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Preface

This thesis is a Public Sector Industrial PhD submitted for the degree of Doctor of
Philosophy at the Faculty of Science, University of Copenhagen, Copenhagen, Den-
mark. The thesis was conducted as a collaboration between the three parties:

• Department of Computer Science, University of Copenhagen, Copenhagen,
Denmark (DIKU),

• Department of Growth and Reproduction, Copenhagen University Hospital,
Rigshospitalet, Copenhagen, Denmark (GR),

• ChemoMetec A/S, Allerød, Denmark (CM).

Being a Public Sector Industrial PhD, the project was aimed at research within
the needs of the industrial partners GR and CM.

GR is a department at the public hospital Rigshospitalet conducting clinical workups
of patients and research within male reproduction. Their routine semen quality anal-
yses are primarily conducted manually and are very labour intensive.

CM is a private company producing image cytometers for automatic counting of
cells. In general, their image cytometers take microscopy images of biological sam-
ples, identify cells by segmentation, and present scatter plots of various cell param-
eters such as cell area, perimeter, and mean intensity. CM developed their Xcyto R©

101 (XC10) image cytometer while these studies were conducted.
We based the project on GR’s need for automating semen quality analyses and

CM’s need for developing image and video analysis for the XC10. A key requirement
was to use the XC10 image cytometer (and developmental prototypes hereof) for ac-
quisition of data (microscopy images/video). Therefore any cell detection algorithm
developed in the project had to include an estimation of a segmentation mask for
each detected object in order for the algorithm to be usable in the XC10 afterwards.

The studies were conducted at the locations of all three project partners listed
above and at the Biomedical Imaging Group Rotterdam, Departments of Medical
Informatics and Radiology, Erasmus MC - University Medical Center Rotterdam,
Rotterdam, the Netherlands between October 2014 and July 2018

This PhD thesis is written as a synopsis containing the following three studies:
1https://chemometec.com/automated-cell-counters/xcyto-10/
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Summary

In this thesis we investigated automatic motility analysis of human semen. The in-
vestigation was conducted in three studies.

First, we investigated how to detect and segment sperm cells in bright field mi-
croscopy images from the Xcyto R© 10 image cytometer. We developed a pixel-wise
segmentation and detection algorithm based on the use of convolutional neural net-
works achieving high pixel-wise accuracy, precision and recall.

Second, we studied how to conduct an unbiased estimation of the motility dis-
tribution of sperm cells and whether we can track sperm cells sufficiently reliably
to obtain accurate motility distributions in practice. The study was conducted by
analysing a set of semi-automatically annotated sperm cell tracks. Based on the
study we recommended a set of guidelines for conducting unbiased motility estima-
tion. We combined our detector from the first study with an existing linker method
to obtain an automatic method for tracking of human sperm cells. Using this tracker
we obtained motility distributions nearly identical to the theoretical distributions.

Third, we evaluated the automatic system for conducting motility analysis of
human sperm by comparing it with manual motility analysis resulting in comparable
results. However, more data needs to be collected before finally concluding whether
the system can be used during routine analysis.
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Resumé

I denne afhandling undersøgte vi automatisk motilitetsanalyse af menneskesæd. Un-
dersøgelsen blev gennemført i tre studier.

Først undersøgte vi, hvordan man genkender og segmenterer sædceller i bright
field mikroskopibilleder fra Xcyto R© 10 billedcytometret. Vi udviklede en pixel-wise
segmenterings- og detektionsalgoritme baseret på brugen af konveksionale neurale
netværk, som opnåede høj pixel-mæssig nøjagtighed, precision og recall.

I det andet studie undersøgte vi hvordan man foretager en upartisk vurdering
af motilitetsfordelingen af sædceller, og om vi kan spore sædceller tilstrækkeligt
pålideligt til at opnå en nøjagtig motilitetsfordeling i praksis. Undersøgelsen blev ud-
ført ved at analysere et sæt semi-automatisk annoterede tracks a sædceller. Baseret
på undersøgelsen anbefalede vi et sæt retningslinjer for gennemførelse af objektiv
motilitetsestimation. Vi kombinerede vores detektor fra det første studie med en
eksisterende linker metode for at opnå en automatisk metode til sporing af humane
sædceller. Ved hjælp af denne tracker opnåede vi motilitetsfordeling næsten identiske
med de teoretiske fordelinger.

I det tredje studie evaluerede vi det automatiske system til udførelse af motilitet-
sanalyse af humane sædceller ved at sammenligne den med manuelle motilitetsanal-
yse, hvilket resulterede i sammenlignelige resultater. Der skal imidlertid indsamles
mere data for at komme med en endelig konklusion på, om systemet kan bruges i
praksis.
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Chapter 1

Introduction

Human fertility has become a major concern over the past decades. An estimate of
48.5 million couples (2010) are affected by infertility [27] leading to a large demand
for fertility analysis for both males and females.

The fertility of the male is investigated by conducting a clinical semen quality
analysis (SQA) of the ejaculate as defined by the WHO [51]. SQA consists of esti-
mating semen quality parameters such as pH-value, viscosity, volume, spermatozoa
(sperm) count (concentration and total count), and sperm quality, where sperm qual-
ity is quantified by the sperm motility, sperm morphology, and other traits specific to
individual sperm cells. The fertilisation capabilities of the male is a complex combi-
nation of all these parameters ultimately summing up to whether or not the male is
able to fertilise the oocyte (egg) of the female and get healthy offspring.

A meta-study of the temporal trend in sperm counts was recently published [23]
revealing a significant decline in sperm counts from 1973 to 2011. Figure 1.2 shows
the meta-study regression lines for mean sperm concentration (a) and mean total
sperm count (b) as a function of year of sample collection presented by Levine et al.
[23]. The decline was especially pronounced for the group of unselected western
(men from North America, Europe, Australia, and New Zealand with no selection
based on fertility) as seen in the graphs with declines of 52.4% and 59.3% for sperm
concentration and total sperm count respectively. Furthermore, Skakkebaek et al.
[45] recently highlighted the issues of male infertility.

A large decrease in fertility rate (average number of births per woman) has been
observed since 1960 as seen in Figure 1.1. Multiple factors affect the fertility rate
such as lifestyle, demographics, and ability to reproduce. Even if the ability to repro-
duce was not the cause of the drop in fertility rate, fertility still plays an increasingly
important role. Fertility naturally plays a key role for couples trying to reproduce,
but it plays an even more important role for society in order to be able to maintain
the population in case fewer people choose to reproduce or they choose to get fever
children.

The study of Levine et al. [23], the data from The World Bank, and the data
from Dansk Fertilittsselskab alltogether highlight the importance of research within
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CHAPTER 1. INTRODUCTION 3

Figure 1.1: Fertility rate (average number of births per woman) between 1960 and 2016.
Data is shown for the world (yellow), North America (purple), Europe and Central Asia
(red), and Denmark (blue). Reproduced from Google Public Data with data from The World
Bank.

Figure 1.2: Meta-study regression lines for mean sperm concentration (a) and mean total
sperm count (b) as function of year of sample collection. The figure has been reproduced
from Levine et al. [23, Figure 3] by permission of Oxford University Press and the European
Society of Human Reproduction and Embryology (ESHRE).

fertility and in particular male fertility.
As mentioned above, there are multiple important parameters affecting male fer-

tility. Good sperm swimming abilities (progressive motility) is a proven predictor of
fertility rate [33, 20]. While comparable historical sperm concentration data exists,
issues with standardisation and reliability of motility analysis has caused an absence
in international comparable historical motility data.

In these studies we focused on the sperm motility analysis requiring replicate
counting of minimum 200 sperm cells [51]. The analysis is both labour intensive and
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Mid pieceHead Tail End piece

SIDE VIEWFRONT VIEW

Figure 1.3: Illustration of human spermatozoa consisting of the head, mid piece, tail, and
end piece (top). The head is illustrated both from a front (bottom left) and side view (bottom
right). Original by Mariana Ruiz Villarreal spermatozoa [Public domain], via Wikimedia
Commons.

prone to high inter-observer variation, though the latter is reducible to an acceptable
range with proper quality control and training [13]. Furthermore the motility analysis
needs to be conducted within an hour of ejaculation putting a strict bound on the
number of samples each laboratory technician can process.

1.1 The sperm cell

Identification of sperm cells is the basis of motility analysis. Figure 1.3 shows an
illustration of a sperm cell consisting of the head, mid piece, tail (flagellum), and end
piece. The sperm cell head should be oval (front view) and normal sperm cells have
been reported to have median length l = 4.1 µm (95% confidence interval 3.7-4.7)
and median width w = 2.8 µm (95% confidence interval 2.5-3.2) [51, pp. 68, Section
2.15.1] or approx. w = 2

3 l. The mid piece should be approximately the same length
as the head, and the tail should be approximately 45 µm long.

Sperm cells swim using their tail for propulsion. The tail beat resembles propa-
gation of a wave in 3D down through the tail. Given a 2D projection of the cell we
mainly observe the motion as a 2D beating from side to side with 2-3 bends on the
tail.
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In order to

1.2 Computer-Aided Sperm Analysis

Research and development of computer-aided sperm analysis (CASA) for assist-
ing laboratory technicians with SQA has been a topic of interest since the 1980s
[26, 28, 25], with the Automated Semen Analyzer (CellSoftTM, 1985) and HTM-
2000 (Hamilton-Thorne) being the first commercially available CASA systems as
described by Horst, Mortimer, and Mortimer [17]. Horst, Mortimer, and Mortimer
[17] likewise described both biological and technical issues related to using CASA
for human SQA such as dirty ejaculates with lots of debris causing mis-classification
of non-sperm objects, high viscosity making representative sampling difficult, and
difficult tracking of sperm cells through collisions causing inaccurate motility esti-
mates. Therefore, no CASA currently exists which is globally accepted and adopted
by human fertility clinics.

Several of the CASA-related issues have been studied with promising results
lately such as the problem of predicting motility grading from sperm cell track kine-
matic metrics [12] and multi-object tracking of sperm cells with collision handling
[12, 49].

Multiple systems have been developed and released during the last few years
such as CEROS II and IVOS II with the Human Motility II software (Hamilton
Thorne), QualiSperm R© (Biophos), Sperm Class Analyzer R© (Microptic), and SQA-
Vision (Medical Electronic Systems), all of which show improvements over previous
iterations of CASA systems.

Machine learning and computer vision has experienced a general improvement
in performance during the past years due to the success of deep learning [21]. These
methods helped improve state-of-the-art performance greatly on problems such as
general image classification [19, 44, 48, 15], traffic sign classification/recognition
[47], and mitosis detection [4]. We hoped to continue these advances by studying
and applying deep learning techniques for solving issues within SQA.

Recently, Palme et al. [34] validated the use of image cytometry and DNA stain-
ing for sperm concentration estimation. We built upon recent successes by combining
machine learning and computer vision with image cytometry for solving problems
within automation of SQA. We did so by using the XC10 image cytometry for auto-
matic acquisition of images and video of human semen samples, which we used as a
basis for the SQA studies presented in this thesis. Figure 1.4 shows an image of the
completely integrated XC10 used for image and video acquisition.

The thesis is structured as follows: First we briefly state the aim of the thesis
in Chapter 2. Second, we describe the three datasets developed for the thesis in
Chapter 3. Third, we go through the methods related to the three studies in Chapter 4.
Fourth, we summarise the three studies conducted in Chapter 5. Fifth, we discuss
the results of the studies in Chapter 6, and finally, we conclude upon the thesis in
Chapter 7.
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Figure 1.4: The XC10 image cytometer



Chapter 2

Aim

The aim of this thesis is to investigate and solve problems related to automating SQA
analyses using new advances within machine learning and computer vision while
taking into account the needs of CM. We investigated three questions with this aim
in mind:

1. How can we detect and segment human sperm cells in a bright field microscopy
image from the XC10 cytometer in less than a second using deep neural net-
works?

2. How can we compute an unbiased estimate of the sperm cell population motil-
ity and can we track sperm cells sufficiently reliably to obtain accurate motility
distributions?

3. How does the automatic motility analysis compare to the manual analysis, and
how precise is it?

These questions are addressed in the three studies briefly described in Chapter 5 and
shown in full in Part II.

7



Chapter 3

Datasets

As part of our work we developed three datasets: the segmentation dataset, the track-
ing dataset, and the clinical motility dataset. In this chapter we briefly describe the
microscope setup followed by a description of the data collection and ground truth
annotations of the datasets. Finally, we briefly describe the ethical considerations
related to data collection and handling.

3.1 Microscope setup

We used the XC10 image cytometer for capturing images and videos with bright field
light setup and 20× optical magnification.

Bright field microscopy makes visual identification of the sperm cells relatively
easy by maintaining the overall visual features intact as long as the sperm cell is close
to being in focus. Using regular light microscopy also means affecting the sperm
cells minimally making motility analysis possible. The down-side of using bright
field is, that the sperm cells change appearance drastically depending on their focus
plane offset. Detection algorithms therefore have to take the change of appearance
into account. The choice was influenced by an original goal of wanting to conduct
morphology (appearance) analysis requiring a good representation of the full sperm
cell. We later abandoned this goal due to an insufficient level of optical magnification
making it difficult to meet the strict standards of morphology analysis described by
the WHO [51, pp. 67-70, Section 2.15].

20× optical magnification yields a good compromise between level of sperm
cell detail and field of view size. The combination of optical magnification and cam-
era used in the XC10 gives a resolution of 0.2269 µm/pixels and a field of view
of 435.6× 326.7 µm. This makes it possible to distinguish sperm cells from debris
while having > 650 sperm cells per field of view for the most concentrated samples.

The camera used by the XC10 is able to capture raw grayscale images at 14-bit
and video at 8-bit depth. We therefore capture images at 8-bit and normalise them
to cover the full 8-bit range in order to be able to use the same detection algorithm

8



CHAPTER 3. DATASETS 9

for both still images and videos. The normalisation gives us images with grey back-
ground and clearly visible cells.

3.2 Segmentation dataset

We developed the segmentation dataset for being able to identify and segment sperm
cells in bright field microscopy images.

Data collection

We collected a total of 35 individually independent samples in two data collection
iterations. In the first iteration we collected four samples during December 2014.
In the second iteration we collected 31 samples. between December 2015 and May
2016. Samples were pools of up to 4 anonymous ejaculates each. Each semen sample
was collected by ejaculating into a plastic container and allowed to liquefy in an
incubator at 37 ◦C before approx 200 µL of each sample was extracted by pipette
and placed in an Eppendorf tube. The samples were mixed thoroughly after being
placed in an Eppendorf tube. The semen samples were cooled to approx 5 ◦C, and
transported to CM in an insulated cooling container with a cooling bag for processing
within 3 days. Samples were destructed immediately after processing.

We mixed a dilution medium of Bicarbonate-Formalin as described by World
Health Organisation (WHO, et al. [51, Section 2.7.5, pp. 51] and added 10 µg/mL
Hoechst-33342 (H342, ChemoMetec) dye to the dilution medium for staining of
DNA as described by Egeberg Palme et al. [8]. We diluted each sample with the
dilution medium to fixate the cells in the sample and to achieve views containing
2-290 sperm cells.

30 µL of the sample was loaded into a 100 µm fixed-depth glass chamber and the
cells were allowed to sediment to the bottom of the chamber. The dilution, fixation
and sedimentation was done to achieve a suitable amount of non-overlapping sperm
cells in each view and to force the sperm cells into the same focus plane. We then
captured multiple spatial views of the sample at different spatial locations and for
each of these views captured a z-stack of images around the focus plane estimated
manually. For each bright field image captured, we also captured a fluorescence
image of the Hoechst dye absorbed by the DNA in sperm cells or other cell types
to aid the annotation process. A 405 nm LED was used to excite the Hoechst dye
and the emitted light was collected using a band pass filter. In the initial iteration we
only saved the z-stack image closest to the focus plane whereas we saved 3-4 images
centred at the focus plane in the second iteration. Using images around the focus
plane allowed us to capture the full range of variation in sperm cell appearance due
to the bright field microscopy choice.
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Figure 3.1: Segmentation GUI. The GUI consists of a window showing the image being
annotated, controls to switch between images, statistics for the dataset, annotation tools, and
a list of annotated sperm and round cells.

Ground truth annotation

The ground truth annotation was conducted in the same two iterations as the captur-
ing of the images. The images of the dataset contain both sperm cells and various
types of debris. The sperm cells are the most important cells in the samples, but
round cells containing DNA (typically larger than sperm cells) are likewise interest-
ing and make up a large portion of the visual variation in the samples. We therefore
annotated both sperm and round cells in all images.

Sperm cells were annotated by their neck point and tip of their head, and round
cells were annotated by an outline of their periphery. In the initial iteration we an-
notated the centre line of the sperm cell tails as well as simple morphological ab-
normalities of the sperm cells. After the initial iteration we decided to focus strictly
on segmentation of the sperm cell heads and therefore only annotated the sperm cell
head and round cell periphery. This choice resulted in a quicker annotation process
making us able to annotate more samples.

Figure 3.1 shows a screenshot of the GUI we developed for manual annotation
of sperm cells. We used this annotation tool to annotate the entire segmentation
dataset. The images of the initial iteration (4 samples, 107 images) were annotated
one by one. In the second iteration we first annotated the image mostly in focus from
each z-stack, copied the annotations to the non-focussed images of each z-stack and
corrected these ground truths where needed.

The result was a dataset of 765 fully annotated images containing a total of
38,708 sperm cells and 1,945 round cells. Table 3.1 shows an overview of semen
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sample-level information about the segmentation dataset.
From the annotations we created automatically generated segmentation masks to

be used as ground truths. In total we had three classes in our masks: background,
sperm cell head, and round cell. Sperm cell head segmentations were created by ex-
ploiting our knowledge of their morphology. An ellipsoid with length l and width
2/3l was drawn for each sperm cell. The length was determined by the distance be-
tween the tip and neck points, which were also the end points of the ellipsoid. Round
cell segmentations were created by filling in the area surrounded by each round cell
periphery annotation. An example image can be seen in Figure 3.2 along with the
corresponding Hoechst image, annotations and automatically generated segmenta-
tion mask. More examples of images and information regarding the segmentation
dataset can be found in the article in Chapter 8.

3.3 Tracking dataset

We created the tracking dataset to develop and study tracking algorithms of sperm
cells with the goal of achieving an accurate and unbiased semen sample motility
estimation.

Data collection

We captured a total of 244 videos of 24 individually independent samples. 21 of these
samples were pooled (from 3 individuals each) and three of the samples were individ-
ual donor samples. The samples were collected between December 2016 and January
2017 and collection followed the procedure of the segmentation dataset: ejaculation
into a plastic container followed by liquefaction on a tilting table. Approx. 200 µL
of each sample was transferred to an Eppendorf tube and transported to CM in an
insulated box containing passive heating elements pre-heated to 37 ◦C. The samples
reached CM where they were placed in an incubator at 37 ◦C and processed for video
capturing within four hours of ejaculation.

Processing consisted of either diluting the sample, conducting a swim-up proce-
dure, or using the raw semen. Dilution was conducted by diluting an aliquot of the
raw semen with Phosphate-buffered saline (PBS) and mixing the sample gently using
a pipette. Five samples having an average number of automatically detected sperm
cells per view of more than 200 were diluted to achieve less than 200 sperm cells per
view. The dilution procedure was conducted to achieve samples with less than 120
sperm cells per view making them suitable for multi target tracking.

The long time since ejaculation caused a decrease in motility and an absence of
highly motile semen samples. Therefore, a swim-up procedure of donor two samples
was conducted to purify the semen resulting in samples with highly motile sperm
cells.

The swim-up procedure was conducted by following Rehfeld, Dissing, and Skakke-
bæk [37]: “Motile spermatozoa were recovered from raw ejaculates by swim-up sep-
aration in human tubular fluid (HTF+) medium containing 97.8 mM NaCl, 4.69 mM
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Figure 3.2: Cutout of example image from the segmentation dataset. The images shown on
order of appearance: bright field image, hoechst image, annotations, and generated segmen-
tation mask. For each sperm cell the tip of the head (red dot), neck point (orange dot), and tail
(blue dots) were annotated. For each round cell the periphery (purple) was annotated. The
segmentation mask shown contain the three classes: background (black), sperm cell head
(grey), and round cells (white).
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KCl, 0.2 mM MgSO4 , 0.37 mM KH2PO4, 2.04 mM CaCl2, 0.33 mM Na− pyruvate,
21.4 mM Na− lactate, 2.78 mM glucose, 21 mM HEPES, and 4 mM NaHCO3,
adjusted to pH 7.3–7.4 with NaOH as described elsewhere [42]. After 1 hour at
37◦C, the swim-up fraction was removed carefully and sperm concentration was de-
termined by image cytometry as described in [9].”. The sperm concentration deter-
mination step was skipped.

We conducted the following procedure when capturing videos of the samples:

1. Take an aliquot of the semen sample

2. Process the sample (dilution, swim-up, or raw semen)

3. Load processed aliquot into 20 µm glass slide and insert glass slide into XC10

4. Capture 8-10 views by conducting the following steps:

a) Move to view position

b) Conduct semi-automatic focusing

c) Capture a video of 512 frames (20.48 seconds)

Ground truth annotation

We annotated individual sperm cell tracks in a subset of the videos captured. For
each video we conducted the following steps:

1. Automatically detect sperm cells using the method of Nissen et al. [31]

2. Perform nearest neighbour tracking

3. Manually fix all “deaths” and “births” of tracks (typically at collision points)

4. Manually playback and fix errors using graphical user interface (GUI)

Before beginning the annotation process we developed a GUI for manually in-
specting and correcting sperm cell tracks. The GUI supported import of the tracks
and detections created by the first two steps of our semi-automatic annotation ap-
proach described above. The GUI is shown in Figure 3.3. We developed the GUI to
speed up the annotation process by having buttons for focusing on short tracks, colli-
sion points, non-edge births of tracks, and frames in tracks without positions detected
as well as key-bindings for all essential buttons.

At first we annotated one view (d01, 3x dilution) for full duration (512 frames)
and one view for half duration (256 frames) taking approximately 8 and 4 hours re-
spectively. The two samples had an average of 41.9 and 47.8 sperm cells per view
respectively. More concentrated samples would take longer to annotate, so we de-
cided to annotate 5 seconds (125 frames) in order to allow for a higher amount of
samples and views to be annotated. Annotation of a single sample view for 125
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Figure 3.3: Tracking GUI. The GUI consists of a video player/frame window, a set of con-
trols for annotating sperm cell tracks and a list of annotated tracks.

frames took between 2 and 8 hours. Towards the end of the annotation process we
needed more full duration data for our analysis, and thus we annotated two additional
samples (p02 and p09) for 512 frames (37 hours of annotation, each)

Table 3.2 shows an overview of information about the tracking dataset. Notice
the average number of detected sperm cells per view ranges from 20.7 to 596.4, and
the annotated videos contain between 21.5 and 122.0 sperm cells per view.

Figure 3.4 shows a visualisation of example image from a video in the tracking
dataset with the annotated tracks for the last 25 seconds. More information regarding
the tracking dataset can be found in the manuscript in Chapter 9.

3.4 Clinical motility dataset

The clinical motility dataset is the third and the last dataset we developed during the
project. We created the dataset to clinically validate the automatic motility analysis
by comparing it with manual motility analysis. The data collection is described in
details in the manuscript in Chapter 10 and I therefore refrain from repeating it here.

3.5 Ethical considerations

All measurements were performed on excess from routine semen analysis from pa-
tients and from quality control donors. The purpose of the data collection was to
evaluate and improve the routine semen analysis and the experiments were therefore
considered a part of the routine analysis. All data was kept either fully anonymised or
pseudo-anonymised. The link between personal information and pseudo-anonymised
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Figure 3.4: Example image from the tracking dataset with annotated sperm cell head posi-
tions (circles) and their tracks for the last 25 frames (lines) overlaid.

data was kept in a secure and access-restricted network drive at GR. Pseudo-anonymised
samples were only processed at GR.
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Label # images Patches ext. # sperm # round Mean length Std. length

1 47 118, 428 4, 721 94 24.93 4.77
2 20 44, 844 199 90 20.69 6.63
3 20 56, 603 2, 963 47 23.20 4.18
4 20 54, 645 886 34 26.06 3.90
p001 13 31, 448 298 69 32.47 6.67
p002 9 24, 000 252 12 24.36 3.84
p003 9 23, 562 303 6 23.97 4.19
p004 11 33, 000 582 47 26.52 6.58
p005 12 35, 140 687 40 24.41 4.81
p006 13 32, 000 227 12 25.51 5.44
p007 12 36, 000 274 104 22.24 5.58
p008 12 34, 566 204 105 24.18 5.16
p009 24 72, 000 488 89 25.40 4.51
p010 24 72, 000 615 150 25.78 5.05
p011 24 57, 675 450 21 25.33 4.29
p012 24 64, 216 465 56 27.17 4.23
p013 24 51, 000 509 6 25.96 3.95
p014 24 51, 000 279 12 26.58 3.85
p015 24 66, 000 369 30 26.21 3.89
p016 27 73, 630 1, 398 30 26.08 4.28
p017 24 54, 000 276 12 26.24 4.37
p018 24 62, 942 622 33 25.82 3.89
p019 24 68, 172 1, 453 71 26.25 4.38
p020 24 55, 164 720 9 25.29 3.79
p021 24 69, 000 759 57 25.04 3.50
p022 25 72, 849 1, 194 81 23.37 4.49
p023 24 69, 000 852 58 25.26 4.03
p024 24 63, 197 513 42 23.81 3.82
p025 24 69, 048 1, 592 75 24.44 3.67
p026 24 64, 887 3, 137 37 23.47 3.45
p027 24 72, 000 6, 524 282 23.02 3.59
p028 24 70, 590 264 51 23.41 4.08
p029 26 61, 189 1, 334 12 26.39 3.61
p030 30 75, 000 519 43 28.56 4.04
p031 27 66, 836 2, 780 28 27.41 3.81
All 765 2, 025, 631 38, 708 1, 945 24.81 4.48

Table 3.1: Sample level information for the segmentation dataset. The following information
is given for each sample: label (1-4 for individual samples and p001-p031 for pooled sam-
ples), number of images (# images) captured, extracted patches from these images (patches
ext.), number of sperm cells annotated (# sperm), number of round cells annotated (# round),
and the mean length (mean length) and standard deviation of the length (std. length) of the
annotated sperm cells. The sperm cells have a mean head length of 24.81 pixels (5.67 µm)
with a standard deviation of 4.48 pixels (1.02 µm)
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Label Processing # views avg. # gt. avg. # det. # annotated frames
125 256 512

d01 8 - 414.5 (±94.0) - - -
d01 3x dilution 8 41.9 (±11.9) 39.4 (±9.7) 7 - 1
d05 8 - 596.4 (±29.3) - - -
d05 8x dilution 8 - 98.1 (±6.9) - - -
d05 Swim-up 10 21.5 (±4.6) 20.7 (±3.2) 10 - -
d16 Swim-up 10 - 59.4 (±13.2) - - -
p02 8 101.7 (±23.7) 103.6 (±18.6) 3 - 1
p03 8 - 143.7 (±13.1) - - -
p04 8 - 118.0 (±21.1) - - -
p06 8 - 303.1 (±26.2) - - -
p06 3x dilution 8 - 101.9 (±19.6) - - -
p07 8 - 238.9 (±32.1) - - -
p07 2x dilution 8 - 119.0 (±10.9) - - -
p08 8 - 81.3 (±16.4) - - -
p09 8 98.7 (±0.0) 153.7 (±52.3) - - 1
p10 8 - 63.9 (±11.4) - - -
p11 8 - 112.0 (±17.9) - - -
p12 8 - 69.6 (±10.3) - - -
p13 8 - 204.2 (±22.7) - - -
p13 3x dilution 8 - 75.6 (±8.9) - - -
p14 8 - 29.4 (±2.9) - - -
p15 8 47.8 (±4.4) 44.3 (±5.3) 7 1 -
p17 8 - 178.3 (±21.1) - - -
p18 8 - 88.2 (±14.7) - - -
p19 8 - 176.9 (±19.2) - - -
p20 8 - 71.1 (±24.0) - - -
p21 8 25.0 (±4.5) 22.8 (±4.6) 8 - -
p22 8 122.0 (±0.3) 119.9 (±14.8) 2 - -
p23 8 - 96.0 (±8.3) - - -
p24 8 - 152.5 (±11.7) - - -

Table 3.2: Tracking dataset information for each sample: label specified as either donor (d)
or pooled (p) sample, sample processing (processing), number of views captured (# views),
average number of ground truth sperm cells annotated per view (avg. # gt.), average number
of automatically detected sperm cells (avg. # det.), and number of views annotated for 125,
256, and 512 frames (# annotated frames). Notice that some samples appear multiple times
since capturing was conducted after multiple types of processing. The column “avg. # det.”
was generated by applying our automatic sperm cell head detector [31] to each frame of each
view and counting the resulting detections



Chapter 4

Method

In this chapter we introduce and describe the methods used in the three studies.

4.1 Deep learning

Deep neural networks (DNN) have been studied since the introduction of backprop-
agation [40] in 1986. However, the methods suffered from being too slow to train
on large amounts of data. Since then, hardware development have increased the
computational power and storage capabilities yielding training speedup and bigger
datasets. The training process gained a speedup factor of up to 100 from using
highly optimised software written for and executed on massively parallel hardware
such as graphics processing units (GPUs) instead of using traditional sequential code
executed on central processing units (CPUs) as described by Ciresan, Meier, and
Schmidhuber [3]. This improvement made it possible for DNNs to be trained on
bigger datasets within reasonable time. Ciresan, Meier, and Schmidhuber [3] re-
ported training times in the orders of hours or days and relative improvements of the
state-of-the-art (at the time of writing) of 30-70% on a wide array of classification
datasets.

The ImageNet Large Scale Visual Recognition Challenge 2010 (ILSVRC2010)
[41] dataset was the first large scale image classification dataset to revolutionise deep
learning research. It contained 1.2 million images for training, 50,000 images for
validating, and 150,000 images for testing. All three subsets had data from 1,000
hand-labelled categories. Krizhevsky, Sutskever, and Hinton [19] were the first to
show the power of training a convolutional neural network (CNN) [22] on the im-
ageNet dataset using GPUs. This is by many considered the break-through study
inspiring researchers to venture into the field of deep learning. Over the years a wide
array of well-known deep CNNs were developed based on the ImageNet dataset such
as VGG Net [44], GoogLeNet [48], and ResNet [15].

18
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4.2 The classification task: Logistic regression

In our work we focus on supervised learning for binary classification in which we
assume a set of N input data points X , and the corresponding class labels Y from an
unknown but fixed distribution p(X,Y ). The task is to learn a model h(·) that can
be used to predict Y for newly observed X such that Y = h(X). A commonly used
assumption is that the data points are independent and identically distributed (i.i.d).

One possible way of solving it is using logistic regression [1], where the likeli-
hood P that h(x) = y given that h(x) captured the unknown distribution is:

P (Y |X) =
{
h(x) for y = 1
1− h(x) for y = 0

(4.1)

Given our assumption of the data points being i.i.d., the following factorisation step
holds:

P (Y |X) =
N∏
n=1

P (yn|xn) (4.2)

Using the logarithm, which is a monotonically increasing function, we optimise the
same objective:

log (P (Y |X)) = log
(

N∏
n=1

P (yn|xn)
)

(4.3)

=
N∑
n=1

log (P (yn|xn)) (4.4)

Maximising the log-likelihood is the same as minimising the negative log-likelihood.
Furthermore we wish to obtain an average loss resulting in:

− 1
N

log (P (Y |X)) = − 1
N

N∑
n=1

log (P (yn|xn)) (4.5)

Given our binary label space we can substitute P (yn|xn) with its definition in 4.1
yielding the final formulation of the average negative log-likelihood loss function:

− 1
N

log (P (Y |X)) = − 1
N

N∑
n=1

[yn log (h(xn)) + (1− yn) log (1− h (xn))]

(4.6)

We
In this thesis we use a CNN model hθ(x) with parameters θ as the hypothesis

model. The loss function is minimised by computing the derivatives of hθ(x) and
changing the parameters accordingly using an optimiser such as gradient descend.
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Figure 4.1: Illustration of our 2-conv CNN for performing binary classifying of an image
patche into the two classes: background (0) and sperm cell head (1).

4.3 Convolutional neural networks

Neural networks are complex models with a high number of parameters. This com-
bination make the networks difficult to train in practice. Therefore, when designing
a neural network we need to constrain the network while maintaining a level of com-
plexity sufficient for representing the unknown distribution in our data.

Given the extent of research within CNNs and the widespread knowledge of the
topic I will adhere from describing the methods in detail and instead give a brief
introduction to CNNs inspired by Goodfellow, Bengio, and Courville [11] and our
work in the first study. A thorough description of deep learning and CNNs in partic-
ular can be found in Goodfellow, Bengio, and Courville [11].

In our first study we developed the 2-conv network seen in Figure 4.1. Based on
this CNN we explain the components of a traditional CNN model.

A CNN is a neural network with at least one convolution layer [22] applying
the convolution operation to its input and optimising the convolution kernel. CNNs
are often used as models when there is a grid-like topology such as time series and
images as described by Goodfellow, Bengio, and Courville [11]. We exploit these
data-dependencies using the convolutional layer to learn patterns in the data while
maintaining a minimal number of parameters through weight sharing. Translational
equivariance is one of the key properties of the convolution layer: A pattern can be
identified irrespective of its location in the input data. The 2-conv network operates
on images, where the pixels of the image resembles a grid-like topology. During
optimisation, the convolutions learn to recognise features such as the edges around
the sperm cell head and the tail irrespective of their location in the image.

In our 2-conv network we have two consecutive “convolution groups” of layers
consisting of a convolutional layer, a rectified linear unit (ReLU), and a max pooling
layer. The convolution operation is a linear transformation of its input. By using the
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ReLU [14] we non-linearly transform the output of the convolution to increase the
complexity of the model.

The max-pooling layer [53] summarises its input by performing the max func-
tion over small rectangular regions of the image. Other pooling functions can be
used such as the average and L2. The pooling operation gives invariance against
slight transformations in the input. In particular, the max pooling layer captures the
most prominent feature within a region. Therefore, features learned by the network
can be offset slightly yet still recognised by subsequent layers. For example, it is
important for the 2-conv network to recognise the round shape of the sperm cell. The
shape is formed by combinations of gradients perpendicular to the edge of the sperm
cell head. Pooling allows the network to recognise the round shape despite slight
distortions of the head.

We compute non-overlapping max pooling operations in the 2-conv network
causing a subsampling of the input. However, both the density and region size of
the pooling operations can be specified. Subsampling the input decreases the num-
ber of operations in subsequent layers making the networks faster in practice. The
speed-up is minimal for a small classification network like 2-conv. However, the di-
mensions of the full images in our segmentation dataset are 1920× 1440 pixels, and
the addition of subsampling pooling made us able to segment the full image using
CNNs in practice.

The 2-conv network has two fully connected layers after the two convolution
groups. These layers summarise the existence of features learned by the convolution
layers by computing a weighted sum of all elements in the input for each element in
the output. Within CNNs these layers are also called the classification layers. The
output size should be scaled according to the amount of variation within the classes of
the dataset. For example, our 2-conv network needs to recognise sperm cells despite
varying appearance due to focus offset and head and tail orientation. Given the linear
nature of the fully connected layer, we place a ReLU to increase the complexity of
the model.

Finally, we use the softmax layer to compute output probabilities for each of the
two classes.

In our first study, we defined the 2-conv-full-up network illustrated in Figure 4.2
conducting dense binary pixel-wise classification of our input images of 1920×1440
pixels. Having described the layers of the 2-conv network we briefly describe the
conversions needed to allow dense pixel-wise prediction as described by [24].

Convolution and pooling layers can be applied to images of arbitrary sizes with-
out parameter modification, whereas fully connected layers are input-size dependent.
The fully convolutional layer [24] is a convolution layer able to substitute the fully
connected layers of the CNN. The two layer types compute identical operations if
the number of convolution kernels match the number of fully connected outputs and
the size of the convolution kernel matches the size of the input to the fully connected
layer. Therefore we can substitute the fully connected layer with a fully convolu-
tional layer (a convolution layer matching the specifications mentioned above). The
2-conv network has a fully connected layer with 100 output elements connected to
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Figure 4.2: Illustration of our 2-conv-full-up CNN for performing dense pixel-wise binary
classification on a full size image outputting a full size.

the output of a max pooling layer with size 13 × 13. We substitute this layer with a
convolution layer having 100 kernels of size 13 × 13 and therefore living up to the
specification of the fully convolutional layer. Similarly, the subsequent fully con-
nected layer is substituted by a fully convolutional layer removing the dependency
on input image size. The resulting network is called 2-conv-full in our first study.

The 2-conv-full network accepts images of arbitrary size as input and outputs
probability maps. However, the output of the network is down-sampled due to the
use of max pooling layers. In order to achieve pixel-wise prediction we introduce
the transposed convolution layer (also called de-convolution) as described by Long,
Shelhamer, and Darrell [24]. The transposed convolution operation is a matrix multi-
plication conducting the inverse of the convolution. By appropriately initialising the
size, stride, and weights of the transposed convolution the layer conducts upscaling
of its input resulting in a dense pixel-wise prediction map. The 2-conv-full network
is down-sampled by a factor 4. In order to upscale the output by a factor 4, we need
to use kernels of size 8× 8 and stride 4. The transposed convolution layer is inserted
between the last fully connected layer and the softmax layer.

4.4 Manual motility analysis and grading

Manual motility analysis consists of assessing the motility grade of individual sperm
cells in order to obtain a motility grade distribution.

Motility grading was previously defined based on general speed of progression
[29, 50]: A) Progressive motility (≥ 25 µm/s), B) Slow progressive motility (5 −
−25 µm/s), C) non-progressive motility (< 5 µm/s and tail beat), and D) immotility
(no tail beat). The use of general speed of progression made it difficult for the human
eye to differentiate between the four motility grades during manual motility analysis
as described by Cooper and Yeung [5]. Therefore, grade A and B were merged and
the motility grading was verbally defined as according to World Health Organization,
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et al. [51, Section 2.5.1, pp. 22]:

• “Progressive motility (PR): spermatozoa moving actively, either linearly or in
a large circle, regardless of speed.

• Non-progressive motility (NP): all other patterns of motility with an absence
of progression, e.g. swimming in small circles, the flagellar force hardly dis-
placing the head, or when only a flagellar beat can be observed.

• Immotility (IM): no movement.”

Thorough guidelines for how to conduct manual motility analysis are described
by World Health Organization, et al. [51, Section 2.5, pp. 21-26]: We briefly sum-
marise the steps in the manual motility analysis:

1. Take two aliquots of 10 µL and place the droplets on a glass slide

2. Cover the droplets with a 22× 22 mm cover slip avoiding air bubbles to get a
suspension chamber approx. 20 µm deep

3. Place the glass slide on a heated (37 ◦C) microscope stage

4. Assess whether the two aliquots look similar. Go to step 1 if this is not the
case.

5. Allow the sample drift to settle

6. Count/estimate the motility grade of 200 sperm cells in each aliquot

7. Check if the results are within the defined margins of agreement based on the
mean and difference of the most frequent motility grade. Go to step 1 if this is
not the case. For more details on the margins of agreement see World Health
Organization, et al. [51].

4.5 Sperm kinematic metrics

In this thesis we employed a set of kinematic metrics measured for quantifying the
motion of a sperm cell. These metrics are globally agreed upon and used by CASA
systems and researchers within the field of motility analysis as described by World
Health Organization, et al. [51].

Figure 4.3 shows an illustration of the basic kinematic metrics and the variables
used for computing the metrics: curvilinear velocity (VCL) is the velocity along
the curvilinear path, average path velocity (VAP) is the velocity along the average
path, straight-line velocity (VSL) is the velocity from the first to the last track point,
amplitude of lateral head displacement (ALH) is the distance between the average
and curvilinear paths, and mean angular displacement (MAD) is the average angle
between the velocity vectors for two consecutive time steps over time. Based on
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the mentioned parameters, a set of descriptive variables can be computed: linearity
(LIN, VCL/VSL) is the degree of linear movement along the curvilinear path, wobble
(WOB, VAP/VCL) is the degree of side-movement, straightness (STR, VSL/VAP)
is the degree of linear movement along the average path, and beat-cross frequency
(BCF) is the rate at which the curvilinear and average paths cross.

The motility gradings are defined from general speed of progression, linearity of
movement, and tail beating. General speed of progression can be determined by two
velocity metrics VSL, and VAP. Linearity of movement is measured by LIN. Tail
beating cannot be measured from the sperm cell head position. However, there is
no consensus on how to compute VAP in practice whereas VSL is clearly defined.
Therefore, we used the VSL, and LIN (VCL/VSL) metrics in studies 2 and 3.

Note that the metrics described are highly dependent of frame rate [7, 2] limiting
the application of CASA based findings to CASA systems with similar frame rate.

4.6 Conversion of metrics to motility grade

Sperm kinematic metrics are known to correlate with fertilisation rates [16]. How-
ever, we need to convert the kinematic metrics to motility grade when using CASA
systems for motility analysis in clinical practice.

The conversion has traditionally been based on gating/thresholding of metrics
such as VSL, VCL, and STR and computing the percentage of cells within each gate
[29, 5, 12].

Recently, Goodson et al. [12] developed the CASAnova algorithm for classify-
ing motile cells based on VAP, VSL, VCL, ALH, and BCF into five classes with an
accuracy of 89.9%. Their model consists of a decision tree with four support vec-
tor machines trained from a dataset of tracks with manually classified labels. Their
analysis was conducted at a frame rate of 60 Hz whereas the XC10 captures videos at
25 Hz, therefore we cannot directly use their model due to the metrics’ dependency
on frame rate.

In our third study we follow the work of Cooper and Yeung [5] and base our
motility grading on thresholding of VSL.

4.7 Multi-target tracking

Multi-target tracking is the task of tracking multiple individual objects over time
which is required for conducting motility analysis. The task is a concern and issue in
CASA systems due to collisions between sperm cells causing incorrect tracking of
cells [17].

Recently, Smal and Meijering [46] evaluated a set of nine multi-target trackers
for particle tracking in microscopy. The trackers were evaluated on a set of scenarios
with varying type of motion, density of objects, and rate of missing and spurious
detections.
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Figure 4.3: Illustration of sperm kinematic metrics. The figure is reprinted with permis-
sion from the World Health Organisation [51, Fig. 3.3, pp. 138, Copyright World Health
Organisation (2010)].

The Noniterative Greedy Algorithm for Multiframe Point Correspondence (NGA)
[46, 43, 18] was consistently amongst the top scoring algorithms of the challenge.
Therefore, we used this multi-target tracking algorithm (linker) to link detected sperm
cells between consecutive frames.

The linker uses a sliding window approach sequentially linking frames using a
frame buffer of size n. At frame i the linker has a set of tracks and a set of detections
for frame i + 1. The linker considers a set of track extensions between detections
from frame i−n+2 to detections in frame i+1, then i−n+3 to i+1 until reaching
i to i+ 1. The individual cost of each of possible assignments is computed based on
a mixed-motion model defined as a weighted sum of linear and random motion. The
assignments are made based on a greedy minimisation of total assignment cost.

In order to use this method, a set of parameters need to be defined. These param-
eters are: n, diffusion gate, directed motion gate, minimum track length, initial speed
of new tracks, cost of missing detection, cost of track death, and cost of birth.

These parameters are highly application dependent. Our choices of parameters
are described in study 2 [30].
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Summary of studies and results

5.1 Study I

In our first study [31] “Convolutional Neural Networks for Segmentation and Object
Detection of Human Semen” we investigated how to use CNNs for detecting and
segmenting sperm cells in bright field microscopy images from the XC10 of human
semen samples. The method studied comprised of two steps: pixel-wise segmenta-
tion and conversion of said segmentation to objects. CNNs were used for conducting
the pixel-wise segmentation, and connected components and filtering based on the
component area was used for converting the segmentation to objects. We based the
studies on the segmentation dataset described in Section 3.2.

We designed three types of CNNs able to train from one of three possible setups
each: an image patch and a ground truth label, a full image and a down sampled label
image, or a full image and full label image. The networks trained from patches were
regular CNNs whereas the networks trained from full images were FCNs. All net-
works and an existing baseline sperm detection algorithm described by Ghasemian
et al. [10] were trained and tested on the segmentation dataset and compared with
each other.

We found that training from full images gave the highest pixel-wise accuracy,
precision and recall, and that deeper networks conducting down-sampling as part of
the filter bank construction needed up-sampling layers to compensate for the loss of
information. Networks with relatively few parameters (20 convolutions per convolu-
tion layer) performed almost the same on the train and test dataset whereas a network
with increased parameters overfitted to the train dataset though it still performed best
on the test dataset.

The baseline method achieved a remarkable difference in performance between
the train and test dataset despite the fact that the thresholding area was the only
parameter trained. This could indicate a difference in the distribution of variation
between the splits of the dataset, which the CNNs had no problem capturing. All our
CNNs outperformed the baseline method both on segmentation and object detection
performance. Our best performing network achieved a mean intersection-over-union

26
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of 0.7387, 93.87% precision and 91.89% recall on the test dataset. This network had
an average prediction time (per image in the dataset) of 0.364 seconds using a single
Titan X GPU.

The main contributions of the study were the definition of CNNs and FCNs for
pixel-wise segmentation of small objects (sperm cells) in large images and how to
train these networks best for both segmentation and object detection.

5.2 Study II

In our second study [30] “Estimation of motility distribution: A study of linearity for
human sperm motility analysis” we investigated how to conduct an unbiased estima-
tion of the motility distribution of a population from a subset of observations. The
study was based on using the linearity metric for describing the motility distribution
of human sperm cells, and we used the tracking dataset described in Section 3.3 for
testing the hypotheses of our study. Furthermore, we introduced a fully automatic
detection and tracking system based on [31] and the NGA tracking algorithm.

First, we studied metric behaviour, object interaction, and spatio-temporal cell
selection to uncover dependencies leading to biases in linearity measurements. Hy-
potheses for each of the topics were investigated and the following observations were
made and 7 guidelines were proposed:

• The linearity metric depends on the observation duration. Therefore, the ob-
servation duration should be pre-defined and a potential clinical application
should be validated with the specific pre-defined observation duration.

• The variation in linearity measured for a sperm cell depends on the duration
of the observation. The minimal variation was observed from a duration of at
least 2 seconds.

• Only sperm cells tracked for the full duration should be included in the analysis
due to the linearity dependency on duration described above.

• Only cells starting at a location further away from the edge of the view than a
distance d should be included. d depended on the duration and was based on
the movement speed of the sperm cell population analysed.

• Cells with low motility collided less with other cells than cells with high motil-
ity. Therefore, the tracker needs to be capable of handling cell collisions,
though the linearity of the single cell was not affected by collisions.

• No global linearity drift was observed during 20 second videos.

• Aggregation of motility statistics across multiple views improved the estima-
tion of the global motility.
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Second, we compared linearity distributions computed on the annotated ground
truth tracks (theoretical) and on tracks generated using the automatic method intro-
duced (practical). By following the proposed guidelines we achieved nearly identical
theoretical and practical linearity distributions.

The seven guidelines proposed based on observations of (real-world) data was
the main contribution of the study.

5.3 Study III

In our third study [32] “Evaluation of a new integrated and fully automated system
for sperm motility analysis” we evaluated the automatic motility analysis introduced
in our second study [30] in combination with the XC10 in a clinical setting. As part of
the study we developed the third dataset (Section 3.4) consisting of data from manual
and automatic motility analysis of 77 human semen samples, of which 53 samples
were analysed with the automatic method more than an hour after the manual analysis
was conducted, and 24 samples were analysed with less than an hour between the two
analyses.

The evaluation consisted of a comparison between manual and automatic motility
analysis, estimation of thresholding parameters for converting the sperm kinematic
parameter straight-line speed (VSL) to motility grade (AB, C, and D), and an inves-
tigation of the variation in automatic motility read-outs. Bias and variation was es-
timated using Bland-Altman analysis/plots, and we conducted both 1- and 2-second
analysis for all experiments.

First, we conducted a comparison between manual and automatic analysis using
the WHO defined AB threshold (5 µm/s) revealing a significant bias between the two
analyses.

Second, we optimised the AB and D thresholds to achieve minimal (non-significant)
bias. With these thresholds we likewise achieved a very good linear correlation be-
tween manual and automatic read-outs of AB% and D%. These thresholds were used
throughout the rest of the study.

Third, we investigated the temporal, intra-aliquot, variation in automatic motility
read-outs We observed a low temporal variation in read-outs, though the temporal
variation was slightly lower in 2- than 1-second analysis. Intra-aliquot variation was
slightly higher than temporal variation.

Fourth and last, we investigated the inter-aliquot variation in both manual and
automatic motility read-outs. The variation of manual analysis was acceptable (close
to ±10 % as according to [17]) whereas the variation of automatic motility analysis
was considerably higher. The variation was caused by a subgroup of samples having
higher motility in the first of the two aliquots measured. The variation in automatic
analysis was however lower than for manual analysis when only including samples
adhering to the agreement between repeated measures as employed in the manual
analysis.
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In the study we achieved different optimal VSL thresholds for 1- and 2-second
analysis indicating a relationship between the two. However, when investigating
temporal variation of AB% we observed no significant bias between 1- and 2-second
analysis.

The main contributions of the study were the optimised thresholds for converting
the kinematic parameter VSL into motility grade resulting in unbiased results com-
pared with manual motility analysis and the investigation of variation from read-outs
of the automatic method.



Chapter 6

Discussion and future work

In this chapter we discuss the results presented in our studies and present ideas for
future work.

6.1 Detection of sperm cells

From our study on detection of sperm cells [31] we obtained a method capable of
segmenting and detecting sperm cells fast and reliably, though both precision and re-
call achieved by the method could be improved. By combining the detection method
with the NGA linker, tracking sperm cells, and computing linearity distributions we
obtained linearity distributions almost identical to the theoretically possible distri-
butions. This indicates that our detection method in combination with the linker is
sufficient for solving the task of estimating motility distributions of human semen
samples despite not achieving perfect precision and recall performance.

The CNNs were developed specifically for segmentation of human sperm cells
in our study. However, the CNNs could be used for segmenting other objects of sim-
ilar size. This would “only” require re-training on a suitable dataset. CM develops
systems for counting and quantifying parameters for a wide array of biological cell
types. These studies can help both CM and others to develop systems capable of
segmenting small objects.

Our choice of segmentation method combined with the simple conversion to ob-
jects has one big drawback: Overlapping and adjacent sperm cells are recognised as
one big cell. The issue was non-existent when working on the segmentation dataset
due to a lack of overlapping and adjacent sperm cells. However, upon studying the
tracking dataset we became aware of the severity of the issue when detecting moving
and colliding rather than fixated cells. There are multiple ways of possibly fixing the
drawback in the method. One approach is to change the post-processing of the seg-
mentation. This would require a study of how to correctly split merged sperm cells
based on the probability output of the CNN. The second approach is to include data
for adjacent sperm cells in the training dataset, annotate a separation line between ad-
jacent sperm cells, and train the CNNs to recognise the separation line between the
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sperm cells correctly. This approach was used by Ronneberger, Fischer, and Brox
[39] for training the U-net to recognise separation borders between various (larger)
biological cells. The third approach is to design the CNN to solve the instance-aware
(semantic) segmentation task. This task has received a lot of attention recently re-
sulting in multiple new instance-aware CNNs [6, 52, 36, 35].

6.2 Motility estimation and tracking of sperm cells

In our second study [30] we thoroughly investigated how to conduct unbiased esti-
mation. One of the key points from the study was that we obtain minimal variation
in linearity using 2-second observations. A study by Mack, Wolf, and Tash [25]
found that curvilinear velocity (VCL) and VSL means (LIN is the ratio between
these metrics) were stable for 5 and 7 trackpoints at 30 frames per second, respec-
tively, contradicting our observation. One key difference between the two studies
is, that Mack, Wolf, and Tash [25] based their study on five “representative” sperm
cell tracks whereas our studies were based on analysis of several thousand sperm cell
tracks.

Currently, the WHO recommends using 1-second analysis [51, Section 3.5.2.2, pp.
138], which reportedly should be sufficient for achieving accurate results. When
summarising linearity metrics for all sperm cells in the semen samples, we only ob-
served little difference between the 1- and 2-second analysis in our study [30]. This
indicates that the limited variation from 1-second analysis is sufficient for obtaining
accurate motility estimates.

According to our reported guidelines we only include sperm cells starting inside
a specified field of view. This field of view decreases with increasing observation
duration leaving fewer samples for inclusion. Furthermore, we only include sperm
cells tracked for the full observation duration. In practice it is harder to track sperm
cells for 2 than 1 seconds resulting in fewer tracks living up to the restriction of be-
ing traced for the full duration. To summarise, these two requirements cause us to
exclude more semen samples when using 2- than 1-second analysis. Therefore we
would have to analyse more views using a 2-second analysis than using a 1-second
analysis. This observation was very clear in our third study [30] where we had to
exclude several semen samples for the 2-second analyses conducted. The choice
of whether to use 1- or 2-second analysis depends on the purpose of the analysis.
1-second analysis should be sufficient for routine motility analysis of semen sam-
ples. 2-second analysis is preferred when we wish to obtain an accurate estimate of
individual sperm cell traits such as when researching effects in motility caused by
chemicals [38].

6.3 Kinematic metrics to motility grading

In our third study [32] we compared manual and automatic motility analysis and opti-
mised the VSL thresholding parameters used for converting VSL to motility grading
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achieving comparable grading results with no bias. In other words we optimised
the thresholds based on a set of semen population statistics measured on two differ-
ent aliquots of the same samples. By doing so we include possible side effects of
sample handling and differences in measurements by the two methods. This optimi-
sation method requires a significant amount of samples given the large variation in
motility between semen samples and the practical issues related to sample handling.
Currently, we only optimise the thresholds based on 24 and 20 samples for 1- and 2-
second analysis, respectively. We will have to collect more data for a higher amount
of samples to achieve a confident identification of thresholds.

A different way of optimising the thresholds is to look at the motility grading of
the individual sperm cell eliminating the side effects of sample handling. Trained
laboratory technicians could manually grade the several thousand sperm cell tracks
of our tracking dataset. Thereafter, we could study the relationship between sperm
kinematics and motility grade for videos captured by the XC10.

Our automatic motility analysis method relies solely on VSL for motility grading.
However, tail beating is one of the differentiating factor between non-progressive (C)
and immotile (D) sperm cells during manual motility grading. Therefore it could be
beneficial for the automatic analysis to add an estimation of the location of the sperm
cell tail. The tail location could likewise be used for indicating general direction of
movement when tracking sperm cells. This could improve the tracking especially
when solving collision cases. Recall that a minor part of our segmentation dataset al-
ready has tails annotated, and thus one could conduct initial studies of tail orientation
estimation based on existing data.

6.4 Clinical perspectives

From a clinical point of view we have developed and evaluated an automatic system
for conducting motility grading. However, we need to conduct more data collection
before being certain that our optimised thresholds are widely applicable and there-
fore usable in routine analysis as described above. The high intra-aliquot variation
observed in automatically obtained read-outs is another concern. During the analysis
we identified a subgroup of samples having higher motility in the first than second
aliquot most likely caused by drift in the samples. By using the automatic system
for conducting the motility analysis we will free up time for the technician. Instead,
the technician can focus on sample handling to achieve similar and representative
aliquots with minimal drift. However, we need to conduct further studies before
concluding whether the intra-aliquot variation poses a problem.

In our studies we have focused on using our detection method for motility analy-
sis. However, detection of sperm cells is also useful for sperm cell concentration and
research within SQA. Therefore, the outcome of our studies can also be used to aid
researchers in conducting research within SQA.
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Conclusion

In this thesis we presented our studies on automatic motility analysis of human
sperm. The studies were based on CM’s need for developing image and video anal-
ysis for the XC10 and GR’s need for automating SQA. The aim of the studies was
presented in Chapter 2 and comprised of three questions related to detection and seg-
mentation of sperm cells in less than a second, tracking of sperm cells and obtaining
unbiased estimates of heir motility, and evaluating the resulting system for automatic
motility analysis of human sperm in a clinical setting. We conducted and presented
three studies to answer each of these questions.

First, we presented a method for detecting and segmenting sperm cells using
CNNs with high precision and recall sufficiently fast [31].

Second, we recommended a set of guidelines to follow in order to conduct unbi-
ased motility estimation, and we combined our sperm cell detector with an existing
tracking algorithm resulting in reliable estimates of motility distributions [30].

Third and last, we evaluated the proposed method for automatic motility estima-
tion by comparing it with manual motility analysis resulting in comparable motility
estimates. The system can help researchers within human SQA, thought more data
needs to be collected before concluding whether the system can be used in routine
motility analysis of human semen samples.
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Abstract. We compare a set of convolutional neural network (CNN)
architectures for the task of segmenting and detecting human sperm cells
in an image taken from a semen sample. In contrast to previous work,
samples are not stained or washed to allow for full sperm quality analysis,
making analysis harder due to clutter. Our results indicate that training
on full images is superior to training on patches when class-skew is prop-
erly handled. Full image training including up-sampling during training
proves to be beneficial in deep CNNs for pixel wise accuracy and detec-
tion performance. Predicted sperm cells are found by using connected
components on the CNN predictions. We investigate optimization of a
threshold parameter on the size of detected components. Our best net-
work achieves 93.87% precision and 91.89% recall on our test dataset
after thresholding outperforming a classical image analysis approach.

Keywords: Deep learning · Segmentation · Convolutional neural
networks · Human sperm · Fertility examination

1 Introduction

Sperm Quality Analysis (SQA) involves measuring concentration, morphology,
and motility [13] of sperm cells. For the application to animal sperm cells, there
exist a number of commercial Computer-Aided Sperm Analysis (CASA) systems,
such as the Hamilton-Thorne IVOS-II and CEROS-II 1 and the Sperm Class
Analyzer2.

1 http://www.hamiltonthorne.com/.
2 http://www.micropticsl.com/products/sperm-class-analyzer-casa-system/.
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Fig. 1. Examples of debris, variations, and morphological abnormalities: normal sperm
cell (a, b), aggregated cells out of focus (c), agglutinated cells (d), round cells (e, f),
headless sperm (g), sperm head seen from the side or morphologically abnormal (h, i),
circular tails (i), and other types of artifacts and debris (b, f, j).

Fig. 2. 1200 × 300 pixel cut-out of image from the dataset

Human semen samples have a significantly lower quality of sperm cells com-
pared to most animals [7], which increases the accuracy demand on the analysis.
Moreover, human semen is often cluttered with debris and cells other than nor-
mal mature sperms. Figure 1 shows examples of typical debris, variations, and
morphological abnormalities of human sperm samples. Figure 2 shows a section
of a typical image.

In practice, staining and smearing are often used for preparation of samples
to highlight specific properties of the cells [1–4,10], but the sample needs to be
in its natural form for motility estimation. This article focuses on the first step
of SQA, image segmentation and detection of non-stained human sperm cells
as analyzed by Ghasemian et al. [4] and Hidayahtullah and Zuhdi [6]. These
algorithms apply classical image analysis techniques to solve the problem. To
our knowledge no deep learning techniques have been applied yet.

Our approach focuses on deep convolutional neural networks (CNN) to seg-
ment the sperm cells in the image. There are three main challenges in this
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Fig. 3. Illustration of the 2-conv CNN

approach: Firstly, every pooling layer in a CNN reduces resolution by at least
50%; after three layers of pooling, every pixel of the result encodes the infor-
mation of an 8× 8 area of the original image. Secondly, CNNs are often trained
on image patches, however there is a huge class imbalance between background
and sperm pixels, where sperm pixels are significantly harder to detect. Lastly,
we need to cluster the segmentations to objects. Imperfect predictions of the
networks often lead to spurious detections, which need to be removed. One way
to do this is to use thresholding on the size of clusters, leading to an arbitrary
threshold parameter. This parameter needs to be chosen carefully.

We investigate possible solutions to these challenges. While using max-
pooling layers is possible without reducing resolution [5], an exponential amount
of time in the number of pooling layers is required. This makes it infeasible
in practice as the results have to be computed quickly enough to allow video
analysis. We follow Long et al. [9] and investigate up-sampling on the output of
the CNN during training and testing. Ronneberger et al. [11] proposed a more
complex architecture, which we disregard since predictions would be too slow for
our application. Further, we compare training on image patches with training
on the full images, where class-labels are re-weighted to correct the class-skew.

For comparison we implemented the sperm head detection method proposed
by Ghasemian et al. [4]. This method has a similar threshold parameter as our
method which has to be adapted for a fair comparison. For this, we propose a
way to adapt the thresholding parameters using the product of precision and
recall on the final detections.

The paper is organized as follows: Sect. 2 describes the dataset and the CNN
architectures used. Experiments are described in Sect. 3. Results are given in
Sect. 4 and discussed in Sect. 5. Finally, we conclude in Sect. 6.

2 Method

Dataset. We have constructed a dataset of 765 grayscale images of 35 indepen-
dent sperm samples. The 35 samples were individually diluted using a solution of
Bicarbonate-Formalin (as devised by WHO [13]) to get an appropriate amount
of cells in each image (between 2 and 290 sperm cells) and to fixate them. Fixa-
tion facilitates sedimentation of the cells to the bottom of the counting chamber,
ensuring that all cells are roughly in the same focal plane. In order to have cells
both in and out of focus, reflecting the optical variation, Z-stacks of images were
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acquired. The images were acquired using an image cytometer with 20 × optical
magnification and a resolution of 1920× 1440 pixels (0.2 µm/pixel). The image
intensities have been quantized from 14- to 8-bit images. In each image the
intensities where normalized to lie between zero and one.

The images were annotated by experts and registered into two classes: back-
ground and sperm cells. Round cells form an important part of the background
and were therefore also annotated. The tip of the head and the neck point was
registered for each sperm cell while the circumference was annotated for each
round cell. Pixel-segmentation ground truths are generated by creating an ellipse
at the center of each sperm cell head with radius r1 = 1

4 lcell and r2 = 2
3r1 where

lcell is the length of the cell head.
We split the samples into 70% train and 30% test data based on stratified

sampling on the average number of sperm cells in the full images of each sample.
This ensures that images from the same sample are part of the same split as
they contain correlated data. Hence, one sample being part of testing data is
never represented in the training data.

From the training dataset we generated an additional dataset of extracted
patches from the images using the annotated classes. This patch dataset contains
63×63 pixel patches which are labelled by their ground truth in the center pixel.
The size of the patches is chosen to allow the entire head, which is typically
25 pixels long, and a small part of the tail to be included. From each image,
we extract up to 3,000 patches, split into 40% sperm cells, 40% background
and 20% round cells. The numbers were chosen to cover the variety of debris
in the background class (round cells contribute a lot to the variability of the
background). Random rotation and flipping is applied before extracting each
patch. Table 1 shows statistics for the resulting datasets. Note that the dataset
contains a total of 38,708 sperm cells of which 23,997 are included in the train
set and 14,711 are included in the test set.

Table 1. Data statistics

Statistic Train Test Total

Images 540 225 765

Sperm cells 23,997 14,711 38,708

Patches 1,424,341 601,290 2,025,631

Networks. We define seven networks to test against each other. The first net-
work is called 2-conv. It is defined for input patches and illustrated in Fig. 3. It is
a standard CNN with two convolutional, ReLU and max-pooling layers followed
by two fully connected layers separated by another ReLu layer and including 50%
dropout during training. The network 3-conv is obtained by adding an additional
set of convolution, ReLU, and max-pooling layers. The networks are defined with
receptive fields of size 63 × 63 using 20 filters in each of their convolution layers
and 100 filters in their fully convolutional layer.
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Table 2. Experiment results mIU , threshold, and mpred for all eight methods

Method mIU Threshold mpred (s)

2-conv 0.6658 200 0.145

2-conv-full 0.7080 200 0.143

2-conv-full-up 0.6805 250 0.143

3-conv 0.6556 200 0.119

3-conv-full 0.6497 150 0.119

3-conv-full-up 0.6661 300 0.116

3-conv-full-up-inc 0.7387 150 0.364

Baseline [4] 0.5679 400 -

For prediction on the full images, the fully connected layers are substituted
with fully convolutional layers as described by Long et al. [9] to allow for faster
computation. As each max-pooling layer divides the spatial resolution of the
output by a factor of 2 in each dimension, we further perform bilinear upscaling
of the network output probabilities to obtain a pixel-wise segmentation.

To compare whether training on full images is beneficial compared to patch-
based training, we define the architectures 2-conv-full and 3-conv-full, which
have the same structure as 2-conv and 3-conv in the prediction phase and are
trained on full images with the final up-sampling removed. Finally, the architec-
tures 2-conv-full-up and 3-conv-full-up also incorporate the bilinear up-sampling
into the training process. The networks trained on full images use a receptive
field of size 64 × 64 and the same number of filters3. We further add a network
3-conv-full-up-inc with the same receptive field size but with 64, 128, and 256 fil-
ters in the convolution layers and 1024 filters in the fully convolutional layer. We
omit the network 2-conv-full-up-inc due to limitations in the framework used.

When testing the networks, we perform post-processing of the full size output
probabilities in two steps: Firstly, we choose the most probable class as output for
each pixel. Secondly, we cluster pixel-wise segmentation to objects by computing
the 8-neighbourhood connected components and removing components smaller
than a threshold t. The value of this threshold is found in Sect. 4.

3 Experiments

The 2-conv and 3-conv architectures have been trained on the patch dataset and
tested on the full image dataset, whereas all other networks have been trained
and tested on the full image dataset. The outputs of 2-conv-full and 3-conv-full
are smaller than the label masks of the full images. We therefore downsample
the label masks by factors 4 and 8 respectively. This is done by taking every 4th
or 8th pixel corresponding to the center of the receptive field of the output.

3 The difference comes from the fact that it is easier to define a center-pixel in 63 × 63
receptive fields.
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All networks are trained by optimizing the cross-entropy between the pre-
dicted and ground truth label. To compensate for the class skew in the full
images during training we re-weight the classes according to their distribution.
The weight wi of class i is defined as wi = 1

ni

∑
j

1
nj

where ni is the number of

pixels belonging to class i. Omitting the re-weighting led to far inferior results
classifying everything as background.

The architectures have been trained for 200 epochs using the Adam solver
[12] with mini-batches of 256 patches or 1 full image (1920 · 1440 “samples”).
For training we chose learning rate α = 0.001, moment 1 β1 = 0.9, moment 2
β2 = 0.999, and ε = 10−8. We implemented the networks using Caffe [8], and
the experiments have been carried out using a single Titan X GPU.

The baseline method [4] consists of three major steps: Noise reduction, object
region detection, and sperm head localization. The method assumes that all suf-
ficiently large object regions are sperm cells and therefore filters out all object
regions smaller than a chosen threshold. This threshold is crucial for the perfor-
mance of the algorithm and needs to be chosen carefully.

On an object level we are interested in finding each sperm cell. For this
purpose we use the two measures precision = TP

TP+FP and recall = TP
TP+FN ,

where TP is the number of true positives, FP is the number of false positives and
FN is the number of false negatives. A predicted sperm cell is categorized as TP
if it covers more than half the area of a ground truth sperm cell. Each predicted
cell can only count as one positive, i.e. a predicted cell covering more than half
the area of two sperm cells counts as one true positive and one false negative. We
evaluate precision and recall for multiple thresholds on the training data to get
a precision-recall (PR) curve for every method. We choose the threshold value
that maximizes the product between precision and recall.

Mean intersection over union (mean IU) mIU is used to quantify the pixel-
wise segmentation performance as described by Long et al. [9]:

mIU =
1

2

∑

i

(
pii∑

j(pij + pji) − pii

)

where pij is the number of occurences of class i predicted as class j. We have
chosen this measure since it is invariant to the aforementioned class skew.

Finally, fast computations is one of the requirements for automatic SQA.
We therefore record the execution time of computing a prediction and object
removal on all 765 full images and compute the mean execution time mpred per
image. Our baseline method implementation is not as optimized as our networks
and therefore we omit the results.

4 Results

Results of the mean IU mIU , thresholds found by maximizing the product
between precision and recall on training data, and mean execution time mpred

for each method are given in Table 2.
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Fig. 4. Precision-recall graphs for (a) train and (b) test for all networks. 2-conv net-
works are plotted using fully-drawn lines and 3-conv networks using dashed lines. Same
colours of lines indicate same parameters. The black circles indicate the point on each
graph that corresponds to the threshold t reported in Table 2, while the black crosses
indicate the points for t = 150.
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Generally when considering mIU , the networks trained on full images with
up-sampling perform better than the networks trained on patches. All networks
perform better than the baseline method. Training on full images without up-
sampling leads to better results for 2-conv-full but worse for 3-conv-full. The
2-conv networks perform better than their 3-conv equivalents. The network 3-
conv-full-up-inc performs best, but it also has a considerably higher execution
time mpred = 0.364 than the other methods spanning the range of 0.116–0.145
seconds per image.

The results for the object detection are given in Fig. 4. The figure shows the
precision-recall graphs for (a) train and (b) test for all methods. The graphs have
ends due to the smallest and largest thresholds considered (0–1, 000). We plot
2-conv networks using fully-drawn lines and 3-conv networks using dashed lines.
Same colours of lines indicate same parameters. The black circles indicate the
point on each graph that corresponds to the threshold reported in Table 2, while
the black crosses indicate the points for a threshold of 150. The baseline performs
considerably different on the train and test set even though there is no training
involved apart from the choice of threshold. It performs considerably worse than
our networks except 3-conv-full. The best method is 3-conv-full-up-inc having
93.87% precision and 91.89% recall on the test set using threshold 150. While
some overfitting can be seen between training and test, it still outperforms the
other methods.

5 Discussion

Our results show that using neural networks is beneficial compared to the clas-
sical approach. The large difference in baseline performance indicate that there
is a large variation between samples. We believe that we have captured the vari-
ation of a sperm cell in our train and test sets, but we have not captured all
possible combinations of cells in an entire image. Given our limited number of
individual samples, there are some cell concentration differences. The baseline
performance difference is likely caused by these cell concentration differences.
Our networks are not affected by these differences except to the degree expected
from overfitting. All networks except 3-conv-full-up-inc perform almost the same
on train and test data whereas 3-conv-full-up-inc is showing clear signs of over-
fitting. This indicates that our networks are sufficiently complex to cover the
variation of the data and that even larger networks are unlikely to generalize
better. As we have not used the test set for model selection, we can expect the
performance on the test set to be close to the true performance.

Up-sampling has different effects on mean IU and object detection. For mean
IU detecting object boundaries is important. As up-sampling is equivalent to
blurring it is not beneficial for mean IU when the model is already able to
accurately describe the shape of the objects. This can be seen in the difference
in its effect on networks with two and three max-pooling layers. We hypothesize
that training using up-sampling gives us true predictions with cluster areas closer
to the true size of sperm cells. This makes it easier to distinguish sperm cells
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from a specific type of debris (Fig. 1b and i) easily mistaken for the head of a
sperm cell but having a slightly smaller area.

When omitting up-sampling, there is no general tendency when comparing
patch-based and full-image training. For 2-conv networks, full-image training
seems to profit from the increased variation in the data while patch-based train-
ing profits from the weighting of round cells in the background. This can be seen
by the differences in precision and recall for the two methods in Fig. 4.

When we compare the PR-curves, we see that the choice of a fixed threshold
can be misleading. It turns out that the ranking of the networks can change
depending on the choice of it. However, the chosen thresholds on the training set
lead to consistent rankings on the test set in our case. Introducing the threshold
and optimizing it leads to far superior results for all networks compared to
choosing an arbitrary value. The obtained precision and recall seems reasonable
for the purpose of identifying sperm cells in a semen sample, however it needs
clinical testing for verification of its performance in practice.

6 Conclusion

In this paper, we have used deep convolutional neural networks for the task of
sperm cell segmentation and object detection. In this task, we are constrained by
the computation time as well as the accuracy demands, which make it harder to
train networks with many pooling layers. To mitigate both problems we explored
the use of full image training and up-sampling of the network outputs in order
to increase performance. We specifically investigated thresholding on the size
of detected components. Choosing the product of precision and recall leads to
a robust estimate of threshold parameter. For deeper networks, up-sampling
appears necessary to achieve good segmentation and object detection perfor-
mance. The same does not necessarily hold for more shallow networks.

Our method outperformed a classical image analysis method which can be
considered state-of-the-art. Overall the system sensitivity and precision are suf-
ficiently high to be valuable for human sperm analysis systems.
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Abstract We investigate how to conduct an unbiased

motility estimation based on using the linearity met-
ric for human sperm motility analysis. The three major
topics of our investigation are metric behaviour, ob-

ject interaction, and spatio-temporal object selection.
For validation of the problems and solutions we have
constructed a dataset of 2,730 semi-automatically an-
notated (ground truth) sperm cell tracks from 41 videos

of 7 independent human sperm samples. The investiga-
tion showed that the observation duration should be
pre-defined and the motility estimation should be clin-

ically validated for the specific duration. We identified
no global drift in linearity in videos analysed for up to
20 seconds. Using observations of 2 seconds maximises

the consistency of measurements for each sperm cell.
We should only include sperm cells tracked for the full
duration to avoid bias towards higher motility. Further-
more, we should only include cells that start within a
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field of view defined from a minimum distance to the
edge of the view based on the observation duration.
Sperm cell collisions need to be handled to avoid intro-

ducing an implicit selection bias. Finally, aggregating
motility statistics across multiple views of the sample
improves our estimate of the global motility.

By following these recommendations we were able
to achieve very similar motility distributions when com-

paring theoretical (based on ground truth tracks) and
practical (based on automatically detected and tracked
sperm cells) estimates for 1- and 2-second analysis. There-
fore, we can expect practical motility estimates to re-

flect the theoretically possible motility estimates on
similar data.

Keywords Motility distribution estimation · Selection

bias · Observation statistics · Track linearity

1 Introduction

Multiple machine vision applications use estimation of

motion and motility of objects, such as: movement be-
haviour of zebrafish, behaviour analysis based on hand
and finger movements, and motility analysis of human

sperm cells [10,7,18].The central question in all these
applications is how the movement of objects can be
traced and described best so as to facilitate subsequent

analyses.

In practice we can only observe a spatially and tem-

porally limited view of the population. Based on this
limited observation we can compute the desired motil-
ity metrics and estimate the motility distribution.

During estimation we need to consider various ef-
fects possibly biasing the estimate. Fig. 1 illustrates the

spatio-temporal space with the x- and y-axes represent-
ing the spatial dimensions and the t-axis representing
the temporal dimension. The cube illustrates a sam-
ple observation in the spatio-temporal space. The four

tracks inside the cube illustrate four basic classes of
tracks we encounter: A) objects fully tracked within our
observation, B) objects present at the beginning of our

observation but exiting the view before the observation
ends, C) objects passing through the view thus enter-
ing after the observation starts and exiting before the

observation ends, and D) objects entering and staying
within the view until the observation ends. Classes B, C,
and D only contain moving objects whereas class A also
includes stationary objects. Only moving objects exit

and enter the view during the observation. Therefore
classes B, C, and D potentially skew the motility dis-
tribution inside the view. In some applications objects

interact with each other possibly changing their move-
ment and thus also affecting the metrics measured. The
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Fig. 1 The tracking problem illustrated by the spatial axes x
and y and the temporal axis t. The cube represents a view of
objects from a population. The lines inside the cube represent
object track groups: fully tracked object (A, blue), exiting ob-
ject (B, purple), passing object (C, red), entering object (D,
yellow). The objects enter and exit the cube at their square
and circular markers respectively.

three main topics we investigate are: Metric behaviour,
how does the metric depend on the spatio-temporal do-

main? Object interaction, how do objects interact? And
Spatio-temporal object selection, which objects do we in-
clude in the analysis to avoid selection bias influencing
resulting?

Our application is human sperm motility analysis,

which is an essential part of human sperm quality anal-
ysis. The analysis is mainly conducted manually as de-
scribed by the WHO [20], and is consequently very
labour intensive and prone to high variation, though

the latter can be reduced with the aid of repeated train-
ing [6,8]. Here we have automated the analysis with the
aim to overcome these problems. Our analysis of motil-

ity hence consists of the sperm cells in a semen sample,
and the observation is a video of a limited view and tem-
poral duration of the semen sample observed through

an image cytometer.

1.1 Human sperm motility analysis

The WHO [20] describes the basic sperm quality anal-
yses. It contains a set of recommendations for using

computer-aided sperm analysis (CASA) systems for motil-
ity estimation. In short, a small portion of the semen
sample is put under a microscope, videos of multiple

views are captured, and cells are identified and tracked
throughout the videos. Manual assessment of the motil-
ity of each sperm cell is done according to the definition
of motility in the WHO manual [20, section 2.5.1]:

– “Progressive motility (PR): spermatozoa moving ac-

tively, either linearly or in a large circle, regardless
of speed.

– Non-progressive motility (NP): all other patterns of

motility with an absence of progression, e.g. swim-
ming in small circles, the flagellar force hardly dis-

placing the head, or when only a flagellar beat can

be observed.
– Immotility (IM): no movement.”

This verbal definition of sperm motility leaves room
for interpretation of how to estimate the motility from

sperm tracks when going from manual to automatic
assessment. The WHO manual briefly describes some
of the standard sperm track kinematic characteristics

measured by existing CASA systems: curvilinear ve-
locity VCL, straight-line velocity VSL, average path
velocity, amplitude of lateral head displacement, lin-
earity LIN, wobble, straightness, beat-cross frequency,

and mean angular displacement. Earlier versions of the
manual based the motility grading on movement speed
rather than linearity. Therefore pre-2010 studies and

CASA systems typically base their motility estimates
on the cell speed measures [18,3]. We here aim at mea-
suring the percentage of progressively moving cells, and

thus we investigate linearity for being able to distin-
guish between PR and NP/IM cells.

When automating sperm motility analysis several
questions are raised which we try to address in the
present study. These include:

Sperm cells are easily affected by their living condi-
tions. They gradually experience a decrease in motility
after ejaculation, and temperature changes affect their
movement. Therefore the motility needs to be estimated

within 60 minutes of ejaculation and at a well specified
temperature, typically 37 ◦C, in order to get the most
accurate motility estimate. Do we experience a global

drift in motility due to these factors?

According to the WHO manual one needs to fol-
low a sperm cell for at least one second for accurately
estimating its motility. This is due to the occasionally

irregular behaviour of sperm cells (noise). Does linear-
ity depend on the duration for which it is measured,
and how long a duration do we need to get consistent

motility estimates of a cell?

Sperm cells moving into the view skew the statistics,
and therefore motility is in general easily overestimated.
How much do entering cells skew the statistics and how
do we select cells to get an unbiased motility estimate?

Finally, cell collisions occur even at low sperm cell
concentrations. In practice, collisions can be hard to
solve correctly. This could cause the tracks of colliding
cells to die affecting the motility distribution measured.

Do collisions affect the linearity measured on cell level,
and is the linearity distribution of colliding cells dif-
ferent from the linearity distribution of non-colliding

cells?
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1.2 Topics and hypotheses

We split our investigation into the three main topics
in order to assess the effect of the three main pitfalls
mentioned above: metric behaviour, object interaction,

and spatio-temporal object selection. For each of these
topics we define a set of hypotheses:

– Metric behaviour:
1. Global drift: The global drift in motility due to

cell exhaustion and temperature changes cannot

be observed in videos of 20 seconds
2. Linearity decrease: Measured linearity decreases

with increased observation duration

3. Metric consistency: The consistency/stability of
measured linearity depends on the observation
duration

– Object interaction:
1. Collisions affect cell motility

– Spatio-temporal object selection:
1. Cell origin: Entering and passing (introduced)

cells are biased towards progressively motile com-
pared to fully tracked (origin) cells

2. Field of view: Requirements on the observation

duration cause a selection bias towards slow and
immotile sperm cells

Based on the results of the investigation we propose
a protocol for analysing a video of human semen. We

compare the outcome of applying the protocol to ground
truth tracks and tracks obtained from automatic detec-
tion and linking of sperm cells in videos for which we
have ground truth tracks.

1.3 Structure of the article

The structure of the remaining of the article is: In sec-

tion 2 we describe the dataset and methods used for
analysis. Section 3 describes the experiments and find-
ings related to each hypothesis. We discuss the results

and propose an analysis protocol in section 4, and fi-
nally we conclude upon our work in section 5.

2 Methods

2.1 Dataset

Our dataset consists of videos of 7 fully anonymised
independent samples. Table 1 shows an overview of in-

formation about the samples in the dataset. The sam-
ples include two donor samples (d01 and d05), and five
pooled samples each consisting of semen from three pa-

tients. The raw sample was allowed to liquefy and kept
at 37 ◦C until being loaded in a 20 µm glass chamber,

after which we captured 8-10 independent views using

bright field lighting and 20x optical magnification in the
ChemoMetec Xcyto 10 image cytometer1. The sperm
cell concentration of each sample was estimated using

the automatic image cytometry method of Egeberg et
al. [5]. The sample “d01” was diluted to a 3x solution
using phosphate-buffered saline (PBS). in order to limit
the number of cells per view, and the sample “d05” went

through a swim-up procedure similar to [14] to purify
the sample and leave an overrepresentation of progres-
sively motile sperm cells. Collectively, the samples rep-

resent a broad spectrum of samples encountered in a
fertility clinic.

Each video consists of 512 greyscale frames of 1920×
1440 pixels (435.6 µm× 326.7 µm) captured at 25 frames

per second (fps).

Annotation of the full dataset proved to be too time
consuming, and thus we only annotated 41 of the views
for 125-512 frames. Table 1 shows detailed information
about the number of annotated views from each sample,

the duration of the annotations, and the average num-
ber of cells per view. Notice that we annotated three
views for the full duration of 512 frames, one view for

256 frames, and 37 views for 125 frames. The choice of
annotation duration was adjusted throughout the anno-
tation process based on time consumption. The anno-

tations were conducted semi-automatically. An initial
detection of sperm cells in each frame was conducted
using the method of Nissen et al. [13], non-collision
nearest neighbour points were automatically connected,

collision points were manually solved, missing points
and tracks were manually added, and finally all tracks
were individually manually inspected for errors and cor-

rected. This protocol took between 2-37 hours to con-
duct per view depending on the concentration of cells,
their movement, and the number of annotated frames.

Table 2 shows a brief summary ground truth track

information grouped by the number of annotated frames.
Fig. 2 shows a histogram of the ground truth track
lengths. Notice that the y-axis is a log scale, and that
we have a considerable amount of tracks of exactly 125,

256, and 512 frames because the views have been an-
notated for these number of frames.

Fig. 3 shows an example of a view from sample
p02 with the annotated tracks for the last 25 frames

overlaid. Notice that the example includes cells from
all three motility categories. We observe this by visu-
ally inspecting the tracks and comparing them with the
motility category definitions in Section 1.1.

1 https://chemometec.com/automated-cell-counters/

xcyto-10/
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Table 1 Dataset sample information. Sample IDs are denoted as either donor (d) or pooled (p) samples, where donor
samples are single anonymised sperm donor samples, and pooled samples are fully anonymised samples of raw sperm
from three individuals pooled into one sample.

Sample ID Est. conc. (·106 ml−1) Sample handling Views #cells/view Views with #frames annotated1:
125 256 512

d01 43.33 3x dilution 8 42.69 7 - 1
d05 - Swim up 10 21.46 10 - -
p02 - - 4 101.77 3 - 1
p09 46.00 - 1 98.71 - - 1
p15 17.38 - 8 47.65 7 1 -
p21 10.52 - 8 25.04 8 - -
p22 55.21 - 2 121.98 2 - -

1 Views annotated for 125, 256, and 512 frames respectively

Table 2 Track ground truth information.

Frames Independent
samples

Videos Tracks

125 frames 6 37 2, 072
256 frames 1 1 73
512 frames 3 3 585

Total 7 41 2, 730

25 75 125 175 225 275 325 375 425 475 525
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Fig. 2 Histogram of track lengths in our dataset.

Fig. 3 Example cutout from a view from sample p02 with
tracks for the last 25 frames overlaid.
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Fig. 4 Histogram of the track motility distribution of the
dataset. The linearity of each track is measured continuously
using a sliding observation window of 25 frames. The motil-
ity for each track is computed as the median of linearities
measured.

2.2 Motility estimation

As mentioned in the introduction, we focus our investi-
gation of motility using linearity (LIN), which is based
on straight line velocity (VSL) and curvilinear veloc-

ity (VCL). VCL is defined as the velocity along the
curvilinear track, and VSL is defined as the distance
between the first and last point of a track divided by
the duration. Finally, LIN is defined as the ratio be-

tween VSL and VCL. Formally, let x be a track of n
points x1, . . . ,xn ∈ R2. VCL, VSL, and LIN are defined
as:

VCL(x) =
f

n− 1

n∑

t=2

‖xt − xt−1‖2 (1)

VSL(x) =
f

n− 1
‖xn − x1‖2 (2)

LIN(x) =
VSL(x)

VCL(x)
(3)

where f is the fps and ‖·‖2 is the euclidean norm.

Tomlinson et al. [18] base their motility estimates
on VSL thresholds (a. > 25 µm/s, b. 5-25 µm/s, c. <
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5 µm/s, d. static) due to the use of the pre-2010 motil-
ity classes a-d are defined from speed rather than lin-
earity of movement. Kraemer et al. [10] investigate var-
ious aspects of preparation handling and how the as-

pects affect the sperm kinematic characteristics mea-
sured. During their investigations they used the fol-
lowing LINintervals when describing the LIN distribu-

tion changes: [0; 0.2[, [0.2 − 0.6], ]0.6; 1]. Hidayatullah
et al. [7] directly adopt these thresholds for categori-
sation into the three motility classes: IM ([0; 0.2[), NP

([0.2; 0.6]), and PR (]0.6; 1]). Their results show some
correspondence with manual motility estimation, but
the choice of thresholds have not been further investi-
gated or validated. Fig. 4 shows a histogram of the track

motility distribution of the entire dataset based on the
manual annotations. LIN is measured continuously for
each track using a sliding window of 25 frames, the me-

dian LIN is used as the track linearity, and the thresh-
olds described above are used for categorising the track
motility. Notice that approximately 10 % of the tracks
are shorter than 25 frames. These tracks are typically

located close to the edges of the view and therefore exit
the view quickly.

2.3 Statistics

Throughout our experiments we use LIN distributions
for our investigations. We base our experiments and

results on non-parametric statistics in the form of box
plots, scatter plots and Bland-Altman plots [1].

We use the scatter plots to visualise the correlation
between different methods of measuring the linearity of
an object. The two methods being compared are both
error-prone, and thus we have to use a model that as-

sumes error in both variables when estimating the lin-
ear correlation between the two methods. Given that
our measures are equally scaled, we use the major axis

method [21] for least squares fitting of the correlation
plots.

Bland-Altman plots visualise the difference between

two methods as a function of the mean of the two meth-
ods. Using these plots we measure the limits of agree-
ment and the bias between two methods. We define

the limits of agreement (LoA) as ±1.45 × Interquantile
Range of the difference between the two methods (5%
confidence interval if the differences are normally dis-

tributed), and the bias is the median of the difference
between the two methods.

2.4 Motility estimation in practice

When conducting automatic motility estimation in prac-
tice we need to detect and track the sperm cells, af-

ter which the resulting track can be analysed. We use
the method proposed by Nissen et al. [13] for detecting
sperm cells. The method applies a convolutional neural

network to a greyscale bright field image of a semen
sample, computes connected components, and thresh-
olds the components based on their area. The compo-
nent centroids are used as cell locations. We use the rec-

ommended network called 3-conv-full-up-inc. The method
is applied to each image of a video sequence giving us
detections at every frame of the sequence.

The detections are linked together using the Nonit-
erative Greedy Algorithm for Multiframe Point Corre-

spondence (NGA) with mixed motion (linear and ran-
dom) described by Smal et al. [17,16,9]. In short, the
linker sequentially combines tracks frame by frame by
minimising the cost of connecting previous and current

detections with the detections in the next frame. The
number of previous frames that are considered is deter-
mined by the buffer size ∆t. A greedy choice of least-

cost assignments is made based on costs calculated as a
weighted sum of linear and random motion. The model
requires tuning of a set of parameters, which we have

manually optimised based on visual inspection of the re-
sulting tracks (chosen parameters in parentheses): dif-
fusion gate (80 pixels), directed motion gate (50 pix-
els), buffer size (5 frames), minimum track length (3

frames), initial speed of new tracks (8 pixels/frame),
cost of missing detection (8), cost of track death (60),
and cost of track birth (13). Notice that we operate

with a 5 frame buffer. This makes the linker able to
link tracks having at most three consecutive missing
detections. The chosen detector only detects one ob-
ject when multiple sperm cell head perimeters coincide

or overlap, thus leaving only one detection for multiple
tracks upon collision. These situations require a frame
buffer big enough for the cells to spread apart and form

individual detections. Choosing too large a frame buffer
comes at the cost of computation time and typically de-
creases linking performance for cells having fewer con-

secutive missing detections.

We now describe how to quantify tracking perfor-
mance to validate the detector and tracker described

above. Given two sets of tracks (ground truth and linked
tracks) we wish to pair the tracks such that we obtain
the best possible total track overlap. Performance is

computed on the basis of the tracks and their pairing.
We following the instructions of Chenouard et al. [2]
for pairing tracks using the Optimal Subpattern As-

signment (OSPA) [15] method and report the tracking
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Fig. 5 Box plot of linearity measured for every second of the
videos annotated for 512 frames. Window size is fixed to 25
frames (one second). For every window, only tracks that are
annotated for the entire window are included.

performance β with ε = 25 described by Chenouard
et al. [2]. Briefly explained, β gives a score between

0 and 1 based on the distance between paired ground
truth and predicted tracks and penalties for non-paired
tracks. The parameter ε defines a maximum distance

penalty between track points.

3 Experiments and results

We here describe the experiments and results obtained
in the investigation of each of the topics introduced in
Section 1.2.

3.1 Metric behaviour

The first topic of our investigation is the metric be-
haviour. Generally the metric is not affected by the

spatial position of the cell and therefore we focus on
the temporal dimension.

3.1.1 Global motility drift

We hypothesise that the global drift in motility due
to cell exhaustion cannot be observed in videos of 20

seconds. We investigate the hypothesis by selecting the
videos annotated for 512 seconds, splitting them into
25-frame intervals, and computing the linearity distri-
bution of all cells fully tracked within each interval. Fig.

5 shows the box plots of linearity for each of the inter-
vals. The box plots show no general drift in the linearity
distribution throughout the videos. Having confirmed

this hypothesis, we can ignore the temporal position of
tracks in the remaining experiments.
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Fig. 6 Box plot of linearity for varying observation dura-
tions. The data has been sampled from tracks between 200
and 512 frames long (275 tracks). 2,000 tracks have been sam-
pled for each observation duration. A random subtrack of the
given observation duration was randomly chosen for linearity
computation of each randomly selected track.

3.1.2 Linearity decrease

Our next hypothesis is that linearity decreases with in-
creasing observation duration. In order to test this hy-
pothesis we measure the linearity of a set of tracks for

varying observation durations l. We test durations of
12, 25, 50, 75, 100, 125, 150, 175, and 200 frames (ap-
proximately 0.5 to 8 seconds). We only included tracks
in the experiment which were at least as long as the

longest duration to avoid introducing other biases in
the experiment. Thus we only included tracks of at least
200 frames (275 tracks). Sperm cells may perform irreg-

ular behaviour and thus we sampled multiple random
subtracks from each track to obtain a representative
linearity distribution independent of track length and

observation consistency. We conduct the following sam-
pling for each observation duration l: First, we sample
2,000 random track indices. Second, we select a random
subtrack of l points from each of the tracks identified by

the previously sampled track indices. All random sam-
pling was done using a uniform random distribution.

The results of the experiment are shown in Fig.
6. The figure shows a box plot of the sampled linear-

ity distributions for the previously defined observation
durations. Notice how the distributions are gradually
pushed towards lower linearities as the observation du-
ration increases. Table 3 shows motility classifications

based on thresholding of the linearity distributions as
explained in Section 2.2. Notice how the distribution
changes from having 22.97 % PR cells with l = 12 to

having only 9.40 % PR cells with l = 200. The exper-
iment validates the hypothesis that linearity decreases
for increasing observation duration, and thus the inves-

tigations of the remaining hypotheses need to account
for this effect.
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Table 3 Motility distributions for the data represented in
Fig. 6 using the motility buckets based on LIN. IM: LIN <
0.2, NP: 0.2 ≥ LIN ≤ 0.6, PR: LIN > 0.6.

Obs. duration (frames) IM NP PR

12 0.2212 0.5491 0.2297
25 0.3210 0.5020 0.1770
50 0.3673 0.4907 0.1420
75 0.3784 0.5095 0.1121
100 0.4141 0.4762 0.1097
125 0.4454 0.4654 0.0892
150 0.4383 0.4699 0.0918
175 0.4737 0.4256 0.1008
200 0.4910 0.4150 0.0940

-12-25-50-75-100-125

0

12 25 50 75 100 125

Fig. 7 Illustration of the temporal split of a track into two
non-overlapping observations of varying sizes. The top line
shows a temporal line offset/centred at the middle observa-
tion (frame 125) indicated by 0. Observation 1 is before and
observation 2 is after the split. The bottom line shows an il-
lustration of a track with the temporal markers defined in the
top line at their spatial locations.

3.1.3 Metric consistency

The third hypothesis is that the consistency/stability
of the linearity measured depends on the observation

duration. We test this hypothesis by measuring the lin-
earity of two non-overlapping observations of the same
track and compare the two resulting linearities for each

track. Given our data we look at observation durations
l1 and l2 for observation 1 and 2 respectively of 12, 25,
50, 75, 100, and 125 frames (approximately 0.5 to 5
seconds). We find all tracks of at least 250 frames (196

tracks) and split them into two subtracks at frame 125.
The subtrack before frame 125 is observation 1 and the
subtrack after frame 125 is observation 2. Observation

1 always ends at frame 125 and observation 2 always
starts after frame 125. Fig. 7 illustrates how a track is
split temporally around frame 125 marked by 0 with

markers for all observation durations on both sides of
the split. The top line shows the temporal split and
the bottom line shows a track with the corresponding
temporal observation duration markers at their spatial

locations along the track.

Fig. 8 shows scatter (top) and Bland-Altman (bot-
tom) plots of the linearity LINobs1 and LINobs2 mea-

sured of observation 1 and 2 respectively for observa-
tion durations where l1 = l2 = 12, 25, 50, and 125.

We have omitted the plots for durations 75 and 100

here for brevity, but they can be found in Appendix
A. The identity line and linear least squared line found
by using the major axis method [21] are also depicted

in the correlation plots. We see that the data points
get closer to the identity line as the observation du-
ration increases from 12 (Fig. 8a) to 50 frames (Fig.

8c). The plots do not change much for longer obser-
vations. We also see that the least squared fitted line
coincides well with the identity line indicating a linear
correspondence between the linearities of observation 1

and 2. The Bland-Altman plots confirm these observa-
tions displaying decreased limits of agreement from 12
(Fig. 8e) to 50 frames (Fig. 8g) after which they sta-

bilise.
Fig. 9 shows a plot of the median of difference and

limits of agreement as a function of the observation du-
ration from the Bland-Altman plots in Fig. 8. This plot

verifies our observation of the limits of agreement be-
ing minimised and stabilised at observations of dura-
tions 50 to 125. We also see that the bias (median of

the difference between the two observations) is an or-
der of magnitude (> 20 times) smaller than the limits
of agreement and thus close to non-existent.

Given that an observation duration of 50 frames is
the minimum duration for a stable linearity we re-do the
experiment with l1 = 50 and l2 = 12, 25, 50, 75, 100, 125.
Fig. 10 shows the bias (median of the difference) and

limits of agreement for l1 = 50 and varying observa-
tion 2 duration l2. We notice that shorter l2 durations
display a tendency towards higher linearities and that

longer l2 durations display a tendency towards lower
linearities as observed in Section 3.1.2. Also notice that
the limits of agreement are stable for longer l2 dura-
tions.

The results of the experiment validate the hypoth-
esis that linearity consistency depends on observation
duration. We have observed, that a duration of at least

50 frames optimises the linearity consistency.

3.2 Cell interaction

Cell interaction is the second topic of our investigation.
We only have one hypothesis for this topic: motility is
affected by cell collisions. In practice, collisions can be

hard to link correctly, and they will in some cases cause
tracks to die or spawn. We test this hypothesis in two
parts: The effect of collisions on the linearity of indi-
vidual cells, and the difference in linearity distributions

of collision and non-collision observations. We test the
latter in case the linker is unable to handle collisions.

For the first part, we find all tracks with at least

one collision. The following is conducted for each ob-
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Fig. 8 Correlation (top) and Bland-Altman plots (bottom) of LIN for two non-overlapping observations of the same track
with varying observation lengths l1 = l2. In the top plots the dashed orange line indicates the identity line and the dot-dashed
blue line indicates the linear least squares fitting. In the bottom plots the dashed orange lines indicate the limits of agreement
and the blue dot-dashed line indicates the bias (median of the linearity difference).
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Fig. 9 Median of difference and limits of agreement for vary-
ing observation lengths where l1 = l2. The plot indicates con-
sistency of linearity observations of various lengths.
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Fig. 10 Median of difference and limits of agreement for
l1 = 50 and varying l2. The plot indicates bias.

servation duration l = 25, 50, 75, 100, 125: For each
track we scan through all subtracks of length l and

split them into two groups: subtracks with and without
collisions. For each of the subtracks with collisions we
count the number of collisions. We identify the subtrack

with the maximum number of collisions having a non-
overlapping subtrack from the non-collision group. We
have conducted the Bland-Altman plot analysis for non-
overlapping collision LINcol and non-collision LINnocol

observations of tracks for varying observation duration
l. The plots are omitted here but can be found in Ap-
pendix B. Instead, Fig. 11 shows a summary of the bias

(median of linearity difference) and limits of agreement
for said Bland-Altman plots. We observe that the me-
dian of LINnocol − LINcol is very close to zero (-0.011

to 0.0069), and that the limits of agreement stabilise at
50 to 125 frames (0.12 to 0.10). This follows the obser-
vations in Section 3.1.3. The linearity of the individual
cell is in other words not affected by collisions.

For the second part, we re-use the sampled data
from Section 3.1.2 illustrated in Fig. 6. We split the

data into two subsets: subtracks/observations with and
without collisions occurring. Fig. 12 shows box plots for
varying observation duration for non-collision and col-

lision observations. We observe that the linearity dis-
tribution of non-collision observations i biased towards
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Fig. 11 Median of difference and limits of agreement for col-
lisions and non-collision observations of varying observation
lengths where l1 = l2.
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Fig. 12 Box plot of linearity for varying window sizes. The
tracks are the same as in Fig. 6 but split based on whether
a collision occurs within the sampled observation window.
The blue plots show track samples with no collisions and the
orange plots show track samples with collisions.

lower linearities than the distribution for collision ob-
servations for all observation durations. Notice that the
box plots for long non-collision observations are based

on a much smaller amount of observations because cells
rarely are tracked for long durations without any colli-
sions.

3.3 Spatio-temporal cell selection

Spatio-temporal cell selection is the third and last topic
we investigate.

3.3.1 Cell origin

The first hypothesis of the topic states that cells en-
tering the view during the analysis are biased towards

progressively motile compared to origin cells. In order
to test this hypothesis we compare linearity for fully
tracked (origin) cells (start frame 1) and introduced
cells (start frame > 1). We re-use the sampled linearity

data from Section 3.1.2 and split it up into origin and
introduced tracks. The tracks from which we sampled
consist of 191 origin and 84 introduced cells. Given the

uniform random sampling, we maintain the ratio be-
tween origin and introduced tracks for the sampled sub-
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Fig. 13 Box plot of linearity for varying observation dura-
tions. The tracks are the same as in Fig. 6 but split based on
start frame. The blue plots show origin tracks (start frame
= 1) and the orange plots show introduced tracks (start frame
> 1).

tracks. Fig. 13 shows two sets of box plots for varying
observation durations for origin and introduced tracks.
The distribution of introduced tracks is clearly biased

towards higher linearities than the distribution of ori-
gin tracks. This holds for all observation durations. In
other words cells entering the view during the analy-

sis skew the distribution towards progressively motile
independent of observation duration.

3.3.2 Field of view

The second hypothesis of the topic is that requirements
on the track length cause a selection bias towards slow
and immotile sperm cells. The reasoning behind this

hypothesis is the difference in movement and the lim-
ited field of view (FoV). We investigate the hypothesis
in two experiments: First, we look at the linearity dis-
tributions for different track lengths, and second, we

investigate limiting the FoV based on the motion of
moving cells.

In the first experiment we use the views annotated
for the full 512 frames. From these views we select
all tracks of at least 25 frames (511 tracks). We di-

vide the tracks into subsets based on their track length
and sample 2,000 random track indices from each sub-
set. LIN is computed for a random subtrack of each of

the randomly chosen track indices. Fig. 14 shows box
plots of the linearity sampled for varying track length
intervals between 0 and 512. We see that the maxi-
mum LIN decreases as the track length increases, and

that cells of maximum length have a distribution sig-
nificantly skewed towards lower LIN value than all the
remaining track length intervals.

In the second experiment we investigate the likeli-
hood that a moving cell stays inside the view within a

specified duration by the use of a simulation of mov-
ing cells. The idea is to exclude cells too close to the
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spatial edges of the view such that we keep a certain
percentage of the moving cells within our observation
boundaries after a specified duration.

We assume that cells are positioned at uniformly

random positions inside the view, and that they move
linearly in a uniformly random direction. The speed of
cells vary greatly, and thus we choose to sample the

speed of each simulated cell from an estimated linear
speed distribution of our data. Sperm cells typically
move in zig-zag motions making the average path some-
what linear. For each cell in our dataset we compute the

average path using a sliding window of nine frames and
use the median straight line speed of said average path
as an approximation of the linear speed of the cell. Fig.

15 shows a histogram of the estimated linear speed dis-
tribution of moving cells (median VSL > 10 µm/s for
the avg. path) which we sample the cell velocities from.
We sample 500,000 cells and record their predicted po-

sitions after 25 and 50 frames.

We vary the FoV exclusion/inclusion distance d to
the nearest edge between 0 and 165 µm. For each d we

register the moving cells inside the FoV at the simula-
tion start and the percentage of these cells still within
the view at the simulation endpoint. We conduct this
investigation for both the 25 and 50 frame simulations.

Fig. 16 shows the fraction of cells inside the view and
the distance from the view edge as a function of the
FoV fraction of the view area included. For example,

requiring 95 % of the moving cells to be within the
view lets us utilise 76.20 % of the area for counting af-
ter 25 frames, which corresponds to a FoV distance of

23.69 µm = 104.42 pixels from the edge of the view. Us-
ing the same requirement for 50 frames means that we
can only use 31.49 % of the view corresponding to a
FoV distance of 81.28 µm = 358.27 pixels from the edge

of the view.

3.4 Theoretical and practical example

The hypotheses presented in this work are all explored

on the basis of ground truth tracks. In this experiment
we investigate the difference between the theoretical
and practical track linearity distribution. First, we ver-

ify our notion that linking performance decreases with
increasing video duration.

To investigate how performance changes based on
video duration, we choose the three videos annotated

for 512 frames. The ground truth cell positions are
linked using the NGA linker described in Section 2.4
for varying video durations from 12 to 500 frames, and

the performance metric β is computed. Fig. 17 shows
mean and standard error of β as a function of the video
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earity estimation. Notice how the last box plot only contains
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Fig. 15 Histogram of median straight line speed of the av-
erage path (9 point average) for all tracks. Tracks with a
median speed lower than 10µm have been pruned to remove
stationary cells.
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Fig. 17 Performance (β) as a function of the video duration.

duration. We see that performance decreases with in-
creasing video duration as expected.

Second, we compare the linearity distributions from
the ground truth and automatically obtained (practi-

cal) tracks. The experiment is conducted on all anno-
tated videos and for both the first 25 and 50 frames
for comparison. We obtain the practical tracks of each

video by automatically detecting and linking sperm cells
as described in Section 2.4. The tracks are analysed as
follows: First we remove all cells starting outside the

FoV define to keep 95% of the cells inside the view (Sec-
tion 3.3.2). Second, we remove tracks shorter than the
specific video duration. Third, we compute the linearity
of the remaining tracks.

The experiment results in 192 boxplots which are

found in Appendix C. For simplicity we compare the
linearity distributions by comparing their medians. Fig.
18 shows the comparison of medians of linearity distri-
butions. The comparisons are made by looking at his-

tograms of the differences between linearity medians:
Fig. 18a and 18b compare theoretical and practical me-
dians on the view and sample level respectively, and

Fig. 18c and 18d compare 25- and 50-frame distribu-
tions on the view and sample level respectively. Firstly
we observe that the difference between linearity medi-

ans of theoretical and practical distributions are very
close to zero. More than 80% of the views have a differ-
ence between -0.01 and 0.01 (Fig. 18a) and all the sam-
ples have a difference between -0.03 and 0.01 (Fig. 18b).

These differences are in general slightly bigger for 50-
than 25-frame tracks. Secondly, we observe the notable
difference between 25- and 50-frame medians for both

theoretical and practical tracks at view level (Fig. 18c).
There is a slight tendency towards higher linearities for
25-frame medians skewing the histogram towards the

positive side. This tendency is clearly observed when
looking at sample level (Fig. 18d).

4 Discussion

4.1 Metric behaviour

The experiments and results related to metric behaviour
are all focused on investigating how the temporal di-

mension affects the linearity distribution measured. First,
we briefly argue why we do not have a problem with
global motility drift in our videos. Second, we discuss
the observation duration and the two hypotheses re-

lated to the problem: linearity decrease and metric con-
sistency.

4.1.1 Global drift

Urbano et al. [19] show that the track statistics for sin-
gle tracks can change over longer periods. They pre-
sented specific data for two cells indicating large move-
ment variations in at least one of the tracks slowing the

movement down within the 55 seconds it was recorded.
Motility is known to be affected by factors such as time
passed since ejaculation and the sample storage tem-

perature. As described in the results section 3.1.1 we
do not observe any general drift in the linearity distri-
butions of our 20 second videos. Though Urbano et al.

[19] observed a change on single cell level, we do not
observe it as a general drift on the population level.
From our experiment we can conclude, that the level of
motility is maintained throughout the 20 seconds with

no drift. In other words the effect of cell exhaustion
and change in sample temperature during the 20 sec-
ond video-acquisition cannot be observed in our setup.

4.1.2 Observation duration

The duration of observation has been defined to a fixed
length in most CASA instruments and automatic motil-
ity studies [7,10,18,19], and the choice of length is typ-

ically chosen by the authors based on recommendations
from the WHO manual. The WHO manual [20] spec-
ifies that each sperm should be observed for at least

one second, but the work referenced does not mention
the parameter directly [12]. Other sources mentioned
in the WHO manual do conduct a limited investigation

of the problem [4,11](NOTE: Add more references?).
The choice of one second seems reasonable: Most cells
can be tracked for one second without exiting the view
apart from the cells very close to the border. One second

seems to be enough to make a manual judgement of the
motility. The overall motility drift is non-observable as
concluded above. In practice the minimum observation

duration is desired for fast and correct detection and
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Fig. 18 Histograms for comparisons of medians of linearity distributions on a view and sample level.

linking. There are however still issues to address be-
fore concluding anything: linearity behaviour and con-

sistency

According to the WHO manual progressively motile

cells are cells that move linearly or in big circles whereas
non-progressively motile cells include all other move-
ment patterns without progression such as cells moving
in small circles. The difference between small and big

circles are not described further. The choice of linear-
ity as metric for determining motility seems reasonable
from the definition of motility according to the WHO

manual.

The definition of linearity has a natural built-in ten-

dency to decrease as we increase the observation dura-
tion. A track consisting of two points always has lin-
earity equal to 1 since the definitions of VSL and
VCLare similar in this case. For short observation du-

rations there is a significant risk that the cell moves
inconsistently thus giving us a very noisy estimate of
the general motility of the sperm cell. As the obser-

vation duration increases, an otherwise linear cell will
have a higher risk of making a slight turn either from

colliding with other objects or from irregular behaviour
thus decreasing the linearity. Interestingly, cells moving

in circles will have a very low linearity if the observa-
tion time is exactly equal to the time it takes the cell
to move one full circle. The observation duration is in

other words very important for the distribution of lin-
earities we can expect to observe.

We investigate the change in the linearity distribu-
tion based on various observation durations in hypoth-
esis 2. The results verify our intuition that the distribu-

tion of linearity based on longer durations cause a skew
towards lower linearities. The bias identified when com-
paring non-overlapping observations of 50 frames with
observations of varying durations further validated the

statement. This means that we should be careful when
using linearity for motility classification. We need to use
a fixed observation duration for all cells analysed as also

recommended by Davis and Katz [4] and Mack et al.
[11]. The cutoff thresholds between the three motility
classes cannot blindly be adopted by previous methods.

They need to be identified for the specific observation
duration and frame rate in a clinical study. One focus
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point in such a study could be the distinction between
small and big circles and the corresponding linearities
measured. In order to be able to conduct the study (for
25 fps) we would have to extend our dataset with expert

classifications of every single sperm cell track.
Mack et al. [11] concluded, that VSL, and VCL sta-

bilised after 5-7 frames at 30 fps for five specific cells se-

lected to cover varying movement progression. LIN was
not directly investigated in this context, but due to the
definition based on VSL and VCL we can assume, that

LIN likewise stabilises after 7 frames for the cells they
investigated. We investigate the stability of linearity for
observation durations between 12 and 125 frames (ap-
proximately 0.5 to 5 seconds) on a population of 275

tracks with varying motility between completely sta-
tionary and highly linear. Based on the Bland-Altman
plots we identify observations of 2 seconds to give maxi-

mum observation consistency/stability at the minimum
number of frames. In other words the certainty of the
linearity being representative for the cell motion is max-
imised at a duration of 2 seconds, and the certainty does

not increase by increasing the observation duration to
5 seconds. This finding conflicts with the current belief
that one second is enough to obtain a correct motility

estimate.

4.2 Cell interaction

The second topic of our investigation is cell interac-
tion and how it affects motility. Our results show that
collisions do not affect the linearity measured of the in-

dividual cell as indicated by the stability of the limits
of agreement. This indicates that cells are able to pass
each other in the third dimension instead of repeat-
edly colliding or getting entangled. In other words it

validates that the glass chamber depth of 20 µm is suf-
ficient depth for motility analysis of human sperm cells,
validating the statement by the WHO manual [20, pp.

138]: “Disposable counting chambers, 20 µm deep, give
reliable results”.

The number of collisions occurring in a sample is

highly dependent on the concentration and motility.
Current CASA systems have bounds on the concen-
trations they are applicable to due to the risk of intro-
ducing tracking errors upon collisions. We investigate if

there is a linearity distribution difference between col-
lision and non-collision cells. Naturally we would think
that completely stationary cells have a smaller risk of

being included in a collision than motile cells due to the
fact that some other cell has to collide into the station-
ary one. The motile cells on the other hand can collide
with both stationary cells and other motile cells. For

short observation durations there is a small difference in

the linearity distributions of collision and non-collision

observations. For longer observation durations we see
a bigger skew towards lower linearities for non-collision
cells indicating that our notion from the previous state-

ment is valid. If cell collisions are not handled by the
linker, the collision tracks risk being filtered away due
to the strict track-length policy described in Section
4.1.2, and thus the distribution skew mentioned above

will be relevant. To summarise, cell collisions need to
be handled by the linker to avoid selection bias, though
collisions do not affect the linearity obtained for the

single cell.

4.3 Spatio-temporal cell selection

Our goal is to measure the global motility distribution
of a semen sample from a small view hereof. Ideally, we
would like to instantaneously estimate the motility in

the view allowing no cells to move in or out of the view
during the analysis. The nature of sperm cell movement
however require a certain temporal duration as shown in

previous experiments. Correct selection of cells included
in the analysis is therefore essential for an unbiased
motility estimate. We split the topic into two parts:

cell origin and field of view investigating the spatio-
temporal positions of cells.

4.3.1 Cell origin

It seems like a natural deduction that cells moving into
the view during the analysis skew the distribution of

motility towards more motile cells. Introduced cells po-
tentially also include immotile cells being pushed into
the view by other cells or by drift in the sample in case

the chamber is given insufficient time to settle after
loading. We investigate the difference in linearity dis-
tributions between origin and introduced cells. The re-
sulting statistics support the view that the linearity dis-

tribution of introduced cells is biased towards a higher
linearity than the distribution of origin cells, and thus
we need to exclude introduced cells entering the view

during the analysis. This conclusion follows the advice
stated in the WHO manual for manual counting [20, pp.
23]: “... avoid counting both those present initially plus
those that swim into the grid section during scoring,

which would bias the result in favour of motile sperma-
tozoa”.

In practice, cells risk being introduced during the

analysis due to linker-errors causing tracks to termi-
nate and new tracks to spawn wrongfully. This can be
avoided by disallowing tracks within the interior of the

view to die or spawn. The specific way of modifying or
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developing such linkers would have to be further inves-
tigated in order to avoid introducing linker errors.

4.3.2 Field of view

The second part of the investigation of the hypothe-

sis deals with specifying a FoV to make sure all cells
initially identified are within the view after a specified
observation duration. The problem of cells exiting the

view was observed by Mack et al. [4] for tracks of 5 and
15 frames at 30 fps. They did not propose a way of fixing
the skew introduced by the problem other than to use as
few frames as possible; 5 frames for cell concentration

and 15 frames for motility estimation. By simulating
the average movement of sperm cells in our data, we
found, that we can utilise 76.20 % and 31.49 % of the

view for durations of 1 and 2 seconds respectively while
maintaining 95 % of the cells initially identified inside
the view. This means that we have to analyse nearly 2.5

times as many views for 2 seconds than for 1 second in
order to count the same number of sperm cells. Nat-
urally, the FoV distances reported depend on the cell
motility distribution used for the simulation, and thus

the distances for samples with other cell distributions
could differ from the FoV distances reported here. Al-
ternatively we could have used the maximum cell speed

observed in our dataset for every cell simulated. This
would give us the worst case FoV distance, which would
hugely restrict the FoV and thus the number of cells we

are able to count in each view. Our approach is a com-
promise between no FoV restriction and the worst case
FoV restriction.

4.4 Theoretical and practical example

In Section 3.4 we first verify the statement that sperm
cell tracking performance decreases with increasing video
duration. The decreasing performance is naturally caused

by an increasing amount of collisions in each track due
to longer tracks. This effect causes us to favour short
video durations to avoid introducing more linker errors

than necessary to obtain sufficient motility statistics for
each video. This view is supported by the previous dis-
cussion on observation duration and FoV restriction.
As discussed earlier we need a duration of at least 50

frames in order to get the most consistent linearity mea-
sures of single cells.

Second, we investigate the theoretical and practical

linearity distributions for 25 and 50 frame videos on
the view and sample level. The resulting distributions
are remarkably similar for most of the views despite the
fact, that both the detector and linker introduce devi-

ations from the ground truths. At sample level we can

barely see any difference between the theoretical and

practical distributions. We observe that there could be
noticeable differences when comparing the results of 25
and 50 frame videos at view level. This difference is

caused by the FoV restriction on views with a low num-
ber of sperm cells causing the statistics to be based on
very few cells. The linearity distributions for 25 and
50 frames are very similar at sample level though the

distributions for 50 frame videos are pushed slightly
further towards lower linearities as expected by the lin-
earity analysis discussed earlier. In conclusion, we can

expect the linearity distribution obtained in practice
to reflect the ground truth linearity distribution, and
25 and 50 frame videos result in comparable linearity
distributions given a sufficient amount of cells in each

sample.

5 Conclusion

We investigated how the movement of objects can be
traced and described best so as to enable their subse-
quent classification. The three main topics of our inves-
tigation were: metric behaviour, object interaction, and

spatio-temporal object selection. These topics were in-
vestigated for the specific application of human sperm
motility analysis using the linearity motility measure.

Our conclusions and recommendations are as follows:
1. Pre-define the observation duration and validate

the motility estimation for this specific observation
duration

2. An observation duration of 2 seconds gives max-

imum measurement consistency at minimum ob-
servation duration

3. Only include origin tracks, disregard tracks enter-
ing the view during analysis

4. Restrict the field of view based on observation
duration and desired percentage of moving cells
within the view at the end of the observation (Fig.

16)
5. Cell collisions should be handled by the tracker

and cannot be ignored

6. No global linearity drift can be identified in videos
up to 20 seconds

7. Aggregate motility statistics across multiple views
of the sample for better global motility estimation.

One view is typically not enough.

We compared theoretical (from ground truths) and prac-

tical (from automatically detected and tracked sperm
cells) motility estimate distributions and achieved very
similar results, concluding that we can expect practi-

cal results to reflect the theoretically possible motility
estimate on similar data.
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A Metric consistency
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Fig. 19 Scatter (a-b) and Bland-Altman (c-d) plots of LIN for two non-overlapping observations of the same track with
varying observation durations l1 and l2 respectively. In the scatter plots the dashed orange line indicates the identity line and
the dot-dashed blue line indicates the linear least squares fitting. In the bottom plots the dashed orange lines indicate the
limits of agreement and the blue dot-dashed line indicates the bias (median of the linearity difference).
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B Cell interaction

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

LIN
col

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L
IN

n
o

 c
o

l

r=0.74

n=1445

(a) l = 12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

LIN
col

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L
IN

n
o

 c
o

l

r=0.85

n=1293

(b) l = 25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

LIN
col

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L
IN

n
o

 c
o

l

r=0.90

n=910

(c) l = 50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

LIN
col

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L
IN

n
o

 c
o

l

r=0.92

n=543

(d) l = 75

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

LIN
col

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L
IN

n
o

 c
o

l

r=0.93

n=268

(e) l = 100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

LIN
col

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L
IN

n
o

 c
o

l

r=0.85

n=114

(f) l = 125

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mean LIN
col

 & LIN
no col

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

L
IN

n
o
 c

o
l -

 L
IN

c
o
l

(g) l = 12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mean LIN
col

 & LIN
no col

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

L
IN

n
o
 c

o
l -

 L
IN

c
o
l

(h) l = 25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mean LIN
col

 & LIN
no col

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

L
IN

n
o
 c

o
l -

 L
IN

c
o
l

(i) l = 50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mean LIN
col

 & LIN
no col

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

L
IN

n
o
 c

o
l -

 L
IN

c
o
l

(j) l = 75

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mean LIN
col

 & LIN
no col

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

L
IN

n
o
 c

o
l -

 L
IN

c
o
l

(k) l = 100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mean LIN
col

 & LIN
no col

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

L
IN

n
o
 c

o
l -

 L
IN

c
o
l

(l) l = 125

Fig. 20 Scatter (a-f) and Bland-Altman (g-l) plots of LIN for two non-overlapping observations of the same track where
one observation contains collisions (LINcol) and the other contains no collisions (LINnocol). The plots are made for varying
observation duration l. In the scatter plots the dashed orange line indicates the identity line and the dot-dashed blue line
indicates the linear least squares fitting. In the bottom plots the dashed orange lines indicate the limits of agreement and the
blue dot-dashed line indicates the bias (median of the linearity difference).
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C Theoretical and practical example
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Abstract

Background:
Sperm motility analysis traditionally reports motility
grades (A-D) based on visual observations. Several com-

puter-aided systems for sperm motility analysis exist
but no unifying and platform-independent conversion
exist that recapitulate the manual evaluation.

Objectives:
To evaluate a new integrated and fully automated sys-
tem for sperm motility analysis and to identify conver-

sion parameters recapitulating manual analysis.

Materials and methods:
Acquisition of motility tracks were facilitated by image

cytometry and analysed for durations of 1 and 2s. Man-
ual and automated motility data were acquired from
77 ejaculates. Straight line velocity (VSL) was used for

conversion between kinematic parameters and motility
grading. The VSL grading thresholds were estimated
achieving minimal bias between manual and automatic
read-outs followed by an analysis of temporal, intra-

aliquot, and inter-aliquot variation of the automated
read-outs.
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Results: Using WHO thresholds we observed a signifi-
cant bias (1s: bias -14, p= 0.01; 2s: bias -19, p=001) be-
tween manual and automatic read-outs of AB%. Opti-
mising the thresholds to reflect manual read-outs yielded

a good correlation with non-significant bias for both
AB% and D%. Temporal variation of automatic AB%
was minimal but linearity was significantly affected.

Intra-aliquot variation was slightly higher than tempo-
ral (1-2s: 14 vs. 1s: 4.7, 2s: 3.9) and inter-aliquot varia-
tion was considerable (1s: 31, 2s: 26). Automatic anal-

ysis performed slightly better than the manual when
forcing read-outs to obey the Poisson distribution as
recommended by the WHO.

Discussion:
After optimising the gating thresholds, we observed min-

imal bias between the manual and the automated anal-
ysis. However, the intrinsic variation was still consider-
able. The automated system performed slightly better
than manual analysis and allow technicians to focus

more on sample handling than performing the counting
itself.

Conclusion:
By optimising the VSL-gating thresholds we achieved
comparable results between the automated and man-

ual methods. Linearity was more affected by temporal
variation than AB%.

Keywords CASA · Automatic motility estimation ·
Motility grading

1 Introduction

Today, routine analysis of human semen samples is con-

ducted manually which is very labour intensive. The
examination and analysis of human semen was first
standardised by the World Health Organisation (WHO)

in 1980 [1], and the 5th and the latest edition of the
standard was published in 2010 [15]. The analysis in-
cludes estimating parameters such as sperm concentra-

tion, motility, morphology, and vitality. In this study,
we focus on human sperm motility analysis.

The recommendations/guidelines for sperm motil-
ity grading and analysis has been re-defined multiple
times during the past 30 years. The WHO defined four

motility grades (A-D) based on swimming speed in 1999
[14]. Cooper & Yeung [3], however, discovered that in
practice the differentiation between the four motility
grades was too difficult to estimate for technicians. To

overcome this issue a new definition was introduced
in 2010 having three motility grades based on human-
interpretable descriptions [15]: Progressive motility (PR),

non-progressive motility (NP), and immotility (IM) cor-
responding to grade AB, C, and D, respectively.
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Since the 1980s many have tried to autmate motility
analysis using Computer-Aided Sperm Analysis (CASA),
but many problems still limit the clinical applicabil-
ity of CASA in the routine analysis as described by

van der Horst et al. [8]. Generally all CASA machines
measure the same set of basic sperm kinematic met-
rics for each sperm cell described by the WHO [15,

Section 3.5.2.3, pp.138-139]: curvilinear velocity (VCL),
straight-line velocity (VSL), average path velocity (VAP),
amplitude of lateral head displacement (ALH), linear-

ity (LIN), wobble (WOB), straightness (STR), beat-
cross frequency (ALH), and mean angular displacement
(MAD).

While the WHO grades builds on practical group-

ing of what can be observed by the eye, the CASA
systems measure different kinematic parameters. Cur-
rently, there exists no clearly defined and 100% accu-

rate translation between manual motility grading and
the automatically obtained motility metrics. Cooper &
Yeung [3] based their motility grading on VSL before
the re-definition of motility in 2010. Hidayatullah et

al. [7] used a gating on LIN, and Goodson et al. [6]
reported that proprietary systems currently use a mix-
ture of gates on metrics such as VAP and STR to esti-

mate the motility grading. Mortimer et al. [9] used the
following metric gating for classifying “‘good mucus-
penetrating’ kinematic characteristics”: VAP ≥ 25 µm

and STR ≥ 80 % and ALH ≥ 2.5 µm where ALH is
the amplitude of lateral head displacement meaning
the distance between the average path and the curvi-
linear path. Recently, Goodson et al. [6] developed the

CASAnova algorithm for classifying human-like motil-
ity grades with high accuracy. However, several metrics
used in this work depend on the frame rate [10], and

thus the specific model parameters reported can not be
applied to other experimental setups.

In this study we evaluate a new fully automated
sperm motility analysis system, based on image cytom-

etry, by comparing read-outs of manual and automatic
motility analysis. We optimise the gating thresholds of
the automatic analysis and thoroughly evaluate the de-

gree of variation in read-outs of the automatic motility
analysis.

2 Material and methods

2.1 Semen samples

We collected data for 77 semen samples with varying
sperm motility from January to June 2018. All individ-
uals were patients at the Department of Growth and
Reproduction, Copenhagen University Hospital (GR).

10 of the patients were from infertile couples referred to

GR for routine andrological workup and 67 of the indi-

viduals were referred from general practitioners for the
initial routine assessment of semen quality. The sam-
ples were collected at the department by ejaculating

into a (wide-mouthed) plastic container. The samples
were then allowed to liquefy for at least 15 minutes in an
incubator at 37 ◦C before being manually and automat-
ically analysed as described in the sections below. The

time between ejaculation and incubation was between
1 and 18 minutes with a median of 5 minutes. For this
study we gathered the following information about each

sample: time (min) between ejaculation and incubation,
time (min) between ejaculation and manual analysis,
time (min) between ejaculation and automatic analy-
sis, manually counted motility numbers (AB, C, D) ac-

cording to WHO guidelines (see further details below),
automatically acquired videos of the sperm samples for
further analysis (see below), sperm dilution estimated

by the technician, and sperm concentration measured
using the NC-3000TM image cytometer (ChemoMetec)
as described by Egeberg et al. [4,13].

2.2 Manual motility estimation

The manual motility estimations were conducted ac-

cording to the guidelines described by the WHO [15].
Briefly described, two 10 µL aliquots of the semen sam-
ple were placed on a microscope slide (Menzel Gläser),
and a 22× 22 mm cover slip was placed on top of each

aliquot creating volumes with a depth of approx. 20 µm
[15, pp. 18, Section 2.4.2]. A phase-contrast microscope
with a 20x objective, 40x objective, and a heated stage

pre-heated to 37 ◦C was used to assess motility after the
sample drift had settled. Firstly, the visual appearance
between the two aliquots was checked for consistency,

and the dilution of the sample was estimated using the
20x objective. In case of visual appearance inconsis-
tency two new aliquots were taken and the entire pro-
cess was repeated. Secondly, the sperm motility was

estimated by counting sperm cells and grading them
as progressively motile (AB), non-progressively motile
(C), or immotile (D). 200 sperm cells were counted in

each aliquot (a total of 2x200) and the counts were
checked for consistency. The check consisted of com-
puting the average frequency of each of the three motil-
ity grades. The average frequency of the most frequent

class was chosen and the frequency difference between
the two aliquots was tested based on Table A7.2 of
the WHO manual [15, pp. 259]. This table is based on

the discrete Poisson probability distribution. If the fre-
quency difference was within the allowed margin, the
average motility estimation of each grade was accepted

as the estimated sperm motility of the semen sample.
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Otherwise two new aliquots were taken and the pro-
cedure repeated. In our study only 2x100 cells were
counted due to limitations on lab technician time, but
the quality control criteria for having counted 2x200

cells were used. This choice meant that samples were
counted faster, but the stricter limits of agreement be-
tween aliquot counts were maintained and thus the qual-

ity of the analysis was maintained. In theory, counting
only 2x100 cells imply that more samples would have to
be re-counted due to failing quality control. In practice,

the approach was used at GR prior to our study with
a very low re-counting frequency leading to a signifi-
cantly shorter analysis time. The laboratory at GR has
taken part in the ESHRE semen analysis quality con-

trol program for several years. This entails alignment
of manual motility estimates across laboratories.

2.3 Automatic motility estimation

The automatic motility estimation was performed in
two rounds with slight differences. Sample preparation

differed slightly between the the two rounds of investi-
gation whereas video acquisition and analysis was con-
ducted the same way for all samples.

The first 53 samples were prepared as follows: A
small aliquot (approx. 60 µL) of the semen sample was
transferred to an adjacent lab for processing. The ali-
quots were kept at 37 ◦C for varying time periods before

processing. For samples with an estimated dilution of
1:20 or lower, 10 µL of the raw semen was used. Sam-
ples with higher dilution estimate the raw semen was di-

luted using human tubluar fluid (HTF+) medium as de-
scribed by Egeberg Palme et al.[5] to achieve a dilution
of approximately 1:20. Two times 10 µL were placed
separately on a microscope slide (Menzel Gläser), cov-

ered by a 22× 22 mm cover slip each and loaded into
an XcytoR© 10 image cytometer (XC10, ChemoMetec)
and video acquisition started within a few minutes.

The last 24 samples were prepared as follows: Two
10 µL aliquots were taken from each sample at the same
time where aliquots for manual analysis were drawn

and placed on a microscope slide and covered by a
22× 22 mm cover slip avoiding air bubbles. The aliquots
were examined for consistency and drift under a phase-
contrast microscope with a 20x objective. If the aliquots

drifted too much or the samples were too inconsistent,
two new aliquots were taken and the process repeated.
The aliquots were loaded into an XC10 and video ac-

quisition was conducted once the observable drift had
disappeared.

We conducted the video acquisition by capturing
videos (1920× 1440 pixels) of 4 seconds at a rate of 25

frames per second for up to 15 views of each aliquot.

Each view spans an area of 435.6× 326.7 µm. This pro-

cess took approx. 5 minutes per aliquot. After acquisi-
tion we manually registered views containing air bub-
bles, big lumps of agglutinated sperm cells, or sample

drift, and removed these from the subsequent analy-
sis. The videos were digitally analysed as described in
detail by Nissen et al. [12] for both 1- and 2-second
analysis. In brief, the analysis of videos followed these

steps: first, sperm cells are identified in each frame using
image segmentation [11]. Second, the sperm cell loca-
tions are linked across frames to form tracks through-

out the videos. Third, the tracks are filtered to achieve
an unbiased estimate of the motility metrics. The out-
come of the analysis is a list of sperm tracks for each of
which the standard CASA metrics are computed as de-

scribed by the WHO [15, Section 3.5.2.3, pp. 138-139].
We utilise the linearity (LIN) and straight line speed
(VSL) metrics in our work.

The motility grading definition was changed from
the 4th to the 5th version of the WHO manual as de-
scribed in the introduction. The new definition is math-

ematically very vaguely formulated and follows the in-
tuition of motility grading made by humans, whereas
the old definition very precisely described the grading
from a mathematical point of view. The motility grad-

ing of the 4th edition of the WHO manual [14, pp. 9-10]
was defined as follows:

a) “rapid progressive motility (i.e., ≥ 25 µm/s at 37 ◦C
and 20 µm/s at 20 ◦C; note that 25 µm is approx-
imately equal to five head lengths or half a tail

length);
b) slow or sluggish progressive motility;
c) nonprogressive motility (< 5 µm/s);
d) Immotility.”

The sperm swimming speed is not further defined, but
as mentioned earlier, VSL or VAP is often used. We

chose to use VSL for motility grading since it is shown
to be independent of frame rate [10] and is computed
the same way across all CASA systems as opposed to

VAP which fulfils neither of these properties. In our
work we mainly focus on the percentage of progressively
motile sperm, which we defined as the percentage of

cells in categories a) and b) and abbreviated as motility
grading AB.

The three motility grades progressive motility (AB),
non-progressive motility (C) , and immotility (D) are

separated by placing two gating thresholds on VSL: the
AB threshold tAB and the D threshold tD. Tracks with
VSL ≥ tAB are classified as AB, tracks with tAB >

VSL ≥ tD are classified as C, and tracks with VSL <
tD are classified as D. The AB threshold is defined
as tAB = 5 µm/s according to the motility definition
shown above, whereas the D threshold is not defined.
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2.4 Agreement between repeated measurements

The quality control conducted during manual motil-

ity analysis is described by the WHO [15]. It is based
on a 95% confidence interval on the Poisson distribu-
tion. Specifically, the difference d = |p1 − p2| between
probability 1 p1 and probability 2 p2 has a limit of

1.96
√

2p̄(100−p̄)
N where p̄ = p1+p2

2 and N is the number
of objects counted in each aliquot. In the automated
analysis, we set N to the average of the two counts in
case of estimates based on different counts.

2.5 Comparison of manual and automatic motility

We compared the manual and automatic motility scores
based on the average of the two aliquots of each sample.
The comparison was conducted in two rounds. First,

we compared the AB% based on the AB threshold de-
fined by WHO: tAB = 5 µm/s Second, we measured and
minimised the bias between the manual and automatic
AB% by varying the AB threshold and the bias between

the manual and automatic D% by varying the D thresh-
old. Using the new thresholds we compared the manual
and new automatic AB% and D%. Only samples with

less than an hour between the manual and automatic
motility analysis and at least 100 tracked sperm cells in
each aliquot were included in the threshold estimation.

Sperm sample motility declines over time, but the
decline varies from sample to sample. We therefore split
the comparisons into three parts depending on the time

(hours) between the manual and automatic motility
analysis ∆t. Analyses with low ∆t are expected to show
a high AB% inter-analysis correlation, whereas analy-

ses with high ∆t are expected to reflect the motility
decline variation.

2.6 Temporal variation

We estimated the temporal variation of the metrics

measured by the automatic analysis within each aliquot
by collecting the tracks from all views of the same aliquot
and calculating the AB% for each aliquot at non-over-
lapping time steps for both 1 and 2 seconds.

2.7 Intra-aliquot variation

The intra-aliquot variation was estimated by splitting
the views of each aliquot into two sets of views (view
splits) with as equal a total track number as possible.

The AB% of each set of views from the same aliquot
was compared.

2.8 Inter-aliquot variation

To estimate the inter-aliquot variation we compared the

AB% of aliquot 1 and 2 independently for automatic
and manual motility analysis. For the automatic anal-
ysis we conducted the comparison for both the subset
of samples that lives up to the quality control and for

all samples.

2.9 Statistical analysis

We use Bland-Altman (BA) plots [2] to investigate the
bias and limits of agreement (LoA)/coefficient of re-
producibility between two measures of motility, and we

use the Major axis regression (MA) [16] for estimat-
ing the linear relationship between the two measures.
The resulting linear relationship equation y = ax + b,

the Pearson r-value squared r2, and the number of data-
points n included in the analysis is shown on each of the
scatter plots. We define the coefficient of reproducibil-
ity as the 95% confidence interval for the difference be-

tween the two methods being compared. For normally
distributed differences we define RPC = 1.96σ, where
σ is the standard deviation of the differences, and for

other distributions we use the non-parametric equiva-
lent RPCnp = 1.45IQR, where IQR is the inter-quantile
range (Q3 − Q1) of the differences. All statistics and

plots are created in MATLABR© 2016b1.

3 Results

3.1 Comparison with manual motility

Manual counting is currently the method recommended

by the WHO to assess motility. We therefore aimed
to compare our newly developed method (Nissen et al.
[12]) for motility assessment to manually determined

measurements.

First, we compared the manual and automatic anal-

ysis using the WHO defined thresholds. Fig. 1 shows
scatter plots for the comparison between manual and
automatic motility analysis using the WHO defined AB

threshold. The measurements we compared were aver-
ages of the two aliquots of each sample for both the
manual and automatic methods. The plots are shown
for both 1-second analysis (Fig. 1a-c) and 2-second anal-

ysis (Fig. 1d-f) and for the sample criteria ∆t ≥ 1 (Fig.
1a, 1d), ∆t > 1 (Fig. 1b, 1e), and all ∆t (Fig. 1c,

1 MA code: http://www3.mbari.org/Products/

Matlab_shell_scripts/regress/lsqfitma.m, BA code:
https://se.mathworks.com/matlabcentral/fileexchange/

45049-bland-altman-and-correlation-plot
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1f). Only samples with automatic analysis of at least
100 sperm cell tracks in both aliquots (2x100) were in-
cluded. We observed a linear correlation (r2 = 0.55 and
r2 = 0.31 for 1- and 2-second analysis, respectively)

with a few outliers for samples with ∆t ≤ 1 and with a
bias towards lower AB% for automatic analysis. Sam-
ples with ∆t > 1 scattered more towards lower AB%

for the automatic analysis but with a high amount of
observations within the same correlation range as for
∆t ≤ 1. These observations were similar for both 1-

and 2-second analysis.

Fig. 2 shows BA plots of the data shown above with
∆t ≤ 1. The 1-second analysis from n = 24 samples

has RPCnp = 17, and a bias of -13.7 with a p-value
of 0.0122. The 2-second analysis from n = 20 samples
has RPCnp = 18, and a bias of -19.0 with a p-value of

0.0011.

Second, we investigated the bias as a function of
the AB and D threshold definitions. We minimised the

bias and compared the resulting automatic method to
manual analysis. Fig. 3 shows the bias and RPCnp as
functions of the AB threshold (Fig. 3a) and D thresh-

old (Fig. 3b). The figures show results for both 1- and
2-second analysis. Generally, the AB% bias decreased
as the AB threshold increased (0-7) and the RPCnp de-
creased slightly from approx. 30 to 20. When varying

the AB threshold the RPCnp was nearly identical for 1-
and 2-second analysis whereas the bias was higher for 1-
than 2-second analysis. When varying the D threshold

both the D% bias and RPCnp were slightly lower for
1- than 2-second analysis. We identified the thresholds
yielding non-significant biases closest to zero which are

shown in table 1. Using these thresholds we computed
the automatic AB% and compared against the man-
ual method. These comparisons are shown in Fig. 4.
In general we observed a correlation along the identity

line with varying degree of scattering. After the opti-
misation we achieved higher RPCnp and slight changes
of r2-values in both directions. Samples with ∆t ≤ 1

in general showed smaller signs of scattering than sam-
ples with ∆t > 1. Both the 1- and 2-second analysis had
two “outlier” samples which were automatically anal-
ysed 0.4 and 0.57 hours (24 and 34 minutes) after the

manual motility was estimated.

While the comparison between manual and auto-

mated analysis were affected by the chosen AB and
D threshold we tried to compare only the fraction of
immotile cells. Fig. 5 shows scatter plots of D% (im-

motile sperm cells) with the optimised D thresholds for
1- and 2-second analysis for all ∆t. These plots indi-
cate a linear correlation with a large amount of varia-
tion yielding r2 = 0.29 and r2 = 0.21 respectively with

non-significant biases of -0.71 and -0.14.

Threshold Info 25 frames 50 frames

AB

Threshold 1.80 1.10
Bias 0.2 0.3
Bias p 0.70 0.86
RPCnp 22.8 25.7

D

Threshold 1.05 0.75
Bias 0.6 0.3
Bias p 0.99 0.90
RPCnp 26.1 27.2

Table 1 AB/CD and C/D optimal threshold information for
25 and 50 frames analyses.

In summary, comparing automated with manual mo-
tility seems highly affected by how the automated mea-
surements are translated into manual ABCD categories.

With optimised thresholds we obtain very good linearly
correlated graphs for AB% and D% between manual
and automatic analysis but with an increasing amount
of variation for samples with high ∆t. The optimised

AB and D thresholds reported are used throughout the
remaining experiments.

3.2 Temporal variation

Automated motility assessment allows us to investigate
the variation in read-outs as a function of the observa-
tion duration. We measure the stability of the read-outs

for consecutive read-outs of the same observation dura-
tion and the relationship between read-outs of different
observation durations.

Fig. 7 shows the temporal variation of AB% for each
aliquot of seconds 1 and 2 (a) and seconds 1-2 and 3-

4 (b). We observed a near linear relationship of both
distributions with r2 = 0.99 and r2 = 0.97 and limits
of agreement of 4.7 and 3.9 respectively. Table 2 shows
an overview of bias and RPCnp for different combina-

tions of 1- and 2-second intervals for which LIN and
AB% was calculated. Notice there was a bias between
1 and 2 seconds for LIN with a p-value of 0.03-0.04 but

not for AB%. RPCnp was very similar between 1- and
2-second combinations for LIN whereas it was slightly
lower for 2-second combinations for AB%. There is like-

wise a larger RPCnp for 1- and 2-second combinations
compared to only combining 1 or 2 seconds for both
LIN and AB%. This implies that the choice between 1
and 2 seconds depends on the metric being measured.

The LIN bias is significant between 1 and 2 second du-
rations but the AB% bias is not significant. In general,
very little difference was observed for AB% as a func-

tion of observation duration. AB% RPCnp is slightly
smaller for 2 second than for 1 second durations.
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(a) 1 second, ∆t ≤ 1
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(b) 1 second, ∆t > 1
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(c) 1 second, all ∆t
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(d) 2 seconds, ∆t ≤ 1
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(e) 2 seconds, ∆t > 1
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Fig. 1 Scatter plot of AB% from avg. manual and avg. automatic analysis. Plots are shown for 1- and 2-second analysis and
three splits of samples based on time between measurements ∆t. The exact time between the automated and manual analysis
is indicated by the colour scale. The size of the points indicates average number of tracks in the automatic analysis ranging
from 104 to 1593.

LIN AB%
Time 1 (sec (frames)) Time 2 (sec (frames)) Bias Bias p RPCnp Bias Bias p RPCnp

1 (1-25) 2 (26-50) 0.0002 1.00 0.0376 0.18 0.97 4.74
1 (1-25) 3 (51-75) −0.0007 0.91 0.0354 0.15 0.96 5.46
1 (1-25) 4 (76-100) −0.0031 0.86 0.0345 −0.16 0.93 4.41
2 (26-50) 3 (51-75) 0.0001 0.87 0.0324 −0.11 1.00 5.05
2 (26-50) 4 (76-100) −0.0016 0.84 0.0374 −0.21 0.87 4.04
3 (51-75) 4 (76-100) −0.0001 0.97 0.0334 −0.38 0.85 4.38
1 (1-25) 3-4 (51-100) −0.0413 0.03 0.0472 2.10 0.27 8.01
2 (26-50) 3-4 (51-100) −0.0351 0.03 0.0411 2.13 0.30 7.48
3 (51-75) 1-2 (1-50) −0.0368 0.04 0.0424 2.50 0.30 7.72
4 (76-100) 1-2 (1-50) −0.0362 0.03 0.0463 2.44 0.31 8.16
1-2 (1-50) 3-4 (51-100) 0.0013 0.99 0.0369 0.17 0.92 3.92

Table 2 Summary of Bland-Altman analysis for combinations of selected non-overlapping 1- and 2-second timeslots. Bias
p-values of less than 0.05 are highlighted in bold indicating a 95% significance level.

3.3 Intra-aliquot variation

We subsequently investigate the variation in read-outs

within each aliquot. The experiment gives an estimate
of the confidence we have in the read-outs from the
automated method for semen under the same physical

conditions and handled exactly the same. Views from
each aliquot were split into two groups with a close to

equal amount of tracked sperm cells and the resulting
motility estimations were compared.

Fig. 8 shows BA plots for the AB% variation across
the view groups for 1 (Fig. 8a) and 2 (Fig. 8b) seconds.

Only samples with at least 100 tracked sperm cells in
each view split have been included for reliable estimates
of AB%. The distribution follows a general linear ten-

dency with few outliers. RPCnp is the same for 1 (14)
and 2 (14) second videos and is higher than the tempo-
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Fig. 2 Bland-Altman plot of AB% from avg. manual and
avg. automatic analysis. Samples with at least 2x100 sperm
cell tracks are included.
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Fig. 3 Plots of bias (blue) and RPCnp(orange) measured
on samples with ∆t ≤ 1 when varying the AB (a) and D
(b) thresholds within 0–7 µm/s with steps of 0.05 µm/s. Each
plot shows data for analysis of both 25 frames (line) and 50
frames (dashed line).

ral variation (4.7 and 3.9 for 1- and 2-second analysis,
respectively).

3.4 Inter-aliquot variation

The manual WHO motility analysis procedure dictates
that two aliquots should be scored and compared to
increase the certainty of the analysis. We estimate the

variation of read-outs from multiple aliquots of semen
handled according to the same protocol for both auto-
matic and manual analysis.

The BA plots for the inter-aliquot variation estima-
tion of AB% are shown in Fig. 14 and 12 for the au-
tomatic and manual motility analysis respectively. The
automatic results are shown for both 1 and 2 seconds as

well as two different inclusion criteria: samples having
a minimum of 100 sperm tracks in each aliquot (Fig.
14 a-b) and samples living up to the same quality con-

trol criteria as the manual assessments (Fig. 14 c-d).
Similar plots are found in the supplementary material
for motility grades C and D. The plots for automatic
motility estimation (Fig. 14 a-b) show a linear corre-

lation for 59 and 37 1- and 2-second analysis samples,
respectively. For the remaining 18 and 3 1- and 2-second
analysis, respectively, we see a considerably lower motil-

ity in aliquot 2 compared to aliquot 1. Samples con-
forming to similar quality control criteria as manually
determined read-outs naturally show a very good lin-

ear correlation with r2 values of 0.97 and RPCnpof 10
and 7.0 for 1- and 2-second analysis respectively (Fig.
14 c-d). The manual analysis (Fig. 12) shows a linear
correlation with r2 = 0.92 and a RPCnp of 9.1. Notice

the difference in the number of samples included after
the quality control check between automatic (18 and 14
for 1- and 2-second analyses, respectively) and manual

(77) motility analysis.

Take together, the observed variation within each
sample was considerable and when forcing read-outs

to obey the Poisson distribution automated evaluation
performed slightly better than manual evaluation.

4 Discussion

4.1 Comparison with manual motility

Due to the large effect of time on motility assessments
we divided our data into two categories when compar-

ing with the manual analysis: Correlation for samples
with less than one hour between the analyses and with
more than one hour between the analyses. Comparison

of both these sub-parts of the dataset showed correla-
tions as expected: Analyses that were conducted tem-
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Fig. 4 Scatter plot of AB% from avg. manual and avg. automatic analysis. Plots are shown for 1- and 2-second analysis and
three splits of samples based on time between measurements ∆t. The exact time between the automated and manual analysis
is indicated by the colour scale. The size of the points indicates average number of tracks in the automatic analysis ranging
from 104 to 1593.
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Fig. 5 Scatter plot of D% from avg. manual and avg. auto-
matic analysis for 1- and 2-second analysis. The marker size
indicates average number of tracks in the automatic analysis
ranging from 104 to 1593.

porally close to each other had a good linear correlation
with a few outliers. The analyses conducted temporally

further apart were scattered more towards lower motil-
ities for the last (automatic) analysis due to the tempo-
ral decrease of motility affecting samples with varying
effect.

The temporally close analyses had a bias towards

lower motility for the automatic analysis. We therefore
adjusted the VSL gating parameters to minimise the
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Fig. 6 Bland-Altman plot of D% from avg. manual and avg.
automatic analysis with optimised D threshold. Samples with
at least 2x100 sperm cell tracks are included.

bias between the two methods for samples with ∆t ≤ 1

making our automatic analysis reflect the manual anal-
ysis. The optimisation of bias indicated, that we needed
different thresholds for 1- and 2-second analysis. This
difference could be caused by differences in metric read-

out (VSL) for the single sperm cell caused by the dif-
ference in duration as Nissen et al. [12] observed for
LIN. This argument is supported by the bias in AB%

observed between 1- and 2-second analysis, though the
bias was non-significant.
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Fig. 7 Bland-Altman plots of AB% computed based on non-
overlapping framesubsets for the same aliquots.
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(b) 2 seconds (frames 1-50)

Fig. 8 Bland-Altman plot of AB% computed based on view
splits 1 and 2 for automatic counting.

Having statistically comparable measurements be-
tween manual and automatic analysis, we could change

to using the automatic analysis instead of the manual.
Theoretically, there is one big advantage of choosing
CASA over manual analysis: sperm cell sample size.

When conducting motility estimation we estimate the
global motility distribution in a semen sample from a

small subset of observed sperm cells. Assume we have a
method that accurately estimates the motility of a sin-
gle sperm cell. The accuracy of the global motility esti-
mate increases as our sperm cell sample size increases.

With CASA we can increase the sperm cell sample size
compared to the manual analysis without increasing the
laboratory technician hands-on time, thereby also in-

creasing the global motility estimate accuracy.

4.2 Temporal variation

Our data on temporal variation verified our previous
findings of a LIN bias between 1- and 2-second analy-
sis as reported in Nissen et al. [12], whereas there was

no significant bias for AB% between 1- and 2-second
analysis. The RPCnp for AB% was bigger for 1- than
2-second analysis, which was not the case for LIN. We

need to be careful with the choice of metric and de-
sign of data analysis due to these differences in metric
behaviour/dependencies.

Our data also showed the existence of temporal vari-

ation in the metrics we computed limiting the certainty
of each automatic motility estimation. Briefly explained
we are trying to estimate the global motility of a semen

sample by sampling the motion of a subset of the sperm
cells in the sample from a short duration. Even small
abrupt behaviour expressed by a single sperm cell has

the potential to alter the read-outs of very specific and
precise metrics. This is however also the case with man-
ual assessment of motility.

4.3 Intra-aliquot variation

The results of the intra-aliquot variation experiment

indicated, that the variation across subsets of views in
the same aliquot is larger than the temporal variation
in the full set of views. Some of the increased variation

most likely originates from estimating the motility dis-
tribution from half the number of sperm cell tracks de-
creasing the accuracy of the estimate. We only included
aliquots/samples with view splits having at least 2x100

tracked sperm cells in order to maintain a decent level
of accuracy of the estimated motility. Another part of
the increased variation might come from inconsistent

views due to a non-uniform spatial sperm cell distribu-
tion. Our view splits were made based on sperm track
count in each view, splitting up the views such that we

achieved a minimal difference between the total number
of cells in each subgroup. In case of inconsistent motility
of views this could lead to inconsistency of motility in
the subgroups. For example: One subgroup could con-

sist of one view with a large number of sperm cells with
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(d) 2 seconds, quality control

Fig. 9 Bland-Altman plots for the two aliquots AB1 and AB2 for automatic counting for 1 and 2 seconds. Two different
sample inclusion criteria are used: samples with minimum 2x100 sperm cell tracks and samples with aliquots living up to the
quality control criteria.
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Fig. 10 Bland-Altman plot of the two aliquots AB1 and
AB2 for manual counting of 2x100 sperm cells.

high motility, and the other subgroup could consist of

a large number of views each with fewer and less motile
sperm cells.

4.4 Inter-aliquot variation

The inter-aliquot variation experiments with relaxed in-

clusion criteria (2x100 tracks) clearly indicated incon-
sistencies between a subgroup of the samples while the
remaining samples showed a good inter-aliquot corre-

lation. The subgroup of inconsistent samples all had a
higher motility in aliquot 1 than 2 (except one). Aliquot
1 was always the first aliquot being captured, and the
subgroup therefore indicated a systematic problem with

our setup affecting the motility analysis of aliquot 2 for
certain samples. These problems could include: sam-

ple drift, temperature changes, pipette handling, dilu-

tion technique, natural motility decrease, and mixing
of samples.

Adding the quality control criteria made us filter
away a very high number of the samples (59/77 and

26/40 for 1- and 2-second analyses respectively), for
which new analysis would have to be conducted if we
were to use the same criteria as the manual estima-

tion. The remaining samples were nicely correlated as
expected. The automatic analysis is able to analyse a
higher number of sperm cells than the manual analysis.

This gives us a more strict quality control criteria due
to the definition of the Poisson distribution. We could
ask, if the model for quality control is reasonable given
the amount of both temporal and intra-aliquot varia-

tion? Do we risk throwing away valuable information in
the process of trying to fit the data to our model?

The manual analysis with quality control had a slight-

ly higher RPCnp compared to the automatic analy-
sis. This result was expected, as the quality control
automatically excludes all results that would lead to
higher variance between aliquots and that the auto-

matic method has better counting statistics.

The automatic system requires no interaction dur-
ing analysis freeing up the time spent on counting by

the technician. This will allow the technician to fo-
cus on sample handling minimising the intrinsic vari-
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ation due to sample drift, pipette handling, and non-
representative aliquots.

One of the reasons for differences between aliquots
could be caused by sample handling. It can be diffi-
cult to get two consistent aliquots from a semen sample

if the semen is inconsistent (lumpy) or if it has high
viscosity. Drift can also be very difficult to avoid in
combination with avoiding air bubbles (these will cre-

ate local drift). In order to avoid air bubbles one can let
the cover slip touch the droplet at an acute angle from
the side before dropping the rest of the cover slip onto
the droplet. This technique has a tendency of creating

a global drift due to the angulation of the cover slip.
The issue with drift is, that immotile cells move thus
making it difficult to get a good estimate of the actual

motility distribution. Unfortunately the current auto-
matic analysis does not handle any level of drift whereas
manual analysis is more robust against a light amount

of drift. The issue with handling drift automatically is
that drift can be very local in non-consistent samples
and that immotile cells may stick to the glass slide or
cover slip. Therefore we cannot estimate a global drift

and transform all tracked paths accordingly. A differ-
ent option recommended by WHO [15, pp. 21, Section
2.5] is to wait for the sample to stop drifting. We fol-

lowed this recommendation in case of light drift, but
if a heavy drift was observed, the cells would typically
drift out from underneath the cover slip before the drift
settled. This left very few sperm cells to be observed,

and we generally observed a shift towards lower motil-
ity in the remaining cells due to an overrepresentation
of immotile cells sticking to the slide or cover slip.

4.5 Duration of analysis

We conducted all our experiments for both 1- and 2-

second analysis. In general, the 2-second analysis ex-
cludes more tracks than the 1-second analysis in order
to obtain an unbiased motility estimate as described by

Nissen et al. [?]. This caused fewer sample to live up to
the requirement of having a least 2x100 sperm in our
experiments after analysis. In order to avoid this issue,
it would be advisable to capture more views of the sam-

ples ensuring a sufficient amount of sperm cell tracks to
base the analysis on. We observed a smaller temporal
variation for 2- than 1-second analysis indicating that

we obtain better/more consistent statistics for the pop-
ulation when observing it for 2 seconds rather than 1
second. In conclusion, 2-second analysis achieved the
most consistent results with the added cost of having

to capture more views than for 1-second analysis.
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Fig. 13 Bland-Altman plots for the two aliquots C1 and C2 for automatic counting for 1 and 2 seconds. Two different sample
inclusion criteria are used: samples with minimum 2x100 sperm cell tracks and samples with aliquots living up to the quality
control criteria.
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