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Abstract

Synchrotron X-ray tomography allows to non-destructively image the interior of three-dimensional
objects at a very high resolution. Users of synchrotron facilities depend on reliable recon-
structions (images) of the specimen they brought, and subsequent analysis of the images.
My dissertation addresses both of these analysis steps through mathematical modeling and
specific approaches to practical solutions.

Many in situ X-ray CT experiments entail rigs to control the in situ environment. In
some cases, the X-ray beam is fully or partly occluded by the rig leading to ”polluted” or
missing data for some projection angles. This may lead to artifacts in the tomographic re-
constructions, which complicate the subsequent image analysis. We have analysed a specific
tomographic experiment including a percolation cell for controlling fluid flow in chalk sam-
ples. The images provided by the synchrotron facilities suffered from severe reconstruction
artifacts due to occluded projections. Our goal was to find methods to suppress the artifacts
and to generalize our analyses to make them applicable to a wider audience. We restricted
ourselves to consider artifact reduction methods only in conjunction with the filtered back-
projection algorithm because, with these large amounts of data, the use of simple and fast
algorithms is crucial. The methods we proposed removed or suppressed the artifacts suc-
cessfully. The work was followed by a theoretical characterization of all types of incomplete
data artifacts and proofs of the advantages of including a smooth cutoff across singularities
in incomplete data.

Establishing image analysis in X-ray synchrotron tomographic images was the other focus
of this work. Synchrotron tomography is widely used in medicine and was established many
years ago. However, specialized methods are required to fully exploit the potentials of the
three-dimensional (3D) nature of the images. We analysed 3D images of muscle biopsies by
measuring the muscle fiber morphology. The biopsies were from healthy participants and
participants with one of three different types of neuromuscular diseases. Generally, these
types of measures are carried out by light microscopy in two-dimensional (2D) images, and
we showed that 3D image analysis may be preferred in specific situations. Further, we pro-
vided a measure of the orientation consistencies of the muscle fibers, which is a measure of
how aligned or organized the fibers are related to each other. We showed that participants
with cerebral palsy exhibited a lower degree of muscle fiber orientation consistency than the
healthy participants did.

One of the main challenges in synchrotron data is the amount of data. Conversely, it is
also the main advantage. The degree of detail and the 3D nature provided by the modality
is what makes it superior to many other imaging modalities. We focused on methods that
were able to handle these large amounts of data and at the same time were able to extract
important details. The main contributions of this thesis can be seen as an approach towards
better understanding the implications of synchrotron X-ray tomographic data.
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Preface

This Ph.D. thesis is the result of my work at the Image Section, Department of Computer
Science, University of Copenhagen from December 2014 to August 2018. My supervisors
were François Lauze and Jon Sporring.

The first part of my work was carried out for the P3 project, which is an inter-institutional
collaboration between the University of Copenhagen, Maersk Oil and Gas, and Innovation
Fund Denmark. During this project, I worked 6 months in Per Christian Hansens research
group in Department of Applied Mathematics and Computer Science, DTU Compute, Tech-
nical University of Denmark, as a part of my change of scientific environment.

The second part of my work was carried out for the MAX4Imagers project, which is a
collaboration between researchers from the newly opened synchrotron, MAX IV in Lund,
Sweden, the Capital Region hospitals, University of Copenhagen, and the Technical Univer-
sity of Denmark. It is funded by the Capital Region Research Foundation for Healthcare.

My main research outputs are the three following articles on which this thesis is based.

1. L. Borg, J. S. Jørgensen, J. Frikel, and J. Sporring. Reduction of variable-truncation
artifacts from beam occlusion during in situ x-ray tomography. Measurement Science
and Technology, 28(12), 2017. [1]

2. L. Borg, J. S. Jørgensen, J. Frikel and E. T. Quinto. Analyzing Reconstruction Arti-
facts from Arbitrary Incomplete X-ray CT Data [2]. Under review at the Society for
Industrial and Applied Mathematics (SIAM) Journal on Imaging Sciences.

3. L. Borg, J. Sporring, V. A. Dahl, A. B. Dahl, E. B. Dam, and J. Pingel. Muscle fiber
morphology and orientation consistency in cerebral palsy from 2- and 3-dimensional
images obtained by synchrotron X-ray computed tomography [3]. Submitted to Com-
puters in Biology and Medicine.

The inclusion of all three articles in this dissertation is permitted. In addition to the articles,
I published a technical report [4], which was the preliminary work of our article [1]. More-
over, I attended conferences and contributed to a number of poster presentations.

The thesis is written in such a way that a Ph.D. student in computer science should
be able to follow. Therefore, a soft introduction to computed tomography is presented in
Section 2. Further, our article [2] in Section 4.1 comes along with an introductory description
and some figures for visualizing the geometries and some of the main points. This should
support the readability of the article for non-mathematician readers.

The three articles are incorporated in the thesis as they are and as their own entity, with
separate sectioning systems and paginations. Therefore, there are several cases of the same
section numbers and page numbers. When I refer to sections, the referred section number is
related to the thesis, as given in the table of contents. Otherwise, when referring to sections
in the articles, it is always stated which article I refer to.
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Introduction 1

X-ray computed tomography (CT) is an imaging technique providing the possibility of seeing
the inside of an object. For data acquisition, the object is irradiated by X-rays at different
angles, and the transmitted beam intensity is detected. Tomographic reconstruction entails
methods to convert these raw CT measurements into images of the objects. To take full
advantage of the potential of such three-dimensional (3D) images, subsequent image analysis
must be carried out. Users of synchrotron facilities bring samples to be imaged and expertise
in their own area of science, and often depend on both tomographic reconstruction and
subsequent analysis of the images. My dissertation addresses both of these analysis steps
through mathematical modeling and specific approaches to practical solutions.

Acquisition of synchrotron X-ray data is where extremities meet; tiny particles (electrons)
are accelerated in gigantic storage rings by strong magnetic fields to reach near-relativistic
speeds. X-rays are produced by collisions between the particles and matter when quantum
states are changed in the atoms. An image of the European Synchrotron Radiation Facility
located in Grenoble in France is shown in Figure 1.1.

Figure 1.1: The European Synchrotron Radiation Facility in Grenoble,
France. The image is copied from https://www.nqicorp.com/portfolio/

esrf-european-synchrotron-radiation-facility/
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”Big data” is a concept associated with extremely large and complex datsets. The definition
has changed over the time and according to [5] one definition of big data is based on volume,
variety, and velocity:

1. Volume refers to the magnitude of data and sizes are reported in multiple terabytes
and petabytes.

2. Variety refers to the structural heterogeneity in a dataset. Text, images, audio, and
video are examples of unstructured data, which sometimes lack the structural organi-
zation required by machines for analysis.

3. Velocity refers to the rate at which data are recorded.

Synchrotrons are big, and they definitely produce big data according to the definition
just given and according to authors of [6]. Big data requires processing methods suitable for
handling the inherent level of detail and complexity of the specific problem, which leads us
to the aims of this thesis.

1.1 Aims of the thesis

The aim of this thesis is to add to the applications in the analysis of synchrotron X-ray
tomographic data. Due to a large amount of data and the complexity often inherent in to-
mographic data, important factors for the methods are well-understood behavior, robustness,
and computational efficiency. The aims fall into two categories: Tomographic reconstruction
and image analysis. In the category of tomographic reconstruction, I worked on two separate
projects: a practical and an analytic approach for artifact reduction.

Typically, synchrotron facilities provide reconstructions based on the data measured at
the site. According to the variety of experimental setups and in specimens to be imaged,
the reconstruction methods must be rather generic. This means that a high reconstruction
quality is not guaranteed for more specialized imaging experiments.

In the P3 project, we had raw synchrotron CT measurements and corresponding recon-
structions available from the SPring-8 facilities in Japan. However, the experimental setup
was highly specialized, and the reconstructions provided by SPring-8 contained streak ar-
tifacts, which initiated the first project aim; Our aim was to develop a method to obtain
reconstructions without streak artifacts from the raw data. At the same time, the method
was to be able to handle the large amounts of data from the synchrotron and needed to be
relatively fast as the real-time analysis was crucial.

This work led to new ideas for a more theoretical approach for characterizing artifacts
from incomplete data. The aim was to use formulations from microlocal analysis to charac-
terize not only streaks similar to those in the P3 project, but also for artifacts from arbitrary
incomplete datasets.

In the last study, we analysed 3D structures in images from synchrotron X-ray CT of
muscle biopsies. This was a unique dataset in many ways; Muscle biopsies are usually not
imaged in three dimensions, and transmission synchrotron X-ray CT has to our knowledge
never before been used for analysing muscle fibers. The aim was to apply suitable algorithms
to explore 3D features of the muscle fibers. Our approach was segmentation followed by 3D
morphologic analyses and measuring the muscle fiber orientations with respect to each other.

1.2 Structure of the thesis

Section 2 covers a short introduction to CT; historical perspectives, mathematical models of
the data acquisition and reconstruction methods, and lastly, practical aspects. The follow-
ing four sections, Section 3, 4, 5, and 6, represent the four main works of the thesis. The
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main structure of these sections is such that each section contains an article, supplementary
material, and a summary (except Section 5 which contains yet unsubmitted work and no
supplementary material). The summaries are extractions of the results, discussions, conclu-
sions, and outlook of the different works. The supplementary material in Section 4 is part
of the introduction of the section and thus does not have its own section.

The work conducted relevant for the P3 project is presented in Section 3, and is an anal-
ysis of variable-truncation artifacts. Section 3.1 contains the article Reduction of variable-
truncation artifacts from beam occlusion during in situ x-ray tomography. The article is
followed by supplementary material: a short description of how the sinogram is linked to the
raw data is presented in Section 3.2.1, in Section 3.2.2 experiments on synthetic data serve
to give an intuition about the nature of the truncated-projection artifacts, Section 3.2.3
discusses an algebraic solution for the truncated-projection problem, and Section 3.3 is a
summary of Section 3.

The theoretical approach for characterizing artifacts from arbitrary incomplete data is
laid out in Section 4. It has an introductory part with figures for visualizing the geometries
of the mathematical descriptions and the most important points. Section 4.1 contains the
article Analyzing Reconstruction Artifacts from Arbitrary Incomplete X-ray CT Data and
Section 4.2 is a summary for the analyses in Section 4.

The initial set of analyses on the images of muscle biopsies were based on a Chan-Vese
segmentation [7] followed by a measure of the anisotropy in the 3D volumetric segmenta-
tions. A similar study was carried out on rat muscle biopsies [8], with which we wanted to
compare our results for the humane dataset. These analyses are presented in Section 5.1 to
Section 5.4 and will be submitted for publication as part of a future article. Section 5.5 is a
summary of Section 5. Section 6 is a direct follower of the work presented in Section 5. A
snake method [9] enabled analyses on each single muscle fibers, which led to the work pre-
sented in the article Muscle fiber morphology and orientation consistency in cerebral palsy
from 2- and 3-dimensional images obtained by synchrotron X-ray computed tomography, and
is contained in Section 6.1. Supplementary material is presented in Section 6.2, where Sec-
tion 6.2.1 contains supplementary analysis and full segmentations, and Section 6.2.2 contains
supplementary discussions not given in the article. Section 6.3 is a summary of Section 6.
Section 7 draws conclusions and sets the four works described in Chapters 3, 4, 5, and 6 into
perspective.
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Computed tomography in short 2

The very first steps towards transmission tomography date back to the 19’th and 20’th
centuries. The German physicist Wilhelm Conrad Röntgen discovered the X-rays in 1895
and won a Nobel Prize for the realization of X-ray imaging in 1901 [10]. Figure 2.1 shows
one of the first X-ray images ever taken. It shows the hand of Anna Bertha Röntgen, who
was the wife of Wilhelm Conrad Röntgen.

Figure 2.1: One of the first X-ray images in history: The hand of Anna Bertha Röntgen with
a ring on the fourth finger.

Later, in the year of 1917, the Austrian mathematician Johan Radon introduced the
Radon transform [11], which defines a projection of a two-dimensional object, f(x, y), by
line integrals of the object. The natural next step was the definition of the inverse Radon
transform, implying that f(x, y) can be exactly reconstructed from the complete set of all
possible line integrals of the object. It took more than 40 years before the physicist, Allan
MacLeod Cormack, in 1963 applied the solutions to the inverse problem, to X-ray images.
In 1971, Hounsfield built a prototype head scanner, which was the introduction of CT in
medical practice. Hounsfield and Cormack were awarded the Nobel Prize in Physiology in
1979 for their work on X-ray CT. Over the years, CT application has expanded to cover
a range of applications, from medical imaging to spectroscopic analysis, materials science,
and geophysics, among others. The first types of CT scanners required long scanning times
and high radiation dose but yet provided images of relatively low resolution. While the
first generation of scanners used a parallel-beam configuration, subsequent scanner genera-
tions now use 2D detectors for parallel-beam configuration, fan-beam configuration, circular
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cone-beam configuration, and helical cone-beam configuration providing substantially higher
temporal and spatial resolution, while requiring a lower radiation dose. For details on the
beam configurations refer to [12] or [13]. While modern lab tomography provides images of
high quality, synchrotron tomography takes the quality and possibilities to completely new
levels.

The tunable wavelengths for monochromaticity, high intensity, and penetration power
allows for investigation of a wide range of specimens in various depths and resolutions. The
high emitted flux and brilliance increase the signal-to-noise ratio and the resolution. On top
of this, a high coherence of the beam, which is the property that enables the emitted radiation
to produce wave-like phenomena, allows for diffraction used for phase contrast imaging [14,
15]. The most recent synchrotron sources are “fully coherent” down to wavelengths in the
ultraviolet and soft-X-ray range [16]. In 2017 [15] reached a resolution of ∼ 20 nm resolution,
by magnifying the projected image with a Fresnel zone plate and enhancing the contrast with
a Zernike type phase ring. This is absolutely amazing! Not only can we see the inside of a
specimen, but we can also go down to a 20-nanometer resolution!

As history has shown, CT is subject to continuous research and development which has
led the way to spatial and temporal resolution never seen before, capturing changes down to
tens of nanometers and sub-nanoseconds [17]. The MAX IV Laboratory in Lund is currently
the synchrotron X-ray source with the beam of highest brilliance (2016) [18].

There exist many variations of X-ray synchrotron imaging, such as X-ray holography,
magnetic Compton scattering, resonant X-ray scattering, high-energy fluorescent X-ray,
ultra-small angle scattering, just to mention some. In this thesis, we consider only transmis-
sion X-ray synchrotron imaging with a monochromatic beam in a parallel-beam configura-
tion.

In the following sections, mathematical models of the data acquisition and how to obtain
an image from this data are presented, followed by practical aspects in CT.

2.1 Data acquisition

Different types of materials attenuate different amounts of X-rays according to the photon-
matter interaction. This property is exploited in the transmission X-ray CT-imaging tech-
nique, where an object is irradiated by X-rays and the amount of transmitted X-rays is
measured by a detector. The amount of X-rays measured by the detector carries informa-
tion about the attenuation coefficients inside the material, but this is only the integrated
information from that specific X-ray penetrating the entire object from one specific angle.
To refine the information of the attenuation coefficients, the object must be irradiated from
different angles and by a number of X-rays covering the entire object. Gathering all this
information with proper amounts of radiation angles and beam-detector pairs covering the
entire object makes it possible to obtain a 3D image of the object. The pixel values in the
image are directly correlated to the physical X-ray attenuation coefficient for that specific
material.

The Radon transform [11], R, is a mathematical model widely used in CT, which inte-
grates a function, f , over the straight line, L. In CT, it is defined by the line integrals of the
attenuation coefficients through an object, which is essentially the negative logarithm of the
ratio of the incoming and outgoing number of photons, as we will see in the following. The
Radon transform is closely related to the Lambert-Beer model [19, 20, 21], which describes
the behavior of the photon attenuation when a beam is penetrating an object. Following
derivations can be found in any introductory book on CT, such as in [12], on which these
derivations are based. In inhomogeneous objects, the attenuation coefficients, f , are spa-
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tially variant, as sketched in Figure 2.2. In the figure, I0 is the incoming beam and In is the
beam measured in the detector after having traveled the distance t in step lengths of Δt.
The thought behind the derivation is that we allow the attenuation coefficients, f , to vary
as indicated in Figure 2.2 and then let the width Δt go towards zero.

f1 f2 f3 fn

I0 I1 I3I2 In

Δt

td
...

...

Figure 2.2: Lambert-Beer’s law of attenuation.

The intensity of the beam after passing through the first portion of the object, Δt, is
given by

I1 = I0 − f1I0Δt = I0(1− f1Δt).

Likewise, the intensity I2 is

I2 = I1(1− f2Δt) = I0(1− f1Δt)(1− f2Δt).

The intensity after having passed n ·Δt is

In = I0(1− f1Δt)(1− f2Δt) · · · (1− fnΔt).

The Taylor expansion to first order of the exponential e−x around 0 is

e−x ≈ 1− x, (2.1)

so the terms in the parantheses can be expressed as a Taylor expansion

In ≈ I0e
−

n∑

i=1
fiΔt

.

If the discretization of the object is very fine, i.e. Δt is very small, fiΔt is close to zero, and
the equality holds:

In = lim
fiΔt→0

I0e
−

n∑

i=1
fiΔt

When Δt is small, we can convert the summation into an integral,

lim
Δt→0

I0e
−

n∑

i=1
fiΔt

= I0e
− ∫

0

t
df(t)dt

where t is the position at the detector, and finally we have

In = I0e
−

td∫

0

f(t)dt
, (2.2)

known as Lambert-Beer’s law of attenuation. By rearranging equation 2.2, we define the
projection integral

− ln
In
I0

=

td∫
0

f(t)dt, (2.3)

6



which is the Radon transform. We will use following notation for the Radon transform

Rf(ϕ, p) = − ln
In
I0

=

∫
L(ϕ,p)

f(p)dp, (2.4)

where ϕ is the rotation angle, p is the displacement of the detector or the signed distance
from origo, parameterized as

p = x1 cosϕ+ x2 sinϕ

and L is the sets of points x = (x1, x2):

L(ϕ, p) = {x ∈ R2 : x1 cosϕ+ x2 sinϕ = p}. (2.5)

Figure 2.3 visualizes the geometry of the set-up and the related the variables. The dotted
lines are the projection lines, L(ϕ0, p).

x1

x2

p
L(ϕ0, p)

ϕ0

f

Rf(ϕ0, p) detector

Figure 2.3: The Radon transform showing one projection for the angle ϕ0.

sϕ0(p) is denothed as the projection obtained from the angle, ϕ0, and variable p:

sϕ0(p) = Rf(ϕ0, p).

While acquiring the data, the source-detector system rotates by a small angle to obtain data
from different angles until 180 degrees is covered.

2.2 Reconstruction methods

Typical reconstruction methods fall into two major categories: Fourier-based and algebraic-
based. The approaches are quite different as Fourier-based methods are based on continuous
formulations and algebraic methods are based on a discretized formulation. The following is
a very short presentation of the two types of methods. One can read about the methods in
any introductory book on the mathematics behind CT, such as [12], and these descriptions
are based on [12, 22, 23, 24].

7



Fourier-based reconstruction There exist a number of Radon inversion formulas, where
the most common is the filtered backprojection (FBP). The Radon transform and FBP are
closely related to the Fourier transform. The Fourier slice theorem states that the 1D Fourier
transform of a projection of an object is equal to the slice parallel to the projection line taken
from the 2D Fourier transform of the object. This basically means that the object can be
reconstructed from its projections (the Radon transform). I.e. the reconstruction, f̃ , is
calculated

f̃(x1, x2) =

∫ π

0

∫ −∞

−∞
F1sϕ(ω)|ω|e2πipωdωdϕ,

where

F1sϕ(ω) =

∫ −∞

−∞
sϕ(p)e

−2πipωdp

is the 1D Fourier transform of a projection sϕ(ω) and ω is the frequency. |ω| is a ramp filter
that emphasizes the high-frequency components of the signal and it derives from the change
of Cartesian coordinates to polar coordinates. In practice, a low-pass filter is added for de-
emphasizing the high frequencies in the reconstruction. The intuition behind this method
is to ”smear” the projections back along the line they came from, which can be captured
in one word: backprojection. All backprojections are added and the result is normalized
by the number of projections to obtain the reconstruction. Prior to backprojection, one
needs to filter the projections for covering change of coordinate systems and to de-emphasize
high-frequency components. So, the name ”filtered backprojection” covers the act quite well.

Algebraic reconstruction The algebraic reconstruction techniques represent the recon-
struction problem as a linear system of equations in a matrix-vector form,

Af̃ = b.

A is the system matrix, representing the weights from the projection lines through the pixels
of the discretized object, f , consisting of the elements

ai,j =
illuminated area of pixel j by ray i

total area of pixel j
.

b is the measurements, and f̃ is the solution to the inverse problem. In practice, itera-
tive solutions are typically preferred according to the relatively large sizes of CT problems.
Two classes of iterative methods commonly used are the algebraic reconstruction techniques
(ART) and the simultaneous iterative reconstruction techniques (SIRT) [22]. The recon-
struction problem may be formulated as the minimization of a functional, where the goal is
to find a solution f̃ that minimizes the distance between Af̃ and b. Prior knowledge about
noise, missing data, etc. may be incorporated in the formulations (but will not be covered
here). The basic ART method use the updating rule:

f̃ (k,i) = f̃ (k−1,i) + λ
bi − aTi f̃

(k−1,i)

||ai||22
ai, k = 1, 2, ..., i = 1, 2, ...,M,

where k is the iteration step number, λ is the relaxation parameter, aTi is the i’th row of
A, and M is the total number of rows in A. The SIRT methods replace the one-by-one
application of rows in ART by a single simultaneous iteration step, by accessing the rows
simultaneously and computing the next iteration vector:

f̃ (k) = f̃ (k−1) + λT1A
TT2(b−Au(k))

One example of SIRT is the Cimmino method for which

T1 = I and T2 =
1

m
diag(

1

||ai||22
),

and m is the total number of rows in A.
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2.3 Practical aspects

The imaging technique and reconstruction methods described in the previous sections were
from a completely theoretical perspective. In practice, when working with real acquisition
setups and real data, however, one must consider additional aspects. These aspects are
abundant and include source and detector conditions, photon starvation, detector element
cross-talk, scattering, and conditions in acquisition setups leading to different types of limited
data.

These practical issues all lead to reconstruction artifacts which differ in nature according
to their cause. Artifacts include ring artifacts, beam hardening artifacts, misalignment arti-
facts, metal artifacts, motion artifacts and artifacts related to limited data, among others.
Improving the acquisition hardware or post-processing of the acquired data are two common
ways to address the issues.

Examples of limited data include limited-angle (LA), region-of-interest (ROI), exterior
data, sparse data, and variations of these types of limited data. Acquisition of only a range
of angular measurements is referred to as LA. ROI, also called interior tomography is when
only a part of the object is covered by the detector panel and exterior data is when the center
part of the object is not covered by the detector panel. Sparse data is obtained when only
a sparse number of projections is available or the spatial resolution is low. Our article in
Section 3.1, address the issues in an example of an in-situ setup, leading to a combination
ROI- and LA-data. We refer to the resulting artifacts as variable-truncation artifacts. There
exist two different schemes often used when approaching limited-data problems:

• Repair data + Fourier-based reconstruction: Repairing the data may, for instance,
be approached by inpainting methods, which fill in the missing pixels values, or by
handling the discontinuities in the data. After repairing the data, FBP may be used
to obtain the image.

• Use data as it is + algebraic reconstruction with a suitable regularization method:
The regularization method can be constructed in such a way as to handle the miss-
ing data and to obtain a higher numerical stability. Some examples are total vari-
ation [25], downweighing affected sinogram pixels [26], or shearlet-based regulariza-
tion [27], among others.

It may be possible to incorporate regularization in the integrals in the Fourier-based ap-
proach. In practice, though, this is probably less frequent. One of the two schemes must be
chosen according to the specific data at hand; Numerical methods may handle issues in a
more clever way as they can target the issues more specifically, FBP, however, can handle
very large problems in relatively short time.

9



Variable-truncation artifacts 3

The P3 project investigates the possibilities of being able to extract larger amounts of oil
than currently possible in oil reservoirs in the Danish sector of the North Sea. The key is
to search underground chalk reservoirs. Chalk is up to 40-50 percent full of tiny cavities or
pores, in which oil, water, CO2 or any other type of fluid can be contained [28]. Modeling
grain and pore structure in rock samples can help to determine if it is worth going after
oil in some of those marginal oil fields. The reconstructions of the chalk provided by the
SPring-8 facilities in Japan contained severe artifacts due to a specialized imaging setup.
The work outlined in this section serves to reconstruct the images and at the same time
suppress artifacts. We restricted ourselves to consider methods in conjunction with the FBP
method. Iterative reconstruction methods typically require computing times several orders
of magnitude longer than FBP, and with these large amounts of data, the use of simple and
fast algorithms is crucial. Section 3.1 contains our article Reduction of variable-truncation
artifacts from beam occlusion during in situ X-ray tomography, Section 3.2 is supplementary
material and Section 3.3 is a discussion of the work.

3.1 Article # 1: Reduction of variable-truncation artifacts
from beam occlusion during in situ X-ray tomography

10
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1. Introduction

1.1. In situ x-ray tomography

X-ray computed tomography (CT) has been an indispens-
able non-invasive imaging technique in medical imaging, 

non-destructive testing, materials science and numerous other 
areas for many years. Traditionally, an object has been sub-
jected to x-ray CT to provide images of its (static) internal 
three-dimensional structure, or to study the effect of treat-
ments such as heating by comparing an x-ray CT scan before 
and after the treatment. Since only an image of the sample 
after the treatment is obtained, such studies only provide an 
indirect window into the processes taking places during the 
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treatment. In recent years, in situ x-ray CT has become an 
increasingly wide-spread technique to study processes as they 
happen within material samples subject to various environ-
ments such as high temperature, high pressure, controlled 
atmosphere, fluid flow, etc. Some noteworthy examples in 
materials science include studies of rock fractures during 
freeze-thaw cycles [1], deformation and liquid flow in alu-
minum alloys under temperature control [2], evolution of 
fatigue cracks in magnesium [3] and fracture evolution in 
cement under compression [4].

In many in situ x-ray CT experiments the imaging equip-
ment is complemented by additional equipment, often called 
rigs, to control the in situ environment, such as furnaces, ten-
sion rigs, fluid flow tubes, etc. Often, this equipment can be 
arranged to remain outside the x-ray beam from source to 
detector to prevent any effect on the acquired data. However, 
in some cases this is not possible, and the x-ray beam will 
either pass through or be fully or partially occluded by the 
equipment at some of the projection angles. This results in 
parts of the tomographic data being either ‘polluted’ by the 
additional attenuation through the equipment or, in the case 
of occlusion, completely missing. Depending on the severity 
of this effect, the resulting tomographic reconstruction may 
suffer from artifacts ranging from minor to completely 
destructive for the desired imaging task.

The present work is motivated by in situ x-ray CT studies 
of fluid flow through porous chalk. The experiment entails a 
percolation cell with four metal bars to sustain high temper-
ature and pressure, as detailed in section  2 and illustrated in 
figure 2. At some projection angles the metal bars cause full or 
partial occlusion of the x-ray beam, which results in missing 
data and drastic streak artifacts in the reconstruction, see  
figures 3 and 4. The goal of the present work is to understand the 
cause of these artifacts and determine methods to reduce them.

The most common reconstruction method in routine use 
at synchrotrons remains the filtered backprojection (FBP) 
algorithm due to its versatility, robustness, computational 
efficiency and well-understood behavior. In recent years a 
variety of, mainly iterative, reconstruction methods based on 
an algebraic imaging model and using statistical and a priori 
information have been proposed and potential improvements 
over FBP demonstrated, see e.g. [5–8]. However, major chal-
lenges remain before these methods are suitable for larger 
datasets in practical synchrotron routine use, which often uses 
high resolution and thousands of projections. With these large 
amounts of data, the use of simple/fast algorithms is crucial. 
Iterative reconstrutction methods typically require computing 
times several orders of magnitude longer than FBP. They 
are more complex and typically involve tweaking of several 
parameters such as the number of iterations and any regulari-
zation parameters before improvements are obtained. Further, 
a multitude of different methods exist each with strengths and 
weaknesses for different types of images, making it difficult 
for non-specialists to choose a suitable method for a particular 
data set. Therefore, to be of direct relevance and easy to adopt 
in practice, in the present work we restrict ourselves to con-
sider artifacts and reduction methods in conjunction with FBP 
reconstruction.

1.2. Typical reconstruction artifacts

A variety of reconstruction artifacts can be encountered in 
case of incomplete data. Figure  1 illustrates a number of 
typical cases with different forms of incomplete data and 
corresponding reconstruction artifacts. Shown first is the 
complete-data case without artifacts for the classical Shepp–

Logan phantom. In the sinogram the columns contain projec-
tions obtained at angles from 0◦ to 180◦ in a parallel-beam 

(a) Complete (b) ROI (c) LA (d) VT

Figure 1. Top row: Shepp–Logan phantom sinograms with different cut-offs. Bottom row: Corresponding reconstructions. (a) Complete: 
No artifacts. (b) ROI: Region-of-interest caused by smaller detector width than sample size. (c) LA: Limited angle, where projections from 
a range of angles are missing. (d) VT: Variable truncation, where symmetrically placed metal objects outside the sample occlude the beam 
causing projections with variable amount of truncation. The gray-scale window of all reconstructions is [0, 0.6].
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configuration. Second, region-of-interest (ROI) data and arti-
facts arise from a smaller detector width than sample size 
causing projections to be truncated and detector-directed dis-
continuities to arise in the sinogram. The effect is a bright 
ring around and a pronounced cupping artifact across the 
ROI. The third case is limited angle (LA) data and artifacts, 
where projections are missing for a range of angles, causing 
angular discontinuities in the sinogram and major streak arti-
facts emerge from edges in the reconstruction. The fourth 
case, which is the focus of the present work, can be seen as a 
combination of LA data and ROI data, in which the ROI trun-
cation varies across projections from fully missing through 
partial to complete projections. In the sinogram, both angular 
and detector-directed discontinuities are present. The corre-
sponding reconstruction contains LA artifacts as well as new 
regularly spaced streaks seemingly unrelated to image fea-
tures. We refer to this case as variable-truncation data and 
artifacts. In this article we focus on the variable-truncation 
(VT) artifacts, which we will show derive from the stair-
casing shape of the missing-data region in the sinogram with 
angular and detector-directed discontinuities, as seen in the 
zoom-inset in figure 1(d).

A closely related class of artifacts, mainly described in 
the medical imaging literature, is known as metal artifacts. 
Metal artifacts are often observed in medical imaging when 
metal is present, e.g. as implants in body parts and dental fill-
ings. One can distinguish between two types of metal effects. 
First, the presence of highly-attenuating metal within tissue 
or bone can lead to physical effects, such as high attenuation 
coefficients, high noise-to-primary-signal ratio, high scatter-
to-primary-signal ratio, beam hardening, and non-linear par-
tial volume effects [9, 10]. Second, the metal edges lead to 
sinogram discontinuities either directly present in the raw data 
or user-induced, e.g. through discarding the affected data [9]. 
The second type of metal artifacts are very similar to the VT 
artifacts in that they are thin regular streaks extending tangen-
tially from the metal edges [10, 11].

Metal-artifact reduction is often treated as missing-data 
problems. Typical methods are projection completion methods, 
which fill in missing or deteriorated data points by synthetic 
data [12], and algebraic reconstruction methods, which may 
completely omit these data points [13, 14]. Omitting single 
data points is not possible when using FBP, as this method 
needs complete projections. The methods proposed in this 
article provide a possibility of disregarding missing or dete-
riorated data in conjunction with FBP. The simplest possible 
idea, and the starting point for the present work, is to replace 
any missing data points by zero values, as illustrated in the 
zoom-inset of figure 1(d), simply to have complete projections 
without blanks in order for FBP to process the data. Doing this 
has two consequences:

 (i) It essentially removes the first type of metal artifacts, 
i.e. any physical effects caused by the presence of metal 
which corrupts the data, as such effects primarily relate to 
the projection lines traversing the metal (see for instance 
[9] and [10] for a description of metal artifacts). This 

means that we do not need to account further for potential 
metal artifacts of this type.

 (ii) It introduces discontinuities in the detector direction of 
the sinogram. Such discontinuities will be drastically 
emphasized by the filtering step of FBP to cause an artifi-
cial over- and under-shooting effect, which in turn will be 
back-projected and create pronounced streak artifacts.

Many metal-artifact reduction methods are aimed at 
reducing these streaks by handling the discontinuities. 
Similarly, in the present work, we focus on addressing the 
discontinuities in the VT data to reduce the arising streak 
artifacts.

1.3. Contributions and organization of the present work

Much work has been devoted to characterize and conceive 
reduction methods for both LA artifacts, see e.g. [15–19], 
and ROI artifacts [20–23]. On the other hand the VT artifacts 
arising for the particular in situ x-ray tomography setup have to 
the best of our knowledge not been addressed in the literature.

To this end, the present work presents two contributions. 
First, after describing the experimental setup and data in 
section 2, we develop in section 3 a mathematical model of 
the considered setup to describe precisely how and where in 
the reconstruction the VT artifacts arise. The model is used 
to simulate VT data for variations of the experimental setup 
using small and large radii and distances of the metal bars, in 
order to describe the artifacts across a more general class of 
problems. We also explain that the artifacts arise from sino-
gram discontinuities during the filtering step of FBP.

Second, in section 4 we propose three methods to reduce 
the VT artifacts – all of them simple to implement as a pre-
processing step for standard FBP to allow efficient reconstruc-
tion, essential for large real synchrotron data sets. Insertion 
of zeros values (IZV) for the blank data points provides the 
starting point, on which we want to improve by following pro-
posed methods:

 (i) Reduction to limited angle (RLA), which simply discards 
all truncated projections to obtain an LA data set. This is 
a very easy way to remove the detector-directed disconti-
nuities, but the drawback is that it discards useful data.

 (ii) Detector-directed smoothing (DDS), which applies local 
smoothing to remove the detector-directed discontinui-
ties.

 (iii) Reflexive boundary condition (RBC), which handles the 
detector-directed discontinuities by imposing a reflexive 
boundary condition.

In section 5 we report qualitative and quantitative results 
to assess the proposed methods on simulated and real VT data 
sets. The results show that all methods can remove the VT 
artifacts effectively, while DDS and especially RBC allow fur-
ther reconstruction improvement by using data from the par-
tial projections, compared to RLA, which discards this data. 
Finally, section 6 discusses the methods and results in a wider 
context before section 7 concludes the study.

Meas. Sci. Technol. 28 (2017) 124004
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2. Data

2.1. Acquisition set-up

The motivating case for the present study is in situ x-ray micro-
tomography imaging of fluid flow through porous chalk, in 
which the goal is to recover oil from the North Sea under-
ground. In situ x-ray tomography data was obtained for a cylin-
drical porous chalk sample of diameter 0.6 mm using beamline 
BL20XU of the SPring-8 Synchrotron Radiation Facility, 
Japan using a monochromatic (28 keV) parallel-beam scan 
configuration. Fluid is forced through the sample by a percola-
tion cell, seen in figure 2(a), by applying a pressure of 50 bars 
imitating the underground conditions. The goal is to model the 
structural changes of the sample during the fluid flow and a 
series of scans are acquired continuously over the experiment. 
Structural changes are slow compared to the acquisition time 
of each complete scan and any sample deformations within 
each scan can be neglected. The percolation cell is equipped 
with four metal bars which can sustain pres sures of 200 bar 
and temperatures of 100 °C. The metal bars have a radius of 
1 mm and are positioned in a square around and at approxi-
mately distance of 15.6 mm from the sample. The number of 
detector pixels is 2048× 2048, providing in each horizontal 
slice a field of view (FOV) of approximately 0.5 mm in diam-
eter [24]. The detector is positioned outside the percolation cell 
and 1800 projections are collected covering 0 to 180 degrees. 
As seen in figure 2(b) most projections are complete, some are 
fully occluded by the metal bars, while some projections are 
partially occluded. These partial projections are the focus of 
the present work. In addition, since the sample is larger than 
the FOV, all projections are slightly truncated.

2.2. Reconstruction provided by the synchrotron site

At SPring-8, FBP is used slice-by-slice to produce a 20483 recon-
structed volume based on the acquired CT data [25]. Due to slices 
being independently reconstructed thanks to the parallel-beam 
geometry we consider without loss of generality the FBP recon-
struction of a single 2048× 2048-pixel slice. Artifacts are clear, 
especially towards the outlying region of the reconstruction, see 
figure 3. They appear as streaks with angles of approximately 
45 and 135 degrees measured in the counter-clockwise direction 

from the horizontal axis. The artifacts cause problems for subse-
quent analysis of the data: From the reconstruction, an automated 
segmentation of the chalk pores is needed as a step towards the 
fluid flow model. This requires a high-quality artifact-free recon-
structed image. The present work is motivated by identifying the 
cause of the streaks and finding a way to reduce them.

2.3. Processing the raw data

From the complete raw data set the data corresponding to slice 
number 1000 out of 2048 is extracted and consists of 1800 
projections of length 2048 pixels. These are the transmission 
values measured at the detector which we denote by I(φ, p), 
where φ denotes the rotation angle and p the detector posi-
tion. In addition, two flat fields I0,before and I0,after are recorded 
before and after I(φ, p) was recorded, i.e. with the x-ray beam 
on, but the sample out of the field of view, as well as a dark 
field Ibg, i.e. with the source off to account for any background 
radiation. Flat and dark fields are used for flat- and dark-field 
correction of all projections, i.e.

Z(φ, p) =
I(φ, p)− Ibg(φ, p)
I0(φ, p)− Ibg(φ, p)

. (1)

As the source conditions such as voltage and current may 
change slightly during a scan, I0(φ, p) is an interpolated flat 
field calculated for each projection from the two flat fields 
I0,before and I0,after by weighting by projection angle:

I0(φ, p) =
(

1− φ

180◦
)
· I0,before( p) +

φ

180◦
· I0,after( p).

 (2)

Figure 4 shows the flat- and dark-field corrected sinogram 
Z(φ, p). It represents the number of counted photons relative 
to the emitted photons and is the sinogram from which the 
SPring-8 reconstruction in figure 3(a) is calculated. The hori-
zontal axis is projection angles, φ, over 0 to 180 degrees and the 
vertical axis is detector element position, p. Because the metal 
bars are positioned relatively far from the chalk sample and the 
detector width is small compared to the metal bar radius, the full 
sinogram resembles the LA sinogram in figure 1(c). However, 
on close inspection, as seen in the zooms of figure 4, clear dif-
ferences are apparent. Instead of the immediate transition from 
a full to a complete blank projection in the LA case, projections 

Figure 2. (a) Side-view of the percolation cell. (b) Top-view of the setup, where the specimen is placed in the center between four metal 
bars (not to scale). Four angular positions for the detector (the black bar) are shown: For two of them, the projections are complete. For the 
detector position along the SW–NE diagonal, the beam is occluded completely by the metal bars and no signal is measured at the detector. 
In between one position is shown at which the outermost parts of the beam are occluded by two of the metal bars, leading to a projection 
with truncation from both sides.
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are increasingly truncated over an angular range, eventually 
becoming completely blank, when the beam is fully occluded, 
before gradually becoming decreasingly truncated again. This 
corresponds to the case in figure 1(d). Due to the symmetry of 
the metal bar positions, the patterns are symmetric around the 
detector center, seen in zoom 1. Taking a more narrow look at 
the sinogram in zoom 2, stair-casing is revealed with vertical and 
horizontal boundaries. In the idealized case of continuous φ and 
p, the width of the truncated projections would be decreasing or 
increasing continuously. Since a finite number of projections are 
recorded in practice, a stepwise change is observed with angular-
directed discontinuities, i.e. across vertical line segments.

In the detector direction a smooth transition is seen from 
the full signal to zero photon counts across the detector ele-
ments in the partially occluded projections. The smooth trans-
ition indicates that the occlusion does not occur abruptly but 
slightly gradually over some detector pixels. The lower counts 
recorded in the transition region are not representative of the 
sample and need to be handled along with blank measure-
ments due to beam occlusion.

2.4. Handling small or zero transmission values in FBP 
reconstruction

For a monochromatic x-ray beam, Lambert–Beer’s law, here 
rewritten as

∫
L
μ(s)ds = − log

I
I0

, (3)

where μ(s) is the linear attenuation coefficient at spatial posi-
tion s to be recovered, provides a decent model of x-ray atten-
uation as a basis for reconstruction. Dark field and variables φ 
and p have been omitted here for simplicity. For parallel-beam 
data reconstruction can be done using the filtered backprojec-
tion (FBP) algorithm applied to a sinogram consisting of the 
right-hand side of (3) for all measured angles φ and detector 
positions p.

To arrive at such a sinogram, we need to apply the nega-
tive logarithm to Z(φ, p), and we denote the resulting sinogram 
as S(φ, p) = − log Z(φ, p). Zero- and close-to-zero values in 
Z(φ, p) are not handled well by this model, as they are mapped 

(a) (b)

Figure 3. (a) FBP reconstruction provided by the SPring-8 synchrotron facility with zoom areas indicated by black squares. (b) Zooms of the 
reconstruction.

(a) (b) (c)

Figure 4. Flat- and dark-field corrected sinogram Z(φ, p) and two zooms. The white rectangles in (a) and (b) denote the zoom areas in 
(b) and (c), respectively. Gray scale window is [0, 0.53], corresponding to the fraction of photons detected. (a) Transmission sinogram. (b) 
Zoom 1. (c) Zoom 2.
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to infinity or very large values by the negative logarithm and will 
dominate the reconstruction [10]. Values of Z(φ, p) ∈ [0, 0.53] 
smaller than an empirically chosen threshold, 0.24, are dis-
carded, leaving blank areas in the sinogram. FBP cannot handle 
pixels without an assigned value, so some values need to be 
assigned to complete the projections. The simplest choice, that 
does not make any assumptions, is to assign the value zero 
in the blanks of S(φ, p), resulting in the attenuation sinogram, 
which we still denote S(φ, p), shown in figure 5. In practice this 
operation was carried out by replacing all entries of S(φ, p) for 
which Z(φ, p) was smaller than 0.24 by a zero. A few, less than 
50, isolated pixels within the existing projections were hereby 
unintentionally set to zero. These pixels were assigned values 
by linear interpolation in the corresponding projection.

Following this, an FBP reconstruction was computed 
using the  function of MATLAB R2014b employing 
a Hamming filter for noise reduction, see figure 6. The FBP 
reconstruction is seen to contain thin streak artifacts distrib-
uted regularly over the image with angles of approximately 
45 degrees and 135 degrees. As such, the streaks have some 

resemblance with the SPring-8 reconstruction in figure  3, 
only less pronounced. As we do not have access to details of 
the synchrotron reconstruction method, including possible 
pre- and postprocessing steps, it is difficult to determine the 
cause of the slightly different appearance. However, since the 
streaks in both reconstructions occur at the same angles, we 
believe their origin in both cases to lie with the VT data.

As seen in figure 5, the assignment of zero-values in S(φ, p) 
introduces detector-directed discontinuities in the sinogram. 
As we will describe further in the following section, it is these 
discontinuities that cause the regular streak artifacts in the 
FBP reconstruction.

3. Analysis

3.1. Modeling the data cut-off

In order to understand the arising VT artifacts we devise a 
mathematical model of the missing sinogram data caused by 
the metal bars. We use an indicator function m(φ, p), which 

(a) (b) (c)

Figure 5. Sinogram S(φ, p) after negative logarithm transform and insertion of zero values in blank pixels, along with two zooms. The 
white rectangles in (a) and (b) denote the zoom areas in (b) and (c), respectively. Gray scale window is [0, 1.43]. (a) Attenuation sinogram. 
(b) Zoom 1. (c) Zoom 2.

(a) (b)

Figure 6. (a) FBP reconstruction based on the sinogram S(φ, p) with zeros inserted in blank positions, with zoom areas indicated by black 
squares. (b) Zooms of the reconstruction.

Meas. Sci. Technol. 28 (2017) 124004

16



L Borg et al

7

we refer to as the mask, to represent whether a data point 
exists, m(φ, p) = 1, or not, m(φ, p) = 0, for φ ∈ [0◦, 180◦) 
and p ∈ R. The case m(φ, p) = 0 corresponds to those pro-
jection lines which are blocked by the metal bars. Figure 7 
shows the considered setup. Four metal bars with radius r and 
indexed by i = 1, 2, 3, 4 are positioned at (x1, y1) = (d, d), 
(x2, y2) = (−d, d), (x3, y3) = (−d,−d) and (x4, y4) = (d,−d), 
i.e. at a distance of 

√
2d from the origin, which is the position 

of the sample and assumed to be the center of rotation. The 
p-axis, which represents the detector, is oriented at an angle φ 
measured counterclockwise from the positive x-axis.

Each line of integration (along an x-ray) can be para-
metrized as a function of φ and p as

L(φ, p) = {(x, y) ∈ R2 : x cosφ+ y sinφ = p}. (4)

The line of integration at angle φ which intersects the center 
of bar i is denoted Li(φ). From knowledge of metal bar i’s 
center coordinates (xi, yi) the corresponding p-value pi(φ) of 
Li(φ) can be found as

pi(φ) = xi cosφ+ yi sinφ. (5)

Using the trigonometric identity x cosφ+ y cosφ =
√

x2 + y2

sin(φ+ atan2(y, x)) the expression for pi(φ) can be simplified 
to a single sine function,

pi(φ) =
√

2d sin(φ+ φi), (6)

where φi = atan2(yi, xi) = 45◦, 135◦,−135◦,−45◦ for i = 1, 2, 3, 4.
Since the metal bar radius is r, all parallel rays within a dis-

tance of r from Li(φ) will be blocked by metal bar i, in other 
words, for all p in the range

prangei
(φ) = ] pi(φ)− r, pi(φ) + r [ for i = 1, 2, 3, 4,

 (7)
no signal will be measured. As an example, the range prange4

(φ) 
is sketched in figure 7. At a fixed angle φ a ray will be blocked 
if its p-value is in (at least) one of these ranges, or equiva-
lently, in the union of the ranges. Hence we can write the mask 
combining all four metal bar ranges explicitly as

m(φ, p) =

⎧⎨
⎩

0 when p ∈
4⋃

i=1
prangei

(φ),

1 otherwise.
 (8)

Figure 8 shows a synthesized image consisting of four metal 
bars seen from above, the corresponding sinogram mask 
extending to fully including the metal bars, and a zoom of the 
mask corresponding to the actual detector width. The metal 
bar radius is 1 mm and the distance to the rotation center is √

2 · 11 mm  =  15.6 mm to closely approximate the actual 
experimental set-up. The full mask contains four bands of 
missing data, one for each metal bar. Each band has a distinct 
sinusoidal appearance, which is in agreement with (8), which 
prescribes four superpositioned sinusoidal bands of vertical 
thickness 2r. Due to the symmetry of our setup, the two sets 
of opposite metal bars result in two pairwise crossings of the 
bands over the 180◦ range.

When the detector only covers 0.5 mm instead of the entire 
image, this is equal to zooming in on the sinogram, seen in 
figure 8(c). The zoom is indicated by the centered rectangle 
in figure 8(b). The missing-data region in the sinogram zoom 
closely resembles the motivating real-data case in figure 4 and 
can be used to simulate missing data from a complete sinogram.

3.2. Varying metal bar radius and distance to object

Using the derived mathematical model we can simulate the 
effect of variations of the experimental setup (metal bar radius 
and distance) on the arising data truncation. We do this to 
show how the derived mathematical model describes a larger 
class of potentially interesting imaging scenarios with vari-
able beam occlusion. By considering this extended set of test 
problems we hope to illustrate that our proposed VT artifact 
reduction methods can enable useful reconstructions under 
more challenging data truncation than that of the originally 
motivating case of figure 3.

Figure 9 shows four cases of possible acquisition set-ups 
(combinations of radius 1 mm and 2 mm, and distance 3 mm 
and 11 mm) with images and corresponding masks applied 
to the sinogram of the Shepp–Logan phantom. To verify that 
the analytically computed mask expression (8) is correct, 
the boundary curves of the intervals in (7) as function of φ 
for all bars are plotted on top of sinogram masks simulated 
numerically by applying MATLAB’s  function to the 
images in the top row in figure 9. The boundary curves follow 
the numerical mask boundaries exactly, and further illustrate 

Figure 7. Metal bars 1–4 centered at (x, y)  =  (d, d), (−d, d), 
(−d,−d), and (d,−d).
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the contribution of each of the four metal bar shadows in the 
sinogram.

The original case corresponds to Mask 1 and is seen to 
entail the smallest amount of missing data.

Increasing radius at fixed distance is seen to produce a 
wider band of missing data, while the cut-off slope appears to 
be unchanged. This is in agreement with behavior predicted 
by (7) that the pi(φ) follows a sine curve independent of r, 
while the vertical band thickness grows linearly with r, which 
causes a wider horizontal gap of missing data. Increasing dis-
tance at fixed radius is seen to reduce the missing data gap 
width and increase cut-off steepness. This can also be under-
stood from (7), since the sinusoidal amplitude grows linearly 
with d causing the derivative at the crossings to be of larger 
magnitude, which is equivalent to a steeper cut-off and a nar-
rower missing data gap.

3.3. How variable-truncation artifacts arise in filtered  
backprojection

To understand how streaks arise, we first briefly remind the 
reader that reconstruction by FBP consists of two steps: 
Filtering and backprojection. The filtered sinogram will be 
referred to as H(φ, p).

Any introductory textbook on the mathematics of CT, 
such as [10], explains that the filtering step of FBP empha-
sizes discontinuities to yield very large values with opposite 
signs on each side of the discontinuity in the filtered projec-
tion. This is illustrated in figure 11. Backprojecting such a 
filtered projection produces a pair of a dark and bright streak 
along L(φ, p).

A truncated projection viewed over the full projection’s 
domain contains a discontinuity at the truncation point. If the 
truncation is constant over all projections, as is the case with 

(a) (b) (c)

Figure 8. (a) Top-view of four metal bars with radius 1 mm. (b) The corresponding sinogram mask (white is 1, black is 0). The horizontal 
axis is projection angles, φ, over 0 to 180 degrees and the vertical axis is detector element position, p. The two horizontal lines denote the 
zoom of the sinogram in (c), imitating a detector width of 0.5 mm. (c) A zoom of the mask, which reproduces the variable truncation of 
projections in the real data in figure 4.

(a) (b) (c) (d)

Figure 9. The top row shows images of four metal bars seen from above. Metal bar radii r and distances d are 
(r, d) = (1, 11), (1, 3), (2, 11), (2, 3), respectively. This gives rise to four sinogram masks (similar to the mask shown to the right in 
figure 8): Mask 1, 2, 3, and 4, which are applied to the sinogram of the Shepp–Logan phantom, shown in the bottom row. The detector 
width is 0.5 mm. (a) Mask 1. (b) Mask 2. (c) Mask 3. (d) Mask 4.
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ROI data as shown in figure 1(b), these streaks still ‘line up’ 
and cancel each other out (in the continuous or highly sam-
pled case) yielding no streak artifacts but only a circle of dis-
continuities at the ROI border and a cupping artifact as seen in 
figure 1(b). However, if truncation is not constant over all pro-
jections, as in the case in figure 1(d), the resulting streaks will 
no longer line up and cancel each other out. In particular, in 
case of a finite number of projections, the angular increment is 
finite and hence even a gradual truncation width change in the 
continuous domain is approximated by steps in the discrete 
practical case. This means that adjacent truncated projections 
have different width, which results in streaks occurring at dif-
ferent p-positions, preventing them from canceling with each 
other. The result, as shown in the following section, is regular 
streaks at certain angles across the entire reconstruction.

3.4. Streak artifacts caused by data with variable truncation

Figure 10 shows the reconstructions when applying mask 1–4 
to the sinogram of the Shepp–Logan phantom. In the top row, 
the full reconstructions are seen, and in the bottom row the 
zooms specified by the white rectangles in the top row are 
seen. To emphasize VT artifacts the zooms are shown in nar-
rower gray-scale window, as specified in the figure caption. 
The full reconstruction images mainly show LA artifacts, i.e. 
few large streaks emerging from edges in the image, espe-
cially from the skull. The zooms additionally show regularly 
spaced VT artifacts. In the reconstructions in figure 10, there 
is exactly one streak for each detector-directed discontinuity 
in the sinograms in figure 9, and its angle and position depends 

on the position of the detector-directed discontinuity. For fur-
ther discussions and illustrations of this, see [26].

Four different angles of streaks are seen in Reconstruction 
1: either just under or just over 45 degrees or just under or 
just over 135 degrees. The reason of this is found in the corre-
sponding sinogram in figure  9 where the detector-directed 
discontinuities are seen to occur exactly around these angles. 
Because the sinogram discontinuities occur with approxi-
mately regular spacing in the p-direction, the streaks also 
appear regularly spaced and with angles corresponding to the 
angles of the truncated projections.

The streaks in case 3 have the same spacing as in case 1,  
because the cut-off slope is the same. However, since the 
detector-directed discontinuities occur farther from 45◦ and 
135◦ the two sets of VT artifacts are further from being pair-
wise parallel.

For mask 2 and 4 the metal bars are much closer to the 
rotation center than for mask 1 and 3. This leads to a less 
steep cut-off of the data, and more plentiful detector-directed 
discontinuities, which again means that more densely spaced 
streaks are present in the reconstructions, as observed in the 
second and fourth columns of figure 10. As before, the streaks 
in case 2 and 4 occur with the same spacing but at different 
angles, since the detector-directed discontinuities occur at dif-
ferent angles.

As a final remark, we note that in each case four seemingly 
parallel sets of streaks can be observed, however since the 
detector-directed discontinuities occur over an angular range, 
only the streaks coming from the same projection are in fact 
perfectly parallel.

(a) (b) (c) (d)

Figure 10. Reconstructions based on sinograms in figure 9 with Mask 1, 2, 3, and 4 from left to right, respectively. The white squares indicate the 
positions of the zooms in the bottom row. The gray-scale windows are for the full images [−0.23, 1.03], [−0.49, 1.03], [−0.37, 1.02], [−0.76, 0.98] 
and the zooms [0.10, 0.30], [0.05, 0.30], [−0.01, 0.20], [0.10, 0.30], respectively. Different windows are used, since different amounts of missing data 
cause different reconstruction intensities. (a) Reconstruction 1. (b) Reconstruction 2. (c) Reconstruction 3. (d) Reconstruction 4.
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4. Methods

4.1. Overview of proposed methods

Having completed our analysis and description of the VT arti-
facts caused by detector-directed discontinuities we now pro-
ceed to propose three methods to reduce them. The proposed 
methods are motivated by being straightforward to implement 
in conjunction with FBP to allow fast reconstruction using a 
well-understood algorithm already in routine use at synchro-
tron beamlines. In the following subsections we describe each 
of the proposed methods but we first give a brief overview of 
the methods considered:

 • Complete dataset (COM): in case of simulated data use 
the complete sinogram as ‘ground truth’ without applying 
any missing-data mask.

 • Insertion of zero values (IZV): fill all missing data points 
by zeros.

 • Reduction to limited angle (RLA): set all truncated pro-
jections to zero, thus reduce to limited-angle problem.

 • Detector-directed smoothing (DDS): multiply all trun-
cated projections with a function for local smoothing of 
detector-directed discontinuities.

 • Reflexive boundary condition (RBC): introduce a 
reflexive boundary condition at the detector-directed 
discontinuities.

Figure 11 illustrates the methods on a 1D truncated pro-
jection before (left) and after (middle and right) the filtering 
step of FBP. The methods RLA, DDS and RBC are motivated 
by handling the detector-directed discontinuities in order to 
reduce VT artifacts that arise when simply filling missing 
values by zeros in the IZV method.

4.2. IZV: insertion of zero values

The simplest choice that does not make any assumptions is to 
assign zero values in the log-transformed sinogram domain. 
However, this introduces discontinuities in the truncated 
projection causing oscillations after filtering, as illustrated 
in figure  11. Figure  11(b) illustrates the extreme overshoot 

followed by an undershoot near the discontinuity, resulting 
in pairs of dark and bright streaks across the reconstructed 
image. The overshoot even offsets long before the disconti-
nuity, as seen in figure 11(c). Typical ROI-artifacts appear as 
a bright ring in the outskirts of the reconstruction (where the 
truncation discontinuities are), which is also explained by this 
effect. IZV is the starting point that we want to improve on by 
the following methods.

4.3. RLA: reduction to limited angle

Replacing all truncated projections completely by zero 
values eliminates sinogram stair-casing, thereby removing 
the detector-directed discontinuities and therefore also the 
VT artifacts. Setting truncated projections to zero reduces the 
problem to a pure LA problem, which as seen in figures 1(c) 
and (d) effectively removes streaks. In figure 11, this method 
is seen as the graph which is zero for all p-values. It is the 
impression of the authors that RLA is in practical use among 
x-ray CT experimentalists as a simple method to avoid the 
streak artifacts caused by variable data truncation. While 
simple and effective, this method completely discards the 
potentially usable data in the truncated projections. For an 
example of this, see [26, figure 19].

4.4. DDS: detector-directed smoothing

This method multiplies each of the truncated projections with 
a function, which dampens intensity values near the detector-
directed discontinuities, thereby obtaining smooth transitions, 
as seen in figure 11. This method is motivated by [15, 27], 
where smoothing is applied in the angular direction to reduce 
LA artifacts. In our case we do not apply angular smoothing, 
but smoothing in the detector direction. At angle φ0 we have 
a projection truncated at p = a0 and p = b0 in S(φ0, p). We 
modify the smoothing function used in [27] for detector-
directed smoothing by defining

gε( p) =
(

1
ε2 p(2ε− p)

)2

, (9)

(a) (b) (c)

Figure 11. The proposed methods illustrated on a 1D truncated projection before and after filtering. (a) Projections before filtering, S(φ, p). 
Note, that RBC is shifted downwards for illustration purposes as indicated by the arrow and coincides with COM left of the discontinuity. 
(b) Projections after filtering, H(φ, p). (c) Zoom of projections are filtering. Note, that in RBC the padded values will be set to zero before 
backprojection, see figure 13 for an illustration on the original data.
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where ε specifies the width of the smoothing region, i.e. 
the number of pixels over which projection values will be 
smoothed to decay to zero, and

κa,b
ε ( p) =

⎧⎪⎪⎨
⎪⎪⎩

gε( p− a) if p ∈ [a, a + ε],
1 if p ∈ ]a + ε, b− ε[,
gε( p− (b− 2ε)) if p ∈ [b− ε, b],
0 else.

 (10)

Then the smoothed projection is obtained as

Q(φ0, p) = κa,b
ε ( p)S(φ0, p). (11)

The function gε( p) is two times differentiable and the arti-
facts are two orders smoother after applying the smoothing, 
meaning that they are not completely smoothed, so they are 
mathematically still present [28]. This is in line with what 
we observe: after filtering of the DDS-projection, there still 
remain some oscillations, however substantially dampened 
compared to the IZV-projection, as seen in figure 11(c). We 
have empirically found a smoothing region of ε = 30 pixels 
to provide a suitable level of smoothing and use this value 
throughout the presented results.

4.5. RBC: reflexive boundary condition

This method introduces a reflexive boundary condition at the 
detector-directed discontinuities. The high-pass ramp filter in 
FBP emphasizes discontinuities, and the low-pass filter, e.g. a 
Hamming filter, often used together with the ramp filter may 
not dampen the oscillations sufficiently to avoid streaks. To 
counteract this, a reflexive boundary condition [29] is imposed 
to the truncated projections by padding by existing data values 
reflected in the discontinuity point. This induces a Neumann 
boundary condition with zero slope at the boundary. This method 
is similar to typical handling of ROI-problems where the outer-
most detector element values are used as padding values. After 
filtering of the projections, the padding is set to zero again before 
backprojecting, because we want to avoid introducing any artifi-
cially created data. This method works on the discontinuity itself 
and does not alter any existing pixel values explicitly as the RLA 
method and DDS methods do. As observed in figure 11(c), this is 
the only method that continues to coincide with the COM signal 
to the left of the cut-off after filtering, except for very few pixels 
≃ 4 just before the cut-off. The discrepancy at these last few 
pixels is caused by the filter width in FBP: at and near the dis-
continuity, the filter uses pixel values from the right side of the 
discontinuity to calculate values to the left of the discontinuity. 
When reflected pixel values are used instead of pixel values 
from COM, this alters the pixel values left of the discontinuity.

5. Results

5.1. Overview and purpose of experiments

The proposed artifact reduction methods are assessed in the 
following three studies:

 (i) In the original dataset in figure 3 we want to reduce the 
VT artifacts to enable subsequent segmentation as part 

of an automated data processing pipeline designed for 
improving analysis of fluid flow through the pores of the 
chalk. The first study shows how the proposed methods 
perform on the original data set. Since a ground truth is 
not available for quantitative comparisons, we evaluate 
the methods qualitatively, i.e. using visual inspection.

 (ii) Second, we compare the methods on the well-known 
Shepp–Logan phantom with simulated missing data in 
order to evaluate the methods in a controlled noise-free 
setting sufficiently simple that the effect of the different 
methods can be clearly seen. The four masks from figure 9 
are applied to a complete sinogram to assess the proposed 
methods across a range of possible experimental setups. 
The full-angle reconstruction will be used as the refer-
ence when assessing the methods quantitatively.

 (iii) Finally, an equivalent real-data study is carried out 
using a separate chalk data set with a complete set of 
non-truncated projections acquired under comparable 
imaging conditions as the original truncated chalk data 
set. This study is included to evaluate the methods on a 
real, noisy, high-complexity problem, comparable to the 
original dataset, but with the advantage that a full-angle 
reconstruction can be determined and used as reference 
image for quantitative assessment.

5.2. Quantitative image quality assessment

The following image quality measures are chosen to evaluate 
the methods quantitatively:

 (i) The root-mean-square error (RMSE):

RMSE =

(
1

NM

M∑
i=1

N∑
j=1

|R(i, j)− R0(i, j)|2
) 1

2

, (12)

  where N and M are number of rows and columns in the 
images R and R0, representing the reconstruction and the 
reference image, respectively. This measure is a standard 
measure, used for pixel-wise comparison in images.

 (ii) Spectral magnitude distortion (SMD) [30]:

SMD =
1

MN

M∑
i=1

N∑
j=1

|PR(i, j)− PR0(i, j)|2, (13)

  where PR and PR0 are the power spectra of the reconstruc-
tion and reference image, respectively. Since VT streaks 
occur with regular spacing, the power spectrum of a 
reconstruction with such artifacts will contain distinct 
pronounced peaks at particular frequencies. In addi-
tion, the streaks are discontinuous features relative to 
the underlying image and as such show up in the power 
spectrum as high-frequency components. In contrast, the 
power spectrum of the reference image contains only 
the frequencies of the underlying image, and the SMD 
precisely captures these differences. This measure, which 
is not as commonly used as the RMSE in the tomographic 
imaging literature, is chosen because it is particularly 
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suited to detect changes in regular streak artifacts and 
hence well aligned with the purpose of the paper.

5.3. Original chalk dataset with variable-truncation data

Figure 12 shows the results of applying RLA, DDS and RBC 
to the original chalk data set with variable data truncation. The 
top row shows the full reconstructions for RLA, DDS, and 
RBC from left to right. The white squares indicate the position 
of a zoom to a region of interest shown in the middle row. The 
bottom row shows difference images between RLA, DDS and 
RBC and the IZV reconstruction in figure 6(b) to emphasize 
improvements.

The top and middle rows of figure 12 illustrate that the VT 
streaks are reduced to such an extent that they are no longer 
visible to the naked eye. Streaks, consisting of a dark and 
a bright line side by side, are present in all three difference 

images in the bottom row of figure 12, corresponding to only 
being present in the IZV reconstruction. This means that they 
have effectively been removed by RLA, DDS and RBC. The 
RLA difference image has additional vague underlying streak 
structures with same directions of the streaks. Since these are 
only present here, they must correspond to the data lost when 
the truncated projections are set to zero. The discarded projec-
tions all correspond to angles near 45◦ and 135◦, explaining 
the angles of the underlying structures. The background of 
the RBC difference image appears constant, whereas smooth 
variations appear in the gray squares for DDS. We can explain 
this, since RBC works only on the discontinuity itself and 
does not damp or enhance the projection values near the dis-
continuities as DDS does. In conclusion, all methods remove 
streaks satisfactorily, while we consider RBC to be superior to 
DDS, which is in turn superior to RLA, in terms of not modi-
fying reconstruction background structure.

(a) RLA (b) DDS (c) RBC

Figure 12. Top row: Full reconstructed images by RLA, DDS and RBC with white squares indicating region of interest. Middle row: 
Zoom to region of interest. Size of region of interest is 200 by 200 pixels. Bottom row: Difference images (zoom) between the RLA, DDS, 
and RBC reconstructions and IZV reconstruction. Gray-scale windows: Full reconstructions and zooms: [−1 · 10−4, 10 · 10−4], difference 
images: [−2 · 10−4, 2 · 10−4].
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Given that some projections are completely missing, espe-
cially so for RLA, one could have expected LA artifacts sim-
ilar to the ones in figure 10 but none are seen. The intensity 
of LA streak artifacts scale with the contrast between the fea-
tures from which they emerge [28]. Unlike the Shepp–Logan 
phantom, which contains large contrasts and thus clear LA 
artifacts, the chalk-data contrast is relatively low, which we 
believe can explain the absence of pronounced LA streak 
artifacts.

Figure 13 shows zooms of the H(φ, p) sinogram, i.e. after 
filtering, for IZV and RBC applied to the original dataset. 
Figure 13(a) illustrates the projections of IZV after filtering, 
just before backprojection. The extreme overshoot/undershoot 
shown in figure 11 is also seen in this image. In the missing-
data region next to the discontinuities of the truncated projec-
tions, the pixels are very dark (undershoot), while just within 
the existing-data region the pixels are very bright (overshoot). 
Figure 13(b) shows the same part of the sinogram for RBC 
with reflexive padding and after filtering, while figure 13(c) 
further shows when zeros have been reinserted in place of 
the padding prior to backprojection. We note that detector-
directed discontinuities remain in the RBC sinogram and will 
thus be backprojected. However, they do not generate VT arti-
facts in the RBC reconstruction in figure 12. This emphasizes 
that it is the filtering step of FBP that leads to streaks from 
detector-directed discontinuities, whereas the backprojection 
step does not.

5.4. Simulated variable-truncation data using the Shepp
Logan phantom

The four different masks are applied to the Shepp–Logan 
sinogram. As was seen in figure 10, the IZV reconstructions 
suffer from both LA and VT artifacts. RLA, DDS and RBC 
are applied to the four cases and zooms of reconstructed 
images are shown in figure 14 along with the same zoom for 
IZV repeated for ease of comparison.

RLA, DDS and RBC reconstructions all show substantial 
reductions of VT artifacts. Because of the phantom simplicity, 
the noise-free simulation study and the use of a narrow gray-
scale window, differences between the methods are high-
lighted, and the LA artifacts stand out clearly.

The DDS method does not remove the streaks as suc-
cessfully as the other methods do, which is most clear when 
comparing the reconstructions in the first and third columns. 
Figure 11(c) shows that the DDS signal still has an overshoot 
followed by and undershoot near the discontinuity. In other 
words, DDS smooths the discontinuities meaning that it also 
smoothies the streaks and dampens their effect, but does not 
remove them completely. There is a trade-off such that if ε is 
too small, streaks are not sufficiently reduced, and if too large, 
streaks are reduced but too much of the actual image is lost 
as well.

Comparison of the reconstructions in the fourth column 
illustrates that DDS and RBC have fewer LA artifacts than 
RLA has: the black blob in the reconstructions would have 
been an ellipse if data were not missing; the blob in the RLA 
reconstruction is larger, less closed and more smeared than for 
DDS and RBC, because more data has been erased in the RLA 
method. Similarly, the small bright ellipse in the bottom-right 
corner is more well-defined for DDS and RBC than for RLA. 
Comparable observations can be made for the three other 
cases but to a lesser extent since data truncation is most severe 
in the fourth case.

RLA removes all detector-directed discontinuities com-
pletely, meaning that VT artifacts are not present in RLA 
reconstructions. The RBC reconstructions are similar to the 
RLA reconstructions in that no streaks are visible, indicating 
that RBC removes – or at least substantially reduces – the 
VT artifacts. RBC thus has fewer LA artifacts than RLA and 
better streak reduction than DDS, and from a qualitative per-
spective the results render it the superior method of the three.

For quantitative assessment, table  1 reports RMSE and 
SMD values for IZV, RLA, DDS and RBC applied to the four 
cases. The computed values are global, i.e. computed over the 
full reconstruction images using the full-angle COM recon-
struction as reference. In all cases, the global RMSE values are 
very similar for all methods and hence do not reflect the visual 
assessment that all methods improve over the IZV method: 
in terms of global RMSE, RLA appears to worsen the recon-
struction, while DDS and RBC only offer marginal gains. The 
global SMD measures, on the other hand, are in better align-
ment with the visual assessment, confirming RBC as the best 
performing method. We believe the discrepancy for RMSE is 

(a) (b) (c)

Figure 13. Illustration of application of IZV (left) and RBC (center and right) on a zoom of the sinogram in the H-domain (after filtering). 
The left and right sinograms are the ones used when backprojecting. (a) IZV after filtering. (b) RBC after padding and filtering. (c) RBC 
after padding, filtering, and reinsertion of zeros.
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due to quite large differences between the full-angle recon-
struction and any of the other reconstructions caused by the 
missing data and LA artifacts. The improvements that RLA, 
DDS, and RBC offer in terms of RMSE are so small com-
pared to the global quality drop from the full reconstruction 
to either of the missing-data reconstructions, that they may 
be completely dominated by other artifacts. Measuring the 
RMSE only over a smaller region, where LA artifacts are not 
dominating, may better capture the reduction of VT streaks.

We therefore replace the global measures by computing 
RMSE and SMD locally over the zooms in figure 14 and report 
values in table 2. These local RMSE results are in all cases 
much better aligned with the visual assessment, indicating an 
improvement by RLA over IZV, and further improvements 
by DDS and RBC. Similar conclusions are obtained for local 
SMD. In general, the measures do not indicate a noteworthy 
difference between DDS and RBC. However, as a consistent 
trend, RBC performs marginally better when Mask 1 and 3 

(a) Mask 1 (b)  Mask 2 (c)  Mask 3 (d)  Mask 4

Figure 14. Shepp–Logan reconstruction zooms based on methods (vertical) and different masks imposed on the sinogram (horizontal). 
The position of the zooms are shown in figure 10. Gray-scale windows are [0.10, 0.30], [0.05, 0.30], [−0.01, 0.20], and [0.10, 0.30] for the 
reconstructions in columns 1 to 4, respectively.

Table 1. Quantitative image quality results for IZV, RLA, DDS and RBC reconstruction from simulated variable-truncation data of the 
Shepp–Logan phantom. RMSE and SMD values are computed over the entire reconstructed image using the full-angle COM reconstruction 
as reference image.

RMSE SMD

Mask 1 Mask 2 Mask 3 Mask 4 Mask 1 Mask 2 Mask 3 Mask 4

IZV 0.0422 0.0930 0.0634 0.1361 5.3092 17.0283 8.5020 27.3855
RLA 0.0461 0.1043 0.0669 0.1478 4.3620 15.1321 7.5844 26.0166
DDS 0.0416 0.0922 0.0631 0.1356 3.7973 12.8935 6.9873 23.4302
RBC 0.0414 0.0925 0.0630 0.1364 3.7827 12.8449 6.9641 23.3903
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are applied, whereas DDS performs a little better when Mask 
2 and 4 are applied. The reconstructed images indicate that 
RBC is superior to DDS for Mask 1 and 3, while DDS and 
RBC reconstructions with Mask 2 and 4 appear of comparable 
quality. Overall, the quantitative results support the previous 
conclusion that RBC is the best performing method.

5.5. Simulated variable-truncation data using complete chalk 
data set

In addition to the original chalk data set with VT data we have 
access to a comparable but complete chalk data set without 
data truncation. We can use this data set to simulate data trun-
cation as we did for the synthetic Shepp–Logan phantom in 
order to assess the proposed methods on a real data set with 
the same complexity as the original truncated chalk data. 
Crucially, by using the complete chalk data, we can determine 
a full-angle FBP reconstruction for use as reference image in 
quantitative assessment.

Applying the four different sinogram masks, e.g. applying 
IZV to the complete sinogram and reconstructing from this, 
gives images with VT artifacts, seen in figure 15 and zoom-ins 
to a region of interest in the top row of figure 16. In particular, 
we note the similarity of the streaks occurring for mask 1 to 
the ones in the original truncated data set seen in figure 6, for 
which the experimental setup (metal bar radius and distance to 
sample) are comparable.

After applying methods RLA, DDS, and RBC, the streaks 
are reduced as seen in figure 16. Visually, all three methods 
improve on the IZV method. Due to noise it is difficult to see 
differences in the performance of the methods. However, for 
the second and especially the fourth column, DDS and RBC 
reproduce the dark round objects substantially better than 
RLA, for which objects are distinctively more square-like. 

The data cut-off in case 2 and 4 is flatter, meaning that more 
projections are truncated and thus discarded by RLA. It there-
fore makes sense that the largest advantage of DDS and RBC 
over RLA is seen in these cases.

Quantitative results in the form of local RMSE and SMD 
values are reported in table 3 calculated only over the zooms 
shown in figure 16 using the full-angle chalk reconstruction 
as reference. Both RMSE and SMD values are in alignment 
with the Shepp–Logan study in that RLA improves compared 
to IZV, while DDS and RBC provide further (and comparable) 
improvements.

We emphasize that the fourth case was deliberately chosen 
to be very challenging, which is reflected in the severe LA 
artifacts. Nevertheless, DDS and RBC manage to remove the 
VT artifacts and preserve the main features. Hence, DDS and 
RBC may in specific cases, where a coarse reconstruction is 
sufficient for the relevant imaging task, enable a successful 
imaging experiment in the face of severe beam occlusion.

6. Discussion

The results show that in all considered cases DDS and RBC 
outperform RLA. As the VT data cut-off becomes increasingly 
steep, i.e. for metal bars being further away from the sample, 
the number of VT artifacts is reduced as the data approaches 
the LA case without data truncation. In these cases, RLA dis-
cards only a small amount of data and the relative advantage 
of DDS and RBC over RLA diminishes, and at a certain point 
one may obtain equally good results by RLA.

In the other extreme, as the distance of the metal bars to 
the sample is decreased, the data cut-off becomes less steep 
and many, possibly all, projections will suffer from vari-
able truncation. In this case RLA will have few, or even no, 

Table 2. Same as table 1 but RMSE and SMD values are computed locally over only the region of interest shown in the zooms in figure 14.

RMSE SMD

Mask 1 Mask 2 Mask 3 Mask 4 Mask 1 Mask 2 Mask 3 Mask 4

IZV 0.0385 0.1038 0.0567 0.1607 0.0955 0.2381 0.1319 0.2905
RLA 0.0132 0.0374 0.0132 0.0368 0.0450 0.1059 0.0439 0.0947
DDS 0.0101 0.0174 0.0102 0.0185 0.0355 0.0666 0.0348 0.0696
RBC 0.0098 0.0195 0.0099 0.0211 0.0345 0.0679 0.0346 0.0719

(a) Mask 1 (b)  Mask 2 (c)  Mask 3 (d)  Mask 4

Figure 15. Reconstructions from sinograms in figure 9, with varying radii and distances. The white squares indicate the zooms in figure 16. 
Gray-scale windows are [1.0 · 10−4, 6.0 · 10−4], [0, 6.0 · 10−4], [−1.0 · 10−4, 6.0 · 10−4], and [1.0 · 10−4, 6.0 · 10−4] for each of the 
columns 1 to 4, respectively—the same as in the zooms of figure 16.
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projections available, and therefore only allow a very poor 
reconstruction, if one at all. DDS and RBC, on the other 
hand, will be able to use the truncated projections and con-
tinue to produce a reconstruction. An indicative example of 
this was seen using Mask 4 in figures 14(d) and 15(d), but 
for thinner metal bars closer to the sample, the cut-off will 
be even flatter and result in a larger advantage of DDS and 
RBC over RLA.

A typical answer to streaks in CT reconstructions is to 
increase the number of angular steps [10]. To illustrate the 
effect hereof on VT artifacts, we used 2, 4, 8, 16, and 32 
times the number of projections originally used, namely 
1800, and reconstructed from the Shepp–Logan sinogram 
with simulated VT by Mask 1 from figure  9(a). The top 
row in figure 17 shows zooms of sinograms with different 
numbers of projections. The bottom row shows zooms of 

(a) Mask 1 (b) Mask 2 (c) Mask 3 (d) Mask 4

Figure 16. Mask 1, 2, 3, and 4 imposed to full dataset of chalk, reconstructed by use of methods IZV, RLA, DDS, and RBC. Zoom to 
region of interest of size 409× 409 pixels. The gray-scale windows are the same as those for the full reconstruction in figure 15.

Table 3. Quantitative image quality results for IZV, RLA, DDS and RBC reconstruction from simulated variable-truncation data using 
the complete chalk data set. RMSE and SMD values are computed locally over only the region of interest shown in the zooms in figure 16 
using the full-angle COM reconstruction as reference image.

RMSE SMD

Mask 1 Mask 2 Mask 3 Mask 4 Mask 1 Mask 2 Mask 3 Mask 4

IZV 0.0628 0.1274 0.0789 0.1845 · 10−3 0.2790 0.7042 0.3798 1.0406 · 10−3

RLA 0.0550 0.1188 0.0557 0.1357 · 10−3 0.2215 0.4917 0.2241 0.5190 · 10−3

DDS 0.0514 0.0932 0.0518 0.0977 · 10−3 0.1956 0.3899 0.1994 0.4009 · 10−3

RBC 0.0489 0.0966 0.0492 0.1069 · 10−3 0.1901 0.3869 0.1929 0.3982 · 10−3
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the corresponding reconstructions, to be compared with 
figure  10(a). The number of streaks doubles, when the 
number of projection doubles, however with weakened 
strength for each projection number increase. Approximately 
16 times more projections are needed to smooth out the VT 
artifacts. The streaks may eventually cancel, but even with 
32 times more projections (32 · 1800 = 57 600 projections) 
at the considered resolution of 2048, vague shadows from 
the VT artifacts are still present as seen in the zoom inset 
of figure 17(e). In practice, one cannot always increase the 
number of projections due to experimental constraints, e.g. 
one may wish to keep acquisition time down to enable doing 
more scans within an allocated beam time. For a fixed acqui-
sition time, one could increase the number of projections 
while reducing exposure time of each projection accord-
ingly. However, this would reduce the signal to noise ratio 
in each projection and thus reduce reconstruction quality. 
In practice a trade-off is chosen when setting up the scan 
(which was out of our control) and any VT artifacts have to 
be dealt with subsequently.

In the present work we deliberately restricted our 
focus to reconstruction using the FBP algorithm to avoid 
increasing reconstruction time and complexity. It is quite 
likely that algebraic or regularization-based reconstruction 
methods can be developed to achieve further improvements. 
However, this may entail longer development time, more 
difficult integration in beamline reconstruction software, 
as well as longer computing time. We leave this for future 
investigations.

We also did not investigate sinogram inpainting methods, 
but focused on enabling use of all the existing data through 
handling of the sinogram discontinuities, without introducing 
artificial data which might produce new and more subtle arti-
facts. Nevertheless, a comparison of the methods proposed 
here with sinogram inpainting methods is an interesting future 
direction.

The proposed methods are completely automatic requiring 
no user input, with the sole exception of setting the threshold 
value below which to discard data values. This value is highly 
dependent on the data set and should be chosen to preserve 
as much of the data as possible, while discarding unreliable 
data. Through analysis of a histogram of the sinogram values 
it should be possible to determine a suitable threshold auto-
matically, but developing a robust method for this was beyond 
the scope of the present work.

In the present work we focused on the detector-directed 
discontinuities to reduce VT artifacts, while leaving LA arti-
facts unreduced. We believe a straightforward extension would 
be to combine the methods proposed here with LA reduction 
techniques such as the angular smoothing proposed in [15] to 
achieve simultaneous LA and VT artifact reduction.

While the analysis and mathematical model for VT data 
developed are specific for a parallel-beam configuration, the 
same principles can be used to model other cases such as a 
cone-beam geometry which will also experience streaks from 
VT data. The proposed artifact reduction methods are not tied 
to the parallel-beam geometry and can be directly applied to 
other configurations. The methods are also not specific to the 
particular data cut-off but applicable to general data cut-offs, 
including asymmetric truncation, internal gaps and combina-
tions hereof. As such, the methods may be capable of reducing 
VT artifacts across a range of in situ x-ray tomography setups.

7. Conclusion

In an in situ x-ray tomography experiment of fluid flow in 
porous chalk the reconstructed cross sections  were found 
to suffer from drastic streak artifacts with certain preferred 
directions. The streaks were found to arise from detector-
directed discontinuities in the sinogram introduced by vari-
able truncation of projections caused by partial occlusion of 
the x-ray beam by four metal bars of the percolation cell used 

(a) 3600 (b) 7200 (c) 14400 (d) 28800 (e) 57600

Figure 17. Top row: Zooms of Shepp–Logan phantom sinograms with varied number of angular measurements as indicated below each 
experiment. The zooms are as in figure 4(c), all in the angular range of 41.1 to 41.5 degrees. The number of projections varies in each 
sinogram in that each step corresponds to one projection. Bottom row: Zooms of corresponding reconstructions. The zooms are as in 
figure 10. Gray-scale window of the reconstructions is [0.4, 0.12]. A zoom inset in the figure (e) is seen with increased constrast (gray-scale 
window is here [0.71, 0.8]), indicating that vague shadows of the VT artifacts are still present.
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in the experiment. A mathematical model describing variable 
truncation as a function of metal bar radius and distance to 
sample was derived and verified numerically and in com-
parison with the experimental data. Using the mathematical 
model, the origin and location of variable-truncation artifacts 
were established.

Three methods for variable-truncation artifact reduction 
were proposed addressing in different ways the detector-
directed discontinuities: by discarding all truncated projections 
(reduction to limited angle), by smoothing the discontinuities 
(detector-directed smoothing), and by enforcing a zero deriva-
tive at the discontinuities (reflexive boundary condition).

All methods successfully reduced the streak artifacts in the 
original variable-truncation chalk data set. In more extensive 
tests across a range of simulated variable-truncation data cases 
using both synthetic and real data, the reflexive boundary con-
dition method was found to outperform the other methods in 
terms of both qualitative and quantitative assessment of recon-
struction image quality. The advantage of this method and the 
detector-directed smoothing method was found to be larger in 
more challenging cases involving larger proportion of trun-
cated projections.

The proposed artifact-reduction methods are conceptually 
simple, computationally efficient and intended to be easy to 
incorporate with existing FBP implementations and apply to 
large real synchrotron data sets. The methods can handle quite 
general data cut-offs and may enable successful reconstruc-
tion across a variety of conceivable in situ x-ray tomography 
experiments with partial beam occlusion leading to variable-
truncation data.
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3.2 Supplementary material

This section provides the link between the raw data and the sinogram (Section 3.2.1), a
description of three types of artifacts (Section 3.2.2), and an algebraic approach for handling
truncated-projection artifacts (Section 3).

3.2.1 Linking the sinogram to the raw data

The descriptions in this section are based on the work presented in the technical report [4].
As described in our article Reduction of variable-truncation artifacts from beam occlusion
during in situ X-ray tomography in Section 3.1 the transmissions are zero due to shadowing
metal bars in the setup, see Figure 2b in the article. Please note that transmissions are
what is measured by the detector, whereas projections are the negative logarithm of the
transmissions. The recorded 2D transmissions are measured by a detector panel consisting of
2048 × 2048 detector elements1. Figure 3.1 shows transmissions for six angular measurement
with numbers, a = {438, 442, 446, 459, 454, 462} out of amax = 1800 angular measurements,
covering 180 degrees. The transmissions are already corrected for dark and white fields
(see Section 2.3 in the article Reduction of variable-truncation artifacts from beam occlusion
during in situ X-ray tomography for details). The figure shows that the transmissions are
increasingly truncated by the metal bars over the angular measurements until the beam is
fully occluded in measurement number 462.

(a) Transmission 438 (b) Transmission 446 (c) Transmission 450

(d) Transmission 454 (e) Transmission 458 (f) Transmission 462

Figure 3.1: 2D transmissions, corrected for dark and white fields. The dimensions are
2048 × 2048 according to the number of detector elements. Data shown in this figure are
obtained at SPring-8.

1We thank the Japan Synchrotron Radiation Research Institute for the allotment of beam time on beamline
BL20XU of SPring-8 (Proposal 2015A1147).
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Picking out row number 1000 (approximately the ones in the middle) of all 1800 trans-
missions, and collecting them side-by-side, yields the transmission sinogram for slice number
1000. Each transmission slice (one for each angle) appear as a column in the 1800× 2048
transmission sinogram, T (φ, p), shown in Figure 3.2. The angular variable is on the abscissa
and the detector displacement is on the ordinate (which is how sinograms are presented
through the entire dissertation).

Figure 3.2: Transmission sinogram for slice number 1000, which is obtained at SPring-8.

3.2.2 Artifacts

Examples of FBP reconstructions (MATLAB, version R2017a) are shown in Figure 3.3 from
a range of sinograms. The sinograms are shown in the top row, and from left to right, a full
sinogram, a limited-angle sinogram, and a sinogram with truncated projections are shown.
In the bottom row, the respective reconstructions are shown. The sinograms were obtained
from 51 angles over 180 degrees from a 200 × 200 image of the Shepp-Logan phantom. The
reconstructions have the same dimensions as the original image.

Figure 3.3: Sinograms are shown in the top row, from left to right: full sinogram, limited-
angle sinogram, sinogram with truncated projections. The bottom row shows the corre-
sponding FBP reconstructions.
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There are many types of artifacts in the image. The pronounced artifacts outside the
phantom head in the left reconstruction is caused by the sparse number of angular measure-
ments. The LA artifacts in the center reconstruction of the figure are caused by the LA
cut-offs and missing data in the sinogram. They appear along the projection lines L with
angles perpendicular to the cut-off angles in the sinogram but emerge only from edges in the
reconstruction (see [29] for details). Further, we see that edges in the reconstructed image
with angles corresponding to the angles of the missing projections are not reconstructed.
The rightmost reconstruction of the figure has truncated projection artifacts on top of the
other artifacts. Each of the singularities caused by the truncated projections leads to a streak
artifact along the corresponding projection line. This means that:

1. The artifacts appear as streaks independently of the object

2. The slopes of the streak artifacts are perpendicular to the angle by which the truncated
projections appear in the sinogram.

3. Their translative positions in the reconstructions correspond to the detector-wise trans-
lation of the truncations in the sinogram.

A generalization of these observations and other types of missing data artifacts (not
artifacts caused by low resolution) are presented in our article Characterizing Reconstruction
Artifacts from Arbitrary Incomplete X-ray CT Data, in Section 4.1.

3.2.3 An algebraic approach

The left image in Figure 3.4 shows a reconstruction based on the sinogram with truncated
projections in the right panel of Figure 3.3. The reconstruction is based on the Cimmino
implementation in AIRtools [23] and was stopped after 50 iterations. It is very similar to the
rightmost FBP reconstruction in Figure 3.3; The reconstruction qualities and appearances do
not differ much between the reconstruction methods. However, the Cimmino reconstruction
is a little more smoothed than that of the FBP reconstruction. This is probably due to the
relatively low iteration number, and the regularization in the Cimmino method. The right
image of the figure is a Cimmino reconstruction - also based on the sinogram with truncated
projections to the right in Figure 3.3. In this version, the rows in the A-matrix corresponding
to the missing data points were removed prior to reconstruction.

Figure 3.4: Left: Cimmino reconstruction (similar to the rightmost plot in the middle row
in Figure 3.4). Right: Cimmino reconstruction where rows in A-matrix corresponding to the
missing data were removed prior to reconstruction.
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The results in the figures imply that zeros in a sinogram do not represent missing data.
This is not an issue in standard limited-angle problems, but definitely is for truncated-
projection cases; backprojecting a projection of zeros in FBP adds nothing to the recon-
struction. The Cimmino method does not need full projections, however, FBP does, which
is one of the reasons why algebraic methods handle truncated projections better than FBP.
Another advantage of the Cimmino method is that it does not cause overexposure as FBP
does; Backprojecting the truncated projections adds to the pixel values only across parts of
the reconstruction and not on the zero-values parts.

3.3 Summary

In Section 3.1 reconstructions from an in situ X-ray tomography experiment of fluid flow in
porous chalk was analysed. The reconstructions suffered from drastic streak artifacts, which
were found to arise from variable truncations of projections. The truncations were caused
by partial occlusion of the X-ray beam by four metal bars in the experimental setup. A
mathematical model describing variable truncation as a function of metal bar radius and
distance to sample was derived and verified. Based on this model, various masks were used
to simulate variable-truncation data and imposed on synthetic and real data. We proposed
four methods for variable-truncation artifact reduction and the most successful method was
the Reflexive Boundary Condition method. The four methods are all based on the FBP
algorithm, which is the most common reconstruction method in routine use at synchrotrons.
This is due to its robustness, computational efficiency, and well-understood behavior. The
proposed methods are conceptually simple, computationally efficient and intended to be easy
to incorporate with existing FBP implementations and apply to large real synchrotron data
sets. The methods can handle a variety of in situ X-ray tomography experiments with partial
beam occlusion.

An example of an algebraic solution (Section 3.2.3) suggests removal of rows in the A
matrix and b vector corresponding to those projection lines affected by the beam occlusion. It
is quite likely that algebraic or regularization-based reconstruction methods can be developed
to handle variable-truncation artifacts. However, this typically involves tweaking of several
parameters, more difficult integration in beamline reconstruction software, as well as longer
computing time. We leave this for future investigations.
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Characterizing artifacts from incomplete data 4

This section is a theoretical approach to describing reconstruction artifacts from arbitrary
incomplete data. Section 4.1 contains the article Analyzing Reconstruction Artifacts from
Arbitrary Incomplete X-ray CT Data and Section 4.2 is a summary of the work. Following
is a presentation of some of the variables and outlines in the article, supported by example
figures.

In the article, we consider only continuous problems where the object is a function on
R2 and the data (sinogram) is a function on [0, 2π]×R, respectively, rather than finite data
on a grid. Therefore, we do not analyze artifacts caused by numerical discretization (as
exemplified in the left panel of Figure 3.3 in this thesis). Each projection line, L(ϕ, p), in
the object space correlates to one single point in the data space, as illustrated in Figure 4.1.
The two projection lines in the figure are parallel.

f

L(ϕl, pm)

ϕ

(ϕl, pn)

L(ϕl, pn)

Rf(ϕl, pn)

Rf(ϕl, pm)

(ϕl, pm)
p

x1

x2

Figure 4.1: Linking object space and data space.

The projection lines defined in this thesis in Section 2.1,

L(ϕ, p) = {x ∈ R2 : x1 cosϕ+ x2 sinϕ = p}

are expressed a little differently in the article, namely:

L(ϕ, p) = {x ∈ R2 : x · θ̄(ϕ) = p},

where θ̄(ϕ) = (cos(ϕ), sin(ϕ)) is the unit vector in the direction of ϕ. A line L(ϕ, p) contains
the point p(ϕ)θ̄(ϕ) and is parallel to θ⊥(ϕ) = (− sin(ϕ), cos(ϕ)), which is the unit vector
π/2 radians counterclockwise from θ̄(ϕ), as sketched in Figure 4.2. In the figure, the dots
represent the points p(ϕ)θ̄(ϕ) and xb (xb will be introduced later).
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L(ϕ, p)

ϕ
p(ϕ)θ̄(ϕ)

x1

x2

θ⊥(ϕ)

xb

|p′(ϕ)|

Figure 4.2: Correlating the variables in the geometrical setting of the object space.

The complete dataset, Rf(ϕ, p), is given over all (ϕ, p) ∈ [0, 2π]×R, where the incomplete
dataset is the subset, A, of [0, 2π]×R. The characteristic function of the set A is the function
that is equal to one on A and zero outside of the set, and is denoted 1A. The incomplete
CT data can then be modeled as

RAf(ϕ, p) = 1A(ϕ, p)Rf(ϕ, p).

1A(ϕ, p)Rf(ϕ, p) sets the data to zero outside of A since we don’t know the data there. An
example of the subset A is sketched in Figure 4.3. RAf equals Rf inside the subset A and is
zero off of A. In the figure, the boundary of A is indicated as bd(A). I will in a bit explain
the other elements in the figure.

ϕ

p

A

bdA

Case III

WF(1A)
LA: special case

of Case II

Case I or

Case II

Figure 4.3: The subset A, the boundary of A is bd(A), the wavefront set of A is WF(1A),
and examples of the 3 cases where streaks may occur in the reconstruction, depending on
Rf(ϕ, p) on bd(A).

Microlocal analysis provides a mathematical framework for describing the artifacts. In
particular, the definitions of singularities, wavefront sets, and how singularities are trans-
formed by Fourier integral operators [30, 31] (in FBP) are useful in this context:

• Singularities are edges or density jumps described by the tuple (t, ξ), where t is the
singular position and ξ is the singular direction. Consider bd(A) in Figure 4.3. Let 1A
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be the function that is equal to one on A and zero outside of A, then the points on
bdA are all singular positions. Take a singular position, t0 = (ϕ0, p0) ∈ bdA. ξ0 �= 0 ∈
bd(A), is a vector pointing in the normal direction to the boundary of A at the singular
position. The black arrows in Figure 4.3 indicate singular directions and the red arrows
point to the describing text corresponding to the geometric examples in the figure.

• Wavefront sets are sets of the singularities, as exemplified in Figure 4.3 and indicated
by WF(1A). Wavefront sets are in this context used to state that artifacts only occur
on lines L(ϕ, p) with (ϕ, p) ∈ bdA.

• The reconstruction from a complete dataset is Lf = R∗(ΛRf), where R∗ is the back-
projection operator and Λ is the standard FBP filter. The reconstruction from an
incomplete data set is LAf = R∗(ΛRAf) = R∗(Λ1ARf). Singularities in a reconstruc-
tion, may it be Lf or LAf , can ONLY come from singularities in the original dataset
Rf or RAf .

The artifacts are either object-dependent or object-independent, determined by the geometry
of bd(A). Object-dependent artifacts are caused by the object, f , being scanned AND the
geometry of bd(A), whereas object-independent artifacts solely depend on the geometry of
bd(A) (if Rf is non-zero). The article describes 3 main cases of artifacts. If we consider a
point (ϕ0, p0) ∈ bd(A), then artifacts may occur in following cases:

Case I: The boundary of A is smooth with a finite slope. An artifact can occur along
the curve:

xb = xb(ϕ) = p(ϕ)θ̄(ϕ) + p′(ϕ)θ⊥(ϕ).

See Figure 4.2 for an example of the position of point xb, and please note that xb ∈
L(ϕ, p). This type of artifact is object independent because it can occur whether f
is smooth normal to L(ϕ0, p0) or not. Being smooth normal to L(ϕ0, p0) means that
f has no wavefront set (x,±θ̄(ϕ)) for any x on L(ϕ0, p0) (note that θ̄(ϕ) is normal
to L(ϕ0, p0)). An example of this is shown in Figure 4.1: f is smooth normal to the
projection line L(ϕl, pm).

Case II: The boundary of A is smooth with a finite slope AND f has a singularity
normal to L(ϕ0, p0). Then, an artifact can occur along the line L(ϕ0, p0). This type of
artifact is object dependent because it will not occur unless f has a singularity normal
to L(ϕ0, p0). In Figure 4.1 f has a singularity normal to L(ϕl, pn), indicated by the red
arrow.

Case III: The boundary of A is non-smooth at (ϕ0, p0) ∈ bd(A). Then, an artifact can
occur all along L(ϕ0, p0). If bd(A) comes to a corner at (ϕ0, p0), f is smooth normal
to L(ϕ0, p0), AND Rf(ϕ, p) �= 0, then an artifact occurs along the line L(ϕ0, p0). This
type of artifact is object independent because it can occur whether f is smooth normal
to L(ϕ0, p0) or not. A corner in this context is when a singularity has several singular
directions rather than only one. The ”star” of arrows in Figure 4.3 indicate a singularity
with several directions.

Objects that have singularities normal to a line in the boundary of the image might not
contribute artifacts. This is the reason why we say that artifacts can occur in the three cases
just described. A remark to case I: If the slope of bd(A) at (ϕ0, p0) is small enough, i.e.

|p′(ϕ0)| <
√

1− p20

then the artifact curve is visible in the reconstruction, otherwise it may appear outside the
typical reconstruction area (outside the unit disk). This is exemplified in Figure 3A in our
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article Analyzing Reconstruction Artifacts from Arbitrary Incomplete X-ray CT Data. In
the limited-angle case p′(ϕ0) is infinitely large meaning that xb(ϕ0) is a point infinitely far
away. Limited-angle artifacts are object dependent and such artifacts occur along the line
L.

Considering artifacts in case II and III, the general rule is that an artifact can occur if a
corner in the sinogram, RAf , is present. In a complete sinogram, Rf , corners do not occur
due to the nature of the acquisition scheme (in a continuous setting). Artifacts emerging
because of corners are thus only associated with points on bdA, (ϕ, p) ∈ bdA.

4.1 Article # 2: Characterizing Reconstruction Artifacts from
Arbitrary Incomplete X-ray CT Data
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Analyzing Reconstruction Artifacts from Arbitrary Incomplete X-ray CT Data∗

Leise Borg† , Jürgen Frikel‡ , Jakob Sauer Jørgensen§ , and Eric Todd Quinto¶

Abstract. This article provides a mathematical analysis of artifacts from arbitrary incomplete X-ray computed
tomography (CT) data when using the classical filtered backprojection algorithm. We prove that
artifacts arise from points at the boundary of the data set. Our results show that, depending
on the geometry of this boundary, two types of artifacts can arise: object-dependent and object-
independent artifacts. The object-dependent artifacts are generated by singularities of the object
being scanned and these artifacts can extend all along lines. They generalize the streak artifacts
observed in limited-angle tomography. The article also characterizes two new types of artifacts
that are essentially independent of the object; they occur along lines if the boundary of the data
set is not smooth at a point and along curves if the boundary is smooth locally. In addition to
the geometric description of artifacts, the article provides characterizations of their strength in
Sobolev scale in certain cases. The results of this article apply to the well-known incomplete data
problems, including limited-angle and region-of-interest tomography, as well as to unconventional
X-ray CT imaging setups. Reconstructions from simulated and real data are analyzed to illustrate
our theorems, including the reconstruction that motivated this work–a synchrotron data set in which
artifacts appear along lines that have no relation to the object.

Key words. X-ray tomography, incomplete data tomography, limited angle tomography, region of interest to-
mography, reconstruction artifact, wavefront set, microlocal analysis, Fourier integral operators

AMS subject classifications. 44A12, 92C55, 35S30, 58J40

1. Introduction. Over the past decades computed tomography (CT) has established it-
self as a standard imaging technique in many areas, including materials science and medical
imaging. Its principle is based on collecting numerous X-ray measurements of the object along
all possible directions (lines) and then reconstructing the interior of the object by using an
appropriate mathematical algorithm. In classical tomographic imaging setups, this procedure
works very well because the data can be collected all around the object (i.e., the data are com-
plete) and standard reconstruction algorithms, such as filtered backprojection (FBP), provide
accurate reconstructions [29, 36]. However, in many recent applications of CT, some data
are not available, and this leads to incomplete (or limited) data sets. The reasons for data
incompleteness might be health-related (e.g., to decrease dose) or practical (e.g., when the
scanner cannot image all of the object as in digital breast tomosynthesis).

Classical incomplete data problems have been studied from the beginning of tomography,
including limited-angle tomography, where the data can be collected only from certain view-
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Figure 1: Left: A small part of the sinogram of the chalk sample analyzed in Section 7.
Notice the rough boundary. Right: Small central section of a reconstruction of the chalk.
Monochromatic parallel beam data were taken of the entire cross section of the chalk over
1800 views covering 180 degrees, and there were 2048 × 2048 detector elements with a 0.5
mm field of view, providing micrometer resolution of the sample. Data [51] obtained, with
thanks from the Japan Synchrotron Radiation Research Institute from beam time on beamline
BL20XU of SPring-8 (Proposal 2015A1147). For more details, see Section 7 and [5, c©IOP
Publishing. Reproduced by permission of IOP Publishing. All rights reserved].

angles [27, 22]; interior or region-of-interest (ROI) tomography, where the X-ray measurements
are available only over lines intersecting a certain subregion of the object [9]; or exterior
tomography, where only measurements over all lines outside a certain subregion are available
[28, 41].

In addition, new scanning methods generate novel data sets, such as the synchrotron
experiment [6, 5] in Section 7 that motivated this research. That reconstruction, in Figure
1, includes dramatic streaks that are independent of the object and were not described in
the mathematical theory at that time but are explained by our main theorems. A thorough
practical investigation of this particular problem was recently presented in [5].

Regardless of the type of data incompleteness, in most practical CT problems a variant
of FBP is used on the incomplete data to produce reconstructions [36]. It is well-known that
incomplete data reconstruction problems that do not incorporate a priori information (as is
the case in all FBP type reconstructions) are severely ill-posed. Consequently, certain image
features cannot be reconstructed reliably [40] and, in general, artifacts1, such as the limited-
angle streaks in Figure 2 can occur. Therefore, reconstruction quality suffers considerably,
and this complicates the proper interpretation of images.

1.1. Related research in the mathematical literature. Our work is based on microlocal
analysis, a deep theory that describes how singularities are transformed by Fourier integral
operators, such as the X-ray transform. In the 1990s microlocal analysis was used to char-
acterize visible singularities from X-ray CT data and their strength was given in [40, 24].

1Artifacts are image features (singularities), e.g. streaks or points, that are added by the algorithm and
that are not part of the original object.
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Subsequently, artifacts were extensively studied in the context of limited-angle tomography,
e.g., [22, 12]. The strength of added artifacts in limited-angle tomography was analyzed in
[31]. Similar characterizations of artifacts in limited-angle type reconstructions have also been
derived for the generalized Radon line and hyperplane transforms as well as for other Radon
transforms (such as circular and spherical Radon transform), see [13, 14, 32, 1, 33].

Metal in objects can corrupt CT data and create dramatic streak artifacts [3]. This can be
dealt with as an incomplete data problem by excluding data over lines through the metal. Re-
cently, this problem has been mathematically modeled in a sophisticated way using microlocal
analysis in [37, 44, 35], all of which are in the spirit of our article. A related problem is studied
in [34], where the authors develop a streak reduction method for quantitative susceptibility
mapping (see also [7]). Moreover, microlocal analysis has been used to characterize properties
of related integral transforms in pure and applied settings [4, 15, 47, 10, 43].

To the best of our knowledge, the mathematical literature up until now, e.g., [22, 31, 12,
13, 33] used microlocal and functional analysis to explain streak artifacts along lines that
are generated by singularities of the object, and they were for specific problems, primarily
limited-angle tomography. Even classical setups, such as region-of-interest tomography, had
not yet been thoroughly explored microlocally, not to mention nonstandard imaging setups
such as the one presented in Figure 1.

1.2. Basic mathematical setup and our results. In this article, we present a unified
approach to characterize reconstruction artifacts for arbitrary incomplete X-ray CT data that
are caused by the choice of data set. We not only consider all of the above mentioned classical
incomplete data problems but also emerging imaging situations with incomplete data. To this
end, we employ tools from microlocal analysis and the calculus of Fourier integral operators.

If f is the density of the object to be reconstructed, then each CT measurement is modeled
by a line integral of f over a line in the data set. As we will fully describe in Section 2.1, we
parametrize lines by (ϕ, p) ∈ [0, 2π] × R, and the CT measurement of f over the line L(ϕ, p)
is denoted Rf(ϕ, p). With complete data, where Rf(ϕ, p) is given over all (ϕ, p) ∈ [0, 2π]×R,
accurate reconstructions can be produced by the FBP algorithm. In incomplete data CT
problems, the data are taken over lines L(ϕ, p) for (ϕ, p) in a proper subset, A, of [0, 2π]×R and,
even though FBP is designed for complete data, it is still one of the preferred reconstruction
methods in practice. As a result, incomplete data CT reconstructions usually suffer from
artifacts.

We prove that incomplete data artifacts arise from points at the boundary or “edge” of
the data set, bd(A), and we show that there are two types of artifacts: object-dependent and
object-independent artifacts. The object-dependent artifacts are caused by singularities of the
object being scanned. In this case, artifacts can spread all along a line L(ϕ0, p0) (i.e., a streak)
if (ϕ0, p0) ∈ bd(A) and if there is a singularity of the object along the line (such as a jump or
object boundary tangent to the line)—this singularity of the object “generates” the artifact.
The streak artifacts observed in limited-angle tomography are special cases of this type of
artifact.

In addition, we characterize two new phenomena that are (essentially) independent of the
object being scanned. If the boundary of A is smooth near a point (ϕ0, p0) ∈ bd(A), then we
prove that artifacts can appear in the reconstruction along curves generated by bd(A) near
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(ϕ0, p0), and they occur whether the object being scanned has singularities or not. We also
prove if bd(A) is not smooth (see Definition 3.2) at a point (ϕ0, p0) then, independent of the
object, an artifact line can be generated all along L(ϕ0, p0).

We will illustrate our results using classical problems including limited-angle tomography
and region-of-interest tomography, as well as problems with novel data sets, including the
synchrotron data set in Figure 1. In addition to the geometric characterization of artifacts,
we also provide a characterization of their strength in Sobolev scale, and we review a general
method to suppress the artifacts.

1.3. Organization of the article. In Section 2, we provide notation and some of the
basic ideas about distributions and wavefront sets. In Section 3 we give our main theoretical
results, and in Section 4, we apply them to classical examples to explain added artifacts. In
Section 5, we describe the strength of added artifacts in Sobolev scale. Then, in Section 6,
we describe a straightforward way to decrease the added artifacts. We provide more details
of the synchrotron experiment in Section 7 and observations and generalizations in Section 8.
Finally, in the appendix, we give some technical theorems and then prove the main theorems.

2. Mathematical basis. Much of our theory can be made rigorous for distributions of
compact support (see [11, 45] for an overview of distributions), but we will consider only
functions in L2(D), the set of absolutely square integrable functions supported in the open
unit disk D =

{
x ∈ R2 : ‖x‖ < 1

}
. This setup is realistic in practice, and our theorems are

simpler in this case than for general distributions. Remark A.4 provides perspective on this.

2.1. Notation. For (ϕ, p) ∈ [0, 2π] × R, we define

(2.1)
θ(ϕ) = (cos(ϕ), sin(ϕ)) and

θ⊥(ϕ) = (− sin(ϕ), cos(ϕ)),

so θ(ϕ) is the unit vector in the direction of ϕ and θ⊥(ϕ) is the unit vector π/2 radians
counterclockwise from θ(ϕ). The line perpendicular to θ(ϕ) and containing pθ(ϕ) is denoted

(2.2) L(ϕ, p) =
{
x ∈ R2 : x · θ(ϕ) = p

}
.

This line is parameterized by t 	→ pθ(ϕ) + tθ⊥(ϕ). Note that L(ϕ, p) = L(ϕ+ π,−p).
We define the X-ray transform or Radon line transform of f ∈ L2(D) to be

(2.3) Rf(ϕ, p) =

∫ ∞

−∞
f(pθ(ϕ) + tθ⊥(ϕ)) dt.

For functions g on [0, 2π]×R, the dual Radon transform or backprojection operator is defined

(2.4) R∗g(x) =
∫ 2π

0
g(ϕ, x · θ(ϕ)) dϕ.

2.2. Wavefront sets. In this section, we define some important concepts needed to de-
scribe singularities in general. Sources, such as [11], provide introductions to microlocal
analysis. Generally cotangent spaces are used to describe microlocal ideas, but they would
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complicate this exposition, so we will identify a covector (x, ξdx) with the associated ordered
pair of vectors (x, ξ). The book chapter [23] provides some basic microlocal ideas and a more
elementary exposition adapted for tomography.

The wavefront set is a deep concept that makes singularities of functions precise, and we
take the definition from [11].

Definition 2.1 (Wavefront set). Let x0 ∈ R2 and ξ0 ∈ R2\0. A cutoff function at x0 is any
C∞-function of compact support that is nonzero at x0. Let f be a locally integrable function.
We say f is smooth at x0 in direction ξ0 if there is a cutoff function ψ at x0 and an open cone
V containing ξ0 such that the Fourier transform F(ψf)(ξ) is rapidly decaying at infinity.2

If f is not smooth at x0 in direction ξ0, then we say f has a singularity at x0 in direction
ξ0. The wavefront set of f is the set WF(f) of all such (x0, ξ0).

For example, if A is a subset of the plane with a smooth boundary, and f is equal to 1 on
A and 0 off of A, then WF(f) is the set of all points (x, ξ) where x is in the boundary of A
and ξ is normal to the boundary at x.

We parametrize lines on [0, 2π] × R, rather than S1 × R, because, in practice, the data
space consists of points (ϕ, p) ∈ [0, 2π] × R and the sinogram is represented as a picture in
the (ϕ, p)-plane, not on a cylinder. We will consider only distributions on [0, 2π]×R that are
restrictions of distributions for (ϕ, p) ∈ R2 that are 2π-periodic in ϕ. The Radon transform
and our other operators on [0, 2π]×R are all 2π-periodic in ϕ, and so this is no real restriction.
For this reason, we can use the same definition of wavefront set as for R2, and we just apply
it to the 2π-periodic extensions.

Our next definition allows us to express efficiently the correspondence between singularities
of the object and of its Radon transform.

Definition 2.2. Let (ϕ, p) ∈ [0, 2π] × R. The 6 normal space of the line L(ϕ, p) is

(2.5) N(L(ϕ, p)) =
{
(x, ωθ(ϕ)) : x ∈ L(ϕ, p), ω ∈ R

}

and the set of singularities of f normal to L(ϕ, p) is

(2.6) WFL(ϕ,p)(f) = WF(f) ∩ (N(L(ϕ, p))) .

Let f be a locally integrable function on R2. We say f is smooth normal to the line L(ϕ, p)
if WFL(ϕ,p)(f) = ∅.

For x0 ∈ R2, we let
WFx0(f) = WF(f) ∩ ({x0} × R2

)
.

Now, let g be a locally integrable function on [0, 2π]×R and (ϕ, p) ∈ [0, 2π]×R. We define

(2.7) WF(ϕ,p)(g) = WF(g) ∩ ({(ϕ, p)} × R2
)
.

It is important to understand each set introduced in Definition 2.2: N(L(ϕ, p)) is the set
of all (x, ξ) such that x ∈ L(ϕ, p) and the vector ξ is normal to L(ϕ, p) at x. Therefore,

2That is, for every k ∈ N, there is a constant Ck > 0 such that |F(ψf)(ξ)| ≤ Ck/(1 + ‖ξ‖)k for all ξ ∈ V .

42



6 L. BORG, J. FRIKEL, J. S. JØRGENSEN, AND E. T. QUINTO

WFL(ϕ,p)(f) is the set of wavefront directions of f above points x ∈ L(ϕ, p) that are normal
to this line.

If g is a locally integrable function on [0, 2π] × R, then WF(ϕ,p)(g) is the set of wave-
front directions with base point (ϕ, p). The sets defined in Definition 2.2 have an important
relationship that we will exploit starting in the next section.

3. Main results. In contrast to limited-angle characterizations in [12], our main results
characterize arbitrary incomplete data reconstructions, including classical problems such as
region-of-interest tomography, exterior tomography, and limited-angle tomography. Our re-
sults are formulated in terms of the wavefront set (Definition 2.1).

In many applications, reconstructions from incomplete CT data are calculated by the
filtered backprojection algorithm (FBP), which is designed for complete data (see [36] for a
practical discussion of FBP in practice). In this case, the incomplete data is often implicitly
extended by the algorithm to a complete data set on [0, 2π]×R by setting it to zero off of the
set A (cutoff region) over which data are taken. Therefore, the incomplete CT data can be
modeled as

(3.1) RAf(ϕ, p) = 1A(ϕ, p)Rf(ϕ, p),

where 1A is the characteristic function of A.3 Thus, using the FBP algorithm to calculate a
reconstruction from such data gives rise to the reconstruction operator:

(3.2) LAf = R∗ (ΛRAf) = R∗ (Λ1ARf) ,

where Λ is the standard FBP filter (see e.g., [29, Theorem 2.5] and [30, §5.1.1] for numerical
implementations) and R∗ is defined by (2.4).

Our next assumption collects the conditions we will impose on the cutoff region A. There,
we will use the notation int(A), bd(A), and ext(A) to denote the interior of A, the boundary
of A, and the exterior of A, respectively.

Assumption 3.1. Let A be a proper subset of [0, 2π] × R (i.e., A � [0, 2π] × R) with a
nontrivial interior and assume A is symmetric in the following sense:

(3.3) if (ϕ, p) ∈ A then (ϕ+ π,−p) ∈ A.

In addition, assume that A is the smallest closed set containing int(A), i.e. A = cl(int(A)).

We now justify using this assumption. Since A is proper, data over A are incomplete.
Being symmetric means that the part of A in [0, π] × R determines the data set. We assume
that A is the smallest closed set containing int(A) in order to exclude degenerate cases, such
as when A includes an isolated curve.

Our next definition gives us the language to describe the geometry of bd(A).

Definition 3.2 (Smoothness of bd(A)). Let A ⊂ [0, 2π] × R and let (ϕ0, p0) ∈ bd(A).
• We say that bd(A) is smooth near (ϕ0, p0) if this boundary is a C∞ curve near (ϕ0, p0).
In this case, there is a unique tangent line in (ϕ, p)-space to bd(A) at (ϕ0, p0).

3The characteristic function of a set A is the function that is equal to one on the set and zero outside of A.
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– If this tangent line is vertical (i.e., of the form ϕ = ϕ0), then we say the
boundary has infinite slope at (ϕ0, p0).

– If this tangent line is not vertical, then bd(A) is defined near (ϕ0, p0) by a
smooth function p = p(ϕ). In this case, the slope of the boundary at (ϕ0, p0)
will be the slope of this tangent line, which is given by p′(ϕ0).

• We say that bd(A) is not smooth at (ϕ0, p0) if it is not a smooth curve at (ϕ0, p0).
– We say that bd(A) has a corner at (ϕ0, p0) if the curve bd(A) is continuous

at (ϕ0, p0), is smooth at all other points in some neighborhood of (ϕ0, p0), and
has one-sided slopes at (ϕ0, p0) but those slopes are different.

3.1. Basic theorems on artifacts and visible singularities. In this section we begin to
characterize singularities and artifacts, and we show that artifacts occur only on lines L(ϕ, p)
for (ϕ, p) ∈ bd(A). This material is either known (e.g., [40]) or it follows from [40].

Definition 3.3 (Artifacts and visible singularities). Every singularity of LAf that is not a
singularity of f is called an artifact (i.e., any singularity in WF(LAf) \WF(f)). A streak
artifact is a line of artifacts.

Every singularity of LAf that is a singularity of f is called a visible singularity (from
data on A) (i.e., any singularity in WF(LAf) ∩WF(f)). Other singularities of f are called
invisible (from data on A).4

Theorem 3.4 (Localization of artifacts to lines from bd(A)). Let A satisfy Assumption 3.1.
If (x, ξ) ∈ WF(LAf) \WF(f), then there is a (ϕ0, p0) ∈ bd(A), such that x ∈ L(ϕ0, p0) and
ξ is normal to L(ϕ0, p0). That is, if a singularity of LAf at (x, ξ) is an artifact, then it,
necessarily, comes from bd(A).

This theorem follows from the microlocal analysis in [40, 42]. More generally, every sin-
gularity of LAf must come from a singularity of 1ARf , and if the singularity does not come
from Rf , it must come from a singularity of 1A, and these singularities are on bd(A).

Our next theorem gives an analysis of singularities in LAf corresponding to lines not in
bd(A). It shows that visible singularities are along lines L(ϕ, p) when (ϕ, p) ∈ int(A) and
invisible singularities are on lines for (ϕ, p) ∈ ext(A).5

Theorem 3.5 (Visible and invisible singularities in the reconstruction). Let f ∈ L2(D) and
let A ⊂ [0, 2π] × R satisfy Assumption 3.1.

(i) If (ϕ, p) ∈ int(A) then WFL(ϕ,p)(f) = WFL(ϕ,p)(LAf). That is, all singularities of f
normal to L(ϕ, p) are visible from data on A.

(ii) If (ϕ, p) /∈ (A ∩ supp(Rf)), then WFL(ϕ,p)(LAf) = ∅. In this case, LAf is smooth
normal to L(ϕ, p). That is, all singularities of f normal to L(ϕ, p) are invisible from
data on A.

(iii) Now, let x ∈ D and assume that all lines through x are parameterized by points in
int(A) (i.e., ∀ϕ ∈ [0, 2π], (ϕ, x · θ(ϕ)) ∈ int(A)). Then all singularities of f at x are

4Invisible singularities are smoothed by LA and reconstruction of those singularities is in general is expo-
nentially ill-posed in Sobolev scale.

5Visible singularities of f can appear on lines L(ϕ0, p0) for (ϕ0, p0) ∈ bd(A), but these can cause artifacts
all along the line L(ϕ0, p0) as noted in Theorem 3.6 and seen in the reconstructions in Section 4. In addition,
artifacts along such lines can mask visible singularities on those lines.
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visible in LAf :

(3.4) WFx(f) = WFx(LAf).

Therefore, artifacts occur only on lines in bd(A).

This theorem follows directly from [40, Theorem 3.1] or [42], and the proof will be sketched
in Section A.2 since it is not exactly given in the literature.

3.2. Characterization of artifacts. We now characterize artifacts in FBP reconstructions
from incomplete data given by (3.2). In particular, we show that the nature of artifacts
depends on the smoothness and geometry of bd(A) and, in some cases, singularities of the
object f . Our next two theorems show that artifacts arise in two ways:

• Object-independent artifacts: those caused essentially by the geometry of bd(A).

• Object-dependent artifacts: those caused by singularities of the object f that are
normal to L(ϕ, p) for some (ϕ, p) ∈ bd(A).

As a first generalization of the limited-angle characterizations in [22, 12] we consider the
case where bd(A) is locally smooth. This theorem describes the range of artifacts that can
occur in this case, and it guarantees they will occur in certain cases.

Theorem 3.6 (Artifacts for locally smooth boundary). Let f ∈ L2(D) and A ⊂ [0, 2π] × R

satisfy Assumption 3.1. Let (ϕ0, p0) ∈ bd(A) and assume that bd(A) is smooth near (ϕ0, p0).
I. Assume bd(A) has finite slope at (ϕ0, p0) and let I be a neighborhood of ϕ0 such that

bd(A) is given by a smooth curve p = p(ϕ) near (ϕ0, p0). Let

(3.5) xb = xb(ϕ) = p(ϕ)θ(ϕ) + p′(ϕ)θ⊥(ϕ) for ϕ ∈ I.

A. An object-independent artifact can occur along the curve I � ϕ 	→ xb(ϕ).
B. If f has no singularity normal to L(ϕ0, p0) then

(3.6) WFL(ϕ0,p0)(LAf) ⊂
{
(xb, ωθ(ϕ0)) : ω �= 0

}
.

That is, LAf is smooth normal to L(ϕ0, p0), except perhaps at the single point
xb(ϕ0) ∈ L(ϕ0, p0).

(i) If, in addition, Rf(ϕ0, p0) �= 0, then equality holds in (3.6) and the
xb(ϕ) artifact curve will be visible near xb(ϕ0).

(ii) If Rf is zero in a neighborhood of (ϕ0, p0), then the xb(ϕ) artifact curve
will not be visible near xb(ϕ0).

II. In all cases with smooth boundary at (ϕ0, p0), if f has a singularity normal to L(ϕ0, p0),
then an object-dependent streak artifact can occur along L(ϕ0, p0).

A. If f is smooth conormal to L(ϕ0, p0) and bd(A) is vertical at (ϕ0, p0), then
LAf is smooth normal to L(ϕ0, p0).

B. If bd(A) is not vertical then LAf is smooth normal to L(ϕ0, p0) except possibly
at xb(ϕ0).

Theorem 3.6 part II. gives a necessary condition under which there can be an object-
dependent artifact. This is observed in practice (see Figure 2). However, Remark A.6 shows
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such object-dependent streak artifacts might not occur, even if there is a singularity of f
normal to this line. This is why we state that artifacts can occur in parts I.A. and II. of
Theorem 3.6.

The proof is given in Section A.3 and we will present reconstructions illustrating this
theorem in Section 4.2.

Remark 3.7. Assume bd(A) is smooth at with finite slope at (ϕ0, p0). Let I be a neigh-
borhood of ϕ0 and p : I → R describes bd(A) near (ϕ0, p0). Note that

xb(ϕ) ∈ L(ϕ, p) for ϕ ∈ I.

If the slope of bd(A) at (ϕ0, p0) is small enough, i.e.,

(3.7)
∣∣p′(ϕ0)

∣∣ <
√

1− p20

holds, then the artifact curve ϕ→ xb(ϕ) will be inside the unit disk, D, near (ϕ0, p0). If not,
this curve will be outside, D, at least at ϕ0.

If bd(A) is smooth and vertical at (ϕ0, p0) (infinite slope), then there will be no object-
independent artifact on the line L(ϕ0, p0) because xb(ϕ0) is a “point at infinity” since “p′(ϕ0)”
is infinite. This is proven using the arguments in the proof of Theorem 3.6B.

When bd(A) is not smooth at (ϕ0, p0), the next theorem shows there can be a streak
artifact in LAf along L(ϕ0, p0) that is independent of the object f .

Theorem 3.8 (Artifacts for nonsmooth boundary). Let f ∈ L2(D) and A ⊂ [0, 2π] × R

satisfy Assumption 3.1. Let (ϕ0, p0) ∈ bd(A) and assume that bd(A) is not smooth at (ϕ0, p0).
Then, LAf can have a streak artifact on L(ϕ0, p0) independent of f .

If f is smooth normal to L(ϕ0, p0), Rf(ϕ0, p0) �= 0 and bd(A) has a corner at (ϕ0, p0)
(see Definition 3.2), then LAf does have a streak artifact all along L(ϕ0, p0):

WFL(ϕ0,p0)(LAf) = N(L(ϕ0, p0)).

This theorem is proven in Section A.3.
The streak artifacts (artifacts along lines) in this theorem are object-independent, and

they are illustrated in a simple case in Section 4.4 and on real data in Section 7.
In Theorem 5.2, we will describe the strength of the artifacts in Sobolev scale in specific

cases of Theorems 3.6 and 3.8.
Object-dependent streak artifacts along lines were analyzed for limited-angle tomography

in articles such as [22, 12, 31], but we are unaware of a general reference to Theorem 3.6, part
II. for general incomplete data problems, although this is not surprising given the limited-
angle result. We are not aware of a previous reference in the mathematical literature to the
xb curve artifact in Theorem 3.6 part I. or to the corner artifacts from Theorem 3.8.

4. Numerical illustrations of our theoretical results. We now consider a range of well-
known incomplete data problems as well as unconventional ones to show how the theoretical
results in Section 3 are reflected in practice. All sinograms have ϕ ∈ [0, π] on the horizontal
axis and p ∈ [−√2,

√
2] on the vertical. Except for the center picture in Figure 3(A), the

reconstruction is displayed on [−1, 1]2.
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4.1. Limited-angle tomography. First, we analyze limited-angle tomography, a classical
problem in which part II. of Theorem 3.6 applies. In this case bd(A) consists of vertical lines
given by ϕ = ϕ0 (infinite slope). Taking a closer look at the statement of Theorem 3.6 and the
results of [12, 14] one can observe that, locally, they describe the same phenomena, namely:
whenever there is a line L(ϕ0, p0) in the data set with (ϕ0, p0) ∈ bd(A) and which is normal to
a singularity of f , then a streak artifact can be generated along L(ϕ0, p0) in the reconstruction
LAf . Therefore, Theorem 3.6 generalizes the results of [22, 12] as it also apply to cutoffs with
non-vertical slope.

It is important to note that, with limited-angle data, there are no object-independent
artifacts since bd(A) is smooth and the artifact curve ϕ 	→ xb(ϕ) is not defined.

Figure 2: Left: Limited-angle data (cutoff with infinite slope). Center: FBP reconstruction.
Right: Reconstruction highlighting object-dependent artifact lines tangent to skull corre-
sponding to the four circled points in the sinogram.

Figure 2 illustrates limited-angle tomography. The boundary consists of the vertical lines
ϕ = 4π/9 and ϕ = 5π/9. The artifact lines are exactly the lines with ϕ = 4π/9 or 5π/9 that
are tangent to boundaries in the object (i.e., wavefront directions are normal to the line).
The four circled points on the sinogram correspond to the object-dependent artifact lines at
the boundary of the skull. The corresponding lines are tangent to the skull and have angle
ϕ = 4π/9 and ϕ = 5π/9. One can also observe artifact lines tangent to the inside of the skull
with these same angles.

4.2. Smooth boundary with finite slope. We now consider the general case in Theorem
3.6 by analyzing the artifacts for a specific set A which is defined as follows. It will be cut
in the middle so that the left-most cutoff boundary occurs at ϕ = a := 4

9π; the right-most
boundary is constructed as ϕ = b := 5

9π for p ≤ 0 and

(4.1) p(ϕ) = c
√

ϕ− b, ϕ > b

for p > 0 such that the two parts join differentiably at (ϕ, p) = (0, 0). The steepness of the
curved part of the right-most boundary is governed by the constant c (as seen in the two
sinograms in Figure 3).
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According to the condition (3.7), the curved part of bd(A) is the only part that can
potentially cause object-independent artifacts in D, since the other parts are vertical. In
Figure 3, we consider two data sets A with smooth boundary, the top where the xb artifact
curve is outside the unit disk and the bottom where it meets the object.

(A) Left: Boundary of A with large slope (c = 1.3). Center: FBP reconstruction over the larger
region [−2, 2]2 to show that the xb artifact is outside of the region displayed in the right frame. Right:
Reconstruction highlighting object-dependent artifact lines tangent to the skull corresponding to the
four circled points in the sinogram.

(B) Smooth boundary with small slope (c = 0.65) causing a prominent curve of artifacts in D. Left:
Sinogram with part of boundary that could causes artifacts in the reconstruction region highlighted
in magenta. The solid part of the curve indicates the artifacts that are realized in the reconstruction.
The dotted curve at the right end of the sinogram indicates potential artifacts that are not realized
because the corresponding part of bd(A) is outside supp(Rf) (see Theorem 3.5(ii)). Center: FBP
reconstruction. Right: The magenta curve in the reconstruction is the curve of artifacts ϕ 	→ xb(ϕ)
and the yellow artifact lines are object-dependent artifacts similar to those in Figure 3(A).

Figure 3: Illustration of artifacts with smooth boundary given by (4.1). The artifact curve
ϕ 	→ xb(ϕ) is outside the reconstruction region in the top figure and the curve meets the
object in the bottom picture.

Figure 3(A) provides a reconstruction with data set defined by c = 1.3 in (4.1). Many
artifacts in the reconstruction region are the same as in Figure 2 because the boundaries of
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the cutoff regions are substantially the same: the artifacts corresponding to the circles with
ϕ = 4π/9 and the lower circle with ϕ = 5π/9, are the same limited-angle artifacts as in Figure
2 because those parts of the boundaries are the same. However, the upper right circled point
in the sinogram has ϕ > 5π/9 so the corresponding artifact line has this larger angle, as seen
in the reconstruction. The center reconstruction in Figure 3(A) shows the xb artifact curve,
but it is far enough from D that it is not visible in the reconstruction on the far right.

Figure 3(B) provides a reconstruction with data set defined by c = 0.65 in (4.1). In
this case, the object-dependent artifacts are similar to those in Figure 3(A), but the lines
for (ϕ, p) defined by (4.1) are different because bd(A) is different. The highlighted part of
the boundary of A defined by (4.1) indicates the boundary points that create the part of
the xb(ϕ) artifact curve that is in the reconstruction region. The highlighted curve in the
right-hand reconstruction of Figure 3(B) is this part of the xb(ϕ) curve. Note that this curve
is calculated using the formula (3.5) for xb(ϕ) rather than by tracing the physical curve on
the reconstruction. That they are substantially the same shows the efficacy of our theory. A
simple exercise shows that, for any c > 0, the xb curve changes direction at xb(1/2 + 5π/9).

Let (ϕ0, p0) be the coordinates of the circled point in the upper right of the sinogram in
Figure 3(B). This circled point is on the boundary of supp(Rf) so L(ϕ0, p0) is tangent to the
skull and an object-dependent artifact is visible along L(ϕ0, p0) in the reconstruction. The
xb curve ends at xb(ϕ0) (as justified by Theorem 3.5 part (ii)) and so the xb curve seems to
blend into this line. If supp(f) were larger and the dotted part of the magenta curve on the
sinogram were in supp(Rf), the xb curve would be longer.

4.3. Region-of-interest (ROI) tomography. The ROI problem, also known as interior
tomography, is a classical incomplete data tomography problem in which a part of the object
(the ROI) is imaged using only data over lines that meet the ROI. ROI data are used when
the detector width is not large enough to contain the complete object or when researchers
would like a higher resolution scan of a small part of the object. We now demonstrate how
our theoretical results predict precisely which reconstruction artifacts occur for two choices of
detector width.

Note that Theorem 3.5 part (iii) implies that if the ROI is convex, then all singularities
of f in the interior of the ROI are recovered. The reason is that, in this case, all wavefront
directions at all points in the interior are normal to lines in the data set. This is observed in
both reconstructions in Figure 4.

The boundary of the sinogram are given by horizontal lines p = ±p0 where p0 = 0.4 in
Figure 4(A) and p0 = 0.8 in Figure 4(B). The points given by (3.5) are xb(ϕ) = p0θ(ϕ)+0θ⊥(ϕ)
since p′ = 0, i.e., a circle of radius p0. The ring around the ROI in Figure 4(A) is exactly the
curve ϕ 	→ xb(ϕ) for this ROI. There are no object-dependent streak artifacts in this picture
because there are no artifacts of the object tangent to lines for (ϕ, p) ∈ bd(A).

More generally, if the ROI is smooth and strictly convex then the artifact curve xb traces
the boundary of the ROI. The proof is an exercise using the parametrization in (ϕ, p) of
tangent lines to this boundary.

Analyzing the reconstruction in Figure 4(B), one sees the top and bottom of an xb artifact
circle which is analogous to the one in Figure 4(A). However, the artifact circle does not
extend outside the object (as represented by the dotted magenta curve) because Rf is zero
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(A) Sinogram and ROI reconstruction within a disk of radius 0.4 centered at the origin, p ∈ [−0.4, 0.4].

(B) Sinogram and ROI reconstruction within a disk of radius 0.8 centered at the origin, p ∈ [−0.8, 0.8].

Figure 4: ROI reconstructions with small and large ROI. In each subfigure top left is the
sinogram, top right the reconstruction and bottom the same with sinogram boundary and
reconstruction artifacts plotted. Note that the part of the sinogram for ϕ ∈ [0, π] is shown.

near the lines corresponding to p = ±0.8, ϕ < 0.7121 and ϕ > 2.429 (this is indicated by
the dotted part of bd(A) in the sinogram). Therefore, the reconstruction is smooth there as
explained by Theorem 3.6 part (ii).

One also sees object-dependent artifacts described by Theorem 3.6 part II. in Figure 4(B).
These occur along lines L(ϕ0, p0) where p0 = ±0.8 that are tangent to the two boundaries
of the skull. The angles for these lines are ϕ0 = 0.7121 and ϕ0 = 2.429 (these four points
(ϕ0, p0) are circled on the sinogram), and they are where the support of Rf intersects the line
p = ±0.8; these are lines at the boundary of the data set at which Rf has wavefront set (so
f has wavefront set normal to the line L(ϕ, p)). The same phenomenon happens on the line
with p = ±0.8 that is tangent to the inside of the skull, which is what causes the second set
of four visible line artifacts indicated in yellow.

4.4. The general case. The reconstruction in Figure 5 illustrates all our cases in one. In
that figure, we consider a general incomplete data set with a rectangular region cut out of the
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sinogram leading to all considered types of artifacts. Now, we describe the resulting artifacts.
In Figure 5 the horizontal sinogram boundaries at p = p0 = ±0.35 for φ ∈ [

7
18π,

11
18π

]
are

displayed in solid magenta line. As in the ROI case, along these boundaries, we have p′ = 0
and thus circular arcs of radius p0 for the given interval for ϕ are added in the reconstruction
(as indicated by solid magenta). As predicted by Theorem 3.8, each of the four corners produce
a line artifact as marked by the yellow solid lines in the right-hand reconstruction, and they
align tangentially with the ends of the curved artifacts.

Figure 5: Left: The sinogram for a general incomplete data problem in which the cutoff
region, A, has a locally smooth boundary with zero and infinite slope as well as corners.
The cutout from the sinogram is at 7π

18 and 11π
18 , p = ±0.35. Center: FBP reconstruction.

Right: Reconstruction with the circular xb curve artifacts highlighted in magenta and object-
independent “corner” streak artifacts highlighted in yellow.

The circular arc between those lines corresponds to the top and bottom parts of bd(A) as
the data are, locally, constrained as in ROI CT (see Section 4.3).

In Figure 5, there are other object-dependent streaks corresponding to the vertical lines
in the sinogram at ϕ = 7π

18 and at ϕ = 11π
18 as predicted by Theorem 3.6II., but they are less

pronounced and more difficult to see.

4.5. Summary. We have presented reconstructions that illustrate all of types of incom-
plete data and each of our theorems from Section 3. All artifacts arise because of points
(ϕ0, p0) ∈ bd(A), and they fall into two categories.

• Streak artifacts along the line L(ϕ0, p0):
– Object-dependent streaks when bd(A) is smooth at (ϕ0, p0) and a singularity

of f is normal to L(ϕ0, p0).
– Object-independent streaks when bd(A) is nonsmooth at (ϕ0, p0).

• Artifacts on curves:
– They are object-independent, and they are generated by the map ϕ 	→ xb(ϕ)

from parts of bd(A) that are smooth and of small slope.

5. Strength of added artifacts. Using the Sobolev continuity of Rf , one can measure
the strength in Sobolev scale of added artifacts in several useful cases. First, we define the
Sobolev norm [45, 38]. We state it for distributions, so it applies to functions f ∈ L2(D).
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Definition 5.1 (Sobolev wavefront set [38]). For s ∈ R, the Sobolev space Hs(R
n) is the

set of all distributions with locally square integrable Fourier transform and with finite Sobolev
norm:

(5.1) ‖f‖s :=
(∫

y∈Rn

|Ff(y)|2 (1 + ‖y‖2)s dy
)1/2

<∞.

Let f have locally square integrable Fourier transform and let x0 ∈ Rn and ξ0 ∈ Rn \ 0. We
say f is in Hs at x0 in direction ξ0 if there is a cutoff function ψ at x0 and an open cone V
containing ξ0 such that the localized and microlocalized Sobolev seminorm

(5.2) ‖f‖s,ψ,V :=

(∫
y∈V

|F (ψf) (y)|2 (1 + ‖y‖2)s dy
)1/2

<∞.

On the other hand, if (5.2) does not hold for any cutoff at x0, ψ or conic neighborhood V
of ξ0, then (x0, ξ0) ∈WFs(f), the Sobolev wavefront set of f of order s.

An exercise using the definitions shows that WF(f) = ∪s∈RWFs(f) [11].
The Sobolev wavefront set can be defined for periodic distributions on [0, 2π] × R by

considering the periodic extension to (ϕ, p) ∈ [0, 2π]×R as discussed for C∞ wavefront set in
Section 2.2.

Note that this norm on distributions on [0, 2π] × R is not the typical H0,s norm used in
elementary continuity proofs for the Radon transform (see e.g., [19, equation (2.11)]), but this
is the appropriate norm for the continuity theorems for general Fourier integral operators [20,
Theorem 4.3.1], [8, Corollary 4.4.5].

Our next theorem gives the strength in Sobolev scale of added singularities of LAf under
certain assumptions on f . It uses the relation between microlocal Sobolev strength of f and
of Rf , [40, Theorem 3.1] and of g and R∗g, which is given in Proposition A.7.

Theorem 5.2. Let f ∈ L2(D) and let A ⊂ [0, 2π]×R satisfy Assumption 3.1. Let (ϕ0, p0) ∈
bd(A) and assume Rf(ϕ0, p0) �= 0 and f is smooth normal to L(ϕ0, p0), i.e., WFL(ϕ0,p0)(f) =
∅.

(i) Assume bd(A) is smooth and not vertical at (ϕ0, p0). Let xb = xb(ϕ0) be given by (3.5)
and let ω �= 0. Then, LAf is in Hs for s < 0 at ξ0 = (xb, ωθ(ϕ0)) and ξ0 ∈WF0(LAf).
Thus, there are singularities above xb in the 0-order wavefront set of LAf .

(ii) Now, assume bd(A) has a corner at (ϕ0, p0). Then for each (x, ξ) ∈ N(L(ϕ0, p0)),
(x, ξ) ∈WF1(LAf) and, except for two points on L(ϕ0, p0), LAf is in Hs for s < 1 at
(x, ξ).

(iii) Now, assume (ϕ0, p0) ∈ int(A). Then, for every (x, ξ) ∈ N(L(ϕ0, p0)), (x, ξ) ∈
WFs(f) if and only if (x, ξ) ∈WFs(LAf).

This theorem provides estimates on smoothness for more general data sets than the
limited-angle case, which was thoroughly considered in [22, 31]. In contrast to part (i) of
this theorem, if bd(A) has a vertical tangent at (ϕ0, p0), then, under the smoothness assump-
tion on f , there are no added artifacts in LAf normal to L(ϕ0, p0) (see Theorem 3.6 part II.).
Part (i) of this theorem is a more precise version of the last assertion of Theorem 3.8. In cases
(i) and (ii), bd(A) will cause specific singularities in specific locations on L(ϕ0, p0). The two
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more singular points in part (ii) will be specified in equation (A.16). If one part of bd(A) is
vertical at (ϕ0, p0), then there is only one more singular point.

This theorem will be proven in Section A.4 of the appendix.

6. Artifact reduction. In this section, we briefly describe a simple method to suppress
the added streak artifacts described in Theorems 3.6 and 3.8. As outlined in Section 3, the
application of FBP to incomplete data extends the data from A ⊂ [0, 2π]×R to all of [0, 2π]×R

by padding it with zeros off of A. This hard truncation can create discontinuities along bd(A)
and that explains the artifacts. These jumps are stronger singularities than those of Rf for
Rf ∈ H1/2([0, 2π] × R) since f ∈ L2(D) = H0(D).

One obvious way to get rid of the jump discontinuities of 1A is to replace 1A by a smooth
function on [0, 2π] × R, ψ, that is equal to zero off of A and equal one on most of int(A)
and smoothly transitions to zero near bd(A). We also assume ψ is symmetric in the sense
ψ(ϕ, p) = ψ(ϕ + π,−p) for all (ϕ, p).

This gives the forward operator

(6.1) Rψf(ϕ, p) = ψ(ϕ, p)Rf(ϕ, p)

and the reconstruction operator

(6.2) Lψf = R∗ (ΛRψf) = R∗ (ΛψRf) .

Because ψ is a smooth function, Rψ is a standard Fourier integral operator and so Lψ is a
standard pseudodifferential operator. This allows us to show that Lψ does not add artifacts.

Theorem 6.1 (Artifact Reduction Theorem). Let f ∈ L2(D) and A ⊂ [0, 2π] × R satisfy
Assumption 3.1. Then

(6.3) WF(Lψf) ⊂WF(f).

Therefore, Lψ does not add artifacts to the reconstruction.
Let x ∈ D, ϕ ∈ [0, 2π], and ω �= 0 and assume ψ(ϕ, x · θ(ϕ)) �= 0. Then,

(6.4) (x, ωθ(ϕ)dx) ∈WF(Lψf) if and only if (x, ωθ(ϕ)dx) ∈WF(f).

Proof. We provide an outline using arguments from [14]. First, Lψ is a standard pseu-
dodifferential operator (ΨDO) because it is the composition of R∗, the ΨDO Λψ, and R, and
because R satisfies the global Bolker assumption (see (A.7)). When the top-order symbol
of Lψ is nonzero, the operator Lψ is elliptic. The symbol is calculated more generally in
Theorems 6.1 and 6.2 in [14] or [39]. For reference, the symbol of Lψ is

σ (Lψ) (x, ωθ(ϕ)) = 4πψ
(
ϕ, x · θ(ϕ)) ,

and this follows from the symbol calculation in [14, (6.3) and (A.11)] with ξ = ωθ(ϕ), with
weights μ = 1 and ν = 1, P = ‖ξ‖, and one uses that ψ is symmetric.

Many practitioners include a smooth cutoff function in incomplete data algorithms, but
others do not. Theorem 6.1 shows the advantages of including such a cutoff, and it has been
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Figure 6: Left: Smoothed sinogram. Center: Smoothed reconstruction with suppressed arti-
facts. Right: Reconstruction using LA, with sharp cutoff.

suggested in several settings, including limited-angle X-ray CT [22, 12] and more general
tomography problems [14, 13, 46]. More sophisticated methods are discussed in [6, 5] for the
synchrotron problem that is described in Section 7.

Figure 6 illustrates the effects of our smoothing algorithm. At the end of Section 7, we
will illustrate the efficiency of this simple artifact reduction method on real synchrotron data.

7. Application: a synchrotron experiment. Figure 7 shows tomographic data of a chalk
sample (Figure 7(A) and 7(B)) that was acquired at a synchrotron experiment [6, 5] (see [25]
for related work) and a zoom of the corresponding reconstruction (Figure 7(C)). As can be
clearly observed, the reconstruction includes dramatic streaks that are independent of the
object. These streaks motivated the research in this article since they were not explained by
the mathematical theory at that time (such as in [22, 31, 12, 13, 14]).

Taking a closer look at the attenuation sinogram, Figures 7(A)-7(B), a staircasing is
revealed with vertical and horizontal boundaries. This is a result of X-rays being blocked by
four metal bars that help stabilize the percolation chamber (sample holder) as the sample is
subjected to high pressure during data acquisition, see Figure 8. More details are given in [5].

Because the original reconstructions of this synchrotron data used a sharp cutoff, the
original reconstructions suffer from severe streak artifacts, see Figure 9(A). These artifacts
are exactly described by Theorem 3.8 in that each corner of the sinogram gives rise to a line
artifact in the reconstruction (cf. Figures 7(A)-7(B)). The authors of [5] then use a smooth
cutoff at bd(A) that essentially eliminates the streaks. The resulting reconstruction is shown
in Figure 9(B).

8. Discussion. We first make observations about our results for LA and then discuss
generalizations.

8.1. Observations. Theorem 3.8 is valid as long as WF(ϕ0,p0)(1A) = {(ϕ0, p0)}×
(
R2 \ 0),

but the analogous theorem for Sobolev singularities, Theorem 5.2(ii), assumes that A has a
corner at (ϕ0, p0). If A has a weaker singularity at (ϕ0, p0), then an analogous theorem would
hold but one would need to factor in the Sobolev strength of the wavefront of 1A above
(ϕ0, p0).
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(A) Segmented attenuation
sinogram (processed Radon
transform data) with the
rectangular zoom region in Fig.
7(B) highlighted.

(B) Zoom of segmented sino-
gram.

(C) Zoomed synchrotron recon-
struction given in Figure 1.

Figure 7: Left and Center: The truncated attenuation sinogram (after processing to get Radon
transform data) and an enlargement of a central section of bd(A). Right: Reconstruction given
in Figure 1 [5, c©IOP Publishing. Reproduced by permission of IOP Publishing. All rights
reserved].

position of sample

metal bar

metal bar no signal

sample

truncated
projection

full
projections

Figure 8: Data acquisition setup for the synchrotron experiment [5, c©IOP Publishing. Re-
produced by permission of IOP Publishing. All rights reserved].

Our artifact reduction method, which is motivated by Theorem 6.1, works well for the
synchrotron data as was shown in Figure 9. The article [5] provides more elaborate artifact
reduction methods that are even more successful. We would also like to point out that in other
incomplete data tomography problems, this simple technique might not work as efficiently as
in the presented problem. In general, the artifact reduction methods need to be designed for
each particular incomplete data tomography problem, but Theorem 6.1 implies that smooth
cutoffs are better than abrupt cutoffs.

There are other methods to deal with incomplete data. In other approaches, authors have
completed incomplete data so that the completed data is in the range of the Radon transform
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(A) Standard FBP reconstruction

(B) FBP reconstruction with artifact reduction (cf. Theorem 6.1).

Figure 9: Reconstructions from synchrotron data without smoothing (top) and with smoothing
(bottom)[5, c©IOP Publishing. Reproduced by permission of IOP Publishing. All rights
reserved].

with full data (e.g., [26, 2, 49]). In [34] and [7], the authors develop artifact reduction methods
using quantitative susceptibility mapping. For metal artifacts, there is vast literature (see,
e.g., [3]) for artifact reduction methods, and we believe that those methods might also be
useful for certain other incomplete data tomography problems. Authors [37, 44, 35] have
effectively used microlocal analysis to understand these related problems.

Our theory is developed based on the continuous case – we view the data as functions on
[0, 2π]×R, not just defined at discrete points. As shown in this article, our theory predicts and
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explains the artifacts and visible and invisible singularities. In practice, real data are discrete,
and discretization may also introduce artifacts, such as undersampling streaks. Discretization
in our synchrotron experiment could be a factor in the streaks in Figure 7. Furthermore,
numerical experiments have finite resolution, and this can cause (and sometimes de-emphasize)
artifacts. For all these reasons, further analysis is needed to shed light on the interplay between
the discrete and the continuous theory for CT reconstructions from incomplete data.

8.2. Generalizations. Our theorems were proven for LA = R∗ (Λ (1AR)), but the results
hold for more general filtering operators besides Λ. One key to our proofs is that Λ satisfies
the ellipticity condition in Remark A.5, but many other operators satisfy this condition. For
example, the operator, L = − ∂2

∂p2
, in Lambda CT [9] satisfies this condition, and the only

difference comes in our Sobolev Continuity Theorem 5.2. Since L is order two, the operator
R∗LR is of order 1 and the smoothness in Sobolev scale of the reconstructions would be one
degree lower than for LA.

Our theorems hold for fan-beam data when the source curve γ is smooth and convex and
the object is compactly supported inside γ. This is true because, in this case, the fan-beam
parameterization of lines is diffeomorphic to the parallel beam parametrization we use and
the microlocal theorems we use are invariant under diffeomorphisms.

Theorems 3.6 and 3.8 hold verbatim for generalized Radon transforms with smooth mea-
sures on lines in R2 because they all have the same canonical relation, given by (A.4), and
the proofs would be done as for LA but using the basic microlocal analysis in [39].

Analogous theorems hold for other Radon transforms including the hyperplane transform
and the spherical transform of photoacoustic CT. The proofs would use our arguments here
plus the proofs in [14, 13]. These generalizations are the subject of ongoing work. In incom-
plete data problems for R, the artifacts are either along curves ϕ 	→ xb(ϕ) or they are streaks
along the lines corresponding to points on bd(A). However, in these higher dimensional cases,
the results will be more subtle because artifacts can spread on proper subsets of the surface
over which data are taken, not necessarily the entire set (see [13, Remark 4.7]).

Analogous theorems should hold for cone beam CT, but this type of CT is more subtle
because the reconstruction operator itself can add artifacts, even with complete data [15, 10].

Appendix A. Proofs. Here, we provide some basic microlocal analysis and then use this to
prove our theorems. In this section, we adapt the standard terminology of microlocal analysis
and consider wavefront sets as subsets of cotangent spaces [50]. Elementary presentations
of microlocal analysis for tomography are in [23] and [18, Section 2.2]. Standard references
include [11, 48].

A.1. Building blocks. Our first lemma gives some basic facts about wavefront sets.

Lemma A.1. Let x0 ∈ R2. Let u and v be locally integrable functions or distributions.
(i) Let U be an open neighborhood of x0. Assume that u and v are equal on U , then

WFx0(u) = WFx0(v).
(ii) Let ψ be a smooth, compactly supported function, then WFx0(ψu) ⊂WFx0(u). If ψ is

nonzero at x0 then WFx0(u) = WFx0(ψu).
(iii) WFx0(u) = ∅ if and only if there is an open neighborhood U of x0 on which u is a

smooth function.
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The analogous statements hold for functions on [0, 2π] × R.6

These basic properties are proven using the arguments in Section 8.1 of [21], in particular,
Lemma 8.1.1, Definition 8.1.2, and Proposition 8.1.3.

Our next definition will be useful to describe how wavefront set propagates under R and
R∗.

Definition A.2. If C ⊂ T ∗([0, 2π] ×R)× T ∗(R2) then,

Ct = {(x, ξ, ϕ, p, η) : (ϕ, p, η, x, ξ) ∈ C} .
If B ⊂ T ∗([0, 2π] × R), then

Ct ◦B =
{
(x, ξ) ∈ T ∗(R2) : (x, ξ, ϕ, p, η) ∈ Ct for some (ϕ, p, η) ∈ B

}
.

The function g on [0, 2π] × R will be called symmetric if

(A.1) ∀(ϕ, p) ∈ [0, 2π] ×R, g(ϕ, p) = g(ϕ + π,−p).
If f ∈ L2(D), then Rf and Λ1ARf are both locally integrable functions that satisfy this
symmetry condition. For such functions,

(A.2) (ϕ0, p0, ω0(−αdϕ+ dp)) ∈WF(g)⇔ (ϕ0 + π,−p0,−ω0(αdϕ+ dp)) ∈WF(g).

For these reasons, we will identify cotangent vectors

(A.3) (ϕ0, p0, ω0(−αdϕ+ dp))⇔ (ϕ0 + π,−p0,−ω0(αdϕ+ dp)) .

Our next proposition is the main technical theorem of the article. It provides the wavefront
correspondences for R and R∗ which we will use in our proofs.

Proposition A.3 (Microlocal correspondence of singularities [42]). The X-ray transform, R,
is an elliptic Fourier integral operator with canonical relation

(A.4)
C =

{ (
ϕ, x · θ(ϕ), ω(−x · θ(ϕ)dϕ + dp), x, ωθ(ϕ)

)
: ϕ ∈ [0, 2π], x ∈ R2, ω �= 0

}
.

Let f ∈ L2(D) and let g be a locally integrable function on [0, 2π] × R that is symmetric
by (A.1). Let x0 ∈ R2, ϕ0 ∈ [0, 2π], and let p, α, and ω be real numbers with ω �= 0.

The X-ray transform R is an elliptic FIO with canonical relation C. Therefore,

(A.5)
WF(Rf) = C ◦WF(f) and

C ◦ {(x0, ωθ(ϕ)dx)} =
{(

ϕ0, x0 · θ(ϕ0), ω(−x0 · θ⊥(ϕ0)dϕ+ dp)
)}

under the identification (A.3).
The dual transform R∗ is an elliptic Fourier integral operator associated with Ct. Then,

(A.6)

WF(R∗g) = Ct ◦WF(g) and

Ct ◦ {(ϕ, p, ω(−αdϕ + dp))} = {
(x0(ϕ, p, α), ωθ(ϕ))

}
where x0(ϕ, p, α) = αθ⊥(ϕ) + pθ(ϕ).

6This lemma is valid on [0, 2π]×R since we consider only distributions on [0, 2π]×R that are the restriction
to [0, 2π]× R of distributions for (ϕ, p) ∈ R2 that are 2π-periodic in ϕ.
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Proof. The facts about R are directly from [40, Theorem 3.1] or [42, Theorem A.2], and
they use the calculus of the FIO R [16, 17] (see also [39]). Note that the crucial point is
that R is an elliptic Fourier integral operator that satisfies the global Bolker Assumption: the
natural projection

(A.7) ΠL : C → T ∗(Y ) is an injective immersion,

so (A.5) holds for R. Note that we are using the identification (A.3) in asserting that (A.5)
is an equality. The proofs for R∗ are parallel to those for R except they involve the canonical
relation for R∗, Ct, rather than C.

Remark A.4. In order to multiply distributions u and v on [0, 2π]×R as distributions one
needs the non-cancellation condition

(A.8) ∀ (ϕ, p, ξ) ∈WF(u), (ϕ, p,−ξ) /∈WF(v)

to hold. Then uv is a distribution and an upper bound for WF(uv) can be calculated in terms
of WF(u) and WF(v) [21, Theorem 8.2.10]. However, this non-cancellation condition does not
hold, in general for 1A and Rf when 1A either is smooth with finite slope or is not smooth
at (ϕ0, p0). That is why we consider functions f ∈ L2(D) since 1ARf will be a function in
L2([0, 2π] × R) even if [21, Theorem 8.2.10] does not apply.

Our next remark will be used in ellipticity proofs that follow.

Remark A.5. The operator Λ is elliptic in all cotangent directions except dϕ because the
symbol of Λ is |τ | where τ is the Fourier variable dual to p. However, the dϕ direction will not
affect our proofs. This is true because, for any function f ∈ L2(D), the covector (ϕ, p, ωdϕ) is
not in WF(Rf) because WF(Rf) = C ◦WF(f) (use the definition of composition and (A.4)).
So, for each f ∈ L2(D), WF(ΛRf) = WF(Rf). Because Ct ◦{(ϕ, p, αdϕ)} = ∅ by (A.4), even
if (ϕ, ωdϕ) ∈ WF(1ARf), that covector will not affect the calculation of Ct ◦WF(Λ1ARf).
Therefore, Λ is elliptic on all cotangent directions that are preserved when composed with Ct,
and these are all the directions we need in our proofs.

Our theorems will be valid for any 2π-periodic ΨDO on [0, 2π]×R that is invariant under
the symmetry condition (A.1) and satisfies this ellipticity condition (although the Sobolev
results will depend on the order of the operator).

A.2. Proof of Theorem 3.5. Assume (ϕ0, p0) /∈ bd(A). Then, there are two cases: either
(ϕ0, p0) ∈ int(A), the interior of A, or (ϕ0, p0) ∈ ext(A), the exterior of A.

If (ϕ0, p0) ∈ int(A) then there is a neighborhood U of (ϕ0, p0) that is contained in A.
By Lemma A.1 part (i), since Rf and 1ARf agree in U , WF(ϕ0,p0)(Rf) = WF(ϕ0,p0)(1ARf).
The proof is finished using (A.6) and (A.9). The proof of part (ii) follows the same argument
except that 1ARf is zero (so smooth) in a neighborhood of (ϕ0, p0).

The last part of the theorem is proven using part (i) and the fact that every line through
x is parameterized by points in int(A).

A.3. Proof of Theorems 3.6 and 3.8. In the proofs of Theorems 3.6 and 3.8, we use
Proposition A.3 to analyze how multiplication by 1A adds singularities to the data Rf and
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then to the reconstruction, LAf . We first make observations that will be useful in the proofs
of both theorems.

Let A satisfy Assumption 3.1 and let f ∈ L2(D). Let

G = 1ARf then R∗ΛG = LAf.

By Remark A.5 and the statements in Proposition A.3,

(A.9) WF(LAf) = Ct ◦WF(G).

Using the expression (A.4) for C, one can show for (ϕ0, p0) ∈ [0, 2π] × R that

(A.10)

C ◦ (N∗(L(ϕ0, p0)) \ 0) = T ∗
(ϕ0,p0)

([0, 2π] × R) \ P
where N∗(L(ϕ0, p0)) =

{
(x, ωθ(ϕ0)dx) : x ∈ L(ϕ0, p0), ω ∈ R

}
and P = {(ϕ, p, ωdϕ) : (ϕ, p) ∈ [0, 2π] × R, ω ∈ R} .

Because WF(Rf) = C ◦WF(f), equation (A.10) implies that if f is smooth conormal to
L(ϕ0, p0), then Rf is smooth at (ϕ0, p0).

Using analogous arguments for Ct, one shows for (ϕ, p) ∈ [0, 2π] × R that

(A.11) Ct ◦
(
T ∗
(ϕ0,p0)

([0, 2π] × R)
)
= N∗(L(ϕ0, p0)) \ 0.

By (A.9), if G is smooth near (ϕ0, p0) then LAf is smooth conormal to L(ϕ0, p0).

Proof of Theorem 3.6. Assume bd(A) is smooth with finite slope at (ϕ0, p0). Therefore,
there is an open neighborhood I of ϕ0 and a smooth function p = p(ϕ) for ϕ ∈ I such that
(ϕ, p(ϕ)) ∈ bd(A). A straightforward calculation shows for each ϕ ∈ I and each ω �= 0 that

η(ϕ) =
(
ϕ, p(ϕ), ω

(−p′(ϕ)dϕ+ dp)
))

is conormal to bd(A) at (ϕ, p(ϕ)). A calculation using (A.6) and (A.9) shows that

(A.12) η(ϕ) ∈WF(G) if and only if (xb(ϕ), ωθ(ϕ)dx) ∈WF (LAf),

where xb(ϕ) is given by (3.5). Then, (xb(ϕ0), ωθ(ϕ0)dx) is the possible object-independent
artifact that could occur on L(ϕ0, p0).

If f has no singularities conormal to L(ϕ0, p0), then Rf is smooth so WF(G) ⊂WF(1A)
by Lemma A.1 part (ii). This proves (3.6).

If Rf(ϕ0, p0) �= 0, then WF(ϕ0,p0)(G) = {η(ϕ0)} by Lemma A.1 part (ii). Now, by (A.12),

(xb(ϕ0), ωθ(ϕ0)dx) ∈WF(LAf). This proves part (i).
If Rf is zero in a neighborhood of (ϕ0, p0), then G is smooth near (ϕ0, p0) so, by the note

below (A.11), LAf is smooth. This proves (ii) and finishes the proof of part I.
To prove part II. we make a simple observation. Singularities of f conormal to L(ϕ0, p0)

can cause singularities in G only above (ϕ0, p0) and those can cause singularities of LAf only
conormal to L(ϕ0, p0).
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Proof of Theorem 3.8. The first observation is straightforward: if bd(A) is not smooth at
(ϕ0, p0), then that singularity can cause singularities in G at (ϕ0, p0) which cause singularities
of LAf conormal to L(ϕ0, p0).

Assume f is smooth conormal to L(ϕ0, p0), Rf(ϕ0, p0) �= 0, and A has a corner at (ϕ0, p0)
(see Definition 3.2). Then, by Lemma A.1, WF(ϕ0,p0)(G) = WF(ϕ0,p0)(1A) which is equal to
T ∗
(ϕ0,p0)

([0, 2π] × R) \ 0. Therefore, by (A.11), WFL(ϕ0,p0)(LAf) = N∗(L(ϕ0, p0)) \ 0. This
finishes the proof of Theorem 3.8

Remark A.6. Here we provide an example for which Theorems 3.6 and 3.8 apply but LAf
has no artifacts. This explains why one can, in general, only say artifacts “can occur.”

Let
A = {(ϕ, p) : ϕ ∈ [0, π/2], p ≤ 0 or ϕ ∈ [π, 3π/2], p ≥ 0} .

Then the set of lines in A do not meet the open first quadrant of the coordinate plane. Let f
be the characteristic function of [0, 1]2, then LAf = 0.

Although A has a non-vertical boundary, there is no xb curve. Although f has singular-
ities conormal to L(0, 0) and (0, 0) ∈ bd(A), there is no object-dependent artifact in LAf .
Furthermore, bd(A) has a corner, but there are no corner streak artifacts in LAf .

A.4. Proof of Theorem 5.2. We first prove a proposition giving the correspondence
between Sobolev wavefront set and R∗.

Proposition A.7 (Sobolev wavefront correspondence for R andR∗). Let (ϕ0, p0) ∈ [0, 2π]×R,
ω0 �= 0, and let s and α be real numbers. Let

η0 = ω0(−αdθ + dp), x0 = p0θ(ϕ0) + αθ⊥(ϕ0), and ξ0 = ω0θ(ϕ0)dx.

Let f be a distribution on R2 and g a distribution on [0, 2π] × R. Then,

(x0, ξ0) ∈WFs(f)⇐⇒ (ϕ0, p0, η0) ∈WFs+1/2(Rf),(A.13)

(ϕ0, p0, η0) ∈WFs(g)⇐⇒ (x0, ξ0) ∈WFs+1/2(R
∗g).(A.14)

Proof. Equivalence (A.13) is given [40, Theorem 3.1], however the proof of the ⇐ impli-
cation for R was left to the reader.

The proof of the⇒ implication of (A.14) is completely analogous to the proof given in [40]
for R. For completeness, we will prove the⇐ implication. Assume g is inHs at (ϕ0, p0, η0). By
[38, Theorem 6.1, p. 259], we can write g = g1 + g2 where g1 ∈ Hs and (ϕ0, p0, η0) /∈WF(g2).
The operator R∗ is continuous in Sobolev spaces from Hs to H loc

s+1/2 by [48, Theorem VIII 6.1]

since Ct is a local canonical graph. Therefore R∗g1 ∈ H loc
s+1/2. Since (ϕ0, p0, η0) /∈ WF(g2),

(x0, ξ0) /∈WF(R∗g2) by the wavefront correspondence (A.6). An exercise using Definition 5.1
and the Fourier transform shows that R∗g = R∗g1 +R∗g2 is in Hs at (x0, ξ0).

Proof of Theorem 5.2. Let f ∈ L2(D) and let A satisfy Assumption 3.1. Let (ϕ0, p0) ∈
bd(A) and assume Rf(ϕ0, p0) �= 0 and f is smooth conormal to L(ϕ0, p0). Because f is smooth
conormal to L(ϕ0, p0), WF(ϕ0,p0)(Rf) = ∅ so Rf is smooth in a neighborhood of (ϕ0, p0) by
Lemma A.1 part (iii). Since Rf(ϕ0, p0) �= 0, for each s,

(A.15) (WFs−1)(ϕ0,p0)
(Λ1ARf) = (WFs)(ϕ0,p0)

(1ARf) = (WFs)(ϕ0,p0)
(1A) ;
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the left-hand equality is true because Λ is an elliptic pseudodifferential operator of order one
in these directions and, the right-hand equality is true by arguments similar to the proof of
part (ii) of Lemma A.1.

To prove part (i) of the theorem, assume bd(A) is smooth and has finite slope at (ϕ0, p0).
Because the Sobolev wavefront set is contravariant under diffeomorphism [48], we may as-
sume bd(A) is a horizontal line, at least locally near (ϕ0, p0). Let η0 = dp. We claim that
(ϕ0, p0,±η0) ∈ WF1/2(1A) and, for s < 1/2, 1A is in Hs at (ϕ0, p0,±η0). Furthermore
1A is smooth in every other direction above (ϕ0, p0). The proofs of these two statements
are now outlined. Using a product cutoff function ψ = ψ1(ϕ)ψ2(p) to calculate F(ψ1A)
and integrations by parts, one can show that this localized Fourier transform is of the form
S(ν)T (τ) where S is a smooth, rapidly decreasing function and T is O(1/ |τ |). Therefore
S(ν)T (τ) is rapidly decaying in all directions but the vertical. This implies that 1A is in Hs

for s < 1/2 at (ϕ0, p0,±η0) and (ϕ0, p0,±η0) ∈WF1/2(1A). This also shows that this localized
Fourier transform is rapidly decaying in all directions except ±η0. Now, using (A.15) one sees
that (ϕ0, p0,±η0) ∈ WF−1/2(Λ1ARf); Λ1ARf is in Hs for s < −1/2 at (ϕ0, p0,±η0); and
(ϕ0, p0, η) /∈WF(Λ1ARf) for any η not parallel η0.

Now, by Proposition A.7, LAf = R∗Λ1ARf is in Hs at (xb(ϕ0),±θ(ϕ0)) for s < 0 and

(xb,±θ(ϕ0)) ∈WF0(LAf),

where xb(ϕ0) is given by (3.5). Using this theorem again, one sees that for any x ∈ L(ϕ0, p0),
if x �= xb(ϕ0),

(x,±θ(ϕ0)dx) /∈WF(LAf).

Therefore, the only covectors in N∗(L(ϕ0, p0)) ∩WF(LAf) are (xb(ϕ0), αθ(ϕ0)dx) for α �= 0.
To prove part (ii), assume bd(A) has a corner at (ϕ0, p0). Let α1 and α2 be the slopes at

(ϕ0, p0) of the two parts of bd(A). Let

(A.16) ηj = −αjdϕ+ dp, xbj = p0θ(ϕ0) + αjθ
⊥(ϕ0), j = 1, 2.

An argument similar to the diffeomorphism/integration by parts argument in the last part
of the proof is used. First a diffeomorphism is used to transform the corner so, locally A
becomes A = {(ϕ, p) : ϕ ≥ 0, p ≥ 0}. Then one uses a product cutoff ψ = ψ1(ϕ)ψ2(p) at (0, 0).
Then, the Fourier transform can be written F (ψ1A) = S(ν)T (τ) where S(ν) = O(1/ |ν|) and
T (τ) = O(1/ |τ |). So, the localized Fourier transform is decreasing of order −1 in the dp
(vertical) and dϕ (horizontal) directions and −2 in all other directions.

Note that η1 and η2 are the images of dp and dϕ under the diffeomorphism back to
the original coordinates. By contravariance of Sobolev wavefront set under diffeomorphism,
(ϕ0, p0,±ηj) ∈ WF−1/2(Λ1ARf) and, for s < −1/2, Λ1ARf is in Hs at (ϕ0, p0, ηj). Other
covectors are in WF1/2(Λ1ARf). One finishes the proof using (A.14).

This proof shows that Ct ◦ {(ϕ0, p0, ηj)} ∈ WF0(LAf), and these are the “more singular
points” referred to after the statement of Theorem 5.2. If one part of bd(A) is vertical at
(ϕ0, p0), then for one value of j, ηj is parallel dϕ and Ct ◦ {(ϕ0, p0, ηj)} = ∅ so there is only
one point, not two on L(ϕ0, p0) on which f is more singular.

Part (iii) is valid for the following reasons. Since (ϕ0, p0) ∈ int(A), 1ARf = Rf in a
neighborhood of (ϕ0, p0) so

(
WFs−1/2

)
(ϕ0,p0)

(Λ1ARf) =
(
WFs+1/2

)
(ϕ0,p0)

(Rf) (ignoring dϕ

directions). One finishes the proof using Proposition A.7.
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4.2 Summary

In Section 4.1 we presented characterizations of all types of incomplete data artifacts. All
artifacts arise because of points (ϕ0, p0) ∈ bdA, and they fall into two categories: artifacts
on lines and artifacts on curves:

1. Streak artifacts along the line L(ϕ0, p0):

• Object-dependent streaks when bd(A) is smooth at (ϕ0, p0) and a singularity of
f is normal to L(ϕ0, p0)

• Object-independent streaks when bd(A) is nonsmooth at (ϕ0, p0).

2. Artifacts on curves:

• They are object-independent, and they are generated by the map ϕ → xbθ̄(ϕ)
from parts of bd(A) that are smooth and of small slope.

The article described the strength of the artifacts in Sobolev scale in specific cases.
Further, we provided illustrations of the theoretical results and proved the advantages of
including a smooth cutoff across singularities in the incomplete data.
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Image analysis of structures in 3D, part 1 5

The aim of establishing comprehensible and easily accessible image analysis in synchrotron
imaging for the MAX4Imagers was directly in line with the aims of this thesis. The following
work relates to analyses of images of muscle biopsies taken from humans, and is covered in
Section 5 and in Section 6. Parts of the work in the present section will be submitted for
publication together with other analyses not ready yet.

Neuromuscular diseases are caused by an unbalanced signaling between the brain and
the muscles, which often leads to involuntary passive or active muscle contractions. One
symptom often seen in neuromuscular diseases is muscle atrophy which is reflected as smaller
muscle volume, and hence smaller cross-section areas of the individual muscle fibers [32].

The motivation of the study in this section is described in the following. In [8], the
authors used an isotropy measure for distinguishing between states of muscle tissues. The
study was carried out on rat muscle images from healthy rats and rats that had had botox
injected. The isotropy index was measured by a stand-alone software tool, Quant3D [33].
Our aim was to conduct similar analyses on the humane biopsies and compare their results
with ours. We followed exactly the same procedures with only one exception; In [8] they
used a type of Markov random field for segmentation (see [8] for details), where we used
a Chan-Vese segmentation [7]. Apart from measuring the isotropy index, we included two
measures for assessing the atrophy of the muscles. The two measures were based on two
different segmentation methods, the Chan-Vese segmentation, and a 2D snake segmenta-
tion method [9]. This section contains subsections describing the data, methods, results,
discussion, and a summary.

5.1 Data

A total of 41 biopsies were taken from the m. Gastrocnemius in four classes of participants:
3 biopsies from participants with apoplexy (A), 21 biopsies from participants with cerebral
palsy (CP), 7 biopsies from participants with spinal cord injury (S), and 10 biopsies from
healthy control participants (H). The biopsies were then embedded in Bouin’s fluid and stored
at 4 degrees Celsius for 48 hours. After that, the biopsies were washed with 98% Ethanol for
5 min. six times. Subsequently, the biopsies were stored in 98% EtOH at 4 degrees Celsius
until imaging. A subpart of size 844 × 844 × 713 μm3 of each muscle biopsy was imaged by
the TOMCAT beamline at the Swiss Light Source [34]. The images consisted of 2160 slices,
each with a resolution of 2560 × 2560 pixels. Stacking these images provided a 3D image of
size 2560 × 2560 × 2160 pixels. One example slice (number 1000) from each class is shown
in Figure 5.1. The shape of the muscle fibers is generally elongated. The data was captured
in such a way that many fibers are extending perpendicularly to volume slices, while few are
extending in the plane of the slices. From the examples, it is difficult to see the difference
between the A, CP, and H-classes. However, the S-class looks different since the number of
muscle fibers seems to be smaller, they are not lying side-by-side in clusters, and ”granular”
tissue is in the space between the muscle fibers.
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(a) A3 (b) CP10

(c) H6 (d) S8

Figure 5.1: The 1000’nd slice from the four 3D images - one from each class. The participant
ID is indicated in the respective captions. The images are reconstructions provided by the
Swiss Light Source Facilities.
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5.2 Methods

The resolution was reduced by a factor of four in all three directions, resulting in a 640 × 640
× 540 image. After that, the outermost pixels were cut out to reduce the image size to 303
× 303 × 530 voxels, corresponding to a volume of interest (VOI) of size 0.4 × 0.4 × 0.7mm3.
This reduction was done to be able to compare the analysis to that of [8], where they reduced
similarly. We used a 2D Chan-Vese method [7] to segment the fibrillar tissue in a slice-by-
slice setting. For measuring the isotropy we used the same procedure as described in [8]:
The non-fibrillar from the segmentations were used as inputs, where 10,000 points with 513
random orientations were used to calculate the mean object lengths of the objects. They were
used to find the so-called star length distribution (SLD), which provides the anisotropy of
the objects in the segmented image. A value close to one reflects a more isotropic structure,
indicating a higher degree of disorganization. The volume fraction is the fraction of fibrillar
tissue over the entire volume. To find the volume fraction, the number of pixels belonging
to the fibrillar volume (according to the Chan-Vese segmentation) was counted and divided
by the number of pixels in the entire slice. This was done for all segmented slices in each
sample.

As a supplement to the Chan-Vese segmentation, a snake method [9] was used for pro-
viding cross-section areas of the fibers. The method was used on slice number 1000 in each
sample. The area of four fibers in slice number 1000 was measured for all samples where
muscle fibers were present and clear to see. Four random points on the slice were used to
pick the fibers to measure. If the random points were not on top of a fiber or hit a fiber
that was already chosen, the nearest fiber was chosen. Conditions for the fibers to enter
in the area measurements were: 1) the entire fiber had to be visible on the slice, 2) it had
to (seemingly) extend perpendicularly to the slice plane of the image, 3) the fiber had to
be inside the circular area defined by the larges circle that fits the images. The means, the
standard deviations (SD), and standard error of the means (SEM) were calculated for the
isotropies and volume fractions for each of the four classes, where SEM = SD√

n
.

5.3 Results

A zoom of the images in Figure 5.1 are shown in Figure 5.2. The size of the zoom is 0.4 ×
0.4 mm2, corresponding to the size of the slices after the described reduction. Four examples
of the 2D segmentations are shown in Figure 5.3 and can be compared with the images in
Figure 5.2. The 3D segmentations of the fibrillar tissue are shown in Figure 5.4, Figure 5.5
shows the non-fibrillar 3D segmentations, and Figure 5.6 shows the SLD for the non-fibrillar
tissue. An example of segmentations by use of the snake is shown in Figure 5.7.
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(a) A3 (b) CP10

(c) H6 (d) S8

Figure 5.2: The 1000’nd slice of the original images, zoom of slices in Figure 5.1. The images
are reconstructions provided by the Swiss Ligth Source Facilities.
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(a) A3 (b) CP10

(c) H6 (d) S8

Figure 5.3: The 245’th slices of the segmented images: reduced resolution, reduced area,
segmented in fibrillar and non-fibrillar tissue. These slices have the same position in the
samples as the high-resolution companion slices shown in Figure 5.2 and are therefore directly
comparable.
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(a) A3 (b) CP10

(c) H6 (d) S8

Figure 5.4: The 3D volumes of the segmented fibrillar tissue.
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(a) A3 (b) CP10

(c) H6 (d) S8

Figure 5.5: The 3D volume of the segmented non-fibrillar tissue.
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(a) A3 (b) CP10 (c) H6 (d) S8

Figure 5.6: SLD of the non-fibrillar tissue.

Figure 5.7: Example of snake segmentations. The underlying image is a reconstruction
provided by the Swiss Ligth Source Facilities.

The isotropy indices for the samples are shown in Figure 5.8. The classes are plotted on
the x-axis, and the isotropy index is on the y-axis. In Figure 5.8a, the isotropy indices for
each of the individual samples are plotted, in Figure 5.8b the mean and STD are shown and
in Figure 5.8c the mean and SEM are shown. A similar structure is used in Figures 5.9 and
Figure 5.10, which show the volume fractions and the 2D cross-section areas. Please note
the different ranges of y-axes for the measures.
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Figure 5.8: Isotropy of the non-fibriliar tissue. A value closer to one indicates larger degree
of disorganization.
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Figure 5.9: The volume fraction.
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Figure 5.10: Cross-section areas.

5.4 Discussion

The Chan-Vese method used for segmentation was based on 2D analysis of the images, and
a 3D implementation would most probably have improved the results as it would analyse
surfaces in 3D instead of contours in 2D. Another disadvantage of the method was that it
did not separate the individual fibers from each other. Therefore, we could not directly use
these segmentations to calculate the cross-section areas. With the implementation of the
2D snake segmentation method, however, the curves are closed contours around each of the
fiber edges. The method performed excellently and captured the edges of the fibers almost
perfectly. Therefore, for measuring the cross-section areas, we used the snake segmentation
on single slices of the samples. The fiber selection method for measuring the cross-section
areas had a number of disadvantages; First of all, cross-section areas should be measured
perpendicularly to the extension direction of the fibers. However, from a 2D view, we could
not be certain that this demand was satisfied. Another disadvantage of this method was that
it was more likely to choose larger fibers than smaller ones; random points in the images
would be more likely to hit larger fibers than smaller ones. This would skew the cross-section
areas measures towards higher values, however, all classes were affected equally by this effect.
As an inter-class comparison was more important than absolute values of the cross-section
areas for this analysis, we did not consider this as a major issue.

The mean isotropy indices differed only a little between the classes as seen in Figure 5.8.
This observation also holds for the two other measures in Figure 5.9 and Figure 5.10. Though
the differences were not significant, there are tendencies which are in accordance with our
expectations: On average, H had a little lower isotropy index with a mean of around 0.6,
where S had the highest mean isotropy index at around 0.7, as seen in plot 5.8b and 5.8c.
This implies that the healthy control participants have a higher degree of linear structure of
the muscle tissue. In the study of rat muscle biopsies, the samples from the healthy controls
also had higher mean isotropy index than that of the rats that were injected by botox.
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According to plot 5.8a, the variance of the isotropy index for CP was smaller compared to H
- especially if disregarding the bottom point (which may be an outlier) - implying that the
structures were more similar among the participants with cerebral palsy.

Figure 5.9 shows that the mean volume fraction of the H-class was higher than in any of
the other classes. This was in accordance with our assumption, as atrophy is typically ob-
served in neuromuscular diseases [32]. The mean volume fraction of the S-class was 0.45 and
lower than for the other classes which were all above 0.6. This implied that the participants
with spinal cord injury on average suffered from the largest degree of atrophy compared with
the other classes in this study.

The fiber cross-section areas ranged from 300 to 15,000 μm2, as indicated in Figure 5.10,
implying diameters of 20 to 140 μm if the fiber cross-sections were shaped like perfect circles.
The mean fiber cross-section area for H at 6600 μm2 was higher than the average of the
other classes, which were 4700, 4900, and 5000 μm2 for A, CP, and S, respectively. The
corresponding mean diameters, if the fibers were perfectly circular, were 92, 78, 78, and 80
μm for H, A, CP, and S, respectively. This supports the assumption that healthy participants
have larger muscle fibers compared to the diseased participants.

5.5 Summary

The structure of the muscle tissue for the neuromuscular diseased participants compared to
healthy conditions was quantified by measuring the isotropy index, the volume fraction, and
the fiber cross-section areas. The differences between healthy and diseased participants were
not reflected very well, as only subtle differences in the measures were present. However,
those subtle differences were in alignment with our assumptions of 1) loss of linear structure of
muscle tissue in the diseased participants (in line with the findings in [8], where the rats that
had botox injected also expressed loss of linear structure) and 2) atrophy in muscle tissue
for the diseased participants compared to healthy participants [32], measured by volume
fractions and muscle fiber cross-section areas.
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Image analysis of structures in 3D, part 2 6

In this section, we quantify the orientation consistencies and carry out 3D morphological
analyses on a subset of the images used in Section 5. Section 6.1 contains our article Muscle
fiber morphology and orientation consistency in cerebral palsy from 2- and 3-dimensional
images obtained by synchrotron X-ray computed tomography, Section 6.2 provides supple-
mentary details and discussions not given in the article, and Section 6.3 is a summary of the
work.

6.1 Article # 3: Muscle fiber morphology and orientation
consistency in cerebral palsy from 2- and 3-dimensional
images obtained by synchrotron X-ray computed tomog-
raphy
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Abstract

Cerebral palsy lead to morphological changes in muscle fibers, and traditionally this has been in-
vestigated by quantifying muscle fiber morphology using 2D imaging methods. This will however
only allow analyzing cross-sections through the tissue and not enable a precise characterization
of the muscle fibers. Three-dimensional (3D) microscopic imaging from synchrotron X-ray com-
puted tomography (SXCT) allows for investigations at a sub-micrometer resolution where precise
morphological measures of individual muscle fibers can be done. In this study, we analyzed 3D
SXCT images of muscle biopsies taken from participants with cerebral palsy and from healthy con-
trols. By slicing the volumetric images we carried out 2-dimensional (2D) analysis and compared
the obtained characteristics to the results obtained using full 3D analysis. We demonstrate an
increased variation in muscle fiber orientations in samples from participants with cerebral palsy.
Further, our analysis shows that the morphological characterization obtained using 2D imaging is
not able to distinguish variation in the orientation of fibers from variation in size. Therefore, the
traditional understanding that the size of muscle fibers from people with cerebral palsy varies more
than healthy controls was not confirmed by our study, but the muscle fiber orientation varies more.
In addition to these findings, our study shows the great potential in using 3D SXCT compared to
2D microscopy for ex-vivo microscopy.

Keywords: Synchrotron computed tomography, muscle biopsies, 3-dimensional images, cerebral palsy,
orientation consistency, morphology

1 Introduction

Analysis of muscle fiber biopsies is most often done using 2D slice-based microscopy methods to
measure morphological features such as average fiber cross-section area and its standard deviation.

∗Corresponding author’s e-mail address: lebo@di.ku.dk
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Muscle fiber morphology and orientation consistency 2

This approach is sensitive to the slicing direction because if the biopsy is not sliced orthogonal to the
fiber orientation, it will overestimate the cross-section area. Instead, the cross-section area can be
computed with much higher precision if 3D microscopy imaging is employed, which is exactly what is
demonstrated in this paper.

Imaging the microstructure of tissue in 3D at a resolution similar to optical microscopy used in
histopathology has become possible with the development of large-scale synchrotron X-ray imaging
facilities. In this study, images were acquired at the Swiss Light Source (SLS) at the TOMCAT beam-
line [1], that allow for volumetric X-ray CT imaging at sub-micrometer resolution. This sophisticated
imaging technique combined with advanced quantitative image analysis has allowed us to quantify the
uncertainty when using 2D morphological characterization. This is demonstrated on tissue biopsies
from people with cerebral palsy (CP) and healthy controls (H) in a study with a total of 30 participants.

The contributions of this work are threefold, in that we show:

1. Analysis of muscle fiber morphology from 2D microscopy requires very careful alignment of the
biopsy with the muscle fiber direction to avoid overestimating the fiber area. Due to variation in
the alignment of fibers this analysis may be associated with uncertainties. Instead, analyzing the
morphology in 3D microscopy images allows an accurate morphological quantification of muscle
fibers.

2. People with CP have smaller cross-section areas of their muscle fibers compared to healthy people,
which is in line with previous findings [2]. The variance in their cross-section areas is however not
significantly different between CP and healthy people, which is in contrast to previous findings.
This can be explained by variation in the orientation of the fibers, resulting in an overestimation
of fibers that have not been cut orthogonal to the fiber orientation.

3. We introduce a novel biomarker of muscle integrity, which we refer to as orientation consistency.
The muscle fiber orientation consistency is a quantification of how aligned or ordered the fibers
are organized in a sample. We show that the orientation consistency is significantly larger for
the healthy participants than it is for the participants with CP.

This demonstrates the potential in using 3D synchrotron imaging combined with advanced image
analysis for understanding the 3D morphology of muscle fibers as shown here, but it also demonstrates
the potential in ex-vivo bioimaging.

Synchrotron X-ray computed tomography (SXCT) allows for three-dimensional (3D) imaging of ob-
jects at a very high resolution. The high photon flux, monochromatic, tunable beams in synchrotrons
together with methods like phase contrast allows for contrast in tissue despite little difference attenua-
tion, and therefore permit non-destructive ex-vivo examination of various specimens in various depths
and at different scales [3, 4]. X-ray computed tomography is most widely used in clinical practice for
in-vivo examination, but the use of SXCT for bioimaging is at a resolution that is comparable to optical
microscopy, and at best only slightly lower than electron microscopy. The sample size and radiation
dose will most often only allow for ex-vivo investigations, but the technique is very well suited for
studying muscle fiber biopsies as done here. 3D structures of single muscle fibers on a sub-micrometer
scale were clearly visible, but it did not reveal sub-structures such as myofibrils.

Muscle biopsies play an integral role in the evaluation of patients with neuromuscular diseases.
Morphologic analyses are used in research settings for cerebral palsy, and common pathologic findings
include a decrease in fiber size and an increase in fiber size variation [2]. The evaluations are often
carried out on two-dimensional (2D) histochemical-based images or other image modalities in 2D. For
reliable morphological results, the biopsy must be orientated such that muscle fibers extend perpen-
dicularly to the slice plane [5]. However, it may occur that the biopsy has been tilted during tissue
preparation or the samples have low orientation consistency, i.e. the muscle fibers are not organized
parallelly and point in different directions. Then, a subsequent morphologic analysis will be prone
to errors because those fibers not extending perpendicularly to the slice plane appear with altered
cross-section areas and shapes.
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Muscle fiber morphology and orientation consistency 3

Much work has been devoted to analysing muscle biopsies and 2D microscope images of muscle
biopsies (see for instance [6]. However, SXCT images of humane muscle biopsies have to our knowledge
been addressed only a few times in the literature [7, 8]. This means that the appearances and relative
pixel values of blood cells, muscle fibers and other tissues in SXCT scans are not yet fully established.
3D shapes may be used as an indication for determining the tissue type, though. The authors of [8]
compare light microscopy histology and a corresponding phase contrast CT image and identify nerve
tissue and muscle spindles in a CT scan of a mouse soleus muscle sample. Also, they identify blood
vessels, blood cells, and empty capillaries.

For 2D analysis of muscle fibers, there exist several automatic and semi-automatic segmentation
methods [9, 10, 11], some of which are based on active contours [12, 13, 14] whereas others combine
threshold selection and morphology techniques [15, 16]. To our knowledge, there are only two reported
papers of segmented muscle tissue in SXCT images [8, 17]. Some of the studies just mentioned provide
segmentations only, whereas other studies provide subsequent analyses on the segmented fibers relating
to muscle diseases, functional properties, degeneration and regeneration of muscles. There exists a vast
amount of segmentation methods, and the optimal method must be chosen according to the data at
hand and to the intended subsequent analysis.

Our aim is to make a 3D analysis on muscle fibers and to test whether a 3D analysis should be
considered in place of a 2D analysis for fiber morphology. To evaluate this, we calculate the muscle
fiber cross-section areas in 2D and in 3D from the CP-class and the H-class and we validate by the
following hypothesis, often reported in the literature [2]: The muscle fiber cross-section areas from
participants with cerebral palsy are smaller than those from healthy participants. Also, we calculate
the standard deviation of the cross-section areas (STD) both in 2D and in 3D. We introduce a novel
method for measuring the orientation consistency, which is based on 3D muscle fiber orientations of
the samples.

2 Materials and methods

This study focuses on a detailed morphological study of muscle fibers and the fiber orientation consis-
tency in the 3D volumes. Since the data set is very large, we found it sufficient to investigate parts of
the acquired volumetric images.

Data Our dataset consisted of images of muscle biopsies. A total of 30 biopsies was taken from
m. Gastrocnemius: 20 biopsies from participants with cerebral palsy and 10 from healthy participants.
The biopsies were then embedded in Bouin’s fluid and stored at 4 degrees Celsius for 48 hours. After
that, the biopsies were washed with 98% Ethanol for 5 min six times. Subsequently, the biopsies were
stored in 98% EtOH at 4 degrees Celsius until analysis. Imaging was done at the TOMCAT beamline
at the Swiss Light Source [1] using synchrotron X-ray CT. Only the central part of the biopsy was
imaged, resulting in an image of 2560×2560×2160 voxels. The voxel size is (330 nm)3, so the depicted
volume is 844×844×773 μm. For details of image acquisition, please refer to [17]. The slice planes of
the imaged biopsy were determined by how the biopsy was oriented in the SXCT scanner. One example
slice from each of the two classes is shown in Figure 1. The shape of the muscle fibers is generally
elongated. The data were captured in such a way that many fibers are extending perpendicularly to
the slices, while few are extending in the plane of the slices. Almost all fibers extend perpendicularly
to the slices in sample H6 and it seems that sample CP10 exhibits a lower orientation consistency than
that of sample H6.

The image quality is much lower in the periphery because these parts of the sample were not
traversed by X-rays from all directions when obtaining the projections in the SXCT-scan. Therefore,
we only consider the interior of the largest circle that fits in the example images of Figure 1.

Snake segmentation Automated segmentation of individual fibers is challenging because the in-
tensity of the fibers vary and the boundary is often not clear all the way along the periphery of the
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Muscle fiber morphology and orientation consistency 4

(a) CP10 (b) H6

Figure 1: Slice number 1000 from each class. CP10 is from sample number 10 in the cerebral palsy
class, and H6 is sample number 6 in the healthy class.

fiber. Therefore, we chose to use a semiautomated method based on a 2D snake [18]. The 2D snake
method used the unfolded representation of the curve [19] to segment the fibers slice-by-slice. Each
fiber segmentation was seeded by clicking the approximate center in a graphical user interface, and if
needed, the segmentations were adjusted semi-automatically. The segmentations from one slice were
passed on to the following slice and used as an offset to the subsequent segmentation. For every 20
slices, the segmentations were semi-automatically adjusted and new segmentations were initialized if
new fibers had entered the image. The 2D segmentations of slices number 100 to 300 were stacked to
form 3D segmentations of 66 μm in height and of 844 μm in diameter.

2D morphology The 2D analysis was based on the segmentations in the 201 slices. In each slice,
the cross-section areas of individual fibers and the STD of the cross-section areas of the fibers were
calculated, and the means of both measures were calculated from the 201 slices. The cross-section
areas were calculated by counting the number of pixels inside the fiber segmentations in each slice and
STD was calculated by taking the standard deviation of the cross-section areas in each slice.

3D morphology The 3D segmentations were presented as surface renderings of the segmentations
in the 201 slices. 3D surface normal vectors were computed from the segmented muscle fibers in each
node of the segmented surface. To calculate the cross-section areas, we identified each fiber direction
by analyzing its normal vectors Nk; The outer product of the set of normals was summarized

M =

K∑
k=1

NkN
T
k

to obtain the matrix, M , known as the Structure Tensor [20]. In this case, it is a 3× 3 matrix. For a
perfectly straight fiber, most of its normals will be perpendicular to the fiber’s direction, and the two
eigenvectors of M corresponding to the two largest eigenvalues in absolute sense span the cross section
of the fiber, and the eigenvector, d, corresponding to the smallest eigenvalue is parallel to the overall
direction of the fiber. With the fiber direction at hand, we estimated the cross-section area as follows:
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Muscle fiber morphology and orientation consistency 5

(a) CP3 (b) H8

Figure 2: Two examples of 3D volumetric segmentations from 201 slices.

1. Calculate the residuals points, R(l), of the segmented points on a fiber’s surface by projecting
the points, P (l) of the segmentation onto the plane perpendicular to d,

R(l) = P (l)− (P (l) · d)d.

2. Make a principal component analysis on the cloud of residual points, R(l), to obtain the principal
component variances a and b in the plane perpendicular to d.

3. Assume the cross-section is approximately elliptical and estimate the area of the cross-section as
the area of an ellipse with

√
a and

√
b as the lengths of its main axes,

A =
π
√
ab

4
.

Orientation consistency We developed an algorithm to quantify the fiber orientation consistency.
It was estimated by the entropy of the fiber orientation distribution for each sample: All fiber orien-
tations were represented by two vectors, v and −v, and plotted on a sphere. A 2D histogram for the
azimuth-elevation coordinates with 12 bins in each angular direction was evaluated by estimating the
entropy. The method was tested by comparing the true entropy on the unit sphere from a uniform
distribution with 1000 random samples drawn from a uniform distribution, and the error was less than
2.1%. For further details, please refer to [21].

3 Results

Figure 2 shows two examples of the segmented volumes (note that it is not the same samples as those
shown in Figure 1). The segmentations are from 201 slices, corresponding to 66 μm in height, and the
samples are tilted so they are seen from below. Figure 3 shows the results of measuring the cross-section
areas in 2D and in 3D for both classes. The red stars indicate the mean measures of the samples and
the error bars indicate the means ± STD or ± SEM. SEM is calculated as STD√

S
, where S is the number

of samples. Mean 2D cross-section areas were 6300 and 7400 μm2 for CP and H, respectively. Mean
3D cross-section areas were 2600 and 4500 μm2 for CP and H, respectively. Evaluating the differences
between the classes was estimated by a two-sample t-test. The resulting p-values are shown in the
respective plots. The means and standard deviations of the STD of the cross-section areas in 2D and
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Figure 3: Cross-section areas in 2D and 3D.

STD of
Cross-section area cross-section area Entropy

μ2D μ3D μ2D μ3D h

CP 6300 2600 5000 2400 1.04
H 7400 4500 4700 2900 0.58

p-value 0.5 0.0004 0.9 0.4 0.04

Table 1: This table shows the mean cross-section areas in 2D and 3D in μm2, mean STD of the cross-
section areas in 2D and 3D in μm2, and entropy of the fiber orientations in nits (nits = natural units
of information).

(a) CP3 (b) H5

Figure 4: Examples of the fiber organization in samples CP3 and H5.
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Muscle fiber morphology and orientation consistency 7

in 3D are shown in Table 1. Figure 4 shows two examples of the fiber orientation consistency in the
samples. The plots are in 3D but viewed from above (according to the imaging direction) with the
same angle as in Figure 1. The fibers are transparent grey, and on top of the fibers, their respective
directions are indicated by a randomly colored line. The mean orientation consistencies for the two
classes are indicated in Table 1.

4 Discussion

In this section, we discuss the methods and results of the segmentations, the morphology, and the
orientation consistency, and present the limitations and outlook of the work.

Segmentation 201 slices were chosen to ensure that enough data were analyzed to obtain reliable
results from the data analysis. This number of slices covered approximately all fibers cross-section
areas across all samples. The snake method allowed for analysis on single fibers since they were
separated from one another in the representation. Segmenting slice by slice in 2D allowed for inspecting
and correcting the segmentation quality in the slices on a regular basis. This gave very accurate
segmentations allowing for precise 3D characterization of the muscle fibers. The images were processed
relatively fast despite the size of the images, and this even without the use of GPUs or large storage
space. For speeding up the performance further, the data fitting term and regularization term in the
graph cut optimization algorithm were split into two consecutive steps instead of being combined in
one single step. The drawback was that fibers with high curvatures in the slices contracted a little
in each slice, which sometimes led to losing track of the fiber edges. Another drawback of using
this segmentation method was the amount of time spent on each segmentation, which ranged from 10
minutes to 1 hour of focused work per sample, due to the semi-automatic initializations and adjustments
of segmentations. In some samples, the fibers were difficult to distinguish from one another due to too
weak edge information. Therefore, we did not consider lowering the resolution.

Morphology The mean 2D cross-section areas were in general larger than the mean 3D cross-section
areas, as indicated in Figure 3 and in the two left columns of Table 1. The 2D cross-section areas of
CP and H were distributed over a large range of areas, whereas the 3D measures were more densely
distributed around the mean, as seen in Figure 3. This is because the cross-section areas appear larger
and with greater variance when measuring in 2D slices than when measuring the true cross-section
area and taking 3D effects into account.

The 2D cross-section areas for CP and H was almost indistinguishable (p-value of 0.5). However,
when correcting for the fiber directions, the mean cross-section area was significantly larger for H than
for CP, as observed in the literature[2]. The p-value was 0.0004. In 2D, the mean of the STD of the
cross-section area shown in Table 1 was slightly increased for CP, agreeing with what is observed in
the literature [2]. However, in the 3D analysis, the mean was a little increased for H, meaning that we
could not reestablish the increased cross-section variation reported in the literature.

This indicates that in order to obtain reliable morphological results, the biopsy must be orientated
such that muscle fibers extend perpendicularly to the slice plane. If not, a subsequent morphologic
analysis will be prone to errors because those fibers not extending perpendicularly to the slice plane
appear with altered cross-section areas and shapes, and 3D aspects must be considered.

Orientation consistency Measuring the orientation consistency is not trivial, but the method in-
troduced in this work seemed to capture our observations of the differences between the classes very
well. The quantification of the orientation consistency as indicated in Table 1 demonstrates that it was
significantly higher in H than it was in CP, which is to the best of our knowledge a novel observation.
The 2D STD of the cross-section areas may be viewed as a measure inversely related to the orientation
consistency; If a sample contains fibers extending in many different directions, and therefore has a
low orientation consistency, the 2D STD of the cross-section has a high value. In this view, the larger
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Muscle fiber morphology and orientation consistency 8

cross-section variation for CP than for H reported in the literature [2], could be an indication of lower
orientation consistency of the fibers, rather than a measure of the cross-section area variation. This
viewpoint is in line with the present results showing a larger 2D cross-section variation for CP. This
increased variation was not observed in 3D which is considered being more robust. On top of that, we
measured a lower orientation consistency in CP, also supporting this argument.

We showed that morphological analysis is only correct if the fibers extend perpendicularly to the
2D slices. Also, we showed that the orientation consistency is smaller for CP. In practice, this means
the 2D slice analysis is not reliable for CP participants, but - to a greater extend - reliable for healthy
participants. Employing a method which is only reliable when measured on healthy participants entails
a fundamental problem of the analysis.

Limitations and outlook We segmented only 201 slices from each of our 30 samples due to time
constrictions. If more slices were segmented, the results could have been more precise and could have
altered the quantification results. However, it could also have worsened the results as they relied on
main-direction measures of the fibers. If more slices were segmented, the fibers would extend over
larger volumes and one vector could not have captured its direction as well as it did with fewer slices,
which could potentially lead to erroneous morphological measures. Although 201 slices may seem like
a lot, they only exhibit 66 μm, corresponding to approximately two times an average healthy muscle
fiber diameter. If another subvolume of the image had been segmented, the results could have looked
different. On the other hand, the number of fibers and samples should mount to a reasonable dataset
size, and should, therefore, average out statistical differences. We carried out analysis on all available
segmentations - also fibers touching the edges. Some samples contained almost only fibers extending
in the slice planes, almost all of them touching the edges of the image. These segmentations were kept
in order to keep as much information as possible. The consequence was probably smaller cross-section
areas in general across all samples and in both 2D and 3D measures. As only a small fraction of the
total amount of fibers touched the edges, we anticipate that the measures are still robust.

The structure tensor analysis allowed for finding the main fiber directions, which were used to
calculate the 3D cross-section areas. For the vast majority of fibers, it seemed to capture the directions
well. However, in rare cases, they were incorrect. As the number of incorrect fiber orientation estimates
were relatively low, we considered the morphology measures to be rather reliable. The structure tensor
analysis could have allowed the fiber direction to vary along its extension by splitting the analysis into
separate parts of the fiber. However, we considered this method to be a decent first approach, which
showed the expected differences in the cross-section areas between the classes. Obtaining the cross-
section from the 3D volumes, an elliptic shape of the cloud of residual vectors was anticipated. If a fiber
changes direction or has a flat contour, this is not strictly correct, but yet a sensible approximation.
Because there were no outliers in the 3D cross-section areas (see Figure 3b), we felt convinced that
measurements carried out on fibers were usable even if they extended in other directions. During the
fiber segmentation, semi-automatic adjustments were required, which was time-consuming.

The differences revealed on the μm scale are surprisingly small considering the condition of partici-
pants with cerebral palsy. Other imaging modalities such as magnetic resonance imaging (MRI) could
reveal other and/or more statistically significant differences between the classes, such as whole-muscle
cross-section areas. A combination between the two imaging modalities - and scales - would probably
find differences between the classes more efficiently.

In the present work, we focused 3D analysis of muscle fibers on a μm scale, which, to our knowledge,
has not been done before. While the methods and analysis were applied to muscle fibers, the same
principles are applicable to other types of fibrous materials and on other scales, such as nerve fibers
or carbon fibers. Possible extensions of the 3D analysis include more morphological measures such as
roundness, a skeletonization of the segmentation and staining the samples to highlight specific types
of tissue, such as fiber type or cell nuclei. We leave such investigations for future work.
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5 Conclusions

We carried out analyses on SXCT images of muscle biopsies in 2D slices and in 3D volumes. Common
pathologic findings in CP include a decrease in fiber cross-section area and an increase in fiber size
variation [2]. A comparison of the morphology between participants with cerebral palsy and healthy
participants measured in the 2D slices did not show the expected cross-section area difference. A
similar analysis carried out on 3D volumes did, however, show significant smaller cross-section areas
for CP than for healthy participants. We used this to demonstrate that the 2D estimates of the
morphology of muscle fibers are difficult to obtain because the fibers must be relatively unidirectional
and they must be sliced orthogonal to their direction. With the variation in the muscle fiber direction of
cerebral palsy, this is not possible. Instead, imaging in 3D gives an accurate morphological description
directly from the biopsies, independent on their alignment of with the muscle fiber direction. The
present study did not show significantly larger cross-section area variations in cerebral palsy when
measuring in 2D, and when measuring in 3D the cross-section variation was even (insignificantly)
larger in healthy participants. Interestingly, the orientation consistency – a measure of how ordered
the fibers are organized in the sample – was significantly larger for the healthy participants than for
the participants with cerebral palsy. Therefore, the traditional understanding that the size of muscle
fibers from people with cerebral palsy varies more than healthy controls was not confirmed by our
study, but the muscle fiber orientation varies more. Our study demonstrated the gain in information
that is possible using SXCT because the image resolution is similar to 2D microscopy but in full 3D.
With further developments in SXCT techniques, this has great promise of morphological analysis of
tissue.
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6.2 Supplementary material

Section 6.2.1 provides supplementary analysis and full segmentation of three samples. Sec-
tion 6.2.2 gives supplementary discussions related to the methods used in our article in
Section 6.1, and Section 6.2.3 compares the isotropy analyses from Sections 5 and 6.

6.2.1 Supplementary analysis and full segmentations

In our article in Section 6.1 we calculated the orientation consistency based on a measure of
the isotropy on a sphere. It captured the differences quite well, but prior to this, we examined
another method. In this section, this method is presented together with visualizations of
three full segmentations. It is organized in the following parts: Data, Methods, Results, and
Discussion.

Data In the supplementary analysis, the dataset was identical to the dataset in our article
in section 6.1. The full segmentations visualized in Figure 6.2, however, where samples A3,
H8, and S8.

Method In the search for capturing the differences of the orientation consistencies between
the classes, we examined the following method, which we refer to as orientation consistency
with weight. All fiber directions found by the structure tensor analysis as described in the
article in Section 6.1, v1, v2, v3, ..., vN , were dotted pairwisely and weighted by the inverse of
the inter-fiber distance. The result was normalized by the number of dotted fiber pairs:

Q =
1

N2 − 1

N∑
i

N∑
j

|vi · vj | 1

dist(ci, cj)
, i �= j,

where the inter-fiber distance, dist(ci, cj), was the Euclidian distance between the fiber cen-
ters of gravity. The main fiber directions, v, given by the structure tensor analysis were
parallel to the fibers. However, both v and −v were solutions for the orientation of the fiber.
Therefore, we used the norm of the inner product of the vector-pairs to account for both
directions of vn, namely vn and −vn; The inner product can be represented by the cosine,

vi · vj = |vi||vj | cos(θ)

where θ is the angle between the two vectors vi and vj . Since cosine is an even function,
both vn and −vn are accounted for by taking the norm of cos θ, as illustrated in Figure 6.1,
where the blue line would map to the red line. Taking the norm of cos θ is essentially the
same as taking the norm of the dot product. Samples with high orientation consistencies
exhibit high values of Q.
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θ − π

Figure 6.1: To account for both vi and −vi, the norm if cos θ is taken.

Results In Figure 6.2, segmentations are shown for samples A3, H8, and S8, running
through 1900 slices (from number 100 to number 2000). In Figure 6.2a the fibers in the
cluster towards the background of the image exhibit mainly one single direction. Another
cluster of fibers twirls around the cluster in the back altering direction along its extension.
The fibers of H8 appear larger and with one main direction that, however, seems to alter
continuously a little from left (almost vertical) to right (more vertical) in the image. The
fibers in Figure 6.2c look fragmented and sizes seem to vary more. Figure 6.3 shows the
measures of orientation consistency with weight.
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(a) A3

(b) H8

(c) S8

Figure 6.2: Full segmentations of three samples.
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Figure 6.3: Orientation consistency with weight.

Discussion The orientation consistency with weight incorporated a down weight on grad-
ual changes, as opposed to the method used in our article in section 6.1. This means that
if inter-fiber directions changed gradually over the image, the Q-value would still be high
even though many different fiber directions were present in the sample. With a p-value of
0.44, there was no significant difference in the orientation consistencies with weight among
the classes. This was in contrast with the orientation consistency measured by anisotropy in
the article. One reason for the discrepancy could be that samples with gradual changes (as
exemplified in sample A3) exhibit a lower degree of orientation consistency for the measure
using the anisotropy than for the measure using the weight. For capturing the differences in
the orientation consistencies, an altering of the distance measure might be helpful. This is
left for future work.

6.2.2 Supplementary discussions

This part contains a deeper discussion of the snake segmentation method and the structure
tensor analysis. The choice of reading the images in a slice-by-slice manner as provided by
the synchrotron facility and perspectives regarding machine learning used for segmentation
of the muscle fibers are also discussed.

The snake segmentation method The snake method was already discussed in our article
in section 6.1. Further details are given here. Each segmentation was seeded by a click in
the approximate fiber center in a graphical user interface. If necessary, the segmentation was
adjusted semi-automatically by 1) dragging in the graph combined with 2) automatic edge
detection. Segmentations were (automatically) adjusted continuously from slice to slice and
took onsets from the segmentations in previous slices. We used an unfolded version of each
fiber segmentation where the coordinate system was rotated according to the segmentation
curve [35]. The size of the unfolded image was defined by the number of normals of the
detected edges (x-axis) and a specified range across the edges (y-axis). Figure 6.4a shows
the normals across a fiber segmentation from the previous slice with lengths of 200 pixels
(100 pixels away from the edge in each direction). Figure 6.4b shows the unfolded version
where a change of coordinate systems was carried out. The bottom part corresponds to the
inside of the muscle fiber and the top part corresponds to the outside of the muscle fiber.
The negative values of the gradient taken only in the y-direction (from bottom to top) of the
unfolded image are shown in Figure 6.4c. Figure 6.4d is generated by taking the negative
gradient magnitude of the image in 6.4a and then unfold it.
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(a) Image with normals. The reconstruction was provided by the Swiss Ligth Source Facilities.

(b) Unfolded image. (c) Negative gradient values of
the unfolded.

(d) Unfolded image of the nega-
tive absolute gradient values.

Figure 6.4: Figure 6.4a shows an image with a fiber in the center. On top of the image, nor-
mals are plotted, ranging 100 pixels in each direction from the edge of the fiber. Figure 6.4b
shows the unfolded image. Figure 6.4c shows the negative gradient values of the unfolded
image, taken only in the vertical direction (from bottom to top). Figure 6.4d is generated
by taking the negative gradient magnitude of the image and then unfold it.
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Using the negative gradient magnitudes in Figure 6.4d for minimizing the curve energy
is the classical approach for segmenting (not in the unfolded version, though). However, in
this approach, the segmentation would occasionally snap to edges of adjacent fibers because
of the presence of the two dark curves (of low pixel values) in 6.4d. The bottom curve
corresponds to the fiber edge, whereas the top curve corresponds to edges of adjacent fibers
or other structures. When using the negative gradients only in the bottom-to-top direction
illustrated in Figure 6.4c, the segmentation was repelled from adjacent fiber edges due to
their high-level pixel values, and, therefore, stuck to the intended fiber edge. If, however, the
segmentation would wander off and the normals would unintentionally rotate by 90 degrees
tangent to the fiber edge, the use of the negative of the gradient values in all directions would
be a better choice. However, a behavior like this was never observed during segmentation of
the samples.

In the article, it was mentioned that the data fitting term and regularization term in
the graph optimization were split into two consecutive steps instead of being combined in
one single step. The regularization imposed elasticity and rigidity on the segmentations
by multiplication with a matrix, confining the segmentation curvatures. Two examples of
segmentations are shown in Figure 6.5: One example of 5 fibers with low curvature (6.5a),
and a fiber segmentation with high curvature (6.5b).

(a) Five fibers easy to
segment

(b) One fiber diffcult to segment.

Figure 6.5: Two examples of segmentations. The fiber to the right has a saw-like shape due
to too strict regularization for this specific fiber.

The reason for the saw-like shape in the reconstruction in 6.5b is twofold: 1) The fiber
has a ”flat-looking” profile when viewed in the slice plane (if one could see the image in 6.5b
from above), resulting in high curvatures in the parts farthest away from the center. This
caused contractions for every new slice (from the bottom towards the top) according to the
regularization, which was too prominent for a fiber with such high curvatures. 2) For every n
slices a semi-automatic correction to the true fiber periphery was carried out, broadening the
fiber segmentations again. The choice of regularization strength was adjusted to handling
the majority of the fibers. The consequence was saw-like segmentations for a minor part of
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the fibers. Adaptive regularization depending on the curvature sized could be an answer to
better handling fibers like the one in Figure 6.5b.

The method did not handle fibers extending in the slice planes well, as the contours would
change more drastically from slice to slice. As information was already carried from slice to
slice there was some sort of 3D aspects. However, a pure 3D snake would probably be an
answer to the problem and might have saved us time spent on segmentation adjustments.
An estimation of the time spent on implementing a new method vs. spending time on semi-
automatic adjustments made us arrive at the decision to stay using the 2D version. Also,
it seemed to quite accurately detect the fiber edges based on the studies in Section 5. The
choice also allowed for a rather high degree of control.

The structure tensor analysis The structure tensor used our article in Section 6.1 was
the sum of the outer products of all of the segmentation surface normals (see the article for
details). In [36], the authors applied the structure tensor in a 2D image. We summed up for
larger parts of the fibers and applied the analysis on the 3D object rather than in the image
coordinates. Figure 6.6 shows two cases of segmented fibers (black) with surface normals
(red), and calculated main directions (green). The structure tensor analysis found the fiber
directions quiet robustly, both for fibers extending in the slice planes and perpendicularly to
the slice planes. Consider the fiber in the bottom part of Figure 6.6; Even though normals
pointing upwards and downwards were missing, the overall fiber direction was calculated
satisfactorily. The main fiber directions, v, given by the structure tensor analysis point in
the directions parallel to the fiber extensions. However, both v and −v are solutions for the
orientation of the fiber.

Prior to the structure tensor analysis, we investigated a principal component analysis
(PCA) for finding the directions. It worked excellent for fibers like the bottom one in
Figure 6.6, but not for fibers extending perpendicularly to the slice planes as the top one in
Figure 6.6. PCA finds the principal components, where data in an n-dimensional space has
the largest variance. For a fiber like the bottom one in Figure 6.6, the principal direction is
similar or close to the extension of the fiber. However, for fibers like the top one in Figure 6.6
the principal component would find the largest distance between the bottom and top parts
of the fiber, and would therefore probably extend diagonally in the fiber.

Choosing sample orientation Reading the 3D images in a side-to-side fashion instead
of a bottom-to-top fashion could have been an answer to better handle fibers extending in
the slice planes. For fibers changing directions, such as in Figure 6.2a, one would have to
change the reading direction adaptively. Further, for samples containing fibers with various
directions (also in Figure 6.2a), one would need to read the image several times and keep track
of fibers already segmented. Reading the images in other directions would imply regridding
and interpolation on top of the complications mentioned above. The samples were positioned
in the CT-scanner such as the majority of the fibers extended perpendicularly to the slice
planes, so according to the complications discussed above, the decision fell on reading the
slices as provided by the synchrotron facilities.

Future work In future work could include a machine learning approach trained in edge
detection, curvatures, texture, fiber size, and shapes for segmentation. To avoid compromis-
ing the high-resolution nature of the images, the method could work on subareas of the full
image. A supervised machine learning approach could follow the same ideas as the 2D snake
by segmenting slice-by-slice. The algorithm could be trained to look for typical changes from
one slice to another and integrating information from several slices behind. Considerable
amounts of training data are crucial for the performance of machine learning methods, and
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Figure 6.6: Fiber surface segmentations (black) with surface normals (red) and main direc-
tions (green).
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with the snake segmentations at hand, we already have immense amounts of annotated data
that could be used for the training purpose.

6.2.3 Comparison between Image analysis of structures in 3D, part 1 and
part 2

Both studies in Section 5 and in Section 6 analyse the isotropic behaviors of the fibers in
the samples, but with very different approaches. Both approaches agree about increased
fiber isotropy (which is the same as the larger degree of variations) in diseased participants
compared to healthy participants. However, the results are non-significant in the first set of
analyses (Section 5), but significant in the second set of analyses (Section 6) due to refined
techniques and more detailed information. The snake segmentations were the main reason
for the high degree of details, in that it provided clearly distinguishable segmentations of the
fibers. This allowed for very precise 3D characterization of the muscle fibers.

6.3 Summary

In cerebral palsy, muscle atrophy is often observed, which is reflected as decreased cross-
section areas of the individual muscle fibers [32]. We used this background knowledge for
assessing the findings in our article in Section 6.1, where we compared analysis on 2D slices
and 3D images of muscle biopsies. Further, we compared the orientation consistency be-
tween the healthy participants and participants with cerebral palsy. In the 3D analysis, we
accounted for the various directions of the fibers and showed that the fiber cross-section
areas of the healthy participants were significantly larger than they were for the partici-
pants with cerebral palsy (p = 0.0004). This result could not be re-established by analysis
conducted in 2D (p-value = 0.5), as the fibers did not extend perpendicularly to the slice
planes. Therefore, we argued that 3D aspects should be accounted for if fibers do not extend
perpendicularly to the slice planes when carrying out morphologic analysis on muscle fibers.
We also showed that orientation consistency was significantly higher in healthy participants
than it was in participants with cerebral palsy (p-value = 0.04).

The structure tensor analysis used for finding the directions of the muscle fibers was quite
robust.

The 2D implementation of the snake method had some problems, and in future work, we
would consider a 3D snake implementation or a machine learning approach for segmentation.
From this work, we already have large amounts of annotated data which could be used for
training a neural network. However, in a clinical setting, it may be difficult to reproduce
results across different datasets when using a machine learning approach.
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Conclusions and perspectives 7

The main contributions of this thesis can be seen as an approach towards better understand-
ing the implications of synchrotron X-ray tomographic data. The work was quite interdis-
ciplinary, where computer science and mathematical modeling met for targeting underlying
practical applications in CT and medicine. A workflow diagram of CT image analysis is
shown in Figure 7.1.

2. Tomographic reconstruction

1. Data acquisition

3. Segmentation

4. Feature extraction

5. Analysis based on features

Figure 7.1: Workflow diagram

The topics relating to this thesis are marked as boldface text in the figure; tomographic
reconstruction relates to the works described in Sections 3 and 4, and segmentation,
feature extraction, and analysis based on features relate to the works described in
Sections 5 and 6. The specific results described in the sections were obtained in the general
framework of analysis of synchrotron X-ray tomographic data. Studying problems in specific
datasets and developing practical solutions to them may take a very long time. However,
if generalizations can be made, the time and effort spent can be applicable to a range of
related datasets and be of interest to a broader audience. In the reconstruction problem, we
analysed variable-truncation artifacts and solved the specific problem. Alongside, we gener-
alized the underlying problem, which makes our work applicable in related settings. In the
image analysis problem, we analysed muscle fiber morphology and orientation consistency
in 3D. We demonstrated the gain in information from using SXCT in medical imaging and
revealed interesting, new knowledge about the orientation consistency, which was higher in
healthy participants than in participants with cerebral palsy. Hence, we produced valuable
new knowledge, which can be adopted in CT communities and in clinical settings.

One of the main challenges when working with synchrotron data is the amount of data.
Controversially, it is also the main advantage. The degree of detail and the 3D nature
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provided by the modality is what makes it superior to many other imaging modalities. In
our work, we focused on methods that were able to handle these large amounts of data but
at the same time could extract the important details.

For further development of the image analysis work, a higher degree of automatization
and a 3D snake model would be of very high priority. Further, it would be interesting to
implement a machine learning approach for segmentation and to compare with the 2D/3D
snake versions. Automatic image analysis almost always demand human interaction, and
tweaking parameters is easier when we can use our intuition (prior knowledge); what is the
noise level, how large are the objects we are looking for, how sharp are the edges, how do
the shapes look, how many phases are there, etc. The use of machine learning is often an
excellent choice in many segmentation and data analysis cases due to its versatility and
ability to explore high-dimensional spaces. However, the number of tunable parameters may
be plentiful, and the hunt for an optimum set of parameters may be challenging. It may be
difficult to reproduce results across datasets, and the discriminating features for classification
and prediction are impossible to extract, which makes it difficult to use in clinical a setting.
Therefore, it may be more robust to use well-known methods on new datasets in a clinical
context. Tomographic reconstruction may also be a parameter hunt; parameter tuning in
iterative methods with, say, just two regularization terms may not be very intuitive and
difficult to balance. There exist methods that can be used for searching the parameter
space, however, if a set of parameters are found as optimum for one dataset it is most likely
not optimum for other datasets.

About interdisciplinarity and sharing knowledge. Methods for synchrotron tomo-
graphic reconstruction are developed at many places; developers of TomoPy and researchers
at the iMinds Vision Lab at the University of Antwerp develop ASTRA, workers at the Karl-
sruhe Institute of Technology have developed UFO, and the Helmholtz Centers have been
working on HDRI [6] to mention some. According to the authors of [6] there is a significant
amount of duplication of effort between facilities, and many of the efforts are still not tak-
ing a “big data” approach to data analysis. They hope that file formats and approaches to
software design will be based on some standards, such that it can be easily shared.

Users of synchrotron facilities often need not only reconstruction but also image analysis
for carrying out their research. They bring samples to be imaged and their expertise in
their own area of science. Providing the appropriate software and expertise for synchrotron
imaging analysis, which is the goal of MAX4Imagers, is a highly interdisciplinary field. The
image analysists need to learn about the data to be able to interpret them and to find suitable
methods for analysing it.

Therefore, it is absolutely necessary that we share knowledge within disciplines and co-
operate across disciplines to keep transcending the limits in synchrotron imaging. Where
would we be if the physicists Röntgen and Cormack, the mathematician Radon, and the
engineer Hounsfield had not stood on each other’s shoulders?
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R. Betemps, U. Frommherz, P. Böhler, D. Meister, M. Lange, and R. Abela. Trends in
synchrotron-based tomographic imaging: the SLS experience. Proc.SPIE, 6318:6318 –
6318 – 14, 2006.

[35] Kang Li, Xiaodong Wu, Danny Z Chen, and Milan Sonka. Optimal surface segmenta-
tion in volumetric images—a graph-theoretic approach. IEEE transactions on pattern
analysis and machine intelligence, 28(1):119–134, 01 2006.

[36] Y. Kim, T. Brox, W. Feiden, and J. Weickert. Fully automated segmentation and
morphometrical analysis of muscle fiber images. Cytometry, 71A:8–15, 2007.

101


