
University of Copenhagen

New Ideas on Labeling Schemes

Author:
Noy Rotbart

Supervisors:
Prof. Jakob Grue
Simonsen and Prof.
Christian Wulff-Nilsen

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy

in the

Department of Computer Science

October 18, 2016

3

UNIVERSITY OF COPENHAGEN

Abstract
Faculty of Sciences

Department of Computer Science

Doctor of Philosophy

New Ideas on Labeling Schemes

by Noy Rotbart

With ever increasing size of graphs, many distributed graph systems emerged
to store, preprocess and analyze them. While such systems ease up conges-
tion on servers, they incur certain penalties compared to centralized data
structure. First, the total storage required to store a graph in a distributed
fashion increases. Second, attempting to answer queries on vertices of a
graph stored in a distributed fashion can be significantly more complicated.

In order to lay theoretical foundations to the first penalty mentioned a
large body of work concentrated on labeling schemes. A labeling scheme
is a method of distributing the information about the structure of a graph
among its vertices by assigning short labels, such that a selected function on
vertices can be computed using only their labels. Using labeling schemes,
specific queries can be determined using little communication and good run-
ning times, effectively eliminating the second penalty mentioned.

We continue this theoretical study in several ways. First, we dedicate
a large part of the thesis to the graph family of trees, for which we pro-
vide an overview of labeling schemes supporting several important functions
such as ancestry, routing and especially adjacency. The survey is com-
plemented by novel contributions to this study, among which are the first
asymptotically optimal adjacency labeling scheme for bounded degree trees,
improved bounds on ancestry labeling schemes, dynamic multifunctional la-
beling schemes and an experimental evaluation of fully dynamic labeling
schemes.

Due to a connection between adjacency labeling schemes and the graph
theoretical study of induced universal graphs, we study these in depth and
show novel results for bounded degree graphs and power-law graphs. We also
survey and make progress on the related implicit representation conjecture.
Finally, we extend the concept of labeling schemes to allow for a better
understanding of the space cost incurred by information dissemination.

5

Acknowledgements
This thesis is dedicated to my son Noah Poralla Rotbart, who was born
halfway through its writing, and who learned to walk faster than I understood
Noga Alon’s new result.

I would like to thank both my supervisors Jakob Grue Simonsen and
Christian Wulff-Nilsen. It was only in my last paper that I finally got to
have a fruitful work with both (along with Casper Petersen), but they were
each supportive, fun to talk to and incredibly smart. My first publication was
the result of a long lasting friendship with David Adjiashvili. I can’t start
describing what it meant to me, and I’m very grateful for his support. My
second publication was born in the office I shared with Marcos Vaz Zalles,
and a follow up Masters student thesis with Iasonas Zotos. Our conversations
were not only amusing, but taught me a lesson about the huge gap existing
between industry and research, in particular in algorithms. Follow up con-
versations led to the idea behind my third publication, and upon moving to
an office with Soren Dalgaard, it was only appropriate that we will work on it
together. Soren’s part in our paper was a difficult one, and when discussing
the matter with Mathias Knudsen, a solution was quickly found. The latter
proved much more dominant in the follow up paper. I am very pleased to
have had papers with these two.

I would like to thank Pierre Fraigniaud, Amos Korman and Adi Rozen for
good talks and hosting when I was in Paris, and Viktor Zamarev and Vadim
Lozin for a nice hosting in Warwick, Mike and Fran Fellows for inviting me
to their cool conferences, and Oren Weimann and Ofer Freedman for a nice
week in Haifa.

Patrick Hagge Cording and Brian Brost kept me in good shape through-
out this period, and I thank them for that and for being great friends. I
had a great mentoring from Julia Lawall, and to many extents she can be
considered a co-supervisor of this thesis. I would also like to thank Benny
Chor for keeping my spirit up with some top notch Hummus.

I would like to thank my parents Yaron and Carmia, as well as my broth-
ers Nativ and Tzlil for their love and support. My last thanks is for my
girlfriend and the mother of my child Henrike Poralla, who keeps me both
grounded and inspired.

7

Contents

Abstract 3

Acknowledgements 5

1 Introduction 1
1.1 An example . 2
1.2 Discussed functions . 3
1.3 The structure of the thesis . 4
1.4 Practical and theoretical applications of labeling schemes . . . 5
1.5 Preliminaries . 6
1.6 Graph families related definitions 6
1.7 Basic tree related definitions 7
1.8 Definitions and generalizations of labeling schemes 7

1.8.1 Generalizations . 8
1.8.2 A subtle point regarding the size of the graphs 9
1.8.3 Predefined naming . 9

2 Common Algorithm Techniques 11
2.1 Binary strings and bit tricks 11

2.1.1 Number representation 11
2.1.2 Padding . 11
2.1.3 Approximation using O(log log n) bits 11
2.1.4 Word storing in a string 12

2.2 Efficient encodings . 12
2.2.1 A dfsi traversal . 12
2.2.2 Suffix-free codes . 12
2.2.3 Alphabetic sequences 13

2.3 Tree decompositions . 13
2.3.1 Heavy-light decomposition 14
2.3.2 Separator . 14
2.3.3 Spines decomposition 15
2.3.4 Clustering . 16

2.4 Boxes and groups . 17

3 Introduction to Adjacency Labeling Schemes on Trees 19
3.1 Literature overview . 19
3.2 A log n+O(log∗ n) labeling scheme for Trees(n) 20

3.2.1 A log n+O(log log n) simple labeling scheme 20
3.2.2 A modified cluster tree 21
3.2.3 The final labeling scheme 22

3.3 Traversal and jumping . 23
3.4 One-sided error Adjacency labeling scheme 24

8 Contents

4 Adjacency for Bounded degree: Trees, Planar graphs and
Graphs 27
4.1 Our methods . 28
4.2 A compact edge-universal graph for bounded-degree outerpla-

nar graphs . 28
4.3 Warm-up: a log n+O(log log n) Labeling Scheme 29
4.4 The encoder . 29

4.4.1 Differential sizing - the suffix of a label 29
4.4.2 Resolving ambiguity. 31
4.4.3 Constructing the prefix. 33
4.4.4 The final labels. 33

4.5 Decoding . 35
4.6 Computing the embedding φ 36
4.7 Improvements and special cases 37
4.8 Planar graphs . 37
4.9 Graph of bounded, but not constant degree 39
4.10 Concluding remarks . 42

5 Adjacency Labeling Schemes for Power-Law Graphs 43
5.1 Preliminaries . 44
5.2 Defining power-law graphs . 45
5.3 Comparison to other deterministic models 47
5.4 The labeling schemes . 48
5.5 A labeling scheme for random graphs 49
5.6 Lower bounds . 49
5.7 Bypassing the lower bound 51
5.8 A Distance labeling scheme 52
5.9 Experimental study . 53
5.10 Conclusion and future work 57

6 On the Implicit Representation Conjecture 59
6.1 Introduction . 59
6.2 The implicit representation conjecture 61
6.3 Segment intersection graphs 62
6.4 Non polynomially decodable implicit graph classes 64

6.4.1 Preliminaries . 64
6.4.2 The construction . 65

6.5 The implicit representation conjecture holds for speeds 2O(n1/2) 67

7 Ancestry Labeling Schemes 69
7.1 The classic algorithm . 69
7.2 Literature review . 69

7.2.1 Preliminaries . 70
7.3 A method for interval based labeling schemes 70
7.4 Using the method to describe the Classic labeling 73
7.5 An improved log n+ 2 log log n Ancestry labeling scheme . . . 74
7.6 Lower bound . 77
7.7 Dynamic Ancestry labeling schemes 77

Contents 9

8 Multifunctional and Dynamic Labeling Schemes 81
8.1 Introduction . 81

8.1.1 Our contribution . 82
8.1.2 Preliminaries . 83

8.2 Dynamic labeling schemes . 83
8.2.1 Upper Bounds . 84
8.2.2 Lower Bounds . 84
8.2.3 Other Graph Families 85
8.2.4 Dynamic multifunctional Labeling Schemes 86

8.3 Static multifunctional Labeling Schemes 86
8.3.1 Lower Bounds . 87

8.4 Concluding remarks . 90

9 An experimental analysis of dynamic labeling schemes 91
9.1 Introduction . 91

9.1.1 Preliminaries . 92
9.2 Dynamic labeling schemes for tree networks 93

9.2.1 Brief overview . 93
9.3 Experimental framework . 95
9.4 Experimental results . 96

9.4.1 SemGL . 96
9.4.2 Comparison of SemGL and SemDL 98
9.4.3 Fully-dynamic labeling schemes 99

9.5 Conclusions . 101

10 Routing Labeling Schemes 103
10.1 Introduction to Routing schemes 103

10.1.1 Literature review . 104
10.2 Designer port model . 104
10.3 Fixed Port Model . 108

11 The Future 109
11.1 Cluster labeling . 109

11.1.1 Definition . 110
11.1.2 Motivating examples 110

11.2 Open Questions . 113
11.2.1 Open questions on trees 113
11.2.2 Open questions on other graph families 114

A Labeling Schemes for Nearest Common Ancestor 129
A.1 Literature review . 129
A.2 Id-NCA . 130

A.2.1 NCA, SepLevel , and their connection to Distance . . . 130
A.2.2 Upper bound for Id-NCA 131

A.3 Label-NCA . 132
A.3.1 Label-NCA with O(log n) bits 133

B Proofs Omitted 135
B.1 Proof of Lemma 5 . 135
B.2 Proof of the claim in Section 3.3 136

11

List of Tables

1.1 Known upper/lower bounds for labeling schemes on trees . . . 10

4.1 Adjacency labels for various bounded degree graphs 28

5.1 Power-law experimental data sets 55
5.2 Label sizes for the power-law graphs labeles 56

6.1 Best known results for induced universal graphs for particular
graph families . 61

8.1 Bounds on dynamic and static label sizes for various functions
on trees . 82

9.1 Label size estimates for dynamic labeling schemes for trees . . 94
9.2 The distribution of messages per vertex for GL 100

1

Chapter 1

Introduction

The Internet is a large geographically dispersed network, and information
about its structure is needed by all its participants. Decentralizing the struc-
tural information is a key part in the scalability and performance thereof.

Labeling schemes are methods of distributing the structure of a graph
among its vertices, such that certain queries can be answered in a short time.
Moreover, the information needed to answer the queries should be contained
in the labels of the questioned vertices themselves. On the one hand, storing
the entire data structure at each vertex would result in short answer time
for each query. On the other hand, such replications would defy the aim
of distributing information. Therefore, the primary indicator of the quality
of a labeling scheme is the size of the labels it produces in the worst-case
scenario.

Labeling schemes are tailored for specific types of queries. Adjacency
labeling schemes were the first to be investigated in the literature. The
vertices in a graph are labeled in such a way that the Adjacency between two
vertices can be determined directly from their labels. A restricted form of
Adjacency labeling schemes for graphs was studied almost 50 years ago by
Brauer [1]. The more general concept was defined 25 years later by Kannan,
Naor and Rudich [2] as well as by Muller [3]. Following that, the idea laid
dormant for over a decade until it was noticed that labeling schemes could
also be defined for many other types of queries other than Adjacency . This
observation revived interest in labeling schemes and triggered an abundance
of subsequent publications, including many variants of the concept. Further
details on the historical development of labeling schemes can be found in [4].

We investigate labeling schemes for the restricted graph families, and
most notably, the family of trees with at most n vertices. This particular
family is chosen for the following reasons: When graphs are considered, la-
beling schemes for all of the functions we study require a label size that is
in the order of the size of the graph itself. Even the most basic query, Ad-
jacency , labeling schemes requires at least n/2 bits to support the family
of graphs [5]. It is thus not surprising that the focus of the body of work
surveyed, and the early definitions of labeling schemes, require labels of size
poly-logarithmic in the size of the graph. On the other hand, techniques in-
troduced in the papers surveyed contributed directly to labeling schemes for
several families of graphs. Among others, bounded tree-width [6], bounded
degree [7], bounded arboricity [8], and planar graphs [9] labeling schemes
for various functions are obtained directly from their corresponding labeling
schemes for trees.

2 Chapter 1. Introduction

1.1 An example

Before diving into practical applications and details of the precise definition
of labeling schemes, it is instructive to warm up with a small example ac-
companied by some general remarks. This section therefore presents a simple
Adjacency labeling scheme for trees: What this means will be made precise
later, but the general idea is to construct an algorithm that associates with
every vertex a label, which is just some data, such that, given the labels of
two vertices, one can determine if the vertices are adjacent or not.

Consider an arbitrary rooted tree with n vertices. Enumerate the vertices
in the tree with the numbers 0 through n − 1 as binary strings, and let,
for each vertex v, Id(v) be the number associated with v and p(v) be the
parent of v in T . The encoding of the labels is demonstrated in Figure 1.1.
Given the labels L(v) = (Id(v), Id(p(v)) and L(u) = (Id(u), Id(P (u)) for two
vertices v and u, they are adjacent if and only if either Id(p(v)) = Id(u) or
Id(p(u)) = Id(v) but not both, so that the root is not adjacent to itself.

1,1

14,1

23,1416,14

22,1618,16

21,1820,1819,18

17,16

15,14

12,1

13,12

2,1

4,23,2

10,3

11,10

7,3

9,78,7

5,3

6,5

Figure 1.1: A tree with n = 23 vertices. Each vertex is
assigned a label of size 2 log n supporting Adjacency queries.
A vertex v with parent u is labeled (Id(v), Id(u)) and the

root r is labeled (Id(r), Id(r)).

This is a labeling scheme. It consists of an encoder algorithm that labels
the vertices of a tree and a decoder algorithm that can answer Adjacency
queries using only labels as input. Note that the encoding algorithm relies
on knowing the entire tree, whereas the decoding algorithm only knows the
labels it receives as input and nothing else.

Recall that the quality of a labeling scheme is measured by the size of
the label it produces in the worst case. In the above example, the pair
(Id(u), Id(v)) can be represented as a binary string of length 2 dlog ne 1. The
goal is to find an optimal labeling scheme: that is, one where the worst-case
label size is as small as theoretically possible.

There are two main characteristics of a labeling scheme. First, there
is the type of query for which the labeling scheme has been constructed.
In our example, the type of query is “Adjacency”, but it could also have
been something else, for example “Ancestry” (is one vertex an ancestor of
the other?) or “Distance” (what is the distance between two vertices?).
Second, there is the family of graphs under consideration. In our example,
the labeling scheme is for the family of all trees, but both smaller and larger
families would have been possible. A different choice of query or a different

1From hereon, unless stated otherwise, logn stands for log2 n, and n is assumed to be
a power of 2.

1.2. Discussed functions 3

choice of graph family may lead to an entirely different labeling scheme with
different properties and a different optimal worst-case label size.

1.2 Discussed functions

The thesis provides some overview of labeling schemes where the maximum
(worst-case) label size is as small as possible. The problem of finding such
labeling schemes for a graph family G for a given function f is known as the
f -labeling problem for G. An overview of applications for labeling scheme is
provided in Section 1.4, and formal definitions in Section 1.5.

Let k ∈ N, and let G = (V,E) ∈ Graphs(n) a simple graph. We investi-
gate labeling schemes supporting the following functions for any u, v ∈ V :

1. Adjacency : (V × V)→ {false, true} (Chapters 3 to 6)
AdjacencyG(u, v) = true if and only if u and v are adjacent in G.

2. Distance : (V × V)→ N (Chapter 5)
DistanceG(u, v) returns the length of the shortest path u v in G,
which is equal to the number of edges in u v if G in unweighted.

We provide special detail for functions on trees: Let k ∈ N, and let
T = (V,E) ∈ Trees(n) be a tree rooted in r. We investigate labeling schemes
supporting the following functions for any u, v ∈ V :

3. Siblings : (V × V)→ {false, true} (Chapter 8)
SiblingsT (u, v) = true if and only if the parent of u is the parent of v
in T for u 6= r and v 6= r. A vertex is its own sibling.

4. Connectivity : (V × V)→ {false, true} (Chapter 8)
Connectivity(u, v) = true if and only if u and v are in the same com-
ponent in G.

5. Ancestry : (V × V)→ {false, true} (Chapter 7)
AncestryT (u, v) = true if and only if u is an ancestor of v in T .

6. Routing : (V × V)→ N (Chapter 10)
RoutingT (u, v) returns the port number (Definition 18) leading to the
next vertex on the path u v in T .

7. NCA : (V × V)→ {0, 1}+ (Appendix A)
NCAT (u, v) returns the label of the first vertex in common for the paths
v r and u r in T .

Additional functions for labeling schemes were studied in the literature.
Some of these are also defined for the family of edge weighted n vertex trees,
i.e. trees where each edge is assigned an integer at most 2M for some integer
M . We denote this family as WeightedTrees(n, 2M).

8. Center : (V × V × V)→ {0, 1}+
CenterT (u, v, w) returns the unique vertex z such that the three paths
z u, z v, and z w in T are edge-disjoint.

9. MaxFlow : (V × V)→ N
MaxFlowT (u, v) returns the smallest edge weight on u v in T .

4 Chapter 1. Introduction

10. SepLevel : (V × V)→ {0, 1}+ (Appendix A)
SepLevelT (u, v) returns the length of the path r w in T where r is
the root and w is NCAT (u, v).

11. Small-Distance : (V × V × N)→ N
Small-DistanceT (u, v, k) = true if and only if DistanceT (u, v) ≤ k in
T , otherwise, it returns ∞.

A full report of known results for the aforementioned functions is found
in Table 1.1.

1.3 The structure of the thesis

The work on this thesis begun with a survey for labeling schemes on trees, and
parts of it are included therein. The following sections of this thesis belong
to this survey: Chapter 2 for an overview of techniques, Chapter 3 for the
function Adjacency , Chapter 7 includes a survey on Ancestry , Chapter 10
for the function Routing2 and Appendix A for the function NCA. This thesis
includes the following novel contributions:

1. Chapter 4 appeared in ICALP 2014’ [7]. It concerns asymptotically
optimal labeling schemes for bounded degree outer-plannar graphs and
trees. In this work we also introduce Adjacency labeling schemes for
bounded (non constant) degree graphs. The version presented in the
thesis includes the complete proofs, including the ones omitted in [7],
along with additional results for planar graphs in Section 4.8.

2. Chapter 5 appeared in ICALP 2016’ [10] (and in PODC 2016’ [11] as
an announcement). In this work we pioneer the study of Adjacency
labeling schemes for power-law graphs, and show some other results on
Adjacency labeling scheme for this family as well as a careful analysis
of Adjacency labeling schemes for sparse graphs. The version in the
thesis includes an experimental analysis of our labeling scheme.

3. Chapter 6 is an extract from an upcoming survey on the implicit rep-
resentation conjecture along with Prof. Vadim Lozin and Dr. Viktor
Zamarev from University of Warwick. It contains several novel results
regarding the implicit representation conjecture.

4. Chapter 7 contains a result from ICALP 2015’ [12] improving the best
known Ancestry labeling scheme for trees from log n + 4 log log n to
log n+ 2 log log n using a significantly simpler method.

5. Chapter 8 appeared in ISAAC 2014’ [13] (and in DISC 2014’ [14] as
an announcement). We studied labeling schemes incorporating several
the aforementioned labeling schemes3 as well as extension of these to
a dynamic case.

6. Chapter 9 appeared in SEA 2014’ [15] . It is an experimental evaluation
of a previously studied dynamic labeling schemes with permitted re-
labeling.

2We stress that Chapter 10 includes a repair of the main theorem of the best known
upper bound for the function.

3We describe such results as multifunctional labeling schemes.

1.4. Practical and theoretical applications of labeling schemes 5

7. Chapter 11 consists of (i) a dedicated to a novel concept that gener-
alize the notion of labeling schemes to better understand the cost of
information dissemination, and (ii) an overview of open questions.

1.4 Practical and theoretical applications of label-
ing schemes

Labeling schemes have contributed directly to a number of areas, including
XML querying, graph theory, shortest paths in road networks and routing
schemes.

XML querying. Extensible Markup Language (XML) documents are a
popular and ubiquitous standard for exchanging structured data on the In-
ternet [16]. An XML document can be viewed as a rooted tree in which each
vertex corresponds to a semantic element, enclosed by matching beginning
and end tags in the form <item> . . . </item>. When searching for informa-
tion in an XML document, one will typically not only search for pure text
but also utilize the semantic structure of the document and specify, for ex-
ample, certain ancestry relations in the document tree. By using a labeling
scheme, queries of this type can be answered directly from labels, which can
be stored in a hash table, without having to access the actual document.
This can have a significant positive impact on performance, and has been
studied extensively [16–21].

To achieve a good performance for queries on XML documents, it is im-
portant that a large part of the document’s indexed structure can reside in
main memory. Since these structures can be extremely large, every single bit
counts. Much of the work in this particular direction focused on seemingly
small benefits. For example, both relations used by practitioners, namely,
Adjacency (illustrated in Figure 1.1) and ancestry had strikingly simple la-
beling schemes with labels of at most 2 log n bits [2]. In order to identify the
XML element specifically the labels of an element in an XML file with at
most n elements requires at least log n bits label size. The effort to reduce
the single additive log n contributed not only to the performance of XML
queries but also to the subject of implicit representation of trees.

Graph theory. If the query type supported by a labeling scheme allows
the entire graph to be reconstructed from the labels, then the collection of
labels can be seen as a disseminated representation of the graph: that is, a
representation where the graph is not stored as a single structure but can
be determined from a collection of smaller structures. This is in contrast
to any global representation of a graph, for example an adjacency matrix,
where the adjacency between two vertices is determined by consulting the
relevant entry in a single entity, and where the index of each vertex contains
no relevant information in itself but serves only as a placeholder or a pointer
to the entries of the matrix. In this sense, a labeling scheme is more efficient
since it does not waste space on meaningless placeholders. This, however,
does not mean that the collection of labels in total uses less space than a
traditional representation: on the contrary, the extra requirement that the
data structure must be disseminated may lead to one that is larger in total.
We explore this overhead further in Section 11.1.

6 Chapter 1. Introduction

Kannan et al. [2] noticed the tight correlation between Adjacency labeling
schemes and the induced-universal graphs, a topic researched extensively
since the 1960’s [5]. For various numbers of families, the goal is to find
the smallest number of vertices required for a graph that contains each of
the n-vertex graphs of the family as induced subgraphs. We defer further
discussion on the nature of this connection to Chapter 6.

Shortest paths in road networks. Another practical aspect of labeling
schemes concerns distributed shortest paths on road networks. Gavoille et
al. [22] first investigated Distance labeling schemes. Abraham et al. [23, 24]
modified the labeling schemes to achieve a distributed system to answer
reachability and shortest path queries on road networks.

Routing schemes. Perhaps the most practical application of labeling schemes
arises from routing schemes. In a large network, information sent from one
participant to another must visit other participants in the network according
to the network topology. A routing scheme is a description of a system de-
signed to support the operation of transferring packets through the network.
According to Peleg [25], labeling schemes assist in the design of “memory-
free” routing schemes, which support fast and simple switch architectures
by storing little data locally. A significant effort by the community yielded
numerous papers dealing with labeling schemes for routing [4, 9, 26–32].

1.5 Preliminaries

In the remainder of the thesis we use the following terms: k is a positive
integer, a binary string is a member of the set {0, 1}∗. We denote dlog2 ne
as log n. We denote by N = {1, 2 . . . } the set of natural numbers and by
N0 = {0, 1, 2 . . . } the extended set that includes 0. For x ∈ N we denote by
bin(x) its standard binary representation, and |x| as the number of bits in
bin(x). The concatenation of two bit strings a and b is denoted a ◦ b.

1.6 Graph families related definitions

For a graph G we denote the set of vertices and edges by V (G) and E(G),
respectively. For any graph family F , let F(n) ⊆ F denote the subfamily
containing the graphs of at most n vertices. Unless stated otherwise, the
number of vertices in a graph n is assumed to be a power of 2. The family
of all graphs is denoted G. The collection of unweighted forests in G respec-
tively G(n) is denoted Forests respectively Forests(n). The collection of
unweighted trees in Forests respectively Forests(n) is denoted Trees re-
spectively Trees(n). Similarly, the collection of edge weighted trees, with
weights in {1 . . . 2M} in G respectively G(n) is denoted WeightedTrees(2M)
respectively WeightedTrees(n, 2M). A caterpillar is a tree in which all non-
leaf vertices lie on a single path, denoted the main path. The collection of un-
weighted caterpillars in Trees respectively Trees(n) is denoted Caterpillars
and Caterpillars(n). The collection of trees with bounded depth δ in Trees
respectively Trees(n) is denoted Trees(δ) respectively Trees(n, δ). Trees
of Bounded degree ∆ are marked similarly Trees(∆) and Trees(n,∆). As
a shorthand, trees of bounded degree three are marked BinaryTrees and

1.7. Basic tree related definitions 7

BinaryTrees(n). For each of the (unbounded) families described the bounded
degree and depth variants are denoted in according. From hereon, unless
stated otherwise, we assume trees to be rooted.

1.7 Basic tree related definitions

Let T = (V,E) ∈ Trees(n) be a tree rooted in r. The number of edges in a
tree is always |E|= |V |−1. The vertices of degree 1 other than the root are
called leaves, and all other vertices are called internal vertices.

Let u and v be vertices in tree T . If (v, u) ∈ E we say that v and u are
neighbours, and denote The set of all neighbours of v as N(v), and |N(v)|
as the degree of v, or deg(v). A non-root vertex with degree at most 1 is
called a leaf, and an inner vertex is a non-leaf vertex. The parent of v, if v
is not the root, is denoted p(v), and v is the child of p(v). A sibling (v 6= u
of u) is a child of p(u). We denote by v u the sequence 〈v0, v1 . . . vk〉 of
vertices such that v = v0, u = vk, and (vi−1, vi) ∈ E for i = 1, 2 . . . k between
v and u in T . This sequence is typically called the path between v and u,
and k is called the length of the path v u. Note that every two vertices
in a tree are connected by a unique path. The distance between u and v in
T , denoted Distance(u, v), is the number of edges on the path u v. The
distance from v to the root is called the depth of v, denoted depth(v), and
the depth of the tree, depth(T), is the maximum depth among its vertices.
If u is a vertex on the path from the root of a rooted tree to a vertex v, then
u is an ancestor of v, and v is a descendant of u. Note, in particular, that a
vertex is its own ancestor, descendant and sibling, but not its own child or
parent. A common ancestor of two vertices is a vertex that is an ancestor
of both vertices, and their nearest common ancestor (NCA) is the unique
common ancestor with maximum depth. Given a vertex v, the descendants
of v form an induced subtree Tv with v as root. Finally, the size of v, denoted
size(v), is the number of vertices in Tv.

1.8 Definitions and generalizations of labeling schemes

We present definitions of labeling schemes, approximate labeling schemes and
three related definitions.

Definition 1. Let f : V (G)k → S be a k-ary function over vertices in G ∈ G
into S.

A label assignment eG for G ∈ G is a mapping of each v ∈ V (G) into a
bit string eG(v) = L(v), called the label of v.

An f-labeling scheme for G, denoted 〈e, d〉, consists of the following:

1. An encoder e which is an algorithm that receives G ∈ G as input and
computes the label assignment eG.

2. A decoder d which is an algorithm that gets any sequence of k labels
L(v1) . . .L(vk) and computes the query d(L(v1) . . .L(vk)). If d(L(v1) . . .L(vk)) =
f(v1 . . . vk) we say that d is an exact decoder.

Remark 1.

i. If ∀G ∈ G, eG is an injective mapping, i.e. for all distinct u, v ∈ V (G),
eG(u) 6= eG(v), we say that the labeling scheme has a unique encoder.

8 Chapter 1. Introduction

ii. The encoding of a vertex depends on the graph to which the vertex belongs,
whereas the decoding of a k-tuple of labels is oblivious to the graph from
which the labels come.

iii. By Definition 1 labels of unrestricted size can be used to encode the entire
graph structure.

Definition 2. Let 〈e, d〉 be an f -labeling scheme for G(n).

1. 〈e, d〉 is a ρ(n) f -labeling scheme if for any G ∈ G(n), the size of any
label in the label assignment eG is bounded by some function ρ(n).

2. e is computed in time t(n) if for any G ∈ G(n), e computes the label
assignment eG in time at most t(n).

3. d is computed in time t(n) if for any G ∈ G(n) and any v1 . . . vk ∈ G
the query d(L(v1) . . .L(vk)) is computed in time at most t(n).

4. 〈e, d〉 is an average ρ f -labeling scheme if for any G ∈ G(n), the sum
of lengths of all labels in the label assignment eG is bounded by ρ(n) · n
(See [33]).

We turn to define labeling schemes that provide an approximate solution.

Definition 3. Let f : V (G)k → N be a k-ary function over vertices in
G ∈ G to N. An R-approximate f -labeling scheme for G, denoted 〈e, d〉,
is an f -labeling scheme with the following property. Consider any graph
G = (V,E) ∈ G which receives a label assignment eG from e. Then for any
set of vertices v1 . . . vk ∈ V with labels L(v1) . . .L(vk) the value computed by
d satisfies

1

R
· d(L(v1) . . .L(vk)) ≤ f(v1 . . . vk) ≤ R · d(L(v1) . . .L(vk)).

1.8.1 Generalizations

We present definitions of three generalizations to the concept of labeling
schemes, namely query, one-sided error and forbidden-set labeling schemes.

Labeling schemes with a query [34] extend the decoder’s operation
such that given two labels, it may call a third label to determine the query.

Definition 4. Let f be a function over vertex sets in G ∈ G to N. A
(polynomial time) query algorithm Q receives the labels L(u) and L(v) of
vertices u and v in G and outputs the label L(w) of vertex w ∈ G. An f -
labeling scheme with a query is an f -labeling scheme (Definition 1) where
the decoder may use Q to compute the query.

For result concerning this generalization see Section 5.7.

Labeling schemes with one-sided error [35] allow the labels to pro-
duce incorrect results for boolean functions, as long as they are one-sided.

Definition 5. Let f be a boolean function over vertex sets in G ∈ G to N.
A (probabilistic) one-sided error f -labeling scheme with guarantee p is an
f -labeling scheme (Definition 1) with the following property: Consider any
graph G = (V,E) ∈ G which receives a label assignment eG from e. Then for
any set of vertices v1 . . . vk ∈ V with labels L(v1) . . .L(vk)

1.8. Definitions and generalizations of labeling schemes 9

• If f(v1 . . . vk) = true, then prob(d(L(v1) . . .L(vk)) = true) ≥ p.

• If f(v1 . . . vk) = false, then d(L(v1) . . .L(vk)) = false.

An in depth review of results on this generalization is available in Sec-
tion 3.4, and additional probabilistic labeling scheme results can be found
in Section 5.5. From hereon, unless stated otherwise, encoder and decoder
stands for exact encoder and deterministic decoder.

Forbidden-set labeling schemes [36] aim to assign labels which are ro-
bust to partial network failure. This particularly interesting body of work [37–
40] was not researched in the scope of this thesis.

Definition 6. Let f be a function over vertex sets in G ∈ G to N, and let
X be a subgraph of G. A forbidden-set f -labeling scheme is an f -labeling
scheme (Definition 1) where the decoder receives the subgraph X and returns
d(L(v1) . . .L(vk)) where the function is defined over the graph G \X.

1.8.2 A subtle point regarding the size of the graphs

We denote the family of trees with at most n vertices total(n) and the family
of trees with exactly n vertices exact(n). In the literature reviewed, some
results [2, 16] are defined for total(n), while other [8, 29, 41, 42] are defined
for exact(n). Naturally, for n > 1, exact(n) ⊂ total(n). Therefore, upper
bounds defined for total(n) trivially hold for exact(n). In contrast, lower
bounds on labeling schemes for exact(n) hold for total(n). It may be conjec-
tured that for labeling schemes, the definitions are equivalent, but there exist
no such proof in the literature surveyed. The subject is expended in [43]. We
were unable to find a labeling scheme or a lower bound for a labeling scheme
in which the result provided only holds for either exact(n) or total(n).

1.8.3 Predefined naming

Suppose a tree T = (V,E) has a predefined label assignment of log n bits
from a preset name domain, and denote the product of such an assignment
for a vertex v ∈ V as the vertex identifier of v, or simply Id(v). We can
extend most labeling schemes presented so far to support vertex identifiers
by modifying their encoder to concatenate the vertex identifier to each label.
In the case of NCA such an extension is not as straightforward since it should
return, for two vertices in the tree, the vertex identifier of a third vertex.
Moreover, such an extension was proven to incur an asymptotical penalty for
the label size required [44]. We report results on both variants, and denote
labeling schemes for NCA specifically designed to support vertex identifiers
as Id-NCA, and those that do not as Label-NCA.

Recall that the function Routing returns an edge identifier4. In a similar
manner, if each vertex in a tree T = (V,E) has a predefined (local) label
assignment on its edges, it was shown [25] that returning this pre-assigned
edge label also incurs an asymptotical penalty on the label size. If such a
restriction exist we report the result as fixed port Routing , and designer port
Routing otherwise.

4The first edge on the distinct path leading from the first to the second vertex.

10 Chapter 1. Introduction

Table 1.1: Known upper/lower bounds for labeling schemes on trees. Labeling schemes that do not necessar-
ily provide unique labels are marked with *. The families Trees(n), Forests(n), BinaryTrees(n), T rees(n, δ) and

Trees(n,∆) are defined in Section 1.5. Results implied, but not specified in the literature are marked with †.

Reference Variant Upper bound Lower bound Encoder Decoder
Adjacency

[45] Trees(n) log n+O(1) log n+ 1 O(n) O(1)
[46] BinaryTrees(n) log n+O(1) log n+ 1 O(n) O(1)
[47] Trees(n, δ) log n+ 3 log δ +O(1) log n+ 1 O(n) O(1)
[7] Trees(n,∆) log n+O(log ∆) logn+ 1 O(n log n) O(log log n)

Non-Adjacency

[35] One sided error* 2k + 1 with −−− O(n) O(1)
p = 1− 1

2k

Ancestry

[12] Trees(n) log n+ 2 log log n+ 3 log n+ log log n O(n) O(1)
[47] Trees(n, δ) log n+ 2 log δ +O(1) O(n) O(1)

[35] One sided error* log n− k
2 +O(log log n) log n+ log p− O(n) O(1)

with p = 1
2k

O(1)

Non-Ancestry

[35] One sided error* dlog ne with log n+ log p− O(n) O(1)
p = 1

2 O(1)

Center

[25] Trees(n), fixed model Θ(log2 n) Θ(log2 n) O(n log n) O(1)†

Connectivity

[42] Forests(n) log n+ log log n log n+ log log n O(n) O(1)
[42] Forests(n)* log n log n O(n) O(1)

Distance

[48] Trees(n) 1
4 log2 n+ o(log2 n) 1

4 log2 n−O(log n) O(n log n) O(1)†

[22] WeightedTrees(n, 2M) Θ(M log n+ log2 n) Θ(M log n+ log2 n) O(n log n) O(log n)

Distance, approx. 1 + 1/n

[49] 2M weighted diameter Θ(log n · logM) Θ(log n · logM) O(nm) O(1)
[48] Trees(n) O(log(1/ε) log n) Ω(log(1/ε) log n) O(n) O(1)

MaxFlow

[50] WeightedTrees(n, 2M) Θ(M log n+ log2 n) Θ(M log n+ log2 n) O(n) O(1)

NCA

[51] Trees(n), Label-NCA 3 log n 1.008 log n O(n) O(1)
[25] Trees(n), Id-NCA O(log2 n) Ω(log2 n) O(n log n) O(1)†

Routing

[9] Trees(n), designer port (1 + o(1)) log n log n+ log log n O(n log n) O(1)
[26] Trees(n), fixed port Θ(log2 n/log log n) Θ(log2 n/log logn) O(n) O(1)

Siblings

[52] Trees(n) log n+ log log n log n+ log log n O(n) O(1)
[42] Trees(n)* log n log n O(n) O(1)

Small-Distance

[48] Trees(n),distance k min log n+O(k log(log n/k)) log n+ Ω(k log(log n/(k log k))) O(n)† O(1)
O(log n · log(k/log n))

11

Chapter 2

Common Algorithm Techniques

In this section we describe various algorithmic techniques that are either
folklore, used in several papers, or ones that originate from papers not covered
by the thesis. The purpose of the section is to outline a common toolbox
useful for labeling schemes, and to point out the similarity between some of
the techniques.

2.1 Binary strings and bit tricks

2.1.1 Number representation

Labels and words can be seen both as integers or as boolean strings. In
order to represent any possible number in the range {1 . . . n}, dlog ne bits
are required. Therefore, the number of bits in a binary string bin(x) is
dlog xe, and we occasionally denote it by |bin(x)|.

A method used in most of others work as well as our own is the concate-
nation of meaningful bits. Given two strings α and β, we denote the concate-
nated string α ◦ β. Both α and β may be extracted from the string α ◦ β by
a naïve separating string. A separating string is a string of m = |α|+|β| bits
with ′1′ in bit number |α| and ′0′ in the rest. A label with m bits of two or
more parts, each of variable size, may be described as a corresponding label
of size 2m, such that each part can be extracted from it using the added
separating string. When we are interested in reducing 2m further, and have
a fixed number of parts c, we may use a label of size m+ c logm. Moreover,
suppose we have a label containing two parts α and β, then we may extract
both parts using an improved separating string with log min(|a|, |b|) bits. It
follows that any constant number of bits attached to a string does not change
its size asymptotically. Most labeling schemes reviewed utilise this property
to attach a constant number of bits to be used later by the decoder.

2.1.2 Padding

The following bit-trick allows for parts of a label to consistently have the
same size by adding a single bit to the largest resulting label. Suppose we
want to represent x where |bin(x)|< log n, then we can use exactly log n+ 1
bits to describe x using the bit string bin(x)◦1◦0i where i = n+1−|bin(x)|,
and 0i is the binary string composed of i times 0.

2.1.3 Approximation using O(log log n) bits

Let k ∈ {1 . . . n} be an integer, and recall that bin(k) requires at most dlog ne
bits. Using dlog logne bits we can represent a number k′ such that dk/2e <

12 Chapter 2. Common Algorithm Techniques

2k
′ ≤ k or, alternatively such that k ≤ 2k

′
< 2k. We set k′ = k[p], where k[p]

is the position of the most significant bit set to ′1′ in bin(k). Now bin(k′)
is interpreted as a 1/2-approximation of k by computing the appropriate
binary string 1 ◦ 0k

′−1. Similarly, we can produce a 2-approximation of k by
the binary string 1 ◦ 1k

′−1. Any additional bit stored in k′ now increases the
accuracy of the approximation by a factor of two. The latter is in particular
useful since by storing additional dlog log ne bits we can represent a number
k∗ such that k ≤ k∗ < b(1 + 1/log n)kc, respectively

⌊
logn

logn+1k
⌋
< k∗ ≤ k.

2.1.4 Word storing in a string

We conclude this section with the following bit-trick, which is based on the
following facts. For any two integers j and k, the value of the bit string
bin(j) ◦ bin(k) is j · 2|bin(k)| + k, and in addition j < 2|bin(j)|.

Lemma 1. Let w and z be two integers. One can compute an integer x ∈
[z, z + 2|bin(w)|) such that bin(w) is a suffix of bin(x).

Proof. We compute d =
⌊
z/2|bin(w)|⌋ and denote the difference m = z − d.

Consider now the number x represented by the bit-string bin(d) ◦ bin(w). If
w ≥ m then x ≥ z and also x = z−m+w ≤ z+w < z+ 2|bin(w)|. If w < m
then xmay be smaller than z. We therefore increase the value of x by 2|bin(w)|,
represented by bin(d+1)◦bin(w). Now, x = z−m+2|bin(w)|+w > z+w ≥ z
sincem < 2|bin(w)|, and also z−m+2|bin(w)|+w < z+2|bin(w)| since w < z.

2.2 Efficient encodings

2.2.1 A dfsi traversal

We denote a depth first traversal of a tree as dfs. A substantial number of the
results surveyed use a vertex numbering by a particular depth first traversal
of a tree. A depth-first traversal of the tree is denoted dfsi if children of small
size1 are visited before children of larger size. Given a tree T = (V,E) every
vertex v ∈ V receives the number dfsi(v) from dfsi, and we occasionally refer
to it as the dfsi identifier of v.

2.2.2 Suffix-free codes

A code is a set of words, and a code is suffix-free2, if no word in the code
is the suffix of another word. As a concrete example consider the following
collection of words: code0(x) = 1◦0x, where 0x is the binary string composed
of x times 0. This suffix-free code is inefficient since the number of bits
required to store code0(x) is 2|bin(x)| + 1. We can extended this code to
an efficient recursively constructed suffix-free code by codei+1(x) = bin(x) ◦
codei(|bin(x)|−1) for every i ≥ 0. For example, code0(8) = 100000000,
code1(8) = 10001000, code2(8) = 10001110. In order to store code1(x) and
code2(x) we use 2 blog xc+ 2 and blog xc+ 2 blog log xc+ 3 bits respectively.
The method can be applied recursively up to log∗ x times such that the length
of codei(x) is at most blog xc+ blog log xc+ · · ·+O(log∗ x)3.

1The size of a vertex in a tree is the number of its descendants.
2 suffix-free codes are also known as suffix codes.
3log∗ is the number of times log should be iterated before the result is at most 1.

2.3. Tree decompositions 13

Suffix-free codes are useful for labeling schemes for one important prop-
erty: a concatenation of suffix codes is by itself a suffix code. For labels
constructed by two or more parts of variable sizes, suffix codes allow for an
encoding of those parts. It is worth noting that, by Kraft’s inequality [53],
no uniquely decipherable encoding for boolean string s can enjoy a size of
less than s+ log s, for a sufficiently large s.

2.2.3 Alphabetic sequences

The following Lemma is useful to assign labels to the vertices of a rooted
path that achieves the following two properties: First, vertices of a large
size are assigned a small label, and second, the labels maintain a total order
among the path’s vertices.

Let <lex denote the lexicographical order of binary strings. A finite
sequence (ai) of nonempty, binary strings ai ∈ {0, 1}∗ is alphabetic if ai <lex
aj for i < j.

Lemma 2. Given a finite sequence (wi) of positive numbers with w =
∑

iwi,
there exists an alphabetic sequence (ai) with |ai|≤ blogw − logwic+ 1 for all
i.

Proof. The proof is by induction on the number of elements in the sequence
(wi). If there is only one element, w1, then we can set a1 = 0, which satisfies
|a1|= 1 = blogw1 − logw1c+1. Suppose that there is more than one element
in the sequence and that the theorem holds for shorter sequences. Let k be
the smallest index such that

∑
i≤k wi > w/2, and set ak = 0. Then ak clearly

satisfies the condition. The subsequences (wi)i<k and (wi)i>k are shorter
and satisfy

∑
i<k wi ≤ w/2 and

∑
i>k wi ≤ w/2, so by induction there exist

alphabetic sequences (bi)i<k and (bi)i>k with |bi|≤ blog(w/2)− logwic+1 =
blogw − logwic for all i 6= k. Now, define ai for i < k by ai = 0 ◦ bi
and for i > k by ai = 1 ◦ bi. Then (ai) is an alphabetic sequence with
|ai|≤ blogw − logwic+ 1 for all i.

Viewed differently, alphabetic sequence is possible since each number wj
(1 ≤ j ≤ i) can be represented by a number between

∑j−1
i=1 wi and

∑j−1
i=1 wi+

2blogwjc with at least blogwjc ′0′ in its least significant bits that can be
discarded. As an example, the sequence (w5) = 2, 8, 1, 1, 4 with w = 16,
may be represented by 0000, 1000, 1010, 1100, 1110 and in according (ai) =
0, 1, 101, 11, 111. Numbers in (ai) now have a total order with respect to the
order in which they were in (wi). Given two numbers, a decoder may equalise
their size by adding zeros to the number with less digits.

2.3 Tree decompositions

This section is dedicated to recursive tree decomposition techniques that
were found useful in the results surveyed. The heavy-light and separator are
two well known techniques, and in this section we expose their similarity.
The splines decomposition can be seen as an extension and generalisation of
heavy-light decomposition. The clustering decomposition was only used once
in the surveyed literature, but bears potential for further use. Some of the
techniques create a path-decomposition of a tree T , which is a collection of
paths in T such that every vertex v ∈ T is a member of exactly one path.

14 Chapter 2. Common Algorithm Techniques

Figure 2.1: A tree in which light and heavy vertices have
been marked with “◦” and “•”, respectively, and heavy and
light edges have been drawn with solid and dashed lines,

respectively.

2.3.1 Heavy-light decomposition

Harel and Tarjan [54] show how to create a path-decomposition of a rooted
tree where each vertex of a path, except its top-vertex4, has maximum size
among its siblings. The decomposition allows the location of a vertex in the
tree to be described by the sequence of paths that must be traversed in order
to reach the vertex from the root.

Let T be a tree with root r. The vertices of T are classified as either
heavy or light as follows. The root is light. For each internal vertex v ∈ T ,
pick one child w whose size is maximal among the children of v and classify
it as heavy; classify the other children of v as light. We denote the unique
heavy child of v by hchild(v) and the set of light children of v, if exist, by
lchildren(v) = v1 . . . vk. The light size of a vertex v is the number

lsize(v) = 1 +
k∑
i=1

size(vi).

Note that if v is a leaf or has only a single child then lsize(v) = 1, and if
v is internal then lsize(v) = |v|−|hchild(v)|.

An edge connecting a light vertex to its parent is a light edge, and edge
connecting a heavy vertex to its parent is a heavy edge. By removing the light
edges, T is divided into a collection of heavy paths. The set of vertices on the
same heavy path as v is denoted hpath(v). See Figure 2.1 for an example.

Given a vertex v in T , consider the list of light vertices u0 . . . uk encoun-
tered on the path from the root r to v. The first of these light vertices is the
root, r = u0, and we denote the list u0 . . . uk as lpath(v). The number k is
the light depth of v, denoted ldepth(v). The light depth of T , ldepth(T), is
the maximum light depth among the vertices in T . Since the size of every
light vertex is bounded by the size of its heavy sibling, the size of ui+1 is at
most half the size of ui. From this, it follows that ldepth(v) ≤ blog nc for all
vertices v, where n is the number of vertices in T .

Note that the results surveyed which use this path-decomposition per-
forms also a dfsi traversal of the tree (see Section 2.2.1).

2.3.2 Separator

Two sets of vertices in a graph are separated if no vertex in one is adjacent to
any vertex in the other. A separator is typically defined as a subset of vertices

4The top-vertex of a path in a tree T rooted in r is the vertex closest to r.

2.3. Tree decompositions 15

in a graph G whose removal from G separates the graph to two subsets U
and V such that |U |≤ |V |< 2|U | [55]. For all trees there exist a separator
that consist of a single vertex.

Theorem 1. [56] Given a tree T rooted in vertex r, we can find, in linear
time, a single vertex whose removal separates T into subtrees of at most n/2
vertices each.

Proof. Consider any vertex v ∈ T . If v does not divide T into components
of size at most n/2 each, then v has a neighbour u in a subtree of size more
than n/2. Move into the subtree rooted by u and recurse. This process will
never traverse the same edge twice, thus, the separator is found in at most
n steps.

The result holds naturally for forests. Korman and Peleg [57] use The-
orem 1 to define a separator tree described briefly hereafter. Given a tree
T = (V,E) ∈ Trees(n) we construct a separator tree denoted T sep in the
following manner. The root r of T sep is the separator, its children are the
separators of the subtrees described in Theorem 1 for r. The subtree rooted
by each of those children is defined recursively in the same manner. The
depth of the corresponding separator tree T sep is log n. A vertex v ∈ V on
the path r v in T sep with depth i (0 ≤ i ≤ log n− 1) has now some inter-
esting properties. First, it is a separator for a subtree in T of size at most
2logn−i, in which both v and all its children in T sep are present. Second, v
is a vertex in all of the subtrees associated with v’s ancestors in T sep. For a
demonstration, see Figure 2.2.

a

b c d

e f

i

g

k ljh

b

dfe

a

c d

e f

i

g

k ljh

a

c

i

g

k ljh

h i kj a g

c l

T sep

Figure 2.2: Separator tree for the tree T , with separator
vertices marked in grey. Top row: T rooted at a (left). The
forest resulted by removing the separator b from T (center).
The remaining forest after removing the separators e, f, d

(right). Bottom row: the resulting T sep.

2.3.3 Spines decomposition

This path-decomposition was invented by Thorup and Zwick [9], and used
by Fraigniaud and Korman [58]. Similarly to heavy-light decomposition, a
spines decomposition decomposes an n vertex tree T into a collection of paths,
using an additional parameter, an integer 1 ≤ b ≤ n. A vertex v is heavys if
size(v) ≥ n/b and lights otherwise. Note that the heavy vertices in T induce
a subtree rooted by the root of T , which is always a heavys vertex. Th is
the subtree of T which spans the heavy vertices, and we note that Th has at

16 Chapter 2. Common Algorithm Techniques

most b leaves. We create a path-decomposition of Th by removing every edge
(u, v) where u has more than one child in Th. This results in at most 2b− 1
paths P1 . . . Pl, (1 ≤ l ≤ 2b − 1) which we denote as heavys paths (some of
which may consist of a single vertex). When b = 1, the single heavys path
is referred to as the spine of T .

The spines decomposition of T is constructed recursively for subtrees in
the forest T \ Th by using the above path-decomposition. The removal of Th
from T results in a forest F . Note that a lights vertex v in T adjacent to a
vertex in Th is a root of a tree Tv ∈ F of size size(v) ≤ n/b. The decomposi-
tion stops when all vertices in T are heavys vertices at some recursive step,
and both vertex and path are of level i if they occur at step i in the decom-
position. Using arguments similar to those for heavy-light decomposition, it
follows that within at most logb n steps all vertices in T are heavys vertices.
See Figure 2.3 for a demonstration.

Figure 2.3: The first step of a spines decomposition of T
with b = 6 for a tree with n = 24 vertices. Black vertices are
heavys vertices, and the rest are lights vertices for the first
step. Dotted lines are removed from Th and the emphasised

edges mark the heavys paths.

2.3.4 Clustering

The following definitions are used to prove that given a number x between
1 and n, every tree can be decomposed into at most n/x clusters with O(x)
vertices each, such that every cluster has at most two vertices in common
with other clusters. Moreover, such clusters can be governed by a so-called
macro tree.

Definition 7. Let T be a tree of size n = |V (T)|> 1. For a connected subtree
C of T , we call a vertex in V (C) incident with a vertex in V (T) \ V (C) a
boundary vertex. The boundary vertices of C are denoted by δC. A cluster is
a connected subtree of T where |δC|≤ 2. We denote C(u, v) a cluster with the
boundary vertices u and v, where depth(u) < depth(v). If a cluster has only
one boundary vertex, we associate its rightmost leaf 5 as the second boundary
vertex. Such clusters are called leaf clusters. The remaining clusters are
called internal clusters. A set of clusters CS is a cluster partition of a tree
T with root r if and only if V (T) = ∪C∈CSV (C), E(T) = ∪C∈CSE(C), and
for any distinct C1, C2 ∈ CS,E(C1) ∩ E(C2) = ∅,|E(C1)|≥ 1, and r ∈ V (C)
if r ∈ δC.

5The rightmost leaf of a tree T is the last leaf encountered in the dfs traversal (see
Section 2.2.1) of T .

2.4. Boxes and groups 17

Figure 2.4: A demonstration of a nice cluster partition
with n = 14 and x = 4. The dotted clusters are leaf clus-
ters and the rest are internal clusters. The black vertices
are boundary vertices, and the grey vertices are the second

boundary vertices added.

Definition 8. Given a tree T rooted in r, n > 1, and a parameter 1 ≤ x ≤ n.
A cluster partition CS is a nice cluster partition if |CS|≤ n/x and |V (C)|≤ cx
for all C ∈ CS, for some constant c.

Lemma 3. For any tree T with n vertices, and any 1 ≤ x ≤ n, there exist a
nice cluster partition. Moreover, such a partition can be computed in linear
time.

A proof for the lemma can be found in [59] (Lemma 12, Appendix A),
and an illustration of the decomposition in Figure 2.4.

To make use of these partitions, the following meta data structure is
useful.

Definition 9. A cluster partition CS has a macro tree Tm defined as follows.
The vertices V (Tm) are the set of boundary vertices of CS. The edges E(Tm)
are the set of pairs (u, v), where u, v belong to the same cluster C(u, v). The
root of Tm is the root r of the original tree T . This is possible since r is
defined to be a boundary vertex of some cluster in CS.

2.4 Boxes and groups

This section presents a single lemma for lower bounds on label sizes. Intro-
duced by Alstrup, Bille and Rauhe [42] and refined by Dahlgaard et al. [13].
The technique uses a division into “boxes and groups” of the set that is to be
labeled.

Lemma 4. Let X be a set with |X|= nk, where n is a power of 3 and
k ≤ log3 n. Further, let e:X → S be a function that labels the elements from
X with labels from some set S. Assume that we have partitioned X into k+1
disjoint subsets of the same size:

X = X0 ∪ · · · ∪Xk, where |Xi|= n,

and that we have further partitioned Xi into 3i partitions of size n/3i:

Xi = X1,i ∪ · · · ∪Xn/3i,i, where |Xij |= 3i.

We call each Xi a box and each Xi,j a group. Now, suppose that the following
two conditions hold:

18 Chapter 2. Common Algorithm Techniques

(i) Two distinct elements of the same box have distinct labels.

(ii) If x1, x2, x
′
1, x
′
2 ∈ X are elements such that e(x1) = e(x′1), e(x2) = e(x′2)

and x1, x2 belong to two different groups in the same box, then x′1, x
′
2

belong to two different groups.

Then |S|≥ n+ (n/3)k.

Proof. We show the claim by induction on b ≤ k. For b = 0, by Property (i)
each of the elements in X0 must have a distinct label. Assume that the
claim holds for b− 1. Let Xprior be the set of all boxes X0 ∪ · · · ∪Xb−1. We
show that the number of elements in Xprior ∪Xb sharing a label is at most
2n/3: By Property (i), the labels assigned to Xb are distinct. The number
of groups in Xprior is

∑b−1
i=0 3i < 2 · 3b−1, and the number of groups in Xb is

3 · 3b−1. From property (ii) it follows that there are at least (3 − 2) · 3b−1

groups in Xb, each of size n/3b which may not share any element with Xprior,
and thus, box Xb contains at least 3b−1n/3b = n/3 items of labels distinct in
Xprior ∪Xb.

19

Chapter 3

Introduction to Adjacency
Labeling Schemes on Trees

In this chapter we survey three key results of Adjacency labeling schemes, and
start with a literature overview in Section 3.1. In Section 3.2 we summarize
the work by Alstrup and Rauhe [8] which was the best known bound at the
time of the writing of the thesis. It begins with a simple log n+O(log log n)
result for trees, and followed by an improvement to log n + O(log∗ n). We
then show a log n + O(1) labeling scheme by Gavoille and Labourel [46] for
caterpillars in Section 3.3. Lastly, in Section 3.4 we discuss an intriguing
one-sided error variant by Fraigniaud and Korman [35] .

3.1 Literature overview

Adjacency labeling schemes were introduced by Breuer [1], and revisited by
Kannan et al. [2] for trees and graphs. They were also independently defined
by Muller [3] in a model that does not require polynomiality of encoding
and decoding. Following the 2 log n Adjacency labeling schemes for trees
(Section 1.1), Abiteboul, Kaplan, and Milo [16] improved the label size to
1.5 log n+O(log log n). Alstrup and Rauhe [8] proved that both Forests(n)
and Trees(n) have an Adjacency labeling scheme of log n+O(log∗ n). Fraig-
niaud and Korman [47] showed that trees with bounded depth δ have a
labeling scheme of size log n + 3 log δ + O(1). Gavoille and Labourel [46]
proved that caterpillars and binary trees enjoy a labeling scheme of size
log(n) + O(1) using a method called “Traversal and jumping”. As we wrote
this section, it became clear that bounded degree trees could be a stepping
stone for solving the problem. In 2014, the along with David Adjiashvili [7]
we showed that trees with bounded degree ∆ have a labeling scheme of size
log n + log ∆ + O(1). We also showed that this bound holds for bounded
degree outerplanar graphs, and a result concerning bounded (not necessarily
constant) degree. For a description of the result see Chapter 4. Fraigniaud
and Korman [35] showed that in a one-sided error labeling scheme, Non-
Adjacency labeling schemes require k+ 1 bits to have a guarantee of 1− 1

2k
.

In 2015, Alstrup, Dahlgaard and Knudsen [45] showed an asymptotically
optimal log n + O(1) adjacency labeling scheme for the most general case,
namely, forests. This chapter was written prior to [45] and plays a historical
role as it was available as reading material to its authors1.

1The careful reader will have noticed that the first step in the proof is a better analysis
of traversal and jumping, a technique we describe later on.

20 Chapter 3. Introduction to Adjacency Labeling Schemes on Trees

Adjacency labeling schemes for trees are useful for general graphs due to
an observation by Nash-Williams [60], which states that a graph of arboricity2

d can be decomposed into at most d forests3. Kannan et al. [2] proved
that graphs with arboricity d can be labeled using (d + 1) log n bit labels.
Therefore, the labeling scheme of [45] yields a label size of d log n+O(d) for
graphs with arboricity d. Graphs in G(n,∆) have arboricity of d∆/2e [2]. It
follows that graphs in G(n,∆) have a labeling scheme of (d∆/2e) log n+O(1)
bits if ∆ is constant. For a description of current labeling schemes results on
various graph families see Table 6.1.

3.2 A log n+O(log∗ n) labeling scheme for Trees(n)

For general trees, Alstrup and Rauhe [8] showed a log n+O(log∗ n) labeling
scheme for Adjacency with query time of O(log∗ n) and encoding time of
O(n log∗ n). In this section we describe their result in detail.

3.2.1 A log n+O(log log n) simple labeling scheme

We first introduce two labeling schemes for Trees(n). The first favours equal
size labeling scheme for all vertices, and the other achieves a smaller label
size for leaves, at the expanse of bigger label size for internal vertices.

Lemma 5. [8] The following Adjacency labeling schemes are available for
Trees(n). 〈eα, dα〉, whose worst-case label size is log n + 3 log log n for all
vertices, and 〈eβ, dβ〉, which has a label size of log n+O(1) for the leaves and
log n+ 4 log log n for internal vertices.

Both labeling schemes are based on a heavy-light decomposition (Sec-
tion 2.3.1) as well as a dfsi traversal (Section 2.2.1), in which children of small
size are visited before children of larger size. They also use 1/2-approximation
(see Section 2.1) of numbers in {1 . . . n} for different parts of the labels.

Consider a non-leaf vertex v with parent p(v) and heavy child h. The
encoder of 〈eα, dα〉 labels v as a concatenation of the bit strings: I.) dfsi(v);
II.) ldepth(v); III.) a 1/2-approximation of dfsi(v)− dfsi(p(v)); and IV.) a
1/2-approximation of dfsi(h)−dfsi(v). Leaves are labeled similarly, with the
last part set to 0, and the root is marked especially.

Alstrup and Rauhe [8] prove that the information is sufficient to deter-
mine adjacency. For completeness we attach a revised proof in Appendix B.1.

We create 〈eβ, dβ〉 by extending 〈eα, dα〉 such that each internal vertex
receives additional log logn bits, describing a 1/2-approximation of the num-
ber of its leaf children, which we denote blc2. Suppose that v and u are two
leaf children of a vertex with l children, and v is one of the first blc2 leaf
children traversed, and u is not. The encoder then sets L(v) = (dfsi(v), 0)
and L(u) = (dfsi(u) − blc2, 1). See Figure 3.1 for a demonstration. In con-
clusion, 〈eβ, dβ〉 produces labels of size log n+ 4 log log n for internal vertices
and log n+O(1) for leaves.

2The arboricity of a graph G is the minimum number of edge-disjoint acyclic subgraphs
whose union is G.

3See also [61] for a simplified proof of the claim.

3.2. A log n+O(log∗ n) labeling scheme for Trees(n) 21

52,2

53,0 54,0 55,0 56,0 53,1 54,1 55,1 56,1

Figure 3.1: An internal vertex with (simplified) la-
bel (52,2). The second number indicate that its 1/2-
approximation is 22 = 4. The children are given labels in

{53 . . . 56} and an additional bit.

3.2.2 A modified cluster tree

To further reduce the size of the label, the authors use a special and recursive
clustering on the tree T . The nice clustering technique (Section 2.3.4) is
modified to suit the needs of the labeling scheme. Recall that for every
1 ≤ x ≤ n and any tree T , there exist a (nice) cluster partition dividing T
to at most n/x clusters, each having O(x) vertices.

Definition 10. A cluster C(u, v) (Definition 7) is a single child cluster if
I.) it is a leaf cluster; or II.) it contains at most two vertices; or III.) u v
contains at least 5 vertices, v has no children in C(u, v), and u has only one,
i.e., the vertex on the path to v. A nice cluster partition (Definition 8) is a
single child cluster partition if all its clusters are single child clusters.

We complete an omitted proof of Lemma 7 in [8].

Lemma 6. Let T be a rooted tree with n vertices. For every 1 ≤ x ≤ n/7
there exist a single child cluster partition of T of at most n/x clusters, each
containing O(x) vertices.

Proof. Let CS be a nice cluster partition for T with |CS|≤ n/7x and each
cluster contains O(x) vertices. We decompose every internal cluster C(u, v) ∈
CS which is not a single child cluster to at most seven single child clusters
as described below.

Assume that u v contains 5 or more vertices, and that v has children in
the cluster C(u, v). Denote an arbitrary child of u not on u v as u′. C(u, v)
is decomposed to the clusters C ′(u, v) and C ′(u, u′), where C ′(u, u′) is a leaf
cluster consisting of the children of u excluding the one in the path u v,
and C ′(u, v) contains the rest of the vertices. We use a similar procedure on
a cluster C(u, v) where v has more than one child. It follows that a cluster
C(u, v) is decomposed to at most two leaf clusters and one internal cluster
C ′(u, v) that contains the path u v. Hence, all three clusters are single
child clusters.

If C(u, v) contains more than two vertices, and u v contains less
than five, we decompose the cluster in the following manner (illustrated in
Figure 3.2). An internal 2 vertex cluster C(i, j) is created for every two
adjacent vertices i and j on the path u v. In addition, a leaf cluster
C(a, b) is created for every vertex a on u v with at least one child not on
the path. Let Fd be the forest created by removing all edges on the path
u v from the cluster C(u, v). Each cluster contains all the vertices in the
tree rooted in a from Fd, and b 6= a, an arbitrary vertex in Fd. To conclude,
C(u, v) is transformed to at most three single child internal clusters, and at
most four leaf clusters.

22 Chapter 3. Introduction to Adjacency Labeling Schemes on Trees

Figure 3.2: Left: A nice cluster, Right: the cluster de-
composed to 7 single child nice clusters. Black vertices are

boundary vertices.

The cluster partitioning guaranteed in Lemma 6 is used to create a cor-
relating macro tree as seen in Definition 9.

3.2.3 The final labeling scheme

Theorem 2. [8] There exist an Adjacency labeling scheme for Trees(n)
whose worst-case label size is at most log n+O(log∗ n).

We show a simplified proof of the theorem.

Proof. We begin by labeling the macro tree Tm (Definition 9) of a single
child cluster partition of T , using the leaf favouring encoder eβ (defined in
Lemma 5). Every edge (u, v) ∈ E(Tm) represents a micro tree, a cluster of at
most cx vertices, for some c, not including its boundary vertices. In addition,
Tm has at most n/x+ 1 vertices. We can use eβ to encode the leaves of Tm
using log(n/x) + O(1) bits, and the inner vertex of Tm using log(n/x) +
4 log log(n/x). By choosing x = log5 n both label sizes are bounded by
log n+O(1). For the remainder of the proof, an edge (u, v) ∈ E(Tm) where
dfsi(u) < dfsi(v) is labeled in v’s label, L(v).

Consider the vertices in the internal cluster C(a, b)\{a, b}. These vertices
maintain adjacency relation only between themselves and possibly the two
boundary vertices a and b. By storing only a unique identifier of the edge
they belong to in the macro tree, we can safely reject a query of two vertices
from different clusters. Such a unique label is already given to every micro-
tree labeled L(b) by dfsi(b), which is just the first log(n/x) bits of the label
given by eβ . We stress that the non-boundary vertices of the internal clusters
are exempt from maintaining the additional 4 log log(n/x) bits required by
dβ to determine Adjacency in Tm. We mark the boundary vertices, and their
immediate (single) neighbours from each side by a finite number of types
(such as root of an internal cluster, a child of a root of a cluster etc.).

A full label for the tree is achieved by concatenating those labels with
the Adjacency labels of the micro trees, using the original log x+ 3 log log x
bits labeling scheme for trees of size x. This time the boundary vertices are
the one exempt from storing this information. The decoder can detect if
two vertices are in the same micro tree using the first part, and check for
Adjacency if the two vertices are in the same micro part, using the second
part of the labels.

3.3. Traversal and jumping 23

To summarize, there are four types of vertices. Vertices in leaf clusters,
boundary vertices of the internal clusters, immediate neighbors of the bound-
ary vertices, and vertices in micro trees of internal clusters. All four enjoy a
labeling scheme of at most log n+ 3 log log log5 n+O(1).

We utilise the structure of the new micro trees and label those by applying
the labeling scheme recursively. The encoder assigns L(u) to u ∈ T as a
concatenation of at most i decreasing size macro trees that contain u. The
last element concatenated to L(u) marks that u is either be a boundary
vertex in some level prior to i, or a full label of u in the last micro tree.
Denote f(n) = log5(n) and f i(n) operating f i − 1 times recursively on n.
eβ is applied i−1 times, and vertices in the (final) micro trees are labeled by
the second encoder eα. The description of the labeling scheme yields labels
of size at most:

(3.1)

i∑
j =1

(
log (f j−1(n)/f j(n)) +O(1)

)
+ 3 log log (f i−1(n)/f i(n))

+O(1) = logn+ log f i(n) + i ·O(1) + 3 log log (f i−1(n)/f i(n)).

Assigning i = log∗ n we have that the maximum label size is log n+O(log∗ n)
as guaranteed.

3.3 Traversal and jumping

Caterpillars were shown to have a labeling scheme of log n+O(1) by Gavoille
and Labourel [46], using a technique called “traversal and jumping". In the
remainder of this section we occasionally refer to the labels as the integers
they represent.

A caterpillar tree T rooted in x1 consists of the path of internal vertices
P = x1 . . . xp where each xi ∈ P has l(i) leaf children L(i) = yi1 . . . y

i
l(i). The

only two cases where two vertices are adjacent in a caterpillar is either when
one is a leaf child of the other or if they are adjacent internal vertices. We
also note that there exist a straightforward non-unique Adjacency labeling
scheme for this family.

Recall that a dfsi traversal (Section 2.2) of a caterpillar T rooted in x1

visits vertices in L(i) before xi+1 for all 1 ≤ i ≤ p. As with the labeling
scheme in Section 3.2, the leaves do not contain additional information other
than a unique identifier. For every 1 ≤ i ≤ p and 1 ≤ j ≤ l(i), we set
L(yij) = L(xi) + j. In other words, the leaf children of xi are given labels
consecutively after xi’s label, and a single bit is prefixed to each label to
determine the vertex’s type.

We can construct a 2 log n Adjacency labeling scheme by assigning dfsi(v)
to every vertex v, and concatenate l(i) to every internal vertex. An internal
vertex u and a leaf child v are adjacent if and only if dfsi(u) ≤ dfsi(v) ≤
dfsi(u) + l(i), and two internal vertices u, and v where dfsi(v) > dfsi(u) are
adjacent if and only if dfsi(u) + l(u) + 1 = Id(v).

Rather than storing l(i) in xi, we maintain a 2-approximation (Sec-
tion 2.1.3) of both li and li+1 denoted dlie2 and dli+1e2, respectively in xi.
For 1 ≤ i ≤ p we compute

ti := max{2 log ti+1, log(dlie2)}+O(1),

24 Chapter 3. Introduction to Adjacency Labeling Schemes on Trees

x1 x2 x3 xp

�

L(2)Caterpillar Domain

cn�

2t1

�

L(x2)

L(x1)

y2
1 y2

l(2)

L(y2
l(2))L(y2

1)

2t2
2t1

, …

Figure 3.3: Label assignment of the inner vertices and
leaves of the caterpillar depicted on the left using traver-
sal and jumping. The label L(x1) is chosen from {1 . . . 2t1},
L(x2) from {L(x1) + 2t1 . . .L(x1) + 2t1 + 2t2} and the
leaves y21 . . . y2l(2) ∈ L2 are labeled s.t. L(y21) = L(x2) +

1 . . .L(y2l(2)) = L(x2) + l2.

where tp = log(dlpe2). An internal vertex xi ∈ P is assigned a range of size
2ti in which the label of xi and the labels of L(i) will reside. In order to
store both ti and ti+1 in the label of xi, we first construct the suffix code
(Section 2.2.2) C(xi), which is defined as:

C(xi) = code1(ti+1) ◦ code0(ti − |code1(ti+1)|).

We then choose the label of xi+1 to be the number in the range {L(xi) +
2ti . . .L(xi)+2ti +2ti+1} that contains C(xi) as a suffix. We find this partic-
ular number using Lemma 1. Due to the selection of ti, it is guaranteed that
there are at least l(i) consecutive numbers in the range after that number.
To prove that the size of the label is at most log n+O(1) the authors prove
that for some constant c′:

∑p
i=1 2ti ≤ c′ ·∑p

i=1 l(i). The avid reader will
find the proof for this claim in Appendix B.2. Since

∑p
i=1 l(i) < n, it follows

that the maximum label size used by any internal vertex is log n + O(1).
The largest label is assigned to the last leaf L(ypl(p)), and since the leaves are
assigned numbers consecutively after their parents, the number of labels is
at most doubled, requiring only one additional bit. For an illustration of the
technique see Figure 3.3.

3.4 One-sided error Adjacency labeling scheme

Consider the function Non-Adjacency for any graph G = (V,E) that returns
true if and only if vertices u, v ∈ V are not adjacent inG. Suppose we demand
our query to be precise only when the vertices are in fact adjacent, and allow
two non adjacent vertices to be declared adjacent. It is of course helpful to be
able to predict and control how often such a “false positive” would occur. [35]
demonstrate the usefulness of one-sided error labeling scheme (Definition 5)
for Adjacency in the following.

Theorem 3. For any 1 ≤ k there exist a one-sided error Non-Adjacency
labeling scheme 〈e, d〉 for Trees(n) with guarantee p = 1− 1

2k
of size 2(k+1).

Furthermore, e is computed in O(n), and d is computed in O(1)

Proof. For each vertex v ∈ V in the tree T = (V,E), e assigns L(v) =
〈L1(v),L2(v)〉 as follows. The root r is assigned 〈L1(r),L2(r)〉, where L1(r),
L2(r) are chosen uniformly at random in {0 . . . 2k+1 − 1}. A vertex u with
parent v in the tree is assigned L1(u) = L2(v) and L2(u) chosen uniformly

3.4. One-sided error Adjacency labeling scheme 25

at random in {0 . . . 2k+1− 1}. e is clearly computed in O(n) with n+ 1 calls
to a random function, and may assign non-unique labels.

The decoder d will decode 〈L1(u),L2(u)〉 , 〈L1(v),L2(v)〉 by evaluating
the predicate (L1(v) = L2(u)) ∨ (L1(u) = L2(v)). If u, v ∈ V are adjacent,
the predicate is trivially satisfied. If u, v ∈ V are non adjacent, prob(L1(v) =
L2(u)) = prob(L2(v) = L1(u)) = 1

2k+1
. Therefore, the predicate is satisfied

with probability 1
2k+1 +(1− 1

2k+1)· 1
2k+1 <

2
2k+1 = 1

2k
, and thus p = 1− 1

2k
.

Notice that one bit is sufficient to avoid false determination of two ad-
jacent vertices as non adjacent. The latter theorem shows that for “false
positive” guarantee of 99.99%, as few as 30 bits are sufficient. Choos-
ing k = log n + O(1) ensures a guarantee p = 1 − 1

2O(1)
√
n
. In contrast

Fraigniaud and Korman [35] prove that any one-sided error Adjacency la-
beling scheme for Trees(n) with guarantee p requires labels of size at least
log n+ log p−O(1).

27

Chapter 4

Adjacency for Bounded degree:
Trees, Planar graphs and
Graphs

In this chapter we describe an optimal (up to an additive constant) log n +
O(1) size Adjacency labeling scheme for bounded-degree outerplanar graphs.
A graph is outerplanar if it admits a planar embedding with the property
that all vertices lie on the unbounded face. graphs with bounded degree ∆.
As a special case thereof, we obtain an optimal labeling scheme for bounded
degree trees. We summarize this result in the following theorem.

Theorem 4. For every fixed ∆ ≥ 1, the class O(n,∆) of bounded-degree
outerplanar graphs admits an Adjacency labeling scheme of size log n+O(1),
with encoding complexity O(n log n) and decoding complexity O(log log n).

Our labeling scheme utilizes a novel technique based on edge-universal
graphs1 for bounded degree outerplanar graphs. To the best of our knowl-
edge, our labeling scheme is the first to use the total label size to separate
the different components of the label. In contrast, other labeling schemes,
such as [9, 44], introduce an extra overhead to support such separation.

As a corollary of Theorem 4, we also obtain an efficient (b∆/2c+ 1) log n
size labeling scheme for graphs with maximum degree ∆. For the case of
bounded degree planar graphs we construct a d∆/2e+1

2 log n size labeling
scheme with average label size of (1 + o(1)) log n + O(log log n), improving
the best known construction for ∆ ≤ 4. Finally, we observe that a simple
application of combinatorial number systems [65] gives an adjacency label-
ing scheme for all graphs with maximum degree ∆(n), improving the known
bounds for ∆(n) ∈ [(e+ 1)

√
n, n/5].

We summarize our contributions in Table 4.1. Our results for outerpla-
nar graphs, planar graphs and general graphs are presented in Section 4.2,
Section 4.8 and Section 4.9, respectively.

Our method relies on an embedding technique of Bhatt, Chung, Leighton
and Rosenberg [62] for bounded degree outerplanar graphs. In their paper,
the authors were concerned with edge-universal graphs for various families
of bounded degree graphs. In particular, they show that for every n ∈ N
there exists a graph Hn with O(n) vertices and O(n) edges that contains
every bounded degree outerplanar graph G ∈ O(n,∆) as a subgraph (not
necessarily induced).

1A graph G is edge-universal for a class R of graphs, if every graph in R appears as a
subgraph in G (not necessarily induced).

28 Chapter 4. Adjacency for Bounded degree: Trees, Planar graphs and
Graphs

Table 4.1: Our contribution for families of graphs with
bounded degree ∆.

Family Upper bound Tight Encoding Decoding Ref.
Trees log n+O(1) yes O(n log n) O(log log n) Cor. 1
Outerplanar log n+O(1) yes O(n log n) O(log log n) Thm. 4
Planar (∆ ≤ 4) 3

2 log n+O(log log n) no O(n log n) O(log log n) Thm. 7
Planar 2 log n+O(1) no O(n log n) O(log log n) Cor. 2
Graphs, ∆(n) log

(
n

d∆(n)/2e
)

+ 2 log n no O(n2) O(∆(n) log n) Thm. 8
Graphs d∆

2 e log n+O(1) no O(n log n) O(log log n) Cor. 3

4.1 Our methods

Our main tool is an embedding technique due to Bhatt et al. [62] of outerpla-
nar graphs into Hn. On the one hand, the embedding is simple to compute.
This fact will lead to an efficient O(n log n) time encoder. On the other hand,
the embedding satisfies a useful locality property. This property allows our
labels to contain both unique vertex identifiers of the graph Hn and edge
identifiers, without exceeding the desired label size log n+O(1).

To obtain the latter label size via an embedding into Hn we need to
overcome several difficulties. Although Hn has a linear number of edges, its
maximum degree is Ω(log n), thus, unique edge identifiers require Ω(log logn)
bits, in general. Since also |V (Hn)|= Ω(n), it follows that a label cannot con-
tain an arbitrary combination of vertex identifiers in Vn and edge identifiers
at the same time, as it would lead to labels with size log n + Ω(log logn).
This difficulty is overcome by exploiting the structure of Hn further and con-
structing unique vertex identifiers in a particular way that allows reducing
the encoding length. This solution creates an additional difficulty of sepa-
rating the different parts of the label in the decoding phase. This difficulty
is overcome by designing careful encoding lengths that minimize the ambi-
guity, and storing an additional constant amount of information to eliminate
it altogether.

4.2 A compact edge-universal graph for bounded-
degree outerplanar graphs

We describe next the edge-universal graph Hn = (Vn, En) constructed by
Bhatt et al. [62] for O(n,∆). We let k = min{s ∈ N : 2s − 1 ≥ n} and set
N = 2k − 1. The construction uses two constants c = c(∆), g = g(∆), that
depend only on ∆.

The graph Hn is constructed from the complete binary tree T on N
vertices as follows. To obtain the vertex set Vn, split every vertex v ∈ V (T)
at level t in T into γt = c log(N/2t) vertices w1(v), · · · , wγt(v). The latter set
of vertices is called the cluster of v. For w ∈ Vn we denote by t(w) the level
of w, that is the level in the binary tree T of the cluster to which w belongs.

The edge set En is defined as follows. Two vertices wi(v), wj(u) ∈ Vn are
adjacent if and only if the clusters they belong to in T are at distance at most
g in T. Note that w1w2 ∈ En implies |t(w1)− t(w2)|≤ g. This completes the
construction of the graph. One can easily check that |Vn|= O(n). |En|= O(n)
also holds, but we do not use this fact directly. The graph Hn is illustrated
in Figure 4.1. Our labeling scheme relies on the following result.

4.3. Warm-up: a log n+O(log log n) Labeling Scheme 29

......

t = 1

t = 2

t = 3

...
LCA g(D)

} g(D)
t = i

t = j...

Figure 1: An illustration of the graph Hn.

1

Figure 4.1: An illustration of the graph Hn.

Theorem 5. [62] Hn is edge-universal for the class of bounded degree out-
erplanar graphs O(n,∆).

4.3 Warm-up: a log n+O(log log n) Labeling Scheme

We briefly describe a simple log n+O(log log n) labeling scheme. First, assign
unique identifiers Id to the vertices in Hn. Since |Vn|= O(n) we can assume
that |Id(v)|= log n + O(1) for every v ∈ Vn. Next, for every v ∈ Vn assign
unique identifiers to the edges incident to v, Since every vertex in Hn has
O(log n) neighbours, each edge can be encoded using log logn+O(1) bits.

To obtain labels for a given outerplanar graph G = (V,E), compute first
an embedding φ : V → Vn of G into Hn. Next, define the label of vertex
v ∈ V to be the concatenation of Id(φ(v)) with the identifiers of all edges
in En leading to images under the embedding φ of neighbouring vertices,
namely all φ(u)φ(v) such that uv ∈ E. Since the maximum degree in G is
bounded by the constant ∆, this results in a log n+O(log log n) label size. It
is not difficult to see that encoding and decoding can be performed efficiently
(we elaborate on it later on).

4.4 The encoder

To reduce the size of the labels to log n + O(1) we need to refine the latter
scheme significantly. As a first step we employ differential sizing, a technique
first used in the context of labeling schemes by Thorup and Zwick [9]. In
differential sizing some parts of the label do not have a fixed number of
allocated bits across all labels. Concretely, we use differential sizing for both
vertex and edge identifiers.

The resulting labels will have the desired length, but will also contain
an undesired ambiguity, that will prohibit correct decoding. We will then
append a short prefix to the label that will resolve this ambiguity.

4.4.1 Differential sizing - the suffix of a label

Let us first formally define our naming scheme for vertex and edge identifiers
in Hn.

30 Chapter 4. Adjacency for Bounded degree: Trees, Planar graphs and
Graphs

Definition 11. A naming of Hn is an injective function Id : Vn → N and a
collection of injective functions EIdv : Ev → N for every v ∈ Vn. A naming
is coherent if for every v, v1, v2 ∈ Vn:

1. Id(v1) > Id(v2) implies that t(v1) > t(v2), or t(v1) = t(v2) and the
cluster of v2 appears to the left of the cluster of v1 in T.

2. EIdv (vv1) > EIdv (vv2) implies that Id(v1) > Id(v2).

We compute a coherent naming by assigning the identifiers 1 through
|Vn| to Vn level by level, traversing the clusters in any single level in T from
left to right, and then naming the edges incident to v ∈ Vn from 1 to |Ev|
in a way that is consistent with the vertex naming. For v, v′ ∈ V define
α(v) := dlog Id(v)e and βv(vv′) := dlogEIdv (vv′)e and let

αt = max
v : t(v)≤t

α(v) and βt = max
vv′ : t(v)≤t

βv(vv
′)

be the maximal number of bits required to encode a vertex name and an
edge name for vertices with level at most t. The simple labels described in
the beginning of this section store log n+O(1) and log log n+O(1) bits for
every vertex name, and every edge name, respectively. In contrast, our label
for a vertex in level t stores αt bits for a vertex name, and βt for edge names.
In the following lemma we prove that the new labels have the desired size.

Lemma 7. For every t ≤ logN it holds that αt ≤ t+dlog(logN−t)e+O(1),
βt ≤ dlog(logN − t)e+O(1) and αt + ∆βt = log n+O(1).

Proof. We start with the following simple observation stating a couple of
facts about the size of different parts of Hn. We let V t

n ⊂ Vn and Γ(v) ⊂ Vn
denote the set of vertices in Hn with level at most t, and the set of neighbors
of v ∈ Vn in Hn, respectively. This properties will provide bounds on αt and
βt.

Property 1. The following properties hold for every level t and every vertex
v in level t.

i. |V t
n|≤ c2t(logN − t+ 1).

ii. |Γ(v)|≤ 6c∆2(logN − t+ g(∆)).

Proof. i. Note that the number of vertices in level i is c2i−1(logN − i), thus
we obtain

|V t
n|=

t∑
i=1

2i−1c(logN − i) ≤ c2t logN − c
t∑
i=1

2i−1i.

Using
∑t

i=1 2i−1i = t2t+1 − (t+ 1)2t + 1 ≥ 2t(t− 1) and substituting in the
expression above we obtain the desired result.

ii. We notice that, by definition ofHn, the set of neighbors of v are exactly
all vertices whose cluster is at distance at most g(∆) from the cluster of v.
It follows that every such cluster has at most c log(N/2t−g(∆)) = O(logN −
t + g(∆)) vertices. Finally, notice that the number of clusters that are at
distance at most g(∆) away from a given cluster is at most 3 ·2g(∆)−1 = 6∆2.
Putting things together we obtain a bound of 6∆2(logN − t + g(∆)), as
desired.

4.4. The encoder 31

We can now use property 1 to prove the bounds

αt ≤ t+ dlog(logN − t)e+ log c+ 2.

and
βt ≤ dlog(logN − t)e+ 2 log ∆ + log c+ 4.

We turn to proving the bound on αt + ∆βt for an arbitrary t ≤ logN . We
drop the additive terms log c+2 and 2 log ∆+log c+4 as they do not depend
on n, and hence only contribute a constant additive term.

Substituting the bounds above for αt and βt and defining Q = logN−t(v)
we obtain

αt + ∆βt = t+ (∆ + 1) log(logN − t) = logN −Q+ (∆ + 1) log logQ.

Using the fact that (∆+1) log logQ−Q ≤ 0 whenever Q ≥ (∆+1) log(∆+1)
and (∆ + 1) log logQ − Q ≤ (∆ + 1) log log(∆ + 1) whenever Q < (∆ +
1) log(∆+1), we have αt+∆βt ≤ logN+(∆+1) log log(∆+1) = log n+O(1).
This concludes the proof of the lemma.

We henceforth denote the part of the label containing the vertex name
and all its edge identifiers as the suffix.

4.4.2 Resolving ambiguity.

Since the vertex name does not occupy a fixed number of bits across all
labels, it is a priori unclear which part of the label contains it. To resolve
this ambiguity we analyze the following function, which represents the final
length of our labels for vertices in level t (up to a fixed constant). Let
D = [dlogNe] and f : D → N be defined as

f(t) = αt + ∆βt = t+ (∆ + 1)dlog(logN − t))e.
The following lemma states that all but a constant number (depending on
∆) of values in D have at most two pre-images under f . This observation
is useful, since it implies that the knowledge of the level t(v) of the vertex v
can resolve all remaining ambiguities in its label, as the vertex name occupies
exactly αt(v) bits.

Lemma 8. Let r(∆) = d8(∆+1) log(∆+1)e. For every t ∈ [dlogNe−r(∆)]
the number of integers t′ ∈ D \ {t} that satisfy f(t) = f(t′), is at most one.

Proof. Consider first the behavior of the term h(t) = (∆ + 1)dlog(logN −
t)e in the definition of f . Let t1 ∈ [D] be the smallest integer such that
log(logN − t1) is integer. It follows that logN − t1 = 2s for some integer s.
Consider the smallest integer t2 ∈ D with t2 > t1 such that log(logN − t2) is
integer. This value clearly satisfies logN − t2 = 2s−1. The smallest integer
t3 ∈ D with t3 > t2 such that log(logN−t3) is integer is logN−t3 = 2s−2 and
so on. Let t1 < t2 < · · · < tp be the obtained sequence of p = O(log logN)
points that satisfies ti = logN−2s−i+1 for i ∈ [p]. We call such points jumps.
See Figure 4.2 for an illustration of f . Observe next that for every k ∈ [p−1]
the term h(t) is constant within the interval Ik = [tk + 1, tk+1], while at the
point tk+1 + 1 it decreases by ∆ + 1.

32 Chapter 4. Adjacency for Bounded degree: Trees, Planar graphs and
Graphs

We rewrite f as

f(t) = t−
∑

k : tk≤t−1

(∆ + 1) + (∆ + 1)dlog(logN − 1)e,

The last term does not depend on t, thus it suffices to prove the claim for
f̂(t) = t −∑k : tk≤t−1(∆ + 1). Consider next some t ∈ D and assume that
f̂(r) 6= f̂(t) for every r < t. Define K = dlogNe − t, and let ti ≥ t be
the smallest jump larger or equal to t. Define γ = ti − t. Observe that
the number of jumps within the interval [ti, dlogNe], whose length is K − γ
is at most log(K − γ) + 1, while the next jump occurring after ti appears
exactly in the middle of the latter interval, namely ti+1 − ti = K−γ

2 . To
this end assume that f̂(t) has at least two other pre-images t′′ > t′ > t
under f̂ . Since f̂ is monotonic between jumps, there must be at least one
jump between every consecutive pair of pre-images of f̂ . It follows that
t ≤ ti ≤ t′ and t′ ≤ tj ≤ t′′ for some j ≥ i+ 1. In particular, it follows that
[ti, ti+1] ⊂ [ti, t

′′], which implies t′′ − ti ≥ K−γ
2 . Now, using the fact that

within the interval [ti, dlogNe] ⊃ [ti, t
′′] there are at most log(K − γ) jumps,

we can write

f̂(t′′) = t′′ −
∑

k : tk≤t′′−1

(∆ + 1)

≥ t−
∑

k : tk≤t−1

(∆ + 1) + (t′′ − t)−
∑

k : tk∈[ti,t′′−1]

(∆ + 1)

≥ f̂(t) + (γ +
K − γ

2
)− (∆ + 1)(log(K − γ) + 1)

≥ f̂(t) +
K

2
− (∆ + 1)(logK + 1),

which, using f̂(t) = f̂(t′′), implies

K

2
− (∆ + 1)(logK + 1) ≤ 0.

Rearranging the terms we obtain K
2(logK+1) ≤ ∆ + 1, which clearly implies

K ≤ r(∆) and t ∈ [dlogNe − r(∆)]. This concludes the proof.

Remark 2. It is natural to ask if having equal label lengths for vertices in
different levels can be avoided altogether (thus making Lemma 8 unnecessary).
This seems not to be the case for the following reason. The number of vertices
in every level is at least Ω(logN), thus, with label size ` = o(log logN) one
can not uniquely represent all vertices in any level. Furthermore, the label
length is also restricted to log n+O(1), and the number of levels is dlogNe.
Thus, a function assigning levels to label lengths would need to have domain
[dlogNe] and range [g(N), dlogNe] for g(N) = Ω(log logN), implying that
it cannot be one-to-one.

Recall that the length of the suffix of vertex v ∈ V is exactly αt(v)+∆βt(v).
We next show how the structural property proved here allows to construct a
constant size prefix, that will eliminate the ambiguity caused by differential
sizing.

4.4. The encoder 33

Δ

2Δ

1

lo
g

n
 +

O

(Δ
)

logn – O(Δ)

log
(n)

/2

log(
n)/
4

log(
n)/
8

t

label size

lo
g

lo
g

n
+

 O
(Δ

)

Figure 4.2: An illustration of Lemma 8

4.4.3 Constructing the prefix.

For a formal description of the prefix we need the following definition. We
let r(∆) = d8(∆ + 1) log(∆ + 1)e, as in Lemma 8.

Definition 12. A vertex v ∈ V is called shallow if its level t(v) is at most
dlogNe − r(∆). We call a shallow vertex early if t(v) is the smallest pre-
image of f(t(v)). A shallow vertex that is not early is called late.

A vertex v ∈ V that is not shallow is called deep. A deep vertex is of
type τ , if its level satisfies t(v) = dlogNe − τ .

It is easy to verify the following properties. Lemma 8 guarantees that if
v is shallow, then f(t(v)) has at most two pre-images under f . If v is shallow
and there is only one pre-image for f(t(v)), then v is early. Finally, observe
that the type of deep vertices ranges in the interval [1, r(∆)].

We are now ready to define the prefix of a label L(v) for a vertex v ∈ V .
Every prefix starts with a single bit D(v) that is set to 0 if v is shallow, and
to 1 if v is deep. The second bit R(v) in every prefix indicates whether a
shallow vertex is early, in which case it is set to 0, or late, in which case
it is set to 1. The bit R(v) is always set to 0 in labels of deep vertices.
The next part Type(v) of the prefix contains dlog r(∆)e bits representing the
type of the vertex v, in case v is deep. If v is shallow this field is set to zero.
This concludes the definition of the prefix. Observe that the prefix contains
O(log ∆) = O(1) bits. We stress that length sp of the prefix is identical
across all labels.

It is evident that the prefix of a label eliminates any remaining ambiguity.
This follows from the fact that the level t(v) of a vertex v ∈ V can be
computed from the length of the suffix and the additional information stored
in the prefix. The level, in turn, allows to decompose the suffix into the vertex
name and the incident edge names, which can then be used for decoding. We
elaborate on the decoding algorithm later on.

4.4.4 The final labels.

The final label is obtained by concatenating the suffix to the prefix, namely
L(v) is defined as follows.

34 Chapter 4. Adjacency for Bounded degree: Trees, Planar graphs and
Graphs

L(v) = D(v) ◦R(v) ◦ Type(v)︸ ︷︷ ︸
prefix

◦ Id(φ(v)) ◦ EIdφ(v)(e1) ◦ · · · ◦ EIdφ(v)(e∆)︸ ︷︷ ︸
suffix

.

Figure 4.3 illustrates the label structure as a function of the level of the
vertex. Note that |L(v)|= sp + f(t(v)), thus the level t(v) of v determines
|L(v)|. Note that Lemma 7 and the fact that the prefix has constant size
guarantees that |L(v)|= log n + O(1), as desired. We also pad each label
with sufficiently many 0’s and a single ’1’, to arrive at a uniform length. The
latter simple modification allows the decoder to work without knowing n in
advance (see [47] for details).

0 dlogr(D)e+2 f (i) = f (j) logn+O(1)

#

t = 1 a1 b1 b1· · ·

2 a2 b2 b2· · ·

i+1 ai+1 bi+1 bi+1· · ·
i ai bi bi· · ·

j a j b j b j· · ·

logN ak bk bk· · ·

......

......

......

prefix suffix$

1

Figure 4.3: The composition of labels in our labeling
scheme for vertices in different levels t = 1, · · · , logN . The
size of the prefix is seen to be constant in every level, while
the fields of lengths αt and βt, used to store vertex and edge
identifiers, respectively, have variable sizes. The levels i and
j comprise a collision with respect to the function f , thus

labels of vertices in these levels have the same length.

Although it is not necessary for the correctness of our labeling scheme,
we prove here uniqueness of the labels. In other words, we show that two
different vertices in G necessarily get different labels.

Lemma 9. For every two distinct u, v ∈ V (G) it holds that L(u) 6= L(v).

Proof. Consider two vertices u, v ∈ V (G) and assume L(u) = L(v). Since the
prefix of every label has the same length and the same parts for every vertex in
V (G), it must hold that D(u) = D(v), R(u) = R(v) and Type(u) = Type(v).

Assume first that both u and v are shallow. In this case L(u) = L(v)
implies that f(t(u)) = f(t(v)). Now, since R(u) = R(v), both v and u are
either early, or late, implying by Lemma 8 that t(u) = t(v) =: t. It follows by
definition of the labels, that the first αt bits of the suffices of L(u) and L(v)
contain Id(φ(u)) and Id(φ(v)), respectively, implying Id(φ(u)) = Id(φ(v)).
From the correctness of the embedding φ and uniqueness of the identifiers Id
it follows that u = v.

4.5. Decoding 35

Finally, assume that both u and v are deep. In this case Type(u) =
Type(v) implies again that t(u) = t(v). We now reach the conclusion u = v
as in the previous case.

4.5 Decoding

Consider two labels L(u) and L(v) for vertices u, v ∈ V . The decoder first
extracts the levels t(u) and t(v) of u and v respectively, using the following
simple procedure, which we describe for v. If D(v) = 0, v is shallow. To
this end, the decoder computes all pre-images of the length of the suffix,
|L(v)|−sp, under f . Recall, that by Lemma 8, the number of pre-images is
at most two. Let t1 ≤ t2 be the computed pre-images. Next, the decoder
inspects the bit R(v). According to the definition of the labels, t(v) = t1 if
R(v) = 0, and t(v) = t2, otherwise. Consider next the case D(v) = 1, namely
that v is deep. In this case, the decoder inspects Type(v). The level of v is
t(v) = dlogNe−Type(v), by definition of a type of a deep vertex. It is obvious
by the definition of the labels that the decoder extracts t(v) correctly. Assume
next that the decoder extracted t(u) and t(v). The decoder can now extract
Id(φ(u)) and Id(φ(v)), by inspecting the first αt(u) and αt(v) bits of the suffix
of L(u) and L(v), respectively. Next, the decoder checks if φ(u)φ(v) 6∈ En, in
which case it reports false. Finally, if φ(u)φ(v) ∈ En the decoder scans all ∆
blocks of βt(u) bits each, succeeding Id(φ(u)) in the suffix of L(u), checking if
one of them contains the edge-identifier EIdφ(u)(φ(u)φ(v)). If this identifier is
found the decoder reports true. Otherwise, it reports false. The correctness
of the decoding is clear from the label definition and Lemma 8.

Lemma 10. The decoding of the labels can be performed in time O(log log n).

Proof. All operations performed by the decoder take O(1) time except for
the computation of pre-images of an integer under f , and steps that inspect
properties in Hn. The former can obviously be performed in O(log log n)
time as follows. If the label corresponds to a deep label, then the decoder
checks all r(∆) = O(1) possible preimages, so assume next that the vertex
is shallow. Notice that t − f(t) = O(log log n) for every t ∈ D. Thus, given
f(t), one can compute in O(log log n) time all f(y) for all integers y with
|y − f(t)|= O(log log n). All preimages of f(t) under f will be found this
way.

We focus hereafter on the complexity of deciding if φ(u)φ(v) ∈ En and
the computation of the edge-identifier corresponding to two vertices in Hn.
To this end we need to elaborate on the way labeling is performed for the
graphHn. Recall thatHn is built from the complete binary tree T with logN
levels by splitting each vertex at level t into γt = c log(N/2t) vertices, thus
forming clusters, and then connecting two vertices if they belong to clusters
at distance at most g(∆) = 2 log ∆ + 2 apart in T. The labeling of vertices
is performed by assigning a range RC of size γt to every cluster at level t
in a single breadth-first search traversal, and then ordering the vertices in
the cluster arbitrarily using unique values in the range Rc. More precisely,
the ranges are constructed starting from the root of T, processing T level by
level as follows. The Range of the root cluster is simply [1, γ1]. The range
of the left child of the root is assigned the range [γ1 + 1, γ1 + γ2], while the
right child is assigned the range [γ1 + γ2 + 1, γ1 + 2γ2] and so on. At level

36 Chapter 4. Adjacency for Bounded degree: Trees, Planar graphs and
Graphs

t, the assignment of ranges starts from the left descendant of the parent at
level t− 1 with the lowest range (the range with the smallest lower bound),
followed by the right one, and so on. This process defines an ordering of the
clusters, in each level. We denote by POS(C) the position of the cluster C
in this order.

Given a label L of a vertex w ∈ Vn at level t = t(w), its clusters range
(which identifies the cluster) can be computed as follows. By definition of
the labeling, we have that L is contained in the range I(w) = [A+ 1, A+ γt]
with

A =
t−1∑
i=1

2i−1γi + (POS(C(w))− 1)γt,

where C(w) is the cluster to which w belongs. We now notice that

t−1∑
i=1

2i−1γi =
t−1∑
i=1

2i−1(log n− i) = c log n
t−1∑
i=1

2i−1 − c

2

t−1∑
i=1

2ii,

where both sums in the last formula have simple closed form expressions. It
follows that POS(C(w)) can be easily computed from t and L in O(1) time.

Finally, the decoder can compute both the parent and the descendants
of a cluster C at level t whose range is [A + 1, A + γt]. The parent is com-
puted using the fact that it is at level t − 1 and its position in this level is
dPOS(C)/2e. The descendants can be computed using the fact that their
level is t+1 and their positions in this level are 2POS(C)−1 and 2POS(C).
Both computations can clearly be performed in O(1) time, once presented
with the values γt. We conclude that it is possible to obtain in time O(1)
the ranges of all neighbours of a given cluster C in T.

We turn to the problem of deciding whether φ(u)φ(v) ∈ En. The decoder
starts by computing the clusters Cu and Cv of u and v, respectively in time
O(log n log n). Then the decoder computes paths Pu and Pv of length at most
g(∆) from Cu and Cv, respectively in the tree T. Each path is obtained by
successively moving at most g(∆) steps from a cluster to its parent in T.
The computation of these paths takes O(1) time, using the aforementioned
method for computing a parent of a cluster. By definition ofHn, we have that
φ(u)φ(v) ∈ En if and only if the clusters of φ(u) and φ(v) are at distance
at most g(∆) from one another in T. This can be now easily tested by
inspecting the paths Pu, Pv, which must contain the least common ancestor
(LCA) of φ(u) and φ(v), in case they are neighbours in Hn (see Figure 4.1
for an illustration).

With a similar argument one shows that each edge identifier can be de-
coded in O(1) time. The details are similar, and thus omitted. Performing
the decoding to all ∆ edge identifiers gives a total running time of O(1).
We conclude that the decoder can be implemented to have running time
O(log log n).

4.6 Computing the embedding φ

All the labels can clearly be computed from the graph G, the embedding φ
and the graph Hn in time O(n log n). It is also straightforward to compute
Hn in O(n) time. It remains to discuss how to compute an embedding φ, for
which we provide a high-level overview. For a detailed description, see [62].

4.7. Improvements and special cases 37

The algorithm uses a subroutine for computing bisectors of a graph. A
bisector of a graph G = (V,E) is a set S ⊂ V of vertices with the property
that the connected components of the graph G − S can be partitioned into
two parts, such that the sum of the vertices in each part is the same, and no
edge connects two vertices in different parts. If S is a bisector in G we say
that S bisects V \ S.

Given a k-coloring V = V1 ∪ · · · ∪ Vk of V (for some k ∈ N), one can
define a k-bisector of G as a set S ⊂ V that bisects every color class, namely
one that bisects Vi \ S for all i ∈ [k]. An important property of outerplanar
graphs is that they admit O(log n) size k-bisectors, for every fixed k.

The algorithm works by assigning vertices in the graph G to clusters in
T. The root of T is assigned up to c log n vertices that form a bisector of G
with parts G1, G2. In the next iteration, vertices adjacent to vertices in the
bisector are given a new color. Next, two new 2-bisectors are found, one in
each part G1, G2, and they are assigned to the corresponding decedents of
the root of T.

Let k(∆) = log ∆ + 1. In general, the vertices stored at a vertex of T at
level t correspond to a k(∆)-bisector. The colors of this bisector correspond
to the neighbors of vertex-sets stored at k(∆) − 1 nearest ancestors of the
current vertex in T. The last color is reserved to the remaining vertices. Also
stored in this vertex are all neighbors of the vertex-set stored in the ancestor
of the current vertex at distance exactly k(∆), that were not yet assigned to
some other cluster. We refer the reader to [62] for an analysis of the sizes of
clusters.

Let T (n) be the running time of the latter algorithm in a graph with n
vertices. T (n) clearly satisfies T (n) ≤ 2T (n/2) +O(h(n)), where h(n) is the
complexity of finding an O(1)-bisector of O(log n) size in an n-vertex graph.
For outerplanar graphs the latter can be done in linear time [55,62], thus the
labels of our labeling scheme can be computed in O(n log n) time.

4.7 Improvements and special cases

Several well-known techniques can be easily applied on top of our construc-
tion to reduce the additive constant in the label size. First, since graphs of
maximum degree ∆ have arboricity b∆

2 c + 1, one can reduce the number of
edge identifiers stored in each label to the latter number (see [2]). We later
show a simpler procedure that works for bounded degree graphs.

Finally, for bounded-degree trees T (n,∆), it suffices to store a single edge
identifier (corresponding to the edge connecting a vertex to its parent in G).
We summarize this result in the following corollary of Theorem 4.

Corollary 1. For every fixed ∆ ≥ 1, the class T (n,∆) of bounded-degree
trees admits a labeling scheme of size log n+O(1), with encoding complexity
O(n log n) and decoding complexity O(log log n).

4.8 Planar graphs

We present here our labeling scheme for the class of bounded degree planar
graphs P(n,∆). First, [63] proved that planar graphs can be edge-partitioned
into two outerplanar graphs in linear time. Combining this fact with Theo-
rem 4, yields the following.

38 Chapter 4. Adjacency for Bounded degree: Trees, Planar graphs and
Graphs

Corollary 2. For every fixed ∆ ≥ 1, the class T (n,∆) of bounded-degree
planar graphs admits a labeling scheme of size 2 log n+O(1), with encoding
complexity O(n log n) and decoding complexity O(log log n).

In the remainder of this section we show improved bounds for ∆ < 6.
We rely on an embedding of the given planar graph G into a graph PLn =
(Wn, An), obtained from the complete binary tree T. The only difference
between PLn and Hn is that in PLn, every vertex v in level t of T is divided
into a cluster of δt = c′

√
N

2−t vertices z1(v), · · · , zδt(v) (instead of γt in Hn),
for some constant c′. As for Hn, two vertices inWn are connected if and only
if the distance between their clusters in T is at most ĝ(∆) = O(log ∆). [62]
showed the following.

Theorem 6 ([62]). PLn is edge-universal for the class of bounded degree
planar graphs P(n,∆). Furthermore, PLn has O(n) vertices and O(n log n)
edges.

We use the latter theorem to prove the following result.

Theorem 7. For every fixed ∆ ≥ 1, the class P(n,∆) of bounded-degree
planar graphs admits a labeling scheme of size d∆/2e+1

2 log n + O(log log n),
with encoding complexity O(n log n) and decoding complexity O(log n log n).
The average label size of the latter scheme is (1 + o(1)) log n+O(log log n).

Proof. We use a simplified version of the method used in Section 4.2, thus
many details are omitted. Our labeling scheme for planar graphs works with
an embedding ψ : V →Wn of the given graph G into PLn. Levels of vertices
w ∈ Wn and u ∈ V are defined as before. Analogously to our previous
scheme, we assign unique identifiers Id(v) to vertices v ∈ Wn level by level,
starting from the highest level, and use them to define edge identifiers. Let
W t
n ⊂ Wn denote the set of vertices in PLn with level at most t. Then we

have the following lemma.

Lemma 11. The following properties hold for every level t and every vertex
v in level t.

i. |W t
n|= O(

√
N2t).

ii. |Γ(v)|= O(
√
N2−t).

Proof. i. Note that the number of vertices in level i is O(2i
√

N
2i

), thus for
some constant d,

|W t
n|= c′

t∑
i=1

2i−1

√
N

2i
≤ c′
√
N

t∑
i=1

√
2
i−1

= O(
√
N2t).

ii. Since v is connected to vertices in clusters at distance at most O(log ∆) =
O(1) from its cluster, there are O(1) such clusters. Furthermore, the highest
level of such a cluster is at least t − O(1), thus every such cluster contains
O(δt) = O(

√
N2−t) vertices, which concludes the proof.

Lemma 11 implies that a the encoding length of label containing a vertex
identifier Id(ψ(v)) together with s ∈ N edge identifiers corresponding to ψ(v)
is

log(
√
N2t)+s log(

√
N2−t)+O(1) = log n+

s− 1

2
(log n−t(v))+O(1). (4.1)

4.9. Graph of bounded, but not constant degree 39

Additionally storing the level t(v) using O(log log n) bits allows to perform
decoding easily, without needing the complications arising in our scheme for
outerplanar graphs. Finally, combined with the label splitting technique of
Kannan et al. [2] the statement of the theorem follows.

To prove the bound on the average label length we perform the following
simple computation. Consider a constant B � ∆ and let t∗ = (1−B−1) log n.
By choice of t∗ and using Lemma 11 it follows that |W t∗

n |= c′n1−ε and |Wn \
W t∗
n |= n − c′n1−ε for some constants c′, ε > 0. Now, the length of every

label L(v) for v ∈W t∗
n can be trivially bounded by ∆ log n, while for vertices

v ∈ W \W t∗
n , whose level is at least t∗, we use (Equation (4.1)) to upper-

bound the label size by

log n+
∆− 1

2
(log n−t∗)+O(log log n) =

(
1 +B−1 ∆− 1

2

)
log n+O(log log n).

Finally, combining the bounds one obtains the following bound on the sum
of the label sizes.∑
v∈V
|L(v)|≤ c′n1−ε∆ log n+(n−c′n1−ε)

(
1 +B−1 ∆− 1

2

)
log n+O(n log logn).

The term dn1−ε∆ log n is clearly negligible, since ∆ is fixed. We conclude
that the average label length is at most

(
1 +B−1 ∆−1

2

)
(1 + h(n)) log n +

O(log log n) for some function h(n) = o(1). Repeating the argument with
B = O(log log n) leads to a bound of

(1 + o(1)) log n+O(log log n)

on the average label size, which is asymptotically the best possible average
label size.

In light of the 2 log n + O(log log n) labeling scheme of [6] for general
planar graphs, our result improves the best known bounds for ∆ ≤ 4, which
includes grid graphs, and matches it for ∆ ≤ 6.

4.9 Graph of bounded, but not constant degree

First we note that Theorem 4 implies almost directly a d∆/2e log n labeling
scheme for graphs of fixed bounded degree ∆. The result follows from the
technique of [8], Lemma 9 and the fact that any subtree of a bounded degree
graph has bounded degree.

Corollary 3. For every ∆ ≥ 1, the class G(n,∆) of bounded-degree graphs
admits labeling schemes of size d∆/2e log n+O(1), with encoding complexity
O(n log n) and decoding complexity O(log log n).

From here on, we discuss labeling schemes for graphs of non-constant
bounded degree k = ∆(n). Adjacency relation between any two vertices may
be reported in only one of the labels representing them. For bounded degree
graphs, the method of [2] of decomposition into forests can be replaced with
a simpler procedure, using Eulerian circuits, as we prove in the following.

40 Chapter 4. Adjacency for Bounded degree: Trees, Planar graphs and
Graphs

Lemma 12. Let G = (V,E) be a graph with degree bounded by k. It is
possible to partition E into sets Sv, v ∈ V , with the properties that all edges
in Sv are incident to v and |Sv|≤ dk2e for all v ∈ V . This partition implies a
labeling scheme with size (dk2e+ 1) log n for graphs with degree bounded by k.

Proof. We first create an Eulerian multigraph G′ = (V,E′) from G by adding
at most |V |/2 new edges, comprising a matching that connects pairs of ver-
tices in G with odd degree. The degrees of all vertices in G′ are even, hence
it is Eulerian. We proceed by finding an Eulerian circuit P in G′ and di-
recting every edge according to the direction along P . Every vertex in G′

with degree d has now exactly d
2 incoming and outgoing edges. The label

of a vertex will only correspond to the vertices which are adjacent through
outgoing edges in P . This number is at most d

2 . The identifiers of the edges
in M are not included in the resulting label. The labeling scheme obtained
will assign unique labels to each of the vertices, and concatenate the selected
labels to each vertex. since d ≤ k this yields a label of size (dk2e+1) log n.

The current best labeling schemes for graphs works in two modes, ac-
cording to the range of k. If k ≤ n/log n, a k/2 log n labeling scheme can be
achieved [2], essentially by encoding an adjacency list. For larger k, labels
defined through the adjacency matrix of the graph have size n/2 +O(1) [64].
Our improved labels use the well-known combinatorial number system (see
e.g. [65]).

Lemma 13. Let L =
(
n
k

)
. There is a bijective mapping σ : Sk → [0, L − 1]

between the set of strictly increasing sequences Sk of the form 0 ≤ t1 <
t2 · · · < tk < n and [0, L− 1] given by

σ(t1, · · · , tk) =
k∑
i=1

(
ti
i

)
.

We use Lemma 13 to prove the following theorem. For this purpose we
assume that the labeling scheme presented in Lemma 12 returns a subset of
vertices for every vertex v ∈ V according to the partition instead of a final
label.

Theorem 8. For 1 ≤ k ≤ n, there exist an Adjacency labeling scheme for
G(n, k) with size: log

(
n
dk/2e

)
+ dlog ne+ dlog ke.

Proof. We assume the vertices of the graph G = (V,E) to be numbered from
0 to n − 1. We call a binary vector C of length n an adjacency vector of a
vertex v ∈ V if it satisfies that Ci = 1 if and only if vi is a neighbor of v
in G. We denote by C̄ the binary vector with C̄i = 1 if and only if Ci = 0.
We interpret the vectors C and C̄ and sets S ⊂ V as sequences of integers
in the range [0, n − 1], as in Lemma 13. Let v ∈ V be a vertex with k′ ≤ k
neighbors, and let C be its adjacency vector. Our labeling scheme assigns
every v ∈ V to an appropriate L(v) as follows.

We first use the encoder from the labeling scheme described in Lemma 12
to obtain a temporary subset Sv of neighbors of v. If k′ < 2n

3 we set the last
bit of L(v) to 0, and append it to the number mapped to the sequence of
integers corresponding to Sv under the bijection in Lemma 13. According
to Lemma 12, we are assured that |Sv|≤ dk2e ≤ dn3 e. If k′ ≥ 2n

3 , we set
the last bit of L(v) to 1, and append to it the number corresponding to C̄

4.9. Graph of bounded, but not constant degree 41

under the bijection in Lemma 13. Since k′ > 2n
3 , the number of 1’s in C̄ is at

most n
3 . Finally, we attach to every label a binary representation of k′ and a

unique vertex identifier using exactly log n bits each. The encoder performs
the operation in polynomial time. It is straightforward to verify the claimed
label length.

The decoder receives L(u) and L(v) and extracts the corresponding vec-
tors Cu and Cv, the adjacency vectors of u and v, resp., using Lemma 13,
and possibly a bit inversion operation. The decoder returns true if and
only if either Cu(v) = 1 or Cv(u) = 1. We note that the decoding can be
implemented in O(k log

(
n
k

)
) time.

The labeling scheme suggested in Theorem 8 implies a label size of ap-
proximately (k + 2) log n bits, when k is small and Θ(n) when k = Θ(n).
The following lemma identifies the range of k for which our labeling scheme
improves on the best known bounds.

Lemma 14. For (e+ 1)
√
n ≤ k ≤ n

5 , and f(n, k) =
(

n
dk/2e

)
+ log k+ log n it

holds that a) f(n, k) < n
2 ; and b) f(n, k) < dk/2e+ 2 log(n).

Proof. Stirling’s approximation yields the following asymptotic approxima-
tion.

log

(
cn

n

)
∼ log

(
cc

(c− 1)c−1

)
· n.

Accordingly, log
(
n
1
3
n

)
∼ 2.75

3 n. Since log(1010

99)/10 < 0.5, and since the func-
tion

(
n
k

)
is increasing for

√
n ≤ k ≤ n

3 our labeling scheme will incur strictly
less than 0.5n label size for the proposed labeling scheme over the range
specified.

Let xn be defined by xn = log(n!)− (n log n− n+ 1/2(log 2πn)), and by
its definition xn → 0 as n→∞. In addition:

log

(
k

n

)
= log(n!)− log((n− k)!)− log(k!)

= (xn−xn−k−xk)+n log n−(n−k) log(n−k)−k(log k)+1/2 log(n/k(n−k)2π)).

Define f(n, k) by f(n, k) = k/2 log n− log
(
k
n

)
. We are now interested in the

smallest k for which kn = f(n, k) ≤ 0 for fixed n. f(n, b√nc) < 0, so kn >√
n, so we can assume

√
n ≤ k ≤ n/2, which implies that 1/2 log(n/(k(n −

k)2π)) = O(log n). Furthermore xn − xn−k − xk = O(1) so

f(n, k) = k/2 log n− n log n+ (n− k) log(n− k) + k log k +O(log n)

= k/2 log n+ n log((n− k)/n) + k log(k/(n− k)) +O(log n).

Note that as n log((n− k)/n) = O(k) this means that

f(n, k)

k
=

1

2
log n− log((n− k)/k) +O(1) = log

(
k
√
n

n− k

)
+O(1)

This means that there exists some constant c > 0 such that if log
(
k
√
n

n−k

)
≥

c then f(n, k) ≥ 0. But

42 Chapter 4. Adjacency for Bounded degree: Trees, Planar graphs and
Graphs

log

(
k
√
n

n− k

)
≥ c⇐⇒ k ≥ c n√

n+ c
.

If k > c
√
n then f(n, k) ≥ 0. We can conclude kn ≤ c

√
n, and we may

assume that c
√
n ≥ k ≥ √n.

Now we can conclude that nlog((n−k)/n) = −k+O(k2/n) = −k+O(1).
Hence

f(n, k)

k
=

1

2
log n− 1 + k log(k/(n− k)) +O(

log n√
n

),

and thus
f(n, k)

k
= log

(
k
√
n

e(n− k)

)
+O(

log n√
n

).

We can now conclude with cn = exp(O(logn√
n

))

kn = cne
n√

n+ cne
+O(1) = e

√
n+O(log n).

We conclude from Lemma 14 that our labeling scheme is preferable to [64]
for graphs of bounded degree k for (e+ 1)

√
n ≤ k ≤ n

5 .

4.10 Concluding remarks

Firstly, we note that [47] result for Ancestry in bounded depth trees served
as basis for a labeling scheme for the unbounded case [58]. It would be inter-
esting to see if there exist an alternative asymptotically optimal Adjacency
labeling schemes for forests using a variant of Theorem 4.

Secondly, there exists a large gap in our results for bounded degree planar
graph (Section 4.8) between the size of the labeling scheme and the average
label length. This suggests the possibility of improving labeling schemes
for bounded degree planar graphs. It is also conceivable that there exists a
general transformation from labeling schemes with small average label length
to good “ordinary” labeling schemes.

Lastly, our labeling scheme for general graphs (Section 4.9) bears an
expensive decoding process, and would benefit from a more efficient decoding.

43

Chapter 5

Adjacency Labeling Schemes
for Power-Law Graphs

Though many graph families have been meticulously studied for this problem,
a non-trivial labeling scheme for the important family of power-law graphs
has yet to be obtained. This family is particularly useful for social and
web networks as their underlying graphs are typically modelled as power-law
graphs. Using simple strategies and a careful selection of a parameter, we
show upper bounds for such labeling schemes of (α

√
n) for power law graphs

with coefficient α, as well as nearly matching lower bounds. We also show
two relaxations that allow for a label of logarithmic size, and extend the
upper-bound technique to produce an improved Distance labeling scheme
for power-law graphs.

One class of graphs extensively used for modelling real-world networks is
power-law graphs: roughly, n-vertex graphs where the number of vertices of
degree k is proportional to n/kα for some positive α. Power-law graphs (also
called scale-free graphs in the literature) have been used to model the Inter-
net AS-level graph [67,68], and many other types of network (see, e.g., [69,70]
for overviews). The adequacy of fit of power-law graph models to actual data,
as well as the empirical correctness of the conjectured mechanisms giving rise
to power-law behaviour, have been subject to criticism (see, e.g., [69,71]). In
spite of such criticism, and because their degree distribution affords a rea-
sonable approximation of the degree distribution of many networks, the class
of power-law graphs remains a popular tool in network modelling. In this
chapter, we perform the first theoretical and practical study of Adjacency la-
beling schemes for classes of graphs whose statistical properties–in particular
their degree distribution–more closely resemble that of real-world networks.

Our contributions

In this chapter we contribute the following:

A discrete and simple characterisation of power-law graphs An
n-vertex graph is power-law if the number of its vertices of degree k is pro-
portional to n/kα for some positive α. To solidify this somewhat vague
definition, numerous probabilistic and deterministic definitions of power-law
graphs are given in the literature. In Section 5.2, we define and prove useful
properties for two simple families of graphs, Ph and Pl, where Ph contains
and Pl is contained by the standard definitions of power-law graphs in the
literature, including recent ones [72]. We use Ph and Pl to study upper and
lower bounds respectively.

44 Chapter 5. Adjacency Labeling Schemes for Power-Law Graphs

FatThin

Number
of

vertices

DegreeThreshold

(a)

FatThin

Number
of

vertices

DegreeThreshold

(b)

Figure 5.1: Two illustrations of the main idea: Figure (a)
demonstrates the threshold assignment, figure (b) demon-
strates the label assignment, in which fat (black) vertices do

not store Adjacency to thin (white) vertices.

An O(α
√
n(log n)1−1/α) Adjacency labeling scheme In Section 5.4, we

describe our labeling scheme, which is based on two ideas: (i) a labeling
strategy that partitions the vertices of G into high (“fat”) and low degree
(“thin”) vertices based on a threshold degree, and (ii) a threshold prediction
that depends only on the coefficient α of a power-law curve fitted to the
degree distribution of G. These ideas are illustrated in Figure 5.1. Using
the same ideas, we get an asymptotically near-tight O(

√
n log n) Adjacency

labeling scheme for sparse graphs. As real-world power-law graphs have
2 ≤ α ≤ 3 and rarely exceed 1010 vertices, this implies labels of the order of
104− 105 bits. That, and the simplicity of our labeling scheme suggests that
our labeling schemes may be appealing in practice. To stress this point, we
offer an experimental evaluation of our labeling scheme in Section 5.9.

A lower bound of Ω(α
√
n) for any Adjacency labeling scheme In

Section 5.6, We use our restrictive subclass of power-law graphs and show
that it requires label size Ω(α

√
n) for n-vertex graphs. This lower bound shows

that our upper bound above is asymptotically optimal, bar a (log n)1−1/α

factor. By the connections between Adjacency labeling schemes and universal
graphs, we also obtain upper and lower bounds for induced universal graphs
for power-law graphs. We also show, in Section 5.7, two scenarios in which
this lower bound can be bypassed.

A o(n) Distance labeling scheme In Section 5.8, we demonstrate the
usefulness of our strategy to arrive at a o(n) Distance labeling scheme for
power-law graphs. Our labeling scheme is designed to outperform competing
labeling schemes for small distances, in accordance with Chung and Lu’s
findings [73] on the small expected diameter of power-law graphs.

5.1 Preliminaries

In this chapter we consider n-vertex, undirected graphs. For a real c > 0,
a graph is c-sparse if it has at most cn edges and sparse if it is c-sparse for
some constant c. For 0 < c ≤ n−1, the set of c-sparse graphs with n vertices
is denoted by Sc,n. If F is a set of graphs, Fn denotes the subset of graphs in
F having exactly n vertices. The degree of a vertex v in a graph is denoted
by ∆(v), and for non-negative integers k, the set of vertices in a graph G
of degree k is denoted by Vk. The length of a binary string x ∈ {0, 1}∗ is
denoted by |x|.

5.2. Defining power-law graphs 45

Let F be a set of graphs. An Adjacency labeling scheme (from hereon
just labeling scheme) for F is a pair consisting of an encoder and a decoder.
The encoder is an algorithm that receives G ∈ F as input and outputs a
bit string L(v) ∈ {0, 1}∗, called the label of v, for each vertex v in G. The
decoder is an algorithm that receives any two labels L(v),L(u) as input and
outputs true if u and v are adjacent in G and false otherwise. Note that
the graph G is not an input to the decoder. The size of a labeling scheme
is the map size : N −→ N such that size(n) is the maximum length of any
label assigned by the encoder to any vertex in any graph G ∈ Fn. The degree
distribution of a graph G = (V,E) is the mapping ddistG(k) : N0 −→ Q
defined by ddistG(k) := |Vk|

n .

5.2 Defining power-law graphs

In the literature power-law graphs are usually defined as the class of n vertex
graphs G such that ddistG(k) is proportional to k−α for some real number
α > 1. Ideally, and ignoring rounding, ddistG(k) = Ck−α for all k for
constant C. As the degree distribution of a graph must be a probability
distribution, we have

∑∞
k=1Ck

−α = C
∑∞

k=1 k
−α = 1, hence C = 1/ζ(α)

where ζ is the Riemann zeta function. However, in the literature, concessions
are usually made that relax the restrictions on ddistG(k), for example that
the power-law property need only hold for high-degree vertices (“above a
cutoff”), or that ddistG(k) is only approximately equal to Ck−α, with some
approximation error that falls off with n. To ensure that our results hold for
all these variations of power-law graphs, we define two families of graphs Ph
and Pl with Pl (Ph. Family Ph is rich enough to contain the graphs whose
degree distribution is approximately, or perfectly, power-law distributed, and
our upper bound on the label size for our labeling scheme holds for any
graph in Ph. Family Pl is used to show our lower bound and is restrictive
enough that most definitions of power-law graph occurring in the literature
will contain it.

In the following, let i1 = Θ(α
√
n) be the smallest integer such that

bCn/iα1 c ≤ 1, and let C ′ ≥ (C
α−1 + i1

α√n + 5)α + C
α−1 be a constant; we

shall use C ′ in the remainder of the chapter.

Definition 13. Let α > 1 be a real number and let χ : N→ N be a function.
Ph,χ,α is the family of graphs G such that if n = |V (G)| then for all integers
k between χ(n) and n− 1,

∑n−1
i=k |Vi| ≤ C ′(n

kα−1). We shall usually suppress
χ and α, writing merely Ph.

The function χ captures the notion of a cutoff as defined in [69, Sec.
3.1]; the intuition is that for an n-vertex graph the power-law distribution
need only apply for vertices of degree higher than χ(n), rather than for all
degrees. Setting χ(n) = 1 corresponds to the case where the entire range of
degrees follows a power-law distribution, hence even for small values of χ(n),
Ph morally contains all graphs with power-law degree distribution. We will
later prove upper bounds that hold for all χ bounded from above by some
function; in particular for the upper bound for Adjacency labeling schemes,
the bound holds for χ(n) as high as α

√
n/log n.

The class Pl contains graphs where the number of vertices of degree k
must be C n

kα rounded either up or down and the number of vertices of degree

46 Chapter 5. Adjacency Labeling Schemes for Power-Law Graphs

k is non-increasing with k. Note that the function k 7→ C 1
kα is strictly

decreasing.

Definition 14. Let α > 1 be a real number and let C = 1/ζ(α) where ζ is
the Riemann zeta function. Pl,α is the set of graphs G = (V,E) such that

1. bCnc − i1 − 1 ≤ |V1|≤ dCne,

2. bC n
2α c ≤ |V2|≤ dC n

2α e+ 1,

3. for every i with 3 ≤ i ≤ n: |Vi|∈ {bC n
iα c, dC n

iα e}, and

4. for every i with 2 ≤ i ≤ n− 1: |Vi|≥ |Vi+1|.

We usually suppress α, writing just Pl.

Note that we allow slightly more noise in the sizes of V1 and V2 than in
the remaining sets; without it, it seems tricky to prove a better lower bound
than Ω(α+1

√
n) on label sizes.

We show the following properties of Pl.

Proposition 1. The maximum degree in an n-vertex graph in Pl is at most(
C
α−1 + 2

)
α
√
n+ i1 + 3 = Θ(α

√
n).

Proof. Let n > 0 be an integer and let k′ = b α√nc. Furthermore, let Sk′ =∑k′

i=1|Vi|, that is Sk′ is the number of vertices of degree at most k′. Let
S−k′ = (

∑k′

i=1bCni−αc) − i1 − 1. Then Sk′ ≥ S−k′ . We now bound S−k′ from
below. For every i with 1 ≤ i ≤ k′,

S−k′ + k′ = −i1 − 1 +
k′∑
i=1

(⌊
Cni−α

⌋
+ 1
)

≥ −i1 − 1 +
k′∑
i=1

Cni−α = −i1 − 1 + Cn
k′∑
i=1

i−α

≥ n
(

1− C
∞∑

i=k′+1

i−α

)
− i1 − 1 ≥ n

(
1− C

∫ ∞
k′

x−αdx

)
− i1 − 1

= n

(
1− C

[
1

α− 1
x−α+1

]k′
∞

)
− i1 − 1 = n

(
1− C

α− 1

(
d α√ne

)−α+1
)
− i1 − 1

≥ n
(

1− C

α− 1

(
α
√
n
)−α+1

)
− i1 − 1 = n− Cn

α− 1
n−1+ 1

α − i1 − 1

= n− C

α− 1
α
√
n− i1 − 1,

giving Sk′ ≥ S−k′ ≥ n − C
α−1

α
√
n − d α√ne − i1 − 1. There are thus at most

C
α−1

α
√
n + b α√nc + i1 + 1 vertices of degree strictly more than k′ = d α√ne.

Since for every 1 ≤ i ≤ n − 1: |Vi|≥ |Vi+1|, it follows that the maximum
degree of any graph in Pl is at most

(
C
α−1 + 2

)
α
√
n+ i1 + 3.

Proposition 2. For α > 2, all graphs in Pl are sparse.

5.3. Comparison to other deterministic models 47

Proof. By Proposition 1, the maximum degree of an n-vertex graph in Pl
graph is at most k′ ,

(
C
α−1 + 2

)
α
√
n + i1 + 3, whence the total number of

edges is at most 1
2

∑k′

k=1 k|Vk|. By definition, |Vk|≤ dCnkα e ≤ Cn
kα + 1 for k 6= 2

and |V2|≤ dCn2α e+ 1, and thus

1

2

k′∑
k=1

k|Vk| ≤ 1 +
1

2

k′∑
k=1

k

(
Cn

kα
+ 1

)
≤ 1 +

k′(k′ + 1)

4
+ Cn

∞∑
k=1

k−α+1

= O(n2/α) + Cnζ(α− 1) = O(n).

Proposition 3. For any χ and α > 1, Pl,α ⊆ Ph,χ,α.

Proof. Let d = b(C
α−1 + 2) α

√
n+ i1 + 3c. For any graph in Pl with n vertices

and for any k, |Vk|≤ Ck−αn+ 1 and by Proposition 1, |Vk|= 0 when k > d.
Let k be an arbitrary integer between χ(n) and n− 1. We need to show

that
∑n−1

i=k |Vi| ≤ C ′(n
kα−1). It suffices to show this for k ≤ d. We have:

n−1∑
i=k

|Vi| ≤
d∑
i=k

(Ci−αn+ 1) = d− k + 1 + Cn

d∑
i=k

i−α

≤
(

C

α− 1
+

i1
α
√
n

+ 5

)
α
√
n+ Cn

∫ d

k

x−αdx

≤
(

C

α− 1
+

i1
α
√
n

+ 5

)
α
√
n+ Cn

[
1

α− 1
x−α+1

]k
∞

≤
((

C

α− 1
+

i1
α
√
n

+ 5

)(
α
√
ndα−1

n

)
+

C

α− 1

)
nk−α+1

≤
(

C

α− 1
+

i1
α
√
n

+ 5

)(
C

α− 1
+

i1
α
√
n

+ 5

)α−1
nk−α+1 +

(
C

α− 1

)
nk−α+1

≤ C ′nk−α+1,

as desired.

5.3 Comparison to other deterministic models

Numerous probabilistic and deterministic definitions of power-law graphs are
given in the literature. A recent deterministic model, called shifted power-
law distribution [74] has recently proven to capture a vast number of such
definitions, both in theory and experimentally in [72]. We show that our
definition of Ph contains graphs that adhere to the model, which is defined
as follows. Let c1 > 0 be a constant. A graph G is power-law bounded for
parameters α > 1 and t ≥ 0 if for every integer d ≥ 0, the number of vertices
of G of degree in [2d, 2d+1) is at most

c1n(t+ 1)α−1
2d+1−1∑
i=2d

(i+ t)−α.

As experimentally verified in [72], the value of t is typically very small. If
t = O(1), the bound above becomes O(n

∑2d+1−1
i=2d i−α). In this case, our

family Ph(χ, α) is rich enough to contain these power-law bounded graphs

48 Chapter 5. Adjacency Labeling Schemes for Power-Law Graphs

for sufficiently large C ′ and any choice of χ and α. This follows since for
any power-law bounded graph with n vertices and any integer k between
1 and n − 1,

∑n−1
i=k |Vi| = O(

∑dlog(n−1)e
d=blog kc n

∑2d+1−1
i=2d i−α) = O(n

kα−1). Thus
our upper bound also applies to power-law bounded graphs. It is possible
to extend our upper bound to super-constant t where the bound is stronger
the smaller t is; we omit the details. Conversely, our family Pl is restrictive
enough that Pl is contained in the family of power-law bounded graphs when
t = O(1), and the lower bound we derive thus also holds in that setting.

5.4 The labeling schemes

We now construct algorithms for labeling schemes for c-sparse graphs and
for the family Ph. Both labeling schemes partition vertices into thin vertices
which are of low degree and fat vertices of high degree. The degree threshold
for the scheme is the lowest possible degree of a fat vertex. We start with
c-sparse graphs.

Theorem 9. There is a
√

2cn log n+ 2 log n+ 1 labeling scheme for Sc,n.

Proof. Let G = (V,E) be an n-vertex c-sparse graph. Let τ(n) be the de-
gree threshold for n-vertex graphs; we choose τ(n) below. Let k denote the
number of fat vertices of G, and assign each fat vertex a unique identifier
between 1 and k. Each thin vertex is given a unique identifier between k+ 1
and n.

For a v ∈ V , the first part of the label L(v) is a single bit indicating
whether v is thin or fat followed by a string of log n bits representing its
identifier. If v is thin, the last part of L(v) is the concatenation of the
identifiers of the neighbors of v. If v is fat, the last part of L(v) is a fat bit
string of length k where the ith bit is 1 iff v is incident to the (fat) vertex
with identifier i.

Decoding a pair (L(u),L(v)) is straightforward: if one of the vertices, say
u, is thin, u and v are adjacent iff the identifier of v is part of the label of
u. If both u and v are fat then they are adjacent iff the ith bit of the fat bit
string of L(u) is 1 where i is the identifier of v. Both decoding processes can
be computed in O(log n) time using standard assumptions.

Since |E|≤ cn, we have k ≤ 2cn/τ(n). A fat vertex thus has label size
1 + log n + k ≤ 1 + log n + 2cn/τ(n) and a thin vertex has label size at
most 1 + log n + τ(n) log n. To minimize the maximum possible label size,
we solve 2cn/x = x log n. Solving this gives x =

√
2cn/log n and setting

τ(n) = dxe gives a label size of at most 1 + log n+ (
√

2cn/log n+ 1) log n ≤
1 + 2 log n+

√
2cn log n.

By Proposition 2, graphs in Pl are sparse for α > 2. This gives a label size
of O(

√
n log n) with the labeling scheme in Theorem 9. We now show that

this label can be significantly improved, by constructing a labeling scheme
for Ph which contains Pl.

Theorem 10. There is a α
√
C ′n(log n)1−1/α+ 2 log n+ 1 labeling scheme for

Ph.

Proof. The proof is very similar to that of Theorem 9. We let τ(n) denote
the degree threshold. If we pick τ(n) ≥ α

√
n/log n then by Definition 13 there

5.5. A labeling scheme for random graphs 49

are at most C ′n/τ(n)α−1 fat vertices. Defining labels in the same way as in
Theorem 9 gives a label size for thin vertices of at most 1 + log n+ τ(n) log n
and a label size for fat vertices of at most 1 + log n + C ′n/τ(n)α−1. We
minimize by solving x log n = C ′n/xα−1, giving x = α

√
C ′n/log n. Setting

τ(n) = dxe gives a label size of at most α
√
C ′n(log n)1−1/α + 2 log n+ 1.

5.5 A labeling scheme for random graphs

There are schemes using randomness to “grow” graphs that, with high prob-
ability, have an approximate power-law degree distribution for a range of
degrees (see e.g. [75]). For graphs obtained from such models, their degree
sequences are instead probability distributions. We now show that applying
our labeling scheme for Ph to random graphs with the power-law distribution
results in a small expected worst-case label size.

Using the definition of Mitzenmacher [70], a random variable X is said
to have the power-law distribution (w.r.t. α > 1) if

Pr[X ≥ x] ∼ cx−α+1,

for a constant c > 0, i.e., limx→∞ Pr[X ≥ x]/cx−α+1 = 1.
Let ε > 0 be fixed. Consider a graph G picked from a family F of random

graphs whose degree sequences have the power-law distribution. Order the
vertices of G arbitrarily as v1, . . . , vn. For i = 1, . . . , n, let indicator variable
Xi be 1 iff vi has degree at least d = α

√
n/log n. There is a constant N0 ∈ N

(depending on ε) such that if n ≥ N0 then for all i,

E[Xi] = Pr[Xi = 1] ≤ (1 + ε)cd−α+1.

With the same labeling scheme as for Ph with degree threshold τ(n) = d,
denote by En the expected label size of an n-vertex graph from F . Then for
all n ≥ N0,

En =
n∑
x=0

Pr

[
n∑
i=1

Xi = x

]
O((x+ d log n)) = O

(
d log n+ E

[
n∑
i=1

Xi

])

= O

(
d log n+

n∑
i=1

E[Xi]

)
= O

(
d log n+ nd−α+1

)
= O

(
α
√
n(log n)1−1/α

)
.

Thus, we have:

Theorem 11. Let F be a family of graphs with degree sequences having
the power-law distribution w.r.t. α > 1. Then there is a labeling scheme
for F such that the expected worst-case label size of any graph G ∈ F is
O(α
√
n(log n)1−1/α) where n is the number of vertices of G.

5.6 Lower bounds

We now derive lower bounds for the label size of any labeling schemes for
both Sc,n and Pl. Our proofs rely on Moon’s [76] lower bound of bn/2c
bits for labeling scheme for general graphs. We first show that the upper
bound achieved for sparse graphs is close to the best possible. The following

50 Chapter 5. Adjacency Labeling Schemes for Power-Law Graphs

proposition is essentially a more precise version of the lower bound suggested
by Spinrad [77].

Proposition 4. Any labeling scheme for Sc,n requires labels of size at least⌊√
cn
2

⌋
bits.

Proof. Assume for contradiction that there exists a labeling scheme assigning
labels of size strictly less than b

√
cn
2 c. Let G be an n-vertex graph. Let G′ be

the graph resulting by adding
⌊
n2

c

⌋
−n isolated vertices to G, and note that

now G′ is c-sparse. The graph G is an induced subgraph of G′. It now follows

that the vertices of G have labels of size strictly less than
⌊√

cbn2/cc
2

⌋
≤ n/2

bits. As G was arbitrary, we obtain a contradiction.

In the remainder of this section we are assuming that α > 2 and prove
the following:

Theorem 12. For any n, any labeling scheme for n-vertex graphs of Ph,χ,α
requires label size Ω(α

√
n).

More precisely, we present a lower bound for Pl which is contained in Ph.
Let n ∈ N be given and let H = (V (H), E(H)) be an arbitrary graph with
i1 vertices where i1 = Θ(α

√
n) is defined as in Section 5.2. We show how

to construct a graph G = (V,E) in Pl with n vertices that contains H as
an induced subgraph. Observe that a labeling of G induces a labeling of H.
As H was chosen arbitrarily and as any labeling scheme for k-vertex graphs
requires bi1/2c label size in the worst case, Theorem 12 follows if we can
show the existence of G.

We construct G incrementally where initially E = ∅. Partition V into
subsets V1, . . . , Vn as follows. The set V1 has size bCnc−i1. For i = 2, . . . , i1−
1, Vi has size bCn/iαc. Letting n′ =

∑i1−1
i=1 |Vi|, we set the size of Vi to 1 for

i = i1, . . . , i1+n−n′−1 and the size of Vi to 0 for i = i1+n−n′, . . . , n, thereby
ensuring that the sum of sizes of all sets is n. Observe that

∑i1
i=1bCn/iαc ≤ n

so that n′ ≤ n− i1, implying that n−n′ ≥ i1. Hence we have at least i1 size
1 subsets Vi1 , . . . , Vi1+n−n′−1 in each of which the vertex degree allowed by
Definition 14 is at least i1.

Let v1, . . . , vi1 be an ordering of V (H), form a set VH ⊆ V of i1 arbitrary
vertices from the sets Vi1 , . . . , Vi1+n−n′−1, and choose an ordering v′1, . . . , v′i1
of VH . For all i, j ∈ {1, . . . , i1}, add edge (v′i, v

′
j) to E iff (vi, vj) ∈ E(H).

Now, H is an induced subgraph of G and since the maximum degree of H is
i1− 1, no vertex of Vi exceeds the degree bound allowed by Definition 14 for
i = 1, . . . , n.

We next add additional edges to G in three phases to ensure that it is an
element of Pl while maintaining the property that H is an induced subgraph
of G. For i = 1, . . . , n, during the construction of G we say that a vertex
v ∈ Vi is unprocessed if its degree in the current graph G is strictly less than
i. If the degree of v is exactly i, v is processed.

Phase 1 Let V ′ = V \ (V1 ∪ VH). Phase 1 is as follows: while there exists
a pair of unprocessed vertices (u, v) ∈ V ′ × VH , add (u, v) to E.

When Phase 1 terminates, H is clearly still an induced subgraph of G.
Furthermore, all vertices of VH are processed. To see this, note that the sum

5.7. Bypassing the lower bound 51

of degrees of vertices of VH when they are all processed is O(i21) = O(n2/α)
which is o(n) since α > 2. Furthermore, prior to Phase 1, each of the Θ(n)
vertices of V ′ have degree 0 and can thus have their degrees increased by at
least 1 before being processed.

Phase 2 While there exists a pair of unprocessed vertices (u, v) ∈ V ′ ×
V ′, add (u, v) to E. At termination, at most one vertex of V ′ remains
unprocessed. If such a vertex exists we process it by connecting it to O(α

√
n)

vertices of V1; as |V1|= Θ(n) there are enough vertices of V1 to accommodate
this. Furthermore, prior to adding these edges, all vertices of V1 have degree
0, and hence the bound allowed for vertices of this set is not exceeded.

Phase 3 We add edges between pairs of unprocessed vertices of V1 until
no such pair exists. If no unprocessed vertices remain we have the desired
graph G. Otherwise, let w ∈ V1 be the unprocessed vertex of degree 0. We
add a single edge from w to another vertex w′ of V1, thereby processing w
and moving w′ from V1 to V2. Note that the sizes of V1 and V2 are kept in
their allowed ranges due to the first two conditions in Definition 14. This
proves Theorem 12.

5.7 Bypassing the lower bound

The lower bound presented can be avoided in two interesting cases. The first,
for random graphs generated by a popular model, and the second using an
extension of the concept of labeling schemes from the literature.

BA model As discussed in Section 5.5, generative models play an impor-
tant role in the study of power-law graphs. Perhaps the most well-known
generative model is the Barabási-Albert (BA) which, roughly, grows a graph
in a sequence of time steps by inserting a single vertex at each step and at-
taching it to m existing vertices with probability weighted by the degree of
each existing vertex [78]. The BA model generates graphs that asymptoti-
cally have a power-law degree distribution (α = 3) for low-degree vertices [79].
However, graphs created by the BA model have low arboricity 1 [80]. We
use this fact to devise the following highly efficient labeling scheme for such
graphs.

Proposition 5. The family of graphs generated by the BA model has an
O(m log n) Adjacency labeling scheme.

Proof. Let G = (V,E) be an n-vertex graph resulting by the construc-
tion by the BA model with some parameter m (starting from some graph
G0 = (V0, E0) with |V0|� n). While it is not known how to compute the
arboricity of a graph efficiently, it is possible in near-linear time to compute
a partition of G with at most twice2 the number of forests in comparison to
the optimal [82]. We can thus decompose the graph to 2m forests in near
linear time and label each forest using the recent log n+O(1) labeling scheme
for trees [45], and achieve a 2m(log n+O(1)) labeling scheme for G.

1the arboricity of a graph is the minimum number of spanning forests needed to cover
its edges.

2More precisely, for any ε ∈ (0, 1) there exist an O(|E(G)|/ε) algorithm [81] that com-
putes such partition using at most (1 + ε) times more forests than the optimal one.

52 Chapter 5. Adjacency Labeling Schemes for Power-Law Graphs

If the encoder operates at the same time as the creation of the graph,
Proposition 5 can be tightened to yield a m log n labeling scheme, by stor-
ing the identifiers of the vertices to the vertex introduced. Theorem 12 and
Proposition 5 strongly suggest that local properties of power-law graphs are
very different from those of a randomly generated graph using the BA model.
In contrast, other generative models such as Waxman’s [83], N-level Hierar-
chical [84]. and Chung and Liu’s [75] (Chapter 3) do not seem to have an
obvious smaller label size than the one in Theorem 10.

Labeling schemes with a query. The concept of labeling scheme limits
the number of vertices participating in a query severely. A relaxed variant
thereof, called 1-query labeling scheme [34], assumes that the decoder receives
both labels queried, and may access the label of a third vertex in order to
answer the query. If this is allowed, we can construct an O(log n) 1-query
Adjacency labeling scheme for sparse (and power-law) graphs as follows: We
assign each vertex v with an identifier ID(v), then produce a classic [85]
chaining perfect hash-function3 from {1 . . . cn} to {1 . . . n}, with the guaran-
tee that the worst case number of collisions is constant. We then compute the
hash function for all edges (u, v) and store the tuple 〈ID(v), ID(u)〉 in the
label of the corresponding vertex. The decoder first computes the hash value
resulting from ID(v) and ID(u) and proceed to examine if on the label corre-
sponding to the result of the function the tuple appears. The decoder needs
only to know the primary and secondary hash functions used, description
thereof amount to logarithmic number of bits, which can be concatenated to
each label.

5.8 A Distance labeling scheme

In this section we extend the usefulness of our strategy by showing a labeling
scheme for small distances in power-law graphs.

For sparse graphs, Alstrup et al. [86] obtain a Distance labeling scheme
with maximum label size O(nD log2D) where D = (log n)/(log m+n

n) and m
is the number of edges in the graph. Gawrychowski et al. obtain an upper
bound of [87] O(nD logD) with sub-linear decoding time. Few general results
on lower bounds exist. The lower bound of Ω(

√
n) for Adjacency given

hereafter is trivially also a lower bound for Distance; for total label size, the
best known lower bound remains Ω(n3/2) as proved by Gavoille et al. [22].

Lemma 15. For any computable f : N −→ N such that f(n) ≤ n − 1 for
all n, and for any χ(n) ≥ n1/(alpha−1+f(n)) there is an f(n)-Distance labeling
scheme for Ph,χ,α that assigns labels of length at most O(nf(n)/(f(n)+1) log f(n)).

Proof. Let G be a graph in Ph,χ,α. A vertex of G is fat if it has degree at
least n1/(α−1+f(n)) and thin otherwise. The label of each vertex v contains
(i) a table of distances to all fat vertices (if the distance is more than f(n),
it is simply ignored), (ii) a table of distances to all thin vertices w that are
at most distance f(n) away from v where the shortest path between v and w
does not pass through any fat vertex, and (iii) a single bit signifiying whether
the vertex is fat or thin. Clearly, as f(n) is computable and distances in G
are computable, there is a computable encoder assigning labels. A decoder

3To this end, we may for example first partition the domain into c parts.

5.9. Experimental study 53

can now compute the distance between any two vertices u, v as follows: If
both u or v are fat, the distance can be directly read off part (i) of the label
of any vertex. If at least one of u and v is fat, the distance can be read off
part (i) of the label of the thin vertex. If both vertices are thin, the decoder
can check if the distance is in part (ii) of the label of either vertex; if the
distance is not present, either the distance is strictly greater than f(n), or
the shortest path between u and v passes through a fat vertex; in this case,
the decoder may brute-force check the distances from u and v to each fat
vertex, and output the smallest sum of these two distances.

Furthermore, as all vertices of G are either thin or fat, it is clearly possible
for an encoder to compute all distances less than or equal to f(n) between
any pair of vertices. Note that as all distances we care for are bounded above
by f(n), each such distance can be stored using at most log f(n) bits.

As G = G(V,E) is in Ph,χ,α, we have

n−1∑
i=χ(n)

|Vi| ≤
n−1∑

i=n
1

α−1+f(n)

|Vi|≤ C ′
 n(

n
1

α−1+f(n)

)α−1

≤ C ′n1−(α−1)/α−1+f(n) = C ′nf(n)/(α−1+f(n))

Thus, a table of distances to all fat vertices takes up at most

O

(
n

f(n)
α−1+f(n) log f(n)

)
bits.

Similarly, for each vertex v there are at most
(
n1/(α−1+f(n))

)f(n)

= nf(n)/(α−1+f(n)) vertices at distance at most f(n) away from v where the
shortest path consists only of thin vertices. Hence, the associated table of
distances takes up at most
O(nf(n)/(α−1+f(n)) log n) bits.

In total, each label thus has size at most O(nf(n)/(f(n)+1) log n) bits.

For f(n) = logn, Lemma 15 yields labels of sizeO
(
n(logn)/(α−1+logn) log log n

)
.

Unsurprisingly, as we are only considering distances up to f(n), this label size
is asymptotically smaller than for the labeling schemes working for all dis-
tances in sparse graphs, e.g. the largest label sizes of [87] for sparse graphs is
O(n log logn

logn). For power-law random graphs, Chung and Lu show in [73] that,
subject to mild conditions, the diameter of power-law graphs with α > 2 is
almost surely Θ(log n). We thus expect our labeling scheme to have superior
performance for such graphs.

5.9 Experimental study

We now perform an experimental evaluation of our labeling scheme on a
number of large networks. The source code for our experiments can be found
at: www.diku.dk/~simonsen/suppmat/podc15/powerlaw.zip

Experimental framework

Performance indicators. Recall that our labeling scheme consists of two
ideas: separation of the vertices according to some threshold, and selecting a

www.diku.dk/~simonsen/suppmat/podc15/powerlaw.zip

54 Chapter 5. Adjacency Labeling Schemes for Power-Law Graphs

threshold depending on the power-law parameter α. In our labeling scheme,
the threshold is d α

√
Cn/(α− 1)e. We call this the predicted threshold; it

is an approximation to the theoretically optimal threshold choice when de-
gree distributions follow the power-law curve k 7→ Cn/kα perfectly. The
approximation uses integration similar to what is done in, e.g., the proof of
Proposition 3. For a concrete graph G, it is conceivable that some other
threshold n0, different from the predicted threshold, would yield a label-
ing scheme with smaller size. Let maxt(n0) and maxf (n0) be the maxi-
mum label sizes of thin, resp. fat vertices in G when the threshold is set at
1 ≤ n0 ≤ n − 1. Clearly the maximum label size with the threshold n0 is
max{maxt(n0),maxf (n0)}. Observe further that maxt(n0) and maxf (n0) are
monotonically increasing, resp. decreasing functions of n0. Hence, the n0 for
which max{maxt(n0),maxf (n0)} is minimal is where the curves of maxt(n0)
and maxf (n0) intersect. We call this n0 the empirical threshold. We set up
the following performance indicators to gauge (1) the difference in label size
with predicted and empirical threshold, and (2) the label size obtained by
our labeling scheme on several data sets, compared to other labeling schemes.

Performance Indicator 1: We measure the label sizes for the labeling
schemes with the predicted and empirical thresholds. We interpret a small
relative difference between these label sizes means that the predicted thresh-
old can achieve small label sizes without examining the global properties of
the network other than the power-law parameter α.

Performance Indicator 2: We measure the label sizes attained by our
labeling schemes to other labeling schemes, namely state-of-the art labeling
schemes for the classes of bounded-degree, sparse and general graphs using
the labeling schemes suggested in [7], Theorem 9 and [64]. We interpret
small label sizes for our scheme, especially in comparison with “small” classes
like the class of bounded-degree graphs, as a sign that our labeling scheme
efficiently utilizes the extra information about the graphs: namely that their
degree distribution is reasonably well-approximated by a power-law.

Test sets. We employ both real-world and synthetic data sets.
The six synthetic data sets are created by first generating a power-law

degree sequence using the method of Clauset et al. [69, App. D], subsequently
constructing a corresponding graph for the sequence using the Havel-Hakimi
method [88]. We use the range 2 < α < 3 as suggested in [69] as this
range of α occurs most commonly in modeling of real-world networks. We
generate graphs of 300, 000 and 1M. vertices denoted s300α=x and s1Mα=x

respectively, for x ∈ {2.2, 2.4, 2.6, 2.8}.
The three real-world data sets originate from articles that found the data

to be well-approximated by a power-law. The www data set [89] contains
information on links between webpages within the nd.edu domain. The en-
ron data set [90] contains email communication between Enron employees
(vertices are email addresses; there is a link between two addresses if a mail
has been sent between them). The internet data set [91] provides a snap-
shot the Internet structure at the level of autonomous systems, reconstructed
from BGP tables. For all of these sets, we consider the underlying simple,
undirected graphs. For each set, standard maximum likelihood methods were
used to compute the parameter α of the best-fitting power-law curve [69].
Additional information on the data sets can be found in Table 5.1.

5.9. Experimental study 55

Real-Life
Data set |V | |E| α ∆max Source
www 325,729 1,117,563 2.16 10,721 [89]
enron 36,692 183,830 1.97 1,383 [90]
internet 22,963 48,436 2.09 2,390 [91]

Synthetic
s1Mα=2.4 1,000,000 1,127,797 2.4 42,683 –
s1Mα=2.6 1,000,000 878,472 2.6 12,169 –
s1Mα=2.8 1,000,000 751,784 2.8 1,692 –
s300α=2.2 300,000 491,926 2.2 10,906 –
s300α=2.4 300,000 327,631 2.4 3,265 –
s300α=2.6 300,000 261,949 2.6 1,410 –
s300α=2.8 300,000 227,247 2.8 1,842 –

Table 5.1: Data sets and their properties. All graphs are
undirected and simple. ∆max is the maximum degree of any

vertex in the data set.

Findings

Figure 5.2 shows the distribution of maximum label sizes for one synthetic
and one real-world data set. The maximum label size for the predicted and
empirical thresholds as well as upper bounds on the label sizes from different
label schemes in the literature can be seen in Table 5.2 for two synthetic data
sets and all three real-world data sets.

100 150 200 250 300 350 400
4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

Threshold value

M
a

x
.

la
b

e
l
le

n
g

th
 (

in
 b

it
s)

Max. label length (fat)

Max. label length (thin)

Predicted threshold

220 230 240 250 260
4400

4600

4800

5000

(a) syn300α=2.2

80 100 120 140 160 180 200 220 240
2500

3000

3500

4000

4500

5000

Threshold value

M
a

x
.

la
b

e
l
le

n
g

th
 (

in
 b

it
s)

Max. label length (fat)

Max. label length (thin)

Predicted threshold

150 155 160 165 170
2550

2600

2650

2700

2750

2800

(b) enron

Figure 5.2: Maximum label sizes of different threshold val-
ues for the syn300α=2.2 and enron data sets. The triangles
and crosses represent that for the tested threshold the largest
label belong to fat, resp. thin vertex. The star indicate the

position of the predicted threshold.

Table 5.2 shows the maximum label sizes achieved using different labeling
schemes on our data sets. “Predicted” shows the experimental maximum label
size obtained by running our scheme on the graphs, “Empirical” is the label
size attained by using the empirical threshold. The remaining columns show
non-experimental upper bounds for different label schemes: “Bound” is the
upper bound guaranteed in Theorem 10, “C-sparse” is the labeling scheme for
sparse graphs defined in Theorem 9, “BD” is the d∆

2 edlog ne bounded degree
graph labeling of [7], and AKTZ is the dn/2e + 6 general graph labeling

56 Chapter 5. Adjacency Labeling Schemes for Power-Law Graphs

of [64]. Both “Empirical” and “Bound” using simple concatenation of labels
to represent the fat bit string4.

Data set Predicted Empirical Bound C-sparse BD [7] AKTZ [64]
s1Mα=2.4 4, 841 4, 821 25, 012 30, 079 426, 820 500, 006
s1Mα=2.6 3, 361 3, 201 15, 282 26, 551 121, 680 500, 006
s1Mα=2.8 2, 101 2, 061 10, 081 24, 566 16, 920 500, 006
s300α=2.2 4, 523 4, 447 24, 878 18, 885 103, 607 150, 006
s300α=2.4 2, 775 2, 680 14, 404 15, 420 31, 008 150, 006
s300α=2.6 1, 958 1, 920 9, 151 13, 792 13, 395 150, 006
s300α=2.8 1, 350 1, 312 6, 244 12, 849 17, 499 150, 006
www 5, 245 3, 060 29, 225 28, 445 101, 840 162, 870
enron 2, 609 2, 577 15, 835 9, 735 11, 056 18, 352
internet 1, 426 1, 156 8, 181 4, 700 17, 925 11, 487

Table 5.2: Label size in bits of labeling schemes. The two
leftmost columns are experimental results; the remaining are
upper bounds on label sizes computed from the characteris-

tics of the data sets.

Our findings are as follows. For Performance Indicator (i), our labeling
scheme obtains maximum label size at most 3% larger than what would have
been obtained by using the empirical threshold for all synthetic data sets.
This is expected—the synthetic data sets are graphs generated specifically
to have power-law distributed degree distribution. For the real-world data
sets, the labeling scheme obtains maximum label size at most 23% larger
than by using the empirical threshold; this larger deviation is likely due to
degree distributions of the data sets being close to, but not quite, power-law
distributions due to natural phenomena or noise. E.g., for the enron data
set there is sudden drop in frequency between vertices of degree < 158 and
≥ 158.

For Performance Indicator (ii), both our experimental results and theo-
retical upper bounds for our labeling scheme are several orders of magnitudes
lower than for labeling schemes aimed at more general classes of graphs, as
expected. Of the more general classes of graphs, it is most interesting to
compare the upper bound of bounded degree graphs—the most restrictive
class of graphs that both contains the class of power-law graphs and has an
efficient labeling scheme described in the literature [7]. As seen in Table 5.2,
the upper bound on our labeling schemes for both power-law graphs and
sparse graphs have better upper bounds on label sizes, but only marginally
so for data sets with low maximum degree and low values of the power-law
parameter α, e.g. Enron (α = 1.97). It is interesting to note that the
actual label sizes obtained in the experiments (the two leftmost columns of
Table 5.2) are substantially lower than the upper bounds, that is, the label-
ing scheme performs much better in practice than suggested by theory (down
to less than a kilobyte per vertex for all data sets). This phenomenon may
be due to the degree distribution of the graphs of the data sets having only
minor deviation from a power-law for small vertex degrees; our upper bounds
on the label size are derived by using the very rich family Ph that allows very
large deviation from a power-law for degrees between 1 and α

√
n/log n− 1.

4Our labeling schemes introduced in this paper all make use of a succinctly represented
“fat bit string”; for our experiments, we use simple concatenation of labels instead of a bit
string; this incurs a (logn)/α factor on the label size, but simplifies the implementation.

5.10. Conclusion and future work 57

Finally, note that our labeling scheme supports Adjacency for directed
graphs by using one more bit per edge in each label to store the edge ori-
entation. For data sets whose natural interpretation is as a directed graph
(e.g., the www set where edges are outgoing and incoming links), the results
of Table 5.2 thus carry over with just one more bit added to the numbers in
the two leftmost columns.

5.10 Conclusion and future work

We have devised Adjacency and Distance labeling schemes for sparse graphs
and graphs whose degree distribution approximately follows a power-law dis-
tribution. We have proven lower bounds for the class of power-law graphs
showing that our strategy for Adjacency labeling scheme is almost optimal,
and showed two relaxations that allow for logarithmic size labels.

We propose the following directions:

• Our labeling schemes are designed for static networks, and while it
seems not difficult to extend our idea to dynamic networks, an analysis
is required to account for the communication and number of re-labels
incurred by such an extension.

• Labeling schemes for power-law graphs can likely be devised for the
realistic case where the scheme only has incomplete knowledge of the
graph, for example when the expected frequency of vertices of each
degree is known, but not the exact frequency of each vertex.

• Closing the gap of the multiplicative logarithmic factor may be of inter-
est to the theory community. A more interesting gap exists for Distance
labeling schemes. As we have seen, there is a large gap between labeling
schemes for short Distance and Adjacency for power-law (and sparse)
graphs. This gap effectively deemed the Distance labels uninteresting
for practical applications.

• Finally, while power-law distributions may model the degree distri-
bution of real-world networks, other distributions may fit better (see,
e.g., [69]); it is interesting to see whether refinements of our labeling
scheme that utilize knowledge about such distributions would result in
superior labeling schemes for real-world data.

59

Chapter 6

On the Implicit Representation
Conjecture

We begin this section with an overview of a connection between labeling
schemes and induced universal graph in Section 6.1. We then introduce the
implicit graph conjecture in Section 6.2 and present three unpublished and
perhaps somewhat unpolished results on this conjecture in Sections 6.3 to 6.5.

6.1 Introduction

A graph U is induced universal for an n vertex graph family F if it contains
each of the graphs in F an induced subgraphs1. A large body of work estab-
lished in the attempt to find graphs of smallest number of vertices for various
graph, most notably graphs [76], and trees [92].

Kannan Naor and Rudich stated the following theorem:

Theorem 13. If a graph family has a k log n Adjacency labeling scheme,
then it has a universal graph of size nk constructible in polynomial time.

To prove this theorem, the authors construct an nk vertex graph such that
each vertex corresponds to one of the possible strings produced using k log n
bits. The edges of this induced universal graph are inferred by querying all
pairs of vertices on the decoder of the labeling scheme. As illustration, we
demonstrate the process in Figure 6.1 for the labeling scheme in Section 1.1.

1To understand the difference between subgraph and induced subgraph: an edge from
a graph creates a subgraph, removal of a vertex and all edges adjacent to it creates an
induced subgraph.

1,1

1,3

2,1 2,2 2,3

3,1

3,3

1,2

3,2

1

7

4 5 6

3

9

2

8

Figure 6.1: Constructing the 32 induced universal graph
from Theorem 13 for 3 vertex trees according to the encoder
of the Adjacency labeling scheme in Section 1.1. Left: the
original numbering and right: the numbers parsed according

to Section 1.1.

60 Chapter 6. On the Implicit Representation Conjecture

This theorem implies that Adjacency labeling schemes are explicit construc-
tors of induced universal graphs. It is thus not surprising that this important
graph theoretic concept served as a major incentive to determine the precise
label size required.

The opposite relation holds in a weaker sense. The existence of an
induced-universal graph with 2f(n) vertices for a family F of graphs implies
the existence of labeling scheme with size f(n). Such transformation is how-
ever not efficient, namely the resulting scheme has exponential running time.
As seen in Chapter 4, it can be highly non trivial to construct an efficient
f(n) Adjacency labeling scheme for a graph family, even when an induced
universal graph of size 2f(n) exists. We shall also see furhter in Section 6.4 a
case in which an exponential decoding time is necessary.

A variant of this concept is the concept of induced universal trees, which
are trees that contain all n-vertex trees as induced subgraphs [92]. In this
case an induced universal tree of size 2f(n) implies a Distance labeling scheme
of size f(n). Recently, Freedman et al. [48] proved that the converse is not
true, namely that there exists a Distance labeling scheme for trees small
enough that it beats the lower bound [93] on the size of an induced universal
tree for n vertex trees. Lastly, a connection between universal matrices and
Distance labeling schemes was studied by Korman et al. [94] and by Gavoille
and Paul [95].

Zeitgeist

This thesis was written between 2013 − 2016. As evident in Chapters 3
and 4, a good amount of progress was done in this period for labeling
schemes/induced universal graphs for trees. We also pioneered the study
for power law graphs in Chapter 5. We mention that this was also a fruit-
ful period for other important families, namely general and bounded degree
graphs:

• General graphs: Alstrup, Kaplan, Thorup and Zwick successfully shaved
the additive log n factor from the label size for general graphs and
showed an Adjacency labeling scheme of size dn/2e+4 [64]. Two years
later Alon showed [98], using the probabilistic method, a non construc-
tive proof that a dn/2e − 1 Adjacency labeling scheme is possible for
general graphs, essentially proving that the lower bound from 1965 [76]
was in fact the correct answer. The techniques in both papers other
improved also the best known results for directed graphs, tournaments
and bipartite graphs.

• Bounded degree graphs: Following our results for bounded degree k(n)
graphs (Section 4.9), Abrahamsen, Alstrup, Holm, Knudsen and Stockel [96]
improved the bound from log

(
n
dk/2e

)
+ dlog ne + dlog ke to

(bn/2c
bk/2c

)
·

2O(
√
k logn log(n/k)) and showed a fairly close lower bound of

(bn/2c
bk/2c

)
·

2−O(
√
k logn log(n/k)). In the same time, the label size on bounded de-

gree graphs for constant degree was determined to the bit by Alon and
Nenadov [97]. In the remainder of this thesis we shall use the term
"air-tight" to describe the quality of such labeling schemes.

The best known bounds on the size of induced universal graphs for im-
portant graph families are found in Table 6.1.

6.2. The implicit representation conjecture 61

Table 6.1: Best known results for the size of induced uni-
versal graphs for particular graph families. The references
concern the upper bound. Excluding [98], each upper bound
f(n) mentioned in this table has a labeling scheme of size

log(f(n)).

Graph family Lower bound Upper bound Reference

General graphs 2
n−1

2 (1 + o(1))2
n−1

2 Alon [98]
Tournaments 2

n−1
2 (1 + o(1))2

n−1
2 Alon [98]

Bipartite graphs Ω(2
n
4) (1 + o(1))2

n
4 Alon [98]

Graphs of at most cn edges d
√
cn
2 e

√
2cn log n+O(log n) Petersen et al. [10]

α-Power-law Graphs Ω(α
√
n) O(α

√
n(logn)1−1/α) Petersen et al. [10]

Graphs of max degree ∆(n)2
(bn/2c
b∆/2c

)
· 2−O(R)

(bn/2c
b∆/2c

)
· 2O(R) Abrahamsen et al. [96]

Graphs of max degree ∆ Ω(n
∆
2) c∆n∆/2 Alon and Nenadov [97]

Graphs of max degree 2 d11n
6 e [99] 2n− 1 Abrahamsen et al. [96]

Graphs excluding a fixed minor Ω(n) n2(log n)O(1) Gavoille and Labourel [6]
Planar graphs Ω(n) n2 log nO(1) Gavoille and Labourel [6]

Planar graphs of Ω(n) O(n2) Bhatt et al. [62]
max degree ∆

Planar graphs of Ω(n) O(n
3
2) Adjiashvili and Rotbart [7]

max degree 4

Outerplanar graphs Ω(n) n(log n)O(1) Gavoille and Labourel [6]
Outerplanar graphs of Ω(n) Bhatt et al. [62]

max degree ∆

Graphs of treewidth k n2Ω(k) n(log n
k)O(k) Gavoille and Labourel [6]

Graphs of arboricity k nk

2O(k2)
nk Alstrup et al. [8, 45]

Forests 1.5n O(n) Alstrup et al. [45]
Forests of bounded degree ∆ n O(n) Adjiashvili and Rotbart [7]
Trees of bounded depth δ n O(nδ3) Fraigniaud and Korman [100]

Caterpillars 1.5n 12n Alstrup et al. [45]

6.2 The implicit representation conjecture

A careful look at Table 6.1 will show a separation between graph families to
some that have O(log n) labels, and some who have labels much larger than
that. We say that a graph family has an implicit representation if it has an
O(log n) Adjacency labeling scheme. Recall that the number of all graphs is
bounded by 2Θ(n2). The study of graph families is assisted by the terminology
speed (introduced in [101]) to describe the number of graphs in an n vertex
graph family as a function of n. A graph family of f(n) graphs has constant
speed if log f(n) = Θ(1), polynomial if log f(n) = Θ(log n), exponential
if log f(n) = Θ(n), factorial if log f(n) = Θ(n log n) and super-factorial for
larger speeds (up to log f(n) = Θ(n2)). If a graph family has a super-factorial
speed it can not have an implicit representation for the following reason. The
union of all labels defines a unique graph from the graph family, and can be
expressed using a bit string of O(n log n) bits. Since there are 2O(n logn)

possible bit strings, and strictly more (distinct) graphs in such a family, it
follows that it can not have an implicit representation. Is this restriction
enough to guarantee that the graph family has an implicit representation? A
brief look at the lower bound for the factorial speed family of sparse graphs

2We set R =
√

∆ logn log(n/∆).

62 Chapter 6. On the Implicit Representation Conjecture

in Table 6.1 (proved in Theorem 12) shows that this is not the case. Notice
that a small subgraph of a sparse graph can have an arbitrary edge set
without violating the graph being sparse, forcing labels in this small group
to have relatively large labels. To stop this abuse, Kannan et al. [2] added the
hereditary requirement. A graph family is hereditary if for every graph, all its
induced subgraphs are also in this family. In common to all known implicitly
representable graph families are these two properties, namely hereditary and
of speed at most factorial. In the remainder of this section we denote such
graph families as suitable graph families. Are all suitable graph families
have an implicit representation? This interesting question was stated first
by Kannan et al. [2] and posed as a conjecture by Spinrad [77], which we
now write in a modified form:

Conjecture 1 (The implicit representation conjecture). Every hereditary
family of unlabeled graphs of size 2O(n logn) has an O(log n) Adjacency label-
ing scheme.

We modified the original conjecture statement in two ways:

• We added the requirement that the graphs are unlabeled. As a con-
crete example of the necessity of our addition of this detail we observe
the speed of trees. The speed of labeled trees is nn−2 [102] (super-
factorial) whereas unlabeled trees have factorial speed [103]. More-
over, the connection between labeling schemes and induced universal
graphs from Section 6.1 applies for families of unlabeled graphs. While
we have failed to find a version of the conjecture statement that con-
tains explicitly the term unlabeled graph families, we regard it as such.
See Section 6.5 for additional discussion on this difference.

• We omitted the requirement stated in the original statement [2] that
the encoding and decoding of such labeling schemes is performed in
polynomial time. We prove that this (minor) detail does not hold
in Section 6.4.

6.3 Segment intersection graphs

Among the suitable graph families labeling scheme of which remains un-
resolved are several geometric graph families such as segment intersection
graphs [104], unit-disk graphs [105] and dot-product graphs [106]. Unlike
previously studied suited graph families, these families are not bounded by
any familiar parameter3. Proving that these graph families are factorial is by
itself non-trivial and relies on a reduction to the number theoretic Warran’s
theroem [107].

In this section we elaborate on the family of segment intersection graphs.

Definition 15. Let S be a class of line segments in the Euclidean plane, then
the family of intersection graphs of S is the class of all graphs isomorphic to
graphs of the form G = (V,E) where V ⊆ S and for u, v ∈ V , e = uv ∈ E
iff u ∪ v 6= ∅.

A restricted subclass of this family is the group of families k−DIR. For
a fixed k real number d1, . . . , dk, the family k − DIR(d1, . . . , dk) is defined

3See e.g. http://graphclasses.org/classes/gc_389.html.

6.3. Segment intersection graphs 63

as the family of intersection graph where all segments have slopes among
d1, . . . , dk. As a private example of such graph family, if we set k = 1 we
get interval graphs [108], for which the following simple 2 log n + 2 exists.
The endpoints of the intervals representing the graph are assigned integer
endpoints in the range 1, . . . , 2n, corresponding to their ordering. The label
of each segment consists of the ordering of both its endpoints, using at most
2 log n + 2 bits. Adjacency testing between two intervals is determined by
range inclusion testing.

One may ask if geometric representation of a segment graph can be trans-
formed directly into an implicit representation. Even though the segments
may be defined over the reals, every segment graph can be realized by seg-
ments with rational endpoints, as the graphs discussed are finite. Assigning
each vertex its segments rational endpoints (four integers) is a valid label-
ing scheme, operating in the same manner as the one discussed for interval
graphs. If each such point can be described using a number bounded by a
polynomial of n, then the resulting labels are of logarithmic size. This ap-
proach to implicit representation was proven to fail, as Matousek [104] proved
that the precision needed to realize these graphs is double exponential in the
number of segments. McDiarmid and Müller [109] proved in addition that
this bound is tight. Interestingly, the lower bound is achieved using 3−DIR
graphs, meaning that this approach fails already for this very restrictive fam-
ily. In contrast we now prove the following:

Theorem 14. There exist a 2k log n+ log k+ 2k Adjacency labeling scheme
for the family k −DIR.

Proof. A segment a is represented by two points a1, a2 (2n points in total),
and its label is a concatenation of the labels of each point, along with addi-
tional log k bits to describe the type of its slope. The label L(p) of a point
p consists of k times log 2n size bit strings described as follows. We perform
a scan for each slope d1, . . . , dk, such that each scan begins with all points
on one half plane. A point p gets a log(2n) sub-label L(p[di]), which is the
rank of p in the ordering defined by the scan di. A scan will be performed
from the top left to the bottom right of the plane. The points of segments
with similar slope as a scan will encounter it simultaneously and are labeled
such that a point closer to the top has the lower label 4. Note that this way,
non endpoints on a segment receive labels according to their order on this
segment.

Let a = (a1, a2) and b = (b1, b2) be two segments with slopes da and db
respectively. If da = db, the decoder description is similar to the one from
the labeling scheme for interval graphs. If da 6= db, we assume w.l.o.g that
the scan db encounters a1 before a2 and b1 before b2 and that da encounters
b1 before b2 and a1 before a2. We prove that the two segments intersect if
and only if

L(a1[db]) < L(b1[db]) < L(a2[db])︸ ︷︷ ︸
Condition 1

andL(b1[da]) < L(a1[da]) < L(b2[da])︸ ︷︷ ︸
Condition 2

.

4In the exception of a total horizontal line, the ordering will be such that the point
closer to the left gets the lower number.

64 Chapter 6. On the Implicit Representation Conjecture

(1)
(2)

(3)(4)

db(
1)

db(
2)

a

Figure 6.2: A division of the plane described in the proof
of Theorem 14. Parts (1) and (4) are only labeled in the

drawing as they are not essential to the proof.

To prove that it is necessary, suppose first that condition 1 is not met.
In this case the scan db encountered all of segment a completely before or
completely after meeting segment b, implying that the segments can not
intersect. The argument is similar if we assume that condition 2 is not met.

To prove that it is sufficient, we divide the plane into four parts using two
lines db(1), and db(2), both with slope db, touching segment a at its endpoints
a1 and a2 respectively. We call the parts that divide the strip induced by the
lines db(1) and db(2) as parts (2) and (3), where (2) is below segment a and
(3) is above it. See Figure 6.2 for illustration. From condition 1 we know
that segment b can only lie in parts (2) and (3) of the plane. Every point p
in (2) must have L(p[da]) < L(a1[da]) and every point p2 in (3) must have
L(a1[da]) < L(p2[da]). Combining this with condition 2 we get that b1 must
be in (2) and b2 must be in (3), which proves that a and b intersect.

6.4 Non polynomially decodable implicit graph classes

The conjecture in its original statement required an encoding and decoding
time that are polynomial in the size of the graph and label respectively. While
this requirement does not seem crucial for the conjecture, in this section we
prove the following theorem:

Theorem 15. There is a family of finite graphs with implicit representa-
tion, if the decoder is allowed to run in time O(2n

2
), and has no implicit

representation if the decoder has time strictly less than O(2n).

This result in this section is mostly due to Jakob Grue Simonsen, and
much to our surprise, was reinvented a year later and published in an ex-
tended form by Chandoo [110].

6.4.1 Preliminaries

We assume that Turing machines are described by a suitable binary coding.
If M ∈ {0, 1}+ is a Turing machine, we let φM : {0, 1}+ ⇀ {0, 1}+ denote
the partial function computed byM . We assume a Turing machine may take
several arguments by suitable binary coding of pairs, e.g. writing φM (a.b)
when M gets more than one argument. If M is run on empty input, we
denote this by empty parentheses, e.g. φM ().

6.4. Non polynomially decodable implicit graph classes 65

We fix a universal Turing machine U that is able to simulate every Turing
machine with at most linear overhead, that is,

• ∀M.∀x ∈ {0, 1}+.φU (M.x) = φM (x) (universality), and

• ∃N ∈ N.∀M.∀x ∈ {0, 1}+, U simulates one step of M on input x using
at most N · |M.x| steps (linear overhead)

If n ∈ N we denote by 〈n〉 some standard binary representation of n such
that |〈n〉|= O(log n).

The Kolmogorov complexity of x ∈ {0, 1}+ (wrt. U) is

KU (x) = min{|M |.φU (M) = x}

that is, KU (x) is the length of a shortest (string encoding a) Turing machine
that, when run on empty input, produces x. By standard results in Kol-
mogorov complexity (the so-called “Invariance Theorem”), if U ′ is a universal
Turing machine, there exists a constant CU ′ such that, for all x ∈ {0, 1}+,
KU ′(x) ≤ KU (x) + CU ′ . Hence, changing universal machine incurs at most
a bounded difference in Kolmogorov complexity which is independent of x.
We shall therefore merely write K(x) instead of KU (x).

6.4.2 The construction

The following lemma is a variation of standard results from resource-bounded
Kolmogorov complexity [111].

Lemma 16. There is a Turing machine Q such that:

• For each n, Q, on input 〈n〉, outputs a string, sn, of length n(n− 1)/2

• Q runs in time O(2n
2
).

• For each n ∈ N, there is no Turing machine R such that (i) TIMER() <
2n, (ii) |R|< n(n− 1)/2, and (iii) φR() = sn.

Proof. On input 〈n〉, Q successively generates each binary string y of length
at most n(n − 1)/2 − 1 and then uses a copy of the universal machine U
as a subroutine to simulate U running on input y for 2n − 1 steps. As U
simulates each (the Turing machine encoded by) y with linear overhead, each
such simulation takes at most N · |y|(2n − 1) steps where N is a constant
independent of y. Hence, the total time taken to simulate all strings is
O(2n(n−1)/2 · (n(n−1)/2−1)(2n−1)) = O(2n

2
); the overhead needed to gen-

erate each string and other housekeeping operations is negligible compared
to this.

During the simulation, Q stores all strings of length exactly n(n − 1)/2
as output by strings y during the simulation in a set S (i.e., if |φU (y)|=
n(n − 1)/2 and y runs for at most 2n − 1 steps on empty input, Q stores
φU (y). When all strings have been simulated, Q outputs the lexicographically
smallest string of length n(n− 1)/2 that is not in S.

By construction, Q always terminates with output a string of length
n(n − 1)/2 and runs in time O(2n

2
). Suppose, for contradiction, that there

were an n ∈ N and a Turing machine R such that (i) TIMER() < 2n, (ii)
|R|< n(n − 1)/2, and (iii) φR() = sn. By construction, Q simulates R for
exactly 2n − 1 steps, and thus φR() = φU (R) = sn ∈ S. But by construction
of Q it follows sn /∈ S, which contradicts the assumption.

66 Chapter 6. On the Implicit Representation Conjecture

Note that |〈n〉|= O(log n), so the time complexity of Q is O
(

222 logn
)
,

that is, doubly exponential in the square of its input size.

Theorem 16. There is a family F of graphs such that:

• F has a labeling scheme such that every element of Fn has maximum
label size O(log n), the encoding is computable, and the decoder runs in
time O(2n

2
).

• If a labeling scheme for F (i) has maximum label size ≤ n/2 − 2 for
infinitely many n, then no decoder for the labeling scheme can run in
polynomial time in n.

Proof. There is a computable bijection between the set of (labeled) simple,
undirected graphs with n vertices (given by an n × n symmetric adjacency
matrix with zero diagonal) and the set of binary strings of length n(n−1)/2:
if s is such a string, the first n− 1 bits is the first row above the diagonal of
the adjacency matrix, the next n− 2 bits the second row, and so forth.

Thus, the Turing machine Q of Lemma 16 produces, for each n, an ad-
jacency matrix for a graph of n vertices. We set Fn = {φQ(〈n〉) : n ∈ N} =
{sn : n ∈ N}. Note that Fn contains exactly one labeled graph5.

We prove the claims of the theorem in turn:

• Each element G ∈ F can be labeled by a Turing machine as follows:
Each vertex receives a label comprising (i) a representation of n (using
log n bits), and (ii) an identifier of the vertex (using log n bits), that is,
a total of O(log n) bits. Furthermore, a decoder running in time O(2n

2
)

can be devised as follows: Given labels of two vertices, the decoder first
decodes log n bits to obtain n, then runs a copy of Q as a subroutine
to obtain φQ(〈n〉) (i.e., the adjacency matrix of the unique graph in
Fn), then decoding the identifier part of the labels of the two vertices,
and finally performing a lookup in the adjacency matrix using the two
identifiers. The cost of all operations except for computing φQ(〈n〉)
can clearly be done in polynomial time in n. Thus, the total time use
is dominated by the time for computing φQ(〈n〉), namely O(2n

2
).

• Assume, for contradiction, that there is a labeling scheme for F that
has maximum label size ≤ n/2 − 2 for all n in some infinite set I =
{n1, n2, . . .} and has a decoder running in time P (n) where P is some
polynomial.

Then, there are constants c, C such that we can build a family of pro-
grams pn each of size |pn|≤ c+ n2/2− n− 1 such that for each n ∈ I,
φpn = φQ(〈n〉) and pn runs in time Cn2(P (n) + n2). To see this, note
that one can simply store a string consisting of a concatenation of all
the labels of the vertices separated by a fresh symbol #, and use the
decoder as a subroutine to ascertain, for each pair of vertices, whether
they are adjacent, and thus outputting the adjacency matrix φQ(〈n〉).
The string consisting of a concatenation of the vertex labels and sepa-
rators can be stored using at most n(n/2−2)+n−1 = n2/2−n−1 bits,

5If one wants the family F to be closed under isomorphism, one can merely add all
graphs isomorphic to the ones in Fn. This incurs the cost of re-coding the identifiers of
the graph, adding logn to the label size.

6.5. The implicit representation conjecture holds for speeds 2O(n1/2) 67

and the remaining program logic can be stored using c bits for some c,
independently of n. Hence, |pn|≤ c+ n2/2− n− 1. The running time
of pn is bounded above by the time to query all pairs of vertices using
the decoder as well as quadratic time in the size of the string used to
store all labels (i.e., O(n4)) to move tape pointers into position. Hence,
the total running time of pn is bounded above by Cn2(P (n) + n2) for
some constant C, and is hence polynomial in n.

But then there is an N such that for all n > N with n ∈ I, we have
(i) TIMEpn() = Cn2(P (n) + n2 < 2n. In addition, for all n ∈ I, we
have(ii) |pn|< n2/2 − n − 1 < n(n − 1)/2 and (iii) φpn() = sn. As I
was infinite, there is thus at least one n that satisfies (i), (ii) and (iii),
contradicting Lemma 16.

Corollary 4. There is a family of finite graphs that has (i) a labeling scheme
producing labels of size O(log n), with a decoder running in time O(2n

2
), but

(ii) if a labeling scheme has a decoder running in time polynomial in the label
size (or in n), the maximum label size produced by this scheme is Ω(n).

Kannan, Naor and Rudich [2] consider families of finite graphs to have
labeling scheme if there is a computable labeling encoder producing labels of
size at most O(log n) and a decoder running in time polynomial in the label
size. A fortiori, running in time polynomial in the label size means running
in polynomial time in n. Theorem 16 arriving at Theorem 15.

6.5 The implicit representation conjecture holds for
speeds 2O(n1/2)

We repeat the main labeling scheme conjecture: All hereditary families of
n-vertex graphs of size at most 2O(n logn) have an implicit representation. In
a follow up to the seminal paper by Scheinerman and Zito [112], Scheiner-
man [113] showed that for labeled graph families of size 2kn logn for any fixed
k < 1/2 not only is the conjecture true, but the size of each label is constant6.

As discussed in Section 6.2, we argue that the conjecture asks the question
on unlabeled families rather than labeled ones. We denote the speed of a
unlabeled graph family Pn as |Pn|, and the speed of the same labeled 7

family Pn as |Pn|. The relation between these sizes is:

|Pn|≤ |Pn|≤ n! |Pn|.

As n! has a growth rate of 2Θ(n logn) one can not simply convert Scheinerman’s
result to have meaningful statement about unlabeled graphs. However, we
can show a related result to Scheinerman’s [113] for unlabeled graphs using a
later result by Balogh et al. [114]. The remainder of this section is dedicated
to this end.

We call CL the collection of the following six unlabeled n vertex graph
families: Cliques, star forests and path forests, along with the complement

6These constant size labels are of course non-unique (Remark 1), and can be made
unique by adding additional logn bits per label.

7The set of isomorphism classes of n-vertex graphs.

68 Chapter 6. On the Implicit Representation Conjecture

families of each of the three. Denote by S(n) the number of partitions of a
set with n indistinguishable elements into non-empty subsets. Each of the
graph families in CL have speed S(n), which has growth rate of 2Θ(

√
n).

Recall that the list of neighbors of a vertex v in a graph is denoted N(v).
For a graph G, two vertices {x, y} ∈ V (G) are twins if N(x) ∪ {x, y} =
N(y) ∪ {x, y}. A homogeneous k-part graph is a graph with k-partition
(V1, . . . , Vk) where each pair of vertices in Vi are twins. It follows that every
k-partition is either an independent set or a clique.

We now present an adaptation of the main theorem in [114].

Theorem 17. There are constants k and t such that the following holds. For
every unlabeled hereditary n-vertex graph family Gn, if its speed |Gn|< S(n)
for all sufficiently large n0 > n, every graph in Gn is the symmetric difference
of a homogeneous k-part graph and a graph in which every component has at
most t vertices. If |Gn|= S(n) then Gn ∈ CL.

At this point all we have to show is that the mentioned graph families
have an implicit representation. As mentioned, each l-partition in an l-
part graph consists of either an independent or a clique, which has a trivial
log n + 1 Adjacency labeling scheme. By the definition of l-part graph, the
edge set between each two l-partitions in an l-part graph is either empty
or complete. It follows that using only l bits per vertex, we can determine
Adjacency relation between two nodes in different l-partitions. It is also not
difficult to show a log n + t log t bit labeling scheme for a graph where each
component has at most t vertices, and a graph that is a symmetric difference
of the two types can be labeled by extending each of the labels with a first
bit to describe to which type the graph belongs to. When |Gn|= 2c(n

1/2), by
Theorem 17 the graph belongs to CL, each of which has a trivial labeling
scheme of size log n+ 1.

Corollary 5. For a constant c depending on k and t from Theorem 17 , all
unlabeled hereditary families of n-vertex graphs of size at most 2cn

1/2 have an
implicit representation.

69

Chapter 7

Ancestry Labeling Schemes

We discuss labeling schemes for Ancestry . First, we describe in Section 7.1
the Classic 2 log n labeling scheme for the function, followed by literature
review in Section 7.2. We then present in Section 7.3 a generic method to
assign intervals to tree vertices, which we will use twice, once in Section 7.4
to re-describe the Classic labeling scheme, and finally in Section 7.5 for
the best known log n + 2 log log n labeling scheme. The bound is matched
asymptotically by a lower bound in Section 7.6. Finally, in Section 7.7,
we discuss dynamic Ancestry labeling schemes and present in detail a lower
bound for a natural dynamic model.

7.1 The classic algorithm

The following 2 log n Ancestry labeling scheme was introduced by Kannan
et al. [2]. Similarly to the one in Section 1.1, it is composed of two numbers
in the set {1 . . . n}. Using a dfs traversal (Section 2.2), the encoder assigns
vertex v ∈ T , with L(v) = (dfs(v), dfs(w)) where w is the descendant of u
with largest dfs number (if v is a leaf we set w = v).

Encoding each label is done in a single dfs traversal. The resulting label
L(v) = (dfs(v),dfs(w)) represents an interval I(v), where I(r) = {1 . . . n}.
Given the labels L(u) and L(v) the decoder returns true if I(v) ⊆ I(u). See
Figure 7.1 for a demonstration of the labeling scheme.

1,23

14,23

2316,22

2218,21

212019

17

15

12,13

13

2,11

113,10

9,10

10

6,8

87

4,5

5

Figure 7.1: A tree with n = 23 vertices. Each vertex is
assigned a label of size 2 log n supporting Ancestry queries.

7.2 Literature review

Ancestry labeling schemes are typically classified into two categories; range-
based and prefix-based. Range-based labels, such as the Classic labeling
scheme, are decoded by comparing the ranges assigned to each vertex. An
additional example of a range-based labeling scheme is found in Section 7.5.

70 Chapter 7. Ancestry Labeling Schemes

Prefix-based labels are decoded by comparing the prefix of both labels such
that u is an ancestor of v if and only if L(u) is a prefix of L(v). An example
of prefix-based labeling scheme is found in Section 7.7.

The 2 log n labeling scheme presented above was improved gradually.
Abiteboul, Kaplan and Milo [16] achieved an upper bound of 3/2 log n +
O(log log n) bits, which was improved to log n + O(

√
log n) [115]. Shortly

after, Alstrup and Bille [42] constructed a lower bound of log n+log logn for
any labeling scheme supporting the function. Fraigniaud and Korman [47]
showed that Trees(n, δ) enjoy a labeling scheme of log n + O(log δ). The
result was generalised in a follow up paper [58] for Trees(n) in a labeling
scheme of size log n + 4 log log n, which is asymptotically optimal. Interest-
ingly, the asymptotically optimal labeling scheme is based on the first one
presented eighteen years prior [2].

In the case where Ancestry may be determined if the distance between
the vertices is at most d, Alstrup et al. [42] constructed a labeling scheme of
size log n+O(d

√
log n), for which the new upper bound performs better for

any d.
Due to their great applicability in queries for XML documents, a stagger-

ing number of papers address this practical aspect [19,20,116–123]. Typically,
those address the dynamic variant thereof. For a short survey on dynamic
Ancestry labeling schemes, see [121].

7.2.1 Preliminaries

Recall that denote the subtree rooted in u as Tu, i.e. the tree consisting of all
descendants of u, and stress that a vertex is both an ancestor and descendant
of itself.

We denote the interval assigned to a vertex u by I(u) = [a(u), b(u)], where
a(u) and b(u) denote the lower and upper part of the interval, respectively.
We also define a(u) and b(u) to be the maximum value of a(v) respectively
b(v), where v is a descendant of u (note that this includes u itself). We will
use the following notion:

Definition 16. Let T be a rooted tree and I an interval assignment defined
on V (T). We say that the interval assignment I is left-including if for each
u, v ∈ T it holds that u is an ancestor of v iff a(v) ∈ I(u).

In contrast to Definition 16, the literature surveyed [2,16,58,124] considers
intervals where u is an ancestor of v iff I(v) ⊆ I(u), i.e. the interval of a
descendant vertex is fully contained in the interval of the ancestor. This
distinction is amongst the unused leverage points which we will use to arrive
at our new labeling scheme.

7.3 A method for interval based labeling schemes

In this section we introduce a method for assigning intervals to tree vertices.
We will see in Sections 7.4 and 7.5 how this method can be used to describe
Ancestry labeling schemes. The method relies heavily on the values defined
in Section 7.2.1, namely a(u), b(u), a(u), b(u). An illustration of these values
is found in Figure 7.2 below. The interval [a(u), b(u)] can be seen as a slack
interval from which b(u) can be chosen. This will prove useful in Section 7.5.

7.3. A method for interval based labeling schemes 71

Figure 7.2: Two examples of left-including interval assign-
ments to a tree. Left: a left-including assignment as used for
Classic in the introduction corresponding to b(u) = a(u).
Right: a different left-including assignment for the same tree.
For internal vertices where a(u) and b(u) do not coincide with
b(u), we have marked these by a grey diamond and square

respectively.

The following lemmas contain necessary and sufficient conditions for in-
terval assignments satisfying the left inclusion property.

Lemma 17. Let T be a rooted tree and I a left-including interval assignment
defined on V (T). Then the following is true:

1. For each u ∈ T , b(u) ≥ a(u).

2. For each u ∈ T and v ∈ Tu\{u} a descendant of u, a(v) > a(u).

3. For each u ∈ T , [a(u), b(u)] =
⋃
v∈Tu I(v) =

⋃
v∈Tu [a(v), b(v)]

4. For any two distinct vertices u, v ∈ T such that u is not an ancestor of
v and v is not an ancestor of u the intervals [a(u), b(u)] and [a(v), b(v)]
are disjoint.

Lemma 18. Let T be a rooted tree and I an interval assignment defined
on V (T). If the following conditions are satisfied, then I is a left-including
interval assignment.

i For each u ∈ T , b(u) ≥ a(u).

ii For each u ∈ T and v ∈ T a child of u, a(v) > a(u).

iii For any two siblings u, v ∈ T the intervals [a(u), b(u)] and [a(v), b(v)]
are disjoint.

We now consider a general approach for creating left-including interval
assignments. For a vertex u ∈ T and a positive integer t we define the proce-
dure Assign(u, t) that assigns intervals to Tu recursively and in particular,
assigns a(u) = t. For pseudocode of the procedure see Algorithm 1.

Algorithm 1 provides a general method for assigning intervals using a
depth-first traversal. We can use it to design an actual interval assignment
by specifying: (1) the way we choose b(u), and (2) the order in which the
children are traversed. These specifications correspond to Line 6 and Line 3,

72 Chapter 7. Ancestry Labeling Schemes

Algorithm 1 Assigning intervals to all vertices in the subtree Tu rooted at
u ensuring a(u) = t.

procedure Assign(u, t)
(a(u), a(u), b(u), b(u))← (t, t, t, t)
for v ∈ children(u) do

Assign(v, b(u) + 1)(
a(u), b(u)

)
←
(
a(v), b(v)

)
Assign b(u) such that b(u) ≥ a(u).
b(u)← max

{
b(u), b(u)

}
respectively, and determine entirely the way the intervals are assigned. It
may seem counter-intuitive to pick b(u) > ā(u), but we will show that doing
so in a systematic way, we are able to describe the interval using fewer bits
by limiting the choices for b(u). In the remainder of this chapter, we will see
how these two decisions impact also the label size, and produce our claimed
labeling scheme.

We now show that any ordering of the children and any way of choosing
b(u) satisfying b(u) ≥ a(u) generates a left-including interval assignment.

Lemma 19. Let T be a tree rooted in r. After running Algorithm 1 with
Assign(r, 0) the values of a(u), b(u) are correct, i.e. for all u ∈ T :

a(u) = max
v∈Tu

{a(v)} , b(u) = max
v∈Tu

{b(v)} .

The following Lemma is useful for showing several properties in the
method.

Lemma 20. Let u be a vertex in a tree T with children v1 . . . vk. After run-
ning Algorithm 1 with parameters Assign(r, 0) where v1 . . . vk are processed
in that order, the following properties hold:

1. b(u)− a(u) + 1 =
(∑k

i=1 b(vi)− a(vi) + 1
)

+ 1.

2. a(u)− a(u) + 1 = a(vk)− a(vk) +
(∑k−1

i=1 b(vi)− a(vi) + 1
)

+ 1.

Proof. By the definition of Assign we see that for all i = 1, . . . , k − 1,
a(vi+1) = 1 + b(vi). Furthermore a(v1) = a(u) + 1 and b(vk) = b(u). Hence:

b(u)− a(u) + 1 = b(vk)− a(v1) + 2

=

(
k∑
i=2

b(vi)− b(vi−1)

)
+ b(v1)− a(v1) + 2

=

(
k∑
i=1

b(vi)− a(vi) + 1

)
+ 1.

The second equality follows by the same line of argument.

Theorem 18. Let T be a tree rooted in r. After running Algorithm 1 with
parameters Assign(r, 0) the set of intervals produced are left-including.

7.4. Using the method to describe the Classic labeling 73

Proof. Consider any vertex u ∈ T and a call Assign(u, t). We will prove
each of the conditions of Lemma 18, which implies the theorem.

i This condition is trivially satisfied by Line 6.

iii First, observe that any interval assigned to a vertex w by a call to
Assign(v, t) has a(w) ≥ t, and by i it has b(w) ≥ b(w) ≥ a(w). Let
v1, . . . , vk be the children in the order of the for loop in Line 3. By
Lines 2, 4 and 5 we have a(v1) = a(u) + 1, a(v2) = b(v1) + 1, a(v3) =
b(v2) + 1, . . . , a(vk) = b(vk−1) + 1, thus the condition is satisfied.

ii The first child v of u has a(v) = t + 1 = a(u) + 1. By the same line
of argument as in iii we see that all other children w of u must have
a(w) > a(v) = a(u) + 1.

7.4 Using the method to describe the Classic la-
beling

To get acquainted with the method of Section 7.3, we use it to redefine the
2 log n labeling scheme introduced in Section 7.1.

Let T be a tree rooted in r. We first modify the function Assign to create
Assign-Classic such that the intervals I(u) = [a(u), b(u)] correspond to the
intervals of the algorithm described in the introduction. To do this we set
b(u) = a(u) in Line 6 and traverse the children in any order in Line 3. We
note that there is a clear distinction between an algorithm such as Assign-
Classic and an encoder. This distinction will be more clear in Section 7.5.
We will need the following lemma to describe the encoder.

Lemma 21. After Assign-Classic(u, t) is called the following invariant is
true:

b(u)− a(u) + 1 = |Tu|

Proof. We prove the claim by induction on |Tu|. When |Tu| = 1 u is a leaf
and hence b(u) = a(u) = t and the claim holds.

Let |Tu| = m > 1 and assume that the claim holds for all vertices with
subtree size < m. Let v1, . . . , vk be the children of u. By Lemma 20 and the
induction hypothesis we have:

b(u)− a(u) + 1 =

(
k∑
i=1

b(vi)− a(vi) + 1

)
+ 1

=

(
k∑
i=1

|Tvi |
)

+ 1 = |Tu| .

This completes the induction.

Description of the encoder: Let T be an n-vertex tree rooted in
r. We first invoke a call to Assign-Classic(r, 0). By Lemma 21 we have
b(r) − a(r) + 1 = n and this implies 0 ≤ a(u), b(u) ≤ n − 1 for every
u ∈ T . Let xu and yu be the encoding of a(u) and b(u) using exactly1

1This can be accomplished by padding with zeros if necessary.

74 Chapter 7. Ancestry Labeling Schemes

dlog ne bits respectively. We set the label of u to be the concatenation of the
two bitstrings, i.e. `(u) = xu ◦ yu.

Description of the decoder: Let `(u) and `(v) be the labels of the
vertices u and v in a tree T . By the definition of the encoder, the labels have
the same size and it is 2z for some integer z ≥ 1. Let `(u) = xu ◦ yu where
xu and yu are the first and last z bits of `(u) respectively. Let au and bu
the integers from [2z] corresponding to the bit strings xu and yu respectively.
We define av and bv analogously. The decoder responds True, i.e. that u is
the ancestor of v, iff av ∈ [au, bu].

The correctness of the labeling scheme follows from Theorem 18 and the
description of the decoder.

7.5 An improved log n+2 log log n Ancestry labeling
scheme

In this section we use approximation-based approach which improves the
previously known label size:

Theorem 19. There exist an Ancestry labeling scheme of size dlog ne +
2 dlog log ne+ 3.

To prove this theorem, we use the method introduced in Section 7.3. The
barrier in reducing the size of the Classic labeling scheme is that the number
of different intervals that can be assigned to a vertex is Θ(n2). It is impossible
to encode so many different intervals without using at least 2 log n−O(1) bits.
The challenge is therefore to find a smaller set of intervals I(u) = [a(u), b(u)]
to assign to the vertices. First, note that Lemma 17 points 2 and 4 imply that
any two vertices u, v must have a(u) 6= a(v). By considering the n vertex tree
T rooted in r where r has n− 1 children, we also see that there must be at
least n− 1 different values of b(u) (by Lemma 17 point 4). One might think
that this implies the need for Ω(n2) different intervals. This is, however,
not the case. We consider a family of intervals, such that a(u) = O(n) and
the size of each interval, b(u) − a(u) + 1, comes from a much smaller set,
S. Since there are O(n |S|) such intervals we are able to encode them using
log n+ log |S|+O(1) bits.

We now present a modification of Assign called Assign-New. Calling
Assign-New(r, 0) on an n-vertex tree T with root r will result in each
a(u) ∈ [2n] and b(u) ∈ S, where S is given by:

S =
{⌊

(1 + ε)k
⌋
| k ∈

[
4 dlog ne2

]}
, (7.1)

where ε is the unique solution to the equation log(1+ε) = (dlog ne)−1. First,
we examine some properties of S:

Lemma 22. Let S be defined as in Equation (7.1). For everym ∈ {1, 2, . . . , 2n}
there exists s ∈ S such that:

m ≤ s < m(1 + ε) .

Furthermore, s =
⌊
(1 + ε)k

⌋
for some k ∈

[
4 dlog ne2

]
, and both s and k can

be computed in O(1) time.

7.5. An improved log n+ 2 log log n Ancestry labeling scheme 75

Proof. Fixm ∈ {1, 2, . . . , 2n}. Let k be the largest integer such that (1 + ε)k−1 <
m. Equivalently, k is the largest integer such that:

k − 1 <
logm

log (1 + ε)
= (logm) · dlog ne .

In other words we choose k as d(logm) · dlog nee and note that k is computed
in O(1) time. Since logm ≤ log(2n) ≤ 2 log n:

k ≤ d2(log n) · dlog nee ≤ 2 dlog ne2 < 4 dlog ne2 .

By setting s =
⌊
(1 + ε)k

⌋
we have s ∈ S. By the definition of k we see that

(1 + ε)k ≥ m and thus also s ≥ m. Similarly:

m(1 + ε) > (1 + ε)k−1 · (1 + ε) = (1 + ε)k ≥ s.

This proves that s ∈ S satisfies the desired requirement. Furthermore s can
be computed in O(1) time by noting that:

s =
⌊
(1 + ε)k

⌋
=
⌊
2log(1+ε)k

⌋
=
⌊
2dlogne−1·k

⌋
.

We now define Assign-New by modifying Assign in the following two
ways. First, we specify the order in which the children are traversed in Line 3.
This is done in non-decreasing order of their subtree size, i.e. we iterate
v1, . . . , vk, where |Tv1 |≤ . . . ≤ |Tvk |. Second, we choose b(u) in Line 6 as the
smallest value, such that b(u) ≥ a(u) and b(u)− a(u) + 1 ∈ S. This is done
by using Lemma 22 with m = a(u)−a(u)+1 and setting b(u) = a(u)+s−1.
In order to do this we must have m ≤ 2n. To do this, we show the following
lemma corresponding to Lemma 21 in Section 7.4.

Lemma 23. After Assign-New(u, t) is called the following invariants holds:

a(u)− a(u) + 1 ≤ |Tu| (1 + ε)blog|Tu|c (7.2)

b(u)− a(u) + 1 ≤ |Tu| (1 + ε)blog|Tu|c+1 (7.3)

Proof. We prove the claim by induction on |Tu|. When |Tu| = 1, u is a leaf,
so b(u) = a(u) = a(u) = t and the claim holds.

Now let |Tu| = m > 1 and assume that the claim holds for all vertices
with subtree size < m. Let v1, . . . , vk be the children of u such that |Tv1 | ≤
. . . ≤ |Tvk |. First, we show that Equation (7.2) holds. By Lemma 20 we have
the following expression for a(u)− a(u) + 1:

a(u)− a(u) + 1 = (a(vk)− a(vk) + 1) +

(
k−1∑
i=1

b(vi)− a(vi) + 1

)
+ 1. (7.4)

It follows from the induction hypothesis that:

a(vk)− a(vk) + 1 ≤ |Tvk | (1 + ε)blog|Tvk |c ≤ |Tvk | (1 + ε)blog|Tu|c. (7.5)

76 Chapter 7. Ancestry Labeling Schemes

Furthermore, by the ordering of the children, we have log |Tvi | ≤ log |Tu| − 1
for every i = 1, . . . , k − 1. Hence:

b(vi)− a(vi) + 1 ≤ |Tvi | (1 + ε)blog|Tvi |c+1 ≤ |Tvk | (1 + ε)blog|Tu|c. (7.6)

Inserting Equations (7.5) and (7.6) into Equation (7.4) proves invariant Equa-
tion (7.2).

Since b(u) = max
{
b(vk), b(u)

}
we only need to upper bound b(vk) −

a(u) + 1 and b(u)− a(u) + 1. First we note that since b(u) is chosen smallest
possible such that b(u) ≥ a(u) and b(u) − a(u) + 1 ∈ S, it is guaranteed by
Lemma 22 that:

b(u)− a(u) + 1 < (1 + ε) (a(u)− a(u) + 1) ≤ |Tu| (1 + ε)blog|Tu|c+1

Hence we just need to upper bound b(vk)− a(u) + 1. First we note that just
as in Equation (7.4):

b(vk)− a(u) + 1 =

(
k∑
i=1

b(vi)− a(vi) + 1

)
+ 1 (7.7)

By the induction hypothesis, for every i = 1, . . . , k:

b(vi)− a(vi) + 1 ≤ |Tvi | (1 + ε)blog|Tvi |c+1 ≤ |Tvi | (1 + ε)blog|Tu|c+1 (7.8)

Inserting Equation (7.8) into Equation (7.7) gives the desired:

b(vk)− a(u) + 1 ≤ 1 +

k∑
i=1

|Tvi | (1 + ε)blog|Tu|c+1 ≤ |Tu| (1 + ε)blog|Tu|c+1.

This completes the induction.

By Lemma 23 we see that for a tree T with n vertices and u ∈ T :

a(u)− a(u) + 1 ≤ |Tu| (1 + ε)blog|Tu|c ≤ n · 2blognc log(1+ε) ≤ n · 21 = 2n.

In particular, for any u ∈ T we see that a(u) ≤ 2n, and by Lemma 22 the
function Assign-New is well-defined.

We are now ready to describe the labeling scheme:
Description of the encoder: Given an n-vertex tree T rooted in r,

the encoding algorithm works by first invoking a call to Approx-New(r, 0).
Recall that by Lemma 22 we find b(u) such that b(u)−a(u) + 1 =

⌊
(1 + ε)k

⌋
as well as the value of k in O(1) time. For a vertex u, denote the value
of k by k(u) and let xu and yu be the bit strings representing a(u) and
k(u) respectively, consisting of exactly dlog(2n)e and

⌈
log(4 dlog ne2)

⌉
bits

(padding with zeroes if necessary). This is possible since a(u) ∈ [2n] and
k(u) ∈

[
4 dlog ne2

]
.

For each vertex u ∈ T we assign the label `(u) = xu ◦ yu. Since

dlog(2n)e = 1+dlog ne ,
⌈
log(4 dlog ne2)

⌉
= 2+d2 log(dlog ne)e = 2+d2 log log ne ,

the label size of this scheme is dlog ne+ d2 log log ne+ 3.

7.6. Lower bound 77

Description of the decoder: Let `(u) and `(v) be the labels of the
vertices u and v in a tree T . By the definition of the encoder the labels have
the same size and it is s = z + d2 log ze+ 3 for some integer z ≥ 1. By using
that s− d2 log se − 3 = z −O(1) we can compute z in O(1) time. We know
that the number of vertices n in T satisfies dlog ne = z. We can therefore
define ε to be the unique solution to log(1+ε) = dlog ne−1 = z−1. Let xu and
yu be the first z+1 bits and last d2 log ze+2 bits of `(u) respectively. We let
au and ku be the integers in [2z+1] and [4z2] corresponding to the bit strings
xu and yu respectively. We define su as

⌊
(1 + ε)ku

⌋
and bu = su + au − 1.

We define av, bv, kv, sv analogously. The decoder responds True, i.e. that u
is the ancestor of v, iff av ∈ [au, bu].

Theorem 19 is now achieved by using the labeling scheme described above.
Correctness follows from Theorem 18.

7.6 Lower bound

The following lower bound is an extension of the one by Alstrup et al. [42]
using the same technique, namely, boxes and groups (Section 2.4).

Theorem 20. For any n, δ with n ≥ δ+1 ≥ 3, any Ancestry labeling scheme
for Trees(n, δ) has a worst-case label size of at least dlog ne+blog blog δcc−1.2

Proof. Let m = 2blog(n−1)c = 2dlogne−1 be n−1 rounded down to the nearest
power of 2, and set k = blog δc. Note that k ≤ logm. Construct for i = 1 . . . k
the tree Ti as a root vertex to which m/2i paths of length 2i have been
attached. Thus, Ti hasm+1 ≤ n vertices, whereofm belong to disjoint paths.
Further, Ti has depth 2i ≤ 2k ≤ δ, and hence Ti belongs to Trees(n, δ). For
an illustration of such trees see Figure 7.3.

Each vertex in a tree must be uniquely labeled by an Ancestry labeling
scheme. Further, if two vertices in Ti lie on distinct paths, then their labels
cannot be used on the same path in Tj for any j 6= i, because vertices
on the same path have an Ancestry relation whereas vertices on different
paths do not. We can therefore apply Lemma 4, using the m vertices of
the paths of each tree as a “box” and each path as a “group”, and it follows
that we need at least 1

2m(k + 1) = 1
2m(blog δc + 1) labels. If the worst-

case label size is L we can create 2L+1 − 1 distinct labels, and we must
therefore have 1

2m(blog δc + 1) ≤ 2L+1 − 1 from which it follows that L ≥
dlog ne+ blog blog δcc − 1.

7.7 Dynamic Ancestry labeling schemes

All results described thus far present a worst-case analysis of static scenarios.
We describe the first dynamic result, in which rather than receiving a tree T ,
the decoder receives a sequence of n operations constructing T . Operations
considered in the literature are insertions and deletions of leaves, or arbitrary
vertices. For convenience it is assumed that the sequence constructs a rooted
tree, and its root exist from the beginning and is never deleted.

2Observe that the assumption n ≥ δ + 1 is natural, since any tree with n vertices and
depth δ satisfies n ≥ δ + 1.

78 Chapter 7. Ancestry Labeling Schemes

1

2

9

10

13

14

15

16

1

2

9

10

3

4

11

12

1
2

5
6

3

4

7

8

T1 T2 T3

Figure 7.3: Illustration of T1, T2, T3 for n = 8.

The section discusses a persistent Ancestry labeling scheme, i.e a dynamic
labeling scheme that does not change the label given to a vertex. The result
is described in a model in which the operation allowed is an insertion of
leaves.

A trivial prefix-based labeling Ancestry labeling scheme for the model is
built directly from the suffix free code0 (Section 2.2.2). The root r receives
the label 1. Suppose vertex v receives the label L(v). The i’th child of v
receives the label L(v) ◦ 10i−1. Decoding L(u),L(v) is done in the standard
way, and the label size is at most O(n). The next section proves that this
trivial labeling scheme is asymptotically optimal.

Lower bound for persistent Ancestry labeling scheme Cohen, Ka-
plan and Milo [17] proved a lower bound of Ω(n) on the label length for a
sequence of n+ 1 insertions. They do so by presenting a family of insertion
sequences of size 2n−1, such that each sequence has at least one vertex with
unique label.

Definition 17. We define the family of insertion sequences F(n) recursively
as follows. F(1) consists of a single sequence which inserts a root r and a
child of r, w. F(n) extends each sequence s in F(n − 1) rooted in r to two
sequences s1 and s2. Both insertion sequences replace the insertion of the
root r by the sequence r′ and w′, a child of r′. s1 is defined by connecting
vertices previously adjacent to r to be adjacent to w′. In the same manner,
r′ “replaces” r in s2. For illustration, see Figure 7.4.

For convenience, we denote the last vertex in a sequence s, as last(s), and
the set of all sequences s2, respectively s1 in F(n) created from s ∈ F(n−1)
as s2 type sequence respectively s1 type sequence.

Since |F(1)|= 1, and |F(i)|= 2 · |F(i− 1)| it follows that the number of
insertion sequences is |F(n)|= 2n−1. Each insertion sequence in F(n) has
one more vertex than the sequence it was built upon from F(n − 1). Since
the size of the sequence in F(1) is 2, it follows that the size of each insertion
sequence in F(n) is n+ 1.

We proceed to present the lower bound.

Lemma 24. [16] Any persistent Ancestry labeling scheme with a deter-
ministic encoder must give a unique label to the last insertion in each of the
insertion sequences in F(n).

Proof. The claim is proved by induction. Suppose the claim is true for F(n−
1), and pick two insertion sequences s, s′ ∈ F(n− 1). Denote the sequences

7.7. Dynamic Ancestry labeling schemes 79

1

2

1

2 3

1

2

4

r’’
1

2

1

2

r’’

w’’

1

2

r’’1

2

3 5

4 6

3

7

3

8

F(1) F(2)

F(3)

s1

s
1

s
1

s2

s 2

s 2

Figure 7.4: An illustration of the trees resulting by the
sequences F(1), F(2) and F(3) from Definition 17. The
grey vertices are the ones introduced by Lemma 24. The
arrows denote the extension of a sequence, and marked s1 or

s2 according to the type.

extending s and s′ using the first extension type s1 and s′1 respectively. From
the induction hypothesis it follows directly that L(last(s1)) 6= L(last(s′1)).

Denote now both derived sequences of s in F(n) as s1 and s2. Since
the encoder is deterministic, and the first two elements of the insertions are
identical, r′ and w′ receives the same label in both. The vertex last(s1) is
not a decedent of w but last(s2) is. Since the decoder needs to determine an
Ancestry relation, d(L(w),L(last(s1))) = false and d(L(w),L(last(s2))) =
true. Therefore, it is required that L(last(s1)) 6= L(last(s2)).

From Lemma 24, and since there are 2n−1 insertion sequences of size n,
it follows that 2n−1 distinct labels are needed for the last vertex in each
sequence in F(n).

Corollary 6. Every persistent Ancestry labeling scheme 〈e, d〉 is of size
Ω(n).

Using a similar argument, Cohen et al. [17] prove that the bound holds
for a sequence corresponding to a tree from Trees(n,∆), when ∆ ≥ 2. More-
over, the bound is shown to hold even when the encoder is allowed to use
randomisation.

To overcome this inherent difficulty, the authors introduce the notion
of sibling and direct clues. Loosely speaking, sibling, respectively, direct
clues provide every vertex v in the sequence a guarantee on the range of
possible number of v’s siblings, respectively size of v. Using this method,
they show tight bounds on the label sizes for such labeling schemes with
Θ(log n) bits using sibling clues and Θ(log2 n) bits using direct clues. We
show in Chapter 8 that this bound applies for the functions NCA, Distance,
and Routing as well, and in contrast, that 2 log n are sufficient and necessary
in this model for the functions Adjacency , Siblings and Connectivity .

81

Chapter 8

Multifunctional and Dynamic
Labeling Schemes

In this chapter we investigate labeling schemes supporting Adjacency , Ances-
try , Siblings, and Connectivity queries in forests. In the course of more than
20 years, the existence of log n + O(log log n) labeling schemes supporting
each of these functions was proven, last being ancestry, as seen in Chapter 7.
Several multifunctional labeling schemes also enjoy lower or upper bounds
of log n+ Ω(log log n) or log n+O(log log n) respectively. Notably an upper
bound of log n + 2 log log n for Adjacency +Siblings and a lower bound of
log n + log log n for each of the functions Siblings, Ancestry , and Connec-
tivity [42]. We improve the constants hidden in the O-notation for several
multifunctional labeling schemes. .

In the context of dynamic labeling schemes, we have seen in Section 7.7
that Ancestry requires Ω(n) bits. In contrast, we show upper and lower
bounds on the label size for Adjacency , Siblings, and Connectivity of 2 log n
bits, and 3 log n to support all three functions. We also show that there
exist no efficient dynamic Adjacency labeling schemes for planar, bounded
treewidth, bounded arboricity and bounded degree graphs.

8.1 Introduction

In their seminal paper, Kannan et al. [2] introduced labeling schemes using at
most 2 log n bits for each of the functions Adjacency , Siblings and Ancestry .
Improving these results have been motivated heavily by the fact that a small
improvement of the label size may contribute significantly to the performance
of XML search engines. Alstrup, Bille and Rauhe [42] established a lower
bound of log n+log log n for the functions Siblings, Connectivity and Ancestry
along with a matching upper bound for the first two.

In most settings, it is the case that the structure of the graph to be labeled
is not known in advance. In contrast to the static setting described above, a
dynamic labeling scheme receives the tree as an online sequence of topological
events. As described in Section 7.7, Cohen, Kaplan and Milo [121] considered
dynamic labeling schemes where the encoder receives n leaf insertions and
assigns unique labels that must remain unchanged throughout the labeling
process. In this context, they showed a tight bound of Θ(n) bits for any
dynamic Ancestry labeling scheme. We stress the importance of their lower
bound by showing that it extends to routing, NCA, and distance as well.
In light of this lower bound, Korman, Peleg and Rodeh [125] introduced
dynamic labeling schemes where vertex re-label is permitted and performed
by message passing. In this model they obtain a compact labeling scheme

82 Chapter 8. Multifunctional and Dynamic Labeling Schemes

Function Static Label Size Static Lower Bound Dynamic
Adjacency log n+O(log∗ n) [8] log n+ 1 2 log n (Theorem 21)
Connectivity log n+ log log n [42] log n+ log log n [42] 2 log n (Theorem 21)
Siblings log n+ log log n [52] log n+ log log n [42] 2 log n (Theorem 21)
Ancestry log n+ 2 log log n [58] log n+ log log n [42] n [121]
AD/S log n+ 2 log log n [12]) log n+ log log n [42] 2 log n (Theorem 21)
C/S log n+ 2 log log n (Theorem 25) log n+ 2 log log n (Theorem 26) 3 log n (Theorem 24)
C/AN log n+ 5 log log n (Theorem 25) log n+ 2 log log n (Theorem 27) n [121]
C/AD/S log n+ 3 log log n (Theorem 25) log n+ 2 log log n (Theorem 26) 3 log n (Theorem 24)
Routing (1 + o(1)) log n [9] log n+ log log n [42] n (Section 8.2)
NCA 2.772 log n [51] 1.008 log n [51] n (Section 8.2)
Distance 1/4 log2 n [48] 1/4 log2 n [48] n (Section 8.2)
Siblings * log n log n log n

Connectivity * log n log n log n

C/S* log n+ log log n (Theorem 25) log n+ log log n (Theorem 28) 2 log n

Table 8.1: Upper and lower label sizes for labeling trees
with n vertices (excluding additive constants). Routing is
reported in the designer-port model [26] and NCA with no
pre-existing labels [51]. Functions marked with * denote non-
unique labeling schemes, and bounds without a reference are

folklore. Dynamic labeling schemes are all tight.

for Ancestry , while keeping the number of messages small. Additional results
in this setting include conversion methods for static labeling schemes [125,
126], as well as specialized distance [126] and routing [127] labeling schemes.
See Chapter 9 for experimental evaluation of some of the aforementioned
results.

Considering the static setting, a natural question is to determine the label
size required to support some, or all, of the functions. Simply concatenating
the labels mentioned yield an O(log n) label size, which is clearly undesired.
Labeling schemes supporting multiple functions1 were previously studied for
Adjacency and Siblings queries. Alstrup et al. [42] proved a log n+5 log log n
label size which was improved by Gavoille and Labourel [128] to log n +
2 log log n. See Table 8.1 for a summary of labeling schemes for forests in-
cluding the results of this chapter.

8.1.1 Our contribution

We contribute several upper and lower bounds for both dynamic and mul-
tifunctional labeling schemes. First, we observe that the naïve 2 log n Ad-
jacency , Siblings and Connectivity labeling schemes are suitable for the dy-
namic setting without the need of relabeling. We then present simple families
of insertion sequences for which labels of size 2 log n are required, showing
that in the dynamic setting the naïve labeling schemes are in fact optimal.
The result is in contrast to the static case, where Adjacency labels requires
strictly fewer bits than both Siblings and Connectivity . The labeling schemes
also reveal an exponential gap between Ancestry and the functions mentioned
for the dynamic setting. In Section 8.2.3 we show a construction of simple
lower bounds of Ω(n) for Adjacency labeling schemes on various important
graph families.

1 We refer to such labeling schemes as multifunctional labeling schemes.

8.2. Dynamic labeling schemes 83

In the context of multifunctional labeling schemes, we show first that
3 log n bits are necessary and sufficient for any dynamic labeling scheme
supporting Adjacency and Connectivity . Using a novel technique, we prove in
Theorem 26 a lower bound of log n+2 log log n for any unique labeling scheme
supporting both Connectivity and Siblings/Ancestry . This lower bound is
preceded by a simple upper bound, proving that any labeling scheme of size
S(n) growing faster than log n can be altered to support Connectivity as
well by adding at most log log n bits. Note that in the case of Connectivity
and Siblings the upper and lower bounds match. All omitted proofs appear
in [13].

8.1.2 Preliminaries

We define some particular dynamic encoder and decoder functions. If the
encoder receives G as a sequence of topological events2 the labeling scheme
is dynamic. Recall that If for all graphs G ∈ G, the label assignment eG is
an injective mapping, i.e. for all distinct u, v ∈ V (G), eG(u) 6= eG(v), we say
that the labeling scheme assigns unique labels. Unless stated otherwise, the
labeling schemes presented are assumed to assign unique labels. Moreover,
we allow the decoder to know the label size.

Let G be a graph in a family of graphs H and suppose that an f-labeling
scheme assigns a vertex v ∈ G the label L(v). If L(v) does not appear in
any of the label assignments for the other graphs in H, we say that the label
is distinct for the labeling scheme over H. This notion will be useful in
proving the lower bounds. All labeling schemes constructed in this chapter
require O(n) encoding time and O(1) decoding time under the assumption
of a Ω(log n) word size RAM model. See [9] for additional details.

8.2 Dynamic labeling schemes

We first note that the lower bound for Ancestry due to Cohen, et al. also
holds for NCA, since the labels computed by an NCA labeling scheme can
decide Ancestry : Given the labels L(u),L(v) of two vertices u, v in the tree T ,
return true if L(u) is equal to the label returned by the original NCA decoder,
and false otherwise. Similarly, suppose a labeling scheme for routing3 assigns
0 as the port number on the path to the root. Given L(u),L(v) as before,
return true if routing(L(u),L(v)) 6= 0 and routing(L(v),L(u)) = 0. If there
were to exist a dynamic labeling scheme for routing or NCA with size o(n),
the labels produced would be sufficient to determine Ancestry , in contrast
to Cohen’s bound. Peleg [25] proved that any f(n) distance labeling scheme
can be converted to f(n) + log(n) labeling scheme for NCA by attaching the
depth of any vertex. Since the depth of a vertex inserted can not change in
our dynamic setting, we conclude that the lower bound applies to distance
up to additive O(log n) factor.

2Cohen et al. defines such a sequence as a set of insertion of vertices into an initially
empty tree, where the root is inserted first, and all other insertions are of the form “insert
vertex u as a child of vertex v”. We extend it to support “remove leaf u”, where the root
may never be deleted.

3Routing in the designer port model [26], in which this assumption is standard.

84 Chapter 8. Multifunctional and Dynamic Labeling Schemes

8.2.1 Upper Bounds

The following naïve Adjacency labeling scheme was introduced by Kannan
et al. [2]. Consider an arbitrary rooted tree T with n vertices. Enumerate
the vertices in the tree with the numbers 0 through n− 1, and let, for each
vertex v, Id(v) be the number associated with v. Let parent(v) be the parent
of a vertex v in the tree. The label of v is L(v) = (Id(v) ◦ Id(parent(v))),
and the root is labeled (0, 0). Given the labels L(v),L(v′) of two vertices v
and v′, two vertices are adjacent if and only if either Id(parent(v)) = Id(v′)
or Id(parent(v′)) = Id(v) but not both, so that the root is not adjacent to
itself.

This is also a dynamic labeling scheme for Adjacency with equal label size.
Moreover, it is also both a static and dynamic labeling scheme for Siblings, in
which case, the decoder must check if Id(parent(v)) = Id(parent(v′)). A la-
beling scheme for Connectivity can be constructed by storing the component
number rather than the parent id. After n insertions, each label contains
two parts, each in the range [0, n − 1]. Therefore, the label size required is
2 log n.

The labeling schemes suggested extend to larger families of graphs. In
particular, the dynamic Connectivity labeling scheme holds for the family of
all graphs. The family of k-bounded degree graphs enjoys a similar dynamic
Adjacency labeling scheme of size (k + 1) log n.

8.2.2 Lower Bounds

We show that 2 log n is a tight bound for any dynamic Adjacency labeling
scheme for trees. We denote by Fn(k) an insertion sequence of n vertices,
creating an initial path of length 1 < k ≤ n, followed by n−k adjacent leaves
to vertex k − 1 on the path. The family of all such insertions sequences is
denoted Fn. For illustration see Figure 8.1.

Lemma 25. Fix some dynamic labeling scheme that supports Adjacency.
For any 1 < k < n, Fn(k) must contain at least n− k distinct labels for this
labeling scheme over Fn.

Proof. The labels of Fn(n) are set to P1 . . . Pn respectively. Since the encoder
is deterministic, and since every insertion sequence Fn(k) first inserts vertices
on the initial path, these vertices must be labeled P1 . . . Pk. Let the labels of
the adjacent leaves of such an insertion sequence be denoted by Lk1 . . . Lkn−k.

P1

L31

P2

P3

L32

P1

L21

P2 L22

L23
P1

L41

P2

P3

P4

P1

P2

P3

P4

P5

Figure 8.1: Illustration of F5.

Clearly, Lk1 . . . Lkn−k must be different from P1 . . . Pn, as the only other
labels adjacent to Pk−1 are Pk−2 and Pk, which have already been used on
the initial path. Consider now any vertex labeled Lji of Fn(j) for j 6= k.
Assume w.l.o.g that j > k. Such a vertex must be adjacent to Pj−1 and not

8.2. Dynamic labeling schemes 85

to Pk−1, as Pk−1 is contained in the path to Pj−1. Therefore we must have
Lji /∈ {Lk1, . . . , Lkn−k}.

Identical lower bounds are attained similarly for both Siblings and Con-
nectivity .

Theorem 21. Any dynamic labeling scheme supporting either Adjacency,
Connectivity, or Siblings requires at least 2 log n− 1 bits.

Proof. According to Lemma 25, at least n+
∑n−1

i=2 i = n2/2 +O(n) distinct
labels are required to label Fn if Adjacency or Siblings requests are supported,
and the same applies for Fcn if Connectivity is supported.

A natural question is whether a randomized labeling scheme could provide
labels of size less than 2 log n−O(1). The next theorem, based on Thm. 3.4
in [121] answer this question negatively.

Theorem 22. For any randomized dynamic labeling scheme supporting ei-
ther Adjacency, Connectivity, or Siblings queries there exists an insertion
sequence such that the expected value of the maximal label size is at least
2 log n−O(1) bits.

8.2.3 Other Graph Families

In this part, we expand our lower bound ideas to Adjacency labeling schemes
for the following families with at most n vertices: bounded arboricity-k
graphs4 Ak, bounded degree-k graphs ∆k, planar graphs P and bounded
treewidth-k graphs Tk. In the context of (static) Adjacency labeling schemes,
these families are well studied [2, 6–8]. In particular, Tk, P, ∆k and Ak en-
joy Adjacency labeling schemes of size log n+O(k log log(n/k)) [6], 2 log n+

O(log log n) [6], b∆(n)
2 c+ 1 [7], and k log n [7] respectively.

We consider a sequence of vertex insertions along with all edges adjacent
to them, such that an edge (u, v) may be introduced along with vertex v if
vertex u appeared prior in the sequence, and prove the following.

Theorem 23. Any dynamic Adjacency labeling scheme for each A2, P
and T3 requires Ω(n) bits. Similarly, any dynamic Adjacency labeling
scheme for ∆k requires k log n bits.

Proof. Let S be the collection of all nonempty subsets of the integers 1 . . . n−
1. For every s ∈ S, we denote by Fn(s) an insertion sequence of n vertices,
creating a path of length n − 1, followed by a single vertex v connected to
the vertices on the path whose number is a member of s. Such a graph has
arboricity 2 since it can be decomposed into an initial path and a star rooted
in v. For each of the |S| insertion sequences, v’s label must be distinct. We
conclude that the number of bits required for any Adjacency labeling scheme
is at least log(|S|) = n− 1. See Figure 8.2 for illustration.

The construction of Fn(s) implies an identical lower bound for the family
of planar graphs, as well as interval graphs. By considering all sets s of at
most k elements instead, we get a bound of k log n label size for any Adjacency
labeling scheme for ∆k, where k is constant.

86 Chapter 8. Multifunctional and Dynamic Labeling Schemes

P1 P2 P3 P4 P5

V

Figure 8.2: Illustration of F5(s). The dotted lines may or
may not appear in the insertion sequence depending on the

element of S chosen.

In the following two sections we investigate labeling schemes incorpo-
rating two or more of the functions mentioned for both dynamic and static
labeling schemes.

8.2.4 Dynamic multifunctional Labeling Schemes

A 3 log n dynamic labeling scheme for any combination of Connectivity , Ad-
jacency and Siblings queries can be obtained by setting the label of a vertex
v to be (Id(v)◦Id(parent(v))◦component(v)), as described in Section 8.2.1.

We now show that this upper bound is in fact tight. More precisely, we
show that 3 log n bits are required to answer the combination of Connectivity
and Adjacency . Let In(j, k) be an insertion sequence designed as follows:
First j vertices are inserted creating an initial forest of single vertex trees.
Then k vertices are added as a path with root in the jth tree. At last, n−j−k
adjacent path leaves are added to the second-to-last vertex on the path. For
a given n we define In as the family of all such insertion sequences.

Lemma 26. Fix some dynamic labeling scheme that supports Adjacency and
Connectivity requests. For any 1 < j + k < n, In(k) must contain at least
n− j − k distinct labels for this labeling scheme over In.

According to this Lemma, at least
∑n−1

j=1

∑n−j−1
k=1 n−j−k = 1

6n
3−O(n2)

distinct labels are required to label the family In. We can thus conclude.

Theorem 24. Any dynamic labeling scheme supporting both Adjacency and
Connectivity queries requires at least 3 log n−O(1) bits.

The same family of insertion sequences can be used to show a 3 log n −
O(1) lower bound for any dynamic labeling scheme supporting both Siblings
and Connectivity queries. Furthermore, similarly to Theorem 22, the bound
holds even without the assumption that the encoder is deterministic.

8.3 Static multifunctional Labeling Schemes

As seen in Theorem 24, the requirement to support both Connectivity and
Adjacency forces an increased label size for any dynamic labeling scheme.
In the remainder of the paper we prove lower and upper bounds for static
labeling schemes that support those operations, both for the case where the
labels are necessarily unique, and for the case that they are not. From
hereon, all labeling schemes are on the family of rooted forests with at most
n vertices. We show that most labeling schemes can be altered to support
Connectivity as well.

4The arboricity of a graph G is the minimum number of edge-disjoint acyclic subgraphs
whose union is G.

8.3. Static multifunctional Labeling Schemes 87

Theorem 25. Consider any function f of two vertices in a single tree on
n vertices. If there exists an f -labeling scheme of size S(n), where S(n) is
non-decreasing and S(a) − S(b) ≥ log a − log b − O(1) for any a ≥ b. Then
there exists an f -labeling scheme, which also supports Connectivity queries
of size at most S(n) + log log n+O(1).

Proof. We will consider the label L(v) = (C ◦ L ◦ sep) defined as follows.
First, sort the trees of the forest according to their sizes. For the ith biggest
tree we set C = i using log i bits. Since the tree has at most n/i vertices,
we can pick the label L internally in the tree using only S(n/i) bits. Finally,
we need a separator, sep, to separate C from L. We can represent this using
log logn bits, since i uses at most log n bits.

The total label size is log i+ S(n/i) + log log n+O(1) bits, which is less
than S(n) + log log n+O(1) if S(n)−S(n/i) ≥ log i− c for some constant c.
Since f is a function of two vertices from the same tree, this altered labeling
scheme can answer both queries for f as well as Connectivity . It is now
required that any label assigned has size exactly S(n)+log log n bits, so that
the decoder may correctly identify sep in the bit string. For that purpose we
pad labels with less bits with sufficiently many 0’s. The decoder can identify
C in O(1) time.

As a corollary, we get labeling schemes of the sizes reported in Table 8.1.

8.3.1 Lower Bounds

We now show that the upper bounds implied by Theorem 25 for labeling
schemes supporting Siblings and Connectivity are indeed tight for both the
unique and non-unique cases. To that end we consider the following forests:
For any integers a, b, n such that ab | n denote by Fn(a, b) a forest consist-
ing of a components (trees), each with b sibling groups, where each sibling
group consist of n

a·b vertices. Note that n ≤ |Fn(a, b)|< 2n since we add one
auxiliary root per component.

Our proofs work as follows: Firstly, for any two forests Fn(a, b) and
Fn(c, d) as defined above, we establish an upper bound on the number of la-
bels that can be assigned to both Fn(a, b) and Fn(c, d). Secondly, for a care-
fully chosen family of forests Fn(a1, b1), . . . , Fn(ak, bk), we show that when
labeling Fn(ai, bi) at least a constant fraction of the labels has to be distinct
from the labels of Fn(a1, b1), . . . , Fn(ai−1, bi−1). Finally, by summing over
each Fn(ai, bi) we show that a sufficiently large number of bits are required
by any labeling scheme supporting the desired queries.

Our technique simplifies the boxes and groups argument of Alstrup et al. [42],
and generalizes to the case of two nested equivalence classes5, namely Con-
nectivity and Siblings.

Lemma 27. Let Fn(a, b) and Fn(c, d) be two forests such that ab ≥ cd.
Fix some unique labeling scheme supporting both Connectivity and Siblings,
and denote the set of labels assigned to Fn(a, b) and Fn(c, d) as e1 and e2

respectively. Then

|e1 ∩ e2|≤ min(a, c) ·min(b, d) · n

a · b .

5See [52] for definitions and further discussion.

88 Chapter 8. Multifunctional and Dynamic Labeling Schemes

Proof. Consider label sets s1 and s2 of two sibling groups from Fn(a, b)
and Fn(c, d) respectively for which |s1 ∩ s2|≥ 1. Clearly, we must have
|s1∩s2|≤ min(|s1|, |s2|) = n

a·b . Furthermore, no other sibling group of Fn(a, b)
or Fn(c, d) can be assigned labels from s1 ∪ s2, as the Siblings relationship
must be maintained. We can thus create a one-to-one matching between the
sibling groups of Fn(a, b) and Fn(c, d), that have labels in common (note
that not all sibling groups will necessarily be mapped). Bounding the num-
ber of common labels thus becomes a problem of bounding the size of this
matching. In order to maintain the Connectivity relation, sibling groups
from one component cannot be matched to several components. Therefore
at most min(b, d) sibling groups can be shared per component, and at most
min(a, c) components can be shared. Combining this gives the final bound
of min(a, c) ·min(b, d) · na·b .

Lemma 28. Let Fn(a1, b1), . . . , Fn(ai, bi) be a family of forests with a1 ·
b1 ≤ . . . ≤ ai · bi. Assume there exists a unique labeling scheme supporting
both Connectivity and Siblings, and let ej be the set of labels assigned by
this scheme to the forest Fn(aj , bj). Assume that the sets e1, . . . , ei−1 have
been assigned. The number of distinct labels introduced by the encoder when
assigning ei is at least

n−
i−1∑
j=1

min(aj , ai) ·min(bj , bi) ·
n

ai · bi
.

We demonstrate the use of Lemma 28 by showing the following known
result [42].

Warmup 1. Any static labeling scheme for Connectivity queries requires at
least log n+ log log n−O(1) bits.

Proof. Consider the family of log3 n forests Fn(30, 1), Fn(31, 1), . . . , Fn(3log3 n, 1).
This family is demonstrated in Figure 8.3 for n = 9. Two vertices are Sib-
lings if and only if they are connected in this family. Therefore we can
use Lemma 28 even though we want to show a lower bound for only Connec-
tivity . Note, that in Figure 8.3 the second forest can at most reuse 3 labels
from the first, and the third can at most reuse 4 from the two previous.

Let ej denote the label set assigned by an encoder for Fn(3j , 1). We
assume that the labels are assigned in the order e0, . . . , elog3 n. By Lemma 28
the number of distinct labels introduced when assigning ej is at least

n− n
j−1∑
i=0

3i−j > n/2 .

It follows that labeling the log3 n forests in the family requires at least
Ω(n log n) distinct labels.

We are now ready to prove the main theorem of this part.

Theorem 26. Any unique static labeling scheme supporting both Connectiv-
ity and sibling queries requires labels of size at least log n+2 log log n−O(1).

Proof. Fix some integer x, and assume that n is a power of x. We consider the
family of forests Fn(1, 1), Fn(x, 1), Fn(1, x), Fn(x2, 1), Fn(x, x), Fn(1, x2), . . . ,
Fn(1, xlogx n).

8.3. Static multifunctional Labeling Schemes 89

F9(1,1)

F9(3,1)

F9(9,1)

Figure 8.3: The family of forests F9(1, 1), F9(3, 1), F9(9, 1).
Vertices inside the same box are connected and Siblings.

Note that component roots have been omitted.

Let eba denote the label set assigned to Fn(xa, xb) by an encoder. We as-
sign the labels in the order e0

0, e
0
1, e

1
0, e

0
2, e

1
1, . . . , e

logx n
0 . Thus, when assigning

eba we have already assigned all label sets edc with c+d < a+b or c+d = a+b
and d < b. By Lemma 28, the number of distinct labels introduced when
assigning eba is at least

n−
∑

c+d<a+b
c,d≥0

n

xa+b
· xmin(a,c)+min(b,d) +

b−1∑
d=0

n

xa+b
· xa+d

This counting argument is better demonstrated in Figure 8.4. In the figure,
we are concerned with assigning the labels in e2

2. The grey boxes represent
the label sets already assigned, and the right-side figure shows the fractions
of n that each set edc at most has in common with e2

2. Observe that we can
split the above sum into three cases as demonstrated in the figure: If c ≤ a
and d ≤ b the bound supplied by Lemma 27 is xc+d−a−b. Otherwise, either
c > a or d > b, but not both. If c > a, recall that d < b so the bound is
xd−b. For d > b the bound is xc−a by the same argument. Applying these
rules, we see that the number of distinct labels introduced is at least

n− n ·
(

a∑
c=0

b∑
d=0

xc+d−a−b +

b−1∑
d=0

(b− d) · xd−b +

a−2∑
c=0

(a− c) · xc−a
)

+ n

≥ n− n ·
(
x2 + x+ 2

(x− 1)2

)
+ n = n− n · 3x+ 1

(x− 1)2
.

Note that we add n, as we have also subtracted n labels for the case (c, d) =
(a, b).

By setting x = 6 we get that the encoder must introduce 6n/25 distinct
labels for each eba. Since we have Θ(log2 n) forests, a total of Ω(n log2 n)
labels are required for labeling the family of forests. Each forest consists of
no more than 2n vertices, which concludes the proof.

The same proof technique is used to prove the following theorems.

Theorem 27. Any unique static labeling scheme supporting both Connectiv-
ity and Ancestry queries requires labels of size at least log n + 2 log log n −
O(1).

Theorem 28. Any static labeling scheme supporting both Connectivity and
sibling queries requires at least log n+ log log n−O(1) bits if the labels need
not be unique.

90 Chapter 8. Multifunctional and Dynamic Labeling Schemes

e0
0

e1
0

e2
0

e3
0

e4
0

e0
1 e0

2 e0
3 e0

4

e1
1 e1

2 e1
3

e2
1 e2

2

e3
1

x-4

e2
2

-

-x-3

x-2

x-2

x-2
x-1
x-1
x-2
x-3 x-2

x-1
x-2

a+1

b

b+1 a-1

Figure 8.4: Demonstration of the label counting for e22.

Proof. Assume w.l.o.g. that n is a power of 3. Consider the family of log3 n
forests Fn(1, n), Fn(3, n/3), Fn(32, n/32), . . . , Fn(3log3 n, 1). Since each sib-
ling group of the forest Fn(3i, n/3i) has exactly one vertex, we note that no
two vertices are Siblings. Thus each label of the forest has to be unique, since
we have assumed that a vertex is sibling to itself. We can thus use Lemma 27
as if we were in the unique case for this family of forests.

Let ej denote the label set assigned by an encoder for Fn(3j , n/3j). We
assume that the labels are assigned in the order e0, . . . , elog3 n. By Lemma 28
the number of distinct labels introduced when assigning ej is at least

n− n
j−1∑
i=0

3i−j > n/2.

It follows that when labeling each of the log3 n forests in the family, any
encoder must introduce at least n/2 distinct labels, i.e. Ω(n log n) distinct
labels in total. The family consist of forests with no more than 2n vertices,
which concludes the proof.

8.4 Concluding remarks

We have considered multifunctional labels for the functions Adjacency , Sib-
lings and Connectivity . We also provided a lower bound for Ancestry and
Connectivity . A major open question is whether it is possible to have a label
of size log n+O(log log n) supporting all of the functions.

In the context of dynamic labeling schemes, if arbitrary insertion is per-
mitted, neither Adjacency nor sibling labels are possible. All dynamic label-
ing schemes also operate when leaf removal is allowed, simply by erasing the
removed label.

91

Chapter 9

An experimental analysis of
dynamic labeling schemes

We present an implementation and evaluation based on simulation of dy-
namic labeling schemes for tree networks. Unlike the results from Chapter 8
and section 7.7, the model used in this body of work lifts the assumptions
that labels may not be modified. Two algorithms are studied: a general
scheme that converts static labeling schemes to dynamic, and a specialized
dynamic distance labeling scheme. Our study shows that theoretical bounds
only partially portray the performance of such dynamic labeling schemes in
practice. First, we observe order-of-magnitude differences between the gains
in label size when compared to the number of messages passed. Second,
we demonstrate a significant bottleneck in the tree network, suggesting that
the current practice of counting total messages passed in the whole network
is insufficient to properly characterize performance of these distributed algo-
rithms. Finally, our experiments provide intuition on the worst case scenarios
for the stated algorithms, in particular path tree networks and fully dynamic
schemes permitting both vertex additions and deletions.

9.1 Introduction

Korman, Peleg and Rodeh [125] studied labeling schemes in the context of
distributed systems. In this context, information about labeling is exclu-
sively communicated via messages, and vertices may join or leave the system
dynamically. Since communication is required, maximum label size is not
the sole criterion for the quality of such labeling schemes, but also metrics
related to the number and total size of messages passing in the network.
The authors suggested two algorithms that fit this context: a conversion of
static labeling schemes, and a specialized distance labeling scheme. Addi-
tional work investigated specialized labeling schemes for routing [127, 129]
and various trade-offs for distance [34,126].

As seen in Section 7.7, Cohen, Kaplan and Milo [121] showed that if re-
labeling is not permitted, there is a a tight bound of Θ(m) bit for labels
supporting m insertions, and it is thus not surprising that a large body of
work for real-life dynamic systems for most functions 1 focused on a dynamic
model with re-labeling. We focus on the function distance, as its labels are
expressive enough to answer all the queries mentioned above.

1More specifically: NCA, Routing , Distance, MaxFlow and Center . Recall that
in Chapter 8 we showed that Siblings, Adjacency and Connectivity enjoy simple dynamic
labeling schemes of size 2 logn.

92 Chapter 9. An experimental analysis of dynamic labeling schemes

Previous experimental papers on the topic focused on the performance
of static labeling schemes, emphasizing the label size as the main metric.
Caminiti et al. [130] experimented on the influence that different tree de-
compositions have on label size for NCA labeling schemes. Fischer [131]
evaluated the label size expected for a variant of NCA, using various coding
algorithms. Kaplan et al. [116] presented experiments to support an ances-
try labeling scheme trading slightly larger labels for much faster query time.
Finally, Cohen et al. [132] performed experiments on a novel technique for
labeling schemes for graphs.

These papers reveal that different families of trees present very different
label sizes. A natural question is whether dynamic labeling schemes present
the same behaviour. In addition, it remains unclear how the various com-
munication and label size trade-offs suggested for dynamic labeling schemes
behave in practice. Moreover, one may question whether it is sensible to
develop dynamic labeling schemes for individual functions, or whether the
trade-offs given by general methods are good enough [125]. Furthermore,
the price of allowing for deletions, rather than just insertions, still needs to
be characterized in representative scenarios. In short, many questions are
relevant and interesting for dynamic labeling schemes, but we are unaware
of any experimental papers on the topic.

In this chapter, we devise a simulation of a tree network and answer those
questions for the dynamic labeling schemes proposed by Korman, Peleg and
Rodeh [125]. These labeling schemes can be classified along two dimensions:
whether the labeling scheme is specialized for distance or supports general
static labelers, and whether the labeling scheme supports both insertion and
deletions or only insertions. Our findings suggest three main observations:

1. Generally, the amortized complexity analysis of [125] is verified in our
experiments. However, for labeling schemes supporting general static
labelers, the observed behaviour indicates that the complexity of the
static labeler is overshadowed by the overhead introduced by the dy-
namic scheme.

2. In order to achieve an asymptotically tight label size, the specialized
distance labeling scheme uses significantly more communication.

3. The message distribution in labeling schemes that support both inser-
tion and deletion is severely skewed. We show an experiment in which
the majority of messages in the system is communicated by less than
0.4% of the vertices.

9.1.1 Preliminaries

We adopt the terminology in [125], which names dynamic encoding algo-
rithms as distributed online protocols or simply protocols. From here on, all
dynamic labeling schemes discussed are for tree networks. The following
types of topology changes are considered: a) Add-Leaf, where a new degree-
one vertex u is added as a child of an existing vertex v ; and b) Remove-Leaf,
where a (non-root) leaf v is deleted. Dynamic labeling schemes that sup-
port only Add-Leaf are denoted semi-dynamic, and those that support both
operations are denoted fully-dynamic.

9.2. Dynamic labeling schemes for tree networks 93

Metrics for dynamic labeling schemes. In the literature surveyed, la-
beling schemes aim for smallest possible label. If communication is not
accounted for, dynamic labeling schemes can trivially achieve the optimal,
static bounds. Therefore, in order to account for the cost of communication,
the following metrics are introduced [125]. Let M be a dynamic labeling
scheme, with re-labeling allowed, and let S(n) be a sequence of n topological
changes.

1. Label Size LS(M,n): the maximum size of a label assigned by M on
S(n).

2. Message Complexity, MC(M,n): the maximum number of messages
sent in total by M on S(n). Messages are sent exclusively between
adjacent vertices.

3. Bit Complexity, BC(M,n): the maximum number of bits sent in total
by M on S(n). Note that BC(M,n) ≤MC(M,n) · LS(M,n).

9.2 Dynamic labeling schemes for tree networks

Korman et al. [125] presented semi-dynamic and fully-dynamic labeling schemes
that support distance queries and a semi-dynamic and fully-dynamic labeling
scheme that receives a static labeling scheme2 as input and supports queries
of its type. In this section, we give a brief and informal description of both
semi-dynamic labeling schemes as well as of the conversion necessary to make
these schemes fully-dynamic.

We denote the static distance labeling scheme as Distance, its extension
to a specialized semi-dynamic mode SemDL, and its fully-dynamic special-
ized extension as DL. Korman et al. [125] define the general dynamic labeling
schemes SemGL and GL, which maintain labels on each vertex of a dynam-
ically changing tree network using a static labeling scheme as a subroutine.
The performance of these schemes is tightly coupled to the performance of
the static scheme used. Throughout the remainder, we denote the general
labeling schemes operating on Distance simply as SemGL andGL, and explic-
itly mention other distance functions where appropriate. Table 9.1 reports
the different complexities for the aforementioned schemes (the parameter d
is explained in Section 9.2.1).

9.2.1 Brief overview

In this section, we provide an informal description for Distance, SemDL,
SemGL, and the approach for semi-dynamic to dynamic conversion.

Encoding Distance directly from heavy-light decomposition. For
every non-leaf v in a rooted tree T , we denote a child with the heaviest
weight3 as heavy and the rest as light ; we mark the root of the tree as light
and its leaves as heavy. The light vertices divide T into disjoint heavy paths.
For any v ∈ T , the path from the root traverses at most log n light vertices,

2The static labeling scheme must respect a set of conditions as mentioned in [125],
which to the best of our knowledge are respected by all labeling schemes in the literature.

3The weight of a vertex v is the number of its descendants in a tree.

94 Chapter 9. An experimental analysis of dynamic labeling schemes

Labeling Scheme Label Size MC BC
Distance O(log2 n) O(n) O(n log2 n)

SemDL O(log2 n) O(n log2 n) O(n log2 n log log n)

DL O(log2 n) O(n log2 n) O(n log2 n log log n)

SemGL O(d−1
log d log3 n) O(n logn

log d) unreported
GL O(log3 n) O(n log2 n) unreported

Table 9.1: Simplified complexity estimates for Trees(n).
Bounds for GL are reported with d = 2. See [125] for an

elaborate complexity report.

and accordingly at most log n heavy paths. A label of a vertex can now
be defined by interleaving light sub-labels, containing the index of a light
child, with heavy sub-labels, containing only the length of the heavy path.
Such labels clearly require O(log2 n) bits, which is asymptotically optimal
for labels supporting distance on trees. Computing the distance between two
vertices can be done by comparing the prefixes of their corresponding labels.
Finally, we note that the labels produced by Distance can be used to solve
most queries in the literature, namely Adjacency , Siblings, Ancestry , Routing
and NCA.

SemDL. It is not essential for the correctness of the decomposition that
the heavy vertex selected be in fact the heaviest, or say, the 3rd heaviest. It
is only essential for the bound on the label size. semDL maintains a dynamic
version of the Distance labels using precisely this observation. Every vertex
maintains an estimate of its weight, and transfers this estimate to its parent,
using a previously introduced binning method [133]. When the estimate
exceeds a threshold in a vertex, this implies that a vertex other than the
heavy vertex is now significantly heavier than the heavy vertex. Thus, a
re-labeling (shuffle, in [125]) is instantiated on the subtree to maintain the
O(log2 n) label size.

SemGL. The protocol is designed to transform any static labeling scheme
Static to semi-dynamic, and therefore, does not utilize the heavy-light de-
composition directly. Instead, the protocol operates Static separately on a
cleverly constructed sets of so called bubbles described as follows.

Each vertex v ∈ T is included in exactly one induced subtree of T , denoted
bubble of order i (0 ≤ i ≤ logd n) that contains at least di vertices. The
bubbles constitute a bubble tree, where the order of a bubble is always less
or equal to the order of the parent bubble. In addition, there are no d
consecutive bubbles of the same order in any path of the bubble tree. A
vertex added to the tree is assigned the order 0. If this insertion yields d
consecutive bubbles of order 0 in the bubble tree, they are merged to a single
bubble of order 1, and the condition is checked again for bubbles of order
1 and so on. We denote the parent of the root of bubble b as bp and the
function that Static supports as f . Essentially, the label of a vertex v in a
bubble b is a concatenation of the label of bp with both a local Static label
of v in b, and the result of f(v, bp).

9.3. Experimental framework 95

Semi-dynamic to fully-dynamic conversion. Both labeling schemes
are converted to their counterpart fully-dynamic labeling schemes, DL and
GL, using an additional simple protocol. The protocol uses the binning
method [133] to maintain local weight estimates for each vertex. The protocol
simply ignores the topological changes up to the point in which their number
is large, and then re-labels the entire tree.

9.3 Experimental framework

We have used simulation as our performance measurement methodology [134].
There are several reasons for this choice. First, distributed systems of real-
istic size in the order of millions of vertices are unavailable to us. Sec-
ond, simulation allows us to remain isolated from effects such as network
interference. Third, simulation is a sufficient tool to compare the met-
rics intended for our purposes. All implementations have been realized in
C#. The full package is available over the Internet at the URL: http:
//www.diku.dk/~noyro/dynamic-labeling.zip.

Performance Indicators. In order to match the analysis, we use the met-
rics defined above, namelyMC, BC, and LS, denoted total network messages,
total network bandwidth, and maximum label length resp. In particular, we
are interested in the tradeoff between LS andMC in the different systems.
Even though we report the bit complexity, message sizes in our setting are
bounded by the label sizes, which tend to be very small. Since in networks
the start up costs of sending small messages dominate messaging cost, it is
sufficient to focus on message complexity alone. In addition, we study the
distribution of messages passing through a single vertex. The latter provides
insight into the congestion for worst-case network performance.

The algorithms present slightly improved bounds if the number of topo-
logical events n is known in advance. We simulate labeling schemes that are
not aware of n. It is beyond the scope of our paper to account for neither
the construction time, nor the performance of the decoder.

Selected static functions. To test SemGL and GL, we provide, in addi-
tion to Distance, the static labeling scheme Ancestry [2] with labels of size
2 log n.

Test Sets. We consider insertions sequences creating the following trees.

• Complete K-ary Trees. K-ary trees are trees that have a maximum
number of children allowed per vertex. A complete K-ary tree is a
K-ary tree in which all leaf vertices reside on the lowest level and all
other vertices have K children. The leaves are inserted starting from
the leftmost vertices of the tree. We denote a 2-ary tree as full binary
tree.

• Skewed Trees: star and path. A star is a rooted tree with children
adjacent to the root. In a path tree, all vertices have either one or no
children.

http://www.diku.dk/~noyro/dynamic-labeling.zip
http://www.diku.dk/~noyro/dynamic-labeling.zip

96 Chapter 9. An experimental analysis of dynamic labeling schemes

• Random Trees. We implemented random insertion sequences creat-
ing trees of bounded depth δ as well as of unbounded depth. While
generating trees that are truly random is challenging, we follow a sim-
ple iterative procedure. First, select a vertex with equal probability
among the vertices with depth less than δ. Then, insert a new vertex
under the selected vertex and iterate.

From [130, 131], we conclude that labels constructed using a heavy-light de-
composition yield the largest label size when applied on full binary trees.
Since we would like to focus on the performance of the dynamic protocols,
we use full binary trees as our main test set.

Counted Bits. The labels constructed have polylogarithmic size, and each
is composed of a number of components of variable sizes. Therefore, we must
account for a realistic bit encoding. Bit accounting matters for both LS and
BC. All labels are accounted by twice their theoretical label size, so that the
encoder could find the beginning and the end of each of the components. The
same applies for messages. We use unary encoding to represent the number
of non-empty elements in each row of the label matrix [125].

9.4 Experimental results

In this section, we summarize our main experimental findings. First, we test
semGL with two static labeling schemes and outline the role d plays in the
protocol (Section 9.4.1). We then proceed by directly comparing SemGL
to SemDL (Section 9.4.2). We conclude by observing the performance of
GL in comparison to SemGL and DL, as well as comparing the distribution
of messages in GL and SemGL (Section 9.4.3). All figures presented but
Figure 9.3 and Figure 9.7 have the number of vertex additions in their x-
axes in a log-scale. Figures describing MC and BC have their y-axes in
log-scale, and figures describing LS are in linear scale.

9.4.1 SemGL

We discuss two experiments dealing exclusively with the performance of
semGL.

Varying tree type. For the purposes of this section, we compare SemGL
under two static labeling schemes, namely Distance and Ancestry. The test
is performed on eight different, deterministically constructed trees, where the
full K-ary trees are expanded either in a breadth-first or a depth-first manner.
We fix d = 4, as it best illustrates the differences observed.

Overall, we observe similar trends for both static labeling schemes (Fig-
ures 9.1a, 9.1c and 9.1e vs. Figures 9.1b, 9.1d and 9.1f). However, we ob-
serve an apparent anomaly on the largest label sizes produced in Figure 9.1b.
While in general labels for Ancestry should be more compact than labels for
Distance, the opposite effect is evident for paths. This effect can be explained
when we recall that on a path, the label size of Distance is a straightforward
log n bits, whereas the label size of Ancestry is fixed to 2 log n.

We observe that the maximum label size of SemGL is directly related to
the depth of the tree, such that trees with higher depth yield larger labels.

9.4. Experimental results 97

10 100 1k 10k 100k 1m 10m
10b

100b

1Kb

10Kb

Total number of addition events

M
ax

im
um

 la
be

l s
iz

e
in

 b
its

Full Tree (16, BF)
Full Tree (16, DF)

Full Tree (2, BF)
Full Tree (2, DF)

Full Tree (64, BF)
Full Tree (64, DF)

Path Tree
Star Tree

(a) Ancestry- LS

10 100 1k 10k 100k 1m 10m

32b

64b

128b

256b

512b

1Kb

Total number of addition events

M
ax

im
um

 la
be

l s
iz

e
in

 b
its Full Tree (16, BF)

Full Tree (16, DF)

Full Tree (2, BF)
Full Tree (2, DF)

Full Tree (64, BF)
Full Tree (64, DF)

Path Tree
Star Tree

(b) Distance- LS

10 100 1k 10k 100k 1m 10m
1

100

10k

1m

100m

10b

Total number of addition events

To
ta

l n
um

be
r o

f n
et

w
or

k
m

es
sa

ge
s

Full Tree (16, BF)
Full Tree (16, DF)

Full Tree (2, BF)
Full Tree (2, DF)

Full Tree (64, BF)
Full Tree (64, DF)

Path Tree
Star Tree

(c) Ancestry-MC

10 100 1k 10k 100k 1m 10m
1

100

10k

1m

100m

10b

Total number of addition events

To
ta

l n
um

be
r o

f n
et

w
or

k
m

es
sa

ge
s

Full Tree (16, BF)
Full Tree (16, DF)

Full Tree (2, BF)
Full Tree (2, DF)

Full Tree (64, BF)
Full Tree (64, DF)

Path Tree
Star Tree

(d) Distance-MC

10 100 1k 10k 100k 1m 10m

100b

10Kb

1Mb

100Mb

10Gb

Full Tree (16, BF)
Full Tree (16, DF)

Full Tree (2, BF)
Full Tree (2, DF)

Full Tree (64, BF)
Full Tree (64, DF)

Path Tree

To
ta

l b
an

dw
id

th
 in

 b
its

Total number of addition events

(e) Ancestry- BC

10 100 1k 10k 100k 1m 10m

100b

10Kb

1Mb

100Mb

10Gb

Total number of addition events

To
ta

l b
an

dw
id

th
 in

 b
its

Full Tree (16, BF)
Full Tree (16, DF)

Full Tree (2, BF)
Full Tree (2, DF)

Full Tree (64, BF)
Full Tree (64, DF)

Path Tree
Star Tree

(f) Distance- BC

Figure 9.1: SemGL on Distance and Ancestry static label-
ing schemes, for various trees of different order and vertex

insertion modes, with d = 4.

In addition, trees with higher depth have more variance in their maximum
label size. Both of these properties can be attributed to the bubble tree
structure. Since the bubble order directly relates to the maximum vertex
depth, higher depth leads to larger bubble order, which yields a larger label
size. The second property, namely higher variance of maximum label size in
trees of higher depth, is attributed to more frequent high-level relabeling. At
the noticeable decline points, the encoder relabels large parts of the tree to
ensure the logarithmic label size.

A clear evidence for the correlation of label size to the depth of the tree is
that for random trees of bounded and unbounded depth, the label size grows
consistently with depth, as shown in Figure 9.2. Comparing Figure 9.2 to
Figure 9.1, the values for random trees lie between the values for path and
the remaining trees. We also note that while the total number of messages is
essentially identical, the bit complexity is higher as the depth is higher. We
deduce that the depth influences the size of each message, and not just the
number of messages.

Given these results, in the rest of the experiments we focus on full bi-
nary trees traversed in depth-first manner. We have observed in separate
experiments that these trees generate similar trends as random trees.

98 Chapter 9. An experimental analysis of dynamic labeling schemes

10 100 1k 10k 100k 2m
10b

1Kb

100Kb

10Mb

 Number of node addition events

To
ta

l m
es

sa
ge

 b
an

dw
id

th
 in

 tr
ee

 n
et

w
or

k

Depth = 4
Depth = 6
Depth = 8
Depth = 10
Unbounded

10 100 1k 10k 100k 2m
1

100

10k

1m

100m

 Number of node addition eventsTo
ta

l n
um

be
r o

f m
es

sa
ge

s
in

 tr
ee

 n
et

w
or

k

Depth = 4
Depth = 6
Depth = 8
Depth = 10
Unbounded

10 100 1k 10k 100k 2m
0

50b

100b

150b

200b

250b

300b

 Number of node addition events

M
ax

im
um

 la
be

l s
iz

e
in

 b
its

Depth = 4
Depth = 6
Depth = 8
Depth = 10
Unbounded

Figure 9.2: SemGL labels for random trees with variable
bounded depth. Each curve represents the average of 10

executions, with d = 4.

2 4 6 8 10 12 14 16
0

50b

100b

150b

200b

250b

300b

350b

Variable D

La
be

l s
iz

e
in

 b
its

5m nodes
1m nodes

2 4 6 8 10 12 14 16
0

10m

20m

30m

40m

50m

60m

70m

Variable DN
um

be
r o

f m
es

sa
ge

s
pa

ss
ed

 in
 tr

ee
 n

et
w

or
k

5m nodes
1m nodes

2 4 6 8 10 12 14 16
0

0.2Gb

0.4Gb

0.6Gb

0.8Gb

1Gb

1.2Gb

1.4Gb

1.6Gb

1.8Gb

Variable DTo
ta

l b
an

dw
id

th
 c

on
su

m
ed

 b
y

tre
e

ne
tw

or
k

5m nodes
1m nodes

Figure 9.3: SemGL Variable d experiment for full binary
trees expanded in a depth-first manner. Samples are taken

for d in [2,16] in trees of size 1m and 5m vertices.

Varying the d variable. In Figure 9.3, we vary the value of d in values
between 2 and 16, and analyze its influence on SemGL. We choose a set of
low d values to trigger larger overhead on the message complexity of SemGL,
such that performance changes are more noticeable. The results are similar
for SemGL with the Ancestry static labeling scheme, and thus omitted from
the figure.

We observe two trends in the figures. First, the number of messages
passed in the network drops logarithmically as we increase d. The same drop
can be observed for the total bandwidth. In addition, the label size increases
as d increases. This trend is in line with the expected d−1

log d expression reported
in Table 9.1.

In addition, we notice a decay in number of messages in Figure 9.3 which
is also in line with the expected O((log d)−1) curve forMC(SemGL, n). The
total bandwidth consumed by tree network reacts to d in the same manner
that the total number of messages does. The values stabilize when d = 12
for approx. 5 m (million) vertices and 11 for 1 m vertices. Since both
complexities are showing similar behavior throughout all experiments, we
omit graphs describing the total bandwidth in the remainder for brevity.

9.4.2 Comparison of SemGL and SemDL

Figure 9.4a shows as expected that SemGL produces larger labels than
semDL. Recall that by Table 9.1 we expect a log factor in the label size
between both methods. For trees with 4m vertices, the latter translates into
a factor of 20, in contrast to the factor of four seen in the figure. On the

9.4. Experimental results 99

10 100 1k 10k 100k 1m 4m
0

50b

100b

150b

200b

250b

300b

Total number of addition events

M
ax

im
um

 la
be

l s
iz

e
in

 b
its

SemGL D=12
SemGL D=2
SemDL

(a)

10 100 1k 10k 100k 1m 4m
1

100

10k

1m

100m

10b

1t

Total number of addition events

To
ta

l n
um

be
r o

f m
es

sa
ge

s
pa

ss
ed

 in
 tr

ee
 n

et
w

or
k

SemGL D=12
SemGL D=2
SemDL

(b)

Figure 9.4: SemGL versus SemDL on full binary trees ex-
panded in a depth-first manner: (a) the maximum label size;

(b) the number of messages sent.

10 100 1k 10k 100k 1m 4m
0

50b

100b

150b

200b

250b

300b

Total number of addition events

M
ax

im
um

 la
be

l s
iz

e
in

 b
its

GL
DL

(a)

10 100 1k 10k 100k 1m 4m

100

10k

1m

100m

10b

Total number of addition events

To
ta

l n
um

be
r o

f m
es

sa
ge

s
 p

as
se

d
in

 tr
ee

 n
et

w
or

k

GL
DL

(b)

Figure 9.5: Comparison of DL and GL (a) is the maximum
label size measured in bits and (b) is the total number of

messages passed

other hand, Figure 9.4b shows that the distance-specialized semDL uses up
to 270 times more messages in comparison to SemGL, when we would again
by Table 9.1 expect a reverse multiplicative log factor4. This suggests that
the trade-off between label size and communication expected by the reported
complexities is in practice overshadowed by significant constants. The ratio
of the factor differences amounts to two orders of magnitude.

Comparing Figure 9.4a and Figure 9.4b, semDL presents a stable increase
in the label size in contrast to the two bumps in its message size. The latter is
in contrast to the previously explained phenomena in SemGL. The two bumps
mark a re-label operation done from the root, and contribute to almost an
order-of-magnitude difference in the number of messages passed.

9.4.3 Fully-dynamic labeling schemes

In this section, we analyze the performance of fully-dynamic protocols, and
the performance differences between semi-dynamic and dynamic labeling
schemes. We use a full binary tree, generated in a depth-first manner.

Comparison of DL and GL. In this experiment, we compare DL and
GL for tree expansion, i.e., additions of vertices to the tree. We remark that
SemGL exhibited a definite advantage in MC over semDL (Section 9.4.2).
Similarly, we note in Figures 9.5a and 9.5b that GL performs significantly
better than DL in terms of network messages. For 4m vertices, GL uses
roughly 100 times less messages compared to DL. At the same time, as ex-
pected DL yields labels that are up to five times smaller than GL.

4Note that d is a low constant in our experiment

100 Chapter 9. An experimental analysis of dynamic labeling schemes

400 4k 40k 400k 4m
0

50b

100b

150b

200b

250b

300b

M
ax

im
um

 L
ab

el
 S

iz
e

(B
its

)

400 4k 40k 400k 4m
1

100

10k

1m

100m

To
ta

l n
et

w
or

k
m

es
sa

ge
s

400 4k 40k 400k 4m
1

100

10Kb

1Mb

100Mb

10Gb

To
ta

l n
et

w
or

k
ba

nd
w

id
th

 (B
its

)

SemGL
GL

SemGL
GL

SemGL
GL

Number of addition events Number of addition events Number of addition events

Figure 9.6: Comparison of semGL (d = 12) and GL

Comparison of semGL and GL. In this experiment, we compare semGL
and GL again over a tree expansion. We emphasise that no deletion opera-
tions are performed. We aim to give an insight on the overhead caused by
transforming the semi-dynamic labeling scheme to fully-dynamic.

In Figure 9.6, we view that the maximum label size is lower for GL. How-
ever, as we scale on the number of vertices, both curves tend to approach
the same value. GL’s number of messages is, however, 100 times larger than
semGL for 4m vertices. This constitutes a significant overhead in the exe-
cution of the fully-dynamic labeling scheme. For perspective, 4.3m messages
suffice to label 4m vertices using semGL, but only 0.23m vertices using GL.

messages (range) vertices Percent of vertices Percent of messages
0 - 5 500018 50.00% 2.6%
5-50 468725 46.87% 23.4%
51-500 27366 2.74% 15.9%
501-5000 3646 0.36% 20.86%
5001-50000 215 0.02% 15.66%
50001-500000 30 0.00003% 21.55%

Table 9.2: The distribution of messages per vertex for GL,
with d = 14.

Message distribution. We group the vertices according to the number
of messages that pass through them throughout the GL protocol. Table 9.2
shows that the distribution of messages is remarkably skewed. Interestingly,
0.00003% of the vertices account for 21.55% of the total number of messages
passed. Each of the top 30 vertices in the distribution have either sent or
received between 50001 − 500000 messages. The top vertex, in particular,
has either sent or received about 0.5m out of a total of 19m messages. We
have verified that the top vertex in the distribution corresponds to the root,
and the top 30 vertices are the shallowest vertices in the tree.

In contrast, Figure 9.7 shows the distribution of messages for semGL on
a worst case path network with 1m vertices. semGL does not incur similar
bottlenecks as GL. Instead, the figure shows a distribution that resembles a
bell curve: Most vertices either send or receive around 20 messages, and the
differences in number of messages among vertices are not stark.

9.5. Conclusions 101

0 5 10 15 25 30 35
Number of messages passed

200

20000

40000

60000

80000

100000

120000

140000

N
um

be
r o

f n
od

es

Figure 9.7: The distribution of messages per vertex for
semGL, with d = 2 on a path.

This result suggests that GL creates a network bottleneck by concen-
trating the messages passed. This behavior is undesirable in a distributed
system.

9.5 Conclusions

Overall, the algorithms perform as expected given the amortized complexity
analysis. However, the experiments reveal constant factors that clearly af-
fect performance. We observed that fully-dynamic protocols induce a severe
performance overhead when compared to semi-dynamic variants. Moreover,
as seen in the distribution of messages passed, fully-dynamic protocols also
lead to severe bottlenecks in the tree network.

We affirm Korman et al.’s recommendations, namely to reset the d pa-
rameter of GL on a restart, and for semGL, to predict, if plausible, the target
tree length nf in order to set d to a value close to log nf . On the other hand,
Korman et al. argue for trading network communication for improved label
size in DL [125]. In light of our results, we suggest that in practice, the
opposite trade-off is required, namely larger labeling schemes with decreased
message complexity.

Korman et al. have developed DL with a metric that accumulates network
messages, amortizing this value over a number of insertions. Our experiments
show that such a metric allows for major bottlenecks and non-distributed
system in practice. We suggest that a revised metric that accounts for the
total number of messages passing through a single vertex be investigated as
part of future work.

103

Chapter 10

Routing Labeling Schemes

We first describe general Routing schemes and two models for labeling schemes
of Routing called designer port model and fixed port model. In Section 10.1.1
we provide a literature review. In Section 10.2 we describe in detail the cur-
rent best upper bound for Routing in the designer port model due to [9]. We
provide a corrected proof for this result. In Section 10.3 we present a proof
omitted in [9], that shows an efficient construction of a Routing scheme for
the fixed port model.

10.1 Introduction to Routing schemes

Labeling schemes are one of many methods to maintain a Routing scheme.
A Routing scheme is a mechanism that can deliver packets of information
between any two vertices in the network. Typically, such mechanism consist
of I.) a Routing function II.) the format of the address; III.) a local
labeling of the vertices; IV.) a message header format, and V.) local
information to perform the computation of the Routing function [26].

Routing labeling schemes produce direct Routing schemes, which means
that the message header is fixed once by the source host, and cannot be
modified by intermediate vertices on its route to the destination. Rather
than supplying the entire path, a vertex provides only the next vertex to
visit in order for the packet to arrive at its destination. The local labelings
of edges from every vertex are identified by so called port-numbers.

Definition 18. Let T = (V,E) be a tree with n vertices, and let u ∈ V be a
vertex with degree ∆. A port numbering is an injective function that assigns
integers to the edges incident to v.

Note that a port assignment is performed locally, and an edge can receive
two different port numbers from each of its vertices. The two main variants
considered in the literature are the designer port model and fixed port model.
The former allows the encoder to freely enumerate the incident ports to all
vertices, while the latter assumes that the port numbers are fixed by an
adversary.

Routing labeling schemes are related to two functions discussed in the
thesis, namely Ancestry and NCA. Unlike Ancestry , a Routing query is mean-
ingful even for unrooted trees. In the literature surveyed, the tree is assumed
to be rooted, and for the designer port model the port number of the parent
is 0 and the port number of the heavy1 child is 1. Under these assump-
tions, designer port Routing labeling schemes produce labels that are able
to determine Ancestry , since for an ancestry query L(u),L(v) we can run

1A child with maximal number of decedents.

104 Chapter 10. Routing Labeling Schemes

the Routing decoder and return true if its value is not 0. Finally, we note
that the Label-NCA labeling scheme presented in Theorem 37 can answer
designer port Routing queries, since the labels can determine the first edge
on the shortest path between the vertices queried.

10.1.1 Literature review

Labeling schemes for Routing were introduced by Peleg [135]. Fraigniaud
and Gavoille [26] achieved a labeling scheme of size 3 log n for the function.
Thorup and Zwick [9] presented, almost at the same time, an improvement
of the label size to (1 + o(1)) log n for the designer port model. Fraigniaud
and Gavoille [136] then showed a lower bound for any fixed port labeling
scheme for Routing of Ω(log2 n/log logn). In an experimental paper Krioukov
et al. [137] compared the performance of several labeling schemes for both
models. Korman and Peleg [127,138], studied the function in a dynamic tree
network settings, with permitted relabeling.

Unlike the situation in trees, there could be many paths between two
vertices in arbitrary graphs. For this class of graphs, Routing schemes at-
tempt to route the package along a shortest, or a close-to shortest path. The
parameter measuring the quality of the path is called stretch2. [139] showed
a lower bound implying that achieving stretch 3 or less requires Ω(n) bits.
Abraham et al. [140] showed a stretch 3 Routing scheme with a O(

√
n) local

information stored in each vertex. For surveys on Routing schemes see [141],
and [28].

10.2 Designer port model

We present the proof for the following theorem.

Theorem 29. [9] There exist a designer port model Routing labeling scheme
for Trees(n), denoted 〈e, d〉, with labels of size at most (1 + o(1)) log n.

We first describe the label, prove that its size is bounded, and finally
describe the decoding process.

Label description Given a tree T , we first decompose it using the spines
decomposition defined in Section 2.3.3. In this decomposition all vertices
are on a heavys path at some stage of the decomposition. In particular,
a vertex v of size size(v) is a member of a heavys path at level LD(v) if
size(v) > n/bLD(v). The level number LD(v) is in the range {1 . . . logb n}
and stands for the number of iterations of the decomposition where v is a
lights vertex.

Similarly to the definitions in Section 2.3.1, a vertex v in T with lights
children v1 . . . vd has light size lsizes(v) =

∑d
i=1 size(vi) + 1. We also define

the light size of a path P = u(1) u(k) as lsizes(P) =
∑k

i=1 lsizes(u(i)).
The collection of paths in level i, in decreasing order of their light size, is
denoted P i = P i1 . . . P

i
l , and the light size of P i is just the sum of their

light sizes. The vertex with the k’th largest light size in the path with
2Formally the stretch of a Routing scheme is the worst case ratio between the length

of the path obtained by the Routing scheme and the length of the shortest path between
the source vertex and the destination vertex.

10.2. Designer port model 105

the j’th largest path size at level i is denoted P ij [k]. See Figure 10.1 for a
demonstration.

P i
1

P i
1[2]

P i
1[1]

P i
1[3]

P i
1[4]

P i
1[5]

P i
2[1]

P i
2[2]P i

2

P i
3

P i
4

P i
6[1]

P i
5[1]

P i
4[1]

P i
4[2]

P i
3[2]

P i
3[1]

1

0

2

RT (v)

vP i
1

P i
2

P i
3

P i
4

P i
5

P i
6

0

0

1

2

0

0

Figure 10.1: A demonstration of naming of the paths and
heavys vertices on level i of a spines decomposition of a sub-
tree. The thick lines are heavys paths. The heavys vertices
are full, the lights vertices are empty, and the triangles are
represent subtrees of lights vertices. The routing table of
vertex v to the left describes which one of the ports 0̄, 1̄ and
2̄ it needs to traverse to arrive at vertices at other heavys

paths on level i. The i’th triplet in L(v) is 〈5, 1, ε〉.

A vertex v is assigned a two part label L(v) = (Id(v), RT (v)), described
below. The part Id(v) is, by itself, a concatenation of triplets of the form
〈ji, ki, pi〉, for 1 ≤ i ≤ LD(v) ≤ logb n, defined as follows: The parts ji, and
ki specify P ij [k], the heavys vertex on level i on the path r v of maximal
depth. We use Lemma 2 to number both ji and ki. More specifically, we
choose ji according to the relative contribution of lsizes(P

i
j) to lsizes(P

i),
such that |ji|= log(lsizes(P

i)/lsizes(P
i
j)) + 1. Similarly, we choose ki accord-

ing to the relative contribution of lsize(P ij [k]) to lsizes(P
i
j). The part pi is

the port number used from P ij [k] to the vertex v, which is also assigned using
Lemma 2 with size(pi) and lsize(P ij [k]). Note that for the last triplet in Id(v)
we use the empty string for pLD(v). As in Section 10.1, the ports to the root
and the heavys child are marked 0 and 1, respectively. Each label contains
up to logb n triplets of three parts, where each part may be of different length.
In order to distinguish between the parts of each triplet, we store each part
in Id(v) using the suffix code code1 (see Section 2.2). In this way a part of m
bits requires m+O(logm) bits, and the different parts may be concatenated.

The second part of L(v), is the level routing tableRT (v) of v that contains
the ports v must use to arrive at each of the heavys paths P

LD(v)
1 . . . P

LD(v)
l

in v’s level LD(v). If v is not the last vertex on its heavy path, then each
description concludes in traversing the path in some direction, i.e., up or
down. If v is the last vertex, we assign the associated ports with the numbers
of the ports leading to the roots of other paths in level LD(v). This concludes
the description of the label.

To compute the size of this labeling scheme we first prove the following
Lemma.

Lemma 29.
∑logb n

i=1 |ji|+|ki|+|pi|= log n+O(logb n).

Proof. Let 〈j1, k1, p1〉 be the first triplet in Id(v) for a vertex v, and let u be
the light child of P 1

j [k] to which port p1 is addressed to. We first prove that

|j1|+|k1|+|p1|≤ log n− log(size(u)) +O(1).

106 Chapter 10. Routing Labeling Schemes

By definition:

|j1|≤ log(n/lsizes(P
1
j)) +O(1) = log n− log(lsizes(P

1
j)) +O(1),

and also

|k1| ≤ log(lsizes(P
1
j)/lsizes(P

1
j [k])) +O(1)

= log(lsizes(P
1
j))− log(lsizes(P

1
j [k])) +O(1).

Similarly,

|p1| ≤ log(lsizes(P
1
j [k])/size(u)) +O(1)

= log(lsizes(P
1
j [k]))− log(size(u)) +O(1).

Summing those inequalities we get:

|j1|+|k1|+|p1|≤ log n− log(size(u)) +O(1),

as requested.
Since lsizes(P

2) ≤ size(u), we can repeat the argument so that for w, the
light child of P 2

j [k] addressed by port p2 we have:

|j2|+|k2|+|p2|≤ log(size(u))− log(size(w)) +O(1).

Summing over all the triplets, it follows that:

LD(v)∑
i=1

|ji|+|ki|+|pi|≤ log n+O(1) · LD(v) ≤ log n+O(logb n).

Lemma 30. The encoder described above produces labels of size at most
log n+O(log n/log logn · log log log n).

Proof. Choosing b =
⌈√

log n
⌉
we can bound the number of the triplets in

Id(v) by logb n = log logn
2 . The number of bits required to represent them is:

logb n∑
i=1

|ji|+|ki|+|pi|+O(

logb n∑
i=1

log(|ji|) + log(|ki|) + log(|pi|) + 3).

The first sum corresponds to the number of bits required to store the infor-
mation, and the second sum is the additive number of bits required to encode
each part in code1. By Lemma 29 the first sum is bounded by log n+O(logb n)
bits.

For brevity, we denote the number of parts by k = 3 logb n and the
size of the k parts in Id(v) by c1 . . . c3k Next we bound

∑k
i=1 log ci, where∑k

i=1 ci ≤ log n + O(k) by Lemma 29. Since log is a concave function, we
have:

k∑
i=1

log ci ≤ k log(

∑k
i=1 ci
k

) = k log(
log n+O(k)

k
) ≤ k log(

log n

k
) +O(1)k.

10.2. Designer port model 107

Since logn
3 logb n

= log2 b
3 the expression can be bounded byO(k log log b+3 logb n),

which is bounded by O(logn
log logn log log log n).

To account for the size of RT (v), recall that at every level of the spines
decomposition there can be at most 2b−1 paths. Furthermore, since the ports
stored lead to subtrees with at least n/b vertices, it is guaranteed that each
port will be assigned an identifier with O(log b) bits. Thus, storing RT (v)
requires O(b log b) bits, and for b =

⌈√
log n

⌉
, this can also be bounded by

O(logn·log log logn
log logn).

Decoding We confirm that the information stored in the label is sufficient
to determine the function Routing . A key observation is that while it is not
possible to determine the rank of the a vertex in its heavys path, the order
between two vertices on the same heavys path can be determined.

Let v,u be two vertices in T with labels L(v) = (Id(v), RT (v)), L(u) =
(Id(u), RT (u)) with depth LD(v), LD(u), respectively in the recursive de-
composition of T .

If |Id(v)|< |Id(u)| then the decoder returns 0, since that implies that u is
not an ancestor of v and the path u v must begin with the edge traversing
upwards from u. Using the same argument, we return 0 if the first LD(u)−1
triplets of both Id(v) and Id(u) are not equal.

Let (pathv, vertexv, edgev) and (pathu, vertexu, ε) be triplets number
LD(u) in Id(v) and Id(u), respectively. There are three possible scenarios:

• If pathv = pathu and vertexv = vertexu return edgev.

• If pathv = pathu and vertexv 6= vertexu, then determine which of
vertexv and vertexu are first on the heavy path and return 0 if the
former and 1 if the latter.

• If pathv 6= pathu then return the edge corresponding to the traversal
from pathu to pathv in RT (u).

Lemma 29 is a correction to Lemma 2.4 in the original proof in [9]. Using
similar definitions, the Lemma argues that every triplet requires at most
log b+ 2 bits. The term lsizes(v) represents the size of the subtree rooted in
a lights vertex at any level including the first, and therefore 1 ≤ size(v) ≤
n/b. From that we get that log2

n
lsizes(v)

+ 2 > log2 b + 2. In fact the claim
log2

n
lsizes(v)

+ 2 ≤ log2 b+ 2 in [9] holds in the opposite direction.

Implications From this upper bound and the recent lower bound forNCA [51]
it follows that any labeling scheme for NCA is of provably larger size than the
size required for Routing . The question of whether the best possible lower
order term is O(log n/log log n) or O(log log n) remains open. The current
lower bound for designer port Routing in trees stands at log n+O(log log n).
This follows from its relationship to Ancestry labeling schemes reported ear-
lier. Clearly, it is of great interest to prove that a larger label size is needed for
Routing than needed for Ancestry/Siblings/Connectivity labeling schemes.

108 Chapter 10. Routing Labeling Schemes

10.3 Fixed Port Model

We now consider the fixed port model, i.e the model where the port numbers
are chosen by an adversary. We provide a proof of the following result of [9]
that was omitted in their paper.

Theorem 30. There exist a fixed port model Routing labeling scheme for
Trees(n), denoted 〈e, d〉, with labels of size at most O(log2 n/log logn).

Proof. The encoder operates on the tree T similarly to the one for the de-
signer port problem. A vertex v ∈ T with label (Id(v), RT (v)) is transformed
in the following manner: We store additional log n bits to denote the port
number assigned by the adversary to the edge in each triplet in Id(v). Recall
that the Routing table RT (v) contains at most b port numbers. We store the
edge numbering assigned by the adversary for each entry in the table. The
new Id(v) requires additional log n bits for each of the logb n parts, and the
new RT (v) requires b log n additional bits. Setting b =

⌈√
log n

⌉
as before,

the total new label length is bounded by O(log2 n/log logn), as required.

The labeling scheme in Section 10.3 is asymptotically optimal in light of
the lower bound in [136]. An alternative proof for the existence of such a
labeling scheme is given in [26].

109

Chapter 11

The Future

We conclude the thesis as one should, looking to the future. First, in Sec-
tion 11.1 we present an unpublished idea where we discuss labeling schemes as
the beginning of a study of information dissemination. We end the thesis with
a comprehensive list of open questions for labeling schemes in Section 11.2.

11.1 Cluster labeling

With ever increasing size of graphs in real-world applications (e.g. web
graphs, social networks) many distributed graph systems attempt to store,
preprocess and analyze large-scale graphs [142]. These systems disseminate
the structure of the graph among multiple clusters such that certain queries
can be performed quickly while minimizing both communication and stor-
age. The method researched in thesis thus far, that of labeling scheme, can
be seen as an extreme case of such dissemination.

We propose a novel method called cluster labeling. This method extends
the concept of labeling scheme to study the overhead incurred by the distri-
bution of graph structure across multiple machines. The encoder of a cluster
labeling receives a graph from a particular graph family, a desired number of
clusters C, and a two variable query to be supported and returns a strategy
to assign C bit strings to each graph in the family such that any query can
be determined by at most two of them.

Labeling schemes for a combination of important graph families and sev-
eral key functions are well studied. Compared to (centralized) data struc-
tures, this body of work can be interpreted as the study of the overhead
incurred by labeling on the space required for a total dissemination of the
data structure, e.g.:

• Distance queries for planar graphs can be performed in a centralized
data structure using linear space [143]. In contrast, labeling schemes
for the same function require labels of size at least Ω(n1/3) each [22],
summing up to a total of Ω(n4/3) bits.

• It was recently shown that the current best centralised data structures
to support constant time distance queries for general graphs and the
current best known labeling schemes for this functions bare the same
total size [144,145].

We view centralized data structures and labeling schemes as two extremes
in a spectrum of information dissemination. Between the two, we may in-
stead divide an input graph into a number of smaller graphs which we call
clusters. A cluster labeling assigns labels to each of the clusters that contains
sufficient information to answer a requested query for vertices associated to

110 Chapter 11. The Future

this cluster. When two vertices belong to two different clusters, the union
of the information in both cluster labels is sufficient to answer the query.
This design is done to maintain three important design factors implied by
labeling schemes: locality of a query, function specific data structure and
minimal communication. We argue that this concept may assist both in
the design of large-scale distributed graph algorithms, and in the theoretical
understanding of the limits these design must adhere.

We first define this notion formally in Section 11.1.1, and then present
two motivating examples in Section 11.1.2. The examples are (i) upper and
lower bounds for Adjacency cluster labeling for general graphs, and (ii) a
conversion from any labeling scheme to a cluster labeling in trees. Note that
the presented bounds are asymptotically optimal for the cases C = 1 and
C = n.

11.1.1 Definition

As defined in Section 1.8.3, a vertex v in the n-vertex graph has a unique
identifier of log n bits Id(v) an encoder may assign. Given a graphG, a cluster
is a subgraph thereof, and the set of clusters C1 . . . CC is a clustering of graph
G if C1∪. . .∪CC = G. We define Cluster labeling schemes, abbreviated cluster
labeling, as follows:

Definition 19. Let C be an integer, S be a nonempty set, G be a family of
graphs and let, for each G ∈ G, FG : V (G) × V (G) −→ S be a function. A
cluster labeling for a graph G is a pair of encoder and decoder (E,D) such
that:

• The encoder E receives a graph G ∈ G and computes a clustering
C1 . . . CC of G, along with their corresponding cluster labels, the bit-
strings L(C1), . . . ,L(CC) ∈ {0, 1}+.

• Let Ci and Cj be clusters in graph G and vertices u ∈ Ci and v ∈
Cj. The decoder receives a quadruple (Id(u), Id(v),L(Ci),L(Cj)) and
returns FG(u, v).

The quality of a cluster labeling is measured by the maximum size of its
cluster labels. The goal is therefore to minimize max(|L(C1)|, . . . , |L(CC)|).
We refer to this as the size of the cluster labeling and give it as a function
of n = |V (G)| and C. The cases C = 1 or C = n correspond to succinct data
structures [146] and labeling schemes [2], respectively. Finally, note that the
definition allows a vertex to belong to more than one cluster.

11.1.2 Motivating examples

In the following we derive simple upper and lower bounds for cluster labeling
for adjacency in general graphs, as well as a general conversion scheme from
(regular) labeling schemes on trees. In both examples we will use so-called
local labels explained as follows. The encoder assigns the nodes in every
cluster vertex identifiers from a range of consecutive integeres, and we set
log |Ci| local labels of the vertices in the cluster Ci from the set {1, . . . , |Ci|}
according to their vertex identifier ordering. The smallest unique identifier

11.1. Cluster labeling 111

in the cluster is saved as a log n bit offset to allow for a conversion between
the two identifier types1.

Adjacency in general graphs.

Theorem 31. There is a cluster labeling for adjacency for the family of n
vertex graphs Gn of size n2

2C +O(nC log C) + log n.

Proof. We assign the vertices of a graph G = (V,E) labels of size n/2+O(1)
using the scheme in [45], denoted original. A vertex v now has a tuple of
two labels, its unique identifier Id(v) and an original label L(v). We now
split the graph into C parts of n/C vertices each, with consecutive unique
identifiers. The cluster label L(Ci) of a cluster Ci is simply a concatenation
of the original labels of the vertices it consists of, ordered by their vertex
identifier. The length of each such cluster label is n

C (n2 +log C+O(1))+ log n
bits. Given a quadruple (Id(u), Id(v),L(Ci),L(Cj)) the decoder computes
Adjacency in the following manner. First, it uses Id(u) and Id(v) to extract
the original labels of u and v contained in L(Ci) and L(Cj) respectively. The
decoder then computes the original decoder on the extracted labels L(u) and
L(v) and returns its result.

We proceed to showing a lower bound for this case.

Theorem 32. For every clustering of C clusters and for all ε, any Adjacency
cluster labeling for Gn must have label size at least n2

(2+ε)C bits.

Proof. Consider any graph G with n/C vertices. Construct C identical copies
of G to obtain a graph of size n. The union of all cluster labels and vertex
identifiers forms a description D of G. Suppose the label size of each cluster
is strictly less than n2

(2+ε)C then:

|D|< C n2

(2 + ε)C =
1

2 + ε
n2.

For all sufficiently large n, |D|< n(n−1)
2 bits. Since the labeling scheme works

for all graphs, we can obtain, for any string s of length n(n− 1)/2, a strictly
shorter description of s by constructing the graph whose incidence matrix
it represents. This contradicts the fact that there is at least one string of
length n(n− 1)/2 that is incompressible.

Cluster labeling for trees. As seen in the thesis, there are numerous
functions well understood in the context of labeling schemes for trees. Kor-
man [147] proposed a method2 to convert each such labeling scheme to a fully
dynamic one. In this spirit, we propose a method to convert each labeling
scheme for trees to a corresponding cluster labeling. Note that in [147],
some natural restrictions on the supported functions are assumed. Since
all functions discussed in the thesis adhere to these restrictions, we use the
term function to mean a function among those described in Section 1.2. The
following assumption suffices for our purposes. Let u,w ∈ Ci, v, x ∈ Cj be

1While this seems to be a good practice, we omit it from the basic definition since it
might be sub-optimal.

2For further notes on this topic, see Chapter 9.

112 Chapter 11. The Future

nodes in a tree T in two distinct clusters Ci and Cj , and w and x are the
boundary nodes closest to the root of Ci and Cj respectively. The result of the
function FG(u, v) can be deduced from FG(u,w), FG(w, x) and FG(x, v). As
a concrete example, it is easy to see that the relation Distance in this case is
simply FG(u,w)+FG(w, x)+FG(x, v). Finally, we stress that information on
the boundary nodes appear in all the clusters containing them. The following
proof hinges on the cluster partition in Section 2.3.4, and uses concepts and
terminology that can be found in this section.

Theorem 33. Let L be a labeling scheme of size f(n) for the family of rooted
trees. Then there exists a matching O(n/C)+O(f(C))+log n cluster labeling.

Proof. We assign every vertex in the tree its identifier Id(v) by a dfsi traversal
on the tree, as defined in Section 2.2.1. For every 1 ≤ C ≤ n, we partition
the tree to at most C trees of size at most O(n/C) rooted in one boundary
vertex, with at most one more additional boundary vertex. Each cluster
contains vertices with consecutive Id numbers. We then form the vertex
macro tree M whose |2C| vertices correspond to the boundary vertices and
its edges correspond to pairs (u, v) of boundary vertices belonging to the
same cluster.

The encoder assigns the label L(Ci) for a cluster Ci with boundary nodes
u(Ci) and v(Ci) as the concatenation of the following sub-labels: (i) an
f(C) bits label of the cluster Ci in the macro tree M , as assigned by the
labeling scheme L, (ii) an O(n/C) (centralized) bits data structure (e.g. [148])
for the tree Ci with O(n/C) vertices supporting the function f , and (iii) a
concatenation of the local vertex identifiers of the vertices in Ci.

Given a quadruple (Id(u), Id(v),L(Ci),L(Cj)) the decoder deduces the
function f in the following manner. First, it uses Id(u) and Id(v) and extracts
the local labels of u and v contained in sub-labels (ii) of L(Ci) and L(Cj)
respectively. If L(Ci) = L(Cj), the decoder uses the local labels to identify
the vertices in the centralized data structure and returns the function f .
If L(Ci) 6= L(Cj) the decoder first computes the result of L on part (i)
of both cluster labels. It then computes the function FG for vertex v and
the root of Ci, and computes the desired function FG for u and the root of
Cj . The decoder may now compute FG(u, v) using the results of these three
computations.

11.2. Open Questions 113

11.2 Open Questions

In this section we enumerate the open problems we leave behind. To rank
the hardness and importance of these problems we will use a ranking3 of
conferences such results have a chance to appear in, which we estimate based
on the venues similar results appeared in. The ordering is STOC/FOCS,
SODA, ICALP, ESA4. If the results are in flavour of distributed computing
conferences we also suggest PODC. If the results are in flavour of graph
theory, we suggest Journal of Combinatorial Theory Series B.

11.2.1 Open questions on trees

1. Labeling schemes for designer port Routing on trees remain the single
biggest open question for labeling schemes on trees. We have seen
in Chapter 10 a log n+o(log n)5 labeling scheme and a log n+log log n
lower bound. A proof that NCA is separated from both Routing and
Ancestry was SODA worthy [51]. We’d argue that separating Routing
from Ancestry stands at least on the same pedestal. A completely tight
result with non-trivial technique is a STOC/FOCS candidate.

2. Given the recent "air-tight" results by Alon [98] and Alon and Ne-
nadov [97], one might ask what is the real size of the induced universal
graph for trees? Is it bounded by 200n as implied in [45] or closer to
2n? A simple argument shows that it is at least 1.5n using a path graph
and a star graph. Proving an air tight result is clearly a STOC/FOCS
worthy. Simplifying [45] and additional improvement may well be a
SODA paper.

3. We have shown in Theorem 26 a tight log n+2 log log n multifunctional
labeling scheme for Siblings and Connectivity , and in Theorem 19 an
upper bound log n + 2 log log n labeling scheme for Ancestry . We also
know now a log n+O(1) labeling scheme for adjacency, and that asymp-
totically all these results are tight. It would be interesting to show what
would be the size of a labeling scheme capable of doing all of the afore-
mentioned functions. Our current best result is log n+ 5 log log n. We
suspect log n+ 2 log log n suffice, and if non-trivial in technique this is
ESA worthy.

4. With respect to the previously mentioned Ancestry labels, we are nearly
convinced that it requires log n + 2 log log n bits but were never able
to prove it. If this indeed is the case, such lower bound result is ESA
worthy. If the label can be decreased further, it might very well be
ICALP worthy.

5. The exact label size for Label-NCA function is somewhere between 1.008
and 2.75. We will not be surprised if it is 2. Similar rewards to the
previous clause are expected.

3This is also under the implicit assumption that the techniques used to prove these
questions will be non-trivial, a sad truth of our profession.

4This ranking is based on the one by the Computing Research and Education Associa-
tion of Australasia, available online in http://lipn.univ-paris13.fr/ bennani/CSRank.html.

5Precisely: logn+O(logn log log logn
log logn

).

114 Chapter 11. The Future

6. Our re-labelable dynamic labeling schemes analysis (Chapter 9) showed
that Korman’s methods for re-labeling [125] are very centralized in
practice. Decentralizing these methods seems PODC worthy.

Figure 11.1 describes the current state of affairs in this study.

Routing (designer
 m

ode)

 Sibling,
C

onnectivity

A
djacency

C
onnectivity and

sibling (non-unique)

Routing (fixed
 m

ode),D
istance,

N
C

A-fixed

N
C

A

N
on-adjacency

N
on-ancestry

Functions
Supported

log n+1

k log n+O(1)

log n+log log n

Ancestry

log n+2log log n

1/4log 2 n+o(log 2 n)

Θ(log n)

App. distance
m

ultifunctional

log n+Θ(log log n)

Figure 11.1: Illustration of the current study on labeling
schemes for various functions on trees. Functions underlined
have "air-tight" label sizes. The remaining are tight up to

the additive factor.

11.2.2 Open questions on other graph families

1. Proving the implicit graph conjecture is the most important problem
discussed in the thesis. In case it is false, it might be a nearly trivial
lower bound on some geometric graph class as reported in Section 6.3.
In which case, we would rank it is as STOC/FOCS worthy. If the con-
jecture is in fact correct, its proof should discover something remark-
able about the structure of hereditary graph properties. As numerous
Journal of Combinatorial Theory Series B papers were written on this
topic [112,114,149–151], it is at least that worthy.

2. As we have seen in Section 6.5, the implicit representation conjecture
is indeed true up to speed of 2

√
n. Can this bound be improved based

on similar techniques? A strong progress forward in this direction may
also be Journal of Combinatorial Theory Series B worthy.

3. Distance labeling for unweighted planar graphs is not very well known.
The current lower and upper bounds are 3

√
n and

√
n log n [22] respec-

tively. In the same paper weighted planar graphs were shown to have
nearly matching

√
n and

√
n log n, and Abboud and Dahlgaard [152]

shwed a lower bound of
√
n log n, sealing the weighted question and

making the gap in the unweighted version even more odd. Closing this
gap is STOC/FOCS worthy.

4. Still in planar graphs, there is still a large gap for Adjacency between
log n+1.5 and 2 log n+O(log log n) [6]. A reduction of the O(log log n)
factor is ICALP worthy, a log n+o(log n) is SODA worthy, and a tight
result is STOC/FOCS worthy. We mention that the current best bound
stems from a decomposition of planar graph to two outer-planar graphs,

11.2. Open Questions 115

which in turn have treewidth 1. Even a smarter union of two such labels
is not yet available in the literature. We conjecture that the right label
size here is 1.5 log n.

5. As seen in Chapter 5 we have only just begun the study of Adjacency
labeling schemes for sparse and power-law graphs. We suspect that the
whole multiplicative O(

√
log n) is redundant. A tight result for sparse

graphs is SODA worthy.

6. Distance for sparse graphs seems to be notoriously difficult. We were
the first to spot that Alstrup et al. [86] preliminary results effectively
produce a sub-linear distance labeling scheme for this family6. The
difference here is between a follow up result [87] of O(nR log2R) where
R = logn

log m+n
n

and a lower bound of
√
n from Adjacency . Closing this

gap tight is at least SODA worthy.

7. Unlike on trees and planar graphs, we have not yet been able to separate
between Adjacency and Distance for neither bounded degree, sparse
and general graphs. This fundamental question is STOC/FOCS worthy
for non-trivial technique.

8. The recent result by Alon [98] is carried out using the probabilistic
method. This means that while induced universal graphs of this size
were proven to exist, no such explicit construction was given. Labeling
schemes are not the only method to do so, but showing a matching
bound using an Adjacency labeling scheme seems both likely and im-
portant. This would be a clear STOC/FOCS paper.

6They indeed thanked me for "useful discussions" in the text.

117

Bibliography

[1] M. A. Breuer, J. Folkman, An unexpected result in coding the ver-
tices of a graph, Journal of Mathematical Analysis and Applications
20 (1967) 583–600.

[2] S. Kannan, M. Naor, S. Rudich, Implicit representation of graphs, in:
SIAM Journal On Discrete Mathematics, 1992, pp. 334–343.

[3] J. H. Muller, Local structure in graph classes, Ph.D. thesis, Georgia
Institute of Technology, Atlanta, GA, USA, order No: GAX88-11342
(1988).

[4] C. Gavoille, D. Peleg, Compact and localized distributed data struc-
tures, Distrib. Comput. 16 (2-3) (2003) 111–120.

[5] R. Rado, Universal graphs and universal functions, Acta Arithmetica
9 (4) (1964) 331–340.

[6] C. Gavoille, A. Labourel, Shorter implicit representation for planar
graphs and bounded treewidth graphs, in: Algorithms–ESA 2007,
Springer, 2007, pp. 582–593.

[7] D. Adjiashvili, N. Rotbart, Labeling schemes for bounded degree
graphs, in: International Colloquium on Automata, Languages, and
Programming, Springer, 2014, pp. 375–386.

[8] S. Alstrup, T. Rauhe, Small induced-universal graphs and compact im-
plicit graph representations, in: Proceedings of the 43rd Symposium on
Foundations of Computer Science, FOCS ’02, IEEE Computer Society,
Washington, DC, USA, 2002, pp. 53–62.

[9] M. Thorup, U. Zwick, Compact routing schemes, in: Proceedings of
the thirteenth annual ACM symposium on Parallel algorithms and ar-
chitectures, SPAA ’01, ACM, New York, NY, USA, 2001, pp. 1–10.

[10] C. Petersen, N. Rotbart, J. G. Simonsen, C. Wulff-Nilsen, Near Op-
timal Adjacency Labeling Schemes for Power-Law Graphs, in: 43rd
International Colloquium on Automata, Languages, and Programming
(ICALP 2016), Vol. 55, 2016, pp. 127:1–127:15.

[11] C. Petersen, N. Rotbart, J. Grue Simonsen, C. Wulff-Nilsen, Brief an-
nouncement: Labeling schemes for power-law graphs, in: Proceedings
of the 2016 ACM Symposium on Principles of Distributed Computing,
ACM, 2016, pp. 39–41.

[12] S. Dahlgaard, M. B. T. Knudsen, N. Rotbart, A simple and optimal
ancestry labeling scheme for trees, in: International Colloquium on
Automata, Languages, and Programming, Springer Berlin Heidelberg,
2015, pp. 564–574.

118 BIBLIOGRAPHY

[13] S. Dahlgaard, M. B. T. Knudsen, N. Rotbart, Dynamic and multi-
functional labeling schemes, in: International Symposium on Algo-
rithms and Computation, Springer, 2014, pp. 141–153.

[14] S. Dahlgaard, M. B. T. Knudsen, N. Rotbart, Brief announcement:
On dynamic and multi-functional labeling schemes, Proceedings of
the 2014 International symposium on Distributed Computing (DISC)
(2014) 544.

[15] N. Rotbart, M. V. S. Salles, I. Zotos, An evaluation of dynamic labeling
schemes for tree networks, in: International Symposium on Experimen-
tal Algorithms, Springer International Publishing, 2014, pp. 199–210.

[16] S. Abiteboul, H. Kaplan, T. Milo, Compact labeling schemes for an-
cestor queries, in: Proceedings of the twelfth annual ACM-SIAM sym-
posium on Discrete algorithms, SODA ’01, 2001, pp. 547–556.

[17] E. Cohen, H. Kaplan, T. Milo, Labeling dynamic xml trees, in: Pro-
ceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART sympo-
sium on Principles of database systems, PODS ’02, ACM, New York,
NY, USA, 2002, pp. 271–281.

[18] J. Lu, Xml labeling scheme, in: An Introduction to XML Query Pro-
cessing and Keyword Search, Springer, 2013, pp. 9–32.

[19] T. Härder, M. Haustein, C. Mathis, M. Wagner, Node labeling schemes
for dynamic xml documents reconsidered, Data & Knowledge Engineer-
ing 60 (1) (2007) 126–149.

[20] X. Wu, M. L. Lee, W. Hsu, A prime number labeling scheme for dy-
namic ordered xml trees, in: Data Engineering, 2004. Proceedings. 20th
International Conference on, IEEE, 2004, pp. 66–78.

[21] E. Cohen, H. Kaplan, T. Milo, Labeling dynamic xml trees, SIAM
Journal on Computing 39 (5) (2010) 2048–2074.

[22] C. Gavoille, D. Peleg, S. Pérennes, R. Raz, Distance labeling in graphs,
in: Proceedings of the twelfth annual ACM-SIAM symposium on Dis-
crete algorithms, SODA ’01, Society for Industrial and Applied Math-
ematics, Philadelphia, PA, USA, 2001, pp. 210–219.

[23] I. Abraham, D. Delling, A. V. Goldberg, R. F. Werneck, A hub-based
labeling algorithm for shortest paths on road networks.

[24] I. Abraham, D. Delling, A. V. Goldberg, R. F. Werneck, Hierarchical
hub labelings for shortest paths, in: Algorithms–ESA 2012, Springer,
2012, pp. 24–35.

[25] D. Peleg, Informative labeling schemes for graphs, Theor. Comput. Sci.
340 (3) (2005) 577–593.

[26] P. Fraigniaud, C. Gavoille, Routing in trees, in: IN 28 TH INTER-
NATIONAL COLLOQUIUM ON AUTOMATA, LANGUAGES AND
PROGRAMMING (ICALP, Springer, 2001, pp. 757–772.

BIBLIOGRAPHY 119

[27] C. Gavoille, S. Pérennès, Memory requirement for routing in dis-
tributed networks, in: Proceedings of the fifteenth annual ACM sympo-
sium on Principles of distributed computing, ACM, 1996, pp. 125–133.

[28] M. Dom, in: D. Wagner, R. Wattenhofer (Eds.), Algorithms for Sensor
and Ad Hoc Networks, Vol. 4621 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 2007, pp. 187–202.

[29] A. Korman, S. Kutten, Labeling schemes with queries, in: Proceedings
of the 14th international conference on Structural information and com-
munication complexity, SIROCCO’07, Springer-Verlag, Berlin, Heidel-
berg, 2007, pp. 109–123.

[30] D. Krioukov, K. Fall, X. Yang, Compact routing on internet-like
graphs, in: INFOCOM 2004. Twenty-third AnnualJoint Conference
of the IEEE Computer and Communications Societies, Vol. 1, IEEE,
2004.

[31] I. Abraham, C. Gavoille, A. V. Goldberg, D. Malkhi, Routing in net-
works with low doubling dimension, in: Distributed Computing Sys-
tems, 2006. ICDCS 2006. 26th IEEE International Conference on,
IEEE, 2006, pp. 75–75.

[32] I. Abraham, D. Malkhi, Name independent routing for growth bounded
networks, in: Proceedings of the seventeenth annual ACM symposium
on Parallelism in algorithms and architectures, ACM, 2005, pp. 49–55.

[33] M.-Y. Kao, X.-Y. Li, W. Wang, Average case analysis for tree la-
belling schemes, Theoretical Computer Science 378 (3) (2007) 271 –
291, <ce:title>Algorithms and Computation</ce:title>.

[34] A. Korman, D. Peleg, Labeling schemes for weighted dynamic trees,
Information and Computation 205 (12) (2007) 1721–1740.

[35] P. Fraigniaud, A. Korman, On randomized representations of graphs
using short labels, in: Proceedings of the twenty-first annual sympo-
sium on Parallelism in algorithms and architectures, ACM, 2009, pp.
131–137.

[36] B. Courcelle, C. Gavoille, M. Kanté, A. Twigg, Forbidden-set label-
ing on graphs, in: 2nd Workshop on Locality Preserving Distributed
Computing Methods (LOCALITY)", Co-located with PODC, 2007.

[37] B. Courcelle, A. Twigg, Compact forbidden-set routing, in: Annual
Symposium on Theoretical Aspects of Computer Science, Springer,
2007, pp. 37–48.

[38] I. Abraham, S. Chechik, C. Gavoille, D. Peleg, Forbidden-set distance
labels for graphs of bounded doubling dimension, in: Proceedings of the
29th ACM SIGACT-SIGOPS symposium on Principles of distributed
computing, ACM, 2010, pp. 192–200.

[39] B. Courcelle, A. Twigg, Constrained-path labellings on graphs of
bounded clique-width, Theory of Computing Systems 47 (2) (2010)
531–567.

120 BIBLIOGRAPHY

[40] S. Chechik, M. Langberg, D. Peleg, L. Roditty, f-sensitivity distance
oracles and routing schemes, in: European Symposium on Algorithms,
Springer, 2010, pp. 84–96.

[41] C. Gavoille, A. Labourel, Distributed relationship schemes for trees,
Algorithms and Computation (2007) 728–738.

[42] S. Alstrup, P. Bille, T. Rauhe, Labeling schemes for small distances in
trees, SIAM J. Discret. Math. 19 (2) (2005) 448–462.

[43] B. H. Esben, Graph labeling schemes, Master’s thesis, University of
Copenhagen, Universitetsparken 5, Copenhagen (2013).

[44] S. Alstrup, C. Gavoille, H. Kaplan, T. Rauhe, Nearest common an-
cestors: A survey and a new distributed algorithm, in: Proceedings
of the fourteenth annual ACM symposium on Parallel algorithms and
architectures, ACM PRESS, 2002, pp. 258–264.

[45] S. Alstrup, S. Dahlgaard, M. B. T. Knudsen, Optimal induced universal
graphs and adjacency labeling for trees, in: Foundations of Computer
Science (FOCS), 2015 IEEE 56th Annual Symposium on, IEEE, 2015,
pp. 1311–1326.

[46] N. Bonichon, C. Gavoille, A. Labourel, Short labels by traversal and
jumping, in: Proceedings of the 13th international conference on Struc-
tural Information and Communication Complexity, SIROCCO’06,
Springer-Verlag, Berlin, Heidelberg, 2006, pp. 143–156.

[47] P. Fraigniaud, A. Korman, Compact ancestry labeling schemes for xml
trees, in: In Proc. 21st ACM-SIAM Symp. on Discrete Algorithms
(SODA, 2010.

[48] O. Freedman, P. Gawrychowski, P. K. Nicholson, O. Weimann, Optimal
distance labeling schemes for trees, arXiv preprint arXiv:1608.00212.

[49] C. Gavoille, M. Katz, N. A. Katz, C. Paul, D. Peleg, Approximate
distance labeling schemes (extended abstract) (2000).

[50] M. Katz, N. A. Katz, A. Korman, D. Peleg, Labeling schemes for flow
and connectivity, SIAM Journal on Computing 34 (1) (2004) 23–40.

[51] S. Alstrup, E. Bistrup Halvorsen, K. Green Larsen, Near-optimal label-
ing schemes for nearest common ancestors, in: Proceedings of the thirty
first annual ACM-SIAM symposium on Discrete algorithms, SODA ’14,
2014.

[52] M. Lewenstein, J. I. Munro, V. Raman, Succinct data structures for
representing equivalence classes, in: International Symposium on Al-
gorithms and Computation, Springer, 2013, pp. 502–512.

[53] T. M. Cover, J. A. Thomas, Elements of information theory, John
Wiley & Sons, 2012.

[54] D. Harel, R. E. Tarjan, Fast algorithms for finding nearest common
ancestors, SIAM Journal on Computing 13 (2) (1984) 338–355.

BIBLIOGRAPHY 121

[55] F. R. Chung, Separator theorems and their applications,
Forschungsinst. für Diskrete Mathematik, 1989.

[56] C. Jordan, Sur les assemblages de lignes., Journal für die reine und
angewandte Mathematik 70 (1869) 185–190.

[57] A. Korman, D. Peleg, Compact separator decompositions in dynamic
trees and applications to labeling schemes, in: Distributed Computing,
Springer, 2007, pp. 313–327.

[58] P. Fraigniaud, A. Korman, An optimal ancestry labeling scheme with
applications to xml trees and universal posets, Journal of the ACM
(JACM) 63 (1) (2016) 6.

[59] S. Alstrup, P. Lauridsen, P. Sommerlund, M. Thorup, Finding cores of
limited length, Lecture notes in computer science (1997) 45–54.

[60] C. Nash-Williams, Edge-disjoint spanning trees of finite graphs, Jour-
nal of the London Mathematical Society 1 (1) (1961) 445–450.

[61] B. Chen, M. Matsumoto, J. Wang, Z. Zhang, J. Zhang, A short proof
of nash-williams’ theorem for the arboricity of a graph, Graphs and
Combinatorics 10 (1) (1994) 27–28.

[62] S. Bhatt, F. R. Graham Chung, T. Leighton, A. Rosenberg, Universal
Graphs for Bounded-Degree Trees and Planar Graphs, SIAM Journal
on Discrete Mathematics 2 (2) (1989) 145–155.

[63] D. Gonçalves, Edge partition of planar sraphs into two outerplanar
graphs, in: Proceedings of the thirty-seventh annual ACM symposium
on Theory of computing, ACM, 2005, pp. 504–512.

[64] S. Alstrup, H. Kaplan, M. Thorup, U. Zwick, Adjacency labeling
schemes and induced-universal graphs, in: Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, ACM,
2015, pp. 625–634.

[65] D. Knuth, Combinatorial algorithms: Part 1, the art of computer pro-
gramming, vol. 4a (2011).

[66] O. Weimann, D. Peleg, A note on exact distance labeling, Inf. Process.
Lett. 111 (14) (2011) 671–673.

[67] G. Siganos, M. Faloutsos, P. Faloutsos, C. Faloutsos, Power laws and
the as-level internet topology, IEEE/ACM Transactions on Networking
(TON) 11 (4) (2003) 514–524.

[68] A. Akella, S. Chawla, A. Kannan, S. Seshan, Scaling properties of the
internet graph, in: Proceedings of the twenty-second annual sympo-
sium on Principles of distributed computing, ACM, 2003, pp. 337–346.

[69] A. Clauset, C. R. Shalizi, M. E. Newman, Power-law distributions in
empirical data, SIAM review 51 (4) (2009) 661–703.

[70] M. Mitzenmacher, A brief history of generative models for power law
and lognormal distributions, Internet mathematics 1 (2) (2004) 226–
251.

122 BIBLIOGRAPHY

[71] D. Achlioptas, A. Clauset, D. Kempe, C. Moore, On the bias of tracer-
oute sampling, in: STOC, ACM, Vol. 1581139608, 2005, p. 0005.

[72] P. Brach, M. Cygan, J. Łącki, P. Sankowski, Algorithmic complexity
of power law networks, in: Proceedings of the Twenty-Seventh An-
nual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2016, pp.
1306–1325.

[73] F. Chung, L. Lu, The average distance in a random graph with given
expected degrees, Internet Mathematics 1 (1) (2004) 91–113.

[74] Y. Eom, S. Fortunato, M. Perc, Characterizing and modeling citation
dynamics, PLoS ONE 6 (9) (2011) e24926.

[75] F. R. Chung, L. Lu, Complex graphs and networks, Vol. 107, American
mathematical society Providence, 2006.

[76] J. Moon, On minimal n-universal graphs, in: Proceedings of the Glas-
gow Mathematical Association, Vol. 7, Cambridge Univ Press, 1965,
pp. 32–33.

[77] J. P. Spinrad, Efficient graph representations, American mathematical
society, 2003.

[78] A.-L. Barabási, R. Albert, Emergence of scaling in random networks,
science 286 (5439) (1999) 509–512.

[79] B. Bollobás, O. Riordan, J. Spencer, G. Tusnády, et al., The degree
sequence of a scale-free random graph process, Random Structures &
Algorithms 18 (3) (2001) 279–290.

[80] G. Goel, J. Gustedt, Bounded arboricity to determine the local struc-
ture of sparse graphs, in: International Workshop on Graph-Theoretic
Concepts in Computer Science, Springer, 2006, pp. 159–167.

[81] Ł. Kowalik, Approximation scheme for lowest outdegree orientation and
graph density measures, in: International Symposium on Algorithms
and Computation, Springer, 2006, pp. 557–566.

[82] S. R. Arikati, A. Maheshwari, C. D. Zaroliagis, Efficient computation
of implicit representations of sparse graphs, Discrete Applied Mathe-
matics 78 (1) (1997) 1–16.

[83] B. M. Waxman, Routing of multipoint connections, IEEE journal on
selected areas in communications 6 (9) (1988) 1617–1622.

[84] K. L. Calvert, M. B. Doar, E. W. Zegura, Modeling internet topology,
IEEE Communications magazine 35 (6) (1997) 160–163.

[85] T. H. Cormen, C. Stein, R. L. Rivest, C. E. Leiserson, Introduction to
Algorithms, 2nd Edition, McGraw-Hill Higher Education, 2001.

[86] S. Alstrup, S. Dahlgaard, M. B. T. Knudsen, E. Porat, Sublinear Dis-
tance Labeling, in: 24th Annual European Symposium on Algorithms
(ESA 2016), Vol. 57, 2016, pp. 5:1–5:15.

BIBLIOGRAPHY 123

[87] P. Gawrychowski, A. Kosowski, P. Uznanski, Sublinear-space distance
labeling using hubs, in: International Symposium on Distributed Com-
puting, Springer, 2016.

[88] S. L. Hakimi, On realizability of a set of integers as degrees of the
vertices of a linear graph. i, Journal of the Society for Industrial &
Applied Mathematics 10 (3) (1962) 496–506.

[89] R. Albert, H. Jeong, A.-L. Barabási, Diameter of the world-wide web,
Nature 401 (6749) (1999) 130–131.

[90] J. Leskovec, K. J. Lang, A. Dasgupta, M. W. Mahoney, Community
structure in large networks: Natural cluster sizes and the absence of
large well-defined clusters, Internet Mathematics 6 (1) (2009) 29–123.

[91] M. Newman, Network data, http://www-personal.umich.edu/
~mejn/netdata/ (2013).

[92] M. Gol’dberg, E. Livshits, On minimal universal trees, Mathematical
Notes of the Academy of Sciences of the USSR 4 (3) (1968) 713–717.

[93] F. C. R. GRAHAM, D. COPPERSMITH, On trees containing all small
trees, in: The Theory and applications of graphs: Fourth International
Conference, May 6-9, 1980, Western Michigan University, Kalamazoo,
Michigan, John Wiley & Sons, 1981, p. 265.

[94] A. Korman, D. Peleg, Y. Rodeh, Constructing labeling schemes
through universal matrices, Algorithmica 57 (4) (2010) 641–652.

[95] C. Gavoille, C. Paul, Split decomposition and distance labelling: an
optimal scheme for distance hereditary graphs, Electronic Notes in Dis-
crete Mathematics 10 (2001) 117–120.

[96] M. Abrahamsen, S. Alstrup, J. Holm, M. B. T. Knudsen, M. Stöckel,
Near-optimal induced universal graphs for bounded degree graphs,
arXiv preprint arXiv:1607.04911.

[97] N. Alon, R. Nenadov, Optimal induced universal graphs for bounded-
degree graphs, arXiv preprint arXiv:1607.03234.

[98] N. Alon, Asymptotically optimal induced universal graphs.

[99] L. Esperet, A. Labourel, P. Ochem, On induced-universal graphs for the
class of bounded-degree graphs, Information Processing Letters 108 (5)
(2008) 255–260.

[100] P. Fraigniaud, A. Korman, An optimal ancestry labeling scheme with
applications to xml trees and universal posets, Journal of the ACM
(JACM) 63 (1) (2016) 6.

[101] B. R. P. Erdős, D.J. Kleitman, Asymptotic enumeration of kn-free
graphs, Colloquio Internazionale sulle Teorie Combinatorie 17 (1976)
19–27.

[102] A. Cayley, A theorem on trees, Quart. J. Math. 23 (1889) 376–378.

[103] R. Otter, The number of trees, Annals of Mathematics (1948) 583–599.

http://www-personal.umich.edu/~mejn/netdata/
http://www-personal.umich.edu/~mejn/netdata/

124 BIBLIOGRAPHY

[104] J. Kratochvíl, J. Matousek, Intersection graphs of segments, Journal
of Combinatorial Theory, Series B 62 (2) (1994) 289–315.

[105] B. N. Clark, C. J. Colbourn, D. S. Johnson, Unit disk graphs, Discrete
mathematics 86 (1-3) (1990) 165–177.

[106] E. R. Scheinerman, K. Tucker, Modeling graphs using dot product
representations, Computational Statistics 25 (1) (2010) 1–16.

[107] H. E. Warren, Lower bounds for approximation by nonlinear manifolds,
Transactions of the American Mathematical Society 133 (1) (1968)
167–178.

[108] D. Fulkerson, O. Gross, Incidence matrices and interval graphs, Pacific
journal of mathematics 15 (3) (1965) 835–855.

[109] C. McDiarmid, T. Müller, Integer realizations of disk and segment
graphs, Journal of Combinatorial Theory, Series B 103 (1) (2013) 114–
143.

[110] M. Chandoo, On the Implicit Graph Conjecture, in: 41st International
Symposium on Mathematical Foundations of Computer Science (MFCS
2016), Vol. 58, 2016, pp. 23:1–23:13.

[111] L. Longpré, Ph.D. thesis.

[112] E. R. Scheinerman, J. Zito, On the size of hereditary classes of graphs,
Journal of Combinatorial Theory, Series B 61 (1) (1994) 16–39.

[113] E. R. Scheinerman, Local representations using very short labels, Dis-
crete mathematics 203 (1) (1999) 287–290.

[114] J. Balogh, B. Bollobás, M. Saks, V. T. Sós, The unlabelled speed of a
hereditary graph property, Journal of Combinatorial Theory, Series B
99 (1) (2009) 9–19.

[115] S. Abiteboul, S. Alstrup, H. Kaplan, T. Milo, T. Rauhe, Compact
labeling scheme for ancestor queries, SIAM J. Comput. 35 (6) (2006)
1295–1309.

[116] H. Kaplan, T. Milo, R. Shabo, A comparison of labeling schemes for
ancestor queries, in: Proceedings of the thirteenth annual ACM-SIAM
symposium on Discrete algorithms, Society for Industrial and Applied
Mathematics, 2002, pp. 954–963.

[117] P. O’Neil, E. O’Neil, S. Pal, I. Cseri, G. Schaller, N. Westbury,
Ordpaths: insert-friendly xml node labels, in: Proceedings of the
2004 ACM SIGMOD international conference on Management of data,
ACM, 2004, pp. 903–908.

[118] C. Li, T. W. Ling, Qed: a novel quaternary encoding to completely
avoid re-labeling in xml updates, in: Proceedings of the 14th ACM
international conference on Information and knowledge management,
ACM, 2005, pp. 501–508.

BIBLIOGRAPHY 125

[119] J. Lu, T. W. Ling, C.-Y. Chan, T. Chen, From region encoding to
extended dewey: on efficient processing of xml twig pattern matching,
in: Proceedings of the 31st international conference on Very large data
bases, VLDB Endowment, 2005, pp. 193–204.

[120] L. Xu, T. W. Ling, H. Wu, Z. Bao, Dde: from dewey to a fully dynamic
xml labeling scheme, in: Proceedings of the 2009 ACM SIGMOD Inter-
national Conference on Management of data, ACM, 2009, pp. 719–730.

[121] E. Cohen, H. Kaplan, T. Milo, Labeling dynamic xml trees, SIAM
Journal on Computing 39 (5) (2010) 2048–2074.

[122] M. F. OConnor, M. Roantree, Scooter: A compact and scalable dy-
namic labeling scheme for xml updates, in: Database and Expert Sys-
tems Applications, Springer, 2012, pp. 26–40.

[123] T. A. Ghaleb, S. Mohammed, Novel scheme for labeling xml trees based
on bits-masking and logical matching, in: Computer and Information
Technology (WCCIT), 2013 World Congress on, IEEE, 2013, pp. 1–5.

[124] S. Alstrup, T. Rauhe, Improved labeling scheme for ancestor queries,
in: Proceedings of the thirteenth annual ACM-SIAM symposium on
Discrete algorithms, Society for Industrial and Applied Mathematics,
2002, pp. 947–953.

[125] A. Korman, D. Peleg, Y. Rodeh, Labeling schemes for dynamic tree
networks, Theory of Computing Systems 37 (1) (2004) 49–75.

[126] A. Korman, General compact labeling schemes for dynamic trees, Dis-
tributed Computing 20 (3) (2007) 179–193.

[127] A. Korman, Improved compact routing schemes for dynamic trees, in:
PODC ’08, ACM, 2008, pp. 185–194.

[128] C. Gavoille, A. Labourel, Distributed relationship schemes for trees, in:
International Symposium on Algorithms and Computation, Springer
Berlin Heidelberg, 2007, pp. 728–738.

[129] A. Korman, Compact routing schemes for dynamic trees in the fixed
port model, in: International Conference on Distributed Computing
and Networking, Springer, 2009, pp. 218–229.

[130] S. Caminiti, I. Finocchi, R. Petreschi, Engineering tree labeling
schemes: A case study on least common ancestors, in: European Sym-
posium on Algorithms, Springer, 2008, pp. 234–245.

[131] J. Fischer, Short labels for lowest common ancestors in trees, in: ESA,
2009, pp. 752–763.

[132] E. Cohen, E. Halperin, H. Kaplan, U. Zwick, Reachability and distance
queries via 2-hop labels, SIAM J. Comp. 32 (5) (2003) 1338–1355.

[133] Y. Afek, B. Awerbuch, S. Plotkin, M. Saks, Local management of a
global resource in a communication network, JACM 43 (1) (1996) 1–
19.

126 BIBLIOGRAPHY

[134] R. Jain, The art of computer systems performance analysis: tech-
niques for experimental design, measurement, simulation, and mod-
eling (1990).

[135] D. Peleg, Proximity-preserving labeling schemes and their applications,
in: Graph-Theoretic Concepts in Computer Science, Springer, 1999,
pp. 30–41.

[136] P. Fraigniaud, C. Gavoille, A space lower bound for routing in trees,
in: STACS 2002, Springer, 2002, pp. 65–75.

[137] D. Krioukov, K. Fall, A. Brady, et al., On compact routing for the
internet, ACM SIGCOMM Computer Communication Review 37 (3)
(2007) 41–52.

[138] A. Korman, D. Peleg, Dynamic routing schemes for general graphs,
Automata, Languages and Programming (2006) 619–630.

[139] C. Gavoille, M. Gengler, Space-efficiency for routing schemes of stretch
factor three, Journal of Parallel and Distributed Computing 61 (5)
(2001) 679–687.

[140] I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, M. Thorup, Compact
name-independent routing with minimum stretch, in: Proceedings of
the sixteenth annual ACM symposium on Parallelism in algorithms and
architectures, ACM, 2004, pp. 20–24.

[141] C. Gavoille, Routing in distributed networks: Overview and open prob-
lems, ACM SIGACT News 32 (1) (2001) 36–52.

[142] Y. Lu, J. Cheng, D. Yan, H. Wu, Large-scale distributed graph com-
puting systems: An experimental evaluation, Proceedings of the VLDB
Endowment 8 (3).

[143] S. Mozes, C. Sommer, Exact distance oracles for planar graphs, in:
Proceedings of the 23rd SODA, SIAM, 2012, pp. 209–222.

[144] P. Ferragina, I. Nitto, R. Venturini, On compact representations of all-
pairs-shortest-path-distance matrices, Theoretical Computer Science
411 (34) (2010) 3293–3300.

[145] S. Alstrup, C. Gavoille, E. B. Halvorsen, H. Petersen, Simpler, faster
and shorter labels for distances in graphs, in: Proceedings of the
Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SIAM, 2016, pp. 338–350.

[146] D. K. Blandford, G. E. Blelloch, I. A. Kash, Compact representations
of separable graphs, in: Proceedings of the 14th SODA, 2003, pp. 679–
688.

[147] A. Korman, General compact labeling schemes for dynamic trees, Dis-
tributed Computing (2005) 457–471.

[148] G. J. Jacobson, Succinct static data structures.

BIBLIOGRAPHY 127

[149] N. Alon, J. Balogh, B. Bollobás, R. Morris, The structure of almost
all graphs in a hereditary property, Journal of Combinatorial Theory,
Series B 101 (2) (2011) 85–110.

[150] J. Balogh, B. Bollobás, D. Weinreich, The speed of hereditary proper-
ties of graphs, Journal of Combinatorial Theory, Series B 79 (2) (2000)
131–156.

[151] J. Balogh, B. Bollobás, D. Weinreich, A jump to the bell number for
hereditary graph properties, Journal of Combinatorial Theory, Series
B 95 (1) (2005) 29–48.

[152] A. Abboud, S. Dahlgaard, Popular conjectures as a barrier for dy-
namic planar graph algorithms, in: Foundations of Computer Science
(FOCS), 2016 IEEE 57th Annual Symposium on, IEEE, 2016.

[153] A. V. Aho, J. E. Hopcroft, J. D. Ullman, On finding lowest common
ancestors in trees, in: Proceedings of the fifth annual ACM symposium
on Theory of computing, STOC ’73, ACM, New York, NY, USA, 1973,
pp. 253–265.

[154] D. Peleg, Informative labeling schemes for graphs, in: Mathematical
Foundations of Computer Science 2000, Springer, 2000, pp. 579–588.

[155] L. Blin, S. Dolev, M. G. Potop-Butucaru, S. Rovedakis, Fast self-
stabilizing minimum spanning tree construction, in: Distributed Com-
puting, Springer, 2010, pp. 480–494.

[156] S. Caminiti, I. Finocchi, R. Petreschi, Informative labeling schemes for
the least common ancestor problem., in: ICTCS, 2009, pp. 66–70.

[157] H. N. Gabow, J. L. Bentley, R. E. Tarjan, Scaling and related tech-
niques for geometry problems, in: Proceedings of the sixteenth an-
nual ACM symposium on Theory of computing, STOC ’84, ACM, New
York, NY, USA, 1984, pp. 135–143.

[158] C. Gavoillea, D. Peleg, S. Pérennesc, R. Razb, Distance labeling in
graphs, Journal of Algorithms 53 (2004) 85–112.

[159] D. Peleg, Proximity-preserving labeling schemes, Journal of Graph
Theory 33 (3) (2000) 167–176.

129

Appendix A

Labeling Schemes for Nearest
Common Ancestor

In this appendix we discuss labeling schemes for the function NCA. Two vari-
ants of labeling schemes that support the function appear in the literature,
Label-NCA and Id-NCA explained hereafter. Suppose a tree T = (V,E) has
a predefined label assignment of log n bits from a preset name domain, and
denote the product of such an assignment for a vertex v ∈ V as the vertex
identifier of v, or simply Id(v). We can extend all labeling schemes presented
so far to support vertex identifiers by modifying their encoder to concatenate
the vertex identifier to each label. In the case of NCA such an extension is
not as straightforward since it should return, for two vertices in the tree,
the vertex identifier of a third vertex. We treat both variants, and denote
labeling schemes for NCA specifically designed to support vertex identifiers
as Id-NCA, and those that do not as Label-NCA.

In Section A.1 we provide a literature overview and describe connections
to related problems. In Section A.2 we survey a connection between Id-
NCA and the functions Distance, SepLevel and Center . The connection
leads to a lower bound, for which an asymptotically identical upper bound
is presented. We dedicate Section A.3 to the construction of a Label-NCA
labeling scheme, of the same asymptotic size. We then show how to improve
this labeling scheme to achieve labels of size O(log n). Finally, we discuss
an extension of labeling schemes that provides a natural bridge between the
two variants.

A.1 Literature review

The problem of finding nearest (occasionally referred, least) common ances-
tors (NCAs) is non-trivial already in the non-distributed setting. Its impor-
tance is derived by its role as a subroutine of common algorithms for min-
imum spanning trees in a graph, finding maximum weighted matching in a
graph, and bounded tree-width algorithms. Aho, Hopcroft and Ullman [153]
were among the first to consider the problem of finding NCAs, and Harel
and Tarjan [54] were the first to describe an algorithm that uses only linear
time and space for pre-processing and can answer NCA queries in constant
time. Their algorithm is distributed for complete binary trees, but uses a
non-distributed, precomputed auxiliary data structure in order to generalise
the results to arbitrary trees. A more recent, simpler, and distributed algo-
rithm was presented by Alstrup et. al [44] in the form of a Label-NCA labeling
scheme of size 10 log n + O(1). The labeling scheme was improved recently

130 Appendix A. Labeling Schemes for Nearest Common Ancestor

by Green et. al [51] to 3 log n + O(1), along with a lower bound of 1.008n,
and a non-constructive proof of a labeling scheme of size 2.772 log n+O(1).

Peleg [154] showed that for Id-NCA labels of size Θ(log2n) are sufficient
and required. Blin et. al [155] extend Alstrup et al.’s labeling scheme for la-
bels of length bound by constant k. Experimental studies of labeling schemes
for the function are considered in [131,156]. Korman [29] studied Id-NCA in
a query labeling scheme variant (Section 1.8.1). Recall that In this model,
the decoder has access to a query function, that gets two labels and returns
a vertex identifier. In this setting Id-NCA queries can be answered using
labels of size O(log n).

Connection to other problems The function NCA is tightly related to
two problems. First, finding a nearest common ancestor labeling scheme is
equivalent to the discrete range searching problem [157]. Second, for both
Id-NCA and Label-NCA, the labels produced can determine ancestry relation
directly. Put formally, any labeling scheme 〈e, d〉 supporting the NCA func-
tion computes a label assignment eT with following property: For u, v ∈ T ,
we can construct a decoder that receives L(u),L(v) determines ancestry. The
decoder may use the NCA decoder d and compare the result to L(u). If u
is a parent of v, the two are equivalent and our ancestry decoder may safely
return True. As a result, any lower bounds that apply to ancestry label-
ing schemes apply to NCA schemes as well. A last connection between the
function NCA and routing is discussed in Section A.3.

A.2 Id-NCA

In this section, we present lower and upper bounds for Id-NCA.

A.2.1 NCA, SepLevel , and their connection to Distance

Peleg [25] proved that Ω(log2 n) bits are necessary for any Id-NCA labeling
scheme, as well as the functions SepLevel , and Center . Recall that the
function SepLevel returns the length of the path r w in T where r is the
root and w is NCAT (u, v).

Theorem 34. [25] For labeling schemes on Trees(n), we have the following
claims:

1. Given an f(n) Distance labeling scheme, we can construct a f(n) +
log n-SepLevel labeling scheme.

2. Given an f(n) SepLevel labeling scheme, we can construct a f(n) +
log n-Distance labeling scheme.

3. Let g(n) denote the maximum size of an identifier of any vertex in
Trees(n). If an Id-NCA labeling scheme has labels of size at most
l(n) · g(n) then there exist a SepLevel labeling scheme of size l(n) ·
(g(n) + log n).

Proof. To prove Claim 1, assume there exist a distance labeling scheme
〈edist, ddist〉. The encoder edist computes a label assignment for a tree T

A.2. Id-NCA 131

rooted in r with vertices u, v and w such that w = NCA(u, v). We trans-
form the encoder edist by concatenating a prefix depth(v) 1 to the label
L(v) assigned by edist to every v ∈ V , using additional log n extra bits. The
decoder can now compute SepLevel (u, v), by observing that Distance(u, v) =
Distance(u,NCA(u, v))+Distance(v,NCA(u, v)), and depth(u) = depth(NCA(u, v))+
Distance(u,NCA(u, v)) (the same formula holds by replacing u with v). It
follows that

depth(NCA(u, v)) =
depth(u) + depth(v)− dist(u, v)

2
= SepLevel(u, v).

We prove Claim 2 using the same transformation, i.e. adding depth(v) to
all labels produced by the encoder of any SepLevel labeling scheme. We
prove Claim 3 by the same transformation, with the exception that the new
encoder adds depth(v) to the vertex identifier, adding exactly log n for each
of the vertex identifiers.

Distance labeling scheme has a lower bound of Ω(log2 n) on the size of
the label [158]. Assume that there exist a labeling scheme for Id-NCA of
size φ(n) = o(log2(n)). Since g(n) = log n, it implies that l(n) = o(log n).
By Claim 3, there also exist a corresponding labeling scheme for SepLevel
of size o(log2 n). That labeling scheme, by Claim 2, leads to a distance
labeling scheme for distance of size o(log2 n), in contrast with the lower
bound mentioned [22].

Corollary 7. Any labeling scheme supporting Id-NCA for Trees(n) must
use labels of size Ω(log2(n)).

A.2.2 Upper bound for Id-NCA

It remains to prove that there exist an Id-NCA matching (asymptotically)
the lower bound. For brevity, we repeat the definitions related to heavy-light
decomposition (Section 2.3.1):

hchild(v) is the (unique) heavy child of v, lchildren(v) is the set of light
children of v, lsize(v) is the weight of v not including the tree rooted in its
heavy child, lpath(v) is the list of all light vertices in r v, ldepth(v) =
|lpath(v)|, hpath(v) is the set of vertices on the same heavy path as v.

Theorem 35. [25] There exist an Id-NCA labeling scheme with labels of
size at most O(log2 n).

Proof. Let T be a tree rooted in r, where every vertex v ∈ V with light depth
ldepth(v) has a unique predefined identifier, Id(v). The label of vertex v ∈ T
is defined as a concatenation of two parts, namely, Ca(v) and Cb(v) defined
below.
Ca(v) contains Id(v), and an ancestry label as defined in Section 7.1,

using at most 2 log n bits, and in total at most 3 log n bits. Cb(v) contains
a concatenation (Section 2.1) of triplets of the form 〈Id(li), Id(ni), di〉, for
1 ≤ i ≤ ldepth(v), where li is the i’th light vertex in lpath(v), di is the depth
of li, and ni is the vertex adjacent to li on r li. Each triplet requires at
most 3 log n bits, and thus Cb contains at most 3 log2 n bits. In conclusion,
for every vertex v ∈ T , |L(v)|= |Cb(v)|+|Ca(v)|≤ 3(log2 n+ log n).

1 Section 1.7): A vertex v in a tree T = (V,E) rooted in r has depth(v) edges on the
path r v.

132 Appendix A. Labeling Schemes for Nearest Common Ancestor

We describe the operation on two vertices u, v ∈ T with NCA w. The
decoder uses Ca to determine if one is an ancestor of the other, and if so
returns its vertex identifier. At this point we can safely claim that the path
u v traverses exactly two of w’s edges, where at least one of those must
be a light edge (see Figure A.1 for a demonstration). Thus, the decoder
computes the common prefix of Cb(u) and Cb(v), and determines the first k
for which the k’th triplet in Cb(u) is not equal to the k’th triplet in Cb(v).
Since each triplet contains the depth of the light vertex it represents, we can
deduce which of them is closer to w, and if the depth is equal we choose one
arbitrarily. We return the parent of the light vertex, stored in the selected
triplet.

l rw
y

xzu

v

Figure A.1: The nearest common ancestor w=NCA (u,v)
in a root rooted in r. The vertex l is the last light vertex in
common in the paths r u and r v, and y and z are the
first light vertices immediately after l on those paths, where
depth(z) > depth(y). Straight lines represent edges, dashed

lines are paths, and grey vertices are light vertices.

A.3 Label-NCA

We prove that there exist a Label-NCA labeling scheme of size O(log n) in two
steps. First, we present a simple (inefficient) labeling scheme with O(log2 n)
and then we prove that by a slight improvement, the label size decreases
to O(log n). The first labeling scheme is by itself a modified version of the
one presented in Theorem 35. Rather than storing the light path for every
vertex along with the vertex above it, we store the light path along with the
distance of the heavy paths between each two consecutive light vertices.

Theorem 36. There exist a Label-NCA labeling scheme 〈e, d〉 with label size
bounded by O(log2 n).

Proof. Let T = (V,E) be a tree rooted in r. For convenience, r is a heavy
vertex with the label 0. We first compute a heavy-light decomposition of T
(Section 2.3.1).

The new label comprises the concatenation of the tuples 〈hi, li〉, where
li is the index of i’th light vertex in lpath(v), and hi is the (possibly null)
length of the heavy path hpath(li), from li−1 to li or to v when i = ldepth(v).
See Figure A.2 for an illustration.

Since 1 ≤ hi, li ≤ n, each tuple requires at most 2 log n bits. Since
|lpath(v)|≤ log n (Section 2.3.1), the total label size is bounded by 2 log2 n.
To complete the proof we show how to compute the label of the NCA
of two vertices u and v with labels L(u) = hu1 , l

u
1 . . . h

u
k , l

u
k and L(v) =

hv1, l
v
1 . . . h

v
k′ , l

v
k′ respectively. Without loss of generality assume that k ≤ k′.

We find the first i for which hui , l
u
i 6= hvi , l

v
i . If there is no such i, then u is

the ancestor of v and we return its label. If hui = hvi we return the label
hu1 , l

u
1 . . . h

u
i . Otherwise, we return hu1 , lu1 . . .min{hui , hvi }.

A.3. Label-NCA 133

Note that this labeling scheme can return the depth of the NCA, in other
words the SepLevel . By Theorem 34, any labeling scheme supporting Se-
pLevel must have labels of size Ω(log2 n). Moreover, using the formulas from
Theorem 34 we observe that the function Distance may also be computed
using these labels. The first labeling scheme for the function Distance [159]
uses separator decomposition. The label created in this labeling scheme can
not be used to determine the functions NCA, Adjacency and Ancestry . In
contrast, our labeling scheme stores enough information on the topology of
the tree to determine all(!) the functions surveyed on trees.

The labeling scheme presented is based on the ability to choose a vertex’s
name. The one presented next utilises the ability further, and reduces the
bound on the label size from O(log2 n) to O(log n).

A.3.1 Label-NCA with O(log n) bits

The maximum label size in Theorem 36 is the longest description of a se-
quence of at most log n tuples of the form 〈hi, li〉. We do not consider as-
signing short labels to vertices with big size, nor do we account for the total
length possible for the heavy paths. However, even with those improve-
ments, we will still be able to determine SepLevel , which implies a label of
size Ω(log2 n) as mentioned.

The key observation is that the function NCA can be determined even
without knowing the exact length of the heavy paths. We only require that
each label of the vertices on a heavy path h1 . . . hk has a total order on that
path, i.e., given two labels, determine which of them is first on the path.
Alstrup, Gavoille, Kaplan and Rauhe [44] use those two observations as well
as Lemma 2 to construct a O(log n) Label-NCA labeling scheme presented
below.

Theorem 37. [44] There exist a Label-NCA labeling scheme of size O(log n).

Sketch.
Consider a vertex v where parent(v) = u in a tree T rooted in r with
ldepth(v) = k and lpath = {lp1 . . . lpk}. The label comprises the concatena-
tion of the tuples 〈h′i, l′i〉. We first construct the labels given by Theorem 36
as auxiliary labels where 〈hi, li〉 defined as in Theorem 36.

To compute each l′i, we use Lemma 2 with size(lpi) and the lsize of each
of its siblings in T . The lemma provides l′i a label appropriate to size(lpi),
and more precisely:

|l′i|≤ log size(v)− log lsize(p(lpi)) + 1,

where p(lpi) is the parent of lpi.
To compute each h′i we use Lemma 2 with the size of all vertices on the

heavy path rooted in lpi, hpath(v), ordered by their depth. That is, since
we want to have labels as small as possible the closer we are to lpi. The
lemma provides h′i a label appropriate to the light size of the hi’th vertex on
hpath(v). More precisely:

|h′i|≤ log size(lpi)− log lsize(v) + 1.

134 Appendix A. Labeling Schemes for Nearest Common Ancestor

In contrast to the previous labeling scheme, both l′i and h
′
i have variable

size. In order to distinguish the different parts in L(v) = h′1, l
′
1, . . . h

′
k, l
′
k we

use a separating string (Section 2.1), which doubles the size of the label. By
induction, it can be shown that |h′1|, |l′1|, . . . |h′k|, |l′k|≤ log n + 4k + 2. The
proof is similar to that of Lemma 29.

The decoder is computed similarly to the one defined in Theorem 36
with the exception that in the last case we use min<lex{hi, h′i} instead of
min {hi, h′i}.

For proof of the induction, and the correctness of the decoder, see [43].

10111

1010

1001

1000

1000011

01

1000101

1001011 1001101

1010011 1010101

0110001

1000011

010101

1000011

010110 011000111 011001

0110100

0110011010

0110011001

01101010

0110010101

0110010110

0

10

2

3

4

01

0110

02

0210

022

02300221

11

21

31

12

22

32

0201

0211

021110

0212

021210

Figure A.2: A tree with heavy (black) and light (white)
vertices marked in the labeling scheme from Theorem 37 in
binary on top and Theorem 35 in decimal at the bottom.

Both labels have their heavy sub-labels underlined.

The labels constructed in Theorem 37 can determine the first edge on
the shortest path between the vertices queried. Therefore, using a slightly
different decoder, we can construct a Routing labeling scheme (Chapter 10).

The label size achieved in this method is at most 10 log n. Green et. al [51]
recently achieved an improved labeling scheme of size 3 log n by replacing
Lemma 2 with a more compact total order which allows for empty strings.

Labeling schemes with a query Korman [29] extend the definition of
labeling scheme such that alongside the encoder and decoder, they define
a query function. Formally, given the labels L(u) and L(v) of u, v ∈ V
outputs Q(L(u),L(v)) which is a vertex c ∈ V . The decoder is free to use c
to compute the query. In this context, the authors proved that both Label-
NCA and Id-NCA have a similar label size of O(log n). The authors achieve
similar label sizes for the functions Distance, Routing and MaxFlow .

135

Appendix B

Proofs Omitted

B.1 Proof of Lemma 5

Consider the non-leaf node v with parent p(v) and heavy child h(v) in a
rooted tree T . Recall that the encoder of 〈eα, dα〉 labels v as a concatenation
of the bit strings: I.) dfsi(v); II.) ldepth(v); III.) a 1/2-approximation of
dfsi(v)− dfsi(p(v)); and IV.) a 1/2-approximation of dfsi(h(v))− dfsi(v).

We denote the 1/2-approximation of dfsi(v) − dfsi(p(v)) as bP c2(v) and
and the 1/2-approximation of dfsi(h(v)) − dfsi(v) as bCc2(v). The decoder
receives both labels L(u) and L(v) and computes the value recomp(u, v)
which takes a 1/2 approximation of the values dfsi(u)−dfsi(v) given by their
labels.

Suppose u is the parent of the node v. The decoder dα returns true for
L(u),L(v) by verifying the following predicates hold:

• dfsi(u) < dfsi(v).

• ldepth(v) = ldepth(u) if v is heavy, and ldepth(v) = ldepth(u) + 1 if v
is light.

• bCc2(u) = bP c2(v) if v is heavy and bCc2(u) ≥ bP c2(v) if v is light.

• recomp(u, v) = bP c2(v).

The above conditions are clearly sufficient if u is the parent of v. We
now denote the heavy child of u as h(u). Assume in contradiction that the
conditions hold, but u is not the parent of the node v. First, assume that v
is light. The first two predicates assure that u can not be a descendant of
v. Since v has ldepth(u) + 1 it must be the child of either of h(u) or not a
decedent of v at all. In both cases the path u v must contain at least one
more node y = p(v) where dfsi(y) ≥ dfsi(h(u)). It follows that :

dfsi(v)−dfsi(u) ≥ dfsi(v)−dfsi(y)+dfsi(h(u))−dfsi(u) ≥ 2min(bCc2(u), bP c2(v)).
(B.1)

Since v is light we know that:

bCc2(u) ≥ bP c2(v) = recomp(u, v).

It follows that recomp(u, v) = min(bCc2(u), bP c2(v)), and since recomp is a
1/2-approximation:

2 recomp(u, v) = 2min(bCc2(u), bP c2(v)) > dfsi(v)− dfsi(u),

which is a contradiction.

136 Appendix B. Proofs Omitted

If v is heavy, it may no longer be a decedent of u, and there exist a
y = p(v) for which equation B.1 holds as before, and the contradiction holds
similarly.

B.2 Proof of the claim in Section 3.3

The proof follows directly from the following lemma.

Lemma 31. The following property holds for every 2 ≤ m ≤ p for some
constant c′:

p∑
i=m

2ti ≤ c′
p∑

i=m

dl(i)e2 − 2tm .

Proof. We prove this claim by induction over m from p down to 2. The claim
holds trivially for m = p. Assume that the property holds for m, for m − 1
by the induction hypothesis:

p∑
i=m−1

2ti ≤ c′
p∑

i=m

dl(i)e2 − 2tm + 2tm−1 .

If dl(m − 1)e2 ≥ 2tm then 2tm−1 = dl(m − 1)e2 by definition, and thus for
c′ > 2:

p∑
i=m−1

2ti ≤ c′
p∑

i=m

dl(i)e2 − 2tm + 2tm−1 = c′
p∑

i=m−1

dl(i)e2 − 2tm − (c′ − 1)dl(m− 1)e2

≤ c′
p∑

i=m−1

dl(i)e2 − 2tm−1 .

If dl(m − 1)e2 < 2tm then 2tm−1 ≤ 2tm by definition. We want to prove
that in this case

2tm−1 ≤ 1

2
2tm = 2tm−1

Which holds so long as ti ≥ 4 for all i, which can be maintained as long as
c′ > 16. We can now replace the terms such that:

p∑
i=m−1

2ti ≤ c′
p∑

i=m

dl(i)e2−2tm+2tm−1 = c′
p∑

i=m−1

dl(i)e2−2tm/2 ≤ c′
p∑

i=m−1

dl(i)e2−2tm−1 .

Choosing c = c′ + 1 ≥ 5 we conclude:

p∑
i=1

2ti ≤ c
p∑

i=m−1

l(i)− 2tm−1 .

	Abstract
	Acknowledgements
	Introduction
	An example
	Discussed functions
	The structure of the thesis
	Practical and theoretical applications of labeling schemes
	Preliminaries
	Graph families related definitions
	Basic tree related definitions
	Definitions and generalizations of labeling schemes
	Generalizations
	A subtle point regarding the size of the graphs
	Predefined naming

	Common Algorithm Techniques
	Binary strings and bit tricks
	Number representation
	Padding
	Approximation using O(loglogn) bits
	Word storing in a string

	Efficient encodings
	 A @瑥浰搠*@瑥浰挠enumdfsi traversal
	Suffix-free codes
	Alphabetic sequences

	Tree decompositions
	Heavy-light decomposition
	Separator
	Spines decomposition
	Clustering

	Boxes and groups

	Introduction to Adjacency Labeling Schemes on Trees
	Literature overview
	A logn + O(log^*n) labeling scheme for Trees(n)
	A logn +O(loglogn) simple labeling scheme
	 A modified cluster tree
	The final labeling scheme

	Traversal and jumping
	One-sided error Adjacency labeling scheme

	Adjacency for Bounded degree: Trees, Planar graphs and Graphs
	Our methods
	A compact edge-universal graph for bounded-degree outerplanar graphs
	Warm-up: a logn +O(loglogn) Labeling Scheme
	The encoder
	Differential sizing - the suffix of a label
	Resolving ambiguity.
	Constructing the prefix.
	The final labels.

	Decoding
	Computing the embedding
	Improvements and special cases
	Planar graphs
	Graph of bounded, but not constant degree
	Concluding remarks

	Adjacency Labeling Schemes for Power-Law Graphs
	Preliminaries
	Defining power-law graphs
	Comparison to other deterministic models
	The labeling schemes
	A labeling scheme for random graphs
	Lower bounds
	Bypassing the lower bound
	A Distance labeling scheme
	Experimental study
	Conclusion and future work

	On the Implicit Representation Conjecture
	Introduction
	The implicit representation conjecture
	Segment intersection graphs
	Non polynomially decodable implicit graph classes
	Preliminaries
	The construction

	The implicit representation conjecture holds for speeds 2^O(n^1/2)

	Ancestry Labeling Schemes
	The classic algorithm
	Literature review
	Preliminaries

	A method for interval based labeling schemes
	Using the method to describe the Classic labeling
	An improved logn +2loglogn Ancestry labeling scheme
	Lower bound
	Dynamic Ancestry labeling schemes

	Multifunctional and Dynamic Labeling Schemes
	Introduction
	Our contribution
	Preliminaries

	Dynamic labeling schemes
	 Upper Bounds
	 Lower Bounds
	Other Graph Families
	Dynamic multifunctional Labeling Schemes

	Static multifunctional Labeling Schemes
	Lower Bounds

	Concluding remarks

	An experimental analysis of dynamic labeling schemes
	Introduction
	Preliminaries

	Dynamic labeling schemes for tree networks
	Brief overview

	Experimental framework
	Experimental results
	SemGL
	Comparison of SemGL and SemDL
	Fully-dynamic labeling schemes

	Conclusions

	Routing Labeling Schemes
	Introduction to Routing schemes
	Literature review

	Designer port model
	Fixed Port Model

	The Future
	Cluster labeling
	Definition
	Motivating examples

	Open Questions
	Open questions on trees
	Open questions on other graph families

	 Labeling Schemes for Nearest Common Ancestor
	Literature review
	Id-NCA
	NCA, SepLevel, and their connection to Distance
	Upper bound for Id-NCA

	Label-NCA
	Label-NCA with O(logn) bits

	Proofs Omitted
	Proof of @瑥浰搠*@瑥浰挠sectionlem:4loglogn
	Proof of the claim in @瑥浰搠*@瑥浰挠sectiontraversaljumping

