
U N I V E R S I T Y O F C O P E N H A G E N
F A C U L T Y O F S C I E N C E

PhD thesis
Jacob Holm

Efficient Graph algorithms and Data Structures
This thesis has been submitted to the PhD School of The Faculty of Science, University of Copenhagen

Principal Advisor: Mikkel Thorup
Co-Advisor: Stephen Alstrup

Submitted August 31, 2018

ii

iii

Author Jacob Holm

Affiliation Department of Computer Science
University of Copenhagen

Title Efficient Graph algorithms and Data Structures

Academic Advisors Mikkel Thorup (principal)
Stephen Alstrup

Submitted August 31, 2018

Short Abstract
The graph is one of the most important abstractions used in computer

science. This thesis gives substantial improvements to the state of the art
regarding 4 different problems on static or dynamic graphs, namely: Static
reachability in planar graphs, Online bipartite matching with recourse, Deter-
ministic fully-dynamic 2-edge connectivity and bridge-finding, and Strong
trail orientations of graphs.

iv

Abstract v

Abstract

This work in theoretical computer science covers the following subjects:

Planar Reachability in Linear Space and Constant Time We show how to rep-
resent a planar digraph in linear space so that reachability queries can be answered
in constant time. The data structure can be constructed in linear time. This repre-
sentation of reachability is thus optimal in both time and space, and has optimal
construction time. The previous best solution used O(n log n) space for constant
query time [Thorup FOCS’01].

Online Bipartite Matching with Amortized O(log2 n) Replacements In the
online bipartite matching problem with replacements, all the vertices on one side of
the bipartition are given, and the vertices on the other side arrive one by one with all
their incident edges. The goal is to maintain a maximum matching while minimizing
the number of changes (replacements) to the matching. We show that the greedy
algorithm that always takes the shortest augmenting path from the newly inserted
vertex (denoted the SAP protocol) uses at most amortized O(log2 n) replacements
per insertion, where n is the total number of vertices inserted. This is the first
analysis to achieve a polylogarithmic number of replacements for any replacement
strategy, almost matching the Ω(log n) lower bound. The previous best strategy
known achieved amortized O(

√
n) replacements [Bosek, Leniowski, Sankowski,

Zych, FOCS 2014]. For the SAP protocol in particular, nothing better than the trivial
O(n) bound was known except in special cases. Our analysis immediately implies
the same upper bound of O(log2 n) reassignments for the capacitated assignment
problem, where each vertex on the static side of the bipartition is initialized with
the capacity to serve a number of vertices.

We also analyze the problem of minimizing the maximum server load. We show
that if the final graph has maximum server load L, then the SAP protocol makes
amortized O(min{L log2 n,

√
n log n}) reassignments. We also show that this is

close to tight because Ω(min{L,√n}) reassignments can be necessary.

Dynamic Bridge-Finding in Õ(log2 n) Amortized Time We present a deter-
ministic fully-dynamic data structure for maintaining information about the bridges
in a graph. We support updates in Õ((log n)2) amortized time, and can find a bridge
in the component of any given vertex, or a bridge separating any two given vertices,
in O(log n/ log logn) worst case time. Our bounds match the current best bounds
for deterministic fully-dynamic connectivity up to log logn factors.

The previous best dynamic bridge finding algorithm was an Õ((log n)3) amor-
tized time algorithm by Thorup [STOC2000], which was a bit-trick-based im-
provement on the O((log n)4) amortized time algorithm by Holm et al. [STOC98,
JACM2001].

vi Abstract

Our approach is based on a different and purely combinatorial improvement of
the algorithm of Holm et al., which by itself gives a new combinatorial Õ((log n)3)
amortized time algorithm. Combining it with Thorup’s bit-trick, we get down to the
claimed Õ((log n)2) amortized time.

Essentially the same new trick can be applied to the biconnectivity data structure
from [STOC98, JACM2001], improving the amortized update time to Õ((log n)3).

We also offer improvements in space. We describe a general trick, which applies
both to our new algorithms and to the old ones, to get down to linear space, where
the previous best use O(m+ n log n log logn).

Our result yields an improved running time for deciding whether a unique
perfect matching exists in a static graph.

One-Way Trail Orientations Given a graph, does there exist an orientation of
the edges such that the resulting directed graph is strongly connected? Robbins’
theorem [Robbins, Am. Math. Monthly, 1939] asserts that such an orientation exists
if and only if the graph is 2-edge connected. A natural extension of this problem is
the following: Suppose that the edges of the graph are partitioned into trails. Can
the trails be oriented consistently such that the resulting directed graph is strongly
connected?

We show that 2-edge connectivity is again a sufficient condition and we provide
a linear time algorithm for finding such an orientation.

The generalised Robbins’ theorem [Boesch, Am. Math. Monthly, 1980] for
mixed multigraphs asserts that the undirected edges of a mixed multigraph can be
oriented to make the resulting directed graph strongly connected exactly when the
mixed graph is strongly connected and the underlying graph is bridgeless.

We consider the natural extension where the undirected edges of a mixed
multigraph are partitioned into trails. It turns out that in this case the condition
of the generalised Robbin’s Theorem is not sufficient. However, we show that as
long as each cut either contains at least 2 undirected edges or directed edges in both
directions, there exists an orientation of the trails such that the resulting directed
graph is strongly connected. Moreover, if the condition is satisfied, we may start by
orienting an arbitrary trail in an arbitrary direction. Using this result one obtains
a very simple polynomial time algorithm for finding a strong trail orientation if it
exists, both in the undirected and the mixed setting.

Dansk Resumé (Danish Abstract) vii

Dansk Resumé (Danish Abstract)

Dette arbejde indenfor teoretisk datalogi dækker følgende emner:

Fremkommelighed i Orienterede Plane Grafer Vi viser, hvordan man kan re-
præsentere en orienteret plan graf, med kun lineært forbrug af plads, så man i
konstant tid kan afgøre, om der findes en orienteret vej mellem vilkårlige to knuder.
Datastrukturen kan konstrueres i lineær tid, og er derfor optimal både i tid, plads,
og konstruktionstid. Den hidtil bedste løsning brugte O(n log n) plads for at opnå
konstant forespørgselstid.

Online Bipartit Matching med AmortiseretO(log2 n) Ændringer I problemet
kaldet “Online bipartit matching med ændringer”, er knuderne på den ene side af
en bipartit graf givet på forhånd, mens knuderne på den anden side afsløres een ad
gangen sammen med alle deres kanter. Målet er, til enhver tid at vedligeholde en
“matching” af maksimal størrelse, men at gøre det med færrest mulige ændringer til
matchingen undervejs. Vi viser, at enhver grådig algoritme der til enhver tid vælger
at ændre langs en korteste vej fra senest ankomne knude (kaldet SAP-protokollen)
laver højest amortiseret O(log2 n) ændringer per ny knude, hvor n er det totale
antal knuder der indsættes. Dette er den første analyse, der viser et polylogaritmisk
antal ændringer for nogen protokol, og er tæt på den nedre grænse på Ω(log n). Den
hidtil bedste analyse opnåede amortiseret O(

√
n) ændringer [Bosek, Leniowski,

Sankowski, Zych, FOCS 2014]. For SAP-protokollen var intet kendt udover den
trivielle øvre grænse på O(n). Det følger umiddelbart af vores analyse, at den
samme øvre grænse på O(log2 n) ændringer også gælder for den generaliserede
version hvor hver af de statiske knuder har en (på forhånd givet) kapacitet som kan
være større end 1.

Vi analyserer også en variant af problemet, hvor målet er at minimere den
maksimale belastning på de statiske knuder. Vi viser, at hvis den graf vi slutter
med har optimal maksimal belastning L, så laver SAP-protokollen amortiseret
O(min{L log2 n,

√
n log n}) ændringer. Vi viser også, at dette er tæt på optimalt,

idet Ω(min{L,√n}) ændringer kan være nødvendige.

Dynamisk Bro-Søgning i Õ(log2 n) Amortiseret Tid Vi giver en deterministisk,
fuldt-dynamisk datastruktur, som vedligeholder informationer om “broer” i en graf.
Strukturen understøtter opdateringer i Õ(log2 n) amortiseret tid og kan finde en bro
i den komponent der indeholder en given knude, eller en bro der adskiller to givne
knuder, i O(log n/ log logn) tid i værste fald. Køretiden afviger således kun med
log log n faktorer fra den bedste deterministiske fuldt-dynamiske datastruktur der
kan afgøre om to givne knuder er sammenhængende.

Den hidtil bedste datastruktur for bro-søgning, var en Õ(log3 n)-tids datastruk-
tur fra Thorup [STOC2000], som var en bit-trick-baseret forbedring af O(log4 n)-
tids datastrukturen fra Holm et al. [STOC98,JACM2001].

viii Dansk Resumé (Danish Abstract)

Vores tilgang er baseret på en anden, rent kombinatorisk, forbedring af data-
strukturen fra Holm et al., som i sig selv giver en ny Õ(log3 n)-tids datastruktur. I
kombination med Thorups bit-tricks giver det så den påståede Õ(log2 n) amortise-
rede tid.

Omtrent det samme nye kombinatoriske trick kan anvendes på datastrukturen for
2-sammenhæng fra [STOC98,JACM2001], hvilket forbedrer dennes amortiserede
opdateringstid til Õ(log3 n).

Vi forbedrer også pladsforbruget. Til det bruger vi et generelt trick, som kan
anvendes på både de nye og de gamle algoritmer, og som bringer pladsforbruget
ned til lineært hvor det tidligere bedste var O(m+ n log n log log n).

Vores resultat forbedrer køretiden for at afgøre om en graf har en unik perfekt
matching.

Ensretning af veje Givet en graf, findes der en orientering af kanterne så den
resulterende graf er stærkt sammenhængende? Robbins’ theorem [Robbins, Am.
Math. Monthly, 1939] siger, at en sådan orientering findes hvis og kun hvis grafen
er 2-kant sammenhængende. En naturlig generalisering af problemet er: Antag, at
kanterne i grafen er fordelt på veje. Kan disse veje så orienteres konsistent, så den
resulterende graf er stærkt sammenhængende?

Vi viser, at 2-kant sammenhæng igen er en tilstrækkelig betingelse, og vi giver
en lineær-tids algoritme for at finde en sådan orientering.

Det generaliserede Robbins’ Theorem [Boesch, Am. Math. Monthly, 1980] for
blandede multigrafer siger, at de ikke-orienterede kanter i en blandet multigraf kan
orienteres så den resulterende graf er stærkt sammenhængende, hvis og kun hvis den
blandede graf er stærkt sammenhængende og den underliggende ikke-orienterede
graf er 2-kant sammenhængende.

Vi betragter den naturlige generalisering, hvor de ikke-orienterede kanter i
en blandet graf er fordelt på veje. Det viser sig, at i dette tilfælde er betingelsen
fra det generaliserede Robbins’ Theorem ikke tilstrækkelig. I stedet viser vi, at så
længe ethvert cut enten indeholder mindst 2 ikke-orienterede kanter, eller indeholder
orienterede kanter der krydser i begge retninger, så findes en orientering af vejene
så den resulterende graf er stærkt sammenhængende. Ydermere, hvis betingelsen er
opfyldt, kan vi starte med at orientere en vilkårlig vej i vilkårlig retning. Med brug
af dette resultat, får man en meget simpel polynomiel-tids algoritme for at finde
en stærk orientering af vejene hvis den findes, både i det ikke-orienterede og det
blandede tilfælde.

Acknowledgements ix

Acknowledgements

I would like to thank my supervisors Mikkel Thorup and Stephen Alstrup, first for
getting me interested in graph problems and data structures all those many years
ago, and second for being so supportive when I decided to return to academia after
my long break.

That decision might never have been made had it not been for the intervention of
my long time friend and old collaborator Kristian de Lichtenberg. The masters thesis
I co-authored with Kristian back in 1998, and some of the discussions surrounding
it, are direct predecessors to some of the work in this thesis. And had he not invited
me to that talk by Bob Tarjan on August 23. 2013 at DIKU (just over 5 years ago),
it is doubtful that I would be where I am today.

Also a huge thanks to my most consistent and excellent collaborator Eva Roten-
berg, who I first met at that aforementioned talk. Kristian may have been the one
who got me there, but Eva arranged the weekly meetings that made me realize that I
still have a place in academia, and not just as a hobby. And then it turned out we
make an excellent team, as evidenced by our 10 papers together so far (9 of them
made during my PhD).

I would also like to thank Uri Zwick for being an excellent host during my 6
week stay in Tel Aviv. Too bad none of the things we discussed then bore fruit. The
same goes for Virginia Vassilevska Williams and MIT. It was only a brief visit, but
I had a great time while I was there. My visit to Pino Italiano at Tor Vergata and
Jakub Łącki at Sapienza, both in Rome was not only fun, but also very productive.

A big thanks also to all my co-authors during my PhD (in alphabetic order):
Anders Aamand, Mikkel Abrahamsen, Stephen Alstrup, Aaron Bernstein, Niklas
Hjuler, Guiseppe F. Italiano, Adam Karczmarz, Mathias Bæk Tejs Knudsen, Jakub
Łącki, Eva Rotenberg, Piotr Sankowski, Morten Stöckel, Mikkel Thorup, and
Christian Wulff-Nilsen. It has been an absolute pleasure working with all of you,
and I am proud of what we have achieved.

Thanks to Alan Roytman for proofreading the almost-final version of this thesis.
Finally, a big thanks to my extended family, for their patience and support

through the years, for being there when I needed it, but also for giving me space
when I needed that.

x Acknowledgements

Preface xi

Preface

This thesis is written as “a synopsis with manuscripts of papers or already published
papers attached” in accordance with the formal requirements laid out in Section
5.1 of the “General rules and guidelines for the PhD programme”1 at the Faculty
of Science, University of Copenhagen. All results listed here were finalized during
my enrollment as a Ph.D. student from September 2015 to August 2018. They
consist of 9 papers published in peer reviewed conferences [Aam+18; Abr+17a;
Abr+17c; BHR18; Hol+18; Hol+17; HRT15; HRT18] or journals [HR17], and 2
submitted manuscripts [Abr+17b; HR18]. Of these, 2 of the published conference
papers [BHR18; Hol+18] have won “Best Paper” awards.

For brevity, this thesis will discuss only 4 of these results [Aam+18; BHR18;
HRT15; HRT18]. For completeness, I include the full list here.

[Aam+18] Anders Aamand, Niklas Hjuler, Jacob Holm, and Eva Rotenberg.
“One-Way Trail Orientations”. In: 45th International Colloquium on
Automata, Languages, and Programming, ICALP 2018, July 9-13,
2018, Prague, Czech Republic. July 2018, 6:1–6:13. DOI: 10.4230/
LIPIcs.ICALP.2018.6.

[Abr+17a] Mikkel Abrahamsen, Stephen Alstrup, Jacob Holm, Mathias Bæk
Tejs Knudsen, and Morten Stöckel. “Near-Optimal Induced Universal
Graphs for Bounded Degree Graphs”. In: 44th International Collo-
quium on Automata, Languages, and Programming (ICALP 2017).
Note that my name is incorrectly listed as “Stephen Holm” in
the proceedings. 2017. ISBN: 978-3-95977-041-5. DOI: 10.4230/
LIPIcs.ICALP.2017.128.

[Abr+17b] Mikkel Abrahamsen, Stephen Alstrup, Jacob Holm, Mathias Bæk
Tejs Knudsen, and Morten Stöckel. “Near-Optimal Induced Univer-
sal Graphs for Bounded Degree Graphs”. In: CoRR abs/1607.04911
(2017). Split in two for publication. One part published as [Abr+17a],
other part submitted to Discrete Applied Mathematics. arXiv: 1607.
04911.

[Abr+17c] Mikkel Abrahamsen, Jacob Holm, Eva Rotenberg, and Christian Wulff-
Nilsen. “Best Laid Plans of Lions and Men”. In: 33rd International
Symposium on Computational Geometry, SoCG 2017, July 4-7, 2017,
Brisbane, Australia. Ed. by Boris Aronov and Matthew J. Katz. Vol. 77.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017,
6:1–6:16. DOI: 10.4230/LIPIcs.SoCG.2017.6.

1See https://www.science.ku.dk/english/research/phd/student/filer/
regelsaet/SCIENCE_regels_t_2015_FINAL.pdf.

http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.6
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.6
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.128
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.128
http://arxiv.org/abs/1607.04911
http://arxiv.org/abs/1607.04911
http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.6
https://www.science.ku.dk/english/research/phd/student/filer/regelsaet/SCIENCE_regels_t_2015_FINAL.pdf
https://www.science.ku.dk/english/research/phd/student/filer/regelsaet/SCIENCE_regels_t_2015_FINAL.pdf

xii Preface

[BHR18] Aaron Bernstein, Jacob Holm, and Eva Rotenberg. “Online Bipartite
Matching with Amortized O(log2 n) Replacements”. In: Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018.
Ed. by Artur Czumaj. SODA 2018 best paper. SIAM, 2018, pp. 947–
959. DOI: 10.1137/1.9781611975031.61.

[Hol+18] Jacob Holm, Giuseppe F. Italiano, Adam Karczmarz, Jakub Łącki,
and Eva Rotenberg. “Decremental SPQR-trees for Planar Graphs”.
In: 26th Annual European Symposium on Algorithms (ESA 2018).
Ed. by Yossi Azar, Hannah Bast, and Grzegorz Herman. Vol. 112.
Leibniz International Proceedings in Informatics (LIPIcs). ESA 2018
best paper. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2018, 46:1–46:16. ISBN: 978-3-95977-081-1. DOI:
10.4230/LIPIcs.ESA.2018.46.

[Hol+17] Jacob Holm, Giuseppe F. Italiano, Adam Karczmarz, Jakub Łącki,
Eva Rotenberg, and Piotr Sankowski. “Contracting a Planar Graph
Efficiently”. In: 25th Annual European Symposium on Algorithms, ESA
2017, September 4-6, 2017, Vienna, Austria. Ed. by Kirk Pruhs and
Christian Sohler. Vol. 87. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2017, 50:1–50:15. DOI: 10.4230/LIPIcs.ESA.
2017.50.

[HR17] Jacob Holm and Eva Rotenberg. “Dynamic Planar Embeddings of
Dynamic Graphs”. In: Theory Comput. Syst. 61.4 (2017). Announced
at STACS’15, pp. 1054–1083. DOI: 10.1007/s00224- 017-
9768-7.

[HR18] Jacob Holm and Eva Rotenberg. “Good r-divisions Imply Optimal
Amortised Decremental Biconnectivity”. In: CoRR abs/1808.02568
(Aug. 2018). Submitted to SODA 2019. arXiv: 1808.02568.

[HRT15] Jacob Holm, Eva Rotenberg, and Mikkel Thorup. “Planar Reachability
in Linear Space and Constant Time”. In: IEEE 56th Annual Symposium
on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,
17-20 October, 2015. Ed. by Venkatesan Guruswami. IEEE Computer
Society, 2015, pp. 370–389. DOI: 10.1109/FOCS.2015.30.

[HRT18] Jacob Holm, Eva Rotenberg, and Mikkel Thorup. “Dynamic Bridge-
Finding in Õ(log2 n) Amortized Time”. In: Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2018, New Orleans, LA, USA, January 7-10, 2018. Ed. by Artur Czu-
maj. SIAM, Jan. 2018, pp. 35–52. DOI: 10.1137/1.9781611975031.
3.

The papers I have not included in this thesis fall roughly into 4 categories. I will
discuss them briefly here.

http://dx.doi.org/10.1137/1.9781611975031.61
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.46
http://dx.doi.org/10.4230/LIPIcs.ESA.2017.50
http://dx.doi.org/10.4230/LIPIcs.ESA.2017.50
http://dx.doi.org/10.1007/s00224-017-9768-7
http://dx.doi.org/10.1007/s00224-017-9768-7
http://arxiv.org/abs/1808.02568
http://dx.doi.org/10.1109/FOCS.2015.30
http://dx.doi.org/10.1137/1.9781611975031.3
http://dx.doi.org/10.1137/1.9781611975031.3

Preface xiii

Induced universal graphs and adjacency labelling schemes [Abr+17a; Abr+17b]
These two papers are really part of the same project, which aims to find the smallest
induced universal graph for the family of graphs with n vertices and degree at
most D. The first paper shows new bounds for a wide range of values of D. The
second specifically treats the case D = 2.

Pursuit and evasion games in the plane [Abr+17c] This paper contains two
main results about the classical “man and lion” game. The first answers a question
dating back to J.E. Littlewood (1885–1977) by showing that two lions are not always
enough to catch a man in a bounded region with obstacles. The second result is that
a fast man can escape arbitrarily many slightly slower lions in an unbounded region
without obstacles. In the arXiv version [Abr+17d] we even extend this to show that
the man can survive against any countably infinite set of lions.

Unfortunately, after publication it has come to our attention that the first of these
results had essentially already been shown by Bhadauria et al. [Bha+12]

Decremental algorithms for planar/separable graphs [Hol+18; Hol+17; HR18]
In [Hol+17] we show how to maintain a planar graph under edge contractions in
linear total time, while supporting adjacency queries in worst case constant time,
as well as providing explicit neighbor lists. We then apply this data structure to
get optimal decremental algorithms for bridge-finding, 2-edge connectivity, and
maximal 3-edge connected components on planar graphs, as well as an optimal
algorithm for determining if a planar graph has a unique perfect matching. We also
improve the best decremental algorithms for 2-vertex- and 3-edge connectivity.

In [Hol+18] we continue this work by showing a decremental O(log2 n) algo-
rithm for maintaining the SPQR-tree and the 3-vertex connected components of a
planar graph.

In [HR18] we show that sometimes we can use a pair of suitable r-divisions to
turn a fully-dynamic algorithm with polylogarithmic update time into a decremental
algorithm with constant update time. In this particular case, we show how to do this
for connectivity and 2-vertex connectivity. Thus giving optimal algorithms for these
problems on e.g. minor-free graphs.

Planarity testing [HR17] This paper shows how to maintain a fully-dynamic
plane graph under certain changes to the embedding in O(log2 n) worst case time
per operation. The structure can not only tell whether a given edge insertion is valid
in the current embedding. If a single change to the embedding is sufficient to allow
the insertion of an edge, then the structure can also find this change. This result may
not seem that impressive by itself, but it is an essential part of my “master plan” to
one day do fully dynamic planarity testing in polylogarithmic time.

xiv Preface

Contents xv

Contents

Abstract . v

Dansk Resumé (Danish Abstract) . vii

Acknowledgements . ix

Preface . xi

Contents . xv

I Synopsis . 1

1 Introduction . 3
1.1 Outline . 3

2 Preliminaries . 4
2.1 Machine models . 4
2.2 Asymptotic notation: O, Ω, Θ, and Õ 5
2.3 Graphs . 6
2.4 Static vs. Dynamic graph problems 10

3 Planar reachability (Synopsis of Appendix A) 12
3.1 Problem . 12
3.2 Known results . 12
3.3 Our result . 12
3.4 Techniques . 13
3.5 Future work . 14

4 Online Bipartite Matching (Synopsis of Appendix B) 15
4.1 Problem . 15
4.2 Known results . 15
4.3 Our Result . 15
4.4 Techniques . 16
4.5 Future Work . 16

5 Dynamic Bridge-Finding (Synopsis of Appendix C) 17
5.1 Problem . 17
5.2 Known results . 17
5.3 Our result . 18
5.4 Techniques . 18
5.5 Future work . 21

6 One-Way Trail Orientations (Synopsis of Appendix D) 22

xvi Contents

6.1 Problem . 22
6.2 Known results . 22
6.3 Our result . 22
6.4 Subsequent improvement, made for this thesis 23
6.5 Techniques . 23
6.6 Future Work . 24

7 Concluding remarks . 25

Bibliography . 26

II Appendix . 33

A Planar Reachability in Linear Space and Constant Time 34

B Online Bipartite Matching with Amortized O(log2 n) Replacements 55

C Dynamic Bridge-Finding in Õ(log2 n) Amortized Time 80

D One-Way Trail Orientations . 111

1

Part I

Synopsis
This part comprises an overview of the results presented in the thesis.

2

Section 1: Introduction 3

1 Introduction

One of the most important abstractions used in computer science is that of a graph.
Intuitively, a graph is simply a collection of “things” (usually called nodes or
vertices), where some pairs of “things” are related (we say there is an edge or an
arc between them) and others are not. Simple examples of graphs include e.g.:

geographical road maps Here vertices are intersections (and other points of inter-
est), and edges are the roads connecting them.

facebook friendships Here vertices are people (facebook accounts), and edges
correspond to facebook “friends”.

chemical molecules Here vertices might represent individual atoms, and edges the
covalent bonds between them.

Because graphs are ubiquitous, many real-world problems involve or can be reduced
to a graph problem. Conversely, solving a single graph problem has the potential to
solve many seemingly different real-world problems.

But what do we mean by solving a graph problem? Since this is a theoretical
work, we will stop short of actually writing a computer program, and call a problem
solved when we have found an algorithm (a recipe that a computer can follow) and
an associated data structure (a representation of the problem in computer memory)
for the problem.

Since the graphs we need to work with are often large (millions or even billions
of vertices), we need our solutions to be efficient in terms of both time and space
used. In particular, we need the time (number of steps used in the algorithm) and
space (amount of memory used by the data structure) to grow “slowly” (if at all)
with the problem size, because otherwise even a moderately large graph will be too
large to handle even for the best computers.

As the title implies, the goal of this thesis is to describe efficient algorithms and
data structures for certain graph problems.

1.1 Outline

In Section 2 we will briefly define the terms and notation used in the rest of this
synopsis. Then in each of Sections 3, 4, 5, and 6 we describe a graph problem and
its solution in one of the papers included in the appendix. Finally, in Section 7 we
add some concluding remarks.

Note that with the exception of a few remarks in Subsection 4.4 and all of
Subsection 6.4, there is nothing in these chapters that is not also in the corresponding
papers in the appendices.

The appendices contain the following papers, each of which is an extended
version of one of my peer-reviewed conference papers:

4 Section 2: Preliminaries

Appendix A Jacob Holm, Eva Rotenberg, and Mikkel Thorup. “Planar Reacha-
bility in Linear Space and Constant Time”. In: ArXiv e-prints (Nov. 2014).
Extended version of [HRT15]. arXiv: 1411.5867 [cs.DS]

Appendix B Aaron Bernstein, Jacob Holm, and Eva Rotenberg. “Online Bipartite
Matching with Amortized O(log2 n) Replacements”. In: ArXiv e-prints
(July 2017). Extended version of [BHR18], submitted to JACM. arXiv:
1707.06063 [cs.DS]

Appendix C Jacob Holm, Eva Rotenberg, and Mikkel Thorup. “Dynamic Bridge-
Finding in Õ(log2 n) Amortized Time”. In: ArXiv e-prints (July 2017).
Extended version of [HRT18]. arXiv: 1707.06311 [cs.DS]

Appendix D Anders Aamand, Niklas Hjuler, Jacob Holm, and Eva Rotenberg.
“One-Way Trail Orientations”. In: ArXiv e-prints (Aug. 2017). Extended
version of [Aam+18]. arXiv: 1708.07389 [cs.DS]

The papers are included exactly as they appear on the arXiv preprint server at the
time of writing, except: 1) They have been scaled to fit the pages of this thesis,
and 2) Each page has an added header with (among other things) the running page
number in this thesis.

In particular, no attempt has been made to unify the notation and terminology
for inclusion in this thesis. Thus, some minor inconsistencies are to be expected.

2 Preliminaries

2.1 Machine models

Before we can even start to talk about being efficient in time and space, we need
to pin down exactly what we mean by those words. Since we are doing theory, we
can’t just implement it on a computer, ask it to run a few examples, and measure the
time/memory used. Not because the algorithms can’t be implemented (they can).
Not even because such measurements wouldn’t be useful for evaluating practical
uses (they would). The simple reason is that we want to know how our algorithms
perform asymptotically, so we can predict how they scale with the problem size.

Instead, we will be using an abstract model of a computer. For all algorithms
and data structures mentioned in this thesis, unless otherwise noted, we will be
using the model known as “Word RAM with word size w ∈ Θ(log n) and standard
AC0 operations”. Here is what that means:

Word RAM means that our memory is partitioned into cells called words, and that
we can access (read or write) any word in memory in constant time given its
address.

word size w ∈ Θ(log n) means that the words of our machine each hold enough
bits that the size of our problem, denoted n, can be stored in at most some

http://arxiv.org/abs/1411.5867
http://arxiv.org/abs/1707.06063
http://arxiv.org/abs/1707.06311
http://arxiv.org/abs/1708.07389

2.2 Asymptotic notation: O, Ω, Θ, and Õ 5

constant number of them, but not enough bits to do “unreasonable” things,
like representing the whole problem in a single word. (We’ll get back to that
Θ notation later).

standard AC0 operations Standard operations means that what our machine sup-
ports are the operations we are used to from a programming language such as
C, e.g. addition, subtraction, bitwise and/or/xor, bit shifts, etc.

AC0 means that we only allow operations that can be computed by a circuit of
constant “depth”, unlimited fan-in, and size polynomial in w. Essentially that
is the same as saying that the hardware needed to implement the operation
can be made to run in constant time independent of the word size, and that
it does not take up “too much” space on the chip. In particular, this means
we don’t allow multiplication or division of arbitrary numbers as elementary
operations.

In this model, whenever we talk about the space used by a data structure, we mean
the number of w-bit words of memory used. And the time is really the number of
elementary operations used.

In contrast, for most lower bounds mentioned, we will be assuming the “cell-
probe” model. This is similar to the “Word RAM with word size Θ(log n)” model,
except we allow any computation whatsoever for free, and redefine time as the
number of memory cells accessed.

2.2 Asymptotic notation: O, Ω, Θ, and Õ
Now that we have a definition of time and space, we are almost ready to start
a discussion of what it means to be efficient. However, we want to make sure
that our discussion happens at the right level of abstraction, and counting the
exact number of instructions executed by an algorithm is both cumbersome, and
not really transferable between similar machine models (which may e.g. have
different but equally good instruction sets). So rather than counting the exact
number of instructions f(n) executed for some problem of size n and finding that e.g.
f(n) ≤ 4n3 + 6n2 log n+ 42 log n, we will use asymptotic notation2 and just write
that f(n) ∈ O(n3) (or informally that f(n) is O(n3), or even that f(n) = O(n3)).
Similarly, instead of writing e.g. that f(n) ≥ 5n2/ log n + n log n, we will say
that f(n) ∈ Ω(n2/ log n). Finally, if both f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n))
for some function g, then we write f(n) ∈ Θ(g(n)). In each of these cases, we
ignore constant factors and keep only the dominating term, meaning the term that
determines the growth rate of the function in question as the parameter(s) grow
large. Sometimes, we even go a little bit further and drop not just constant factors,
but also logarithmic factors. We use the notation f(n) ∈ Õ(g(n)) to mean that
f(n) is O(g(n)) except for logarithmic factors of g(n). For example, this means
that both log2 n/ log logn ∈ Õ(log2 n) and log2 n · log2 log n ∈ Õ(log2 n).

2Sometimes called Landau notation.

6 Section 2: Preliminaries

f(n) ∈ O(g(n)) ⇐⇒ ∃k > 0 ∃N ∀n ≥ N : |f(n)| ≤ k · g(n)

f(n) ∈ Ω(g(n)) ⇐⇒ ∃k > 0 ∃N ∀n ≥ N : |f(n)| ≥ k · g(n)

f(n) ∈ Θ(g(n)) ⇐⇒ f(n) ∈ O(g(n)) ∧ f(n) ∈ Ω(g(n))

f(n) ∈ o(g(n)) ⇐⇒ ∀k > 0 ∃N ∀n ≥ N : |f(n)| < k · g(n)

f(n) ∈ ω(g(n)) ⇐⇒ ∀k > 0 ∃N ∀n ≥ N : |f(n)| > k · g(n)

f(n) ∈ Õ(g(n)) ⇐⇒ ∃k ∈ R : f(n) ∈ O(g(n) logk max{1, g(n)})

Figure 1: For single-variable functions f(n) and g(n) ≥ 0, here is a formal
definition of the asymptotic notation used in this paper. The correct definition
for functions of multiple variables is much more subtle (See e.g. [How08]).

The point is that, with the proper definition of the notation (See Figure 1),
we can do calculations without having to care about irrelevant details. E.g. if
f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)) then f1(n) +f2(n) ∈ O(g1(n) + g2(n))
and f1(n) · f2(n) ∈ O(g1(n) · g2(n)), and similar rules apply to Ω, Θ, and Õ.

As the notation implies, O(g(n)) is really a set of functions, and it is useful
to know how these sets for different functions are related. Some representative
examples used in this thesis are shown in Figure 2.

To summarize, when we describe how efficient our algorithms are, we usually
find “nice” functions t(n) and s(n) such that the total number of w-bit words of
memory space used for the data structure is O(s(n)), and the number of standard
AC0 instructions used is O(t(n)).

Similarly, for lower bounds we typically describe functions such that the number
of words used is Ω(s(n)) and the number of memory accesses is Ω(t(n)).

2.3 Graphs

With the technicalities of the abstract machine model and how to measure time and
space out of the way, we are finally ready to start discussing the main subject of this
thesis, namely graphs.

Formally, a graph is a pair (V,E), consisting of two sets:

V is the called the set of vertices, and we usually let n = |V |.

E is is called the set of edges, and we usually let m = |E|.

Each edge has an associated ordered or unordered pair of (not necessarily distinct)
vertices, called its end vertices. An edge is a self-loop if its end vertices are the same.
It is directed if its associated pair of end vertices is ordered, and it is undirected
otherwise. For a directed edge e ∈ E with end vertices (u, v), we call u the tail,

2.3 Graphs 7

O(log n/ log log n) ⊂ O(log n)

⊂ O(log n · log2 log n)

⊂ O(log n · log3 log n) ⊂ Õ(log n)

⊂ O(log2 n/ log log n)

⊂ O(log2 n)

⊂ O(log2 n · log2 log n) ⊂ Õ(log2 n)

⊂ O(log3 n · log log n) ⊂ Õ(log3 n)

⊂ O(log4 n) ⊂ Õ(log4 n)

⊂ O(no(1)) ⊂ Õ(nε) ⊂ Õ(n
1
2
−ε)

⊂ O
(√

n

log n
log logn

)

⊂ O(
√
n) ⊂ Õ(

√
n)

⊂ O(n2/3) ⊂ Õ(n2/3)

⊂ O(n)

⊂ O(nα(n))

⊂ O(n log n)

⊂ O(n log2 n) ⊂ Õ(n)

⊂ O(n1+Ω(1))

Figure 2: The complexity classes used in this paper, in order from most to least
efficient. Note that we use ⊂ and ⊆ analogously to < and ≤, so in particular
A ⊂ B means A ⊆ B and A 6= B. Some authors, especially in the mathematical
community, prefer to use (and ⊂ instead. ε here is any constant 0 < ε < 1

4 . α(n)
here is the extremely slowly growing inverse of Ackermanns function.

8 Section 2: Preliminaries

and v the head of e. When drawing a directed edge, we usually draw it as an arrow,
pointing from the tail to the head. A directed edge is sometimes called an arc.

Similarly, each vertex v has a set of incident edges, which is the set of edges
that have v as one of its associated end vertices. The degree of v, denoted d(v),
is the number of times v occurs as an end vertex (counting self-loops twice). The
in-degree of a vertex v, denoted dIN(v), is the number of directed edges whose head
is v. Similarly, the out-degree, denoted dOUT(v), is the number of directed edges
whose tail is v.

A graph is said to be a subgraph of another graph, if the first graph consists of a
subset of the vertices and a subset of the edges of the second. An induced subgraph
is a graph defined by a subset of vertices and all edges with both end vertices in that
subset.

A graph is called loopless if none of its edges are self-loops. For the rest of this
thesis, we will assume that all graphs are loopless. A graph is called simple if no
two edges are associated with the same (ordered or unordered) pair of end vertices,
and otherwise it is called a multigraph. A graph is undirected (resp) directed if all
its edges are. A directed graph is also called a digraph. A graph with both directed
and undirected edges is called mixed.

A graph is planar, if it can be drawn in the plane such that each vertex is a
distinct point, each edge is a simple curve connecting the points corresponding
to its end vertices, and no two of these edge curves intersect except at their end
points. Such a drawing is called an embedding of the graph (in the plane). Any such
embedding defines a clockwise cyclic order of the edges incident to each vertex. An
assignment of such a clockwise cyclic order for each vertex is called a topological
embedding. A planar graph, together with a topological embedding that corresponds
to some embedding of the graph in the plane is called a plane graph. A useful fact
about planar graphs is that a simple, undirected planar graph with n ≥ 3 vertices
has at most m ≤ 3n − 6 edges, and a simple directed planar graph with at least
n ≥ 3 vertices has at most m ≤ 6n− 12 edges. Thus a simple planar graph has at
most O(n) edges. This is in contrast with the general case for simple graphs, which
may have as many as m =

(
n
2

)
= n(n−1)

2 = Ω(n2) edges, or for multigraphs where
there is no upper bound.

A graph is bipartite if we can partition its vertices into two sets V = C ∪ S,
C ∩ S = ∅, such that every edge has one end vertex in each set.

A matching in a graph is a subset of the edges, such that no two edges in the
matching have an end vertex in common. A matching is maximal if every edge not
in the matching shares an end vertex with some edge in the matching. A matching
is maximum if it has the maximum size over all possible matchings.

Undirected graphs

A walk (of length k) in an undirected graph is pair consisting of a sequence of
vertices v0, . . . , vk ∈ V , and a sequence of edges e1, . . . , ek ∈ E, such that for
each i = 1, . . . , k the end vertices of ei are {vi−1, vi}. A walk is called a trail if all

2.3 Graphs 9

its edges are distinct, and a (simple) path if all its vertices are distinct. Note that
the edges of a walk uniquely determine the vertices, so we will sometimes think
of a walk/trail/path as just a sequence of edges. Similarly, in a simple graph, the
sequence of vertices on a walk uniquely determine the edges, so for simple graphs
we sometimes think of a walk/trail/path as just a sequence of vertices.

A walk or trail is closed if its first and last vertex are the same. A (simple) cycle
is a closed trail with as many distinct vertices as edges.

A pair of vertices u, v are connected if there exists a path with u and v as first
and last vertices respectively. A graph is connected if every pair of vertices u, v
in it are connected. A connected component in a graph is a maximal connected
subgraph.

An edge is a bridge (also known as a 1-cut) if deleting it from the graph increases
the number of connected components. Similarly, for k ≥ 1, a set of k edges is a k-
cut if deleting all edges in the set increases the number of connected components. A
pair of vertices u, v are k-edge connected if they are connected in the graph obtained
by removing any k − 1 edges. By Menger’s Theorem [Men27] this is equivalent to
saying that there are k edge-disjoint paths connecting them. In particular, if u and v
are connected but not 2-edge connected, any path between u and v contains a bridge.
In fact, every path from u to v contains exactly the same bridges, in the same order.
A graph is k-edge connected if every pair of vertices in it are k-edge connected. A
k-edge connected component is a maximal subset of the vertices that are pairwise
k-edge connected. Every vertex is in exactly one k-edge connected component. For
k ≤ 2 each k-edge connected component induces a connected subgraph. For k > 2
this is not the case in general.

k-edge connectivity is a natural generalization of connectivity. In particular, 1-
edge connectivity is exactly the same as connectivity. Another natural generalization
is called k-vertex connectivity, or just k-connectivity, but that is beyond the scope
of this thesis.

Directed and mixed graphs

A directed walk in a directed or mixed graph is defined similarly as a walk in an
undirected graph, but with the additional requirement that for i ∈ 1, . . . , k if ei is
directed then vi−1 must be the tail and vi be the head of ei. Essentially, we are
not allowed to follow an edge in the wrong direction. A directed walk is called a
directed trail if all its edges are distinct, and a (simple) directed path or a (simple)
dipath if all its vertices are distinct.

A directed walk or trail is closed if its first and last vertex are the same. A
(simple) directed cycle is a closed directed trail with as many distinct vertices as
edges.

A vertex v is reachable from a vertex u if there exists a dipath with u as first
and v as last vertex. Two vertices are strongly connected if each is reachable from
the other. A graph is strongly connected if every pair of vertices in it are strongly
connected. The strongly connected components of a graph are the maximal strongly

10 Section 2: Preliminaries

connected subgraphs. Note that every vertex is in exactly one strongly connected
component.

A strong bridge in a directed or mixed graph is an edge whose removal increases
the number of strongly connected components.

A strong orientation of an undirected or mixed graph is a digraph with the same
vertices and edges, but where an order has been imposed on the end vertices of each
edge to make it directed, in such a way that the whole graph is strongly connected.

A digraph is acyclic if every strongly connected component consists of a single
vertex. A vertex is called a source if it has in-degree 0, and a sink or a target if it
has out-degree 0. Any acyclic digraph has at least one source and at least one sink.
An acyclic digraph with exactly one source and one sink is sometimes called an
st-graph.

2.4 Static vs. Dynamic graph problems

Now that we know how to talk about graphs, we need just a bit more terminology
regarding the different types of problems we tend to work on.

Static

We call a graph problem static if we are given the whole graph at once, and then
work on that graph until we have solved the problem or it is no longer interesting.
This is the case for the problem we consider in two of the included papers (See
Sections 3 and 6).

The alternative to a static problem is a dynamic problem, where part of the
problem is handling the fact that the graph changes over time. We further subdivide
the dynamic problems into 3 distinct categories.

Decremental

If we are given a (possibly very complicated) initial graph, and every update opera-
tion decreases (some measure of) the complexity, then we say we have a decremental
problem. An example could be a data structure where the updates consist of delet-
ing or contracting edges (See e.g. [Hol+18; Hol+17; HR18]). Here every update
decreases the total number of edges, so after at most m updates, no more updates
are possible. None of the included papers directly address this type of problem.

Incremental

If instead (some measure of) the complexity of the graph increases with each update,
then we say we have an incremental problem. An obvious example is when the
update consists of adding edges and/or vertices. For this kind of problem we can
typically assume we start with an empty edge set, and sometimes even an empty
vertex set (although the graph (∅, ∅) is not a well-defined concept). The problem we
consider in Section 4 is of this type.

2.4 Static vs. Dynamic graph problems 11

Fully dynamic

Finally, if the update operations on the graph can both decrease and increase the
complexity of the graph arbitrarily, we say we have a fully dynamic problem. A
common example is that our graph has a fixed set of vertices, and starts with an
empty set of edges, but updates may insert or delete edges. The problem we consider
in Section 5 is of this type.

Note that the assumption about a fixed set of vertices is not really necessary.
There is a more-or-less standard doubling technique that can be used to remove
the restriction in most cases. It works by maintaining 3 copies of the structure in
parallel, each supporting a different number of vertices. The middle one of these
structures is the active one, that we use to answer queries. Each update to the graph
causes a constant number of updates in the small and large structures, and these are
chosen in such a way that by the time the current graph has too few or too many
vertices, one of the other structures is just right and ready to be activated.

12 Section 3: Planar reachability (Synopsis of Appendix A)

3 Planar reachability (Synopsis of Appendix A)

Appendix A Jacob Holm, Eva Rotenberg, and Mikkel Thorup. “Planar Reacha-
bility in Linear Space and Constant Time”. In: ArXiv e-prints (Nov. 2014).
Extended version of [HRT15]. arXiv: 1411.5867 [cs.DS]

3.1 Problem

Given a directed graph G = (V,E) with n = |V | vertices and m = |E| edges, the
reachability problem is to build a data structure that can answer queries of the form:

REACHABLE(u, v): given u, v ∈ V , is there a directed path from u to v?

This paper considers the restriction of this problem to (simple) planar digraphs.
Note that we can trivially convert any (not necessarily simple) planar digraph into
a simple planar digraph (with O(n) edges) in O(m + n) time and space without
affecting reachability, by doing a radix sort (with radix n) of the edges in O(m+ n)
time, and removing duplicate edges.

3.2 Known results

Thorup and Zwick proved in [TZ05] that there are graph classes where any rep-
resentation of reachability needs Ω(m) bits, and Pǎtraşcu proved in [P a11] that
there are sparse directed graphs with O(n) edges such that any representation that
can answer reachability correctly in constant time requires n1+Ω(1) bits. Thus, for
general graphs, constant query time requires at least Ω(m+ n1+Ω(1)) bits.

For planar digraphs, this bound does not hold. Thorup showed in [Tho04] that
for planar graphs it was possible to get constant query time using O(n log n) words
of size w = Ω(log n) (so O(n log2 n) bits).

Tamassia and Tollis [TT93] showed that for a very special kind of planar digraph,
here called a planar st-graph3, we can get constant query time using only O(n)
w-bit words. A planar st-graph is an acyclic planar graph with two distinguished
vertices, called the source s and sink t, such that every vertex is reachable from the
source and every vertex can reach the sink.

3.3 Our result

We show that if G is simple and planar, we can build a data structure in O(n)
time and space, such that each reachability query can be answered in worst case
constant time. This is optimal (up to constant factors), because even if the graph is
just a single directed path, every possible order of the vertices must use a distinct
representation. Since there are n! possible orders, this requires the representation of
some graph to use at least log2(n!) = Ω(n log n) bits, which is Ω(n) space in total.

3In their paper, planar st-graph means something different. What we call a planar st-graph, they
call a spherical st-graph.

http://arxiv.org/abs/1411.5867

3.4 Techniques 13

3.4 Techniques

We define a new type of graph decomposition, called a good st-decomposition,
that exists for acyclic plane digraphs with a single source (see Appendix A, Def-
inition 3.3). Essentially, an st-decomposition is a rooted tree where each node
corresponds to a subgraph of G that is a so-called truncated st-graph, and these
subgraphs partition the vertices in such a way that all dipaths go “down” in the
tree and never “across” or “up”. We then show that we can always, in linear time,
find a good such partition, meaning that the tree has height O(log n), and that for
any subtree rooted at some node x in the decomposition, the set of edges Ex that
enter that subtree from above all have their “tails” on some set of at most 4 dipaths,
together called the frame Fx.

These features of the st-decomposition combined lets us reduce the problem of
answering REACHABLE(u, v) on single-source acyclic plane digraphs to a question
of finding, in the subgraph Cx containing u, the at most 4 “last” vertices v1, . . . , v4

that are on some frame that can reach v, and then asking if u can reach either of
them.

We then prove some deep properties of good st-decompositions (the “Crossing
Lemmas” 3.28 and 3.46) that essentially allow us to represent the reachability
relationships between each frame vertex and each vertex that needs to be able to
find it using 9 different overlapping forests whose nodes are vertices in V , and to
find each of v1, . . . , v4 using at most a constant number of level ancestor queries in
these forests. Using well-known data structures for level-ancestor (e.g. [AH00]),
we can therefore find v1, . . . , v4 in worst case constant time, and using the result by
Tamassia and Tollis [TT93] we can answer each REACHABLE(u, vi) in worst case
constant time. Thus, for acyclic plane digraphs with a single source this gives us the
required solution.

We then extend this data structure to handle a slightly larger class of graphs,
which we call acyclic planar In-Out graphs. These are graphs which may have
multiple sources, but where there is still one special source s that can reach all sinks.
The main idea here is to color the vertices into red and green, such that the green
vertices are exactly those that are reachable from s, and then flipping the direction
of every edge with a red end vertex. This makes the graph single-source, and for
every u, v where u is green and/or v is red, we can use this structure to answer
REACHABLE(u, v) in worst case constant time. We then show that we can augment
this structure to handle the final case, where u is red and v is green, still in worst
case constant time per query.

Finally, we use the known reduction from [Tho04] to handle general acyclic pla-
nar digraphs, and then contracting each strongly connected component using [Tar72]
lets us handle general planar digraphs.

14 Section 3: Planar reachability (Synopsis of Appendix A)

3.5 Future work

While there are lower bounds proving that these bounds are unobtainable for general
graphs, it seems likely that similar results can be achieved for e.g. graphs of bounded
genus or more generally for any class of graphs defined by a set of excluded minors.

Some of the previous results (e.g. [Tho04]) had the form of labelling schemes,
where each vertex u is assigned a (unique) b-bit label `(u), and the answer must
be computed only from `(u) and `(v). Labelling schemes are in some sense
the ultimate distributed data structures, so finding such a labelling scheme with
b = O(log n) that could still answer queries in worst case constant time would
be extremely interesting. Alternatively, proving that such a labelling scheme does
not exist would give a nontrivial separation between the capabilities of labelling
schemes and more general data structures.

Section 4: Online Bipartite Matching (Synopsis of Appendix B) 15

4 Online Bipartite Matching (Synopsis of Appendix B)

Appendix B Aaron Bernstein, Jacob Holm, and Eva Rotenberg. “Online Bipartite
Matching with Amortized O(log2 n) Replacements”. In: ArXiv e-prints
(July 2017). Extended version of [BHR18], submitted to JACM. arXiv:
1707.06063 [cs.DS]

4.1 Problem

Given a bipartite graph G = (S ∪ C,E) where S is a fixed set of servers, and C
is an (initially empty) set of clients, maintain a maximum cardinality matching M
under the following operation:

ADDCLIENT(c, Sc): given a new client c and a subset Sc ⊆ S of servers, add c to
C and {(c, s) | s ∈ Sc} to E and update the matching.

For this particular problem, we are less interested in time or space usage, and
more interested in analyzing the number of replacements during a sequence of n
ADDCLIENT operations, where each replacement is defined as some client getting
matched to a different server.

4.2 Known results

There is a very natural greedy algorithm for the problem, which for each ADDCLIENT
just updates all clients along a so-called shortest augmenting path. We call any such
algorithm a SAP-algorithm, or just SAP.

The problem was introduced by Grove et al. [Gro+95], who showed that
Ω(n log n) replacements may be needed, even if each client has at most 2 neighbors,
and that SAP is optimal in this special case. Chaudhuri et al. [Cha+09] showed that
as long as the clients are added in random order, the expected number of replace-
ments when using SAP is O(n log n), and that for this random-arrival version of
the problem this is optimal. They posed as an open question whether SAP is optimal
for the original adversarial-arrival version of the problem.

The problem has been investigated for a number of special classes for graphs,
e.g. graphs of client-degree 2 [Gro+95], and forests [Bos+18; Bos+17; Cha+09], in
each case showing matching upper and lower bounds of Θ(n log n).

However, for general bipartite graphs, no analysis of SAP showing better than
O(n2) replacements was known, and the best non-SAP algorithm (from [Bos+14])
still used O(n

√
n) replacements.

4.3 Our Result

We show that any SAP-algorithm uses at most O(n log2 n) replacements. Fur-
thermore, this result still holds if we allow an adversary to arbitrarily change the
matching between ADDCLIENT operations, as long as we only count the replace-
ments made by the SAP-algorithm.

http://arxiv.org/abs/1707.06063

16 Section 4: Online Bipartite Matching (Synopsis of Appendix B)

In addition, we show that a SAP-algorithm can actually be implemented in
linear space and O(m

√
n
√

log n) total time, where m = |E| and n = |C| in the
final graph. This is only a factor ofO(

√
log n) worse than the best offline algorithm

by Hopcroft and Karp [HK73].
Our analysis extends to give improved bounds for a number of other, related,

problems.

4.4 Techniques

The key idea in our new analysis is to assign each server s a server necessity, which
is a number between 0 and 1, denoted4 α(s), that is independent of the current
matching (See Definition 11 and 13).

While this is not obvious from the definition, we show that the server neces-
sities are unique (Lemma 14), that they only increase (Lemma 21), and that each
ADDCLIENT(c, Sc) only increases necessities that are already at least as large as
mins∈Sc α(s) (Lemma 22).

We then use the server necessities to show a crucial “Expansion Lemma”
(Lemma 29), which can be rephrased as: Using SAP, each ADDCLIENT(c, Sc)
does at most 1

ε lnn replacements, where ε = 1−mins∈Sc α(s).
By combining these results, we show that for any h > 0, any SAP-algorithm

processes at most 4n ln(n)/h paths of length > h, and the result immediately
follows5 because in the sum

n−1∑

i=0

{
n if i = 0

4n ln(n)/i otherwise
= O(n log2 n)

each path of length h is counted by exactly h terms of the sum.
For the implementation, we show that the problem of maintaining the necessary

shortest augmenting paths can be transformed into a problem of maintaining shortest
dipaths up to length h =

√
n
√

log n in a certain orientation of the graph (and brute
forcing the at most 4 ln(n)/h searches for longer paths needed in O(mn log(n)/h)
total time). Using known techniques (See Lemma 32) we can maintain this graph
in O(mh + n log2 n) total time. Thus, the total time for the algorithm becomes
O(mn log(n)/h+mh+ n log2 n) which for our choice of h is O(m

√
n
√

log n).

4.5 Future Work

We do not know how tight the 4n ln(n)/h bound is. If it could be improved to
O(n/h) that would immediately prove the optimality of SAP, and improve the total
running time of our online matching algorithm to match the O(m

√
n) time of the

best offline algorithm.

4Not to be confused with the inverse of Ackermanns function, also commonly written as α(n).
5The paper uses a slightly more involved argument for the last step. Thanks to Bartlomiej Bosek

and Anna Zych for pointing out this simpler version.

Section 5: Dynamic Bridge-Finding (Synopsis of Appendix C) 17

5 Dynamic Bridge-Finding (Synopsis of Appendix C)

Appendix C Jacob Holm, Eva Rotenberg, and Mikkel Thorup. “Dynamic Bridge-
Finding in Õ(log2 n) Amortized Time”. In: ArXiv e-prints (July 2017).
Extended version of [HRT18]. arXiv: 1707.06311 [cs.DS]

5.1 Problem

Given an undirected multigraph G = (V,E) where V is fixed and E is initially
empty, maintain a data structure for G supporting the following operations.

INSERT-EDGE(u, v): Insert a new edge e between vertices u and v, and return e.

DELETE-EDGE(e): Delete the edge e.

CONNECTED(u, v): Are vertices u and v connected?

2-EDGE-CONNECTED(u, v): Are vertices u and v 2-edge-connected?

FIND-BRIDGE(u): Find and return a bridge in the connected component of vertex
u, or nil if this component is 2-edge-connected.

FIND-BRIDGE(u, v): Among the bridges separating vertices u and v, return the
one closest to u, or nil if u and v are 2-edge-connected or not connected.

FIND-SIZE(u): Return the number of vertices in the connected component contain-
ing vertex u.

FIND-2-SIZE(u): Return the number of vertices in the 2-edge-connected compo-
nent containing vertex u.

5.2 Known results

In a static graph, there are simple linear-time algorithms for finding all bridges
(See e.g. [Tar74]). Such an algorithm can be used to build a data structure that can
answer all the queries in worst case constant time. This can be used to construct
a trivial solution to the dynamic problem, by simply recomputing everything as
needed, either immediately after each update, or before each query that is preceded
by an update. This trivial solution runs in worst case O(m+ n) time per operation.

The first non-trivial data structure for fully dynamic 2-edge-connectivity was
given by Galil et al. [GI92], and had worst case O(m2/3) time per operation. This
was improved by Frederickson [Fre97], to worst case O(

√
m) update time and

worst case O(log n) query time. Eppstein et al. [Epp+97] then improved the worst
case update time to O(

√
n) using their sparsification technique.

The first 2-edge connectivity structure with polylogarithmic update time was
given by Henzinger et al. [HK95]. It was a Las Vegas style randomized al-
gorithm using O(log4 n) expected amortized time per update and worst case
O(log n/ log logn) per query.

http://arxiv.org/abs/1707.06311

18 Section 5: Dynamic Bridge-Finding (Synopsis of Appendix C)

The first deterministic data structure with polylogarithmic update time for 2-
edge connectivity was given by Holm et al. [HLT01], and used amortized O(log4 n)
time per update and (with trivial modifications) O(log n) time per query. This was
later improved6, by Thorup [Tho00], who used approximate counting to reduce the
amortized update time to O(log3 n · log logn).

None of the above results directly support the FIND-BRIDGE or FIND-2-SIZE
queries, although some of them (e.g. [HLT01; Tho00]) can be extended to do so.

The best lower bound we have for fully dynamic 2-edge connectivity is based on
the O(log n) lower bound by Pǎtraşcu et al. [PD06] for fully dynamic connectivity
via a simple reduction.

For comparison, the current best update times for connectivity data struc-
tures are: Deterministic O(

√
n

logn log log n) worst case by Kejlberg-Rasmussen

et al. [Kej+16], Las Vegas randomizedO(no(1)) with high probability by Nanongkai
et al. [NSW17], Monte Carlo randomizedO(log4 n) worst case with one-sided error
by Kapron et al. [KKM13] and Gibb et al. [Gib+15], DeterministicO(log2 n/ log logn)
amortized by Wulff-Nilsen [Wul13], and Las Vegas randomizedO(log n·log2 log n)
expected by Huang et al. [Hua+17].

More generally, for k-edge connectivity not much is known beyond the de-
terministic data structures by [Epp+97] which for fixed k = 2, 3, 4 or k > 4
handles updates in worst case O(

√
n), O(n2/3), O(nα(n)), and O(n log n) time

respectively.

5.3 Our result

We present a deterministic data structure using linear space, that supports
INSERT-EDGE and DELETE-EDGE operations in amortized O(log2 n · log2 log n)
time, and CONNECTED, 2-EDGE-CONNECTED, FIND-BRIDGE and FIND-SIZE
in O(log n/ log logn) worst case time, and FIND-2-SIZE in O(log n · log2 log n)
worst case time.

In other words, ignoring factors of O(log log n), bridge-finding is now as fast
as connectivity in the deterministic amortized setting.

5.4 Techniques

We carefully dissect the algorithm from [HLT01], and make it explicit how it reduces
the bridge-finding problem to a certain problem of maintaining the sizes of certain
subtrees of a dynamic tree. The algorithm uses top trees [Als+05] (See Figure 3) to
keep track of these sizes, and for each cluster maintains an O(log n) × O(log n)
matrix of subtree sizes.

The main new idea comes from recognizing that all but a constant number of the
differences between adjacent columns in this matrix are unchanged between a cluster

6This result is relatively unknown. It is mentioned briefly in a paper whose main result is a Las
Vegas style randomized algorithm for connectivity with O(logn · log3 logn) expected amortized
update time.

5.4 Techniques 19

a

b

c

d

e

f

g

h

i

j
A

B

C

D

E

F

G

H

I

Path cluster

Point cluster

{c}

A

{c}

B

{c, d}

C

{d, e}

D

{e}

E

{e, g}

F

{g}

G

{g}

H

{g}

I

{c} {c, e} {e, g} {g}

{e} {g}

{g}

{g}

Figure 3: A top tree and its underlying tree. A cluster is a connected subtree with at
most two boundary vertices. Each node in the top tree corresponds to a cluster with
the listed boundary vertices. Vertex g is chosen as external boundary vertex.

20 Section 5: Dynamic Bridge-Finding (Synopsis of Appendix C)

+ →

+ →

VS.

Figure 4: In each MERGE, the old algorithm had to recompute the whole matrix.
The new one inherits most of the vectors from the previous nodes.

and its parent. Maintaining the column difference vectors in a suitable balanced
tree then lets us compute any entry of the original matrix in O(log log n) time as a
simple prefix sum when needed, and each MERGE requires only O(log log n) new
difference vectors to be computed, essentially as a sum of two existing vectors
(See Figure 4). This is enough to give a factor Θ(log n/ log log n) improvement
in amortized update time over [HLT01], and is of independent interest because it
achieves the same O(log3 n · log log n) update time as [Tho00] without the use of
bit-tricks.

The actual “bit-tricks” used in [Tho00] are based on the fact that we don’t
always7 need the exact subtree sizes, which require O(log n) bits each, but can
make do with an (1 + O(1)

logn)-approximate lower bound, which can be stored as a
O(log log n) bit floating point value per subtree size. That means we can pack
Ω(log n/ log log n) of these approximate subtree sizes in a single word of size
w = Ω(log n) and can e.g. add them in parallel in constant time. This gives
an immediate speedup by a factor of Ω(log n/ log logn) for most operations, but
in one case we need to compute the diagonal of the matrix, which would still
naively take Θ(log n · log logn) time. We fix this by letting the prefix sum tree also
maintain a filtered prefix sum, where all entries on the wrong side of the diagonal are
counted as zero. With this, every MERGE or SPLIT in the top tree takes worst case
O(log2 log n) time, and each INSERT-EDGE or DELETE-EDGE causes amortized
O(log2 n) MERGEs and SPLITs, giving the claimedO(log2 n · log2 log n) amortized
time per update.

7Specifically, we only need the exact sizes to answer FIND-SIZE and FIND-2-SIZE queries, and
for this it is sufficient with exact sizes for cover levels −1 and 0 respectively.

5.5 Future work 21

The natural query time using this structure is O(log n · log2 log n), which is
also the time we end up with for the FIND-2-SIZE query8. The remaining queries
can be sped up by maintaining a separate O(logε n)-nary top tree on the side (for
some small ε > 0). We show for the first time how to maintain such a wide top
tree of height O(log n/(ε log logn)). Using bit-tricks to work on information from
all children in parallel, and avoiding the use of EXPOSE, we can use this to answer
CONNECTED, 2-EDGE-CONNECTED, FIND-BRIDGE, and FIND-SIZE queries in
worst case O(log n/ log log n) time, without affecting the amortized update time.

The structure as described uses O(m+ n log2 log n) space. To reduce this, we
show a somewhat general trick with top trees, consisting of only storing the full data
for clusters that are larger than some value q(n). In our case q(n) = Ω(log2 log n).
There are at most O(n/q(n)) of these clusters, so the total space becomes linear,
and we show that q(n) is small enough that we can compute the information as
needed without increasing the total running time.

5.5 Future work

There are gaps everywhere in our understanding of fully dynamic k-edge-connectivity
for all k. Even for k = 1, the fine-grained complexity of the problem is not well
understood. E.g. is randomization necessary to get O(log2−ε n) amortized update
time for connectivity? Or to get O(no(1)) (expected) worst case time for connectiv-
ity? Is it possible to find an algorithm that (expected) behaves well both worst case
and amortized, e.g. has O(n1−ε) worst case per operation, but still O(poly(logn))
amortized?

For k > 2, no algorithm for k-edge connectivity with polylogarithmic time per
operation is known. Would it be possible to achieve e.g. O(poly(logk n)) for fixed
k?

8It seems likely that this can be improved to O(logn) by implementing FIND-2-SIZE without
using EXPOSE, similarly to what we do for the other queries.

22 Section 6: One-Way Trail Orientations (Synopsis of Appendix D)

6 One-Way Trail Orientations (Synopsis of Appendix D)

Appendix D Anders Aamand, Niklas Hjuler, Jacob Holm, and Eva Rotenberg.
“One-Way Trail Orientations”. In: ArXiv e-prints (Aug. 2017). Extended
version of [Aam+18]. arXiv: 1708.07389 [cs.DS]

6.1 Problem

TRAIL-ORIENTABLE(G,P): Given an undirected or mixed graph G = (V,E),
and a partition P of the undirected edges of E into trails, does there exist
an orientation of the undirected edges of E, such that each trail is oriented
consistently, and the whole graph is strongly connected?

TRAIL-ORIENTATION(G,P): Given an undirected or mixed graph G = (V,E),
and a partition P of the undirected edges of E into trails, either return a
strong orientation of G such that each trail is oriented consistently, or nil if
no such strong orientation exists.

6.2 Known results

When each trail inP consists of a single edge, the problem is well understood. For an
undirected graphG, Robbins Theorem [Rob39] states that TRAIL-ORIENTABLE(G,P)
is true if and only if G is connected and bridgeless. For mixed graphs, the General-
ized Robbins Theorem from [BT80] similarly states that TRAIL-ORIENTABLE(G,P)
is true if and only ifG is strongly connected and the graph obtained by making all the
edges undirected is bridgeless. In either case, simple DFS-based algorithms by Tar-
jan et al. [HT73] and Chung et al. [CGT] can compute TRAIL-ORIENTATION(G,P)
in linear time.

The more general version, where each trail in P may consist of more than one
edge, was posed as an open problem by Tarjan at the Erice summer school on
“Graph Theory, Algorithms and Applications” in May 2017.

6.3 Our result

For undirected G = (V,E) and any partition P of E into trails, we show that
TRAIL-ORIENTABLE(G,P) if and only if G is connected and bridgeless, and we
give a linear-time algorithm for computing TRAIL-ORIENTATION(G,P).

For G = (V,E) strongly connected and mixed we show that

1. if G has an undirected strong bridge e and T ∈ P is the trail contain-
ing e, then TRAIL-ORIENTABLE(G,P) if and only if there is an orien-
tation of T such that the resulting graph G′ is strongly connected, and
TRAIL-ORIENTABLE(G′,P \ {T}).

2. if G has no undirected strong bridges, then for any partition P and any trail
T ∈ P , any orientation of T can be extended to a strong orientation of G.

http://arxiv.org/abs/1708.07389

6.4 Subsequent improvement, made for this thesis 23

An immediate corollary to this is that the obvious naive greedy algorithm (See
Algorithm 1) works. In the paper we just mention that it runs in polynomial time.

6.4 Subsequent improvement, made for this thesis

In fact, we can make Algorithm 1 run in O(pm) time where p = |P| ≤ m is
the number of trails in the partition. For this, we can use e.g. the algorithm by
Italiano et al. [ILS12] to find all strong bridges in line 5, and e.g. Tarjan’s algorithm
from [Tar72] to find the strongly connected components in line 7. This makes each
of the at most p iterations of the algorithm run in O(m) time. We can improve this
to O(min{p, n}m) time by observing that:

1. Each time we reach line 8, the number of connected components is increased
in the graph Gu = (V,Eu) where Eu is the set of undirected edges in G.
Thus, line 6 is reached at most min{p, n− 1} times.

2. If we ever reach line 13, we know that any partition of the undirected edges
into trails admit a strong orientation. In particular, we can merge any pair of
trails that share a common end vertex and still preserve this property. Doing
so until there are no such trail pairs left reduces the total number of remaining
trails to at most min{p, n/2}. It is possible to do all these merges in O(m)
time.

With these modifications, the main loop of Algorithm 1 runs at most O(min{p, n})
iterations, and each iteration takes only O(m) time, thus the total time becomes
O(min{p, n}m) as claimed.

6.5 Techniques

For the undirected version of our new theorem, we consider an edge that is at the
end of its trail. Either this edge can be deleted without creating a bridge, in which
case it follows by induction that the remaining graph has a strong trail-orientation
and that this orientation extends to a trail-orientation of G; or the edge is part of
a 2-edge cut, and we can construct two smaller graphs which, again by induction,
have a trail-orientation that can be extended to a trail-orientation of G.

The linear-time algorithm takes this idea a bit further. We first transform the
graph to have maximum degree 3. Then we show that if we remove a maximal set of
edges that are at the ends of their trails, such that the graph remains connected and
bridgeless, then the resulting graph has a linear number of 2-edge cuts. We can then
construct a new graph for each 3-edge connected component, and show that given a
trail-orientation for each of these new graphs, we can construct a trail-orientation
for G. Since there are a linear number of 2-edge cuts, at most a constant fraction
of the 3-edge connected components have size greater than some small constant.
Thus, as long as we can find the edges to delete, construct the new graphs for the
3-edge connected components, and combine the results, all in linear time, then the

24 Section 6: One-Way Trail Orientations (Synopsis of Appendix D)

total running time is also linear. Finally we show that existing techniques can be
combined to do exactly that.

For the mixed version, we assume G has no undirected strong bridges and con-
sider any trail T ∈ P and some chosen orientation of T . The proof is by induction
on |P|. If the graph G′ resulting from this orientation still has no undirected strong
bridges, then by induction (G′,P \ {T}) has a strong trail orientation, which is
clearly also the required orientation of G. Otherwise G′ has an undirected strong
bridge e, and we show that given (G,P) and e we can construct instances (G1,P1)
and (G2,P2), with |P1|, |P2| < |P|, such thatG1 andG2 have no undirected strong
bridges and each chosen orientation of T enforces at most one orientation in each.
Since these graphs are smaller, it follows by induction that they have the required
strong orientation, and by construction these orientations give the required strong
orientation of (G,P).

6.6 Future Work

The problem seems quite well understood for undirected graphs now, but for mixed
graphs there are still some open questions, both graph theoretically and algorithmi-
cally. On the graph theory side, it would be interesting to find some simpler criteria
for when a mixed graph with undirected strong bridges has a strong orientation.
Algorithmically, it would be interesting to beat the O(min{p, n}m) time algorithm
presented in this thesis.

An obvious idea would be to try to extend the linear-time algorithm for undi-
rected graphs. It turns out there exists a similar transformation to cubic graphs that
works for mixed graphs. The main problem with this idea is to find a large subset S
of directed edges and trail-ends such that G− S is strongly connected and is easily
partitioned into subproblems whose total size is at most a constant fraction of the
original size.

Section 7: Concluding remarks 25

7 Concluding remarks

In this thesis we have presented several results on efficient graph algorithms and
data structures. While these seem important in and of themselves, the “spin-offs”
might be equally interesting. By that I mean things like the st-decomposition from
Appendix A, the server necessities from Appendix B, the wide or fat-bottomed top
trees from Appendix C, or the “delete as much as possible while staying 2-edge
connected, then consider the 3-edge connected components” idea from Appendix D.

All of these seem like interesting tools, and I can’t wait to see what they will be
used for in the future.

26 Bibliography

Bibliography

[Aam+17] Anders Aamand, Niklas Hjuler, Jacob Holm, and Eva Rotenberg. “One-
Way Trail Orientations”. In: ArXiv e-prints (Aug. 2017). Extended
version of [Aam+18]. arXiv: 1708.07389 [cs.DS].

[Aam+18] Anders Aamand, Niklas Hjuler, Jacob Holm, and Eva Rotenberg.
“One-Way Trail Orientations”. In: 45th International Colloquium on
Automata, Languages, and Programming, ICALP 2018, July 9-13,
2018, Prague, Czech Republic. July 2018, 6:1–6:13. DOI: 10.4230/
LIPIcs.ICALP.2018.6.

[Abr+17a] Mikkel Abrahamsen, Stephen Alstrup, Jacob Holm, Mathias Bæk
Tejs Knudsen, and Morten Stöckel. “Near-Optimal Induced Universal
Graphs for Bounded Degree Graphs”. In: 44th International Collo-
quium on Automata, Languages, and Programming (ICALP 2017).
Note that my name is incorrectly listed as “Stephen Holm” in
the proceedings. 2017. ISBN: 978-3-95977-041-5. DOI: 10.4230/
LIPIcs.ICALP.2017.128.

[Abr+17b] Mikkel Abrahamsen, Stephen Alstrup, Jacob Holm, Mathias Bæk
Tejs Knudsen, and Morten Stöckel. “Near-Optimal Induced Univer-
sal Graphs for Bounded Degree Graphs”. In: CoRR abs/1607.04911
(2017). Split in two for publication. One part published as [Abr+17a],
other part submitted to Discrete Applied Mathematics. arXiv: 1607.
04911.

[Abr+17c] Mikkel Abrahamsen, Jacob Holm, Eva Rotenberg, and Christian Wulff-
Nilsen. “Best Laid Plans of Lions and Men”. In: 33rd International
Symposium on Computational Geometry, SoCG 2017, July 4-7, 2017,
Brisbane, Australia. Ed. by Boris Aronov and Matthew J. Katz. Vol. 77.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017,
6:1–6:16. DOI: 10.4230/LIPIcs.SoCG.2017.6.

[Abr+17d] Mikkel Abrahamsen, Jacob Holm, Eva Rotenberg, and Christian Wulff-
Nilsen. “Best Laid Plans of Lions and Men”. In: CoRR abs/1703.03687
(2017). arXiv: 1703.03687.

[AH00] Stephen Alstrup and Jacob Holm. “Improved Algorithms for Finding
Level Ancestors in Dynamic Trees”. In: Automata, Languages and
Programming, 27th International Colloquium, ICALP 2000, Geneva,
Switzerland, July 9-15, 2000, Proceedings. Ed. by Ugo Montanari, José
D. P. Rolim, and Emo Welzl. Vol. 1853. Lecture Notes in Computer
Science. Springer, 2000, pp. 73–84. ISBN: 3-540-67715-1. DOI: 10.
1007/3-540-45022-X_8.

http://arxiv.org/abs/1708.07389
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.6
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.6
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.128
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.128
http://arxiv.org/abs/1607.04911
http://arxiv.org/abs/1607.04911
http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.6
http://arxiv.org/abs/1703.03687
http://dx.doi.org/10.1007/3-540-45022-X_8
http://dx.doi.org/10.1007/3-540-45022-X_8

Bibliography 27

[Als+05] Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel
Thorup. “Maintaining information in fully dynamic trees with top
trees”. In: ACM Trans. Algorithms 1.2 (2005), pp. 243–264. DOI:
10.1145/1103963.1103966.

[BHR17] Aaron Bernstein, Jacob Holm, and Eva Rotenberg. “Online Bipar-
tite Matching with Amortized O(log2 n) Replacements”. In: ArXiv
e-prints (July 2017). Extended version of [BHR18], submitted to
JACM. arXiv: 1707.06063 [cs.DS].

[BHR18] Aaron Bernstein, Jacob Holm, and Eva Rotenberg. “Online Bipartite
Matching with Amortized O(log2 n) Replacements”. In: Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018.
Ed. by Artur Czumaj. SODA 2018 best paper. SIAM, 2018, pp. 947–
959. DOI: 10.1137/1.9781611975031.61.

[Bha+12] Deepak Bhadauria, Kyle Klein, Volkan Isler, and Subhash Suri. “Cap-
turing an evader in polygonal environments with obstacles: The full
visibility case”. In: I. J. Robotics Res. 31.10 (2012), pp. 1176–1189.
DOI: 10.1177/0278364912452894.

[BT80] Frank Boesch and Ralph Tindell. “Robbins’s Theorem for Mixed
Multigraphs”. In: The American Mathematical Monthly 87.9 (1980),
pp. 716–719. DOI: 10.1080/00029890.1980.11995131.

[Bos+14] Bartlomiej Bosek, Dariusz Leniowski, Piotr Sankowski, and Anna
Zych. “Online Bipartite Matching in Offline Time”. In: 55th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2014,
Philadelphia, PA, USA, October 18-21, 2014. IEEE Computer Soci-
ety, 2014, pp. 384–393. ISBN: 978-1-4799-6517-5. DOI: 10.1109/
FOCS.2014.48.

[Bos+18] Bartlomiej Bosek, Dariusz Leniowski, Piotr Sankowski, and Anna
Zych-Pawlewicz. “Shortest Augmenting Paths for Online Matchings
on Trees”. In: Theory Comput. Syst. 62.2 (2018), pp. 337–348. DOI:
10.1007/s00224-017-9838-x.

[Bos+17] Bartlomiej Bosek, Dariusz Leniowski, Anna Zych, and Piotr Sankowski.
“The Shortest Augmenting Paths for Online Matchings on Trees”. In:
CoRR abs/1704.02093 (2017). arXiv: 1704.02093. URL: http:
//arxiv.org/abs/1704.02093.

[Cha+09] Kamalika Chaudhuri, Constantinos Daskalakis, Robert D. Kleinberg,
and Henry Lin. “Online Bipartite Perfect Matching With Augmen-
tations”. In: INFOCOM 2009. 28th IEEE International Conference
on Computer Communications, Joint Conference of the IEEE Com-
puter and Communications Societies, 19-25 April 2009, Rio de Janeiro,

http://dx.doi.org/10.1145/1103963.1103966
http://arxiv.org/abs/1707.06063
http://dx.doi.org/10.1137/1.9781611975031.61
http://dx.doi.org/10.1177/0278364912452894
http://dx.doi.org/10.1080/00029890.1980.11995131
http://dx.doi.org/10.1109/FOCS.2014.48
http://dx.doi.org/10.1109/FOCS.2014.48
http://dx.doi.org/10.1007/s00224-017-9838-x
http://arxiv.org/abs/1704.02093
http://arxiv.org/abs/1704.02093
http://arxiv.org/abs/1704.02093

28 Bibliography

Brazil. IEEE, 2009, pp. 1044–1052. ISBN: 978-1-4244-3513-5. DOI:
10.1109/INFCOM.2009.5062016.

[CGT] Fan R. K. Chung, Michael Randolph Garey, and Robert Endre Tarjan.
“Strongly connected orientations of mixed multigraphs”. In: Networks
15.4 (), pp. 477–484. DOI: 10.1002/net.3230150409.

[Epp+97] David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nis-
senzweig. “Sparsification - a technique for speeding up dynamic graph
algorithms”. In: J. ACM 44.5 (1997), pp. 669–696. DOI: 10.1145/
265910.265914.

[Fre97] Greg N. Frederickson. “Ambivalent Data Structures for Dynamic 2-
Edge-Connectivity and k Smallest Spanning Trees”. In: SIAM J. Com-
put. 26.2 (1997), pp. 484–538. DOI: 10.1137/S0097539792226825.

[GI92] Zvi Galil and Giuseppe F. Italiano. “Fully Dynamic Algorithms for 2-
Edge Connectivity”. In: SIAM J. Comput. 21.6 (1992), pp. 1047–1069.
DOI: 10.1137/0221062.

[Gib+15] David Gibb, Bruce M. Kapron, Valerie King, and Nolan Thorn. “Dy-
namic graph connectivity with improved worst case update time and
sublinear space”. In: CoRR abs/1509.06464 (2015). arXiv: 1509.
06464. URL: http://arxiv.org/abs/1509.06464.

[Gro+95] Edward F. Grove, Ming-Yang Kao, P. Krishnan, and Jeffrey Scott Vit-
ter. “Online Perfect Matching and Mobile Computing”. In: Algorithms
and Data Structures, 4th International Workshop, WADS ’95, Kingston,
Ontario, Canada, August 16-18, 1995, Proceedings. Ed. by Selim G.
Akl, Frank K. H. A. Dehne, Jörg-Rüdiger Sack, and Nicola Santoro.
Vol. 955. Lecture Notes in Computer Science. Springer, 1995, pp. 194–
205. ISBN: 3-540-60220-8. DOI: 10.1007/3-540-60220-8\
_62.

[HK95] Monika Rauch Henzinger and Valerie King. “Randomized dynamic
graph algorithms with polylogarithmic time per operation”. In: Pro-
ceedings of the Twenty-Seventh Annual ACM Symposium on Theory
of Computing, 29 May-1 June 1995, Las Vegas, Nevada, USA. Ed. by
Frank Thomson Leighton and Allan Borodin. ACM, 1995, pp. 519–
527. ISBN: 0-89791-718-9. DOI: 10.1145/225058.225269.

[Hol+18] Jacob Holm, Giuseppe F. Italiano, Adam Karczmarz, Jakub Łącki,
and Eva Rotenberg. “Decremental SPQR-trees for Planar Graphs”.
In: 26th Annual European Symposium on Algorithms (ESA 2018).
Ed. by Yossi Azar, Hannah Bast, and Grzegorz Herman. Vol. 112.
Leibniz International Proceedings in Informatics (LIPIcs). ESA 2018
best paper. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2018, 46:1–46:16. ISBN: 978-3-95977-081-1. DOI:
10.4230/LIPIcs.ESA.2018.46.

http://dx.doi.org/10.1109/INFCOM.2009.5062016
http://dx.doi.org/10.1002/net.3230150409
http://dx.doi.org/10.1145/265910.265914
http://dx.doi.org/10.1145/265910.265914
http://dx.doi.org/10.1137/S0097539792226825
http://dx.doi.org/10.1137/0221062
http://arxiv.org/abs/1509.06464
http://arxiv.org/abs/1509.06464
http://arxiv.org/abs/1509.06464
http://dx.doi.org/10.1007/3-540-60220-8_62
http://dx.doi.org/10.1007/3-540-60220-8_62
http://dx.doi.org/10.1145/225058.225269
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.46

Bibliography 29

[Hol+17] Jacob Holm, Giuseppe F. Italiano, Adam Karczmarz, Jakub Łącki,
Eva Rotenberg, and Piotr Sankowski. “Contracting a Planar Graph
Efficiently”. In: 25th Annual European Symposium on Algorithms, ESA
2017, September 4-6, 2017, Vienna, Austria. Ed. by Kirk Pruhs and
Christian Sohler. Vol. 87. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2017, 50:1–50:15. DOI: 10.4230/LIPIcs.ESA.
2017.50.

[HLT01] Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. “Poly-
logarithmic deterministic fully-dynamic algorithms for connectivity,
minimum spanning tree, 2-edge, and biconnectivity”. In: J. ACM 48.4
(2001), pp. 723–760. DOI: 10.1145/502090.502095.

[HR17] Jacob Holm and Eva Rotenberg. “Dynamic Planar Embeddings of
Dynamic Graphs”. In: Theory Comput. Syst. 61.4 (2017). Announced
at STACS’15, pp. 1054–1083. DOI: 10.1007/s00224- 017-
9768-7.

[HR18] Jacob Holm and Eva Rotenberg. “Good r-divisions Imply Optimal
Amortised Decremental Biconnectivity”. In: CoRR abs/1808.02568
(Aug. 2018). Submitted to SODA 2019. arXiv: 1808.02568.

[HRT14] Jacob Holm, Eva Rotenberg, and Mikkel Thorup. “Planar Reachability
in Linear Space and Constant Time”. In: ArXiv e-prints (Nov. 2014).
Extended version of [HRT15]. arXiv: 1411.5867 [cs.DS].

[HRT15] Jacob Holm, Eva Rotenberg, and Mikkel Thorup. “Planar Reachability
in Linear Space and Constant Time”. In: IEEE 56th Annual Symposium
on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,
17-20 October, 2015. Ed. by Venkatesan Guruswami. IEEE Computer
Society, 2015, pp. 370–389. DOI: 10.1109/FOCS.2015.30.

[HRT17] Jacob Holm, Eva Rotenberg, and Mikkel Thorup. “Dynamic Bridge-
Finding in Õ(log2 n) Amortized Time”. In: ArXiv e-prints (July 2017).
Extended version of [HRT18]. arXiv: 1707.06311 [cs.DS].

[HRT18] Jacob Holm, Eva Rotenberg, and Mikkel Thorup. “Dynamic Bridge-
Finding in Õ(log2 n) Amortized Time”. In: Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2018, New Orleans, LA, USA, January 7-10, 2018. Ed. by Artur Czu-
maj. SIAM, Jan. 2018, pp. 35–52. DOI: 10.1137/1.9781611975031.
3.

[HK73] John Edward Hopcroft and Richard Manning Karp. “An n5/2 Al-
gorithm for Maximum Matchings in Bipartite Graphs”. In: SIAM J.
Comput. 2.4 (1973), pp. 225–231. DOI: 10.1137/0202019.

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.50
http://dx.doi.org/10.4230/LIPIcs.ESA.2017.50
http://dx.doi.org/10.1145/502090.502095
http://dx.doi.org/10.1007/s00224-017-9768-7
http://dx.doi.org/10.1007/s00224-017-9768-7
http://arxiv.org/abs/1808.02568
http://arxiv.org/abs/1411.5867
http://dx.doi.org/10.1109/FOCS.2015.30
http://arxiv.org/abs/1707.06311
http://dx.doi.org/10.1137/1.9781611975031.3
http://dx.doi.org/10.1137/1.9781611975031.3
http://dx.doi.org/10.1137/0202019

30 Bibliography

[HT73] John Hopcroft and Robert Endre Tarjan. “Algorithm 447: Efficient
Algorithms for Graph Manipulation”. In: Commun. ACM 16.6 (June
1973), pp. 372–378. ISSN: 0001-0782. DOI: 10.1145/362248.
362272.

[How08] Rodney R. Howell. On Asymptotic Notation with Multiple Variables.
Tech. rep. 2007-4. Kansas State University, Jan. 2008. URL: http:
//people.cs.ksu.edu/~rhowell/asymptotic.pdf.

[Hua+17] Shang-En Huang, Dawei Huang, Tsvi Kopelowitz, and Seth Pettie.
“Fully Dynamic Connectivity in O(log n(log log n)2) Amortized Ex-
pected Time”. In: Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona,
Spain, Hotel Porta Fira, January 16-19. Ed. by Philip N. Klein. SIAM,
2017, pp. 510–520. ISBN: 978-1-61197-478-2. DOI: 10.1137/1.
9781611974782.32.

[ILS12] Giuseppe F. Italiano, Luigi Laura, and Federico Santaroni. “Finding
strong bridges and strong articulation points in linear time”. In: Theor.
Comput. Sci. 447 (2012), pp. 74–84. DOI: 10.1016/j.tcs.2011.
11.011.

[KKM13] Bruce M. Kapron, Valerie King, and Ben Mountjoy. “Dynamic graph
connectivity in polylogarithmic worst case time”. In: Proceedings
of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8,
2013. Ed. by Sanjeev Khanna. SIAM, 2013, pp. 1131–1142. ISBN:
978-1-61197-251-1. DOI: 10.1137/1.9781611973105.81.

[Kej+16] Casper Kejlberg-Rasmussen, Tsvi Kopelowitz, Seth Pettie, and Mikkel
Thorup. “Faster Worst Case Deterministic Dynamic Connectivity”. In:
24th Annual European Symposium on Algorithms, ESA 2016, August
22-24, 2016, Aarhus, Denmark. Ed. by Piotr Sankowski and Christos
D. Zaroliagis. Vol. 57. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2016, 53:1–53:15. ISBN: 978-3-95977-015-6. DOI:
10.4230/LIPIcs.ESA.2016.53.

[Kha13] Sanjeev Khanna, ed. Proceedings of the Twenty-Fourth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans,
Louisiana, USA, January 6-8, 2013. SIAM, 2013. ISBN: 978-1-61197-
251-1. DOI: 10.1137/1.9781611973105.

[Men27] Karl Menger. “Zur allgemeinen Kurventheorie”. In: Fundamenta Math-
ematicae 10 (1927).

[NSW17] Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-
Nilsen. “Dynamic Minimum Spanning Forest with Subpolynomial
Worst-Case Update Time”. In: 58th IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2017, Berkeley, CA, USA, Octo-

http://dx.doi.org/10.1145/362248.362272
http://dx.doi.org/10.1145/362248.362272
http://people.cs.ksu.edu/~rhowell/asymptotic.pdf
http://people.cs.ksu.edu/~rhowell/asymptotic.pdf
http://dx.doi.org/10.1137/1.9781611974782.32
http://dx.doi.org/10.1137/1.9781611974782.32
http://dx.doi.org/10.1016/j.tcs.2011.11.011
http://dx.doi.org/10.1016/j.tcs.2011.11.011
http://dx.doi.org/10.1137/1.9781611973105.81
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.53
http://dx.doi.org/10.1137/1.9781611973105

Bibliography 31

ber 15-17, 2017. Ed. by Chris Umans. IEEE Computer Society, 2017,
pp. 950–961. ISBN: 978-1-5386-3464-6. DOI: 10.1109/FOCS.
2017.92.

[P a11] Mihai Pǎtraşcu. “Unifying the Landscape of Cell-Probe Lower Bounds”.
In: SIAM J. Comput. 40.3 (2011), pp. 827–847. DOI: 10.1137/
09075336X.

[PD06] Mihai Pǎtraşcu and Erik D. Demaine. “Logarithmic Lower Bounds in
the Cell-Probe Model”. In: SIAM J. Comput. 35.4 (2006), pp. 932–963.
DOI: 10.1137/S0097539705447256.

[Rob39] Herbert Ellis Robbins. “A Theorem on Graphs, with an Application
to a Problem of Traffic Control”. In: The American Mathematical
Monthly 46.5 (1939), pp. 281–283. ISSN: 00029890, 19300972. URL:
http://www.jstor.org/stable/2303897.

[TT93] Roberto Tamassia and Ioannis G. Tollis. “Dynamic Reachability in
Planar Digraphs with One Source and One Sink”. In: Theor. Comput.
Sci. 119.2 (1993), pp. 331–343. DOI: 10.1016/0304-3975(93)
90164-O.

[Tar72] Robert Endre Tarjan. “Depth-First Search and Linear Graph Algo-
rithms”. In: SIAM J. Comput. 1.2 (1972), pp. 146–160. DOI: 10.
1137/0201010.

[Tar74] Robert Endre Tarjan. “A Note on Finding the Bridges of a Graph”. In:
Inf. Process. Lett. 2.6 (1974), pp. 160–161. DOI: 10.1016/0020-
0190(74)90003-9.

[Tho00] Mikkel Thorup. “Near-optimal fully-dynamic graph connectivity”.
In: Proceedings of the Thirty-Second Annual ACM Symposium on
Theory of Computing, May 21-23, 2000, Portland, OR, USA. Ed. by
F. Frances Yao and Eugene M. Luks. ACM, 2000, pp. 343–350. ISBN:
1-58113-184-4. DOI: 10.1145/335305.335345.

[Tho04] Mikkel Thorup. “Compact oracles for reachability and approximate
distances in planar digraphs”. In: J. ACM 51.6 (2004), pp. 993–1024.
DOI: 10.1145/1039488.1039493.

[TZ05] Mikkel Thorup and Uri Zwick. “Approximate distance oracles”. In: J.
ACM 52.1 (2005), pp. 1–24. DOI: 10.1145/1044731.1044732.

[Wul13] Christian Wulff-Nilsen. “Faster Deterministic Fully-Dynamic Graph
Connectivity”. In: Proceedings of the Twenty-Fourth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans,
Louisiana, USA, January 6-8, 2013. Ed. by Sanjeev Khanna. SIAM,
2013, pp. 1757–1769. ISBN: 978-1-61197-251-1. DOI: 10.1137/1.
9781611973105.126.

http://dx.doi.org/10.1109/FOCS.2017.92
http://dx.doi.org/10.1109/FOCS.2017.92
http://dx.doi.org/10.1137/09075336X
http://dx.doi.org/10.1137/09075336X
http://dx.doi.org/10.1137/S0097539705447256
http://www.jstor.org/stable/2303897
http://dx.doi.org/10.1016/0304-3975(93)90164-O
http://dx.doi.org/10.1016/0304-3975(93)90164-O
http://dx.doi.org/10.1137/0201010
http://dx.doi.org/10.1137/0201010
http://dx.doi.org/10.1016/0020-0190(74)90003-9
http://dx.doi.org/10.1016/0020-0190(74)90003-9
http://dx.doi.org/10.1145/335305.335345
http://dx.doi.org/10.1145/1039488.1039493
http://dx.doi.org/10.1145/1044731.1044732
http://dx.doi.org/10.1137/1.9781611973105.126
http://dx.doi.org/10.1137/1.9781611973105.126

32 Bibliography

33

Part II

Appendix

Planar Reachability in Linear Space and Constant Time

Jacob Holm and Eva Rotenberg and Mikkel Thorup∗†

University of Copenhagen (DIKU),
jaho@di.ku.dk, roden@di.ku.dk, mthorup@di.ku.dk

April 7, 2015

Abstract

We show how to represent a planar digraph in linear space so that reachability queries can be an-
swered in constant time. The data structure can be constructed in linear time. This representation of
reachability is thus optimal in both time and space, and has optimal construction time. The previous best
solution used O(n log n) space for constant query time [Thorup FOCS’01].

∗Research partly supported by Thorup’s Advanced Grant from the Danish Council for Independent Research under the Sapere
Aude research career programme.
†Research partly supported by the FNU project AlgoDisc - Discrete Mathematics, Algorithms, and Data Structures.

ar
X

iv
:1

41
1.

58
67

v2
 [

cs
.D

S]
 4

 A
pr

 2
01

5

34 Appendix A: Planar Reachability in Linear Space and Constant Time

1 Introduction

Representing reachability of a directed graph is a fundamental challenge. We want to represent a digraph
G = (V,E), n = |V |, m = |E|, so that we for any vertices u and w can tell if u reaches v, that is, if
there is a dipath from u to v. There are two extreme solutions: one is to just store the graph, as is, using
O(m) words of space and answering reachability queries from scratch, e.g., using breadth-first-search, in
O(m) time. The other is to store a reachability matrix using n2 bits and then answer reachability queries in
constant time. Thorup and Zwick [20] proved that there are graphs classes such that any representation of
reachability needs Ω(m) bits. Also, Pǎtraşcu [16] has proved that there are directed graphs with O(n) edges
where constant time reachability queries require n1+Ω(1) space. Thus, for constant time reachability queries
to a general digraph, all we know is that the worst-case space is somewhere between Ω(m + n1+Ω(1)) and
n2 bits.

The situation is in stark contrast to the situation for undirected/symmetric graphs where we can trivially
represent reachability queries on O(n) space and constant time, simply by enumerating the connected com-
ponents, and storing with each vertex the number of the component it belongs to. Then u reaches v if and
only if the have the same component number.

In this paper we focus on the planar case, which feels particularly relevant when you live on a sphere.
For planar digraphs it is already known that we can do much better than for general digraphs. Back in 2001,
Thorup [19] presented a reachability oracle for planar digraphs using O(n lg n) space for constant query
time, or linear space for O(log n) query time. In this paper, we present the first improvement; namely an
O(n) space reachability oracle that can answer reachability queries in constant time. Note that this bound
is asymptotically optimal; even to distinguish between the subclass of directed paths of length n, we need
Ω(n log n) bits. Our oracle is constructed in linear time.

Computational model The computational model for all upper bounds is the word RAM, modelling what
we can program in a standard programming language such as C [12]. A word is a unit of space big enough to
fit any vertex identifier, so a word hasw ≥ lg n bits, and word operations take constant time. Here lg = log2.
In our upper bounds, we limit ourselves to the practical RAM model [14], which is a restriction of the word
RAM to the standard operations on words available in C that are AC0. This includes indexing arrays as
needed just to store a reachability matrix with constant time access, but excludes e.g. multiplication and
division. Thus, unless otherwise specified, we measure space as the number of words used and time as the
number of word operations performed.

The Ω(m + n1+Ω(1)) space lower bound from [16] for general graphs is in the cell-probe model sub-
suming the word RAM with an arbitrary instruction set.

Other related work Before [19], the best reachability oracles for general planar digraphs were distance
oracles, telling not just if u reaches w, but if so, also the length of the shortest dipath from u to w [3–5]. For
such planar distance oracles, the best current time-space trade-off is Õ(n/

√
s) time for any s ∈ [n, n2] [15].

The construction of [19] also yields approximate distance oracles for planar digraphs. With edge weights
from [N], N ≤ 2w, distance queries where answered within a factor (1 + ε) in O(log log(Nn) + 1/ε) time
using O(n(log n)(log(Nn))/ε) space. These bounds have not been improved.

For the simpler case of undirected graphs, where reachability is trivial, [13,19] provides a more efficient
(1 + ε)-approximate distance queries for planar graphs in O(1/ε) time and O(n(log n)/ε) space. In [10] it
was shown that the space can be improved to linear if the query time is increased toO((log n)2/ε2). In [11] it
was shown how to represent planar graphs with bounded weights usingO(n log2((log n)/ε) log∗(n) log log(1/ε))
space and answering (1 + ε) approximate distance queries in O((1/ε) log(1/ε) log log(1/ε) log∗(n) +
log log log n)) time. Using Ō to suppress factors of O(log log n) and O(log(1/ε)), these bounds reduce

2

Appendix A: Planar Reachability in Linear Space and Constant Time 35

to Ō(n) space and Ō(1/ε) time. This improvement is similar in spirit to our improvement for reachability
in planar digraphs. However, the techniques are entirely different.

There has also been work on special classes of planar digraphs. In particular, for a planar s-t-graph,
where all vertices are on dipaths between s and t, Tamassia and Tollis [17] have shown that we can represent
reachability in linear space, answering reachability queries in constant time. Also, [4,6,7] presents improved
bounds for planar exact distance oracles when all the vertices are on the boundary of a small set of faces.

Techniques We will develop our linear space constant query time reachability oracles by considering more
and more complex classes of planar digraphs. We make reductions from i+ 1 to i in the following:

1. Acyclic planar s-t-graph; ∃(s, t), such that all vertices are reachable from s and may reach t. [17]

2. Acyclic planar single-source graph; ∃s, such that all vertices are reachable from s. See Section 3.

3. Acyclic planar In-Out graph; ∃s such that all vertices with out-degree 0 are reachable from s. See
Section 4

4. Any acyclic planar graph. The reduction to acyclic planar In-Out graphs from general acyclic planar
graphs is known. [19]

5. Any planar graph. The reduction to acyclic planar graphs is well-known. Using the depth first search
algorithm by Tarjan [18], we can contract each strongly connected component to get an acyclic planar
graph. Vertices in the same strongly connected component can always reach each other, and vertices
in distinct strongly connected components can reach each other if the corresponding vertices in the
contracted graph can.

The most technically involved step is the reduction from single-source graph to s-t-graph. As in [19],
we use separators to form a tree over a partitioning of the vertices of the graph. However, in [19], the
alternation number; the number of directed segments in the frame that separates a child from its parent (see
Section 2), needs only be a constant number. In contrast, it is a crucial part of our construction that the
alternation number, which must be even, is at most 4. Also, in our data structure, paths cannot go upward
in the rooted tree, whereas there is no such restriction in [19]. These two features let us use a level ancestor
-like algorithm to quickly calculate the best ≤ 4 vertices in a given tree-node that can reach a given vertex
v. Each component is an s-t-graph, and v can be reached by some u in the ancestral component if and only
if u can reach at least one of these best ≤ 4 vertices.

2 Preliminaries

For a vertex v at depth d in a rooted forest T and an integer 0 ≤ i ≤ d, the i’th level ancestor of v in T is
the ancestor to v in T at depth i. For two nodes x, y in a rooted tree, let x � y denote that x is an ancestor
to y, and x ≺ y that x is a proper ancestor to y.

We say a graph is plane, if it is embedded in the plane, and denote by πv the permutation of edges around
v. Given a plane graph, (G, π), we may introduce corners to describe the incidence of a vertex to a face.
A vertex of degree n has n corners, where if πv((v, u)) = (v, w), and the face f is incident to (v, u) and
(v, w), then there is a corner of f incident to v between (v, u) and (v, w). We denote by V [X] and E[X]
the vertices and edges, of some (not necessarily induced) subgraph X . Given a subgraph H of a planar
embedded graph G, the faces of H define superfaces of those of G, and the faces of G are subfaces of those
of H . Similarly for corners. Note that the faces of H correspond to the connected components of G∗ \H .
The super-corners incident to v correspond to a set of consecutive corners in the ordering around v.

3

36 Appendix A: Planar Reachability in Linear Space and Constant Time

In a directed graph, we may consider the boundary of a face in some subgraph, H . A corner of a face f
ofH is a target for f if it lies between ingoing edges (u, v) and (w, v), and source if it lies between outgoing
edges (v, u) and (v, w). We say the face boundary has alternation number 2a if it has a source and a target
corners. When a face boundary has alternation number 2a, we say it consists of 2a disegments (directed
segments), associated with the directed paths from source to target. We associate with each disegment the
total ordering stemming from reachability of vertices on the path via the path, and by convention we set
succ(t, S) = ⊥ for a target vertex t on the disegment. Given a set of edges S ⊂ E, we denote by init(S)
the set of inital vertices, init(S) = {u|(u, v) ∈ S}. Given a connected planar graph with a spanning tree
T , the edges T ∗ := E \ T form a spanning tree for the dual graph. We call the pair (T, T ∗) a tree-cotree
decomposition of the graph, referring to T and T ∗ as tree and cotree.

When u can reach v we write u v. An s-t-graph is a graph with special vertices s, t such that s v
and v t for all vertices v. We say a graph is a truncated s-t-graph if it is possible to add vertices s, t to
obtain an s-t-graph, without violating the embedding. In an s-t-graph, all faces has alternation number 2.

3 Acyclic planar single-source digraph

Given a global source vertex s for the planar digraph, we wish to make a data structure for reachability
queries. We do this by reduction to the s-t-case. A tree-like structure with truncated s-t-graphs as nodes
is obtained by recursively choosing a face f wisely, and then letting vertices that can reach vertices on f
belong to this node, and partitioning all other vertices among the descendants of this node. As we shall see
in Section 3.1, this can be done in such a way that we obtain logarithmic height and such that the border
between a node and its ancestors is a cycle of alternation number at most 4. We call this the frame of the
node.

We always choose the truncated s-t-graph maximally, such that once a path crosses a frame, it does not
exit the frame again. Thus, for u to reach v, u has to lie in a component which is ancestral to that of v, and
since the alternation number of any frame between those two component is at most 4, the path could always
be chosen to use one of the at most 4 different “best” vertices for reaching v on that frame. Thus, the idea is to
do something inspired by level ancestry to find those “best” vertices in u’s component. We handle the case of
frames with alternation number 2 in Section 3.3. Frames with alternation number 4 are similar but more in-
volved, and the details are found in Section 3.4.

Figure 1: A tree of truncated s-
t-graphs, each child contained in
a face-cycle of its parent.

Definition 3.1. Given a graph G = (V,E), a subgraph G′ = (V ′, E′) is
backward closed if ∀(u, v) ∈ E : v ∈ V ′ =⇒ (u, v) ∈ E′.

Definition 3.2. The backward closure of a face f , denoted bc(f) is the
unique smallest backward closed graph that contains all the vertices inci-
dent to f .

Definition 3.3. Let G = (V,E) be an acyclic single-source plane di-
graph, and let G∗ = (V ∗, E∗) be its dual. An s-t-decomposition of G is
a rooted tree where each node x is associated with a face fx ∈ V ∗ and
subgraphs G∗x ⊆ G∗ and Cx ⊆ Sx ⊆ G such that:

• fx is unique (fx 6= fy for x 6= y).

• Sx is bc(fx) if x is the root, and bc(fx) ∪ Sy if x is a child of y.

• Cx is bc(fx) if x is the root, and bc(fx) \ Sy if x is a child of y.

4

Appendix A: Planar Reachability in Linear Space and Constant Time 37

• G∗x is the subgraph of G∗ induced by {fz| z is a descendent of x}.
Furthermore, if x is a child of y we require thatG∗x is the connected
component of G∗ \ E∗[Sy] containing fx.

If x is a child of y, x has a parent frame Fx ⊆ Sy and a set of down-edges Ex ⊆ E such that:

• Fx is the face cycle in Sy that corresponds to G∗x.

• Ex is the set of edges (w,w′) such that w ∈ V [Fx] and w′ ∈ V [Cz] for some descendant z of x.

An s-t-decomposition is good if the tree has height O(log n) and each frame has alternation number 2 or 4.

The name s-t-decomposition is chosen based on the following

Lemma 3.4. Each vertex of G is in exactly one Cx, and each Cx is a truncated s-t-graph.

Proof. If x is the root, Cx = bc(fx) and this is clearly a truncted s-t-graph. Otherwise let y be the parent
of x. Then Sx = bc(fx) ∪ Sy, is backward-closed and therefore contains s. Contracting Sy in that graph to
a single vertex s′ gives a single-source graph Sx/Sy with s′ as the source. Adding a dummy target t′ in fx
results in an s-t-graph (Sx/Sy)∪ {t′}. Thus, Sx/Sy is a truncated s-t-graph, and since Cx = bc(fx) \ Sy =
Sx \ Sy = (Sx/Sy) \ {s′} so is Cx.

Let v be a vertex, let I be the set of all nodes in the s-t-decomposition whose associated faces {fx}x∈I
are reachable from v, and let N = lca(I). We now show that v lies in CN and only in CN . To see that
v ∈ CN , note that v ∈ Sx for all x ∈ I , but then v ∈ ⋂x∈I Sx = SN . But v /∈ Sa for any ancestor a of N
by definition of lca, and thus, v /∈ Sy for the parent y of N , entailing v ∈ SN \ Sy = CN . We have now
seen that v ∈ CN and that v /∈ Cx when x ≺ N or N ≺ x. To see that v /∈ Cx for any unrelated x 6= N ,
note the following: if x has no descendants in I , then v 6∈ V [Sx] since all vertices reachable from v lie on
some face. Thus, v /∈ Cx ⊆ Sx.

Theorem 3.5. Any acyclic single-source plane digraph has a good s-t-decomposition.

We defer the proof to section 3.1. The reason for studying s-t-decompositions in the context of reacha-
bility is the following

Lemma 3.6. If u v where u ∈ Cx and v ∈ Cy then either x = y or x has a child z that is ancestor to y
such that any u v path contains a vertex in Fz .

Proof. Note that whenever w w′ with w′ ∈ Ca, w must belong to an ancestor of a, since w ∈ bc(fa).
Thus, x is an ancestor of y, which means that either x = y or x has a child z that is an ancestor to y. But
then either w lies on Fx, or Fx is a cycle separating w from w′. In either case, a path from w to w′ must
contain a vertex on Fx.

Since (by theorem 3.5) we can assume the alternation number is at most 4, this reduces the reachability
question to the problem of finding the at most 4 “last” vertices on Fz∩Cx that can reach v and then checking
in Cx if u can reach either of them. In section 3.3 we will show how to do this efficiently when Fz is a 2-
frame, that is, has alternation number 2, and in section 3.4 we will extend this to the case when Fz is a
4-frame, that is, has alternation number 4.

Theorem 3.7. There exists a practical RAM data structure that for any planar digraph with n vertices uses
O(n) words of O(log n) bits and can answer reachability queries in constant time. The data structure can
be built in linear time.

5

38 Appendix A: Planar Reachability in Linear Space and Constant Time

Proof. First, build a good s-t-decomposition of G. Such a decomposition exists (Lemma 3.5) and can be
built in linear time (Lemma 3.15). Adding DFS pre- and postorder numbers to each node in the tree lets us
discover the ancestry relationship between any two vertices in constant time. Then, calculate the structures
described in Section 3.3 (in particular d2[]) and Section 3.4 (c[] and d[]).

To answer reachable(u, v), there are the following cases. Let x = c[u] and y = c[v].

1. If x 6� y, then u cannot reach v.

2. If x = y, then the answer is given by the s-t-graph labelling of Cx from [17].

3. If x ≺ y and d2[u] == d2[v] there are no 2-frames separating u and v, but since x ≺ y there are
4-frames. Let i = d[u], then by 3.51 we can in constant time compute l0i (v), r0

i (v), l1i (v), and r1
i (v).

If u can reach any of them, them u can reach v, otherwise no.

4. Otherwise x ≺ y and d2[u] < d2[v] and there is a 2-frame separating u and v. Let i = d2[u], then
by 3.33 we can in constant time compute li(v) and ri(v). If u can reach any of them, then u can reach
v, otherwise no.

Note that the recursive calls in step 3 only leads to questions of type < 3, and similarly the recursive calls in
step 4 only leads to questions of type < 4. Thus any query uses case 3 at most twice and case 1 + 2 at most
8 times. Thus we use only constant time per query.

A consequence of our construction which might be of independent interest is the following:

Theorem 3.8. If a planar digraph G admits an s-t-decompostion of height h where all frames have alter-
nation number 2 and 4, there exists an O(h log n) bit labelling scheme for reachability with evaluation time
O(h)

Especially, if a class of planar digraphs have such an s-t-decompositions of constant height, they have
an O(log n) bit labelling scheme for reachability.

3.1 Constructing an s-t-decomposition

The s-t-decomposition recursively chooses a face f and consequently a subgraph H = bc(f) of the graph
G induced by all vertices that can reach a vertex on f . Since G was embedded in the plane, the subgraph H
is embedded in the plane, and all vertices of G \H lie in a unique face of H . We may choose a tree-cotree
composition wisely, such that for each face of H , the restriction of T ∗ to the subfaces of that face is again a
dual spanning tree (Lemma 3.10).

We also have to chooseH carefully to ensure logarithmic height, and a limited alternation number on the
frames. To ensure at most logarithmic height, we show two cases: 2-frame-nodes have only small children,
while for 4-frame-nodes, we only need to ensure that their 4-frame children themselves are small.

Lemma 3.9. Let G = (V,E) be a plane graph, let G∗ = (V ∗, E∗) be its dual, let (T, T ∗) be a tree/cotree
decomposition of G, and let S be a subgraph of G such that S ∩ T is connected. Then the faces of S
correspond to connected components of T ∗ \ E∗[S].

Proof. Let S∗ be the dual of S, then S∗ = G∗/(G∗ \ E∗[S]) and the claim is equivalent to saying that the
components ofG∗\E∗[S] correspond to the components of T ∗\E∗[S]. Consider a pair of faces f1, f2 ∈ V ∗.
Clearly, if they are in separate components ofG∗\E∗[S], they are also in separate components in T ∗\E∗[S].
On the other hand, suppose f1 and f2 are in different components in T ∗ \ E∗[S]. Then there exists an edge
e∗ ∈ E∗[S] ∩ T ∗ separating them. The corresponding edge e ∈ E[S] induces a cycle in T , which is also
part of S since S ∩T is connected. The dual to that cycle is an edge cut in G∗ that separates f1 from f2.

6

Appendix A: Planar Reachability in Linear Space and Constant Time 39

Lemma 3.10. Let T be a spanning tree where all edges point away from the source s of G, then for any
node x in an st-decomposition of G, the subgraph T ∗x of T ∗ induced by V ∗[G∗x] is a connected subtree of
T ∗.

Proof. If x is the root, this trivially holds. If x has a parent y, G∗x corresponds to a face in Sy. Now Sy ∩ T
is connected since Sy is the union of backward-closed graphs, and the result follows from Lemma 3.9.

Lemma 3.11. Let x be a node in an st-decomposition whose parent frame Fx has alternation number 2, and
let A∗ be the set of faces in T ∗x incident to the target corner of Fx. Then for any child y of x:

A∗ ⊆ V ∗[T ∗y] =⇒ Fy has alternation number 4.

A∗ 6⊆ V ∗[T ∗y] =⇒ Fy has alternation number 2.

Proof. Let tx be the target corner of Fx and let A∗ be the set of faces in Tx∗ incident to tx. For any child y
if x, Fy consists of a (possibly empty) segment of Fx and two directed paths that meet at a new target corner
ty. Each target corner of Fy must therefore be at either tx or ty. Now if A∗ ⊆ V ∗[T ∗y], then both tx and ty
are target corners of Fy, otherwise only ty is. Either way the result follows.

Lemma 3.12. Let x be a node in an st-decomposition whose parent frame Fx has alternation number 4, and
let A0∗ and A1∗ be the sets of faces in T ∗x incident to the target corners of Fx. Then for any child y of x:

A0∗ 6⊆ V ∗[T ∗y] ∨A1∗ 6⊆ V ∗[T ∗y] =⇒ Fy has alternation number at most 4.

A0∗ 6⊆ V ∗[T ∗y] ∧A1∗ 6⊆ V ∗[T ∗y] =⇒ Fy has alternation number 2.

Proof. Let t0x and t1x be the two target corners of Fx and for i ∈ {0, 1} let Ai∗ be the set of faces in Tx∗

incident to tix. For any child y of x, Fy consists of a (possibly empty) segment of Fx and two directed paths
that meet at a new target corner ty. Each target corner of Fy must therefore be at either ty, t0x, or t1x. Now if
Ai
∗ 6⊆ V ∗[T ∗y] for some i ∈ {0, 1}, then tix is not a target corner of Fy. So the number of target corners in

Fy is at least 1, and at most 3 minus the number of such i, and the result follows.

proof of theorem 3.5. Let s be the source of G and let (T, T ∗) be a tree/cotree decomposition of G such that
all edges in T point away from s. The st-decomposition can be constructed recursively as follows. Start
with the root. In each step we have a node x and by Lemma 3.10 the subgraph T ∗x induced in T ∗ by V ∗[G∗x]
is a tree. The goal is to select a face fx such that for each child y:

• The alternation number of Fy is at most 4, and

• For each child z of y (and thus grandchild of x), |T ∗z | ≤ 1
2 |T ∗x |.

If we can do this for all x, we are done. There are 3 cases:

x is the root Let fx be the median of T ∗x = T ∗. Then for each child y, |T ∗y | ≤ 1
2 |T ∗x |, and, since

Sx = bc(fx) is a truncated s-t-graph with a single source, fy has alternation number 2.

Fx has alternation number 2 Let fx be the median of T ∗x . Then for each child y, |T ∗y | ≤ 1
2 |T ∗x |, and, by

Lemma 3.11, fy has alternation number at most 4.

7

40 Appendix A: Planar Reachability in Linear Space and Constant Time

Fx has alternation number 4 Let t0 and t1 be the local targets of Fx and let f0, f1 ∈ V ∗[T ∗x] be (not
necessarily distinct) faces incident to t0 and t1 respectively. Now choose fx as the projection of the median
m of T ∗x on the path f0, . . . , f1 in T ∗x . By Lemma 3.12 this means that for any child y of x, the alternation
number of the parent frame Fy is at most 4.
- If fx = m then |T ∗y | ≤ 1

2 |T ∗x |.
- If fx 6= m and T ∗y is not the component of m in T ∗x \ E∗[bc(fx)], then |T ∗y | ≤ 1

2 |T ∗x |.
- If fx 6= m, and T ∗y is the component of m in T ∗x \ E∗[bc(fx)], then T ∗y contains neither f0 nor f1, so by
Lemma 3.12 the parent frame Fy has alternation number at most 2 and we have just shown this means any
child z of y has |T ∗z | ≤ 1

2 |T ∗y | ≤ 1
2 |T ∗x |.

Note that this construction can be implemented in linear time by using ideas similar to [2].

3.2 Constructing a good s-t-decomposition in linear time

In the construction of an s-t-decomposition, a face is chosen, some edges are deleted, and new connected
components of the dual graph arise. We then recurse on the new connected components of the dual graph.
By Lemma 3.10 we can choose a tree/cotree-decomposition such that each component that arises is spanned
by a subtree of the cotree.

To obtain linear construction time, we use a variation of the decremental tree connectivity algorithm
from [2] to keep track of the subtrees of the cotree, and associate some information with each subtree. In
particular, when T ∗x is a component at some point, we can in constant time find the node x.

For each node x we keep the set of target vertices on Fx (or ∅ if x is the root), and a face in T ∗x incident
to each target in the set.

Build a top tree (see [1]) of height O(log n) over T ∗, and let v∗n−i be the i’th face that stops being
boundary during the construction. Using this enumeration, the boundary faces of a cluster will be visited
before boundary faces of their descendants. We use this ordering to find the splitting faces of the s-t-
decomposition.

For each v∗i , we can use the connectivity structure to find the relevant node x to split. We then need to
choose the target face fx defining the split. If x is the root or Fx is a 2-frame, we just set fx = v∗i . If Fx is
a 4-frame, the information in x contains a pair of faces f1, f2 and we use a static nearest common ancestor
data structure from Harel and Tarjan [8] to find the projection fx = π(v∗i) of v∗i on f1, · · · , f2. Note that the
projection of v∗i is always contained in the same connected component as f1, f2, and thus, the data structure
for the whole tree suffices to answer this query for the particular subtree.

Once fx has been selected, we traverse the graph backwards from the vertices of fx until we have found
all the edges with destination in Cx. This search takes |Cx| time. We delete these edges from the forest as
we go along. Once we are done, we take all targets in Cx and select an incident face for each component it
is incident to. This again takes |Cx| time. If fx 6= v∗i we try with v∗i again, otherwise we move on to v∗i+1.

Lemma 3.13. The s-t-decomposition constructed via the approach sketched above has no frame of alterna-
tion number > 4.

Proof. Components with 2-frames always have children with 2- and 4-frames. For components with 4-
frames, this follows directly from Lemma 3.11, since we chose a splitting face on the cotree path between
faces near the two targets.

Lemma 3.14. The s-t-decomposition constructed via the approach sketched above has height O(log n).

Proof. Since the top-tree has height O(log n), choosing the boundary face v∗i as a splitting face every time
would result in a tree of the same height; O(log n). However, for each 4-frame, we might choose a face

8

Appendix A: Planar Reachability in Linear Space and Constant Time 41

v

ri(v)

li(v)

ti(v)

si(v)

Figure 2: The best two vertices that can reach v on level i.

fx 6= v∗i which is the projection of v∗i on f1 . . . f2. As noted in Lemma 3.11, when this happens, v∗i will lie
in a child which has a 2-frame. But then, v∗i will be the splitting face for that child. We thus increase the
height by no more than a factor 2, and the s-t-decomposition has height 2O(log n) = O(log n).

Lemma 3.15. Let G = (V,E) be a plane single-source graph with source s, then we can construct a good
s-t-decomposition of G in linear time.

Proof. Since the top-tree can be constructed in linear time, and since the decremental connectivity for trees
takes linear time, and since the static nearest common ancestor data stucture is constructed in linear time and
answers queries in constant time, the construction takes linear time. By Lemma 3.13 and 3.14, the resulting
s-t-decomposition is good.

3.3 2-frames

Definition 3.16. Let T be an st-decomposition ofG = (V,E). Then we can define a 2-frame-decomposition
T2 by contracting each edge in T that corresponds to a 4-frame. For each node x in T2 that is contracted
from a set of nodes Y ⊆ T define Cx :=

⋃
y∈Y Cy and if x is not the root, define Fx := Flca(Y) and

Ex := Elca(Y). Then Fx is a 2-frame, and we can define sx to be the source corner, and tx to be the target
corner on Fx.

Definition 3.17. Let (L,R) be the partition of ∪x∈T2Ex defined as follows: For each (u, v) ∈ ∪x∈T2Ex let
y be the node (if it exists) closest to the root of T2 such that (u, v) ∈ Ey but u is not the target vertex of
Fy. If y exists and (u, v) is incident to a corner on the clockwise disegment of Fy between sy and ty assign
(u, v) toR, otherwise assign (u, v) to L.

Definition 3.18. Let T2 be an 2-frame-decomposition of G = (V,E). For any vertex v ∈ V define:

c2[v] := The node x in T2 such that v ∈ V [Cx]

d2[v] := The depth of c2[v] in T2

9

42 Appendix A: Planar Reachability in Linear Space and Constant Time

Definition 3.19. For any 0 ≤ i < d2[v], let x be the ancestor of c2[v] at depth i+ 1 and define:

Ei(v) := Ex

Li(v) := Ex ∩ L
Ri(v) := Ex ∩R
L̂i(v) :=

{
(w,w′) ∈ Li(v)

∣∣ w′ v
}

R̂i(v) :=
{

(w,w′) ∈ Ri(v)
∣∣ w′ v

}

F̂i(v) := L̂i(v) ∪ R̂i(v)

li(v) :=

{
⊥ if L̂i(v) = ∅
the last vertex in init(L̂i(v)) on the counterclockwise dipath of Fx otherwise

ri(v) :=

{
⊥ if R̂i(v) = ∅
the last vertex in init(R̂i(v)) on the clockwise dipath of Fx otherwise

si(v) := The vertex associated with sx
ti(v) := The vertex associated with tx

Additionally, let Li(v) and L̂i(v) be totally ordered by the position of the starting vertices on the counter-
clockwise disegment of Fx and the clockwise order around each starting vertex. Similarly let Ri(v) and
R̂i(v) be totally ordered by the position of the starting vertices on the clockwise disegment of Fx and the
counterclockwise order around each starting vertex.

The goal in this section is a data structure for efficiently computing li(v) and ri(v) for 0 ≤ i < d2[v].

Lemma 3.20. For any vertex v ∈ V and 0 ≤ i < d2[v]: F̂i(v) 6= ∅

Proof. Let x be the ancestor of c2[v] at depth i+ 1. Since G is a single-source graph, there is a path from s
to v. This path must contain a vertex in V [Fx]. But then the edge following the last such vertex on the path
must be in L̂i(v) ∪ R̂i(v) which is therefore nonempty.

Lemma 3.21. For any u, v ∈ V and 0 ≤ i < d2[u]: If u v then L̂i(u) ⊆ L̂i(v) and R̂i(u) ⊆ R̂i(v).

Proof. Since u v, c2[u] is ancestor to c2[v] and so Li(u) = Li(v) and hence L̂i(u) ⊆ L̂i(v). Similarly,
Ri(u) = Ri(v) and R̂i(u) ⊆ R̂i(v).

Lemma 3.22. Given any vertex v ∈ V , 0 ≤ i < d2[v], and (w,w′) ∈ Ei(v). Then:

(w,w′) ∈ L̂i(v) =⇒ (w,w′) ∈ L̂i′(v) for all i′, d2[w] ≤ i′ < min
{
d2[w′], d2[v]

}

(w,w′) ∈ R̂i(v) =⇒ (w,w′) ∈ R̂i′(v) for all i′, d2[w] ≤ i′ < min
{
d2[w′], d2[v]

}

Proof. Let j = d2[w] and k = min {d2[w′], d2[v]}. Clearly (w,w′) ∈ Ei′ for all j ≤ i′ < k. Suppose
(w,w′) ∈ L̂i(v) ⊆ Li(v), then since j ≤ i < k the definition give us (w,w′) ∈ Li′(v) for all j ≤ i′ < k.
And since w′ v this implies (w,w′) ∈ L̂i′(v) for all j ≤ i′ < k and the result follows. The case for R is
symmetric.

10

Appendix A: Planar Reachability in Linear Space and Constant Time 43

Definition 3.23. For any vertex v ∈ V let

pl[v] :=

{
⊥ if d2[v] = 0

ld2[v]−1(v) otherwise

pr[v] :=

{
⊥ if d2[v] = 0

rd2[v]−1(v) otherwise

and let Tl and Tr denote the rooted forests over V whose parent pointers are pl and pr respectively.

Definition 3.24. For any v ∈ V ∪ {⊥}, and i ≥ 0 let

l′i(v) :=

{
v if v = ⊥ ∨ d2[v] ≤ i
l′i(pl[v]) otherwise

r′i(v) :=

{
v if v = ⊥ ∨ d2[v] ≤ i
r′i(pr[v]) otherwise

Lemma 3.25. Let v ∈ V , and i ≥ 0 be given, then

i = d2[v]− 1 =⇒ l′i(v) = li(v) ∧ r′i(v) = ri(v)

i ≤ d2[v]− 1 =⇒ l′i(v) ∈ init(L̂i(v)) ∪ {⊥} ∧ r′i(v) ∈ init(R̂i(v)) ∪ {⊥}
i > d2[v]− 1 =⇒ l′i(v) = v ∧ r′i(v) = v

Proof. We will show this for l′ only, as r′ is completely symmetrical. If i > d2[v] − 1 then d2[v] ≤ i and
we get l′i(v) = v directly from the definition of l′. Similarly if i = d2[v] − 1 then l′i(v) = l′i(pl[v]) =

l′i(ld2[v]−1(v)) = l′i(li(v)) = li(v) ∈ init(L̂i(v)) ∪ {⊥}. Finally suppose i < d2[v] − 1. If l′i(v) = ⊥ we
are done, so suppose that is not the case. Let u be the child of l′i(v) in Tl that is ancestor to v. Then l′i(v) =

l′i(u) = pl[u] = ld2[u]−1(u). By definition of ld2[u]−1(u) there exists an edge (w,w′) ∈ L̂d2[u]−1 where
w = ld2[u]−1(u) and d2[w] ≤ i < d2[w′] ≤ d2[u] and by setting (v, i, (w,w′)) = (u, d2[u] − 1, (w,w′))

in lemma 3.22 we get (w,w′) ∈ L̂i(u), and therefore l′i(v) ∈ init(L̂i(u)). But since u v we have
L̂i(u) ⊆ L̂i(v) by Lemma 3.21 and we are done.

Lemma 3.26. Let v ∈ V and 0 ≤ i ≤ j then

l′i(l
′
j(v)) = l′i(v) ∧ r′i(r

′
j(v)) = r′i(v)

Proof. l′j(v) is on the path from v to l′i(v) in Tl, so this follows trivially from the recursion. The case for r′

is symmetric.

Lemma 3.27. Let v ∈ V , and 0 ≤ i < d2[v]− 1, then

li(v) = ⊥ =⇒ l′i(li+1(v)) = ⊥ ∧ ri(v) = ⊥ =⇒ r′i(ri+1(v)) = ⊥

Proof. If li(v) = ⊥ then L̂i(v) = ∅, so either li+1(v) = ⊥ implying l′i(li+1(v)) = ⊥ by the definition
of l′, or li+1(v) 6∈ init(L̂i(v)) so d2[li+1(v)] = i + 1 and by Lemma 3.25 and Lemma 3.21 l′i(li+1(v)) ∈
init(L̂i(li+1(v)))∪{⊥} ⊆ init(L̂i(v))∪{⊥} = {⊥} so again l′i(li+1(v)) = ⊥. The case for r is symmetric.

11

44 Appendix A: Planar Reachability in Linear Space and Constant Time

v

l'i(li+1(v)) li(v)

mi(v)

li+1(v)

Figure 3: The best path from Li(v)
goes via ri+1(v).

Lemma 3.28 (Crossing lemma). Let v ∈ V , and 0 ≤ i < d2[v]− 1.

li(v) 6= l′i(li+1(v)) =⇒ li(v) = l′i(m) ∧ ri(v) = r′i(m) ∧ d2[m] = i+ 1

where m = ri+1(v) 6= ⊥
ri(v) 6= r′i(ri+1(v)) =⇒ li(v) = l′i(m) ∧ ri(v) = r′i(m) ∧ d2[m] = i+ 1

where m = li+1(v) 6= ⊥

Proof. Suppose li(v) 6= l′i(li+1(v)) (the case ri(v) 6= r′i(ri+1(v)) is symmetrical). Then li(v) 6= ⊥ by
lemma 3.27. Thus there is a last edge (w,w′) ∈ L̂i(v) with w = li(v) and d2[w] ≤ i < d2[w′] and a path
P = w′ v.

Now (w,w′) 6∈ Ei+1(v) since otherwise by Definition 3.19 (w,w′) ∈ Li+1(v) and since w′ v even
(w,w′) ∈ L̂i+1(v) implying li(v) = li+1(v) and thus li(v) = l′i(li+1(v)) by lemma 3.25, contradicting our
assumption.

Since (w,w′) 6∈ Ei+1(v), the path P must cross F̂i+1(v). Let (u, u′) be the last edge in P ∩ F̂i+1(v).
Then w′ u so d2[u] ≥ i + 1 and (u, u′) 6∈ Li+1(v) since otherwise d2[li+1(v)] = i + 1 and hence by
Lemma 3.25 li(v) = l′i(li+1(v)), again contradicting our assumption. Since F̂i+1(v) 6= ∅, we therefore have
(u, u′) ∈ R̂i+1(v).

But then we can choose P so it goes through (m,m′) where m = ri+1(v) 6= ⊥. Now i+ 1 ≤ d2[w′] ≤
d2[ri+1(v)] ≤ i+ 1 so d2[m] = i+ 1.

Let e be the last edge in R̂i(v) then any path ri(v) v that starts with e crosses P ∪ R̂i+1(v), implying
that there exists such a path that contains (m,m′) and thus ri(v) = ri(m). Since d2[m] = i+ 1, then
li(v) = l′i(m) and ri(v) = r′i(m) follows from lemma 3.25.

Definition 3.29. Let v ∈ V and 0 ≤ i < d2[v].

mi(v) :=

v if i+ 1 = d2[v]

li+1(v) if i+ 1 < d2[v] ∧ ri(v) 6= r′i(ri+1(v))

ri+1(v) if i+ 1 < d2[v] ∧ li(v) 6= l′i(li+1(v))

mi+1(v) otherwise

Corollary 3.30. Let v ∈ V and 0 ≤ i < d2[v]− 1. If li(v) 6= l′i(li+1(v)) or ri(v) 6= r′i(ri+1(v)) then

li(v) = l′i(mi(v)) ∧ ri(v) = r′i(mi(v)) ∧ d2[mi(v)] = i+ 1

Proof. This is just a reformulation of lemma 3.28 in terms of mi(v).

Lemma 3.31. For any vertex v ∈ V and 0 ≤ i < d2[v]

li(v) = l′i(mi(v)) ∧ ri(v) = r′i(mi(v))

12

Appendix A: Planar Reachability in Linear Space and Constant Time 45

Proof. The proof is by induction on j, the number of times the “otherwise” case is used before reaching one
of the other cases when expanding the recursive definition of mi(v).

For j = 0, either i + 1 = d2[v] and the result follows from Lemma 3.25, or i + 1 < d2[v] and
li(v) 6= l′i(li+1(v)) or ri(v) 6= r′i(ri+1(v)). In either case we have by Corollary 3.30, that li(v) = l′i(mi(v))
and ri(v) = r′i(mi(v)).

For j > 0 we have i + 1 < d2[v] and li(v) = l′i(li+1(v)) and ri(v) = r′i(ri+1(v)) and mi(v) =
mi+1(v). By induction we can assume that li+1(v) = l′i+1(mi+1(v)) and ri+1(v) = r′i+1(mi+1(v)).
Then by Lemma 3.26, l′i(li+1(v)) = l′i(l

′
i+1(mi+1(v))) = l′i(mi+1(v)) = l′i(mi(v)), showing that li(v) =

l′i(mi(v)) as desired. The case for r is symmetric.

Definition 3.32. For any vertex v ∈ V , let

M [v] := {i| 0 < i < d2[v] ∧mi−1(v) 6= mi(v)}

pm[v] :=

{
⊥ if M [v] = ∅
mmaxM [v]−1(v) otherwise

And define Tm as the rooted forest over V whose parent pointers are pm.

Theorem 3.33. There exists a practical RAM data structure that for any good st-decomposition of a graph
with n vertices uses O(n) words of O(log n) bits and can answer li(v) and ri(v) queries in constant time.

Proof. For any vertex v ∈ V , let

Dl[v] := {i| v has a proper ancestor w in Tl with d2[w] = i}
Dr[v] := {i| v has a proper ancestor w in Tr with d2[w] = i}

Now, store levelancestor structures for each of Tl, Tr, and Tm, together with d2[v], Dl[v], Dr[v], and M [v]
for each vertex. Since the height of the st-decomposition isO(log n) each of Dl[v], Dr[v], and M [v] can be
represented in a single O(log n)-bit word.

This representation allows us to find d2[mi(v)] = succ(M [v] ∪ {d2[v]} , i) in constant time, as well as
computing the depth in Tm of mi(v). Then using the levelancestor structure for Tm we can compute mi(v)
in constant time.

Similarly, this representation of the Dl[v] set lets us compute the depth in Tl of l′i(v) in constant time,
and with the levelancestor structure that lets us compute l′i(v) in constant time. A symmetric argument
shows that we can compute r′i(v) in constant time.

Finally, lemma 3.31 says we can compute li(v) and ri(v) in constant time given constant-time functions
for l′, r′, and m.

3.4 4-frames

Definition 3.34. Let x be a node in an s-t-decomposition such that Fx is a 4-frame, and let y be its parent.
Let s0

x and s1
x be the source corners on Fx and let t0x and t1x be the target corners on Fx, numbered such that

their clockwise cyclic order on Fx is s0
x, t

0
x, s

1
x, t

1
x, and such that if Fy is a 4-frame there is an α ∈ {0, 1} so

tαx = tαy .

Definition 3.35. Let E4 be the set of edges (u, v) such if x is the node in the s-t-decomposition that contains
v, then (u, v) ∈ Ex and Fx is a 4-frame. Let (L0,R0,L1,R1) be the partition of E4 defined as follows: For
each (u, v) ∈ E4 let x be the node such that v ∈ Cx, and let y be the node (if it exists) closest to the root of
T such that

13

46 Appendix A: Planar Reachability in Linear Space and Constant Time

• For any z that is ancestor to x and descendent to y, Fz is a 4-frame.

• (u, v) ∈ Ey.

• u is not a target vertex of Fy.

If y exists, then (u, v) is incident to a corner c on Fy. If there is an α ∈ {0, 1} such that c is on the clockwise
disegment of Fy between sαy and tαy we assign (u, v) to Rα. Otherwise there must be an α ∈ {0, 1} such
that c is on the counterclockwise disegment of Fy between s1−α

y and tαy , and we assign (u, v) to Lα. If no
such y exists, (u, v) must be incident to tαx for some α ∈ {0, 1} and we (arbitrarily) assign (u, v) to Lα.

Definition 3.36. Let T be an st-decomposition of G = (V,E). For any vertex v ∈ V define:

c[v] := The node x in T such that v ∈ V [Cx]

d[v] := The depth of c[v] in T
J2[v] := {depth(x)| x is a non-root ancestor to c[v] in T and Fx is a 2-frame}
j2[v] := max(J2[v]))

The number j2[v] is especially useful for 4-frame nodes. On the path from the root to the component of
v in the s-t-decomposition tree, there will be a last component whose frame is a 2-frame. We call the depth
of the next component on the path j2[v]. If c[v] has a 4-frame, then for the rest of the path, that is, depth i
with j2[v] ≤ i < d[v], we will have 4-frames nested in 4-frames, which gives a lot of useful structure.

Definition 3.37. For any j2[v] ≤ i < d[v] and α ∈ {0, 1}, let x be the ancestor of c[v] at depth i + 1 and
define:

Ei(v) := Ex

Lαi (v) := Ex ∩ Lα
Rαi (v) := Ex ∩Rα

L̂αi (v) :=
{

(w,w′) ∈ Lαi (v)
∣∣ w′ v

}

R̂αi (v) :=
{

(w,w′) ∈ Rαi (v)
∣∣ w′ v

}

F̂i(v) := L̂0
i (v) ∪ R̂0

i (v) ∪ L̂1
i (v) ∪ R̂1

i (v)

lαi (v) :=

{
⊥ if L̂αi (v) = ∅
the last vertex in init(L̂αi (v)) on the counterclockwise dipath of Fx otherwise

rαi (v) :=

{
⊥ if R̂αi (v) = ∅
the last vertex in init(R̂αi (v)) on the clockwise dipath of Fx otherwise

sαi (v) := The vertex associated with sαx
tαi (v) := The vertex associated with tαx

Additionally, let Lαi (v) and L̂αi (v) be totally ordered by the position of the starting vertices on the counter-
clockwise disegment of Fx and the clockwise order around each starting vertex. Similarly let Rαi (v) and
R̂αi (v) be totally ordered by the position of the starting vertices on the clockwise disegment of Fx and the
counterclockwise order around each starting vertex.

We know from Section 3.3 that we can find the relevant vertices on each 2-frame surrounding v. The
goal in this section is a data structure for efficiently computing lαi (v) and rαi (v) for j2[v] ≤ i < d[v].

14

Appendix A: Planar Reachability in Linear Space and Constant Time 47

Lemma 3.38. For any vertex v ∈ V and j2[v] ≤ i < d[v]: F̂i(v) 6= ∅

Proof. Let x be the ancestor of c[v] at depth i + 1. Since G is a single-source graph, there is a path from s
to v. This path must contain a vertex in V [Fx]. But then the edge following the last such vertex on the path
must be in L̂0

i (v) ∪ R̂0
i (v) ∪ L̂1

i (v) ∪ R̂1
i (v) which is therefore nonempty.

Lemma 3.39. For any u, v ∈ V , j2[v] ≤ i < d[u], and α ∈ {0, 1}: If u v then L̂αi (u) ⊆ L̂αi (v) and
R̂αi (u) ⊆ R̂alphai(v).

Proof. Since u v, c[u] is ancestor to c[v] and so Lαi (u) = Lαi (v) and hence L̂αi (u) ⊆ L̂αi (v). Similarly,
Rαi (u) = Rαi (v) and R̂αi (u) ⊆ R̂αi (v).

Lemma 3.40. Given any vertex v ∈ V , j2[v] ≤ i < d[v], α ∈ {0, 1}, and (w,w′) ∈ Ei(v). Then:

(w,w′) ∈ L̂αi (v) =⇒ (w,w′) ∈ L̂αi′(v) for all i′,max {d[w], j2[v]} ≤ i′ < min
{
d[w′], d[v]

}

(w,w′) ∈ R̂αi (v) =⇒ (w,w′) ∈ R̂αi′(v) for all i′,max {d[w], j2[v]} ≤ i′ < min
{
d[w′], d[v]

}

Proof. Let j = max {d[w], j2[v]} and k = min {d[w′], d[v]}. Clearly (w,w′) ∈ Ei′ for all j ≤ i′ < k.
Suppose (w,w′) ∈ L̂αi (v) ⊆ Lαi (v), then since j ≤ i < k the definition give us (w,w′) ∈ Lαi′(v) for all
j ≤ i′ < k. And since w′ v this implies (w,w′) ∈ L̂αi′(v) for all j ≤ i′ < k and the result follows. The
case for R is symmetric.

Definition 3.41. For any vertex v ∈ V and α ∈ {0, 1} let

pαl [v] :=

{
⊥ if d[v] = 0 ∨ Fd[v]−1(v) is a 2-frame
lαd[v]−1(v) otherwise

pαr [v] :=

{
⊥ if d[v] = 0 ∨ Fd[v]−1(v) is a 2-frame
rαd[v]−1(v) otherwise

and let Tαl and Tαr denote the rooted forests over V whose parent pointers are pαl and pαr respectively.

Definition 3.42. For any v ∈ V ∪ {⊥}, α ∈ {0, 1}, and i ≥ j2[v] let

l′αi (v) :=

{
v if v = ⊥ ∨ d[v] ≤ i
l′αi (pαl [v]) otherwise

r′αi (v) :=

{
v if v = ⊥ ∨ d[v] ≤ i
r′αi (pαr [v]) otherwise

Lemma 3.43. Let v ∈ V , α ∈ {0, 1}, and i ≥ j2[v] be given, then

i = d[v]− 1 =⇒ l′αi (v) = lαi (v) ∧ r′αi (v) = rαi (v)

i ≤ d[v]− 1 =⇒ l′αi (v) ∈ init(L̂αi (v)) ∪ {⊥} ∧ r′αi (v) ∈ init(R̂αi (v)) ∪ {⊥}
i > d[v]− 1 =⇒ l′αi (v) = v ∧ r′αi (v) = v

15

48 Appendix A: Planar Reachability in Linear Space and Constant Time

Proof. We will show this for l′ only, as r′ is completely symmetrical. If i > d[v] − 1 then d[v] ≤ i and
we get l′αi (v) = v directly from the definition of l′. Similarly if i = d[v] − 1 then l′αi (v) = l′αi (pαl [v]) =

l′αi (lαd[v]−1(v)) = l′αi (lαi (v)) = lαi (v) ∈ init(L̂αi (v)) ∪ {⊥}. Finally suppose i < d[v] − 1. If l′αi (v) = ⊥
we are done, so suppose that is not the case. Let u be the child of l′αi (v) in Tl that is ancestor to v. Then
l′αi (v) = l′αi (u) = pαl [u] = lαd[u]−1(u). By definition of lαd[u]−1(u) there exists an edge (w,w′) ∈ L̂αd[u]−1

where w = lαd[u]−1(u) and d[w] ≤ i < d[w′] ≤ d[u] and by setting (v, i, (w,w′)) = (u, d[u] − 1, (w,w′))

in lemma 3.40 we get (w,w′) ∈ L̂αi (u), and therefore l′αi (v) ∈ init(L̂αi (u)). But since u v we have
L̂αi (u) ⊆ L̂αi (v) by Lemma 3.39 and we are done.

Lemma 3.44. Let v ∈ V , α ∈ {0, 1}, and j2[v] ≤ i ≤ j then

l′αi (l′αj (v)) = l′αi (v) ∧ r′αi (r′αj (v)) = r′αi (v)

Proof. l′αj (v) is on the path from v to l′αi (v) in Tl, so this follows trivially from the recursion. The case for
r′ is symmetric.

Lemma 3.45. Let v ∈ V , α ∈ {0, 1}, and j2[v] ≤ i < d[v]− 1, then

lαi (v) = ⊥ =⇒ l′αi (lαi+1(v)) = ⊥ ∧ rαi (v) = ⊥ =⇒ r′αi (rαi+1(v)) = ⊥

Proof. If lαi (v) = ⊥ then L̂αi (v) = ∅, so either lαi+1(v) = ⊥ implying l′αi (lαi+1(v)) = ⊥ by the definition of
l′, or lαi+1(v) 6∈ init(L̂αi (v)) so d[lαi+1(v)] = i + 1 and by Lemma 3.43 l′αi (lαi+1(v)) ∈ init(L̂αi (lαi+1(v))) ∪
{⊥} ⊆ init(L̂αi (v)) ∪ {⊥} = {⊥} so again l′αi (lαi+1(v)) = ⊥. The case for r is symmetric.

Lemma 3.46 (Crossing lemma). Let v ∈ V , α ∈ {0, 1}, and j2[v] ≤ i < d[v]− 1.

lαi (v) 6= l′αi (lαi+1(v)) =⇒ lαi (v) = l′αi (m) ∧ rαi (v) = r′αi (m) ∧ d[m] = i+ 1

where m = rαi+1(v) 6= ⊥
rαi (v) 6= r′αi (rαi+1(v)) =⇒ lαi (v) = l′αi (m) ∧ rαi (v) = r′αi (m) ∧ d[m] = i+ 1

where m = lαi+1(v) 6= ⊥

Proof. Suppose lαi (v) 6= l′αi (lαi+1(v)) (the case rαi (v) 6= r′αi (rαi+1(v)) is symmetrical). Then lαi (v) 6= ⊥ by
lemma 3.45. Thus there is a last edge (w,w′) ∈ L̂αi (v) with w = lαi (v) and d[w] ≤ i < d[w′] and a path
P = w′ v.

Now (w,w′) 6∈ Ei+1(v) since otherwise by Definition 3.37 (w,w′) ∈ Lαi+1(v) and since w′ v even
(w,w′) ∈ L̂αi+1(v) implying lαi (v) = lαi+1(v) and thus lαi (v) = l′αi (lαi+1(v)) by lemma 3.43, contradicting
our assumption.

Since (w,w′) 6∈ Ei+1(v), the path P must cross F̂i+1(v). Let (u, u′) be the last edge in P ∩ F̂i+1(v).
Then w′ u so d[u] ≥ i + 1 and (u, u′) 6∈ Lαi+1(v) since otherwise d[lαi+1(v)] = i + 1 and hence by
Lemma 3.43 lαi (v) = l′αi (lαi+1(v)), again contradicting our assumption.

Also, tαi (v) 6= tαi+1(v) because tαi (v) = tαi+1(v) would imply (w,w′) ∈ Lαi+1(v) ∪ {⊥} which we have
just shown is not the case.

Since tαi (v) 6= tαi+1(v), then by definition t1−αi (v) = t1−αi+1 (v) and hence L1−α
i+1 (v) ⊆ L1−α

i (v) and
R1−α
i+1 (v) ⊆ R1−α

i (v), implying d[w′′] ≤ i for all w′′ ∈ L1−α
i+1 (v) ∪ R1−α

i+1 (v). Thus, (u, u′) 6∈ L1−α
i+1 (v) ∪

R1−α
i+1 (v) since d[u] > i, and we can conclude that (u, u′) ∈ R̂αi+1(v).

16

Appendix A: Planar Reachability in Linear Space and Constant Time 49

s0i

s1i

t1i

t0i

m0i

v

Figure 4: Sometimes the best path from L0
i (v) to v must go through R0

i+1(v).

But then we can choose P so it goes through (m,m′) where m = rαi+1(v) 6= ⊥. Now i+ 1 ≤ d[w′] ≤
d[rαi+1(v)] ≤ i+ 1 so d[m] = i+ 1.

Let e be the last edge in R̂αi (v) then any path rαi (v) v that starts with e crosses P ∪ R̂αi+1(v),
implying that there exists such a path that contains (m,m′) and thus rαi (v) = rαi (m). Since d[m] = i+ 1,
then lαi (v) = l′αi (m) and rαi (v) = r′αi (m) follows from lemma 3.43.

Definition 3.47. Let v ∈ V , α ∈ {0, 1}, and 0 ≤ i < d[v].

mα
i (v) :=

v if i+ 1 = d[v]

lαi+1(v) if i+ 1 < d[v] ∧ rαi (v) 6= r′αi (rαi+1(v))

rαi+1(v) if i+ 1 < d[v] ∧ lαi (v) 6= l′αi (lαi+1(v))

mα
i+1(v) otherwise

Corollary 3.48. Let v ∈ V , α ∈ {0, 1}, and j2[v] ≤ i < d[v] − 1. If lαi (v) 6= l′αi (lαi+1(v)) or rαi (v) 6=
r′αi (rαi+1(v)) then

lαi (v) = l′αi (mα
i (v)) ∧ rαi (v) = r′αi (mα

i (v)) ∧ d[mα
i (v)] = i+ 1

Proof. This is just a reformulation of lemma 3.46 in terms of mα
i (v).

Lemma 3.49. For any vertex v ∈ V , α ∈ {0, 1}, and j2[v] ≤ i < d[v]

lαi (v) = l′αi (mα
i (v)) ∧ rαi (v) = r′αi (mα

i (v))

Proof. The proof is by induction on j, the number of times the “otherwise” case is used before reaching one
of the other cases when expanding the recursive definition of mi(v).

17

50 Appendix A: Planar Reachability in Linear Space and Constant Time

For j = 0, either i + 1 = d[v] and the result follows from Lemma 3.43, or i + 1 < d[v] and li(v) 6=
l′i(li+1(v)) or ri(v) 6= r′i(ri+1(v)). In either case we have by Corollary 3.48, that lαi (v) = l′αi (mα

i (v)) and
rαi (v) = r′αi (mα

i (v)).
For j > 0 we have i + 1 < d[v] and li(v) = l′i(li+1(v)) and ri(v) = r′i(ri+1(v)) and mi(v) =

mi+1(v). By induction we can assume that lαi+1(v) = l′αi+1(mα
i+1(v)) and rαi+1(v) = r′αi+1(mα

i+1(v)).
Then by Lemma 3.44, l′αi (lαi+1(v)) = l′αi (l′αi+1(mα

i+1(v))) = l′αi (mα
i+1(v)) = l′αi (mα

i (v)), showing that
lαi (v) = l′αi (mα

i (v)) as desired. The case for r is symmetric.

Definition 3.50. For any vertex v ∈ V , and α ∈ {0, 1} let

Mα[v] :=
{
i
∣∣ j2[v] < i < d[v] ∧mα

i−1(v) 6= mα
i (v)

}

pαm[v] :=

{
⊥ if Mα[v] = ∅
mα

maxMα[v]−1(v) otherwise

And define Tαm as the rooted forest over V whose parent pointers are pαm.

Theorem 3.51. There exists a practical RAM data structure that for any good st-decomposition of a graph
with n vertices uses O(n) words of O(log n) bits and can answer lαi (v) and rαi (v) queries in constant time.

Proof. For any vertex v ∈ V , and α ∈ {0, 1} let

Dα
l [v] := {i| v has a proper ancestor w in Tαl with d[w] = i}

Dα
r [v] := {i| v has a proper ancestor w in Tαr with d[w] = i}

Now, store levelancestor structures for each of Tαl , Tαr , and Tαm, together with d[v], j2[v], J2[v], Dα
l [v],

Dα
r [v], and Mα[v] for each vertex. Since the height of the st-decomposition is O(log n) each of J2[v],

Dα
l [v], Dα

r [v], and Mα[v] can be represented in a single O(log n)-bit word.
This representation allows us to find d[mα

i (v)] = succ(Mα[v] ∪ {d[v]} , i) in constant time, as well as
computing the depth in Tαm ofmα

i (v). Then using the levelancestor structure for Tαm we can computemα
i (v)

in constant time.
Similarly, this representation of the Dα

l [v] set lets us compute the depth in Tαl of l′αi (v) in constant time,
and with the levelancestor structure that lets us compute l′αi (v) in constant time. A symmetric argument
shows that we can compute r′αi (v) in constant time.

Finally, lemma 3.49 says we can compute lαi (v) and rαi (v) in constant time given constant-time functions
for l′, r′, and m.

4 Acyclic planar In- out- graphs

For an in-out-graph G we have a source, s, that can reach all vertices of outdegree 0. Given such a source, s,
we may assign all vertices a colour: A vertex is green if it can be reached from s, and red otherwise. We may
also colour the directed edges: (u, v) has the same colour as its endpoints, or is a blue edge in the special
case where u is red and v is green. Our idea is to keep the colouring and flip all non-green edges, thus
obtaining a single source graph H with source s. (Any vertex was either green and thus already reachable
from s, or could reach some target t, and is reachable from s in H via the first green vertex on its path to t.)

Consider the single source reachability data structure for the red-green graph, H . This alone does not
suffice to determine reachability in G, but it does when endowed with a few extra words per vertex:

M1 A red vertex u must remember the additional information of the best green vertices BestGreen(u) on
its own parent frame it can reach. There are at most 4 such vertices, one for each disegment.

18

Appendix A: Planar Reachability in Linear Space and Constant Time 51

M2 Information about paths from a red to a green vertex in the same component. See Section 4.1.

M3 Information about paths from a red vertex in some component C to a green vertex in an ancestor
component of C. See Section 4.2.

Given a green vertex v, we know for each ancestral frame segment the best vertex that can reach v. For
a red vertex u, given a segment p on an ancestral frame to u, we have information about the best vertex on p
that may reach u in H via “ingoing” edges, that is, an edge from the corresponding F̂i(u). If that best vertex
is red, then it is the best vertex on p that u can reach, again, from the “inside”.

We may now case reachability based on the colour of nodes:

• For green u and red v, reachG(u, v) = No.

• For green vertices u, v, reachG(u, v) = reachH(u, v)

• For red vertices u, v, reachG(u, v) = reachH(v, u)

• When u is red and v is green, to determine reachG(u, v) we need more work. It will depend on where
in the hierarchy of components, u and v reside.

..
. ..

.

...

v1,v3

v2,v4 u3,u4

u1,u2

When u is red and v is green, there are the following cases.

1. c[u] = c[v]. There may be a path from u to v:

◦ Via a green vertex w in the parent frame of u. For each candidate
w ∈ BestGreen(u), try reachH(w, v). (See M1).
◦ Staying within the frame, that is, reachc[u](u, v). To handle this case

we need to store more information, see Section 4.1.

2. c[u] ≺ c[v]. There may be a path from u to v:

◦ Via a green vertex w in the parent frame of u, reachH(w, v). (See M1).
◦ Via a green vertex w, where c[w] = c[u], then reachG(u,w) is in case 1

above. v knows the at most 4 such ws from the single source structure.

3. c[u] � c[v]. There may be a path from u to v:

◦ Via a red edge (w′, w) inGwith c[w] � c[v] ≺ c[w′] � c[u]. That is, in
the single-source structure for H , u can find its best vertex w for each
disegment of the parent frame of c[v]. For a path via that disegment to
exist, w must be red, and reachG(w, v), which is in case 1 or 2 above,
must return true.
◦ Via a blue edge (w′, w) with c[w] � c[v] ≺ c[w′] � c[u]. We handle

this case in Section 4.2.

4. c[u], c[v] � N , where N = lca(c[u], c[v]). A path from u to v must go:

◦ Via w, c[w] � N , then reachG(u,w) is in case 3 above. v computes at most 4 such ws from the
single source structure, and note that all the vertices that v computes must be green.

19

52 Appendix A: Planar Reachability in Linear Space and Constant Time

4.1 Intracomponental blue edges

Consider the set of “blue” edges (a, b) from G where both the red vertex a and green b reside in some given
component in the s-t-decomposition of H .

Lemma 4.1. We may assign to each vertex ≤ 2 numbers, such that if red u remembers i, j ∈ N and green
v remembers l, r ∈ N, then u can reach v if and only if i ≤ l ≤ j or i ≤ r ≤ j or min{l, r} ≤ j < i or
j < i ≤ max{l, r}.

Proof. The key observation is that we may enumerate all blue edges b0 = (u0, v0), . . . bi = (um, vm)
such that any red vertex can reach a segment of their endpoints, vi, . . . , vj . Namely, the blue edges form a
minimal cut in the planar graph which separates the red from the green vertices, and this cut induces a cyclic
order. In this order, each red vertex may reach a segment of blue edges, and each green vertex may reach a
segment of blue edge endpoints. Thus, the blue edge endpoints reachable from a given red vertex (through
any path) is a union of overlapping segments, which is again a segment.

Now each red vertex remembers the indices of the first vi and last vj blue edge endpoint it may reach.
For a green vertex v, the s-t-subgraph with v as target has a delimiting face consisting of two paths, P and
Q. v remembers the indices l, r of the latest blue edge endpoints vl ∈ P and vr ∈ Q, if they exist. Clearly,
if l or r is within range, u may reach v. Contrarily, if u may reach v, it must do so via some vertex v′ on
P ∪Q. But then v′ must be able to reach vl or vr, and thus, l or r is within range.

4.2 Intercomponental blue edges

For any red vertex u, if a blue edge (u′, v) reachable from u is separated u by a frame, then one of the best
red vertices on that frame can reach u′. So let each red vertex remember the best≤ 4 blue edges it can reach
on its own frame. Then we can define 4 bitmasks {Bβ(u)}0≤β≤3 such that for any i finding the highest 1-bit
≤ i in each, gives at most 4 levels such that the best red vertices reachable from u on those levels together
know the best blue edges for u.

References

[1] S. Alstrup, J. Holm, K. de Lichtenberg, and M. Thorup. Maintaining information in fully dynamic
trees with top trees. ACM Trans. Algorithms, 1(2):243–264, October 2005.

[2] S. Alstrup, J. P. Secher, and M. Spork. Optimal on-line decremental connectivity in trees. Inf. Process.
Lett., 64:161–164, 1997.

[3] S. Arikati, D.Z. Chen, L.P. Chew, G. Das, M. Smid, and C.D. Zaroliagis. Planar spanners and approx-
imate shortest path queries among obstacles in the plane. In ESA ’96, pages 514–528, 1996.

[4] D.Z. Chen and J. Xu. Shortest path queries in planar graphs. In STOC ’00, pages 469–478, 2000.

[5] H. Djidjev. Efficient algorithms for shortest path queries in planar digraphs. In WG ’96, pages 151–165,
1996.

[6] H. Djidjev, G. Panziou, and C. Zaroliagis. Computing shortest paths and distances in planar graphs. In
ICALP ’91, pages 327–339, 1991.

[7] H. Djidjev, G. Panziou, and C. Zaroliagis. Fast algorithms for maintaining shortest paths in outerplanar
and planar digraphs. In FCT ’95, pages 191–200, 1995.

20

Appendix A: Planar Reachability in Linear Space and Constant Time 53

[8] D. Harel and R. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM J. Comput.,
13(2):338–355, 1984.

[9] T. Kameda. On the vector representation of the reachability in planar directed graphs. Inf. Process.
Lett., 3(3):75–77, 1975.

[10] K. Kawarabayashi, P.N. Klein, and C. Sommer. Linear-space approximate distance oracles for planar,
bounded-genus, and minor-free graphs. In ALP ’11, pages 135–146, 2011.

[11] K. Kawarabayashi, C. Sommer, and M. Thorup. More compact oracles for approximate distances in
undirected planar graphs. In SODA ’13, pages 550–563, 2013.

[12] B.W. Kernighan and D.M. Ritchie. The C Programming Language. Prentice Hall, 2nd edition, 1988.

[13] P. Klein. Preprocessing an undirected planar network to enable fast approximate distance queries. In
SODA ’02, pages 820–827, 2002.

[14] P. B. Miltersen. Lower bounds for static dictionaries on rams with bit operations but no multiplication.
In ICALP ’96, pages 442–453. 1996.

[15] S. Mozes and C. Sommer. Exact distance oracles for planar graphs. In SODA ’12, pages 209–222,
2012.

[16] M. Pǎtraşcu. Unifying the landscape of cell-probe lower bounds. SIAM J. Comput., 40(3):827–847,
2011. Announced at FOCS’08. See also arXiv:1010.3783.

[17] R. Tamassia and I.G. Tollis. Dynamic reachability in planar digraphs with one source and one sink.
Theor. Comput. Sci., 119(2):331–343, 1993.

[18] R. Tarjan. Depth first search and linear graph algorithms. SIAM J. Comput., 1972.

[19] M. Thorup. Compact oracles for reachability and approximate distances in planar digraphs. J. ACM,
51(6):993–1024, 2004.

[20] M. Thorup and U. Zwick. Approximate distance oracles. J. ACM, 52(1):183–192, 2005. Announced
at STOC’01.

21

54 Appendix A: Planar Reachability in Linear Space and Constant Time

Online Bipartite Matching with Amortized O(log2 n) Replacements

Aaron Bernstein1, Jacob Holm∗2, and Eva Rotenberg†3

1Technical University of Berlin, bernstei@gmail.com
2University of Copenhagen (DIKU), jaho@di.ku.dk

3Technical University of Denmark, erot@dtu.dk

May 7, 2018

Abstract

In the online bipartite matching problem with replacements, all the vertices on one side of
the bipartition are given, and the vertices on the other side arrive one by one with all their
incident edges. The goal is to maintain a maximum matching while minimizing the number
of changes (replacements) to the matching. We show that the greedy algorithm that always
takes the shortest augmenting path from the newly inserted vertex (denoted the SAP protocol)
uses at most amortized O(log2 n) replacements per insertion, where n is the total number of
vertices inserted. This is the first analysis to achieve a polylogarithmic number of replacements
for any replacement strategy, almost matching the Ω(logn) lower bound. The previous best
strategy known achieved amortized O(

√
n) replacements [Bosek, Leniowski, Sankowski, Zych,

FOCS 2014]. For the SAP protocol in particular, nothing better than then trivial O(n) bound
was known except in special cases. Our analysis immediately implies the same upper bound of
O(log2 n) reassignments for the capacitated assignment problem, where each vertex on the static
side of the bipartition is initialized with the capacity to serve a number of vertices.

We also analyze the problem of minimizing the maximum server load. We show that
if the final graph has maximum server load L, then the SAP protocol makes amortized
O(min{L log2 n,

√
n logn}) reassignments. We also show that this is close to tight because

Ω(min{L,√n}) reassignments can be necessary.

∗This research is supported by Mikkel Thorup’s Advanced Grant DFF-0602-02499B from the Danish Council for
Independent Research under the Sapere Aude research career programme.
†This research was partly conducted during the third author’s time as a PhD student at University of Copenhagen.

ar
X

iv
:1

70
7.

06
06

3v
4

 [
cs

.D
S]

 4
 M

ay
 2

01
8

Appendix B: Online Bipartite Matching with Amortized O(log2 n) Replacements 55

1 Introduction
In the online bipartite matching problem, the vertices on one side are given in advance (we call
these the servers S), while the vertices on the other side (the clients C) arrive one at a time with
all their incident edges. In the standard online model the arriving client can only be matched
immediately upon arrival, and the matching cannot be changed later. Because of this irreversibility,
the final matching might not be maximum; no algorithm can guarantee better than a (1 − 1/e)-
approximation [22]. But in many settings the irreversibility assumption is too strict: rematching a
client is expensive but not impossible. This motivates the online bipartite matching problem with
replacements, where the goal is to at all times match as many clients as possible, while minimizing
the number of changes to the matching. Applications include hashing, job scheduling, web hosting,
streaming content delivery, and data storage; see [8] for more details.

In several of the applications above, a server can serve multiple clients, which raises the question
of online bipartite assignment with reassignments. There are two ways of modeling this:

Capacitated assignments. Each server s comes with the capacity to serve some number of clients
u(s), where each u(s) is given in advance. Clients should be assigned to a server, and at no
times should the capacity of a server be exceeded. There exists an easy reduction showing
that this problem is equivalent to online matching with replacements [2]. A more formal
description is given in Section 6.1.

Minimize max load. There is no limit on the number of clients a server can serve, but we want
to (at all times) distribute the clients as “fairly” as possible, while still serving all the clients.
Defining the load on a server as the number of clients assigned to it, the task is to, at all times,
minimize the maximum server load — with as few reassignments as possible. A more formal
description is given in Section 6.2

While the primary goal is to minimize the number of replacements, special emphasis has been
placed on analyzing the SAP protocol in particular, which always augments down a shortest
augmenting path from the newly arrived client to a free server (breaking ties arbitrarily). This is
the most natural replacement strategy, and shortest augmenting paths are already of great interest
in graph algorithms: they occur in for example in Dinitz’ and Edmonds and Karp’s algorithm for
maximum flow [9,10], and in Hopcroft and Karp’s algorithm for maximum matching in bipartite
graphs [19].

Throughout the rest of the paper, we let n be the number of clients in the final graph, and
we consider the total number of replacements during the entire sequence of insertions; this is
exactly n times the amortized number of replacements. The reason for studying the vertex-arrival
model (where each client arrives with all its incident edges) instead of the (perhaps more natural)
edge-arrival model is the existence of a trivial lower bound of Ω(n2) total replacements in this model:
Start with a single edge, and maintaining at all times that the current graph is a path, add edges
to alternating sides of the path. Every pair of insertions cause the entire path to be augmented,
leading to a total of ∑n/2

i=1 i ∈ Ω(n2) replacements.

1.1 Previous work
The problem of online bipartite matchings with replacements was introduced in 1995 by Grove, Kao,
Krishnan, and Vitter [13], who showed matching upper and lower bounds of Θ(n logn) replacements

1

56 Appendix B: Online Bipartite Matching with Amortized O(log2 n) Replacements

for the case where each client has degree two. In 2009, Chadhuri, Daskalakis, Kleinberg, and Lin [8]
showed that for any arbitrary underlying bipartite graph, if the client vertices arrive in a random
order, the expected number of replacements (in their terminology, the switching cost) is Θ(n logn)
using SAP, which they also show is tight. They also show that if the bipartite graph remains a
forest, there exists an algorithm (not SAP) with O(n logn) replacements, and a matching lower
bound. Bosek, Leniowski, Sankowski and Zych later analyzed the SAP protocol for forests, giving
an upper bound of O(n log2 n) replacements [6], later improved to the optimal O(n logn) total
replacements [7]. For general bipartite graphs, no analysis of SAP is known that shows better than
the trivial O(n2) total replacements. Bosek et al. [5] showed a different algorithm that achieves
a total of O(n

√
n) replacements. They also show how to implement this algorithm in total time

O(m
√
n), which matches the best performing combinatorial algorithm for computing a maximum

matching in a static bipartite graph (Hopcroft and Karp [19]).
The lower bound of Ω(logn) by Grove et al. [13] has not been improved since, and is conjectured

by Chadhuri et al. [8] to be tight, even for SAP, in the general case. We take a giant leap towards
closing that conjecture.

For the problem of minimizing maximum load, [15] and [2] showed an approximation solution:
with only O(1) amortized changes per client insertion they maintain an assignment A such that at
all times the maximum load is within a factor of 8 of optimum.

The model of online algorithms with replacements – alternatively referred to as online algorithms
with recourse – has also been studied for a variety of problems other than matching. The model
is similar to that of online algorithms, except that instead of trying to maintain the best possible
approximation without making any changes, the goal is to maintain an optimal solution while
making as few changes to the solution as possible. This model encapsulates settings in which
changes to the solution are possible but expensive. The model originally goes back to online
Steiner trees [20], and there have been several recent improvements for online Steiner tree with
recourse [14, 17, 24, 25]. There are many papers on online scheduling that try to minimize the
number of job reassignments [1, 11, 26, 27, 29, 31]. The model has also been studied in the context of
flows [15,31], and there is a very recent result on online set cover with recourse [16].

1.2 Our results
Theorem 1. SAP makes at most O(n log2 n) total replacements when n clients are added.

This is a huge improvement of the O(n
√
n) bound by [5], and is only a log factor from the lower

bound of Ω(n logn) by [13]. It is also a huge improvement of the analysis of SAP; previously no
better upper bound than O(n2) replacements for SAP was known. To attain the result we develop a
new tool for analyzing matching-related properties of graphs (the balanced flow in Sections 3 and 4)
that is quite general, and that we believe may be of independent interest.

Although SAP is an obvious way of serving the clients as they come, it does not immediately
allow for an efficient implementation. Finding an augmenting path may take up to O(m) time,
where m denotes the total number of edges in the final graph. Thus, the naive implementation takes
O(mn) total time. However, short augmenting paths can be found substantially faster, and using
the new analytical tools developed in this paper, we are able to exploit this in a data structure that
finds the augmenting paths efficiently:

Theorem 2. There is an implementation of the SAP protocol that runs in total time O(m
√
n
√

logn).

2

Appendix B: Online Bipartite Matching with Amortized O(log2 n) Replacements 57

Note that this is only an O(
√

logn) factor from the offline algorithm of Hopcroft and Karp [19].
This offline algorithm had previously been matched in the online setting by the algorithm of Bosek et
al. [5], which has total running time O(m

√
n). Our result has the advantage of combining multiple

desired properties in a single algorithm: few replacements (O(n log2(n)) vs. O(n1.5) in [5]), fast
implementation (O(m

√
n
√

logn) vs. O(m
√
n) in [5]), and the most natural augmentation protocol

(shortest augmenting path).
Extending our result to the case where each server can have multiple clients, we use that the

capacitated assignment problem is equivalent to that of matching (see Section 6.1 to obtain:

Theorem 3. SAP uses at most O(n log2 n) reassignments for the capacitated assignment problem,
where n is the number of clients.

In the case where we wish to minimize the maximum load, such a small number of total
reassignments is not possible. Let opt(G) denote the minimum possible maximum load in graph
G. We present a lower bound showing that when opt(G) = L we may need as many as Ω(nL)
reassignments, as well as a nearly matching upper bound.

Theorem 4. For any positive integers n and L ≤
√
n/2 divisible by 4 there exists a graph G =

(C ∪ S,E) with |C| = n and opt(G) = L, along with an ordering in which the clients in C are
inserted, such that any algorithm for the exact online assignment problem requires a total of Ω(nL)
changes. This lower bound holds even if the algorithm knows the entire graph G in advance, as well
as the order in which the clients are inserted.

Theorem 5. Let C be the set of all clients inserted, let n = |C|, and let L = opt(G) be the
minimum possible maximum load in the final graph G = (C ∪ S,E). SAP at all times maintains an
optimal assignment while making a total of O(nmin {L log2 n,

√
n logn}) reassignments.

1.3 High level overview of techniques
Consider the standard setting in which we are given the entire graph from the beginning and want
to compute a maximum matching. The classic shortest-augmenting paths algorithm constructs
a matching by at every step picking a shortest augmenting path in the graph. We now show a
very simple argument that the total length of all these augmenting paths is O(n logn). Recall the
well-known fact that if all augmenting paths in the matching have length ≥ h, then the current
matching is at most 2n/h edges from optimal [19]. Thus the algorithm augments down at most
2n/h augmenting paths of length ≥ h. Let P1, P2, ..., Pk denote all the paths augmented down by
the algorithm in decreasing order of |Pi|; then k ≤ n, and |Pi| = h implies i ≤ 2n/h. But then
|Pi| ≤ 2n/i, so ∑1≤i≤k |Pi| ≤ 2n∑1≤i≤k

1
i = 2n(ln(k) +O(1)) = O(n log k) = O(n logn).

In the online setting, the algorithm does not have access to the entire graph. It can only choose
the shortest augmenting path from the arriving client c. We are nonetheless able to show a similar
bound for this setting:

Lemma 6. Consider the following protocol for constructing a matching: For each client c in
arbitrary order, augment along the shortest augmenting path from c (if one exists). Given any h,
this protocol augments down a total of at most 4n ln(n)/h augmenting paths of length > h.

The proof of our main theorem then follows directly from the lemma.

3

58 Appendix B: Online Bipartite Matching with Amortized O(log2 n) Replacements

Proof of Theorem 1. Note that the SAP protocol exactly follows the condition of Lemma 6.
Now, Given any 0 ≤ i ≤ log2(n) + 1, we say that an augmenting path is at level i if its length is in
the interval [2i, 2i+1). By Lemma 6, the SAP protocol augments down at most 4n ln(n)/2i paths of
level i. Since each of those paths contains at most 2i+1 edges, the total length of augmenting paths
of level i is at most 8n ln(n). Summing over all levels yields the desired O(n log2 n) bound.

The entirety of Sections 3 and 4 is devoted to proving Lemma 6. Previous algorithms attempted
to bound the total number of reassignments by tracking how some property of the matching M
changes over time. For example, the analysis of Gupta et al. [15] keeps track of changes to the
”height” of vertices in M , while the algorithm with O(n

√
n) reassignments [5] takes a more direct

approach, and uses a non-SAP protocol whose changes to M depend on how often each particular
client has already been reassigned.

Unfortunately such arguments have had limited success because the matching M can change
quite erratically. This is especially true under the SAP protocol, which is why it has only been
analyzed in very restrictive settings [6, 8, 13]. We overcome this difficulty by showing that it is
enough to analyze how new clients change the structure of the graph G = (C ∪ S,E), without
reference to any particular matching.

Intuitively, our analysis keeps track of how ”necessary” each server s is (denoted α(s) below).
So for example, if there is a complete bipartite graph with 10 servers and 10 clients, then all servers
are completely necessary. But if the complete graph has 20 servers and 10 clients, then while
any matching has 10 matched servers and 10 unmatched ones, it is clear that if we abstract away
from the particular matching every server is 1/2-necessary. Of course in more complicated graphs
different servers might have different necessities, and some necessities might be very close to 1 (say
1− 1/n2/3). Note that server necessities depend only on the graph, not on any particular matching.
Note also that our algorithm never computes the server necessities, as they are merely an analytical
tool.

We relate necessities to the number of reassignments with 2 crucial arguments. 1. Server
necessities only increase as clients are inserted, and once a server has α(s) = 1, then regardless
of the current matching, no future augmenting path will go through s. 2. If, in any matching,
the shortest augmenting path from a new client c is long, then the insertion of c will increase the
necessity of servers that already had high necessity. We then argue that this cannot happen too
many times before the servers involved have necessity 1, and thus do not partake in any future
augmenting paths.

1.4 Paper outline
In Section 2, we introduce the terminology necessary to understand the paper. In Section 3, we
introduce and reason about the abstraction of a balanced server flow, a number that reflects the
necessity of each server. In Section 4, we use the balanced server flow to prove Lemma 6, which
proves our main theorem that SAP makes a total of O(n log2 n) replacements. In Section 5, we
give an efficient implementation of SAP. Finally, in Section 6, we present our results on capacitated
online assignment, and for minimizing maximum server load in the online assignment problem.

4

Appendix B: Online Bipartite Matching with Amortized O(log2 n) Replacements 59

2 Preliminaries and notation
Let (C, S) be the vertices, and E be the edges of a bipartite graph. We call C the clients, and S
the servers. Clients arrive, one at a time, and we must maintain an explicit maximum matching of
the clients. For simplicity of notation, we assume for the rest of the paper that C 6= ∅. For any
vertex v, let N(v) denote the neighborhood of v, and for any V ⊆ C ∪ S let N(V) = ⋃

v∈V N(v).
Theorem 7 (Halls Marriage Theorem [18]). There is a matching of size |C| if and only if |K| ≤
|N(K)| for all K ⊆ C.
Definition 8. Given any matching in a graph G = (C ∪ S,E), an alternating path is one which
alternates between unmatched and matched edges. An augmenting path is an alternating path that
starts and ends with an unmatched vertex. Given any augmenting path P , “flipping” the matched
status of every edge on P gives a new larger matching. We call this process augmenting down P .

Denote by SAP the algorithm that upon the arrival of a new client c augments down the shortest
augmenting path from c; ties can be broken arbitrarily, and if no augmenting path from c exists
the algorithm does nothing. Chaudhuri et al. [8] showed that if the final graph contains a perfect
matching, then the SAP protocol also returns a perfect matching. We now generalize this as follows
Observation 9. Because of the nature of augmenting paths, once a client c or a server s is matched
by the SAP protocol, it will remain matched during all future client insertions. On the other hand,
if a client c arrives and there is no augmenting path from c to a free server, then during the entire
sequence of client insertions c will never be matched by the SAP protocol; no alternating path can go
through c because it is not incident to any matched edges.
Lemma 10. The SAP protocol always maintains a maximum matching in the current graph
G = (C ∪ S,E).
Proof. Consider for contradiction the first client c such that after the insertion of c, the matching
M maintained by the SAP protocol is not a maximum matching. Let C be the set of clients before
c was inserted. Since M is maximum in the graph G = (C ∪ S,E) but not in G′ = (C ∪ S ∪ {c} , E),
it is clear that c is matched in the maximum matching M ′ of G′ but not in M . But this contradicts
the well known property of augmenting paths that the symmetric difference M ⊕M ′ contains an
augmenting path in M from c to a free server.

3 The server flow abstraction
3.1 Defining the Server Flow
We now formalize the notion of server necessities from Section 1.3 by using a flow-based notation.
The necessity of a server s will be the value α(s) ∈ [0, 1] of a balanced server flow α: We will now
go on to define a server flow, define what it means for a server flow to be balanced, and then, show
that the balanced server flow is unique.
Definition 11. Given any graph G = (C ∪ S,E), define a server flow α as any map from S to the
nonnegative reals such that there exist nonnegative (xe)e∈E with:

∀c ∈ C :
∑

s∈N(c)
xcs = 1 ∀s ∈ S :

∑

c∈N(s)
xcs = α(s)

We say that such a set of x-values realize the server flow.

5

60 Appendix B: Online Bipartite Matching with Amortized O(log2 n) Replacements

A server flow can be thought of as a fractional assignment from C to S; note, however, that is is
not necessarily a fractional matching, since servers may have a load greater than 1. Note also that
the same server flow may be realized in more than one way. Furthermore, if |N(c)| = 0 for some
c ∈ C then ∑s∈N(c) xcs = 0 6= 1, so no server flow is possible. So suppose (unless otherwise noted)
that |N(c)| ≥ 1 for all c ∈ C.

The following theorem can be seen as a generalization of Hall’s Marriage Theorem:

Lemma 12. If max∅⊂K⊆C |K|
|N(K)| = p

q , then there exists a server flow where every server s ∈ S has
α(s) ≤ p

q .

Proof. Let C∗ be the original set C but with q copies of each client. Similarly let S∗ contain p
copies of each server, and let E∗ consist of all pq edges between copies of the endpoints of each edge
in E.

Now let K∗ ⊆ C∗, and let K ⊆ C be the originals that the vertices in K∗ are copies of. Then
|K∗| ≤ q |K| ≤ p |N(K)| = |N(K∗)|, so the graph (C∗ ∪ S∗, E∗) satisfies Hall’s theorem and thus it
has some matching M in which every client in C∗ is matched. Now, for cs ∈ E let

xcs = 1
q

∣∣∣
{
c∗s∗ ∈M

∣∣∣ c∗ is a copy of c and s∗ is a copy of s
}∣∣∣

Since for each c ∈ C all q copies of c are matched, ∑s∈N(c) xcs = q
q = 1 for all c ∈ C. Similarly,

since for each s ∈ S at most p copies of s are matched, ∑c∈N(s) xcs ≤ p
q . Thus, (xe)e∈E realizes the

desired server flow.

Definition 13. We say that a server flow α is balanced, if additionally:

∀c ∈ C, s ∈ N(c) \A(c) : xcs = 0 where A(c) = arg min
s∈N(c)

α(s)

That is, if each client only sends flow to its least loaded neighbours.
We call the set A(c) the active neighbors of c, and we call an edge cs active when s ∈ A(c). We

extend the definition to sets of clients in the natural way, so for K ⊆ C, A(K) = ⋃
c∈K A(c).

3.2 Uniqueness of Loads in a Balanced Server Flow
Note that while there may be more than one server flow, we will show that the balanced server flow
α is unique, although there may be many possible x-values xcs that realize α.

Lemma 14. A unique balanced server flow exists if and only if |N(c)| ≥ 1 for all c ∈ C.

Clearly, it is necessary for all clients to have at least one neighbor for a server flow to exist, so
the “only if” part is obvious. We dedicate the rest of this section to proving that this condition is
sufficient. In fact, we provide two different proofs of uniqueness, the first of which is simpler but
provides less intuition for what the unique α(s) values signify about the structure of the graph.

3.2.1 Short proof of Lemma 14 via convex optimization

It is not hard to prove uniqueness by showing that a balanced server flow corresponds to the solution
to a convex program1. Consider the convex optimization problem where the constraints are those

1The authors thank Seffi Naor for pointing this out to us.

6

Appendix B: Online Bipartite Matching with Amortized O(log2 n) Replacements 61

of a not necessarily balanced server flow (Definition 11), and the objective function we seek to
minimize is the sum of the squares of the server loads.

To be precise, the convex program contains a variable αs for each server s ∈ S, and a variable
xcs for each edge (c, s) in the graph. Its objective is to minimize the function ∑s∈S α

2
s subject to

the constraints:

0 ≤ xcs ≤ 1 ∀c ∈ C :
∑

s∈N(c)
xcs = 1 ∀s ∈ S :

∑

c∈N(s)
xcs = αs

It is easy to check that because we introduce a separate variable αs for each server load, the
objective function is strictly convex, so the convex program has a unique minimum with respect to
the server loads αs (but not the edge flows).

We now observe that this unique solution is a balanced server flow: the constraints of the convex
program ensure that it is a server flow, and were it not balanced, there would be some client c that
sends non-zero flow to both s and s′ where α(s) < α(s′), which would be a contradiction because
we can decrease the objective function by increasing xcs and decreasing xcs′ . We have thus proved
the existence of a balanced server flow.

We must now prove uniqueness, i.e. that all balanced server flows have the same server loads.
We will do this by showing that any balanced server flow optimizes the objective function of the
convex function. There are many standard approaches for proving this claim, but the simplest one
we know of is based on existing literature on load balancing with selfish agents. In particular, we
rely on the following simple auxiliary lemma, which is a simplified version of Lemma 2.2 in [30].

Lemma 15. Consider any balanced server flow xcs, let αs = ∑
c∈C xcs be the server flow of s. Let

x′cs be any feasible server flow, and let α′s = ∑
c∈C x

′
cs be the resulting server loads. Then, we always

have:
∑

s∈S
α2
s ≤

∑

s∈S
αsα

′
s

Proof. For any client c, let µ(c) (µ for minimum) be the minimum server load neighboring c in the
balanced solution xcs. That is, µ(c) = mins∈N(c) αs. We then have

∑

s∈S
α2
s =

∑

s∈S

∑

c∈C
xcsαs =

∑

c∈C

∑

s∈S
xcsαs =

∑

c∈C

∑

s∈S
xcsµ(c) =

∑

c∈C
µ(c),

where the last inequality follows from the fact that each client sends one unit of flow, and the
before-last inequality follows from the fact that the flow is balanced, so for any edge (c, s) ∈ E with
xcs 6= 0 we have αs = µ(c).

From the definition of µ(c) it follows that for any edge (c, s) ∈ E, we have αs ≥ µ(c). This
yields:

∑

s∈S
α′sαs =

∑

s∈S

∑

c∈C
x′csαs =

∑

c∈C

∑

s∈S
x′csαs ≥

∑

c∈C

∑

s∈S
x′csµ(c) =

∑

c∈C
µ(c).

We thus have ∑s∈S α
2
s = ∑

c∈C µ(c) and ∑s∈S α
′
sαs ≥

∑
c∈C µ(c), which yields the lemma.

We now argue that any balanced flow is an optimal solution to the convex program, and is
thus unique. Consider any balanced flow with loads αs. To show that αs is optimum, we need to

7

62 Appendix B: Online Bipartite Matching with Amortized O(log2 n) Replacements

show that for any feasible solution α′s we have ∑s∈S α
2
s ≤

∑
s∈S(α′)2

s. Equivalently, let α and α′ be
the vectors of server loads in the two solutions. We want to show that ‖α‖ ≤ ‖α′‖. This follows
trivially from Lemma 15, which is equivalent to ‖α‖2 ≤ α ·α′.

3.2.2 Longer combinatorial proof of uniqueness

Although the reduction to convex programming is the most direct proof of uniqueness, it has the
disadvantage of not providing any insight into what the unique α(s) values actually correspond to.
We thus provide a more complicated combinatorial proof which shows that the α(s) correspond to a
certain hierarchical decomposition of the graph.

The following lemma will help us upper and lower bound the sum of flow to a subset of servers.

Lemma 16. If α is a balanced server flow, then

∀T ⊆ S :
∣∣∣{c ∈ C | A(c) ⊆ T}

∣∣∣ ≤
∑

s∈T
α(s) ≤

∣∣∣{c ∈ C | A(c) ∩ T 6= ∅}
∣∣∣

Proof. The first inequality is true because each client in the first set contributes exactly one to
the sum (but there may be other contributions). The second inequality is true because every
client contributes exactly one to ∑s∈S α(s), and the inequality counts every client that contributes
anything to ∑s∈T α(s) as contributing one.

The first step to proving that every graph has a unique server flow α is to show that the
maximum value α̂ = maxs∈S α(s) is uniquely defined. We start by showing that the generalization
of Hall’s Marriage Theorem from Lemma 12 is “tight” for a balanced server flow in the sense that
there does indeed exist a set of p clients with neighbourhood of size q realizing the maximum α-value
p
q . In fact, the maximally necessary servers and their active neighbours (defined below) form such a
pair of sets:

Lemma 17. Let α be a balanced server flow, let α̂ = maxs∈S α(s) be the maximal necessity, let
Ŝ = {s ∈ S | α(s) = α̂} be the maximally necessary servers, and let K̂ = {c ∈ C | A(c) ∩ Ŝ 6= ∅} be
their active neighbours. Then N(K̂) = Ŝ and |K̂| = α̂ |Ŝ|.

Proof. Let K = {c ∈ C | A(c) ⊆ Ŝ}, and note that K ⊆ K̂. However, we also have K̂ ⊆ K: By
definition of Ŝ, and since we assume the server flow is balanced, K̂ 6= ∅, and for every c ∈ K̂,
N(c) = A(c) ⊆ Ŝ. Thus, K = K̂ and N(K̂) = Ŝ. Now, note that by Lemma 16

|K̂| = |K| ≤ α̂ |Ŝ| ≤ |K̂| .

We can thus show that α̂ exactly equals the maximal quotient |K|
|N(K)| over subsets K of clients.

Lemma 18. Let α be a balanced server flow, and let α̂ = maxs∈S α(s). Then

α̂ = max
∅⊂K⊆C

|K|
|N(K)|

Furthermore, for any K ⊆ C, if |K| = α̂ |N(K)|, then α(s) = α̂ for all s ∈ N(K).

8

Appendix B: Online Bipartite Matching with Amortized O(log2 n) Replacements 63

Proof. By definition of server flow, for K ⊆ C, |K| ≤∑s∈N(K) α(s) ≤ α̂ |N(K)|, so |K| ≤ α̂ |N(K)|.
Let K̂ be defined as in Lemma 17. Then α̂ = |K̂|

|N(K̂)| ≤ max∅⊂K⊆C |K|
|N(K)| ≤ α̂. Finally, if

|K| = ∑
s∈N(K) α(s) = α̂ |N(K)| then α(s) ≤ α̂ for all s ∈ S implies α(s) = α̂ for s ∈ N(K).

Corollary 19. If max∅⊂K⊆C |K|
|N(K)| = |C|

|S| there is a unique balanced server flow.

Proof. By Lemma 12 there exists a server flow with α(s) ≤ |C||S| for all s ∈ S. Since ∑s∈S α(s) = |C|,
any such flow must actually have α(s) = |C|

|S| for all s ∈ S, and be balanced. Uniqueness follows from
Lemma 18.

We are now ready to give a combinatorial proof of uniqueness. We will do so by showing that
the α(s) in fact express a very nice structural property of the graph, which can be thought of as a
hierarchy of ”tightness” for the Hall constraint. As shown in Lemma 18, the maximum α value α̂
corresponds to the tightest Hall constraint, i.e. the maximum possible value of |K| / |N(K)|. Now,
there may be many sets K with |K| / |N(K)| = α̂, so let Ĉ be a maximal such set; we will show
that Ĉ is in fact the union of all sets K with |K| / |N(K)| = α̂. Now, by Lemma 18, every server
s ∈ N(Ĉ) has α(s) = α̂. We will show that in fact, because Ĉ captured all sets with tightness α̂,
all servers s /∈ N(Ĉ) have α(s) < α̂. Thus, because the flow is balanced, all active edges incident
to Ĉ or Ŝ will be between Ĉ and Ŝ; there will be no active edges coming from the outside. For
this reason, any balanced server flow α on G = (C ∪ S) can be the thought of as the union of two
completely independent server flows: the first (unique) flow assigns α(s) = α̂ = |Ĉ| / |N(Ĉ)| to all
s ∈ Ŝ, while the second is a balanced server flow on the remaining graph G \ (Ĉ ∪ Ŝ). Since this
remaining graph is smaller, we can use induction on the size of the graph to claim that this second
balanced server flow has unique α-values, which completes the proof of uniqueness. If we follow
through the entire inductive chain, we end up with a hierarchy of α-values, which can be viewed as
the result of the following peeling procedure: first find the (maximally large) set C1 that maximizes
α1 = |C1| / |N(C1| and assign every server s ∈ N(C1) a value of α1; then peel off C1 and N(C1),
find the (maximally large) set C2 in the remaining graph that maximizes α2 = |C2| / |N(C2|, and
assign every server s ∈ N(C2) value α2; peel off C2 and N(C2) and continue in this fashion, until
every server has some value αi. These values αi assigned to each server are precisely the unique
α(s) in a balanced server flow.

Remark 20. We were unaware of this when submitting the extended abstract, but a similar
hierarchical decomposition was used earlier to compute an approximate matching in the semi-
streaming setting: see [12], [21]. Note that unlike those papers, we do not end up relying on this
decomposition for our main arguments. We only present it here to give a combinatorial alternative
to the convex optimization proof above: regardless of which proof we use, once uniqueness is
established, the rest of our analysis is expressed purely in terms of balanced server flows.

Proof of Lemma 14. As already noted, |N(c)| ≥ 1 for all c ∈ C is a necessary condition. We will
prove that it is sufficient by induction on i = |S|. If |S| = 1, the flow α(s) = |C| for s ∈ S is trivially
the unique balanced server flow. Suppose now that i > 1 and that it holds for all |S| < i. Now let
α̂ = max∅⊂K⊆C |K|

|N(K)| and let

Ĉ =
⋃

K∈K
K where K =

{
K ⊆ C

∣∣∣ |K| = α̂ |N(K)|
}

9

64 Appendix B: Online Bipartite Matching with Amortized O(log2 n) Replacements

Note that for any K1,K2 ∈ K we have

α̂ |N(K1 ∪K2)| ≥ |K1 ∪K2| (by definition of α̂)
= |K1|+ |K2| − |K1 ∩K2|
= α̂ |N(K1)|+ α̂ |N(K2)| − |K1 ∩K2| (since K1,K2 ∈ K)
≥ α̂ |N(K1)|+ α̂ |N(K2)| − α̂ |N(K1 ∩K2)| (by definition of α̂)
≥ α̂ |N(K1 ∪K2)| (since |N(·)| is submodular)

so K1 ∪ K2 ∈ K and thus Ĉ ∈ K and |Ĉ| = α̂ |N(Ĉ)|. If N(Ĉ) = S then Ĉ = C (otherwise
|Ĉ|
|N(Ĉ)| <

|C|
|S| ≤ α̂) and by Corollary 19 we are done, so suppose ∅ ⊂ N(Ĉ) ⊂ S. Consider the

subgraph G1 induced by Ĉ ∪N(Ĉ) and the subgraph G2 induced by (C \ Ĉ) ∪ (S \N(Ĉ)).
By Corollary 19, G1 has a unique balanced server flow α1 with α1(s) = α̂ for all s ∈ N(Ĉ).
By our induction hypothesis, G2 also has a unique balanced server flow α2.
We proceed to show that the combination of α1 with α2 constitutes a unique balanced flow α of

the entire graph G, defined as follows:

α(s) =
{
α1(s) if s ∈ N(Ĉ)
α2(s) otherwise

Note first that α is a balanced server flow for G, because both G1 and G2 have a set of x-values
that realize them, and by construction these values (together with zeroes for each edge between
C \ Ĉ and N(Ĉ)) realize a balanced server flow for G.

For uniqueness, note that by Lemma 18 any balanced server flow α′ for G must have α′(s) =
α̂ = α1(s) for s ∈ N(Ĉ). We now show that for any s ∈ S \N(Ĉ), any balanced server flow α′ must
also have α′(s) = α2(s); then, the uniqueness of α will follow from the uniqueness of α1 and α2.

Let Ŝ = {s ∈ S | α′(s) = α̂} be the set of maximally necessary servers, and let K̂ = {c ∈ C |
A(c) ∩ Ŝ 6= ∅} be the set of clients with a maximally necessary server in their active neighborhood.
We will show that K̂ = Ĉ.

“⊆” By Lemma 17, |K̂| = α̂ |N(K̂)| so by definition of Ĉ, K̂ ⊆ Ĉ.
“⊇” On the other hand, |Ĉ| = α̂ |N(Ĉ)| so by Lemma 18 we have N(Ĉ) ⊆ Ŝ and in particular

A(c) ⊆ Ŝ for c in Ĉ and thus Ĉ ⊆ K̂.

Thus, by definition of K̂, A(c)∩ Ŝ = ∅ for all c ∈ C \ Ĉ. And there are clearly no edges between
Ĉ and S \N(Ĉ). But then, for any (xe)e∈E realizing α′, the subset (xcs)c∈C\Ĉ,s∈S\N(Ĉ) realizes a
balanced server flow in G2, so since α2 is the unique balanced server flow in G2 we have α′(s) = α2(s)
for s ∈ S \N(Ĉ).

3.3 How Server Loads Change as New Clients are Inserted
From now on, let α denote the unique balanced server flow. We want to understand how the
balanced server flow changes as new clients are added. For any server s, let αold(s) be the flow in s
before the insertion of c, and let αnew(s) be the flow after. Also, let ∆α(s) = αnew(s)− αold(s).

Intuitively, as more clients are added to the graph, the flow on the servers only increases, so no
α(s) ever decreases. We now prove this formally.

10

Appendix B: Online Bipartite Matching with Amortized O(log2 n) Replacements 65

Lemma 21. When a new client c is added, ∆α(s) ≥ 0 for all s ∈ S.

Proof. Let S∗ = {s ∈ S | αnew(s) < αold(s)}. We want to show that S∗ = ∅. Say for contradiction
that S∗ 6= ∅, and let α∗ = mins∈S∗ αnew(s). We will now partition S into three sets.

S− = {s ∈ S | αold(s) ≤ α∗}
S∆ = {s ∈ S | αold(s) > α∗ ∧ αnew(s) = α∗}
S+ = {s ∈ S | αold(s) > α∗ ∧ αnew(s) > α∗}

It is easy to see that these sets form a partition of S, and that ∅ 6= S∆ ⊆ S∗.
Now, let C∆ contain all clients with an active neighbor in S∆ before the insertion of c. Since

each client sends one unit of flow, ∑s∈S∆ αold(s) ≤
∣∣∣C∆

∣∣∣. Now, because we had a balanced flow
before the insertion of c there cannot be any edges in G from C∆ to S− (any such edge would be
from a client u ∈ C∆ to a server v ∈ S− with αold(v) ≤ α∗ < αold(s) for s ∈ S∆ contradicting that
u had an active neighbor in S∆). Moreover, in the balanced flow after the insertion of c, there are
no active edges from C∆ to S+ (any such edge would be from a client u ∈ C∆ to a server v ∈ S+

with αnew(v) > α∗ = αnew(s) for all s ∈ S∆ so is not active). Thus, all active edges incident to C∆

go to S∆, so ∑s∈S∆ αnew(s) ≥
∣∣∣C∆

∣∣∣. This contradicts the earlier fact that ∑s∈S∆ αold(s) ≤
∣∣∣C∆

∣∣∣,
since by definition of S∆ we have ∑s∈S∆ αnew(s) <∑s∈S∆ αold(s).

The next lemma formalizes the following argument: Say that we insert a new client c, and for
simplicity say that c is only incident to server s. Now, c will have no choice but to send all of its
flow to s, but that does not imply that ∆α(s) = 1, since other clients will balance by retracting
their flow from s and sending it elsewhere. But by the assumption that the flow was balanced before
the insertion of c, all this new flow can only flow “upward” from s: it cannot end up increasing the
flow on some s− with αold(s−) < αold(s). Along the same lines of intuition, even if c has several
neighbors, inserting c cannot affect the flow of servers whose original flow was less than the lowest
original flow among the neighbors of s.

Lemma 22. When a new client c is added , ∆α(s) = 0 for all s where αold(s) < minv∈N(c) α
old(v).

Proof. Let us first consider the balanced flow before the insertion of c.
Let S+ =

{
s ∈ S

∣∣∣ αold(s) ≥ minv∈N(c) α
old(v)

}
and define S− = S \ S+. We want to show

that ∆α(s) = 0 for all servers s in S−.
Define C+ to be the set of client vertices whose neighbors are all in S+; that is, C+ ={

c ∈ C
∣∣ N(c) ⊆ S+}. Note that the following holds before the insertion of c: by definition of C+

there are no edges in G from C+ to S−, and because the flow is balanced, there are no active edges
from C− to S+. Thus, ∑s∈S− α

old(s) = |C−|.
Now consider the insertion of c. By definition of S− the new client c has no neighbors in S−,

so it is still the case that only clients in C− have neighbors in S−. Thus, in the new balanced
flow we still have have that ∑s∈S− α

new(s) ≤ |C−|. But this means that ∑s∈S− ∆α(s) ≤ 0, so if
∆α(s1) > 0 for some s1 ∈ S− then ∆α(s2) < 0 for some s2 ∈ S−, which contradicts Lemma 21.

4 Analyzing replacements in maximum matching
We now consider how server flows relate to the length of augmenting paths.

11

66 Appendix B: Online Bipartite Matching with Amortized O(log2 n) Replacements

Lemma 23. The graph (C ∪ S,E) contains a matching of size |C|, if and only if α(s) ≤ 1 for all
s ∈ S.

Proof. Let α̂ = maxs∈S α(s). It follows directly from Lemma 18 that |K| ≤ |N(K)| for all K ⊆ C
if and only if α̂ ≤ 1. The corollary then follows from Hall’s Theorem (Theorem 7)

It is possible that in the original graph G = (C ∪ S,E), there are many clients that cannot be
matched. But recall that by Observation 9, if a client cannot be matched when it is inserted, then
it can be effectively ignored for the rest of the algorithm. This motivates the following definition:

Definition 24. We define the set CM ⊆ C as follows. When a client c is inserted, consider the set
of clients C ′ before c is inserted: then c ∈ CM if the maximum matching in (C ′ ∪ {c} ∪ S,E) is
greater than the maximum matching in (C ′ ∪ S,E). Define GM = (CM ∪ S,E).

Observation 25. When a client c ∈ CM is inserted the SAP algorithm finds an augmenting path
from c to a free server; this follows from the fact that SAP always maintains a maximum matching
(Lemma 10). By Observation 9, if c /∈ CM then no augmenting path goes through c during the
entire sequence of insertions. By the same observation, once a vertex c ∈ CM is inserted it remains
matched through the entire sequence of insertions.

Definition 26. Given any s ∈ S, let αM (s) be the flow into s in some balanced server flow in GM ;
by Lemma 14 αM (s) is uniquely defined.

Observation 27. By construction GM contains a matching of size |CM |, so by Lemma 23 αM (s) ≤ 1
for all s ∈ S. Finally, note that since CM ⊆ C, we clearly have αM (s) ≤ α(s)

Definition 28. Define an augmenting tail from a vertex v to be an alternating path that starts
in v and ends in an unmatched server. We call an augmenting tail active if all the edges on the
alternating path that are not in the matching are active.

Note that augmenting tails as defined above are an obvious extension of the concept of augmenting
paths: Every augmenting path for a newly arrived client c consists of an edge (c, s), plus an
augmenting tail from some server s ∈ N(c).

We are now ready to prove our main lemma connecting the balanced server flow to augmenting
paths. We show that if some server s has small α(s), then regardless of the particular matching at
hand, there is guaranteed to be a short active augmenting tail from s. Since every active augmenting
tail is by definition an augmenting tail, this implies that any newly newly inserted client c that is
incident to s has a short augmenting path to an unmatched server.

Lemma 29 (Expansion Lemma). Let s ∈ S, and suppose αM (s) = 1 − ε for some ε > 0. Then
there is an active augmenting tail for s of length at most 2

ε ln(|CM |).

Proof. By our definition of active edges, it is not hard to see that any server s′ reachable from s by
an active augmenting tail has αM (s′) ≤ 1− ε.

For i ≥ 1, letKi be the set of clients c such that there is an active augmenting tail s0, c0, . . . , ck−1, sk
from s with c = cj for some j < i. Let ki = |Ki|. Note that k1 = 1, K1 ⊆ K2 ⊆ . . . ⊆ Ki, and

ki = |Ki| ≤
∑

s′∈A(Ki)
αM (s′) ≤

∑

s′∈A(Ki)
(1− ε) = |A(Ki)| (1− ε)

12

Appendix B: Online Bipartite Matching with Amortized O(log2 n) Replacements 67

Thus

|A(Ki)| ≥
ki

1− ε
Suppose there is no active augmenting tail from s of length ≤ 2(i − 1), then every server in

A(Ki) is matched, and the clients they are matched to are exactly Ki+1. There is a bijection
between A(Ki) and Ki+1 given by the perfect matching, so we have ki+1 = |A(Ki)| and thus
|CM | ≥ ki+1 ≥ 1

1−εki ≥ (1
1−ε)ik1 = (1

1−ε)i. It follows that i ≤ ln|CM |
ln 1

1−ε
≤ 1

ε ln |CM |, where the last

inequality follows from 1− ε ≤ e−ε. Thus for any i > 1
ε ln |CM | there exists an active augmenting

tail of length at most 2(i− 1), and the result follows.

We are now able to prove the key lemma of our paper, which we showed in Section 1.3 implies
Theorem 1.

Lemma 6. Consider the following protocol for constructing a matching: For each client c in
arbitrary order, augment along the shortest augmenting path from c (if one exists). Given any h,
this protocol augments down a total of at most 4n ln(n)/h augmenting paths of length > h.

Proof. Recall that n = |C| ≥ |CM |. The lemma clearly holds for h ≤ 4 ln(n) because there at most
n augmenting paths in total. We can thus assume for the rest of the proof that h > 4 ln(n). Recall
by Observation 25 that any augmenting path is contained entirely in GM . Now, let C∗ ⊆ CM be
the set of clients whose shortest augmenting path have length at least h+ 1 when they are added.
Our goal is to show that |C∗| ≤ 4n ln(n)/h. For each c ∈ C∗ the shortest augmenting tail from each
server s ∈ N(c) has length at least h and so by the Expansion Lemma 29, each server s ∈ N(c) has
αM (s) ≥ 1−2 ln(n)/h. Let S∗ be the set of all servers that at some point have αM (s) ≥ 1−2 ln(n)/h;
by Lemma 21, this is exactly the set of servers s such that αM (s) ≥ 1− 2 ln(n)/h after all clients
have been inserted. By Lemma 22, if c ∈ C∗, the insertion of c only increases the flow on servers in
S∗ that already had flow at least 1− 2 ln(n)/h. Since by Observation 27 αM (s) ≤ 1 for all s ∈ S,
the flow of each server in S∗ can only increase by at most 2 ln(n)/h. But then, since the client c
contributes with exactly one unit of flow, the total number of such clients is |C∗| ≤ (2 log(n)/h) |S∗|.
We complete the proof by showing that |S∗| < 2n. This follows from the fact that each client c ∈ CM
sends one unit of flow, so n ≥ |CM | ≥ (1− 2 ln(n)/h) |S∗| > |S∗| /2, where the last inequality follows
from the assumption that h > 4 ln(n).

5 Implementation
In the previous section we proved that augmenting along a shortest augmenting path yields a total
of O(n log2 n) replacements. But the naive implementation would spend O(m) time per inserted
vertex, leading to total time O(mn) for actually maintaining the matching. In this section, we show
how to find the augmenting paths more quickly, and thus maintain the optimal matching at all
times in O(m

√
n
√

logn) total time, differing only by an O(
√

logn) factor from the classic offline
algorithm of Hopcroft and Karp algorithm for static graphs [19].

Definition 30. Define the height of a vertex v (server or client) to be the length of the shortest
augmenting tail (Definition 28) from v. If no augmenting tail exists, we set the height to 2n.

13

68 Appendix B: Online Bipartite Matching with Amortized O(log2 n) Replacements

At a high level, our algorithm is very similar to the standard O(m
√
n) blocking flow algorithm.

We will keep track of heights to find shortest augmenting paths of length at most
√
n
√

logn. We
will find longer augmenting paths using the trivial O(m) algorithm, and use Lemma 6 to bound the
number of such paths. Our analysis will also require the following lemma:

Lemma 31. For any server s ∈ S, there is an augmenting tail from s to an unmatched server if
and only if αM (s) < 1.

Proof. If αM (s) < 1, then the existence of some tail follows directly from the Expansion Lemma 29.
Now let us consider αM (s) = 1. Let S1 = {s ∈ S | αM (s) = 1}. Since 1 is the maximum possible
value of αM (s) (Observation 27), Lemma 17 implies that there is a set of clients C1 ∈ CM such that
N(C1) = S1 and |C1| = |S1|. Now since every client in C1 is matched, every server S1 is matched to
some client in C1. Every augmenting tail from some s ∈ S1 must start with a matched edge, so it
must go through C1, so it never reaches a server outside of N(C1) = S1, so it can never reach a free
server.

We now turn to our implementation of the SAP protocol. We will use a dynamic single-source
shortest paths algorithm as a building block. We start by defining a directed graph D such that
maintaining distances in D will allow us to easily find shortest augmenting paths as new clients are
inserted.

Let D be the directed graph obtained from G = (C ∪ S,E) by directing all unmatched edges
from C to S, and all matched edges from S to C, and finally adding a sink t with an edge from all
unmatched vertices, as well as edge from all clients in C that have not yet arrived. Any alternating
path in G corresponds to a directed path in D \ {t} and vice-versa. In particular, it is easy to see
that if P is a shortest path in D from a matched server s to the sink t, then P \ {t} is a shortest
augmenting tail from s to a free server. Similarly, for any client c that has arrived (so edge (c, t) is
deleted) but is not yet matched, if P is the shortest path from c to t in D, then P \ {t} is a shortest
augmenting path for c in G. Furthermore, augmenting down this path in G corresponds (in D) to
changing the direction of all edges on P \ {t} and deleting the edge on P incident to t.

We can thus keep track of shortest augmenting paths by using a simple dynamic shortest path
algorithm to maintain shortest paths to t in the changing graph D. We will use a modification of
Even and Shiloach (See [28]) to maintain a shortest path tree in D to t from all vertices of height at
most h =

√
n
√

logn. The original version by Even and Shiloach worked only for undirected graphs,
and only in the decremental setting where the graph only undergoes edge deletions, never edge
insertions. This was later extended by King [23] to work for directed graphs. The only-deletions
setting is too constrained for our purposes because we will need to insert edges into D; augmenting
down a path P corresponds to deleting the edges on P and inserting the reverse edges. Fortunately,
it is well known that the Even and Shiloach tree can be extended to the setting where there are
both deletions and insertions, as long as the latter are guaranteed not to decrease distances; we will
show that this in fact applies to our setting.

Lemma 32 (Folklore. See e.g. [3, 4]). Let G = (V,E) be a dynamic directed or undirected graph
with positive integer weights, let t be a fixed sink, and say that for every vertex v we are guaranteed
that the distance dist(v, t) never decreases due to an edge insertion. Then we can maintain a tree of
shortest paths to t up to distance d in total time O(m · d+ ∆), where m is the total number of edges
(u, v) such that (u, v) is in the graph at any point during the update sequence, and ∆ is the total
number of edge changes.

14

Appendix B: Online Bipartite Matching with Amortized O(log2 n) Replacements 69

Theorem 2. There is an implementation of the SAP protocol that runs in total time O(m
√
n
√

logn).

Proof. We will explicitly maintain the graph D, and use the extended Even-Shiloach tree structure
from Lemma 32 to maintain a tree T of shortest paths to t up to distance h =

√
n
√

logn. Every
vertex will either be in this tree (and hence have height less than h), or be marked as a high vertex.
When a new client c arrives, we update D (and T) by first adding edges to N(c) from c, and then
deleting the dummy edge from c to t. Note that because the deletion of edge (c, t) comes last, the
inserted edges do not change any distances to t. We then use D and T to find a shortest augmenting
path. We consider two cases.

The first case is when c is not high. Then T contains a shortest path P from c to t.
The second case is when c is high. In this case we can just brute-force search for a shortest path

P from c to t in time O(m). If we do not find a path from c to t, then we remove all servers and
clients encountered during the search, and continue the algorithm in the graph with these vertices
removed.

In either case, if a shortest path P from c to t is found, we augment down P and then make
the corresponding changes to D: we first reverse the edges on P \ {t} in order starting with the
edge closest to c, and then we delete the edge (s, t) on P incident to t (because the server s is now
matched). Each edge reversal is done by first inserting the reversed edge, and then deleting the
original. Note that since P is a shortest path, none of these edge insertions change the distances to
t.

Correctness: We want to show that our implementation chooses a shortest augmenting path at
every step. This is clearly true if we always find an augmenting path, but otherwise becomes a bit
more subtle as we delete vertices from the graph after a failed brute-force search. We must thus
show that any vertex deleted in this way cannot have participated in any future augmenting path.

To see this, note that when our implementation deletes a server s ∈ S, there must have been
no augmenting path through s at the time that s was deleted. By Lemma 31, this implies that
αM (s) = 1. But then by Lemma 21 we have αM (s) = 1 for all future client insertions as well.
(Recall that by Observation 27 we never have αM (s) > 1.) Thus by Lemma 31 there is never an
augmenting path through s after this point, so s can safely be deleted from the graph. Similarly, if
a client c is deleted from the graph, then all of its neighboring servers had no augmenting tails at
that time, so they all have αM (s) = 1, so there will never be an augmenting path through c.

Running time: There are three factors to consider.

1. the time to follow the augmenting paths and maintain D.

2. the time to maintain T .

3. the time to brute-force search for augmenting paths.

Item 1 takes O(m+ n log2 n) time because we need O(1) time to add each of the m edges and
to follow and reverse each edge in the augmenting paths, and by Theorem 1 the total length of
augmenting paths is O(n log2 n).

For Item 2, it is easy to see that the total number of edges ever to appear in D is m = O(|E|);
D consists only of dummy edges to the sink t, and edges in the original graph oriented in one of

15

70 Appendix B: Online Bipartite Matching with Amortized O(log2 n) Replacements

two directions. By Item 1, the number of changes to D is O(m+ n log2 n). Thus by Lemma 32 the
total time to maintain T is O(mh+ n log2 n) .

For Item 3 we consider two cases. The first is brute-force searches which result in finding an
augmenting path. These take a total of O(mn log(n)/h) time because by Lemma 6 during the
course of the entire algorithm there are at most O(n log(n)/h) augmenting paths of length ≥ h, and
each such path requires O(m) time to find. The second case to consider is brute-force searches that
do not result in an augmenting path. These take total time O(m) because once a vertex participates
in such a search, it is deleted from the graph with all its incident edges.

Summing up, the total time used is O(mh+ n log2 n+mn log(n)/h+m), which for our choice
of h =

√
n
√

logn is O(m
√
n
√

logn).

6 Extensions
In many applications of online bipartite assignments, it is natural to consider the extension in which
each server can serve multiple clients. Recall from the introduction that we examine two variants:
capacitated assignment, where each server comes with a fixed capacity which we are not allowed
to exceed, and minimizing maximum server load, in which there is no upper limit to the server
capacity, but we wish to minimize the maximum number of clients served by any server. We show
that there is a substantial difference between the number of reassignments: Capacitated assignment
is equivalent to uncapacitated online matching with replacements, but for minimizing maximum
load, we show a significantly higher lower bound.

6.1 Capacitated assignment
We first consider the version of the problem where each server can be matched to multiple clients.
Each server comes with a positive integer capacity u(s), which denotes how many clients can be
matched to that server. The greedy algorithm is the same as before: when a new client is inserted,
find the shortest augmenting path to a server s that currently has less than u(s) clients assigned.

Theorem 3. SAP uses at most O(n log2 n) reassignments for the capacitated assignment problem,
where n is the number of clients.

Proof. There is a trivial reduction from any instance of capacitated assignment to one of uncapac-
itated matching where each server can only be matched to one client: simple create u(s) copies
of each server s. This reduction was previously used in [2]. When a client c is inserted, if there
is an edge (c, s) in the original graph, then add edges from c to every copy of s. It is easy to see
that the number of flips made by the greedy algorithm in the capacitated graph is exactly equal
to the number made in the uncapacitated graph, which by Theorem 1 is O(n log2 n). (Note that
although the constructed uncapacitated graph has more servers than the original capacitated graph,
the number of clients n is exactly the same in both graphs.)

6.2 Minimizing maximum server load
In this section, we analyze the online assignment problem. Here, servers may have an unlimited
load, but we wish to minimize maximum server load.

16

Appendix B: Online Bipartite Matching with Amortized O(log2 n) Replacements 71

Definition 33. Given a bipartite graph G = (C ∪ S,E), an assignment A : C → S assigns each
client c to a server A(c) ∈ S. Given some assignment A, for any s ∈ S let the load of s, denoted
`A(s), be the number of clients assigned to s; when the assignment A is clear from context we
just write `(s). Let `(A) = maxs∈S `A(s). Let opt(G) be the minimum load among all possible
assignments from C to S.

In the online assignment problem, clients are again inserted one by one with all their incident
edges, and the goal is to maintain an assignment with minimum possible load. More formally, define
Gt = (Ct ∪ S,Et) to be the graph after exactly t clients have arrived, and let At be the assignment
at time t. Then we must have that for all t, `(At) = opt(Gt). The goal is to make as few changes
to the assignment as possible.

[15] and [2] showed how to solve this problem with approximation: namely, with only O(1)
amortized changes per client insertion they can maintain an assignment A such that for all
t, `(At) ≤ 8opt(Gt). Maintaining an approximate assignment is thus not much harder than
maintaining an approximate maximum matching, so one might have hoped that the same analogy
holds for the exact case, and that it is possible to maintain an optimal assignment with amortized
O(log2 n) changes per client insertion. We now present a lower bound disproving the existence of
such an upper bound. The lower bound is not specific to the greedy algorithm, and applies to any
algorithm for maintaining an assignment A of minimal load. In fact, the lower bound applies even
if the algorithm knows the entire graph G in advance; by contrast, if the goal is only to maintain a
maximum matching, then knowing G in advance trivially leads to an online matching algorithm
that never has to rematch any vertex.

Theorem 4. For any positive integers n and L ≤
√
n/2 divisible by 4 there exists a graph G =

(C ∪ S,E) with |C| = n and opt(G) = L, along with an ordering in which the clients in C are
inserted, such that any algorithm for the exact online assignment problem requires a total of Ω(nL)
changes. This lower bound holds even if the algorithm knows the entire graph G in advance, as well
as the order in which the clients are inserted.

The main ingredient of the proof is the following lemma:

Lemma 34. For any positive integer L divisible by 4, there exists a graph G = (C ∪ S,E) along
with an ordering in which clients in C are inserted, such that |C| = L2, |S| = L, opt(G) = L, and
any algorithm for maintaining an optimal assignment A requires Ω(L3) changes to A.

Proof. Let S = {s1, s2, ..., sL}. We partition the clients in C into L blocks C1, C2, ..., CL, where all
the clients in a block have the same neighborhood. In particular, clients in CL only have a single
edge to server sL, and clients in Ci for i < L have an edge to si and si+1.

The online sequence of client insertions begins by adding L/2 clients to each block Ci. The
online sequence then proceeds to alternate between down-heavy epochs and up-heavy epochs, where
a down-heavy epoch inserts 2 clients into blocks C1, C2, ..., CL/2 (in any order), while an up-heavy
epoch inserts 2 clients into blocks CL/2+1, ..., CL. The sequence then terminates after L/2 such
epochs: L/4 up-heavy ones and L/4 down-heavy ones in alternation. Note that a down-heavy
epoch followed by an up-heavy one simply adds two clients to each block. Thus the final graph has
|Ci| = L for each i, so the graph G = (C ∪ S,E) satisfies the desired conditions that |C| = L2 and
opt(G) = L.

We complete the proof by showing that all the client insertions during a single down-heavy
epoch cause the algorithm to make at least Ω(L2) changes to the assignment; the same analysis

17

72 Appendix B: Online Bipartite Matching with Amortized O(log2 n) Replacements

C1 C2 C3 CL/2 CL/2+1 CL−3 CL−2 CL−1 CL

s1 s2 s3 s4 sL/2 sL/2+1 sL/2+2 sL−2 sL−1 sL

β

0

β

0

β

0

· · ·

β

0

β

0

· · ·

0

β

0

β

0

β

Figure 1: Number of assignments of each type after first L/2 clients added to each block, and after
each up-heavy phase. Each Ci has β clients. Each server has β clients assigned.

applies to the up-heavy epochs as well. Consider the kth down-heavy epoch of client insertions. Let
β = L/2 + 2(k − 1) and consider the graph Gold = (Cold ∪ S,Eold) before the down-heavy epoch:
it is easy to see that every block Ci has exactly β clients, that opt(Gold) = β, and that there is
exactly one assignment Aold that adheres to this maximum load: Aold assigns all clients in block
Ci to server si (see Figure 1).

Now, consider the graph Gnew = (Cnew ∪ S,Enew) after the down-heavy epoch. Blocks
C1, C2, ..., CL/2 now have β + 2 clients, while blocks CL/2+1, ..., CL still only have β. We now show
that opt(Gnew) = β + 1. In particular, recall that β ≥ L/2 and consider the following assignment
Anew: for i ≤ L/2, Anew assigns β + 2− i ≥ 2 clients from Ci to si and i clients in Ci to si+1; for
L/2 < i ≤ L, Anew assigns β + i− L ≥ 0 clients in Ci to si, and L− i clients from Ci to si+1. (In
particular, all β clients in CL are assigned to sL, which is necessary as there is no server sL+1). It is
easy to check that for every s ∈ S, `Anew(s) = β + 1 (see Figure 2).

C1 C2 C3 CL/2 CL/2+1 CL−3 CL−2 CL−1 CL

s1 s2 s3 s4 sL/2 sL/2+1 sL/2+2 sL−2 sL−1 sL

β
+

1
1

β

2

β
−

1
3

· · · β
+

2−
L
/
2

L
/
2

β
+

1−
L
/
2

L
/
2
−

1

· · ·

3

β
−

2
2

β
−

1
1

β

Figure 2: Number of assignments of each type after each down-heavy phase. Each Ci has β + 2
clients for 1 ≤ i ≤ L/2 and β clients for L/2 + 1 ≤ i ≤ L. Each server has β + 1 clients assigned.

We now argue that Anew is in fact the only assignment in Gnew with `(Anew) = β+ 1. Consider
any assignment A for Cnew with `(A) = β + 1. Observe that since the total number of clients in
Cnew is exactly (β + 1)L, we must have that every server s ∈ S has `(s) = β + 1 in A. We now
argue by induction that for i ≤ β/2, A assigns assigns β + 2− i clients from Ci to si and i clients
in Ci to si+1 (exactly as Anew does). The claim holds for i = 1 because the only way s1 can end
up with load β + 1 is if β + 1 clients from C1 are assigned to it. Now say the claim is true for
some i < β/2. By the induction hypothesis, si+1 has i clients from Ci assigned to it. Since si+1

18

Appendix B: Online Bipartite Matching with Amortized O(log2 n) Replacements 73

must have total load β + 1, and all clients assigned to it come from Ci or Ci+1, si+1 must have
β + 1− i = β + 2− (i+ 1) clients assigned to it from Ci+1.

We now prove by induction that for all L/2 < i ≤ L, A assigns β + i−L clients in Ci to si, and
L− i clients from Ci to si+1, which proves that A = Anew. The claim holds for i = L/2 + 1 because
we have already shown that in the above paragraph that L/2 clients assigned to si = sL/2+1 come
from CL/2, so since `(si) = β + 1, it must have β + 1− L/2 = β + i− L clients from Ci assigned to
it. Now, say that the claim is true for some i > L/2. Then by the induction step si+1 has L− i
clients assigned to it from Ci, so since `(si+1) = β + 1, it has β + (i+ 1)− L clients assigned to it
from Ci+1, as desired. The remaining L− (i+ 1) clients in Ci+1 must then be assigned to si+2.

We have thus shown that the online assignment algorithm is forced to have assignment Aold

before the down-heavy epoch, and assignment Anew afterwards. We now consider how many changes
the algorithm must make to go from one to another. Consider block Ci for some L/2 < i ≤ L.
Note that because the epoch of client insertions was down-heavy, |Ci| = β before and after the
epoch. Now, in Aold all of the clients in Ci are matched to si. But in Anew, L − i of them
are matched to si+i. Thus, the total number of reassignments to get from Aold to Anew is at
least ∑L/2<i≤L(L − i) = Ω(L2). Since there are L/4 down-heavy epochs, the total number of
reassignments over the entire sequence of client insertions is Ω(L3).

Proof of Theorem 4. Recall the assumption of the Theorem that n/2 ≥ L2 . Simply let the graph
G consist of

⌊
n/L2⌋ separate instances of the graph in Lemma 34, together with sufficient copies of

K1,1 to make the total number of clients n. The algorithm will have to make Ω(L3) changes in each
such instance, leading to Ω(L3 ⌊n/L2⌋) = Ω(nL) changes in total.

We now show a nearly matching upper bound which is off by a log2 n factor. As with the case
of matching, this upper bound is achieved by the most natural SAP algorithm, which we now define
in this setting. Since opt(G) may change as clients are inserted into C, whenever a new client is
inserted, the greedy algorithm must first compute opt(G) for the next client set. Note that the
algorithm does not do any reassignments at this stage, it simply figures out what the max load
should be. opt(G) can easily be computed in polynomial time: for example we could just compute
the maximum matching when every server has capacity b for every b = 1, 2, ..., |C|, and then opt(G)
is the minimum b for which every client in C is matched; for a more efficient approach see [2]. Now,
when a new client c is inserted, the algorithm first checks if opt(G) increases. If yes, the maximum
allowable load on each server increases by 1 so c can just be matched to an arbitrary neighbor.
Otherwise, SAP finds the shortest alternating path from c to a server s with `(s) < opt(G): an
augmenting path is defined exactly the same way as in Definition 8, though there may now be
multiple matching edges incident to every server. The proof of the upper bound will rely on the
following very simple observation:

Observation 35. For the uncapacitated problem of online maximum matching with replacements,
let us say that instead of starting with C = ∅, the algorithm starts with some initial set of clients
C0 ⊂ C already inserted, and an initial matching between C0 and S. Then the total number of
replacement made during all future client insertions is still upper bounded by the same O(n log2 n)
as in Theorem 1, where n is the number of clients in the final graph (so n is |C0| plus the number
of clients inserted).

Proof. Intuitively, we could simply let our protocol start by unmatching all the clients in C0, and
then rematching them according the SAP protocol, which would lead to O(n log2 n) replacements.

19

74 Appendix B: Online Bipartite Matching with Amortized O(log2 n) Replacements

In fact this initial unmatching is not actually necessary. Recall that the proof of Theorem 1 follows
directly from the key Lemma 6, which in term follows from the expansion argument in Lemma 29.
The expansion argument only refers to server necessities, not to the particular matching maintained
by the algorithm, so it will hold no matter what initial matching we start with.

Theorem 5. Let C be the set of all clients inserted, let n = |C|, and let L = opt(G) be the
minimum possible maximum load in the final graph G = (C ∪ S,E). SAP at all times maintains an
optimal assignment while making a total of O(nmin {L log2 n,

√
n logn}) reassignments.

Proof. Let us define epoch i to contain all clients c such that after the insertion of c we have
opt(G) = i. We now define ni as the total number of clients added by the end of epoch i (so
ni counts clients from previous epochs as well). Extend the reduction in the proof of Theorem 3
from [2] as follows: between any two epochs, add a new copy of each server, along with all of its
edges. For the following epoch, say, the ith epoch, Observation 35 tells us that regardless of what
matching we had at the beginning of the epoch, the total number of reassignments performed by SAP
during the epoch will not exceed O(ni log2 ni) ⊆ O(n log2 n). We thus make at most O(nL log2 n)
reassignments in total, which completes the proof if L <

√
n/ logn. If L ≥ √n/ logn, we make

O(n
√
n logn) reassignments during the first

√
n/ logn epochs. In all future epochs, note that a

server at its maximum allowable load has at least
√
n/ logn clients assigned to it, so there are at

most
√
n logn such servers, and whenever a client is inserted the shortest augmenting path to a

server below maximum load will have length O(
√
n logn). This completes the proof because there

are only n augmenting paths in total.

6.3 Approximate semi-matching
Though our result on minimizing maximum load exactly is tight, we conclude this section on
extensions with a short and cute improvement for approximate load balancing, which follows from
the Expansion Lemma (Lemma 29).

We study a setting similar to that of [2], in which one wishes to minimize not only the maximum
load, but the p-norm |X|p = (∑s∈S l(s)p)

1
p , where l(s) is the load of the server s in the assignment

X, for every p ≥ 1.
First, observe that a lower bound on the p-norm comes from our necessity values α from Section 3.

That is, (∑s∈S α(s)p)
1
p ≤ |X|p, for any assignment X. For p = 1, we even have equality, as we

simply count the number of clients. For p > 1, the proof is almost identical to that of uniqueness in
Section 3.2.1.

In Section 6.2, we saw that even for the ∞-norm, we cannot obtain dα(s)e with logarithmic
recourse. This motivates the use of approximation, and motivates the following definition:

Definition 36 ((1 + ε)-approximate semi-matching). For each server s in the current graph, let
L(s) = d(1+ε)α(s)e. We say that a semi-matching is (1+ε)-approximate, if each server s is assigned
at most L(s) clients.

Assigning (1 + ε)α(s) clients to server s would indeed give a (1 + ε)-approximation for every
p-norm. Unfortunately, (1 + ε)α(s) may not be an integer, which is why we apply the natural ceiling
operation. Under the further assumption that α(s) ≥ 1

ε for all s, we have

d(1 + ε)α(s)e
α(s) <

(1 + ε)α(s) + 1
α(s) = 1 + ε+ 1

α(s) ≤ 1 + 2ε

20

Appendix B: Online Bipartite Matching with Amortized O(log2 n) Replacements 75

And thus, under the assumption that all necessities are ≥ 1
ε , then for any (1 + ε)-approximate

assignment X, where we let l(s) denote the number of clients assigned to server s ∈ S, we have:
(∑

s∈S
l(s)p

) 1
p

≤
(∑

s∈S
d(1 + ε)α(s)ep

) 1
p

<

(
(1 + 2ε)p

∑

s∈S
α(s)p

) 1
p

= (1 + 2ε)
(∑

s∈S
α(s)p

) 1
p

But as already noted, the p-norm of the α-vector is a lower bound on any assignment, including the
optimal assignment Xopt, so |X|p ≤ (1 + 2ε) |Xopt|.

In the following, let n denote the number of clients that have arrived thus far.

Theorem 37. (1 + ε)-approximate semi-matching has worst-case O(1
ε logn) reassignments with

SAP.

The proof of this theorem relies again on the Expansion Lemma. In this case, however, we do
not use the α-values as part of an amortization argument, but only to bound the lengths of the
shortest augmenting paths.

Proof. Given our graph G, let G′ denote a similar graph with L(s) copies of each server. Then any
maximum matching in G′ corresponds to an (1 + ε)-approximate semi-matching in G. Now, note
that each client-set K in G′ has a neighborhood of at least (1 + ε) times its own size:

|NG′(K)| =
∑

s∈NG(K)
L(s) ≥ (1 + ε)

∑

s∈NG(K)
αG(s) ≥ (1 + ε) |K|

Where the last inequality follows from the fact that the neighborhood of K receives at least all
the flow from K, and thus, at least K flow. Thus, by Lemma 18 we can upper bound the highest
alpha-value α̂ in G′ by

α̂ = max
∅⊂K⊆C

|K|
|NG′(K)| ≤

1
1 + ε

= 1− ε

1 + ε

By setting ε′ = ε
1+ε , all servers of G′ has necessity ≤ 1−ε′. The Expansion Lemma (Lemma 29) then

gives that any active augmenting tail has length at most 2
ε′ ln(n) = 21+ε

ε lnn, which is O(1
ε logn).

7 Conclusion
We showed that in the online matching problem with replacements, where vertices on one side
of the bipartition are fixed (the servers), while those the other side arrive one at a time with all
their incoming edges (the n clients), the shortest augmenting path protocol maintains a maximum
matching while only making amortized O(log2 n) changes to the matching per client insertion. This
almost matches the Ω(logn) lower bound of Grove et al. [13]. Ours is the first paper to achieve
polylogarithmic changes per client; the previous best of Bosek et al. required O(

√
n) changes, and

used a non-SAP strategy [5]. The SAP protocol is especially interesting to analyze because it is
the most natural greedy approach to maintaining the matching. However, despite the conjecture
of Chaudhuri et al. [8] that the SAP protocol only requires O(logn) amortized changes per client,
our analysis is the first to go beyond the trivial O(n) bound for general bipartite graphs; previous
results were only able to analyze SAP in restricted settings. Using our new analysis technique,

21

76 Appendix B: Online Bipartite Matching with Amortized O(log2 n) Replacements

we were also able to show an implementation of the SAP protocol that requires total update time
O(m

√
n
√

logn), which almost matches the classic offline O(m
√
n) running time of Hopcroft and

Karp [19].
The main open problem that remains is to close the gap between our O(log2 n) upper bound and

the Ω(logn) lower bound. This would be interesting for any replacement strategy, but it would also
be interesting to know what the right bound is for the SAP protocol in particular. Another open
question is to remove the

√
logn factor in our implementation of the SAP protocol. Note that both

of these open questions would be resolved if we managed to improve the bound in Lemma 6 from
O(n ln(n)/h) to O(n/h). (In the implementation of Section 5 we would then set h =

√
n instead of

h =
√
n
√

logn.)

8 Acknowledgements
The first author would like to thank Cliff Stein for introducing him to the problem. The authors
would like to thank Seffi Naor for pointing out to us that uniqueness of server loads can be proved
via convex optimization (Section 3.2.1), and to thank Martin Skutella and Guilamme Sagnol for
very helpful pointers regarding the details of this proof.

References
[1] M. Andrews, M. X. Goemans, and L. Zhang. Improved bounds for on-line load balancing.

Algorithmica, 23(4):278–301, Apr 1999.

[2] A. Bernstein, T. Kopelowitz, S. Pettie, E. Porat, and C. Stein. Simultaneously load balancing
for every p-norm, with reassignments. In Proceedings of the 8th Conference on Innovations in
Theoretical Computer Science (ITCS), 2017.

[3] Aaron Bernstein and Shiri Chechik. Deterministic decremental single source shortest paths:
beyond the O(mn) bound. In Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 389–397,
2016.

[4] Aaron Bernstein and Liam Roditty. Improved dynamic algorithms for maintaining approximate
shortest paths under deletions. In Proceedings of the Twenty-Second Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January
23-25, 2011, pages 1355–1365, 2011.

[5] B. Bosek, D. Leniowski, P. Sankowski, and A. Zych. Online bipartite matching in offline time.
In 55th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 384–393.
IEEE Computer Society, 2014.

[6] B. Bosek, D. Leniowski, P. Sankowski, and A. Zych. Shortest augmenting paths for online
matchings on trees. In Approximation and Online Algorithms: 13th International Workshop,
WAOA 2015, Patras, Greece, September 17-18, 2015. Revised Selected Papers, pages 59–71,
Cham, 2015. Springer International Publishing.

22

Appendix B: Online Bipartite Matching with Amortized O(log2 n) Replacements 77

[7] B. Bosek, D. Leniowski, A. Zych, and P. Sankowski. The shortest augmenting paths for online
matchings on trees. CoRR, abs/1704.02093, 2017.

[8] K. Chaudhuri, C. Daskalakis, R. D. Kleinberg, and H. Lin. Online bipartite perfect match-
ing with augmentations. In The 31st Annual IEEE International Conference on Computer
Communications (INFOCOM), pages 1044–1052. IEEE, 2009.

[9] E. A. Dinic. Algorithm for Solution of a Problem of Maximum Flow in a Network with Power
Estimation. Soviet Math Doklady, 11:1277–1280, 1970.

[10] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency for network
flow problems. J. ACM, 19(2):248–264, April 1972.

[11] Leah Epstein and Asaf Levin. Robust Algorithms for Preemptive Scheduling, pages 567–578.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[12] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming
complexity of maximum bipartite matching. In Proceedings of the Twenty-Third Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012,
pages 468–485, 2012.

[13] E. F. Grove, M.-Y. Kao, P. Krishnan, and J. S. Vitter. Online perfect matching and mobile
computing. In S. G. Akl, F. Dehne, J.-R. Sack, and N. Santoro, editors, Algorithms and Data
Structures, pages 194–205. Springer, Berlin„ 1995.

[14] Albert Gu, Anupam Gupta, and Amit Kumar. The power of deferral: Maintaining a constant-
competitive steiner tree online. In Proceedings of the Forty-fifth Annual ACM Symposium on
Theory of Computing, STOC ’13, pages 525–534, New York, NY, USA, 2013. ACM.

[15] A. Gupta, A. Kumar, and C. Stein. Maintaining assignments online: Matching, scheduling,
and flows. In Proceedings of the Twenty-fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’14, pages 468–479, Philadelphia, PA, USA, 2014. Society for Industrial and
Applied Mathematics.

[16] Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Debmalya Panigrahi. Online
and dynamic algorithms for set cover. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, pages 537–550, New York, NY, USA, 2017.
ACM.

[17] Anupam Gupta and Amit Kumar. Online steiner tree with deletions. In Proceedings of the
Twenty-fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’14, pages 455–467,
Philadelphia, PA, USA, 2014. Society for Industrial and Applied Mathematics.

[18] P. Hall. On representatives of subsets. Journal of the London Mathematical Society, s1-10(1):26–
30, 1935.

[19] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in bipartite graphs.
SIAM Journal on Computing, 2(4):225–231, 1973.

[20] Makoto Imase and Bernard M. Waxman. Dynamic steiner tree problem. SIAM Journal on
Discrete Mathematics, 4(3):369–384, 1991.

23

78 Appendix B: Online Bipartite Matching with Amortized O(log2 n) Replacements

[21] Michael Kapralov. Better bounds for matchings in the streaming model. In Proceedings of
the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New
Orleans, Louisiana, USA, January 6-8, 2013, pages 1679–1697, 2013.

[22] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line bipar-
tite matching. In Proceedings of the Twenty-second Annual ACM Symposium on Theory of
Computing, STOC ’90, pages 352–358, New York, NY, USA, 1990. ACM.

[23] Valerie King. Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive
closure in digraphs. In 40th Annual Symposium on Foundations of Computer Science, FOCS
’99, 17-18 October, 1999, New York, NY, USA, pages 81–91. IEEE Computer Society, 1999.

[24] Jakub La̧cki, Jakub Ocwieja, Marcin Pilipczuk, Piotr Sankowski, and Anna Zych. The power
of dynamic distance oracles: Efficient dynamic algorithms for the steiner tree. In Proceedings of
the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland,
OR, USA, June 14-17, 2015, pages 11–20, 2015.

[25] Nicole Megow, Martin Skutella, José Verschae, and Andreas Wiese. The power of recourse for
online mst and tsp. SIAM Journal on Computing, 45(3):859–880, 2016.

[26] S. Phillips and J. Westbrook. On-line load balancing and network flow. Algorithmica, 21(3):245–
261, Jul 1998.

[27] Peter Sanders, Naveen Sivadasan, and Martin Skutella. Online scheduling with bounded
migration. Math. Oper. Res., 34(2):481–498, 2009.

[28] Yossi Shiloach and Shimon Even. An on-line edge-deletion problem. J. ACM, 28(1):1–4, January
1981.

[29] Martin Skutella and José Verschae. A robust PTAS for machine covering and packing. In Mark
de Berg and Ulrich Meyer, editors, Algorithms - ESA 2010, 18th Annual European Symposium,
Liverpool, UK, September 6-8, 2010. Proceedings, Part I, volume 6346 of Lecture Notes in
Computer Science, pages 36–47. Springer, 2010.

[30] Subhash Suri, Csaba D. Tóth, and Yunhong Zhou. Selfish load balancing and atomic congestion
games. Algorithmica, 47(1):79–96, 2007.

[31] Jeffery Westbrook. Load balancing for response time. Journal of Algorithms, 35(1):1 – 16, 2000.
Announced at ESA’95.

24

Appendix B: Online Bipartite Matching with Amortized O(log2 n) Replacements 79

Dynamic Bridge-Finding in Õ(log2 n) Amortized Time

Jacob Holm∗, Eva Rotenberg, and Mikkel Thorup∗

University of Copenhagen (DIKU),
jaho@di.ku.dk, eva@rotenberg.dk, mthorup@di.ku.dk

August 28, 2018

Abstract

We present a deterministic fully-dynamic data structure for maintaining information about
the bridges in a graph. We support updates in Õ((log n)2) amortized time, and can find a
bridge in the component of any given vertex, or a bridge separating any two given vertices,
in O(log n/ log log n) worst case time. Our bounds match the current best for bounds for
deterministic fully-dynamic connectivity up to log log n factors.

The previous best dynamic bridge finding was an Õ((log n)3) amortized time algorithm by
Thorup [STOC2000], which was a bittrick-based improvement on the O((log n)4) amortized time
algorithm by Holm et al.[STOC98, JACM2001].

Our approach is based on a different and purely combinatorial improvement of the algorithm
of Holm et al., which by itself gives a new combinatorial Õ((log n)3) amortized time algorithm.

Combining it with Thorup’s bittrick, we get down to the claimed Õ((log n)2) amortized time.
Essentially the same new trick can be applied to the biconnectivity data structure from

[STOC98, JACM2001], improving the amortized update time to Õ((log n)3).
We also offer improvements in space. We describe a general trick which applies to both of

our new algorithms, and to the old ones, to get down to linear space, where the previous best
use O(m+ n log n log log n).

Our result yields an improved running time for deciding whether a unique perfect matching
exists in a static graph.

∗This research is supported by Mikkel Thorup’s Advanced Grant DFF-0602-02499B from the Danish Council for
Independent Research under the Sapere Aude research career programme.

ar
X

iv
:1

70
7.

06
31

1v
3

 [
cs

.D
S]

 2
7

A
ug

 2
01

8

80 Appendix C: Dynamic Bridge-Finding in Õ(log2 n) Amortized Time

1 Introduction

In graphs and networks, connectivity between vertices is a fundamental property. In real life, we
often encounter networks that change over time, subject to insertion and deletion of edges. We call
such a graph fully dynamic. Dynamic graphs call for dynamic data structures that maintain just
enough information about the graph in its current state to be able to promptly answer queries.

Vertices of a graph are said to be connected if there exists a path between them, and k-edge
connected if no sequence of k − 1 edge deletions can disconnect them. A bridge is an edge whose
deletion would disconnect the graph. In other words, a pair of connected vertices are 2-edge
connected if they are not separated by a bridge. By Menger’s Theorem [20], this is equivalent to
saying that a pair of connected vertices are 2-edge connected if there exist two edge-disjoint paths
between them. By edge-disjoint it is meant that no edge appears in both paths.

For dynamic graphs, the first and most fundamental property to be studied was that of dynamic
connectivity. In general, we can assume the graph has a fixed set of n vertices, and we let m denote
the current number of edges in the graph. The first data structure with sublinear O(

√
n) update time

is due to Frederickson [6] and Eppstein et al. [5]. Later, Frederickson [7] and Eppstein et al. [5] gave
a data structure with O(

√
n) update time for 2-edge connectivity. Henzinger and King achieved poly-

logarithmic expected amortized time [11], that is, an expected amortized update time of O((log n)3),
and O(log n/ log log n) query time for connectivity. And in [12], O((log n)5) expected amortized
update time and O(log n) worst case query time for 2-edge connectivity. The first polylogarithmic
deterministic result was by Holm et al. announced in [13], see [14] for a journal version; an
amortized deterministic update time of O((log n)2) for connectivity, and O((log n)4) for 2-edge
connectivity. The update time for deterministic dynamic connectivity has later been improved to
O((log n)2/ log log n) by Wulff-Nilsen [24]. Sacrificing determinism, an O(log n(log log n)3) structure
for connectivity was presented by Thorup [23], and later improved to O(log n(log logn)2) by Huang et
al. [15]. In the same paper, Thorup obtains an update time of O((log n)3 log log n) for deterministic
2-edge connectivity. Interestingly, Kapron et al. [16] gave a Monte Carlo-style randomized data
structure with polylogarithmic worst case update time for dynamic connectivity, namely, O((log n)4)
per edge insertion, O((log n)5) per edge deletion, and O(log n/ log logn) per query. This was later
improved by Gibbs et al. [10] to O((log n)4) worst case update time and sublinear O(n log2 n) space.
We know of no similar worst-case result for bridge finding. The same paper [10] also gives the
first sublinear-space O(n log2 n) space data structure for (amortized) 2-edge connectivity, by using
the sublinear-space connectivity data structure to maintain a sparse subgraph preserving 2-edge
connectivity and then using the existing 2-edge connectivity data structure from Holm et al. [14] as
a black box on that subgraph.

The best lower bound known is by Pǎtraşcu et al. [21], which shows a trade-off between update
time tu and query time tq of tq lg tu

tq
= Ω(lg n) and tu lg

tq
tu

= Ω(lg n).

1.1 Our results

We obtain an update time of O((log n)2(log logn)2) and a query time of O(log n/ log logn) for the
bridge finding problem:

Theorem 1. There exists a deterministic data structure for dynamic multigraphs in the word RAM
model with Ω(log n) word size, that uses O(m+ n) space, and can handle the following updates, and
queries for arbitrary vertices v or arbitrary connected vertices v, u:

1

Appendix C: Dynamic Bridge-Finding in Õ(log2 n) Amortized Time 81

• insert and delete edges in O((log n)2(log log n)2) amortized time,

• find a bridge in v’s connected component or determine that none exists, or find a bridge that
separates u from v or determine that none exists. Both in O(log n/ log log n) worst-case time.

• find the size of v’s connected component in O(log n/ log log n) worst-case time, or the size of
its 2-edge connected component in O(log n(log log n)2) worst-case time.

Since a pair of connected vertices are 2-edge connected exactly when there is no bridge separating
them, we have the following corollary:

Corollary 2. There exists a data structure for dynamic multigraphs in the word RAM model with
Ω(log n) word size, that can answer 2-edge connectivity queries in O(log n/ log log n) worst case
time and handle insertion and deletion of edges in O((log n)2(log log n)2) amortized time, with space
consumption O(m+ n).

Note that the query time is optimal with respect to the trade-off by Pǎtraşcu et al. [21]
As a stepping stone on the way to our main theorem, we show the following:

Theorem 3. There exists a combinatorial deterministic data structure for dynamic multigraphs
on the pointer-machine without the use of bit-tricks, that uses O(m + n) space, and can handle
insertions and deletions of edges in O((log n)3 log log n) amortized time, find bridges and determine
connected component sizes in O(log n) worst-case time, and find 2-edge connected component sizes
in O((log n)2 log log n) worst-case time.

Our results are based on modifications to the 2-edge connectivity data structure from [14].
Applying the analoguous modification to the biconnectivity data structure from the same paper
yields a structure with O((log n)3(log log n)2) amortized update time and O((log n)2(log logn)2)
worst case query time. The details of this modification are beyond the scope of this paper.

1.2 Applications

Although our data structure is deterministic and uses linear space, it entails an improvement of the
current best sublinear-space data structure. Namely, the Monte-Carlo randomized sublinear-space
2-edge connectivity data structure by Gibbs et al. [10] uses the data structure from [14] as a black
box: For each update the data structure uses worst case O(log5 n) time by itself, and makes O(log2 n)
updates in the sparse graph seen by the black box. Thus, with the O(log4 n) amortized update
time from [14], this gives a sublinear-space data structure with amortized O(log6 n) update time.
Using the data structure from [23] or our new purely combinatorial data structure, this drops
to O((log n)5 log log n) amortized time. With our new Õ(log2 n) update time data structure, this
improves to O(log5 n) amortized time (and the bottleneck is now in the reduction).

While dynamic graphs are interesting in their own right, many algorithms and theorem proofs for
static graphs rely on decremental or incremental graphs. Take for example the problem of whether
or not a graph has a unique perfect matching. The following theorem by Kotzig immediately yields
a near-linear time algorithm if implemented together with a decremental 2-edge connectivity data
structure with poly-logarithmic update time:

Theorem 4 (A. Kotzig ’59 [19]). Let G be a connected graph with a unique perfect matching M .
Then G has a bridge that belongs to M .

2

82 Appendix C: Dynamic Bridge-Finding in Õ(log2 n) Amortized Time

The near-linear algorithm for finding a unique perfect matching by Gabow, Kaplan, and Tarjan [9]
is straight-forward: Find a bridge and delete it. If deleting it yields connected components of odd
size, it must belong to the matching, and all edges incident to its endpoints may be deleted—if the
components have even size, the bridge cannot belong to the matching. Recurse on the components.
Thus, to implement Kotzig’s Theorem, one has to implement three operations: One that finds a
bridge, a second that deletes an edge, and a third returning the size of a connected component.

Another example is Petersen’s theorem [22] which states that any cubic, 2-edge connected graph
contains a perfect matching. An algorithm by Biedl et al. [3] finds a perfect matching in such graphs
in O(n log4 n) time, by using the Holm et al 2-edge connectivity data structure as a subroutine. In
fact, one may implement their algorithm and obtain running time O(nf(n)), by using as subroutine
a data structure for amortized decremental 2-edge connectivity with update-time f(n). Here, we
thus improve the running time from O(n(log n)3 log logn) to O(n(log n)2(log log n)2).

In 2010, Diks and Stanczyk [4] improved Biedl et al.’s algorithm for perfect matchings in 2-edge
connected cubic graphs, by having it rely only on dynamic connectivity, not 2-edge connectivity,
and thus obtaining a running time of O(n(log n)2/ log logn) for the deterministic version, or
O(n log n(log logn)2) expected running time for the randomized version. However, our data structure
still yields a direct improvement to the original algorithm by Biedl et al.

Note that all applications to static graphs have in common that it is no disadvantage that our
running time is amortized.

1.3 Techniques

As with the previous algorithms, our result is based on top trees [2] which is a hierarchical tree
structure used to represent information about a dynamic tree — in this case, a certain spanning
tree of the dynamic graph. The original O((log n)4) algorithm of Holm et al. [14] stores O((log n)2)
counters with each top tree node, where each counter represent the size of a certain subgraph. Our
new O((log n)3) algorithm applies top trees the same way, representing the same O((log n)2) sizes
with each top tree node, but with a much more efficient implicit representation of the sizes.

Reanalyzing the algorithm of Holm et al. [14], we show that many of the sizes represented in the
top nodes are identical, which implies that that they can be represented more efficiently as a list of
actual differences. We then need additional data structures to provide the desired sizes, and we have
to be very careful when we move information around as the top tree changes, but overall, we gain
almost a log-factor in the amortized time bound, and the algorithm remains purely combinatorial.

Our combinatorial improvement can be composed with the bittrick improvement of Thorup [23].
Thorup represents the same sizes as the original algorithm of Holm et al., but observes that we
don’t need the exact sizes, but just a constant factor approximation. Each approximate size can
be represented with only O(log logn) bits, and we can therefore pack Ω(log n/ log logn) of them
together in a single Ω(log n)-bit word. This can be used to reduce the cost of adding two O(log n)-
dimensional vectors of approximate sizes from O(log n) time to O(log logn) time. It may not be
obvious from the current presentation, but it was a significant technical difficulty when developing
our O((log n)3 log logn) algorithm to make sure we could apply this technique and get the associated
speedup to O((log n)2(log log n)2).

The “natural” query time of our algorithm is the same as its update time. In order to reduce
the query time, we observe that we can augment the main algorithm to maintain a secondary
structure that can answer queries much faster. This can be used to reduce the query time for the
combinatorial algorithm to O(log n), and for the full algorithm to the optimal O(log n/ log logn).

3

Appendix C: Dynamic Bridge-Finding in Õ(log2 n) Amortized Time 83

The secondary structure needed for the optimal O(log n/ log log n) query time uses top trees of
degree O(log n/ log logn). While the use of non-binary trees is nothing new, we believe we are the
first to show that such top trees can be maintained in the “natural” time.

Finally, we show a general technique for getting down to linear space, using top trees whose
base clusters have size Θ(logc n).

1.4 Article outline

In Section 2, we recall how [14] fundamentally solves 2-edge connectivity via a reduction to a certain
set of operations on a dynamic forest. In Section 3, we recall how top trees can be used to maintain
information in a dynamic forest, as shown in [2]. In Sections 4, 5, and 6, we describe how to support
the operations on a dynamic tree needed to make a combinatorial O((log n)3 log log n) algorithm
for bridge finding, as stated in Theorem 3. Then, in Section 7, we show how to use Approximate
Counting to get down to O((log n)2(log logn)2) update time, thus, reaching the update time of
Theorem 1. We then revisit top trees in Section 8, and introduce the notion of B-ary top trees, as
well as a general trick to save space in complex top tree applications. We proceed to show how
to obtain the optimal Θ(log n/ log logn) query time in Section 9. Finally, in Section 10, we show
how to achieve optimal space, by only storing cluster information with large clusters, and otherwise
calculating it from scratch when needed.

2 Reduction to operations on dynamic trees

In [14], 2-edge connectivity was maintained via operations on dynamic trees, as follows. For each
edge e of the graph, the algorithm explicitly maintains a level, `(e), between 0 and `max = blog2 nc
such that the edges at level `max form a spanning forest T , and such that the 2-edge connected
components in the subgraph induced by edges at level at least i have at most

⌊
n/2i

⌋
vertices. For

each edge e in the spanning forest, define the cover level, c(e), as the maximum level of an edge
crossing the cut defined by removing e from T , or −1 if no such edge exists. The cover levels are
only maintained implicitly, because each edge insertion and deletion can change the cover levels of
Ω(n) edges. Note that the bridges are exactly the edges in the spanning forest with cover level −1.
The algorithm explicitly maintains the spanning forest T using a dynamic tree structure supporting
the following operations:

1. Link(v, w). Add the edge (v, w) to the dynamic tree, implicitly setting its cover level to −1.

2. Cut(v, w). Remove the edge (v, w) from the dynamic tree.

3. Connected(v, w). Returns true if v and w are in the same tree, false otherwise.

4. Cover(v, w, i). For each edge e on the tree path from v to w whose cover level is less than i,
implicitly set the cover level to i. (Called when an edge was inserted at level i = 0 or had its
level incresed to i > 0.)

5. Uncover(v, w, i). For each edge e on the tree path from v to w whose cover level is at most i,
implicitly set the cover level to −1. (Called when the knowledge we had about whether the
edges on the tree path from v to w were covered at level ≤ i is no longer valid because some
edge was deleted. This may temporarily set some cover levels too low, but the algorithm fixes
that using subsequent calls to Cover.)

6. CoverLevel(v). Return the minimal cover level of any edge in the tree containing v.

4

84 Appendix C: Dynamic Bridge-Finding in Õ(log2 n) Amortized Time

7. CoverLevel(v, w). Return the minimal cover level of an edge on the path from v to w. If
v = w, we define CoverLevel(v, w) = `max.

8. MinCoveredEdge(v). Return any edge in the tree containing v with minimal cover level. (Find
a bridge, anywhere in the tree.)

9. MinCoveredEdge(v, w). Returns a tree-edge on the path from v to w whose cover level is
CoverLevel(v, w). (Find a bridge on the given path.)

10. AddLabel(v, l, i). Associate the user label l to the vertex v at level i. (Insert a non-tree edge.)

11. RemoveLabel(l). Remove the user label l from its vertex vertex(l). (Delete a non-tree edge.)

12. FindFirstLabel(v, w, i). Find a user label at level i such that the associated vertex u has1

CoverLevel(u,meet(u, v, w)) ≥ i; among such user labels, return the one that minimizes the
distance from v to meet(u, v, w). (Find the first candidate witness that part of the path v · · ·w
is covered on level i, or a non-tree edge to swap with when deleting a covered tree edge.)

13. FindSize(v, w, i). Find the number of vertices u such that CoverLevel(u,meet(u, v, w)) ≥ i.
(Determine the size of the 2-edge connected component at level i that would result from
increasing the level of (v, w) to i, or for v = w just find the size of the 2-edge connected
component at level i that contains v = w. Thus the size of the 2-edge component of v in the
whole graph is FindSize(v, v, 0).). Note that FindSize(v, v,−1) is just the number of vertices
in the tree containing v (which is also the size of the connected component of v).

Lemma 5 (Essentially the high level algorithm from [14]). There exists a deterministic reduction
for dynamic graphs with n nodes, that, when starting with an empty graph, supports any sequence
of m Insert or Delete operations using:

• O(m) calls to Link, Cut, Uncover, and CoverLevel.

• O(m log n) calls to Connected, Cover, AddLabel, RemoveLabel, FindFirstLabel, and FindSize.

And that can answer FindBridge queries using a constant number of calls to Connected, CoverLevel,
and MinCoveredEdge, and size queries using a single call to FindSize.

Proof. See Appendix A for a proof and pseudocode.

The algorithm in [14] used a dynamic tree structure supporting all the operations in O((log n)3)
time, leading to an O((log n)4) algorithm for bridge finding. Thorup [23] showed how to improve
the time for the dynamic tree structure to O((log n)2 log logn) leading to an O((log n)3 log logn)
algorithm for bridge finding.

Throughout this paper, we will show a number of data structures for dynamic trees, implementing
various subsets of these operations while ignoring the rest (See Table 1). Define a CoverLevel
structure to be one that implements operations 1–9, and a FindSize structure to be a CoverLevel
structure that additionally implements the FindSize operation. Finally, we define a FindFirstLabel
structure to be one that implements operations 1–12 (all except for FindSize).

The point is that we can get different trade-offs between the operation costs in the different
structures, and that we can combine them into a single structure supporting all the operations using
the following

1meet(u, v, w) is defined as the unique vertex that is on all simple paths beween any two of u, v, and w.

5

Appendix C: Dynamic Bridge-Finding in Õ(log2 n) Amortized Time 85

Operation
Asymptotic worst case time per call, using structure in section

4 5 6 7 9
1 Link(v, w, e)

log n (log n)2 log log n log n log log n log n(log log n)2

f(n) logn
log f(n)2 Cut(e)

3 Connected(v, w)

logn
log f(n)

4 Cover(v, w, i)
5 Uncover(v, w, i)
6 CoverLevel(v)
7 CoverLevel(v, w)
8 MinCoveredEdge(v)
9 MinCoveredEdge(v, w)

10 AddLabel(v, l, i)
- - log n log log n - -11 RemoveLabel(l)

12 FindFirstLabel(v, w, i)

13
FindSize(v, w, i) - (log n)2 log log n - log n(log log n)2 -

FindSize(v, v,−1) log n log n log n log n logn
log f(n)

Space cost, using structure in section
natively

n
n log n

m+ n
n log log n

n
when modified as in Section 10 n n

Table 1: Data structures presented in this paper. In the last column, f(n) ∈ O(logn
log logn) can be

chosen arbitrarily.

Lemma 6 (Folklore). Given two data structures S and S′ for the same problem consisting of a set
U of update operations and a set Q of query operations. If the respective update times are fu(n) and
f ′u(n) for u ∈ U , and the query times are gq(n) and g′q(n) for q ∈ Q, we can create a combined data
structure running in O(fu(n) + f ′u(n)) time for update operation u ∈ U , and O(min

{
gq(n), g′q(n)

}
)

time for query operation q ∈ Q.

Proof. Simply maintain both structures in parallel. Call all update operations on both structures,
and call only the fastest structure for each query.

Proof of Theorem 3. Use the CoverLevel structure from Section 4, the FindSize structure from
Section 5, and the FindFirstLabel structure from Section 6, and combine them into a single structure
using Lemma 6. Then the reduction from Lemma 5 gives the correct running times but uses
O(m+ n log n) space. To get linear space, modify the FindSize and FindFirstLabel structures as
described in Section 10.

Proof of Theorem 1. Use the CoverLevel structure from Section 9, the FindSize structure from
Section 5, as modified in Section 7 and 10, and the FindFirstLabel structure from Section 6, and
combine them into a single structure using Lemma 6. Then the reduction from Lemma 5 gives the
required bounds.

3 Top trees

A top tree is a data structure for maintaining information about each tree of a dynamic forest. Let
T be a tree, and let ∂T be an arbitrary set of 1 or 2 vertices of T , which we will call the external
boundary vertices of T . For any subgraph S of T , define the boundary vertices of S (denoted ∂(T,∂T)S

6

86 Appendix C: Dynamic Bridge-Finding in Õ(log2 n) Amortized Time

or just ∂S) as the set of vertices in S that are either in ∂T or are incident to an edge not in S. A
cluster C is a connected subgraph of T with 1 or 2 boundary vertices2. A top tree T is a rooted
tree representing a recursive partition of T into clusters. The root of T corresponds to all of T , and
each non-leaf node is an edge-disjoint union of the clusters of its children. The leaves of T are called
base clusters and (usually3) correspond to the edges of T .

For every cluster C the cluster path of C, denoted π(C), is the tree path in T connecting ∂C. If
|∂C| = 2 then π(C) contains at least one edge, and we call C a path cluster. Otherwise |π(C)| = 1
and we call C a point cluster. If |∂C| = 1 then π(C) is the trivial path consisting of the single
boundary vertex.

A top tree is binary if each node has at most two children. We call a non-leaf node heterogeneous
if it has both a point cluster and a path cluster among its children, and homogeneous otherwise.

A path cluster D is called a path child of its parent C if π(D) ⊆ π(C). Note that for binary
top trees, a path cluster D is a path child if and only if its parent C is also a path cluster. But for
non-binary top trees, even if C and D are both path clusters, ∂D may intersect ∂C only in a point,
or not at all.

The top forest supports dynamic changes to the forest: insertion (link) or deletion (cut) of edges.
Furthermore, it supports the expose operation: expose(v), or expose(v1, v2), returns a top tree where
v, or v1, v2, are external boundary vertices. All operations are supported by performing a series of
destroy, create, split, and merge operations: split destroys a node of the top tree and replaces it
with its children, while merge creates a parent as a union of its children. Destroy and create are
the base cases for split and merge, respectively. Note that clusters can only be merged if they are
edge-disjoint and their union is a cluster (i.e. is connected and has a boundary of size at most 2).

Theorem 7 (Alstrup, Holm, de Lichtenberg, Thorup [2]). For a dynamic forest on n vertices we
can maintain binary top trees of height O(log n) supporting each link, cut or expose with a sequence
of O(1) calls to create or destroy, and O(log n) calls to merge or split. These top tree modifications
are identified in O(log n) time. The space usage of the top trees is linear in the size of the dynamic
forest.

4 A CoverLevel structure

In this section we show how to maintain a top tree supporting the CoverLevel operations. This part
is essentially the same as in [13,14] (with minor corrections), but is included here for completeness
because the rest of the paper builds on it. Pseudocode for maintaining this structure is given in
Appendix B.

For each cluster C we want to maintain the following two integers and up to two edges:

coverC := min {c(e) | e ∈ π(C)} ∪ {`max}
globalcoverC := min {c(e) | e ∈ C \ π(C)} ∪ {`max}

minpathedgeC := arg min
e∈π(C)

c(e) if |∂C| = 2, and nil otherwise

minglobaledgeC := arg min
e∈C\π(C)

c(e) if C 6= π(C), and nil otherwise

2Note that this deviates from the existing literature, which introduces a special class of cluster with 0 boundary
vertices, which can only be present in the root [2]

3We will look at generalized top trees where this is not the case in Section 8

7

Appendix C: Dynamic Bridge-Finding in Õ(log2 n) Amortized Time 87

Then

CoverLevel(v) = globalcoverC

MinCoveredEdge(v) = minglobaledgeC

}
where C is the point cluster returned by Expose(v)

CoverLevel(v, w) = coverC

MinCoveredEdge(v, w) = minpathedgeC

}
where C is the path cluster returned by Expose(v, w)

The problem is that when handling Cover or Uncover we cannot afford to propagate the
information all the way down to the edges. When these operations are called on a path cluster
C, we instead implement them directly in C, and then store “lazy information” in C about what
should be propagated down in case we want to look at the descendants of C. The exact additional
information we store for a path cluster C is

cover−C := max level of a pending Uncover, or −1

cover+C := max level of a pending Cover, or −1

We maintain the invariant that coverC ≥ cover+C , and if coverC ≤ cover−C then coverC = cover+C .
This allows us to implement Cover(v, w, i) by first calling Expose(v, w), and then updating the

returned path cluster C as follows:

coverC = max {coverC , i} cover+C = max
{

cover+C , i
}

Similarly, we can implement Uncover(v, w, i) by first calling Expose(v, w), and then updating the
returned path cluster C as follows if coverC ≤ i:

coverC = −1 cover+C = −1 cover−C = max
{

cover−C , i
}

Together, cover−C and cover+C represent the fact that for each path descendant D of C, if
coverD ≤ max

{
cover−C , cover+C

}
4, we need to set coverD = cover+C . In particular whenever a path

cluster C is split, for each path child D of C, if max
{

coverD, cover−D
}
≤ cover−C we need to set

cover−D = cover−C

Furthermore, if coverD ≤ max
{

cover−C , cover+C
}

we need to set

coverD = cover+C cover+D = cover+C

Note that only coverD is affected. None of globalcoverD, minpathedgeD, or minglobaledgeD depend
directly on the lazy information.

Now suppose we have k clusters5 A1, . . . , Ak that we want to merge into a single new cluster C.
For 1 ≤ i ≤ k define

globalcover′C,Ai :=

{
globalcoverAi if ∂Ai ⊆ π(C) or globalcoverAi ≤ coverAi
coverAi otherwise

minglobaledge′C,Ai :=

{
minglobaledgeAi if ∂Ai ⊆ π(C) or globalcoverAi ≤ coverAi
minpathedgeAi otherwise

4In [13,14] this condition is erroneously stated as coverD ≤ cover−C .
5k = 2 for now, but we will reuse this in section 9 with a higher-degree top tree.

8

88 Appendix C: Dynamic Bridge-Finding in Õ(log2 n) Amortized Time

Note that for a point-cluster Ai, globalcoverAi is always ≤ coverAi = lmax.
We then have the following relations between the data of the parent and the data of its children:

coverC = `max if |∂C| < 2, otherwise min
1≤i<k,∂Ai⊆π(C)

coverAi

minpathedgeC = nil if |∂C| < 2, otherwise minpathedgeAj where j = arg min
1≤i<k,∂Ai⊆π(C)

coverAi

globalcoverC = min
1≤i<k

globalcover′C,Ai

minglobaledgeC = minglobaledge′C,Aj where j = arg min
1≤i<k

globalcover′C,Ai

cover−C = −1

cover+C = −1

Analysis For any constant-degree top tree, Merge and Split with this information takes constant
time, and thus, all operations in the CoverLevel structure in this section take O(log n) time. Each
cluster uses O(1) space, so the total space used is O(n).

5 A FindSize structure

We now proceed to show how to extend the CoverLevel structure from Section 4 to support FindSize
in O(log n log log n) time per Merge and Split. Later, in Section 7 we will show how to reduce this
to O((log logn)2) time per Merge and Split. See Appendix C for pseudocode.

We will use the idea of having a single vertex label for each vertex, which is a point cluster with
no edges, having that vertex as boundary vertex and containing all relevant information about the
vertex. The advantage of this is that it simplifies handling of the common boundary vertex during a
merge by making sure it is uniquely assigned to (and accounted for by) one of the children.

Let C be a cluster in T , let v be a vertex in π(C), and let 0 ≤ i < `max. Define

pointsetC,v,i :=

{
u ∈ C

∣∣∣∣∣
π(C) ∩ u · · · v = {v}
∧ CoverLevel(u, v) ≥ i

}

Intuitively, pointsetC,v,i is the set of vertices in C whose path to v is covered at level ≥ i independently
of the cover levels on π(C). Information (such as the size or the existence of certain marked vertices)
about this set stays constant for as long as C exists, no matter what happens with the lazy
information in the ancestors to C. In this section we only care about the size

pointsizeC,v,i :=
∣∣pointsetC,v,i

∣∣

For convenience, we will combine all the O(log n) levels together into a single vector6

pointsizeC,v :=
(
pointsizeC,v,i

)
{0≤i<`max}

Then we can define the vector

sizeC :=
∑

u∈π(C)

pointsizeC,u

6All vectors and matrices in this section have indices ranging from 0 to `max − 1.

9

Appendix C: Dynamic Bridge-Finding in Õ(log2 n) Amortized Time 89

Note that with this definition, if ∂C = {v} then pointsizeC,v = sizeC so even when v = w we have

FindSize(v, w, i) = sizeC,i where C = Expose(v, w)

So for any cluster C, the sizeC vector is what we want to maintain.
The main difficulty turns out be computing the sizeC vector for the heterogeneous point clusters.

To help with that we will for each cluster C and boundary vertex v ∈ ∂C break π(C) into `max + 2
parts. For each −1 ≤ i ≤ `max define

partpathC,v,i := {u ∈ π(C) | CoverLevel(u, v) = i}

Then partpathC,v,i (if nonempty) is a contiguous subset of the vertices on π(C). Furthermore,
partpathC,v,`max

= {v}, ∂C \ {v} ⊆ partpathC,v,−1, and for all 0 ≤ i < `max the set partpathC,v,i
lies between the closest edge e to v with c(e) ≤ i and the closest edge e′ to v with c(e′) < i. In
addition to the sizeC vector, we will maintain the following two size vectors for each part:

partsizeC,v,i :=
∑

u∈partpathC,v,i
pointsizeC,u diagsizeC,v,i := M(i) · partsizeC,v,i

Where M(i) is a diagonal matrix whose entries are defined by7

M(i)jj = [j ≤ i]

The M(i) matrix is purely a notational convenience whose purpose is to “zero out” some elements
in a vector. In particular, for 0 ≤ j < `max

diagsizeC,v,i,j = (M(i) · partsizeC,v,i)j =

{
partsizeC,v,i,j if j ≤ i
0 otherwise

Note that these vectors do not take cover−C and cover+C (as defined in Section 4) into account. The
corresponding “clean” vectors are not explicitly stored, but computed when needed as follows

partsize′C,v,i =

partsizeC,v,i if i > `∑`
j=−1 partsizeC,v,j if i = cover+C

~0 otherwise

diagsize′C,v,i =

diagsizeC,v,i if i > `

M(i) ·∑`
j=−1 partsizeC,v,j if i = cover+C

~0 otherwise

where ` = max
{

cover−C , cover+C
}

The point of these definitions is that each path cluster inherits most of its partsize and diagsize
vectors from its children, and we can use this fact to get an O(`max/ log `max) = O(log n/ log log n)
speedup compared to [14].

7Here, [P] =

{
1 if P is true

0 otherwise
is the Iverson Bracket (see [17]).

10

90 Appendix C: Dynamic Bridge-Finding in Õ(log2 n) Amortized Time

Merging along a path (the general case) Let A,B be clusters that we want to merge into a
new cluster C, and suppose ∂A ∪ ∂B ⊆ π(C). This covers both types of homogeneous merges (two
point or two path clusters), as well as the heterogeneous merge (one point and one path cluster)
where the result is a path cluster. The only type of merge not covered is the heterogeneous merge
resulting in a point cluster, which is handled in the next section. Let ∂A ∩ ∂B = {c}. If |∂C| = 1,
let a = b = c, otherwise let ∂C = {a, b} with a ∈ ∂A, b ∈ ∂B. Then

sizeC = sizeA + sizeB

partsizeC,a,i =

partsize′A,a,i if i > coverA

partsize′A,a,i +
∑`max

j=i partsize′B,c,j if i = coverA

partsize′B,c,i if i < coverA

diagsizeC,a,i =

diagsize′A,a,i if i > coverA

diagsize′A,a,i +M(i) ·∑`max
j=i partsize′B,c,j if i = coverA

diagsize′B,c,i if i < coverA

The formulas for partsizeC,b,i and diagsizeC,b,i are analoguous. The important thing to note is that
if we have already computed and stored the partsize′A,a,i, partsize′B,c,i, diagsize′A,a,i, and diagsize′B,c,i
vectors for all i, then the only new value we need to compute is for i = coverA. The rest can be
inherited.

Merging off the path (heterogeneous point clusters) Now let A be a path cluster with
∂A = {a, b}, let B be a point cluster with ∂B = {b}, and suppose we want to merge A,B into a
new point cluster C with ∂C = {a}. Then

sizeC =

(
`max∑

i=−1
diagsize′A,a,i

)
+M(coverA) · sizeB

partsizeC,a,i =

{
sizeC if i = `max

~0 otherwise

diagsizeC,a,i = partsizeC,a,i

Analysis The advantage of our new approach is that each merge or split is a constant number of
splits, concatenations, searches, and sums over O(`max)-length lists of `max-dimensional vectors. By
representing each list as an augmented balanced binary search tree (see e.g. [18, pp. 471–475]), we
can implement each of these operations in O(`max log `max) time, and using O(`max) space per cluster,
as follows. Let C be a cluster and let v ∈ ∂C. The tree has one node for each key i,−1 ≤ i ≤ `max

11

Appendix C: Dynamic Bridge-Finding in Õ(log2 n) Amortized Time 91

such that partsizeC,v,i is nonzero, augmented with the following additional information:

key := i

partsize := partsizeC,v,i

diagsize := diagsizeC,v,i

partsizesum :=
∑

j descendant of i

partsizeC,v,j

diagsizesum :=
∑

j descendant of i

partsizeC,v,j

Each split, concatenate, search, or sum operation can be implemented such that it touches O(log `max)
nodes, and the time for each node update is dominated by the time it takes to add two `max-
dimensional vectors, which is O(`max). The total time for each Cover, Uncover, Link, Cut, or
FindSize is therefore O(log n · `max · log `max) = O((log n)2 log logn), and the total space used for
the structure is O(n · `max) = O(n log n).

Comparison to previous algorithms For any path cluster C and vertex v ∈ ∂C, let SC,v be
the matrix whose jth column 0 ≤ j < `max is defined by

(STC,v)j :=

`max∑

k=j

partsize′C,v,k

Then SC,v is essentially the size matrix maintained for path clusters in [13,14,23]. Notice that

diag(SC,v) =

`max∑

k=−1
diagsize′C,v,k

which explains our choice of the “diag” prefix.

6 A FindFirstLabel structure

We will show how to maintain information that allows us to implement FindFirstLabel; the function
that allows us to inspect the replacement edge candidates at a given level. The implementation uses
a “destructive binary search, with undo” strategy, similar to the non-local search introduced in [2].

The idea is to maintain enough information in each cluster to determine if there is a result.
Then we can start by using Expose(v, w), and repeatedly split the root containing the answer until
we arrive at the correct label. After that, we simply undo the splits (using the appropriate merges),
and finally undo the Expose.

Just as in the FindSize structure, we will use vertex labels to store all the information pertinent
to a vertex. We store all the added user labels for each vertex in the label object for that vertex in
the base level of the top tree. For each level where the vertex has an associated user label, we keep
a doubly linked list of those labels, and we keep a singly-linked list of these nonempty lists. Thus,
FindFirstLabel(v, w, i) boils down to finding the first vertex label that has an associated user label
at the right level. Once we have that vertex label, the desired user label can be found in O(`max)
time.

12

92 Appendix C: Dynamic Bridge-Finding in Õ(log2 n) Amortized Time

Let C be a cluster in T , and let v ∈ ∂C. Define bit vectors8

pointincidentC,v :=
([
∃v ∈ pointsetC,v,i :

v has labels
at level i

])
{0≤i<`max}

incidentC :=
∨

u∈π(C)

pointincidentC,u

Maintaining the incidentC bit vectors, and the corresponding partincidentC,v and diagincidentC,v
bit vectors, can be done completely analogous to the way we maintain the size vectors used for
FindSize, with the minor change that we use bitwise OR on bit vectors instead of vector addition.

Updating the vertex label cluster C in the top tree during AddLabel(v, l, i), or a RemoveLabel(l)
where v = vertex(l) and `(l) = i can be done by first calling detach(C), then updating the linked
lists containing the user labels and setting

incidentC = ([v has labels at level j]){0≤j<`max}

partincidentC,v,i =

{
incidentC if i = `max

~0 otherwise

diagincidentC,v = partincidentC

and then reattaching C. Finally FindFirstLabel(v,w,i) can be implemented in the way already
described, by examining pointincidentC,v,i for each cluster. Note that even though we don’t explicitly
maintain it, for any cluster C and any v ∈ ∂C we can easily compute

pointincidentC,v =

`max∨

i=−1
diagincident′C,v,i

=

(
`max∨

i=`+1

diagincidentC,v,i

)
+M(cover+C) ·

(∨̀

i=−1
partincidentC,v,i

)

where ` := max
{

cover−C , cover+C
}

In general, let A1, . . . , Ak be the clusters resulting from an expose or split, let v, w ∈ ⋃k
i=1 ∂Ai

8Again, using the Iverson bracket.

13

Appendix C: Dynamic Bridge-Finding in Õ(log2 n) Amortized Time 93

(not necessarily distinct). Then we can define

FindFirstLabel((A1, . . . , Ak); v, w, i) =

{
userlabelsvx,i if Ax is a vertex label

FindFirstLabel(Split(Ax); vx, wx, i) otherwise

where for 1 ≤ j ≤ k
vj = arg min

u∈∂Aj
dist(v, u)

wj = arg max
u∈∂Aj

dist(v, u)

and

I =

{
1 ≤ j ≤ k

∣∣∣∣∣
CoverLevel(v, vj) ≥ i
∧ pointincidentAj ,vj ,i = 1

}

x = arg min
j∈I

(3 · dist(v,meet(vj , v, w)) + |∂Aj ∩ v · · ·w|)

FindFirstLabel(v, w, i) = FindFirstLabel(Expose(v, w); v, w, i)

What happens here is that, for each j, the vertices vj and wj are the boundary vertices of Aj closest
to v, and farthest from v, respectively. Thus, if Aj is a path cluster, ∂Aj = {vj , wj}, otherwise
∂Aj = {vj} = {wj}. The set I defined above is the set of indices of the clusters that contain labels at
level i. Then, x is picked from I to minimize D(x) = dist(v,meet(vx, v, w)). If there are more than
one cluster minimizing D(x), we prefer clusters with at most one boundary vertex on π(C), since
any vertex u in such a cluster will have dist(v,meet(u, v, w)) = D(x), which is minimal. A path
cluster Ax with both boundary vertices on π(C) is only picked if it is the only cluster minimizing
D(x). In either case, we know that Ax contains a vertex u with the desired label, and that any
vertex in Ax minimizing dist(vx,meet(u, vx, wx)) will suffice. Now if Ax is a vertex label, it has only
one vertex, and it stores the desired user label. Otherwise, we simply split Ax and recurse

Analysis By the method described in this section, AddLabel, RemoveLabel, and FindFirstLabel
are maintained in O(log n · `max · log `max) = O((log n)2 log logn) worst-case time.

This can be reduced to O(log n · log `max) = O(log n log logn) by realizing that each `max-
dimensional bit vector fits into O(1) words, and that each bitwise OR therefore only takes constant
time.

The total space used for a FindFirstLabel structure with n vertices and m labels is O(m+ n)
plus the space for O(n) bit vectors. If we assume a word size of Ω(log n), this is just O(m+ n) in
total. If we disallow bit packing tricks, we may have to use O(m+ n · `max) = O(m+ n log n) space.

7 Approximate counting

As noted in [23], we don’t need to use the exact component sizes at each level. If s is the actual
correct size, it is sufficient to store an approximate value s′ such that s′ ≤ s ≤ eεs′, for some constant
0 < ε < ln 2. Then we are no longer guaranteed that component sizes drop by a factor of 1

2 at each
level, but rather get a factor of eε

2 . This increases the number of levels to `max = blnn/(ln 2− ε)c
(which is still O(log n)), but leaves the algorithm otherwise unchanged. Suppose we represent each
size as a floating point value with a b-bit mantissa, for some b to be determined later. For each

14

94 Appendix C: Dynamic Bridge-Finding in Õ(log2 n) Amortized Time

addition of such numbers the relative error increases. The relative error at the root of a tree of
additions of height h is (1 + 2−b)h ≤ e2−bh, thus to get the required precision it is sufficient to set
b = log2

h
ε . In our algorithm(s) the depth of calculation is clearly upper bounded by h ≤ h(n) · `max,

where h(n) = O(log n) is the height of the top tree. It follows that some b ∈ O(log log n) is sufficient.
Since the maximum size of a component is n, the exponent has size at most dlog2 ne, and can be
represented in dlog2 dlog2 nee bits. Thus storing the sizes as O(log logn) bit floating point values is
sufficient to get the required precision. Assuming a word size of Ω(log n) this lets us store O

(logn
log logn

)

sizes in a single word, and to add them in parallel in constant time.

Analysis We will show how this applies to our FindSize structure from Section 5. The bottlenecks
in the algorithm all have to do with operations on `max-dimensional size vectors. In particular, the
amortized update time is dominated by the time to do O(log n · log `max) vector additions, and
O(log n) multiplications of a vector by the M(i) matrix. With approximate counting, the vector
additions each take O(log log n) time. Multiplying a size vector x by M(i) we get:

(M(i) · x)j =

{
xj if j ≤ i
0 otherwise

And clearly this operation can also be done on O
(logn
log logn

)
sizes in parallel when they are packed

into a single word. With approximate counting, each multiplication by M(i) therefore also takes
O(log log n) time. Thus the time per operation is reduced to O(log n(log log n)2).

The space consumption of the data structure is O(n) plus the space needed to store O(n) of the
`max-dimensional size vectors. With approximate counting that drops to O(log log n) per vector, or
O(n log log n) in total.

Comparison to previous algorithms Combining the modified FindSize structure with the
CoverLevel structure from Section 4 and the FindFirstLabel structure from Section 6 gives us
the first bridge-finding structure with O((log n)2(log logn)2) amortized update time. This struc-
ture uses O(m + n log log n) space, and uses O(log n) time for FindBridge and Size queries, and
O(log n(log log n)2) for 2-size queries.

For comparison, applying this trick in the obvious way to the basic O((log n)4) time and O(m+
n(log n)2) space algorithm from [13,14] gives the O((log n)3 log n) time and O(m+ n log n log log n)
space algorithm briefly mentioned in [23].

8 Top trees revisited

We can combine the tree data structures presented so far to build a data structure for bridge-finding
that has update time O((log n)2(log log n)2), query time O(log n), and uses O(m+n log logn) space.

In order to get faster queries and linear space, we need to use top-trees in an even smarter way.
For this, we need the full generality of the top trees described in [2].

8.1 Level-based top trees, labels, and fat-bottomed trees

As described in [2], we may associate a level with each cluster, such that the leaves of the top tree
have level 0, and such that the parent of a level i cluster is on level i+ 1. As observed in Alstrup et

15

Appendix C: Dynamic Bridge-Finding in Õ(log2 n) Amortized Time 95

al. [2, Theorem 5.1], one may also associate one or more labels with each vertex. For any vertex,
v, we may handle the label(s) of v as point clusters with v as their boundary vertex and no edges.
Furthermore, as described in [2], we need not have single edges on the bottom most level. We may
generalize this to instead have clusters of size ≤ Q, that is, with at most Q edges, as the leaves of
the top tree.

Theorem 8 (Alstrup, Holm, de Lichtenberg, Thorup [2]). Consider a fully dynamic forest and let
Q be a positive integer parameter. For the trees in the forest, we can maintain levelled top trees
whose base clusters are of size at most Q and such that if a tree has size s, it has height h = O(log s)
and

⌈
O(s/(Q(1 + ε)i))

⌉
clusters on level i ≤ h. Here, ε is a positive constant. Each link, cut, attach,

detach, or expose operation is supported with O(1) creates and destroys, and O(1) joins and splits on
each positive level. If the involved trees have total size s, this involves O(log s) top tree modifications,
all of which are identified in O(Q+ log s) time. For a composite sequence of k updates, each of the
above bounds are multiplied by k. As a variant, if we have parameter S bounding the size of each
underlying tree, then we can choose to let all top roots be on the same level H = O(logS).

8.2 High degree top trees

Top trees of degree two are well described and often used. However, it turns out to be useful to also
consider top trees of higher degree B, especially for B ∈ ω(1).

Lemma 9. Given any Q ≥ 1 and B ≥ 2, one can maintain top trees of degree B and height
O(log n/ logB) with base clusters of size at most Q. Each expose, link, or cut is handled by O(1)
calls to create or destroy and O(log n/ logB) calls to split or merge. The operations are identified
in O(B(log n/ logB) +Q) time.

Proof. Given a binary levelled top tree T2 of height h with base clusters of size at most Q as in
Theorem 8, we can create a B-ary levelled top tree TB, where the leaves of TB are the leaves of
T2, and where the clusters on level i of TB are the clusters on level i · blog2Bc of T2. Edges in TB
correspond to paths of length blog2Bc in T2. Thus, given a binary top tree, we may create a B-ary
top tree bottom-up in linear time.

We may implement link, cut and expose by running the corresponding operation in T2. Each
cut, link or expose operation will affect clusters on a constant number of root-paths in T2. There
are thus only O(log n/ logB) calls to split or merge of a cluster on a level divisible by blog2Bc.
Thus, since each split or merge in TB corresponds to a split or merge of a cluster in T2 whose level
is divisible by blog2Bc, we have only O(log n/ logB) calls to split and merge in TB.

However, since there are O(B) clusters whose parent pointers need to be updated after a merge,
the total running time becomes O(B(log n/ logB) +Q).

8.3 Saving space with fat-bottomed top trees

In this section we present a general technique for reducing the space usage of a top tree based data
structure to linear. For convenience, we will call any b(n)-ary top tree data structure that can be
implemented using the top trees from Lemma 9 well-behaved. Loosely speaking, any well-behaved
top tree data structure can be modified to use linear space.

The properties of the technique are captured in the following:

16

96 Appendix C: Dynamic Bridge-Finding in Õ(log2 n) Amortized Time

Lemma 10. Suppose we have a well-behaved b(n)-ary top tree data structure, that uses s(n) space
per cluster, and spends t(n) worst-case time per merge or split. Suppose further that there exists an
algorithm that takes any subgraph of size q that forms a cluster, say, C, and calculates the complete
information for C in t0(q, n) time, and suppose that the complete information for C has size at most
s0(q, n). Finally, suppose that there exists a function q of n such that s(n) < s0(q(n), n) ∈ O(q(n)).

Then, there exists a data structure maintaining the same information in top trees of height h =
O(log n/ log b(n)), such that the top trees use linear space in total, and have O(t(n)·h(n)+t0(q(n), n))
update time for link, cut, and expose.

Proof. This follows directly from Lemma 9 by setting Q = q(n) and B = b(n). Then the top tree
will have O(n/q(n)) clusters of size at most s0(q(n), n) = O(q(n)) so the total size is linear. The
time per update follows because the top tree uses O(h(n)) merges or splits and O(1) create and
destroy per link cut and expose. These take t(n) and t0(q(n), n) time respectively.

9 A faster CoverLevel structure

If we allow ourselves to use bit tricks, we can improve the CoverLevel data structure from Section 4.
The main idea is, for some 0 < ε < 1, to use top trees of degree b(n) = (log n)ε ∈ O(w/ log `max).
As noted in Lemma 9, such top trees have height h(n) ∈ O(logn

ε log logn), and finding the sequence of

merges and splits for a given link, cut or expose takes O(b(n) · h(n)) ∈ O((logn)
1+ε

ε log logn) ⊆ o((log n)1+ε)
time.

The high-level algorithm makes at most a constant number of calls to link and cut for each insert
or delete, so we are fine with the time for these operations. However, we can no longer use Expose
to implement Cover, Uncover, CoverLevel and MinCoveredEdge, as that would take too long.

In this section, we will show how to overcome this limitation by working directly with the
underlying tree.

The data The basic idea is to have each parent cluster store a buffer for each of its children,
containing all the cover, cover−, cover+ and globalcover values. Since the degree is O(w/ log `max),
and each value uses at most O(log `max) bits, these fit into a constant number of words, and so we
can use standard bit tricks9 to operate on the buffers for all children of a node in parallel. We will
show how to implement Cover, Uncover, CoverLevel, and MinCoveredEdge, such that each of them
only touches O(h(n)) nodes and the buffers stored in those nodes.

Let C be a cluster with children A1, . . . , Ak. Since k ≤ w/ log `max, we can define the following
vectors that each fit into a constant number of words.

packedcoverC := (coverAi){1≤i≤k}
packedcover−C := (cover−Ai){1≤i≤k}

packedcover+C := (cover+Ai){1≤i≤k}

packedglobalcoverC := (globalcoverAi){1≤i≤k}

The description of Split and Merge from Section 4 still apply, if we think of the “packed” values
as a separate layer of degree 1 clusters between each pair of “real” clusters.

For concreteness, let C be a cluster with children A1, . . . , Ak, and define operations

9See e.g. [8] or [1].

17

Appendix C: Dynamic Bridge-Finding in Õ(log2 n) Amortized Time 97

• CleanToBuffer(C). For each 1 ≤ i ≤ k: If Ai is a path child of C and
max

{
packedcoverC,i, packedcover−C,i

}
≤ cover−C , set:

packedcover−C,i = cover−C

Then if packedcoverC,i ≤ max
{

cover−C , cover+C
}

set

packedcoverC,i = cover+C

packedcover+C,i = cover+C

After updating all k children, set cover−C = cover+C = −1. Note that this can be done in
parallel for all 1 ≤ i ≤ k in constant time using bit tricks.

• CleanToChild(C, i). If Ai is a path child of C and max
{

coverAi , cover−Ai
}
≤ packedcover−C,i,

set

cover−Ai = packedcover−C,i

Then if coverAi ≤ max
{

packedcover−C,i,packedcover+C,i
}

set

coverAi = packedcover+C,i

cover+Ai = packedcover+C,i

Finally set packedcover−C,i = packedcover+C,i = −1. Again, note that this takes constant time.

• ComputeFromChild(C, i). Set

packedcoverC,i = coverAi

packedcover−C,i = −1

packedcover+C,i = −1

packedglobalcoverC,i = globalcoverAi

• ComputeFromBuffer(C). For 1 ≤ i ≤ k define

packedglobalcover′C,i =

packedglobalcoverC,i if ∂Ai ⊆ π(C)

or packedglobalcoverC,i ≤ packedcoverC,i

packedcoverC,i otherwise

minglobaledge′C,i =

minglobaledgeAi if ∂Ai ⊆ π(C)

or globalcoverAi ≤ coverAi
minpathedgeAi otherwise

18

98 Appendix C: Dynamic Bridge-Finding in Õ(log2 n) Amortized Time

We can then compute the data for C from the buffer as follows:

coverC =

min
1≤i<k

∂Ai⊆π(C)

packedcoverC,i if |∂C| = 2

`max otherwise

minpathedgeC =

minpathedgeAj if |∂C| = 2

where j = arg min
1≤i<k

∂Ai⊆π(C)

packedcoverC,i

nil otherwise

globalcoverC = min
1≤i<k

packedglobalcover′C,i

minglobaledgeC = minglobaledge′C,j
where j = arg min

1≤i<k
packedglobalcover′C,i

cover−C = −1

cover+C = −1

This can be computed in constant time, because (packedglobalcover′C,i){1≤i≤k} fits into a
constant number of words that can be computed in constant time using bit tricks, and thus
each “min” or “arg min” is taken over values packed into a constant number of words.

Then Split(C) can be implemented by first calling CleanToBuffer(C), and then for each 1 ≤ i ≤ k
calling CleanToChild(C, i). This ensures that all the lazy cover information is propagated down cor-
rectly. Similarly, Merge(C;A1, . . . , Ak) can be implemented by first calling ComputeFromChild(C, i)
for each 1 ≤ i ≤ k, and then calling ComputeFromBuffer(C). Thus Split and Merge each take
O(b(n)) time.

Computing CoverLevel(v) and MinCoveredEdge(v) With the data described in the previous
section, we can now answer the “global” queries as follows

CoverLevel(v) = globalcoverC

MinCoveredEdge(v) = minglobaledgeC

where C is the point cluster returned by root(v)

Note that, for simplicity, we assume the top tree always has a single vertex exposed. This can easily
be arranged by a constant number of calls to Expose after each link or cut, without affecting the
asymptotic running time. Computing CoverLevel(v) or MinCoveredEdge(v) therefore takes O(h(n))
worst case time.

Computing CoverLevel(v, w) and MinCoveredEdge(v, w) Since we can no longer use Expose to
implement Cover and Uncover, we need a little more machinery.

What saves us is that all the information we need to find CoverLevel(v, w) is stored in the
O(h(n)) clusters that have v or w as internal vertices, and that once we have that, we can find a
single child X of one of these clusters such that MinCoveredEdge(v, w) = minpathedgeX .

19

Appendix C: Dynamic Bridge-Finding in Õ(log2 n) Amortized Time 99

Before we get there, we have to deal with the complication of cover− and cover+. Fortunately,
all we need to do is make O(h(n)) calls to CleanToBuffer and CleanToChild, starting from the root
and going down towards v and w. Since each of these calls take constant time, we use only O(h(n))
time on cleaning.

Now, the path v · · ·w consists of O(h(n)) edge-disjoint fragments, such that:

• Each fragment f is associated with, and contained in, a single cluster Cf whose parent has v
or w as an internal vertex.

• For each fragment f , the endpoints are either in {v, w} (and then Cf is a base cluster) or are
boundary vertices of children of Cf .

We can find the fragments in O(h(n)) time, and for each fragment f , we can in constant time
find its cover level by examining packedcoverCf .

Let f1, . . . , fk be the fragments of the path, and for 1 ≤ i ≤ k let vi, wi be the endpoints of the
fragment closest to v, w respectively. Then10

CoverLevel(v, w) = min
1≤i≤k

CoverLevel(vi, wi)

MinCoveredEdge(v, w) = MinCoveredEdge(vj , wj)

where j = arg min
1≤i≤k

CoverLevel(vi, wi)

MinCoveredEdge(vj , wj) = minpathedgeX

where X = arg min
Y path child of Cfj

coverY

So computing CoverLevel(v, w) or MinCoveredEdge(v, w) takes O(h(n)) worst case time.

Cover and Uncover We are now ready to handle Cover(v, w, i) and Uncover(v, w, i). First we
make O(h(n)) calls to CleanToBuffer and CleanToChild. Then let f1, . . . , fk be the fragments of the
v · · ·w path, and for 1 ≤ i ≤ k let vi, wi be the endpoints of the fragment closest to v, w respectively.
Then for each f ∈ f1, . . . , fk, and each path child Aj of Cf , Cover(v, w, i) needs to set

packedcoverCf ,j = max
{

packedcoverCf ,j , i
}

packedcover+Cf ,j = max
{

packedcover+Cf ,j , i
}

Similarly, for each f ∈ f1, . . . , fk, and for each path child Aj of Cf , if packedcoverCf ,j ≤ i,
Uncover(v, w, i) needs to set

packedcoverCf ,j = −1

packedcover+Cf ,j = −1

packedcover−Cf ,j = max
{

packedcover−Cf ,j , i
}

In each case, we can use bit tricks to make this take constant time per fragment. Finally, we need
to update all the O(h(n)) ancestors to the clusters we just changed. We can do this bottom-up
using O(h(n)) calls to ComputeFromChild and ComputeFromBuffer.

We conclude that Cover(v, w, i) and Uncover(v, w, i) each take worst case O(h(n)) time.

10Recall that a path child of C is defined as a child that contains at least one edge of π(C).

20

100 Appendix C: Dynamic Bridge-Finding in Õ(log2 n) Amortized Time

Analysis Choosing any b(n) ∈ O(w/ log `max) we get height h(n) ∈ O(logn
log b(n)), so Link and

Cut take worst case O(b(n) lognlog b(n)) time with this CoverLevel structure. The remaining operations,

Connected, Cover, Uncover, CoverLevel and MinCoveredEdge all take O(logn
log b(n)) worst case time.

For the purpose of our main result, choosing b(n) ∈ Θ(
√

log n) is sufficient. Each cluster uses O(1)
space, so the total space used is O(n).

10 Saving space

We now apply the space-saving trick from Lemma 10 to the FindSize structures from Section 5
and 7. Let D be the number of words used for each size vector in our FindSize structure. This is
O(log n) for the purely combinatorial version, and O(log logn) in the version using approximate
counting. As shown previously these use s(n) = O(D) space per cluster and t(n) = O(log n ·D)
worst case time per merge and split.

Lemma 11. The complete information for a cluster of size q in the FindSize structure, including
information that would be shared with its children, has total size s0(q, n) = O(q + `max ·D).

Proof. The complete information for a cluster C with |C| = q consists of

• c(e) for all e ∈ C.

• coverC , cover−C , cover+C , globalcoverC , sizeC .

• partsizeC,v,i and diagsizeC,v,i for v ∈ ∂C and −1 ≤ i ≤ `max.

The total size for all of these is s0(q, n) = O(q + `max ·D)

Note that when keeping n fixed, this is clearly O(q). In particular, we can choose q(n) ∈
Θ(`max ·D) such that s(n) < s0(q(n), n) ∈ O(q(n)).

Lemma 12. The complete information for a cluster of size q in the FindSize structure, including
information that would be shared with its children, can be computed directly in time t0(q, n) =
O(q log q + `max ·D).

Proof. Let C be the cluster of size |C| = q. For each v ∈ ∂C, we can in O(q) time find and partition
the cluster path into the at most `max parts such that in part i, each vertex m on the cluster path
have CoverLevel(v,m) = i. For each part i, run the following algorithm:

1: Vector x← ~0
2: Initialize empty max-queue Q
3: j ← `max

4: for w ← each vertex in the fragment that is on π(C) do
5: Mark w as visited
6: xj ← xj + 1
7: for e← each edge incident to w that is not on π(C) do
8: if c(e) ≥ 0 then
9: Add e to Q with key c(e)

10: while Q is not empty do

21

Appendix C: Dynamic Bridge-Finding in Õ(log2 n) Amortized Time 101

11: e← extract-max(Q)
12: while c(e) < j do
13: xj−1 = xj
14: j ← j − 1

15: w ← the unvisited vertex at the end of e
16: Mark w as visited
17: xj ← xj + 1
18: for e← each edge incident to w that has an unvisited end do
19: if c(e) ≥ 0 then
20: Add e to Q with key c(e)

21: partsizeC,v,i ← x
22: diagsizeC,v,i ←M(i) · x
If the ith part has size qi than it can be processed this way in O(qi log qi +D) time. Summing over
all O(`max) parts gives the desired result.

Analysis Applying Lemma 10 with the s(n), t(n), s0(q, n), t0(q, n) and q(n) derived in this section
immediately gives a FindSize structure with O(log n ·D · log `max) worst case time per operation and
using O(n) space. A completely analogous argument shows that we can convert the bitpacking-free
version of the FindFirstLabel structure from O(log n · `max · log `max) time and O(m+n · `max) space
to one using linear space. (If bitpacking is allowed the structure already used linear space). In either
case is the same time per operation as the original versions, so using the modified version here does
not affect the overall running time, but reduces the total space of each bridge-finding structure to
O(m+ n).

Note that we can explicitly store lists with all the least-covered edges for these large base clusters,
so this does not change the time to report the first k least-covered edges.

References

[1] Susanne Albers and Torben Hagerup. Improved parallel integer sorting without concurrent
writing. Inf. Comput., 136(1):25–51, 1997.

[2] Stephen Alstrup, Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. Maintaining
information in fully dynamic trees with top trees. ACM Trans. Algorithms, 1(2):243–264,
October 2005.

[3] Therese C. Biedl, Prosenjit Bose, Erik D. Demaine, and Anna Lubiw. Efficient algorithms for
petersen’s matching theorem. Journal of Algorithms, 38(1):110 – 134, 2001.

[4] Krzysztof Diks and Piotr Stanczyk. Perfect Matching for Biconnected Cubic Graphs in
O(n log2 n) Time, pages 321–333. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[5] David Eppstein, Zvi Galil, and Giuseppe F. Italiano. Improved sparsification. Technical report,
1993.

[6] Greg N. Frederickson. Data structures for on-line updating of minimum spanning trees, with
applications. SIAM Journal on Computing, 14(4):781–798, 1985.

22

102 Appendix C: Dynamic Bridge-Finding in Õ(log2 n) Amortized Time

[7] Greg N. Frederickson. Ambivalent data structures for dynamic 2-edge-connectivity and k
smallest spanning trees. SIAM J. Comput., 26(2):484–538, 1997.

[8] Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound with
fusion trees. J. Comput. Syst. Sci., 47(3):424–436, 1993.

[9] Harold N. Gabow, Haim Kaplan, and Robert Endre Tarjan. Unique maximum matching
algorithms. J. Algorithms, 40(2):159–183, 2001. Announced at STOC ’99.

[10] David Gibb, Bruce M. Kapron, Valerie King, and Nolan Thorn. Dynamic graph connectivity
with improved worst case update time and sublinear space. CoRR, abs/1509.06464, 2015.

[11] Monika R. Henzinger and Valerie King. Maintaining minimum spanning trees in dynamic
graphs, pages 594–604. Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.

[12] Monika Rauch Henzinger and Valerie King. Fully dynamic 2-edge connectivity algorithm in
polylogarithmic time per operation, 1997.

[13] Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.
In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, STOC ’98,
pages 79–89, New York, NY, USA, 1998. ACM.

[14] Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.
J. ACM, 48(4):723–760, July 2001.

[15] Shang-En Huang, Dawei Huang, Tsvi Kopelowitz, and Seth Pettie. Fully dynamic connectivity
in o(log n(log log n)2) amortized expected time. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’17, pages 510–520, Philadelphia, PA,
USA, 2017. Society for Industrial and Applied Mathematics.

[16] Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in polyloga-
rithmic worst case time. In Proceedings of the Twenty-fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’13, pages 1131–1142, Philadelphia, PA, USA, 2013. Society for
Industrial and Applied Mathematics.

[17] Donald E. Knuth. Two notes on notation. The American Mathematical Monthly, 99(5):403–422,
1992.

[18] Donald E. Knuth. The Art of Computer Programming, Volume 3: (2nd Ed.) Sorting and
Searching. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1998.

[19] Anton Kotzig. On the theory of finite graphs with a linear factor II. 1959.

[20] Karl Menger. Zur allgemeinen Kurventheorie. Fundamenta Mathematicae, 10, 1927.

[21] Mihai Patrascu and Erik D Demaine. Logarithmic lower bounds in the cell-probe model. SIAM
Journal on Computing, 35(4):932–963, 2006.

[22] Julius Petersen. Die Theorie der regulären graphs. Acta Math., 15:193–220, 1891.

23

Appendix C: Dynamic Bridge-Finding in Õ(log2 n) Amortized Time 103

[23] Mikkel Thorup. Near-optimal fully-dynamic graph connectivity. In Proceedings of the Thirty-
second Annual ACM Symposium on Theory of Computing, STOC ’00, pages 343–350, New
York, NY, USA, 2000. ACM.

[24] Christian Wulff-Nilsen. Faster deterministic fully-dynamic graph connectivity. In Encyclopedia
of Algorithms, pages 738–741. 2016.

A Details of the high level algorithm

Lemma 5 (Essentially the high level algorithm from [14]). There exists a deterministic reduction
for dynamic graphs with n nodes, that, when starting with an empty graph, supports any sequence
of m Insert or Delete operations using:

• O(m) calls to Link, Cut, Uncover, and CoverLevel.

• O(m log n) calls to Connected, Cover, AddLabel, RemoveLabel, FindFirstLabel, and FindSize.

And that can answer FindBridge queries using a constant number of calls to Connected, CoverLevel,
and MinCoveredEdge, and size queries using a single call to FindSize.

Proof. The only part of the high level algorithm from [14] that does not directly and trivially
translate into a call of the required dynamic tree operations (see pseudocode below) is in the Swap
method where given a tree edge e = (v, w) we need to find a nontree edge e′ covering e with
`(e′) = i = CoverLevel(e). We can find this e′ by using FindFirstLabel and increasing the level of
each non-tree edge we examine that does not cover e. For at least one side of (v, w), all non-tree
edges at level i incident to that side will either cover e or can safely have their level increased
without violating the size invariant. So we can simply search the side where the level i component
is smallest until we find the required edge (which must exist since e was covered on level i). The
amortized cost of all operations remain unchanged with this implementation. Counting the number
of operations (see Table 2) gives the desired bound.

1: function 2-edge-connected(v, w)
2: return T.Connected(v, w) ∧ T.CoverLevel(v, w)≥ 0

3: function FindBridge(v)
4: if T.CoverLevel(v)= −1 then
5: return T.MinCoveredEdge(v)
6: else
7: return nil
8: function FindBridge(v, w)
9: if T.CoverLevel(v, w)= −1 then

10: return T.MinCoveredEdge(v, w)
11: else
12: return nil
13: function Size(v)
14: return T.FindSize(v,v,−1)

15: function 2-Size(v)
16: return T.FindSize(v,v,0)

24

104 Appendix C: Dynamic Bridge-Finding in Õ(log2 n) Amortized Time

Operation
#Calls during

Insert+Delete FindBridge(v) FindBridge(v, w) Size(v) 2-Size(v)
1 Link(v, w, e) 1 0 0 0 0
2 Cut(e) 1 0 0 0 0
3 Connected(v, w) log n 0 1 0 0
4 Cover(v, w, i) log n 0 0 0 0
5 Uncover(v, w, i) 1 0 0 0 0
6 CoverLevel(v) 0 1 0 0 0
7 CoverLevel(v, w) 1 0 1 0 0
8 MinCoveredEdge(v) 0 1 0 0 0
9 MinCoveredEdge(v, w) 0 0 1 0 0

10 AddLabel(v, l, i) log n 0 0 0 0
11 RemoveLabel(l) log n 0 0 0 0
12 FindFirstLabel(v, w, i) log n 0 0 0 0

13
FindSize(v, w, i) log n 0 0 0 1
FindSize(v, v,−1) 0 0 0 1 0

Table 2: Overview of how many times each tree operation is called for each graph operation, ignoring
constant factors. The “Insert+Delete” column is amortized over any sequence starting with an
empty set of edges. The remaining columns are worst case.

17: function Insert(v, w, e)
18: if ¬T.Connected(v, w) then
19: T.Link(v, w, e)
20: `(e)← `max

21: else
22: T.AddLabel(v, e.label1, 0)
23: T.AddLabel(w, e.label2, 0)
24: `(e)← 0
25: T.Cover(v, w, 0)

26: function Delete(e)
27: (v, w)← e
28: α← `(e)
29: if α = `max then
30: α← T.CoverLevel(v, w)
31: if α = −1 then
32: T.Cut(e)
33: return
34: Swap(e)

35: T.RemoveLabel(e.label1)
36: T.RemoveLabel(e.label2)
37: T.Uncover(v, w, α)
38: for i← α, . . . , 0 do
39: Recover(w,v,i)

40: function Swap(e)
41: (v, w)← e

25

Appendix C: Dynamic Bridge-Finding in Õ(log2 n) Amortized Time 105

42: α← T.CoverLevel(v, w)
43: T.Cut(e)
44: e′ ←FindReplacement(v,w,α)
45: (x, y)← e′

46: T.RemoveLabel(e′.label1)
47: T.RemoveLabel(e′.label2)
48: T.Link(x, y, e′)
49: `(e′)← `max

50: T.AddLabel(v,e.label1, α)
51: T.AddLabel(w,e.label2, α)
52: `(e)← α
53: T.Cover(v,w,α)

54: function FindReplacement(v,w,i)
55: sv ← T.FindSize(v, v, i)
56: sw ← T.FindSize(w,w, i)
57: if sv ≤ sw then
58: return RecoverPhase(v, v, i, sv)
59: else
60: return RecoverPhase(w,w, i, sw)

61: function Recover(v,w,i)
62: s← bT.FindSize(v, w, i)/2c
63: RecoverPhase(v,w,i,s)
64: RecoverPhase(w,v,i,s)

65: function RecoverPhase(v, w, i, s)
66: l← T.FindFirstLabel(v, w, i)
67: while l 6= nil do
68: e← l.edge
69: (q, r)← e
70: if ¬T.Connected(q, r) then
71: return e
72: if T.FindSize(q, r, i+ 1) ≤ s then
73: T.RemoveLabel(e.label1)
74: T.RemoveLabel(e.label2)
75: T.AddLabel(q, e.label1, i+ 1)
76: T.AddLabel(r, e.label2, i+ 1)
77: `(e) = i+ 1
78: T.Cover(q,r,i+ 1)
79: else
80: T.Cover(q,r,i)
81: return nil
82: l← T.FindFirstLabel(v, w, i)

83: return nil

26

106 Appendix C: Dynamic Bridge-Finding in Õ(log2 n) Amortized Time

B Pseudocode for the CoverLevel structure

1: function CL.Cover(v,w,i)
2: C ← TopTree.Expose(v, w)
3: coverC ← max {coverC , i}
4: cover+C ← max

{
cover+C , i

}

5: function CL.Uncover(v,w,i)
6: C ← TopTree.Expose(v, w)
7: coverC ← −1
8: cover+C ← −1
9: cover−C ← max

{
cover−C , i

}

10: function CL.CoverLevel(v)
11: C ← TopTree.Expose(v)
12: return globalcoverC
13: function CL.CoverLevel(v, w)
14: C ← TopTree.Expose(v, w)
15: return coverC
16: function CL.MinCoveredEdge(v)
17: C ← TopTree.Expose(v)
18: return minglobaledgeC
19: function CL.MinCoveredEdge(v, w)
20: C ← TopTree.Expose(v, w)
21: return minpathedgeC
22: function CL.Split(C)
23: for each path child D of C do
24: if max

{
coverD, cover−D

}
≤ cover−C then

25: cover−D ← cover−C
26: if coverD ≤ max

{
cover−D, cover+D

}
then

27: coverD ← cover+C
28: cover+D ← cover+C
29: function CL.Merge(C; A1, . . . , Ak)
30: coverC ← `max

31: minpathedgeC ← nil
32: globalcoverC ← `max

33: minglobaledgeC ← nil
34: for i← 1, . . . , k do
35: if ∂Ai ⊆ π(C) then
36: if coverAi < coverC then
37: coverC ← coverAi
38: minpathedgeC ← minpathedgeAi
39: else
40: if coverAi < globalcoverC then
41: globalcoverC ← coverAi

27

Appendix C: Dynamic Bridge-Finding in Õ(log2 n) Amortized Time 107

42: minglobaledgeC ← minpathedgeAi
43: if globalcoverAi < globalcoverC then
44: globalcoverC ← globalcoverAi
45: minglobaledgeC ← minglobaledgeAi
46: cover−C ← −1
47: cover+C ← −1

48: function CL.Create(C; edge e)
49: coverC ← −1
50: globalcoverC ← −1
51: if C is a point cluster then
52: minpathedgeC ← nil
53: minglobaledgeC ← e
54: else
55: minpathedgeC ← e
56: minglobaledgeC ← nil

57: cover−C ← −1
58: cover+C ← −1

C Pseudocode for the FindSize structure

In the following, we use the notation

[key : partsize, diagsize]

to denote the root of a new tree consisting of a single node with the given values. And for a given
tree root and given x, y

(tree{x≤i≤y})

is the root of the subtree consisting of all nodes whose keys are in the given range. Similarly, for
any given i, let

(treei)

denote the node in the tree having the given key.

1: function FS.FindSize(v, w, i)
2: C ← TopTree.Expose(v, w)
3: return sizeC,i

4: function FS.Merge(C; A, B)
5: {c} ← ∂A ∩ ∂B
6: if c ∈ π(C) then . Merge along path
7: if |∂C| <= 1 then
8: a← c, b← c
9: else

10: {a, b} ← ∂C with a ∈ ∂A and b ∈ ∂B.

28

108 Appendix C: Dynamic Bridge-Finding in Õ(log2 n) Amortized Time

11: sizeC ← sizeA + sizeB
12: for (x,X)← (a,A), (b, B) do
13: if x = c then
14: tree′X,x ← treeX,x, undo′X,x ← nil
15: else
16: for v ← x, c do
17: `← max

{
cover−X , cover+X

}

18: s← (treeX,v). partsizesum
19: d←M(cover+X) ∗ s
20: tree′X,v ← treeX,v,{i>`}, undo′X,v ← treeX,v,{i≤`}
21: tree′X,v ← tree′X,v +[cover+X : s, d]

22: for (x,X, y, Y)← (a,A, b, B), (b, B, a,A) do
23: s← (tree′Y,c,{coverX≤i≤`max}).partsizesum

24: p← (tree′X,x,coverX).partsize +s
25: d← (tree′X,x,coverX). diagsize +M(coverX) ∗ s
26: if x = c then
27: tree′′X,x ← [`max : sizeX , sizeX], undo′′X,x ← nil
28: else
29: tree′′X,x ← tree′X,x,{i>coverX}, undo′′X,x ← tree′X,x,{i≤coverX}

30: if y = c then
31: tree′′′Y,c ← nil, undo′′′Y,c ← [`max : sizeY , sizeY]
32: else
33: tree′′′Y,c ← tree′Y,c,{i<coverX}, undo′′′Y,c ← tree′Y,c,{i≥coverX}

34: treeC,x ← tree′′X,x +[coverX : p, d] + tree′′′Y,c
35: else . Merge off path
36: {a} ← ∂C \ {c}
37: if a 6∈ ∂A then
38: Swap A and B

39: `← max
{

cover−A, cover+A
}

40: d← (treeA,a,{`<i≤`max}).diagsizesum
41: p← (treeA,a,{−1≤i≤`}).partsizesum

42: sizeC ← d+M(cover+A) ∗ p+M(coverA) ∗ sizeB
43: treeC,a ← [`max : sizeC , sizeC]

44: function FS.Split(C)
45: A,B ← the children of C
46: {c} ← ∂A ∩ ∂B
47: if c ∈ π(C) then . Split along path
48: if |∂C| <= 1 then
49: a← c, b← c
50: else
51: {a, b} ← ∂C with a ∈ ∂A and b ∈ ∂B.

52: for (x,X, y, Y)← (a,A, b, B), (b, B, a,A) do
53: tree′′X,x ← treeC,x,{i>coverX}, tree′′′Y,c ← treeC,x,{i<coverX}

29

Appendix C: Dynamic Bridge-Finding in Õ(log2 n) Amortized Time 109

54: if y 6= c then
55: tree′Y,c ← tree′′′Y,c + undo′′′Y,c

56: if x 6= c then
57: tree′X,x ← tree′′X,x + undo′′X,x

58: for (x,X)← (a,A), (b, B) do
59: if x 6= c then
60: for v ← x, c do
61: treeX,v ← tree′

X,v,{i>cover+X}+ undo′X,v

62: function FS.Create(C; edge e)
63: sizeC ← ~0
64: for v ∈ ∂C do
65: treeC,v ← [`max : ~0,~0]

66: function FS.Create(C; vertex label l)
67: sizeC ← (1){0≤i<`max}
68: for v ∈ ∂C do
69: treeC,v = [`max : sizeC , sizeC]

30

110 Appendix C: Dynamic Bridge-Finding in Õ(log2 n) Amortized Time

ar
X

iv
:1

70
8.

07
38

9v
1

 [
cs

.D
S]

 2
4

A
ug

 2
01

7

One-Way Trail Orientations
Anders Aamand, Niklas Hjuler ∗, Jacob Holm†, and

Eva Rotenberg

University of Copenhagen

Abstract

Given a graph, does there exist an orientation of the edges such that the resulting directed
graph is strongly connected? Robbins’ theorem [Robbins, Am. Math. Monthly, 1939] states
that such an orientation exists if and only if the graph is 2-edge connected. A natural extension
of this problem is the following: Suppose that the edges of the graph is partitioned into trails.
Can we orient the trails such that the resulting directed graph is strongly connected?

We show that 2-edge connectivity is again a sufficient condition and we provide a linear time
algorithm for finding such an orientation, which is both optimal and the first polynomial time
algorithm for deciding this problem.

The generalised Robbins’ theorem [Boesch, Am. Math. Monthly, 1980] for mixed multi-
graphs states that the undirected edges of a mixed multigraph can be oriented making the
resulting directed graph strongly connected exactly when the mixed graph is connected and the
underlying graph is bridgeless. We show that as long as all cuts have at least 2 undirected edges
or directed edges both ways, then there exists an orientation making the resulting directed graph
strongly connected. This provides the first polynomial time algorithm for this problem and a
very simple polynomial time algorithm to the previous problem.

∗This work is supported by the Innovation Fund Denmark through the DABAI project.
†This research is supported by Mikkel Thorup’s Advanced Grant DFF-0602-02499B from the Danish Council for

Independent Research under the Sapere Aude research career programme.

1

Appendix D: One-Way Trail Orientations 111

http://arxiv.org/abs/1708.07389v1

1 Introduction and motivation
Suppose that the mayor of a small town decides to make all the streets one-way in such a way
that it is possible to get from any place to any other place without violating the orientations of
the streets1. If initially all the streets are two-way then Robbins’ theorem [9] asserts that this can
be done exactly when the corresponding graph is 2-edge connected. If, on the other hand some of
the streets were already one-way in the beginning then the generalised Robbins’ theorem [1] states
that it can be done exactly when the corresponding graph is strongly connected and the underlying
graph is 2-edge connected.

However, the proofs of both of these results assume that every street of the city corresponds to
exactly one edge in the graph. This assumption hardly holds in any city in the world and therefore
a much more natural assumption is that every street corresponds to a trail in the graph and that
the edges of each trail must be oriented consistently2.

In this paper we prove that Robbins’ Theorem continues to hold even when the set of edges
is partitioned into trails. In other words a necessary and sufficient condition for an orientation to
exist is that the graph is 2-edge connected. We also provide a linear time algorithm for finding
such an orientation.

Finally we will consider the generalised Robbins’ theorem in this new setting i.e. we allow some
edges to be oriented initially and suppose that the remaining edges are partitioned into trails. We
will show that if any cut (V1, V2) in the graph has either at least 2 undirected edges going between
V1 to V2 or a directed edge in each direction then it is possible to orient the trails making the
resulting graph strongly connected. Although this condition is not necessary it does give a simple
algorithm for deciding the problem. Indeed, the only cuts containing an undirected edge which
we allow are the ones where this edge (and hence its trail) is forced in one direction. Hence for
deciding the problem we can start by orienting all the forced trails until there are no more forced
trails. Then the trails can be oriented making the graph strongly connected exactly if the resulting
graph satisfies our condition.

Note that when some edges are initially oriented the answer to the problem depends on the trail
decomposition which is not the case for the other results. That the condition from the generalised
Robbins’ theorem is not sufficient can be seen from figure 1.

Figure 1: The graph is strongly connected and the underlying graph is 2-edge connected, but no
matter the orientation of the red trail, the graph will lose its strong connectivity

Earlier methods Several methods have already been applied for solving orientation problems in
graphs where the goal is to make the resulting graph strongly connected.

1The motivation for doing so is that the streets of the town are very narrow and thus it is a great hassle when
two cars unexpectedly meet.

2This version of the problem was given to us through personal communication with Professor Robert E. Tarjan

2

112 Appendix D: One-Way Trail Orientations

One approach used by Robbins [9] is to use that a 2-edge connected graph has an ear-decomposition.
An ear decomposition of a graph is a partition of the set of edges into a cycle C and paths P1, . . . , Pt

such that Pi has its two endpoints but none of its internal vertices on C ∪
(⋃i−1

j=1 Pj

)
. Assuming the

existence of an ear decomposition of 2-edge connected graphs it is easy to prove Robbins’ theorem.
Indeed, it is easy to see by induction that any consistent orientations of the paths and the cycle
give a strongly connected graph.

A second approach introduced by Tarjan [3] gives another simple proof of Robbins’ theorem.
One can make a DFS tree in the graph rooted at a vertex v and orient all edges in the DFS tree
away from v. The remaining edges are oriented towards v and if the graph is 2-edge connected it
is easily verified that this gives a strong orientation.

A similar approach was used by Chung et al. [2] in the context of the generalized Robbins
theorem for mixed multigraphs.

The above methods not only prove Robbins’ theorem, they also provide linear time algorithms
for finding strong orientations of undirected or mixed multigraphs.

However, none of the above methods have proven fruitful in our case. In case of the ear
decomposition one needs a such which is somehow compatible with the partitioning into trails and
this seems hard to guarantee. The original proof by Roberts is essentially similar to using the
ear decomposition. Similar problems appear when trying a DFS-approach. Neither does the proof
by Boesch [1] of Robbins’ theorem for mixed multigraphs generalise to prove our result. Most
importantly the corresponding theorem is no longer true for trail orientations as is shown by the
example above.

Since the classical linear time algorithms rely on ear-decompositions and DFS searches, and
since these approaches do not immediately work for trail partitions, our linear time algorithm will
be a completely new approach to solving orientation problems.

2 Preliminaries
Let us briefly review the concepts from graph theory that we will need. Recall that a walk in a
graph is an alternating sequence of vertices and edges v0, e1, v1, e2, . . . , vk, such that for 1 ≤ i ≤ k
the edge ei has vi−1 and vi as its two endpoints. In a directed or mixed graph the ordering of the
endpoints of each edge in the sequence must be consistent with the direction of the edge in case it
is oriented. A trail is a walk without repeated edges. A path is a trail without repeated vertices
(except possibly v0 = vk). Finally a cycle is a path for which v0 = vk

Next, recall that a mixed multigraph G = (V, E) is called strongly connected if for any vertices
u, v ∈ V there exists a walk from u to v. In case that the graph contains no directed edges this is
equivalent to saying that it consists of exactly one connected component.

We also recall the definition of k-edge connectivity. A graph G = (V, E) is said to be k-edge
connected if and only if G′ = (V, E − X) is connected for all X ⊆ E where |X| < k. A trivially
equivalent condition is that any edge-cut (V1, V2) in the graph has at least k edges going between
V1 and V2.

Finally, if G = (V, E) is a mixed multigraph and A ⊆ V we define G/A to be that graph
obtained by contracting A to a single vertex and G[A] to be the subgraph of G induced by A. The
following simple observation will be used repeatedly in this paper.
Observation 1. If G = (V, E) is k-edge connected and A ⊆ V then G/A is k-edge connected. Also
if G is a strongly connected mixed multigraph then G/A is too.

3

Appendix D: One-Way Trail Orientations 113

The structure of this paper is as follows. In section 3 we prove our generalisation of Robbins’
theorem for undirected graphs partitioned into trails. In section 4 we study what happens in the
case of mixed graphs. Finally in section 5 we provide our linear time algorithm for trail orientation
in an undirected graph.

3 Robbins Theorem Revisited
We are now ready to state our generalisation of Robbins’ theorem.

Theorem 2. Let G = (V, E) be a multigraph with E partitioned into trails. An orientation of each
trail such that the resulting directed graph is strongly connected exists if and only if G is 2-edge
connected.

Proof. If G is not 2-edge connected, such an orientation obviously doesn’t exist so we need to prove
the converse. Suppose therefore that G is 2-edge connected.

Our proof is by induction on the number of edges in G. If there are no edges, the graph is a
single vertex, and the statement is obviously true. Assume now the statement holds for all graphs
with strictly fewer edges than G. Pick an arbitrary edge e that is at the end of its corresponding
trail.

If G − e is 2-edge connected, then by the induction hypothesis there is a strong orientation of
G − e that respects the trails of G. Such an orientation clearly extends to the required orientation
of G.

V1 V2

u1

w1

u2

w2

e

b

V1 V2

u1

w1

u2

w2

Figure 2: A two edge cut and the two graphs G1 and G2.

If G − e is not 2-edge connected, there exists a bridge b in G − e (see figure 2). Let V1, V2 be
the two connected components of G − {e, b}, and let e = (u1, u2) and b = (w1, w2) such that for
i ∈ {1, 2}, ui, wi ∈ Vi (note that we don’t necessarily have that ui and wi are distinct for i ∈ {1, 2}).
Now for i ∈ {1, 2} construct the graph Gi = G[Vi] ∪ {(ui, wi)}, and define the trails in Gi to be
the trails of G that are completely contained in Gi, together with a single trail combined from the
(possibly empty) partial trail of e contained in Gi and ending at ei, followed by the edge (ui, wi),
followed by the (possibly empty) partial trail of b contained in Gi starting at bi. Both G1 and G2
are 2-edge connected since they can each be obtained as a contraction of G. Furthermore, they
each have strictly fewer edges than G, so inductively each has a strong orientation that respects the
given trails. Further, we can assume that the orientations are such that the new edges are oriented
as (u1, w1) and (w2, u2) by flipping the orientation of all edges in either graph if necessary. We
claim that this orientation, together with e oriented as (u1, u2) and b oriented as (w2, w1), is the
required orientation of G. To see this first note that (by construction) this orientation respects the
trails. Secondly suppose v1 ∈ V1 and v2 ∈ V2 are arbitrary. Since G1 is strongly connected G[V1]

4

114 Appendix D: One-Way Trail Orientations

contains a directed path from v1 to u1. Similarly, G[V2] contains a directed path from u2 to v2.
Thus G contains a directed path from v1 to v2. A similar argument gives a directed path from v2
to v1 and since v1 and v2 were arbitrary this proves that G is strongly connected and our induction
is complete.

The construction in the proof can be interpreted as a naive algorithm for finding the required
orientation when it exists.

Corollary 3. The one-way trail orientation problem on a graph with n vertices and m edges can
be solved in O(n + m · f(m, n)) time, where f(m, n) is the time per operation for fully dynamic
bridge finding (a.k.a. 2-edge connectivity).

At the time of this writing3, this is O(n + m(log n log log n)2). In Section 5 we will show a less
naive algorithm that runs in linear time.

4 Extension to Mixed graphs
Now we will extend our result to the case of mixed graphs. We are going to prove the following.

Theorem 4. Let G = (V, E) be a strongly connected mixed multigraph. Then G − e is strongly
connected for all undirected e ∈ E if and only if for any partition P of the undirected edges of G
into trails, and any T ∈ P, any orientation of T can be extended to a strong trail orientation of
(G, P).

Suppose G = (V, E) is as in the theorem. We will say that e ∈ E is forced if it is undirected and
satisfies that G − e is not strongly connected4. Note that this is a proper extension of Theorem 2
since if G is undirected and 2-edge connected then no e ∈ E is forced.

For proving the result we’ll need the following lemma.

Lemma 5. Let G be a directed graph, and let (A, B) be a cut with exactly one edge crossing from
A to B and at least one edge crossing from B to A. Then G is strongly connected if and only if
G/A and G/B are.

Proof. Strong connectivity is preserved by contractions, so if G is strongly connected then G/A
and G/B both are. For the other direction, let (a1, b1) be the edge going from A to B, and let
(b2, a2) be any edge from B to A. Since G/A is strongly connected and (a1, b1) is the only edge
from A to B, G/A contains a path from b1 to b2 that stays in B. Since this holds for any edge going
from B to A, and since G/B is strongly connected, A is strongly connected in G. By a symmetric
argument, B is also strongly connected in G and since the cut has edges in both directions, G must
be strongly connected.

Now we provide the proof of Theorem 4.
3Separate paper submitted to SODA’18 by Holm, Rotenberg and Thorup.
4This terminology is natural since it is equivalent to saying that there exists a cut (V1, V2) in G such that e is the

only undirected edge in this cut and such that all the directed edges go from V1 to V2. If one wants an orientation
of the trails making the graph strongly connected we are clearly forced to orient e from V2 to V1.

5

Appendix D: One-Way Trail Orientations 115

Proof of theorem 4. If G − e is not strongly connected, the trail T containing e can at most be
directed one way since e is forced, so there is an orientation of T which not extend to a strong trail
orientation of (G, P). To prove the converse suppose G − e is strongly connected for all undirected
e ∈ E.

The proof is by induction on |P|. If |P| ≤ 1 the result is trivial. So suppose |P| > 1 and that
the theorem holds for all (G′, P ′) with |P ′| < |P|.

Consider a trail T ∈ P. Suppose there is no cut (A, B) that T crosses exactly once, which has
exactly one other undirected edge crossing it, and has every directed edge crossing it going from
A to B. Then regardless of the orientation of T , the resulting graph G′ has no undirected edge
e such that G − e is not strongly connected. Thus, by induction (G′, P \ {T }) has a strong trail
orientation, which is also a strong trail orientation of (G, P), as desired.

A B
T

A
b

TA

Figure 3: A cut with two undirected edges and all directed edges going from A to B followed by a
contraction of B.

Now suppose there is such a cut (A, B) (see figure 3). Construct a graph G/B by contracting
every vertex in B into a single new vertex b. Let PA consist of all trails in P that are completely
contained in A, together with a single trail TA combined from the (possibly empty) fragments of the
two trails that crossed the cut, joined at b. Since any cut in G/B corresponds to a cut in G, G/B
is strongly connected and remains so after deletion of any single undirected edge. By induction
any orientation of TA in G/B extends to a strong orientation of (G/B, PA). Let G/A, a, PB and
TB be defined symmetrically, then by the same argument any orientation of TB in G/A extends to
a strong orientation of (G/A, PB). Now for any orientation of T , we can choose orientations of TA

and TB that are compatible. The result follows by Lemma 5.

Notice that the partitioning of edges into trails does not matter in the case when no edge is
forced. Since any undirected graph has no forced edges if it is 2-edge connected, the theorem implies
that the most naive algorithm: "directing trails that are forced and if none are forced direct an
arbitrary trail" works for undirected graphs. In general for mixed graphs algorithm 1 below can
clearly be implemented in polynomial time and does solve the trail orientation problem for mixed
graphs.

Theorem 4 gives a sufficient condition for when a strong orientation exists and we deal with
the other cases by dealing with the forced edges first. However, the generalised Robbins’ Theorem
provides a simple equivalent condition, which we lack. Finding such an equivalent condition when
you have trail decomposition is an essential open problem for strong graph orientations. Due to
figure 1 in this setting one has to take into account the structure of the trail partition.

6

116 Appendix D: One-Way Trail Orientations

Algorithm 1: Algorithm for mixed graphs.
Input: A mixed multigraph G and a partition P of the undirected edges of G into trails.
Output: True if (G, P) has a strong trail orientation, otherwise false. G is modified in

place, either to have such a strong trail orientation, or to a forced graph that is
not strongly connected.

1 if G has a bridge or is not strongly connected then
2 return false
3 end
4 while |P| > 0 do
5 if for some undirected edge e, G − e is not strongly connected then
6 Let T ∈ P be the trail containing e.
7 if some orientation of T leaves G strongly connected then
8 Apply such an orientation of T to G
9 else

10 return false
11 end
12 else
13 Let T ∈ P be arbitrary.
14 Update G by orienting T in an arbitrary direction.
15 end
16 Remove T from P.
17 end
18 return true

5 Linear time algorithm
In this section we provide our linear time algorithm for solving the trail orientation problem in
undirected graphs. For this, we make two crucial observations. First, we show that there is an easy
linear time reduction from general graphs or multigraphs to cubic multigraphs. Second, we show
that in a cubic multigraph with n vertices, we can in linear time find and delete a set of edges that
are at the end of their trails, such that the resulting graph has Ω(n) 3-edge connected components.
We further show that we can compute the required orientation recursively from an orientation of
each 3-edge connected component together with the cactus of 3-edge connected components. Since
the average size of these components is constant, we can compute the orientations of most of them
in linear time. The rest contains at most a constant fraction of the vertices, and so a simple
geometric sum argment tells us that the total time is also linear.

We start out by making the following reduction.

Lemma 6. The one-way trail problem on a 2-edge connected graph or multigraph with n vertices
and m edges, reduces in O(m+n) time to the same problem on a 2-edge connected cubic multigraph
with 2m vertices and 3m edges.

Proof. Order the edges adjacent to each vertex such that two edges that are adjacent on the same
trail are consecutive in the order. Replace each single vertex v with a cycle of length deg(v), with
each vertex of the new cycle inheriting a corresponding neighbour of v. Note that for a vertex of

7

Appendix D: One-Way Trail Orientations 117

degree 2, this creates a pair of parallel edges, so the result may be a multigraph. Since edges on
the same trail are neighbours, we can make the cycle-edge between the two corresponding vertices
belong to the same trail. The rest of the cycle edges form new length 1 trails. This graph has
exactly 2m vertices and 3m edges, and any one-way trail orientation on this graph translates to a
one-way trail orientation of the original graph. The graph is constructed in O(m + n) time.

v

Figure 4: A node of degree 5 turns into a cycle of length 5

Recall now that a graph C is called a cactus if it is connected and each edge is contained in at
most one cycle. If G is any connected graph we let C1, . . . , Ck be its 3-edge connected components.
It is well known that if we contract each of these we obtain a cactus graph. For a proof of this
result see section 2.3.5 of [7]. As the cuts in a contracted graph are also cuts in the original graph
we have that if G is 2-edge connected then the cactus graph is 2-edge connected. The edges of the
cactus are exactly the edges of G which are part of a 2-edge cut. We will call these edges 2-edge
critical.

It is easy to check that if a cactus has m edges and n vertices then m ≤ 2(n − 1). We will be
using this result in the proof of the following lemma.

Lemma 7. Let G = (V, E) be a cubic 2-edge connected multigraph, let X ⊆ E, and let F ⊇ E \ X
be minimal such that H = (V, F) is 2-edge connected. Then H has at least 2

5 |X| distinct 3-edge
connected components.

Proof. Let Xdel ⊆ X, be the set of edges deleted from G to obtain H, and let Xkeep = X \ Xdel be
the remaining edges in X.

If |Xkeep| ≥ 4
5 |X|, then by minimality of H there are at least |Xkeep| 2-edge-critical edges in H

i.e. edges of the corresponding cactus, and thus at least 1
2 |Xkeep| + 1 ≥ 2

5 |X| + 1 distinct 3-edge
connected components.

If |Xkeep| ≤ 4
5 |X| then |Xdel| ≥ 1

5 |X|, and since G is cubic and the removal of each edge creates
two vertices of degree 2 we must have that H has at least 2 |Xdel| ≥ 2

5 |X| distinct 3-edge connected
components.

Lemma 8. Let G = (V, E) be a connected cubic multigraph with E partitioned into trails. Then G
has a spanning tree that contains all edges that are not at the end of their trail.

8

118 Appendix D: One-Way Trail Orientations

Proof. Let F be the set of edges that are not at the end of their trail. Since G is cubic, the graph
(V, F) is a collection of vertex-disjoint paths, and in particular it is acyclic. Since G is connected
F can be extended to a spanning tree.

Note that we can find this spanning tree in linear time. Indeed, we may assign weight 0 to edges
in F and 1 to the remaining edges and use the so-called5 Prim’s minimal spanning tree algorithm
with a suitable priority queue to find the tree.

Lemma 9. Let G = (V, E) be a cubic 2-edge connected multigraph with E partitioned into trails.
Let T be a spanning tree of G containing all edges that are not at the end of their trail. Let H be
a minimal subgraph of G that contains T and is 2-edge connected. Then for any k ≥ 5, less than
4
5

k
k−1 |V | of the vertices in H are in a 3-edge connected component with at least k vertices.

Proof. Let X be the set of edges that are not in T . Since G is cubic, |X| = 1
2 |V | + 1. By Lemma 7

H has at least 2
5 |X| > 1

5 |V | 3-edge connected components. Each such component contains at
least one vertex, so the total number of vertices in components of size at least k is less than

k
k−1

(
|V | − 1

5 |V |
)

= 4
5

k
k−1 |V |.

Definition 10. Let C be a 3-edge connected component in some graph H, whose edges is par-
titioned into trails. Define ΓH(C) to be the 3-edge connected graph obtained by replacing each
min-cut {e, f} where e = (e1, e2) and f = (f1, f2) and e1, f1 ∈ C with a single new edge (e1, f1).
Define the corresponding partition of the edges of ΓH(C) into trails by taking every trail that is
completely contained in C, together with new trails combined from the fragments of the trails that
were broken by the min-cuts together with the new edges that replaced them. See figure 5.

At this point the idea of the algorithm can be explained. We remove as many of the edges, at
the end of their trails, as we can still maintaining that the graph is 2-edge connected. Lemma 9
guarantees that we obtain a graph H with Ω(|V |) many 3-edge connected components of size O(1).
We solve the problem for each ΓH(C) for every 3-edge connected component. Finally, we combine
the solutions for the different components like in the proof of theorem 2.

C ΓH(C)

Figure 5: 3-edge connected components, notice how every edge out from the centre is part of a
cycle. This right hand shows ΓH(C) where C is the component in the middle.

5Originally discovered by Jarník [4], later rediscovered by Prim [8]

9

Appendix D: One-Way Trail Orientations 119

Theorem 11. The one-way trail orientation problem can be solved in O(m+n) time on any 2-edge
connected graph or multigraph with n vertices and m edges.

Proof. By Lemma 6, we can assume the graph is cubic. For the algorithm we will use two sub-
routines. First of all when we have found the minimum spanning tree T containing the edges that
are not on the end of their trail we can use the algorithm of Kelsen [5] to, in linear time, find a
minimal (w.r.t. inclusion) subgraph H of G that contains T and is 2-edge connected. Secondly we
will use the algorithm of Melhorn [6] to, in linear time, build the cactus graph of 3-edge connected
components. The algorithm runs as follows:

1. Construct a spanning tree T of G that contains all edges that are not at the end of their trail.

2. Construct a minimal subgraph H of G that contains T and is 2-edge connected6.

3. Find the cactus of 3-edge connected components of7 H.

4. For each 3-edge connected component Ci, construct ΓH(Ci).

5. Recursively compute an orientation for each8 ΓH(Ci).

6. Combine the orientations from each component.

First we will show correctness and then we will determine the running time.
Recall that we can flip the orientation in each ΓH(Ci) and still obtain a strongly connected

graph respecting the trails in ΓH(Ci). The way we construct the orientation of the edges of G is by
flipping the orientation of each ΓH(Ci) in such a way that each cycle in the cactus graph becomes a
directed cycle9. This can be done exactly because no edge of the cactus is contained in two cycles.
By construction this orientation respects the trails so we need to argue that it gives a strongly
connected graph.

For showing that the resulting graph is strongly connected, first let every 3-edge connected
component be contracted, then the graph is strongly connected since the cycles of the cactus graph
have become directed cycles. Now assume inductively that we have uncontracted some of the
components and call this graph G1. Now we uncontract another component C (see figure 6) and
obtain a new graph G2 which we will show is also strongly connected. If u, v ∈ C, then since
ΓH(C) is strongly connected there is a path from u to v in ΓH(C). If this path only contains edges
which are edges in C clearly this path also exists in G2 so we are done. If the path uses one of
the added edges (e1, f1) (without loss of generality oriented from e1 to f1), it is because there are
edges (e1, e2) and (f1, f2) forming a cut and thus being part of a cycle in the cactus. In this case
we use edge (e1, e2) to leave component C and then go from e2 back to component C which is
possible since G1 was strongly connected. When we get back to the component C we must arrive
at f1 since otherwise there would be two cycles in the cactus containing the edge (e1, e2). Hence
the edge (e1, f1) was not needed. This argument can be used for any of the edges of ΓH(C) that are
not in C and thus we can move between any two nodes in C. Since G1 was strongly connected this

6See Kelsen [5]
7See Melhorn [6]
8Note that ΓH(Ci) is cubic unless it consists of exactly one node. In this case however we don’t need to do

anything.
9In practise this is done by making a DFS (or any other search tree one likes) of the cactus and repeatedly orienting

each component in a way consistent with the previous ones.

10

120 Appendix D: One-Way Trail Orientations

suffices to show that G2 is strongly connected. By induction this implies that after uncontracting
all components the resulting graph is strongly connected.

C

C

Figure 6: Before and after uncontracting component C

Now for the running time. By Lemma 9 each level of recursion reduces the number of vertices in
“large” components by a constant fraction, for instance for k = 10 we reduce the number of vertices
in large components by a factor of 1

9 . Let f(n) be the worst case running time with n nodes for a
cubic graph, and pick c large enough such that cn is larger than the time it takes to go through
steps 1-4 and 6 as well as computing the orientations in the “small” components. Let a1, . . . , ak be
the number of vertices in the “large” 3-edge connected components. Then

∑
i ai ≤ 8n

9 and

f(n) ≤ cn +
∑

i

f(ai)

Inductively we may assume that f(ai) ≤ 9cn and thus obtain

f(n) ≤ cn +
∑

i

f(ai) ≤ cn +
∑

i

9cai = cn + 8cn = 9cn

proving that f(n) ≤ 9cn for all n.

6 Open problems
We here mention two problems concerning trail orientations which remain open.

First of all, our linear time algorithm for finding trail orientations only works for undirected
graphs and it doesn’t seem to generalise to the trail orientation problem for mixed graphs. It would
be interesting to know whether there also exists a linear time algorithm working for mixed graphs.
If so it would complete the picture of how fast an algorithm we can obtain for any variant of the
trail orientation problem.

Secondly, our sufficient condition for when it is possible to solve the trail orientation problem
for mixed multigraphs is clearly not necessary. It would be interesting to know whether there is a

11

Appendix D: One-Way Trail Orientations 121

Algorithm 2: Linear time algorithm for cubic graphs.
Input: An undirected multigraph G and a partition P of the edges of G into trails.
Output: True if (G, P) has a strong trail orientation, otherwise false. G is modified in

place, either to have such a strong trail orientation, or to a forced graph that is
not strongly connected.

1 Construct a spanning tree T of G that contains all edges that are not at the end of their trail.
2 Construct a minimal subgraph H of G that contains T and is 2-edge connected.
3 Find the cactus C of 3-edge connected components of H.
4 for each 3-edge connected component Ci in C in DFS preorder do
5 Construct Gi = ΓH(Ci).
6 Recursively compute an orientation for Gi.
7 if the orientation of Gi is not compatible with its DFS parent then
8 Flip orientation of Gi

9 end
10 end
11 for each edge e deleted from G to create H do
12 if no edge on the trail of e has been oriented yet then
13 Pick an arbitrary orientation for e.
14 else
15 Set the orientation of e to follow the trail.
16 end
17 end

simple necessary and sufficient condition like there is in the undirected case. Since in the mixed
case the answer to the problem actually depends on the given trail decomposition and not just on
the connectivity of the graph it is harder to provide such a condition. One can give the following
condition. It is possible to orient the trails making the resulting graph strongly connected if and
only if when we repeatedly direct the forced trails end up with a graph satisfying our condition in
theorem 4. This condition is not simple and is not easy to check directly. Is there a more natural
condition?

12

122 Appendix D: One-Way Trail Orientations

References
[1] Frank Boesch and Ralph Tindell. Robbins’s theorem for mixed multigraphs. The American

Mathematical Monthly, 87(9):716–719, 1980.

[2] Fan R. K. Chung, Michael R. Garey, and Robert E. Tarjan. Strongly connected orientations of
mixed multigraphs. Networks, 15(4):477–484, 1985.

[3] John Hopcroft and Robert Tarjan. Algorithm 447: Efficient algorithms for graph manipulation.
Commun. ACM, 16(6):372–378, June 1973.

[4] V. Jarník. O jistém problému minimálním: (Z dopisu panu O. Borůskovi). Práce Moravské
přírodovědecké společnosti. Mor. přírodovědecká společnost, 1930.

[5] Pierre Kelsen and Vijaya Ramachandran. On finding minimal 2-connected subgraphs. In
Proceedings of the Second Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms,
28-30 January 1991, San Francisco, California., pages 178–187, 1991.

[6] Kurt Mehlhorn, Adrian Neumann, and Jens M. Schmidt. Certifying 3-edge-connectivity. Algo-
rithmica, 77(2):309–335, 2017.

[7] Hiroshi Nagamochi and Toshihide Ibaraki. Algorithmic Aspects of Graph Connectivity. Cam-
bridge University Press, New York, NY, USA, 1 edition, 2008.

[8] R. C. Prim. Shortest connection networks and some generalizations. The Bell System Technical
Journal, 36(6):1389–1401, Nov 1957.

[9] H. E. Robbins. A theorem on graphs, with an application to a problem of traffic control. The
American Mathematical Monthly, 46(5):281–283, 1939.

13

Appendix D: One-Way Trail Orientations 123

	Abstract
	Dansk Resumé (Danish Abstract)
	Acknowledgements
	Preface
	Contents
	I Synopsis
	Introduction
	Outline

	Preliminaries
	Machine models
	Asymptotic notation: O, Ω, Θ and Õ
	Graphs
	Static vs. Dynamic graph problems

	Planar reachability (Synopsis of Appendix A)
	Problem
	Known results
	Our result
	Techniques
	Future work

	Online Bipartite Matching (Synopsis of Appendix B)
	Problem
	Known results
	Our Result
	Techniques
	Future Work

	Dynamic Bridge-Finding (Synopsis of Appendix C)
	Problem
	Known results
	Our result
	Techniques
	Future work

	One-Way Trail Orientations (Synopsis of Appendix D)
	Problem
	Known results
	Our result
	Subsequent improvement, made for this thesis
	Techniques
	Future Work

	Concluding remarks
	Bibliography

	II Appendix
	Planar Reachability in Linear Space and Constant Time
	Online Bipartite Matching with Amortized O(log² n) Replacements
	Dynamic Bridge-Finding in Õ(log² n) Amortized Time
	One-Way Trail Orientations

