). Around the same time, the minimum-perimeter sum prob-
lem was studied for partitions into k subsets for k > 2; for this vari-
ant Capoyleas et al. [CRW91] presented an algorithm with running
time O(n6k). Mitchell and Wynters mentioned the improvement of
the space requirement of the quadratic-time algorithm as an open
problem, and they stated the existence of a subquadratic algorithm
for any of the four variants as the most prominent open problem.

Rokne et al. [RWW92] made progress on the first question, by pre-
senting an O(n2 logn) algorithm that uses only O(n) space for the
line-partition version of each of the four problems. Devillers and
Katz [DK99] gave algorithms for the min-max variant of the prob-
lem, both for area and perimeter, which run in O((n + k) log2 n)
time. Here k is a parameter that is only known to be in O(n2), al-
though Devillers and Katz suspected that k is subquadratic. They
also gave linear-time algorithms for these problems when the point
set P is in convex position and given in cyclic order. Segal [Seg02]
proved an Ω(n logn) lower bound for the min-max problems. Very
recently, and apparently unaware of the earlier work on these prob-
lems, Cho et al. [Cho+16] presented an O(n2 log2 n) time algorithm
for the minimum-perimeter-sum problem and an O(n4 log2 n) time
algorithm for the minimum-area-sum problem (considering all parti-
tions, not only line partitions). Despite these efforts, the main ques-
tion remained open: is it possible to obtain a subquadratic algorithm
for any of the four bipartition problems based on convex-hull size?

4.2 our contribution

We answer the question above affirmatively by presenting a subqua-
dratic algorithm for the minimum perimeter-sum bipartition problem
in the plane.

As mentioned, an optimal solution (P1,P2) to the minimum peri-
meter-sum bipartition problem must be a line partition. A straightfor-
ward algorithm would generate all Θ(n2) line partitions and compute
the value per(P1)+per(P2) for each of them. If the latter is done from
scratch for each partition, the resulting algorithm runs in O(n3 logn)
time. The algorithms by Mitchell and Wynters [MW91] and Rokne et
al. [RWW92] improve on this by using that the different line biparti-
tions can be generated in an ordered way, such that subsequent line
partitions differ in at most one point. Thus the convex hulls do not

[August 31, 2017 at 8:40 – classicthesis]

4.2 our contribution 27

have to be recomputed from scratch, but they can be obtained by up-
dating the convex hulls of the previous bipartition. To obtain a sub-
quadratic algorithm a fundamentally new approach is necessary: we
need a strategy that generates a subquadratic number of candidate
partitions, instead considering all line partitions. We achieve this as
follows.

We start by proving that an optimal bipartition (P1,P2) satisfies the
following separation property:

Theorem 12. There is a set of O(1) canonical orientations1 such that
for any set of points in the plane, the optimal bipartition (P1,P2) for the
minimum-perimeter sum problem satisfies one of the following two condi-
tions:

• P1 can be separated from P2 by a line with a canonical orientation, or

• the distance between ch(P1) and ch(P2) is proportional to
min(per(P1), per(P2).

There are only O(n) bipartitions of the former type, and finding
the best among them is relatively easy. The bipartitions of the second
type are much more challenging. We show how to employ a com-
pressed quadtree to generate a collection of O(n) canonical 5-gons—
intersections of axis-parallel rectangles and canonical halfplanes—
such that the smaller of ch(P1) and ch(P2) (in a bipartition of the
second type) is contained in one of the 5-gons.

It then remains to find the best among the bipartitions of the second
type. Even though the number of such bipartitions is linear, we cannot
afford to compute their perimeters from scratch. We therefore design
a data structure to quickly compute per(P ∩Q), where Q is a query
canonical 5-gon and obtain the following result:

Theorem 13. Let P be a set of n points in the plane. Then we can compute
a partition (P1,P2) of P that minimizes per(P1) + per(P2) in O(n log4 n)
time using O(n log3 n) space.

1 In fact, the seven orientations

{(
cos iπ7
sin iπ7

)
| i = 0, . . . , 6

}
will do.

[August 31, 2017 at 8:40 – classicthesis]

[August 31, 2017 at 8:40 – classicthesis]

B I B L I O G R A P H Y

[Abe+16] Z. Abel, E.D. Demaine, M.L. Demaine, S. Eisenstat, J.
Lynch, and T.B. Schardl. “Who Needs Crossings? Hard-
ness of Plane Graph Rigidity.” In: 32nd International Sym-
posium on Computational Geometry (SoCG 2016). 2016, 3:1–
3:15.

[Abr15a] M. Abrahamsen. “An Optimal Algorithm for the Sepa-
rating Common Tangents of Two Polygons.” In: 31st In-
ternational Symposium on Computational Geometry (SoCG
2015). 2015, pp. 198–208.

[Abr15b] M. Abrahamsen. “Spiral Toolpaths for High-Speed Ma-
chining of 2D Pockets With or Without Islands.” In:
ASME 2015 International Design Engineering Technical Con-
ferences and Computers and Information in Engineering Con-
ference. 2015.

[AAM17a] M. Abrahamsen, A. Adamaszek, and T. Miltzow. “Irra-
tional Guards are Sometimes Needed.” In: 33rd Interna-
tional Symposium on Computational Geometry (SoCG 2017).
2017.

[AAM17b] M. Abrahamsen, A. Adamaszek, and T. Miltzow. The Art
Gallery Problem is ∃R-complete. Preprint, https://arxiv.
org/abs/1704.06969. 2017.

[AT16] M. Abrahamsen and M. Thorup. “Finding the Maximum
Subset with Bounded Convex Curvature.” In: 32nd In-
ternational Symposium on Computational Geometry (SoCG
2016). 2016, 4:1–4:17.

[AW16] M. Abrahamsen and B. Walczak. “Outer Common Tan-
gents and Nesting of Convex Hulls in Linear Time and
Constant Workspace.” In: 24th Annual European Sympo-
sium on Algorithms (ESA 2016). 2016, 4:1–4:15.

[AW17] M. Abrahamsen and B. Walczak. Common Tangents of Two
Simple Polygons in Linear Time and Constant Workspace.
Manuscript. 2017.

[Abr+16] M. Abrahamsen, G. Bodwin, E. Rotenberg, and M.
Stöckel. “Graph Reconstruction with a Betweenness Ora-
cle.” In: 33rd Symposium on Theoretical Aspects of Computer
Science (STACS 2016). 2016, 5:1–5:14.

[Abr+17a] M. Abrahamsen, J. Holm, E. Rotenberg, and C. Wulff-
Nilsen. “Best Laid Plans of Lions and Men.” In: 33rd In-
ternational Symposium on Computational Geometry (SoCG
2017). 2017.

29

[August 31, 2017 at 8:40 – classicthesis]

https://arxiv.org/abs/1704.06969
https://arxiv.org/abs/1704.06969

30 Bibliography

[Abr+17b] M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and
A.D. Mehrabi. “Minimum Perimeter-Sum Partitions in
the Plane.” In: 33rd International Symposium on Computa-
tional Geometry (SoCG 2017). 2017.

[Abr+17c] M. Abrahamsen, S. Alstrup, J. Holm, M.B.T. Knud-
sen, and M. Stöckel. “Near-Optimal Induced Universal
Graphs for Bounded Degree Graphs.” In: The 44th Inter-
national Colloquium on Automata, Languages, and Program-
ming (ICALP 2017). 2017.

[Abr+17d] M. Abrahamsen, S. Alstrup, J. Holm, M.B.T. Knudsen,
and M. Stöckel. Near-Optimal Induced Universal Graphs for
Cycles and Paths. In submission. 2017.

[Abr+17e] M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and
A.D. Mehrabi. “Range-Clustering Queries.” In: 33rd In-
ternational Symposium on Computational Geometry (SoCG
2017). 2017.

[AMTrc] P.K. Agarwal, K. Mehlhorn, and M. Teillaud. Dagstuhl
Seminar 11111, Computational Geometry. March 13 – 18 ,
2011.

[AS98] P.K. Agarwal and M. Sharir. “Efficient algorithms for
geometric optimization.” In: ACM Comput. Surv. 30 (4
1998), pp. 412–458.

[Agg84] A. Aggarwal. “The art gallery theorem: its variations, ap-
plications and algorithmic aspects.” PhD thesis. 1984.

[Agg+92] A. Aggarwal, H. Edelsbrunner, P. Raghavan, and P. Ti-
wari. “Optimal time bounds for some proximity prob-
lems in the plane.” In: Information Processing Letters 42.1
(1992), pp. 55–60.

[Asa+88] T. Asano, B. Bhattacharya, M. Keil, and F. Yao. “Cluster-
ing algorithms based on minimum and maximum span-
ning trees.” In: 4th International Symposium on Computa-
tional Geometry (SoCG 1988). 1988, pp. 252–257.

[Asa+11] T. Asano, W. Mulzer, G. Rote, and Y. Wang. “Constant-
work-space algorithms for geometric problems.” In: J.
Comput. Geom. 2.1 (2011), pp. 46–68.

[Asa+13] T. Asano, K. Buchin, M. Buchin, M. Korman, W. Mulzer,
G. Rote, and A. Schulz. “Memory-constrained algo-
rithms for simple polygons.” In: Comput. Geom. 46.8
(2013), pp. 959–969.

[Bar+14] L. Barba, M. Korman, S. Langerman, and R.I. Silveira.
“Computing the visibility polygon using few variables.”
In: Comput. Geom. 47.9 (2014), pp. 918–926.

[Bar+15] L. Barba, M. Korman, S. Langerman, K. Sadakane, and
R.I. Silveira. “Space–time trade-offs for stack-based algo-
rithms.” In: Algorithmica 72.4 (2015), pp. 1097–1129.

[August 31, 2017 at 8:40 – classicthesis]

Bibliography 31

[BPR06] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in real alge-
braic geometry. Springer-Verlag Berlin Heidelberg, 2006.

[Bel91] P. Belleville. “Computing two-covers of simple poly-
gons.” MA thesis. McGill University, 1991.

[Ber+08] M. de Berg, M. van Kreveld, M. Overmars, and O.
Cheong. Computational Geometry: Algorithms and Applica-
tions (3rd edition). Springer-Verlag, 2008.

[Bha+12] D. Bhadauria, K. Klein, V. Isler, and S. Suri. “Captur-
ing an evader in polygonal environments with obstacles:
The full visibility case.” In: The International Journal of
Robotics Research 31.10 (2012), pp. 1176–1189.

[Bie91] D. Bienstock. “Some provably hard crossing number
problems.” In: Discrete & Computational Geometry 6.3
(1991), pp. 443–459.

[BJ02] G.S. Brodal and R. Jacob. “Dynamic planar convex hull.”
In: 43rd Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS 2002). 2002, pp. 617–626.

[Can88] J. Canny. “Some algebraic and geometric computations
in PSPACE.” In: Proceedings of the twentieth annual ACM
symposium on Theory of computing (STOC 1988). ACM.
1988, pp. 460–467.

[CRW91] V. Capoyleas, G. Rote, and G. Woeginger. “Geometric
clusterings.” In: J. Alg. 12 (2 1991), pp. 341–356.

[Car15] J. Cardinal. “Computational Geometry Column 62.” In:
SIGACT News 46.4 (2015), pp. 69–78.

[CH17] J. Cardinal and U. Hoffmann. “Recognition and com-
plexity of point visibility graphs.” In: Discrete & Compu-
tational Geometry 57.1 (2017), pp. 164–178.

[Car+16] E. Carson, J. Demmel, L. Grigori, N. Knight, P. Koanan-
takool, O. Schwartz, and H.V. Simhadri. “Write-avoiding
algorithms.” In: 30th IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2016). 2016,
pp. 648–658.

[Cha99] T.M. Chan. “More planar two-center algorithms.” In:
Comput. Geom. Theory Appl. 13 (2 1999), pp. 189–198.

[Cho+16] H.G. Cho, W. Evans, N. Saeedi, and C.S. Shin. “Covering
points with convex sets of minimum size.” In: 10th Int.
Workshop Alg. Comput. (WALCOM 2016). 2016, pp. 166–
178.

[DO11] S.L. Devadoss and J. O’Rourke. Discrete and Computa-
tional Geometry. Princeton University Press, 2011.

[DK99] O. Devillers and M.J. Katz. “Optimal line bipartitions
of point sets.” In: Int. J. Comput. Geom. Appl. 9 (1 1999),
pp. 39–51.

[August 31, 2017 at 8:40 – classicthesis]

32 Bibliography

[Dre84] Z. Drezner. “The planar two-center and two-median
problems.” In: Transportation Science 18 (4 1984), pp. 351–
361.

[EH06] A. Efrat and S. Har-Peled. “Guarding galleries and
terrains.” In: Information Processing Letters 100.6 (2006),
pp. 238–245.

[Epp97] D. Eppstein. “Faster construction of planar two-centers.”
In: 8th ACM-SIAM Symp. Discr. Alg. (SODA 1997). 1997,
pp. 131–138.

[Fek] S. Fekete. private communication.

[Fri+16] S. Friedrichs, M. Hemmer, J. King, and C. Schmidt. “The
continuous 1.5D terrain guarding problem: Discretiza-
tion, optimal solutions, and PTAS.” In: Journal of Com-
putational Geometry 7.1 (2016), pp. 256–284.

[Gar+15] J. Garg, R. Mehta, V.V. Vazirani, and S. Yazdanbod. “ETR-
Completeness for Decision Versions of Multi-player
(Symmetric) Nash Equilibria.” In: Proceedings of the 42nd
International Colloquium on Automata, Languages, and Pro-
gramming (ICALP 2015), part 1. Vol. 9134. Lecture Notes
in Computer Science (LNCS). 2015, pp. 554–566.

[GHS91] L. Guibas, J. Hershberger, and J. Snoeyink. “Compact
interval trees: a data structure for convex hulls.” In: Int.
J. Comput. Geom. Appl. 1.1 (1991), pp. 1–22.

[GH89] L.J. Guibas and J. Hershberger. “Optimal shortest path
queries in a simple polygon.” In: Journal of Computer and
System Sciences 39.2 (1989), pp. 126–152.

[HP15] S. Har-Peled. “Shortest path in a polygon using sub-
linear space.” In: 31st International Symposium on Com-
putational Geometry (SoCG 2015). Vol. 34. LIPIcs. 2015,
pp. 111–125.

[Her92] J. Hershberger. “Minimizing the sum of diameters ef-
ficiently.” In: Comput. Geom. Theory Appl. 2 (2 1992),
pp. 111–118.

[HS92] J. Hershberger and S. Suri. “Applications of a semi-
dynamic convex hull algorithm.” In: BIT Numer. Math.
32.2 (1992), pp. 249–267.

[HS95] J. Hershberger and S. Suri. “A pedestrian approach to
ray shooting: Shoot a ray, take a walk.” In: Journal of Al-
gorithms 18.3 (1995), pp. 403–431.

[JK94] J.W. Jaromczyk and M. Kowaluk. “An efficient algorithm
for the Euclidean two-center problem.” In: 1994, pp. 303–
311.

[KS95] D. Kirkpatrick and J. Snoeyink. “Computing common
tangents without a separating line.” In: 4th International
Workshop on Algorithms and Data Structures (WADS 1995).
Vol. 955. LNCS. Springer, 1995, pp. 183–193.

[August 31, 2017 at 8:40 – classicthesis]

Bibliography 33

[LL86] D.T. Lee and A.K. Lin. “Computational complexity of art
gallery problems.” In: IEEE Transactions on Information
Theory 32.2 (1986), pp. 276–282.

[Mat02] J. Matoušek. Lectures on Discrete Geometry. Vol. 212. Grad-
uate Texts in Mathematics. Springer-Verlag New York,
2002.

[Mat14] J. Matoušek. Intersection graphs of segments and ∃R. Tech.
rep. Preprint, https://arxiv.org/abs/1406.2636. 2014.

[MM13] C. McDiarmid and T. Müller. “Integer realizations of
disk and segment graphs.” In: Journal of Combinatorial
Theory, Series B 103.1 (2013), pp. 114–143.

[Mel87] A.A. Melkman. “On-line construction of the convex hull
of a simple polyline.” In: Inform. Process. Lett. 25.1 (1987),
pp. 11–12.

[MW91] J.S.B. Mitchell and E.L. Wynters. “Finding optimal bipar-
titions of points and polygons.” In: (1991), pp. 202–213.

[Mnë88] N.E. Mnëv. “The universality theorems on the classifica-
tion problem of configuration varieties and convex poly-
topes varieties.” In: Topology and geometry – Rohlin semi-
nar. Ed. by O.Y. Viro. Springer-Verlag Berlin Heidelberg,
1988, pp. 527–543.

[O’R87] J. O’Rourke. Art Gallery Theorems and Algorithms. Oxford
University Press, 1987.

[O’R98] J. O’Rourke. Computational Geometry in C. Cambridge
University Press, 1998.

[O’R04] J. O’Rourke. “Visibility.” In: Handbook of Discrete and
Computational Geometry. Ed. by Jacob E. Goodman and
Joseph O’Rourke. Second. Chapman & Hall/CRC, 2004.
Chap. 28.

[OL81] M.H. Overmars and J. van Leeuwen. “Maintenance of
configurations in the plane.” In: J. Comput. System Sci.
23.2 (1981), pp. 166–204.

[PH77] F.P. Preparata and S.J. Hong. “Convex hulls of finite sets
of points in two and three dimensions.” In: Commun.
ACM 20.2 (1977), pp. 87–93.

[PS85] F.P. Preparata and M.I. Shamos. Computational Geometry
– An Introduction. Springer-Verlag, 1985.

[Qui17] Quintic function – Wikipedia, The Free Encyclopedia.
[Online; accessed 14-March-2017]. 2017. url: https://
en.wikipedia.org/wiki/Quintic_function.

[Rei08] O. Reingold. “Undirected connectivity in log-space.” In:
Journal of the ACM (JACM) 55.4 (2008), pp. 1–24.

[August 31, 2017 at 8:40 – classicthesis]

https://arxiv.org/abs/1406.2636
https://en.wikipedia.org/wiki/Quintic_function
https://en.wikipedia.org/wiki/Quintic_function

34 Bibliography

[Rez+16] P.J. de Rezende, C.C. de Souza, S. Friedrichs, M. Hem-
mer, A. Kröller, and D.C. Tozoni. “Engineering Art Gal-
leries.” In: Algorithm Engineering – Selected Results and
Surveys. Ed. by L. Kliemann and P. Sanders. Springer
International Publishing, 2016, pp. 379–417.

[RGZ95] J. Richter-Gebert and G.M. Ziegler. “Realization spaces
of 4-polytopes are universal.” In: Bulletin of the American
Mathematical Society 32.4 (1995), pp. 403–412.

[RWW92] J. Rokne, S. Wang, and X. Wu. “Optimal bipartitions of
point sets.” In: 4th Canad. Conf. Comput. Geom. (CCCG
1992). 1992, pp. 11–16.

[Rot11] G. Rote. EuroCG Open Problem Session. See the personal
webpage of Günter Rote: http://page.mi.fu-berlin.
de/rote/Papers/slides/Open- Problem_artgallery-

Morschach-EuroCG-2011.pdf. 2011.

[Sch09] M. Schaefer. “Complexity of some geometric and topo-
logical problems.” In: Proceedings of the 17th International
Symposium on Graph Drawing (GD 2009). Vol. 5849. Lec-
ture Notes in Computer Science (LNCS). Springer. 2009,
pp. 334–344.

[Sch13] M. Schaefer. “Realizability of graphs and linkages.”
In: Thirty Essays on Geometric Graph Theory. Ed. by
János Pach. Springer-Verlag New York, 2013. Chap. 23,
pp. 461–482.

[Seg02] M. Segal. “Lower bounds for covering problems.” In:
J. Math. Modelling Alg. 1 (1 2002), pp. 17–29.

[Sha97] M. Sharir. “A near-linear algorithm for the planar 2-
center problem.” In: Discr. Comput. Geom. 18 (2 1997),
pp. 125–134.

[She92] T.C. Shermer. “Recent results in art galleries.” In: Proceed-
ings of the IEEE 80.9 (1992), pp. 1384–1399.

[Shi16] Y. Shitov. The complexity of positive semidefinite matrix fac-
torization. Tech. rep. Preprint, http://arxiv.org/abs/
1606.09065. 2016.

[Sho91] P.W. Shor. “Stretchability of pseudolines is NP-hard.” In:
Applied Geometry and Discrete Mathematics: The Victor Klee
Festschrift. Ed. by Peter Gritzmann and Bernd Sturmfels.
Vol. 4. DIMACS – Series in Discrete Mathematics and
Theoretical Computer Science. American Mathematical
Society and Association for Computing Machinery, 1991,
pp. 531–554.

[Tou83] G.T. Toussaint. “Solving geometric problems with the
rotating calipers.” In: IEEE Mediterranean Electrotechnical
Conference (MELECON 1983). 1983, A10.02/1–4.

[Urr00] J. Urrutia. “Art Gallery and Illumination Problems.” In:
Handbook of Computational Geometry. Ed. by J.-R. Sack and
J. Urrutia. Elsevier, 2000. Chap. 22, pp. 973–1027.

[August 31, 2017 at 8:40 – classicthesis]

http://page.mi.fu-berlin.de/rote/Papers/slides/Open-Problem_artgallery-Morschach-EuroCG-2011.pdf
http://page.mi.fu-berlin.de/rote/Papers/slides/Open-Problem_artgallery-Morschach-EuroCG-2011.pdf
http://page.mi.fu-berlin.de/rote/Papers/slides/Open-Problem_artgallery-Morschach-EuroCG-2011.pdf
http://arxiv.org/abs/1606.09065
http://arxiv.org/abs/1606.09065

Part II

A P P E N D I X

This appendix contains the papers described in the synop-
sis.

[August 31, 2017 at 8:40 – classicthesis]

[August 31, 2017 at 8:40 – classicthesis]

A
C O M M O N TA N G E N T S O F T W O D I S J O I N T
P O LY G O N S I N L I N E A R T I M E A N D C O N S TA N T
W O R K S PA C E

37

[August 31, 2017 at 8:40 – classicthesis]

Common Tangents of Two Disjoint Polygons in Linear Time and

Constant Workspace∗

Mikkel Abrahamsen† Bartosz Walczak‡

August 29, 2017

Abstract

We provide a remarkably simple algorithm to compute all (at most four) common tangents of two
disjoint simple polygons. Given each polygon as a read-only array of its corners in cyclic order, the
algorithm runs in linear time and constant workspace and is the first to achieve the two complexity
bounds simultaneously. The set of common tangents provides basic information about the convex hulls
of the polygons—whether they are nested, overlapping, or disjoint—and our algorithm thus also decides
this relationship.

1 Introduction

A tangent of a polygon is a line touching the polygon such that all of the polygon lies on the same side
of the line. We consider the problem of computing the common tangents of two disjoint polygons that are
simple, that is, they have no self-intersections. The set of common tangents provides basic information about
the convex hulls of the polygons, i.e., whether they are disjoint, overlapping, or nested. We call a common
tangent outer if the two polygons lie on the same side of it and separating otherwise. Two disjoint polygons
have two outer common tangents unless their convex hulls are nested, and if they are properly nested, then
there is no outer common tangent. Two polygons have two separating common tangents unless their convex
hulls overlap, and if they properly overlap, then there is no separating common tangent. See Figures 1–3.
Common tangents arise in many different contexts, for instance in problems related to convex hulls [18],
shortest paths [11], ray shooting [14], and clustering [2].

We provide a very simple algorithm to compute all at most four common tangents of two disjoint simple
polygons. In view of the above, our algorithm also determines whether the two polygons have (properly)
nested, (properly) overlapping, or disjoint convex hulls. Given each of the two polygons as a read-only array
of its corners in cyclic order, our algorithm runs in linear time and uses seven variables each storing a boolean
value or an index of a corner in one of the arrays. The algorithm is therefore asymptotically optimal with
respect to time as well as workspace, and operates in the constant workspace model of computation.

The constant workspace model is a restricted version of the RAM model in which the input is read-only,
the output is write-only, and only O(log n) additional bits of workspace (with both read and write access) are
available, where n denotes the size of the input. Clearly, Ω(log n) bits of workspace are necessary to solve any
interesting computational problem, because that many bits are required to store an index of or a pointer to
an entry in the input. Since blocks of Θ(log n) bits are considered to form words in the memory, algorithms
in the constant workspace model use O(1) words of workspace, which explains the name of the model. The
practical relevance of studying problems in the constant workspace model is increasing, as there are many

∗Preliminary versions of this paper appeared at SoCG 2015 [1] and ESA 2016 [3].
†Department of Computer Science, University of Copenhagen, Denmark, miab@di.ku.dk. Partially supported by Mikkel

Thorup’s Advanced Grant from the Danish Council for Independent Research under the Sapere Aude research career programme.
‡Department of Theoretical Computer Science, Faculty of Mathematics and Computer Science, Jagiellonian University in

Kraków, Polandwalczak@tcs.uj.edu.pl. Partially supported by National Science Center of Poland grant 2015/17/D/ST1/00585.

1

A

[August 31, 2017 at 8:40 – classicthesis]

Figure 1: The convex hulls are
disjoint—outer and separating com-
mon tangents exist.

Figure 2: The convex hulls
overlap—only outer com-
mon tangents exist.

Figure 3: The convex
hulls are nested—no com-
mon tangents exist.

current and emerging memory technologies where writing can be much more expensive than reading in terms
of time and energy [9].

The constant workspace model was first considered explicitly for geometric problems by Asano et al. [5].
Recently, there has been growing interest in algorithms for geometric problems using constant or restricted
workspace, see for instance [4,6,7,12]. In complexity theory, the class of the decision problems solvable using
constant workspace is usually known as L. The constant workspace model has been shown to be surprisingly
powerful—for instance, the problem of deciding whether two vertices in an undirected graph are in the same
connected component is in L [19].

The problem of computing common tangents of two polygons has received much attention in the special
case that the polygons are convex. For instance, computing the outer common tangents of disjoint convex
polygons is used as a subroutine in the classical divide-and-conquer algorithm for the convex hull of a set
of n points in the plane due to Preparata and Hong [18]. They gave a naive linear-time algorithm for
outer common tangents, which suffices for an O(n log n)-time convex hull algorithm. The problem is also
considered in various dynamic convex hull algorithms [8, 13, 17]. Overmars and van Leeuwen [17] gave an
O(log n)-time algorithm for computing an outer common tangent of two disjoint convex polygons when a
separating line is known, where each polygon has at most n corners. Kirkpatrick and Snoeyink [15] gave an
O(log n)-time algorithm for the same problem but without using a separating line. Guibas et al. [10] gave
a lower bound of Ω(log2 n) on the time required to compute an outer common tangent of two intersecting
convex polygons even when they are known to intersect in at most two points. They also described an
algorithm achieving that bound. Toussaint [20] considered the problem of computing separating common
tangents of convex polygons. He gave a linear-time algorithm using the technique of the “rotating calipers”.
Guibas et al. [10] gave an O(log n)-time algorithm for the same problem. All the above-mentioned algorithms
with sublinear running times make essential use of convexity of the polygons. If the polygons are not convex,
a linear-time algorithm due to Melkman [16] can be used to compute the convex hulls before computing the
tangents. However, if the polygons are given in read-only memory, then Ω(n) extra bits are required to store
the convex hulls, so this approach does not work in the constant workspace model.

In the following we describe our algorithm, which is presented in full detail using pseudocode in Algo-
rithm 2. (Algorithm 1 is a simplified version of Algorithm 2, which finds the separating common tangents in
all cases, but is only guaranteed to find the outer common tangents when the convex hulls of the polygons
are disjoint.) In order to find a particular common tangent of two polygons P0 and P1, we maintain a pair of
corners of support q0 and q1, one in each polygon, that together define a candidate L(q0, q1) for the tangent
(i.e., L(q0, q1) is the line containing q0 and q1). We traverse the polygons one edge at a time, alternating
between the polygons. Each polygon is traversed from its corner of support in a cyclic order determined by
the type of tangent that we wish to compute—the two separating common tangents correspond to traversing
both polygons the same direction whereas the outer common tangents can be found by choosing different
directions. We check that each traversed edge is on the correct side of L(q0, q1). When an edge e of, say, P0

is found that ends at a corner q′0 on the wrong side (i.e., the edge e shows that L(q0, q1) is not the desired
tangent), there are two cases. We consider the order of the following three points on L(q0, q1): q0, q1, and

2

A

[August 31, 2017 at 8:40 – classicthesis]

the intersection point of e and L(q0, q1). If q1 is not the middle point of these three, we update q0 to q′0,
thus also update the candidate line, and retract the traversal of P1 to q1. Otherwise, it can be seen that q1
must be in the convex hull of P0 and q1 can therefore not be a support of the tangent we wish to find. In
that case, we block q0 from being updated and only care to traverse P1 until an update to q1 happens. If q1
has not been updated after a full traversal of P1, then the convex hulls are nested and no common tangents
exist. Otherwise, we unblock q0 when q1 is updated. The correctness of the algorithm relies on the surprising
fact that if the tangent exists, an update to a corner of support can only happen during the first or second
traversal of the respective polygon. If an update happens in the third traversal of a polygon, we conclude
that a common tangent of the desired type does not exist. Otherwise, we can after the third traversal of
both polygons conclude that the candidate line L(q0, q1) coincides with the tangent that we wish to find.

The rest of the paper is structured as follows. In Section 2, we introduce the terminology and conventions
used throughout the paper and state well-known facts about the common tangents of two polygons. In
Section 3, we describe two algorithms for computing the common tangents of two disjoint simple polygons
if they exist or detecting that they do not exist. One is a simplified version of the other and only works in
some cases. Section 4 contains proofs that the algorithms work correctly under the assumption of a crucial
lemma, which is then proved in Section 5. We conclude in Section 6 by discussing how to avoid the general
position assumption of Sections 2–5 and by suggesting some related open problems for future research.

2 Basic terminology and notation

For any two points a and b in the plane, the closed line segment with endpoints a and b is denoted by ab.
When a 6= b, the two-way infinite straight line passing through a and b is denoted by L(a, b). The segment
ab and the line L(a, b) are considered oriented in the direction from a towards b. A simple polygon or just a
polygon with corners a0, . . . , an−1, denoted by P(a0, . . . , an−1), is a closed curve in the plane composed of
n edges a0a1, . . . , an−2an−1, an−1a0 that have no common points other than the common endpoints of pairs
of edges consecutive in that cyclic order. The polygon P(a0, . . . , an−1) is considered oriented so that its
forward traversal visits corners a0, . . . , an−1 in this cyclic order. A polygonal region is a closed and bounded
region of the plane that is bounded by a polygon.

For any two points a = (ax, ay) and b = (bx, by) in R2, we let

det(a, b) =

∣∣∣∣
ax bx
ay by

∣∣∣∣ = axby − bxay.

For a0, . . . , an−1 ∈ R2, we let

det?(a0, . . . , an−1) = det(a0, a1) + · · ·+ det(an−2, an−1) + det(an−1, a0).

In particular, for any three points a = (ax, ay), b = (bx, by), and c = (cx, cy) in R2, we have

det?(a, b, c) =

∣∣∣∣
ax bx
ay by

∣∣∣∣+

∣∣∣∣
bx cx
by cy

∣∣∣∣+

∣∣∣∣
cx ax
cy ay

∣∣∣∣ =

∣∣∣∣∣∣

ax bx cx
ay by cy
1 1 1

∣∣∣∣∣∣
.

For two distinct points a and b in the plane, the left side and the right side of an oriented line L(a, b) are
the two closed half-planes LHP(a, b) and RHP(a, b), respectively, defined as follows:

LHP(a, b) = {c ∈ R2 : det?(a, b, c) ≥ 0},
RHP(a, b) = {c ∈ R2 : det?(a, b, c) ≤ 0}.

An oriented polygon P(a0, . . . , an−1) is counterclockwise when det?(a0, . . . , an−1) > 0 and clockwise when
det?(a0, . . . , an−1) < 0.

3

A

[August 31, 2017 at 8:40 – classicthesis]

We assume for the rest of this paper that P0 and P1 are two disjoint simple polygons with n0 and n1
corners, respectively, each defined by a read-only array of its corners:

P0 = P(p0[0], . . . , p0[n0 − 1]), P1 = P(p1[0], . . . , p1[n1 − 1]).

We make no assumption (yet) on whether P0 and P1 are oriented counterclockwise or clockwise. We further
assume that the corners of P0 and P1 are in general position, that is, P0 and P1 have no corners in common
and the combined set of corners {p0[0], . . . , p0[n0 − 1], p1[0], . . . , p1[n1 − 1]} contains no triple of collinear
points. This assumption simplifies the description and the analysis of the algorithm but can be avoided,
as we explain in the last section. We do not assume the polygonal regions bounded by P0 and P1 to be
disjoint—they may be nested. Indices of the corners of each Pk are considered modulo nk, so that pk[i] and
pk[j] denote the same corner when i ≡ j (mod nk).

A tangent of Pk is a line L such that Pk has a common point with L and is contained in one of the two
closed half-planes determined by L. A line L is a common tangent of P0 and P1 if it is a tangent of both
P0 and P1; it is an outer common tangent if P0 and P1 lie on the same side of L and a separating common
tangent otherwise. The following lemma asserts well-known properties of common tangents of polygons. See
Figures 1–3.

Lemma 2.1. A line is a tangent of a polygon P if and only if it is a tangent of the convex hull of P .
Moreover, under the general position assumption, the following holds:

• P0 and P1 have no common tangents if the convex hulls of P0 and P1 are nested;

• P0 and P1 have two outer common tangents and no separating common tangents if the convex hulls of
P0 and P1 properly overlap;

• P0 and P1 have two outer common tangents and two separating common tangents if the convex hulls of
P0 and P1 are disjoint.

3 Algorithms

We distinguish four particular cases of the common tangent problem: find the pair of indices (s0, s1) such
that

1. P0 ⊂ RHP(p0[s0], p1[s1]) and P1 ⊂ RHP(p0[s0], p1[s1]),

2. P0 ⊂ LHP(p0[s0], p1[s1]) and P1 ⊂ LHP(p0[s0], p1[s1]),

3. P0 ⊂ RHP(p0[s0], p1[s1]) and P1 ⊂ LHP(p0[s0], p1[s1]),

4. P0 ⊂ LHP(p0[s0], p1[s1]) and P1 ⊂ RHP(p0[s0], p1[s1]).

The line L(p0[s0], p1[s1]) is an outer common tangent in cases 1–2 and a separating common tangent in cases
3–4. We say that (s0, s1) is the solution to the particular case of the problem. An algorithm solving each
case 1–4 is expected to find and return the solution (s0, s1) if it exists (i.e. the convex hulls of P0 and P1 are
not nested in cases 1–2 and are disjoint in cases 3–4) and to report “no solution” otherwise.

We will describe two general algorithms. Algorithm 1, very simple, fully solves the separating common
tangent problem (cases 3–4), finding the separating common tangent if the convex hulls of P0 and P1 are
disjoint and otherwise reporting that the requested tangent does not exist. Furthermore, Algorithm 1 solves
the outer common tangent problem (cases 1–2) provided that the convex hulls of P0 and P1 are disjoint.
Algorithm 1 also correctly reports that the outer common tangents do not exist if the convex hulls of P0

and P1 are nested. However, Algorithm 1 can fail to find the outer common tangents if the convex hulls
of P0 and P1 properly overlap. Algorithm 2 is an improved version of Algorithm 1 that solves the problem
correctly in all cases.

4

A

[August 31, 2017 at 8:40 – classicthesis]

The general idea behind either algorithm is as follows. The algorithm maintains a pair of indices (s0, s1)
called the candidate solution, which determines the line L(p0[s0], p1[s1]) called the candidate line. If each
of the two polygons lies on the “correct side” of the candidate line, which is either RHP(p0[s0], p1[s1]) or
LHP(p0[s0], p1[s1]) depending on the particular case of 1–4 to be solved, then the algorithm returns (s0, s1)
as the requested solution. Otherwise, for some u ∈ {0, 1}, the algorithm finds an index vu such that pu[vu]
lies on the “wrong side” of the candidate line, updates su by setting su ← vu, and repeats. This general
scheme guarantees that if (s0, s1) is claimed to be the solution, then it indeed is. However, the algorithm can
fall in an infinite loop—when there is no solution or when the existing solution keeps being missed. Detailed
implementation of the scheme must guarantee that the solution is found in linearly many steps if it exists.
Then, if the solution is not found in the guaranteed number of steps, the algorithm terminates and reports
“no solution”.

The particular case of 1–4 to be solved is specified to the algorithms by providing two binary parameters
α0, α1 ∈ {+1,−1} specifying that the final solution (s0, s1) should satisfy

P0 ⊂ RHP(p0[s0], p1[s1]) if α0 = +1, P0 ⊂ LHP(p0[s0], p1[s1]) if α0 = −1,

P1 ⊂ RHP(p0[s0], p1[s1]) if α1 = +1, P1 ⊂ LHP(p0[s0], p1[s1]) if α1 = −1.

For clarity, instead of using the parameters α0 and α1 explicitly, the pseudocode uses half-planes H0(a, b)
and H1(a, b) defined as follows, for any k ∈ {0, 1} and any distinct a, b ∈ R2:

Hk(a, b) =
{
c ∈ R2 : αk det?(a, b, c) ≤ 0

}
=

{
RHP(a, b) if αk = +1,

LHP(a, b) if αk = −1.

Therefore, a test of the form c /∈ Hk(a, b) in the pseudocode should be understood as testing whether
αk det?(a, b, c) > 0. Another assumption that we make when presenting the pseudocode concerns the direc-
tion in which each polygon Pk is traversed in order to find an index vk such that pk[vk] /∈ Hk(p0[s0], p1[s1]).
For a reason that will become clear later when we analyze correctness of the algorithms, we require that

• P0 is traversed counterclockwise when α1 = +1 and clockwise when α1 = −1,

• P1 is traversed clockwise when α0 = +1 and counterclockwise when α0 = −1.

In the pseudocode, the forward orientation of Pk is assumed to be the one in which the corners of Pk should
be traversed according to the conditions above. When this has not been guaranteed in the problem setup,
a reference to a corner of Pk of the form pk[i] in the pseudocode should be understood as pk[βki] for the
constant βk ∈ {+1,−1} computed as follows at the very beginning:

β0 = α1 sgn det?(p0[0], . . . , p0[n0 − 1]), β1 = −α0 sgn det?(p1[0], . . . , p1[n1 − 1]).

To summarize, we make the following assumptions when presenting the pseudocode of the two algorithms
for each particular case of 1–4, respectively:

1. P0 is counterclockwise, P1 is clockwise, and H0(a, b) = H1(a, b) = RHP(a, b),

2. P0 is clockwise, P1 is counterclockwise, and H0(a, b) = H1(a, b) = LHP(a, b),

3. P0 and P1 are clockwise, H0(a, b) = RHP(a, b), and H1(x, y) = LHP(a, b),

4. P0 and P1 are counterclockwise, H0(a, b) = LHP(a, b), and H1(a, b) = RHP(a, b).

Algorithm 1 maintains a candidate solution (s0, s1) starting from (s0, s1) = (0, 0). At the beginning and
after each update to (s0, s1), the algorithm traverses P0 and P1 in parallel with indices (v0, v1), starting from
(v0, v1) = (s0, s1) and advancing v0 and v1 alternately. The variable u ∈ {0, 1} determines the polygon Pu
in which the traversal is advanced in the current iteration. If the test in line 4 of Algorithm 1 succeeds, that
is, the corner pu[vu] lies on the “wrong side” of the candidate line, then the algorithm updates the candidate

5

A

[August 31, 2017 at 8:40 – classicthesis]

Algorithm 1:

1 s0 ← 0; v0 ← 0; s1 ← 0; v1 ← 0; u← 0
2 while s0 < 2n0 and s1 < 2n1 and (v0 < s0 + n0 or v1 < s1 + n1)
3 vu ← vu + 1
4 if pu[vu] /∈ Hu(p0[s0], p1[s1])
5 su ← vu; v1−u ← s1−u

6 u← 1− u
7 if s0 ≥ 2n0 or s1 ≥ 2n1
8 return “no solution”

9 return (s0, s1)

P0

P1

a

b

c

d

Figure 4: An example of how Algorithm 1 finds the separating common tangent L(b, d) of P0 and P1 starting
from (p0[0], p1[0]) = (a, c). The segments p0[s0]p1[s1] on intermediate candidate lines are also shown.

solution by setting su ← vu and reverts v1−u back to s1−u in line 5. The algorithm returns (s0, s1) when both
polygons have been entirely traversed with indices v0 and v1 without detecting any corner on the “wrong
side” of the candidate line. This can happen only when P0 ⊂ H0(p0[s0], p1[s1]) and P1 ⊂ H1(p0[s0], p1[s1]),
as required.

See Figure 4 for an example run of Algorithm 1 for the separating common tangent problem (case 4).
The following theorem asserts that Algorithm 1 is correct for the separating common tangent problem and
“partially correct” for the outer common tangent problem.

Theorem 3.1. If Algorithm 1 is to solve the outer common tangent problem (case 1 or 2), then it returns
the solution (s0, s1) if the convex hulls of P0 and P1 are disjoint and reports “no solution” if the convex hulls
of P0 and P1 are nested. If Algorithm 1 is to solve the separating common tangent problem (case 3 or 4),
then it returns the solution (s0, s1) if the convex hulls of P0 and P1 are disjoint and reports “no solution”
otherwise. Moreover, Algorithm 1 runs in linear time and uses constant workspace.

If the convex hulls of P0 and P1 properly overlap, then Algorithm 1 can fail to find the solution even
though it exists. An example of such behavior is presented in Figure 5. Algorithm 2 is an improved version of
Algorithm 1 that solves the problem correctly in all cases including the case of properly overlapping convex
hulls. In line 5 of Algorithm 2, ∆(a, b, c) denotes the triangular region spanned by a, b, and c, and a test
of the form z ∈ ∆(a, b, c) is equivalent to testing whether det?(z, a, b), det?(z, b, c), and det?(z, c, a) are all
positive or all negative (they are all non-zero, by the general position assumption). If the test in line 5
succeeds, then p1−u[s1−u] belongs to the convex hull of Pu, and a special boolean variable bu is set. In later
iterations, when bk = true, no update to sk can occur in line 8 (with u = k) until bk is cleared at an update
to s1−k in line 8 (with u = 1 − k). As we will show, such an update to s1−k must occur unless the convex

6

A

[August 31, 2017 at 8:40 – classicthesis]

Algorithm 2:

1 s0 ← 0; v0 ← 0; b0 ← false; s1 ← 0; v1 ← 0; b1 ← false; u← 0
2 while s0 < 2n0 and s1 < 2n1 and (v0 < s0 + n0 or v1 < s1 + n1)
3 vu ← vu + 1
4 if pu[vu] /∈ Hu(p0[s0], p1[s1]) and not bu
5 if p1−u[s1−u] ∈ ∆(pu[su], pu[vu − 1], pu[vu])
6 bu ← true

7 else
8 su ← vu; v1−u ← s1−u; b1−u ← false

9 u← 1− u
10 if s0 ≥ 2n0 or s1 ≥ 2n1 or b0 or b1
11 return “no solution”

12 return (s0, s1)

hull of P1−k is contained in the convex hull of Pk, and preventing updates to sk when bk = true suffices to
guarantee correctness of the algorithm in all cases.

See Figure 6 for an example run of Algorithm 2 for the outer common tangent problem (case 1), where
the convex hulls of P0 and P1 properly overlap. If the convex hulls of P0 and P1 are disjoint, then the test in
line 5 of Algorithm 2 never succeeds, the variables b0 and b1 remain unset, and thus Algorithm 2 essentially
becomes Algorithm 1.

Theorem 3.2. If Algorithm 2 is to solve the outer common tangent problem (case 1 or 2), then it returns
the solution (s0, s1) unless the convex hulls of P0 and P1 are nested, in which case it reports “no solution”.
If Algorithm 2 is to solve the separating common tangent problem (case 3 or 4), then it returns the solu-
tion (s0, s1) if the convex hulls of P0 and P1 are disjoint and reports “no solution” otherwise. Moreover,
Algorithm 2 runs in linear time and uses constant workspace.

4 Correctness of Algorithm 1 and Algorithm 2

In this section, we prove Theorem 3.1 and Theorem 3.2 on correctness and efficiency of Algorithms 1 and 2
while leaving the proof of a key lemma to the next section. First, we prove the claims on running time and
workspace usage in Theorems 3.1 and 3.2.

Lemma 4.1. Algorithms 1 and 2 run in linear time and use constant workspace.

Proof. It is clear that the algorithms use constant workspace. For the bound on the running time, we prove
the following two claims:

1. Before and after every iteration of the “while” loop in Algorithm 1 or 2, we have (vu−su)−(v1−u−s1−u) ∈
{−1, 0}.

2. In each iteration, the sum s0 + s1 + v0 + v1 is increased by at least 1.

Initially, we have su = vu = s1−u = v1−u = 0, so statement 1 holds before the first iteration. Now, suppose
that statement 1 holds before iteration i. After the assignment vu ← vu+1, we have (vu−su)−(v1−u−s1−u) ∈
{0, 1}, and the sum s0 + s1 + v0 + v1 has been increased by 1. The former implies that if the assignments
su ← vu and v1−u ← s1−u are performed in iteration i (in line 5 of Algorithm 1 or line 8 of Algorithm 2), then
the sum s0+s1+v0+v1 remains unchanged or is increased by 1 again, and we have (vu−su)−(v1−u−s1−u) = 0
afterwards. In total, the sum s0+s1+v0+v1 is increased by 1 or 2 in iteration i. Finally, after the assignment
u← 1− u, we have (vu − su)− (v1−u − s1−u) ∈ {−1, 0}, so statement 1 holds at the end of iteration i.

7

A

[August 31, 2017 at 8:40 – classicthesis]

P0

P1

a

b

c

d

Figure 5: Two polygons P0 and P1 for
which Algorithm 1 fails to find the outer
common tangent L(b, d) starting from
(p0[0], p1[0]) = (a, c). If the conditions
s0 < 2n0 and s1 < 2n1 of the “while”
loop are ignored, the algorithm keeps up-
dating (s0, s1) indefinitely, always getting
back to the initial state where u = 0 and
(p0[s0], p1[s1]) = (p0[v0], p1[v1]) = (a, c).

P0

P1

e

f

b

g

h

d

a

c

Figure 6: An example of how Algorithm 2 finds the outer com-
mon tangent L(c, h) of P0 and P1 starting from (p0[0], p1[0]) =
(a, e). The segments p0[s0]p1[s1] on intermediate candidate
lines are also shown. In the 11th iteration, an update makes
(p0[s0], p1[s1]) = (b, f) and the dotted line L(b, f) becomes the
candidate line. In the 19th iteration, u = 0 and p0[v0] = d, so
b0 is set to true. In the 28th iteration, u = 1 and p0[v1] = g,
so b0 is set back to false. In the 31st iteration, an update
makes (p0[s0], p1[s1]) = (c, h), and the outer common tangent
is found.

Statement 1 implies that each iteration starts with s0 < 2n0, s1 < 2n1, v0 − s0 ≤ max(n0, n1), and
v1 − s1 ≤ max(n0, n1) (where at least one of the last two inequalities is strict), otherwise the “while” loop
would terminate before that iteration. Therefore, we have s0 + s1 + v0 + v1 ≤ 2(s0 + s1) + 2 max(n0, n1) <
6(n0 + n1) before each iteration fully performed by the algorithm, in particular the last one. This, the fact
that s0 + s1 + v0 + v1 = 0 before the first iteration, and statement 2 imply that the algorithm makes at most
6(n0 + n1) iterations, each of which takes constant time.

Let k ∈ {0, 1}. We extend the notation pk[x] to all real numbers x to make the function R 3 x 7→ pk[x] ∈
Pk a continuous and piecewise linear traversal of Pk:

pk[x] = (dxe − x)pk[bxc] + (x− bxc)pk[dxe] ∈ pk[bxc]pk[dxe], for x ∈ Rr Z.

When x, y ∈ R and x ≤ y, we let Pk[x, y] denote the part of Pk from pk[x] to pk[y] in the forward direction
of Pk, that is, Pk[x, y] = {pk[z] : z ∈ [x, y]}. We say that Pk[x, y] is a cap of Hk(a, b) (for distinct a, b ∈ R2)
if Pk[x, y] ⊂ Hk(a, b) and Pk[x, y] ∩ L(a, b) = {x, y}; this allows x = y.

Lemma 4.2. For each k ∈ {0, 1}, Algorithm 1 maintains the following invariant before and after every
iteration of the “while” loop: Pk[sk, vk] ⊂ Hk(p0[s0], p1[s1]).

Proof. Algorithm 1 starts with s0 = v0 = s1 = v1 = 0, so the invariant holds initially. To show that it is
preserved by every iteration, suppose it holds before iteration i. Let u and vu denote the values in iteration i
after the assignment vu ← vu + 1 and before the assignment u ← 1 − u. Suppose the test in line 4 of
Algorithm 1 succeeds, that is, pu[vu] /∈ Hu(p0[s0], p1[s1]); otherwise, clearly, the invariant is preserved by
iteration i. The updates in line 5 yield s0 = v0 and s1 = v1, which makes the invariant satisfied after
iteration i.

Lemma 4.3. For each k ∈ {0, 1}, Algorithm 2 maintains the following invariant before and after every
iteration of the “while” loop:

8

A

[August 31, 2017 at 8:40 – classicthesis]

• if bk = false, then Pk[sk, vk] ⊂ Hk(p0[s0], p1[s1]);

• if bk = true, then there is wk ∈ (sk, vk) such that Pk[sk, wk] is a cap of Hk(p0[s0], p1[s1]) and
p1−k[s1−k] ∈ pk[sk]pk[wk].

Moreover, on every update su ← vu in line 8 of Algorithm 2, if su denotes the value before the update, then
pu[vu] /∈ Hu(p0[s0], p1[s1]) and there is wu ∈ [vu − 1, vu) such that Pu[su, wu] is a cap of Hu(p0[s0], p1[s1])
and p1−u[s1−u] /∈ pu[su]pu[wu].

Proof. Algorithm 2 starts with s0 = v0 = s1 = v1 = 0 and b0 = b1 = false, so the invariant holds initially.
To show that it is preserved by every iteration, suppose it holds before iteration i. Let u and vu denote the
values in iteration i after the assignment vu ← vu + 1 and before the assignment u ← 1 − u. Suppose the
test in line 4 of Algorithm 2 succeeds, that is, pu[vu] /∈ Hu(p0[s0], p1[s1]) and bu = false; otherwise, clearly,
the invariant is preserved by iteration i. This and the assumption that the invariant holds before iteration i
imply Pu[su, vu−1] ⊂ Hu(p0[s0], p1[s1]) and Pu[su, vu] 6⊂ Hu(p0[s0], p1[s1]). Let wu ∈ [vu−1, vu) be maximal
such that Pu[su, wu] ⊂ Hu(p0[s0], p1[s1]). That is, pu[wu] is the intersection point of pu[vu − 1]pu[vu] and
L(p0[s0], p1[s1]). The general position assumption implies that Pu[su, wu] is a cap of Hu(p0[s0], p1[s1]). We
have p1−u[s1−u] ∈ pu[su]pu[wu] if and only if p1−u[s1−u] ∈ ∆(pu[su], pu[vu−1], pu[vu]). Therefore, if the test
in line 5 succeeds, then the assignment bu ← true in line 6 makes the invariant satisfied after iteration i.
Now, suppose the test in line 5 fails. It follows that p1−u[s1−u] /∈ pu[su]pu[wu], so the update su ← vu in
line 8 satisfies the second statement of the lemma. Furthermore, the updates in line 8 yield s0 = v0, s1 = v1,
and b1−u = false, which makes the invariant satisfied after iteration i.

Most effort in proving correctness of the two algorithms lies in the following two lemmas:

Lemma 4.4. If the convex hulls of P0 and P1 are disjoint, then the “while” loop in Algorithm 1 ends with
s0 < 2n0 and s1 < 2n1.

Lemma 4.5. If Algorithm 2 is to solve the outer common tangent problem (case 1 or 2) and the convex hulls
of P0 and P1 are not nested or Algorithm 2 is to solve the separating common tangent problem (case 3 or 4)
and the convex hulls of P0 and P1 are disjoint, then the “while” loop in Algorithm 2 ends with s0 < 2n0
and s1 < 2n1.

If the convex hulls of P0 and P1 are disjoint, then the test in line 5 of Algorithm 2 never succeeds, b1
and b2 remain unset all the time, and thus Algorithm 2 becomes equivalent to Algorithm 1. Therefore,
Lemma 4.4 is a direct consequence of Lemma 4.5. We prove Lemma 4.5 in the next section. Here, we
proceed with the proofs of Theorems 3.1 and 3.2 assuming Lemma 4.5.

Proof of Theorem 3.1. Algorithm 1 returns (s0, s1) only when the “while” loop has terminated with v0 ≥
s0+n0 and v1 ≥ s1+n1. This and Lemma 4.2 imply that P0 ⊂ H0(p0[s0], p1[s1]) and P1 ⊂ H1(p0[s0], p1[s1]),
that is, (s0, s1) is the correct solution. If Algorithm 1 is to solve the outer common tangent problem and the
convex hulls of P0 and P1 are nested or Algorithm 2 is to solve the separating common tangent problem and
the convex hulls of P0 and P1 are not disjoint, then the solution does not exist, so the algorithm reports “no
solution”, as explained above. By Lemma 4.4, if the convex hulls of P0 and P1 are disjoint, then the “while”
loop ends with s0 < 2n0 and s1 < 2n1, so the algorithm returns (s0, s1), which is the correct solution, as
explained above. By Lemma 4.1, the running time and the workspace usage are as stated.

For the proof of correctness of Algorithm 2, we need one more lemma.

Lemma 4.6. If Algorithm 2 is to solve the outer common tangent problem (case 1 or 2) and the convex
hulls of P0 and P1 are not nested or Algorithm 2 is to solve the separating common tangent problem (case
3 or 4) and the convex hulls of P0 and P1 are disjoint, then the “while” loop in Algorithm 2 ends with
b0 = b1 = false.

9

A

[August 31, 2017 at 8:40 – classicthesis]

Proof. Consider the final values of s0, v0, b0, s1, v1, and b1 when the “while” loop in Algorithm 2 is
terminated. Lemma 4.5 yields s0 < 2n0 and s1 < 2n1. This and the termination condition implies v0 ≥
s0 + n0 and v1 ≥ s1 + n1. If the algorithm is to solve the separating common tangent problem (case 3 or 4)
and we have b0 = true or b1 = true, then Lemma 4.3 implies that the convex hulls of P0 and P1 are not
disjoint, contrary to the assumption of the lemma. Now, suppose the algorithm is to solve the outer common
tangent problem (case 1 or 2). Thus H0(p0[s0], p1[s1]) = H1(p0[s0], p1[s1]). If bk = true and b1−k = false

for some k ∈ {0, 1}, then Lemma 4.3 and the fact that P1−k[s1−k, v1−k] = P1−k yield a cap Pk[sk, wk] of
Hk(p0[s0], p1[s1]) such that P1−k is contained in the polygonal region bounded by Pk[sk, wk] ∪ pk[sk]pk[wk],
and therefore the convex hull of P1−k is contained in the convex hull of Pk, contrary to the assumption
of the lemma. If b0 = b1 = true, then Lemma 4.3 yields a cap P0[s0, w0] of H0(p0[s0], p1[s1]) and a cap
P1[s1, w1] of H1(p0[s0], p1[s1]) such that the points p1[w1], p0[s0], p1[s1], and p0[w0] occur in this order on
L(p0[s0], p1[s1]), which is impossible when H0(p0[s0], p1[s1]) = H1(p0[s0], p1[s1]).

Proof of Theorem 3.2. Algorithm 2 returns (s0, s1) only when the “while” loop has terminated with v0 ≥
s0 + n0, v1 ≥ s1 + n1, and b0 = b1 = false. This and Lemma 4.3 imply that P0 ⊂ H0(p0[s0], p1[s1]) and
P1 ⊂ H1(p0[s0], p1[s1]), that is, (s0, s1) is the correct solution. If Algorithm 2 is to solve the outer common
tangent problem (case 1 or 2) and the convex hulls of P0 and P1 are nested or Algorithm 1 is to solve the
separating common tangent problem (case 3 or 4) and the convex hulls of P0 and P1 are not disjoint, then the
solution does not exist, so the algorithm reports “no solution”, as explained above. Otherwise, the “while”
loop ends with s0 < 2n0 and s1 < 2n1, by Lemma 4.5, and with b0 = b1 = false, by Lemma 4.6, and
therefore the algorithm returns (s0, s1), which is the correct solution, as explained above. By Lemma 4.1,
the running time and the workspace usage are as stated.

5 Proof of Lemma 4.5

To complete the proof of correctness of the two algorithms, it remains to prove Lemma 4.5. If the convex
hulls of P0 and P1 are disjoint, then the test in line 5 of Algorithm 2 can never succeed, so b0 and b1 remain
unset, and Algorithm 2 becomes equivalent to Algorithm 1. Therefore, if we prove the second statement of
Lemma 4.5 (for Algorithm 2), then the first statement of Lemma 4.5 comes as a direct consequence. For the
rest of this section, we adopt the assumptions of Lemma 4.5, in particular that the solution exists, and we
show that it is found and returned by Algorithm 2.

5.1 Reduction to one case of the outer common tangent problem

We will reduce Lemma 4.5 for all cases 1–4 of the common tangent problem just to case 1. First, we
explain what we mean by such a reduction. An input to Algorithm 2 is a quadruple (P0, P1, α0, α1), where
P0 = P(p0[0], . . . , p0[n0 − 1]), P1 = P(p1[0], . . . , p1[n1 − 1]), and α0, α1 ∈ {+1,−1} are implicit parameters
that determine the particular case 1–4 of the common tangent problem to be solved by the algorithm (see
Section 3). Consider two inputs (P0, P1, α0, α1) and (P ′0, P

′
1, α
′
0, α
′
1), where Pk = P(pk[0], . . . , pk[nk − 1])

and P ′k = P(p′k[0], . . . , p′k[nk − 1]) for each k ∈ {0, 1}. Let a′ = p′k[i] when a = pk[i] (for k ∈ {0, 1}
and i ∈ Z). The inputs (P0, P1, α0, α1) and (P ′0, P

′
1, α
′
0, α
′
1) are equivalent if the following holds for all

a, b, c ∈ {p0[0], . . . , p0[n0 − 1], p1[0], . . . , p1[n1 − 1]}:

α0 sgn det?(a, b, c) = α′0 sgn det?(a′, b′, c′) if |{a, b, c} ∩ {p0[0], . . . , p0[n0 − 1]}| ∈ {0, 2},
α1 sgn det?(a, b, c) = α′1 sgn det?(a′, b′, c′) if |{a, b, c} ∩ {p0[0], . . . , p0[n0 − 1]}| ∈ {1, 3}.

In view of the next lemma, if Lemma 4.5 holds for some input (P0, P1, α0, α1), then it holds for all inputs
equivalent to (P0, P1, α0, α1).

Lemma 5.1. If inputs (P0, P1, α0, α1) and (P ′0, P
′
1, α
′
0, α
′
1) are equivalent, then Algorithm 2 applied to

(P0, P1, α0, α1) and (P ′0, P
′
1, α
′
0, α
′
1) produces the same result (i.e., the same solution or the same message

“no solution”), which is correct for (P0, P1, α0, α1) if and only if it is correct for (P ′0, P
′
1, α
′
0, α
′
1).

10

A

[August 31, 2017 at 8:40 – classicthesis]

Proof. Let k ∈ {0, 1}. Recall from Section 3 the implicit constant βk ∈ {+1,−1}, which determines whether
Algorithm 2 traverses Pk (P ′k) forwards or backwards. We show that βk has the same value for both inputs.
It is well known that Pk can be triangulated ; in particular, there are nk− 2 triangles of the form P(at, bt, ct)
with at, bt, ct ∈ {pk[0], . . . , pk[nk − 1]} (1 ≤ t ≤ nk − 2), all with the same orientation (counterclockwise or
clockwise), such that

det?(pk[0], . . . , pk[nk − 1]) =
n−2∑

t=1

(
det(at, bt) + det(bt, ct) + det(ct, at)

)
=
n−2∑

t=1

det?(at, bt, ct).

Equivalence of (P0, P1, α0, α1) and (P ′0, P
′
1, α
′
0, α
′
1) implies

α1−k sgn det?(at, bt, ct) = α′1−k sgn det?(a′t, b
′
t, c
′
t) for all t ∈ {1, . . . , nk − 2}.

We conclude that all triangles P(a′t, b
′
t, c
′
t) (1 ≤ t ≤ nk − 2) have the same orientation and

α1−k sgn det?(pk[0], . . . , pk[nk − 1]) = α′1−k sgn det?(p′k[0], . . . , p′k[nk − 1]).

This and the definition of βk implies that βk has the same value for both inputs.
We show that Algorithm 2 proceeds in exactly the same way for both inputs, in particular producing

the same final result. Specifically, we show the same number of iterations of the “while” loop is performed
for both inputs, and for each iteration i, the variables s0, v0, b0, s1, v1, and b1 have the same values for
both inputs before and after iteration i (it is clear that u has the same value, because it depends only on i).
The initial setup is common for both inputs. Now, suppose s0, v0, b0, s1, v1, and b1 have the same values
for both inputs before iteration i. The test in line 4 produces the same outcome for both inputs, because
equivalence of (P0, P1, α0, α1) and (P ′0, P

′
1, α
′
0, α
′
1) implies that αu det?(p0[s0], p1[s1], pu[vu]) > 0 if and only

if α′u det?(p′0[s0], p′1[s1], p′u[vu]) > 0. If that outcome is positive, then the test in line 5 produces the same
outcome for both inputs, by an analogous argument. It follows that the same assignments are performed in
iteration i for both inputs, and therefore s0, v0, b0, s1, v1, and b1 have the same values for both inputs after
iteration i.

Finally, we show that the same final result is expected for both inputs. Let s0, s1 ∈ Z. Equiv-
alence of (P0, P1, α0, α1) and (P ′0, P

′
1, α
′
0, α
′
1) implies that αk det?(p0[s0], p1[s1], pk[i]) > 0 if and only if

α′k det?(p′0[s0], p′1[s1], p′k[i]) > 0 (for k ∈ {0, 1} and i ∈ Z). It follows that the containment Pk ⊂ Hk(p0[s0], p1[s1])
is either true for both inputs or false for both inputs (for k ∈ {0, 1}), so (s1, s2) either is the correct solution
or is not the correct solution for both inputs.

First, we reduce Lemma 4.5 for cases 2 and 4 of the common tangent problem to cases 1 and 3 thereof.
Consider the transformation φ : R2 3 (x, y) 7→ (−x, y) ∈ R2 (horizontal flip). Let P ′0 = P(φ(p0[0]), . . . , φ(p0[n0−
1])) and P ′1 = P(φ(p1[0]), . . . , φ(p1[n1 − 1])). For any three points a = (ax, ay), b = (bx, by), and c = (cx, cy)
in R2, we have

det?(φ(a), φ(b), φ(c)) =

∣∣∣∣∣∣

−ax −bx −cx
ay by cy
1 1 1

∣∣∣∣∣∣
= −det?(a, b, c).

It follows that the input (P0, P1, α0, α1) is equivalent to (P ′0, P
′
1,−α0,−α1). If the former is case 2 or 4 of

the common tangent problem, then the latter is case 1 or 3 thereof, respectively. By Lemma 5.1, it remains
to prove Lemma 4.5 for cases 1 and 3 of the common tangent problem.

Now, we reduce Lemma 4.5 for case 3 of the common tangent problem to case 1 thereof. Suppose an
input (P0, P1, α0, α1) is case 3 of the common tangent problem, that is, α0 = +1 and α1 = −1. Assume
that the convex hulls of P0 and P1 are disjoint (as in Lemma 4.5). It follows that there is a straight line
separating the two convex hulls in the plane. Assume without loss of generality that it is the vertical line
x = 0 and every corner of P0 has negative x-coordinate while every corner of P1 has positive x-coordinate,
applying an appropriate rotation or translation of the plane to turn (P0, P1, α0, α1) into an equivalent input
that has these properties. Consider the transformation

φ :
{

(x, y) ∈ R2 : x 6= 0
}
3 (x, y) 7→

(
y

x
,

1

x

)
∈
{

(x′, y′) ∈ R2 : x′ 6= 0
}

.

11

A

[August 31, 2017 at 8:40 – classicthesis]

For any three points a = (ax, ay), b = (bx, by), and c = (cx, cy) in R2 with ax 6= 0, bx 6= 0, and cx 6= 0, we
have

det?(φ(a), φ(b), φ(c)) =

∣∣∣∣∣∣∣

ay
ax

by
bx

cy
cx

1
ax

1
bx

1
cx

1 1 1

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

1 1 1
ay
ax

by
bx

cy
cx

1
ax

1
bx

1
cx

∣∣∣∣∣∣∣
=

det?(a, b, c)

axbxcx
. (†)

Since a, b, and c are collinear if and only if det?(a, b, c) = 0, it follows from (†) that φ preserves collinearity (ac-
tually, it is a projective transformation). Let P ′0 = P(φ(p0[0]), . . . , φ(p0[n0−1])) and P ′1 = P(φ(p1[0]), . . . , φ(p1[n1−
1])); they are (simple) polygons, because φ is a bijection on {(x, y) ∈ R2 : x 6= 0}. For any a, b, c ∈
{p0[0], . . . , p0[n0 − 1], p1[0], . . . , p1[n1 − 1]}, (†) implies that

sgn det?(φ(a), φ(b), φ(c)) = sgn det?(a, b, c) if |{a, b, c} ∩ {p0[0], . . . , p0[n0 − 1]}| ∈ {0, 2},
sgn det?(φ(a), φ(b), φ(c)) = − sgn det?(a, b, c) if |{a, b, c} ∩ {p0[0], . . . , p0[n0 − 1]}| ∈ {1, 3}.

Therefore, the input (P0, P1, α0, α1) is equivalent to (P ′0, P
′
1, α0,−α1). Since the former is case 3 of the

common tangent problem, the latter is case 1 thereof. By Lemma 5.1, it remains to prove Lemma 4.5 for
case 1 of the common tangent problem, and this is what we do in the remainder of Section 5.

5.2 Auxiliary concepts

For the sequel, we assume that the convex hulls of P0 and P1 are not nested, P0 is oriented counterclockwise,
P1 is oriented clockwise, and Algorithm 2 is to solve case 1 of the outer common tangent problem—compute
a pair of indices (s0, s1) such that P0, P1 ⊂ RHP(p0[s0], p1[s1]).

Recall that a segment ab in the plane is considered oriented from a to b, so that forward traversal of ab
starts at a and ends at b. A polygonal path is a curve in the plane composed of n segments a0a1, . . . , an−1an
with no common points other than the common endpoints of pairs of consecutive segments in that order.
Such a polygonal path is considered oriented from a0 to an, so that forward traversal of it starts at a0 and ends
at an. A segment or a polygonal path is degenerate if it consists of a single point. When a non-degenerate
polygonal path a0a1, . . . , an−1an (a non-degenerate segment if n = 1) is contained in the boundary of a
polygonal region Q, we say that Q lies to the left or to the right of a0a1, . . . , an−1an if forward traversal of
a0a1, . . . , an−1an agrees with counterclockwise traversal or clockwise traversal, respectively, of the boundary
of Q. For k ∈ {0, 1} and a, b ∈ Pk, let Pk[a, b] be the polygonal path from a to b along the boundary of Pk
in the forward direction (counterclockwise for P0 and clockwise for P1); in particular, Pk[a, a] = {a}.

Let `0, r0 ∈ P0 and `1, r1 ∈ P1 be such that P0, P1 ⊂ LHP(`0, `1)∩RHP(r0, r1). Thus r0 and r1 determine
the requested outer common tangent, while `0 and `1 determine the other one. It is possible that `0 = r0 or
`1 = r1 (but not both). For clarity of presentation, we will ignore this special case and proceed as if `0 6= r0
and `1 6= r1. Our arguments remain correct when `k = rk (k ∈ {0, 1}) after adding the following exceptions
to the definitions of a polygon, a polygonal path, and Pk[a, b]:

• the point `k = rk is allowed to occur twice on a polygon (as two corners) or a polygonal path (as both
endpoints of the path), where one occurrence is denoted by `k and the other by rk;

• Pk[`k, rk] = Pk; forward traversal of Pk[`k, rk] makes one full traversal of Pk from `k to rk in the forward
direction of Pk (counterclockwise for P0 and clockwise for P1).

A door is a segment xy such that xy ∩ P0 = {x} and xy ∩ P1 = {y} (always oriented from the endpoint
on P0 to the endpoint on P1). A zone is a polygonal region Z such that the interior of Z is disjoint from
P0 ∪P1 and the boundary of Z is the union of some non-empty part of P0 (not necessarily connected), some
non-empty part of P1 (likewise), and some segments with both endpoints on P0∪P1. Let E be the polygonal
region bounded by `0`1 ∪ P0[`0, r0] ∪ P1[`1, r1] ∪ r0r1. Since E ⊂ LHP(`0, `1) ∩ RHP(r0, r1), it follows that
E lies to the left of `0`1, to the right of P0[`0, r0], to the left of P1[`1, r1], and to the right of r0r1.

Observation 5.2. The polygonal region E is a zone and satisfies E∩P0 = P0[`0, r0] and E∩P1 = P1[`1, r1].
Moreover, every door or zone is contained in E. In particular, every door has one endpoint on P0[`0, r0]
and the other on P1[`1, r1].

12

A

[August 31, 2017 at 8:40 – classicthesis]

Proof. Let k ∈ {0, 1} and Sk = (LHP(`0, `1) ∩ RHP(r0, r1)) r Pk[`k, rk]. Since E and the polygonal region
bounded by Pk lie to the opposite sides of Pk[`k, rk], the sets PkrPk[`k, rk] and ErPk[`k, rk] are contained
in different connected components of Sk. A consequence of this property is that E ∩ Pk = Pk[`k, rk]. This,
for both k ∈ {0, 1}, proves the first statement. Another consequence is that Pk rPk[`k, rk] and P1−k belong
to different connected components of Sk, because E r Pk[`k, rk] and P1−k intersect. Therefore, Pk[`k, rk]
intersects the interior of every segment or polygonal region that is contained in LHP(`0, `1)∩RHP(r0, r1) and
intersects both PkrPk[`k, rk] and P1−k. However, every door or zone is contained in LHP(`0, `1)∩RHP(r0, r1)
(because P0 and P1 are) and internally disjoint from Pk[`k, rk]. This, for both k ∈ {0, 1}, proves the last two
statements.

For two doors xy and x′y′, let xy � x′y′ denote that P0[x, x′] ⊆ P0[`0, r0] and P1[y, y′] ⊆ P1[`1, r1] (that
is, forward traversal of P0[`0, r0] encounters x no later than x′ and forward traversal of P1[`1, r1] encounters
y no later than y′), and let xy ≺ x′y′ denote that xy � x′y′ and xy 6= x′y′. Two doors are non-crossing if
they are disjoint or they intersect only at a common endpoint. The following observation implies that ≺ is
a total order on any set of pairwise non-crossing doors:

Observation 5.3. Any two non-crossing doors xy and x′y′ satisfy xy ≺ x′y′ or x′y′ ≺ xy.

Proof. Observation 5.2 yields xy, x′y′ ⊂ E. If neither xy ≺ x′y′ nor x′y′ ≺ xy, then the points x, x′, y, and
y′ are distinct and occur on the boundary of E in this cyclic order (clockwise or counterclockwise), which
contradicts the assumption that xy and x′y′ do not cross.

Observation 5.4. The boundary of every zone Z contains exactly two doors. Moreover, if these doors are
denoted by xy and x′y′ so that xy ≺ x′y′, then

1. Z lies to the left of xy and to the right of x′y′,

2. a door x′′y′′ is disjoint from the interior of Z if and only if x′′y′′ � xy or x′y′ � x′′y′′.

Proof. The boundary of Z intersects both P0 and P1, so it contains at least two doors. By Observation 5.3,
since the doors on the boundary of Z are pairwise non-crossing, they are totally ordered by ≺. Let xy be
the minimum door and x′y′ be the maximum door on the boundary of Z with respect to the order ≺. We
will show statements 1 and 2 for xy and x′y′. Statement 2, minimality of xy, and maximality of x′y′ imply
that the boundary of Z contains no other doors.

For every door x′′y′′, since Z ⊆ E and x′′y′′ ⊂ E (by Observation 5.2), the following holds: if the set
E r x′′y′′ has two connected components intersecting Z, then x′′y′′ intersects the interior of Z. If neither
x′′y′′ � xy nor x′y′ � x′′y′′, then the set E r x′′y′′ has two connected components intersecting Z (by the
definition of �), so x′′y′′ intersects the interior of Z, which is one implication in statement 2. It also follows
that either of the sets E r xy and E r x′y′ has only one connected component intersecting Z, so Z is
contained in the polygonal region Z? bounded by xy ∪ P0[x, x′] ∪ P1[y, y′] ∪ x′y′, which is contained in E.
If x 6= x′, then Z? lies to the right of P0[x, x′] (because E does), and if y 6= y′, then Z? lies to the left of
P1[y, y′] (because E does). Therefore, Z? and thus Z lie to the left of xy and to the right of x′y′, which
is statement 1. Moreover, if x′′y′′ � xy or x′y′ � x′′y′′, then x′′y′′ is disjoint from the interior of Z? and
therefore is disjoint from the interior of Z, which is the converse implication in statement 2.

For the rest of this subsection, fix points q0 ∈ P0 and q1 ∈ P1, and consider doors contained in q0q1
(doors on q0q1 in short). The sign of such a door xy on q0q1 is

• +1 if forward traversal of q0q1 encounters x first and y second (then xy is positive on q0q1),

• −1 if forward traversal of q0q1 encounters y first and x second (then xy is negative on q0q1).

See Figure 7 for an illustration.

Observation 5.5. The signs of all doors on q0q1 sum up to 1.

13

A

[August 31, 2017 at 8:40 – classicthesis]

q0 = z′0

q′0

q′′0

q1 = q′1 = q′′1
z′1

z′′0
z′′1

`0

`1

r0
r1

F

T

Z1

Z2

Z1
Z2

Z3

Z4
Z5

Figure 7: Thick blue segments are positive doors and thick red segments are negative doors on q′0q
′
1 and

q′′0 q
′′
1 . The primary door on q′0q

′
1 is z′0z

′
1, and that on q′′0 q

′′
1 is z′′0 z

′′
1 . The red region F (considered in

Lemma 5.7) determines red zones Z1 ≺ Z2. The blue region T (considered in Lemma 5.8) determines blue
zones Z1 ≺ Z2 ≺ Z3 ≺ Z4 ≺ Z5, of which Z1, Z2, and Z5 are two-sided while Z3 and Z4 are one-sided.

Proof. Let x1y1, . . . , xdyd be all the doors on q0q1 enumerated in the order they are encountered by forward
traversal of q0q1. The first endpoint of such a door is the one closer to q0, and the last endpoint is the one
closer to q1. Every subsegment of q0q1 connecting a point on P0 with a point on P1 contains at least one
of the doors. Since q0 ∈ P0, the subsegment of q0q1 from q0 to the first endpoint of x1y1 contains no points
of P1, so x1y1 is positive on q0q1. For i ∈ {1, . . . , d − 1}, the subsegment of q0q1 from the last endpoint of
xiyi to the first endpoint of xi+1yi+1 contains no points of P0 or no points of P1, so the sign of xi+1yi+1 is
opposite to the sign of xiyi on q0q1. Finally, since q1 ∈ P1, the subsegment of q0q1 from the last endpoint of
xdyd to q1 contains no points of P0, so xdyd is positive on q0q1. This implies that xiyi is positive on q0q1 for
i odd, xiyi is negative on q0q1 for i is even, and d is odd. Therefore, the signs of x1y1, . . . , xdyd on q0q1 sum
up to 1.

The doors on q0q1 are pairwise non-crossing, so they are totally ordered by the relation ≺, by Observa-
tion 5.3. Let x1y1, . . . , xdyd be all the doors on q0q1 ordered so that x1y1 ≺ · · · ≺ xdyd. The primary door
on q0q1 is the door xjyj with minimum j ∈ {1, . . . , d} such that the signs of x1y1, . . . , xjyj on q0q1 sum up
to 1. Such an index j exists, because d is a candidate, by Observation 5.5. Minimality of j in the definition
of the primary door directly implies the following:

Observation 5.6. The primary door xiyi is positive on q0q1. Moreover, if i ≥ 2, then the door xi−1yi−1
is also positive on q0q1.

5.3 Proof of Lemma 4.5 for the remaining case

We go back to the proof of Lemma 4.5. Having reduced Lemma 4.5 to case 1 of the outer common tangent
problem, we have assumed the setup of that case: the convex hulls of P0 and P1 are not nested, P0 is oriented
counterclockwise, P1 is oriented clockwise, and Algorithm 2 is to compute a pair of indices (s0, s1) such that
P0, P1 ⊂ RHP(p0[s0], p1[s1]), that is, p0[s0] = r0 and p1[s1] = r1.

Algorithm 2 starts with (s0, s1) = (0, 0) and then makes some updates to the candidate solution (s0, s1)
in line 8 until the end of the “while” loop. The second part of Lemma 4.3 explains what these updates

14

A

[August 31, 2017 at 8:40 – classicthesis]

look like: on every update su ← vu in line 8 of Algorithm 2, if su denotes the value before the update, then
pu[vu] /∈ RHP(p0[s0], p1[s1]) and there is wu ∈ [vu−1, vu) such that Pu[su, wu] is a cap of RHP(p0[s0], p1[s1]),
Pu[wu, vu] is the segment pu[wu]pu[vu], and p1−u[s1−u] /∈ pu[su]pu[wu].

First, we present informally the general proof idea. Imagine that an update like above happens in
continuous time, as follows. Let q0 = p0[s0] and q1 = p1[s1]. As the update begins, the point qu jumps over
Pu[su, wu] “right behind” pu[wu] (if su < wu), and then it moves continuously to pu[vu] along the segment
pu[wu]pu[vu] of Pu. Thus qu = pu[su] again after the assignment su ← vu. As qu is moving during the
update, we track the primary door z0z1 on q0q1 and show that

1. the door z0z1 is only moving (piecewise continuously) forward in the order ≺,

2. the point qu never passes or jumps over zu.

To see how this implies Lemma 4.5, consider the overall move of q0, q1, and z0z1 during all updates to the
candidate solution (s0, s1), starting from q0 = p0[0] and q1 = p1[0]. For each k ∈ {0, 1}, statement 1 implies
that zk is only moving forward on Pk[`k, rk], never passing or jumping over rk, and statement 2 asserts that
qk never passes or jumps over zk, whence it follows that qk passes or jumps over rk at most once.

Now, we proceed with the proof of Lemma 4.5. The next two lemmas formalize statement 1 above—
Lemma 5.7 for the initial jump over Pu[su, wu], and Lemma 5.8 for the continuous move along p[wu]p[vu].
See Figure 7 for an illustration of Lemmas 5.7 and 5.8. Statement 2 above is formalized by the invariant
that we formulate after proving Lemmas 5.7 and 5.8.

Lemma 5.7. Let u ∈ {0, 1}, qu, q′u ∈ Pu, and q1−u = q′1−u ∈ P1−u. If Pu[qu, q
′
u] is a cap of RHP(q0, q1)

and q1−u /∈ quq′u, then the same door is primary on q0q1 and on q′0q
′
1.

Proof. The lemma is trivial when qu = q′u, so assume qu 6= q′u. Thus q0q1 ⊂ q′0q
′
1 or q′0q

′
1 ⊂ q0q1 (because

q1−u /∈ quq′u). Let q′′0 q
′′
1 be the longer of q0q1 and q′0q

′
1 (q′0q

′
1 in the former and q0q1 in the latter case). Let

F be the polygonal region bounded by Pu[qu, q
′
u] ∪ quq′u. Thus F ⊂ RHP(q′′0 , q

′′
1). Let Z be the set of zones

contained in F with boundaries contained in (P0 ∩ F) ∪ (P1 ∩ F) ∪ quq′u. For every door xy ⊂ quq
′
u, there

is a zone in Z to the right of xy (if F is to the right of xy) or to the left of xy (if F is to the left of xy).
By Observation 5.4, the zones in Z can be ordered as Z1, . . . , Zd and the doors contained in quq

′
u can be

ordered as x1y1, x
1y1, . . . , xdyd, x

dyd so that

• every zone Zi ∈ Z has exactly two doors on the boundary, namely, xiyi and xiyi,

• x1y1 ≺ x1y1 ≺ · · · ≺ xdyd ≺ xdyd.

For each i ∈ {1, . . . , d}, since Zi ⊂ RHP(q′′0 , q
′′
1), Observation 5.4 (1 and 2) implies that

• xiyi is negative and xiyi is positive on q′′0 q
′′
1 ,

• xiyi and xiyi are consecutive in the order ≺ of the doors on q′′0 q
′′
1 .

By Observation 5.6, none of x1y1, x
1y1, . . . , xdyd, x

dyd is primary on q′′0 q
′′
1 . Moreover, for each door xy on

the shorter of q0q1 and q′0q
′
1, the following two sums are equal:

• the sum of the signs of all doors on q′′0 q
′′
1 up to xy in the order ≺,

• the sum of the signs of all doors on the shorter of q0q1 and q′0q
′
1 up to xy in the order ≺.

We conclude that the same door is primary on q′′0 q
′′
1 and on the shorter of q0q1 and q′0q

′
1.

Lemma 5.8. Let u ∈ {0, 1}, q′uq′′u ⊂ Pu, and q′1−u = q′′1−u ∈ P1−u. Let z′0z
′
1 be the primary door on q′0q

′
1

and z′′0 z
′′
1 be the primary door on q′′0 q

′′
1 . If q′′u /∈ RHP(q′0, q

′
1), then z′0z

′
1 ≺ z′′0 z′′1 .

15

A

[August 31, 2017 at 8:40 – classicthesis]

Proof. Let T be the triangular region bounded by q′0q
′
1 ∪ q′0q′′0 ∪ q′1q′′1 ∪ q′′0 q′′1 , where either q′0q

′′
0 or q′1q

′′
1 is a

degenerate segment. Thus T ⊂ LHP(q′0, q
′
1) ∩ RHP(q′′0 , q

′′
1). Let Z be the set of zones contained in T with

boundaries contained in q′0q
′
1 ∪ (P0 ∩ T) ∪ (P1 ∩ T) ∪ q′′0 q′′1 . For every door xy ⊂ q′0q′1 ∪ q′′0 q′′1 , there is a zone

in Z to the right of xy (if T lies to the right of xy) or to the left of xy (if T lies to the left of xy). By
Observation 5.4, the zones in Z can be ordered as Z1, . . . , Zd and the doors contained in q′0q

′
1 ∪ q′′0 q′′1 can be

ordered as x1y1, x
1y1, . . . , xdyd, x

dyd so that

• every zone Zi ∈ Z has exactly two doors on the boundary, namely, xiyi and xiyi,

• x1y1 ≺ x1y1 ≺ · · · ≺ xdyd ≺ xdyd.

For every i ∈ {1, . . . , d}, since Zi ⊂ LHP(q′0, q
′
1) ∩ RHP(q′′0 , q

′′
1), Observation 5.4 (1) implies that

• xiyi is a positive door on q′0q
′
1 or a negative door on q′′0 q

′′
1 ,

• xiyi is a negative door on q′0q
′
1 or a positive door on q′′0 q

′′
1 .

We will use these two properties extensively without explicit reference.
We say that a zone Zi ∈ Z is one-sided if xiyi and xiyi lie both on q′0q

′
1 or both on q′′0 q

′′
1 , otherwise we

say that Zi is two-sided. For each one-sided zone Zi ∈ Z, the doors xiyi and xiyi have opposite signs on
q′0q
′
1 or q′′0 q

′′
1 (whichever they lie on). For each two-sided zone Zi ∈ Z, if x′iy

′
i and x′′i y

′′
i denote the two doors

on the boundary of Zi so that x′iy
′
i ⊆ q′0q

′
1 and x′′i y

′′
i ⊆ q′′0 q

′′
1 , then the sign of x′iy

′
i on q′0q

′
1 is equal to the

sign of x′′i y
′′
i on q′′0 q

′′
1 . Let I be the set of indices i ∈ {1, . . . , d} such that Zi is a two-sided zone in Z. The

above and Observation 5.5 implies that

• the signs of the doors x′iy
′
i on q′0q

′
1 over all i ∈ I sum up to 1,

• the signs of the doors x′′i y
′′
i on q′′0 q

′′
1 over all i ∈ I sum up to 1,

and the following four sums are equal, for each j ∈ I:

• the sum of the signs of all doors on q′0q
′
1 up to x′jy

′
j in the order ≺,

• the sum of the signs of the doors x′iy
′
i on q′0q

′
1 over all i ∈ I ∩ {1, . . . , j},

• the sum of the signs of the doors x′′i y
′′
i on q′′0 q

′′
1 over all i ∈ I ∩ {1, . . . , j},

• the sum of the signs of all doors on q′′0 q
′′
1 up to x′′j y

′′
j in the order ≺.

Let j ∈ I be minimum such that the four sums above are equal to 1. Since xiyi is positive and xiyi is
negative on q′0q

′
1 for every (one-sided) zone Zi ∈ Z such that xiyi, x

iyi ⊆ q′0q
′
1, it follows that the primary

door on q′0q
′
1 is either x′jy

′
j or xiyi for some (one-sided) zone Zi ∈ Z with xiyi, x

iyi ⊆ q′0q
′
1 and i < j, and

thus xiyi ≺ x′jy
′
j . For every (one-sided) zone Zi ∈ Z such that xiyi, x

iyi ⊆ q′′0 q
′′
1 , since xiyi is negative and

xiyi is positive on q′′0 q
′′
1 , neither xiyi nor xiyi is primary on q′′0 q

′′
1 , by Observation 5.6. It follows that x′′j y

′′
j is

the primary door on q′′0 q
′′
1 . Since the primary door is always positive, we have x′jy

′
j = xjyj and x′′j y

′′
j = xjyj ,

and thus x′jy
′
j ≺ x′′j y′′j . We conclude that z′0z

′
1 � x′jy′j ≺ x′′j y′′j = z′′0 z

′′
1 .

Let a0 ∈ [0, n0) and a1 ∈ [0, n1) be such that p0[a0] = `0 and p1[a1] = `1. To prove Lemma 4.5, we
show that Algorithm 2 maintains the following invariant: if c0 ∈ [a0, a0 + n0) and c1 ∈ [a1, a1 + n1) are such
that p0[c0]p1[c1] is the primary door on p0[s0]p1[s1], then s0 ≤ c0 and s1 ≤ c1. The invariant implies that
s0 ≤ c0 < a0 + n0 < 2n0 and s1 ≤ c1 < a1 + n1 < 2n1 at the end of the “while” loop in Algorithm 2, which
is the assertion of Lemma 4.5.

Algorithm 2 starts with s0 = 0 ≤ a0 ≤ c0 and s1 = 0 ≤ a1 ≤ c1, so the invariant holds initially. Consider
an update su ← vu in line 8 of Algorithm 2, where u ∈ {0, 1}, assuming that the invariant holds before the
update. Let su denote the value before the update and wu be as claimed by the second part of Lemma 4.3.
Let qu = pu[su], q′u = pu[wu], q′′u = pu[vu], and q1−u = q′1−u = q′′1−u = p1−u[s1−u]. The conclusions of
Lemma 4.3 imply that quq

′
u is a segment of L(q0, q1) not containing q1−u, Pu[qu, q

′
u] is a cap of RHP(q0, q1),

16

A

[August 31, 2017 at 8:40 – classicthesis]

Pu[q′u, q
′′
u] is the single segment q′uq

′′
u, and q′′u /∈ RHP(q0, q1) = RHP(q′0, q

′
1), where the last equality follows

from q′1−u = q1−u ∈ L(q0, q1) r quq
′
u. These conditions are what we need to apply Lemma 5.7 (to q0, q1,

q′0, and q′1) and Lemma 5.8 (to q′0, q′1, q′′0 , and q′′1). Let z0z1, z′0z
′
1, and z′′0 z

′′
1 be the primary doors on q0q1,

q′0q
′
1, and q′′0 q

′′
1 , respectively. Lemma 5.7 and Lemma 5.8 yield z0z1 = z′0z

′
1 ≺ z′′0 z′′1 . Let c0, c

′′
0 ∈ [a0, a0 + n0)

and c1, c
′′
1 ∈ [a1, a1 + n1) be such that p0[c0] = z0, p0[c′′0] = z′′0 , p1[c1] = z1, and p1[c′′1] = z′′1 . This and

z0z1 ≺ z′′0 z
′′
1 imply c0 < c′′0 and c1 < c′′1 . This and the assumption that s0 ≤ c0 and s1 ≤ c1 (which is the

invariant before the update) imply s0 < c′′0 and s1 < c′′1 . This already gives one inequality of the invariant
after the update, namely, s1−u ≤ c′′1−u. It remains to prove vu ≤ c′′u, which is the other inequality of the
invariant after the update. Since q′′u /∈ RHP(q0, q1) and q′′1−u = q1−u, we have RHP(q0, q1) ∩ q′′0 q′′1 = {q′′1−u}.
This and Pu[qu, q

′
u] ⊂ RHP(q0, q1) imply Pu[qu, q

′
u] ∩ q′′0 q′′1 = ∅. Since Pu[q′u, q

′′
u] = q′uq

′′
u and q′u /∈ q′′0 q′′1 , we

have Pu[q′u, q
′′
u]∩q′′0 q′′1 = {q′′u}. Thus Pu[qu, q

′′
u]∩q′′0 q′′1 = {q′′u}. This and the fact that pu[c′′u] = z′′u ∈ Pu∩q′′0 q′′1

imply c′′u /∈ [su, vu). This and su < c′′u give the requested inequality vu ≤ c′′u. We conclude that the invariant
is preserved at the considered update to su, which completes the proof of Lemma 4.5.

6 Concluding remarks

So far, we were assuming that the combined set P̂ of corners of P0 and P1 contains no triple of collinear points,
which guarantees that expressions of the form sgn det?(a, b, c) with a, b, c ∈ P̂ are non-zero. Such expressions
are evaluated in line 4 of Algorithm 1 and lines 4 and 5 of Algorithm 2. Now, we adapt the algorithms to
handle the case that P̂ may contain triples of collinear points. Consider the following transformation, where
ε is a (very small) positive constant:

φε : R2 3 (x, y) 7→
(
x+ εy, y + ε(x+ εy)2

)
∈ R2.

It has the property that for any distinct points a, b, c ∈ R2, the limit of sgn det?(φε(a), φε(b), φε(c)) as ε→ 0
exists, is non-zero, and can be easily computed from the coordinates of a, b, and c. We can modify Algorithms
1 and 2 so that they evaluate that limit instead of sgn det?(a, b, c) for any distinct points a, b, c ∈ P̂ .
Conceptually, this is the same as invoking the algorithms on the polygons P0 and P1 transformed by φε,
where ε is small enough so that the value of sgn det?(φε(a), φε(b), φε(c)) is equal to the limit for any distinct
points a, b, c ∈ P̂ . Consequently, if either algorithm claims to find a solution, the fact that it is correct on
the transformed input implies that it is correct on the original input. The same reasoning (and the same
modification of the algorithms) can be applied with the following transformation ψε instead of φε:

ψε : R2 3 (x, y) 7→
(
x+ εy, y − ε(x+ εy)2

)
∈ R2.

Any straight line is transformed by φε and ψε (with ε small enough) into two lines that curve in the opposite
directions. This property is important when we want to find “degenerate” common tangents. Namely, if the
convex hulls of P0 and P1 touch, then one of φε and ψε makes them overlap properly while the other makes
them disjoint; therefore, one modification of Algorithm 1 or 2 finds the “degenerate” separating common
tangent while the other does not. Similarly, if the convex hulls of P0 and P1 are nested and their boundaries
touch, then one of φε and ψε makes them overlap properly while the other moves the smaller convex hull to
the interior of the larger; therefore, one modification of Algorithm 2 finds the “degenerate” outer common
tangent while the other does not. We recognize that there is no solution when both modifications report no
solution.

It remains open whether an outer common tangent of two polygons that are not disjoint can be found in
linear time and constant workspace. Another natural question is whether the diameter of the convex hull of
a simple polygon can be computed in linear time and constant workspace.

References

[1] M. Abrahamsen. An optimal algorithm for the separating common tangents of two polygons. In 31st
International Symposium on Computational Geometry (SoCG 2015), volume 34 of LIPIcs, pages 198–
208, 2015. arXiv:1511.04036 (corrected version).

17

A

[August 31, 2017 at 8:40 – classicthesis]

[2] M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A.D. Mehrabi. Minimum perimeter-sum par-
titions in the plane. In 33rd International Symposium on Computational Geometry (SoCG 2017),
volume 77 of LIPIcs, pages 4:1–4:15, 2017.

[3] M. Abrahamsen and B. Walczak. Outer common tangents and nesting of convex hulls in linear time
and constant workspace. In 24th Annual European Symposium on Algorithms (ESA 2016), volume 57
of LIPIcs, pages 4:1–4:15, 2016.

[4] T. Asano, K. Buchin, M. Buchin, M. Korman, W. Mulzer, G. Rote, and A. Schulz. Memory-constrained
algorithms for simple polygons. Comput. Geom., 46(8):959–969, 2013.

[5] T. Asano, W. Mulzer, G. Rote, and Y. Wang. Constant-work-space algorithms for geometric problems.
J. Comput. Geom., 2(1):46–68, 2011.

[6] L. Barba, M. Korman, S. Langerman, K. Sadakane, and R.I. Silveira. Space–time trade-offs for stack-
based algorithms. Algorithmica, 72(4):1097–1129, 2015.

[7] L. Barba, M. Korman, S. Langerman, and R.I. Silveira. Computing the visibility polygon using few
variables. Comput. Geom., 47(9):918–926, 2014.

[8] G.S. Brodal and R. Jacob. Dynamic planar convex hull. In 43rd Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS 2002), pages 617–626, 2002.

[9] E. Carson, J. Demmel, L. Grigori, N. Knight, P. Koanantakool, O. Schwartz, and H.V. Simhadri.
Write-avoiding algorithms. In 30th IEEE International Parallel and Distributed Processing Symposium
(IPDPS 2016), pages 648–658, 2016.

[10] L. Guibas, J. Hershberger, and J. Snoeyink. Compact interval trees: a data structure for convex hulls.
Int. J. Comput. Geom. Appl., 1(1):1–22, 1991.

[11] L.J. Guibas and J. Hershberger. Optimal shortest path queries in a simple polygon. J. Comput. System
Sci., 39(2):126–152, 1989.

[12] S. Har-Peled. Shortest path in a polygon using sublinear space. In 31st International Symposium on
Computational Geometry (SoCG 2015), volume 34 of LIPIcs, pages 111–125, 2015.

[13] J. Hershberger and S. Suri. Applications of a semi-dynamic convex hull algorithm. BIT Numer. Math.,
32(2):249–267, 1992.

[14] J. Hershberger and S. Suri. A pedestrian approach to ray shooting: shoot a ray, take a walk. J.
Algorithms, 18(3):403–431, 1995.

[15] D. Kirkpatrick and J. Snoeyink. Computing common tangents without a separating line. In 4th In-
ternational Workshop on Algorithms and Data Structures (WADS 1995), volume 955 of LNCS, pages
183–193. Springer, 1995.

[16] A.A. Melkman. On-line construction of the convex hull of a simple polyline. Inform. Process. Lett.,
25(1):11–12, 1987.

[17] M.H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane. J. Comput. System
Sci., 23(2):166–204, 1981.

[18] F.P. Preparata and S.J. Hong. Convex hulls of finite sets of points in two and three dimensions. Commun.
ACM, 20(2):87–93, 1977.

[19] O. Reingold. Undirected connectivity in log-space. Journal of the ACM (JACM), 55(4):1–24, 2008.

[20] G.T. Toussaint. Solving geometric problems with the rotating calipers. In IEEE Mediterranean Elec-
trotechnical Conference (MELECON 1983), pages A10.02/1–4, 1983.

18

A

[August 31, 2017 at 8:40 – classicthesis]

[August 31, 2017 at 8:40 – classicthesis]

B
I R R AT I O N A L G U A R D S A R E S O M E T I M E S N E E D E D

57

[August 31, 2017 at 8:40 – classicthesis]

Irrational Guards are Sometimes Needed

Mikkel Abrahamsen1, Anna Adamaszek1, and Tillmann Miltzow2

1University of Copenhagen, Denmark. {miab,anad}@di.ku.dk
2Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA

SZTAKI), t.miltzow@gmail.com

Till, Mikkel, Anna meticulously guarding the polygon: a little irrational, but pretty optimal.

Abstract

In this paper we study the art gallery problem, which is one of the fundamental problems in
computational geometry. The objective is to place a minimum number of guards inside a simple
polygon such that the guards together can see the whole polygon. We say that a guard at position
x sees a point y if the line segment xy is fully contained in the polygon.

Despite an extensive study of the art gallery problem, it remained an open question whether there
are polygons given by integer coordinates that require guard positions with irrational coordinates
in any optimal solution. We give a positive answer to this question by constructing a monotone

polygon with integer coordinates that can be guarded by three guards only when we allow to place
the guards at points with irrational coordinates. Otherwise, four guards are needed. By extending
this example, we show that for every n, there is polygon which can be guarded by 3n guards with
irrational coordinates but need 4n guards if the coordinates have to be rational. Subsequently,
we show that there are rectilinear polygons given by integer coordinates that require guards with
irrational coordinates in any optimal solution.

1

B

[August 31, 2017 at 8:40 – classicthesis]

1 Introduction

For a polygon P and points x, y ∈ P, we say that x sees y if the interval xy is contained in P. A guard
set S is a set of points in P such that every point in P is seen by some point in S. The points in S are
called guards. The art gallery problem is to �nd a minimum cardinality guard set for a simple polygon
P on n vertices. The polygon P is considered to be �lled, i.e., it consists of a closed polygonal curve in
the plane and the bounded region enclosed by this curve.

This classical version of the art gallery problem has been originally formulated in 1973 by Victor Klee
(see the book of O'Rourke [24, page 2]). It is often referred to as the interior-guard art gallery problem
or the point-guard art gallery problem, to distinguish it from other versions that have been introduced
over the years.

In 1978, Steve Fisk provided an elegant proof that bn/3c guards are always su�cient and sometimes
necessary to guard a polygon with n vertices [18]. Five years earlier, Victor Klee had posed this question
to Václav Chvátal, who soon gave a more complicated solution [12]. Since then, the art gallery problem
has been extensively studied, both from the combinatorial and the algorithmic perspective. Most of
this research, however, is not focused directly on the classical art gallery problem, but on its numerous
versions, including di�erent de�nitions of visibility, restricted classes of polygons, di�erent shapes of the
guards, restrictions on the positions of the guards, etc. For more detailed information we refer the reader
to the following surveys [20, 24, 29, 31].

Despite extensive research on the art gallery problem, no combinatorial algorithm for �nding an
optimal solution, or even for deciding whether a guard set of a given size k exists, is known. The only
exact algorithm is attributed to Micha Sharir (see [15]), who has shown that in nO(k) time one can �nd
a guard set consisting of k guards, if such a guard set exists. This result is obtained by using standard
tools from real algebraic geometry [3], and it is not known how to �nd an optimal solution without using
this powerful machinery (see [4] for an analysis of the very restricted case of k = 2). To stress this even
more: Without the tools from algebraic geometry, we would not know if it is decidable whether a guard
set of size k exists or not! Some recent lower bounds [6] based on the exponential time hypothesis suggest
that there might be no better exact algorithms than the one by Sharir.

To explain the di�culty in constructing exact algorithms, we want to emphasize that it is not known
whether the decision version of the art gallery problem (i.e., the problem of deciding whether there is
a guard set consisting of k guards, where k is a parameter) lies in the complexity class NP, even with
the algorithm by Sharir. While NP-hardness and APX-hardness of the art gallery problem have been
shown for di�erent classes of polygons [7, 16, 21, 22, 25, 28, 30], the question of whether the point-guard
art gallery problem is in NP remains open. A simple way to show NP-membership would be to prove
that there always exists an optimal set of guards with rational coordinates of polynomially bounded
description.

Indeed, Sándor Fekete posed at MIT in 2010 and at Dagstuhl in 2011 an open problem, asking whether
there are polygons requiring irrational coordinates in an optimal guard set [1, 17]. The question has been
raised again by Günter Rote at EuroCG 2011 [26]. It has also been mentioned by Rezende et al. [13]: �it
remains an open question whether there are polygons given by rational coordinates that require optimal
guard positions with irrational coordinates�. A similar question has been raised by Friedrichs et al. [19]:
�[. . .] it is a long-standing open problem for the more general Art Gallery Problem (AGP): For the AGP
it is not known whether the coordinates of an optimal guard cover can be represented with a polynomial
number of bits�.

Our results. We answer the open question of Sándor Fekete, by proving the following main result of our
paper. Recall that a polygon P is called monotone if there exists a line l such that every line orthogonal
to l intersects P at most twice.

Theorem 1. There is a simple monotone polygon P with integer coordinates of the vertices such that

(i) P can be guarded by 3 guards placed at points with irrational coordinates, and

(ii) an optimal guard set of P with guards at points with rational coordinates has size 4.

We then extend this result, by providing a family of polygons for which the ratio between the number
of guards in an optimal solution restricted to guards at rational positions, to the number of guards in
an optimal solution allowing irrational guards, is 4/3.

2

B

[August 31, 2017 at 8:40 – classicthesis]

Theorem 2. There is a family of simple polygons (Pn)n∈Z+
with integer coordinates of the vertices such

that

(i) Pn can be guarded by 3n guards placed at points with irrational coordinates, and

(ii) an optimal guard set of Pn with guards at points with rational coordinates has size 4n.

Moreover, the coordinates of the points de�ning the polygons Pn are polynomial in n.

We show that the phenomenon with guards at irrational coordinates occurs also in the important
class of rectilinear polygons.

Theorem 3. There is a rectilinear polygon PR with vertices at integer coordinates satisfying the following
properties.

(i) PR can be guarded by 9 guards if we allow placing guards at points with irrational coordinates.

(ii) An optimal guard set of PR with guards at points with rational coordinates has size 10.

Other related work. The art gallery problem has been studied from the perspective of approximation
algorithms. Efrat and Har-Peled [15] gave a randomized polynomial time algorithm for �nding a guard set
S where the guards are restricted to a very �ne grid Γ. To be more precise, if coordinates of the vertices of
the input polygon P are given by positive integers and L is the largest such integer, then Γ can be de�ned
as the points in L−20 ·Z2 ∩P. Let OPTgrid ⊂ Γ be a guard set with a minimum number of guards under
this restriction. The algorithm of Efrat and Har-Peled yields an O(log |OPTgrid|)-approximation for this
problem. However, it remained open whether OPTgrid is an approximation of an optimal unrestricted
guard set OPT . Bonnet and Miltzow [5] �lled this gap by showing that under a general position
assumption |OPTgrid| = O(|OPT |), which yields the �rst polynomial time approximation algorithm for
simple polygons under this assumption. It is easy to construct a polygon with integer coordinates that
forces a guard on the point (1/3, 1/3), which might not lie on the grid, in case that L is not divisible
by 3. This implies that OPTgrid is not optimal. But this does not rule out that there is a slightly more
clever choice of Γ so that OPTgrid is indeed optimal. It follows from our Theorem 2 that there are
polygons (requiring arbitrarily many guards in an optimal guard set) such that for any choice of Γ ⊂ Q2,
it holds that |OPTgrid| ≥ 4/3 · |OPT |. No lower bound of this kind has been known before. More general,
our result shows that no algorithm which considers only rational points as possible guard positions can
achieve an approximation ratio better than 4/3.

A new line of research focuses on implementing algorithms that are capable of solving instances of the
art gallery problem with thousands of vertices, giving a solution which is close to the optimal one, see the
recent survey by Rezende et al. [13]. They explain that many practical algorithms rely on �routines to
�nd candidates for discrete guard and witness locations.� We show that this technique inevitably leads
to sub-optimal solutions unless irrational candidate locations are also considered. We believe that our
example and techniques are a good starting point to construct benchmark instances for implementations
of art gallery algorithms. Benchmark instances serve to validate the quality of algorithms. Using the
same instances when comparing di�erent algorithms makes the results comparable.

A problem related to the art-gallery problem is the terrain guarding problem. In this problem, an
x-monotone polygonal curve c (i.e., the terrain) is given. The region R above the curve c has to be
guarded, and the guards are restricted to lie on c. Similarly as in our problem, a guard x sees a point
y if xy is contained in the region R. Although the solution space of the terrain guarding instance is
the continuous polygonal curve c, a discretization of the solution space has been recently described by
Friedrichs et al. [19]. Given a terrain with n vertices at integer position, they describe a set S ⊂ Q of
size O(n3), computable in polynomial time, such that there is an optimal guard placement restricted to
S. It follows that for the terrain guarding problem the phenomenon with irrational numbers does not
appear, and also the decision version of the terrain guarding problem is in NP.

Irrational numbers turn up surprisingly in other areas of computational geometry. One such example
is the nested polytopes problem. Here, we are given two nested polytopes S ⊆ P and want to �nd a
polytope T with a minimum number of corners such that T is nested between S and P , i.e., S ⊆ T ⊆ P .
Christikov et al. [11] recently gave an example of two nested polytopes S ⊆ P in R3, with all corners at
rational coordinates, such that there is a unique polytope T with 5 corners nested between S and P , and
T has corners with irrational coordinates. The nested polytopes problem is closely related to nonnegative

3

B

[August 31, 2017 at 8:40 – classicthesis]

matrix multiplication, where similar phenomena have been discovered, that a problem de�ned entirely
by rational numbers has an optimal solution requiring irrational numbers [10, 11].

The Structure of the Paper. Section 2 contains the description of a monotone polygon P with vertices
at points with rational coordinates that can be guarded by three guards only if the guards are placed at
points with irrational coordinates. In Section 3, we describe the intuition behind our construction, and
explain how we have found the polygon P. The formal proof of Theorems 1 and 2 is then provided in
Section 4. In Section 5, we present the rectilinear polygon PR from Theorem 3 requiring guards with
irrational coordinates in an optimal guard set. Finally, in Section 6 we suggest some open problems for
future research.

2 The Polygon

In Figure 1 we present the polygon P. In Section 4 we will prove that P can be guarded by three guards
only when we allow the guards to be placed at points with irrational coordinates.

The polygon P is constructed as follows. We start with a basic rectangle [0, 20]× [0, 4] ⊂ R2. Then,
we append to it six triangular pockets (colored with green in the �gure), which are triangles de�ned by
the following coordinates

T `
t : {(2, 4), (2, 4.5), (2.1, 4)}, T `

b : {(2, 0), (2,−0.5), (1.9, 0)},
Tm
t : {(16 5

6 , 4), (17 2
6 , 4.15), (17 2

6 , 4)}, Tm
b : {(3.5, 0), (3,−0.15), (3, 0)},

T r
t : {(19, 4), (19, 4.5), (19.1, 4)}, and T r

b : {(19, 0), (19,−0.5), (18.9, 0)}.
Next, we append three rectangular pockets (colored with blue in the �gure, for practical reasons these

pockets are drawn in the �gure shorter than they actually are), which are rectangles de�ned in the
following way.

R`: [−10, 0]× [1.7, 1.8], Rr: [20, 30]× [0.5, 0.6], and Rm: [10.5, 10.6]× [4, 8].
Last, we append four quadrilateral pockets (colored with red in the �gure), which are de�ned by

points with the following coordinates
Top-left pocket P `

t {(4, 4), (4, 28047), (8, 29447), (8, 4)}
Top-right pocket P r

t {(12, 4), (12, 2486375), (16, 1776375), (16, 4)}
Bottom-left pocket P `

b {(4, 0), (4,− 12
19), (8,− 18

19), (8, 0)}
Bottom-right pocket P r

b {(12, 0), (12,− 34
21), (16,− 36

21), (16, 0)}.
The polygon P is clearly monotone. We will denote by e`t, e

r
t , e

`
b, and e

r
b the non-axis-parallel edge

within each of the four quadrilateral pockets, respectively.

3 Intuition

In this section, we explain the key ideas behind the construction of the polygon P. Our presentation
is informal, but it resembles the work process that lead to the construction of P more than the formal
proof of Theorem 1 in Section 4 does. Here we omit all �scary� computations and focus on conveying the
big picture. In the end of this section, we also explain how we actually constructed the polygon P.

De�ne a rational point to be a point with two rational coordinates. An irrational point is a point
that is not rational. A rational line is a line that contains two rational points. An irrational line is a
line that is not rational.

Forcing a Guard on a Line Segment. Consider the drawing of the polygon P in Figure 1. We
will now explain an idea of how three pairs of triangular pockets, (T `

t , T
`
b), (Tm

t , T
m
b), and (T r

t , T
r
b), can

enforce three guards on three line segments within P.
Consider the two triangular pockets in Figure 2a. The blue line segment contains one edge of each of

these pockets, and the interiors of the pockets are at di�erent sides of the line segment. A guard which
sees the point t must be placed within the orange triangular region, and a guard which sees b must be
placed within the yellow triangular region. Thus, a single guard can see both t and b only if it is on the
blue line segment tb, which is the intersection of the two regions.

Consider now the case that we have k pairs of triangular pockets, and no two regions corresponding
to di�erent pairs of pockets intersect. In order to guard the polygon with k guards, there must be one
guard on the line segment corresponding to each pair. Our polygon P has three such pairs of pockets
(see Figure 2b), and it can be checked that the corresponding regions do not intersect.

4

B

[August 31, 2017 at 8:40 – classicthesis]

T
`t

T
`b

T
rt

T
rb

T
mt

T
mb

R
r

R
`

R
m

P
`t

P
`b

P
rt

P
rb

(0,4
)

(2
0,4)

(2
0,0)

(0,0
)

(2,4
)

(2,4
.5)

(2
.1
,4
)

(1.9
,0
)

(2,−
0.5

)

(2,0
)

(19,4)

(19,4.5
)

(19.1,4
)

(18.9,0)

(1
9,−

0.5)

(19,0)

(16
56
,4) (17

26
,4
.15

)

(17
26
,4)

(3.5
,0)

(3,−
0
.1
5
)

(3,0
)

(20,0.6)
(30

,0.6)
(3
0,0.5)

(20,0.5)

(0,1
.7
)

(−
1
0
,1
.7)

(−
1
0
,1
.8
)

(0,1
.8
)

(10.5,4)

(10.5,8)
(10.6,8)

(10.6,4)
(4,4)

(4,
2
8
0

4
7
)

(8,
2
9
4

4
7
)

(8,4)
(16,4)

(16,
1
7
7
6

3
7
5
)

(12,
2
4
8
6

3
7
5
)

(12,4)

(4,0)

(4,−
1
2

1
9
)

(8,−
1
8

1
9
)

(8,0)
(16,0)

(16,−
3
6

2
1
)

(12,−
3
4

2
1
)

(12,0)

Figure 1: The polygon P. We will show that P can be guarded by three guards only when we allow
the guards to be placed at points with irrational coordinates. For practical reasons, the blue rectagular
pockets are drawn shorter than they actually are.

5

B

[August 31, 2017 at 8:40 – classicthesis]

t

b

(a) The only way that one guard can see both
t and b is when the guard is on the blue line.

l`
lm lr

(b) The only way to guard the polygon with three guards re-
quires one guard on each of the green lines l`, lm, lr.

Figure 2: Forcing guards to lie on speci�c line segments.

Notice that in this way we can only enforce a guard to be on a rational line, as the line contains
vertices of the polygon, which are rational points.

Restricting a Guard to a Region Bounded by a Curve. For the following discussion, see the
Figure 3 and notation therein. We want to guard the polygon from Figure 3 using two guards, g1 and
g2. We assume that g1 is forced to be on the blue vertical line l.

Consider some position of g1 on l, such that g1 can see at least one point of the top edge et of the top
quadrilateral pocket, and at least one point of the bottom edge eb of the bottom quadrilateral pocket.
Let pt and pb denote the leftmost points seen by g1 on et and eb, respectively. Observe that pt moves
to the right if g1 moves up, and to the left if g1 moves down. The point pb behaves in the opposite way
when g1 is moved. Consider some �xed position of g1 on the blue line, and the corresponding positions
of pt and pb. Let b be the bottom right corner of the top pocket, and d the top right corner of the bottom
pocket. Let i be the intersection point of the line containing pt and b, with the line containing pb and d.
The points b, d, i de�ne a triangular region ∆. It is clear that if we place the guard g2 anywhere inside
∆, then g1 and g2 will together see the entire polygon. On the other hand, if we place g2 to the right of
∆, then g1 and g2 will not see the entire polygon, as some part of the top or the bottom pocket will not
be seen.

a b

C

g1
g2

c d

a b

c d

et

eb

pt

pb

i

g2
l

l

Figure 3: Left: The guard g2 must be inside the triangular region (or to the left of it) in order to guard
the entire part of the polygon that is not seen by g1. Right: All possible positions of the point i de�ne
a simple curve C.

Now, let us move the guard g1 along the blue line. Each position of g1 yields some intersection point
i. We denote the union of all these intersection points by C (see the right picture in Figure 3). It is easy
to see that C is a simple curve. We can compute a parameterization of C since we have described how to
construct the point i as a function of the position of g1.

Note that g2 sees a larger part of both pockets if it is moved horizontally to the left and a smaller
part of both pockets if it is moved horizontally to the right. Consider a �xed position of g2 on or to the
right of the segment bd. Let g′2 be the horizontal projection of g2 on C. Let g1 be the unique position on
the blue line such that g1 and g′2 see all of the polygon. If g2 is to the left of C, g′2 sees less of the pockets
than g2, so g1 and g2 can together see everything. If g2 is to the right of C, g2 sees less of the pockets
than g′2 and neither the top nor the bottom pocket are completely guarded by g1 and g2. For any higher
placement of g1 even less of the top pocket is guarded and for any lower placement of g1 even less of the
bottom pocket is guarded. Thus, there exists no placement of g1 such that both pockets are completely
guarded by g1 and g2. We summarize our reasoning in the following observation.

6

B

[August 31, 2017 at 8:40 – classicthesis]

Observation 1. Consider a �xed position of g2 on or to the right of the segment bd. There exists a
position of g1 on l such that the entire polygon is seen by g1 and g2 if and only if g2 lies on or to the left
of the curve C.

g`

gm
gr

l`
lm

lr

p`t prt

p`b
prb

e`t
ert

e`b
erb

c`
cr

Figure 4: The polygon P.

Restricting a Guard to a Single (Irrational) Point. For this paragraph, let us consider the polygon
P introduced in Section 2, and consider a guard set for P consisting of three guards. The polygon P is
drawn again in Figure 4, together with additional labels and information. The three guards g`, gm, gr are
forced by the triangular pockets to lie on the three green lines l`, lm, lr, respectively. Additionally, the
three rectangular pockets R`, Rm, Rr force the guards to lie within one of three short intervals within
each line. (These properties of our construction will be discussed in more detail in Section 4.) With
these restrictions, we will show that for the three guards to see the whole polygon, it must hold that the
guards g` and gm can together see the left pockets P `

t and P `
b , and the guards gm and gr can together

see the right pockets P r
t and P r

b .
Then, the curve c` bounds from the right the feasible region for the guard gm, such that g` and gm

can together see the left pockets P `
t and P `

b . Similarly, the curve cr bounds from the left the feasible
region for the guard gm, such that gr and gm can together see the right pockets P r

t and P r
b . Thus, the

only way that g`, gm, and gr can see the whole polygon is when gm is within the grey region, between
c` and cr. Our idea is to de�ne the line lm so that it contains an intersection point of c` and cr, and it
does not enter the interior of the grey region. A simple computation with sage [14] outputs equations
de�ning the two curves:

c` : 138x2 − 568xy − 1071y2 − 3018x+ 8828y + 15312 = 0 ,

cr : 138x2 − 156xy − 356y2 − 1791x+ 3296y + 1620 = 0 .

See Appendix A for the sage code for this computation. It can be checked, even by hand, that the point

p = (3.5 + 5
√

2, 1.5
√

2) ≈ (10.57, 2.12)

lies on both curves, and also on the line lm = { (x, y) : y = 0.3x− 1.05 }. Therefore, p is a feasible (and
at the same time irrational) position for the guard gm. Moreover, by plotting c`, cr, and lm in P as in
Figure 4, we get an indication that as we traverse lm from left to right, at the point p we exit the area
where gm and gl can guard together the two left pockets, and at the same time we enter the area where
gm and gr can guard together the two right pockets. Thus, the only feasible position for the guard gm
is the irrational point p. A formal proof will be given in Section 4.

Searching for the Polygon. The simplicity of the ideas behind our construction does not re�ect the
di�culty of �nding the exact coordinates for the polygon P. The reader might for instance presume that
most other choices of horizontal pockets would work, if the line lm is changed accordingly. However, this
is not the case.

It is easy to construct the pockets so that the corresponding curves c` and cr intersect at some point p.
We expect p to be an irrational point in general, since the curves c` and cr are de�ned by two second

7

B

[August 31, 2017 at 8:40 – classicthesis]

degree polynomials, as indicated above. In our construction, we need to force gm to be on a line lm
containing p, but we can only force gm to be on a rational line. Hence, we require the existence of a
rational line lm that contains p.

As any two rational lines intersect in a rational point, there can be at most one rational line containing
the irrational point p. Moreover, there exists a rational line containing p if and only if p = (r1 +r2α, r3 +
r4α) for some r1, r2, r3, r4 ∈ Q, where α ∈ R\Q is an irrational number. The equation of the rational line
containing p is then y = r4

r2
·x+ (r3− r1 · r4r2). We say that this line supports p. Therefore, we should not

hope that the intersection point of the curves c` and cr de�ned by arbitrarily chosen pockets will have a
supporting line. Our main idea to overcome this problem has been to reverse-engineer the polygon, after
having chosen the positions of the guards. We chose three irrational guards, all with supporting rational
lines, and then de�ned the pockets so that gm automatically became the intersection point between the
curves c` and cr associated with the pockets.

We chose all three guards to have coordinates of the form (r1 + r2
√

2, r3 + r4
√

2) for r1, r2, r3, r4 ∈ Q.
Assume, for the ease of presentation, that we already know that we can end up with a polygon described
as follows. (In our initial attempts, our polygons were much less regular.) The polygon should consist
of the rectangle R = [0, 20] × [0, 4] with some pockets added. We would like the pockets to extrude
vertically from the horizontal edges of R such that the pockets meet R along the segments (4, 0)(8, 0),
(12, 0)(16, 0), (4, 4)(8, 4), and (12, 4)(16, 4), respectively.

We now explain the technique for constructing the bottom pocket to the left which should extrude
from R vertically downwards from the corners (4, 0) and (8, 0). We have to de�ne the edge e`b, which is
the bottom edge in the pocket. We want p`b to be a point on e`b such that g` can only see the part of e`b
from p`b and to the right, whereas gm can only see the part of e`b from p`b and to the left. Therefore, we
de�ne p`b to be the intersection point between the line containing g` and (4, 0), and the line containing gm
and (8, 0). It follows that p`b is of the form (r1 +r2

√
2, r3 +r4

√
2) for some r1, r2, r3, r4 ∈ Q. Hence, there

is a unique rational line l supporting p`b, and e
`
b must be a segment on l. We therefore need that both of

the points (4, 0) and (8, 0) are above l, since otherwise we do not get a meaningful polygon. However, this
is not the case for arbitrary choices of the guards g` and gm. The other pockets add similar restrictions
to the positions of the guards.

In the construction we had to take care of other issues as well. In particular, the line lm which
supports the guard gm cannot enter the grey region between the two curves c` and cr, as otherwise the
position of gm would not be unique, and the guard could be moved to a rational point. Also, the three
lines l`, lm, lr supporting the three guards g`, gm, gr cannot intersect within the polygon.

We experimented with the construction in GeoGebra [2], where we had the possibility to draw the lines
supporting p`t, p

`
b, p

r
t , p

r
b and see how they were changing in an intricate way as we changed the coordinates

of the guards. For most choices of the guards and other parts of the polygon, we did not get meaningful
results. The great advantage of GeoGebra is that we could continuously vary all parts of the polygon
and play around with all parameters, thus gaining an intuitive understanding of various dependencies.
After experimenting for a while, we were able to produce feasible examples and then �nd more appealing
examples with simpler coordinates etc. In particular, it was important to us that many edges of the
polygon are axis-parallel, so that we could easier derive from our example a rectilinear polygon with the
same property, i.e., that the optimal guard set requires points with irrational coordinates.

4 Proof of Theorems 1 and 2

Basic observations. Recall the construction of the polygon P as de�ned in Section 2, and consider a
guard set of P of cardinality at most 3. Let l`, lm, lr be, respectively, the restrictions of the following
lines to P:

x = 2, y = 0.3x− 1.05, and x = 19.

As argued in Section 3, the triangular pockets enforce a guard onto each of these lines.

Lemma 4. Consider any guard set S for P consisting of at most 3 guards. Then (i) |S| = 3, and (ii)
there is one guard on each of the lines l`, lm, lr.

Proof. Each triangular pocket T `
t , T

`
b , T

m
t , T

m
b , T

r
t , T

r
b has one vertex which is not on the basic rectangle

[0, 20] × [0, 4]. For each triangular pocket, we consider the points in P that can see that vertex. These
positions correspond to the areas pictured in yellow and orange in Figure 2b.

8

B

[August 31, 2017 at 8:40 – classicthesis]

It is straightforward to check that the only positions of guards that can see two such vertices are on
the segments l`, lm, lr. Since these segments are non-intersecting, at least three guards are needed to see
the whole polygon P. If there are three guards, then there must be one guard on each of the segments
l`, lm, lr.

Now, consider the intervals i1 = [0.5, 0.6] and i2 = [1.7, 1.8]. Similarly as for the case of triangular
pockets, we can show that rectangular pockets R`, Rm, Rr enforce a guard with an x-coordinate in
[10.5, 10.6], and two remaining guards with y-coordinates in i1 and i2.

Lemma 5. Consider any guard set S for P consisting of 3 guards. Then one of the guards has an
x-coordinate in [10.5, 10.6]. For the remaining two guards, one has a y-coordinate in i1 and the other
one in i2.

Proof. From Lemma 4, there must be one guard g` on l`, one guard gm on lm, and the last guard gr on
lr. Recall that the rectangular pockets are as follows R`: [−10, 0]× [1.7, 1.8], Rr: [20, 30]× [0.5, 0.6], and
Rm: [10.5, 10.6]× [4, 8]. It is straightforward to check that none of the guards g`, gr can see the two top
vertices of the pocket Rm. Therefore, the middle guard gm has to see both these vertices and it must
have an x-coordinate in [10.5, 10.6].

Then, as gm ∈ lm, the y-coordinate of gm is in [2.1, 2.13]. Therefore, gm cannot see any of the left
vertices of R`, or any of the right vertices of Rr. These four vertices must be seen by the guards g` and
gr.

As some guard must see the bottom-left corner of the pocket R`, it must be placed at a height of at
least 1.7. Then, this guard cannot see any of the right vertices of Rr. Therefore, the last guard must
see both right vertices of Rr, and its height must be within i1 = [0.5, 0.6]. Then, this guard cannot see
any left vertex of the pocket R`, and the second guard must see both left vertices of the pocket, and its
height must be within i2 = [1.7, 1.8].

Dependencies between guard positions. Let {g`, gm, gr} be a guard set of P, with g` ∈ l`, gm ∈ lm,
and gr ∈ lr. We will now analyze dependencies between the positions of the guards that are caused by
the horizontal pockets of P. Recall that the non-axis-parallel edges of these pockets are denoted by e`t,
ert , e

`
b, and e

r
b .

We start with two technical lemmas that are needed for Lemma 8.

Lemma 6. Let h ∈ [0, 4] be the height of the guard g`. If h > 135
47 ≈ 2.87 then g` cannot see any point

on e`t, and otherwise it can see a part of e`t starting from the x-coordinate 908−188h
181−47h and to the right of

it. If h < 9
19 ≈ 0.47 then g` cannot see any point on e`b, and otherwise it can see a part of e`b starting

from the x-coordinate 76h+12
19h−3 and to the right of it.

Proof. Consider the guard g` and the top-left pocket. The left-most point on e`t that g` can see is at the
intersection of the following two lines: the line containing g` and the bottom-left corner of the pocket
(i.e., the point (4, 4)), and the line containing e`t. If g` = (2, h), then the equation of the �rst line is
y = 4−h

2 + (2h− 4). The second contains points (4, 28047) and (8, 29447), and its equation is y = 7
94x+ 266

47 .
The x-coordinate of the intersection is 908−188h

181−47h . It reaches a value of 8 (i.e., the point coincides with
the right endpoint of e`t) when h = 135

47 .
Now, consider the guard g` and the bottom-left pocket. The leftmost point on e`b that g` can see is

at the intersection of the following two lines: the line containing g` and the top-left corner of the pocket
(i.e., the point (4, 0)), and the line containing e`b. The �rst of these lines has equation y = −h

2x + 2h.
The second line contains points (4,− 12

19), (8,− 18
19), and its equation is y = − 3

38x− 6
19 . The x-coordinate

of the intersection is 76h+12
19h−3 , which reaches 8 when h = 9

19 .

Lemma 7. Let h ∈ [0, 4] be the height of the guard gr. If h >
507
250 = 2.028 then g` cannot see any point

on ert , and otherwise it can see a part of ert starting from the x-coordinate 4000h−9768
250h−645 and to the left of

it. If h < 17
14 ≈ 1.21 then g` cannot see any point on erb, and otherwise it can see a part of erb starting

from the x-coordinate 224h−56
14h+1 and to the left of it.

9

B

[August 31, 2017 at 8:40 – classicthesis]

(a) g` and gr cannot see any of the right pockets. (b) g` and gr cannot see any of the left pockets.

Figure 5: Showing that g` and gr cannot see together a whole pocket. Possible positions for the guards
are pictured in red.

Proof. Consider the guard gr and the top-right pocket. The right-most point on ert that gr can see is
at the intersection of the following two lines: the line containing gr and the bottom-right corner of the
pocket (i.e., the point (16, 4)), and the line containing ert . If gr = (19, h), then the equation of the �rst
line is y = h−4

3 x + 76−16h
3 . The second contains points (12, 2486375) and (16, 1776375), and its equation is

y = − 71
150x + 4616

375 . The x-coordinate of the intersection is 4000h−9768
250h−645 . It reaches a value of 12 (i.e., the

point coincides with the left endpoint of ert) when h = 507
250 = 2.028.

Now, consider the guard gr and the bottom-right pocket. The rightmost point on erb that gr can see is
at the intersection of the following two lines: the line containing gr and the top-right corner of the pocket
(i.e., the point (16, 0)), and the line containing erb . The �rst of these lines has equation y = h

3x − 16h
3 .

The second line contains points (12,− 34
21), (16,− 36

21), and its equation is y = − 1
42x− 4

3 . The x-coordinate
of the intersection is 224h−56

14h+1 , which reaches 12 when h = 17
14 ≈ 1.21.

Lemma 8. The guards g` and gm together see all of e`t and e
`
b, and the guards gm and gr together can

see all of ert and erb. Also, the y-coordinate of g` is in i1, and the y-coordinate of gr is in i2.

Proof. By the construction of P, it holds that if a guard sees a point on one of the edges e`t, e
r
t , e

`
b, and

erb , then the guard sees an interval of the edge containing an endpoint of the edge. It now follows that if
three guards together see one of these edges, then two do as well. In order to prove the lemma, it thus
su�ces to prove that

• g` and gr cannot together see any of the edges e`t, e
`
b, e

r
t , and e

r
b ,

• g` and gm cannot together see any of the right edges ert and erb , and

• gm and gr cannot together see any of the left edges e`t and e
`
b.

We �rst show that the height h of the right guard gr must be within i2. From Lemma 5, the guard
gm has an x-coordinate in [10.5, 10.6], and for the remaining two guards one has an y-coordinate in i1,
and the other one in i2. If h /∈ i2, we would have h ≤ 0.6, and from Lemma 7, the edge erb would be
completely invisible to gr. Then, the middle guard gm would have to see that edge entirely, i.e., it would
have an x-coordinate of at least 12. As the x-coordinate of gm is in [10.5, 10.6], we get that h ∈ i2. Also,
the y-coordinate of g` must be in i1.

We now prove that g` and gr cannot together see any of the right edges ert and erb (see Figure 5a).
Since h ∈ i2, Lemma 7, gives that gr cannot see ert to the right of the point (742

55 ,
1629
275), and erb to the

right of the point (1736
131 ,− 216

131). It is now easy to verify that no point on l` can see any of these two
points. Hence, g` and gr cannot together see any of the edges ert and erb .

We now prove that g` and gr cannot together see e`t (see Figure 5b). Since the y-coordinate of gr is
in i2, it follows that gr does not see any point on e`t. Since the x-coordinate of g` is less than 4, neither
g` nor gr can see the left endpoint of e`t.

To show that g` and gr cannot together see the edge e`b, we argue as follows (see Figure 5b). The
guard g` is placed at a height of at most 0.6, and gr at a height of at most 1.8. It follows from Lemma 6
and from elementary computations that neither of the guards can see the interval of e`b with x-coordinates
between 2076

507 < 4.1 and 48
7 > 6.8.

10

B

[August 31, 2017 at 8:40 – classicthesis]

As the x-coordinate of both g` and gm is smaller than 12, none of these guards can see the left
endpoint of the edges ert , e

r
b . Therefore, g` and gm cannot together see any of the edges ert , e

r
b . Similarly,

as the x-coordinates of gm and gr are greater than 8, gm and gr cannot together see e`t or e`b. This
completes our proof.

Lemma 9. The maximum x-coordinate of gm such that g` and gm can together see e`t and e`b is x =
3.5 + 5

√
2. The corresponding position of g` is (2, 2−

√
2).

Proof. Consider the guard g` at position (2, h). From Lemma 8, we know that h ∈ i1 = [0.5, 0.6]. If
gm and g` together see e`t, we know from Lemma 6 in the appendix that gm has to be on or below
the line containing the vertices (8, 4) and (908−188h

181−47h ,
7
94 · 908−188h

181−47h + 266
47), i.e., the line with equation

y = 92−23h
−135+47hx+ −1276+372h

−135+47h . As gm is at the line y = 0.3x− 1.05, its x-coordinate satis�es 0.3x− 1.05 ≤
92−23h
−135+47hx+ −1276+372h

−135+47h , i.e., x ≤ 28355−8427h
2650−742h .

If gm and g` together see e`b, then gm has to be on or above the line containing the vertices (8, 0) and
(76h+12

19h−3 ,− 3
38 · 76h+12

19h−3 − 6
19), i.e., the line with equation y = 3h

19h−9x− 24h
19h−9 . Hence, the x-coordinate of

g` must satisfy 0.3x− 1.05 ≥ 3h
19h−9x− 24h

19h−9 , i.e., x(1− h) ≤ 81h+189
54 . Therefore, since h < 1, we must

have x ≤ 81h+189
54−54h .

We now know that x ≤ min{ 28355−8427h2650−742h , 81h+189
54−54h }. The �rst of the two values decreases with h,

and the second one increases with h. Therefore the maximum is obtained when 28355−8427h
2650−742h = 81h+189

54−54h ,

i.e., for h = 2 −
√

2. The value of x is then 3.5 + 5
√

2. The corresponding position of the guard g` is
(2, h) = (2, 2−

√
2).

Similarly, we can compute the left-most possible position of gm such that gm and gr can see together
both right pockets. The proof is in the appendix.

Computing the unique solution. We can now show that there is only one guard set for P consisting
of three guards. Let us start by computing the right-most possible position of gm such that g` and gm
can see together both left pockets.

Lemma 10. The minimum x-coordinate of gm such that gr and gm can see both ert and erb is x =

3.5 + 5
√

2. The corresponding position of gr is (19, 1 +
√
2
2).

Proof. Consider the guard gr at position (19, h). From Lemma 8, we know that h ∈ i2 = [1.7, 1.8]. If
gm and gr together see ert , we know from Lemma 7 in the appendix that gm has to be on or below the
line containing the vertices (12, 4) and (4000h−9768

250h−645 ,− 71
150

4000h−9768
250h−645 + 4616

375), i.e., the line with equation

y = 46h−184
250h−507x+ 448h+180

250h−507 . As gm is at the line y = 0.3x− 1.05, its x coordinate satis�es: 0.3x− 1.05 ≤
46h−184
250h−507x+ 448h+180

250h−507 , i.e., x ≥ 490h−243
20h+22 .

If gm and gr together see erb , then gm has to be on or above the line containing the vertices (12, 0) and
(224h−56

14h+1 ,− 1
42

224h−56
14h+1 − 4

3), i.e., the line with equation y = 6h
17−14hx − 72h

17−14h . Hence, the x-coordinate

of gr must satisfy 0.3x− 1.05 ≥ 6h
17−14hx− 72h

17−14h , i.e., x ≥ 34h−7
4h−2 .

We have to minimize the value of max{ 490h−24320h+22 , 34h−74h−2 }. When the value of h increases, the �rst of
these two values increases, and the second one decreases. The minimum value is therefore obtained when
490h−243
20h+22 = 34h−7

4h−2 , i.e., for h = 1 +
√
2
2 . The value of x is then 3.5 + 5

√
2.

We are now ready to prove our main theorems.

Proof of Theorem 1. Let P be the polygon constructed as in Section 2, and let S be a guard set for P
consisting of at most 3 guards. From Lemma 4 we have |S| = 3, and there is one guard at each of the
lines l`, lm, lr. Denote these guards by g`, gm, gr, respectively. From Lemma 8 we know that if g`, gm, and
gr together see all of P, then g` and gm must see all of e`t and e

`
b, and gm and gr must see all of ert and e

r
b .

It then follows from Lemmas 9 and 10 that gm must have coordinates (3.5 + 5
√

2, 1.5
√

2) ≈ (10.57, 2.12),
g` = (2, 2−

√
2) ≈ (2, 0.59), and gr = (19, 1 +

√
2
2) ≈ (19, 1.71). Thus, indeed, the guards g`, gm, and gr

see the entire polygon P and are the only three guards doing so.
By scaling P up by the least common multiple of the denominators in the coordinates of the corners

of P, we obtain a polygon with integer coordinates. This does not a�ect the number of guards required
to see all of P.

11

B

[August 31, 2017 at 8:40 – classicthesis]

In order to guard P using four guards with rational coordinates, we choose two rational guards g′m,1

and g′m,2 on lm a little bit to the left and to the right of gm, respectively. The guard g′m,1 sees a little
more of both of the edges e`t and e

`
b than does gm, whereas g′m,2 sees a little more of ert and e

r
b . Therefore,

we can choose a rational guard g′` on l` close to g` such that g′` and g
′
m,1 together see e`t and e

`
b, and a

rational guard g′r on lr with analogous properties. Thus, g′`, g
′
m,1, g

′
m,2, g

′
r guard P.

Figure 6: A sketch of a polygon that can be guarded by 6 guards when irrational coordinates are allowed,
but needs 8 guards when only rational coordinates are allowed.

Proof of Theorem 2. We will now construct a polygon Pn that can be guarded by 3n guards placed at
points with irrational coordinates, but such that when we restrict guard positions to points with rational
coordinates, the minimum number of guards becomes 4n. We start by making n copies of the polygon
P described above, which we denote by P(1), . . . ,P(n). We connect the copies into one polygon Pn as
follows. Each consecutive pair P(i),P(i+1) is connected by a thin corridor consisting of a horizontal piece
H(i) visible by the rightmost guard in P(i), and a vertical piece V (i) visible to the middle guard in P(i+1)

(see Figure 6 for the case n = 2). We can then guard Pn using 3n guards, by placing three guards within
each polygon P(i) in the same way as for P, i.e., at irrational points.

Now, assume that Pn can be guarded by at most 4n−1 guards. We will show that at least one guard
must be irrational. For formal reasons, we de�ne H(0) = V (0) = H(n) = V (n) = ∅. The horizontal and
vertical corridors H(i) and V (i), for i ∈ {0, . . . , n}, intersect at a rectangular area B(i) = H(i) ∩ V (i)

which we call a bend. For i ∈ {1, . . . , n− 1}, the bend B(i) is non-empty and visible from both polygons
P(i) and P(i+1). De�ne the extension of P(i), denoted by E(P(i)), to be the union of P(i) and the
adjacent corridors excluding the bends, i.e., E(P(i)) = P(i) ∪ (V (i−1) \ B(i−1)) ∪ (H(i) \ B(i)). Since
the extensions are pairwise disjoint, there is an extension E(P(i)) containing at most three guards. If
there are no guards in any of the bends B(i−1), B(i) it follows from Theorem 1 that three guards must
be placed inside P(i) at irrational coordinates, so assume that there is a guard in one or both of the
bends. If the adjacent corridors V (i−1) and H(i) are long enough and thin enough, a guard in the bends
B(i−1) and B(i) cannot see any left corner of any of the vertical pockets of P(i), any point in a triangular
pocket, or any point in a horizontal pocket. Hence, all the features of P(i) that enforce the irrationality
of the guards are unseen by the guards in the bends and it follows that there must be irrational guards
in P(i). Therefore, at least 4n guards are needed if we require them to be rational. Similarly as in the
proof of Theorem 1, we can show that 4n rational guards are enough to guard Pn.

5 Rectilinear Polygon

Figure 7 depicts a rectilinear polygon PR with corners at rational coordinates that can be guarded by
9 guards, but requires 10 guards if we restrict the guards to points with rational coordinates. Before
the formal proof, we want to give the reader a short overview. The construction of PR starts with the

12

B

[August 31, 2017 at 8:40 – classicthesis]

polygon P from Theorem 1. We will extend the non-rectilinear parts by �equivalent� rectilinear parts,
colored gray in the �gure. The rectilinear pockets will be constructed in such a way, that each of them
will require at least one guard in the interior. Additionally, if the interior of each pocket contains only
one guard, then these guards must be placed at speci�c positions, making the area not seen by these six
additional guards exactly the polygon P described in Section 2 (the white area in Figure 7). Thus, the
remaining 3 guards must be placed at three irrational points by Theorem 1.

H1 H2

H3 H4

l` lm lr

T1

T2

Q2

Q3

Q4

Q1

Rm

R` Rr

Figure 7: The rectilinear polygon PR can be guarded with 9 guards only when we allow placing guards
at irrational points.

Proof of Theorem 3. We describe a polygon PR with vertices at integer coordinates that can be guarded
by 9 guards with irrational coordinates, but needs 10 guards if only rational coordinates are allowed.

The construction of PR starts with the polygon P from Theorem 1. We will replace the non-rectilinear
parts by �equivalent� rectilinear parts, see Figure 7 for an illustration of the complete polygon PR and
the notation therein. The additional areas need to be guarded by additional guards, as will be described
later.

First, consider the triangular pockets of the polygon P. These pockets have been added to enforce
the guards to be on the lines l`, lm, lr. Four of these pockets, the ones corresponding to l` and lr, can be
easily replaced by corresponding rectilinear pockets denoted by H1, H2, H3, H4, where three vertices of
the new rectilinear pockets are the same as the vertices of the original triangular pockets. This does not
work for the pockets corresponding to the line lm, as this line is not axis-parallel, in particular, a guard
on the line lm would not see all of the interior of such rectangular pockets.

The two triangular pockets corresponding to lm and the four quadrilateral pockets will be extended
to new, more complicated pockets. Note that there are only two di�erent kinds of pockets that need to
be extended, triangular pockets and quadrilateral pockets, as pictured on the left of Figure 8 and Figure 9.
Each triangular pocket is de�ned by three vertices and one of the sides of each pocket is not axis-parallel.
Similarly, each quadrilateral pocket is de�ned by four vertices and one of the sides of each pocket is not
axis-parallel.

Consider a pocket P , which needs to be extended in order to become rectilinear. Our extensions
are pictured in the middle of Figure 8 and 9. The green area in the middle of Figure 8 and 9 is a
newly-created pocket Q. For now, let us assume that Q does not intersect other parts of the polygon.
The pocket Q satis�es the following properties (see the right pictures in Figure 8 and 9).

(a) There are four points p1(Q), p2(Q), p3(Q), p4(Q) within Q, such that each of them can only be seen
by a guard, which is inside Q.

(b) There exists exactly one point q(Q) that can see all four points p1(Q), p2(Q), p3(Q), p4(Q).

(c) The point q(Q) sees exactly the interior of Q.

(d) All vertices of Q are rational.

13

B

[August 31, 2017 at 8:40 – classicthesis]

We now show that a pocket Q satisfying all these properties can be constructed. First, we extend the
non-axis-parallel edge of the pocket P in the direction outside the polygon and place a point q = q(Q),
with rational coordinates, on it. We let p1, p2, p3, p4 be points with rational coordinates directly above,
to the right, below, and to the left of q, respectively. Then, we construct four rectilinear sub-pockets
each with a vertex at one of the points p1, p2, p3, p4, so that all these can be seen by q. These pockets
can also be constructed with rational coordinates because q has rational coordinates. Clearly, we can
choose the point q close enough to P so that the resulting pocket Q does not intersect the rest of the
polygon.

Let PR be the constructed rectilinear polygon as pictured in Figure 7, where all triangular and
horizontal pockets have been extended by rectilinear pockets. We have to show that PR can be guarded
by 9 guards, but that we need 10 guards if we require the guards to be at rational coordinates. The
underlying idea is that after an optimal placement of one guard in each of the six pockets that have been
extended in order to become rectilinear, the remaining area that must be seen by the remaining guards
is exactly the same as in the original polygon P.

p1

p2

p3

q
s s

t

b
q

p4

Figure 8: A triangular pocket is extended into a new rectilinear pocket.

s1

t

b

s2

s1

t

b

s2

s1

t

b

s2

p1

p2

p3

p4
q

Figure 9: A quadrangular pocket is extended into a new rectilinear pocket.

We �rst present a solution with 9 guards when we are allowed to place guards at points with irrational
coordinates. For this we place guards at the points q(T1), q(T2), q(Q1), q(Q2), q(Q3), q(Q4) so that the
interior of each of the pockets T1, T2, Q1, Q2, Q3, Q4 is seen, see Property (b) and (c). Then we cover the
remaining part of the polygon with three irrational guards as described in the proof of Theorem 1.

It remains to show that 10 guards are required when we restrict the guards to have rational coordi-
nates. Suppose for the purpose of contradiction that there is a solution with 9 rational guards. Note that
there must be at least one guard in each pocket Q ∈ {T1, T2, Q1, Q2, Q3, Q4} because of Property (a).
We will now show that there must be at least three guards placed outside of T1∪T2∪Q1∪Q2∪Q3∪Q4.
First, notice that no guard placed in any of the pockets T1, T2, Q1, Q2, Q3, Q4 can see any of the
following points: the top-left vertex of H1 and H2, and the bottom-right vertex of H3 and H4. To see
these four points, at least two guards are needed. If there are only two guards, one of them must lie on
l`, and the other on lr. But then none of the guards placed on l` ∪ lr ∪ T1 ∪ T2 ∪Q1 ∪Q2 ∪Q3 ∪Q4 can
see the top edge of the pocket Rm, and one more guard is needed. Therefore, at least three guards must
be placed outside of T1 ∪ T2 ∪Q1 ∪Q2 ∪Q3 ∪Q4.

When only 9 guards are available, there must be exactly 3 guards outside the pockets T1, T2, Q1,

14

B

[August 31, 2017 at 8:40 – classicthesis]

Q2, Q3, Q4, and exactly one guard inside each pocket Q ∈ {T1, T2, Q1, Q2, Q3, Q4}. As each pocket Q
contains exactly one guard, then this guard must be the point q(Q) because of Property (a) and (b).
Let P∗R be the area unseen by the guards within the six pockets. This polygon is exactly P, and by
Theorem 1 the unique solution with three guards is irrational. A polygon with integer coordinates can
then be obtained by multiplying all coordinates with the least common multiple of all denominators of
the coordinates.

6 Future Work

One of the most prominent open questions related to the art gallery problem is whether the problem is in
NP. Recently, some researchers popularized an interesting complexity class, called ∃R, being somewhere
between NP and PSPACE [8, 9, 23, 27]. Many geometric problems for which membership in NP is
uncertain have been shown to be complete for the complexity class ∃R. Famous examples are: order
type realizability, pseudoline stretchability, recognition of segment intersection graphs, recognition of unit
disk intersection graphs, recognition of point visibility graphs, minimizing rectilinear crossing number,
linkage realizability. This suggests that there might indeed be no polynomial sized witness for any of
these problems as this would imply NP = ∃R. It is an interesting open problem whether the art gallery
problem is ∃R-complete or not.

The irrational coordinates of the guards in our examples are all of degree 2, i.e., they are roots
in second-degree polynomials with integer coe�cients. We would like to know if polygons exist where
irrational numbers of higher degree are needed in the coordinates of an optimal solution.

We have constructed a simple polygon requiring three guards placed at points with irrational coordi-
nates. It is a natural question whether there exists a polygon which can be guarded by two guards only
if they are placed at points with irrational coordinates.

We show that there exists polygons for which |OPTQ| ≥ 4
3 |OPT |. It follows from the work by Bonnet

and Miltzow [5] that it always holds that |OPTQ| ≤ 9|OPT |. It is interesting to see if any of these
bounds can be improved.

As previously mentioned, there is an algorithm running in time nO(k) that �nds a guard set consisting
of k guards if such guard set exists. We would like to know if an algorithm exists for the same problem
when we restrict ourselves to guards with coordinates in Q.

Acknowledgement. We want to thank Sándor Fekete, Frank Ho�mann, Udo Ho�mann, Linda Kleist,
Péter Kutas, Günter Rote and Andrew Winslow for discussions on the problem and links to the literature.
Special thanks goes to Michaª Adamaszek for providing the sage code.

Mikkel Abrahamsen is partially supported by Mikkel Thorup's Advanced Grant from the Danish
Council for Independent Research under the Sapere Aude research career programme. Anna Adamszek
is supported by the Danish Council for Independent Research DFF-MOBILEX mobility grant. Tillmann
Miltzow is supported by the ERC grant �PARAMTIGHT: Parameterized complexity and the search
for tight complexity results", no. 280152. We want to further thank the developers of the software
GeoGebra. Being able to do computations and visualize parameter changes in real time facilitated our
search tremendously.

References

[1] Pankaj Kumar Agarwal, Kurt Mehlhorn, and Monique Teillaud. Dagstuhl Seminar 11111, Compu-
tational Geometry, March 13 � 18 , 2011.

[2] GeoGebra 5.0. http://www.geogebra.org, 2016.

[3] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in real algebraic geometry.
Springer-Verlag Berlin Heidelberg.

[4] Patrice Belleville. Computing two-covers of simple polygons. Master's thesis, McGill University,
1991.

[5] Édouard Bonnet and Tillmann Miltzow. An approximation algorithm for the art gallery problem.
CoRR, abs/1607.05527, 2016.

15

B

[August 31, 2017 at 8:40 – classicthesis]

[6] Édouard Bonnet and Tillmann Miltzow. Parameterized hardness of art gallery problems. In 24th
Annual European Symposium on Algorithms (ESA), pages 19:1�19:17, 2016. Full version available
at https://arxiv.org/abs/1603.08116.

[7] Björn Brodén, Mikael Hammar, and Bengt J. Nilsson. Guarding lines and 2-link polygons is APX-
hard. In Proceedings of the 13th Canadian Conference on Computational Geometry (CCCG), pages
45�48, 2001.

[8] John Canny. Some algebraic and geometric computations in PSPACE. In Proceedings of the twentieth
annual ACM symposium on Theory of computing (STOC), pages 460�467. ACM, 1988.

[9] Jean Cardinal. Computational geometry column 62. SIGACT News, 46(4):69�78, December 2015.

[10] Dmitry Chistikov, Stefan Kiefer, Ines Maru²i¢, Mahsa Shirmohammadi, and James Worrell. Non-
negative matrix factorization requires irrationality. CoRR, abs/1605.06848, 2016.

[11] Dmitry Chistikov, Stefan Kiefer, Ines Marusic, Mahsa Shirmohammadi, and James Worrell. On
Restricted Nonnegative Matrix Factorization. In 43rd International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2016), volume 55 of LIPIcs, pages 103:1�103:14, 2016.

[12] Václav Chvátal. A combinatorial theorem in plane geometry. Journal of Combinatorial Theory,
Series B, 18(1):39�41, 1975.

[13] Pedro Jussieu de Rezende, Cid C. de Souza, Stephan Friedrichs, Michael Hemmer, Alexander Kröller,
and Davi C. Tozoni. Engineering art galleries. In Algorithm Engineering: Selected Results and
Surveys, LNCS, pages 379�417. Springer, 2016.

[14] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 7.4), 2016.
http://www.sagemath.org.

[15] Alon Efrat and Sariel Har-Peled. Guarding galleries and terrains. Inf. Process. Lett., 100(6):238�245,
2006.

[16] Stephan Eidenbenz, Christoph Stamm, and Peter Widmayer. Inapproximability results for guarding
polygons and terrains. Algorithmica, 31(1):79�113, 2001.

[17] Sándor Fekete. private communication.

[18] Steve Fisk. A short proof of Chvátal's watchman theorem. J. Comb. Theory, Ser. B, 24(3):374,
1978.

[19] Stephan Friedrichs, Michael Hemmer, James King, and Christiane Schmidt. The continuous 1.5D
terrain guarding problem: Discretization, optimal solutions, and PTAS. Journal of Computational
Geometry, 7(1):256�284, 2016.

[20] Subir Kumar Ghosh. Visibility algorithms in the plane. Cambridge University Press, 2007.

[21] Erik Krohn and Bengt J. Nilsson. Approximate guarding of monotone and rectilinear polygons.
Algorithmica, 66(3):564�594, 2013.

[22] D. T. Lee and Arthur K. Lin. Computational complexity of art gallery problems. IEEE Transactions
on Information Theory, 32(2):276�282, 1986.

[23] Jirí Matousek. Intersection graphs of segments and ∃R. CoRR, abs/1406.2636, 2014.

[24] Joseph O'Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, 1987.

[25] Joseph O'Rourke and Kenneth Supowit. Some NP-hard polygon decomposition problems. IEEE
Transactions on Information Theory, 29(2):181�190, 1983.

[26] Günter Rote. EuroCG open problem session, 2011. See the personal webpage of
Günter Rote: http://page.mi.fu-berlin.de/rote/Papers/slides/Open-Problem_

artgallery-Morschach-EuroCG-2011.pdf.

16

B

[August 31, 2017 at 8:40 – classicthesis]

[27] Marcus Schaefer. Complexity of some geometric and topological problems. In International Sym-
posium on Graph Drawing, pages 334�344. Springer, 2009.

[28] Dietmar Schuchardt and Hans-Dietrich Hecker. Two NP-hard art-gallery problems for ortho-
polygons. Math. Log. Q., 41:261�267, 1995.

[29] Thomas C. Shermer. Recent results in art galleries. Proceedings of the IEEE, 80(9):1384�1399, 1992.

[30] Ana Paula Tomás. Guarding thin orthogonal polygons is hard. In Fundamentals of Computation
Theory, pages 305�316. Springer, 2013.

[31] Jorge Urrutia. Art gallery and illumination problems. In J.-R. Sack and J. Urrutia, editors, Handbook
of Computational Geometry, chapter 22, pages 973�1027. Elsevier, 2000.

17

B

[August 31, 2017 at 8:40 – classicthesis]

A Computations

de f c o l i n e a r (A,B,C) :
r e turn Matrix ([[A[0] ,A[1] , 1] , [B [0] ,B [1] , 1] , [C[0] ,C [1] , 1]]) . determinant ()

R.<t , p1 , q1 , p2 , q2 , x , y> = QQ[]

eq1 = i d e a l (
c o l i n e a r ((2 , t) , (4 , 4) , (p1 , q1)) ,
c o l i n e a r ((2 , t) , (4 , 0) , (p2 , q2)) ,
c o l i n e a r ((4 , 280/47) , (p1 , q1) , (8 , 2 94/47)) ,
c o l i n e a r ((4 ,−12/19) ,(p2 , q2) , (8 , −18/19)) ,
c o l i n e a r ((p1 , q1) , (8 , 4) , (x , y)) ,
c o l i n e a r ((p2 , q2) , (8 , 0) , (x , y))

) . e l im ina t i on_ idea l ([t , p1 , q1 , p2 , q2]) . gens () [0]

eq2 = i d e a l (
c o l i n e a r ((19 , t) , (1 6 , 4) , (p1 , q1)) ,
c o l i n e a r ((19 , t) , (1 6 , 0) , (p2 , q2)) ,
c o l i n e a r ((16 ,1776/375) , (p1 , q1) , (12 , 2486/375)) ,
c o l i n e a r ((16 ,−36/21) ,(p2 , q2) , (12 ,−34/21)) ,
c o l i n e a r ((p1 , q1) , (1 2 , 4) , (x , y)) ,
c o l i n e a r ((p2 , q2) , (1 2 , 0) , (x , y))

) . e l im ina t i on_ idea l ([t , p1 , q1 , p2 , q2]) . gens () [0]

p r i n t eq1
p r in t eq2

18

B

[August 31, 2017 at 8:40 – classicthesis]

[August 31, 2017 at 8:40 – classicthesis]

C
T H E A RT G A L L E RY P R O B L E M I S ∃R - C O M P L E T E

77

[August 31, 2017 at 8:40 – classicthesis]

The Art Gallery Problem is ∃R-complete

Mikkel Abrahamsen1, Anna Adamaszek1, and Tillmann Miltzow2

1University of Copenhagen, Denmark. {miab,anad}@di.ku.dk
2 Université libre de Bruxelles (ULB), Brussels, Belgium. t.miltzow@gmail.com

Abstract

We prove that the art gallery problem is equivalent under polynomial time reductions
to deciding whether a system of polynomial equations over the real numbers has a solution.
The art gallery problem is a classical problem in computational geometry, introduced in
1973 by Viktor Klee. Given a simple polygon P and an integer k, the goal is to decide if
there exists a set G of k guards within P such that every point p ∈ P is seen by at least one
guard g ∈ G. Each guard corresponds to a point in the polygon P, and we say that a guard
g sees a point p if the line segment pg is contained in P.

The art gallery problem has stimulated a myriad of research in geometry and in algo-
rithms. However, despite extensive research, the complexity status of the art gallery problem
has not been resolved. It has long been known that the problem is NP-hard, but no one
has been able to show that it lies in NP. Recently, the computational geometry community
became more aware of the complexity class ∃R. The class ∃R consists of problems that can
be reduced in polynomial time to the problem of deciding whether a system of polynomial
equations with integer coefficients and any number of real variables has a solution. It can be
easily seen that NP ⊆ ∃R. We prove that the art gallery problem is ∃R-complete, implying
that (1) any system of polynomial equations over the real numbers can be encoded as an
instance of the art gallery problem, and (2) the art gallery problem is not in the complexity
class NP unless NP = ∃R. As a corollary of our construction, we prove that for any real
algebraic number α there is an instance of the art gallery problem where one of the coordi-
nates of the guards equals α in any guard set of minimum cardinality. That rules out many
geometric approaches to the problem.

C

[August 31, 2017 at 8:40 – classicthesis]

1 Introduction

We prove that the art gallery problem is equivalent under polynomial time reductions to deciding
whether a system of polynomial equations over the real numbers has a solution.

The art gallery problem. Given a simple polygon P, we say that two points p, q ∈ P see
each other if the line segment pq is contained in P. A set of points G ⊆ P is said to guard the
polygon P if every point p ∈ P is seen by at least one guard g ∈ G. Such a set G is called a
guard set of P, and the points of G are called guards. A guard set of P is optimal if it is a
minimum cardinality guard set of P.

In the art gallery problem we are given an integer g and a polygon P with corners at rational
coordinates, and the goal is to decide if P has a guard set of cardinality g. We consider a polygon
as a Jordan curve consisting of finitely many line segments and the region that it encloses. The
art gallery problem has been introduced in 1973 by Viktor Klee, and it has stimulated a myriad
of research in geometry and in algorithms. However, the complexity status of the art gallery
problem has stayed unresolved. We are going to prove that the problem is ∃R-complete. Below,
we give a formal definition of the complexity class ∃R.

The complexity class ∃R. The first order theory of the reals is a set of all true sentences
involving real variables, universal and existential quantifiers, boolean and arithmetic operators,
constants 0 and 1, parenthesis, equalities and inequalities (x1, x2, . . . ,∀, ∃,∧,∨,¬, 0, 1,+,−, ·,
(,) ,=, <,≤). A formula is called a sentence if it has no free variables, i.e., each variable
present in the formula is bound by a quantifier. Note that within such formulas one can easily
express integer constants (using binary expansion) and powers. Each formula can be converted
to a prenex form, i.e., a form where it starts with all the quantifiers and is followed by a
quantifier-free formula, by a transformation which changes the length of the formula by at most
a constant factor.

The existential theory of the reals is a set of all true sentences of the first-order theory of
the reals in prenex form with existential quantifiers only, i.e., sentences of the form

(∃X1∃X2 . . . ∃Xk) Φ(X1, X2, . . . , Xk),

where Φ is a quantifier-free formula of the first-order theory of the reals with variablesX1, . . . , Xk.
The problem ETR is the problem of deciding whether a given existential formula of the above
form is true. The complexity class ∃R consists of all problems that are reducible to ETR in
polynomial time. The most well-known problem in the complexity class ∃R is deciding whether
a system of polynomial equations over the real numbers has a solution.

It is currently known that
NP ⊆ ∃R ⊆ PSPACE.

It is not hard see that the problem ETR is NP-hard, for instance by the following reduction
from 3SAT. For each boolean variable x in an instance of 3SAT, we introduce a real variable
x′, and require that x′ · (1 − x′) = 0 in order to ensure that x′ ∈ {0, 1}. For any clause of
the 3SAT formula we construct a function which evaluates to 1 if the corresponding clause is
satisfied, and to 0 otherwise. For a clause C of the form x∨ y ∨¬z, the corresponding function
C ′ is 1− (1− x′)(1− y′)z′. The conjunction of clauses C1 ∧ . . . ∧ Cm is then translated to the
equation C ′1 · . . . ·C ′m − 1 = 0. Clearly, a formula of 3SAT is true if and only if the constructed
set of equations has a solution in R. The containment ∃R ⊆ PSPACE is highly non-trivial, and
it has first been established by Canny [11].

By the reduction from 3SAT to ETR sketched above we know that a problem of decid-
ing whether a given polynomial equation over {0, 1} with integer coefficients has a solution is
NP-hard. The problem is also in NP, as a satisfying assignment clearly serves as a witness.

1

C

[August 31, 2017 at 8:40 – classicthesis]

Therefore, NP-complete problems are the problems equivalent (under polynomial time reduc-
tions) to deciding whether a given polynomial equation over {0, 1} with integer coefficients has
a solution. A well-known ∃R-complete problem is the problem of deciding whether a single
polynomial equation Q(x1, . . . , xn) = 0 with integer coefficients has a solution in R [28, Propo-
sition 3.2]. Therefore, the ∃R-complete problems are equivalent to deciding whether a given
polynomial equation over R with integer coefficients has a solution.

Our results and their implications. We prove that solving the art gallery problem is, up
to a polynomial time reduction, as hard as deciding whether a system of polynomial equations
and inequalities over the real numbers has a solution.

Theorem 1. The art gallery problem is ∃R-complete, even the restricted variant where we are
given a polygon with vertices at integer coordinates.

In our construction, an ETR formula (∃X1 . . . ∃Xk) Φ(X1, . . . , Xk) is transformed into an
instance (P, g) of the art gallery problem where g > k. Let SΦ denote the solution space of the
formula Φ, i.e., SΦ := {x ∈ Rk : Φ(x)}. We will prove the following theorem.

Theorem 2. Let Φ be an ETR formula with k variables. Then there is an instance (P, g) of
the art gallery problem, and constants c1, d1, . . . , ck, dk ∈ Q, such that

• if Φ has a solution, then P has a guard set of size g, and

• for any guard set G of P of size g, there exists (x1, . . . , xk) ∈ SΦ such that G contains
guards at positions (c1x1 + d1, 0), . . . , (ckxk + dk, 0).

We get the following corollary.

Corollary 3. Given any real algebraic number α, there exists a polygon P with vertices at
rational coordinates such that in any optimal guard set of P there is a guard with an x-coordinate
equal to α.

It is a classical result in Galois theory, and has thus been known since the 19th century, that
there are polynomial equations of degree five with integer coefficients which have real solutions,
but with no solutions expressible by radicals (i.e., solutions that can be expressed using integers,
addition, subtraction, multiplication, division, raising to integer powers, and the extraction of
n’th roots). One such example is the equation x5 − x + 1 = 0 [35]. It is a peculiar fact that
using the reduction described in this paper, we are able to transform such an equation into an
instance of the art gallery problem where no optimal guard set can be expressed by radicals.

Our result rules out many approaches to solving the art gallery problem. A natural approach
to finding a guard set for a given polygon P is to create a candidate set for the guards, and select
a guard set as a subset of the candidate set. For instance, a candidate set can consist of the
vertices of P. The candidate set can then be expanded by considering all lines containing two
candidates and adding all intersection points of these lines to the candidate set. This process
can be repeated any finite number of times, but only candidates with rational coordinates can
be obtained that way, and the candidate set will thus not contain an optimal guard set in
general. Algorithms of this kind are for instance discussed by de Rezende et al. [15]. One can
get a more refined set of candidates by also considering certain quadratic curves [6], or more
complicated curves. Our results imply that if the algebraic degree of the considered curves is
bounded by a constant, a such approach cannot lead to an optimal solution in general, since
the coordinates of the candidates will also have algebraic degree bounded by a constant.

2

C

[August 31, 2017 at 8:40 – classicthesis]

Related work. The art gallery problem has been extensively studied, with some books,
surveys, and book chapters dedicated to it [31, 41, 45, 33, 14, 27, 16, 32]. The research is
stimulated by a large number of possible variants of the problem and related questions that can
be studied. The version of the art gallery problem considered in this paper is the classical one,
and it has been originally formulated by Victor Klee (see O’Rourke [31]). Other versions of
the art gallery problem include restrictions on the positions of the guards, different definitions
of visibility, restricted classes of polygons, restricting the part of the polygon that has to be
guarded, etc.

The art gallery problem has been studied both from combinatorial and from the algorithmic
perspective. Studies have been made on algorithms performing well in practice on real-world
and simulated instances of the problem [9, 15]. Another branch of research investigates approx-
imation algorithms for the art gallery problem and its variants [18, 8, 22].

The first exact algorithm for solving the art gallery problem was published in 2002 in the
conference version of a paper by Efrat and Har-Peled [17]. They attribute the result to Micha
Sharir. Before this time, the problem was not even known to be decidable. The approach is
to reduce the art gallery problem to a formula in the first order theory of the reals and use
standard algebraic methods to decide if that formula is true, such as the techniques provided
by Basu et al. [5]. No algorithm is known that avoids the use of this powerful machinery.

Lee and Lin [25] proved, by constructing a reduction from 3SAT, that the art gallery problem
is NP-hard when the guards are restricted to the vertices of the polygon. It has subsequently
been shown by Aggarwal ([3], see also [31]) that this argument can be extended to the case
with no restrictions on the guards. Various papers showed other hardness results or conditional
lower bounds for the art gallery problem and its variations [25, 40, 44, 10, 18, 34, 24, 8, 21].

Note that the version of the art gallery problem where the guards are restricted to the
vertices of the polygon is obviously in NP. Another related problem is the terrain guarding
problem. Here, the area above an x-monotone polygonal curve c has to be guarded by guards
restricted to c. Friedrichs et al. [19] recently showed that terrain guarding is in NP. These two
problems are both NP-complete. The authors of the present paper [2] gave a simple example of
a polygon with a unique optimal guard set consisting of three guards at irrational coordinates.
Four guards are needed if they have to have rational coordinates. This could be an indication
that the original version of the art gallery problem with no restrictions on the guards is actually
more difficult than these related problems. Friedrichs et al. [19] stated that “[. . .] it is a long-
standing open problem for the more general Art Gallery Problem (AGP): For the AGP it is not
known whether the coordinates of an optimal guard cover can be represented with a polynomial
number of bits”. In the present paper, we show that such a representation does not exist and
that the art gallery problem is indeed not in NP under the assumption NP 6= ∃R.

A growing class of problems turn out to be equivalent (under polynomial time reductions)
to deciding whether polynomial equations and inequalities over the reals have a solution. These
problems form the family of ∃R-complete problems as it is currently known. This class includes
problems like the stretchability of pseudoline arrangements [30, 43], recognition of intersection
graphs of various objects (e.g. segments [28], unit disks [29], and general convex sets [37]), recog-
nition of point visibility graphs [13], the Steinitz problem for 4-polytopes [36], deciding whether
a graph with given edge lengths can be realized by a straight-line drawing [38, 1], deciding
whether a straight line drawing of a graph exists with a given number of edge crossings [7],
decision problems related to Nash-equilibria [20], and positive semidefinite matrix factoriza-
tion [42]. We refer the reader to the lecture notes by Matoušek [28] and surveys by Schaefer [37]
and Cardinal [12] for more information on the complexity class ∃R.

Overview of the paper and techniques. In Section 2 we show that the art gallery problem
is in the complexity class ∃R. For that we present a construction of an ETR-formula Φ for any
instance (P, g) of the art gallery problem such that Φ has a solution if and only if P has a

3

C

[August 31, 2017 at 8:40 – classicthesis]

guard set of size g. The details of the construction are in Appendix A. The idea is to encode
guards by pairs of variables and compute a set of witnesses (which depend on the positions of
the guards) of polynomial size such that the polygon is guarded if and only if the witnesses are
seen by the guards.

The proof that the art gallery problem is ∃R-hard is the main result of the paper, and it
consists of two parts. The first part is of algebraic nature, and in that we introduce a novel ∃R-
complete problem which we call ETR-INV. A common way of making a reduction from ETR to
some other problem is to build gadgets corresponding to each of the equations x = 1, x+y = z,
and x · y = z for any variables x, y, z. Usually, the multiplication gadget is the most involved
one. An instance of ETR-INV is a conjunction of formulas of the form x = 1, x + y = z, and
x · y = 1, with the requirement that each variable must be in the interval [1/2, 2]. In particular,
the reduction from ETR-INV requires building a gadget for inversion (i.e., x · y = 1) instead
of a more general gadget for multiplication. The formal definition of ETR-INV and the proof
that it is ∃R-complete is presented in Section 3 (with details in Appendix B). We think that
the problem ETR-INV might be of independent interest, and that it will simplify constructing
∃R-hardness proofs. The problem ETR-INV has already been used to prove ∃R-completeness
of a geometric graph drawing problem with prescribed face areas [23].

In Section 4 (with details in Appendix C) we describe a polynomial time reduction from
ETR-INV to the art gallery problem, which shows that the art gallery problem is ∃R-hard. This
reduction constructs an art gallery instance (P(Φ), g(Φ)) from an ETR-INV instance Φ, such
that P(Φ) has a guard set of size g(Φ) if and only if the formula Φ has a solution. We construct
the polygon so that it contains g(Φ) guard segments (which are horizontal line segments within
P) and stationary guard positions (points within P). By introducing pockets we enforce that if
P has a guard set of size g(Φ), then there must be exactly one guard at each guard segment
and at each stationary guard position. Each guard segment represents a variable of Φ (with
multiple segments representing the same variable) in the sense that the position of the guard
on the segment specifies the value of the variable, the endpoints of a segment corresponding to
the values 1/2 and 2.

We develop a technique for copying guard segments, i.e., enforcing that the guards at two
segments correspond to the same variable. We do that by introducing critical segments within
the polygon, which can be seen by guards from two guard segments (but not from other guard
segments). Then the requirement that a critical segment is seen introduces dependency between
the guards at the corresponding segments. Different critical segments will enforce different de-
pendencies, and by enforcing that two guards must see together two particular critical segments,
we can ensure that the guards represent the same value. The stationary guards are placed to
see the remaining areas of the polygon.

With this technique, we are able to copy two or three segments from an area containing
guard segments corresponding to all variables into a gadget, where we will enforce a dependency
between the values of the variables represented by the two or three segments. This is done by
constructing a corridor containing two critical segments for each pair of copied segments. The
construction is non-trivial, as it requires the critical segments not to be seen from any other
segments.

Within the gadgets, we build features that enforce the variables x, y, z represented by the
guards to satisfy one of the conditions x + y ≥ z, x + y ≤ z, or x · y = 1. The conditions
are enforced by a requirement that two or three guards can see together some areas, where for
the case of a gadget with three variables the area to be seen is a quadrilateral instead of a line
segment.

4

C

[August 31, 2017 at 8:40 – classicthesis]

2 The art gallery problem is in ∃R
In this section we sketch a proof that the art gallery problem is in the complexity class ∃R.
Our proof also works for the more general version of the art gallery problem where the input
polygon can have polygonal holes.

Theorem 4. The art gallery problem is in the complexity class ∃R.

Sketch of proof. Let (P, g) be an instance of the art gallery problem where the polygon P has
n vertices, each of which has rational coordinates represented by at most B bits. Assume that
g < n, as it is otherwise trivial that P can be guarded by g guards. We show how to construct
in polynomial time a quantifier-free formula Φ := Φ(P, g) of the first-order theory of the reals
such that Φ is satisfiable if and only if P has a guard set of cardinality g. It has been our priority
to define the formula Φ so that it is as simple as possible to describe. It might be possible to
construct an equivalent but shorter formula.

The description of Φ resembles the formula Ψ that Micha Sharir described to Efrat and
Har-Peled [17]:

Ψ :=

[
∃x1, y1, . . . , xg, yg ∀px, py : INSIDE-POLYGON(px, py) =⇒

g∨

i=1

SEES(xi, yi, px, py)

]
.

For each i ∈ {1, . . . , g}, the variables xi, yi represent the position of a guard gi := (xi, yi), and
p := (px, py) represents an arbitrary point. The predicate INSIDE-POLYGON(px, py) tests if
the point p is contained in the polygon P and SEES(xi, yi, px, py) checks if the guard gi can see
the point p. Thus, the formula is satisfiable if and only if P has a guard set of cardinality g.
Note that although the implication “=⇒” is not allowed in the first order theory of the reals,
we can always substitute “A =⇒ B” by “¬A ∨B”.

The formula Ψ is not an existential formula. Our main idea behind obtaining a formula
with no universal quantifier is finding a polynomial number of points inside P which, if all seen
by the guards, ensure that all of P is seen. We denote such a set of points as a witness set.

P

g

Figure 1: A polygon P together with
a guard g and the resulting line ar-
rangement L. The yellow region is
not seen.

Creating a witness set. We are now ready to describe the
witness set that replaces the universal quantifier. Let L :=
{`1, . . . , `m} be the set of lines containing either an edge of P,
or a guard gi for i ∈ {1, . . . , g} and a vertex v of P.∗ The well-
defined lines in L partition the plane into a collection of open
regions A, which are connected components of R2 \ ⋃`∈L `
(see Figure 1 for an example).

The set A has the following properties.

• Each region in A is an open convex polygon.

• Each region in A is either contained in P or contained
in the complement of P.

• The closure of the union of the regions that are con-
tained in P equals P.

• For each region R ∈ A, each guard gi either sees all
points of R, or sees no point of R. In particular, if a
guard gi sees one point in R, it sees all of R and its
closure.

∗Note that if a line is defined as passing through a guard gi and a vertex v such that gi and v are coincident,
the line is not well-defined. Such lines are not considered in the partition into regions described below, but they
are included in the set L. However, in this sketch of the proof, we will ignore them.

5

C

[August 31, 2017 at 8:40 – classicthesis]

Thus, it is sufficient to test that for each region R ∈ A which is in P, at least one point in
R is seen by a guard. For three points a, b, c, define the centroid of a, b, c to be the point
C(a, b, c) := (a + b + c)/3. If a, b, c are three different vertices of the same region R ∈ A, then
the centroid C(a, b, c) must lie in the interior of R. Note that each region has at least three
vertices and thus contains at least one such centroid. Let X be the set of all intersection points
of two non-parallel, well-defined lines in L, i.e., X consists of all vertices of all regions in A. In
the formula Φ, we generate all points in X. For any three points a, b, c in X, we also generate
the centroid C(a, b, c). If the centroid is in P, we check that it is seen by a guard. Since there
are O(((gn)2)3) centroids of three points in X and each is tested by a formula of size O(gnB),
we get a formula of length O(g7n7B2) = O(n14B2). Clearly, the formula can be computed in
polynomial time. �

3 The problem ETR-INV

To show that the art gallery problem is ∃R-hard, we will provide a reduction from the problem
ETR-INV, which we introduce below. In this section, we sketch how to show that ETR-INV is
∃R-complete.

Definition 5 (ETR-INV). In the problem ETR-INV, we are given a set of real variables
{x1, . . . , xn}, and a set of equations of the form

x = 1, x+ y = z, x · y = 1,

for x, y, z ∈ {x1, . . . , xn}. The goal is to decide whether the system of equations has a solution
when each variable is restricted to the range [1/2, 2].

Theorem 6. The problem ETR-INV is ∃R-complete.

Sketch of proof. To show that ETR-INV is ∃R-hard, we perform a series of polynomial time
reductions, starting from a formula (∃X1 . . . ∃Xk) Φ(X1, . . . , Xk) which is an instance of the
problem ETR. We use a lemma by Schaefer and Štefankovič [39] to reduce this formula to a
single polynomial F with integer coefficients, so that the equation F = 0 has a solution if and
only if Φ has a solution. Using a standard technique, we transform the equation F = 0 into a
formula Φ′ which is a conjunction of equations of the forms x = 1, x+ y = z, and x · y = z. The
idea is to replace each addition or multiplication of two variables x, y in F by a new variable z,
and to add to Φ′ the corresponding condition x+ y = z or x · y = z. The coefficients of F are
decomposed in a similar way. Another standard technique is used to get an equivalent problem
where the variables have been scaled down to the range [−1/8, 1/8]. A third standard technique
is used to shift the variables to the range [1/2, 2]. We finally show how we can substitute each
equation of the form x·y = z by an equivalent set of equations using only addition and inversion,
i.e., equations of the forms x+ y = z and x · y = 1. We explain the main ideas in the following
while ignoring that the variables should stay in the range [1/2, 2]. In this simplified case, the
result in fact follows from the proof by Aho et al. [4, Section 8.2] that squaring and taking
reciprocals is equivalent to multiplication.

We first show how to define a new variable Vx2 satisfying Vx2 = x2. The technique is based
on the observation that for x /∈ {0, 1}, we have 1

x−1 − 1
x = 1

x2−x . With the equations allowed in

ETR-INV we can easily construct variables V 1
x−1

and V 1
x

satisfying V 1
x−1

= 1
x−1 and V 1

x
= 1

x .

The equation V 1
x

+V 1
x2−x

= V 1
x−1

ensures that for a new variable V 1
x2−x

, we have V 1
x2−x

= 1
x2−x .

Now, the equations Vx2−x · V 1
x2−x

= 1 and Vx2−x + x = Vx2 ensure that Vx2 = x2.

In order to substitute equations of the form x·y = z with the equations allowed in ETR-INV,
we observe that (x+ y)2−x2− y2 = 2xy. We can create variables satisfying V(x+y)2 = (x+ y)2,

6

C

[August 31, 2017 at 8:40 – classicthesis]

Vx2 = x2, and Vy2 = y2 using the technique for squaring a variable described before. It is then
easy to construct a variable V2xy satisfying V2xy = 2xy.

The constructed instance of ETR-INV can be computed in polynomial time, and it has
a solution if and only if the formula Φ has a solution. Therefore, ETR-INV is ∃R-hard. As
the conjunction of the equations of ETR-INV, together with the inequalities describing the
restricted range [1/2, 2] of the variables, is a quantifier-free formula of the first-order theory of
the reals, ETR-INV is in ∃R, which yields that ETR-INV is ∃R-complete.

4 Reduction from ETR-INV to the art gallery problem

Overview of the construction. Let Φ be an instance of ETR-INV consisting of k equations
with n variables X := {x0, . . . , xn−1}. We show that there exists a polygon P := P(Φ) with
corners at rational coordinates which can be computed in polynomial time such that Φ has a
solution if and only if P can be guarded by some number g := g(Φ) of guards. The number g
will follow from the construction. A sketch of the polygon P is shown in Figure 2.

Figure 2: A high-level sketch of the construction of the polygon P.

Each variable xi ∈ X is represented by a collection of guard segments, which are horizontal
line segments contained in the interior of P. Consider one guard segment s := ab, where a is to
the left of b, and assume that s represents the variable xi and that there is exactly one guard p
placed on s. The guard segment s can be oriented to the right or to the left. The guard p on
s specifies the value of the variable xi as 1

2 + 3‖ap‖
2‖ab‖ if s is oriented to the right, and 1

2 + 3‖bp‖
2‖ab‖ if

s is oriented to the left. Here, the additive term 1
2 and the factor 3

2 stem from the fact that all
the variables in X are contained in the interval [1

2 , 2].
Suppose that there exists a solution to Φ. We will show that in that case any optimal guard

set G of P has size g(Φ) and specifies a solution to Φ in the sense that it satisfies the following
two properties.

• Each variable xi ∈ X is specified consistently by G, i.e., there is exactly one guard on
each guard segment representing xi, and all these guards specify the same value of xi.

• The guard set G is feasible, i.e., the values of X thus specified is a solution to Φ.

Moreover, if there is no solution to Φ, each guard set of P consists of more than g(Φ) guards.
The polygon P is constructed in the following way. The bottom part of the polygon con-

sists of a collection of pockets, containing in total 4n collinear and equidistant guard segments
s0, . . . , s4n−1, three right-oriented and one left-oriented segment corresponding to each variable
of Φ. We denote the horizontal line containing these guard segments as the base line or `b. At
the left and at the right side of P, there are some corridors attached, each of which leads into
a gadget. The entrances to the corridors at the right side of P are line segments contained in
a vertical line `r. Likewise, the entrances to the corridors at the left side of P are contained

7

C

[August 31, 2017 at 8:40 – classicthesis]

in a vertical line `l. The gadgets also contain guard segments, and they are used to impose
dependencies between the guards in order to ensure that if there is a solution to Φ, then any
minimum guard set of P consists of g(Φ) guards and specifies a solution to Φ in the sense
defined above. The corridors are used to copy the positions of guards on guard segments on
the base line to guards on guard segments inside the gadgets. Each gadget corresponds to a
constraint of one of the types x + y ≥ z, x + y ≤ z, x · y = 1, x + y ≥ 5/2, and x + y ≤ 5/2.
The first three types of constraints are used to encode the dependencies between the variables
in X as specified by Φ, whereas the latter two constraints are used to encode the dependencies
between the right-oriented and left-oriented guard segments representing a single variable in X.
The constraints of type x = 1 are enforced by modifying the pocket containing a guard segment
corresponding to x.

Creating stationary guard positions and guard segments. We denote some points in
P as stationary guard positions. A guard placed at a stationary guard position is called a
stationary guard. A stationary guard position is the unique point p ∈ P such that a guard
placed at p can see some set of vertices (usually two vertices) of P. We use stationary guards
for the purpose of seeing some region on one side of a line segment `, but no points on the other
side of `. See Figure 3 (left) for an explanation of how such a construction can be made.

Figure 3: Left: The construction of a stationary guard position p that sees an area in P below a line
segment `. The brown areas are the regions of points that see q1 and q2, and p is the only point that sees
both q1 and q2. The point p sees the points in the blue wedge, and the angle of the wedge can be adjusted
by choosing the point h accordingly. Right: The construction of a guard segment s (the blue segment).
In order to see the points t0, t1, a guard must be on the horizontal dotted segment. Furthermore, in
order to see u0, u1, the guard must be between the vertical dotted segments that contain the endpoints
of s. Thus, a guard sees t0, t1, u0, u1 if and only if the guard is at s.

We likewise denote some horizontal line segments of P as guard segments. A guard segment s
consists of all points from which a guard can see some set of four vertices of P. See Figure 3
(right) for an example of such a construction.

In the full version of the reduction, we will prove that for any guard set of size of at most
g(Φ), there is one guard placed at each stationary guard position and at each guard segment,
and there are no guards except of these positions. As explained earlier, guards placed at the
guard segments will be used to encode the values of the variables of Φ.

Imposing inequalities by nooks and umbras. The nooks and umbras, which we introduce
below, are our basic tools used to impose dependency between guards placed on two different
guard segments. For the following definitions, see Figure 4.

Definition 7 (nook and umbra). Let P be a polygon with guard segments r0 := a0b0 and
r1 := a1b1, where r0 is to the left of r1. Let c0, c1 be two vertices of P, such that c0 is to the

left of c1. Suppose that the rays
−−→
b0c0 and

−−→
b1c1 intersect at a point f0, the lines −−→a0c0 and −−→a1c1

intersect at a point f1, and that Q := c0c1f1f0 is a convex quadrilateral contained in P. For
each i ∈ {0, 1} define the function πi : ri −→ f0f1 such that πi(p) is the intersection of the ray
−→pci with the line segment f0f1, and suppose that πi is bijective.

8

C

[August 31, 2017 at 8:40 – classicthesis]

Figure 4: The brown area Q representing a nook (left), and an umbra (right). In the left figure, note
that if a guard p1 placed at the segment a1b1 has to see the whole line segment f0f1 together with p0,
then p1 must be on or to the left of the point π−11 (e), where e := π0(p0).

We say that Q is a nook of the pair of guard segments r0, r1 if for each i ∈ {0, 1} and every
p ∈ ri, a guard at p can see all of the segment πi(p)f1−i but nothing else of f0f1. We say that Q
is an umbra of the segments r0, r1 if for each i ∈ {0, 1} and every p ∈ ri, a guard at p can see
all of the segment πi(p)fi but nothing else of f0f1. The functions π0, π1 are called projections
of the nook or the umbra.

Definition 8 (critical segment and shadow corners). Consider a nook or an umbra Q :=
c0c1f1f0 of a pair of guard segments r0, r1. The line segment f0f1 is called the critical segment
of Q, and the vertices c0, c1 are called the shadow corners of Q.

Figure 5: Q1 is a copy-nook of the segments r0 := a0b0 and r1 := a1b1 with a critical segment f0f1,
and Q2 is a copy-umbra for the same pair with a critical segment f2f3. It can be seen that this polygon
cannot be guarded by fewer than 3 guards, and any guard set with 3 guards must contain a guard g0
on r0, a guard g1 on r1, and a stationary guard at the point g2. The guards g0 and g1 must specify the
same value on r0 and r1, respectively.

We will construct nooks and umbras for pairs of guard segments where we want to enforce
dependency between the values of the corresponding variables. When making use of an umbra,
we will also create a stationary guard position from which a guard sees the whole quadrilateral
Q, but nothing on the other side of the critical segment f0f1. In this way we can enforce the
guards on r0 and r1 to see all of f0f1 together. For the case of a nook, the segment f0f1 will
always be on the polygon boundary, and then there will be no stationary guard needed. See
Figure 5 for an example of a construction of both a nook and an umbra for a pair of guard
segments.

9

C

[August 31, 2017 at 8:40 – classicthesis]

Definition 9. Let Q be a nook or an umbra of a pair of guard segments r0 := a0b0 and r1 := a1b1
with the same orientation, such that the shadow corners c0 and c1 have the same y-coordinate.
We then call Q a copy-nook or a copy-umbra, respectively.

Consider a pair of guard segments r0, r1 oriented in the same way, for which there is both a
copy-nook and a copy-umbra. We can show that if there is one guard placed at each segment,
and the guards together see both critical segments, then the two guards specify the same value.
We use this observation to make one guard segment a copy of another. See Figure 5, where the
guard segment a1b1 is a copy of a0b0.

Corridors. Inside each gadget there are two or three guard segments ri, rj , rl (or ri, rj) corre-
sponding to two or three pairwise different guard segments from the base line si, sj , sl (or si, sj).
A corridor ensures that the segments ri, rj , rl are copies of the segments si, sj , sl, respectively.
To obtain that, we need to construct a copy-nook and a copy-umbra within the corridor for
each pair of corresponding segments, see Figure 6 for a simplified illustration. The lower wall
of the corridor of the gadget is a horizontal edge c0, c1. The vertices c0, c1 of the corridor act
as shadow corners in three overlapping copy-umbras for the pairs (si, ri), (sj , rj), and (sl, rl),
respectively. We construct the top wall of the corridor so that it creates three copy-nooks for
the same pairs. To enforce that for any guard set of size g(Φ) and each σ ∈ {i, j, l}, the guard
segments sσ and rσ specify the same value, we have to ensure that no guards on guard segments
other than sσ and rσ can see the critical segments of the copy-umbra and the copy-nook of the
pair sσ, rσ. The precise construction of the corridor that ensures this property is non-trivial.
The high-level idea behind the construction is as follows. By placing the corridor sufficiently
far away from the segments on the base line, and by making the corridor entrance sufficiently
small, we obtain that the visibility lines from the guard segment endpoints through the points
at the corridor entrance are almost parallel and can be described by a simple pattern. Moreover,
each point in the corridor which is far enough from the corridor entrances can be seen by points
from at most one guard segment placed to the left of the left entrance, and from at most one
guard segment placed to the right of the right entrance. Stationary guards within the corridor
ensure that the remaining area of the corridor is seen. This allows us to construct the corridor
with the desired properties.

nook & umbra

c0 c1

si sj sl ri rj rl

d1d0

Figure 6: In this figure, we display a simplified corridor construction. The vertices c0, c1 serve as shadow
corners for three copy-umbras simultaneously for the pairs (si, ri), (sj , rj), (sl, rl). Each of these pairs
also have a small copy-nook in the top of corridor. The entrances c0d0 and c1d1 to the corridor are
sufficiently small so that the critical segments of the nook and umbra of each pair of segments sσ, rσ
(contained in the small boxes at the top of the figure) are not seen by other guard segments.

Addition gadget. For any equation of the form xi+xj = xl in Φ, where i, j, l ∈ {0, . . . , n−1},
we construct a ≥-addition gadget which represents the inequality xi+xj ≥ xl, and a ≤-addition
gadget for the inequality xi + xj ≤ xl.

The general idea behind the construction of the gadget imposing the ≥-inequality is as
follows (see Figure 7). We can place three guard segments r′i, rj , rl in such a way that a certain

10

C

[August 31, 2017 at 8:40 – classicthesis]

Figure 7: The thick black segments are edges of the polygon. The green quadrilateral is Γ. In order to
see Γ together with g′i and gj , the guard gl must be on or to the left of the point χ′.

quadrilateral Γ is seen by the guards g′i, gj , gl placed at r′i, rj , rl, respectively, if and only if the
values x′i, xj , xl specified by the corresponding segments satisfy the inequality x′i + xj ≥ xl.
The area of the gadget except of Γ can be seen with the help of stationary guards. The
actual gadget is more complicated, as the guard segments r′i, rj , rl need to be copies (where
copying is performed via corridor, as described earlier) of the base line guard segments. To
make it possible, we introduce an additional guard segment ri within the gadget, and we copy
appropriately chosen segments from the base line into ri, rj , rl from the left (i.e., the gadget
is placed in the right side of P). Then, by introducing a copy-nook within the construction
sketched in Figure 7, we ensure that the value x′i corresponding to r′i is not greater than the
value xi corresponding to ri. Such a gadget enforces the desired inequality xi + xj ≥ xl. The
gadget enforcing the ≤-inequality is obtained in a similar way, but here we need to place the
gadget in the left side of P.

Orientation gadget. In the addition gadget, we need to copy three pairwise different line
segments from the base line into the gadget. Additionally, we require the segments corresponding
to the values of xi, xj , xl to be copied into the gadget in a particular order. To make it possible,
we create three right-oriented segments corresponding to each variable and one left-oriented.

To ensure that two base line guard segments specify the same value, we use the orientation
gadget. This gadget is a slight modification of the addition gadget, where instead of a guard
segment rl, we place a stationary guard corresponding to a value of 2.5. This allows us to ensure
that two line segments from the base line, one left-oriented and one right-oriented, specify the
same value. Using orientation gadgets we can enforce consistency between all base line guard
segments corresponding to the same variable.

Inversion gadget. In the inversion gadget, we have a right-oriented guard segment ri and a
left-oriented guard segment rj . We construct an umbra Qu such that guards at ri, rj see the
whole critical segment of the umbra if and only if the values xi, xj specified by the segments
satisfy xi · xj ≤ 1. We also construct a nook Qn which enforces the inequality xi · xj ≥ 1.

11

C

[August 31, 2017 at 8:40 – classicthesis]

A The art gallery problem is in ∃R
In this section we will prove that the art gallery problem is in the complexity class ∃R. Our
proof works also for a more general version of the art gallery problem, where the input polygon
can have polygonal holes.

Theorem 4. The art gallery problem is in the complexity class ∃R.

Proof. Let (P, g) be an instance of the art gallery problem where the polygon P has n ver-
tices, each of which has rational coordinates represented by at most B bits. We show how to
construct a quantifier-free formula Φ := Φ(P, g) of the first-order theory of the reals such that
Φ is satisfiable if and only if P has a guard set of cardinality g. The formula Φ has length
O(g7n7B2) = O(n14B2) and can be computed in polynomial time. It has been our priority to
define the formula Φ so that it is as simple as possible to describe. It might be possible to
construct an equivalent but shorter formula.

The description of Φ is similar to the formula Ψ that Micha Sharir described to Efrat and
Har-Peled [17]

Ψ :=

[
∃x1, y1, . . . , xk, yk ∀px, py : INSIDE-POLYGON(px, py) =⇒

k∨

i=1

SEES(xi, yi, px, py)

]
.

For each i ∈ {1, . . . , k}, the variables xi, yi represent the position of guard gi := (xi, yi), and
p := (px, py) represents an arbitrary point. The predicate INSIDE-POLYGON(px, py) tests if
the point p is contained in the polygon P, and SEES(xi, yi, px, py) checks if the guard gi can see
the point p. Thus, the formula is satisfiable if and only if there is a guard set of cardinality g.
Note that although the implication “=⇒” is not allowed in the first order theory of the reals,
we can always substitute “A =⇒ B” by “¬A ∨B”.

For the purpose of self-containment, we will briefly repeat the construction of the predicates
INSIDE-POLYGON(px, py) and SEES(xi, yi, px, py). The elementary tool is evaluation of the
sign of the determinant det(#»u , #»v) of two vectors #»u , #»v . Recall that the sign of the expression
det(#»u , #»v) determines whether #»v points to the left of #»u (if det(#»u , #»v) > 0), is parallel to #»u (if
det(#»u , #»v) = 0), or points to the right of #»u (if det(#»u , #»v) < 0).

We compute a triangulation T of the polygon P, e.g., using an algorithm from [14], order
the vertices of each triangle of T in the counter-clockwise order, and orient each edge of the
triangle accordingly. A point is contained inside the polygon if and only if it is contained in one
of the triangles of T . A point is contained in a triangle if and only if it is on one of the edges
or to the left of each edge. Thus the predicate INSIDE-POLYGON(px, py) has length O(nB).

A guard gi sees a point p if and only if no two consecutive edges of P block the visibility. See
Figure 8 on why it is not sufficient to check each edge individually. Given a guard gi, a point
p, and two consecutive edges e1, e2 of P, it can be checked by evaluating a constant number of
determinants whether e1, e2 block the visibility between gi and p. Thus SEES(xi, yi, px, py) has

length O(nB) and consequently
∨k
i=1 SEES(xi, yi, px, py) has length O(knB).

Note that the formula Ψ is not a formula in ETR because of the universal quantifier. The
main idea to get an equivalent formula with no universal quantifier is to find a polynomial
number of points inside P which, if all seen by the guards, ensure that all of P is seen. We
denote such a set of points as a witness set.

Creating a witness set. We are now ready to describe the witness set that replaces the
universal quantifier. Let L := {`1, . . . , `m} be the set of lines containing either an edge of P, or
a guard g ∈ G and a vertex v ∈ P .† The well-defined lines in L partition the plane into regions,
which are connected components of R2 \⋃`∈L ` (see Figure 8 for an example).

†Note that if a line is defined as passing through a guard g ∈ G and a vertex v ∈ P such that g and v are
coincident, the line is not well-defined. Such lines are not considered in the partition into regions described below,
but they are included in the set L. Later we will show how to ignore these lines in our formula.

12

C

[August 31, 2017 at 8:40 – classicthesis]

P

g

g

p

g′

Figure 8: Illustrations for the proof that the art gallery problem is in ∃R. Left: A polygon P together
with a guard g and the resulting line arrangement L. The yellow region is not seen. Right: A line
segment gp going through the vertices of P. This illustrates that it is not sufficient to check each edge
individually for crossing. A vertex of P is on the line segment g′p, but the visibility between p and g′ is
not blocked in that case.

Let A be the set of these regions. It is easy to verify that A has the following properties:

• Each region in A is an open convex polygon.

• Each region in A is either contained in P or contained in the complement of P.

• The closure of the union of the regions that are contained in P equals P.

• For each region R ∈ A, each guard g ∈ G either sees all points of R or sees no point in R.
In particular, if a guard g sees one point in R, it sees all of R and its closure.

Thus it is sufficient to test that for each region R ∈ A which is in P, at least one point in
R is seen by a guard. For three points a, b, c, define the centroid of a, b, c to be the point
C(a, b, c) := (a + b + c)/3. If a, b, c are three different vertices of the same region R ∈ A, then
the centroid C(a, b, c) must lie in the interior of R. Note that each region has at least three
vertices and thus contains at least one such centroid. Let X be the set of all intersection points
between two non-parallel well-defined lines in L, i.e., X consists of all vertices of all regions in
A. In the formula Φ, we generate all points in X. For any three points a, b, c in X, we also
generate the centroid C(a, b, c). If the centroid is in P, we check that it is seen by a guard.
Since there are O(((kn)2)3) centroids of three points in X and each is tested by a formula of
size O(knB), we get a formula of the aforementioned size.

Constructing the formula Φ. Each line `i is defined by a pair of points {(pi, qi), (p′i, q
′
i)}.

Let
#»

`i := (p′i−pi, q′i− qi) be a direction vector corresponding to the line. A line ` is well-defined

if and only if the corresponding vector
#»

` is non-zero.
The lines `i, `j are well-defined and non-parallel if and only if det(

#»

`i ,
#»

`j) 6= 0. If two lines
`i, `j are well-defined and non-parallel, their intersection point Xij is well-defined and it has
coordinates
(

(pjq
′
j − qjp′j)(p′i − pi)− (piq

′
i − qip′i)(p′j − pj)

det(
#»

`i ,
#»

`j)
,
(pjq

′
j − qjp′j)(q′i − qi)− (piq

′
i − qip′i)(q′j − qj)

det(
#»

`i ,
#»

`j)

)
.

For each pair (i, j) ∈ {1, . . . ,m}2, we add the variables xij , yij to the formula Φ and we
define INTERSECT(i, j) to be the formula

det(
#»

`i ,
#»

`j) 6= 0 =⇒
[

det(
#»

`i ,
#»

`j) · xij = (pjq
′
j − qjp′j)(p′i − pi)− (piq

′
i − qip′i)(p′j − pj) ∧

det(
#»

`i ,
#»

`j) · yij = (pjq
′
j − qjp′j)(q′i − qi)− (piq

′
i − qip′i)(q′j − qj)

]
.

13

C

[August 31, 2017 at 8:40 – classicthesis]

It follows that if the formula INTERSECT(i, j) is true then either

• `i or `j is not well-defined or they are both well-defined, but parallel, or

• `i and `j are well-defined and non-parallel and the variables xij and yij are the coordinates
of the intersection point Xij of the lines.

Let Λ := {λ1, . . . , λm6} = {1, . . . ,m}6 be all the tuples of six elements from the set
{1, . . . ,m}. Each tuple λ := (a, b, c, d, e, f) ∈ Λ corresponds to a centroid of the following
three points: the intersection point of the lines `a, `b, the intersection point of the lines `c, `d,
and the intersection point of the lines `e, `f . For each tuple λ, we proceed as follows. We define
the formula CENTROID-DEFINED(λ) to be

det(
#»

`a,
#»

`b) 6= 0 ∧ det(
#»

`c,
#»

`d) 6= 0 ∧ det(
#»

`e,
#»

`f) 6= 0.

We add the variables uλ, vλ to the formula Φ, and define the formula CENTROID(λ) as

3uλ = xab + xcd + xef ∧ 3vλ = yab + ycd + yef .

It follows that if the formulas CENTROID-DEFINED(λ) and CENTROID(λ) are both true,
then the lines in each of the pairs (`a, `b), (`c, `d), (`e, `f) are well-defined and non-parallel, and
the variables uλ and vλ are the coordinates of the centroid C(Xab, Xcd, Xef).

We are now ready to write up our existential formula as

∃x1, y1, . . . , xk, yk ∃x11, y11, x12, y12, . . . , xmm, ymm ∃uλ1 , vλ1 , . . . , uλm6 , vλm6 : Φ,

where

Φ :=


 ∧

(i,j)∈{1,...,m}2
INTERSECT(i, j)


∧

∧

λ∈Λ

[
CENTROID-DEFINED(λ) =⇒

[
CENTROID(λ) ∧

[
INSIDE-POLYGON(uλ, vλ) =⇒

k∨

i=1

SEES(xi, yi, uλ, vλ)
]]]

.

14

C

[August 31, 2017 at 8:40 – classicthesis]

B The problem ETR-INV

To show that the art gallery problem is ∃R-hard, we will provide a reduction from the problem
ETR-INV, which we introduce below. In this section, we will show that ETR-INV is ∃R-
complete.

Definition 5 (ETR-INV). In the problem ETR-INV, we are given a set of real variables
{x1, . . . , xn}, and a set of equations of the form

x = 1, x+ y = z, x · y = 1,

for x, y, z ∈ {x1, . . . , xn}. The goal is to decide whether the system of equations has a solution
when each variable is restricted to the range [1/2, 2].

Thus, if Φ(x) is an instance of ETR-INV with variables x := (x1, . . . , xn), the space of
solutions SΦ := {x ∈ [1/2, 2]n : Φ(x)} consists of the vectors in [1/2, 2]n that satisfy all the
equations of Φ.

In order to show that ETR-INV is ∃R-complete, we make use of the following problem.

Definition 10. In the problem ETRc,+,·, where c ∈ R, we are given a set of real variables
{x1, . . . , xn}, and a set of equations of the form

x = c, x+ y = z, x · y = z,

for x, y, z ∈ {x1, . . . , xn}. The goal is to decide whether the system of equations has a solution.
A modified version of the problem, where we additionally require that x1, . . . , xn ∈ [a, b] for

some a, b ∈ R, is denoted by ETRc,+,·
[a,b] .

We are now ready to prove that ETR-INV is ∃R-complete.

Theorem 6. The problem ETR-INV is ∃R-complete.

Proof. To show that ETR-INV is ∃R-hard, we will perform a series of polynomial time reduc-

tions, starting from ETR and subsequently reducing it to the problems ETR1,+,·, ETR
1/8,+,·
[−1/8,1/8],

and ETR1,+,·
[1/2,2], and ending with ETR-INV.

To simplify the notation, while considering a problem ETRc,+,· or ETRc,+,·
[a,b] , we might sub-

stitute any variable in an equation by the constant c. For instance, x+ c = z is a shorthand for
the equations x+ y = z and y = c, where y is an additional variable.

Reduction to ETR1,+,·. We will first argue that ETR1,+,· is ∃R-hard. This seems to
be folklore, but we did not find a formal statement. For the sake of self-containment and
rigorousness, we present here a short proof based on the following lemma.

Lemma 11 (Schaefer, Štefankovič [39]). Let Φ(x) be a quantifier-free formula of the first order
theory of the reals, where x := (x1, x2, . . . , xn) is a vector of variables. We can construct in
polynomial time a polynomial F : Rn+m → R of degree 4, for some m = O(|Φ|), so that

{x ∈ Rn : Φ(x)} = {x ∈ Rn : (∃y ∈ Rm) F (x, y) = 0}.

The coefficients of F have bitlength O(|Φ|).
Thus it is ∃R-hard to decide if a polynomial has a real root. We reduce this problem to

ETR1,+,·. Consider a polynomial equation Q = 0. First, we generate all variables corresponding
to all the coefficients of Q, by using only the constant 1, addition and multiplication. For
example, a variable corresponding to 20 can be obtained as follows: V1 = 1, V21 = 1 + 1, V22 =
V21 ·V21 , V24 = V22 ·V22 , V20 = V24 +V22 . We are now left with a polynomial Q′ consisting entirely
of sums of products of variables, and we keep simplifying Q′ as described in the following.

15

C

[August 31, 2017 at 8:40 – classicthesis]

Whenever there is an occurrence of a sum x + y or a product x · y of two variables in Q′, we
introduce a new variable z. In the first case, we add the equation x+ y = z to Φ and substitute
the term x+ y by z in Q′. In the latter case, we add the equation x · y = z to Φ and substitute
x · y by z in Q′. We finish the construction when Q′ has been simplified to consist of a single
variable, i.e., Q′ = x, in which case we add the equation x + V1 = V1 (corresponding to the
equation Q′ = 0) to Φ. When the process finishes, Φ yields an instance of ETR1,+,·, and the
solutions to Φ are in one-to-one correspondence with the solutions to the original polynomial
equation Q = 0.

Reduction to ETR
1/8,+,·
[−1/8,1/8]. We will now present a reduction from the problem ETR1,+,·

to ETR
1/8,+,·
[−1/8,1/8]. We use the following result from algebraic geometry, which was stated by

Schaefer and Štefankovič [39] in a simplified form. Given an instance Φ(x) of ETR over the
vector of variables x := (x1, . . . , xn), we define the semi-algebraic set SΦ as the solution space

SΦ := {x ∈ Rn : Φ(x)}.

The complexity L of a semi-algebraic set SΦ is defined as the number of symbols appearing in
the formula Φ defining SΦ (see [28]).

Corollary 12 (Schaefer and Štefankovič [39]). Let B be the set of points in Rn at distance at

most 2L
8n

= 228n logL
from the origin. Every non-empty semi-algebraic set S in Rn of complexity

at most L ≥ 4 contains a point in B.

Let Φ be an instance of ETR1,+,· with n variables x1, . . . , xn. We construct an instance

Φ′ of ETR
1/8,+,·
[−1/8,1/8] such that Φ has a solution if and only if Φ′ has a solution. Let us fix

k := (8n · logL+ 3) and ε := 2−2k . In Φ′, we first define a variable Vε satisfying Vε = ε, using
Θ(k) new variables V

1/222
, V

1/223
, . . . , V

1/22k
and equations

V
1/222

+ V
1/222

= 1/8,

V
1/222

· V
1/222

= V
1/223

,

V
1/223

· V
1/223

= V
1/224

,

...

V
1/22k−1 · V1/22k−1 = Vε.

In Φ′, we use the variables Vεx1 , . . . , Vεxn instead of x1, . . . , xn. An equation of Φ of the form
x = 1 is transformed to the equation Vεx = Vε in Φ′. An equation of Φ of the form x + y = z
is transformed to the equation Vεx + Vεy = Vεz of Φ′. An equation of Φ of the form x · y = z is
transformed to the following equations of Φ′, where Vε2z is a new variable satisfying

Vεx · Vεy = Vε2z,

Vε · Vεz = Vε2z.

Assume that Φ is true. Then there exists an assignment of values to the variables x1, . . . , xn

of Φ that satisfies all the equations and where each variable xi satisfies |xi| ∈
[
0, 228n logL

]
.

Then the assignment Vεxi = εxi and (when Vε2xi appears in Φ′) Vε2xi = ε2xi yields a solution
to Φ′ with all variables in the range [−1/8, 1/8]. On the other hand, if there is a solution to Φ′,
an analogous argument yields a corresponding solution to Φ. We have given a reduction from

ETR1,+,· to ETR
1/8,+,·
[−1/8,1/8]. The length of the formula increases by at most a polylogarithmic

factor.

Reduction to ETR1,+,·
[1/2,2]. We will now show a reduction from ETR

1/8,+,·
[−1/8,1/8] to ETR1,+,·

[1/2,2].

The reduction is similar as in [43]. We substitute each variable xi ∈ [−1/8, 1/8] by Vxi+7/8

16

C

[August 31, 2017 at 8:40 – classicthesis]

which will be assumed to have a value of xi + 7/8. Instead of an equation x = 1/8 we now
have Vx+7/8 = 1. Using addition and the variable equal 1, we can easily get the variables
V1/2, V3/2, V3/4, V7/4, V7/8 with corresponding values of 1/2, 3/2, 3/4, 7/4, and 7/8. Instead of
each equation x+ y = z we now have equations:

Vx+7/8 + Vy+7/8 = V(z+7/8)+7/8,

Vz+7/8 + V7/8 = V(z+7/8)+7/8.

As the original variables x, y, z have values in the interval [−1/8, 1/8], the added variables
V(z+7/8)+7/8 have a value in [13/8, 15/8].

Instead of each equation x · y = z we have the following set of equations

Vx+7/8 + Vy+7/8 = Vx+y+14/8, (Vx+y+14/8 ∈ [12/8, 2])

Vx+y+7/8 + V7/8 = Vx+y+14/8, (Vx+y+7/8 ∈ [5/8, 9/8])

Vx+7/8 + V1 = Vx+15/8, (Vx+15/8 ∈ [14/8, 2])

Vx+1 + V7/8 = Vx+15/8, (Vx+1 ∈ [7/8, 9/8])

Vy+7/8 + V1 = Vy+15/8, (Vy+15/8 ∈ [14/8, 2])

Vy+1 + V7/8 = Vy+15/8, (Vy+1 ∈ [7/8, 9/8])

Vx+1 · Vy+1 = Vxy+x+y+1, (Vxy+x+y+1 ∈ [49/64, 81/64])

Vxy+x+y+1 + V1/2 = Vxy+x+y+3/2, (Vxy+x+y+3/2 ∈ [81/64, 113/64])

Vxy+5/8 + Vx+y+7/8 = Vxy+x+y+3/2, (Vxy+5/8 ∈ [39/64, 41/64])

Vxy+5/8 + 1 = Vxy+13/8, (Vxy+13/8 ∈ [103/64, 105/64])

Vz+7/8 + V3/4 = Vxy+13/8.

Each formula Φ of ETR
1/8,+,·
[−1/8,1/8] is transformed to a formula Φ′ of ETR1,+,·

[1/2,2], as explained

above. If there is a solution for Φ, there clearly is a solution for Φ′, as all the newly introduced
variables have a value within the intervals claimed above. If there is a solution for Φ′, there is
also a solution for Φ, as the newly introduced variables V2x+7/4, Vx+5/8 ∈ [1/2, 2] ensure that
x ∈ [−1/8, 1/8]. The increase in the length of the formula is linear.

Note that the only place where we use multiplication is in the formula Vx+1 · Vy+1 =
Vxy+x+y+1, where Vx+1, Vy+1 ∈ [7/8, 9/8]. We will use this fact in the next step of the re-
duction.

Reduction to ETR-INV. We will now show that ETR
1/8,+,·
[−1/8,1/8] reduces to ETR-INV. In

the first step, we reduce a formula Φ of ETR
1/8,+,·
[−1/8,1/8] to a formula Φ′ of ETR1,+,·

[1/2,2], as described

in the step above. We now have to show how to express each equation x · y = z of Φ′ using only
the equations allowed in ETR-INV. Note that, as explained above, multiplication is used only
for variables x, y ∈ [7/8, 9/8]. Some of the steps in this reduction rely on techniques also used
in the proof by Aho et al. [4, Section 8.2] that squaring and taking reciprocals is equivalent to
multiplication.

We first show how to define a new variable Vx2 satisfying Vx2 = x2, where x ∈ [7/8, 9/8].

x+ V3/4 = Vx+3/4, (Vx+3/4 ∈ [13/8, 15/8])

V1/(x+3/4) · Vx+3/4 = 1, (V1/(x+3/4) ∈ [8/15, 8/13])

Vx−1/4 + 1 = Vx+3/4, (Vx−1/4 ∈ [5/8, 7/8])

V1/(x−1/4) · Vx−1/4 = 1, (V1/(x−1/4) ∈ [8/7, 8/5])

V1/(x2+x/2−3/16) + V1/(x+3/4) = V1/(x−1/4), (V1/(x2+x/2−3/16) ∈ [64/105, 64/65])

V1/(x2+x/2−3/16) · Vx2+x/2−3/16 = 1, (Vx2+x/2−3/16 ∈ [65/64, 105/64])

17

C

[August 31, 2017 at 8:40 – classicthesis]

x+ V7/8 = Vx+7/8, (Vx+7/8 ∈ [14/8, 2])

Vx+1/8 + V3/4 = Vx+7/8, (Vx+1/8 ∈ [1, 10/8])

Vx/2+1/16 + Vx/2+1/16 = Vx+1/8, (Vx/2+1/16 ∈ [1/2, 10/16])

Vx2−1/4 + Vx/2+1/16 = Vx2+x/2−3/16, (Vx2−1/4 ∈ [33/64, 65/64])

Vx2−1/4 + V3/4 = Vx2+1/2, (Vx2+1/2 ∈ [81/64, 113/64])

Vx2 + V1/2 = Vx2+1/2.

Note that the constructed variables are in the range [1
2 , 2]. In the following, as shorthand for the

construction given above, we allow to use equations of the form x2 = y, for a variable x with a
value in [7/8, 9/8]. We now describe how to express an equation x·y = z, where x, y ∈ [7/8, 9/8].

x+ V7/8 = Vx+7/8, (Vx+7/8 ∈ [14/8, 2])

V(x+7/8)/2 + V(x+7/8)/2 = Vx+7/8, (V(x+7/8)/2 ∈ [14/16, 1])

y + V7/8 = Vy+7/8, (Vy+7/8 ∈ [14/8, 2])

V(y+7/8)/2 + V(y+7/8)/2 = Vy+7/8, (V(y+7/8)/2 ∈ [14/16, 1])

V(x+7/8)/2 + V(y+7/8)/2 = V(x+y)/2+7/8, (V(x+y)/2+7/8 ∈ [14/8, 2])

V(x+y)/2 + V7/8 = V(x+y)/2+7/8, (V(x+y)/2 ∈ [7/8, 9/8])

V 2
(x+y)/2 = V((x+y)/2)2 , (V((x+y)/2)2 ∈ [49/64, 81/64])

V((x+y)/2)2 + V1/2 = V((x+y)/2)2+1/2, (V((x+y)/2)2+1/2 ∈ [81/64, 113/64])

x2 = Vx2 , (Vx2 ∈ [49/64, 81/64])

y2 = Vy2 , (Vy2 ∈ [49/64, 81/64])

Vx2 + V1/2 = Vx2+1/2, (Vx2+1/2 ∈ [81/64, 113/64])

Vx2/2+1/4 + Vx2/2+1/4 = Vx2+1/2, (Vx2/2+1/4 ∈ [81/128, 113/128])

Vy2 + V1/2 = Vy2+1/2, (Vy2+1/2 ∈ [81/64, 113/64])

Vy2/2+1/4 + Vy2/2+1/4 = Vy2+1/2, (Vy2/2+1/4 ∈ [81/128, 113/128])

Vx2/2+1/4 + Vy2/2+1/4 = V(x2+y2)/2+1/2, (V(x2+y2)/2+1/2 ∈ [81/64, 113/64])

V(x2+y2)/2 + V1/2 = V(x2+y2)/2+1/2, (V(x2+y2)/2 ∈ [49/64, 81/64])

V(x2+y2)/4+1/4 + V(x2+y2)/4+1/4 = V(x2+y2)/2+1/2, (V(x2+y2)/4+1/4 ∈ [81/128, 113/128])

V(x2+y2)/4+1/4 + Vxy/2+1/4 = V((x+y)/2)2+1/2, (Vxy/2+1/4 ∈ [81/128, 113/128])

Vxy/2+1/4 + Vxy/2+1/4 = Vxy+1/2, (Vxy+1/2 ∈ [81/64, 113/64])

z + V1/2 = Vxy+1/2.

The constructed variables are in a range [1/2, 2].

A formula Φ of ETR
1/8,+,·
[−1/8,1/8] has been first transformed into a formula Φ′ of ETR1,+,·

[1/2,2],

and subsequently into a formula Φ′′ of ETR-INV. If Φ is satisfiable, then both Φ′ and Φ′′ are
satisfiable. If Φ′′ is satisfiable, then both Φ′ and Φ are satisfiable. We get that ETR-INV is
∃R-hard.

As the conjunction of the equations of ETR-INV, together with the inequalities describing
the allowed range of the variables within ETR-INV, is a quantifier-free formula of the first-order
theory of the reals, ETR-INV is in ∃R, which yields that ETR-INV is ∃R-complete.

Lemma 11 and Corollary 12 together with the reductions explained in this section imply the
following lemma.

18

C

[August 31, 2017 at 8:40 – classicthesis]

Lemma 13. Let Φ be an instance of ETR with variables x1, . . . , xn. Then there exists an
instance Ψ of ETR-INV with variables y1, . . . , ym, m ≥ n, and constants c1, . . . , cn, d1, . . . , dn ∈
Q, such that

• there is a solution to Φ if and only if there is a solution to Ψ, and

• for any solution (y1, . . . , ym) to Ψ, there exists a solution (x1, . . . , xn) to Φ where y1 =
c1x1 + d1, . . . , yn = cnxn + dn.

19

C

[August 31, 2017 at 8:40 – classicthesis]

C Reduction from ETR-INV to the art gallery problem

C.1 Notation

Given two different points p, q, the line containing p and q is denoted as ←→pq , the ray with the
origin at p and passing through q is denoted as −→pq, and the line segment from p to q is denoted
as pq. For a point p, we let x(p) and y(p) denote the x- and y-coordinate of p, respectively.
Table 1 shows the definitions of some objects and distances frequently used in the description
of the construction.

C.2 Overview of the construction

Let Φ be an instance of the problem ETR-INV with n variables X := {x0, . . . , xn−1} and
consisting of k equations. We show that there exists a polygon P := P(Φ) with corners at
rational coordinates which can be computed in polynomial time such that Φ has a solution if
and only if P can be guarded by some number g := g(Φ) of guards. The number g will follow
from the construction. A sketch of the polygon P is shown in Figure 9.

Figure 9: A high-level sketch of the construction of the polygon P.

Each variable xi ∈ X is represented by a collection of guard segments, which are horizontal
line segments contained in the interior of P. Consider one guard segment s := ab, where a is to
the left of b, and assume that s represents the variable xi and that there is exactly one guard p
placed on s. The guard segment s can be oriented to the right or to the left. The guard p on
s specifies the value of the variable xi as 1

2 + 3‖ap‖
2‖ab‖ if s is oriented to the right, and 1

2 + 3‖bp‖
2‖ab‖ if

s is oriented to the left. Here, the additive term 1
2 and the factor 3

2 stem from the fact that all
the variables in X are contained in the interval [1

2 , 2].
Suppose that there is a solution to Φ. We will show that in that case any minimum guard

set G of P has size g(Φ) and specifies a solution to Φ in the sense that it satisfies the following
two properties.

• Each variable xi ∈ X is specified consistently by G, i.e., there is exactly one guard on
each guard segment representing xi, and all these guards specify the same value of xi.

• The guard set G is feasible, i.e., the values of X thus specified is a solution to Φ.

Moreover, if there is no solution to Φ, each guard set of P consists of more than g(Φ) guards.
The polygon P is constructed in the following way. The bottom part of the polygon consists

of a collection of pockets, containing in total 4n collinear and equidistant guard segments. We

20

C

[August 31, 2017 at 8:40 – classicthesis]

Name Description/value

Φ ETR-INV formula that we reduce from

X := {x0, . . . , xn−1} set of variables of Φ

P := P(Φ) final polygon to be constructed from Φ

g := g(Φ) number of guards needed to guard P if and only if Φ has a solution

k number of equations in Φ

n number of variables in Φ

k′ 3n plus number of equations x · y = 1, x+ y = z in Φ

N max{4n, k′}
C 200000

`b (base line) line that contains 4n guard segments at the bottom of P
si = aibi guard segment on `b, i ∈ {0, . . . , 4n− 1}, ‖aibi‖ = 3/2

PM (main part of P) middle part of P, without corridors and gadgets

`r, `l vertical lines bounding PM
corridor connection between the main part of P and a gadget

c0d0, c1d1 corridor entrances, d0 := c0 + (0, 3
CN2) and d1 := c1 + (0, 1.5

CN2)

ri, rj , rl, r
′
i guard segments within gadgets, of length 1.5

CN2

a′σ, b
′
σ, σ ∈ {i, j, l} left and right endpoint of rσ

`c vertical line through c1+c2
2

o,o′ intersections of rays −−→a0c0 and
−−→
b′lc1 with the line `c

δ, ρ , ε δ := 13.5
CN2 , ρ := δ

9 = 1.5
CN2 , ε := ρ

12 = 1
8CN2

V c0+c1
2 + (0, 1) + [−38Nρ,+38Nρ]× [−38Nρ,+38Nρ]

slab S(q, v, r) region of all points with distance at most r to the line through q

with direction v

center of slab line in the middle of a slab

L-slabs, R-slabs uncertainty regions for visibility rays, see page 31

Table 1: Parameters, variables, and certain distances that are frequently used are summarized in this
table for easy access. Some descriptions are much simplified.

21

C

[August 31, 2017 at 8:40 – classicthesis]

denote the horizontal line containing these guard segments as the base line or `b. In order from
left to right, we denote the guard segments as s0, . . . , s4n−1. The segments s0, . . . , sn−1 are right-
oriented segments representing the variables x0, . . . , xn−1, as are the segments sn, . . . , s2n−1, and
s2n, . . . , s3n−1. The segments s3n, . . . , s4n−1 are left-oriented ant they also represent the variables
x0, . . . , xn−1. At the left and at the right side of P, there are some corridors attached, each of
which leads into a gadget. The entrances to the corridors at the right side of P are line segments
contained in a vertical line `r. Likewise, the entrances to the corridors at the left side of P are
contained in a vertical line `l. The gadgets also contain guard segments, and they are used to
impose dependencies between the guards in order to ensure that if there is a solution to Φ, then
any minimum guard set of P consists of g(Φ) guards and specifies a solution to Φ in the sense
defined above. The corridors are used to copy the positions of guards on guard segments on
the base line to guards on guard segments inside the gadgets. Each gadget corresponds to a
constraint of one of the types x + y ≥ z, x + y ≤ z, x · y = 1, x + y ≥ 5/2, and x + y ≤ 5/2.
The first three types of constraints are used to encode the dependencies between the variables
in X as specified by Φ, whereas the latter two constraints are used to encode the dependencies
between the right-oriented and left-oriented guard segments representing a single variable in X.

C.3 Creating a stationary guard position

We denote some points of P as stationary guard positions. A guard placed at a stationary
guard position is called a stationary guard. We will often define a stationary guard position as
the unique point p ∈ P such that a guard placed at p can see some two vertices q1, q2 of the
polygon P.

We will later prove that for any guard set of size of at most g(Φ), there is a guard placed at
each stationary guard position. For that, we will need the lemma stated below. For an example
of the application of the lemma, see Figure 12. The stationary guard position g2 is the only
point from which a guard can see both vertices q1 and q2. Applying Lemma 14 with p := g2,
W := {q1, q2}, A := P and M := {t1, t2}, we get that there must be a guard placed at g2 in
any guard set of size 3. The purpose of the area A is so that we can restrict our arguments to
a small area of the polygon.

Lemma 14. Let P be a polygon, A ⊆ P , and M a set of points in A such that no point in M
can be seen from a point in P \A, and no two points in M can be seen from the same point in
P . Suppose that there is a point p ∈ A and a set of points W ⊂ A such that

1. no point in W can be seen from a point in P \A,

2. the only point in P that sees all points in W is p, and

3. no point in P can see a point in M and a point in W simultaneously.

Then any guard set of P has at least |M | + 1 guards placed within A, and if a guard set with
|M |+ 1 guards placed within A exists, one of its guards is placed at p.

Proof. Let q be a point in W . Since no two points in the set {q} ∪M can be seen from the
same point in P , and no point from P \A can see a point in {q} ∪M , at least |M |+ 1 guards
are needed within A. Suppose that a guard set with exactly |M | + 1 guards placed within A
exists. There must be |M | guards in A such that each of them can see one point in M and no
point in W . The last guard in A has to be at the point p in order to see all points in W .

In the polygon P we often use stationary guards for the purpose of seeing some region on one
side of a line segment `, but no points on the other side of `. Other guards have the responsibility
to see the remaining area. See Figure 10 (left) for an explanation of how a stationary guard
position can be constructed.

22

C

[August 31, 2017 at 8:40 – classicthesis]

Figure 10: Left: The construction of a stationary guard position p that sees an area in P below a line
segment `. The brown areas are the regions of points that see q1 and q2, and p is the only point that sees
both q1 and q2. The point p sees the points in the blue wedge, and the angle of the wedge can be adjusted
by choosing the point h accordingly. Right: The construction of a guard segment s (the blue segment).
In order to see the points t0, t1, a guard must be on the horizontal dotted segment. Furthermore, in
order to see u0, u1, the guard must be between the vertical dotted segments that contain the endpoints
of s. Thus, a guard sees t0, t1, u0, u1 if and only if the guard is at s.

C.4 Creating a guard segment

In the construction of P we will denote some horizontal line segments of P as guard segments.
We will later prove that for any guard set of size of at most g(Φ), there is exactly one guard
placed at each guard segment.

We will always define a guard segment s by providing a collection of four vertices of P
such that a guard within P can see all these four vertices if and only if it is placed on the line
segment s. See Figure 10 (right) for an example of such a construction. To show that there is
a guard placed on a guard segment, we will use the following lemma.

Lemma 15. Let P be a polygon, A ⊆ P , and M a set of points in A such that no point in M
can be seen from a point in P \A, and no two points in M can be seen from the same point in
P . Suppose that there is a line segment s in A, and points t0, t1, u0, u1 ∈ A such that

1. no point in {t0, t1, u0, u1} can be seen from a point in P \A,

2. a guard in P sees all of the points t0, t1, u0, u1 if and only if the guard is at s, and

3. no point in P can see a point in M and one of the points t0, t1, u0, u1.

Then any guard set of P has at least |M | + 1 guards placed within A, and if a guard set with
|M |+ 1 guards placed within A exists, one of its guards is placed on the line segment s.

Proof. Similar to the proof of Lemma 14.

Consider once more the example pictured in Figure 12, where we want to guard the polygon
with only three guards. We define two guard segments, a0b0 and a1b1. The first one is defined
by the vertices t0, t1, u0, u1, and the second one by the vertices t2, t3, u2, u3. Applying Lemma
15 we get that there must be a guard placed at a0b0 (we set A := P and M := {t2, q2}) and at
a1b1 (we set A := P and M := {t1, q2}) in any guard set of size 3.

As already explained in Section C.2, guards placed at the guard segments will be used to
encode the values of the variables of Φ.

C.5 Imposing inequalities by nooks and umbras

In this section we introduce nooks and umbras, which are our basic tools used to impose de-
pendency between guards placed on two different guard segments. For the following definitions,
see Figure 11.

23

C

[August 31, 2017 at 8:40 – classicthesis]

Figure 11: The brown area Q representing a nook (top), and an umbra (bottom). In the left figure, note
that if a guard p1 placed at the segment a1b1 has to see the whole line segment f0f1 together with p0,
then p1 must be on or to the left of the point π−11 (e), where e := π0(p0).

Definition 7 (nook and umbra). Let P be a polygon with guard segments r0 := a0b0 and
r1 := a1b1, where r0 is to the left of r1. Let c0, c1 be two vertices of P, such that c0 is to the

left of c1. Suppose that the rays
−−→
b0c0 and

−−→
b1c1 intersect at a point f0, the lines −−→a0c0 and −−→a1c1

intersect at a point f1, and that Q := c0c1f1f0 is a convex quadrilateral contained in P. For
each i ∈ {0, 1} define the function πi : ri −→ f0f1 such that πi(p) is the intersection of the ray
−→pci with the line segment f0f1, and suppose that πi is bijective.

We say that Q is a nook of the pair of guard segments r0, r1 if for each i ∈ {0, 1} and every
p ∈ ri, a guard at p can see all of the segment πi(p)f1−i but nothing else of f0f1. We say that Q
is an umbra of the segments r0, r1 if for each i ∈ {0, 1} and every p ∈ ri, a guard at p can see
all of the segment πi(p)fi but nothing else of f0f1. The functions π0, π1 are called projections
of the nook or the umbra.

We will construct nooks and umbras for pairs of guard segments where we want to enforce
dependency between the values of the corresponding variables. When making use of an umbra,
we will also create a stationary guard position from which a guard sees the whole quadrilateral
Q, but nothing on the other side of the line segment f0f1. In this way we can enforce the guards
on r0 and r1 to see all of f0f1 together. For the case of a nook, the segment f0f1 will always
be on the polygon boundary, and then there will be no stationary guard needed. See Figure 12
for an example of a construction of both a nook and an umbra for a pair of guard segments.

Definition 8 (critical segment and shadow corners). Consider a nook or an umbra Q :=

24

C

[August 31, 2017 at 8:40 – classicthesis]

Figure 12: Q1 is a copy-nook of the segments r0 := a0b0 and r1 := a1b1 with a critical segment f0f1,
and Q2 is a copy-umbra for the same pair with a critical segment f2f3. Lemmas 14 and 15 imply that
this polygon cannot be guarded by fewer than 3 guards, and any guard set with 3 guards must contain
a guard g0 on r0, a guard g1 on r1, and a stationary guard at the point g2. The guards g0 and g1 must
specify the same value on r0 and r1, respectively.

c0c1f1f0 of a pair of guard segments r0, r1. The line segment f0f1 is called the critical segment
of Q, and the vertices c0, c1 are called the shadow corners of Q.

Consider a nook or an umbra of a pair of guard segments r0, r1. Let p0, p1 be the guards
placed on the guard segments r0 and r1, respectively, and assume that p0 and p1 together see
all of the critical segment f0f1. Let e := π0(p0). The condition that p0, p1 together see all of
f0f1 enforces dependency between the position of the guard p1 and the point π−1

1 (e). If Q is a
nook, p1 must be in the closed wedge W between the rays −→ec0 and −→ec1. If Q is an umbra, p1

must be in P \W (the closure of the complement of W), i.e., either on or to the right of π−1
1 (e).

This observation will allow us to impose an inequality on the x-coordinates of p0, p1, and thus
on the variables corresponding to the guard segments r0, r1.

C.6 Copying one variable

Definition 9. Let Q be a nook or an umbra of a pair of guard segments r0 := a0b0 and r1 := a1b1
with the same orientation, such that the shadow corners c0 and c1 have the same y-coordinate.
We then call Q a copy-nook or a copy-umbra, respectively.

We can show the following result.

Lemma 16. Let Q be a copy-nook or a copy-umbra for a pair of guard segments r0 := a0b0

and r1 := a1b1. Then for every point e ∈ f0f1 we have
‖a0π−1

0 (e)‖
‖a0b0‖ =

‖a1π−1
1 (e)‖

‖a1b1‖ , i.e., the points

π−1
0 (e) and π−1

1 (e) on the corresponding guard segments r0 and r1 represent the same value.

Proof. See Figure 13. Let ` :=←→c0c1 be the horizontal line containing the line segment c0c1, and

`′ a horizontal line passing trough e. Let f2 be an intersection point of the line
←−→
f0f1 with the

line `. Let a′0, a
′
1, b
′
0, b
′
1 be the intersection points of the rays −−→a0c0,

−−→a1c1,
−−→
b0c0,

−−→
b1c1, respectively,

with the line `′.
We obtain

‖a0π
−1
0 (e)‖

‖π−1
0 (e)b0‖

· ‖π
−1
1 (e)b1‖

‖a1π
−1
1 (e)‖

=
‖ea′0‖
‖b′0e‖

· ‖b
′
1e‖
‖ea′1‖

=
‖ea′0‖
‖ea′1‖

· ‖b
′
1e‖
‖b′0e‖

=
‖c0f2‖
‖c1f2‖

· ‖c1f2‖
‖c0f2‖

= 1.

25

C

[August 31, 2017 at 8:40 – classicthesis]

Figure 13: A copy-nook or a copy-umbra Q for a pair of guard segments r0 := a0b0 and r1 := a1b1. The
points π−10 (e) and π−11 (e) represent the same value.

The first equality holds as the following pairs of triangles are similar: a0π
−1
0 (e)c0 and a′0ec0,

π−1
0 (e)b0c0 and eb′0c0, a1π

−1
1 (e)c1 and a′1ec1, π−1

1 (e)b1c1 and eb′1c1. The third equality holds
as the following pairs of triangles are similar: ea′0f1 and f2c0f1, ea′1f1 and f2c1f1, b′1ef0 and
c1f2f0, and b′0ef0 and c0f2f0.

The following lemma is a direct consequence of Lemma 16. See Figure 12 for an example of
how a construction as described in the lemma can be made.

Lemma 17. Let r0, r1 be a pair of guard segments oriented in the same way for which there
is both a copy-nook and a copy-umbra. Suppose that there is exactly one guard p0 placed at r0

and one guard p1 placed at r1, and that the guards p0 and p1 see together both critical segments.
Then the guards p0 and p1 specify the same value.

Definition 18. Let r0, r1 be a pair of guard segments for which there is both a copy-nook and
a copy-umbra. We say that r1 is a copy of r0. If there is only a copy-nook or a copy-umbra of
the pair r0, r1, we say that r1 is a weak copy of r0.

It will follow from the construction of the polygon P that if there is a solution to Φ, then
for any optimal guard set of P and any pair of guard segments r0, r1 such that r1 is a copy of
r0, there is exactly one guard on each segment r0, r1, and the guards together see the whole
critical segment of both the copy-nook and the copy-umbra.

C.7 The overall design of the polygon P
Recall the high-level sketch of the polygon P in Figure 9. The bottom part of the polygon
consists of pockets containing 4n guard segments s0, . . . , s4n−1. The guard segments are placed
on the base line `b, each segment having a width of 3/2 and contained within a pocket of width
13.5. Therefore the horizontal space used for the 4n guard segments on the base line `b is 54n.
The wall of P forming the 4n pockets is denoted the bottom wall. The detailed description of
the pockets and of the bottom wall is presented in Section C.8.

Let k′ be equal to 3n plus the number of equations in Φ of the form xi+xj = xk or xi ·xj = 1.
At the right side of P and at the left side of P there will be at most k′ corridors attached, each
of which leads into a gadget. The entrances to the corridors are contained in the vertical lines

26

C

[August 31, 2017 at 8:40 – classicthesis]

`r and `l. The corridors are described in Section C.9, and they are placed equidistantly, with a
vertical distance of 3 between the entrances of two consecutive corridors along the lines `r and
`l. The gadgets are described in Sections C.10–C.13. The total vertical space occupied by the
corridors and the gadgets at each side of P is at most 3k′.

Figure 14: A sketch of the construction of P with 8 guard segments s0, . . . , s7 on the base line, and one
gadget at the right side of P. The gadget contains the guard segments r2, r3, r6, which are copies of the
segments s2, s3, s6, respectively. The gadget is the part of the polygon to the right of the line segment
c1d1. The proportions in the drawing are not correct.

Consider the sketch of the polygon P in Figure 14. Let N := max{4n, k′}, and let us define
a constant C := 200000. Let wl and wr denote the left and right endpoint of the bottom wall,
respectively. The horizontal distance from wl to the line `l is CN2−54n+6, as is the horizontal
distance from wr to `r. The horizontal distance from the left endpoint a0 of the leftmost segment
to `r, as well as the horizontal distance from the right endpoint b4n−1 of the rightmost segment
to `l, is CN2. The vertical distance from `b up to the entrance of the first corridor is CN2. The
boundary of P contains an edge connecting wl to the point vl := wl+(−(CN2−54n+6), CN2−1)
on `l, and an edge connecting wr to the point vr := wr + (CN2 − 54n+ 6, CN2 − 1) on `r. Let
tl := vl + (0, 3k′) and tr := vr + (0, 3k′). The main area PM of P is the area bounded by the
bottom wall of P (to be defined in Section C.8) and a polygonal curve defined by the points
wlvltltrvrwr. The entrances to the corridors are on the segment vltl in the left side and on the
segment vrtr in the right side. The set P \ PM outside of the main area consists of corridors
and gadgets.

The reason why we need the distances from the guard segments on the base line `b to the
gadgets to be so large is that we want all the rays from the guard segments on the base line
through the corridor entrances on `r (`l) to have nearly the same slopes. That will allow us to
describe a general method for copying guard segments from the base line into the gadgets.

Each gadget corresponds to a constraint involving either two or three variables, where each
variable corresponds to a guard segment on the base line. Gadgets are connected with the
main area PM via corridors. A corridor does not contain any guard segments, and its aim is
enforcing consistency between (two or three) pairs of guard segments, where one segment from
each pair is in PM and the other one is in the gadget. Each corridor has two vertical entrances,
the entrance c0d0 of height 3

CN2 connecting it with PM , and the entrance c1d1 of height 1.5
CN2

27

C

[August 31, 2017 at 8:40 – classicthesis]

connecting it with a gadget. The bottom wall of a corridor is a horizontal line segment c0c1 of
length 2. The shape of the upper wall is more complicated, and it depends on the indices of
the guard segments involved in the corresponding constraint, and on the height of where the
corridor is placed with respect to the base line `b.

A gadget can be thought of as a room which is connected with the main area PM of P via a
corridor, i.e., attached to the vertices c1 and d1 of the corridor. There are five different kinds of
gadgets, each corresponding to a different kind of inequality or equation, and, unlike for the case
of corridors, all gadgets of the same type are identical. Each gadget contains one or two guard
segments for each variable present in the corresponding formula. All guard segments within a
gadget are of length 1.5

CN2 , and are placed very close to the middle point of the gadget, defined
as m := c1 + (1,−1) for gadgets at the right side of P, and m := c1 + (−1,−1) for gadgets at
the left side of P.

C.8 Construction of the bottom wall

In this section we present the construction of the bottom wall of P. We first describe the overall
construction, as shown in Figure 15, and later we introduce small features corresponding to each
equation of the type xi = 1 in Φ.

The bottom wall forms 4n pockets, each pocket containing one guard segment on the base
line `b. Each pocket has a width of 13.5. Each guard segment has a length of 3/2, and the
distance between two consecutive segments is 12.

Figure 15: The construction of three consecutive guard segments (blue) on the base line. A pocket
corresponding to a single guard segment si := aibi is marked in grey.

Let s0 := a0b0, . . . , s4n−1 := a4n−1b4n−1 be the guard segments in order from left to right.
A pocket for a guard segment si = aibi is constructed as shown in Figure 15 (the grey area in
the figure). The left endpoint of the pocket is at the point ai + (−6, 1), and the right endpoint
of the pocket is at the point ai + (7.5, 1). The guard segment is defined by the following points,
which are vertices of the pocket: ti0 := ai + (−2, 0), ti1 := ai + (3.5, 0), ui0 := ai + (0,−5),
ui1 := ai + (1.5,−5). The vertical edges of the pocket are contained in lines x = x(ai) − 1.5,
x = x(ai), x = x(ai) + 1.5, and x = x(ai) + 3. The horizontal edges of the pocket are contained
in lines y = 0, y = −0.5, and y = −5. The remaining edges are constructed so that the points
ti0, t

i
1 can be seen only from within the pocket, and that any point on si sees the whole area of

the pocket.
Consider an equation of the form xi = 1 in Φ. There are four guard segments representing

xi, i.e., the guard segments si, si+n, si+2n, and si+3n, where the first three are right-oriented
and the last one is left-oriented. We add two spikes in the construction of the leftmost of these
guard segments, i.e., the segment si, as shown in Figure 16. The dashed lines in the figure
intersect at the point gi ∈ si, where gi := ai + (1/2, 0). The spike containing qi1 enforces the
guard to be at the point gi or to the right of it, while the spike containing qi2 enforces the guard
to be at gi or to the left of it. Also, the points qi1 and qi2 are chosen so that they cannot be seen
by any points from within the corridors or gadgets. The guard segment is thus reduced to a
stationary guard position gi corresponding to the value xi = 1.

Note that we only need to add such spikes to the pocket containing si, since the construction
described in Section C.12 will enforce the guards on all the segments si, si+n, si+2n, and si+3n

to specify the value of xi consistently. We have now specified all the details of the main area
PM of P (recall the definition of PM from Section C.7). The following lemma holds.

28

C

[August 31, 2017 at 8:40 – classicthesis]

Figure 16: The spikes with vertices at qi1 and qi2 enforce the guard from the guard segment si to be at
the point gi corresponding to the value of 1.

Lemma 19. For any ETR-INV formula Φ, we can construct in polynomial time the bottom
wall corresponding to Φ such that every vertex has rational coordinates, with the enumerator
upper-bounded by ζN and denominator upper-bounded by ζ, where ζ is some universal constant.

We can prove the following lemma.

Lemma 20. Any guard set G of the polygon P satisfies the following properties.

• G has at least 4n guards placed in PM .

• If G has exactly 4n guards placed in PM , then it has one guard within each of the 4n guard
segments s0, . . . , s4n−1.

• If G has exactly 4n guards placed in the main area of P, then for each variable xi ∈ X
such that there is an equation xi = 1 in Φ, the guard at the segment si is at the position
corresponding to the value 1.

Moreover, any set G′ of points such that (i) G′ has a point within each of the 4n guard segments
of PM , and (ii) for each variable xi ∈ X such that there is an equation xi = 1 in Φ there is a
guard at si at the position corresponding to the value of 1, can see together the whole area of
PM .

Proof. Recall that each point ti1, for i ∈ {0, . . . , 4n−1}, can be seen only from within the pocket
corresponding to the guard segment si. Therefore any guard set requires at least one guard
within each of these pockets, i.e., it contains at least 4n guards in PM .

Now, consider any guard segment si, for i ∈ {0, . . . , 4n − 1}. Let M := {tj1 : j ∈
{0, 1, . . . , 4n − 1}, j 6= i}. Note also that none of the points ti0, t

i
1, u

i
0, u

i
1, and also no point

from M can be seen by a guard placed within a corridor or a gadget of P, i.e., outside of the
main area of P. By Lemma 15, by taking ti0, t

i
1, u

i
0, u

i
1 as t0, t1, u0, u1 and A := PM , we obtain

that if a guard set G has exactly 4n guards placed in PM , then it has a guard within si.
For the third property, consider any variable xi ∈ X such that there is an equation xi = 1

in Φ. As none of the points qi1 and qi2 can be seen from guards within the corridors or gadgets,
or from the guards within the other guard segments on the base line, both of them must be
seen by the only guard gi placed on si. Then, gi must be placed at the position corresponding
to the value 1.

At last, consider any set G′ of points such that (i) G′ has a point within each of the 4n
guard segments of PM , and (ii) for each variable xi ∈ X such that there is an equation xi = 1
in Φ there is a guard at si at the position corresponding to the value of 1. We will show that G′

can see together the whole area of PM . From the construction of the pockets, a guard within a
pocket containing si can see the whole area of the pocket (in particular, the guards at positions
corresponding to the value of 1 can see the whole area of the added spikes). The guard at si also

29

C

[August 31, 2017 at 8:40 – classicthesis]

sees the whole area of PM which is above the pocket, i.e., all points of PM with x-coordinates
in [x(ai)− 6, x(ai) + 7.5]. The part of PM to the left of the leftmost pocket can be seen by the
guard on the leftmost guard segment, and the part of PM to the right of the rightmost pocket
can be seen by the guard on the rightmost guard segment.

C.9 Construction of a corridor

In this section, we describe the construction of a corridor. Inside each gadget there are two or
three guard segments ri, rj , rl (or ri, rj) corresponding to two or three pairwise different guard
segments from the base line si, sj , sl (or si, sj). We require that for each σ ∈ {i, j, l} the guard
segments sσ, rσ have the same orientation. For the corridors attached at the right side of P
we assume i < j < l, and for the corridors attached at the left side we assume i > j > l.
We describe here how to construct a corridor that ensures that that the segments ri, rj , rl are
copies of the segments si, sj , sl, respectively. This construction requires that the guard segments
within the gadget satisfy the conditions of some technical lemmas (see Lemma 21 and 26).

Note that this construction can be generalized for copying an arbitrary subset of guard
segments, but since we only need to copy two or three segments, we explain the construction
in the setting of three segments. The construction for two segments is analogous but simpler.
We first describe how to copy into a gadget at the right side of the polygon P – copying into
gadgets at the left side of P can be done in a symmetric way and is described shortly in Section
C.9.4.

As described briefly in Section C.7, the lower wall of the corridor of the gadget is a horizontal
edge c0c1 of length 2, where c0 is on the line `r and c1 is to the right of c0. The upper wall
of the corridor is more complicated, and it will be described later. It has the left endpoint at
d0 := c0 + (0, 3

CN2), and the right endpoint d1 := c1 + (0, 1.5
CN2). The vertical line segments c0d0

and c1d1 are called the entrances of the corridor.

C.9.1 Idea of the copying construction

nook & umbra

c0 c1

si sj sl ri rj rl

d1d0

Figure 17: In this figure, we display a simplified corridor construction. The vertices c0, c1 serve as shadow
corners for three copy-umbras simultaneously for the pairs (si, ri), (sj , rj), (sl, rl). Each of these pairs
also have a small copy-nook in the top of corridor. The entrances c0d0 and c1d1 to the corridor are
sufficiently small so that the critical segments of the nook and umbra of each pair of segments sσ, rσ
(contained in the small boxes at the top of the figure) are not seen by other guard segments.

To ensure that the segments ri, rj , rl are copies of the segments si, sj , sl, we need to construct
within the corridor copy-nooks and copy-umbras for the pairs of corresponding segments, see
Figure 17 for a simplified illustration. The vertices c0, c1 of the corridor act as shadow corners
in three overlapping copy-umbras for the pairs (si, ri), (sj , rj), and (sl, rl), respectively. We
construct the chain of P from d0 to d1 bounding the corridor from above so that it creates
three copy-nooks for the same pairs. To enforce that for any guard set of size g(Φ), for each
σ ∈ {i, j, l} the guard segments sσ and rσ specify the same value, we have to ensure that no
guards on guard segments other than sσ and rσ can see the critical segments of the copy-umbra
and the copy-nook of the pair sσ, rσ. For each σ ∈ {i, j, l} we also introduce a stationary

30

C

[August 31, 2017 at 8:40 – classicthesis]

guard position, so that guards placed at these positions together see all the copy-umbras, but
nothing on the other sides of the critical segments of the copy-umbras. We also need to ensure
that the guards placed at the stationary guard positions cannot see the critical segments of
the copy-umbras and the copy-nooks of other pairs. We then obtain (see Lemma 24) that for
any guard set with one guard at each guard segment, and with no guards placed outside of
the guard segments and stationary guard positions, the segments sσ, rσ specify the value of xσ
consistently.

Our construction will ensure that for any σ ∈ {i, j, l}, only the guard segment sσ from the
base line, and only the guard segment rσ from within the gadget can see the critical segments
of the corresponding copy-nook and copy-umbra. In particular, we will ensure that the vertical
edge of P directly above the entrance c0d0 blocks visibility from all guard segments sσ′ for
σ′ ∈ {0, . . . , σ − 1}, whereas the vertical edge of P directly below c0d0 blocks visibility from all
guard segments sσ′ for σ′ ∈ {σ + 1, . . . , 4n− 1}. An analogous property will be ensured for the
gadget guard segments.

The main idea to achieve the above property is to make the entrances cidi of the corridor
sufficiently small. However, we cannot place the point d0 arbitrarily close to c0, since both
endpoints aσ and bσ of the segment sσ have to see the left endpoint of the critical segment of
the copy-umbra, and the right endpoint of the critical segment of the copy-nook for the pair
sσ, rσ (the points f0 and f1, respectively, in the context of Section C.5). By placing the corridor
sufficiently far away from the segments on the base line, we obtain that the visibility lines from
the guard segment endpoints through the points c0, d0 are almost parallel and can be described
by a simple pattern. The same holds for the pair of points d1 and c1 and the guard segment rσ.
The pattern enables us to construct the corridor with the desired properties.

In the following, we introduce objects that make it possible to describe the upper corridor
wall and prove that the construction works as intended.

C.9.2 Introducing slabs

In a small area around the point c0+c1
2 + (0, 1), every ray from an endpoint of a base line guard

segment through one of the points c0, d0 intersects every ray from an endpoint of a gadget guard
segment through one of the points c1, d1. These rays intersect at angles close to π/2, and they
form an arrangement consisting of quadrilaterals, creating a nearly-regular pattern. However,
the arrangement of rays is not completely regular. We therefore introduce a collection of thin
slabs, where each slab contains one of the rays in a small neighbourhood around c0+c1

2 + (0, 1),
and such that the slabs form an orthogonal grid with axis (1, 1) and (−1, 1). Thus, the slabs
are introduced in order to handle the “uncertainty” and irregularity of the rays.

Given a point q and a vector v, the slab S(q, v, r) consists of all points at a distance of at
most r from the line through q parallel to v. The center of the slab S(q, v, r) is the line through
q parallel to v.

Let ri := a′ib
′
i, rj := a′jb

′
j , rl := a′lb

′
l. Let `c be a vertical line passing through the middle of

the segment c0c1. Recall that here we describe the construction of a corridor to be attached at
the right side of P. Let o be the intersection point of the ray −−→a0c0 with `c, and o′ the intersection

point of the ray
−−→
b′lc1 with `c. All the points o, o′, c0+c1

2 + (0, 1) lie on the vertical line `c.
Let us define vectors α := (1, 1), β := (−1, 1), and introduce a grid of slabs parallel to α

and β. Let us fix δ := 13.5
CN2 , ρ := δ

9 = 1.5
CN2 , and ε := ρ

12 = 1
8CN2 . For each σ ∈ {0, . . . , 4n − 1}

and γ ∈ {0, 1, 2, 3} we define a slab

Lγσ := S(o+ (0, σδ + γρ), α, ε),

which we denote as an L-slab. Let τ(i) := 2, τ(j) := 1, and τ(l) := 0. For each σ ∈ {i, j, l} and
γ ∈ {0, 1, 2, 3} we define a slab

Rγσ := S(o′ + (0, τ(σ)δ + γρ), β, ε),

31

C

[August 31, 2017 at 8:40 – classicthesis]

which we denote as an R-slab.
In the case of gadgets with just two guard segments ri, rj , we define the point o′ as the

intersection point of the ray
−−→
b′jc1 with `c, and we define τ(i) := 1 and τ(j) := 0. Then, the

R-slabs Rγσ are defined as above for σ ∈ {i, j}.
See Figure 18 for an illustration of the area where the L-slabs intersect the R-slabs.

`c

L0
0, L

1
0, L

2
0, L

3
0

L0
1, L

1
1, L

2
1, L

3
1

L0
2, L

1
2, L

2
2, L

3
2

R3
l , R

2
l , R

1
l , R

0
l

R3
j , R

2
j , R

1
j , R

0
j

R3
i , R

2
i , R

2
i , R

0
i

...

o′
o

Figure 18: The L-slabs have slope 1 and the R-slabs have slope −1. For each guard segment we get 4
equidistant slabs. The width of each slab is 2ε. The distance between two slabs from the same group is
ρ and the distance between two groups is δ. All intersections are contained in the region denoted by V .

Let V be the square c0+c1
2 + (0, 1) + [−38Nρ, 38Nρ]× [−38Nρ, 38Nρ]. We now prove that

the area where the L-slabs and the R-slabs intersect is contained in V . Let us denote by R all
the rays with endpoint at one of the guard segments in the main area, going through c0 and
d0 and all the rays from the endpoints of gadget guard segments through the points c1, d1. We
also ensure that all rays in R are inside a predefined slab within the area V .

In sections specific to the particular gadgets, we will prove the following lemma. We state
the lemma for gadgets with three guard segments ri, rj , rl, but it has a natural analogy for
gadgets with just two guard segments ri, rj .

Lemma 21. For any gadget to be attached at the right side of the polygon P and containing the
guard segments ri = a′ib

′
i, rj = a′jb

′
j , rl = a′lb

′
l the following holds, where c1 is the bottom-right

endpoint of the corridor corresponding to the gadget.

1. The intersection of any R-slab with the line `c is contained in V .

2. For each σ ∈ {i, j, l}, it holds that
−−→
b′σc1 ∩ V ⊂ R0

σ,
−−→
a′σc1 ∩ V ⊂ R1

σ,
−−→
b′σd1 ∩ V ⊂ R2

σ, and−−→
a′σd1 ∩ V ⊂ R3

σ.

3. There are no stationary guard positions or guard segments different from ri, rj , rl within
the gadget from which any point of the corridor can be seen.

Assuming that the above lemma holds, we will prove the following.

Lemma 22. For any corridor to be attached at the right side of the polygon P, the following
properties are satisfied.

1. The intersection of any L-slab with any R-slab is contained in V .

32

C

[August 31, 2017 at 8:40 – classicthesis]

2. For each σ ∈ {0, . . . , 4n− 1}, it holds that −−→aσc0 ∩ V ⊂ L0
σ,
−−→
bσc0 ∩ V ⊂ L1

σ,
−−→
aσd0 ∩ V ⊂ L2

σ,

and
−−→
bσd0 ∩ V ⊂ L3

σ.

Proof. We will first show that the intersection of any L-slab with the line `c is contained
in V . Consider Figure 19. Recall that o is the intersection point of the ray −−→a0c0 with `c.
The horizontal distance between `c and c0 is 1. Let u be the intersection point of the lines
`b and `r. From the polygon description in Section C.7 we know that ‖a0u‖ = CN2, and
‖c0u‖ ∈ [CN2, CN2 + 3k′] ⊆ [CN2, CN2 + 3N]. The distance between the point c0+c1

2 and the

point o is ‖c0u‖‖a0u‖ ∈ [1, 1+ 3N
CN2] = [1, 1+2Nρ]. From the definition of the L-slabs, the intersection

of the L-slabs with the vertical line `c is contained in the line segment (o−(0, 2ε), o+(0, 4Nδ)) ⊆
(c0+c1

2 + (0, 1− 2ε), c0+c1
2 + (0, 1 + 2Nρ+ 4Nδ)), which is contained in V as δ = 9ρ.

By Property 1 of Lemma 21, any point in the intersection of an L-slab and an R-slab must
have a y-coordinate within the range of V . As the angles of the slabs are exactly π/4 and 3π/4,
we get that also the x-coordinates of the intersection must be within the range of V , see also
to the right of Figure 19. That gives us Property 1.

`c

Figure 19: Left: Structure of rays with origins a0 and b0, containing points c0 and d0. Right: Even in
the case that a left ray intersects `c at the very top of V and a right ray intersects at the very bottom
of V , they still have to intersect within V .

For Property 2, let us first consider σ = 0. Let us define oac, oad, obc, obd as the intersection

points of the rays −−→a0c0,
−−→
a0d0,

−−→
b0c0,

−−→
b0d0 with the line `c (see Figure 19). We have o = oac. The

points oad, obc, obd lie above o, and we will now estimate the distance between each of them and
o. We do that as follows.

First, consider the distance ‖ooad‖. From below, we have a trivial bound

‖ooad‖ ≥ ‖c0d0‖ =
3

CN2
= 2ρ.

From the similarity of triangles a0c0d0 and a0oo
ad, and as the distance between the line `c

and the line `r equals 1, we obtain the following upper bound for ‖ooad‖

‖ooad‖ = ‖c0d0‖ ·
‖a0u‖+ 1

‖a0u‖
=

3

CN2
· CN

2 + 1

CN2
=

3

CN2
·
(

1 +
1

CN2

)
≤ 2ρ+

ε

6
.

Let b′ be a vertical projection of b0 on the ray −−→a0c0. From similarity of triangles c0oo
bc and

c0b
′b0, and triangles a0b0b

′ and a0uc0, we get the following equality

‖oobc‖ = ‖b0b′‖ ·
1

‖b0u‖
= ‖c0u‖ ·

‖a0b0‖
‖a0u‖

· 1

‖b0u‖
= 3/2 · ‖c0u‖

‖a0u‖‖b0u‖
.

33

C

[August 31, 2017 at 8:40 – classicthesis]

We instantly get

‖oobc‖ ≥ 3/2 · CN2

(CN2)2
= ρ.

For an upper bound, we compute

‖a0u‖‖b0u‖
‖c0u‖

≥ CN2(CN2 − 3/2)

CN2 + 3N
≥ (CN2 + 3N)(CN2 − 4N)

CN2 + 3N
= CN2 − 4N ≥ CN2

1 + 1/72
,

where the last inequality follows since C ≥ 73 · 4 = 292. That gives us

‖oobc‖ ≤ 3/2 · 1 + 1/72

CN2
=

3/2

CN2
+

1/48

CN2
= ρ+

ε

6
.

In the same way as for ‖oobc‖ we obtain the following bounds

ρ ≤ ‖oadobd‖ ≤ ρ+ ε/6.

As ‖oobd‖ = ‖ooad‖+ ‖oadobd‖, we instantly get

3ρ ≤ ‖oobd‖ ≤ 3ρ+ ε/3.

Summarizing this part, we have the following bounds:

ρ ≤ ‖oobc‖ ≤ ρ+ ε/3, 2ρ ≤ ‖ooad‖ ≤ 2ρ+ ε/3, 3ρ ≤ ‖oobd‖ ≤ 3ρ+ ε/3.

Therefore, the intersection points of the rays −−→a0c0,
−−→
b0c0,

−−→
a0d0,

−−→
b0d0 are contained in the required

slabs, at a vertical distance of at most ε/3 from the centers of the slabs.

Now, consider any σ ∈ {0, . . . , 4n − 1}, τ ∈ {a, b} and η ∈ {c, d}. Let us denote by R all
the rays with endpoint at one of the guard segments in the main area, going through c0 and d0

and all the rays from the endpoints of gadget guard segments through the points c1, d1.
Let ô be the intersection point of the ray −−→τση0 with the line `c (see Figure 20). We first

Figure 20: Bounding ‖oô‖.

bound the distance ‖oτηô‖. Recall that u is the intersection point of `b and `r. Let τ̂σ be the
point on the ray −−→τ0η0 vertically above τσ.

34

C

[August 31, 2017 at 8:40 – classicthesis]

As the triangles η0o
τηô and η0τ̂στσ are similar, the triangles τ0τσ τ̂σ and τ0uη0 are similar,

and the distance between the lines `c and `r is 1, we get the following equality

‖oτηô‖ = ‖τσ τ̂σ‖ ·
1

‖τσu‖
= ‖uη0‖ ·

‖τ0τσ‖
‖τ0u‖

· 1

‖τσu‖
= 13.5σ · ‖uη0‖

‖τ0u‖‖τσu‖
.

We first bound ‖oτηô‖ from above. As C ≥ 1297 · 58 = 75226, we get

‖τ0u‖‖τσu‖
‖uη0‖

≥ (CN2 − 3/2)(CN2 − 54N)

CN2 + 3N
≥ (CN2 + 3N)(CN2 − 58N)

CN2 + 3N

= CN2 − 58N ≥ CN2

1 + 1
1296N

,

and, as σ ≤ 4N , we can bound

‖oτηô‖ ≤ 13.5σ · 1 + 1
1296N

CN2
≤ σ · 13.5

CN2
+

1/24

CN2
= σδ +

ε

3
.

To bound ‖oτηô‖ from below, we compute

‖oτηô‖ = 13.5σ · ‖uη0‖
‖τ0u‖‖τσu‖

≥ 13.5σ · CN2

(CN2)2
= σδ.

Therefore, as ‖oô‖ = ‖oγηô‖+‖ooγη‖, the intersection points of the rays −−→aσc0,
−−→
bσc0,

−−→
aσd0,

−−→
bσd0

are contained in the required slabs, at a vertical distance of at most 2ε/3 from the centers of
the slabs.

We now need to verify that the rays stay in their respective slabs within the range of the
x-coordinates of V . We therefore bound the slope of a ray −−→τση0 for any σ ∈ {0, . . . , 4n − 1},
τ ∈ {a, b} and η ∈ {c, d}. A bound from below is

‖uη0‖
‖τσu‖

≥ CN2

CN2
≥ 1.

To bound the slope of −−→τση0 from above, we compute (as C ≥ 57 · 1368 + 54 = 78030)

‖uη0‖
‖τσu‖

≤ CN2 + 3N

CN2 − 54N
≤ 1 +

57N

CN2 − 54N
≤ 1 +

1

1368N
.

The center of each L-slab has the slope equal to 1. As the vertical distance between ô and
the center of the slab is at most 2ε/3, and 1

1368N · 38Nρ = ρ
36 = ε

3 , we get that −−→τση0 ∩ V is
contained in the corresponding slab.

C.9.3 Constructing the corridor using slabs

We are now ready to describe the exact construction of the corridor. As mentioned before,
the bottom wall is simply the line segment c0c1. We first describe the approximate shape of
the upper wall, defined by a polygonal curve Λ connecting the points d1 and d0. Later we will
present how to modify Λ into a final polygonal curve Λ′, which is exactly the upper wall of the
corridor.

Note that in the corridor construction here we assume that i < j < l. In particular, the
L-slabs Lγl are above the L-slabs Lγj , which are above Lγi . For the R-slabs it is the opposite,
i.e., the R-slabs Rγl are below the R-slabs Rγj , which are below Rγi .

Figure 21 shows the grid of slabs and a sketch of the curve Λ approximating the upper
wall (excluding most of the leftmost and rightmost edge of Λ, with endpoints at d0 and d1,

35

C

[August 31, 2017 at 8:40 – classicthesis]

Figure 21: The grid of L- and R-slabs (bounded by blue and red lines) and an approximate shape Λ
(black) of the upper wall of the corridor copying the guard segments si, sj , sl to the guard segments
ri, rj , rl in the gadget. Here, there are 8 guard segments s0, . . . , s7 on the base line, and we have i = 2,
j = 5, and l = 6. The blue lines bound the slabs corresponding to the rays originating at the left endpoints
of the guard segments (i.e., slabs L0

σ, L
2
σ, R

1
σ, R

3
σ), and the red lines bound the slabs corresponding to

the rays originating at the right endpoints. The full lines bound the slabs corresponding to the rays
passing through c0 or c1 (i.e., slabs L0

σ, L
1
σ, R

0
σ, R

1
σ), and the dashed lines bound the slabs corresponding

to the rays passing through d0 or d1. The blue points and the red points are the intersections of the rays
−−→aσc0 ∩

−−→
a′σc1 and

−−→
bσc0 ∩

−−→
b′σc1, respectively, for σ ∈ {i, j, l}. The green segments each contains a critical

segment (the part between the blue and the red point) of a copy-umbra for sσ and rσ with shadow
corners c0, c1.

36

C

[August 31, 2017 at 8:40 – classicthesis]

Figure 22: A closeup of the upper wall of the corridor from Figure 21 with features for copying the
leftmost pair sl, rl of guard segments. The curve Λ′ is drawn in black. The boundary of the square Nl is
drawn with thick line segments. The points zl0, zl1 are the shadow corners of the copy-nook Qnl (brown
area) of sl, rl. The critical segment of Qnl is on the topmost black segment and it is so short that it
appears as if it was just a point. The green line segment f0f1 is the critical segment of a copy-umbra
Qul of sl, rl with shadow corners c0, c1. The point pl is a stationary guard position, from which a guard
can see the area below the segment zl0zl1 containing f0f1. Furthermore, pl sees the area to the left of
the vertical ray emitting downwards from pl.

respectively, since they are too long to be pictured together with the middle segments). For

σ ∈ {i, j, l}, let uσ be the intersection point of the rays
−−→
aσd0 and

−−→
b′σd1. Let vij be the intersection

point of the rays
−−→
aid0 and

−−→
b′jd1, and vjl the intersection point of the rays

−−→
ajd0 and

−−→
b′ld1. The

curve Λ is then a path defined by the points d1uivijujvjluld0. By Lemma 22, Λ∩V is contained
in the union of the L-slabs and the R-slabs, as shown in Figure 21. Due to the relative position
of the slabs Lγl , L

γ
j , L

γ
i and Rγl , R

γ
j , R

γ
i as discussed above, the curve Λ is x-monotone, and the

point vij (resp. vjl) has smaller y-coordinate than the neighbouring points ui, uj (resp. uj , ul),
i.e., the curve Λ always has a zig-zag shape resembling the one from Figure 21.

We will now show how to modify Λ by adding to the curve some features. The first modifi-
cation is in order to construct copy-nooks Qni , Q

n
j , Q

n
l for each of the pairs (si, ri), (sj , rj), and

(sl, rl), respectively. Note that the area above c0c1 and below Λ already contains a copy-umbra
Quσ for each pair sσ, rσ for σ ∈ {i, j, l} with shadow corners c0 and c1 (as Quσ is contained in

the triangular area bounded above c0c1 and below the rays
−−→
bσc0,

−−→
a′σc1, which, due to Lemmas

21 and 22, is below Λ). The second reason why we need to modify Λ is in order to create
stationary guard positions pi, pj , pl that see the areas of the copy-umbras, but nothing above
their critical segments. In the following, we explain how to modify the fragment of Λ consisting
of the leftmost two edges, i.e., the path vjluld0. The construction is presented in Figure 22. We
then perform similar modifications for the fragments of Λ consisting of the paths vijujvjl and
d1uivij .

First, we show how to construct a copy-nook Qnl of sl and rl with shadow corners at Λ. The
curve Λ will then be modified so that Qnl is contained within the corridor. Let Nl be the square

37

C

[August 31, 2017 at 8:40 – classicthesis]

Figure 23: Construction of the nook Qnl .

consisting of points which are above the slabs L1
l and R1

l , but not above L3
l or R3

l . The square
Nl is approximately the area which is seen both from the right endpoint bl of sl, and the left
endpoint a′l of rl. Note that Nl contains the point ul (as ul ∈ L2

l ∩R2
l , and thus ul is above L1

l

and R1
l and below L3

l and R3
l). The copy-nook Qnl for the pair sl, rl will be created inside Nl (see

Figure 23). Consider the two intersection points of the boundary of Nl with the line segments
vjlul and uld0. Let yN be the larger of the y-coordinates of these two intersection points. The
shadow corners of the nook Qnl are chosen as intersection points of the horizontal line y = yN
with the line segments vjlul and uld0, and they are denoted by zl1 and zl0, respectively. In this
way we ensure that both shadow corners are visible from any point within the segments sl and
rl, and that they define a copy-nook Qnl for the pair of segments sl, rl. Note that the entire
nook Qnl is contained in Nl, since by Lemmas 21 and 22 no point on sl or rl can see a point
above the slabs L3

l or R3
l . We now modify the curve Λ as follows. Let Pl be a quadrilateral

with two vertices at zl0 and zl1, and such that it contains vertical edges incident to zl0 and zl1,
and an edge containing the critical segment for Qnl . We modify Λ so that between the points
zl0 and zl1, it consists of the vertical edges and the topmost edge of Pl.

Now, consider the copy-umbra Qul for the pair of segments sl, rl with shadow corners c0 and

c1. Let f0 :=
−−→
blc0∩

−−→
b′lc1 and f1 := −−→alc0∩

−−→
a′lc1. Note that the points f0, f1 correspond to the red and

blue points in Figures 21 and 22. The segment f0f1 is the critical segment for Qul . By Lemmas 21
and 22, f0 ∈ L1

l ∩ R0
l and f1 ∈ L0

l ∩ R1
l , and the squares L1

l ∩ R0
l , L

0
l ∩ R1

l have a sidelength

of 2ε. Therefore the slope of the line
←−→
f0f1 is in the interval

[
−2
√

2ε√
2ρ
, 2
√

2ε√
2ρ

]
= [−1/6, 1/6], and

this line intersects both line segments vjlul and uld0. Let z′l0 and z′l1 be the intersection points

of the line
←−→
f0f1 with the line segments uld0 and ulvjl, respectively. (We similarly define points

z′i0, z
′
i1 on d1uivij as the intersection points with the line containing the critical segment of the

umbra Qui , and z′j0, z
′
j1 on vijujvjl as the intersection points with the line containing the critical

segment of the umbra Quj .) We introduce a stationary guard position pl by creating a pocket
which will require modifying the curve Λ again. The pocket is extruding to the right from vjlul,

following the line
←−→
f0f1, as pictured in Figure 22. Likewise, it is extruding vertically up from vjl.

The pocket contains a stationary guard position pl on the line
←−→
f0f1. Clearly, a guard placed at

pl sees nothing above the line segment f0f1. Note that it sees the part of Qul to the left of the

38

C

[August 31, 2017 at 8:40 – classicthesis]

Figure 24: The complete construction of the corridor.

vertical line through vjl.
For the middle two edges vijujvjl of Λ, we place the stationary guard position pj vertically

above vij so that it sees an area below the critical segment of the umbra Qnj and to the left
of the vertical line through vij . For the rightmost edges d1uivjl, we place the stationary guard
position pi vertically above d1 so that it sees an area below the critical segment of the umbra Qui
to the left of the vertical line through d1. Let Λ′ be the wall obtained by doing the modifications
to Λ described here, and let C be the corridor, that is, the area bounded by the lower wall c0c1,
the upper wall Λ′ between d0 and d1, and by the vertical entrance segments c0d0 and c1d1. See
Figure 24 for a picture of the complete corridor.

Lemma 23. The stationary guard positions pi, pj , pl have the following three properties.

• The three stationary guard positions pi, pj , pl see together all of the corridor except the
points above the segments z′i0z

′
i1, z′j0z

′
j1, z′l0z

′
l1.

• None of the guards can see anything to the right of the right entrance c1d1.

• None of the stationary guard positions pi, pj , pl for the pairs (si, ri), (sj , rj), (sl, rl), respec-
tively, can see any point on the critical segment of the nook or umbra of one of the other
pairs.

Proof. See Figure 24. For the first claim, note that the vertical lines through vjl and vij divide
the corridor into three parts. It is now clear that all points in the leftmost part below z′l0z

′
l1

are seen by pl, all points in the middle part below z′j0z
′
j1 are seen by pj , and all points in the

rightmost part below z′i0z
′
i1 are seen by pi.

For the second part, observe that the point pi cannot see any point to the right of the vertical
line through d1, and the visibility of pj and pl is bounded by vertical lines more to the left.

For the last part, we note that the curve Λ′ passes through points vjl and vij , blocking
visibility between stationary guard positions and critical segments corresponding to different
pairs.

Lemma 24. Suppose that in each of the pairs (si, ri), (sj , rj), (sl, rl) of guard segments cor-
responding to a corridor C, the two segments have the same orientation. Then C satisfies the
following properties.

1. In any guard set G of P there are at least 3 guards placed within the corridor C, and if
there are exactly 3 then they are placed at the stationary guard positions pi, pj , pl. (The
number is 2 instead of 3 if we construct C to copy only two segments.)

39

C

[August 31, 2017 at 8:40 – classicthesis]

2. Let G be any set of points with exactly one guard on each guard segment and each station-
ary guard position, and with no guards outside of stationary guard positions and guard
segments. If the whole area of C is seen by G, then for each of the pairs (si, ri), (sj , rj),
(sl, rl) the two guards on the segments specify the same value.

3. For any set of points G which satisfies the properties: (i) there is a guard at each point
pi, pj , pl and at each guard segment si, sj , sl and ri, rj , rj, and (ii) the values specified by
the pairs of segments si, sj , sl and ri, rj , rj are consistent, G sees the whole area of C.

4. No guard at a stationary guard position or a guard segment outside the gadget can see any

point inside the gadget below the line
←−→
d0c1.

5. The vertical distance from c0c1 to the topmost point of the corridor is at most 1.4.

Proof. For Property 1, note that the points defining the stationary guards within C can be seen
only from within C. We can now use Lemma 14, setting A as the corridor area and choosing
the points defining the stationary guards to construct the set M , to prove the desired property.

For Property 2, consider the set G as described, and let σ ∈ {i, j, l}. The stationary guard
positions pi, pj , pl cannot see any points above the line containing the critical segments of the
umbra Quσ. Lemma 23 and Property 3 of Lemma 21 give us that guards at the guard segments
s0, s1, . . . , s4n−1, ri, rj , rl must see the critical lines of the nook and umbra Qnσ, Q

u
σ. We will now

show that among all these segments, only guards placed at the segments sσ, rσ are able to do
so. From Lemma 22 we get that for any σ′ > σ, no guard on the guard segment sσ′ can see a
point in the square V below L0

σ′ . As L0
σ′ is above L3

σ, it is also above the critical segments of the
nook Qnσ and the umbra Quσ of the pair sσ, rσ. Likewise, for any σ′ < σ, no guard on the guard
segment sσ′ can see a point in V above L3

σ′ . As L3
σ′ is below L0

σ, it is also below the critical
segments of the pair sσ, rσ. A similar argument shows that among the guard segments ri, rj , rl,
only guards on rσ can see any points on the critical segments for the pair sσ, rσ. Therefore the
two guards on sσ, rσ must see together both critical segments of that pair, and by Lemma 17
the guards must specify the same value.

For Property 3, consider a set G satisfying (i) and (ii). By Lemma 23, the stationary
guards can see the whole area of C except of the points which are above the line segments
z′i0z

′
i1, z

′
j0z
′
j1, z

′
l0z
′
l1 containing the critical segments of the umbras. Consider any σ ∈ {i, j, l},

and the guard segments sσ, rσ. As these guards can see the complete critical segment for the
umbra Quσ, they can see the whole area contained above the critical segment and below Λ. As
they can see the complete critical interval for the nook Qnσ, they can see the whole area of the
polygon Pσ. Therefore, they can see the whole area above the critical interval and below Λ′.

Property 4 is a clear consequence of Lemma 23.
For Property 5, note that the top wall of the corridor can only extend beyond the square

V due to a part of the wall Λ′ creating a stationary guard position. Recall that the slope of
the critical segments of the umbras Qui , Q

u
j , Q

u
l is in the range [−1/6, 1/6]. Since ‖c0c1‖ = 2, it

follows that any point on Λ′ is at height at most 1 + 38Nρ+ 2 · 1/6 < 1.4 above c0c1.

Lemma 25. Assume that the endpoints of guard segments corresponding to a corridor C are
at rational points, with the enumerators and the denominators upper-bounded by (ζCN2)O(1).
Then, we can construct the corridor C in such a way that each vertex of C has rational coordi-
nates, with the enumerator and the denominator upper-bounded by (ζCN2)O(1). The corridor
construction can be done in polynomial time.

Proof. Note that the entrances to the corridor are also at rational points, with enumerators
and denominators upper-bounded by (ζCN2)O(1). Therefore, each of the lines defining the
polygonal curve Λ is defined by two rational points with this property. The same holds for the
lines bounding the L-slabs and the R-slabs.

40

C

[August 31, 2017 at 8:40 – classicthesis]

Consider the construction of a copy-nook Qnσ within the corridor. The vertices of Qnσ are
then at points which are defined as intersection of two lines, where each line is defined by two
rational points with enumerators and denominators upper-bounded by (ζCN2)O(1). Therefore,
the vertices of the nook, and therefore also the vertices of the quadrilateral Pσ are also of this
form.

The stationary guard positions pi, pj , pl are the intersection points of two lines, again each
line defined by two points with the above property. Therefore, the enumerators and denomi-
nators of the stationary guard positions are also upper-bounded by (ζCN2)O(1). The vertices
of the pockets corresponding to pi, pj , pl can be chosen with much freedom, and therefore they
can also be at points satisfying the lemma statement.

C.9.4 Corridor construction for gadgets at the left side of P
For the gadgets attached at the left side of the polygon P, the construction of the corridor is
analogous. Now the points c0, d0 lie on the line `l instead of `r, and the points c1, d1 are to the
left of c0, d0. As we want the points o (o′) to correspond to the lowest intersection point of a ray
from an endpoint of a guard segment in the base line (in the gadget, respectively) containing
the point c0 (c1, respectively) with `c, we redefine these points in the following way. The point

o is the intersection point of the ray
−−−−→
b4n−1c0 with `c, and o′ is the intersection point of the ray−−→

a′lc1 with `c. As we want the slabs Lγσ to contain fragments of rays from the endpoints of the
segment sσ, we redefine

Lγσ := S(o+ (0, (4n− 1− σ)δ + γρ), β, ε).

Similarly, we redefine
Rγσ := S(o′ + (0, τ(σ)δ + γρ), α, ε).

As now the left endpoints of the gadget guard segments are further away from the line `c
than the right endpoints, each gadget attached to the left side of P has to satisfy the following
(instead of Lemma 21).

Lemma 26. For any gadget to be attached to the left side of the polygon P and containing the
guard segments ri = a′ib

′
i, rj = a′jb

′
j , rl = a′lb

′
l the following holds, where c1 is the bottom-left

endpoint of the corridor corresponding to the gadget.

1. The intersection of any R-slab with the line `c is contained in V .

2. For each σ ∈ {i, j, l}, it holds that
−−→
a′σc1 ∩ V ⊂ R0

σ,
−−→
b′σc1 ∩ V ⊂ R1

σ,
−−→
a′σd1 ∩ V ⊂ R2

σ, and−−→
b′σd1 ∩ V ⊂ R3

σ.

3. There are no stationary guard positions or guard segments different from ri, rj , rl within
the gadget, from which any point of the corridor can be seen.

For the same reason, instead of Lemma 22 we get the following lemma.

Lemma 27. Within any corridor to be attached to the left side of the polygon P the following
properties are satisfied.

1. The intersection of any L-slab with any R-slab is contained in V .

2. For each σ ∈ {0, . . . , 4n− 1}, it holds that
−−→
bσc0 ∩ V ⊂ L0

σ,
−−→aσc0 ∩ V ⊂ L1

σ,
−−→
bσd0 ∩ V ⊂ L2

σ,

and
−−→
aσd0 ∩ V ⊂ L3

σ.

41

C

[August 31, 2017 at 8:40 – classicthesis]

Due to symmetry of PM , the proof of Lemma 27 is the same as the proof of Lemma 22. The
corridor construction and the proof of Lemma 24 is then the same as for the corridor attached
at the right side of P. The only difference is that in order to ensure that the L-slabs Lγl are
above the L-slabs Lγj , which are above Lγi (which is required to get a meaningful zig-zag shape
of the upper wall of the corridor) we now have to assume that i > j > l (as the definition of
the L-slabs has changed).

C.10 The ≥-addition gadget

In this section we present construction of the ≥-addition gadget which represents an inequality
xi + xj ≥ xl, where i, j, l ∈ {0, . . . , n − 1}. In Section C.11 we will show how to modify the
construction to obtain the ≤-addition gadget for the inequality xi + xj ≤ xl. For any equation
of the form xi + xj = xl in Φ we will then add both gadgets into our polygon P.

C.10.1 Idea behind the gadget construction

We first describe the general idea behind the construction of a gadget imposing an inequality
x′i + xj ≥ xl for three variables x′i, xj , xl. See Figure 25 for a sketch of the construction. Let
w, v, h > 0 be rational values such that w > v + 3/2. Let r′i, rj , rl be right-oriented guard
segments‡ of length 3/2 such that rj has its left endpoint at the point (−w, 0), r′i has its
right endpoint at (w, 0), and rl has its left endpoint at (−2,−h). Let g′i := (w − 2 + x′i, 0),
gj := (−w − 1/2 + xj , 0), and gl := (−5/2 + xl,−h) be three guards on r′i, rj , rl, respectively,
representing the values x′i, xj , xl ∈ [1/2, 2].

Figure 25: The thick black segments are edges of the polygon. The green quadrilateral is Γ. In order to
see Γ together with g′i and gj , the guard gl must be on or to the left of the point χ′.

Let ci := (v, h), cj := (−v, h), cl := (0, h). Let Γ be a collection of points ω such that the
ray −→ωci intersects r′i, and the ray −→ωcj intersects rj . Then Γ is a quadrilateral, bounded by the

‡We use r′i instead of ri here (and x′i instead of xi), as the guard segment r′i specifying the value x′i will only
be a weak copy of the segment from the base line with a value xi, i.e., it will hold that x′i ≤ xi. More details will
be provided later.

42

C

[August 31, 2017 at 8:40 – classicthesis]

following rays: the rays with origin at the endpoints of r′i and containing ci, and the rays with
origin at the endpoints of rj and containing cj . Suppose that

• for every point g′i on r′i and ω in Γ, the points ω and g′i can see each other if and only if

ω is on or to the right of the line
←→
g′ici,

• for every point gj on rj and ω in Γ, the points ω and gj can see each other if and only if
ω is on or to the right of the line ←→gjcj ,

• for every point gl on rl and ω in Γ, the points ω and gl can see each other if and only if
ω is on or to the left of the line ←→glcl.

Then, we can show the following result.

Lemma 28. The guards g′i, gj , gl can see together the whole quadrilateral Γ if and only if x′i +
xj ≥ xl.

Proof. Let ω ∈ Γ be the intersection point of the rays
−→
g′ici and −−→gjcj .

Suppose that the guards g′i, gj , gl together see the whole quadrilateral Γ. Since g′i cannot see

the area to the left of the line
←→
ωg′i, and gj cannot see the area to the left of the line ←→ωgj , there

are points arbitrarily close to ω which are not seen by any of the guards g′i, gj . Therefore, gl
has to see ω.

Consider the rays −→ωci, −→ωcj , and −→ωcl. Let χ be the intersection point of the ray −→ωcl with a
horizontal line y = 0, and χ′ the intersection point of the ray −→ωcl with a horizontal line y = −h.
Note that the guard gl can see the point ω if and only if gl is coincident with χ′ or to the left
of χ′.

From the similarity of triangles gjg
′
iω and cjciω we get that y(ω)

y(ω)−h =
‖g′i−gj‖

2v =
2w+x′i−xj−3/2

2v .

From the similarity of triangles gjχω and cjc`ω we get that y(ω)
y(ω)−h =

‖χ−gj‖
v , and therefore

‖χ − gj‖ = w + x′i/2 − xj/2 − 3/4, and χ = (x′i/2 + xj/2 − 5/4, 0). From the similarity of
triangles (0, 0)χcl and (0,−h)χ′cl we get that χ′ = (x′i + xj − 5/2, 0). The condition that the
guard gl is coincident with χ′ or to the left of χ′ is equivalent to −5/2 +xl ≤ x′i +xj − 5/2, i.e.,
x′i + xj ≥ xl.

On the other hand, if x′i + xj ≥ xl then the guard gl is coincident with χ′ or to the left of
χ′, and therefore gl can see ω. Then the guards g′i, gj , gl can together see the whole Γ.

C.10.2 Fragment of the gadget for testing the inequality

We now present construction of a polygon Pineq containing three guard segments r′i, rj , rl and
vertices ci, cj , cl with coordinates as described above, where we set w := 26, v := 10, and
h := 10.5, enforcing an inequality on the values corresponding to the guard segments. The main
part of the polygon Pineq is pictured in Figure 26. The three blue line segments correspond
to the guard segments, and the three green dots to stationary guard positions. The stationary
guard positions gt, gm, gb have been chosen as follows. The point gt is at the ray with origin at
the right endpoint of rj and containing cj , gb is at the ray with origin at the right endpoint of
rj and containing cl, and gm is at the ray with origin at the right endpoint of r′i and containing
ci. For each guard segment and each stationary guard position we introduce pockets of the
polygon, such that the points defining each guard segment and stationary guard position cannot
be seen from any other guard segment or stationary guard position. Two edges in the left of
the figure are only shown partially. They end to the left at vertices c1 := (−CN2, CN2) and
d1 := (−CN2, CN2 + 1.5), respectively. These vertices are connected by an edge c1d1 which
closes the polygon. We can show the following result.

Lemma 29. Consider the polygon Pineq from Figure 26. A set of points G ⊂ Pineq of cardinality
at most 6 guards Pineq if and only if

43

C

[August 31, 2017 at 8:40 – classicthesis]

Figure 26: The main part of a polygon Pineq for which all guard sets G of size 6 have the following
form: (i) there is one guard at each stationary guard position (denoted by the green dots), (ii) there
is one guard at each guard segment (blue line segments), and (iii) the values x′i, xj , xl specified by the
guards at the corresponding guard segments r′i, rj , rl satisfy the inequality x′i + xj ≥ xl. Moreover, all
sets G satisfying conditions (i)-(iii) are guard sets. The brown regions represent points of Pineq included
in some ray originating at rj and containing cj , or originating at r′i and containing ci. The quadrilateral
Γ represents the intersection of these two regions.

• there is exactly one guard placed at each guard segment r′i, rj , rl and at each stationary
guard position gt, gm, gb, and

• the variables x′i, xj , xl corresponding to the guard segments r′i, rj , rl, respectively, satisfy
the inequality x′i + xj ≥ xl.

Proof. Assume first that the two conditions are satisfied. Observe that the stationary guard
positions gt, gm, gb have been chosen so that guards placed at them cannot see any point in the
interior of Γ, but together with the guards g′i, gj , gl placed at r′i, rj , rl can see the whole area of
Pineq \ Γ. (For this property to hold, the position of g′i, gj , gl within the corresponding guard
segments does not matter.) Since additionally the inequality x′i + xj ≥ xl is satisfied, then
Lemma 28 yields that the whole area of Γ is seen, and hence G guards Pineq.

Assume now that a set G of at most 6 guards sees all of Pineq. Using Lemmas 14 and 15
(where we set A = Pineq and choose the points in M among the following: one point t1 defining
each stationary guard position, and one point q2 defining each guard segment) we can show
that the polygon requires at least 6 guards, and if there are 6 guards then there must be one
guard at each stationary guard position, and at each guard segment. Then, as Γ is seen by the
guards, by Lemma 28 we get that the inequality x′i + xj ≥ xl holds.

In the actual ≥-addition gadget we modify Pineq in a way described later and scale it down
by a factor of 1

CN2 . Then we connect it to the main part of the polygon P. The polygon Pineq is
attached at the right side of P, and the connection between Pineq and the main area of P is via
a corridor. The point which corresponds to (0, 0) in the polygon Pineq is then at the position
m := c1 + (1,−1) in P, where c1 is the bottom-right vertex of the corridor.

44

C

[August 31, 2017 at 8:40 – classicthesis]

C.10.3 Copying guard segments to their final position

Let r′i, rj , rl denote the guard segments of Pineq. We now show how to enforce dependency
between appropriate guard segments from the base line of the polygon P and the guard segments
r′i, rj , rl.

We ensure that the guard segments rj and rl are copies of segments from the base line by
connecting the (scaled) polygon Pineq to the polygon P via a corridor. However, the segment r′i
cannot be copied in this way, as the edges of Pineq are blocking visibility. Instead, we introduce
an additional guard segment ri within the gadget, and we copy appropriately chosen segments
si, sj , sl from the base line into ri, rj , rl. This part is explained in detail in Section C.10.5. Then,
by introducing a copy-nook within the construction of Pineq, we ensure that r′i is a weak copy of
ri. This is explained in detail in Section C.10.4. In Section C.10.6 we summarize the properties
of the constructed gadget.

The gadget is scaled by a factor of 1
CN2 before it is attached to the corridor, and the

points c1, d1 of the gadget are coincident with the points defining the right entrance of the
corridor, which have the same names. After this operation, the middle point of the gadget (i.e.,
the point corresponding to (0, 0) in the coordinate system of the gadget) satisfies the equality
m = c1 + (1,−1), as stated in Section C.7.

For the picture of the complete gadget see Figure 27.

Figure 27: Detailed construction of the ≥-addition gadget. Note that the dotted lines show that no
guard on ri can see any point in Γ because of the corner z, a guard on ri can always see both shadow
corners of the copy-nook Qi, and no point on rl sees any point of Qi because of the corner cl. For each of
the segments rσ, σ ∈ {i, j, l}, the rays from points on rσ through the corridor entrance c1d1 are between
the two grey dashed rays emitting from the endpoints of rσ.

45

C

[August 31, 2017 at 8:40 – classicthesis]

C.10.4 Introducing a new guard segment ri

Consider the setting as described in Section C.10.2, and the polygon Pineq from Figure 26. We
explain how to modify Pineq into a polygon P ′ineq, which is a scaled version of our gadget. The
main part of P ′ineq is shown in Figure 27, where again the edges to the left with endpoints at c1

and d1 are not fully shown.
The polygon P ′ineq is obtained from Pineq in the following way. First, we add an additional

guard segment ri of length 3/2 (i.e., the same as the length of other guard segments in the
construction), with its left endpoint at the point (−20.5,−17). This requires introducing a
pocket corresponding to the added guard segment. We ensure that r′i is a weak copy of ri by
creating a copy-nook Qi the for pair of guard segments ri, r

′
i, which cannot be seen from any

other guard segment or stationary guard position. The shadow corners of Qi are (2.5, 34) and
(4.5, 34). We have to ensure that after this modification, the gadget still enforces the desired
inequality. In particular, we have to ensure that a guard placed at ri cannot see any point in
the interior of Γ. We can do that by introducing a new corner z = (−12.5,−1.5) of the polygon
that blocks ri from seeing Γ. Note that z does not block ri from seeing the segment c1d1 (as
shown by the dashed grey lines in Figure 27).

Lemma 30. A set of points G ⊂ P ′ineq of cardinality at most 7 guards P ′ineq if and only if

• there is exactly one guard placed at each guard segment r′i, ri, rj , rl and at each stationary
guard position,

• the variables xi, x
′
i corresponding to the guard segments ri, r

′
i, respectively, satisfy the

inequality xi ≥ x′i, and

• the variables x′i, xj , xl corresponding to the guard segments r′i, rj , rl, respectively, satisfy
the inequality x′i + xj ≥ xl.

Proof. Assume that the polygon is guarded by a set G of at most 7 guards. Similarly as in
Lemma 29 we can show that there must be exactly one guard at each guard segment and
each stationary guard position. As the copy-nook Qi can be seen only by guards placed at ri
and r′i, it follows from Lemma 16 that the polygon is guarded by G only if the variables xi, x

′
i

corresponding to ri, r
′
i, respectively, satisfy the inequality xi ≥ x′i. As the quadrilateral Γ cannot

be seen by a guard from ri, we get from Lemma 29 that the variables x′i, xj , xl corresponding
to the guard segments r′i, rj , rl, respectively, must satisfy the inequality x′i + xj ≥ xl.

Now assume that there is exactly one guard placed at each guard segment r′i, ri, rj , rl and
at each stationary guard position, the variables xi, x

′
i satisfy the inequality xi ≥ x′i, and the

variables x′i, xj , xl satisfy the inequality x′i + xj ≥ xl. Then the whole area of Γ is seen by the
guards, as is the whole area of the nook Qi. The remaining area is also seen by the guards,
which we can show in the same way as in Lemma 29.

C.10.5 Copying three guard segments via a corridor

We are given a formula from Φ of the form xi + xj = xl, where i, j, l ∈ {0, . . . , n− 1} and want
to construct a gadget imposing an inequality xi + xj ≥ xl. We need to show that the values of
the required variables can be copied into the guard segments ri, rj , rl in the gadget described
above. First, we will explain how to choose the segments from the base line to be copied into the
gadget. Then, we will show that the ≥-addition gadget satisfies properties required by Lemma
21, which will ensure that the gadget can be connected to the main area by a corridor.

In order to apply a corridor construction as described in Section C.9 to copy three guard
segments from the base line into the gadget, we require the segments in order from left to right
on the base line to represent the variables xi, xj , xl. Recall that there are n variables x0, . . . , xn−1

in the formula Φ, but that for any σ ∈ {0, . . . , n−1}, we use xσ+n, xσ+2n and xσ+3n as synonyms

46

C

[August 31, 2017 at 8:40 – classicthesis]

for xσ. Therefore, the inequality xi + xj ≥ xl is equivalent to xi + xn+j ≥ x2n+l. The guard
segments on the base line are s0, . . . , s4n−1, where each sσ represents the variable xσ. The
segments s0, . . . , s3n−1 are right-oriented whereas s3n, . . . , s4n−1 are left-oriented. (In Section
C.12 we explain how to obtain these dependencies between the guard segments.) Therefore,
with slight abuse of notation, we redefine j := j + n and l := l + 2n so that i < j < l < 3n.
Then, the guard segments si, sj , sl satisfy our requirements.

We now need to show that our gadget construction satisfies the conditions of Lemma 21.
Recall that our gadget is the polygon P ′ineq scaled by a factor of 1

CN2 . First, we will prove an
auxiliary lemma.

Lemma 31. Let G be any gadget to be attached at the right side of the polygon P such that the
guard segments ri, rj , rl have a length of 3/2

CN2 and are contained in the box m+[−∆,∆]×[−∆,∆],
where ∆ := 50

CN2 . Suppose furthermore that the left endpoint of rj is on the line through a′i+(δ, δ)
parallel to the vector (−1, 1) and the left endpoint of rl is on the line through a′i+(2δ, 2δ) parallel
to the same vector, where a′i is the left endpoint of ri. Then properties 1 and 2 of Lemma 21
both hold for G.

Proof. Assume in this proof without loss of generality that c1 = (0, 0). Then m = (1,−1).
Define (ωxi, ωyi) := CN2 · (b′i−m), (ωxj , ωyj) := CN2 · (b′j−m), and (ωxl, ωyl) := CN2 · (b′l−m).
It follows from the conditions in the lemma that each of these values is in [−50, 50].

Define o′σ for each σ ∈ {i, j, l} to be the intersection point of the ray
−−→
b′σc1 with `c. Recall

that the point o′ is defined as o′l. We first verify that Property 1 holds, that is, each point o′σ is
in the rectangle V . We thus need to ensure that y(o′σ) ∈ [1− 38Nρ, 1 + 38Nρ]. The horizontal
distance between `c and c1 is 1. Therefore, the vertical distance between c0c1 and the point o′σ
is y(o′σ) = −y(b′σ)

x(b′σ) =
CN2−ωyσ
CN2+ωxσ

. We have y(o′σ) ≥ CN2−50
CN2+50

. Note that the lower edge of the square

V has y-coordinate 1− 38Nρ = 1− 57
CN . Now, the inequality CN2−50

CN2+50
≥ 1− 57

CN is equivalent to

57CN3 + 2850N ≥ 100CN2, which is true for all N ≥ 2.
Similarly, we have that y(o′σ) ≤ CN2+50

CN2−50
. The upper edge of V has y-coordinate 1 + 38Nρ =

1 + 57
CN . The inequality CN2+50

CN2−50
≤ 1 + 57

CN is equivalent to 100CN2 ≤ 57CN3 − 2850N , which
is also true for all N ≥ 2. Hence, Property 1 holds.

Fix any σ ∈ {i, j, l}. Recall that the vertical distance between the centers of two consecutive
rays from R0

σ, R
1
σ, R

2
σ, R

3
σ is ρ. We now show that the following four properties imply that

Property 2 holds. Afterwards, we will prove that the four properties are satisfied.

a The vertical distance from o′σ to the center of the slab R0
σ is at most ε/4,

b the distance d0
σ between the intersection points of

−−→
b′σc1 and

−−→
b′σd1 with `c is in the interval

[2ρ− ε
4 , 2ρ+ ε

4],

c for any symbol µ ∈ {c, d} the distance dµσ between the intersection points of
−−→
a′σµ1 and−−→

b′σµ1 with `c is in
[
ρ− ε

4 , ρ+ ε
4

]
, and

d the absolute value of the slope of any ray with origin at an endpoint of rσ and passing

through a point in c1d1 is in
[
1− 1

38Nρ · ε4 , 1 + 1
38Nρ · ε4

]
.

The first three properties yield that all rays
−−→
b′σc1,

−−→
a′σc1,

−−→
b′σd1, and

−−→
a′σd1 intersect the line `c within

their corresponding slabs at the vertical distance of at most 3ε
4 from the center of the slab. The

last property yields that the rays are contained in the corresponding slabs throughout the square
V .

We now prove Property a. For σ = l, the distance is 0 by definition. We thus have to bound
the distances ‖o′o′i‖ and ‖o′o′j‖.

47

C

[August 31, 2017 at 8:40 – classicthesis]

Note that the conditions in the lemma gives that y(b′j) = y(b′l) + x(b′l) − x(b′j) − δ and
y(b′i) = y(b′l) + x(b′l)− x(b′i)− 2δ. We have

‖o′o′j‖ = y(o′j)− y(o′) =
−y(b′j)

x(b′j)
− −y(b′l)

x(b′l)
=
−y(b′l)− x(b′l) + x(b′j) + δ

x(b′j)
+
y(b′l)
x(b′l)

=
−y(b′l)− x(b′l) + δ

x(b′j)
+
y(b′l) + x(b′l)

x(b′l)

=
2CN2 − ωyl − ωxl + CN2δ

CN2 + ωxj
+
−2CN2 + ωyl + ωxl

CN2 + ωxl

∈
[

CN2δ

CN2 + 50
,

CN2δ

CN2 − 50

]
⊂
[

CN2δ

CN2 + 50N2
,

CN2δ

CN2 − 50N2

]

=

[
4000

4001
· δ, 4000

3999
· δ
]
⊂ [δ − ε/4, δ + ε/4] .

A similar argument gives ‖o′o′i‖ ∈ [2δ − ε/4, 2δ + ε/4].
We will prove Property b as follows. We have |x(b′σ) − x(m)| ≤ ∆ ≤ 1

1500 (as C > 75000),
and

d0
σ = ‖c1d1‖ ·

2 + x(b′σ)− x(m)

1 + x(b′σ)− x(m)

∈
[
ρ · 2− 1

1500

1 + 1
1500

, ρ · 2 + 1
1500

1− 1
1500

]
=

[
ρ ·
(

2− 2

1501

)
, ρ ·

(
2 +

3

1499

)]
⊂
[
2ρ− ε

4
, 2ρ+

ε

4

]
.

For Property c, denote H as the distance between the point a′σ and its vertical projection

on the ray
−−→
b′σµ1. We have dµσ

H = 1
1+x(a′σ)−x(m) = 1

1+x(b′σ)−x(m)−ρ , H
ρ = 1+y(m)−y(b′σ)+‖µ1c1‖

1+x(b′σ)−x(m) and

ρ ≤ 1
50000 (as C ≥ 75000), and therefore

dµσ = ρ · 1 + y(m)− y(b′σ) + ‖µ1c1‖
1 + x(b′σ)− x(m)

· 1

1 + x(b′σ)− x(m)− ρ

∈
[
ρ · 1− 1

1500

1 + 1
1500

· 1

1 + 1
1500

, ρ · 1 + 1
1500 + 1

50000

1− 1
1500

· 1

1− 1
1500 − 1

50000

]

=

[
ρ ·
(

1− 4501

2253001

)
, ρ ·

(
1 +

458897

224695603

)]

⊂
[
δ − ε

4
, δ +

ε

4

]
.

For Property d, we have to bound the slope of the rays. Note that 1
38Nρ · ε4 = 1

1824N . Since
C ≥ 50 · 1824 = 91200, we get that the slope is at least

y(c1)− y(b′σ)

x(b′σ)− x(c1)
=

1 + y(m)− y(b′σ)

1 + x(b′σ)− x(m)
≥ 1−∆

1 + ∆
= 1− 50

CN2 + 50
≥ 1− 50

CN
≥ 1− 1

1824N
.

On the other hand, since C ≥ 101.5 · 1824 + 50 = 185186, we get that the slope is at most

y(d1)− y(b′σ)

x(b′σ)− x(d1)
≤ 1 + ∆ + ρ

1−∆
= 1 +

101.5

CN2 − 50
≤ 1 +

101.5

(C − 50)N
≤ 1 +

1

1824N
.

Since all four properties hold, so does Property 2.

Proof of Lemma 21 for the ≥-addition gadget. Note that in the ≥-addition gadget, the seg-
ments ri, rj , rl have lengths of 3/2

CN2 and their right endpoints are placed at positions m +
(−20.5
CN2 ,

−17.5
CN2),m + (−24.5

CN2 , 0),m + (−0.5
CN2 ,

−10.5
CN2), respectively, where m := c1 + (1,−1). As the

conditions of Lemma 31 are satisfied, Properties 1 and 2 hold.
Property 3 also holds, as the edge cjd1 blocks all points at stationary guard positions and

at the guard segment r′i from seeing c1d1.

48

C

[August 31, 2017 at 8:40 – classicthesis]

C.10.6 Summary

Lemma 32. Consider the addition gadget together with the corresponding corridor representing
an inequality xi + xj ≥ xl, as described below. The following properties hold.

• The gadget and the corridor fit into a rectangular box of height 3.

• For any guard set of P, at least 10 guards have to be placed in the corridor and the gadget.

• Assume that in the main area PM , there is exactly one guard at each guard segment, and
there are no guards outside of the guard segments. Then 10 guards can be placed in the
corridor and the gadget so that the whole corridor and gadget is seen if and only if the
values xi, xj , xl specified by the guards at the guard segments si, sj , sl satisfy the inequality
xi + xj ≥ xl.

Proof. Recall that by Lemma 24, the distance from c0c1 to the topmost point in the corridor is
at most 1.4. The main part of the gadget is centered around the point c0 + (1,−1), and as it
is of size Θ(1

CN2), the vertical space of at most 1.1 below the line segment c0c1 is enough to fit
the gadget.

From Lemma 24, there are at least 3 guards placed within the corridor. From Lemma 30,
there are at least 7 guards placed within the gadget. That gives us at least 10 guards needed.

Assume that there are exactly 10 guards within the corridor and gadget and that the corridor
is completely seen. Then, from Lemma 24 and 30, there is exactly one guard at each guard
segment and each stationary guard position. Then, by Lemma 24, the values xi, xj , xl specified
by si, sj , sl, and the values specified by ri, rj , rl, are the same. By Lemma 30, the values xi, x

′
i

corresponding to r′i, ri satisfy xi ≥ x′i, and we also have x′i + xj ≥ xl. That enforces inequality
xi + xj ≥ xl.

On the other hand, assume that xi + xj ≥ xl. We first place a guard at every of the 6
stationary guard positions in the corridor and gadget. By Lemmas 24 and 30, if we set guards
at the 4 guard segments so that the values specified by guards at ri, rj , rl are xi, xj , xl, and the
value x′i specified by the guard at r′i is the same as xi, then the whole area of the gadget is
guarded.

C.11 The ≤-addition gadget

In this section we present construction of a gadget representing an inequality xi+xj ≤ xl, where
i, j, l ∈ {0, . . . , n − 1}. The idea of the construction of this gadget is analogous as for the ≥-
addition gadget presented in Section C.10, and the basic principle is presented in Section C.11.1.
The principle underlying the ≥-addition gadget, as explained in Section C.10.1, required the
polygon to have edges blocking the visibility between the segment r′i (placed at the right side)
and the segments rj , rl (placed at the left side). We managed to get around that by making
r′i a weak copy of a segment ri, which in turn was a copy of a segment si on the base line.
In contrast to this, the principle underlying the ≤-addition gadget presented here requires the
polygon to have an edge separating r′i placed at the left side from the segments rj , rl at the
right side. If we were to build a gadget to be placed at the right side of P, we would have to
copy the variables corresponding to both of the segments rj , rl weakly, and the gadget would
not enforce the desired inequality. To avoid this problem, we will place the gadget at the left
side of P. Then, we introduce an additional guard segment ri, and we make r′i a weak copy
of ri using a copy-nook Qi. As r′i is to the left of ri, the copy-nook Qi enforces the inequality
x′i ≥ xi, where r′i, ri represent x′i, xi, respectively. The result is that the gadget enforces the
desired inequality. The relative placement of the segments ri, rj , rl, r

′
i (in particular, the value

of w from Section C.10.2) has to be slightly different than in the construction of ≥-addition
gadget, as it does not seem to be possible to make the gadgets completely symmetrical.

49

C

[August 31, 2017 at 8:40 – classicthesis]

Figure 28: Detailed construction of the ≤-addition gadget. As previously, the dotted line shows that no
guard on ri can see any point in Γ because of the corner z, a guard on ri can always see both shadow
corners of the copy-nook Qi, and no point on rl sees any point of Qi because of the corner cl. For each of
the segments rσ, σ ∈ {i, j, l}, the rays from points on rσ through the corridor entrance c1d1 are between
the two grey dashed rays emitting from the endpoints of rσ.

C.11.1 Idea behind the gadget construction

The idea behind a gadget imposing an inequality x′i + xj ≤ xl is similar as for the ≥-addition
gadget described above. As before, consider rational values w, v, h > 0, where w > v+ 3/2, and
let r′i, rj , rl be right-oriented guard segments of length 3/2 such that r′i has its left endpoint at
the point (−w, 0), rj has its right endpoint at (w, 0), and rl has its left endpoint at (−2,−h).
Let g′i := (−w − 1/2 + xi, 0), gj := (w − 2 + xj , 0), and gl := (−5/2 + xl,−h) be three guards
on r′i, rj , rl, respectively, representing the values x′i, xj , xl ∈ [1/2, 2].

Suppose that there are vertices ci := (−v, h), cj := (v, h), cl := (0, h) of P. As before, let Γ
be a collection of points ω such that the ray −→ωci intersects r′i, and the ray −→ωcj intersects rj . Then
Γ is a quadrilateral, bounded by the following rays: the rays with origin at the endpoints of r′i
and containing ci, and the rays with origin at the endpoints of rj and containing cj . Suppose
that

• for every point g′i on r′i and ω in Γ, the points ω and g′i can see each other if and only if

ω is on or to the left of the line
←→
g′ici,

• for every point gj on rj and ω in Γ, the points ω and gj can see each other if and only if
ω is on or to the left of the line ←→gjcj ,

• for every point gl on rl and ω in Γ, the points ω and gl can see each other if and only if
ω is on or to the right of the line ←→glcl.

50

C

[August 31, 2017 at 8:40 – classicthesis]

Then, we can show the following result in an analogous way as we proved Lemma 28.

Lemma 33. The guards g′i, gj , gl can see together the whole quadrilateral Γ if and only if x′i +
xj ≤ xl.

C.11.2 A specification of the gadget

We will present the construction of a gadget with four guard segments ri, rj , rl, r
′
i, where the

segments r′i, rj , rl correspond to the segments in the idea described in Section C.11.1, where this
time we set w := 23.5, v := 10, and h := 10.5. The gadget is shown in Figure 28 and should be
attached to the left side of the main are PM using a left corridor as described in Section C.9.4.

As for the case of the ≥-addition gadget, there are three stationary guards which do not see
any point within Γ, but which enforce that the whole area except of Γ is seen whenever a guard
is placed at each of the guard segments ri, rj , rl, r

′
i. The guard segment ri has length 3/2 (as do

r′i, rj , rl) and is placed with its left endpoint at the point (13.75,−21.75). We will ensure that r′i
is a weak copy of ri by creating a copy-nook Qi the for pair of guard segments ri, r

′
i. The nook

Qi has shadow corners (−1.5, 35) and (0.5, 35). To ensure that a guard placed at ri cannot see
any point in the interior of Γ, we introduce a new corner z := (8.5,−2.5) of the polygon that
blocks ri from seeing Γ. Two edges to the right in the figure are not fully shown. They end at
vertices c1 := (CN2, CN2) and d1 := (CN2, CN2 + 1.5).

In order to attach the gadget to the main are PM , we scale down the construction described
here by the factor 1

CN2 and translate it so that the point which corresponds to (0, 0) in the
gadget will be placed at position m := c1 + (−1,−1). (Recall that the left entrance to the
corridor, at which we attach the gadget, is the segment c1d1.)

The following lemma is proved in the same way as Lemma 30.

Lemma 34. Let P ′rev-ineq be the polygon obtained from the gadget described above by closing it
by adding the edge c1d1. A set of points G ⊂ P ′rev-ineq of cardinality at most 7 guards P ′rev-ineq if
and only if

• there is exactly one guard placed at each guard segment r′i, ri, rj , rl and at each stationary
guard position,

• the variables xi, x
′
i corresponding to the guard segments ri, r

′
i, respectively, satisfy the

inequality xi ≤ x′i, and

• the variables x′i, xj , xl corresponding to the guard segments r′i, rj , rl, respectively, satisfy
the inequality x′i + xj ≤ xl.

C.11.3 Copying three guard segments via a corridor

Here we proceed as in section C.10.5. We need to show is that the variables xi, xj , xl can be
copied into guard segments ri, rj , rl from three guard segments on the base line. Due to the
gadget construction, we now require the segment corresponding to the variable xl to be the
leftmost one, and all guard segments have to be right-oriented. With slight abuse of notation,
we redefine i := i+ n and j := j + 2n. Then, the segments sl, si, sj satisfy our requirements.

As before, to prove that the corridor construction enforces the required dependency between
the guards on the base line and guards within the gadget, i.e., for Lemma 24 to work, we need
to show that our gadget construction satisfies the conditions of Lemma 26. In particular, we
use the following symmetric version of Lemma 31 for gadgets attached to the left side of P.

Lemma 35. Let G be any gadget to be attached at the left side of the polygon P such that
the guard segments rl, rj , ri have a length of 3/2

CN2 and are contained in the box m + [−∆,∆] ×
[−∆,∆], where ∆ := 50

CN2 . Suppose furthermore that the left endpoint of rj is on the line

51

C

[August 31, 2017 at 8:40 – classicthesis]

through a′i + (−δ, δ) parallel to the vector (1, 1) and the left endpoint of rl is on the line through
a′i + (−2δ, 2δ) parallel to the same vector, where a′i is the left endpoint of ri. Then properties 1
and 2 of Lemma 26 both hold for G.

Proof of Lemma 26 for the ≤-addition gadget. Note that in the ≤-addition gadget, the seg-
ments ri, rj , rl have lengths of 3/2

CN2 and their left endpoints are placed at positions m +
(13.75
CN2 ,

−21.75
CN2),m + (22

CN2 , 0),m + (−2
CN2 ,

−10.5
CN2), respectively, where m := c1 + (−1,−1). As

the conditions of Lemma 35 are satisfied, Properties 1 and 2 hold.
Property 3 also holds, as the edge cjd1 blocks all points at stationary guard positions and

at the guard segment r′i from seeing c1d1.

C.11.4 Summary

In the same way as in Lemma 32, we get the following result.

Lemma 36. Consider the ≤-addition gadget together with the corridor, corresponding to the
inequality xi + xj ≤ xl. The following properties hold.

• The gadget and the corridor fit into a rectangular box of height 3.

• For any guard set of P, at least 10 guards have to be placed in the corridor and the gadget.

• Assume that in the main area PM , there is exactly one guard at each guard segment, and
there are no guards outside of the guard segments. Then 10 guards can be placed in the
corridor and the gadget so that the whole corridor and gadget is seen if and only if the
values xi, xj , xl specified by the guards at the guard segments si, sj , sl satisfy the inequality
xi + xj ≤ xl.

C.12 The ≥- and ≤-orientation gadgets

In this section we explain how to enforce consistency between the guard segments on the base
line which represent the same variable xi, for i ∈ {0, . . . , n − 1}. Recall that there are four
guard segments si, sn+i, s2n+i, s3n+i representing the variable xi, and that the first three ones
are right-oriented, and the last one is left-oriented.

We will present a gadget enforcing that two guard segments corresponding to the same
variable xi and oriented in different directions specify the variable consistently. We will then use
this gadget for the following pairs of guard segments: (si, s3n+i), (sn+i, s3n+i), and (s2n+i, s3n+i).

Consider two guard segments si, sj on the base line, where si is right-oriented and sj is left-
oriented, and assume that there is one guard placed on each of these segments. Let xi and xj
be the values represented by si and sj , respectively. Let xrj be the value that would be specified
by sj if sj was right-oriented instead of left-oriented. We have xj + xrj = 2.5. Therefore si and
sj specify the same value if and only if xi + xrj = 2.5.

Performing a simple modification of the ≥- and ≤-addition gadgets, we obtain the ≥- and
≤-orientation gadgets, which together enforce the equality xi + xrj = 2.5. See Figure 29 for a
detailed picture of the main part of the ≥-orientation gadget, which enforces that xi+xrj ≥ 2.5,
or, equivalently, xi ≥ xj . In the ≥-addition gadget, we copy three values from the base line
into the gadget. Here, we copy only the value of the two segments si, sj . Instead of the guard
segment rl inside the gadget, we create a stationary guard position p at the line containing rl
at distance 1

CN2 to the right of the right endpoint of rl. Then p corresponds to the value of 5/2
on rl (ignoring that p lies outside rl).

The ≤-orientation gadget, which corresponds to the inequality xi + xrj ≤ 5/2, is obtained
by an analogous modification of the ≤-addition gadget. Note that in both of these orientation
gadgets, we create 4 stationary guard positions in the corridor instead of 6 for the addition

52

C

[August 31, 2017 at 8:40 – classicthesis]

Figure 29: Detailed construction of the ≥-orientation gadget for xri + xrj ≥ 2.5, which is a modified
version of the ≥-addition gadget.

gadgets, and the gadget itself contains 4 stationary guards and 3 guard segments, instead of 3
and 4 in the addition gadgets, respectively.

We summarize the properties of the orientation gadgets by the following Lemma, which can
be proven in a way analogous to Lemmas 32 and 36.

Lemma 37. Consider the ≥-orientation gadget (resp. ≤-orientation gadget) together with the
corresponding corridor for making ri, rj copies of guard segments si, sj on the base line, where
si is right-oriented and sj is left-oriented. The following properties hold.

• The gadget and the corridor fit into a rectangular box of height 3.

• For any guard set of P, at least 9 guards have to be placed in the corridor and the gadget.

• Assume that in the main area PM , there is exactly one guard at each guard segment,
and there are no guards outside of the guard segments. Then 9 guards can be placed in
the corridor and the gadget so that the whole corridor and gadget is seen if and only if
the values xi, xj specified by the guards at the guard segments si, sj satisfy the inequality
xi ≥ xj (resp. xi ≤ xj).

C.13 The inversion gadget

In this section we present the construction of the inversion gadget which represent an inequality
xi · xj = 1, where i, j ∈ {0, . . . , n − 1}. We made use of Maple [26] for the construction and
verification of this gadget.

C.13.1 Idea behind the gadget construction

We first describe the principle underlying the inversion gadget. See Figure 30. Let a′i := (1/2, 0),
b′i := (2, 0), a′j := (13.9, 0.1), b′j := (15.4, 0.1), and suppose that ri := a′ib

′
i is a right-oriented

53

C

[August 31, 2017 at 8:40 – classicthesis]

guard segment representing the variable xi and rj := a′jb
′
j is a left-oriented guard segment

representing the variable xj .
Let ξ0 := (7, 541

184) ≈ (7, 2.94) and ξ1 := (9, 259139
112792) ≈ (9, 2.30) and suppose that ξ0, ξ1 are

shadow corners of an umbra Qu with corners ξ0ξ1f1f0 of ri, rj . Then f0 := (499811
70923 ,

38731813
13049832) ≈

(7.05, 2.97) and f1 := (112379
15432 ,

4355591
1419744) ≈ (7.28, 3.07).

Lemma 38. If guards pi, pj on ri, rj, respectively, see f0f1 together, then xixj ≤ 1.

Proof. Let πi and πj be the associated projections from ri and rj to f0f1, respectively. Note
that since pi represents the variable xi, we must have pi := (xi, 0). Let

e := πi(pi) =

(
258288xi − 16765

36994xi − 3065
,
20013754xi − 1295695

6806896xi − 563960

)
.

Now, π−1
j (e) = (15.9−1/xi, 1/10), which represents the value 15.9− (15.9−1/xi) = 1/xi on rj .

In order to see f0f1 together with pi, the guard pj has to stand on π−1
j (e) or to the right. This

corresponds to xj being at most 1/xi. In other words, if a guard pj on rj sees f0f1 together
with pi, then xixj ≤ 1.

We now construct an umbra that impose the guards to satisfy the opposite inequality xixj ≥
1: Let ξ2 := (7, 8865

752) ≈ (7, 11.79) and ξ3 := (9, 4214815
460976) ≈ (9, 9.14) and suppose that ξ2, ξ3 are

shadow corners of a nook Qn with corners ξ2ξ3f3f2 of ri, rj . Then f2 := (182083
25835 ,

231222249
19427920) ≈

(7.05, 11.90) and f3 := (205139
28156 ,

130288905
10586656) ≈ (7.29, 12.31).

Lemma 39. If guards pi, pj on ri, rj, respectively, see f2f3 together, then xixj ≥ 1.

Proof. Let π̂0 and π̂1 be the associated projections from ri and rj to f2f3, respectively. Let

ê := π̂0(p0) =

(
470184xi − 29953

67346xi − 5517
,
597022290xi − 37933335

50644192xi − 4148784

)
.

Now, π̂−1
j (ê) = (15.9−1/xi, 1/10), which represents the value 15.9− (15.9−1/xi) = 1/xi on rj .

In order to see f2f3 together with pi, the guard pj has to stand on π̂−1
1 (ê) or to the left. This

corresponds to xj being at least 1/xi so that xixj ≥ 1.

We thus have the following lemma:

Lemma 40. If guards pi and pj placed at guard segments ri and ri, respectively, see both critical
segments f0f1 and f2f3, then the corresponding values specified by pi and pj satisfy xixj = 1.

C.13.2 The construction of the gadget

We now explain how to make the complete gadget for the equation xixj = 1, as shown in
Figure 30. We make the wall in the gadget so that it creates the umbra Qu and the nook Qn
as described before. We also create a stationary guard position at the green point in the figure
which sees the umbra Qu, but nothing above the line containing the critical segment of Qu. Two
edges at the left side of the gadget are not fully shown. They end at vertices c1 := (−CN2, CN2)
and d1 := (−CN2, CN2 + 1.5), respectively.

The gadget contains two guard segments ri and rj representing xi and xj , respectively, and
it is required that ri is right-oriented and rj is left-oriented. Therefore, with slight abuse of
notation, we redefine j := j+ 3n, so that si, sj are guard segments on the base line representing
xi, xj , respectively, where si is right-oriented and sj is left-oriented. We then use a corridor as
described in Section C.9 to make ri, rj copies of si, sj , respectively. Recall that the endpoints
of the right entrance of the corridor are denoted c1, d1. In order to attach the gadget to the

54

C

[August 31, 2017 at 8:40 – classicthesis]

Figure 30: The inversion gadget. The nook and umbra (the brown areas) for the pair of guard segments
ri, rj impose the inequality xixj = 1 on the variables xi and xj represented by ri and rj . The green

point is a stationary guard position which sees the umbra but nothing above the line
←−→
f0f1.

corridor, we first scale it down by the factor 1
CN2 and then translate it so that the points c1, d1

of the gadget coincides with the endpoints of the right entrance of the corridor with the same
names. We thus obtain that the point (0, 0) in the gadget becomes the point m := c1 + (1,−1)
in P.

Lemma 41. Let P ′inv be the polygon obtained from the inversion gadget by closing it by adding
the edge c1d1. A set of points G ⊂ P ′inv of cardinality at most 3 guards P ′inv if and only if

• there is exactly one guard placed at each guard segment ri, rj and at the stationary guard
position,

• the variables xi, xj corresponding to the guard segments ri, rj, respectively, satisfy the
equation xi · xj = 1.

Proof. Assume that the polygon is guarded by a set G of at most 3 guards. Similarly as in
Lemma 29 we can show that there must be exactly one guard at each guard segment and at
the stationary guard position. It then follows from Lemma 40 that xi · xj = 1.

Now assume that there is exactly one guard placed at each guard segment ri, rj and at the
stationary guard position, and that the variables xi, xj represented by the guards at ri, rj satisfy
xi · xj = 1. Then the whole area of Qu and Qn is seen by the guards. The remaining area is
clearly also seen by the guards.

C.13.3 Connecting the gadget with a corridor

We now need to show that our gadget construction satisfies the conditions of Lemma 21.

Proof of Lemma 21 for the inversion gadget. Note that in the inversion gadget, the segments
ri, rj have lengths of 3/2

CN2 and their right endpoints are placed at positions m + (2
CN2 , 0) and

m + (15.4
CN2 ,

0.1
CN2), respectively, where m := c1 + (1,−1). As the conditions of Lemma 31 (here

55

C

[August 31, 2017 at 8:40 – classicthesis]

used in a simplified version for a gadget with only two guard segments ri and rj) are satisfied,
Properties 1 and 2 hold.

Property 3 also holds, as the stationary guard position in the gadget cannot see the edge
c1d1.

C.13.4 Summary

Lemma 42. Consider the inversion gadget together with the corresponding corridor representing
an inequality xi · xj = 1, as described below. The following properties hold.

• The gadget and the corridor fit into a rectangular box of height 3.

• For any guard set of P, at least 5 guards have to be placed in the corridor and the gadget
in total.

• Assume that in the main area PM , there is exactly one guard at each guard segment, and
there are no guards outside of the guard segments. Then the whole area of the corridor
and the gadget can be guarded by 5 guards (together with the guards on the base line) if
and only if the values xi, xj specified by the guards at the guard segments si, sj satisfy the
inequality xi · xj = 1.

Proof. The proof for the first property is similar to that for the addition gadget in Lemma 32.
From Lemma 24, there are at least 2 guards placed within the corridor. Furthermore, there

must be at least 3 guards placed within the gadget by Lemma 41. That gives us at least 5
guards needed.

Assume that there are exactly 5 guards within the corridor and gadget and that the corridor
is completely seen. Then, from Lemma 24 and 41, there is exactly one guard at each guard
segment and each stationary guard position. Then, by Lemma 24, the values xi, xj specified by
si, sj , and the values specified by ri, rj , are the same. Lemma 24 gives that the guards at ri, rj
must see the critical segments of both Qn and Qu. Then, by Lemma 41, the values xi, xj thus
satisfy xi · xj = 1.

On the other hand, assume that xi ·xj = 1. We first place a guard at every of the 3 stationary
guard positions in the corridor and gadget. By Lemmas 24 and 41, if we set guards at the 2
guard segments so that the values specified by guards at ri, rj are xi, xj , then the whole area
of the gadget is guarded.

C.14 Putting it all together

Let Φ be an ETR-INV formula with n variables, k1 equations of the form xi + xj = xl, and
k2 equations of the form xi · xj = 1. We have already explained how to construct the polygon
P(Φ), but we shall here give a brief summary of the process. We start by constructing the main
area with 4n guard segments. We modify the pockets corresponding to the variables xi for
which Φ contains equation xi = 1, as described in Section C.8. To enforce dependency between
the base line guard segments corresponding to the same variable, we construct 3n ≥-orientation
gadgets (attached at the right side of the polygon) and 3n ≤-orientation gadgets (attached at
the left side), as described in Section C.12. For each equality of the form xi + xj = xl in Φ,
we construct a corresponding ≥-addition gadget (attached at the right side), and a ≤-addition
gadget (attached at the left side), as described in Sections C.10 and C.11, respectively. For each
equality of the form xi · xj = 1 in Φ we construct a corresponding inversion gadget (attached
at the right side), as described in Section C.13. The total number of gadgets at each side of P
is therefore at most 3n+ k1 + k2 = k′, as stated in Section C.7.

Without loss of generality, we assume that the y-coordinate of the base line of P(Φ) is 0.
We set g(Φ) := 58n+ 20k1 + 5k2. Then (P(Φ), g(Φ)) is an instance of the art gallery problem,
and the following theorem holds.

56

C

[August 31, 2017 at 8:40 – classicthesis]

Theorem 43. The polygon P(Φ) has vertices at rational coordinates, which can be computed
in polynomial time. Moreover, there exist constants d0, . . . , dn−1 ∈ Q such that for any x :=
(x0, . . . , xn−1) ∈ Rn, x is a solution to Φ if and only if there exists a guard set G of cardinality
g(Φ) containing guards at all the positions (x0 + d0, 0) . . . , (xn−1 + dn−1, 0).

Proof. Consider a guard set G of the polygon P := P(Φ). By Lemma 20, G has at least
4n guards placed in PM , and if the number of guards within PM equals 4n, then there must
be exactly one guard at each guard segment. Lemma 37 implies that within each of the 6n
orientation gadgets of P together with the corresponding corridors, there are at least 9 guards,
giving at least 54n guards in total. Similarly, from Lemmas 32 and 36 we obtain that there
must be at least 10 guards placed within each ≥-addition gadget and each ≤-addition gadget
plus the corresponding corridors, giving at least 20k1 guards. By Lemma 42, there are at least 5
guards within each inversion gadget and the corresponding corridor, giving at least 5k2 guards
in total. Therefore, G has at least 58n+ 20k1 + 5k2 guards, which is equal to g(Φ).

If a guard set of size g(Φ) exists, then there are exactly 4n guards in PM , 9 guards within
each orientation gadget, 10 guards within each ≥-addition gadget and each ≤-addition gadget,
and 5 guards within each inversion gadget. The same lemmas give us then that there is exactly
one guard at each guard segment and each stationary guard position, and no guards away from
the guard segments or the stationary guard positions. Also, the variables x0, . . . , xn−1 specified
by the guard segments s0, . . . , sn−1 are a solution to Φ.

On the other hand, if there exists a solution to Φ, then we get a guard set of size g(Φ) by
placing the guards accordingly. It is thus clear that the solutions to Φ correspond to the optimal
guard sets of P, as stated in the theorem.

Due to Lemmas 19 and 25, we get that the vertices of PM and the corridor vertices are
all rational, with the enumerators and denominators polynomially bounded. Next, consider
all the vertices of the gadgets. Each gadget is first described as a polygon with coordinates
where enumerators and denominators are both of size Θ(1) (as this construction is fixed and
it does not depend on the formula Φ; and we can easily choose the vertices so that they are
all at rational coordinates), and this polygon is subsequently scaled down by a factor of 1

CN2

and attached at a corridor entrance, which also has polynomially bounded enumerators and
denominators. Thus, the coordinates of the vertices in the gadgets have polynomially bounded
complexity and can be computed in polynomial time.

We can now prove the main theorem of the paper.

Theorem 1. The art gallery problem is ∃R-complete, even the restricted variant where we are
given a polygon with vertices at integer coordinates.

Proof. By Theorem 4, the art gallery problem is in the complexity class ∃R. From Theorem 6 we
know that the problem ETR-INV is ∃R-complete. We presented a polynomial time construction
of an instance (P(Φ), g(Φ)) of the art gallery problem from an instance Φ of ETR. Theorem 43
gives that it is ∃R-hard to solve the art gallery problem when the coordinates of the polygon
vertices are given by rational numbers. Note that the number of vertices of P is proportional
to the input length |Φ|. By Theorem 43, there is a polynomial |Φ|m which is a bound on
every denominator of a coordinate of a vertex in P. The product Π of denominators of all
coordinates of vertices of P thus has size at most |Φ|m O(|Φ|). It follows that we can express Π
by O(m|Φ| log |Φ|) bits. By multiplying every coordinate of P by Π, we get a polygon P ′ with
integer coordinates and the theorem follows.

Theorem 2, restated below, likewise easily follows from Lemma 13 in Appendix B and
Theorem 43.

Theorem 2. Let Φ be an ETR formula with k variables. Then there is an instance (P, g) of
the art gallery problem, and constants c1, d1, . . . , ck, dk ∈ Q, such that

57

C

[August 31, 2017 at 8:40 – classicthesis]

• if Φ has a solution, then P has a guard set of size g, and

• for any guard set G of P of size g, there exists (x1, . . . , xk) ∈ SΦ such that G contains
guards at positions (c1x1 + d1, 0), . . . , (ckxk + dk, 0).

We can now prove Corollary 3, restated below.

Corollary 3. Given any real algebraic number α, there exists a polygon P with vertices at
rational coordinates such that in any optimal guard set of P there is a guard with an x-coordinate
equal to α.

Proof. Let P (x) be a polynomial of degree more than 0 in one variable x such that the equation
P (x) = 0 has α as a solution. The equation might have other solutions as well, but we can
choose integers p1, p2, q1, q2 such that α is the only solution in the interval [p1/q1, p2/q2]. Then
the formula P (x) = 0 ∧ p1 ≤ q1x ∧ q2x ≤ p2 is an instance of the problem ETR with a unique
solution x = α. Now, by Theorem 2, there exists a polygon P and rational constants c, d such
that in any optimal guard set of P, one guard has coordinates (cα+d, 0). By subtracting d from
the x-coordinate of all vertices of P and then dividing all coordinates by c, we get a polygon
P ′ such that any optimal guard set of P ′ has a guard at the point (α, 0).

58

C

[August 31, 2017 at 8:40 – classicthesis]

References

[1] Zachary Abel, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Jayson Lynch, and
Tao B. Schardl. Who needs crossings? Hardness of plane graph rigidity. In 32nd Interna-
tional Symposium on Computational Geometry (SoCG 2016), pages 3:1–3:15, 2016.

[2] Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. Irrational guards are some-
times needed. In 33rd International Symposium on Computational Geometry (SoCG 2017),
2017. To appear.

[3] Alok Aggarwal. The art gallery theorem: its variations, applications and algorithmic as-
pects. PhD thesis, 1984.

[4] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The design and analysis of
computer algorithms. Addison-Wesley, 1975.

[5] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. On the combinatorial and alge-
braic complexity of quantifier elimination. Journal of the ACM, 43(6):1002–1045, 1996.

[6] Patrice Belleville. Computing two-covers of simple polygons. Master’s thesis, McGill
University, 1991.

[7] Daniel Bienstock. Some provably hard crossing number problems. Discrete & Computa-
tional Geometry, 6(3):443–459, 1991.

[8] Édouard Bonnet and Tillmann Miltzow. Parameterized hardness of art gallery problems.
In 24th Annual European Symposium on Algorithms (ESA), pages 19:1–19:17, 2016.

[9] Dorit Borrmann, Pedro J. de Rezende, Cid C. de Souza, Sándor P. Fekete, Stephan
Friedrichs, Alexander Kröller, Andreas Nüchter, Christiane Schmidt, and Davi C. Tozoni.
Point guards and point clouds: Solving general art gallery problems. In Symposuim on
Computational Geometry 2013 (SoCG 2013), pages 347–348, 2013.

[10] Björn Brodén, Mikael Hammar, and Bengt J. Nilsson. Guarding lines and 2-link polygons
is APX-hard. In Proceedings of the 13th Canadian Conference on Computational Geometry
(CCCG 2001), pages 45–48, 2001.

[11] John Canny. Some algebraic and geometric computations in PSPACE. In Proceedings of the
twentieth annual ACM symposium on Theory of computing (STOC 1988), pages 460–467.
ACM, 1988.

[12] Jean Cardinal. Computational geometry column 62. SIGACT News, 46(4):69–78, 2015.

[13] Jean Cardinal and Udo Hoffmann. Recognition and complexity of point visibility graphs.
Discrete & Computational Geometry, 57(1):164–178, 2017.

[14] Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Cheong Schwarzkopf.
Computational Geometry: Algorithms and Applications (3rd edition). Springer-Verlag,
2008.

[15] Pedro J. de Rezende, Cid C. de Souza, Stephan Friedrichs, Michael Hemmer, Alexander
Kröller, and Davi C. Tozoni. Engineering art galleries. In Peter Sanders Lasse Kliemann,
editor, Algorithm Engineering – Selected Results and Surveys, pages 379–417. Springer
International Publishing, 2016.

[16] Satyan L. Devadoss and Joseph O’Rourke. Discrete and Computational Geometry. Prince-
ton University Press, 2011.

59

C

[August 31, 2017 at 8:40 – classicthesis]

[17] Alon Efrat and Sariel Har-Peled. Guarding galleries and terrains. Information Processing
Letters, 100(6):238–245, 2006.

[18] Stephan Eidenbenz, Christoph Stamm, and Peter Widmayer. Inapproximability results for
guarding polygons and terrains. Algorithmica, 31(1):79–113, 2001.

[19] Stephan Friedrichs, Michael Hemmer, James King, and Christiane Schmidt. The continuous
1.5D terrain guarding problem: Discretization, optimal solutions, and PTAS. Journal of
Computational Geometry, 7(1):256–284, 2016.

[20] Jugal Garg, Ruta Mehta, Vijay V. Vazirani, and Sadra Yazdanbod. ETR-completeness for
decision versions of multi-player (symmetric) Nash equilibria. In Proceedings of the 42nd
International Colloquium on Automata, Languages, and Programming (ICALP 2015), part
1, volume 9134 of Lecture Notes in Computer Science (LNCS), pages 554–566, 2015.

[21] James King and Erik Krohn. Terrain guarding is NP-hard. In Proceedings of the Twenty-
First Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2010), pages 1580–
1593, 2010.

[22] David G. Kirkpatrick. An O(lg lg OPT)-approximation algorithm for multi-guarding gal-
leries. Discrete & Computational Geometry, 53(2):327–343, 2015.

[23] Linda Kleist, Tillmann Miltzow, and Pawe l Rza↪żewski. Is area univesality ∀∃R-complete?
In The European Workshop on Computational Geometry (EuroCG 2017), pages 181–184,
2017. Full version in preparation.

[24] Erik Krohn and Bengt J. Nilsson. Approximate guarding of monotone and rectilinear
polygons. Algorithmica, 66(3):564–594, 2013.

[25] D. T. Lee and Arthur K. Lin. Computational complexity of art gallery problems. IEEE
Transactions on Information Theory, 32(2):276–282, 1986.

[26] Maple 2016.1, Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario. Maple is
a trademark of Waterloo Maple Inc.

[27] Jǐŕı Matoušek. Lectures on Discrete Geometry, volume 212 of Graduate Texts in Mathe-
matics. Springer-Verlag New York, 2002.

[28] Jǐŕı Matoušek. Intersection graphs of segments and ∃R. 2014. Preprint, https://arxiv.
org/abs/1406.2636.

[29] Colin McDiarmid and Tobias Müller. Integer realizations of disk and segment graphs.
Journal of Combinatorial Theory, Series B, 103(1):114–143, 2013.

[30] Nicolai E Mnëv. The universality theorems on the classification problem of configuration
varieties and convex polytopes varieties. In Oleg Y. Viro, editor, Topology and geometry –
Rohlin seminar, pages 527–543. Springer-Verlag Berlin Heidelberg, 1988.

[31] Joseph O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, 1987.

[32] Joseph O’Rourke. Computational Geometry in C. Cambridge University Press, 1998.

[33] Joseph O’Rourke. Visibility. In Jacob E. Goodman and Joseph O’Rourke, editors, Hand-
book of Discrete and Computational Geometry, chapter 28. Chapman & Hall/CRC, second
edition, 2004.

[34] Joseph O’Rourke and Kenneth Supowit. Some NP-hard polygon decomposition problems.
IEEE Transactions on Information Theory, 29(2):181–190, 1983.

60

C

[August 31, 2017 at 8:40 – classicthesis]

[35] Quintic function – Wikipedia, The Free Encyclopedia, 2017. [Online; accessed 14-March-
2017].

[36] Jürgen Richter-Gebert and Günter M. Ziegler. Realization spaces of 4-polytopes are uni-
versal. Bulletin of the American Mathematical Society, 32(4):403–412, 1995.

[37] Marcus Schaefer. Complexity of some geometric and topological problems. In Proceedings
of the 17th International Symposium on Graph Drawing (GD 2009), volume 5849 of Lecture
Notes in Computer Science (LNCS), pages 334–344. Springer, 2009.

[38] Marcus Schaefer. Realizability of graphs and linkages. In János Pach, editor, Thirty Essays
on Geometric Graph Theory, chapter 23, pages 461–482. Springer-Verlag New York, 2013.

[39] Marcus Schaefer and Daniel Štefankovič. Fixed points, Nash equilibria, and the existential
theory of the reals. Theory of Computing Systems, 60(2):172–193, 2017.

[40] Dietmar Schuchardt and Hans-Dietrich Hecker. Two NP-hard art-gallery problems for
ortho-polygons. Mathematical Logic Quarterly, 41:261–267, 1995.

[41] Thomas C. Shermer. Recent results in art galleries. Proceedings of the IEEE, 80(9):1384–
1399, 1992.

[42] Yaroslav Shitov. The complexity of positive semidefinite matrix factorization. 2016.
Preprint, http://arxiv.org/abs/1606.09065.

[43] Peter W. Shor. Stretchability of pseudolines is NP-hard. In Peter Gritzmann and
Bernd Sturmfels, editors, Applied Geometry and Discrete Mathematics: The Victor Klee
Festschrift, volume 4 of DIMACS – Series in Discrete Mathematics and Theoretical Com-
puter Science, pages 531–554. American Mathematical Society and Association for Com-
puting Machinery, 1991.

[44] Ana Paula Tomás. Guarding thin orthogonal polygons is hard. In Fundamentals of Com-
putation Theory, pages 305–316. Springer, 2013.

[45] Jorge Urrutia. Art gallery and illumination problems. In J.-R. Sack and J. Urrutia, editors,
Handbook of Computational Geometry, chapter 22, pages 973–1027. Elsevier, 2000.

61

C

[August 31, 2017 at 8:40 – classicthesis]

[August 31, 2017 at 8:40 – classicthesis]

D
M I N I M U M P E R I M E T E R - S U M PA RT I T I O N S I N T H E
P L A N E

141

[August 31, 2017 at 8:40 – classicthesis]

Minimum Perimeter-Sum Partitions in the Plane∗

Mikkel Abrahamsen

Department of Computer Science, University of Copenhagen, Denmark
miab@di.ku.dk

Mark de Berg, Kevin Buchin, Mehran Mehr, and Ali D. Mehrabi

Department of Computer Science, TU Eindhoven, the Netherlands
mdberg@win.tue.nl,k.a.buchin@tue.nl,m.mehr@tue.nl,amehrabi@win.tue.nl

22nd November 2016

Abstract

Let P be a set of n points in the plane. We consider the problem of partitioning P into two
subsets P1 and P2 such that the sum of the perimeters of ch(P1) and ch(P2) is minimized,
where ch(Pi) denotes the convex hull of Pi. The problem was first studied by Mitchell and
Wynters in 1991 who gave an O(n2) time algorithm. Despite considerable progress on related
problems, no subquadratic time algorithm for this problem was found so far. We present an
algorithm solving the problem in O(n log4 n) time and a (1 + ε)-approximation algorithm for
the same problem running in O(n+ 1/ε2 · log4(1/ε)) time.

∗MA is partly supported by Mikkel Thorup’s Advanced Grant from the Danish Council for Independent
Research under the Sapere Aude research career programme. MdB, KB, MM, and AM are supported by the
Netherlands’ Organisation for Scientific Research (NWO) under project no. 024.002.003, 612.001.207, 022.005025,
and 612.001.118 respectively.

D

[August 31, 2017 at 8:40 – classicthesis]

1 Introduction

The clustering problem is to partition a given data set into clusters (that is, subsets) according
to some measure of optimality. We are interested in clustering problems where the data set
is a set P of points in Euclidean space. Most of these clustering problems fall into one of two
categories: problems where the maximum cost of a cluster is given and the goal is to find a
clustering consisting of a minimum number of clusters, and problems where the number of
clusters is given and the goal is to find a clustering of minimum total cost. In this paper we
consider a basic problem of the latter type, where we wish to find a bipartition (P1, P2) of a
planar point set P . Bipartition problems are not only interesting in their own right, but also
because bipartition algorithms can form the basis of hierarchical clustering methods.

There are many possible variants of the bipartition problem on planar point sets, which differ
in how the cost of a clustering is defined. A variant that received a lot of attention is the 2-center
problem [6, 10, 11, 14, 19], where the cost of a partition (P1, P2) of the given point set P is
defined as the maximum of the radii of the smallest enclosing disks of P1 and P2. Other cost
functions that have been studied include the maximum diameter of the two point sets [2] and the
sum of the diameters [13]; see also the survey by Agarwal and Sharir [1] for some more variants.

A natural class of cost function considers the size of the convex hulls ch(P1) and ch(P2) of the
two subsets, where the size of ch(Pi) can either be defined as the area of ch(Pi) or as the perimeter
per(Pi) of ch(Pi). (The perimeter of ch(Pi) is the length of the boundary ∂ ch(Pi).) This class
of cost functions was already studied in 1991 by Mitchell and Wynters [16]. They studied four
problem variants: minimize the sum of the perimeters, the maximum of the perimeters, the
sum of the areas, or the maximum of the areas. In three of the four variants the convex hulls
ch(P1) and ch(P2) in an optimal solution may intersect [16, full version]—only in the minimum
perimeter-sum problem the optimal bipartition is guaranteed to be a so-called line partition,
that is, a solution with disjoint convex hulls. For each of the four variants they gave an O(n3)
algorithm that uses O(n) space and for all except the minimum-maximum area problem, they
also gave an O(n2) algorithm that uses O(n2) space; their algorithms only consider line partitions
(which in the case of the minimum perimeter-sum problem implies an optimal bipartition).
Around the same time, the minimum-perimeter sum problem was studied for partitions into k
subsets for k > 2; for this variant Capoyleas et al. [5] presented an algorithm with running
time O(n6k). Mitchell and Wynters mentioned the improvement of the space requirement of the
quadratic-time algorithm as an open problem, and they stated the existence of a subquadratic
algorithm for any of the four variants as the most prominent open problem.

Rokne et al. [17] made progress on the first question, by presenting an O(n2 log n) algorithm
that uses only O(n) space for the line-partition version of each of the four problems. Devillers and
Katz [9] gave algorithms for the min-max variant of the problem, both for area and perimeter,
which run in O((n+ k) log2 n) time. Here k is a parameter that is only known to be in O(n2),
although Devillers and Katz suspected that k is subquadratic. They also gave linear-time
algorithms for these problems when the point set P is in convex position and given in cyclic
order. Segal [18] proved an Ω(n log n) lower bound for the min-max problems. Very recently, and
apparently unaware of the earlier work on these problems, Cho et al. [7] presented an O(n2 log2 n)
time algorithm for the minimum-perimeter-sum problem and an O(n4 log2 n) time algorithm for
the minimum-area-sum problem (considering all partitions, not only line partitions). Despite
these efforts, the main question is still open: is it possible to obtain a subquadratic algorithm for
any of the four bipartition problems based on convex-hull size?

1

D

[August 31, 2017 at 8:40 – classicthesis]

Our contribution. We answer the question above affirmatively by presenting a subquadratic
algorithm for the minimum perimeter-sum bipartition problem in the plane.

As mentioned, an optimal solution (P1, P2) to the minimum perimeter-sum bipartition
problem must be a line partition. A straightforward algorithm would generate all Θ(n2) line
partitions and compute the value per(P1) + per(P2) for each of them. If the latter is done from
scratch for each partition, the resulting algorithm runs in O(n3 log n) time. The algorithms by
Mitchell and Wynters [16] and Rokne et al. [17] improve on this by using that the different
line bipartitions can be generated in an ordered way, such that subsequent line partitions differ
in at most one point. Thus the convex hulls do not have to be recomputed from scratch, but
they can be obtained by updating the convex hulls of the previous bipartition. To obtain a
subquadratic algorithm a fundamentally new approach is necessary: we need a strategy that
generates a subquadratic number of candidate partitions, instead considering all line partitions.
We achieve this as follows.

We start by proving that an optimal bipartition (P1, P2) has the following property: there
is a set of O(1) canonical orientations such that P1 can be separated from P2 by a line with a
canonical orientation, or the distance between ch(P1) and ch(P2) is Ω(min(per(P1), per(P2)).
There are only O(1) bipartitions of the former type, and finding the best among them is relatively
easy. The bipartitions of the second type are much more challenging. We show how to employ
a compressed quadtree to generate a collection of O(n) canonical 5-gons—intersections of axis-
parallel rectangles and canonical halfplanes—such that the smaller of ch(P1) and ch(P2) (in a
bipartition of the second type) is contained in one of the 5-gons.

It then remains to find the best among the bipartitions of the second type. Even though
the number of such bipartitions is linear, we cannot afford to compute their perimeters from
scratch. We therefore design a data structure to quickly compute per(P ∩ Q), where Q is a
query canonical 5-gon. Brass et al. [4] presented such a data structure for the case where Q is an
axis-parallel rectangle. Their structure uses O(n log2 n) space and has O(log5 n) query time; it
can be extended to handle canonical 5-gons as queries, at the cost of increasing the space usage
to O(n log3 n) and the query time to O(log7 n). Our data structure improves upon this: it has
O(log4 n) query time for canonical 5-gons (and O(log3 n) for rectangles) while using the same
amount of space. Using this data structure to find the best bipartition of the second type we
obtain our main result: an exact algorithm for the minimum perimeter-sum bipartition problem
that runs in O(n log4 n) time.

Besides our exact algorithm, we present a linear-time (1 + ε)-approximation algorithm. Its
running time is O(n + T (nε)), where T (nε) is the running time of an exact algorithm on an
instance of size nε = O(1/ε2). When we plug in our exact algorithm as a subroutine, we thus
obtain O(n+ 1/ε2 · log4(1/ε)) running time.

2 The exact algorithm

In this section we present an exact algorithm for the minimum-perimeter-sum partition problem.
We first prove a separation property that an optimal solution must satisfy, and then we show
how to use this property to develop a fast algorithm.

Let P be the set of n points in the plane for which we want to solve the minimum-perimeter-
sum partition problem. An optimal partition (P1, P2) of P has the following two basic properties:
P1 and P2 are non-empty, and the convex hulls ch(P1) and ch(P2) are disjoint. In the remainder,
whenever we talk about a partition of P , we refer to a partition with these two properties.

2

D

[August 31, 2017 at 8:40 – classicthesis]

`2 `1 `4

`3

c34
α

βP1 P2

c13 c23

Figure 1: The angles α and β.

2.1 Geometric properties of an optimal partition

Consider a partition (P1, P2) of P . Define P1 := ch(P1) and P2 := ch(P2) to be the convex hulls
of P1 and P2, respectively, and let `1 and `2 be the two inner common tangents of P1 and P2. The
lines `1 and `2 define four wedges: one containing P1, one containing P2, and two empty wedges.
We call the opening angle of the empty wedges the separation angle of P1 and P2. Furthermore,
we call the distance between ch(P1) and ch(P2) the separation distance of P1 and P2.

Theorem 1. Let P be a set of n points in the plane, and let (P1, P2) be a partition of P that
minimizes per(P1) + per(P2). Then the separation angle of P1 and P2 is at least π/6 or the
separation distance is at least csep ·min(per(P1), per(P2)), where csep := 1/250.

The remainder of this section is devoted to proving Theorem 1. To this end let (P1, P2) be a
partition of P that minimizes per(P1) + per(P2). Let `3 and `4 be the outer common tangents
of P1 and P2. We define α to be the angle between `3 and `4. More precisely, if `3 and `4 are
parallel we define α := 0, otherwise we define α as the opening angle of the wedge defined by `3
and `4 containing P1 and P2. We denote the separation angle of P1 and P2 by β; see Fig. 1. Let
cij be the intersection point between `i and `j , where i < j. If `3 and `4 are parallel, we choose
c34 as a point at infinity on `3. Assume without loss of generality that neither `1 nor `2 separate
P1 from c34 and that `3 is the outer common tangent such that P1 and P2 are to the left of `3
when traversing `3 from c34 to an intersection point in `3 ∩ P1. Assume furthermore that c13 is
closer to c34 than c23.

For two lines, rays, or segments r1, r2, let ∠(r1, r2) be the angle we need to rotate r1 in
counterclockwise direction until r1 and r2 are parallel. For three points a, b, c, let ∠(a, b, c) :=
∠(ba, bc). For i = 1, 2 and j = 1, 2, 3, 4, let sij be a point in Pi∩ `j . Let ∂Pi denote the boundary
of Pi and per(Pi) the perimeter of Pi. Furthermore, let ∂Pi(x, y) denote the portion of ∂Pi from
x ∈ ∂Pi counterclockwise to y ∈ ∂Pi, and length(∂Pi(x, y)) denote the length of ∂Pi(x, y).

Lemma 2. We have α+ 3β > π.

Proof. Since per(P1) + per(P2) is minimum, we know that

length(∂P1(s13, s14)) + length(∂P2(s24, s23)) 6 Ψ,

where Ψ := |s13s23|+ |s14s24|. Furthermore, we know that s11, s12 ∈ ∂P1(s13, s14) and s21, s22 ∈
∂P1(s24, s23). We thus have

length(∂P1(s13, s14)) + length(∂P2(s24, s23)) > Φ,

where Φ := |s13s11|+ |s11s12|+ |s12s14|+ |s24s21|+ |s21s22|+ |s22s23|. Hence, we must have

Φ 6 Ψ. (1)

3

D

[August 31, 2017 at 8:40 – classicthesis]

Now assume that α+ 3β < π. We will show that this assumption, together with inequality (1),
leads to a contradiction, thus proving the lemma. To this end we will argue that if (1) holds,
then it must also hold when (i) s21 or s22 coincides with c12, and (ii) s11 or s12 coincides with
c12. To finish the proof it then suffices to observe that that if (i) and (ii) hold, then P1 and P2
touch in c12 and so (1) contradicts the triangle inequality.

It remains to argue that if (1) holds, then we can create a situation where (1) holds and (i)
and (ii) hold as well. To this end we ignore that the points sij are specific points in the set P and
allow the point sij to move on the tangent `j , as long as the movement preserves (1). Moving
s13 along `3 away from s23 increases Ψ more than it increases Φ, so (1) is preserved. Similarly,
we can move s14 away from s24, s23 away from s13, and s24 away from s13.

We first show how to create a situation where (i) holds, and (1) still holds as well. Let
γij := ∠(`i, `j). We consider two cases.

• Case (A): γ32 < π − β.
Note that ∠(xs23, `2) > γ32 for any x ∈ s22c12. However, by moving s23 sufficiently far away
we can make ∠(xs23, `2) arbitrarily close to γ32, and we can ensure that ∠(xs23, `2) < π−β
for any point x ∈ s22c12. We now let the point x move at unit speed from s22 towards c12.
To be more precise, let T := |s22c12|, let v be the unit vector with direction from c23 to
c12, and for any t ∈ [0, T] define x(t) := s22 + t · v. Note that x(0) = s22 and x(T) = c12.

Let a(t) := |x(t)s23| and b(t) := |x(t)s21|.
Lemma 11 in the appendix gives that

a′(t) = − cos(∠(x(t)s23, `2)) and b′(t) = cos(∠(`2, x(t)s21)).

Since ∠(x(t)s23, `2) < π−β for any value t ∈ [0, T], we get a′(t) < − cos(π−β). Furthermore,
we have ∠(`2, x(t)s21) > π− β and hence b′(t) 6 cos(π− β). Therefore, a′(t) + b′(t) < 0 for
any t and we conclude that a(T)+b(T) 6 a(0)+b(0). This is the same as |s21c12|+|c12s23| 6
|s21s22|+ |s22s23|, so (1) still holds when we substitute s22 by c12.

• Case (B): γ32 > π − β.
Using our assumption α+ 3β < π we get γ32 > α+ 2β. Note that γ14 = π − γ32 + α+ β.
Hence, γ14 < π − β. By moving s24 and s21, we can in a similar way as in Case (A) argue
that (1) still holds when we substitute s21 by c12.

We conclude that in both cases we can ensure (i) without violating (1).
Since γ42 6 γ32 and γ13 6 γ14, we likewise have γ42 < π − β or γ13 < π − β. Hence, we can

substitute s11 or s12 by c12 without violating (1), thus finishing the proof.

Let dist(P1,P2) := min(p,q)∈P1×P2
|pq| denote the separation distance between P1 and P2.

Recall that α denotes the angle between the two common outer tangents of P1 and P2; see Fig. 1

Lemma 3. We have
dist(P1,P2) > f(α) · per(P1), (2)

where f : [0, π]→ R is the increasing function

f(ϕ) :=
sin(ϕ/4)

1 + sin(ϕ/4)
· sin(ϕ/2)

1 + sin(ϕ/2)
· 1− cos(ϕ/4)

2
.

4

D

[August 31, 2017 at 8:40 – classicthesis]

P1

P2

p q

`vert1

`3

`4

s14

α

s13

s23

s24

λ

s24(λ)

s23(λ)

q(λ)

c34

> α

`vert2

Figure 2: Illustration for the proof of Lemma 3.

Proof. The statement is trivial if α = 0 so assume α > 0. Let p ∈ P1 and q ∈ P2 be points so
that |pq| = dist(P1,P2) and assume without loss of generality that pq is a horizontal segment
with p being its left endpoint. Let `vert1 and `vert2 be vertical lines containing p and q, respectively.
Note that P1 is in the closed half-plane to the left of `vert1 and P2 is in the closed half-plane to
the right of `vert2 . Recall that sij denotes a point on ∂Pi ∩ `j .

We prove the following claim in the appendix.

Claim: There exist two convex polygons P ′1 and P ′2 satisfying the following conditions:

1. P ′1 and P ′2 have the same outer common tangents as P1 and P2, namely `3 and `4.
2. P ′1 is to the left of `vert1 and p ∈ ∂P ′1; and P ′2 is to right of `vert2 and q ∈ ∂P ′2.
3. per(P ′1) = per(P1).
4. per(P ′1) + per(P ′2) 6 per(ch(P ′1 ∪ P ′2)).
5. There are points s′ij ∈ P ′i ∩ `j for all i ∈ {1, 2} and j ∈ {3, 4} such that ∂P ′1(s′13, p),
∂P ′1(p, s′14), ∂P ′2(s′24, q), and ∂P ′2(q, s′23) each consist of a single line segment.

6. Let s′2j(λ) := s′2j − (λ, 0) and let `′j(λ) be the line through s′1j and s′2j(λ) for j ∈ {3, 4}.
Then ∠(`′3(|pq|), `′4(|pq|)) > α/2.

Note that condition 2 implies that dist(P ′1,P ′2) = dist(P1,P2) = |pq|, and hence inequality (2)
follows from condition 3 if we manage to prove dist(P ′1,P ′2) > f(α) · per(P ′1). Therefore, with a
slight abuse of notation, we assume from now on that P1 and P2 satisfy the conditions in the
claim, where the points sij play the role as s′ij in conditions 5 and 6.

We now consider a copy of P2 that is translated horizontally to the left over a distance λ; see
Fig. 2. Let s24(λ), s23(λ), and q(λ) be the translated copies of s24, s23, and q, respectively, and
let `j(λ) be the line through s1j and s2j(λ) for j ∈ {3, 4}. Furthermore, define

Φ(λ) := |s13p|+ |s14p|+ |s23(λ)q(λ)|+ |s24(λ)q(λ)|

and
Ψ(λ) := |s13s23(λ)|+ |s14s24(λ)|.

Note that Φ(λ) = Φ is constant. By conditions 4 and 5, we know that

Φ 6 Ψ(0). (3)

5

D

[August 31, 2017 at 8:40 – classicthesis]

Note that q(|pq|) = p. We now apply Lemma 12 from the appendix to get

Φ−Ψ(|pq|) > sin(δ/2) · 1− cos(δ/2)

1 + sin(δ/2)
· (|s13p|+ |s14p|), (4)

where δ := ∠(`3(|pq|), `4(|pq|)). By condition 6, we know that δ > α/2. The function δ 7−→
sin(δ/2) · 1−cos(δ/2)1+sin(δ/2) is increasing for δ ∈ [0, π] and hence inequality (4) also holds for δ = α/2.

When λ increases from 0 to |pq| with unit speed, the value Ψ(λ) decreases with speed at
most 2, i.e., Ψ(λ) > Ψ(0)− 2λ. Using this and inequalities (3) and (4), we get

2|pq| > Ψ(0)−Ψ(|pq|) > Φ− Φ + sin(α/4) · 1− cos(α/4)

1 + sin(α/4)
· (|s13p|+ |s14p|),

and we conclude that

|pq| > 1

2
· sin(α/4) · 1− cos(α/4)

1 + sin(α/4)
· (|s13p|+ |s14p|). (5)

By the triangle inequality, |s13p|+ |s14p| > |s13s14|. Furthermore, for a given length of s13s14,
the fraction |s13s14|/(|s14c34|+ |c34s13|) is minimized when s13s14 is perpendicular to the angular
bisector of `3 and `4. (Recall that c34 is the intersection point of the outer common tangents `3
and `4; see Fig. 2.) Hence

|s13s14| > sin(α/2) · (|s14c34|+ |c34s13|) . (6)

We now conclude

|s13p|+ |s14p| = sin(α/2)
1+sin(α/2) ·

(
|s13p|+|s14p|

sin(α/2) + |s13p|+ |s14p|
)

> sin(α/2)
1+sin(α/2) ·

(
|s13s14|
sin(α/2) + |s13p|+ |s14p|

)
by the triangle inequality

> sin(α/2)
1+sin(α/2) ·

(
|s14c34|+ |c34s13|+ |s13p|+ |s14p|

)
by (6)

> sin(α/2)
1+sin(α/2) · per(P1),

where the last inequality follows because P1 is fully contained in the quadrilateral s14, c34, x13, p.
The statement (2) in the lemma now follows from (5).

We are now ready to prove Theorem 1.

Proof of Theorem 1. If the separation angle of P1 and P2 is at least π/6, we are done. Otherwise,
Lemma 2 gives that α > π/2, and Lemma 3 gives that dist(P1,P2) > f(π/2) · per(P1) >
(1/250) ·min(per(P1),per(P2)).

2.2 The algorithm

Theorem 1 suggests to distinguish two cases when computing an optimal partition: the case
where the separation angle is large (namely at least π/6) and the case where the separation
distance is large (namely at least csep ·min(per(P1), per(P2))). As we will see, the first case can
be handled in O(n log n) time and the second case in O(n log4 n) time, leading to the following
theorem.

Theorem 4. Let P be a set of n points in the plane. Then we can compute a partition (P1, P2)
of P that minimizes per(P1) + per(P2) in O(n log4 n) time using O(n log3 n) space.

6

D

[August 31, 2017 at 8:40 – classicthesis]

To find the best partition when the separation angle is at least π/6, we observe that in this
case there is a separating line whose orientation is j · π/7 for some 0 6 j < 7. For each of these
orientations we can scan over the points with a line ` of the given orientation, and maintain the
perimeters of the convex hulls on both sides. This takes O(n log n) time in total; see Appendix B.

Next we show how to compute the best partition with large separation distance. We assume
without loss of generality that per(P2) 6 per(P1). It will be convenient to treat the case where
P2 is a singleton separately. We prove the following lemma in the appendix.

Lemma 5. The point p ∈ P minimizing per(P \ {p}) can be computed in O(n log n) time.

It remains to compute the best partition (P1, P2) with per(P2) 6 per(P1) whose separation
distance is at least csep · per(P2) and where P2 is not a singleton. Let (P ∗1 , P

∗
2) denote this

partition. Define the size of a square1 σ to be its edge length. A square σ is a good square if (i)
P ∗2 ⊂ σ, and (ii) size(σ) 6 c∗ · per(P ∗2), where c∗ := 18. Our algorithm globally works as follows.

1. Compute a set S of O(n) squares such that S contains a good square.
2. For each square σ ∈ S, construct a set Hσ of O(1) halfplanes such that the following holds:

if σ ∈ S is a good square then there is a halfplane h ∈ Hσ such that P ∗2 = P (σ ∩ h), where
P (σ ∩ h) := P ∩ (σ ∩ h).

3. For each pair (σ, h) with σ ∈ S and h ∈ Hσ, compute per(P \ P (σ ∩ h)) + per(P (σ ∩ h)),
and report the partition (P \ P (σ ∩ h), P (σ ∩ h)) that gives the smallest sum.

Step 1: Finding a good square. To find a set S that contains a good square, we first
construct a set Sbase of so-called base squares. The set S will then be obtained by expanding the
base squares appropriately.

We define a base square σ to be good if (i) σ contains at least one point from P ∗2 , and (ii)
c1 · diam(P ∗2) 6 size(σ) 6 c2 · diam(P ∗2), where c1 := 1/4 and c2 := 4 and diam(P ∗2) denotes the
diameter of P ∗2 . Note that 2 · diam(P ∗2) 6 per(P ∗2) 6 4 · diam(P ∗2). For a square σ, define σ to be
the square with the same center as σ and whose size is (1 + 2/c1) · size(σ). The following lemma
is proved in the appendix.

Lemma 6. If σ is a good base square then σ is a good square.

To obtain S it thus suffices to construct a set Sbase that contains a good base square. To this
end we first build a compressed quadtree for P . For completeness we briefly review the definition
of compressed quadtrees; see also Fig. 3 (left).

Assume without loss of generality that P lies in the interior of the unit square U := [0, 1]2.
Define a canonical square to be any square that can be obtained by subdividing U recursively
into quadrants. A compressed quadtree [12] for P is a hierarchical subdivision of U , defined as
follows. In a generic step of the recursive process we are given a canonical square σ and the set
P (σ) := P ∩ σ of points inside σ. (Initially σ = U and P (σ) = P .)

• If |P (σ)| 6 1 then the recursive process stops and σ is a square in the final subdivision.

• Otherwise there are two cases. Consider the four quadrants of σ. The first case is that
at least two of these quadrants contain points from P (σ). (We consider the quadrants to
be closed on the left and bottom side, and open on the right and top side, so a point is
contained in a unique quadrant.) In this case we partition σ into its four quadrants—we

1Whenever we speak of squares, we always mean axis-parallel squares.

7

D

[August 31, 2017 at 8:40 – classicthesis]

B1

B2

B3

B4.1

B4.2

B4.3

Figure 3: A compressed quadtree and some of the base squares generated from it. In the right
figure, only the points are shown that are relevant for the shown base squares.

call this a quadtree split—and recurse on each quadrant. The second case is that all points
from P (σ) lie inside the same quadrant. In this case we compute the smallest canonical
square, σ′, that contains P (σ) and we partition σ into two regions: the square σ′ and the
so-called donut region σ \ σ′. We call this a shrinking step. After a shrinking step we only
recurse on the square σ′, not on the donut region.

A compressed quadtree for a set of n points can be computed in O(n log n) time in the appropriate
model of computation2 [12]. The idea is now as follows. Let p, p′ ∈ P ∗2 be a pair of points
defining diam(P ∗2). The compressed quadtree hopefully allows us to zoom in until we have a
square in the compressed quadtree that contains p or p′ and whose size is roughly equal to |pp′|.
Such a square will be then a good base square. Unfortunately this does not always work since p
and p′ can be separated too early. We therefore have to proceed more carefully: we need to add
five types of base squares to Sbase, as explained next and illustrated in Fig. 3 (right).

(B1) Any square σ that is generated during the recursive construction—note that this not only
refers to squares in the final subdivision—is put into Sbase.

(B2) For each point p ∈ P we add a square σp to Sbase, as follows. Let σ be the square of the
final subdivision that contains p. Then σp is a smallest square that contains p and that
shares a corner with σ.

(B3) For each square σ that results from a shrinking step we add an extra square σ′ to Sbase,
where σ′ is the smallest square that contains σ and that shares a corner with the parent
square of σ.

2In particular we need to be able to compute the smallest canonical square containing two given points in O(1)
time. See the book by Har-Peled [12] for a discussion.

8

D

[August 31, 2017 at 8:40 – classicthesis]

(B4) For any two regions in the final subdivision that touch each other—we also consider two
regions to touch if they only share a vertex—we add at most one square to Sbase, as follows.
If one of the regions is an empty square, we do not add anything for this pair. Otherwise
we have three cases.

(B4.1) If both regions are non-empty squares containing points p and p′, respectively,
then we add a smallest enclosing square for the pair of points p, p′ to Sbase.

(B4.2) If both regions are donut regions, say σ1 \ σ′1 and σ2 \ σ′2, then we add a smallest
enclosing square for the pair σ′1, σ

′
2 to Sbase.

(B4.3) If one region is a non-empty square containing a point p and the other is a donut
region σ \ σ′, then we add a smallest enclosing square for the pair p, σ′ to Sbase.

Lemma 7. The set Sbase has size O(n) and contains a good base square. Furthermore, Sbase
can be computed in O(n log n) time.

Proof. A compressed quadtree has size O(n) so we have O(n) base squares of type (B1) and (B3).
Obviously there are O(n) base squares of type (B2). Finally, the number of pairs of final
regions that touch is O(n)—this follows because we have a planar rectilinear subdivision of total
complexity O(n)—and so the number of base squares of type (B4) is O(n) as well. The fact that
we can compute Sbase in O(n log n) time follows directly from the fact that we can compute the
compressed quadtree in O(n log n) time [12].

It remains to prove that Sbase contains a good base square. We call a square σ too small
when size(σ) < c1 ·diam(P ∗2) and too large when size(σ) > c2 ·diam(P ∗2); otherwise we say that σ
has the correct size. Let p, p′ ∈ P ∗2 be two points with |pp′| = diam(P ∗2), and consider a smallest
square σp,p′ , in the compressed quadtree that contains both p and p′. Note that σp,p′ cannot be
too small, since c1 = 1/4 < 1/

√
2. If σp,p′ has the correct size, then we are done since it is a good

base square of type (B1). So now suppose σp,p′ is too large.
Let σ0, σ1, . . . , σk be the sequence of squares in the recursive subdivision of σp,p′ that contain p;

thus σ0 = σp,p′ and σk is a square in the final subdivision. Define σ′0, σ
′
1, . . . , σ

′
k′ similarly, but

now for p′ instead of p. Suppose that none of these squares has the correct size—otherwise we
have a good base square of type (B1). There are three cases.

• Case (i): σk and σ′k′ are too large.

We claim that σk touches σ′k′ . To see this, assume without loss of generality that size(σk) 6
size(σ′k′). If σk does not touch σ′k′ then |pp′| > size(σk), which contradicts that σk is too
large. Hence, σk indeed touches σ′k′ . But then we have a base square of type (B4.1) for the
pair p, p′ and since |pp′| = diam(P ∗2) this is a good base square.

• Case (ii): σk and σ′k′ are too small.

In this case there are indices 0 < j 6 k and 0 < j′ 6 k′ such that σj−1 and σ′j′−1 are too
large and σj and σ′j′ are too small. Note that this implies that both σj and σ′j′ result from
a shrinking step, because c1 < c2/2 and so the quadrants of a too-large square cannot be
too small. We claim that σj−1 touches σ′j′−1. Indeed, similarly to Case (i), if σj−1 and
σ′j′−1 do not touch then |pp′| > min(size(σj−1), size(σ′j′−1)), contradicting that both σj−1
and σ′j′−1 are too large. We now have two subcases.

– The first subcase is that the donut region σj−1 \σj touches the donut region σ′j′−1 \σj′ .
Thus a smallest enclosing square for σj and σ′j′ has been put into Sbase as a base

9

D

[August 31, 2017 at 8:40 – classicthesis]

square of type (B4.2). Let σ∗ denote this square. Since the segment pp′ is contained
in σ∗ we have

c1 · diam(P ∗2) < diam(P ∗2)/
√

2 = |pp′|/
√

2 6 size(σ∗).

Furthermore, since σj and σ′j′ are too small we have

size(σ∗) 6 size(σj) + size(σ′j′) + |pp′| 6 3 · diam(P ∗2) < c2 · diam(P ∗2), (7)

and so σ∗ is a good base square.

– The second subcase is that σj−1 \σj does not touch σ′j′−1 \σj′ . This can only happen if
σj−1 and σ′j′−1 just share a single corner, v. Observe that σj must lie in the quadrant
of σj−1 that has v as a corner, otherwise |pp′| > size(σj−1)/2 and σj−1 would not be
too large. Similarly, σ′j′ must lie in the quadrant of σ′j′−1 that has v as a corner. Thus
the base squares of type (B3) for σj and σ′j′ both have v as a corner. Take the largest
of these two base squares, say σj . For this square σ∗ we have

c1 · diam(P ∗2) < diam(P ∗2)/2
√

2 = |pp′|/2
√

2 6 size(σ∗),

since |pp′| is contained in a square of twice the size of σ∗. Furthermore, since σj is
too small and |pv| < |pp′| we have

size(σ∗) 6 size(σj) + |pv| 6 (c1 + 1) · diam(P ∗2) < c2 · diam(P ∗2). (8)

Hence, σ∗ is a good base square.

• Case (iii): neither (i) nor (ii) applies.

In this case σk is too small and σ′k′ is too large (or vice versa). Thus there must be an index
0 < j 6 k such that σj−1 is too large and σj is too small. We can now follow a similar
reasoning as in Case (ii): First we argue that σj must have resulted from a shrinking step
and that σj−1 touches σ′k′ . Then we distinguish two subcases, namely where the donut
region σj \ σj−1 touches σ′k′ and where it does not touch σ′k′ . The arguments for the two
subcases are similar to the subcases in Case (ii), with the following modifications. In the
first subcase we use base squares of type (B4.3) and in (7) the term size(σ′j′) disappears; in
the second subcase we use a type (B3) base square for σj and a type (B2) base square for
p′, and when the base square for p′ is larger than the base square for σj then (8) becomes
size(σ∗) 6 2 |p′v| < c2 · diam(P ∗2).

Step 2: Generating halfplanes. Consider a good square σ ∈ S. Let Qσ be a set of
4 · c∗/csep + 1 = 18001 points placed equidistantly around the boundary of σ. Note that the
distance between two neighbouring points in Qσ is less than csep/c

∗ · size(σ). For each pair
q1, q2 of points in Qσ, add to Hσ the two halfplanes defined by the line through q1 and q2. The
following lemma is proved in the appendix.

Lemma 8. For any good square σ ∈ S, there is a halfplane h ∈ Hσ such that P ∗2 = P (σ ∩ h).

10

D

[August 31, 2017 at 8:40 – classicthesis]

Step 3: Evaluating candidate solutions. In this step we need to compute for each pair (σ, h)
with σ ∈ S and h ∈ Hσ, the value per(P \P (σ∩h))+per(P (σ∩h)). We do this by preprocessing
P into a data structure that allows us to quickly compute per(P \ P (σ ∩ h)) and per(P (σ ∩ h))
for a given pair (σ, h). Recall that the bounding lines of the halfplanes h we must process have
O(1) different orientations. We construct a separate data structure for each orientation.

Consider a fixed orientation φ. We build a data structure Dφ for range searching on P
with ranges of the form σ ∩ h, where σ is a square and h is halfplane whose bounding line has
orientation φ. Since the edges of σ are axis-parallel and the bounding line of the halfplanes h
have a fixed orientation, we can use a standard three-level range tree [3] for this. Constructing
this tree takes O(n log2 n) time and the tree has O(n log2 n) nodes.

Each node ν of the third-level trees in Dφ is associated with a canonical subset P (ν), which
contains the points stored in the subtree rooted at ν. We preprocess each canonical subset P (ν)
as follows. First we compute the convex hull ch(P (ν)). Let v1, . . . , vk denote the convex-hull
vertices in counterclockwise order. We store these vertices in order in an array, and we store for
each vertex vi the value length(∂ P (v1, vi)), that is, the length of the part of ∂ ch(P (ν)) from
v1 to vi in counterclockwise order. Note that the convex hull ch(P (ν)) can be computed in
O(|P (ν)|) from the convex hulls at the two children of ν. Hence, the convex hulls ch(P (ν)) (and
the values length(∂ P (v1, vi))) can be computed in

∑
ν∈Dφ O(|P (ν)|) = O(n log3 n) time in total,

in a bottom-up manner.
Now suppose we want to compute per(P (σ ∩ h)), where the orientation of the bounding line

of h is φ. We perform a range query in Dφ to find a set N(σ ∩ h) of O(log3 n) nodes such that
P (σ ∩ h) is equal to the union of the canonical subsets of the nodes in N(σ ∩ h). Standard
range-tree properties guarantee that the convex hulls ch(P (ν)) and ch(P (µ)) of any two nodes
ν, µ ∈ N(σ ∩ h) are disjoint. Note that ch(P (σ ∩ h)) is equal to the convex hull of the set of
convex hulls ch(P (ν)) with ν ∈ N(σ ∩ h). Lemma 13 in the appendix thus implies that we can
compute per(P (σ ∩ h)) in O(log4 n) time.

Observe that P \ P (σ ∩ h) can also be expressed as the union of O(log3 n) canonical subsets
with disjoint convex hulls, since R2 \ (σ ∩ h) is the disjoint union of O(1) ranges of the right type.
Hence, we can compute per(P \P (σ ∩ h)) in O(log4 n) time. We thus obtain the following result,
which finishes the proof of Theorem 4.

Lemma 9. Step 3 can be performed in O(n log4 n) time and using O(n log3 n) space.

3 The approximation algorithm

Theorem 10. Let P be a set of n points in the plane and let (P ∗1 , P
∗
2) be a partition of P

minimizing per(P ∗1) + per(P ∗2). Suppose we have an exact algorithm for the minimum perimeter-
sum problem running in T (k) time for instances with k points. Then for any given ε > 0 we can
compute a partition (P1, P2) of P such that per(P1) + per(P2) 6 (1 + ε) ·

(
per(P ∗1) + per(P ∗2)

)
in

O(n+ T (nε)) time, where nε = O(1/ε2).

For the proof, we consider two cases and give an algorithm for each. When per(P ∗1) + per(P ∗2)
is small compared to the bounding box of P , we show that the exact solution can be found
in linear time. Otherwise, we construct a subset P̂ ⊆ P of size O(1/ε2) in linear time that
approximates the P with respect to the minimum perimeter-sum problem, and apply the exact
algorithm to get an optimal clustering of P̂ . Each point p ∈ P \ P̂ is then added to the cluster
containing the representative of p in P̂ . Let (P1, P2) be the resulting clustering. Our analysis
yields that per(P1) + per(P2) 6 (1 + ε) ·

(
per(P ∗1) + per(P ∗2)

)
. See Appendix D for more details.

11

D

[August 31, 2017 at 8:40 – classicthesis]

References

[1] P.K. Agarwal, M. Sharir Efficient algorithms for geometric optimization. ACM Comput.
Surv. 30(4): 412–458 (1998).

[2] T. Asano, B. Bhattacharya, M. Keil, and F. Yao. Clustering algorithms based on minimum
and maximum spanning trees. In Proc. 4th ACM Symp. Comput. Geom. (SoCG), pages
252–257, 1988.

[3] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:
Algorithms and Applications (3rd edition). Springer-Verlag, 2008.

[4] P. Brass, C. Knauer, C.-S. Shin, M. Smid, and I. Vigan. Range-aggregate queries for
geometric extent problems. In Proc. 19th Computing: Australasian Theory Symp. (CATS),
pages 3–10, 2013.

[5] V. Capoyleas, G. Rote, G. Woeginger. Geometric clusterings. J. Alg. 12(2): 341–356 (1991).

[6] T.M. Chan. More planar two-center algorithms. Comput. Geom. Theory Appl. 13(2): 189–198
(1999).

[7] H.G. Cho, W. Evans, N. Saeedi, and C.S. Shin. Covering points with convex sets of minimum
size. In Proc. 10th Int. Workshop Alg. Comput. (WALCOM), LNCS 9627, pages 166–178,
2016.

[8] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms (3rd
edition). MIT Press, 2009.

[9] O. Devillers and M.J. Katz. Optimal line bipartitions of point sets. Int. J. Comput. Geom.
Appl. 9(1): 39–51 (1999).

[10] Z. Drezner. The planar two-center and two-median problems. Transportation Science 18(4):
351–361 (1984).

[11] D. Eppstein. Faster construction of planar two-centers. In Proc. 8th ACM-SIAM Symp.
Discr. Alg. (SODA), pages 131–138 (1997).

[12] S. Har-Peled. Geometric approximation algorithms. Mathematical surveys and monographs,
Vol. 173. American Mathematical Society, 2011.

[13] J. Hershberger. Minimizing the sum of diameters efficiently. Comput. Geom. Theory
Appl. 2(2): 111–118 (1992).

[14] J.W. Jaromczyk and M. Kowaluk. An efficient algorithm for the Euclidean two-center
problem. In Proc. 10th ACM Symp. Comput. Geom. (SoCG), pages 303–311 (1994).

[15] D. Kirkpatrick and J. Snoeyink. Computing common tangents without a separating line. In
Proc. 4th Workshop Alg. Data Struct. (WADS), LNCS 955, pages 183–193, 1995.

[16] J.S.B. Mitchell and E.L. Wynters. Finding optimal bipartitions of points and polygons. In
In Proc. 2nd Workshop Alg. Data Struct. (WADS), LNCS 519, pages 202–213, 1991. Full
version available at http://www.ams.sunysb.edu/~jsbm/.

12

D

[August 31, 2017 at 8:40 – classicthesis]

[17] J. Rokne, S. Wang, and X. Wu. Optimal bipartitions of point sets. In Proc. 4th Canad.
Conf. Comput. Geom. (CCCG), pages 11–16, 1992.

[18] M. Segal. Lower bounds for covering problems. J. Math. Modelling Alg. 1(1): 17–29 (2002).

[19] M. Sharir. A near-linear algorithm for the planar 2-center problem. Discr. Comput.
Geom. 18(2): 125–134 (1997).

13

D

[August 31, 2017 at 8:40 – classicthesis]

x
b1 b2

t1

t2

r1

r2

m

r3p

δ

> δ/2

Figure 4: Illustration for Lemma 12. Φ is the total length of the four segments t1m, t2m, b1m,
b2m, and Ψ is equal to the total length of the two fat segments.

A Omitted lemma and proofs in Section 2.1

Lemma 11. Let p0 and q be points and v be a unit vector. Let p(t) := p0+t ·v and d(t) := |p(t)q|
and assume that p(t) 6= q for all t ∈ R. Then d′(t) = cos(∠(q, p(t), p(t) + v)) if the points
q, p(t), p(t) + v make a left-turn and d′(t) = − cos(∠(q, p(t), p(t) + v)) otherwise.3

Proof. We prove the lemma for an arbitrary value t = t0. By reparameterizing p, we may assume
that t0 = 0. Furthermore, by changing the coordinate system, we can without loss of generality
assume that p0 = (0, 0) and q = (x, 0) for some value x > 0.

Let φ := ∠((x, 0), (0, 0),v). Assume that v has positive y-coordinate—the case that v
has negative y-coordinate can be handled analogously. We have proven the lemma if we
manage to show that d′(0) = − cosφ. Note that since v has positive y-coordinate, we have
p(t) = (t cosφ, t sinφ) for every t ∈ R. Hence

d(t) =

√
(t cosφ− x)2 + t2 sin2 φ.

and

d′(t) =
t− x cosφ√

t2 − 2tx cosφ+ x2
.

Evaluating in t = 0, we get

d′(0) = −x cosφ

|x| = − cosφ,

where the last equality follows since x > 0.

The following lemma is illustrated in Fig. 4.

Lemma 12. Let x be a point and r1 and r2 be two rays starting at x such that ∠(r1, r2) = δ,
and assume that δ 6 π. Let b1, b2 ∈ r1 and t1, t2 ∈ r2 be such that b1 ∈ xb2 and t1 ∈ xt2, and let
m be a point in the quadrilateral b1b2t2t1. Then

Φ−Ψ > (1− cos(δ/2)) · sin(δ/2)

1 + sin(δ/2)
· (|b1m|+ |t1m|),

3Note that ∠(q, p(t), p(t) + v) = ∠(q, p(t), p(t) − v) by the definition of ∠(·, ·, ·) which is the reason that there
are two cases in the lemma.

14

D

[August 31, 2017 at 8:40 – classicthesis]

where Φ := |b1m|+ |t1m|+ |b2m|+ |t2m| and Ψ := |b1b2|+ |t1t2|.

Proof. First note that

|b1m|+ |b2m| > |b1b2| (9)

and
|t1m|+ |t2m| > |t1t2|. (10)

Let r3 be the angular bisector of r1 and r2. Assume without loss of generality that m lies in
the wedge defined by r1 and r3. Then ∠(m, t1, t2) > δ/2.

We now consider two cases.

• Case (A): |t1m| > sin(δ/2)
1+sin(δ/2) · (|b1m|+ |t1m|).

Our first step is to prove that

|t1m|+ |t2m| − |t1t2| > (1− cos(δ/2)) · |t1m|. (11)

Let p be the orthogonal projection of m on r2. Note that |t2m| > |t2p|. Consider first the
case that p is on the same side of t1 as x. In this case |t2p| > |t1t2| and therefore

|t1m|+ |t2m| − |t1t2| > |t1m| > (1− cos(δ/2)) · |t1m|,

which proves (11).

Assume now that p is on the same side of t1 as t2. In this case, we have ∠(m, t1, t2) 6 π/2
and thus |t1p| = cos(∠(m, t1, t2)) · |t1m| 6 cos(δ/2) · |t1m|. Hence we have

|t1m|+ |t2m| − |t1t2| > |t1m|+ |t2p| − (|t1p|+ |t2p|)
> (1− cos(δ/2)) · |t1m|,

and we have proved (11).

We now have

Φ−Ψ = |b1m|+ |t1m|+ |b2m|+ |t2m| − |b1b2| − |t1t2|
> |b1m|+ |b2m| − |b1b2|+ (1− cos(δ/2)) · |t1m| by (11)

> (1− cos(δ/2)) · sin(δ/2)
1+sin(δ/2) · (|b1m|+ |t1m|) by (9)

where the last step uses that we are in Case (A). Thus the lemma holds in Case (A).

• Case (B): |t1m| < sin(δ/2)
1+sin(δ/2) · (|b1m|+ |t1m|).

The condition for this case can be rewritten as

|b1m| >
1

1 + sin δ/2
· (|b1m|+ |t1m|). (12)

To prove the lemma in this case we first argue that ∠(b2, b1,m) > π/2. To this end, assume
for a contradiction that ∠(b2, b1,m) 6 π/2. It is easy to verify that for a given length
of t1m (and assuming ∠(b2, b1,m) 6 π/2), the fraction |b1m|/(|b1m|+ |t1m|) is maximized
when segment t1m is perpendicular to r2, and m ∈ r3, and b1 = x. But then

|b1m|
|b1m|+ |t1m|

6 1

1 + sin δ/2
,

15

D

[August 31, 2017 at 8:40 – classicthesis]

which would contradict (12). Thus we indeed have ∠(b2, b1,m) > π/2. Hence, |b2m| > |b1b2|,
and so |b1m|+ |b2m| − |b1b2| > |b1m|. We can now derive

Φ−Ψ = |b1m|+ |t1m|+ |b2m|+ |t2m| − |b1b2| − |t1t2|
> |b1m|+ |t1m|+ |t2m| − |t1t2| by the above
> 1

1+sin δ/2 ·
(
|b1m|+ |t1m|

)
by (10) and (12)

>
(

sin(δ/2) · (1− cos(δ/2))
)
· 1
1+sin δ/2 ·

(
|b1m|+ |t1m|

)

Thus the lemma also holds in Case (B).

Proof of the claim in the proof of Lemma 3. We show how to modify P1 and P2 until they have
all the required conditions. Of course, they already satisfy conditions 1–4. We first show how
to obtain condition 5, namely that ∂P1(s13, p) and ∂P1(p, s14)—and similarly ∂P2(s24, q) and
∂P1(q, s23)—each consist of a single line segment, as depicted in Fig. 2. To this end, let vij be
the intersection point `verti ∩ `j for i ∈ {1, 2} and j ∈ {3, 4}. Let s′ ∈ s14v14 be the point such
that length(∂P1(p, s14)) = |ps′|+ |s′s14|. Such a point exists since

|ps14| 6 length(∂P1(p, s14)) 6 |pv14|+ |v14s14|.

We modify P1 by substituting ∂P1(p, s14) with the segments ps′ and s′s14. We can now redefine
s14 := s′ so that ∂P1(p, s14) = ps14 is a line segment. We can modify P1 in a similar way
to ensure that ∂P1(s13, p) = s13p, and we can modify P2 to ensure ∂P2(s24, q) = s24q and
∂P2(q, s23) = qs23. Note that these modifications preserve conditions 1–4 and that condition 5
is now satisfied.

The only condition that (P1,P2) might not satisfy is condition 6. Let s2j(λ) := s2j − (λ, 0)
and let `j(λ) be the line through s2j(λ) and s1j for j ∈ {3, 4}. Clearly, if the slopes of `3 and
`4 have different signs (as in Fig. 2), the angle ∠(`3(λ), `4(λ)) is increasing for λ ∈ [0, |pq|], and
condition 6 is satisfied. However, if the slopes of `3 and `4 have the same sign, the angle might
decrease.

Consider the case where both slopes are positive—the other case is analogous. Changing
P2 by substituting ∂P2(s23, s24) with the line segment s23s24 makes per(P1) + per(P2) and
per(ch(P1 ∪ P2)) decrease equally much and hence condition 4 is preserved. This clearly has no
influence on the other conditions. We thus assume that P2 is the triangle qs23s24. Consider what
happens if we move s23 along the line `3 away from c34 with unit speed. Then |s13s23| grows
with speed exactly 1 whereas |qs23| grows with speed at most 1. We therefore preserve condition
4, and the other conditions are likewise not affected.

We now move s23 sufficiently far away so that ∠(`3, `3(|pq|)) 6 α/4. Similarly, we move s24
sufficiently far away from c34 along `4 to ensure that ∠(`4, `4(|pq|)) 6 α/4. It then follows that
∠(`3(|pq|), `4(|pq|)) > ∠(`3, `4)− α/2 = α/2, and condition 6 is satisfied.

B The best partition with large separation angle

Define the orientation of a line `, denoted by φ(`), to be the counterclockwise angle that ` makes
with the positive y-axis. If the separation angle of P1 and P2 is at least π/6, then there must be a
line ` separating P1 from P2 that does not contain any point from P and such that φ(`) = j · π/7
for some j ∈ {0, 1, . . . , 6}. For each of these seven orientations we can compute the best partition
in O(n log n) time, as explained next.

16

D

[August 31, 2017 at 8:40 – classicthesis]

Without loss of generality, consider separating lines ` with φ(`) = 0, that is, vertical separating
lines. Let X be the set of all x-coordinates of the points in P . For any x-value x ∈ X define
P1(x) := {p ∈ P | px 6 x}, where px denotes the x-coordinate of a point p, and define
P2(x) := P \ P1(x). Our task is to find the best partition of the form (P1(x), P2(x)) over all
x ∈ X. To this end we first compute the values per(P1(x)) for all x ∈ X in O(n log n) time
in total, as follows. We compute the lengths of the upper hulls of the point sets P1(x), for all
x ∈ X, using Graham’s scan [3], and we compute the lengths of the lower hulls in a second scan.
(Graham’s scan goes over the points from left to right and maintains the upper (or lower) hull of
the encountered points; it is trivial to extend the algorithm so that it also maintains the length of
the hull.) By combining the lengths of the upper and lower hulls, we get the values per(P1(x)).

Computing the values per(P2(x)) can be done similarly, after which we can easily find the best
partition of the form (P1(x), P2(x)) in O(n) time. Thus the best partition with large separation
angle can be found in O(n log n) time.

C Omitted lemma and proofs in Section 2.2

Proof of Lemma 5. The point p we are looking for must be a vertex of ch(P). First we compute
ch(P) in O(n log n) time [3]. Let v0, v1, . . . , vm−1 denote the vertices of ch(P) in counterclockwise
order. Let ∆i be the triangle with vertices vi−1vivi+1 (with indices taken modulo m) and let Pi
denote the set of points lying inside ∆i, excluding vi but including vi−1 and vi+1. Note that any
point p ∈ P is present in at most two sets Pi. Hence,

∑m
i=0 |Pi| = O(n). It is not hard to compute

the sets Pi in O(n log n) time in total. After doing so, we compute all convex hulls ch(Pi) in
O(n log n) time in total. Since

per(P \ {vi}) = per(P)− |vi−1vi| − |vivi+1|+ per(Pi)− |vi−1vi+1|,

we can now find the point p minimizing per(P \ {p}) in O(n) time.

Proof of Lemma 6. The distance from any point in σ to the boundary of σ is at least

size(σ)− size(σ)

2
> diam(P ∗2).

Since σ contains a point from P ∗2 , it follows that P ∗2 ⊂ σ. Since size(σ) 6 c2 · diam(P ∗2), we have

size(σ) 6 (2/c1 + 1) · c2 · diam(P ∗2) = 36 · diam(P ∗2) 6 c∗ · per(P ∗2).

Proof of Lemma 8. In the case where σ ∩ P ∗1 = ∅, two points in Qσ from the same edge of σ
define a half-plane h such that P ∗2 = P (σ ∩ h), so assume that σ contains one or more points
from P ∗1 .

We know that the separation distance between P ∗1 and P ∗2 is at least csep · per(P ∗2), where
csep = 1/250. Moreover, size(σ) 6 c∗ · per(P ∗2), where c∗ = 18. Hence, there is an empty open
stripe O with a width of at least csep/c

∗ · size(σ) separating P ∗2 from P ∗1 . Since σ contains a point
from P ∗1 , we know that σ \O consists of two pieces and that the part of the boundary of σ inside
O consists of two disjoint portions B1 and B2 each of length at least csep/c

∗ · size(σ). Hence the
sets B1 ∩Qσ and B2 ∩Qσ contain points q1 and q2, respectively, that define a half-plane h as
desired.

17

D

[August 31, 2017 at 8:40 – classicthesis]

Q1

Q2

Q3

Q5

Q6
U [6]

U [2]

U [5]

U [4]

U [1]

U [3]

Q4

Figure 5: A collection of disjoint polygons Q (left) and the vertical slices in the corresponding
list U which appear on the upper envelope (right). Note that polygon Q3 defines two slices that
contribute to the upper envelope.

Lemma 13. Let Q be a set of k pairwise disjoint convex polygons with m vertices in total.
Suppose each Q ∈ Q is represented by an array storing its vertices in counterclockwise order, and
suppose for each vertex vi of Q the value length(∂Q(v1, vi)) is known. Let Q :=

⋃
Q∈QQ. Then

we can compute the perimeter of ch(Q) in O(k logm) time.

Proof. Any ordered pair (Qi, Qj) of disjoint convex polygons has two outer common tangents:
the left outer tangent, which is the one having Qi and Qj on its right when directed from Qi to
Qj , and the right outer tangent. The bridge B(Qi, Qj) from Qi to Qj is the minimum-length
segment qiqj contained in the left outer tangent of Qi and Qj and connecting points in Qi and Qj .
The boundary ∂ ch(Q) consists of portions of boundaries ∂Q, where Q ∈ Q, that are connected
by bridges.

The upper convex hull of a set of points S, denoted by uh(S), is the part of ∂ ch(S) from
the rightmost to the leftmost point in S in counterclockwise direction. We compute a list L
that represents uh(Q). L consists of the polygons in Q having corners on uh(Q) in the order
they are encountered as we traverse uh(Q) from left to right. We denote the length of L as
|L| and the entries as L[1], . . . ,L[|L|], and do similarly for other lists. Consecutive polygons
L[i],L[i+ 1] should always be different, but the same polygon Q ∈ Q can appear in L multiple
times, since several portions of ∂Q can appear on uh(Q) interrupted by portions of boundaries
of other polygons.

The upper envelope of a set of points S, denoted env(S), is the subset {(x, y) ∈ S | ∀(x, y′) ∈
S : y′ 6 y}. In order to compute L, we first compute env(Q). Clearly, if a portion of the
boundary of a polygon Q ∈ Q is on uh(Q), then the same portion is also on env(Q). We thus
have uh(Q) = uh(env(Q)). The envelope env(Q) can be computed with a simple sweep-line
algorithm, as described next.

Define the x-range of a polygon Q ∈ Q to be the interval Ix(Q) := [xmin(Q), xmax(Q)], where
xmin(Q) and xmax(Q) denote the minimum and maximum x-coordinate of Q, respectively. For an
interval I ⊆ Ix(Q), define Q[I] to be the intersection of Q with the vertical slab I × (−∞,+∞).
We call Q[I] a vertical slice of Q. Our representation of Q allows us to do the following using
the algorithm described by Kirkpatrick and Snoeyink [15]: given vertical slices Q[I] and Q′[I ′],
compute the bridge B(Q[I], Q′[I ′]).

18

D

[August 31, 2017 at 8:40 – classicthesis]

Consider the upper envelope env(Q). It consists of portions of the upper boundaries of the
polygons in Q. Each maximal boundary portion of some polygon Q that shows up on env(Q)
defines a vertical slice of Q, namely the slice whose top boundary is exactly the envelope portion.
We create a list U that stores these vertical slices in left-to-right order; see Fig. 5. Consecutive
slices U [i],U [i+ 1] are always from different polygons, but multiple slices from the same polygon
Q ∈ Q can appear in U , since several portions of ∂Q can appear on env(Q) interrupted by
portions of boundaries of other polygons.

As mentioned, we will compute env(Q) using a sweep-line algorithm. As the sweep line `
moves from left to right, we maintain a data structure Σ containing all the polygons intersecting
` from top to bottom. Let Σtop be the topmost polygon in Σ. In case Σ is empty, so is Σtop. We
implement Σ as a red-black tree [8]. Note that since the polygons are disjoint, the vertical order
of any two polygons in Σ is invariant, and so Σ only needs to be updated when ` starts or stops
intersecting a polygon in Q. Thus, to find the sorted set of events we simply find the leftmost
point Li and the rightmost point Ri of each polygon Qi ∈ Q and sort these points from left to
right.

An event ej ∈ E is now handled as follows.

• If ej = Li, we insert Qi to Σ. This requires O(log k) comparisons between Qi and polygons
currently stored in Σ, to find the position where Q should be inserted. Each such comparison
can be done in O(1) time since Qi is above Qj if and only if LiRi is above LjRj .

If Σtop changes from some polygon Qh to Qi, then we add the appropriate vertical slice of
Qh to U . (This slice ends at the current position of the sweep line `, and it starts at the
most recent position of ` at which Qh became Σtop.)

• If ej = Ri then we delete Qi from Σ in O(log k) time. If Σtop was equal to Qi before the
event, we add the appropriate vertical slice of Qi to U .

There are 2k events to handle, each taking O(log k) time, so the total time used to compute U is
O(k log k).

We now proceed to the algorithm computing the list L representing the upper convex hull of
the vertical slices in U . In the sequel, we think of U as a list of polygons with disjoint x-ranges
sorted from left to right. Let M be a subsequence of U , and let bi be the bridge between M[i]
and M[i+ 1]. We say that a triple M[i− 1],M[i],M[i+ 1] is a valid triple if either

(a) the right endpoint of bi−1 lies strictly to the left of the left endpoint of bi, or

(b) the right endpoint of bi−1 coincides with the left endpoint of bi, and bi−1 and bi make a
right turn.

We need the following claim.

Claim: Suppose M satisfies the following conditions:

(i) All triples M[i− 1],M[i],M[i+ 1] in M are valid triples.

(ii) Every polygon U [i] that is not inM lies completely below one bridge bi between consecutive
polygons in M. (Note that this condition implies that the first element in M is U [1] and
the last element is U [|U|].)

Then M correctly represent uh(U).

19

D

[August 31, 2017 at 8:40 – classicthesis]

L[i+ 1]

L[i]

L[i− 1]

Figure 6: An invalid triple of polygons.

Proof of the Claim. Observe that condition (i), together with the definition of a valid triple,
implies that the bridges between consecutive polygons in U together with the relevant boundary
pieces—namely, for each polygon in U the piece of its upper boundary in between the bridges to
the previous and the next polygon in U—form a convex x-monotone chain. Hence, M represents
the upper hull of all polygons that appear in M. On the other hand, a polygon that does
not appear in M cannot contribute to uh(U) by condition (ii). We conclude that M correctly
represents uh(U).

We now describe the algorithm computing L, and we prove its correctness by showing that it
satisfies the conditions from the claim.

The algorithm is essentially the same as Andrew’s version of Graham’s scan [3] for point
sets, except that the standard right-turn check for points is replaced by a valid-triple check for
polygons. Thus it works as follows. We handle the polygons from U to L one by one in order
from U [1] to U [|U|]. To handle U [i] we first append U [i] to L. Next, we check if the last three
polygons in L defines a valid triple. If not, we remove the middle of the three polygons, and
check if the new triple at the end of L is valid, remove the middle polygon if the triple is invalid,
and so on. This continues until either the last triple in the list is valid, or we have only two
polygons left in L. We have then proceed to handle the next polygon, U [i+ 1].

We claim that the algorithm satisfies the following invariant: When we have added U [1], . . . ,U [i]
to L, then L defines the upper convex hull ch(U [1, . . . , i]). It clearly follows from this invariant
that when we have handled the last polygon in U , then L correctly defines uh(U).

We prove the invariant by induction. Assume therefore that it holds when we have added
the polygons U [1, . . . , i] to L and consider what happens when we add U [i + 1] to L. By our
invalid-triple removal procedure, after we have handled U [i+ 1] all triples U [j − 1],U [j],U [j + 1]
that remain in L must be valid, either because the triple was already in the list before the
addition of U [i+ 1], or because it is a triple involving U [i+ 1] (in which case it was explicitly
checked). Thus condition (i) is satisfied. To establish condition (ii) we only need to argue that
every polygon that is removed from L is completely below some bridge. This is true because the
middle polygon of an invalid triple lies below the bridge between the first and last polygon of the
triple—see Fig. 6. Hence, the resulting list L satisfies conditions (ii) as well. This completes the
proof of the correctness of the algorithm.

Since U has size O(k), we need to do O(k) checks for invalid triples. Each such check involves
the computation of two bridges, which takes O(logm) time. Thus the whole procedure takes
O(k logm) time. It is easy to compute the length of uh(Q) within the same time bounds.
Similarly, we can compute the lower convex hull of Q and its length in O(k logm) time. This
finishes the proof of the lemma.

20

D

[August 31, 2017 at 8:40 – classicthesis]

D Omitted proof in Section 3

Proof of Theorem 10. Consider the axis-parallel bounding box B of P . Let w be the width of B
and let h be its height. Assume without loss of generality that w > h. Our algorithm works in
two steps.

• Step 1: Check if per(P ∗1) + per(P ∗2) 6 w/16. If so, compute the exact solution.

We partition B vertically into four strips with width w/4, denoted B1, B2, B3, and B4 from
left to right. If B2 or B3 contains a point from P , we have per(P ∗1)+per(P ∗2) > w/2 > w/16
and we go to Step 2. If B2 and B3 are both empty, we consider two cases.

– Case (i): h 6 w/8.

In this case we simply return the partition (P ∩ B1, P ∩ B4). To see that this is
optimal, we first note that any subset P ′ ⊂ P that contains a point from B1 as
well as a point from B4 has per(P ′) > 2 · (3w/4) = 3w/2. On the other hand,
per(P ∩B1) + per(P ∩B4) 6 2 · (w/2 + 2h) 6 3w/2.

– Case (ii): h > w/8.

We partition B horizontally into four rows with height h/4, numbered R1, R2, R3,
and R4 from bottom to top. If R2 or R3 contains a point from P , we have per(P ∗1) +
per(P ∗2) > h/2 > w/16, and we go the Step 2. If R2 and R3 are both empty,
we overlay the vertical and the horizontal partitioning of B to get a 4 × 4 grid
of cells Cij := Bi ∩ Rj for i, j ∈ {1, . . . , 4}. We know that only the corner cells
C11, C14, C41, C44 contain points from P . If three or four corner cells are non-empty,
per(P ∗1) + per(P ∗2) > 6h/4 > w/16. Hence, we may without loss of generality assume
that any point of P is in C11 or C44. We now return the partition (P ∩C11, P ∩C44),
which is easily seen to be optimal.

• Step 2: Handle the case where per(P ∗1) + per(P ∗2) > w/16.

The idea is to compute a subset P̂ ⊂ P of size O(1/ε2) such that an exact solution to the
minimum perimeter-sum problem on P̂ can be used to obtain a (1 + ε)-approximation for
the problem on P .

We subdivide B into O(1/ε2) rectangular cells of width and height at most c := εw/(64
√

2π).
For each cell C where P ∩ C is non-empty we pick an arbitrary point in P ∩ C, and we
let P̂ be the set of selected points. For a point p ∈ P̂ , let C(p) be the cell containing p.
Intuitively, each point p ∈ P̂ represents all the points P ∩C(p). Let (P̂1, P̂2) be a partition
of P̂ that minimizes per(P̂1) + per(P̂2). We assume we have an algorithm that can compute
such an optimal partition in T (|P̂ |) time. For i = 1, 2, define

Pi :=
⋃

p∈P̂i

P ∩ C(p).

Our approximation algorithm returns the partition (P1, P2). (Note that the convex hulls of
P1 and P2 are not necessarily disjoint.) It remains to prove the approximation ratio.

First, note that per(P̂1) + per(P̂2) 6 per(P ∗1) + per(P ∗2) since P̂ ⊆ P . For i = 1, 2, let P̃i
consist of all points in the plane (not only points in P) within a distance of at most

√
2c

from ch(P̂i). In other words, P̃i is the Minkowksi sum of ch(P̂i) with a disk D of radius√
2c centered at the origin; see Fig. 7. Note that if p ∈ P̂i, then q ∈ P̃i for any q ∈ P ∩C(p),

21

D

[August 31, 2017 at 8:40 – classicthesis]

Figure 7: The crossed points are the points of P̂ . The left gray region is P̃1 and the right gray
region is P̃2. The left purple-colored polygon is the convex hull of P1 and the right purple-colored
polygon is the convex hull of P2.

since any two points in C(p) are at most
√

2c apart from each other. Therefore Pi ⊂ P̃i and
hence per(Pi) 6 per(P̃i). Note also that per(P̃i) = per(P̂i) + 2

√
2cπ. These observations

yield

per(P1) + per(P2) 6 per(P̃1) + per(P̃2)

= per(P̂1) + per(P̂2) + 4
√

2cπ

6 per(P ∗1) + per(P ∗2) + 4
√

2cπ

= per(P ∗1) + per(P ∗2) + 4
√

2π ·
(
εw/(64

√
2π)
)

6 per(P ∗1) + per(P ∗2) + εw/16
6 (1 + ε) · (per(P ∗1) + per(P ∗2)).

As all the steps can be done in linear time, the time complexity of the algorithm is
O(n+ T (nε)) for some nε = O(1/ε2).

22

D

[August 31, 2017 at 8:40 – classicthesis]

	Abstract
	Resume
	Preface
	Contents
	Synopsis
	1 Introduction
	1.1 Notation and definitions

	2 The Common Tangent Problem
	2.1 Introduction
	2.2 Basic terminology and notation
	2.3 Algorithms
	2.4 Concluding remarks

	3 The Art Gallery Problem
	3.1 Introduction
	3.2 Irrational guards
	3.3 R-completeness
	3.3.1 The complexity class R
	3.3.2 Our results
	3.3.3 Other R-complete problems
	3.3.4 Overall structure of the reductions

	3.4 Concluding remarks

	4 The Minimum Perimeter Sum Problem
	4.1 Introduction
	4.2 Our contribution

	Bibliography

	Appendix
	A Common Tangents of Two Disjoint Polygons in Linear Time and Constant Workspace
	B Irrational Guards are Sometimes Needed
	C The Art Gallery Problem is R-complete
	D Minimum Perimeter-Sum Partitions in the Plane

