
University of Copenhagen

Online Evaluation of Rankers
Using Multileaving

Author:
Brian Brost

Supervisors:
Professor Ingemar J. Cox,
Associate Professor
Christina Lioma,
and
Associate Professor
Yevgeny Seldin

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy

in the

Department of Computer Science

July 6, 2017

i

Abstract
This thesis deals with two central challenges in the online evaluation of

rankers for information retrieval: (i) The design of multileaving algorithms
and (ii) how best to manage the exploration-exploitation tradeoff associated
with online evaluation using multileaving.

Multileaving is an online evaluation approach where the ranked lists pro-
duced by a set of rankers are combined to produce a single ranked list which
is presented to users of a system. The quality of the rankers is then inferred
based on implicit user feedback, i.e. which items the user clicks on. Multi-
leaving is a generalization of interleaving, which differs from multileaving in
only combining pairs of rankers at a time. Multileaving has been shown to
reduce the quantity of feedback needed in order to evaluate rankers relative
to interleaving.

We show that prior multileaving methods can be much less accurate than
previously believed. In particular, prior multileaving methods fail to account
for the interaction between how they create the multileaved lists presented
to users, and how they use implicit feedback to infer the relative qualities
of rankers. This can result in the quality estimates of prior multileaving
methods depending on artefacts of the multileaving process, rather than the
quality of the rankers being evaluated.

We introduce two new multileaving algorithms. Sample-Only Scored
Multileaving (SOSM) is the first multileaving algorithm to scale well with
the number of rankers being compared, without introducing substantial er-
rors. Multileaving using Importance Sampling (MIS) is the first multileaving
algorithm for which we can provide provable guarantees regarding the accu-
racy of evaluation.

Multileaving evaluates a chosen set of rankers. However it does not
address how to choose these rankers. This is a classic exploitation versus
exploration problem. On the one hand we would like the multileaved list to
contain relevant documents, i.e. we should exploit the rankers we believe are
good. On the other hand, other rankers may be better, i.e. we should explore
rankers we are uncertain of. This problem has been previously framed as a
dueling bandit problem when evaluating rankers using interleaving.

We extend the dueling bandit framework to managing the exploration-
exploitation tradeoff associated with most currently existing multileaving
algorithms. This is designed for algorithms where the outcome of the multi-
leaving is a binary outcome, reflecting whether one ranker was better than
another in a comparison. For this setting we introduce multi-dueling ban-
dits, and show that regret can be reduced by orders of magnitude relative
to what is attainable for dueling bandits.

For managing the exploration-exploitation tradeoff associated with mul-
tileaving algorithms such as MIS, which output absolute scores for rankers,
we introduce a new variant of the bandits with multiple plays setting. This
distinguishes itself from previous multiple play settings in that the number
of arms to be played at each iteration is not fixed. Thus, it is possible to
converge on exclusively selecting the best arm.

ii

Dedication

To Declan,
Ar dheis Dé go raibh a anam

iii

Acknowledgements
I can’t thank Ingemar, Christina, and Yevgeny enough for their guidance and
support over the last years, and for the patience and faith they’ve shown me
throughout. I’d also like to thank all my other colleagues and fellow PhD
students, in particular Noy, Casper, and Niels, who helped make my time
at DIKU such a fun and positive experience. Finally, I’d like to thank my
family, my girlfriend, and my friends for always being there for me, and for
putting up with me when I got grumpy.

iv

Contents

Abstract i

Dedication ii

Acknowledgements iii

1 Introduction 2
1.1 Online Evaluation in Information Retrieval 2

1.1.1 Offline Evaluation . 2
1.1.2 Lab-based Studies . 3
1.1.3 Online Evaluation . 3
1.1.4 Exploration-Exploitation Tradeoff 5

1.2 Main Contributions . 5
1.3 Thesis Overview . 7

2 Background 8
2.1 Information Retrieval . 8

2.1.1 Ranking Models . 8
2.1.2 Personalization . 11
2.1.3 Aggregated Search . 11
2.1.4 Fundamentals of IR evaluation 11

2.2 Offline Evaluation of IR Systems 13
2.2.1 Relevance Judgements 13
2.2.2 Metrics . 14
2.2.3 User Studies . 16

2.3 Online Evaluation of IR Systems 16
2.3.1 Interpeting Click Feedback 16
2.3.2 Click Models . 17
2.3.3 A/B Testing . 18
2.3.4 Interleaving . 19
2.3.5 Multileaving . 20
2.3.6 Counterfactual Evaluation 23

2.4 Online Learning . 24
2.4.1 Bandits . 24
2.4.2 Dueling Bandits . 24
2.4.3 Bandits with Multiple Plays 26

3 Multileaving for Online Ranker Evaluation 27
3.1 Problem Setting . 27
3.2 Sample-Only Scored Multileaving 29

3.2.1 Algorithm . 29
3.2.2 Experimental Evaluation 30
3.2.3 Conclusions . 33

3.3 Multileaving Using Importance Sampling 33

Contents v

3.3.1 Motivation . 33
3.3.2 Algorithm . 36
3.3.3 Experimental Evaluation 37
3.3.4 Conclusions . 44

4 Online Learning 55
4.1 Multi-Dueling Bandits . 56

4.1.1 Problem Setting . 56
4.1.2 Algorithm . 57
4.1.3 Experimental Evaluation 58
4.1.4 Conclusions . 69

4.2 Bandits with Multiple Plays 71
4.2.1 Problem Setting . 71
4.2.2 Algorithm . 71
4.2.3 Experimental Evaluation 72
4.2.4 Conclusions . 75

5 Conclusions and Future Work 79
5.1 Multileaving . 79
5.2 Exploration-Exploitation Tradeoff 81
5.3 Other Future Work . 82

2

Chapter 1

Introduction

1.1 Online Evaluation in Information Retrieval

Ranking is a central problem underlying many of the most important ser-
vices on the web today. Examples of applications include the need to rank
search results for a web search engine or to rank products for recommen-
dation in e-commerce. This thesis explores the use of multileaving for the
online evaluation of ranking algorithms in information retrieval (IR). This
section explains why evaluation of ranking algorithms, also called rankers, is
a central problem in IR and related fields; why online methods are such an
important part of ranker evaluation; and finally, why multileaving methods
have the potential to solve many of the problems faced when attempting to
evaluate rankers online.

Since ranking is such a central task for many applications, engineers
and researchers make considerable efforts to develop and optimise ranking
algorithms. Furthermore, because of the huge volumes of users on many web
services, the potential impact on revenue of even very small improvements
in ranker quality can be immense. It is therefore of critical importance to
be able to reliably evaluate even very small differences in ranker quality.
There are most often few theoretical guarantees that a particular ranking
algorithm is good, so the cornerstone of ranker evaluation is thorough and
careful empirical validation [36].

Ranker evaluation methods can be divided into three broad categories:
Offline, online, and lab-based studies.

1.1.1 Offline Evaluation

Offline evaluation was long the dominant form of evaluation used in IR,
and most commonly followed the Cranfield paradigm [96]. Here the starting
point is a test collection; consisting of queries describing some information
needs; documents, which can be web pages, tweets, images etc.; and rele-
vance judgements, explicit judgements of how relevant the documents are to
the given information need. Given this test collection we can then evaluate
a variety of rankers according to various metrics most often measuring how
highly the rankers place documents judged relevant. Relevance judgements,
and the associated metrics, will be described in more detail in Sections 2.2.1
and 2.2.2 respectively. This approach provides a repeatable experimental
setup on which experiments can be run quickly once the test collection has
been created, and for which it is simple to carry out statistical tests to verify
whether observed results are significant.

A key limitation of this experimental setup is the reliance on relevance
judgements. Human judges have to estimate the relevance of documents to

1.1. Online Evaluation in Information Retrieval 3

often ambiguously described information needs, which may be unrepresenta-
tive of the information needs of real users. This can be expensive, and cannot
be done exhaustively for large collections. Furthermore it can be difficult
for judges to decide which documents are really useful to the end user. In
particular, since the judges are often not involved in authoring the queries,
they may themselves misunderstand the information need represented by the
queries. Furthermore, a judge can only guess at the utility of a document
in a personalised search setting, and judging cannot be easily updated to
take into account new information, something that may be highly important
for news retrieval. Finally, although the metrics used in offline evaluations
measure certain notions of ranking quality, improvements in these metrics
do not correlate consistently with increases in user satisfaction [96] or sys-
tem revenue, which can often be the ultimate standards by which we wish
to evaluate a ranking algorithm.

1.1.2 Lab-based Studies

Lab-based studies involve inviting users to participate in controlled exper-
iments, where their experiences can be evaluated explicitly [10]. Unfortu-
nately, although lab studies can provide feedback which is difficult to obtain
otherwise, they are expensive, problematic to replicate and scale up, and
since the number of users is generally small, it can be difficult to obtain a
representative sample of the entire population of users for which the evalu-
ation is meant to hold. A further limitation of lab-based evaluations is that
participants may behave differently in a laboratory environment to how they
would in more natural use cases [62].

1.1.3 Online Evaluation

Online evaluation of rankers is the evaluation of rankers in a fully function-
ing system based on implicit measurement of real users’ experiences of the
system in a natural usage environment [53].

By evaluating in a natural usage environment, i.e. based on how people
use the system in their day-to-day lives, we can avoid a key problem of offline
evaluation methods, that they can only approximate a real user’s feedback,
and we can avoid the possible distortions that can occur due to the less
natural usage environment present in a lab-based study. Furthermore user
behaviour can be easily logged with no additional effort from the user. This
provides online evaluation methods with inexpensive access to large amounts
of timely training data [26]. On the other hand, the implicit measurement of
feedback, meaning the logging of clicks and other user behaviours, is noisy
and difficult to interpret. As a result, these large amounts of training data
are necessary to reliably infer quality differences between rankers. A click
during a web search session can be a mistake, or even if it is not a mistake,
cannot be interpreted as an absolute signal of quality. Instead, a click on a
given document may only support the relative judgement that this document
was more useful than the other documents inspected by the user.

One of the key drawbacks of online evaluation methods is that the out-
puts of new, potentially poor, rankers are presented to actual users. If a new
ranker is poor, users will be presented with poor results and, in the worst
case, might abandon the service [54]. Conversely, if new rankers are not

4 Chapter 1. Introduction

presented there is a risk of overlooking better rankers in the pool of rankers.
In online learning the question of determining a proper exploration level is
known as the exploration-exploitation tradeoff, an issue we will return to in
Section 1.1.4, and which will be a major focus of this thesis.

The gold standard for online evaluation of rankers is A/B testing of the
rankers on separate random subsets of the users or queries [99]. A/B testing
allows for rankers to be compared on real users, according to the exact,
specific use case that the experimenter wishes to examine, and according to
the exact metric by which the experimenter measures success. The primary
cost associated with A/B testing is the number of user impressions that are
required to reliably distinguish performance. Since we can measure exactly
what we want with A/B testing, the goal of alternative online evaluation
methods should be to replicate the expected outcomes of A/B tests, while
requiring fewer user impressions than A/B testing.

In online evaluation, it is often easier for users to make relative judge-
ments, rather than absolute judgements. For example, it is easier for a user
to say that document A is more relevant for a certain query than docu-
ment B, than to say how relevant each document is. This intuition partly
motivates the introduction of interleaving as a method to compare rankers.
Interleaving methods have two stages, and compare pairs of rankers by first
combining the ranked lists produced by each ranker into a single ranked list
and displaying this list to the user. They then infer which ranker is better
from implicit feedback, e.g. clicks, collected from the user. This approach
has the benefit that the comparison is carried out on the same user, elimi-
nating the between user variance which would affect a comparison between
rankers A and B on separate users. Interleaving methods were found to
require 1-2 orders of magnitude less interaction data than absolute metrics
to detect even small differences in retrieval quality [26]. Additionally, it has
been shown that the credit inference stage of interleaving methods can be
tuned so that their outcomes agree well with the relative outcomes of A/B
testing [99].

Multileaving is a generalisation of interleaving that allows more than two
rankers to be simultaneously compared [102, 98, 17]. In this case, K > 2
rankers are compared by creating a new ranked results list that consists of
documents selected from the documents retrieved by the K rankers and then
inferring based on the user’s clicks how good each ranker is. Multileaving
has been shown to use click feedback more efficiently than interleaving [102].

Like interleaving, multileaving methods have two distinct stages; the first
stage involves sampling the documents to be displayed to the user, and the
second stage assigns credit to the rankers based on the user’s clicks. The
sampling stage is often a straightforward generalization of those proposed in
the interleaving literature, for example one method is to randomly order the
rankers and then, in turns, sample the top remaining document from each
ranker. These sampling strategies are not uniform, i.e. some documents are
much more likely to be sampled than others. One of the main contributions
of this thesis is to show that for multileaving, the expected outcome of the
credit assignment stage is affected by the probabilities of the documents be-
ing sampled during the first stage. Specifically, the ranker quality estimates
in multileaving methods are skewed by artefacts of the sampling process, and
this can cause substantial errors in the accuracies of multileaving estimates
of ranker quality.

1.2. Main Contributions 5

Multileaving offers dramatically improved efficiency over interleaving, al-
lowing large numbers of rankers to be compared with very little interaction
data, however this comes at the price of the above described problem which
can affect the accuracy of the comparisons. One of our main contributions
will be to provide a multileaving algorithm which solves this problem using
importance sampling.

1.1.4 Exploration-Exploitation Tradeoff

Finally, we return to what we earlier described as one of the main issues when
attempting to carry out online evaluation of rankers, the risk of displaying
results from suboptimal rankers to the user. Interleaving and multileaving
address the problem of how to compare rankers simultaneously, but do not
address the critical question of what rankers to choose for each comparison,
i.e. to resolve the exploration-exploitation tradeoff. This is critical since
we would like to minimize how often we show poor results to the user even
as we evaluate rankers of uncertain quality. Dueling bandits is an elegant
mathematical framework that provides a principled way for dealing with the
exploration-exploitation trade-off in learning with relative preference feed-
back from pairwise comparisons [123]. It has been successfully applied to
online ranker evaluation based on interleaving [132, 133, 131]. Prior to the
work contained in this thesis, there was no equivalent to the dueling bandits
framework for multileaving. We describe our extensions of dueling bandits
for use with multileaving in the next section.

1.2 Main Contributions

In this thesis we explore the problem of online evaluation using multileaving.
Our main contributions can be separated into multileaving contributions and
contributions to managing the exploration-exploitation tradeoff faced when
carrying out online evaluation of rankers using these multileaving meth-
ods. The multileaving contributions are two multileaving algorithms and
the discovery that a key property of the multileaving setting causes prior
multileaving methods to be error prone. The contributions to managing the
exploration-exploitation tradeoff are two corresponding algorithms for man-
aging this tradeoff with two different classes of multileaving algorithms. We
begin by describing our multileaving contributions.

Sample-Only Scored Multileave (SOSM) [17] is the first multileaving
method to scale well with the number of rankers being compared, with-
out introducing substantial errors. The central idea of SOSM is that rankers
are evaluated only on the basis of their relative rankings of the documents
included in the multileaved ranking. This means that each recorded click
can be used to infer something about the relative quality of each pair of
rankers, but no ranker is unfairly advantaged by having more of its highly
ranked documents in the multileaved list. This efficient use of feedback al-
lows SOSM to estimate the relative qualities of rankers, even after very few
comparisons, regardless of how many rankers are being compared. SOSM
was found to be substantially more efficient than prior multileaving meth-
ods, with prior methods often requiring twice as many user interactions to
obtain similarly good ranker quality estimates [17].

6 Chapter 1. Introduction

The main non-algorithmic contribution of this thesis is that we demon-
strate that multileaving methods need to properly account for the proba-
bility of a document being presented to the user in order to score rankers
correctly. Prior multileaving methods, including SOSM, did not properly
account for this, and consequently, and contrary to initial evaluations of
multileaving methods, they are prone to being inaccurate. Concrete exam-
ples of how this affects the various prior multileavings methods are provided
in Section 2.3.5.1.

The second multileaving algorithm contributed as part of this thesis,
Multileaving using Importance Sampling (MIS), is the first multileaving al-
gorithm to properly account for the probabilities of documents being pre-
sented to the user when scoring rankers. This is therefore the first multileav-
ing method, which can reliably be used to accurately estimate the quality of
rankers. MIS was shown to be highly accurate, scale well with the number of
rankers being compared, and was shown to reliably evaluate rankers accord-
ing to many different important information retrieval metrics. Finally, MIS
is the first multileaving method that can be used in an unbiased manner on
historical interaction data. This is possible since the importance sampling
in the scoring function allows MIS to compensate for the difference in proba-
bility that a given document was presented to the user in the historical data,
and the probability that the document would be presented to the user if a
new multileaving was performed.

Since online evaluation of rankers involves displaying results from poten-
tially inferior rankers to end users, a critical task is to balance the result-
ing exploration-exploitation dilemma when employing multileaving methods.
Our main contributions in this area are given below.

We extend the dueling bandit framework and propose a Multi-Dueling
Bandit algorithm that provides an intelligent selection of rankers for simul-
taneous comparisons based on upper confidence bounds, and improves the
trade-off between exploration and exploitation[18]. This MDB setting as-
sume binary relative scores for each pair of rankers being compared at each
iteration, and is therefore applicable to use with multileaving algorithms
such as SOSM, but not MIS, which produces non-binary scores for rankers
at each comparison. With the MDB algorithm, performance, in terms of
how many results from suboptimal rankers are displayed to users, was found
to scale much better with the number of rankers being compared, and can
be orders of magnitude better than that obtained by prior dueling bandit
algorithms.

Our final contribution is a new Bandits with Multiple Plays setting ap-
plicable to absolute scores, such as those produced by MIS. Our algorithm
for this setting performs similarly to our MDB algorithm, and give orders of
magnitude improvements in performance over state-of-the-art dueling bandit
algorithms.

In summary, this thesis advances the state of the art in multileaving to
the point where multileaving methods combine efficiency and accuracy. To-
gether with our work demonstrating how the exploration-exploitation trade-
off can be handled using multileaving, this provides a promising avenue of
future research into new applications of multileaving. Although the results
presented in this thesis are promising, the experiments were all carried out
on simulated users. This has become the standard in the interleaving and

1.3. Thesis Overview 7

multileaving literature, however more work is required to verify to what
extent the findings on simulated users agree with evaluations on real users.

1.3 Thesis Overview

We have just introduced and motivated the main topics of this thesis, and
given an overview of our main contributions. In Chapter 2 we provide the
necessary background material to understand the main parts of the thesis.
In particular, Sections 2.3 and 2.4 describe the material and related work
necessary to understand and contextualise our multileaving and bandit con-
tributions respectively.

Chapter 3 introduces our new multileaving algorithms and provides a
thorough evaluation of these algorithms relative to the prior state of the art
in multileaving. Chapter 4 introduces our corresponding new bandit settings
and algorithms for managing the exploration-exploitation tradeoff associated
with online evaluation using multileaving algorithms.

Finally in Chapter 5 we summarise our main findings and present per-
spectives on potential areas of future work in online evaluation using multi-
leaving.

The work in Section 3.2 is adapted from work published in [17]. The work
in Section 3.3 has been submitted to CIKM 2017. The work in Section 4.1
is adapted from work published in [18].

8

Chapter 2

Background

2.1 Information Retrieval

Much of the research on ranking algorithms has been done within the context
of information retrieval. We therefore provide a brief introduction to some of
the most important concepts. Information retrieval (IR) deals with finding
material, often text, but also many other forms of material, usually of an
unstructured nature, that satisfies an in an information need from within
large collections [79].

Thus the central task in information retrieval is finding information that
satisfies an information need, and ranking this information according to some
measure of how well it satisfies the information need. As noted in the in-
troduction, decades of research and engineering have gone into developing
better ranking algorithms to assist in this task, and these competing al-
gorithms need to be evaluated in order to decide which to use for a given
situation. A central problem, which can be the bottleneck in improving IR
systems, is that the evaluation required to confirm a potential improvement
can be time-consuming and costly [71].

2.1.1 Ranking Models

Since this thesis concerns the evaluation of ranking algorithms, we will now
briefly introduce some of the key concepts in ranking within text informa-
tion retrieval. In particular we will focus on ranking models, which model
the assumptions we make about how ranking should be carried out, and
which have played an important role in the development of many ranking
algorithms [36].

Most early information retrieval systems, and many current email search
systems [24], employ a boolean retrieval model. Here the retrieval task
is considered as a filtering process. In response to a query ’jaguar NOT
car’, a boolean retrieval algorithm would return all those documents in the
collection which contain the word ’jaguar’ but do not contain the word ’car’.

The boolean retrieval model is attractive for its simplicity, and the fact
that its outputs are predictable to the user. However many evaluations
have found that boolean retrieval systems perform worse than algorithms
which attempt to weight terms according to notions of importance or rele-
vance [95]. Additionally, boolean retrieval systems can perform particularly
poorly for inexperienced users, who either cannot properly formulate their
queries, or struggle to understand what terms are useful for filtering through
the collection [36]. Despite these apparent shortcomings some studies have
found that users, particularly those that consider themselves experts, prefer

2.1. Information Retrieval 9

boolean retrieval systems [115, 52]. This apparent preference for boolean re-
trieval needs to be interpreted carefully however, in particular, since boolean
retrieval systems were much more prevalent when those studies were carried
out, and the user preferences might partly reflect greater familiarity. Note
that even today, purely boolean retrieval can be important in areas such as
patent retrieval, where recall is highly important [22].

The vector space model became the dominant model for ranking algo-
rithms in the 1960’s and 1970’s [22]. Unlike the boolean retrieval model,
it provides a simple framework for incorporating concepts like term weight-
ing and ranking [36]. Rankings can be inferred from an ordering on the
distances between vectors representing the query and the documents in the
collection. Unfortunately, although providing a simple framework, the vec-
tor space model provides little guidance for choices of how to practically
incorporate the various elements like term weighting, or choice of distance
function into a ranking algorithm [36].

One of the most important concepts underlying many of the most suc-
cessful ranking algorithms is tf-idf term weighting. Here tf stands for term
frequency, the number of times a term occurs in a document and idf stands
for inverse document frequency, the inverse of the number of documents in
the collection containing a term [105]. The tf-idf weighting is a product of
these two factors. This reflects the intuition that a document containing a
term many times is more likely to be about the term than one which con-
tains the term only a single time, and that a term which is contained in
many documents might not be very discriminative for deciding what those
documents are really about.

There have been many models that could be described as probabilistic in
IR, but the probabilistic model for IR is usually used to refer specifically to
methods arising from the work of Stephen Robertson, Karen Spärck Jones
and their collaborators beginning in the 1970’s [22]. The probabilistic model
starts from a basic assumption that if an IR system ranks the documents
in the collection according to their probability of relevance, the overall ef-
fectiveness of the system to its user will be the best that is obtainable [92].
Note that this assumption can be regarded as an oversimplification, since it
ignores document dependencies such as the desire to present a diverse set of
documents to the user.

Nonetheless it proved extremely successful, and one instantiation, BM25
is one of the best performing non machine learned algorithms in IR [91].
BM25 combines a tf-idf weighting scheme with a document length normal-
isation to reflect the fact that a term which occurs a number times in a
short document might reflect relevance to a greater extent then the occur-
rence of that term the same number of times in a long document, such as an
encyclopaedia.

Language models are used in diverse fields such as machine translation,
speech recognition and information retrieval [10]. A language model is a
probability distribution over a sequence of words or phrases, which models
how likely each word or phrase is to appear in a given text. They can be
used for retrieval by first generating language models for each document
and then seeing which document language model has the highest probabil-
ity of generating the query string [35]. Since many words would have a
zero probability of occurring in a language model based purely on the indi-
vidual documents, language modelling techniques often employ smoothing

10 Chapter 2. Background

techniques which provide a transition between the document language model
and the collection language model [127].

We have until now only discussed ranking models in terms of how they
match documents to queries by considering things like term and document
frequencies. This focus on the match between query and document ignores
two other types of signal which might be important in IR: Query-independent
properties of the document, and document-independent properties of the
query. The fact that a document appears to be about the same topic as
a query might be reflected in the term frequencies, but a web page could
still be undesirable to a user because it is spam. More generally, the link
structure of the web can be used to infer the importance or trustworthiness
of a web page [59], for example in the PageRank algorithm [86]. A simple
example of an important document-independent property of the query is
that the location from which the query ’weather’ is issued can be the main
determinant of what results a mobile phone user is looking for.

An additional important consideration, identified very early in the his-
tory of information retrieval is the vocabulary mismatch problem [94, 34].
This is the problem that a single concept or thing can have several names.
In recent years semantic search has become an increasingly important area
of research in IR. Here semantic search means that rather than just trying to
match query to topic based on the words of the query, we instead try to use
the meaning of the query [47]. This has led to the development of extensions
of vector space models [114], and language models which, for example, use
word embeddings to circumvent the vocabulary mismatch problem.

We have described some of the most important models for text retrieval,
but we have ignored the fact that many of the ranking algorithms derived
from these models have parameters that need to be tuned in order to max-
imise their performance for a given application. BM25 has two parameters;
models like BM25F [91] weigh different parts of a document differently, so
that, for example, the terms in the title of a web page might be considered
more important than those in the body of the web page; and a language
model smoothing technique such as Jelinek-Mercer has a parameter control-
ling how much the document or collection frequencies of terms are weighted.
Additionally, search engines may have many other useful signals such as
the time a query was issued; demographic information or search history of
the user who issued a query; the PageRank scores; and many other diverse
sources of information that could be useful in the retrieval task. Many of
these signals are complementary, and there is no obvious way to integrate
them by hand, necessitating a different method of best constructing a re-
trieval algorithm.

One of the most powerful techniques to arise in information retrieval
in recent years is that of using machine learning. Learning to Rank [78]
is concerned with using machine learning to learn ranking functions. Most
learning to rank methods have treated it as an offline supervised learning
task. There are three main approaches to this type learning to rank, point-
wise, pairwise and listwise approaches. Pointwise approaches attempt to
learn the relevance of documents. These can then be sorted to produce a
ranked list. Pairwise approaches learn to decide given a pair of documents,
which of the two is more relevant, an approach which can also be used to
infer a ranked ordering on the documents. Finally, listwise approaches at-
tempt to directly optimise the types of ranking metrics we will introduce in

2.1. Information Retrieval 11

Section 2.2.2.
A different approach is to attempt to use online click feedback to carry

out online learning to rank. We will return to this topic after we have more
thoroughly discussed the use of online click feedback in Section 2.3.1.

The important thing to note about these retrieval models we have in-
troduced is that many of the decisions about parameters and about how
to combine models have little theoretical motivation. Furthermore, to the
extent that we can make theoretically well-founded decisions, these do not
necessarily correlate with improved retrieval performance [36]. As a result,
and in particular because of the growth of learning to rank approaches, the
number of ranking models which need to be evaluated for a given application
can be very large, necessitating inexpensive, scalable evaluation.

2.1.2 Personalization

Another trend that needs to be considered when deciding how to evaluate
IR systems is the increased tendency of IR systems to employ elements of
personalised search. For many applications, large potential improvements
in search quality are possible because of the difference between what the
average user is searching for, and what any one individual user is searching
for [113].

Personalised search systems require some degree of personalised or situ-
ational evaluation, since the potential benefits of personalisation apply only
on the individual level [39, 40]. In particular, this suggests that an eval-
uation based on a user’s own clicks should be preferable to attempting to
evaluate based on other people’s relevance judgements.

2.1.3 Aggregated Search

An important element of modern web search engines is that they aggregate
different types of results into a single results page that is displayed to the
user [82]. This aggregated search can combine elements of relevant news,
images, videos, as so called verticals in addition to the main results [3].

This presents additional challenges for IR evaluation methods, since these
often assume a simple ranked list layout [128]. We will see in the coming
sections that this presents a problem for both offline and online evaluation
methods.

2.1.4 Fundamentals of IR evaluation

Before going into the details of evaluation methodologies, we begin by consid-
ering some more fundamental questions regarding IR evaluation. Returning
to our definition of IR, we can regard information retrieval evaluation as the
process of assessing how well a system meets the information need of its users
[118]. An important consideration here is that the individual components
of the system can be less important than its overall performance [34]. As a
result, it may sometimes be desirable, as far as possible, to evaluate ranking
algorithms and other components of IR as they appear within those systems,
rather than as separate, independent components.

IR systems often face a tradeoff between two competing requirements,
the needs for effectiveness and efficiency. Effectiveness can be regarded
as including all aspects of the quality of the information presented to the

12 Chapter 2. Background

user, and how well the user’s information need is satisfied, whereas efficiency
concerns the system’s resource consumption. The efficiency of a system can
be roughly broken down into three components; time efficiency, i.e. how fast
does the system serve its results; space efficiency, i.e. how much memory
or disk space does it require; and cost efficiency, i.e. how expensive is the
system to set up and operate [22]. For this thesis we restrict our attention
to evaluating ranking quality, an aspect of IR system effectiveness.

The interplay between effectiveness, efficiency, and user satisfaction is not
straightforward, with improvements in one aspect not necessarily correlating
with improvements in user satisfaction [44, 2]. As a result, in the ideal case,
evaluations cannot just focus on verifying that a change results in improved
effectiveness, but should also examine to what extent the improvements in
effectiveness translate to improved user satisfaction.

Traditionally, a fundamental concept in the study of IR system effec-
tiveness has been the idea of relevance [32, 88]. There is no unanimously
accepted precise definition for what relevance really is, but it can be regarded
as capturing to what extent a document retrieved by an IR system satisfies
the information need of the user.

Most traditional measures of effectiveness are based on how well a sys-
tem retrieves the relevant documents in a collection in response to a query
issued to the system. Two of the simplest and most important measures
are precision and recall. The precision of a system is the proportion of the
retrieved documents that are relevant, and the recall is the proportion of
the relevant documents retrieved by the system. Other important metrics
such as normalized discounted cumulative gain and mean reciprocal rank
will be introduced later, but for now we return our focus to relevance. More
specifically, in order to compute these metrics we first need to decide which
documents are relevant.

This has traditionally been done by appointing judges to assess how
relevant each document in the collection is to some query. Unfortunately
this is prohibitively expensive to do exhaustively for even moderately sized
collections, since it would require the relevance of each document in the col-
lection to be assessed against each query [10]. Instead, the top-k documents
retrieved by a group of reference rankers can be combined into a smaller
document pool for each query, and these documents can be assessed. Doc-
uments not included in the pool are assumed to be irrelevant to the query.
This approach, part of the Cranfield paradigm [118], has several potential
weaknesses [129] which we will discuss in more detail in Section 2.2.1.

Alternatively, systems could try to obtain explicit relevance judgements
directly from users, however this can be disruptive to the user experience,
and this approach is often considered of limited utility [63]. Instead, user’s
actions can be interpreted as implicit feedback regarding the quality of the
displayed results. Note that we cannot consider clicks on documents as direct
relevance judgements, since this implicit feedback is noisy, and prone to bias
which will be discussed in more detail in Section 2.3.1.

2.2. Offline Evaluation of IR Systems 13

2.2 Offline Evaluation of IR Systems

We briefly discussed offline evaluation, particularly that based on the Cran-
field paradigm, in the previous sections. We now consider some of the com-
ponents and strengths and weaknesses of offline evaluation methods in more
detail.

Recall that under the Cranfield paradigm the starting point is a test
collection [96]; consisting of queries describing some information needs; doc-
uments, which can be web pages, tweets, images etc.; and relevance judge-
ments, explicit judgements of how relevant the documents are to the given
information need. Given such a test collection we can then evaluate a variety
of rankers according to various metrics most often measuring how highly the
rankers place documents judged relevant. We will begin with a more de-
tailed discussion of the relevance judgements, since creating them presents
the biggest cost associated with Cranfield-style offline evaluation.

2.2.1 Relevance Judgements

Relevance judgements have traditionally required human judges to estimate
the relevance of each document relative to a query representing some infor-
mation need. These relevance judgements may be binary, indicating only
if a document is relevant or not, or graded, with, for example, a relevance
judgement of 4 corresponding to a highly relevant document, and decreasing
levels of relevance up to a relevance of 0 for a document which is not relevant
at all.

Perhaps the most well known problem with this setup is that for large
collections it is impractical to create relevance judgements for all the doc-
uments in the collection for each query. As a result, for example, the top
100 documents retrieved by some set of rankers would first be collected into
a document pool, and only the documents in this pool would then given
relevance judgements. The unjudged documents outside this pool would be
considered not to be relevant. The obvious problem with this approach is
that a ranker which retrieves relevant documents outside of this pool risks
having its performance underestimated by any metric using these relevance
judgements. This problem is known as pool bias, and is exacerbated by in-
creasing collection size, even if the size of the document pool is increased
too [20].

Early research suggested that this problem was negligible in practice [50,
129]. For example in [129] the rankers used to create the document pool were
assessed against the relevance judgements obtained when the documents
contributed by that ranker were excluded from the pool, and the relative
performances were found to be robust to this change. However later work
has suggested that this problem can substantially bias evaluations [20, 23],
and this bias can be particularly strong for systems radically different from
those used to create the document pool. An example of this could be that a
ranker which finds relevant documents based on semantic, rather than term
matching, would not be rewarded in the evaluation if the pool was created
purely by rankers which carry out term matching.

Since pool bias can be somewhat mitigated if the size of the document
pool is increased, it is important to be able to generate relevance judgements
in a cost-efficient and scalable manner. A promising tool for generating

14 Chapter 2. Background

relevance judgements is crowd sourcing. Unfortunately it is well known
that crowd sourcing can be unreliable because of the non-expert nature of
participants, and the fact that their incentive is often to use the minimal
effort required [84]. Despite these risks, research suggests that although
individually less reliable than expert annotators, in aggregate crowd sourcing
can produce high quality relevance judgements [84, 14]

There are more fundamental problems with relevance judgements, than
just their incompleteness and the associated pool bias. Relevance judgements
generally assess documents against some notion of topical relevance, i.e.
if the documents are about the same topic as the information need, but
such judgements may not sufficiently weigh factors such as utility [32] or
diversity, and may not even be able to address a concept like personal or
situational relevance. Although specialised or graded relevance judgements
may approximate some of these factors, an unavoidable problem for any
relevance judgement is that certain aspects can only be assessed by the
users themselves [81].

Finally, we can try to interpret implicit feedback generated from click-
through data as relevance judgements. This is problematic, since clicks are
biased in a number of ways. They also suffer from a form of pool bias, since
documents not displayed to users cannot be clicked on. Furthermore there
are other biases which will be discussed in more detail in Section 2.3.1. As
a result, it is difficult to interpret clicks as judgements of a document’s rel-
evance in an absolute sense. However they can be interpreted as relative
relevance judgements between documents in a reasonably accurate manner
[58]. For example, a click on a document reliably suggests that it is more
relevant than a more highly ranked document which was not clicked.

2.2.2 Metrics

Given relevance judgements, a variety of metrics are used to assess the per-
formance of rankers. We will introduce some of the most important metrics
before discussing their relation to user satisfaction.

The precision of a system is the proportion of the retrieved documents
that are relevant, and the recall is the proportion of the relevant documents
retrieved by the system. Often it is considered more important for a ranker
to rank the top of its ranked list well than it is to assess how good the
documents ranked at lower positions are. This can be justified by the fact
that users are much more likely to actually look at the top ranked documents
[33]. Two rankers which each rank a single relevant document at ranks 1
and 100 respectively would have the same precision, even though intuitively,
the performance of the first ranker seems much better.

This motivates two variants of precision, Precision @ K (P@K) and
Average Precision (AP). P@K is defined as the proportion of documents
retrieved in the top K which are relevant, and

AP =
n∑
k=1

P@k × δ(k)

|R|
(2.1)

where n is the total number of retrieved documents, R is the set of relevant
documents and δ(k) is the relevance score of the document if the document
ranked at position k. This relevance score is 1 if the document is relevant,

2.2. Offline Evaluation of IR Systems 15

and 0 otherwise. Note that the cutoff version of Precision, P@K still suffers
from the problem that the order of items does not affect the score, as long
as they are contained in the top K. Conversely, AP rewards a ranker more
the higher it ranks relevant documents.

For certain types of use cases we might only be interested in how highly
a single item is retrieved, for example if a query is issued for a specific
website. For this type of navigational query, one possible metric could be
P@1. However this can be unstable, and would not distinguish between a
ranker which ranked the correct document at position 2, and therefore only
narrowly failed, and another ranker which placed that same document at
position 100. In such a scenario a more appropriate metric might be the
so-called mean reciprocal rank (MRR). The mean reciprocal rank over a set
of queries Q is

MRR =
1

|Q|

|Q|∑
q=1

1

rank(q)
, (2.2)

where rank(q) is the rank of the first relevant document for query q.
The metrics we have described so far cannot take into account graded rel-

evance. We now introduce the normalized discounted cumulative gain which
has many variants. We will use a popular variant [61, 120] used in Lerot
[100], the software package which we have used for our experiments. We
first need to introduce the cumulative gain at K and discounted cumulative
gain at K, given by

CG@K =

K∑
k=1

2δ(k) − 1 (2.3)

DCG@K =
K∑
k=1

2δ(k) − 1

log2(k + 1)
(2.4)

where δ(k) is the graded relevance score of the document ranked at position
k. Then we can define

nDCG@K =
DCG@K

iDCG@K
(2.5)

where iDCG@K is the DCG@K score obtained if the documents are ranked
according to their graded relevance. nDCG is a popular IR evaluation metric
for graded relevance judgements [61, 120].

Surprisingly, given the widespread popularity of nDCG, user satisfaction
with the Google search engine has been found to be more strongly correlated
with CG@10 and P@10 than DCG@10 and nDCG@10 [2]. This finding
was subsequently contradicted in a much larger user study [97], which found
that nDCG@10 was more strongly correlated with user preferences than the
aforementioned metrics.

These somewhat contradictory results underline the fact that there is
a complicated interplay between offline measures of effectiveness and user
satisfaction [44, 2, 97]. In light of this complicated interplay, it is important
to empirically validate, through either online evaluations or user studies, the
findings of offline evaluations [60].

16 Chapter 2. Background

2.2.3 User Studies

Lab-based studies involve users participating in controlled experiments, where
their experiences can be evaluated explicitly [10]. This provides a way of val-
idating the results of offline evaluations. However as already noted, there are
aspects of system effectiveness, particularly when dealing with personalised
search results, that can only be evaluated by the end users themselves [81].

Despite this, user studies can provide insights into what causes a system
to be perceived as effective or ineffective, such as why a user prefers one
result over another, that cannot be obtained by normal offline evaluations, or
through online implicit feedback. Additionally, user studies can be valuable
tools for validating the results of offline and online evaluations. However,
higher throughput evaluation methods are required for experimenting on the
hundreds of variants of their rankers that commercial search engines might
wish to evaluate at any given time [70].

A significant reason for this is that lab-based studies are expensive, dif-
ficult to replicate and scale up, and since the number of users is generally
small, it can be difficult to obtain a representative sample of the entire pop-
ulation of users for which the evaluation is meant to hold. An additional
limitation of lab-based evaluations is that participants may behave differ-
ently in a laboratory environment to how they would in more natural use
cases [62].

2.3 Online Evaluation of IR Systems

Online evaluation of rankers is the evaluation of rankers in a fully functioning
system based on implicit measurement of real users’ experiences of the sys-
tem in a natural usage environment [53]. The most common form of implicit
user feedback used in online evaluation is click feedback, and we will dis-
cuss how clicks can be interpreted, how we can model user click behaviour,
and some of the most important online evaluation methods in the coming
sections.

2.3.1 Interpeting Click Feedback

Logged implicit user feedback, e.g. clicks, has the potential to give informa-
tion about the effectiveness of search results. The fact that a user clicks on
a document could be taken as an explicit judgement that the given docu-
ment is relevant to the user. Unfortunately, user behaviours are noisy and
prone to a variety of biases which need to be accounted for [58, 90] when
interpreting clicks.

Position bias is the tendency of users to be more likely to click on docu-
ments ranked in a high position than those ranked lower [58]. This can have
a number of different causes, including that users tend to read the results
page from top to bottom and might stop before ever considering a docu-
ment with a low position. Additionally users might trust the search engine
sufficiently to assume that higher ranked documents are more relevant, and
might therefore click on a document purely because of their trust in the
search system.

Joachims et al. showed that the quality of the ranking influences the
user’s click behaviour [58], with users more likely to click on less relevant

2.3. Online Evaluation of IR Systems 17

documents if the overall quality of the ranked list is worse. This makes the
interpretation of clicks as an absolute relevance judgement problematic. It
may be difficult to interpret clicks as absolute judgements, however clicks
can be interpreted as relative relevance judgements reliably [58, 90]. For
example, a clicked document at position 2 in a ranked list can be reliably
interpreted as being more relevant than an an unclicked document at position
1.

Another potential source of bias is presentation bias. Search engines
produce small snippets summarising parts of their retrieved documents and
users have been found to be more likely to click on documents with attractive
snippets, regardless of the actual relevance of the document [126]. This can
be particularly problematic from the point of view of preventing the ranking
of spam websites, since they might attempt to manipulate their snippets to
be unrepresentative of their real content.

Selection bias [119] is the phenomenon that the collection of queries
for which clicks are recorded is biased compared to the entire collection
of queries. This means that certain queries will occur less frequently in the
click log used for online evaluation than in the overall query log. An example
of this could be that queries asking about the weather are underrepresented
in the click logs, relative to how frequently they are actually issued, because
the user is presented with information directly in response to the query, and
does not need to click on any links.

Although clickthrough data is an important source of implicit logged
feedback, it is not the only type of feedback we can infer from search logs.
An example of another type of behaviour that can be used is abandonment,
where a user issues a query, but does not click on any results. This could
be considered a negative signal, since it may indicate that the user was not
presented with any useful results to click on. Conversely, it can also reflect
the fact that a user’s information need was met directly on the search page
as in the above weather query example, or if the information need is met
by one of the presented snippets. This type of good abandonment [76] can
be partly identified, for example by tracking cursor movement [57], or by
checking if the query was subsequently reformulated [51].

As a final example of a form of implicit feedback which could be used,
although it is not currently logged by search engines, eye tracking has been
found to be predictive of relevance [93, 46, 21].

Ranker evaluation methods which use click feedback must be carefully
designed to ensure that the above described biases do not impact rankers
unequally, and we will see in Sections 2.3.3, 2.3.4 and 2.3.5 that controlling
for bias is a central consideration when designing evaluation methods.

2.3.2 Click Models

If we can accurately model user click behaviour we can use these models to
design ranker evaluation methods which can control for the user biases. Fur-
thermore if the user models are accurate, simulations can provide valuable
insights into how well ranker evaluation methods perform, without having
to experiment with them on real users. Click models can also help motivate
the design of IR metrics [31].

As already noted, position bias is a key source of bias in clicks where the
presentation order of documents affects their likelihood of being clicked on.

18 Chapter 2. Background

This problem is addressed by two of the most well known families of click
models: position based, and cascade click models [33].

Position based click models decompose the probability of a click into the
probability of looking at a document, given that it is at a given position,
and the probability that the document is clicked, given that it was looked
at. This can be regarded as a model where a user inspects the ranked list
from top to bottom, and has a relevance-dependent probability of clicking on
each document, and a fixed probability of stopping their examination of the
documents. Cascade click models instead let the stopping probability also
be dependent on the relevance of the document. This reflects the intuition
that if a user’s information need is fully satisfied by the first document
encountered, there is no need to look at any other documents. Cascade
click models have been found to significantly outperform position based click
models [33].

Cascade click models are very popular and have been used to simulate
experiments in most recent papers on interleaving and multileaving methods
[55, 102, 98, 17]. Work on more systematic simulations of information re-
trieval interactions is relatively recent but promises to provide more realistic
simulations [64, 9, 80].

Other, more advanced, click models which attempt to account for posi-
tion bias include the dependent click model [49], the user browsing model
[43], a dynamic bayesian network model [27] and the click chain model [48].
A survey of click models for web search that also account for important
aspects of search such as aggregated search, diversity and multiple sessions
is given in [28]. Recently, recurrent neural network and LSTM’s have been
used to learn click models directly from historical user interactions, without
first assuming that the user inspects the results page in a particular way
[15].

2.3.3 A/B Testing

An A/B test, sometimes also called a randomised, or controlled experiment,
in its simplest manifestation, is an online experiment where users are ran-
domly assigned to one of two variants of a system [71]. Relevant metrics can
then be collected based on implicit feedback and statistical tests can deter-
mine if there are significant differences between the two variants. Usually
the one variant of the system is the system as it is currently in operation and
the other variant is a modification with a single change whose effect we wish
to investigate. If the assignment of users between the variants is random,
and the only change between the variants is what we wish to investigate
[83], any difference in performance can be expected to be because of the
change in the new variant, since this is the only consistent difference. For
this reason A/B testing is considered the gold standard in online evaluation
[71], and commercial search engines run hundreds of concurrent A/B tests
on any given day [70].

A central focus in designing A/B tests is to select a good overall evalua-
tion criterion, according to which it can be decided which variant performed
better. Choosing this criterion is difficult because the criteria which might
ultimately be of most interest, such as user satisfaction or long term system
revenue, may not be directly measurable. We must therefore instead choose

2.3. Online Evaluation of IR Systems 19

proxies based on immediate signals like clicks, which correlate well with the
long term goals [37, 71, 69, 41].

A/B tests can require hundreds of thousands of user impressions to detect
small differences between systems [26]. Given the number of experiments
that web service providers would like to carry out, the need to minimize
possible deterioration in the experience of the user base when testing mod-
ifications is a limiting factor on how many experiments can be carried out.
Another limiting factor, if either the user traffic is limited for a smaller web
service, or if the number of desired experiments is huge, is that there might
not be enough user impressions to test new variants as quickly as desired.
For this reason, it is highly important to be able to use user feedback effi-
ciently, and develop online evaluation techniques which require less traffic in
order to determine if one system is better than another [112, 38, 68, 67, 65].

2.3.4 Interleaving

One of the reasons A/B testing can require so many user impressions to
detect small differences in quality is that variants are not tested on the same
user impressions. If we evaluate two systems using A/B testing, one system
may initially encounter queries which are easier than those encountered by
the other system. This can be expected to even out over a sufficiently large
number of user impressions, but it presents an important source of variance
in the metrics being studied. We now introduce a method which allows this
source of variance to be eliminated.

Interleaving methods are an online evaluation approach where a pair of
rankers is compared by combining the ranked lists produced by each ranker,
displaying this combined list to a single user, and inferring which ranker is
better based on clicks collected from the user. Interleaving methods thus
have two stages, a document sampling stage where documents are sampled
from the ranked lists of the two rankers into the joint list displayed to the
user, and a credit inference stage where the rankers are given credit based on
the clicks. State-of-the-art interleaving methods include Team Draft Inter-
leaving [90], Probabilistic Interleaving [55], Optimized Interleaving [89] and
Generalized Team Draft Interleaving [66]. Interleaving methods have been
found to require 1-2 orders of magnitude fewer user impressions than A/B
tests [26].

However, unlike A/B testing, which does not make specific assumptions
about the presentation of the results, interleaving methods generally assume
that the documents are presented in a single ranked list. Recently, interleav-
ing methods have been developed to handle more general settings, including
other layouts of the retrieved results, such as grid layouts [66], and have
also been extended to enable the interleaving of aggregated search results
[29, 30].

Finally, work has been carried out on how to optimise the credit inference
stage of interleaving to agree with specific A/B testing user satisfaction
metrics [99]. This is important since we saw in the previous section that
there has been a lot of research on what metrics make sense for A/B testing,
and we would like to be able to retain agreement with these metrics in the
interleaving setting.

20 Chapter 2. Background

2.3.5 Multileaving

Schuth et al. generalised interleaving to simultaneous comparisons of more
than two rankers, called multileaving, and introduced two multileaving meth-
ods: Team Draft Multileaving (TDM) and Optimised Multileaving (OM)
[102]. TDM works similarly to team draft interleaving: the multileaved
list is created in rounds, with each ranker contributing its highest ranked
remaining document to the multileaving, up to a predetermined length, usu-
ally fixed to 10, to reflect the fact that users often only look at documents on
the first page of the search engine results page. Note that in this case if more
than 10 rankers are being compared, some rankers do not receive an oppor-
tunity to contribute a document. Rankers are then given a credit for each
clicked document contributed by the given ranker, and a ranker is considered
to have won the comparison over another if it receives more credit. OM gen-
eralises optimized interleaving [89], and attempts to construct a multileaving
optimised for sensitivity, subject to certain constraints on the makeup of the
multileaved list, for example to ensure that the best documents according to
the individual rankers are used to create the multileaved list.

Before proceeding we note that we are primarily interested in three as-
pects of the performance of a multileaving algorithm: Firstly, how accurate
they are relative to some desired ground truth. Secondly, how quickly does
the multileaving method converge to varying levels of accuracy, i.e. how
many user impressions are needed to get to an error rate of 10%. We will
refer to this as the efficiency of the multileaving method. Finally, we are in-
terested in how these first two aspects are affected by the number of rankers
being simultaneously compared by the multileaving method. We will refer
to this as the scalability of the method. A more detailed discussion of the
problem setting for multileaving algorithms is given in Chapter 3.

Schuth et al. [102] found that TDM was substantially more efficient than
interleaving methods, meaning that fewer user interactions were required to
accurately determine pairwise preferences between rankers. They also found
that TDM was substantially more accurate than OM, and that TDM was
similar in accuracy to interleaving methods. Due to the poor accuracy of
OM reported in [102] we will not consider OM further.

Since TDM credits rankers only for clicks on documents drawn from the
corresponding ranker, TDM does not scale well to comparing more rankers
than there are documents in the multileaved list. Since users of search en-
gines typically only inspect the first results page, the multileaved list is
effectively only of length 10. We are often interested in comparing signifi-
cantly more than just 10 rankers, so there is a need for multileaving methods
which scale better to larger comparison sets.

Schuth et al. [98] subsequently proposed Probabilistic Multileaving (PM),
a generalization of probabilistic interleaving, which creates the multileaved
list in a similar manner to TDM, although with a probabilistic sampling of
documents. It then attempts to account for all the possible ways that a
document could have been sampled into the multileaved list. This approach
overcomes the limitation of TDM that clicks on documents only result in
credit for a single ranker, limiting the scalability of TDM. PM was found to
be substantially more efficient and scalable than TDM, while demonstrating
similar accuracy. However, the experimental evaluations in [102, 98] were

2.3. Online Evaluation of IR Systems 21

only carried out on a very limited number of rankers, and results in [17]
suggest that the findings do not generalise.

2.3.5.1 Shortcomings of prior Multileaving Methods

We now note flaws in the prior multileaving methods.
The multileaving methods we have discussed above can be prone to errors

since they do not take into account the connection between the document
sampling stage and the credit assignment stage. As a consequence, TDM
can underestimate the quality of similar rankers, as the following simple
example demonstrates: Consider the case of three rankers, A, B, C. Assume
that rankers A and B have the same top ranked document, and that this
is different from the top ranked document of ranker C. When creating a
multileaved list of length 3, rankers A and B will be represented by either
their top ranked or second ranked document. However ranker C will always
be represented by its top-ranked document. Suppose that the top ranked
documents for all three rankers are relevant, whereas their second ranked
documents are not relevant. Then ranker C will outperform rankers A and
B according to TDM, even though A, B, and C are equally good. TDM
systematically underestimates the performance of rankers A and B. If the
number of rankers that rank documents at similar positions increases, this
underestimation of quality becomes more extreme. Thus, TDM does not
properly account for the fact that in its credit assignment stage, similar
rankers have to split the credit that they would receive from clicks on their
highest ranked documents. This is particularly problematic since agreement
between rankers can be a signal of good ranker quality.

Conversely, PM systematically overestimates the quality of rankers which
are similar to the other rankers in the comparison set as discussed in [17].
To understand this flaw, we consider PM in more depth. Suppose we have
a set R of rankers we wish to multileave. PM creates the multileaved list in
rounds. In each round a random ordering of the rankers is decided. Then, a
document is probabilistically selected from the next ranker in the ordering,
where the probability of drawing a document d from ranker R is determined
solely by the document’s rank and is given by Equation 2.6, where pos(d,R)
is the rank of document d according to ranker R, and D is the set of docu-
ments ranked by R.

PR(d) =

1
pos(d,R)3∑

d′∈D
1

pos(d′,R)3

(2.6)

Note that when a document is drawn, the document is removed from all
the rankers’ retrieved lists. In the next draw, the probabilities of the re-
maining documents are recalculated according to Equation 2.6, where the
rankings, pos(d,R), are now determined in the absence of previously chosen
documents.

In the credit inference stage, PM considers all possible assignments of
documents to rankers that could have occurred, i.e. from what ranker might
the given document have been sampled, and weight each assignment based on
its probability. A given assignment a of all the documents in the multileaved

22 Chapter 2. Background

list has probability, P (a), given by

P (a) =
N∏
i=1

PRα(i)(di)P (Rα(i)) (2.7)

where N is the length of the multileaved list and PRα(i)(di) is the probability
of drawing document di from its assigned ranker, denoted by Rα(i). This
probability is given by Equation 2.6, and P (Rα(i)) is given by 1/|R|. For
an assignment, a, Ranker R is given credit, oR(a) equal to the number of
assigned documents clicked on. The total credit, oR(A), assigned to ranker
R, is given by oR(A) =

∑
a∈A oR(a)P (a), where A is the set of all possible

assignments.
PM overestimates the quality of rankers which are similar to other rankers

in the comparison set. This is because they can benefit from the presence of
documents contributed by similar rankers, and similar rankers will therefore
perform better according to PM than they actually do in practice.

To illustrate this problem, consider the following simple example: three
rankers and their corresponding retrieved lists: (R1 : d1, d2) (R2 : d2, d1),
and (R3 : d2, d1). The possible multileavings of length two, are {d1, d2} and
{d2, d1}.

The former multileaving occurs with probability 0.37, and the latter oc-
curs with probability 0.63. To see this, we note that if the first document is
drawn from R1, then according to Equation 2.6 the probability of d1 being
drawn first, corresponding to the first of the two possible multileavings is:

1
1
1 + 1

8

=
8

9

If the first document is drawn from R2 or R3, then according to Equation 2.6
probability of d1 being drawn first is:

1
8

1
1 + 1

8

=
1

9

Taken together we see that the probability of the multileaving {d1, d2} oc-
curring is:

1

3
· 8

9
+

1

3
· 1

9
+

1

3
· 1

9
= 0.37

Suppose that d1 and d2 are both relevant and always clicked on, i.e. all three
rankers have equal performance. Even though the rankers are equally good,
R1 will lose to the other two rankers with probability 0.63 due to the fact
that when the multileaving {d1, d2} occurs, R1 is given more credit in the
credit inference stage of PM, and if {d2, d1} occurs, R2 and R3 are given
more credit. Thus, in PM, the document sampling probabilities are higher
for documents ranked highly by many rankers, but the credit assignment
phase does not account for this.

Brost et al. proposed Sample-Only Scored Multileaving (SOSM) which
creates the multileaved list in the same way as TDM, but gives credit to
rankers based purely on how they would have ranked the sampled documents
in the multileaved list, as opposed to using the documents’ original positions
in each ranking to determine their scores. This allows an arbitrary number of

2.3. Online Evaluation of IR Systems 23

rankers to be compared, overcoming a major shortcoming of TDM, without
introducing the inaccuracy present in PM. Brost et al. demonstrated that
SOSM was more efficient than previous multileaving methods, slightly more
accurate than TDM, and substantially more accurate than PM [17].

Unfortunately, like TDM and PM, SOSM fails to correctly account for
the relationship between its document sampling stage and the credit assign-
ment phase. Specifically, documents from rankers which are similar to each
other are more likely to be ranked highly in the multileaved list. Thus, if the
user exhibits position click bias, this can result in the similar rankers being
systematically favoured by SOSM over rankers which are dissimilar from the
other rankers in the comparison set. Furthermore, it was shown in [18] that
the estimates of SOSM can occasionally be distorted, in the sense that, de-
pending on which other rankers are being compared in a given multileaving,
SOSM can disagree with itself about the relative quality of pairs of rankers.

In Chapter 3.3 we propose using importance sampling to produce a mul-
tileaving algorithm which is unbiased. Note that in order to be unbiased,
importance sampling requires that all documents have a non-zero probabil-
ity of being sampled into the multileaved list in their position in the original
ranked lists. As such, importance sampling cannot be used to correct either
TDM or SOSM, since both algorithms use the same sampling algorithm
which always samples the top remaining document from a given ranker, and
therefore can have zero probabilities of sampling documents into their orig-
inal positions according to some of the rankers.

2.3.6 Counterfactual Evaluation

While importance sampling has not been previously used for multileaving, it
has been used for counterfactual evaluation. Counterfactual evaluation is a
form of online evaluation in which the experimenter has (almost) no control
over what is displayed to the user. Instead of interleaving or multileaving
documents from multiple rankers, a single logging/production ranker is used
but its result set may be randomly permuted. Counterfactual methods then
attempt to answer the question, based on logged feedback for the logging
ranker which is actually displayed to the users, of how a different ranker
would have performed, had it been displayed to the users [16]. In order for
this counterfactual evaluation to be unbiased, the above mentioned permu-
tations of the logging ranker must have a non-zero probability of producing
any ranked list that can be produced by the rankers that we want to evaluate
[75].

Importance sampling, and variants thereof, have been used in this coun-
terfactual setting [109, 110, 108, 77, 111]. To the extent that the assumptions
made by the counterfactual evaluation method are met, and if the logging
ranker is similar enough to the rankers being evaluated, counterfactual eval-
uation has many of the same advantages as interleaving or multileaving,
without requiring full control of what documents are displayed to the user.

Some of the disadvantages of counterfactual methods are that the more
dissimilar the rankers we wish to evaluate are to the logging ranker, the more
randomisation, or logged data is required to reliably evaluate the rankers.
In particular, increasing the randomisation in the results produced by the
logging ranker can produce unacceptably poor result lists to be displayed to
the end user.

24 Chapter 2. Background

2.4 Online Learning

Recall that one of the key drawbacks of online evaluation methods such as
A/B testing, interleaving, or multileaving, is that we face a tradeoff be-
tween displaying the results that we believe are best to the user, or showing
results which will help us learn more about the quality of the rankers we
are evaluating, but at the cost of potentially showing poor results to the
user [54]. Resolving this exploration-exploitation tradeoff can be formalised
by different so-called bandit settings, depending on what online evaluation
methods we are considering. We will now introduce the relevant literature
corresponding to online evaluation using A/B tests, interleaving, and multi-
leaving

2.4.1 Bandits

We can regard online evaluation when using A/B testing as a sequential
decision making problem, where we face a stream of queries issued by users,
and for each query we wish to choose which ranker’s results to display to
the user. This approach can be modeled within the multiarmed bandit
framework [13], where we associate rankers with arms. At each iteration of
a multiarmed bandit game the player picks one of K possible arms (in our
case rankers) and observes the reward of that arm. Rewards of arms that
were not selected remain unobserved. The goal is to select arms, so that
the cumulative regret, defined as the sum of the differences across iterations
between the reward of the unknown best arm and the reward of the chosen
arm, is minimized.

2.4.2 Dueling Bandits

If instead of using A/B testing, we wish to use interleaving to compare
rankers, we can instead regard our situation as a sequential decision making
problem where we face a stream of queries issued by users, and for each
query we wish to choose which two rankers to interleave to the user. This
learning from relative feedback from pairwise comparisons can be modeled
as a K-armed dueling bandit problem [123]. The goal is to select pairs
of rankers, so that a mix of their rankings will be almost as good as the
ranking of the best ranker in the pool. (We note that the model permits
selecting the same ranker twice, as the first and the second element of the
pair.) There are several possible definitions of the best ranker for pairwise
comparisons. The most common definition is the Condorcet winner, which
is a ranker that is (pairwise) better that any other ranker in the pool. Note
that a Condorcet winner is not guaranteed to exist, for example in a situ-
ation with three rankers A, B, and C, where A wins in a comparison with
B, B wins in a comparison with C, and C wins in a comparison with A. Al-
though somewhat counterintuitive, this type of situation occurs frequently
for interleaving methods [42].

The K-armed dueling bandit problem was introduced by Yue et al. [123],
who also presented an algorithm called interleaved filtering (IF) for solving
it. In IF, arms are eliminated sequentially by comparing them with the best
currently known arm until they are defeated with sufficient confidence. Yue
et al. [125] subsequently proposed an improved algorithm called beat the

2.4. Online Learning 25

mean (BTM). This algorithm attempted to reduce the number of compar-
isons needed by focusing on comparing the arm that had been used in the
least number of comparisons with a randomly sampled arm that had not yet
been eliminated. Yue et al. also presented experimental evidence confirming
the superior performance of BTM over IF.

Zoghi et al. [132] proposed an algorithm for the dueling bandit setting
based on the idea of relative upper confidence bounds (RUCB). The algo-
rithm maintains a relative upper confidence bound on the probability that a
given arm i is better than another arm j. The algorithm then selects an arm
i that might be the best, based on its upper confidence bounds relative to all
other arms, and then selects the challenger with the highest upper confidence
bound relative to i. This approach was shown to outperform both IF and
BTM. Zoghi et al. [131] subsequently proposed a divide-and-conquer algo-
rithm, MergeRUCB, extending their earlier work in [132]. MergeRUCB was
designed to perform well for problems involving a large number of arms. Ex-
tensive experiments by Zoghi et al. suggest that it substantially outperforms
IF and BTM, and that for large numbers of arms it outperforms RUCB too.

Komiyama et al. [72] proposed an algorithm, Relative Minimum Em-
pirical Divergence (RMED), which selects pairs of arms based on whether
an arm has not been compared with other arms sufficiently often, or if it
is not substantially beaten by many other arms. To decide if an arm has
been sufficiently explored it uses bounds based on the KL-divergence. They
showed that this algorithm outperformed RUCB and MergeRUCB.

Most recently, a new dueling bandits algorithm which selects both arms
using Thompson sampling has been found to outperform prior dueling bandit
algorithms [122].

Dueling bandits have been the focus of a lot of recent research, culminat-
ing in several new research directions and variants of the problem setting.
We will briefly summarise some of these directions here.

Since the Condorcet winner is not guaranteed to exist, there has been
work investigating algorithms given other concepts of winners, such as du-
eling bandits for a Copeland winner [130, 74] or for a von Neumann winner
[42]. A Copeland winner is a ranker for which the number of pairwise com-
parisons won by the ranker is greater than the number of pairwise wins of
any other ranker. A von Neumann winner is a probability distribution over
the rankers, such that in expectation a ranker drawn from the distribution
will defeat any other individual ranker.

It has also been shown that dueling bandits can be reduced to the stan-
dard multiarmed bandit setting [1]. Balsubramani et al. [12] provided the
first algorithms which take advantage of the specific problem instance to
produce instance dependent regret bounds. Finally, work on so-called ad-
versarial bandits, where the rewards for each arm are not assumed to be
identically and independently distributed, has been extended for dueling
bandits by Gajane et al. [45].

The dueling bandit problem setting is limited to pairwise comparisons.
We introduce a new problem setting, multi-dueling bandits [18], described
in Chapter 4.1, for regret minimisation when simultaneously comparing an
arbitrary number of arms. Subsequently, there has been further work on
multi-dueling bandits [107]. However, this work by Sui et al. restricted at-
tention to the case where the number of arms selected at each iteration is
fixed. Sui et al. also produced earlier work on the closely related problem

26 Chapter 2. Background

of learning from subgroup rank feedback, although this problem setting dis-
tinguishes itself from our multi-dueling bandit setting in that the number of
arms selected at each iteration is again fixed [106].

2.4.3 Bandits with Multiple Plays

In Section 4.2 we introduce a new bandits with multiple plays setting appli-
cable, for example, to regret minimization when using a multileaving method
like our new Multileaving using Importance Sampling algorithm introduced
in Section 3.3.

There has been prior work on bandits with multiple plays [87, 116, 73],
but prior work was again restricted to the case where the number of bandits
selected at each iteration is fixed. This prior work is therefore not directly
applicable to the online ranker evaluation problem, where we wish to elimi-
nate arms as we become more certain that they are not optimal, rather than
continuously selecting a fixed number of rankers.

27

Chapter 3

Multileaving for Online
Ranker Evaluation

We first introduce our multileaving problem setting in Section 3.1. Then we
present our proposed algorithms, Sample-Only Scored Multileave (SOSM)
[17] in Section 3.2, and Multileaving using Importance Sampling (MIS) in
Section 3.3. We present thorough experimental evaluations of SOSM and
MIS in Sections 3.2.2 and 3.3.3 respectively.

3.1 Problem Setting

We are given a set R of rankers and a set Q of queries. For each query
q a document set Dq must be ranked. Each of the rankers produces its
own ranked list for each query. The ranked lists are then combined using
a multileaving algorithm to produce a single ranked list. This multileaved
list is then presented to a user, whose clicks are recorded. The multileaving
method must infer the quality of the individual rankers based on the user’s
clicks. A multileaving method therefore has two distinct phases, a document
sampling stage, where the multileaved list is created, and a ranker scoring
phase, where each ranker is given some score based on the user clicks.

Recall from Section 2.3.3 that A/B testing can be regarded as the gold
standard of online evaluation. We therefore regard the quality of a mul-
tileaving method as measuring its degree of agreement with A/B testing.
Ranker evaluation based on A/B testing involves randomly assigning users
to different rankers, and then for each ranker comparing the mean for some
metric across user impressions. A ranker has then outperformed another
ranker if its mean for the metric is greater than that of the other ranker.
Given a set of rankers and a metric, the expected scores for each ranker for
the metric on an A/B test induce an ordering on the rankers. We regard
the ground truth to be this ordering. Our primary error metric for a multi-
leaving method will be the percentage of pairwise errors in the preferences
inferred by the multileaving method relative to this ordering.

We are primarily interested in three aspects of the error metric: Firstly,
what amount of error would a multileaving method converge to, given an
unlimited number of user impressions. We will refer to this as the accuracy
of the multileaving method. Secondly, how quickly does the multileaving
method converge to varying levels of accuracy, i.e. how many user impres-
sions are needed to get to an error rate of 25% or 10%. We will refer to
this as the efficiency of the multileaving method. Finally, we are interested
in how these first two aspects are affected by the number of rankers being

28 Chapter 3. Multileaving for Online Ranker Evaluation

simultaneously compared by the multileaving method. We will refer to this
as the scalability of the method.

Note that for our experiments we do not have access to real users on which
we can carry out A/B tests. Instead of comparing the inferred preferences of
the multileaving against the ordering induced by their scores on A/B tests,
we will therefore use the ordering induced by an offline metric as our ground
truth. Unless otherwise stated, this metric will be the NDCG@10 score of
the rankers. This only requires relevance judgements in order to compute
the NDCG@10 score, and these are provided for many publicly available
learning to rank datasets.

Bias has received a lot of attention in the interleaving and multileaving
literature. A method is defined to be biased if it infers preferences between
rankers for a user whose clicks are uniformly random between documents
[56]. Bias is problematic since it should be impossible to determine which
ranker is better if clicks are completely random. Unfortunately, this defini-
tion of bias does not capture susceptibility to a user’s position bias. If a user
exhibits position bias, previous multileaving algorithms can infer a ranker
preference even if the user has no such preference. Since position bias is an
extremely important source of bias in user behaviour, it would be preferable
to define a method as being biased if it infers preferences between rankers
for a user whose clicks are random, but display position bias. We will re-
fer to this as the latent bias of a multileaving method and investigate how
this affects the multileaving methods in Section 3.3.3.2.4. We call it latent
bias to distinguish from the definition of bias commonly used for statistical
estimators [121].

Since our ultimate goal is to minimize pairwise errors between the in-
ferred preferences of a multileaving method and the ordering induced by an
A/B test, it is not sufficient to create a method which does not display latent
bias. Instead, we wish to ensure that the expected inferred preferences of the
multileaving method agree with the expected ordering of the A/B test. We
will see in Section 3.3 that this can be guaranteed by our second proposed
method MIS.

A final property we are interested in is the possibility of the outcomes of
multileaved comparisons to be distorted by the makeup of the comparison
set. In the ideal case, when we carry out A/B tests to evaluate a set of
rankers, there is a single best ranker. For interleaving and multileaving
methods, this is not necessarily the case. For example, an interleaving or
multileaving method might find that a ranker A is superior to a ranker B,
which in turn is superior to a ranker C, but that ranker C is superior to A
[42].

For multileaving methods the even more counterintuitive possibility can
arise that even though there may be a single best ranker in a set of rankers
when the rankers are compared pairwise, a different ranker may appear to
be the best when three rankers are compared at a time. For example a
ranker A could be superior to rankers B and C in pairwise comparisons, but
when all three rankers are multileaved, B is superior to A and C, because
the documents sampled into the multileaving systematically favour ranker
B. Simple examples of how this can occur are given for TDM, PM and
SOSM in Section 2.3.5. This problem of distortion was discovered for SOSM
[18], and we will investigate how it affects different multileaving methods in
Section 3.3.3.2.5.

3.2. Sample-Only Scored Multileaving 29

3.2 Sample-Only Scored Multileaving

Recall from Section 2.3.5 that TDM does not scale well with the number of
rankers being compared, since a click can only be used to infer something
about the quality of a single ranker. Conversely, PM has the potential to
be more efficient, since it infers something about the quality of each ranker
based on each click. Unfortunately as noted in Section 2.3.5 PM can be
highly inaccurate and we will see that it suffers from potentially extreme
latent bias in Section 3.2.2.

We now introduce a multileaving method, Sample-Only Scored Multi-
leaving (SOSM), which is efficient and scales well with the number of rankers
being compared, since clicks are used to infer something about the quality of
each ranker. SOSM is more efficient than, and similarly accurate to, TDM
and substantially more accurate than PM.

3.2.1 Algorithm

Our aim is to create an algorithm which uses click feedback efficiently, unlike
TDM, but does not introduce latent bias like PM. The core concept under-
lying SOSM is that even though the document sampling stage of SOSM
may favour sampling documents from certain rankers, the scoring function
will compensate for this imbalance by only scoring a ranker in terms of its
relative ranking of the documents included in the multileaving.

The process of creating the multileaved list in SOSM is identical to that in
TDM. SOSM creates the multileaved list in rounds. In each round a random
ordering of the rankers is decided and the top document from each ranker
that has not yet appeared in the multileaving is drawn until the multileaved
list is of sufficient length.

To infer preferences, each ranker r first ranks the documents in the mul-
tileaved list such that posM (d, r) denotes the order of document d among
the documents in the multileaved list, according to their positions in the
original ranked list of r.

Letting DM denote the documents of the multileaved list, the score of
document d for ranker r is given in Equation 3.1

s(posM (d, r)) =

1
posM (d,r)3∑

d′∈DM
1

posM (d′,r)3
(3.1)

Finally, ranker r is credited with a final score of

f(r) =
∑
d∈C

s(posM (d, r)),

where C denotes the set of clicked documents. Note the similarity between
our scoring function in Equation 3.1, and the scoring function used by PM
[98]. The only difference is that PM considers the positions of documents
according to the original ranked lists when scoring rankers, whereas we only
consider the relative positions of the documents in the multileaving according
to the original ranked lists.

SOSM is efficient, accurate, and scales well with the number of rankers
being compared, as verified experimentally in Section 3.2.2. However unfor-
tunately SOSM displays latent bias. Note that SOSM does not suffer from

30 Chapter 3. Multileaving for Online Ranker Evaluation

Table 3.1: Datasets. Each dataset consists of a number of
query-document pairs, together with a relevance judgement
for the pair. Each document is represented by a feature

vector.

Datasets Queries URLs Features

MSLR-WEB30K 1 31,531 3,771,125 136
YLR Set 1 [25] 19,944 473,134 700
YLR Set 2 [25] 1,266 34,815 700

latent bias according to the definition used in previous interleaving and mul-
tileaving papers [56], but only according to our extended definition of latent
bias.

3.2.2 Experimental Evaluation

We compare our algorithm, SOSM, against TDM and PM, the two previ-
ously state of the art multileaving methods. We begin by describing our
experimental setup in Section 3.2.2.1, before presenting our results in Sec-
tion 3.2.2.2.

3.2.2.1 Experimental Setup

Since we do not have access to real users for our experiments, we simulate
the interactions for our multileaving methods using probabilistic user models.
This experimental setup using simulated user interactions has become the
standard for evaluating multileaving methods, and has been used to evaluate
all the prior work in multileaving [102, 98, 17].

We use standard online learning to rank datasets, whose properties are
summarised in Table 3.1. Following [102, 98, 17], for each dataset we choose
the possible rankers to be the features of the dataset. That is, for a given
feature, we construct a ranker which ranks documents only according to the
score of that feature. An example of a feature in the MSLR dataset is the
BM25 score of the body of the document. Although these rankers are weaker
than the rankers that need to be evaluated in a practical use case, this is
the standard evaluation methodology in the interleaving and multileaving
literature. Using these feature rankers makes experimental replication eas-
ier. Furthermore, when investigating evaluation methods, it is the relative
quality of the rankers, rather than the absolute quality of the rankers which
determines how difficult the evaluation task is, and many of the feature
rankers are very similar in quality.

For each experimental run we randomly sampleK rankers, fix the number
of iterations for the experiment to run, and choose a user model. We split the
queries of the dataset into a test set and training set, and for each iteration we
randomly sample a query with replacement from the training set, and each
of the K rankers produces a ranked list. Each multileaving method then uses
these ranked lists to produce a multileaved list, of length fixed to 10, which is
displayed to a simulated user. The simulated user then clicks on some of the

3.2. Sample-Only Scored Multileaving 31

Table 3.2: User Models. For each user model, the user in-
spects the ranked list from top to bottom and either clicks on
a document, or stops inspecting the list, with each action’s
probability defined by the user model, and the document rel-
evance. We use the perfect, navigational and informational
click models from [56], additionally we define two random

click models for testing bias.

Click Probabilities Stop Probabilities

Relevance 0 1 2 3 4 0 1 2 3 4

Perfect 0.0 0.2 0.4 0.8 1.0 0.0 0.0 0.0 0.0 0.0
Navigational 0.05 0.1 0.2 0.4 0.8 0.0 0.2 0.4 0.6 0.8
Informational 0.4 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5

Random 0.5 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0
Random Position Bias 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

documents according to the chosen cascade user model [56]. The parameters
of these user models are described in Table 3.2. The perfect, navigational,
and informational click models introduce progressively more noise into the
user’s interactions with the search system. The random click models are
included to detect latent bias in the multileaving methods. Specifically, if a
multileaving method detects a preference for one ranker over another when
clicks are uncorrelated with document relevance, the multileaving method
has displayed latent bias towards that ranker.

Based on the cumulative scores for two rankers i and j: ft(i) and ft(j)
after t iterations according to the multileaving methods, we can create a
matrix M̂(t) with entries M̂ij(t) = ft(i)

ft(i)+ft(j)
. We let a matrix P be given

with entries Pij = gi
gi+gj

, where gi is the ground truth score of ranker i

on a held-out test set of queries. Unless otherwise stated, this will be the
NDCG@10 score of the ranker.

For a given pair of rankers, we consider the multileaving method to have
made an error after t comparisons if M̂ij(t) and Pij disagree. We wish to
minimize the percentage of errors made,

E(t) =

∑
i,j∈R sgn(M̂ij(t)− 0.5) 6= sgn(Pij − 0.5)

|R|(|R| − 1)
(3.2)

For the experiments involving random click models, instead of consider-
ing the error measure from Equation 3.2 as we do for all other experiments,
we consider the multileaving method to have made an error if it detects a
score ratio of 53% or more between a pair of rankers, since if the method
was unbiased, this ratio would be expected to be 50%.

For the experiments not involving a random click model, we include a
curve showing how well the NDCG score on the queries seen by the multi-
leaving methods agrees with the NDCG score on the test set used to define
the ground truth. This oracle, whose curve is labelled as NDCG in our
figures, serves to establish a lower bound on the error that can reasonably
be obtained. Unlike the multileaving methods, which only have access to
the simulated user’s implicit feedback, the oracle has access to the actual
relevance judgements for the documents.

32 Chapter 3. Multileaving for Online Ranker Evaluation

3.2.2.2 Experimental Results

Table 3.3 enumerates the percentage error after 2,000 and 10,000 iterations
when multileaving 5, 40 or 100 rankers for the three click models. In almost
all cases SOSM is superior. The two exceptions occur when comparing only
5 rankers. In this case, TDM is marginally better than SOSM for the in-
formational click model, and indistinguishable for the perfect click model.
For 40 or 100 rankers, SOSM substantially outperforms TDM and PM. For
example, with 100 rankers and the informational click model, the error rates
are reduced by 50% from 32% to 16% after 10,000 iterations.

Table 3.3: Percentage error, E, after 2,000 and 10,0000
iterations for each multileaving method for 5, 40 and 100
rankers and three click models. The best performing method
is indicated with a *. Bolded entries indicate that SOSM is

significantly different to the two baselines with p < 0.01.

Iterations 2,000 10,000

Click Model

`````````````̀# Rankers
Method

TDM PM SOSM TDM PM SOSM

Perfect
5 rankers 18% 23% 18%* 14% 18% 14%*
40 rankers 23% 28% 17%* 18% 28% 15%*
100 rankers 30% 29% 18%* 21% 28% 16%*

Navigational
5 rankers 27% 30% 22%* 24% 25% 16%*
40 rankers 34% 30% 24%* 26% 31% 22%*
100 rankers 39% 31% 25%* 29% 29% 21%*

Informational
5 rankers 18%* 29% 20% 16%* 32% 18%
40 rankers 37% 32% 22%* 27% 32% 15%*
100 rankers 42% 33% 21%* 34% 32% 16%*

Figure 3.1 shows how the performances of the multileaving methods are
affected by the click model used. For all three click models, SOSM outper-
forms both TDM and PM. This is most pronounced for the navigational
model, where the percentage error for TDM and PM is 50% greater than
that of SOSM (30% compared to 20%).

Figure 3.2 shows the sensitivity of the multileaving methods to different
choices of dataset. We repeat the experiment from Figure 3.1(b) using two
other datasets. All three algorithms (TDM, PM, SOSM) perform similarly
across datasets. In all cases, SOSM exhibits superior performance.

Figure 3.3 shows how the performances of the multileaving methods
scales with the number of rankers being compared. We show the percentage
error after 2,000 iterations, as a function of the number k of rankers that
are multileaved. For a given k, a random subset of rankers is selected and
multileaved for 2,000 iterations. The same subset is used for PM, TDM and
SOSM. This is repeated 25 times, each time with a different random subset
of k rankers. The results in Figure 3.3 are the average of these 25 runs. We
observe that for SOSM and PM the error remains relatively stable as the
number of rankers increases. However, for TDM the error is increasing and
we observe that its performance becomes worse than PM for large numbers
of rankers. This is due to the fact that during the scoring phase, TDM is un-
able to assign credit to more than the 10 rankers from which the multileaved
documents originated.



3.3. Multileaving Using Importance Sampling 33

Figure 3.4 tests if the multileaving methods suffer from latent bias. In
Section 2.3.5.1, we showed that PM could exhibit latent bias under certain
conditions. For this experiment we use a random click model, i.e. clicks are
random and independent of document relevance. In this case, we expect that
the elements of the pairwise preference matrix should converge to 0.5, i.e.
there is no observed preference between rankers i and j. An error is declared
if the value of M̂ij(t) deviates from 0.5 by more than 0.03. Figure 3.4 shows
that PM exhibits very strong latent bias, with error rates of about 60%.2

TDM’s behaviour is much better, but after 2000 iterations some latent bias
is still present. In contrast, the percentage error decreases much quicker in
SOSM, and is almost zero after just 2000 iterations. Note that we will see
in Section 3.3.3.2.4 that SOSM can suffer from latent bias when the user
displays position bias in clicking behaviour.

3.2.3 Conclusions

We identified and experimentally verified weaknesses in the scalability of
TDM and the unbiasedness of PM. We then proposed a new algorithm,
SOSM, that corrects these problems. Experimental results using simulated
users (perfect, navigational, informational click models), on three different
datasets confirmed that (i) SOSM scales well with the number of rankers to
be multileaved, (ii) is unbiased, and (iii) is significantly more efficient and
accurate than prior methods. In some cases error rates were reduced by half.

The residual error needs investigating but is likely to be partly due to (i)
establishing a ground truth based on NDCG@10, which is not used as the
scoring function in Equation 3.1, and (ii) the ground truth data is computed
on “test” data that is not used during the multileaving experiments.

Although SOSM is highly efficient, the scoring function is based only
on the documents included in the multileaving. This can make it difficult
to accurately capture certain ground truths, since for example, it would be
difficult to use SOSM to obtain good agreement with a ground truth which
only credits the top ranked documents of rankers. We now introduce a
multileaving method with a more adaptable method for scoring rankers, and
for which we can provide guarantees on its accuracy.

3.3 Multileaving Using Importance Sampling

We will first motivate Multileaving using Importance Sampling (MIS) and
show that we can make the expected outcome of a multileaving equal to
the expected outcome under A/B testing in Section 3.3.1. We will then
describe the MIS algorithm in Section 3.3.2. We will experimentally evaluate
MIS in Section 3.3.3. Finally, we will conclude our multileaving chapter in
Section 3.3.4

3.3.1 Motivation

Recall from Section 3.1 that our goal is to create a multileaving method
which produces the same relative outcomes between rankers as A/B testing

2Note that in [98] no such bias was detected. However, in [98] the set of multileaved
rankers was not picked randomly. Further, personal communication with an author of [98]
confirmed the existence of a software bug in PM which we corrected for these experiments.



34 Chapter 3. Multileaving for Online Ranker Evaluation

for a given metric. One way of guaranteeing this is to create a multileaving
method which ensures that the expected score for each ranker is equal to the
expected score of that ranker under A/B testing with a given metric. This
is possible using importance sampling, and we will now demonstrate how it
can be done.

For the following, let the metric use some click scoring function s to
evaluate the rankers. The scoring function credits rankers based on the rank
position of documents’ users click. We restrict our attention to functions
that only credit documents in the top-10 of a ranker, i.e.

s(i) =

{
t(i) i ∈ {1, . . . 10}
0 else

where examples of t include:

t(i) = 1/i

t(i) = 1/i2

t(i) = 1/ log(i+ 1)

We will begin by considering the expected outcome if we were carrying
out A/B testing. We assume that we are given a set of R rankers and a set
D of documents. Each ranker displays a ranked list of the documents in D
to a user, whose clicks are recorded. If we denote by C the set of clicked
documents, and pos(d,R) the position of document d according to ranker R,
then the final score f for each ranker R ∈ R is given by

f(R) =
∑
d∈C

s(pos(d,R)), (3.3)

Let us assume that the probability of a document being clicked on, i.e.
its click probability, is independent of its position (beyond needing to be in
the top-10), and independent of what other documents are present in the
ranked list. Let p(cd|d ∈ T 10) denote document d’s click probability, given
that it was included in the top-10. Note that p(cd|d 6∈ T 10) = 0, since we
assume that users do not see or click on documents outside the top-10. Let
pR(d ∈ T 10) denote the probability that d is included in the top-10 of ranker
R. Then, by definition,

pR(d ∈ T 10) =

{
1 if d ∈ T 10

0 else

and we can write the probability of a click on document d given that ranker
R has been displayed to the user as

pR(cd) = p(cd|d ∈ T 10)pR(d ∈ T 10) (3.4)



3.3. Multileaving Using Importance Sampling 35

We can write the expected value of f(R) under the A/B testing regime as

E[f(r)] =
∑
d∈D

pR(cd)s(pos(d,R)) (3.5)

=
∑
d∈D

p(cd|d ∈ T 10)pR(d ∈ T 10)s(pos(d,R)) (3.6)

This is the expected value that we would like to obtain when multileaving.
When multileaving, we have a fixed probability for each document that

it will be included in the top-10 of the multileaving displayed to the user,
which we denote by pM (d ∈ T 10). We then have that the probability of a
click on document d, when multileaving, denoted by pM (cd) is given by

pM (cd) = p(cd|d ∈ T 10)pM (d ∈ T 10) (3.7)

If we were to record the empirical score f as in Equation 3.3, we would not
obtain the same expected score when multileaving, since in general pM (d ∈
T 10) 6= pR(d ∈ T 10). Instead, it is possible to obtain the same expected
score as under A/B testing by recording the empirical score g shown below
instead of using f .

g(R) =
∑
d∈C

s(pos(d,R))

pM (d ∈ T 10)
(3.8)

The idea is to use importance sampling to correct for the modified document
sampling probabilities when multileaving. We require that pM (d ∈ T 10) is
known, which is the case since we control the document sampling stage of
the multileaving. Furthermore we require the document sampling stage to
satisfy that pM (d ∈ T 10) 6= 0 for all d such that there exists a ranker R
in the comparison set such that pR(d ∈ T 10) 6= 0. That is, any document
which is present in the top-10 of at least one ranker must have a non-zero
probability of being in the multileaving.

Then the empirical score has expected value

E[g(R)] =
∑
d∈DM

pM (cd)
s(pos(d,R))

pM (d ∈ T 10)
(3.9)

=
∑
d∈DM

p(cd|d ∈ T 10)pM (d ∈ T 10)
s(pos(d,R))

pM (d ∈ T 10)
(3.10)

=
∑
d∈D

p(cd|d ∈ T 10)s(pos(d,R)) (3.11)

=
∑
d∈D

p(cd|d ∈ T 10)pR(d ∈ T 10)s(pos(d,R)) (3.12)

= E[f(R)] (3.13)

where we have used that pR(d ∈ T 10) = 1 if s(pos(d,R)) > 0, and pR(d ∈
T 10) = 0 otherwise. We have now shown how to create a multileaving algo-
rithm for which the expected score for each ranker is equal to the expected
score of the ranker under A/B testing. In Section 3.3.2 we describe our
implementation of this idea.



36 Chapter 3. Multileaving for Online Ranker Evaluation

3.3.2 Algorithm

Recall that a multileaving algorithm has a document sampling stage and a
ranker scoring stage. We describe these next for our algorithm.

3.3.2.1 Document sampling stage

As noted in Section 3.1, we require that for any document which appears
in the top-10 of some ranker, this document has a non-zero probability of
appearing in the top-10 of the multileaving. Apart from this requirement, the
document sampling strategy can be chosen freely according to any number of
criteria. We choose the following document sampling strategy which makes
the importance weights from Equation 3.16 easy to compute.

Given a set R of rankers, and a set Dq of documents to be ranked for
a given query, we first filter out all the documents which are not included
in the top-10 of at least one of the rankers. We denote by Nq the number
of documents remaining after the filtering step. We then rank all the re-
maining Nq documents according to an arbitrary preference criterion, such
as, for instance, the simple or weighted average rank of the document across
all rankers. We then partition the document set into a set of M ‘preferred’
documents and Nq−M ‘non-preferred’ documents, where the preferred docu-
ments are the top M documents according to the chosen preference criterion.
We can then sample a proportion L ∈ [0, 1] of the M preferred documents
uniformly at random, and sample the remaining documents needed to ob-
tain a multileaving of the desired length from the non-preferred documents
uniformly at random. Finally, we display a random ordering of the sampled
documents to the user. The purpose of the parameter L is to control how
heavily we favour sampling from the preferred documents.

The pseudocode of the above is displayed in Algorithm 1.
For a fixed multileaving of length 10, it is simple to verify that

pM (d ∈ T 10) =
10L

M
(3.14)

for preferred documents, and

pM (d ∈ T 10) =
10(1− L)

Nq −M
(3.15)

for non-preferred documents.

3.3.2.2 Ranker Scoring Stage

Recall from Section 3.1 that we have restricted our attention to scoring func-
tions which only credit documents in the top-10 of a ranker. More specifi-
cally, we will credit a ranker R with s(pos(d,R)) for each clicked document
d, where

s(pos(d,R)) = 1/(log(1 + pos(d,R)))

if pos(d,R) ≤ 10, and s(pos(d,R)) = 0 otherwise. We choose a logarithmic
decay in the scoring function to match the logarithmic decay in the NDCG
ground truth (which is the most commonly used evaluation metric in the
multileaving literature). As seen in Section 3.1, we need to normalise each



3.3. Multileaving Using Importance Sampling 37

document’s credit by its probability of being included in the top-10 of the
multileaving to obtain our final ranker score. We do this as follows:

g(R) =
∑
d∈C

s(pos(d,R))

pM (d ∈ T 10)
, (3.16)

where pM (d ∈ T 10) is the probability of that document appearing in the
top-10 of the multileaving and C denotes the set of clicked documents. The
need to compute pM (d ∈ T 10) for each document is the reason we chose
our document sampling strategy, since for our strategy the probabilities are
simple to compute, as shown in Equations 3.14 and 3.15.

1 Parameters: M, L
2 SR = 0 for all rankers
3 for q = 1, . . . , T do
4 Filter out any documents not ranked in the top-10 of some ranker
5 Rank the remaining documents according to average rank across

all rankers
6 Let the top-M of these documents according to this ranking be

‘preferred’ documents, and the remaining documents be
‘non-preferred’

7 Sample L of the M ‘preferred’ documents and the remaining
documents from the ‘non-preferred’ set

8 Display sampled documents in random order to user and observe
clicks

9 Let Cq be the set of documents that were clicked on
10 for R = 1, . . . ,K do
11 g(R)← g(R) +

∑
d∈Cq [s(pos(d,R))/pM (d ∈ T 10)]

12 end

13 end
Algorithm 1: Multileaving Using Importance Sampling (MIS)

We refer to our multileaving method that uses the document sampling
stage and ranker scoring stage presented above as Multileaving Using Im-
portance Sampling (MIS).

3.3.3 Experimental Evaluation

We compare our method, MIS, against SOSM [17] and TDM [102]. We
omit PM from the experiments because its performance was shown to be
substantially worse than TDM and SOSM in [17], see Section 3.2.2.2 for
details.

3.3.3.1 Experimental Setup

We replicate the exact same experimental setup of [102, 98, 17], where user
interactions are simulated using probabilistic user models. We use four stan-
dard online learning to rank datasets, whose properties are summarised in
Table 3.4. Following [102, 98, 17], for each dataset we treat the features of
the dataset as rankers. That is, for a given feature, we construct a ranker
which ranks documents only according to the score of that feature.



38 Chapter 3. Multileaving for Online Ranker Evaluation

Table 3.4: Datasets. Each dataset consists of a number of
query-document pairs, together with a relevance judgement
for the pair. Each document is represented by a feature

vector.

Datasets Queries URLs Features

MSLR-WEB30K 3 31,531 3,771,125 136
YLR Set 1 [25] 19,944 473,134 700
YLR Set 2 [25] 1,266 34,815 700
Yandex 4 9,124 97,290 245

For each run, we randomly sample K rankers, fix the number of itera-
tions, and choose one of the user models displayed in Table 3.5. We split the
queries and associated relevance judgements of the dataset into two subsets
A and B5. For each iteration we randomly sample a query with replacement
from the set A, and each of the K rankers produces a ranked list. Each
multileaving method then uses these ranked lists to produce a multileaved
list, of length fixed to 10, which is displayed to a simulated user. The sim-
ulated user then clicks on some of the documents according to the chosen
user model [56].

In these user models, the simulated user inspects the displayed list from
the top, inspecting one document at a time. After inspecting each document,
there is a probability that the user clicks on a document, or stops browsing.
This probability is controlled by parameters described in Table 3.5. The
perfect, navigational, and informational click models introduce progressively
more noise into the user’s interactions with the search system, and reflect
different types of user behavior. The perfect click model represents a user
whose click probabilities are perfectly correlated with document relevance.
The navigational click model represents a user looking for a specific result.
This click model therefore has a high probability of clicking on highly relevant
documents, and a high probability of stopping browsing after encountering
highly relevant documents. The informational click model represents a user
searching for general information about a topic. Taken together, these user
models represent some of the most common types of user behavior.

Each multileaving method maintains a matrix M̂(t) with entry M̂ij(t)
storing the score ratio of rankers i and j after t iterations. Additionally, we
let a matrix P be given with entries Pij = gi

gi+gj
, where gi is the ground

truth NDCG@10 score of ranker i on the held-out set B of queries. This set
is used only for computing the ground truth scores of the rankers. Then, for
a given pair of rankers, we consider the multileaving method to have made
an error after t comparisons if M̂ij(t) and Pij disagree. We wish to minimize

5This corresponds to the split into training and test sets already contained in the
datasets. We follow the convention from [102, 98, 17] of splitting the datasets, but prefer
not to use the words training and test, since there is no explicit training.



3.3. Multileaving Using Importance Sampling 39

Table 3.5: User Models. For each user model, the user in-
spects the ranked list from top to bottom and either clicks on
a document, or stops inspecting the list, with each action’s
probability defined by the user model, and the document rel-
evance. We use the perfect, navigational and informational
click models from [56], additionally we define two random

click models for testing latent bias.

Click Probabilities Stop Probabilities

Relevance 0 1 2 3 4 0 1 2 3 4

Perfect 0.0 0.2 0.4 0.8 1.0 0.0 0.0 0.0 0.0 0.0
Navigational 0.05 0.1 0.2 0.4 0.8 0.0 0.2 0.4 0.6 0.8
Informational 0.4 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5

Random 0.5 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0
Random Position Bias 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

the percentage of errors made,

E(t) =

∑
i,j∈R sgn(M̂ij(t)− 0.5) 6= sgn(Pij − 0.5)

|R|(|R| − 1)
(3.17)

For the experiments not involving a random click model, we include a
curve showing how well the NDCG score on the queries seen by the multi-
leaving methods agrees with the NDCG score on the test set used to define
the ground truth. This oracle, labelled as NDCG in our figures, serves to es-
tablish a lower bound on the error that can reasonably be obtained. Unlike
the multileaving methods, which only have access to the simulated user’s
implicit feedback, the oracle has access to the actual relevance judgements
for the documents.

3.3.3.2 Experimental Results

We are primarily interested in the accuracy, efficiency and scalability of
multileaving methods.

We evaluate the methods in terms of our three main criteria: accuracy
in Section 3.3.3.2.1, efficiency in Section 3.3.3.2.2 and scalability in Sec-
tion 3.3.3.2.3. Finally, we investigate how latent bias affects the methods in
Section 3.3.3.2.4 and to what extent the methods are affected by distortion
in Section 3.3.3.2.5. Additionally, we investigate the impact of the parame-
ter settings on the performance of Multileaving using Importance Sampling
in Section 3.3.3.2.6.

3.3.3.2.1 Accuracy

Figure 3.5 shows the performance of the multileaving algorithms on the
MSLR dataset for the perfect, navigational and informational click models.
We are interested in what percentage of errors the methods converge to. We
include a curve showing how well the NDCG score computed on the queries
seen by the multileaving methods agrees with the NDCG ground truth. This
curve, labelled as oracle in our figures, serves to establish a lower bound on
the error that can reasonably be obtained. Unlike the multileaving methods,



40 Chapter 3. Multileaving for Online Ranker Evaluation

which only have access to the simulated user’s implicit feedback, the oracle
has access to the actual relevance judgements for the documents.

In the legends of our figures we note the average NDCG@10 scores for
the multileaved lists displayed by the different multileaving methods. This
is the mean across the experimental runs of the NDCG of the displayed
multileaved lists.

We see in Figure 3.5 that MIS is substantially more accurate than both
TDM and SOSM for all click models. For example for the perfect click
model after 100,000 iterations, the error rate for TDM and SOSM are 15.5%
and 16.0% respectively. In comparison, for M = 0, the error rate for MIS
was only 3.3%, an improvement by a factor of approximately 5 over TDM
and SOSM. For M = 10, L = 0.8, the error rate for MIS was 7.1%, an
improvement by a factor of more than 2 over TDM and SOSM.

Furthermore, unlike TDM and SOSM, which appear to have stopped
improving after 100,000 iterations, the curves have not fully levelled off for
MIS. It is therefore likely that these curves present an underestimate of the
accuracy gain from MIS relative to TDM and SOSM. Indeed, for additional
experiments which ran for 200,000 iterations on the MSLR dataset with the
perfect click model, the mean percentage error decreased from 7.1% after
100,000 iterations to 6.3% after 200,000 iterations for MIS with M = 10, L =
0.8. In comparison, for TDM the error had only decreased from 15.5% after
100,000 iterations to 15.4% after 200,000 iterations. For SOSM the error
remained unchanged at 16.0% between 100,000 and 200,000 iterations.

Figure 3.6 shows the performance of the multileaving algorithms on the
YLR1, YLR2 and Yandex datasets for the perfect click model. Again, MIS is
substantially more accurate than TDM and SOSM for all datasets. Similar
results were obtained for both navigational and informational click models
but are omitted due to space constraints.

Tables 3.6 and 3.7 show the percentage error for each multileaving method
after 2,000, 20,000, 50,000 and 100,000 iterations. Table 3.6 shows the per-
formance for the perfect, navigational and informational click models for
the MSLR dataset and Table 3.7 shows the performance for the perfect
click model for the YLR1, YLR2 and Yandex datasets. We note that for
all parameter settings, and across all the datasets and click models, MIS is
substantially and significantly more accurate than TDM and SOSM.

3.3.3.2.2 Efficiency

Recall that the efficiency of a multileaving method measures how quickly
the multileaving method converges to varying levels of accuracy, i.e. how
many user impressions are needed to get to an error rate of 25% or 10%.
The efficiency of MIS decreases as we increase the L parameter. Figure 3.5
shows that the efficiency of MIS is most impacted by the noise in the click
model for greater values of L. Whereas the efficiency of MIS is good, when
M = 0, and for L = 0.6, increasing L further to 0.8 results in the performance
of MIS not overtaking SOSM until after approximately 40,000 iterations for
the informational click model.

We note that the performance of MIS is less affected by the parameter
settings, L and M , for the YLR1, YLR2 and Yandex datasets than for the
MSLR dataset. This probably reflects the fact that the median size of the
document pool for the MSLR dataset is much larger than those for the



3.3. Multileaving Using Importance Sampling 41

Table 3.6: Percentage error, after 2,000, 20,000, 50,000
and 100,000 iterations for each multileaving method for 20
rankers and three click models on the MLSR dataset. The
best performing method is indicated with a *. Bolded entries
indicate that the method is significantly better than TDM
and SOSM with p < 0.01 according to paired t-tests. Itali-
cised entries indicate that the method is significantly worse

than at least one of TDM and SOSM with p < 0.01.

Method

Click Model Num. Iterations TDM SOSM MIS (M=0) MIS (M=10,L=0.6) MIS (M=10,L=0.8)

Average NDCG 0.237 0.237 0.196 0.233 0.248

Perfect
2,000 19.7% 17.9% 12.1%* 17.0% 22.5%
20,000 16.3% 16.4% 4.5%* 7.6% 10.7%
50,000 15.7% 16.2% 3.8%* 6.8% 8.2%
100,000 15.5% 16.0% 3.3%* 6.1% 7.1%

Navigational
2,000 30.9% 23.3%* 24.5% 29.8% 34.5%
20,000 20.1% 19.4% 12.7%* 16.0% 19.7%
50,000 18.9% 18.9% 10.4%* 14.0% 15.9%
100,000 18.5% 18.9% 9.7%* 12.9% 14.4%

Informational
2,000 31.3% 21.0% 27.4% 32.5% 36.9%
20,000 18.9% 15.4% 11.2%* 16.1% 19.3%
50,000 16.3% 14.7% 8.1%* 11.7% 13.8%
100,000 15.5% 14.5% 6.5%* 9.4% 11.7%

other datasets. For the MSLR dataset, the median number of documents
to be ranked per query is 110, whereas it is 19 for the YLR1 and YLR2
datasets, and only 9 for the Yandex dataset. Since the number of documents
determines how large the reweighting due to the document probabilities in
the importance sampling step of MIS can be, see Equation 3.16, we expect
that for a larger document pool, the reweighting will be a larger factor

In general, MIS is more efficient than TDM, requiring only 20,000 itera-
tions to obtain a lower percentage error than TDM even in the worst case.
MIS is also more efficient than SOSM at reaching high levels of accuracy, but
reaches lower levels of accuracy slower than SOSM, in some cases requires
as many as 40,000 iterations to outperform SOSM.

Note that while the number of iterations required for MIS to overtake
SOSM may seem large, requiring up to 40,000 iterations in the worst case,
this is a relatively small number of iterations compared to what is often
required when A/B testing or interleaving in commercial search engines [26].
Here, it is not uncommon to require hundreds of thousands of iterations [26].

3.3.3.2.3 Scalability

Figure 3.7 shows how the performances of the algorithms scale with the
number of rankers. We see that the only algorithm for which performance
is adversely affected by the number of rankers being compared is TDM.
This reflects the fact that unlike SOSM, and MIS, which gain information
about the performance of each ranker at each iteration, TDM can only gain
information about at most 10 rankers at each comparison.

3.3.3.2.4 Latent bias

Prior works on multileaving have measured whether multileaving algorithms
have a bias towards a ranker when a user shows no such preference [102, 98,



42 Chapter 3. Multileaving for Online Ranker Evaluation

Table 3.7: Percentage error, after 2,000, 20,000, 50,000
and 100,000 iterations for each multileaving method for 20
rankers, a perfect click model, and three data sets. The best
performing method is indicated with a *. Bolded entries in-
dicate that the method is significantly better than TDM and
SOSM with p < 0.01 according to paired t-tests. Italicised
entries indicate that the method is significantly worse than

at least one of TDM and SOSM with p < 0.01.

Method

Dataset Num. Iterations TDM SOSM MIS (M=0) MIS (M=10,L=0.6) MIS (M=10,L=0.8)

YLR1
2,000 28.9% 21.6% 20.5%* 22.1% 25.6%
20,000 20.3% 14.6% 12.9%* 13.1% 16.1%
50,000 18.4% 13.5% 10.8%* 11.0% 13.2%
100,000 16.7% 13.0% 10.2% 10.0%* 11.8%

YLR2
2,000 28.2% 23.3%* 23.4% 24.7% 27.5%
20,000 22.2% 19.0% 17.3%* 17.4% 19.5%
50,000 20.5% 18.4% 16.2% 15.8%* 16.9%
100,000 19.8% 17.7% 15.4% 14.8%* 15.6%

Yandex
2,000 29.2% 14.6% 14.1% 13.7%* 15.0%
20,000 14.1% 7.2% 6.4%* 6.4% 7.0%
50,000 10.7% 6.2% 5.2% 5.1%* 5.4%
100,000 9.1% 5.8% 4.5% 4.4%* 4.7%

17]. We refer to this as latent bias. To measure this, a random user click
model is used, i.e. a user randomly clicks on documents with no preference
for documents or rankers. In this case, the pairwise preferences derived from
the score matrix M̂ , should not favour any ranker.

Figure 3.8 shows the performance of MIS against TDM and SOSM for
random click models with varying degrees of position bias. The error here
measures the extent to which preferences are detected even though under
the random click models, there should not be any preferences. A failure to
eventually reach a percentage error of 0 suggests latent bias in the method.
We note that contrary to evaluations which only considered the random click
model without position bias, Figure 3.8(b) shows that SOSM can be biased
when the user displays position bias. These experiments detect no latent
bias in TDM or MIS.

3.3.3.2.5 Distortions Analysis

We further analyse the possibility that the outcomes of multileaved com-
parisons may be distorted by the makeup of the comparison set. For multi-
leaving methods the counterintuitive possibility can arise that even though
there may be a single best ranker in a set of rankers when the rankers are
compared pairwise, a different ranker may appear to be the best when three
rankers are compared at a time. For example, ranker A could be superior
to rankers B and C in pairwise comparisons, but when all three rankers are
multileaved, B is superior to A and C, because the documents sampled into
the multileaving systematically favour ranker B. Simple examples of how
this can occur are given for TDM, PM and SOSM in Section 2.3.5. This
problem of distortion was observed in [18], and we here investigate how it
affects different multileaving methods.

Distortion can be quantified by first randomly sampling a fixed size subset
of rankers that includes a ranker that beats every other ranker in the subset



3.3. Multileaving Using Importance Sampling 43

in a pairwise comparison. This ranker is called the Condorcet winner. We
then multileave all the rankers in the subset, and measure, after some fixed
number of multileavings, the fraction of rankers that beat the Condorcet
winner more than 50% of the time. If there is no distortion, and the number
of multileavings is sufficient, we expect this fraction to be zero.

The following experiments test the level of distortion in the multileaving
methods TDM, SOSM and MIS. For each dataset, and each click model,
we randomly sample subsets of rankers of sizes 10 that include a Condorcet
winner. We examine the probabilities of the rankers beating the Condorcet
winner after 5,000 iterations. Note that this is likely to be an overestimate of
the distortion of the multileaving method, since, for rankers of very similar
quality, 5,000 iterations may not be sufficient to reliably distinguish rankers.
Table 3.8 shows the average, over 100 runs, of the percentage of rankers that
beat the Condorcet winner.

We observe that the distortion problem is largest for SOSM, and that it
mostly manifests itself for the MSLR dataset with navigational and infor-
mational click models. This verifies the findings of [18]. There is evidence of
distortion for TDM in the Yandex dataset. Almost no distortion is observed
for MIS.

Table 3.8: Percentage of rankers beating the Condorcet
winner (distortion), averaged over 100 runs, after 5,000 iter-
ations for 20 rankers being multileaved for each dataset and

click model.

Distortion

Method TDM SOSM MIS (M=0) MIS (M=10,L=0.6) MIS (M=10,L=0.8)

MSLR Perfect 0.0% 0.0% 0.0% 0.0% 0.0%
MSLR Navigational 0.0% 1.3% 0.0% 0.0% 0.0%
MSLR Informational 0.0% 8.9% 0.0% 0.0% 0.0%

YLR1 Perfect 0.0% 0.0% 0.0% 0.0% 0.0%
YLR1 Navigational 0.0% 0.0% 0.0% 0.0% 0.0%
YLR1 Informational 0.0% 0.0% 0.0% 0.0% 0.0%

YLR2 Perfect 0.0% 0.0% 0.0% 0.0% 0.0%
YLR2 Navigational 0.0% 0.5% 0.0% 0.0% 0.0%
YLR2 Informational 0.0% 0.8% 0.0% 0.0% 0.0%

Yandex Perfect 0.0% 0.5% 0.0% 0.0% 0.0%
Yandex Navigational 1.8% 4.8% 0.0% 0.0% 0.3%
Yandex Informational 1.7% 5.1% 0.0% 0.0% 0.0%

3.3.3.2.6 Parameter Settings Analysis

Finally, we look into the impact of parameter L on the performance of
our MIS method. Parameter L controls how much the sampling procedure
favours the “preferred” documents.

Figure 3.9 shows that the efficiency of MIS gradually decreases as we
increase the parameter L When L is high, we are selecting a larger fraction
of “preferred” documents, thereby ensuring that the multileaved list is of
high quality, i.e. has high NDGC@10. However, the variances of the scores
increase as we increase L, due to the increased imbalances of the document
probabilities (given by Equations 3.14 and 3.15), which therefore cause larger
fluctuations in the reweighted document scores shown in Equation 3.16. This



44 Chapter 3. Multileaving for Online Ranker Evaluation

Table 3.9: Mean and Variance of Scores for different pa-
rameter Settings. The last row shows the mean NDCG of the
multileaved list displayed to users for the different parameter

settings.

Parameter settings: M,L 0, N/A 10, 0.2 10, 0.3 10, 0.4 10, 0.5 10, 0.6 10, 0.7 10, 0.8 10, 0.9

Score Mean 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65

Score Variance 2.28 2.28 2.28 2.45 2.91 3.59 4.40 6.11 11.65

NDCG@10 0.196 0.199 0.209 0.217 0.224 0.233 0.240 0.248 0.256

represents a form of exploration-exploitation tradeoff within the multileav-
ing method. If L is low, we explore more by considering the documents
more equally. Conversely, if L is high, we exploit our knowledge of which
documents are likely to be good, at the expense of less information about
the quality of low ranked documents, and high variance in score estimates.

These larger document score variances mean that the weighting of doc-
uments scores plays a larger role in the score differences of rankers, and the
actual quality differences between rankers therefore requires more iterations,
before their contributions to the scores begin to dominate. To illustrate the
differences in variance we provide the score variances together with the score
means for different parameter settings in Table 3.9. For smaller values of L,
the variance of the scores is low, but it begins to substantially increase as L
increases.

From Table 3.9 we also see the mean NDCG@10 scores of the multi-
leaved lists displayed to the user for the different parameter settings. For
comparison, the mean NDCG of the multileaved lists displayed by TDM
and SOSM is 0.237.

For all our experiments except those shown in Figure 3.9 and Table 3.9
we display the results for three parameter settings for MIS. This is to prevent
the plots from being too difficult to read because of the number of curves
included. We consider (i) M=0, i.e. full exploration, which maximises con-
vergence at the expense of the quality of the multileaved list. Here the mul-
tileaved list has an average NDCG@10 of 0.196; (ii) M=10, L=0.6, which
provides a multileaved list with average NDGC@10 of 0.233 which is slightly
poorer that for TDM and SOSM; and (iii) M=10, L=0.8, which provides
a multileaved list with average NDGC@10 of 0.248 which is slightly better
than that for TDM and SOSM.

3.3.4 Conclusions

We have introduced a new multileaving method, MIS, for which we can guar-
antee that the expected outcome of comparisons agrees with A/B testing.
Furthermore we have experimentally verified that this method is substan-
tially more accurate than prior multileaving methods. For MIS there exists a
tradeoff between the efficiency of learning, and the quality of the multileaved
list, as controlled by the parameter L of the algorithm. MIS can be highly
efficient if user feedback has little noise. Conversely, MIS can produce high
quality ranked lists, but this comes at the expense of diminished efficiency,
particularly for noisier user feedback.

In the future, we will investigate the possibility of using weighted im-
portance sampling, and document sampling techniques which preferentially



3.3. Multileaving Using Importance Sampling 45

sample from those rankers for which our quality estimates are most uncer-
tain, in order to improve the tradeoff between learning efficiency and quality
of the multileaved list. Additionally, if this tradeoff can be handled bet-
ter, there is the potential to investigate document sampling strategies for
which we more strongly control the order of the documents presented during
multileaving.



46 Chapter 3. Multileaving for Online Ranker Evaluation

(a) perfect click model

(b) navigational click model

(c) informational click model

Figure 3.1: Percentage errors (averaged over 25 runs) ver-
sus the number of iterations on random subsets of 20 rankers
for the MSLR dataset using perfect (a), navigational (b), and

informational (c) click models.



3.3. Multileaving Using Importance Sampling 47

(a) YLR1

(b) YLR2

Figure 3.2: Percentage errors (averaged over 25 runs) ver-
sus the number of iterations on random subsets of 20 rankers
for the YLR1 (a) and YLR2 (b) datasets using a navigational

click model.



48 Chapter 3. Multileaving for Online Ranker Evaluation

(a) perfect click model

(b) navigational click model

(c) informational click model

Figure 3.3: Percentage errors after 2,000 iterations (av-
eraged over 25 runs) versus the number of rankers being
compared on 25 random subsets of k rankers for the MSLR
dataset with perfect (a), navigational (b), and informational

(c) click models.



3.3. Multileaving Using Importance Sampling 49

(a) random click model

Figure 3.4: Percentage errors (averaged over 25 runs) ver-
sus the number of iterations on random subsets of 20 rankers

for the MSLR dataset using a random click model.



50 Chapter 3. Multileaving for Online Ranker Evaluation

0 20000 40000 60000 80000 100000
number of iterations

0

10

20

30

40

50

Pe
rc
e
n
ta
g
e
 E
rr
o
rs

dataset: MSLR, 20 rankers, perfect click model

Oracle

TDM (NDCG: 0.237)

SOSM (NDCG: 0.237)

MIS: M=0 (NDCG: 0.196)

MIS: M=10, L=0.6 (NDCG: 0.233)

MIS: M=10, L=0.8 (NDCG: 0.248)

(a)

0 20000 40000 60000 80000 100000
number of iterations

0

10

20

30

40

50

Pe
rc
e
n
ta
g
e
 E
rr
o
rs

dataset: MSLR, 20 rankers, navigational click model

Oracle

TDM (NDCG: 0.237)

SOSM (NDCG: 0.237)

MIS: M=0 (NDCG: 0.196)

MIS: M=10, L=0.6 (NDCG: 0.233)

MIS: M=10, L=0.8 (NDCG: 0.248)

(b)

0 20000 40000 60000 80000 100000
number of iterations

0

10

20

30

40

50

Pe
rc
e
n
ta
g
e
 E
rr
o
rs

dataset: MSLR, 20 rankers, informational click model

Oracle

TDM (NDCG: 0.237)

SOSM (NDCG: 0.237)

MIS: M=0 (NDCG: 0.196)

MIS: M=10, L=0.6 (NDCG: 0.233)

MIS: M=10, L=0.8 (NDCG: 0.248)

(c)

Figure 3.5: Percentage error averaged over 100 runs
against number of iterations for different click models.



3.3. Multileaving Using Importance Sampling 51

0 20000 40000 60000 80000 100000
number of iterations

0

10

20

30

40

50

Pe
rc
e
n
ta
g
e
 E
rr
o
rs

dataset: YLR1, 20 rankers, perfect click model

Oracle

TDM (NDCG: 0.562)

SOSM (NDCG: 0.562)

MIS: M=0 (NDCG: 0.543)

MIS: M=10, L=0.6 (NDCG: 0.551)

MIS: M=10, L=0.8 (NDCG: 0.563)

(a)

0 20000 40000 60000 80000 100000
number of iterations

0

10

20

30

40

50

Pe
rc
e
n
ta
g
e
 E
rr
o
rs

dataset: YLR2, 20 rankers, perfect click model

Oracle

TDM (NDCG: 0.515)

SOSM (NDCG: 0.515)

MIS: M=0 (NDCG: 0.501)

MIS: M=10, L=0.6 (NDCG: 0.512)

MIS: M=10, L=0.8 (NDCG: 0.518)

(b)

0 20000 40000 60000 80000 100000
number of iterations

0

10

20

30

40

50

Pe
rc
e
n
ta
g
e
 E
rr
o
rs

dataset: Yandex, 20 rankers, perfect click model

Oracle

TDM (NDCG: 0.644)

SOSM (NDCG: 0.644)

MIS: M=0 (NDCG: 0.623)

MIS: M=10, L=0.6 (NDCG: 0.632)

MIS: M=10, L=0.8 (NDCG: 0.644)

(c)

Figure 3.6: Percentage error averaged over 100 runs
against number of iterations for different datasets. The
figures show error rates for the YLR1, YLR2 and Yandex

datasets with perfect click models.



52 Chapter 3. Multileaving for Online Ranker Evaluation

20 30 40 50 60 70 80 90 100
number of rankers

0

5

10

15

20

25

30

Pe
rc
e
n
ta
g
e
 E
rr
o
rs

perfect click model
TDM (NDCG: 0.237)

SOSM (NDCG: 0.237)

MIS: M=0 (NDCG: 0.196)

MIS: M=10, L=0.6 (NDCG: 0.233)

MIS: M=10, L=0.8 (NDCG: 0.248)

(a)

Figure 3.7: Percentage errors, averaged over 20 runs, after
20,000 iterations versus the number of rankers being com-
pared on random subsets of k rankers for the MSLR dataset

with perfect click model.



3.3. Multileaving Using Importance Sampling 53

0 5000 10000 15000 20000
number of iterations

0

10

20

30

40

50

Pe
rc
e
n
ta
g
e
 E
rr
o
rs

dataset: MSLR, 20 rankers, random click model

TDM (NDCG: 0.237)

SOSM (NDCG: 0.237)

MIS: M=0 (NDCG: 0.196)

MIS: M=10, L=0.6 (NDCG: 0.233)

MIS: M=10, L=0.8 (NDCG: 0.248)

(a)

0 5000 10000 15000 20000
number of iterations

0

10

20

30

40

50

Pe
rc
e
n
ta
g
e
 E
rr
o
rs

dataset: MSLR, 20 rankers, random position bias click model

TDM (NDCG: 0.237)

SOSM (NDCG: 0.237)

MIS: M=0 (NDCG: 0.196)

MIS: M=10, L=0.6 (NDCG: 0.233)

MIS: M=10, L=0.8 (NDCG: 0.248)

(b)

Figure 3.8: Percentage error against number of iterations
for different click models. The figures show error rates for

random click models with or without position bias



54 Chapter 3. Multileaving for Online Ranker Evaluation

0 5000 10000 15000 20000
number of iterations

0

5

10

15

20

25

30

35

40

45

Pe
rc
e
n
ta
g
e
 E
rr
o
rs

20 rankers, perfect click model

Oracle

TDM (NDCG: 0.237)

SOSM (NDCG: 0.237)

MUS (NDCG: 0.196)

MIS: M=10, L=0.3 (NDCG: 0.209)

MIS: M=10, L=0.5 (NDCG: 0.224)

MIS: M=10, L=0.7 (NDCG: 0.241)

MIS: M=10, L=0.9 (NDCG: 0.256)

Figure 3.9: Percentage error against number of iterations
for different parameter settings of MIS for the MSLR dataset

with perfect click model.



55

Chapter 4

Online Learning

We now turn our attention to the second main problem of this thesis: How
to manage the exploration-exploitation tradeoff associated with online eval-
uation using multileaving.

Recall that evaluation of rankers can be done online by presenting the
ranked lists produced by rankers to users and then inferring the quality of
the rankers by analyzing users’ clicks and other forms of behaviour. Online
evaluation of rankers has become increasingly popular, partly because user
behaviour can be easily logged with no additional effort from the user. This
provides online evaluation methods with inexpensive access to large amounts
of timely training data [26]. One of the key drawbacks of online evaluation
methods is that the outputs of new, potentially poor, rankers need to be
presented to actual users. If a new ranker turns out to be poor, then users
will be presented with poor results and, in the worst case, might abandon
the service [54]. Conversely, if new rankers are not presented there is a
risk of overlooking better rankers in the pool of rankers. In online learn-
ing the question of determining a proper exploration level is known as the
exploration-exploitation tradeoff.

In online evaluation, it is usually easier for users to make relative judge-
ments, rather than absolute judgements. For example, it is easier to say that
document A is more relevant for a certain query than document B, than to
say how relevant it is. Similarly, rankers A and B can be compared by in-
terleaving their result lists and examining which documents a user clicks
on. Interleaving methods were found to require 1-2 orders of magnitude
less data than absolute metrics to detect even small differences in retrieval
quality [26].

When using interleaving to compare pairs of rankers, it is critical to
determine which two rankers to interleave at each comparison, i.e. to resolve
the exploration-exploitation tradeoff. Dueling bandits, described in more
detail in Section 2.4.2 is an elegant mathematical framework that provides
a principled way for dealing with the exploration-exploitation trade-off in
learning with relative preference feedback from pairwise comparisons [123].

More recently, interleaving has been generalized to multileaving which
permits more than two rankers to be compared in a single comparison [102,
98, 17]. However this work focused only on the comparisons themselves,
and did not address the key issue of selecting subsets of rankers for each
comparison. This means that all rankers, both good and bad ones, were
used in all the comparisons. This simple approach has several disadvantages.
Firstly, since poor rankers are participating in all the comparisons the quality
of the multileaved lists throughout the evaluation process is poor. And
secondly, very poor rankers that could potentially be eliminated early in the



56 Chapter 4. Online Learning

process continue being evaluated, which does not allow the comparisons to
focus on rankers whose quality is harder to distinguish.

We extend the dueling bandit framework and propose a Multi-Dueling
Bandit algorithm that provides an intelligent selection of rankers for simul-
taneous comparisons and improves the trade-off between exploration and
exploitation. In Section 4.1 we introduce the Multi-Dueling Bandits setting
and our algorithm. Here the observed outcomes are assumed to be pairwise
wins. This is applicable to multileaving algorithms such as TDM and SOSM.

Unfortunately, as noted in Sections 2.3.5, these prior multileaving meth-
ods do not properly account for the interaction of the document sampling
and ranker scoring phases. As a result they are prone to being inaccurate.
In Section 3.3 we introduce MIS, a new multileaving method based on im-
portance sampling, for which accuracy can be guaranteed. This multileaving
method does not output pairwise wins, but instead provides score estimates
for each ranker included in the multileaving. The Multi-Dueling Bandit
problem setting is therefore not applicable. We instead introduce the Ban-
dits with Multiple Plays setting in Section 4.2. Here we assume that the
outcomes are absolute scores. This is applicable to our multileaving algo-
rithm MIS. It can be regarded as an extension of the standard multiarmed
bandit setting to multiple plays,

4.1 Multi-Dueling Bandits

Section 4.1.1 formalises the problem of learning with relative comparisons
between multiple options as a K-armed multi-dueling bandit problem. Sec-
tion 4.1.2 describes our proposed algorithm for solving this problem. Finally,
Section 4.1.3 presents our experimental evaluation.

4.1.1 Problem Setting

In multi-dueling bandits, at each iteration, t, an algorithm selects a subset,
St, of K arms and observes outcomes of noisy pairwise comparisons (duels)
between all pairs of arms in St. In the ranking scenario this corresponds to
multileaving the ranked lists of the subset, St, of rankers and then inferring
the relative quality of the lists (and the corresponding rankers) from user
clicks. When the size of St is limited to 2 the problem reduces to standard
dueling bandits.

Let P = [pij ] be a matrix of probabilities that arm i wins in a pairwise
comparison with arm j (it satisfies pij = 1−pji and we define pii = 1

2). Recall
that in pairwise comparisons the best arm is not always well-defined (recall
the example with A being better than B, B better than C, and C better than
A). We follow the assumption in most dueling bandit literature and assume
that there exists a Condorcet winner, which is a unique arm ∗ satisfying
p∗j >

1
2 for all j 6= ∗. That is, the Condorcet winner ∗ is pairwise better

than any other arm j. The quality of all arms is then defined by their regret,
r(j) = p∗j − 1

2 , which is a shifted probability of losing to the best arm (this
definition also coincides with dueling bandits). Smaller regret corresponds
to better quality and the regret of playing the best arm is zero. The quality
of a set of arms St is defined by the average quality of the constituent arms



4.1. Multi-Dueling Bandits 57

(the average regret)

r(St) =

∑
j∈St p∗j

|St|
− 1

2
. (4.1)

The goal of a multi-dueling bandit algorithm is to select subsets of arms
S1, S2, . . ., so that the cumulative regret

∑T
t=1 r(St) is minimized. All arms

have to be selected a small number of times in order to be explored, but the
goal of the algorithm is to minimize the number of times when suboptimal
arms are selected. On average, simultaneous exploration has lower regret
than sequential comparison.

Simultaneous comparison of more than two arms may affect their pair-
wise winning probabilities. For example, in ranking, the effective length of
a multileaved ranked list is typically limited by 10 items, since users rarely
go beyond the first page of results. Therefore, the simultaneous comparison
of more than 10 rankers means that some rankers may be compared based
on a merged list that does not include their top suggestions. This may af-
fect the estimates of their relative quality. This effect, which we refer to
as distortion may also occur when less than 10 rankers are compared, since
the limited length of the merged list does not allow perfect representation
of every ranker. The exact level of distortion depends on the data, ranker,
and method used for multileaving. The level of distortion of estimates of
the pairwise winning probabilities made by SOSM, which was used in our
experiments, is evaluated in Section 3.3.3.2.5. It is important to empha-
size that in all our experimental comparisons, except one pathological case,
the advantage of parallel exploration outweighed the disadvantage due to
distortion in estimates.

4.1.2 Algorithm

The proposed multi-dueling bandit algorithm is based on the principle of
“optimism in the face of uncertainty” used in many other bandit algorithms.
It maintains optimistic estimates of pairwise winning probabilities pij and
plays arms that, according to these optimistic estimates, have a chance of
being the Condorcet winner. When there is a single candidate, the algo-
rithm exploits this knowledge and plays only that candidate. When there
are multiple candidates the algorithm explores by comparing them all. We
increase parallel exploration by adding additional arms to such comparisons,
as described below.

Our estimates of pairwise winning probabilities are based on empirical
counts of wins/losses. In order for these estimates to be meaningful the algo-
rithm has to assume that pairwise winning probabilities are consistent with
the pairwise winning probability matrix P , irrespective of the composition
of the set St (meaning that they are not distorted). More precisely, since
correct identification of the Condorcet winner depends on correct estimation
of the probabilities p∗j , it is important that they remain at a certain margin
above 1

2 irrespective of the composition of St. Incorrect estimation of pij-s
for i, j 6= ∗ does not influence identification of the Condorcet winner and,
therefore, their distortion does not disturb the operation of the algorithm.

We now describe our algorithm, which is provided in the Algorithm 2
box. We denote by nij(t) the number of times up to round t that i and j
were compared with each other. Let wij(t) denote the number of times when
arm i beat arm j. We break ties randomly, so that nij(t) = wij(t) + wji(t).



58 Chapter 4. Online Learning

We compute upper confidence bounds uij(t) on the probabilities pij :

uij(t) =
wij(t)

nij(t)
+

√
α ln t

nij(t)
(4.2)

(uij-s are the optimistic estimates of pij-s and they are analogous to those
used in [132] for pairwise comparisons). The first term in uij(t) is an em-
pirical estimate of pij and the second term bounds the fluctuations of this
estimate with high probability, see [6, 132]. The α parameter in the second
term controls the width of the upper confidence bound.

Additionally, we maintain a second wider upper bound vij(t), which we
use to increase parallel exploration. We define vij(t) by

vij(t) =
wij(t)

nij(t)
+

√
βα ln t

nij(t)
, (4.3)

where the parameter β ≥ 1 controls how much wider it is than the upper
confidence bound of Equation 4.2. When there is more than one candi-
date for a Condorcet winner according to the “narrow” confidence bounds
in Equation 4.2 an exploration round is triggered and arms that could be
Condorcet winner candidates according to the “wide” confidence bounds
are compared. This leads to some arms being explored preemptively and
decreases the overall number of exploration rounds by increasing parallel
exploration.

Given K arms, we define Ui(t) = minj∈K,j 6=i {uij(t)}, i.e. Ui(t) is the
smallest upper confidence bound of i. Let E denote the set of potential
Condorcet winners, which contains all arms i for which Ui(t) ≥ 1/2. Addi-
tionally, we define Vi(t) = minj∈K,j 6=i {vij(t)} and F to be the set of potential
Condorcet winners according to the wider upper bounds, that is, all arms
for which Vi(t) ≥ 1/2.

At each iteration of Algorithm 2, if there is only a single potential Con-
dorcet winner in E, we choose this arm. If there are several potential Con-
dorcet winners, we select all arms in the larger set F . In the unlikely event
that there are no potential Condorcet winners, we select all arms. The
selected arms are compared against each other using multileaving and pair-
wise wins between the rankers are inferred from the scores produced by the
multileaving method.

4.1.3 Experimental Evaluation

We next present the experimental evaluation of our Multi-Dueling Bandits
(MDB) algorithm. We begin by describing our experimental setup.

We compare our MDB algorithm to three state-of-the-art dueling bandit
algorithms, namely RUCB and MergeRUCB, both implemented in the freely
available software package Lerot [100], and RMED1 [72]. As per [131], we
set the α parameter for RUCB to 0.51, and to 1.01 for MergeRUCB. For
RMED1 we use the same parameter setting as [72]: f(K) = 0.3K1.01. To
select the parameters for MDB, we carried out a grid search on the grid
{0.5, 1, 1.5}×{1.25, 1.5, 2, 4} on a separate dataset, specifically the validation
set of the YLR1 dataset, and found the best parameters to be α = 0.5 and



4.1. Multi-Dueling Bandits 59

1 W = [wij ] := 0K×K
2 Play all arms and update the corresponding entries in W
3 for t = 2, . . . , T do

4 U := [uij(t)] =
wij(t)
nij(t)

+
√

α ln t
nij(t)

, uii(t) = 1/2

5 V := [vij(t)] =
wij(t)
nij(t)

+
√

βα ln t
nij(t)

, vii(t) = 1/2

6 E = {i s.t. Ui(t) ≥ 1/2} (The set of potential champions
according to U)

7 F = {i s.t. Vi(t) ≥ 1/2} (The set of potential champions according
to V )

8 if |E| > 1 then
9 Choose all arms f ∈ F for comparison and update the

corresponding entries in W
10 else if |E| = 1 then
11 Choose the arm e ∈ E
12 else
13 Choose all arms for comparison and update the corresponding

entries in W
14 end

Algorithm 2: Multi-Dueling Bandit (MDB) Algorithm.

β = 1.5. We used these as our parameter settings for MDB for all other
experiments.

We first compare the algorithms on artificial datasets where each arm has
a utility which defines its winning probability against other arms, similar to
the experiments proposed in [1]. In each iteration, for the arms chosen
by the dueling or multi-dueling bandit algorithm, we sample from normal
distributions with mean given by the utility of the arms, and unit variance
to obtain scores for each arm. The arm utilities used are listed in Table 4.1.
They were chosen to provide problem instances where the quality of the best
arm was progressively less distinct from that of the other arms, and where
the impact of increasing the number of arms could be isolated.

We also compare the algorithms on four large-scale evaluation datasets

Table 4.1: Datasets used for artificial utility based experi-
ments.

Dataset Distributions of Utilities of arms

1good5poor 1 arm with utility 0.8, 5 arms with utility 0.2
1good50poor 1 arm with utility 0.8, 50 arms with utility 0.2
1good200poor 1 arm with utility 0.8, 200 arms with utility 0.2
2good4poor 1 arm with utility 0.8, 1 arm with utility 0.7, 4 arms with utility 0.2
11good40poor 1 arm with utility 0.8, 10 arms with utility 0.7, 40 arms with utility 0.2
41good160poor 1 arm with utility 0.8, 40 arms with utility 0.7, 160 arms with utility 0.2
3good3poor 1 arm with utility 0.8, 2 arm with utility 0.7, 3 arms with utility 0.2
21good30poor 1 arm with utility 0.8, 20 arms with utility 0.7, 30 arms with utility 0.2
81good120poor 1 arm with utility 0.8, 80 arms with utility 0.7, 120 arms with utility 0.2
arith6 1 arm with utility 0.8, 5 arms with utilities forming arithmetic sequence between 0.7 and 0.2
arith51 1 arm with utility 0.8, 50 arms with utilities forming arithmetic sequence between 0.7 and 0.2
arith201 1 arm with utility 0.8, 200 arms with utilities forming arithmetic sequence between 0.7 and 0.2
geom6 1 arm with utility 0.8, 5 arms with utilities forming geometric sequence between 0.7 and 0.2
geom51 1 arm with utility 0.8, 50 arms with utilities forming geometric sequence between 0.7 and 0.2
geom201 1 arm with utility 0.8, 200 arms with utilities forming geometric sequence between 0.7 and 0.2



60 Chapter 4. Online Learning

Table 4.2: Datasets. Each dataset consists of a number of
query-document pairs, together with a relevance judgement
for the pair. Each document is represented by a feature

vector.

Datasets Queries URLs Features

MSLR-WEB30K 2 31,531 3,771,125 136
YLR Set 1 [25] 19,944 473,134 700
YLR Set 2 [25] 1,266 34,815 700
Yandex 3 9,124 97,290 245

summarised in Table 4.21. Since there was no Condorcet winner for the Yan-
dex dataset, we randomly sampled subsets of 200 rankers from the Yandex
dataset, selecting the first subset with a Condorcet winner. This subset was
used in the experiments involving the Yandex dataset, except those described
in Section 4.1.3.1.5, where we investigate the behaviour of the algorithms in
the absence of a Condorcet winner.

The datasets and the corresponding rankers form our dueling or multi-
dueling bandit problem instances. Following [131], for each dataset we choose
the rankers to be the features of the dataset. That is, for a given feature,
we construct a ranker which ranks documents only according to the score
of that feature. An example of a feature is the BM25 score of the body
of the document, or a document’s PageRank. As noted in [131] this is a
somewhat artificial setup from a learning-to-rank perspective, since we are
generally interested in comparing different retrieval algorithms using all the
features of the dataset, rather than finding the best individual feature. The
benefit of this approach is that it makes the experiments easy to replicate.
Furthermore, from the point of view of evaluating dueling and multi-dueling
bandit algorithms, the difficulty of a problem instance is affected by the
relative performance of the rankers, not their absolute performance. Us-
ing the feature rankers is therefore useful for assessing the performance of
dueling and multi-dueling bandit algorithms since many of the features per-
form similarly and are therefore difficult to distinguish using interleaved or
multileaved comparisons.

All experiments, except those using the artificial datasets described in
Table 4.1, are conducted using a simulated user model. For each iteration
we randomly sample with replacement one query from the pool of queries of
the dataset. The dueling or multi-dueling bandit algorithms choose rankers,
whose results are then interleaved or multileaved respectively, and presented
to a simulated user. For the dueling bandit algorithms, we compare pairs
of rankers using probabilistic interleaving [55], which is the best performing
interleaving method to the best of our knowledge. For MDB, we use SOSM,
which is the best performing multileaving method to the best of our knowl-
edge [17]. Both probabilistic interleaving and SOSM only present the top-10
documents to users. This limit was chosen since it is rare for users to look

1Only 519 features are non-zero for YLR Set 1 and only 596 features are non-zero for
YLR Set 2. The remaining features are zero for all query-document pairs.



4.1. Multi-Dueling Bandits 61

Table 4.3: User Models. For each user model, the user in-
spects the ranked list from top to bottom and either clicks on
a document, or stops inspecting the list, with each action’s
probability defined by the user model, and the document rel-
evance. We use the perfect, navigational and informational

click models from [56].

Click Probabilities Stop Probabilities

Relevance 0 1 2 3 4 0 1 2 3 4

Perfect 0.0 0.2 0.4 0.8 1.0 0.0 0.0 0.0 0.0 0.0
Navigational 0.05 0.1 0.2 0.4 0.8 0.0 0.2 0.4 0.6 0.8
Informational 0.4 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5

past the first page of results when using search engines. Clicks are then gen-
erated from a probabilistic user model [56]. The interleaving or multileaving
algorithm scores the chosen rankers using the clicks generated by the user
model.

The click model used for these experiments was the navigational user
model from [56], unless otherwise stated. This click model describes a user
who inspects the retrieved list of documents from top to bottom, and is
more likely to click on a document if it is more relevant, but may interrupt
their session with a certain probability, rather than inspect the entire list
of retrieved documents. This click model has been used as a standard click
model for dueling bandit algorithm evaluation in [131]. The click models are
described in Table 4.3.

4.1.3.1 Experimental Results

Below we summarize the experimental results for the various experiments.
For all figures, the error bars show the standard deviation of cumulative
regret across runs for each algorithm at the given time step.

4.1.3.1.1 Experiments on synthetic data

We begin by examining how the cumulative regret increases at each iteration
for each of the four algorithms. We use synthetic data for two reasons.
First, synthetic data does not require interleaving or multileaving. This is
because, at each iteration, after selecting the rankers to be compared, the
comparison is performed based on drawing random numbers from a normal
distribution with mean given by each arm’s utility and unit variance. Thus,
the performance of each of the four bandit algorithms is independent of
the interleaving/multileaving, and only due to the bandit algorithm. The
second reason for using synthetic data is that it allows us to control the
relative performance of the individual arms. Clearly, if the best arm is much
better that the other arm, the problem is easier than the case when the best
arm is only slightly better than other arms.

Figure 4.1 shows the average cumulative regret against the number of
iterations for the 4 algorithms on each of the artificial datasets from Ta-
ble 4.1. MDB performs better than all the benchmark algorithms for all
the datasets. The first column shows the datasets with 6 arms, the second



62 Chapter 4. Online Learning

column shows the datasets with 51 arms and the third column shows the
datasets with 201 arms. We see that while the regret does not increase no-
ticeably for MDB as we increase the number of arms, the regret of all the
dueling bandit algorithms increases substantially. For all the datasets with
51 or more rankers, MDB incurs at least an order of magnitude less regret
than the best dueling bandit algorithm, RMED1.

The results demonstrate that as we increase the number of arms being
compared, the advantages of MDB become larger. This advantage is at
its most extreme when there is only one good arm, and all other arms are
weaker, as in row 1 of Figure 4.1. In this case dueling bandit algorithms
have to waste exploration time comparing suboptimal arms which are hard
to differentiate from each other, and it can take a long time before the single
good arm is identified.

4.1.3.1.2 Experiments on simulated Learning-to-Rank Datasets

Figure 4.2 shows how the cumulative regret increases with each iteration
using the real data sets, MSLR, YLR1, YLR2 and Yandex. It clearly shows
that MDB performs best for all the datasets. It outperforms the best dueling
bandit algorithm, RMED1, by a factor of approximately 3 for the dataset
with the smallest number of features, the MSLR dataset, and approximately
1-2 orders of magnitude for all the other datasets. RMED1 outperforms
RUCB and MergeRUCB, as expected from the results of [72].

Note that for the Yandex dataset, since there was no Condorcet winner,
we randomly sampled 200 of the 245 feature rankers to obtain a dataset
with a Condorcet winner. Results using the full Yandex dataset with no
Condorcet winner are described later.

4.1.3.1.3 Dependence on Number of Rankers

The results using synthetic data showed that the advantage of our algo-
rithm increased relative to the three other algorithms, as the number of
arms being compared increased. Additionally, for the results on the real
learning-to-rank datasets, the advantage of our algorithm ranges from a fac-
tor of approximately 3 for the MSLR dataset with the smallest number of
features to approximately 2 orders of magnitude for the two YLR datasets,
which have the greatest numbers of features.

To isolate the impact of the number of rankers being compared on the
real datasets involving multileaving, we investigate how regret scales with the
number of rankers being compared using the YLR1 dataset. We randomly
sampled subsets of rankers of sizes {10, 25, 40, 55, 70, 85, 100, 115, 130, 145}
from the YLR1 dataset. Note that we randomly sampled different subsets
of rankers for each run. For each of these subsets we then carried out 10
runs of each algorithm over 5,000,000 iterations and recorded the average
cumulative regret across runs.

Figure 4.3 shows how the performance of the 4 algorithms varies as a
function of the number of rankers. Additionally we have shown the per-
formance of a random policy which simply selects a random subset of the
rankers for multileaving at each iteration. We observe that as the num-
ber of rankers increases the cumulative regret increases most for RUCB and
MergeRUCB, while it increases more slowly for RMED1. Regret appears to
be almost independent of the number of rankers for MDB.



4.1. Multi-Dueling Bandits 63

1good5poor 1good50poor 1good200poor

2good4poor 11good40poor 41good160poor

3good3poor 21good30poor 81good120poor

arith6 arith51 arith201

geom6 geom51 geom201

Figure 4.1: Cumulative regret averaged over 10 runs
against number of iterations for the 4 algorithms on the

datasets listed in Table 4.1



64 Chapter 4. Online Learning

(a) MSLR (b) YLR1

(c) YLR2 (d) Yandex

Figure 4.2: Cumulative regret averaged over 10 runs
against number of iterations for the 4 algorithms on the
MSLR (a), YLR1 (b), YLR2 (c) and Yandex (d) datasets

with the navigational click model.



4.1. Multi-Dueling Bandits 65

Figure 4.3: Cumulative regret averaged over 10 runs after
5,000,000 iterations against number of rankers for the 4 al-
gorithms, and a random policy, on subsets with M rankers

of the YLR1 dataset with navigational click model.

These experiments were also carried out for the perfect and informational
click models, and the results were very similar.

For the MDB algorithm, the regret associated with having to explore
suboptimal rankers does not appear to be additionally compounded by the
number of rankers being explored. This is an important characteristic of
the MDB algorithm, since if we can explore additional rankers with no sub-
stantial additional cost, the risks associated with large-scale online ranker
evaluation are substantially mitigated.

Note that it may appear that regret levels off for MergeRUCB as we
increase the number of rankers. This is due to the fact that for 5,000,000
iterations there is a limit to how much regret can be incurred just by making
random choices in 5,000,000 iterations. For larger problem sizes and for a
time frame of 5,000,000 iterations, MergeRUCB begins to perform no better
than a random policy. This does not imply that MergeRUCB performs
as badly as a random policy in general, but for these problem instances it
has not yet begun to eliminate suboptimal arms after 5,000,000 iterations.
Further iterations would be needed to show improvements relative to the
random policy.

4.1.3.1.4 Dependence on Click Model

To test the robustness of our approach to the choice of click model, we also
investigated performance using the perfect and informational click models
[56]. These click models have less, respectively more, noisy user behaviour
than the navigational model. Since different click models can reflect different
types of user behaviour and search intent it is important that the algorithms
are robust to different click models. Figure 4.4 shows how the cumulative



66 Chapter 4. Online Learning

regret is affected by different user click models, using randomly selected
subsets of size 200 of the rankers from the YLR1 dataset. We chose to use
subsets of the full dataset for these experiments because of the computational
costs of running RMED1 on the full YLR1 dataset. For all click models MDB
outperforms the best dueling bandit algorithm by between 1 and 2 orders of
magnitude.

For MDB, the regret doubles when going from the perfect to the naviga-
tional click model, but does not increase further for the informational click
model. In contrast, for the dueling bandit algorithms, regret for the infor-
mational click model is approximately double that for the navigational click
model, which is approximately double that of the perfect click model. MDB
is therefore least affected by varying the click model in our experiments.

4.1.3.1.5 Dataset without Condorcet winner

As noted earlier, the baseline dueling bandit algorithms and our algorithm
MDB assume the existence of a Condorcet winner, i.e. a ranker which beats
every other ranker in expectation. In practice, this may not be true, and in
fact there is no Condorcet winner for the full Yandex dataset. To evaluate
how the algorithms perform when the Condorcet assumption is violated, we
investigated the performance of the algorithms on the full Yandex dataset.
Since there is no Condorcet winner we cannot use the regret definition from
Equation 4.1 to evaluate the algorithms. Instead we define the winner for
the full Yandex dataset based on the NDCG@10 score, denote this score by
NDCG∗, and use a definition of regret given by

r(St) =

∑
j∈St NDCG

∗ −NDCGj
|St|

. (4.4)

We carried out 10 runs of each algorithm over 5,000,000 iterations and
recorded the average regret over runs at each iteration. Figure 4.5 shows
how the cumulative regret increases with each iteration for the full Yandex
dataset with regret defined in Equation 4.4. The results are very similar to
those from Figure 4.2 for the Yandex subset with a Condorcet winner. MDB
outperforms the best dueling bandit algorithm, RMED1, by approximately
an order of magnitude after 5,000,000 iterations.

4.1.3.1.6 Distortion of probability estimates due to multileaving

As discussed earlier, simultaneous comparison of more than two arms may
affect their pairwise winning probabilities. We called this effect distortion.
We can quantify this effect by first randomly sampling a fixed size subset of
rankers that includes a Condorcet winner, and then measuring, after some
fixed number of multileavings, the fraction of rankers that beat the Con-
dorcet winner more than 50% of the time. If there is no distortion, and the
number of multileavings is sufficient, we expect this fraction to be zero.

In these experiments we test the level of distortion in the multileaving
method SOSM, and examine how robust our MDB algorithm is to possible
distortions in the multileaving method.

For each dataset, and each click model, we randomly sample subsets of
rankers of sizes 3, 10, and 100 that include a Condorcet winner. We examine
the probabilities of the rankers beating the Condorcet winner after 3,000



4.1. Multi-Dueling Bandits 67

(a) perfect click model

(b) navigational click model

(c) informational click model

Figure 4.4: Cumulative regret averaged over 10 runs
against number of iterations for the 4 algorithms on the
YLR1 dataset using the (a) perfect, (b) navigational and

(c) informational click models.



68 Chapter 4. Online Learning

Figure 4.5: Average cumulative regret over 10 runs against
number of iterations for the 4 algorithms on the full Yandex

dataset.

multileavings. Note that this is likely to be an overestimate of the distortion
of the multileaving method, since, for rankers of very similar quality, 3,000
iterations may not be sufficient to reliably distinguish rankers. Table 4.4
shows the average, over 30 runs, of the percentage of rankers that beat the
Condorcet winner.

We observe that the distortion problem is almost unique to the MSLR
dataset, and is exacerbated by the noisier click models. The distortion prob-
lem is exclusively related to the feature ranker 133 in the MSLR dataset.
Feature ranker 133 scores documents solely based on the query-document
clicks, i.e. a document was clicked on in response to a query. This feature
is very good at identifying 1 or 2 documents that are very likely to be rel-
evant. However, when asked to rank documents in a multileaved set, most
of the documents, even though they might be relevant, have not been pre-
viously clicked on. As such, ranker 133 is unable to distinguish between the
vast majority of documents. Thus, even though ranker 133 performs well
in pairwise comparisons, where it has contributed half of the documents in
the results list, it performs very poorly when multileaved with many other
rankers. Table 4.4 also includes results for the MSLR dataset, when feature
ranker 133 is excluded. This is denoted by MSLR*. When ranker 133 is
excluded, no substantial distortion is observed.

The moderate levels of distortion observed for the Yandex and MSLR
dataset (excluding feature ranker 133) are likely to be mostly caused by the
fact that there are many rankers that are very similar in quality, and so
3,000 comparisons are not sufficient to differentiate these similar rankers.

The only problem setting where our MDB algorithm did not substan-
tially outperform the best baseline dueling bandit algorithm, RMED1, was
for the MSLR dataset with all 136 feature rankers with the informational
click model. The results for this problem setting are shown in Figure 4.6.



4.1. Multi-Dueling Bandits 69

Table 4.4: Percentage of rankers beating the Condorcet
winner (distortion), averaged over 30 runs, after 3,000 iter-
ations for 3, 10, and 100 rankers being multileaved for each
dataset and click model. The dataset denoted MSLR* is the

MSLR dataset with feature ranker 133 removed.

Distortion

Num. Rankers 3 10 100

MSLR Perfect 0.0% 0.0% 9.2%
MSLR Navigational 0.0% 0.0% 15.2%
MSLR Informational 0.0% 6.8% 41.3%

MSLR* Perfect 1.7% 3.1% 3.3%
MSLR* Navigational 1.7% 4.0% 3.5%
MSLR* Informational 0.0% 2.9% 2.7%

YLR1 Perfect 0.0% 0.0% 0.0%
YLR1 Navigational 0.0% 0.0% 0.0%
YLR1 Informational 0.0% 0.0% 0.3%

YLR2 Perfect 0.0% 0.0% 0.4%
YLR2 Navigational 0.0% 0.4% 0.8%
YLR2 Informational 0.0% 1.0% 0.9%

Yandex Perfect 0.0% 1.1% 1.4%
Yandex Navigational 3.3% 4.5% 3.8%
Yandex Informational 3.3% 3.9% 3.4%

This is due specifically to the feature ranker 133 in the MSLR dataset. Ta-
ble 4.4 shows that there was some distortion for all click models for the
MSLR dataset. However, it is with the informational click model that the
distortion is greatest, reaching 41.3% for 100 rankers. This is a very high
percentage. The MDB algorithm appears to be robust to more reasonable
levels of distortion, suffering substantially less regret than the baselines for
the MSLR dataset with the navigational click model, shown in Figure 4.2(a),
and with the perfect click model. Additionally, for the MSLR dataset with
feature ranker 133 removed, MDB substantially outperformed all baselines
for all click models.

4.1.4 Conclusions

We proposed a generalisation of the K-armed dueling bandits, termed multi-
dueling bandits (MDB). We have applied MDB in online ranker evaluation
to leverage the power of simultaneous comparisons through multileaving and



70 Chapter 4. Online Learning

Figure 4.6: Average cumulative regret over 10 runs against
number of iterations for the 4 algorithms on the MSLR

dataset using the informational click model.

improve the exploration-exploitation trade-off. Our experimental results on
synthetic data and data from 4 standard datasets demonstrated up to 1 to 2
orders of magnitude reduction in regret compared to state-of-the-art dueling
bandit algorithms, RUCB [132], MergeRUCB [131], and RMED1 [72] in all
except one pathological case discussed below. Generally, relative benefits
compared to dueling bandits increased with the number of rankers being
compared. For MDB, the incurred regret did not increase substantially as the
number of rankers increased. As such, the risks associated with large-scale
online ranker evaluation are substantially mitigated. Further experiments
showed that MDB was robust to various user click models.

Experiments were also conducted to examine the behaviour of MDB
in the absence of a Condorcet winner, which is the case for the full Yan-
dex dataset. In this case, the regret was approximated by measuring the
NDGC@10 score. In this case MDB outperformed the best dueling bandit
algorithm, RMED1, by approximately an order of magnitude after 5,000,000
iterations.

We also investigated the level of distortion of pairwise winning probabili-
ties in multileaving using SOSM. For the MSLR dataset using a navigational
click model, the distortion reached 41.3%. In this case MDB was inferior to
RMED1. The high level of distortion was due to the peculiarities of ranker
133. If ranker 133 is removed, the distortion of pairwise winning probabilities
is significantly reduced and MDB outperforms all other algorithms.

There are a number of avenues for future work. The distortion of pairwise
winning probabilities in multileaving needs further investigation. All existing
multileaving algorithms exhibit this behaviour. It remains an open question
as to whether a new multileaving algorithm can be designed to avoid this
problem, or at least minimize it. Furthermore, a theoretical analysis of
our algorithm needs to be developed to better understand its power and



4.2. Bandits with Multiple Plays 71

limitations. Additionally, since a Condorcet winner is not guaranteed to
exist, it may be useful to explore other concepts of winners, such as the
Copeland [130], Borda [117] and von Neumann [42] criteria. Finally, we
note that the proposed multi-dueling bandit algorithm can be applied to a
broad class of problems and applications in other domains, e.g. recommender
systems.

4.2 Bandits with Multiple Plays

Section 4.2.1 formalises the problem of learning from multileaved compar-
isons which produce absolute scores as a K-armed bandits with multiple
plays problem. Section 4.2.2 describes our proposed algorithm for solving
this problem. Finally, Section 4.2.3 presents our experimental evaluation.

4.2.1 Problem Setting

In bandits with multiple plays, we are given a set K of arms. At each
iteration, t, an algorithm selects a subset, St, of arms and observes rewards in
the range [0, b] for each selected arm i ∈ St. These rewards are independently
and identically distributed according to corresponding distributions with
unknown expectations µi.

In the ranking scenario this corresponds to multileaving the ranked lists
of the subset, St, of rankers and then inferring a score for each ranker from
user clicks.

We let µ∗ = maxi µi, and let ∆i = µ∗ − µi. Then we define the regret

r(St) =

∑
i∈St ∆i

|St|
(4.5)

The goal of a bandits with multiple plays algorithm is to select subsets
of arms S1, S2, . . . , so that the cumulative regret

∑T
t=1 r(St) is minimized.

4.2.2 Algorithm

The proposed bandits with multiple plays algorithm has a similar underlying
idea to our multi-dueling bandit algorithm from Section 4.1.

The algorithm maintains optimistic and pessimistic estimates of the ex-
pected value of each arm. Furthermore, it maintains wide versions of these
estimates. We therefore maintain upper confidence bounds, wide upper con-
fidence bounds, lower confidence bounds and wide lower confidence bounds
for the expected value of each arm. The wide confidence bounds serve to
ensure that we explore arms in parallel. How this is done will be explained
below.

At a given iteration, we say that an arm is a champion if it has the great-
est upper confidence bound. If there are several arms with the same upper
confidence bound we choose one of them at random to be champion. We
call those arms whose upper confidence bound exceed the lower confidence
bound of the champion candidates. Additionally, we call those arms whose
wide upper confidence bounds exceed the wide lower confidence bound of
the champion secondary candidates When there is a single champion, and
no other candidates, the algorithm exploits this knowledge and plays only



72 Chapter 4. Online Learning

the champion. When there are multiple candidates the algorithm explores
by selecting all the secondary candidates.

We now precisely describe our algorithm, which is provided in the Algo-
rithm 3 box. Let K be the number of arms. We denote by ni(t) the number
of times up to round t that arm i was played. Let x̄i(t) denote the mean
score of arm i after t iterations, and ȳi(t) denote the variance of the scores
of arm i after t iterations. Recall that the scores for all arms have support
[0, b]. We compute upper and lower confidence bounds ui(t) and li(t) on the
scores x̄i(t):

ui(t) = x̄i(t) +

√
2αȳi(t) ln t

ni(t)
+

3bα ln t

ni(t)
(4.6)

li(t) = x̄i(t)−

√
2αȳi(t) ln t

ni(t)
− 3bα ln t

ni(t)
(4.7)

Note that we use variance estimates in our confidence bounds, this should
be advantageous if the variances of the scores of the arms are substantially
smaller than b2 [5]. These confidence bounds are based on an empirical
Bernstein bound, see [4].

They ensure that with high probability the real expected value µi of the
score of arm i is in the range [li(t), ui(t)].

Additionally, we maintain a second wider set of bounds vi(t) and mi(t),
which we use to increase parallel exploration. We define them by

vi(t) = x̄i(t) +

√
2βαȳi(t) ln t

ni(t)
+

3bβα ln t

ni(t)
(4.8)

mi(t) = x̄i(t)−

√
2βαȳi(t) ln t

ni(t)
− 3bβα ln t

ni(t)
(4.9)

where the parameter β ≥ 1 controls how much wider they are than the upper
confidence bounds of Equation 4.7. When there is more than one candidate
according to the “narrow” confidence bounds in Equation 4.7 an exploration
round is triggered and the secondary candidates according to the “wide”
confidence bounds are selected. This leads to some arms being explored
preemptively and decreases the overall number of exploration rounds by
increasing parallel exploration.

4.2.3 Experimental Evaluation

We next present the experimental evaluation of our bandits with multiple
plays (BMP) algorithm. We begin by describing our experimental setup.

4.2.3.1 Experimental Setup

Since this is a new problem setting, there are no prior algorithms against
which we can directly compare our algorithm. However since the intended
application for our algorithm is online evaluation of rankers using multileav-
ing, we will compare against the MDB algorithm [18] from Section 4.1. We
set the parameters for MDB to α = 0.5 and β = 1.5, as in Section 4.1.



4.2. Bandits with Multiple Plays 73

1 X = [x̄i(t)] := 0K
2 Play all arms and update the corresponding entries in X
3 for t = 2, . . . , T do

4 U := [ui(t)] = x̄i(t) +
√

2αȳi(t) ln t
ni(t)

+ 3bα ln t
ni(t)

5 V := [vi(t)] = x̄i(t) +
√

2βαȳi(t) ln t
ni(t)

+ 3bβα ln t
ni(t)

6 L := [li(t)] = x̄i(t)−
√

2αȳi(t) ln t
ni(t)

− 3bα ln t
ni(t)

7 M := [mi(t)] = x̄i(t)−
√

2βαȳi(t) ln t
ni(t)

− 3bβα ln t
ni(t)

8 c = argmaxi∈K(Ui(t)) (The champion. If there are several arms,
choose one at random)

9 D = {i s.t. Ui(t) ≥ Lc(t)} (The set of candidates)
10 E = {i s.t. Vi(t) ≥Mc(t)} (The set of secondary candidates)
11 if |D| > 1 then
12 Choose all arms in E
13 else
14 Choose c

15 end
Algorithm 3: Bandits with Multiple Plays (BMP).

For MDB we use SOSM, described in Section 3.2 as the input multileaving
method.

To select the parameters for BMP, we carried out a grid search on the
grid {0.01, 0.05, 0.5, 1.5}×{1.25, 1.5, 2.0, 4.0, 8.0, 16.0} on a separate dataset,
specifically the validation set of the YLR1 dataset, and found the best pa-
rameters to be α = 0.05 and β = 4.0. For BMP we use MIS, described in
Section 3.3 as the input multileaving method. For MIS we used the param-
eter settings: M = 10, L = 0.6, which were also found to be the best out of
the options M = 0; M = 10, L = 0.6; and M = 10, L = 0.8 on the validation
set of the YLR1 dataset.

Since the multileaving methods used as inputs to MDB and BMP are
different, the quality of the multileaved lists presented to users is different,
even when the same set of rankers is multileaved. For the experiments to
follow we therefore use the following notion of regret so that we are compar-
ing methods in terms of the quality of the multileaved lists they display to
users:

r(St) = NDCG∗ −NDCGMt , (4.10)

where NDCG∗ is the average NDCG@10 score of the ranker with the best
NDCG@10 score on the dataset, and NDCGMt is the NDCG@10 score of
the multileaved list presented to the user at iteration t.

Otherwise, we replicate the experimental setup from Section 4.1.3. We
compare the algorithms on the four large-scale evaluation datasets sum-
marised in Table 4.54.

The datasets and the corresponding rankers form our BMP or MDB
problem instances. For each dataset we choose the rankers to be the features
of the dataset. All experiments are conducted using a simulated user model.

4Only 519 features are non-zero for YLR Set 1 and only 596 features are non-zero for
YLR Set 2. The remaining features are zero for all query-document pairs.



74 Chapter 4. Online Learning

Table 4.5: Datasets. Each dataset consists of a number of
query-document pairs, together with a relevance judgement
for the pair. Each document is represented by a feature

vector.

Datasets Queries URLs Features

MSLR-WEB30K 5 31,531 3,771,125 136
YLR Set 1 [25] 19,944 473,134 700
YLR Set 2 [25] 1,266 34,815 700
Yandex 6 9,124 97,290 245

Table 4.6: User Models. For each user model, the user in-
spects the ranked list from top to bottom and either clicks on
a document, or stops inspecting the list, with each action’s
probability defined by the user model, and the document rel-
evance. We use the perfect, navigational and informational

click models from [56].

Click Probabilities Stop Probabilities

Relevance 0 1 2 3 4 0 1 2 3 4

Perfect 0.0 0.2 0.4 0.8 1.0 0.0 0.0 0.0 0.0 0.0
Navigational 0.05 0.1 0.2 0.4 0.8 0.0 0.2 0.4 0.6 0.8
Informational 0.4 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5

For each iteration we randomly sample with replacement one query from the
pool of queries of the dataset. The BMP or MDB algorithms choose rankers,
whose results are then multileaved and presented to a simulated user. Clicks
are then generated from a probabilistic user model [56] described in Table 4.6.

4.2.3.2 Experimental Results

Below we summarize the experimental results for the various experiments.
The error bars show the standard deviation of cumulative regret across runs
for each algorithm at the given time step.

4.2.3.2.1 Click Models

Figure 4.7 shows the performance of the BMP and MDB algorithms on the
MSLR dataset for the perfect, navigational and informational click models.
We note that for all click models, BMP outperforms MDB. While the dif-
ference is relatively small for the perfect and navigational click models, for
the informational click model, MDB settles on the wrong arm resulting in
linear regret. As a result, the regret suffered by BMP is almost 2 orders of
magnitude less than that suffered by MDB after 10,000,000 iterations. This
tendency of MDB to settle on the wrong arm can be understood in light of



4.2. Bandits with Multiple Plays 75

the distortion suffered by the multileaving method used by MDB, SOSM,
described further in Section 4.1.3.1.6.

4.2.3.2.2 Datasets

Figure 4.8 shows the performance of the BMP and MDB algorithms on the
MSLR dataset for the YLR1, YLR2 and Yandex datasets with navigational
click model. For all three datasets the algorithms perform similarly in terms
of cumulative regret after 10,000,000 iterations.

Note, however, that for the YLR2 dataset, although BMP has suffered
more regret after 10,000,000 iterations, the regret does not really level off
for MDB. This is because the Condorcet winner, which MDB identifies as
the best ranker and converges on selecting, is actually marginally inferior
in terms of NDCG to another ranker. This ranker is correctly identified by
BMP, even though BMP takes longer to converge on selecting it. If the time
horizon for the experiment had been sufficiently long, BMP would therefore
have suffered lower regret than MDB for this setting.

4.2.3.2.3 Scalability

Finally, Figure 4.9 shows how the performance of BMP and MDB scales with
the number of rankers being evaluated. We note that the regret suffered af-
ter 5,000,000 iterations increases only weakly as we increase the number of
rankers for both algorithms. This suggests that the parallel exploration en-
abled by the BMP and MDB settings is effective at reducing the dependency
of the regret on the number of rankers being evaluated.

4.2.4 Conclusions

We have proposed a variant of the bandit with multiple plays (BMP) prob-
lem where the number of arms selected at each iteration is not fixed. This is
applicable to managing the exploration-exploitation tradeoff associated with
a multileaving algorithm like MIS, introduced in Section 3.3, where the out-
come of a multileaving is an absolute score for each ranker in the comparison
set.

Our experimental results on data from 4 standard datasets demonstrated
improved, or similar performance, relative to MDB for all datasets and click
models investigated. Most notably, while BMP is never substantially outper-
formed by MDB, it substantially outperforms MDB for the MSLR dataset.
Like MDB, the regret suffered by BMP scales well with the number of rankers
being evaluated.

Thus, BMP preserves the strength of MDB, in providing a highly scalable
method for handling the exploration-exploitation tradeoff associated with
online evaluation of rankers using multileaving. Additionally, BMP provides
the advantage of being applicable to a more accurate multileaving algorithm
than those which MDB is applicable to.

An important future extension of this work is to develop upper and lower
bounds on the regret attainable in the BMP setting. Additionally, it is likely
that improved regret can be obtained by leveraging dependencies between
the rewards for different arms as in [107].



76 Chapter 4. Online Learning

102 103 104 105 106 107

Number of Iterations

100

101

102

103

104

105

106

C
u
m
u
la
ti
v
e
 R
e
g
re
t

dataset: MSLR, click model: navigational

BMP (alpha = 0.05, beta = 4.0)

MDB (alpha = 0.5, beta = 1.5)

(a)

102 103 104 105 106 107

Number of Iterations

100

101

102

103

104

105

106

C
u
m
u
la
ti
v
e
 R
e
g
re
t

dataset: MSLR, click model: navigational

BMP (alpha = 0.05, beta = 4.0)

MDB (alpha = 0.5, beta = 1.5)

(b)

102 103 104 105 106 107

Number of Iterations

100

101

102

103

104

105

106

C
u
m
u
la
ti
v
e
 R
e
g
re
t

dataset: MSLR, click model: informational

BMP (alpha = 0.05, beta = 4.0)

MDB (alpha = 0.5, beta = 1.5)

(c)

Figure 4.7: Cumulative regret averaged over 20 runs
against number of iterations for the (a) perfect, (b) navi-
gational, and (c) informational click models on the MSLR

dataset.



4.2. Bandits with Multiple Plays 77

102 103 104 105 106 107

Number of Iterations

100

101

102

103

104

105

106

C
u
m
u
la
ti
v
e
 R
e
g
re
t

dataset: YLR1, click model: navigational

BMP (alpha = 0.05, beta = 4.0)

MDB (alpha = 0.5, beta = 1.5)

(a)

102 103 104 105 106 107

Number of Iterations

100

101

102

103

104

105

106

C
u
m
u
la
ti
v
e
 R
e
g
re
t

dataset: YLR2, click model: navigational

BMP (alpha = 0.05, beta = 4.0)

MDB (alpha = 0.5, beta = 1.5)

(b)

102 103 104 105 106 107

Number of Iterations

100

101

102

103

104

105

106

C
u

m
u

la
ti

v
e

 R
e

g
re

t

dataset: Yandex, click model: navigational

BMP (alpha = 0.05, beta = 4.0)

MDB (alpha = 0.5, beta = 1.5)

(c)

Figure 4.8: Cumulative regret averaged over 20 runs
against number of iterations for the (a) YLR1, (b) YLR2,

and (c) Yandex datasets with navigational click model.



78 Chapter 4. Online Learning

0 20 40 60 80 100 120 140
Number of Rankers

100

101

102

103

104

C
u
m
u
la
ti
v
e
 R
e
g
re
t 
a
ft
e
r 
2
,0
0
0
,0
0
0
 i
te
ra
ti
o
n
s

BMP (alpha = 0.05, beta = 4.0)

MDB (alpha = 0.5, beta = 1.5)

Figure 4.9: Cumulative regret after 5,000,000 iterations
averaged over 10 runs against the number of rankers be-
ing evaluated for the MSLR dataset with navigational click

model.



79

Chapter 5

Conclusions and Future
Work

Efficient online evaluation of ranking algorithms is an important problem
for large-scale commercial web search engines and recommender systems
[112, 70]. Multileaving was introduced in [102] and offers order of magni-
tudes improvements in efficiency over alternative online evaluation methods.
This thesis investigated multileaving and how to manage the exploration-
exploitation tradeoff associated with online evaluation using multileaving.

5.1 Multileaving

This thesis introduced two new multileaving algorithms. Furthermore, we
demonstrated that an interaction between the two stages of multileaving
algorithms can cause substantial inaccuracies if not properly accounted for.

Sample-Only Scored Multileave (SOSM) [17] is the first multileaving
method to scale well with the number of rankers being compared. The
central idea of SOSM is that rankers are evaluated only on the basis of their
relative rankings of the documents included in the multileaved ranking. This
means that each recorded click can be used to infer something about the rela-
tive quality of each pair of rankers. This is in contrast to prior methods such
as TDM where a click was only used to infer something about the quality of
a single ranker, or PM, where some rankers had more opportunity to obtain
credit than others, independent of their actual quality. This efficient use of
feedback allows SOSM to estimate the relative qualities of rankers, even after
very few comparisons, regardless of how many rankers are being compared.
SOSM was found to be substantially more efficient than prior multileaving
methods, with prior methods often requiring twice as many user interactions
to obtain similarly good ranker quality estimates [17].

The main non-algorithmic contribution of this thesis is that we demon-
strate that the scoring function in a multileaving method must correct for
the probability a document has of being shown to the user. Prior multileav-
ing methods, including SOSM, did not account for this, and consequently,
and contrary to initial evaluations of multileaving methods, they are prone
to being inaccurate.

The second multileaving algorithm contributed as part of this thesis,
Multileaving using Importance Sampling (MIS), is the first multileaving al-
gorithm to properly account for the probabilities of documents being pre-
sented to the user when scoring rankers. This is therefore the first multileav-
ing method, which can reliably be used to accurately estimate the quality



80 Chapter 5. Conclusions and Future Work

of rankers. MIS was shown to be highly accurate, scale well with the num-
ber of rankers being compared, and was shown to reliably evaluate rankers.
Finally, MIS is the first multileaving method that can be used in an un-
biased manner on historical interaction data. This is possible because the
importance sampling in the scoring function allows MIS to compensate for
the difference in probability that a given document was presented to the
user in the historical data, and the probability that the document would be
presented to the user if a new multileaving was performed.

Thus, this thesis demonstrated (i) that there exist substantial problems
with multileaving, in that the scoring function and the document sampling
strategy of the multileaving method interact with each other; and (ii) that
these problems can be overcome by using importance sampling to correct for
this interaction. Consequently, multileaving can provide unbiased, scalable,
efficient and accurate evaluations. This suggests that multileaving could
have the potential to play an important part in the online evaluation of
large-scale web search and recommender systems.

An important caveat regarding these findings is that the experiments for
this thesis were carried out on simulated users. More specifically, they used
Lerot [100], a framework for simulated experiments in online evaluation and
online learning to rank. Although these experiments with simulated users
have become the standard in the interleaving and multileaving literature,
more work is needed to verify how well the outcomes of these simulated
experiments agree with experiments carried out on deployed search systems.
Thus, there is a need to evaluate multileaving algorithms on real, deployed
search systems. This is needed to verify that biases not captured by the
user models from our experiments do not substantially alter the outcomes
of experiments. More generally, recalling the complicated interplay between
system effectiveness and user satisfaction, there is a need to verify that the
preferences inferred by multileaving methods agree with measures of user
satisfaction.

There are several interesting possible improvements and extensions to
MIS which remain as future work. One promising approach is to investigate
the possibility of using weighted importance sampling, and document sam-
pling techniques which preferentially sample from those rankers for which
our quality estimates are most uncertain, in order to improve the tradeoff
between learning efficiency and quality of the multileaved list. Additionally,
if this tradeoff can be handled better, there is the potential to investigate
document sampling strategies for which we more strongly control the order
of the documents presented during multileaving.

For our algorithm, MIS, we have theoretical guarantees that the expected
outcome of evaluation can be made to agree with A/B testing. However,
this guarantee applies to a particular class of metrics for A/B testing, and
an important avenue for future research would be to extend the work of [99]
to multileaving. Here we would want to investigate experimentally what
types of A/B metrics can be captured accurately by multileaving approaches.
Furthermore, it would be useful to extend the theoretical guarantee offered
by MIS to more general classes of A/B metrics.

Current multileaving methods are applicable to ranking algorithms which
output ranked lists of documents. Since modern search engines aggregate
results from multiple sources, multileaving could be made more widely appli-
cable if work on applying interleaving to aggregated search and more general



5.2. Exploration-Exploitation Tradeoff 81

user interfaces [66, 29] could be extended to multileaving. Another challenge
is to ensure that multileaving does not interfere with desirable properties of
search result pages such as diversity.

5.2 Exploration-Exploitation Tradeoff

One of the key drawbacks of online evaluation methods is that the outputs of
new, potentially poor, rankers are presented to actual users. If a new ranker
is poor, users will be presented with poor results and, in the worst case,
might abandon the service [54]. Conversely, if new rankers are not presented
there is a risk of overlooking better rankers in the pool of rankers. In online
learning the question of determining a proper exploration level is known as
the exploration-exploitation tradeoff.

This thesis introduced new algorithms for managing the exploration-
exploitation tradeoff applicable to two classes of multileaving algorithms.
The first, Multi-dueling Bandits (MDB), uses Hoeffding’s inequality and
handles multileaving algorithms such as SOSM, which output relative out-
comes for the rankers being compared. The second, Bandits with Multiple
Plays (BMP), uses an empirical Bernstein inequality and handles multileav-
ing algorithms such as MIS, which output absolute scores for the rankers
being compared. These algorithms perform similarly, and both give orders of
magnitude improvements in performance over state-of-the-art dueling bandit
algorithms.

In particular, the performance of both algorithms scales substantially
better with the number of rankers being compared than dueling bandit algo-
rithms. This suggests that the MDB and BMP settings could allow for more
aggressive online experimentation in terms of the number of new rankers
evaluated.

We have not provided any theoretical upper or lower bounds on the
performance obtainable in our problem settings. This is an important area
for future work, in particular, it would be interesting to see to what extent
the scalability of performance is improved in a theoretical sense over the
bandits and dueling bandits settings. Subsequent work in multi-dueling
bandits [107] has investigated how to model dependencies between arms,
and extending this to the bandits with multiple plays setting could provide
improved performance, since the scores obtained by rankers when comparing
them using MIS are likely to be correlated based on how similar the rankers
are.

Work on adversarial bandits has recently been extended to the dueling
bandits setting [45]. Here the winning probabilities for different arms are
not necessarily identically and independently distributed. The problem of
formulating and providing algorithms for adversarial MDB or BMP settings
could be an interesting problem. An example of a realistic use case for such
algorithms could be the fact that ranker qualities are likely to drift over time
in the web search setting, and being able to account for this could avoid the
problem of too heavily selecting strong rankers which subsequently become
weaker.

In extension to this, recent work has focused on algorithms which are
strong for both stochastic and adversarial bandit settings [19, 104, 7, 103].
Extending this work to the dueling bandits, MDB and BMP settings could



82 Chapter 5. Conclusions and Future Work

allow for algorithms which can exploit the presence of a stochastic structure
to the problem, while not performing poorly when this is absent.

Finally, it is likely that a single ranking algorithm may not be optimal
for all use cases, and extending work on contextual bandits to the MDB or
BMP settings could be important for practical applications. Here the goal
is not to focus on a single ranker which is optimal for every situation, but
instead to select rankers which are the best for the given context.

5.3 Other Future Work

Online learning to rank approaches based on interleaving and multileaving,
such as dueling bandit gradient descent [124] and multileave gradient descent
[101, 85] assume that the parameter space is convex. This assumption is
known to be violated in practice [124]. Non convex online learning to rank
using multileaving could be possible by using multileaving to simultaneously
explore many areas of the parameter space. This could also allow the use
of more complicated ranking models, since current online learning to rank
approaches focus on linear models.

This thesis focuses purely on multileaving methods which attempt to
infer something about the quality of ranking algorithms through click feed-
back. An important challenge could be to attempt to extend these methods
to using and combining other types of implicit feedback. For example, what
can be inferred about the relative quality of two interleaved rankers from
user abandonment, and how can we simultaneously learn from clicks and
other signals such as abandonment?

In this thesis we have treated the problem of multileaving, and the prob-
lem of dealing with the associated exploration-exploitation tradeoff as two
separate problems. It may be preferable to attempt to treat this as a sin-
gle problem. This could involve developing a multileaving which balances
the need to explore documents about which the rankers disagree, and the
need to exploit agreement between the rankers as to which documents are
strong. This could be preferable, since we might be able to optimise the
displayed documents according to criteria such as the potential information
gain from a click on the document. The current approach of treating multi-
leaving and managing the exploration-exploitation tradeoff separately leads
to potentially suboptimal exploration, since exploration is carried out based
on the choices of rankers, instead of the choices of documents.

Finally, recall that the experiments in this thesis all involved simulated
users, and that it would be preferable to test algorithms on real users. Living
Labs for Information Retrieval provides an online evaluation framework for
ranking algorithms [8, 11]. It could be highly useful for academic research
in online evaluation methods if a similar framework could be created, or if
the Living Labs framework could be extended, to allow online experimenta-
tion with online evaluation methods. This could help alleviate the problem
that academic research on online evaluation methods is heavily reliant on
simulated user feedback.



83

Bibliography

[1] Ailon, N., Karnin, Z. S., and Joachims, T. Reducing dueling
bandits to cardinal bandits. In ICML (2014), vol. 32, pp. 856–864.

[2] Al-Maskari, A., Sanderson, M., and Clough, P. The rela-
tionship between ir effectiveness measures and user satisfaction. In
Proceedings of the 30th annual international ACM SIGIR conference
on Research and development in information retrieval (2007), ACM,
pp. 773–774.

[3] Arguello, J., Diaz, F., and Callan, J. Learning to aggregate
vertical results into web search results. In Proceedings of the 20th ACM
international conference on Information and knowledge management
(2011), ACM, pp. 201–210.

[4] Audibert, J.-Y., Munos, R., and Szepesvári, C. Tuning ban-
dit algorithms in stochastic environments. In ALT (2007), vol. 4754,
Springer, pp. 150–165.

[5] Audibert, J.-Y., Munos, R., and Szepesvári, C. Exploration–
exploitation tradeoff using variance estimates in multi-armed bandits.
Theoretical Computer Science 410, 19 (2009), 1876–1902.

[6] Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time analysis
of the multiarmed bandit problem. Machine learning 47, 2-3 (2002),
235–256.

[7] Auer, P., and Chiang, C.-K. An algorithm with nearly opti-
mal pseudo-regret for both stochastic and adversarial bandits. arXiv
preprint arXiv:1605.08722 (2016).

[8] Azzopardi, L., and Balog, K. Towards a living lab for information
retrieval research and development. In International Conference of
the Cross-Language Evaluation Forum for European Languages (2011),
Springer, pp. 26–37.

[9] Azzopardi, L., Järvelin, K., Kamps, J., and Smucker, M. D.
Report on the sigir 2010 workshop on the simulation of interaction. In
ACM SIGIR Forum (2011), vol. 44, ACM, pp. 35–47.

[10] Baeza-Yates, R., Ribeiro-Neto, B., et al. Modern information
retrieval, vol. 463. ACM press New York, 1999.

[11] Balog, K., Kelly, L., and Schuth, A. Head first: Living labs
for ad-hoc search evaluation. In Proceedings of the 23rd ACM In-
ternational Conference on Conference on Information and Knowledge
Management (2014), ACM, pp. 1815–1818.



84 BIBLIOGRAPHY

[12] Balsubramani, A., Karnin, Z., Schapire, R., and Zoghi, M.
Instance-dependent regret bounds for dueling bandits. In Proceedings
of The 29th Conference on Learning Theory, COLT (2016), vol. 2016.

[13] Berry, D. A., and Fristedt, B. Bandit problems: sequential alloca-
tion of experiments (Monographs on statistics and applied probability).
Springer, 1985.

[14] Blanco, R., Halpin, H., Herzig, D. M., Mika, P., Pound, J.,
Thompson, H. S., and Tran Duc, T. Repeatable and reliable
search system evaluation using crowdsourcing. In Proceedings of the
34th international ACM SIGIR conference on Research and develop-
ment in Information Retrieval (2011), ACM, pp. 923–932.

[15] Borisov, A., Markov, I., de Rijke, M., and Serdyukov, P. A
neural click model for web search. In Proceedings of the 25th Inter-
national Conference on World Wide Web (2016), International World
Wide Web Conferences Steering Committee, pp. 531–541.

[16] Bottou, L., Peters, J., Candela, J. Q., Charles, D. X.,
Chickering, M., Portugaly, E., Ray, D., Simard, P. Y., and
Snelson, E. Counterfactual reasoning and learning systems: the
example of computational advertising. Journal of Machine Learning
Research 14, 1 (2013), 3207–3260.

[17] Brost, B., Cox, I. J., Seldin, Y., and Lioma, C. An improved
multileaving algorithm for online ranker evaluation. In Proceedings
of the 39th International ACM SIGIR Conference on Research and
Development in Information Retrieval (2016), pp. 745–748.

[18] Brost, B., Seldin, Y., Cox, I. J., and Lioma, C. Multi-dueling
bandits and their application to online ranker evaluation. In Proceed-
ings of the 25th International ACM Conference on Information and
Knowledge Management (2016), ACM, pp. 2161–2166.

[19] Bubeck, S., and Slivkins, A. The best of both worlds: Stochastic
and adversarial bandits. In COLT (2012), pp. 42–1.

[20] Buckley, C., Dimmick, D., Soboroff, I., and Voorhees, E.
Bias and the limits of pooling for large collections. Information re-
trieval 10, 6 (2007), 491–508.

[21] Buscher, G., Dengel, A., Biedert, R., and Elst, L. V. At-
tentive documents: Eye tracking as implicit feedback for information
retrieval and beyond. ACM Transactions on Interactive Intelligent
Systems (TiiS) 1, 2 (2012), 9.

[22] Büttcher, S., Clarke, C. L., and Cormack, G. V. Informa-
tion retrieval: Implementing and evaluating search engines. Mit Press,
2016.

[23] Büttcher, S., Clarke, C. L., Yeung, P. C., and Soboroff, I.
Reliable information retrieval evaluation with incomplete and biased
judgements. In Proceedings of the 30th annual international ACM SI-
GIR conference on Research and development in information retrieval
(2007), ACM, pp. 63–70.



BIBLIOGRAPHY 85

[24] Carmel, D., Halawi, G., Lewin-Eytan, L., Maarek, Y., and
Raviv, A. Rank by time or by relevance?: Revisiting email search.
In Proceedings of the 24th ACM International on Conference on In-
formation and Knowledge Management (2015), ACM, pp. 283–292.

[25] Chapelle, O., and Chang, Y. Yahoo! learning to rank challenge
overview. In Yahoo! Learning to Rank Challenge (2011), pp. 1–24.

[26] Chapelle, O., Joachims, T., Radlinski, F., and Yue, Y. Large-
scale validation and analysis of interleaved search evaluation. ACM
Transactions on Information Systems (TOIS) 30, 1 (2012), 6.

[27] Chapelle, O., and Zhang, Y. A dynamic bayesian network click
model for web search ranking. In Proceedings of the 18th international
conference on World wide web (2009), ACM, pp. 1–10.

[28] Chuklin, A., Markov, I., and Rijke, M. d. Click models for web
search. Synthesis Lectures on Information Concepts, Retrieval, and
Services 7, 3 (2015), 1–115.

[29] Chuklin, A., Schuth, A., Hofmann, K., Serdyukov, P., and
De Rijke, M. Evaluating aggregated search using interleaving. In
Proceedings of the 22nd ACM international conference on Information
& Knowledge Management (2013), ACM, pp. 669–678.

[30] Chuklin, A., Schuth, A., Zhou, K., and Rijke, M. D. A com-
parative analysis of interleaving methods for aggregated search. ACM
Transactions on Information Systems (TOIS) 33, 2 (2015), 5.

[31] Chuklin, A., Serdyukov, P., and De Rijke, M. Click model-
based information retrieval metrics. In Proceedings of the 36th in-
ternational ACM SIGIR conference on Research and development in
information retrieval (2013), ACM, pp. 493–502.

[32] Cooper, W. S. A definition of relevance for information retrieval.
Information storage and retrieval 7, 1 (1971), 19–37.

[33] Craswell, N., Zoeter, O., Taylor, M., and Ramsey, B. An
experimental comparison of click position-bias models. In Proceedings
of the 2008 International Conference on Web Search and Data Mining
(2008), ACM, pp. 87–94.

[34] Croft, W. B. What do people want from information retrieval. D-Lib
magazine 1, 5 (1995).

[35] Croft, W. B. Language models for information retrieval. In Data En-
gineering, 2003. Proceedings. 19th International Conference on (2003),
IEEE, pp. 3–7.

[36] Croft, W. B., Metzler, D., and Strohmann, T. Search engines.
Pearson Education, 2010.

[37] Crook, T., Frasca, B., Kohavi, R., and Longbotham, R. Seven
pitfalls to avoid when running controlled experiments on the web. In
Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining (2009), ACM, pp. 1105–1114.



86 BIBLIOGRAPHY

[38] Deng, A., Xu, Y., Kohavi, R., and Walker, T. Improving the
sensitivity of online controlled experiments by utilizing pre-experiment
data. In Proceedings of the sixth ACM international conference on Web
search and data mining (2013), ACM, pp. 123–132.

[39] Dou, Z., Song, R., and Wen, J.-R. A large-scale evaluation and
analysis of personalized search strategies. In Proceedings of the 16th
international conference on World Wide Web (2007), ACM, pp. 581–
590.

[40] Dou, Z., Song, R., Wen, J.-R., and Yuan, X. Evaluating the ef-
fectiveness of personalized web search. IEEE Transactions on Knowl-
edge and Data Engineering 21, 8 (2009), 1178–1190.

[41] Drutsa, A., Ufliand, A., and Gusev, G. Practical aspects of sen-
sitivity in online experimentation with user engagement metrics. In
Proceedings of the 24th ACM International on Conference on Infor-
mation and Knowledge Management (2015), ACM, pp. 763–772.

[42] Dudık, M., Hofmann, K., Schapire, R. E., Slivkins, A., and
Zoghi, M. Contextual dueling bandits. In Proceedings of the 28th
Conference on Learning Theory (2015).

[43] Dupret, G. E., and Piwowarski, B. A user browsing model to
predict search engine click data from past observations. In Proceedings
of the 31st annual international ACM SIGIR conference on Research
and development in information retrieval (2008), ACM, pp. 331–338.

[44] Frøkjær, E., Hertzum, M., and Hornbæk, K. Measuring usabil-
ity: are effectiveness, efficiency, and satisfaction really correlated? In
Proceedings of the SIGCHI conference on Human Factors in Comput-
ing Systems (2000), ACM, pp. 345–352.

[45] Gajane, P., Urvoy, T., and Clérot, F. A relative exponen-
tial weighing algorithm for adversarial utility-based dueling bandits.
In Proceedings of the 32Nd International Conference on Interna-
tional Conference on Machine Learning - Volume 37 (2015), ICML’15,
JMLR.org, pp. 218–227.

[46] Granka, L. A., Joachims, T., and Gay, G. Eye-tracking analysis
of user behavior in www search. In Proceedings of the 27th annual
international ACM SIGIR conference on Research and development in
information retrieval (2004), ACM, pp. 478–479.

[47] Guha, R., McCool, R., and Miller, E. Semantic search. In
Proceedings of the 12th international conference on World Wide Web
(2003), ACM, pp. 700–709.

[48] Guo, F., Liu, C., Kannan, A., Minka, T., Taylor, M., Wang,
Y.-M., and Faloutsos, C. Click chain model in web search. In
Proceedings of the 18th international conference on World wide web
(2009), ACM, pp. 11–20.

[49] Guo, F., Liu, C., and Wang, Y. M. Efficient multiple-click models
in web search. In Proceedings of the Second ACM International Con-
ference on Web Search and Data Mining (2009), ACM, pp. 124–131.



BIBLIOGRAPHY 87

[50] Harman, D. Overview of the second text retrieval conference (trec-2).
Information Processing & Management 31, 3 (1995), 271–289.

[51] Hassan, A., Shi, X., Craswell, N., and Ramsey, B. Beyond
clicks: query reformulation as a predictor of search satisfaction. In
Proceedings of the 22nd ACM international conference on Conference
on information & knowledge management (2013), ACM, pp. 2019–
2028.

[52] Hersh, W., Turpin, A., Price, S., Kraemer, D., Olson, D.,
Chan, B., and Sacherek, L. Challenging conventional assumptions
of automated information retrieval with real users: Boolean searching
and batch retrieval evaluations. Information Processing & Manage-
ment 37, 3 (2001), 383–402.

[53] Hofmann, K., Li, L., Radlinski, F., et al. Online evaluation
for information retrieval. Foundations and Trends R© in Information
Retrieval 10, 1 (2016), 1–117.

[54] Hofmann, K., Whiteson, S., and de Rijke, M. Balancing ex-
ploration and exploitation in learning to rank online. In Advances in
Information Retrieval. Springer, 2011, pp. 251–263.

[55] Hofmann, K., Whiteson, S., and de Rijke, M. A probabilistic
method for inferring preferences from clicks. In Proceedings of the 20th
ACM international conference on Information and knowledge manage-
ment (2011), ACM, pp. 249–258.

[56] Hofmann, K., Whiteson, S., and Rijke, M. D. Fidelity, sound-
ness, and efficiency of interleaved comparison methods. ACM Trans-
actions on Information Systems (TOIS) 31, 4 (2013), 17.

[57] Huang, J., White, R. W., and Dumais, S. No clicks, no problem:
using cursor movements to understand and improve search. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems (2011), ACM, pp. 1225–1234.

[58] Joachims, T., Granka, L., Pan, B., Hembrooke, H., and Gay,
G. Accurately interpreting clickthrough data as implicit feedback. In
Proceedings of the 28th annual international ACM SIGIR conference
on Research and development in information retrieval (2005), Acm,
pp. 154–161.

[59] Jøsang, A., Ismail, R., and Boyd, C. A survey of trust and rep-
utation systems for online service provision. Decision support systems
43, 2 (2007), 618–644.

[60] Kanoulas, E. A short survey on online and offline methods for search
quality evaluation. In Information Retrieval. Springer International
Publishing, 2016, pp. 38–87.

[61] Kanoulas, E., and Aslam, J. A. Empirical justification of the
gain and discount function for ndcg. In Proceedings of the 18th ACM
conference on Information and knowledge management (2009), ACM,
pp. 611–620.



88 BIBLIOGRAPHY

[62] Kelly, D., et al. Methods for evaluating interactive information
retrieval systems with users. Foundations and Trends R© in Information
Retrieval 3, 1–2 (2009), 1–224.

[63] Kelly, D., and Teevan, J. Implicit feedback for inferring user
preference: a bibliography. In ACM SIGIR Forum (2003), vol. 37,
ACM, pp. 18–28.

[64] Keskustalo, H., Järvelin, K., and Pirkola, A. Evaluating the
effectiveness of relevance feedback based on a user simulation model:
effects of a user scenario on cumulated gain value. Information Re-
trieval 11, 3 (2008), 209–228.

[65] Kharitonov, E., Drutsa, A., and Serdyukov, P. Learning sensi-
tive combinations of a/b test metrics. In Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining (2017),
ACM, pp. 651–659.

[66] Kharitonov, E., Macdonald, C., Serdyukov, P., and Ounis,
I. Generalized team draft interleaving. In Proceedings of the 24th ACM
International on Conference on Information and Knowledge Manage-
ment (2015), ACM, pp. 773–782.

[67] Kharitonov, E., Macdonald, C., Serdyukov, P., and Ounis, I.
Optimised scheduling of online experiments. In Proceedings of the 38th
International ACM SIGIR Conference on Research and Development
in Information Retrieval (2015), ACM, pp. 453–462.

[68] Kharitonov, E., Vorobev, A., Macdonald, C., Serdyukov,
P., and Ounis, I. Sequential testing for early stopping of online ex-
periments. In Proceedings of the 38th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval (2015),
ACM, pp. 473–482.

[69] Kohavi, R., Deng, A., Frasca, B., Longbotham, R., Walker,
T., and Xu, Y. Trustworthy online controlled experiments: Five puz-
zling outcomes explained. In Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data mining
(2012), ACM, pp. 786–794.

[70] Kohavi, R., Deng, A., Frasca, B., Walker, T., Xu, Y., and
Pohlmann, N. Online controlled experiments at large scale. In
Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining (2013), ACM, pp. 1168–1176.

[71] Kohavi, R., Longbotham, R., Sommerfield, D., and Henne,
R. M. Controlled experiments on the web: survey and practical guide.
Data mining and knowledge discovery 18, 1 (2009), 140–181.

[72] Komiyama, J., Honda, J., Kashima, H., and Nakagawa, H.
Regret lower bound and optimal algorithm in dueling bandit problem.
arXiv preprint arXiv:1506.02550 (2015).

[73] Komiyama, J., Honda, J., and Nakagawa, H. Optimal regret
analysis of thompson sampling in stochastic multi-armed bandit prob-
lem with multiple plays. arXiv preprint arXiv:1506.00779 (2015).



BIBLIOGRAPHY 89

[74] Komiyama, J., Honda, J., and Nakagawa, H. Copeland dueling
bandit problem: Regret lower bound, optimal algorithm, and compu-
tationally efficient algorithm. arXiv preprint arXiv:1605.01677 (2016).

[75] Langford, J., Strehl, A., and Wortman, J. Exploration scav-
enging. In Proceedings of the 25th international conference on Machine
learning (2008), ACM, pp. 528–535.

[76] Li, J., Huffman, S., and Tokuda, A. Good abandonment in mo-
bile and pc internet search. In Proceedings of the 32nd international
ACM SIGIR conference on Research and development in information
retrieval (2009), ACM, pp. 43–50.

[77] Li, L., Kim, J. Y., and Zitouni, I. Toward predicting the out-
come of an a/b experiment for search relevance. In Proceedings of
the Eighth ACM International Conference on Web Search and Data
Mining (2015), ACM, pp. 37–46.

[78] Liu, T.-Y., et al. Learning to rank for information retrieval. Foun-
dations and Trends R© in Information Retrieval 3, 3 (2009), 225–331.

[79] Manning, C. D., Raghavan, P., Schütze, H., et al. Introduction
to information retrieval. Cambridge university press Cambridge, 2008.

[80] Maxwell, D., and Azzopardi, L. Simulating interactive infor-
mation retrieval: Simiir: A framework for the simulation of interac-
tion. In Proceedings of the 39th International ACM SIGIR conference
on Research and Development in Information Retrieval (2016), ACM,
pp. 1141–1144.

[81] Mizzaro, S. How many relevances in information retrieval? Inter-
acting with computers 10, 3 (1998), 303–320.

[82] Murdock, V., and Lalmas, M. Workshop on aggregated search.
In ACM SIGIR Forum (2008), vol. 42, ACM, pp. 80–83.

[83] Nolting, M., and von Seggern, J. E. Context-based a/b test
validation. In Proceedings of the 25th International Conference Com-
panion on World Wide Web (2016), International World Wide Web
Conferences Steering Committee, pp. 277–278.

[84] Nowak, S., and Rüger, S. How reliable are annotations via crowd-
sourcing: a study about inter-annotator agreement for multi-label im-
age annotation. In Proceedings of the international conference on Mul-
timedia information retrieval (2010), ACM, pp. 557–566.

[85] Oosterhuis, H., Schuth, A., and de Rijke, M. Probabilistic
multileave gradient descent. In European Conference on Information
Retrieval (2016), Springer, pp. 661–668.

[86] Page, L., Brin, S., Motwani, R., and Winograd, T. The pager-
ank citation ranking: Bringing order to the web. Tech. rep., Stanford
InfoLab, 1999.



90 BIBLIOGRAPHY

[87] Pandelis, D. G., and Teneketzis, D. On the optimality of the
gittins index rule for multi-armed bandits with multiple plays. Math-
ematical Methods of Operations Research 50, 3 (1999), 449–461.

[88] Park, T. K. The nature of relevance in information retrieval: An
empirical study. The library quarterly 63, 3 (1993), 318–351.

[89] Radlinski, F., and Craswell, N. Optimized interleaving for online
retrieval evaluation. In Proceedings of the sixth ACM international
conference on Web search and data mining (2013), ACM, pp. 245–
254.

[90] Radlinski, F., Kurup, M., and Joachims, T. How does click-
through data reflect retrieval quality? In Proceedings of the 17th ACM
conference on Information and knowledge management (2008), ACM,
pp. 43–52.

[91] Robertson, S., Zaragoza, H., et al. The probabilistic relevance
framework: Bm25 and beyond. Foundations and Trends R© in Infor-
mation Retrieval 3, 4 (2009), 333–389.

[92] Robertson, S. E. The probability ranking principle in ir. Journal of
documentation 33, 4 (1977), 294–304.

[93] Salojärvi, J., Kojo, I., Simola, J., and Kaski, S. Can relevance
be inferred from eye movements in information retrieval. In Proceedings
of WSOM (2003), vol. 3, pp. 261–266.

[94] Salton, G. Associative document retrieval techniques using biblio-
graphic information. Journal of the ACM (JACM) 10, 4 (1963), 440–
457.

[95] Salton, G., and Buckley, C. Term-weighting approaches in au-
tomatic text retrieval. Information processing & management 24, 5
(1988), 513–523.

[96] Sanderson, M. Test collection based evaluation of information re-
trieval systems. Now Publishers Inc, 2010.

[97] Sanderson, M., Paramita, M. L., Clough, P., and Kanoulas,
E. Do user preferences and evaluation measures line up? In Proceed-
ings of the 33rd international ACM SIGIR conference on Research and
development in information retrieval (2010), ACM, pp. 555–562.

[98] Schuth, A., Bruintjes, R.-J., Buüttner, F., van Doorn, J.,
Groenland, C., Oosterhuis, H., Tran, C.-N., Veeling, B.,
van der Velde, J., Wechsler, R., et al. Probabilistic multileave
for online retrieval evaluation. In Proceedings of the 38th International
ACM SIGIR Conference on Research and Development in Information
Retrieval (2015), ACM, pp. 955–958.

[99] Schuth, A., Hofmann, K., and Radlinski, F. Predicting search
satisfaction metrics with interleaved comparisons. In Proceedings of
the 38th International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (2015), ACM, pp. 463–472.



BIBLIOGRAPHY 91

[100] Schuth, A., Hofmann, K., Whiteson, S., and de Rijke, M.
Lerot: An online learning to rank framework. In Proceedings of
the 2013 workshop on Living labs for information retrieval evaluation
(2013), ACM, pp. 23–26.

[101] Schuth, A., Oosterhuis, H., Whiteson, S., and de Rijke, M.
Multileave gradient descent for fast online learning to rank. In Pro-
ceedings of the Ninth ACM International Conference on Web Search
and Data Mining (2016), ACM, pp. 457–466.

[102] Schuth, A., Sietsma, F., Whiteson, S., Lefortier, D., and
de Rijke, M. Multileaved comparisons for fast online evaluation. In
Proceedings of the 23rd ACM International Conference on Conference
on Information and Knowledge Management (2014), ACM, pp. 71–80.

[103] Seldin, Y., and Lugosi, G. An improved parametrization and anal-
ysis of the exp3++ algorithm for stochastic and adversarial bandits.
arXiv preprint arXiv:1702.06103 (2017).

[104] Seldin, Y., and Slivkins, A. One practical algorithm for both
stochastic and adversarial bandits. In Proceedings of the 31th Interna-
tional Conference on Machine Learning, ICML 2014, Beijing, China,
21-26 June 2014 (2014), pp. 1287–1295.

[105] Sparck Jones, K. A statistical interpretation of term specificity and
its application in retrieval. Journal of documentation 28, 1 (1972),
11–21.

[106] Sui, Y., and Burdick, J. Clinical online recommendation with sub-
group rank feedback. In Proceedings of the 8th ACM Conference on
Recommender systems (2014), ACM, pp. 289–292.

[107] Sui, Y., Zhuang, V., Burdick, J. W., and Yue, Y. Multi-dueling
bandits with dependent arms. arXiv preprint arXiv:1705.00253
(2017).

[108] Swaminathan, A., and Joachims, T. Batch learning from logged
bandit feedback through counterfactual risk minimization. Journal of
Machine Learning Research 16 (2015), 1731–1755.

[109] Swaminathan, A., and Joachims, T. Counterfactual risk minimiza-
tion: Learning from logged bandit feedback. In Proceedings of the 32nd
International Conference on Machine Learning (2015), pp. 814–823.

[110] Swaminathan, A., and Joachims, T. The self-normalized estima-
tor for counterfactual learning. In Advances in Neural Information
Processing Systems (2015), pp. 3231–3239.

[111] Swaminathan, A., Krishnamurthy, A., Agarwal, A., Dud́ık,
M., Langford, J., Jose, D., and Zitouni, I. Off-policy evaluation
for slate recommendation. arXiv preprint arXiv:1605.04812 (2016).

[112] Tang, D., Agarwal, A., O’Brien, D., and Meyer, M. Overlap-
ping experiment infrastructure: More, better, faster experimentation.
In Proceedings of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining (2010), ACM, pp. 17–26.



92 BIBLIOGRAPHY

[113] Teevan, J., Dumais, S. T., and Horvitz, E. Potential for per-
sonalization. ACM Transactions on Computer-Human Interaction
(TOCHI) 17, 1 (2010), 4.

[114] Turney, P. D., and Pantel, P. From frequency to meaning: Vector
space models of semantics. Journal of artificial intelligence research
37 (2010), 141–188.

[115] Turtle, H. Natural language vs. boolean query evaluation: A com-
parison of retrieval performance. In Proceedings of the 17th annual
international ACM SIGIR conference on Research and development in
information retrieval (1994), Springer-Verlag New York, Inc., pp. 212–
220.

[116] Uchiya, T., Nakamura, A., and Kudo, M. Algorithms for adver-
sarial bandit problems with multiple plays. In International Confer-
ence on Algorithmic Learning Theory (2010), Springer, pp. 375–389.

[117] Urvoy, T., Clerot, F., Féraud, R., and Naamane, S. Generic
exploration and k-armed voting bandits. In Proceedings of the 30th
International Conference on Machine Learning (ICML-13) (2013),
pp. 91–99.

[118] Voorhees, E. M. The philosophy of information retrieval evaluation.
In Workshop of the Cross-Language Evaluation Forum for European
Languages (2001), Springer, pp. 355–370.

[119] Wang, X., Bendersky, M., Metzler, D., and Najork, M.
Learning to rank with selection bias in personal search. In Proceed-
ings of the 39th International ACM SIGIR conference on Research and
Development in Information Retrieval (2016), ACM, pp. 115–124.

[120] Wang, Y., Wang, L., Li, Y., He, D., Chen, W., and Liu, T.-Y.
A theoretical analysis of ndcg ranking measures. In Proceedings of the
26th Annual Conference on Learning Theory (COLT 2013) (2013).

[121] Wasserman, L. All of statistics: a concise course in statistical infer-
ence. Springer Science & Business Media, 2013.

[122] Wu, H., and Liu, X. Double thompson sampling for dueling ban-
dits. In Advances in Neural Information Processing Systems (2016),
pp. 649–657.

[123] Yue, Y., Broder, J., Kleinberg, R., and Joachims, T. The
k-armed dueling bandits problem. Journal of Computer and System
Sciences 78, 5 (2012), 1538–1556.

[124] Yue, Y., and Joachims, T. Interactively optimizing information
retrieval systems as a dueling bandits problem. In Proceedings of the
26th Annual International Conference on Machine Learning (2009),
ACM, pp. 1201–1208.

[125] Yue, Y., and Joachims, T. Beat the mean bandit. In Proceedings
of the 28th International Conference on Machine Learning (ICML-11)
(2011), pp. 241–248.



BIBLIOGRAPHY 93

[126] Yue, Y., Patel, R., and Roehrig, H. Beyond position bias: Ex-
amining result attractiveness as a source of presentation bias in click-
through data. In Proceedings of the 19th international conference on
World wide web (2010), ACM, pp. 1011–1018.

[127] Zhai, C., and Lafferty, J. A study of smoothing methods for
language models applied to ad hoc information retrieval. In Proceedings
of the 24th annual international ACM SIGIR conference on Research
and development in information retrieval (2001), ACM, pp. 334–342.

[128] Zhou, K., Cummins, R., Lalmas, M., and Jose, J. M. Evaluat-
ing aggregated search pages. In Proceedings of the 35th international
ACM SIGIR conference on Research and development in information
retrieval (2012), ACM, pp. 115–124.

[129] Zobel, J. How reliable are the results of large-scale information re-
trieval experiments? In Proceedings of the 21st annual international
ACM SIGIR conference on Research and development in information
retrieval (1998), ACM, pp. 307–314.

[130] Zoghi, M., Karnin, Z. S., Whiteson, S., and De Rijke, M.
Copeland dueling bandits. In Advances in Neural Information Pro-
cessing Systems (2015), pp. 307–315.

[131] Zoghi, M., Whiteson, S., and de Rijke, M. Mergerucb: A
method for large-scale online ranker evaluation. In Proceedings of the
Eighth ACM International Conference on Web Search and Data Min-
ing (2015), ACM, pp. 17–26.

[132] Zoghi, M., Whiteson, S., Munos, R., Rijke, M. d., et al. Rel-
ative upper confidence bound for the k-armed dueling bandit prob-
lem. In JMLR Workshop and Conference Proceedings (2014), JMLR,
pp. 10–18.

[133] Zoghi, M., Whiteson, S. A., de Rijke, M., and Munos, R.
Relative confidence sampling for efficient on-line ranker evaluation. In
Proceedings of the 7th ACM international conference on Web search
and data mining (2014), ACM, pp. 73–82.


	Abstract
	Dedication
	Acknowledgements
	Introduction
	Online Evaluation in Information Retrieval
	Offline Evaluation
	Lab-based Studies
	Online Evaluation
	Exploration-Exploitation Tradeoff

	Main Contributions
	Thesis Overview

	Background
	Information Retrieval
	Ranking Models
	Personalization
	Aggregated Search
	Fundamentals of IR evaluation

	Offline Evaluation of IR Systems
	Relevance Judgements
	Metrics
	User Studies

	Online Evaluation of IR Systems
	Interpeting Click Feedback
	Click Models
	A/B Testing
	Interleaving
	Multileaving
	Counterfactual Evaluation

	Online Learning
	Bandits
	Dueling Bandits
	Bandits with Multiple Plays


	Multileaving for Online Ranker Evaluation
	Problem Setting
	Sample-Only Scored Multileaving
	Algorithm
	Experimental Evaluation
	Conclusions

	Multileaving Using Importance Sampling
	Motivation
	Algorithm
	Experimental Evaluation
	Conclusions


	Online Learning
	Multi-Dueling Bandits
	Problem Setting
	Algorithm
	Experimental Evaluation
	Conclusions

	Bandits with Multiple Plays
	Problem Setting
	Algorithm
	Experimental Evaluation
	Conclusions


	Conclusions and Future Work
	Multileaving
	Exploration-Exploitation Tradeoff
	Other Future Work


