
U N I V E R S I T Y O F C O P E N H A G E N
F A C U L T Y O F S C I E N C E

PhD thesis
Troels Henriksen — athas@sigkill.dk

Design and Implementation of the
Futhark Programming Language

Supervisors: Cosmin Eugen Oancea and Fritz Henglein

August, 2017

Abstract

In this thesis we describe the design and implementation of Futhark, a small
data-parallel purely functional array language that offers a machine-neutral pro-
gramming model, and an optimising compiler that generates efficient OpenCL
code for GPUs. The overall philosophy is based on seeking a middle ground
between functional and imperative approaches. The specific contributions are
as follows:

First, we present a moderate flattening transformation aimed at enhancing
the degree of parallelism, which is capable of exploiting easily accessible par-
allelism. Excess parallelism is efficiently sequentialised, while keeping access
patterns intact, which then permits further locality-of-reference optimisations.
We demonstrate this capability by showing instances of automatic loop tiling,
as well as optimising memory access patterns.

Second, to support the flattening transformation, we present a lightweight
system of size-dependent types that enables the compiler to reason symbolically
about the size of arrays in the program, and that reuses general-purpose compiler
optimisations to infer relationships between sizes.

Third, we furnish Futhark with novel parallel combinators capable of ex-
pressing efficient sequentialisation of excess parallelism, as well as their fusion
rules.

Fourth, in order to express efficient programmer-written sequential code
inside parallel constructs, we introduce support for safe in-place updates, with
type system support to ensure referential transparency and equational reasoning.

Fifth, we perform an evaluation on 21 benchmarks that demonstrates the
impact of the language and compiler features, and shows application-level per-
formance that is in many cases competitive with hand-written GPU code.

Sixth, we make the Futhark compiler freely available with full source code
and documentation, to serve both as a basis for further research into functional
array programming, and as a useful tool for parallel programming in practise.

ii

Resumé

Denne afhandling beskriver udformningen og implementeringen af Futhark,
et enkelt data-parallelt, sideeffekt-frit, og funktionsorienteret geledsprog, der
frembyder en maskinneutral programmeringsmodel. Vi beskriver ligeledes den
tilhørende optimerende Futhark-oversætter, som producerer effektiv OpenCL-
kode målrettet afvikling på GPUer. Den overordnede designfilosofi er at yd-
nytte både functionsorienterede og imperative fremgangsmåder. Vores konkrete
bidrag er som følger:

For det første præsenterer vi en moderat fladningstransformering, der er i
stand til at udnytte blot den grad af parallelisme som er nødvendig eller lettil-
gængelig, og omdanne overskydende parallelisme til effektiv sekventiel kode.
Denne sekventielle kode bibeholder oprindelig lageradgangsmønsterinforma-
tion, hvilket tillader yderligere lagertilgangsforbedringer. Vi demonstrerer nyt-
ten af denne egenskab ved at give eksempler på automatisk blokafvikling af
løkker, samt ændring af lageradgangsmønstre således at GPUens lagersystem
udnyttes bedst muligt.

For det andet beskriver vi, med henblik på understøttelse af fladningstrans-
formeringen, et enkelt typesystem med størrelses-afhængige typer, der tillader
oversætteren at ræsonnere symbolsk om størrelsen på geledder i programmet
under oversættelse. Vores fremgangsmåde tillader genbrug af det almene reper-
toire af oversætteroptimeringer i spørgsmål om ligheder mellem størrelser.

For det tredje udstyrer vi Futhark med en række nyskabedne parallelle
kombinatorer der tillader effektiv sekventialisering af unødig parallelisme, samt
disses fusionsregler.

For det fjerde indfører vi, med henblik på at understøtte effektiv sekventiel
kode indlejret i de parallelle sprogkonstruktioner, understøttelse for direkte
ændringer i geledværdier. Denne understøttelse sikres af et typesystem der
garanterer at effekten ikke kan observeres, og at lighedsbaseret ræsonnering
stadigvæk er muligt.

For det femte foretager vi en ydelsessammenlining indeholdende 21 pro-
grammer, med henblik på at demonstrere sprogets praktiske anvendelighed
og oversætteroptimeringernes indvirkning. Vores resultater viser at Futhark’s
overordnede ydelse i mange tilfælde er konkurrencedygtig med håndskreven
GPU-kode.

For det sjette gør vi Futhark-oversætteren frit tilgængelig, inklusive al
kildetekst og omfattende dokumentation, således at den kan tjene både som
et udgangspunkt for yderligere forskning i funktionsorienteret geledprogram-
mering, samt som et praktisk andvendeligt værktøj til parallelprogrammering.

iii

Contents

Preface v

Part I Land, Logic, and Language

1 Introduction 2

2 Background and Philosophy 6

3 An Array Calculus 47

4 Parallelism and Hardware Constraints 52

Part II An Optimising Compiler

5 Overview and Uniqueness Types 69

6 Size Inference 89

7 Fusion 107

8 Moderate Flattening and Kernel Extraction 127

9 Optimising for Locality of Reference 137

10 Empirical Validation 147

Part III Closing Credits

11 Conclusions and Future Work 160

Bibliography 162

iv

Preface

This thesis is submitted in fulfillment of the PhD programme in computer science
(Datalogi) at the University of Copenhagen, for Troels Henriksen, under the supervi-
sion of Cosmin Eugen Oancea and Fritz Henglein.

Publications

Of the peer-reviewed papers I have published during my studies, the following con-
tribute directly to this thesis:

Henriksen, Troels, Martin Elsman, and Cosmin E Oancea. “Size
slicing: a hybrid approach to size inference in Futhark”. In: Proc.
of the 3rd ACM SIGPLAN workshop on Functional high-performance
computing. ACM. 2014, pp. 31–42

Henriksen, Troels, Ken Friis Larsen, and Cosmin E. Oancea. “De-
sign and GPGPU Performance of Futhark’s Redomap Construct”. In:
Proceedings of the 3rd ACM SIGPLAN International Workshop on Li-
braries, Languages, and Compilers for Array Programming. ARRAY
2016. Santa Barbara, CA, USA: ACM, 2016, pp. 17–24

Henriksen, Troels, Niels GW Serup, Martin Elsman, Fritz Hen-
glein, and Cosmin E Oancea. “Futhark: purely functional GPU-
programming with nested parallelism and in-place array updates”. In:
Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation. ACM. 2017, pp. 556–571

While the following do not:

Henriksen, Troels and Cosmin E Oancea. “Bounds checking: An
instance of hybrid analysis”. In: Proceedings of ACM SIGPLAN Inter-
national Workshop on Libraries, Languages, and Compilers for Array
Programming. ACM. 2014, p. 88

v

CONTENTS

Henriksen, Troels, Martin Dybdal, Henrik Urms, Anna Sofie
Kiehn, Daniel Gavin, Hjalte Abelskov, Martin Elsman, and Cos-
min Oancea. “APL on GPUs: A TAIL from the Past, Scribbled in
Futhark”. In: Procs. of the 5th Int. Workshop on Functional High-
Performance Computing. FHPC’16. Nara, Japan: ACM, 2016, pp. 38–
43

Larsen, Rasmus Wriedt and Troels Henriksen. “Strategies for Regu-
lar Segmented Reductions on GPU”. in: Proceedings of the 6th ACM SIG-
PLAN Workshop on Functional High-performance Computing. FHPC
’17. New York, NY, USA: ACM, 2017

Acknowledgements

Language design and compiler hacking easily becomes a lonely endeavour. I would
in particular like to thank Cosmin Oancea, Martin Elsman, and Fritz Henglein for
being willing to frequently and vigorously discuss language design issues. I am also
grateful to all students who contributed to the design and implementation of Futhark.
In no particular order: Niels G. W. Serup, Chi Pham, Maya Saietz, Daniel Gavin,
Hjalte Abelskov, Mikkel Storgaard Knudsen, Jonathan Schrøder Holm Hansen, Sune
Hellfritzsch, Christian Hansen, Lasse Halberg Haarbye, Brian Spiegelhauer, William
Sprent, René Løwe Jacobsen, Anna Sofie Kiehn, Henrik Urms, Jonas Brunsgaard, and
Rasmus Wriedt Larsen. Development of the compiler was aided by Giuseppe Bilotta’s
advice on OpenCL programming, and James Price’s work on oclgrind [PM15]. I
am also highly appreciative of the work of all who contributed code or feedback to the
Futhark project on Github1, including (but not limited to): David Rechnagel Udsen,
Charlotte Tortorella, Samrat Man Singh, maccam912, mrakgr, Pierre Fenoll, and
titouanc

I am also particularly grateful for Cosmin Oancea’s choice to devise a research
programme that has allowed me the opportunity to spend three years setting up GPU
drivers on Linux. And relatedly, I am grateful to NVIDIA for donating the K40 GPU
used for most of the empirical results in this thesis.

And of course, I am grateful that Lea was able to put up with me for these three
and a half years, even if I still do not understand why.

The cover image depicts the common European hedgedog (Erinaceus europaeus),
and is from Iconographia Zoologica, a 19th century collection of zoological prints.
Like hedgehogs, functional languages can be much faster than they might appear.

1https://github.com/diku-dk/futhark

vi

https://github.com/diku-dk/futhark

Part I

Land, Logic, and Language

1

Chapter 1

Introduction

This thesis describes the design and implementation of Futhark, a data parallel func-
tional array language. Futhark, named after the first six letters of the Runic alphabet,
is a small programming language that is superficially similar to established functional
languages such as OCaml and Haskell, but with restrictions and extensions meant to
permit compilation into efficient parallel code. While this thesis contains techniques
that could be applied in other settings, Futhark has been the overarching context
for our work. We demonstrate the applicability and efficiency of the techniques by
their application in the Futhark compiler, and the performance of the resulting code.
Apart from serving as a vehicle for compiler research, Futhark is also a programming
language that is useful in practice for high-performance parallel programming.

It is the task of the compiler to map the high-level portable parallelism to low-level
parallel code that can be executed by some machine. For example, a parallel language
may support nested parallelism, while most machines efficiently support only flat
parallelism. One problem is that not all parallelism is born equal, and the optimal
depth of parallelisation depends not just on the static structure of the program, but also
on the problem size encountered at run-time. When writing a program in data parallel
language, the program tends to contain a large amount of parallelism; frequently much
more than what is necessary to fully exploit the target machine. For example, the
program may contain two parallel loops, where executing the second loop in parallel
carries significant overhead. If the outer loop contains enough parallel iterations to
fully saturate the machine, then it is better to execute the inner loop sequentially. On
the other hand, if the outer loop contains comparatively few iterations, then it may
be worth paying the overhead of also executing the innermost loop in parallel. This
decision cannot be made at compile-time, and thus the compiler should produce code
for both versions, and pick between them at run-time, based on the problem size.

Many implementation techniques for data-parallelism have been developed. From
the field of functional programming, we have Guy Blelloch’s seminal full flattening
algorithm [Ble+94], which shows how to transform all parallelism in program written
in a nested data-parallel language to flat parallelism. While full flattening is guar-

2

CHAPTER 1. INTRODUCTION

anteed to preserve the asymptotic cost and parallelism of the program, its practical
performance is often poor, because some of the parallelism may carry heavy overhead
to exploit, and is unnecessary in practise. An example of this could be parallel code
hidden behind branches. Furthermore, the code generated by full flattening has an
un-analysable structure, preventing locality-of-reference optimisations such as loop
tiling.

For these reasons, flattening is not used much in practise. Instead, we find
techniques that tend to exploit only easily accessible parallelism. One common
approach is to exploit only top-level parallelism, with nested parallelism exploited
only in limited ways, for example by always mapping it to a specific layer of the
parallel hierarchy of the machine [GS06; Lee+14; McD+13; Ste+15]. While the
resulting code tends to exhibit little overhead, the lack of flexibility makes it hard
to express algorithms whose natural expression contains nested parallelism. This is
particularly problematic when exploiting the inner levels of parallelism is critical to
obtaining performance in pracise.

More powerful techniques exist, for example dynamic techniques for detecting
parallelism [OM08] can in principle exploit also partial parallelism, but at significant
run-time overhead. Static analyses such as the polyhedral model [Pou+11; RKC16;
Ver+13; CSS15] are able to support some forms of nested parallelism, but are typically
limited to affine code, and their success is not guaranteed by the language semantics.

In this thesis, we bridge the imperative and functional approaches: we seek to
exploit only that parallelism which is necessary or easily accessible, and we work on
the foundation of an explicitly parallel language. We are inspired by the systematic
approach of flattening, but we wish to employ full flattening only as a last resort,
when absolutely all parallelism must be exploited. Our goal is pragmatic. We
wish to write Futhark programs in a high-level hardware-agnostic and modular style,
using nested parallelism where convenient. The compiler should then translate the
Futhark programs to low-level GPU code whose run-time performance rivals that of
hand-written code.

First Contribution Our key contribution is moderate flattening (Chapter 8). This
algorithm, which is inspired by both full flattening and loop distribution, is capable of
restricting itself to exploiting only that parallelism which is cheap to access, or more
aggressively exploit more of the available parallelism. Excess parallelism is turned
into efficient sequential code, with enough structure retained to perform important
locality-of-reference optimisations (Chapter 9). The moderate flattening algorithm
is also capable of improving the degree of available parallelism by rewriting the
program. For example, loop interchange is used to move parallel loop levels next to
each other, even if they were separated by a sequential loop in the source program.

The moderate flattening algorithm is capable of data-sensitive parallelisation,
where different parallelisations are constructed for the same program, and the optimal

3

CHAPTER 1. INTRODUCTION

one picked at run-time.

Second Contribution The moderate flattening algorithm requires significant infras-
tructure to function. While full flattening transforms everything into flat bulk parallel
constructs, within which all variables are scalars, we wish to permit just partial par-
allelisation. As a result, some variables in the sequentialised excess parallelism may
be arrays. The compiler must have a mechanism for reasoning about their sizes.

One contribution here is a technique for size inference on multidimensional arrays
(Chapter 6) that gives us the property that for every array in the program, there is
a variable (or constant) in scope that describes the size of each dimension of the
array. This allows the compiler to reason about the variance of arrays in a symbolic
and simple way. Prior work tends to either restrict the language to ensure that all
symbolic sizes can be statically determined [Jay99], or requires extensive annotation
by the programmer [Bra13; BD09]. Our technique for size inference is a pragmatic
design that does not restrict the language (by forbidding for example filtering), but
also does not require any annotations on behalf of the programmer, although it can
benefit from this. We do this by using a simple form of existential types.

Third Contribution We present an extension to existing work on fusion (Chap-
ter 7). The primary novelty is the creation of new array combinators that permit a
greater degree of fusibility. Because of the moderate flattening technique, the fusion
algorithm cannot know whether some piece of code will eventually be parallelised or
sequentialised. We present constructs that have good fusion properties, but also allow
both the recovery of all parallelism, and the transformation into efficient sequential
code. These are not properties provided by prior work on fusion. We also show
how “horizontal” fusion can be considered a special case of “vertical” (producer/-
consumer) fusion, given sufficiently powerful combinators, and can be an enabler of
vertical fusion.

Fourth Contribution Even in a parallel language, it is sometimes useful to im-
plement efficient sequential algorithms, often applied in parallel to parts of a data
set. Most functional parallel languages do not support in-place updates at all, which
hinders the efficient implementation of such sequential algorithms. While imperative
languages obviously support in-place updates efficiently, they do not guarantee safety
in the presence of parallelism.

We present a system of uniqueness types (Section 2.5.1), and a corresponding
formalisation (Section 5.3), that permits a restricted form of in-place updates, that
provides the cost guarantees without compromising functional purity or parallel se-
mantics. While more powerful uniqueness type systems [BS93], and affine and linear
types [TP11; FD02] are known, ours is the first application that directly addresses
map-style parallel constructs, and shows how in-place updates can be supported with-

4

CHAPTER 1. INTRODUCTION

out making evaluation order observable. Our design for in-place updates is similar to
static single assignment form (SSA), and maintains explicit data dependencies in the
compiler IR. We show that the addition of uniqueness types does not overly burden
the implementation of compiler optimisations.

Fifth Contribution We demonstrate the GPU performance of code generated by
the Futhark compiler on a a set of 21 nontrivial problems adapted from published
benchmark suites. 16 of the benchmarks are compared to hand-written implementa-
tions, but we also include five programs ported from Accelerate [McD+13], a mature
Haskell library for parallel array programming. Our results show that the Futhark
compiler generates code that performs comparably with hand-written code in most
cases, and generally outperforms Accelerate. The results indirectly validate the low
overhead of size analysis, and also show the impact of both uniqueness types and the
various optimisations performed by the Futhark compiler.

Sixth Contribution The Futhark compiler is implemented with approximately
45, 000 lines of Haskell, and is available under a free software license at

https://github.com/diku-dk/futhark/
The compiler and language is sufficiently documented for usage by third parties.

The compiler performs several operations whose implementations took significant en-
gineering effort, but are not covered in this thesis due to lack of scientific contribution.
These include defunctorisation for an ML-style higher order module system, hoist-
ing, variance/data-dependency analysis, memory management, memory expansion,
OpenCL code generation, and a plethora of classical optimisations.

We believe that the Futhark compiler can serve as a starting point for future
research in optimising compilers for explicitly parallel languages, as well as a tool for
implementing data-parallel algorithms.

Closing At a high level, we argue that techniques from imperative compilers can be
lifted to a functional and explicitly parallel setting, where analyses are driven by high-
level properties of language constructs, rather than complex and low-level analysis,
and hence prove more robust. We prove that using these techniques, a compiler can
be written that generates highly performant code for non-contrived programs. We
demonstrate the resulting performance compared to hand-written code (Chapter 10),
where Futhark in most cases approaches or even exceeds the performance of hand-
written low-level code.

Most of this work has previously been published in FHPC 2013 [HO13] (during
the author’s master’s studies), FHPC 2014 [HEO14], ARRAY 2016 [HLO16] and
PLDI 2017 [Hen+17].

5

https://github.com/diku-dk/futhark/

Chapter 2

Background and Philosophy

In physics, the speed of light, denoted c, is the ultimate speed limit of the universe.
Likewise in programming, “as fast as C” is often used as an indication that some
programming language is as fast as it can possibly be. In theory it makes no sense to say
that a given programming language is “slow” or “fast”, as these are merely properties
of a particular implementation of the programming language running on a specific
computer. But in practise, it is clear that the design of a programming language has
an overwhelming influence on the ease with which a performant implementation can
be constructed.

For decades, the design of languages such as C has permitted the implementation
of compilers that generate efficient code. One important reason is that the abstract
machine model underlying C, a sequential random-access register machine, can be
mapped easily to mainstream computers with little overhead. This means that a
programmer can write code in C and have a reasonable idea of the performance of
the resulting code. It also means that even a naive non-optimising C compiler can
generate code with good performance, although it may require somewhat more care
from the C programmer. Indeed, C has often been described as “portable assembly
code”.1

In contrast, languages whose abstract model is more different from physical ma-
chines, so-called “high-level languages”, cannot be as easily mapped to real machines.
Compilers must invest considerable effort in mapping for example the call-by-need
lambda calculus of Haskell to the sequential register machine [Jon92]. Even after
decades of work, high-level languages struggle to catch up to the performance of C
on the sequential random-accesss register machine.

Of course, a cursory study of modern hardware designs show that the sequential
random-access register machine is an illusion. The abstract model of C may match a
70s minicomputer reasonably well, but it is increasingly diverging from how modern
computers are constructed. This is not despite lack of effort on behalf of the hardware

1I will using C as the main point of reference in the following sections, but the problems I point out
are common to any sequential language.

6

CHAPTER 2. BACKGROUND AND PHILOSOPHY

designers: due to the massive popularity (and therefore economic significance) of C-
like languages, manufacturers have attempted to prolong the illusion of the sequential
random-access machine for as long as possible.

Unfortunately, while C may be exceeded (as we hope to show in this thesis), c is a
tougher nut to crack. The machine on which this paragraph is being typed contains a
CPU with a clock frequency of 2.3GHz, corresponding to a clock cycle taking 0.43ns.
Given that c is approximately 3 · 108m/s, light moves approximately 13cm in the the
time the CPU takes to perform a clock cycle, thus physically limiting the distance a
single piece of information can travel in a single cycle.

Another, even greater, physical limitation is power dissipation: roughly, the power
usage of the transistors in a processor is roughly proportional to the square of its clock
frequency [DAS12]. This prevents an increase in clock frequency unless we can
compensate with an increase in the efficiency of the transistors. For a sequential
machine that executes instructions in exactly the order they are given, the only way
to speed up execution of a program is to increase the rate at which instructions are
executed. If we can double the rate at which instructions are processed, we in effect
halve the time it takes to execute some program (assuming no memory bottlenecks,
which we will discuss later).

In the popular vernacular, Moore’s Law is typically rendered as “computers double
in speed every two years”. But actually, the law states that transistor density doubles
every two years (implying that transistors become smaller). Moore’s Law does not
state that the enlargened transistor budget translates straightforwardly to improved
performance, although that was indeed the case for several decades. This is due to
another law, Dennard scaling, which roughly states that as transistors get smaller,
their power density stays constant. Taken together, Moore’s Law and Dennard scaling
rougly say that we can put ever more transistors into the same physical size, and with
the same power usage (and thus heat generation).

The reduction in power usage per transistor granted by Dennard scaling permitted
a straightforward increase in CPU clock frequency. Roughly, every time we cut the
power consumption of a transistor in half via shrinkage, we can increase the clock
frequency by 50%. For a sequential computer, this translates into a 50% performance
increase. We can partially circumvent the limits of c by using techniques such as
pipelining. Instruction latency may not be decreased with pipelining, but throughput
can increase significantly. While it is clear that Moore’s Law will eventually stop, or
else transistors would eventually be smaller than a single atom, this is not the issue
that has hindered the illusion of the sequential machine.

The problem is that Dennard scaling began to break down around 2006. Physical
properties of the circuit material leads to increased current leakage at small sizes,
causing the chip to heat up. Simply pushing up the clock frequency is no longer
viable. Instead, chip manufacturers use the transistor budget on increasing the amount
of work that can be done in a clock cycle through various means:

7

CHAPTER 2. BACKGROUND AND PHILOSOPHY

Increasing the size of caches. One significant problem with modern computer de-
signs is that processors are significantly faster than the memory from which
they get their data. As a rule of thumb, accessing main memory incurs a latency
of 100ns - likely hundreds of clock cycles on a current CPU. This so-called
memory wall can be circumvented by the addition of caches that store small
subsets of the larger memory. Heuristics, usually based on temporal locality,
are useed to determine which parts of the larger memory are stored in the caches.
High-performance CPUs can use several layers caches, each layer being larger
and slower than the former.

Inferring instruction-level parallelism. While the semantics of a sequential CPU
is that instructions are executed one after another, it is often the case that two
instructions to not have dependencies on one another, and thus can be executed
in parallel. CPUs even perform out-of-order execution where later instructions
are executed before earlier ones, if the latter instruction has no dependence on
the latter.

Explicit parallelism at the hardware level. The two former techniques try to mas-
querade the fact that the sequential machine model is increasingly physically
untenable. Another approach is to explicitly provide programmers with hard-
ware support for parallel execution. This most famously takes the form of
adding additional CPU cores, each of which processes a sequential stream of
instructions, but an equally important technique is to add vector instructions
that operate on entire vectors of data, rather than single values. As an example,
the newest Intel AVX-512 vector instruction set provides instructions that op-
erate on entire 512-bit vectors (for example, 16 single precision floating point
values). Such instructions dramatically increase the amount of work that is
done in a single clock cycle.

These techniques are all based on merely extending and refining the classic CPU
design. While code may have to be re-written to take advantage of certain new
hardware features (such as multiple cores or vector instructions), the programming
experience is not too dissimilar from programming sequential machines. This is
not necessarily a bad thing: sequential machines are easy to reason about, generous
in their support of complex control flow, and have a significant existing base of
programmer experience.

However, the notion that C is “portable assembly” begins to crack noticeably
even at this point. C itself has no built-in notion of multi-threaded programming, nor
of vector operations, and thus vendors have to provide new programming APIs (or
language extensions) for programmers to take advantage of the new (performance-
critical) machine features. Alternatively, C compilers must perform significant static
analysis of the sequential C code to find opportunities for vectorisation or multithread-
ing. In essence, the compiler must reverse engineer the sequential statements written

8

CHAPTER 2. BACKGROUND AND PHILOSOPHY

by the programmer to reconstruct whatever parallelism may be present in the original
algorithm.

The problem is that C was carefully designed for a particularly class of machines;
a machine no longer resembled by modern high-performance computers. Thus, the
impedance mismatch between C and hardware continues to grow, with little sign of
stopping. This mismatch becomes acute when we move away from the comparatively
benign world of multicore CPUs and into the realm of massively parallel processors.

In this chapter we shall discuss the problems caused by the impedance mismatch,
and what a better programming model may look like. We begin in Section 2.1 by
giving an overview of massively parallel machines, in particular the now-ubiquitous
GPUs. Section 2.2 presents data-parallel functional programming, a programming
model suited for massively parallel machines, through Futhark, the programming lan-
guage that has been developed as part of this thesis. In Sections 2.3 and 2.4 we argue
for the importance of fusion and nested parallelism for modular parallel programming.
In Section 2.5 we defend the decision to introduce yet another programming language,
rather than re-use an existing one, by arguing that certain features of existing func-
tional languages hinder efficient parallel execution. Section 2.6 shows how Futhark,
a restricted data-parallel language, can be used in practise, by demonstrating interop-
erability with mainstream and not-so-mainstream technologies. Finally, Section 2.7
shows in practise the difficulties involved in parallelising legacy sequential code, and
Section 2.8 discusses other approaches to data-parallel functional programming.

2.1 Massively Parallel Machines

To a large extent, mainstream CPUs favour programming convenience, familiarity,
and backwards compatibility over raw performance. We must look elsewhere for
examples of the kind of hardware that could be built if we were willing to sacrifice
traditional sequential notions of sequential programming.

For as long as there has been computers, there have been parallel computers.
Indeed, if we think back to the very earliest computers, the human ones made of
flesh and blood, parallelism was the only way to speed up a computation. You were
unlikely to make a single human computer much faster through training, but you
could always pack more of them into a room. However, with the rise of electrical
computers, and in particular the speed with which sequential performance improved,
parallelism dwindled into the background. Certainly, you could have two computers
cooperate on solving some problem, but the programming difficulties involved made
it more palatable to simply wait for a faster computer to enter the market. Only the
largest computational problems were worth the pain of parallel programming.2

2Concurrency was alive and well, however, due to its importance in multiuser operating systems
and multitasking in general. But most concurrent programs were executed on sequential machines,
with the illusion of concurrency formed through multiplexing. Many of the techniques developed for
concurrent programming are also applicable to parallel programming, although concurrency tends to

9

CHAPTER 2. BACKGROUND AND PHILOSOPHY

Several interesting parallel computers were designed for high-performance com-
puting (HPC) applications. One of the earliest and most influential was the Cray-1
from 1976, which was the first vector processor. About 80 were sold, which was a
large number for a high-end supercomputer. A different design was the CM-1 from
1985, which was based on a computer built from a large number of simple 1-bit
microprocessors. The CM-1 proved difficult to program and was not a success in the
market, but was an early example of a massively parallel machine [Hil89].

In the 90s, consumer demand for increasing visual fidelity in video games led to
the rise of the graphics processing unit (GPU), for accelerating graphical operations
that would be too slow if executed on the CPU. Initially, GPUs were special-purpose
non-programmable processors that could only perform fixed graphical operations.
Over time, the need for more flexibility in graphical effects lead to the development of
programmable pixel shaders, first seen in the NVIDIA GeForce 3 in 2000. Roughly,
pixel shaders allowed an effect to be applied to every pixel of an image - for exam-
ple, looking at every pixel and add a reflection effect to those that represent water.
Graphical operations such as these tend to be inherently parallel, and as a result,
GPU hardware evolved to support efficient execution of programs with very sim-
ple control flow, but a massive amount of fine-grained parallelism. Eventually, GPU
manufacturers started providing APIs that allowed programmers to exploit the parallel
computational power of the now-mainstream GPUs even for non-graphics workloads,
so-called general-purpose GPU programming (GPGPU). The most popular such APIs
are CUDA [17] from NVIDIA, and OpenCL [SGS10].

GPUs are not the only massively parallel machines in use. However, their great
success, their availability, the difficulty in programming them, and their potential
compute power makes them excellent objects of study for researchers of parallel
programming models. In this work, I focus on the details of GPUs over other parallel
machines. However, a central thesis of the work is that modern hardware is too
complicated and too diverse for low-level programming by hand to be viable. I
will introduce a high-level hardware-agnostic programming model, and describe its
efficient mapping to GPUs. The implication is that if the model can be mapped
efficiently to a platform as restricted as GPUs, it can probably also be mapped to other
parallel platforms, such as multicore CPUs, clusters, or maybe even FPGAs.

2.1.1 Basic Properties of GPUs

The performance characterictics and programming model of modern GPUs is covered
in greater detail on 4, but a basic introduction is given here, in order to give an idea
of the difficulties involved in retrofitting sequential languages for GPU execution.

GPUs derive their performance from an execution model called single instruction
multiple thread (SIMT), which is very similar to the single instruction multiple data
model. Roughly, threads are not fully independent, but grouped into bundles that all

implicitly focus on correctness over performance on some specific machine.

10

CHAPTER 2. BACKGROUND AND PHILOSOPHY

execute the same operations on different parts of a large data set. For example, on
an NVIDIA GPU, threads are bundled into warps, of 32 threads each, that execute in
lockstep, and which form the unit of scheduling. This execution is highly suited for
dense and regular computations, such as the ones found in linear algebra, but less so
for irregular and branch-heavy computations such as graph algorithms.

A GPU is still subject to the laws of physics, and there is therefore a significant
latency between issuing a memory read, and actually receiving the requested data (the
memory wall). On a CPU, a hierarchy of caches is used to decrease the latency, but
a GPU uses aggressive simultaneous multithreading, where a thread that is waiting
for a memory operation to complete is de-scheduled and another thread run in its
place. This scheduling is done entirely in hardware, and thus does not carry the
usual overhead of context switches. This scheduling is not done on each thread in
isolation, but on entire 32-thread warps. Thus, while a GPU may be only have enough
computational units (such as ALUs) to execute a few thousand parallel instructions per
clock cycle, tens of thousands of threads may be necessary to avoid the computational
units being idle while waiting for memory operations to finish. As a result of this
design, memory can also be optimised for very high bandwidth at the expense of
latency, and it is not unusual for GPU memory buses to support bandwidth in excess
of 300GiB/s (although as we shall discuss in Chapter 4, specific access patterns must
be followed to reach this performance).

GPUs have many limitations that hinder traditional programming techniques and
languages:

• GPUs function as co-processors, where code is explicitly uploaded and invoked.
A GPU program is typically called a GPU kernel, or just kernel.

• The amount of threads necessary implies that each thread can use only relatively
few registers and little memory (including stack space).

• The lockstep execution of warps, as well as the very small per-thread stack size,
prevents function pointers and recursion.

• GPUs cannot directly access CPU memory, and so data must manually be
copied to and from the GPU.3

• The memory hierarchy is explicit. While a small amount of cache memory
is often present, obtaining peak performance depends on judicious use of
programmer-managed on-chip memory.

• Memory allocation is typically not possible while executing a GPU program.
All necessary memory must be pre-computed before starting GPU execution.

• Generally no support for interrupts or signals.
3This is changing with the newer generation of GPUs.

11

CHAPTER 2. BACKGROUND AND PHILOSOPHY

The mismatch between the abstract machine model of C and GPU architectures is
clear. While current GPU programming APIs do in fact use a restricted subset of C (or
C++ in the case of CUDA) for expressing the per-thread code, it is the programmmer’s
responsibility to orchestrate their execution. This involves organising communication
between the tens of thousands of threads that are needed to saturate the hardware, with
both correctness and performance easily suffering under even small mistakes—a tall
order, and the compiler offers little help. In practise, this renders GPU programming
the domain of experts, and off-limits to most programmers, except through the use of
restricted libraries offering pre-defined primitives.

2.2 A Parallel Programming Language

We need a better programming model; one that does not have as fundamental a
mismatch between its execution model and parallel hardware. This does not mean
we need a low-level language, or a specialised GPU language. Rather, we should
increase the level of abstraction, and stop overspecifying details like iteration order
and sequencing, unless we really need something to execute in some specific order.
In a C program, everything is required to execute in exactly the order written by
the programmer, and the C compiler must perform significant work to determine
which of the sequencing restrictions are essential, and which are accidental. In a
(pure) functional language, only data dependencies affect ordering. Furthermore, the
language should be safe for parallel execution by construction, without the risk of
race conditions or deadlocks.

In the following, I will introduce the Futhark programming language, a purely
functional ML-like array language that has been developed as part of my PhD work4.
Futhark is statically typed and eagerly evaluated. The full Futhark language supports
both parametric polymorphism and an advanced higher-order module system inspired
by Standard ML [MTM97], but for this thesis we shall restrict ourselves to the simple
monomorphic subset. Futhark is not a general-purpose programming language. In-
stead, Futhark is intended for relatively small and simple high-performance programs,
which can form the computational core of a larger program written in a conventional
language. This perspective is elaborated in Section 2.6. This thesis is not intended
as a full guide to Futhark programming; the Futhark reference manual5 serves that
purpose well enough. Therefore, we explain the syntax and semantics of Futhark on a
case-by-case basis by example. We shall, however, be more precise when we describe
the core language used by the compiler.

A reasonable high-level programming model for parallel computers is one based
on bulk operations, where we program in terms of transformations on entire collec-
tions of data. Suppose we wish to increment every element in a vector by 2. The

4Futhark has its roots in an earlier language,L0, which I helped develop during my master’s studies.
5https://futhark.readthedocs.io

12

https://futhark.readthedocs.io

CHAPTER 2. BACKGROUND AND PHILOSOPHY

functional programming tradition comes with an established vocabulary of such bulk
operations which we can use as inspiration. For this task, we use the map construct,
which takes a function α → β and an array of values of type α, and produces a
collection of values of type β:

map (\x -> x + 2) xs

The above is a valid expression in the Futhark programming language. We use
the notation (\x -> ...), taken from Haskell, to express an anonymous function
with a parameter x. This expression does not specify how the computation is to be
carried out, and it does not imply any accidental ordering constraints. Indeed, the
only restriction is that this expression can only be evaluated after the expression that
produces xs.

In this section, and those that follow, Futhark will be used to demonstrate the
qualities of parallel programming models. Futhark is by no means the first parallel
programming language, nor even the first parallel functional language. That title
likely belongs to the venerable APL, which was first described in 1962 [Ive62].
Futhark is not even the first parallel language in a λ-calculus style, as it is predated
by NESL [Ble96] by some twenty years. Indeed, as we shall see, Futhark is not even
the most expressive such language. Futhark has more similarities than differences
from other parallel functional languages. The main contributions of this thesis are
the implementation techniques that have been developed for Futhark—its efficient
mapping to GPU hardware—as well as those bits of its language design that enable
said implementation. It seems likely that the implementation techniques could be
applied to other functional languages of roughly the same design. For more on why
I chose to construct a new programming language rather than use an existing design,
see Section 2.5.

Let us return to the map expression:

map (\x -> x + 2) xs

The style of parallelism used by Futhark is termed explicit data parallelism. It is
explicit because the user is required to use special constructs (here, map) to inform the
compiler of where the parallelism is located, and it is data parallel because the same
operation is applied to different pieces of data. In contrast, thread-based programming
is based on task parallelism, where different threads perform different operations on
different pieces of data (or a shared piece of data, if one enjoys debugging race
conditions). Task parallelism does necessarily imply low-level and racy code with
manual synchronisation and message passing, but can be given safe structure through
for examples futures or fork/join patterns.

One important property of functional data parallelism is that the semantics are
sequential. The program can be understood entirely as a serial sequence of expressions

13

CHAPTER 2. BACKGROUND AND PHILOSOPHY

evaluating to values, with parallel execution (if any) not affecting the result in any
way. This decoupling of semantics and operations is typical of functional languages,
and is key to enabling aggressive automatic transformation by a compiler. It is also
easier for programmers to reason sequentially than in parallel. It is still important
to the programmer that an operation such as map is, however, operationally parallel
can be described through parallel cost models. One such cost model was described
and subsequently proven implementable for the data parallel language NESL [BG96].
While a formal cost model for Futhark is outside the scope of this thesis, the similarity
of Futhark to NESL suggests that a similar approach would be viable. Instead, we use
the intuitive notion that certain constructs (such as map) may be executed in parallel.
However, it is not always efficient to translate all potential parallelism into realised
parallelism on a concrete machine (see Section 2.2.2).

2.2.1 Choice of Parallel Combinators

A persistent question when designing a programming language is which constructs
to build in, and which to derive from more primitive forms. In functional languages,
we usually prefer to include just a few powerful foundational constructs, on which the
rest of the language can be built. In principle, map can be used to express (almost)
all other data-parallel constructs. For example, we can write a summation as follows,
where we assume for simplicity that the size of the input array is a power of two:

let sum (xs: []i32): i32 =
let ys’ =

loop ys=xs while length ys > 1 do
let n = length ys / 2
in map (+) (zip ys[0:n] ys[n:2*n])

in ys’[0]

An explanation of the syntax is necessary. In Futhark, both functions and local
bindings are defined using the let keyword. These functions both take a single
parameter, xs of type []i32. We write the type of arrays containing elements of
type t as []t. The loop construct is specialised syntax for expressing sequential
loops. Here, ys is the variant parameter, which initialised with the value xs, and
receives a new value after every iteration of the loop body. The array slicing syntax
ys[n:2*n] takes elements starting at index n and up to (but exclusive) 2*n.

The summation proceeds by repeatedly cutting the array in twain, adding each half
to the other until only a single element is left. We can characterise the performance
of sum with with a work/depth parallel cost model [BG95]. If we suppose that map
runs in work O(n) and depth O(1), the function sum runs in work O(n) and depth
O(log n). This is asymptotically optimal for physically reasonable machine models.
However, if executed straightforwardly on a GPU, this function will be far from

14

CHAPTER 2. BACKGROUND AND PHILOSOPHY

reaching peak potential performance. One reason is that it is very expensive to create
the intermediate ys arrays, compared to the time taken to add the numbers. While
a “sufficiently smart” compiler may be able to rewrite the program to avoid some
of this overhead (and perhaps even take advantage of hardware-specific features for
performing summations), this is contrary to the philosophy behind Futhark. Although
we do not mind aggressive optimisation, the transformations we perform should arise
naturally out of the constructs used by the programmer, and not depend on subtle and
fragile analyses.

As a consequence, we provide several parallel constructs in Futhark that, while
expressible in an asymptotically optimal form using map and sequential loops, can
be mapped by the compiler to far superior low-level code. We still wish to keep the
number of constructs small, because each requires significant effort to implement and
integrate in the compiler, particularly with respect to optimisations such as fusion
(Chapter 7). The main constructs we have chosen to include are the following, which
closely resemble higher-order functions found in most functional languages:

• map : (α→ β) → []α→ []β
map f xs ≡ [f xs[0], f xs[1], ..., f xs[n-1]]
Applies the function f to every element of the array xs, producing a new array.

• reduce : (α→ α→ α) → α→ []α→ α
reduce f v xs ≡ f xs[0] (f ... xs[n-1])
Reduces the array xs with the function f. The function must take two argu-
ments and be associative, with v as the neutral element. If xs is empty, v is
produced. This is similar to the fold function found in functional languages,
but the extra requirements permit a parallel execution, which is not guaranteed
for an arbitrary fold.

• scan : (α→ α→ α) → α→ []α→ []α
scan f v xs ≡[reduce f v xs[0:1],

reduce f v xs[0:2],
...
reduce f v xs[0:n]]

Computes an inclusive scan (sometimes called generalised prefix sum) of the
array xs. As with reduction, the function must be associative and have v as its
neutral element. The resulting array has the same size as xs.

• filter : (α→ bool) → []α→ []α
filter f xs ≡ [x | x <- xs, f x]
Produces an array consisting of those elements in xs for which the function f
returns true.

Together, constructs such as these are called second-order array combinators
(or SOACs). Futhark does not presently permit the programmer to write their own

15

CHAPTER 2. BACKGROUND AND PHILOSOPHY

higher-order functions, so new ones cannot be defined (this can be worked around
via higher-order modules; see Section 2.5). Futhark also contains two more exotic
SOACs, stream_red and stream_map, which will be discussed in Section 2.5.2.

Requiring associativity and neutral elements for the functional arguments in
reduce and scan is what enables a parallel implementation. For reductions, perfor-
mance can be improved further if the operator is also commutative (see Section 4.5).
For simple functions, the Futhark compiler can detect commutativity, but otherwise
the programmer can use a special reduce_comm SOAC that behaves exactly like
reduce, but carries the promise that the function is commutative. There is no such
variant for scan, because scans do not benefit from commutative operators.

In all cases, it is the programmers responsibility to ensure that the functions have
the required properties - the compiler will not check. Indeed, checking such semantic
(as opposed to syntactic) properties in general is undecidable, as shown by Rice’s
Theorem [Ric53]. If an invalid function is provided (such as subtraction, which is not
associative), the program may produce nondeterministic results.

In some parallel languages or libraries, reductions and scans are restricted to a
small collection of standard operators, such as addition or maximum. This makes
the language safer, but we have found many examples of problems that can be solved
efficiently with nonstandard reductions. For example, consider the problem of finding
the index of the largest element in an array of floating-point numbers. In many parallel
libraries, this is a primitive operation. In Futhark, we can express this as:

let index_of_max [n] (xs: [n]f32): i32 =
let (_, i) =

reduce_comm
(\(x,xi) (y,yi) ->

if xi < 0 then (y, yi)
else if yi < 0 then (x, xi)
else if x < y then (y, yi)
else if y < x then (x, xi)
else if xi < yi then (y, yi)
else (x, xi))

(0.0, -1)
(zip xs [0...n-1])

in i

First, another note on syntax. The size parameter [n] indicates that the function
is polymorphic in some size n. This parameter is in scope as a variable of type i32
in the remaining parameters and body of the function. We use this to indicate that the
array parameter xs has n elements, and to construct an array of the integers from 0 to
n-1 in the expression [0...n-1]. We will return to size parameters in Section 2.5.

The index_of_max function functions by pairing each element in xs with its

16

CHAPTER 2. BACKGROUND AND PHILOSOPHY

index, then performing a reduction over the resulting array of pairs. As a result, the
two taken parameters by the reduction function themselves consist of two values. We
consider the neutral element to be any pair where the index is negative. To make the
operator commutative, we use the indices as a tie-breaker in cases where multiple
elements of xs have the same value (the element with the greater index is chosen).
We use reduce_comm instead of plain reduce to inform the compiler that the
operator is indeed commutative.

2.2.2 Efficient Sequentialisation

In the literature, a parallelising compiler is a compiler that takes as input a pro-
gram written in some sequential language, typically C or Fortran, and attempts to
automatically deduce (sometimes with the help of programmer-given annotations)
which loops are parallel, and how best to exploit the available parallelism. A large
variety of techniques exist, ranging from sophisticated static approaches based on
loop index analysis [Pou+11], to speculative execution that assumes all loops are
parallel, and dynamically falls back to sequential execution of the assumption fails
at runtime [OM08]. The Futhark compiler is not such a parallelising compiler. In-
stead, we assume that the programmer has already made all parallelism explicit via
constructs such as map (and others we will cover). In this style of programming, it
is likely that the program contains excess parallelism, that is, more parallelism than
the machine needs. As almost all parallelism comes with a cost in terms of overhead,
one of the main challenges of the Futhark compilers is to determine how much of this
parallelism to actually take advantage of, and how much to turn into low-overhead
sequential code via efficient sequentialisation. It is therefore more correct to say that
the Futhark compiler is a sequentialising compiler.

For example, let us consider thereduce construct, which is used for transforming
an array of elements of type α into a single element of type α:

reduce (\x y -> x + y) 0 xs

We require that the functional argument is an associative function, and that the
second element is a neutral element for that function. The conventional way to
illustrate a parallel reduction is via a tree, as on Figure 1. To reduce an n-element
array [x1, . . . , xn] using operator ⊕, we launch n/2 threads, with thread i computing
x2i ⊕ x2i+1. The initial n elements are thus reduced to n/2 elements. The process is
repeated until just a single value is left–the final result of the reduction. We perform
O(log(n)) partial reductions, each of which is perfectly parallel, resulting in a work
depth of O(log(n)).

Tree reduction is optimal on an idealised perfectly parallel machine, but on real
hardware, such as GPUs, it is inefficient. The inefficiency is caused by exposing more
parallelism than needed to fully exploit the hardware. The excess parallelism means

17

CHAPTER 2. BACKGROUND AND PHILOSOPHY

Here goes a graph.

Figure 1: Summation as a tree reduction.

Here goes a graph.

Figure 2: Summation as a chunked tree reduction.

Figure 3: The runtime of a summation implemented as either a tree reduction or a chunked
tree reduction.

. .

we pay an unnecessary overhead due to communication cost between threads. For a
summation, the overhead of communicating intermediate results between processors
significantly dominates the cost of a single addition. Efficient parallel execution relies
on exposing as much parallelism as is needed to saturate the machine, but no more.

The optimal amount of parallelism depends on the hardware and exact form of the
reduction, but suppose that parallel k threads are sufficient. Then, instead of spawning
a number of threads dependent on the input size n, we always spawn k threads. Each
thread sequentially reduces a chunk of the input consisting of n

k elements, producing
one intermediate result per thread. We then launch a second reduction over all these
intermediate results. This second reduction can also be done in parallel, or can be
sequential if k is sufficiently small. This approach is shown on Figure 2. A rough
performance comparison between sample implementations of the two approaches
to reduction is shown on Figure 3?. On a sequential machine, we can simply set
k = 1, and not exploit any parallelism at all. Efficient sequentialisation is particularly
important (and also more difficult) when it comes to handling nested parallelism, as
it enables locality-of-reference optimisations as we shall see in Section 2.4.

Efficient sequentialisation is not a single implementation technique, but a general
implementation philosophy, which gives rise to various techniques and design choices.
It is a principle that I shall often return to during this thesis, as it has proven critical for
executing Futhark efficiently on real hardware. In essence, efficient sequentialisation
is used to bridge the impedance mismatch between the “perfectly parallel” abstract
machine assumed by Futhark, and real machines that all have only limited parallelism.
As we shall see, using efficient sequentialisation to move from perfect parallelism to
limited parallelism is much easier, than the the efforts parallelising compilers go to
when converting sequential code to parallel code.

2.3 Fusion for Modular Programming

One of the most important goals for most programming languages is to support
modular and abstract programming. A modular program is composed of nominally
independent subcomponents, which are composed to form a full program. The
simplest feature that supports modular programming is perhaps the procedure. Almost

18

CHAPTER 2. BACKGROUND AND PHILOSOPHY

all programming languages support the subdivision of a program into procedures,
although most languages also support higher-level abstractions. The most important
property of a procedure is that it can be understood in terms of its specification, rather
than its implementation. This simplifies reasoning by abstracting away irrelevant
details.

As a purely functional language, procedures in Futhark are called functions. To
support a programming style based on the writing of small, reusable components, it
is important that there is little run-time overhead to the use of functions. Function
inlining is a well established technique to remove the overhead of function calls,
although at the cost of an increase in code size. Another useful property of inlining is
that it enables further optimisation., When an opaque function call is replaced with the
function body, further simplification may be possible. While wide-spread techniques
such as copy propagation, constant folding, and dead code removal remain useful
in a data-parallel such as Futhark, other, more sophisticated, transformations are
also important. One such transformation is loop fusion, which removes intermediate
results by combining several loops into one. Chapter 7 discusses in more detail the
technique by which fusion is implemented in the Futhark compiler. The remainder
of this section discusses the intuition and motivation behind loop fusion, as well as
showing how fusion is significantly easier in the functional setting than for imperative
languages.

Let us consider two Futhark functions on arrays:

let arr_abs (xs: []i32) = map i32.abs xs

let arr_incr (xs: []i32) = map (+1) xs

The function arr_abs applies the function i32.abs (absolute value of a 32-
bit integer) to every element of the input array. The function arr_scale increases
every element of the input by 1. We use a shorthand for the functional argument:
(+1) is equivalent to \x -> x + 1, similarly to the operator sections of Haskell.

Consider now the following expression:

let ys = arr_abs xs
in arr_incr ys

If we inline arr_abs and arr_incr we obtain:

let ys = map i32.abs xs
in map (+1) ys

If we suppose a straightforward execution, the first map will read each element of
xs from memory, compute its absolute value, then write the results back to memory as
the array ys. The second mapwill then read back the elements ys array, perform the

19

CHAPTER 2. BACKGROUND AND PHILOSOPHY

(+1) operation, and place the result somewhere else in memory. Ifxs has n elements,
the result is a total of 4n memory operations. Given that memory access is often the
bottleneck in current computer systems, this is wasteful. Instead, we should read each
element of the arrayxs, apply the combined function(\x -> i32.abs x + 1),
then write the final result, for a total of 2n memory operations. We could write such a
map manually, but we would lose modularity, as the program is no longer structured
as a composition of re-usable functions. For such simple functions as are used in this
example, the loss is not great, but the issue remains for more complicated functions.

The compiler employs producer-consumer loop fusion to combine the two map
operations into one. The validity of fusion is in this case justified by the algebraic
rule

map f ◦ map g = map (f ◦ g)

This permits the Futhark compiler to automatically combine the twomaps and produce
the following program:

map (\x -> let y = i32.abs x in y + 1) xs

Fusion is the core implementation technique that permits code to be written as a
composition of simple parallel operations, without having to actually manifest most
of the intermediate results. It is worth noting that the fusion algorithm used by the
Futhark compiler respects the asymptotic behaviour of programs. Thus, a program
that is fully fused will only be a constant amount faster than one that is not fused at
all. This is in fact a feature, as it means the tractability of a program does not depend
on a compiler optimisation. Chapter 7 goes into more detail.

While the Futhark programming language does not correspond directly to any
specific calculus, it is heavily based on the array combinator calculus discussed in
Chapter 3. This calculus serves as inspiration and justification for rewrite rules that
are exploited to transform user-written programs into forms that are more efficient.
As we shall see, the usual array combinators (map, reduce, scan, etc) are not
adequate for fusion purposes. Using these, we cannot even perform the classic case
of map-reduce fusion, as we would invariably break either the type rules for the
reduce operator, or the requirement of associativity. In Section 7.1 we introduce a
new set of internal combinators that are used to perform aggressive fusion.

2.3.1 How Combinators Aid Fusion

While loop fusion is not an unknown technique in compilers for imperative languages,
it is significantly more complicated to implement. One major problem is that imper-
ative languages do not have map as a fundamental construct. Hence, index analysis
is first needed to determine that some loop in fact encodes a map operation, as the
following imperative pseudocode demonstrates:

20

CHAPTER 2. BACKGROUND AND PHILOSOPHY

for i < n:
ys[i] <- f(xs[i])

for i < n:
zs[i] <- g(ys[i])

While index analysis can easily become undecidable, it is feasible for simple
cases, such as this one. A bigger problem is that there is no guarantee that the loops
can be executed parallel. For example, the functions f and g may have arbitrary side
effects, which means that they must be executed in order. Many functions written in an
imperative language, even those that are externally pure, use side-effects internally, for
example for storage management or accumulator variables in loops. It can be difficult
for a compiler to automatically determine that a function is indeed pure. A solution
is to have the programmer manually add a purity annotation to the function, which is
then trusted by the compiler. There are two problems with this technique: first, the
programmer may be wrong, which may result in unpredictably wrong code, depending
on how the optimiser exploits the information. Second, optimising compilers are
notoriously bad at providing feedback about when insufficient information inhibits
an information, and how the programmer can rectify the problem. A performance-
conscious programmer may end up liberally sprinkling purity annotations on most
of their functions in the hope of helping the optimiser, thus exacerbating the first
problem.

Even if we can somehow determine f and g to be pure, the in-place assignment to
y may have an effect if xs and ys are aliases of each other (i.e. overlap in memory).
Alias analysis is one of the great challenges for compiler optimisation in imperative
languages [HG92]—indeed, aliasing guarantees are one of the performance benefits
Fortran has over languages such as C. Modern languages tend to support annotations
by which the programmer can indicate that some array has no aliases in scope6. These
annotations, while useful, have the same issues as the purity annotations discussed
above.

In a purely functional language, we avoid these issues by construction. This allows
the compiler (and the compiler writer!) to focus on exploiting parallel properties,
rather than proving them.

2.4 Nested Parallelism

In a parallel expression map f xs, the function f can in principle be anything. In
particular, f can contain more parallelism. When one parallel construct can be nested
inside of another, we call it nested parallelism.

The need for nested parallelism arises naturally out of our desire to support
modular programming. We should be able to map any function f, even if f is parallel

6The restrict keyword in C99.

21

CHAPTER 2. BACKGROUND AND PHILOSOPHY

itself. Furthermore, the parallelism inside of f should also be utilised—it’s not
enough to exploit only the outermost level of parallelism, as that may not be enough
to saturate the hardware. Unfortunately, it turns out that nested parallelism is difficult
to implement efficiently in its full generality. The reason is that it is hard to map
arbitrary nested parallelism to current parallel hardware, which supports only a fixed
level of parallelism efficiently (and typically with harsh restrictions on the size of each
level beyond the first; see Chapter 4). This is an example of an impedance mismatch
between free-form nested parallel program and the real hardware we have available
to us. Fortunately, there are ways to bridge the divide that follow straightforwardly
from the construction of data-parallel functional programs in general, and Futhark
programs in particular.

Guy Blelloch’s seminal work on NESL demonstrated how to handle arbitrary
nested parallelism via full flattening [Ble+94]. The flattening algorithm transforms
arbitrary nested data parallelism into flat data parallelism, which can be easily mapped
on to most machines. The key technique is vectorisation, by which each function f is
lifted to a vectorised version f̂ , that applies to segments of some larger array. While
flattening is useful for its universal applicability, it has three main problems:

1. All parallelism is exploited, even that which is expensive to exploit (perhaps
hidden behind branches) and not necessary to take full advantage of the hard-
ware.

2. The vectorisation transformation forces all sequential loops to the outermost
level, thus preventing low-overhead sequential loops inside threads. This is
particularly harmful for programs that are “almost flat”, such as a map whose
function simply performs a sequential loop. Flattening would transform this
into a sequential loop that contains a map, thus forcing an array of intermediate
results to be written after every map. In contrast, the original loop may have
been able to run using just registers.

3. The structure of the original program is heavily modified, destroying much
information and rendering optimisations based on access pattern information
(such as loop tiling) infeasible.

Work is still progressing on adapting and improving the flattening transformation.
For example, [Kel+12] shows how to avoid vectorisation in places where it produces
only overhead with little gain in parallelism, particularly addressing problem (2)
above.

Flattening remains the only technique to have demonstrated universal applicabil-
ity, and is thus useful as a “last resort” for awkward programs that admit no other
solution. However, many interesting programs only exhibit limited nested parallelism.
Specifically, they exhibit only regular nested parallelism, which is significantly easier
to map to hardware.

22

CHAPTER 2. BACKGROUND AND PHILOSOPHY

Nested parallelism is regular if the amount of parallelism in its inner parallel
loops is invariant to its outer parallel loops, and otherwise irregular. For example,
the following Futhark expression contains irregular parallelism:

map (\i -> reduce (+) 0 [1...i]) [1...n]

While this one does not:

map (\i -> reduce (+) 0 (map (+i) [1...n])) [1...n]

In the former program, the inner parallel reduce operates on an array containing
i elements, where i is bound by the function of the map. In the latter case, the
reduce operates on an array of size n, where n is bound outside the expression.
The parameter i is still used, but it does not contribute to the size of any array, only
to their values. While the Futhark language does support irregular nested parallelism,
as demonstrated above, the current implementation is not able to exploit it. Should it
prove necessary, the Futhark compiler could be modified to incorporate the flattening
algorithm as well, but for this thesis, I have focused on developing implementation
techniques that are more limited in scope, but produce faster code.

The limitation to regular nested parallelism is not as onerous as it may seem.
First, many interesting problems are naturally regular (see Chapter 10 for examples).
Second, we can always manually apply the flattening algorithm to our program
to the degree necessary to remove irregular nested parallelism. This may require
manual inlining and thus breaking modularity. Third, many irregular programs can
be modified in an ad-hoc fashion to become regular. For example, the irregular
program shown above can be rewritten to

map (\i -> reduce (+) 0
(map (\x -> if x > n then 0 else x) [1...n]))

[1...n]

But this method is not mechanical—a unique approach is required based on the
algorithm in question, in contrast to flattening, which is general.

The largest problem with the restriction to only regular parallelism is that it
inhibits modularity. Consider a function that computes the sum of the first n positive
integers for some n:

let sum_nats (n: i32): i32 =
reduce (+) 0 [1...n]

The type of this function is merely i32 -> i32, and so we should be able to
map it over an array of type i32:

23

CHAPTER 2. BACKGROUND AND PHILOSOPHY

map sum_nats [1...100]

However, this gives rise to irregular parallelism, because the parallelism of
the map inside the definition of sum_nats depends on the integer argument to
sum_nats. This is not a problem that can be detected merely by the type of
sum_nats. It remains future work to investigate language mechanisms that allows
programmers to reason about the regularity of parallelism in a modular fashion.

The restriction to regular parallelism is an artifact of the current Futhark im-
plementation, not Futhark as a programming language. Therefore, if necessary, an
implementation could be constructed that avoids this issie by using full flattening.
However, the performance advantage of regular nested parallelism still motivates a
language mechanism for modular reasoning.

2.5 Why a New Language?

Most of the preceding discussion involves concepts and constructs that are common
to many functional languages. Indeed, it is frequently claimed that pure functional
programming makes parallel execution trivial. Why, then, do I propose an entirely
new language, rather than applying my techniques to existing and reasonably popular
languages such as Haskell, OCaml, or F#? What does Futhark have that these
languages lack?

The answer lies in the inverse question: what has been excluded from Futhark
to permit efficient parallel execution? While all mentioned languages contain the
essentials for data-parallel programming—bulk operations with pure functions—they
also contain features and promote programming styles that complicates the task of
writing a compiler capable of generating high-performance code for restricted parallel
machines, such as GPUs. This is not a task that needs further complication. The
following discusses common problematic traits, and how Futhark circumvents them.
We do not claim that these problems cannot be solved, merely that they provide
significant challenges that would have distracted from the core goal our work, which
is developing compilation techniques for programs written as compositions of bulk
parallel operators.

Emphasis on recursion: Recursion is an inherently sequential process, which is
accordingly of less general usefulness in a parallel language. However, even for
those cases where we do desire sequential loops, free-form recursive functions
prove challenging to implement efficiently on a GPU.

On the GPU, threads do not possess a stack in the conventional sense. While
stacks can be emulated (slowly), hardware limitations force a small, static size.
For example, a GPU may need 100, 000 parallel threads to be saturated. On
a GPU with 8GiB of memory (not insignificant for the current generation),
each thread could at most have a stack size of 83KiB—and that’s if we use all

24

CHAPTER 2. BACKGROUND AND PHILOSOPHY

available memory just for stacks. Recursion inside code running on a GPU is
thus a bad idea.

A language could conceivably be defined where the only form of recursion
permitted is tail-recursion, which does not suffer from this problem. In the
interest of expedience, Futhark entirely bans ordinary recursive functions, and
provides special syntax (the loop construct) for the equivalent of tail recursion.
In the future, this restriction could be loosened to support (mutually) tail
recursive functions.

Another approach, which is in practice what is done by the flattening transfor-
mation, is to interchange the recursion outside of the parallel sections. This
comes at a significant cost in both memory usage and expensive control flow.

Sum types and recursive types: Sum types by themselves are only problematic in
that they necessarily imply control flow to handle different cases. While control
flow is not hard to map to a GPU, branching can be expensive. Nevertheless,
the use of a sum type is an explicit choice made by the programmer, presumably
with an understanding of the costs involved, and so are likely to be supported
by Futhark in the future.

Recursive types (such as linked lists) usually imply pointer-chasing at runtime,
which fits poorly with the very regular access patterns require to obtain peak
GPU performance (see Section 4.3.1). Constructing complex data types usually
requires allocation, which is also generally not possible on a GPU. While it
has been shown that these problems can be solved in some cases, for example
by region inference in the Harland programming language [Hol+14], it is not
clear that the performance of the resulting code is good. As Futhark is a
language primarily focused on obtaining good performance, we have left out
features that—while possible to map to GPU—should probably not be used in
a program we wish to be fast.

Lazy evaluation: Lazy evaluation is essentially shared state plus runtime effects—
two of the most difficult things to map to GPUs. As allocation is not generally
possible on the GPU, it is a serious problem that evaluation of any term could
potentially require allocating an arbitrary amount of space. It is telling that
data-parallel extensions to Haskell, such as Accelerate [McD+13] and Data
Parallel Haskell [Cha+07], are both strict, even though Haskell itself heavily
emphasises laziness.

Side effects: While all functional languages emphasise programming with pure func-
tions, most languages in the ML family tend to permit essentially unrestricted
side effects. This is traditionally not a problem when only “benign effects”
are used. For example, a function could internally use mutable references for

25

CHAPTER 2. BACKGROUND AND PHILOSOPHY

performance reasons, such as to implement memoisation. As long as the ef-
fects are not visible to callers of the function, the programmer can still perform
black-box reasoning as if the function were pure.

However, a compiler does not have this freedom. Even if we are willing to trust
some annotation that an function implemented with effects really behaves as an
extensionally pure function, this does not extend to its definition. A compiler
cannot treat a function as a black box, but may need to perform significant
transformations on its definition to produce efficient code.

As a result, Futhark permits no side effects, except for nontermination and
other error cases. To address some of the performance issues associated with
expressing efficient sequential algorithms in a pure functional language, Futhark
supports uniqueness types, which are used to permit in-place updates of arrays
under some circumstances. These are discussed in Section 2.5.1.

First class functions: GPUs do not support function pointers (related to the absence
of a stack), which immediately renders most conventional implementation tech-
niques for first-class functions impractical. We can employ defunctionalisa-
tion [Rey72], where every function term in the program is identified with a
unique integer, and a large branch statement is used to select the corresponding
function a runtime. This is the approach taken by Harland, but the heavy use
of branching renders it inefficient on GPUs. In particular, this approach has
the unfortunate consequence that whenever the programmer adds a function,
all other function calls will become slower (except those that can be statically
resolved).

While fully first class functions are not viable, limited support for higher-
order functions is possible. Whenever we can statically determine the form of
the functional arguments to a function, we can generate a specialised version
of the function at compile-time, where the concrete functional argument is
embedded. This is not yet implemented in Futhark, and so user-defined higher-
order functions are not supported. It is, however, possible to use the higher-
order module system to imitate higher-order functions, albeit at some cost in
boilerplate. An example is shown on Figure 4. As the module system is outside
the scope of this thesis, we shall not delve further on the merits and demerits
of this approach.

The primary motivation behind Futhark was to create a language whose efficient
implementation is not hindered by complicated features. For the most part, Futhark
resembles a least-common-denominator functional language. However, we have
taken the opportunity to add various language features specialised for the task of
high-performance parallel array programming. In particular, the fact that Futhark is
not intended for constructing advanced user-defined data types, but instead expects

26

CHAPTER 2. BACKGROUND AND PHILOSOPHY

-- A parametric module (functor) taking as argument
-- a module, and producing a module.
module map2(fm: { type c_t -- "closure" type

type x_t -- element type
val f: c_t -> x_t -> x_t }) = {

let g [n] (c: fm.c_t) (xs: [n]fm.x_t): [n]fm.x_t =
map (\x -> fm.f c (fm.f c x)) xs

}

module increment_twice = map2 {
type c_t = i32
type x_t = i32
let f (c: i32) (x: i32) = x + c

}

module scale_twice = map2 {
type c_t = f64
type x_t = i32
let f (c: f64) (x: i32) = i32 (f64 x * c)

}

let foo = increment_twice.g 2 [1...5]
-- foo == [5i32, 6i32, 7i32, 8i32, 9i32]
let bar = scale_twice.g f64.pi [1...5]
-- bar == [9i32, 18i32, 28i32, 37i32, 47i32]

Figure 4: Using higher-order modules to imitate higher order functions in Futhark. Themap2
parametric module produces a module containing a function g, which applies a
provided function twice. The parameter of type c_t is used to emulate a closure
environment.

27

CHAPTER 2. BACKGROUND AND PHILOSOPHY

let dotprod [n] (xs: [n]i32) (ys: [n]i32): i32 =
reduce (+) 0 (map (+) (zip xs ys))

(a) Dot product of integer vectors in Futhark.

let matmul [n][m][p]
(xss: [n][m]i32) (yss: [m][p]i32): [n][p]i32 =

map (\xs -> map (dotprod xs) (transpose yss)) xss

(b) Multiplication of integer matrices in Futhark.

Figure 5: Two examples of using size parameters to encode size constraints on Futhark
functions. Presently the constraints are checked at run-time, not compile-time, and
thus serve more as documentation than a safety mechanism.

. .

programmers to express their program in terms of arrays, allows us to add specialised
constructs and notation to aid in array programming. We have already seen an example
in the form of size parameters, which allows the programmer to express size constraints
on functions parameters. For example, the dot product function on Figure 5a requires
that the two input arrays have the same length, while the matrix multiplication on
Figure 5b specifies the usual size constraints on matrix multiplication.

Apart from the usual parallel combinators, Futhark also supports two somewhat
more exotic features, both of which are introduced for performance reasons. These
are discussed below.

2.5.1 In-Place Updates

While Futhark is a data-parallel language, and expects programs to exhibit large
amounts of parallelism, it also supports the implementation of limited imperative
algorithms in an efficient manner. Specifically, Futhark supports in-place updates,
which allows one to create an array that is semantically a copy of another array, but
with new values at specified positions. This can be done in a purely functional manner
by simply copying the array, but this would cause the asymptotic cost of the update
to be proportional to the full size of the array, not just the part that we are updating.
With an in-place update, we pay only for the part of the array that we are updating.
This section describes how Futhark supports in-place updates without violating the
functional purity that we depend on for safe parallel programming.

Before further discussion, we must justify why in-place updates are needed. Our
motivation is twofold. First, it is not uncommon for a parallel program to consist
of a number of parallel loops surrounding an inner sequential code. The simplest

28

CHAPTER 2. BACKGROUND AND PHILOSOPHY

expression of this pattern is applying a function f, that internally performs side effects
but is externally pure, on every element of an array. It is just as important that the
inner sequential code is efficient, as it is that we execute the outer loop in parallel.
Both influence the final program performance.

Our second piece of motivation is the notion of efficient sequentialisation. In
Section 2.5.2 we shall see language constructs that permit the programmer to describe
a computation comprising both an efficient sequential part, as well as a description
of how to combine sequentially produced results in parallel. The utility of such
language constructs hinge entirely on the ability to actually express said efficient
sequential code. In-place updates are key to this ability.

The main language construct that permits array update is quite simple:

a with [i] <- v

This expression semantically produces an array that is identical to a, except with
the element at position i replaced by v. The compiler then verifies that no alias of
a (including a) is used on any execution path following the in-place update. If the
compiler had to perform a full copy of a, the asymptotic cost would be O(n) (where
n is the size of a). Using an in-place update, the cost is O(1) (assuming that v has
constant size).

Uniqueness Types

The safety of in-place updates is supported in Futhark through a type-system feature
called uniqueness types. This system is similar to, but simpler, than the system found
in Clean [BS93; BS96], where the primary motivation is modeling IO. Our use is
reminiscent of the ownership types of Rust [Hoa13]. Alongside a relatively simple
conservative and intra-procedural aliasing analysis in the type checker, this approach
is sufficient to determine at compile time whether an in-place modification is safe,
and signal an error otherwise.

This section describes uniqueness types in intuitive terms. A more precise for-
malisation on the Futhark core language can be found in Section 5.3. An important
concept used in our uniqueness type system is aliasing. Each array-typed variable is
associated with a set of other variables in scope, which it may alias. Operationally,
aliasing models the possibility that two arrays are backed by the same memory loca-
tion. A freshly created array (as by map or an array literal) has no aliases. Some
language constructs, like array slicing, may produce arrays that are aliased with the
source array. The result of if aliases the union of the aliases of both branches.

When an array is modified in-place, all of its aliases are marked as unusable,
and a compile-time error occurs if they are used afterwards. This prevents the in-
place modification from being observable, except due to its performance effects. The

29

CHAPTER 2. BACKGROUND AND PHILOSOPHY

larger problem is how to ensure safety in the interprocedural case, which is where
uniqueness types enter the picture.

We now introduce uniqueness types through the example below, which shows a
function definition:

let modify [n] (a: *[n]int) (i: int)
(x: [n]int): *[n]int =

a with [i] <- (a[i] + x[i])

A call modify a i x returns a, but where a[i] has been increased by x[i].
In the parameter declaration (a: *[n]int), the asterisk (*) means that modify
has been given “ownership” of the array a. The caller of modifywill never reference
array a after the call. As a consequence, modify can change the element at index
i in place, without first copying the array; i.e. modify is free to do an in-place
modification. Further, the result of modify is also unique—the * in the return
type declares that the function result will not be aliased with any of the non-unique
parameters (it might alias a but not with x). Finally, the call modify n a i x
is valid if neither a nor any variable that aliases a is used on any execution path
following the call to modify.

We say that an array is consumed when it is the source of an in-place update or
is passed as a unique parameter to a function call; for instance, a is consumed in
the expression a with [i] <- x. Past the consumption point, neither a nor its
aliases may be used again. From an implementation perspective, this contract is what
allows type checking to rely on simple intra-procedural analysis, both in the callee
and in the caller, as described in the following sections.

Parallel Scatter

The in-place update construct thus seen is satisfactory for sequential programming.
However, the system of uniqueness types also lets us define an efficient construct
for parallel scatter. A scatter operation, whose nomenclature is taken from vector
processing, takes an array a, a array of indices js, and a array of values vs, and
writes each value to the position in the array given by the corresponding index. The
operation can be explained in imperative pseudocode as follows:

for i in 0...n-1:
a[js[i]] = vs[i]

In Futhark, the scatter construct is used as follows:

scatter a js vs

Semantically, scatter returns a new array. We treat the array a as consumed,
which operationally permits the compiler to perform the operation in-place, thus

30

CHAPTER 2. BACKGROUND AND PHILOSOPHY

making the cost of scatter proportional to the size of vs, not a.
The scatter construct is fully parallel, and therefore it is unspecified what

happens if we try to write distinct values to the same index. Other parallel languages,
for example Accelerate [McD+13], contain a variation of scatter that requires the
specification of an associative and commutative combination function, which is used
to combine duplicate writes. While this carries nontrivial extra run-time overhead, it
makes the construct safer and more flexible, and will likely be added to Futhark in
the future.

The scatter construct is primarily used as an “escape hatch” for encoding
irregular problems that are not a good fit for any of the conventional SOACs. An
example is discussed in Section 10.2.

In vector programming, scatter is often paired with a matching “gather” con-
struct. There is no need for this in Futhark, as a gather is easily expressible as a map
over an index space, as follows:

map (\i -> a[i]) is

2.5.2 Streaming SOACs

Most of the array combinators supported by Futhark are familiar to users of existing
functional languages. However, we found it useful to add two novel SOACs that
directly address our focus on efficient sequentialisation. This section introduces
the streaming SOACs, stream_red and stream_map, by demonstrating their
application to k-means clustering and generation of Sobol numbers. The idea behind
the streaming SOACs is to allow the programmer to provide an efficient sequential
algorithm which is applied in parallel to separate chunks of the input, with the per-
chunk results combined via a programmer-provided function. This is useful when the
hand-written sequential algorithm is more efficient than simply executing the parallel
algorithm sequentially.

k-means clustering

In multidimensional cluster analysis, one widely used algorithm is k-means analysis.
The goal is to assign n points in a d-dimensional space to one of k clusters, with each
point belonging to the cluster with the closest centre. The centre of a cluster is the
mean of all points belonging to the cluster. Often, k is small (maybe 5), while d can
be larger (27 in one of our data sets), and n usually much larger (hundreds of thou-
sands). The algorithm is typically implemented by initially assigning points randomly
to clusters, then recomputing cluster means and re-assigning points until a fixed point
is reached. In this section, we explain how one part of the algorithm—the compu-
tation of cluster centres—can be efficiently expressed using stream_red, and its
performance advantage over a traditional map-reduce-formulation. The problem

31

CHAPTER 2. BACKGROUND AND PHILOSOPHY

1 let add_centroids [d] (x: [d]f32, y: [d]f32)
2 : *[d]f32 =
3 map (+) (zip x y)
4

5 let cluster_sums_seq [k] [n] [d]
6 (counts: [k]i32)
7 (points: [n]([d]f32,i32))
8 : [k][d]f32 =
9 loop (acc = replicate k (replicate d 0.0))

10 for (p,c) in points do
11 let p’ = map (/f32(counts[c])) p
12 in acc with [c] <- add_centroids acc[c] p’

Figure 6: Sequential calculation of means.
. .

is taken from the k-means benchmark from the Rodinia benchmark suite [Che+09],
which is discussed further in Chapter 10.

As a first approximation—and also as further introduction to Futhark—we will
discuss a (mostly) sequential solution of the problem. This will also be a useful
building block in our final solution. The code is shown on Figure 6. On lines 2–3
we define a function for adding d-dimensional points, which we represent as vectors
of floating-point values. Element-wise addition is done by passing both vectors to
map with the addition function as the operator. We mark the return value as unique,
meaning that it does not alias either of the input parameters. The need for this will be
apparent shortly.

On lines 10–12, we define the main loop. This loop proceeds by maintaining an
accumulator acc that contains the cluster centres as they have been computed thus far.
The initial value is constructed via the replicate array constructor, whose first
argument is the number of times to replicate the second argument. In this case, two
nested replicates are used to construct a two-dimensional array. We then iterate
across all points, and for each point we add its contribution to the corresponding
cluster.

Line 12, which updates acc, is particularly interesting, as it performs an in-
place update. Semantically, we construct a new array that is a copy of acc, ex-
cept that the value at the given index has been replaced by the result of the call to
add_centroids, and bind this array to a new variable named acc (shadowing
the old). However, we are guaranteed that no copying takes place, and that the cost
is proportional only to the size of the value we are writing (an array of size d), rather
than the array we are updating (of size k × d). It is important that we know that the
result of add_centroids cannot alias its arguments, acc[c] or p’, and this is

32

CHAPTER 2. BACKGROUND AND PHILOSOPHY

exactly the property that is ensured by marking the return value of add_centroids
as unique. If the return value of add_centroids did alias the acc array, then the
in-place update into acc might not be safe, as we would be simultaneously reading
and writing from the same array.

The cluster_sums_seq function forms the sequential implementation of
cluster summation. While a small amount ofmap-parallelism is present in the function
add_centroids, the main bulk of the work is the outer loop of n iterations. Even
though the implementation performs O(n · d) work, which is efficient, the sequential
depth is n, which is not satisfactory.

A fully parallel implementation is shown in Figure 7. The algorithm computes,
for each point, an increment matrix, which is an array of type [k][d]f32 containing
all zeroes, except at the row corresponding to the cluster for the point in question.
This computation is done on lines 5–9. In-place updates are used only in a trivial
form. The result is an array of matrices, which we then sum on lines 11–13 to get
the final result. The rearrange construct is a generalisation of transposition, and
produces a view of the given array where the dimensions have been reordered by the
given permutation. For example, if

b = rearrange (1,2,0) a,
then

b[i0,i1,i2] == a[i1,i2,i0].
In the program, the rearrange construct is used to bring the dimension we wish
to reduce across innermost, which allows us to avoid a reduction where the operator
operates on large arrays.7

This implementation exploits all degrees of parallelism in the problem. Unfortu-
nately, it is not work efficient. Constructing the increment matrix involves O(n · k · d)
work, as does its eventual reduction, while the sequential version requires only O(n ·d)
work. If executed on a system capable of exploiting all available parallelism, this
might be an acceptable tradeoff, but real hardware is limited in the amount of paral-
lelism it can take advantage of. We need a language construct that can expose enough
parallelism to take full advantage of the machine, but that will run efficient sequential
code within each thread. The stream_red SOAC provides just this functionality.

The stream_red construct builds on the property that any fold with an asso-
ciative operator ⊙ can be rewritten as a fold over chunks of the input, followed by a
fold over the per-chunk results:

fold ⊙ xs = fold ⊙ (map (fold ⊙) (chunk xs))

By selecting the number of chunks such that we obtain enough parallelism by the outer
map, we can implement the innermost fold as a work-efficient sequential function. In
Futhark, we let the programmer specify this chunk function directly.

7Chapter 8 shows that the Futhark compiler can do this automatically, but here we do it by hand for
clarity.

33

CHAPTER 2. BACKGROUND AND PHILOSOPHY

1 let cluster_sums_par [k] [n] [d]
2 (counts: [k]i32)
3 (points: [n]([d]f32,i32))
4 : *[k][d]f32 =
5 let increments: [n][k][d]i32 =
6 map (\(p, c) ->
7 let a = replicate k (replicate d 0.0)
8 in a with [c] <- map (/f32 counts[c]) p)
9 points

10 let increments’: [k][d][n]i32 =
11 rearrange (1,2,0) increments
12 in map (\x -> map (\y -> reduce (+) 0.0 y) x)
13 increments’

Figure 7: Parallel calculation of means (types of increments and increments’ anno-
tated for clarity).

1 let cluster_sums_stream [k] [n] [d]
2 (counts: [k]i32)
3 (points: [n][d]f32)
4 (membership: [n]i32)
5 : [k][d]f32 =
6 stream_red
7 (\(x: [k][d]f32) (y: [k][d]f32) ->
8 map add_centroids (zip x y))
9 (cluster_sums_seq counts)

10 (zip points membership)

Figure 8: Chunked parallel calculation of means.
. .

As shown in Figure 8, stream_red is given the associative reduction operator
(lines 7–8), together with the chunk function (line 9). Because we wish to process
two arrays—both points and membership—we use zip to combine the two
arrays into one array of pairs (line 10). In this case, the reduction operator is
matrix addition, and the chunk function applies the sequentialcluster_sums_seq
function (partially applied to counts) previously shown in Figure 6.

It is the programmer’s responsibility to ensure that the provided reduction function
is associative, and that the result of stream_red is the same no matter how the
input is partitioned among chunks.

The stream_red formulation can be automatically transformed into the fully

34

CHAPTER 2. BACKGROUND AND PHILOSOPHY

Program Version Runtime Speedup

Cluster means

Chunked (parallel) 17.6ms ×7.60Fully parallel 134.1ms
Chunked (sequential) 98.3ms ×0.92Fully sequential 90.7ms

Sobol numbers

Chunked (parallel) 3.9ms ×11.13Fully parallel 43.4ms
Chunked (sequential) 129.7ms ×1.00Fully sequential 129.1ms

Table 1: Speedup of chunking SOACs versus fully sequential and fully parallel implementa-
tions. For comparing sequential performance, a compiler generating single-threaded
CPU code has been used and the code runs on an Intel Xeon E6-2570. For compar-
ing parallel performance, OpenCL code is generated and executed on an NVIDIA
Tesla K40 GPU. We generate 30, 000, 000 Sobol numbers, and compute cluster
means with k = 5, n = 10, 000, 000, and d = 3.

. .

parallel implementation from Figure 7 by setting the chunk size to 1, or into the
sequential implementation from Figure 6 by setting the chunk size to the full size
of the input (followed by simplification). It thus allows the compiler or runtime
system to generate code that best fits the problem and target machine. The compiler
is free to exploit the nested parallelism inside both the reduction function and the fold
function. In general, there is no one size fits all, and different parallelisation patterns
are best for different data sets. Handling this issue is future work (see Section 8.3),
and for now the Futhark compiler uses various hardcoded heuristics to determine how
parallelisation is best done (Chapter 8). For this program, the reduction function will
be fully parallelised as a segmented reduction, and the body of the chunk function
will be sequentialised.

The performance of the stream_red version compared to explicitly parallel
and sequential code is shown in Table 1. We see that the fully parallel version running
on a GPU is in fact slower than the sequential version, because it does significantly
more work. The stream_red version performs well both when compiled to parallel
code, and when compiled to sequential code.

Sobol Sequences

This section introduces the stream_map SOAC. The goal is the same as previously:
we wish to formulate our program in a way that gives the compiler freedom to exploit
exactly as much parallelism as is profitable on the target hardware.

The problem is as follows: we wish to generate n entries from a Sobol se-
quence [BF88], and compute their sum. Sobol sequences are quasi-random low-
discrepancy sequences frequently used in Monte-Carlo algorithms. While the sum-
mation is contrived, the need to efficiently generate Sobol sequences comes from

35

CHAPTER 2. BACKGROUND AND PHILOSOPHY

1 let gray_code (x: i32): i32 =
2 (x >> 1) ^ x
3

4 let test_bit (x: i32) (ind: i32): bool =
5 (x & (1 << ind)) == (1 << ind)
6

7 let sobol_ind [n] (dir_v: [n]i32) (x: i32): i32 =
8 let reldv_vals = map (\dv i ->
9 if test_bit (gray_code x) i

10 then dv else 0)
11 dir_v [1..<n]
12 in reduce (^) 0 reldv_vals
13

14 let sobol_ind [n] _r(dir_v: [n]i32) (x: i32): f32 =
15 f32 (sobol_ind dir_v x) / (2.0 ** f32 n)
16

17 let sobol_par [n] (k: i32) (dir_v: [n]i32): f32 =
18 let sobol_nums =
19 map (sobol_ind_r dir_v) (map (+1) (iota k))
20 in reduce (+) 0.0 sobol_nums

Figure 9: map-parallel calculation of Sobol numbers.
. .

the OptionPricing benchmark presented in Section 10.1.3. Sobol numbers can be
computed by a map-parallel formula, or by a cheaper (recurrence) one, but which
requires scan [And+16; Oan+12]. This property can be expressed elegantly with
stream_map, whose function accepts an input chunk, and must produce an output
chunk of the same size. Chunks are processed in parallel. For this program, the chunk
function applies the map-parallel formula once, then applies the scan formula.

An implementation of the map-parallel formula to a sequence of k Sobol numbers
is shown in Figure 9. The [1..<n] expression creates an array of the integers from
0 to n-1, and the precise Sobol sequence generated is defined by the direction vector
dir_v. The independent formula works by essentially performing a map-reduce
computation for every Sobol number, with the number of iterations being the size of
the direction vector. Typically, this number is fairly small (perhaps 31) as it is limited
to the number of bits in an integer.

An implementation of the recurrent formula is shown in Figure 10. Notice that
for each chunk, we first apply the function sobol_ind to compute the first Sobol
number, then apply a combination of map and scan to compute the rest of the
chunk. While map and scan are parallel operators, the compiler will sequentialise
them during code generation, and instead use the chunk size to control how much

36

CHAPTER 2. BACKGROUND AND PHILOSOPHY

1 let index_of_least_significant_0 (x: i32): i32 =
2 loop (i = 0) while i < 32 && ((x>>i)&1) != 0 do i + 1
3

4 let rec_m [n] (dir_v: [n]i32) (i: i32): i32 =
5 let bit = index_of_least_significant_0 i
6 in dir_v[bit]
7

8 let sobol_chunk [n]
9 (dir_v: [n]i32)

10 (x: i32)
11 (chunk: i32)
12 : [chunk]f32 =
13 let sob_beg = sobol_ind dir_v (x+1)
14 let contrbs = map (\i -> if i==0 then sob_beg
15 else rec_m dir_v (i+x))
16 [0..<chunk]
17 let vct_ints = scan (^) 0 contrbs
18 in map (\y -> f32 y / (2.0 ** f32 n)) vct_ints
19

20 let sobol_stream [n] (k: i32) (dir_v: [n]i32): f32 =
21 let sobol_nums = stream_map
22 (\[chunk] (xs: [chunk]i32): [chunk]f32 ->
23 sobol_chunk dir_v xs[0] chunk)
24 [0..<k]
25 in reduce (+) 0.0 sobol_nums

Figure 10: Chunked calculation of Sobol numbers.
. .

parallelism to exploit.
Note that the two formulae are algorithmically very different. There is little

chance that a compiler can efficiently derive one from the other. The performance
of the StreamMap version compared to explicitly parallel and sequential code is
shown in Table 1. The significant speedup of the chunked over the fully parallel
implementation is due to the inner parallelism being efficiently sequentialised through
the “stream_seq fusion” technique discussed in Section 7.3.2. This changes the
per-chunk memory footprint from O(chunksize) to O(1); effectively transforming the
problem from memory-bound to compute-bound.

37

CHAPTER 2. BACKGROUND AND PHILOSOPHY

Host (CPU)

−→

Device (GPU)

Code
−→
Data
←−
Data

Figure 11: The run-time structure of a program using OpenCL. The “host” is typically a
CPU, and is entirely in control of the “device”, which might for example be a
GPU, but could be anything (even the same CPU as the host).

. .

2.6 Interoperability

Futhark is not a general-purpose programming language. As a purely functional
language, interacting with the outside world is impossible. As an array-oriented
language, complicated data structures are awkward or impossible. Futhark is at its
core designed on trading flexibility for the ability to automatically obtain good runtime
performance. As a result, writing full applications in Futhark is impossible. While
the Futhark compiler can compile a Futhark program into an executable, the resulting
program simply executes the Futhark main function, while reading input data from
standard input and writing the result on standard output. This is useful for testing, but
not particularly useful for an application programmer.

Futhark is intended to be used only for the computationally intensive parts of a
larger application, with the main part of the application written in a general-purpose
language. It is therefore important that Futhark code can be easily integrated with
code written in other languages. Fortunately, the design of OpenCL [SGS10], the
library used by the Futhark compiler to communicate with GPUs or other accelerators,
fits this use case well.

The overall structure of OpenCL is shown on Figure 11. The CPU, which in
OpenCL nomenclature is called the host, is in control. The host communicates with
one or more devices, which act as coprocessors. The device can for example be a
GPU, but any kind of computational resource can be presented to OpenCL via the
device abstraction. The host issues commands to the devices, which may involve
uploading code (kernels) or data, initiating execution of uploaded code, or retrieving
data stored on the device in response to executions. The code uploaded to the device
must be specified in OpenCL C, a severely restricted variant of the C kernel language,
that lacks support for features such as function pointers, recursion, or allocation. The
key property that we exploit for interoperability purposes is that the code running on
the host is required only for managing the device, and thus need not be particularly
efficient, as the vast majority of the computation takes place inside OpenCL kernels.
This allows us to specify the host-level code in ways that maximise interoperability,
without worrying overmuch about performance losses.

38

CHAPTER 2. BACKGROUND AND PHILOSOPHY

(a) Mandelbrot (b) N-body (c) Fluid (d) Crystal

Figure 12: Visualisations of four benchmark programs implemented in Futhark, and called
from Python.

. .

As a concrete example, the Futhark compiler contains a code generator backend
where the host code is generated in the Python programming language, and interacts
with OpenCL through the PyOpenCL library [Klö+12]. The result of compiling
a Futhark program is a Python module that defines a class, the methods of which
correspond to Futhark functions. These methods accept and return Python values
(which may wrap on-GPU data), and feel to the programmer like calling any other
Python library. But behind the scenes, data and code is submitted to the GPU. This
allows us to use Futhark for the heavy lifting, while making use of Python’s wealth
of libraries for such things as user interaction and data format serialisation. As an
example, several of the benchmark programs we discuss in 10 have been furnished
with interactive visualisations via the Pygame library. The Python program reads
input events from the user, and the Futhark programs creates screen images (in the
form of two-dimensional arrays of integers), which are then blitted to the screen via
Pygame. Examples of the resulting visualisations can be seen on Figure 12

While Python is a worthwhile target language due to its popularity for scientific
computing, it is not realistic to construct code generators for all languages of interest.
Even a short list might include Ruby, R, C#, Java, Swift, and more. While writing
a host-code backend for the Futhark compiler requires only a few thousand lines
of Haskell code, we do not wish the burden of maintaining a dozen such backends.
Rather, we should invest effort in improving the C backend, such that it can generate
code that can be called by the foreign function interfaces (FFIs) of other languages.
Due to its ubiquity, most languages make it easy to call C code. However, the
Python backend still demonstrates clearly how Futhark can be useful in an application
development context.

An entirely different approach is to use Futhark as a target language for a compiler.
In fact, this was the original purpose for Futhark, but it has receded into the background
as the Futhark source language grew more pleasant to use. We have, however,
cursorily investigated this approach by using Futhark as the target language for an
APL compiler [Hen+16], where the generated code performed comparably with hand-
written Futhark.

39

CHAPTER 2. BACKGROUND AND PHILOSOPHY

2.7 Related Work on Automatic Parallelisation

This section discusses three simplified Fortran 77 examples from the DYFESM and
BDNA benchmarks of the PERFECT club suite [Ber+88], whose automatic paralleli-
sation requires complex compiler analysis [OR12; OR15; OR11]—for example based
on (i) inter-procedural summarization of array references, (ii) extraction of runtime
(sufficient) conditions for safe parallelization, and (iii) special treatment of a class of
induction variables (CIV) that cannot be expressed as a closed-form formula in terms
of loop indices. Such analysis are beyond the capability of the common programmers
and commercial compilers, and it would not be necessary if application parallelism
was expressed explicitly by means of bulk-parallel operators, as in a data-parallel
language.

The first example, presented in Section 2.7.1, semantically corresponds to a map
applied to an irregular two-dimensional array, but the low level implementation—
which uses indirect arrays, unspecified preconditions, and array reshaping at call
sites—-complicates analysis.

The second example, presented in Section 2.7.2, shows an example in which the
same loop may encode two semantically different parallel operators: a map and a
generalized reduction. Further difficulties refer to the compiler having to reverse
engineer users optimizations, such as mapping two semantically different arrays to
the same memory block.

The third example, presented in Section 2.7.3, shows a loop that semantically
corresponds to the sequential composition of a filter and a map. In this case the anal-
ysis has to be extended to (i) accommodate “conditional-induction variables” (CIV),
and to (ii) reverse-engineer a composition of parallel-operators that is semantically
equivalent with the original sequential loop.

2.7.1 Example 1: Difficult to Parallelise Map

Figure 13 shows the simplified version of loop solvh_do20 from DYFESM bench-
mark of the PERFECT club benchmark suite. The aim is to prove that the (outermost)
loop solvh_do20 is parallel, in the sense that no dependencies exists between loop
iterations—in essence the loop is semantically an irregular map, each iteration of it
producing non-overlapping subsets of the elements of the XE and HE arrays.

The reasoning necessary for proving loop solvh_do20 parallel is nontriv-
ial [OR12], and in fact impossible using purely static techniques. The presence
of exploitable parallelism is dependent on the statically unknown accesses using the
indirect arrays IA and IB, which semantically model irregular 2D arrays.

The reasoning can proceed by looking at XE and HE as unidimensional arrays,
and by observing that XE is written in subroutine geteu on all indexes belonging to
interval [1,16*NP] and is read in matmult on indexes in [1,NS].

40

CHAPTER 2. BACKGROUND AND PHILOSOPHY

SUBROUTINE solvh(HE,XE,IA,IB) SUBROUTINE geteu(XE,SYM,NP)
DIMENSION HE(32, *), XE(*) DIMENSION XE(16,*)
READ(*,*) SYM, NS, NP, N
CCC SOLVH_do20
DO i = 1, N, 1 DO i = 1, NP, 1
DO k = 1, IA(i), 1 DO j = 1, 16, 1
id = IB(i) + k - 1 XE(j, i) = ...
CALL geteu (XE, SYM, NP) ENDDO
CALL matmult(HE(1,id),XE,NS) ENDDO
CALL solvhe (HE(1,id), NP)
ENDDO END

ENDDO END
SUBROUTINE solvhe(HE,NP)

SUBROUTINE matmult(HE,XE,NS) DIMENSION HE(8, *)
DIMENSION HE(*), XE(*)

DO j = 1, 3, 1
DO j = 1, NS, 1 DO i = 1, NP, 1
HE(j) = XE(j) HE(j, i)=HE(j, i)+..
XE(j) = ... ENDDO

ENDDO END ENDDO END

Figure 13: Simplified Loop SOLVH_DO20 from DYFESM.
. .

Similarly, HE is written in matmult on all indexes in interval [τ+1,τ+NS], and
read and written in solvhe on a subset of indexes in interval [τ+1,τ+8*NP-5],
where τ=32*(id-1) is the array offset of parameter HE(1,id).

Read-After-Write independence of the outermost loop can be established by show-
ing that the per-iteration read set of XE and HE are covered by their per-iteration write
set. This corresponds to solving interval-inclusion equations

[1,NS]⊆[1,16*NP]

and
[τ+1,τ+8*NP-5]⊆[τ+1,τ+NS],

yielding predicate
NS≤16*NP ∧ 8*NP<NS+6

as sufficient condition for the flow independence of arrays XE and HE, respectively.
For Write-After-Write independence, one can observe that the per-iteration write

set of array XE is invariant to the outermost loop, hence XE can be privatised and
updated at the very end with the values written by the last iteration (i.e., static-last
value).

41

CHAPTER 2. BACKGROUND AND PHILOSOPHY

The rationale for the write-after-write independence of array HE is more compli-
cated: The write set of an iteration i of loop solvh_do20, denoted WFi, can be
overestimated to the interval of indices:

[32*(IB(i)-1),32*(IB(i)+IA(i)-2)+NS-1]

The aim is to show that
∀i , j, WFi ∩ WFj = ∅

A sufficient condition [OR11] that works in practice is derived by checking the
monotonicity of such intervals, i.e., the upper bound of WFi is less than than lower
bound of WFi+1, for all i. This results in the predicate

∧N−1
i=1 NS≤32*(IB(i+1)-IA(i)-IB(i)+1)

that verifies output independence under O(N) runtime complexity.

2.7.2 Example 2: Reduction or Map?

Imperative techniques typically identify generalized-reduction patterns on an array
(or scalar) variable A by checking that all its uses inside the target loop are of the form
A[x] = A[x] ⊕.., where x is an arbitrary expression and ⊕ is a (known) binary
associative operator.

The code below is an example of a generalized reduction, and can be parallelized
by by computing the changes to A locally on each processor and by merging (adding)
them in parallel at the end of the loop.

DO i = 1, N, 1
A(B(i)) = A(B(i)) + C(i)

ENDDO

However, if B is an injective mapping of indices, this treatment is unnecessary
because each iteration reads and writes distinct elements of A, and thus each processor
can work safely directly on the shared array A. In Futhark terms, in the latter case the
loop is actually a composition of the parallel operators map and scatter.

Identifying the case when a generalized reduction is a map can requires summa-
rization of the iteration-wise read-write set of the target array A, denoted RWi and
checking that they do not overlap. This can be stated as the following equality:

∪Ni=1(RWi ∩ ∪
i−1
k=1(RWk)) = ∅

Finally, sufficient conditions for identifying the map case can be extracted from this
equation, for example by sorting the RWi sets (as intervals), and then checking non-
overlap. Such analysis is known as runtime reduction (RRED) in the literature [OR12],

42

CHAPTER 2. BACKGROUND AND PHILOSOPHY

but it would not be necessary if the map-scatter parallelism would be explicitly
expressed in the first place.

Another significant challenge to automatic parallelization are memory optimiza-
tions performed by the programmer. The classical example is privatization – an
analysis that determines whether it is safe that the declaration of a variable is moved
from outside to inside the loop. Another example is when two semantically different
arrays are combined into the same array, as illustrated in the example below.

DO i = 1, N, 1
S1: A(i) = C(i)*2
S2: A(B(i)) = A(B(i)) + C(i)

The statements S1 and S2 semantically build two different arrays: one which is
constructed by a map operation, and another by a generalized-reduction operation.

To disambiguate such cases, compiler analysis needs to support an extended
reduction pattern (EXT-RRED), where the target array A is allowed to be (only)
written outside reduction statements, as long as the write accesses do not precede
on any control-flow-graph path any reduction statement. Note that instances of EXT-
RRED have non-empty per-iteration write-first (WFi) and read-write (RWi) sets and
empty read-only set.

Enabling parallel execution in this case requires proving:

• Read-After-Write independence: ∪N
i=1(WFi) ∩ ∪

N
i=1(RWi)=∅, and either

• Write-After-Write independence: ∪N
i=1(WFi ∩ ∪

i−1
k=1(WFk)) = ∅ or

• privatisation by static-last value: ∪N
i=1(WFi) ⊆ WFi←N

Loops MXMULT_DO10 and FORMR_DO20 that cover almost 55% of DYFESM’s
sequential runtime, exhibit both patterns discussed in this section.

2.7.3 Example 3: Conditional Induction Variables

Another challenge for automatic parallelisation are the so called “conditional-induction
variables” (CIV) that represent scalars that do not form a uniform recurrence. For ex-
ample, their increment may not be constant across the iteration space of the analysed
loop.

43

CHAPTER 2. BACKGROUND AND PHILOSOPHY

civ@1 = 0
DO i = 1, N, 1

civ@2=ϕ(civ@1, civ@4)
IF C(i) .GT. 0 THEN

DO j = 1, C(i), 1
X(j+civ@2) = ...

ENDDO
civ@3 = C(i) + civ@2

ENDIF
civ@4 = ϕ(civ@3, civ@2)

ENDDO
civ@5=ϕ(civ@4, civ@1)

The code above shows a simplified version of loop CORREC_do401 from BDNA
benchmark, as an example of non-trivial loop that uses both CIV and affine-based
subscripts. Variable civ is written directly in (gated) single-static-assignment (SSA)
notation.

For example, statement civ@2=ϕ(civ@1,civ@4) has the semantics that vari-
able civ@2 takes either the value of civ@1 for the first iteration of the loop or the
value of civ@4 for all other iterations.

The gist of the parallelisation technique [OR15] is to aggregate symbolically the
CIV references on every control-flow path of the analyzed loop, in terms of the CIV
values at the entry and end of each iteration or loop. The analysis succeeds if (i) the
symbolic-summary results are identical on all paths and (ii) they can be aggregated
across iterations in the interval domain. Parallelisation requires two main steps:

1 proving the absence of cross-iteration dependencies on array X.

2 computing in parallel the values of civ at the beginning of each iteration, i.e.,
the values of civ@2.

Step 1. The write accesses of the inner loop can be summarized by the interval

WFinner−loop=[civ@2,civ@2+C(i)-1].

On the path on which condition C(i).GT.0 holds, we have

civ@4=civ@3=civ@2+C(i)

and the path summary is rewritten as

WTHEN
i = [civ@2,civ@4-1].

The other path neither updates X nor increments civ, hence it can use the same
symbolic summary

WELSE
i = [civ@2,civ@4-1] = ∅

44

CHAPTER 2. BACKGROUND AND PHILOSOPHY

because on that path civ@2=civ@4>civ@4-1, and an interval having its lower
bound greater than its upper bound is considered empty.

It follows that the summaries of the THEN and ELSE branches can be unified; the
iteration summary being

Wi = [civ@2,civ@4-1].

Loop independence can now be proven by verifying the set equation

∪Ni=1(Wi ∩ ∪
i−1
k=1(WFk))=∅,

which holds because∪i−1
k=1(WFk) can be symbolically computed to be[1, civ@2i-1]

by using:

• the implicit invariant civ@4i−1 = civ@2i, i.e., the civ value at an iteration
end is equal to the civ value at the entry of the next iteration, and

• the monotonicity of the civ@2 values (because they are incremented by C(i)
only when C(i) is positive).

Step 2. While the accesses to X have been disambiguated, civ still remains the
source of cross iteration dependences.

The CIV values at the beginning of each iteration can be computed in parallel by
the following technique: First, the slice that computes civ in an iteration is extracted
and it is checked that civ appears only in reductions statement in it. Second, the
civ@2 is initialized (in the slice) to the neutral-element of the reduction operator.
Third, the obtained slice is mapped across the original iterations space, and the result
is subjected to an exclusive scan.

The Futhark code below illustrates the result of this technique on our example8:

scan (+) 0 (map (\i -> if C[i] > 0 then C[i] else 0)
[1...N])

We conclude by remarking that in addition to this “heroic” analysis, which is
necessary for proving the absence of cross-iteration dependences for array X that uses
CIV-based accesses, the compiler also had to re-engineer the computation of civ
values from inherently sequential to parallel. We argue that, if parallel execution
is desired, the code should have been written from the very beginning in terms of
data-parallel operators rather than sequential loops.

8Except that scan in Futhark is inclusive, not exclusive.

45

CHAPTER 2. BACKGROUND AND PHILOSOPHY

2.8 Related Work on Data-Parallel Languages

Fortunately, not all work on parallelism involves Fortran 77. There is a rich body
of literature on embedded array languages and libraries targetting GPUs. Imperative
solutions include Copperhead [CGK11], Accelerator [TPO06], and deep-learning
DSLs, such as Theano [Ber+10] and Torch [CKF11].

Purely functional languages include Accelerate [McD+13], Obsidian [CSS12],
and NOVA [Col+14]. These languages support neither arbitrary nested regular par-
allelism, nor explicit indexing and efficient sequential code inside their parallel con-
structs.

A number of dataflow languages aim at efficient GPU compilation. StreamIt
supports a number of static optimizations on various hardware, for example, GPU
optimizations [Hor+11] include memory-layout selection (shared/global memory),
resolving shared-memory bank conflicts, increasing the granularity of parallelism
by vertical fusion, and untilizing unused registers by software prefetching and loop
unrolling, while multicore optimizations [GTA06] are aimed at finding the right mix
of task, data and pipeline parallelism.

Recent work has been done on ameliorating the downsides of full flattening.
These include data-only flattening [Ber+13], and streaming [MF16]. The streaming
approach uses the type system to classify sequences into arrays and streams, where
the latter do not support random access, but only structured operations such as map,
reduce, and scan. This allows an incremental dataflow-oriented execution model
that avoids the explosion in memory usage that often accompanies full flattening. De-
spite the similarity in naming, Futhark’s stream_map and stream_red operators
do not directly support this notion of streaming, as they do not ban random access
into arbitrary arrays (including the array being “streamed”) from within the chunk
function.

46

Chapter 3

An Array Calculus

The theoretical foundation of Futhark are the list homomorphisms of Bird and
Meertens [Bir89], realised in the form of purely functional parallel second-order
array combinators (SOACs). Their rich equational theory for semantics-preserving
transformations are employed in Futhark for fusion, streaming, and flattening of par-
allelism. This chapter discusses a simple array combinator calculus that is used to
convey the intuition behind certain useful transformations on arrays and, more im-
portantly, functions that operate on arrays. In Section 4.5 we shall also see that the
primitives defined here have an efficient implementation on the GPU.

The calculus presented here is simpler than the full Futhark programming lan-
guage, yet also more flexible. While the names of the combinators intentionally
resemble those of Futhark (both the source language and the core language we will
see later in the thesis), they are not exactly identical.

3.1 Array Combinator Calculus

The array combinator calculus, a modified lambda calculus, describes terms that
operate on array values. The syntax is summarised on Figure 14. We make a
distinction between ground values v, which cannot contain functionals, and terms
e, which can. An array value is written as a comma-separated sequence of values
enclosed in square brackets, as in [v1, v2, v3]. Arrays may contain scalar values written

. .

α, β, τ ::= t | (τ1, . . . , τn) | [n]τ
v ::= v | (v1, . . . , vn) | [v1, . . . , vn]
α̂, β̂, τ̂ ::= τ | α̂→ β̂ | Πn.τ̂
e ::= v | (e1, . . . , en) | [e1, . . . , en] | e1 e2 | λ(x1, . . . , xn).e

Figure 14: Syntax of the Array Combinator Calculus.

47

CHAPTER 3. AN ARRAY CALCULUS

as t (which are not important for the calculus), other arrays, or tuples of values. A
tuple is written as a comma-separated sequence of values enclosed in parentheses.

Array values are classified by array types. We write [n]τ to denote the type of
arrays with n elements of type τ. This effectively bans irregular arrays, as there is no
way to provide n,m such that the value [[1, 2], [3]] is classified by a type [n][m]i32.

The tuple of a tuple is written as the types of its components separated by commas
and enclosed in parentheses. Primitive (non-array) types are written as t. Simi-
larly to other published array formalisms MOA [HM93], we treat the curry/uncurry-
isomorphic types [m]([n]τ) � [m×n]τ as interchangeable. This isomorphic treatment
is justified because both streaming and indexed access to either type can be efficiently
implemented without explicitly applying the isomorphism and materializing (storing)
the result first. This is different from the Futhark source language, where for example
[1][n]τ and [n][1]τ are distinct types. Likewise, a singleton array [1]τ is distinct from
a scalar of type τ.

Higher-order types τ̂ for classifying functions are a superset of value types. Specif-
ically, we do not permit first class functions in the calculus, although we do permit
functional arguments in function types. Function types support both ordinary value
abstraction α̂→ β̂, as well as size abstraction, writtenΠn.τ̂. This allows us to specify
a function that can operate on an array of any size, and returns an array of that same
size, which could have the following type:

Πn.[n]τ → [n]τ

This size of an array returned by a function must be expressible in terms of the size
of its input. This restriction could be lifted by supporting ∃-quantification in types,
but we omit this for the array calculus.

We treat the zip/unzip-isomorphic types [n](τ1, . . . , τk) � [n]τ1, . . . , [n]τk
as interchangeable in any context. This is justified as any array of tuples can be
converted into a corresponding tuple of arrays, as shown on Figure 15. The function
CV(v) rewrites a value v such that no arrays of tuples appear. Likewise, the function
CT(τ) rewrites a type. Intuitively, the rewriting considers an array of tuples as an
augmented array with an extra dimension, followed by transposing out that extra
dimension. Actually constructing this array would not be well-typed, as all elements
of an array must have the same type, whereas tuples can contain elements of differing
types.

3.2 Basic SOACs

We first describe the basic SOACs and later introduce streaming combinators. The
basic SOACs include (i) map, which constructs an array by applying its function
argument to each element of the input array, (ii) reduce, which applies a binary-
associative operator ⊕ to all elements of the input, and (iii) scan, which computes all

48

CHAPTER 3. AN ARRAY CALCULUS

CV([(v(1,1), . . . , v(1,m)), . . . , (v(n,1), . . . , v(n,m))]) =
(CV([v(1,1), . . . , v(n,1)]), . . . , CV([v(1,m), . . . , v(n,m)]))

CT([k](τ1, . . . , τn)) =
(CT([k]τ1), . . . , CT([k]τn))

Figure 15: Converting arrays of tuples to tuples of arrays. The function CV transforms
values, and CT transforms types. The equalities are applied recursively until a
fixed point is reached. We claim the property that if v : τ, then CV(v) : CT(τ).

. .

prefix sums of the input array elements. Their types and semantics are shown below:

map : (α→ β) → Πn.[n]α → [n]β
map f [a1, . . . , an] = [f a1, . . . , f an]
reduce : (α→ α→ α) → α → Πn.[n]α→ α
reduce ⊕ 0⊕ [a1, . . . , an] = 0⊕ ⊕ a1 ⊕ . . . ⊕ an
scan : (α→ α→ α) → α → Πn.[n]α → [n]α
scan ⊕ 0⊕ [a1, . . . , an] = [a1, . . . , a1 ⊕ . . . ⊕ an]

We can view theΠn notation as indicating where the size n becomes fixed; it indicates,
for instance, that we can partially apply map to a function and apply the resulting
function to arrays of different sizes.

The SOAC semantics enables powerful rewrite rules. For example, mapping an
array by a function f followed by mapping the result with a function g gives the same
result as mapping the original array with the composition of f and g:

(map f) ◦ (map g) ≡ map (f ◦ g)

Applied from left-to-right and from right-to-left this rule corresponds to producer-
consumer (vertical) fusion and fission, respectively. Horizontal fusion/fission refers
to the case when the two maps are independent (i.e., not in any producer-consumer
relation), as in the equation below:

(map f x,map g y) ≡ map (λ(a, b).(f a, g b)) (x, y)

The rest of this chapter shows how map and reduce are special cases of a more
general bulk-parallel operator named redomap, which (i) can represent (fused) com-
positions of map and reduce operators and, as such, (ii) can itself be decomposed
into a map-reduce composition. Similarly, we introduce the parallel operator sFold,
which generalizes Futhark’s streaming operators.

49

CHAPTER 3. AN ARRAY CALCULUS

3.2.1 Notation

We denote array concatenation by # and the empty array by ϵ ; inj(a) is the single-
element array containing a. A partitioning of an array v is a sequence of arrays
v1, . . . , vk such that v1# . . . #vk = v. Given binary operations f and g, their product
f ∗ g is defined by component-wise application, i.e., (f , g)(x) = (f x, g x).

3.2.2 The Parallel Operator redomap

Many arrays operations are monoid homomorphisms, which conceptually allows for
splitting an array into two parts, applying the operation recursively, and combining the
results using an associative operation ⊕. For example, a map − reduce composition
can be formally transformed, via the list homomorphism promotion lemma [Bir87],
to an equivalent form:

reduce ⊕ 0⊕ ◦map f ≡ reduce ⊕ e ◦map (reduce ⊕ 0⊕ ◦map f) ◦ splitp

where the original array is partitioned into p chunks. Operationally, we could imag-
ine that p processors will each perform the map − reduce composition sequentially,
followed by a parallel combination of the per-processor results. Hence, the inner
map − reduce can be written as a left-fold

reduce ⊕ 0⊕ ◦map f ≡ reduce ⊕ e ◦map (foldl g 0⊕) ◦ splitp

for an appropriately defined function g.
Thus, every monoid homomorphism is uniquely determined by (⊕, 0⊕) and a

function g. The combinator redomap1 thus expresses all such homomorphisms:

redomap : (α→ α→ α, α) → (β→ α) → Πn.([n]β→ α)
redomap (⊕, 0⊕) g [b1, . . . , bn] = 0⊕ ⊕ (g 0⊕ b1) ⊕ . . . ⊕ (g 0⊕ bn)

The redomap combinator can decompose previously seen SOACs:

map g = redomap (#, ϵ) (inj ◦ g)
reduce (⊕, 0⊕) = redomap (⊕, 0⊕) id

and redomap can itself be decomposed by the equation

redomap (⊕, 0⊕) g = reduce (⊕, 0⊕) ◦map g.

3.2.3 Streaming combinators.

A key aspect of Futhark is to partition implementations of redomap, such that they
partition vectors into chunks before applying the operation on the chunks individually
and eventually combining them:

sFold : (α→ α→ α) → (Πm.([m]β→ α)) → Πn.[n]β→ α
sFold (⊕) f (v1# . . . #vk) = (f ϵ) ⊕ (f v1) ⊕ . . . ⊕ (f vk)

1The name is a portmanteau of reduce ◦map.

50

CHAPTER 3. AN ARRAY CALCULUS

Because a vector can have multiple partitions, sFold is well-defined—it gives the
same result for all partitions—if and only if f is equivalent to a redomap with ⊕ as
combining operator. Futhark assumes such properties to hold; they are not checked
at run-time, but a programmer responsibility.

The streaming combinators permit Futhark to choose freely any suitable partition
of the input vector. In the source language, Futhark uses specialized versions of sFold:

stream_map f = sFold (#) f
stream_red (⊕) f = sFold ((⊕) ∗ (#)) f

Fusion and fission transformations are based on the universal properties of
redomap (and sFold); for example, horizontal (parallel) fusion is expressed by the
“banana split theorem” [MFP91], read as a transformation from right to left:

redomap ((⊕, 0⊕) ∗ (⊗, 0⊗)) (f , g) = (redomap (⊕, 0⊕) f , redomap (⊗, 0⊗) g)

The map-map rule map (g ◦ f) = map g ◦ map f is the functorial property of
arrays; it is used for fusion from right to left and eventually, as a fission rule, from
left to right as part of flattening nested parallelism (see Chapter 8). The flattening
rule map(map f) � map f eliminates nested parallel maps by mapping the argument
function over the product index space (an isomorphism modulo the curry/uncurry
isomorphism). Finally, sequential (de)composition of the discussed SOACs can be
similarly reasoned in terms of the general iterative operator sFold; for example:

map f = sFold (#) ϵ (map f)
reduce ⊕ 0⊕ = sFold ⊕ 0⊕ (reduce ⊕ 0⊕)

51

Chapter 4

Parallelism and Hardware
Constraints

There exists a large diversity of parallel machines. Far too many to list exhaustively,
and far too different in capability and performance characteristics for one set of
program transformations and optimisations to apply universally. In this thesis, we
focus our discussion on one type of architecture: the modern Graphics Processing
Unit (GPU), which can be used for non-graphics computation under the term General-
Purpose GPU computing (GPGPU). Specifically, we focus on the Single-Instruction
Multiple-Thread (SIMT) model used by NVIDIA, and also seen in recent chips from
AMD and Intel.

This chapter presents a simplified abstract GPU machine model that we will
use to justify the design of the Futhark compiler. In particular, a machine model
is needed to argue for the optimising transformations that we perform. The model
defined here serves this purpose. As an example, Section 4.3.1 describes how matrix
transposition is implemented efficiently on GPUs. This is crucial, since Futhark uses
transpositions to optimise for spatial locality (Section 9.1). Section 4.5 shows how
selected important primitive constructs from the array calculus (Chapter 3) can be
mapped to GPU code. This is of of particular interest since Chapter 8 shows how
nested parallelism is transformed into a form very similar to these primitives.

When we use the term “GPU”, we will refer to the model defined herein. Our cho-
sen terminology is primarily taken from OpenCL, an open standard for programming
accelerator devices, of which GPUs are one example. Unfortunately, NVIDIAs API
for GPGPU computing, CUDA, uses the same terms in some cases, but with different
definitions. Section 4.4 describes how our GPU model maps to CUDA terms, and
how our simplifications map to real hardware.

52

CHAPTER 4. PARALLELISM AND HARDWARE CONSTRAINTS

thread(in, out):
gtid <- get_global_id()
x <- in[gtid]
y <- x + 2
out[gtid] <- y

Figure 16: Each thread reads an integer, adds two, and writes the result back to some other
memory location

. .

4.1 Kernels and the Thread Space

A GPU is an accelerator device attached to a conventional CPU-based computer,
which is called the host system. A GPU program is called a kernel, and is launched
by the host. A running kernel comprises some quantity of independent threads, each
of which is executing the same sequential program. When a kernel is launched,
the host system dictates how many threads are to be used, and how they are to be
organised. These parameters can vary from one launch of the same kernel to the next.
Furthermore, each thread may also be passed some parameters containing values or
memory addresses – the same for every thread.

The threads are organised into equally sized workgroups (or just groups), within
which communication between threads is possible. The total number of threads
launched is thus always a multiple of the group size. The hardware limits both the
maximum group size (typically 1024 or less), as well as the maximum number of
groups, although the latter is rarely relevant in practice. For kernels in which each
thread is fully independent (what we call map-parallelism), the group size is mostly
irrelevant.

As each thread runs a sequential program, the number of threads launched for
a kernel is the sole way that we can express parallelism. Nested parallelism is not
supported in this model.

Each thread in a running kernel can be uniquely identified by its global thread ID
(gtid). Futhermore, each thread belongs to a group, identified by a group id (gid) that
is shared by all threads in the group. Within a group, each thread has a local thread
ID (ltid) that is unique only within the workgroup. If the group size is gsize, then

gtid = gtid · gsize + ltid

holds for every thread. The thread index space is single-dimensional, and each
ID is a single integer. An example in imperative pseudocode is shown on Figure 16,
which demonstrates how threads use their identifiers to read input and write output.
The in and out parameters to the thread are addresses of arrays in memory.

53

CHAPTER 4. PARALLELISM AND HARDWARE CONSTRAINTS

thread(arr):
gtid <- get_global_id()
x <- arr[gtid]
if (x < 0):

x <- -x
arr[gtid] <- x

Figure 17: A kernel that computes the absolute value in-place on the elements of an array.
. .

4.2 The GPU Model

When we launch a kernel on the GPU, we specify a group size and the desired number
of groups. This does not mean that every thread is actually running concurrently. The
GPU hardware has some quantity of resources available – for this discussion, most
notably registers and local memory space. A group requires some kernel-dependent
amount of registers for each of its threads, as well as some (potentially zero) amount
of local memory. The GPU may be able to fit anywhere from zero to all groups
concurrently. Every thread in a group must be able to fit on a GPU simultaneously -
fractional groups are not permitted.

If not all groups fit at the same time, then as many as possible will be launched, with
remaining groups being launched once earlier ones finish (the order in which groups
are launched is undefined). This is another reason why communication between
groups is difficult: unless we have detailed low-level information about both GPU
and kernel, we cannot know whether the group we wish to communicate with has even
been launched yet! In principle, the GPU may even be running groups from different
kernel launches concurrently, perhaps even belonging to different users on the host
system. Due to these difficulties, we generally take the view that communication is
only possible within a workgroup.

GPUs execute neighbouring threads in lockstep. The threads within a group are
divided into warps, the size of which is hardware-dependent. These warps form the
basis of execution and scheduling. All threads in a warp execute the same instruction
in the same clock cycle. Branches are handled via masking. All threads in a warp
follow every conditional branch for which the condition is true for at least a single
thread in the warp. For those threads where the condition is false, a flag is set that
makes the GPU ignore the instructions being executed. This means that we cannot
hide expensive but infrequent computation behind branches, the way we typically to
on CPUs: if just one thread has to enter the expensive region, then we pay the cost
for every thread in the warp. An example of a kernel that contains branches is shown
on Figure 17. Even if the condition on line 4 is false for a given thread, it may still
execute line 5. But if so, the mask bit will be set, and the write to x will be ignored.

54

CHAPTER 4. PARALLELISM AND HARDWARE CONSTRAINTS

4.3 Memory Spaces

The GPU has several kinds of memory, each with its own properties and performance
considerations. As the limiting factor in GPU performance is typically memory
access times, proper use of the various kinds of memory is important. The following
kinds of memory are used in our GPU model:

Registers, which are private to each thread. Registers are scarce but fast, and
while they can be used to hold small arrays, they are typically used to hold
scalar values. Overuse of registers can lead to fewer threads being able to run
concurrently, or perhaps to the kernel being unable to run at all. The number
of registers used by a thread is a function solely of its code, and cannot depend
on kernel-launch parameters.

Local memory, which is fast but size-constrained on-chip memory, which is shared
by all threads in a group. When a kernel is launched, some quantity of local
memory can be requested per group (same amount for each). The contents of a
local memory buffer becomes invalidated once its associated group terminates,
and hence cannot be used for passing results back to the CPU, or to store data
from one kernel launch to the next.

Global memory, which is large off-chip memory, typically several GiB in size. Al-
though much slower than registers or shared memory, global memory is typ-
ically still much faster than CPU RAM. The contents of global memory are
visible to all groups, and persists across kernel launches. Thus, global memory
is the only way to pass initial data to a kernel, and for a kernel to return a result.
Global memory can be read from or written to from the CPU, although at much
lower speeds than the GPU itself is able to.

Global memory does not have the many layers of caching that we are used to
from the CPU. Instead, we must make sure to only access global memory with
efficient access patterns (see Section 4.3.1).

Global memory must be allocated by the host prior to kernel execution. Memory
allocation is not possible from within a running kernel.

Threads communicate with each other by reading and writing values to memory
(typically, shared memory). Since GPUs use a weakly consistent memory model,
we must use barrier intructions to ensure that the memory location we wish to read
from has already been written to by the responsible thread. When a thread executes a
barrier instruction, it will wait until every other thread in the group has also reached
the barrier instruction, at which point they will continue execution. The fact that
barriers have an effect only within a group is why we say that communication can
only happen between threads in the same group.

55

CHAPTER 4. PARALLELISM AND HARDWARE CONSTRAINTS

4.3.1 Coalesced Memory Accesses

The connection from GPU to global memory is via a fast and wide bus that is able to
fetch several words in a single transaction. As an example, many NVIDIA hardware
GPus uses a 512-bit bus that can fetch 16 32-bit words in one transaction, but only
if the words are stored adjacent in memory and do not cross a cache line. We will
ignore the cache line concern in the following, as it is a secondary effect.

This memory bus behaviour has important performance implications. Fetching
16 neighbouring words can be done in one memory transaction, whilst fetching 16
widely spaced words will require a transaction per word, thus utilising only a sixteenth
of available memory bandwidth. As the performance of many GPU programs depends
on how quickly they can access memory (they are bandwidth-bound), making efficient
use of the memory bus has high priority.

When a warp issues a memory operation such that adjacent threads access adjacent
locations in memory, we say that we have a coalesced memory access. This term
comes from the notion that several memory operations coalesce into one. On some
GPUs, the addresses accessed by the threads in a warp must be ascending by one word
per thread, but on newer GPUs, it can be any permutation we wish, as long as every
address falls within the same 512-bit memory block. On an NVIDIA GPU, in the
best case, a 32-thread warp can store 32 32-bit words using two memory transactions.

The optimal access pattern is thus a bit counter-intuitive compared to what we
are used to from CPU programming. On the GPU, a single thread should access
global memory with a stride–something that is known to exhibit bad cache behaviour
on a CPU. An example is shown on Figure 18. In both of the kernels shown, each
thread sums n elements of some array. The difference lies in the access pattern. On
Figure 18a, when j accesses the element at index j ·n+ i, thread j +1 will be accessing
the element at index (j + 1) · n + i. Unless n is small, these two addresses are far
from each other, and will require a memory transaction each. In contrast, Figure 18b
shows a program where thread j accesses index i · n + j while thread j + 1 accesses
index i · n + j + 1. These are adjacent locations in memory and can likely be fetched
in just one memory operation. In practice, the latter program will run significantly
faster – a factor 10 difference is not at all unlikely.

GPUs have little cache in the way we know from CPUs. While we can use local and
private memory as a manually managed cache, most of our memory performance will
come from rapidly reading and writing from global memory via coalesced memory
operations.

A coalescing example: transposition

As an example of how coalescing can be resolved in a nontrivial case, this section will
present how two-dimensional matrix transposition can be implemented in the GPU
model. The basic idea is to launch a kernel that contains one thread for every element

56

CHAPTER 4. PARALLELISM AND HARDWARE CONSTRAINTS

thread(in, out, n):
gtid <- get_global_id()
sum <- 0
for i < n:

sum <- sum + in[gtid*n + i]
out[gtid] <- sum

(a) Uncoalesced access.

thread(in, out, n):
gtid <- get_global_id()
sum <- 0
for i < n:

sum <- sum + in[i*n + gtid]
out[gtid] <- sum

(b) Coalesced access.

Figure 18: Examples of programs with uncoalesced and coalesced memory accesses.

thread(in, out, n, m):
gtid <- get_global_id()
i <- gtid / n
j <- gtid % m

index_in <- i * n + j
index_out <- j * m + i

out[index_out] <- in[index_in]

Figure 19: Naive GPU implementation of matrix transposition.
. .

in the input matrix. For simplicity, we assume that the total number of input elements
is divisible by our desired workgroup size.

A naive attempt can be seen on Figure 19. Because the GPU model does not
have a notion of multi-dimensional arrays, we assume the nominally n × m matrix is
represented as a flat array in row-major representation.

The write to the out array is fine, as it is coalesced between neighbouring threads.
However, the read from in is problematic. Suppose n = m = 100. If we perform the

57

CHAPTER 4. PARALLELISM AND HARDWARE CONSTRAINTS

gtid i j index_in index_out
0 0 0 0 0
1 0 1 1 100
2 0 2 2 200
3 0 3 3 300

...

100 1 0 100 1
101 1 1 101 101
102 1 2 102 201

(a) Tabulation of computed indexes for the transposition kernel on Figure 19. We assume
n = m = 100.

gtid g_i g_j l_i l_j index_in index_out
0 0 0 0 0 0 0
1 0 1 0 1 1 1
2 0 2 1 0 2 2
3 0 3 1 1 3 3

...

100 1 0 0 0 100 100
101 1 1 0 1 101 101
102 1 2 1 0 102 102

(b) Tabulation of computed indexes for the transposition kernel on Figure 20. We assume
n = m = 100, and TILE_SIZE = 2 (this is an implausibly small number, 16 is more
realistic).

Table 2: Tables of indices computed for the two transposition kernels.
. .

index arithmetic by hand, we obtain the threads and indexes shown on Table 2a.
The solution is to perform a tiled transposition. Every workgroup will read a

chunk of the input array into a local memory array, and then write back that chunk
in transposed form. The trick is that the element that a given thread reads is not the
same as the element that it writes. We could say that we perform the transposition
in local memory, rather than global memory. The approach is shown on Figure 20.
We assume some constant TILE_SIZE, and that the workgroup size is exactly
TILE_SIZE · TILE_SIZE. We further assume the presence of a local memory
array block with room for one element for every thread in the workgroup. Recall
that local memory arrays are local to the workgroup, and visible by all threads in the
workgroup.

We use a memory barrier between reading the input and writing the output. This
is necessary to ensure that the element we read from block has been written by the
responsible thread, as GPUs do not guarentee execution order outside of warps.

The coalesced kernel is very efficient on current GPU hardware, and is in fact

58

CHAPTER 4. PARALLELISM AND HARDWARE CONSTRAINTS

local block[TILE_SIZE*TILE_SIZE]

thread(in, out, n, m):
gtid <- get_global_id()
g_i <- gtid / n
g_j <- gtid % m

ltid <- get_local_id()
l_i <- ltid / TILE_SIZE
l_j <- ltid % TILE_SIZE

index_in <- g_i * m + g_j
index_out <- g_i * n + g_j

block[l_j*TILE_SIZE + l_i] <- in[index_in]

barrier()

out[index_out] <- block[l_i*TILE_SIZE + l_j]

Figure 20: A GPU implementation of matrix transposition that ensures coalesced access to
memory. We assume that the workgroup size is TILE_SIZE · TILE_SIZE.

. .

not much slower than an ordinary memory copy. Thus we can treat transposition
as a fast primitive. It is also not hard to extend the transposition kernel such that it
transposes not just a single two-dimensional array, but rather transposes the inner two
dimensions of a three-dimensional array. This is useful for implementing Futhark’s
rearrange construct. We have two final remarks on transposition:

1. For this kernel, we assume that n and m are divisible by TILE_SIZE in
both dimensions. This assumption can be lifted by the liberal application
of bounds checks before accessing global memory. However, such checks
may make the kernel inefficient for pathological cases where n or m is very
small (corresponding to very “fat” or “skinny” matrices), as many threads per
workgroup will be idle. Specialised kernels should be used for these cases.

2. The way the kernel on Figure 20 accesses local memory is susceptible to bank
conflicts, where several threads in the same memory clock cycle attempt to
access different addresses within the same memory bank. We do not address
bank conflicts further here, except to note that they are solvable by padding the
local array such that it has size TILE_SIZE*(TILE_SIZE+1).

59

CHAPTER 4. PARALLELISM AND HARDWARE CONSTRAINTS

Our term CUDA term
Workgroup Block
Private memory Local memory
Local memory Shared memory

Table 3: Thesis terms to CUDA terms
. .

4.4 The Model in the Real World

The model presented in this chapter is intended as a tool for justifying the transfor-
mations performed by the Futhark compiler. But as our eventual goal is efficient
execution on real silicon, the model is useless if it does not permit an efficient map-
ping to reality. In this section, I will explain how the GPU model maps to the popular
CUDA [17] model supplied by NVIDIA. One issue is that of terminology. This the-
sis uses terms from the OpenCL standard, which overlaps in incompatible way with
terms defined by CUDA. Table 3 summarises the differences. In this section we will
continue using the same terms as in the rest of the thesis, even when talking about
CUDA.

The most significant difference between the GPU model and CUDA is the di-
mensionality. In CUDA, groups and threads are organised into a three-dimensional
grid (x, y, z), while our model contains only a single dimension. This is primarily a
programming convenience for problems that can be decomposed spatially. However,
the grid has hardware-specific size constraints: on recent NVIDIA hardware, the
maximum number of threads in a workgroup in the x and y dimensions can be at
most 1024, and in the z dimension at most 64. Also, the total number of threads in a
workgroup may not exceed 1024.

The one-dimensional space of our GPU model can be mapped to CUDA by only
using the x dimension, and leaving the y and z dimensions of size 1. However,
CUDA imposes more restrictions: we can have at most 216 = 65535 workgroups
in one dimension. Usually this will not be a problem, as no GPU needs anywhere
this many threads to saturate its computational resources. If it were to become a
problem in the future, we could simply map the flat group ID space onto CUDAs
three-dimensional space by computing, for any gid:

x =
gid
216 , y = gid mod 216, z = 0

In general, flat and nested spaces can be mapped to each other at the cost of a
modest number of division and remainder operations. The only place where the layout
of the thread space has semantic or performance consequences is within workgroups.
As the size limit for these (1024) is the same as the maximum number of threads
along the x dimension, we can always treat them as one-dimensional.

In the extreme case, we can also virtualise workgroups by adding a loop to each
physical workgroup. This loop runs the body multiple times with different values for

60

CHAPTER 4. PARALLELISM AND HARDWARE CONSTRAINTS

gid and gtid. This works because we assume communication between workgroups
to be impossible, and hence the order of evaluation to be irrelevant.

4.4.1 Excluded Facilities

Real GPU hardware possesses some capabilities that are not represented in our model.
Some of these are unimportant, but others do offer performance opportunities that
are for this work lost to us.

Atomic Operations

One important missing facility is atomic global memory operations, by which a
thread can modify a location in memory in a race-free manner. The hardware
supports a fixed number of atomic operators, such as addition, subtraction, exchange,
or taking minimum and maximum. Crucially, there is also an atomic compare-
and-swap instruction, on top of which other synchronisation primitives could be
built [Fra04].

Using atomic addition, we could represent a summation kernel that needs only
one kernel launch instead of two (see Section 4.5 for a general treatment of how
reduction is implemented). The reason we do not exploit these atomic operations
is due to their lack of generality. To the Futhark compiler, there is nothing special
about a summation: it is treated like any other commutative reduction. Could the
code generator, or some intermediate optimisation pass, employ pattern matching to
recognise known patterns that have particularly efficient realisations? Certainly, and
perhaps we will do so in the future, but for the present work we have chosen to focus on
the general case, in the interest of simplicity. Using compare-and-swap, it is feasible
to implement single-state reduction for arbitrary operators, but it is unclear whether
it is worth the cost in complexity, as the memory traffic would not be smaller than
for the two-stage kernel. The primary savings would be in avoiding the overhead of
launching the second (single-group) kernel, which by itself is not all that expensive.

Atomic operations are most useful when used to implement communication be-
tween workgroups. An implementation of prefix sum (scan) in CUDA has been
developed which performs just one full pass over the input [MYB16]. In contrast,
the best version available to us requires two. However, the single-stage scan imple-
mentation depends on intimate knowledge about the target hardware—in particular,
launching no more groups than will fit concurrently. This is not just a question of
knowing the hardware, but also its users. If some other program is also using the
GPU, we will have room for fewer concurrent groups than expected, potentially re-
sulting in deadlock. We have judged the fragility of such code unacceptable for the
output of a compiler, especially since the compiler is intended to shield its users from
having to possess deep hardware knowledge. In contrast to language that employ full

61

CHAPTER 4. PARALLELISM AND HARDWARE CONSTRAINTS

flattening (such as NESL [Ble96]), Futhark performance is also less dependent on
scan performance.

More Memory Spaces

Real GPUs support more kinds of memory than we have included in our GPU model:

Constant memory is a size-limited read-only on-chip cache. When we declare an
array input to a kernel function, we can mark it as constant, which will cause
it to be copied to the cache just before the kernel begins execution. Constant
memory is useful when many threads are reader the same memory in the same
clock cycle, as accessing the constant cache is significantly faster terms of
latency) than accessing global memory.

Unfortunately, this facility is difficult to exploit for a compiler. The reason is that
the size of the constant cache is quite small—usually not more than 64KiB—
and the kernel launch will fail if the arrays passed for constant parameters
do not fit in the cache. In general, the specific sizes of arrays is not known
until runtime. Thus, the choice of whether to use constant memory is thus a
compile-time decision, while the validity of the choice can only be known at
run-time.

Texture memory is physically global memory, but marked as read-only, and spa-
tially cached, and, in contrast to other memories, multi-dimensional and with
assumptions on the type of elements stored. Texture memory is useful for access
patterns that exhibit spatial locality in a multi-dimensional space. For exam-
ple, for a two-dimensional array a, the elements a[i,j] and a[i+1,j+1]
are distant from each other no matter whether a is represented in row- or
column-major form, but they are spatially close in a two-dimensional space.

Texture memory is cached in such a way that elements are stored together with
spatially nearby elements. When texture memory is allocated, we must specify
its dimensionality, which in extant hardware must be of 1, 2, or 3 dimensions.
There are also restrictions on the size of individual dimensions. On an NVIDIA
GTX780, 1D buffers are limited to 227 elements, 2D buffers to 216 ·216 elements,
and 3D buffers to 212 · 212 · 212.

Texture memory also supports other convenient operations with full hardware-
acceleration. For example, out-of-bounds accesses can be handled transpar-
ently via index-wraparound, or by yielding a specified “border” value. Linear
interpolation between neighbouring values is also provided. However, for non-
graphics workloads, the spatial locality caching model is the most interesting
feature. Unfortunately, it is difficult for a compiler to exploit. The size limita-
tions are particularly inconvenient for “skinny” arrays that are much larger in
one dimension than in the others.

62

CHAPTER 4. PARALLELISM AND HARDWARE CONSTRAINTS

As with constant memory, the use of texture memory is thus a compile-time
decision whose validity depends on run-time properties of the program input.

Dynamic Parallelism

Another core assumption of our GPU model is that there are only two levels of
parallelism: we launch a number of groups, and each group contains a number
of threads. Recent GPUs support dynamic parallelism, in which new kernels may
be launched by any thread in a running kernel, after which the thread may wait for
completion of the new kernel instance. This is an instance of the well-known fork-join
model of parallelism.

Dynamic parallelism has interesting use cases. One can imagine a search al-
gorithm that starts by performing a coarse analysis of regions of the input data,
then launching new kernels for those parts that appear interesting. Very irregular
algorithms, such as graph processing, may also be convenient to implement in this
fashion.

Unfortunately, dynamic parallelism often suffers from performance problems in
practice [DT13; WY14], and fruitful applications are not as prevalent as might have
been expected. Efficient usage of dynamic parallelism centers around collecting
the desired new kernel launches and merging them together into as few launches as
possible, to amortise the overhead. From a functional programming point of view, it
seems a better strategy to implement irregular problems via flattening (either manual
or automatic), rather than using dynamic parallelism. For these reasons, dynamic
parallelism is not part of our GPU model, and is not employed by the Futhark
compiler.1

Intra-Group Communication

Most GPUs have support for efficient “swizzle” operations for exchanging values
between threads in a warp. However, despite the hardware supporting this as a
general capability, current programming interfaces provide only specialised variants,
for example for summation inside a warp, with each thread providing an integer. In our
GPU model, we thus require all cross-thread communication to be done through local
memory. This is not a restriction with deep ramifications–should more efficient intra-
group communication primitives become available, it would have no great overall
impact on our compilation strategy.

1Another, more pragmatic, reason is that dynamic parallelism is not supported by the OpenCL
implementation provided by NVIDIA.

63

CHAPTER 4. PARALLELISM AND HARDWARE CONSTRAINTS

thread(in, out, n):
gtid <- get_global_id()

if gtid < n:
x <- in[gtid]
y <- f(x)
out[gtid] <- y

Figure 21: A GPU implementation of map f a. We assume the array a is stored in memory
pointed at by the parameter in.

. .

4.5 GPU Implementation of Selected Parts of the Array Calculus

The combinators presented in Chapter 3 permit an efficient mapping to GPUs. Indeed,
we shall see that “kernel extraction”, the process of generating flat parallel GPU
kernels from a nested parallel Futhark program, is primarily a process of rewriting
the program into a composition of recognisable primitives. This section shows how a
subset of these are handled with respect to the GPU model introduced above. In order
to focus on mapping the parallelism and exploiting certain crucial optimisations, we
will ignore some technicalities.

The simplest case is implementing map f a. This can be done with a kernel that
conceptually runs one thread for every element in a, which applies f and writes the
result. Supose that a contains n elements, and that our desired workgroup size is w.
We then use n/w workgroups (rounding up). Since the size of a may not be divisible
by the optimal group size for the GPU, the last workgroup might have threads that
are idle. The kernel is shown on Figure 21. We assume that f is merely executed
sequentially within each thread.

Mapping a reduction such as reduce ⊕ 0⊕ a is more complicated. Again supposing
that a contains n elements, one solution is to launch n/2 threads. Each thread reads
2 elements, applies ⊕, and writes its result. The process is then recursively applied
on the resulting n/2 elements until only a single one is left. This implementation is
shown on Figure 22.

The reduction thus computed is correct and fully parallel, but it requires man-
ifesting O(log n) intermediate results in global memory. The time taken to shuffle
memory around is likely to significantly dominate the cost of computing ⊕. Further,
it is awkward if we want to support not just ordinary reductions, but the redomap
construct, where reduction is preceded by a fold. A better solution, one that takes
more direct advantage of the GPU architecture, is needed.

An implementation of redomap ⊕ f 0⊕ a is shown on Figure 23. The idea is to
divide the n input elements into chunks, where each thread processes a chunk of the
input sequentially using the f function, followed by all threads within a workgroup

64

CHAPTER 4. PARALLELISM AND HARDWARE CONSTRAINTS

thread(in, out, n):
gtid <- get_global_id()

z <- 0⊕

if gtid < n:
x <- in[gtid*2]
y <- in[gtid*2+1]
z <- x ⊕ y

out[gtid] <- z

Figure 22: A GPU implementation of reduce ⊕ 0⊕ a. We assume the array a is stored
in memory pointed at by the parameter in. The kernel is invoked several times
while swapping in and out.

. .

collaboratively reducing together, yielding one result per workgroup (which here is
written by thread 0 of the group). These per-workgroup results can then be reduced
using a simple single-workgroup reduction to a single, final result. The result is
that reduction of an arbitrarily-sized input array can be done using two GPU kernel
invocations.

Assume that we are launching k workgroups each of size w, for a total of k · w
threads. For simplicity we assume that n is divisible by k ·w, whhich means that each
thread processes exactly n

k ·w elements. This assumption can be removed by having
each thread explicitly compute its chunk size. We also assume that w is a power of
two, as this simplifies the the intra-group reduction.

Unfortunately, the kernel shown on Figure 23 has a significant problem: the
memory accesses performed during the sequential per-chunk processing are non-
coalesced. This is because the chunk processed by a given thread is sequential in
memory. At an abstract level, we are treating the input as a two-dimensional array of
shape n

(k ·w) × (k · w) represented in row-major order.
A simple solution is to stride the chunks, such that each element within a chunk is

separated by k · w elements in the array as a whole. Using the matrix metaphor, this
corresponds to representing the input in column-major order. This approach is shown
in Figure 24. Unfortunately, this solution changes the order of application of, which
means that unless ⊕ is commutative, the result of the reduction is now wrong. We can
solve this by treating the input as a two-dimensional array and pre-transposing the
input, after which the “wrong” iteration order will actually restore the original order.
As shown in Section 4.3.1, transpositions can be implemented efficiently on GPUs,
so this extra memory traffic is a small price to pay, if the alternative is non-coalesced
access. In practise, most operators we wish to use in reductions are commutative, in

65

CHAPTER 4. PARALLELISM AND HARDWARE CONSTRAINTS

local block[]

thread(in, out, k, w, n):
gtid <- get_global_id()
ltid <- get_local_id()
gid <- get_group_id()

chunk_size <- n/(k*w)

-- Compute a fold of the chunk.
i <- 0
x <- 0⊕
while i < chunk_size:

y <- f(in[gtid*chunk_size + i])
x <- x ⊕ y
i <- i + i

block[ltid] <- x
barrier()

i <- w/2
while i > 0:

if ltid < i:
x <- block[ltid*2]
y <- block[ltid*2+1]
z <- x ⊕ y

barrier()
if ltid < i:

block[ltid] <- z
barrier()
i <- i / 2

if ltid == 0:
out[gid] <- block[0]

Figure 23: A GPU implementation of redomap ⊕ 0⊕ a. We assume the array a is stored
in memory pointed at by the parameter in. The result is one partial result per
workgroup, which will have to be processed by a final (much smaller) reduction.

66

CHAPTER 4. PARALLELISM AND HARDWARE CONSTRAINTS

local block[]

thread(in, out, k, w, n):
...

-- Compute a fold of the chunk.
i <- 0
x <- 0⊕
while i < chunk_size:

y <- f(in[gtid + i*(w*n)])
x <- x ⊕ y
i <- i + i

...

Figure 24: A rewriting of the per-chunk folding of Figure 23 such that memory accesses are
coalesced. This only works if the reduction is commutative.

. .

which case the pre-transposition is not necessary. A generalisation of this technique
is is used by the Futhark compiler, as discussed in Section 9.1.

67

Part II

An Optimising Compiler

68

Chapter 5

Overview and Uniqueness Types

This chapter contains three primary elements: First, an overview of the compiler
design, with an emphasis on how the program is transformed as it proceeds through
the pipeline (Section 5.1). Second, a simplified Futhark core language that will be
used in the following chapters to describe the operations performed by the Futhark
compiler (Section 5.2). Third, a formalisation of the uniqueness type system expressed
on the core language (Section 5.3).

The simplification engine encompasses well established optimisations such as
inlining, copy propagation, constant folding, common-subexpression elimination,
dead-code elimination, and hoisting of invariant terms out of recurrences in loops and
SOACs. The simplification rules are critical for optimising the result of higher-level
optimisations, such as producer-consumer fusion [Hen14; HO13], hoisting, and size
analysis, which is the subject of Chapter 6. For example, size analysis is implemented
via high-level transformation rules that only guarantee that the asymptotic complexity
(in number of operations) of the original program is preserved, but rely on the
simplification engine to reduce the overhead to be negligible in the common case.

5.1 Compiler Design

The Futhark compiler is implemented in Haskell, and is designed as a conventional
syntax-directed translator. The compiler is comprised as a number of passes, which
can be seen as functions that accept a program as input, and produce a program as
output. Some passes perform rewrites of a program in some representation, while
other passes lower the program to a more specialised or lower-level representation.

The compiler contains two different compiler pipelines; one for generating a
sequential program, and one for generating a program with parallel code. Parallelism
in the generated code is expressed as OpenCL [SGS10] kernels. While OpenCL
is a hardware-agnostic API, and we generate portable OpenCL code, many of the
optimisations we perform make assumptions that are specific to GPUs. We might
not achieve desired performance if we executed the generated OpenCL code on, for

69

CHAPTER 5. OVERVIEW AND UNIQUENESS TYPES

example, FPGAs or other such exotic platforms. We have, however, noted decent
performance on multicore CPUs, but this is not a direction we shall investigate in this
thesis.

The initial passes of the sequential and parallel pipelines are identical, but they
differ after a certain point. In this section, and the thesis as a whole, we will
focus on the parallel compilation pipeline, as it is by far the more complicated of
the two. The intermediate representation used by Futhark is typed, and to ensure
robustness, full type-checking (including verifying safety of in-place updates) is
performed between all compiler passes. The type checking rules become more
lenient as the representation is gradually lowered, and the later stages perform only
cursory checking. This type-checking carries a significant compilation overhead
(approximately 20%), so we expect to disable it for production releases of the compiler.

The pipeline proceeds with the following passes in order as follows:

Internalisation and Desugaring The source Futhark language is translated into the
core language (Section 5.2). In particular, modules and polymorphic functions
are removed through specialisation (outside the scope of this thesis), all tuples
are flattened, and arrays of tuples are transformed into tuples of arrays, using
the technique shown on 15. This is also the pass where where size inference is
performed (Chapter 6).

Inlining and Dead Function Removal All functions are inlined. As the Futhark
language presently does not support recursive functions, this is always possible.
This may result in significant growth in code size, and so future work should
investigate more conservative approaches. Inlining is critical to making sub-
sequent optimisations possible, however. On GPUs, our main target platform,
all functions inside kernels are automatically inlined in any case, so we do not
lose much by inlining at the Futhark-level sas well.

SOAC Fusion SOACs in a producer-consumer relationship, or simply adjacent and
looping over arrays of identical size, are fused (Chapter 7).

Kernel Extraction A moderate flattening algorithm is applied to the program, which
transforms nests of SOACS into flat-parallel kernels (Chapter 8). The kernels
produced here are not yet low-level GPU kernels, but a higher-level representa-
tion that still abstracts many details, in particular issues of memory allocation.
Nested parallelism is gone after this pass.

Coalescing Fixes The kernels generated in the previous pass are inspected, and non-
coalesced array access patterns are resolved by semantically transposing the
arrays in question (Section 9.1).

Loop Tilng Loop tiling is performed inside the generated kernels (Section 9.2). This
is the last pass we discuss in detail in this thesis—the remainder are concerned

70

CHAPTER 5. OVERVIEW AND UNIQUENESS TYPES

with various technical minutiae, which, while extremely time-consuming and
challenging to implement, are of lesser scientific importance.

Memory Allocation Explicit allocations are inserted in the program, in a scheme
similar to region inference [Tof+04]. Every array becomes associated with
a “memory block”, the allocation of which can be hoisted out of the recur-
rence or branch where the array itself is constructed. To handle cases where
pre-allocation is not possible (such as a loop where the array size changes for
every iteration), the existential-types mechanism also employed for size infer-
ence (Chapter 6) is used. The ability for the compiler to manipulate memory
allocations as program constructs is important. We use this to arrange the
program such that all memory is pre-allocated before entering GPU kernels,
inside which allocation is not supported.

Double Buffering We perform double buffering to enable the hosting of memory
allocations out of loops (in particular loops that are inside parallel kernels).
For technical reasons, we currently do not perform double buffering in the
usual way, with pointer swapping, but instead insert extra copies for every
iteration of the loop. In Section 10.1.1 we shall see an example where this
significantly impacts our performance.

Memory Expansion It is not safe to naively hoist allocations out of parallel kernels.
When hoisting such allocations, we first have to perform expansion, such that
one per-thread private allocation of b bytes becomes one shared allocation of
n × b bytes, where n is the number of threads. This requires all allocations to
be at the top level of kernels, and for their size to be expressible in terms of (or
at least bounded by) variables whose value is known before the kernel.

Imperative IR Code Generation The flat-parallel Futhark program with explicit al-
locations is transformed into a low-level imperative intermediate representation
(IR). This IR is similar to C, but significantly simpler, and much more explicit.
No optimisations are performed on this representation. The IR has special con-
structs for representing GPU kernels, whose bodies are also expressed with the
imperative IR. This pass fails if any allocations remain inside parallel kernels.

Final Code Generation The imperative IR is transformed into host-level (CPU) code
and actual OpenCL kernels. The host-level code is either C or Python, with calls
to the OpenCL library, while OpenCL kernels are in OpenCL C (a restricted
dialect of C). We write the result to one or more files, and, depending on the
compilation options, may invoke a C compiler to generate an executable.

71

CHAPTER 5. OVERVIEW AND UNIQUENESS TYPES

5.1.1 Simplification Passes

The preceding list of passes is incomplete. Between almost every pass, we perform
a range of simplifications and conventional optimisations. There are too many in
number, and too individually uninteresting, to be discussed in detail, but a few
deserve mention:

Copy propagation, constant folding, and CSE: The usual bevy of of scalar optimi-
sations is performed, with range analysis and propagation performed to support
the elimination of (some) bounds- and size checks.

Aggressive hoisting: The Futhark compiler aggressively hoists expressions out of
loops and branches, where possible and safe. Care is taken to avoid hoisting
potentially expensive constructs out of branches.

Dead code removal: We remove not merely expressions whose results are never used,
but also rewrite expressions where only part of the result is used. Consider for
example an if that returns a pair, where only one component of the pair is
subsequently used.

Removal of single-iteration loops and SOACs: Any loop with a single iteration, or
a SOAC whose input array has a constant size of 1, can be trivially substituted
with its body. This is used to enable efficient sequentialisation (see Section 7.3.2
for an example).

Un-existentialisation: As we shall see in Chapter 6, Futhark uses an existential type
system with size-dependent types. Simplification rules are used for making
existential sizes concrete where possible.

Most of the simplifications are performed by a general simplification engine,
which traverses the program and applies a collection of rewrite rules to every ex-
pression. The process is repeated until a fixed point is reached. This approach is
fairly similar to the one used by the Glasgow Haskell Compiler (GHC) [JTH01]. The
main difference is that in GHC the rules are expressed as user-provided equalities,
but the simplification rules in Futhark are hardwired into the compiler in the form of
monadic Haskell functions. This allows the Futhark rewrite rules to be significantly
more powerful, as they can inspect the surrounding environment, but they are not
user-extensible. As an example, Figure 25 defines a rule that removes results of a
map that are not used subsequently. This rule depends on information about what
happens after the expression, and is thus applied during a bottom-up traversal. This
is the sole exception to our general policy of not showing compiler implementation
code in this thesis.

72

CHAPTER 5. OVERVIEW AND UNIQUENESS TYPES

removeDeadMapping :: (MonadBinder m,
Op (Lore m) ~ SOAC (Lore m))

=> BottomUpRule m
removeDeadMapping (_, used)

(Let pat _ (Op (Map cs width fun arrs))) =
let ses = bodyResult $ lambdaBody fun

isUsed (bindee, _, _) =
(‘UT.used‘ used) $ patElemName bindee

(pat’,ses’, ts’) =
unzip3 $ filter isUsed $
zip3 (patternElements pat) ses $ lambdaReturnType fun

fun’ = fun { lambdaBody =
(lambdaBody fun) { bodyResult = ses’ }

, lambdaReturnType = ts’
}

in if pat /= Pattern [] pat’
then letBind_ (Pattern [] pat’) $

Op $ Map cs width fun’ arrs
else cannotSimplify

removeDeadMapping _ _ = cannotSimplify

Figure 25: An example of a simplification rule from the Futhark compiler (slightly refor-
matted for presentation purposes). This rule removes map results that are never
used.

. .

5.2 Abstract Syntax of the Core IR

This section describes the abstract syntax of a simplified form of the Futhark interme-
diate representation (IR).

5.2.1 Notation for sequences

Whenever z is an object of some kind, we write z to range over sequences of ob-
jects of this kind. When we want to be explicit about the size of a sequence
z = z0, · · · , z(n−1), we often write it on the form z(n) and we write z, z to denote
the sequence z, z0, · · · , z(n−1). Depending on context, the elements of the sequence
or may not have separators, or be merely juxtaposed. For example, we may use the
same notation to shorten a function application

f v(n) ≡ f v1 · · · vn
or a tuple

(v(n)) ≡ (v1, . . . , vn)
or a function type

τ(n) → τn+1 ≡ τ1 → · · · → τn → τn+1.

73

CHAPTER 5. OVERVIEW AND UNIQUENESS TYPES

It is always clear from the context which separator (if any) is intended. On occasion
we use more complicated sequences, where not all terms under the bar are variant. In
this case, the variant term is subscripted with i. For example,

([d]vi
(n)) = ([d]v1, . . . , [d]vn)

and
([di]vi

(n)) = ([d1]v1, . . . , [dn]vn)

5.2.2 AST definition

Figure 26 shows the (simplified) core IR of Futhark, which will be used for all
compiler chapters of this thesis. The syntax is intentionally similar to the source
language. Notable details include:

• Variable names are ranged over by d, x, y, and z, and we use f to range over
function names.

• A variable may have a scalar type (i.e.,bool,i32,f64), or a multidimensional
(regular) array type, such as [][]f64, which is the type of a matrix in which all
rows have the same size.

• Named and unnamed functions use a syntax similar to the source language, but
unnamed functions may appear only as immediate arguments to SOACS, such
as map, reduce, filter, and so on. Moreover, named functions may only
be defined at top-level. Recursion is not permitted.

When discussing properties of the language, we will often assume that expressions (e)
in the intermediate language are in A-normal form [SF92]. That is, all subexpressions
are variable names (except for the special cases loop, if, and let). However, for
readability, we shall often stray from strict A-normal form when showing examples.
Tuple-typed variables do not exist in the IR, except as a syntactical construct for some
operators. A let-bound pattern (p) consists of one or more variables and associated
types that bind the result of an expression (e); intuitively equivalent to a tuple pattern
in the source language. Types are syntactically differentiated into two sorts: τ,
without uniqueness attributes, and τ̂, which permit an optional uniqueness attribute
(an asterisk). Uniqueness attributes are only used when specifying the parameter and
return types of top-level functions and for-loops—patterns in let bindings and
anonymous functions possess no uniqueness attributes.

Syntactic Conveniences

We permit the omission of of in immediately preceding let. This allows us to write

74

CHAPTER 5. OVERVIEW AND UNIQUENESS TYPES

f ::= id (Function names)
d, x, y, z ::= id (Variable names)
c ::= const (Constant value)
t ::= bool | i32 | f32 | ... (Built-in types)

τ ::= t | []τ (Scalar/array type)
τ̂ ::= τ | *τ (Nonunique/Unique type)
ρ ::= (τ1, . . . , τn) (Tuple types)
ρ̂ ::= (τ̂1, . . . , τ̂n) (Nonunique/Unique tuple types)
ϕ ::= ρ1 → · · · → ρn (Function type)

p ::= (x1 : τ1) . . . (xn : τn) (let or λ pattern)
p̂ ::= (x1 : τ̂1) . . . (xn : τ̂n) (Function pattern)

f un ::= let f p̂ : τ̂ = e (Named function)
P ::= ϵ | f un P (Program)

e ::= (x1, . . . , xn) (n-tuple)
| let p = e in b (Let binding)
| k (Constant)
| x (Variable)
| e ⊙ e (Scalar binary operator)
| if e then e else e (Branch)
| x[x1, . . . , xn] (Array indexing)
| x with [e1, . . . , en] ← e (In-place update)
| loop (p̂)=(x1, . . . , xn) (Loop)

for x < x do e
| f x1 . . . xn (Function call)
| op a1 . . . an (Operator call)

a ::= x (Simple argument)
| (x1, . . . , xn) (Tuple argument)
| (λp : ρ → e) (Function argument)

Figure 26: Grammar for the core Futhark IR. Some compiler stages may impose additional
constraints on the structure of ASTs, in particular by requiring size annotations to
be present, or banning certain operations. The definition of op in particular may
differ between stages. Some constructs, such as while loops, have been elided
for simplicity. The elided constructs would have no influence on the development
of the thesis.

75

CHAPTER 5. OVERVIEW AND UNIQUENESS TYPES

let x = 2
let y = 3
in x + y

instead of

let x = 2 in
let y = 3 in
x + y

which quickly adds up for larger expressions. This convenience is also present in
the Futhark source language. For patterns in let-bindings, we will also write

(x1 : τ1, . . . , xn : τn)

instead of
(x1 : τ1) . . . (xn : τn)

as strictly required by the syntax, in order to match the source language. For brevity,
we will also sometimes elide some type annotations. In such cases we may also elide
the parentheses when only a single name is bound by the pattern. We will often stray
from the strict syntax for lambdas, and write for example (+) for (λx y→x+y), or
(+2) instead of (λx→x+2).

On occasion, we will need bind variables whose names we do not care about. In
these cases we will use an underscore to indicate that the name is irrelevant. For
example:

map (λ_ y _ → x + 2) xs ys zs

5.2.3 Array Operators

An array operator (op) is one of several constructs that operate on arrays. These
include SOACs, but also such operations as iota and reshape. An array operator
can be applied to multiple arguments (a), where an argument can be a variable in
scope, but may also be a tuple of variables, or an anonymous function.

For giving concise types to operators, we use a notion of extended types that
supports polymorphism in types and for which arguments to functions may themselves
be functions:

τ ::= α | (τ1, . . . , τn) | τ1 → τ2 | τ → τ
ϕ ::= ∀α.τ

Extended types (τ) and extended type schemes (σ) are used only for the treatment of
operators and we shall be implicit about converting types and type schemes to and
from their extended counter parts. We treat the single-element tuple (τ) as equivalent
to τ. A substitution (S) is a mapping from type variables (and, later, term variables)

76

CHAPTER 5. OVERVIEW AND UNIQUENESS TYPES

op a1 . . . an Description
size c x Returns the size of dim x of x, where x

must be a non-negative integer literal.
iota x Returns the vector [0, . . . , x − 1].
replicate y x Returns an array of rank one higher

than x’s rank, containing an y-times
replication of x.

reshape (y1, . . . , yn) x Return an array of shape y1 × . . . × yn
containing the row-major elements of
x. It is a dynamic error if x does not
contain exactly y1× . . .× yn elements.

rearrange (c1, . . . , cn) x Rearrange the order of dimensions of
the n-dimensional array x. The re-
ordering c1, . . . , cn must be a permuta-
tion of 1...n.

Figure 27: Description of array operators. SOACs are described on Figure 28

op a(l) Description
map λ x(n) Apply the n-ary function λ simultaneously to consec-

utive elements of x1 . . . xn, producing an array of the
results. If λ returns k values, k arrays are returned.

scatter x y z For all i, write z[i] to position y[j] in x. Consumes
x and semantically returns a new array. The result is
unspecified if different values are written to the same
position. Out-of-bound writes have no effect.

reduce λ (y(n)) x(n) Perform a reduction of arrays x1, . . . , xn via the 2n-
ary function λ, producing n values. The values
y1, . . . , yn constitute a neutral argument for λ.

scan λ (y(n)) x(n) Perform an inclusive prefix scan of arrays x1, . . . , xn
via the 2n-ary function λ, producing n values. The
values y1, . . . , yn constitute a neutral argument for λ.

filter λ x(n) Produce n arrays, containing only those elements
with index j for which λ xi[j]

(n)
is true.

stream_map λ x(n) See Section 2.5.2.
stream_red λc λ f x(n) See Section 2.5.2.

Figure 28: Description of SOAC operators.

77

CHAPTER 5. OVERVIEW AND UNIQUENESS TYPES

op TySch(op)
size : ∀α.i32→ α→ i32
iota : i32→ []i32
replicate : ∀α.i32→ α→ []α
reshape : ∀α.(i321, . . . ,i32n) → []1 · · · []mα→ []1 · · · []nα
rearrange (c(n)) : ∀α.[]1 · · · []nα→ []1 · · · []nα
map : ∀α(n)β(m).(α(n) → (β(m))) → []αi (n) → (β(m))
scatter : ∀α(n).([]αi (n)) → ([]i32(n)) → ([]αi (n)) → ([]βi (n))
reduce : ∀α(n).(α(n) → α(n) → (α(n))) → (α(n)) → []αi (n) → (α(n))
scan : ∀α(n).(α(n) → α(n) → (α(n))) → (α(n)) → []αi (n) → ([]αi (n))
filter : ∀α(n).(α(n) → bool) → []αi

(n) → ([]αi
(n))

stream_map : ∀α(n) β(m).([]αi (n) → ([]βi (m))) → []αi (n) → ([]β(m))
stream_red : ∀α(n) β(m).(β(m) → β(m) → (β(m))) → ([]αi (n) → (βi (m)))

→ []αi
(n) → (β(m))

Figure 29: Size-agnostic type schemes for operators, including various SOACs.
. .

to extended types. We write substitutions ⟨x 7→ y⟩. Applying a substitution S to
some object B, written S(B), has the effect of simultaneously applying S to variables
in B (being the identity outside its domain). An extended type τ′ is an instance of an
extended type scheme ϕ = ∀®α.τ, written ϕ ≥ τ′, if there exists a substitution S such
that S(τ) = τ′.

Type schemes for operators, including a representative subset of the SOAC opera-
tors, are given in Figure 29, and an informal description is given in Figures 27 and 28.
The SOACs of the intermediate language (such as map) are a tuple-of-array versions
of the user language SOACs. The SOACs of the intermediate language receive an
arbitrary number of array arguments and produce a tuple of arrays as their result.
The semantics of a SOAC operator can be intuitively understood as a composition be-
tween unzip, the user-language SOAC (such as map), and zip, where the unnamed
function is suitably modified to work with the flat sequence of array arguments.

5.2.4 Typing Rules

In the type rules, we permit the implicit transformation of uniqueness types and
patterns τ̂/ρ̂/p̂ to their corresponding τ/ρ/p, where uniqueness attributes have simply
been removed. This simplifies the type rules, which can then be stated separate from
the rules for checking uniqueness properties.

Type environments (Γ) are finite maps from program variables to types or function
types. Looking up the type of x in Γ is written Γ(x). When Γ is a type environment
and p is a pattern τ1 x1, · · · , τn xn, we write Γ, p to denote the typing environment

78

CHAPTER 5. OVERVIEW AND UNIQUENESS TYPES

Γ, x1 : τ1, · · · , xn : τn.
Typing rules for the source language are given in Figures 30 and 31. The rules

allow inferences among sentences of the following forms:

⊢p p : ρ, read “the pattern p is matched by expressions of tuple type ρ.”

⊢p̂ p̂ : ρ̂, read “the pattern with uniqueness p̂ is matched by expressions of tuple type
ρ.”

Γ ⊢a a : τ/ϕ, read “under the assumptions Γ, the operator argument a has type τ or
function type ϕ.”

Γ ⊢ b : ρ, read “under the assumptions Γ, the expression e has tuple type ρ.”

Γ ⊢P P : ρ, read “under the assumptions Γ, the program P has tuple type ρ.”

79

CHAPTER 5. OVERVIEW AND UNIQUENESS TYPES

Patterns ⊢p p : ρ

⊢p (x1 : τ1, · · · , xn : τn) : (τ1, · · · , τn)
(5.1)

Operator arguments ⊢a a : ρ/ϕ

Γ ⊢a x : Γ(x)
(5.2)

⊢p p : ρ Γ, p ⊢ b : ρ′

Γ ⊢a λp : ρ′ → b : ρ→ ρ′
(5.3)

⊢p (x1, . . . , xn) : (Γ(x1), . . . , Γ(xn))
(5.4)

Parameters ⊢p̂ p̂ : ρ̂

⊢p̂ (x1 : τ̂1, · · · , xn : τ̂n) : (τ̂1, · · · , τ̂n)
(5.5)

Programs Γ ⊢P P

⊢p̂ p̂ : (τ1, . . . , τn) Γ, p̂ ⊢ e : ρ
Γ(f) = τ1 → . . .→ τn → ρ̂ Γ ⊢P P

Γ ⊢P let f p̂ : ρ̂ = e P
(5.6)

Γ ⊢P ϵ
(5.7)

Figure 30: Typing rules for Futhark’s core IR, excluding expressions, which are shown on
Figure 31.

80

CHAPTER 5. OVERVIEW AND UNIQUENESS TYPES

Expressions Γ ⊢ e : ρ

⊢p p̂ : ρ Γ ⊢ e1 : ρ
Γ, p ⊢ e2 : ρ′

Γ ⊢ let p = e1 in e2 : ρ′
(5.8)

Γ ⊢ (x1, · · · , xn) : (Γ(x1), · · · , Γ(xn))
(5.9)

Γ(x) = []τ Γ(s) = i32

Γ ⊢ x[s] : τ
(5.10)

ConstType(ct) = τ
Γ ⊢ c : τ

(5.11)

Γ ⊢a ai : τi i ∈ {1, . . . , n}
TySch(op) ≥ (τ(n)) → ρ

Γ ⊢ op a(n) : ρ
(5.12)

Γ(xi) = τi i ∈ {1, . . . , n}
lookupfun(f) = τ1 → · · · → τn → ρ

Γ ⊢ f x1 . . . xn : ρ
(5.13)

Γ(s) = bool Γ ⊢ e1 : ρ Γ ⊢ e2 : ρ
Γ ⊢ if s then e1 else e2 : ρ

(5.14)

⊢p p̂ : ρ Γ ⊢ e1 : ρ Γ ⊢ e3 : ρ
Γ ⊢ e2 : i32

Γ ⊢ loop p̂ = e1 for x < e2 do e3 : ρ
(5.15)

Figure 31: Typing rules for expressions in Futhark’s core IR. The defition of TySch is found
on Figure 29.

81

CHAPTER 5. OVERVIEW AND UNIQUENESS TYPES

5.3 Checking Uniqueness Types

An in-place update a with [i] ← v is safe if and only if:

1. The array a (including aliases) does not occur on any execution path following
the in-place update.

2. v does not alias a.

To check for safety statically, we require two things: aliasing information for
all variables in the program (Section 5.3.1), and a way to check for how and when
variables are used (Section 5.3.2). In the formalisation that follows, alias analysis is
separate from safety checking. In an implementation, the two can be done in a single
pass.

5.3.1 Alias Analysis

We perform alias analysis on a program that we assume to be otherwise type-correct.
Our presentation uses an inference rule-based approach in which the central judgment
takes the form Σ ⊢ e ⇒ ⟨σ1, . . . , σn⟩, which asserts that, within the context Σ, the
expression e produces n values, where value number i has the alias set σi. An alias
set is a subset of the variable names in scope, and indicates which variables an array
value (or variable) may be aliased with. The context Σ maps variables in scope to
their aliasing sets.

The aliasing rules are listed in Figures 32 and 33. The Alias-Var-rule defines
the aliases of a variable expression to be the alias set of the variable joined by the
name of the variable itself - this is because v < Σ(v), as can be seen by Alias-LetPat.
Alias sets for values produced by SOACs such as map are empty. We can imagine the
arrays produced as fresh, although the compiler is of course free to reuse memory if it
can do so safely. The Alias-IndexArray rule tells us that a scalar read from an array
does not alias its origin array, but Alias-SliceArray dictates that an array slice does.
This fits the our intuition of how an implementation might implement these cases -
scalars are read into registers, where array slicing is just offsetting a pointer.

The most interesting aliasing rules are the ones for function calls (Alias-Apply-
Nonunique and Alias-Apply-Unique). Since our alias analysis is intra-procedural,
we are forced to be conservative. There are two rules, corresponding to functions
returning unique and non-unique arrays, respectively. When the result is unique
the alias set is empty, otherwise the result conservatively aliases all non-unique
parameters.

5.3.2 In-Place Update Checking

In our implementation, alias computation and in-place update checking is performed
at the same time, but is split here for expository purposes. In the following, let

82

CHAPTER 5. OVERVIEW AND UNIQUENESS TYPES

Expression aliases Σ ⊢ e⇒ ⟨σ1, . . . , σn⟩

Σ ⊢ (x1, . . . , xn) ⇒ ⟨{x1} ∪ Σ(x1), . . . , {xn} ∪ Σ(xn)⟩
(Alias-Tuple)

Σ ⊢ e1 ⇒ ⟨σ(n)⟩
Σ, xi 7→ σi ⊢ e2 ⇒ ⟨σ′

(n)⟩

Σ ⊢ let (x : τ)(n) = e1 in e2 ⇒ ⟨σ′
(n)⟩ \ {x(n)}

(Alias-LetPat)

Σ ⊢ k ⇒ ⟨∅⟩
(Alias-Const)

Σ ⊢ x ⇒ ⟨{x} ∪ Σ(x)⟩
(Alias-Var)

Σ ⊢ x ⊙ y ⇒ ⟨∅⟩
(Alias-ScalarBinOp)

Σ ⊢ e2 ⇒ ⟨s2
1, . . . , s

2
n⟩ Σ ⊢ e3 ⇒ ⟨s3

1, . . . , s
3
n⟩

Σ ⊢ if x1 then e2 else e3 ⇒ ⟨s2
1 ∪ s3

1, . . . , s
2
n ∪ s3

n⟩
(Alias-If)

x is of rank n

Σ ⊢ x[x(n)]⇒ ⟨∅⟩
(Alias-IndexArray)

x is of rank > n

Σ ⊢ x[x(n)]⇒ ⟨{x} ∪ Σ(x)⟩
(Alias-SliceArray)

Σ ⊢ xa with [e(n)] ← ex ⇒ ⟨{xa} ∪ Σ(xa)⟩
(Alias-Update)

Figure 32: Aliasing rules for simple expressions. For simplicity, we treat only the single-
parameter case for loops and function calls.

. .

aliases(v) be the alias set of the variable v, which we assume has been computed as
in the previous section. We denote by O the set of the variables observed (used) in
some expression e, and by C the set of variables consumed through function calls and
in-place updates. Together, the pair ⟨C,O⟩ is called an occurrence trace.

Figure 34 defines a sequencing judgment between two occurrence traces, which
takes the form

⟨C1,O1⟩ ≫ ⟨C2,O2⟩ : ⟨C3,O3⟩

and which can be derived if and only if it is acceptable for ⟨C1,O1⟩ to happen first,
then ⟨C2,O2⟩, giving the combined occurrence trace ⟨C3,O3⟩. We formulate this as
a judgment because sequencing is sometimes not derivable—for example in the case
where an array is used after it has been consumed. The judgment is defined by a
single inference rule, which states that two occurrence traces can be sequentialized if

83

CHAPTER 5. OVERVIEW AND UNIQUENESS TYPES

Expression aliases (continued) Σ ⊢ e⇒ ⟨σ1, . . . , σn⟩

τ is not of form *τ
′

Σ ⊢ x1 ⇒ ⟨σ⟩ Σ, x1 7→ σ ⊢ e⇒ ⟨σ′⟩
Σ ⊢ loop (x1 : τ) = y2 for z1 < z2 do e⇒ ⟨σ′ \ {x1}⟩

(Alias-DoLoop-Nonunique)

Σ ⊢ loop (x1 : *τ) = y2 for z1 < z2 do e⇒ ⟨∅⟩
(Alias-DoLoop-Unique)

lookupfun(f) = τ̂1 → · · · → τ̂n → τ
Σ ⊢ xi ⇒ ⟨σi⟩ σ =

∪
τi is not of form *τ

′ σi

Σ ⊢ f x1 . . . xn ⇒ ⟨σ⟩
(Alias-Apply-Nonunique)

lookupfun(f) = τ̂1 → · · · → τ̂n → *τ

Σ ⊢ f x1 . . . xn ⇒ ⟨∅⟩
(Alias-Apply-Unique)

Σ ⊢ size c x ⇒ ⟨∅⟩
(Alias-Size)

Σ ⊢ iota x ⇒ ⟨∅⟩
(Alias-Iota)

Σ ⊢ replicate x y ⇒ ⟨∅⟩
(Alias-Replicate)

Σ ⊢ y ⇒ σ
Σ ⊢ reshape (x1, . . . , xn) y ⇒ ⟨σ⟩

(Alias-Reshape)

Σ ⊢ y ⇒ σ
Σ ⊢ rearrange (ci, . . . , cn) y ⇒ ⟨σ⟩

(Alias-Rearrange)

Σ ⊢ map (λp: (τ(m)) → e) x(n) ⇒ ⟨∅(m)⟩
(Alias-Map)

Σ ⊢ scatter x y z ⇒ ⟨{x} ∪ Σ(x)⟩
(Alias-Scatter)

Σ ⊢ reduce a (x(n)) x(n) ⇒ ⟨∅(n)⟩
(Alias-Reduce)

Σ ⊢ scan a (x(n)) x(n) ⇒ ⟨∅(n)⟩
(Alias-Scan)

Σ ⊢ filter a x(n) ⇒ ⟨∅(n)⟩
(Alias-Filter)

Figure 33: More aliasing rules.

84

CHAPTER 5. OVERVIEW AND UNIQUENESS TYPES

and only if no array consumed in the left-hand trace is used in the right-hand trace.
Some of the most important inference rules for checking if an expression e is

functionally safe with respect to in-place updates are shown in Figure 34, where the
central judgment is e ▷ ⟨C,O⟩. We assume that the program is in strict A-normal
form.

The rule for in-place update va with [v(n)] ← vv gives rise to an occurrence
trace indicating that we have observed vv and consumed va. Indices v(n) are ignored
as they are necessarily scalar variables, which cannot be consumed.

Another interesting rule concerns checking the safety of map expressions. We
do not wish to permit the function of a map to consume any array bound outside
of it, as that would imply the array may be consumed by more than one iteration of
the map. However, the function may consume its parameters, which should be seen
as the map expression as a whole consuming the corresponding input array. This
restriction also preserves the parallel semantics of map, because different rows of a
matrix can be safely updated in parallel. An example can be seen on Figure 36, which
shows an in-place update nested inside an array. To express this restriction, we define
an auxiliary judgment:

P ⊢ ⟨C1,O1⟩△⟨C2,O2⟩

Here, P is a mapping from parameter names to alias sets. Any variable v in O1 that
has a mapping in P is replaced with P[v] to produce O2. If no such mapping exists,
v is simply included in O2. Similarly, any variable v in C1 that has a mapping in P is
replaced with the variables in the set P[v] (taking the union of all such replacements),
producing C2. However, if v does not have such a mapping, the judgment is not
derivable. The precise inference rules are shown on Figure 35. Do-loops and
function declarations can be checked for safety in a similar way. A function is safe
with respect to in-place updates if its body consumes only those of the function’s
parameters that are unique (rule Safe-Fun on Figure 35). For a function call, care is
taken to ensure that the argument passed for a consumed parameter does not alias any
other argument.

5.4 Related Work on Uniqueness Types

Futhark’s uniqueness type system is similar to, but simpler, than the system found
in Clean [BS93; BS96], where the primary motivation is modeling IO. Our use is
more reminiscent of the ownership types of Rust [Hoa13]. The fact that Futhark is
restricted in its support for user-defined data types, in particular not supporting pointer
structures and instead emphasises the use of arrays, makes alias analysis tractable,
and even possible to expose as a user-languate feature.

While more powerful uniqueness type systems [BS93], and affine and linear
types [TP11; FD02] are known, ours is the first application that directly addresses
map-style parallel constructs, and shows how in-place updates can be supported

85

CHAPTER 5. OVERVIEW AND UNIQUENESS TYPES

Validity of sequencing ⟨C1,O1⟩ ≫ ⟨C2,O2⟩ : ⟨C3,O3⟩

(O2 ∪ C2) ∩ C1 = ∅
⟨C1,O1⟩ ≫ ⟨C2,O2⟩ : ⟨C1 ∪ C2,O1 ∪ O2⟩

(Occurence-Seq)

Uniqueness safety for expressions e ▷ ⟨C,O⟩

v ▷ ⟨∅, aliases(v)⟩
(Safe-Var)

k ▷ ⟨∅, ∅⟩
(Safe-Const)

e1 ▷ ⟨C1,O1⟩ e2 ▷ ⟨C2,O2⟩
⟨C1,O1⟩ ≫ ⟨C2,O2⟩ : ⟨C3,O3⟩

let v1 . . . vn = e1 in e2 ▷ ⟨C3,O3⟩⟩
(Safe-LetPat)

v1 ▷ ⟨C1,O1⟩ e2 ▷ ⟨C2,O2⟩ e3 ▷ ⟨C3,O3⟩
⟨C1,O1⟩ ≫ ⟨C2,O2⟩ : ⟨C ′2,O ′2⟩
⟨C1,O1⟩ ≫ ⟨C3,O3⟩ : ⟨C ′3,O ′3⟩

if v1 then e2 else e3 ▷ ⟨C ′2 ∪ C′3,O ′2 ∪ O ′3⟩
(Safe-If)

va with [v(n)] ←vv ▷ ⟨aliases(va), aliases(vn)⟩
(Safe-Update)

eb ▷ ⟨C,O⟩
pi 7→ aliases(vi)

(n) ⊢ ⟨C,O⟩△⟨C ′,O ′⟩

map (λp(n):t(m) → eb)v(n) ▷ ⟨C ′,O ′⟩
(Safe-Map)

lookupfun(f) = τ̂1 → · · · → τ̂n → τ̂r
∀i.(τ̂i = *τ) ⇒ (∀ j . j = i ∨ v < aliases(vj))
C′ = {aliases(vi) | vi ∈ v(n), xi = v ∧ τi = *τ}

O ′ = {aliases(vi) | vi ∈ v(n)} − C′

f x1 . . . xn ▷ ⟨C ′,O ′⟩
(Safe-Fun)

e ▷ ⟨C,O⟩
∀v ∈ C.∃i.xi = v ∧ .τ̂i = *τ

∀i.(τ̂i = *τ) ⇒ (∀ j . j = i ∨ v < aliases(vj))
C′ = {aliases(vi) | vi ∈ v(n), xi = v ∧ τi = *τ}

O ′ = {aliases(vi) | vi ∈ v(n)} − C′

loop (xi : τ̂i
(n)
) = v(n) for z1 < z2 do e ▷ ⟨C ′,O ′⟩

(Safe-Loop)

Figure 34: Checking safety of consumption.

86

CHAPTER 5. OVERVIEW AND UNIQUENESS TYPES

Uniqueness safety for function definitions ▽ f un

e ▷ ⟨C,O⟩
∀v ∈ C.∃i.xi = v ∧ τi = *τ

▽let f xi : τ̂i
(n)

: ρ̂2 = e
(Safe-Fun)

Validity of parameter consumption P ⊢ ⟨C1,O1⟩△⟨C2,O2⟩

P ⊢ ⟨C1,O1⟩△⟨C2,O2⟩

P ⊢ ⟨∅, ∅⟩△⟨∅, ∅⟩
(Observe-BaseCase)

v ∈ P P ⊢ ⟨∅,O⟩△⟨∅,O ′⟩
P ⊢ ⟨∅, {v} ∪ O⟩△⟨∅,P[v] ∪ O ′⟩

(Observe-Param)

¬(v ∈ P) P ⊢ ⟨∅,O⟩△⟨∅,O ′⟩
P ⊢ ⟨∅, {v} ∪ O⟩△⟨∅, {v} ∪ O ′⟩

(Observe-NonParam)

v ∈ P P ⊢ ⟨C,O⟩△⟨C ′,O ′⟩
P ⊢ ⟨{v} ∪ C,O⟩△⟨P[v] ∪ C′,O ′⟩

(Observe-NonParam)

Figure 35: Checking parameter consumption.

-- This one is OK and considered to consume ’as’.
let bs = map (λa → a with [0] ← 2) as
let d = iota m
-- This one is NOT safe, since d is not a formal parameter.
let cs = map (λi → d with [i] ← 2) (iota n)

Figure 36: Examples of maps with in-place updates.

87

CHAPTER 5. OVERVIEW AND UNIQUENESS TYPES

without making evaluation order observable. Our system is also somewhat more
“friendly”, as the former approaches deal with more complicated systems and rely on
significantly more complex analysis, where for example aliasing of affine variables is
banned, while in our case unique arrays maybe be used multiple times before being
consumed, with aliasing information used to flag the use-after-consumption cases.
Indeed, the uniqueness type system shown here only affects function definitions and
function calls, with exclusively aliasing analysis used for the intraprocedural case.

Some prior work does exist for destructively updating memory in the presence
of bulk parallel operators. For example, [Les09] discusses fusing away intermediate
copies when composing bulk updates in Haskell. In contrast, our uniqueness types
are (i) intended for sequential parts of the code, and (ii) able to guarantee the absense
of any copying whatsoever. For example in the cited work xs//vs1/vs2, which
first updates xs with vs1, then updates the result with vs2, is fused to perform just
a single copy of xs instead of two, but the copy of xs cannot be avoided, because
there is no way in Haskell to enforce that some array variable may no longer be used.

88

Chapter 6

Size Inference

A great many optimisations and safety checks in Futhark depend on how the shape
of two arrays relate to each other, or at which point the shape of an array can be
known (especially if that point is much earlier than the point at which the values of
the array can be known). Especially the latter is important for the moderate flattening
transformation (Chapter 8) that constitutes one of the main contributions of the thesis.
Nested parallelism supports the construction of arrays whose values are dependent on
some outer parallel construct. However, for regular nested parallelism, the shapes of
those arrays can be computed invariant to all parallel loops. It is crucial for efficient
execution that we can hoist the computation of such sizes out of parallel loops. This
requires us to reify the notion of an array shape, and the computation of that shape, in
the IR. In the Futhark compiler, we treat size computations like any other expression,
which allows us to use our general compiler optimisation repertoire to optimise and
simplify the computation of sizes.

The main contribution of this chapter is an IR design that maintains the invariant
that for any array-typed variable in scope, each dimension of that array corresponds
to some i32-typed variable also in scope. For expressions where the shape of the
result cannot be computed in advance (consider a filter or a function call), we use
a lightweight mechanism based on existential types. This chapter also discusses how
we move from the unsized IR to the sized IR (analogous to “typed” versus “untyped”),
and how most size calculations can subsequently be optimised away. An important
technique is function slicing, which we use to derive functions that precompute the
size of values returned by a function.

Section 6.1 introduces the syntax of the IR, which is a slight extension of the
one presented in the previous chapter. In Section 6.2 we give an intuition for how
size inference is accomplished, via an example of how a program progresses from
having no inferred sizes, to being highly existential, to finally having most sizes
resolved statically. Section 6.3 presents a subset of the type rules for the sized IR,
and Section 6.4 shows some of the transformations used to add size information to an
unsized program.

89

CHAPTER 6. SIZE INFERENCE

τ ::= t | [d]τ (Scalar/array type)
ϕ ::= (x1 : τ1) → · · · → (xn : τn) → ∃d̄.ρ (Sizes of results ∈ d̄)
τ ::= α | (x1 : τ1, . . . , xn : τn) | (x : τ) → ∃d̄.τ (Sizes of results ∈ d̄)
ϕ ::= ∀ᾱ.ϕ
fun ::= let f p̂ : d.τ̂ = e (Sizes of results ∈ d̄)

Figure 37: Types with embedded size information and named parameters. The remaining
syntax definitions remain unchanged, except that they refer to the new definitions
above.

. .

6.1 A Sized IR

One important observation of the IR presented in the previous chapter is that some
operator-semantics invariants, related to the array regularity, are guaranteed to hold
by construction, but several other invariants are only “assumed”, that is, they have not
been verified (made explicit) in the IR:

• iota and replicate assume a non-negative first argument, and the size of
the resulting array is exactly the value of the first argument.

• map is guaranteed to receive arguments of identical outermost size, which also
matches the outermost size of all result arrays1. However, map assumes that its
function argument produces arrays of identical shape for each element of the
input array.

• filter receives and produces arguments and results of identical outermost
size, respectively (and the outermost size of the argument is not smaller than
the one of the result).

• reduce and scan receive arguments of identical outermost size, and scan
results have outermost size equal to that of the input. The semantics forreduce
and scan assumes that the two arguments and result of the binary associative
operator have identical shapes.

Figure 37 shows an extended type system in which (i) sizes are encoded in each ar-
ray type, that is, [d]τ represents the type of an array in which the outermost dimension
has size d, and in which (ii) function/lambda types use universal quantifiers for the
sizes of the array parameters (∀s1), and existential quantifiers for the sizes of the result
arrays (∃s2). Function types now also contain named parameters, supporting a simple
variant of dependent types. For function parameters where the name is irrelevant, we
shall elide the name and use the same notation as previously. Figure 38 also shows

1 In the user language zip accepts an arbitrary number of array arguments that are required to have
the same outermost size.

90

CHAPTER 6. SIZE INFERENCE

op TySch(op)
iota : (d : i32) → [d]i32
replicate : ∀α.(d : i32) → α→ [d]α
reshape : ∀d

(m)
α.(x1 : i32, . . . , xn : i32)
→ [d1] · · · [dm]α→ [x1] · · · [xn]α

rearrange (c(n)) : ∀d
(n)
α.[d1] · · · [dn]α→ [dp(1)] · · · [dp(n)]α

where p(i) is the result of applying the
permutation induced by c1, . . . , cn.

map : ∀d ᾱ(n) β̄(m).

(α(n) → (β̄(m))) → [s]αi
(n) → ([s]βi

(m))
scatter : ∀dx(m)α(n).

([xi]αi
(n)) → ([d]i32(n)) → ([d]αi

(n)) → ([xi]βi
(m))

reduce : ∀d ᾱ(n).

(α(n) → α(n) → (β̄(n))) → (α(n)) → [d]αi
(n) → (α(n))

scan : ∀d ᾱ(n).

(α(n) → α(n) → (β̄(n))) → (α(n)) → [d]αi
(n) → ([d]αi

(n))
filter : ∀d1 ᾱ

(n).

(α(n) → bool) → [d1]αi
(n) → ∃d2.([d2]αi

(n))
stream_map : ∀d α(n) β

(m)
.

((x : i32) → [x]αi
(n) → ([x]βi

(m))) → [d]αi
(n) → ([d]β(m))

stream_red : ∀d α(n)β
(m)
.(β(m) → β(m) → (β(m)))

→ ((x : i32) → [x]αi
(n) → (βi

(m)))
→ [d]αi

(n) → (β(m))

Figure 38: Dependent-size types for various SOACs.
. .

that this extension allows to encode most of the afore-mentioned invariants into size-
dependent types. The requirement for non-negative input to iota and replicate
remains only dynamically checked. We see that most parameters remain unnamed,
but are crucially used to encode the shape properties of iota and replicate.

The type of map is interesting because the result array types do not follow
immediately from the input array types. Instead, it is expected that the functional
argument declares the result type (including sizes) in advance. Operationally, we can
see this as being able to “pre-allocate” space for the result. However, the return size
cannot in general be known in advance without evaluating the function.

The main difference between the size-dependent typing of the core language, and
the size annotations of the source language, is that the latter are optional and checked
dynamically, while the former are mandatory and enforced statically. As shown on
Figure 38, the reshape construct functions as an “escape hatch”, by which we can

91

CHAPTER 6. SIZE INFERENCE

let concat (xs: []f64) (ys: []f64): []f64 =
let a = size 0 xs
let b = size 0 ys
let c = a+b
let (is: []i32) = iota c
let (os: []f64) = map (λi → if i < a then xs[i] else ys[i+b])

is
in os

let f (vss: [][]f64): []f64 =
let (ys: []f64) (zs: []f64) =

map (λ(vs: []f64) →
let ys = reduce (+) 0.0 vs
let zs = reduce (*) 1.0 vs
in (ys, zs))

vss
let (rs: []f64) = concat ys zs
in rs

let main (vsss: [][][]f64): [][]f64 =
let (rss: [][]f64) =

map (λ(vss: [][]f64): []f64 →
let rs = f vss
in rs) vs

in rss

Figure 39: Running example: Program in un-sized IR.
. .

arbitrarily transform the shape of an array. An implicit run-time check enforces that
the original shape and the desired shape has the same total number of elements. This
is used to handle cases that would otherwise not be well-typed.

6.2 Size Inference by Example

This section demonstrates, by example, the code transformation that (i) makes explicit
in the code the shape-dependent types and verifies the assumed invariants and (ii)
optimizes away in many cases the existential types. Our philosophy is to initially use
existential types liberally, with the expectation that inlining and simplification will
eventually remove almost all of them.

The program in Figure 39 receives as input a three-dimensional array vsss,
and produces a two-dimensional array, by mapping the elements of the outermost

92

CHAPTER 6. SIZE INFERENCE

let concat (n: i32) (m: i32) (xs: [n]f64) (ys: [m]f64)
: d.[d]f64 =

let a = n
let b = m
let c = a+b
let (is: [c]i32) = iota c
let (os: [c]f64) =
map (λi → if i < n then xs[i] else ys[i+a]) is

in os

let f (m: i32) (k: i32) (vss: [m][k]f64): d.[d]f64 =
let (ys: [m]f64) (zs: [m]f64) =

map (λ(vs: [k]f64) →
let ys = reduce (+) 0.0 vs
let zs = reduce (*) 1.0 vs
in (ys, zs))

vss
let (l: i32) (rss: [l]f64) = concat m m ys zs
in rs

let main (n: i32) (m: i32) (k: i32)
(vsss: [n][m][k]f64): d1 d2.[d][d1][d2]f64 =

let l = if n != 0
then let (d: i32) (ws: [d]f64) = f n m vsss[0]

in d
else 0

let (rss: [n][d]f64) =
map (λ(vss: [m][k]f64): [l]f64 →

let (d: i32) (w: [d]f64) = f m k vss
let vs = reshape l w
in vs)

vsss
in rss

Figure 40: Running example: ∃-quantified target IR. Changes compared to Figure 39 high-
lighted in red.

. .

dimension of vsss by function f.
The first stage, demonstrated in Figure 40, transforms the program into an un-

optimised version in which (i) all arrays have shape-dependent types, which may be
existentially quantified, and (ii) all “assumed” invariants are explicitly checked. This
is achieved by:

93

CHAPTER 6. SIZE INFERENCE

• Extending the function signatures to encompass also the shape information for
each array argument. For example, f takes additional parameters m and k that
specify the shape of array argument vss,

• Representing function’s array results via existentially-quantified shape-dependent
types. For example, the return type of f is specified as d.[d]f64, indicating
an existential size d.

• Modifying let patterns to also explicitly bind any existential sizes returned
by the corresponding expression. For example, the binding of the result of
concat now also includes a variable l, representing the result size.

• For the map in main, we need to make a “guess” at the size of the array being
returned, which we store as the variable l. This guess is made by applying
the map function to vsss[0], which produces both a size and an array, from
which we use just the size. This corresponds to slicing the map function. If
vsss is empty (that is, if n is zero), the guess is zero. There is a risk here: if
the map function consumes any of its parameters via in-place updates, the slice
will likewise, and since vsss[0] aliases vsss, we would end up consuming
vsss twice. As a result, we must copy any inputs that are consumed in the
sliced function, although for this example, there are none.

Since f returns an existential result, and the lambda must return an array of
exactly type [l]f64, we use a reshape to obtain this desired type. Since
the reshape fails if d != n, this effectively ensures that the map produces
a regular array.

• Since all arrays in scope also have variables in scope for describing their size,
replace all uses of size with references to those variables.

It is important to note that this transformation preserves asymptotically the number
of operations of the original program. However, it performs a significant amount
of redundant computation. To compute l, we compute the entire result, only to
throw most of it away. General-purpose optimisation techniques can be employed
to eliminate the overhead. On Figure 41 we see the result of inlining all functions,
followed by straightforward simplification, dead code removal, and hoisting of the
computation of c. The result is that all arrays constructed inside the maps have a size
that can be computed before the maps are entered. From an operational perspective,
this lets us pre-allocate memory before executing the maps on a GPU. This is essential
for GPU execution because dynamic allocation and assertions are typically not well
suited for accelerators, hence the shapes of the result and of various intermediate
arrays need to be computed (or at least overestimated) and verified before the kernel
is run.

However, there is still a problem with the code shown on Figure 41. The issue
is that the compiler cannot statically see that l==c, and thus has to maintain the

94

CHAPTER 6. SIZE INFERENCE

let main (n: i32) (m: i32) (k: i32)
(vsss: [n][m][k]f64): d1 d2.[d][d1][d2]f64 =

let c = m+m
let l = if n != 0 then c else 0
let (rss: [n][d]f64) =
map (λ(vss: [m][k]f64): [l]f64 →

let (ys: [m]f64) (zs: [m]f64) =
map (λ(vs: [k]f64) →

let ys = reduce (+) 0.0 vs
let zs = reduce (*) 1.0 vs
in (ys, zs))

vss
let (is: [c]i32) = iota c
let (os: [c]f64) =

map (λi → if i < n then xs[i] else ys[i+a])
is

let rs = reshape l os
in rs)

vsss
in rss

Figure 41: After inlining all functions and performing simple inlining, CSE, dead-code
elimination, and simplification—no existential quantification left.

. .

reshape and perform a dynamic safety check at run-time. This is because the
computation of l is hidden behind a branch. The branch was conservatively inserted
because we could not be sure that the value of vsss[0] (on Figure 40) would not
be used for computing the size (size analysis is intraprocedural, and so by the time
we first computed the slize, we had no insight in the definition of f). The branch was
inserted for safety reasons, but is now a hindrance to further simplification. There
are at least two possible solutions, both of which are used by the present Futhark
compiler:

1. Give the programmer the ability to annotate the original lambda (in the source
language) with the return type, including expected size. This effectively lets
the programmer make the guess for us, with no branch required. The result is
still checked by a reshape, but in most cases the guess will be statically the
same as the computed size, and the reshape can thus be simplified away.

2. Somehow “mark” the branch as being a size computation. Then, after inlining
and simplification, we can recognise such branches, and simplify them to their
“true” branch, if that branch contains only “safe” expressions, where a safe

95

CHAPTER 6. SIZE INFERENCE

let main (n: i32) (m: i32) (k: i32)
(vsss: [n][m][k]f64): d1 d2.[d][d1][d2]f64 =

let l = if n != 0 then m+m else 0
let c = m+m
let cert = assert(n == 0 || l==c)
let (rss: [n][d]f64) =
map (λ(vss: [m][k]f64): [l]f64 →

let (ys: [m]f64) (zs: [m]f64) =
map (λ(vs: [k]f64) →

let ys = reduce (+) 0.0 vs
let zs = reduce (*) 1.0 vs
in (ys, zs))

vss
let (is: [c]i32) = iota c
let (zs: [c]f64) =

map (λi → if i < n then xs[i] else ys[i+a]) is
let rs = reshape<cert> l zs
in rs)

vsss
in rss

Figure 42: Separating the size-checking of a reshape from the reshape itself.
. .

expression is one whose evaluation can never fail. We have to wait until after
inlining and simplification, as a function call can never be considered safe.

This solution has the downside that it may affect whether an inner size of an
empty array is zero or nonzero.

In practise, the first solution is preferable in the vast majority of cases, as it also
serves as useful documentation of programmer intent in the source program.

A third solution is to factor out the “checking” part of the reshape operation.
This approach is sketched on Figure 42. Here, we use a hypothetical assert
expression for computing a “certificate”, on which the reshape expression itself
is predicated. To enable the check to be hoisted safely out of the outer map, the
condition also succeeds if the outer map contains no iterations (n == 0). The
Futhark compiler currently makes only limited use of this technique, as the static
equivalence of sizes is a more powerful enabler of other optimisations.

One may observe that in the resulting code, the shape and regularity of rss
are computed and verified before the definition of rss, respectively, and, most
importantly, that the size computation and assumed-invariant verification introduce
negligible overhead, i.e., O(1) number of operations.

96

CHAPTER 6. SIZE INFERENCE

let concat_shape (n: i32) (m: i32)
(xs: [n]f64) (ys: [m]f64): i32 =

n+m

let concat_value (n: i32) (m: i32) (c: i32)
(xs: [n]f64) (ys: [m]f64): [c]f64 =

let (is: [c]i32) = iota c
let (zs: [c]f64) =
map (λi → if i < n then xs[i] else ys[i+n]) is

in zs

let f (m: i32) (k: i32) (vss: [m][k]f64): d.[d]f64 =
let (ys: [m]f64) (zs: [m]f64) =
map (λ(vs: [k]f64) →

let ys = reduce (+) 0.0 vs
let zs = reduce (*) 1.0 vs
in (ys, zs))

vss
let (l: i32) = concat_shape m m c ys zs
let (rss: [l]f64) = concat_value m m c ys zs
in rs

Figure 43: An example of applying the slicing approach to concat.
. .

Note that the code shown on Figure 40 is the only required step we have to perform.
Subsequent optimisation to eliminate existential quantification could be done in any
way that is found desirable, perhaps via interprocedural analysis or slicing. Previously,
we experienced with a technique based on slicing, where a function g is divided into
two functions g_shape and g_value, the first of which computes the sizes of all
(top-level) arrays in the latter, including the result [HEO14]. An example is shown on
Figure 43, which contains a portion of the running example. The concat function
has been split into concat_shape and concat_value. The call to concat has
been likewise split.

In practise, sophisticated dead code removal may be necessary to obtain efficient
shape functions — for example, we will need to remove shape-invariant loops — and
thus our approach generally requires the compiler to possess an effective simplification
engine.

The Futhark compiler currently does not use this approach of splitting functions.
Partly because of the risk for asymptotic slowdown in the presence of recursion (which
was supported at the time), and partly because merely inlining plus simplification is
easier to implement, and performed equally well for our purposes.

97

CHAPTER 6. SIZE INFERENCE

Existential subtyping ∃x.ρ′ <: ∃y.ρ

∃x(n).ρ <: ∃x(n).ρ
(6.1)

∃z(l).ρ′′ <: ∃y(m).ρ′ ∃y(m).ρ′ <: ∃x(n).ρ

∃z(l).ρ′′ <: ∃x(n).ρ
(6.2)

S is bijective from x(n) to y(n)

None of y used free in ρ.

∃y(n).S(ρ) <: ∃x(n).ρ
(6.3)

y used free in ρ

∃ y x(n).ρ <: ∃ x(n).ρ
(6.4)

Figure 44: The subtyping relationship for existential types. The four rules describe reflexivity,
transitivity, renaming, and weakening.

. .

6.3 New Type Rules

The addition of size-dependent types requires an extension of the typing rules. The
main problem is the handling of an existential context in the type of an expression.
First, we define a subtyping relation on existential types. The judgment and its
associated rules is shown on Figure 44. Apart from the usual rules for reflexivity
and transitivity, we define alpha substitution (it is valid to change the names bound
by the existential context), and weakening. In our context, weakening corresponds
to making the size of an array type less concrete. For example, we can weaken the
type [x]i32 to ∃x.[x]i32 (we would usually also rename x to avoid confusion). The
need for weakening arises in particular due to the typing rules for let and if, as we
shall see.

We extend the type judgment for expressions such that it now returns a type with
an existentially quantified part (which may be empty). The most interesting rules
are shown on Figure 45 and discussed below. We ignore uniqueness attributes here,
as they have no influence on size-dependent typing. The rule for array operators
performs some abuse of notation to construct the substitution S; the intent is to
construct a substitution from names used in the type scheme (even the ∀-quantified
context) to the operator arguments supplying the concrete value. This is used in for
example the size-dependent typing of iota.

98

CHAPTER 6. SIZE INFERENCE

Expressions Γ ⊢ e : ∃d.ρ

Γ ⊢ e : ∃x.ρ ∃y.ρ′ <: ∃x.ρ

Γ ⊢ e : ∃y.ρ′ (6.5)

⊢p p : (di : i32
(l)
, ρ) Γ ⊢ e1 : ∃d

(l)
.ρ

Γ, p ⊢ e2 : ∃dr
(k)
.ρ′

No name bound by p used in ρ′

Γ ⊢ let p = e1 in e2 : ∃dr
(k)
.ρ′

(6.6)

lookupfun(f) = (pi : τi)
(n) → ∃d

(l)
τ′
(m)

S = ⟨pi 7→ xi
(n)⟩ ∀i ∈ {1, . . . , n}.Γ(xi) = S(τi)

Γ ⊢ f x1 . . . xn : ∃d
(l)
.S(τ′(m))

(6.7)

Γ ⊢a ai : τpi i ∈ {1, . . . , n}
TySch(op) = (pi : τi)

(n) → ∃d
(l)
.τ′
(m)

S = ⟨pi 7→ xi
(m) | where xi = ai⟩ ∀i ∈ {1, . . . , n}.τpi = S(τi)

Γ ⊢ op a(n) : ∃d
(l)
.S(τ′(m))

(6.8)

Γ(s) = bool
Γ ⊢ e1 : ∃x.ρ Γ ⊢ e2 : ∃x.ρ

Γ ⊢ if s then e1 else e2 : ∃x.ρ
(6.9)

⊢p p : ∃d
(n)
.ρ Γ ⊢ e1 : ∃d

(n)
.ρ Γ ⊢ e3 : ∃d

(n)
.ρ

Γ ⊢ e2 : i32

Γ ⊢ loop (di : i32)(n) p = e1 for x < e2 do e3 : ∃d
(n)
.ρ

(6.10)

Figure 45: Size-aware typing rules for interesting expressions. The subtyping relationship is
defined on Figure 44.

99

CHAPTER 6. SIZE INFERENCE

The first rule states that if we can derive expression e to have some existential
type ∃d.ρ, then w also has any existential type that is a subtype of what we derived.
This rule is what allows us to weaken the typing for an expression, which is necessary
in many cases.

The rule for let requires that the names bound may not be present in the type of
the returned value. As an example, consider an expression replicate x v. Sup-
posingv : τ, this expression has type [x]τwhilelet x = y in replicate x v
has type ∃d.[d]τ (with d picked arbitrarily). It is crucial that we are able to use weak-
ening to loosen the type of the body of the let-binding, or else we could not type
it.

It is also in the rule for let-bindings that we bind the existential sizes to concrete
variables. For example, if the return type of the function contains l existential sizes,
then we require that the pattern begins with l names of type i32. Operationally,
these will be bound to the actual sizes of the value returned by the function. As a
slight hack, we require that these names match exactly the corresponding existential
context. We can always use alpha substitution to ensure a match. For example, given
a function

f : (x : i32) → (y : τ) → ∃n.[x][n]τ
we can derive a typing judgment for the let-binding

let (m : i32,v : [a][m]τ) = f a b in e

if we assume that a : i32 and e is well-typed, but

let (m : i32,v : [m][a]τ) = f a b in e

is a type error (note the swapped dimensions in the type of v). However, we can
always further weaken the type and make all sizes existential, as in

let (m : i32,k : i32,v : [m][k]τ) = f a b in e

and in fact this is how size information is initially inserted by the size inference
procedure described in Section 6.4.

Using weakening, a pattern can also contain existential parts that are not imme-
diately existential in the type. This is useful for supporting gradual simplification
of existential sizes, without having the intermediate steps be ill-typed For example,
consider this expression:

let(d: i32) (a: [d]i32) =(let y = x in replicate y 0) in e

Since the size y is bound inside of the outer let-binding, we have no choice but
to leave the size d existential. If the compiler then performs copy-propagation, we
obtain the following expression:

100

CHAPTER 6. SIZE INFERENCE

let (d: i32) (a: [d]i32) = replicate x 0 in e

The type of replicate x 0 is [x]i32, but since copy-propagation is not
concerned with modifying patterns in let-patterns, we still existentially quantify
the size of the result. A subsequent simplification can then be applied to remove
unnecessary existential parts of patterns, by noting that d will always be x, yielding:

let (a: [x]i32) = replicate x 0 in e

The vast majority of the existential-related simplification we perform is of the
trivial nature above, where gradual rewrites eventually bring the program to a form
where the existential sizes can be statically resolved.

From a compiler engineering point of view, it would be awkward if copy-
propagation (or other optimisations) were also responsible for fixing any changes
to existential sizes that were caused by their simplifications. It is cleaner to separate
this into multiple separate transformations, but this requires that the intermediate
forms are well-typed. This fits well with the general philosophy in the Futhark com-
piler of gradual refinement, as was also shown in the previous section. This leniency
will also help us when first inserting the existential information, as shown in the next
section. However, making a type more existential would still require us to fix up the
relevant patterns.

Another interesting case is for functions and operators, due to named parameters.
We assume that all arguments to the function are variable names. Intuitively, we then
construct a substitution Sp from the parameter names in the type of the function to the
concrete names of the arguments, and apply this substitution before checking whether
the argument types match the parameter types. The substitution is also applied to the
result type.

We use a similar trick for if expressions, where both branches must return exis-
tential types with identical existential contexts. For example, consider the following
expression:

if c then replicate x (iota y) else replicate y (iota x)

The “true” branch has type [x][y]i32, while the “false” branch has type [y][x]i32.
The least existential type that can encompass both of these is ∃nm.[n][m]i32, which
must thus be the type of the if-expression.

6.4 Size Inference

This section presents a set of syntax-directed rules for transforming an un-annotated
Futhark program into an annotated Futhark program, where all types have size infor-
mation. Concretely, we are performing a syntax-directed translation that carries out
the following tasks:

101

CHAPTER 6. SIZE INFERENCE

1. Add existential contexts to function return types to match the number of (dis-
tinct) array dimensions.

2. Add extra parameters to all functions corresponding to the number of (distinct)
array dimensions in their parameters.

3. Add existential contexts to all let-patterns corresponding to the existential
type of the bound expression.

4. Insert reshape expressions where necessary (such as for inputs to map) to
ensure that size-related restrictions are maintained.

5. Amend any type []τ such that it has form [d]τ, where d is some variable in
scope. After the preceding steps have been accomplished, this can be done by
looking at the context in which the type occurs and following the type rules.

We will ignore the distinction between unique and non-unique types, as these
have no influence on size inference. We write d(τ) to indicate the rank (number of
dimensions) of a type τ. We may also write d(v), where v is not itself a type, but
something which has a type, such as a variable.

6.4.1 Fundamental Transformation

For each function f in the original program, we generate the existential function
fext, that returns the values returned by f , with all shapes in the return type being
existentially quantified.

Specifically, if the return type of a function f is τ(n), then the return type of fext

is ∃d1
i

(d(τ1))
· · · dn

i

(d(τn))
.(τ′1, . . . , τ′n), where d(τ) is the rank of τ, and τ′j is τj shape-

annotated with di
i

(d(τj))
. For example, if f returns type [][]i32, fext will return type

∃d1 d2[d1][d2]i32. Thus, after transformation, the shape of the return of a function
will be existentially quantified.

Furthermore, the parameters of f are likewise annotated. An explicit i32 pa-
rameter is added for every dimension of an array parameter, with the array parameter
itself annotated to refer to the corresponding i32 parameter. For example, if f takes
a single parameter [][]i32p, then fext will take three parameters i32 n, i32 m, and
[m][n]i32

In this chapter we assume for simplicity that the original program contains no pre-
existing size information, as by the un-sized IR presented in the previous chapter. This
is not congruent with the actual Futhark source language, where user-provided shape
invariants may be present. In the implementation, these are handled by imposing
constraints on the dimensions we generate. For example, if the source program
contains information relating certain dimensions of the function return type to specific
function parameters, we do not generate existential dimensions, but instead refer

102

CHAPTER 6. SIZE INFERENCE

T([]1 · · ·[]nt, s(n)) = [s1]· · ·[sn]t

Figure 46: Annotating types with shapes.
. .

directly to the function parameters. Likewise, if the source program specifies that
certain dimensions are identical to each other, we simply generate a single size
parameter and use that for all the dimensions in question.

We will use function T(τ x, s) in Figure 46 to annotate a type τ with the shapes
in s, which is a sequence of variable names whose length is equal to the rank of τ. As
an example,

T([][]i32,n,m) = [m][n]i32

6.4.2 Transformation Functions

The functionAexp
Σ
(b) computes the annotated version of the body b in the environment

Σ and returns shapes as well as values (that is, its type will contain existentials). The
environment Σ is a mapping from names of arrays to lists of variable names, where
element i of the list denotes the size of dimension i of the corresponding array. We
will use conventional head, tail and drop operations to manipulate these lists, as well
as bracket notation for arbitrary indexing; we write the “cons” operation as x :: xs.

The functionAfun(f) computes the existentially-quantified function fext, by using
Aexp
Σ

to annotate the function’s body (and result) with shapes information, and by
modifying the function’s type as described in the beginning of Section 6.4.1.

We also have a function Alam
Σ
(λ, r, p). This is similar to the function transforma-

tion, except that (i) we work within an environment Σ, and (ii) we know in advance
the intended shape of the result (r) and parameters (p), because the result shape of an
anonymous function is never existentially quantified.

6.4.3 Simple Rules

This section describes cases for the function Aexp
Σ
(e). The core rules are listed in

Figure 47, including the rule for let-patterns, which is likely the most important
one. Here we create an existential size for every dimension of the bound variables.
It is assumed that subsequent simplification will remove those that can be resolved
statically.

Observe how size expressions are completely removed from the annotated
program, and instead replaced with the variable storing the desired size. The rule
for if is completely straightforward, and simply applies the transformation to the
subexpressions. Most of the rules are of this form, and have been elided. A call to
a function f becomes a call to the function fext, where argument sizes are passed
explicitly.

103

CHAPTER 6. SIZE INFERENCE

Aexp
Σ
(let vi : τi (n) = e1 in e2) =

let sizes(τi)
(n)

vi : T(τi, sizes(τi))
(n)

= Aexp
Σ
(e1) in Aexp

Σ′ (e2)

where sizes(τj) = d j
i

(d(τj))

Σ′ = vi 7→ sizes(τi)
(n)
, Σ

Aexp
Σ
(let (v : i32) = size k a in e) =

let (v : i32) = Σ(a)[k] in Aexp
Σ
(e)

Aexp
Σ
(if e1 then e2 else e3) =

if Aexp
Σ
(e1) then Aexp

Σ
(e2) else Aexp

Σ
(e3)

Aexp
Σ
(f x(n)) =

fext Σ(xi)
(n)

x(n)

Figure 47: Simple transformation rules for expressions.
. .

6.4.4 SOAC-related Rules

There are two issues to be dealt with when size-transforming SOACs. The first is that
the type rules indicate that the outer dimension of all input arrays must be identical.
We deal with this by using reshape to transform all input arrays to have the same
outermost size as the first input array.

The second, and bigger problem with annotating SOACs is that, in Futhark,
anonymous functions cannot be existentially quantified. Hence, before evaluating the
SOAC, we must know the shape of its return value. For this section, we assume that
given an anonymous function λ, it is possible to compute λshape, which returns the
shape of the values that would normally be returned by λ.

Similarly to function calls, when transforming map λ a, there are two possible
avenues of attack.

Pre-assertion First, calculatemap λshape a, and assert, for each returned array, that all
of its elements are identical. That is, check in advance that the map expression
results in a regular array. After this check, we know with certainty the shape of
the values returned by the original map computation (and that it will be regular),
which we can then use to annotate the map computing the values. This strategy
would require an extension to support an explicit assert expression.

Intra-assertion Alternatively, we can compute λshape a[0], the shape of the first
element of the result. Then, we modify λ to explicitly reshape its result to

104

CHAPTER 6. SIZE INFERENCE

Aexp
Σ
(map λ a(n))) =

let s2
1 . . . s

d(τ1)
1 . . . s2

m, . . . , s
d(τm)
m = λshape ai[0]

(n)

in map λchecking shapeup(ai)
(n)

where (τ(m)) = Return type of λ
shapeup(ai) = reshape (head(Σ(a1)) :: tail(Σ(ai))) ai
ri = s2

i :: . . . :: sd(τi)
i

pi = tail(Σ(ai))
λchecking = Alam

Σ
(λ, r (m), p(n)).

Figure 48: Transformation for map using the intra-assertion strategy.
. .

the same shape as that computed for the first element - we call this modified
version λchecking. This is the approach we used on Figure 40, and describe on
Figure 48. First, the shape slice of λ is applied to the first element of the input,
which results in one result for every dimension of every array-typed return value
of λ. For brevity we have elided the branch guarding against the case where
the input arrays are empty. This results in a prediction for the result size of λ,
which is incorporated into constructing λchecking, which explicitly reshapes
its result to match the prediction.

Then we apply λchecking to the original input, although with every input array
reshaped such that the outer dimension matches the outer dimension of the first
input array, and the other dimensions unchanged. This is to respect the type
rule that all input arrays to map (and the other SOACs) must have the same
outer size.

The former approach is only efficient if λshape is efficient compared to λ - in
practice, it must not contain any loops. The latter approach is limited in that it forces
shape checking inside the value computation, which means that we do not know in
advance whether the shape annotation is correct. However, in practice, the reshape
operations often end up being statically simplified away. Hence, our compiler always
applies the intra-assertion rule, with the expectation that a later optimisation will
remove the assertions, if possible.

Similar approaches are used for the remaining SOACs. The cases for reduce,
scan, scatter, and stream_red are simple because the correct return shape for
the anonymous functions can be deduced from the inputs to the SOAC. The case for
stream_map is simple because the return shape must match the chunk size. These
cases are all handled by inserting reshape expressions in the functions.

105

CHAPTER 6. SIZE INFERENCE

6.5 Related Work

An important piece of related work is the work on the FISh [Jay99] programming
language, which uses partial evaluation and program specialization for resolving
shape information at compile time. The semantics of FISh guarantees that this is
possible. A similar approach is used in F̃ [Sha+17], with the specific motivation of
being able to efficiently pre-allocate memory.

Futhark uses approximately the same strategy, but adds existential types to handle
constructs such as filter, at the cost of no longer being able to fully resolve shape
information statically in all cases.

Much work has also gone into investigating expressive type systems, based on
dependent types, which allow for expressing more accurately, the assumptions of
higher-order operators for array operations [TC13; TG11; TG09]. Compared to the
present work, such type systems may give the programmer certainty about particular
execution strategies implemented by a backend compiler. The expressiveness, how-
ever, comes at a price. Advanced dependent type systems are often very difficult to
program and modularity and reusability of library routines require the end program-
mer to grasp, in detail, the underlying, often complicated, type system. Computer
algebra systems [Wat+90; Wat03] have also provided for a long time a compelling
application of dependent types in order to express accurately the rich mathematical
structure of applications, but inter-operating across such systems remains a significant
challenge [Chi+04; OW05].

A somewhat orthogonal approach has been to extend the language operators such
that size and bounds checking invariants always hold [ED14], the downfall being that
non-affine indexing might appear. The Futhark strategy is instead to rely on advanced
program analysis and compilation techniques to implement a pay-as-you-go scheme
for programming massively parallel architectures.

Another strand of related work is the work on effect systems for region-based
memory management [Tof+04], in particular, the work on multiplicity inference and
region representation analysis in terms of physical-size inference [Vej94; BTV96].
Whereas the goal of multiplicity inference is to determine an upper bound to the
number of objects stored into a region at runtime, physical-size inference seeks to
compute an upper bound to the number of bytes stored in a single write. Compared
to the present work, multiplicity inference and physical-size inference are engineered
to work well for common objects such as pairs and closures, but the techniques work
less well with objects whose sizes are determined dynamically.

106

Chapter 7

Fusion

This chapter describes the approach taken by the Futhark compiler to perform loop
fusion on SOACs. Our approach is capable of handling both vertical fusion, where
two SOACs are in a producer-consumer relationship, and horizontal fusion, where two
otherwise independent SOACs take the same array as input. As all other optimisations
in the Futhark compiler, the approach is based on a syntactic rewriting of abstract
syntax trees.

The core of the technique has been previously described in my master’s the-
sis [Hen14]. The current thesis makes three new contributions:

1. A simple technique for integrating horizontal fusion in the existing framework.
The previously published work did not support horizontal fusion at all.

2. Vertical fusion of map into scan and map into scatter.

3. Fusion rules for the streaming SOACs stream_red and stream_map.

However, before we can move on to the new contributions, we must establish the
basic fusion algorithm. The algorithm identifies pairs of SOACs that can be fuesed.
The rules by which we combine SOACs through fusion is called the fusion algebra.
The fusion algebra used by the Futhark compiler has as its central goals to never
duplicate computation, and never reduce available parallelism. This ensures that the
asymptotics of the program under optimisation are not affected. Instead, the goal of
fusion is to eliminate the overhead of storing intermediate results in memory.

Most fusion algorithms in the literature are unable to handle fusion across
zip/unzip, and more generally the case where the output of a producer is used
by several consumers. The algorithm used by the Futhark compiler is capable of
fusing such cases if this is possible without duplicating computation, as demonstrated
on Figure 49. The linchpin of this capability is our choice of internal representation,
in which arrays of tuples (and therefore zip/unzip) does not occur.

107

CHAPTER 7. FUSION

let b = map (+1) a
let c = map (+2) b
let d = map (+3) b
in map (+) c d

(a) Before fusion.

map (λx →
let b = x + 1
let c = x + 2
let d = x + 3
in c + d)

a

(b) After fusion.

Figure 49: Fusing multiple consumers without duplicating computation.
. .

This chapter covers two main themes: Section 7.2 describes our aggressive fusion
algorithm, which in particular supports fusion for producers whose result are used
by multiple consumers, without duplicating computation. Section 7.3 describes the
rewrite rules used to fuse two SOACs. However, first we define an extended set of
SOACs with better fusion properties than the SOACs used in previous chapters.

7.1 New SOACs

The SOACs we have used so far are a close match to the SOACs of the source Futhark
language. However, they do not permit a fusion algebra as rich as we desire. Using
the previously shown SOACs, there is not even a way to fuse a composition of map
and reduce. This section will introduce a new set of SOACs that, while perhaps not
as aesthetically pleasing and orthogonal as those in the source languages, have two
important qualities:

1. Their fusion properties are much more powerful, permitting for example both
vertical and horizontal of map into reduce or scan.

2. They permit an efficient mapping to parallel code. This requirement prevents
us from defining overly complicated SOACS that fuse with everything, but
no longer have parallel semantics. This issue is examined in more depth in
Chapter 8.

The types of the new SOACs are shown on Figure 50. An individual description
now follows, which also shows how instances of the previous SOACs are mapped to
the new ones. It may prove useful to refer to the types while reading the descriptions.

map is unchanged from before.

scatter now takes a functional argument, which maps n input arrays to m pairs of
indexes and values, which are written to the m destination arrays, if the indexes

108

CHAPTER 7. FUSION

are in bounds. What we previously wrote as
scatter dest is vs

we would now write as
scatter (iv → (i,v)) (dest) is vs

The dest is in parentheses to distinguish the destination arrays from the input
arrays.

redomap is a composition of map and reduce that permits a particularly efficient
implementation. It corresponds to a variation of the redomap operator from
Section 3.2.2. A redomap has two functional arguments: an associative re-
duction operator and a fold function. The fold function takes as parameters a
current accumulator, and an element of the input. The redomap fold function
returns m + l values. The first m are called the reduced results, and are reduced
with the reduction operator, while the remaining l mapped results are simply
returned as an array in the final result. We shall soon see how this enables
horizontal fusion. The relationship between source-language reduce and
redomap is by the following equivalence:

reduce f x a = redomap f f x a
The way we construct the fold function in redomap ensures that the mapped
results do not depend on the accumulator. It trivially holds when a redomap
is first constructed from a reduce (because there are no mapped results), and
is maintained by the fusion algebra. This is crucial for generating parallel code
from redomap. As an example of redomap fusion, consider the following
expression fragment:

let (ys: [n]i32) = map (λx → 0 - x) xs
let (zs: [n]i32) = map (λx → x + 1) xs
let (sum: i32) = reduce (+) (0) xs
in (ys, zs, sum)

This can be fused into a single redomap

109

CHAPTER 7. FUSION

let (sum: i32) (ys: [n]i32) (zs: [n]i32) =
redomap (+)

(λx →
(x, -- reduced result
0 - x, -- mapped result
x + 1) -- mapped result

)
(0)
xs

in (ys, zs, sum)

This fusion operation would not be possible without the notion of mapped
results.

scanomap is similar to redomap, but performs a scan instead of a reduction. The
following equivalence holds:

scan f x a = scanomap f f x a

stream_par functions as a unification of the stream_map and stream_red
constructs from the source language. As with redomap, the chunk operator
returns m + l values, of which the first m take part in reduction, and the latter l
are simply returned. One restriction is that the latter l values must all be arrays
of size x, where x is the size of the chunk of the input given to the operator.

stream_seq is a SOAC used to fuse otherwise infusible cases, without losing
potential parallelism, by performing what is semantically a fold over chunks
of the input array. The chunk operator takes the current values of the accumu-
lator, as well as chunks of the n input arrays, and returns new values for the
accumulator. We can recover all parallelism in the chunk operator by applying
it to “chunks” containing the full input arrays, or fully sequentialise by adding
an outer sequential loop and setting the chunk size to 1. This aids in efficient
sequentialisation. We discuss stream_seq in greater detail in Section 7.3.2.

We exclude filter from our discussion of fusion. While filter does have
useful fusion properties (in particular with reduce/redomap), the current imple-
mentation in the Futhark compiler implements filter by a decomposition into
scan and scatter.

7.2 The Overall Fusion Algorithm

While the foundations of the fusion algorithm were developed prior to this the-
sis [HO13], we will summarise the basic technique. The following is adapted from
the author’s master’s thesis [Hen14].

110

CHAPTER 7. FUSION

op TySch(op)
map : ∀dᾱ(n) β̄(m).(αi (n) → (β̄i (m))) → [d]αi

(n) → ([d]βi
(m))

scatter : ∀dx(m)ᾱ(n) β̄(m).

(α(n) → (i32, β1
(m))) → ([xi]βi

(m)) → ([d]αi
(n)) → ([xi]βi

(m))
redomap : ∀dᾱ(m) β̄(n)γ(l).

(α(m) → α(m) → (ᾱ(m))) → (α(m) → β(n) → (ᾱ(m), γ̄(l)))
→ (α(m)) → [d]βi

(n) → (α(m), [d]γi
(l))

scanomap : ∀dᾱ(m) β̄(n)γ(l).

(α(m) → α(m) → (ᾱ(m))) → (α(m) → β(n) → (ᾱ(m), γ̄(l)))
→ (α(m)) → [d]βi

(n) → ([d]α(m), [d]γi
(l))

stream_par : ∀dxᾱ(m) β̄(n)γ(l).
(α(m) → α(m) → (α(m)))

→ ((x : i32) → [x]βi
(n) → (ᾱ(m), [x]γi

(l)))
→ [d]βi

(n) → (α(m), [d]γi
(l))

stream_seq : ∀dxᾱ(m) β̄(n)γ(l).

((x : i32) → α(m) → [x]βi
(m) → (β̄(m), [x]γ(l)))

→ (α(m)) → [d]βi
(n) → (α(m))

Figure 50: Extended SOACs used for fusion and later stages of the compiler.
. .

The entire algorithm consists of two distinct stages:

1. Traverse the program, collecting SOAC-expressions and fusing producers into
consumers where possible. The end result is a mapping from SOACs in
the original program, to replacement SOAC expressions (the result of fusion
operations). This is called the gathering phase.

2. Traverse the program again, using the result of the gathering phase to replace
SOAC expressions with their fully fused forms. This may lead to dead code, as
the output variables of producers that have been fused into their consumers are
no longer used. These can be removed using standard dead code removal.

Futhark, as a block-structured language, is suited to region-based analysis, and the
fusion algorithm is indeed designed as a reduction of a dataflow graph. Our structural
analysis is inspired by the T1-T2-reduction [Aho+07]. We say that a flow graph is
reducible if it can be reduced to a single node by the following two transformations:

T1: Remove an edge from a node to itself.

T2: Combine two nodes m and n, where m is the single predecessor of n, and n is not
the entry of the flow graph.

111

CHAPTER 7. FUSION

1

4

2 3

T2

T1

Figure 51: T1-T2-reduction
. .

On Figure 51 is shown a small flow graph and highlights instances where the
two reductions could apply. The overall idea is to construct a flow graph of the
Futhark program, reduce it to a single point, and at each reduction step combine the
information stored at the nodes being combined.

By construction, Futhark always produces a reducible graph. Each node corre-
sponds to an expression, with the successors of the node being its subexpressions.
This means that we can implement the reduction simply as a bottom-up traversal of
the Futhark syntax tree.

Figure 52 depicts the intuitive idea on which our fusion transformation is based.
The top-left figure shows the dependency graph of a simple program, where an arrow
points from the consumer to the producer.

The main point is that all SOACs that appear inside the dashed circle can be fused
without duplicating any computation, even if several of the to-be-fused arrays are
used in different SOACs. For example, y1 is used to compute both (z1,z2) and
(q1,q)1. This is accomplished by means of T2 reduction on the dependency graph:
The rightmost child, i.e., map g ..., of the root SOAC (map f1 ...) has only
one incoming edge, hence it can be fused. This is achieved by:

1. Replacing in the root SOAC the child’s output with the child’s input arrays

2. Inserting a call to the child’s function in the root’s function, which computes
the per-element output of the child,

3. Removing duplicate input arrays of the resulting SOAC.

This is the procedure for fusing two map SOACs. Section 7.3 gives the rules used for
other cases.

The top-right part of Figure 52 shows the result of the first fusion, after slight
simplification of the lambda bodies via copy propagation. In the new graph, the
leftmost child of the root, i.e., the one computing (z1,z2), has only one incoming

1Note also that not all input arrays of a SOAC need be produced by the same SOAC.

112

CHAPTER 7. FUSION

 x1 = map h1 x2 map h2 x2

(y1,y2,y3) = mapT f1 x1 x2

(z1,z2) =
 map f2 y1 y2

(q1,q2) =
 map g y3 z1 y2 y3

map h q1 q2 z2 y1 y3

1

 x1 = map h1 x2 map h2 x2

(y1,y2,y3) = map f1 x1 x2

(z1,z2) =
 map f2 y1 y2

 map (\zli y2i z2i y1i y3i) ->
 let (q1i,q2i) =
 g y3i z1i y2i y3i
 in h q1i q2i z2i y1i y3i
 z1 y2 z2 y1 y3

2

 x1 = map h1 x2 map h2 x2

(y1,y2,y3) = map f1 x1 x2

 map (\y2i y1i y3i ->
 let (z1i,z2i) = f2 y1i y2i
 let (q1i,q2i) =
 g y3i z1i y2i y3i
 in h q1i q2i z2i y1i y3i)
 y2 y1 y3

3

 x1 = map h1 x2 map h2 x2

map (\x1i x2i ->
 let (y1i,y2i,y3i) =
 f1 x1i x2i
 let (z1i,z2i) =
 f2 y1i y2i
 let (q1i,q2i) =
 g y3i z1i y2i y3i
 in h q1i q2i z2i y1i y3i)
x1 x2

4

Figure 52: Fusion by T2-transformation on the dependency graph
. .

edge and can be fused. The resulting graph, shown in the bottom-left figure can be
fused again resulting in the bottom-right graph of Figure 52. At this point no further T2
reduction is possible, because the SOAC computing x1 has two incoming edges. This
example demonstrates a key benefit of removing zip/unzip and using our tupleless
SOACs representation: there are no intermediate nodes in the data-dependency graph
between fusable producer and consumer.

7.2.1 Optimality of Fusion

With a sufficiently rich fusion algebra it is sometimes the case that the data dependency
graph can be reduced in multiple different ways. Consider the following example
from [RLK14].

113

CHAPTER 7. FUSION

xs

map reduce

map

ys
× sum

zs

(a) No fusion.

xs

map reduce

map

ys
× sum

zs

(b) Horizontal fusion of
map and reduce into
redomap.

xs

map reduce

map

ys
× sum

zs

(c) Vertical fusion of the two
map operations.

Figure 53: Three fusion possibilities for the example program. Figure taken from [Dyb17]
with permission.

. .

let ys = map (λx → x + 1.0) xs
let sum = reduce (+) (0.0) xs
let zs = map (λy → y / sum) ys
in zs

There are three mutually incompatible ways to fuse in this expression.

• No fusion. (Figure 53a).

• Fuse the two maps together, yielding a single map that has a dependency on
the reduce through sum (Figure 53b).

• Horizontally fuse the first map with the reduce, yielding a redomap. This
redomap cannot be fused with the final map (Figure 53c).

The crossed-out edge indicates an incontractable edge, because while there is a
data dependency between the reduce and the final map, it is not of a form that
permits fusion.

Looking at the expression in isolation, we might be able to use hardware heuristics
to determine whether it is better to fuse one way or the other. However, for larger
expressions the choice made might affect fusibility of other SOACs that are in a
producer- or consumer-relationship with those fused. Determining optimal fusion
is equivalent to graph clustering, an NP-hard problem. However, practical solutions
based on integer linear programming [MS97] or graph partitioning [Kri+16] have
been developed. The Futhark compiler presently uses a greedy approach: the first
succesful candidate for fusion is used (where the iteration order is essentially just the
bottom-up traversal of the AST). We have not yet in practise observed cases where the
greedy approach leads to suboptimal code, but if such cases were to become prevalent,
the techniques mentioned above could readily be adopted.

114

CHAPTER 7. FUSION

7.2.2 Invalid fusion

We must be careful not to violate the uniqueness rules when performing fusion. For
example, consider the following program.

let b = map f a
let c = a with [i] ← x
in map g b

Without the constraints imposed upon us by the semantics of in-place modification,
we could fuse to the following program.

let c = a with [i] ← x
in map (g ◦ f) a

However, this results in a violation of Uniqueness Rule 1, because now a is used
after it has been consumed, and the resulting program is thus invalid. In general, we
must track the possible execution paths from the producer-SOAC to the consumer-
SOAC, and only fuse if none of the inputs of the producer have been consumed (in
the uniqueness type sense of the word) by a let-with or function call on any
possible execution paths. This is easier than it may appear at first glance, as the
fusion algorithm will only fuse when the consumer is within the lexical scope of the
producer anyway.

Another, subtler, issue is that a fused SOAC may consume more of its input than
the original constituent SOAC. Consider the following expression.

let b = map (λx → x) a
in map g b

Suppose that the function g consumes its input. This means that in the expression
as a whole, the array b is being consumed, but a is not (by the fusion rules, the array
produced by a map has no aliases). After map-map fusion (and copy propagation),
we obtain

map (λx → g x) a

This expression does consume a. While this example is contrived, it is not
impossible for f to be a function whose output aliases its input, which will give the
same problem.

The solution is to track which inputs are consumed, for each SOAC that contributed
to the final SOAC produced at the end of fusion. For each array that the final SOAC
consumes, yet which were not consumed by any of the original SOACs, we add a
copy. In the example above, this would correspond to the following.

115

CHAPTER 7. FUSION

let a’ = copy a
in map (λx → g x) a’

This ensures that the result of fusion never consumes more than the original
expression(s). For this example, it also makes fusion ineffective, as the copy is just
as slow as an identity map. However, this is the worst-case situation: at most we one
copy per SOAC input fused, which will never be worse than not fusing in the first
place, but also might not be an improvement.

7.2.3 When to fuse

Even when fusion is possible, it may not be beneficial, and may be harmful to overall
performance in the following cases.

Computation may be duplicated. In the program

let xs = map f as
let ys = map g xs
let zs = map h xs
in (ys,zs)

fusing the x-producer into the two consumers will double the number of calls to
the function f, which might be expensive. The implementation in the Futhark
compiler will currently only fuse if absolutely no computation is duplicated,
although this is likely too conservative. Duplicating cheap work, for example
functions that use only primitive operations on scalars, is probably not harmful
to overall performance, although we have not investigated this fully.

In general, in the context of GPU, the tradeoff between duplicating computa-
tion and increasing communication is not an easy problem to solve. Accessing
global memory can be more than a hundred times slower than accessing lo-
cal (register) memory, hence duplicating computation may in some cases be
preferable.

The fusion algorithm used by the Futhark compiler is careful never to duplicate
computation. However, some simpification rules may perform duplicate small
amounts of scalar computation.

Note that the expression above is only a problem when considering just ver-
tical fusion; using horizontal fusion we can fuse this into a single map (see
Section 7.3.3 where we use just this example).

Can reduce memory locality. Consider a simple case of fusing

map f ◦ map g

116

CHAPTER 7. FUSION

When g is executed for an element of the input array, neighboring elements may
be put into the cache, making them faster to access. This exhibits good data
locality. In contrast, the composed function f ◦ g will perform more work after
accessing a given input element, increasing the risk that the input array may be
evicted from the cache before the next element is to be used. On GPUs, there
is the added risk of the kernel function exercising additional register pressure,
which may reduce hardware occupancy (thus reducing latency hiding) by having
fewer computational cores active. In this case, it may be better to execute each
of the two maps as separate kernels.

The fusion algorithm used by the Futhark compiler is not concerned with these
issues. The risk of cache eviction is not very relevant on GPUs, and determining
the proper size of GPU kernels is a job better left for kernel extraction Chapter 8.

7.3 Fusion Rules

The rules of the fusion algebra describe the fusion of two SOACs with associated
patterns, termed A and B, where A produces some arrays that are inputs to B. Syn-
tactically, we write the SOACs as a let-binding without the in part, as let p = e.
This is important because fusion not only rewrites the SOAC itself, but also the pattern
to which it is bound. A crucial property is that, when fusing SOACs A and B, the
resulting SOAC C binds (at least) the same names as A and C. This permits us to
remove A entirely, and replace B with C. It is likely that some of these names will be
dead after fusion, but they will be removed by subsequent simplification, not by the
fusion algorithm itself.

For simplicity, when fusing A into B, we will assume that the inputs to B have
been arranged such that those arrays that are produced by A come first. This causes
no loss of generality, as this rearranging is always possible. We commit some abuse
of notation when describing the composition of the lambda functions, as we invoke
lambdas as if they were functions. This is not strictly permitted by the grammar we
use for the core language, but it avoids a significant amount of tedious bookkeeping
in the rules.

We do not describe explicitly rules for all compositions of SOACs, even those
that are in principle fusible. Since any map can be transformed into a scanomap or
redomap by the equivalence on Figure 54, and any redomap can be transformed
into a stream_par by the equivalence on Figure 55, we elide those cases that can
be handled by first transforming the SOAC into a more general form. This does for
example mean that by the rules, map-map fusion produces a redomap, not a map,
but a map can be recovered by exploiting the equivalence in the opposite direction.
Reverting back to less general constructs is necessary because the moderate flattening
algorithm of Chapter 8 depends crucially on being able to recognise map nestings,
and can also benefit from recognising simple cases of reduce and scan.

117

CHAPTER 7. FUSION

Given a SOAC
let ys = map f (v) xs

the following SOACs are both equivalent:

let ys = scanomap nil f () xs

and
let ys = redomap nil f () xs

where nil is the anonymous function that accepts zero arguments and returns zero
values (which would otherwise be written (λ→)).

Figure 54: Transforming a map to a scanomap or redomap.

Given a SOAC
let y ys = redomap ⊕ f (vs) xs

the following SOAC is equivalent:

let y ys = stream_par ⊕ f (vs) xs

where

h = λc xs′→
let y′ ys′ = redomap ⊕ f (vs) xs′

in (y′, ys′)

Figure 55: Transforming a redomap to a stream_par. Note that the function of the
produced stream_par itself contains a redomap—an implementation must
take care not to apply this transformation when unnecessary for fusion, or risk
nontermination. This transformation relies on the guarantee that the mapped
result of redomap cannot depend on the accumulator.

. .

Recovering a redomap from a stream_par is more difficult, and is not at-
tempted by the Futhark compiler. In general, stream_pars only occur if the
original source program contained a stream_red. All SOACs can be transformed
into stream_seq; the advantage of which we will discuss in Section 7.3.2.

Not all pairs of SOACs are covered by the following fusion rules, even when per-
mitting transformation into stream_par. These cases are handled by transforming
the SOACs involved into stream_seq, as discussed in Section 7.3.2.

118

CHAPTER 7. FUSION

7.3.1 List of Fusion Rules

map-scatter

SOAC A : let ys = map f xsA
SOAC B : let zs = scatter g (vs) ys xsB
Fuses to SOAC C : let zs = scatter h (vs) xsA xsB

where h = λx y →
let y = f x

let z = g y

in z

Note that in contrast to other fusion rules, all outputs of SOAC A must be used
by SOAC B. In the future, it is likely that scatter will gain mapped results,
like redomap, to enable greater fusibility.

redomap-redomap

SOAC A: let yr ysm yss = redomap ⊕ f (vA) xsA
SOAC B: let zr zss = redomap ⊗ g (vB) ysm xsB
Fuses to SOAC C: let yr zr zss ysm yss = redomap ⊙ h (vA, vB) xsA xsB

where h = λaA aB x y →
let cA ym ys = f aA x

let cB z = g aB ym

in (cA, cB, z, ym, ys)
⊙ = λaA aB bA bB →

let cA = ⊕ aA bA

let cB = ⊗ aB bB

in (cA, cB)

The outputs of SOAC A are divided into three parts: yr are the reduction results.
These are not used by SOAC B at all, or the fusion algorithm would not have
attempted fusion in the first place (where would be an incontractable edge in
the graph). The map results are divided into ysm, which are input to SOAC B,
and yss, which are not. SOAC C must still produce both of these, even though
it is likely that ysm will not be used afterwards.

119

CHAPTER 7. FUSION

Note also how we combine the reduction operators ⊕ and ⊗ to produce ⊙.
We do this through no particular cleverness; as we simply apply ⊕ and ⊗ to
those parameters that correspond to the original values from SOAC A and B.
This operation carries a risk, as it conceptually increases the size of the values
involved in the the reduction. The implementation of reductions shown in
Section 4.5 uses GPU local memory to communicate between threads during
the reduction, and for sufficiently large values we may eventually run of local
memory. In such cases we either have to communicate between threads in
(slow) global memory, or split apart the reduction into multiple independent
passes. The Futhark compiler currently does not handle this problem. Since
fusion is performed statically (as opposed to dynamically; see Section 7.4 for
alternatives), this risk is not dataset-dependent, but only proportional to the
number of independent reductions present in the program being compiled. We
have not yet observed this problem in practise.

scanomap-scanomap

Similar to redomap-scanomap.

stream_par-stream_par

SOAC A: let yr ysm yss = stream_par ⊕ f xsA
SOAC B: let zr zs = stream_par ⊗ g ysm xsB
Fuses to SOAC C: let zr yr zs ysm yss = stream_par ⊙ h xsA xsB

where h = λ c xs′
A

xs′B →
let yA ys′m ys′s = f c xs′

A

let zB zs′ = g c ys′m xs′B
in (zB, yA, zs′, ys′m, ys′s)

⊙ = λaA aB bA bB →
let cA = ⊕ aA bA

let cB = ⊗ aB bB

in (cA, cB)

Fusion of stream_par is very similar to redomap fusion, and carries the
same potential problem regarding the combined reduction operator.

stream_seq-stream_seq

SOAC A: let yr ysm yss = stream_seq f (vA) xsA
SOAC B: let zr zs = stream_seq g ysm (vB) xsB
Fuses to SOAC B: let yr zr zs ysm yss = stream_seq h ysm (vB) xsB

120

CHAPTER 7. FUSION

where h = λ c aA aB xs′
A

xs′B →
let yA ys′m ys′s = f c aA xs′

A

let zB zs′ = g c aB ys′m xs′B
in (zB, yA, zs′, ys′m, ys′s)

7.3.2 Sequential Fusion via stream_seq

There are some producer-consumer relationships that cannot be fused by the above
rules. For example, a scanomap whose output is used as inputs to a map. This is
because there is no SOAC that is able to describe the resulting composition without
duplicating computation. We could fuse and produce a sequential do-loop as a result,
but this would lose parallelism, which is not acceptable in general. However, if the
scanomap-map composition occurs at a place that will eventually be turned into
sequential code by the moderate flattening algorithm described in Chapter 8, then
such fusion would be desirable. But since fusion occurs at a stage where it is not yet
known which parts of the program will be executed in parallel, and which will be
sequential, we have a conundrum.

The solution is to fuse to a SOAC that permits the recovery of all original paral-
lelism, yet can also be turned into efficient sequential code. We use stream_seq
for this purpose. Any SOAC can be transformed into a stream_seq, so by trans-
forming two SOACs that cannot otherwise be fused by the fusion algebra intoto
stream_seqs, then using the rule for stream_seq fusion, we can in effect fuse
any two SOACs.

For example, the transformation from a scanomap into stream_seq is shown
on Figure 56. The idea is for each chunk to perform a scanomap, then add to the
result the carry produced by processing the previous chunk. The carry for a chunk
corresponds to the last element of a scanned chunk. This works only because we are
guaranteed that the scan operator ⊕ is associative. The initial value of the carry is the
neutral element for ⊕.

The utility of stream_seq is that we can recover the parallelism of the original
formulation simply by setting the chunk size to the full size of the input array, resulting
in just one chunk. While the transformation on Figure 56 has introduced additional
maps, these do not affect how much parallelism is available. Furthermore, since the
carry will be set to the neutral element, frequently a constant, basic simplification
may be able to remove the maps entirely.

As an example, consider the following expression fragment, whew we suppose
the size of xs is given by n:

let (ys: [n]i32) = scanomap (+) (+) (0) xs
let (zs: [n]i32) = map (+2) ys

121

CHAPTER 7. FUSION

Given a SOAC
let ys = scanomap ⊕ f (v) xs

the following SOAC is equivalent:

let d ys = stream_seq ⊕ g (v) xs

where d are the unused final carry values and

g = λ c a xs′→
let xs′′ = scanomap ⊕ f (v) xs′

let ys′1 = map (⊕ a1) xs′′1
...

let ys′n = map (⊕ an) xs′′n
let a′1 = ys′1[c − 1]
...

let a′n = ys′n[c − 1]
in (a′, ys′)

Figure 56: Transforming a scanomap to a stream_seq. We assume here that chunks
may never be empty. Other SOACs can be transformed using a similar technique.

. .

The above can be transformed to the following stream_seqs:

let (unused: i32) (ys: [n]i32) =
stream_seq (λ(c: i32) (a: i32) (xs’: [c]i32)

: (i32, [c]i32) →
let xs’’ = scanomap (+) (+) 0 xs’
let ys’ = map (+) a xs’’
let a’ = ys[c-1]
in (a’, ys’))

(0)
xs

let (zs: [n]i32) =
stream_seq (λ(c: i32) (ys’: [c]i32): [c]i32 →

let zs’ = map (+2) ys’
in zs’)

()
ys

Note that we use mapped results to return the chunks making up the ys array, and

122

CHAPTER 7. FUSION

discard the final accumulator. The two stream_seqs can be fused as follows:

let (ys: [n]i32) (zs: [n]i32) =
stream_seq (λ(c: i32) (a: i32) (xs’: [c]i32): i32 →

let xs’’ = scanomap (+) (+) 0 xs’
let ys’ = map (+) a xs’’
let a’ = ys[c-1]
let zs’ = map (+2) ys’
in (a’, ys’, zs’))

(0)
xs

We can recover the original parallelism simply by inlining the body of the anony-
mous function, preceded by explicit bindings ofc,a, andxs’ to values corresponding
to a single chunk of size n covering all of xs, and followed by a binding of ys to the
result:

let c = n
let a = 0
let (xs’: [c]i32) = reshape (c) xs
let (xs’’: [c]i32) = scanomap (+) (+) (0) xs’
let ys’ = map (+) a xs’’
let a’ = ys[c-1]
let zs’ = map (+2) ys’
let (ys: [n]i32) = reshape (n) ys’
let (zs: [n]i32) = reshape (n) zs’

Note the need for reshapes to make the size-dependent typing work out. An
application of copy propagation, constant folding, and other straightforward simplifi-
cations, in particular removing identity reshapes, then recovers the original expression
fragment.

On the other hand, we can also transform the above stream_seq into a se-
quential loop by forcing the chunk size to unit, and inserting an enclosing sequential
do-loop:

123

CHAPTER 7. FUSION

let ys_blank = replicate n 0
let zs_blank = replicate n 0
let (ys, zs) =

loop (a ys_out zs_out) =
(0, ys_blank, zs_blank) for i < n do

let c = 1
let xs’ = xs[i:i+c]
let xs’’ = scanomap (+) (+) 0 xs’
let ys’ = map (+) a xs’’
let a’ = ys[c-1]
let zs’ = map (+2) ys’
let ys_out’ = ys_out with [i:i+c] ← ys’
let zs_out’ = zs_out with [i:i+c] ← zs’
in (a’, ys_out’, zs_out)

(We cheat a bit notation-wise with the construction of such arrays as xs’ and
ys_out’—according to the grammar used thus far, indexes can only produce single
elements, but here we perform an entire slice, and likewise perform an in-place update
on an entire range of an array. These can be turned into do-loops if desirable.)

Assuming straightforward simplification rules, including removing SOACs on
single-element input arrays, as well as unused loop results, we obtain the following:

let ys_blank = ...
let zs_blank = ...
let zs =

loop (a, ys_out) = (0, ys_blank) for i < n do
let x = xs[i]
let y = a + x
let z = 1 + y
let ys_out’ = ys_out with [i] ← y
let zs_out’ = zs_out with [i] ← z
in (y, ys_out’ zs_out’)

This loop corresponds to a sequential fusion of the original scanomap-map
composition, with no intermediate arrays.

7.3.3 Horizontal Fusion

Horizontal fusion can be treated as a special case of vertical fusion, with the same
fusion rules. We simply consider the set of names in the producer/consumer relation-
ship to be empty, and only fuse with respect to the unconsumed names. For example,
for the map-map fusion rule, we let ysm be empty. Two SOACs can be horizontally
fused if their inputs have the same outer size, there is no data dependencies between

124

CHAPTER 7. FUSION

them, and there are no uniqueness issues that would prevent the result of fusion from
being safe. This is integrated easily with the fusion algorithm simply by adding edges
in the graphs between SOACs that have the same outer size, and are not separated by
being in different loop or if expressions.

While horizontal fusion provides a minor optimisation in reducing array traversals,
its major purpose is as an enabler of vertical fusion. For example, consider the previous
example of an expression that cannot be fused without duplicating computation, using
just vertical fusion:

let xs = map f as
let ys = map g xs
let zs = map h xs
in (ys,zs)

Using horizontal fusion, we can fuse the expressions producing ys and zs as follows:

let xs = map f as
let (ys, zs) = map (λx → (g x, h x)) xs
in (y,z)

Which then permits vertical fusion of the expression producing xs:

let (ys, zs) = map (λa → let x = f a
in (g x, h x))

as
in (y,z)

7.4 Related Work

Loop fusion is an old technique, dating back at least to the seventies [Che77], with
loop fusion in a parallel setting being covered in [MP90]. In imperative languages,
the term “fusion” typically refers to horizontal, not vertical fusion. Most functional
languages primarily make use of vertical fusion, because the rewrite rules are more
local. Single Assignment C [GS06] (SaC) is, however, a prominent example of a
functional language that incorporates horizontal fusion.

Data-Parallel Haskell (DPH) [Cha+07] makes use of aggressive inlining and
rewrite rules to perform fusion, including expressing array operations in terms of
streams [CSL07], which have previously been shown to be easily fusable. While
DPH obtains good results, this form of rewrite rules are quite limited—they are an
inherently local view of the computation, and would be unable to cope with limitations
in the presence of in-place array updates, or fuse if an array operation is used multiple

125

CHAPTER 7. FUSION

times. The Glasgow Haskell Compiler itself also bases its list fusion on rewrite rules
and cross-module inlining [JTH01].

The Repa [Kel+10] approach to fusion is based on a delayed representation of
arrays at run-time, which models an array as a function from index to value. With this
representation, fusion happens automatically through function composition, although
this can cause duplication of work in many cases. To counteract this, Repa lets the
user force an array, by which it is converted from the delayed representation to a
traditional sequence of values. The pull arrays of Obsidian [CSS12] use a similar
mechanism.

Accelerate [McD+13] uses an elaboration of the delayed arrays representation
from Repa, and in particular manages to avoid duplicating work. All array operations
have a uniform representation as constructors for delayed arrays, on which fusion is
performed by tree contraction. Accelerate supports multiple arrays as input to the
same array operation (using a zipWith construct). Although arrays are usually
used at least twice (once for getting the size, once for the data), it does not seem that
Accelerate handles the difficult case where the output of an array operation is used as
input to two other array operations.

NESL has been extended with a GPU backend [BR12], for which the authors
note that fusion is critical to the performance of the flattened program. The NESL
approach is to use a form of copy-propagation on the intermediary code, and lift the
resulting functions to work on entire arrays. Their approach only works for what we
would term map-map fusion, however.

The with-loops of SaC can fulfill the same role as redomap [GHS06], although
the fusion algorithm in which they are used is very different: in SaC, producer-
consumer and horizontal fusion is combined in a general framework of with-loop
fusion. The with-loops can not, however, fulfill the role taken by stream_seq or
stream_par in permitting efficient sequentialisation.

126

Chapter 8

Moderate Flattening and Kernel
Extraction

This chapter presents a transformation that aims to enhance the degree of statically-
exploitable parallelism by reorganizing imperfectly nested parallelism into perfect
SOAC nests. The outer levels of the resulting nestings correspond to map operators,
which are trivial to map to GPUs, and the innermost one is an arbitrary SOAC or
sequential code. In essence, the transformation seeks rewrite the program to express
patterns of parallelism that have a known efficient implementation to GPUs. The
simplest such pattern is a perfect nest of maps, where the innermost function contains
arbitrary sequential code. This pattern maps directly to a single GPU kernel, but
there are other interesting patterns that correspond to for example segmented scans
and reductions.

In a purely functional setting, Blelloch’s transformation [Ble90] flattens all avail-
able parallelism, while asymptotically preserving the depth and work of the original
nested-parallel program. In our setting, this corresponds to interchanging all se-
quential loops outwards, and forming map-nests that contain only simple scalar code.
While asymptotically efficient, the approach is arguably inefficient in practise [BR12],
for example because it does not account for locality of reference, and pays a poten-
tially large cost in memory usage to extract parallelism that may not be necessary.
For example, a fully flattened implementation of matrix multiplication requries O(n3)
storage, where the usual implementation uses only O(n2).

Our algorithm, presented below, builds on map-loop interchange and map dis-
tribution, exploiting the property that it is always safe to interchange inwards or to
distribute a parallel loop [KA02]. Our algorithm attempts to exploit some of the
efficient top-level parallelism. Two important limitations are:

1. We do not exploit parallelism inside if branches, as this generally requires
expensive filter operations.

127

CHAPTER 8. MODERATE FLATTENING AND KERNEL EXTRACTION

let (asss, bss) =
map
(λps: ([m][m]i32,[m]i32) →
let ass =
map
(λp: [m]i32 →
let cs =
scan (+) 0 (iota p)

let r = reduce (+) 0 cs
let as = map (+r) ps
in as) ps

let bs =
loop (ws=ps) for i < n do
let ws’ =
map
(λas w: i32 →
let d = reduce (+) 0 as
let e = d + w
let w’ = 2 * e
in w’) ass ws

in ws’
in (ass, bs))
pss

(a) Program before distribution.

let rss =
map
(λps: [m]i32 →

map
(λp: i32 →
let cs = scan (+) 0 (iota p)
let r = reduce (+) 0 cs
in r) ps) pss

let asss =
map (λps rs: [m]i32 →

map (λr →
map (+r) ps)

rs)
pss rss

let bss =
loop (wss=pss) for i < n do
let dss =
map (λass: [m]i32 →

map (λas: i32 →
reduce (+) 0 as)

ass)
asss

in map (λws, ds: [m]i32 →
map (λw d: i32 →

let e = d + w
let w’ = 2 * e
in w’)

ws ds)
wss dss

(b) Program after distribution.

Figure 57: Extracting kernels from a complicated nesting. We assume pss : [m][m]i32.
Exploitable (outermost or perfectly nested) levels of parallelism are highlighted
in blue.

. .

2. We terminate distribution when it would introduce irregular arrays, as these
obscure access patterns and prevent further spatial- and temporal-locality opti-
mizations.

Our algorithm is less general than flattening, but generates more analysable code
in the common case, for programs that do not require the generality of flattening. This
enables the optimisations covered in Chapter 9. Multi-versioned code, discussed in
Section 8.3, could be used to apply full flattening as a fallback for those cases where
moderate flattening is incapable of extracting sufficient parallelism.

8.1 Example of Moderate Flattening

Figures 57a and 57b demonstrate the application of our algorithm on a contrived
but illustrative example that demonstrates many of the flattening rules exploited in
the generation of efficient code for the various benchmark programs. The original

128

CHAPTER 8. MODERATE FLATTENING AND KERNEL EXTRACTION

program consists of an outer map that encloses (i) another map operator implemented
as a sequence of maps, reduces, and scans and (ii) a loop containing a mapwhose
implementation is given by a reduce and some scalar computation. As written,
only one level of parallelism (for example, the outermost) can be statically mapped on
GPGPU hardware. Our algorithm distributes the outer map across the enclosed map
and loop bindings, performs a map-loop interchange, and continues distribution.
The result consists of four perfect nests: a map-map and map-map-map nest at the
outer level, and a map-map-reduce (segmented reduction) and map-map nest
contained inside the loop. In the first map-map nest, the scan and reduce are
sequentialized because further distribution would generate an irregular array, as the
size p of cs is variant to the second map.

8.2 Rules for Moderate Flattening

Figure 58 lists the rules that form the basis of the flattening algorithm. We shall use
Σ to denote map nest contexts, which are sequences of map contexts, written M x y,
where x denotes the bound variables of the map operator over the arrays held in y. The
flattening rules, which take the form Σ ⊢ e ⇒ e′, specify how a source expression e
may be translated into an equivalent target expression e′ in the given map nest context
Σ. Several rules may be applied in each situation. The particular algorithm used by
Futhark bases its decisions on crude heuristics related to the structure of the map nest
context and the inner expression. Presently, nestedstream_pars are sequentialised,
while nested maps, scans, and reduces are parallelised. These rules were mainly
chosen to exercise the code generator, but sequentialising stream_par is the right
thing to do for most of the data sets we use in Section 10.

For transforming the program, the flattening algorithm is applied (in the empty
map nest context) on each map nest in the program. Rule G1 (together with rule G3)
allows for manifestation of the map nest context Σ over e. Whereas rule G1 can be
applied for any e, the algorithm makes use of this rule only when no other rules apply.
Given a map nest context Σ and an instance of a map SOAC, rule G2 captures the
map SOAC in the map nest context. This rule is the only rule that extends the map
nest context.

Rule G4 allows for map fission (map (f ◦ g) ⇒ map f ◦ map g), in the sense
that the map nest context can be materialized first over e1 and then over e2 with
appropriate additional context to allow for access to the now array-materialized values
that were previously referenced through the let-bound variables a0. The rule can be
applied only if the intermediate arrays formed by the transformation are ensured to
be regular, which is enforced by a side condition in the rule. To avoid unnecessary
excessive flattening on scalar computations, thelet-expressions are rearranged using
a combination of let-floating [PPS96] and tupling for grouping together scalar code
in a single let-construct. In essence, inner SOACs are natural splitting points for
fission. For example,

129

CHAPTER 8. MODERATE FLATTENING AND KERNEL EXTRACTION

Basic Flattening Rules Σ ⊢ e⇒ e

Σ ⊢ map (λ x → e) y ⇒ e′

Σ,M x y ⊢ e⇒ e′
(G1)

Σ,M x y ⊢ e⇒ e′

Σ ⊢ map (λ x → e) y ⇒ e′
(G2)

∅ ⊢ e⇒ e
(G3)

Σ = M xp yp, . . . ,M x1 y1
Σ′ = M (xp, ap−1) (yp, ap), . . . ,M (x1, a0) (y1, a1

q1)
ap, . . . , a1 fresh names

size of each array in a0 invariant to Σ
Σ ⊢ e1 ⇒ e′1 Σ′ ⊢ e2 ⇒ e′2

Σ ⊢ let a0 = e1 in e2 ⇒ let ap = e′1 in e′2
(G4)

g = reduce (λ y2∗p → e) np

Σ ⊢ map (g) (transpose z0) . . . (transpose zp−1) ⇒ e′

f = map (λ y2∗p → e)

Σ ⊢ reduce (f) (replicate k n
p) zp ⇒ e′

(G5)

Σ ⊢ rearrange (0, 1 + k0, . . . , 1 + kn−1) y ⇒ e

Σ,M x y ⊢ rearrange k
(n)

x ⇒ e
(G6)

Σ′ = Σ,M (x, y) (xs, ys) ({n} ∪ q) ∩ (x, y) = ∅
m = outer size of each of xs and ys

f contains exploitable (regular) inner parallelism
Σ ⊢ loop = ()for zs′ = replicate m zi, ys′ = ys < do

for i < n do map(f i q) xs ys ys′ zs′⇒ e

Σ′ ⊢ loop = ()for z′ = z, y′ = y < do
for i < n do f i q x y y′ z ⇒ e

(G7)

Figure 58: The flattening rules that form the basis of the moderate flattening algorithm.

130

CHAPTER 8. MODERATE FLATTENING AND KERNEL EXTRACTION

let b = x+1
let a = b+2
in replicate n a

is conceptually split as
let a = (let b = x+1 in b+2)
in replicate n a

Rule G5 allows for reduce-map interchange where it is assumed that the source
neutral reduction element is a replicated value. The original pattern appears in k-
means (see Figure 8) as a reduction with an array operator, which is inefficient on
a GPU if executed as such. The interchange results in a segmented-reduce operator
(applied on equally-sized segments), at the expense of transposing the input array(s).
This rule demonstrates a transformation of both schedule and (if the transposition is
manifested) data of the program being optimized.

Rule G6 allows for distributing a rearrange construct by rearranging the outer
array (input to the map nest) with an expanded permutation. The semantics of
rearrange p a is that it returns a with its dimensions reordered by a statically-
given permutation p. For instance, the expression rearrange (2,1,0) a re-
verses the dimensions of the three-dimensional array a. For convenience, we use
transpose a is syntactic sugar for rearrange (1,0,...) a, which swaps
the two outermost dimensions. Similar rules can be added to handle other expressions
that have a particularly efficient formulation when distributed on their own, such as
concatenation (not covered in this paper).

Finally, rule G7 implements a map-loop interchange. The simple intuition is
that

map (λx → loop (x’=x) for i < n do (f x’)) xs
is equivalent to

loop (xs’=xs) for i < n do (map f xs’)
because they both produce [fn(xs[0]), . . . ,fn(xs[m-1])]. The rule is
sufficiently general to deal with all variations of variant and invariant variables in the
loop body. The side condition in the rule ensures that z ⊆ q are free variables and
thus invariant to Σ. The rule is applied only if the body of the loop contains inner
parallelism, such as maps, otherwise its application is not beneficial (as an example,
it would change the Mandelbrot benchmark from Section 10.1.4 to have a memory-
rather than a compute-bound behavior). However, rule G7 is essential for efficient
execution of the LocVolCalib benchmark (Section 10.1.3), because a loop separates
the outer map from four inner maps.

We conclude by remarking that some of the choices made in the flattening rewrite
rules about how much parallelism to exploit and how much to sequentialize efficiently
are arbitrary, because there is no size that fits all. For example, we currently sequen-
tialize a stream_par if it is inside a map nest, but the algorithm can easily be made

131

CHAPTER 8. MODERATE FLATTENING AND KERNEL EXTRACTION

more aggressive. To see the problem, consider an expression that computes the sum
of rows of a matrix:

map (λxs → reduce (+) 0 xs) xss
Assume that xss is of shape n × m. If n is sufficiently large (tens of thousands on a
GPU), then it is most efficient to turn the reduce into a sequential loop. If n is very
small, then perhaps it is best to sequentialise the map, and keep the reduce parallel.
Or perhaps we must exploit the parallelism of both the map and the reduce to fully
saturate the parallel capacity of the target hardware. Since n and m are not known at
compile-time, we cannot generate code that is optimal for all cases.

A more general solution would be to generate all three possible code versions,
and to discriminate between them at runtime based on dynamic predicates that test
whether the exploited parallelism is enough to fully utilize hardware. This idea is
discussed further below.

8.3 Multi-Versioned Code

The flattening rules of the preceding section contain are able to directly decompose
map-nestings via loop distribution. However, they are not in general able to exploit
parallelism nested within the functional argument to a non-map SOAC. Some rules,
for example G5 that performs reduce-map interchange, expose maps which can
then be further handled by the moderate flattening algorithm. This section presents
further rules that decompose SOACs into maps and other SOACs. Furthermore,
we also introduce a rule for multi-versioned code, by which a single SOAC may be
flattened in two different ways, with either of the two alternatives picked at runtime
via a branch. While the Futhark compiler contains a prototype implementation of
multi-versioned code, it is not yet used by default. Hence, the ideas in this section are
not as empirically proven as the rest of the thesis.

Multi-versioned code does not change the overall framework of moderate flatten-
ing. Figure 59 simply provides additional rules that are more aggressive in decom-
posing SOACs into constituent parts. The most crucial rule is E1, which states that
if some expression e can be flattened in two distinct ways e′1 and e′2, then e can be
flattened to an if expression that uses some runtime predicate to determine which
of e′1 or e′2 to apply. We do not specify the form of the predicate in detail here. One
common case is that it is some comparison of the amount of parallelism exploited by
e′1 versus some runtime-given constant that characterises the hardware the program
is executing on. Determining the right form of the predicates, and the constants they
may employ, is in practise a form of auto-tuning.

Rule E2 describes how a redomap can be taken apart into a map and a reduce,
which is then (potentially) further flattened. The map uses a modified function f ′, in
which we fix the first n parameters of the original function f (corresponding to the
accumulator) to the neutral value. Since redomap returns both reduced and mapped

132

CHAPTER 8. MODERATE FLATTENING AND KERNEL EXTRACTION

More Flattening Rules Σ ⊢ e⇒ e

Σ ⊢ e⇒ e′1
Σ ⊢ e⇒ e′2

e′1 , e′2
v is fresh

Σ ⊢ e⇒ let v = predicate in if v then e′1 else e′2
(E1)

a(n) b
(m)

c(n) are fresh
f ′ = f v(n)

op1 ≡ map f ′ x op2 ≡ reduce ⊕ (v(n)) a(n)

Σ ⊢ let a(n) b
(m)

= op1 in let c(n) = op2 in (c(n), b
(m)) ⇒ e′

Σ ⊢ redomap ⊕ f (v(n)) x ⇒ e′
(E2)

a(n) b
(m)

c(n) are fresh
op1 ≡ map (unchunk(n,m, f)) x op2 ≡ reduce ⊕ (v(n)) a(n)

Σ ⊢ let a(n) b
(m)

= op1 in let c(n) = op2 in (c(n), b
(m)) ⇒ e′

Σ ⊢ stream_par ⊕ f x ⇒ e′
(E3)

w is size of any x
Σ ⊢ let c = w in let vi = xi

(k)
in e f ⇒ e′

Σ ⊢ stream_seq (λc v(k) → e f) (v(n)) x(k) ⇒ e′
(E4)

Figure 59: Flattening rules that are more aggressive in exploiting inner parallelism. The
definition of unchunk can be found on Figure 60.

unchunk(n,m, λc v(k) : (τ(n), [c]τ(m)) → e) =λv′(k) : (τ(n), τ(m)) →
let c = 1

let vi = [v′i]
(k)

let a(n) b
(m)

= e

let b′i = bi[0]
(m)

in a(n) b′
(m)

Figure 60: Turning a chunk function into a non-chunked function by setting the chunk size
to unit, and turning the resulting unit-size map-out results into single values.

133

CHAPTER 8. MODERATE FLATTENING AND KERNEL EXTRACTION

results, we are careful to only pass the former to the reduce. An almost identical
rule can be defined for scanomap.

Rule E3 is similar to E2, but applies to stream_par, and recovers available all
parallelism by splitting into a map and a reduce. The main difference compared to
E2 is that computing the function for map is somewhat more complicated, as shown
on Figure 60.

Rule E4 is used to exploit any parallelism inside of a stream_seq. This is done
by fixing the chunk size c to the full size w of the input arrays, and then inserting the
function body.

8.4 Kernel Extraction

The moderate flattening algorithm, as presented in this chapter, does not directly trans-
form SOACs into flat-parallel kernels suitable for GPU execution. Instead, it merely
rearranges the SOACs into simpler forms that are passed to a simple pattern matcher,
which recognises forms of top-level parallelism, and transforms it to an explicitly flat
kernel representation of GPU kernels. In this context, top-level parallelism is a SOAC
that is not embedded inside the function of another SOAC. We will not describe this
operation, or the full kernel representation used by the Futhark compiler, in detail, as
it pertains to straightforward but tedious book-keeping, but some details are worth
mentioning.

In the implementation, there is no distinction between moderate flattening and
kernel extraction: it is interleaved in the same pass. Conceptually, when rule G1 first
fires, it will sequentialise the expression e, and then manifest the entire map context
Σ at once, in the form of a flat parallel kernel.

Not all kernels are extracted from the simple form of a map nest containing a
sequential function. Other patterns that give rise to a GPU kernel are:

• redomap or scanomap can be transformed into two GPU kernels via the
techniques used in Section 4.5.

• stream_par can be transformed into two GPU kernels similarly to aredomap.
Any parallelism inside the functional arguments is sequentialised.

• redomap or scanomap perfectly nested within one or more maps can be
transformed into kernels implementing segmented reduction or prefix scan.
The number of kernels depends on the exact implementation strategy, which
is outside the scope of this thesis. The implementation strategy for segmented
reductions used by the Futhark compiler is presented in [LH17].

• scatter can be transformed directly into a single GPU kernel similar to map.

134

CHAPTER 8. MODERATE FLATTENING AND KERNEL EXTRACTION

The bodies of the kernels produced by kernel extraction remains Futhark code,
and kernel extraction maintains the original structure of the sequential code. Impor-
tantly, even though nested SOACs may not have had their potential for parallelism
exploited, they remain high-level descriptions of loops, which can be used for further
optimisation. We shall see examples in Chapter 9.

Later in the compiler, the high-level kernel representation is transformed into a
low-level imperative IR, and from there to actual OpenCL code. However, these
topics are outside the scope of the thesis.

8.5 Related Work

Futhark builds on previous work in type systems and parallel compilation techniques.
Recent work [Ste+15] shows that stochastic combinations of rewrite rules opens the
door to autotuning. Work has been done on designing purely functional represen-
tations for OpenCL kernels [SRD17], which could in principle be targeted by our
moderate flattening algorithm. The Futhark compiler presently uses a similar (but
simpler) representation, the full details of which are outside the scope of this thesis.

Halide [Rag+13] uses a stochastic approach for finding optimal schedules for
fusing stencils by a combination of tiling, sliding window and work replication. This
is complementary to Futhark, which does not optimise stencils, nor uses autotuning
techniques, but could benefit from both. In comparison, Futhark supports arbitrary
nested parallelism and flattening transformation, together with streaming SOACs that
generically encode strength-reduction invariants. sequentialization strategy).

Delite uses rewrite rules to optimize locality in NUMA settings [Bro+16] and pro-
poses techniques [Lee+14] for handling simple cases of nested parallelism on GPUs
by mapping inner parallelism to CUDA block and warp level. We use transposition to
handle coalescing (see Chapter 9), and, to our knowledge, no other compiler matches
our AST-structural approach to kernel extraction, except for those that employ full flat-
tening, such as NESL [Ble+94; BR12], which often introduces inefficiencies and does
not support in-place updates. Data-only flattening [Ber+13] shows how to convert
from nested to flat representation of data, without affecting program structure. This
would be a required step in extending Futhark to exploit irregular parallelism. In com-
parison, Futhark flattens some of the top-level parallelism control, while preserving
the inner structure and opportunities for locality-of-reference optimizations.

Imperative GPU compilation techniques rely on low-level index analysis ranging
from pattern-matching heuristics [Yan+10; Dub+12] to general modeling of affine
transformations by polyhedral analysis [Ver+13; Pou+11]. Since such analyses often
fight the language, solutions rely on user annotations to improve accuracy. For
example, OpenMP annotations can be used to enable transformations of otherwise
unanalyzable patterns [CSS15], while PENCIL [Bag+15] provides a restricted C99-
like low-level language that allows the (expert) user to express the parallelism of loops
and provide additional information about memory access patterns and dependencies.

135

CHAPTER 8. MODERATE FLATTENING AND KERNEL EXTRACTION

The moderate flattening transformation resembles the tree-of-bands construc-
tion [Ver+13] in that it semantically builds on interchange and distribution, but we
use rules that directly exploit properties of the language. For example, imperative ap-
proaches would implement a reduction with a vectorized operator via a histogram-like
computation [RKC16], which is efficient only when the histogram size is small. In
comparison, rule G5 on Figure 58 transforms a reduction with a vectorized operator
to a (regular) segmented reduction, which always has an efficient implementation.

136

Chapter 9

Optimising for Locality of
Reference

While GPUs possess impressively fast memory, the ratio of computation to memory
speed is even more lopsided than on a CPU. As a consequence, accessing memory
efficiently is of critical importance to obtaining high performance. Furthermore,
while CPUs have multiple layers of automatic caching to help mitigate the effect
of the memory wall, GPUs typically have only a single very small level-1 cache.
This chapter presents how two well-known locality-of-reference optimisations can be
applied to kernels produced by moderate flattening. The optimisations improves the
memory access patterns of Futhark programs by optimising both spatial and temporal
locality of reference.

Section 9.1 shows how arrays traversed in a kernel can have their representation
in memory modified to ensure that the traversal is efficient. This form of optimisation
for spatial locality of reference, which changes not just the code, but also the data, is
not usually used by compilers. Section 9.2 shows a technique for temporal locality
of reference, via loop tiling, that uses the local memory of the GPU as a cache to
minimise the amount of traffic to global memory. While loop tiling is an established
optimisation technique, our approach can handle even indirect accesses. These are not
supported by conventional techniques for loop tiling, including polyhedral approaches
such as the ones discussed in [CSS15].

To express the optimisations we have to extend the core Futhark IR, yet again,
with a few more operations. Their types are shown on Figure 61, and their semantics
below.

manifest (c(n)) x is used to force a particular representation of an n-dimensional
array in memory. The permutation (c1, . . . , cn) indicates the order in which
dimensions should occur. Thus, for the two-dimensional case,

manifest (0,1) xss
corresponds to a row-major (the default) copy of the array xss, while

137

CHAPTER 9. OPTIMISING FOR LOCALITY OF REFERENCE

manifest (1,0) xss
is a column-major copy. Note that the type of the result of manifest is the
same as of the input array. The only change is in how the array is located in
memory, and thus the memory address computed when indexing an element
at a given index. As with rearrange, the permutation must be a compile-
time constant. The manifest construct differs from rearrange in that
manifest creates an actual array in memory, while rearrange is merely
a symbolic index space transformation.

kernel (d
(n)

) (λv(2n) : τ(m) → e) models an n-dimensional GPU kernel, loosely
corresponding to a flattened form of n map-nets, where nest number i (counted
from outside-in) has size di. Semantically, the kernel function is executed for
every thread, and passed n global thread indices, one for every dimension, and
n local thread indices, again one for every dimension (see Section 4.1). In
many cases we will not be making use of the local thread indices, in which case
we will simply put an underscore for the parameter names. The group size is
not explicitly stated, but may be implicitly bounded through the use of local
(see below).

If the kernel function returns m values, then the kernel construct as a whole
returns m arrays, each of of shape [d1] · · · [dn]. This corresponds to each thread
returning a single value.

local c(n) x may only occur within kernels, and produces an array of shape
[c1] · · · [cn] where every thread contributes a value x. Operationally, c(n)

corresponds to the group size of the kernel (and any kernel containing a local
is thus implicitly forced to have that group size), and the resulting array is
located in local memory. The subtleties of this construct is detailed further in
Section 9.2.

op TySch(op)
manifest (c1, . . . , cn) : ∀d

(n)
α.[d1] · · · [dn]α→ [d1] · · · [dn]α

kernel : ∀α(m).(di : i32)(n)

→ (i32(2n) → (α(m)))
→ ([d1] · · · [dn]α

(m))
local c : ∀α.(di : i32)(n) → α→ [d1] · · · [dn]α

Figure 61: The types of the language constructs used to express kernel-level locality of
reference optimisations.

138

CHAPTER 9. OPTIMISING FOR LOCALITY OF REFERENCE

9.1 Transposing for Coalesced Memory Access

Ensuring coalesced accesses to global memory is critical for GPU performance. Sev-
eral of the benchmarks discussed in Chapter 10, such as FinPar’s LocVolCalib, Accel-
erate’s n-body, and Rodinia’s CFD, k-means, Myocyte, and LavaMD, exhibit kernels
in which one or several innermost dimensions of arrays are processed sequentially
inside the kernel. In the context of the moderate flattening algorithm, this typically
corresponds to the case where rule G1 has been applied with e being a SOAC. For
this discussion, we assume that the nested SOAC is transformed to a stream_seq;
removing parallelism, but retaining access pattern information.

A naive translation of a nested stream_seq would lead to consecutive threads
accessing global memory with a stride equal to the size of the inner (non-parallel) array
dimensions, which may generate one-order-of-magnitude slowdowns on a GPU. The
Futhark compiler solves this by, intuitively, transposing the non-parallel dimensions
of the array outermost, and the same for the result and all intermediate arrays created
inside the kernel. For this thesis, we only discuss the first case, of arrays that are
sequentially iterated inside a kernel, as the others are not a question of transforming an
AST, but simply a question of how we allocate arrays in the first place. Our approach
is guaranteed to resolve coalescing if the sequential-dimension indices are invariant
to the parallel array dimensions. For example, consider the following expression:

kernel (n) (λi _ → stream_seq f (0) xss[i])

Assuming that f performs a sequential in-order traversal of its input, the expres-
sion is optimized by changing the representation of xss to be column major (the
default is row major), via transposition in memory, as follows:

let xss’ = manifest (1,0) xss
in kernel (n) (λi _ → stream_seq f (0) xss’[i])

The type of xss’ is the same as that of xss. The difference between xss and
xss’ can be seen by computing the flat index corresponding to an index expression.
Suppose xss has shape [n][m], i is the parallel (thread) index, j is the counter of a
sequential loop, and flat(x) is a function that returns a one-dimensional view of an
array x; then

xss[i][j] = flat(xss)[i · m + j]

versus
xss’[i][j] = flat(xss′)[j · m + i].

It is clear that the latter gives rise to coalesced memory accesses, while the former
does not (assuming non-pathological values of m).

Concretely, the compiler inspects index expressions x[y(n)] inside of kernels,
where x is a rank m array that is created prior to the kernel. The inspection may yield

139

CHAPTER 9. OPTIMISING FOR LOCALITY OF REFERENCE

a permutation c(m) that is used to construct an array

x ′ = manifest (c(m)) x

after which x is replaced by x ′ in the original index expression. Two patterns are
recognised by the inspection:

Complete Index
The indices y(n) contain at least some of the the global thread indices, and the
innermost global thread index can be moved to the last position in the indices
via the permutation c(m). We then copy the array with permutation c(m). An
example is a kernel

kernel (n,m) (λi j _ _ → xss[j][i] + 2)

which is transformed into

let xss’ = manifest (1,0) xs
in kernel (n,m) (λi j _ _ → xss’[j][i] + 2)

For this example, we could also have transposed the kernel dimensions them-
selves, followed by transposing the result:

let r = kernel (m,n) (λj i _ _ → xss’[j][i] + 2)
in rearrange (1,0) r

This saves on memory traffic, since rearrange is a non-manifest index space
transformation. However, this transformation affects the memory layout of
the result of the kernel, which may result in non-coalesced accesses in later
expressions. As a result, we prefer using manifest, which has purely local
effects.

Note that the pattern also applies to the case where the found permutation is the
identity permutation. A useful optimisation is to remove those manifests
where it can be determined that the array is already in the desired representation,
either because of arearrange that was already present in the source program,
or because the optimal representation is row-major, which is generally the
default for Futhark expressions.

Incomplete Index
The indices y(n) do not fully index the array (n < m), and at least one of the
indices is variant to the thread indices. An array index yi is variant to a thread
index if there is a (conservatively estimated) data dependency from one of

140

CHAPTER 9. OPTIMISING FOR LOCALITY OF REFERENCE

the thread indices passed to the kernel function to yi. In such cases, we use
manifest with the permutation (n, . . . ,m− 1, 0, . . . , n− 1), corresponding to
interchanging the sequentially traversed dimensions outermost.

The (potentially wrong) assumption is that the dimensions that are not indexed
will be traversed sequentially. It remains future work to perform a more detailed
analysis of how the resulting array slice is traversed.

The requirement that at least one of y(n) must be thread-variant is to avoid
the pattern triggering on cases where an array is being indexed identically by
all threads, such as xss[0]. Such indexes do not give rise to non-coalesced
memory access.

Note that the transformation is on index expressions, not on arrays. The same
array xss may be indexed in different ways within the same kernel, and each distinct
index expression may give rise to a unique new manifest array. However, if the
same array is iterated in the same way in multiple places within the kernel, this will
still give rise only to a single array.

Our approach is not necessarily optimal—there are cases where several distinct
manifestations (as given by the rules above) all solve the specific cases of uncoalesced
access, but so might a combined single manifestation, with an appropriately selected
permutation. This would require the algorithm to take a more “global” view, and has
not yet been done.

9.1.1 Viability of the Optimisation

This optimisation requires additional runtime work and extra memory space to per-
form transpositions before the kernel is invoked. The Futhark compiler presently
always applies the optimisation whenever it detects an array indexing of the appropri-
ate form. A relevant question to ask is whether there are cases where this is not an
optimisation, but rather a pessimisation. The short answer: in some cases, yes, but
usually not.

First we remark that transpositions are quite fast on GPUs; running at close to the
speed of a memory copy. Therefore, even in pathological cases where where one of
the dimensions is unit, or the inner sequential loop is so short that the uncoalesced
accesses have no great impact, the cost of the transpositions is not catastrophic.

A greater concern is having to allocate extra memory to store the transposed
copies. In the worst case, this may require temporarily migrating the original arrays
to CPU memory in order to fit the new copies. The CPU-GPU bandwidth is very
low (current PCIe 4.0 x16 runs at 31.51GiB/s in the best case), so this could lead to
significant slowdown. In the future, we intend to investigate how to “back-propagate”
the manifest operations to the point at where the array is originally created, and
store it in the desired representation in the first place.

141

CHAPTER 9. OPTIMISING FOR LOCALITY OF REFERENCE

9.1.2 Indirect Accesses

The coalescing transformation applies even in cases where indirect accesses are
involved, as it depends only on variance information. For example, consider this
variation on the earlier example, where an array is of indices is used to index xss.

let (js: [n]i32) = ...
let (xss: [m][k]i32) = ...
in kernel (m) (λi _ →

loop acc = 0 for p < n do
let j = js[p]
let x = xss[i][j]
in acc + x)

To the coalescing optimisation, this kernel contains two array indices: js[p]
and xss[i,j]. The former is not touched, since it does not involve any thread
indices, and so does not meet either of the rules. However, the indexing expression
xss[i,j] does match the rule for complete indexes, since the global thread index i
can be moved to the innermost position via the permutation (1,0). Thus, the kernel
is transformed to the following, where all accesses are coalesced.

let (js: [n]i32) = ...
let (xss: [m][k]i32) = ...
let (xss’: [m][k]i32) = manifest (1,0) xss
in kernel (m) (λi _ →

loop acc = 0 for p < n do
let j = js[p]
let x = xss’[i][j]
in acc + x)

Note that the p index in ps[p] is invariant to the kernel, and as such leads to
effective caching (each thread in a warp accesses the same is[p] in the same SIMD
instruction).

9.2 Automatic Loop Tiling

The Futhark compiler performs simple block tiling in cases where several threads are
traversing the same array. The tiling algorithm transforms traversal to be over chunks
of the input, where each chunk is collectively copied to local memory before it is
traversed. The result is that the number of accesses to global memory are reduced.

The algorithm is driven by recognizing arrays that are inputs to stream_seq
constructs and are invariant to one or two of the kernel’s innermost dimensions.
The tiling algorithm proceeds by traversing the body of a kernel and looking

142

CHAPTER 9. OPTIMISING FOR LOCALITY OF REFERENCE

for an appropriate stream_seq instance, which is then transformed using either
one-dimensional or two-dimensional tiling, as detailed below. In both cases, the
stream_seq is transformed into two nested stream_seqs, with the outer one
iterating across chunks, and the inner iterating across a single chunk. We tile at most
one stream_seq for a kernel, as each instance of tiling may impose constraints on
the group size of the GPU kernel, and it is not clear whether multiple instances of
tiling would lead to conflicting constraints.

In the following, we say that an array is variant to a parallel dimension if there
is no data dependency between the array and the thread index corresponding to that
dimension. To simplify the exposition, we are ignoring a significant amount of
tedious complexity with computing GPU group sizes and handling cases where the
tiled arrays have sizes that are not divisible with the optimal tile size.

9.2.1 One-Dimensional Tiling

One-dimensional tiling is performed when the input arrays of a stream_seq are
invariant to the same dimension. We exploit a stripmining property of stream_seq,
by which any stream_seq can be transformed into two nested stream_seqs.

For example, the kernel

kernel (n) (λi li → stream_seq (f i) (v) ps)

can have its stream_seq stripmined to obtain the following

kernel (n)
(λi li → stream_seq

(λq a (ps’: [q]int) →
stream_seq (f i) (a) ps’)

(v)
ps)

This kernel exhibits an optimization opportunity for the streamed array ps, as
it is invariant to the first (and only) dimension. Concretely, the threads within a
workgroup can collectively copy the chunk ps’ into local memory, which we write
as

143

CHAPTER 9. OPTIMISING FOR LOCALITY OF REFERENCE

kernel (n)
(λi li → stream_seq

(λq a (ps’: [q]int) →
let x = ps’[li]
let ps’’ = local q x
in stream_seq (f i) (a) ps’’)

(v)
ps)

Recall that li is the local thread index. Then, ps’’ is a local memory array created
by collective copying (local), and used instead of ps’ in f. The size q is then
bounded (at runtime) by the group size used for this kernel, such that the array ps’’
will fit in local memory. For simplicity, we assume that the size of arrayps is divisible
by some reasonable group size. The trick is that every thread within a workgroup
reads a distinct element from ps’, by using the local thread index. The array ps” is
visible by all threads within the workgroup, so local in effect constitutes intra-group
communication.

When tiling along a dimension i (1 in the above example), it must be ensured that
each consecutive q threads along that dimension belong to the same GPU group. In
general, this is done by forcing the group size to unit along all non-tiled dimensions,
although this is not necessary in the case of a unidimensional kernel.

One-dimensional tiling is used for the n-body benchmark discussed in Sec-
tion 10.1.1. Note that the dimensionality of the kernel need not be restricted to
one for one-dimensional tiling to apply. Section 9.2.3 contains an example of one-
dimensional tiling applied in a two-dimensional kernel.

9.2.2 Two-Dimensional Tiling

Futhark also supports two-dimensional tiling, where two streamed arrays are invariant
to different parallel dimensions. A matrix multiplication that exhibits the pattern
appears as follows:

let yss’ = rearrange (1,0) yss
in kernel (n,l) (λi j li lj →

let xs = xss[i]
let ys = yss’[j]
in stream_seq f (0) xs ys)

where f = λc acc xs’ ys’ →
loop (acc) for i < c do

acc + xs’[i] * ys’[i]

The chunk function f computes the dot product of its two input arrays and adds

144

CHAPTER 9. OPTIMISING FOR LOCALITY OF REFERENCE

it to the accumulator. Prior to kernel extraction, the stream_seq was in the form
of a redomap. The arrays xs and ys are both invariant to at least one dimension of
the kernel, so they can be tiled as follows:

let yss’ = rearrange (1,0) yss
in kernel (n,l) (λi j li lj →

let xs = xss[i]
let ys = yss’[j]
in stream_seq (g li lj) (0) xs ys

where g = λli lj q acc xs’ ys’ →
let x = xs’[lj]
let y = ys’[li]
let xss’ = local q q x
let xs’’ = xss’[li]
let yss’ = local q q y
let yss_tr = rearrange (1,0) yss’
let ys’’ = yss_tr[lj]
in stream_seq f acc xs’’ ys’’

f = as before

Operationally, the local expressions creates a two-dimensional array in local
memory, which is then immediately indexed with the local thread index along dimen-
sion 1 (or 2), resulting in a one-dimensional array. The core IR used in this thesis does
not support fixing any but the first dimension; instead we transpose before indexing.

9.2.3 A Complicated Instance of Tiling

The LavaMD benchmark from Section 10.1.1 exhibits an interesting tiling pattern, in
which the to-be-tiled array is the result of an indirect index computed by a function
f, all nested inside of a sequential loop. A simplified reproduction follows.

kernel (n,m) (λi j li lj →
loop (outer_acc) = (...) for l < k do

let i’ = f l i
let xs = xss[i’]
in stream_seq (h j) outer_acc xs)

where f l i = let p = if 0 < l then ps[l,i] else j
in js[p]

h j = some function

Since the computation of the array xss is invariant to the first dimension of the
kernel (of size n), it can be tiled as follows:

145

CHAPTER 9. OPTIMISING FOR LOCALITY OF REFERENCE

kernel (n,m) (λi j li lj →
loop (outer_acc) = (...) for l < k do

let i’ = f l i
let xs = xss[i’]
in stream_seq (g j lj) (0) outer_acc xs)

where f l i = let p = if 0 < l then ps[l,i] else i
in js[p]

g = λj lj q acc xs’ →
let x = xs’[lj]
let xss’ = local 1 q x
let xs’’ = xss’[0]
in stream_seq (h j) acc xs’’

h j = some function

Note that the tiling operation itself is not affected at all by the convoluted com-
putation of the index j’. All that we need is the ability to compute which kernel
dimensions j’ is invariant to, which is reasonably simple in a pure language such as
Futhark.

Again we assume that the second dimension (of size m) can be divided by a
reasonable group size (say, 256). This assumption can be removed by the addition
of various tedious bounds checks and branches. The use of local 1 q forces that
the two-dimensional group size is always 1 along the outermost dimension, which
maximises the ratio of local-to-global memory accesses for array xs.

9.3 Related Work

The intent of this chapter is not to argue that Futhark’s scheme for tiling and achiev-
ing coalesced memory accesses is superior to other techniques. Rather, we have
merely shown that the moderate flattening algorithm does not actively prevent us
from performing such optimisations, as is the case for full flattening.

For example, in comparison to Futhark, imperative analyses [Yan+10; Ver+13] are
superior at performing all kinds of tiling, for example hexagonal time tilling [Gro+14]
and achieving memory coalescing by semantically transposing arrays on the fly
(via tiling). However, non-affine array indexes may restrict applicability: for ex-
ample indirect-array accesses would prevent them from optimising memory coa-
lescing for the OptionPricing benchmark (Section 10.1.3), where Futhark’s simpler,
transposition-based approach succeeds.

146

Chapter 10

Empirical Validation

When a new programming model is proposed, it must be demonstrated that interesting
programs can be written within the model. While the model espoused by this thesis—
functional array programming—is not new, our claim that it is a good foundation for
obtaining parallel performance requires evidence.

This chapter serves as an empirical validation of the compilation strategy dis-
cussed in this thesis, and the practical usability of the Futhark compiler as a whole
(the fifth contribution from the introduction). We discuss several programs imple-
mented in Futhark, with a focus on their runtime performance. While we cannot
claim that the current Futhark compiler embodies the full potential of functional ar-
ray programming, the results presented here constitute at least a lower bound on that
potential.

The chapter is divided into two main parts: first we have manually translated
a range of benchmark programs from other languages or libraries to Futhark (Sec-
tion 10.1). Second, we perform a deeper analysis of the performance of an irregular
program that, due to dataset-sensitivity, is not as easy to benchmark (Section 10.2).
We will use the term reference implementation to refer to programs that were not writ-
ten by us, and Futhark implementation to refer to our translated Futhark programs.
Any Futhark code examples will use the source language, not the IR we used to
discuss the design of the compiler.

10.1 Empirical Validation in Bulk

Most of the programs presented in this section are from the published benchmark
suites Rodinia 3.1 [Che+09], Parboil 2.5 [Str+12], and FinPar [And+16]. The com-
parison with hand-written implementations is to show the potential cost of using a
high-level language. However, as we shall see, even published code often contains
significant inefficiencies, which occasionally leads to Futhark outperforming the refer-
ence implementations. A handful of benchmarks are from Accelerate 1.0 [McD+13],

147

CHAPTER 10. EMPIRICAL VALIDATION

Runtime in milliseconds
NVIDIA K40 AMD W8100

Benchmark Dataset Ref. Fut. Ref. Fut.

Rodinia
Backprop Input layer size equal to 220 52.2 21.2 233.2 9.8
CFD fvcorr.domn.193K 2893.6 3487.5 1637.8 1955.5
HotSpot 1024 × 1024; 360 iterations 51.6 60.3 3178.4 54.4
k-means kdd_cup 1680.3 664.2 1377.6 1264.4
LavaMD boxes1d = 10 7.1 9.4 5.8 7.4
LUD 2048 40.6 111.1 28.7 132.2
Myocyte workload = 216; xmax = 3 3881.5 806.2 — 1621.0
NN Default duplicated 20 times 182.9 13.4 331.0 60.3
Pathfinder Array of size 105 26.1 9.4 96.3 2.7
SRAD 502 × 458; 100 iterations 21.8 22.1 49.9 41.8

Parboil
MRI-Q large 27.6 22.8 15.6 20.1
SGEMM medium 3.4 7.2 3.2 4.7
Stencil default 179.0 253.7 97.8 223.7
TPACF medium 655.3 873.4 272.0 557.9

FinPar

LocVolCalib
small 495.8 281.4 442.8 248.1
medium 319.9 190.0 214.0 139.7
large 1484.2 2038.5 1678.1 3279.9

OptionPricing
small 4.7 7.3 4.2 6.1
medium 10.4 17.7 6.7 13.6
large 97.1 158.6 83.2 175.3

Accelerate
Crystal Size 2000, degree 50 27.9 11.2 — 10.3
Fluid 3000 × 3000; 20 iterations 15.0 19.9 — 14.5
Mandelbrot 4000 × 4000; 255 limit 6.1 6.0 — 5.0
N-body N = 105 559.0 127.6 — 141.7
Tunnel 4000 × 4000 94.2 72.5 — 89.8

Table 4: Benchmark datasets and average runtimes, computed over ten executions of every
benchmark. See Figures 62 to 65 for a visualisation of the results. Missing
entries indicate that a benchmark implementation was not runnable for a given
configuration.

148

CHAPTER 10. EMPIRICAL VALIDATION

a Haskell eDSL for data-parallel array programming. These are included to show the
performance of Futhark compared to an existing mature GPU language.

All programs have been manually ported to Futhark, and compiled and run with
the default settings. We show how the performance of the Futhark code compares to
the performance of the original reference implementations. In some cases, we also
discuss the programming techniques used to obtain efficient Futhark implementations.
For most benchmarks, we use only a single dataset, as the relative performance for
these is not dataset-sensitive (except for pathological cases).

While some of the benchmarks are small, others are decidedly nontrivial. For
example, Stencil from Parboil is implemented as 13 non-blank non-comment lines of
Futhark, while Myocyte from Rodinia requires 883. The total number of non-blank
non-comment lines in the Futhark implementations is 2984, with a median of of 98.

We have evaluated the performance of the generated code on two different test
systems:

1. An NVIDIA K40 GPU installed in a server-grade system with an Intel Xeon
E5-2560 CPU and 128GiB of RAM.

2. An AMD W8100 GPU installed in a desktop-class system with an Intel Core 2
Quad CPU and 4GiB of RAM.

The intent is to show that the OpenCL code generated by the Futhark compiler
works on both NVIDIA and AMD GPUs. However, note that the two systems
are very dissimilar—the AMD GPU is installed in a rather old computer, and it is
possible that the slow CPU and anaemic amount of system memory may bottleneck
the GPU1. This may explain some of the unusual behaviour we will see on the
AMD GPU, particularly for reference implementations. In particular, three reference
implementations from Rodinia—Backprop, Hotspot, and Pathfinder—exhibit extreme
and inexplicable slowdown on the AMD GPU. We consider these results anomalous,
and will discard from from further discussion (although they are included in the graphs
and tables). Ideally, the NVIDIA and AMD GPUs would be installed in systems that
are otherwise similar, but such were not available for the writing of this thesis.

CUDA, as an API proprietary to NVIDIA, can be executed only on the NVIDIA
K40 GPU. Thus, when selecting reference implementations, we have picked those
written in OpenCL, to allow us to run the same code on both platforms. Reference
implementations in OpenCL were not available for all benchmarks; these will be
discussed on a case-by-case basis. All Futhark implementations executed successfully
on both test systems.

We invoke the Futhark compiler with no benchmark-specific flags—no tuning is
done, and the exact same code is executed on both of our test systems. It is likely that
approximately 10% speedup could be obtained by tweaking GPU group sizes.

1Unusually, the GPU actually has more memory than the CPU; a reversal of the usual situation.

149

CHAPTER 10. EMPIRICAL VALIDATION

Backprop
CFD

HotSpot
K-means

LavaMD
Myocyte

NN
Pathfinder

SRAD
LUD

0
1
2
3
4
5
6

Sp
ee

du
p

2.4
6

0.8
2

0.8
5

2.5
2

0.7
5

4.8
1 13

.61

2.7
7

0.9
8

0.3
6

23
.71

0.8
3

58
.39

1.0
8

0.7
7

5.4
8 36

.25

1.1
9

0.2
1

NVIDIA K40 AMD W8100

Figure 62: Relative speedup compared to reference implementations for Rodinia (the bar for
NN is truncated for space reasons).

. .

The compiler inserts instrumentation that records total runtime minus the time
taken for (i) loading program input onto the GPU, (ii) reading final results back from
the GPU, and (iii) OpenCL context creation and kernel build time. Excluding these
overheads emphasises the performance differences. Any other host-device commu-
nication/copying is measured. When necessary, the reference implementations have
been modified to time similarly. When in doubt, we have erred in favour of the
reference implementations.

The results are shown on Table 4, and discussed in greater detail below. Most of
our slowdown is related to generic issues of unnecessary copying and missing micro-
optimisation that are common to compilers for high-level languages. Section 10.1.5
contains a brief discussion of how the major optimisations performed by the Futhark
compiler affect the performance of the benchmarks.

Futhark implementations of all benchmarks discussed here, as well as several
more, are publicly available at the following URL:

https://github.com/diku-dk/futhark-benchmarks

10.1.1 Ten Benchmarks from Rodinia

Rodinia is a popular benchmark suite that contains approximately 21 benchmarks.
Of these, we have selected those 10 benchmarks that look the most friendly from a
data-parallel perspective, and were expressible in terms of a nested composition of
map, reduce, scan, stream_red, stream_map.

There is great variation in the performance of the Rodinia reference implementa-
tions. Some, such as Myocyte or NN, contain oversights that negatively affect GPU
performance. Others, such as LUD or LavaMD, are based on clever algorithms and
carefully implemented. Some Rodinia implementations exhibit massive slowdown
on the AMD GPU for reasons that we cannot determine. We conjecture that this is
related to the under-powered CPU on the machine hosting the AMD GPU, but this is
only a suspicion. The speedups are shown on Figure 62.

The speedup on Backprop seems related to a reduction that Rodinia has left

150

https://github.com/diku-dk/futhark-benchmarks

CHAPTER 10. EMPIRICAL VALIDATION

sequential. Running time of the training phase is roughly equal in Rodinia and
Futhark (∼ 10 ms).

Rodinia’s implementation of HotSpot, a two-dimensional stencil code, uses time
tiling [Gro+14], which seems to pay off on the NVIDIA GPU, but not on AMD.
On the NVIDIA GPU, the majority of Futhark’s slowdown is due to how memory
management is done for the arrays involved in the time series loop in the stencil. At
a high level, the stencil is a sequential loop containing a nested map over the m × m
iteration space:

loop s = s0 for i < n do
let s’ = map (λi → map (f s i) [0...m-1]) [0...m-1]
in s’

Two distinct memory blocks are necessary, because several elements of s are
combined to construct one element of s’. The reference implementation uses two
pre-allocated buffers, and switches between them by swapping the pointers. This
is a common technique for implementing stencils. Instead of swapping pointers,
The Futhark compiler copies the entire intermediate result instead, and these copies
account for 30% of runtime.

Our speedup on k-means is due to Rodinia not parallelising computation of the
new cluster centres, which is semantically a histogram, which can be implemented as
a segmented reduction.

The default dataset for Myocyte dataset was expanded because its degree of
parallelism was one (workload = 1). We used Rodinia’s CUDA implementation
rather than its OpenCL implementation, as the latter is not fully parallelised. We
attribute our speedup to automatic coalescing optimisations, which is tedious to do
by hand on such large programs.

Our speedup on NN is due to Rodinia leaving 100 reduce operations for finding
the nearest neighbours sequential on the CPU. This is possibly because the reduce
operator is atypical: it computes both the minimal value and the corresponding
index, much like the example in Section 2.2.1. Speedup is less impressive on the
AMD GPU, due to higher kernel launch overhead—this benchmark is dominated by
frequent launches of short kernels.

For Pathfinder, Rodinia uses time tiling, which, unlike HotSpot, does not seem to
pay off on the tested hardware.

The reference implementation of LUD uses a clever block-based algorithm that
makes efficient use of local memory on the GPU. The Futhark implementation is
similar, but the Futhark compiler is not yet able to map it as efficiently to the GPU
hardware. The LUD algorithm uses block decomposition, and the block size (not
to be confused with the CUDA term “thread block size”, which is something else)
is a programmer-given constant. Both the reference and Futhark implementation
simply hard-code a constant that appears to give good performance in practise: 32

151

CHAPTER 10. EMPIRICAL VALIDATION

MRI-Q
SGEMM

Stencil
TPACF

0
1
2
3
4
5
6

Sp
ee

du
p

1.2
0

0.4
6 0.7

0
0.7

5
0.7

7
0.6

7
0.4

3
0.4

8

NVIDIA K40 AMD W8100

Figure 63: Relative speedup compared to reference implementations for Parboil.
. .

for Futhark, and 16 for the reference implementation.

10.1.2 Four Benchmarks from Parboil

The Parboil benchmark suite is smaller than Rodinia, containing 11 benchmarks, but
the implementations are generally of higher quality. Furthermore, Parboil comes with
excellent built-in support for instrumentation and validation of results. The Parboil
benchmarks tend to be more difficult than those found in Rodinia, so we have only
ported four of them to Futhark. The speedups are shown on Figure 63.

MRI-Q is semantically an outer map surrounding an inner map-reduce oper-
ation on an array that is invariant to the outer map. The Parboil implementation is
based on heavily unrolling the inner loop, while the Futhark compiler performs one-
dimensional tiling in local memory (Section 9.2.1). This appears to be the superior
strategy on the NVIDIA GPU, but not the AMD GPU.

SGEMM is an implementation of a common matrix primitive that computes

C ← α × A × B + β × C

where A, B,C are matrices and α, β are scalars. The Futhark compiler performs two-
dimensional tiling (Section 9.2.2) in local memory, while the Parboil implementation
performs more sophisticated register tiling. SGEMM is a well-studied primitive, and
it is hard for a compiler to match a hand-tuned implementation.

Stencil is a straightforward stencil code. The Futhark implementation suffers due
to poor memory management that induces extra copies, as with Rodinia’s HotSpot.

TPACF is semantically a histogram, which Parboil implements using clever use
of local memory. In Futhark, we implement it using a segmented reduction, which is
not as efficient.

10.1.3 Two Benchmarks from FinPar

FinPar is a small benchmark suite translated from real-world financial kernels. The
problems are sophisticated, with nontrivial use of nested parallelism, and the reference

152

CHAPTER 10. EMPIRICAL VALIDATION

LocVolCalib-small
LocVolCalib-medium

LocVolCalib-large
OptionPricing-small

OptionPricing-medium
OptionPricing-large

0
1
2
3
4
5
6

Sp
ee

du
p

1.7
6

1.6
8

0.7
2

0.6
4

0.5
8

0.6
11.7

8
1.5

3

0.5
1

0.6
9

0.4
9

0.4
7

NVIDIA K40 AMD W8100

Figure 64: Relative speedup compared to reference implementations for FinPar. Each bench-
mark is applied to three different data sets.

. .

implementations are well implemented. We have ported only two out of the three
FinPar benchmarks to Futhark, as the third one (InterestCalib) contains (limited)
irregular parallelism. Due to the small size of FinPar, we have evaluated each
benchmark on all three available data sets. The speedups are shown on Figure 64.

OptionPricing is essentially a map-reduce-composition. The benchmark pri-
marily measures how well the Futhark compiler sequentialises excess parallelism
inside the complex map function. We see approximately equal relative performance
for each of the three data sets.

LocVolCalib from FinPar is an outer map containing a sequential for-loop,
which itself contains several more maps. Exploiting all parallelism requires the
compiler to interchange the outer map and the sequential loop. The slowdown on the
AMD GPU is due to transpositions, inserted to fix coalescing, being relatively slower
than on the NVIDIA GPU.

The small and medium datasets for LocVolCalib have the interesting property that
they do not provide enough parallelism in the outer loops to fully saturate the GPU.
Note the absolute runtime numbers on Table 4, where the runtime for the small dataset
is greater than that for the medium dataset, despite the latter actually requiring more
work. Two distinct LocVolCalib implementations are provided by FinPar: one that
exploits only outer-level parallelism, and one that exploits all available parallelism.
The former is the right choice for the large dataset, and the one we compare against
here, as it is also roughly how the current Futhark compiler parallelises LocVolCalib.
However, the FinPar implementation that fully exploits all parallelism outperforms
Futhark on the small and medium datasets. Handling cases such as this transparently
is the main motivation for multi-versioned code (Section 8.3).

10.1.4 Five Benchmarks from Accelerate

Accelerate is a mature Haskell-embedded language for data-parallel array program-
ming. The benchmarks picked here are presented as “examples”, and are not part
of a benchmark suite as such. While they are written by the Accelerate authors

153

CHAPTER 10. EMPIRICAL VALIDATION

Crystal
Fluid

Mandelbrot
N-body

Tunnel
0
1
2
3
4
5
6

Sp
ee

du
p

2.5
0

0.7
5 1.0

1

4.3
8

1.2
9

NVIDIA K40

Figure 65: Relative speedup compared to reference implementations for Accelerate.
. .

themselves, and contain built-in support for benchmarking, it is possible that perfor-
mance has been sacrificed in the interest of readability. We use the recently released
llvm-ptx GPU backend, which performs significantly better than the old cuda
backend. Unfortunately, this backend is still NVIDIA-specific, so we were unable to
execute Accelerate on the AMD GPU.

The benchmarks were all straightforward to translate to Futhark, as Accelerate
does not support nested parallelism or low-level GPU programming. One major and
interesting source of performance differences is that Accelerate is a Just-In-Time (JIT)
compiler for an embedded language, while Futhark is a conventional Ahead-Of-Time
(AOT) compiler. As a result, Accelerate has access to dynamic information that can
be used to perform code specialisation, but its embedded nature limits the compilers
ability to see the program as a whole. On the other hand, the Futhark compiler can
perform more global optimisations, but cannot inline dataset-specific constants for
loop iteration counts and similar. The trade-offs between JIT and AOT compilation
are a fascinating and deep subject that we will not delve further into here, but is
certainly worthy of further study. Speedups are shown on Figure 65.

Crystal is a straightforward map containing an inner map-reduce over a small
array. It is unclear why Futhark outperforms Accelerate on this benchmark.

Fluid is a two-dimensional stencil code with complicated edge conditions. As with
Rodinia’s HotSpot, Futhark’s approach to memory management causes unnecessary
copies for each of the outer sequential loops, giving Accelerate the edge.

The Mandelbrot benchmark is a straightforward map containing a while loop,
with little opportunity for optimisation.

N-body is operationally a map containing an inner map-reduce over an array
invariant to the outer array. The Futhark compiler performs one-dimensional tiling
in local memory to optimise access to this array. Accelerate does not perform tiling,
which gives the edge to Futhark.

Tunnel is similar to Crystal, and contains a straightforward map containing an
inner map-reduce over a small array. Performance is similar between Futhark and
Accelerate.

154

CHAPTER 10. EMPIRICAL VALIDATION

10.1.5 Impact of Optimisations

Impact was measured by turning individual optimisations off and re-running bench-
marks on the NVIDIA GPU. We report only where the impact is non-negligible.

Fusion (Chapter 7) has a significant impact on K-means (×1.42), LavaMD (×4.55),
Myocyte (×1.66), SRAD (×1.21), Crystal (×10.1), and LocVolCalib (×9.4). Without
fusion, OptionPricing, N-body, MRI-Q, and SGEMM fail due to increased storage
requirements.

In the absence of in-place updates, we would have to implement K-means as on
Figure 7—the resulting program is slower by ×8.3. Likewise, LocVolCalib would
have to implement its central tridag procedure via a less efficient scan-map
composition, causing a ×1.7 slowdown. OptionPricing uses an inherently sequential
Brownian Bridge computation that is not expressible without in-place updates.

The coalescing-by-transposition transformation (Section 9.1) has a significant im-
pact on k-means (×9.26), Myocyte (×4.2), OptionPricing (×8.79), and LocVolCalib
(×8.4). Loop tiling (Section 9.2) has an impact on LavaMD (×1.35), MRI-Q (×1.33),
SGEMM (×2.3), N-body (×2.29), and LUD (×1.10).

10.2 Benchmarking an implementation of Breadth-First-Search

The Rodinia benchmark suite contains a benchmark, BFS, that implements Breadth-
First-Search. This problem is highly irregular, and its performance is very dataset-
sensitive. As a result, we have excluded it from the presentation of the general
benchmark results, and instead dedicated this section to discuss the issues. The
following serves as an example of benchmarks where measuring performance is not
quite straightforward, and incidentally as an example of how to implement irregular
problems in Futhark.

Figure 66 shows an excerpt of Rodinia’s imperative-but-parallel implementation
of the breadth-first search algorithm, which traverses the graph and records in the
cost array the breadth level of each graph node. The code excerpt processes in
parallel all the nodes, indexed by src_id, on the current breadth level (i.e., the
ones with the mask[src_id] set). For each such node, the breadth level of all its
unvisited neighbours (i.e., !visited[id]) are updated to cost[src_id]+1 in
the sequential (inner) loop at line 11. The problem with this code is that the update of
cost potentially introduces data races in the case when two nodes on the same level
are connected to a common (unvisited) node. What makes it still safe is the property
that the output dependences are idempotent (i.e., the updated value is the same across
different outermost iterations).

Figure 67 shows a simple, albeit work-inefficient, translation to Futhark of the
discussed imperative code, which uses padding to satisfy array regularity. First, the
indices of the active nodes (i.e., the ones on the current breadth level) are identified by
the filter operation on line 8. This contributes significantly to final performance.

155

CHAPTER 10. EMPIRICAL VALIDATION

Second, the maximal number of edges of these nodes, denoted bye_max, is computed
via a map-reduce composition on lines 10–12. Third, the map nest computes two
two-dimensional arrays of innermost size equal to e_max, in which the first one
corresponds to the indices of the unvisited neighbours, and the second one to their
breadth level (costs). The indices that are outside the edge degree of a node
are marked with out-of-bounds indices (-1), and similarly for the nodes that were
already visited. Fourth, the index-value arrays are flattened (at lines 29-30) and the
scatter bulk operator is used to update the cost and updating_mask arrays
at lines 32–37.

Table 5 shows the running time of Futhark and Rodinia implementations on four
datasets. The Rodinia implementation exploits only the parallelism of the outer
loop, and it wins on the datasets in which the graph is large enough to fully utilise
the hardware, while Futhark exploits both levels of parallelism and wins on smaller
graphs with large edge degree. Interestingly, this is not simply a question of how
much to parallelise, but a fundamental algorithmic design decision. The unsolved
challenge is a representation and technique that can fuse the Futhark code in Figure 67
into something resulting the one-level-parallel C code in Figure 66, and furthermore
generate both versions of the code.

1 // n is the number of graph nodes
2 for (int src_id = 0; src_id < n; src_id++) { // parallel
3 if (mask[src_id] == true) {
4 mask[src_id] = false;
5 for (int i = nodes[src_id].starting; // sequential
6 i < (nodes[src_id].num_edges
7 +nodes[src_id].starting);
8 i++) {
9 int dst_id = edges_dest[i];

10 if(!visited[dst_id]) {
11 cost[dst_id] = cost[src_id] + 1;
12 updating_mask[dst_id] = true;
13 }
14 }
15 }
16 }

Figure 66: Imperative code for breadth-first search.

Finally, we remark that the presented Futhark code is work-inefficient due to the
“padding” of the edge-degree of a node, but the scatter construct also enables
a work-efficient implementation (not shown), which would correspond to applying
flattening by hand. In our tests, this is slower than the padded one due to the overhead

156

CHAPTER 10. EMPIRICAL VALIDATION

1 let step [n][e] (cost: [n]i32)
2 (nodes_starting: [n]i32)
3 (nodes_num_edges: [n]i32)
4 (edges_dest: [e]i32)
5 (visited: [n]bool)
6 (mask: [n]bool)
7 : ([n]i32, [n]bool, []i32) =
8 let active_indices = filter (λi → mask[i]) (iota n)
9 let n_indices = length active_indices

10 let e_max =
11 reduce i32.max 0
12 (map (λi → nodes_n_edges[i]) active_indices)
13 let (node_ids_2d, costs_2d) =
14 map (λsrc_id: ([e_max]i32, [e_max]i32) →
15 let s_index = nodes_starting [src_id]
16 let n_edges = nodes_num_edges[src_id]
17 let edge_indices = map (+s_index) (iota e_max)
18 let node_ids =
19 map (λi →
20 if i < s_index + n_edges
21 then let dst_id = edges_dest[i]
22 in if !visited[dst_id]
23 then dst_id else -1
24 else -1)
25 edge_indices
26 let costs = replicate e_max (cost[src_id] + 1)
27 in (node_ids, costs))
28 active_indices
29 let node_ids = reshape flat_len node_ids_2d
30 let costs = reshape flat_len costs_2d
31 let flat_len = e_max * n_indices
32 let mask’ =
33 scatter mask active_indices (replicate n_indices false)
34 let cost’ =
35 scatter cost node_ids costs
36 let updating_mask’ =
37 scatter updating_mask node_ids (replicate flat_len true)
38 in (mask’, cost’, updating_mask’)

Figure 67: Work-inefficient Futhark code for breadth-first search.
. .

of multiple scans.

157

CHAPTER 10. EMPIRICAL VALIDATION

Dataset Version Runtime Speedup

2000 nodes, 1000 edges each Futhark 4.0ms ×1.9Rodinia 7.6ms

1000 nodes, 10–1000 edges each Futhark 1.7ms ×3.7Rodinia 6.3ms

100,000 nodes, 6 edges each Futhark 6.7ms ×0.25Rodinia 1.7ms

100,000 nodes, 10–500 edges each Futhark 153.1ms ×0.43Rodinia 66.5ms

Table 5: Performance of Rodinia and Futhark breadth-first search implementations on various
datasets. Executed on an NVIDIA GTX 780 Ti with random graphs (uniform
distribution). Reported runtime is average over 10 runs.

158

Part III

Closing Credits

159

Chapter 11

Conclusions and Future Work

We have presented a fully automatic optimizing compiler for Futhark, a pure func-
tional array language. Futhark is a simple language that supports just a few core
concepts, yet is more expressive than prior parallel languages of similar performance,
in particular by supporting nested parallelism. While more flexible parallel languages
exist (notably NESL), these have not yet been shown to obtain good GPU performance
in practise.

We have demonstrated a combination of imperative and functional concepts by
supporting in-place updates with safety guaranteed by uniqueness types rather than
complicated index-based analysis. We support not just efficient top-level imperative
code with in-place updates, but also sequential code nested inside parallel constructs,
all without violating the functional properties on which we depend for safe parallel
execution.

We have also shown how size-dependent array types can be inferred from a size-
agnostic source program, via a combination of type-driven rules and function slicing.
Our slicing technique results in neglible overhead in practise.

By introducing novel parallel streaming constructs, we provide better support for
efficient sequential execution of excess parallelism than is possible with the classical
parallel combinators. We have also shown how these constructs permit highly general
fusion rules, in particular permitting sequential fusion without losing the potential for
parallel execution.

All of these build up to our primary result, the moderate flattening algorithm,
which allows the efficient exploitation of easily accessible “common case” parallelism.
The moderate flattening algorithm sequentialises excess parallelism while keeping
intact the high-level invariants provided by the original parallel and purely functional
formulation, which permits further locality-of-reference optimisations. We have
demonstrated this capability by showing how to automatically repair some cases of
non-coalesced memory accesses, as well as performing simple block tiling of loops.
We argue that the moderate flattening algorithm can be developed further into a
gradual flattening algorithm, which uses multi-versioned code to exploit a varying

160

CHAPTER 11. CONCLUSIONS AND FUTURE WORK

amount of parallelism of the program, dependent on the characteristics of the input
data encountered at runtime.

To support our claims, we have validated our approach on 21 benchmark pro-
grams, which are compiled to GPU code via OpenCL. Compared to reference imple-
mentations, the performance ranges from ×0.21 slowdown to ×13 speedup, and is
competitive on average. Our results show that while the ease of high-level structural
transformation permitted by a functional language is powerful, attention must still be
paid to low-level issues such as communication costs and memory access patterns.

We have made the developed compiler and all benchmark programs freely avail-
able for reproduction, study, or further development.

11.1 Limitations and Future Work

The primary limitation of Futhark as a language is the lack of support for irregu-
lar arrays. Some problems, such as graph algorithms, are naturally irregular, and
transforming them to a regular formulation is tedious and error-prone. Worse, such
transformation is essentially manual flattening, which tends to result in code that is
hard for the compiler to analyse and optimise. It remains to be seen how we can either
modify the algorithms in question to exhibit less irregularity, or extend Futhark with
lightweight support for some cases of irregular parallelism, without sacrificing the
ability of the compiler to generate efficient code. After all, Futhark’s entire raison
d’être is performance—there are already many functional languages that are far more
expressive, so improving flexibility at great cost in runtime performance is not a goal.

However, even with the current language, irregularity still rears its ugly head for
the compiler. It is not hard to write a program that, although it uses only regular
arrays, implicitly expresses irregular parallelism, which cannot in general be handled
by our current approach. The reason is that we expect to be able to pre-allocate
memory before entering GPU kernels, but it is not hard to write a program in which
the size of intermediate arrays is thread-variant. For example, consider the following
expression.

map (λi → reduce (+) 0 (iota i)) is

The size of the array produced by iota i may differ for each element of the array
is, which means the total memory requirement of the map cannot be immediately
known. The problem has multiple solutions. In the most general case, we can
apply full flattening—this removes all forms of irregularity, but the overhead can be
significant. In other cases, a slicing approach can be used. For example, we can
precompute the total memory required, allocate one large slab of memory, and use a
scan to compute an offset for each iteration of the map:

161

CHAPTER 11. CONCLUSIONS AND FUTURE WORK

let os = scan (+) 0 is
in map (λ(i,o) →

-- iota i located at offset ’o’
-- in some memory block.
reduce (+) 0 (iota i))

(zip is os)

This is not a language issue—our sequential compiler pipeline is able to compile
any valid Futhark program to sequential code—but a limitation in our compilation
strategy for parallel code. Our strategy was to focus on development a technique for
exploiting “common case” parallelism efficiently, and only later extend it to support
more exotic cases.

162

Bibliography

[17] CUDA API Reference Manual. 8.0. NVIDIA. Oct. 2017. url: http://docs.nvidia.
com/cuda.

[Aho+07] Aho, Alfred V., Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers,
Principles, Techniques, and Tools. Pearson Addison Wesley, 2007. isbn: 0-321-49169-6.

[And+16] Andreetta, Christian, Vivien Bégot, Jost Berthold, Martin Elsman, Fritz Hen-
glein, Troels Henriksen, Maj-Britt Nordfang, and Cosmin E. Oancea. “FinPar: A
Parallel Financial Benchmark”. In: ACM Trans. Archit. Code Optim. 13.2 (June 2016),
18:1–18:27. issn: 1544-3566.

[Bag+15] Baghdadi, Riyadh, Ulysse Beaugnon, Albert Cohen, Tobias Grosser, Michael
Kruse, Chandan Reddy, Sven Verdoolaege, Adam Betts, Alastair F Donaldson,
Jeroen Ketema, et al. “PENCIL: a platform-neutral compute intermediate language for
accelerator programming”. In: 2015 International Conference on Parallel Architecture
and Compilation (PACT). IEEE. 2015, pp. 138–149.

[BD09] Bove, Ana and Peter Dybjer. “Dependent types at work”. In: Language engineering
and rigorous software development. Springer, 2009, pp. 57–99.

[Ber+10] Bergstra, James, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan
Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua
Bengio. “Theano: A CPU and GPU Math Compiler in Python”. In: Procs. of the 9th
Python in Science Conference. Ed. by Walt, Stéfan van der and Jarrod Millman. 2010,
pp. 3–10.

[Ber+13] Bergstrom, Lars, Matthew Fluet, Mike Rainey, John Reppy, Stephen Rosen, and
Adam Shaw. “Data-only Flattening for Nested Data Parallelism”. In: Procs. of the 18th
ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming. PPoPP ’13.
Shenzhen, China: ACM, 2013, pp. 81–92. isbn: 978-1-4503-1922-5. doi: http://dx.
doi.org/10.1145/2442516.2442525. url: http://doi.acm.org/10.
1145/2442516.2442525.

[Ber+88] Berry, M., D. Chen, P. Koss, D. Kuck, S. Lo, Y. Pang, L. Pointer, R. Roloff, A. Sameh,
E. Clementi, S. Chin, D. Schneider, G. Fox, P. Messina, D. Walker, C. Hsiung, J.
Schwarzmeier, K. Lue, S. Orszag, F. Seidl, O. Johnson, and R. Goodrum. “The
PERFECT Club Benchmarks: Effective Performance Evaluation of Supercomputers”. In:
International Journal of Supercomputer Applications 3 (1988), pp. 5–40.

[BF88] Bratley, Paul and Bennett L. Fox. “Algorithm 659 Implementing Sobol’s Quasirandom
Sequence Generator”. In: ACM Trans. on Math. Software (TOMS) 14(1) (1988), pp. 88–
100.

163

http://docs.nvidia.com/cuda
http://docs.nvidia.com/cuda
http://dx.doi.org/10.1145/2442516.2442525
http://dx.doi.org/10.1145/2442516.2442525
http://doi.acm.org/10.1145/2442516.2442525
http://doi.acm.org/10.1145/2442516.2442525

CHAPTER 11. CONCLUSIONS AND FUTURE WORK

[BG95] Blelloch, Guy and John Greiner. “Parallelism in Sequential Functional Languages”.
In: Proceedings of the Seventh International Conference on Functional Programming
Languages and Computer Architecture. FPCA ’95. La Jolla, California, USA: ACM,
1995, pp. 226–237. isbn: 0-89791-719-7. doi: http://dx.doi.org/10.1145/
224164.224210. url: http://doi.acm.org/10.1145/224164.224210.

[BG96] Blelloch, Guy E. and John Greiner. “A Provable Time and Space Efficient Implemen-
tation of NESL”. In: Proceedings of the First ACM SIGPLAN International Conference
on Functional Programming. ICFP ’96. Philadelphia, Pennsylvania, USA: ACM, 1996,
pp. 213–225. isbn: 0-89791-770-7. doi: http://dx.doi.org/10.1145/232627.
232650. url: http://doi.acm.org/10.1145/232627.232650.

[Bir87] Bird, R. S. “An Introduction to the Theory of Lists”. In: NATO Inst. on Logic of Progr.
and Calculi of Discrete Design. 1987, pp. 5–42.

[Bir89] Bird, R. S. “Algebraic Identities for Program Calculation”. In: Computer Journal 32.2
(1989), pp. 122–126.

[Ble+94] Blelloch, Guy E, Jonathan C Hardwick, Jay Sipelstein, Marco Zagha, and Sid-
dhartha Chatterjee. “Implementation of a Portable Nested Data-Parallel Language”.
In: Journal of parallel and distributed computing 21.1 (1994), pp. 4–14.

[Ble90] Blelloch, Guy E. Vector models for data-parallel computing. Vol. 75. MIT press Cam-
bridge, 1990.

[Ble96] Blelloch, Guy E. “Programming Parallel Algorithms”. In: Communications of the ACM
(CACM) 39.3 (1996), pp. 85–97.

[BR12] Bergstrom, Lars and John Reppy. “Nested Data-Parallelism on the GPU”. In: Procs. of
Int. Conf. Funct. Prog. (ICFP). ACM. 2012, pp. 247–258.

[Bra13] Brady, Edwin. “Idris, a general-purpose dependently typed programming language: De-
sign and implementation”. In: Journal of Functional Programming 23.5 (2013), pp. 552–
593.

[Bro+16] Brown, Kevin J., HyoukJoong Lee, Tiark Rompf, Arvind K. Sujeeth, Christo-
pher De Sa, Christopher Aberger, and Kunle Olukotun. “Have Abstraction and
Eat Performance, Too: Optimized Heterogeneous Computing with Parallel Patterns”. In:
Proceedings of the 2016 International Symposium on Code Generation and Optimiza-
tion. CGO 2016. Barcelona, Spain: ACM, 2016, pp. 194–205. isbn: 978-1-4503-3778-
6. doi: http://dx.doi.org/10.1145/2854038.2854042. url: http:
//doi.acm.org/10.1145/2854038.2854042.

[BS93] Barendsen, Erik and Sjaak Smetsers. “Conventional and Uniqueness Typing in Graph
Rewrite Systems”. In: Found. of Soft. Tech. and Theoretical Comp. Sci. (FSTTCS). Vol. 761.
LNCS. 1993, pp. 41–51.

[BS96] Barendsen, Erik and Sjaak Smetsers. “Uniqueness Typing for Functional Languages
with Graph Rewriting Semantics”. In: Mathematical Structures in Computer Science 6.6
(1996), pp. 579–612.

[BTV96] Birkedal, Lars, Mads Tofte, and Magnus Vejlstrup. “From Region Inference to
von Neumann Machines via Region Representation Inference”. In: ACM Symposium on
Principles of Programming Languages. POPL’96. ACM Press, Jan. 1996, pp. 171–183.

[CGK11] Catanzaro, Bryan, Michael Garland, and Kurt Keutzer. “Copperhead: Compiling
an Embedded Data Parallel Language”. In: Procs. of ACM Symp. on Principles and
Practice of Parallel Programming. PPoPP ’11. San Antonio, TX, USA: ACM, 2011, pp. 47–
56. isbn: 978-1-4503-0119-0. doi: http://dx.doi.org/10.1145/1941553.
1941562. url: http://doi.acm.org/10.1145/1941553.1941562.

164

http://dx.doi.org/10.1145/224164.224210
http://dx.doi.org/10.1145/224164.224210
http://doi.acm.org/10.1145/224164.224210
http://dx.doi.org/10.1145/232627.232650
http://dx.doi.org/10.1145/232627.232650
http://doi.acm.org/10.1145/232627.232650
http://dx.doi.org/10.1145/2854038.2854042
http://doi.acm.org/10.1145/2854038.2854042
http://doi.acm.org/10.1145/2854038.2854042
http://dx.doi.org/10.1145/1941553.1941562
http://dx.doi.org/10.1145/1941553.1941562
http://doi.acm.org/10.1145/1941553.1941562

CHAPTER 11. CONCLUSIONS AND FUTURE WORK

[Cha+07] Chakravarty, Manuel M. T., Roman Leshchinskiy, Simon Peyton Jones, Gabriele
Keller, and Simon Marlow. “Data Parallel Haskell: A Status Report”. In: Int. Work. on
Decl. Aspects of Multicore Prog. (DAMP). 2007, pp. 10–18.

[Che+09] Che, S., M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H. Lee, and K. Skadron.
“Rodinia: A benchmark suite for heterogeneous computing”. In: Workload Characteriza-
tion, 2009. IISWC 2009. IEEE International Symposium on. Oct. 2009, pp. 44–54. doi:
http://dx.doi.org/10.1109/IISWC.2009.5306797.

[Che77] Cheatham Jr, Thomas E. “Programming Language Design Issues”. In: Design and
Implem. of Prog. Lang. Springer, 1977, pp. 399–435.

[Chi+04] Chicha, Y., M. Lloyd, C. Oancea, and S. M. Watt. “Parametric Polymorphism for
Computer Algebra Software Components”. In: Proc. 6th International Symposium on
Symbolic and Numeric Algorithms for Scientific Comput. Mirton Publishing House, 2004,
pp. 119–130.

[CKF11] Collobert, Ronan, Koray Kavukcuoglu, and Clément Farabet. “Torch7: A Matlab-
like Environment for Machine Learning”. In: BigLearn, Neural Information Processing
Systems. 2011.

[Col+14] Collins, Alexander, Dominik Grewe, Vinod Grover, Sean Lee, and Adriana Sus-
nea. “NOVA: A Functional Language for Data Parallelism”. In: Procs. of Int. Workshop
on Libraries, Languages, and Compilers for Array Prog. ARRAY’14. Edinburgh, United
Kingdom: ACM, 2014, 8:8–8:13. isbn: 978-1-4503-2937-8. doi: http://dx.doi.
org/10.1145/2627373.2627375. url: http://doi.acm.org/10.1145/
2627373.2627375.

[CSL07] Coutts, Duncan, Don Stewart, and Roman Leshchinskiy. “Rewriting Haskell Strings”.
In: Practical Aspects of Decl. Lang. Springer, 2007, pp. 50–64.

[CSS12] Claessen, Koen, Mary Sheeran, and Bo Joel Svensson. “Expressive Array Constructs
in an Embedded GPU Kernel Programming Language”. In: Work. on Decl. Aspects of Mul-
ticore Prog DAMP. 2012, pp. 21–30.

[CSS15] Chatarasi, Prasanth, Jun Shirako, and Vivek Sarkar. “Polyhedral optimizations of
explicitly parallel programs”. In: 2015 International Conference on Parallel Architecture
and Compilation (PACT). IEEE. 2015, pp. 213–226.

[DAS12] Dubois, Michel, Murali Annavaram, and Per Stenstrm. Parallel Computer Orga-
nization and Design. New York, NY, USA: Cambridge University Press, 2012. isbn:
9780521886758.

[DT13] DiMarco, Jeffrey and Michela Taufer. “Performance impact of dynamic parallelism
on different clustering algorithms”. In: Proc. SPIE. Vol. 8752. 2013, 87520E.

[Dub+12] Dubach, Christophe, Perry Cheng, Rodric Rabbah, David F. Bacon, and Stephen J.
Fink. “Compiling a High-level Language for GPUs: (via Language Support for Archi-
tectures and Compilers)”. In: Proceedings of the 33rd ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI ’12. Beijing, China: ACM,
2012, pp. 1–12. isbn: 978-1-4503-1205-9. doi: http://dx.doi.org/10.1145/
2254064.2254066.

[Dyb17] Dybdal, Martin. “Array abstractions for GPU programming”. PhD thesis. Department
of Computer Science, Faculty of Science, University of Copenhagen, 2017.

[ED14] Elsman, Martin and Martin Dybdal. “Compiling a Subset of APL Into a Typed
Intermediate Language”. In: Procs. Int. Workshop on Lib. Lang. and Compilers for Array
Prog. (ARRAY). ACM, 2014.

165

http://dx.doi.org/10.1109/IISWC.2009.5306797
http://dx.doi.org/10.1145/2627373.2627375
http://dx.doi.org/10.1145/2627373.2627375
http://doi.acm.org/10.1145/2627373.2627375
http://doi.acm.org/10.1145/2627373.2627375
http://dx.doi.org/10.1145/2254064.2254066
http://dx.doi.org/10.1145/2254064.2254066

CHAPTER 11. CONCLUSIONS AND FUTURE WORK

[FD02] Fahndrich, Manuel and Robert DeLine. “Adoption and Focus: Practical Linear Types
for Imperative Programming”. In: SIGPLAN Not. 37.5 (May 2002), pp. 13–24. issn: 0362-
1340. doi: http://dx.doi.org/10.1145/543552.512532. url: http:
//doi.acm.org/10.1145/543552.512532.

[Fra04] Fraser, Keir. Practical lock-freedom. Tech. rep. University of Cambridge, Computer
Laboratory, 2004.

[GHS06] Grelck, Clemens, Karsten HinckfuSS, and Sven-Bodo Scholz. “With-Loop Fusion
for Data Locality and Parallelism”. In: Proceedings of the 17th International Confer-
ence on Implementation and Application of Functional Languages. IFL’05. Dublin, Ire-
land: Springer-Verlag, 2006, pp. 178–195. doi: http://dx.doi.org/10.1007/
11964681_11. url: http://dx.doi.org/10.1007/11964681_11.

[Gro+14] Grosser, Tobias, Albert Cohen, Justin Holewinski, P. Sadayappan, and Sven Ver-
doolaege. “Hybrid Hexagonal/Classical Tiling for GPUs”. In: Procs. Int. Symposium on
Code Generation and Optimization. CGO ’14. ACM, 2014, 66:66–66:75. doi: http:
//dx.doi.org/10.1145/2544137.2544160.

[GS06] Grelck, Clemens and Sven-Bodo Scholz. “SAC - A Functional Array Language for
Efficient Multi-Threaded Execution”. In: International Journal of Parallel Programming
34.4 (2006), pp. 383–427.

[GTA06] Gordon, Michael I., William Thies, and Saman Amarasinghe. “Exploiting Coarse-
grained Task, Data, and Pipeline Parallelism in Stream Programs”. In: Procs. of Int. Conf.
on Architectural Support for Programming Languages and Operating Systems. ASPLOS
XII. San Jose, California, USA: ACM, 2006, pp. 151–162. isbn: 1-59593-451-0. doi:
http://dx.doi.org/10.1145/1168857.1168877. url: http://doi.
acm.org/10.1145/1168857.1168877.

[Hen+16] Henriksen, Troels, Martin Dybdal, Henrik Urms, Anna Sofie Kiehn, Daniel Gavin,
Hjalte Abelskov, Martin Elsman, and Cosmin Oancea. “APL on GPUs: A TAIL from
the Past, Scribbled in Futhark”. In: Procs. of the 5th Int. Workshop on Functional High-
Performance Computing. FHPC’16. Nara, Japan: ACM, 2016, pp. 38–43.

[Hen+17] Henriksen, Troels, Niels GW Serup, Martin Elsman, Fritz Henglein, and Cos-
min E Oancea. “Futhark: purely functional GPU-programming with nested parallelism
and in-place array updates”. In: Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation. ACM. 2017, pp. 556–571.

[Hen14] Henriksen, Troels. “Exploiting functional invariants to optimise parallelism: a dataflow
approach”. In: Master’s thesis, DIKU, Denmark (2014).

[HEO14] Henriksen, Troels, Martin Elsman, and Cosmin E Oancea. “Size slicing: a hybrid
approach to size inference in Futhark”. In: Proc. of the 3rd ACM SIGPLAN workshop on
Functional high-performance computing. ACM. 2014, pp. 31–42.

[HG92] Hendren, Laurie J and Guang R Gao. “Designing programming languages for an-
alyzability: A fresh look at pointer data structures”. In: Computer Languages, 1992.,
Proceedings of the 1992 International Conference on. IEEE. 1992, pp. 242–251.

[Hil89] Hillis, W Daniel. The connection machine. MIT press, 1989.

[HLO16] Henriksen, Troels, Ken Friis Larsen, and Cosmin E. Oancea. “Design and GPGPU
Performance of Futhark’s Redomap Construct”. In: Proceedings of the 3rd ACM SIGPLAN
International Workshop on Libraries, Languages, and Compilers for Array Programming.
ARRAY 2016. Santa Barbara, CA, USA: ACM, 2016, pp. 17–24.

166

http://dx.doi.org/10.1145/543552.512532
http://doi.acm.org/10.1145/543552.512532
http://doi.acm.org/10.1145/543552.512532
http://dx.doi.org/10.1007/11964681_11
http://dx.doi.org/10.1007/11964681_11
http://dx.doi.org/10.1007/11964681_11
http://dx.doi.org/10.1145/2544137.2544160
http://dx.doi.org/10.1145/2544137.2544160
http://dx.doi.org/10.1145/1168857.1168877
http://doi.acm.org/10.1145/1168857.1168877
http://doi.acm.org/10.1145/1168857.1168877

CHAPTER 11. CONCLUSIONS AND FUTURE WORK

[HM93] Hains, G. and L. M. R. Mullin. “Parallel Functional Programming with Arrays”. In:
The Computer Journal 36.3 (1993), p. 238. doi: http://dx.doi.org/10.1093/
comjnl/36.3.238. eprint: /oup/backfile/content_public/journal/
comjnl/36/3/10.1093/comjnl/36.3.238/2/360238.pdf. url: +%
20http://dx.doi.org/10.1093/comjnl/36.3.238.

[HO13] Henriksen, Troels and Cosmin Eugen Oancea. “A T2 graph-reduction approach
to fusion”. In: Proceedings of the 2nd ACM SIGPLAN workshop on Functional high-
performance computing. ACM. 2013, pp. 47–58.

[HO14] Henriksen, Troels and Cosmin E Oancea. “Bounds checking: An instance of hybrid
analysis”. In: Proceedings of ACM SIGPLAN International Workshop on Libraries, Lan-
guages, and Compilers for Array Programming. ACM. 2014, p. 88.

[Hoa13] Hoare, Graydon. The Rust Programming Language. June 2013. url: http://www.
rust-lang.org/.

[Hol+14] Holk, Eric, Ryan Newton, Jeremy Siek, and Andrew Lumsdaine. “Region-based
memory management for GPU programming languages: enabling rich data structures on
a spartan host”. In: ACM SIGPLAN Notices 49.10 (2014), pp. 141–155.

[Hor+11] Hormati, Amir H., Mehrzad Samadi, Mark Woh, Trevor Mudge, and Scott Mahlke.
“Sponge: Portable Stream Programming on Graphics Engines”. In: Procs. of Int. Conf. on
Architectural Support for Programming Languages and Operating Systems. ASPLOS
XVI. Newport Beach, California, USA: ACM, 2011, pp. 381–392. isbn: 978-1-4503-
0266-1. doi: http://dx.doi.org/10.1145/1950365.1950409. url: http:
//doi.acm.org/10.1145/1950365.1950409.

[Ive62] Iverson, Kenneth E. A Programming Language. John Wiley and Sons, Inc, 1962.

[Jay99] Jay, C. Barry. “Programming in FISh”. In: International Journal on Software Tools for
Technology Transfer 2.3 (1999), pp. 307–315.

[Jon92] Jones, Simon L Peyton. “Implementing lazy functional languages on stock hardware:
the Spineless Tagless G-machine”. In: Journal of functional programming 2.2 (1992),
pp. 127–202.

[JTH01] Jones, Simon Peyton, Andrew Tolmach, and Tony Hoare. “Playing by the Rules:
Rewriting as a Practical Optimisation Technique in GHC”. In: Haskell Workshop. Vol. 1.
2001, pp. 203–233.

[KA02] Kennedy, Ken and John R. Allen. Optimizing Compilers for Modern Architectures: A
Dependence-based Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2002. isbn: 1-55860-286-0.

[Kel+10] Keller, Gabriele, Manuel MT Chakravarty, Roman Leshchinskiy, Simon Peyton
Jones, and Ben Lippmeier. “Regular, Shape-Polymorphic, Parallel Arrays in Haskell”. In:
ACM Sigplan Notices 45.9 (2010), pp. 261–272.

[Kel+12] Keller, Gabriele, Manuel M.T. Chakravarty, Roman Leshchinskiy, Ben Lipp-
meier, and Simon Peyton Jones. “Vectorisation Avoidance”. In: Proceedings of the 2012
Haskell Symposium. Haskell ’12. Copenhagen, Denmark: ACM, 2012, pp. 37–48. isbn:
978-1-4503-1574-6. doi: http://dx.doi.org/10.1145/2364506.2364512.
url: http://doi.acm.org/10.1145/2364506.2364512.

[Klö+12] Klöckner, Andreas, Nicolas Pinto, Yunsup Lee, B. Catanzaro, Paul Ivanov, and
Ahmed Fasih. “PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time
Code Generation”. In: Parallel Computing 38.3 (2012), pp. 157–174. issn: 0167-8191.
doi: http://dx.doi.org/10.1016/j.parco.2011.09.001.

167

http://dx.doi.org/10.1093/comjnl/36.3.238
http://dx.doi.org/10.1093/comjnl/36.3.238
/oup/backfile/content_public/journal/comjnl/36/3/10.1093/comjnl/36.3.238/2/360238.pdf
/oup/backfile/content_public/journal/comjnl/36/3/10.1093/comjnl/36.3.238/2/360238.pdf
+%20http://dx.doi.org/10.1093/comjnl/36.3.238
+%20http://dx.doi.org/10.1093/comjnl/36.3.238
http://www.rust-lang.org/
http://www.rust-lang.org/
http://dx.doi.org/10.1145/1950365.1950409
http://doi.acm.org/10.1145/1950365.1950409
http://doi.acm.org/10.1145/1950365.1950409
http://dx.doi.org/10.1145/2364506.2364512
http://doi.acm.org/10.1145/2364506.2364512
http://dx.doi.org/10.1016/j.parco.2011.09.001

CHAPTER 11. CONCLUSIONS AND FUTURE WORK

[Kri+16] Kristensen, Mads R.B., Simon A.F. Lund, Troels Blum, and James Avery. “Fusion
of Parallel Array Operations”. In: Proceedings of the 2016 International Conference on
Parallel Architectures and Compilation. PACT ’16. Haifa, Israel: ACM, 2016, pp. 71–
85. isbn: 978-1-4503-4121-9. doi: http://dx.doi.org/10.1145/2967938.
2967945. url: http://doi.acm.org/10.1145/2967938.2967945.

[Lee+14] Lee, HyoukJoong, Kevin J. Brown, Arvind K. Sujeeth, Tiark Rompf, and Kunle
Olukotun. “Locality-Aware Mapping of Nested Parallel Patterns on GPUs”. In: Pro-
ceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture.
MICRO-47. Cambridge, United Kingdom: IEEE Computer Society, 2014, pp. 63–74. isbn:
978-1-4799-6998-2. doi: http://dx.doi.org/10.1109/MICRO.2014.23.

[Les09] Leshchinskiy, Roman. “Recycle Your Arrays!” In: Practical Aspects of Declarative
Languages: 11th International Symposium, PADL 2009, Savannah, GA, USA, January
19-20, 2009. Proceedings. Ed. by Gill, Andy and Terrance Swift. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 209–223. isbn: 978-3-540-92995-6. doi: http:
//dx.doi.org/10.1007/978-3-540-92995-6_15. url: https://doi.
org/10.1007/978-3-540-92995-6_15.

[LH17] Larsen, Rasmus Wriedt and Troels Henriksen. “Strategies for Regular Segmented
Reductions on GPU”. In: Proceedings of the 6th ACM SIGPLAN Workshop on Functional
High-performance Computing. FHPC ’17. New York, NY, USA: ACM, 2017.

[McD+13] McDonell, Trevor L., Manuel MT Chakravarty, Gabriele Keller, and Ben Lipp-
meier. “Optimising Purely Functional GPU Programs”. In: Procs. of Int. Conf. Funct.
Prog. (ICFP). 2013.

[MF16] Madsen, Frederik M and Andrzej Filinski. “Streaming nested data parallelism on
multicores”. In: Proceedings of the 5th International Workshop on Functional High-
Performance Computing. ACM. 2016, pp. 44–51.

[MFP91] Meijer, Erik, Maarten Fokkinga, and Ross Paterson. “Functional Programming with
Bananas, Lenses, Envelopes and Barbed Wire”. In: Proc. 5th ACM Conf. on Functional
Programming Languages and Computer Architecture (FPCA). Cambridge, MA, 1991,
pp. 26–30.

[MP90] Midki, Samuel P and David A Padua. “Issues in the Compile-Time Optimization of
Parallel Programs”. In: Procs. of Int. Conf. on Parallel Processing. Vol. 2. 1990, pp. 105–
113.

[MS97] Megiddo, Nimrod and Vivek Sarkar. “Optimal Weighted Loop Fusion for Parallel
Programs”. In: Proceedings of the Ninth Annual ACM Symposium on Parallel Algorithms
and Architectures. SPAA ’97. Newport, Rhode Island, USA: ACM, 1997, pp. 282–291.
isbn: 0-89791-890-8. doi: http://dx.doi.org/10.1145/258492.258520.
url: http://doi.acm.org/10.1145/258492.258520.

[MTM97] Milner, Robin, Mads Tofte, and David Macqueen. The Definition of Standard ML.
Cambridge, MA, USA: MIT Press, 1997. isbn: 0262631814.

[MYB16] Maleki, Sepideh, Annie Yang, and Martin Burtscher. “Higher-order and Tuple-based
Massively-parallel Prefix Sums”. In: Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation. PLDI ’16. Santa Barbara, CA,
USA: ACM, 2016, pp. 539–552. isbn: 978-1-4503-4261-2. doi: http://dx.doi.
org/10.1145/2908080.2908089. url: http://doi.acm.org/10.1145/
2908080.2908089.

[Oan+12] Oancea, Cosmin, Christian Andreetta, Jost Berthold, Alain Frisch, and Fritz
Henglein. “Financial Software on GPUs: between Haskell and Fortran”. In: Funct. High-
Perf. Comp. (FHPC’12). 2012.

168

http://dx.doi.org/10.1145/2967938.2967945
http://dx.doi.org/10.1145/2967938.2967945
http://doi.acm.org/10.1145/2967938.2967945
http://dx.doi.org/10.1109/MICRO.2014.23
http://dx.doi.org/10.1007/978-3-540-92995-6_15
http://dx.doi.org/10.1007/978-3-540-92995-6_15
https://doi.org/10.1007/978-3-540-92995-6_15
https://doi.org/10.1007/978-3-540-92995-6_15
http://dx.doi.org/10.1145/258492.258520
http://doi.acm.org/10.1145/258492.258520
http://dx.doi.org/10.1145/2908080.2908089
http://dx.doi.org/10.1145/2908080.2908089
http://doi.acm.org/10.1145/2908080.2908089
http://doi.acm.org/10.1145/2908080.2908089

CHAPTER 11. CONCLUSIONS AND FUTURE WORK

[OM08] Oancea, Cosmin E. and Alan Mycroft. “Software Thread-Level Speculation – An
Optimistic Library Implementation”. In: IWMSE. 2008.

[OR11] Oancea, Cosmin E. and Lawrence Rauchwerger. “A Hybrid Approach to Proving
Memory Reference Monotonicity”. In: Procs. Int. Lang. Comp. Par. Comp. (LCPC).
2011.

[OR12] Oancea, Cosmin E. and Lawrence Rauchwerger. “Logical Inference Techniques for
Loop Parallelization”. In: Procs. of Int. Conf. Prog. Lang. Design and Impl. (PLDI). 2012,
pp. 509–520.

[OR15] Oancea, Cosmin E. and Lawrence Rauchwerger. “Scalable Conditional Induction
Variables (CIV) Analysis”. In: Proceedings of the 13th Annual IEEE/ACM International
Symposium on Code Generation and Optimization. CGO ’15. San Francisco, California:
IEEE Computer Society, 2015, pp. 213–224. isbn: 978-1-4799-8161-8. url: http:
//dl.acm.org/citation.cfm?id=2738600.2738627.

[OW05] Oancea, C. E. and S. M. Watt. “Domains and Expressions: An Interface between Two Ap-
proaches to Computer Algebra”. In: Proceedings of the ACM ISSAC 2005. 2005, pp. 261–
269. url: http://www.csd.uwo.ca/~coancea/Publications.

[PM15] Price, James and Simon McIntosh-Smith. “Oclgrind: An extensible OpenCL device
simulator”. In: Procs. of the 3rd Int. Workshop on OpenCL. ACM. 2015, p. 12.

[Pou+11] Pouchet, Louis-Noël, Uday Bondhugula, Cédric Bastoul, Albert Cohen, J. Ra-
manujam, P. Sadayappan, and Nicolas Vasilache. “Loop Transformations: Convexity,
Pruning and Optimization”. In: Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL ’11. Austin, Texas, USA:
ACM, 2011, pp. 549–562. isbn: 978-1-4503-0490-0. doi: http://dx.doi.org/10.
1145/1926385.1926449. url: http://doi.acm.org/10.1145/1926385.
1926449.

[PPS96] Peyton Jones, Simon, Will Partain, and André Santos. “Let-floating: Moving Bind-
ings to Give Faster Programs”. In: Proceedings of the First ACM SIGPLAN International
Conference on Functional Programming. ICFP ’96. Philadelphia, Pennsylvania, USA:
ACM, 1996, pp. 1–12. isbn: 0-89791-770-7. doi: http://dx.doi.org/10.1145/
232627.232630. url: http://doi.acm.org/10.1145/232627.232630.

[Rag+13] Ragan-Kelley, Jonathan, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. “Halide: A Language and Compiler for Optimizing
Parallelism, Locality, and Recomputation in Image Processing Pipelines”. In: Proceed-
ings of the 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation. PLDI ’13. Seattle, Washington, USA: ACM, 2013, pp. 519–530. isbn:
978-1-4503-2014-6. doi: http://dx.doi.org/10.1145/2491956.2462176.

[Rey72] Reynolds, John C. “Definitional interpreters for higher-order programming languages”.
In: Proceedings of the ACM annual conference-Volume 2. ACM. 1972, pp. 717–740.

[Ric53] Rice, H. G. “Classes of Recursively Enumerable Sets and Their Decision Problems”.
In: Transactions of the American Mathematical Society 74.2 (1953), pp. 358–366. issn:
00029947. url: http://www.jstor.org/stable/1990888.

[RKC16] Reddy, Chandan, Michael Kruse, and Albert Cohen. “Reduction Drawing: Language
Constructs and Polyhedral Compilation for Reductions on GPU”. In: Proceedings of the
2016 International Conference on Parallel Architectures and Compilation. PACT ’16.
Haifa, Israel: ACM, 2016, pp. 87–97. isbn: 978-1-4503-4121-9. doi: http://dx.doi.
org/10.1145/2967938.2967950. url: http://doi.acm.org/10.1145/
2967938.2967950.

169

http://dl.acm.org/citation.cfm?id=2738600.2738627
http://dl.acm.org/citation.cfm?id=2738600.2738627
http://www.csd.uwo.ca/~coancea/Publications
http://dx.doi.org/10.1145/1926385.1926449
http://dx.doi.org/10.1145/1926385.1926449
http://doi.acm.org/10.1145/1926385.1926449
http://doi.acm.org/10.1145/1926385.1926449
http://dx.doi.org/10.1145/232627.232630
http://dx.doi.org/10.1145/232627.232630
http://doi.acm.org/10.1145/232627.232630
http://dx.doi.org/10.1145/2491956.2462176
http://www.jstor.org/stable/1990888
http://dx.doi.org/10.1145/2967938.2967950
http://dx.doi.org/10.1145/2967938.2967950
http://doi.acm.org/10.1145/2967938.2967950
http://doi.acm.org/10.1145/2967938.2967950

CHAPTER 11. CONCLUSIONS AND FUTURE WORK

[RLK14] Robinson, Amos, Ben Lippmeier, and Gabriele Keller. “Fusing Filters with Integer
Linear Programming”. In: Proceedings of the 3rd ACM SIGPLAN Workshop on Functional
High-performance Computing. FHPC ’14. Gothenburg, Sweden: ACM, 2014, pp. 53–62.
isbn: 978-1-4503-3040-4. doi: http://dx.doi.org/10.1145/2636228.
2636235. url: http://doi.acm.org/10.1145/2636228.2636235.

[SF92] Sabry, Amr and Matthias Felleisen. “Reasoning About Programs in Continuation-
passing Style.” In: SIGPLAN Lisp Pointers V.1 (Jan. 1992), pp. 288–298. issn: 1045-3563.

[SGS10] Stone, John E., David Gohara, and Guochun Shi. “OpenCL: A Parallel Programming
Standard for Heterogeneous Computing Systems”. In: IEEE Des. Test 12.3 (May 2010),
pp. 66–73. issn: 0740-7475. doi: http://dx.doi.org/10.1109/MCSE.2010.
69. url: http://dx.doi.org/10.1109/MCSE.2010.69.

[Sha+17] Shaikhha, Amir, Andrew Fitzgibbon, Simon Peyton-Jones, and Dimitrios Vytinio-
tis. “Destination-Passing Style for Efficient Memory Management”. In: FHPC ’17 (2017).

[SRD17] Steuwer, Michel, Toomas Remmelg, and Christophe Dubach. “Lift: A Functional
Data-parallel IR for High-performance GPU Code Generation”. In: Procs. of Int. Symp.
on Code Generation and Optimization. CGO’17. Austin, USA: IEEE Press, 2017, pp. 74–
85. isbn: 978-1-5090-4931-8. url: http://dl.acm.org/citation.cfm?id=
3049832.3049841.

[Ste+15] Steuwer, Michel, Christian Fensch, Sam Lindley, and Christophe Dubach. “Gen-
erating Performance Portable Code Using Rewrite Rules: From High-level Functional
Expressions to High-performance OpenCL Code”. In: SIGPLAN Not. 50.9 (Aug. 2015),
pp. 205–217. issn: 0362-1340. doi: http://dx.doi.org/10.1145/2858949.
2784754. url: http://doi.acm.org/10.1145/2858949.2784754.

[Str+12] Stratton, John A, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang,
Nasser Anssari, Geng Daniel Liu, and Wen-mei W Hwu. “Parboil: A revised bench-
mark suite for scientific and commercial throughput computing”. In: Center for Reliable
and High-Performance Computing 127 (2012).

[TC13] Thiemann, Peter and Manuel M. T. Chakravarty. “Agda Meets Accelerate”. In:
Proceedings of the 24th Symposium on Implementation and Application of Functional
Languages. IFL’2012. Revised Papers, Springer-Verlag, LNCS 8241. 2013.

[TG09] Trojahner, Kai and Clemens Grelck. “Dependently typed array programs don’t go
wrong”. In: The Journal of Logic and Algebraic Programming 78.7 (2009). The 19th
Nordic Workshop on Programming Theory (NWPT’2007), pp. 643–664.

[TG11] Trojahner, Kai and Clemens Grelck. “Descriptor-free Representation of Arrays with
Dependent Types”. In: Proceedings of the 20th International Conference on Implemen-
tation and Application of Functional Languages. IFL’08. Hatfield, UK: Springer-Verlag,
2011, pp. 100–117.

[Tof+04] Tofte, Mads, Lars Birkedal, Martin Elsman, and Niels Hallenberg. “A Retrospec-
tive on Region-Based Memory Management”. In: Higher-Order and Symbolic Computa-
tion (HOSC) 17.3 (Sept. 2004), pp. 245–265.

[TP11] Tov, Jesse A. and Riccardo Pucella. “Practical Affine Types”. In: Proceedings of
the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL ’11. Austin, Texas, USA: ACM, 2011, pp. 447–458. isbn: 978-1-4503-
0490-0. doi: http://dx.doi.org/10.1145/1926385.1926436. url: http:
//doi.acm.org/10.1145/1926385.1926436.

170

http://dx.doi.org/10.1145/2636228.2636235
http://dx.doi.org/10.1145/2636228.2636235
http://doi.acm.org/10.1145/2636228.2636235
http://dx.doi.org/10.1109/MCSE.2010.69
http://dx.doi.org/10.1109/MCSE.2010.69
http://dx.doi.org/10.1109/MCSE.2010.69
http://dl.acm.org/citation.cfm?id=3049832.3049841
http://dl.acm.org/citation.cfm?id=3049832.3049841
http://dx.doi.org/10.1145/2858949.2784754
http://dx.doi.org/10.1145/2858949.2784754
http://doi.acm.org/10.1145/2858949.2784754
http://dx.doi.org/10.1145/1926385.1926436
http://doi.acm.org/10.1145/1926385.1926436
http://doi.acm.org/10.1145/1926385.1926436

CHAPTER 11. CONCLUSIONS AND FUTURE WORK

[TPO06] Tarditi, David, Sidd Puri, and Jose Oglesby. Accelerator: Using Data Parallelism to
Program GPUs for General-Purpose Uses. Tech. rep. Oct. 2006, p. 11. url: https:
//www.microsoft.com/en-us/research/publication/accelerator-
using-data-parallelism-to-program-gpus-for-general-purpose-
uses/.

[Vej94] Vejlstrup, Magnus. “Multiplicity Inference”. MA thesis. Department of Computer Sci-
ence, University of Copenhagen, Sept. 1994.

[Ver+13] Verdoolaege, Sven, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez, Chris-
tian Tenllado, and Francky Catthoor. “Polyhedral Parallel Code Generation for
CUDA”. In: ACM Trans. Archit. Code Optim. 9.4 (Jan. 2013), 54:1–54:23. issn: 1544-
3566. doi: http://dx.doi.org/10.1145/2400682.2400713. url: http:
//doi.acm.org/10.1145/2400682.2400713.

[Wat+90] Watt, S. M., R. D. Jenks, R. S. Sutor, and B. M. Trager. “The Scratchpad II Type
System: Domains and Subdomains”. In: Procs of Computing Tools For Scientific Problem
Solving. A. Miola ed. Academic Press, 1990, pp. 63–82.

[Wat03] Watt, S. M. “Aldor”. In: Handbook of Computer Algebra. Ed. by Grabmeier, J., E.
Kaltofen, and V. Weispfenning. 2003, pp. 154–160.

[WY14] Wang, Jin and Sudhakar Yalamanchili. “Characterization and analysis of dynamic
parallelism in unstructured GPU applications”. In: Workload Characterization (IISWC),
2014 IEEE International Symposium on. IEEE. 2014, pp. 51–60.

[Yan+10] Yang, Yi, Ping Xiang, Jingfei Kong, and Huiyang Zhou. “A GPGPU Compiler for
Memory Optimization and Parallelism Management”. In: Proceedings of the 31st ACM
SIGPLAN Conference on Programming Language Design and Implementation. PLDI
’10. Toronto, Ontario, Canada: ACM, 2010, pp. 86–97. isbn: 978-1-4503-0019-3. doi:
http://dx.doi.org/10.1145/1806596.1806606. url: http://doi.
acm.org/10.1145/1806596.1806606.

171

https://www.microsoft.com/en-us/research/publication/accelerator-using-data-parallelism-to-program-gpus-for-general-purpose-uses/
https://www.microsoft.com/en-us/research/publication/accelerator-using-data-parallelism-to-program-gpus-for-general-purpose-uses/
https://www.microsoft.com/en-us/research/publication/accelerator-using-data-parallelism-to-program-gpus-for-general-purpose-uses/
https://www.microsoft.com/en-us/research/publication/accelerator-using-data-parallelism-to-program-gpus-for-general-purpose-uses/
http://dx.doi.org/10.1145/2400682.2400713
http://doi.acm.org/10.1145/2400682.2400713
http://doi.acm.org/10.1145/2400682.2400713
http://dx.doi.org/10.1145/1806596.1806606
http://doi.acm.org/10.1145/1806596.1806606
http://doi.acm.org/10.1145/1806596.1806606

	Preface
	Land, Logic, and Language
	Introduction
	Background and Philosophy
	An Array Calculus
	Parallelism and Hardware Constraints

	An Optimising Compiler
	Overview and Uniqueness Types
	Size Inference
	Fusion
	Moderate Flattening and Kernel Extraction
	Optimising for Locality of Reference
	Empirical Validation

	Closing Credits
	Conclusions and Future Work
	Bibliography

