
Stream Processing Using Grammars
and Regular Expressions

Ulrik Terp Rasmussen
DIKU, Department of Computer Science

University of Copenhagen, Denmark

September 25, 2016

PhD Thesis
This thesis has been submitted to the PhD School of the Faculty of Science,

University of Copenhagen, Denmark





i

Abstract

In this dissertation we study expression based parsing and the use
of grammatical specifications for the synthesis of fast, streaming string-
processing programs.

In the first part we develop two linear-time algorithms for regular
expression based parsing with Perl-style greedy disambiguation. The
first algorithm operates in two passes in a semi-streaming fashion, us-
ing a constant amount of working memory and an auxiliary tape storage
which is written in the first pass and consumed by the second. The sec-
ond algorithm is a single-pass and optimally streaming algorithm which
outputs as much of the parse tree as is semantically possible based on
the input prefix read so far, and resorts to buffering as many symbols
as is required to resolve the next choice. Optimality is obtained by per-
forming a PSPACE-complete pre-analysis on the regular expression.

In the second part we present Kleenex, a language for expressing
high-performance streaming string processing programs as regular gram-
mars with embedded semantic actions, and its compilation to streaming
string transducers with worst-case linear-time performance. Its underly-
ing theory is based on transducer decomposition into oracle and action
machines, and a finite-state specialization of the streaming parsing algo-
rithm presented in the first part. In the second part we also develop a
new linear-time streaming parsing algorithm for parsing expression gram-
mars (PEG) which generalizes the regular grammars of Kleenex. The
algorithm is based on a bottom-up tabulation algorithm reformulated
using least fixed points and evaluated using an instance of the chaotic
iteration scheme by Cousot and Cousot.
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Resumé

I denne afhandling beskæftiger vi os med parsing med regulære
udtryk samt anvendelsen af grammatiske specifikationer til syntese af
hurtige, strømmende programmer til strengprocessering.

I første del udvikler vi to algoritmer til parsing med regulære udtryk
i lineær tid, og med grådig afgørelse af flertydigheder i stil med Perl. Den
første algoritme består af to faser, der afvikles på en semi-strømmende
facon med konstant størrelse arbejdslager, samt et ekstra båndlager der
henholdsvis skrives og læses af hver af de to faser. Den anden algoritme
består af en enkelt fase og er optimalt strømmende i den forstand, at
den udskriver så meget af parse-træet, som det er semantisk muligt ud
fra det præfix af inddata, der på det givne tidspunkt er blevet indlæst.
Algoritmen falder tilbage til buffering af så mange inputsymboler, som
det er nødvendigt for at kunne afgøre næste valg. Optimalitet opnås ved
hjælp af en PSPACE-fuldstændig præanalyse af det regulære udtryk.

I anden del præsenterer vi Kleenex, et sprog til at udtrykke højtyd-
ende, strømmende strengprocesseringsprogrammer som regulære gram-
matikker med indlejrede semantiske handlinger, samt dets oversættelse
til streaming string transducers med worst-case lineær tids ydelse. Den
underliggende teori er baseret på dekomponering af transducere i orakel-
og handlingsmaskiner, samt en specialisering af den strømmende par-
singalgoritme fra den første del som en endelig tilstandsmaskine. I anden
del udvikler vi også en ny lineær tids, strømmende parsing algoritme til
parsing expression grammars (PEG) der generaliserer de regulære gram-
matikker fra Kleenex. Algoritmen er baseret på en bottom-up tabelop-
stillingsalgoritme, der reformuleres ved brug af mindste fikspunkter, og
som beregnes ved hjælp af en instans af Cousot og Cousots chaotic itera-
tion.
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Chapter 1

Introduction

Programmers need to make several trade-offs when writing software. Most
important, the software has to be correct while at the same time being able
to handle all reasonably expected inputs and usage scenarios. In addition,
the underlying implementation should be as simple as possible so that it can
be maintained and adjusted without major risks of introducing errors. Fur-
thermore, the software should also be efficient in the sense that requests are
answered within a reasonable time frame, and there should be no way to bring
the software to use excessive amounts of time and space, either by an adver-
sary or by accident.

In this dissertation, we will focus on programs that process data in its sim-
plest form: strings of symbols. In practice, programs of this kind can be found
performing a variety of tasks including processing of user input, decoding of
data formats and protocols, automated word processing, and searching over
large amounts of sequential data, from log files and source code to sequenced
DNA. The one task all programs have in common is the task of deducing the
underlying structure of the data in order to be able to process it in a mean-
ingful way. This task can be quite difficult to tackle in itself, and is not made
easier by virtue of having to take into account the trade-offs mentioned earlier.
There is therefore a need for general solutions and tools that can help over-
come these challenges, thereby reducing the time and risk associated with
software development.

Any general solution will also have to make trade-offs, so we should not
expect a single approach to be able to solve all of our problems once and for
all. In this dissertation, we will approach the problem from the perspective of
automata theory and formal languages, which already have deep roots in the
theoretical and practical aspects of parsing. It is the ultimate goal to provide
a new set of methods based on solid foundations which can be used to build
string-processing programs with strong performance guarantees, while still
being flexible and expressive enough to not increase development costs.

The narrative of this dissertation can roughly be divided into two parts.

1



2 CHAPTER 1. INTRODUCTION

Regular Expression Based Parsing

The first part will be concerned with regular expressions, an algebraic formal-
ism with a well-understood theory that is commonly used to express patterns
of strings. Their conciseness and attractive computational properties have
made them popular as a language for expressing string search and input val-
idation programs. Since we rarely validate an input string without the in-
tention of using it, most practical regular expression implementations also
provide facilities for breaking up the string into parts based on the specified
pattern, a process also known as parsing. However, the classical theory does
not account for the issues that are normally associated with parsing, and as a
result these data extraction facilities have been built as ad-hoc extensions on
top of implementations of the classical interpretation of regular expressions
as pure string patterns. This approach has missed some opportunities for
greater expressivity, and has also resulted in the loss of the attractive perfor-
mance guarantees that were associated with regular expressions in the first
place.

We take a different approach, and work from a generalized theory of reg-
ular expressions that take parsing into account. From this perspective we
find new algorithmic methods for solving the regular expression parsing prob-
lem: Given a regular expression and an input string, what is its associated
parse tree?

Grammar-Based Stream Processing

In the second part we focus on formalisms for specifying string processing
programs which operate based on the syntactic structure of their inputs. Pro-
grams of this kind perform a range of useful tasks, including advanced text
substitution, filtering and formatting of logging data, as well as implementa-
tions of data exchange formats. As data of this kind is often generated at a
high rate, string processing programs have to operate in a streaming fashion
where they only store a small part of the input string in memory at any time.
Writing and maintaining software which keeps track of the technical details
of streaming while also dealing with the complexities of a data format is a
challenging task.

We propose the use of syntax-directed translation schemes as a suitable for-
malism for expressing such programs. The formalism based on existing for-
malisms for describing string patterns, such as regular expressions, extended
with embedded semantic actions—arbitrary program fragments which are exe-
cuted based on how a given input string is matched by the specified pattern.
We study two different formalisms, and methods for efficiently running spec-
ifications written in them in a streaming fashion. The first of these have been
used in the design and implementation of the high-performance streaming
string processing language Kleenex.



Chapter 2

Regular Expression Based
Parsing

This chapter is concerned with the problem of parsing using regular expres-
sions, which are mathematical expressions for denoting sets of strings, first
introduced by Kleene to describe sets of events in mathematical models of
the nervous system [51]. After their practical application for text search was
pointed out by Thompson [94], regular expressions became a popular lan-
guage for specifying complex text search patterns. They now enjoy appli-
cations in many diverse areas, including text editing [77], querying of data
formats [22], detection of code duplication [86] and searching in sequenced
DNA data [62]. Their popularity primarily stems from their simplicity, con-
ciseness, and attractive theoretical properties. Most important, a computer
program only has to spend time proportional to the length of a string in or-
der to decide if it belongs to the set described by a given regular expression,
guaranteeing that a search query will return within reasonable time.

Over the years, implementations have moved away from these theoretical
foundations, and the nomenclature “regex” is now informally used to refer to
the implemented versions of the original “regular expressions”, with which
they have little in common apart from syntax. Operators were added in order
to increase the number of patterns that could be expressed, notably backrefer-
ences and recursion, and mechanisms for limited parsing in the form of captur-
ing groups were introduced to accommodate advanced text substitution. Most
of these extensions seem to have been added based on what was possible to
implement as extensions to the existing search algorithms, and as a result the
theoretical properties were lost: Matching a string against a regex can take
exponential time in the length of the input, and it is not uncommon to see
performance bugs due to seemingly innocent-looking regexes that suddenly
trigger this behavior for rare pathological inputs1,2.

1http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
2http://davidvgalbraith.com/how-i-fixed-atom/

3
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4 CHAPTER 2. REGULAR EXPRESSION BASED PARSING

We will take a different approach, and work from a more general theory of
regular expressions which takes the issues related to parsing into account. By
changing our perspective on the problem, we reveal new and efficient algo-
rithms for solving the core problem related to the use of regular expressions
for data extraction. Furthermore, we will see that the generalization offers an
increase in expressivity, enabling new and interesting applications of regular
expressions.

We give a semi-formal exposition of the theory of regular expressions in
Section 2.1, including its relation to finite automata. In Section 2.2, we show
how popular “regex” software packages have extended this theory and dis-
cuss the trade-offs. We present the main problem of regular expression based
parsing in Section 2.3, and relate it to a computational model called finite trans-
ducers in Section 2.4. In Section 2.5 we review the current approaches to solv-
ing this problem, and in Section 2.6 we present our contributions. We con-
clude this chapter in Section 2.7.

2.1 Regular Expressions In Theory
A regular expression (RE) is a formal mathematical expression using a limited
set of operators. Their purpose is to serve as concise specifications of sets of
strings with certain desirable properties.

It is assumed that some finite set of symbols Σ, also called the alphabet, is
given. The alphabet specifies the valid symbols that may occur in the strings
described by an RE. For example, Σ could be the set of the 256 bytes that can
be represented by 8-bit words, or the full set of Unicode code points—in the
remainder of this chapter we will just assume that Σ is the set of lowercase
letters {a, b, ..., z}. The infinite set of all strings over Σ is written Σ∗, that is

Σ∗ = {ε, a, b, ..., z, aa, ab, ..., az, ..., ba, bb, ..., bz, ...}

and so on, where ε stands for the empty string. Of course, appending the empty
string to another string u results in the same string again: εu = u = uε. We
will generally use letters u, v, w to refer to strings, and will avoid using them
as symbols.

The syntax of REs can be compactly described by a generative grammar:

E ::= a | ϵ | E∗1 | E1E2 | E1 + E2

That is, the simplest REs consist of a single symbol a from Σ or the “unit
expression” ϵ. Smaller REs E1, E2 can be combined to form larger ones by
the “star operator” E∗1 , the “sequence operator” E1E2 or the “sum operator”
E1 + E2. These are listed in increasing order of precedence, i.e. ab∗ + c is
parenthesized as (a(b∗)) + c. Sequence and sum associate to the right, so
E1E2E3 and E1 + E2 + E3 parenthesize as E1(E2E3) and E1 + (E2 + E3), re-
spectively.
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The usual interpretation of REs is as denotations of formal languages, each
of which is a subset of Σ∗. The sets {cnn, bbc}, {a, aa, aaa, ...} and ∅ = {}
are all examples of such, where the last is the degenerate case of the empty
language. In order to define the meaning of REs, we will first need to intro-
duce some operations on languages. Given two languages A and B, we can
combine them into a new language AB formed by concatenating every string
in A with every string in B, or formally:

AB = {uv | u ∈ A, v ∈ B}.

For example, if A = {ab, cd} and B = {e, f}, then AB = {abe, abf, cde, cdf}.
Concatenation can be iterated any number of times for a single language: For
any number n ≥ 0, define

An = AA · · · A︸ ︷︷ ︸
n times

where A0 = {ε} is defined as the language containing just the empty string.
For example, if A = {a, b}, then A3 = {aaa, aab, aba, abb, baa, bab, bba, bbb}.
The last language operation we will need is also the most powerful. For a
language A, write A∗ for the language formed by taking any number of strings
from A and concatenating them. Formally, this is the language

A∗ =
∞∪

n=0

An = A0 ∪ A1 ∪ A2 ∪ ...

This is a quite powerful operation. For example, if we view the alphabet Σ as
a language of single-symbol strings, then Σ∗ is exactly the infinite set of all
strings containing symbols from Σ. For another example:

{ab, c}∗ = {ε, ab, c, abc, cba, abab, cc, abcab, ...}.

Every RE E is a description of a language LJEK which is built using the
operations we have just defined. The mapping from syntax to language oper-
ators should be quite apparent, and is formally defined as follows:

LJaK = {a} LJϵK = {ε}
LJE∗1K = LJE1K∗ LJE1E2K = LJE1KLJE2K

LJE1 + E2K = LJE1K∪ LJE2K
It can be quite instructive to view an RE E as a pattern whose meaning as

such is the set of strings LJEK matched by it. This view also hints to their
practical use for text search. For example, consider the following pattern:

(he+ she)(was+ is)((very)∗ + not)(happy+ hungry+ sad)

Ignoring the issue of word spacing, this matches an infinite number of varia-
tions of sentences of the following kind:
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he was not hungry, she is very happy, she is very very hungry,
she is not sad, he is very very sad, ...

While REs offer a lot of expressive power, there are many languages that
they cannot express. For example, there is no way to specify the language of
all strings of the form

aa · · · a︸ ︷︷ ︸
n times

bb · · · b︸ ︷︷ ︸
n times

that is, strings with the same number of occurrences of as and bs, but with all
as occurring before the bs. Patterns of this kind may occur in practice in the
form of strings of matching parentheses, so surely it would be useful to be able
to express them. However, this restriction of expressive power is deliberate.
In order to see why, we have to look at the computational properties of REs.

Finite Automata

At this point we have established the semantics of REs, and we have illustrated
their power and limitations as a language for constructing string patterns. We
now briefly review a general solution to the recognition problem:

Given an RE E and a string u, is u in the language LJEK?
The limited expressivity of REs turns out to be an advantage when solving
this problem, as it allows every RE to be converted into a particularly simple
type of program called a finite automaton [54].

Automata are usually defined using state diagrams as follows:

0start

1

2a

b
ε

a

c

a

b

The circles are called states, and the numbers within are names identifying
them. The arrows between states are called transitions, and are labeled by ei-
ther a single symbol or the empty string. A single state is a designated starting
state and is marked as such. Each state is either accepting or not accepting, with
accepting states drawn as double circles.
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With every automaton M is associated a set of strings LJMK, in the same
way that every RE is associated with one. However, where the language of an
RE is defined in terms of language operators, the language of an automaton is
defined in terms of a process. A specific set of rules specify how to “run” an
automaton on some string u by keeping track of a number of “pebbles” that
are placed on the states. The rules are as follows:

1. Place a pebble on the starting state and on any state reachable via one
or more ε-transitions.

2. For each symbol in u from left to right:

a) Pick up all pebbles, remembering what states had pebbles on them.
b) For every state that had pebbles on it and has a transition matching

the next symbol, put a pebble on the destination state.
c) Put a pebble on all states that can be reached via one or more ϵ-

transitions from a state with pebbles on it.

If at least one accepting state has pebbles on it when all symbols have
been processed, then u is accepted by the automaton, and we say that u is in
LJMK; otherwise it is rejected. Note that we are not concerned with the number
of pebbles on each state, just that it has a non-zero amount. The following
demonstrates an accepting run of the automaton on the string aabca:

start a a b c a
{0} {2} {2, 0} {1, 0} {0} {2} accept

Our interest in finite automata comes from the fact that this process is very
efficient to implement on a computer, which only has to look at each input
symbol once. Since the set of states with pebbles on them can never be larger
than the total amount of states, it will always take time proportional to the
length of the string to decide whether it is recognized by the automaton or
not.

There is a deep connection between REs and automata, namely that for
every RE E there is an automaton M such that LJEK = LJMK [51]. In other
words, automata provide the recipe for efficiently “running” regular expres-
sions. For an example, consider the RE (a∗b)∗ which has the following asso-
ciated automaton:

1

2 3

4 5

0start 6

a

bε ε ε

ε
ε ε
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Another remarkable fact is that this connection also holds in the other direc-
tion: for every automaton, there is an RE denoting its language. This equiv-
alence with finite automata explains our hesitance towards adding more ex-
pressive power to REs, as they have exactly the amount of power they need
while still enabling us to use efficient techniques based on finite automata to
implement them.

The finite automata presented in this section are also called non-deterministic
finite automata (NFA), due to the fact that there can be more than one state with
pebbles on it when running it. This is done to distinguish them from the spe-
cial case where exactly on state can ever have pebbles on it, in which case
the automaton is called deterministic (DFA). Any NFA can be converted to a
DFA [80], although this may cause the number of states to increase exponen-
tially. On the other hand, running a DFA is often even faster than running
an NFA, so this optimization can pay off when the input size is significantly
larger than the RE itself.

2.2 Regular Expressions In Practice

In this section we briefly review some of the history of regex implementations
and point out the central differences between them and the REs presented in
the previous section. For a more comprehensive account of both the history
and features of regexes, we refer to the book by Friedl [38].

REs were popularized in computing from 1968. Thompson [94] pointed
out the application of text search and implemented them in the editors QED
and ed. This later led to the creation of the specialized UNIX search tool grep,
whose name comes from the ed command g/re/p for RE based searching [38].
Also in 1968, Johnson, Porter, Ackley, Ross [48] applied REs for building lexi-
cal analyzers for programming language compilers.

In 1986 Harry Spencer wrote the first general regex library for incorpora-
tion in other software. This was later adopted and heavily extended by Larry
Wall in his Perl [101] programming language, which became popular for prac-
tical string manipulation tasks, in part due to regexes being built into its syn-
tax. Its popularity eventually led to the notion of “Perl compatible regexes”
(PCRE) for referring to implementations that behaved like Perl’s. PCRE regexes
have now made it into most other popular programming languages, either
built into the language syntax or provided via a library.

There are several important differences between regexes and REs. On the
surface, the syntax is slightly different from that of REs: the RE a(b∗ + c)d∗
would typically be written as the regex a(b*|c)d*, with variations depending
on the exact flavor. In the following we will highlight the notable semantic
differences that separate regex implementations from their theoretical coun-
terparts.
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Capturing Groups

The recognition semantics are extended to matching via the notion of captur-
ing groups which are used to extract information about how a string is matched
by a regex, and not just whether it is in its language or not. For every paren-
thesis in a regex, the implementation will report the position of the substring
that matched the enclosed subexpression. The user can later refer to the sub-
strings matched by capturing groups by using the names \1, \2, ..., and so
on—the groups are numbered from left to right according to their opening
parentheses. The following example shows a how a PCRE implementation
will report matches when given the input aaaabbbb:

a*(aa(bb|bbb))b* a a
\1︷ ︸︸ ︷

a a b b︸︷︷︸
\2

b b

The example illustrates that even though capturing groups seem benign, they
introduce a new problem of ambiguity. The second capturing group could
also have matched the substring bbb, but the left alternative was chosen by the
implementation. This behavior is shared by all PCRE implementations, which
prefer left alternatives over right ones. However, a second popular flavor of
regex specified by the POSIX standard [47] would pick the right alternative
based on a policy which maximizes the lengths of submatches from left to
right. The differences in matching semantics of different regex flavors has
resulted in much confusion among users, with the issue further exacerbated
by the fact that the POSIX regex specification is unnecessarily obscure, leading
to a situation where no two tools claiming to be POSIX actually report the
same results for all inputs [37, 72, 55, 91].

Another limitation of capturing groups is that they do not work well when
combined with the star operator. For example, when the regex (a*b)* is
matched against input abaaab, it is ambiguous whether the implementation
should return ab or aaab for the substring \1. In some usage scenarios, the
user might even want the position of both submatches (e.g. for reading a list
of data items), but that is not possible under the regex matching paradigm.

Backreferences and Backtracking

Capturing groups enable another regex extension called backreferences that al-
low users to write \1, \2, ... to refer back to the substrings matched by captur-
ing groups earlier in the pattern. For example, the regex (a*)b\1 will match
any string of the form

aa · · · a︸ ︷︷ ︸
n times

b aa · · · a︸ ︷︷ ︸
n times

No RE or finite automaton can express such a language. Implementations
with backreferences typically work by using an extended form of automata
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where transitions can mark the beginnings and endings of a capturing groups,
and other transitions can refer back to them. Consider the regex (aa|a)\1a,
which has the following extended automaton:

0start 1

2 3 4

5 6

7 8 9 10
(

ε
a a

ε

ε a ε

) \1 a

We can run it using a strategy called backtracking, which resembles the pebble
strategy from the previous section, but with the restriction that at most one
state can have a pebble on it at any time. When the pebble can move to more
than one state, we choose one arbitrarily and remember the state we came
from in case we need to go back and try another one. If at any point the
pebble cannot move to a new state but more symbols are in the string, then we
backtrack to the last choice point and try the next alternative. This process is
repeated until all input symbols have been consumed and the pebble is on an
accepting state, or until all possible pebble movements have been exhausted.
We write down the position in the input string whenever the pebble crosses
an opening and closing parenthesis. When the pebble tries to transition a
backreference, it uses these positions to check whether the remainder of the
string matches the substring given by the last recorded positions.

For example, on input aaa in the automaton depicted above, the pebble
first moves along the states 0,1,2,3,4,7,8, recording that the group \1 matches
aa. But now the pebble cannot move from 8 to 9, since only a is left, and aa
is needed. It backtracks to the last choice (state 1) and now continues along
states 5,6,7,8, recording that \1 matches a. Since aa remains, the pebble can
now move along states 9 and 10, and the automaton accepts.

This strategy works, and is used in PCRE style regex implementations.
They agree on disambiguation by systematically always trying left alterna-
tives first. For this reason, the PCRE disambiguation policy is also called
greedy or first-match disambiguation. Although backtracking is usually fast
in practice, it has the disadvantage that some regexes and inputs can make
it spend an atrocious amount of time—exponential in the length of the input
string.

As stated in the introduction of this chapter, the exponential time worst
case does occur in practice, and also opens up systems to attacks by adver-
saries who construct input data to deliberately trigger the worst-case behav-
ior of certain regexes. This type of attack, known as regular expression denial-
of-service (REDoS) [79], has motivated a lot of recent research in methods for
identifying vulnerable regexes [50, 89, 13, 81, 102].
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2.3 Regular Expression Based Parsing

After reading the previous sections it should be clear that regex implemen-
tations make trade-offs between expressivity and predictable performance.
These trade-offs are perfectly acceptable for situations like ad-hoc text ma-
nipulation and automation of non-critical tasks, but as we pointed out there
are also scenarios where we need greater matching expressivity (capturing
groups under the star operator) and/or hard performance guarantees (expo-
nential time performance bugs in mission-critical systems). In this section we
address the first issue by presenting a generalization of the language seman-
tics for REs into one of parsing. The goal of formulating a new semantics for
REs is to separate the specification of what we want to solve from its actual im-
plementation, giving us freedom to try out different approaches. The second
issue will then be addressed by finding new ways to implement the parsing
semantics efficiently, which is the main topic of our contributions.

Terms and Types

Before we can define the parsing semantics for REs, we need to introduce the
notions of terms and types.

Terms act as generalizations of strings with extra information about how
they are matched. They can be compactly described by the following genera-
tive grammar:

V ::= a | ε | (V1, V2) | left V1 | right V2 | [V1, V2, ..., Vn]

In other words, symbols a and the empty string ε are the smallest terms. Larger
terms can be build as follows: if V1, V2 are terms, then (V1, V2) is a term; left V1
is a term; and right V2 is a term. Finally, if V1, V2, ..., Vn are terms, then the list
[V1, V2, ..., Vn] is a term. In particular, the empty list [] is a term.

Terms have structure, and can easily be decomposed into smaller parts by
a program. It is instructive to view them as upside-down trees, with the small-
est terms at the bottom. For example, the term V = ((a, ε), left [left a, right b])
has the following tree structure:

(·, ·)

(·, ·)

a ε

right ·

[· · · ]

left ·

a

right ·

b
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This illustrates how terms are merely strings with more structure: by remov-
ing anything above the symbols at the bottom, we are left with the string
aεab = aab. This is also called the flattening of V, and we write |V| = aab.

We write TermΣ to refer to the infinite set of all terms over the alphabet
Σ. We will call subsets T of terms for types, analogously to the way we called
subsets of Σ∗ languages in the previous sections. We also need to define anal-
ogous operations for concatenation, union and star.

Given two types T and U, write T×U for their product which is the set of
all pairs whose first and second components are from T and U, respectively.
Formally, T ×U = {(V1, V2) | V1 ∈ T, V2 ∈ U}. For example,

{left a, right b} × {[], [a], [a, a], ...}
= {(left a, []), (right b, []), (left a, [a]), (right b, [a]), ...}

The product operation is analogous to the concatenation operation AB for
languages, but with the difference that it reveals whenever there are multiple
ways of obtaining the same string. Consider the following example, which
shows language concatenation in the top and type product in the bottom:

{a, ab}{bc, c} = {abc, ac, abbc}
{a, (a, b)} × {(b, c), c} = {(a, (b, c)), (a, c), ((a, b), (b, c)), ((a, b), c)}

The string abc can be formed either by picking a from the left language and
bc from the right; or by picking ab and then c. The two are indistinguishable,
so the result is a language with three strings instead of four. For products, the
two cases can be distinguished, and we obtain a four-element type.

Given two types T and U, write T + U for their sum which is the set all
terms of the form left V1 and right V2, where V1 is in T and V2 is in U. Formally,
T + U = {left V1 | V1 ∈ T} ∪ {right V2 | V2 ∈ U}. For example,

{left a, right b}+ {[], [a], [a, a], ...}
= {left (left a), left (right b), right [], right [a], right [a, a], ...}

The sum operation is analogous to the union operation A ∪ B for languages,
but with the difference that it records from which operand a given element
comes from, ensuring that no two elements are conflated. Consider the fol-
lowing example, which shows language union on top and type sum in the
bottom:

{a, ab} ∪ {ab, ac} = {a, ab, ac}
{a, (a, b)}+ {(a, b), (a, c)} = {left a, left (a, b), right (a, b), right (a, c)}

The string ab is in both languages, but the union only contains the string once,
resulting in a three-element language. For sums, the elements are tagged by
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the side they came from and are thus not conflated, resulting in a four-element
type.

Finally, if T is a type, then List(T) is the set of all lists whose elements are
from T. Formally, List(T) = {[V1, V2, ..., Vn] | n ≥ 0, for all i ≤ n. Vi ∈ T}. For
example, if T is as in the previous examples, then

List(T) = {[], [left a], [right b], [left a, left a], [left a, right b], [right b, left a], ...}

The list operation is analogous to the star operator for languages. The differ-
ence between the two is similar to the difference between concatenation and
product.

Languages can be understood as string patterns. Types are also a form
of string patterns, but where we also care about how a given string is in the
pattern—this is explained by the terms that flatten to the string. The corre-
spondence between languages and types is summarized in the table below:

Strings & Languages Terms & Types
All strings Σ∗ All terms TermΣ
Languages A ⊆ Σ∗ Types T ⊆ TΣ
Concatenation AB Product T ×U
Union A ∪ B Sum T + U
Star A∗ List List(T)

Regular Expressions as Types

We are now ready to define a parsing semantics for REs. Using the framework
of terms and types that we have set up in the previous, we associate every RE
E with a type T JEK as follows:

T JaK = {a} T JϵK = {ε}
T JE∗1K = List(T JE1K) T JE1E2K = T JE1K× T JE2K

T JE1 + E2K = T JE1K+ T JE2K
There is a close connection between the traditional language interpreta-

tion and the type interpretation of REs. Namely, for every RE E, if u is a
string in its language LJEK, then there is a term V in its type T JEK with flat-
tening u, that is |V| = u. Vice versa, for any term T in T JEK, its flattening |V|
can also be found in LJEK.

The benefit of this change of perspective is that the type interpretation of
REs accounts for ambiguity, whereas this aspect is hidden in the language
interpretation and only arises as a property of the concrete implementations.
For example, consider the two REs a(a+ b)∗ and (ab+ a)(a+ b)∗. They have
the same languages, LJa(a+ b)∗K = LJ(ab+ a)(a+ b)∗K, but not the same
types:

T Ja(a+ b)∗K ̸= T J(ab+ a)(a+ b)∗K.
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The type interpretation captures the fact that there is only one term with flat-
tening aba in the type of the first RE, while there are two such terms in the
type of the second, as illustrated in Figure 2.1.

(·, ·)

a

[· · · ]

right ·

b

left ·

a

(·, ·)

left ·

(·, ·)

a b

[· · · ]

left ·

a

(·, ·)

right ·

a

[· · · ]

right ·

b

left ·

a

(a, [right b︸ ︷︷ ︸
\1

, left a︸ ︷︷ ︸
\1

]) (left (a, b)︸ ︷︷ ︸
\1

, [left a︸ ︷︷ ︸
\2

]) (right a︸ ︷︷ ︸
\1

, [right b︸ ︷︷ ︸
\2

, left a︸ ︷︷ ︸
\2

])

Figure 2.1: Terms with flattening aba for REs a(a+ b)∗ and (ab+ a)(a+ b)∗.

A term fully “explains” how its flattened string can be parsed according to
the given RE, including information pertaining to the star operator. As such,
we will therefore also refer to terms as parse trees. The information contained
in parse trees transcends the information provided by capturing groups in a
regex implementation. As the example illustrates, the groups \1 in the first
RE and \2 in the second cannot be assigned unique substrings since they both
occur under a star operator, whereas the parse tree just contains a list of all
the possible assignments.

The recognition problem introduced in Section 2.1 can now be generalized
to the parsing problem:

Given an RE E and an input string u, is there a parse tree V in T JEK
such that |V| = u?

Unlike the recognition problem, the parsing problem has more than one solu-
tion due to the possibility of ambiguous choices for the parse tree V. Different
strategies for picking such a parse tree are analogous to the solutions to the dis-
ambiguation problem for regex matching, and it is possible to give definitions
that are compatible with both PCRE [39] and POSIX [91] disambiguation.

2.4 Parsing as Transduction

The finite automata used as the computational model for the language inter-
pretation of REs are not expressive enough for the type interpretation. Since
a finite automaton can only ever accept or reject an input, it does not support
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the construction of a parse tree. There is, however, another model called finite
transducers [15, 68] which can. In order to connect the type interpretation to
this machine model, we need to first introduce the concept of bit-coding [70].

Bit-Coding

Bit-coding can be seen as a way of writing down a parse tree for an RE as a flat
string, but in a way such that the parse tree can easily be recovered again. The
coding scheme is based on the observation that if an RE is of the form E1 + E2,
then any of its parse trees must be of one of the two forms left V1 or right V2.
A single number, say 0 or 1, can be used to specify which of the respective
shapes the parse tree has, and we are left with the problem of finding a code
for one of the subtrees V1 or V2. Similarly, every parse tree for an RE E∗1 is a list,
and we can again use the symbols 0 and 1 to indicate whether the list is non-
empty or empty, respectively. In the latter case there is only one possible list
(the empty list), and in the first case, we are left with the problem of finding
codes for the first element and the rest of the list. For a product E1E2, every
parse tree is of the form (V1, V2), so all we have to do is find codes for the two
subtrees. Similarly, for the remaining constructs and a, ϵ there is only one
possible parse tree, so no coding is needed to specify which one it is.

Formally, for any parse tree V, we define code(V) as a string of bits, that
is a string in {0, 1}∗, as follows:

code(a) = ε

code(ε) = ε

code([V1, V2, ..., Vn]) = 0 code(V1) 0 code(V2) ... 0 code(Vn) 1
code((V1, V2)) = code(V1)code(V2)

code(left V1) = 0 code(V1)

code(right V2) = 1 code(V2)

For example, the term (right a, [right b, left a]) which is a parse tree for
(ab+ a)(a+ b)∗ and depicted as the third tree in Figure 2.1 has the following
bit-code:

code((right a, [right b, left a])) = code(right a) code([right b, left a])
= 1 code([right b, left a])
= 1 0code(right b) 0code(left a) 1
= 1 01 00 1

A code can easily be decoded again to obtain the original parse tree. That
is, for every RE E there is also a function decodeE which takes a bit-code
and returns the parse tree that we started out with. In other words, we have
decodeE(code(V)) = V. We will not need the definition of decoding for this
presentation, and refer to Nielsen and Henglein [70] for details.
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Transductions

By treating parse trees as codes, we can now connect the type interpretation of
REs with another type of finite automata called finite transducers [15]. These
are finite automata extended such that every transition is now labeled by a
pair a/c, where a is an input label and c is an output label. Input labels are
symbols from Σ as before, or the empty string ε. Output labels are strings
over some output alphabet Γ. A string u is accepted by a transducer if there
is a path from the initial to the final state such that the concatenation of all
the input labels along the path equals u. Furthermore, every such path is
associated with a corresponding output string obtained by concatenating all
the output labels in the same way. This justifies the name transducers, as they
model a simple form of string translators. When transducers are used for
parsing, we will have Γ = {0, 1} as we will be translating input strings to
bit-codes.

It can be shown that every RE has a transducer which accepts the strings in
its language and furthermore outputs all the bit-codes of the corresponding
parse trees with the same flattening [70]. For an example, see the transducer
for the RE (ab + a)(a + b)∗ in Figure 2.2. It can be seen that this machine
generates two codes for the input aba, corresponding to the two parse trees
on the right in Figure 2.1.

1start
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ε/0

ε/1

a/ε

a/ε

b/ε

ε/1

ε/0
ε/0

ε/1

a/ε

b/ε

Figure 2.2: A bit-coded parsing transducer for the RE (ab+ a)(a+ b)∗.

Running a non-deterministic transducer is not as straightforward as using
the pebble method for automata, since every pebble is now associated with
the output string generated along its path. Since there can be an exponential
number of different ways to get to a particular state, a pebble strategy will
have to limit the number of active pebbles on each state to at most one in
order to ensure linear running time. This corresponds to disambiguation of
parses when more than one parse of a string is possible.

Bit-coded parsing transducers provide another perspective on the parsing
problem which now becomes:
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Given an RE E and a string u, is there an accepting path with input u
and output v in the parsing transducer?

2.5 Recognition, Matching and Parsing Techniques
We have discussed three different problems pertaining to REs: recognition,
matching and parsing. The first is formulated in terms of the language se-
mantics of REs, the second arises in concrete implementations and the third is
formulated in terms of the type interpretation. The answers to each problem
provide increasing amounts of information, as summarized in the following
table:

Problem Solution
Recognition Accept/Reject
Matching Accept/Reject and disambiguated captures
Parsing Accept/Reject and disambiguated parse tree

In this section we review the work that has been done on techniques for solv-
ing the above.

Recognition and Matching

For pure recognition, the NFA (“multi-pebble”) and DFA (“single-pebble”)
based techniques described in this chapter are well-known [54, 1]. The con-
struction of NFAs from REs is generally attributed to Thompson [94], and
McNaughton and Yamada [64]. Instead of automata, one can also use Brzo-
zowski [20] or Antimirov [9] derivatives. These are syntactic operators on REs
which correspond to removing a single letter from all strings in the underly-
ing language. The recognition problem can then be reduced to taking iterated
derivatives and checking whether the resulting RE contains the empty string.
Implementations of regex matching not based on automata or derivatives are
generally based on backtracking which has already been covered earlier in
this chapter.

The first implementation of regex matching appeared in Pike’s sam edi-
tor [77]. The method was not based on backtracking, but tracked the locations
of capturing groups during running of the NFA. According to Cox [24], Pike
did not know that his technique was new and thus did not claim it as such.
Laurikari [57] later rediscovered it and formalized it using an extension of
NFAs with tags for tracking captures, and also gave a method for converting
tagged NFAs to tagged DFAs.

While NFA based approaches ensure linear time, they are not as fast as
DFAs, which on the other hand can get very big for certain REs. Cox [25]
describes a way of constructing DFAs on the fly while running the NFA. The
method obtains the performance benefits of DFAs without risking an expo-
nential blowup of the number of states during conversion, and gracefully



18 CHAPTER 2. REGULAR EXPRESSION BASED PARSING

falls back to using only the NFA when too many DFA states are encountered.
It is implemented in the RE2 library [26, 93] which also supports matching
via capturing groups, although the fast DFA technique supports at most one
group. Other approaches to augmenting NFAs with information about cap-
turing groups exist [32, 43], with a particularly elegant one due to Fischer,
Huch and Wilke [32], implemented in the Haskell [46] programming lan-
guage. It avoids explicitly constructing an NFA by treating the nodes in the
RE syntax tree as states in a Glushkov [40] automaton.

It is also possible to perform RE matching without the use of finite au-
tomata by applying RE derivatives. This is a popular approach for imple-
mentations in functional programming languages where the representation
of finite automata can be cumbersome [75]. Sulzmann and Lu [90] give an RE
matching algorithm by extending Brzozowski and Antimirov derivatives to
keep track of partially matched capturing groups added to the syntax of REs,
and they give variants of the method for both POSIX and PCRE disambigua-
tion.

Parsing

Via General Parsing Techniques

The RE formalism is subsumed by more general language formalisms such
as context-free grammars (CFG) which are capable of expressing non-regular
languages such as anbn. Methods for parsing with CFGs can therefore also be
applied to solve the RE parsing problem, but due to their generality they can-
not take advantage of the limited expressivity. The literature on CFG parsing
algorithms is vast [42], but they can generally be divided into two categories:
deterministic and general algorithms.

General CFG parsing algorithms include CYK [103], Earley [29] and GLR [96],
and they can parse all CFGs regardless of ambiguity, including REs. The re-
sult is often a set of all possible parse trees, with disambiguation deferred
to the consumer of the algorithm. The disadvantage of using general CFG
algorithms for RE parsing is first of all that the worst-case running time is
non-linear, a situation which is theoretically impossible to improve [58]. Fur-
thermore, we are rarely interested in the set of all parse trees and would rather
prefer disambiguation to be built in.

Deterministic CFG parsing algorithms include LR(k) [52] and LL(k) [60],
and they guarantee linear time complexity at the expense of only working for
a strict subset of CFGs which are deterministic (choices are resolved by look-
ing at most k symbols ahead in the input) relative to the strategy employed
by the respective algorithms. The result is always a single parse tree, as am-
biguity is ruled out by the determinism restriction. This unfortunately also
rules out all ambiguous REs, so deterministic CFG parsing will only work for
unambiguous RE subclasses such as one-unambiguous REs [19].
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Ostrand, Paull and Wcyuker [73] restrict themselves to regular CFGs and
devise an algorithm for deciding whether such a grammar is FL(k) for some
k, where FL(k) means that at most k next symbols have to be examined in
order to resolve any choice. They give two linear time algorithms which can
parse any FL(k) grammar while producing the parse tree on the fly. In the
case where unbounded lookahead is required, the latter algorithm still works
but may use non-linear time.

Another general language formalism is Ford’s [36] parsing expression gram-
mars (PEG), which can also express any RE [66]. Contrary to CFG parsing,
PEG parsing can actually be done in linear time [2, 35] and always yields a
unique parse tree consistent with the disambiguation policy of PCRE. The
known linear time parsing algorithms use quite a lot of memory, however,
which is again a consequence of the generality of PEGs.

Pure RE Parsing

Most automata-based RE parsing algorithms operate in two separate passes,
where the first pass runs over the input string and the second runs over an
auxiliary data structure produced during the first pass. We will classify such
methods as being either “forwards-backwards” or “backwards-forwards” de-
pending on the direction of these runs.

Kearns [49] devised the first known pure RE parsing algorithm which op-
erates by running the NFA in reverse while journaling the sets of active states
in each step. If the run succeeds then the journal is traversed again in order
to construct the parse tree. It is thus a backwards-forwards algorithm.

Dubé and Feeley [28] gave the first method based on NFAs whose tran-
sitions are annotated with actions for constructing parse trees. Under this
view, NFA runs also produce a parse tree whenever the machine accepts, but
since many paths are explored at once in the forward simulation, the problem
becomes finding the one that lead to acceptance. Their forwards-backwards
algorithm builds a DFA without actions and runs it while journaling the se-
quence of visited states. If the DFA accepts, the journal can be traversed again
to reconstruct a single NFA path using a precomputed lookup table. By exe-
cuting the actions on this path, the corresponding parse tree is obtained.

Neither of the methods by Kearns or Dubé and Feeley are concerned with
implementing a specific formal disambiguation policy. Kearns implements a
policy which seems to resemble that of PCRE, but he never proves them equiv-
alent. Dubé and Feeley encode disambiguation in the lookup table which is
not uniquely characterized, and so disambiguation is left to the implementa-
tion. This situation was resolved by Frisch and Cardelli [39] who indepen-
dently rediscovered the backwards-forwards method of Kearns, but also for-
malized PCRE disambiguation in terms of parse trees and proves that the
method actually implements this policy. They also gave a satisfying solution
to the problem of dealing with so-called problematic REs which cause naïve
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backtracking implementations to run forever, and thus also pose a problem
for a formal account of PCRE disambiguation. Their solution also handles
problematic REs, but in a way which gives the same results as backtracking
search in all cases where it terminates.

The formalization by Frisch and Cardelli seems to be the first mention of
the type interpretation of REs. This interpretation is further investigated by
Henglein and Nielsen [44] who use it to give a sound and complete reason-
ing system for proving RE containment (is the language of one RE contained
in another?). Their system has a computational interpretation as coercions
of parse trees and also admits an encoding of other reasoning systems for
RE containment [85, 53, 41], equipping them with a computational interpre-
tation as well. They also introduce the bit-coding of parse trees described in
Section 2.3. Nielsen and Henglein [70] show that the forwards-backwards
method of Dubé and Feeley and the backwards-forwards method of Frisch
and Cardelli can both be modified to emit bit-codes instead of materializing
the parse trees.

Parsing with the POSIX “leftmost-longest” disambiguation policy is sig-
nificantly more difficult than parsing with the PCRE “greedy” policy. Okui
and Suzuki [71, 72] give the first forwards-backwards algorithm for disam-
biguated RE parsing using POSIX disambiguation. It runs in linear time, but
with a constant that is quadratic in the size of the RE. The correctness proof
of the algorithm is also significantly more intricate than the previous meth-
ods discussed here, which confirms the impression that the POSIX policy is
in fact more difficult to implement than PCRE, at least for automata based
techniques. Sulzmann and Lu [91] formulate POSIX disambiguation as an
ordering relation on parse trees and give an alternative forwards-backwards
parsing algorithm based on Brzozowski [20] derivatives, as well as a forwards
parsing algorithm using only a single pass which produces a bit-code repre-
sentation of the parse tree.

Borsotti, Breveglieri, Reghizzi and Morzenti [16, 17] recently gave a forwards-
backwards parser based on an extension of the Berry-Sethi [14] algorithm for
constructing DFAs from REs. The parser can be configured for both POSIX
and PCRE disambiguation by only changing the choices made in the second
backwards pass, giving a common framework which can accommodate both
policies.

Connection to Transducers

It is remarkable that every automaton based method for RE parsing seems to
operate in two passes. By applying the interpretation of parsing as transduc-
tion from Section 2.4, it seems that one should be able to obtain a single-pass
parser by turning the non-deterministic parsing transducer into a determin-
istic one, just as an NFA can be converted to an equivalent DFA. This is how-
ever not possible in general, as non-deterministic transducers are strictly more
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powerful than deterministic ones [15, ex. IV.2.3]. This implies that any deter-
ministic RE parsing machine must be more powerful than finite transducers.

One the other hand, an old result by Elgot and Mezei [30][15, Theorem
5.2] says that every unambiguous transducer can be run in two passes, where
each pass is modeled by a deterministic transducer. The first pass runs in
the forwards direction, producing an auxiliary string over an intermediate
alphabet, and the second pass runs in the opposite direction over this string to
produce the reversed output. This is exactly the forwards-backwards model
employed by the automata based parsing methods, which can all be seen as
rediscoveries of this old result.

Disambiguation Policies

Since most practical REs are ambiguous, any method for RE matching or pars-
ing must employ a disambiguation policy, which furthermore must have a
semantics that is transparent to the user. Defining a disambiguation policy
which is both efficient to implement and easy to comprehend is not an easy
task. The formal definitions by Vansummeren [97] of various common disam-
biguation policies, including those employed in PCRE and POSIX, provide a
good comparison of their different qualities.

Myers, Oliva and Guimaraes [69] argue that the PCRE and POSIX disam-
biguation policies are not intuitive, since they are inherently tied to the struc-
ture of the underlying NFA instead of more meaningful semantic criteria such
as “maximize the total length of substrings captured in all capturing groups”.
They give a method which in an NFA can select the path that corresponds
to either maximizing the length of all captured substrings, or the individual
lengths of the leftmost ones.

Although semantic policies are ostensibly more intuitive, they seem to
have been largely ignored in most work on RE matching and parsing. Apart
from the difficulty of obtaining efficient implementations (Myers’ method
runs in linear time, but with a large constant overhead), a possible hindrance
to adoption could be that most users have familiarized themselves with REs
through existing PCRE or POSIX tools, and so this is the behavior that they
have come to expect.

2.6 Our Contributions

The first two papers of this dissertation are concerned with regular expres-
sion based parsing using a PCRE “greedy” disambiguation policy. Our ap-
proaches are both based on finite automata annotated with bit-codes à la
Nielsen and Henglein [70] and offer, respectively, improved memory and
time usage by lowered constant factors compared to existing methods, as well
as a new streaming execution model for parsing.
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In Paper A we present a new algorithm for RE parsing which operates in
two passes similar to the forwards-backwards algorithms mentioned in the
previous section, producing a reversed bit-code representation of the greedy
parse tree in the second pass. The first pass runs the NFA in the forwards
direction while maintaining an ordered list of active states instead of a set,
where the ordering of states in the list denote their ranking according to the
disambiguation policy. In each step of the forward run we save k bits of infor-
mation in a log, where k < 1

3 m and m is the number of states in the NFA. In
the second pass the log is traversed in opposite order in order to reconstruct
the greedy parse tree. Our algorithm is a variant of the method of Dubé and
Feeley [28] with disambiguation, and using less storage for the log—we only
save k bits per input character instead of the full set of active states which re-
quires m bits. We also avoid having to build a DFA and thus avoid the risk of
an exponential number of states. We compare the performance of a prototype
C implementation with RE2 [26], Tcl [74], Perl [101], GNU grep as well as the
implementations by Nielsen and Henglein [70] of the methods of Dubé and
Feeley [28] and Frisch and Cardelli [39]. It performs well in practice, and is
surprisingly competitive with tools that only perform matching such as RE2
and grep.

Paper B takes a new approach and presents a linear time parsing algorithm
which also performs bit-coded PCRE disambiguated parsing, but using only a
single forward pass. Furthermore, the parse is produced in an optimally stream-
ing fashion—bits of the output is produced as early as is semtically possible,
sometimes even before the corresponding input symbols have been seen. For
REs where an unbounded amount of symbols need to be consumed in order to
resolve a choice, such as the RE a∗b+ a∗c, the algorithm automatically adapts
to buffering as many as as needed, and immediately outputs the bit-code as
soon as a b or c symbol is encountered. In order to obtain optimal streaming a
PSPACE-hard analysis is required, adding a worst-case O(2m log m) preprocess-
ing phase to the algorithm, although this must only be done once for the RE
and is independent of the input. The main idea of the method is to maintain a
path tree from the initial state to all states that can be reached by reading the in-
put read so far, where a branching node in the tree represents the latest point
at which two paths diverge. The longest unary branch from the root of the
tree thus represents the path prefix that must be followed by all viable paths
reading a completion of the input seen so far. The path tree model was also
used by Ostrand, Paull and Weyuker [73] in their FL(k) parser, albeit without
support for linear-time parsing with unbounded lookahead and with a more
primitive condition for resolving choices.
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2.7 Conclusions and Perspectives
We will hope that by the end of reading this chapter, it has become clear that
the area of regular expressions still contains interesting problems despite their
well-understood language theory and long list of practical applications. By
taking a step back to properly identify the core problem that is being solved
in practical regex tools, namely parsing, we obtain a new perspective from
which new and interesting solutions can be uncovered.

We present two new methods for regular expression based parsing. The
first improves on previous methods, while the second appears to be the first
streaming parsing algorithm for unrestricted regular expressions, and both
methods follow a simple disambiguation policy consistent with that found
in popular regex implementations such as Perl’s. Our work paves the road
for new tools with stronger guarantees and greater expressivity than current
solutions, as well as new and interesting application areas. Furthermore, a
connection is revealed between regular expression based parsing and finite-
state transductions.

It would be a mistake to claim that our methods will replace all existing
applications of regular expressions for search, extraction and manipulation
of data. Existing tools are also appreciated for the features which we delib-
erately choose not to support, and there continue to be problem areas where
the resulting trade-offs are acceptable. On the other hand, the two-pass and
streaming regular expression parsing methods offer alternatives for those ar-
eas where the performance guarantee or increased expressivity is needed.

Our focus has mainly been on the theoretical aspects of regular expres-
sion parsing and little on practical applications, of which we believe there are
many. Possible applications include parsing of data formats, streaming proto-
col implementation, advanced text editing and lexical analysis with maximal
munch [83].

In order to enable any application, a considerable amount of effort has to
be invested in tools and integration, including software libraries, command-
line tools, programming language integration or the design of domain-specific
languages. The development of a compiler for the latter is one of the topics
of the next chapter, in which we develop a grammar-based programming lan-
guage for high-performance streaming string processing, based on the stream-
ing parsing algorithm presented in Paper B.





Chapter 3

Grammar Based Stream
Processing

In this chapter we will consider two formalisms, regular grammars and pars-
ing expression grammars, as foundations for specifications of string processing
programs. It is our goal to be able to turn such specifications into efficient
streaming programs which execute in time proportional to the length of the
input string. “Streaming” in this context means that the resulting programs
do not need access to the full input string at any time, but instead operate in
a single pass from left to right, generating parts of the final result as they go
along. Programs of this kind can be used to perform a range of useful tasks, in-
cluding advanced text substitution, streaming filtering of log files, formatting
of data to human-readable form, lexical analysis of programming languages,
et cetera.

We first observe that the compact nature of REs cause large specifications
to become unwieldy and hard to comprehend. A formalism that scales bet-
ter is Chomsky’s [21, 1] context-free grammars (CFG) for specifying linguistic
structure using a set of production rules. CFGs have more expressive power
than REs, so in order to use them as a replacement of the latter, a syntactic
test must be used to discard those that use non-regular features. The regu-
lar CFGs have a natural notion of parse trees which is compatible with the
transducer based view of RE parsing using greedy disambiguation.

In order to use regular CFGs as specifications of programs, we assign a se-
mantics to the parse trees by translating every tree into a sequence of program
statements to be executed. This type of specification is called a syntax-directed
translation scheme (SDT) [59], and is obtained by allowing CFGs to contain pro-
gram fragments, also called semantic actions, embedded within productions.
The actions then show up in the parse trees which can be flattened to remove
all structure except the sequence of program statements to be executed. This
is the first formalism that will be considered by this chapter, and the goal is
to apply the streaming RE parsing technique of Paper B.

25
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The restriction to regular languages somewhat limit the possible applica-
tions, as it precludes the specification of programs that need to match paren-
theses or otherwise parse recursive language structures. For this purpose
we want to base our program specifications on a more expressive formalism,
but without giving up the strong performance guarantees provided by lin-
ear time parsing. A candidate for such as formalism is Ford’s [36] parsing ex-
pressing grammars (PEG) for specifying recursive descent parses with limited
backtracking. Every regular CFG parsed using greedy disambiguation corre-
sponds to its interpretation as a PEG, but PEGs can additionally also express
recursive parsing rules. This is the second formalism to be considered, and
the challenge then becomes to generalize the streaming RE parsing methods
to also apply to PEGs.

The rest of the chapter is structured as follows. We define context-free
grammars in Section 3.1, and show how the regular subclass allows for a com-
pact representation of non-deterministic finite automata. In Section 3.2 we
describe syntax-directed translation schemes and give a few examples. In
Section 3.3 we introduce parsing expression grammars as a generalization of
regular translation schemes with greedy disambiguation. In Section 3.4, we
discuss formalisms found in the literature for the specification of string pro-
cessing programs and their evaluation on commodity hardware. We present
our own contributions in Section 3.5, and offer our conclusions and perspec-
tives for further work in Section 3.6.

3.1 Context-Free Grammars

REs are not a particularly compact way of specifying regular languages. Al-
though REs and finite automata have the same expressive power, there are
regular language whose smallest RE description is quadratically bigger than
equivalent descriptions using DFAs [31, Theorem 23]. Furthermore, since the
RE formalism does not include a systematic way of breaking up large REs into
more manageable parts, they quickly become unwieldy and hard to compre-
hend for users. In this section we consider an alternative.

The context-free grammars (CFGs) introduced by Chomsky [21] is a formal-
ism for systematically describing formal languages using a set of production
rules. They are one step above REs in the Chomsky hierarchy of increasingly
expressive generative language formalisms. Figure 3.1 shows an example of a
CFG for a simple language. The underlined words in the grammar are called
nonterminal symbols and act as “syntactic variables” in the specification. The
letters (written in typewriter font) are called terminal symbols. Every line in the
CFG is called a production, and is of the form A → α0 | α1 | ... | αn−1, where
each αi is a string (possibly empty) of terminals and nonterminals. The αi
strings are called alternatives, as they represent different choices for sentences
described by the corresponding nonterminal. They are numbered from left to
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phrase→ subject verb adjectives
subject→ he | she

verb→ was | is
adjectives→ adverb adjective | adverb adjective and adjectives

adverb→ verys | not
verys→ very verys | ε

adjective→ happy | hungry | tall

Figure 3.1: A context-free grammar.

right starting from zero. The nonterminal to the left of the arrow in the first
production is a designated starting symbol.

The language described by the CFG contains the following sentences:

he is tall,
she was very hungry and not happy,
he is tall and very very happy,

she was happy and hungry and tall

This language can also be described by an RE. However, it is quite big, span-
ning two lines, and is not very readable:

(he+ she)(was+ is)((very)∗ + not)(happy+ hungry+ tall)
(and((very)∗ + not)(happy+ hungry+ tall))∗

In particular, note that we have to include duplicate occurrences of most of
the words in order to correctly specify that a list of adjectives is separated by
the word and. On the other hand, the CFG is self-documenting by having the
names of nonterminals describe what kind of sentence structure they define.

The language described by a CFG is determined as the set of all strings of
terminal symbols that can be derived from the starting symbol. A derivation is
a sequence of rewritings of strings containing terminal and nonterminal sym-
bols. For any string α of the form βAδ, where β and δ are strings of terminals
and nonterminals and A is a nonterminal with production A → γ0 | γ1 | ... |
γn−1, we can rewrite α as follows:

α⇒ βγiδ

where the alternative γi is chosen freely among the alternatives in the produc-
tion for A. If a string can be rewritten several times, α0 ⇒ α1 ⇒ ... ⇒ α′, we
also write just α ⇒ α′. Rewriting is a highly non-deterministic process, since
neither the expanded non-terminal A or the chosen alternative are uniquely



28 CHAPTER 3. GRAMMAR BASED STREAM PROCESSING

phrase

subject

he

verb

is

adjectives

adverb

verys

ε

adjective

tall

phrase⇒0 subject verb adjectives
⇒0 he verb adjectives
⇒1 he is adjectives
⇒0 he is adverb adjective
⇒0 he is verys adjective
⇒1 he is adjective
⇒2 he is tall

Figure 3.2: A parse tree and the corresponding derivation.

determined in each step. Figure 3.2 shows an example of how to derive a
sentence in the grammar from Figure 3.1, starting from the starting symbol
phrase, and with the expanded nonterminal highlighted in each step.

We denote the language of a grammar G with start symbol S by LJGK, and
define it formally as the set of all terminal strings that can be derived from S:

LJGK = {u ∈ Σ∗ | there is a derivation S⇒ u in G}

Parse Trees and Codes

Parse trees for CFGs are naturally defined as pictorial descriptions of how
a given string is derived from the starting symbol. As such, a parse tree
consists of labeled nodes, where internal nodes are labeled by nonterminals
and leaf nodes are labeled by terminals or the empty string ε. The root is
always labeled by the starting symbol, and for each internal node with la-
bel A and child nodes with labels L0, L1, ..., Lm−1, there must be a production
A → α0 | α1 | ... | αn−1 such that αi = L0L1...Lm−1 for some number i. If we
assume that no production contains two equal alternatives, then every parse
tree uniquely guides the choice of alternatives in derivations, although the
order of expanded nonterminals is still nondeterministic. See Figure 3.2 for
an example.

We can obtain a true one-to-one correspondence between parse trees and
derivations by only considering derivations which choose the next nontermi-
nal to expand in a particular order. For this purpose we only consider left-
most derivations, which always expand the leftmost nonterminal before oth-
ers. The derivation in Figure 3.2 is leftmost, and thus uniquely determines
the corresponding parse tree and vice versa.

Every parse tree can be given a serialized code in the same way as we did
for RE parse trees in Chapter 2. Since a parse tree corresponds to a leftmost
derivation which performs a series of deterministic expansions, the code can
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S→ aT | aL
T → bL | bS
L→ aL | bL | ε

Sstart T L
a/0

a/1

b/0

b/1 a/0

b/1

Figure 3.3: Regular CFG and its parsing transducer.

simply be defined as the sequence of numbers which determine the alterna-
tives in each expansion step. For example, the derivation in Figure 3.2 has
been annotated with the choice of alternative in each expansion, which leads
to the code 0010012.

From CFGs to Transducers

The motivation for introducing CFGs were as a replacement for REs, allowing
us to apply methods specific to RE parsing to parse CFGs. Not every CFG has
a corresponding RE describing the same language, as the CFG formalism is
significantly more expressive. For example, the simple grammar with only
one production S → aSb | ε describes the non-regular language consisting
of strings of as followed by exactly the same number of bs. We will have to
rule out such grammars to ensure that we only consider the regular CFGs.
There is no computer program which can determine for any CFG whether it
is regular or not [12], but there are simple tests we can use which can verify
most regular CFGs as such, but which returns false negatives for some [8].

It can be shown that every regular CFG can be rewritten such that for ev-
ery production A→ α0 | α1 | ... | αn−1, each αi is either of the form aiBi where
each ai is a terminal symbol and Bi is a nonterminal symbol, or αi = ε. Gram-
mars on this form are called right-regular, and have a natural interpretation
as finite state transducers where each nonterminal identifies a state. If the
production for a nonterminal A has an alternative αi = ε, then its state is ac-
cepting. For every alternative where αi = aiBi, there is an outgoing transition
A

ai/i→ Bi. See Figure 3.3 for an example.

Disambiguation

The problem of ambiguity also arises for CFGs, since there can be more than
one parse tree/leftmost derivation for a given string. The problem can be
solved in a similar way as for REs by specifying a policy for selecting a single
parse tree from a set of candidates. We consider here the greedy disambigua-
tion policy introduced in the previous chapter generalized to CFGs: If there is
more than one leftmost derivation for a terminal string, identify the first step
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at which they made different expansion choices, and pick the one that chose
the earliest alternative.

For example, the grammar in Figure 3.3 is ambiguous since the string aba
has three leftmost derivations:

S⇒0 aT ⇒0 abL⇒0 abaL⇒1 aba (3.1)
S⇒0 aT ⇒1 abS⇒1 abaL⇒1 aba (3.2)
S⇒1 aL⇒1 abL⇒0 abaL⇒0 aba (3.3)

We see that (3.1) differs from (3.2) and (3.3) in the first and second step, re-
spectively. In both cases, (3.1) chooses an earlier alternative than the other, so
this is the unique greedy derivation.

3.2 Syntax-Directed Translation Schemes
In a syntax-directed translation scheme (SDT) [1], we allow program fragments,
also called semantic actions, to occur inside the alternatives of each produc-
tion. The program fragments can be anything that can be executed on the
underlying machine, such as manipulation of stateful variables or execution
of side-effects. In order to distinguish semantic actions from the terminal and
nonterminal symbols, we will write them in braces and highlight them. For
example, the action which sets a variable x to value "a" is written {x:="a"}.

A derivation for an SDT is finished when it has reached a string which
only contains interleaved terminal symbols and semantic actions. The parsed
string is the substring of terminal symbols, and the substring of semantic ac-
tions forms a sequence of program statements to be executed.

We illustate SDTs by an example. Consider the SDT in Figure 3.4 which
reads an English noun phrase, reformulates it, and prints the result. If we
parse the string a man who was happy using the SDT, we obtain the (greedy)
parse tree depicted in Figure 3.5. The subsequence of program statements
in the leaves forms the following program, which when executed prints the
string a formerly happy man:

d := "a";
n := "man";
v := "formerly";
a := "happy";
p := d+v+a+n;
print(p);

Many useful string processing programs can be conveniently specified us-
ing SDTs. For example, if we needed to collect statistics from a large log of
web requests, an SDT could easily be used to parse the log entries and update
a database based on the extracted data. We could also use an SDT to read data
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phrase→ det noun wp verb adj { p := d+v+a+n; print(p); }
det→ the { d := "the"; }

| a { d := "a"; }
noun→ man { n := "man"; }

| woman { n := "woman"; }
wp→ who

verb→ is { v := ""; }
| was { v := "formerly"; }

adj→ happy { a := "happy"; }
| tall { a := "tall"; }

Figure 3.4: Example SDT for reformulating simple English phrases.

phrase

det

a
{d:="a";}

noun

man

{n:="man";}

wp

who

verb

was
{v:="formerly";}

adj

happy

{a:="happy";}
{p:=d+v+a+n; print(p);}

Figure 3.5: Greedy parse of the string a man who was happy, using SDT from
Figure 3.4.

in a format which is hard to read for humans and automatically format it in a
readable report.

For some applications such as implementations of protocols where data
arrives in a stream whose total length is unknown, we want to start executing
semantic actions as soon a possible, since we may not have enough memory to
store the complete stream. Under this execution model, we have to be careful
not to execute semantic actions “prematurely”: if after seeing a prefix of the
input stream we decide to execute an action, then that action must be guaran-
teed to be executed for every complete parse of the input.

This leads us to the first problem that we wish to address in this chapter:

How to evaluate the SDT on an input string in a streaming fashion,
using at most time proportional to the length of the input?
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sum← f actor + sum/ f actor
f actor ← 0/digit digits/( sum )
digits← digit digits/ε

digit← 0/1/.../9

Figure 3.6: Example of a simple PEG.

3.3 Parsing Expression Grammars
With the restriction to regular SDTs, we lose the ability to express a large
number of interesting string processing programs. Regular languages can-
not contain unbounded nesting, so this precludes processing languages such
as arithmetic expressions, languages containing matching parentheses and
nested data formats.

As we pointed out in the previous chapter, we cannot allow specifications
based on unrestricted CFGs without losing the guarantee of linear time pars-
ing [58], and we would like to avoid restricting ourselves to deterministic
CFGs such as LR(k) [52] since they are difficult to write. It seems to be hard to
come up with a suitable relaxation of the regular SDTs, so in this section we
will step outside the Chomsky hierarchy and instead consider Ford’s parsing
expression grammars (PEG) [36].

A PEG is specified as a set of production rules, each of the form A ← e,
where A is a nonterminal as before, and e is a parsing expression (PE) generated
by the following grammar:

e ::= A | a | e1e2 | e1/e2 |!e1

A PE can either be a nonterminal A, a terminal symbol a in Σ, the empty string
ε, a product e1e2, an ordered sum e1/e2, or a negated expression !e1, where in all of
the previous, e1 and e2 stand for PEs. The rules for associativity of parentheses
are the same as for REs, and we write e1e2e3 and e1/e2/e3 for the PEs e1(e2e3)
and e1/(e2/e3), respectively. See Figure 3.6 for an example PEG which parses
simple arithmetic expressions with parentheses.

PEG Semantics

Although on the surface PEGs resemble CFGs, their semantics are quite dif-
ferent. PEGs do not have a notion of derivations, but instead every parsing ex-
pression specifies a recursive backtracking parser which searches for a greedy
parse of the input.

The result of a parse is either success, in which case zero or more input
symbols are consumed, or failure, in which case exactly zero input symbols
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sum

f actor

(

sum

f actor

0 +

sum

f actor

digit

1

digits

ε ) +

sum

f actor

digit

4

digits

digit

6

digits

ε

Figure 3.7: A PEG parse tree for the string (0+1)+46.

are consumed. If the PE being parsed is a terminal symbol, then the parse
succeeds and consumes one symbol if the first symbol in the input matches;
otherwise it fails. If the PE is a nonterminal, then parsing proceeds with the
PE associated with that nonterminal in the PEG. For sequences e1e2, the ex-
pression e1 is parsed first, and if it succeeds, e2 is parsed with the remainder
of the input; otherwise e1e2 fails. For ordered sums e1/e2, the expression e1
is parsed first, and if it succeeds, the whole sum succeeds, disregarding e2.
Only if e1 fails is e2 tried. A negation !e1 fails if e1 succeeds; if e1 fails, then !e1
succeeds, but consumes zero symbols.

The behavior for ordered sums means that in the PEG in Figure 3.6, pars-
ing f actor with input 0123 will fail: since the first alternative consumes 0, the
other alternatives are disregarded, leaving the suffix 123 unhandled. This il-
lustrates the difference with CFGs, where the second alternative would have
lead to a successful parse. The backtracking behavior is in this case intention-
ally used to reject numbers with leading zeros. See Figure 3.7 for the parse
tree resulting from parsing the input (0+1)+46.

Although the semantics of PEGs are formulated as a backtracking parsing
process, every PEG can be parsed in time proportional to the input length.
One can either apply a dynamic programming approach [2, Theorem 6.4]
or apply the memoizing Packrat algorithm due to Ford [35]. None of these
algorithms operate in a streaming fashion, however.

Expressivity

PEGs are equivalent in power to the formalisms TDPL and GTDPL [36] due
to Aho and Ullman [2], albeit a lot easier to read.
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The expressive power of PEGs and CFGs is incomparable. The negation
operator allows PEGs to parse languages which cannot be described by any
CFG. An example of such a language is the following:

aa · · · a︸ ︷︷ ︸
n times

bb · · · b︸ ︷︷ ︸
n times

cc · · · c︸ ︷︷ ︸
n times

That is, the strings consisting of as followed by bs followed by cs, in equal
numbers. The PEG recognizing this language crucially depends on the nega-
tion operator in order to look ahead in the input string [36, Section 3.4]:

D ← !!(A !b) S B !(a/b/c)
A← a A b/ε

B← b B c/ε

S← a S/ε

On the other hand, since every PEG can be parsed in linear time, then due
to the non-linear lower bound of general CFG parsing [58], there must exist
a CFG describing a language which cannot be parsed by any PEG.1 However,
every deterministic CFG can be simulated by PEG [2, Theorem 6.1], including
all LL(k) and LR(k) grammars.

Although PEGs are incomparable to general CFGs, they do have a close
connection to the right-regular CFGs. For every right-regular CFG, replace
all productions of the form A → α0 | α1 | ... | αn−1 by PEG rules A ←
α0/α1/.../αn−1, and then replace every occurrence of ε by a special end-of-
input marker #. It can be shown that for every input string u, the greedy left-
most derivation for u in the original CFG will yield the same parse tree as the
PEG on input u#. The reason for this is that no ordered sum in the PEG will
finish parsing before all of the string has been processed, so all alternatives
will be exhausted, resulting in a simulation of the search for the greedy left-
most derivation in the CFG. PEGs can thus be seen as direct generalizations
of regular CFGs with greedy leftmost semantics.

It is straightforward to extend PEGs with semantic actions in the same way
as we did for CFGs to obtain a generalization of the regular syntax-directed
translation schemes. By applying one of the linear time PEG parsing algo-
rithms, we can evaluate such a PEG-based SDT in a non-streaming fashion.
This leads to the second problem to be addressed in this chapter:

How to evaluate a PEG-based SDT on an input string in a streaming
fashion, using at most time proportional to the length of the input?

1To the best of our knowledge, finding an example of such a language is an open problem.
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3.4 String Processing Methods

We discuss formalisms for the specification of string processing programs and
methods for evaluating such specifications on commodity hardware.

Line-Oriented Stream Processing

Several methods and tools for streaming text processing rely on a delimiters
such as newline symbols to chunk the input stream. Each chunk is processed
independently of the following ones, and can be discarded once the next
chunk starts processing. The UNIX operating system adopted this model
by treating text files as arrays of strings separated by newlines, and as a re-
sult all popular UNIX tools for streaming text processing, such as the regex
based tools sed [92] and awk/gawk [78], operate using the chunking model.
The advantage of this model is that each chunk can be assumed to be small,
often a single line in a text file, which means that further pattern matching
inside chunks do not have to be streaming. The disadvantage is, as noted by
Pike [76], that “[...] if the interesting quantum of information isn’t a line, most of
the tools [...] don’t help”, and as a consequence, processing data formats which
are not line-oriented is complicated2.

Automata Based Methods

There are several different methods for specification of streaming string pro-
cessing programs using finite automata and their generalizations. The state
machine compiler Ragel [95] allows users to specify NFAs whose transitions
are annotated by arbitrary program statements from a host programming lan-
guage. The annotated NFAs are converted to DFAs, and in the case of ambigu-
ity the DFA will simultaneously perform actions from several NFA transitions
upon transitioning from one state to the next, even if one of these transitions
turns out not to be on a viable path. By contrast, a syntax-directed transla-
tion scheme will only perform the actions that occur in the unique final parse
tree. For this reason, Ragel is most useful for processing mostly deterministic
specifications or for pure recognition.

Methods based on the more expressive transducer model include the Mi-
crosoft Research languages Bek3 [45] and Bex4 [98], both of which are based
on symbolic transducers [99, 27], a compact notation for representing transduc-
ers with many similar transitions which can be described using logical theo-
ries. Both languages are formalisms for expressing string sanitizers and en-
coders commonly found in web programming, supporting both synthesis of
fast programs as well as automatic checking of common correctness criteria

2sed, awk are Turing-complete and can parse any decidable language, but not without pain.
3http://rise4fun.com/Bek
4http://rise4fun.com/Bex

http://rise4fun.com/Bek
http://rise4fun.com/Bex
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of such specifications. Due to the focus on a limited application domain, both
languages are restricted to expressing deterministic transducers only. This
trivially ensures linear time execution, but also limits their expressivity.

Streaming string transducers (SSTs) [3, 4] is another extension of DFAs which
upon transitioning from one state to another can perform a set of simultane-
ous copy-free updates to a finite number of string variables. SSTs are deter-
ministic, but are powerful enough to be able express any function describ-
able by non-deterministic transducers, as well as some functions which can-
not, such as string reversal. Since they can be run in linear time, they are an
interesting model of computation to target for string processing languages.
DReX [5] is a domain specific string processing language based on a combina-
tory language [7] which can express all string functions describable by SSTs.
In order for DReX programs to be evaluated in time proportional to the input
length, they must be restricted to an unambiguous subset.

Domain-Specific Languages

There is an abundance of less general solutions which operate within restricted
application domains. These include languages for specifying steaming pro-
cessors for binary [11] and textual [33, 34] data formats, network packets [63,
61, 18] and wireless protocols [88]. Many of these require domain-specific
features which are outside the scope of the general grammar based model of
SDTs.

A system which comes close to the SDT model is PADS [33, 34], a domain-
specific language for writing specifications of the physical and textual layouts
of ad-hoc data formats from which parsers, statistical tools and streaming
string translators to other textual formats or databases can be derived. PADS
can be seen as regular SDTs with greedy disambiguation, but extended with
extra features such as data dependencies—grammar alternatives can be resolved
based on semantic predicates on previously parsed data. The parsers gener-
ated by a PADS specification operate via backtracking.

Parsing Expression Grammars

Streaming evaluation of PEG-based SDTs will have to rely on a streaming top-
down parsing method for PEG. Current practical methods are either based on
backtracking [65], recursive descent with memoization [35], or some variant
of these using heuristics for optimization [82, 56].

There is only one known parsing method which is streaming [67], but it
relies on the programmer to manually annotate the grammar with cut points
to help the parsing algorithm figure out when parts of the parse tree can be
written to the output.

For a more in-depth discussion on methods for streaming PEG parsing,
we also refer to Section D.7 of Paper D.
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3.5 Our Contributions

In Paper C we present Kleenex, a language for expressing high-performance
streaming string processing programs as regular grammars with embedded
semantic actions for string manipulation, and its compilation to efficient C
code. Its underlying theory is based on transducer decomposition into ora-
cle and action machines, where an oracle machine corresponds to a bit-coded
RE parsing transducer of Chapter 2, and an action machine is a determinis-
tic transducer which translates bit-codes into sequences of semantic actions
to be executed. Based on the optimally streaming RE parsing algorithm of
Paper B, the oracle machine, which is non-deterministic and ambiguous, is
disambiguated using the greedy policy and converted into a deterministic
streaming string transducer, the same machine model employed by DReX. Un-
like DReX, we allow unrestricted ambiguity in Kleenex specifications which
makes programming in Kleenex easier. By letting the set of semantic ac-
tions in Kleenex be copy-free string variable updates, it appears that Kleenex
programs are equivalent to the full set of non-deterministic streaming string
transducers [6], and thus equivalent in expressive power with DReX.

The generated transducers are translated to efficient C programs which
achieve sustained high throughput in the 1Gbps range on practical use cases.
The high performance is obtained by avoiding having to compute path trees
at run-time—the most expensive part of the streaming algorithm of Paper B—
by fully encoding the current path tree structure in the control mechanism of
the streaming string transducer. Furthermore, having translated a Kleenex
specification to a restricted machine model allows a range of optimizations to
be applied, including standard compiler optimizations such as constant prop-
agation [10] as well as model-specific optimizations such as symbolic repre-
sentation [99].

In Paper D we present a new linear time parsing algorithm for parsing
expression grammars. The algorithm is based on a well-known bottom-up
tabulation strategy by Aho and Ullman [2] which is reformulated using least
fixed points. Using the method of chaotic iteration [23] for computing least
fixed points, we can compute approximations of the parse table, one for each
prefix of the input, in an incremental top-down fashion. The approximated
parse tables provide enough information for a simple dynamic analysis to
predict a prefix of the control flow of all viable parses accepting a completion
of the input prefix read so far. The result is a streaming parser which can
be used to schedule semantic actions during the parsing process in the same
fashion as Kleenex. We evaluate a prototype of the method on selected exam-
ples which shows that it automatically adapts to use practically constant space
for grammars that do not require lookahead. We also point out directions for
further improvements which must be addressed before the algorithm can be
used as a basis for an efficient streaming implementation of parsing expres-
sion grammars. In particular, the algorithm fails to obtain streaming behavior
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for strictly right-regular grammars, and it also performs a large amount of su-
perfluous computation, adding a large constant to the time complexity.

3.6 Conclusions and Perspectives
In this chapter, we have illustated how syntax-directed translation schemes
provide a restricted but expressive formalism which programmers can use
to specify streaming string processing programs without having to explicitly
deal with orthogonal technical issues related to buffering and disambigua-
tion.

With the Kleenex language, we have demonstrated that streaming regular
expression parsing can be used to obtain high-performance implementations
of regular syntax-directed translation schemes with greedy disambiguation.
Kleenex provides a concise and convenient language for rapid development
of streaming string processing programs with predictable high performance.
These programs can be used to process many of the common ad-hoc data
formats that can be described or approximated by regular grammars, includ-
ing web request logs, CSV files, HTML documents, JSON files, and more.
Kleenex is distinguished from other tools in the same category by allowing un-
restricted ambiguity in specifications which are automatically disambiguated
using a predictable policy, thus making it easier to combine and reuse Kleenex
program fragments without having to worry about compiler errors.

For the cases where the expressivity of Kleenex is not adequate, we show
that the foundation of regular grammars can be conservatively extended to
the more expressive formalism of parsing expression grammars, thus allow-
ing a larger range of translation schemes to be specified while preserving the
input/output-semantics of the regular ones. This however leaves the ques-
tion of how to evaluate parsing expression grammars in a streaming fashion.
We address this issue by providing a streaming linear time algorithm which
automatically adapts to constant memory usage in practical use cases, paving
the way for a more expressive dialect of Kleenex.

There are several directions for future work on the Kleenex language and
its compilation:

Data-parallel execution Veanes, Molnar and Mytkowics [100] show how to
implement the symbolic tranducers of Bek and Bex on multi-core hard-
ware in order to hide I/O latencies by processing separate partitions of
the input string in parallel. By virtue of also being based on finite state
transducers, a similar approach might be applicable to enable Kleenex
to run on multi-core hardware as well.

Reducing state complexity Certain Kleenex specifications have a tendency
to result in very large SSTs, which negatively affects both the compile
times and the sizes of the produced binary programs. Perhaps we can



3.6. CONCLUSIONS AND PERSPECTIVES 39

apply a similar hybrid runtime simulation/compilation technique as
used in the RE2 [24] library in order to materialize only the SST states
reached during processing of a particular input stream.
We should also point out a result of Roche [84], who shows that the num-
ber of states in the forwards-backwards decomposition of a transducer
can be exponentially smaller than the equivalent representation using a
bimachine [87, 15], another deterministic transducer model. It is future
work to see if this also applies to SSTs, and whether it can account for
the blowups observed in practice, but if it turns out to be the case then
a streaming variant of the forwards-backwards parsing algorithm of Pa-
per A might serve as an alternative, more space economical execution
model for Kleenex.

As we also point out in Paper D, there are still some issues that need to
be addressed before the streaming parsing algorithm for parsing expression
grammars can be used as a high-performance execution model in Kleenex:

Regular grammar parsing The algorithm fails to be streaming for the purely
right-regular grammars, but works as expected for grammars using the
non-regular features of parsing expression grammars. This is due to
the fact that streaming regular expression parsing relies on orthogonal
criteria for detecting when parts of the parse tree can be written to the
output, which suggests that we might be able to find a hybrid method
which can handle both types of grammars.

Time complexity overhead In its current form, the algorithm has been op-
timized for simplicity and performs a large number of computations
which are never needed, adding a constant time overhead to the pro-
cessing of each input symbol. This should be avoidable by integration
with a runtime analysis, but requires further study.

Machine models Can we find a deterministic machine model which can sim-
ulate the streaming parsing algorithm such that parts of the expensive
computations can be encoded in the control mechanism of the machine?
Such a model would necessarily have to generalize the deterministic
pushdown automata [1, 42] used for parsing deterministic context-free
languages, but could potentially yield significant speedups.
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Two-Pass Greedy Regular Expression Parsing1

Niels Bjørn Bugge Grathwohl, Fritz Henglein, Lasse Nielsen and Ulrik Terp
Rasmussen

Department of Computer Science, University of Copenhagen (DIKU)

Abstract

We present new algorithms for producing greedy parses for regular
expressions (REs) in a semi-streaming fashion. Our lean-log algorithm
executes in time O(mn) for REs of size m and input strings of size n and
outputs a compact bit-coded parse tree representation. It improves on
previous algorithms by: operating in only 2 passes; using only O(m)
words of random-access memory (independent of n); requiring only kn
bits of sequentially written and read log storage, where k < 1

3 m is the
number of alternatives and Kleene stars in the RE; processing the input
string as a symbol stream and not requiring it to be stored at all. Previous
RE parsing algorithms do not scale linearly with input size, or require
substantially more log storage and employ 3 passes where the first con-
sists of reversing the input, or do not or are not known to produce a
greedy parse. The performance of our unoptimized C-based prototype
indicates that the superior performance of our lean-log algorithm can
also be observed in practice; it is also surprisingly competitive with RE
tools not performing full parsing, such as Grep.

A.1 Introduction

Regular expression (RE) parsing is the problem of producing a parse tree
for an input string under a given RE. In contrast to most regular-expression
based tools for programming such as Grep, RE2 and Perl, RE parsing returns
not only whether the input is accepted, where a substring matching the RE
and/or sub-REs are matched, but a full parse tree. In particular, for Kleene
stars it returns a list of all matches, where each match again can contain such
lists depending on the star depth of the RE.

An RE parser can be built using Perl-style backtracking or general context-
free parsing techniques. What the backtracking parser produces is the greedy
parse amongst potentially many parses. General context-free parsing and
backtracking parsing are not scalable since they have cubic, respectively ex-
ponential worst-case running times. REs can be and often are grammatically
ambiguous and can require arbitrary much look-ahead, making limited look-
ahead context-free parsing techniques inapplicable. Kearns [7] describes the
first linear-time algorithm for RE parsing. In a streaming context it consists

1The order of authors is insignificant.
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of 3 passes: reverse the input, perform backward NFA-simulation, and con-
struct parse tree. Frisch and Cardelli [5] formalize greedy parsing and use the
same strategy to produce a greedy parse. Dubé and Feeley [2] and Nielsen
and Henglein [9] produce parse trees in linear time for fixed RE, the former
producing internal data structures and their serialized forms, the latter parse
trees in bit-coded form; neither produces a greedy parse.

In this paper we make the following contributions:

1. Specification and construction of symmetric nondeterministic finite au-
tomata (NFA) with maximum in- and out-degree 2, whose paths from
initial to final state are in one-to-one correspondence with the parse
trees of the underlying RE; in particular, the greedy parse for a string
corresponds to the lexicographically least path accepting the string.

2. NFA simulation with ordered state sets, which gives rise to a 2-pass greedy
parse algorithm using ⌈m lg m⌉ bits per input symbol in the original in-
put string, with m the size of the underlying RE. No input reversal is
required.

3. NFA simulation optimized to require only k ≤ ⌈1/3m⌉ bits per input
symbol, where the input string need not be stored at all and the 2nd
pass is simplified. Remarkably, this lean-log algorithm requires fewest log
bits, and neither state set nor even the input string need to be stored.

4. An empirical evaluation, which indicates that our prototype implemen-
tation of the optimized 2-pass algorithm outperforms also in practice
previous RE parsing tools and is sometimes even competitive with RE
tools performing limited forms of RE matching.

In the remainder, we introduce REs as types to represent parse trees, de-
fine greedy parses and their bit-coding, introduce NFAs with bit-labeled tran-
sitions, describe NFA simulation with ordered sets for greedy parsing and fi-
nally the optimized algorithm, which only logs join state bits. We conclude
with an empirical evaluation of a straightforward prototype to gauge the com-
petitiveness of full greedy parsing with regular-expression based tools yield-
ing less information for Kleene-stars.

A.2 Symmetric NFA Representation of Parse Trees

REs are finite terms of the form 0, 1, a, E1× E2, E1 + E2 or E∗1 , where E1, E2 are
REs.

Proviso: For simplicity and brevity we henceforth assume REs that do
not contain sub-REs of the form E∗, where E is nullable (can generate the
empty string). All results reported here can be and have been extended to
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such problematic REs in the style of Frisch and Cardelli [5]. In particular, our
implementation BitC handles problematic REs.

REs can be interpreted as types built from singleton, product, sum, and
list type constructors [5, 6]:

T [[0]] = ∅
T [[1]] = {()},
T [[a]] = {a},

T [[E1 × E2]] = {(V1, V2) | V1 ∈ T [[E1]], V2 ∈ T [[E2]]},
T [[E1 + E2]] = {inl V1 | V1 ∈ T [[E1]]} ∪ {inr V2 | V2 ∈ T [[E2]]},

T [[E⋆
0 ]] = {[V1, . . . , Vn] | n ≥ 0 ∧ ∀1 ≤ i ≤ n.Vi ∈ T [[E0]]}

Its structured values T [[E]] represent the parse trees for E such that the regu-
lar language L[[E]] coincides with the strings obtained by flattening the parse
trees:

L[[E]] = {flat(V) | V ∈ T [[E]]},
where the flattening function erases all structure but the leaves:

flat(()) = ϵ

flat(a) = a

flat((V1, V2)) = flat(V1)flat(V2)

flat(inl V1) = flat(V1)

flat(inr V2) = flat(V2)

flat([V1, . . . , Vn]) = flat(V1) . . . flat(Vn)

We recall bit-coding from Nielsen and Henglein [9]. The bit code code(V)
of a parse tree V ∈ T [[E]] is a sequence of bits uniquely identifying V within
T [[E]]; that is, there exists a function decodeE such that for all V ∈ T [[E]], we
have decodeE(code(V)) = V:

code(()) = ϵ

code(a) = ϵ

code((V1, V2)) = code(V1) code(V2)

code([V1, . . . , Vn]) = 0 code(V1) . . . 0 code(Vn) 1
code(inl V1) = 0 code(V1)

code(inr V2) = 1 code(V2)

The definition of decodeE is omitted for brevity, but is straightforward.
We write B[[. . .]] instead of T [[. . .]] whenever we want to refer to the bit

codings, rather than the parse trees. We use subscripts to discriminate parses
with a specific flattening: Ts[[E]] = {V ∈ T [[E]] | flat(V) = s}. We extend the
notation Bs[[. . .]] similarly.
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Figure A.1: aNFA construction schema.

Note that a bit string by itself does not carry enough information to deduce
which parse tree it represents. Indeed this is what makes bit strings a compact
representation of strings where the underlying RE is statically known.

The set B[[E]] for an RE E can be compactly represented by an augmented
nondeterministic finite automaton (aNFA), a variant of enhanced NFAs [9] that
has in- and outdegree at most 2 and carries a label on each transition.

Definition 1 (Augmented NFA). An augmented NFA (aNFA) is a 5-tuple M =
(Q, Σ, ∆, qs, q f ) where Q is the set of states, Σ is the input alphabet, and qs, q f

are the start and final states, respectively. The transition relation ∆ ⊆ Q ×
(Σ ∪ {0, 1, 0, 1})×Q contains directed, labeled transitions: (q, γ, q′) ∈ ∆ is a
transition from q to q′ with label γ, written q

γ−→ q′.
We call transition labels in Σ input labels; labels in {0, 1} output labels; and

labels in {0, 1} log labels.
We write q

p
⇝ q′ if there is a path labeled p from q to q′. The sequences

read(p), write(p), and log(p) are the subsequences of input labels, output la-
bels, and log labels of p, respectively.

We write: JM for the join states {q ∈ Q | ∃q1, q2. (q1, 0, q), (q2, 1, q) ∈ ∆};
SM for the symbol sources {q ∈ Q | ∃q′ ∈ Q, a ∈ Σ. (q, a, q′)}; and CM for the
choice states {q ∈ Q | ∃q1, q2. (q, 0, q1), (q, 1, q2) ∈ ∆}.

If M is an aNFA, then M is the aNFA obtained by flipping all transitions
and exchanging the start and finishing states, that is reverse all transitions
and interchange output labels with the corresponding log labels.
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Our algorithm for constructing an aNFA from an RE is a standard Thompson-
style NFA generation algorithm modified to accomodate output and log la-
bels:

Definition 2 (aNFA construction). We write M = N⟨E, qs, q f ⟩ when M is an
aNFA constructed according to the rules in Figure A.1.

Augmented NFAs are dual under reversal; that is, flipping produces the
augmented NFA for the reverse of the regular language.

Proposition A.2.1. Let E be canonically constructed from E to denote the reverse of
L[[E]], i.e. E1 × E2 = E2 × E1. Let M = N⟨E, qs, q f ⟩. Then M = N⟨E, q f , qs⟩.

This is useful since we will be running aNFAs in both forward and back-
ward (reverse) directions.

Well-formed aNFAs—and Thompson-style NFAs in general—are canoni-
cal representations of REs in the sense that they not only represent their lan-
guage interpretation, but their type interpretation:

Theorem A.2.2 (Representation). Given an aNFA M = N⟨E, qs, q f ⟩, M outputs
the bit-codings of E:

Bs[[E]] = {write(p) | qs p
⇝ q f ∧ read(p) = s}.

A.3 Greedy parsing
The greedy parse of a string s under an RE E is what a backtracking parser re-
turns that tries the left operand of an alternative first and backtracks to try the
right alternative only if the left alternative does not yield a successful parse.
The name comes from treating the Kleene star E⋆ as E× E⋆ + 1, which “greed-
ily” matches E against the input as many times as possible. A “lazy” matching
interpretation of E⋆ corresponds to treating E⋆ as 1+ E× E⋆. (In practice, mul-
tiple Kleene-star operators are allowed to make both interpretations available;
e.g. E∗ and E∗∗ in PCRE.)

Greedy parsing can be formalized by an order ⋖ on parse trees, where
V1 ⋖ V2 means that V1 is “more greedy” than V2. The following is adapted
from Frisch and Cardelli [5].

Definition 3 (Greedy order). The binary relation ⋖ is defined inductively on
the structure of values as follows:

(V1, V2) ⋖ (V ′1, V ′2) if V1 ⋖V ′1 ∨ (V1 = V ′1 ∧V2 ⋖V ′2)
inl V0 ⋖ inl V ′0 if V0 ⋖V ′0
inr V0 ⋖ inr V ′0 if V0 ⋖V ′0
inl V0 ⋖ inr V ′0

[V1, . . .] ⋖ []
[V1, . . .] ⋖ [V ′1, . . .] if V1 ⋖V ′1

[V1, V2, . . .] ⋖ [V1, V ′2, . . .] if [V2, . . .]⋖ [V ′2, . . .]
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The relation ⋖ is not a total order; consider for example the incomparable
elements (a, inl ()) and (b, inr ()). The parse trees of any particular RE are
totally ordered, however:

Proposition A.3.1. For each E, the order ⋖ is a strict total order on T [[E]].

In the following, we will show that there is a correspondence between the
structural order on values and the lexicographic order on their bit-codings.

Definition 4. For bit sequences d, d′ ∈ {0, 1}⋆ we write d ≺ d′ if d is lexico-
graphically strictly less than d′; that is, ≺ is the least relation satisfying

1. ϵ ≺ d if d ̸= ϵ

2. b d ≺ b′ d′ if b < b′ or b = b′ and d ≺ d′.

Theorem A.3.2. For all REs E and values V, V ′ ∈ T [[E]] we have V ⋖ V ′ iff
code(V) ≺ code(V ′).

Corollary A.3.3. For any RE E with aNFA M = N⟨E, qs, q f ⟩, and for any string
s, min⋖ Ts[[E]] exists and

min
⋖
Ts[[E]] = decodeE

(
min
≺

{
write(p)

∣∣∣ qs p
⇝ q f ∧ read(p) = s

})
.

Proof. Follows from Theorems A.2.2 and A.3.2.

We can now characterize greedy RE parsing as follows: Given an RE E

and string s, find bit sequence b such that there exists a path qs p
⇝ q f from

start to finishing state in the aNFA for E such that:

1. read(p) = s,

2. write(p) = b,

3. b is lexicographically least among all paths satisfying 1 and 2.

This is easily done by a backtracking algorithm that tries 0-labeled transi-
tions before 1-labeled ones. It is atrociously slow in the worst case, however:
exponential time. How to do it faster?

A.4 NFA-Simulation with Ordered State Sets

Our first algorithm is basically an NFA-simulation. For reasons of space we
only sketch its key idea, which is the basis for the more efficient algorithm in
the following section.
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A standard NFA-simulation consists of computing Reach(S, s) where

Reach(S, ϵ) = S
Reach(S, a s′) = Reach(Close(Step(S, a)), s′)

Step(S, a) = {q′ | q ∈ S, q a−→ q′}

Close(S′) = {q′′ | q′ ∈ S′, q′
p
⇝ q′′, read(p) = ϵ}

Checking q f ∈ Reach(S0, s) where S0 = Close({qs}) determines whether s is
accepted or not. But how to construct an accepting path and in particular the
one corresponding to the greedy parse?

We can log the sequence of NFA state sets reached during forward NFA-
simulation over an input string s = a1 . . . an. The log thus consists of a list of
state sets S0, S1, ..., Sn, where S0 is defined above, and for each 0 ≤ i ≤ n− 1,
we have Si+1 = Close(Step(Si, ai+1)).

It is easy to check that every path qs p
⇝ q f with read(p) = s is of the form

qs p0⇝ q0
a1−→ q′0

p1⇝ q1 · · · qi
ai+1−→ q′i

pi+1⇝ qi+1 · · · qn−1
an−→ q′n−1

pn⇝ q f

where p = p0a1 p1a2 p2...an pn and read(pi) = ϵ for all 0 ≤ i ≤ n. By definition,
each qi is in the state set Si, so the set of all paths {p | qs p

⇝ q f ∧ read(p) = s}
can be recovered only from the log, and equals the set Paths(n, q f ) defined as
follows:

Paths(0, q′′) = {p | qs p
⇝ q′′ | read(p) = ϵ}

Paths(i + 1, q′′) = {p′p | ∃q ∈ Si. ∃a, q′. q a−→ q′
p
⇝ q′′

∧ read(p) = ϵ
∧ p′ ∈ Paths(i, q)}

(A.1)

Using this definition, any single path p ∈ Paths(n, q f ) can be recovered in
linear time by processing the log in reverse order. In each step i > 0, we pick
some q ∈ Si such that the condition in A.1 is satisfied, which can be checked
by computing the preimage of the ϵ-closure of q′′. Note in particular that we
do not need the input string for this. write(p) gives a bit-coded parse tree,
though not necessarily the lexicographically least. We need a way to locally
choose q ∈ Si such that the lexicographically least path is constructed without
backtracking.

We can adapt the NFA-simulation by keeping each state set Si in a partic-
ular order: If Reach({qs}, a1 . . . ai) = {qi1, . . . qiji} then order the qij according
to the lexicographic order of the paths reaching them. Intuitively, the high-
est ranked state in Si is on the greedy path if the remaining input is accepted
from this state; if not, the second-highest ranked is on the greedy path, if the
remaining input is accepted; and so on. Using this, we can resolve the choice
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of q in (A.1) and define a function which recovers the lexicographically least
bit-code Path(n, q f ) from the log:

Path(0, q′′) = min
≺
{p | qs p

⇝ q′′ | read(p) = ϵ}

Path(i + 1, q′′) = Path(i, q)write(p)
where q ∈ Si is highest ranked such that

∃a, q′. q a−→ q′
p
⇝ q′′ ∧ read(p) = ϵ

The NFA-simulation can be refined to construct properly ordered state
sequences instead of sets without asymptotic slow-down. The log, however,
is adversely affected by this. We need ⌈m lg m⌉ bits per input symbol, for a
total of ⌈mn lg m⌉ bits.

The key property for allowing us to list a state at most once in an ordered
state sequence is this:

Lemma A.4.1. Let s, t1, t2, and t be states in an aNFA M, and let p1, p2, q1, q2 be
paths in M such that s

p1⇝ t1, s
p2⇝ t2, and t1

q1⇝ t, t2
q2⇝ t, where p1 is not a prefix of

p2. If write(p1) ≺ write(p2) then write(p1q1) ≺ write(p2q2)

Proof. Application of the lexicographical ordering on paths.

A.5 Lean-log Algorithm

We can do better than saving a log where each element is a full sequence of
NFA states. Since the join states JM of an aNFA M become the choice states CM
of the reverse aNFA M we only need to construct one “direction” bit for each
join state at each input string position. It is not necessary to record any states
in the log at all. This results in an algorithm that requires only k bits per input
symbol for the log, where k is the number of Kleene-stars and alternatives
occurring in the RE. It can be shown that k ≤ 1

3 m; in practice we can observe
k << m.

Instead of writing down state sequences, we write down log frames which
are partial maps L : JM → {0, 1}. The subset of JM on which L is defined
is denoted dom(L). The empty log frame is ∅, and the disjoint union of two
log frames L, L′ is written as L ∪ L′. The set of all log frames is FrameM. A



60 PAPER A. TWO-PASS GREEDY REGULAR EXPRESSION PARSING

modified closure algorithm computes both a state sequence and a log frame:

Close(q, L) : QM × FrameM → Q∗M × FrameM

Close(q, L) =



(⃗qq⃗′, L′′) if q 0−→ q0 ∧ q 1−→ q1

∧ Close(q0, L) = (⃗q, L′)
∧ Close(q1, L′) = (q⃗′, L′′)

Close(q′, L ∪ {q′ 7→ t}) if q t−→ q′ ∧ t ∈ {0, 1}
∧ q′ ̸∈ dom(L)

(ϵ, L)

ComputingClose(q, ∅) = (⃗q, L) results in the sequence of states q⃗ in the “fron-
tier” of the ϵ-closure of q, ordered according to their lexicographic order, and
a log frame L which uniquely identifies the lexicographically least ϵ-path from
q to any state in q⃗. Note that the algorithm works by backtracking and stops
when a join state has previously been encountered. This is sound since the
previous encounter must have been via a higher ranked path, and since any
extension of the path continues to have higher rank by Lemma A.4.1.

The closure algorithm is extended to state sequences by applying the state-
wise closure algorithm in ranking order, using the same log frame:

Close∗ : Q∗M × FrameM → Q∗M × FrameM

Close∗(ϵ, L) = L

Close∗(q q⃗, L) = (q⃗′q⃗′′, L′′)

where (q⃗′, L′) = Close(q, L)

and (q⃗′′, L′′) = Close∗ (⃗q, L′)

The modified algorithm Step : Q∗M × Σ → Q∗M is defined on single states
q ∈ QM by

Step(q, a) =

{
q′ if q a−→ q′

ϵ otherwise

and extended homomorphically to sequences Q∗M. The forward simulation
algorithm is essentially the same process as before, but now explicitly main-
tains a sequence of log frames L⃗:

Reach : Q∗M × Σ∗ → Q∗M × Frame∗M
Reach(⃗q, ϵ) = (⃗q, ϵ)

Reach(⃗q, a s′) = (q⃗′′, L⃗L)

where (q⃗′, L) = Close∗(Step(⃗q, a), ∅)

and (q⃗′′, L⃗) = Reach(q⃗′, s′)
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Let s = a1 . . . an. Computing Reach(q⃗0, s) where (q⃗0, L0) = Close(qs, ∅)
results in a pair (q1q2...qm, L1...Ln). If for any 1 ≤ k ≤ m we have qk = q f ,
then the the lexicographically least path qs p

⇝ q f with read(p) = s exists,
and the sequence L0L1...Ln can be used to effectively reconstruct its bit-code
Path(q f , n):

Path : QM × {0, 1, ..., n} → {0, 1}∗

Path(qs, 0) = ϵ

Path(q′, i) =


Path(q, i− 1) if ∃a ∈ Σ. q a−→ q′

Path(qLi(q), i) if q0
0−→ q′ and q1

1−→ q′

Path(q, i)b if q b−→ q′ and b ∈ {0, 1}

The forwardReach algorithm keeps the aNFA and the current character in
working memory, requiring O(m) words of random access memory (RAM),
writing nk bits to the log, and discarding the input string. The backward Path
algorithm also requires O(m)words of RAM and reads from the log in reverse
write order. The log is thus a 2-phase stack: In the first pass it is only pushed
to, in the second pass popped from.

Both Close∗ and Step run in time O(m) per input symbol, hence the for-
ward pass requires time O(mn). Likewise, the backward pass requires time
O(mn).

A.6 Evaluation

We have implemented the optimized algorithms in C and in Haskell, and we
compare the performance of the C implementation with the following existing
RE tools:

RE2: Google’s RE implementation, available from [11].

Tcl: The scripting language Tcl [10].

Perl: The scripting language Perl [13].

Grep: The UNIX tool grep.

Rcp: The implementation of the algorithm “DFASIM” from [9]. It is based on
Dubé and Feeley’s method [2], but altered to produce a bit-coded parse
tree.

FrCa: The implementation of the algorithm“FrCa” algorithm used in [9]. It
is based on Frisch and Cardelli’s method from [5].
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In the subsequent plots, our implementation of the lean-log algorithm is
referred to as BitC.

The tests have been performed on an Intel Xeon 2.5 GHz machine running
GNU/Linux 2.6.

Pathological Expressions

To get an indication of the “raw” throughput for each tool, a⋆ was run on
sequences of as (Figure A.2a). (Note that the plots use log scales on both
axes, so as to accommodate the dramatically varying running times.) Perl
outperforms the rest, likely due to a strategy where it falls back on a simple
scan of the input. FrCa stores each position in the input string from which
a match can be made, which in this case is every position. As a result, FrCa
uses significantly more memory than the rest, causing a dramatic slowdown.

The expression (a|b)⋆a(a|b)n with the input (ab)n/2 is a worst-case for
DFA-based methods, as it results in a number of states exponential in n. Perl
has been omitted from the plots, as it was prohibitively slow. Tcl, Rcp, and
Grep all perform orders of magnitude slower than FrCa, RE2, and BitC (Fig-
ure A.2b), indicating that Tcl and Grep also use a DFA for this expression. If
we fix n to 25, it becomes clear that FrCa is slower than the rest, likely due to
high memory consumption as a result of its storing all positions in the input
string (Figure A.2c). The asymptotic running times of the others appear to be
similar to each other, but with greatly varying constants.

For the backtracking worst-case expression (a?)nan in Figure A.3a, BitC
performs roughly like RE2.2 In contrast to Rcp and FrCa, which are both
highly sensitive to the direction of non-determinism, BitC has the same perfor-
mance for both (a?)nan and an(a?)n (Figure A.3b).

Practical Examples

We have run the comparisons with various “real-life” examples of REs taken
from [12], all of which deal with expressions matching e-mail addresses. In
Figure A.4b, BitC is significantly slower than in the other examples. This can
likely be ascribed to heavy use of bounded repetitions in this expression, as
they are currently just rewritten into concatenations and alternations in our
implementation.

In the other two cases, BitC’s performance is roughly like that of Grep.
This is promising for BitC since Grep performs only RE matching, not full pars-
ing. RE2 is consistently ranked as the fastest program in our benchmarks,
presumably due to its aggressive optimizations and ability to dynamically
choose between several strategies. Recall that RE2 performs greedy leftmost
subgroup matching, not full parsing. Our present prototype of BitC is coded

2The expression parser in BitC failed for the largest expressions, which is why they are not
on the plot.
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in less than 1000 lines of C. It uses only standard libraries and performs no op-
timizations such as NFA-minimization, DFA-construction, cached or parallel
NFA-simulation, etc. This is future work.

A.7 Related work
The known RE parsing algorithms can be divided into four categories. The
first category is Perl-style backtracking used in many tools and libraries for
RE subgroup matching [1]; it has an exponential worst case running time, but
always produces the greedy parse and enables some extensions to REs such
as backreferences. Another category consists of context-free parsing meth-
ods, where the RE is first translated to a context-free grammar, before a gen-
eral context-free parsing algorithm such as Earley’s [3] using cubic time is
applied. An interesting CFG method is derivatives-based parsing [8]. While
efficient parsers exist for subsets of unambiguous context-free languages, this
restriction propagates to REs, and thus these parsers can only be applied for
subsets of unambiguous REs. The third category contains RE scalable parsing
algorithms that do not always produce the greedy parse. This includes NFA
and DFA based algorithms provided by Dubé and Feeley [2] and Nielsen and
Henglein [9], where the RE is first converted to an NFA with additional in-
formation used to parse strings or to create a DFA preserving the additional
information for parsing. This category also includes the algorithm by Fischer,
Huch and Wilke [4]; it is left out of our tests since its Haskell-based imple-
mentation often turned out not to be competitive with the other tools. The
last category consists of the algorithms that scale well and always produce
greedy parse trees. Kearns [7] and Frisch and Cardelli [5] reverse the input;
perform backwards NFA-simulation, building a log of NFA-states reached at
each input position; and construct the greedy parse tree in a final forward
pass over the input. They require storing the input symbol plus m bits per
input symbol for the log. This can be optimized to storing bits proportional
to the number of NFA-states reached at a given input position [9], although
the worst case remains the same. Our lean log algorithm uses only 2 passes,
does not require storing the input symbols and stores only k < 1

3 m bits per
input symbol in the string.
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Figure A.2: Comparisons using very simple iteration expressions.
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Optimally Streaming Greedy Regular
Expression Parsing1

Niels Bjørn Bugge Grathwohl, Fritz Henglein and Ulrik Terp Rasmussen

Department of Computer Science, University of Copenhagen (DIKU)

Abstract

We study the problem of streaming regular expression parsing: Given
a regular expression and an input stream of symbols, how to output a
serialized syntax tree representation as an output stream during input
stream processing.

We show that optimally streaming regular expression parsing, out-
putting bits of the output as early as is semantically possible for any
regular expression of size m and any input string of length n, can be per-
formed in time O(2m log m + mn) on a unit-cost random-access machine.
This is for the wide-spread greedy disambiguation strategy for choosing
parse trees of grammatically ambiguous regular expressions. In partic-
ular, for a fixed regular expression, the algorithm’s run-time scales lin-
early with the input string length. The exponential is due to the need
for preprocessing the regular expression to analyze state coverage of its
associated NFA, a PSPACE-hard problem, and tabulating all reachable
ordered sets of NFA-states.

Previous regular expression parsing algorithms operate in multiple
phases, always requiring processing or storing the whole input string be-
fore outputting the first bit of output, not only for those regular expres-
sions and input prefixes where reading to the end of the input is strictly
necessary.

B.1 Introduction
In programming, regular expressions are often used to extract information
from an input, which requires an intensional interpretation of regular expres-
sions as denoting parse trees, and not just their ordinary language-theoretic
interpretation as denoting strings.

This is a nontrivial change of perspective. We need to deal with gram-
matical ambiguity—which parse tree to return, not just that it has one—and
memory requirements become a critical factor: Deciding whether a string be-
longs to the language denoted by (ab)⋆ + (a+ b)⋆ can be done in constant
space, but outputting the first bit, whether the string matches the first alterna-
tive or only the second, may require buffering the whole input string. This is
an instructive case of deliberate grammatical ambiguity to be resolved by the
prefer-the-left-alternative policy of greedy disambiguation: Try to match the

1The order of authors is insignificant.
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left alternative; if that fails, return a match according to the right alternative
as a fallback. Straight-forward application of automata-theoretic techniques
does not help: (ab)⋆ + (a+ b)⋆ denotes the same language as (a+ b)⋆, which
is unambiguous and corresponds to a small DFA, but is also useless: it doesn’t
represent any more when a string consists of a sequence of ab-groups.

Previous parsing algorithms [9, 3, 5, 10, 13, 6] require at least one full pass
over the input string before outputting any output bits representing the parse
tree. This is the case even for regular expressions requiring only bounded
lookahead such as one-unambiguous regular expressions [1].

In this paper we study the problem of optimally streaming parsing. Con-
sider

(ab)⋆ + (a+ b)⋆,

which is ambiguous and in general requires unbounded input buffering, and
consider the particular input string

ab . . . abaababababab . . . .

An optimally streaming parsing algorithm needs to buffer the prefix ab . . . ab
in some form because the complete parse might match either of the two al-
ternatives in the regular expression, but once encountering aa, only the right
alternative is possible. At this point it outputs this information and the out-
put representation for the buffered string as parsed by the second alternative.
After this, it outputs a bit for each input symbol read, with no internal buffer-
ing: input symbols are discarded before reading the next symbol. Optimality
means that output bits representing the eventual parse tree must be produced
earliest possible: as soon as they are semantically determined by the input pro-
cessed so far under the assumption that the parse will succeed.

Outline. In Section B.2 we recall the type interpretation of regular expres-
sions, where a regular expression denotes parse trees, along with the bit-coding
of parse trees.

In Section B.3 we introduce a class of Thompson-style augmented non-
deterministic finite automata (aNFAs). Paths in such an aNFA naturally rep-
resent complete parse trees, and paths to intermediate states represent partial
parse trees for prefixes of an input string.

We recall the greedy disambiguation strategy in Section B.4, which speci-
fies a deterministic mapping of accepted strings to NFA-paths.

Section B.5 contains a definition of what it means to be an optimally stream-
ing implementation of a parsing function.

We define what it means for a set of aNFA-states to cover another state in
Section B.6, which constitutes the computationally hardest part needed in our
algorithm.

Section B.7 contains the main results. We present path trees as a way of
organizing partial parse trees, and based on these we present our algorithm
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for an optimally streaming parsing function and analyze its asymptotic run-
time complexity.

Finally, in Section B.8, the algorithm is demonstrated by illustrative exam-
ples alluding to its expressive power and practical utility.

B.2 Preliminaries
In the following section, we recall definitions of regular expressions and their
interpretation as types [10].

Definition 5 (Regular expression). A regular expression (RE) over a finite al-
phabet Σ is an expression E generated by the grammar

E ::= 0 | 1 | a | E1E2 | E1 + E2 | E⋆
1

where a ∈ Σ.

Concatenation (juxtaposition) and alternation (+) associates to the right;
parentheses may be inserted to override associativity. Kleene star (⋆) binds
tightest, followed by concatenation and alternation.

The standard interpretation of regular expressions is as descriptions of
regular languages.

Definition 6 (Language interpretation). Every RE E denotes a languageLJEK ⊆
Σ⋆ given as follows:

LJ0K = ∅ LJE1E2K = LJE1KLJE2K LJaK = {a}
LJ1K = {ϵ} LJE1 + E2K = LJE1K∪ LJE2K LJE⋆

1K = ∪
n≥0

LJE1Kn

where we have A1 A2 = {w1w2 | w1 ∈ A1, w2 ∈ A2}, and A0 = {ϵ} and
An+1 = AAn.

Proviso: Henceforth we shall restrict ourselves to REs E such that LJEK ̸= ∅.
For regular expression parsing, we consider an alternative interpretation

of regular expressions as types.

Definition 7 (Type interpretation). Let the syntax of values be given by

v ::= () | inl v1 | inr v1 | ⟨v1, v2⟩ | [v1, v2, ..., vn]

Every RE E can be seen as a type describing a set T JEK of well-typed values:

T J0K = ∅ T JE1E2K = {⟨v1, v2⟩ | v1 ∈ T JE1K, v2 ∈ T JE2K}
T J1K = {()} T JE1 + E2K = {inl v | v ∈ T JE1K} ∪ {inr v | v ∈ T JE2K}
T JaK = {a} T JE⋆

1K = {[v1, . . . , vn] | n ≥ 0∧ ∀1 ≤ i ≤ n.vi ∈ T JE1K}
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We write |v| for the flattening of a value, defined as the word obtained by
doing an in-order traversal of v and writing down all the symbols in the order
they are visited. We write TwJEK for the restricted set {v ∈ T JEK | |v| = w}.
Regular expression parsing is a generalization of the acceptance problem of
determining whether a word w belongs to the language of some RE E, where
additionally we produce a parse tree from TwJEK. We say that an RE E is
ambiguous iff there exists a w such that |TwJEK| > 1.

Any well-typed value can be serialized into a sequence of bits.

Definition 8 (Bit-coding). Given a value v ∈ T JEK, we denote its bit-code by
⌜v⌝ ⊆ {0, 1}⋆, defined as follows:

⌜()⌝ = ϵ ⌜a⌝ = ϵ ⌜inl v⌝ = 0 ⌜v⌝
⌜⟨v1, v2⟩⌝ = ⌜v1⌝ ⌜v2⌝ ⌜[v1, ..., vn]⌝ = 0 ⌜v1⌝ ... 0 ⌜vn⌝ 1 ⌜inr v⌝ = 1 ⌜v⌝

We writeBJEK for the set {⌜v⌝ | v ∈ T JEK} andBwJEK for the set restricted
to bit-codes for values with a flattening w. Note that for any RE E, bit-coding
is an isomorphism when seen as a function ⌜·⌝E : T JEK→ BJEK.
B.3 Augmented Automata

In this section we recall from an earlier paper [6] the construction of finite
automata from regular expressions. Our construction is similar to that of
Thompson [15], but augmented with extra annotations on non-deterministic
ϵ-transitions. The resulting state machines can be seen as non-deterministic
transducers which for each accepted input string in the language of the un-
derlying regular expression outputs the bit-codes for the corresponding parse
trees.

Definition 9 (Augmented non-deterministic finite automaton). An augmented
non-deterministic finite automaton (aNFA) is a tuple (State, δ, qin, qfin), where
State is a finite set of states, qin, qfin ∈ State are initial and final states, respec-
tively, and δ ⊆ State× Γ × State is a labeled transition relation with labels
Γ = Σ ⊎ {0, 1, ϵ}.

Transition labels are divided into the disjoint sets Σ (symbol labels); {0, 1}
(bit-labels); and {ϵ} (ϵ-labels). Σ-transitions can be seen as input actions, and
bit-transitions as output actions.

Definition 10 (aNFA construction). Let E be an RE and define an aNFA ME =
(StateE, δE, qinE , qfinE ) by induction on E. We give the definition diagrammati-
cally by cases:
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E ME

0 qin qfin

1 qin (qin = qfin)

a qin qfina

E1E2 qin q′ qfin
ME1 ME2

E1 + E2 qin

q1

q2

q′1

q′2

qfin
0

1

ϵ

ϵ

ME1

ME2

E⋆
1

qin q′ qfin

q1 q′1
ME1

ϵ 1

0 ϵ

In the above, the notation q1 q2M means that q1, q2 are initial and final
states, respectively, in some (sub-)automaton M.

See Figure B.1 for an example.

Definition 11 (Path). A path in an aNFA is a finite and non-empty sequence
α ∈ State⋆ of the form α = p0 p1 ... pn−1 such that for each i < n, we have
(pi, γi, pi+1) ∈ δE for some γi. As a shorthand for this fact we might write
p0

α⇝ pn−1 (note that a single state is a path to itself).
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Each path α is associated with a (possibly empty) sequence of labels lab(α):
we let read(α) and write(α) refer to the corresponding subsequences of lab(α)
filtered by Σ and {0, 1}, respectively. An automaton accepts a word w iff we
have qin

α⇝ qfin for some α where read(α) = w. There is a one-to-one corre-
spondence between bit-codes and accepting paths:

Proposition B.3.1. For any RE E with aNFA ME, we have for each w ∈ LJEK that

{write(α) | qin
α⇝ qfin ∧ read(α) = w} = BwJEK.

Determinization. Given a state set Q, define its closure as the set

closure(Q) = {q′ | q ∈ Q ∧ ∃α.read(α) = ϵ ∧ q
α⇝ q′}.

For any aNFA M = (State, δ, qin, qfin), let D(M) = (DStateM, IM, FM, ∆M) be
the deterministic automaton obtained by applying the standard subset sum
construction: Here, IM = closure({qin}) is the initial state, and DStateM ⊆
2State is the set of states, defined to be the smallest set containing IM and
closed under the transition function: for all a ∈ Σ and Q ∈ DStateM, we
have ∆M(Q, a) ∈ DStateM, where

∆M(Q, a) = closure({q′ | (q, a, q′) ∈ δ, q ∈ Q}).

The set of final states is FM = {Q ∈ DStateM | qfin ∈ Q}.

B.4 Disambiguation

A regular expression parsing algorithm has to produce a parse tree for an
input word whenever the word is in the language for the underlying RE. In
the case of ambiguous REs, the algorithm has to choose one of several can-
didates. We do not want the choice to be arbitrary, but rather a parse tree
which is uniquely identified by a disambiguation policy. Since there is a one-to-
one correspondence between words in the language of an RE E and accepting
paths in ME, a disambiguation policy can be seen as a deterministic choice
between aNFA paths recognizing the same string.

We will focus on greedy disambiguation, which corresponds to choosing
the first result that would have been found by a backtracking regular expres-
sion parsing algorithm such as the one found in the Perl programming lan-
guage [16]. The greedy strategy has successfully been implemented in previ-
ous work [5, 6], and is simpler to define and implement than other strategies
such as POSIX [8, 4] whose known parsing algorithms are technically more
complicated [11, 13, 14].
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Greedy disambiguation can be seen as picking the accepting path with
the lexicographically least bitcode. A well-known problem with backtrack-
ing parsing is non-termination in the case of regular expressions with nul-
lable subexpressions under Kleene star, which means that the lexicographi-
cally least path is not always well-defined. This problem can easily be solved
by not considering paths with non-productive loops, as in [5].

B.5 Optimal Streaming
In this section we specify what it means to be an optimally streaming imple-
mentation of a function from sequences to sequences.

We write w ⊑ w′′ if w is a prefix of w′′, that is ww′ = w′′ for some w′.
Note that ⊑ is a partial order with greatest lower bounds for nonempty sets:d

L = w if w ⊑ w′′ for all w′′ ∈ L and ∀w′.(∀w′′ ∈ S.w′ ⊑ w′′) ⇒ w′ ⊑ w.d
L is the longest common prefix of all words in L.

Definition 12 (Completions). The set of completions CE(w) of w in E is the set
of all words in LJEK that have w as a prefix:

CE(w) = {w′′ | w ⊑ w′′ ∧ w′′ ∈ LJEK}.
Note that CE(w) may be empty.

Definition 13 (Extension). For nonempty CE(w) the unique extension ŵE of
w under E is the longest extension of w with a suffix such that all successful
extensions of w to an element of LJEK are also extensions of ŵ:

ŵE =
l

CE(w).

Word w is extended under E if w = ŵ; otherwise it is unextended.

Extension is a closure operation: ˆ̂w = ŵ; in particular, extensions are ex-
tended.

Definition 14 (Reduction). For empty CE(w) the unique reduction w̄E of w
under E is the longest prefix w′ of w such that CE(w′) ̸= ∅.

Given parse function PE(·) : LJEK → BJEK for complete input strings,
we can now define what it means for an implementation of it to be optimally
streaming:

Definition 15 (Optimally streaming). The optimally streaming function corre-
sponding to PE(·) is

OE(w) =

{ d
{PE(w′′) | w′′ ∈ CE(w)} if CE(w) ̸= ∅

(
d

OE(w̄))♯ if CE(w) = ∅.
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The first condition expresses that after seeing prefix w the function must
output all bits that are a common prefix of all bit-coded parse trees of words in
LJEK that w can be extended to. The second condition expresses that as soon
as it is clear that a prefix has no extension to an element of LJEK, an indicator
♯ of failure must be emitted, with no further output after that. In this sense
OE is optimally streaming: It produces output bits at the semantically earliest
possible time during input processing.

It is easy to check that OE is a streaming function:

w ⊑ w′ ⇒ OE(w) ⊑ OE(w′)

The definition has the, at first glance, surprising consequence that OE may
output bits for parts of the input it has not even read yet:

Proposition B.5.1. OE(w) = OE(ŵ)

E.g. for E = (a+ a)(a+ a) we have OE(ϵ) = 00; that is, OE outputs 00
off the bat, before reading any input symbols, in anticipation of aa being the
only possible successful extension. Assume the input is ab. After reading a it
does not output anything, and after reading b it outputs ♯ to indicate a failed
parse, the total output being 00♯.

B.6 Coverage
Our algorithm is based on simulating aNFAs in lock-step, maintaining a set of
partial paths reading the prefix w of the input that has been consumed so far.
In order to be optimally streaming, we have to identify partial paths which
are guaranteed not to be prefixes of a greedy parse for a word in CE(w).

In this section, we define a coverage relation which our parsing algorithm
relies on in order to detect the aforementioned situation. In the following, fix
an RE E and its aNFA ME = (StateE, δE, qinE , qfinE ).

Definition 16 (Coverage). Let p ∈ StateE be a state and Q ⊆ StateE a state
set. We say that Q covers p, written Q ⊒ p, iff

{read(α) | q
α⇝ qfin, q ∈ Q} ⊇ {read(β) | p

β
⇝ qfin} (B.1)

Coverage can be seen as a slight generalization of language inclusion. That
is, if Q ⊒ p, then every word suffix read by a path from p to the final state can
also be read by a path from one of the states in Q to the final state.

Let Me refer to the automaton obtained by reversing the direction of all
transitions and swapping the initial and final states. It can easily be verified
that if (B.1) holds for some Q, p, then the following property also holds in the
reverse automaton ME:

{read(α) | qin
α⇝ q, q ∈ Q} ⊇ {read(β) | qin

α⇝ p} (B.2)



78 PAPER B. OPTIMALLY STREAMING PARSING

If we consider D(ME), the deterministic automaton generated from ME, then
we see that (B.2) is satisfied iff

∀S ∈ DStateME
. p ∈ S⇒ Q ∩ S ̸= ∅ (B.3)

This is true since a DFA state S is reachable by reading a word w in D(ME) iff
every q ∈ S is reachable by reading w in ME. Since a DFA accepts the same
language as the underlying aNFA, this implies that condition (B.2) must hold
iff Q has a non-empty intersection with all DFA states containing p.

The equivalence of (B.1) and (B.3) gives us a method to decide ⊒ in an
aNFA M, provided that we have computed D(M) beforehand. Checking (B.3)
for a particular Q and p can be done by intersecting all states ofDStateME

with
Q, using time O(|Q||DStateME

|) = O(|Q|2O(m)), where m is the size of the RE
E.

The exponential cost appears to be unavoidable – the problem of deciding
coverage is inherently hard to compute:

Proposition B.6.1. The problem of deciding coverage, that is the set {(E, Q, p) |
Q ⊆ StateE ∧Q ⊒ p}, is PSPACE-hard.

Proof. We can reduce regular expression equivalence to coverage: Given reg-
ular expressions E and F, produce an aNFA ME+F for E + F and observe that
ME and MF are subautomata. Now observe that there is a path qinE+F

α⇝ qfinE

(respectively qinE+F
β
⇝ qfinF ) in ME+F iff there is a path qinE

α′⇝ qfinE with read(α) =

read(α′) in ME (respectively qinF
β′

⇝ qfinF with read(β) = read(β′) in MF). Hence,
we have {qinF } ⊒ qinE in ME+F iff LJEK ⊆ LJFK. Since regular expression
containment is PSPACE-complete [12] this shows that coverage is PSPACE-
hard.

Even after having computed a determinized automaton, the decision ver-
sion of the coverage problem is still NP-complete, which we show by reduc-
tion to and from Min-Cover, a well-known NP-complete problem. Let State-
Cover refer to the problem of deciding membership for the language

{(M, D(M), p, k) | ∃Q. |Q| = k ∧ p ̸∈ Q ∧Q ⊒ p in M}.

Recall that Min-Cover is the problem of deciding membership for the lan-
guage {(X,F , k) | ∃C ⊆ F .|C| = k ∧ X =

∪ C}.
Proposition B.6.2. State-Cover is NP-complete.

Proof. State-Cover⇒Min-Cover: Let (M, D(M), p, k) be given. Define X =
{S ∈ DStateM | p ∈ S} andF = {Rq | q ∈ ∪

X}where Rq = {S ∈ X | q ∈ S}.
Then any k-sized set cover C = {Rq1 , ..., Rqk} gives a state cover Q = {q1, ..., qk}
and vice-versa.
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Min-Cover ⇒ State-Cover: Let (X,F , k) be given, where |X| = m and
|F | = n. Construct an aNFA MX,F over the alphabet Σ = X ⊎ {$}. Define its
states to be the set {qin, qfin, p} ∪ {F1, ..., Fn}, and for each Fi, add transitions
Fi

$→ qfin and qin
xij→ Fi for each xij ∈ Fi. Finally add transitions p $→ qfin and

qin x→ p for each x ∈ X.
Observe that D(MX,F ) will have states {{qin}, {qfin}} ∪ {Sx | x ∈ X}

where Sx = {F ∈ F | x ∈ F} ∪ {p}, and ∆({qin}, x) = Sx. Also, the time
to compute D(MX,F ) is bounded by O(|X||F |). Then any k-sized state cover
Q = {F1, ..., Fk} is also a set cover.

B.7 Algorithm
Our parsing algorithm produces a bit-coded parse tree from an input string w
for a given RE E. We will simulate ME in lock-step, reading a symbol from w
in each step. The simulation maintains a set of all partial paths that read the
prefix of w that has been consumed so far; there are always only finitely many
paths to consider, since we restrict ourselves to paths without non-productive
loops. When a path reaches a non-deterministic choice, it will “fork” into two
paths with the same prefix. Thus, the path set can be represented as a tree
of states, where the root is the initial state, the edges are transitions between
states, and the leaves are the reachable states.

Definition 17 (Path trees). A path tree is a rooted, ordered, binary tree with
internal nodes of outdegrees 1 or 2. Nodes are labeled by aNFA-states and
edges by Γ = Σ ∪ {0, 1} ∪ {ϵ}. Binary nodes have a pair of 0- and 1-labeled
edges (in this order only), respectively.

We use the following notation:

• root(T) is the root node of path tree T.

• path(n, c) is the path from n to c, where c is a descendant of n.

• init(T) is the path from the root to the first binary node reachable or to
the unique leaf of T if it has no binary node.

• leaves(T) is the ordered list of leaf nodes.

• Trempty is the empty tree.

As a notational convenience, the tree with a root node labeled q and no chil-
dren is written q⟨·⟩, where q is an aNFA-state. Similarly, a tree with a root
labeled q with children l and r is written q⟨0 : l, 1 : r⟩, where q is an aNFA-
state and l and r are path trees and the edges from q to l and r are labeled
0 and 1, respectively. Unary nodes are labelled by Σ ∪ {ϵ} and are written
q⟨ℓ : c⟩, denoting a tree rooted at q with only one ℓ-labelled child c.
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In the following we shall use Tw to refer to a path tree created after pro-
cessing input word w and T to refer to path trees in general, where the input
string giving rise to the tree is irrelevant.

Definition 18 (Path tree invariant). Let Tw be a path tree and w a word. Define
I(Tw) as the proposition that all of the following hold:

(i) The leaves(Tw) have pairwise distinct node labels; all labels are symbol
sources, that is states with a single symbol transition, or the accept state.

(ii) All paths from the root to a leaf read w:

∀n ∈ leaves(Tw). read(path(root(Tw), n)) = w.

(iii) For each leaf n ∈ leaves(Tw) there exists w′′ ∈ CE(w) such that the bit-
coded parse of w′′ starts with write(path(root(Tw), n)).

(iv) For each w′′ ∈ CE(w) there exists n ∈ leaves(Tw) such that the bit-coded
parse of w′′ starts with write(path(root(Tw), n)).

The path tree invariant is maintained by Algorithm 2: line 2 establishes
part (i); line 3 establishes part (ii); and lines 4–7 establishes part (iii) and (iv).

Algorithm 1 Optimally streaming parsing algorithm.
Input: An aNFA M, a coverage relation ⊒, and an input stream S.
Output: Greedy leftmost parse tree, emitted in optimally-streaming fashion.

1: function Stream-Parse(M, ⊒, S)
2: w← ϵ
3: (Tϵ, )← closure(M, ∅, qin) ▷ Initial path tree as output of closure
4: while S has another input symbol a do
5: if CE(wa) = ∅ then
6: return write(init(Tw)) followed by ♯ and exit.
7: Twa ← Establish-Invariant(Tw, a,⊒)
8: Output new bits on the path to the first binary node in Twa, if any.
9: w← wa

10: if qfin ∈ leaves(Tw) then
11: return write(path(root(Tw), qfin))
12: else
13: return write(init(Tw)) followed by ♯

Theorem B.7.1 (Optimal streaming property). Assume extended w, CE(w) ̸=
∅. Consider the path tree Tw after reading w upon entry into the while-loop of the
algorithm in Algorithm 1. Then write(init(Tw)) = OE(w).
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Algorithm 2 Establishing invariant I(Twa)

Input: A path tree Tw satisfying I(Tw), a character a, and coverage relation⊒.
Output: A path tree Twa satisfying invariant I(Twa).

1: function Establish-Invariant(Tw, a, ⊒)
2: Remove leaves from Tw that do not have a transition on a.
3: Extend Tw to Twa by following all a-transitions.
4: for each leaf n in Twa do
5: (T′, )← closure(M, ∅, n).
6: Replace the leaf n with the tree T′ in Twa.
7: return prune(Twa,⊒)

Algorithm 3 Pruning algorithm.
Input: A path tree T and a covering relation ⊒.
Output: A pruned path tree T′ where all leaves are alive.

1: function prune(T,⊒)
2: for each l in reverse(leaves(T)) do
3: S← {n | n comes before l in leaves(T)}
4: if S ⊒ l then
5: p← parent(l)
6: Delete l from T
7: T ← cut(T, p)
8: return T
9: function cut(T, n) ▷ Cuts a chain of 1-ary nodes.

10: if |children(n)| = 0 then
11: p← parent(n)
12: T′ ← T with n removed
13: return cut(T′, p)
14: else
15: return T

In other words, the initial path from the root of Tw to the first binary node
in Tw is the longest common prefix of all paths accepting an extension of w.
Operationally, whenever that path gets longer by pruning branches, we out-
put the bits on the extension.

Proof. Assume w extended, that is w = ŵ; assume CE(w) ̸= ∅, that is there
exists w′′ such that w ⊑ w′′ and w′′ ∈ LJEK.

Claim: |leaves(Tw)| ≥ 2 or the unique node in leaves(Tw) is labeled by
the accept state. Proof of claim: Assume otherwise, that is |leaves(Tw)| = 1,
but its node is not the accept state. By (i) of I(Tw), this means the node must
have a symbol transition on some symbol a. In this case, all accepting paths
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Algorithm 4 ϵ-closure with path tree construction.
Require: An aNFA M, a set of visited states V, and a state q
Ensure: A path tree T and a set of visited states V ′

1: function closure(M, V, q)
2: if q 0→ ql and q 1→ qr then
3: (Tl , Vl)← closure(M, V ∪ {q} , ql) ▷ Try left option first.
4: (Tr, Vlr)← closure(M, Vl , qr) ▷ Use Vl to skip already-visited

nodes.
5: return (q⟨Tl : Tr⟩, Vlr)

6: if q ϵ→ p then
7: if p ∈ V then ▷ Stop loops.
8: return (Trempty, V)
9: else

10: (T′, V ′)← closure(M, V ∪ {q} , p)
11: return (q⟨ϵ : T′⟩, V ′)
12: else ▷ q is a symbol source or the final state.
13: return (q⟨·⟩, V)

CE(wa) = CE(w) and thus ŵ = ŵa; in particular ŵ ̸= w, which, however, is a
contradiction to the assumption that w is extended.

This means we have two cases. The case |leaves(Tw)| = 1 with the sole
node being labeled by the accept state is easy: It spells a single path from
initial to accept state. By (ii) and (iii) of I(Tw) we have that that path is correct
for w. By (iv) and since the accept state has no outgoing transitions, we have
CE(w) = {w}, and the theorem follows for this case.

Let us consider the case |leaves(Tw)| ≥ 2 then. Recall that CE(w) ̸= ∅ by
assumption. By (iv) of I(Tw) the accepting path of every w′′ ∈ CE(w) starts
with path(root(Tw), n) for some n ∈ leaves(Tw), and by (iii) each path from the
root to a leaf is the start of some accept path. Since |leaves(Tw)| ≥ 2 we know
that there exists a binary node in Tw. Consider the first on the path from the
root to a leaf. It has both 0- and 1-labeled out-edges. Thus the longest common
prefix of {write(p) | n ∈ leaves(Tw), p ∈ path(root(Tw), n)} is write(init(Tw)),
the bits on the initial path from the root of Tw to its first binary node.

The algorithm, as given, is only optimally streaming for extended prefixes.
It can be made to work for all prefixes by enclosing it in an outer loop that for
each prefix w computes ŵ and calls the given algorithm with ŵ. The outer
loop then checks that subsequent symbols match until ŵ is reached. By Propo-
sition B.5.1 the resulting algorithm gives the right result for all input prefixes,
not only extended ones.

Theorem B.7.2. The optimally streaming algorithm can be implemented to run in
time O(2m log m + mn), where m = |E| and n = |w|.
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Sketch. As shown in Section B.6, we can decide coverage in time O(m2O(m)).
The set of ordered lists leaves(T) for any T reachable from the initial state
can be precomputed and covered states marked in it. (This requires unit-cost
random access since there are O(2m log m) such lists.) The ϵ-closure can be
computed in time O(m) for each input symbol, and pruning can be amortized
over ϵ-closure computation by charging each edge removed to its addition to
a tree path.

For fixed regular expression E this is linear time in n and thus asymptoti-
cally optimal. An exponential in m as an additive preprocessing cost appears
practically unavoidable since we require the coverage relation, which is inher-
ently hard to compute (Proposition B.6.1).

B.8 Example

Consider the RE (aaa+ aa)⋆. A simplified version of its symmetric position
automaton is shown in Figure B.2. The following two observations are re-
quirements for an earliest parse of this expression:

• After one a has been read, the algorithm must output a 0 to indicate that
one iteration of the Kleene star has been made, but:

• five consecutive as determine that the leftmost possibility in the Kleene
star choice was taken, meaning that the first three as are consumed in
that branch.

The first point can be seen by noting that any parse of a non-zero number
of as must follow a path through the Kleene star. This guarantees that if a
successful parse is eventually performed, it must be the case that at least one
iteration was made.

The second point can be seen by considering the situation where only four
input as have been read: It is not known whether these are the only four or
more input symbols in the stream. In the former case, the correct (and only)
parse is two iterations with the right alternative, but in the latter case, the first
three symbols are consumed in the left branch instead.

These observations correspond intuitively to what “earliest” parsing is; as
soon as it is impossible that an iteration was not made, a bit indicating this
fact is emitted, and as soon as the first three symbols must have been parsed
in the left alternative, this fact is output. Furthermore, a 0-bit is emitted to
indicate that (at least) another iteration is performed.

Figure B.2 shows the evolution of the path tree during execution with the
RE (aaa+ aa)⋆ on the input aaaaa.

By similar reasoning as above, after five as it is safe to commit to the left al-
ternative after every thirda. Hence, for the inputsaaaaa(aaa)n, aaaaa(aaa)na,
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and aaaaa(aaa)naa the “commit points” are placed as follows (· indicate end-
of-input):

a
0
| aaaa

00
|
(
aaa
00
| · · · | aaa

00

)
︸ ︷︷ ︸

n times

| ·
11

a
0
| aaaa

00
|
(
aaa
00
| · · · | aaa

00

)
︸ ︷︷ ︸

n times

| a·
01

a
0
| aaaa

00
|
(
aaa
00
| · · · | aaa

00

)
︸ ︷︷ ︸

n times

| aa·
1011

Complex coverage. The previous example does not exhibit any non-trivial
coverage, i.e., situations where a state n is covered by k > 1 other states. One
can construct an expression that contains non-trivial coverage relations by
observing that if each symbol source s in the aNFA is associated with the RE
representing the language recognized from s, coverage can be expressed as
a set of (in)equations in Kleene algebra. Thus, the coverage {n0, n1} ⊒ n be-
comes RE(n0) + RE(n1) ≥ RE(n) in KA, where RE(·) is the function that
yields the RE from a symbol source in an aNFA.

Any expression of the form x1zy1 + x2zy2 + x3z(y1 + y2) satisfies the prop-
erty that two subterms cover a third. If the coverage is to play a role in the
algorithm, however, the languages denoted by x1 and x2 must not subsume
that of x3, otherwise the part starting with x3 would never play a role due to
greedy leftmost disambiguation.

Choose x1 = x2 = (aa)⋆, x3 = a⋆, y1 = a, and y2 = b. Figure B.3 shows
the expression

(aa)⋆za+ aa⋆zb+ a⋆za+ b = (aa)⋆(za+ zb) + a⋆z(a+ b).

The earliest point where any bits can be output is when the z is reached. Then
it becomes known whether there was an even or odd number of as. Due to
the coverage {8, 13} ⊒ 20 state 20 is pruned away on the input aazb, thereby
causing the path tree to have a large trunk that can be output.

CSV files. The expression ((a+ b)⋆(;(a+ b)⋆)⋆n)⋆ defines the format of a
simple semicolon-delimited data format, with data consisting of words over
{a,b} and rows separated by the newline character, n. Our algorithm emits
the partial parse trees after each letter has been parsed, as illustrated on the
example input below:

a;ba;a
b;;b a

000
| ;
10
| b
01
| a
00
| ;
10
| a
00
| n
11
| b
001
| ;
10
| ;
10
| a
00
| n
11
| ·
1

Due to the star-height of three, many widespread implementations would
not be able to meaningfully handle this expression using only the RE engine.
Capturing groups under Kleene stars return either the first or last match, but
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{5} ⊒ 8
{4} ⊒ 7
{8} ⊒ 5
{7} ⊒ 4
{5} ⊒ 3

Figure B.2: Example run of the algorithm on the regular expression E =
(aaa+ aa)⋆ and the input string aaaaa. The dashed edges represent the par-
tial parse trees that can be emitted: thus, after one awe can emit a 0, and after
five as we can emit 00 because the bottom “leg” of the tree has been removed
in the pruning step. The automaton for E and its associated minimal covering
relation are shown in the inset.
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{14} ⊒ 25
{9} ⊒ 22

{8, 13} ⊒ 20
{4, 5} ⊒ 18
{25} ⊒ 14
{20} ⊒ 13
{22} ⊒ 9
{20} ⊒ 8
{18} ⊒ 5
{18} ⊒ 4

Figure B.3: Example run of the algorithm on E = (aa)⋆(za+ zb) +
a⋆z(a+ b). Note that state 20 is covered by the combination of states 8 and
13. The earliest time the algorithm can commit is when a z is encountered,
which determines if the number of as is even or odd. The top shows the path
tree on the input aaazb. There is a “trunk” from state 1 to state 21 after read-
ing z, as the rest of the branches have been pruned (not shown). This path
corresponds to choosing the right top-level alternative. In the second figure,
we see that if the z appears after an even number of as, a binary-node-free
path from 1 to 7 emerges. Due to the cover {8, 13} ⊒ 20, the branch starting
from 20 is not expanded further, even though there could be a z-transition on
it. This is indicated with  . Overall, the resulting parse tree corresponds to
the leftmost option in the sum.
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not a list of matches—and certainly not a list of lists of matches! Hence, if using
an implementation like Perl’s [16], one is forced to rewrite the expression by
removing the iteration in the outer Kleene star and reintroduce it as a looping
construct in Perl.

B.9 Related and Future Work
Parsing regular expressions is not new [6, 5, 3, 10, 14], and streaming pars-
ing of XML documents has been investigated for more than a decade in the
context of XQuery and XPath—see, e.g., [2, 7, 17]. However, streaming regular
expression parsing appears to be new.

In earlier work [6] we described a compact “lean log” format for storing
intermediate information required for two-phase regular expression parsing.
The algorithm presented here may degenerate to two passes, but requires of-
ten just one pass in the sense being effectively streaming, using only O(m)
work space, independent of n. The preprocessing of the regular expression
and the intermediate data structure during input string processing are more
complex, however. It may be possible to merge the two approaches using a
tree of lean log frames with associated counters, observing that edges in the
path tree that are not labeled 0 or 1 are redundant. This is future work.
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Abstract

We present and illustrate Kleenex, a language for expressing general
nondeterministic finite transducers, and its novel compilation to stream-
ing string transducers with worst-case linear-time performance and sus-
tained high throughput. Its underlying theory is based on transducer
decomposition into oracle and action machines: the oracle machine per-
forms streaming greedy disambiguation of the input; the action machine
performs the output actions. In use cases Kleenex achieves consistently
high throughput rates around the 1 Gbps range on stock hardware. It
performs well, especially in complex use cases, in comparison to both
specialized and related tools such as awk, sed, RE2, Ragel and regular-
expression libraries.

C.1 Introduction

A Kleenex program consists of a context-free grammar, restricted to guarantee
regularity, with embedded side-effecting semantic actions.

We illustrate Kleenex by an example. Consider a large text file containing
unbounded numerals, which we want to make more readable by inserting
separators; e.g. “12742” is to be replaced by “12,742”). In Kleenex, this trans-
formation can be specified as follows:

main := (num /[^0-9]/ | other)*
num := digit{1,3} ("," digit{3})*
digit := /[0-9]/
other := /./

This is the complete program. The program defines a set of nonterminals,
with main being the start symbol. The constructs /[0-9]/, /[^0-9]/ and /./
specify matching a single digit, any non-digit and any symbol, respectively,
and echoing the matched symbol to the output. The construct "," reads noth-
ing and outputs a single comma. The star * performs the inner transformation

1The order of authors is insignificant.
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zero or more times; the repetition {1,3} performs it between 1 and 3 times. Fi-
nally, the | operator denotes prioritized choice, with priority given to the left
alternative. An example of its execution is as follows:

Input read so far …and output produced so far
Surf Surf
Surface:␣ Surface:␣
Surface:␣14479 Surface:␣
Surface:␣1447985 Surface:␣
Surface:␣144798500␣ Surface:␣144,798,500␣
Surface:␣144798500␣kmˆ2 Surface:␣144,798,500␣kmˆ2

The example highlights the following:

Ambiguity by design. Any string is accepted by this program, since any string
matching num /[^0-9]/ also matches (other)*. Greedy disambiguation
forces the num /[^0-9]/ transformation to be tried first, however, and
only if that fails do we fall back to echoing the input verbatim to the
output using other.

Streaming output. The program almost always detects the earliest possible
time an output action can be performed. Any non-digit symbol is writ-
ten to the output immediately, and as soon as the first non-digit symbol
after a sequence of digits is read, the resulting numeral with separators
is written to the output stream. The first of a sequence of digits is not
output right away, however. Employing a strategy that always outputs
as early as possible would require solving a PSPACE-hard problem.

A Kleenex program is first compiled to a possibly ambiguous (finite-state)
transducer. Any transducer can be decomposed into two transducers: an oracle
machine, which maps an input string to a bit-coded representation of the trans-
ducer paths accepting the input, and a deterministic action machine, which
translates such a bit-code to the corresponding sequence of output actions in
the original transducer. The greedy leftmost path in the oracle machine corre-
sponds to the lexicographically least bit-code of paths accepting a given input;
consequently, disambiguation reduces to computing this bit-code for a given
input. To compute it, the oracle machine is simulated in a streaming fashion.
This generalizes NFA simulation to not just yield a single-bit output—accept
or reject—but also the lexicographically least path witnessing acceptance. The
simulation algorithm maintains a path tree from the initial state to all the oracle
machine states reachable by the input prefix read so far. A branching node
represents both sides of an alternative where both are still viable. The out-
put actions on the (possibly empty) path segment from the initial state to the
first branching node can be performed based on the input prefix processed
so far without knowing which of the presently reached states will eventually
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accept the rest of the input. This algorithm generalizes greedy regular expres-
sion parsing [31, 32] to arbitrary right-regular grammars. Regular expressions
correspond to certain well-structured oracle machines via their McNaughton-
Yamada-Thompson construction. The simulation algorithm automatically re-
sults in constant memory space consumption for grammars that are determin-
istic modulo finite lookahead, e.g. one-unambiguous regular expressions [19].
For arbitrary transducers the simulation requires linear space in the size of the
input in the worst case. No algorithm can guarantee constant space consump-
tion: the number of unique path trees computed by the streaming algorithm
is potentially unbounded due to the possibility of arbitrarily much lookahead
required to determine which of two possible alternatives will eventually suc-
ceed. Unbounded lookahead is the reason that not all unambiguous transduc-
ers can be determinized to a finite state machine [53, 13].

By identifying path trees with the same ordered leaves and underlying
branching structure, we obtain an equivalence relation with finite index. That
is, a path tree can be seen as a rooted full binary tree together with an asso-
ciation of output strings with tree edges, and the set of reachable rooted full
binary trees of an oracle machine can can be precomputed analogous to the
NFA state sets reachable in an NFA. We can thus compile an oracle machine
to a streaming string transducer [5, 4, 7], a deterministic machine model with
(unbounded sized) string registers and affine (copy-free) updates associated
with each transition: a path tree is represented as an abstract state and the
contents of a finite set of registers, each containing a bit sequence coding a
path segment of the represented path tree. Upon reading an input, the state
is changed and the registers are updated in-place to represent the subsequent
path tree. This yields a both asymptotically and practically very efficient im-
plementation: the example shown earlier compiles to an efficient C program
that operates with sustained high throughput in the 1 Gbps range on stock
desktop hardware.

The semantic model of context-free grammars with unbridled “regular”
ambiguity and embedded semantic actions is flexible and the above imple-
mentation technology is quite general. For example, the action transducer
is not constrained to producing output in the string monoid, but can be ex-
tended to any monoid. By considering the monoid of affine register updates,
Kleenex can code all nondeterministic streaming string transducers [8].

Contributions

This paper makes the following novel contributions:

• A streaming algorithm for nondeterministic finite state transducers (FST),
which emits the lexicographically least output sequence generated by
all accepting paths of an input string based on decomposition into an



C.1. INTRODUCTION 95

input-processing oracle machine and an output-effecting action machine.
It runs in O(mn) time for transducers of size m and inputs of size n.

• An effective determinization of FSTs into a subclass of streaming string
transducers (SST) [4], finite state machines with copy-free updating of
string registers when entering a new state upon reading an input sym-
bol.

• An expressive declarative language, Kleenex, for specifying FSTs with
full support for and clear semantics of unrestricted nondeterminism
by greedy disambiguation. A basic Kleenex program is a context-free
grammar with embedded semantic output actions, but syntactically re-
stricted to ensure that the input is regular.2 Basic Kleenex programs
can be functionally composed into pipelines. The central technical as-
pect of Kleenex is its semantic support for unbridled nondeterminism
and its effective determinization and compilation to SSTs, which both
highlights and complements the significance of SSTs as a deterministic
machine model.

• An implementation, including empirically evaluated optimizations, of
Kleenex that generates SSTs and deterministic finite-state machines, each
rendered as standard single-threaded C-code that is eventually com-
piled to x86 machine code. The optimizations illustrate the design and
implementation flexibility obtained by the underlying theories of FSTs
and SSTs.

• Use cases that illustrate the expressive power of Kleenex, and a perfor-
mance comparison with related tools, including Ragel [65], RE2 [62] and
specialized string processing tools. These document Kleenex’s consis-
tently high performance (typically around 1 Gbps, single core, on stock
hardware) even when compared to less expressive tools with special-
cased algorithms and to tools with no or limited support for nondeter-
minism.

Overview of paper

In Section C.2 we introduce normalized transducers with explicit determin-
istic and nondeterministic ϵ-transitions. Kleenex and its translation to such
transducers is defined in Section C.3. We then devise an efficient streaming
transducer simulation (Section C.4) and its determinization (Section C.5) to
streaming string transducers. In Section C.6 we briefly describe the compila-
tion to C-code and some optimizations, and we then empirically evaluate the
implementation on a number of simple benchmarks and more realistic use
cases (Section C.7). We conclude with a discussion of related and possible
future work (Section C.8).

2This avoids the Ω(M(n)) lower bound for context-free grammar parsing, where M(n) is
the complexity of multiplying n× n matrices [40].
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We assume basic knowledge of automata [39], compilation [2], and algo-
rithms [21]. Basic results in these areas are not explicitly cited.

C.2 Transducers

An alphabet A is a finite set; e.g. the binary alphabet 2 = {0, 1} and the empty
alphabet ∅ = {}. A∗ denotes the free monoid generated by A, that is the
strings over A with concatenation, expressed by juxtaposition, and the empty
string ε as neutral element. We write A[x, . . .] for extending A with additional
elements x, . . . not in A.

Definition 19 (Finite state transducer). A finite state transducer (FST) T over Σ
and Γ is a tuple (Σ, Γ, Q, q−, q f , E) where

• Σ and Γ are alphabets;
• Q is a finite set of states;
• q−, q f ∈ Q are the initial and final states, respectively;
• E : Q× Σ[ϵ]× Γ[ϵ]×Q is the transition relation.

Its size is the cardinality of its transition relation: |T| = |E|.
T is deterministic if for all q ∈ Q, a ∈ Σ[ϵ] we have

(q, a, b′, q′) ∈ E ∧ (q, a, b′′, q′′) ∈ E ⇒ b′ = b′′ ∧ q′ = q′′

(q, ϵ, b′, q′) ∈ E ∧ (q, a, b′′, q′′) ∈ E ⇒ ϵ = a

The support of a state is the set of symbols it has transitions on:

supp(q) = {a ∈ Σ[ϵ] | ∃q′, b. (q, a, b, q′) ∈ E}.

Deterministic FSTs with no ϵ-transitions and supp(q) = Σ for all q are Mealy
machines. Conversely, every deterministic FST is easily turned into a Mealy
machine by adding a failure state and transitions to it.

We write q a/b−→ q′ whenever (q, a, b, q′) ∈ E, and E is understood from the
context. A path in T is a possibly empty sequence of transitions

q0
a1/b1−−→ q1

a2/b2−−→ . . . an/bn−−→ qn

It has input u = a1a2 . . . an and output v = b1b2 . . . bn. We write q0
u/v−→ qn if

there exists such a path.

Definition 20 (Relational semantics, input language). FST T denotes the bi-
nary relation

R[[T ]] = {(u, v) | q− u/v−→ q f }
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where the ϵ-erasure · : Σ[ϵ]∗ → Σ∗ is ϵ = ε and a = a for all a ∈ Σ, extended
homomorphically to strings. Its input language is

L[[T ]] = {s | ∃t . (s, t) ∈ R[[T ]]}.

Two FSTs are equivalent if they have the same relational semantics.

The class of relations denotable by FSTs are the rational relations; their input
languages are the regular languages [13].

Definition 21 (Normalized FST). A normalized finite state transducer over Σ and
Γ is a deterministic FST over Σ[ϵ0, ϵ1] and Γ such that for all q ∈ Q, q is:

• a choice state: supp(q) = {ϵ0, ϵ1} and q ̸= q f , or
• a skip state: supp(q) = {ϵ} and q ̸= q f , or
• a symbol state: supp(q) = {a} for some a ∈ Σ and q ̸= q f , or
• the final state: supp(q) = {} and q = q f

We say that q is a resting state if q is either a symbol state or the final state.
The relational semanticsR[[T ]] of a normalized FST is the same as in Def-

inition 20, where ϵ-erasure is extended by ϵ0 = ϵ1 = ε.

Proposition C.2.1. For every FST of size m there exists an equivalent normalized
FST of size at most 3m. Conversely, for every normalized FST of size m there exists
an equivalent FST of the same size.

Proof. (Sketch) For each state q with k > 1 outgoing transitions, add k new
states q(1), . . . , q(k), replace the i-th outgoing transition (q, a, b, q′) by (q(i), a, b, q′)
and add a full binary tree of ϵ0- and ϵ1-transitions for reaching each q(i) from
q. In the converse direction, replace ϵ0 and ϵ1 by ϵ.

Normalized FSTs are useful by limiting transition outdegree to 2, having
explicit ϵ-transitions and classifying them into deterministic (ϵ) and ordered
nondeterministic ones (ϵ0, ϵ1).

Proviso. Henceforth we will call normalized FSTs simply transducers.
Let |·| : Σ[ϵ0, ϵ1, ϵ] → 2[ϵ] be defined by |ϵ0| = 0, |ϵ1| = 1 and |a| = ϵ for

all a ∈ Σ[ϵ].

Definition 22 (Oracle and action machines). Let T be a transducer. The oracle
machine T C is defined as T , but with each transition (q, a, b, q′) replaced by
(q, a, |a|, q′). Its action machine T A is T , but with each transition (q, a, b, q′)
replaced by (q, |a|, b, q′).

The oracle machine is a transducer over Σ and 2; the action machine a de-
terministic FST over 2 and Γ. Each transducer can be canonically decomposed
into its oracle and action machines:

Proposition C.2.2. R[[T ]] = R[[T A]] ◦ R[[T C]]
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main := (num /\n/)*
num := digit{1,3} ("," digit{3})*
digit := /a/
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Figure C.1: Top: a Kleenex program and its associated transducer. The pro-
gram accepts a list of newline-separated numbers (simplified to unary num-
bers with digit a) and inserts thousands separators. Bottom: The correspond-
ing oracle and action machines.

where ◦ denotes relational composition. Note that the oracle machine is inde-
pendent of the outputs in the original transducer; in particular, a transducer
where only the outputs are changed has the same oracle machine. Intuitively,
the action machine starts at the initial state the original transducer, automat-
ically follows transitions from resting and skip states, and uses the bit string
from the oracle machine as an oracle—hence the name—to choose which tran-
sition to take from a choice state; in this process it emits the outputs it tra-
verses.

Example 1. Figure C.1 shows a Kleenex program (see Section C.3), the asso-
ciated transducer and its decomposition into oracle and action machines.

Observe that if there is a path q u/v−→ q′ then u uniquely identifies the path
from q to q′ in a transducer and, furthermore, in an oracle machine so does v.

We write q u/v−→np q′′ if the path q u/v−→ q′′ does not contain an ϵ-loop, that is
a subpath q′ u′/v′−−→ q′ where u′ = ε. Paths without ϵ-loops are called nonprob-
lematic paths [29].
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Definition 23 (Greedy semantics). The greedy semantics of a transducer T is
G[[T ]] = R[[T A]] ◦ G[[T C]] where

G[[T C]] = {(u, v) | q− u/v−→np q f ∧

∀u′, v′. q− u′/v′−−→np q f ∧ u = u′ =⇒ v ≤ v′}

and ≤ denotes the lexicographic ordering on bit strings.

Given input string s, the greedy semantics chooses the lexicographically
least path in the transducer accepting s and outputs the corresponding out-
put symbols encountered along the path. The restriction to nonproblematic
paths ensures that there are only finitely many paths accepting s and thus the
lexicographically least amongst them exists, if s is accepted at all. We write
q u/v−→min q′ if q u/v−→ q′ is the lexicographically least nonproblematic path from
q to q′.

A transducer T over Σ and Γ is single-valued if R[[T ]] is a partial function
from Σ∗ to Γ∗.

Proposition C.2.3. Let T be a transducer over Σ and Γ.

• G[[T ]] is a partial function from Σ∗ to Γ∗.

• G[[T ]] = R[[T ]] if T is single-valued.

The greedy semantics can be thought of as a disambiguation policy for trans-
ducers that conservatively extends the standard semantics for single-valued
transducers to a deterministic semantics for arbitrary transducers.

C.3 Kleenex

Kleenex3 is a language for compactly and conveniently expressing transduc-
ers.

Core Kleenex

Core Kleenex is a grammar for directly coding transducers.

Definition 24 (Core Kleenex syntax). A Core Kleenex program is a nonempty
list p = d0d1 . . . dn of definitions di, each of the form N:= t, where N is an
identifier and t is generated by the grammar

t ::= ε | N | a N′ | "b" N′ | N0|N1

3Kleenex is a contraction of Kleene and expression in recognition of the fundamental contri-
butions by Stephen Kleene to language theory.
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where a ∈ Σ and b ∈ Γ for given alphabets Σ, Γ, e.g. some character set. N
ranges over some set of identifiers. The identifiers occurring in p are called
nonterminals. There must be at most one definition of each nonterminal, and
every occurrence of a nonterminal must have a definition.

Definition 25 (Core Kleenex transducer semantics). The transducer associated
with Core Kleenex program p for nonterminal N ∈ N is

Tp(N) = (Σ, Γ,N [q f ], N, q f , E)

where N is the set of nonterminals in p, and E consists of transitions con-
structed from each production in p as follows:

N:= ε N ϵ/ϵ−→ q f

N:= N′ N ϵ/ϵ−→ N′

N:= a N′ N a/ϵ−→ N′

N:= "b" N′ N ϵ/b−→ N′

N:= N′|N′′ N
ϵ0/ϵ−−→ N′ and

N
ϵ1/ϵ−−→ N′′

The semantics of p is the greedy semantics of its associated transducer: G[[p]] =
G[[Tp]](N0) where N0 is a designated start nonterminal. (By convention, this
is main.)

Standard Kleenex

We extend the syntax of right-hand sides in Kleenex productions with arbi-
trary concatenations of the form and N′N′′ and slightly simplify the remain-
ing rules as follows:

t ::= ε | N | a | "b" | N0|N1 | N′N′′

Let p be such a Standard Kleenex program. Its dependency graph Gp = (N , D)
consists of its nonterminals N and the dependencies

D = {N → N′ | N′ occurs in the definition of N in p}.

Define the strict dependencies Ds = {N → N′ | (N:=N′N′′) ∈ p}.

Definition 26 (Well-formedness). A Standard Kleenex program p is well-formed
if no strong component of Gp contains a strict dependency.

Well-formedness ensures that the underlying grammar is non-self-embedding
[10], and thus its input language is regular.
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Definition 27 (Kleenex syntax and semantics). Let p be a well-formed Kleenex
program with nonterminalsN . Define the transitions E ⊆ N ∗×Σ[ϵ0, ϵ1, ϵ]×
Γ[ϵ]×N ∗ as follows:

For rule d add these transitions for all X ∈ N ∗ to E

N:= ε NX ϵ/ϵ−→ X
N:= N′ NX ϵ/ϵ−→ N′X
N:= a NX a/ϵ−→ X

N:= "b" NX ϵ/b−→ X
N:= N′ N′′ NX ϵ/ϵ−→ N′N′′X
N:= N′|N′′ NX

ϵ0/ϵ−−→ N′X and
NX

ϵ1/ϵ−−→ N′′X

Let Reach(N) = {N⃗k | N ./.−→ . . . ./.−→ N⃗k} be the nonterminal sequences
reachable from N along transitions in E. The transducer Tp associated with p
is (Σ, Γ, R, N, ε, E|R) where R = Reach(N) for designated start symbol N and
E|R is E restricted to R. The (greedy) semantics of p is the greedy semantics of
Tp: G[[p]] = G[[Tp]].

The following proposition justifies calling Tp a transducer.

Proposition C.3.1. Let p be a well-formed Standard Kleenex program, with Tp as
defined above. Then R is finite, and Tp is a transducer, that is normalized FST.

Proof. (Sketch) Reach(N) consists of all the nonterminal suffixes of sentential
forms of left-most derivations of p considered as a context-free grammar. In
well-formed Kleenex programs, their maximum length is bounded by |N |. It
is easy to check that every state in R is either a resting, skip, choice or final
state.

Observe that the transducer associated with a Kleenex program can be expo-
nentially bigger than the program itself.

Since a transducer has a straightforward representation in Core Kleenex,
the construction of Tp provides a translation of a well-formed Standard Kleenex
program into Core Kleenex. For example, the Kleenex program on the left
translates into the Core Kleenex program on the right:

M := M′|N
M′ := NNa
Na := a
N := N′|Nε

N′ := NbN
Nb := b
Nε := ε

=⇒

M := N′|N
M′ := N′|Na
Na := aNε

N′ := bM′

N := N′|Nε

Nε := ε
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The Full Surface Language

The full surface syntax of Kleenex is obtained by extending Standard Kleenex
with the following term-level constructors, none of which increase the expres-
sive power:

t ::= . . . | "v" | /e/ | ~t | t0t1 | t0|t1 | t* | t+ | t?
| t{n} | t{n,} | t{,m} | t{n,m}

where v ∈ Γ∗, n, m ∈ N, and e is a regular expression. The terms t0t1 and
t0|t1 desugar into N0N1 and N0|N1, respectively, with additional productions
N0 := t0 and N1 := t1 for new nonterminals N0, N1. The term "v" is short-
hand for a sequence of outputs.

Regular expressions are special versions of Kleenex terms without nonter-
minals. They desugar to terms that output the matched input string, i.e. /e/
desugars by adding an output symbol "a" after every input symbol a in e. For
example, the regular expression /a*|b{n,m}|c?/ becomes

(a"a")*|(b"b"){n,m}|(c"c")?,

which can then be further desugared.
A suppressed subterm ~t desugars into t with all output symbols removed,

including any that might have been added in t by the above construction. For
example, ~("b"/a/) desugars into ~("b" a "a"), which further desugars into
a.

The operators ·*, ·+ and ·? desugar to their usual meaning as regular oper-
ators, as do the repetition operators ·{n}, ·{n,}, ·{,m}, and ·{n,m}. Note that
they all desugar into their greedy variants where matching a subexpression is
preferred over skipping it. For example:

M := (a "b")+ =⇒ M := (a "b")N′

N′ := a "b"N′|ε

Lazy variants can be encoded by making ε the left rather than the right choice
of an alternative.

Register Update Actions

By viewing Γ as an alphabet of effects, we can extend the expressivity of Kleenex
beyond rational functions [13]. Let X be a computable set, and assume that
there is an effective partial action Γ × X → X. It is simple to define a de-
terministic machine implementing the function Γ∗ × X → X by successively
applying a list of actions to some starting state X. Any Kleenex program then
denotes a function Σ∗×X → X by composing its greedy semantics with such
a machine. If we can implement the pure transducer part in a streaming fash-
ion, then a state X can be maintained on-the-fly by interpreting output actions
as soon as they become available.
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Let X = (Γ∗)+ × (Γ∗)n for some n, representing a non-empty stack of out-
put strings and n string registers. The transducer output alphabet is extended
to Γ[push, pop0, ..., popn,write0, ...,writen], with actions defined by

(tw⃗, v0, ..., vn) · a = ((ta)w⃗, v0, ..., vn) (a ∈ Γ)
(w⃗, v0, ..., vn) · push = ((ε)w⃗, v0, ..., vn)

(tw⃗, v0, ..., vi, ..., vn) · popi = (w⃗, v0, ..., t, ..., vn) (|w⃗| > 0)
(tw⃗, v0, ..., vn) ·writei = ((tvi)w⃗, v0, ..., vn)

The bottom stack element can only be appended to and models a designated
output register—popping it is undefined. The stack and the variables can be
used to perform complex string interpolation. To access the extended actions,
we extend the surface language:

t ::= . . . | R @ t | !R
| [ R <- (R | "v")⋆ ] | [ R += (R | "v")⋆ ]

where R ranges over register names standing for indices.
The term R @ t desugars to "push" t "popR", and the term !R desugars to

"writeR". The term [ R <- x1...xm ] desugars to "push"t′1...t′m"popR", where
t′i = writeRi if xi = Ri, and t′i = xi otherwise. Finally, [ R += x⃗ ] desugars to
[ R <- R x⃗ ].

Thus all streaming string transducers (see Section C.5) can be coded. As
an example, the following program swaps two input lines by storing them in
registers a and b and outputting them in reverse order:

main := a@line b@line !b !a
line := /[^\n]*\n/

where the first line above desugars to

main := "push" line "popa" "push" line "popb"
"writeb" "writea"

C.4 Streaming Simulation

As we have seen, every Kleenex program has an associated transducer, which
can be split into oracle and action machines. The action machine is a straight-
forwardly implemented deterministic FST. The oracle machine is nondeter-
ministic, however: The key challenge is how to (deterministically) find and
output the lexicographically least path that accepts a given input string. In
this section we develop an efficient oracle machine simulation algorithm that
inputs a stream of symbols and streams the output bits almost as early as
possible during input processing.
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Path Trees

Given an oracle machine T C as in Definition 22, consider input s such that
q− u/v−→min q f where u = s. Recall that q u/v−→min q′ uniquely identifies a path
from q to q′ in T C, which is furthermore asserted to be the lexicographically
minimal amongst all nonproblematic paths from q to q′.

Proposition C.4.1 (Path decomposition). Assume q− u/v−→min q f . For every prefix
s′ of u there exist unique u′, v′, u′′, v′′, q′ such that q− u′/v′−−→min q′ u′′/v′′−−−→min q f , q′ is
a resting state, u′ = s′, u′u′′ = u and v′v′′ = v.

Proof. Let u′ be the longest prefix of u such that u′ = s′ and let q− u′/v′−−→np q′

be the path from q determined by u′. (Such a prefix must exist.) Claim: This
is the q′ in the proposition.

1. q′ is a resting state. If it were not, we could transition on ϵ, ϵ0 or ϵ1 re-
sulting in a longer prefix w with w = s′.

2. q− u′/v′−−→min q′ and q′ u′′/v′′−−−→min q f . If any of these subpaths were not lexi-
cographically minimal, we could replace it with one that is lexicograph-
ically less, resulting in a path from q− to q f that is lexicographically less
than q− u/v−→np q f , contradicting our assumption q− u/v−→min q f .

After reading input prefix s′we need to find the above q− u′/v′−−→min q′where
u′ = s′. Since we do not know the remaining input yet, however, we maintain
all paths q− u′/v′−−→min q′ for any resting state q′ such that u′ = s′.

Definition 28 (Path tree). Let T C be given. Its path tree P(s) for s is the set of
paths {q− u/v−→min q′ | u = s}.

Consider a transducer as a directed labeled graph where the nodes are
transducer states indexed by the strings reaching them,

{qs | ∃u, v. q− u/v−→ q ∧ u = s},

and the edges are the corresponding transitions,

{qs
a/b−→ q′sa | q a/b−→ q′}.

It can be seen that P(s) is a subgraph that forms a non-full rooted edge-labeled
binary tree. The stem of P(s) is the longest path in this tree from q−ε to some
qs′ for a prefix s′ of s only involving nodes with at most one child. The leaves
of P(s) are the states q such that qs is reachable, in lexicographic order of the
paths reaching them from q−ε .
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Example 2. Recall the oracle machine for the decimal converter in the lower
left of Figure C.1. Its path tree for input a is shown in the upper left of Fig-
ure C.2. The nodes are subscripted with the length of the input prefix rather
the input prefix itself. Note that the leaf states are listed from top to bottom
in lexicographic order of their paths reaching them. This means that the top
state is the prime candidate for being q′ in Proposition C.4.1. If the remainder
of the input is not accepted from it, though, the other leaf states take over in
the given order.
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Basic Simulation Algorithm

The basic streaming simulation algorithm works as follows:

Algorithm 5 Basic streaming algorithm
Let s = a1 . . . an ∈ Σ∗ be the input string.

1: for i = 1 to n do
2: if P(a1...ai) = ∅ then
3: terminate with failure (input rejected)
4: if stem(P(a1...ai)) longer than stem(P(a1...ai−1)) then
5: emit the output bits on the stem extension
6: if P(a1...an) contains path to q f then
7: if path tree contains at least one branch, emit output bits on path from

highest binary ancestor to q f

8: terminate with success (input accepted)
9: else

10: terminate with failure (input rejected)

The critical step in the algorithm is incrementally computing the path tree
for s′a from the path tree for s′.

Algorithm 6 Incremental path tree computation
Let P be P(s′) for some prefix s′ of the input string, and let [q0, ..., qn] be its
leaves in lexicographic order of the paths reaching them. Upon reading a,
incrementally compute P(s′a) as follows.

1: for q = q0 to qn do
2: compute Pq(a), the path tree of lexicographically least (u/v) paths

with u = a from q to resting states, but excluding resting states that
have been reached in a previous iteration

3: if Pq(a) is non-empty then
4: replace leaf node q in P by Pq(a)
5: else
6: prune branch from lowest binary ancestor to leaf node q; if binary

ancestor does not exist, then terminate with failure (input rejected)

Example 3. The upper right in Figure C.2 shows P(aa) for the decimal con-
verter. Observe how it arises from P(a) by extending leaf states 4 and 9, which
have an a-transition, and building the ϵ-closure as a binary tree. It prunes
branches either because they reach a state already reached by a lexicographi-
cal lower path (state 6) or because the leaf does not have transition on a (state
13). The algorithm outputs 0 after reading the first a since 0 is the sequence
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of output bits on the stem of the path tree. It does not output anything after
reading the second a since P(aa) has the same stem as P(a).

Definition 29 (Optimal streaming). Let f be a partial function from Σ∗ to Γ∗,
s ∈ Σ∗. Let T(s) = { f (ss′) | s′ ∈ Σ∗ ∧ ss′ ∈ dom f }. The output f #(s) de-
termined by f for s is the longest common prefix of T(s) if T(s) is nonempty;
otherwise it is undefined. The partial function f # is called the optimally stream-
ing version of f . An optimally streaming algorithm for f is an algorithm that
implements f #: It emits output symbols as soon as they are semantically de-
termined by the input prefix read so far.

Let transducer T be given. Write L[[q]] for L[[T ′]] where T ′ is T , but with
q as initial state instead of q−. A state q is covered by {q1, . . . , qk} if L[[q]] ⊆
L[[q1]] ∪ . . . ∪ L[[qk]]. A path tree P(s) with lexicographically ordered leaves
[q1, . . . , qn] is cover-free if no qi is covered by {q1, . . . , qi−1}. T is cover-free if
P(s) is cover-free for all s ∈ Σ∗.

Theorem C.4.2. Let T be cover-free. Then Algorithm 5 with Algorithm 6 for incre-
mental path tree recomputation is an optimally streaming algorithm for G[[T C]] that
runs in time O(mn), where m = |T C| and n is the length of the input string.

Proof. (Sketch) Algorithm 6 can be implemented to run in time O(m) since it
visits each transition in T C at most once and pruning can be amortized: every
deallocation of an edge can be charged to its allocation. Algorithm 5 invokes
Algorithm 6 n times. Optimal streaming follows from a generalization of the
proof of optimal streaming for regular expression parsing [32].

The algorithm can be made optimally streaming for all oracle transducers
by also pruning leaf states that are covered by other leaf states in Step 6 of
Algorithm 6. Coverage is PSPACE-complete, however. Eliding the coverage
check does not seem to make much of a difference to the streaming behavior
in practice.

C.5 Determinization

NFA simulation maintains a set of NFA states. This is the basis of compil-
ing an NFA into a DFA: precompute and number the set of all NFA state sets
reachable by any input from the initial NFA state, observing that there are
only finitely many such sets. In the transducer simulation in Section C.4 path
trees play the role of NFA state sets. The corresponding determinization idea
does not work for transducers, however: {P(s) | s ∈ Σ∗} is in general infi-
nite. For example, for the oracle machine in Figure C.1, the trees P(an) all
have the same stem, but contain paths with bit strings of length proportional
to n. This is inherently so. A single-valued transducer can be transformed
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effectively [12, 66] into a form of deterministic finite-state transducer if its re-
lational semantics is subsequential [53, 13], but nondeterministic finite state
transducers in general are properly more expressive than their deterministic
counterparts. We can factor a path tree into its underlying full binary tree
and the labels associated with the edges, though. Since there are only finitely
many different such trees, we can achieve determinization to transducers with
registers storing the potentially unbounded label data.

Definition 30 (Streaming String Transducer [4]). A deterministic streaming
string transducer (SST) over alphabets Σ, Γ is a tuple S = (X, Q, q−, F, δ1, δ2)
where

• X is a finite set of register variables;
• Q is is a finite set of states;
• F is a partial function Q→ (Γ∪X)∗mapping each final state q ∈ dom(F)

to a word F(q) ∈ (Γ ∪ X)∗ such that each x ∈ X occurs at most once in
F(q);

• δ1 is a transition function Q× Σ→ Q;
• δ2 is a register update function Q× Σ → (X → (Γ ∪ X)∗) such that for

each q ∈ Q, a ∈ Σ and x ∈ X, there is at most one occurrence of x in the
multiset of strings {δ2(q, a)(y) | y ∈ X}.

A configuration of an SST S = (X, Q, q−, F, δ1, δ2) is a pair (q, ρ) where q ∈ Q
is a state, and ρ : X → Γ∗ is a valuation. A valuation extends to a monoid
homomorphism ρ̂ : (X ∪ Γ)∗ → Γ∗ by setting ρ(x) = x for x ∈ Γ. The initial
configuration is (q−, ρ−) where ρ−(x) = ϵ for all x ∈ X.

A configuration steps to a new one given an input symbol: δ((q, ρ), a) =
(δ1(q, a), ρ̂ ◦ δ2(q, a)). The transition function extends to a transition function
on words δ∗ by δ∗((q, ρ), ϵ) = (q, ρ) and δ∗((q, ρ), au) = δ∗(δ((q, ρ), a), u).

Every SST S denotes a partial function F [[S ]] : Σ∗ → Γ∗ where for any
u ∈ Σ∗ such that δ∗((q−, ρ−), u) = (q′, ρ′), we define

F [[S ]](u) =
{

ρ̂′(F(q′)) if q′ ∈ dom(F)
undefined otherwise

In the following, let X = {rp | p ∈ 2∗} be a set of registers.

Definition 31 (Reduced register tree). Let P be a path tree. Its reduced register
tree R(P) is a pair (RP, ρP) where ρP is a valuation X → 2∗ and RP is a full
binary tree with state-labeled leaves, obtained from P by first contracting all
unary branches and concatenating edge labels; then replacing each edge label
(u/v) by a single register symbol rp, where p denotes the unique path from
the root to the edge destination node, and setting ρP(rp) = v.

The set {RP(s) | s ∈ Σ∗} is finite: it is bounded by the number of full binary
trees with up to |Q| leaves times the number of possible permutations of the
leaves.
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Let R be RP and a ∈ Σ a symbol, and apply Algorithm 6 to R. The result
is a non-full binary tree with edges labeled either by a register or by a (u/v)
pair. By reducing the tree again and treating registers as output labels, we get
a pair (Ra, κR,a) where κR,a : X → (2 ∪ X)∗ is a register update.

Example 4. Consider the bottom left tree in Figure C.2. This is the reduced
register tree obtained from the path tree above it. The evaluation map ρ can
be seen below it, where register subscripts denote their position in the regis-
ter tree. In the middle is the result of extending the register tree using Algo-
rithm 6. Reducing this again yields the tree on the right. The update map
κ is shown below it—note that the range of this map is mixed register/bit
sequences.

Proposition C.5.1. Let T C be given, and let P = P(s), P′ = P(sa), (R, ρ) = R(P)
and (R′, ρ′) = R(P′) for some s and a. Then R′ = Ra and ρ′ = ρ̂ ◦ κR,a.

Theorem C.5.2. Let T C be an oracle machine of size m. There is an SST S with
O(2m log m) states such that F [[S ]] = G[[T ]].

Proof. Let QS = {RP(s) | s ∈ Σ∗} ∪ {R0} and q−S = R0, where R0 is the
single-leaf binary tree with leaf q−T . The set of registers XS is the finite sub-
set of register variables occurring in QS . The transition maps are given by
δ1
S (R, a) = Ra and δ2

S (R, a) = κR,a. For any R ∈ QS − {R0}, define the final
output FS (R) to be the sequence of registers on the path from the root to the
final state q f

T in R if R contains it as a leaf; otherwise let FS (R) be undefined.
Let FS (R0) = v if q−T

ϵ/v−→min q f for some v; otherwise let FS (R0) be undefined.
Correctness follows by showing δ∗((R0, ρ−), u) = R(P(u)) for all u ∈ Σ+.

We prove this by induction, applying Proposition C.5.1 in each step. For the
case u = ε correctness follows by the definition of FS (R0).

The upper bound follows from the fact that there are at most Ck−1(k −
1)! = O(2m log m) full binary trees with k pairwise distinct leaves where k is the
number of resting states in T C and Ck−1 is the (k− 1)-st Catalan number.

Example 5. The oracle machine in Figure C.1 yields the SST in Figure C.3. The
states 1 and 2 are identified by the left and right reduced trees, respectively,
in the bottom of Figure C.2.

Corollary C.5.3. The SST S for T C can be implemented to execute in time O(mn)
where m = |T C|.

Proof. (Sketch) Use a data structure for imperatively extending a string reg-
ister, r := rs, in amortized time O(n) where n is the size of s, independent of
the size of the string stored in r. The result then follows from the fact that the
steps in Algorithm 6 can be implemented in the same amortized time.
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In practice, the compiled version of the SST is much more efficient—roughly
one to two orders of magnitude faster—than streaming simulation since it
compiles away the interpretive overhead of explicitly managing the binary
trees underlying path trees and employs machine word-level parallelism by
operating on bit strings in fewer registers rather than many edges each labeled
by at most one bit.



112 PAPER C. KLEENEX

0

st
ar

t

1
2

3
4

5
6

r ε
r 1

a

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣r ε
7→

r ε
0

r 0
7→

0
r 1
7→

1
r 1

0
7→

0
r 1

1
7→

1
r 1

10
7→

0
r 1

11
7→

1

a

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣r 1
7→

r 1
r 1

1r
11

0
r 0

0
7→

0
r 0

1
7→

1
r 0

10
7→

0
r 0

11
7→

1
a

∣ ∣ ∣ ∣ ∣r 0
1
7→

r 0
1r

01
0

r 0
00
7→

0
r 0

01
7→

1
a

∣ ∣ ∣ ∣ ∣r 0
07→

r 0
0r

00
0

r 1
07→

0
r 1

17→
1

a

∣ ∣ ∣ ∣ ∣r 0
10
7→

0
r 0

11
7→

1
r 1
7→

r 1
r 1

0

a

∣ ∣ ∣ ∣ ∣r 0
00
7→

0
r 0

01
7→

1
r 0

1
7→

r 0
1r

01
0

a

∣ ∣ ∣ ∣ ∣r ε
7→

r ε
r 0

r 0
,r

10
,r

11
07→

0
r 1

,r
11

,r
11

17→
1

\n

∣ ∣ ∣ ∣ ∣r ε
7→

r ε
r 1

r 1
1r

11
1

r 0
7→

0
r 1
7→

1
\n

∣ ∣ ∣ ∣ ∣r ε
7→

r ε
r 0

r 0
1r

01
1

r 0
7→

0
r 1
7→

1
\n

∣ ∣ ∣ ∣ ∣r ε
7→

r ε
r 0

r 0
0r

00
1

r 0
7→

0
r 1
7→

1
\n

∣ ∣ ∣ ∣ ∣r ε
7→

r ε
r 1

r 1
1

r 0
7→

0
r 1
7→

1
\n

∣ ∣ ∣ ∣ ∣r ε
7→

r ε
r 0

r 0
1r

01
1

r 0
7→

0
r 1
7→

1

Fi
gu

re
C

.3
:S

ST
co

ns
tr

uc
te

d
fr

om
th

e
or

ac
le

m
ac

hi
ne

in
Fi

gu
re

C
.1.



C.6. IMPLEMENTATION AND BENCHMARKS 113

C.6 Implementation and Benchmarks

Our implementation4 compiles the action machine and the oracle SST to ma-
chine code via C. We have implemented several optimizations which are or-
thogonal to the underlying principles behind our compilation from Kleenex
via transducers to SSTs:

Inlining of output actions The action machine and the oracle SST need to be
composed. We can do this at runtime by piping the SST output to the action
machine, or we can apply a form of deforestation [70] to inline the output
actions directly into the SST. This is straightforward since the machines are
deterministic.

Constant propagation The SSTs generated by the construction underlying
Theorem C.5.2 typically contain many constant-valued registers (e.g. most
registers in Figure C.3 are constant). We eliminate these using constant propa-
gation: compute reaching definitions by solving a set of data-flow constraints.

Symbolic representation A more succinct SST representation is obtained
by using a symbolic representation of transitions where input symbols are
replaced by predicates and output symbols by terms indexed by input sym-
bols. This is a straightforward extension of similar representations for au-
tomata [72] and transducers [66, 68, 67, 69]. Our implementation uses simple
predicates in the form of byte ranges, and simple output terms represented
by byte-indexed lookup tables. We refer the reader to the cited literature for
the technical details of symbolic transducers.

Finite lookahead Symbolic FSTs with bounded lookahead have been shown
to reduce the state space when representing string encoders [22, 67, 69]. We
have implemented a form of finite lookahead in our SST representation. Op-
portunities for lookahead is detected by the compiler, and arise in the case
where the program contains a string constant with length above one. In this
case a lookahead transition is used to check once and for all if the string con-
stant is matched by the input instead of creating an SST state for each symbol.
This may in some cases reduce the size of the generated code since we avoid
tabulating all states of the whole program for every prefix of the string con-
stant.

We have run comparisons with different combinations of the following
tools:

RE2, Google’s regular expression C++ library [62].
RE2J, a recent re-implementation of RE2 in Java [63].

4Source code and benchmarks available at http://kleenexlang.org/

http://kleenexlang.org/
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GNU AWK and GNU sed, programming languages and tools for text process-
ing and extraction [60].

Oniglib, a regular expression library written in C++ with support for differ-
ent character encodings [38].

Ragel, a finite state machine compiler with multiple language backends [65].

In addition, we implemented test programs using the standard regular ex-
pression libraries in the scripting languages Perl [71], Python [41], and Tcl [73].

The benchmark suite, Kleenex programs, and version numbers of libraries
used can be found at http://kleenexlang.org.

Meaning of plot labels Kleenex plot labels indicate the compilation path,
and follow the format [<0|3>[-la] | woACT] [clang|gcc]. 0/3 indicates
whether constant propagation was disabled/enabled. la indicates whether
lookahead was enabled. clang/gcc indicates which C compiler was used.
The last part indicates that custom register updates are disabled, in which
case we generate a single fused SST as described in Section C.6. These are
only run with constant propagation and lookahead enabled.

Experimental setup The benchmark machine runs Linux, has 32 GB RAM
and an eight-core Intel Xeon E3-1276 3.6 GHz CPU with 256 KB L2 cache and
8 MB L3 cache. Each benchmark program was run 15 times, after first doing
two warm-up rounds. All C and C++ files have been compiled with -O3.

Difference between Kleenex and the other implementations Unless oth-
erwise stated, the structure of all the non-Kleenex implementations is a loop
that reads input line by line and applies an action to the line. Hence, in these
implementations there is an interplay between the regular expression library
used and the external language, e.g., RE2 and C++. In Kleenex, line breaks
do not carry any special significance, so the multi-line programs can be for-
mulated entirely within Kleenex.

Ragel optimization levels Ragel is compiled with three different optimiza-
tion levels: T1, F1, and G2. “T1” and “F1” means that the generated C code
should be based on a lookup-table, and “G2” means that it should be based
on C goto statements.

Kleenex compilation timeout On some plots, some versions of the Kleenex
programs are not included. This is because the C compiler times out (after
30 seconds). As we fully determinize the transducers, the resulting C code
can explode in some cases. The two worst-case exponential blow-ups in gen-
erating transducers from Kleenex and then generating SSTs implemented in
C code from transducers are inherent, though, and as such can be considered

http://kleenexlang.org
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a feature of Kleenex: tools based on finite machines with no or limited non-
determinism support such as Ragel would require hand-coding a potentially
huge machine that Kleenex generates automatically.5

Baseline

The following two programs are intended to give a baseline impression of the
performance of Kleenex programs.

flip_ab The program flip_ab swaps “a”s and “b”s on all its input lines. In
Kleenex it looks like this:

main := ("b" ~/a/ | "a" ~/b/ | /\n/)*

We made a corresponding implementation with Ragel, using a while-loop
in C to get each new input line and feed it to the automaton code generated
by Ragel.

Implementing this functionality with regular expression libraries in the
other tools would be an unnatural use of them, so we have not measured
those.

The performance of the two implementations run on input with an average
line length of 1000 characters is shown in Figure C.4.

patho2 The program patho2 forces Kleenex to wait until the very last char-
acter of each line has been read before it can produce any output:

main := ((~/[a-z]*a/ | /[a-z]*b/)? /\n/)+

In this benchmark, the constant propagation makes a big difference, as
Figure C.5 shows. Due to the high degree of interleaving and the lack of
keywords, in this program the lookahead optimization has reduced overall
performance.

This benchmark was not run with Ragel because Ragel requires the pro-
grammer to do all disambiguation manually when writing the program; the
C code that Ragel generates does not handle ambiguity in a for us predictable
way.

Rewriting

Thousand separators The following Kleenex program inserts thousand sep-
arators in a sequence of digits:

main := (num /\n/)*
num := digit{1,3} ("," digit{3})*
digit := /[0-9]/

5We have found it excessively difficult to employ Ragel in some use cases with a natural
nondeterministic specification.
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Figure C.4: flip_ab run on lines with average length 1000.

We evaluated the Kleenex implementation along with two other implementa-
tions using Perl and Python. The performance can be seen in Figure C.6. Both
Perl and Python are significantly slower than all of the Kleenex implementa-
tions; the problem is tricky to solve with regular expressions unless one reads
the input right-to-left.

IRC protocol handling The following Kleenex program parses the IRC pro-
tocol as specified in RFC 2812.6 It follows roughly the output style described
in part 2.3.1 of the RFC. Note that the Kleenex source code and the BNF gram-
mar in the RFC are almost identical. Figure C.7 shows the throughput on 250
MiB data.

main := (message | "Malformed line: " /[^\r\n]*\r?\n/)*
message := (~/:/ "Prefix: " prefix "\n" ~/ /)?

"Command: " command "\n"
"Parameters: " params? "\n"
~crlf

command := letter+ | digit{3}
prefix := servername | nickname ((/!/ user)? /@/ host )?
user := /[^\n\r @]/+ // Missing \x00

6https://tools.ietf.org/html/rfc2812

https://tools.ietf.org/html/rfc2812
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Figure C.5: patho2 run on lines with average length 1000.

middle := nospcrlfcl ( /:/ | nospcrlfcl )*
params := (~/ / middle ", "){,14} ( ~/ :/ trailing )?

| ( ~/ / middle ){14} ( / / /:/? trailing )?
trailing := (/:/ | / / | nospcrlfcl)*
nickname := (letter | special)

(letter | special | digit){,10}
host := hostname | hostaddr
servername := hostname
hostname := shortname ( /\./ shortname)*
hostaddr := ip4addr
shortname := (letter | digit) (letter | digit | /-/)*

(letter | digit)*
ip4addr := (digit{1,3} /\./ ){3} digit{1,3}

CSV rewriting The program csv_project3 deletes all columns but the 2nd
and 5th from a CSV file:

main := (row /\n/)*
col := /[^,\n]*/
row := ~(col /,/) col "\t" ~/,/ ~(col /,/)

~(col /,/) col ~/,/ ~col
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Figure C.6: Inserting separators in random numbers of average length 1000.

Various specialized tools that can handle this transformation are included in
Figure C.8; GNU cut is a command that splits its input on certain characters,
and GNU AWK has built-in support for this type of transformation.

Apart from cut, which is very fast for its own use case, a Kleenex imple-
mentation is the fastest. The performance of Ragel is slightly lower, but this
is likely due to the way the implementation produces output. In a Kleenex
program, output strings are automatically put in an output buffer which is
flushed routinely, whereas a programmer has to manually handle buffering
when writing a Ragel program.

With or Without Action Separation

One can choose to use the machine resulting from fusing the oracle and action
machines when compiling Kleenex. Doing so results in only one process per-
forming both disambiguation and outputting, which in some cases is faster
and in other cases slower. Figures C.8, C.9, and C.11 illustrate both situations.
It depends on the structure of the problem whether it pays off to split up the
work into two processes; if all the work happens in the oracle machine and
the action machine does nearly nothing, then the added overhead incurred by
the process context switches becomes noticeable. On the other hand, in cases
where both machines perform much work, the fact that two CPU cores can be
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Figure C.7: Throughput when parsing 250 MiB random IRC data.

utilized in parallel speeds up execution. This is more likely once Kleenex has
support for actions that can perform arbitrary computations, e.g. in the form
of embedded C code.

C.7 Use Cases

We briefly touch upon various use cases—natural application scenarios—for
Kleenex.

JSON logs to SQL We have implemented a Kleenex program that trans-
forms a JSON log file into an SQL insert statement. The program works on
the logs provided by Issuu.7

The Ragel version we implemented outperforms Kleenex by about 50%
(Figure C.9), indicating that further optimizations of our SST construction
should be possible.

7The line-based data set consists of 30 compressed parts; part one is available from http:
//labs.issuu.com/anodataset/2014-03-1.json.xz

http://labs.issuu.com/anodataset/2014-03-1.json.xz
http://labs.issuu.com/anodataset/2014-03-1.json.xz
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Figure C.8: csv_project3 reads in a CSV file with six columns and outputs
columns two and five. “gawk” is GNU AWK that uses the native AWK way of
splitting up lines. “cut” is a tool from GNU coreutils that splits up lines.

Apache CLF to JSON The Kleenex program below rewrites Apache CLF8

log files into a list of JSON records:

main := "[" loglines? "]\n"
loglines := (logline "," /\n/)* logline /\n/
logline := "{" host ~sep ~userid ~sep ~authuser sep

timestamp sep request sep code sep
bytes sep referer sep useragent "}"

host := "\"host\":\"" ip "\""
userid := "\"user\":\"" /-/ "\""
authuser := "\"authuser\":\"" /[^ \n]+/ "\""
timestamp := "\"date\":\"" ~/\[/ /[^\n\]]+/ ~/]/ "\""
request := "\"request\":" quotedString
code := "\"status\":\"" integer "\""
bytes := "\"size\":\"" (integer | /-/) "\""
referer := "\"url\":" quotedString
useragent := "\"agent\":" quotedString
sep := "," ~/[\t ]+/
quotedString := /"([^"\n]|\\")*"/

8https://httpd.apache.org/docs/trunk/logs.html#common

https://httpd.apache.org/docs/trunk/logs.html#common
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Figure C.9: The speeds of transforming JSON objects to SQL INSERT state-
ments using Ragel and Kleenex.

integer := /[0-9]+/
ip := integer (/\./ integer){3}

This is a re-implementation of a Ragel program.9 Figure C.10 shows the bench-
mark results. The versions compiled with clang are not included, as the com-
pilation timed out after 30 seconds. Curiously, the non-optimized Kleenex
program is the fastest in this case.

ISO date/time objects to JSON Inspired by an example in [30], the program
iso_datetime_to_json converts date and time stamps in an ISO standard
format to a JSON object. Figure C.11 shows the performance.

HTML comments The following Kleenex program finds HTML comments
with basic formatting commands and renders them in HTML after the com-
ment. For example, <!-- doc: *Hello* world --> becomes <!-- doc: *Hello*
world --><div> <b>Hello</b> world </div>.

main := (comment | /./)*
comment := /<!-- doc:/ clear doc* !orig /-->/

9https://engineering.emcien.com/2013/04/5-building-tokenizers-with-ragel

https://engineering.emcien.com/2013/04/5-building-tokenizers-with-ragel
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Figure C.10: Speed of the conversion from the Apache Common Log Format
to JSON.

"<div>" !render "</div>"
doc := ~/\*/ t@/[^*]*/ ~/\*/

[ orig += "*" t "*" ] [ render += "<b>" t "</b>" ]
| t@/./ [ orig += t ] [ render += t ]

clear := [ orig <- "" ] [ render <- "" ]

Syntax highlighting Kleenex can be used to write syntax highlighters; in
fact, the Kleenex syntax in this paper was highlighted using a Kleenex pro-
gram.

C.8 Discussion

We discuss related and future work by building Kleenex conceptually up from
regular expression matching via regular expressions as types for bit-coded
parsing to transducers and eventually grammars with embedded actions.

Regular Expression Matching. Regular expression matching has different
meanings in the literature.
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Figure C.11: The performance of the conversion of ISO time stamps into JSON
format.

For acceptance testing, the subject of automata theory where only a single
bit is output, NFA-simulation and DFA-construction are classical techniques.
Bille and Thorup [14] improve on Myers’ [46] log-factor improved classical
NFA-simulation for regular expressions, based on tabling. They design an
O(kn) algorithm [15] with word-level parallelism, where k ≤ m is the num-
ber of strings occurring in an RE. The tabling technique may be promising
in practice; the algorithms have not been implemented and evaluated empir-
ically, though.

In subgroup matching as in PCRE [34], an input is not only classified as
accepting or not, but a substring is returned for each sub-RE of interest. Sub-
group matching exposes ambiguity in the RE. Subgroup matching is often im-
plemented by backtracking over alternatives, which implements greedy disam-
biguation.10 Backtracking may result in exponential-time worst case behav-
ior, however, even in the absence of inherently hard matching with backref-
erences [1]. Considerable human effort is usually expended to engineer REs
used in practice to perform well anyway. More recently, REs designed to force
exponential run-time behavior are used in algorithmic attacks, though [56,

10Committing to the left alternative before checking that the remainder of the input is ac-
cepted is the essence of parsing expression grammars [28].



124 PAPER C. KLEENEX

52]. Some subgroup matching libraries have guaranteed worst-case linear-
time performance based on automata-theoretic techniques, notably Google’s
RE2 [62]. Intel’s Hyperscan [61] is also described as employing automata-
theoretic techniques. A key point of Kleenex is implementing the natural
backtracking semantics without actually performing backtracking and with-
out requiring storage of the input.

Myers, Oliva and Guimaraes [44] and Okui, Suzuki [50] describe a O(mn),
respectively O(m2n) POSIX-disambiguated matching algorithms. Sulzmann
and Lu [57] use Brzozowski [20] and Antimirov derivatives [11] for Perl-style
subgroup matching for greedy and POSIX disambiguation. Borsotti, Breveg-
lieri, Reghizzi, and Morzenti [16, 17] have devised a Berry-Sethi based parser
generator that can be configured for greedy or POSIX disambiguation.

Regular expression parsing. Full RE parsing, also called RE matching [29],
generalizes subgroup matching to return a full parse tree. The set of parses
are exactly the elements of a regular expression read as a type [29, 35]: Kleene-
star is the (finite) list type constructor, concatenation the Cartesian product,
alternation the sum type and an individual character the singleton type con-
taining that character. A (McNaughton-Yamada-)Thompson NFA [42, 64] repre-
sents an RE in a strong sense: the complete paths—paths from initial to final
state—are in one-to-one correspondence with the parses [31, 33]. A Thomp-
son NFA equipped with 0, 1 outputs [31] is a certain kind of oracle machine.
The bit-code it generates can also be computed directly from the RE underly-
ing the Thompson automaton [35, 49]. The greedy RE parsing problem produces
the lexicographically least bit-code for a string matching a given RE. Kearns
[37], Frisch and Cardelli [29] devise 3-pass linear-time greedy RE parsing; they
require 2 passes over the input, the first consisting of reversing the entire in-
put, before generating output in the third pass. Grathwohl, Henglein, Nielsen,
Rasmussen devise a two-pass [31] and an optimally streaming [32] greedy reg-
ular expression parsing algorithm. The algorithm works for all NFAs, indeed
transducers, not just Thompson NFAs.

Sulzman and Lu [58] remark that POSIX is notoriously difficult to imple-
ment correctly and show how to use Brzozowski derivatives [20] for POSIX
RE parsing.

Regular expression implementation optimizations. There are specialized
RE matching tools and techniques too numerous to review comprehensively.
We mention a few employing automaton optimization techniques potentially
applicable to Kleenex, but presently unexplored. Yang, Manadhata, Horne,
Rao, Ganapathy [75] propose an OBDD representation for subgroup match-
ing and apply it to intrusion detection REs; the cycle counts per byte ap-
pear a bit high, but are reported to be competitive with RE2. Sidhu and
Prasanna [54] implement NFAs directly on an FPGA, essentially performing
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NFA-simulation in parallel; it outperforms GNU grep. Brodie, Taylor, Cytron
[18] construct a multistride DFA, which processes multiple input symbols
in parallel, and devise a compressed implementation on stock FPGA, also
achieving very high throughput rates. Likewise, Ziria employs tabled mul-
tistriding to achieve high throughput [55]. Navarro and Raffinot [48] show
how to code DFAs compactly for efficient simulation.

Finite state transducers. From RE parsing it is a surprisingly short distance
to the implementation of arbitrary nondeterministic finite state transducers
(FSTs) [13, 43]. In contrast to the situation for automata, nondeterministic
transducers are strictly more powerful than deterministic transducers; this,
together with observable ambiguity, highlights why RE parsing is more chal-
lenging than RE acceptance testing.

As we have noted, efficient RE parsing algorithms operate on arbitrary
NFAs, not only those corresponding to REs. Indeed, REs are not a particu-
larly convenient or compact way of specifying regular languages: they can
be represented by certain small NFAs with low tree width [36], but may be
inherently quadratically bigger than automata, even for DFAs [24, Theorem
23]. This is why Kleenex employs well-formed context-free grammars, which
are much more compact than regular expressions.

Streaming string transducers. We have shown in this paper that the greedy
semantics of arbitrary FSTs can be compiled to a subclass of streaming string
transducers (SSTs). SSTs extensionally correspond to regular transductions,
functions implementable by 2-way deterministic finite-state transducers [4],
MSO-definable string transductions [25] and a combinator language analo-
gous to regular expressions [9]. The implementation techniques used in Kleenex
appear to be directly applicable to all SSTs, not just the ones corresponding to
FSTs.

DReX [7] is a combinatory functional language for expressing all SST-definable
transductions. Kleenex without register operations is expressively more re-
strictive; with copy-less register operations it appears to compactly code ex-
actly the nondeterministic SSTs and thus SSTs. Programs in DReX must be
unambiguous by construction while programs in Kleenex may be nondeter-
ministic and ambiguous, which is greedily disambiguated.

Symbolic transducers. Veanes, Molnar, Mytkowics [69] employ symbolic
transducers [68, 23] in the implementation of the Microsoft Research languages
BEK11 and BEX12 for multicore execution. These techniques can be thought of
as synthesizing code that implements the transition function of a finite state
machine not only efficiently, but also compactly. Tabling in code form (switch

11http://research.microsoft.com/en-us/projects/bek
12http://research.microsoft.com/en-us/projects/bex

http://research.microsoft.com/en-us/projects/bek
http://research.microsoft.com/en-us/projects/bex
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statement) or data form (lookup in array) is the standard implementation tech-
nique for the transition function. It is efficient when applicable, but not com-
pact enough for large alphabets and multistrided processing. Kleenex em-
ploys basic symbolic transition. Compact coding of multistrided transitions
is likely to be crucial for exploiting word-level parallelism—processing 64 bits
at a time—in practice.

Parallel transducer processing. Allender and Mertz [3] show that the func-
tions computable by cost register automata [6], which generalize the string
monoid used in SSTs to admit arbitrary monoids and more general algebraic
structures, are in NC and thus inherently parallelizable. This appears to be
achievable by performing relational FST-composition by matrix multiplica-
tion on the matrix representation of FSTs [13], which can be performed by
parallel reduction. This requires in principle running an FST from all states,
not just the input state, on input string fragments. Mytkowicz, Musuvathi,
Schulte [47] observe that there is often a small set of cut states sufficient to
run each FST. This promises to be an interesting parallel harness for a suitably
adapted Kleenex implementation running on fragments of very large inputs.

Syntax-directed translation schemes. A Kleenex program is an example of
a syntax-directed translation scheme (SDTS) or a domain-specific stream process-
ing language such as PADS [26, 27] and Ziria [55]. In these the underlying
grammar is typically deterministic modulo short lookahead so that semantic
actions can be executed immediately when encountered during parsing.

Kleenex is restricted to non-self-embedding grammars to avoid the matrix-
multiplication lower bound on general context-free parsing [40]; it supports
full nondeterminism without lookahead restriction, though. A key contribu-
tion of Kleenex is that semantic actions are scheduled no earlier than seman-
tically permissible and no later than necessary.

C.9 Conclusions

We have presented Kleenex, a convenient language for specifying nondeter-
ministic finite state transducers, and its compilation to machine code imple-
menting streaming string transducers.

Kleenex is comparatively expressive and performs consistently well. For
complex regular expressions with nontrivial amounts of output it is almost al-
ways better than industrial-strength text processing tools such as RE2, Ragel,
AWK, sed and RE-libraries of Perl, Python and Tcl in the evaluated use cases.

We believe Kleenex’s clean semantics, streaming optimality, algorithmic
generality, worst-case guarantees and absence of tricky code and special cas-
ing provide a useful basis for
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• extensions, specifically visibly push-down transducers [51, 59], restricted
versions of backreferences and approximate regular expression matching[45,
74];

• known, but so far unexplored optimizations, such as multistriding, au-
tomata minimization and symbolic representation, hybrid FST simula-
tion and SST construction;

• massively parallel (log-depth, linear work) processing.
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Abstract

Tabular top-down parsing and its lazy variant, Packrat, are linear-
time execution models for the TDPL family of recursive descent parsers
with limited backtracking. By tabulating the result of each (nontermi-
nal, offset)-pair, we avoid exponential work due to backtracking at the
expense of always using space proportional to the product of the input
length and grammar size. Current methods for limiting the space us-
age relies either on manual annotations or on static analyses which are
sensitive to the syntactic structure of the grammar.

We present progressive tabular parsing (PTP), a new execution model
which progressively computes parse tables for longer prefixes of the in-
put and simultaneously generates a leftmost expansion of the parts of
the parse tree that can be resolved. Table columns can be discarded on-
the-fly as the expansion progresses through the input string, providing
best-case constant and worst-case linear memory use. Furthermore, se-
mantic actions are scheduled before the parser has seen the end of the
input. The scheduling is conservative in the sense that no action has to
be “undone” in the case of backtracking.

The time complexity is O(dmn) where m is the size of the parser
specification, n is the size of the input string, and d is either a configured
constant or the maximum parser stack depth.

For common data exchange formats such as JSON, we demonstrate
practically constant space usage, and without static annotation of the
grammar.

D.1 Introduction

Parsing of computer languages has been a topic of research for several decades,
leading to a large family of different parsing methods and formalisms. Still,
with each solution offering varying degrees of expressivity, flexibility, speed
and memory usage, and often at a trade-off, none of them can be regarded
as an ideal general approach to solving to all parsing problems. For exam-
ple, compiler writers often specify their languages in a declarative formalism
such as context-free grammars (CFG), relying LL(k) or LR(k) parser genera-
tors to turn their specifications into executable parsers. The resulting parsers
are often fast, but with the downsides that a separate lexical preprocessing

1The order of authors is insignificant.
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is needed, and that the programmer is required to mold the grammar into a
form that is deterministic for the chosen parser technology. Such solutions re-
quire a large investment in time, as identifying the sources of non-determinism
in a grammar can be quite difficult. A user who needs to write an ad-hoc
parser will thus not find that the amount of time invested makes up for the
apparent benefits.

Aho and Ullman’s TDPL/GTDPL languages [1], which were later popu-
larized as Parsing Expression Grammars (PEG) [6], provide a formal founda-
tion for the specification of recursive-descent parsers with limited backtrack-
ing. They do away with the problem of non-determinism by always having,
by definition, a single unique parse for every accepted input. The syntax of
PEGs resembles that of CFGs, but where a CFG is a set of generative rules spec-
ifying its language, a PEG is a set of rules for a backtracking recognizer, and
its language is the set of strings recognized. This ensures unique parses, but
with the downside that it can sometimes be quite hard to determine what lan-
guage a given PEG represents. Recognition can be performed in linear time
and space by an algorithm which computes a table of results for every (non-
terminal, input offset)-pair [1], although it seems to never have been used in
practice, probably due to its large complexity constants. Ford’s Packrat pars-
ing [5] reduces these constants by only computing the table entries that are
needed to resolve the actual parse. However, the memory usage of Packrat is
Θ(mn) for PEGs of size m and inputs of size n, which can be prohibitively ex-
pensive for large m and n, and completely precludes applying it in a streaming
context where input is potentially infinite. Heuristics for reducing memory
usage [10, 17] still store the complete input string, and even risks triggering
exponential time behavior. One method [14] can remove both table regions
and input prefixes from memory during runtime, but relies on manual anno-
tations and/or a static analysis which does not seem to perform well beyond
LL languages [18].

In this paper, we present progressive tabular parsing (PTP), a new execution
model for the TDPL family of languages. The method is based on the tabular
parsing of Aho and Ullman, but avoids computing the full parse table at once.
We instead start by computing a table with a single column based on the first
symbol in the input. For each consecutive symbol, we append a correspond-
ing column to the table and update all other entries based on the newly added
information. We continue this until the end of the input has been reached and
the full parse table has been computed. During this process, we have access
to partial parse tables which we use to guide a leftmost expansion of the parse
tree for the overall parse. Whenever a prefix of the input has been uniquely
parsed by this process, the prefix and its corresponding table columns can be
removed from memory. The result is a linear-time parsing algorithm which
still uses O(mn) memory in the worst case, but O(m) in the best case. Since
we have access to the partial results of every nonterminal during parsing, a
simple dynamic analysis can use the table to rule out alternative branches and
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speculatively expand the parse tree before the corresponding production has
been fully resolved. The speculation is conservative and never has to undo
an expansion unless the whole parse turns out to fail. The analysis changes
the time complexity to O(dmn) for a configurable constant d bounded by the
maximum stack depth of the parser, but preliminary experiments suggests
that it pays for itself in practice by avoiding the computation of unused table
entries.

The method can be formulated elegantly using least fixed points of mono-
tone table operators in the partial order of tables with entrywise comparison,
and where unresolved entries are considered a bottom element in the partial
order. The computation of parse tables is then an instance of chaotic itera-
tion [4] for computing least fixed points using a work set instead of evolving
all entries in parallel. The work set is maintained such that we obtain mean-
ingful partial parse tables as intermediate results which can be used by the
dynamic analysis. Linear time is obtained by using an auxiliary data struc-
ture to ensure that each table entry is added to the work set at most once.

Our evaluation demonstrates that PTP dynamically adapts its memory us-
age based on the amount of lookahead required to resolve productions. The
complexity constant due to indiscriminately computing all entries of the parse
table can be quite large, but we are confident that this problem can be allevi-
ated in the same way as Packrat reduced the constants for conventional tab-
ular parsing. We believe that our general formulation of PTP offers a solid
foundation for further development of both static and dynamic analyses for
improving performance.

To summarize, we make the following contributions:

• Progressive tabular parsing (PTP), a new execution model for the TDPL
family of parsing formalisms. The execution of a program proceeds by
progressively computing parse tables, one for each prefix of the input,
using the method of chaotic iteration for computing least fixed points.
Meanwhile, a leftmost expansion of the parse tree is generated in a
streaming fashion using the parse table as an oracle. Table columns are
discarded on-the-fly as soon as the method detects that a backtracking
parser would never have to return to the corresponding part of the in-
put.

• An algorithm for computing progressive parse tables in an incremental
fashion. It operates in amortized time O(mn) for grammars of size m
and inputs of size n, and produces n progressive approximations of the
parse table. The algorithm implements the execution model in O(mn)
time and space. We show that for certain grammars and inputs, as little
as O(m) space is consumed.

• A configurable dynamic analysis which can dramatically improve the
streaming behavior of parsers by allowing a longer trace to be generated
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earlier in the parse. The dynamic analysis changes the time complex-
ity to O(dmn) where d is either a configured constant or the maximum
parser stack depth.

• An evaluation of a prototype of the algorithm which demonstrates that
a) for an unannotated JSON parser written in the PEG formalism, mem-
ory usage is practically constant, b) for parsers of non-LL languages, the
algorithm adjusts memory usage according to the amount of lookahead
required, c) however, ambiguous tail-recursive programs trigger worst--
case behavior.

The rest of the paper is organized as follows. The GTDPL and PEG pars-
ing formalisms are introduced in Section D.2, together with a notion of parse
trees and a definition streaming parsing. In Section D.3 we recall the linear-
time tabular parsing method, but defined using least fixed points. We extend
this in Section D.4 to obtain an approximation of the full parse table based on
a prefix of the full input string. In the same section, we define the streaming
generation of execution traces based on dynamic analysis of approxmation
tables, which we then use to present the progressive tabular parsing method.
In Section D.5 we define—and prove correct—an amortized linear-time algo-
rithm for computing all progressive table approximations for all consecutive
prefixes of an input string. A prototype implementation is evaluated on three
different parsing programs in Section D.6, where we also point out the main
challenges towards a high-performance implementation. We conclude with
a discussion of related and future work in Section D.7.

D.2 Parsing Formalism
The generalized top-down parsing language (GTDPL) is a language for specifying
top-down parsing algorithms with limited backtracking [1, 3]. It has the same
recognition power as the top-down parsing language (TDPL), from which it was
generalized, and parsing expression grammars (PEG) [6], albeit using a smaller
set of operators.

The top-down parsing formalism can be seen as a recognition-based al-
ternative to declarative formalisms used to describe machine languages, such
as context-free grammars (CFGs). A CFG constitutes a set of generative rules
that characterize a language, and the presence of ambiguity and non-determinism
poses severe challenges when such a specification must be turned into a de-
terministic parsing algorithm. In contrast, every GTDPL/PEG by definition
denotes a deterministic program which operates on an input string and returns
with an outcome indicating failure or success. The recognition power of CFGs
and GTDPL/PEG is incomparable. There are GTDPLs which recognize lan-
guages that are not context-free [1], e.g. the language {anbncn | n ≥ 0}. On
the other hand, GTDPL recognition is linear-time [1] and CFG recognition
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is super-linear [11], which suggests that there exists a context-free languages
that cannot be recognized by any GTDPL.2

Let Σ be a finite alphabet, and N a finite set of nonterminal symbols.

Definition 32 (Program). A GTDPL program (henceforth just program) is a
tuple P = (Σ, V, S, R) where

1. Σ is a finite input alphabets; and

2. V is a finite set of nonterminal symbols; and

3. S ∈ V is the starting nonterminal; and

4. R = {A0←g0, ..., Am−1←gm−1} is a non-empty finite set of numbered
rules, where each Ai is in V and each gi ∈ GExpr is an expression gener-
ated by the grammar

GExpr ∋ g ::= ϵ | f | a | A[B, C]

where A, B, C ∈ V, a ∈ Σ. Rules are unique: i ̸= j implies Ai ̸= Aj.

Define the size |P| of a program to be the cardinality of its rule set |R| = m.
When P is understood, we will write A←g for the assertion A←g ∈ R. By
uniqueness of rule definitions, we can write iA for the unique index of a rule
Ai←gi in R. If gi is of the form B[C, D]we call it a complex expression, otherwise
we call it a simple expression.

The intuitive semantics of a production A←B[C, D] is to first try parsing
the input with B. If this succeeds, parse the remainder with C, otherwise
backtrack and parse from the beginning of the input with D. For this reason
we call B the condition and C and D the continuation branch and failure branch,
respectively.

Given sets X, Y, write X + Y for their disjoint union {0} × X ∪ {1} ×Y.

Definition 33 (Operational semantics). Let P = (Σ, V, S, R) be a program and
define a matching relation⇒P from V × Σ∗ to results r ∈ Σ∗ + {f}. That is,
it relates pairs of the form (A, u) ∈ V × Σ∗ to either the failure value f, or a
result value v ∈ Σ∗ indicating success, where v is the suffix of u that remains
unconsumed. We leave out the subscript P when it is clear from the context.

Let⇒P be generated by the following rules:

(1) (A←ϵ)
(A, u)⇒P u

(2) (A←f)
(A, u)⇒P f

(3i) (A←a)
(A, au)⇒P u

(3ii) (A←a and a not prefix of u)
(A, u)⇒P f

2To the best of our knowledge, no such language is known.
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(B, u)⇒P v (C, v)⇒P r
(4i) (A←B[C, D])

(A, u)⇒p r

(B, u)⇒P f (D, u)⇒P r
(4ii) (A←B[C, D])

(A, u)⇒p r

The proof derivations generated by the rules will be denoted by subscripted
variations of the letter D.

Write (A, u) ̸⇒P when there does not exist an r such that (A, u)⇒P r. Say
that A matches u when (A, u) ⇒P v for v ∈ Σ∗ (note that A does not have to
consume all of the input). The language recognized by a nonterminal A is the
set LP(A) = {u ∈ Σ∗ | ∃v ∈ Σ∗. (A, u) ⇒P v}. The language rejected by A
is the set LP(A) = {u ∈ Σ∗ | (A, u) ⇒P f}. We say that A handles u when
u ∈ LP(A) ∪ LP(A). The program P is complete if the start symbol S handles
all strings u ∈ Σ∗.

The following two properties are easily shown by induction.

Proposition D.2.1 (Suffix output). If (A, u) ⇒P (s, w), then w is a suffix of u
(∃v. u = vw).

Proposition D.2.2 (Determinacy). If (A, u) ⇒P r1 by D1 and (A, u) ⇒P r2 by
D2, then D1 = D2 and r1 = r2.

We recall the following negative decidability results proved by Ford for
the PEG formalism [6]. Since any GTDPL can be converted to an equivalent
PEG and vice-versa, they hold for GTDPL as well.

Proposition D.2.3. It is undecidable whether LP(A) = ∅ and whether LP(A) =
Σ∗.

Proposition D.2.4. It is undecidable whether a program is complete.

Parsing Expression Grammars

Having only a single complex operator, GTDPL offers a minimal foundation
which simplifies the developments in later sections. The drawback is that it
is very hard to determine the language denoted by a given GTDPL program.
In order to make examples more readable, we will admit programs to be pre-
sented with expressions from the extended set PExpr defined as follows:

PExpr ∋ e ::= g ∈ GExpr | e1e2 | e1/e2 | e∗ | !e1

This corresponds to the subset of predicate-free parsing expressions extended
with the ternary GTDPL operator. A program P with productions in PExpr
is called a PEG program, and desugars to a pure GTDPL program by adding
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productions E←ϵ and F←f and replacing every non-conforming production
as follows:

A←e1e2 7−→ A←B[C, F]
B←e1
C←e2

A←e1/e2 7−→ A←B[E, C]
B←e1
C←e2

A←e∗1 7−→ A←B[A, E]
B←e1

A←!e1 7−→ A←B[F, E]
B←e2

The desugaring embeds the semantics of PEG in GTDPL [6], so there is no
need to introduce semantic rules for parsing expressions. Note that although
parsing expressions resemble regular expressions, the recognizers that they
denote may not recognize the same languages as their usual set-theoretic in-
terpretation. For example, the expression a∗a recognizes the empty language!

Parse Trees

We are usually interested in providing a parse tree instead of just doing recog-
nition, e.g. for the purpose of executing semantic actions associated with pars-
ing decisions. Unlike generative frameworks, any program uniquely matches
an input via a unique derivation D, which we therefore could take as our no-
tion of parse tree. However, for space complexity reasons we will employ a
more compact notion for which we also define a bit coding for the purpose of
providing a definition of streaming parsing.

A parse tree T is an ordered tree where each leaf node is labeled by the
empty string or a symbol in Σ, and each internal node is labeled by a nonter-
minal subscripted by a symbol from 2 ∪ {ε} where 2 = {0, 1}.

Definition 34 (Parse trees and codes). For any A ∈ V, u, v ∈ Σ∗, and deriva-
tion D :: (A, u) ⇒P v, define simultaneously a parse tree TD and a parse code
CD ∈ 2∗ by recursion on D:

1. If A←ϵ, respectively A←a, then TD is a node labeled by Aε with a single
child node labeled by ε, respectively a. Let CD = ε.

2. If A←B[C, D] and D1 :: (B, u) ⇒P u′ we must have D2 :: (C, u′) ⇒P v.
Let TD be a node A0 with subtrees TD1 and TD2 . Let CD = 0 CD1CD2 .

3. If A←B[C, D] andD1 :: (B, u)⇒P f, then we must haveD2 :: (D, u′)⇒P
v. Create a node labeled by A1 with a single subtree TD2 . Let CD = 1 CD2 .
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The size of a parse tree |T | is the number of nodes in it. Note that only the
parts of a derivation counting towards the successful match contribute to its
parse tree, while failing subderivations are omitted. This ensures that parse
trees have size proportional to the input, in contrast to derivations which can
grow exponentially in the worst case.

Proposition D.2.5 (Linear tree complexity). Fix a program P. For all A ∈ V and
u, v ∈ Σ∗ and derivations D :: (A, u)⇒P v we have |T (D)| = O(|u|).

Parse trees and parse codes both provide injective codings of the subset of
derivations with non-failing results.

Proposition D.2.6 (Injectivity). Fix a program P and symbol A ∈ V. For all
u1, u2, v1, v2 ∈ Σ∗ and derivations D1 :: (A, u1) ⇒P v1 and D2 :: (A, u2) ⇒P v2,
if D1 ̸= D2, then TD1 ̸= TD2 and CD1 ̸= CD2 .

It is easy to check that a code can be used to construct the corresponding
parse tree in linear time, regardless of the size of the underlying derivation. In
general, a code can be viewed as an oracle which guides a leftmost expansion
of the corresponding parse tree. Any prefix of a code can thus be seen as
a partially expanded parse tree. During expansion, we maintain a stack of
nodes that are not yet expanded. If the top node is simple it can be expanded
deterministically, and if it is complex the next code symbol determines its
expansion; its child nodes are pushed on the stack.

Example 6. Consider the PEG program S←(a∗b/ϵ)a∗, which desugars into:

S←L[R, F] L←P[E, E] P←A[P, B] R←A[R, E]
A←a B←b E←ϵ F←f

We have derivations D :: (S, aa) ⇒ ε and D′ :: (S, aaba) ⇒ ε. Visualized
below is, from left to right: the trees TD, TD′ , and the partial tree expanded
from the prefix 000 of the code CD′ . The leftmost nonterminal leaf is the next
to be expanded.
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R0
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The parse codes are CD = 01001 and CD′ = 0000101, respectively. Observe
that codes correspond to the subscripts of the internal nodes in the order they
would be visited by an in-order traversal, reflecting the leftmost expansion
order.

Streaming Parsing

Using parse codes, we can define streaming parsing.

Definition 35 (Streaming parsing function). Let # ̸∈ Σ be a special end-of-
input marker. A streaming parsing function for a program P is a function f :
Σ∗(#∪ ε)→ 2∗ which for every input prefix u ∈ Σ∗ satisfies the following:

1. it is monotone: For all v ∈ Σ∗, f (uv) = f (u)c′ for some c′ ∈ 2∗.

2. it computes code prefixes: For all v ∈ Σ∗ and matching derivations D ::
(A, uv)⇒P w (w ∈ Σ∗), we have CD = f (u)c′ for some c′ ∈ 2∗.

3. it completes the code: if there exists a matching derivationD :: (A, u)⇒P
w, then CD = f (u#).

In the rest of this chaper, we develop an algorithm which implements a
streaming parsing function as defined above. The code prefix produced al-
lows consumers to perform parsing actions (e.g. construction of syntax trees,
evaluation of expressions, printing, etc.) before all of the input string has been
consumed. Monotonicity ensures that no actions will have to be “un-done”,
with the caveat that further input might cause the whole parse to be rejected.

D.3 Tabulation of Operational Semantics

In the following we fix a program P = (Σ, V, S, R).
We will be working with various constructions defined as least fixed points

of monotone operators on partially ordered sets. A partial order is a pair
(X,⊑) where X is a set and ⊑ is a reflexive, transitive and antisymmetric re-
lation on X. Given two elements x, y ∈ X, we will write x ⊏ y when x ⊑ y
and x ̸= y.

For any set X, let (X,⊑) be the discrete partial order, the smallest partial
order on X (i.e. x ⊑ x′ implies x = x′). Write X⊥ for the set X + {⊥} and let
(X⊥,⊑) be the lifted partial order with ⊥ as an adjoined bottom element, i.e.
∀x ∈ X⊥.⊥ ⊑ x.

A table on X is a |P| ×ω matrix T where each entry Tij is in X⊥, and indices
(i, j) are in the set Index = {(i, j) | 0 ≤ i < |P| ∧ 0 ≤ j}. The set of all tables on
X is denoted Table(X), and forms a partial order (Table(X),⊑) by comparing
entries pointwise: for T, T′ ∈ Table(X), we write T ⊑ T′ iff for all (i, j) ∈
Index, we have Tij ⊑ T′ij. Write ⊥ ∈ Table(X) for the table with all entries
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equal to⊥ ∈ X⊥. It is easy to verify that the partial order on Table(X) has the
following structure:

complete partial order: For all chains T0 ⊑ T1 ⊑ ... where Ti ∈ Table(X),
i ∈ {0, 1, ...}, the least upper bound

⊔
i Ti exists.

meet-semilattice: For all non-empty subsets S ⊆ Table(X), the greatest lower
bound

d
S exists.

A function F : Table(X)→ Table(X) is said to be continuous if it preserves
least upper bounds: For all S ⊆ Table(X), we have F(

⊔
S) =

⊔
T∈S F(T). A

continous function is automatically monotone, meaning that T ⊑ T′ implies
F(T) ⊑ F(T′). A least fixed point of F is an element T such that F(T) = T (T
is a fixed point) and also T ⊑ T′ for all fixed points T′. A general property of
complete partial orders is that if F is a continuous function then its least fixed
point lfp F exists and is given by

lfp F =
⊔
n

Fn(⊥)

where Fn is the n-fold composition of F with itself. We will also rely on the
following generalization:

Lemma D.3.1 (Lower bound iteration). If T ⊑ lfp F, then lfp F =
⊔

n Fn(T).

Parse Tables

We now recall the parse table used in the dynamic programming algorithm
for linear time recognition [1], but presented here as a least fixed point. The
table will have entries in the set Res = ω + {f}, i.e. either a natural number or
f indicating failure. Given a finite (respectively, infinite) string w = a0a1...an−1
(w = a0a1...), and an offset 0 ≤ j < n (0 ≤ j), write uj for the suffix ajaj+1...an−1
(ajaj+1...) obtained by skipping the first j symbols.

Definition 36 (Parse table). Let u ∈ Σ∗. Define a table operator Fu onTable(Res)
as follows. Let w = u#ω, the infinite string starting with u followed by an in-
finite number of repetitions of the end marker # ̸∈ Σ. For any table T ∈
Table(Res) define Fu(T) = T′ such that for all (i, j) ∈ Index:

T′ij =



f Ai←f or Ai←a and a not a prefix of wj

1 Ai←a and a is a prefix of wj

0 Ai←ϵ

m + m′ Ai←Ax[Ay, Az]; Txj = m; Ty(j+m) = m′

f Ai←Ax[Ay, Az]; Txj = m; Ty(j+m) = f

Tzj Ai←Ax[Ay, Az]; Txj = f

⊥ otherwise
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The operator Fu is easily seen to be continuous, and we define the parse
table for u by T(u) = lfp Fu.

For any u ∈ Σ∗, the table T(u) is a tabulation of all parsing results on all
suffixes of u:

Theorem D.3.2 (Fundamental theorem). Let u ∈ Σ∗ and consider T(u) as de-
fined above. For all (i, j) ∈ Index:

1. j ≤ |u| and T(u)ij = f iff (Ai, uj)⇒P f; and

2. j ≤ |u| and T(u)ij = m ∈ ω iff (Ai, uj)⇒P uj+m; and

3. j ≤ |u| and T(u)ij = ⊥ iff (Ai, uj) ̸⇒P;

4. if j > |u| then Tij = Ti|u|

The converse also holds: for any T satisfying the above, we have T = T(u).

Property 4 is sufficient to ensure that all parse tables have a finitary rep-
resentation of size |P| × |u|. It is straightforward to extract a parse code from
T(u) by applying Definition 34 and the theorem.

Example 7. Consider the program P from Example 6. The tables T = T(aa)
and T′ = T(aaba) are shown below:

0 1 2 · · ·
a a # · · ·

A 1 1 f

· · ·

B f f f
E 0 0 0
F f f f
L 0 0 0
P f f f
R 2 1 0
S 2 1 0

0 1 2 3 4 · · ·
a a b a # · · ·

A 1 1 f 1 f

· · ·

B f f 1 f f
E 0 0 0 0 0
F f f f f f
L 3 2 1 0 0
P 3 2 1 f f
R 2 1 0 1 0
S 4 3 2 1 0

Note that columns 1,2 in the left table equals columns 3,4 in the right table. In
general, columns depend on the corresponding input suffix but are indepen-
dent of the previous columns. This is a simple consequence of Theorem D.3.2.

For a table T and m ∈ ω, let T[m] be the table obtained by removing the
first m columns from T, i.e. T[m]ij = Ti(j+m).

Corollary D.3.3 (Independence). Let u ∈ Σ∗. For all 0 ≤ m, we have T(u)[m] =
T(um).
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Proof. By Theorem D.3.2. For example, if T(u)i(j+m) = m′ for some m′ then
(Ai, uj+m) ⇒ uj+m+m′ . Have (um)j = um+j, so (Ai, (um)j) ⇒ (um)j+m′ , and
therefore T(um)ij = m′.

Independence leads to the linear-time parsing algorithm of Aho and Ull-
man. For input u with |u| = n, compute T(u) column by column, starting
from the right. For each m ≤ n, we compute column m by fixed point it-
eration of Fum on the current table state. Since T(u)[m + 1] = T(um+1) has
already been computed, only |P| entries need to be processed in each step,
which takes time O(|P|2).

D.4 Streaming Parsing with Tables
The linear-time parsing algorithm has asymptotically optimal time complex-
ity. However, it always uses space linear in the length of the input string, since
all columns of the parse table has to be computed before the final result can be
obtained. For large grammars and inputs, this can be prohibitively expensive.
In the following we describe a method for computing only an initial part of
the table. The initial columns will in some cases provide enough information
to construct a prefix of the parse code and allow us to continue parsing with
a smaller table, saving space.

Let us illustrate the idea by an example. Let w = uv be an input string, and
let Ai←Ax[Ay, Az] be a rule in the program. Suppose that by analyzing only
the prefix u, we can conclude that there is a constant m such that T(uv′)x0 = m
for all v′. In particular, this holds for v′ = v, so T(w)i0 ∈ ω if and only if
T(w)i0 = m + m′ where m′ = T(w)ym = T(w)[m]y0 = T(wm)y0 (the last
equation follows by independence). By examining only the prefix u, we have
thus determined that the result only depends on T(wm), freeing up m columns
of table space. The process can be repeated for the remaining input wm.

We will need an analysis that can predict results as described. The theo-
retically optimal analysis is defined as follows:

Definition 37 (Optimal prefix table). Let u ∈ Σ∗, and define the optimal prefix
table T⊓(u) ∈ Table(Res) as the largest approximation of all the complete
tables for all extensions of u:

T⊓(u) =
l

v∈Σ∗
T(uv)

Theorem D.4.1. For all u, i, j:

1. if T⊓(u)ij ̸= ⊥ then ∀v. T(uv)ij = T⊓(u)ij;

2. if (∀v. T(uv)ij = r ̸= ⊥), then T⊓(u)ij = r.

Unfortunately, we cannot use this for parsing, as the optimal prefix table
is too precise to be computable:



150 PAPER D. PEG PARSING USING PROGRESSIVE TABLING

Theorem D.4.2. There is no procedure which computes T⊓(u) for all GTDPLs P
and input prefixes u.

Proof. Assume otherwise that T⊓(u) is computable for any u and GTDPL P.
Then L(P) = ∅ iff T⊓(ε)iS,0 = f. Hence emptiness is decidable, a contradiction
by Proposition D.2.3.

A conservative and computable approximation of T⊓ can easily be defined
as a least fixed point. Given a table operator F and a subset J ⊆ Index define
a restricted operator FJ by

FJ(T)ij =

{
F(T)ij if (i, j) ∈ J
Tij otherwise

If J = {(p, q)} is a singleton, write Fpq for FJ . Clearly, if F is continuous
then so is FJ .

For any u ∈ Σ∗, define an operator F(u) by F(u) = Fu
Ju

where Ju = {(i, j) ∈
Index | j < |u|}. The prefix table for u is the least fixed point of this operator:

T<(u) = lfp F(u)

Intuitively, a prefix table contains as much information as can be deter-
mined without depending on column |u|. Prefix tables are clearly computable
by virtue of being least fixed points, and properly approximate the optimal
analysis:

Theorem D.4.3 (Approximation). For all u ∈ Σ∗, we have T<(u) ⊑ T⊓(u). In
particular, if T<(u)ij = m or T<(u)ij = f, then ∀v. T(uv)ij = m or ∀v. T(uv)ij =
f, respectively.

Perhaps not surprisingly, prefix tables become better approximations as
the input prefix is extended. We will make use of this property and Lemma D.3.1
to efficiently compute prefix tables in an incremental fashion:

Proposition D.4.4 (Prefix monotonicity). For all u, v ∈ Σ∗, we have T<(u) ⊑
T<(uv).

The full parse table can be recovered as a prefix table if we just append an
explicit end marker to the input string:

Proposition D.4.5 (End marker). For all u ∈ Σ∗ and (i, j) ∈ Index, if j ≤ |u|
then T<(u#)ij = T(u)ij.

Independence carries over to prefix tables. For all u ∈ Σ∗ and m ≥ 0, we
thus have T<(u)[m] = T<(um).
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Streaming Code Construction

The resolved entries of a prefix table can be used to guide a partial leftmost
expansion of a parse tree. We model this expansion process by a labeled tran-
sition system which generates the corresponding parse code. By constructing
the expansion such that it is a prefix of all viable expansions, the parse code
can be computed in a streaming fashion. In order to determine as much of
the parse code as possible, we speculatively guess that choices succeed when
a dynamic analysis can determine that the alternative must fail.

Definition 38 (Leftmost parse tree expansion). Let T ∈ Table(Res) be a table
and d ∈ ω a speculation constant. Define a labeled transition system ET =

(Q, E)with states Q = V∗×ω and transitions E ⊆ {q c→ q′ | c ∈ 2∗; q, q′ ∈ Q}.
Let E be the smallest set such that for all Ai ∈ V, K⃗ ∈ V∗ and j ∈ ω:

1. If Ai←Ax[Ay, Az]; and either Txj ∈ ω or (AzK⃗, j) failsd , then:
(AiK⃗, j) 0→ (Ax AyK⃗, j) ∈ E

2. If Ai←Ax[Ay, Az]; and Txj = f, then:
(AiK⃗, j) 1→ (AzK⃗, j) ∈ E

3. If Ai←ϵ or Ai←a; and Tij = m, then:
(AiK⃗, j) ε→ (K⃗, j) ∈ E

4. If q c→ q′ ∈ E and q′ c′→ q′′, then: q cc′→ q′′ ∈ E.

where for all K⃗, j, n, write (K⃗, j) failsn if K⃗ = AiK⃗′ and either

1. Tij = f; or

2. Tij = m, n = n′ + 1 and (K⃗′, j + m) failsn′ .

A state encodes the input offset and the stack of leaves that remain unex-
panded. The node on the top of the stack is expanded upon a transition to the
next state, with the expansion choice indicated in the label of the transition.
The system is deterministic in the sense that every state can step to at most
one other state in a single step (the label is determined by the source state).

The highlighted disjunct allows us to speculatively resolve a choice as suc-
ceeding when the failure branch is guaranteed to fail. This is determined by
examining the table entries for at most d nonterminals on the current stack K⃗.

Example 8. The partial parse tree of Example 6 corresponds to the following
steps in ET′ where T′ is the table from Example 7:

(S, 0) 0→ (LR, 0) 0→ (PER, 0) 0→ (APER, 0) ε→ (PER, 1)
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A state q is quiescent if there is no transition from it. Say that q is convergent
and write q c→ q′ ↓ if either there is a path q c→ q′ such that q′ quiescent; or, q
is already quiescent and q′ = q and c = ε. Clearly, if such c and q′ exists, then
they are unique and can be effectively determined. Otherwise, we say that q
is divergent.

Expansions compute coded (matching) derivations in full parse tables:

Proposition D.4.6. Let u ∈ Σ∗ and consider the system ET(u).

1. There is a derivation D :: (A, u)⇒P um with c = CD if and only if (A, 0) c→
(ε, m) ↓.

2. We have (A, u)⇒p f if and only if (A, 0) failsn for some n.

It follows that a state (A, 0) is only divergent if the input is unhandled:

Proposition D.4.7. Let u ∈ Σ∗ and consider the system ET(u). Then (A, u) ̸⇒P if
and only if (A, 0) is divergent.

Hence, if P is complete, then every state is convergent in ET(u), and the
relation q c→ q′ ↓ becomes a total function q 7→ (c, q′).

The function associating every input prefix u with the code c given by
(S, 0) c→ q′ ↓ in the system ET<(u) is a streaming parse function as per Defi-
nition 35. This is ensured by the following sufficient condition, which states
that expansions never “change direction” as the underlying table is refined:

Proposition D.4.8. If T ⊑ T′ and (K⃗, j) c→ (K⃗′, j′) in ET, then either (K⃗, j) c→
(K⃗′, j′) in ET′ or (K⃗, j) fails in ET′ .

Expansions also never backtrack in the input, that is, if (K⃗, j) c→ (K⃗′, j′)
then j ≤ j′. This allows us to discard the initial columns of a table as we
derive a leftmost expansion:

Proposition D.4.9. Let T be a table. Then (K⃗, m)
c→ (K⃗′, n) in ET if and only if

(K⃗, 0) c→ (K⃗′, n−m) in ET[m].

Progressive Tabular Parsing

Assume that P is a complete program. We use the constructions of this sec-
tion to define our progressive tabular parsing procedure. The algorithmic issues
of space and time complexity will not be of our concern yet, but will we be
adressed in the following section.

Given an input string with end marker w# = a0a1...an−1 (an−1 = #), the
procedure decides whether there exists a matching derivationD :: (S, w)⇒P
wk, and in that case produces CD in a streaming fashion. In each step 0 ≤ k ≤
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(1) a

A 1
B f
E 0
F f
L ⊥
P ⊥
R ⊥
S ⊥

(2) a a

A 1 1
B f f
E 0 0
F f f
L ⊥ ⊥
P ⊥ ⊥
R ⊥ ⊥
S ⊥ ⊥

(3) a a b

A 1 1 f ⊥
B f f 1 ⊥
E 0 0 0 ⊥
F f f f ⊥
L ⊥ ⊥ ⊥ ⊥
P 3 2 1 ⊥
R 2 1 0 ⊥
S ⊥ ⊥ ⊥ ⊥

(4) a a b a

A 1 1 f 1 ⊥
B f f 1 f ⊥
E 0 0 0 0 ⊥
F f f f f ⊥
L ⊥ ⊥ ⊥ ⊥ ⊥
P 3 2 1 ⊥ ⊥
R 2 1 0 ⊥ ⊥
S ⊥ ⊥ ⊥ ⊥ ⊥

(5) a a b a #

A 1 1 f 1 f
B f f 1 f f
E 0 0 0 0 0
F f f f f f
L ⊥ ⊥ ⊥ ⊥ 0
P 3 2 1 ⊥ f
R 2 1 0 ⊥ 0
S ⊥ ⊥ ⊥ ⊥ 0

(1) : (S, aaba#) 0→ (LR, aaba#)
(2) : (LR, aaba#)
(3) : (LR, aaba#) 0→ (PER, aaba#) 0→ (APER, aaba#)→ (PER, aba#)

0→ (APER, aba#)→ (PER, ba#) 1→ (BER, ba#)→ (ER, a#)
(4) : (ER, a#)→ (R, a#) 0→ (AR, a#)→ (R, #)
(5) : (R, #) 1→ (E, #)→ (ε, #)

Figure D.1: In the top is five consecutive tables during the parse of input w =
aaba, using the program from Example 6. Only the columns to the right of the
dashed line has to be stored for the next iteration. Newly computed entries
are colored; entries considered by the expansion process are written in bold
face. The progression of the leftmost expansion is shown below.

n, we compute a table Tk ∈ Table(Res), a stack K⃗k, an offset mk ≤ k and a code
chunk ck ∈ 2∗. Upon termination, we will have CD = c0c1...cn.

Initially T0 = T<(ε), q0 = (S, 0) and c0 = ε. For each 1 ≤ k ≤ n, the
values Tk, K⃗k, mk and ck are obtained by

Tk = T<(amk−1 ...ak−1)

mk = mk−1 + m′

where (K⃗k−1, 0) ck
→ (K⃗k, m′) ↓

Since P is complete, we have by Proposition D.4.7 that the last line above can
be resolved.

If K⃗n = ε, accept the input; otherwise reject.



154 PAPER D. PEG PARSING USING PROGRESSIVE TABLING

Theorem D.4.10. The procedure computes CD iff there is a derivationD :: (S, w)⇒P
wk.

Proof. We claim that after each step k, we have (S, 0) c0...ck
→ (K⃗k, mk) ↓ in ET(w).

This holds for k = 0, as (S, 0) is quiescent. For k > 0, we assume that it holds
for k− 1 and must show (K⃗k−1, mk−1)

ck
→ (K⃗k, mk) ↓ in ET(w). By construction,

we have a path (K⃗k−1, 0) ck
→ (K⃗k, mk −mk−1) in ETk . By Proposition D.4.4 and

Theorem D.4.3, we have Tk = T<(amk−1 ...ak−1) ⊑ T<(wmk−1) ⊑ T(wmk−1) =
T(w)[mk − 1], so by Proposition D.4.8 the path is in ET(w)[mk−1], and by Propo-
sition D.4.9, we obtain our subgoal.

If the procedure accepts the input, then we are done by Proposition D.4.6.
If it rejects, it suffices to show that (K⃗, mk) is quiescent in ET(w) which by
Proposition D.4.6 implies that there is no matching derivation. Since Tm =
T<(w#), we can apply Proposition D.4.5 to easily show ETm = ET(w), and we
are done.

Figure D.1 shows an example of a few iterations of the procedure applied
to the program in Example 6.

In the next section we show that the above procedure can be performed
using at most linear time and space. Linear space is easily seen to be obtained
by observing that the table Tk−1 is no longer needed once Tk has been com-
puted. On the other hand, obtaining a linear time guarantee requires careful
design: Computing each table Tk using the classical right-to-left algorithm
would take linear time in each step, and hence quadratic time in total. In
the following section, we show how to obtain the desired time complexity by
computing each table incrementally from the previous one.

D.5 Algorithm
The streaming parsing procedure of Section D.4 can be performed in amor-
tized time O(|w|) (treating the program size as a constant). We assume that
the program P is complete.

Our algorithm computes each prefix table Tk using a work set algorithm
for computing fixed points. We save work by starting the computation from
Tk−1[mk−1] instead of the empty table ⊥. In order to avoid unnecessary pro-
cessing, an auxiliary data structure is used to determine exactly those entries
which have enough information available to be resolved. This structure itself
can be maintained in constant time per step. Since at most O(|w|) unique en-
tries need to be resolved over the course of parsing w, this is also the time
complexity of the algorithm.

The algorithm is presented in two parts in Figure D.2. Algorithm 1 (Parse)
takes as input a #-terminated input stream and maintains two structures: A
table structure T which incrementally gets updated to represent T<(u) for a
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varying substring u = amk−1 ...ak−1; and a structure R which keeps track of
reverse data dependencies between the entries in T. In each iteration, any
resolved code prefix is returned and the corresponding table columns freed.
The main work is done in Algorithm 2 (Fix) which updates T and R to repre-
sent the next prefix table and its reverse dependencies, respectively.

We will sketch the correctness proof and highlight important lemmas dur-
ing the presentation. Detailed proofs can be found in the appendix.

Work Sets

Let T be a table such that T ⊑ T<(u) for some prefix u. The work set ∆u(T) ⊆
Index consists of all indices of entries that can be updated to bring T closer to
T<(u) by applying F(u):

∆u(T) = {(i, j) | Tij ⊏ F(u)(T)ij}.

It should be clear that T = T<(u) iff ∆u(T) = ∅, and that for all (p, q) ∈
∆u(T), we still have F(u)

pq (T) ⊑ T<(u) for the updated table. In the following
we show how ∆u(F(u)

pq (T)) can be obtained from ∆u(T) instead of recomputing
it from scratch.

Dependencies

In order to determine the effect of table updates on the work set, we need to
make some observations about the dependencies between table entries.

Consider an index (i, j) such that Ai←Ax[Ay, Az] and Tij = ⊥. The index
(i, j) cannot be in the work set for T unless either Txj = m and Ty(j+m) ̸= ⊥;
or Txj = f and Tzj ̸= ⊥. We say that (i, j) conditions on (x, j). The reverse
condition map C−1 in Figure D.2 associates every row index x with the set of
row indices i ∈ C−1

x such that (i, j) conditions on (x, j) for all j.
If Txj = m or Txj = f then (i, j) is in the work set iff Ty(j+m) ̸= ⊥ or

Tzj ̸= ⊥, respectively. In either case we say that (i, j) has a dynamic dependency
on (y, j + m) or (z, j), respectively. The dependency is dynamic since it varies
based on the value of Txj. The partial map D : Table(Res)× Index → Index⊥
defined in Figure D.2 associates every index (i, j) with its unique dynamic
dependency DT

ij in table T. The dynamic dependency is undefined (⊥) if the
condition is unresolved or if the corresponding expression gi is simple.

By the observations above, we can reformulate the work set using depen-
dencies:

Lemma D.5.1 (Work set characterization). For all T we have

∆u(T) = {(i, j) ∈ Ju | Tij = ⊥
∧ (gi complex⇒ DT

ij ̸= ⊥ ̸= TDT
ij
)}
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Algorithm 1 (Parse).
In: w = a0a1...a|w|−1 ∈ Σ∗#.
Out: Code c0c1...c|w|−1, accept/reject.

1: u := ε
2: T := ⊥
3: K⃗ := ε
4: R := (i, j) 7→ ∅
5: for k ∈ {1, ..., |w|} do
6: u := u ak−1
7: run Fix
8: compute (K⃗, 0) c→ (K⃗′, m′) ↓
9: cn := c

10: K⃗ := K⃗′

11: T := T[m′]
12: R := R[m′]
13: accept if K⃗ = ε else reject

Algorithm 2 (Fix).
Precondition:
u = am...ak−1
T = T<(am...ak−2) ∧ R = (DT)−1

Postcondition:
u = am...ak−1
T = T<(u) ∧ R = (DT)−1

1: W := {(i, |u| − 1) | gi simple}
2: while W ̸= ∅ do
3: let (p, q) ∈W
4: T := F(u)

pq (T)
5: W := W \ {(p, q)} ∪ Rpq
6: for i′ ∈ C−1

p do
7: let (k, ℓ) = DT

i′q
8: Rkℓ := Rkℓ ∪ {(i′, q)}
9: if Tkℓ ̸= ⊥ then

10: W := W ∪ {(i′, q)}
Reverse condition map

C−1 : |P| → 2|P|

C−1
x = {i ∈ |P| | Ai←Ax[Ay, Az]}

Dynamic (reverse) dependency map

D : Table× Index→ Index⊥

DT
ij =


(y, j + m) if Ai←Ax[Ay, Az] ∧ Txj = m
(z, j) if Ai←Ax[Ay, Az] ∧ Txj = f

⊥ otherwise

(DT)−1
kℓ = {(i, j) | DT

ij = (k, ℓ)}

Restrictions

T[m]ij = Ti(m+j)

R[m]kℓ = {(i, j−m) | (i, j) ∈ Rk(m+ℓ) ∧ j ≥ m}

Figure D.2: Parsing algorithm.
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Incremental Work Set Computation

When a table S is updated by computing T = F(u)
pq (S) for (p, q) ∈ ∆u(S),

Lemma D.5.1 tells us that the changes to the work set can be characterized by
considering the entries (i, j) for which one or more of the values DT

ij and TDT
ij

differ from DS
ij and SDS

ij
, respectively.

An important observation is that the dependency map only gets more de-
fined as we go from S to T:

Lemma D.5.2 (Dependency monotonicity). If T ⊑ T′, then for all (i, j) ∈ Index,
we have DT

ij ⊑ DT′
ij .

Using this and the fact that S ⊑ T, it is easy to show that we must have
∆u(T) ⊇ ∆u(S) \ {(p, q)}. Furthermore, we observe that (i, j) ∈ ∆u(T) \
(∆u(S) \ {(p, q)}) iff

1. DS
ij ⊏ DT

ij and TDT
ij
̸= ⊥; or

2. DS
ij = DT

ij ̸= ⊥ and SDS
ij
⊏ TDT

ij
.

Since the second case can only be satisfied when DT
ij = (p, q), it is completely

characterized by the reverse dependency set (DT)−1
pq , defined in Figure D.2.

The first case is when (i, j) conditions on (p, q) (equivalent to DS
ij ⊏ DT

ij ) and
TDT

ij
̸= ⊥. The entries satisfying the former are completely characterized by

the reverse condition map:

Lemma D.5.3 (Dependency difference). Let S ∈ Table(Res) such that S ⊑
T<(u) and (p, q) ∈ ∆u(S), and define T = F(u)

pq (S). Then {(i, j) | DS
ij ⊏ DT

ij} =
C−1

p × {q}.

By Lemmas D.5.1, D.5.2 and D.5.3, we obtain the following incremental
characterization of the work set:

Lemma D.5.4 (Work set update). Let S ⊑ F(u)(S) ⊑ T<(u), (p, q) ∈ ∆u(S)
and T = F(u)

pq (S). Then

∆u(T) = ∆u(S) \ {(p, q)}
∪ (DS)−1

pq

∪ {(i′, q) | i′ ∈ C−1
p ∧⊥ ̸= TDT

i′q
}

The extra premise S ⊑ F(u)(S) says that every entry in S must be a conse-
quence of the rules encoded by F(u), and can easily be shown to be an invariant
of our algorithm.
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Reverse dependency map lookups (DT)−1
pq cannot easily be computed effi-

ciently. To accomodate efficient evaluation of these lookups, the algorithm
maintains a data structure R to represent (DT)−1. The following Lemma
shows that the loop 6-10 will reestablish the invariant that R = (DT)−1:

Lemma D.5.5 (Dependency update). Let S ⊑ T<(u), (p, q) ∈ ∆u(S) and T =

F(u)
pq (S). Then for all (k, ℓ) ∈ Index, we have (DT)−1

kℓ = (DS)−1
kℓ ∪ {(i′, q) | i′ ∈

C−1
p ∧ (k, ℓ) = DT

i′q}.

Correctness

Theorem D.5.6 (Correctness of Fix). If the precondition of Fix holds, then the
postcondition holds upon termination.

Proof sketch. We first remark that the algorithm never attempts to perform an
undefined action. It suffices to check that line 3 is always well-defined, and
that Lemma D.5.3 implies that the right of the equation in line 7 is always
resolved.

The outer loop maintains that R = (DT)−1 and W = ∆u(T). Initially, only
the entries in the last column which are associated with simple expressions
can be updated. If S is the state of T at the beginning of an iteration of loop
2-10, then at the end of the iteration T will have the form of the right hand
side of Lemma D.5.4. When the loop terminates we have W = ∆u(T) = ∅, so
T = T<(u).

Theorem D.5.7 (Correctness of Parse). The algorithm Parse performs the stream-
ing parsing procedure of Section D.4.

Proof sketch. After executing lines 1-4, we verify that R = (DT)−1, and that
for k = 0:

T = T<(amk ...ak−1), K⃗ = K⃗k, u = amk ...ak−1

The loop maintains the invariant: When entering the loop, we increment k
and thus have R = (DT)−1 and

T = T<(amk−1 ...ak−2), K⃗ = K⃗k−1, u = amk−1...ak−2

After the assignment to u, we have u = amk−1 ...ak−1. By running Fix, we then
obtain T = T<(amk−1 ...ak−1) = Tk. By assumption that P is complete, line 8 is
computable, and we obtain

K⃗′ = K⃗k c = ck m′ = mk −mk−1

The last updates in the loop thus reestablishes the invariant.
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Complexity

We give an informal argument for the linear time complexity. Let d ∈ ω be the
constant from Definition 38 limiting the number of stack symbols considered
when resolving choices.

It can be shown that the three sets on the right hand side of the equation
in Lemma D.5.4 are pairwise disjoint; likewise for Lemma D.5.5. We thus
never add the same element twice to W and R, meaning that they can be rep-
resented using list data structures, ensuring that all single-element operations
are constant time.

The complexity argument is a simple aggregate analysis. To see that Parse
runs in linear time, we observe that the work set invariant ensures that we
execute at most O(|u|) iterations of the loop 2-10 in Fix. Since we only add
unprocessed elements to the work list, and no element is added twice, the
total number of append operations performed in lines 5 and 10 is also O(|u|).
The same reasoning applies for the total number of append operations in line
8. The remaining operations in Fix are constant time.

Line 8 in Parse computes an expansion of aggregate length O(mn). For
each expansion transition, we use at most d steps to resolve choices, and we
thus obtain a bound of O(dmn).

The restriction operator T[m] can be performed in constant time by mov-
ing a pointer. The restriction of the reverse dependency map R[m] can be
implemented in constant time by storing the offset and lazily performing the
offset calculation j−m and filtering by j ≤ m on lookup.

D.6 Evaluation

We have developed a simple prototype implementation for the purpose of
measuring how the number of columns grow and shrink as the parser pro-
ceeds, which gives an indication of both its memory usage and its ability to
resolve choices. The evaluation also reveals parts of the design which will re-
quire further engineering in order to obtain an efficient implementation. We
have not yet developed an implementation optimized for speed, so a compar-
ative performance comparison with other tools is reserved for future work.

We consider three programs: a) a simplified JSON parser, b) a simplified
parser for the fragment of statements and arithmetic expressions of a toy pro-
gramming language, c) a tail-recursive program demonstrating a pathological
worst-case.

All programs are presented as PEGs for readability. Nonterminals are un-
derlined, terminals are written in typewriter and a character class [a...z] is
short for a/b/.../z.
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JSON Parser We have written a simple JSON parser based on a simplifica-
tion of the ECMA 404 specification3 and taking advantage of the repetition
operator of PEG. To keep the presentation uncluttered, we have left out han-
dling of whitespace.

object ← {members }
members ← pair(, pair)∗/ϵ

pair ← string : value
array ← [ elements ]

elements ← value(, value)∗/ϵ
value ← string / object / number / array

/true/false/null
string ← "[a...z]∗"

number ← int( f rac /ϵ)(exp /ϵ)
int ← [1...9] digits /-[1...9] digits /-[0...9]/[0...9]

f rac ← . digits
exp ← e digits

digits ← [0...9][0...9]∗

e ← e+/e-/e/E+/E-/E

The desugared program contains 158 rules. We ran the program on a 364 byte
JSON input with several nesting levels and syntactic constructs exercising all
rules of the grammar. The resulting parse code is computed in 3530 expansion
steps based on the computed table information.

We would like to get an idea of how varying values of the speculation con-
stant d affects the amount of memory consumed and also the amount of work
performed. Recall that d specifies the number of stack symbols considered
when determining whether a branch must succeed on all viable expansions.
The results for the range 0 to 12 are summarized in the following table:

3http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
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d max cols non-imm. entries spec. steps visited
(max 365) (max 23360) (rel. to 3530)

0 362 23348 (99.95%) 0 (0.00%) 2866
1 229 23248 (99.52%) 6 (0.17%) 2876
2 229 23248 (99.52%) 9 (0.25%) 2876
3 10 19321 (82.71%) 271 (7.68%) 3116
4 10 19321 (82.71%) 283 (8.02%) 3117
5 10 19284 (82.55%) 295 (8.36%) 3121
6 10 19200 (82.19%) 312 (8.84%) 3134
7 10 19200 (82.19%) 321 (9.09%) 3134
8 2 18936 (81.06%) 419 (11.87%) 3162
9 2 18921 (81.00%) 431 (12.21%) 3173
10 2 18921 (81.00%) 442 (12.52%) 3173
11 2 18789 (80.43%) 453 (12.83%) 3173
12 2 18789 (80.43%) 453 (12.83%) 3173

The second column shows the maximum number of columns stored at any
point. The worst case is 364 + 1 = 365. We observe that d = 8 results in just
two columns needing to be stored in memory.

The third column measures the potential work saved as d is increased. To
explain it, we introduce the notion of an immediate rule, which is either simple,
or of the form A←A[B, C] where A and B are immediate and either C←ϵ or
C←f. An entry Tij where Ai is immediate is always resolved upon reading
symbol j, and can thus be precomputed and looked up based on the symbol.
The real run-time cost is therefore the number of computed non-immediate
entries, which is shown in the third column together with the percentage com-
pared to the worst case. The benchmark shows that for d ≥ 8, an average of
52 complex entries must be resolved for each input symbol. This may turn
out to be an issue for scalability, as the number of non-immediate entries can
be expected to be proportional to the program size.

The fourth column is the number of steps spent evaluating the (K⃗, j) failsn
predicate, and the relative number compared to the number of expansion
steps. For this particular program, the overhead is seen to be very small com-
pared to the reduction in computed entries and the fact that parsing proceeds
in practically constant memory.

The last column shows the total number of unique table entries visited by
the expansion. This is much smaller than the number of entries actually com-
puted, so there is ample room for optimization, e.g. by integration between
the expansion process and the table computation in order to compute only
the entries that are needed.

Statement/Expression Parser The following is inspired by an example from
a paper on ALL(*) [15]. The program parses a sequence of statements, each
terminated by semicolon, with the whole sequence terminated by a single
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dot representing an end-of-program token. Each statement is either a single
arithmetic expression or an assignment.

prog ← stat stat∗ .
stat ← sum = sum ;/ sum ;
sum ← product + sum / product

product ← f actor * product / f actor
f actor ← id ( sum )/( sum )/ id

id ← [a...z][a...z]∗

Top-down parsing of infix expressions may require unbounded buffering
of the left operand, as the operator itself arrives later in the input stream. The
following shows an input string, and below each symbol is the size of the
parse table right after its consumption:

aj z = f ( z ) ; x = x + y * y * y ; g ( x ) ; . #
size 1 0 1 2 3 4 0 1 0 1 0 1 2 3 4 5 0 1 2 3 4 0 0 1

We are not concerned with the speculation constant; assume that it is un-
bounded. The example demonstrates how the method adapts the table size
as input is consumed. Note that ; and = resolves the sum expression cur-
rently being parsed, truncating the table, and also that the left operand of the
+ symbol is correctly resolved, while the * expression must be buffered.

Ambiguous Tail-Recursive Programs Any non-deterministic finite automa-
ton (NFA) can be interpreted as a PEG program by assigning a nonterminal
to each state, and for each state q with transitions q

a1→ q1, ..., q an→ qn creating a
rule q←a1 q1 /.../an qn. The ordering of transitions is significant and defines
a disambiguation priority. The final state q f is assumed to have no transitions,
and is given the rule q f ←ϵ.

If the NFA contains no ε-loops then its language will coincide with that
of its PEG encoding, which is a complete program implementing a backtrack-
ing depth-first search for an accepting path. The following shows a simple
example of an NFA and its prioritized interpretation as a PEG:

S T

E

a

a

a
b

S←a S /a T /bU
T←a S
E←ϵ

S←P[E, Q] P←A[S, F]
T←A[S, F] Q←V[E, W]
E←ϵ V←A[T, F]
F←f W←B[E, F]
B←b
A←a
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The NFA is ambiguous, as any string of the form an+2b, n ≥ 0, can be matched
by more than one path from S to E. The priority enforced by the program
dictates that T is never invoked, as the production aS covers the production
aT, meaning that every string accepted by the latter is also accepted by the
former, which has higher priority in the choice.

The example triggers worst-case behavior for our method, which fails to
detect coverage regardless of the speculation bound, resulting in a table size
proportional to the input length. This is obviously suboptimal, as any regular
language can be recognized in constant space.

The problem is in the tail recursion; the desugared program has every
recursive call occur as a condition which remains unresolved until the end-of-
marker input has been seen. The analysis is oblivious to coverage, and thus
fails to detect that T can never be on a viable expansion until the very end.

D.7 Discussion

We discuss our method in the context of the work of others, and point out
directions for future work.

The workset algorithm is an instance of the scheme of chaotic iteration [4]
for computing limits of finite iterations of monotone functions. Our parsing
formalism goes back to the TS/TDPL formalism introduced by Birman and
Ullman [3] and later generalized to GTDPL by Aho and Ullman [1]. They also
present the linear-time tabular parsing technique and show that GTDPL can
express recognizers for all deterministic context-free languages, including all
deterministic LR-class languages. On the other hand, there are context-free
languages that cannot be recognised by GTDPL, as general context-free pars-
ing is super-linear [11]. Ford’s Parsing Expression Grammars (PEG) [6] have
the same recognition power as GTDPL, albeit using a larger set of operators
which arguably are better suited for practical use.

Packrat parsing [5], is a direct implementation of the PEG operational
semantics with memoization. It can be viewed as “sparse” tabular parsing
where only the entries encountered on a depth-first search for an expansion
are computed. Our evaluation shows that PTP computes a very large portion
of the table. Some of this overhead is unavoidable, as the dynamic analysis re-
lies on the exploration of both branches of the choice currently being resolved,
but most of the computed entries are never considered by the expansion pro-
cess. A closer integration of expansion and table computation inspired by
Packrat may turn out to be a rewarding implementation strategy.

Heuristic approaches include Kuramitsu’s Elastic Packrat algorithm [10]
and Redziejowski’s parser generator Mouse [17], both of which are Packrat
implementations using memory bounded by a configurable constant. The
former uses a sliding window to limit the number of stored table columns,
and the latter limits the number of memoized calls per nonterminal. Both ap-
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proaches risk triggering exponential behavior when backtracking exceeds the
bounds of their configured constants, which however seems rare in practice.
A disadvantage of heuristic memory reductions is that they have to store the
full input string until the full parse is resolved, because they cannot guarantee
that the parser will not backtrack.

Packrat With Static Cut Annotations

Mizushima, Maeda and Yamaguchi observes that when Packrat has no fail-
ure continuations on the stack, all table columns whose indices are less than
the index of the current symbol can be removed from memory. To increase
the likelihood of this, they extend PEG with cut operators à la Prolog to “cut
away” failure continuations, and also devise a technique for sound automatic
cut insertion, i.e. without changing the recognized language [14]. Manu-
ally inserted cuts yield significant reductions in heap usage and increases in
throughput, but automatic cut insertion seems to miss several opportunities
for optimization. Redziejowski further develops the theory of cut insertion
and identifies sufficient conditions for soundness, but notes that automation
is difficult: “It appears that finding cut points in non-LL(1) grammars must to a
large extent be done manually” [18].

The method of Mizushima et al. is subsumed by PTP. An empty stack of
failure continuations corresponds to the case where the condition A in a top-
level choice A[B, C] is resolved. Insertion of cuts is the same as refactoring
the grammar using the GTDPL operator A[B, C], which is the cut operator
A ↑ B/C of Mizushima et al. in disguise. Increasing the speculation bound
can achieve constant memory use without requiring any refactoring of the
program.

Cost vs Benefit of Memoization

Several authors argue that the cost of saving parse results outweighs its bene-
fits in practice [2, 9]. The PEG implementation for the Lua language [9] uses a
backtracking parsing machine instead of Packrat in order to avoid paying the
memory cost [12]. Becket and Somogyi compares the performances of Packrat
parsers with and without memoization using a parser for the Java language
as benchmark [2]. Their results show that full memoization is always much
slower than plain recursive descent parsing, which never triggered the expo-
nential worst case in any of their tests. On the other hand, memoizing only a
few selected nonterminals may yield in a speedup, suggesting that memoiza-
tion does not serve as a performance optimization, but as a safeguard against
pathological worst-case scenarios which are rare in practice. However, an-
other experiment by Redziejowki on PEG parsers for the C language show a
significant overhead due to backtracking. This could not be completely elim-
inated by memoizing a limited number of nonterminals, but required man-
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ual rewriting of the grammar based on knowledge from the benchmark re-
sults [16].

Our technique uses full tabulation rather than memoization, but the re-
sults still apply to suggest that a direct implementation will likely be slower
than plain recursive descent parsers on common inputs and carefully con-
structed grammars. However, ad-hoc parsers cannot be expected to be con-
structed in such an optimal way, and thus may need memoization to prevent
triggering worst-case behavior. Furthermore, our best-case memory usage—
which is bounded—outperforms recursive descent parsers which must store
the complete input string in case of backtracking. This is crucial in the case of
huge or infinite input strings which cannot fit in memory, e.g. logging data,
streaming protocols or very large data files.

Parsing Using Regular Expressions

Medeiros, Mascarenhas and Ierusalimschy embed backtracking regular ex-
pression matching in PEG [13]. In fact, every regular expression corresponds
to a right-regular context-free grammar4, and one can easily check that inter-
preting this grammar as a PEG yields its backtracking matching semantics.
Interestingly, the PEG encoding of ambiguous regular expressions make our
method exhibit worst-case behavior with regards to streaming and memory
usage, as the dynamic analysis is oblivous to detection of coverage. Coverage
is undecidable for PEG in general, but is decidable for right-regular gram-
mars [8].

Grathwohl, Henglein and Rasmussen give a streaming regular expres-
sion parsing technique which supports both approximate and optimal cov-
erage analysis [8]. With Søholm and Tørholm they develop Kleenex, which
compiles grammars for regular languages into high-performance streaming
parsers with backtracking semantics [7]. Since PEGs combine lexical and syn-
tactic analysis, they can be expected to contain many regular fragments. Per-
haps the technique of Kleenex can be combined with PTP to obtain better
streaming behavior for these.

D.8 Conclusion

We have presented PTP, a new streaming execution model for the TDPL fam-
ily of recursive descent parsers with limited backtracking, together with a
linear-time algorithm for computing progressive tables and a dynamic anal-
ysis for improving the streaming behavior of the resulting parsers. We have
also demonstrated that parsers for both LL and non-LL languages automati-

4Contains only productions of the form A → ε and A → aB, corresponding 1-1 to the
transitions of an NFA.
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cally adapt their memory usage based on the amount of lookahead necessary
to resolve choices.

A practical performance-oriented implementation will be crucial in order
to get a better idea of the applicability of our method. Our prototype evalua-
tion shows that a substantial amount of the computed table entries are never
used, so future work should focus on minimizing this overhead.

We believe that our method will be useful in scenarios where a streaming
parse is desired, either because all of the input is not yet available, or because
it is too large to be stored in memory at once. Possible applications include
read-eval-print-loops, implementation of streaming protocols and processing
of huge structured data files.

D.9 Proofs
Proposition D.2.5 (Linear tree complexity). Fix a program P. For all A ∈ V and
u, v ∈ Σ∗ and derivations D :: (A, u)⇒P v we have |T (D)| = O(|u|).

Proof. Observe that D cannot contain a strict subderivation for the subject
(A, u), as determinism would imply that D would be infinite.

We show by induction on |u| − |v| that |T (D)| ≤ 2|P|(|u| − |v|).

Tabulation of Operational Semantics

Lemma D.3.1 (Lower bound iteration). If T ⊑ lfp F, then lfp F =
⊔

n Fn(T).

Proof. We prove both directions of the equality.
Claim: lfp F ⊑ ⊔

n Fn(T). We first remark that by definition, lfp F =⊔
n Fn(⊥) is the least upper bound of {Fn(⊥)}. Observe that for all n we have

Fn(⊥) ⊑ Fn(T) ⊑ ⊔
n Fn(T). Indeed, the last inequality follows by definition

of least upper bounds. The former holds by induction, since we have ⊥ ⊑ T
and by monotonicity of F, Fm(⊥) ⊑ Fm(T) implies Fm+1(⊥) ⊑ Fm+1(T).
Since we have shown that

⊔
n Fn(T) is an upper bound of {Fn(⊥)}, we have

lfp F ⊑ ⊔
n Fn(T).

Claim:
⊔

n Fn(T) ⊑ lfp F. Observe that for all n we have Fn(T) ⊑ lfp F.
Indeed we have T ⊑ lfp F by assumption, and by monotonicity Fm(T) ⊑ lfp F
implies Fm+1(T) ⊑ F(lfp F) = lfp F. Since we have shown that lfp F is an
upper bound of {Fn(T)} it follows that

⊔
n Fn(T) ⊑ lfp F.

Theorem D.3.2 (Fundamental theorem). Let u ∈ Σ∗ and consider T(u) as de-
fined above. For all (i, j) ∈ Index:

1. j ≤ |u| and T(u)ij = f iff (Ai, uj)⇒P f; and

2. j ≤ |u| and T(u)ij = m ∈ ω iff (Ai, uj)⇒P uj+m; and

3. j ≤ |u| and T(u)ij = ⊥ iff (Ai, uj) ̸⇒P;
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4. if j > |u| then Tij = Ti|u|

The converse also holds: for any T satisfying the above, we have T = T(u).

Proof. We start by proving Property 4. Let w = u#ω and observe that for
all (i, j) where j > |u| we have wj = w|u|, and it follows that Fu(⊥)ij =
Fu(⊥)i|u| ∈ {⊥, f}. By a simple induction we obtain that j > |u| implies
(Fu)k(⊥)ij = (Fu)k(⊥)i|u| for all k ≥ 0. Therefore j ≥ |u| implies that T(u)ij =⊔

k(Fu)k(⊥)ij =
⊔

k(Fu)k(⊥)i|u| = T(u)i|u|.
Before proving the remaining, we make the claim that for all (i, j) such

that j ≤ |u| we have

1. If (Ai, uj)⇒ uj+m then ∃k. (Fu)k(⊥)ij = m.

2. If (Ai, uj)⇒ f then ∃k. (Fu)k(⊥)ij = f.

3. If (Ai, uj) ̸⇒ then ∀k. (Fu)k(⊥)ij = ⊥.

If the claim holds, then one direction of Properties 1,2,3 follow. For example, if
(Ai, uj) ⇒ uj+m then there is a k such that m = (Fu)k(⊥)ij ⊑

⊔
k(Fu)k(⊥)ij =

T(u)ij. For the converse directions we use the fact that for all (i, j) we have
(∃m. (Ai, uj) ⇒ uj+m) ∨ ((Ai, uj) ⇒ f) ∨ ((Ai, uj) ̸⇒). Using the previous
claims, the value of Tij will be in contradiction with all but one of the three
disjuncts.

The first two claims follow by induction on derivations. In the inductive
cases we use monotonicity of Fu to pick a large enough k. For the third claim
we prove that ∃k. (Fu)k(⊥)ij = f/m then (Ai, uj) ⇒ f/uj+m by induction on
k. The contrapositive of this matches the third claim.

Using determinacy of the parsing relation, it is easily seen that the prop-
erties of the Theorem uniquely determines T(u).

Prefix Tables

Theorem D.4.3 (Approximation). For all u ∈ Σ∗, we have T<(u) ⊑ T⊓(u). In
particular, if T<(u)ij = m or T<(u)ij = f, then ∀v. T(uv)ij = m or ∀v. T(uv)ij =
f, respectively.

Proof. Let u ∈ Σ∗. It suffices to show that for any v ∈ Σ∗, we have T<(u) ⊑ T(uv).
We first remark that for all J ⊆ Index and T ∈ Table we have Fu

J (T) ⊑
Fu(T). Furthermore, for all v ∈ Σ∗ we have Fu

Ju
(T) = Fuv

Ju
(T). By these two

remarks, we obtain via induction that for all n ≥ 0, we have (Fu
Ju
)n(⊥) =

(Fuv
Ju
)n(⊥) ⊑ (Fuv)n(⊥) ⊑ ⊔

n(Fuv)n(⊥). Hence T(uv) is an upper bound of
{(Fu

Ju
)n(⊥) | n ≥ 0}, but since T<(u) is the least upper bound of this set, we

obtain T<(u) ⊑ T(uv).
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Correctness of algorithm

Lemma D.5.1 (Work set characterization). For all T we have

∆u(T) = {(i, j) ∈ Ju | Tij = ⊥
∧ (gi complex⇒ DT

ij ̸= ⊥ ̸= TDT
ij
)}

Proof. Let (i, j) ∈ Index. For the forward direction, assume Tij ⊏ F(u)(T)ij.
Then Tij = ⊥, and since Tij ̸= F(u)(T)ij = FJu(T)ij, we must have (i, j) ∈ Ju.
It remains to prove the implication. Assume Ai←Ax[Ay, Az]. By cases on
the definition of Fu and the fact Fu(T)ij ̸= ⊥, we have three possible cases:
Txj = m and Ty(j+m) = m′; or Txj = m and Ty(j+m) = f; or Txj = f and Tzj ̸= ⊥.
In the first two cases we have DT

ij = (y, j + m) and Ty(j+m) ̸= ⊥. In the last
case we have DT

ij = (z, j) and Tzj = f ̸= ⊥, and we are done.
For the converse direction, assume (i, j) ∈ Ju, Tij = ⊥ and (gi complex⇒

DT
ij ̸= ⊥ ̸= TDT

ij
). Since (i, j) ∈ Ju, we have F(u)(T)ij = Fu(T)ij and we need

to show Fu(T)ij ̸= ⊥. If gi is simple it is easy to check that Fu(T)ij ̸= ⊥ in all
cases. If Ai←Ax[Ay, Az], then by assumption we have DT

ij ̸= ⊥ ̸= TDT
ij
. We

have three possible cases which are handled analogously. For the first case
Txj = m, DT

ij = (y, j + m) and Ty(j+m) = m′ for some m, m′. By definition
Fu(T)ij = m + m′ ̸= ⊥, and we are done.

Dependency monotonicity says that the dependency map seen as a table
operator is monotone.

Lemma D.5.2 (Dependency monotonicity). If T ⊑ T′, then for all (i, j) ∈ Index,
we have DT

ij ⊑ DT′
ij .

Proof. Let (i, j) ∈ Index and assume DT
ij ̸= ⊥ (the case DT

ij = ⊥ is trivial).
Then Ai←Ax[Ay, Az] and either DT

ij = (y, j + m) and Txj = m; or DT
ij = (z, j)

and txj = f. In the first case we get Txj ⊑ T′xj = m by assumption, so DT′
ij =

(y, j + m) = DT
ij . The latter case is analogous.

The following shows that upon updating a single entry in a table, the set
of dependencies that will go from being undefined to being defined can be
determined statically.

Lemma D.5.3 (Dependency difference). Let S ∈ Table(Res) such that S ⊑
T<(u) and (p, q) ∈ ∆u(S), and define T = F(u)

pq (S). Then {(i, j) | DS
ij ⊏ DT

ij} =
C−1

p × {q}.

Proof. For the converse direction, let i ∈ C−1
p , which implies Ai←Ap[Ay, Az].

Since Spq = ⊥ ̸= Tpq, we must have ⊥ = DS
iq ⊏ DT

iq ̸= ⊥, and we are done.
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For the forward direction, assume ⊥ = DS
ij ⊏ DT

ij ̸= ⊥. By the latter
equality it follows that Ai←Ax[Ay, Az] where Ci = x, so i ∈ C−1

x . By the
first equality and definition, we have Sxj = ⊥; by the latter equality we have
Txj ̸= ⊥. But then Sxj ⊏ Txj, which implies (x, j) = (p, q). Since i ∈ C−1

p and
j = q, we are done.

We can now prove the main lemma of the correctness proof:

Lemma D.5.4 (Work set update). Let S ⊑ F(u)(S) ⊑ T<(u), (p, q) ∈ ∆u(S)
and T = F(u)

pq (S). Then

∆u(T) = ∆u(S) \ {(p, q)}
∪ (DS)−1

pq

∪ {(i′, q) | i′ ∈ C−1
p ∧⊥ ̸= TDT

i′q
}

Proof. We initially remark that S ⊑ T by definition of T, and hence that DS ⊑
DT by Lemma D.5.2. Since (p, q) ∈ ∆u(S) we have Spq ⊏ F(u)(S)pq = Tpq, so
in particular Tpq ̸= ⊥.

Forward direction. Assume (i, j) ∈ ∆u(T). By Lemma D.5.1 we have
Tij = ⊥ and (gi complex⇒ DT

ij ̸= ⊥ ̸= TDT
ij
). So, (i, j) ̸= (p, q) and Sij = ⊥.

Assume gi complex. Then DT
ij ̸= ⊥ ̸= TDT

ij
. Since DS

ij ⊑ DT
ij , we have either

(a) DS
ij = ⊥ ⊏ DT

ij ; or (b) DS
ij = DT

ij ̸= ⊥.
In case (a), we apply Lemma D.5.3 to obtain (i, j) ∈ C−1

p × {q}, which
implies (i, j) ∈ {(i′, q) | i′ ∈ C−1

p ∧⊥ ̸= TDT
i′q
}, and we are done.

In case (b) we consider the subcases (α) SDS
ij
= ⊥ ⊏ TDT

ij
; and (β) SDT

ij
=

TDT
ij
̸= ⊥. In subcase (α), we must have DS

ij = (p, q) so (i, j) ∈ (DS)−1
pq and

we are done. In subcase (β), observe that we have DS
ij ̸= ⊥ ̸= SDS

ij
which by

Lemma D.5.1 implies (i, j) ∈ ∆u(S) \ {(p, q)}.
Converse direction. Assume that (i, j) is in the set on the right hand side.

By Lemma D.5.1 it suffices to show Tij = ⊥ and (gi complex ⇒ DT
ij ̸= ⊥ ̸=

TDT
ij
). We have three possible cases:
Case (i, j) ∈ ∆u(S) \ {(p, q)}. Since (i, j) ̸= (p, q) we have Sij = Tij by

definition of T. By Lemma D.5.1 we obtain Sij = ⊥ = Tij and (gi complex⇒
DS

ij ̸= ⊥ ̸= SDS
ij
). Assuming gi complex, we thus have DS

ij ̸= ⊥ ̸= SDS
ij
, and

since S ⊑ T and DS ⊑ DT, this implies DT ̸= ⊥ ̸= TDT
ij
, and we are done.

Case (i, j) ∈ (DS)−1
pq . Then (p, q) = DS

ij = DT
ij . By Lemma D.9.1 and

Spq = ⊥ we obtain Tij = ⊥. Since DT
ij ̸= ⊥ ̸= Tpq = TDT

ij
, we are done.

Case i ∈ C−1
p , j = q and⊥ ̸= TDT

iq
. We have DT

iq ̸= ⊥ ̸= TDT
iq
, so it suffices to

show Tiq = ⊥. Since Ci = p, have Ai←Ap[Ay, Az]. By Spq = ⊥, we therefore
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have F(u)(S)iq = ⊥. By S ⊑ F(u)(S), this implies Siq = ⊥. It suffices to show
i ̸= p, as this implies Tiq = Siq = ⊥.

Assume i = p. Then by Spq = ⊥ we have Tpq = F(u)(S)pq = ⊥ ̸= Tpq, so
Tpq ̸= Tpq a contradiction. Thus i ̸= p, and we are done.

The previous proof uses the following, which shows that the entry for a
complex expression cannot be resolved if its dynamic dependency is undeter-
mined.

Lemma D.9.1 (Dependency strictness). Let T ∈ Table, (i, j) ∈ Index and u ∈
Σ∗. If T ⊑ T<(u); gi complex and DT

ij = ⊥, then F(u)(T)ij = ⊥.

Proof. If (i, j) ̸∈ Ju then F(u)(T)ij = Tij. Since Tij ⊑ T<(u)ij, the result follows
by showing T<(u)ij = ⊥. By (i, j) ̸∈ Ju we have F(u)(T)ij = Tij for all T, and
by induction we obtain (F(u))n(⊥)ij = ⊥ for all n ≥ 0. We must therefore
have T<(u)ij = ⊥, since T<(u) is the least upper bound of all (F(u))n(⊥).

In the other case, assume (i, j) ∈ Ju, so F(u)(T) = Fu(T). We must have
Ai←Ax[Ay, Az]. By DT

ij = ⊥ and definition, we have Txj = ⊥ and hence
Fu(T)ij = ⊥.

Upon updating a single entry in a table, each entry in the updated reverse
dependency map is obtained by appending a predetermined set of indices to
the corresponding entry in the old reverse dependency map:

Lemma D.5.5 (Dependency update). Let S ⊑ T<(u), (p, q) ∈ ∆u(S) and T =

F(u)
pq (S). Then for all (k, ℓ) ∈ Index, we have (DT)−1

kℓ = (DS)−1
kℓ ∪ {(i′, q) | i′ ∈

C−1
p ∧ (k, ℓ) = DT

i′q}.

Proof. Let (i, j) ∈ Index such that DT
ij = (k, ℓ). Since S ⊑ T we have DS

ij ⊑ DT
ij .

We have DS
ij = DT

ij = (k, ℓ) if and only if (i, j) ∈ (DS)−1
kℓ . The other case,

DS
ij ⊏ DT

ij , holds if and only if (i, j) ∈ C−1
p × {q} by Lemma D.5.3.

Correctness of Fix

Invariant 1 (Work loop). Assuming variables u ∈ Σ∗(# + ε); T ∈ Table; R :
Index→ 2Index; and W ⊆ Index:

1. T ⊑ F(u)(T) ⊑ T<(u)

2. R = (DT)−1

3. W = ∆u(T)

Lemma D.9.2 (Initialization). When entering line 2 in Fix, Invariant 1 holds.

Proof. Let u′ = ama1...an−1 and u = u′an. By the precondition, T = T<(u′)
and R = (DT)−1.
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Property 1. We first show T ⊑ F(u)(T). Let (i, j) ∈ Index. We either have
(i, j) ∈ Ju′ or (i, j) ̸∈ Ju′ .

In the first case we also have (i, j) ∈ Ju, so F(u)(T)ij = F(u′)(T)ij = Tij,
where the last equality follows from the fact that T is a fixed point of F(u′).

In the second case (i, j) ̸∈ Ju′ we have ∀T′. F(u′)(T′)ij = T′ij. Hence ∀n ≥
0. (F(u′))n(⊥)ij = ⊥, and since T = T<(u′) is the least upper bound of all
(F(u′))n(⊥), we have Tij = ⊥ ⊑ F(u)(T)ij.

From the above we conclude T ⊑ F(u)(T), and it remains to show Fu(T) ⊑
T<(u).

Since F(u)(T<(u)) = T<(u), this follows by monotonicity of F and T =
T<(u′) ⊑ T<(u), which in turn follows from Proposition D.4.4.

Property 2. Follows by assumption.

Property 3. Since T = T<(u′), we have ∆u′(T) = ∅. Thus ∆u(T) = ∆u(T) \
∆u′(T), and by Lemma D.5.1 (i, j) ∈ T<(u) if and only if j = |u| − 1, Ti(|u|−1) =

⊥ and either DT
i(|u|−1) ̸= ⊥ ̸= TDT

i(|u|−1)
or gi simple. But DT

i(|u|−1) = ⊥ for all
i < |P|, so ∆u(T) = {(i, |u| − 1) | gi simple}.

Lemma D.9.3 (Preservation of consistency). If F : Table → Table is monotone
and T ⊑ F(T), then for all (p, q) ∈ Index, we have Fpq(T) ⊑ F(Fpq(T)).

Proof. Since T ⊑ F(T) then in particular Tpq ⊑ F(T)pq, so T ⊑ Fpq(T). By
monotonicity, we have F(T) ⊑ F(Fpq(T)). But then

∀(i, j) ∈ Index. Tij ⊑ F(T)ij ⊑ F(Fpq(T))ij

We now prove ∀(i, j) ∈ Index. Fpq(T)ij ⊑ F(Fpq(T))ij. If (i, j) = (p, q), then
Fpq(T)ij = F(T)ij ⊑ F(Fpq(T))ij; and if (p, q) ̸∈ (i, j), then Fpq(T)ij = Tij ⊑
F(Fpq(T))ij.

Lemma D.9.4 (Maintenance). Invariant 1 is maintained for each iteration of lines 2-
10 in Fix.

Proof. Assume that Invariant 1 holds, and let S refer to the configuration of
T at the beginning of the iteration. When the iteration has finished, some
(p, q) ∈ ∆u(S) has been picked such that

(a) T = F(u)
pq (S)ij

(b) S ⊑ F(u)(S) ⊑ T<(u)

(c) ∀k, ℓ. Rkℓ = (DS)−1
kℓ ∪ {(i′, q) | i′ ∈ C−1

p } ∩ (DT)−1
kℓ
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(d) W = ∆u(S) \ {(p, q)}
∪ (DS)−1

pq
∪ {(i′, q) | i′ ∈ C−1

p ∧ DT
i′q ̸= ⊥ ̸= TDT

i′q
}

By Lemma D.9.3 on (a), (b), Property 1 is reestablished.
By Lemma D.5.5 on (a), (b), (c), Property 2 is reestablished.
By Lemma D.5.4 on (a), (b) and (d), Property 3 is reestablished.

Lemma D.9.5 (Termination). Invariant 1 entails the postcondition of Fix when the
loop in lines 2-10 terminates.

Proof. When the loop terminates we have W = ∅. By the invariant we have
both W = ∆u(T) = ∅ and T ⊑ T<(u), so T = T<(u).
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