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Abstract

Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI or DWI) is a
non-invasive scanning protocol aimed at inferring the structure of biological
tissue by tracking the movement of water molecules. As molecules diffuse
along and around obstacles, in-vivo images of the diffusion can be used
to reconstruct the minuscule anatomy that would otherwise be invisible
in standard MRI. The applications of DWI ranges from tumor detection to
tracing the neuronal pathways connecting the brain.

DWI is also a complex modality and difficult to both validate and compare.
The data is directional and exhibits a non-linear behaviour for high-resolution
images. It requires longer scanning times and high magnetic gradients, re-
sulting in an increased amount of noise from motion and external factors.
DWI also has no gold standard datasets for comparable quantitative vali-
dation. Group studies often present results through private segmentations
from trained experts or by qualitative visual evaluation. This is a significant
problem as DWI is becoming an issue of Big Data due to increasing amounts
of open and freely available datasets. As such, our first contribution is a
critical review of image registration and validation of group-wise alignment
of DWI. We investigate common approaches to compare DWI data in terms
of voxel- and connectivity-based methods.

Image registration is the process of spatially aligning images in a way that
allow us to define a shared coordinate system between them. For DWI, the
reorientation of the directional information presents a difficult challenge.
In many cases, DWI is simply registered using standard 3D algorithms
and without considering their non-linear relationship. Our second contribu-
tion is a density-based scale-space formulation for DWI that gives access to
information-theoretic similarity measures, based on the full diffusion profile.
The presented framework is a global registration method that optimizes the
mutual information between DWI with explicit reorientation of the gradient
vectors. We show that the directional scale is important for aligning DWI.
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Nonrigid image registration allows for local warping of images and is an
essential part of spatial alignments. While few studies compare the perfor-
mance of nonrigid methods used for DWI, it is clear that the gold standards
of nonrigid registration algorithms are those designed to include the an-
gular information as a direct part of the registration. Our third and final
contribution is a nonrigid extension of the framework for density-based DWI
registration. We present the full analytical solution and demonstrate it on
simulated and synthetically warped DWI, finding empirical evidence of a
preservation of the underlying DWI structure during registration. As design-
ing such algorithms is non-trivial and a significant computational challenge
in terms of time, memory and numerical precision, we also append a section
on how the framework was implemented to make it computationally feasible.
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Resumé

Diffusionsvægtet magnetisk resonansbilleddannelse (DW-MR eller DWI) er
en ikke-invasiv scanningsprotokol, der sigter mod at udlede strukturen af
biologisk væv ved at spore bevægelsen af vandmolekyler. Da molekyler dif-
funderer langs og omkring forhindringer, kan in-vivo billeder af diffusionen
bruges til at rekonstruere den mikroskopiske anatomi, der ellers ville være
usynlig i standard MR. Anvendelserne af DWI spænder fra tumordetektion
til sporing af de neuronale veje, som forbinder hjernen.

DWI er også en kompleks modalitet og vanskelig at både validere og sam-
menligne. Data er retningsbestemt og udviser en ikke-lineær adfærd for
billeder i høj opløsning. Det kræver længere scanningstider og høje mag-
netiske gradienter, hvilket resulterer i en øget mængde støj fra bevægelse
og eksterne faktorer. DWI har heller intet guldstandard datasæt til sammen-
lignelig kvantitativ validering. Gruppestudier præsenterer ofte resultater
gennem private segmenteringer fra uddannede eksperter eller ved kvalitativ
visuel evaluering. Dette er et væsentligt problem, da DWI bliver et Big Data
problem på grund af stigende mængder åbne og frit tilgængelige datasæt.
Derfor er vores første bidrag en kritisk gennemgang af billedregistrering
og validering af gruppevis sammenligning af DWI. Vi undersøger fælles
fremgangsmåder til at sammenligne DWI-data med hensyn til voxel- og
konnektivitetsbaserede metoder.

Billedregistrering går ud på at transformere billeder på en måde, der giver
os mulighed for at definere et fælles koordinatsystem mellem billederne.
For DWI udgør reorienteringen af retningsvektorerne en vanskelig udfor-
dring. I mange tilfælde registreres DWI simpelthen ved hjælp af standard
3D-algoritmer og uden at overveje deres ikke-lineære forhold. Vores andet
bidrag er en tæthedsbaseret skalarumsformulering til DWI, der giver adgang
til informationsteoretiske similaritetsmål baseret på den fulde diffusionsprofil.
Det præsenterede program er en global registreringsmetode, der optimerer
den gensidige information mellem DWI med eksplicit omorientering af gra-
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dientvektorer. Vi viser, at retningskalaen er vigtig for at sammenligne DWI.

Ikke-rigid billedregistrering muliggør lokal transformation af billeder og
er en væsentlig del af rumlige tilpasninger. Selv om få undersøgelser sam-
menligner præstationer af ikke-rigide metoder, der anvendes til DWI, er
det klart, at guldstandarderne for ikke-rigid registreringsalgoritmer er dem,
der er designet til at inkludere retningsinformationen som en direkte del af
registreringen. Vores tredje og sidste bidrag er en ikke-rigid udvidelse af
programmet for tæthedsbaseret DWI-registrering. Vi præsenterer den fulde
analytiske løsning og demonstrerer den på simuleret og kunstigt deformeret
DWI, hvor der findes empiriske beviser for bevarelse af den underliggende
DWI struktur under registrering. Da det at designe sådanne algoritmer ikke
er trivielt, og da der er betydelige beregningsmæssige udfordringer med hen-
syn til tid, hukommelse og numerisk præcision, tilføjer vi også et afsnit om,
hvordan programmet blev implementeret for at gøre det beregningsmæssigt
realistisk.
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1 Introduction

More than half a century ago, the medical imaging community started on the
challenging journey towards the ability to study the in-vivo human brain in
a non-invasive and non-harmful way, by using magnetic resonance imaging
(MRI) [Carr and Purcell, 1954]. Soon after, with the emergence of diffusion-
weighted MRI (DW-MRI, or simply DWI) [Stejskal and Tanner, 1965], re-
searchers began to probe the microstructural tissue through the displacement
of water molecules, and in 1986 it was introduced in clinical practice as a
diagnostic tool for neurological disorders [Le Bihan et al., 1986]. With the
introduction of diffusion tensor imaging (DTI) [Basser et al., 1994], computa-
tional methods for DWI became a highly popular area of research and grew
to become one of the great challenges of the 21st century. Today, we can with
increasing certainty visualize the neurological pathways connecting the brain
- even as multiple fibers cross each other in a single voxel of a 3-dimensional
image. However, between the inter-variability of brains and the low spatial
resolution of DWI, the field has never settled on a gold standard or ground
truth dataset for automatic validation. New methods, that aim to model the
diffusion and use it to reconstruct the underlying anatomy, often rely on
trained experts to manually segment the data for a quantifiable result. And
yet, the need for automated evaluation has steadily been growing. Large
open datasets are emerging, containing thousands of DWI scans, multiple
image modalities, and biometric data. Increasing computational efficiency
and high-resolution acquisitions are resulting in incredibly detailed DWI
reconstructions, making it harder for trained experts to discern and delineate
subtle differences. To properly validate new findings in DWI, the results
should be both reproducible across multiple subjects and verifiable by other
state-of-the-art reconstruction methods. Nevertheless, group-wise analysis
remains one of the great challenges in DWI [Mangin et al., 2016].
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1.1. Motivation

1.1 Motivation

The work and motivation of this dissertation revolve around automated
group-wise alignment of DWI data and obtaining a better understanding of
the state and future of DWI analysis. One of the major problems in comparing
DWI scans is that they are relatively noisy and difficult to normalize between
subjects and scanners. Combined with the increasing interest in multimodal
imaging, aligning scans based on information-theoretic similarity measures
is an obvious choice, as these have convenient invariance properties and
can model unknown statistical relationships. However, these measures are
coupled to scalar images, and we believe that there is be much to be gained
by extending them to include the orientational information of DWI.

1.2 Outline

This dissertation is divided into six chapters. Excluding the first, Chapter 2
introduces the core topics by providing a brief layman’s introduction to
image registration and diffusion-weighted MRI. The basic steps in a typical
registration framework are covered, and the DWI terminology relevant for
this dissertation is explained along with some of the different types of data
acquisitions and computational diffusion models. In Chapter 3, the state
of group-wise alignment, registration, and validation of DWI is extensively
reviewed. Approaches to voxel-based registration of popular DWI acquisi-
tions are presented with a focus on how registration methods are designed
for the directional DWI data. An equal focus is on how tractography is
compared and used in group studies that focus on the alignment. Validation
is discussed throughout the review. Chapter 4 presents a new scale-space
formulation for information-theoretic similarity measures in DWI registration.
Global affine registration with Mutual Information is used to examine the
properties of the scale-space induced by the intensity and spatio-directional
kernels. In Chapter 5, the scale-space formulation is extended to a nonrigid
registration framework. This density-based formulation is applied to DWI
data in an approach that explicitly accounts for the reorientation of the full
diffusion profile, while also defining the statistical relationship between DWI
through Normalized Mutual Information. Finally, Chapter 6 summarizes the
work performed and reflect upon current and future challenges.
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1.3. Contribution

1.3 Contribution

There are three primary contributions in this dissertation: (i) A review of
DWI, (ii) an information-theoretic similarity measures for DWI, and (iii) a
full nonrigid registration framework for DWI.

I A comprehensive review of registration and validation for group-
wise alignment in DWI of the human brain

The first and most recent contribution is an extensive review of image regis-
tration methods and group-wise alignment of the human brain in DWI. The
manuscript related to this contribution gives a high-level critical overview of
recent approaches to the challenging task of group-wise analysis and vali-
dation of DWI. We cover both voxel-based and fiber tract-based registration
in order to form a wholesome impression of the current state of DWI at a
group level, and the challenges and opportunities the community face with a
growing amount of publicly available high-quality data. This contribution
can be found in Chapter 3.

Related journal manuscript:

Critical Issues in the Registration and Validation of Group-wise Alignment of
Diffusion-Weighted Imaging. Manuscript accepted for submission to Human
Brain Mapping (HBM), 2018.

II A scale-space formulation for DWI that introduces information-
theoretic similarity measure to group-wise DWI registration

The second contribution is a scale-space formulation for DWI that offers
explicit control of the orientation, spatial, intensity and integration scale. This
new framework extends the Locally Orderless Registration formulation by
[Darkner and Sporring, 2013] to DWI, and it is likely the first definition of a
DWI-based cost function that optimizes explicitly over both the spatial and
directional domain based on a non-linear information-theoretic similarity
measure. Such measures have been shown to be robust to the extensive
noise and artifacts present in the sensitive DWI scans. In the corresponding
paper, we illustrate the application of the density estimate by affine image
registration of DWI using Mutual Information. This contribution can be
found in Chapter 4.
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1.3. Contribution

Related conference paper:

Locally Orderless Registration for Diffusion Weighted Images. Conference
paper. Accepted at Medical Image Computing and Computer-Assisted
Intervention (MICCAI), 2015.

III A nonrigid density-based registration framework and scale-
space formulation for DWI with explicit reorientation

The third contribution is a nonrigid voxel-based registration framework based
on the scale-space formulation for DWI. It is the culmination of our aim to
create a density-based framework that allows for nonrigid registration of two
DWI over their full diffusion profiles, while at the same time optimizing a
similarity measure that reflects the non-linear statistical relationship in DWI
data. The contribution lies mainly in the analytical formulation but also
in the implementation itself, given the computational complexity of such a
method. While demonstrating the framework on simulated examples and
synthetically warped real data, we provide empirical evidence of how the
underlying structure of the DWI data is preserved during registration. This
contribution can be found in Chapter 5.

Related conference abstract:

Density-Based Nonrigid Registration of Diffusion-Weighted Images. Conference
abstract. Accepted at International Society for Magnetic Resonance in
Medicine (ISMRM), 2017.

Related journal manuscript:

Information-Theoretic Registration with Explicit Reorientation of Diffusion-
Weighted Images. Manuscript intended for submission to Transactions
on Pattern Analysis and Machine Intelligence (TPAMI), 2018.
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2 A Preamble on Image Registration
and Diffusion-Weighted Imaging

The purpose of this chapter is to give a brief layman’s introduction to image
registration and to diffusion-weighted MRI images. It can be skipped if one
is already familiar with these concepts. However, it also serves the purpose
of reducing ambiguity by specifying the terminology and wording used in
the rest of the dissertation.

2.1 Image Registration

Image registration refers to a set of transformations that aligns two or more
images into a shared coordinate system. This process is also referred to as
spatial normalization or as data harmonization.

Figure 2.1: It can be difficult to identify similar structures across complex images,
which is where image registration comes in. This illustration was created
from the white matter segmentations of two HCP subjects.

Image registration is an ill-posed problem [Sotiras et al., 2013]. In medical
image analysis, registration is often associated with aligning existing anatom-
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2.1. Image Registration

ical labels (an atlas) to the image of a patient for navigation and automatic
labeling. It can also be used to create a population average (a template),
which can help differentiate between groups of patients, e.g. sick and healthy.
Alternatively, registration can show how much a tumor has evolved by align-
ing images of the same patient taken at different points in time [Brown, 1992].
In such a case, the focus would be on how much the images have to be
transformed to be aligned. Knowing the difference or similarity between
images can also help in diagnosis by looking at the temporal changes within
a patient, or by comparing the patient with other healthy or sick populations
[Maes et al., 1997]. While image registration is a well-researched field for 2D
and 3D images, it is at an early stage when it comes diffusion-weighted MRI
as it is both spatial and directional.

We will refer to the image being transformed as the moving image I and the
stationary image as the target image J . Our goal is to align these images
under a transformation Φ given a regularity condition S(Φ) and a similarity
F (I ◦Φ,J), such that our cost functionM(I ,J , Φ) is minimized:

M(I ,J , Φ) = F (I ◦Φ,J) + S(Φ) (2.1)

The circle-operator should be read as the function composition Φ(I) or "Φ
applied to I". While the focus of this dissertation is on the similarity measure
F , this formulation is the foundation of our work, and we briefly cover the
individual parts of eq. (2.1).

The Transformation

In image registration, a transformation model Φ can be divided into a global
and a local transformation. The global transformation will be a linear model
that is either rigid or affine. The local or nonrigid model is often non-linear
and defined as a set of local affine transformations. See Figure 2.2 for a quick
overview.

For a global transformation model applied to a 3D image, we add 3 parame-
ters or degrees of freedom for each type of transformation, which means that
the rigid transformation has 6 and the affine 12 degrees of freedom. A non-
rigid registration framework is a combination of global and local registration,
and we write the transform φ(x) of a vector or point x as

φ(x) = φ(x)global ◦ φ(x)local. (2.2)

The transformation gives us a set of new coordinates, which we use to inter-
polate the data in the target image, evaluate the similarity, and update the
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2.1. Image Registration

Figure 2.2: Different degrees of transformation. Increasing in complexity from
left to right, each figure illustrates a deformation applied to a regular
grid, which in turn represents the coordinate system of an image at
the initial scale (e.g. an intensity or pixel value at every square). From
[Jensen, 2014].

transformation in an iterative optimization process. A successful result is a
spatial map, that for any point x in I returns the corresponding point in J .

In Chapter 4, we present the scale-space model and information-theoretic
similarity measure based on a global affine transformation. In Chapter 5, it
is extended to a nonrigid local transformation.

The Regularization

The regularity condition S is a bias added to the deformation to prevent
overfitting. For image registration, it regularizes the flexibility of the regis-
tration by assigning a high cost to undesirable transformations. Too heavy
a regularization means that the image cannot be deformed enough for a
sufficient alignment, while too little regularization likely means that the
transformation will create unrealistic overfitted solutions or even break apart.
Regularization is thus a trade-off between generalization and over-fitting.
To give an example, the microscopic structures in brain scans requires a
detailed alignment as illustrated in Figure 2.3. This entails that we minimize
the amount of regularization needed to get a flexible but still robust model.
However, with such complex images, we run the risk of matching structures
that might exist in one scan but not in the other. There is no easy way to
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2.1. Image Registration

Figure 2.3: The white matter segmentation of two rigidly aligned HCP subjects
(translation+rotation), one in green and the other in grey. While brains
are overall similar, aligning all the folds of the brain is not only extremely
difficult but also likely incorrect. Brains are not diffeomorphic.

define the amount of regularization needed without prior information about
the problem, and it is often left to the user to determine the flexibility. Yet,
if regularization prevents overfitting then more information in the image
should reduce the need for regularization [Hawkins, 2004].

It is our expectation that the voxels in DWI scans, that are rich in angular in-
formation, will create a more robust but flexible deformation for the nonrigid
model described in Chapter 5.

The Similarity

The similarity measure is defined by a single value, computed from an inter-
polation or some other pair-wise distance function associated with F . The
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2.1. Image Registration

choice of similarity measure depends on the type of data. If we compare im-
ages of the same modality, it is common to evaluate the pointwise differences
in intensities. However, if the goal is to compare different modalities of the
same image (e.g. CT vs MRI), it is better to define the similarity in terms of the
correlation and co-variance of the voxel intensities, which are more robust to
variations in illumination [Maes et al., 1997, Viola and Wells III, 1997]. The
definition of similarity is critical to what the final optimal alignment will be.

In this dissertation, we use intensity-invariant similarity measures, previ-
ously reserved for multi-modal scalar images, under the hypothesis that
inter-subject DWI scans are both noisy and vary in illumination in a com-
plicated or unknown way [Van Hecke et al., 2007]. Such measures have al-
ready been used with success in intra-subject (scalar) DWI registration for
both susceptibility-induced distortion correction [Bhushan et al., 2012], eddy-
current and body motion correction [Rohde et al., 2004], and more.

Schematic Overview

Registration is an optimization, where the cost function is minimized, based
on the similarity, given a regularized transformation. But there are other
steps involved. Figure 2.4 provides a more detailed overview of a typical
pipeline.

Interpolation

Optimization
Cost Function

(M)

Transformation
(T)

Similarity  
 Measure (F)

Regularization 
Term (S)

Transformation 
Model (Φ)Moving Image

(I)

Target Image
(J)

Figure 2.4: A standard pipeline for a registration framework. The iterative process of
optimization and transformation is illustrated by the circle of red arrows.
The pink highlighted symbols refers to the content of the previous
paragraphs.
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2.2. Diffusion-Weighted Magnetic Resonance Imaging

2.2 Diffusion-Weighted Magnetic Resonance Imaging

Figure 2.5: Illustration of a DTI-based tractography which we created with the
diffusion framework 3D Slicer [Norton et al., 2017] over HCP subject
103818 at b = 1000 [Van Essen et al., 2013].

Diffusion-weighted imaging (DWI) is a technique used to non-invasively trace
the movement of water molecules inside and outside cells in the body in order
to infer microstructural anatomy. One of the most popular applications of
DWI is imaging the white matter in brain scans [O’Donnell and Westin, 2011],
where it can be used to trace the neuronal fibers connecting the brain. The
hypothesis is that water molecules are more prone to diffuse along rather
than across the axons and fibers connecting different areas of the brain, as
illustrated Figure 2.6.

(a) (b)
Figure 2.6: Illustration of anisotropic and isotropic diffusion. To the left in (a),

we show a water molecule (blue) and its potential motion (red lines)
surrounded by fibrous tissue (e.g. white matter axons). This results in the
anisotropic model shown to the right in (a). (b) shows the unhindered
molecule and its potential isotropic motion. From [Jensen, 2014].

The anisotropic information in DWI lets researchers trace the white matter
fiber pathways by following the hindered directional motion of the diffusion
from one voxel to the next. Drawing lines along probable fiber pathways is
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2.2. Diffusion-Weighted Magnetic Resonance Imaging

called tractography and a large portion of DWI studies are concerned with
comparing brains on the structurally connected scale. An example of such
tractographies can be seen in Figure 2.5. It is important to bear in mind that
these streamlines are only qualified guesses at actual underlying anatomical
fibers and that most likely outline non-existing fibers. However, they serve
the useful purpose of outlining the white matter connecting the brain.

To show how we can go from Figure 2.6 to Figure 2.5, we go through the
basic and most popular elements of DWI in the following order:

1. The Apparent Diffusion Coefficient (ADC) which is the measure of the
magnitude of diffusion on average or in a given direction.

2. The Diffusion Tensor Imaging (DTI) is the simplest model used to describe
the diffusion in a voxel, and remains the most popular tool for DWI in
clinical practice.

3. Visualizations of tensor models and tractographies to further illustrate
the 4D structure of DWI.

4. Popular quantitative DTI measures such as Fractional Anisotropy (FA)
and Mean Diffusivity (MD).

5. The Orientation Density Function (ODF) and complex fiber structures.

6. HARDI, q-Ball Imaging (QBI), and the Funk-Radon Transform (FRT), which
can resolve fiber crossings.

7. DTI versus QBI, where we look at a pros and cons of each method.

The following paragraphs briefly covers the above topics.

The Apparent Diffusion Coefficient (ADC)

In structural MRI, the average diffusivity in a voxel is measured and con-
verted to a scalar intensity value at each voxel, which gives an image of
different types of tissue. In MRI, it is only the magnitude of the mean dif-
fusion that is relevant (bone has less diffusivity than fat, fat less than spinal
fluid, and so on). DWI is MRI with directional information, where we use the
directional movement of water molecules to probe the tissue structure at a
micrometer scale well beyond the usual millimeter MRI resolution. When we
measure diffusion in a specific direction, we measure the diffusion coefficient
which describes the ensemble average diffusion or mean-squared displace-
ment on a macroscopic level, caused by erratic random movement of particles
on a microscopic level, also referred to as Brownian motion [Einstein, 1905].
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2.2. Diffusion-Weighted Magnetic Resonance Imaging

This averaged diffusion is not free within a voxel of biological tissue, and
we refer to the diffusion measured in any direction as the Apparent Diffusion
Coefficient or ADC. It is important to note that the ADC is used in two differ-
ent contexts: One defines it as the observed mean diffusion rate in a given
direction, while the other defines it as the overall mean diffusivity (MD).
We use the first definition which is less ambiguous, and instead we define
the MD as the average ADC. By letting the ADC be the set of diffusivity
measurements, we need a model that describes the shape or profile of the
diffusion in a voxel.

Diffusion Tensor Imaging (DTI)

Figure 2.7: Illustration of the three types of diffusion in a single DTI model: (A)
λ1 >> λ2 ≈ λ3, (B) λ1 ≈ λ2 >> λ3, (C) λ1 ≈ λ2 ≈ λ3. From
[Jensen, 2014].

In 1965 Stejskal and Tanner presented a formulation to calculate the diffusion
coefficient based on their scanner sequence [Stejskal and Tanner, 1965], which
was simplified by [Le Bihan et al., 1986] who introduced the b-value, and
finally it was extended to a 2nd order tensor model by [Basser et al., 1994] to
describe anisotropic diffusion. The following equation is the foundation of
Diffusion Tensor Imaging (DTI), which remains the most clinically used DWI
method [Zucchelli et al., 2017]. It is defined as

S = S0 e−b gTDg (2.3)

where S0 is the signal without any diffusion gradients, the b-value is all the
acquisition-dependent gradient terms gathered in a single scalar parameter
by Bihan et al. and assumes a Gaussian distribution, D is a rank-2 tensor
(symmetric positive-definite 3x3 matrix), and g are the directions or unit
vectors where a minimum of six directions are measured to get a diffusion
profile. Relating to the previous paragraph, the tensorD represents the ADCs.
Equation (2.3) is based on the fact that Brownian motion of particles can be
approximated in any given direction by a zero-mean Gaussian distribution.
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2.2. Diffusion-Weighted Magnetic Resonance Imaging

This is an idealized model and does not fully reflect the constrained diffusion
in anatomy which, unlike a Gaussian model, is not mono-exponential over
time. However, this is mostly an issue for high b-values. DTI has clinically
attractive quick acquisition times and it is sufficient in many scenarios such
as diagnosis, surgical aid, white matter atrophy, etc. Examples of the DTI
model can be seen above in Figure 2.7.

The b-value describes the signal sensitivity to diffusion, often given in mm2/s,
and relates to the strength and time of the diffusion gradients. It is a compiled
value that makes it easier for non-physicists to work with DWI and hides
scanner-specific values. In short, high b-values are more sensitive to diffusion
but also have high signal attenuation, meaning the signal disappears with
time. Low b-values have better Signal-to-Noise Ratio (SNR) but less angular
contrast or directional information. b-values above 1500 mm2/s exhibit bi-
exponential behavior and cannot be modeled with the Gaussian DTI assump-
tion. The bi-exponential behavior is still debatable and is generally attributed
to biological constraints on the diffusion [Yablonskiy and Sukstanskii, 2010].
Figure 2.8 illustrates the four different b-values associated with the popular
HCP dataset [Van Essen et al., 2013].

Figure 2.8: Four DWI of the same subject with varying b-values at approximately
the same gradient angle. (A) b = 0 mm2/s, (B) b = 1000 mm2/s, (C)
b = 2000 mm2/s, and (D) b = 3000 mm2/s. From [Jensen, 2014].

In Equation (2.3), there are two images with b-values: S0 with no diffu-
sion gradient (b < 5 mm2/s), and S with a diffusion gradient at around
b = 1000mm2/s for DTI. S0 is necessary to avoid the underlying structural
T2 image to shine through due to signal attenuation and restricted diffusion.
When we have (at least) these two images, we can calculate the ADC in every
voxel.

We generally refer to the S0 image as the b0 image. We will also be working
with b-values at 3000 mm2/s for a better probing of the tissue boundaries.
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2.2. Diffusion-Weighted Magnetic Resonance Imaging

This is where more advanced diffusion models comes in, such as HARDI
and QBI described further below.

Visualization of DTI, tractography and the 4D nature of DWI

Figure 2.9: DTI-based tractography seeded in the corpus callosum, superimposed
on a slice of the b0 image. The illustration was generated from the same
subject as in Figure 2.5, also using Slicer.

We have found that structure of DWI data can sometimes be a bit tricky, and
so we would like to briefly reiterate on the 4D nature of DWI data. First of
all, with the DTI model describing the diffusion profile at each voxel, we can
already now start to trace streamlines along the anisotropic diffusion.

In Figure 2.9, we have shown an example of a tractography seeded in the
corpus callosum (brain bridge), where potential fiber pathways are being
traced by following the dominant direction of the diffusion profiles that are
shown as anisotropic spheres. A similar illustration is shown in Figure 2.10
to further illustrate this.

There are two common ways to see DWI data. In the first, a DWI scan consists
of multiple scalar 3D images, each corresponding to a measure taken for a
specific diffusion gradient direction. It can be thought of as multiple pictures
of a semi-transparent object that is illuminated from different angles in each
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2.2. Diffusion-Weighted Magnetic Resonance Imaging

Figure 2.10: DTI-based tractography seeded in the corpus callosum. It is a close-up
version of Figure 2.9 and coloured by mean orientation.

image. In the second, a DWI scan is shown as a 3D image where each voxel
contains a non-isotropic or uniform spherical diffusion profile, which is how
we have illustrated it in Figures 2.9 and 2.10. Both are correct and illustrated
in Figure 2.11.

There are two major categories within the field of DWI. The first is tractogra-
phy - the study of how regions connect and the structure of the white matter.
The second category is focused on the individual voxels in DWI scans and the
quantitative measures associated with them. These voxel-based methods are
often closely tied to the rich portfolio of 3D-based image analysis methods,
as they adapt the well-known methods to the directional microstructural
information. Such voxel-based methods are often well-suited for exploratory
research where biased spatial cohesion can be misleading. Quantitative
diffusivity measures are also a lot faster than fiber tract methods, which is
often a major factor in clinical practice. Each category has its strengths and
limitations, which we investigate in detail in Chapter 3.
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2.2. Diffusion-Weighted Magnetic Resonance Imaging

(a) Illustration of a set of diffusion measurement directions, each associated with a directional magnetic
gradient and a 3D image of the brain. The unit sphere represent the directions the is measured in.
From [Jensen, 2014].

(b) Diffusion profile representation 1. Created
from a tractography similar to Figure 2.9 but
seeded within the entire brain mask.

(c) Diffusion profile representation 2. Here the
diffusion is coloured by the orientation of the
largest eigenvector.

Figure 2.11: Three different visualizations of DWI data.

16



2.2. Diffusion-Weighted Magnetic Resonance Imaging

Popular quantitative DWI measures

Scalar-based quantitative DWI measures, such as Mean Diffusivity (MD) and
Fractional Anisotropy (FA), are 3D representations of the diffusion profiles
and highly popular in many areas, from registration [De Santis et al., 2014] to
multiple clinical applications like the detection of stroke [Schlaug et al., 1997].
In terms of registration, the attractive factor is that any standard scalar-based
3D registration framework can be used and that the FA provides sharp edges
around the white matter, which is often the area of interest. These measures
do not provide any directional information, though a color scheme is often
used to indicate the principal orientation of a voxel, as shown in Figure 2.12.
Under the DTI model, fractional anisotropy (FA) measure provides a quick

Figure 2.12: (A) Fractional anisotropy (FA), and (B) FA coloured by the directional
of the principal eigenvector. From [Jensen, 2014].

way to investigate the degree of anisotropy in diffusion and especially in
white matter, which has a high average anisotropy. It is a normalized scalar
value given by [Peter Basser and Pierpaoli, 1996] which is defined as

FA =

√
(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2

2(λ2
1 + λ2

2 + λ2
3)

(2.4)

where λ is the eigenvalues of the ellipsoidal 2nd order diffusion tensor, and
MD is the mean diffusivity defined as the mean of the eigenvalues

MD =
λ1 + λ2 + λ3

3
. (2.5)

MD is straightforward as it characterizes the diffusion or overall displace-
ment of molecules.
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FA is useful but it can be misleading. Within a voxel, diffusion can move
in multiple directions and result in either a disc-shaped or near-isotropic
profile, which will result in low FA values. It can also have lower than ex-
pected values caused by various different factors such as cell death, change in
myelination, increase in extra- or intracellular water, etc., and different com-
binations of eigenvalues can generate the same FA [Alexander et al., 2000].

By traditional mention, we also have the less common Axial Diffusivity
(AD) defined by the largest eigenvalue of the tensor (AD = λ1) and Radial
Diffusivity (RD) defined by the remaining eigenvalues (RD = (λ2 + λ3)/2).
AD gives high values at the white matter and in the cerebrospinal fluid (CSF)
due to highly anisotropic diffusion or simply a high amount of diffusion, and
has been used to detect axonal injuries [Budde et al., 2007]. A combination
of the lowest eigenvalues, RD represents less organized matter and CSF, and
has been used to detect demyelination [Budde et al., 2007].

The Orientation Density Function (ODF) and complex diffusion profiles

The Orientation Density Function (ODF) describes the diffusion profile and
becomes relevant at more complex models than the ellipsoidal 2nd order
tensor. A well-known limitation of the simple DTI model is that it cannot
resolve the orientations of the diffusion of crossing fibers in a voxel, as this
will result in a disc-shaped planar ODF for the diffusion moving along two
crossing fibers (see Figure 2.7B), and a misleading isotropic shape in the
case of three orthogonal crossing fibers. The ability to model crossing fibers
and other complex shapes have prompted higher resolution acquisitions and
more advanced methods, such as HARDI and q-ball imaging or higher order
tensor models. We return to these in the next paragraph, but first, we look at
why some complex ODFs can be hard to reconstruct in a way that models the
underlying fibers. From here, we will refer to the diffusion profile as the ODF.

Estimating complex ODFs are at the core of both voxel-based DWI and trac-
tography. It also remains one of the most difficult and largely unresolved
parts of DWI. The diffusion process in the majority of voxels is unlikely to
be governed by only unidirectional fibers. In fact, according to the survey
by [Jones, 2010], between one third and 90% of the voxels in a brain scan
are estimated to contain more than one fiber population - depending on the
data quality and the models used. The two main obstacles are resolution and
antipodal symmetry. Only the bulk of the diffusion and the likely orientation
of the fibers are captured within a voxel, and these are measured antipodally
symmetric, which means that the measurements do not reveal the direction
of the diffusion. This can be resolved for fiber crossings as the direction does
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not matter, but it makes it extremely difficult to resolve similar structures
such as kissing or curving fibers, as shown in Figure 2.13.

Figure 2.13: Difficult fiber configurations in a voxel (shown in 2D for simplicity).
The sketches are borrowed from [Descoteaux, 2008], who got it from J.
Campbell of McGill University in Montreal, Canada. We also recom-
mend the thesis of [Descoteaux, 2008] as a great in-depth introduction
to DWI.

Today, the 2nd order tensor in DTI is mostly used for quantitative DWI
measures, improved alignments or similar. Most established frameworks,
that model ODFs and track fibers, have the minimum capability of being able
to resolve two-way fiber crossings.
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HARDI, q-Ball Imaging, and the Funk-Radon Transform

The more complex ODFs are often described using q-space analysis methods,
which covers a wider range of imaging methods1. Of these, we limit the
focus to q-ball imaging (QBI) [Tuch, 2004], which is based on the top popular
sampling method of High-Angular Resolution Diffusion Imaging (HARDI)
[Tuch et al., 1999]. The basic idea with HARDI and QBI is to sample the
Orientation Density Function (ODF) directly using a fixed b-value and to let
the high angular contrast improve the SNR critical to high b-values. This is
often referred to as the raw signal.

The concept of directly sampling the diffusion signal comes from q-space
methods, in which the Gaussian model of free diffusion is replaced by rewrit-
ing the Stejskal-Tanner equation in a Fourier transform formulation to get the
displacement profile from a wave vector q. We still use at least one S0 or b0

image and multiple gradient directions. However, we are now working with
the attenuated (low) signal, which is inversely proportional to the diffusion.

QBI saves acquisition time and makes HARDI a clinically popular method
for the higher non-Gaussian b-values as it involves reconstructing the ODF
directly based on the raw HARDI shell. This is done using the Funk-Radon
Transform (FRT), which is a tomographic inversion of the signal - introduced
with QBI [Tuch, 2004] and illustrated in Figure 2.14. The FRT inverts the
measured signal by integrating over the great circle, or equator, to get the
likelihood of diffusion in the perpendicular direction. In this way, the tomo-
graphic inversion of a "disc" would be a "cigar", and so on. In Figure 2.14, it
is illustrated as the following: if f is a spherical function at a unit vector u,
the FRT is the integral of f (w) over the great circle C(u) perpendicular to u.
In the notation of Tuch, the mathematical definition is explicitly given by

G[ f (w)](u) =
∫

w∈C(u)
f (w)dw

=
∫

δ(uTw) f (w)dw (2.6)

where w is constrained to be of unit length. Intuitively, we re-scale each
q-space sample on the sphere by the integral of the corresponding great circle.
For QBI this results in some amount of smoothing of the signal. The smooth-
ing depends on the integral of the perpendicular great circles that must be
interpolated, which in turn depends on the number of uniformly distributed
HARDI samples. The proof is given in Appendix A of [Tuch, 2004] and in

1For detailed concepts and equations of q-space analysis methods, we recommend the
[Callaghan, 1993] (one of its pioneers).
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Figure 2.14: The QBI algorithm with ODF reconstruction. Top row: (left) The
normalized HARDI signal; (right) the approximated ODF modeled;
(middle) and the relation between the two. Bottom row: (left) The
signal projected onto sphere; (middle) the FRT illustrated where the
lines u represent the gradient directions being re-scaled by the integral
of the great circle C(u) for each direction; (right) resulting on the
projected ODF. From [Jensen, 2014].

further detail in Appendix 7.7 of [Descoteaux, 2010]. To avoid confusion, we
define the diffusion ODF (dODF) as the FRT just described, and the fiber
ODF (fODF) as the case where we fit a specific fiber-oriented model to an
ODF - i.e. modeling peaks in the dODF. When we talk about voxels in a DWI,
we will either refer to them as HARDI for the raw signal and ODFs for the
inverted signal or DTI tensor. Additionally, when the term ’reconstructed
signal’ is used, it usually refers to the dODF.

Finally, we note that DTI is in the range of 6-30 diffusion gradient images,
whereas q-space methods, such q-ball imaging, are typically 60-90 or higher.
Additionally, at low b-values (< 1500mm2/s) with fast acquisition time, the
wave vector q will resemble free isotropic diffusion, in which the Gaussian
model of the DTI remains an acceptable model.
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Advantages and Limitations of Popular Diffusion Models

We dedicate the remainder of this introduction to summarize some of the
important advantages and limitations of the popular ways of mapping the
microstructural anatomy through diffusion imaging. The following summari-
sations originate from [Assaf and Cohen, 2009]. For references to the various
claims, we direct the reader to their excellent work and citations.

Diffusion Tensor Imaging (DTI)

Advantages:

1. DTI is very fast and can be performed in as little as 3-4 minutes, though
research scans take up to 20 minutes.

2. It has quantitative and rotationally invariant parameters such as frac-
tional anisotropy (FA) and mean diffusivity (MD) which is used in
relation with many different neurological disorders and diseases, e.g.
when a neurodegenerative process prompts a reduction in FA and
increase in MD.

3. It has qualitative features that can be used to visualize the underly-
ing neuronal fiber tracts, either by 2D orientation-colored FA maps
or by tracing lines through anisotropic ellipsoids that represent fiber
pathways (tractography).

4. It provides an efficient microstructural probe for clinical patient care
and surgical aid.

Limitations:

1. The Partial Volume (PV) effect. Voxels contain several types of tissue
such as grey, white matter, and cerebrospinal fluid (CSF). CSF con-
tamination is a well-known artifact where the fractional anisotropy
is reduced as voxels on the white matter boundary overlap with the
isotropic diffusion of CSF.

2. The averaging effect. Voxels contain more than one predominant fiber
pathway. It is well known that certain areas of the white matter have
reduced anisotropy due to multiple fibers crossing and that this leads
to poor tensor estimations in these regions.

3. Non-Gaussian diffusion. A Gaussian model is unlikely to truly reflect
the diffusion in complicated tissue, across membranes, with various
viscosities and obstacles of different sizes.
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q-Space Imaging

Advantages:

1. It is a quantitative and model-free approach with no Gaussian model
of the diffusion, measuring the quantitative displacement.

2. Combined with QBI and HARDI, it provides a simple mathematical
relation allowing for fast and robust computation of the ODF.

3. It allows for solving the averaging effect by modeling multiple cross-
ing fiber pathways inside a voxel, given a good model and enough
directional measurements relative to the complexity.

4. It can be used to measure the bi-exponential behaviour of high b-values.

Limitations:

1. Acquisition times are longer than conventional DTI. This further leads
to noise as more time in the scanner results in added patient motion.

2. To analyze the output of the scan additional modeling of the ODF is
required, such as the Funk-Radon transform in QBI.

3. q-space theory requires an additional acquisition parameter, a short gra-
dient pulse, that is difficult to achieve on conventional clinical scanners.

All in all, DTI is still the most applied DWI modality in clinical practice but
the more specific q-space methods are more interesting from a basic research
perspective.
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3 Methods in Diffusion-Weighted
Image Registration and Validation

This chapter gives an extensive introduction to and review of different ap-
proaches to performing registration, group-wise studies of DWI, and explains
how such studies are validated. The lack of gold standards has promoted
a large amount of research which is based on closed segmentations from
trained experts and visual validation of new approaches. This is a problem
in a world that is seeing a positive increase in openly available DWI datasets
and still finds itself without public test sets or evaluation protocols. This
chapter is the most recent version of a manuscript intended for the Human
Brain Mapping journal. The manuscript was initially prompted by a study of
current DWI-based registration methods. It was then decided to expand it to
a large in-depth study of group-wise DWI studies and validation protocols,
as we found an astounding lack of inter-study comparisons in DWI. To aptly
cover these topics, we had to look at both voxel-based registration (VBR)
and tract-based registration (TBR), which ended as two major chapters or
categories in the review. The review is currently without intended illustrative
figures and the final submission will have a more selective focus. However,
we believe that this broad coverage of existing methods, and their approaches
to presenting their results, will benefit the community - in particular, re-
searchers young to DWI.

As it is standard procedure for any review to either be invited or to request
an invitation, the following letter was submitted to the editors of the Human
Brain Mapping (HMB) journal - along with the title, abstract, and highlights
that can be found in the beginning of the review. We would like to thank
Prof. Ron Kupers, from the Department of Neuroscience & Pharmacology at
the University of Copenhagen, for his feedback and suggestions on the letter
for HBM.
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Letter to Human Brain Mapping:

Dear editor

I am inquiring as to whether Human Brain Mapping would consider to review
our manuscript, entitled “Critical issues in the registration and validation
of group-wise alignment of Diffusion-Weighted Imaging”. The reason for
our pre-submission inquiry is the length of the manuscript, which is about
23 double-column pages long. In this manuscript, we review the current
state of voxel-based and tract-based registration for group-wise diffusion-
weighted imaging (DWI). Due to the increasing amount of open and freely
available datasets, e.g. the HCP, UK Biobank, etc., DWI is becoming an issue
of Big Data. We argue that there is an imminent need for guidelines for
standardizing the presentation of DWI results to make them comparable
across studies. This is exemplified by the sheer lack of comparative studies
on DWI registration and group-wise validation methods, and by the frequent
use of local tools for segmentation and labelling that are not shared publicly.
We make a plea for online evaluation protocols to help the neuroimaging
community out of the current validation quagmire. The manuscript is tailored
to both neuroimaging scientists and medical doctors who seek a better
understanding of popular approaches to registration of DWI data.

Reception:

The letter was subsequently well-received, and we have been invited to
submit the review. The reply came from Rebecca Strauss from the Editorial
Receiving Office at John Wiley & Sons.
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The overall organization of the review:

1. Introduction to the paper, along with a list of related reviews, termi-
nology and overall categories of registration.

2. Voxel-based registration (VBR) covering different levels of extensions
from standard scalar images to DWI

a) Validation of VBR in terms of known issues, approaches and
solutions.

3. Tract-based registration (TBR) covering both parcellation-based and
fiber tract based registration. Within each, we look at refining methods
and anatomically unbiased methods.

a) Validation of TBR for both parcellation and tract clustering, along
with common approaches to presenting and validating new meth-
ods.

4. Discussion of evaluation protocols for group-wise DWI studies, to-
gether with a hopefully useful FAQ.

5. Appendix on popular available VBR registration frameworks.

This ends the brief introduction to the purpose and structure of the review,
which continues on the following page.
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Critical Issues in the Registration and Validation of Group-wise Alignment of
Diffusion-Weighted Imaging

Manuscript by Henrik G. Jensen

Abstract

Diffusion-weighted imaging (DWI) has become the primary non-invasive method used to study the brain’s microstruc-
ture and connectivity. In both clinical and basic research, DWI studies represent a rapidly expanding multidisciplinary
field with increasing amounts of publicly available high quality and multimodal data. With increasing computational
efficiency and power, it has become feasible to study large cohorts in detail using multiple atlases and modalities,
simultaneous group registration, joint spatial and orientation optimization, etc. This review presents an overview of
recent approaches to DWI group-wise analysis of the human brain, and addresses discrepancies in their validation.
More specifically, we focus on the comparison of DWI scans and on the image registration procedures underlying the
shared coordinate system, or map, between heterogeneous anatomical structures. We provide an overview of current
voxel- and tract-based registration methods. For voxel-based registration, we show how diffusion data are transformed
under existing scalar-based frameworks, and how these have been designed explicitly for DWI. With respect to fiber
tract registration, we discuss group-wise alignments procedures for examining end-to-end connectivity and structural
fiber tract features. With a rapidly growing amount of publicly available DWI data, we hope to foster discussions on
the potential of a more unified approach to group-wise evaluation, reproducibility, and inter-study comparisons.

Highlights

• A comprehensive high-level overview of registration
and group-wise evaluation of DWI in the past decade.

• A definition of voxel-based registration categories
based on DWI.

• A definition of fiber-based registration categories in
terms of connectivity and structural analysis.

• An overview of validation methods for both voxel-
and fiber-based registration.

• A discussion of current and future challenges in quan-
titative evaluation of DWI data.

1. Introduction

Diffusion-weighted magnetic resonance imaging (DWI)
adds directional diffusion information to the scalar MRI.
By observing how molecules diffuse, it is possible to in-
fer microstructure in human brain anatomy, study the
neuronal connectivity, and add valuable information to
aid the diagnosis of diseases [10]. DWI offers the poten-
tial for creating informative maps of the brains structure
but it also presents a significant computational challenge.
There is a constant development within the field towards
designing new models, and corresponding image acqui-
sition sequences, that are able to reflect the anatomical

microstructure of micrometer axons based on images with
a comparative macroscopic resolution [105].

Knowledge of the brain is based on observations made
on the individual level, correlated with prior observa-
tions, and aggregated to prove a hypothesis. Data is gath-
ered from multiple sources in order to model pathologies,
anatomical characteristics, locate new biomarkers, iden-
tify abnormalities, etc. Group studies are, at their core,
about the ability to identify correspondence between fea-
tures in sets of data and, in order to perform automated
groupwise analysis in medical imaging, a shared coordi-
nate system between subjects is needed. This coordinate
system can either created (i) by transforming images into
a shared space, i.e. create templates, or (ii) by transform-
ing existing cartographic information (an atlas) to fit the
images and extract specific localized data for comparison.
At the heart of this is image registration.

Registration offers the potential to identify subtle
changes, aid physicians, and categorize the neurological
state by including the architectural topology of a patient,
as well as combining image modalities to extract and
correlate more information. For instance, a common ap-
plication is to combine structural connectivity information
from DWI with functional images in order to correlate the
anatomy of the brain with how it works. Image registra-
tion is particularly challenging when studying complex
images such as DWI from different subjects, and even
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Figure 1: Example of a DWI analysis pipeline focused on tract-
based registration.

when following the longitudinal development of the same
subject. However, while DWI provides more informa-
tion to drive a registration, it also involves an intrinsic
geometry, orientation, and density, which is challenging
to account for during transformation and alignment.

There are multiple stages in a DWI analysis pipeline
and creating a shared coordinate system for groupwise
analysis is only one step. A group average can be used as
a prior to improve data modelling, but is also dependent
on good acquisitions. An example of a DWI pipeline
could look like Figure 1. However, with the increasing
growth of substantial open multimodal datasets, that are
acquired and preprocessed by the best in the field, large-
scale group studies are going to pave the way for our
future understanding of the human brain. Some of these
projects include the Humman Connectome Project (HCP)
[148], the MASSIVE brain dataset [53], the NKI-Rockland
sample [103], the UK Biobank [133], and more. Registra-
tion is central in all of this in terms of creating atlases,
templates, multi-modal combinations etc.

Intended Audience

This is intended for medical imaging researchers and
doctors who seek an overview of group studies in DWI,
how image registration is relevant to DWI, and common
approaches to validating groupwise DWI data. In addi-
tion, we aim to provide a better understanding of the the
common characteristics between voxel-based and tract-
based approaches to group studies, and where the field
of groupwise analysis of DWI is headed. The reader
is assumed to have a rudimentary understanding of
diffusion data such as the difference between DTI and
HARDI scans, b-space or q-space, and what a structural
T1-weighted or b0 scan is. To be clear, we will use the term
DWI for all diffusion-weighted acquisitions/images, gradi-
ent vectors for scan measurements, and ODF for spherical
distributions modelling the direction of the diffusion both
DTI, HARDI, etc.

Related Work

There exists a substantial amount of guides, reviews,
surveys, and comparative papers related to different
pipelines for DWI analysis. The following is a compact list
of some of the more recent DWI reviews and guides, of-
fering excellent introductions to DWI and/or an overview
of common misconceptions, biases, and challenges. While

registration is not the core focus of each study, all were se-
lected with registration and groupwise analysis in mind,
and each contribute valuable insights. What set this work
apart from these papers is that the focus is on the role
of registration in groupwise DWI, and how data is used
from voxel-based methods to registration based on de-
rived spatial correlations, such as surfaces and fiber tracts
etc.

• [84] identifies 25 pitfalls (biases that can lead to lack
of accuracy and even substantial errors) along the
DWI pre-processing and analysis pipeline with 9
relevant pitfalls dedicated to intra- and inter-subject
comparison in group studies.

• [106] gave a comprehensive review of parcellation-
and fiber-based white matter segmentation (with a
focus on the latter). Focus is given to groupwise
analysis and computational feasibility,

• [132] covers the workflow of DTI analysis from pre-
processing to analysis and result interpretation. A
large amount of relevant literature and prominent
methodology are reviewed in a "straightforward
hitchhiker’s guide to DTI".

• [86] discuss white matter integrity, fiber count, con-
nection strength, and other fallacies in DWI. This
review is focused on the different ways to interpret
DWI statistics and clarify misconceptions prevalent
in the literature. A useful "do’s and don’ts" list is
given.

• [107] presents a review of DWI methods and mea-
sures used in clinical neuroimaging research. Com-
mon ways to analyze in vivo white matter are dis-
cussed and potential pitfalls are presented for each
category.

• [101] provide a boarder review of the DWI pipeline
with a focus on acquisition, pre-processing, group
analysis methods, and non-DTI models, while also
giving and overview of disorders/pathological DWI
studies.

• [97] discuss the future of spatial normalization of
brain images, how diffeomorphism makes most sense
if a template is sufficiently similar, and argues that
heterogeneity should be represented by a cohort
multi-atlases of combined fMRI and DWI.

• [105] very recently gave a perspective on the current
state and future of DWI in relation to tractography,
statistical analysis (e.g. distance metrics in group
studies for tensors and ODFs), and registration of
voxels or fibers.
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Registration Terminology

Image registration refers to a process that transforms
data into a shared coordinate system. Groups are com-
pared either by matching a template such as a group aver-
age, a random single subject to the native space of each
individual subject, or by transforming each subject to
a single shared template space. This is often referred
to as spatial normalization or image fusion. The template
will usually have an associated atlas, which may be the
anatomical segmentation or a probability map. Regis-
tration often consists of an initial global rigid or affine
alignment, and optionally followed by a nonrigid align-
ment. A nonrigid registration can be approximated locally
as a set of local rigid or affine transformations. The global
deformations are often diffeomorphic which means that the
transformation between two images is smooth bijection
(i.e. a differentiable and invertible map).

Approaches to DWI Registration

Throughout the past three decades, numerous regis-
tration methods for DWI have been proposed and new
frameworks are continuously released every year. This
is largely due constantly improving acquisition schemes,
both in terms of data quality and reduction in scan du-
ration. However, it is also owing to a general lack of
shared community-accepted platforms for validating reg-
istered DWI, different ways of interpreting how Orienta-
tion Distribution Functions (ODF) represents the underly-
ing anatomy (e.g. when tracing fibers), and a discrepancy
between acquisitions for basic research and most clini-
cal applications. Depending on the representation of the
ODF, registration methods focus either on quantitative
diffusion measures (scalars derived from the ODF like
fractional anisotropy), on models of the ODF to drive the
registration (scalars combined with directional statistics),
or they trace fiber tracts and group them through cluster-
ing or parcellation [156]. These approaches can be split
into the following two categories

1. Voxel-based registration methods that focus on the
modelling of individual ODFs or quantitative ODF-
derived measures. This is also referred to as Voxel-
Based Analysis (VBA) or Voxel-Based Morphometry
(VBM) and often involves registration of the whole
brain using only a brain mask as prior segmentation.
To avoid confusion, we will refer to any of these as
Voxel-Based Registration (VBR) methods.

2. Fiber tract registration or clustering methods that
solve the white matter segmentation problem. These
will either focus on selected regions-of-interest (ROIs)
often from cortical parcellations, or on clustering fiber
bundles based on structural similarity. They encom-
pass registration based on derived spatial correla-

tions, and we include the popular tract-based spatial
statistics (TBSS) but note that TBSS is not related to
fiber tracking methods. All in all, we shall refer to
these as Tract-Based Registration (TBR) methods.

From a registration point of view, there is a clear over-
lap between the VBR and TBR as groupwise analysis of
tracts often requires some initial voxel-based alignment,
although most surface-based registration approaches use
2D vertices, either exclusively or along with voxels [89].
While surface-based registration is important for parcel-
lation methods, the approach does not use any specific
DWI-related information and we will omit surface-based
methods.

Scope and Section Guide

We review how the angular information in diffusion
data is both transformed and used to aid alignment of
brain scans, and focus on inter-subject and whole-brain
image studies, as these present the greater challenge. We
investigate defining paradigms and commonly used tools
for comparing DWI scans, both in terms of individual
ODFs (VBR) and more spatially correlated models (TBR).
In the context of creating a shared coordinate system
in groups of DWI, we attempt to answer the following
questions

• What are the challenges of extending scalar (3D) im-
age registration to DWI?

• How is tractography being used in registration?

• What are the common ways of validating VBR and
TBR?

• What can be done to rank new methods and stan-
dardize validation?

The review is organized as follows: VBR in Section 2
covers DWI being deformed according to standard scalar-
based registration, and algorithms designed for explicit
DWI optimization. TBR is covered in Section 3 with a
focus on connectivity and shape-based fiber clustering.
Both sections go through several categories of popular
methods and recent developments in groupwise DWI
analysis - each ending with a focus on typical validation
and challenges. We pick up on answering the questions
above in Section 4, and give an overall discussion based on
what we can summarize - including future perspectives
into DWI groupwise validation. Finally, we have attached
descriptions of some of the most prominent and popular
VBR frameworks in Appendix Appendix A.

2. Voxel-Based Registration of DWI Data

Registration of structural scans e.g. T1- or T2-weighted
MRI or quantitative DWI features such as fractional
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anisotropy (FA), are by far the most common ways of
registering DWI. This is due to (i) manipulating orien-
tation vectors for optimization in a way that is still true
to the anatomy and acquisition is very difficult, (ii) the
catalogue of traditional 3D registration methods is im-
mense and well-tested in fields with a gold standard, and
finally (iii) scalar methods are fast. Two approaches for
performing scalar-based DWI registration dominates:

1. Registration of the T1w or T2w MRI scans or the
gradient-free b0 DWI scan and apply the resulting
deformation field to the DWI, either by warping the
model-free gradient vectors or the model used for
ODFs.

2. Registration based on scalars or quantitative mea-
sures derived from the ODFs such as Fractional
Anisotropy (FA), Eigenvalues, Spherical Harmonics
Coefficients, Mean Diffusivity (MD), the Apparent
Diffusion Coefficient (ADC), etc.

We introduce another subdivision of methods to the scalar-
based registration:

3. Algorithms that are based on either (1) or (2), and
that iteratively reorient the gradient vectors or ODF
without performing explicit optimization over the
reorientation. We define this as implicit reorientation
along the methodology of [27].

The third category contains methods which do not explic-
itly calculate the derivatives of the reorientation. These
methods use the deformation from scalar-based registra-
tion to iteratively reorient the gradient vectors during
optimization. An example is two images being aligned by
minimizing the difference of orientation invariant feature
such as FA. The FA is iteratively recalculated based on
the transformed ODFs, which are reoriented using the
gradients of the spatial deformation. Yet this is still a
by-product of the scalar registration - an important dis-
tinction as noted by [4]. The following will be focused
on these three categories, but we will also cover explicit
reorientation methods at the end of this VBR section (one
of which is the well-known DTI-TK framework). Explicit
reorientation methods are distinguished by incorporat-
ing the directional gradients into the cost function of the
optimization.

Scalar-based registration disregard the information
stored in the gradient vectors. However, scalar methods
have merit in larger pipelines/frameworks for analyzing
diffusion data where the warp or deformation field might
have been obtained from elsewhere or for easy swapping
of registration algorithms in a modular way. In fact, most
popular available frameworks today work in this way
Appendix Appendix A.

2.1. VBR: Scalar-based and Implicit Reorientation

In scalar-based registration the orientation of the diffusion
gradients or ODFs are not a direct part of the optimiza-
tion1. Independent of the type of scalars we use, the
challenge for this type of registration lies in obtaining a
correct final reorientation of ODFs, that is coherent with
the orientation of neighbouring ODFs. The importance of
the reorientation depends on the goal. To underline this,
the most recurring discussion, and critical introduction
in most DWI VBR papers, falls on whether the warped
ODFs can still be used to trace the fiber tracts (thus ap-
proximating a "true"/underlining anatomy in the warped
space [40]) - and indeed if tracing fibers in the warped
space is even the goal2. When it comes to inter-subject
registration, a rigid registration will not provide an ad-
equate fit between differently shaped objects and, as a
minimum, an affine transformation is required.

However, an affine registration (global or local) will
result in a shearing, stretching, or non-uniform scaling,
and — if this is not accounted for during reorientation of
the ODF — it will likely have an impact on the ability to
trace fibers through ODFs. Basically, shearing introduces
a complex rotational effect that affects the reconstruc-
tion of fiber trajectories as each direction of the ODF
warped differently [60]. This is generally accounted for
by approximating the warp using only the local rotational
component from an affine deformation, or in some way ac-
counting for the affine transform, e.g. by re-interpolating
the warped ODFs or normalizing the shearing effect.

Reorientation of tensors: FS, PPD, and multi-channel Demons

More than a decade ago, [4] proposed two highly pop-
ular approaches to tensor reorientation which attempt to
deal with the reorientation of the ODFs and are still used
today: the Finite Strain (FS) and Preservation of Principle
Direction (PPD) algorithms. FS decomposes the registra-
tion into a deformation and a separate tensor rotation
component but ignores the affine effects of shearing and
non-uniform scaling. PPD assumes that the eigenvectors
describe the tissue orientations, and preserves them by
approximating the affine transformation (we return to
this further below). For DTI, these two approaches to
reorientation of ODFs have been fundamental and FS is
used in many QBI registration methods. FS has widely
been considered an acceptable and fast approximating of
the deformation, and one of the first uses was seen in [66]
with a multi-channel3 approach, along with the Demons

1Though there might be the implicit reorientation as an iterative
deformation of the ODFs and subsequent recalculation of quantitative
measures. See for instance [121] as an example of this.

2See the discussion Section 2.3 at the end of this section.
3Multi-channel refers to optimisation where each voxel is represented

by multiple measures/features/modalities like FA, MD, T1w, edge-
detection, etc.
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registration algorithm, which is worth briefly introducing
given its frequent appearance in the literature.

The Demons algorithm [137] is a well-known and pop-
ular nonrigid registration method. It is a scalar-based
non-parametric approach that is part of the ITK toolkit,
and variations of it is used in many DWI registration
methods. In its original form, it uses gradient descent
and sum-of-squared difference (SSD) optimization over a
displacement field that is adjusted by a normalized opti-
cal flow force4. [150] extended the Demons algorithm to a
diffeomorphic framework, which was added to the popu-
lar ITK toolkit and used for DTI registration (see e.g. the
comparative study by [155] who compare eight different
DTI registration algorithms). The multi-channel demons
algorithm of [66] was also extended to include iterative
(implicit) tensor reorientation to improve the quality and
evaluated it on both quantitative measure and fiber bun-
dles [115]. Demons also appear in more recent works like
[20] where HARDI-based ODFs are aligned in a diffeo-
morphic multi-channel approach (used on a rotationally
invariant distance function for Real SH) and reoriented
based on FS. [61] also perform diffeomorphic registration
on SH coefficients, rotating them (i.e. altering the SH
coefficients) in a manner similar to FS. Non-parametric,
efficient and diffeomorphic, Demons registration is very
popular for complex data that is hard to regularize such as
DWI or multi-channel data. While extended to DWI, most
of these methods are primarily based on structural regis-
tration from b0 or FA volumes, but as we see in Section 2.2,
Demons was also extended to explicit tensor reorientation
in the publicly available framework MedINRIA.

We return to the PPD tensor reorientation approach.
This is a more DTI-specific approach than FS, as PPD
approximates the affine deformation by applying mul-
tiple rotations. The principal eigenvector is multiplied
with the affine matrix, projected back on the unit sphere,
and the corresponding rotation is found. The same is
done for the next eigenvector, though the second rota-
tion is done perpendicular to the first. Thus, it becomes
a sequential set of rotations keeping the ODF structure
of each individual voxel. It was used by [85] who first
registered T2w scans to create a template, deformed one
of the FA images to create a target FA image, and then
used this for scalar registration with the PPD method for
tensor reorientation. Another early approach, similar to
PPD, was taken by [160] who applied tensor reorientation
using the deformation fields of co-registered T1w images
while iteratively rotating each of the principal directions.
Later [27] used PPD of registered DTI volumes to reori-
ent the HARDI-based ODFs in an inverse-consistent fluid

4The intuition is that a free parameter (the "demon") pushes a point
in the direction of the image gradient if the intensity is lower than the
target value, and in the opposite direction of the gradient otherwise.

registration algorithm that minimizes the symmetrized
Kullback-Leibler divergence.

Reorientation of QBI: Registration of HARDI and higher order
models

Registration algorithms of q-space data, more specifi-
cally HARDI/QBI algorithms, focus on higher angular
resolution to model ODFs for basic research over everyday
clinical application, such as DTI. Nevertheless, despite
having longer acquisition times, QBI is also gaining in
clinical popularity [36]. Registration of HARDI-based
data is often a scalar registration followed by a reorienta-
tion of the ODFs due to the high resolution and complex
shape. As with DTI, it is commonplace to use the Jacobian
of the deformation to reorient the ODF, performed either
by pure local rotation or by local affine transformation.

In the first case (local rotation only), the rotational
component is separated from the transformation, which
offers an attractive simplification of the transformation
as it does not change the ODFs. It is very similar to the
FS model of DTI and, despite being a simplification of
the actual complex transformation, it still commonly used
as seen [61], or more recently in average estimations like
[149].

In the second case (local affine transformation), transfor-
mations are performed by multiplying the Jacobian with
the vectors of the HARDI or ODF model, without any
matrix decomposition, followed by a projection or normal-
ization back on the sphere (see for instance [162] or [78]).
As a consequence of the affine shearing/stretching/non-
uniform scaling, it is often discussed how one preserves
the volume fractions5 of each ODF after the transforma-
tion. [71] use the determinant of the Jacobian (from b0 im-
age registrations) to adjust the length of the transformed
vectors, while [122] use weighted SH point spread func-
tions that are reoriented individually from b0, FA, and
T1w, which corresponds to multiplying with the Jaco-
bian and normalizing the transformed vector. [40] ex-
tended this work to account for correct transformation
of the ODFs in accordance with the expected underly-
ing white matter anatomy, and discussed the risk of cre-
ating anisotropy out of isotropic components through
affine shearing, which they corrected for by separating
the isotropic SH coefficient.

In contrast to the purely orientational tensor in DTI
models, shape and density changes in ODFs are more
visible issues in volumetric models of HARDI data, such
as those based on QBI or similar, where the models have a
non-specific number of dominant fiber orientations. Such

5Volume fractions refer to the different components (different fiber
orientations, other tissues, water, etc) in a voxel, not to be confused
with the partial volume effect which refers the problem of mixing or
averaging the volume fractions.
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volumetric models are often referred to as the diffusion-
ODF (dODF) [82]. However, HARDI data is also being
modelled as more purely orientational models, referred to
as fiber-ODF (fODF), which focus on the peak orientations
of the ODFs. These are often modelled by using Mixture
of Gaussians, (constrained) spherical deconvolution6, or
other higher order models to indicate the estimated un-
derlying fibers, similar to DTI. For a better overview on
deforming and reorienting dODFs, see [164] who extends
on the ideas of [122, 40] for registration and reorientation
directly on the HARDI data. For a couple good articles
covering approaches from point spread functions to im-
plicit reorientation of fODFs using the Jacobian of the
spatial transformation (along with thorough experiments
and discussions), see [123] and [121].

Compartment models: Volume fractions and multi-tensor mod-
elling

Spherical harmonics are perhaps the most common
way to model QBI and HARDI-based ODFs, before or
during registration of q-space data [21], particularly since
[37] who provided an analytical and elegant regularized
solution to modelling the ODF with a Funk-Radon trans-
form of QBI data in a more numerically efficient manner.
However, DTI remains the most popular clinical DWI ac-
quisition protocol ([182]) and various ways have emerged
to resolve crossing-fibers for DTI data, and deal with the
complex mix of hindered and "free" diffusion within a
voxel. These methods are often referred to as compartment
models ([36]) as they are a mixture of multiple models.
Their purpose is to model the volume fractions in a voxel
and avoid partial volume effects where e.g. the isotropic
part of a voxel mixes with anisotropic compartments.
Among these are Gaussian Mixture Models (GMM) which
can be viewed as natural extension of the 2nd order tensor
with multiple tensors per voxel [144], the Ball-and-Stick
Model which uses the GMM for an anisotropic model
of fibers (stick) and an isotropic Gaussian model for the
free diffusion in the voxel not hindered by fibers (ball)
[18], and the similar but more complex ’Composite Hin-
dered And Restricted ModEl of Diffusion’ CHARMED by
[8], which became the field standard for modelling extra-
and intra-axonal compartments from DTI data, extrapo-
lating parameters such as axonal density.

While important for understanding the diffusion pro-
cesses, these DTI-based compartment methods are usually
not extended to registration outside motion correction,
although we note that examples do exist, such as scalar-
based registration of multi-tensor DTI [135], ball-and-stick

6Spherical deconvolution exists in various forms and has its basis in
spherical harmonics. It is a technique used to estimate distribution of
fibre orientations in an ODF using a set of response functions [140].

DTI [6]), and multi-fascicle DTI [136]. However, for clini-
cal practice a quick acquisition time matters significantly
and DTI offers a good cytoarchitectonic probe with the
simplified 2nd order tensor model. It is also simpler to
use a quick scalar-based registration of a structural atlas
instead of trying to deform the multi-component DTI
compartment models. The 2nd order tensor can not re-
solve complex structures, like crossing or kissing fibers,
and yet tractography for surgical aid (planning and navi-
gation) is still often based on the single tensor DTI model
[47]. On the other hand, more advanced scans that can
resolve fiber crossings have been shown to greatly im-
prove the quality for clinical situations [47], and it is
not hard to imagine that the field should prepare for a
future where these scans replace the single tensor DTI.
The tools for modelling complex ODFs of higher reso-
lution scans exists and are constantly improving along
with inter-subject HARDI registration, as seen in a re-
cent nonrigid PPD-based multi-compartment example by
[32]. In recent years, CHARMED has also been extended
to HARDI with the AxCaliber model [9], and together
with NODDI (Neurite Orientation Dispersion and Density
Imaging) [172] and DIAMOND (DIstribution of Anisotropic
MicrO-structural eNvironments with Diffusion-weighted
imaging) [124], they have formed the foundation for a
large range of more complex and computationally in-
tensive diffusion microstructural models (see [69] for an
extensive overview).

Scalar-based registration though multichannel methods

It is clear that DTI is primarily used as an cytoarchitec-
tonic probe, meaning that it might not necessarily reflect
the true anatomical structure but it is a good indicator,
and useful nonetheless as a way of increasing the reso-
lution and improving scalar-based registration through
more informative quantitative measures such as FA maps.
When we discuss more complex models based on HARDI
scans as a clinical tool, it is often in relation to compli-
cated not-everyday cases where longer post-processing
times are acceptable. In these cases, registration is an
important tool and nonrigid registration can significantly
aid manual segmentation and locate biomarkers, as was
shown in a recent study on automated classification of
Parkinson’s Disease [15]. Scalar-based registration is one
way of getting around the computationally heavy and an-
alytically difficult advanced ODF models, but it remains a
projection of the orientational data and suffers from non-
specificity [107], and information is lost when the reorien-
tation of highly angular ODFs is not taken into account
during registration. However, scalar-based methods are
not without merit. They are fast and a lot of popular VBR
frameworks for DWI are scalar-based (see Appendix Ap-
pendix A on popular frameworks). Additionally, areas
of grey matter and the Cortico-Spinal Fluid (CSF) can
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likely be more easily distinguished in high spatial resolu-
tion structural MRI which can provide added information
along with quantitative DWI measures. In recent years a
lot of combinatorial methods using rotationally invariant
features have been suggested for DWI registration, some
multichannel as with the Demons approaches in [20] men-
tioned above. One example is a registration algorithm by
[2] that build feature vectors along the TBSS skeleton (see
Section 3.4) at each voxel that contain GFA, eigenvalues,
etc. used in combination with the HAMMER (Hierarchi-
cal Attribute Matching Mechanism for Elastic Registra-
tion [126]) similarity measure. Another framework that
also use this multi-component similarity measure is the
’SPherical Harmonic Elastic REgistration’ (SPHERE) by
[163] which combines edge maps and several orientation
invariant ODF features for an initial robust registration
followed by an incremental SH order refinement using the
earlier mentioned weighted SH PSF reorientations of [122].
SPHERE updates the ODFs based on the scalar maps of
each iteration and falls under the category of implicit
reorientation. Also in this category are more multichan-
nel Demons approaches as is seen in [19] where a white
matter atlas is created in combination with the popular
Fiber Orientation Distribution (FOD) model by [140, 5]
(as the name implies a method similar to the multi-tensor
concepts used to model the fODF, here by constrained
spherical deconvolution on HARDI data [139]). F-TIMER
(Fast Tensor Image Morphing for Elastic Registration) by
[165] combines anatomical landmarks, edges, and tensor
information in an approach similar to SPHERE (the two
were compared in [163]) - the main difference being that
F-TIMER was built for DTI data instead of HARDI as
with SPHERE.

Whether we term these more complex models to be mul-
timodal, multichannel or combinatorial methods work-
ing on compartment models, FODs or other methods
resolving multi-fiber geometry on ODFs, algorithms for
utilizing multiple features are popular and not without
reason. As long as the models are computationally fea-
sible, adding more data should provide a more robust
registration and, while it is not yet used for registration,
these scalar ensembles are likely to be among the first
methods to be introduced to contemporary popular deep
learning frameworks that benefit from more data chan-
nels as seen in a tumor segmentation example by [178],
can help create entirely new features through convolu-
tional neural networks [143], or for improving sparse DWI
acquisition [64].

2.2. VBR: Explicit Reorientation

This section is dedicated to registration algorithms that
include the reorientation in the analytical gradients, and
by extension makes use of the directional information in
optimizing the similarity or cost function of two volumes.

We refer to this as explicit reorientation. Compared to the
previous section, these algorithms are often more compu-
tationally heavy, have extensive mathematical derivations,
and heavy memory requirements on the derivatives of the
transformation and reorientation, which is why these pa-
pers most often come with numerical implementation de-
tails. On the other hand, they are likely to provide a more
robust and possibly faster optimization as shown by [174]
who use FS with Polar Decomposition and incorporates
the similarity measure between the full DTI profiles in the
cost function. Together with [173] their work became the
foundation of the DTI-TK registration framework, which
remains one of the best and most popular DTI registration
frameworks (see Appendix Appendix A). Another widely
used framework, that also applies explicit tensor reori-
entation and the FS model, is MedINRIA by [168], and
more specifically the DT-REFinD algorithm. It is a fast
diffeomorphic algorithm with a Demons-based objective
function that is computationally heavy but argued to show
improved results against implicit reorientation and scalar-
like computation time as it allows for a Gauss-Newton
optimization approach (again we refer to Appendix Ap-
pendix A for more details). The explicit reorientation
in DT-REFinD was also extended to the log-euclidean
domain by [134].

From DTI to HARDI data, explicit reorientation was
shown to improve the registration in the works of Du et
al. below. This was first done in a Large Deformation
Diffeomorphic Metric Mapping (LDDMM) framework
with a similarity metric based on Riemannian manifolds
where the implementation was compared with both a
scalar and tensor version as well [41]. It was extended to
a probabilistic LDDMM approach for the HARDI atlas
generation in [42], and further to HYDI data (multi-shell
HARDI) in [43] where the signal was represented with
a Bessel Fourier orientation reconstruction (BFOR) and
an atlas was generated. Possibly inspired by their, Zhang
et. al also moved to an LDDMM framework and HARDI
data in [176] with explicit reorientation of diffusion basis
functions (a more generalized symmetric tensor model
than of the Watson distribution basis functions used in
prior work [175]). Their approach results in warped raw
DWI images on which they argue other frameworks, that
model ODFs or other DWI features, can be used for quick
group analysis.

Another interesting framework for linear and non-
linear registration of both DTI and HARDI was presented
in [44] and compared to both DTI-TK and MedINRIA.
The method is built on the FS model, although the au-
thors argue for a possible extension to PPD to include
the affine transformation, and it uses angular interpola-
tion as a substitute to a specific ODF model — similar
to the approach of Zhang et al. above. Their work is an
extension of the popular FSL’s FLIRT and FNIRT (see
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Appendix Appendix A) that includes explicit reorienta-
tion and has been made publicly available as an plugin to
FSL.

2.3. VBR: Validation

In DWI, creating a ground truth or gold standard (a
community-accepted way of evaluating the success of a
registration) remains an open problem [97, 105]. Due to
this lack of ground truth data, qualitative assessment via
visual inspection of ROIs is still one of the primary ways
to present DWI results and can be found in nearly all
DWI studies. It can be useful for inspecting known areas
of fiber crossings, sharpness of the registration, for show-
ing clear discrepancies in results, and generally for sanity
checking a method. However, such results are rarely
reproducible for comparative evaluation in followup stud-
ies, and what we really want is approaches to quantify
results in a way that is comparable with other methods
for external validation. We return to this discussion in
Section 4. Here, we briefly list some of the popular quan-
titative ways studies have evaluated their results, based
on the prominent studies covered above and a list of
comparative studies.

The following is a summarized list of quantitative
groupwise validation methods for VBR which can be
applied to most DWI data. Some methods require expert
segmentations while others can be performed without
medical expertise or without a specific region in mind.

• (Automatic) Whole-brain voxelwise error. VBR is
most powerful as an unbiased registration approach.
Without strong assumptions about spatial correla-
tions, it is possible to perform explorative studies and
tests hypotheses regarding atrophy, new biomarkers,
etc. A majority of the above citations fall within this
category, usually followed by one of the additional
validation approaches below. Aside from standard
scalar-based measure (RMSE, log-SSD, etc.), some of
the popular VBR distance measures for DWI include:

– Symmetrized Kullback-Leibler (sKL) divergence.
Information-theoretic cost metric. sKL is popu-
lar for both DTI and full ODF profiles [27, 41,
176].

– Orientational Discrepancy (OD). Measures angu-
lar discrepancy in ODFs, more specifically the
difference between ODF peaks. [163, 26, 161].

– Dyadic Coherence (DC) and Tensor Overlap (OVL).
DC is the variability in the dominant diffusion
direction based on principal eigenvectors, while
OVL is the overlap of eigenvalue-eigenvector
pairs in DTI [85, 173, 27, 67].

– SH coefficient distance. Scalar measures used over
SH coefficients provide an ODF distance mea-
sure [123, 41].

• (Manual) Structural markers or labels. Well-known
white matter ROIs (structural delineations of tracts),
and at times grey matter structures, are delineated
by experts, and a measure of overlap is often used
to evaluate the registration. An atlas can replace
manual segmentations, if manual segmentations are
not available. It is worth noting that using an atlas
registration from A for VBR to validate your own
registration B is intrinsically limited by A and is
mostly used as a sanity check. Examples of label-
based validation can be found in [163] who use the
Dice ratio, and [41] who use also use sKL.

• (Automatic) Synthetic warp. This popular approach,
where the data is warped, often randomly, and reg-
istered back to itself, is easy to quantify and a great
sanity check. However, it should be noted that warp-
ing an image in an unbiased way while keeping the
warped image anatomically plausible is a significant
challenge. It is also often used in papers to visually
show that the ODFs are reoriented properly using a
controlled deformation. Examples of this approach
can be found in nearly all papers, see e.g. [168], [134],
and [44].

• (Manual) Fiber tracts. In this approach, well-known
fiber tracts are segmented manually and used to eval-
uate the registration. The fiber tracts are estimated
in the native space and warped using the resulting
VBR deformation field. Spatially correlated measures,
such as tracts, are excellent for validation if the labels
can be generated, but care should be taken as they
rely heavily on the trajectory/tractography model.
They are unlikely to compare favourably to TBR in
which the fiber tract models themselves are at the
center of the registration. Examples can be found in
[41] and [163].

There are other groupwise validation methods that de-
pend highly on the data available. These are often seen
when studying specific diseases, tumor development,
treatment, etc, and often require multiple scans of the
same subjects such as intra-subject data. This includes the
development in longitudinal scans e.g. identifying stages
of Alzheimer’s by neuronal atrophy, combining pre- and
intra-operative scans, or tracing other changes like the
effects of age or a specific treatment (see [86] for this and
more).

Once frameworks have been published and committed
for public use, the natural next step is to compare such
methods with as little bias as possible. Such comparative
studies offer an excellent insight into both the state-of-the-
art algorithms and well-described validation methods.

• [155] made a comparison of 8 algorithms - 1 linear
and 7 nonlinear commonly used DTI registration al-
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gorithms. The first 6 were based on FA maps and
the last 2 relates to registration with explicit reori-
entation. Validation included visual inspection of
FA, and structural biomarkers. The latter were white
matter ROIs measured by the DTI-specific mean FA-
weighted angle between principal eigenvectors.

• [157] compared 11 open-source popular DTI registra-
tion methods with 7 DTI-specific evaluation criteria.
Of these open-source methods, 10 were scalar-based
algorithms and 1 was based on explicit DTI reorienta-
tion. All registration frameworks are nicely summa-
rized, and the validation spans a useful set of both
scalar and orientational similarity measures.

These studies are good examples of popular ways to eval-
uate and compare registrations, but they also highlight
how a method can be shown to outperform another by
choosing a biased evaluation criteria. For instance, an
algorithm with explicit reorientation such as DTI-TK will
perform best in test if the error measures are based on
the angle between tensors. On the other hand, SyN seems
better if the evaluation is based on scalars such as FA.

2.4. VBR: Concluding Remarks

The advantages of VBR comes from the more model-
free unbiased algorithms which are great for whole-brain
exploration, e.g. when searching for population-wise
biomarkers. Including directional information in the reg-
istration has repeated been shown to improve the regis-
tration as opposed to scalar-based algorithms based on
structural MRI of quantitative DWI features such as FA
or MD.

The two major limitations of VBR, partial volume (PV)
and reorientation, are both mainly relate to the warped
space that we have from either deforming or interpolating
the images. These are related to creating a DWI template
or performing tractography on a deformed reconstruction.
However, they not primary limitations when it comes to
creating a shared coordinate system between scans and
analyzing differences and shared features.

1. Smoothing introduces partial volume (PV) effects.
Smoothing an image is essential to create a stable
differentiable deformation or a multi-scale model. If
we assume that the initial resolution does not already
suffer from PV effects or that a compartment model
captures the effects (e.g. on the border of the CSF),
smoothing is still bound to make PV effects worse.
However, the smoothing is only relevant to the reg-
istration. Given a spatial mapping, subjects can be
compared across native spaces without adding to
PV issues, and a quantitative template can still be
created by mapping each subjects scalar values. The

major issues from smoothing is the risk that minus-
cule structures will be disregarded if they do not
follow the major dominating features in registration.

2. Scalar-based registration means challenges in re-
orientation. This has been a recurring theme
throughout VBR of DWI. If scalars such as FA are
used to map voxels then it is unlikely that the fiber
trajectories will align as well everywhere — even for
theoretical correct reorientation model. Implicit re-
orientation will give a more correct registration but
it is still based on scalar similarity measures. Again,
this is likely not a significant issue if we do not care
about fiber tracking in the warped space but instead
perform model calculations in the native space. Even
so, we have seen that aligning tensors and ODFs,
based on their shape and directions, with explicit
reorientation improves the registration.

3. Tract-Based Registration of DWI Data

In the second part of this review, we look at algorithms
that derive spatial correlations from DWI with the in-
tend on modelling the brain based on fiber trajectories
or pathways. This is often done either by following the
largest eigenvectors of the tensor in DTI, or peaks in
the dODF or fODF for q-space methods. The estimated
fiber pathways are used to study various topics such as
connectivity, shape/length, and quantitative DTI or ODF
measures along the tracts. For an introduction to these
tract statistics, we recommend [109] who also developed
a generalized TBM implementation.

We to use the terms tracts and fibers a bit interchange-
ably. There is some justified confusion in the imaging
field about tract vs fiber in terms of anatomy. Interlocked
axons make up a nerve fiber, a nerve tract is a bundle of
fibers, and ’bundle’ is a scale that can be anything from
the smallest to the largest tracts. The term "fibers" is often
used as shorthand for fiber tract or fiber bundle. The
type of anatomy referred to by these terms often boils
down to how the white matter segmentation problem is
being solved. That is, do we bundle fibers by connected
regions or by their structural properties (we recommend
[106] for more discussions on this). Finally, we also use
the popular term ’streamlines’ for any contiguous set of
3D points generated from tractography that indicate fiber
pathways.

White Matter Segmentation

To see where groupwise measures and registration fits
into tractography, we have to look at what basis sub-
jects are compared. TBR is all about clustering the (often
millions of) fiber trajectories/streamlines into grouped
comparable regions - which in turn involves solving the
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white matter segmentation problem (globally or locally).
Inspired by [106], this is aptly separated into three ap-
proaches: parcellation-based connectomes, fiber cluster-
ing, and hybrid methods.

• Parcellation (or ROI) methods are fiber termini (or
cortex) centric, which means that they perform corti-
cal (grey matter) parcellation and group fibers based
on what ROIs (or nodes in a connectome graph) they
intersect. As fibers are bundled by the brain regions
that they connect, these methods are well-suited for
graph-based algorithms and comparison with brain
function (fMRI scans).

• Fiber clustering methods are white matter centric
and segment fibers into similar anatomical bundle
structures, based on the clustering algorithm and the
similarity measure. These approaches are aimed at
measuring the central anatomical properties of fiber
tracts, and are well-suited for studying neurological
diseases and large displacements such as tumors.

• Hybrid methods combine the connectivity-driven in-
formation of parcellation-based methods and the clus-
tering of similar white matter anatomy.

Others such as [58] use the terms ’streamline-based’ and
’connectivity-based’ for essentially the same approaches
as the above. Or ’voxel-based’ and ’surface-based’ as in
[28]. Since these methods of segmenting the brain based
on fiber tracts often have different goals (connectivity
vs. structural anatomy), comparing them is not always
straight forward. Without gold standards one paradigm
and scale of segmentation can be as valid as another. That
said, each method have their strengths and weaknesses,
and each relate differently to registration and voxel-based
methods. Parcellation-based approaches lean toward an
initial nonrigid voxel- or surface-registration as ROIs have
to be identified in the cortical regions in a common frame
of reference across subjects. Fiber clustering methods on
the other hand often segment the white matter prior to a
local affine or nonrigid registration of fiber tracts (to get
a more sparse representation). Due to the rich portfolio
of 3D multimodal registration and the high interest in
connectivity, ROI-based methods are the most published
methods while fiber clustering has flourished in the more
recent decade ([58]). There are two common approaches
to perform groupwise analysis in both parcellation and
fiber clustering studies

1. Refinement methods. Here clustering is often indi-
vidual followed by an averaging scheme. These are
the most used methods and make use of spatial pri-
ors (often from histology) or manual delineations. If
available, an atlas is registered to the subject space of
each individual in order to create a common frame of

reference between subjects. Averaging or comparison
of specific local anatomy can then be performed in a
more computationally efficient localized way, as op-
posed to handling all subjects at once. This allows for
handling more information (e.g. streamlines) but it
also limits the parcellation to the initial spacial prior
and the accuracy of the registration or the expert
delineator.

2. Unbiased methods. These methods do not require
spatial priors and are less common due to the com-
putational burden of clustering multiple subjects si-
multaneously. Each subject is either registered to a
common space (often a subject in the cohort) after
which all subjects are clustered, or all subjects are reg-
istered and clustered simultaneously. Such methods
are promising as they are more purely data-driven,
but they can also be harder to navigate and represent
a significant computational challenge. As such, data
is often represented as sparse or high-dimensional.

Others, such as [80], referred to these as "top-down" (re-
finement) and "top-op" (unbiased) methods. There are
of course more nuances to these two categories, such as
multi-atlases, but it is a subdivision that roughly holds
for all group studies, and we use it in the following where
we look at state-of-the-art in white matter connectivity
and structural analysis.

3.1. White Matter Connectivity

The objective of mapping the brain’s anatomy to its func-
tion is closely linked to parcellation-based segmentation
methods, that seek to chart the brain in-vivo based on
what cortical areas are connected. Initially, postmortem
maps and neuroanatomical conventions were used to
create the first successful surface-based parcellation al-
gorithms7 as we saw with FreeSurfer in [51], and the
early DK-atlas presented in [38]. Later it was followed by
the popular atlas by [39], and more recently in [90] with
their DKT40 atlas. These macrostructural approaches are
often rated on their ability to closely identify the same
regions across subjects which is highly useful for cortical
cartography in a clinical setting. However, as pointed
out early in [51], lobes (sulci/gyri) can not always be
separated based on macrostructure (folds) or even mi-
crostructure (folds within folds). If the data is available,
there is evidence that the borders in cortical cartography

7We have intentionally stepped around surface-based registration in
the voxel-based methods of the previous section as this approach is less
relevant for DWI in terms of utilizing directional data. For a comparison
of surface-based and voxel-based registration we recommend [89] who
performed a large-scale comparative study using SyN and ART for
voxel-based registration, and FreeSurfer and Spherical Demons
for surface-based registration.
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should be guided by both "functional fingerprints" and
"connectional fingerprints" [116], while structural scans
can be used for overall navigation and initial bias (see
[46] for a thorough discussion in segmentation based
on connectivity and function). In recent years cortical
parcellation have gone from being structural maps for
functional MRI (fMRI) to incorporating both structural
and functional modalities in the parcellation itself, cre-
ating entirely new subdivisions of the brain. One such
prominent example is [63] who link fMRI to structural
MRI, myelin maps and more, creating a new HCP atlas
by training a robust classifier to recognize the multimodal
fingerprint of each cortical area (by way of clustering and
manual experts). This atlas ended up with 180 areas of
which 97 were new in comparison with previous reports.
They also included but did in fact not use diffusion MRI
data.

To center our scope around DWI, we narrow the focus
to multimodal parcellations that actively involve connec-
tivity information and white matter segmentation, specif-
ically ’structural connectivity’ from DWI data - unlike
connectivity as a correlation/interaction term as used in
fMRI studies. In terms of [116] this is the hypothesis of
functional regions having a specific connectional finger-
print (additionally examined in [30]). Finally, we focus
on very recent studies since whole-brain analysis has
less manual expert intervention in terms of registration,
and it has only recently become computationally feasi-
ble. However, we acknowledge early pioneering work
in connectivity-based parcellation such as [16] who pre-
sented the first in-vivo connectivity-based segmentation
of grey matter, based on connections from thalamus to
cortex (the registration involved was global affine from
FSL).

Parcellation: Voxel- or surface-based registration

There are three common approaches to studying the hu-
man connectome by way of structural connectivity-based
parcellation: (i) voxel-based parcellation when a conven-
tional whole-brain atlas is desired for an initial parcella-
tion often involving a nonrigid voxel-based registration,
(ii) surface-based parcellation for a parcellation based
on macroscopic cortical features, such as gyri, lobes and
commonly shared structural folds, or (iii) a combination
of both when surface and subcortical segmentations are
needed. The dominating approach seems to be surface-
based registration where an initial cortical segmentation
is performed using a tool like FreeSurfer and related
atlases8. While we will only cover purely voxel-based
parcellation briefly in the first part under refinement

8FreeSurfer was also used to parcellate the popular HCP cohorts
[63].

methods, it is also present in studies with subcortical
segmentations using FreeSurfer, as it comes with the
option of both voxel and surface registration.

Refinement based on existing parcellations

We first look at voxel-based parcellation, all of which
were performed using a scalar-based nonrigid registra-
tion frameworks, where an atlas is registered to acquire
an initial parcellation. A common choice is FSL as we
see in [153] where FNIRT is used to transform the AAL-
90 atlas ([147]), modify the atlas based on connectivity,
transform the results back to common space, and create a
probabilistic atlas to investigate group difference between
healthy and schizophrenic subjects. Another scalar-based
registration toolbox is SPM9 which was used in a simi-
lar manner on a larger population in [65] to register the
AAL-90 atlas to the structural T1 scans.

For surface-based parcellation, it is fair to say that
FreeSurfer is the common registration tool of choice.
An early example of groupwise registration for anatom-
ical refinement can be found in [28] who modified a
FreeSurfer atlas parcellation (36 anatomical labels in-
flated to a sphere) by taking inter-subject connectivity
into account. It was also the basis for [22] where the
66 cortical parcellation in the DK-atlas was used to cre-
ate a nested scale-space by initially subdividing each of
the 66 ROIs five times. FreeSurfer comes with both
voxel- and surface-based nonrigid registration (see [119]
or Appendix Appendix A) and the voxel-based regis-
tration was also used to extract subcortical grey struc-
tures from an atlas in [22]. Their work was based on
the prominent correlation studies between structural and
functional connectivity in [68] and [70], who used the
smallest ROI size compared to the scale-space study (still
FreeSurfer). In [145] it was used for presurgical plan-
ning where FreeSurfer and the DK-atlas (here 95 cor-
tical regions) was used in combination with another reg-
istration framework10 more robust to tumors to perform
(simultaneous) groupwise clustering. Based on their pre-
vious similar parcellation-based tract extraction and adap-
tive shift clustering in [146], the fibers were clustered
using the connectivity-pattern of each voxel along a fiber.

A problem with many of these methods is the lack
of availability. A recent bid at publicly available struc-
tural connectivity-based parcellation can be found in [93].
Here FreeSurfer was used for surface-based cortical
registration to parcellate 70 gyri, after which each gyrus
was clustered and segmented based on fiber connectivity
and group reproducibility. This study presented a com-
bination of structural, connectivity and fiber similarity

9Specifically SPM5 in this case.
10DRAMMS or Deformable Registration via Attribute Matching and

Mutual-Saliency weighting [110].
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while relying on gyri segmentation. It is available in the
BrainVISA platform and tested on the ARCHI database.
The parcellation has yet to be connected to functional
scans. Another interesting example of connectivity-based
parcellation with both surface- and voxel-based regis-
tration can be found in the recently published ’Human
Brainnetome Atlas’ by [46]. For each subject, an initial
structural surface-based parcellation is created using the
DK-atlas in FreeSurfer, where the structural scan is
aligned to diffusion space and nonrigidly registered to
a common MNI152-space11. Here an ROI-based proba-
bilistic white matter segmentation is performed, followed
by spectral clustering with cross-validation (and more)
for additional subdivision of the DK-atlas. It resulted in
210 cortical and 36 subcortical parcellated regions based
on connectivity that were reproducible across the cohort,
with added functional connectivity information and with
mental processes delineation from the BrainMap database.
Of particular note, the authors recognizes the need for
what they refer to as ’structural connectivity-based reg-
istration’, which is their term for using orientational fea-
tures in the VBR instead of only scalar-based registration.
However, they deem it not fully mature and use nonrigid
scalar-based registration. The Brainnetome Atlas was fol-
lowed up very recently with the open source Automatic
Tractography-based Parcellation Pipeline (ATPP) in [94]12.
Here a massively-parallel connectivity-based parcellation
framework scalable for both clusters and desktop com-
puters is presented and tested by parcellating a variety of
brain regions from other papers. As in the Brainnetome
project, nonrigid registration to a common space is per-
formed using the scalar-based registration from SPM8
toolkit. It is added that manual inspection of the reg-
istration should be performed and is integrated in the
pipeline.

Unbiased parcellation

The second category of unbiased parcellation methods is
still rare for whole-brain group studies but promising as
the results spatially correlated while also giving a more
data-driven parcellated atlas without macrostructural bias
and predefined number of ROIs. The major challenge lies
in the computational burden of clustering streamlines
simultaneously in a cohort of subjects in an often hierar-
chical manner13. Finding a common frame of reference
can be tricky for close to voxel-sized ROIs due to noise,

11The nonrigid registration framework is never mentioned but likely
done with the scalar-based SPM8 toolkit as evident in the co-developed
ATPP framework below.

12To be clear ATPP was developed during the Brainnetome project
and share very similar yet optimized approaches.

13Without prior knowledge of the number of clusters, some tree-
like hierarchy or multi-scale method often works best. The number of
clusters remain an open problem [94].

partial volume effects, and the anatomical variability14.
While only using a four subjects, an interesting example
of a tree or dendrogram solution can be found in [100]
who used hierarchical clustering to generate whole brain
parcellations, while also comparing several hierarchical
clustering methods. Here SyN was used for nonrigid reg-
istration of FA maps. A clear advantage of this approach
is the dendrograms containing information about how
ROIs relate to each other at different levels. This inspired
[54] who used a larger cohort of 66 HCP subjects, each
of which came with a FreeSurfer surface parcellation
that was used to create shared seed points at vertices used
to cluster tractograms. The unbiased parcellations were
compared against both functional scans and the DK-atlas.
Another approach also using parcellated HCP vertices
was presented in [114]. ’Supervertices’ were used to cre-
ate a nested multi-scale parcellation over 100 subjects that
were split into two groups on three levels going form 500
to 2000 supervertices for a single hemisphere. The reso-
lution was increased and expanded to more modalities
including fMRI in [113].

Concluding remarks on parcellation-based methods

Cortical parcellation enables us to study white matter
connectivity between brain regions in a subject. It ties
structural and functional scans together, and it gives a
common frame of reference for groupwise studies. Struc-
tural connectivity can be used to create more informative
parcellations than the shape and folds of the brain. How-
ever, as we saw with refinement methods, the results are
often tied to the predetermined lobar borders that are
identified in the subject using nonrigid registration (of
vertices or voxels) with an atlas. While more unbiased
methods exist, atlas parcellation is seems to be the most
common. For the popular tools, such as FreeSurfer or
FSL, this registration will in most cases involve structural
MRI (like T1w or b0) or derived quantitative measures
such as FA, but not the connectivity itself. However, new
public tools, like the ATTP pipeline, aim to incorporate
DWI more in the parcellation.

The limitations of using structural connectivity for par-
cellation lies largely in the end-to-end tractography and
the quality of the data. For tractography, tracing fibers
over long distances, and near the cortical regions, requires
the ability to (approximately) resolve crossing/kissing
fibers, which is critical as major homogeneous fiber tracts
will otherwise dominate as evident with the single ten-
sor DTI [7]. Tracing fibers to the borders of the less
anisotropic grey matter also requires higher quality data

14Anatomical variance is also often referred to as heterogeneity in the
brain. The concept of a template or atlas parcellation of a population is
based on capturing the opposite of heterogeneity, namely homogeneity
which refers to shared features.
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[106]. DWI-based parcellations are more difficult to eval-
uate than parcellations based on macrostructural features,
and most such focus on reproducibility as a validation
method and proof of reliability (which we return to in
Section 3.3).

3.2. White Matter Structure

We move from analyzing the white matter as the wires of
the brain, and on to consider the white matter more as
the skeleton of the brain. The goal of parcellation-based
white matter segmentation was indirectly in defining the
graph nodes or ROIs in the cortex based on fiber connec-
tions. Here, the goal is to compare fiber tracts based on
their structural similarity by the shape of streamlines and
tracts, which for whole-brain analysis can mean working
with millions upon millions of streamlines across subjects.
Such tractography-based spatial alignment algorithms are
often defined by the way a fiber is represented and com-
pared to other fibers (similarity), how they are grouped
(clustering), and what registration is used to align them
(registration). It is worth noting that, in the case of group-
wise comparison of fiber tracts, registration is at times
only performed on a purely global scale, leaving it to intel-
ligent clustering to segment similar tracts. Streamlines can
for instance be identified and clustered with high dimen-
sional spectral clustering as shown in [108]. Others argue
that the shape variations in tracts means that localized
registration is critical to groupwise comparison - even to a
cohort where the fiber bundles have been pre-segmented
into known anatomical structures or in a globally aligned
template space [59]. And somewhere between clustering
and registration, multi-atlas and dictionary algorithms
have begun to show significant promise in capturing such
shape variations [97]. In all these approaches, complexity
and high computational requirements have resulted in
algorithms where fiber trajectories are represented in a
sparser space (e.g. 1D tracts, 2D sheets major bundles,
randomly sampled fibers, fixed length representation of
fibers, etc), or in high dimensional spaces such as we see
with the popular spectral clustering methods.

In the following, our focus will be on more recent frame-
works created to directly cluster streamlines and align
fiber tracts in order to segment the white matter for group-
wise analysis. We split it into refinement methods, unbi-
ased methods, and multi-atlas approaches.

Refinement of known fiber tracts

Refinement methods are often focused on comparing
specific anatomically named bundles e.g. by affine trans-
forms. For such methods, registration plays a more sig-
nificant role and streamline clustering is primarily used
to to find simpler, sparser fiber representations.

In a prominent study [59] "Streamline-based Linear
Registration" (SLR) was presented and used to register
streamlines of pre-selected bundles in a cohort, and also
demonstrated for pairwise whole-brain registration. For
bundle-based registration, streamlines were randomly se-
lected (max 400) and affinely registered to a template
subject. Their work was a continuation of the ’Quick-
Bundle’ method (sparse tract representation) [57], which
enables a computationally feasible affine whole-brain fiber
registration. QuickBundles and SLR was recently com-
bined to ’RecoBundles’ in [58]15 where pre-segmented (or
model) bundles can be used to extract similar bundles
from a cohort, and for more difficult subjects with large
displacements, such as tumors. While all registrations
performed remain affine for both bundle and whole-brain
transformations, the registration of bundles can be con-
sidered locally affine and will thus produce better fits,
though limited by the pre-segmentation.

Another registration method came from [98] where
streamlines were registered directly. The high computa-
tional burden was handled through affine registration of
streamlines as feature vectors16 and ICFs (Iterative Clos-
est Feature/Fiber) for high dimension nearest neighbour
matching. ICF is not far removed from the idea behind
the sparse fiber model of QuickBundles (in using fiber
’centroids’ or averages for the deformation), and it was
performed with probabilistic boosting tree classifiers for
bundle segmentation in [99] - referred to as ’Hierarchical
ICF’. ICF was also applied in a more recent paper by
[180] where template bundles were matched to individual
subjects, under the assumption that approximate matches
can be found in all subjects.

Most of the above represent fiber models with a fixed
number of points for all fibers to make the computations
feasible. However, other paradigms also exist. An early
approach was presented in [159] where the subjects were
first rigidly aligned and the bundles — modelled by ’tract
density maps’ based on a Gaussian Process framework
— were nonrigidly registered using a polyaffine group-
wise approach. Here, each bundle is an affine registration
and all local affine registrations are fused into a single
deformation, creating a more unbiased template. The
idea of polyaffine registration of bundles was also used
earlier in one of the first nonlinear bundle-based regis-
tration algorithms by [181] who did pairwise registration
and compared the results with a scalar-based nonrigid
Demons algorithm on FA maps.

15Their framework is publicly available in the open source python
toolbox DIPY - see [56].

16It is a common choice to represent fibers by a fixed number of points
for easy vectorization, often ranging from 5 to 20 points independent of
length.
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Unbiased fiber clustering

Unbiased fiber clustering are characterized as methods
that do not rely on prior segmentations of known tracts
for groupwise alignment, and can be used to potentially
locate new unknown or unexpected fiber constellations.
There are at least two different approaches to groupwise
alignment of unknown fiber tract segmentations.

The first approach is to perform simultaneous cluster-
ing of streamlines from multiple subjects. Without prior
knowledge of the location or number of fiber tracts appear-
ing in across individuals, subjects are globally aligned and
bundles are identified as shared spatially similar struc-
tures - by clustering and fiber registration. This often re-
quires an extra focus on sparse and efficient computations,
and we have only recently begun to see such methods
potential in results for large groups in a decent resolution,
like the HCP. An early noteworthy example of streamline-
based joint groupwise clustering, was presented by [108],
in which global rigid registration of a cohort was per-
formed to create a high-dimensional white mater atlas
based on subsequent spectral embedding and clustering.
Streamlines were represented as high dimensional points,
and random sampling of streamlines were used to help
solve the computation burden. The atlas was manually
segmented after the multi-subject clustering, and any new
subject was clustered and segmented automatically. The
rigid registration was changed to an affine registration
based on fiber similarity in [112], who presented one
of the first simultaneous groupwise tractography-based
registration methods. Finally, the two methods were com-
bined with a nonrigid b-spline registration in a recent
extension to automatic detection of major tracts in sub-
jects with large displacements (brain tumors) [111]17. For
another recent example of inter-subject streamline cluster-
ing, we also recommend [25] who presented a heuristic18

multi-subject streamline clustering framework reported
to have both good scalability and outlier detection. It was
tested on both synthetic data and healthy HCP subjects,
and it is available on Github19.

The second approach is to integrate anatomical ROI
data along with structural streamline similarity to group
fiber tracts across subjects. As an example, [127] pre-
sented an alternative hybrid method for unbiased fiber
clustering, where FreeSurfer (specifically HCP) cortical
and subcortical parcellations were used for unsupervised
spectral clustering of streamlines, along with their struc-
tural similarity. The spatial registration was global affine
but indirectly coupled with the nonrigid FreeSurfer

17All their methods are available online and open source for public
use - see the paper for details.

18In this case the ’Multiple Species Flocking model’.
19https://github.com/amiraCHEK/

3D-SSF-work-in-progress.

pipeline. Their results indicate that using structural ROIs
with fiber anatomy (shape) gives a clustering closer to an
expert manual labelling. It was recently extended to a
hierarchical tree clustering with ’AnatomiCuts’ in [128] -
made computationally feasible with random sampling of
streamlines during clustering.

The multi-atlas and fiber tract registration

On the millimeter scale, the complexity of the brain
cannot be captured in a single average but varies too
significantly, even in healthy subjects, for an optimal non-
rigid spatial mapping. This does not mean that we cannot
use registration and spatial mapping to identify areas of
homo- and heterogeneity in subjects. However, it presents
a significant challenge when it comes to segmentation and
large group studies with more than one subgroup and
correct atlas. [97] referred to this as "The diffeomorphism
delusion", and points to a future of multi-atlas strategies
and dictionaries of anatomical patterns. Intuitively, we
would get a better segmentation by splitting populations
into subgroups with shared or similar unique features
and creating a hierarchy of shared coordinate systems.
More importantly, two criteria for doing so are within
range: (i) large publicly available and growing datasets,
and (ii) sufficient computational power and efficiency.

We have put the concept of using a multi-atlas with
structural fiber clustering as this is a quickly growing area
within multi-atlas approaches for groupwise analysis of
DWI. The reason seems to be that streamline clustering
for group comparison is already performed using sparse
representations of bundles, which makes multi-atlases,
dictionaries, and feature learning possible. It is also im-
portant that clustering methods tend to only perform
global rigid or affine alignments of DWI and, without
the flexibility of nonrigid registration, identifying new
bundles requires more labels or learned features to cap-
ture inter-subject variability [59]. As such, fiber clustering
methods have started to replace nonrigid registration with
multi-atlases and voting schemes. As an example, [169]
used 12 manually labeled subjects with a segmentation of
7 major bundles while assigning arbitrary labels to non-
identified bundles, such that each tract in a test subject is
individually labelled based on the atlas with the most sim-
ilar structures. In a related study by [80], multiple atlases
of manually labeled tracts were used to transform (scalar-
based nonrigid FA) the native space of 198 young normal
twins with HARDI scans, and to segmented them with a
label-fusion method. The fiber clustering used here was
a hybrid approach, similar to [127], with both ROI and
fiber shape clustering. However, the tracts selected for
the multi-atlas were conservative or well-known estimates
that should exist in all subjects, and so this multi-atlas
should be considered to be within the same subgroup or
diffeomorphism. Similar to these multi-atlas approaches,

14



dictionary learning tries to capture or learn the various
configurations of fiber tracts in a sparse representation.
In a recent example, [91] demonstrated a sparse finger-
print20 method, called ’Fiberprint’, on 861 subjects from
the HCP that could separate subjects (including twins)
based on 3.000 fiber trajectories.

Concluding remarks on methods based on white matter struc-
ture

Streamlines and tracts give a high level, model-based,
and spatially correlated view of the brain. It can be an
advantage over VBR, but it is also challenging as it is
more computationally expensive, involves a greater risk
of biased connectivity assumptions, and sparse represen-
tations can easily neglect important density information
[59]. The alignment of fiber tracts are limited by the initial
tractography, and a high number of streamlines is often
required to increase remove outliers and false positives.

In terms of registration and clustering, tracts and
streamlines are treated differently than VBR and corti-
cal parcellation methods. First of all, parcellation-based
methods group tracts based on their fiber termini, which
means that they often rely on the initial voxel or surface
registration and not on the tracts themselves. Second,
the resulting transformation of a VBR can be used to
align streamlines without losing spatial coherence with
the underlying anatomy, as these assumptions are already
made in the initial native space tractography (unlike the
reorientation of ODFs in VBR). Additionally, if an ade-
quate tractography can be performed in the native space,
VBR is likely outperformed by using the streamlines or
tracts directly for the registration, though the a signifi-
cant limitation is that fibers are often treated as the same
length, with the same number of points representing a
fiber, for computational efficiency and vectorization (e.g.
[112] with 5 points, [127] with 10, and [59] with 20).

All in all, detailed registration of fiber tracts still strug-
gles with being computationally heavy for groupwise
studies of the whole brain. However, this is changing
with efficient sparse representations and multi-atlases.
Structural fiber clustering has already been shown to be
a highly efficient tool in both basic research and clinical
practice, and likely the best tool if a study is aimed a
specific bundles [105].

3.3. TBR: Validation

Validation of TBR methods, like VBR, is not easy and suf-
fers from the same lack of ground truths and difficulties
in comparing results with previous studies, as discussed
in Section 2.3. However, TBR involves more assumptions

20A fingerprint here refers to a compact feature vector representation
that is unique to an image.

about spatial correlation through tractography, and the
validation is often focused on the correctness of the tracts
and streamlines, and on the segmentation of well-known
fiber bundles or cortical regions. While both categories of
TBR methods segment the white matter based on shape
or connectivity, their goals and approaches to validation
are not always the same. On the other hand, template
reproducibility is often a keystone for both types of meth-
ods when it comes to results that are based on the end
product of a long pipeline - especially when a good choice
for the number of clusters in various regions or bundles
is unknown.

Validation of parcellation methods

Parcellation based on structural connectivity lies on the
boundary between white matter structural fiber cluster-
ing and functional correlation in the cortex. Regarding
cortical and subcortical parcellation, the first thing to con-
sider is whether parcellation is used to directly to add
anatomical bias to white matter segmentation (like with
[146]), or if the structural connectivity is used to improve
parcellations created from a macrostructural bias. We
have focused on the latter as many DWI-based parcella-
tion methods add structural connectivity information in
order to refine the cortical regions, and combine it with
functional modalities, such as fMRI [46]. For these mul-
timodal methods, the validation is essentially the same
as with fMRI parcellations, and here we cannot hope to
give a better introduction and discussion on the topic
than [7], who systematically compared 10 subject- and
24 group-level state-of-the-art parcellation methods along
with common quantitative assessments.

To our knowledge, there does not currently exist any
DWI-related comparative surveys of parcellation-based
methods. Nor are we aware of any challenges specific
to parcellation that include diffusion data. For VBR, this
presented significant problem as the performance of vari-
ous algorithms were difficult to compare. However, for
parcellation methods the evaluation is often automatic
as most of these methods start from the assumption that
subjects share a coordinate system in the form of the
DK-atlas in FreeSurfer or similar. Even unbiased meth-
ods like [113] assume an approximate vertex mapping
in HCP subjects (again FreeSurfer). Incidentally, vi-
sualization of the refined parcellations have also been
centered around well-known cortical folds, such as the
pre- and post-central gyrus on the left hemisphere de-
fined by FreeSurfer [94, 92, 93] - which should make
the different methods somewhat more comparable. If
we go ahead with the assumption that the registration is
sufficiently accurate, and that the cohort is diffeomorphic
in the cortical atlas region, we can form an idea of the
general validation steps by looking at the two recent pub-
lic frameworks of [93] and [94], and correlate this with

15



[7]. For now, we also assume that the tractography is
well-founded.

• Reproducibility across parcellations. Spatial consis-
tency is the primary quantitative measure for correla-
tion/robustness, as structural connectivity is used to
investigate new potential subdivisions of the cortical
areas. It is common to split the cohort in subgroups
and use cross-correlation with structural labels (Sec-
tion 2.3). The Dice coefficient is a well-used example
an overlap measure between parcels [93, 94], and
it is often used with the Adjusted Rand Index (ARI).
The ARI measures the agreement of two parcellations
without parcel matching which is more effective if
two parcellations have a different number of clusters
[93]. As an alternative [94] used the similar Cramer’s
V.

• Overlap with cytoarchitectonic areas. Here we re-
fer to the well-known areas in the cerebral cortex,
that are often used for visual validation of parcella-
tions. Most common are the motor or visual cortex,
which have a both strong structural alignment and
functional agreement between subjects [7]. They are
available in both FreeSurfer and HCP, and exam-
ples with the motor region can be seen in [93, 94]
(pre-/post-central gyrus).

• Cluster validity. While both of the above contribute
to searching for an optimal number of clusters (still
considered an unsolved problem), a common mea-
sure used to evaluate cluster homogeneity is the Sil-
houette coefficient, found in both [93, 94]. It measures
how much a voxel/vertex belongs to its cluster (i.e.
parcel), as compared to other clusters, and it is de-
rived from the correlation in the native connectivity
matrix/profile of a parcellation. Additionally, [94]
also use topology measures, such as the Hierarchical
index, which depict how well sub-clusters fall within
the same parent cluster.

Most of these and more can be found in [7], who also
reflect that the optimal number clusters depend on the
area of the brain and the type of study.

The idea of structural connectivity-based parcellation
have been met with great interest but also with a lot of
skepticism, which mainly focus on the tractography and
is beyond the scope of this review. DWI-based parcella-
tion have a certain amount of limitations and pitfalls as
discussed in [83]. We recommend a recent review of trac-
tography in the brain by [79], who discuss the challenges
of tracking fibers near the cortex and general misconcep-
tions regarding connection strength between long and
short range regions. Also pointed out in [7] is the risk of
large bundles dominating the evaluation, and the issue of
streamlines that tend to end in the gyri and results in a

false bias towards following the cortical macrostructural
folds.

Validation of fiber clustering methods

Based on the structural similarity (or shape) of the stream-
lines, the three primary approaches to validating group-
wise fiber clustering are (i) synthetic data, (ii) manual
segmentation, and (iii) visualization. We briefly outline
common approaches in these categories, and return to
discussing to manual segmentations, as it is a limiting
factor in groupwise studies.

• Synthetic data/deformation. Simulated setups are
common in groupwise fiber clustering to quantify
results, along with manual segmentations. [58] used
a synthetic tractogram from the ISMRM 2015 Tractog-
raphy Challenge, deformed one of bundles to create
a second version, and registered the two. [112] did
something similar but instead deformed randomly
sampled streamlines from a healthy subject. Publicly
available tools have also been developed to gener-
ate synthetic fiber constellations, such as FiberFox
which was used to create the ISMRM 2015 tractogram
[102]21, and the Numerical Fibre Generator (NFG)
used in the HARDI reconstruction ISBI 2013 Chal-
lenge [29]. There is also the more recent Phantomas
[23], and D-BRAIN [117].

• Manual delineation. These are treated as ground
truth examples that can be used for quantification
of real world data. This means that similarity mea-
sures, associated with knowing the ground truth, are
often used, such as specificity, sensitivity and accu-
racy with cross-validation [58]. Or precision and recall
in [99]. It is also common to use overlap measures,
such as the Dice coefficients and the Jaccard coefficients
[127, 99]. There is also [180] who counted matching
fibers based on a minimum nearest-neighbour dis-
tance. Different tractography algorithms are rarely
compared on a group level, and focus is on the scores
of the individual well-known tracts. For more alter-
natives similar to parcellation validation, [111] used
cluster consistency/reproducibility and fMRI activa-
tion, while [127] used homogeneity and complete-
ness.

• Visualization. A large part of DWI is visualization.
In fact so much so, that it prompted the well-known
paper with "Just pretty pictures?" as part of the title
[81]. Nonetheless, it serves as an important quality
measure for fiber clustering - in particular for inter-
subject analysis where tracts can be overlaid for a

21Updated on http://www.tractometer.org.
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quick comparison. As an interesting example, the
Optic Radiation (OR) tracts are difficult to trace and
hard to manually delineate, and thus popular for
visual validation. They can be seen delineated in [99]
and [59].

With the growth in large open online datasets, it is increas-
ingly important to address the limits of manual validation,
which is rarely shared and will differ from trained expert
to expert. As we mentioned, studies of groupwise fiber
clustering will in often rely significantly on manual seg-
mentations by neuroanatomical experts with specialized
tools such as Slicer, TrackVis, DTIStudio, or similar
(see [132] for more). In fact, nearly all methods listed in
Section 3.2 have their own referenced experts to create
manual delineations22. While other DWI-based methods
also lack ground truth data, such as VBR and connectivity-
based parcellation, the lack of consensus seems more
present in fiber clustering, where new methods quantify
their results by manually seeded tracts or outlined ROIs
as the gold standard23. Involving experts for segmenta-
tions lends credibility and helps quantify results, and it
also adds flexibility in noisy scans or brains with visible
differences. On the other hand, automation is the goal
of DWI analysis. However, manual annotation does not
scale well for large group studies where every ground
truth must be annotated, it is expensive and often not
shared publicly, it affects reproducibility due to human
imprecision [179], and it is increasingly difficult as trac-
tographies become more complex (e.g. multi-tensor DTI
or HARDI) and the number of required ROIs increases to
restrict the selection [111]. While it is highly applaudable
that cutting-edge open-source tools such as SlicerDMRI
[104] is making it a lot easier for clinical researchers to
study difficult individual cases, there remains a signifi-
cant requirement for automated validation approaches of
new (or even existing) fiber tract segmentation methods
in DWI. This is especially true for the large publicly avail-
able DWI databases, where much is to be gained from
groupwise analysis.

We briefly review the typical roles of the manual expert,
and go on to give an example of a recent alternative to
manual validation.

• Adding anatomical knowledge. The primary role
of the expert is to delineate ROIs (in 2D) that a tract
is expected to pass through (usually two or more),
place seed pixels from which streamlines are gener-
ated (e.g. to avoid whole-brain tractography), and

22Exceptions to manual validation are a few the referenced methods
such as [181] who use an in-house developed atlas, and some of the
unbiased methods like [25] and [112].

23Manual delineation of fiber tracts is also, a bit morbidly perhaps,
referred to as ’manual dissection’.

validate major well-known fiber bundles (e.g. corpus
callosum, corticospinal tracts, cingulum, etc. [33]).

• Pruning tracts. The wide range of deterministic and
probabilistic tracing approaches are known to be
plagued by false-positive and false-negative stream-
lines [62]. Having seeded a fiber bundle, to delineate
it an expert will often have to ’prune’ the result for
anatomically implausible streamlines (outliers).

• Tuning parameters. Depending on the task, an ex-
pert might have to change the parameters such as the
minimum length of a streamline, the maximum angu-
lar momentum, and the minimum require anisotropy,
until a tract looks as expected.

For automated image analysis, this corresponds to the
nontrivial steps of registration with an atlas, clustering
the fibers, and learning parameters. To give an example of
this, we summarize the important take-home validation
points of [25], who presented a method without the aid
of manual segmentation (introduced in Section 3.2).

1. Ground truth. The accuracy of the results was evalu-
ated by segmenting 37 bundles in each subject using
the promising state-of-the-art white matter query lan-
guage by [158] (TractQuerier). The ROIs available
from FreeSurfer in the HCP data was used as in-
put to the segmentation. The bundles were converted
to a probabilistic atlas and quantitatively compared
with their own method and another state-of-the-art
method.

2. Synthetic evaluation. The correctness of the stream-
line clustering was evaluated using the NFG software.
This was both used to test complex ODFs and outlier
fibers (pruning), again against other state-of-the-art
methods.

3. Visualization. This goes without saying, as it is one
of the attractive features of tractography papers. It
is not the best way to validate results, but it is an
important indicator for the more experienced readers.

4. Specific data. An important thing to notice is that
the 10 healthy subjects used from the HCP was ac-
tually listed by subject number - giving others an
opportunity for comparison.

This is one way to introduce a new method without
manual expert aid. On the other hand, one of their main
arguments for success is the performance of competing
methods, which might be a limiting factor in itself.

The remaining topic on TBR validation is comparative
studies. However, it says a few things about the state of
tractography and groupwise fiber clustering as there does
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not seem to be any comparative studies of inter-subject
fiber clustering. The few we could find are listed below
and does not necessarily include streamlines or fiber tracts
in the cost function of the registration.

• [156] recently evaluated groupwise tractography
using six different VBR algorithms. Comparison
was based on the Hausdorff distance, RMSE, MSE,
tractwise-FA, and the amount of tract intersection
(cosine distance) between deterministic fibers in 10
subjects and a random subject template. All with
eight manual ROIs based on FA. Additionally, spatial
correlation was used to evaluate probabilistic tractog-
raphy with 27 automatically masked ROIs. DTI-TK
was concluded to be the overall best registration al-
gorithm.

• [35] evaluated two nonlinear image registration al-
gorithms, FNIRT and Elastix, with a redesigned
TBSS approach without the projection phase24. It of-
fers an example of standard scalar-based registration
being used to warp (probabilistic) tractography to a
template space for evaluation.

3.4. TBSS - A Voxel-Based Approach on Tract Statistics

We briefly cover the highly popular approach Tract-Based
Spatial Statistics (TBSS) model by [129, 130], which has
become central to DWI registration (particularly DTI).
Despite the name, it is not related to tractography and
is (in its original appearance) a spatially correlated VBR
method. The name comes from the way that the method
traces the white matter ’skeleton’ from the mean or center-
lines of FA maps, which moves along some of the major
tracts of the brain. It is a method that attempts to combine
some of the strengths from both VBR and TBR. TBSS is
based on two steps. First, a nonrigid alignment of FA im-
ages to a common space where the templated FA image is
thinned and thresholded to create the skeleton along the
lines where to subject cohort have most in common. Sec-
ond, each subject’s spatially aligned FA image is projected
onto the skeleton by searching for perpendicular max FA
values, and statistics along the skeleton is gathered. We
recommend [131] for a good introduction to TBSS.

TBSS is worth mentioning, not only because it is popu-
lar and the foundation for many new methods [35, 152],
but also because it is considered an alternative to dealing
with the the "degree of smoothing"-issue present in VBR
(discussed in Section 2.3) [132, 107]. In this, there are a
few things to keep in mind: (i) TBSS, as an FA scalar-
based algorithm, is a paradigm best-suited for clinical
DTI, (ii) it is a white matter analysis framework, so when
TBSS is an improvement from VBR, it is so in relation to

24See Section 3.4 for an introduction to TBSS.

studies specific to the major fiber bundles, and (iii) TBSS
methods are often purely scalar-based registration meth-
ods without directional data. However, it was extended
to include tractography in [152] (TABSS) which improved
the statistics but also limited the results to major com-
monly shared tracts found in an atlas. TBSS is currently at
the core of the rigorous statistical test framework in FSL
for DWI data, where it was incorporated by the author of
the framework. After becoming part of FSL, it is fair to
say that TBSS has become one of the most popular tools
for hypothesis-testing in pathology related to the white
matter [14]. In particular since little to no manual ex-
pert segmentation is required. For a comparison between
manual ROI and TBSS, see [95]. For a list of pitfalls in
TBSS and a review of methods suggesting improvements,
see [170, 125]. Zalesky et al. points out the risk of mis-
interpreting a lower FA error for general misalignment.
Schwartz et al. additionally points out that some of the
limitations in TBSS lies in the skeletonization process,
which in turn is limited by the nonrigid registration, and
they suggest using more sophisticated registration algo-
rithms. In relation to this, [87] provided a study of the
effect of the choice of target image in the registration of
TBSS, and concluded that the best approach was to use
a groupwise average atlas (created using FSL). Finally,
[14] gives a thorough review of TBSS strengths, miscon-
ceptions, and a list of recommendation about processing,
interpretation and future improvements.

4. Discussion

We end this review by discussing the need for standard-
ized evaluation protocols for groupwise DWI studies, and
give a few recommendations based on frequently asked
questions.

4.1. A Need for Public Evaluation Protocols and Challenges

We have reviewed a large portion of both groupwise
VBR and TBR, and we have covered common approaches
to validation, identifying some of the issues that comes
from the lack of gold standards. There is a lack of stan-
dardized evaluation protocols for new frameworks and
algorithms - both in terms of unbiased online evaluation
and as segmented downloadable dataset. This is not the
same as saying that modelling ODFs and tracing fiber
tracts are completely without ground truth datasets. Trac-
tography in particular is rich on community challenges.
However, there is a gap when it comes to groupwise
validation and evaluating shared features across images.
For both VBR and TBR, being able to perform state-the-
art multi-shell modelling or complex tractographies is
a limited application, if there are no validated ways of
comparing the results. Recent challenges in related fields
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have started to address this problem, such as the Contin-
uous Registration Challenge [34], which offers automatic
benchmarking on multiple datasets that include many
lung and brain modalities - though at the time of writing
not DWI. Below, we briefly discuss the current and future
state of VBR and TBR validation.

Challenges in VBR validation

A gold standard validation of VBR is unlikely to come
from individual studies reporting different error measures
or comparing tuned methods against state-of-the-art on
default parameters settings. The future ways of validat-
ing DWI, in terms of groupwise alignments and across
subjects, is more likely to come from the DWI commu-
nity in forms of challenges/competitions [105, 48]. These
are excellent unbiased ways of collecting and testing the
most recent cutting-edge methods in the field. However,
DWI challenges have been focused on the individual level.
Given a subject or phantom, the objective has been to cor-
rect noise or predict missing data in acquisitions [75, 24],
model ODFs [74], or evaluate the ability to infer structural
connectivity (tractography challenges listed in Section 3.3).
There is a current lack of VBR validation challenges25 for
DWI that can be used to pave the way for accessible eval-
uation of new methods. To this day, new registration
methods still make their own sequence of evaluations and
with little to no reuse of data from other studies - despite
the fact that it is common to use public resources such
as the HCP data. As representative examples, we found
two recently published methods that represent common
situations from articles in the previous sections:

1. A template construction method that rely on their
own setup with MSE-based peak signal-to-noise ratio,
visual inspection, and orientation discrepancy (OD)
between fiber estimates (ODF peaks) [161]. Here a q-
space patch-based mean-shift algorithm for construct-
ing diffusion templates with sharper signal profiles
(ODFs) was presented and evaluated on synthetic
(ODFs with noise) and real data (HCP and DTI).

2. A multi-level FFD registration method by [3] that
uses dictionary learning to create sparse DWI rep-
resentations. Their method is evaluated by random
synthetic nonrigid deformations, and on two differ-
ent cohorts that compare their proposed method to
two other registration frameworks with a sequence
of quantitative measure including RMS, sKL, angular
error, GFA, fiber alignment, etc. and visualization of
the error post-registration of random subjects.

25An overview of previous and upcoming challenges in biomedical
image analysis can be found at https://grand-challenge.org/
all_challenges.

These methods have two common but different objectives
- template evaluation, and comparison with other registra-
tion methods. In both cases, it is clear that the reported
results would be difficult for others to compare with. It
is also clear that in the future of validating VBR for DWI,
state-of-the-art methods would benefit from having one
or several of the following evaluations available, e.g. in
form of challenges or online ranking resources

• Scans of real world phantoms simulating
anisotropic structures with deformations or
similar in shape. As an example, phantoms were
designed and used for fiber tracking in [141] and a
link to existing phantoms can be found at the bottom
of this page26.

• Synthetic but realistic warps of high quality ground
truth DWI. If the goal is to create a realistic warp
for validation, the synthetic warp can e.g. be tested
by performing fiber tracking. Recent work within
this category can be found in [45], though at the
time of writing it is used for single-subject noise and
distortion correction.

• Computer-generated or artificial DWI structures,
e.g. crossing or kissing fibers in comparable con-
figurations. These are seen in challenges for noise
correction or fiber tracking, but not as multiple con-
stellations that can be compared via nonrigid image
registration. With some expertise, examples can be
created using tools such as FiberFox. [102].

• Manually segmented ROIs in real world scans
from multiple subjects - specifically intended for
VBR of DWI. The current gold standards, such as
the HCP, are based on automatic segmentations from
FreeSurfer or similar. Various approaches to ROI
validation was discussed recently in [52].

The best way to avoid overfitted and unbiased results is
to keep the validation online, similar to many challenges,
along with a public ranking. To circumvent problems
with high memory requirements and the data format of
resulting ODFs, it is likely best to evaluate results based
on the deformation field (i.e. displacement of each voxel).
Reorientation of the ODFs is irrelevant to the validation if
the correct point-to-point mapping is achieved. As brains
are inherently heterogeneous, test cases should also con-
tain non-diffeomorphic examples to test the regularization
of the registration, and to evaluate if similar structures
can be identified despite regional differences.

Challenges in TBR validation

Similar to the validation of VBR, challenges and com-
petitions are the key to standardized evaluation of new

26https://www.nitrc.org/projects/diffusion-data
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methods. Here, TBR has an advantage over VBR as the
tractography community is already rich on public chal-
lenges. However, these are not groupwise challenges, and
while the methods for tracing streamlines and perform-
ing tractography are beyond the scope of this review, it
is worth noting that the challenges in tractography and
clustering are focused on individual cases. None of the
recent challenges address the gap in quantitative valida-
tion of groupwise fiber clustering and registration. The
FiberCup challenge (ISMRM) was a quantitative evalu-
ation of 10 tractography algorithms on a single realistic
diffusion MR phantom [49]. In the ISMRM 2015 Tractogra-
phy Challenge, this was extended to a realistic brain-like
synthetic model with HCP-like quality, which got 96 dis-
tinct submissions from 20 different research groups [96].
In the DTI Challenge (MICCAI) investigated four neuro-
surgical cases with tumor and edema [120], though not
with any intent on groupwise analysis. There is also the
Tractography-reproducibility Challenge with Empirical
Data (TraCED - ISMRM 2017) with a scan-rescan dataset
of HARDI multi-shell scans consisting of 20 datasets in to-
tal of the same subject over different sessions and scanners
[142]. With reproducibility being a factor, it is closer but
still not quite aimed at groupwise analysis. And finally,
we have the 3-D Validation of Tractography with Exper-
imental MRI (3D VoTEM) tractography challenge (ISBI
2018) [151], consisting of three very interesting ground
truth cases: a phantom reconstruction, a squirrel mon-
key with tracer injections, and a high resolution ex vivo
macaque monkey brain. All well designed challenges that
will help the tractography field move forward - just not
in particular for inter-subject comparison and validation.

The obstacles in groupwise validation of TBR are simi-
lar to those in VBR mentioned above. TBR results often
relies even more on not public manual segmentations,
and it is still difficult to compare the methods and re-
sults of one inter-subject study with another, without the
aid of trained experts. However, phantoms and tools for
creating simulated fiber tracts are in rapid development,
and with the datasets being developed in the challenges
above, we are not far from a challenge with multiple sim-
ilar DWI volumes and the goal of identifying similar or
different features in fiber tracts. For instance, it would be
interesting to see if outliers and false-positive connections
from individual tractography, such as in the ISMRM 2015
challenge, can be identified by congealing information
from multiple similar datasets.

4.2. FAQ on lessons learned and recommendations

Here we list our take on a few of the questions that
often come up when DWI registration is discussed.

When do I use VBR? It is the better choice if the goal
is to study quantitative DWI measures in certain

areas, or perform exploratory unbiased studies of
populations. Care should be taken with low spatial
resolution DWI, though compartment models have
improved ODFs formed from partial volumes.

When do I use TBR? Excluding the obvious cases,
where to goal is to study connectivity or specific
local fiber bundles, TBR is the better choice if a clear
hypothesis exists which will help define the mini-
mum length of streamlines, the clustering scale, and
other parameters. However, while TBR requires more
computational power, it is becoming exploratory as
well.

Can I rely on models applied to warped DWI data?
The main attraction of evaluating DWI data in a
warped space is to add information that can
help resolve complex ODFs during tractography
in poor quality data. However, we recommend
using VBR for the spatial mapping, which can be
subsequently used to transfer tracts from a good
quality tractography, or a clustered average of
streamlines, as we saw with unbiased TBR methods.
Alternatively, we recommend [1] for a study that
evaluates deterministic fiber tracking in non-linearly
warped DTI against native DTI.

Should I use scalar-based registration for DWI?
Scalar-based registration is quick, efficient, and
well-documented outside DWI. It is easy to use with
tools like FSL that can apply the deformation to DWI
data, and it likely the better choice for low resolution
or very noisy clinical data. However, for most
quantitative DWI studies, there is a lot of evidence
that points to a better performance by frameworks
supporting implicit or explicit reorientation of
tensors and ODFs.

Is multi-atlas better than nonrigid registration?
Registration is the glue combining multi-model
images, correction distortions, and for matching
variable structures of a similar origin/shape. How-
ever, with increasing computational power and what
seems to be a renaissance of machine learning, it
is more than likely there will be an increased focus
on multi-atlases and feature banks of observed
fiber configurations, though defining sparse feature
representations still poses a significant challenge in
high dimensional and memory intensive medical
data. Building hierarchical atlases of subgroups of
populations (e.g. different stages of Alzheimer’s)
might be the next step, where registration is more
poly-affine than nonrigid.

What can I do to aid community validation efforts?
Share the simulated experiments and synthetically
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warped data, and name the HCP (or similar)
subjects used. Until new challenges are defined,
the challenge for computation imaging researchers
often lies in comparing new results with the results
of existing studies. The field still suffers from
an abundance of visual validation and lack of
comparative quantitative results.

Why have DSI not been reviewed? For the same rea-
son that we have not covered multi-shell HARDI
acquisitions. To narrow the review a bit, we have
focused on the most common clinical or near-clinical
methods, and while DSI provide a much more high
quality image, it is often a method for basic research
with longer acquisitions times.

Appendix A. Popular Registration Frameworks

We briefly summarize some of the most popular reg-
istration frameworks in the context of DWI registration.
The frameworks are all publicly available, frequently used
and support both rigid, affine, and nonrigid registration.
They are not all made for DWI registration but selected
on the basis that we often see them used when doing
DWI registration and spatially normalizing populations
in group studies. Again, when we define methods as
scalar-based it also includes algorithms that do not di-
rectly optimize over reorientation as part of cost function,
while full tensor based algorithms do integrate reorien-
tation of the ODF. The following methods described are:
DTI-TK, SyN, MedINRIA, FreeSurfer, FSL, MRtrix -
with an additional paragraph on recent and promising
frameworks.

DTI-TK (full tensor)

The DTI-TK remains on of the best and most used reg-
istration tool for diffusion imaging. From the homepage:
"DTI-TK is a spatial normalization and atlas construction
toolkit optimized for examining white matter morphom-
etry using DTI data". It is diffeomorphic deformable
tensor registration. It was created as part of Gary Zhang’s
PhD Thesis and the methods were presented throughout
[174] (nonrigid, piece-wise affine analytical derivatives for
tensor reorientation), [173] (same but more in-depth and
with subject registration and fiber-tracking), and [171]
(larger study tested against two other scalar-based FA
registration approaches). The initial main contribution
was incorporating a similarity measure between diffusion
profiles into the cost function and analytically optimizing
the registration over this in a nonrigid computationally
feasible manner (much like contribution of this disserta-
tion). In their framework, the tensor reorientation is based
on the FS approach (as PPD is argued to be too expensive

and not available on closed-form) combined with Polar
Decomposition-based affine parametrization (as opposed
to eigenvectors). The method is available for both single-
tensor DTI and higher-order information (such as the full
tensor profile through spherical harmonics). It is com-
pared with a more recent frameworks such as DTI-DROID
in [72] which incorporates additional information such
as neighbourhood interpolation and various tensor-based
quantitative features along with edge detection. Addition-
ally in [154] who combines tract and tensor statistics, and
in [55] who claims approximately similar performance
but six times faster computation by using discrete cosine
transforms and extending part of SPM (Statistical Param-
eter Mapping) toolkit to tensor reorientation. DTI-TK
is still being used directly or as a comparative state-of-
the-art standard to this day in prominent studies such as
[31].

SyN (scalar-based)

SyN (Symmetric Image Normalization) was developed
by [12] and is a symmetric diffeomorphic image nor-
malization method for maximizing the cross-correlation
within the space of diffeomorphic maps. It is part of the
popular ANTs (Advanced Normalization Tools) package
[13] and uses information theoretic similarity measures
(an advantage with noisy DWI data). It transforms scalar
images by optimizing and integrating a time-varying ve-
locity field, and was shown to be among the most accurate
intensity-based registration methods among 14 others in
[88]. Its popularity and nice symmetric formulation has
led to it being used in many DWI studies with scalar-
based registration, and while it does not include ODF
reorientation, Avants el al. themselves extended it to
SyNMN (SyN MultiVariate) [11]. Here it was expanded
to include a similar explicit optimization over the full
tensor as provided by Zhang et al. in DTI-TK (note that
both SyN and DT-ITK is integrated in the Insight and
Registration Toolkit (ITK) toolkit which supports tensor
reorientation). As a more recent prominent example,
SyN was used in [123] for registering higher order Fiber
Orientation Distributions (FODs) modelled by spherical
harmonics.

MedINRIA (full tensor)

MedINRIA is a highly used diffeomorphic medical im-
age analysis and visualization toolbox with a tensor-based
extension by [168] (originally introduced in [167]) that
uses the FS gradient into a diffeomorphic DTI registration
scheme. This, DT-REFinD (Diffusion Tensor Registration
with Exact Finite-strain Differential), is a fast diffeomor-
phic nonrigid Demons algorithm (not far removed from
the approach of DTI-TK) where the exact gradients of
the objective function with the tensor reorientation in-
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corporated in an analytical optimization. The Demons
approach was described in Section 2.1. With the extension
to DTI and calculation of exact gradients, it becomes com-
putationally heavy on large diffusion images but the au-
thors argue for this with improvements in the registration.
Additionally, convergence is improved as the exact gra-
dients allows for the use of a Gauss-Newton method for
optimization (which is argued to bring it down to scalar
image computation time). The algorithm in MedINRIA
was compared with DTI-TK in [155] (along with six other
DTI registration algorithms) and performed almost as
well at a second-best, and in [177] where the two are close
and slightly outperforms each other in different scenarios.

FreeSurfer (scalar- and surface-based)

FreeSurfer [50] deserves a mention as part of it is
generally involved in most larger DWI studies. It (as any-
one in fields related to MRI would be aware of) takes the
price for being the most extensive and used framework for
image analysis of brain scans. The FreeSurfer pipeline
is extensive, starting at preprocessing of raw noisy scans
and all the way to atlas and surface models (parcellation)
and multimodal analysis. When it comes to registration
FreeSurfer is scalar-based and surface-based registra-
tion structural (often T1) scans to a common template
space. It is made for structural and functional MRI but
not in particular for DWI registration. On the other hand
it is very often used together with popular DWI registra-
tion algorithms as the subcortical parcellation provides
more information to the cost function, or to evaluate the
registration in an ROI manner, or visualize the results. It
does play a role in DWI preprocessing and tractography
with its sophisticated tool TRACULA (TRActs Constrained
by UnderLying Anatomy) [166] that also offers longitudi-
nal analysis (i.e. rigid intra-subject registration).

FSL (scalar-based)

FSL [77] also deserves to mentioned as it might be the
most popular framework for linear and nonlinear regis-
tration of medical images, being more light-weight and
more registration-specific than e.g. FreeSurfer. It is
primarily scalar-based registration with the main tools
being FLIRT (linear registration) and FNIRT (nonlinear
registration). FLIRT works well on different image modal-
ities and intensity variations where a nice array of cost
functions are available. It is a generally accepted tool
for global intra-subject (rigid) registration of structural
scans (T1-weighted scans, etc.) to DWI space (often b0
or MD), and also for an initial global alignment prior
to inter-subject nonlinear registration [88]. FNIRT on the
other hand only provides SSD as a similarity measure and
might not be optimal for scans with significant intensity
variations (as can be common for DWI). Thus, it is com-

monly used on structural MRI scans and FA maps, and
together with another scheme for DWI reorientation. FSL
does come with tensor reorientation (for both FLIRT and
FNIRT) in its vecreg tool based on the scalar transfor-
mation though it is not clear what transformation is used
(digging into the C++ code it seems to be Alexander’s
PPD approach) and it is not a broadly used tool.

Like FreeSurfer, FSL comes with tools for noise cor-
rection of DWI scans, and with tools for modelling ODFs
and performing tractography. DTIFIT creates first-order
tensors of the DWI data and quantitative measures, and
QBI tools like qboot also exist. BEDPOSTX (Bayesian
Estimation of Diffusion Parameters Obtained using Sam-
pling Techniques, X is for crossing fibers) is a more ad-
vanced (but also time consuming) tool by [17] for mod-
elling higher order ODFs to solve crossing fibers and
perform probabilistic tractography (and even with multi-
shell options by [76]). It works with PROBTRACKX for
probabilistic streamlines and more.

MRtrix (scalar-based)

MRtrix (specifically MRtrix3) is a more recent suite
of tools similar to FreeSurfer providing preprocessing,
image analysis, and visualization while being focused on
DWI and white matter analysis (i.e. tractography and
fibre analysis). Developed by [138] the ODFs are mod-
elled by constrained spherical deconvolution (CSD) and
the registration is performed by scalar maps like FA but,
it should be noted, with an iterative reorientation of the
Fibre Orientation Distribution (FOD) [123]. Despite its
youth, MRtrix is already highly popular and used in var-
ious recent studies (mainly for tractography as it allows
the use of precomputed warps in the registration). Dif-
ferent from FreeSurfer, it is less specific to the human
brain and used in multiple studies related to tractography
in animals.

DR-TAMAS (full tensor)

DR-TAMAS (Diffeomorphic Registration for Tensor Ac-
curate alignMent of Anatomical Structures) by [73] is
included as an example of a more recent framework that
extends upon popular frameworks. It gives the option
of using a transformation model of SyN from the ANTs
package, or to use a time-varying velocity-based model
(both in ITK). It is based on the exact FS in MedINRIA for
the differentials but optimizes on speed and parallelism.
It is optimized for brain registration and incorporates
structural data in the registration for better alignment of
isotropic areas (CSF, GM) in a combined metric similarity
with DTI. Additionally, they ([73]) gives a refreshingly
honest and extensive discussion on the use of various sim-
ilarity measures for evaluation (and more). They argue
that their method would be great for generating whole-
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brain atlases but does not argue to be better than methods
like DTI-TK optimized for anisotropic (i.e. WM) regions.
The algorithm is part of the TORTOISE pipeline for diffu-
sion MRI, originally introduced by [118].
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4 Locally Orderless Registration for
Diffusion-Weighted Images

This chapter serves as an introduction to the first part of our framework
for DWI registration: A scale-space formulation that defines nonlinear
information-theoretic similarity between DWI scans, while also taking the
full ODF into account. Explicit reorientation in the registration of DWI scans
has been shown to significantly improve voxel-based DWI registration, as
discussed Chapter 3. By defining the analytical gradients of the spatial, direc-
tional and intensity scale, we get a smooth and robust explicit reorientation
model, which can be used for both DTI and HARDI data. As this is the
first part of our registration framework, the registration is purely global and
focused on the scale-space model, the gradients, and the similarity measure.
It was presented as a conference paper at MICCAI 2015 [Jensen et al., 2015],
which can be found at the end of this chapter. We will refer to it as LOR-DWI.

The following sections will briefly reiterate on the background behind the
LOR-DWI framework, and expand on some of the background and method-
ology left out in the paper. It is structured as follows:

Section 4.1 - Locally Orderless Images and Registration. An introduction to
the concept of Locally Orderless Images (LOI). We cover the term ’lo-
cally orderless’ in relation to registration.

Section 4.2 - Choice of Scale-Space Kernels. An introduction to the discrete
scale-space kernels used in the implementation of the framework.

Section 4.3 - Choice of Similarity Measure. The motivation behind choos-
ing Mutual Information as the non-linear similarity measure.

Section 4.4 - The Conference Paper. "Locally Orderless Registration for Dif-
fusion-Weighted Images" [Jensen et al., 2015].
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4.1. Locally Orderless Images and Registration

4.1 Locally Orderless Images and Registration

The LOR-DWI framework is an extension of DWI registration based on
the Locally Orderless Registration (LOR) density estimation framework for
image similarity by [Darkner and Sporring, 2013]. This, in turn, is based
on the concept of Locally Orderless Images (LOI) originally introduced in
[Koenderink and Van Doorn, 1999]. The concept of ’locally orderless’ can
cause confusion out of context. This is understandable as the actual frame-
work is not completely orderless. Instead one could say that it is pair-wise
orderless, due to a joint histogram formulation between two DWI scans. We
do not use the locality term but instead a special global Parzen-Window (PW)
definition of LOI (as shown in [Darkner and Sporring, 2013]). The reason we
use the term ’locally orderless’ comes from the original theoretical foundation
of the framework. We briefly cover the concept of what is local and what is
orderless, while at the same time expanding on some of the concepts of the
paper.

The Locally Orderless Image (LOI)

The LOI is defined in [Koenderink and Van Doorn, 1999] as a histogram-
valued image in a region of interest (ROI). The values in these images depend
on the size of the ROI, the resolution of the image, and the width of the
bins in the histogram. In the construction of any such histogram, the order
(topology) of the values is lost, and it is here that the orderless part comes
in. By this definition, the image is orderless in the ROI but not globally.
However, there is spatial invariance within the ROI. As an example, this
means that an LOI, consisting of vertical black and white stripes, would
be indistinguishable from a set of corresponding horizontal stripes. This
histogram approach enables us to create density estimates of the LOI, from
which we can derive information-theoretic similarity measures, which we
further address inSection 4.3. We define the LOI of a DWI as the histogram

hβ,α,σ,κ(i|x) =
∫

Ω×S2
Pβ(Iσ,κ(x,v)− i)Wα(τ − x)dτ × dv (4.1)

where Pβ is a Gaussian PW with standard deviation β, Wα is a Gaussian
window of integration (i.e. our ROI) of standard deviation α, and Iσ,κ is a
smooth, interpolated DWI. Iσ,κ is defined as

Iσ,κ(x,v) =
∫

S2

(∫

Ω
I(τ ,ν)Kσ(τ − x)dτ

)
Γκ(ν,v)dν (4.2)

where Kσ is a Gaussian kernel of standard deviation σ and Γκ is a Watson
kernel for interpolation on the sphere with a concentration parameter κ. So
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far, the area of integration is still local within Wα and hβ,α,σ,κ is orderless,
defined as the scale-space described by Koenderink et. al with an added di-
rectional scale κ for DWI. However, we shall optimize over a global similarity
measure as we work with registration. To accommodate this, we let α→ ∞
such that W becomes constant over the image domain and the ROI spans the
entire image. Discounting the locality scale W, we now work with a globally
orderless image, though it is still only a special case of the LOI being a PW
as shown in [Darkner and Sporring, 2013]. The LOI, that we use in eq. (4.1),
now simplifies to

hβ,σ,κ(i|x) =
∫

Ω×S2
Pβ(Iσ,κ(x,v)− i)dx× dv (4.3)

To optimize the similarity in image registration, we combine two such LOIs
into a joint histogram, of a target image J and a moving image I , under a
spatial and directional transformation φ and ψ

hβασκ(i, j|Φ̃,x) = (4.4)
∫

Ω×S2
Pβ(Iσκ(φ(x), ψ(v))− i)Pβ(Jσκ(x,v)− j)dx× dv

The entries in the joint histogram are now only pair-wise orderless, in the
sense that the images are aligned and the values of the LOI is a combination
of any two intensities. We would not be able to ignore the order of voxels in
the two images separately, i.e. random sampling must be pair-wise. While
all of this means, that we do not strictly adhere to the generalized definition
of the LOI, it provides a mathematically solid scale-space framework for our
own spatio-directional scale-space model.

4.2 Choice of Scale-Space Kernels

The LOR-DWI framework in our paper is presented as the theoretically sound
extension of the LOR framework using infinite support Gaussians models
and other generalizations. We go through our choice of computationally
feasible, discrete scale-space kernels.

4.2.1 Scale-Space Kernels: Image and Orientation

The interpolation of DWI data is both spatial and directional. In the LOR-
DWI framework, the spatial and directional operations are commutative, and
we can compute them in any of the following order

Iinterp = Γκ ◦ Kσ ◦ I ◦Φ = Kσ ◦ Γκ ◦ I ◦Φ (4.5)

56
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where Γ is the directional interpolation or orientation scale, B the spatial in-
terpolation or image scale, Φ the deformation model, and Iinterp is equivalent
to eq. (4.2) from the LOI definition.

The Image Scale: Cubic B-Splines

There are two common ways of controlling the scale of an image. One is to
smooth the full resolution image to produce different scales, and another is
to use a smooth kernel to downsample the image, as shown in Figure 4.1. In
our experimental setup of [Jensen et al., 2015], we use the first approach, but
change it to the second and quicker version in the extended nonrigid version,
as we return to inChapter 5.

(a) spacing= 4 (b) spacing= 3 (c) spacing= 2 (d) spacing= 1

Figure 4.1: Sagittal view of the mean diffusivity of non-normalized HCP subject
103818 (same as used in Section 2.2). From left to right, cubic B-spline
interpolation at every 4th voxel, every 3rd, 2nd, and finally the full
resolution image.

We discretize the kernel Kσ by approximating it with a uniform cubic B-
Spline, as a full Gaussian kernel is not tractable and a truncated Gaussian has
lower accuracy than a third-order B-Spline [Bouma et al., 2007]. The cubic
B-spline model is a popular and well-known kernel with local support, that
uses a linear combination of basis function to create a smooth curve over an
area, based on the surrounding control points, defined by the kernel. It has
the following attractive properties:

• Stable with local and symmetric support.

• Partition of unity1.

• Piecewise polynomial and non-negative.

• Smooth with trivial analytical derivatives.

For a deeper introduction, such as the definition of basis functions and their
derivatives, we again refer to Chapter 5, which constitutes the nonrigid part
of this framework.

1The weights sum to one and does not change the density of the image.
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(a) Watson κ = 5 (b) Watson κ = 10 (c) Watson κ = 30 (d) Watson κ = −10

Figure 4.2: The Watson distribution with four different concentration parameters.
Note that the kernel is antipodal symmetric and would be mirrored on
the hidden side of the sphere for (a-c). The center of (d) is the same as
for (a-c).

The Orientation Scale: The Watson Density Function

We use the Watson density function Γκ to represent the orientational scale
and model the ODF [Jupp and Mardia, 1989]. The choice of kernel is similar
to the reasoning for using B-Splines. We do not perform interpolation based
on peaks in the diffusion representing fiber orientations. We use a more
data-independent approach, where we convolve the orientation distribution
with a smooth antipodal symmetric kernel - adhering to the symmetric na-
ture of diffusion scans. In other words, we take a step back from trying
to fit a function to a certain distribution on the sphere, which is otherwise
a common use for models such as the Watson distribution combined with
EM-approaches [Bijral et al., 2007].

When it comes to DWI and modeling the raw HARDI signal or the ODF,
there are two predominant ways to perform interpolation on the sphere.
The first is through a combination of periodical orthonormal basis functions
that are fitted to the ODF as often seen with spherical harmonics (SH)
[Tuch, 2004]. The second is to use an exponential density function that also
has a convenient approximation of the tomographic inversion (FRT), such as
the von Mises-Fisher (vMF) or Watson distributions [Jupp and Mardia, 1989].
For the Watson density function, we get the FRT from using a negative
concentration parameter. The function is defined as

Γ(u, v)κ = C ·∑
i

eκ·(〈vi ,u〉)2 · ai (4.6)

where ai is the magnitude of each vector on the sphere and C is a normal-
ization constant, that in our discrete case takes the form C = 1

∑i eκ·(〈vi ,u〉)2 .

Furthermore, κ is a concentration parameter around the mean vector u for
κ > 0, the average magnitude of all vectors vi if κ = 0 (i.e. mean diffusivity),
and the perpendicular great circle if κ < 0. Figure 4.2 shows the spherical
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support of different κ-values. Unlike the vMF kernel, the negative concentra-
tion parameter gives a closed-form solution to the Funk-Radon transform.
It is a kernel function that is suitable to represent the ODF due to its rela-
tively low computational complexity and a nice mathematical justification
[Rathi et al., 2009].

4.2.2 The Intensity Scale: The Parzen-Window (PW)

The final scale is the intensity scale or the topology scale as described in
[Koenderink and Van Doorn, 1999]. The ability to optimize over and manip-
ulate the isocurves between two DWI scans is perhaps the greatest strength
of our registration framework, next to the density-based formulation that
allows us to use information-theoretic similarity measures. Both of these are
a direct effect of the Parzen-Window (PW) formulation.

Since there is no easy and intuitive way to illustrate smooth isocurves of
the 4D structure of DWI, the isocurves are perhaps better illustrated on
a 2D slice of a 3D MR image, similar to the random images presented in
[Darkner and Sporring, 2013]. Figure 4.3 shows a slice and, within this, the
ROI around the ventricles that we use for this example.

(a) (b)
Figure 4.3: Axial or from above view of the brain. The images show the selection

around the ventricles (the dark area in (b)) used to illustrate the isocurves,
or isophotes, in Figure 4.4.

Three smooth isocurves also referred to as soft isophote lines are shown
in Figure 4.4a. They are the soft bins, or densities, from the PW-generated
histogram. The isophotes are inversely proportional and perpendicular to
the gradients of the image, which allow us to smooth along the isocontours
instead of just smoothing the spatial scales, known to result in partial volume
effects.

59



4.2. Choice of Scale-Space Kernels

(a) (b) (c)
Figure 4.4: (a) shows 3 isophote lines around the area of the ventricles, shown as a

spatially smooth version of Figure 4.3. (b-c) are 2 of the red and blue
isophotes extracted from the PW, where β is the scale of the PW, reused
for purely illustrative purposes from [Darkner and Sporring, 2013].

The PW density estimation [Parzen, 1962] is a widespread data-interpolation
technique, where a kernel function is superposed at each discrete obser-
vation xi to estimate the probability P(xi) within the window of support.
PW methods have been widely used in image registration to allow for
gradient-based optimization by explicit differentiation of the otherwise dis-
crete joint histogram, required for information-theoretic similarity measures
[Darkner and Sporring, 2013]. For a Gaussian PW kernel Pβ of standard de-
viation β, we use the definition of the interpolated volume Iσ,κ from eq. (4.2)
to write the LOI of eq. (4.1) and the joint LOI of eq. (4.4) as the normalized
density estimates

pβασ(i|x) '
hβασ(i|x)∫

Λ hβασ(k|x)dk
(4.7)

pβασ(i, j|x) ' hβασ(i, j|x)∫
Λ2 hβασ(k, l|x)dk dl

. (4.8)

In [Jensen et al., 2015], we use a 2D uniform cubic B-Spline as the choice of
kernel for an efficient approximation to a Gaussian Parzen-window. This is
equivalent to an intensity scale parameter β at a Gaussian variance of around
0.6 for each smooth entry into the histogram [Darkner and Sporring, 2013],
see Chapter 5 for details. Furthermore, it has some important properties,
also described with the image scale, such as the partition of unity, which
makes normalization of the densities trivial, as each kernel entry will sum
to one and the normalization factor becomes one over the number of entries
- independent of the transformation. This can, for instance, be found in
[Thévenaz and Unser, 1998] who also uses a Parzen-Window based on cubic
B-splines. It will also ensure that the marginal probabilities pJ of the station-
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ary reference image J remain independent of the transformation parameters,
as we can move the normalization factor outside the kernel. This, in turn,
ensures that we do not need to compute the derivatives with respect to pJ

[Thevenaz and Unser, 1997]. There is also the local support, which spreads
the contribution over several bins, allowing for the recovery of more informa-
tion than a traditional histogram.

The intensity values of both images are linearly scaled to fall within a given
range of bins. The choice of the number of bins is a well-known issue, and
it is a trade-off between removing details and a high sparsity which may
result in noisy estimates. In [Jensen et al., 2015], we measure the effects of
the different scales during optimization. In Chapter 5, we further investigate
the effect of hierarchically changing the size of histogram during registration
in the nonrigid extension.

4.3 Choice of Similarity Measure

As introduced in Section 2.1, the cost functionM defines how well-aligned
two images are in image registration:

M(I ,J , Φ) = F (I ◦Φ,J) + S(Φ) . (4.9)

Our choice of similarity measure F in [Jensen et al., 2015] is the information-
theoretic similarity measure Mutual Information (MI). However, the use
of the smooth differentiable PW formulation, combined with spatial and
directional derivatives, gives us the potential to swap the similarity measure
with another measure, that can be defined over a histogram or normalized
density estimate. This is trivial for linear measure, though somewhat more
complicated for non-linear measures. We briefly discuss our decision to use
the non-linear MI as the similarity measure.

4.3.1 Similar Similarity Measures

It is worth noting that only a handful of similarity measures in publicly avail-
able frameworks include explicit reorientation, as part of the cost function
and the similarity measure. As we investigated in Chapter 3, the only two
both popular and recognized frameworks were DTI-TK [Zhang et al., 2006]
and DT-REFinD [Yeo et al., 2009]. As also noted, both frameworks have
since been expanded but are primarily based on the finite strain models, and
none of the expansions use non-linear measures such as information-theoretic
measures, which makes it more unclear how matching across b-values and
different scanner parameters should be performed.
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4.3.2 A Non-linear Similarity Measure for DWI

Information-theoretic and correlation-based similarity measures are the most
popular measures for comparing images that have a complex relationship
not easily matched or normalized [Rogelj and Kovacic, 2001]. Such multi-
modal images, or images of a complex nature like the bi-exponential DWI,
often have a non-linear relationship and require a measure that can model
the statistical relationship between them. The two most popular similarity
measures that fit this criterion are the Correlation Ratio (CR) and Mutual
Information (MI) [Roche et al., 1999]. CR assumes that some function exists
that can approximate one image with the other. MI is similar but more
statistical than functional, as it is theoretically more robust to variations from
an ideal functional relationship. With few assumptions about the nature of the
relationship between image intensities, MI is particularly attractive to use for
the complex and noisy DWI images, that rely on b-values as a single product
over multiple non-trivial parameters, such as acquisition time, magnetic field
strength, etc. MI has not been extended beyond scalar-based registration in
DWI, but it is already being used extensively used for distortion correction
[Treiber et al., 2016] and motion correction [Rohde et al., 2004].

Mutual Information in the LOR framework

Once the probabilistic density between two DWI images has been calculated
in the shape of a normalized histogram, formulating the similarity mea-
sure is identical to the scalar-based LOR framework on which it was based
[Darkner and Sporring, 2013]. The density formulation gives access to a set
of generalized linear and non-linear similarity measures for DWI registration
as an extension of the LOR framework, defined as

Flin =
∫

Λ2
f (i, j)p(i, j)di dj Fnon−lin =

∫

Λ2
f (p(i, j))di dj (4.10)

where p is the normalized joint histogram and f is the similarity. The
linear version is a position-independent loss function, where only p is in-
fluenced by the registration parameters and f can easily be changed. It is
more complicated with the position-dependent non-linear version, for which
[Darkner and Sporring, 2013] defines MI as

FMI = HI +HR −HI,R (4.11)

where

HI = −
∫

Γ
pI(i) log pI(i) di, HR = −

∫

Γ
pR(j) log pR(j) dj,

HI,R = −
∫

Γ2
pI,R(i, j) log pI,R(i, j) didj, (4.12)
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For a list of both linear and non-linear loss functions, following the above
notation, we refer to the technical report [Sporring and Darkner, 2011], which
also defines CR and more.

This ends the extended background introduction to [Jensen et al., 2015] pre-
sented at MICCAI 2015, which continues on the following page.
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Abstract. Registration of Diffusion Weighted Images (DWI) is chal-
lenging as the data, in contrast to scalar-valued images, is a composition
of both directional and intensity information. The DWI signal is known
to be influenced by noise and a wide range of artifacts. Therefore, it is
attractive to use similarity measures with invariance properties, such as
Mutual Information. However, density estimation from DWI is compli-
cated by directional information. We address this problem by extending
Locally Orderless Registration (LOR), a density estimation framework
for image similarity, to include directional information. We construct a
spatio-directional scale-space formulation of marginal and joint density
distributions between two DWI, that takes the projective nature of the
directional information into account. This accounts for orientation and
magnitude and enables us to use a wide range of similarity measures from
the LOR framework. Using Mutual Information, we examine the prop-
erties of the scale-space induced by the choice of kernels and illustrate
the approach by affine registration.

1 Introduction

The registration of Diffusion Weighted Images (DWI) is interesting as it contains
information about the fibrous micro-architecture otherwise invisible to structural
MRI. Registration of these structures enables us to compare connectivity within
and across subjects. However, registration is challenging due to the inherent
geometry of DWI; notably high-angular resolution diffusion imaging (HARDI)
which models more complex displacement profiles. We extend the Locally Order-
less Registration (LOR) [2] density estimation framework for image similarity
from scalar-valued images to DWI. The LOR is a scale-space framework for
image density estimation that allows us to employ a wide range of similarity
measures for registration, including MI. By introducing a spatio-directional ker-
nel, thus including the space of gradient directions, we model the relationship
between direction and measurements as histograms. The histograms are mapped
to probability density estimates by normalization and marginalization over the
deformed space.

Our contribution is a full LOR scale-space formulation for DWI, offering ex-
plicitly control of orientation, image, intensity and integration scale. We examine
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the effects of the scale-space and illustrate the application of the density estimate
by affine image registration of DWI data using Mutual Information.

2 Previous Work and Background

Locally Orderless Images (LOI) [6] is a scale-space representation of intensity
distributions in images modeling three inherent scales: the image scale (i.e. im-
age smoothing), the integration scale (local histogram), and the intensity scale
(soft bin width). The first mention of LOI in the context of image registration
was in by Hermosillo et al. [4] where a variational approach to image registration
was presented. The LOR framework [2], an extension of [1], generalized a range
of similarity measures as linear and non-linear functions of density estimates
for scalar-valued images. One such non-linear similarity measure is Mutual In-
formation (MI) [13]. MI is one of the most frequently used similarity measures
in image registration and was introduced as a multi-modal similarity measure.
MI is frequently used in MRI due to its invariance properties with respect to
intensity values and is associated with scalar-valued images. It is used in the
context of DWI for distortion-correction [9] on e.g. b0 or individual DWI direc-
tions. Van Hecke et al. [12] used MI for non-rigid registration of DWI. Under
an assumption of alignment, each gradient direction was evaluated separately
as well as in a pooled fashion to form a joint density distribution. Interpolation
of directional information in DWI was introduced by Tao and Miller [10] for
affine registration using SSD and extended by Duarte-Carvajalino et al. [3] to
non-rigid B-spline registration. The angular interpolation was extended with a
Watson distribution by Rathi et al. [8]. Raffelt et al. [7] used SSD after spher-
ical deconvolution for fiber modeling (FODs), while others, like Yap et al. [14],
compared the coefficients of the spherical harmonics.

Image registration is the process of spatially aligning (two) images (I and J)
under some transformation Φ given some regularity condition S(Φ) and similarity
F(I ◦ Φ, J) such that M(I, J, Φ) is minimized

M(I, J, Φ) = F(I ◦ Φ, J) + S(Φ) (1)

In this paper we address the estimation of F of single shell DWI as an extension
of LOR with application to MI. DWI MR attenuation signals at location x,
for a gradient direction v, are modeled by S(x, v) = S0(x)e−bI(x,v) [10] and

apparent diffusion coefficients volumes are given by I(x, v) = − 1
b log S(x,v)

S0(x) .

Gradient directions v are taken on the unit sphere S2 although diffusion are
orientation-free and have I(x, v) ≈ I(x, −v), i.e., with antipodal symmetry. Such
a symmetric function I(x, −) on the sphere can be represented by a function on
the projective space P2 of directions of R3, P2 � S2/{±1}.

We start by defining the type of transformation considered for the LOR den-
sity estimates for single shell DWI presented in this paper. For any transforma-
tion φ of a point x, we consider only diffeomorphic mappings φ(x) : R3 → R3.
Under this assumption, φ is invertible and its differential, or Jacobian dxφ at
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x, gives naturally rise to a projective transformation on P2: tv �→ tdxφ(v), t ∈
R\{0}. We drop x and simply write dφ. Its representation over S2 is v ∈ S2 �→
± dφ(v)

|dφ(v)| . This term appears within a spherical kernel Γκ with antipodal sym-

metry, making the sign irrelevant. Setting ψ(v) = dφ(v)
|dφ(v)| , it corresponds to the

transformation proposed by [10]. We therefore extend our transformation to
Φ̃ : (x, v) �→

(
φ(x), ψ(v)

)
. This type of transformation is also argued in [7],

although neither [10] nor [7] did consider its projective nature. We proceed to
describe the LOR.

The LOR framework defines the similarity over three scales: The image scale
σ, the intensity scale β, and the integration scale α. In registration, for a trans-
formation φ, we get

hβασ(i, j|φ, x) =

∫

Ω

Pβ(Iσ(φ(x)) − i)Pβ(Jσ(x) − j)Wα(τ − x)dτ (2)

pβασ(i, j|φ, x) � hβασ(i, j|φ, x)∫
Λ2 hβασ(k, l|φ, x)dk dl

(3)

where i, j ∈ [a1, a2] are values in the image intensity range, Iσ(φ(x)) = (I ∗
Kσ)(φ(x)) and Jσ(x) = (J ∗ Kσ)(x) are images convolved with the kernel Kσ

with standard deviation σ, Pβ is a Parzen-window of scale β, and Wα is a
Gaussian integration window of scale α. The marginals are trivial and obtained
by integration over the appropriate variable. The LOR-approach to similarity
lets us use a set of generalized similarity measures, the linear and non-linear

Flin =

∫

Λ2

f(i, j)p(i, j)di dj Fnon−lin =

∫

Λ2

f(p(i, j))di dj (4)

where the linear measure f(i, j) includes e.g. sum of squared differences and
Huber, and the non-linear f(p(i, j)) includes e.g. MI, NMI, see [2] for details.

3 Locally Orderless DWI

To extend the density estimates of LOR to include directional information, we
introducing a kernel on the sphere to account for directional smoothing. With
that in mind, we extend spatial smoothing to be spatio-directional, where the
directional smoothing preserves this symmetry, and thus the projective structure,
via a symmetric kernel Γκ(ν, v) on S2. We define the smoothed signal Iσ,κ at
scales (σ, κ) by

Iσκ(x, v) =

∫

S2

(∫

Ω

I(τ , ν)Kσ(τ − x)dτ

)
Γκ(ν, v)dν = (I ∗ (Kσ ⊗ Γκ))(x, v)

(5)

where Kσ(x) is a Gaussian kernel with σ standard deviation. We use a symmetric
Watson distribution [5] as Γκ(ν, v) for directional smoothing on S2, given by

Γκ(ν, v) = Ceκ(〈ν,v〉)2 , C = M(
1

2
,
1

d
, κ) =

∑

i=0...∞

κn

(3
2 )nn!

(6)
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where M is the Kummer function for a d-dimensional unit vector ν, (in this case
d = 3), ±v the center of the distribution, and κ the concentration parameter,
which is roughly inverse proportional to the variance on the sphere. As one
alternative, a symmetrized von Mises-Fisher [5] distribution could be considered.

In order to use the similarity measures provided by the LOR framework,
we extend the LOR formulation from scalar-valued images to DWI. The joint
histogram, that is, the contribution to h(i, j) : Λ2 → R+ of the joint histogram
and normalization can be written as

hβασκ(i, j|x) =

∫

Ω×S2

Pβ(Iσκ(x, v) − i)Pβ(Jσκ(x, v) − j)Wα(τ − x)dx × dv

(7)

pβασκ(i, j|x) =
hβασκ(i, j|x)∫

Λ2 hβασκ(k, l|x)dk dl
(8)

where Iσκ(x, v) and Jσκ(x, v) are defined as in Equation (5), P is a Gaussian
Parzen-window with standard deviation β, and W a Gaussian window of integra-
tion around x with standard deviation α. The marginals are trivial and obtained
by integration over the appropriate variable. The joint and marginal probability
densities allow us to apply the generalized similarity measures in Equation (4).
In this paper, we use the non-linear MI.

4 Image Registration

We write the joint histogram and density for similarity in image registration as

hβασκ(i, j|Φ̃, x) = (9)∫

Ω×S2

Pβ(Iσκ(φ(x), ψ(v)) − i)Pβ(Jσκ(x, v) − j)Wα(τ − x)dτ × dv

pβασκ(i, j|Φ̃, x) =
hβασκ(i, j|Φ̃, x)∫

Λ2 hβασκ(i, j|Φ̃, x)dl dk
(10)

Most similarity measures are global measures, including MI. To make the density
estimate global, we let α → ∞ such that W becomes constant. The first-order
structure of the similarity (1) is derived following the approach of [2], denoting
differentials as dg = Dg(x)dx, where D is the partial derivative operator and
dx a vector of differentials. We seek dM, the derivative of (1), ignoring the
regularization term and omitting irrelevant parameters in the notation. The
derivative of MI with respect to h(i, j) is found in [2]. Thus, we seek dh(i, j)

dh(i, j) =

∫

Ω×S2

dPβ(Iσκ(φ(x), ψ(v)) − i)Pβ(Jσκ(x, v) − j)Wα(τ − x)dτ × dv (11)

with dPβ(Iσκ(φ(x), ψ(v)) − i) = DPβ(Iσκ(φ(x), ψ(v)) − i)dIσκ(φ(x), ψ(v))
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DPβ(Iσκ(φ(x), ψ(v)) − i) can be found in [1, 2]. Inserting (5), we get

dIσκ(φ(x), ψ(v)) = d

∫

S2

(∫

Ω

I(τ , ν)Kσ(τ − φ(x))dτ

)
Γκ(ν, ψ(v))dν. (12)

and using the Leibniz integration rule and the product rule, we get

dIσκ(φ(x), ψ(v)) =

∫

S2

(
d

∫

Ω

I(τ , ν)Kσ(τ − φ(x))dτ

)
Γκ(ν, ψ(v))dν+

∫

S2

(∫

Ω

I(τ , ν)Kσ(τ − φ(x))τ

)
dΓκ(ν, ψ(v))dν (13)

We consider each of the terms on the sum separately. Using Leibniz integration
rule on the first term of the sum, we get

∫

S2

(∫

Ω

I(τ , ν)dKσ(τ − φ(x))τ

)
Γκ(ν, ψ(v))dν (14)

where dKσ(τ − φ(x)) = DKσ(τ − φ(x))dφ(x) which is trivial in the context of
registration. From the second term we get dΓκ(ν, ψ(v)) = DΓκ(ν, ψ(v))dψ(v)
and specifying Γκ(ν, ψ(v)) as a Watson distribution gives

DΓκ(ν, ψ(v)) = Ceκ(〈ν,ψ(v)〉)22κ〈ν, ψ(v)〉dψ(v) (15)

which leaves dφ(x) and dψ(v). The first term dφ is the Jacobian of φ and classical
in registration literature. The first-order information on spherical reorientation

dψ(v) is more complicated, as with our definition of ψ(v) as dφ(v
|dφ(v)| , this leads

to second-order information of φ, which is complex but trivial.

5 Experiments and Results

A series of experiments was conducted to illustrate the scales introduced (spatial,
intensity, and directional) with respect to MI. We computed the MI between
two subjects and plotted the MI as a function of global rotation and translation
(Figure 1) as well as local rotation of three random patches of 10×10×10 voxels
(Figure 2). In addition, we performed a few affine registrations of DWI data using
the proposed extension of LOR to DWI and MI. We used data from the Human
Connectome Project (HCP) database, release Q3, structurally aligned to the
MNI-152 template [11], with 90 gradient directions and a b-value of 3000.

The locally orderless structure introduces four explicit scales on DWI: Image
Kσ, intensity Pβ , and integration Wα, as well as the extension to orientation Γκ.
To examine the effect of the scales (ignoring integration scale Wα, i.e. α → ∞),
we use Mutual Information, which in itself is a complicated measure. Mutual
Information of two observations A, B can be interpreted as the capability of A
to encode B. We use this notion of MI to examine the properties of the proposed
extension of density estimation to DWI. As a first observation from Figure 1
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(a) Image smoothing
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(b) Image smoothing
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(c) Directional smoothing
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(d) Directional smoothing
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(e) Magnitude smoothing
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(f) Magnitude smoothing

Fig. 1. MI as a function of translation and rotation at different scales. As shown,
smoothing in R3 (a & b) moves the optima, while the change in the angular or diffusion
scale (c & d) preserves the MI, despite increased the angular information. This is a
good indication of a substantial information in the directions. Smoothing of diffusion
magnitudes (e & f) has a similar effect to that observed for scalar-valued images.
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(a) Patch 1
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(b) Patch 2
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(c) Patch 3

Fig. 2. We computed the MI between to DWI volumes within three random patches
of 10 × 10 × 10 voxels as a function of rotation and directional smoothing. This clearly
illustrates the change in optima as a function of the directional scale. As the images
are reasonably well-aligned, this is a strong indication that directional information is
required for proper local alignment

it is clear that the DWI optima does not correspond to the structural optima of
the registration (to MNI) provided by the HCP. This is illustrated by the fact
that the maxima of Figure 1 are not at 0.
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(a) Original (b) Affine (c) Target (d) Original (e) Affine (f) Target

Fig. 3. Two DWI images registered using affine transformation and MI for DWI. (left)
b=0 gradient images. (Right) T1-weighted images.

The Image Scale influences the MI significantly. Smoothing in the individual
directions increases the MI (Figures 1(a) and 1(b)). This increase is not surpris-
ing as this smoothing of the intensities will transform the distribution of observed
intensities towards the mean of the image. The Intensity Scale (i.e. Parzen-
window) behaves as reported in [2] where the optima displaces with increased
kernel size (Figures 1(e) and 1(f)). Increasing the size of the Parzen-window cor-
responds to reducing the number of bins. The Orientation Scale has an effect
similar to image smoothing (Figures 1(c) and 1(d)). We observe that smoothing
results in increased Mutual Information as the diffusion measurements of all 90
directions converge towards the rotation-invariant mean diffusivity for κ → 0.
Note that the corresponding curves of MI using small kernels, i.e. higher angu-
lar resolution, only results in a small decrease in the MI. Figures 1(c) and 1(d)
shows preservation of the slope of MI towards the optima is observed, revealing
a well-defined optima. Locally, Figure 2, we observe a dramatic shift in optima
from mean diffusivity κ = 0 to high directional resolution κ = 30. As illustrated,
the local optima shifts 30-40 degrees as a function of scale, which justify the need
for our proper scale-space formulation for similarity of DWI. To Illustrate the
LOR for DWI with MI, we performed a few affine registrations using MI, κ = 30,
a cubic B-spline Parzen-window with 200 bins, and B-Spline image interpolation.
A registration can be seen in Figure 3.

6 Discussion and Conclusion

The LOR for DWI includes directional information and so first-order informa-
tion of the deformation is required. We therefore restrict the deformation model
to diffeomorphisms to ensure well-defined derivatives. For gradient-based opti-
mization, this implies that the second-order information of the deformation is
required, which severely complicates any implementation. We have chosen the
Watson distribution for its simplicity compared to e.g. a symmetrized von Mises-
Fisher kernel or symmetrized geodesic distances.

We have presented an extension of the Locally Orderless Registration for DWI
by introducing a scale-space which accounts for the projective nature of DWI in
a theoretically sound manner. Our experiments show that directional resolution
is important in order to obtain proper local alignment in registration. Our for-
mulation allows us to directly control the scales of the information from which we
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estimate the similarity. By extending the LOR framework, we can easily apply a
wide range of similarity measures. We provided the first-order information of the
densities, briefly reviewed the effects of the scales, and illustrated the approach
by affine registration of DWI using Mutual Information.
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5 Density-based Nonrigid
Registration with Explicit
Reorientation

In this chapter, we extend the scale-space transformation model for global
registration [Jensen et al., 2015] to a nonrigid model. As with any registration
framework built on the explicit reorientation of diffusion data, the analytical
solution quickly grows in complexity for the nonrigid model and requires
more attention to both the analytical formulation and the implementation
itself. The solution and experiments represent the primary scientific contri-
bution, intended for the journal IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI). However, we also consider the implemented
framework as a contribution, since it is a significant challenge to design a
computationally feasible DWI registration framework with explicit reorienta-
tion, that can transform high-resolution DWI on a high-end laptop.

In the first part of this chapter, we introduce the TPAMI manuscript that is the
journal extension of [Jensen et al., 2015]. An earlier version of the nonrigid
framework was presented as an abstract at ISMRM in [Jensen et al., 2017].
It showcases initial non-hierarchical results, and discusses our view on im-
proved registration through full DWI profiles and avoiding warped space
reconstructions for quantitative evaluation when possible. The 3-page confer-
ence submission can be found in Appendix B.

In the second part, we follow up on our journal manuscript by presenting
the framework from a computational perspective in terms of implementation,
memory requirements, speed, schematic overviews, and pseudocode. We
discuss how the gradients can be calculated by taking a concept from com-
puter science called program slicing, and how a parallel solution is essential
for real-world applications of the framework.
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5.1 The Nonrigid Registration Framework

The analytical solution is the result of a long chain rule, partially described
in [Jensen et al., 2015]. In the nonrigid solution, we explicitly define the gra-
dients of the deformation parameters with respect to the similarity, in order
to apply quasi-Newton optimization methods. The most notable changes
are the local free-form deformation (FFD) model [Rueckert et al., 1999], and
the similarity measure Normalized Mutual Information (NMI). The FFD
model is a well-defined nonrigid deformation model well-suited for complex
image modalities, and the similarity measure is more robust than related
popular measures, such as correlation coefficient [Rohde et al., 2004]. In
the nonrigid framework, we additionally use the normalized version of MI
from [Studholme et al., 1999], as it has been argued to also be invariant to
the changes in the overlap region between images through the process of
registration.

We follow up the manuscript, in Section 5.3, with additional algorithmic
details. The reason for this is that the complexity of calculating the gradients
of the new nonrigid model is such that a series of extra algorithmic steps
have to be taken to make the framework feasible for two DWI scans. A large
part of the complexity comes from the reorientation, which itself depends on
the Jacobian of the spatial deformation.

Finally, the manuscript is intended for an expert audience. Though well-
described, a cost function that involves explicit DWI reorientation is not trivial.

Step 2
(Entropy)

Step 3
(Probability)

Step 4
(Histogram)

Step 5
(Interpolation)

Step 1
(Similarity)

Step 6
(Directional 
transform)

Step 7
(Spatial 

transform)

Figure 5.1: LOR-DWI dependency graph.

As such, we have attached
an additional step-by-step
walk-through in Appendix C.
It consists of two over-
all sections that follow Fig-
ure 5.1. The first section
describes every part the de-
formation model, while the
second section goes through
the equivalent derivatives.
With this appendix, it is
our hope that this will
give a clearer understand-
ing of the nonrigid solu-
tion, and help others repli-
cate and improve upon our
work.
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This ends the brief introduction to the nonrigid LOR-DWI manuscript,
which continues on the following page. Implementation details follows
the manuscript.
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Information-Theoretic Registration with Explicit
Reorientation of Diffusion-Weighted Images

Henrik G. Jensen∗, Francois Lauze∗, and Sune Darkner∗

Abstract—Diffusion-weighted MRI (DWI) is the top non-invasive image modality used to study the microstructure of the human brain.
The ability to infer and digitally reconstruct neuroanatomy from diffusing molecules has become one of the grand challenges of the 21st
century. With a significant growth in sources of publicly available DWI data, groupwise analysis and registration is bound to play a
central role in our future understanding of the brain. However, the complex and nonlinear nature DWI requires robust similarity
measures on par with multi-modal image analysis, and registration algorithms that takes the directional nature of DWI into account. In
this paper, we present a voxel-based nonrigid registration framework for DWI with explicit optimization over the orientational scale, and
normalized mutual information as a robust information-theoretic similarity measure for DWI. The framework is a density-based
hierarchical scale-space model, that varies and optimizes over both the spatial, directional, and intensity scale. Our results show a
promising regularizing effect, that comes inherently from the nonlinear cost function and the increased structural information in DWI
data.

Index Terms—Registration, Diffusion-Weighted MRI, Normalized Mutual Information, Explicit Reorientation, Analytical Gradients,
Density-Based Formulation, Watson Density Function, Free-Form Deformation, Cubic B-Spline.

F

1 INTRODUCTION

D IFFUSION Weighted Images (DWI) is a non-invasive
MRI protocol that can be used to infer cytoarchitecture

by tracking the movement of water molecules, otherwise
invisible in structural MRI. However, the directional ge-
ometry of DWI makes it a challenge in image registration,
which is a key tool for comparing and segmenting medical
data. In addition, different DWI also often have a non-linear
relationship which makes defining the similarity between
two DWI difficult [1].

In this paper, we extend the Locally Orderless Registra-
tion for Diffusion-Weighted Images (LOR-DWI) [2] frame-
work to a nonrigid formulation. The LOR-DWI is a scale-
space framework for DWI density estimation that allows for
a wide range of linear and non-linear similarity measures.
The directional information is part of the objective function,
which results in an explicit optimization over the reori-
entation of diffusion gradients, both for raw high-angular
resolution scans (HARDI) or the topographically inverted
Orientation Density Functions (ODF). The density formu-
lation also allows us to optimize over the isoparametric
curves, as the 4D image structures are defined in a joint
histogram.

Our contribution is a scale-space formulation for DWI
that gives a nonrigid registration with explicit reorientation
and non-linear similarity measures well-suited for DWI,
such as normalized mutual information (NMI). We apply
the framework to simulated DWI data and a synthetic de-
formation for data from a subject of the Human Connectome
Project (HCP) [3].

Corresponding author: henrikgjensen@gmail.com∗Department of Computer Science, University of Copenhagen, Denmark
Manuscript, 2018.

2 RELATED WORK

This work tackles two major challenges in voxel-based
registration of DWI: The reorientation of DWI in image
registration, and the non-linear similarity between DWI.

Image registration refers to a process that transforms
data into a shared coordinate system. For DWI, the common
way to register two images is to use scalar-based methods
on quantitative measure, such as the fractional anisotropy
(FA) or the mean diffusivity (MD) [4]. However, as such
methods disregard most of the directional information in
DWI, a methods have been developed to also account for
the reorientation of the diffusion profile. Most of these
are created on top of scalar-based methods and iteratively
reorients the gradients based on the deformation field, of
which some of the most popular can be found in [5],
[6], [7], [8]. However, registration frameworks have been
designed with an objective function that explicitly optimizes
over the reorientation of the gradients, such as DTI-TK
[9], DT-REFineD [10], and the more recent DR-TAMAS [11].
These remain popular frameworks and have been shown
to generally outperform scalar-based frameworks [12], [13],
[14], [15]. Calculating the analytical gradients required for
explicit reorientation, and in a computationally feasible way,
is not an easy task.

The image similarity is straight forward for scalar-based
registration as any popular scalar-based measure such as the
sum-of-squares difference (SSD) [10] or mutual information
(MI) [15] can be used. Explicit reorientation strategies must
define the similarity over both position and orientation,
which can be a daunting analytical task. However, once the
full diffusion profile is part of the similarity, such measures
can be defined in a well-suited way for the non-linear
relationship between DWI. Both [9] and [10] used variations
on SSD in the objective function, while MI was used in
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[2] which was made possible through the density-based
formulation. As argued in [2], the invariant and statistical
properties MI makes it a logical choice for DWI where mul-
tiple factors results in a more statistical relationship, such
as variations in b-values, non-monoexponential behaviour
in biological tissue, and inter-scanner variability [1]. MI is
often used in standard registration of complex modalities
and by extension scalar-based registration of DWI [16] and
pre-processing of DWI [17]. MI and normalized MI (NMI)
provides a non-linear statistical measure, but it is also likely
more functional measures would be well-suited, such as
cross-correlation (CC) and normalized CC (NCC). These
can be defined from the density-formulation found in [18].
The density-based DWI comes from the generalized way
of estimating image similarity measures based on Locally
Orderless Images (LOI) [19]. The first mention of LOI in the
context of image registration was in [20] where a variational
approach to image registration was presented. The LOR
framework [18] generalized a range of similarity measures
as linear and non-linear functions of density estimates for
scalar-valued images.

3 LOCALLY ORDERLESS DWI
3.1 Notations
We start by introducing a few necessary notations. Ω ⊂ R3

is the spatial domain of the images under consideration. A
scalar image is a function I : Ω → R3. We assume that we
can extend it on the whole R3, for instance by extending it
with 0. The projective space of directions of R3 is denoted
by P2, and the unit sphere of R3 by S2. We will encounter
spatio-directional images I : Ω×P2 → R, which we similarly
assume too bee extendable to R3 × P2. This is necessary
in both cases in order to define their spatial smoothing via
convolution. We will use the following elementary property:
As P2 can naturally be identified as the quotient S2/{±1}
by the antipodal symmetry, a function f : P2 → R can
be lifted to an antipodal symmetric function f̃ : S2 → R.
Conversely, any antipodal symmetric function g : S2 → R
factors through P2. A spatio-directional image can (and will)
be lifted to an antipodal symmetric image Ĩ : Ω × S2:
Ĩ(x,−v) = Ĩ(x,v). We will denote by I both the spatio-
directional image and its antipodal symmetric lifting in the
following.

3.2 Recall on the LOR Framework
The LOR framework defines the density estimates over
three scales: The image scale σ, the intensity scale β, and
the integration scale α. In the context of scalar registration,
for a transformation φ : R3 → R3, the estimated histogram
h and the corresponding density p is computed as

hβασ(i, j|φ,x) = (1)∫

R3

Pβ(Iσ(φ(x))− i)Pβ(Jσ(x)− j)Wα(τ − x)dτ

pβασ(i, j|φ,x) ' hβασ(i, j|φ,x)∫
Λ2 hβασ(k, l|φ,x)dk dl

(2)

where i, j ∈ [a1, a2] =: Λ are values in the image intensity
range, Iσ(φ(x)) = (I ∗Kσ)(φ(x)) and Jσ(x) = (J ∗Kσ)(x)
are images convolved with the kernel Kσ with standard

deviation σ, Pβ is a Parzen-window of scale β, and Wα is
a Gaussian integration window of scale α. The marginals
are trivially obtained by integration over the appropriate
variable. The LOR-approach to similarity lets us use a set of
generalized similarity measures, the linear and non-linear

Flin =

∫

Λ2

f(i, j)p(i, j)di dj (3)

Fnon−lin =

∫

Λ2

f(p(i, j))di dj (4)

where the linear measure f(i, j) includes e.g. sum of
squared differences and Huber, and the non-linear f(p(i, j))
includes e.g. MI, normalized MI (NMI), see [21] for details.

3.3 The LOR-DWI framework

This work addresses the estimation of the image simi-
larity F of DWI in the context of nonrigid registration
an extension of our previous work [2]. In our context,
I and J are spatio-directional signals. Specifically DWI
MR attenuation signals at location x, for a gradient di-
rection v, are modeled by S(x,v) = S0(x)e−bI(x,v) [22]
and apparent diffusion coefficients volumes are given by
I(x,v) = − 1

b log S(x,v)
S0(x) . Gradient directions v belong to S2

but diffusion are orientation-free: I(x,v) ≈ I(x,−v) and
this naturally defines a spatio-directional image Ω×P2 → R.
In order to apply LOR-DWI, the histogram and density es-
timates Equation (1) and eq. (2) must be extended to spatio-
directional data, and the action of the spatial transformation
on the directions must be defined.

We introduce a kernel on the sphere as an extension to
the density estimates of LOR to include directional infor-
mation. This kernel accounts for directional smoothing and
defines our LOR-DWI framework. Thus, we extend spatial
smoothing to be spatio-directional, such that the directional
smoothing preserves this symmetry, and thus the projective
structure, via a symmetric kernel Γκ(ν,v) on S2. We define
the smoothed signal Iσ,κ at scales (σ, κ) by

Iσκ(x,v) =

∫

S2

(∫

R3

I(τ ,ν)Kσ(τ − x)dτ

)
Γκ(ν,v)dν

= (I ∗ (Kσ ⊗ Γκ))(x,v) (5)

where Kσ(x) is a Gaussian kernel with σ standard devi-
ation. We employ a symmetric Watson distribution [23] as
Γκ(ν,v) for directional smoothing on S2, given by

Γκ(ν,v) = Ceκ(ν>v)2 (6)

C = M(
1

2
,

1

d
, κ) (7)

where M( 1
2 ,

d
2 , κ) the confluent hypergeometric function

also called Kummer function (d = 3 in our case) [24],
±v the center of the distribution, and κ the concentration
parameter, which is roughly inverse proportional to the
variance on the sphere. Because of the symmetry property
of the Watson distribution and the antipodal symmetry of
I(x,v), it is clear that Iσκ(x,v) is antipodal symmetric
too. As one alternative, a symmetrized von Mises-Fisher
[23] distribution or a symmetrized heat kernel could be
considered. W
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3.3.1 Action on Orientation
A transformation φ : Ω→ Ω acts on directions via its differ-
ential, or Jacobian: at x ∈ Ω, Jxφ sends Rv to RJxφv which
is well defined as soon as det Jxφ 6= 0 which is the case if
we assume that φ is diffeomorphic. Via the representation
P2 ' S2/{±1}, we can write Pxφ : {±v} 7→ {± Jxv

|Jxv|}.
We denote by ψ the mapping (x,v) 7→ Jxv

|Jxv| . Because
it will only appear inside an antipodal symmetric kernel,
ψx = ψ(x, ·) represents Pxφ without ambiguity. Because of
spatial convolutions, we assume that φ can be extented to
R3, assuming that it is the identity out of a compact set D
containing Ω.

3.3.2 Density, orientation and transformation
We will in the sequel, often omit the parameter x. We set
Φ = (φ, ψ) and we write the joint histogram and density for
similarity in image registration as

hβασκ(i, j|Φ,x) = (8)∫

R3×S2

Pβ(Iσκ(φ(x), ψ(v))− i)Pβ(Jσκ(x,v)− j)

Wα(τ − x)dτ × dv

pβασκ(i, j|Φ,x) =
hβασκ(i, j|Φ,x)∫

Λ2 hβασκ(i, j|Φ,x)dl dk
(9)

Assume thatW is a gaussian kernel with standard deviation
α, if we left α → ∞ we obtain full spatial integration and
can thus ignore the integration scale α.

3.4 LOR-DWI and Free Form Deformation
In [2], we assumed that φwas a global affine transformation,
with ψx = ψ the projectivization of its linear part. In
the present work, we instead assume φ to be a nonrigid
transformation, and we use Rueckert et al. framework [25]
where the transformation φ is given as a hierarchical spline
representation linearly parameterized by a spatial grid of
control points c. In the next subsection, we use its vector-
ized form, so that φ = Bc, Φc = (φc, ψc). We seek the
transformation Φ∗c which maximizes the regularized NMI

Φ∗c = arg max
c

M(Φc) = arg max
c

F(I ◦ Φc,J) + S(Φc)

(10)

The dependency of M in c is complex. The following
dependency diagram (Fig. 1) for the mutual information
term illustrates it.

3.5 Estimation and optimization of similarity
We use quasi-Newton methods to compute an optimum of
Equation (10), in particular L-BFGS from [26], and we need
to compute its gradient with respect to control points vector
c. Most of the needed calculations have been provided in
[25], [21], [2]. A full formula for the gradient is very long
and not very informative. Therefore we only describe how
spatio-directional smoothing contributes to it. Thanks to the
LOR-DWI representation, it appears only within the spatio-
directional smoothing of I . One complication comes from
our implementation, where, instead of using the Kummer
functionM( 1

2 ,
3
2 , κ) as normalization constant in the Watson

NMI(Iσκ ◦ Φc,Jσκ;β)

HIσκ◦Φc;β

44

HJσκ;β

OO

HIσκ◦Φc,Jσκ;β

jj

pβ,Iσκ◦Φc

OO

pβ,Jσκ

OO

pβ,Iσκ◦Φc,Jσκ

OO

hβ,Iσκ◦Φc,Jσκ

jj OO 44

Iσκ(φc, ψc)

44

ψcoo Jσκ

jj

φc

jj OO

coo

Fig. 1. Dependency graph of the nonrigid DWI registration between
the moving image I and the target image J , with normalized mutual
information (NMI) as the similarity measure. The deformation is param-
eterized by c so that any change in c will eventually affect the total
similarity between the two images.

kernel, we estimate this factor from a discrete set of N
directions ν1, . . . , νN at each voxel x. It can therefore no
longer be considered as constant. We rewrite the discrete
spatio-directional smoothing as

Iσκ(φc(x), ψc(v)) =
N∑

n=1

∫

R3

I(τ, νn)Kσ(φc(x)− τ)Γ̄κ(νn, ψc(v)) dτ (11)

where we have set

Γ̄κ(νn, ψc(v) =
eκ(ν>

n ψc(v))2

∑N
i=1 e

κ(ν>
i ψc(v))2

. (12)

We compute the Jacobian of the spatio-directional smooth-
ing with respect to the control point parameter c:

JcIσκ(φc(x), ψc(v)) =
N∑

n=1

(∫

R3

I(τ, νn)JcKσ(φc(x)− τ) dτ

)
Γ̄κ(νn, ψc(v)+

N∑

n=1

(∫

R3

I(τ, νn)Kσ(φc(x)− τ) dτ

)
JcΓ̄κ(νn, ψc(v)

(13)

From eq. (13), we have

JcKσ(φc(x)− τ) = −Kσ(φc(x)− τ)

σ2
(φc(x)− τ)

>
B,

(14)

because Kσ is a Gaussian kernel with variance σ2 and
φc = Bc, its Jacobian Jcφc is simply B. The part in-
volving directional kernel is somewhat more complex, as
it involves the Jacobian Jxφc and the normalizing factor in
Equation (12). Set f(x) = eκx

2

, f ′(x) = 2κxf(x), and define
fi = f(νi>ψc(v)).

Jcf(ν>ψcv) = 2κf(ν>ψc(v))ψc(v)>νν>Jcψc(v). (15)



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, APRIL 2018 4

By a straightforward and careful calculation we obtain

JcΓ̄κ(νn, ψc(v)) = (16)

− 2
κΓ̄κ(νn, ψc(v))

∑N
i=1 fi

ψc(v)>


∑

i 6=n
fiνiν

>
i


Jcψc(v) (17)

To understand Jcψc , we need to deal with tensors. The
matrix B is built of cubic B-splines. With k control points,
c has dimension 3k and B(x) ∈ R3×3k. Its spatial Jacobian
is a 3D-tensor made of quadratic B-splines, JxB ∈ R3×3k×3.
Jxφc = JxB ·cwhere the ’·’ operator represents the contrac-
tion R3×3k×3 × R3k → R3×3, (ruvw, sv) 7→ (

∑
v ruvwsv)uw.

One has JcJxφc ∈ R3×3×3k 6= JxJc(Bc) = JxB ∈
R3×3k×3, though the difference is a matter of swapping
indices. Jcψc is a 3D tensor of the same order as JcJxφc.
Another contraction comes from JcJxφc(v). This is a matrix
in R3×3k and one can write JcJxφc(v) = JxB • v where •
is the contraction R3×3k×3 × R3 → R3×3k, (ruvw, tw) 7→
(
∑
w ruvwtw)uv . The differentiation of the inner product

〈Jxφcv, Jxφcv〉 is given by

Jc〈Jxφcv, Jxφcv〉 = (Jxφcv)
>

(JxB • v) (18)

Denoting by V the vector Jxφcv, so that ψc(v) = V
|V | , the

Jacobian Jcψcv is

Jcψcv =

(
I3 −

V V >

|V |2

)
JxB • v
|V | (19)

where I3 is the identity of R3. Note also that V = Jxφcv =

(JxB · c)v and that I3 − V V >

|V |2 is the orthogonal projection
πV ⊥ onto V ⊥, the plane orthogonal to V . Putting things
together, the Jacobian with respect to the control point
parameter c of the spatio-directional smoothing is given by

JcIσκ(φc(x), ψc(v)) =

−
N∑

n=1

∫

R3

I(τ, νn)Kσ(φc(x)− τ)Γ̄κ(νn, ψc(v))×




(φc(x)− τ)>B
σ2

+
2κV >

(∑
i6=n νiν

>
i

)

|V |∑N
i=1 fi

πV⊥

(
JxB • v
|V |

)
dτ.

(20)

3.6 Regularization

So far, we have not specified the form of the regularizer
S(Φc) in Equation (10). The regularization has received little
attention due to the inherent regularization from the smooth
kernels and the additional directional structure. However,
we found that the last steps in the hierarchical transforma-
tion model, the high resolution of the deformation field,
required some regularization to keep the deformation sta-
ble. We used a simple regularization that penalizes a non-
uniform grid by the squared difference between a point ci
and its direct neighbours. The control points are organized
as a family of R grids, from coarse to fine resolution, and
the regularizer S(Φc) is the sum

∑R
r=1 Sr(Φcr ) at each

resolution, with cr = (cr1, . . . c
r
pr )

T the grid of control points
at resolution level r and we denote by Nr(i) the set of

indices j such that control point crj is neighbor to control
point crj and by |Nr(i)| its cardinal . We set

Sr(Φc) = −λr
2

pr∑

i=1

‖cri −
1

|Nr(i)|
∑

j∈Nr(i)

crj‖2. (21)

λr is a strictly positive parameter controlling the degree of
smoothness. The negative sign in Equation (21) comes from
the fact that we maximize the objective function. In order to
compute the gradient of Sr(Φcr ), we define series of linear
mappings T ri : c 7→ |Nr(i)|cri−

∑
j∈Nr(i) c

r
j . The regularizer

in Equation (21) can be rewritten as

Sr(Φc) = −λr
2

pr∑

i=1

1

|Nr(i)|2 ‖T
r
i c

r‖2 (22)

and by classical manipulation we obtain that

∇cSr(Φc) = −λr
pr∑

i=1

1

|Nr(i)|2T
r∗
i T ri c

r. (23)

T r∗i is the adjoint of T ri . Operator −∑pr
i=1

1
|Nr(i)|2T

r∗
i T ri is a

discrete Laplacian. Our sought gradient is

∇cS(Φc) = −
R∑

r=1

λr

pr∑

i=1

1

|Nr(i)|2T
r∗
i T ri c

r. (24)

In this paper, we chose λ1 = · · · = λR.

4 EXPERIMENTS

To illustrate the properties of the proposed method, we
conduct a series of experiments on simulated data and
artificially warped real data.

4.1 Simulated Examples
The first set of experiments are based on artificially gen-
erated distributions of HARDI shells and corresponding
ODFs, each representing different fiber constellations. These
setups are a good way to visually inspect and validate a
framework in a controlled environment. While such arti-
ficial experiments can be found in most DWI registration
papers, the data is rarely shared. To our knowledge there
are no popular open sources of simulated DWI data for
comparing registration frameworks, although we noted that
the DIPY project appears to be a good source for generating
simulations [27]. Working in Matlab and C++, we created
our own simulated DWI data, which will be free available1

4.1.1 Simulating DWI data
We created all HARDI samples by deforming a unit sphere
of equally distributed directions2 to a certain HARDI or
ODF shape. Figure 2 shows two simulated HARDI samples
and their corresponding ODFs, where the first is a single
fiber ODF, and the second a crossing fiber ODF. DWI
samples are antipodal symmetric and every ODF from the
simplest to the most complex can be constructed through

1. Contact us on henrikgjensen@gmail.com for the code or examples.
2. The code was provided by [28] who wrote a small toolbox for

generating between 9 and 1001 uniformly distributed directions by
minimizing the Reisz s-energy configuration of N equal charges con-
fined to the surface of the unit sphere.
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a combination of single fiber ODFs. The simulated data is
visualized using the regularized QBI algorithm, which uses
a linear combination of real spherical harmonics to represent
either the direct QBI sample or transformed ODF[29].

(a) HARDI sample (b) ODF of (a)

(c) HARDI sample (d) ODF of (c)

Fig. 2. Simulated DWI samples. The left column shows the raw DWI
signal. The right column shows the reconstructed diffusion ODFs that
follow anisotropic diffusion. The red lines indicate fiber orientations.

These models can be combined to form simulated DWI
tracts in various DWI shapes, such as crossing fiber tracts
Figure 3. A 20 × 20 grid is used through out this section to
create blueprints of fiber tract constellations and perform
registrations. The images are coloured according to the
generalized FA (GFA) value where dark blue regions rep-
resent free isotropic diffusion. To simulate a more realistic
DWI scenario random uniform noise has been added to the
samples.Figure 3.

The simulated voxels with unit density are rescaled for
the free diffusion to have a low density or mean diffusivity
to resemble real data that has been b0 normalized,.

4.1.2 Parametric Setup
For consistency the same setup is used for all experiments
on the simulated data, unless specifically stated otherwise.
Hierarchical mesh resolution. The spacing between the

control points is decreased in order to iteratively in-
crease the degrees of freedom in the registration. We use
Φlocal = Φδ=4 + Φδ=3.5 + Φδ=3 + Φδ=2. 10 iterations is
used for all resolutions except the last, which terminates
based on the optimal tolerance of ε = 1e−6, or 90
iterations.

Watson concentration, Directional resolution. The
concentration parameter is set to κ = 15, which
is sufficiently smooth to represent the 100 uniform
directions used.

Spatial resolution. A full spatial resolution is used with a
B-spline smoothing at a near-Gaussian variance around
σ = 0.6.

Histogram size. Due to the relatively few fibers being de-
formed, a small histogram size is used (i.e. intensity
resolution) of 20 × 20 bins (unrelated to the grid size).
This allows for some larger, stable but less refined
deformations[21].

(a) HARDI fiber tract crossing

(b) ODFs of (a) showing the fibers

Fig. 3. A simulated DWI fiber tract crossing with uniform random noise.

(a) HARDI fiber tract crossing (b) ODFs of (a) showing the fibers

Fig. 4. Simulated DWI fiber tract crossing shown form above. The
isotropic diffusion have now been normalized to have a lower mean
diffusivity.

HARDI registration, ODF visualization. Note that we will
be registering the raw HARDI models, but will visual-
ize the ODFs of the warped data, based on the Funk-
Radon transformed (FRT). This is to illustrate that the
warped raw data is correctly reoriented and do not
suffer visibly from affine shearing.

Regularization. We use regularization by a factor of λ =
1e−4, where 1 is the maximum. The regularization
could be omitted in the simulated experiments at the
cost of employing multiple levels of resolution of he
deformations (large to small), as the simulated data is
very structured which may hamper convergence of the
optimisation. As an aside, every example below could
be highly improved by a situation-specific choice of
parameters, but for consistency the same settings were
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use for all experiments.

4.2 Experiment 1: Single Fiber Tracts
The first set of experiments maps a straight fiber tract to a
curved tract of the same width. It offers an opportunity to
discuss some of the differences between a good reconstruc-
tion and a correct mapping.

4.2.1 Straight and curved
Three experiments illustrating the different scenarios where
straight fibers are registered to wavy fibers. These experi-
ments clearly demonstrate the regularizing effects of using
the full diffusion profile for registration.

In the first experiment, the length of the fibers is fixed
by adding intersecting fibers at the borders as a shared
feature that defines the end and beginning of a segment. In
a successful spatial mapping, a correct registration should
expand the straight fiber tract to fit the increased length of
the curved fiber between the borders as no other features
are present. Figure 5 shows the simulated moving (straight)
and target (wavy) images.

(a) Moving Image (b) Target Image

Fig. 5. Experiment 1: Simulated fiber tract images with fixed boundaries,
as illustrated in ??.

A similar ”bounded” DWI example will be used in the all
other experiments as well. The results of the first experiment
are shown in Figure 6, where 6a is the reconstructed warp,
and 6b shows the final spatial mapping from the moving
image, overlaid on the original target image. As the figures
illustrate the straight fiber is expanding with the curvature
as expected, and the reconstructed (smoothed) ODFs from
the HARDI-based registration are rotated correctly. Some
voxels appear to be a bit off in the spatial mapping, this
is due to the lack of surrounding information and is not
an issue for a more dense example with more structure
throughout the image.

The second experiment is performed without shared fea-
tures on the boundaries. The results are shown in Figure 7,
where we observe that the length is preserved as the straight
fiber tract is mapped to a sub-part of the curved tract.
Intuitively a correct registration should preserve the length
of the straight fiber in this reconstruction.
The fact that this happens with no strong outside regular-
ization, illustrate an inherent regularization effect of the cost
function which is defined on both spatial and directional
scales.

In the third experiment, the proposed similarity is com-
pared with the equivalent scalar-based registration by per-
forming a mean diffusivity registration (κ = 0) of the tracts

(a) Reconstructed warped image (b) Spatial mapping

Fig. 6. Experiment 1: Registration of single tract images of varying shape
and (given the boundary) length.

(a) Reconstructed warped image (b) Spatial mapping

Fig. 7. Experiment 1: Registration of without boundary fibers. The spatial
mapping indicates a nice preservation of length of the straight tract
mapped to a subsection of the curved tract.

with no signal on the boundaries. The mean diffusivity
carries no directional information. The result can be seen
in the Figure 8.

(a) Reconstructed warped image (b) Spatial mapping

Fig. 8. Experiment 1: Scalar-based registration without boundary fibers
and no directional directional information in the cost function during
optimization.

This pure scalar-based registration is driven by the edges
of the simulated tracts only. The reconstruction appears to
be corect, but the final spatial mapping indicates a lack
of regularization as the fibers are stretched unevenly, the
length is not preserved and is from our perspective an
inferior mapping.

4.3 Experiment 2: Crossing Fiber Tracts

The second set of experiments are designed to test the
registration of crossing fiber tracts.
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4.3.1 Straight and shifted
The first experiment examines the framework’s ability to
register two crossing tracts with a horizontal and vertical
shift Figures 9a and 9b. Circular fibers have been added as
fixed points in the image to illustrate the local shift of the
crossing tracts. The result of the registration is shown in
Figures 9c and 9d. The final spatial mapping, shown with
arrows, is accurate including the reconstruction, which also
shows the added effect of the smoothing.

4.3.2 Two degrees of shearing
The second experiment involving crossing fibers show three
fiber tracts crossing under a varying amount of shear with a
fixed horizontal tract ( Figures 10a and 10b). The purpose is
to investigate a relatively large deformation combined with
a change to the complex crossing at the center. The results
are shown in Figures 10c and 10d. Given that reconstruction
has a degree of smoothing, the structure of the complex
center-crossing closely matches the orientations of 45 degree
crossing fibers. We remind the reader that the registration
was not performed on the ODFs but directly on the simu-
lated HARDI models and then subsequently reconstructed.

4.4 Experiment 3: Fanning Fiber Tracts
The kissing fiber experiments involves a high degree of
complexity.

4.4.1 Fanning and kissing fiber tracts in a crossing
The first experiment consist of two DWI images, that sim-
ulates both fanning (dispersing) and kissing (interleaving)
fiber tracts. The moving image in Figures 11a and 11b is
a crossing with a few fibers fanning in and out along the
vertical line. The target image are two curved tracts fanning
in and out, and merging at the central crossing. The results
are shown in Figures 11c and 11d, where both the recon-
structed warp and spatial mapping show a registration that
follows the lines of the original target image. The resulting
deformation even manages to move, shrink and turn the
center-crossing to fit.

4.4.2 Kissing fiber tracts
The second experiment involves two straight fiber tracts
that are registered to two curving and interleaving tracts
( Figures 12a and 12b). The result shown in Figures 12c
and 12d, displays a large and difficult deformation that by
all accounts appears to be a successful registration.

4.5 Synthetic Deformations of Real Data
In this set of experiments, the registration framework is
evaluated on real data obtained from the HCP [3]. By in-
troducing a random synthetic warp on a subset of the brain
data, a ground truth is obtained where the objective is to
register the warped image back to the original image. These
types of experiments are useful for evaluating the parame-
ters of the model in a realistic scenario, and for exploring the
framework in a guaranteed diffeomorphic scenario. Note
that the warped image does not replace real data, and it
cannot be compared directly to other frameworks, due to its
bias toward the deformation model.

4.5.1 DWI example data

Fig. 13. Selected region of interest for synthetic warp experiments (blue)
overlaid on the b0 image of HCP subject 103818.

The DWI data for this experiment is shown in Figure 13,
where the region of interest (ROI) is the blue overlay on
the subjects b0 image. An ROI of the brain is used ease the
visualization of the results. The ROI was chosen at the edge
of the corpus callosum (CC) in the left hemisphere due to
the characteristic C-shape of the CC and the intersection
with other well-known structures e.g. the cingulum. Fur-
thermore, the ROI is in an area with crossing fiber tracts
and is near the cortex. A b = 1000 DWI volume is used with
the ROI being 11×71×41 at 1.25mm uniform voxel spacing
with 90 directions. Only the central sagittal slice along with
corresponding ODFs is visualised (Figure 14a), while the
deformation is applied to the whole slice. The deformation
field for the central slice is shown in Figure 14b.

4.5.2 Studying the effects of various parameters
The ground truth is simply the unwarped image. However,
since the similarity measure, NMI, does not reflect a unique
point-wise correspondence, three measures for evaluating
the resulting registration are introduced: (1) mean squared
error (MSE) between coordinates, (2) curl of the deformation
field, and (3) divergence of the deformation field. The first
defines the average point-wise distance between the target
image J and the moving image I.

MSE(I(x), J(y)) =
1

n

n∑

i=1

(xi − yi)2 (25)

The second measure, curl, quantify the amount of orien-
tational change in the deformation field, also referred to
as rotation or vorticity. A higher magnitude of the curl
is expected for the results of a scalar-based registration
compared to a registration over the full diffusion profile.
The curl vector is calculated from the Jacobian of the spatial
transformation at each voxel in the image

Curl(I(x)) =

(
∂xz
∂y
− ∂xy

∂z

)
ei +

(
∂xx
∂z
− ∂xz

∂x

)
ej+

(
∂xy
∂x
− ∂xx

∂y

)
ek (26)

The L2-norm of the curl vector is used, i.e. the speed
of rotation. The third measure, divergence, quantifies the
density of the outward flux of a vector field which can
be either positive or negative, indicating an expansion or a
contraction at a given point. It is a scalar given by the trace
of the Jacobian, and we use the L1 norm of the divergence.

Divergence(I(x)) =
∂xx
∂x

+
∂xy
∂y

+
∂xz
∂z

(27)
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(a) Moving Image (b) Target Image (c) Reconstructed warped image (d) Spatial mapping

Fig. 9. Experiment 2: Simulated crossing tracts (a) with a vertical shift (b). The registered result of the crossing under a both vertical and horizontal
shift is reconstructed in (c), and shown with the final spatial mapping from the original position of the moving image in (d).

(a) Moving Image (b) Target Image (c) Reconstructed warped image (d) Spatial mapping

Fig. 10. Experiment 2: Simulated crossing tracts with ∼30 degree (a) to 45 degree shearing (b). The reconstruction of the registered result is shown
in (c), and the corresponding spatial mapping in (d).

(a) Moving Image (b) Target Image (c) Reconstructed warped image (d) Spatial mapping

Fig. 11. Experiment 3: (a) Simulated fanned opening in the moving image, and (b) an interleaving curved target image. The reconstruction is shown
in (c), and the spatial mapping in (d).

(a) Moving Image (b) Target Image (c) Reconstructed warped image (d) Spatial mapping

Fig. 12. Experiment 3: Simulated straight (a) and kissing (b) fiber tracts. The reconstruction is shown in (c), and the spatial mapping in (d).
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(a) Sagittal slice at ROI center.
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(b) Deformation field.

Fig. 14. Original central ROI slice with ODFs (a), and the deformation to
be applied (b).

These three measures provide information about the magni-
tude of the voxel-wise distance and the state of the final de-
formation field. For an example of both curl and divergence
as a (regularization) part of a nonrigid registration frame
also based on B-splines and NMI, we refer to the scalar-
based example by [30].

In the following, experiments are performed over the
intensity scale, the orientation scale, and the spatial scale.
It is the first two that sets this registration framework apart
form most other frameworks is investigated:
1. Isoparametric curves. The density-based formulation al-

lows us to smooth the image inverse proportionally to
the image gradients, such as the borders near the CSF,
which otherwise can be strongly affected by partial vol-
ume effects. When we iteratively decrease the control
point-spacing in the FFD model to get an increasingly
localized registration, it stands to reason that the inten-
sity range should be increased accordingly, to optimize
transformations over relatively isotropic (flat) regions.
This is done by starting with a small histogram with
a fixed degree of smoothing according to the number
of bins and increasing the number of bins after each
termination of the optimization.

2. Explicit reorientation. The directional information is ex-
pected to provide a more stable and regularized trans-
formation. To investigate this hypothesis, different lev-
els of directional smoothing are examined all the way
to a scalar-based mean diffusivity registration at the
concentration parameter κ = 0. The exsperiments on
simulated data revealed how the directional informa-
tion resulted in improved regularized solutions, and
these experiments seek to uncover if these observations

hold on real data.
Regarding the spatial scale, performing multi-resolution
registration is a key element in most high resolution reg-
istration frameworks, e.g. in the FFD model [25], ANTs
[5], Elastix [31], FSL [7], etc. It provides stability while
allowing for large and small deformations and reduces the
computational complexity. While experiments regarding the
spatial part will be performed, its impact on registration
quality is fairly well known - in contrast to isocurves and
explicit reorientation.

4.5.3 Parametric Setup
Hierarchical mesh resolution. As in the simulated experi-

ments, the spacing between the control points is de-
creased . We use the composition Φlocal = Φδ=10 ◦
Φδ=5 ◦ Φδ=3.5 ◦ Φδ=3, where the control point spacing
δ is scaled down for the smaller sides if the image is
not equilateral. The high initial spacing permits the
generation of a large random valid synthetic warp at
around half of the control point spacing (∼ 0.4δ) [32].
The quasi-Newton L-BFGS optimizer runs for 50 itera-
tions for all resolutions, unless the optimality condition
of ε = 1e−6 is fulfilled. Importantly, we refer to the
result after optimizer termination as a step.

Accumulated curl and divergence. While the MSE is easy
to calculate at each step, the curl and divergence
depend on the first-order derivatives of the spatial
deformation, which are accumulated over each step.
Thus the final curl and divergence would be defined
by product of Jacobians for each step Curl(Φδ=3) =
J(Φδ=10)J(Φδ=5)J(Φδ=3.5)J(Φδ=3) for all voxels.

Changes in resolution. Changing the size of the histogram
between steps simply requires a rescaling of the in-
tensity range of the images being registered. Changing
spatial resolution is more complicated but can be solved
by composition.

Other fixed parameters. The regularization is fixed to λ =
1e−4, and we interpolate and optimize over 30 interpo-
lated orientations of the 90 in the HCP data.

All the following experiments will show results of four
accumulating steps. All error measures are reported for the
entire ROI and not just the slice visualized.

4.5.4 The Quantitative Effect of Isoparametric Curves
In this experiment, the effect of changing the size of the
smoothed joint histogram is examined. Three tests are per-
formed with (i) a fixed histogram of 50 × 50 bins, (ii) a
histogram with 500×500 bins, and (iii) gradually increasing
the histogram size in 50, 100, 200 and 500 bins. Figure 15
shows the results in terms of MSE, curl and divergence as
mean value over all points along. It is evident how a small
histogram with wide isocurves results in an initially faster
convergence as higher gradients are required to displace a
region of Figure 15 (blue line). However, wide isocurves
result in flat regions with small gradients and little structure
which causes the result to deteriorate as the degrees of
freedom in the transformation is increased with each step.
In contrast, starting with a high-resolution of the histogram
with thin isocurves has the opposite effect, generating too
small gradients in the system with fewer degrees of freedom
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Fig. 15. Results from testing the effect of the number of bins through the
four step registration. The lines are the mean over all points. The best
results are (a): green at 1.42e−4, (b): green at 3.74e−3, and (c): green
at 2.60e−3.

in the initial steps (red line). By iteratively refining the joint
histogram, we allow for a wide to thin movement in the
image, which provides superior result (green line).

4.5.5 The Quantitative Effect of the Orientation Scale

In the second experiment, we investigate if directional infor-
mation increases the stability and improves the registration.
The size progression of the histogram from the previous
experiment (i.e. [50,100,200,500]) is reused, and the concen-
tration parameter κ is varied from mean diffusivity at κ = 0
to sharp angular features at κ = 30. The results are shown in
Figure 16. It shows how the directional information results
in better registration, with significantly less curl than the
scalar registration at κ = 0. Using the best value κ = 30 is
stable in high directional resolution data such as the HCP.
As an aside we suggest to use κ = 15 for low resolution
data as this is should suffice.

4.5.6 The Quantitative Effect of the Spatial Resolution

In the last experiment, we use κ = 15, set the bins to
[50, 100, 200, 500], and investigate the effects of changing
the spatial scale. The spatial resolution is set to s =
[4, 3, 2, 1], which equivalent of smoothly interpolating every
4th point, followed by every 3rd, etc. As with the control
point spacing of the deformation field, we scale this to fit
the image if the image is not equilateral. For instance, if the
image has the spatial dimension 100× 150× 50 then space
between spatial interpolations for s = 3 will be [2, 3, 1] with
a bound on no less than 1 (i.e. full resolution). The results are
shown in Figure 17. The results are very similar in the final
step. However, hierarchical resolution approach compared
to the full resolution gave a speedup of a factor 2.4.
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Fig. 16. Results from testing the effect of smoothness of the directional
interpolation through the four step registration. The lines are the mean
over all points. The best results are the yellow line at κ = 30 with (a):
9.17e−5, (b): 2.71e−3, and (c): 2.29e−3. However, the overall difference
between κ = 10 and κ = 30 is not more than around 1e−5.
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Fig. 17. Results from testing the effect of changing the spatial resolution
from low to full. The lines are the mean over all points. For the full (blue)
and low-to-full (red) resolution, the difference in results are (a): blue
1.42e−4 vs red 1.58e−4, (b): blue 3.74e−3 vs red 4.21e−3, and (c):
blue 2.60e−3 vs red 2.70e−3.

4.5.7 A Qualitative Example of the Results

Finally, we visualize the registration to perform a qualitative
evaluation of the warp, and the shape and orientation of the
individual ODFs. Similar to the simulated experiments, all
registrations are based on the raw, noise-corrected HARDI
data, while we show the tomographic inversion (FRT) in-
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(a) Ground truth

(b) Warped image

(c) Registered image reconstruction

Fig. 18. 2D visualization of Figure 14a, and the reconstructed warped
image after applying the deformation field to the original image. We will
be registering (b) back to (a).

dicating the direction of the diffusion and likely fiber tract
orientations. Unlike the simulated experiments, we fit a B-
spline to the image prior to deforming and visualizing the
result, which effectively removes most of the smoothing
effect applied during registration and spatial interpolation.
The results of using an increasing control point resolution
with κ = 15, bins = [50, 100, 200, 500], and spatial res-
olution = [4, 3, 2, 1] is shown for the central ROI slice in
Figure 18, along with a zoomed in version in Figure 19.

5 CONCLUSION

We have presented a scale-space formulation of density
estimation that extends LOR to spatio-directional data, in-
cluding registration of DWI data with explicit reorienta-
tion of the full diffusion profile. We have provided em-
pirical evidence that the underlying structure of the data
is preserved during registration, while providing excellent

(a) Ground truth

(b) Registered image reconstruction

Fig. 19. Same as Figure 18, zoomed in on the left side (anterior) of
the figure (around the Genu). The images are not a 100 percent the
same, but the difference is hard to notice, and the registration more than
adequate.

registration results through a number of classical artificial
examples, for which registration is known to be difficult.
In addition the formulation of the similarity itself provides
regularization through the additional information provided
by the orientational dimension of the data which which is
illustrated clearly in some of the artificial examples. We have
investigated the different scales provided by the framework
and shown how the different parameters influences the
registration results. LOR-DWI provides a smooth but well
matched deformation, and the final registration results are
improved by integrating the orientational information in the
objective function.
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5.3 The Framework from a Computational Perspective

The primary contribution of the nonrigid registration framework lies in the
formulation of the analytical solution in the previous section. However, the
implementation of such a framework is a significant challenge in itself, due to
high memory requirements, speed, and numerical precision of the analytical
gradients. The current version of the framework can run on a modern laptop,
processing HARDI-based DWI data. We add this as an addendum to the
TPAMI manuscript and it should provide a better overview of the method
through pseudocode and additional performance measurements.

In the first part, we define a few more steps of the pipeline required to build
a complete registration framework. These include the optimization function
and a hierarchical scheme that progressively increases the resolution of both
the scale-spaces and the nonrigid deformation field.

In the second part, we describe the computational challenges. These are how
the implementation deals with heavy memory requirements using program
slicing, how the calculation time is decreased through parallelization, and
how the numerical precision of the analytical solution is evaluated.

We reused the step-wise and less compact notation from appendix C, which
provided an extended description of the analytical solution and was meant
to clarify implementational details.

5.3.1 The Registration Pipeline

In Algorithm 1, we describe the overall nonrigid registration algorithm in a
similar format as the pseudocode in [Rueckert et al., 1999]. The initial global
affine alignment and increase in control point resolution is described in
the following paragraphs. The target image is re-interpolated spatially and
directionally to achieve the same degree of smoothing as the moving image.
The while-loop represents the optimization function, where λ is the step
length and ε is the stopping criterion. The loop can be replaced by any (cost)
function that takes Φc as input and outputs the regularized similarityM(Φc)

and its analytical gradients dcM(Φc). In our current implementation, this
loop is replaced with the L-BFGS algorithm in the minFunc framework.

Global alignment

Global registration is the first step of any nonrigid registration algorithm,
as a detailed local mapping requires a good initial alignment of the scale,
rotation, position, and stretch. Our transformation model is thus a combined
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Algorithm 1 The overall steps in the registration of two DWI volumes
Input

I : original (moving) image.
J : reference (target) image.

Output

Φc : control points of the deformation field.

Algorithm

normalize intensities of both images to fall within histogram bin range.
interpolate the target image with kernels Γκ and Kσ.
calculate the optimal global affine alignment Φglobal.
initialize the mesh of control points Φc = Φglobal at spacing δc.
repeat

calculate gradients of the cost function with respect control points dcM(Φc).
while ||dcM(Φc)|| < ε do

recalculate the control points Φc = Φc + λ
dcM(Φc)
||dcM(Φc)|| .

recalculate the analytical gradients dcM(Φc).
end while
increase control point resolution by decreasing mesh spacing δc.
increase spatial resolution by interpolating on a finer grid.
increase intensity resolution by increasing the size of the histogram.

until finest control point mesh resolution is reached.

transformation

Φ(x,v) = Φglobal(x,v) ◦Φlocal(x,v) . (5.1)

To increase the robustness and speed, we have split the global transformation
into a translation, followed by an affine transformation

Φglobal(x,v) = Φtranslation(x,v) ◦Φaffine(x,v) . (5.2)

This ensures that the affine transformation is calculated based on overlapping
images with approximately the same center of mass. We only require the
global alignment to be an approximate alignment, which means this part can
be calculated using common simple methods, like FSL FLIRT on the FA or
MD images. We use the same optimizer as for the nonrigid part, minFunc
by [Schmidt, 2005], where we provide a cost function that applies the global
transformation and returns the NMI score under the same interpolation as
the nonrigid model. We let minFunc optimize the 12 parameters of the affine
transformation by forward-difference numerical differentiation.
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Optimizer

We use the popular quasi-newton L-BFGS1 optimization algorithm from the
efficient optimization framework minFunc by [Schmidt, 2005]. The algo-
rithm approximates the Hessian with a low-rank approximation. Since it
has a linear to super-linear convergence and linear memory requirement,
L-BFGS is particularly well-suited for optimization problems with a large
number of degrees of freedom, such as the FFD model used. A similar
prominent example with FFD and a bounded version of L-BFGS can be
found in [Mattes et al., 2003]. Brief attempts to use another popular built-in
optimization scheme, the Stochastic Conjugate Gradient method, resulted in
similar results, however with a much lower convergence rate.

Hierarchical Registration

(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Figure 5.2: Axial views of a hierarchical nonrigid 4-step deformation from a real
HCP subject registration. Each step is the result of an optimized align-
ment for a set of parameters. Each of these steps are calculated on top of
the accumulated effect of previous lower resolution alignment steps.

1Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS).
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In order to avoid local minima, we use a hierarchical multi-resolution op-
timization scheme. Unlike [Rueckert et al., 1999] who use a subdivision
scheme for increasing the resolution of control points, we take the more
direct approach where we combine a set of FFD optimization runs, or steps,
at an increasing granularity. Repeating the notation of eq. (5.1), let Φt

local
denote a mesh resolution at knot-spacing δt where we have left out x and
v, and let Φt+1

local be the next step, which is a higher resolution and lower
knot-spacing such that δt > δt+1. The composition of transformations then
defines a final local transformation given by

Φn
local = Φt+n

local(Φ
t+n−1
local (· · · (Φt+1

local(Φ
t
local))) · · · ) (5.3)

where n is the highest resolution of control points. A multi-level scheme
reduces the need for regularization as the optimization is more gradual and
avoids local minima. However, every time the resolution of the control mesh
increases, it raises the requirements of regularization to avoid local overfitting
or creating a non-invertible deformation2. Our final deformation model can
be written out as

Φ(x,v) =
(

Φtranslation(x,v) ◦Φaffine(x,v)
)
◦
(

Φn
local(x,v)

)
. (5.4)

Additionally, we iteratively increase the spatial resolution and the size of
the histogram. Iteratively increasing the resolution on multiple fronts avoids
local minima, and it decreases the computation time of the initial alignment.

5.3.2 Implementational and Practical Challenges

Implementing the nonrigid registration model, with an analytical solution
and explicit reorientation, has been a major challenge in terms of com-
putational memory, speed, and precision. It required the introduction of
additional steps in the framework to make it computationally feasible. We
go through these three challenges, followed by a schematic and informal
overview of the implementation. In short:

• To solve the memory challenge of storing the derivatives for the analyt-
ical solution, we use a technique from computer science called program
slicing, in which we split the chain rule calculations into two runs.

• To solve the speed challenge of registrations taking days, we paral-
lelized each step in the dependency graph from the paper manuscript.

• To solve the precision challenge of the derived gradients suffering from
high numerical errors, we located critical sources of imprecision and
increased floating point precision at these locations.

2At a very local scale the difference between images can be high, causing steep gradients
and an unstable optimization.
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Challenge: Memory

It is easy to illustrate the memory problem if we take two single-shell HARDI
brain scans from the HCP. The dimensions of the brains are 145x174x145
voxels at 1.25 mm with 90 gradient directions which means 182x218x182
voxel at 1 mm re-interpolated resolution. With a cubic B-Splines FFD model,
we have 64 control point vectors influencing each point x and direction v. For
illustrative purposes, we interpolate the images to a 1 mm spatial resolution,
yet choose to interpolate them in only 30 uniformly distributed directions
to save some space (cutting away about 2/3 of the original HCP scan). We
ignore smaller memory requirements such as the joint histogram. Next, say
we made a quick naive solution in which we stored all values needed to
calculate any set of derivatives with respect to the deformation. Focusing on
a rough estimate of the most memory consuming values and ignoring index
book-keeping, this puts us at around 950 GB as shown in Table 5.1.

Variables # Double-Precision Values Memory in GB
dφc(x) 64 · 182 · 218 · 182 3.44
dψc(v) 3 · 3 · 64 · 182 · 218 · 182 · 30 929.67
dK(φ(x)) ◦ I 3 · 182 · 218 · 182 · 30 4.84
dΓ(ν, ψ(v)) ◦ I 3 · 182 · 218 · 182 · 30 4.84
Volume I & J 2 · 145 · 174 · 145 · 90 4.91
Interpolated I & J 2 · 182 · 218 · 182 · 30 3.22
Total - 950.92

Table 5.1: An estimate of the memory costs of storing the derivatives with respect
to all degrees of freedom (or partial derivatives) in major steps in the
framework for two high-resolution DWI scans.

Clearly the derivatives of the Jacobian in dψc(v) are infeasible to store in short
or even long-term memory. Additionally, due to the normalization in the
Watson kernel and the histogram, we are unable to update the control points
with respect to a single point and direction at a time. Inspired by program
slicing3 in computer science, we defined our own version of algorithmic slicing,
to make the problem computationally feasible.

Program slicing refers to identifying a set of program statements — the pro-
gram slices — that may affect the values of the program at some point. These
can be precomputed. In our algorithm, this corresponds to precomputing
the tail of the chain rule, such that for every partial derivative of the trans-
formation dcφ(x) and dcψ(v), the product of derivatives has already been

3See https://en.wikipedia.org/wiki/Program_slicing
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precomputed between the transformed image gradients and the similarity
measure. In essence, we perform two slicing operations which save memory
at the cost of adding extra computations:

Slice 1 Calculate Φc(x,v) to transform all points x and directions v but do
not calculate the derivatives dΦc(x,v). Instead, calculate the derivatives
dI◦ΦNMI, i.e. the gradients of the transformed image with respect to
the similarity, which is Step 1 to Step 5 in Appendix C.

Slice 2 Repeat the calculation of Φc(x,v) one voxel at a time, this time cal-
culating the derivatives dΦc(x,v), multiplying them with the relevant
dI◦ΦNMI from Slice 1, and adding this product to the 64 dc parameters
affecting the neighbourhood of the voxel.

The additional computational cost, that comes from calculating the transfor-
mation of the moving image twice, is not a heavy operation. Even for an
HCP subject, this only takes a few seconds on a high-end laptop. To get a
better overview of the slicing, see the implementation diagram in Figure 5.3
and pseudocode in Algorithm 2 further below, or go to Appendix A.1 for a
more detailed overview.

Challenge: Speed

Parallelization is essential to achieve an acceptable computation time, given
the number of calculations required in DWI registration. Fortunately, each
step in the framework is trivial to parallelize individually as each point,
direction, or value is updated independently of its neighbors.

The CPU parallelization of each step is based on the C++11 Thread Pool im-
plementation [Jakob and Vclav, 2012]. A pre-initialized pool of re-assignable
threads is preferable, as opposed to creating and deleting new processes
asynchronously which is time-consuming. Each thread is assigned a chunk
of work4 from a list of future-class objects5 allowing for asynchronous
retrieval of the results, which means that the limited amount of threads do
multiple chunks of work per thread before retrieving the results. Table 5.2
shows how this leads to a significant decrease in computation time. The
speed-up ratio in Table 5.2 is 3 - 5 times faster when going from 1 to 5 threads,
and an 11 - 24 times improvement between 1 and 40 threads. While it can be
run on a high-end laptop, a full resolution HCP subject is computationally

4The amount of work per thread is set on to be either an equal number-of-threads-
dependent fragment of the total amount of work or some specified amount, e.g. 500 iterations
per thread. This was set by a quick bit of trial and error, and can likely be improved even
further in the future.

5http://en.cppreference.com/w/cpp/thread/future
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Concurrency Φ dK dΓ dP dNMI dΦ
Threads: 1 0.1089 2.4342 4.0974 0.0416 0.1279 4.1613
Threads: 5 0.0228 0.4378 0.9205 0.0137 0.0371 0.9819
Threads: 10 0.0154 0.2453 0.4884 0.0079 0.0224 0.5248
Threads: 15 0.0105 0.1782 0.3485 0.0050 0.0161 0.3923
Threads: 20 0.0088 0.1380 0.3104 0.0041 0.0146 0.3522
Threads: 25 0.0074 0.1254 0.2508 0.0035 0.0128 0.3112
Threads: 30 0.0072 0.1142 0.2401 0.0027 0.0100 0.2818
Threads: 35 0.0070 0.1102 0.2311 0.0026 0.0089 0.2796
Threads: 40 0.0069 0.1038 0.2221 0.0024 0.0078 0.2650

Table 5.2: Tests run on a department cluster node supporting up to 40 concurrent
threads on an HCP subject at full resolution. The results are measured in
milliseconds, and represents a single update of the FFD parameters. Each
column corresponds to STEP 1-6 in the detailed diagram of Appendix A.1,
where 1-5 represent the first algorithmic slice and step 6 represent the
second slice. In other terms: deformation, spatial interpolation, directional
interpolation, density estimation, similarity, and derivative deformation.

very demanding and due to the lack of available hardware, we have only been
able to report on few comparative results on parallelism. This is only a single
parameter update out of the many runs performed by L-BFGS optimizer.
Running without parallelism would likely take days instead of a few hours.

GPU parallelization has become the gold standard of many embarrassingly
parallel problems. However, memory transfer to and from the GPU is often
an issue of large datasets. An experiment was performed to evaluate the
potential of using GPUs in the individual steps. The experiment was done
on the histogram, as it is tricky to parallelize efficiently in terms of coalesced
memory access. However, even with latency hiding and using multiple
streams, the memory transfer dominated the computations and, under the
current structure of the framework, we did not see any significant advantages
in using the GPU. For details on these experiments, see Appendix A.2.

Challenge: Precision

In this complex system, where the gradient of each single control point
depends on the sum over thousands of value-pairs all part of a long chain of
derivatives, and with kernels fitted to relatively unknown inputs of data, we
cannot avoid numerical instability. As such, we need to evaluate the precision
of our analytical derivatives, as well as the correctness of our implementation.
One common way of doing so is by numerically checking the gradients using
finite difference approximation. If we want to minimize our cost function
M by changing the transformation parameters c, we would expect that the
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analytical gradient is equal to the numerical gradient such that

dcM = lim
ε→0

M(c+ ε)−M(c)

ε
(5.5)

where ε in practice is set to some sufficiently small value that does not cause
more round-off errors. In this case, we set it to ε = 10−6, which often means
that the left- and right-hand sides of eq. (5.5) should agree on at least six
significant digits. For this level of precision, we write the gradient error for a
change in the model parameters c as

E(dcM) ≈
∣∣∣∣dcM−

M(c+ ε)−M(c)

ε

∣∣∣∣ (5.6)

So far, we have looked at the whole system, where a change in a parameter
of the deformation field will lead to a change in the similarity of two DWI
volumes being registered. However, this analysis was also performed at each
individual step of the chain rule in the analytical solution. The analysis found
that the gradients of the spherical interpolation did not satisfy the criteria of
the error being smaller than six significant digits. In fact, the derivatives of
the Watson kernel was off by around E(dψΓ(ν, ψ(v))) ≈ 10−3 for a change
in ψ(v). This is not at all surprising when considering the derivatives of
the Watson kernel. The sum over exponentials on the sphere will result in
round-off errors when we evaluate the support of vectors ν far from the
center of the distribution in ψ(v). While there might be a numerical trick
for solving this, we have reduced the gradient error to acceptable limits by
increasing the precision from the C++ floating-point data type double to
long double for the Watson interpolation. The total precision of all steps
in the analytical solution, for data inputs such as HCP or ADNI subjects with
standard parameters6, is around

E(dcM(I ,J , Φ)) ≈ 10−8 (5.7)

for the gradients of the parameters in transformation model with respect to
the cost function.

Implementation: Diagram

Figure 5.3 shows a diagram of the optimization over the FFD deformation
field. The two slicing operations (yellow and purple) are described in much
more detailed schematic diagrams in Appendix A.1.

6This number varies depending on the data and parameters of the model.
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Figure 5.3: Sketched overview of the registration framework. Each step is imple-
mented in C++ and parallellized, and the Watson Interpolation is imple-
mented with high numerical precision.

Implementation: Pseudocode

In Algorithm 2, we have summarized the implementation which calculates
the similarity measure and analytical gradients, corresponding to the input
to L-BFGS that replaces the optimization while-loop in Algorithm 1 (dis-
regarding the regularization).There are a few things to be aware of when
reading the pseudocode.

First, the parameters (κ, number of bins in h, control point and image resolu-
tion spacing, stopping criteria, etc.) are not included in the input.

Second, the function dF(·) is a bit compact, as it calculates the gradients over
four levels in the dependency graph Step 1 (similarity) to Step 4 (histogram).
The reason is simply that to calculate the effect of a Parzen-window entry into
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the histogram with respect to the final similarity, we have to precompute a
series of steps and then reconstruct the histogram while storing the gradients.

Third, we use the gradient notation ∇aB to indicate "all the partial derivatives
of B with respect to the parameter a".
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Algorithm 2 The cost function and analytical derivatives using slicing.

Input

Φc : dX2
δx
e × dY2

δy
e × d Z2

δz
e × 3, deformation field at spacing δ.

XI : dX2
γx
e × dY2

γy
e × d Z2

γz
e × 3, spatial coordinates at image resolution γ.

VI : dX2
γx
e × dY2

γy
e × d Z2

γz
e × N1× 3, directional vectors at image resolution γ.

I : X1×Y1× Z1× N1, original (moving) image.
J : X2×Y2× Z2× N2, reinterpolated (target) image.
wJ : N2× 3, directional interpolation coordinates.

Output

∇FΦc : dX2
δx
e × dY2

δy
e × d Z2

δz
e × 3, gradients of Φc w.r.t. F .

F : The NMI similarity measure between I ◦Φc and J.
Algorithm - Slice 1

calculate the transformed coordinates (X∗, V∗) = Φc(X, V).
interpolate spatially (I∗,∇φ(x)I) = K(I, X∗, V)

where I∗ : X2×Y2× Z2× N1 and ∇φ(x)I : X2×Y2× Z2× N1× 3.
interpolate directionally, (I∗∗,∇ψ(φ(x))I,∇ψ(φ(v))I) = Γκ(I∗, V∗,∇φ(x)I, wJ)

where ∇ψ(φ(x)) & ∇ψ(φ(v)) : X2×Y2× Z2× N2× 3,
and I∗∗ : X2×Y2× Z2× N2.

calculate the joint histogram hI J = P(I∗∗, J).

calculate the joint probability pI J =
hi,j

∑I J(i,j)hI J

and the marginals pI = ∑i pI J(i, j) and pJ = ∑j pI J(i, j).
calculate the entropy HI J = ∑i,j pI J(i, j)log(pI J(i, j)) , HI = ∑i pI(i)log(pI(i))

and HJ = ∑j pJ(j)log(pJ(j)). Save p∗I J = log(pI J) and p∗I = log(pI)

calculate the similarity measure F = −HI+HJ
HI J

.
calculate the remaining gradients (∇F (H(p(h(ψ(φ(x))))))I,∇F (H(p(hψ(φ(v)))))I)

= dF(I∗∗, J, HI , HJ , HI J , p∗I J , p∗I ,∇ψ(φ(x))I,∇ψ(φ(v))I),
where each spatial gradient is also summed over all N2 directions.

Algorithm - Slice 2

for all xi ∈ XI do
for l = 1..64 do

update ∇FΦcl = ∇FΦcl + (∇φ(xi)
ci · ∇F (H(p(h(ψ(φ(xi))))))

I)
end for
for j = 1..N2 do

for l = 1..64 do
update ∇FΦcl = ∇FΦcl + (∇ψ(vi,j)

ci · ∇F (H(p(h(ψ(φ(vi,j))))))
I)

end for
end for

end for
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6 Conclusions

This dissertation proposes a new formulation for density-based DWI similar-
ity, along with a framework for nonrigid DWI registration that minimizes
the objective function based on the full diffusion profile.

6.1 Summary

Chapter 3 set the foundation of this work by presenting a critical review of
the current state of methods for registration and validation of DWI for voxel-
and tract-based approaches, focused on the human brain. Under a signifi-
cant lack of comparative studies of DWI registration, we reviewed popular
approaches to comparing different DWI scans. We found that most studies
rely on locally trained experts for in-house segmentations and that there is
an immediate requirement for public evaluation protocols and community
challenges, as DWI is becoming an issue of Big Data.

Chapter 4 presented the first density-based cost function between two full
DWI scans. The objective function is based on a scale-space model, that
allows us to perform optimization over the spatial, orientation, and intensity
scales. The integration over the orientational scale takes our method from
3D to DWI, and the intensity kernel offers a unique isocurve optimization by
integrating over the joint density of the DWI scan. This is exemplified in the
entropy-based measure Mutual Information that was used as a non-linear
similarity for global affine registration. We showed that it is important to
take the full diffusion profile into account for a proper spatial alignment.

Chapter 5 presented a full, nonrigid DWI registration framework based on
the previously defined density formulation. It was presented as a theoretical
contribution with an additional focus on the implementation itself. The
framework exploits the smooth scale-space formulation to perform registra-
tion of full DWI profiles with explicit reorientation of the gradient vectors
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as part of the analytical gradients. Both raw HARDI data and ODFs can be
used as input, and the results demonstrate a capability to correctly reorient
the ODFs even if the registration is based on the HARDI data. We also
investigated the parameters of the different scales and their influence on
the results. Interestingly, simulated results indicate that the cost function
has an inherent regularizing effect and that the underlying DWI structure is
preserved.

6.2 Discussion & Future Work

6.2.1 Validation Issues in DWI

DWI is a hot topic used with very different goals in mind, such as studying
regional changes in diffusion or the brain connectivity. Consequently, DWI is
also a highly volatile topic in terms of the various types of raw DWI data and
how the data is modeled. The diversity, rapid growth, and cytoarchitectonic
complexity have resulted in a lack of comparative surveys and quantitative
validation. Results are often qualitatively validated by visual inspection or
by help from trained medical experts. In our critical review, we concluded
that this will be increasingly problematic as DWI data grows in resolution
and public availability, and that computational evaluation will be required to
handle microscopic details and the sheer amount of data. However, while
we believe that group-wise validation is a critical issue, it is worth pointing
out that the DWI community1 seems to be aware of the growing confusion
and lack of cross-study evaluation. Much is actively being done to validate
state-of-the-art methods on the scale of individual DWI.

For current on-going challenges, the focus is often on improving fiber tract
identification and tractography as in the scan-rescan subject in [TraCED, 2017],
and the phantom, tracer-injected monkey and high-resolution ex-vivo mon-
key in [VoTEM, 2018]. Voxel-based validation has been less profiled but that
might also be changing with [CDMRI, 2017, MUSHAC, 2018], where data is
combined from multiple scanners aimed at predicting high-resolution scans
from low-resolution clinical samples. With the focus on DWI as an issue of Big
Data [O’Donnell et al., 2017, Smith and Nichols, 2018, Yeatman et al., 2018]
and with similar problems being tackled in related fields in the Continuous
Registration Challenge [CRC, 2018], we predict that interesting challenges on
large datasets of DWI will soon appear. Already, there are 76TB 1200 subjects
from the HCP that can be found on the Amazon S3 for effective, large-scale
cloud computing [WU-Minn, 2017].

1Conferences such as MICCAI, ISBI, ISMRM, and similar which endorse such DWI
challenges and workshops.
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6.2.2 New Similarity Measures Explicitly for DWI

The similarity between DWI scans is commonly defined in the context scalar
images as a basis for registration. That is, quantitative measures such as
the FA are used for the registration and reorientation, if involved, is built
on top of this - as we saw with implicit reorientation methods in Chap-
ter 3. This is different from similarities in DWI based on fiber tracts, that
are often found to be measures of pair-wise Euclidean distances - possibly
including curvature information or quantitative features along the tracts
[O’Donnell et al., 2017]. Euclidean distance measures make sense for tract-
based methods that already embodies a diffusion model. However, this
does not apply to voxel-based methods. Well-known scalar-based algorithms
applied to an FA image do not utilize the diffusion profile as an explicit part
of the similarity. Moreover, registration algorithms with similarities fully
designed for DWI, such as DTI-TK [Zhang et al., 2006] and DT-REFinD
[Yeo et al., 2009], have repeatedly been shown to outperform scalar-based
methods [Zhang et al., 2014, Wang et al., 2016, Wang et al., 2017].

We reason that the popularity of scalar-based DWI registration, with implicit
use of the diffusion profile, is due to the computational speed and applica-
tions for state-of-the-art DWI in clinical practice. However, it is clear that
future methods would benefit from being explicitly designed for DWI, and
we hope to contribute to this by introducing a density formulation between
DWI. In Chapters 4 and 5, we applied both Mutual Information (MI) and Nor-
malized MI (NMI) as similarity measures between DWI, and we argued that
such information-theoretic measures are well-suited for the problem, as also
pointed out by others [Van Hecke et al., 2007, Bhushan et al., 2012]. DWI
scans clearly have a non-linear and perhaps even purely statistical relationship
in terms of b-values, noise, different scanners, etc. [Wiest-Daesslé et al., 2007,
Johansen-Berg and Behrens, 2013]. However, given a set of high-resolution
temporal or phantom DWI scans with ground truth labels and a one-to-one
correspondence, it could be very interesting to compare the effects of dif-
ferent similarity measures. For instance, it would be relevant to compare
linear and non-linear measures, as this could help quantify the relation-
ship between different b-values or across-scan noise. Or the functional and
statistical relationship could potentially be quantified between Normalized
Cross-Correlation (NCC) and NMI, where it might be that complex scan vari-
ations can be described as a function with NCC while multi-centric studies
with different scanners can be described by the entropy in NMI. In either
case, there is a lot of potentials if the proper data is available.

100



6.2. Discussion & Future Work

6.2.3 Validating DWI in Whole-Brain Registration

Throughout our work, the density-based registration framework has been ap-
plied to a diverse set of problems. Before developing the expertise to simulate
DWI data, initial experiments were performed on different high-resolution
HCP subjects in [Jensen et al., 2015, Jensen et al., 2017]. Inter-subject regis-
tration raises the question of when a spatial alignment is as good as it can be.
We know that brains are not diffeomorphic [Mangin et al., 2016], and to our
knowledge, no regions or anatomical structures in the brain are guaranteed to
have a one-to-one correspondence. Structural landmarks used for validation
in group studies often have a trained expert to place them or correct the
automatic placement [Mori et al., 2008, Klein et al., 2009].

In [Jensen et al., 2015], we were able to use inter-subject registration since
the transformation was global without risk of overfitting, and we were
only interested in effects of the scales with respect to the similarity. In
[Jensen et al., 2017], we demonstrated that large nonrigid deformations were
possible and that the brains seemed aligned by visual inspection in both
structure and orientation. However, from the review in Chapter 3, we could
conclude that there are no generally accepted ways of validating inter-subject
registration, aside from manual labels or the comparison with competing
methods. The latter is an option for studies presenting new methods while
lacking ground truth data. For instance, segmentations from the HCP could
be used as these are generally considered state-of-the-art automatic (not
manual) labels. Examples of such segmentations are shown for illustrative
purposes in Figure 6.1. However, without expert knowledge of competing
frameworks, this approach is inherently flawed and it is easy to fall into the
trap of using the default settings of other methods. Alternative approaches to
validation were thoroughly discussed in Chapter 3. However, most depend
on the data available.

In this work, we initiated several projects towards an openly available way of
validating nonrigid DWI registration. One of our attempts was to register the
public data form the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
[Jack et al., 2008]. While DWI is only a recent addition to the ADNI database,
we managed to download a suitably large dataset of preprocessed healthy
and sick subjects [Nir et al., 2013]. The results are described in Appendix D.
The goal was to evaluate the temporal progression in healthy and sick sub-
jects to locate new potential diffusion-related biomarkers, and to validate our
framework through existing biomarkers and large intra-subject deformations.
However, in the end, it turned out that the resolution of the preprocessed
DWI data in ADNI is too poor for proper validation of nonrigid registration.
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6.2. Discussion & Future Work

(a) White matter segmentation.

(b) "Ribbon" segmentation of the cortical grey matter.

(c) Both surface-based and subcortical multi-label segmentation.

Figure 6.1: A few of the different examples of available preprocessed automatic
FreeSurfer segmentations from the HCP dataset.

We found no suitable datasets for inter-subject whole-brain validation, there
are datasets that would potentially be interesting to future investigations. The
HCP has test-retest scans available by request [WU-Minn, 2017], which could
be used to test intra-subject registration and noise-correction. Additionally,
they offer restricted access to a database of related subjects with twin and
sibling cases, which might have more suitably matching brain structures than
unrelated subjects and could be used for testing inter-subject registration.

On a final note, our framework is not specific in any way to brain data. There
are no built-in bias and regularization towards brains, and any experiment
involving DWI data would be applicable to the formulation.
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A Implementational Details

A.1 Detailed Schematic Overview of the
Implementation of the Analytical Gradients

The diagrams in Figures A.1 to A.3 show a detailed version of the steps that
calculates the analytical gradients of FFD parameters with respect to the NMI
similarity measure. The input and output in the diagrams are colored for
navigational purposes (green output in step 1 corresponds to green input in
step 2 and so on). Gray represents exterior inputs and do not come from any
previous steps. The function names are taken directly from the framework,
which follows the algorithmic slicing pseudocode in Algorithm 2.
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A.1. Detailed Schematic Overview of the Implementation of the Analytical
Gradients

CubicBsplineDeformation()
Using the deformation field: (1) Move 
the points, and (2) then directions 
based on Jacobian from (1).

Deformation Field
[N0-by-3]

Points of IMG 1
[N1s-by-3]

Directions of IMG 1
[N1d-by-3]

INPUT

Deformed Directions
of IMG 1

[N1d*N1s-by-3]

Deformed Points
of IMG 1

[N1s-by-3]

OUTPUT

STEP 1: Deformation of points and directions of Image 1 (derivatives used but not saved - see ‘Part 2’).

SLICE  1

CubicBsplineInterpolation()
Using the deformed points: (1) Get 
values from Image 2, and (2) save 
spatial derivatives.

INPUT OUTPUT

STEP 2: Interpolation in Image 2 of deformed points and directions from STEP 1.

Values of IMG 2
[N2s*N2d-by-1]

Interpolated 
values from IMG 2

[N1s*N2d-by-1]

Spatial 
derivatives

[N1s*N2d-by-3]

INPUT

Deformed Directions 
of IMG 1

[N1s*N1s-by-3]

Deformed Points
of IMG 1

[N1s-by-3]

Interpolated 
values from IMG 2

[N1s*N2d-by-1]

Spatial 
derivatives

[N1s*N2d-by-3]

WatsonInterpolation()
Using the deformed directions: (1) 
Update interpolated values from 
above, (2) update spatial derivatives, 
and (3) get directional derivatives.

Directions of IMG 2
[N2d-by-3]

Interpolated 
values from IMG 2

[N1s*N1d-by-1]

Spatial 
derivatives

[N1s*N1d-by-3]

Directional derivatives
[N1s*N1d-by-3]

OUTPUT

Figure A.1: The first part of the slicing operation. Step 1 is calculating the trans-
formed points and directions without storing the derivatives. Step 2 is
the spatial and directional interpolation.
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A.1. Detailed Schematic Overview of the Implementation of the Analytical
Gradients

SLICE  1 - Continued

Histogram()
Create local (>1 
thread) B-spline 
smooth histograms

INPUT

Global Joint 
Histogram

[nBins-by-nBins]

Global Marginal 
Histogram

[nBins-by-1]

OUTPUT

STEP 3: Global (from local) Histogram.

Interpolated 
values from IMG 2

[N1s*N1d-by-1]

Values of IMG 1
[N1s*N1d-by-1]

Reduce 
local joint 
histograms

INPUT OUTPUT

STEP 4: Entropy and Similarity value.

Global Joint 
Histogram

[nBins-by-nBins]

Global Marginal 
Histogram

[nBins-by-1]

Iterate histograms to 
get log and similarity

Log Global Joint 
Histogram

[nBins-by-nBins]

Log Global Marginal 
Histogram

[nBins-by-1]

Similarity value
(NMI)

INPUT OUTPUT

STEP 5: Derivatives wrt. Similarity value.

Log Global Joint 
Histogram

[nBins-by-nBins]Log Global Marginal 
Histogram

[nBins-by-1]

Similarity value
(NMI)

Interpolated 
values from IMG 2

[N1s*N1d-by-1]Spatial 
derivatives

[N1s*N1d-by-3]
Directional derivatives

[N1s*N1d-by-3]
Values of IMG 1
[N1s*N1d-by-1]

dNormMutualInformation()
Combine log and similarity with IMG 1 
and multiply by spatial and directional 
derivatives.

Spatial derivatives
wrt. similarity

[N1s*N1d-by-3]

Directional derivatives
wrt. similarity

[N1s*N1d-by-3]

Sum spatial 
derivatives over 
directions.

Figure A.2: Continuing the first slice, Step 3 calculates the histogram, Step 4 cal-
culates the entropy (log) and similarity measure, while Step 5 finally
calculates the derivatives with respect to the similarity measure. At the
end of Slice 1, we now have the derivatives of the transformed image
with respect to NMI.
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A.1. Detailed Schematic Overview of the Implementation of the Analytical
Gradients

INPUT OUTPUT

STEP 6: Repeats STEP 1 but using the derivatives of PART 1 to get the deformation wrt. the similarity.

SLICE  2

Deformation Field
[N0-by-3]

Points of IMG 1
[N1s-by-3]

Directions of IMG 1
[N1d-by-3]

Spatial 
derivatives

[N1s*N1d-by-3]

Directional derivatives
[N1s*N1d-by-3]

Sum (local) 
deformation- 
parameter 
gradients

Deformation-parameter 
derivatives wrt. 

similarity
[N0-by-3]

DerivativeBsplineDeformation()
Calculate the last part of the chain rule by 
combining the derivatives of the deformation- 
parameters (wrt. the jacobian of the point and 
direction) with the derivatives of the point and 
direction wrt. the similarity (Part 1).

Figure A.3: The second slicing operation, goes through the deformation of the very
first step, this time calculating the derivatives of the deformation one
at a time, and multiplying on the corresponding gradients from the
first slice. This finally gives us the gradients of the control points with
respect to the similarity NMI.
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A.2. A Brief Experiment in Utilizing the GPU for Parallelization of the
Histogram

A.2 A Brief Experiment in Utilizing the GPU for
Parallelization of the Histogram

Given millions of independent calculations doing the DWI registration on
a GPU makes sense. However for GPU parallelization to add a significant
speedup two criteria should be matched: (1) a large number of independent
computations, and (2) a favorable ratio of memory I/O to the amount of
work per processing unit. The current implementation clearly favors the
first but not the second criteria - the calculations are very quick compared
to the memory that needs to be transferred on to the GPU device memory.
However, in a collaboration with a three other students1, we investigated
the potential of speeding up the registration by taking the hardest part of
the implementation (the histogram) to throw on the GPU and analyze the
potential for latency hiding of datasets that are larger than available device
memory by using streaming techniques.

For histograms, an efficient parallel implementation yields a number of
problems related to memory performance. One of these is the unknown
order of indices from the map-phase which prevents us from working with
the data in a coalesced manner during the reduce-phase. This was solved
by partially sorting (using radix sort) the input data into segments such
that the values of each segment fit into small local histograms which fit into
shared memory and can be flushed to corresponding parts of the global
histogram. Skipping the details on optimizing the hardware parallelism for
radix sort, we move on to CUDA streams. They give us the possibility to
better utilize the hardware in a fashion shown on Figure A.4. The figure
shows copying to the device (HD), histogram computation (K) and copying
back the resulting histogram (DH). As seen, while one buffer is filling up,

HD K

HD

HD

KStream 1

Stream 2 K

HD K

DH

Figure A.4: Using streams to overlap copying with computation.

the other is calculating a histogram and both commit to the same global
histogram. However, HD takes up more than 90% of the run time, making

1In collaboration with Joachim T. Kristensen, Christian K. Larsen, and Mathias Grymer as
part of the course ’Programming Massively Parallel Hardware’ at University of Copenhagen,
2016.
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A.2. A Brief Experiment in Utilizing the GPU for Parallelization of the
Histogram

it impossible to create enough streams to hide the memory transfer. This is
clearly seen in a benchmark tested for a non-parallelized CPU and 1, 2, and 4
streams (1 stream is to check whether memory transfers are the dominating
factor) with a data size of 2G elements and 400k bins. As seen in Table A.1
adding more streams does not reduce time, underlining memory transfer as
a highly dominant factor. There is no doubt that a significant speedup can be

Method Time
CPU 9.64 s
1 stream 4.91 s
2 streams 4.84 s
4 streams 4.92 s

Table A.1: Time of streaming to the device.

achieved using streams if more complex and time-consuming computations
were performed in parallel. However, the steps in the framework are not
independent and while complex bookkeeping and redundant computations
might be possible for a worthwhile speedup, it is beyond the scope of this
work.
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B Abstract from ISMRM 2017

The first non-hierarchical version of the nonrigid LOR-DWI registration
framework was accepted as an abstract and presented at International Society
for Magnetic Resonance in Medicine (ISMRM) in April 2017.

Titled "Density-Based Nonrigid Registration of Diffusion-Weighted Images",
the abstract demonstrates the nonrigid framework on two simulated fiber
crossings and between two HCP subjects. The validation is purely visual but
demonstrates that a correct registration seems to occur, as random gradient
directions match up and large deformations are possible. Moreover, the
abstract also offers a brief discussion on the purpose of DWI registration as a
spatial mapping and what we believe to be the poor idea of reconstructing
DWI in warped space for anything but visual validation.

109



09/11/16 18:48

Page 1 of 3http://submissions.mirasmart.com/ISMRM2017/ViewSubmission.aspx?sbmID=6185

Density-Based Non-Rigid Registration of Diffusion-Weighted ImagesDensity-Based Non-Rigid Registration of Diffusion-Weighted Images
Henrik Grønholt Jensen , Francois Lauze , Mads Nielsen , and Sune Darkner

Computer Science, University of Copenhagen, Copenhagen, Denmark

SynopsisSynopsis
We present a non-rigid registration method for Diffusion-Weighted MRI which uses a density and scale space approachWe present a non-rigid registration method for Diffusion-Weighted MRI which uses a density and scale space approach
to estimate image similarity.  This al lows us to employ smooth intensity- invariant similarity measures,  such as Mutualto est imate image similarity.  This al lows us to employ smooth intensity- invariant similarity measures,  such as Mutual
Information (MI)  in contrast to the model-driven registrations.  Using the inherent microstructure of High AngularInformation (MI)  in contrast to the model-driven registrations.  Using the inherent microstructure of High Angular
Resolution Diffusion Imaging (HARDI)  scans,  we obtain a less regularized and more flexible registration that can beResolution Diffusion Imaging (HARDI)  scans,  we obtain a less regularized and more flexible registration that can be
used on either raw diffusion signals or reconstructions of the fiber orientations.  We show some promising results onused on either raw diffusion signals or reconstructions of the fiber orientations.  We show some promising results on
Human Connectome Project (HCP) subjects and an art ificial  example.Human Connectome Project (HCP) subjects and an art ificial  example.

PurposePurpose
We present a non-rigid registration approach which uses the apparent diffusion coefficient (ADC) directly, based on Locally Orderless
Registration for DWI1. While model-driven registration methods (such as the ones using Spherical Deconvolution, Spherical Harmonics, or
similar) reduce noise or offers smoother solutions by modelling signal frequencies and selecting peaks, they tend to be sensitive to scaling and
multi-scanner variance. It is desirable to use information theoretical measures of the observations in DWI data due to their invariance
properties. With a scale space approach to density estimation we are able to register diffusion data directly using the ADC between subjects.
Our framework allows us to use similarity measures like Mutual Information (MI), previously reserved for registration of scalar-valued images.
We illustrate the approach on a subject from the HCP and on artificial fiber-crossings.

MethodsMethods
We use a non-rigid registration based on B-splines, and the density estimation scheme described by Jensen et al2, to estimate the joint and
marginal distributions over intensity, location, and orientation. The histogram is estimated as

where

and  is the image scale,  is the orientation scale, and  is the intensity scale. , , and  are kernels in intensity, location, and orientation
respectively. In our experiments, the location scale is modelled by B-splines and the orientation scale by a bidirectional Watson kernel. The
histogram is normalised to generate a density estimate from which MI, normalized MI, and other density-based image similarity measures can
be estimated.

ResultsResults
We selected a full brain DWI of a single HARDI shell from 2 randomly chosen subjects from the HCP. We used the scans with a b-value of 3000.
The resolution is 1mm isotropic voxel with 90 directions. In Figure 1 and 2, the subject is first aligned by a global rigid transformation and then
aligned by the non-rigid registration.

We also constructed two artificial DWI samples containing fiber ODFs, one that simulates a fiber-crossing with a 90 degree angle and one that
simulates a 45 degree angle crossing. The resolution is set to 1mm isotropic voxels with 90 directions. Figure 3 illustrates the transformation of
the 45 degree crossing to the 90 degree crossing.

DiscussionDiscussion
As the results show, the method is able to align both the real images and the artificial example.

Although unlikely to occur in real data, the artificial example illustrates the ability of the method to capture the transformation under such
extreme cases. A direct map between the two crossings is not to be expected given the large local deformation needed, but we see that our
model generalises well. Smoothing effects on the isotropic ODFs are to be expected, seen in the corners of the transformation.

Our experiments on real data show that the transformation, and the estimated non-rigid deformation, shows an excellent fit between the
interpolation of subject 1 and the transformed subject 2 (this also generalises to other gradient directions). The application of the registration
using B-splines shows that a very good apparent alignment can be achieved.

It is worth mentioning that the use of a Watson distribution  allows us to register fiber orientations by using negative . However, it appears
that no real difference is observed between positive and negative .

1 1 1 1

1

(i, j| ) = ( ( , ) − i) ( ( , ) − j)d × dhβασκ x ⃗ ∫Ω×S2
Pβ Iσκ x ⃗ v ⃗ Pβ Jσκ x ⃗ v ⃗ x ⃗ v ⃗ 

( , ) = ( I( , ) ( − )d ) ( , )d = (I ∗ ( ⊗ ))( , )Iσκ x ⃗ v ⃗ ∫S2 ∫Ω
τ ⃗ ν ⃗ Kσ τ ⃗ x ⃗ τ ⃗ Γκ ν ⃗ v ⃗ ν ⃗ Kσ Γκ x ⃗ v ⃗ 
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We believe in taking advantage of the full recorded signal (the whole of the DWI signal) including noisy observation to estimate the
transformation in contrast to using the dominant features derived from the signal. The latter may in some cases oversimplify the signal which
potentially could lead to additional overfitting.

It is our belief that in the context of registration, computations on deformed DWI data (such as tractography or modelling of fibers) should be
avoided as the deformed data in no way represents any anatomy, but merely serves the purpose of estimating a transformation between any
two subjects. Computation should be performed in the native space. However, for illustration purposes we have warped the ODFs according to
the deformation to show the optimum found using the similarity measure.

ConclusionConclusion
We have presented a non-rigid registration similarity measure which directly relies upon the ADC and allows us to register diffusion scans
rather than a fiber-model. As the results show, we are able to effectively perform inter-subject registration. Furthermore, we are able to match
regions with potential large anatomical variability as the artificial example shows.
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FiguresFigures

Non-rigid registration of HCP Subject 2 to Subject 1, shown from a random gradient orientation. The interpolation of the original scans are seen
to the left and right. The second column is the non-rigid results that maps Subject 1 to 2, and the third column shows the rigid alignment prior
to the non-rigid registration.

Same as Figure 1 but shown is mean diffusivity instead of from a single gradient direction.
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A 45 degree crossing registered to a 90 degree crossing with a little vertical overlap.



C Step-by-Step Analytical
Formulation of LOR-DWI
Registration

The purpose of this appendix is to unfold the dependencies and write up
the explicit gradients of the transformation parameters with respect to the
similarity measure. The dependency graph is illustrated in Figure C.1, along
with the steps that we will go through.

In the first part, we write up the functions and equations that allow us
to define the similarity F as a function of the transformation model Φc,
specifically its parameters c. We follow the steps in Figure C.1, where we have
chosen the non-linear similarity measure Normalized Mutual Information
(NMI)

Fnon−lin =
∫

Λ2
f (p(i, j))di dj

where f (p(i, j)) = NMI(Φc, I ,J)

where p is the joint density, I is the moving image, and J target image.

In the second part, we again move through the dependency graph, this time
writing up the chain of derivatives. In all parts, we will define both the
continuous and discrete representations.

C.1 Unfolding the Dependencies - Part 1

We start from the top, and follow the branches that depends on the transfor-
mation Φc.
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C.1. Unfolding the Dependencies - Part 1

Step 2
(Entropy)

Step 3
(Probability)

Step 4
(Histogram)

Step 5
(Interpolation)

Step 1
(Similarity)

Step 6
(Directional 
transform)

Step 7
(Spatial 

transform)

Figure C.1: Dependency graph of the nonrigid DWI registration between the moving
image I and the target image J, with normalized mutual information
(NMI) as the similarity measure. The deformation is parameterized by c
so that any change in c will eventually affect the total similarity between
the two images.

Step 1 - Similarity Measure

NMI(Φ, I, J) =
HJ + HI◦Φ

HI◦Φ,J
(C.1)

where H is the marginal and joint entropy.

Step 2 - Entropy

HI◦Φ = −
∫

Λ
pI◦Φ(i) · log(pI◦Φ(i))di (C.2)

HI◦Φ,J = −
∫

Λ2
pI◦Φ,J(i, j) · log(pI◦Φ,J(i, j))di dj (C.3)

where p is the marginal and joint probability density function. The discrete
version simply replaces the integral with a sum.
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C.1. Unfolding the Dependencies - Part 1

Step 3 - Probability Density Function

pI◦Φ(i) =
∫

Λ
pI◦Φ,J(i)di (C.4)

pI◦Φ,J(i, j) =
hI◦Φ,J(i, j)∫

Λ2 h(k, l)dk dl
(C.5)

where h is the joint histogram. Again, the discrete version replaces the in-
tegrals with sums, as the histogram is normalized by the total number of
entries. The straightforward normalization is due to the partition of unity
property of the Parzen-window in Step 4.

Step 4 - Histogram

hI◦Φ,J(i, j) =
∫

Ω×S2
Pβ(I(φ(x), ψ(v))− i)Pβ(J(x,v)− j)dx× dv (C.6)

where I(·) and J(·) are image intensities linearly normalized to the histogram
size, and P is a Gaussian Parzen-window with variance β - the first scale-
space kernel in our model (intensity scale) used to create a smooth histogram.

In the discrete version, we approximate the Parzen-Window with a cubic
B-spline kernel for local and computationally feasible support. This also
ensures that each smooth entry into the histogram sums to one (partition of
unity), which makes normalization trivial. Let I and J be the two discrete
images where the intensities are normalized by the histogram size. We write
up the well-known 1D cubic B-spline basis functions

Bt(u) =





(1− u)3/6 if t = 0

(3u3 − 6u2 + 4)/6 if t = 1

(−3u3 + 3u2 + 3u + 1)/6 if t = 2

u3/6 if t = 3

0 otherwise

(C.7)

where u is a value between 0 and 1. Replacing the Gaussian Parzen-Window
in eq. (C.6) with a cubic B-spline definition, we define the size of a bin (i, j)
in the discrete histogram h over the entire image domain as

h(i, j) = ∑
u∈I,v∈J

Bti(u)Btj(w) (C.8)

where u, w are the non-negative fractional part of the image intensity
u = I(φ(x), ψ(v)) − bI(φ(x), ψ(v))c, w = J(x,v) − bJ(x,v))c, and ti =

bI(φ(x), ψ(v))c − i + 1, tj = bJ(x,v)c − j + 1. This definition also accounts
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C.1. Unfolding the Dependencies - Part 1

for the non-trivial contributions to h(i, j) from neighbouring bins, as any
update to h by a pair of intensity values changes 16 bins instead of just 1.
Let hsub(i,j) be the 4× 4 submatrix of h formed from rows (i− 1, i, i + 1, i + 2)
and columns (j− 1, j, j + 1, j + 2). Then, we define an update of the joint
histogram h at (i, j) for some pair (u, w) as

hsub(i,j) = hsub(i,j) +




B0(u)B0(w) B0(u)B1(w) B0(u)B2(w) B0(u)B3(w)
B1(u)B0(w) B1(u)B1(w) B1(u)B2(w) B1(u)B3(w)
B2(u)B0(w) B2(u)B1(w) B2(u)B2(w) B2(u)B3(w)
B3(u)B0(w) B3(u)B1(w) B3(u)B2(w) B3(u)B3(w)




(C.9)

We can further simplify eq. (C.9) by writing eq. (C.7) as a vector B(u) =

[B0(u), B1(u), B2(u), B3(u)]T so that the matrix of basis functions is given by
the outer (Kronecker) product

hsub(i,j) = hsub(i,j) + B(u)⊗ B(w) (C.10)

Step 5 - Interpolation

IΦc(φ(x), ψ(v)) =
∫

S2

(∫

Ω
I(τ ,ν)Kσ(τ − φ(x))dτ

)
Γκ(ν, ψ(v))dν. (C.11)

where K is the spatial Gaussian kernel at variance σ, and Γ is the directional
Watson kernel at concentration κ. These are the other two kernels in our
scale-space model, representing the spatial and orientational smoothness.

For the discrete case, we start with the spatial Gaussian kernel which we
approximate with a cubic B-spline (similar to Step 4). Since each interpolated
value is independent of its neighbors, we skip the outer sum over the image
domain and simply state that the calculation is applied for all points x.
Let (δx, δy, δz) denote the scale of the interpolated 3D image relative to the
original image. We then have

I(φ(x),ν) = I ◦ Kσ(φ(x)) (C.12)

=
3

∑
tx=0

3

∑
ty=0

3

∑
tz=0

Btx(u)Bty(w)Btz(q) al,νn (C.13)

where B is the 1D cubic basis functions from eq. (C.7), u = φ(x)x/δx −
bφ(x)x/δxc, w = φ(x)y/δy − bφ(x)y/δyc, q = φ(x)z/δz − bφ(x)z/δzc, and a
is a scalar value in the image I at the spatial coordinate l = (bφ(x)x/δxc+
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C.1. Unfolding the Dependencies - Part 1

tx , bφ(x)y/δyc+ ty , bφ(x)z/δzc+ tz)− 1 in the direction νn. Equation (C.13)
is repeated every point x, and we move on to the discrete directional Watson
kernel. Again, the interpolation of every direction v is independent of its
neighbors and the following is applied to all v

I(φ(x), ψ(v)) = I(φ(x)) ◦ Γκ(ν, ψ(v)) (C.14)

= C ·∑
n

eκ·(〈νn,ψ(v)〉)2
I(φ(x),νn) (C.15)

=
1

∑n eκ·(〈νn,ψ(v)〉)2 ∑
n

eκ·(〈νn,ψ(v)〉)2
I(φ(x),νn) (C.16)

where n is the number of ν directions in the original image image, κ is the
concentration parameter, the operator 〈·, ·〉 denotes the inner product, and C
is the normalization constant. Normally, C would be defined by the Kummer
function [Jensen et al., 2015]. However, when the Watson distribution is used
as an interpolating function, it does not ensure the partition of unity property,
and so the Kummer function was replaced with simple normalization over
the discrete set of directions. The normalization becomes a function of the
interpolated result, which adds to the complexity.

Step 6 and 7 - Transformation Model

The directional transformation ψ∇φc
(v) of Step 6 depends on the first-order

derivatives of the spatial transformation φc(x) in Step 7. To make the
notation easier to follow, we start with the spatial transformation model
which is similar to eq. (C.13). Let (δx, δy, δz) denote the uniform spacing of
the vector field c, where c are the parameters controlling the transformation.
The transformation applies to all points x and is defined as

φc(xd) = xd + Bd(x, c) (C.17)

= xd +
3

∑
tx=0

3

∑
ty=0

3

∑
tz=0

Btx(u)Bty(w)Btz(q)cl,d (C.18)

where u = xx/δx − bxx/δxc, w = xy/δy − bxy/δyc, q = xz/δz − bxz/δzc,
and d is the xyz-index in the vector cl,d located at l = (bxx/δxc) + tx −
1 , bxy/δyc) + ty − 1 , bxz/δzc) + tz − 1). This is the spatial transformation
model based on the Free-Form Deformation (FFD) by [Rueckert et al., 1999]
for nonrigid registration. B-Splines are an attractive way of modeling the
transformation as they are computationally efficient, independent of the
image modality, popular in the registration community, and the derivatives
easy to compute. The parameters c are also referred to as knots or control
points in the B-spline model, and uniform mesh of control points is known
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as the deformation field. The spacing δ between control points determine the
degree of nonrigid deformation where a low mesh resolution models global
changes and a high-resolution models small local changes.

The directional transformation for the vector v at the point (x,v) is then
given by

ψ∇φc
(v) = ψc(v) =

∇φc(v)

||∇φc(v)||
=

Jφv

||Jφv||
=

Jφv√
(Jφv)TJφv

(C.19)

where ∇φ is the gradients of the spatial transformation, i.e. Jaocbian J ,
applied to the directional vector v. This projective transformation P2 : tv 7→
t∇φc(v), t ∈ R\{0} of the directional vectors can also be found in other
works of DWI registration [Tao and Miller, 2006, Yap et al., 2010], and offer
an approach to reorientation that is independent of specific DWI model
assumptions. We write the Jacobian of the spatial transformation as

∇φc(v) = Dφc(x)v = Jφv (C.20)

where D is the partial derivative operator. The partial derivatives of the
weights B is defined as

DxBx =
3

∑
tx=0

3

∑
ty=0

3

∑
tz=0

dBtx(u)Bty(w)Btz(q)cl,x (C.21)

DyBx =
3

∑
tx=0

3

∑
ty=0

3

∑
tz=0

Btx(u)dBty(w)Btz(q)cl,x (C.22)

DzBx =
3

∑
tx=0

3

∑
ty=0

3

∑
tz=0

Btx(u)Bty(w)dBtz(q)cl,x (C.23)

then we can write the Jacobian of eq. (C.18) as

Dφc(x) =




1 0 0
0 1 0
0 0 1


+




DxBx DxBy DxBz

DyBx DyBy DyBz

DzBx DzBy DzBz


 = Jφ (C.24)

The first-order derivatives for the basis functions of eq. (C.7) are

dBt(u) =





(−3u2 + 6u− 3)/6 if t = 0

(9u2 − 12u)/6 if t = 1

(−9u2 + 6u + 3)/6 if t = 2

3u2/6 if t = 3

0 otherwise

(C.25)

118



C.2. Unfolding the Dependencies - Part 2

To optimize the objective function in our framework, we use quasi-Newton
methods. To do so requires computing the gradient of our objective with
respect to parameters c. This is a complex task due to the reorientation
already defined through the first-order derivatives of the spatial motion.

C.2 Unfolding the Dependencies - Part 2

The previous section has demonstrated the complex dependency of the ob-
jective to c. To compute the gradient DcF , we use the chain rule together
with the differentials of all the unfolding steps, from the top, writing up the
derivatives of each node in the path NMI to Φc of the dependency graph in
Figure C.1. We will be using common rules, such as the quotient and product
rule, to write up the derivatives. In particular, we will use the special case
of the Leibniz Integral Rule (LIR), which allow us to move the differential
operators inside the integral under the condition that integral limits are
constant. We use the chain rule in the form d f g = Dg( f )d f where Dg( f )
is the differential of g, i.e. the matrix of partial derivatives of g, computed
at f , and d f is the vector of “variations” of f . The subscript denotes the
dependency that we seek if the function g is multivariate. In differential
geometric d f is a differential form.

Step 1 - Derivative of the Similarity Measure

The derivatives of the similarity measure are found by using the quotient
rule

dNMI(Φ, I, J) = d(
HJ + HI◦Φ

HI◦Φ,J
) (C.26)

=
(dHI◦Φ + dHJ)HI◦Φ,J − dHI◦Φ,J(HI◦Φ + HJ)

(HI◦Φ,J)2 (C.27)

Since we only care about the dependency on Φc we have that dHJ = 0 and
thus

dΦNMI(Φ, I, J) =
dHI◦Φ HI◦Φ,J − dHI◦Φ,J(HI◦Φ + HJ)

(HI◦Φ,J)2 (C.28)
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Step 2 - Derivative of the Entropy

We use LIR and the product rule

dHI◦Φ = −d
∫

Λ
pI◦Φ(i) · log(pI◦Φ(i))di (C.29)

= −
∫

Λ
(1 + log(pI◦Φ(i)))dpI◦Φdi (C.30)

dHI◦Φ,J = −d
∫

Λ2
pI◦Φ,J(i, j) · log(pI◦Φ,J(i, j))di dj (C.31)

= −
∫

Λ2
(1 + log(pI◦Φ,J(i, j)))dpI◦Φ,Jdi dj (C.32)

Step 3 - Derivative of the Probability Density Function

We use LIR and the quotient rule

dpI◦Φ(i) = d
∫

Λ
pI◦Φ,J(i)di (C.33)

=
∫

Λ
dpI◦Φ,J(i)di (C.34)

dpI◦Φ,J(i, j) = d
hI◦Φ,J(i, j)∫

Λ2 hI◦Φ,J(k, l)dk dl
(C.35)

=
dhI◦Φ,J(i, j)∫

Λ2 hI◦Φ,J(l, k)dl dk
− hI◦Φ,J(i, j)

∫
Λ2 dhI◦Φ,J(l, k)dl dk

(
∫

Λ2 hI◦Φ,J(l, k)dl dk)2 (C.36)

Step 4 - Derivative of the Histogram

We use LIR and the product rule

dhI◦Φ,J(i, j) = d
∫

Ω×S2
Pβ(I(φ(x), ψ(v))− i)Pβ(J(x,v)− j)dx× dv (C.37)

=
∫

Ω×S2
dPβ(I(φ(x), ψ(v))− i)Pβ(J(x,v)− j)dx× dv

+ Pβ(I(φ(x), ψ(v))− i)dPβ(J(x,v)− j)dx× dv (C.38)

As with Step 1, we seek only the dependency on Φc and so we have that

dΦhI◦Φ,J(i, j) =
∫

Ω×S2
dPβ(I(φ(x), ψ(v))− i)Pβ(J(x,v)− j)dx× dv

+ Pβ(I(φ(x), ψ(v))− i) · 0 dx× dv (C.39)

=
∫

Ω×S2
dPβ(I(φ(x), ψ(v))− i)Pβ(J(x,v)− j) dx× dv (C.40)
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From here we can use the chain rule on the histogram kernel

dPβ(I(φ(x), ψ(v))) = DPβ(I(φ(x), ψ(v)))dI(φ(x), ψ(v)) (C.41)

Relating this to the discrete B-spline kernel version of the Parzen-window,
the total effect of adding an entry from I to the joint histogram is simply the
sum or inner product over eq. (C.9) so that

dPβ(I(φ(x), ψ(v)))Pβ(J(x,v)) = 〈DB(u), B(w)〉 dI(φ(x), ψ(v)) (C.42)

where DB(u) is defined in eq. (C.25).

Step 5 - Derivative of the Interpolation

We use the product rule and LIR

dIσκ(φ(x), ψ(v)) = d
∫

S2

(∫

Ω
I(τ ,ν)Kσ(τ − φ(x))dτ

)
Γκ(ν, ψ(v))dν

(C.43)

=
∫

S2

(
d
∫

Ω
I(τ ,ν)Kσ(τ − φ(x))dτ

)
Γκ(ν, ψ(v))dν +

∫

S2

(∫

Ω
I(τ ,ν)Kσ(τ − φ(x))τ

)
dΓκ(ν, ψ(v))dν (C.44)

=
∫

S2

(∫

Ω
I(τ ,ν)dKσ(τ − φ(x))dτ

)
Γκ(ν, ψ(v))dν +

∫

S2

(∫

Ω
I(τ ,ν)Kσ(τ − φ(x))τ

)
dΓκ(ν, ψ(v))dν (C.45)

As with the histogram, the partial derivatives of the discrete version of
spatial kernel K(φσ(x)) is straight forward for the B-spline kernel. As the
interpolation, with the use of a kernel, is a convolution, we use the shorthand
notation of eq. (C.21)-eq. (C.23) and the derivatives can be written as

d(I ∗ Kσ(φ(x))) = I ∗ dKσ(φ(x)) (C.46)

dKσ(φ(x)) = DBI (φ(x))dφ(x) (C.47)

where BI is the B-spline image interpolation kernel. The directional Watson
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kernel is somewhat more complex due to the normalization constant

I(φ(x)) ◦ dΓκ(ν, ψ(v)) (C.48)

= D
( 1

∑n eκ·(〈νn,ψ(v)〉)2 ∑
n

eκ·(〈νn,ψ(v)〉)2
I(φ(x), νn)

)
dψ(v) (C.49)

=

(
D
( 1

∑n eκ·(〈νn,ψ(v)〉)2

)
∑
n

eκ·(〈νn,ψ(v)〉)2

+
1

∑n eκ·(〈νn,ψ(v)〉)2 D
(

∑
n

eκ·(〈νn,ψ(v)〉)2
))

dψ(v) (C.50)

=

(
D
( 1

∑n eκ·(〈νn,ψ(v)〉)2

)
∑
n

eκ·(〈νn,ψ(v)〉)2

+
1

∑n eκ·(〈νn,ψ(v)〉)2 ∑
n

eκ·(〈νn,ψ(v)〉)2
2κD(〈νn, ψ(v)〉)

)
dψ(v) (C.51)

=

(
1

(
∑n eκ·(〈νn,ψ(v)〉)2)2 ∑

n
eκ·(〈νn,ψ(v)〉)2

2κD(〈νn, ψ(v)〉)

− 1

∑n eκ·(〈νn,ψ(v)〉)2 ∑
n

eκ·(〈νn,ψ(v)〉)2
2κD(〈νn, ψ(v)〉)

)
dψ(v) (C.52)

The product rule was used in eq. (C.50), and the chain rule once in eq. (C.51)
and twice in eq. (C.52). The partial derivatives of the inner product of two
vectors is trivial.

Step 6 - Derivative of the Directional Transformation

This is a slightly complex part, as we seek to write up the derivatives of
the spatial Jacobian applied to the directional vectors with respect to the
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transformation parameters

dψc(v) = D
(
Jφv

||Jφv||

)
dc (C.53)

= D
(

Jφv√
(Jφv)TJφv

)
dc (C.54)

=
1

〈Jφv,Jφv〉

(
DJφv

√
(Jφv)TJφv − Jφv D

(√
(Jφv)TJφv

))
dc (C.55)

=
1

〈Jφv,Jφv〉

(
DJφv

√
(Jφv)TJφv −

Jφv√
(Jφv)TJφv

D
(
(Jφv)

TJφv
))

dc

(C.56)

=
1

〈Jφv,Jφv〉

(
DJφv

√
(Jφv)TJφv −

Jφv√
(Jφv)TJφv

(DJφv)
TDJφv

)
dc

(C.57)

where we have used the quotient in eq. (C.55), and the chain rule in eq. (C.56).
For a B-spline deformation, the derivative of eq. (C.24) with respect to the
parameters is a 3× 3× 3 matrix of partial derivatives. To see why, take DxBx

from eq. (C.21) as example. The partial derivatives with respect to c simply
becomes

DcDxBx =
3

∑
tx=0

3

∑
ty=0

3

∑
tz=0

dBtx(u)Bty(w)Btz(q) (C.58)

which essentially boils down to the sum of derivatives of the B-spline basis
functions replicated three times since Dcx DxBx = Dcy DxBx = Dcz DxBx.

Step 7 - Derivative of the Spatial Transformation

The partial derivatives of the spatial transformation with respect to c is
simply the weights of the basis functions

dφc(xd) = D(xd + Bd(x, c))dc (C.59)

=
( 3

∑
tx=0

3

∑
ty=0

3

∑
tz=0

Btx(u)Bty(w)Btz(q)
)

dc (C.60)

Which brings us to the end of the chain of dependencies from Step 1 to Step
7. The tricky part is connecting all the partial derivatives bottom-up in a
single long chain rule.
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Putting it together

As mentioned in the beginning of the previous paragraph, we optimize
our objective via a quasi-Newton method and we need need to compute
its gradient w.r.t c. Similar to gradient back-propagation, this is done by
chaining the steps of Part 2 via the chain rule.

dcNMI

= DH(p(··· ))NMI dH(p(h(I(ψ(φ(c))))))

= DH(p(··· ))NMI · Dp(h(··· ))H dp(h(I(ψ(φ(c)))))

= DH(p(··· ))NMI · Dp(h(··· ))H · Dh(I(··· )) dh(I(ψ(φ(c))))

= DH(p(··· ))NMI · Dp(h(··· ))H · Dh(I(··· )) · DI(ψ(··· )) dI(ψ(φ(c)))

= DH(p(··· ))NMI · Dp(h(··· ))H · Dh(I(··· )) · DI(ψ(··· )) · Dψ(φ(c)) dψ(φ(c))

= DH(p(··· ))NMI · Dp(h(··· ))H · Dh(I(··· )) · DI(ψ(··· )) · Dψ(φ(c)) · Dψ(φ(c)) dφ(c)

= DH(p(··· ))NMI · Dp(h(··· ))H · Dh(I(··· )) · DI(ψ(··· )) · Dψ(φ(c)) · Dψ(φ(c)) · Dφ(c)dc
(C.61)

In the previous part, we have established analytic formulas of all the dif-
ferentials appearing in (C.61), and by computing from right to left, with an
actual value for c, we obtain the differential of our objective function and
thus its gradient. Details of computations were provided in Section 5.3 and
Appendix A.
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D Longitudinal Registration of
Alzheimer’s DWI

To validate our registration framework and investigate new diffusion biomark-
ers, we downloaded a dataset of normal controls (NC), mild cognitive impair-
ment (MCI), and Alzheimer’s disease (AD) subjects from the public ADNI
database [Jack et al., 2008]. The MCI are further divided into early-MCI and
late-MCI depending on the level of impairment, but due to the size of the
datasets, we have pooled them into MCI in the results. The distribution of
dataset can be seen in Table D.1. All of the subjects have a follow-up scan

Population Females Males Age
NC 15 13 73.55± 6.14
EMCI 6 17 70.91± 8.09
LMCI 9 18 72.70± 6.26
AD 9 20 75.97± 9.94
Total 39 68 73.42± 7.26

Table D.1: Distribution of gender and age in the populations of DWI subjects down-
loaded from ADNI.

that was taken 1-2 years later. The DTI data corresponds to the preprocessed
data made available in [Nir et al., 2013]. The structural T1w images has a
voxel size = 1.2× 1.0× 1.0 mm and the DWI are isotropic voxels of size
2.7× 2.7× 2.7 mm at b = 1000, re-sampled during preprocessing to 2× 2× 2
mm with 41 diffusion gradients. We refer to [Nir et al., 2013] for additional
details on the data.

To segment the data, we used VolBrain on the T1w images. VolBrain
[Manjón and Coupé, 2016] is an online openly available tool for automatic
volumetric brain segmentation and statistical information. We found it to
provide excellent and precise segmentations of the T1w scans. We used FSL
FLIRT to convert the labels to the DWI space through global affine registra-
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tion. Finally, we applied the LOR-DWI framework for nonrigid registration
between the original scans and their follow-up scans in order to investigate
the temporal difference. It should be noted that at the time of the experiment,
the registration was only hierarchical in the control point spacing of the
deformation field, and not hierarchical in the spatial and intensity scales as
described in Chapter 5.

For each subject, we calculated the mean of the Jacobian determinant based
on the deformation at each voxel within a given segmentation. We then
calculated the mean over each population, which is the values shown in
Table D.2. These values represent the net contraction (< 1) or expansion
(> 1) of each anatomical structure in the population, which are often used as
indications of atrophy or growth.

ROI detJ (NC) detJ (MCI) detJ (AD)
White Matter 0.9713 0.9744 0.9937
Grey Matter 0.9612 0.9617 0.9825
Ventricles 1.0110 1.0501 1.0734
Caudate 1.0190 1.0177 1.0201
Putamen 1.0331 1.0037 0.9957
Thalamus 1.0022 0.9930 1.0124
Globus Pallidus 1.0517 1.0233 1.0101
Hippocampus 0.9913 0.9907 0.9877
Amigdala 0.9697 0.9584 0.8921
Accumbens 1.0517 0.9976 0.9952
Brainstem 0.9866 0.9856 1.0079
Cerebellum 0.9633 0.9658 0.9928

Table D.2: The mean of each population’s mean Jacobian determinant for each label
category. The red and green colors indicate some of the most prominent
incorrect and correct results.

Evidently, the overall registrations were unable to capture the expected de-
formations, as it is well-known that the there is atrophy in the white and
gray matter of AD subjects. Here, indicated in red text, we observe more
atrophy in NC than in MCI and AD, which is incorrect [Frisoni et al., 2002,
Thompson et al., 2003, Serra et al., 2010]. The growth in ventricles and the
atrophy in the hippocampus is as expected. However, given the clear indica-
tions of a poor registration, we can not trust the results. The reasons for the
poor registrations can likely be found in the preprocessed data.

There are several issues with the dataset. First of all, the image resolution
is insufficient for measuring atrophy, as indicated by the results in the gray
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matter where NC has the highest atrophy. The average cerebral cortex has a
thickness ranging from 1.5 to 4.5 mm [Narr et al., 2004, Winkler et al., 2010].
Since the original isotropic voxel had a size of 2.7 mm3, it is highly unlikely
that the accuracy is good enough to capture atrophy in the cortex without
severe CSF contamination. Additionally, the motion correction performed
with eddy correct should cause a change in the diffusion directions, but
this does not seem to be the case. Nor was the EPI-correction performed
according to a field map, but through a non-linear registration, which has
little to do with the actual susceptibility artifacts. As we discovered several of
these issues, we looked into performing the preprocessing. However, without
a field map from the original scan, there does not seem to be a good way to
correct the data.
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E Artistic Illustrations of Brains and
DWI Data

On a personal note, one of the really cool things about MRI and DWI was
the visualization of the brain, its subdivisions and connections. The follow-
ing images are based on real HCP subjects, and, while I can not guarantee
anatomical correctness on e.g. the DTI tractographies, I still think it gives a
really inspiring view of what DWI can be used to.
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Axial view of sparse whole-brain tractography coloured by the
orientation of the principal eigenvector. The ODFs used for

streamline-seeding are interspersed.



Coronal view of sparse whole-brain tractography coloured by the
orientation of the principal eigenvector. Glyphs indicating ODFs used

for streamline-seeding are interspersed.



A dense image of whole-brain tractography showing the streamlines
coloured by anisotropy.



Coronal view of a dense whole-brain tractography coloured by the
orientation of the principal eigenvector.
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